salary02/env.py

240 lines
8.2 KiB
Python
Raw Permalink Normal View History

2022-08-29 10:39:29 +08:00
import agentpy as ap
2022-10-31 15:05:22 +08:00
import numpy as np
2022-08-29 10:39:29 +08:00
from random import uniform
2022-10-31 15:05:22 +08:00
import math
2022-08-29 10:39:29 +08:00
from worker import WorkerAgent
from firm import FirmAgent
2022-10-31 15:05:22 +08:00
# plt.ion()
2022-08-29 10:39:29 +08:00
2023-01-18 22:21:22 +08:00
2022-08-29 10:39:29 +08:00
class Env(ap.Model):
float_market_size: float
2023-01-18 22:21:22 +08:00
# percent_rh: float
2022-08-29 10:39:29 +08:00
percent_search: float
2023-02-12 22:52:46 +08:00
is_RH_ratio: float
is_FH_ratio: float
2022-08-29 10:39:29 +08:00
n_worker: int
n_firm: int
e_revenue: float
2023-02-12 23:43:40 +08:00
a_lst_worker: ap.AgentList
a_lst_firm: ap.AgentList
2022-08-29 10:39:29 +08:00
2022-10-31 15:05:22 +08:00
"""
Worker: Mean(s), Gini(s)
2023-02-12 23:43:40 +08:00
Firm: Mean((pi_{j,t})), Gini(pi_{j,t}), Mean(s_a_yield)
2022-10-31 15:05:22 +08:00
Env: Percent(IsHired)
"""
out_w_avg_salary: float
out_w_gini_salary: float
out_f_avg_profit: float
2023-02-12 23:43:40 +08:00
out_f_avg_yield: float
2022-10-31 15:05:22 +08:00
out_f_gini_profit: float
2023-02-12 22:52:46 +08:00
out_w_percent_hired: float
2022-10-31 15:05:22 +08:00
2023-02-12 23:43:40 +08:00
def __init__(self, dct_all, _run_id=None):
2023-02-12 22:52:46 +08:00
super().__init__()
2023-01-19 11:37:21 +08:00
2022-08-29 10:39:29 +08:00
# 工作人员、企业数量、搜寻企业数量赋值
2023-02-12 22:52:46 +08:00
self.n_worker = int(dct_all['n_worker'])
self.n_firm = int(dct_all['n_firm'])
self.percent_search = float(dct_all['percent_search'])
self.is_RH_ratio = float(dct_all['is_RH_ratio'])
self.is_FH_ratio = float(dct_all['is_FH_ratio'])
2022-08-29 10:39:29 +08:00
# 工人、企业列表
self.a_lst_worker = ap.AgentList(self)
self.a_lst_firm = ap.AgentList(self)
2023-01-15 21:51:47 +08:00
self.e_revenue = 5815100000000
2022-08-29 10:39:29 +08:00
# 在工人列表中添加工人
for i in range(self.n_worker):
2023-01-18 22:21:22 +08:00
# 初始化 worker agent并把alpha属性传过去
2023-02-12 22:52:46 +08:00
w = WorkerAgent(self, float(dct_all['alpha']))
2022-08-29 10:39:29 +08:00
self.a_lst_worker.append(w)
# 在企业列表中添加企业放入一个is_RH_ratio, 即有多大比例的企业是属于RH类型的
for i in range(self.n_firm):
# 对于企业属性true or false 的判断, 影响到firm 板块下, self.s_IsRH = is_RH 语句的判断
2023-02-12 22:52:46 +08:00
f = FirmAgent(self, self.is_RH_ratio >= uniform(0, 1), self.is_FH_ratio >= uniform(0, 1))
2022-08-29 10:39:29 +08:00
self.a_lst_firm.append(f)
2023-02-12 22:52:46 +08:00
self.running = True
self.t = 0
2022-08-29 10:39:29 +08:00
def update_e_revenue(self):
2023-02-17 17:06:23 +08:00
self.e_revenue += 0.0027 * self.e_revenue
2022-08-29 10:39:29 +08:00
def step(self):
self.update_e_revenue()
# 先清空每次的选择列表
self.a_lst_firm.empty_apply()
# 一开始worker要去选择很多firm
self.a_lst_worker.select_firm()
# 第二步, firm 去选 worker
self.a_lst_firm.select_worker()
2022-10-31 15:05:22 +08:00
self.a_lst_firm.update_yields()
self.provide_logit_share()
self.a_lst_firm.update_s_profit()
self.create_and_destroy_bankrupt_firms()
2023-01-18 22:21:22 +08:00
self.a_lst_worker.update_wd_by_is_hired()
2022-10-31 15:05:22 +08:00
# self.picture_out()
self.update()
2023-02-20 20:30:55 +08:00
if self.t >= 200:
2023-02-12 22:52:46 +08:00
self.running = False
2023-02-12 23:43:40 +08:00
self.stop()
2023-02-12 22:52:46 +08:00
else:
self.t += 1
2023-02-12 23:43:40 +08:00
# print(f"running the {self.t} step")
2022-08-29 10:39:29 +08:00
2022-10-31 15:05:22 +08:00
def update(self):
lst_salary = []
n_hired = 0
for w in self.a_lst_worker:
lst_salary.append(w.s_salary)
if w.s_is_hired:
n_hired += 1
n_workers = len(lst_salary)
self.out_w_avg_salary = sum(lst_salary) / n_workers
self.out_w_gini_salary = self.gini(lst_salary)
lst_profit = []
2023-02-12 23:43:40 +08:00
lst_yield = []
2023-01-18 22:21:22 +08:00
# n_w_firm = 0
2022-10-31 15:05:22 +08:00
for f in self.a_lst_firm:
lst_profit.append(f.s_profit)
2023-02-12 23:43:40 +08:00
lst_yield.append(f.s_a_yield)
2023-01-18 22:21:22 +08:00
# if f.s_profit > 0:
# n_w_firm += 1
2022-10-31 15:05:22 +08:00
n_firms = len(lst_profit)
self.out_f_avg_profit = sum(lst_profit) / n_firms
2023-02-12 23:43:40 +08:00
self.out_f_avg_yield = sum(lst_yield) / n_firms
2022-10-31 15:05:22 +08:00
self.out_f_gini_profit = self.gini(lst_profit)
2023-02-12 22:52:46 +08:00
self.out_w_percent_hired = n_hired / n_workers
2022-10-31 15:05:22 +08:00
self.record('out_w_avg_salary')
self.record('out_w_gini_salary')
self.record('out_f_avg_profit')
2023-02-12 23:43:40 +08:00
self.record('out_f_avg_yield')
2022-10-31 15:05:22 +08:00
self.record('out_f_gini_profit')
2023-02-12 22:52:46 +08:00
self.record('out_w_percent_hired')
2022-10-31 15:05:22 +08:00
def create_and_destroy_bankrupt_firms(self):
for f in self.a_lst_firm:
if f.s_value < 0:
2023-01-18 22:21:22 +08:00
# 直接淘汰企业,并新增一个企业
for worker in f.l_senior_workers:
worker.s_is_hired = False
worker.working_firm = None
for worker in f.l_junior_workers:
worker.s_is_hired = False
worker.working_firm = None
self.a_lst_firm.remove(f)
del f
2023-02-12 22:52:46 +08:00
new_f = FirmAgent(self, self.is_RH_ratio >= uniform(0, 1), self.is_FH_ratio >= uniform(0, 1))
2023-01-18 22:21:22 +08:00
self.a_lst_firm.append(new_f)
2023-01-15 21:51:47 +08:00
else:
if f.s_profit < 0:
2023-01-18 22:21:22 +08:00
f.l_all_w = f.l_junior_workers + f.l_senior_workers
min_unit_yield_salary, worst_worker = float('inf'), None
for worker in f.l_all_w:
unit_yield_salary = worker.s_yield if f.s_IsFH else worker.s_yield * 10000 / worker.s_salary
if unit_yield_salary < min_unit_yield_salary:
min_unit_yield_salary = unit_yield_salary
worst_worker = worker
worst_worker.s_is_hired = False
worst_worker.working_firm = None
2022-10-31 15:05:22 +08:00
assert len(self.a_lst_firm) == self.n_firm, \
f'current num firm {len(self.a_lst_firm)} != expected num firm {self.n_firm}'
2022-08-29 10:39:29 +08:00
def provide_lst_random_firms(self, the_worker: WorkerAgent):
2023-01-18 22:21:22 +08:00
"""
选择企业数量 = 企业总数*百分比
2022-08-29 10:39:29 +08:00
选择企业的列表 = 随机选择的企业的个数
如果员工处于被雇佣的状态
2022-10-31 15:05:22 +08:00
如果员工工作的企业在随机选定的企业列表中
2022-08-29 10:39:29 +08:00
打开列表中的企业
移除该企业
返回值移除后再重新选择随机选择企业
否则
返回值选择企业列表
2023-01-18 22:21:22 +08:00
"""
2022-08-29 10:39:29 +08:00
n_select_firms = int(self.percent_search * self.n_firm)
a_lst_select_firms = self.a_lst_firm.random(n_select_firms)
if the_worker.s_is_hired:
if the_worker.working_firm in a_lst_select_firms:
# 转换为 list
lst_f = list(self.a_lst_firm)
lst_f.remove(the_worker.working_firm)
return ap.AgentList(self, lst_f).random(n_select_firms)
# 假如以上都不满足, 直接返回
return ap.AgentList(self, a_lst_select_firms)
2022-10-31 15:05:22 +08:00
def provide_logit_share(self):
fen_mu = 0
for f in self.a_lst_firm:
fen_mu += math.exp(f.s_a_yield)
for f in self.a_lst_firm:
f.s_revenue = self.e_revenue * math.exp(f.s_a_yield) / fen_mu
# def picture_out(self, the_worker: WorkerAgent):
# a = self.t
# b = len(the_worker.s_salary)
# plt.plot(a, b, 'ro')
# return plt.show()
@staticmethod
def gini(x):
2023-01-18 22:21:22 +08:00
x = [ele for ele in x if ele > 0]
2022-10-31 15:05:22 +08:00
if len(x) == 0:
return 0
if sum(x) == 0:
return 0
x = np.array(x)
mad = np.abs(np.subtract.outer(x, x)).mean() # Mean absolute difference
r_mad = mad / np.mean(x) # Relative mean absolute difference
return 0.5 * r_mad
2022-08-29 10:39:29 +08:00
if __name__ == '__main__':
2022-12-09 22:07:01 +08:00
# dict_para = {'n_worker': 1000,
# 'n_firm': 100,
# 'percent_search': 0.2,
# 'alpha': 0.5,
# 'is_RH_ratio': 0.5}
# my_model = Env(dict_para)
2022-10-31 15:05:22 +08:00
#
# print(my_model.gini([10000, 0, 0, 0, 0, 0, 0]))
# my_model.run()
# # a = range(0, 101)
# # b = len(WorkerAgent.s_yield)
# # plt.plot(a,b)
# # plt.show()
# plt.show()
parameters = {
2023-01-15 21:51:47 +08:00
'n_worker': 1000,
'n_firm': 100,
2022-10-31 15:05:22 +08:00
'alpha': 0.5,
2023-01-18 22:21:22 +08:00
'percent_search': 0.2,
2022-10-31 15:05:22 +08:00
'is_RH_ratio': 0.5,
2023-01-15 21:51:47 +08:00
'is_FH_ratio': 0.5,
2023-02-12 22:52:46 +08:00
}
2022-10-31 15:05:22 +08:00
sample = ap.Sample(parameters)
# sample = ap.Sample(parameters, n=3)
#
exp = ap.Experiment(Env, sample, iterations=10, record=True)
results = exp.run()
2023-02-12 23:43:40 +08:00
results['variables']['Env'].to_excel('env_data.xlsx', engine='openpyxl')