无报错
This commit is contained in:
parent
b0247e2bee
commit
f7354a4a44
|
@ -0,0 +1,6 @@
|
||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="Encoding">
|
||||||
|
<file url="file://$PROJECT_DIR$/input_data/input_firm_data/Firm_amended.csv" charset="UTF-8" />
|
||||||
|
</component>
|
||||||
|
</project>
|
Binary file not shown.
Binary file not shown.
|
@ -39,7 +39,8 @@ class ControllerDB:
|
||||||
self.lst_saved_s_id = []
|
self.lst_saved_s_id = []
|
||||||
|
|
||||||
self.experiment_data = []
|
self.experiment_data = []
|
||||||
self.batch_size = 999 # 根据需求设置每批次的大小
|
self.batch_size = 2000
|
||||||
|
# 根据需求设置每批次的大小
|
||||||
|
|
||||||
def init_tables(self):
|
def init_tables(self):
|
||||||
self.fill_experiment_table()
|
self.fill_experiment_table()
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
2
main.py
2
main.py
|
@ -44,7 +44,7 @@ if __name__ == '__main__':
|
||||||
# 输入参数
|
# 输入参数
|
||||||
parser = argparse.ArgumentParser(description='setting')
|
parser = argparse.ArgumentParser(description='setting')
|
||||||
parser.add_argument('--exp', type=str, default='without_exp')
|
parser.add_argument('--exp', type=str, default='without_exp')
|
||||||
parser.add_argument('--job', type=int, default='4')
|
parser.add_argument('--job', type=int, default='1')
|
||||||
parser.add_argument('--reset_sample', type=int, default='0')
|
parser.add_argument('--reset_sample', type=int, default='0')
|
||||||
parser.add_argument('--reset_db', type=bool, default=False)
|
parser.add_argument('--reset_db', type=bool, default=False)
|
||||||
|
|
||||||
|
|
35
my_model.py
35
my_model.py
|
@ -91,7 +91,8 @@ class MyModel(Model):
|
||||||
|
|
||||||
firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
|
firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
|
||||||
|
|
||||||
firm['Code'] = firm['Code'].astype('string')
|
firm['Code'] = firm['Code'].astype(str)
|
||||||
|
|
||||||
firm.fillna(0, inplace=True)
|
firm.fillna(0, inplace=True)
|
||||||
|
|
||||||
firm_attr = firm.loc[:, ["Code", "Type_Region", "Revenue_Log", "原材料", "设备数量", "库存商品"]]
|
firm_attr = firm.loc[:, ["Code", "Type_Region", "Revenue_Log", "原材料", "设备数量", "库存商品"]]
|
||||||
|
@ -136,6 +137,15 @@ class MyModel(Model):
|
||||||
# Add edges to G_Firm according to G_bom
|
# Add edges to G_Firm according to G_bom
|
||||||
for node in nx.nodes(self.G_Firm):
|
for node in nx.nodes(self.G_Firm):
|
||||||
lst_pred_product_code = []
|
lst_pred_product_code = []
|
||||||
|
product_code = self.G_Firm.nodes[node].get('Product_Code')
|
||||||
|
# 打印值和类型
|
||||||
|
#print(f"节点 {node} 的 'Product_Code': {product_code}, 类型: {type(product_code)}")
|
||||||
|
|
||||||
|
# 如果 'Product_Code' 是 float 类型或单个值,将其转换为列表
|
||||||
|
if isinstance(product_code, float):
|
||||||
|
#print(f"警告: 节点 {node} 的 'Product_Code' 为浮点数,已转换为列表")
|
||||||
|
product_code = [product_code] # 将浮点数包装为列表
|
||||||
|
|
||||||
for product_code in self.G_Firm.nodes[node]['Product_Code']:
|
for product_code in self.G_Firm.nodes[node]['Product_Code']:
|
||||||
lst_pred_product_code += list(self.G_bom.predecessors(product_code))
|
lst_pred_product_code += list(self.G_bom.predecessors(product_code))
|
||||||
lst_pred_product_code = list(set(lst_pred_product_code))
|
lst_pred_product_code = list(set(lst_pred_product_code))
|
||||||
|
@ -152,13 +162,30 @@ class MyModel(Model):
|
||||||
n_pred_firm = len(lst_pred_firm)
|
n_pred_firm = len(lst_pred_firm)
|
||||||
|
|
||||||
if self.is_prf_size:
|
if self.is_prf_size:
|
||||||
lst_pred_firm_size = [self.G_Firm.nodes[pred_firm]['Revenue_Log'] for pred_firm in
|
# 获取 firm 的 size 列表
|
||||||
lst_pred_firm]
|
lst_pred_firm_size = [self.G_Firm.nodes[pred_firm]['Revenue_Log'] for pred_firm in lst_pred_firm]
|
||||||
lst_prob = [size / sum(lst_pred_firm_size) for size in lst_pred_firm_size]
|
# 检查 lst_pred_firm_size 是否为空或总和为 0
|
||||||
|
if len(lst_pred_firm_size) == 0 or sum(lst_pred_firm_size) == 0:
|
||||||
|
#print("警告: lst_pred_firm_size 为空或总和为 0,无法生成概率分布")
|
||||||
|
lst_choose_firm = [] # 返回空结果,或根据需要处理
|
||||||
|
else:
|
||||||
|
# 计算总和
|
||||||
|
sum_pred_firm_size = sum(lst_pred_firm_size)
|
||||||
|
# 归一化生成 lst_prob
|
||||||
|
lst_prob = [size / sum_pred_firm_size for size in lst_pred_firm_size]
|
||||||
|
# 使用 np.isclose() 确保概率总和接近 1
|
||||||
|
if not np.isclose(sum(lst_prob), 1.0):
|
||||||
|
#print(f"警告: 概率总和为 {sum(lst_prob)},现在进行修正")
|
||||||
|
lst_prob = [prob / sum(lst_prob) for prob in lst_prob]
|
||||||
|
# 确保没有负值或 0
|
||||||
|
lst_prob = [max(0, prob) for prob in lst_prob]
|
||||||
|
# 根据修正后的概率选择 firm
|
||||||
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False, p=lst_prob)
|
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False, p=lst_prob)
|
||||||
else:
|
else:
|
||||||
|
# 直接进行随机选择
|
||||||
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False)
|
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False)
|
||||||
|
|
||||||
|
|
||||||
# Add edges from predecessor firms to current node (firm)
|
# Add edges from predecessor firms to current node (firm)
|
||||||
lst_add_edge = [(pred_firm, node, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
|
lst_add_edge = [(pred_firm, node, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
|
||||||
self.G_Firm.add_edges_from(lst_add_edge)
|
self.G_Firm.add_edges_from(lst_add_edge)
|
||||||
|
|
Loading…
Reference in New Issue