IIabm/firm.py

295 lines
14 KiB
Python
Raw Normal View History

2023-02-24 15:16:28 +08:00
import agentpy as ap
import math
2023-02-24 15:16:28 +08:00
2023-02-24 17:53:55 +08:00
class FirmAgent(ap.Agent):
2023-03-14 18:53:00 +08:00
def setup(self, code, name, type_region, revenue_log, a_lst_product):
2023-02-24 15:16:28 +08:00
self.firm_network = self.model.firm_network
2023-02-27 22:02:46 +08:00
self.product_network = self.model.product_network
2023-02-24 17:53:55 +08:00
2023-06-18 21:03:11 +08:00
# self para
2023-02-24 17:53:55 +08:00
self.code = code
self.name = name
self.type_region = type_region
2023-06-18 20:27:23 +08:00
self.ori_size = revenue_log
self.size = revenue_log
self.dct_prod_up_prod_stat = {}
2023-06-18 21:03:11 +08:00
self.dct_prod_capacity = {}
2023-06-18 21:03:11 +08:00
# para in trial
self.dct_n_trial_up_prod_disrupted = {}
self.dct_cand_alt_supp_up_prod_disrupted = {}
2023-02-27 22:02:46 +08:00
self.dct_request_prod_from_firm = {}
2023-06-18 21:03:11 +08:00
# external variable
2023-06-14 18:00:08 +08:00
self.is_prf_size = self.model.is_prf_size
self.is_prf_conn = bool(self.p.prf_conn)
2023-06-18 18:15:37 +08:00
self.str_cap_limit_prob_type = str(self.p.cap_limit_prob_type)
self.flt_cap_limit_level = float(self.p.cap_limit_level)
2023-05-15 18:18:41 +08:00
self.flt_diff_new_conn = float(self.p.diff_new_conn)
2023-06-14 18:00:08 +08:00
self.flt_crit_supplier = float(self.p.crit_supplier)
2023-05-15 18:18:41 +08:00
2023-06-18 21:03:11 +08:00
# init dct_prod_up_prod_stat (self para)
for prod in a_lst_product:
self.dct_prod_up_prod_stat[prod] = {
# (Normal / Affected / Disrupted / Removed, time step)
2023-06-18 21:03:11 +08:00
'status': [('N', 0)],
# have or have no supply
'supply': dict.fromkeys(prod.a_predecessors(), True)
}
# init extra capacity (self para)
for product in a_lst_product:
2023-06-18 18:15:37 +08:00
# init extra capacity based on discrete uniform distribution
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
"cap_limit_prob_type other than uniform, normal"
if self.str_cap_limit_prob_type == 'uniform':
extra_cap_mean = \
2023-06-18 20:27:23 +08:00
self.size / self.flt_cap_limit_level
2023-06-18 18:15:37 +08:00
extra_cap = self.model.nprandom.integers(extra_cap_mean-2,
extra_cap_mean+2)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
# print(firm_agent.name, extra_cap)
self.dct_prod_capacity[product] = extra_cap
elif self.str_cap_limit_prob_type == 'normal':
extra_cap_mean = \
2023-06-18 20:27:23 +08:00
self.size / self.flt_cap_limit_level
2023-06-18 18:15:37 +08:00
extra_cap = self.model.nprandom.normal(extra_cap_mean, 1)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
# print(firm_agent.name, extra_cap)
self.dct_prod_capacity[product] = extra_cap
def remove_edge_to_cus_affect_cus_up_prod(self, disrupted_prod):
# para remove_product is the product that self got disrupted
2023-03-14 18:53:00 +08:00
lst_out_edge = list(
2023-02-27 22:02:46 +08:00
self.firm_network.graph.out_edges(
self.firm_network.positions[self], keys=True, data='Product'))
2023-03-14 18:53:00 +08:00
for n1, n2, key, product_code in lst_out_edge:
if product_code == disrupted_prod.code:
# remove edge to customer
2023-02-27 22:02:46 +08:00
self.firm_network.graph.remove_edge(n1, n2, key)
# customer up product affected conditionally
2023-02-27 22:02:46 +08:00
customer = ap.AgentIter(self.model, n2).to_list()[0]
2023-03-14 18:53:00 +08:00
lst_in_edge = list(
2023-02-28 16:56:12 +08:00
self.firm_network.graph.in_edges(n2,
keys=True,
data='Product'))
2023-03-14 18:53:00 +08:00
lst_select_in_edge = [
edge for edge in lst_in_edge
if edge[-1] == disrupted_prod.code
2023-02-28 16:56:12 +08:00
]
prob_lost_supp = math.exp(-1 * self.flt_crit_supplier *
len(lst_select_in_edge))
2023-03-14 18:53:00 +08:00
if self.model.nprandom.choice([True, False],
p=[prob_lost_supp,
1 - prob_lost_supp]):
customer.dct_n_trial_up_prod_disrupted[disrupted_prod] = 0
for prod in customer.dct_prod_up_prod_stat.keys():
if disrupted_prod in \
customer.dct_prod_up_prod_stat[
prod]['supply'].keys():
customer.dct_prod_up_prod_stat[
prod]['supply'][disrupted_prod] = False
customer.dct_prod_up_prod_stat[
prod]['status'].append(('A', self.model.t))
print(self.name, disrupted_prod.code, 'affect',
customer.name, prod.code)
def seek_alt_supply(self, product):
# para product is the product that self is seeking
print(f"{self.name} seek alt supply for {product.code}")
if self.dct_n_trial_up_prod_disrupted[
product] <= self.model.int_n_max_trial:
if self.dct_n_trial_up_prod_disrupted[product] == 0:
# select a list of candidate firm that has the product
self.dct_cand_alt_supp_up_prod_disrupted[product] = \
self.model.a_lst_total_firms.select([
firm.is_prod_in_current_normal(product)
for firm in self.model.a_lst_total_firms
])
if self.dct_cand_alt_supp_up_prod_disrupted[product]:
2023-06-10 18:59:38 +08:00
# select based on connection
lst_firm_connect = []
2023-06-14 18:00:08 +08:00
if self.is_prf_conn:
2023-06-10 20:56:34 +08:00
for firm in \
self.dct_cand_alt_supp_up_prod_disrupted[product]:
2023-06-10 20:56:34 +08:00
out_edges = self.model.firm_network.graph.out_edges(
self.model.firm_network.positions[firm], keys=True)
in_edges = self.model.firm_network.graph.in_edges(
self.model.firm_network.positions[firm], keys=True)
lst_adj_firm = []
lst_adj_firm += \
[ap.AgentIter(self.model, edge[1]).to_list()[
0].code for edge in out_edges]
lst_adj_firm += \
[ap.AgentIter(self.model, edge[0]).to_list()[
0].code for edge in in_edges]
if self.code in lst_adj_firm:
lst_firm_connect.append(firm)
2023-06-10 18:59:38 +08:00
if len(lst_firm_connect) == 0:
# select based on size or not
2023-06-14 18:00:08 +08:00
if self.is_prf_size:
lst_size = \
[size for size in
self.dct_cand_alt_supp_up_prod_disrupted[
2023-06-18 20:27:23 +08:00
product].size]
lst_prob = [size / sum(lst_size)
for size in lst_size]
select_alt_supply = self.model.nprandom.choice(
self.dct_cand_alt_supp_up_prod_disrupted[product],
p=lst_prob)
else:
select_alt_supply = self.model.nprandom.choice(
self.dct_cand_alt_supp_up_prod_disrupted[product])
2023-06-10 18:59:38 +08:00
elif len(lst_firm_connect) > 0:
# select based on size of connected firm or not
2023-06-14 18:00:08 +08:00
if self.is_prf_size:
lst_firm_size = \
2023-06-18 20:27:23 +08:00
[firm.size for firm in lst_firm_connect]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect,
p=lst_prob)
else:
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect)
print(
f"{self.name} selct alt supply for {product.code} "
f"from {select_alt_supply.name}"
)
assert select_alt_supply.is_prod_in_current_normal(product), \
2023-02-27 22:02:46 +08:00
f"{select_alt_supply} \
does not produce requested product {product}"
if product in select_alt_supply.dct_request_prod_from_firm.\
keys():
select_alt_supply.dct_request_prod_from_firm[
product].append(self)
else:
select_alt_supply.dct_request_prod_from_firm[product] = [
self
]
print(
select_alt_supply.name, 'dct_request_prod_from_firm', {
key.code: [v.name for v in value]
for key, value in
select_alt_supply.dct_request_prod_from_firm.items()
})
2023-02-27 22:02:46 +08:00
self.dct_n_trial_up_prod_disrupted[product] += 1
2023-02-27 22:02:46 +08:00
def handle_request(self):
print(self.name, 'handle_request')
2023-03-14 18:53:00 +08:00
for product, lst_firm in self.dct_request_prod_from_firm.items():
2023-03-06 22:38:57 +08:00
if self.dct_prod_capacity[product] > 0:
2023-03-14 18:53:00 +08:00
if len(lst_firm) == 0:
2023-03-06 22:38:57 +08:00
continue
2023-03-14 18:53:00 +08:00
elif len(lst_firm) == 1:
self.accept_request(lst_firm[0], product)
elif len(lst_firm) > 1:
2023-03-06 22:38:57 +08:00
# handling based on connection
2023-03-16 16:08:45 +08:00
lst_firm_connect = []
2023-06-14 18:00:08 +08:00
if self.is_prf_conn:
2023-06-10 20:56:34 +08:00
for firm in lst_firm:
out_edges = \
self.model.firm_network.graph.out_edges(
self.model.firm_network.positions[firm],
keys=True)
in_edges = \
self.model.firm_network.graph.in_edges(
self.model.firm_network.positions[firm],
keys=True)
lst_adj_firm = []
lst_adj_firm += \
[ap.AgentIter(self.model, edge[1]).to_list()[
0].code for edge in out_edges]
lst_adj_firm += \
[ap.AgentIter(self.model, edge[0]).to_list()[
0].code for edge in in_edges]
if self.code in lst_adj_firm:
lst_firm_connect.append(firm)
2023-03-16 16:08:45 +08:00
if len(lst_firm_connect) == 0:
# handling based on size or not
2023-06-14 18:00:08 +08:00
if self.is_prf_size:
lst_firm_size = \
2023-06-18 20:27:23 +08:00
[firm.size for firm in lst_firm]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_customer = \
self.model.nprandom.choice(lst_firm,
p=lst_prob)
else:
select_customer = \
self.model.nprandom.choice(lst_firm)
2023-03-16 16:08:45 +08:00
self.accept_request(select_customer, product)
2023-06-10 18:59:38 +08:00
elif len(lst_firm_connect) > 0:
# handling based on size of connected firm or not
2023-06-14 18:00:08 +08:00
if self.is_prf_size:
lst_firm_size = \
2023-06-18 20:27:23 +08:00
[firm.size for firm in lst_firm_connect]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_customer = \
self.model.nprandom.choice(lst_firm_connect,
p=lst_prob)
else:
select_customer = \
self.model.nprandom.choice(lst_firm_connect)
2023-03-16 16:08:45 +08:00
self.accept_request(select_customer, product)
2023-02-27 22:02:46 +08:00
def accept_request(self, down_firm, product):
# para product is the product that self is selling
2023-06-11 15:06:50 +08:00
prod_accept = self.flt_diff_new_conn
2023-03-14 18:53:00 +08:00
if self.model.nprandom.choice([True, False],
p=[prod_accept, 1 - prod_accept]):
self.firm_network.graph.add_edges_from([
(self.firm_network.positions[self],
2023-03-14 18:53:00 +08:00
self.firm_network.positions[down_firm], {
'Product': product.code
})
])
self.dct_prod_capacity[product] -= 1
self.dct_request_prod_from_firm[product].remove(down_firm)
for prod in down_firm.dct_prod_up_prod_stat.keys():
if product in down_firm.dct_prod_up_prod_stat[
prod]['supply'].keys():
down_firm.dct_prod_up_prod_stat[
prod]['supply'][product] = True
down_firm.dct_prod_up_prod_stat[
prod]['status'].append(('N', self.model.t))
del down_firm.dct_n_trial_up_prod_disrupted[product]
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
print(
f"{self.name} accept {product.code} request "
f"from {down_firm.name}"
)
else:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
2023-02-27 22:02:46 +08:00
def clean_before_trial(self):
self.dct_request_prod_from_firm = {}
2023-03-07 12:29:27 +08:00
def clean_before_time_step(self):
self.dct_n_trial_up_prod_disrupted = \
dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0)
self.dct_cand_alt_supp_up_prod_disrupted = {}
2023-06-05 10:47:37 +08:00
def get_firm_network_node(self):
return self.firm_network.positions[self]
def is_prod_in_current_normal(self, prod):
if prod in self.dct_prod_up_prod_stat.keys():
if self.dct_prod_up_prod_stat[prod]['status'][-1][0] == 'N':
return True
else:
return False
else:
return False