4 status (Normal / Affected / Disrupted / Removed)
This commit is contained in:
parent
fe128f8681
commit
6f99d9978e
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -51,11 +51,11 @@ class ControllerDB:
|
|||
Firm['Code'] = Firm['Code'].astype('string')
|
||||
Firm.fillna(0, inplace=True)
|
||||
|
||||
# fill dct_lst_init_remove_firm_prod
|
||||
# fill dct_lst_init_disrupt_firm_prod
|
||||
list_dct = []
|
||||
if self.is_with_exp:
|
||||
str_sql = "select e_id, count, max_max_ts, " \
|
||||
"dct_lst_init_remove_firm_prod from " \
|
||||
"dct_lst_init_disrupt_firm_prod from " \
|
||||
"iiabmdb.without_exp_experiment as a " \
|
||||
"inner join " \
|
||||
"(select e_id, count(id) as count, max(max_ts) as max_max_ts "\
|
||||
|
@ -67,11 +67,11 @@ class ControllerDB:
|
|||
"on a.id = b.e_id " \
|
||||
"order by count desc;"
|
||||
result = pd.read_sql(sql=str_sql, con=engine)
|
||||
result['dct_lst_init_remove_firm_prod'] = \
|
||||
result['dct_lst_init_remove_firm_prod'].apply(
|
||||
result['dct_lst_init_disrupt_firm_prod'] = \
|
||||
result['dct_lst_init_disrupt_firm_prod'].apply(
|
||||
lambda x: pickle.loads(x))
|
||||
list_dct = result.loc[result['count'] > 10,
|
||||
'dct_lst_init_remove_firm_prod'].to_list()
|
||||
'dct_lst_init_disrupt_firm_prod'].to_list()
|
||||
else:
|
||||
for _, row in Firm.iterrows():
|
||||
code = row['Code']
|
||||
|
@ -125,17 +125,17 @@ class ControllerDB:
|
|||
f"init_removal {idx_init_removal}!")
|
||||
|
||||
def add_experiment_1(self, idx_scenario, idx_init_removal,
|
||||
dct_lst_init_remove_firm_prod, g_bom,
|
||||
dct_lst_init_disrupt_firm_prod, g_bom,
|
||||
n_max_trial, prf_size, prf_conn,
|
||||
cap_limit_prob_type, cap_limit_level,
|
||||
diff_new_conn, crit_supplier, diff_remove,
|
||||
proactive_ratio, drop_t, netw_prf_n):
|
||||
diff_new_conn, crit_supplier, diff_disrupt,
|
||||
proactive_ratio, remove_t, netw_prf_n):
|
||||
e = Experiment(
|
||||
idx_scenario=idx_scenario,
|
||||
idx_init_removal=idx_init_removal,
|
||||
n_sample=int(self.dct_parameter['n_sample']),
|
||||
n_iter=int(self.dct_parameter['n_iter']),
|
||||
dct_lst_init_remove_firm_prod=dct_lst_init_remove_firm_prod,
|
||||
dct_lst_init_disrupt_firm_prod=dct_lst_init_disrupt_firm_prod,
|
||||
g_bom=g_bom,
|
||||
n_max_trial=n_max_trial,
|
||||
prf_size=prf_size,
|
||||
|
@ -144,9 +144,9 @@ class ControllerDB:
|
|||
cap_limit_level=cap_limit_level,
|
||||
diff_new_conn=diff_new_conn,
|
||||
crit_supplier=crit_supplier,
|
||||
diff_remove=diff_remove,
|
||||
diff_disrupt=diff_disrupt,
|
||||
proactive_ratio=proactive_ratio,
|
||||
drop_t=drop_t,
|
||||
remove_t=remove_t,
|
||||
netw_prf_n=netw_prf_n
|
||||
)
|
||||
db_session.add(e)
|
||||
|
|
70
firm.py
70
firm.py
|
@ -14,13 +14,13 @@ class FirmAgent(ap.Agent):
|
|||
self.ori_size = revenue_log
|
||||
self.size = revenue_log
|
||||
self.a_lst_product = a_lst_product
|
||||
self.a_lst_product_removed = ap.AgentList(self.model, [])
|
||||
self.a_lst_product_disrupted = ap.AgentList(self.model, [])
|
||||
self.dct_prod_up_prod_stat = {}
|
||||
self.dct_prod_capacity = {}
|
||||
|
||||
# para in trial
|
||||
self.dct_n_trial_up_prod_removed = {}
|
||||
self.dct_cand_alt_supply_up_prod_removed = {}
|
||||
self.dct_n_trial_up_prod_disrupted = {}
|
||||
self.dct_cand_alt_supp_up_prod_disrupted = {}
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
||||
# external variable
|
||||
|
@ -34,7 +34,7 @@ class FirmAgent(ap.Agent):
|
|||
# init dct_prod_up_prod_stat (self para)
|
||||
for prod in a_lst_product:
|
||||
self.dct_prod_up_prod_stat[prod] = {
|
||||
# Normal / Disrupted / Removed + time step
|
||||
# (Normal / Affected / Disrupted / Removed, time step)
|
||||
'status': [('N', 0)],
|
||||
# have or have no supply
|
||||
'supply': dict.fromkeys(prod.a_predecessors(), True)
|
||||
|
@ -61,16 +61,17 @@ class FirmAgent(ap.Agent):
|
|||
# print(firm_agent.name, extra_cap)
|
||||
self.dct_prod_capacity[product] = extra_cap
|
||||
|
||||
def remove_edge_to_cus_remove_cus_up_prod(self, remove_product):
|
||||
def remove_edge_to_cus_affect_cus_up_prod(self, disrupted_prod):
|
||||
# para remove_product is the product that self got disrupted
|
||||
lst_out_edge = list(
|
||||
self.firm_network.graph.out_edges(
|
||||
self.firm_network.positions[self], keys=True, data='Product'))
|
||||
for n1, n2, key, product_code in lst_out_edge:
|
||||
if product_code == remove_product.code:
|
||||
# remove edge
|
||||
if product_code == disrupted_prod.code:
|
||||
# remove edge to customer
|
||||
self.firm_network.graph.remove_edge(n1, n2, key)
|
||||
|
||||
# remove customer up product conditionally
|
||||
# customer up product affected conditionally
|
||||
customer = ap.AgentIter(self.model, n2).to_list()[0]
|
||||
lst_in_edge = list(
|
||||
self.firm_network.graph.in_edges(n2,
|
||||
|
@ -78,45 +79,44 @@ class FirmAgent(ap.Agent):
|
|||
data='Product'))
|
||||
lst_select_in_edge = [
|
||||
edge for edge in lst_in_edge
|
||||
if edge[-1] == remove_product.code
|
||||
if edge[-1] == disrupted_prod.code
|
||||
]
|
||||
prod_remove = math.exp(-1 * self.flt_crit_supplier *
|
||||
len(lst_select_in_edge))
|
||||
prob_lost_supp = math.exp(-1 * self.flt_crit_supplier *
|
||||
len(lst_select_in_edge))
|
||||
if self.model.nprandom.choice([True, False],
|
||||
p=[prod_remove,
|
||||
1 - prod_remove]):
|
||||
customer.dct_n_trial_up_prod_removed[remove_product] = 0
|
||||
p=[prob_lost_supp,
|
||||
1 - prob_lost_supp]):
|
||||
customer.dct_n_trial_up_prod_disrupted[disrupted_prod] = 0
|
||||
for prod in customer.dct_prod_up_prod_stat.keys():
|
||||
if remove_product in \
|
||||
if disrupted_prod in \
|
||||
customer.dct_prod_up_prod_stat[
|
||||
prod]['supply'].keys():
|
||||
customer.dct_prod_up_prod_stat[
|
||||
prod]['supply'][remove_product] = False
|
||||
prod]['supply'][disrupted_prod] = False
|
||||
customer.dct_prod_up_prod_stat[
|
||||
prod]['status'].append(('D', self.model.t))
|
||||
print(self.name, remove_product.code, 'affect',
|
||||
prod]['status'].append(('A', self.model.t))
|
||||
print(self.name, disrupted_prod.code, 'affect',
|
||||
customer.name, prod.code)
|
||||
|
||||
def seek_alt_supply(self, product):
|
||||
# para product is the product that self is seeking
|
||||
# for product in self.a_lst_up_product_removed:
|
||||
print(f"{self.name} seek alt supply for {product.code}")
|
||||
if self.dct_n_trial_up_prod_removed[
|
||||
if self.dct_n_trial_up_prod_disrupted[
|
||||
product] <= self.model.int_n_max_trial:
|
||||
if self.dct_n_trial_up_prod_removed[product] == 0:
|
||||
if self.dct_n_trial_up_prod_disrupted[product] == 0:
|
||||
# select a list of candidate firm that has the product
|
||||
self.dct_cand_alt_supply_up_prod_removed[product] = \
|
||||
self.dct_cand_alt_supp_up_prod_disrupted[product] = \
|
||||
self.model.a_lst_total_firms.select([
|
||||
product in firm.a_lst_product
|
||||
and product not in firm.a_lst_product_removed
|
||||
and product not in firm.a_lst_product_disrupted
|
||||
for firm in self.model.a_lst_total_firms
|
||||
])
|
||||
if self.dct_cand_alt_supply_up_prod_removed[product]:
|
||||
if self.dct_cand_alt_supp_up_prod_disrupted[product]:
|
||||
# select based on connection
|
||||
lst_firm_connect = []
|
||||
if self.is_prf_conn:
|
||||
for firm in \
|
||||
self.dct_cand_alt_supply_up_prod_removed[product]:
|
||||
self.dct_cand_alt_supp_up_prod_disrupted[product]:
|
||||
out_edges = self.model.firm_network.graph.out_edges(
|
||||
self.model.firm_network.positions[firm], keys=True)
|
||||
in_edges = self.model.firm_network.graph.in_edges(
|
||||
|
@ -135,16 +135,16 @@ class FirmAgent(ap.Agent):
|
|||
if self.is_prf_size:
|
||||
lst_size = \
|
||||
[size for size in
|
||||
self.dct_cand_alt_supply_up_prod_removed[
|
||||
self.dct_cand_alt_supp_up_prod_disrupted[
|
||||
product].size]
|
||||
lst_prob = [size / sum(lst_size)
|
||||
for size in lst_size]
|
||||
select_alt_supply = self.model.nprandom.choice(
|
||||
self.dct_cand_alt_supply_up_prod_removed[product],
|
||||
self.dct_cand_alt_supp_up_prod_disrupted[product],
|
||||
p=lst_prob)
|
||||
else:
|
||||
select_alt_supply = self.model.nprandom.choice(
|
||||
self.dct_cand_alt_supply_up_prod_removed[product])
|
||||
self.dct_cand_alt_supp_up_prod_disrupted[product])
|
||||
elif len(lst_firm_connect) > 0:
|
||||
# select based on size of connected firm or not
|
||||
if self.is_prf_size:
|
||||
|
@ -182,7 +182,7 @@ class FirmAgent(ap.Agent):
|
|||
select_alt_supply.dct_request_prod_from_firm.items()
|
||||
})
|
||||
|
||||
self.dct_n_trial_up_prod_removed[product] += 1
|
||||
self.dct_n_trial_up_prod_disrupted[product] += 1
|
||||
|
||||
def handle_request(self):
|
||||
print(self.name, 'handle_request')
|
||||
|
@ -266,23 +266,23 @@ class FirmAgent(ap.Agent):
|
|||
prod]['supply'][product] = True
|
||||
down_firm.dct_prod_up_prod_stat[
|
||||
prod]['status'].append(('N', self.model.t))
|
||||
del down_firm.dct_n_trial_up_prod_removed[product]
|
||||
del down_firm.dct_cand_alt_supply_up_prod_removed[product]
|
||||
del down_firm.dct_n_trial_up_prod_disrupted[product]
|
||||
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
|
||||
|
||||
print(
|
||||
f"{self.name} accept {product.code} request "
|
||||
f"from {down_firm.name}"
|
||||
)
|
||||
else:
|
||||
down_firm.dct_cand_alt_supply_up_prod_removed[product].remove(self)
|
||||
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
|
||||
|
||||
def clean_before_trial(self):
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
||||
def clean_before_time_step(self):
|
||||
self.dct_n_trial_up_prod_removed = \
|
||||
dict.fromkeys(self.dct_n_trial_up_prod_removed.keys(), 0)
|
||||
self.dct_cand_alt_supply_up_prod_removed = {}
|
||||
self.dct_n_trial_up_prod_disrupted = \
|
||||
dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0)
|
||||
self.dct_cand_alt_supp_up_prod_disrupted = {}
|
||||
|
||||
def get_firm_network_node(self):
|
||||
return self.firm_network.positions[self]
|
||||
|
|
84
model.py
84
model.py
|
@ -17,14 +17,14 @@ class Model(ap.Model):
|
|||
self.product_network = None # agentpy network
|
||||
self.firm_network = None # agentpy network
|
||||
self.firm_prod_network = None # networkx
|
||||
self.dct_lst_remove_firm_prod = self.p.dct_lst_init_remove_firm_prod
|
||||
self.dct_lst_disrupt_firm_prod = self.p.dct_lst_init_disrupt_firm_prod
|
||||
|
||||
# external variable
|
||||
self.int_n_max_trial = int(self.p.n_max_trial)
|
||||
self.is_prf_size = bool(self.p.prf_size)
|
||||
self.flt_diff_remove = float(self.p.diff_remove)
|
||||
self.flt_diff_disrupt = float(self.p.diff_disrupt)
|
||||
self.proactive_ratio = float(self.p.proactive_ratio)
|
||||
self.drop_t = int(self.p.drop_t)
|
||||
self.remove_t = int(self.p.remove_t)
|
||||
self.int_netw_prf_n = int(self.p.netw_prf_n)
|
||||
|
||||
# init graph bom
|
||||
|
@ -210,29 +210,29 @@ class Model(ap.Model):
|
|||
self.firm_network.add_agents([firm_agent], [ag_node])
|
||||
self.a_lst_total_firms = ap.AgentList(self, self.firm_network.agents)
|
||||
|
||||
# init dct_list_remove_firm_prod (from string to agent)
|
||||
# init dct_lst_disrupt_firm_prod (from string to agent)
|
||||
t_dct = {}
|
||||
for firm_code, lst_product in self.dct_lst_remove_firm_prod.items():
|
||||
for firm_code, lst_product in self.dct_lst_disrupt_firm_prod.items():
|
||||
firm = self.a_lst_total_firms.select(
|
||||
self.a_lst_total_firms.code == firm_code)[0]
|
||||
t_dct[firm] = self.a_lst_total_products.select([
|
||||
code in lst_product for code in self.a_lst_total_products.code
|
||||
])
|
||||
self.dct_lst_remove_firm_prod = t_dct
|
||||
self.dct_lst_disrupt_firm_prod = t_dct
|
||||
|
||||
# set the initial firm product that are removed
|
||||
# set the initial firm product that are disrupted
|
||||
print('\n', '=' * 20, 'step', self.t, '=' * 20)
|
||||
for firm, a_lst_product in self.dct_lst_remove_firm_prod.items():
|
||||
for firm, a_lst_product in self.dct_lst_disrupt_firm_prod.items():
|
||||
for product in a_lst_product:
|
||||
assert product in firm.a_lst_product, \
|
||||
f"product {product.code} not in firm {firm.code}"
|
||||
firm.a_lst_product_removed.append(product)
|
||||
firm.a_lst_product_disrupted.append(product)
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['status'].append(('R', self.t))
|
||||
product]['status'].append(('D', self.t))
|
||||
|
||||
# proactive strategy
|
||||
# get all the firm prod affected
|
||||
for firm, a_lst_product in self.dct_lst_remove_firm_prod.items():
|
||||
for firm, a_lst_product in self.dct_lst_disrupt_firm_prod.items():
|
||||
for product in a_lst_product:
|
||||
init_node = \
|
||||
[n for n, v in
|
||||
|
@ -290,7 +290,7 @@ class Model(ap.Model):
|
|||
for firm in self.a_lst_total_firms])[0]
|
||||
lst_cand = self.model.a_lst_total_firms.select([
|
||||
di_supp_prod in firm.a_lst_product
|
||||
and di_supp_prod not in firm.a_lst_product_removed
|
||||
and di_supp_prod not in firm.a_lst_product_disrupted
|
||||
for firm in self.model.a_lst_total_firms
|
||||
])
|
||||
n2n_betweenness = \
|
||||
|
@ -312,7 +312,7 @@ class Model(ap.Model):
|
|||
# find a dfferent firm can produce the same product
|
||||
lst_cand = self.model.a_lst_total_firms.select([
|
||||
di_supp_prod in firm.a_lst_product
|
||||
and di_supp_prod not in firm.a_lst_product_removed
|
||||
and di_supp_prod not in firm.a_lst_product_disrupted
|
||||
and firm.code != di_supp_node['Firm_Code']
|
||||
for firm in self.model.a_lst_total_firms
|
||||
])
|
||||
|
@ -339,24 +339,25 @@ class Model(ap.Model):
|
|||
def update(self):
|
||||
self.a_lst_total_firms.clean_before_time_step()
|
||||
|
||||
# reduce the size of removed firm
|
||||
# reduce the size of disrupted firm
|
||||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
|
||||
if status == 'R':
|
||||
if status == 'D':
|
||||
firm.size -= \
|
||||
firm.ori_size / len(firm.a_lst_product) / self.drop_t
|
||||
firm.ori_size / len(firm.a_lst_product) / self.remove_t
|
||||
print(self.t, firm.name, prod.code, firm.size)
|
||||
if self.t - ts + 1 == self.drop_t:
|
||||
if self.t - ts + 1 == self.remove_t:
|
||||
# turn disrupted firm into removed firm
|
||||
firm.dct_prod_up_prod_stat[
|
||||
prod]['status'].append(('N', self.t))
|
||||
prod]['status'].append(('R', self.t))
|
||||
|
||||
# stop simulation if all firm returned to normal except inital removal
|
||||
if self.t > 0:
|
||||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
|
||||
if status == 'R' and ts != 0:
|
||||
if status == 'D' and ts != 0:
|
||||
print("not stop because", firm.name, prod.code)
|
||||
break
|
||||
else:
|
||||
|
@ -369,12 +370,12 @@ class Model(ap.Model):
|
|||
def step(self):
|
||||
print('\n', '=' * 20, 'step', self.t, '=' * 20)
|
||||
|
||||
# remove_edge_to_cus_and_cus_up_prod
|
||||
# remove edge to customer and affect customer up product
|
||||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
|
||||
if status == 'R' and ts == self.t-1:
|
||||
firm.remove_edge_to_cus_remove_cus_up_prod(prod)
|
||||
if status == 'D' and ts == self.t-1:
|
||||
firm.remove_edge_to_cus_affect_cus_up_prod(prod)
|
||||
|
||||
for n_trial in range(self.int_n_max_trial):
|
||||
print('=' * 10, 'trial', n_trial, '=' * 10)
|
||||
|
@ -413,45 +414,46 @@ class Model(ap.Model):
|
|||
# do not use:
|
||||
# self.a_lst_total_firms.dct_request_prod_from_firm = {} why?
|
||||
|
||||
# turn disrupted firm into removed firm conditionally
|
||||
# turn affected firm into disrupted firm conditionally
|
||||
for firm in self.a_lst_total_firms:
|
||||
for product in firm.dct_prod_up_prod_stat.keys():
|
||||
status = firm.dct_prod_up_prod_stat[product]['status'][-1][0]
|
||||
if status == 'D':
|
||||
print(firm.name, 'disrupted product: ', product.code)
|
||||
n_up_product_removed = \
|
||||
if status == 'A':
|
||||
print(firm.name, 'affected product: ', product.code)
|
||||
n_up_product_lost = \
|
||||
sum([not stat for stat in
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['supply'].values()])
|
||||
if n_up_product_removed == 0:
|
||||
if n_up_product_lost == 0:
|
||||
continue
|
||||
else:
|
||||
lost_percent = n_up_product_removed / len(
|
||||
lost_percent = n_up_product_lost / len(
|
||||
product.a_predecessors())
|
||||
lst_size = self.a_lst_total_firms.size
|
||||
lst_size = [firm.size for firm
|
||||
in self.a_lst_total_firms
|
||||
if product in firm.a_lst_product
|
||||
and product
|
||||
not in firm.a_lst_product_removed
|
||||
not in firm.a_lst_product_disrupted
|
||||
]
|
||||
std_size = (firm.size - min(lst_size) +
|
||||
1) / (max(lst_size) - min(lst_size) + 1)
|
||||
prob_remove = 1 - std_size * (1 - lost_percent)
|
||||
prob_disrupt = 1 - std_size * (1 - lost_percent)
|
||||
# damp prob
|
||||
prob_remove = prob_remove ** self.flt_diff_remove
|
||||
prob_disrupt = prob_disrupt ** self.flt_diff_disrupt
|
||||
# sample prob
|
||||
prob_remove = self.nprandom.uniform(
|
||||
prob_remove - 0.1, prob_remove + 0.1)
|
||||
prob_remove = 1 if prob_remove > 1 else prob_remove
|
||||
prob_remove = 0 if prob_remove < 0 else prob_remove
|
||||
prob_disrupt = self.nprandom.uniform(
|
||||
prob_disrupt - 0.1, prob_disrupt + 0.1)
|
||||
prob_disrupt = 1 if prob_disrupt > 1 else prob_disrupt
|
||||
prob_disrupt = 0 if prob_disrupt < 0 else prob_disrupt
|
||||
if self.nprandom.choice([True, False],
|
||||
p=[prob_remove,
|
||||
1 - prob_remove]):
|
||||
firm.a_lst_product_removed.append(product)
|
||||
p=[prob_disrupt,
|
||||
1 - prob_disrupt]):
|
||||
firm.a_lst_product_disrupted.append(product)
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['status'].append(('R', self.t))
|
||||
print(firm.name, 'removed product: ', product.code)
|
||||
product]['status'].append(('D', self.t))
|
||||
print(firm.name, 'disrupted product:',
|
||||
product.code)
|
||||
else:
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['status'].append(('N', self.t))
|
||||
|
@ -473,7 +475,7 @@ class Model(ap.Model):
|
|||
# lst_result_info.append(db_r)
|
||||
# db_session.bulk_save_objects(lst_result_info)
|
||||
# db_session.commit()
|
||||
# for t, dct in self.lst_dct_lst_remove_firm_prod:
|
||||
# for t, dct in self.lst_dct_lst_disrupt_firm_prod:
|
||||
# for firm, a_lst_product in dct.items():
|
||||
# for product in a_lst_product:
|
||||
# # only firm disrupted can be removed theoretically
|
||||
|
|
6
orm.py
6
orm.py
|
@ -51,7 +51,7 @@ class Experiment(Base):
|
|||
n_iter = Column(Integer, nullable=False)
|
||||
|
||||
# variables
|
||||
dct_lst_init_remove_firm_prod = Column(PickleType, nullable=False)
|
||||
dct_lst_init_disrupt_firm_prod = Column(PickleType, nullable=False)
|
||||
g_bom = Column(Text(4294000000), nullable=False)
|
||||
|
||||
n_max_trial = Column(Integer, nullable=False)
|
||||
|
@ -61,9 +61,9 @@ class Experiment(Base):
|
|||
cap_limit_level = Column(DECIMAL(8, 4), nullable=False)
|
||||
diff_new_conn = Column(DECIMAL(8, 4), nullable=False)
|
||||
crit_supplier = Column(DECIMAL(8, 4), nullable=False)
|
||||
diff_remove = Column(DECIMAL(8, 4), nullable=False)
|
||||
diff_disrupt = Column(DECIMAL(8, 4), nullable=False)
|
||||
proactive_ratio = Column(DECIMAL(8, 4), nullable=False)
|
||||
drop_t = Column(Integer, nullable=False)
|
||||
remove_t = Column(Integer, nullable=False)
|
||||
netw_prf_n = Column(Integer, nullable=False)
|
||||
|
||||
sample = relationship(
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_remove,proactive_ratio,drop_t,netw_prf_n
|
||||
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_disrupt,proactive_ratio,remove_t,netw_prf_n
|
||||
15,TRUE,TRUE,uniform,5,0.3,2,0.5,0.3,3,3
|
||||
10,FALSE,FALSE,normal,10,0.5,1,1,0.5,5,2
|
||||
5,,,,15,0.7,0.5,2,0.7,7,1
|
||||
|
|
|
|
@ -1,2 +1,2 @@
|
|||
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_remove,proactive_ratio,drop_t,netw_prf_n
|
||||
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_disrupt,proactive_ratio,remove_t,netw_prf_n
|
||||
10,TRUE,TRUE,uniform,10,0.1,1,0.01,0,5,2
|
||||
|
|
|
Loading…
Reference in New Issue