224 lines
7.2 KiB
Python
224 lines
7.2 KiB
Python
import pandas as pd
|
||
import matplotlib.pyplot as plt
|
||
import networkx as nx
|
||
|
||
plt.rcParams['font.sans-serif'] = 'SimHei'
|
||
|
||
count_prod = pd.read_csv("output_result/risk/count_prod.csv")
|
||
print(count_prod)
|
||
|
||
# category
|
||
print(count_prod.describe())
|
||
|
||
# prod_networkx
|
||
# BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
|
||
# BomNodes.set_index('Code', inplace=True)
|
||
# BomCateNet = pd.read_csv('input_data/input_product_data/BomCateNet.csv', index_col=0)
|
||
# BomCateNet.fillna(0, inplace=True)
|
||
|
||
bom_nodes = pd.read_csv('input_data/input_product_data/BomNodes.csv')
|
||
bom_nodes['Code'] = bom_nodes['Code'].astype(str)
|
||
bom_nodes.set_index('Index', inplace=True)
|
||
|
||
bom_cate_net = pd.read_csv('input_data/input_product_data/合成结点.csv')
|
||
g_bom = nx.from_pandas_edgelist(bom_cate_net, source='UPID', target='ID', create_using=nx.MultiDiGraph())
|
||
|
||
labels_dict = {}
|
||
for code in g_bom.nodes:
|
||
node_attr = bom_nodes.loc[code].to_dict()
|
||
index_list = count_prod[count_prod['id_product'] == code].index.tolist()
|
||
index = index_list[0] if len(index_list) == 1 else -1
|
||
node_attr['count'] = count_prod['count'].get(index, 0)
|
||
node_attr['node_size'] = (count_prod['count'].get(index, 0))/10
|
||
node_attr['node_color'] = count_prod['count'].get(index, 0)
|
||
labels_dict[code] = node_attr
|
||
nx.set_node_attributes(g_bom, labels_dict)
|
||
# print(labels_dict)
|
||
|
||
pos = nx.nx_agraph.graphviz_layout(g_bom, prog="twopi", args="")
|
||
dict_node_name = nx.get_node_attributes(g_bom, 'Name')
|
||
node_labels = {}
|
||
for node in nx.nodes(g_bom):
|
||
node_labels[node] = f"{node} {str(dict_node_name[node])}"
|
||
# node_labels[node] = f"{str(dict_node_name[node])}"
|
||
colors = list(nx.get_node_attributes(g_bom, 'node_color').values())
|
||
vmin = min(colors)
|
||
vmax = max(colors)
|
||
cmap = plt.cm.Blues
|
||
# 创建绘图对象
|
||
fig = plt.figure(figsize=(10, 10), dpi=300)
|
||
ax = fig.add_subplot(111)
|
||
|
||
# 绘制网络图(优化样式参数)
|
||
nx.draw(g_bom, pos,
|
||
node_size=list(nx.get_node_attributes(g_bom, 'node_size').values()),
|
||
labels=node_labels,
|
||
font_size=3,
|
||
node_color=colors,
|
||
cmap=cmap,
|
||
vmin=vmin,
|
||
vmax=vmax,
|
||
edge_color='#808080', # 中性灰
|
||
width=0.3,
|
||
edgecolors='#404040',
|
||
linewidths=0.2)
|
||
|
||
# 创建颜色条(修正实现方式)
|
||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
|
||
sm.set_array([])
|
||
|
||
# 设置颜色条位置和样式
|
||
cax = fig.add_axes([0.88, 0.3, 0.015, 0.4]) # 右侧垂直对齐
|
||
cb = plt.colorbar(sm, cax=cax)
|
||
cb.ax.tick_params(labelsize=4, width=0.5, colors='#333333')
|
||
cb.outline.set_linewidth(0.5)
|
||
cb.set_label('Risk Level', fontsize=5, labelpad=2)
|
||
|
||
# 添加图元信息
|
||
ax.set_title("Production Risk Network", fontsize=6, pad=8, color='#2F2F2F')
|
||
plt.text(0.5, 0.02, 'Data: USTB Production System | Viz: DeepSeek-R1',
|
||
ha='center', fontsize=3, color='#666666',
|
||
transform=fig.transFigure)
|
||
|
||
# 调整边界和保存
|
||
plt.subplots_adjust(left=0.05, right=0.85, top=0.95, bottom=0.1) # 适应颜色条
|
||
plt.savefig(r"output_result/risk/count_prod_network.png", # 规范路径格式
|
||
dpi=600,
|
||
bbox_inches='tight',
|
||
pad_inches=0.05,
|
||
transparent=False)
|
||
plt.close()
|
||
|
||
# dcp_prod
|
||
count_dcp = pd.read_csv("output_result/risk/count_dcp.csv",
|
||
dtype={
|
||
'up_id_firm': str,
|
||
'down_id_firm': str
|
||
})
|
||
count_dcp_prod = count_dcp.groupby(
|
||
['up_id_product',
|
||
'down_id_product'])['count'].sum()
|
||
count_dcp_prod = count_dcp_prod.reset_index()
|
||
count_dcp_prod.sort_values('count', inplace=True, ascending=False)
|
||
count_dcp_prod.to_csv('output_result\\risk\\count_dcp_prod.csv',
|
||
index=False,
|
||
encoding='utf-8-sig')
|
||
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 1000]
|
||
# print(count_dcp_prod)
|
||
|
||
list_prod = count_dcp_prod['up_id_product'].tolist(
|
||
) + count_dcp['down_id_product'].tolist()
|
||
list_prod = list(set(list_prod))
|
||
|
||
# init graph bom
|
||
|
||
BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv')
|
||
BomNodes.set_index('Index', inplace=True)
|
||
|
||
g_bom = nx.MultiDiGraph()
|
||
g_bom.add_nodes_from(list_prod)
|
||
|
||
bom_labels_dict = {}
|
||
for code in list_prod:
|
||
dct_attr = BomNodes.loc[code].to_dict()
|
||
bom_labels_dict[code] = dct_attr
|
||
nx.set_node_attributes(g_bom, bom_labels_dict)
|
||
|
||
count_max = count_dcp_prod['count'].max()
|
||
count_min = count_dcp_prod['count'].min()
|
||
k = 5 / (count_max - count_min)
|
||
for _, row in count_dcp_prod.iterrows():
|
||
# print(row)
|
||
lst_add_edge = [(
|
||
row['up_id_product'],
|
||
row['down_id_product'],
|
||
{
|
||
'count': row['count']
|
||
})]
|
||
g_bom.add_edges_from(lst_add_edge)
|
||
|
||
# dcp_networkx
|
||
pos = nx.nx_agraph.graphviz_layout(g_bom, prog="twopi", args="")
|
||
node_labels = nx.get_node_attributes(g_bom, 'Name')
|
||
|
||
temp = {}
|
||
for key, value in node_labels.items():
|
||
temp[key] = str(key) + " " + value
|
||
node_labels = temp
|
||
node_labels ={
|
||
38: 'SiC Substrate',
|
||
39: 'GaN Substrate',
|
||
40: 'Si Substrate',
|
||
41: 'AlN Substrate',
|
||
42: 'DUV LED Substrate',
|
||
43: 'InP Substrate',
|
||
44: 'Mono-Si Wafer',
|
||
45: 'Poly-Si Wafer',
|
||
46: 'InP Cryst./Wafer',
|
||
47: 'SiC Cryst./Wafer',
|
||
48: 'GaAs Wafer',
|
||
49: 'GaN Cryst./Wafer',
|
||
50: 'Si Epi Wafer',
|
||
51: 'SiC Epi Wafer',
|
||
52: 'AlN Epi',
|
||
53: 'GaN Epi',
|
||
54: 'InP Epi',
|
||
55: 'LED Epi Wafer',
|
||
90: 'Power Devices',
|
||
91: 'Diode',
|
||
92: 'Transistor',
|
||
93: 'Thyristor',
|
||
94: 'Rectifier',
|
||
95: 'IC Fab',
|
||
99: 'Wafer Test'
|
||
}
|
||
colors = nx.get_edge_attributes(g_bom, "count")
|
||
colors = [w for (n1, n2, _), w in colors.items()]
|
||
vmin = min(colors)
|
||
vmax = max(colors)
|
||
cmap = plt.cm.Blues
|
||
|
||
pos_new = {node: (p[1], p[0]) for node, p in pos.items()} # 字典推导式优化
|
||
|
||
fig = plt.figure(figsize=(8, 8), dpi=300)
|
||
plt.subplots_adjust(right=0.85) # 关键调整:右侧保留15%空白
|
||
|
||
# 使用Axes对象精准控制
|
||
main_ax = fig.add_axes([0.1, 0.1, 0.75, 0.8]) # 主图占左75%宽,上下各留10%边距
|
||
nx.draw(g_bom, pos_new,
|
||
ax=main_ax,
|
||
node_size=50,
|
||
labels=node_labels,
|
||
font_size=5,
|
||
width=1.5,
|
||
edge_color=colors,
|
||
edge_cmap=cmap,
|
||
edge_vmin=vmin,
|
||
edge_vmax=vmax,
|
||
)
|
||
main_ax.axis('off')
|
||
|
||
# 颜色条定位系统
|
||
cbar_ax = fig.add_axes([0.86, 0.15, 0.015, 0.3]) # 右边缘86%位置,底部15%起,占30%高度
|
||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
|
||
sm._A = [] # 必需的空数组
|
||
|
||
# 微调颜色条样式
|
||
cbar = fig.colorbar(sm, cax=cbar_ax, orientation='vertical')
|
||
cbar.ax.tick_params(labelsize=4,
|
||
width=0.3, # 刻度线粗细
|
||
length=1.5, # 刻度线长度
|
||
pad=0.8) # 标签与条间距
|
||
cbar.outline.set_linewidth(0.5) # 边框线宽
|
||
|
||
# 输出前验证边界
|
||
print(f"Colorbar position: {cbar_ax.get_position().bounds}") # 应输出(0.86,0.15,0.015,0.3)
|
||
|
||
# 专业级保存参数
|
||
plt.savefig("output_result/risk/count_dcp_prod_network.png",
|
||
dpi=900,
|
||
bbox_inches='tight', # 自动裁剪白边
|
||
pad_inches=0.05, # 保留0.05英寸边距
|
||
metadata={'CreationDate': None}) # 避免时间戳污染元数据
|
||
plt.close()
|