mesa/model.py

253 lines
12 KiB
Python

import json
from random import shuffle
import networkx as nx
import pandas as pd
from mesa import Model
from mesa.space import MultiGrid, NetworkGrid
from mesa.datacollection import DataCollector
from mesa.time import RandomActivation
from firm import FirmAgent
from product import ProductAgent
class MyModel(Model):
def __init__(self, params):
# self.num_agents = N
self.is_prf_size = params['is_prf_size']
self.prf_conn = params['prf_conn']
self.cap_limit_prob_type = params['cap_limit_prob_type']
self.cap_limit_level = params['cap_limit_level']
self.diff_new_conn = params['diff_new_conn']
# NetworkX 图对象
self.t = 0
self.network_graph = nx.MultiDiGraph()
# NetworkGrid 用于管理网格
self.grid = NetworkGrid(self.network_graph)
self.data_collector = DataCollector(
agent_reporters={"Product": "name"}
)
self.company_agents = []
self.product_agents = []
# Initialize parameters from `params`
self.sample = params['sample']
self.int_stop_ts = 0
self.int_n_iter = int(params['n_iter'])
self.dct_lst_init_disrupt_firm_prod = params['dct_lst_init_disrupt_firm_prod']
# external variable
self.int_n_max_trial = int(params['n_max_trial'])
self.is_prf_size = bool(params['prf_size'])
self.remove_t = int(params['remove_t'])
self.int_netw_prf_n = int(params['netw_prf_n'])
self.product_network = None
self.firm_network = None
self.firm_prod_network = None
self.initialize_product_network(params)
self.initialize_firm_network()
self.initialize_firm_product_network()
self.initialize_agents()
self.initialize_disruptions()
def initialize_product_network(self, params):
""" Initialize the product network and add it to the model. """
self.product_network = nx.adjacency_graph(json.loads(params['g_bom']))
self.network_graph.add_edges_from(self.product_network.edges)
def initialize_firm_network(self):
""" Initialize the firm network and add it to the model. """
Firm = pd.read_csv("input_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
Firm_attr = Firm.loc[:, ["Code", "Type_Region", "Revenue_Log"]]
firm_product = [row[row == 1].index.to_list() for _, row in Firm.loc[:, '1':].iterrows()]
Firm_attr.loc[:, 'Product_Code'] = firm_product
Firm_attr.set_index('Code', inplace=True)
self.firm_network = nx.MultiDiGraph()
self.firm_network.add_nodes_from(Firm["Code"])
firm_labels_dict = {code: Firm_attr.loc[code].to_dict() for code in self.firm_network.nodes}
nx.set_node_attributes(self.firm_network, firm_labels_dict)
def initialize_firm_product_network(self):
""" Initialize the firm-product network and add it to the model. """
Firm_Prod = pd.read_csv("input_data/Firm_amended.csv")
Firm_Prod.fillna(0, inplace=True)
firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()})
firm_prod = firm_prod[firm_prod['bool'] == 1].reset_index()
firm_prod.drop('bool', axis=1, inplace=True)
firm_prod.rename({'level_0': 'Firm_Code', 'level_1': 'Product_Code'}, axis=1, inplace=True)
firm_prod['Firm_Code'] = firm_prod['Firm_Code'].astype('string')
self.firm_prod_network = nx.MultiDiGraph()
self.firm_prod_network.add_nodes_from(firm_prod.index)
firm_prod_labels_dict = {code: firm_prod.loc[code].to_dict() for code in firm_prod.index}
nx.set_node_attributes(self.firm_prod_network, firm_prod_labels_dict)
self.add_edges_to_firm_network()
self.connect_unconnected_nodes()
def add_edges_to_firm_network(self):
""" Add edges to the firm network based on product BOM. """
Firm = pd.read_csv("input_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
for node in nx.nodes(self.firm_network):
lst_pred_product_code = []
for product_code in self.firm_network.nodes[node]['Product_Code']:
lst_pred_product_code += list(self.product_network.predecessors(product_code))
lst_pred_product_code = list(set(lst_pred_product_code))
lst_pred_product_code = list(sorted(lst_pred_product_code))
for pred_product_code in lst_pred_product_code:
lst_pred_firm = Firm['Code'][Firm[pred_product_code] == 1].to_list()
n_pred_firm = self.int_netw_prf_n
if n_pred_firm > len(lst_pred_firm):
n_pred_firm = len(lst_pred_firm)
if self.is_prf_size:
lst_pred_firm_size = [self.firm_network.nodes[pred_firm]['Revenue_Log'] for pred_firm in
lst_pred_firm]
lst_prob = [size / sum(lst_pred_firm_size) for size in lst_pred_firm_size]
lst_choose_firm = self.random.choices(lst_pred_firm, k=n_pred_firm, weights=lst_prob)
else:
lst_choose_firm = self.random.choices(lst_pred_firm, k=n_pred_firm)
lst_add_edge = [(pred_firm, node, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
self.firm_network.add_edges_from(lst_add_edge)
# Add edges to firm-prod network
set_node_prod_code = set(self.firm_network.nodes[node]['Product_Code'])
set_pred_succ_code = set(self.product_network.successors(pred_product_code))
lst_use_pred_prod_code = list(set_node_prod_code & set_pred_succ_code)
for pred_firm in lst_choose_firm:
pred_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == pred_firm and v['Product_Code'] == pred_product_code][0]
for use_pred_prod_code in lst_use_pred_prod_code:
current_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == node and v['Product_Code'] == use_pred_prod_code][0]
self.firm_prod_network.add_edge(pred_node, current_node)
def connect_unconnected_nodes(self):
""" Connect unconnected nodes in the firm network. """
Firm = pd.read_csv("input_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
for node in nx.nodes(self.firm_network):
if self.firm_network.degree(node) == 0:
for product_code in self.firm_network.nodes[node]['Product_Code']:
current_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == node and v['Product_Code'] == product_code][0]
lst_succ_product_code = list(self.product_network.successors(product_code))
for succ_product_code in lst_succ_product_code:
lst_succ_firm = Firm['Code'][Firm[succ_product_code] == 1].to_list()
n_succ_firm = self.int_netw_prf_n
if n_succ_firm > len(lst_succ_firm):
n_succ_firm = len(lst_succ_firm)
if self.is_prf_size:
lst_succ_firm_size = [self.firm_network.nodes[succ_firm]['Revenue_Log'] for succ_firm in
lst_succ_firm]
lst_prob = [size / sum(lst_succ_firm_size) for size in lst_succ_firm_size]
lst_choose_firm = self.random.choices(lst_succ_firm, k=n_succ_firm, weights=lst_prob)
else:
lst_choose_firm = self.random.choices(lst_succ_firm, k=n_succ_firm)
lst_add_edge = [(node, succ_firm, {'Product': product_code}) for succ_firm in lst_choose_firm]
self.firm_network.add_edges_from(lst_add_edge)
for succ_firm in lst_choose_firm:
succ_node = [n for n, v in self.firm_prod_network.nodes(data=True) if
v['Firm_Code'] == succ_firm and v['Product_Code'] == succ_product_code][0]
self.firm_prod_network.add_edge(current_node, succ_node)
def initialize_agents(self):
""" Initialize agents and add them to the model. """
for ag_node, attr in self.product_network.nodes(data=True):
product = ProductAgent(ag_node, self, name=attr['Name'])
self.add_agent(product)
# self.grid.place_agent(product, ag_node)
for ag_node, attr in self.firm_network.nodes(data=True):
a_lst_product = [agent for agent in self.product_agents if agent.unique_id in attr['Product_Code']]
firm_agent = FirmAgent(
ag_node, self,
type_region=attr['Type_Region'],
revenue_log=attr['Revenue_Log'],
a_lst_product=a_lst_product,
)
self.add_agent(firm_agent)
# self.grid.place_agent(firm_agent, ag_node)
def initialize_disruptions(self):
""" Initialize disruptions in the network. """
for firm_code, lst_product in self.dct_lst_init_disrupt_firm_prod.items():
for product_code in lst_product:
self.firm_network.nodes[firm_code]['Product_Code'].remove(product_code)
# Log disruptions for visualization
self.dct_lst_init_disrupt_firm_prod[firm_code].append(product_code)
def add_agent(self, agent):
if isinstance(agent, FirmAgent):
self.company_agents.append(agent)
elif isinstance(agent, ProductAgent):
self.product_agents.append(agent)
def step(self):
print(f"Running step {self.t}")
# 1. Remove edge to customer and disrupt customer up product
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if status == 'D' and ts == self.t - 1:
firm.remove_edge_to_cus(prod)
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
for up_prod in firm.dct_prod_up_prod_stat[prod]['s_stat'].keys():
if firm.dct_prod_up_prod_stat[prod]['s_stat'][up_prod]['set_disrupt_firm']:
firm.disrupt_cus_prod(prod, up_prod)
# 2. Trial Process
for n_trial in range(self.int_n_max_trial):
shuffle(self.company_agents) # 手动打乱代理顺序
is_stop_trial = True
for firm in self.company_agents:
lst_seek_prod = []
for prod in firm.dct_prod_up_prod_stat.keys():
status = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1][0]
if status == 'D':
for supply in firm.dct_prod_up_prod_stat[prod]['s_stat'].keys():
if not firm.dct_prod_up_prod_stat[prod]['s_stat'][supply]['stat']:
lst_seek_prod.append(supply)
lst_seek_prod = list(set(lst_seek_prod))
if len(lst_seek_prod) > 0:
is_stop_trial = False
for supply in lst_seek_prod:
firm.seek_alt_supply(supply)
if is_stop_trial:
break
# Handle requests
shuffle(self.company_agents) # 手动打乱代理顺序
for firm in self.company_agents:
if len(firm.dct_request_prod_from_firm) > 0:
firm.handle_request()
# Reset dct_request_prod_from_firm
for firm in self.company_agents:
firm.clean_before_trial()
# Increment the time step
self.t += 1