339 lines
14 KiB
Python
339 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
||
from orm import db_session, engine, Base, ins, connection
|
||
from orm import Experiment, Sample, Result
|
||
from sqlalchemy.exc import OperationalError
|
||
from sqlalchemy import text
|
||
import yaml
|
||
import random
|
||
import pandas as pd
|
||
import platform
|
||
import networkx as nx
|
||
import json
|
||
import pickle
|
||
|
||
|
||
class ControllerDB:
|
||
is_with_exp: bool
|
||
dct_parameter = None
|
||
is_test: bool = None
|
||
db_name_prefix: str = None
|
||
reset_flag: int
|
||
|
||
lst_saved_s_id: list
|
||
|
||
def __init__(self, prefix, reset_flag=0):
|
||
with open('conf_experiment.yaml') as yaml_file:
|
||
dct_conf_experiment = yaml.full_load(yaml_file)
|
||
assert prefix in ['test', 'without_exp', 'with_exp'], "db name not in test, without_exp, with_exp"
|
||
|
||
self.is_test = prefix == 'test'
|
||
self.is_with_exp = False if prefix == 'test' or prefix == 'without_exp' else True
|
||
self.db_name_prefix = prefix
|
||
dct_para_in_test = dct_conf_experiment['test'] if self.is_test else dct_conf_experiment['not_test']
|
||
self.dct_parameter = {'meta_seed': dct_conf_experiment['meta_seed'] , **dct_para_in_test}
|
||
|
||
print(self.dct_parameter)
|
||
# 0, not reset; 1, reset self; 2, reset all
|
||
self.reset_flag = reset_flag
|
||
self.is_exist = False
|
||
self.lst_saved_s_id = []
|
||
|
||
|
||
def init_tables(self):
|
||
self.fill_experiment_table()
|
||
self.fill_sample_table()
|
||
|
||
def fill_experiment_table(self):
|
||
Firm = pd.read_csv("input_data/Firm_amended.csv")
|
||
Firm['Code'] = Firm['Code'].astype('string')
|
||
Firm.fillna(0, inplace=True)
|
||
|
||
# fill dct_lst_init_disrupt_firm_prod
|
||
# 存储 公司-在供应链结点的位置.. 0 :‘1.1’
|
||
list_dct = [] #存储 公司编码code 和对应的产业链 结点
|
||
if self.is_with_exp:
|
||
#对于方差分析时候使用
|
||
with open('SQL_export_high_risk_setting.sql', 'r') as f:
|
||
str_sql = text(f.read())
|
||
result = pd.read_sql(sql=str_sql, con=connection)
|
||
result['dct_lst_init_disrupt_firm_prod'] = \
|
||
result['dct_lst_init_disrupt_firm_prod'].apply(
|
||
lambda x: pickle.loads(x))
|
||
list_dct = result['dct_lst_init_disrupt_firm_prod'].to_list()
|
||
else:
|
||
# 行索引 (index):这一行在数据帧中的索引值。
|
||
# 行数据 (row):这一行的数据,是一个 pandas.Series 对象,包含该行的所有列和值。
|
||
for _, row in Firm.iterrows():
|
||
code = row['Code']
|
||
row = row['1':]
|
||
for product_code in row.index[row == 1].to_list():
|
||
dct = {code: [product_code]}
|
||
list_dct.append(dct)
|
||
|
||
# fill g_bom
|
||
# 结点属性值 相当于 图上点的 原始 产品名称
|
||
BomNodes = pd.read_csv('input_data/BomNodes.csv', index_col=0)
|
||
BomNodes.set_index('Code', inplace=True)
|
||
|
||
BomCateNet = pd.read_csv('input_data/BomCateNet.csv', index_col=0)
|
||
BomCateNet.fillna(0, inplace=True)
|
||
# 创建 可以多边的有向图 同时 转置操作 使得 上游指向下游结点 也就是 1.1.1 - 1.1 类似这种
|
||
g_bom = nx.from_pandas_adjacency(BomCateNet.T,
|
||
create_using=nx.MultiDiGraph())
|
||
# 填充每一个结点 的具体内容 通过 相同的 code 并且通过BomNodes.loc[code].to_dict()字典化 格式类似 格式 { code(0) : {level: 0 ,name: 工业互联网 }}
|
||
bom_labels_dict = {}
|
||
for code in g_bom.nodes:
|
||
bom_labels_dict[code] = BomNodes.loc[code].to_dict()
|
||
# 分配属性 给每一个结点 获得类似 格式:{1: {'label': 'A', 'value': 10},
|
||
nx.set_node_attributes(g_bom, bom_labels_dict)
|
||
# 改为json 格式
|
||
g_product_js = json.dumps(nx.adjacency_data(g_bom))
|
||
|
||
# insert exp
|
||
df_xv = pd.read_csv(
|
||
"input_data/"
|
||
f"xv_{'with_exp' if self.is_with_exp else 'without_exp'}.csv",
|
||
index_col=None)
|
||
# read the OA table
|
||
df_oa = pd.read_csv(
|
||
"input_data/"
|
||
f"oa_{'with_exp' if self.is_with_exp else 'without_exp'}.csv",
|
||
index_col=None)
|
||
# .shape[1] 列数 .iloc 访问特定的值 而不是标签
|
||
df_oa = df_oa.iloc[:, 0:df_xv.shape[1]]
|
||
|
||
# idx_scenario 是 0 指行 idx_init_removal 指 索引 0.. dct_init_removal 键 code 公司 g_product_js 图的json数据 dct_exp_para 解码 全局参数xv-
|
||
for idx_scenario, row in df_oa.iterrows():
|
||
dct_exp_para = {}
|
||
for idx_col, para_level in enumerate(row):
|
||
# 处理 NaN 值,替换为默认值(如 0 或其他合适的值)
|
||
para_level = para_level if not pd.isna(para_level) else 0
|
||
# 转换为整数
|
||
para_level = int(para_level)
|
||
dct_exp_para[df_xv.columns[idx_col]] = \
|
||
df_xv.iloc[para_level, idx_col]
|
||
# different initial removal 只会得到 键 和 值
|
||
for idx_init_removal, dct_init_removal in enumerate(list_dct):
|
||
self.add_experiment_1(idx_scenario,
|
||
idx_init_removal,
|
||
dct_init_removal,
|
||
g_product_js,
|
||
**dct_exp_para)
|
||
print(f"Inserted experiment for scenario {idx_scenario}, "
|
||
f"init_removal {idx_init_removal}!")
|
||
|
||
def add_experiment_1(self, idx_scenario, idx_init_removal,
|
||
dct_lst_init_disrupt_firm_prod, g_bom,
|
||
n_max_trial, prf_size, prf_conn,
|
||
cap_limit_prob_type, cap_limit_level,
|
||
diff_new_conn, remove_t, netw_prf_n):
|
||
e = Experiment(
|
||
idx_scenario=idx_scenario,
|
||
idx_init_removal=idx_init_removal,
|
||
n_sample=int(self.dct_parameter['n_sample']),
|
||
n_iter=int(self.dct_parameter['n_iter']),
|
||
dct_lst_init_disrupt_firm_prod=dct_lst_init_disrupt_firm_prod,
|
||
g_bom=g_bom,
|
||
n_max_trial=n_max_trial,
|
||
prf_size=prf_size,
|
||
prf_conn=prf_conn,
|
||
cap_limit_prob_type=cap_limit_prob_type,
|
||
cap_limit_level=cap_limit_level,
|
||
diff_new_conn=diff_new_conn,
|
||
remove_t=remove_t,
|
||
netw_prf_n=netw_prf_n
|
||
)
|
||
db_session.add(e)
|
||
db_session.commit()
|
||
|
||
def fill_sample_table(self):
|
||
rng = random.Random(self.dct_parameter['meta_seed'])
|
||
# 根据样本数目 设置 32 位随机整数
|
||
lst_seed = [
|
||
rng.getrandbits(32)
|
||
for _ in range(int(self.dct_parameter['n_sample']))
|
||
]
|
||
lst_exp = db_session.query(Experiment).all()
|
||
|
||
lst_sample = []
|
||
for experiment in lst_exp:
|
||
# idx_sample: 1-50
|
||
for idx_sample in range(int(experiment.n_sample)):
|
||
s = Sample(e_id=experiment.id,
|
||
idx_sample=idx_sample + 1,
|
||
seed=lst_seed[idx_sample],
|
||
is_done_flag=-1)
|
||
lst_sample.append(s)
|
||
db_session.bulk_save_objects(lst_sample)
|
||
db_session.commit()
|
||
print(f'Inserted {len(lst_sample)} samples!')
|
||
|
||
def reset_db(self, force_drop=False):
|
||
# first, check if tables exist
|
||
lst_table_obj = [
|
||
Base.metadata.tables[str_table]
|
||
for str_table in ins.get_table_names()
|
||
if str_table.startswith(self.db_name_prefix)
|
||
]
|
||
self.is_exist = len(lst_table_obj) > 0
|
||
if force_drop:
|
||
self.force_drop_db(lst_table_obj)
|
||
# while is_exist:
|
||
# a_table = random.choice(lst_table_obj)
|
||
# try:
|
||
# Base.metadata.drop_all(bind=engine, tables=[a_table])
|
||
# except KeyError:
|
||
# pass
|
||
# except OperationalError:
|
||
# pass
|
||
# else:
|
||
# lst_table_obj.remove(a_table)
|
||
# print(
|
||
# f"Table {a_table.name} is dropped "
|
||
# f"for exp: {self.db_name_prefix}!!!"
|
||
# )
|
||
# finally:
|
||
# is_exist = len(lst_table_obj) > 0
|
||
|
||
if self.is_exist:
|
||
print(
|
||
f"All tables exist. No need to reset "
|
||
f"for exp: {self.db_name_prefix}."
|
||
)
|
||
# change the is_done_flag from 0 to -1
|
||
# rerun the in-finished tasks
|
||
self.is_exist_reset_flag_resset_db()
|
||
# if self.reset_flag > 0:
|
||
# if self.reset_flag == 2:
|
||
# sample = db_session.query(Sample).filter(
|
||
# Sample.is_done_flag == 0)
|
||
# elif self.reset_flag == 1:
|
||
# sample = db_session.query(Sample).filter(
|
||
# Sample.is_done_flag == 0,
|
||
# Sample.computer_name == platform.node())
|
||
# else:
|
||
# raise ValueError('Wrong reset flag')
|
||
# if sample.count() > 0:
|
||
# for s in sample:
|
||
# qry_result = db_session.query(Result).filter_by(
|
||
# s_id=s.id)
|
||
# if qry_result.count() > 0:
|
||
# db_session.query(Result).filter(s_id=s.id).delete()
|
||
# db_session.commit()
|
||
# s.is_done_flag = -1
|
||
# db_session.commit()
|
||
# print(f"Reset the sample id {s.id} flag from 0 to -1")
|
||
|
||
else:
|
||
# 不存在则重新生成所有的表结构
|
||
Base.metadata.create_all(bind=engine)
|
||
self.init_tables()
|
||
print(
|
||
f"All tables are just created and initialized "
|
||
f"for exp: {self.db_name_prefix}."
|
||
)
|
||
|
||
def force_drop_db(self, lst_table_obj):
|
||
self.is_exist = len(lst_table_obj) > 0
|
||
while self.is_exist:
|
||
a_table = random.choice(lst_table_obj)
|
||
try:
|
||
Base.metadata.drop_all(bind=engine, tables=[a_table])
|
||
except KeyError:
|
||
pass
|
||
except OperationalError:
|
||
pass
|
||
else:
|
||
lst_table_obj.remove(a_table)
|
||
print(
|
||
f"Table {a_table.name} is dropped "
|
||
f"for exp: {self.db_name_prefix}!!!"
|
||
)
|
||
finally:
|
||
self.is_exist = len(lst_table_obj) > 0
|
||
|
||
def is_exist_reset_flag_resset_db(self):
|
||
if self.reset_flag > 0:
|
||
if self.reset_flag == 2:
|
||
sample = db_session.query(Sample).filter(
|
||
Sample.is_done_flag == 0)
|
||
elif self.reset_flag == 1:
|
||
sample = db_session.query(Sample).filter(
|
||
Sample.is_done_flag == 0,
|
||
Sample.computer_name == platform.node())
|
||
else:
|
||
raise ValueError('Wrong reset flag')
|
||
if sample.count() > 0:
|
||
for s in sample:
|
||
qry_result = db_session.query(Result).filter_by(
|
||
s_id=s.id)
|
||
if qry_result.count() > 0:
|
||
db_session.query(Result).filter(s_id=s.id).delete()
|
||
db_session.commit()
|
||
s.is_done_flag = -1
|
||
db_session.commit()
|
||
print(f"Reset the sample id {s.id} flag from 0 to -1")
|
||
|
||
def prepare_list_sample(self):
|
||
# 为了符合前面 重置表里面存在 重置本机 或者重置全部 或者不重置的部分 这个部分的 关于样本运行也得重新拿出来
|
||
# 查找一个风险事件中 50 个样本
|
||
res = db_session.execute(
|
||
text(f"SELECT count(*) FROM {self.db_name_prefix}_sample s, "
|
||
f"{self.db_name_prefix}_experiment e WHERE s.e_id=e.id"
|
||
)).scalar()
|
||
# 控制 n_sample数量 作为后面的参数
|
||
n_sample = 0 if res is None else res
|
||
print(f'There are a total of {n_sample} samples.')
|
||
# 查找 is_done_flag = -1 也就是没有运行的 样本 运行后会改为0
|
||
res = db_session.execute(
|
||
text(f"SELECT id FROM {self.db_name_prefix}_sample "
|
||
f"WHERE is_done_flag = -1"
|
||
))
|
||
for row in res:
|
||
s_id = row[0]
|
||
self.lst_saved_s_id.append(s_id)
|
||
|
||
@staticmethod
|
||
def select_random_sample(lst_s_id):
|
||
while 1:
|
||
if len(lst_s_id) == 0:
|
||
return None
|
||
s_id = random.choice(lst_s_id)
|
||
lst_s_id.remove(s_id)
|
||
res = db_session.query(Sample).filter(Sample.id == int(s_id),
|
||
Sample.is_done_flag == -1)
|
||
if res.count() == 1:
|
||
return res[0]
|
||
|
||
def fetch_a_sample(self, s_id=None):
|
||
# 由Computation 调用 返回 sample对象 同时给出 2中 指定访问模式 抓取特定的 样本 通过s_id
|
||
# 默认访问 flag为-1的 lst_saved_s_id
|
||
if s_id is not None:
|
||
res = db_session.query(Sample).filter(Sample.id == int(s_id))
|
||
if res.count() == 0:
|
||
return None
|
||
else:
|
||
return res[0]
|
||
|
||
sample = self.select_random_sample(self.lst_saved_s_id)
|
||
if sample is not None:
|
||
return sample
|
||
|
||
return None
|
||
|
||
@staticmethod
|
||
def lock_the_sample(sample: Sample):
|
||
sample.is_done_flag, sample.computer_name = 0, platform.node()
|
||
db_session.commit()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
print("Testing the database connection...")
|
||
try:
|
||
controller_db = ControllerDB('test')
|
||
Base.metadata.create_all(bind=engine)
|
||
except Exception as e:
|
||
print("Failed to connect to the database!")
|
||
print(e)
|
||
exit(1)
|