201 lines
11 KiB
Python
201 lines
11 KiB
Python
from mesa import Agent
|
|
import numpy as np
|
|
|
|
|
|
class FirmAgent(Agent):
|
|
def __init__(self, unique_id, model, type_region, revenue_log, a_lst_product):
|
|
# 调用超类的 __init__ 方法
|
|
super().__init__(unique_id, model)
|
|
|
|
# 初始化模型中的网络引用
|
|
self.firm_network = self.model.firm_network
|
|
self.product_network = self.model.product_network
|
|
|
|
# 初始化代理自身的属性
|
|
self.type_region = type_region
|
|
|
|
self.size_stat = []
|
|
self.dct_prod_up_prod_stat = {}
|
|
self.dct_prod_capacity = {}
|
|
|
|
# 试验中的参数
|
|
self.dct_n_trial_up_prod_disrupted = {}
|
|
self.dct_cand_alt_supp_up_prod_disrupted = {}
|
|
self.dct_request_prod_from_firm = {}
|
|
|
|
# 外部变量
|
|
self.is_prf_size = self.model.is_prf_size
|
|
self.is_prf_conn = bool(self.model.prf_conn)
|
|
self.str_cap_limit_prob_type = str(self.model.cap_limit_prob_type)
|
|
self.flt_cap_limit_level = float(self.model.cap_limit_level)
|
|
self.flt_diff_new_conn = float(self.model.diff_new_conn)
|
|
|
|
# 初始化 size_stat
|
|
self.size_stat.append((revenue_log, 0))
|
|
|
|
# 初始化 dct_prod_up_prod_stat
|
|
for prod in a_lst_product:
|
|
self.dct_prod_up_prod_stat[prod] = {
|
|
'p_stat': [('N', 0)],
|
|
's_stat': {up_prod: {'stat': True, 'set_disrupt_firm': set()}
|
|
for up_prod in prod.a_predecessors()}
|
|
}
|
|
|
|
# 初始化额外容量 (dct_prod_capacity)
|
|
for product in a_lst_product:
|
|
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
|
|
"cap_limit_prob_type must be either 'uniform' or 'normal'"
|
|
extra_cap_mean = self.size_stat[0][0] / self.flt_cap_limit_level
|
|
if self.str_cap_limit_prob_type == 'uniform':
|
|
extra_cap = self.model.random.uniform(extra_cap_mean - 2, extra_cap_mean + 2)
|
|
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
|
|
elif self.str_cap_limit_prob_type == 'normal':
|
|
extra_cap = self.model.random.normalvariate(extra_cap_mean, 1)
|
|
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
|
|
self.dct_prod_capacity[product] = extra_cap
|
|
|
|
def remove_edge_to_cus(self, disrupted_prod):
|
|
lst_out_edge = list(
|
|
self.firm_network.neighbors(self.unique_id))
|
|
for n2 in lst_out_edge:
|
|
edge_data = self.firm_network.edges[self.unique_id, n2]
|
|
if edge_data.get('Product') == disrupted_prod.code:
|
|
customer = self.model.schedule.get_agent(n2)
|
|
for prod in customer.dct_prod_up_prod_stat.keys():
|
|
if disrupted_prod in customer.dct_prod_up_prod_stat[prod]['s_stat'].keys():
|
|
customer.dct_prod_up_prod_stat[prod]['s_stat'][disrupted_prod][
|
|
'set_disrupt_firm'].add(self)
|
|
self.firm_network.remove_edge(self.unique_id, n2)
|
|
|
|
def disrupt_cus_prod(self, prod, disrupted_up_prod):
|
|
num_lost = len(self.dct_prod_up_prod_stat[prod]['s_stat'][disrupted_up_prod]['set_disrupt_firm'])
|
|
num_remain = len([
|
|
u for u in self.firm_network.neighbors(self.unique_id)
|
|
if self.firm_network.G.edges[u, self.unique_id].get('Product') == disrupted_up_prod.code])
|
|
lost_percent = num_lost / (num_lost + num_remain)
|
|
lst_size = [firm.size_stat[-1][0] for firm in self.model.schedule.agents]
|
|
std_size = (self.size_stat[-1][0] - min(lst_size) + 1) / (max(lst_size) - min(lst_size) + 1)
|
|
|
|
prob_disrupt = 1 - std_size * (1 - lost_percent)
|
|
if self.random.choice([True, False], p=[prob_disrupt, 1 - prob_disrupt]):
|
|
self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0
|
|
self.dct_prod_up_prod_stat[prod]['s_stat'][disrupted_up_prod]['stat'] = False
|
|
status, _ = self.dct_prod_up_prod_stat[prod]['p_stat'][-1]
|
|
if status != 'D':
|
|
self.dct_prod_up_prod_stat[prod]['p_stat'].append(('D', self.model.schedule.time))
|
|
|
|
def seek_alt_supply(self, product):
|
|
if self.dct_n_trial_up_prod_disrupted[product] <= self.model.int_n_max_trial:
|
|
if self.dct_n_trial_up_prod_disrupted[product] == 0:
|
|
self.dct_cand_alt_supp_up_prod_disrupted[product] = [
|
|
firm for firm in self.model.schedule.agents
|
|
if firm.is_prod_in_current_normal(product)]
|
|
if self.dct_cand_alt_supp_up_prod_disrupted[product]:
|
|
lst_firm_connect = []
|
|
if self.is_prf_conn:
|
|
for firm in self.dct_cand_alt_supp_up_prod_disrupted[product]:
|
|
if self.firm_network.G.has_edge(self.unique_id, firm.unique_id) or \
|
|
self.firm_network.G.has_edge(firm.unique_id, self.unique_id):
|
|
lst_firm_connect.append(firm)
|
|
if len(lst_firm_connect) == 0:
|
|
if self.is_prf_size:
|
|
lst_size = [firm.size_stat[-1][0] for firm in self.dct_cand_alt_supp_up_prod_disrupted[product]]
|
|
lst_prob = [size / sum(lst_size) for size in lst_size]
|
|
select_alt_supply = \
|
|
self.random.choices(self.dct_cand_alt_supp_up_prod_disrupted[product], weights=lst_prob)[0]
|
|
else:
|
|
select_alt_supply = self.random.choice(self.dct_cand_alt_supp_up_prod_disrupted[product])
|
|
elif len(lst_firm_connect) > 0:
|
|
if self.is_prf_size:
|
|
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_connect]
|
|
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
|
|
select_alt_supply = self.random.choices(lst_firm_connect, weights=lst_prob)[0]
|
|
else:
|
|
select_alt_supply = self.random.choice(lst_firm_connect)
|
|
|
|
assert select_alt_supply.is_prod_in_current_normal(product)
|
|
|
|
if product in select_alt_supply.dct_request_prod_from_firm:
|
|
select_alt_supply.dct_request_prod_from_firm[product].append(self)
|
|
else:
|
|
select_alt_supply.dct_request_prod_from_firm[product] = [self]
|
|
|
|
self.dct_n_trial_up_prod_disrupted[product] += 1
|
|
|
|
def handle_request(self):
|
|
for product, lst_firm in self.dct_request_prod_from_firm.items():
|
|
if self.dct_prod_capacity[product] > 0:
|
|
if len(lst_firm) == 0:
|
|
continue
|
|
elif len(lst_firm) == 1:
|
|
self.accept_request(lst_firm[0], product)
|
|
elif len(lst_firm) > 1:
|
|
lst_firm_connect = []
|
|
if self.is_prf_conn:
|
|
for firm in lst_firm:
|
|
if self.firm_network.G.has_edge(self.unique_id, firm.unique_id) or \
|
|
self.firm_network.G.has_edge(firm.unique_id, self.unique_id):
|
|
lst_firm_connect.append(firm)
|
|
if len(lst_firm_connect) == 0:
|
|
if self.is_prf_size:
|
|
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm]
|
|
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
|
|
select_customer = self.random.choices(lst_firm, weights=lst_prob)[0]
|
|
else:
|
|
select_customer = self.random.choice(lst_firm)
|
|
self.accept_request(select_customer, product)
|
|
elif len(lst_firm_connect) > 0:
|
|
if self.is_prf_size:
|
|
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_connect]
|
|
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
|
|
select_customer = self.random.choices(lst_firm_connect, weights=lst_prob)[0]
|
|
else:
|
|
select_customer = self.random.choice(lst_firm_connect)
|
|
self.accept_request(select_customer, product)
|
|
else:
|
|
for down_firm in lst_firm:
|
|
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
|
|
|
|
def accept_request(self, down_firm, product):
|
|
if self.firm_network.G.has_edge(self.unique_id, down_firm.unique_id) or \
|
|
self.firm_network.G.has_edge(down_firm.unique_id, self.unique_id):
|
|
prod_accept = 1.0
|
|
else:
|
|
prod_accept = self.flt_diff_new_conn
|
|
if self.random.choice([True, False], p=[prod_accept, 1 - prod_accept]):
|
|
self.firm_network.G.add_edge(self.unique_id, down_firm.unique_id, Product=product.code)
|
|
self.dct_prod_capacity[product] -= 1
|
|
self.dct_request_prod_from_firm[product].remove(down_firm)
|
|
|
|
for prod in down_firm.dct_prod_up_prod_stat.keys():
|
|
if product in down_firm.dct_prod_up_prod_stat[prod]['s_stat']:
|
|
down_firm.dct_prod_up_prod_stat[prod]['s_stat'][product]['stat'] = True
|
|
down_firm.dct_prod_up_prod_stat[prod]['p_stat'].append(
|
|
('N', self.model.schedule.time))
|
|
del down_firm.dct_n_trial_up_prod_disrupted[product]
|
|
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
|
|
else:
|
|
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
|
|
|
|
def clean_before_trial(self):
|
|
self.dct_request_prod_from_firm = {}
|
|
|
|
def clean_before_time_step(self):
|
|
# Reset the number of trials and candidate suppliers for disrupted products
|
|
self.dct_n_trial_up_prod_disrupted = dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0)
|
|
self.dct_cand_alt_supp_up_prod_disrupted = {}
|
|
|
|
# Update the status of products and refresh disruption sets
|
|
for prod in self.dct_prod_up_prod_stat.keys():
|
|
status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1]
|
|
if ts != self.model.schedule.time:
|
|
self.dct_prod_up_prod_stat[prod]['p_stat'].append((status, self.model.schedule.time))
|
|
|
|
# Refresh the set of disrupted firms
|
|
for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys():
|
|
self.dct_prod_up_prod_stat[prod]['s_stat'][up_prod]['set_disrupt_firm'] = set()
|
|
|
|
def step(self):
|
|
# 在每个时间步进行的操作
|
|
pass
|