import pandas as pd import numpy as np # 设置随机种子,确保结果可重复 np.random.seed(42) # 定义产业数量 num_industries = 10 # 创建产业ID列表 industry_ids = [i for i in range(0, num_industries + 1)] # 为每个产业生成随机的材料id、消耗量、产品id和制造量 consumed_materials_data = [] produced_products_data = [] for industry in industry_ids: # 每个产业消耗的材料(生成1到3个随机材料ID和消耗量) num_materials = np.random.randint(1, 4) for _ in range(num_materials): material_id = np.random.randint(0, 100) consumption_quantity = np.random.randint(50, 500) consumed_materials_data.append([industry, material_id, consumption_quantity]) # 每个产业制造的产品(生成1到3个随机产品ID和制造量) num_products = np.random.randint(1, 4) for _ in range(num_products): product_id = np.random.randint(100, 201) production_quantity = np.random.randint(100, 1000) produced_products_data.append([industry, product_id, production_quantity]) # 创建两个数据框 df_consumed_materials = pd.DataFrame(consumed_materials_data, columns=['产业ID', '消耗材料ID', '消耗量']) df_produced_products = pd.DataFrame(produced_products_data, columns=['产业ID', '制造产品ID', '制造量']) # 保存两个数据框为CSV文件 file_path_consumed = '测试数据 consumed_materials.csv' file_path_produced = '测试数据 produced_products.csv' df_consumed_materials.to_csv(file_path_consumed, index=False) df_produced_products.to_csv(file_path_produced, index=False)