gw/genetic_calibration.py

168 lines
5.4 KiB
Python

import json
import random
from pathlib import Path
from typing import List, Tuple
from simulation_model import SimulationModel
# Decision variables:
# - month1, month2, month3, month4 efficiencies (hour/blade)
# - factory-specific new-factory factors (from data/factory_mapping.json)
FACTORY_MAPPING = json.loads(Path("data/factory_mapping.json").read_text(encoding="utf-8"))
FACTORY_IDS = list(FACTORY_MAPPING.values())
# Bounds for genes: (min, max)
MONTH_BOUNDS = (30.0, 250.0)
FACTOR_BOUNDS = (0.8, 3.0)
POP_SIZE = 20
GENERATIONS = 200
MUTATION_RATE = 0.2
MUTATION_STD = 5.0 # hours for months; factors mutate separately
def clip(val: float, bounds: Tuple[float, float]) -> float:
lo, hi = bounds
return max(lo, min(hi, val))
def evaluate(genes: List[float]) -> float:
month1, month2, month3, month4 = genes[:4]
factor_genes = genes[4:]
factory_factors = {fid: val for fid, val in zip(FACTORY_IDS, factor_genes)}
try:
model = SimulationModel(
month1=month1,
month2=month2,
month3=month3,
month4=month4,
factory_factors=factory_factors,
output_enabled=False,
)
while model.running:
model.step()
return model.mean_abs_error
except PermissionError as e:
print(f"文件访问冲突: {e}. 正在重试...")
return float('inf') # 返回高值以惩罚该个体
except Exception as e:
print(f"发生错误: {e}")
return float('inf')
def mutate(genes: List[float]) -> List[float]:
new = genes.copy()
for i in range(len(new)):
if random.random() < MUTATION_RATE:
if i < 4:
new[i] = clip(new[i] + random.gauss(0, MUTATION_STD), MONTH_BOUNDS)
else:
jitter = random.gauss(0, 0.05)
new[i] = clip(new[i] + jitter, FACTOR_BOUNDS)
return new
def crossover(p1: List[float], p2: List[float]) -> Tuple[List[float], List[float]]:
point = random.randint(1, len(p1) - 1)
c1 = p1[:point] + p2[point:]
c2 = p2[:point] + p1[point:]
return c1, c2
def init_population() -> List[List[float]]:
pop = []
# Warm start from best params if available
best_path = Path("data") / "ga_best_params.json"
seed_indiv = None
if best_path.exists():
try:
best = json.loads(best_path.read_text(encoding="utf-8"))
seed_indiv = [
float(best.get("month1", random.uniform(*MONTH_BOUNDS))),
float(best.get("month2", random.uniform(*MONTH_BOUNDS))),
float(best.get("month3", random.uniform(*MONTH_BOUNDS))),
float(best.get("month4", random.uniform(*MONTH_BOUNDS))),
]
for fid in FACTORY_IDS:
seed_indiv.append(float(best.get(f"factor_{fid}", random.uniform(*FACTOR_BOUNDS))))
except Exception:
seed_indiv = None
for _ in range(POP_SIZE):
if seed_indiv is not None and _ == 0:
indiv = seed_indiv
else:
indiv = [
random.uniform(*MONTH_BOUNDS),
random.uniform(*MONTH_BOUNDS),
random.uniform(*MONTH_BOUNDS),
random.uniform(*MONTH_BOUNDS),
]
indiv += [random.uniform(*FACTOR_BOUNDS) for _ in FACTORY_IDS]
pop.append(indiv)
return pop
def main():
best_genes = None
best_score = float("inf")
population = init_population()
for gen in range(GENERATIONS):
scored = []
for indiv in population:
score = evaluate(indiv)
scored.append((score, indiv))
if score < best_score:
best_score = score
best_genes = indiv
scored.sort(key=lambda x: x[0])
# Elitism: keep top 2
next_pop = [scored[0][1], scored[1][1]]
# Fill rest via crossover + mutation
while len(next_pop) < POP_SIZE:
parents = random.sample(scored[:10], 2)
c1, c2 = crossover(parents[0][1], parents[1][1])
next_pop.append(mutate(c1))
if len(next_pop) < POP_SIZE:
next_pop.append(mutate(c2))
population = next_pop
print(f"Generation {gen+1}: best={best_score:.4f}")
# Save best parameters
result = {
"month1": best_genes[0],
"month2": best_genes[1],
"month3": best_genes[2],
"month4": best_genes[3],
}
for fid, val in zip(FACTORY_IDS, best_genes[4:]):
result[f"factor_{fid}"] = val
out_path = Path("output") / "ga_best_params.json"
data_path = Path("data") / "ga_best_params.json"
data_path.parent.mkdir(exist_ok=True)
# Only overwrite if better
if data_path.exists():
try:
prev = json.loads(data_path.read_text(encoding="utf-8"))
prev_score = float(prev.get("best_score", float("inf")))
except Exception:
prev_score = float("inf")
else:
prev_score = float("inf")
if best_score < prev_score:
data_path.write_text(
json.dumps({"best_score": best_score, **result}, ensure_ascii=False, indent=2),
encoding="utf-8",
)
print(f"New best mean abs error: {best_score:.4f}, saved to {data_path}")
else:
print(f"Best mean abs error: {best_score:.4f} (not better than {prev_score:.4f}, not saved)")
if __name__ == "__main__":
main()