上传文件至 ''
This commit is contained in:
parent
5524b52632
commit
94474cbf91
168
env.py
168
env.py
|
@ -1,77 +1,91 @@
|
|||
import agentpy as ap
|
||||
|
||||
from random import uniform
|
||||
|
||||
from worker import WorkerAgent
|
||||
from firm import FirmAgent
|
||||
|
||||
|
||||
class Env(ap.Model):
|
||||
|
||||
float_market_size: float
|
||||
percent_rh: float
|
||||
percent_search: float
|
||||
n_worker: int
|
||||
n_firm: int
|
||||
|
||||
a_lst_worker: ap.AgentList
|
||||
a_lst_firm: ap.AgentList
|
||||
|
||||
def setup(self):
|
||||
# 工作人员、企业数量、搜寻企业数量赋值
|
||||
self.n_worker = self.p.n_worker
|
||||
self.n_firm = self.p.n_firm
|
||||
self.percent_search = self.p.percent_search
|
||||
# 工人、企业列表
|
||||
self.a_lst_worker = ap.AgentList(self)
|
||||
self.a_lst_firm = ap.AgentList(self)
|
||||
|
||||
# 在工人列表中添加工人
|
||||
for i in range(self.n_worker):
|
||||
# 初始化 workeragent,并把alpha属性传过去
|
||||
w = WorkerAgent(self, self.p.alpha)
|
||||
self.a_lst_worker.append(w)
|
||||
|
||||
# 在企业列表中添加企业
|
||||
for i in range(self.n_firm):
|
||||
f = FirmAgent(self)
|
||||
self.a_lst_firm.append(f)
|
||||
|
||||
def step(self):
|
||||
self.a_lst_worker.select_firm()
|
||||
|
||||
if self.t == 100:
|
||||
self.stop()
|
||||
pass
|
||||
|
||||
def provide_lst_random_firms(self, the_worker: WorkerAgent):
|
||||
'''选择企业数量 = 企业总数*百分比
|
||||
选择企业的列表 = 随机选择的企业的个数
|
||||
如果员工处于被雇佣的状态:
|
||||
如果员工工作的企业在随机选定的企业列表中:
|
||||
打开列表中的企业
|
||||
移除该企业
|
||||
返回值:移除后,再重新选择随机选择企业
|
||||
否则:
|
||||
返回值:选择企业列表
|
||||
'''
|
||||
n_select_firms = int(self.percent_search * self.n_firm)
|
||||
a_lst_select_firms = self.a_lst_firm.random(n_select_firms)
|
||||
if the_worker.s_is_hired:
|
||||
if the_worker.working_firm in a_lst_select_firms:
|
||||
lst_f = self.a_lst_firm.to_list()
|
||||
lst_f.remove(the_worker.working_firm)
|
||||
return ap.AgentList(self, lst_f).random(n_select_firms)
|
||||
else:
|
||||
return ap.AgentList(self, a_lst_select_firms)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
dict_para = {'n_worker': 100,
|
||||
'n_firm': 10,
|
||||
'percent_search': 0.2,
|
||||
'alpha': 0.5}
|
||||
my_model = Env(dict_para)
|
||||
my_model.run()
|
||||
|
||||
|
||||
import agentpy as ap
|
||||
|
||||
from random import uniform
|
||||
|
||||
from worker import WorkerAgent
|
||||
from firm import FirmAgent
|
||||
|
||||
|
||||
class Env(ap.Model):
|
||||
|
||||
float_market_size: float
|
||||
percent_rh: float
|
||||
percent_search: float
|
||||
n_worker: int
|
||||
n_firm: int
|
||||
e_revenue: float
|
||||
|
||||
a_lst_worker: ap.AgentList
|
||||
a_lst_firm: ap.AgentList
|
||||
|
||||
def setup(self):
|
||||
# 工作人员、企业数量、搜寻企业数量赋值
|
||||
self.n_worker = self.p.n_worker
|
||||
self.n_firm = self.p.n_firm
|
||||
self.percent_search = self.p.percent_search
|
||||
# 工人、企业列表
|
||||
self.a_lst_worker = ap.AgentList(self)
|
||||
self.a_lst_firm = ap.AgentList(self)
|
||||
self.e_revenue = 119.3
|
||||
|
||||
# 在工人列表中添加工人
|
||||
for i in range(self.n_worker):
|
||||
# 初始化 workeragent,并把alpha属性传过去
|
||||
w = WorkerAgent(self, self.p.alpha)
|
||||
self.a_lst_worker.append(w)
|
||||
|
||||
# 在企业列表中添加企业,放入一个is_RH_ratio, 即有多大比例的企业是属于RH类型的
|
||||
for i in range(self.n_firm):
|
||||
# 对于企业属性true or false 的判断, 影响到firm 板块下, self.s_IsRH = is_RH 语句的判断
|
||||
f = FirmAgent(self, self.p.is_RH_ratio >= uniform(0, 1))
|
||||
self.a_lst_firm.append(f)
|
||||
|
||||
def update_e_revenue(self):
|
||||
self.e_revenue += 0.01 * self.e_revenue
|
||||
|
||||
def step(self):
|
||||
self.update_e_revenue()
|
||||
# 先清空每次的选择列表
|
||||
self.a_lst_firm.empty_apply()
|
||||
# 一开始worker要去选择很多firm
|
||||
self.a_lst_worker.select_firm()
|
||||
# 第二步, firm 去选 worker
|
||||
self.a_lst_firm.select_worker()
|
||||
|
||||
if self.t == 100:
|
||||
self.stop()
|
||||
pass
|
||||
|
||||
def provide_lst_random_firms(self, the_worker: WorkerAgent):
|
||||
'''选择企业数量 = 企业总数*百分比
|
||||
选择企业的列表 = 随机选择的企业的个数
|
||||
如果员工处于被雇佣的状态:
|
||||
如果员工工作的企业在随机选定的企业列表中:
|
||||
打开列表中的企业
|
||||
移除该企业
|
||||
返回值:移除后,再重新选择随机选择企业
|
||||
否则:
|
||||
返回值:选择企业列表
|
||||
'''
|
||||
n_select_firms = int(self.percent_search * self.n_firm)
|
||||
a_lst_select_firms = self.a_lst_firm.random(n_select_firms)
|
||||
if the_worker.s_is_hired:
|
||||
if the_worker.working_firm in a_lst_select_firms:
|
||||
# 转换为 list
|
||||
lst_f = list(self.a_lst_firm)
|
||||
lst_f.remove(the_worker.working_firm)
|
||||
return ap.AgentList(self, lst_f).random(n_select_firms)
|
||||
# 假如以上都不满足, 直接返回
|
||||
return ap.AgentList(self, a_lst_select_firms)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
dict_para = {'n_worker': 100,
|
||||
'n_firm': 20,
|
||||
'percent_search': 0.2,
|
||||
'alpha': 0.5,
|
||||
'is_RH_ratio': 0.5}
|
||||
my_model = Env(dict_para)
|
||||
my_model.run()
|
||||
|
||||
|
||||
|
|
243
firm.py
243
firm.py
|
@ -1,105 +1,138 @@
|
|||
from typing import Union, Any
|
||||
|
||||
import agentpy as ap
|
||||
from random import uniform, randint
|
||||
|
||||
class FirmAgent(ap.Agent):
|
||||
c_incentive: float
|
||||
s_IsRH: bool
|
||||
s_a_senior_yield: float
|
||||
s_a_junior_yield: float
|
||||
s_a_yield: float
|
||||
s_salary: float
|
||||
s_revenue: float
|
||||
s_profit: float
|
||||
l_senior_workers: list
|
||||
l_junior_workers: list
|
||||
l_applied_workers: list
|
||||
|
||||
def setup(self):
|
||||
self.c_incentive = uniform(0, 1)
|
||||
self.s_profit = randint(10, 20)
|
||||
self.l_applied_workers = []
|
||||
|
||||
def apply(self, the_worker):
|
||||
self.l_applied_workers.append(the_worker)
|
||||
|
||||
def select_worker(self):
|
||||
'''
|
||||
企业找到最想招聘的员工
|
||||
:return:
|
||||
'''
|
||||
n_a_firms = len(self.l_applied_workers)
|
||||
# 对员工产出进行排队和比较
|
||||
max_s_yield: float
|
||||
max_s_yield, best_worker = 0, None
|
||||
for i in self.l_applied_workers:
|
||||
y = max_s_yield
|
||||
if y > max_s_yield:
|
||||
max_s_yield = y
|
||||
best_worker = i
|
||||
# print(f'{self}: my best firm is {best_firm} from {n_firms} firms with utility {max_utility}')
|
||||
# return best_worker
|
||||
# 当企业是想要利用产出最高的员工时,从申请的员工中选出产出最高的员工
|
||||
'''if self.s_IsRH :
|
||||
# 计算该名员工的工资水平: 原有工资水平* (1+incentive)
|
||||
bw_salary = self.best_worker.salary()
|
||||
|
||||
# 将该名员工的产出与公司原有员工的产出进行对比,如果高于senior列表中的最后一名的产出,就进入senior_list, 否则进入junior_list
|
||||
self.l_senior_workers.append(best_worker)
|
||||
else:
|
||||
self.l_junior_workers.append(best_worker)
|
||||
# best_worker.apply(self)
|
||||
else:
|
||||
# 计算由于改名员工下一期的薪资总数(根据薪资函数更新)以及企业下一期的利润的差值,并选出最大值
|
||||
'''
|
||||
|
||||
def S_a_Yield(self):
|
||||
# 更新总产出
|
||||
# s_total_senior_yield = self.s_a_senior_yield * len(self.l_senior_workers)
|
||||
# s_total_junior_yield = self.s_a_junior_yield * len(self.l_senior_workers)
|
||||
l_s_workers = self.l_senior_workers
|
||||
l_j_workers = self.l_junior_workers
|
||||
# s_a_yield = s_total_yield / len(self.l_senior_workers + self.l_junior_workers)
|
||||
s_total_senior_yield, s_total_junior_yield = 0, 0
|
||||
'''for i in range(len(self.l_senior_workers)):
|
||||
# 加入工人主体的产出属性
|
||||
s_total_senior_yield += '工人的yield'
|
||||
for i in range (len(self.l_junior_workers)):
|
||||
s_total_junior_yield += '工人的yield'
|
||||
s_a_senior_yield = s_total_senior_yield / len(l_s_workers)
|
||||
s_a_junior_yield = s_total_junior_yield / len(l_j_workers)
|
||||
s_a_yield = 0.8*s_a_senior_yield+0.2*s_a_junior_yield
|
||||
return s_a_yield
|
||||
'''
|
||||
return
|
||||
|
||||
def LogitShare(self):
|
||||
'''
|
||||
self.logitshare = exp(S_a_Yield)/ np.sum(exp(S_a_Yield))
|
||||
:return:
|
||||
'''
|
||||
return
|
||||
|
||||
def Sum_salary(self, l_senior_workers, l_junior_workers):
|
||||
'''
|
||||
计算某公司整体的薪金水平
|
||||
'''
|
||||
l_all_workers = l_senior_workers + l_junior_workers
|
||||
for i in l_all_workers:
|
||||
#self.sum_salary = np.sum()
|
||||
return
|
||||
|
||||
def S_Profit(self):
|
||||
# self.s_profit =self.LogitShare() * EnvironmentAgent.s_e_Irevenue - self.Sum_salary()
|
||||
return
|
||||
|
||||
def step(self):
|
||||
'''
|
||||
更新三个集合:
|
||||
首先,判断员工i在企业j第t时期的l_applied_workers列表里;
|
||||
第二步,判断企业j 的s_IsRH是0或者是1;
|
||||
如果是1,则将应聘员工中s_w_yield最大的员工从l_applied_workers列表转移到l_senior_workers或l_junior_workers列表;
|
||||
否则(即如果是0),则计算每名员工如果进入企业,下一期企业利润的提升max的员工,
|
||||
从l_applied_workers列表转移到l_senior_workers或l_junior_workers列表。
|
||||
'''
|
||||
import math
|
||||
from typing import Union, Any
|
||||
|
||||
import agentpy as ap
|
||||
from random import uniform, randint
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from worker import WorkerAgent
|
||||
|
||||
|
||||
class FirmAgent(ap.Agent):
|
||||
c_incentive: float
|
||||
s_IsRH: bool
|
||||
s_avg_senior_yield: float
|
||||
s_avg_junior_yield: float
|
||||
s_a_yield: float
|
||||
# s_salary: float
|
||||
initial_f_salary: float
|
||||
s_revenue: float
|
||||
s_profit: float
|
||||
l_senior_workers: list
|
||||
l_junior_workers: list
|
||||
l_applied_workers: list
|
||||
|
||||
def setup(self, is_RH):
|
||||
self.c_incentive = uniform(0, 1)
|
||||
# self.s_profit = randint(10, 20)
|
||||
self.l_applied_workers = []
|
||||
self.s_IsRH = is_RH
|
||||
self.initial_f_salary = randint(8000, 10000)
|
||||
|
||||
def apply(self, the_worker):
|
||||
self.l_applied_workers.append(the_worker)
|
||||
|
||||
def empty_apply(self):
|
||||
self.l_applied_workers = []
|
||||
|
||||
def select_worker(self):
|
||||
'''
|
||||
企业找到最想招聘的员工
|
||||
:return:
|
||||
'''
|
||||
n_workers = len(self.l_applied_workers)
|
||||
if n_workers > 0:
|
||||
selected_worker = None
|
||||
if n_workers > 1:
|
||||
# 对员工产出进行排队和比较
|
||||
# 先判断是什么选择方式
|
||||
if self.s_IsRH:
|
||||
max_s_yield, best_worker = 0.0, None
|
||||
for the_worker in self.l_applied_workers:
|
||||
if the_worker.s_yield > max_s_yield:
|
||||
max_s_yield = the_worker.s_yield
|
||||
best_worker = the_worker
|
||||
selected_worker = best_worker
|
||||
else:
|
||||
selected_worker = self.l_applied_workers[0] # TODO
|
||||
# print(f'{self}: my best firm is {best_firm} from {n_firms} firms with utility {max_utility}')
|
||||
# return best_worker
|
||||
# 当企业是想要利用产出最高的员工时,从申请的员工中选出产出最高的员工
|
||||
# if self.s_IsRH :
|
||||
# # 计算该名员工的工资水平: 原有工资水平* (1+incentive)
|
||||
# # bw_salary = self.best_worker.salary()
|
||||
#
|
||||
# # 将该名员工的产出与公司原有员工的产出进行对比,如果高于senior列表中的最后一名的产出,就进入senior_list, 否则进入junior_list
|
||||
# self.l_senior_workers.append(best_worker)
|
||||
# else:
|
||||
# self.l_junior_workers.append(best_worker)
|
||||
# # best_worker.apply(self)
|
||||
# else:
|
||||
# # 计算由于改名员工下一期的薪资总数(根据薪资函数更新)以及企业下一期的利润的差值,并选出最大值
|
||||
else:
|
||||
selected_worker = self.l_applied_workers[0]
|
||||
selected_worker.update_working_firm_is_hired(self)
|
||||
self.update_two_worker_list(selected_worker)
|
||||
|
||||
def update_two_worker_list(self, new_worker):
|
||||
lst_all_worker = self.l_senior_workers + self.l_junior_workers + [new_worker]
|
||||
lst_sorted = lst_all_worker.sort(key=lambda x: x['s_yield'], reverse=True) # from highest yield to lowest
|
||||
n_all_worker = len(lst_all_worker)
|
||||
# 向上取整数值
|
||||
n_senior_worker = math.ceil(n_all_worker * 0.2)
|
||||
n_junior_worker = n_all_worker - n_senior_worker
|
||||
self.l_senior_workers = lst_sorted[:n_senior_worker]
|
||||
if n_junior_worker == 0:
|
||||
self.l_junior_workers = []
|
||||
else:
|
||||
self.l_junior_workers = lst_sorted[n_senior_worker:]
|
||||
|
||||
def update_yields(self): # 需要改
|
||||
n_sw, n_jw = len(self.l_senior_workers), len(self.l_junior_workers)
|
||||
# acc_all_yield = 0
|
||||
|
||||
if n_sw == 0:
|
||||
self.s_avg_senior_yield = 0
|
||||
else:
|
||||
s_acc_senior_yield = 0
|
||||
for sw in self.l_senior_workers:
|
||||
# 加入工人主体的产出属性
|
||||
s_acc_senior_yield += sw.s_yield
|
||||
# acc_all_yield += sw.s_yield
|
||||
self.s_avg_senior_yield = s_acc_senior_yield / n_sw
|
||||
|
||||
if n_jw == 0:
|
||||
self.s_avg_junior_yield = 0
|
||||
else:
|
||||
s_acc_junior_yield = 0
|
||||
for jw in self.l_junior_workers:
|
||||
# 加入工人主体的产出属性
|
||||
s_acc_junior_yield += jw.s_yield
|
||||
self.s_avg_junior_yield = s_acc_junior_yield / n_jw
|
||||
self.s_a_yield = 0.8 * self.s_avg_senior_yield + 0.2 * self.s_avg_junior_yield
|
||||
|
||||
def logit_share(self):
|
||||
logit_share = math.exp(self.s_a_yield) / np.sum(math.exp(self.s_a_yield))
|
||||
return logit_share
|
||||
|
||||
def sum_salary(self, l_senior_workers, l_junior_workers):
|
||||
'''
|
||||
计算某公司整体的薪金水平
|
||||
'''
|
||||
l_all_workers = l_senior_workers + l_junior_workers
|
||||
sum_salary = self.salary
|
||||
for the_worker in l_all_workers:
|
||||
sum_salary += the_worker.salary
|
||||
return
|
||||
|
||||
def s_profit(self):
|
||||
# ?
|
||||
self.s_profit = self.logit_share() * self.p.e_revenue - self.sum_salary()
|
||||
return
|
||||
|
||||
def step(self):
|
||||
pass
|
||||
|
|
32
main.py
32
main.py
|
@ -1,16 +1,16 @@
|
|||
# This is a sample Python script.
|
||||
|
||||
# Press Shift+F10 to execute it or replace it with your code.
|
||||
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
|
||||
|
||||
|
||||
def print_hi(name):
|
||||
# Use a breakpoint in the code line below to debug your script.
|
||||
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
|
||||
|
||||
|
||||
# Press the green button in the gutter to run the script.
|
||||
if __name__ == '__main__':
|
||||
print_hi('PyCharm')
|
||||
|
||||
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
|
||||
# This is a sample Python script.
|
||||
|
||||
# Press Shift+F10 to execute it or replace it with your code.
|
||||
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
|
||||
|
||||
|
||||
def print_hi(name):
|
||||
# Use a breakpoint in the code line below to debug your script.
|
||||
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
|
||||
|
||||
|
||||
# Press the green button in the gutter to run the script.
|
||||
if __name__ == '__main__':
|
||||
print_hi('PyCharm')
|
||||
|
||||
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
|
||||
|
|
168
worker.py
168
worker.py
|
@ -1,77 +1,93 @@
|
|||
import math
|
||||
|
||||
import agentpy as ap
|
||||
from random import uniform, randint
|
||||
from firm import FirmAgent
|
||||
|
||||
|
||||
class WorkerAgent(ap.Agent):
|
||||
select_firm: object
|
||||
c_effort: float
|
||||
s_is_hired: bool
|
||||
c_work_months: int
|
||||
s_work_duration: int
|
||||
working_firm: FirmAgent
|
||||
s_salary: float
|
||||
s_yield: float
|
||||
# s_w_applied: bool
|
||||
c_alpha: float
|
||||
|
||||
def setup(self, alpha):
|
||||
# super().__init__(unique_id, model)
|
||||
# self.num_workers = 10000
|
||||
self.c_effort = uniform(0, 1)
|
||||
self.c_work_months = randint(0, 60)
|
||||
self.s_is_hired = False
|
||||
self.c_alpha = alpha
|
||||
# return
|
||||
|
||||
# def A_Utility(self, c_w_weight=0.5):
|
||||
# a = np.exp(FirmAgent.c_f_incentive, c_w_weight)
|
||||
# b = np.exp(FirmAgent.s_f_profit/max(FirmAgent.s_f_profit), 1-c_w_weight)
|
||||
# self.select_firm = a * b
|
||||
|
||||
def select_firm(self):
|
||||
'''
|
||||
挑选出来的企业列表
|
||||
数量:列表的长度
|
||||
'''
|
||||
lst_firms = self.model.provide_lst_random_firms(self)
|
||||
n_firms = len(lst_firms)
|
||||
# find the max incentive and profit among all firms
|
||||
max_incentive, max_profit = 0, 0
|
||||
for f in lst_firms:
|
||||
if f.c_incentive > max_incentive:
|
||||
max_incentive = f.c_incentive
|
||||
if f.s_profit > max_profit:
|
||||
max_profit = f.s_profit
|
||||
# computer the utility for each firm
|
||||
max_utility, best_firm = 0, None
|
||||
for f in lst_firms:
|
||||
u = math.pow(f.c_incentive / max_incentive, self.c_alpha) * math.pow(f.s_profit/max_profit, 1-self.c_alpha)
|
||||
if u > max_utility:
|
||||
max_utility = u
|
||||
best_firm = f
|
||||
# print(f'{self}: my best firm is {best_firm} from {n_firms} firms with utility {max_utility}')
|
||||
# 选出能够给自己带来最好的效用的企业,并输出/返回
|
||||
best_firm.apply(self)
|
||||
return best_firm
|
||||
|
||||
def salary(self, the_firm: FirmAgent):
|
||||
'''
|
||||
如果员工首次受到雇佣,薪资 = 某公司初始薪资
|
||||
如果员工更换了公司, 薪资 = 原薪资 * (1+c_incentive)
|
||||
? 换公司
|
||||
:return:
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
|
||||
def step(self):
|
||||
if self.s_is_hired == 1:
|
||||
self.s_work_duration +=1
|
||||
self.s_yield = 2 / (1 + math.exp(-0.01 * self.s_work_duration * self.c_effort)) - 1
|
||||
'''
|
||||
是否更换公司成功的状态转换?
|
||||
import math
|
||||
|
||||
import agentpy as ap
|
||||
from random import uniform, randint
|
||||
|
||||
# 编程可以自动补充一些东西,减少报错
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from firm import FirmAgent
|
||||
|
||||
|
||||
class WorkerAgent(ap.Agent):
|
||||
select_firm: object
|
||||
c_effort: float
|
||||
s_is_hired: bool
|
||||
# c_work_months: int
|
||||
s_work_duration: int
|
||||
working_firm: 'FirmAgent'
|
||||
s_salary: float
|
||||
s_yield: float
|
||||
# s_w_applied: bool
|
||||
c_alpha: float
|
||||
|
||||
def setup(self, alpha):
|
||||
# super().__init__(unique_id, model)
|
||||
# self.num_workers = 10000
|
||||
self.c_effort = uniform(0, 1)
|
||||
# self.c_work_months = randint(0, 60)
|
||||
self.s_is_hired = False
|
||||
self.s_work_duration = randint(0, 60)
|
||||
self.c_alpha = alpha
|
||||
self.update_yield()
|
||||
self.s_salary = 0
|
||||
|
||||
# return
|
||||
|
||||
# def A_Utility(self, c_w_weight=0.5):
|
||||
# a = np.exp(FirmAgent.c_f_incentive, c_w_weight)
|
||||
# b = np.exp(FirmAgent.s_f_profit/max(FirmAgent.s_f_profit), 1-c_w_weight)
|
||||
# self.select_firm = a * b
|
||||
|
||||
def select_firm(self):
|
||||
'''
|
||||
挑选出来的企业列表
|
||||
数量:列表的长度
|
||||
'''
|
||||
lst_firms = self.model.provide_lst_random_firms(self)
|
||||
n_firms = len(lst_firms)
|
||||
# find the max incentive and profit among all firms
|
||||
max_incentive, max_profit = 0, 0
|
||||
for f in lst_firms:
|
||||
if f.c_incentive > max_incentive:
|
||||
max_incentive = f.c_incentive
|
||||
if f.s_profit > max_profit:
|
||||
max_profit = f.s_profit
|
||||
# computer the utility for each firm
|
||||
max_utility, best_firm = 0, None
|
||||
for f in lst_firms:
|
||||
u = math.pow(f.c_incentive / max_incentive, self.c_alpha) * math.pow(f.s_profit/max_profit, 1-self.c_alpha)
|
||||
if u > max_utility:
|
||||
max_utility = u
|
||||
best_firm = f
|
||||
# print(f'{self}: my best firm is {best_firm} from {n_firms} firms with utility {max_utility}')
|
||||
# 选出能够给自己带来最好的效用的企业,并输出/返回
|
||||
best_firm.apply(self)
|
||||
return best_firm
|
||||
|
||||
def update_wd_by_is_hired(self):
|
||||
if self.s_is_hired == 1:
|
||||
self.s_work_duration += 1
|
||||
self.update_yield()
|
||||
self.update_salary()
|
||||
|
||||
def update_salary(self, the_firm: 'FirmAgent'):
|
||||
if self.s_salary == 0:
|
||||
self.s_salary = the_firm.initial_f_salary
|
||||
pass
|
||||
else:
|
||||
self.s_salary = self.s_salary * (1 + the_firm.c_incentive)
|
||||
pass
|
||||
|
||||
def update_yield(self):
|
||||
self.s_yield = 2 / (1 + math.exp(-0.01 * self.s_work_duration * self.c_effort)) - 1
|
||||
|
||||
def update_working_firm_is_hired(self, f: 'FirmAgent'):
|
||||
self.s_is_hired = True
|
||||
self.working_firm = f
|
||||
|
||||
def step(self):
|
||||
self.update_wd_by_is_hired()
|
||||
'''
|
||||
是否更换公司成功的状态转换?
|
||||
'''
|
Loading…
Reference in New Issue