import json import random from pathlib import Path from typing import List, Tuple from simulation_model import SimulationModel # Decision variables: two factory factors only TARGET_FACTORIES = ["ZhongcaiBaicheng", "ZhongcaiHami"] # Bounds FACTOR_BOUNDS = (0.8, 3.0) POP_SIZE = 20 GENERATIONS = 50 MUTATION_RATE = 0.2 MUTATION_STD = 0.05 # for factors def clip(val: float, bounds: Tuple[float, float]) -> float: lo, hi = bounds return max(lo, min(hi, val)) def evaluate(genes: List[float]) -> float: factory_factors = {fid: val for fid, val in zip(TARGET_FACTORIES, genes)} model = SimulationModel(factory_factors=factory_factors, output_enabled=False) while model.running: model.step() return model.mean_abs_error def mutate(genes: List[float]) -> List[float]: new = genes.copy() for i in range(len(new)): if random.random() < MUTATION_RATE: jitter = random.gauss(0, MUTATION_STD) new[i] = clip(new[i] + jitter, FACTOR_BOUNDS) return new def crossover(p1: List[float], p2: List[float]) -> Tuple[List[float], List[float]]: point = random.randint(1, len(p1) - 1) c1 = p1[:point] + p2[point:] c2 = p2[:point] + p1[point:] return c1, c2 def init_population() -> List[List[float]]: pop = [] best_path = Path("data") / "ga_two_best_params.json" seed_indiv = None if best_path.exists(): try: best = json.loads(best_path.read_text(encoding="utf-8")) seed_indiv = [float(best.get(f"factor_{fid}", random.uniform(*FACTOR_BOUNDS))) for fid in TARGET_FACTORIES] except Exception: seed_indiv = None for idx in range(POP_SIZE): if seed_indiv is not None and idx == 0: pop.append(seed_indiv) continue indiv = [random.uniform(*FACTOR_BOUNDS) for _ in TARGET_FACTORIES] pop.append(indiv) return pop def main(): best_genes = None best_score = float("inf") population = init_population() for gen in range(GENERATIONS): scored = [] for indiv in population: score = evaluate(indiv) scored.append((score, indiv)) if score < best_score: best_score = score best_genes = indiv scored.sort(key=lambda x: x[0]) next_pop = [scored[0][1], scored[1][1]] while len(next_pop) < POP_SIZE: parents = random.sample(scored[:max(3, len(scored))], 2) c1, c2 = crossover(parents[0][1], parents[1][1]) next_pop.append(mutate(c1)) if len(next_pop) < POP_SIZE: next_pop.append(mutate(c2)) population = next_pop print(f"Generation {gen+1}: best={best_score:.4f}") result = {} for fid, val in zip(TARGET_FACTORIES, best_genes): result[f"factor_{fid}"] = val data_path = Path("data") / "ga_two_best_params.json" prev_score = float("inf") if data_path.exists(): try: prev = json.loads(data_path.read_text(encoding="utf-8")) prev_score = float(prev.get("best_score", float("inf"))) except Exception: prev_score = float("inf") if best_score < prev_score: data_path.write_text( json.dumps({"best_score": best_score, **result}, ensure_ascii=False, indent=2), encoding="utf-8", ) print(f"New best mean abs error: {best_score:.4f}, saved to {data_path}") else: print(f"Best mean abs error: {best_score:.4f} (not better than {prev_score:.4f}, not saved)") if __name__ == "__main__": main()