IIabm/LoadFirm_20230213-1.ipynb

177 lines
1.4 MiB
Plaintext
Raw Normal View History

2023-02-13 17:52:58 +08:00
{
"cells": [
{
"cell_type": "code",
2023-02-17 23:00:28 +08:00
"execution_count": 1,
2023-02-13 17:52:58 +08:00
"metadata": {},
"outputs": [
2023-02-13 18:18:36 +08:00
{
"name": "stderr",
"output_type": "stream",
"text": [
2023-02-17 23:00:28 +08:00
"C:\\Users\\25759\\AppData\\Local\\Temp\\ipykernel_7688\\4260360161.py:31: SettingWithCopyWarning: \n",
2023-02-13 18:18:36 +08:00
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
2023-02-17 23:00:28 +08:00
" Firm_attr['Product_Code'] = firm_product\n",
"c:\\Users\\25759\\anaconda3\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:238: RuntimeWarning: Glyph 160 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"c:\\Users\\25759\\anaconda3\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:201: RuntimeWarning: Glyph 160 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n"
2023-02-13 18:18:36 +08:00
]
},
2023-02-13 17:52:58 +08:00
{
"data": {
2023-02-17 23:00:28 +08:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAACyIAAAsQCAYAAABS037aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3yV5f3/8fd9dnYICXsKCjIEXIgLt2LFiXvW2tYOW2e/VmuH7c/iarWOOqpFrBurxQUqIipDRCDsvUICZM+Ts+/fHyc5cMjJOCHhhOT1fDwQzj2u+3OO10nu+7o/9+cyTNM0BQAAAAAAAAAAAAAAAAAAAABxsCQ6AAAAAAAAAAAAAAAAAAAAAACHHhKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcbMd7AOWl5dr3rx5kdf9+/eX0+k82GEAAAAAAAAAAAAAAAAAAAAAhzSv16u8vLzI64kTJyozM/OgHf+gJyLPmzdPF1988cE+LAAAAAAAAAAAAAAAAAAAANCpvf/++7rooosO2vEsB+1IAAAAAAAAAAAAAAAAAAAAADoNEpEBAAAAAAAAAAAAAAAAAAAAxM12sA/Yv3//qNfvv/++hg4derDDAAAAAAAAAAAAAAAAAAAAAA5pmzZt0sUXXxx5vX+ebns76InITqcz6vXQoUM1cuTIgx0GAAAAAAAAAAAAAAAAAAAA0Knsn6fb3iwH9WgAAAAAAAAAAAAAAAAAAAAAOgUSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcSEQGAAAAAAAAAAAAAAAAAAAAEDcSkQEAAAAAAAAAAAAAAAAAAADEjURkAAAAAAAAAAAAAAAAAAAAAHEjERkAAAAAAAAAAAAAAAAAAABA3EhEBgAAAAAAAAAAAAAAAAAAABA3EpEBAAAAAAAAAAAAAAAAAAAAxI1EZAAAAAAAAAAAAAAAAAAAAABxIxEZAAAAAAAAAAAAAAAAAAAAQNxIRAYAAAAAAAAAAAAAAAAAAAAQNxKRAQAAAAAAAAAAAAAAAAAAAMSNRGQAAAAAAAAAAAAAAAAAAAAAcSMRGQAAAAAAAAAAAAAAAAAAAEDcbIkOAAAAAAAAAAAAHHymaWp3pUcr8yu0pqBS5W6/PIGgvP6QfMGQHFaLnHaLXDarMpPtGtEnXaP7ZqhXukuGYSQ6fAAAAHQBnLMCAAB0fCQiAwAAAAAAAADQBRRWebQ8r1yr8iu0su5PcbUv7nayUx0a3TdDo/tmaFTfDI3tn6keaa52iBgAAABdDeesAAAAhx4SkQEAAAAAAAAA6KSCIVNfrCvUq4u266uNRW3SZnG1T3PXF2nu+r3tnXp4jq4/YaDOGN5DVguV5wAAANBynLMCAAAc2khEBgAAAAAAAACgkymq8urtJXl6ffEO5ZfXtvvxvtpYpK82FqlvZpKuOX6Arji2v3LSnO1+XAAAABy6OGcFAADoHEhEBgAAAAAAAACgk8jNK9dL87fqk1W75A+aB/34+eW1evTT9XpizgZNGtVbPzppsMb0zzzocQAAAKDj4pwVAACgcyERGQAAAAAAAACAQ5zbF9Ajs9Zr2sJtiQ5FkuQ
2023-02-13 17:52:58 +08:00
"text/plain": [
2023-02-13 18:18:36 +08:00
"<Figure size 3600x3600 with 1 Axes>"
2023-02-13 17:52:58 +08:00
]
},
"metadata": {},
2023-02-13 18:18:36 +08:00
"output_type": "display_data"
2023-02-13 17:52:58 +08:00
}
],
"source": [
"import pandas as pd\n",
2023-02-13 18:18:36 +08:00
"import networkx as nx\n",
"import matplotlib.pyplot as plt\n",
2023-02-16 16:58:02 +08:00
"import random\n",
"\n",
2023-02-13 18:18:36 +08:00
"\n",
2023-02-16 16:58:02 +08:00
"seed = 0\n",
"random.seed(seed)\n",
2023-02-13 18:18:36 +08:00
"plt.rcParams['font.sans-serif'] = 'SimHei'\n",
2023-02-13 17:52:58 +08:00
"\n",
2023-02-16 16:11:54 +08:00
"# init graph bom\n",
"BomNodes = pd.read_csv('BomNodes.csv', index_col=0)\n",
"BomNodes.set_index('Code', inplace=True)\n",
"BomCateNet = pd.read_csv('BomCateNet.csv', index_col=0)\n",
"BomCateNet.fillna(0, inplace=True)\n",
"\n",
"G_bom = nx.from_pandas_adjacency(BomCateNet, create_using=nx.MultiDiGraph())\n",
"\n",
"bom_labels_dict = {}\n",
"for code in G_bom.nodes:\n",
" bom_labels_dict[code] = BomNodes.loc[code].to_dict()\n",
"nx.set_node_attributes(G_bom, bom_labels_dict)\n",
"\n",
"# init graph firm\n",
"Firm = pd.read_csv(\"Firm_amended.csv\")\n",
2023-02-13 17:52:58 +08:00
"Firm.fillna(0, inplace=True)\n",
2023-02-13 18:18:36 +08:00
"Firm_attr = Firm[[\"Code\",\"Name\",\"Type_Region\"]]\n",
"firm_product = []\n",
"for _, row in Firm.loc[:,'1':].iterrows():\n",
" firm_product.append(row[row==1].index.to_list())\n",
"Firm_attr['Product_Code'] = firm_product\n",
"Firm_attr.set_index('Code')\n",
"\n",
2023-02-16 16:11:54 +08:00
"G_Firm =nx.MultiDiGraph()\n",
"G_Firm.add_nodes_from(Firm[\"Code\"])\n",
2023-02-13 18:18:36 +08:00
"\n",
2023-02-16 16:11:54 +08:00
"firm_labels_dict = {}\n",
"for code in G_Firm.nodes:\n",
" firm_labels_dict[code] = Firm_attr.loc[code].to_dict()\n",
"nx.set_node_attributes(G_Firm, firm_labels_dict)\n",
2023-02-13 18:18:36 +08:00
"\n",
2023-02-16 16:11:54 +08:00
"# add edge to G_firm according to G_bom\n",
"product_codes = nx.get_node_attributes(G_Firm, 'Product_Code')\n",
"for node in nx.nodes(G_Firm):\n",
" # print(product_codes[node])\n",
" for product_code in product_codes[node]:\n",
" # print(product_code)\n",
2023-02-16 16:58:02 +08:00
" for neighbor_product_code in list(G_bom.neighbors(product_code)):\n",
" neighbor_firms = Firm.index[Firm[neighbor_product_code]==1].to_list()\n",
" list_added_edges = [(node,neighbor_firm) for neighbor_firm in neighbor_firms]\n",
" # 目前是任选一个链接\n",
" if list_added_edges:\n",
" list_added_edges = [random.choice(list_added_edges)]\n",
" G_Firm.add_edges_from(list_added_edges)\n",
2023-02-16 16:11:54 +08:00
"\n",
"# print graph\n",
"pos = nx.nx_agraph.graphviz_layout(G_Firm, prog=\"twopi\", args=\"\")\n",
"node_labels = nx.get_node_attributes(G_Firm, 'Name')\n",
2023-02-13 18:18:36 +08:00
"plt.figure(figsize=(12, 12), dpi=300)\n",
2023-02-16 16:11:54 +08:00
"nx.draw_networkx_nodes(G_Firm, pos)\n",
"nx.draw_networkx_edges(G_Firm, pos)\n",
"nx.draw_networkx_labels(G_Firm, pos, labels = node_labels, font_size=6)\n",
2023-02-13 18:18:36 +08:00
"plt.show()"
2023-02-13 17:52:58 +08:00
]
},
2023-02-16 16:11:54 +08:00
{
"cell_type": "code",
2023-02-16 16:58:02 +08:00
"execution_count": 21,
2023-02-16 16:11:54 +08:00
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"NodeView(('1', '1.1', '1.1.1', '1.1.2', '1.1.3', '1.2', '1.2.1', '1.2.2', '1.2.3', '1.3', '1.3.1', '1.3.1.1', '1.3.1.2', '1.3.1.3', '1.3.1.4', '1.3.1.5', '1.3.1.6', '1.3.1.7', '1.3.2', '1.3.2.1', '1.3.3', '1.3.3.1', '1.3.3.2', '1.3.3.3', '1.3.3.4', '1.3.3.5', '1.3.3.6', '1.3.3.7', '1.3.4', '1.3.4.1', '1.3.4.2', '1.3.4.3', '1.3.5', '1.3.5.1', '1.4', '1.4.1', '1.4.1.1', '1.4.1.2', '1.4.1.3', '1.4.1.4', '1.4.1.5', '1.4.2', '1.4.2.1', '1.4.2.2', '1.4.2.3', '1.4.2.4', '1.4.2.5', '1.4.2.6', '1.4.2.7', '1.4.3', '1.4.3.1', '1.4.3.2', '1.4.3.3', '1.4.3.4', '1.4.3.5', '1.4.3.6', '1.4.4', '1.4.4.1', '1.4.4.2', '1.4.4.3', '1.4.4.4', '1.4.4.5', '1.4.5', '1.4.5.1', '1.4.5.2', '1.4.5.3', '1.4.5.4', '1.4.5.5', '1.4.5.6', '1.4.5.7', '1.4.5.8', '1.4.5.9', '2', '2.1', '2.1.1', '2.1.1.1', '2.1.1.2', '2.1.1.3', '2.1.1.4', '2.1.1.5', '2.1.2', '2.1.2.1', '2.1.2.2', '2.1.2.3', '2.1.2.4', '2.1.3', '2.1.3.1', '2.1.3.2', '2.1.3.3', '2.1.3.4', '2.1.3.5', '2.1.3.6', '2.1.3.7', '2.1.4', '2.1.4.1', '2.1.4.1.1', '2.1.4.1.2', '2.1.4.1.3', '2.1.4.1.4', '2.1.4.2', '2.1.4.2.1', '2.1.4.2.2', '2.2', '2.3', '2.3.1', '2.3.2', '2.3.3'))"
]
},
2023-02-16 16:58:02 +08:00
"execution_count": 21,
2023-02-16 16:11:54 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"G_bom.nodes()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['1.1', '1.2', '1.3', '1.4', '2']"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(G_bom.neighbors('1'))"
]
},
2023-02-13 17:52:58 +08:00
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "bcdafc093860683ffb58d6956591562b7f8ed5d58147d17d71a5d4d6605a08df"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}