mesa/my_model.py

600 lines
28 KiB
Python
Raw Normal View History

2024-08-24 11:20:13 +08:00
import json
2024-08-24 16:13:37 +08:00
from random import shuffle
2024-09-24 19:21:59 +08:00
import platform
2024-08-24 11:20:13 +08:00
import networkx as nx
import pandas as pd
from mesa import Model
2024-08-24 16:13:37 +08:00
from mesa.space import MultiGrid, NetworkGrid
2024-08-24 11:20:13 +08:00
from mesa.datacollection import DataCollector
import numpy as np
2024-11-28 18:56:24 +08:00
from mesa_viz_tornado.modules import NetworkModule
2024-08-24 11:20:13 +08:00
from firm import FirmAgent
2024-09-24 19:21:59 +08:00
from orm import db_session, Result
2024-08-24 11:20:13 +08:00
from product import ProductAgent
2024-11-28 18:56:24 +08:00
from mesa.visualization import ModularServer
2024-08-24 11:20:13 +08:00
class MyModel(Model):
def __init__(self, params):
# 属性
self.is_prf_size = params['prf_size']
self.prf_conn = params['prf_conn']
self.cap_limit_prob_type = params['cap_limit_prob_type']
self.cap_limit_level = params['cap_limit_level']
self.diff_new_conn = params['diff_new_conn']
2024-08-24 16:13:37 +08:00
self.firm_network = nx.MultiDiGraph() # 有向多重图
self.firm_prod_network = nx.MultiDiGraph()
self.product_network = nx.MultiDiGraph() # 有向多重图
# NetworkGrid 用于管理网格
2024-08-24 16:13:37 +08:00
# NetworkX 图对象
self.t = 0
self.network_graph = nx.MultiDiGraph()
2024-08-24 16:13:37 +08:00
self.grid = NetworkGrid(self.network_graph)
self.data_collector = DataCollector(
agent_reporters={"Product": "name"}
)
# initialize graph bom
self.G_bom = nx.adjacency_graph(json.loads(params['g_bom']))
# Create the firm-product network graph
self.G_FirmProd = nx.MultiDiGraph()
# Create the firm network graph
self.G_Firm = nx.MultiDiGraph()
2024-08-24 16:13:37 +08:00
self.company_agents = []
self.product_agents = []
2024-08-24 11:20:13 +08:00
self.nprandom = np.random.default_rng(params['seed'])
2024-08-24 11:20:13 +08:00
# Initialize parameters from `params`
self.sample = params['sample']
self.int_stop_ts = 0
self.int_n_iter = int(params['n_iter'])
self.dct_lst_init_disrupt_firm_prod = params['dct_lst_init_disrupt_firm_prod']
2024-08-24 11:20:13 +08:00
# external variable
self.int_n_max_trial = int(params['n_max_trial'])
self.is_prf_size = bool(params['prf_size'])
self.remove_t = int(params['remove_t'])
self.int_netw_prf_n = int(params['netw_prf_n'])
# 方法执行
2024-08-24 16:13:37 +08:00
self.initialize_product_network(params)
2024-12-11 15:58:06 +08:00
self.resource_integration()
self.j_comp_consumed_produced()
self.initialize_agents()
2024-08-24 11:20:13 +08:00
self.initialize_firm_network()
2024-08-24 16:13:37 +08:00
self.initialize_firm_product_network()
self.add_edges_to_firm_network()
self.connect_unconnected_nodes()
2024-08-24 16:13:37 +08:00
self.initialize_disruptions()
2024-08-24 11:20:13 +08:00
2024-08-24 16:13:37 +08:00
def initialize_product_network(self, params):
try:
self.product_network = nx.adjacency_graph(json.loads(params['g_bom']))
except Exception as e:
print(f"Failed to initialize product network: {e}")
# 赋予 产业的量
# 产业种类
2024-09-29 16:41:34 +08:00
data = pd.read_csv('input_data/input_product_data/BomNodes.csv')
2024-09-21 22:39:09 +08:00
data['Code'] = data['Code'].astype('string')
self.type2 = data
2024-11-28 18:56:24 +08:00
self.id_code = data.groupby('Code')['Index'].apply(list)
# 设备c折旧比值
2024-09-21 22:39:09 +08:00
###
2024-08-24 11:20:13 +08:00
def initialize_firm_network(self):
# Read the firm data
2024-12-11 15:58:06 +08:00
firm = pd.read_csv("input_data/input_firm_data/firm_amended.csv")
2024-10-22 10:51:02 +08:00
firm['Code'] = firm['Code'].astype(str)
firm.fillna(0, inplace=True)
2024-11-28 18:56:24 +08:00
firm_attr = firm.loc[:, ["Code", "Type_Region", "Revenue_Log"]]
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
firm_product = []
grouped = firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list)
firm_product.append(grouped)
firm_attr['Product_Code'] = firm_attr['Code'].map(grouped)
firm_attr.set_index('Code', inplace=True)
2024-08-24 16:13:37 +08:00
2024-11-28 18:56:24 +08:00
grouped = firm_industry_relation.groupby('Firm_Code')
self.firm_prod_labels_dict = {code: group['Product_Code'].tolist() for code, group in grouped}
# 遍历'Product_Code' 与 index 交换
for index, row in firm_attr.iterrows():
id_index_list = []
for i in row['Product_Code']:
for key_values in self.id_code.items():
if int(key_values[0]) == i:
for id in key_values[1]:
id_index_list.append(id)
firm_attr.at[index, 'Product_Code'] = id_index_list
2024-11-28 18:56:24 +08:00
self.G_Firm.add_nodes_from(firm["Code"])
# Assign attributes to the firm nodes
firm_labels_dict = {code: firm_attr.loc[code].to_dict() for code in self.G_Firm.nodes}
nx.set_node_attributes(self.G_Firm, firm_labels_dict)
self.Firm = firm
2024-08-24 16:13:37 +08:00
def initialize_firm_product_network(self):
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
2024-11-28 18:56:24 +08:00
firm_industry_relation['Product_Code'] = firm_industry_relation['Product_Code'].apply(lambda x: [x])
# 将 'firm_prod' 表中的每一行作为图中的节点
self.G_FirmProd.add_nodes_from(firm_industry_relation.index)
# 为每个节点分配属性
2024-09-21 22:39:09 +08:00
2024-11-28 18:56:24 +08:00
# 遍历'Product_Code' 与 index 交换
for index, row in firm_industry_relation.iterrows():
id_index_list = []
for i in row['Product_Code']:
for key_values in self.id_code.items():
if int(key_values[0]) == i:
for id in key_values[1]:
id_index_list.append(id)
firm_industry_relation.at[index, 'Product_Code'] = id_index_list
2024-09-21 22:39:09 +08:00
firm_prod_labels_dict = {code: firm_industry_relation.loc[code].to_dict() for code in
firm_industry_relation.index}
nx.set_node_attributes(self.G_FirmProd, firm_prod_labels_dict)
2024-08-24 16:13:37 +08:00
def add_edges_to_firm_network(self):
""" Add edges between firms based on the product BOM relationships """
# Add edges to G_Firm according to G_bom
for node in nx.nodes(self.G_Firm):
2024-08-24 16:13:37 +08:00
lst_pred_product_code = []
for product_code in self.G_Firm.nodes[node]['Product_Code']:
lst_pred_product_code += list(self.G_bom.predecessors(product_code))
2024-08-24 16:13:37 +08:00
lst_pred_product_code = list(set(lst_pred_product_code))
lst_pred_product_code = list(sorted(lst_pred_product_code)) # Ensure consistency
2024-08-24 16:13:37 +08:00
for pred_product_code in lst_pred_product_code:
# Get a list of firms producing the component (pred_product_code)
2024-09-21 22:39:09 +08:00
lst_pred_firm = [firm_code for firm_code, product in self.firm_prod_labels_dict.items() if
pred_product_code in product]
# Select multiple suppliers (multi-sourcing)
2024-08-24 16:13:37 +08:00
n_pred_firm = self.int_netw_prf_n
if n_pred_firm > len(lst_pred_firm):
n_pred_firm = len(lst_pred_firm)
2024-08-24 16:13:37 +08:00
if self.is_prf_size:
2024-10-22 10:51:02 +08:00
# 获取 firm 的 size 列表
lst_pred_firm_size = [self.G_Firm.nodes[pred_firm]['Revenue_Log'] for pred_firm in lst_pred_firm]
# 检查 lst_pred_firm_size 是否为空或总和为 0
if len(lst_pred_firm_size) == 0 or sum(lst_pred_firm_size) == 0:
2024-11-28 18:56:24 +08:00
# print("警告: lst_pred_firm_size 为空或总和为 0无法生成概率分布")
2024-10-22 10:51:02 +08:00
lst_choose_firm = [] # 返回空结果,或根据需要处理
else:
# 计算总和
sum_pred_firm_size = sum(lst_pred_firm_size)
# 归一化生成 lst_prob
lst_prob = [size / sum_pred_firm_size for size in lst_pred_firm_size]
# 使用 np.isclose() 确保概率总和接近 1
if not np.isclose(sum(lst_prob), 1.0):
2024-11-28 18:56:24 +08:00
# print(f"警告: 概率总和为 {sum(lst_prob)},现在进行修正")
2024-10-22 10:51:02 +08:00
lst_prob = [prob / sum(lst_prob) for prob in lst_prob]
# 确保没有负值或 0
lst_prob = [max(0, prob) for prob in lst_prob]
# 根据修正后的概率选择 firm
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False, p=lst_prob)
2024-08-24 16:13:37 +08:00
else:
2024-10-22 10:51:02 +08:00
# 直接进行随机选择
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False)
# Add edges from predecessor firms to current node (firm)
2024-08-24 16:13:37 +08:00
lst_add_edge = [(pred_firm, node, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
self.G_Firm.add_edges_from(lst_add_edge)
2024-08-24 16:13:37 +08:00
# Add edges to firm-product network
self.add_edges_to_firm_product_network(node, pred_product_code, lst_choose_firm)
2024-08-24 16:13:37 +08:00
def add_edges_to_firm_product_network(self, node, pred_product_code, lst_choose_firm):
""" Helper function to add edges to the firm-product network """
set_node_prod_code = set(self.G_Firm.nodes[node]['Product_Code'])
set_pred_succ_code = set(self.G_bom.successors(pred_product_code))
lst_use_pred_prod_code = list(set_node_prod_code & set_pred_succ_code)
2024-11-28 18:56:24 +08:00
if len(lst_use_pred_prod_code) == 0:
print("错误")
pred_node_list = []
for pred_firm in lst_choose_firm:
2024-11-28 18:56:24 +08:00
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == pred_product_code and v['Firm_Code'] == pred_firm:
pred_node_list.append(n)
if len(pred_node_list) != 0:
pred_node = pred_node_list[0]
else:
pred_node = -1
current_node_list = []
for use_pred_prod_code in lst_use_pred_prod_code:
2024-11-28 18:56:24 +08:00
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == use_pred_prod_code and v['Firm_Code'] == node:
current_node_list.append(n)
if len(current_node_list) != 0:
current_node = current_node_list[0]
else:
current_node = -1
2024-12-08 18:43:33 +08:00
if current_node != -1 and pred_node != -1:
self.G_FirmProd.add_edge(pred_node, current_node)
2024-08-24 16:13:37 +08:00
def connect_unconnected_nodes(self):
""" Connect unconnected nodes in the firm network """
for node in nx.nodes(self.G_Firm):
if self.G_Firm.degree(node) == 0:
2024-11-28 18:56:24 +08:00
current_node_list = []
for product_code in self.G_Firm.nodes[node]['Product_Code']:
2024-11-28 18:56:24 +08:00
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v['Firm_Code'] == node and v1 == product_code:
current_node_list.append(n)
if len(current_node_list) != 0:
current_node = current_node_list[0]
else:
current_node = -1
lst_succ_product_code = list(self.G_bom.successors(product_code))
2024-08-24 16:13:37 +08:00
for succ_product_code in lst_succ_product_code:
2024-09-21 22:39:09 +08:00
lst_succ_firm = [firm_code for firm_code, product in self.firm_prod_labels_dict.items() if
succ_product_code in product]
2024-08-24 16:13:37 +08:00
n_succ_firm = self.int_netw_prf_n
if n_succ_firm > len(lst_succ_firm):
n_succ_firm = len(lst_succ_firm)
2024-08-24 16:13:37 +08:00
if self.is_prf_size:
lst_succ_firm_size = [self.G_Firm.nodes[succ_firm]['Revenue_Log'] for succ_firm in
2024-08-24 16:13:37 +08:00
lst_succ_firm]
2024-11-28 18:56:24 +08:00
if len(lst_succ_firm_size) == 0 or sum(lst_succ_firm_size) == 0:
# print("警告: lst_pred_firm_size 为空或总和为 0无法生成概率分布")
lst_choose_firm = [] # 返回空结果,或根据需要处理
else:
# 计算总和
sum_pred_firm_size = sum(lst_succ_firm_size)
# 归一化生成 lst_prob
lst_prob = [size / sum_pred_firm_size for size in lst_succ_firm_size]
# 使用 np.isclose() 确保概率总和接近 1
if not np.isclose(sum(lst_prob), 1.0):
# print(f"警告: 概率总和为 {sum(lst_prob)},现在进行修正")
lst_prob = [prob / sum(lst_prob) for prob in lst_prob]
# 确保没有负值或 0
lst_prob = [max(0, prob) for prob in lst_prob]
lst_choose_firm = self.nprandom.choice(lst_succ_firm, n_succ_firm, replace=False,
p=lst_prob)
2024-08-24 16:13:37 +08:00
else:
lst_choose_firm = self.nprandom.choice(lst_succ_firm, n_succ_firm, replace=False)
2024-08-24 16:13:37 +08:00
lst_add_edge = [(node, succ_firm, {'Product': product_code}) for succ_firm in
lst_choose_firm]
self.G_Firm.add_edges_from(lst_add_edge)
# Add edges to firm-product network
2024-11-28 18:56:24 +08:00
succ_node_list = []
2024-08-24 16:13:37 +08:00
for succ_firm in lst_choose_firm:
2024-11-28 18:56:24 +08:00
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == succ_product_code and v['Firm_Code'] == succ_firm:
succ_node_list.append(n)
2024-12-08 18:43:33 +08:00
if len(succ_node_list) != 0:
2024-11-28 18:56:24 +08:00
succ_node = succ_node_list[0]
else:
2024-12-08 18:43:33 +08:00
succ_node = -1
2024-11-28 18:56:24 +08:00
if current_node != -1 and succ_node != -1:
self.G_FirmProd.add_edge(current_node, succ_node)
self.sample.g_firm = json.dumps(nx.adjacency_data(self.G_Firm))
self.firm_network = self.G_Firm # 直接使用 networkx 图对象
self.firm_prod_network = self.G_FirmProd # 直接使用 networkx 图对象
2024-08-24 11:20:13 +08:00
def initialize_agents(self):
2024-08-24 16:13:37 +08:00
""" Initialize agents and add them to the model. """
2024-09-21 22:39:09 +08:00
2024-08-24 16:13:37 +08:00
for ag_node, attr in self.product_network.nodes(data=True):
# 产业种类
2024-12-27 16:32:57 +08:00
production_ratio = self.data_production_ratio[self.data_production_ratio['IndustryID'] == ag_node]['Production_ratio']
# 转换为字典
if not production_ratio.empty: # 检查 Series 是否为空
production_ratio_dict = production_ratio.iloc[0] # 提取第一个值
else:
# 如果 Series 是空的,返回一个空字典
production_ratio_dict = {}
2024-12-08 18:43:33 +08:00
2024-12-27 16:32:57 +08:00
product = ProductAgent(ag_node, self, name=attr['Name'], type2=0, production_ratio=production_ratio_dict)
self.add_agent(product)
2024-08-24 16:13:37 +08:00
for ag_node, attr in self.firm_network.nodes(data=True):
a_lst_product = [agent for agent in self.product_agents if agent.unique_id in attr['Product_Code']]
2024-12-27 16:32:57 +08:00
demand_quantity = self.data_materials[self.data_materials['Firm_Code'] == ag_node]
2024-12-27 16:32:57 +08:00
production_output = self.data_produced[self.data_materials['Firm_Code'] == ag_node]
2024-09-21 22:39:09 +08:00
# c购买价格 数据预处理
# c_price = self.Firm.loc[self.Firm['Code'] == ag_node, 'c_price'].values[0]
# 资源 资源库存信息 利用 firm_resource
2024-12-11 15:58:06 +08:00
R = self.firm_resource_R.loc[int(ag_node)]
P = self.firm_resource_P.loc[int(ag_node)]
C = self.firm_resource_C.loc[int(ag_node)]
2024-08-24 11:20:13 +08:00
firm_agent = FirmAgent(
2024-08-24 16:13:37 +08:00
ag_node, self,
2024-08-24 11:20:13 +08:00
type_region=attr['Type_Region'],
revenue_log=attr['Revenue_Log'],
a_lst_product=a_lst_product,
demand_quantity=demand_quantity,
production_output=production_output,
2024-09-21 22:39:09 +08:00
# c_price=c_price,
R=R,
P=P,
C=C
2024-08-24 11:20:13 +08:00
)
self.add_agent(firm_agent)
##print(f"Firm agent created: {firm_agent.unique_id}, Products: {[p.name for p in a_lst_product]}")
# self.grid.place_agent(firm_agent, ag_node)
2024-08-24 11:20:13 +08:00
def initialize_disruptions(self):
# 初始化一部字典,用于存储每个公司及其对应的受干扰产品列表
t_dct = {}
# 遍历初始公司-产品干扰数据,将其转化为基于公司和产品的映射
2024-08-24 16:13:37 +08:00
for firm_code, lst_product in self.dct_lst_init_disrupt_firm_prod.items():
# 从 company_agents 列表中选择指定公司
firms = [firm for firm in self.company_agents if firm.unique_id == firm_code]
firm = firms[0] if firms else None
# 从总产品列表中选择该公司受干扰的产品
disrupted_products = [product for product in self.product_agents if product.unique_id in lst_product]
# 将公司与其受干扰的产品映射到字典中
2024-09-24 19:21:59 +08:00
if firm is not None:
t_dct[firm] = disrupted_products
# 更新 self.dct_lst_init_disrupt_firm_prod 字典,存储公司及其受干扰的产品
self.dct_lst_init_disrupt_firm_prod = t_dct
# 设置初始受干扰的公司产品状态
for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
for product in a_lst_product:
# 确保产品存在于公司的生产状态字典中
assert product in firm.dct_prod_up_prod_stat.keys(), \
f"Product {product.code} not in firm {firm.code}"
2024-08-24 16:13:37 +08:00
# 将产品状态更新为干扰状态,并记录干扰时间
firm.dct_prod_up_prod_stat[product]['p_stat'].append(('D', self.t))
2024-08-24 16:13:37 +08:00
def add_agent(self, agent):
if isinstance(agent, FirmAgent):
self.company_agents.append(agent)
elif isinstance(agent, ProductAgent):
self.product_agents.append(agent)
2024-08-24 11:20:13 +08:00
def resource_integration(self):
2024-12-11 15:58:06 +08:00
2024-09-29 16:41:34 +08:00
data_R = pd.read_csv("input_data/input_firm_data/firms_materials.csv")
data_C = pd.read_csv("input_data/input_firm_data/firms_devices.csv")
data_P = pd.read_csv("input_data/input_firm_data/firms_products.csv")
device_salvage_values = pd.read_csv('input_data/device_salvage_values.csv')
2024-09-21 22:39:09 +08:00
self.device_salvage_values = device_salvage_values
data_merged_C = pd.merge(data_C, device_salvage_values, on='设备id', how='left')
firm_resource_R = (data_R.groupby('Firm_Code')[['材料id', '材料数量']]
.apply(lambda x: x.values.tolist()))
2024-09-21 22:39:09 +08:00
firm_resource_C = (data_merged_C.groupby('Firm_Code')[['设备id', '设备数量', '设备残值']]
.apply(lambda x: x.values.tolist()))
2024-09-21 22:39:09 +08:00
firm_resource_P = (data_P.groupby('Firm_Code')[['产品id', '产品数量']]
.apply(lambda x: x.values.tolist()))
self.firm_resource_R = firm_resource_R
self.firm_resource_C = firm_resource_C
self.firm_resource_P = firm_resource_P
def j_comp_consumed_produced(self):
2024-12-08 18:43:33 +08:00
# 着重修改这 然后考虑逻辑 如何传递值
2024-12-27 16:32:57 +08:00
data_materials = pd.read_csv('input_data/input_firm_data/firms_materials.csv')
2024-12-08 18:43:33 +08:00
data_produced = pd.read_csv('input_data/input_firm_data/firms_products.csv')
2024-12-27 16:32:57 +08:00
data_production_ratio = pd.read_csv('input_data/产品消耗制造比例.csv')
data_not_consumed = data_materials.groupby('Firm_Code')[['材料id', '材料数量']] \
2024-12-11 15:58:06 +08:00
.apply(lambda x: dict(zip(x['材料id'], x['材料数量']))) \
2024-12-08 18:43:33 +08:00
.reset_index(name='Material_not_Consumed')
2024-09-21 22:39:09 +08:00
2024-12-27 16:32:57 +08:00
data_not_produced = data_produced.groupby('Firm_Code')[['产品id', '产品数量']] \
.apply(lambda x: dict(zip(x['产品id'], x['产品数量']))) \
2024-12-08 18:43:33 +08:00
.reset_index(name='Material_not_Consumed')
2024-12-27 16:32:57 +08:00
data_production_ratio = data_production_ratio.groupby('IndustryID')[['MaterialID', 'Quantity']] \
.apply(lambda x: dict(zip(x['MaterialID'], x['Quantity']))) \
.reset_index(name='Production_ratio')
self.data_materials = data_not_consumed
self.data_produced = data_not_produced
self.data_production_ratio = data_production_ratio
2024-08-24 11:20:13 +08:00
def step(self):
2024-08-24 16:13:37 +08:00
# 1. Remove edge to customer and disrupt customer up product
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if status == 'D' and ts == self.t - 1:
firm.remove_edge_to_cus(prod)
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
for up_prod in firm.dct_prod_up_prod_stat[prod]['s_stat'].keys():
if firm.dct_prod_up_prod_stat[prod]['s_stat'][up_prod]['set_disrupt_firm']:
firm.disrupt_cus_prod(prod, up_prod)
# 2. Trial Process
for n_trial in range(self.int_n_max_trial):
shuffle(self.company_agents) # 手动打乱代理顺序
is_stop_trial = True
for firm in self.company_agents:
lst_seek_prod = []
for prod in firm.dct_prod_up_prod_stat.keys():
status = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1][0]
if status == 'D':
for supply in firm.dct_prod_up_prod_stat[prod]['s_stat'].keys():
if not firm.dct_prod_up_prod_stat[prod]['s_stat'][supply]['stat']:
lst_seek_prod.append(supply)
lst_seek_prod = list(set(lst_seek_prod))
if len(lst_seek_prod) > 0:
is_stop_trial = False
for supply in lst_seek_prod:
firm.seek_alt_supply(supply)
if is_stop_trial:
break
# Handle requests
shuffle(self.company_agents) # 手动打乱代理顺序
for firm in self.company_agents:
if len(firm.dct_request_prod_from_firm) > 0:
firm.handle_request()
# Reset dct_request_prod_from_firm
for firm in self.company_agents:
firm.clean_before_trial()
# 3. 判断是否需要购买资源 判断是否需要购买机器
purchase_material_firms = {}
purchase_machinery_firms = {}
material_list = []
machinery_list = []
2024-10-22 10:51:02 +08:00
list_seek_material_firm = [] # 每一个收到请求的企业
list_seek_machinery_firm = [] # 每一个收到请求的企业
2024-09-21 22:39:09 +08:00
for firm in self.company_agents:
# 资源
for sub_list in firm.R:
if sub_list[1] <= firm.s_r:
required_material_quantity = firm.S_r - sub_list[1]
2024-09-21 22:39:09 +08:00
(material_list.append([sub_list[0], required_material_quantity]))
purchase_material_firms[firm] = material_list
# 设备
for sub_list in firm.C:
# 对于设备的required_machinery_quantity 要有所改变 根据残值而言! 每一个周期固定减少残值值 x firm 里面定义
sub_list[2] -= firm.x
if sub_list[2] <= 0: # 残值小于等于 0 时
sub_list[1] -= 1
2024-09-21 22:39:09 +08:00
required_machinery_quantity = 1 # 补回原来的量 也就是 1
(machinery_list
.append([sub_list[0], required_machinery_quantity]))
2024-09-21 22:39:09 +08:00
purchase_machinery_firms[firm] = machinery_list
# 寻源并发送请求 决定是否接受供应 并更新
2024-09-21 22:39:09 +08:00
for material_firm_key, sub_list_values in purchase_material_firms.items():
for mater_list in sub_list_values:
result = material_firm_key.seek_material_supply(mater_list[0])
# 如果 result 不等于 -1才将其添加到 list_seek_material_firm 列表中
2024-09-21 22:39:09 +08:00
if result != -1:
list_seek_material_firm.append(result)
if len(list_seek_material_firm) != 0:
for seek_material_firm in list_seek_material_firm:
2024-09-21 22:39:09 +08:00
seek_material_firm.handle_material_request(mater_list) # 更新产品
for R_list in firm.R:
R_list[1] = firm.S_r
2024-09-21 22:39:09 +08:00
for machinery_firm, sub_list in purchase_machinery_firms.items():
for machi_list in sub_list:
# 执行一次调用 machinery_firm.seek_machinery_supply(machinery_list[0])
result = machinery_firm.seek_machinery_supply(machi_list[0])
# 如果 result 不等于 -1才将其添加到 list_seek_machinery_firm 列表中
2024-09-21 22:39:09 +08:00
if result != -1:
list_seek_machinery_firm.append(result)
if len(list_seek_machinery_firm) != 0:
for seek_machinery_firm in list_seek_machinery_firm:
2024-09-21 22:39:09 +08:00
seek_machinery_firm.handle_machinery_request(machi_list)
for C_list, C0_list in zip(firm.C, firm.C0):
C_list[1] = C0_list[1] # 赋值回去
C_list[2] = C0_list[2]
# 消耗资源过程
2024-12-08 18:43:33 +08:00
# 这里需要修改
2024-12-27 16:32:57 +08:00
k = 0.6
# 特定的产业
firm_consumed_nums_dct = {}
for indus_i in firm.indus_i:
print("这是 公司产业 编码:" + indus_i)
print(type(indus_i))
for p_id, p_nums in firm.P.items():
print("这是 产品 编码:" + p_id)
print(type(p_id))
if p_id == indus_i.unique_id:
consumed_nums = p_nums * k
firm_consumed_nums_dct[indus_i] = consumed_nums
2024-12-08 18:43:33 +08:00
for r_id, r_nums in firm.R.items():
2024-12-27 16:32:57 +08:00
for i, value in firm_consumed_nums_dct.items():
if r_id in i:
r_nums = r_nums - i[r_id] * value
# 生产产品过程
2024-12-08 18:43:33 +08:00
for p_id, p_nums in firm.P.items():
2024-12-27 16:32:57 +08:00
p_nums = p_nums * 1.6
2024-12-08 18:43:33 +08:00
firm.refresh_R()
# 刷新 C状态
firm.refresh_C()
# 刷新 P状态
firm.refresh_P()
2024-08-24 16:13:37 +08:00
# Increment the time step
self.t += 1
2024-09-24 19:21:59 +08:00
def end(self):
# print('/' * 20, 'output', '/' * 20)
qry_result = db_session.query(Result).filter_by(s_id=self.sample.id)
if qry_result.count() == 0:
lst_result_info = []
for firm in self.company_agents:
for prod, dct_status_supply in \
firm.dct_prod_up_prod_stat.items():
lst_is_normal = [stat == 'N' for stat, _
in dct_status_supply['p_stat']]
if not all(lst_is_normal):
# print(f"{firm.name} {prod.code}:")
# print(dct_status_supply['p_stat'])
for status, ts in dct_status_supply['p_stat']:
db_r = Result(s_id=self.sample.id,
id_firm=firm.unique_id,
id_product=prod.unique_id,
ts=ts,
status=status)
lst_result_info.append(db_r)
db_session.bulk_save_objects(lst_result_info)
db_session.commit()
self.sample.is_done_flag = 1
self.sample.computer_name = platform.node()
self.sample.stop_t = self.int_stop_ts
db_session.commit()