import pandas as pd import matplotlib.pyplot as plt import networkx as nx plt.rcParams['font.sans-serif'] = 'SimHei' # count firm category count_firm = pd.read_csv("output_result/risk/count_firm.csv") print(count_firm.describe()) count_dcp = pd.read_csv("output_result/risk/count_dcp.csv", dtype={ 'up_id_firm': str, 'down_id_firm': str }) # print(count_dcp) count_dcp = count_dcp[count_dcp['count'] > 35] list_firm = count_dcp['up_id_firm'].tolist( ) + count_dcp['down_id_firm'].tolist() list_firm = list(set(list_firm)) # init graph firm Firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv") Firm['Code'] = Firm['Code'].astype('string') Firm.fillna(0, inplace=True) Firm_attr = Firm.loc[:, ["Code", "Type_Region", "Revenue_Log"]] firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv") firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string') firm_product = [] grouped = firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list) firm_product.append(grouped) Firm_attr['Product_Code'] = Firm_attr['Code'].map(grouped) Firm_attr.set_index('Code', inplace=True) G_firm = nx.MultiDiGraph() G_firm.add_nodes_from(list_firm) firm_labels_dict = {} for code in G_firm.nodes: firm_labels_dict[code] = Firm_attr.loc[code].to_dict() nx.set_node_attributes(G_firm, firm_labels_dict) count_max = count_dcp['count'].max() count_min = count_dcp['count'].min() k = 5 / (count_max - count_min) for _, row in count_dcp.iterrows(): # print(row) lst_add_edge = [( row['up_id_firm'], row['down_id_firm'], { 'up_id_product': row['up_id_product'], 'down_id_product': row['down_id_product'], 'edge_label': f"{row['up_id_product']} - {row['down_id_product']}", 'edge_width': k * (row['count'] - count_min), 'count': row['count'] })] G_firm.add_edges_from(lst_add_edge) # dcp_networkx pos = nx.nx_agraph.graphviz_layout(G_firm, prog="dot", args="") node_label = nx.get_node_attributes(G_firm, 'Revenue_Log') # desensitize node_label = { key: key for key in node_label.keys() } node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values()) node_size = list(map(lambda x: x**2, node_size)) edge_label = nx.get_edge_attributes(G_firm, "edge_label") edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()} edge_width = nx.get_edge_attributes(G_firm, "edge_width") edge_width = [w for (n1, n2, _), w in edge_width.items()] colors = nx.get_edge_attributes(G_firm, "count") colors = [w for (n1, n2, _), w in colors.items()] vmin = min(colors) vmax = max(colors) cmap = plt.cm.Blues fig = plt.figure(figsize=(10, 8), dpi=300) nx.draw(G_firm, pos, node_size=node_size, labels=node_label, font_size=8, width=3, edge_color=colors, edge_cmap=cmap, edge_vmin=vmin, edge_vmax=vmax) nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=6) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] position = fig.add_axes([0.95, 0.05, 0.01, 0.3]) cb = plt.colorbar(sm, fraction=0.01, cax=position) cb.ax.tick_params(labelsize=10) cb.outline.set_visible(False) plt.savefig("output_result\\risk\\count_dcp_network") plt.close()