mesa/my_model.py

286 lines
14 KiB
Python
Raw Normal View History

2024-08-24 11:20:13 +08:00
import json
2024-08-24 16:13:37 +08:00
from random import shuffle
2024-08-24 11:20:13 +08:00
import networkx as nx
import pandas as pd
from mesa import Model
2024-08-24 16:13:37 +08:00
from mesa.space import MultiGrid, NetworkGrid
2024-08-24 11:20:13 +08:00
from mesa.datacollection import DataCollector
2024-08-24 16:13:37 +08:00
from mesa.time import RandomActivation
2024-08-24 11:20:13 +08:00
from firm import FirmAgent
from product import ProductAgent
class MyModel(Model):
def __init__(self, params):
2024-08-24 16:13:37 +08:00
# self.num_agents = N
self.is_prf_size = params['prf_size']
self.prf_conn = params['prf_conn']
self.cap_limit_prob_type = params['cap_limit_prob_type']
self.cap_limit_level = params['cap_limit_level']
self.diff_new_conn = params['diff_new_conn']
2024-08-24 16:13:37 +08:00
self.firm_network = nx.MultiDiGraph() # 有向多重图
self.firm_prod_network = nx.MultiDiGraph()
self.product_network = nx.MultiDiGraph() # 有向多重图
# NetworkGrid 用于管理网格
2024-08-24 16:13:37 +08:00
# NetworkX 图对象
self.t = 0
self.network_graph = nx.MultiDiGraph()
2024-08-24 16:13:37 +08:00
self.grid = NetworkGrid(self.network_graph)
self.data_collector = DataCollector(
agent_reporters={"Product": "name"}
)
2024-08-24 16:13:37 +08:00
self.company_agents = []
self.product_agents = []
2024-08-24 11:20:13 +08:00
# Initialize parameters from `params`
self.sample = params['sample']
self.int_stop_ts = 0
self.int_n_iter = int(params['n_iter'])
self.dct_lst_init_disrupt_firm_prod = params['dct_lst_init_disrupt_firm_prod']
# external variable
self.int_n_max_trial = int(params['n_max_trial'])
self.is_prf_size = bool(params['prf_size'])
self.remove_t = int(params['remove_t'])
self.int_netw_prf_n = int(params['netw_prf_n'])
2024-08-24 16:13:37 +08:00
self.initialize_product_network(params)
2024-08-24 11:20:13 +08:00
self.initialize_firm_network()
2024-08-24 16:13:37 +08:00
self.initialize_firm_product_network()
self.add_edges_to_firm_network()
self.connect_unconnected_nodes()
2024-08-24 11:20:13 +08:00
self.initialize_agents()
2024-08-24 16:13:37 +08:00
self.initialize_disruptions()
2024-08-24 11:20:13 +08:00
2024-08-24 16:13:37 +08:00
def initialize_product_network(self, params):
try:
self.product_network = nx.adjacency_graph(json.loads(params['g_bom']))
print(
f"Product network initialized with {self.product_network.number_of_nodes()} nodes and {self.product_network.number_of_edges()} edges.")
except Exception as e:
print(f"Failed to initialize product network: {e}")
2024-08-24 11:20:13 +08:00
def initialize_firm_network(self):
2024-08-24 16:13:37 +08:00
""" Initialize the firm network and add it to the model. """
Firm = pd.read_csv("input_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
Firm_attr = Firm.loc[:, ["Code", "Type_Region", "Revenue_Log"]]
firm_product = [row[row == 1].index.to_list() for _, row in Firm.loc[:, '1':].iterrows()]
Firm_attr.loc[:, 'Product_Code'] = firm_product
Firm_attr.set_index('Code', inplace=True)
self.firm_network = nx.MultiDiGraph()
self.firm_network.add_nodes_from(Firm["Code"])
firm_labels_dict = {code: Firm_attr.loc[code].to_dict() for code in self.firm_network.nodes}
nx.set_node_attributes(self.firm_network, firm_labels_dict)
def initialize_firm_product_network(self):
""" Initialize the firm-product network and add it to the model. """
Firm_Prod = pd.read_csv("input_data/Firm_amended.csv")
Firm_Prod.fillna(0, inplace=True)
firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()})
2024-08-24 11:20:13 +08:00
firm_prod = firm_prod[firm_prod['bool'] == 1].reset_index()
firm_prod.drop('bool', axis=1, inplace=True)
firm_prod.rename({'level_0': 'Firm_Code', 'level_1': 'Product_Code'}, axis=1, inplace=True)
firm_prod['Firm_Code'] = firm_prod['Firm_Code'].astype('string')
2024-08-24 16:13:37 +08:00
self.firm_prod_network = nx.MultiDiGraph()
self.firm_prod_network.add_nodes_from(firm_prod.index)
firm_prod_labels_dict = {code: firm_prod.loc[code].to_dict() for code in firm_prod.index}
nx.set_node_attributes(self.firm_prod_network, firm_prod_labels_dict)
self.add_edges_to_firm_network()
self.connect_unconnected_nodes()
print(
f"Firm network has {self.firm_network.number_of_nodes()} nodes and {self.firm_network.number_of_edges()} edges.")
print(
f"Product network has {self.product_network.number_of_nodes()} nodes and {self.product_network.number_of_edges()} edges.")
2024-08-24 16:13:37 +08:00
def add_edges_to_firm_network(self):
""" Add edges to the firm network based on product BOM. """
Firm = pd.read_csv("input_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
for node in nx.nodes(self.firm_network):
lst_pred_product_code = []
for product_code in self.firm_network.nodes[node]['Product_Code']:
lst_pred_product_code += list(self.product_network.predecessors(product_code))
lst_pred_product_code = list(set(lst_pred_product_code))
lst_pred_product_code = list(sorted(lst_pred_product_code))
for pred_product_code in lst_pred_product_code:
lst_pred_firm = Firm['Code'][Firm[pred_product_code] == 1].to_list()
n_pred_firm = self.int_netw_prf_n
if n_pred_firm > len(lst_pred_firm):
n_pred_firm = len(lst_pred_firm)
if self.is_prf_size:
lst_pred_firm_size = [self.firm_network.nodes[pred_firm]['Revenue_Log'] for pred_firm in
lst_pred_firm]
lst_prob = [size / sum(lst_pred_firm_size) for size in lst_pred_firm_size]
lst_choose_firm = self.random.choices(lst_pred_firm, k=n_pred_firm, weights=lst_prob)
else:
lst_choose_firm = self.random.choices(lst_pred_firm, k=n_pred_firm)
lst_add_edge = [(pred_firm, node, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
self.firm_network.add_edges_from(lst_add_edge)
# Add edges to firm-prod network
set_node_prod_code = set(self.firm_network.nodes[node]['Product_Code'])
set_pred_succ_code = set(self.product_network.successors(pred_product_code))
lst_use_pred_prod_code = list(set_node_prod_code & set_pred_succ_code)
for pred_firm in lst_choose_firm:
pred_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == pred_firm and v['Product_Code'] == pred_product_code][0]
for use_pred_prod_code in lst_use_pred_prod_code:
current_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == node and v['Product_Code'] == use_pred_prod_code][0]
self.firm_prod_network.add_edge(pred_node, current_node)
def connect_unconnected_nodes(self):
""" Connect unconnected nodes in the firm network. """
Firm = pd.read_csv("input_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
for node in nx.nodes(self.firm_network):
if self.firm_network.degree(node) == 0:
for product_code in self.firm_network.nodes[node]['Product_Code']:
current_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == node and v['Product_Code'] == product_code][0]
lst_succ_product_code = list(self.product_network.successors(product_code))
for succ_product_code in lst_succ_product_code:
lst_succ_firm = Firm['Code'][Firm[succ_product_code] == 1].to_list()
n_succ_firm = self.int_netw_prf_n
if n_succ_firm > len(lst_succ_firm):
n_succ_firm = len(lst_succ_firm)
if self.is_prf_size:
lst_succ_firm_size = [self.firm_network.nodes[succ_firm]['Revenue_Log'] for succ_firm in
lst_succ_firm]
lst_prob = [size / sum(lst_succ_firm_size) for size in lst_succ_firm_size]
lst_choose_firm = self.random.choices(lst_succ_firm, k=n_succ_firm, weights=lst_prob)
else:
lst_choose_firm = self.random.choices(lst_succ_firm, k=n_succ_firm)
lst_add_edge = [(node, succ_firm, {'Product': product_code}) for succ_firm in lst_choose_firm]
self.firm_network.add_edges_from(lst_add_edge)
for succ_firm in lst_choose_firm:
succ_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == succ_firm and v['Product_Code'] == succ_product_code][0]
self.firm_prod_network.add_edge(current_node, succ_node)
2024-08-24 11:20:13 +08:00
def initialize_agents(self):
2024-08-24 16:13:37 +08:00
""" Initialize agents and add them to the model. """
for ag_node, attr in self.product_network.nodes(data=True):
product = ProductAgent(ag_node, self, name=attr['Name'])
self.add_agent(product)
# self.grid.place_agent(product, ag_node)
2024-08-24 11:20:13 +08:00
##print(f"Product agent created: {product.name}, ID: {product.unique_id}")
2024-08-24 16:13:37 +08:00
for ag_node, attr in self.firm_network.nodes(data=True):
a_lst_product = [agent for agent in self.product_agents if agent.unique_id in attr['Product_Code']]
print(a_lst_product)
2024-08-24 11:20:13 +08:00
firm_agent = FirmAgent(
2024-08-24 16:13:37 +08:00
ag_node, self,
2024-08-24 11:20:13 +08:00
type_region=attr['Type_Region'],
revenue_log=attr['Revenue_Log'],
a_lst_product=a_lst_product,
2024-08-24 11:20:13 +08:00
)
self.add_agent(firm_agent)
##print(f"Firm agent created: {firm_agent.unique_id}, Products: {[p.name for p in a_lst_product]}")
# self.grid.place_agent(firm_agent, ag_node)
2024-08-24 11:20:13 +08:00
def initialize_disruptions(self):
# 初始化一部字典,用于存储每个公司及其对应的受干扰产品列表
t_dct = {}
# 遍历初始公司-产品干扰数据,将其转化为基于公司和产品的映射
2024-08-24 16:13:37 +08:00
for firm_code, lst_product in self.dct_lst_init_disrupt_firm_prod.items():
# 从 company_agents 列表中选择指定公司
firm = next(firm for firm in self.company_agents if firm.unique_id == firm_code)
# 从总产品列表中选择该公司受干扰的产品
disrupted_products = [product for product in self.product_agents if product.unique_id in lst_product]
# 将公司与其受干扰的产品映射到字典中
t_dct[firm] = disrupted_products
# 更新 self.dct_lst_init_disrupt_firm_prod 字典,存储公司及其受干扰的产品
self.dct_lst_init_disrupt_firm_prod = t_dct
# 设置初始受干扰的公司产品状态
for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
for product in a_lst_product:
# 确保产品存在于公司的生产状态字典中
assert product in firm.dct_prod_up_prod_stat.keys(), \
f"Product {product.code} not in firm {firm.code}"
2024-08-24 16:13:37 +08:00
# 将产品状态更新为干扰状态,并记录干扰时间
firm.dct_prod_up_prod_stat[product]['p_stat'].append(('D', self.t))
2024-08-24 16:13:37 +08:00
def add_agent(self, agent):
if isinstance(agent, FirmAgent):
self.company_agents.append(agent)
elif isinstance(agent, ProductAgent):
self.product_agents.append(agent)
2024-08-24 11:20:13 +08:00
def step(self):
print(f"Running step {self.t}")
2024-08-24 16:13:37 +08:00
# 1. Remove edge to customer and disrupt customer up product
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if status == 'D' and ts == self.t - 1:
firm.remove_edge_to_cus(prod)
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
for up_prod in firm.dct_prod_up_prod_stat[prod]['s_stat'].keys():
if firm.dct_prod_up_prod_stat[prod]['s_stat'][up_prod]['set_disrupt_firm']:
firm.disrupt_cus_prod(prod, up_prod)
# 2. Trial Process
for n_trial in range(self.int_n_max_trial):
shuffle(self.company_agents) # 手动打乱代理顺序
is_stop_trial = True
for firm in self.company_agents:
lst_seek_prod = []
for prod in firm.dct_prod_up_prod_stat.keys():
status = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1][0]
if status == 'D':
for supply in firm.dct_prod_up_prod_stat[prod]['s_stat'].keys():
if not firm.dct_prod_up_prod_stat[prod]['s_stat'][supply]['stat']:
lst_seek_prod.append(supply)
lst_seek_prod = list(set(lst_seek_prod))
if len(lst_seek_prod) > 0:
is_stop_trial = False
for supply in lst_seek_prod:
firm.seek_alt_supply(supply)
if is_stop_trial:
break
# Handle requests
shuffle(self.company_agents) # 手动打乱代理顺序
for firm in self.company_agents:
if len(firm.dct_request_prod_from_firm) > 0:
firm.handle_request()
# Reset dct_request_prod_from_firm
for firm in self.company_agents:
firm.clean_before_trial()
# Increment the time step
self.t += 1