第一次运行模型成功

This commit is contained in:
Cricial 2024-09-21 22:39:09 +08:00
parent 8b231696f6
commit f88ed2b5e4
26 changed files with 1642 additions and 464 deletions

View File

@ -66,6 +66,13 @@
</Attribute> </Attribute>
</value> </value>
</entry> </entry>
<entry key="\input_data\测试 Firm_amended 0-49.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\测试 Firm_amended 170.csv"> <entry key="\input_data\测试 Firm_amended 170.csv">
<value> <value>
<Attribute> <Attribute>
@ -73,6 +80,13 @@
</Attribute> </Attribute>
</value> </value>
</entry> </entry>
<entry key="\input_data\测试 Firm_amended.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\测试数据 companies_devices.csv"> <entry key="\测试数据 companies_devices.csv">
<value> <value>
<Attribute> <Attribute>
@ -101,7 +115,14 @@
</Attribute> </Attribute>
</value> </value>
</entry> </entry>
<entry key="\测试数据 industry_raw_materials_products.csv"> <entry key="\测试数据 device_salvage_values.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\测试数据 material_device_product_ids.csv">
<value> <value>
<Attribute> <Attribute>
<option name="separator" value="," /> <option name="separator" value="," />

Binary file not shown.

Binary file not shown.

Binary file not shown.

34
firm.py
View File

@ -3,7 +3,7 @@ from mesa import Agent
class FirmAgent(Agent): class FirmAgent(Agent):
def __init__(self, unique_id, model, type_region, revenue_log, n_equip_c, a_lst_product, def __init__(self, unique_id, model, type_region, revenue_log, n_equip_c, a_lst_product,
production_output, demand_quantity, c_price, R, P, C): production_output, demand_quantity, R, P, C):
# 调用超类的 __init__ 方法 # 调用超类的 __init__ 方法
super().__init__(unique_id, model) super().__init__(unique_id, model)
@ -32,9 +32,11 @@ class FirmAgent(Agent):
# 包括 产品时间 # 包括 产品时间
self.P1 = {0: P} self.P1 = {0: P}
# 企业i的供应商 # 企业i的供应商
self.upper_i = [u for u, v in self.firm_network.in_edges(self.unique_id)] self.upper_i = [agent for u, v in self.firm_network.in_edges(self.unique_id)
for agent in self.model.company_agents if agent.unique_id == u]
# 企业i的客户 # 企业i的客户
self.downer_i = [u for u, v in self.firm_network.out_edges(self.unique_id)] self.downer_i = [agent for u, v in self.firm_network.out_edges(self.unique_id)
for agent in self.model.company_agents if agent.unique_id == u]
# 设备c的数量 (总量) 使用这个来判断设备数量 # 设备c的数量 (总量) 使用这个来判断设备数量
self.n_equip_c = n_equip_c self.n_equip_c = n_equip_c
# 设备c产量 更具设备量进行估算 # 设备c产量 更具设备量进行估算
@ -42,7 +44,7 @@ class FirmAgent(Agent):
# 消耗材料量 根据设备量进行估算 # 消耗材料量 根据设备量进行估算
self.c_consumption = demand_quantity self.c_consumption = demand_quantity
# 设备c购买价格初始值 # 设备c购买价格初始值
self.c_price = c_price # self.c_price = c_price
# 资源r补货库存阈值 # 资源r补货库存阈值
self.s_r = 40 self.s_r = 40
self.S_r = 120 self.S_r = 120
@ -241,8 +243,8 @@ class FirmAgent(Agent):
if sub_list[0] == material_type: if sub_list[0] == material_type:
upper_i_material.append(firm) upper_i_material.append(firm)
# 没有 上游 没有 材料的情况,也就是紊乱的情况 # 没有 上游 没有 材料的情况,也就是紊乱的情况
# if len(upper_i_material)==0: if len(upper_i_material) == 0:
return -1
if self.is_prf_conn: if self.is_prf_conn:
for firm in upper_i_material: for firm in upper_i_material:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or self.firm_network.has_edge( if self.firm_network.has_edge(self.unique_id, firm.unique_id) or self.firm_network.has_edge(
@ -273,8 +275,8 @@ class FirmAgent(Agent):
if sub_list[0] == machinery_type: if sub_list[0] == machinery_type:
upper_i_machinery.append(firm) upper_i_machinery.append(firm)
# 没有 上游 没有 材料的情况,也就是紊乱的情况 # 没有 上游 没有 材料的情况,也就是紊乱的情况
# if len(upper_i_machinery)==0: if len(upper_i_machinery) == 0:
return -1
if self.is_prf_conn: if self.is_prf_conn:
for firm in upper_i_machinery: for firm in upper_i_machinery:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or self.firm_network.has_edge( if self.firm_network.has_edge(self.unique_id, firm.unique_id) or self.firm_network.has_edge(
@ -297,15 +299,15 @@ class FirmAgent(Agent):
select_alt_supply = self.random.choice(lst_firm_machinery_connect) select_alt_supply = self.random.choice(lst_firm_machinery_connect)
return select_alt_supply return select_alt_supply
def handle_material_request(self, material_list): def handle_material_request(self, mater_list):
for list in self.P: for list_P in self.P:
if list[0] == material_list[0]: if list_P[0] == mater_list[0]:
list[1] -= material_list[1] list_P[1] -= mater_list[1]
def handle_machinery_request(self, machinery_list): def handle_machinery_request(self, machi_list):
for list in self.C: for list_C in self.C:
if list[0] == machinery_list[0]: if list_C[0] == machi_list[0]:
list[1] -= machinery_list[1] list_C[1] -= machi_list[1]
def refresh_R(self): def refresh_R(self):
self.R1[self.model.t] = self.R self.R1[self.model.t] = self.R

View File

@ -1,107 +1,107 @@
Index,Code,Level,Name,产业种类 Index,Code,Level,Name,产业种类
0,1,0,工业互联网,0 0,1,0,工业互联网,0
1,1.1,1,工业自动化硬件,1 1,1.1,1,工业自动化硬件,0
2,1.1.1,2,工业计算芯片,0 2,1.1.1,2,工业计算芯片,1
3,1.1.2,2,工业控制器,0 3,1.1.2,2,工业控制器,0
4,1.1.3,2,工业服务器,0 4,1.1.3,2,工业服务器,0
5,1.2,1,工业互联网网络,1 5,1.2,1,工业互联网网络,1
6,1.2.1,2,网络互联服务,0 6,1.2.1,2,网络互联服务,0
7,1.2.2,2,标识解析服务,0 7,1.2.2,2,标识解析服务,0
8,1.2.3,2,数据互通服务,0 8,1.2.3,2,数据互通服务,1
9,1.3,1,工业软件,1 9,1.3,1,工业软件,0
10,1.3.1,2,设计研发软件,0 10,1.3.1,2,设计研发软件,0
11,1.3.1.1,3,计算机辅助设计CAD,0 11,1.3.1.1,3,计算机辅助设计CAD,0
12,1.3.1.2,3,计算机辅助工程CAE,0 12,1.3.1.2,3,计算机辅助工程CAE,1
13,1.3.1.3,3,计算机辅助制造CAM,0 13,1.3.1.3,3,计算机辅助制造CAM,0
14,1.3.1.4,3,计算机辅助工艺过程设计CAPP,0 14,1.3.1.4,3,计算机辅助工艺过程设计CAPP,1
15,1.3.1.5,3,产品数据管理PDM,1 15,1.3.1.5,3,产品数据管理PDM,1
16,1.3.1.6,3,产品生命周期管理PLM,1 16,1.3.1.6,3,产品生命周期管理PLM,0
17,1.3.1.7,3,电子设计自动化EDA,1 17,1.3.1.7,3,电子设计自动化EDA,0
18,1.3.2,2,采购供应软件,1 18,1.3.2,2,采购供应软件,0
19,1.3.2.1,3,供应链管理SCM,1 19,1.3.2.1,3,供应链管理SCM,1
20,1.3.3,2,生产制造软件,1 20,1.3.3,2,生产制造软件,1
21,1.3.3.1,3,制造执行系统MES,1 21,1.3.3.1,3,制造执行系统MES,0
22,1.3.3.2,3,分布式控制系统DCS,0 22,1.3.3.2,3,分布式控制系统DCS,1
23,1.3.3.3,3,数据采集与监视控制系统SCADA,1 23,1.3.3.3,3,数据采集与监视控制系统SCADA,1
24,1.3.3.4,3,可编程逻揖控制系统PLC,1 24,1.3.3.4,3,可编程逻揖控制系统PLC,0
25,1.3.3.5,3,企业资产管理系统EAM,1 25,1.3.3.5,3,企业资产管理系统EAM,1
26,1.3.3.6,3,运维保障系统MRO,1 26,1.3.3.6,3,运维保障系统MRO,1
27,1.3.3.7,3,故障预测与健康管理PHM,1 27,1.3.3.7,3,故障预测与健康管理PHM,1
28,1.3.4,2,企业运营管理软件,1 28,1.3.4,2,企业运营管理软件,0
29,1.3.4.1,3,企业资源计划ERP,1 29,1.3.4.1,3,企业资源计划ERP,1
30,1.3.4.2,3,客户关系管理CRM,1 30,1.3.4.2,3,客户关系管理CRM,1
31,1.3.4.3,3,人力资源管理HRM,1 31,1.3.4.3,3,人力资源管理HRM,0
32,1.3.5,2,仓储物流软件,0 32,1.3.5,2,仓储物流软件,0
33,1.3.5.1,3,仓储物流管理WMS,1 33,1.3.5.1,3,仓储物流管理WMS,1
34,1.4,1,工业互联网安全管理,1 34,1.4,1,工业互联网安全管理,1
35,1.4.1,2,设备安全,1 35,1.4.1,2,设备安全,1
36,1.4.1.1,3,工业防火墙,1 36,1.4.1.1,3,工业防火墙,1
37,1.4.1.2,3,下一代防火墙,0 37,1.4.1.2,3,下一代防火墙,1
38,1.4.1.3,3,防毒墙,1 38,1.4.1.3,3,防毒墙,1
39,1.4.1.4,3,入侵检测系统,1 39,1.4.1.4,3,入侵检测系统,0
40,1.4.1.5,3,统一威胁管理系统,1 40,1.4.1.5,3,统一威胁管理系统,0
41,1.4.2,2,控制安全,1 41,1.4.2,2,控制安全,1
42,1.4.2.1,3,工控安全监测与审计,1 42,1.4.2.1,3,工控安全监测与审计,0
43,1.4.2.2,3,工控主机卫士,1 43,1.4.2.2,3,工控主机卫士,1
44,1.4.2.3,3,工控漏洞扫描,0 44,1.4.2.3,3,工控漏洞扫描,1
45,1.4.2.4,3,安全隔离与信息交换系统,1 45,1.4.2.4,3,安全隔离与信息交换系统,1
46,1.4.2.5,3,安全日志与审计,1 46,1.4.2.5,3,安全日志与审计,1
47,1.4.2.6,3,隐私计算,1 47,1.4.2.6,3,隐私计算,1
48,1.4.2.7,3,工控原生安全,1 48,1.4.2.7,3,工控原生安全,0
49,1.4.3,2,网络安全,1 49,1.4.3,2,网络安全,1
50,1.4.3.1,3,网络漏洞扫描和补丁管理,0 50,1.4.3.1,3,网络漏洞扫描和补丁管理,0
51,1.4.3.2,3,流量检测,1 51,1.4.3.2,3,流量检测,1
52,1.4.3.3,3,APT检测,0 52,1.4.3.3,3,APT检测,1
53,1.4.3.4,3,攻击溯源,0 53,1.4.3.4,3,攻击溯源,0
54,1.4.3.5,3,负载均衡,1 54,1.4.3.5,3,负载均衡,1
55,1.4.3.6,3,沙箱类设备,0 55,1.4.3.6,3,沙箱类设备,1
56,1.4.4,2,平台安全,1 56,1.4.4,2,平台安全,0
57,1.4.4.1,3,身份鉴别与访问控制,0 57,1.4.4.1,3,身份鉴别与访问控制,1
58,1.4.4.2,3,密钥管理,0 58,1.4.4.2,3,密钥管理,0
59,1.4.4.3,3,接入认证,0 59,1.4.4.3,3,接入认证,0
60,1.4.4.4,3,工业应用行为监控,1 60,1.4.4.4,3,工业应用行为监控,0
61,1.4.4.5,3,安全态势感知,0 61,1.4.4.5,3,安全态势感知,0
62,1.4.5,2,数据安全,0 62,1.4.5,2,数据安全,0
63,1.4.5.1,3,恶意代码检测系统,1 63,1.4.5.1,3,恶意代码检测系统,0
64,1.4.5.2,3,数据防泄漏系统,1 64,1.4.5.2,3,数据防泄漏系统,0
65,1.4.5.3,3,数据审计系统,0 65,1.4.5.3,3,数据审计系统,1
66,1.4.5.4,3,数据脱敏,1 66,1.4.5.4,3,数据脱敏,0
67,1.4.5.5,3,敏感数据发现与监控,0 67,1.4.5.5,3,敏感数据发现与监控,1
68,1.4.5.6,3,数据容灾备份,0 68,1.4.5.6,3,数据容灾备份,1
69,1.4.5.7,3,数据恢复,1 69,1.4.5.7,3,数据恢复,1
70,1.4.5.8,3,数据加密,1 70,1.4.5.8,3,数据加密,1
71,1.4.5.9,3,数据防火墙,0 71,1.4.5.9,3,数据防火墙,1
72,2,0,工业互联网平台,1 72,2,0,工业互联网平台,0
73,2.1,1,PaaS,0 73,2.1,1,PaaS,1
74,2.1.1,2,开发工具,1 74,2.1.1,2,开发工具,0
75,2.1.1.1,3,算法建模工具,1 75,2.1.1.1,3,算法建模工具,1
76,2.1.1.2,3,低代码开发工具,0 76,2.1.1.2,3,低代码开发工具,0
77,2.1.1.3,3,流程开发工具,1 77,2.1.1.3,3,流程开发工具,0
78,2.1.1.4,3,组态建模工具,1 78,2.1.1.4,3,组态建模工具,1
79,2.1.1.5,3,数字孪生建模工具,1 79,2.1.1.5,3,数字孪生建模工具,1
80,2.1.2,2,工业模型库,1 80,2.1.2,2,工业模型库,1
81,2.1.2.1,3,数据算法模型,0 81,2.1.2.1,3,数据算法模型,0
82,2.1.2.2,3,业务流程模型,0 82,2.1.2.2,3,业务流程模型,1
83,2.1.2.3,3,研发仿真模型,0 83,2.1.2.3,3,研发仿真模型,1
84,2.1.2.4,3,行业机理模型,1 84,2.1.2.4,3,行业机理模型,1
85,2.1.3,2,工业物联网,1 85,2.1.3,2,工业物联网,1
86,2.1.3.1,3,物联网服务,0 86,2.1.3.1,3,物联网服务,0
87,2.1.3.2,3,平台基础服务,1 87,2.1.3.2,3,平台基础服务,0
88,2.1.3.3,3,工业引擎服务,1 88,2.1.3.3,3,工业引擎服务,1
89,2.1.3.4,3,应用管理服务,1 89,2.1.3.4,3,应用管理服务,1
90,2.1.3.5,3,容器服务,1 90,2.1.3.5,3,容器服务,1
91,2.1.3.6,3,微服务,1 91,2.1.3.6,3,微服务,1
92,2.1.3.7,3,制造类API,0 92,2.1.3.7,3,制造类API,0
93,2.1.4,2,工业大数据,1 93,2.1.4,2,工业大数据,0
94,2.1.4.1,3,工业大数据存储,1 94,2.1.4.1,3,工业大数据存储,1
95,2.1.4.1.1,4,关系型数据库,0 95,2.1.4.1.1,4,关系型数据库,0
96,2.1.4.1.2,4,分布式数据库,1 96,2.1.4.1.2,4,分布式数据库,1
97,2.1.4.1.3,4,实时数据库,0 97,2.1.4.1.3,4,实时数据库,1
98,2.1.4.1.4,4,时序数据库,0 98,2.1.4.1.4,4,时序数据库,0
99,2.1.4.2,3,工业大数据管理,0 99,2.1.4.2,3,工业大数据管理,0
100,2.1.4.2.1,4,数据质量管理,1 100,2.1.4.2.1,4,数据质量管理,1
101,2.1.4.2.2,4,数据安全管理,1 101,2.1.4.2.2,4,数据安全管理,1
102,2.2,1,IaaS,0 102,2.2,1,IaaS,1
103,2.3,1,边缘层,0 103,2.3,1,边缘层,0
104,2.3.1,2,工业数据接入,0 104,2.3.1,2,工业数据接入,0
105,2.3.2,2,边缘数据处理,0 105,2.3.2,2,边缘数据处理,0

1 Index Code Level Name 产业种类
2 0 1 0 工业互联网 0
3 1 1.1 1 工业自动化硬件 1 0
4 2 1.1.1 2 工业计算芯片 0 1
5 3 1.1.2 2 工业控制器 0
6 4 1.1.3 2 工业服务器 0
7 5 1.2 1 工业互联网网络 1
8 6 1.2.1 2 网络互联服务 0
9 7 1.2.2 2 标识解析服务 0
10 8 1.2.3 2 数据互通服务 0 1
11 9 1.3 1 工业软件 1 0
12 10 1.3.1 2 设计研发软件 0
13 11 1.3.1.1 3 计算机辅助设计CAD 0
14 12 1.3.1.2 3 计算机辅助工程CAE 0 1
15 13 1.3.1.3 3 计算机辅助制造CAM 0
16 14 1.3.1.4 3 计算机辅助工艺过程设计CAPP 0 1
17 15 1.3.1.5 3 产品数据管理PDM 1
18 16 1.3.1.6 3 产品生命周期管理PLM 1 0
19 17 1.3.1.7 3 电子设计自动化EDA 1 0
20 18 1.3.2 2 采购供应软件 1 0
21 19 1.3.2.1 3 供应链管理SCM 1
22 20 1.3.3 2 生产制造软件 1
23 21 1.3.3.1 3 制造执行系统MES 1 0
24 22 1.3.3.2 3 分布式控制系统DCS 0 1
25 23 1.3.3.3 3 数据采集与监视控制系统SCADA 1
26 24 1.3.3.4 3 可编程逻揖控制系统PLC 1 0
27 25 1.3.3.5 3 企业资产管理系统EAM 1
28 26 1.3.3.6 3 运维保障系统MRO 1
29 27 1.3.3.7 3 故障预测与健康管理PHM 1
30 28 1.3.4 2 企业运营管理软件 1 0
31 29 1.3.4.1 3 企业资源计划ERP 1
32 30 1.3.4.2 3 客户关系管理CRM 1
33 31 1.3.4.3 3 人力资源管理HRM 1 0
34 32 1.3.5 2 仓储物流软件 0
35 33 1.3.5.1 3 仓储物流管理WMS 1
36 34 1.4 1 工业互联网安全管理 1
37 35 1.4.1 2 设备安全 1
38 36 1.4.1.1 3 工业防火墙 1
39 37 1.4.1.2 3 下一代防火墙 0 1
40 38 1.4.1.3 3 防毒墙 1
41 39 1.4.1.4 3 入侵检测系统 1 0
42 40 1.4.1.5 3 统一威胁管理系统 1 0
43 41 1.4.2 2 控制安全 1
44 42 1.4.2.1 3 工控安全监测与审计 1 0
45 43 1.4.2.2 3 工控主机卫士 1
46 44 1.4.2.3 3 工控漏洞扫描 0 1
47 45 1.4.2.4 3 安全隔离与信息交换系统 1
48 46 1.4.2.5 3 安全日志与审计 1
49 47 1.4.2.6 3 隐私计算 1
50 48 1.4.2.7 3 工控原生安全 1 0
51 49 1.4.3 2 网络安全 1
52 50 1.4.3.1 3 网络漏洞扫描和补丁管理 0
53 51 1.4.3.2 3 流量检测 1
54 52 1.4.3.3 3 APT检测 0 1
55 53 1.4.3.4 3 攻击溯源 0
56 54 1.4.3.5 3 负载均衡 1
57 55 1.4.3.6 3 沙箱类设备 0 1
58 56 1.4.4 2 平台安全 1 0
59 57 1.4.4.1 3 身份鉴别与访问控制 0 1
60 58 1.4.4.2 3 密钥管理 0
61 59 1.4.4.3 3 接入认证 0
62 60 1.4.4.4 3 工业应用行为监控 1 0
63 61 1.4.4.5 3 安全态势感知 0
64 62 1.4.5 2 数据安全 0
65 63 1.4.5.1 3 恶意代码检测系统 1 0
66 64 1.4.5.2 3 数据防泄漏系统 1 0
67 65 1.4.5.3 3 数据审计系统 0 1
68 66 1.4.5.4 3 数据脱敏 1 0
69 67 1.4.5.5 3 敏感数据发现与监控 0 1
70 68 1.4.5.6 3 数据容灾备份 0 1
71 69 1.4.5.7 3 数据恢复 1
72 70 1.4.5.8 3 数据加密 1
73 71 1.4.5.9 3 数据防火墙 0 1
74 72 2 0 工业互联网平台 1 0
75 73 2.1 1 PaaS 0 1
76 74 2.1.1 2 开发工具 1 0
77 75 2.1.1.1 3 算法建模工具 1
78 76 2.1.1.2 3 低代码开发工具 0
79 77 2.1.1.3 3 流程开发工具 1 0
80 78 2.1.1.4 3 组态建模工具 1
81 79 2.1.1.5 3 数字孪生建模工具 1
82 80 2.1.2 2 工业模型库 1
83 81 2.1.2.1 3 数据算法模型 0
84 82 2.1.2.2 3 业务流程模型 0 1
85 83 2.1.2.3 3 研发仿真模型 0 1
86 84 2.1.2.4 3 行业机理模型 1
87 85 2.1.3 2 工业物联网 1
88 86 2.1.3.1 3 物联网服务 0
89 87 2.1.3.2 3 平台基础服务 1 0
90 88 2.1.3.3 3 工业引擎服务 1
91 89 2.1.3.4 3 应用管理服务 1
92 90 2.1.3.5 3 容器服务 1
93 91 2.1.3.6 3 微服务 1
94 92 2.1.3.7 3 制造类API 0
95 93 2.1.4 2 工业大数据 1 0
96 94 2.1.4.1 3 工业大数据存储 1
97 95 2.1.4.1.1 4 关系型数据库 0
98 96 2.1.4.1.2 4 分布式数据库 1
99 97 2.1.4.1.3 4 实时数据库 0 1
100 98 2.1.4.1.4 4 时序数据库 0
101 99 2.1.4.2 3 工业大数据管理 0
102 100 2.1.4.2.1 4 数据质量管理 1
103 101 2.1.4.2.2 4 数据安全管理 1
104 102 2.2 1 IaaS 0 1
105 103 2.3 1 边缘层 0
106 104 2.3.1 2 工业数据接入 0
107 105 2.3.2 2 边缘数据处理 0

View File

@ -1,171 +1,171 @@
Code,Company Name,原材料,库存商品,设备数量,Revenue,Total Employees (People),Type_Region,Self-supply Business (Yes/No),Revenue_Log,production_output,demand_quantity Code,原材料,库存商品,设备数量,Revenue,Total Employees (People),Type_Region,Self-supply Business (Yes/No),Revenue_Log,production_output,demand_quantity
1,Company_1,284.02,982.67,452.15,29692.44,963,Suburban,Yes,10.298647746934053,204.215,481.402 0,181.81,641.66,728.05,87929.36,201,Rural,Yes,11.384289043829558,375.805,273.181
2,Company_2,591.75,232.7,597.47,37552.56,222,Urban,No,10.533496830634064,553.747,253.175 1,563.58,957.81,555.95,87873.23,953,Rural,Yes,11.383650486662598,501.595,232.358
3,Company_3,514.2,466.73,388.52,23557.62,355,Urban,No,10.067204613987071,227.852,377.42 2,580.85,890.49,437.24,69639.0,578,Rural,Yes,11.151080034215557,478.724,188.085
4,Company_4,893.84,633.71,580.73,89135.78,496,Urban,No,11.397916104118977,221.073,483.384 3,973.37,993.31,468.34,44580.21,997,Suburban,No,10.705045317561336,435.834,373.337
5,Company_5,306.54,844.63,474.67,60818.82,117,Suburban,Yes,11.015654559530484,391.467,209.654 4,241.84,285.02,483.51,21252.13,808,Urban,Yes,9.96421240462346,158.351,405.184
6,Company_6,830.89,831.11,177.37,73695.09,279,Rural,No,11.207691454519859,372.737,473.089 5,368.0,315.75,525.42,94743.97,578,Urban,No,11.458933479758539,245.542,332.8
7,Company_7,483.95,603.67,603.02,73826.05,832,Rural,Yes,11.209466929335226,186.302,485.395 6,889.86,353.18,223.03,67882.65,79,Rural,No,11.12553575806758,284.303,494.986
8,Company_8,483.1,525.24,116.64,83568.26,242,Rural,Yes,11.333419061909991,437.664,500.31 7,203.75,914.91,971.29,55768.34,195,Urban,Yes,10.92896160383392,240.129,212.375
9,Company_9,958.73,267.31,682.18,36015.98,351,Suburban,No,10.491718007837608,433.217,460.873 8,243.51,639.94,849.47,74211.92,860,Suburban,Yes,11.21468006315341,248.947,135.351
10,Company_10,946.82,215.02,393.99,26255.05,324,Suburban,No,10.175613630469309,472.399,381.682 9,835.96,867.4,182.11,28603.45,850,Suburban,Yes,10.261282618903437,364.211,188.596
11,Company_11,454.76,689.55,232.49,84782.37,81,Suburban,Yes,11.3478428992222,243.249,260.476 10,689.06,935.11,679.15,81506.9,63,Rural,Yes,11.308442958221967,543.915,395.906
12,Company_12,323.83,177.09,624.04,26639.31,170,Suburban,No,10.19014322341799,321.404,148.382 11,729.56,823.94,570.66,39513.14,817,Urban,Yes,10.584388553798581,217.066,382.956
13,Company_13,425.17,396.05,274.2,31290.59,265,Rural,No,10.351072692349652,287.42,490.517 12,743.22,796.77,994.43,35647.21,628,Suburban,No,10.481426161910335,335.443,259.322
14,Company_14,109.55,739.42,406.11,87814.36,788,Suburban,No,11.38298031978054,148.611,401.955 13,434.41,627.26,640.54,95550.17,312,Urban,Yes,11.467406728840045,521.054,465.44100000000003
15,Company_15,202.82,923.13,100.91,43238.15,487,Suburban,No,10.674478486379028,210.091,336.282 14,218.51,265.34,831.5,74163.89,575,Rural,Yes,11.214032653017249,336.15,349.851
16,Company_16,160.02,615.97,486.87,32433.19,658,Urban,No,10.386937560174536,327.687,459.002 15,324.18,651.97,628.53,65263.67,976,Urban,No,11.086190805158187,277.853,474.418
17,Company_17,292.47,762.76,981.28,22436.39,755,Rural,Yes,10.018439473254828,433.128,232.247 16,263.97,560.28,936.33,71442.85,281,Urban,Yes,11.176653108371672,423.63300000000004,356.397
18,Company_18,331.51,800.32,145.21,65352.83,631,Rural,Yes,11.087556023393986,388.521,358.151 17,826.3,337.48,354.44,39720.11,636,Suburban,No,10.589612887540975,428.444,310.63
19,Company_19,508.01,104.76,862.05,67955.82,579,Rural,No,11.126613067125563,576.205,465.801 18,157.45,801.45,438.72,53164.35,586,Suburban,No,10.881143337921856,440.872,342.745
20,Company_20,484.81,906.52,943.38,70611.44,692,Urban,No,11.164947450014383,325.33799999999997,513.481 19,857.4,256.3,336.24,26539.89,962,Rural,No,10.186404163190344,193.624,348.74
21,Company_21,769.67,739.38,736.02,76562.51,383,Suburban,Yes,11.245862810333419,455.602,197.96699999999998 20,818.54,756.38,396.87,31441.28,520,Rural,Yes,10.355876958182606,502.687,570.854
22,Company_22,533.36,234.46,657.71,38283.05,722,Urban,No,10.552762518463977,416.771,354.336 21,403.99,705.79,826.47,56932.63,390,Suburban,Yes,10.949623917962214,518.647,434.399
23,Company_23,641.84,872.33,487.84,42673.07,791,Suburban,Yes,10.661323321098049,183.784,208.184 22,685.33,651.77,178.3,84452.8,774,Rural,No,11.343948077399748,285.83,399.533
24,Company_24,700.51,197.06,621.79,66410.79,503,Urban,No,11.10361482226283,257.179,341.051 23,822.29,347.16,496.38,39599.95,563,Rural,No,10.586583134615513,316.638,484.229
25,Company_25,628.84,292.82,571.1,72622.08,997,Urban,No,11.19302428680546,240.11,317.884 24,974.83,177.56,867.46,40712.78,330,Suburban,No,10.614297327055466,225.746,440.483
26,Company_26,653.23,970.24,221.15,81298.66,667,Suburban,No,11.305884813235249,382.115,371.323 25,439.19,804.07,984.96,84754.7,164,Rural,Yes,11.347516480932141,350.496,198.91899999999998
27,Company_27,747.52,130.58,938.29,73435.38,990,Urban,No,11.204161114818818,214.829,339.752 26,792.91,452.82,968.22,20146.61,937,Urban,No,9.910791315007794,260.822,471.291
28,Company_28,878.41,322.67,211.96,77726.12,556,Rural,No,11.260946644601198,438.196,371.841 27,760.28,342.11,403.48,72939.31,272,Rural,Yes,11.19738300448793,395.348,563.028
29,Company_29,758.14,433.16,956.4,33200.84,568,Suburban,No,10.410330455789328,458.64,510.81399999999996 28,138.05,932.66,775.93,18503.91,344,Urban,Yes,9.825737340086217,444.59299999999996,196.805
30,Company_30,916.25,613.21,455.27,43485.34,347,Rural,No,10.680179148781386,252.527,267.625 29,149.76,537.24,492.6,32927.81,570,Rural,Yes,10.402072868451919,215.26,185.976
31,Company_31,900.34,969.81,394.83,50244.63,433,Rural,No,10.824658954539137,373.483,322.034 30,979.46,249.46,491.61,82109.54,129,Urban,No,11.315809488446245,268.161,231.946
32,Company_32,996.22,755.3,640.05,33162.77,550,Urban,No,10.409183140139199,514.005,450.622 31,338.04,911.44,390.13,63876.58,147,Rural,Yes,11.064708063012214,445.013,336.804
33,Company_33,515.17,844.15,161.39,57032.93,853,Rural,Yes,10.951384099299384,272.139,470.517 32,650.75,215.55,536.88,85274.44,583,Rural,No,11.353630040276132,270.688,561.075
34,Company_34,540.93,578.49,650.09,74078.09,806,Suburban,Yes,11.21287508605031,236.00900000000001,334.093 33,198.36,555.99,513.68,18940.55,820,Urban,Yes,9.849060405389194,256.368,445.836
35,Company_35,366.24,940.41,849.01,19617.56,483,Rural,Yes,9.884180362490643,519.901,169.624 34,928.72,675.62,330.83,75800.87,320,Rural,No,11.235865049137155,256.08299999999997,216.872
36,Company_36,405.22,450.03,380.13,11929.17,371,Rural,No,9.386741940165397,290.013,425.522 35,980.62,893.25,371.57,54696.03,854,Urban,Yes,10.909546408079658,439.157,382.062
37,Company_37,760.77,517.35,208.94,86851.29,464,Suburban,No,11.371952624754107,145.894,425.077 36,816.55,334.59,506.43,55963.31,690,Rural,Yes,10.932451576422585,428.64300000000003,375.655
38,Company_38,818.17,404.74,315.82,78053.26,201,Suburban,Yes,11.265146693168688,265.582,258.817 37,811.93,613.86,689.11,42557.86,823,Rural,Yes,10.658619840796458,276.911,537.193
39,Company_39,586.03,697.5,155.23,42210.17,931,Suburban,No,10.650416466250073,158.523,523.603 38,233.05,373.08,577.32,80566.43,530,Urban,Yes,11.296837340493292,277.732,518.305
40,Company_40,814.27,687.38,477.47,18756.58,673,Urban,Yes,9.839299903169191,295.747,192.427 39,809.83,356.18,755.38,99458.16,457,Suburban,Yes,11.507492332198147,369.538,550.983
41,Company_41,872.52,234.9,598.33,33207.98,178,Urban,No,10.410545487468179,269.833,469.252 40,621.2,522.25,595.01,87316.4,661,Suburban,No,11.37729358214565,526.501,367.12
42,Company_42,318.98,744.42,671.43,45471.87,404,Rural,No,10.72484917199056,178.143,350.898 41,907.65,730.64,830.85,30436.2,310,Urban,No,10.323387968440548,203.085,361.765
43,Company_43,453.11,750.88,926.15,99013.81,875,Suburban,No,11.503014614337706,490.615,434.311 42,220.93,688.61,996.21,41344.79,794,Suburban,Yes,10.629701694931855,413.621,374.093
44,Company_44,130.39,274.92,629.0,13707.42,384,Urban,Yes,9.525692571040127,474.9,479.039 43,117.81,576.3,264.84,15830.0,784,Rural,Yes,9.669662152875057,374.484,182.781
45,Company_45,578.76,368.08,890.9,26604.81,901,Rural,No,10.188847305490215,324.09000000000003,202.876 44,830.95,800.85,102.52,13639.33,635,Rural,Yes,9.520712809956411,392.252,355.095
46,Company_46,265.4,987.58,137.93,39924.26,335,Suburban,No,10.594739438158781,349.793,331.54 45,675.16,304.52,977.42,47128.26,762,Urban,No,10.760628100076477,206.742,370.51599999999996
47,Company_47,743.33,304.14,867.21,90417.33,567,Urban,Yes,11.412191231547315,371.721,453.33299999999997 46,361.35,271.19,922.51,62800.89,766,Suburban,Yes,11.047724524330391,504.251,534.135
48,Company_48,873.08,651.74,589.46,49837.92,599,Urban,Yes,10.816531419043114,371.946,299.308 47,277.52,628.81,310.08,19127.61,666,Rural,No,9.858888119971708,422.008,183.752
49,Company_49,797.72,610.35,866.25,71390.29,680,Urban,Yes,11.17591714468184,317.625,432.772 48,768.86,962.58,169.23,82513.95,709,Rural,No,11.320722648937608,324.923,553.886
50,Company_50,173.31,403.93,398.59,19134.31,577,Rural,No,9.859238337632949,383.859,427.331 49,640.49,256.78,477.52,96026.28,989,Urban,Yes,11.472377182987278,228.752,202.049
51,Company_51,713.05,943.63,786.47,33400.45,814,Suburban,No,10.416324651927923,242.647,554.305 50,703.49,572.21,670.69,41241.23,374,Urban,No,10.627193763098349,467.069,490.349
52,Company_52,769.5,939.62,827.64,15891.9,622,Urban,No,9.673564824440492,500.764,351.95 51,603.88,740.35,384.55,65698.37,790,Urban,Yes,11.092829394423687,170.45499999999998,362.388
53,Company_53,424.01,131.65,979.59,68631.67,998,Rural,Yes,11.13650936898853,240.959,315.401 52,972.13,799.44,927.28,95157.56,935,Urban,Yes,11.463289323062517,397.728,491.21299999999997
54,Company_54,923.68,474.15,214.87,18889.97,631,Suburban,Yes,9.84638637235242,403.487,459.368 53,193.37,697.4,243.1,98193.26,605,Suburban,Yes,11.494692856549156,390.31,426.337
55,Company_55,671.6,928.96,584.73,93556.96,965,Suburban,No,11.446325727652052,191.473,350.15999999999997 54,849.98,196.48,927.78,83414.35,973,Suburban,Yes,11.33157563589593,293.778,382.998
56,Company_56,740.88,450.42,624.08,75711.44,741,Rural,Yes,11.234684550861001,524.408,318.08799999999997 55,953.18,770.12,207.4,55392.45,498,Suburban,No,10.922198581859748,202.74,563.318
57,Company_57,409.56,660.05,574.35,30617.71,416,Rural,No,10.32933387869449,211.435,536.956 56,381.56,998.22,860.09,62313.91,335,Suburban,Yes,11.039939954331839,382.009,207.156
58,Company_58,436.2,294.82,599.98,78445.43,977,Urban,Yes,11.270158502799614,276.998,387.62 57,644.79,521.74,355.78,75289.45,713,Urban,No,11.229095297730488,402.578,291.479
59,Company_59,516.54,770.6,290.97,37174.96,441,Suburban,Yes,10.523390695335847,419.097,475.654 58,505.59,860.44,789.47,25900.97,585,Urban,Yes,10.162035698723782,182.947,406.55899999999997
60,Company_60,721.93,305.6,412.97,98848.66,842,Urban,Yes,11.501345272614115,316.297,280.193 59,369.43,872.67,895.61,63241.28,675,Rural,No,11.05471253147278,416.56100000000004,423.943
61,Company_61,712.26,395.66,391.41,92570.96,996,Urban,No,11.435730764537892,151.14100000000002,496.226 60,419.27,513.8,452.13,51223.88,838,Urban,No,10.843961108544011,309.213,205.927
62,Company_62,498.75,142.06,747.78,71608.94,917,Rural,Yes,11.178975205489529,536.778,380.875 61,196.58,924.12,338.96,28298.88,859,Rural,No,10.250577506876448,457.896,364.658
63,Company_63,623.33,901.33,397.15,23513.3,567,Suburban,Yes,10.065321497485543,362.715,297.333 62,890.61,305.66,713.32,50412.81,282,Rural,Yes,10.828000588431252,299.332,397.06100000000004
64,Company_64,263.36,133.88,830.99,20195.09,241,Urban,Yes,9.913194784536234,392.099,319.336 63,234.83,181.61,104.55,15073.36,361,Suburban,No,9.62068422629099,279.455,271.483
65,Company_65,479.22,672.42,688.79,41600.33,951,Suburban,No,10.635863378910198,528.879,334.922 64,889.35,562.21,116.14,77654.42,784,Rural,Yes,11.260023749043118,337.614,523.935
66,Company_66,586.48,947.72,733.06,13215.54,624,Rural,Yes,9.489148688859606,487.306,478.648 65,179.85,369.62,180.93,69888.63,840,Suburban,Yes,11.15465825404697,422.093,247.985
67,Company_67,145.29,158.54,178.11,64118.35,910,Rural,Yes,11.068485873391767,260.811,258.529 66,238.0,309.39,564.85,51633.14,940,Suburban,Yes,10.851918993378646,537.485,205.8
68,Company_68,267.7,992.49,846.41,83839.88,127,Urban,No,11.336664068256136,552.641,188.77 67,178.8,934.8,898.22,45553.24,99,Rural,Yes,10.726637030784127,430.822,281.88
69,Company_69,207.33,621.93,942.4,54187.36,793,Suburban,Yes,10.900202949897876,349.24,518.733 68,705.91,321.96,196.64,34943.76,857,Suburban,Yes,10.461495190949123,241.664,257.591
70,Company_70,107.17,406.95,154.29,15249.9,383,Suburban,Yes,9.632328224637009,506.429,294.717 69,417.35,650.65,516.24,40390.81,873,Rural,Yes,10.606357562825298,329.624,242.735
71,Company_71,835.06,230.35,568.8,91044.0,294,Rural,No,11.419098185126074,318.88,291.506 70,143.56,132.64,319.8,31165.9,509,Suburban,Yes,10.347079827375628,418.98,503.356
72,Company_72,149.12,861.62,775.5,97301.35,155,Urban,No,11.485568142692438,360.55,156.912 71,636.49,620.16,375.48,35974.77,861,Urban,Yes,10.49057313840643,260.548,295.649
73,Company_73,385.5,741.6,846.34,19971.89,201,Rural,Yes,9.902081063894537,205.63400000000001,445.55 72,356.74,585.65,467.6,32974.8,250,Rural,Yes,10.403498912366212,538.76,409.674
74,Company_74,363.13,524.32,314.91,46296.94,763,Rural,Yes,10.742831147177496,255.491,284.313 73,647.81,566.75,659.68,37617.13,524,Suburban,No,10.535214810736983,263.96799999999996,300.781
75,Company_75,647.69,363.06,973.17,77340.29,460,Urban,No,11.25597031483101,381.317,278.769 74,263.94,828.9,574.78,76153.93,410,Urban,Yes,11.240511965658731,438.478,361.394
76,Company_76,439.41,498.97,944.89,30625.18,754,Rural,Yes,10.329577825380776,526.489,258.94100000000003 75,905.98,734.15,692.96,13377.47,651,Urban,Yes,9.501327227611464,363.296,469.598
77,Company_77,466.64,397.98,979.11,86794.57,418,Rural,Yes,11.371299341087946,417.911,347.664 76,292.05,243.65,522.28,49923.72,529,Urban,Yes,10.81825151949766,482.228,350.205
78,Company_78,641.64,202.48,850.07,29307.04,807,Urban,No,10.285583039181757,259.007,379.164 77,393.86,999.51,735.64,12433.38,415,Urban,No,9.42814007030796,535.564,303.386
79,Company_79,732.01,600.48,239.65,93479.02,864,Rural,Yes,11.445492305071953,246.965,195.201 78,517.7,326.34,529.63,54028.27,874,Urban,Yes,10.89726270707692,230.963,504.77
80,Company_80,922.97,177.28,277.08,83955.43,883,Urban,Yes,11.33804134177189,500.70799999999997,222.297 79,498.02,282.95,933.3,25192.21,482,Rural,No,10.134290098725792,280.33,480.802
81,Company_81,627.27,621.58,542.03,87676.13,277,Urban,No,11.38140496343402,546.203,518.727 80,199.15,401.59,289.82,22092.58,672,Rural,No,10.002997084523999,486.98199999999997,202.915
82,Company_82,165.15,637.29,220.57,35181.96,313,Urban,Yes,10.468288730213176,371.057,246.515 81,954.83,314.75,347.98,67309.26,972,Urban,Yes,11.117053099035545,248.798,465.483
83,Company_83,819.04,221.6,785.02,16422.34,471,Urban,No,9.706397881988158,424.502,273.904 82,338.55,394.23,140.73,31921.77,182,Suburban,Yes,10.371043501154208,385.073,275.855
84,Company_84,495.01,235.24,793.64,18346.41,797,Suburban,No,9.817189194015675,465.36400000000003,229.501 83,120.84,244.32,962.47,37341.68,855,Suburban,Yes,10.527865408049326,263.247,117.084
85,Company_85,189.98,626.37,530.14,49793.11,669,Suburban,No,10.815631900027373,492.014,420.998 84,941.7,232.22,840.66,64891.57,371,Urban,Yes,11.08047300211371,269.06600000000003,476.17
86,Company_86,786.61,983.8,224.61,27511.88,420,Urban,No,10.222373190369527,296.461,200.661 85,643.17,912.04,990.06,86883.99,914,Rural,Yes,11.372329059527587,355.006,411.317
87,Company_87,775.36,813.93,242.21,94867.05,336,Rural,Yes,11.460231716720575,458.221,433.536 86,678.76,791.29,717.2,69956.18,334,Rural,Yes,11.155624325011686,384.72,515.876
88,Company_88,316.03,569.38,505.27,31548.83,265,Suburban,Yes,10.35929178328807,307.527,299.603 87,231.47,396.41,659.0,13992.44,602,Rural,No,9.546272462744886,549.9,495.147
89,Company_89,411.42,968.1,873.75,17001.83,274,Suburban,No,9.741076264303647,220.375,534.142 88,784.71,953.34,450.9,93706.25,760,Rural,No,11.447920168243213,519.09,365.471
90,Company_90,360.91,720.1,917.41,33781.07,582,Suburban,Yes,10.427655865407793,473.741,252.091 89,113.94,508.95,223.49,39526.07,935,Rural,Yes,10.584715733184998,353.349,172.394
91,Company_91,358.16,611.27,878.08,94174.16,361,Urban,Yes,11.452901112955821,500.808,146.816 90,606.5,550.16,774.11,21875.64,57,Rural,Yes,9.99312896794069,516.4110000000001,309.65
92,Company_92,353.58,598.11,973.92,46314.41,797,Suburban,No,10.743208422753485,540.392,251.358 91,447.17,663.18,423.41,23303.28,170,Rural,Yes,10.056349402178457,240.341,366.717
93,Company_93,796.81,261.4,254.01,36160.77,589,Suburban,No,10.495730108527182,202.401,310.681 92,611.27,585.54,959.77,76513.0,513,Rural,No,11.245215940017895,440.977,300.127
94,Company_94,479.78,168.81,256.88,40033.55,561,Rural,No,10.597473131541856,467.688,210.978 93,902.52,379.67,796.35,51981.86,591,Urban,Yes,10.858650090548744,281.635,361.252
95,Company_95,500.33,585.43,362.28,58187.29,708,Urban,No,10.971422224990354,253.228,302.033 94,301.42,490.92,480.54,26329.43,179,Rural,Yes,10.178442603946115,409.054,406.142
96,Company_96,267.69,499.92,214.82,79427.15,318,Suburban,No,11.282595528333824,179.482,373.769 95,819.3,826.17,491.49,90948.99,995,Suburban,No,11.418054078881859,240.149,414.93
97,Company_97,755.05,985.95,179.24,82469.43,673,Suburban,Yes,11.320182958199297,140.924,446.505 96,911.38,265.66,592.57,20074.86,870,Rural,Yes,9.907223564942575,423.257,283.13800000000003
98,Company_98,302.62,320.94,594.75,51363.17,367,Suburban,No,10.84667665764297,510.475,362.262 97,779.57,543.64,929.73,14326.93,833,Rural,Yes,9.56989626200163,460.973,351.957
99,Company_99,714.96,972.27,684.7,26131.27,620,Rural,No,10.170887960471719,552.47,208.496 98,153.96,660.67,354.21,83007.2,745,Urban,No,11.326682630004385,318.421,433.396
100,Company_100,945.42,505.3,509.87,57539.11,222,Urban,Yes,10.960220169485046,174.987,338.54200000000003 99,932.37,892.01,202.12,60293.69,887,Urban,No,11.00698273379035,210.212,285.23699999999997
101,Company_101,160.02,165.31,985.52,97438.02,772,Urban,Yes,11.486971762540222,329.552,243.002 100,126.64,832.47,671.04,96563.41,475,Urban,No,11.477955169978017,218.10399999999998,398.664
102,Company_102,445.92,108.59,838.78,65823.19,990,Rural,No,11.094727486834918,310.878,233.59199999999998 101,270.89,706.51,300.61,90204.11,749,Suburban,No,11.409830270422843,311.061,477.089
103,Company_103,591.79,603.5,225.38,17043.42,511,Suburban,Yes,9.74351948447026,211.538,287.179 102,482.48,958.61,183.12,43168.79,593,Rural,No,10.67287305943306,471.312,325.248
104,Company_104,252.06,450.61,405.59,57402.73,571,Rural,No,10.95784714215228,316.55899999999997,462.206 103,990.28,733.96,469.56,76332.37,994,Rural,No,11.242852373701297,227.95600000000002,261.028
105,Company_105,165.62,951.39,306.5,45833.17,398,Rural,Yes,10.73276334377794,173.65,386.562 104,388.18,850.49,435.17,32055.5,785,Urban,Yes,10.375224054490317,485.517,453.818
106,Company_106,255.06,128.16,259.17,13244.48,616,Urban,No,9.491336140837323,395.91700000000003,362.506 105,984.39,414.52,197.17,33821.73,736,Urban,Yes,10.428858774308102,402.717,293.43899999999996
107,Company_107,447.35,180.41,643.05,70700.8,449,Rural,No,11.166212167237902,476.305,380.735 106,761.21,183.54,281.11,55013.96,260,Rural,Yes,10.915342250190042,481.111,388.121
108,Company_108,781.83,434.34,550.93,81277.04,720,Suburban,Yes,11.305618844826347,450.093,377.183 107,331.91,279.02,877.44,53710.83,362,Urban,No,10.891369936140743,244.744,530.191
109,Company_109,169.85,134.46,977.71,94591.41,473,Suburban,No,11.45732194753443,239.77100000000002,273.985 108,469.56,264.7,851.26,76110.9,575,Rural,No,11.239946766181669,251.126,345.956
110,Company_110,125.7,708.42,777.62,11615.85,473,Rural,Yes,9.360125823758061,452.762,334.57 109,971.54,881.07,334.09,58867.43,578,Suburban,Yes,10.983043245557232,199.409,391.154
111,Company_111,866.33,981.73,892.43,14848.63,251,Suburban,Yes,9.605662884082752,436.243,392.63300000000004 110,517.61,616.48,893.11,72042.76,787,Rural,No,11.185015110604866,523.311,473.761
112,Company_112,725.77,590.82,558.44,15328.79,949,Urban,Yes,9.63748803854849,397.844,518.577 111,400.81,368.37,725.7,23609.77,891,Suburban,Yes,10.069415888397208,366.57,175.08100000000002
113,Company_113,958.57,191.31,188.92,97104.67,310,Urban,Yes,11.483544747870583,305.892,306.85699999999997 112,453.79,493.83,974.96,90456.84,167,Rural,Yes,11.412628109854797,411.496,427.379
114,Company_114,729.39,511.32,120.71,69592.56,191,Urban,No,11.150412944056944,457.071,390.93899999999996 113,941.13,837.6,410.3,32438.24,520,Suburban,Yes,10.38709325275015,364.03,224.113
115,Company_115,365.17,638.89,288.41,18567.32,982,Rural,Yes,9.829158325138039,372.841,401.517 114,748.24,400.21,504.45,41249.5,921,Urban,No,10.627394270477243,218.445,541.824
116,Company_116,265.79,429.39,476.28,86839.57,716,Urban,No,11.371817672344777,372.628,356.579 115,133.89,994.03,956.81,87486.73,685,Rural,No,11.379242403701742,341.681,283.389
117,Company_117,559.33,264.97,113.88,15724.66,744,Rural,Yes,9.66298545971327,444.388,394.933 116,215.17,615.03,922.44,57195.4,479,Suburban,No,10.954228754553641,340.244,150.517
118,Company_118,781.96,443.32,862.47,74245.47,273,Rural,No,11.215132044702743,427.247,508.196 117,273.3,200.4,702.29,91578.5,282,Urban,Yes,11.424951806954867,468.229,389.33
119,Company_119,890.02,331.77,697.16,83693.72,772,Rural,Yes,11.334919223794108,531.716,428.002 118,727.88,435.23,623.45,88235.21,802,Rural,No,11.387761368682435,467.345,246.788
120,Company_120,358.86,588.14,768.94,84336.55,101,Urban,No,11.342570620606638,188.894,371.886 119,500.21,244.24,743.84,88539.28,213,Urban,Yes,11.391201574335291,198.38400000000001,289.021
121,Company_121,589.37,192.81,994.71,30198.07,651,Urban,Yes,10.315533294036035,451.471,426.937 120,492.05,549.08,197.37,36497.09,698,Suburban,Yes,10.504987810364897,293.737,524.205
122,Company_122,808.28,297.7,455.05,30809.46,875,Urban,Yes,10.335577064660097,157.505,494.828 121,242.04,645.31,338.0,15847.92,625,Suburban,No,9.670793540410068,288.8,503.204
123,Company_123,988.78,307.96,869.8,44511.43,310,Suburban,Yes,10.703501289105592,455.98,326.878 122,169.61,943.12,489.47,94776.28,339,Rural,No,11.459274445964661,396.947,284.961
124,Company_124,461.81,849.69,521.11,84053.28,549,Suburban,Yes,11.339206162465574,425.111,217.18099999999998 123,997.7,668.06,149.31,85691.25,924,Urban,No,11.358505999023217,249.931,254.77
125,Company_125,438.73,683.75,458.4,34747.89,771,Rural,Yes,10.455874129724979,386.84,305.873 124,980.24,952.38,156.39,64771.22,488,Urban,Yes,11.078616647880379,249.639,320.024
126,Company_126,791.33,299.04,650.17,84231.54,634,Urban,Yes,11.341324714414265,208.017,494.13300000000004 125,823.52,620.72,152.73,80077.4,167,Urban,Yes,11.290748945929552,183.273,482.352
127,Company_127,369.59,143.99,204.6,27639.11,536,Rural,Yes,10.22698707765262,338.46,479.959 126,518.56,264.76,894.63,21886.95,544,Urban,Yes,9.99364584778038,392.46299999999997,459.856
128,Company_128,524.05,885.87,431.91,22997.06,766,Suburban,Yes,10.04312166065388,507.19100000000003,410.405 127,516.9,541.19,284.53,79221.17,481,Urban,Yes,11.279998840064575,168.453,416.69
129,Company_129,677.07,490.74,311.48,21524.13,781,Rural,No,9.97692991036063,444.148,564.707 128,479.06,821.23,812.31,45671.01,578,Rural,Yes,10.729219021108582,574.231,207.906
130,Company_130,178.2,260.51,858.09,83651.2,562,Rural,No,11.334411051799224,185.809,333.82 129,864.87,370.37,627.0,99571.15,335,Rural,No,11.508627742978986,166.7,538.487
131,Company_131,691.31,398.92,644.53,87442.53,582,Rural,No,11.378737056558094,443.453,357.131 130,106.9,451.78,741.94,84024.35,712,Suburban,Yes,11.338861916770467,338.194,378.69
132,Company_132,189.46,575.78,346.71,13257.65,284,Rural,Yes,9.492330023297646,296.671,473.946 131,480.63,972.01,956.7,30156.57,517,Suburban,Yes,10.31415808886406,558.67,243.063
133,Company_133,488.33,731.67,953.18,26643.92,489,Rural,Yes,10.190316260976394,559.318,406.83299999999997 132,467.69,512.18,484.88,26439.75,636,Rural,No,10.18262383855027,458.488,496.769
134,Company_134,369.02,465.67,667.29,78924.61,793,Suburban,No,11.27624837201392,238.72899999999998,205.902 133,338.95,482.23,735.23,65016.58,500,Suburban,Yes,11.082397593274264,225.523,355.895
135,Company_135,738.44,879.57,465.81,92477.88,609,Suburban,No,11.434724759768017,365.581,546.844 134,396.97,167.31,970.9,16871.64,796,Urban,Yes,9.73338938480437,501.09000000000003,360.697
136,Company_136,758.99,786.45,658.38,52134.69,989,Urban,Yes,10.861585841104548,218.838,231.899 135,443.34,726.96,811.81,19889.06,186,Suburban,Yes,9.89792511080162,528.181,533.334
137,Company_137,464.53,270.67,133.65,25976.63,552,Suburban,Yes,10.164952566645338,168.365,274.453 136,900.26,735.27,322.44,73358.44,674,Suburban,Yes,11.203112841709697,335.244,343.026
138,Company_138,580.02,793.08,931.46,40643.76,471,Rural,Yes,10.612600597657721,362.146,444.002 137,298.84,960.18,833.89,32517.38,521,Rural,Yes,10.38952999461049,355.389,338.884
139,Company_139,274.51,795.06,500.42,35139.32,233,Rural,Yes,10.46707601038709,281.04200000000003,458.451 138,514.11,138.94,403.06,73790.3,600,Rural,No,11.208982565635692,373.306,287.411
140,Company_140,959.71,868.21,107.06,49994.95,428,Rural,Yes,10.81967727930944,361.706,578.971 139,563.71,895.07,230.42,35866.03,717,Rural,No,10.487545886954793,239.042,317.371
141,Company_141,354.71,563.01,350.48,42908.83,610,Urban,No,10.666832911242361,272.048,357.471 140,233.85,759.24,700.57,65060.34,787,Rural,No,11.083070425958969,232.05700000000002,271.385
142,Company_142,396.03,603.89,128.42,39303.37,668,Urban,No,10.579065544817109,332.842,170.603 141,931.02,738.56,668.2,77652.7,697,Urban,Yes,11.260001599382495,521.82,392.102
143,Company_143,892.61,311.16,670.46,43027.27,864,Suburban,Yes,10.669589379711221,549.046,279.26099999999997 142,212.83,695.04,321.17,18167.74,646,Rural,Yes,9.807402772806727,455.117,180.28300000000002
144,Company_144,486.76,626.8,943.16,39879.69,50,Rural,No,10.593622450725602,318.31600000000003,189.676 143,924.34,205.86,558.88,52162.63,780,Suburban,Yes,10.86212161710854,425.888,415.43399999999997
145,Company_145,917.34,288.69,643.88,55254.01,873,Suburban,Yes,10.919696195931778,281.38800000000003,371.73400000000004 144,249.21,863.7,749.47,84617.29,62,Urban,No,11.34589389823535,207.947,349.921
146,Company_146,435.58,284.0,802.41,14442.55,517,Suburban,Yes,9.577933989653928,362.241,241.558 145,726.16,794.73,746.1,62798.43,763,Rural,No,11.047685352143786,310.61,533.616
147,Company_147,202.67,381.12,247.09,64747.68,871,Rural,Yes,11.07825314880404,335.709,272.267 146,948.13,792.63,192.63,73034.29,730,Suburban,No,11.19868433587119,204.263,380.813
148,Company_148,394.8,297.97,982.49,64826.8,825,Suburban,No,11.079474377086543,261.249,240.48000000000002 147,270.83,206.89,219.69,13885.75,153,Urban,No,9.53861841340637,288.969,487.08299999999997
149,Company_149,703.7,551.4,223.33,52703.5,186,Rural,No,10.872437145986403,325.333,248.37 148,272.47,649.86,407.02,58794.83,719,Suburban,No,10.981809204851006,230.702,388.247
150,Company_150,271.26,639.62,669.86,54145.21,286,Urban,No,10.899424790529425,392.986,361.126 149,896.82,782.03,746.84,81132.02,590,Suburban,Yes,11.303832983390505,402.68399999999997,300.682
151,Company_151,741.21,534.21,734.27,99208.27,649,Urban,Yes,11.504976656733618,459.427,365.121 150,589.6,665.02,990.66,34608.49,157,Urban,Yes,10.45185430666866,433.06600000000003,160.96
152,Company_152,946.16,900.51,456.7,12725.19,836,Rural,Yes,9.451338772544975,533.67,282.616 151,643.56,747.96,727.56,70969.34,259,Urban,No,11.170003231771686,381.756,509.356
153,Company_153,230.74,396.22,221.36,44064.93,469,Rural,No,10.693419506970148,279.136,139.074 152,197.82,825.05,703.02,82097.85,105,Urban,Yes,11.315667107521492,502.302,422.782
154,Company_154,390.33,162.83,592.72,41020.68,592,Urban,Yes,10.621831608768346,283.272,484.033 153,894.06,451.21,306.92,74212.65,254,Urban,No,11.214689899799728,425.692,541.406
155,Company_155,729.59,982.05,479.26,33549.17,191,Suburban,No,10.420767402898578,377.926,280.959 154,543.93,974.84,140.75,83785.49,519,Urban,No,11.336015121119924,288.075,240.393
156,Company_156,873.45,147.99,568.87,10530.31,621,Urban,No,9.262013044390788,262.887,409.345 155,319.43,298.48,775.91,45520.75,824,Rural,Yes,10.725923544938645,469.591,279.943
157,Company_157,799.45,990.69,784.19,76686.49,803,Rural,No,11.247480831032389,299.419,216.945 156,233.39,615.17,724.77,90675.17,284,Rural,Yes,11.415038838977027,389.477,354.339
158,Company_158,491.74,143.25,906.25,59283.77,370,Suburban,No,10.990090854439025,558.625,390.174 157,928.81,981.92,359.93,92439.1,235,Urban,No,11.434305328295919,454.993,273.881
159,Company_159,367.87,208.07,473.62,83903.97,372,Suburban,Yes,11.33742820957182,282.362,264.787 158,704.18,559.39,182.05,44391.3,820,Rural,Yes,10.700798783274456,337.205,528.418
160,Company_160,564.46,355.27,733.19,61663.32,609,Urban,No,11.029444543649397,275.319,363.446 159,154.02,251.18,865.35,98398.02,360,Suburban,No,11.496775960886676,291.53499999999997,364.402
161,Company_161,607.02,300.46,718.76,99731.85,231,Suburban,No,11.510240363309093,538.876,257.702 160,275.54,406.26,568.47,27050.68,69,Suburban,No,10.20546742259082,520.847,180.554
162,Company_162,363.2,676.84,915.1,81358.78,101,Urban,No,11.306624035526434,493.51,285.32 161,398.32,919.29,546.25,98471.58,220,Rural,No,11.49752325760921,397.625,463.832
163,Company_163,976.79,481.49,329.12,87221.77,246,Urban,No,11.37620923470151,221.912,377.679 162,276.07,251.64,777.77,36870.89,744,Suburban,Yes,10.515177629803139,387.777,477.60699999999997
164,Company_164,738.36,396.44,379.5,95322.53,249,Rural,No,11.465021473034172,364.95,406.836 163,645.63,243.57,345.2,26267.46,334,Suburban,Yes,10.176086189767442,206.51999999999998,537.563
165,Company_165,785.54,427.37,589.4,84393.08,683,Suburban,No,11.343240686701314,288.94,373.554 164,869.89,779.5,694.12,33187.84,707,Suburban,Yes,10.40993882275291,174.412,486.98900000000003
166,Company_166,992.29,576.28,173.55,43056.45,352,Rural,No,10.670267324417088,470.355,363.229 165,913.2,937.8,524.82,93834.24,397,Urban,Yes,11.449285100369293,527.482,406.32
167,Company_167,346.54,528.08,728.16,68761.38,309,Rural,Yes,11.138397529103418,195.816,262.654 166,120.77,970.59,161.73,56121.04,791,Rural,Yes,10.935266065762434,349.173,405.077
168,Company_168,523.22,482.95,699.79,58914.32,735,Rural,No,10.983839464028723,344.979,293.322 167,757.06,742.72,289.58,49173.87,459,Rural,No,10.80311766383716,447.95799999999997,499.706
169,Company_169,891.58,418.18,511.08,28763.31,576,Urban,Yes,10.26685589561593,178.108,286.158 168,578.68,954.7,693.6,92161.91,99,Rural,No,11.431302200541351,563.36,531.8679999999999
170,Company_170,712.0,906.86,583.05,16881.59,957,Urban,Yes,9.73397895802674,309.305,519.2 169,486.25,914.6,227.81,41215.88,401,Suburban,Yes,10.626578897969104,266.781,432.625

1 Code Company Name 原材料 库存商品 设备数量 Revenue Total Employees (People) Type_Region Self-supply Business (Yes/No) Revenue_Log production_output demand_quantity
2 1 0 Company_1 284.02 181.81 982.67 641.66 452.15 728.05 29692.44 87929.36 963 201 Suburban Rural Yes 10.298647746934053 11.384289043829558 204.215 375.805 481.402 273.181
3 2 1 Company_2 591.75 563.58 232.7 957.81 597.47 555.95 37552.56 87873.23 222 953 Urban Rural No Yes 10.533496830634064 11.383650486662598 553.747 501.595 253.175 232.358
4 3 2 Company_3 514.2 580.85 466.73 890.49 388.52 437.24 23557.62 69639.0 355 578 Urban Rural No Yes 10.067204613987071 11.151080034215557 227.852 478.724 377.42 188.085
5 4 3 Company_4 893.84 973.37 633.71 993.31 580.73 468.34 89135.78 44580.21 496 997 Urban Suburban No 11.397916104118977 10.705045317561336 221.073 435.834 483.384 373.337
6 5 4 Company_5 306.54 241.84 844.63 285.02 474.67 483.51 60818.82 21252.13 117 808 Suburban Urban Yes 11.015654559530484 9.96421240462346 391.467 158.351 209.654 405.184
7 6 5 Company_6 830.89 368.0 831.11 315.75 177.37 525.42 73695.09 94743.97 279 578 Rural Urban No 11.207691454519859 11.458933479758539 372.737 245.542 473.089 332.8
8 7 6 Company_7 483.95 889.86 603.67 353.18 603.02 223.03 73826.05 67882.65 832 79 Rural Yes No 11.209466929335226 11.12553575806758 186.302 284.303 485.395 494.986
9 8 7 Company_8 483.1 203.75 525.24 914.91 116.64 971.29 83568.26 55768.34 242 195 Rural Urban Yes 11.333419061909991 10.92896160383392 437.664 240.129 500.31 212.375
10 9 8 Company_9 958.73 243.51 267.31 639.94 682.18 849.47 36015.98 74211.92 351 860 Suburban No Yes 10.491718007837608 11.21468006315341 433.217 248.947 460.873 135.351
11 10 9 Company_10 946.82 835.96 215.02 867.4 393.99 182.11 26255.05 28603.45 324 850 Suburban No Yes 10.175613630469309 10.261282618903437 472.399 364.211 381.682 188.596
12 11 10 Company_11 454.76 689.06 689.55 935.11 232.49 679.15 84782.37 81506.9 81 63 Suburban Rural Yes 11.3478428992222 11.308442958221967 243.249 543.915 260.476 395.906
13 12 11 Company_12 323.83 729.56 177.09 823.94 624.04 570.66 26639.31 39513.14 170 817 Suburban Urban No Yes 10.19014322341799 10.584388553798581 321.404 217.066 148.382 382.956
14 13 12 Company_13 425.17 743.22 396.05 796.77 274.2 994.43 31290.59 35647.21 265 628 Rural Suburban No 10.351072692349652 10.481426161910335 287.42 335.443 490.517 259.322
15 14 13 Company_14 109.55 434.41 739.42 627.26 406.11 640.54 87814.36 95550.17 788 312 Suburban Urban No Yes 11.38298031978054 11.467406728840045 148.611 521.054 401.955 465.44100000000003
16 15 14 Company_15 202.82 218.51 923.13 265.34 100.91 831.5 43238.15 74163.89 487 575 Suburban Rural No Yes 10.674478486379028 11.214032653017249 210.091 336.15 336.282 349.851
17 16 15 Company_16 160.02 324.18 615.97 651.97 486.87 628.53 32433.19 65263.67 658 976 Urban No 10.386937560174536 11.086190805158187 327.687 277.853 459.002 474.418
18 17 16 Company_17 292.47 263.97 762.76 560.28 981.28 936.33 22436.39 71442.85 755 281 Rural Urban Yes 10.018439473254828 11.176653108371672 433.128 423.63300000000004 232.247 356.397
19 18 17 Company_18 331.51 826.3 800.32 337.48 145.21 354.44 65352.83 39720.11 631 636 Rural Suburban Yes No 11.087556023393986 10.589612887540975 388.521 428.444 358.151 310.63
20 19 18 Company_19 508.01 157.45 104.76 801.45 862.05 438.72 67955.82 53164.35 579 586 Rural Suburban No 11.126613067125563 10.881143337921856 576.205 440.872 465.801 342.745
21 20 19 Company_20 484.81 857.4 906.52 256.3 943.38 336.24 70611.44 26539.89 692 962 Urban Rural No 11.164947450014383 10.186404163190344 325.33799999999997 193.624 513.481 348.74
22 21 20 Company_21 769.67 818.54 739.38 756.38 736.02 396.87 76562.51 31441.28 383 520 Suburban Rural Yes 11.245862810333419 10.355876958182606 455.602 502.687 197.96699999999998 570.854
23 22 21 Company_22 533.36 403.99 234.46 705.79 657.71 826.47 38283.05 56932.63 722 390 Urban Suburban No Yes 10.552762518463977 10.949623917962214 416.771 518.647 354.336 434.399
24 23 22 Company_23 641.84 685.33 872.33 651.77 487.84 178.3 42673.07 84452.8 791 774 Suburban Rural Yes No 10.661323321098049 11.343948077399748 183.784 285.83 208.184 399.533
25 24 23 Company_24 700.51 822.29 197.06 347.16 621.79 496.38 66410.79 39599.95 503 563 Urban Rural No 11.10361482226283 10.586583134615513 257.179 316.638 341.051 484.229
26 25 24 Company_25 628.84 974.83 292.82 177.56 571.1 867.46 72622.08 40712.78 997 330 Urban Suburban No 11.19302428680546 10.614297327055466 240.11 225.746 317.884 440.483
27 26 25 Company_26 653.23 439.19 970.24 804.07 221.15 984.96 81298.66 84754.7 667 164 Suburban Rural No Yes 11.305884813235249 11.347516480932141 382.115 350.496 371.323 198.91899999999998
28 27 26 Company_27 747.52 792.91 130.58 452.82 938.29 968.22 73435.38 20146.61 990 937 Urban No 11.204161114818818 9.910791315007794 214.829 260.822 339.752 471.291
29 28 27 Company_28 878.41 760.28 322.67 342.11 211.96 403.48 77726.12 72939.31 556 272 Rural No Yes 11.260946644601198 11.19738300448793 438.196 395.348 371.841 563.028
30 29 28 Company_29 758.14 138.05 433.16 932.66 956.4 775.93 33200.84 18503.91 568 344 Suburban Urban No Yes 10.410330455789328 9.825737340086217 458.64 444.59299999999996 510.81399999999996 196.805
31 30 29 Company_30 916.25 149.76 613.21 537.24 455.27 492.6 43485.34 32927.81 347 570 Rural No Yes 10.680179148781386 10.402072868451919 252.527 215.26 267.625 185.976
32 31 30 Company_31 900.34 979.46 969.81 249.46 394.83 491.61 50244.63 82109.54 433 129 Rural Urban No 10.824658954539137 11.315809488446245 373.483 268.161 322.034 231.946
33 32 31 Company_32 996.22 338.04 755.3 911.44 640.05 390.13 33162.77 63876.58 550 147 Urban Rural No Yes 10.409183140139199 11.064708063012214 514.005 445.013 450.622 336.804
34 33 32 Company_33 515.17 650.75 844.15 215.55 161.39 536.88 57032.93 85274.44 853 583 Rural Yes No 10.951384099299384 11.353630040276132 272.139 270.688 470.517 561.075
35 34 33 Company_34 540.93 198.36 578.49 555.99 650.09 513.68 74078.09 18940.55 806 820 Suburban Urban Yes 11.21287508605031 9.849060405389194 236.00900000000001 256.368 334.093 445.836
36 35 34 Company_35 366.24 928.72 940.41 675.62 849.01 330.83 19617.56 75800.87 483 320 Rural Yes No 9.884180362490643 11.235865049137155 519.901 256.08299999999997 169.624 216.872
37 36 35 Company_36 405.22 980.62 450.03 893.25 380.13 371.57 11929.17 54696.03 371 854 Rural Urban No Yes 9.386741940165397 10.909546408079658 290.013 439.157 425.522 382.062
38 37 36 Company_37 760.77 816.55 517.35 334.59 208.94 506.43 86851.29 55963.31 464 690 Suburban Rural No Yes 11.371952624754107 10.932451576422585 145.894 428.64300000000003 425.077 375.655
39 38 37 Company_38 818.17 811.93 404.74 613.86 315.82 689.11 78053.26 42557.86 201 823 Suburban Rural Yes 11.265146693168688 10.658619840796458 265.582 276.911 258.817 537.193
40 39 38 Company_39 586.03 233.05 697.5 373.08 155.23 577.32 42210.17 80566.43 931 530 Suburban Urban No Yes 10.650416466250073 11.296837340493292 158.523 277.732 523.603 518.305
41 40 39 Company_40 814.27 809.83 687.38 356.18 477.47 755.38 18756.58 99458.16 673 457 Urban Suburban Yes 9.839299903169191 11.507492332198147 295.747 369.538 192.427 550.983
42 41 40 Company_41 872.52 621.2 234.9 522.25 598.33 595.01 33207.98 87316.4 178 661 Urban Suburban No 10.410545487468179 11.37729358214565 269.833 526.501 469.252 367.12
43 42 41 Company_42 318.98 907.65 744.42 730.64 671.43 830.85 45471.87 30436.2 404 310 Rural Urban No 10.72484917199056 10.323387968440548 178.143 203.085 350.898 361.765
44 43 42 Company_43 453.11 220.93 750.88 688.61 926.15 996.21 99013.81 41344.79 875 794 Suburban No Yes 11.503014614337706 10.629701694931855 490.615 413.621 434.311 374.093
45 44 43 Company_44 130.39 117.81 274.92 576.3 629.0 264.84 13707.42 15830.0 384 784 Urban Rural Yes 9.525692571040127 9.669662152875057 474.9 374.484 479.039 182.781
46 45 44 Company_45 578.76 830.95 368.08 800.85 890.9 102.52 26604.81 13639.33 901 635 Rural No Yes 10.188847305490215 9.520712809956411 324.09000000000003 392.252 202.876 355.095
47 46 45 Company_46 265.4 675.16 987.58 304.52 137.93 977.42 39924.26 47128.26 335 762 Suburban Urban No 10.594739438158781 10.760628100076477 349.793 206.742 331.54 370.51599999999996
48 47 46 Company_47 743.33 361.35 304.14 271.19 867.21 922.51 90417.33 62800.89 567 766 Urban Suburban Yes 11.412191231547315 11.047724524330391 371.721 504.251 453.33299999999997 534.135
49 48 47 Company_48 873.08 277.52 651.74 628.81 589.46 310.08 49837.92 19127.61 599 666 Urban Rural Yes No 10.816531419043114 9.858888119971708 371.946 422.008 299.308 183.752
50 49 48 Company_49 797.72 768.86 610.35 962.58 866.25 169.23 71390.29 82513.95 680 709 Urban Rural Yes No 11.17591714468184 11.320722648937608 317.625 324.923 432.772 553.886
51 50 49 Company_50 173.31 640.49 403.93 256.78 398.59 477.52 19134.31 96026.28 577 989 Rural Urban No Yes 9.859238337632949 11.472377182987278 383.859 228.752 427.331 202.049
52 51 50 Company_51 713.05 703.49 943.63 572.21 786.47 670.69 33400.45 41241.23 814 374 Suburban Urban No 10.416324651927923 10.627193763098349 242.647 467.069 554.305 490.349
53 52 51 Company_52 769.5 603.88 939.62 740.35 827.64 384.55 15891.9 65698.37 622 790 Urban No Yes 9.673564824440492 11.092829394423687 500.764 170.45499999999998 351.95 362.388
54 53 52 Company_53 424.01 972.13 131.65 799.44 979.59 927.28 68631.67 95157.56 998 935 Rural Urban Yes 11.13650936898853 11.463289323062517 240.959 397.728 315.401 491.21299999999997
55 54 53 Company_54 923.68 193.37 474.15 697.4 214.87 243.1 18889.97 98193.26 631 605 Suburban Yes 9.84638637235242 11.494692856549156 403.487 390.31 459.368 426.337
56 55 54 Company_55 671.6 849.98 928.96 196.48 584.73 927.78 93556.96 83414.35 965 973 Suburban No Yes 11.446325727652052 11.33157563589593 191.473 293.778 350.15999999999997 382.998
57 56 55 Company_56 740.88 953.18 450.42 770.12 624.08 207.4 75711.44 55392.45 741 498 Rural Suburban Yes No 11.234684550861001 10.922198581859748 524.408 202.74 318.08799999999997 563.318
58 57 56 Company_57 409.56 381.56 660.05 998.22 574.35 860.09 30617.71 62313.91 416 335 Rural Suburban No Yes 10.32933387869449 11.039939954331839 211.435 382.009 536.956 207.156
59 58 57 Company_58 436.2 644.79 294.82 521.74 599.98 355.78 78445.43 75289.45 977 713 Urban Yes No 11.270158502799614 11.229095297730488 276.998 402.578 387.62 291.479
60 59 58 Company_59 516.54 505.59 770.6 860.44 290.97 789.47 37174.96 25900.97 441 585 Suburban Urban Yes 10.523390695335847 10.162035698723782 419.097 182.947 475.654 406.55899999999997
61 60 59 Company_60 721.93 369.43 305.6 872.67 412.97 895.61 98848.66 63241.28 842 675 Urban Rural Yes No 11.501345272614115 11.05471253147278 316.297 416.56100000000004 280.193 423.943
62 61 60 Company_61 712.26 419.27 395.66 513.8 391.41 452.13 92570.96 51223.88 996 838 Urban No 11.435730764537892 10.843961108544011 151.14100000000002 309.213 496.226 205.927
63 62 61 Company_62 498.75 196.58 142.06 924.12 747.78 338.96 71608.94 28298.88 917 859 Rural Yes No 11.178975205489529 10.250577506876448 536.778 457.896 380.875 364.658
64 63 62 Company_63 623.33 890.61 901.33 305.66 397.15 713.32 23513.3 50412.81 567 282 Suburban Rural Yes 10.065321497485543 10.828000588431252 362.715 299.332 297.333 397.06100000000004
65 64 63 Company_64 263.36 234.83 133.88 181.61 830.99 104.55 20195.09 15073.36 241 361 Urban Suburban Yes No 9.913194784536234 9.62068422629099 392.099 279.455 319.336 271.483
66 65 64 Company_65 479.22 889.35 672.42 562.21 688.79 116.14 41600.33 77654.42 951 784 Suburban Rural No Yes 10.635863378910198 11.260023749043118 528.879 337.614 334.922 523.935
67 66 65 Company_66 586.48 179.85 947.72 369.62 733.06 180.93 13215.54 69888.63 624 840 Rural Suburban Yes 9.489148688859606 11.15465825404697 487.306 422.093 478.648 247.985
68 67 66 Company_67 145.29 238.0 158.54 309.39 178.11 564.85 64118.35 51633.14 910 940 Rural Suburban Yes 11.068485873391767 10.851918993378646 260.811 537.485 258.529 205.8
69 68 67 Company_68 267.7 178.8 992.49 934.8 846.41 898.22 83839.88 45553.24 127 99 Urban Rural No Yes 11.336664068256136 10.726637030784127 552.641 430.822 188.77 281.88
70 69 68 Company_69 207.33 705.91 621.93 321.96 942.4 196.64 54187.36 34943.76 793 857 Suburban Yes 10.900202949897876 10.461495190949123 349.24 241.664 518.733 257.591
71 70 69 Company_70 107.17 417.35 406.95 650.65 154.29 516.24 15249.9 40390.81 383 873 Suburban Rural Yes 9.632328224637009 10.606357562825298 506.429 329.624 294.717 242.735
72 71 70 Company_71 835.06 143.56 230.35 132.64 568.8 319.8 91044.0 31165.9 294 509 Rural Suburban No Yes 11.419098185126074 10.347079827375628 318.88 418.98 291.506 503.356
73 72 71 Company_72 149.12 636.49 861.62 620.16 775.5 375.48 97301.35 35974.77 155 861 Urban No Yes 11.485568142692438 10.49057313840643 360.55 260.548 156.912 295.649
74 73 72 Company_73 385.5 356.74 741.6 585.65 846.34 467.6 19971.89 32974.8 201 250 Rural Yes 9.902081063894537 10.403498912366212 205.63400000000001 538.76 445.55 409.674
75 74 73 Company_74 363.13 647.81 524.32 566.75 314.91 659.68 46296.94 37617.13 763 524 Rural Suburban Yes No 10.742831147177496 10.535214810736983 255.491 263.96799999999996 284.313 300.781
76 75 74 Company_75 647.69 263.94 363.06 828.9 973.17 574.78 77340.29 76153.93 460 410 Urban No Yes 11.25597031483101 11.240511965658731 381.317 438.478 278.769 361.394
77 76 75 Company_76 439.41 905.98 498.97 734.15 944.89 692.96 30625.18 13377.47 754 651 Rural Urban Yes 10.329577825380776 9.501327227611464 526.489 363.296 258.94100000000003 469.598
78 77 76 Company_77 466.64 292.05 397.98 243.65 979.11 522.28 86794.57 49923.72 418 529 Rural Urban Yes 11.371299341087946 10.81825151949766 417.911 482.228 347.664 350.205
79 78 77 Company_78 641.64 393.86 202.48 999.51 850.07 735.64 29307.04 12433.38 807 415 Urban No 10.285583039181757 9.42814007030796 259.007 535.564 379.164 303.386
80 79 78 Company_79 732.01 517.7 600.48 326.34 239.65 529.63 93479.02 54028.27 864 874 Rural Urban Yes 11.445492305071953 10.89726270707692 246.965 230.963 195.201 504.77
81 80 79 Company_80 922.97 498.02 177.28 282.95 277.08 933.3 83955.43 25192.21 883 482 Urban Rural Yes No 11.33804134177189 10.134290098725792 500.70799999999997 280.33 222.297 480.802
82 81 80 Company_81 627.27 199.15 621.58 401.59 542.03 289.82 87676.13 22092.58 277 672 Urban Rural No 11.38140496343402 10.002997084523999 546.203 486.98199999999997 518.727 202.915
83 82 81 Company_82 165.15 954.83 637.29 314.75 220.57 347.98 35181.96 67309.26 313 972 Urban Yes 10.468288730213176 11.117053099035545 371.057 248.798 246.515 465.483
84 83 82 Company_83 819.04 338.55 221.6 394.23 785.02 140.73 16422.34 31921.77 471 182 Urban Suburban No Yes 9.706397881988158 10.371043501154208 424.502 385.073 273.904 275.855
85 84 83 Company_84 495.01 120.84 235.24 244.32 793.64 962.47 18346.41 37341.68 797 855 Suburban No Yes 9.817189194015675 10.527865408049326 465.36400000000003 263.247 229.501 117.084
86 85 84 Company_85 189.98 941.7 626.37 232.22 530.14 840.66 49793.11 64891.57 669 371 Suburban Urban No Yes 10.815631900027373 11.08047300211371 492.014 269.06600000000003 420.998 476.17
87 86 85 Company_86 786.61 643.17 983.8 912.04 224.61 990.06 27511.88 86883.99 420 914 Urban Rural No Yes 10.222373190369527 11.372329059527587 296.461 355.006 200.661 411.317
88 87 86 Company_87 775.36 678.76 813.93 791.29 242.21 717.2 94867.05 69956.18 336 334 Rural Yes 11.460231716720575 11.155624325011686 458.221 384.72 433.536 515.876
89 88 87 Company_88 316.03 231.47 569.38 396.41 505.27 659.0 31548.83 13992.44 265 602 Suburban Rural Yes No 10.35929178328807 9.546272462744886 307.527 549.9 299.603 495.147
90 89 88 Company_89 411.42 784.71 968.1 953.34 873.75 450.9 17001.83 93706.25 274 760 Suburban Rural No 9.741076264303647 11.447920168243213 220.375 519.09 534.142 365.471
91 90 89 Company_90 360.91 113.94 720.1 508.95 917.41 223.49 33781.07 39526.07 582 935 Suburban Rural Yes 10.427655865407793 10.584715733184998 473.741 353.349 252.091 172.394
92 91 90 Company_91 358.16 606.5 611.27 550.16 878.08 774.11 94174.16 21875.64 361 57 Urban Rural Yes 11.452901112955821 9.99312896794069 500.808 516.4110000000001 146.816 309.65
93 92 91 Company_92 353.58 447.17 598.11 663.18 973.92 423.41 46314.41 23303.28 797 170 Suburban Rural No Yes 10.743208422753485 10.056349402178457 540.392 240.341 251.358 366.717
94 93 92 Company_93 796.81 611.27 261.4 585.54 254.01 959.77 36160.77 76513.0 589 513 Suburban Rural No 10.495730108527182 11.245215940017895 202.401 440.977 310.681 300.127
95 94 93 Company_94 479.78 902.52 168.81 379.67 256.88 796.35 40033.55 51981.86 561 591 Rural Urban No Yes 10.597473131541856 10.858650090548744 467.688 281.635 210.978 361.252
96 95 94 Company_95 500.33 301.42 585.43 490.92 362.28 480.54 58187.29 26329.43 708 179 Urban Rural No Yes 10.971422224990354 10.178442603946115 253.228 409.054 302.033 406.142
97 96 95 Company_96 267.69 819.3 499.92 826.17 214.82 491.49 79427.15 90948.99 318 995 Suburban No 11.282595528333824 11.418054078881859 179.482 240.149 373.769 414.93
98 97 96 Company_97 755.05 911.38 985.95 265.66 179.24 592.57 82469.43 20074.86 673 870 Suburban Rural Yes 11.320182958199297 9.907223564942575 140.924 423.257 446.505 283.13800000000003
99 98 97 Company_98 302.62 779.57 320.94 543.64 594.75 929.73 51363.17 14326.93 367 833 Suburban Rural No Yes 10.84667665764297 9.56989626200163 510.475 460.973 362.262 351.957
100 99 98 Company_99 714.96 153.96 972.27 660.67 684.7 354.21 26131.27 83007.2 620 745 Rural Urban No 10.170887960471719 11.326682630004385 552.47 318.421 208.496 433.396
101 100 99 Company_100 945.42 932.37 505.3 892.01 509.87 202.12 57539.11 60293.69 222 887 Urban Yes No 10.960220169485046 11.00698273379035 174.987 210.212 338.54200000000003 285.23699999999997
102 101 100 Company_101 160.02 126.64 165.31 832.47 985.52 671.04 97438.02 96563.41 772 475 Urban Yes No 11.486971762540222 11.477955169978017 329.552 218.10399999999998 243.002 398.664
103 102 101 Company_102 445.92 270.89 108.59 706.51 838.78 300.61 65823.19 90204.11 990 749 Rural Suburban No 11.094727486834918 11.409830270422843 310.878 311.061 233.59199999999998 477.089
104 103 102 Company_103 591.79 482.48 603.5 958.61 225.38 183.12 17043.42 43168.79 511 593 Suburban Rural Yes No 9.74351948447026 10.67287305943306 211.538 471.312 287.179 325.248
105 104 103 Company_104 252.06 990.28 450.61 733.96 405.59 469.56 57402.73 76332.37 571 994 Rural No 10.95784714215228 11.242852373701297 316.55899999999997 227.95600000000002 462.206 261.028
106 105 104 Company_105 165.62 388.18 951.39 850.49 306.5 435.17 45833.17 32055.5 398 785 Rural Urban Yes 10.73276334377794 10.375224054490317 173.65 485.517 386.562 453.818
107 106 105 Company_106 255.06 984.39 128.16 414.52 259.17 197.17 13244.48 33821.73 616 736 Urban No Yes 9.491336140837323 10.428858774308102 395.91700000000003 402.717 362.506 293.43899999999996
108 107 106 Company_107 447.35 761.21 180.41 183.54 643.05 281.11 70700.8 55013.96 449 260 Rural No Yes 11.166212167237902 10.915342250190042 476.305 481.111 380.735 388.121
109 108 107 Company_108 781.83 331.91 434.34 279.02 550.93 877.44 81277.04 53710.83 720 362 Suburban Urban Yes No 11.305618844826347 10.891369936140743 450.093 244.744 377.183 530.191
110 109 108 Company_109 169.85 469.56 134.46 264.7 977.71 851.26 94591.41 76110.9 473 575 Suburban Rural No 11.45732194753443 11.239946766181669 239.77100000000002 251.126 273.985 345.956
111 110 109 Company_110 125.7 971.54 708.42 881.07 777.62 334.09 11615.85 58867.43 473 578 Rural Suburban Yes 9.360125823758061 10.983043245557232 452.762 199.409 334.57 391.154
112 111 110 Company_111 866.33 517.61 981.73 616.48 892.43 893.11 14848.63 72042.76 251 787 Suburban Rural Yes No 9.605662884082752 11.185015110604866 436.243 523.311 392.63300000000004 473.761
113 112 111 Company_112 725.77 400.81 590.82 368.37 558.44 725.7 15328.79 23609.77 949 891 Urban Suburban Yes 9.63748803854849 10.069415888397208 397.844 366.57 518.577 175.08100000000002
114 113 112 Company_113 958.57 453.79 191.31 493.83 188.92 974.96 97104.67 90456.84 310 167 Urban Rural Yes 11.483544747870583 11.412628109854797 305.892 411.496 306.85699999999997 427.379
115 114 113 Company_114 729.39 941.13 511.32 837.6 120.71 410.3 69592.56 32438.24 191 520 Urban Suburban No Yes 11.150412944056944 10.38709325275015 457.071 364.03 390.93899999999996 224.113
116 115 114 Company_115 365.17 748.24 638.89 400.21 288.41 504.45 18567.32 41249.5 982 921 Rural Urban Yes No 9.829158325138039 10.627394270477243 372.841 218.445 401.517 541.824
117 116 115 Company_116 265.79 133.89 429.39 994.03 476.28 956.81 86839.57 87486.73 716 685 Urban Rural No 11.371817672344777 11.379242403701742 372.628 341.681 356.579 283.389
118 117 116 Company_117 559.33 215.17 264.97 615.03 113.88 922.44 15724.66 57195.4 744 479 Rural Suburban Yes No 9.66298545971327 10.954228754553641 444.388 340.244 394.933 150.517
119 118 117 Company_118 781.96 273.3 443.32 200.4 862.47 702.29 74245.47 91578.5 273 282 Rural Urban No Yes 11.215132044702743 11.424951806954867 427.247 468.229 508.196 389.33
120 119 118 Company_119 890.02 727.88 331.77 435.23 697.16 623.45 83693.72 88235.21 772 802 Rural Yes No 11.334919223794108 11.387761368682435 531.716 467.345 428.002 246.788
121 120 119 Company_120 358.86 500.21 588.14 244.24 768.94 743.84 84336.55 88539.28 101 213 Urban No Yes 11.342570620606638 11.391201574335291 188.894 198.38400000000001 371.886 289.021
122 121 120 Company_121 589.37 492.05 192.81 549.08 994.71 197.37 30198.07 36497.09 651 698 Urban Suburban Yes 10.315533294036035 10.504987810364897 451.471 293.737 426.937 524.205
123 122 121 Company_122 808.28 242.04 297.7 645.31 455.05 338.0 30809.46 15847.92 875 625 Urban Suburban Yes No 10.335577064660097 9.670793540410068 157.505 288.8 494.828 503.204
124 123 122 Company_123 988.78 169.61 307.96 943.12 869.8 489.47 44511.43 94776.28 310 339 Suburban Rural Yes No 10.703501289105592 11.459274445964661 455.98 396.947 326.878 284.961
125 124 123 Company_124 461.81 997.7 849.69 668.06 521.11 149.31 84053.28 85691.25 549 924 Suburban Urban Yes No 11.339206162465574 11.358505999023217 425.111 249.931 217.18099999999998 254.77
126 125 124 Company_125 438.73 980.24 683.75 952.38 458.4 156.39 34747.89 64771.22 771 488 Rural Urban Yes 10.455874129724979 11.078616647880379 386.84 249.639 305.873 320.024
127 126 125 Company_126 791.33 823.52 299.04 620.72 650.17 152.73 84231.54 80077.4 634 167 Urban Yes 11.341324714414265 11.290748945929552 208.017 183.273 494.13300000000004 482.352
128 127 126 Company_127 369.59 518.56 143.99 264.76 204.6 894.63 27639.11 21886.95 536 544 Rural Urban Yes 10.22698707765262 9.99364584778038 338.46 392.46299999999997 479.959 459.856
129 128 127 Company_128 524.05 516.9 885.87 541.19 431.91 284.53 22997.06 79221.17 766 481 Suburban Urban Yes 10.04312166065388 11.279998840064575 507.19100000000003 168.453 410.405 416.69
130 129 128 Company_129 677.07 479.06 490.74 821.23 311.48 812.31 21524.13 45671.01 781 578 Rural No Yes 9.97692991036063 10.729219021108582 444.148 574.231 564.707 207.906
131 130 129 Company_130 178.2 864.87 260.51 370.37 858.09 627.0 83651.2 99571.15 562 335 Rural No 11.334411051799224 11.508627742978986 185.809 166.7 333.82 538.487
132 131 130 Company_131 691.31 106.9 398.92 451.78 644.53 741.94 87442.53 84024.35 582 712 Rural Suburban No Yes 11.378737056558094 11.338861916770467 443.453 338.194 357.131 378.69
133 132 131 Company_132 189.46 480.63 575.78 972.01 346.71 956.7 13257.65 30156.57 284 517 Rural Suburban Yes 9.492330023297646 10.31415808886406 296.671 558.67 473.946 243.063
134 133 132 Company_133 488.33 467.69 731.67 512.18 953.18 484.88 26643.92 26439.75 489 636 Rural Yes No 10.190316260976394 10.18262383855027 559.318 458.488 406.83299999999997 496.769
135 134 133 Company_134 369.02 338.95 465.67 482.23 667.29 735.23 78924.61 65016.58 793 500 Suburban No Yes 11.27624837201392 11.082397593274264 238.72899999999998 225.523 205.902 355.895
136 135 134 Company_135 738.44 396.97 879.57 167.31 465.81 970.9 92477.88 16871.64 609 796 Suburban Urban No Yes 11.434724759768017 9.73338938480437 365.581 501.09000000000003 546.844 360.697
137 136 135 Company_136 758.99 443.34 786.45 726.96 658.38 811.81 52134.69 19889.06 989 186 Urban Suburban Yes 10.861585841104548 9.89792511080162 218.838 528.181 231.899 533.334
138 137 136 Company_137 464.53 900.26 270.67 735.27 133.65 322.44 25976.63 73358.44 552 674 Suburban Yes 10.164952566645338 11.203112841709697 168.365 335.244 274.453 343.026
139 138 137 Company_138 580.02 298.84 793.08 960.18 931.46 833.89 40643.76 32517.38 471 521 Rural Yes 10.612600597657721 10.38952999461049 362.146 355.389 444.002 338.884
140 139 138 Company_139 274.51 514.11 795.06 138.94 500.42 403.06 35139.32 73790.3 233 600 Rural Yes No 10.46707601038709 11.208982565635692 281.04200000000003 373.306 458.451 287.411
141 140 139 Company_140 959.71 563.71 868.21 895.07 107.06 230.42 49994.95 35866.03 428 717 Rural Yes No 10.81967727930944 10.487545886954793 361.706 239.042 578.971 317.371
142 141 140 Company_141 354.71 233.85 563.01 759.24 350.48 700.57 42908.83 65060.34 610 787 Urban Rural No 10.666832911242361 11.083070425958969 272.048 232.05700000000002 357.471 271.385
143 142 141 Company_142 396.03 931.02 603.89 738.56 128.42 668.2 39303.37 77652.7 668 697 Urban No Yes 10.579065544817109 11.260001599382495 332.842 521.82 170.603 392.102
144 143 142 Company_143 892.61 212.83 311.16 695.04 670.46 321.17 43027.27 18167.74 864 646 Suburban Rural Yes 10.669589379711221 9.807402772806727 549.046 455.117 279.26099999999997 180.28300000000002
145 144 143 Company_144 486.76 924.34 626.8 205.86 943.16 558.88 39879.69 52162.63 50 780 Rural Suburban No Yes 10.593622450725602 10.86212161710854 318.31600000000003 425.888 189.676 415.43399999999997
146 145 144 Company_145 917.34 249.21 288.69 863.7 643.88 749.47 55254.01 84617.29 873 62 Suburban Urban Yes No 10.919696195931778 11.34589389823535 281.38800000000003 207.947 371.73400000000004 349.921
147 146 145 Company_146 435.58 726.16 284.0 794.73 802.41 746.1 14442.55 62798.43 517 763 Suburban Rural Yes No 9.577933989653928 11.047685352143786 362.241 310.61 241.558 533.616
148 147 146 Company_147 202.67 948.13 381.12 792.63 247.09 192.63 64747.68 73034.29 871 730 Rural Suburban Yes No 11.07825314880404 11.19868433587119 335.709 204.263 272.267 380.813
149 148 147 Company_148 394.8 270.83 297.97 206.89 982.49 219.69 64826.8 13885.75 825 153 Suburban Urban No 11.079474377086543 9.53861841340637 261.249 288.969 240.48000000000002 487.08299999999997
150 149 148 Company_149 703.7 272.47 551.4 649.86 223.33 407.02 52703.5 58794.83 186 719 Rural Suburban No 10.872437145986403 10.981809204851006 325.333 230.702 248.37 388.247
151 150 149 Company_150 271.26 896.82 639.62 782.03 669.86 746.84 54145.21 81132.02 286 590 Urban Suburban No Yes 10.899424790529425 11.303832983390505 392.986 402.68399999999997 361.126 300.682
152 151 150 Company_151 741.21 589.6 534.21 665.02 734.27 990.66 99208.27 34608.49 649 157 Urban Yes 11.504976656733618 10.45185430666866 459.427 433.06600000000003 365.121 160.96
153 152 151 Company_152 946.16 643.56 900.51 747.96 456.7 727.56 12725.19 70969.34 836 259 Rural Urban Yes No 9.451338772544975 11.170003231771686 533.67 381.756 282.616 509.356
154 153 152 Company_153 230.74 197.82 396.22 825.05 221.36 703.02 44064.93 82097.85 469 105 Rural Urban No Yes 10.693419506970148 11.315667107521492 279.136 502.302 139.074 422.782
155 154 153 Company_154 390.33 894.06 162.83 451.21 592.72 306.92 41020.68 74212.65 592 254 Urban Yes No 10.621831608768346 11.214689899799728 283.272 425.692 484.033 541.406
156 155 154 Company_155 729.59 543.93 982.05 974.84 479.26 140.75 33549.17 83785.49 191 519 Suburban Urban No 10.420767402898578 11.336015121119924 377.926 288.075 280.959 240.393
157 156 155 Company_156 873.45 319.43 147.99 298.48 568.87 775.91 10530.31 45520.75 621 824 Urban Rural No Yes 9.262013044390788 10.725923544938645 262.887 469.591 409.345 279.943
158 157 156 Company_157 799.45 233.39 990.69 615.17 784.19 724.77 76686.49 90675.17 803 284 Rural No Yes 11.247480831032389 11.415038838977027 299.419 389.477 216.945 354.339
159 158 157 Company_158 491.74 928.81 143.25 981.92 906.25 359.93 59283.77 92439.1 370 235 Suburban Urban No 10.990090854439025 11.434305328295919 558.625 454.993 390.174 273.881
160 159 158 Company_159 367.87 704.18 208.07 559.39 473.62 182.05 83903.97 44391.3 372 820 Suburban Rural Yes 11.33742820957182 10.700798783274456 282.362 337.205 264.787 528.418
161 160 159 Company_160 564.46 154.02 355.27 251.18 733.19 865.35 61663.32 98398.02 609 360 Urban Suburban No 11.029444543649397 11.496775960886676 275.319 291.53499999999997 363.446 364.402
162 161 160 Company_161 607.02 275.54 300.46 406.26 718.76 568.47 99731.85 27050.68 231 69 Suburban No 11.510240363309093 10.20546742259082 538.876 520.847 257.702 180.554
163 162 161 Company_162 363.2 398.32 676.84 919.29 915.1 546.25 81358.78 98471.58 101 220 Urban Rural No 11.306624035526434 11.49752325760921 493.51 397.625 285.32 463.832
164 163 162 Company_163 976.79 276.07 481.49 251.64 329.12 777.77 87221.77 36870.89 246 744 Urban Suburban No Yes 11.37620923470151 10.515177629803139 221.912 387.777 377.679 477.60699999999997
165 164 163 Company_164 738.36 645.63 396.44 243.57 379.5 345.2 95322.53 26267.46 249 334 Rural Suburban No Yes 11.465021473034172 10.176086189767442 364.95 206.51999999999998 406.836 537.563
166 165 164 Company_165 785.54 869.89 427.37 779.5 589.4 694.12 84393.08 33187.84 683 707 Suburban No Yes 11.343240686701314 10.40993882275291 288.94 174.412 373.554 486.98900000000003
167 166 165 Company_166 992.29 913.2 576.28 937.8 173.55 524.82 43056.45 93834.24 352 397 Rural Urban No Yes 10.670267324417088 11.449285100369293 470.355 527.482 363.229 406.32
168 167 166 Company_167 346.54 120.77 528.08 970.59 728.16 161.73 68761.38 56121.04 309 791 Rural Yes 11.138397529103418 10.935266065762434 195.816 349.173 262.654 405.077
169 168 167 Company_168 523.22 757.06 482.95 742.72 699.79 289.58 58914.32 49173.87 735 459 Rural No 10.983839464028723 10.80311766383716 344.979 447.95799999999997 293.322 499.706
170 169 168 Company_169 891.58 578.68 418.18 954.7 511.08 693.6 28763.31 92161.91 576 99 Urban Rural Yes No 10.26685589561593 11.431302200541351 178.108 563.36 286.158 531.8679999999999
171 170 169 Company_170 712.0 486.25 906.86 914.6 583.05 227.81 16881.59 41215.88 957 401 Urban Suburban Yes 9.73397895802674 10.626578897969104 309.305 266.781 519.2 432.625

View File

@ -52,7 +52,7 @@ if __name__ == '__main__':
parser.add_argument('--exp', type=str, default='without_exp') parser.add_argument('--exp', type=str, default='without_exp')
parser.add_argument('--job', type=int, default='3') parser.add_argument('--job', type=int, default='3')
parser.add_argument('--reset_sample', type=int, default='0') parser.add_argument('--reset_sample', type=int, default='0')
parser.add_argument('--reset_db', type=bool, default=True) parser.add_argument('--reset_db', type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
# 几核参与进程 # 几核参与进程

View File

@ -78,11 +78,11 @@ class MyModel(Model):
print(f"Failed to initialize product network: {e}") print(f"Failed to initialize product network: {e}")
# 赋予 产业的量 # 赋予 产业的量
# 产业种类 # 产业种类
data = pd.read_csv('测试数据 products_materials_equipment.csv') data = pd.read_csv('input_data/测试 BomNodes.csv')
self.type = data data['Code'] = data['Code'].astype('string')
self.type2 = data
# 设备c折旧比值 # 设备c折旧比值
device_salvage_values = pd.read_csv('测试数据 device_salvage_values.csv') ###
self.device_salvage_values = device_salvage_values
def initialize_firm_network(self): def initialize_firm_network(self):
# Read the firm data # Read the firm data
@ -121,6 +121,10 @@ class MyModel(Model):
self.G_FirmProd.add_nodes_from(firm_industry_relation.index) self.G_FirmProd.add_nodes_from(firm_industry_relation.index)
# 为每个节点分配属性 # 为每个节点分配属性
grouped = firm_industry_relation.groupby('Firm_Code')
self.firm_prod_labels_dict = {code: group['Product_Code'].tolist() for code, group in grouped}
firm_prod_labels_dict = {code: firm_industry_relation.loc[code].to_dict() for code in firm_prod_labels_dict = {code: firm_industry_relation.loc[code].to_dict() for code in
firm_industry_relation.index} firm_industry_relation.index}
nx.set_node_attributes(self.G_FirmProd, firm_prod_labels_dict) nx.set_node_attributes(self.G_FirmProd, firm_prod_labels_dict)
@ -137,7 +141,8 @@ class MyModel(Model):
for pred_product_code in lst_pred_product_code: for pred_product_code in lst_pred_product_code:
# Get a list of firms producing the component (pred_product_code) # Get a list of firms producing the component (pred_product_code)
lst_pred_firm = self.Firm['Code'][self.Firm[pred_product_code] == 1].to_list() lst_pred_firm = [firm_code for firm_code, product in self.firm_prod_labels_dict.items() if
pred_product_code in product]
# Select multiple suppliers (multi-sourcing) # Select multiple suppliers (multi-sourcing)
n_pred_firm = self.int_netw_prf_n n_pred_firm = self.int_netw_prf_n
@ -183,7 +188,8 @@ class MyModel(Model):
lst_succ_product_code = list(self.G_bom.successors(product_code)) lst_succ_product_code = list(self.G_bom.successors(product_code))
for succ_product_code in lst_succ_product_code: for succ_product_code in lst_succ_product_code:
lst_succ_firm = self.Firm['Code'][self.Firm[succ_product_code] == 1].to_list() lst_succ_firm = [firm_code for firm_code, product in self.firm_prod_labels_dict.items() if
succ_product_code in product]
n_succ_firm = self.int_netw_prf_n n_succ_firm = self.int_netw_prf_n
if n_succ_firm > len(lst_succ_firm): if n_succ_firm > len(lst_succ_firm):
@ -214,40 +220,45 @@ class MyModel(Model):
def initialize_agents(self): def initialize_agents(self):
""" Initialize agents and add them to the model. """ """ Initialize agents and add them to the model. """
for ag_node, attr in self.product_network.nodes(data=True): for ag_node, attr in self.product_network.nodes(data=True):
# 产业种类 # 产业种类
type2 = self.type.loc[ag_node, '种类'] # 利用 测试 BomNodes.csv 转换产业 和 id 前提是 一个产业一个产品id 且一一对应
product_id = self.type2.loc[self.type2['Code'] == ag_node, 'Index']
device_salvage_values = self.type.loc[ag_node, '设备残值'] type2 = self.type2.loc[product_id, '产业种类'].values[0]
j_comp_data_consumed = self.data_consumed.loc[ag_node] # depreciation ratio 折旧比值
product_id = product_id.iloc[0]
j_comp_data_produced = self.data_consumed.loc[ag_node] j_comp_data_consumed = self.data_consumed[product_id]
j_comp_data_produced = self.data_produced[product_id]
product = ProductAgent(ag_node, self, name=attr['Name'], type2=type2, product = ProductAgent(ag_node, self, name=attr['Name'], type2=type2,
device_salvage_values=device_salvage_values,
j_comp_data_consumed=j_comp_data_consumed, j_comp_data_consumed=j_comp_data_consumed,
j_comp_data_produced=j_comp_data_produced, ) j_comp_data_produced=j_comp_data_produced,
)
self.add_agent(product) self.add_agent(product)
# self.grid.place_agent(product, ag_node) # self.grid.place_agent(product, ag_node)
##print(f"Product agent created: {product.name}, ID: {product.unique_id}") ##print(f"Product agent created: {product.name}, ID: {product.unique_id}")
for ag_node, attr in self.firm_network.nodes(data=True): for ag_node, attr in self.firm_network.nodes(data=True):
a_lst_product = [agent for agent in self.product_agents if agent.unique_id in attr['Product_Code']] a_lst_product = [agent for agent in self.product_agents if agent.unique_id in attr['Product_Code']]
firm_id = self.Firm['Code'] == ag_node
n_equip_c = self.Firm.loc[firm_id, '设备数量'].values[0]
n_equip_c = self.Firm.loc[ag_node, '设备数量'] demand_quantity = self.Firm.loc[firm_id, 'production_output'].values[0]
demand_quantity = self.Firm.loc[ag_node, 'production_output'] production_output = self.Firm.loc[firm_id, 'demand_quantity'].values[0]
production_output = self.Firm.loc[ag_node, 'demand_quantity'] # c购买价格 数据预处理
# c_price = self.Firm.loc[self.Firm['Code'] == ag_node, 'c_price'].values[0]
c_price = self.Firm.loc[ag_node, 'c_price']
# 资源 资源库存信息 利用 firm_resource # 资源 资源库存信息 利用 firm_resource
R = self.firm_resource_R.loc[ag_node] R = self.firm_resource_R.loc[firm_id].to_list()[0]
P = self.firm_resource_R.loc[ag_node] P = self.firm_resource_P.loc[firm_id].to_list()[0]
C = self.firm_resource_R.loc[ag_node] C = self.firm_resource_C.loc[firm_id].to_list()[0]
firm_agent = FirmAgent( firm_agent = FirmAgent(
ag_node, self, ag_node, self,
@ -257,7 +268,7 @@ class MyModel(Model):
a_lst_product=a_lst_product, a_lst_product=a_lst_product,
demand_quantity=demand_quantity, demand_quantity=demand_quantity,
production_output=production_output, production_output=production_output,
c_price=c_price, # c_price=c_price,
R=R, R=R,
P=P, P=P,
C=C C=C
@ -306,12 +317,18 @@ class MyModel(Model):
data_R = pd.read_csv("测试数据 companies_materials.csv") data_R = pd.read_csv("测试数据 companies_materials.csv")
data_C = pd.read_csv("测试数据 companies_devices.csv") data_C = pd.read_csv("测试数据 companies_devices.csv")
data_P = pd.read_csv("测试数据 companies_products.csv") data_P = pd.read_csv("测试数据 companies_products.csv")
device_salvage_values = pd.read_csv('测试数据 device_salvage_values.csv')
self.device_salvage_values = device_salvage_values
data_merged_C = pd.merge(data_C, device_salvage_values, on='设备id', how='left')
firm_resource_R = (data_R.groupby('Firm_Code')[['材料id', '材料数量']] firm_resource_R = (data_R.groupby('Firm_Code')[['材料id', '材料数量']]
.apply(lambda x: x.values.tolist())) .apply(lambda x: x.values.tolist()))
firm_resource_C = (data_C.groupby('Firm_Code')[['材料id', '材料数量']] firm_resource_C = (data_merged_C.groupby('Firm_Code')[['设备id', '设备数量', '设备残值']]
.apply(lambda x: x.values.tolist())) .apply(lambda x: x.values.tolist()))
firm_resource_P = (data_P.groupby('Firm_Code')[['材料id', '材料数量']] firm_resource_P = (data_P.groupby('Firm_Code')[['产品id', '产品数量']]
.apply(lambda x: x.values.tolist())) .apply(lambda x: x.values.tolist()))
self.firm_resource_R = firm_resource_R self.firm_resource_R = firm_resource_R
@ -321,9 +338,10 @@ class MyModel(Model):
def j_comp_consumed_produced(self): def j_comp_consumed_produced(self):
data_consumed = pd.read_csv('测试数据 consumed_materials.csv') data_consumed = pd.read_csv('测试数据 consumed_materials.csv')
data_produced = pd.read_csv('测试数据 produced_products.csv') data_produced = pd.read_csv('测试数据 produced_products.csv')
data_consumed = (data_consumed.groupby('产业id')[['消耗材料id', '消耗材料数量']]
data_consumed = (data_consumed.groupby('产业id')[['消耗材料id', '消耗量']]
.apply(lambda x: x.values.tolist())) .apply(lambda x: x.values.tolist()))
data_produced = (data_produced.groupby('产业id')[['制造产品id', '制造产品数']] data_produced = (data_produced.groupby('产业id')[['制造产品id', '制造']]
.apply(lambda x: x.values.tolist())) .apply(lambda x: x.values.tolist()))
self.data_consumed = data_consumed self.data_consumed = data_consumed
@ -381,13 +399,13 @@ class MyModel(Model):
machinery_list = [] machinery_list = []
list_seek_material_firm = [] # 每一个收到请求的企业 list_seek_material_firm = [] # 每一个收到请求的企业
list_seek_machinery_firm = [] # 每一个收到请求的企业 list_seek_machinery_firm = [] # 每一个收到请求的企业
for firm in self.company_agents: for firm in self.company_agents:
# 资源 # 资源
for sub_list in firm.R: for sub_list in firm.R:
if sub_list[1] <= firm.s_r: if sub_list[1] <= firm.s_r:
required_material_quantity = firm.S_r - sub_list[1] required_material_quantity = firm.S_r - sub_list[1]
(material_list (material_list.append([sub_list[0], required_material_quantity]))
.append([sub_list[0], required_material_quantity]))
purchase_material_firms[firm] = material_list purchase_material_firms[firm] = material_list
# 设备 # 设备
for sub_list in firm.C: for sub_list in firm.C:
@ -395,37 +413,43 @@ class MyModel(Model):
sub_list[2] -= firm.x sub_list[2] -= firm.x
if sub_list[2] <= 0: # 残值小于等于 0 时 if sub_list[2] <= 0: # 残值小于等于 0 时
sub_list[1] -= 1 sub_list[1] -= 1
required_machinery_quantity = firm.C1[0][1] - sub_list[1] # 补回原来的量 也就是 1 required_machinery_quantity = 1 # 补回原来的量 也就是 1
(machinery_list (machinery_list
.append([sub_list[0], required_machinery_quantity])) .append([sub_list[0], required_machinery_quantity]))
purchase_machinery_firms[firm] = machinery_list purchase_machinery_firms[firm] = machinery_list
# 寻源并发送请求 决定是否接受供应 并更新 # 寻源并发送请求 决定是否接受供应 并更新
for material_firm_key, sub_list_values in purchase_material_firms.items():
for mater_list in sub_list_values:
result = material_firm_key.seek_material_supply(mater_list[0])
# 如果 result 不等于 0才将其添加到 list_seek_material_firm 列表中
if result != -1:
list_seek_material_firm.append(result)
for material_firm, sub_list in purchase_material_firms:
for material_list in sub_list:
(list_seek_material_firm
.append(material_firm.seek_material_supply(material_list[0])))
if len(list_seek_material_firm) != 0: if len(list_seek_material_firm) != 0:
for seek_material_firm in list_seek_material_firm: for seek_material_firm in list_seek_material_firm:
seek_material_firm.handle_material_request(material_list) # 更新产品 seek_material_firm.handle_material_request(mater_list) # 更新产品
for R_list in firm.R: for R_list in firm.R:
R_list[1] = firm.S_r R_list[1] = firm.S_r
for machinery_firm, sub_list in purchase_machinery_firms: for machinery_firm, sub_list in purchase_machinery_firms.items():
for machinery_list in sub_list: for machi_list in sub_list:
(list_seek_machinery_firm # 执行一次调用 machinery_firm.seek_machinery_supply(machinery_list[0])
.append(machinery_firm.seek_machinery_supply(machinery_list[0]))) result = machinery_firm.seek_machinery_supply(machi_list[0])
# 如果 result 不等于 0才将其添加到 list_seek_machinery_firm 列表中
if result != -1:
list_seek_machinery_firm.append(result)
if len(list_seek_machinery_firm) != 0: if len(list_seek_machinery_firm) != 0:
for seek_machinery_firm in list_seek_machinery_firm: for seek_machinery_firm in list_seek_machinery_firm:
seek_machinery_firm.handle_machinery_request(machinery_list) seek_machinery_firm.handle_machinery_request(machi_list)
for C_list, C0_list in zip(firm.C, firm.C0): for C_list, C0_list in zip(firm.C, firm.C0):
C_list[1] = C0_list[1] # 赋值回去 C_list[1] = C0_list[1] # 赋值回去
C_list[2] = C0_list[2] C_list[2] = C0_list[2]
# 消耗资源过程 # 消耗资源过程
consumed_material = [] consumed_material = []
for product in firm.a_lst_product: for product in firm.indus_i:
for sub_list_data_consumed in product.j_comp_data_consumed: for sub_list_data_consumed in product.j_comp_data_consumed:
consumed_material_id = sub_list_data_consumed[0] consumed_material_id = sub_list_data_consumed[0]
consumed_material_num = sub_list_data_consumed[1] consumed_material_num = sub_list_data_consumed[1]
@ -436,7 +460,7 @@ class MyModel(Model):
sub_list_material[1] = sub_list_material[1] - sub_list_consumed_material[1] sub_list_material[1] = sub_list_material[1] - sub_list_consumed_material[1]
# 生产产品过程 # 生产产品过程
produced_products = [] produced_products = []
for product in firm.a_lst_product: for product in firm.indus_i:
for sub_list_produced_products in product.j_comp_data_consumed: for sub_list_produced_products in product.j_comp_data_consumed:
produced_products_id = sub_list_produced_products[0] produced_products_id = sub_list_produced_products[0]
produced_products_num = sub_list_produced_products[1] produced_products_num = sub_list_produced_products[1]

View File

@ -2,7 +2,7 @@ from mesa import Agent
class ProductAgent(Agent): class ProductAgent(Agent):
def __init__(self, unique_id, model, name, type2, device_salvage_values, j_comp_data_consumed, j_comp_data_produced): def __init__(self, unique_id, model, name, type2, j_comp_data_consumed, j_comp_data_produced):
# 调用超类的 __init__ 方法 # 调用超类的 __init__ 方法
super().__init__(unique_id, model) super().__init__(unique_id, model)
@ -13,7 +13,8 @@ class ProductAgent(Agent):
self.is_equip = True self.is_equip = True
else: else:
self.is_mater = True self.is_mater = True
self.device_salvage_values = device_salvage_values # depreciation ratio 折旧比值
# self.depreciation ratio
self.j_comp_data_produced = j_comp_data_produced self.j_comp_data_produced = j_comp_data_produced
self.j_comp_data_consumed = j_comp_data_consumed self.j_comp_data_consumed = j_comp_data_consumed

View File

@ -4,14 +4,25 @@ import numpy as np
# 设置随机种子 # 设置随机种子
np.random.seed(42) np.random.seed(42)
# 生成企业和设备数据 num_companies = 170 # 企业ID范围
num_rows = 10 # 每个表的行数
# 构造数据 # 生成企业和设备数据
company_ids = np.random.randint(1000, 1100, size=num_rows) num_rows = 220 # 每个表的行数
device_ids = np.random.randint(100, 200, size=num_rows)
material_ids = np.random.randint(0, 100, size=num_rows) company_ids = np.arange(num_companies)
product_ids = np.random.randint(0, 200, size=num_rows)
# 第二步生成剩余的随机企业ID
remaining_ids = np.random.randint(0, num_companies, size=num_rows - num_companies)
# 合并两部分的企业ID
all_company_ids = np.concatenate([company_ids, remaining_ids])
# 第三步对企业ID进行升序排序
all_company_ids.sort()
device_ids = np.random.randint(51, 107, size=num_rows)
material_ids = np.random.randint(0, 51, size=num_rows)
product_ids = np.random.randint(0, 107, size=num_rows)
device_quantities = np.random.randint(50, 200, size=num_rows) device_quantities = np.random.randint(50, 200, size=num_rows)
material_quantities = np.random.randint(100,200, size=num_rows) material_quantities = np.random.randint(100,200, size=num_rows)
@ -19,19 +30,19 @@ product_quantities = np.random.randint(20, 100, size=num_rows)
# 创建三个表格的数据框 # 创建三个表格的数据框
df_devices = pd.DataFrame({ df_devices = pd.DataFrame({
'企业id': company_ids, 'Firm_Code': all_company_ids,
'设备id': device_ids, '设备id': device_ids,
'设备数量': device_quantities '设备数量': device_quantities
}) })
df_materials = pd.DataFrame({ df_materials = pd.DataFrame({
'企业id': company_ids, 'Firm_Code': all_company_ids,
'材料id': material_ids, '材料id': material_ids,
'材料数量': material_quantities '材料数量': material_quantities
}) })
df_products = pd.DataFrame({ df_products = pd.DataFrame({
'企业id': company_ids, 'Firm_Code': all_company_ids,
'产品id': product_ids, '产品id': product_ids,
'产品数量': product_quantities '产品数量': product_quantities
}) })

View File

@ -5,7 +5,7 @@ import numpy as np
np.random.seed(42) np.random.seed(42)
# 定义产业数量 # 定义产业数量
num_industries = 10 num_industries = 107
# 创建产业ID列表 # 创建产业ID列表
industry_ids = [i for i in range(0, num_industries + 1)] industry_ids = [i for i in range(0, num_industries + 1)]
@ -30,8 +30,8 @@ for industry in industry_ids:
produced_products_data.append([industry, product_id, production_quantity]) produced_products_data.append([industry, product_id, production_quantity])
# 创建两个数据框 # 创建两个数据框
df_consumed_materials = pd.DataFrame(consumed_materials_data, columns=['产业ID', '消耗材料ID', '消耗量']) df_consumed_materials = pd.DataFrame(consumed_materials_data, columns=['产业id', '消耗材料id', '消耗量'])
df_produced_products = pd.DataFrame(produced_products_data, columns=['产业ID', '制造产品ID', '制造量']) df_produced_products = pd.DataFrame(produced_products_data, columns=['产业id', '制造产品id', '制造量'])
# 保存两个数据框为CSV文件 # 保存两个数据框为CSV文件
file_path_consumed = '测试数据 consumed_materials.csv' file_path_consumed = '测试数据 consumed_materials.csv'

View File

@ -9,7 +9,6 @@ df = pd.DataFrame(data)
df['产业种类'] = [random.choice([0, 1]) for _ in range(107)] df['产业种类'] = [random.choice([0, 1]) for _ in range(107)]
# 显示前几行 # 显示前几行
print(df.head())
# 保存数据到CSV文件 # 保存数据到CSV文件
df.to_csv('input_data/测试 BomNodes.csv', index=False) df.to_csv('input_data/测试 BomNodes.csv', index=False)

View File

@ -6,11 +6,10 @@ import numpy as np
# 生成170条测试数据的函数 # 生成170条测试数据的函数
def generate_test_data(num_rows=170): def generate_test_data(num_rows=170):
data = { data = {
'Company ID': [i for i in range(1, num_rows + 1)], # 生成1到170的公司ID 'Code': [i for i in range(0, num_rows)], # 生成0到170的公司ID
'Company Name': [f'Company_{i}' for i in range(1, num_rows + 1)], # 生成公司名称
'原材料': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 原材料 '原材料': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 原材料
'库存商品': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 库存商品 '库存商品': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 库存商品
'固定资产原值': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 固定资产原值 '设备数量': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 固定资产原值
'Revenue': [round(random.uniform(10000, 100000), 2) for _ in range(num_rows)], # Revenue 'Revenue': [round(random.uniform(10000, 100000), 2) for _ in range(num_rows)], # Revenue
'Total Employees (People)': [random.randint(50, 1000) for _ in range(num_rows)], # 员工总数 'Total Employees (People)': [random.randint(50, 1000) for _ in range(num_rows)], # 员工总数
'Type_Region': [random.choice(['Urban', 'Rural', 'Suburban']) for _ in range(num_rows)], # 区域类型 'Type_Region': [random.choice(['Urban', 'Rural', 'Suburban']) for _ in range(num_rows)], # 区域类型
@ -21,14 +20,13 @@ def generate_test_data(num_rows=170):
# 添加Revenue_Log列 # 添加Revenue_Log列
df['Revenue_Log'] = np.log(df['Revenue']) df['Revenue_Log'] = np.log(df['Revenue'])
df['production_output'] = df['固定资产原值'] / 10+np.random.randint(100, 500, size=len(df)) df['production_output'] = df['设备数量'] / 10+np.random.randint(100, 500, size=len(df))
df['demand_quantity'] = df['原材料'] / 10 +np.random.randint(100, 500, size=len(df)) df['demand_quantity'] = df['原材料'] / 10 +np.random.randint(100, 500, size=len(df))
return df return df
# 生成数据 # 生成数据
df_test_data = generate_test_data() df_test_data = generate_test_data()
# 显示前几行 # 显示前几行
print(df_test_data.head()) print(df_test_data.head())

View File

@ -1,11 +1,221 @@
企业id,设备id,设备数量 Firm_Code,设备id,设备数量
1051,187,104 0,70,140
1092,199,113 1,78,139
1014,123,180 1,97,68
1071,102,100 2,57,88
1060,121,184 3,94,175
1020,152,70 4,58,190
1082,101,122 5,97,175
1086,187,67 6,85,107
1074,129,181 7,64,197
1074,137,138 8,67,110
8,86,176
9,100,154
10,90,50
11,54,180
12,52,141
13,56,162
13,104,105
14,92,166
14,54,183
14,104,107
15,79,93
16,68,110
17,76,96
17,94,198
18,84,129
19,60,167
20,86,196
20,64,69
20,81,195
20,98,96
21,65,98
21,58,63
22,64,192
23,73,50
24,90,166
25,71,103
26,66,167
27,95,52
28,68,193
29,97,61
30,103,123
31,74,65
32,76,151
33,75,166
34,95,57
35,91,171
36,79,141
37,65,139
37,95,185
38,51,109
39,75,77
40,57,150
41,59,90
42,74,194
43,51,190
44,94,95
45,58,84
46,74,183
47,61,131
48,101,164
48,67,96
49,58,59
50,85,105
50,85,79
50,83,158
51,55,54
52,92,168
52,89,82
52,91,167
53,78,114
54,57,195
54,59,60
55,58,134
56,62,75
57,84,112
57,83,135
58,98,108
58,105,76
59,73,147
59,74,154
60,87,148
61,85,178
62,94,198
63,90,104
63,72,55
64,77,144
65,85,182
66,51,151
67,85,52
68,87,72
69,97,102
70,64,132
71,53,194
71,51,134
72,55,127
72,76,159
73,105,50
74,64,100
74,89,53
75,77,162
76,59,81
77,65,83
78,65,141
79,76,144
80,92,121
81,63,88
82,101,167
83,82,52
84,89,172
85,99,99
86,102,61
87,82,103
87,54,182
87,80,106
88,87,194
88,73,161
88,89,96
89,95,134
89,65,191
90,93,115
91,79,124
92,86,152
92,63,87
93,82,99
94,57,147
95,101,131
96,72,79
97,78,128
98,52,140
99,92,101
99,95,128
100,103,79
101,56,155
102,78,100
102,78,130
102,94,182
103,94,78
103,70,181
104,80,187
105,61,194
106,105,123
106,78,66
107,75,133
107,89,118
108,83,83
109,51,55
110,77,102
111,102,175
112,63,92
113,91,164
114,53,160
115,89,129
116,56,144
116,58,167
117,77,193
118,59,57
119,87,181
120,83,153
121,101,181
121,92,74
122,94,145
123,74,142
124,65,110
125,104,171
126,82,100
127,82,196
128,74,70
129,91,54
129,102,141
129,99,110
130,99,71
130,102,198
130,62,119
131,89,50
131,52,182
132,53,61
133,99,139
134,87,95
134,99,83
135,106,127
136,67,94
137,99,122
138,52,75
139,52,96
140,78,170
141,104,105
142,73,143
143,87,156
144,82,112
145,83,97
146,51,110
147,69,130
148,52,75
149,103,85
149,94,50
150,76,57
151,82,162
151,56,148
152,82,96
153,105,176
154,54,105
155,105,63
156,61,77
157,106,127
157,67,179
158,88,158
159,74,63
160,55,105
160,102,164
161,84,56
162,56,52
163,72,160
164,61,156
165,98,67
166,66,87
166,83,164
167,59,64
168,56,168
169,66,77
169,79,88

1 企业id Firm_Code 设备id 设备数量
2 1051 0 187 70 104 140
3 1092 1 199 78 113 139
4 1014 1 123 97 180 68
5 1071 2 102 57 100 88
6 1060 3 121 94 184 175
7 1020 4 152 58 70 190
8 1082 5 101 97 122 175
9 1086 6 187 85 67 107
10 1074 7 129 64 181 197
11 1074 8 137 67 138 110
12 8 86 176
13 9 100 154
14 10 90 50
15 11 54 180
16 12 52 141
17 13 56 162
18 13 104 105
19 14 92 166
20 14 54 183
21 14 104 107
22 15 79 93
23 16 68 110
24 17 76 96
25 17 94 198
26 18 84 129
27 19 60 167
28 20 86 196
29 20 64 69
30 20 81 195
31 20 98 96
32 21 65 98
33 21 58 63
34 22 64 192
35 23 73 50
36 24 90 166
37 25 71 103
38 26 66 167
39 27 95 52
40 28 68 193
41 29 97 61
42 30 103 123
43 31 74 65
44 32 76 151
45 33 75 166
46 34 95 57
47 35 91 171
48 36 79 141
49 37 65 139
50 37 95 185
51 38 51 109
52 39 75 77
53 40 57 150
54 41 59 90
55 42 74 194
56 43 51 190
57 44 94 95
58 45 58 84
59 46 74 183
60 47 61 131
61 48 101 164
62 48 67 96
63 49 58 59
64 50 85 105
65 50 85 79
66 50 83 158
67 51 55 54
68 52 92 168
69 52 89 82
70 52 91 167
71 53 78 114
72 54 57 195
73 54 59 60
74 55 58 134
75 56 62 75
76 57 84 112
77 57 83 135
78 58 98 108
79 58 105 76
80 59 73 147
81 59 74 154
82 60 87 148
83 61 85 178
84 62 94 198
85 63 90 104
86 63 72 55
87 64 77 144
88 65 85 182
89 66 51 151
90 67 85 52
91 68 87 72
92 69 97 102
93 70 64 132
94 71 53 194
95 71 51 134
96 72 55 127
97 72 76 159
98 73 105 50
99 74 64 100
100 74 89 53
101 75 77 162
102 76 59 81
103 77 65 83
104 78 65 141
105 79 76 144
106 80 92 121
107 81 63 88
108 82 101 167
109 83 82 52
110 84 89 172
111 85 99 99
112 86 102 61
113 87 82 103
114 87 54 182
115 87 80 106
116 88 87 194
117 88 73 161
118 88 89 96
119 89 95 134
120 89 65 191
121 90 93 115
122 91 79 124
123 92 86 152
124 92 63 87
125 93 82 99
126 94 57 147
127 95 101 131
128 96 72 79
129 97 78 128
130 98 52 140
131 99 92 101
132 99 95 128
133 100 103 79
134 101 56 155
135 102 78 100
136 102 78 130
137 102 94 182
138 103 94 78
139 103 70 181
140 104 80 187
141 105 61 194
142 106 105 123
143 106 78 66
144 107 75 133
145 107 89 118
146 108 83 83
147 109 51 55
148 110 77 102
149 111 102 175
150 112 63 92
151 113 91 164
152 114 53 160
153 115 89 129
154 116 56 144
155 116 58 167
156 117 77 193
157 118 59 57
158 119 87 181
159 120 83 153
160 121 101 181
161 121 92 74
162 122 94 145
163 123 74 142
164 124 65 110
165 125 104 171
166 126 82 100
167 127 82 196
168 128 74 70
169 129 91 54
170 129 102 141
171 129 99 110
172 130 99 71
173 130 102 198
174 130 62 119
175 131 89 50
176 131 52 182
177 132 53 61
178 133 99 139
179 134 87 95
180 134 99 83
181 135 106 127
182 136 67 94
183 137 99 122
184 138 52 75
185 139 52 96
186 140 78 170
187 141 104 105
188 142 73 143
189 143 87 156
190 144 82 112
191 145 83 97
192 146 51 110
193 147 69 130
194 148 52 75
195 149 103 85
196 149 94 50
197 150 76 57
198 151 82 162
199 151 56 148
200 152 82 96
201 153 105 176
202 154 54 105
203 155 105 63
204 156 61 77
205 157 106 127
206 157 67 179
207 158 88 158
208 159 74 63
209 160 55 105
210 160 102 164
211 161 84 56
212 162 56 52
213 163 72 160
214 164 61 156
215 165 98 67
216 166 66 87
217 166 83 164
218 167 59 64
219 168 56 168
220 169 66 77
221 169 79 88

View File

@ -1,11 +1,221 @@
企业id,材料id,材料数量 Firm_Code,材料id,材料数量
1051,1,159 0,2,156
1092,63,113 1,19,116
1014,59,108 1,35,185
1071,20,189 2,18,189
1060,32,152 3,25,143
1020,75,101 4,2,124
1082,57,183 5,18,116
1086,21,191 6,19,112
1074,88,159 7,31,183
1074,48,170 8,6,124
8,40,167
9,32,109
10,39,166
11,38,117
12,17,199
13,39,185
13,0,133
14,10,107
14,27,139
14,24,182
15,49,141
16,22,140
17,30,105
17,29,151
18,41,125
19,34,163
20,6,197
20,15,158
20,25,155
20,47,158
21,48,169
21,1,132
22,0,152
23,47,121
24,11,120
25,4,169
26,36,169
27,31,103
28,8,193
29,40,174
30,34,161
31,18,161
32,47,193
33,15,194
34,2,123
35,19,154
36,23,108
37,32,102
37,23,130
38,10,139
39,48,135
40,7,123
41,35,194
42,37,105
43,39,165
44,19,183
45,34,191
46,47,174
47,24,103
48,34,178
48,24,105
49,28,193
50,17,150
50,45,161
50,17,156
51,1,165
52,34,178
52,15,174
52,40,107
53,35,125
54,32,150
54,3,144
55,32,143
56,13,104
57,20,169
57,47,125
58,19,167
58,7,118
59,6,183
59,2,196
60,16,119
61,32,111
62,47,146
63,11,100
63,50,189
64,21,113
65,21,163
66,45,137
67,29,136
68,37,110
69,37,199
70,44,176
71,50,102
71,7,132
72,26,105
72,26,149
73,33,109
74,20,104
74,29,122
75,32,109
76,27,143
77,46,101
78,32,112
79,4,139
80,47,101
81,18,183
82,3,164
83,34,162
84,48,172
85,16,116
86,43,108
87,27,174
87,29,114
87,28,123
88,45,137
88,5,134
88,34,193
89,40,194
89,36,148
90,23,168
91,28,161
92,48,159
92,45,149
93,30,177
94,34,174
95,32,108
96,20,133
97,31,175
98,22,198
99,32,134
99,2,100
100,17,139
101,24,163
102,41,121
102,30,159
102,2,163
103,39,192
103,45,171
104,23,110
105,49,113
106,31,159
106,46,129
107,21,134
107,22,184
108,1,136
109,26,104
110,41,182
111,1,177
112,25,125
113,16,161
114,39,103
115,32,188
116,8,141
116,42,188
117,47,117
118,38,139
119,28,171
120,41,138
121,25,113
121,34,131
122,49,150
123,24,137
124,23,196
125,12,122
126,6,162
127,35,114
128,44,196
129,19,124
129,0,116
129,7,196
130,45,165
130,15,177
130,13,152
131,11,150
131,50,138
132,22,150
133,14,169
134,27,105
134,33,166
135,1,106
136,31,150
137,22,171
138,21,141
139,50,163
140,24,114
141,21,128
142,21,132
143,48,193
144,41,126
145,5,135
146,14,128
147,42,137
148,36,156
149,32,196
149,7,126
150,43,154
151,43,132
151,4,167
152,38,185
153,3,165
154,5,109
155,44,104
156,31,173
157,29,196
157,46,137
158,34,112
159,39,130
160,15,146
160,12,199
161,49,187
162,41,151
163,29,155
164,18,114
165,16,128
166,18,107
166,27,104
167,25,128
168,36,146
169,25,167
169,22,175

1 企业id Firm_Code 材料id 材料数量
2 1051 0 1 2 159 156
3 1092 1 63 19 113 116
4 1014 1 59 35 108 185
5 1071 2 20 18 189
6 1060 3 32 25 152 143
7 1020 4 75 2 101 124
8 1082 5 57 18 183 116
9 1086 6 21 19 191 112
10 1074 7 88 31 159 183
11 1074 8 48 6 170 124
12 8 40 167
13 9 32 109
14 10 39 166
15 11 38 117
16 12 17 199
17 13 39 185
18 13 0 133
19 14 10 107
20 14 27 139
21 14 24 182
22 15 49 141
23 16 22 140
24 17 30 105
25 17 29 151
26 18 41 125
27 19 34 163
28 20 6 197
29 20 15 158
30 20 25 155
31 20 47 158
32 21 48 169
33 21 1 132
34 22 0 152
35 23 47 121
36 24 11 120
37 25 4 169
38 26 36 169
39 27 31 103
40 28 8 193
41 29 40 174
42 30 34 161
43 31 18 161
44 32 47 193
45 33 15 194
46 34 2 123
47 35 19 154
48 36 23 108
49 37 32 102
50 37 23 130
51 38 10 139
52 39 48 135
53 40 7 123
54 41 35 194
55 42 37 105
56 43 39 165
57 44 19 183
58 45 34 191
59 46 47 174
60 47 24 103
61 48 34 178
62 48 24 105
63 49 28 193
64 50 17 150
65 50 45 161
66 50 17 156
67 51 1 165
68 52 34 178
69 52 15 174
70 52 40 107
71 53 35 125
72 54 32 150
73 54 3 144
74 55 32 143
75 56 13 104
76 57 20 169
77 57 47 125
78 58 19 167
79 58 7 118
80 59 6 183
81 59 2 196
82 60 16 119
83 61 32 111
84 62 47 146
85 63 11 100
86 63 50 189
87 64 21 113
88 65 21 163
89 66 45 137
90 67 29 136
91 68 37 110
92 69 37 199
93 70 44 176
94 71 50 102
95 71 7 132
96 72 26 105
97 72 26 149
98 73 33 109
99 74 20 104
100 74 29 122
101 75 32 109
102 76 27 143
103 77 46 101
104 78 32 112
105 79 4 139
106 80 47 101
107 81 18 183
108 82 3 164
109 83 34 162
110 84 48 172
111 85 16 116
112 86 43 108
113 87 27 174
114 87 29 114
115 87 28 123
116 88 45 137
117 88 5 134
118 88 34 193
119 89 40 194
120 89 36 148
121 90 23 168
122 91 28 161
123 92 48 159
124 92 45 149
125 93 30 177
126 94 34 174
127 95 32 108
128 96 20 133
129 97 31 175
130 98 22 198
131 99 32 134
132 99 2 100
133 100 17 139
134 101 24 163
135 102 41 121
136 102 30 159
137 102 2 163
138 103 39 192
139 103 45 171
140 104 23 110
141 105 49 113
142 106 31 159
143 106 46 129
144 107 21 134
145 107 22 184
146 108 1 136
147 109 26 104
148 110 41 182
149 111 1 177
150 112 25 125
151 113 16 161
152 114 39 103
153 115 32 188
154 116 8 141
155 116 42 188
156 117 47 117
157 118 38 139
158 119 28 171
159 120 41 138
160 121 25 113
161 121 34 131
162 122 49 150
163 123 24 137
164 124 23 196
165 125 12 122
166 126 6 162
167 127 35 114
168 128 44 196
169 129 19 124
170 129 0 116
171 129 7 196
172 130 45 165
173 130 15 177
174 130 13 152
175 131 11 150
176 131 50 138
177 132 22 150
178 133 14 169
179 134 27 105
180 134 33 166
181 135 1 106
182 136 31 150
183 137 22 171
184 138 21 141
185 139 50 163
186 140 24 114
187 141 21 128
188 142 21 132
189 143 48 193
190 144 41 126
191 145 5 135
192 146 14 128
193 147 42 137
194 148 36 156
195 149 32 196
196 149 7 126
197 150 43 154
198 151 43 132
199 151 4 167
200 152 38 185
201 153 3 165
202 154 5 109
203 155 44 104
204 156 31 173
205 157 29 196
206 157 46 137
207 158 34 112
208 159 39 130
209 160 15 146
210 160 12 199
211 161 49 187
212 162 41 151
213 163 29 155
214 164 18 114
215 165 16 128
216 166 18 107
217 166 27 104
218 167 25 128
219 168 36 146
220 169 25 167
221 169 22 175

View File

@ -1,11 +1,221 @@
企业id,产品id,产品数量 Firm_Code,产品id,产品数量
1051,58,63 0,8,64
1092,169,27 1,11,21
1014,187,66 1,0,46
1071,14,54 2,57,55
1060,189,97 3,0,55
1020,189,55 4,33,45
1082,174,69 5,95,62
1086,189,23 6,47,46
1074,50,21 7,88,88
1074,107,25 8,103,39
8,0,30
9,15,93
10,60,57
11,102,25
12,63,91
13,62,42
13,68,66
14,21,65
14,92,31
14,66,32
15,75,81
16,25,79
17,15,62
17,50,95
18,100,87
19,85,24
20,56,56
20,28,91
20,77,50
20,91,28
21,68,70
21,46,48
22,93,97
23,61,59
24,68,60
25,75,30
26,15,42
27,89,20
28,89,65
29,47,40
30,84,55
31,38,73
32,99,76
33,32,20
34,93,82
35,100,73
36,22,74
37,9,59
37,68,34
38,99,40
39,33,66
40,51,92
41,94,72
42,9,28
43,18,93
44,57,71
45,95,76
46,0,45
47,68,60
48,3,54
48,15,82
49,23,44
50,79,94
50,1,57
50,91,21
51,31,26
52,90,53
52,83,36
52,23,62
53,11,78
54,49,70
54,34,73
55,32,43
56,32,44
57,60,90
57,50,71
58,42,89
58,100,52
59,11,68
59,66,48
60,64,82
61,32,41
62,39,45
63,73,47
63,42,68
64,43,90
65,28,68
66,12,39
67,11,82
68,94,80
69,45,68
70,1,90
71,34,20
71,86,32
72,80,70
72,89,75
73,7,81
74,92,51
74,25,49
75,73,48
76,89,68
77,33,64
78,104,49
79,6,35
80,67,59
81,57,38
82,74,37
83,28,20
84,35,97
85,88,66
86,20,85
87,35,57
87,9,70
87,100,82
88,72,23
88,23,20
88,63,27
89,98,48
89,48,74
90,98,22
91,35,51
92,81,29
92,102,93
93,95,53
94,23,74
95,22,51
96,61,69
97,95,26
98,36,27
99,11,84
99,54,76
100,12,86
101,22,78
102,88,91
102,98,73
102,104,86
103,29,70
103,16,27
104,61,53
105,83,54
106,88,97
106,85,51
107,12,65
107,58,35
108,18,87
109,48,56
110,99,73
111,11,33
112,60,74
113,104,67
114,18,26
115,75,93
116,8,26
116,70,52
117,27,42
118,77,38
119,94,38
120,51,55
121,82,48
121,15,79
122,68,21
123,98,20
124,11,66
125,24,88
126,51,39
127,84,30
128,99,21
129,52,86
129,22,31
129,15,39
130,56,24
130,38,56
130,52,57
131,41,28
131,57,72
132,38,63
133,13,43
134,94,93
134,4,49
135,34,78
136,86,33
137,92,28
138,106,59
139,74,85
140,17,44
141,75,92
142,8,41
143,73,23
144,57,45
145,16,77
146,101,48
147,6,56
148,45,94
149,12,89
149,39,37
150,41,61
151,8,60
151,49,57
152,26,53
153,65,36
154,4,56
155,28,44
156,36,95
157,37,46
157,82,76
158,7,50
159,64,25
160,85,59
160,16,31
161,70,72
162,88,90
163,44,29
164,3,64
165,35,36
166,69,45
166,30,81
167,18,65
168,60,83
169,53,21
169,38,73

1 企业id Firm_Code 产品id 产品数量
2 1051 0 58 8 63 64
3 1092 1 169 11 27 21
4 1014 1 187 0 66 46
5 1071 2 14 57 54 55
6 1060 3 189 0 97 55
7 1020 4 189 33 55 45
8 1082 5 174 95 69 62
9 1086 6 189 47 23 46
10 1074 7 50 88 21 88
11 1074 8 107 103 25 39
12 8 0 30
13 9 15 93
14 10 60 57
15 11 102 25
16 12 63 91
17 13 62 42
18 13 68 66
19 14 21 65
20 14 92 31
21 14 66 32
22 15 75 81
23 16 25 79
24 17 15 62
25 17 50 95
26 18 100 87
27 19 85 24
28 20 56 56
29 20 28 91
30 20 77 50
31 20 91 28
32 21 68 70
33 21 46 48
34 22 93 97
35 23 61 59
36 24 68 60
37 25 75 30
38 26 15 42
39 27 89 20
40 28 89 65
41 29 47 40
42 30 84 55
43 31 38 73
44 32 99 76
45 33 32 20
46 34 93 82
47 35 100 73
48 36 22 74
49 37 9 59
50 37 68 34
51 38 99 40
52 39 33 66
53 40 51 92
54 41 94 72
55 42 9 28
56 43 18 93
57 44 57 71
58 45 95 76
59 46 0 45
60 47 68 60
61 48 3 54
62 48 15 82
63 49 23 44
64 50 79 94
65 50 1 57
66 50 91 21
67 51 31 26
68 52 90 53
69 52 83 36
70 52 23 62
71 53 11 78
72 54 49 70
73 54 34 73
74 55 32 43
75 56 32 44
76 57 60 90
77 57 50 71
78 58 42 89
79 58 100 52
80 59 11 68
81 59 66 48
82 60 64 82
83 61 32 41
84 62 39 45
85 63 73 47
86 63 42 68
87 64 43 90
88 65 28 68
89 66 12 39
90 67 11 82
91 68 94 80
92 69 45 68
93 70 1 90
94 71 34 20
95 71 86 32
96 72 80 70
97 72 89 75
98 73 7 81
99 74 92 51
100 74 25 49
101 75 73 48
102 76 89 68
103 77 33 64
104 78 104 49
105 79 6 35
106 80 67 59
107 81 57 38
108 82 74 37
109 83 28 20
110 84 35 97
111 85 88 66
112 86 20 85
113 87 35 57
114 87 9 70
115 87 100 82
116 88 72 23
117 88 23 20
118 88 63 27
119 89 98 48
120 89 48 74
121 90 98 22
122 91 35 51
123 92 81 29
124 92 102 93
125 93 95 53
126 94 23 74
127 95 22 51
128 96 61 69
129 97 95 26
130 98 36 27
131 99 11 84
132 99 54 76
133 100 12 86
134 101 22 78
135 102 88 91
136 102 98 73
137 102 104 86
138 103 29 70
139 103 16 27
140 104 61 53
141 105 83 54
142 106 88 97
143 106 85 51
144 107 12 65
145 107 58 35
146 108 18 87
147 109 48 56
148 110 99 73
149 111 11 33
150 112 60 74
151 113 104 67
152 114 18 26
153 115 75 93
154 116 8 26
155 116 70 52
156 117 27 42
157 118 77 38
158 119 94 38
159 120 51 55
160 121 82 48
161 121 15 79
162 122 68 21
163 123 98 20
164 124 11 66
165 125 24 88
166 126 51 39
167 127 84 30
168 128 99 21
169 129 52 86
170 129 22 31
171 129 15 39
172 130 56 24
173 130 38 56
174 130 52 57
175 131 41 28
176 131 57 72
177 132 38 63
178 133 13 43
179 134 94 93
180 134 4 49
181 135 34 78
182 136 86 33
183 137 92 28
184 138 106 59
185 139 74 85
186 140 17 44
187 141 75 92
188 142 8 41
189 143 73 23
190 144 57 45
191 145 16 77
192 146 101 48
193 147 6 56
194 148 45 94
195 149 12 89
196 149 39 37
197 150 41 61
198 151 8 60
199 151 49 57
200 152 26 53
201 153 65 36
202 154 4 56
203 155 28 44
204 156 36 95
205 157 37 46
206 157 82 76
207 158 7 50
208 159 64 25
209 160 85 59
210 160 16 31
211 161 70 72
212 162 88 90
213 163 44 29
214 164 3 64
215 165 35 36
216 166 69 45
217 166 30 81
218 167 18 65
219 168 60 83
220 169 53 21
221 169 38 73

View File

@ -1,4 +1,4 @@
产业ID,消耗材料ID,消耗量 产业id,消耗材料id,消耗量
0,51,398 0,51,398
0,14,156 0,14,156
0,71,238 0,71,238
@ -22,3 +22,180 @@
9,61,345 9,61,345
10,52,329 10,52,329
10,25,266 10,25,266
11,44,114
11,88,376
11,8,393
12,10,130
12,7,212
12,34,338
13,32,97
13,22,111
14,90,84
14,64,276
15,0,54
15,89,304
15,13,408
16,50,112
17,14,220
17,28,85
17,12,209
18,61,490
19,61,380
19,91,280
20,2,408
21,96,356
22,31,145
22,87,282
23,51,317
23,38,435
24,1,269
24,53,392
25,18,175
26,31,296
26,67,488
27,97,247
28,58,375
29,35,452
29,89,196
29,19,401
30,10,490
31,93,347
31,98,312
31,15,395
32,0,353
32,11,86
33,19,201
33,53,169
33,32,457
34,88,148
34,24,398
34,17,433
35,40,210
36,66,450
36,32,225
36,75,492
37,50,487
37,7,332
38,68,366
39,92,95
39,5,148
40,45,230
41,31,210
42,23,163
42,31,480
43,89,322
43,32,442
44,24,457
44,12,365
45,7,449
46,65,337
46,86,496
47,21,363
47,57,391
48,14,103
48,59,150
49,67,311
50,46,404
50,54,473
51,62,324
52,61,328
53,95,175
53,47,138
54,63,496
55,66,125
55,25,193
55,50,135
56,46,143
57,47,390
57,38,149
58,9,295
58,68,149
58,33,229
59,3,65
60,34,429
60,32,466
61,11,372
62,42,93
62,28,446
63,25,139
64,74,462
64,35,266
65,72,457
66,95,86
66,11,418
67,61,133
68,18,226
68,99,445
68,60,282
69,15,422
69,68,148
69,11,74
70,52,91
70,57,472
70,13,272
71,74,195
71,75,58
71,73,491
72,39,219
73,65,54
73,28,214
74,70,266
75,30,324
75,60,413
76,38,175
76,66,222
76,12,291
77,38,50
78,24,361
79,57,93
79,44,209
80,79,423
81,35,276
82,30,50
82,53,423
82,2,193
83,7,171
84,40,277
85,12,95
86,55,335
86,4,168
87,48,316
87,84,331
87,62,266
88,97,154
89,4,407
89,2,486
89,22,102
90,16,134
90,77,415
90,0,100
91,64,418
91,31,83
92,2,428
92,49,317
93,93,271
94,65,124
94,50,152
95,97,387
95,29,384
96,29,296
96,50,130
96,4,334
97,33,311
98,42,289
98,74,420
99,66,401
100,4,141
101,4,282
102,44,460
102,72,331
103,55,399
103,62,97
104,7,162
105,89,77
105,86,127
106,6,52
106,22,287
106,17,343
107,38,490
107,16,280

1 产业ID 产业id 消耗材料ID 消耗材料id 消耗量
2 0 51 398
3 0 14 156
4 0 71 238
22 9 61 345
23 10 52 329
24 10 25 266
25 11 44 114
26 11 88 376
27 11 8 393
28 12 10 130
29 12 7 212
30 12 34 338
31 13 32 97
32 13 22 111
33 14 90 84
34 14 64 276
35 15 0 54
36 15 89 304
37 15 13 408
38 16 50 112
39 17 14 220
40 17 28 85
41 17 12 209
42 18 61 490
43 19 61 380
44 19 91 280
45 20 2 408
46 21 96 356
47 22 31 145
48 22 87 282
49 23 51 317
50 23 38 435
51 24 1 269
52 24 53 392
53 25 18 175
54 26 31 296
55 26 67 488
56 27 97 247
57 28 58 375
58 29 35 452
59 29 89 196
60 29 19 401
61 30 10 490
62 31 93 347
63 31 98 312
64 31 15 395
65 32 0 353
66 32 11 86
67 33 19 201
68 33 53 169
69 33 32 457
70 34 88 148
71 34 24 398
72 34 17 433
73 35 40 210
74 36 66 450
75 36 32 225
76 36 75 492
77 37 50 487
78 37 7 332
79 38 68 366
80 39 92 95
81 39 5 148
82 40 45 230
83 41 31 210
84 42 23 163
85 42 31 480
86 43 89 322
87 43 32 442
88 44 24 457
89 44 12 365
90 45 7 449
91 46 65 337
92 46 86 496
93 47 21 363
94 47 57 391
95 48 14 103
96 48 59 150
97 49 67 311
98 50 46 404
99 50 54 473
100 51 62 324
101 52 61 328
102 53 95 175
103 53 47 138
104 54 63 496
105 55 66 125
106 55 25 193
107 55 50 135
108 56 46 143
109 57 47 390
110 57 38 149
111 58 9 295
112 58 68 149
113 58 33 229
114 59 3 65
115 60 34 429
116 60 32 466
117 61 11 372
118 62 42 93
119 62 28 446
120 63 25 139
121 64 74 462
122 64 35 266
123 65 72 457
124 66 95 86
125 66 11 418
126 67 61 133
127 68 18 226
128 68 99 445
129 68 60 282
130 69 15 422
131 69 68 148
132 69 11 74
133 70 52 91
134 70 57 472
135 70 13 272
136 71 74 195
137 71 75 58
138 71 73 491
139 72 39 219
140 73 65 54
141 73 28 214
142 74 70 266
143 75 30 324
144 75 60 413
145 76 38 175
146 76 66 222
147 76 12 291
148 77 38 50
149 78 24 361
150 79 57 93
151 79 44 209
152 80 79 423
153 81 35 276
154 82 30 50
155 82 53 423
156 82 2 193
157 83 7 171
158 84 40 277
159 85 12 95
160 86 55 335
161 86 4 168
162 87 48 316
163 87 84 331
164 87 62 266
165 88 97 154
166 89 4 407
167 89 2 486
168 89 22 102
169 90 16 134
170 90 77 415
171 90 0 100
172 91 64 418
173 91 31 83
174 92 2 428
175 92 49 317
176 93 93 271
177 94 65 124
178 94 50 152
179 95 97 387
180 95 29 384
181 96 29 296
182 96 50 130
183 96 4 334
184 97 33 311
185 98 42 289
186 98 74 420
187 99 66 401
188 100 4 141
189 101 4 282
190 102 44 460
191 102 72 331
192 103 55 399
193 103 62 97
194 104 7 162
195 105 89 77
196 105 86 127
197 106 6 52
198 106 22 287
199 106 17 343
200 107 38 490
201 107 16 280

View File

@ -1,11 +1,57 @@
设备id,设备残值 设备id,设备残值
151,97 51,112
192,382 52,445
114,109 53,870
171,881 54,280
160,673 55,116
120,140 56,81
182,671 57,710
186,318 58,30
174,779 59,624
174,353 60,131
61,476
62,224
63,340
64,468
65,97
66,382
67,109
68,881
69,673
70,140
71,671
72,318
73,779
74,353
75,501
76,423
77,815
78,395
79,201
80,965
81,286
82,170
83,469
84,323
85,31
86,262
87,757
88,866
89,570
90,484
91,68
92,520
93,691
94,485
95,709
96,985
97,792
98,199
99,967
100,696
101,967
102,572
103,885
104,576
105,253
106,841

1 设备id 设备残值
2 151 51 97 112
3 192 52 382 445
4 114 53 109 870
5 171 54 881 280
6 160 55 673 116
7 120 56 140 81
8 182 57 671 710
9 186 58 318 30
10 174 59 779 624
11 174 60 353 131
12 61 476
13 62 224
14 63 340
15 64 468
16 65 97
17 66 382
18 67 109
19 68 881
20 69 673
21 70 140
22 71 671
23 72 318
24 73 779
25 74 353
26 75 501
27 76 423
28 77 815
29 78 395
30 79 201
31 80 965
32 81 286
33 82 170
34 83 469
35 84 323
36 85 31
37 86 262
38 87 757
39 88 866
40 89 570
41 90 484
42 91 68
43 92 520
44 93 691
45 94 485
46 95 709
47 96 985
48 97 792
49 98 199
50 99 967
51 100 696
52 101 967
53 102 572
54 103 885
55 104 576
56 105 253
57 106 841

View File

@ -1,101 +1,171 @@
材料id,设备id,产品id 材料id,设备id,产品id
51,192,14 39,102,92
71,160,20 15,93,71
82,186,74 21,89,82
74,187,116 23,61,74
99,123,130 24,103,99
21,152,1 40,74,2
87,129,37 22,103,1
1,163,187 24,94,29
20,132,57 38,52,63
21,188,48 21,83,75
90,158,169 22,94,88
91,159,14 49,77,58
61,161,174 42,78,59
61,150,107 16,65,61
54,163,130 47,101,54
50,106,20 3,87,50
72,138,17 7,71,72
3,188,59 39,68,3
13,108,89 25,64,8
52,101,83 26,103,1
91,159,198 20,78,59
43,107,174 7,94,46
34,177,80 35,64,80
35,149,103 36,100,103
3,101,133 4,52,5
53,103,190 42,54,53
17,189,43 29,68,89
33,173,189 44,84,73
99,113,94 36,64,94
47,114,199 48,65,71
77,186,189 14,73,61
39,184,81 40,71,79
52,123,153 45,68,52
88,159,123 24,76,88
40,128,14 45,91,28
44,164,88 15,95,64
70,108,87 25,57,8
0,107,62 24,51,7
10,180,135 24,61,80
34,134,32 8,85,34
4,140,27 33,55,105
6,172,71 39,91,27
11,133,32 7,59,71
47,122,61 12,84,32
87,136,98 48,105,22
43,185,34 24,87,98
64,198,100 44,90,85
46,177,130 27,85,64
0,104,141 35,87,46
26,108,14 14,53,0
89,141,123 5,76,13
76,150,62 39,77,8
95,151,131 15,65,89
93,200,150 42,63,50
14,142,28 32,89,51
35,112,159 32,54,93
70,158,85 37,73,102
27,165,169 45,65,42
44,161,184 29,86,12
5,127,27 32,57,58
43,183,29 22,78,65
61,174,127 42,95,61
91,188,189 6,78,27
96,100,120 44,94,83
26,161,120 30,61,91
76,102,197 25,89,61
71,126,136 33,51,26
61,136,50 13,91,2
43,123,58 39,56,71
31,195,179 27,59,61
61,157,51 37,83,50
11,138,129 42,94,23
2,200,112 15,104,31
55,180,186 32,74,104
1,101,53 49,99,57
86,200,128 12,89,1
18,101,52 3,99,100
43,189,159 49,106,80
69,131,67 49,52,1
54,174,183 28,104,86
16,137,23 37,82,96
68,197,138 1,69,52
15,196,200 44,76,31
58,169,92 6,82,67
2,119,186 11,106,16
35,118,89 38,74,68
66,118,147 34,56,85
95,170,51 11,98,15
32,139,127 33,59,58
38,181,103 6,66,92
0,110,184 3,70,58
88,149,150 36,69,89
30,193,41 3,69,19
98,106,143 32,57,51
89,159,112 41,83,39
1,100,47 39,68,103
11,168,36 1,61,91
31,108,98 25,100,22
18,147,130 31,80,41
19,123,53 35,57,15
26,98,59
49,52,0
48,62,68
37,82,8
41,85,18
48,66,2
20,74,53
33,74,71
36,88,103
20,85,88
35,75,92
18,96,81
2,104,34
16,91,99
33,54,32
14,71,47
20,106,7
7,53,16
33,98,75
22,105,21
46,80,37
38,95,50
8,77,26
34,71,29
33,78,63
33,55,60
48,69,3
35,99,16
44,78,29
29,96,5
35,91,36
24,79,45
31,85,59
33,102,62
21,82,86
33,53,17
25,92,94
3,90,45
24,100,31
47,72,22
2,77,105
2,76,16
40,83,8
43,104,47
39,79,41
26,85,49
25,74,12
7,86,44
20,51,7
46,66,13
12,101,86
15,78,97
2,82,86
22,101,24
22,72,48
42,56,14
43,87,96
8,103,59
44,94,4
39,54,5
45,82,93
47,85,54
40,102,15
13,100,105
30,69,16
19,78,57
26,87,89
23,59,11
1,51,33
32,104,47

1 材料id 设备id 产品id
2 51 39 192 102 14 92
3 71 15 160 93 20 71
4 82 21 186 89 74 82
5 74 23 187 61 116 74
6 99 24 123 103 130 99
7 21 40 152 74 1 2
8 87 22 129 103 37 1
9 1 24 163 94 187 29
10 20 38 132 52 57 63
11 21 188 83 48 75
12 90 22 158 94 169 88
13 91 49 159 77 14 58
14 61 42 161 78 174 59
15 61 16 150 65 107 61
16 54 47 163 101 130 54
17 50 3 106 87 20 50
18 72 7 138 71 17 72
19 3 39 188 68 59 3
20 13 25 108 64 89 8
21 52 26 101 103 83 1
22 91 20 159 78 198 59
23 43 7 107 94 174 46
24 34 35 177 64 80
25 35 36 149 100 103
26 3 4 101 52 133 5
27 53 42 103 54 190 53
28 17 29 189 68 43 89
29 33 44 173 84 189 73
30 99 36 113 64 94
31 47 48 114 65 199 71
32 77 14 186 73 189 61
33 39 40 184 71 81 79
34 52 45 123 68 153 52
35 88 24 159 76 123 88
36 40 45 128 91 14 28
37 44 15 164 95 88 64
38 70 25 108 57 87 8
39 0 24 107 51 62 7
40 10 24 180 61 135 80
41 34 8 134 85 32 34
42 4 33 140 55 27 105
43 6 39 172 91 71 27
44 11 7 133 59 32 71
45 47 12 122 84 61 32
46 87 48 136 105 98 22
47 43 24 185 87 34 98
48 64 44 198 90 100 85
49 46 27 177 85 130 64
50 0 35 104 87 141 46
51 26 14 108 53 14 0
52 89 5 141 76 123 13
53 76 39 150 77 62 8
54 95 15 151 65 131 89
55 93 42 200 63 150 50
56 14 32 142 89 28 51
57 35 32 112 54 159 93
58 70 37 158 73 85 102
59 27 45 165 65 169 42
60 44 29 161 86 184 12
61 5 32 127 57 27 58
62 43 22 183 78 29 65
63 61 42 174 95 127 61
64 91 6 188 78 189 27
65 96 44 100 94 120 83
66 26 30 161 61 120 91
67 76 25 102 89 197 61
68 71 33 126 51 136 26
69 61 13 136 91 50 2
70 43 39 123 56 58 71
71 31 27 195 59 179 61
72 61 37 157 83 51 50
73 11 42 138 94 129 23
74 2 15 200 104 112 31
75 55 32 180 74 186 104
76 1 49 101 99 53 57
77 86 12 200 89 128 1
78 18 3 101 99 52 100
79 43 49 189 106 159 80
80 69 49 131 52 67 1
81 54 28 174 104 183 86
82 16 37 137 82 23 96
83 68 1 197 69 138 52
84 15 44 196 76 200 31
85 58 6 169 82 92 67
86 2 11 119 106 186 16
87 35 38 118 74 89 68
88 66 34 118 56 147 85
89 95 11 170 98 51 15
90 32 33 139 59 127 58
91 38 6 181 66 103 92
92 0 3 110 70 184 58
93 88 36 149 69 150 89
94 30 3 193 69 41 19
95 98 32 106 57 143 51
96 89 41 159 83 112 39
97 1 39 100 68 47 103
98 11 1 168 61 36 91
99 31 25 108 100 98 22
100 18 31 147 80 130 41
101 19 35 123 57 53 15
102 26 98 59
103 49 52 0
104 48 62 68
105 37 82 8
106 41 85 18
107 48 66 2
108 20 74 53
109 33 74 71
110 36 88 103
111 20 85 88
112 35 75 92
113 18 96 81
114 2 104 34
115 16 91 99
116 33 54 32
117 14 71 47
118 20 106 7
119 7 53 16
120 33 98 75
121 22 105 21
122 46 80 37
123 38 95 50
124 8 77 26
125 34 71 29
126 33 78 63
127 33 55 60
128 48 69 3
129 35 99 16
130 44 78 29
131 29 96 5
132 35 91 36
133 24 79 45
134 31 85 59
135 33 102 62
136 21 82 86
137 33 53 17
138 25 92 94
139 3 90 45
140 24 100 31
141 47 72 22
142 2 77 105
143 2 76 16
144 40 83 8
145 43 104 47
146 39 79 41
147 26 85 49
148 25 74 12
149 7 86 44
150 20 51 7
151 46 66 13
152 12 101 86
153 15 78 97
154 2 82 86
155 22 101 24
156 22 72 48
157 42 56 14
158 43 87 96
159 8 103 59
160 44 94 4
161 39 54 5
162 45 82 93
163 47 85 54
164 40 102 15
165 13 100 105
166 30 69 16
167 19 78 57
168 26 87 89
169 23 59 11
170 1 51 33
171 32 104 47

View File

@ -1,4 +1,4 @@
产业ID,制造产品ID,制造量 产业id,制造产品id,制造量
0,182,314 0,182,314
1,152,869 1,152,869
1,187,591 1,187,591
@ -20,3 +20,197 @@
8,173,369 8,173,369
9,179,848 9,179,848
10,140,256 10,140,256
11,107,571
12,104,589
12,140,127
12,106,300
13,198,783
14,146,561
15,108,306
15,114,957
15,141,991
16,151,195
16,103,833
16,200,506
17,158,342
17,185,895
17,165,781
18,105,895
19,196,484
19,126,732
20,171,510
20,108,417
21,143,763
21,178,926
22,161,596
23,200,724
23,155,180
23,158,212
24,195,324
25,152,783
25,189,771
26,155,222
26,116,866
26,137,379
27,110,610
27,115,708
28,102,759
29,151,588
29,132,739
29,138,437
30,149,250
31,159,980
32,108,332
32,198,758
32,147,307
33,171,519
33,137,203
33,183,353
34,181,805
34,153,262
35,113,376
36,185,474
36,121,849
36,129,137
37,197,376
37,129,708
37,127,978
38,103,646
38,163,148
38,116,271
39,136,379
40,198,799
40,196,215
40,162,352
41,117,892
41,194,665
41,157,422
42,122,738
42,126,589
43,147,138
43,192,781
43,125,966
44,106,924
44,135,784
45,175,982
45,186,242
46,150,764
46,157,674
47,151,781
48,107,152
49,195,983
50,129,758
51,154,445
51,200,573
52,108,740
52,157,733
52,100,850
53,100,371
54,121,960
55,128,319
56,161,552
56,175,317
57,193,456
58,109,861
58,118,541
58,195,868
59,101,596
59,191,995
59,131,574
60,150,526
61,132,267
62,145,997
62,134,826
62,180,189
63,133,214
63,106,295
64,135,493
65,148,198
65,135,195
65,123,762
66,112,378
66,188,966
66,129,372
67,185,496
68,175,364
68,170,895
68,177,834
69,184,583
69,152,250
69,115,668
70,104,262
70,186,832
71,106,273
72,149,894
73,182,747
73,164,441
74,103,903
75,138,190
75,173,957
76,157,759
76,191,555
77,176,447
77,161,604
77,162,607
78,137,216
79,160,914
80,174,863
81,119,540
81,117,146
81,148,625
82,156,111
82,173,835
82,115,457
83,107,797
83,159,277
84,162,244
84,172,823
84,176,831
85,105,693
85,168,914
85,124,549
86,164,245
87,158,894
87,148,560
88,100,504
88,154,617
88,191,808
89,173,557
90,176,871
91,171,650
91,125,349
91,133,537
92,153,335
93,156,500
93,146,306
93,200,952
94,163,863
94,197,905
95,150,546
95,197,407
95,137,580
96,155,500
96,173,884
97,165,304
98,122,282
98,179,194
98,174,473
99,126,192
99,131,160
99,150,502
100,160,633
100,120,937
101,145,645
101,148,177
102,146,220
103,180,125
104,151,818
104,146,738
104,155,825
105,125,625
105,158,411
106,114,291
106,188,730
106,200,127
107,189,225
107,143,636

1 产业ID 产业id 制造产品ID 制造产品id 制造量
2 0 182 314
3 1 152 869
4 1 187 591
20 8 173 369
21 9 179 848
22 10 140 256
23 11 107 571
24 12 104 589
25 12 140 127
26 12 106 300
27 13 198 783
28 14 146 561
29 15 108 306
30 15 114 957
31 15 141 991
32 16 151 195
33 16 103 833
34 16 200 506
35 17 158 342
36 17 185 895
37 17 165 781
38 18 105 895
39 19 196 484
40 19 126 732
41 20 171 510
42 20 108 417
43 21 143 763
44 21 178 926
45 22 161 596
46 23 200 724
47 23 155 180
48 23 158 212
49 24 195 324
50 25 152 783
51 25 189 771
52 26 155 222
53 26 116 866
54 26 137 379
55 27 110 610
56 27 115 708
57 28 102 759
58 29 151 588
59 29 132 739
60 29 138 437
61 30 149 250
62 31 159 980
63 32 108 332
64 32 198 758
65 32 147 307
66 33 171 519
67 33 137 203
68 33 183 353
69 34 181 805
70 34 153 262
71 35 113 376
72 36 185 474
73 36 121 849
74 36 129 137
75 37 197 376
76 37 129 708
77 37 127 978
78 38 103 646
79 38 163 148
80 38 116 271
81 39 136 379
82 40 198 799
83 40 196 215
84 40 162 352
85 41 117 892
86 41 194 665
87 41 157 422
88 42 122 738
89 42 126 589
90 43 147 138
91 43 192 781
92 43 125 966
93 44 106 924
94 44 135 784
95 45 175 982
96 45 186 242
97 46 150 764
98 46 157 674
99 47 151 781
100 48 107 152
101 49 195 983
102 50 129 758
103 51 154 445
104 51 200 573
105 52 108 740
106 52 157 733
107 52 100 850
108 53 100 371
109 54 121 960
110 55 128 319
111 56 161 552
112 56 175 317
113 57 193 456
114 58 109 861
115 58 118 541
116 58 195 868
117 59 101 596
118 59 191 995
119 59 131 574
120 60 150 526
121 61 132 267
122 62 145 997
123 62 134 826
124 62 180 189
125 63 133 214
126 63 106 295
127 64 135 493
128 65 148 198
129 65 135 195
130 65 123 762
131 66 112 378
132 66 188 966
133 66 129 372
134 67 185 496
135 68 175 364
136 68 170 895
137 68 177 834
138 69 184 583
139 69 152 250
140 69 115 668
141 70 104 262
142 70 186 832
143 71 106 273
144 72 149 894
145 73 182 747
146 73 164 441
147 74 103 903
148 75 138 190
149 75 173 957
150 76 157 759
151 76 191 555
152 77 176 447
153 77 161 604
154 77 162 607
155 78 137 216
156 79 160 914
157 80 174 863
158 81 119 540
159 81 117 146
160 81 148 625
161 82 156 111
162 82 173 835
163 82 115 457
164 83 107 797
165 83 159 277
166 84 162 244
167 84 172 823
168 84 176 831
169 85 105 693
170 85 168 914
171 85 124 549
172 86 164 245
173 87 158 894
174 87 148 560
175 88 100 504
176 88 154 617
177 88 191 808
178 89 173 557
179 90 176 871
180 91 171 650
181 91 125 349
182 91 133 537
183 92 153 335
184 93 156 500
185 93 146 306
186 93 200 952
187 94 163 863
188 94 197 905
189 95 150 546
190 95 197 407
191 95 137 580
192 96 155 500
193 96 173 884
194 97 165 304
195 98 122 282
196 98 179 194
197 98 174 473
198 99 126 192
199 99 131 160
200 99 150 502
201 100 160 633
202 100 120 937
203 101 145 645
204 101 148 177
205 102 146 220
206 103 180 125
207 104 151 818
208 104 146 738
209 104 155 825
210 105 125 625
211 105 158 411
212 106 114 291
213 106 188 730
214 106 200 127
215 107 189 225
216 107 143 636

View File

@ -49,17 +49,17 @@
48,材料 48,材料
49,材料 49,材料
50,材料 50,材料
51,材料 51,设备
52,材料 52,设备
53,材料 53,设备
54,材料 54,设备
55,材料 55,设备
56,材料 56,设备
57,材料 57,设备
58,材料 58,设备
59,材料 59,设备
60,材料 60,设备
61,材料 61,设备
62,设备 62,设备
63,设备 63,设备
64,设备 64,设备
@ -99,3 +99,9 @@
98,设备 98,设备
99,设备 99,设备
100,设备 100,设备
101,设备
102,设备
103,设备
104,设备
105,设备
106,设备

1 产品id 种类
49 48 材料
50 49 材料
51 50 材料
52 51 材料 设备
53 52 材料 设备
54 53 材料 设备
55 54 材料 设备
56 55 材料 设备
57 56 材料 设备
58 57 材料 设备
59 58 材料 设备
60 59 材料 设备
61 60 材料 设备
62 61 材料 设备
63 62 设备
64 63 设备
65 64 设备
99 98 设备
100 99 设备
101 100 设备
102 101 设备
103 102 设备
104 103 设备
105 104 设备
106 105 设备
107 106 设备

View File

@ -2,13 +2,13 @@ import pandas as pd
import numpy as np import numpy as np
# 设置数据行数 # 设置数据行数
total_rows = 100 # 总共100行 total_rows = 106 # 总共100行
material_count = 61 # 前61行为材料 material_count = 50 # 前61行为材料
# 生成产品id # 生成产品id
product_ids = np.arange(1, total_rows + 1) product_ids = np.arange(1, total_rows + 1)
# 生成种类,前61行是材料,后面是设备 # 生成种类,前70行是材料,后面是设备
categories = ['材料'] * material_count + ['设备'] * (total_rows - material_count) categories = ['材料'] * material_count + ['设备'] * (total_rows - material_count)
# 创建数据框 # 创建数据框

View File

@ -5,7 +5,7 @@ import numpy as np
np.random.seed(42) np.random.seed(42)
# 定义生成数据的行数 # 定义生成数据的行数
num_rows = 100 # 生成 100 行数据 num_rows = 170 # 生成 100 行数据
# 创建空列表来存储生成的ID # 创建空列表来存储生成的ID
material_ids = [] material_ids = []
@ -14,12 +14,12 @@ product_ids = []
# 生成材料、设备、产品的ID确保同一行内的ID不重复 # 生成材料、设备、产品的ID确保同一行内的ID不重复
for _ in range(num_rows): for _ in range(num_rows):
mat_id = np.random.randint(0, 100) # 材料ID范围 0-99 mat_id = np.random.randint(1, 51) # 材料ID范围 0-99
dev_id = np.random.randint(100, 201) # 设备ID范围 100-199 dev_id = np.random.randint(51, 107) # 设备ID范围 100-199
# 确保产品ID在当前行与材料ID和设备ID不重复 # 确保产品ID在当前行与材料ID和设备ID不重复
while True: while True:
prod_id = np.random.randint(0, 201) prod_id = np.random.randint(0, 107)
if prod_id != mat_id and prod_id != dev_id: if prod_id != mat_id and prod_id != dev_id:
break break

View File

@ -5,10 +5,10 @@ import numpy as np
np.random.seed(42) np.random.seed(42)
# 定义行数,即生成多少个设备 # 定义行数,即生成多少个设备
num_rows = 10 num_rows = 56
# 生成设备id例如100到200之间的设备ID # 生成设备id例如100到200之间的设备ID
device_ids = np.random.randint(100, 200, size=num_rows) device_ids = (i for i in range(51, 107))
# 生成设备残值假设范围在1000到10000之间 # 生成设备残值假设范围在1000到10000之间
device_salvage_values = np.random.randint(10, 1000, size=num_rows) device_salvage_values = np.random.randint(10, 1000, size=num_rows)
@ -22,4 +22,3 @@ df_devices = pd.DataFrame({
# 保存为CSV文件 # 保存为CSV文件
file_path_devices = '测试数据 device_salvage_values.csv' file_path_devices = '测试数据 device_salvage_values.csv'
df_devices.to_csv(file_path_devices, index=False) df_devices.to_csv(file_path_devices, index=False)