experiments in model and firm py
This commit is contained in:
parent
a5f278c4cb
commit
839e47cf0b
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -74,7 +74,7 @@ class ControllerDB:
|
|||
# insert exp
|
||||
df_xv = pd.read_csv("xv.csv", index_col=None)
|
||||
# read the OA table
|
||||
df_oa = pd.read_fwf("oa.csv", index_col=None)
|
||||
df_oa = pd.read_csv("oa.csv", index_col=None)
|
||||
for idx_scenario, row in df_oa.iterrows():
|
||||
dct_exp_para = {}
|
||||
for idx_col, para_level in enumerate(row):
|
||||
|
@ -91,7 +91,11 @@ class ControllerDB:
|
|||
f"init_removal {idx_init_removal}!")
|
||||
|
||||
def add_experiment_1(self, idx_scenario, idx_init_removal,
|
||||
dct_lst_init_remove_firm_prod, g_bom, n_max_trial):
|
||||
dct_lst_init_remove_firm_prod, g_bom,
|
||||
n_max_trial, crit_supplier, firm_pref_request,
|
||||
firm_pref_accept, netw_pref_cust_n,
|
||||
netw_pref_cust_size, cap_limit, diff_new_conn,
|
||||
diff_remove,):
|
||||
e = Experiment(
|
||||
idx_scenario=idx_scenario,
|
||||
idx_init_removal=idx_init_removal,
|
||||
|
@ -99,7 +103,16 @@ class ControllerDB:
|
|||
n_iter=int(self.dct_parameter['n_iter']),
|
||||
dct_lst_init_remove_firm_prod=dct_lst_init_remove_firm_prod,
|
||||
g_bom=g_bom,
|
||||
n_max_trial=n_max_trial)
|
||||
n_max_trial=n_max_trial,
|
||||
crit_supplier=crit_supplier,
|
||||
firm_pref_request=firm_pref_request,
|
||||
firm_pref_accept=firm_pref_accept,
|
||||
netw_pref_cust_n=netw_pref_cust_n,
|
||||
netw_pref_cust_size=netw_pref_cust_size,
|
||||
cap_limit=cap_limit,
|
||||
diff_new_conn=diff_new_conn,
|
||||
diff_remove=diff_remove,
|
||||
)
|
||||
db_session.add(e)
|
||||
db_session.commit()
|
||||
|
||||
|
|
46
firm.py
46
firm.py
|
@ -22,6 +22,12 @@ class FirmAgent(ap.Agent):
|
|||
self.dct_cand_alt_supply_up_prod_removed = {}
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
||||
# para
|
||||
self.flt_crit_supplier = float(self.p.crit_supplier)
|
||||
self.flt_firm_pref_request = float(self.p.firm_pref_request)
|
||||
self.flt_firm_pref_accept = float(self.p.firm_pref_accept)
|
||||
self.flt_diff_new_conn = float(self.p.diff_new_conn)
|
||||
|
||||
def remove_edge_to_cus_remove_cus_up_prod(self, remove_product):
|
||||
lst_out_edge = list(
|
||||
self.firm_network.graph.out_edges(
|
||||
|
@ -41,7 +47,8 @@ class FirmAgent(ap.Agent):
|
|||
edge for edge in lst_in_edge
|
||||
if edge[-1] == remove_product.code
|
||||
]
|
||||
prod_remove = math.exp(-1 * len(lst_select_in_edge))
|
||||
prod_remove = math.exp(-1 * self.flt_crit_supplier *
|
||||
len(lst_select_in_edge))
|
||||
if self.model.nprandom.choice([True, False],
|
||||
p=[prod_remove,
|
||||
1 - prod_remove]):
|
||||
|
@ -70,13 +77,13 @@ class FirmAgent(ap.Agent):
|
|||
if not self.dct_cand_alt_supply_up_prod_removed[product]:
|
||||
continue
|
||||
# select based on size
|
||||
lst_prob = [
|
||||
size /
|
||||
sum(self.dct_cand_alt_supply_up_prod_removed[
|
||||
product].revenue_log)
|
||||
for size in self.dct_cand_alt_supply_up_prod_removed[
|
||||
product].revenue_log
|
||||
]
|
||||
lst_size_damp = \
|
||||
[size ** self.flt_firm_pref_request for size in
|
||||
self.dct_cand_alt_supply_up_prod_removed[
|
||||
product].revenue_log]
|
||||
lst_prob = [size_damp / sum(lst_size_damp)
|
||||
for size_damp in lst_size_damp
|
||||
]
|
||||
select_alt_supply = self.model.nprandom.choice(
|
||||
self.dct_cand_alt_supply_up_prod_removed[product],
|
||||
p=lst_prob)
|
||||
|
@ -132,10 +139,12 @@ class FirmAgent(ap.Agent):
|
|||
lst_firm_connect.append(firm)
|
||||
if len(lst_firm_connect) == 0:
|
||||
# handling based on size
|
||||
lst_firm_size = [firm.revenue_log for firm in lst_firm]
|
||||
lst_prob = [
|
||||
size / sum(lst_firm_size) for size in lst_firm_size
|
||||
]
|
||||
lst_firm_size_damp = \
|
||||
[firm.revenue_log ** self.flt_firm_pref_accept
|
||||
for firm in lst_firm]
|
||||
lst_prob = \
|
||||
[size_damp / sum(lst_firm_size_damp)
|
||||
for size_damp in lst_firm_size_damp]
|
||||
select_customer = \
|
||||
self.model.nprandom.choice(lst_firm, p=lst_prob)
|
||||
self.accept_request(select_customer, product)
|
||||
|
@ -143,11 +152,12 @@ class FirmAgent(ap.Agent):
|
|||
self.accept_request(lst_firm_connect[0], product)
|
||||
elif len(lst_firm_connect) > 1:
|
||||
# handling based on size of firm that has connection
|
||||
lst_firm_size = [
|
||||
firm.revenue_log for firm in lst_firm_connect]
|
||||
lst_prob = [
|
||||
size / sum(lst_firm_size) for size in lst_firm_size
|
||||
]
|
||||
lst_firm_size_damp = \
|
||||
[firm.revenue_log ** self.flt_firm_pref_accept
|
||||
for firm in lst_firm_connect]
|
||||
lst_prob = \
|
||||
[size_damp / sum(lst_firm_size_damp)
|
||||
for size_damp in lst_firm_size_damp]
|
||||
select_customer = \
|
||||
self.model.nprandom.choice(lst_firm_connect,
|
||||
p=lst_prob)
|
||||
|
@ -160,6 +170,8 @@ class FirmAgent(ap.Agent):
|
|||
and product not in firm.a_lst_product_removed
|
||||
]
|
||||
prod_accept = self.revenue_log / sum(lst_firm_size)
|
||||
# damp prod
|
||||
prod_accept = prod_accept ** self.flt_diff_new_conn
|
||||
if self.model.nprandom.choice([True, False],
|
||||
p=[prod_accept, 1 - prod_accept]):
|
||||
self.firm_network.graph.add_edges_from([
|
||||
|
|
43
model.py
43
model.py
|
@ -17,9 +17,15 @@ class Model(ap.Model):
|
|||
self.random = random.Random(self.p.seed)
|
||||
self.nprandom = np.random.default_rng(self.p.seed)
|
||||
self.int_n_iter = int(self.p.n_iter)
|
||||
self.int_n_max_trial = int(self.p.n_max_trial)
|
||||
|
||||
self.dct_lst_remove_firm_prod = self.p.dct_lst_init_remove_firm_prod
|
||||
|
||||
self.int_n_max_trial = int(self.p.n_max_trial)
|
||||
self.flt_netw_pref_cust_n = float(self.p.netw_pref_cust_n)
|
||||
self.flt_netw_pref_cust_size = float(self.p.netw_pref_cust_size)
|
||||
self.flt_cap_limit = int(self.p.cap_limit)
|
||||
self.flt_diff_remove = float(self.p.diff_remove)
|
||||
|
||||
# init graph bom
|
||||
G_bom = nx.adjacency_graph(json.loads(self.p.g_bom))
|
||||
self.product_network = ap.Network(self, G_bom)
|
||||
|
@ -51,15 +57,16 @@ class Model(ap.Model):
|
|||
# get a list of firm producing this successor
|
||||
lst_succ_firm = Firm['Code'][Firm[succ_product_code] ==
|
||||
1].to_list()
|
||||
lst_succ_firm_size = [
|
||||
G_Firm.nodes[succ_firm]['Revenue_Log']
|
||||
for succ_firm in lst_succ_firm
|
||||
]
|
||||
lst_prob = [
|
||||
size / sum(lst_succ_firm_size)
|
||||
for size in lst_succ_firm_size
|
||||
]
|
||||
# select multiple successors
|
||||
lst_succ_firm_size_damp = \
|
||||
[G_Firm.nodes[succ_firm]['Revenue_Log'] **
|
||||
self.flt_netw_pref_cust_size
|
||||
for succ_firm in lst_succ_firm
|
||||
]
|
||||
lst_prob = \
|
||||
[size_damp / sum(lst_succ_firm_size_damp)
|
||||
for size_damp in lst_succ_firm_size_damp
|
||||
]
|
||||
# select multiple customer
|
||||
# based on relative size of this firm
|
||||
lst_same_prod_firm = Firm['Code'][Firm[product_code] ==
|
||||
1].to_list()
|
||||
|
@ -69,6 +76,8 @@ class Model(ap.Model):
|
|||
]
|
||||
share = G_Firm.nodes[node]['Revenue_Log'] / sum(
|
||||
lst_same_prod_firm_size)
|
||||
# damp share
|
||||
share = share ** self.flt_netw_pref_cust_n
|
||||
n_succ_firm = round(share * len(lst_succ_firm)) if round(
|
||||
share * len(lst_succ_firm)) > 0 else 1 # at least one
|
||||
lst_choose_firm = self.nprandom.choice(lst_succ_firm,
|
||||
|
@ -106,8 +115,10 @@ class Model(ap.Model):
|
|||
]))
|
||||
# init extra capacity based on discrete uniform distribution
|
||||
for product in firm_agent.a_lst_product:
|
||||
firm_agent.dct_prod_capacity[product] = self.nprandom.integers(
|
||||
firm_agent.revenue_log / 5, firm_agent.revenue_log / 5 + 2)
|
||||
firm_agent.dct_prod_capacity[product] = \
|
||||
self.nprandom.integers(firm_agent.revenue_log / 5,
|
||||
firm_agent.revenue_log / 5 +
|
||||
self.flt_cap_limit)
|
||||
|
||||
self.firm_network.add_agents([firm_agent], [ag_node])
|
||||
self.a_lst_total_firms = ap.AgentList(self, self.firm_network.agents)
|
||||
|
@ -220,13 +231,17 @@ class Model(ap.Model):
|
|||
lost_percent = n_up_product_removed / len(
|
||||
product.a_predecessors())
|
||||
lst_size = self.a_lst_total_firms.revenue_log
|
||||
lst_size = [firm.revenue_log for firm in self.a_lst_total_firms
|
||||
lst_size = [firm.revenue_log for firm
|
||||
in self.a_lst_total_firms
|
||||
if product in firm.a_lst_product
|
||||
and product not in firm.a_lst_product_removed
|
||||
and product
|
||||
not in firm.a_lst_product_removed
|
||||
]
|
||||
std_size = (firm.revenue_log - min(lst_size) +
|
||||
1) / (max(lst_size) - min(lst_size) + 1)
|
||||
prod_remove = 1 - std_size * (1 - lost_percent)
|
||||
# damp prod
|
||||
prod_remove = prod_remove ** self.flt_diff_remove
|
||||
if self.nprandom.choice([True, False],
|
||||
p=[prod_remove,
|
||||
1 - prod_remove]):
|
||||
|
|
5
oa.csv
5
oa.csv
|
@ -1,3 +1,2 @@
|
|||
X1
|
||||
0
|
||||
1
|
||||
X1,X2,X3,X4,X5,X6,X7,X8,X9
|
||||
1,1,1,1,1,1,1,1,1
|
||||
|
|
|
11
orm.py
11
orm.py
|
@ -1,7 +1,7 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
from sqlalchemy import create_engine, inspect
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy import (Column, Integer, String, ForeignKey, BigInteger,
|
||||
from sqlalchemy import (Column, Integer, DECIMAL, String, ForeignKey, BigInteger,
|
||||
DateTime, PickleType, Boolean, Text)
|
||||
from sqlalchemy.sql import func
|
||||
from sqlalchemy.orm import relationship, Session
|
||||
|
@ -53,7 +53,16 @@ class Experiment(Base):
|
|||
# variables
|
||||
dct_lst_init_remove_firm_prod = Column(PickleType, nullable=False)
|
||||
g_bom = Column(Text(4294000000), nullable=False)
|
||||
|
||||
n_max_trial = Column(Integer, nullable=False)
|
||||
crit_supplier = Column(DECIMAL(8, 4), nullable=False)
|
||||
firm_pref_request = Column(DECIMAL(8, 4), nullable=False)
|
||||
firm_pref_accept = Column(DECIMAL(8, 4), nullable=False)
|
||||
netw_pref_cust_n = Column(DECIMAL(8, 4), nullable=False)
|
||||
netw_pref_cust_size = Column(DECIMAL(8, 4), nullable=False)
|
||||
cap_limit = Column(Integer, nullable=False)
|
||||
diff_new_conn = Column(DECIMAL(8, 4), nullable=False)
|
||||
diff_remove = Column(DECIMAL(8, 4), nullable=False)
|
||||
|
||||
sample = relationship(
|
||||
'Sample', back_populates='experiment', lazy='dynamic')
|
||||
|
|
7
xv.csv
7
xv.csv
|
@ -1,3 +1,4 @@
|
|||
n_max_trial
|
||||
5
|
||||
10
|
||||
n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove
|
||||
12,2,2,2,0.5,2,4,0.5,0.5
|
||||
8,1,1,1,1,1,2,1,1
|
||||
4,0.5,0.5,0.5,2,0.5,0,2,2
|
||||
|
|
|
Loading…
Reference in New Issue