import pandas as pd import random import numpy as np # 生成170条测试数据的函数 def generate_test_data(num_rows=170): data = { 'Code': [i for i in range(0, num_rows)], # 生成0到170的公司ID '原材料': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 原材料 '库存商品': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 库存商品 '设备数量': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 固定资产原值 'Revenue': [round(random.uniform(10000, 100000), 2) for _ in range(num_rows)], # Revenue 'Total Employees (People)': [random.randint(50, 1000) for _ in range(num_rows)], # 员工总数 'Type_Region': [random.choice(['Urban', 'Rural', 'Suburban']) for _ in range(num_rows)], # 区域类型 'Self-supply Business (Yes/No)': [random.choice(['Yes', 'No']) for _ in range(num_rows)] # 自营业务 } df = pd.DataFrame(data) # 添加Revenue_Log列 df['Revenue_Log'] = np.log(df['Revenue']) df['production_output'] = df['设备数量'] / 10+np.random.randint(100, 500, size=len(df)) df['demand_quantity'] = df['原材料'] / 10 +np.random.randint(100, 500, size=len(df)) return df # 生成数据 df_test_data = generate_test_data() # 显示前几行 print(df_test_data.head()) # 保存数据到CSV文件 df_test_data.to_csv('input_data/测试 Firm_amended 170.csv', index=False)