mesa/risk_analysis_firm_network.py

129 lines
4.0 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
plt.rcParams['font.sans-serif'] = 'SimHei'
# count firm category
count_firm = pd.read_csv("output_result/risk/count_firm.csv")
print(count_firm.describe())
count_dcp = pd.read_csv("output_result/risk/count_dcp.csv",
dtype={
'up_id_firm': str,
'down_id_firm': str
})
count_dcp = count_dcp[count_dcp['count'] > 130]
list_firm = count_dcp['up_id_firm'].tolist(
) + count_dcp['down_id_firm'].tolist()
list_firm = list(set(list_firm))
# init graph firm
Firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
Firm_attr = Firm.loc[:, ["Code", "企业名称", "Type_Region", "Revenue_Log"]]
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
firm_product = []
grouped = firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list)
firm_product.append(grouped)
Firm_attr['Product_Code'] = Firm_attr['Code'].map(grouped)
Firm_attr.set_index('Code', inplace=True)
G_firm = nx.MultiDiGraph()
G_firm.add_nodes_from(list_firm)
firm_labels_dict = {}
for code in G_firm.nodes:
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
nx.set_node_attributes(G_firm, firm_labels_dict)
count_max = count_dcp['count'].max()
count_min = count_dcp['count'].min()
k = 15 / (count_max - count_min)
for _, row in count_dcp.iterrows():
# print(row)
lst_add_edge = [(
row['up_id_firm'],
row['down_id_firm'],
{
'up_id_product': row['up_id_product'],
'down_id_product': row['down_id_product'],
'edge_label': f"{row['up_id_product']} - {row['down_id_product']}",
'edge_width': k * (row['count'] - count_min),
'count': (row['count'])*18
})]
G_firm.add_edges_from(lst_add_edge)
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
node_label = nx.get_node_attributes(G_firm, '企业名称')
# desensitize
node_label = {key: f"{key} " for key, value in node_label.items()}
node_label = {
'343012684': '59',
'2944892892': '165',
'3269039233': '194',
'503176785': '73',
'3111033905': '178',
'3215814536': '190',
'413274977': '64',
'2317841563': '131',
'2354145351': '157',
'653528340': '88',
'888395016': '104',
'3069206426': '174',
'3299144127': '197',
'2624175': '8',
'25685135': '24',
'2348941764': '151',
'750610681': '95',
'2320475044': '133',
'571058167': '78',
'152008168': '44',
'448033045': '66',
'2321109759': '134',
'3445928818': '213'
}
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
node_size = list(map(lambda x: x * 10, node_size))
edge_label = nx.get_edge_attributes(G_firm, "edge_label")
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
edge_width = nx.get_edge_attributes(G_firm, "edge_width")
edge_width = [w for (n1, n2, _), w in edge_width.items()]
colors = nx.get_edge_attributes(G_firm, "count")
colors = [w for (n1, n2, _), w in colors.items()]
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
fig = plt.figure(figsize=(10, 8), dpi=500)
nx.draw(G_firm,
pos,
node_size=node_size,
labels=node_label,
font_size=8,
width=2,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
edge_vmax=vmax)
# nx.draw_networkx_edge_labels(G_firm, pos, font_size=6)
nx.draw_networkx_edge_labels(
G_firm,
pos,
edge_labels=edge_label,
font_size=5
)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.95, 0.05, 0.01, 0.3])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=4)
cb.outline.set_visible(False)
plt.savefig("output_result\\risk\\count_dcp_network")
plt.close()