mesa/测试数据 产业 数据.py

55 lines
1.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
import numpy as np
# 设置随机种子
np.random.seed(42)
num_companies = 170 # 企业ID范围
# 生成企业和设备数据
num_rows = 220 # 每个表的行数
company_ids = np.arange(num_companies)
# 第二步生成剩余的随机企业ID
remaining_ids = np.random.randint(0, num_companies, size=num_rows - num_companies)
# 合并两部分的企业ID
all_company_ids = np.concatenate([company_ids, remaining_ids])
# 第三步对企业ID进行升序排序
all_company_ids.sort()
device_ids = np.random.randint(51, 107, size=num_rows)
material_ids = np.random.randint(0, 51, size=num_rows)
product_ids = np.random.randint(0, 107, size=num_rows)
device_quantities = np.random.randint(50, 200, size=num_rows)
material_quantities = np.random.randint(100,200, size=num_rows)
product_quantities = np.random.randint(20, 100, size=num_rows)
# 创建三个表格的数据框
df_devices = pd.DataFrame({
'Firm_Code': all_company_ids,
'设备id': device_ids,
'设备数量': device_quantities
})
df_materials = pd.DataFrame({
'Firm_Code': all_company_ids,
'材料id': material_ids,
'材料数量': material_quantities
})
df_products = pd.DataFrame({
'Firm_Code': all_company_ids,
'产品id': product_ids,
'产品数量': product_quantities
})
# 保存为CSV文件
df_devices.to_csv('测试数据 companies_devices.csv', index=False)
df_materials.to_csv('测试数据 companies_materials.csv', index=False)
df_products.to_csv('测试数据 companies_products.csv', index=False)