IIabm/LoadFirm_20230213-1.ipynb

100 lines
977 KiB
Plaintext
Raw Normal View History

2023-02-13 17:52:58 +08:00
{
"cells": [
{
"cell_type": "code",
2023-02-13 18:18:36 +08:00
"execution_count": 78,
2023-02-13 17:52:58 +08:00
"metadata": {},
"outputs": [
2023-02-13 18:18:36 +08:00
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\25759\\AppData\\Local\\Temp\\ipykernel_19240\\1111699291.py:13: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" Firm_attr['Product_Code'] = firm_product\n"
]
},
2023-02-13 17:52:58 +08:00
{
"data": {
2023-02-13 18:18:36 +08:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAACyIAAAsQCAYAAABS037aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3iV9f3/8dd99slOSAgQpoggG1EQFfdWXMWtLXZ8a6e1orW1+rN2OGtrW611FbXWarG2uHCBoAwVhbAEkRnCCNnj5Mz7/v1xwoGQebJOEp6P6+KCc9+f+3O/T668EU9e530My7IsAQAAAAAAAAAAAAAAAAAAAEAcbIkuAAAAAAAAAAAAAAAAAAAAAEDPQxAZAAAAAAAAAAAAAAAAAAAAQNwIIgMAAAAAAAAAAAAAAAAAAACIG0FkAAAAAAAAAAAAAAAAAAAAAHEjiAwAAAAAAAAAAAAAAAAAAAAgbgSRAQAAAAAAAAAAAAAAAAAAAMSNIDIAAAAAAAAAAAAAAAAAAACAuBFEBgAAAAAAAAAAAAAAAAAAABA3gsgAAAAAAAAAAAAAAAAAAAAA4kYQGQAAAAAAAAAAAAAAAAAAAEDcCCIDAAAAAAAAAAAAAAAAAAAAiBtBZAAAAAAAAAAAAAAAAAAAAABxI4gMAAAAAAAAAAAAAAAAAAAAIG4EkQEAAAAAAAAAAAAAAAAAAADEjSAyAAAAAAAAAAAAAAAAAAAAgLgRRAYAAAAAAAAAAAAAAAAAAAAQN4LIAAAAAAAAAAAAAAAAAAAAAOJGEBkAAAAAAAAAAAAAAAAAAABA3AgiAwAAAAAAAAAAAAAAAAAAAIgbQWQAAAAAAAAAAAAAAAAAAAAAcSOIDAAAAAAAAAAAAAAAAAAAACBuBJEBAAAAAAAAAAAAAAAAAAAAxI0gMgAAAAAAAAAAAAAAAAAAAIC4EUQGAAAAAAAAAAAAAAAAAAAAEDeCyAAAAAAAAAAAAAAAAAAAAADiRhAZAAAAAAAAAAAAAAAAAAAAQNwIIgMAAAAAAAAAAAAAAAAAAACIm6Orb1heXq5FixbFHg8aNEhut7urywAAAAAAAAAAAAAAAAAAAAB6tEAgoIKCgtjjU045RRkZGV12/y4PIi9atEiXXHJJV98WAAAAAAAAAAAAAAAAAAAA6NX++9//6uKLL+6y+9m67E4AAAAAAAAAAAAAAAAAAAAAeg2CyAAAAAAAAAAAAAAAAAAAAADi5ujqGw4aNKje4//+97868sgju7oMAAAAAAAAAAAAAAAAAAAAoEf76quvdMkll8QeH5rT7WxdHkR2u931Hh955JEaM2ZMV5cBAAAAAAAAAAAAAAAAAAAA9CqH5nQ7m61L7wYAAAAAAAAAAAAAAAAAAACgVyCIDAAAAAAAAAAAAAAAAAAAACBuBJEBAAAAAAAAAAAAAAAAAAAAxI0gMgAAAAAAAAAAAAAAAAAAAIC4EUQGAAAAAAAAAAAAAAAAAAAAEDeCyAAAAAAAAAAAAAAAAAAAAADiRhAZAAAAAAAAAAAAAAAAAAAAQNwIIgMAAAAAAAAAAAAAAAAAAACIG0FkAAAAAAAAAAAAAAAAAAAAAHEjiAwAAAAAAAAAAAAAAAAAAAAgbgSRAQAAAAAAAAAAAAAAAAAAAMSNIDIAAAAAAAAAAAAAAAAAAACAuBFEBgAAAAAAAAAAAAAAAAAAABA3gsgAAAAAAAAAAAAAAAAAAAAA4kYQGQAAAAAAAAAAAAAAAAAAAEDcCCIDAAAAAAAAAAAAAAAAAAAAiBtBZAAAAAAAAAAAAAAAAAAAAABxI4gMAAAAAAAAAAAAAAAAAAAAIG4EkQEAAAAAAAAAAAAAAAAAAADEjSAyAAAAAAAAAAAAAAAAAAAAgLgRRAYAAAAAAAAAAAAAAAAAAAAQN4LIAAAAAAAAAAAAAAAAAAAAAOJGEBkAAAAAAAAAAAAAAAAAAABA3AgiAwAAAAAAAAAAAAAAAAAAAIgbQWQAAAAAAAAAAAAAAAAAAAAAcSOIDAAAAAAAAAAAAAAAAAAAACBuBJEBAAAAAAAAAAAAAAAAAAAAxI0gMgAAAAAAAAAAAAAAAAAAAIC4EUQGAAAAAAAAAAAAAAAAAAAAEDeCyAAAAAAAAAAAAAAAAAAAAADiRhAZAAAAAAAAAAAAAAAAAAAAQNwIIgMAAAAAAAAAAAAAAAAAAACIG0FkAAAAAAAAAAAAAAAAAAAAAHEjiAwAAAAAAAAAAAAAAAAAAAAgbgSRAQAAAAAAAAAAAAAAAAAAAMSNIDIAAAAAAAAAAAAAAAAAAACAuBFEBgAAAAAAAAAAAAAAAAAAABA3gsgAAAAAAAAAAAAAAAAAAAAA4kYQGQAAAAAAAAAAAAAAAAAAAEDcCCIDAAAAAAAAAAAAAAAAAAAAiBtBZAAAAAAAAAAAAAAAAAAAAABxI4gMAAAAAAAAAAAAAAAAAAAAIG4EkQEAAAAAAAAAAAAAAAAAAADEjSAyAAAAAAAAAAAAAAAAAAAAgLgRRAYAAAAAAAAAAAAAAAAAAAAQN4LIAAAAAAAAAAAAAAAAAAAAAOJGEBkAAAAAAAAAAAAAAAAAAABA3AgiAwAAAAAAAAAAAAAAAAAAAIgbQWQAAAAAAAAAAAAAAAAAAAAAcSOIDAAAAAAAAAAAAAAAAAAAACBuBJEBAAAAAAAAAAAAAAAAAAAAxI0gMgAAAAAAAAAAAAAAAAAAAIC4EUQGAAAAAAAAAAAAAAAAAAAAEDeCyAAAAAAAAAAAAAAAAAAAAADiRhAZAAAAAAAAAAAAAAAAAAAAQNwIIgMAAAAAAAAAAAAAAAAAAACIG0FkAAAAAAAAAAAAAAAAAAAAAHEjiAwAAAAAAAAAAAAAAAAAAAAgbgSRAQAAAAAAAAAAAAAAAAAAAMSNIDIAAAAAAAAAAAAAAAAAAACAuBFEBgAAAAAAAAAAAAAAAAAAABA3gsgAAAAAAAAAAAAAAAAAAAAA4kYQGQAAAAAAAAAAAAAAAAAAAEDcCCIDAAAAAAAAAAAAAAAAAAAAiBtBZAAAAAAAAAAAAAAAAAAAAABxI4gMAAAAAAAAAAAAAAAAAAAAIG4EkQEAAAAAAAAAAAAAAAAAAADEjSAyAAAAAAAAAAAAAAAAAAAAgLgRRAYAAAAAAAAAAAAAAAAAAAAQN4LIAAAAAAAAAAAAAAAAAAAAAOJGEBkAAAAAAAAAAAAAAAAAAABA3AgiAwAAAAAAAAAAAAAAAAAAAIgbQWQAAAAAAAAAAAAAAAAAAAAAcSOIDAAAAAAAAAAAAAAAAAAAACBuBJEBAAAAAAAAAAAAAAAAAAAAxI0gMgAAAAAAAAAAAAAAAAAAAIC4EUQGAAAAAAAAAAAAAAAAAAAAEDeCyAAAAAAAAAAAAAAAAAAAAADiRhAZAAAAAAAAAAAAAAAAAAAAQNwIIgMAAAAAAAAAAAAAAAAAAACIG0FkAAAAAAAAAAAAAAAAAAAAAHEjiAwAAAAAAAAAAAAAAAAAAAAgbgSRAQAAAAAAAAAAAAAAAAAAAMSNIDIAAAAAAAAAAAAAAAAAAACAuDkSXQAAAAAAAADQmSzL0p5Kv9YUVmj9rkqV+0LyhyMKhEwFI6ZcdpvcTps8DrsykpwaPSBN4/LS1S/NI8MwEl0+0C3QRwAAAAAAAACAxhBEBgAAAAAAQK9SVOXXqoJyrS2s0Jq6X8XVwbj3yU5xaVxeusblpWtsXromDspQ31RPJ1QMdD/0EQAAAAAAAACgNQgiAwAAAAAAoMeLmJYWbCjS88u3a/GmfR2yZ3F1UAs37tPCjQf2O3lEjq4/fohOH9VXdhtTXtG70EcAAAAAAAAAgHgRRAYAAAAAAECPta8qoJdXFOifn+xQYXltp99v8aZ9Wrxpn/IyvLpmymBdcewg5aS6O/2+QGeijwAAAAAAAAAAbUUQGQAAAAAAAD1OfkG5nl6yVW+t3a1QxOry+xeW1+rBdzbqj+9/qfPG9te3ThymCYMyurwOoD3oIwAAAAAAAABAexFEBgAAAAAAQI/hC4b1wPyNmrNsW6JLkSSFIpbm5e/SvPxdmnXCUN12zkg
2023-02-13 17:52:58 +08:00
"text/plain": [
2023-02-13 18:18:36 +08:00
"<Figure size 3600x3600 with 1 Axes>"
2023-02-13 17:52:58 +08:00
]
},
"metadata": {},
2023-02-13 18:18:36 +08:00
"output_type": "display_data"
2023-02-13 17:52:58 +08:00
}
],
"source": [
"import pandas as pd\n",
2023-02-13 18:18:36 +08:00
"import networkx as nx\n",
"import matplotlib.pyplot as plt\n",
"\n",
"plt.rcParams['font.sans-serif'] = 'SimHei'\n",
2023-02-13 17:52:58 +08:00
"\n",
"Firm = pd.read_csv(\"Firm.csv\")\n",
"Firm.fillna(0, inplace=True)\n",
2023-02-13 18:18:36 +08:00
"Firm_attr = Firm[[\"Code\",\"Name\",\"Type_Region\"]]\n",
"firm_product = []\n",
"for _, row in Firm.loc[:,'1':].iterrows():\n",
" firm_product.append(row[row==1].index.to_list())\n",
"Firm_attr['Product_Code'] = firm_product\n",
"Firm_attr.set_index('Code')\n",
"\n",
"G =nx.MultiDiGraph()\n",
"G.add_nodes_from(Firm[\"Code\"])\n",
"\n",
"labels_dict = {}\n",
"for code in G.nodes:\n",
" labels_dict[code] = Firm_attr.loc[code].to_dict()\n",
"nx.set_node_attributes(G, labels_dict)\n",
"\n",
"pos = nx.nx_agraph.graphviz_layout(G, prog=\"twopi\", args=\"\")\n",
"node_labels = nx.get_node_attributes(G, 'Name')\n",
"plt.figure(figsize=(12, 12), dpi=300)\n",
"nx.draw_networkx_nodes(G, pos)\n",
"nx.draw_networkx_edges(G, pos)\n",
"nx.draw_networkx_labels(G, pos, labels = node_labels, font_size=6)\n",
"plt.show()"
2023-02-13 17:52:58 +08:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "bcdafc093860683ffb58d6956591562b7f8ed5d58147d17d71a5d4d6605a08df"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}