no message

This commit is contained in:
Cricial 2024-09-29 16:41:34 +08:00
parent fe5ea1a284
commit e8ca4d0107
42 changed files with 792 additions and 550 deletions

View File

@ -73,6 +73,41 @@
</Attribute> </Attribute>
</value> </value>
</entry> </entry>
<entry key="\output_result\risk\count_dcp.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_dcp_prod.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_firm.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_firm_prod.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_prod.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\测试数据 companies_devices.csv"> <entry key="\测试数据 companies_devices.csv">
<value> <value>
<Attribute> <Attribute>

Binary file not shown.

Binary file not shown.

View File

@ -44,7 +44,7 @@ class ControllerDB:
self.fill_sample_table() self.fill_sample_table()
def fill_experiment_table(self): def fill_experiment_table(self):
firm = pd.read_csv("input_data/Firm_amended.csv") firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
firm['Code'] = firm['Code'].astype('string') firm['Code'] = firm['Code'].astype('string')
firm.fillna(0, inplace=True) firm.fillna(0, inplace=True)
@ -74,10 +74,10 @@ class ControllerDB:
# fill g_bom # fill g_bom
# 结点属性值 相当于 图上点的 原始 产品名称 # 结点属性值 相当于 图上点的 原始 产品名称
bom_nodes = pd.read_csv('input_data/BomNodes.csv', index_col=0) bom_nodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
bom_nodes.set_index('Code', inplace=True) bom_nodes.set_index('Code', inplace=True)
bom_cate_net = pd.read_csv('input_data/BomCateNet.csv', index_col=0) bom_cate_net = pd.read_csv('input_data/input_product_data/BomCateNet.csv', index_col=0)
bom_cate_net.fillna(0, inplace=True) bom_cate_net.fillna(0, inplace=True)
# 创建 可以多边的有向图 同时 转置操作 使得 上游指向下游结点 也就是 1.1.1 - 1.1 类似这种 # 创建 可以多边的有向图 同时 转置操作 使得 上游指向下游结点 也就是 1.1.1 - 1.1 类似这种
g_bom = nx.from_pandas_adjacency(bom_cate_net.T, g_bom = nx.from_pandas_adjacency(bom_cate_net.T,

View File

@ -1,108 +0,0 @@
Index,Code,Level,Name
0,1,0,工业互联网
1,1.1,1,工业自动化硬件
2,1.1.1,2,工业计算芯片
3,1.1.2,2,工业控制器
4,1.1.3,2,工业服务器
5,1.2,1,工业互联网网络
6,1.2.1,2,网络互联服务
7,1.2.2,2,标识解析服务
8,1.2.3,2,数据互通服务
9,1.3,1,工业软件
10,1.3.1,2,设计研发软件
11,1.3.1.1,3,计算机辅助设计CAD
12,1.3.1.2,3,计算机辅助工程CAE
13,1.3.1.3,3,计算机辅助制造CAM
14,1.3.1.4,3,计算机辅助工艺过程设计CAPP
15,1.3.1.5,3,产品数据管理PDM
16,1.3.1.6,3,产品生命周期管理PLM
17,1.3.1.7,3,电子设计自动化EDA
18,1.3.2,2,采购供应软件
19,1.3.2.1,3,供应链管理SCM
20,1.3.3,2,生产制造软件
21,1.3.3.1,3,制造执行系统MES
22,1.3.3.2,3,分布式控制系统DCS
23,1.3.3.3,3,数据采集与监视控制系统SCADA
24,1.3.3.4,3,可编程逻揖控制系统PLC
25,1.3.3.5,3,企业资产管理系统EAM
26,1.3.3.6,3,运维保障系统MRO
27,1.3.3.7,3,故障预测与健康管理PHM
28,1.3.4,2,企业运营管理软件
29,1.3.4.1,3,企业资源计划ERP
30,1.3.4.2,3,客户关系管理CRM
31,1.3.4.3,3,人力资源管理HRM
32,1.3.5,2,仓储物流软件
33,1.3.5.1,3,仓储物流管理WMS
34,1.4,1,工业互联网安全管理
35,1.4.1,2,设备安全
36,1.4.1.1,3,工业防火墙
37,1.4.1.2,3,下一代防火墙
38,1.4.1.3,3,防毒墙
39,1.4.1.4,3,入侵检测系统
40,1.4.1.5,3,统一威胁管理系统
41,1.4.2,2,控制安全
42,1.4.2.1,3,工控安全监测与审计
43,1.4.2.2,3,工控主机卫士
44,1.4.2.3,3,工控漏洞扫描
45,1.4.2.4,3,安全隔离与信息交换系统
46,1.4.2.5,3,安全日志与审计
47,1.4.2.6,3,隐私计算
48,1.4.2.7,3,工控原生安全
49,1.4.3,2,网络安全
50,1.4.3.1,3,网络漏洞扫描和补丁管理
51,1.4.3.2,3,流量检测
52,1.4.3.3,3,APT检测
53,1.4.3.4,3,攻击溯源
54,1.4.3.5,3,负载均衡
55,1.4.3.6,3,沙箱类设备
56,1.4.4,2,平台安全
57,1.4.4.1,3,身份鉴别与访问控制
58,1.4.4.2,3,密钥管理
59,1.4.4.3,3,接入认证
60,1.4.4.4,3,工业应用行为监控
61,1.4.4.5,3,安全态势感知
62,1.4.5,2,数据安全
63,1.4.5.1,3,恶意代码检测系统
64,1.4.5.2,3,数据防泄漏系统
65,1.4.5.3,3,数据审计系统
66,1.4.5.4,3,数据脱敏
67,1.4.5.5,3,敏感数据发现与监控
68,1.4.5.6,3,数据容灾备份
69,1.4.5.7,3,数据恢复
70,1.4.5.8,3,数据加密
71,1.4.5.9,3,数据防火墙
72,2,0,工业互联网平台
73,2.1,1,PaaS
74,2.1.1,2,开发工具
75,2.1.1.1,3,算法建模工具
76,2.1.1.2,3,低代码开发工具
77,2.1.1.3,3,流程开发工具
78,2.1.1.4,3,组态建模工具
79,2.1.1.5,3,数字孪生建模工具
80,2.1.2,2,工业模型库
81,2.1.2.1,3,数据算法模型
82,2.1.2.2,3,业务流程模型
83,2.1.2.3,3,研发仿真模型
84,2.1.2.4,3,行业机理模型
85,2.1.3,2,工业物联网
86,2.1.3.1,3,物联网服务
87,2.1.3.2,3,平台基础服务
88,2.1.3.3,3,工业引擎服务
89,2.1.3.4,3,应用管理服务
90,2.1.3.5,3,容器服务
91,2.1.3.6,3,微服务
92,2.1.3.7,3,制造类API
93,2.1.4,2,工业大数据
94,2.1.4.1,3,工业大数据存储
95,2.1.4.1.1,4,关系型数据库
96,2.1.4.1.2,4,分布式数据库
97,2.1.4.1.3,4,实时数据库
98,2.1.4.1.4,4,时序数据库
99,2.1.4.2,3,工业大数据管理
100,2.1.4.2.1,4,数据质量管理
101,2.1.4.2.2,4,数据安全管理
102,2.2,1,IaaS
103,2.3,1,边缘层
104,2.3.1,2,工业数据接入
105,2.3.2,2,边缘数据处理
106,2.3.3,2,协议转换
1 Index Code Level Name
2 0 1 0 工业互联网
3 1 1.1 1 工业自动化硬件
4 2 1.1.1 2 工业计算芯片
5 3 1.1.2 2 工业控制器
6 4 1.1.3 2 工业服务器
7 5 1.2 1 工业互联网网络
8 6 1.2.1 2 网络互联服务
9 7 1.2.2 2 标识解析服务
10 8 1.2.3 2 数据互通服务
11 9 1.3 1 工业软件
12 10 1.3.1 2 设计研发软件
13 11 1.3.1.1 3 计算机辅助设计CAD
14 12 1.3.1.2 3 计算机辅助工程CAE
15 13 1.3.1.3 3 计算机辅助制造CAM
16 14 1.3.1.4 3 计算机辅助工艺过程设计CAPP
17 15 1.3.1.5 3 产品数据管理PDM
18 16 1.3.1.6 3 产品生命周期管理PLM
19 17 1.3.1.7 3 电子设计自动化EDA
20 18 1.3.2 2 采购供应软件
21 19 1.3.2.1 3 供应链管理SCM
22 20 1.3.3 2 生产制造软件
23 21 1.3.3.1 3 制造执行系统MES
24 22 1.3.3.2 3 分布式控制系统DCS
25 23 1.3.3.3 3 数据采集与监视控制系统SCADA
26 24 1.3.3.4 3 可编程逻揖控制系统PLC
27 25 1.3.3.5 3 企业资产管理系统EAM
28 26 1.3.3.6 3 运维保障系统MRO
29 27 1.3.3.7 3 故障预测与健康管理PHM
30 28 1.3.4 2 企业运营管理软件
31 29 1.3.4.1 3 企业资源计划ERP
32 30 1.3.4.2 3 客户关系管理CRM
33 31 1.3.4.3 3 人力资源管理HRM
34 32 1.3.5 2 仓储物流软件
35 33 1.3.5.1 3 仓储物流管理WMS
36 34 1.4 1 工业互联网安全管理
37 35 1.4.1 2 设备安全
38 36 1.4.1.1 3 工业防火墙
39 37 1.4.1.2 3 下一代防火墙
40 38 1.4.1.3 3 防毒墙
41 39 1.4.1.4 3 入侵检测系统
42 40 1.4.1.5 3 统一威胁管理系统
43 41 1.4.2 2 控制安全
44 42 1.4.2.1 3 工控安全监测与审计
45 43 1.4.2.2 3 工控主机卫士
46 44 1.4.2.3 3 工控漏洞扫描
47 45 1.4.2.4 3 安全隔离与信息交换系统
48 46 1.4.2.5 3 安全日志与审计
49 47 1.4.2.6 3 隐私计算
50 48 1.4.2.7 3 工控原生安全
51 49 1.4.3 2 网络安全
52 50 1.4.3.1 3 网络漏洞扫描和补丁管理
53 51 1.4.3.2 3 流量检测
54 52 1.4.3.3 3 APT检测
55 53 1.4.3.4 3 攻击溯源
56 54 1.4.3.5 3 负载均衡
57 55 1.4.3.6 3 沙箱类设备
58 56 1.4.4 2 平台安全
59 57 1.4.4.1 3 身份鉴别与访问控制
60 58 1.4.4.2 3 密钥管理
61 59 1.4.4.3 3 接入认证
62 60 1.4.4.4 3 工业应用行为监控
63 61 1.4.4.5 3 安全态势感知
64 62 1.4.5 2 数据安全
65 63 1.4.5.1 3 恶意代码检测系统
66 64 1.4.5.2 3 数据防泄漏系统
67 65 1.4.5.3 3 数据审计系统
68 66 1.4.5.4 3 数据脱敏
69 67 1.4.5.5 3 敏感数据发现与监控
70 68 1.4.5.6 3 数据容灾备份
71 69 1.4.5.7 3 数据恢复
72 70 1.4.5.8 3 数据加密
73 71 1.4.5.9 3 数据防火墙
74 72 2 0 工业互联网平台
75 73 2.1 1 PaaS
76 74 2.1.1 2 开发工具
77 75 2.1.1.1 3 算法建模工具
78 76 2.1.1.2 3 低代码开发工具
79 77 2.1.1.3 3 流程开发工具
80 78 2.1.1.4 3 组态建模工具
81 79 2.1.1.5 3 数字孪生建模工具
82 80 2.1.2 2 工业模型库
83 81 2.1.2.1 3 数据算法模型
84 82 2.1.2.2 3 业务流程模型
85 83 2.1.2.3 3 研发仿真模型
86 84 2.1.2.4 3 行业机理模型
87 85 2.1.3 2 工业物联网
88 86 2.1.3.1 3 物联网服务
89 87 2.1.3.2 3 平台基础服务
90 88 2.1.3.3 3 工业引擎服务
91 89 2.1.3.4 3 应用管理服务
92 90 2.1.3.5 3 容器服务
93 91 2.1.3.6 3 微服务
94 92 2.1.3.7 3 制造类API
95 93 2.1.4 2 工业大数据
96 94 2.1.4.1 3 工业大数据存储
97 95 2.1.4.1.1 4 关系型数据库
98 96 2.1.4.1.2 4 分布式数据库
99 97 2.1.4.1.3 4 实时数据库
100 98 2.1.4.1.4 4 时序数据库
101 99 2.1.4.2 3 工业大数据管理
102 100 2.1.4.2.1 4 数据质量管理
103 101 2.1.4.2.2 4 数据安全管理
104 102 2.2 1 IaaS
105 103 2.3 1 边缘层
106 104 2.3.1 2 工业数据接入
107 105 2.3.2 2 边缘数据处理
108 106 2.3.3 2 协议转换

View File

@ -1,172 +0,0 @@
Code,Stock_Region,Report_Year,Assets,Revenue_Log,Revenue,Size,Num_Employ_Log,Num_Employ,Source,Type_Region,1,1.1,1.1.1,1.1.2,1.1.3,1.2,1.2.1,1.2.2,1.2.3,1.3,1.3.1,1.3.1.1,1.3.1.2,1.3.1.3,1.3.1.4,1.3.1.5,1.3.1.6,1.3.1.7,1.3.2,1.3.2.1,1.3.3,1.3.3.1,1.3.3.2,1.3.3.3,1.3.3.4,1.3.3.5,1.3.3.6,1.3.3.7,1.3.4,1.3.4.1,1.3.4.2,1.3.4.3,1.3.5,1.3.5.1,1.4,1.4.1,1.4.1.1,1.4.1.2,1.4.1.3,1.4.1.4,1.4.1.5,1.4.2,1.4.2.1,1.4.2.2,1.4.2.3,1.4.2.4,1.4.2.5,1.4.2.6,1.4.2.7,1.4.3,1.4.3.1,1.4.3.2,1.4.3.3,1.4.3.4,1.4.3.5,1.4.3.6,1.4.4,1.4.4.1,1.4.4.2,1.4.4.3,1.4.4.4,1.4.4.5,1.4.5,1.4.5.1,1.4.5.2,1.4.5.3,1.4.5.4,1.4.5.5,1.4.5.6,1.4.5.7,1.4.5.8,1.4.5.9,2,2.1,2.1.1,2.1.1.1,2.1.1.2,2.1.1.3,2.1.1.4,2.1.1.5,2.1.2,2.1.2.1,2.1.2.2,2.1.2.3,2.1.2.4,2.1.3,2.1.3.1,2.1.3.2,2.1.3.3,2.1.3.4,2.1.3.5,2.1.3.6,2.1.3.7,2.1.4,2.1.4.1,2.1.4.1.1,2.1.4.1.2,2.1.4.1.3,2.1.4.1.4,2.1.4.2,2.1.4.2.1,2.1.4.2.2,2.2,2.3,2.3.1,2.3.2,2.3.3
0,SH,2021,42040000000,23.11111077,10890000000,L,8.908288886,7393,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,,2021,524000000,18.74276424,138000000,M,5.141663557,171,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
2,,,,18.91495248,,M,4.727387819,113,qichacha,Beijing,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3,,,,17.40772217,,S,3.17805383,24,qichacha,Beijing,,,,,,,,,,,,,,,1,1,1,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4,,,,19.65580702,,M,5.488937726,242,qichacha,Beijing,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5,,,,18.5031337,,S,4.304065093,74,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6,,2017,902000000,18.88441476,159000000,M,5.117993812,167,qichacha,Beijing,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
7,,,,20.22851329,,L,6.077642243,436,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,
8,,,,20.02307783,,M,5.866468057,353,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
9,,,,20.12502381,,L,5.97126184,392,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
10,,,,18.99744465,,M,4.812184355,123,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11,SZ,2021,2831000000,20.33022325,675000000,L,7.437795122,1699,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12,,,,19.4654905,,M,5.293304825,199,qichacha,Beijing,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
13,SZ,2021,8632000000,21.62748399,2470000000,L,9.069698042,8688,qichacha,Beijing,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,1,1,,,1,1,1,1,,1,1,,,1,1,1
14,SZ,2021,21070000000,23.11019208,10880000000,L,9.372969295,11766,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15,SH,2021,18310000000,22.89060378,8735000000,L,9.793616881,17919,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
16,SZ,2021,2357000000,20.6624537,941000000,L,7.398174093,1633,qichacha,Beijing,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1
17,,,,17.68758638,,S,3.465735903,32,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
18,,,,19.78721596,,M,5.624017506,277,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
19,,,,18.19661508,,S,3.988984047,54,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20,,,,16.33896504,,XS,2.079441542,8,qichacha,Beijing,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
21,SE,2021,4348926705,21.58399273,2364879075,L,9.998797732,22000,hexagon,Foreign,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
22,,,,18.78627894,,S,4.59511985,99,qichacha,Beijing,,,,,,,1,1,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,1,1,1,1,1,1,1,,,1,1,1,1,,1,1,,,1,1,1
23,US,2021,10365469660,22.30379074,4857504838,S,4.143134726,63,hollysys,Beijing,,,,1,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,1,1,1
24,HK,2021,2486434448,21.10974082,1471783581,M,5.605802066,272,hkexnews,Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
25,SZ,2021,1802000000,20.17681304,579000000,L,6.492239835,660,qichacha,Beijing,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
26,,,,14.9903437,,XS,0.693147181,2,,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,1,1,,,,,,,,,,,,,,
27,,,,19.43065419,,M,5.257495372,192,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
28,HK,2021,19000334000,22.12943807,4080307000,L,7.181591945,1315,hkexnews,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,
29,US,2021,4.96507E+11,27.58140221,9.51592E+11,M,5.891644212,362,jd,Beijing,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
30,,,,19.34600737,,M,5.170483995,176,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
31,,,,17.01327571,,S,2.772588722,16,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,1,1,,,,,
32,,,,18.75634351,,S,4.564348191,96,qichacha,Beijing,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
33,,,,18.66057858,,S,4.465908119,87,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
34,,,,19.69132991,,M,5.525452939,251,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
35,,,,18.28276201,,S,4.077537444,59,qichacha,Beijing,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
36,SH,2021,1989000000,20.90642038,1201000000,L,6.711740395,822,qichacha,Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
37,SZ,2021,4765000000,21.68223284,2609000000,L,8.394347361,4422,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,1,,,,1,,,,,,,1,,,,,,,,,1,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
38,,,,17.12785796,,S,2.890371758,18,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
39,US,2021,50085024000,23.98443519,26080016000,,,,marketwatch,Foreign,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
40,SH,2021,13480000000,22.48267428,5809000000,L,9.17543832,9657,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,1,,,,,,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
41,SZ,2021,8936000000,22.20168349,4386000000,L,8.792853289,6587,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,1,,,,,,,,,,1,1,,1,1,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
42,,,,20.38102153,,M,6.234410726,510,qichacha,Beijing,,,,,,,,,,,,1,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
43,,2021,3042000000,21.13006339,1502000000,L,6.385194399,593,qichacha,Beijing,,,,,,,,,,,,,,,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
44,,2021,3049000000,21.52884845,2238000000,M,6.754604099,858,qichacha,Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
45,,,,21.43051418,,M,7.313220387,1500,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,1,1,,,,,
46,,,,17.90466593,,S,3.688879454,40,qichacha,Beijing,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
47,,,,21.33304811,,L,7.21303166,1357,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,1,1,1,1,,,,,,,1,,,,,,,,,,,,,,,
48,SH,2021,26190000000,23.13917962,11200000000,L,8.319473692,4103,qichacha,Non_Beijing,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
49,,2017,219000000,18.6195316,122000000,M,5.786897381,326,qichacha,Beijing,,,,,,,,,,,,1,,,1,,1,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
50,,,,20.12502381,,M,5.97126184,392,qichacha,Non_Beijing,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
51,,,,18.79605616,,M,4.605170186,100,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
52,,,,18.36189706,,S,4.158883083,64,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
53,SZ,2021,11600000000,21.93282302,3352000000,L,8.743372131,6269,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,,,,1,1,,,,,,,1,1,1,1,,,,,1,,,,1,1,,,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
54,,,,21.48044599,,L,7.364547014,1579,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,1,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
55,,,,20.09221468,,M,5.937536205,379,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,,,,1,1,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
56,,2020,439000000,19.01400759,181000000,L,5.897153868,364,qichacha,Beijing,,,1,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
57,,,,19.12338465,,M,4.941642423,140,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1
58,SH,2021,17330000000,22.91290617,8932000000,L,10.07255499,23684,qichacha,Beijing,,,,,,,,1,,,,,,,,,1,,1,,,,,,,,,,,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,
59,,,,18.9063051,,M,4.718498871,112,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
60,,,,18.12174548,,S,3.912023005,50,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
61,,2017,629000000,19.3409635,251000000,L,5.811140993,334,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
62,,,,18.64933193,,S,4.454347296,86,qichacha,Beijing,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
63,,,,20.05292974,,M,5.897153868,364,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,1,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
64,,,,19.22865749,,M,5.049856007,156,qichacha,Beijing,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
65,SH,2021,7.62234E+11,26.80902186,4.39552E+11,L,12.53868745,278922,qichacha,Beijing,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
66,SH,2021,5.933E+11,26.51597452,3.279E+11,L,12.39942069,242661,qichacha,Beijing,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
67,SH,2021,1.84E+12,27.46645067,8.48258E+11,L,8.430545385,4585,qichacha,Beijing,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
68,SH,2021,3117000000,20.24199902,618000000,L,7.430707083,1687,qichacha,Beijing,,,,,,,,,,,,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
69,SZ,2021,66430000000,24.93746536,67640000000,L,9.74957851,17147,qichacha,Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
70,US,2021,2.52378E+11,25.92778688,1.82094E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,1,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
71,US,2021,8003332000,22.02110911,3661391520,,,,marketwatch,Foreign,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
72,US,2021,43511280320,23.29726635,13118199200,,,,marketwatch,Foreign,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
73,JP,2021,83161023470,24.06291953,28209355790,,,,fanuc,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,
74,US,2021,4.43554E+11,26.18956307,2.36583E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,
75,US,2021,9.08167E+11,26.70107477,3.94575E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
76,,2021,,20.06161732,516000000,,,,zippia,Foreign,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
77,US,2021,9.02016E+11,26.35266781,2.78496E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
78,,2021,,21.41879181,2004763250,,,,forbes,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
79,US,2021,31012012800,23.24364049,12433253920,,,,marketwatch,Foreign,,,,,,,,,,,,1,,,1,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,1,1,1,1,1,1,1,,1,,,,,1,,,,,1,1,1
80,US,2021,4.56151E+11,25.7083355,1.46214E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
81,US,2021,4.89643E+11,25.97843016,1.91553E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,1,,,,,1,,,,,,,
82,,2021,,18.0265116,67424000,,,,zippia,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
83,US,2021,1.70039E+11,25.55511763,1.25443E+11,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
84,,2021,7.80541E+11,27.07058915,5.70962E+11,,,,bosch,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,1,,,,,,,,,,1,,,
85,FR,2021,1.04402E+12,26.60060295,3.56858E+11,,,,dassault ,Foreign,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
86,US,2021,8.49095E+11,27.11512238,5.96964E+11,,,,marketwatch,Foreign,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
87,US,2021,1.69771E+11,25.56118703,1.26207E+11,,,,marketwatch,Foreign,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
88,US,2021,3.96969E+11,25.97925591,1.91711E+11,,,,marketwatch,Foreign,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
89,US,2021,75779072000,24.59715157,48129040000,,,,marketwatch,Foreign,,,,1,,,1,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
90,,2023,,22.39969825,5346448000,,,,zoominfo,Foreign,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
91,,2023,,21.2735583,1733760000,,6.913737351,1006,rocketreach,Foreign,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
92,JP,2021,47620285930,24.38782633,39038974590,,,,omron,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
93,US,2021,30177737120,23.74657041,20559118720,,,,marketwatch,Foreign,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
94,JP,2021,1.12124E+12,27.50709063,8.83441E+11,,,,mitsubishi,Foreign,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
95,FR,2021,4.00517E+11,26.08097343,2.12238E+11,,,,schneider,Foreign,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,
96,US,2021,6.70779E+11,26.56026085,3.42748E+11,,,,marketwatch,Foreign,,,,,,,1,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
97,US,2021,1.36825E+12,26.95829817,5.10317E+11,,,,marketwatch,Foreign,,,,,,1,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,
98,US,2021,2.2964E+12,27.77637214,1.15645E+12,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
99,XE,2021,1.02335E+12,26.84835831,4.57187E+11,,,,siemens,Foreign,,,,1,,,1,,,,1,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,
100,US,2021,60215548800,24.08697187,28896082560,,,,marketwatch,Foreign,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
101,US,2021,3.59976E+11,24.64226064,50349807680,,,,marketwatch,Foreign,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
102,US,2021,2.89338E+12,28.80423839,3.23238E+12,,,,marketwatch,Foreign,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,
103,US,2021,94016180090,25.03108636,74278423930,,,,marketwatch,Foreign,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
104,XE,2021,1.71332E+11,25.12029384,81209156000,,10.82552176,50288,infineon ,Foreign,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
105,US,2021,1.15863E+12,27.02163609,5.43685E+11,,,,marketwatch,Foreign,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
106,US,2021,1.69022E+12,27.29874466,7.17289E+11,,,,alibaba ,Non_Beijing,,1,,,,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,1,,,,,,,,,,,,,,,,,1,,,,
107,SH,2021,4852000000,21.32210234,1820000000,L,8.191740021,3611,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
108,HK,2021,3.80034E+11,25.54751533,1.24493E+11,,,,hkexnews,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,1,,,,
109,SH,2021,17860000000,23.18796978,11760000000,L,8.567506005,5258,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
110,,,,18.66057858,,S,4.465908119,87,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
111,SZ,2021,2638000000,21.30436351,1788000000,L,8.360305436,4274,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,1,,,,,1,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
112,SZ,2021,545000000,19.36458664,257000000,L,6.376726948,588,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
113,,,,19.49912236,,M,5.327876169,206,qichacha,Non_Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
114,,,,18.79605616,,M,4.605170186,100,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
115,,2021,2.666E+11,26.80913106,4.396E+11,L,12.16509439,191970,qichacha,Non_Beijing,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,
116,SH,2021,2342000000,19.07820075,193000000,M,5.683579767,294,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
117,,,,14.9903437,,XS,0.693147181,2,,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,,,,,,,,,,1,1,1,1,,1,1,,,,,
118,,,,18.44907397,,S,4.248495242,70,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
119,SZ,2021,10070000000,22.44941955,5619000000,L,9.157572306,9486,qichacha,Non_Beijing,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
120,,,,21.70305471,,M,7.593374193,1985,qichacha,Non_Beijing,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
121,,,,17.97502126,,S,3.761200116,43,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
122,SZ,2021,2668000000,20.74110576,1018000000,L,6.966024187,1060,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
123,SZ,2021,2576000000,21.63595007,2491000000,L,7.028201432,1128,qichacha,Non_Beijing,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
124,SH,2021,2.177E+11,26.15085554,2.276E+11,L,11.56051491,104874,qichacha,Non_Beijing,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,
125,,,,18.81532064,,M,4.624972813,102,qichacha,Non_Beijing,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
126,,2021,,27.17973246,6.36807E+11,L,9.210340372,10000,qichacha,Non_Beijing,,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,1,,,,,,,,,,,,,,,,,1,1,,,
127,,2021,,23.0573496,10320000000,M,8.853665428,7000,qichacha,Non_Beijing,,,1,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
128,SZ,2021,3800000000,21.08443069,1435000000,L,7.557472902,1915,qichacha,Non_Beijing,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
129,SZ,2021,3399000000,21.21429683,1634000000,L,7.857093865,2584,qichacha,Non_Beijing,,,,1,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
130,HK,2021,11087132000,22.15217586,4174147000,,,,hkexnews,Non_Beijing,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
131,,,,16.45354728,,S,2.197224577,9,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
132,SZ,2021,3337000000,20.8542941,1140000000,L,7.543273347,1888,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
133,SZ,2021,6249000000,19.47499277,287000000,L,6.107022888,449,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
134,,2019,446000000,19.52593758,302000000,L,6.415096959,611,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
135,SH,2021,4155000000,21.3275818,1830000000,L,7.276556403,1446,qichacha,Non_Beijing,,,,,1,,,,,,,,,,,,,,,1,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,1,1,,,,,,,,,,1,,,,
136,SZ,2021,3.879E+11,26.56216179,3.434E+11,L,12.01853149,165799,qichacha,Non_Beijing,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
137,NQ,,381000000,19.44672234,279000000,M,6.65544035,777,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,1,1,,,,,
138,SZ,2021,2120000000,20.77300793,1051000000,L,7.329749689,1525,qichacha,Non_Beijing,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
139,SH,2021,772000000,19.79944684,397000000,L,6.244166901,515,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
140,SH,2021,1944000000,20.74990777,1027000000,L,7.499976541,1808,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,1,1,,,,,,,,,,,,,,,,,,,,,,,1,,1,1,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
141,,,,19.45071314,,M,5.278114659,196,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
142,SZ,2021,10950000000,22.64092347,6805000000,L,9.09346942,8897,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,1,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
143,,,,21.03606772,,L,6.907755279,1000,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
144,,2021,1130000000,20.06355343,517000000,L,6.263398263,525,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
145,,,,15.38479015,,S,1.098612289,3,,Non_Beijing,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
146,,2021,297000000,19.27934236,236000000,M,4.997212274,148,qichacha,Non_Beijing,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
147,SZ,2021,9607000000,22.77314983,7767000000,L,9.041329829,8445,qichacha,Non_Beijing,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
148,HK,2021,1.61236E+12,27.05141331,5.60118E+11,,,,hkexnews,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,1,,,,,,,,,,,,,,,,,1,,,,
149,,,,18.26613213,,S,4.060443011,58,qichacha,Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
150,SH,2021,2039000000,21.97859693,3509000000,L,5.774551546,322,qichacha,Non_Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
151,,2017,156000000,17.63219378,45453200,S,4.9698133,144,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
152,SZ,2021,7142000000,21.74894895,2789000000,L,7.850493181,2567,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
153,,,,19.12338465,,M,4.941642423,140,qichacha,Non_Beijing,,,,,,,,,,,,1,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
154,,,,19.13030869,,S,4.94875989,141,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,1,1,,,,,
155,HK,2021,2.92892E+11,26.51722152,3.28309E+11,,,,xiaomi,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,
156,,,,14.9903437,,XS,0.693147181,2,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
157,,,,22.72444558,,L,8.643297068,5672,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
158,,2018,425000000,19.54235831,307000000,L,6.240275845,513,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
159,SZ,2021,1.67E+11,25.15800351,84330000000,L,9.647497927,15483,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,
160,HK,2021,9505464000,22.65401405,6894667000,,,,hkexnews,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
161,,,,21.9929142,,L,7.891330758,2674,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1
162,,,,17.88978166,58807600,M,5.370638028,215,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
163,,,,18.36189706,,S,4.158883083,64,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,1,1,,,,,
164,,,,21.83955113,,L,7.733683571,2284,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
165,,,,18.29911239,,S,4.094344562,60,qichacha,Non_Beijing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,
166,,,,19.83851913,,M,5.676753802,292,qichacha,Non_Beijing,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
167,SZ,2021,78220000000,24.43927396,41100000000,L,9.500843462,13371,qichacha,Non_Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
168,SH,2021,10350000000,22.23155657,4519000000,L,8.528528701,5057,qichacha,Non_Beijing,,,,1,,,,,,,,,,,,,,,,,,1,1,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,1
169,SH,2021,2.30233E+11,24.27012079,34704000000,L,8.55120807,5173,qichacha,Non_Beijing,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
170,,,,18.42068074,100000000,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 Code Stock_Region Report_Year Assets Revenue_Log Revenue Size Num_Employ_Log Num_Employ Source Type_Region 1 1.1 1.1.1 1.1.2 1.1.3 1.2 1.2.1 1.2.2 1.2.3 1.3 1.3.1 1.3.1.1 1.3.1.2 1.3.1.3 1.3.1.4 1.3.1.5 1.3.1.6 1.3.1.7 1.3.2 1.3.2.1 1.3.3 1.3.3.1 1.3.3.2 1.3.3.3 1.3.3.4 1.3.3.5 1.3.3.6 1.3.3.7 1.3.4 1.3.4.1 1.3.4.2 1.3.4.3 1.3.5 1.3.5.1 1.4 1.4.1 1.4.1.1 1.4.1.2 1.4.1.3 1.4.1.4 1.4.1.5 1.4.2 1.4.2.1 1.4.2.2 1.4.2.3 1.4.2.4 1.4.2.5 1.4.2.6 1.4.2.7 1.4.3 1.4.3.1 1.4.3.2 1.4.3.3 1.4.3.4 1.4.3.5 1.4.3.6 1.4.4 1.4.4.1 1.4.4.2 1.4.4.3 1.4.4.4 1.4.4.5 1.4.5 1.4.5.1 1.4.5.2 1.4.5.3 1.4.5.4 1.4.5.5 1.4.5.6 1.4.5.7 1.4.5.8 1.4.5.9 2 2.1 2.1.1 2.1.1.1 2.1.1.2 2.1.1.3 2.1.1.4 2.1.1.5 2.1.2 2.1.2.1 2.1.2.2 2.1.2.3 2.1.2.4 2.1.3 2.1.3.1 2.1.3.2 2.1.3.3 2.1.3.4 2.1.3.5 2.1.3.6 2.1.3.7 2.1.4 2.1.4.1 2.1.4.1.1 2.1.4.1.2 2.1.4.1.3 2.1.4.1.4 2.1.4.2 2.1.4.2.1 2.1.4.2.2 2.2 2.3 2.3.1 2.3.2 2.3.3
2 0 SH 2021 42040000000 23.11111077 10890000000 L 8.908288886 7393 qichacha Beijing 1
3 1 2021 524000000 18.74276424 138000000 M 5.141663557 171 qichacha Beijing 1
4 2 18.91495248 M 4.727387819 113 qichacha Beijing 1
5 3 17.40772217 S 3.17805383 24 qichacha Beijing 1 1 1 1
6 4 19.65580702 M 5.488937726 242 qichacha Beijing 1
7 5 18.5031337 S 4.304065093 74 qichacha Beijing 1 1 1 1
8 6 2017 902000000 18.88441476 159000000 M 5.117993812 167 qichacha Beijing 1 1 1 1 1
9 7 20.22851329 L 6.077642243 436 qichacha Beijing 1
10 8 20.02307783 M 5.866468057 353 qichacha Beijing 1
11 9 20.12502381 L 5.97126184 392 qichacha Beijing 1 1
12 10 18.99744465 M 4.812184355 123 qichacha Beijing 1
13 11 SZ 2021 2831000000 20.33022325 675000000 L 7.437795122 1699 qichacha Beijing 1
14 12 19.4654905 M 5.293304825 199 qichacha Beijing 1
15 13 SZ 2021 8632000000 21.62748399 2470000000 L 9.069698042 8688 qichacha Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 14 SZ 2021 21070000000 23.11019208 10880000000 L 9.372969295 11766 qichacha Beijing 1 1
17 15 SH 2021 18310000000 22.89060378 8735000000 L 9.793616881 17919 qichacha Beijing 1
18 16 SZ 2021 2357000000 20.6624537 941000000 L 7.398174093 1633 qichacha Beijing 1 1 1 1
19 17 17.68758638 S 3.465735903 32 qichacha Beijing 1
20 18 19.78721596 M 5.624017506 277 qichacha Beijing 1
21 19 18.19661508 S 3.988984047 54 qichacha Beijing 1
22 20 16.33896504 XS 2.079441542 8 qichacha Beijing 1
23 21 SE 2021 4348926705 21.58399273 2364879075 L 9.998797732 22000 hexagon Foreign 1
24 22 18.78627894 S 4.59511985 99 qichacha Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25 23 US 2021 10365469660 22.30379074 4857504838 S 4.143134726 63 hollysys Beijing 1 1 1 1 1 1 1 1 1 1
26 24 HK 2021 2486434448 21.10974082 1471783581 M 5.605802066 272 hkexnews Beijing 1
27 25 SZ 2021 1802000000 20.17681304 579000000 L 6.492239835 660 qichacha Beijing 1
28 26 14.9903437 XS 0.693147181 2 Beijing 1 1 1 1 1 1 1
29 27 19.43065419 M 5.257495372 192 qichacha Beijing 1
30 28 HK 2021 19000334000 22.12943807 4080307000 L 7.181591945 1315 hkexnews Beijing 1
31 29 US 2021 4.96507E+11 27.58140221 9.51592E+11 M 5.891644212 362 jd Beijing 1
32 30 19.34600737 M 5.170483995 176 qichacha Beijing 1
33 31 17.01327571 S 2.772588722 16 qichacha Non_Beijing 1 1 1 1 1 1 1
34 32 18.75634351 S 4.564348191 96 qichacha Beijing 1
35 33 18.66057858 S 4.465908119 87 qichacha Beijing 1 1 1 1
36 34 19.69132991 M 5.525452939 251 qichacha Beijing 1
37 35 18.28276201 S 4.077537444 59 qichacha Beijing 1
38 36 SH 2021 1989000000 20.90642038 1201000000 L 6.711740395 822 qichacha Beijing 1
39 37 SZ 2021 4765000000 21.68223284 2609000000 L 8.394347361 4422 qichacha Beijing 1 1 1 1 1 1
40 38 17.12785796 S 2.890371758 18 qichacha Beijing 1 1 1 1 1
41 39 US 2021 50085024000 23.98443519 26080016000 marketwatch Foreign 1
42 40 SH 2021 13480000000 22.48267428 5809000000 L 9.17543832 9657 qichacha Beijing 1 1 1 1
43 41 SZ 2021 8936000000 22.20168349 4386000000 L 8.792853289 6587 qichacha Beijing 1 1 1 1 1 1 1
44 42 20.38102153 M 6.234410726 510 qichacha Beijing 1 1 1
45 43 2021 3042000000 21.13006339 1502000000 L 6.385194399 593 qichacha Beijing 1 1
46 44 2021 3049000000 21.52884845 2238000000 M 6.754604099 858 qichacha Beijing 1
47 45 21.43051418 M 7.313220387 1500 qichacha Beijing 1 1 1 1 1 1 1 1 1
48 46 17.90466593 S 3.688879454 40 qichacha Beijing 1
49 47 21.33304811 L 7.21303166 1357 qichacha Beijing 1 1 1 1 1 1 1 1 1
50 48 SH 2021 26190000000 23.13917962 11200000000 L 8.319473692 4103 qichacha Non_Beijing 1
51 49 2017 219000000 18.6195316 122000000 M 5.786897381 326 qichacha Beijing 1 1 1 1 1 1 1 1
52 50 20.12502381 M 5.97126184 392 qichacha Non_Beijing 1
53 51 18.79605616 M 4.605170186 100 qichacha Beijing 1
54 52 18.36189706 S 4.158883083 64 qichacha Beijing 1
55 53 SZ 2021 11600000000 21.93282302 3352000000 L 8.743372131 6269 qichacha Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
56 54 21.48044599 L 7.364547014 1579 qichacha Beijing 1 1 1
57 55 20.09221468 M 5.937536205 379 qichacha Beijing 1 1 1 1 1 1
58 56 2020 439000000 19.01400759 181000000 L 5.897153868 364 qichacha Beijing 1 1
59 57 19.12338465 M 4.941642423 140 qichacha Beijing 1 1 1 1
60 58 SH 2021 17330000000 22.91290617 8932000000 L 10.07255499 23684 qichacha Beijing 1 1 1 1 1 1 1
61 59 18.9063051 M 4.718498871 112 qichacha Beijing 1
62 60 18.12174548 S 3.912023005 50 qichacha Beijing 1 1 1 1 1
63 61 2017 629000000 19.3409635 251000000 L 5.811140993 334 qichacha Beijing 1
64 62 18.64933193 S 4.454347296 86 qichacha Beijing 1 1 1 1 1
65 63 20.05292974 M 5.897153868 364 qichacha Beijing 1 1 1
66 64 19.22865749 M 5.049856007 156 qichacha Beijing 1
67 65 SH 2021 7.62234E+11 26.80902186 4.39552E+11 L 12.53868745 278922 qichacha Beijing 1
68 66 SH 2021 5.933E+11 26.51597452 3.279E+11 L 12.39942069 242661 qichacha Beijing 1
69 67 SH 2021 1.84E+12 27.46645067 8.48258E+11 L 8.430545385 4585 qichacha Beijing 1
70 68 SH 2021 3117000000 20.24199902 618000000 L 7.430707083 1687 qichacha Beijing 1 1 1
71 69 SZ 2021 66430000000 24.93746536 67640000000 L 9.74957851 17147 qichacha Beijing 1
72 70 US 2021 2.52378E+11 25.92778688 1.82094E+11 marketwatch Foreign 1 1
73 71 US 2021 8003332000 22.02110911 3661391520 marketwatch Foreign 1
74 72 US 2021 43511280320 23.29726635 13118199200 marketwatch Foreign 1
75 73 JP 2021 83161023470 24.06291953 28209355790 fanuc Foreign 1
76 74 US 2021 4.43554E+11 26.18956307 2.36583E+11 marketwatch Foreign 1 1
77 75 US 2021 9.08167E+11 26.70107477 3.94575E+11 marketwatch Foreign 1
78 76 2021 20.06161732 516000000 zippia Foreign 1
79 77 US 2021 9.02016E+11 26.35266781 2.78496E+11 marketwatch Foreign 1 1
80 78 2021 21.41879181 2004763250 forbes Foreign 1 1 1 1 1
81 79 US 2021 31012012800 23.24364049 12433253920 marketwatch Foreign 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
82 80 US 2021 4.56151E+11 25.7083355 1.46214E+11 marketwatch Foreign 1 1
83 81 US 2021 4.89643E+11 25.97843016 1.91553E+11 marketwatch Foreign 1 1 1 1
84 82 2021 18.0265116 67424000 zippia Foreign 1 1 1 1
85 83 US 2021 1.70039E+11 25.55511763 1.25443E+11 marketwatch Foreign 1
86 84 2021 7.80541E+11 27.07058915 5.70962E+11 bosch Foreign 1 1 1
87 85 FR 2021 1.04402E+12 26.60060295 3.56858E+11 dassault Foreign 1 1
88 86 US 2021 8.49095E+11 27.11512238 5.96964E+11 marketwatch Foreign 1
89 87 US 2021 1.69771E+11 25.56118703 1.26207E+11 marketwatch Foreign 1
90 88 US 2021 3.96969E+11 25.97925591 1.91711E+11 marketwatch Foreign 1
91 89 US 2021 75779072000 24.59715157 48129040000 marketwatch Foreign 1 1 1
92 90 2023 22.39969825 5346448000 zoominfo Foreign 1
93 91 2023 21.2735583 1733760000 6.913737351 1006 rocketreach Foreign 1
94 92 JP 2021 47620285930 24.38782633 39038974590 omron Foreign 1
95 93 US 2021 30177737120 23.74657041 20559118720 marketwatch Foreign 1
96 94 JP 2021 1.12124E+12 27.50709063 8.83441E+11 mitsubishi Foreign 1
97 95 FR 2021 4.00517E+11 26.08097343 2.12238E+11 schneider Foreign 1 1
98 96 US 2021 6.70779E+11 26.56026085 3.42748E+11 marketwatch Foreign 1 1
99 97 US 2021 1.36825E+12 26.95829817 5.10317E+11 marketwatch Foreign 1 1 1
100 98 US 2021 2.2964E+12 27.77637214 1.15645E+12 marketwatch Foreign 1
101 99 XE 2021 1.02335E+12 26.84835831 4.57187E+11 siemens Foreign 1 1 1 1 1 1
102 100 US 2021 60215548800 24.08697187 28896082560 marketwatch Foreign 1
103 101 US 2021 3.59976E+11 24.64226064 50349807680 marketwatch Foreign 1
104 102 US 2021 2.89338E+12 28.80423839 3.23238E+12 marketwatch Foreign 1 1
105 103 US 2021 94016180090 25.03108636 74278423930 marketwatch Foreign 1
106 104 XE 2021 1.71332E+11 25.12029384 81209156000 10.82552176 50288 infineon  Foreign 1
107 105 US 2021 1.15863E+12 27.02163609 5.43685E+11 marketwatch Foreign 1
108 106 US 2021 1.69022E+12 27.29874466 7.17289E+11 alibaba  Non_Beijing 1 1 1 1 1 1
109 107 SH 2021 4852000000 21.32210234 1820000000 L 8.191740021 3611 qichacha Non_Beijing 1
110 108 HK 2021 3.80034E+11 25.54751533 1.24493E+11 hkexnews Non_Beijing 1 1
111 109 SH 2021 17860000000 23.18796978 11760000000 L 8.567506005 5258 qichacha Non_Beijing 1
112 110 18.66057858 S 4.465908119 87 qichacha Non_Beijing 1
113 111 SZ 2021 2638000000 21.30436351 1788000000 L 8.360305436 4274 qichacha Non_Beijing 1 1 1
114 112 SZ 2021 545000000 19.36458664 257000000 L 6.376726948 588 qichacha Non_Beijing 1
115 113 19.49912236 M 5.327876169 206 qichacha Non_Beijing 1
116 114 18.79605616 M 4.605170186 100 qichacha Non_Beijing 1
117 115 2021 2.666E+11 26.80913106 4.396E+11 L 12.16509439 191970 qichacha Non_Beijing 1 1
118 116 SH 2021 2342000000 19.07820075 193000000 M 5.683579767 294 qichacha Non_Beijing 1
119 117 14.9903437 XS 0.693147181 2 Non_Beijing 1 1 1 1 1 1 1 1 1 1 1
120 118 18.44907397 S 4.248495242 70 qichacha Non_Beijing 1
121 119 SZ 2021 10070000000 22.44941955 5619000000 L 9.157572306 9486 qichacha Non_Beijing 1
122 120 21.70305471 M 7.593374193 1985 qichacha Non_Beijing 1
123 121 17.97502126 S 3.761200116 43 qichacha Non_Beijing 1
124 122 SZ 2021 2668000000 20.74110576 1018000000 L 6.966024187 1060 qichacha Non_Beijing 1
125 123 SZ 2021 2576000000 21.63595007 2491000000 L 7.028201432 1128 qichacha Non_Beijing 1
126 124 SH 2021 2.177E+11 26.15085554 2.276E+11 L 11.56051491 104874 qichacha Non_Beijing 1 1
127 125 18.81532064 M 4.624972813 102 qichacha Non_Beijing 1
128 126 2021 27.17973246 6.36807E+11 L 9.210340372 10000 qichacha Non_Beijing 1 1 1 1 1 1 1
129 127 2021 23.0573496 10320000000 M 8.853665428 7000 qichacha Non_Beijing 1 1
130 128 SZ 2021 3800000000 21.08443069 1435000000 L 7.557472902 1915 qichacha Non_Beijing 1
131 129 SZ 2021 3399000000 21.21429683 1634000000 L 7.857093865 2584 qichacha Non_Beijing 1 1
132 130 HK 2021 11087132000 22.15217586 4174147000 hkexnews Non_Beijing 1 1 1 1 1
133 131 16.45354728 S 2.197224577 9 qichacha Non_Beijing 1 1 1 1 1
134 132 SZ 2021 3337000000 20.8542941 1140000000 L 7.543273347 1888 qichacha Non_Beijing 1
135 133 SZ 2021 6249000000 19.47499277 287000000 L 6.107022888 449 qichacha Non_Beijing 1 1
136 134 2019 446000000 19.52593758 302000000 L 6.415096959 611 qichacha Non_Beijing 1
137 135 SH 2021 4155000000 21.3275818 1830000000 L 7.276556403 1446 qichacha Non_Beijing 1 1 1 1 1 1 1 1 1 1 1
138 136 SZ 2021 3.879E+11 26.56216179 3.434E+11 L 12.01853149 165799 qichacha Non_Beijing 1
139 137 NQ 381000000 19.44672234 279000000 M 6.65544035 777 qichacha Non_Beijing 1 1 1 1 1 1
140 138 SZ 2021 2120000000 20.77300793 1051000000 L 7.329749689 1525 qichacha Non_Beijing 1
141 139 SH 2021 772000000 19.79944684 397000000 L 6.244166901 515 qichacha Non_Beijing 1
142 140 SH 2021 1944000000 20.74990777 1027000000 L 7.499976541 1808 qichacha Non_Beijing 1 1 1 1 1 1 1
143 141 19.45071314 M 5.278114659 196 qichacha Non_Beijing 1
144 142 SZ 2021 10950000000 22.64092347 6805000000 L 9.09346942 8897 qichacha Non_Beijing 1 1 1
145 143 21.03606772 L 6.907755279 1000 qichacha Non_Beijing 1 1 1 1 1
146 144 2021 1130000000 20.06355343 517000000 L 6.263398263 525 qichacha Non_Beijing 1 1 1 1
147 145 15.38479015 S 1.098612289 3 Non_Beijing 1
148 146 2021 297000000 19.27934236 236000000 M 4.997212274 148 qichacha Non_Beijing 1
149 147 SZ 2021 9607000000 22.77314983 7767000000 L 9.041329829 8445 qichacha Non_Beijing 1
150 148 HK 2021 1.61236E+12 27.05141331 5.60118E+11 hkexnews Non_Beijing 1 1 1
151 149 18.26613213 S 4.060443011 58 qichacha Beijing 1 1 1 1
152 150 SH 2021 2039000000 21.97859693 3509000000 L 5.774551546 322 qichacha Non_Beijing 1
153 151 2017 156000000 17.63219378 45453200 S 4.9698133 144 qichacha Non_Beijing 1
154 152 SZ 2021 7142000000 21.74894895 2789000000 L 7.850493181 2567 qichacha Non_Beijing 1
155 153 19.12338465 M 4.941642423 140 qichacha Non_Beijing 1 1
156 154 19.13030869 S 4.94875989 141 qichacha Non_Beijing 1 1 1 1 1 1
157 155 HK 2021 2.92892E+11 26.51722152 3.28309E+11 xiaomi Non_Beijing 1
158 156 14.9903437 XS 0.693147181 2 qichacha Non_Beijing 1
159 157 22.72444558 L 8.643297068 5672 qichacha Non_Beijing 1
160 158 2018 425000000 19.54235831 307000000 L 6.240275845 513 qichacha Non_Beijing 1
161 159 SZ 2021 1.67E+11 25.15800351 84330000000 L 9.647497927 15483 qichacha Non_Beijing 1
162 160 HK 2021 9505464000 22.65401405 6894667000 hkexnews Non_Beijing 1
163 161 21.9929142 L 7.891330758 2674 qichacha Non_Beijing 1 1 1
164 162 17.88978166 58807600 M 5.370638028 215 qichacha Non_Beijing 1 1
165 163 18.36189706 S 4.158883083 64 qichacha Non_Beijing 1 1 1 1 1 1
166 164 21.83955113 L 7.733683571 2284 qichacha Non_Beijing 1
167 165 18.29911239 S 4.094344562 60 qichacha Non_Beijing 1 1 1 1
168 166 19.83851913 M 5.676753802 292 qichacha Non_Beijing 1
169 167 SZ 2021 78220000000 24.43927396 41100000000 L 9.500843462 13371 qichacha Non_Beijing 1
170 168 SH 2021 10350000000 22.23155657 4519000000 L 8.528528701 5057 qichacha Non_Beijing 1 1 1 1 1 1 1
171 169 SH 2021 2.30233E+11 24.27012079 34704000000 L 8.55120807 5173 qichacha Non_Beijing 1
172 170 18.42068074 100000000 1

View File

@ -5,9 +5,7 @@ from multiprocessing import Process
import argparse import argparse
from computation import Computation from computation import Computation
from sqlalchemy.orm import close_all_sessions from sqlalchemy.orm import close_all_sessions
import yaml import yaml
from controller_db import ControllerDB from controller_db import ControllerDB
@ -23,8 +21,6 @@ def controll_db_and_process(exp_argument, reset_sample_argument, reset_db_argume
close_all_sessions() close_all_sessions()
# 调用 do_process 利用计算机进行多核处理 仿真 将数据库中 # 调用 do_process 利用计算机进行多核处理 仿真 将数据库中
do_process(do_computation, controller_db) do_process(do_computation, controller_db)
def do_process(target: object, controller_db: ControllerDB, ): def do_process(target: object, controller_db: ControllerDB, ):
process_list = [] process_list = []
for i in range(int(args.job)): for i in range(int(args.job)):
@ -34,8 +30,6 @@ def do_process(target: object, controller_db: ControllerDB, ):
for i in process_list: for i in process_list:
i.join() i.join()
def do_computation(c_db): def do_computation(c_db):
exp = Computation(c_db) exp = Computation(c_db)

View File

@ -80,7 +80,7 @@ class MyModel(Model):
print(f"Failed to initialize product network: {e}") print(f"Failed to initialize product network: {e}")
# 赋予 产业的量 # 赋予 产业的量
# 产业种类 # 产业种类
data = pd.read_csv('input_data/测试 BomNodes.csv') data = pd.read_csv('input_data/input_product_data/BomNodes.csv')
data['Code'] = data['Code'].astype('string') data['Code'] = data['Code'].astype('string')
self.type2 = data self.type2 = data
# 设备c折旧比值 # 设备c折旧比值
@ -89,7 +89,7 @@ class MyModel(Model):
def initialize_firm_network(self): def initialize_firm_network(self):
# Read the firm data # Read the firm data
firm = pd.read_csv("input_data/测试 Firm_amended 170.csv") firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
firm['Code'] = firm['Code'].astype('string') firm['Code'] = firm['Code'].astype('string')
firm.fillna(0, inplace=True) firm.fillna(0, inplace=True)
@ -225,7 +225,7 @@ class MyModel(Model):
for ag_node, attr in self.product_network.nodes(data=True): for ag_node, attr in self.product_network.nodes(data=True):
# 产业种类 # 产业种类
# 利用 测试 BomNodes.csv 转换产业 和 id 前提是 一个产业一个产品id 且一一对应 # 利用 BomNodes.csv 转换产业 和 id 前提是 一个产业一个产品id 且一一对应
product_id = self.type2.loc[self.type2['Code'] == ag_node, 'Index'] product_id = self.type2.loc[self.type2['Code'] == ag_node, 'Index']
type2 = self.type2.loc[product_id, '产业种类'].values[0] type2 = self.type2.loc[product_id, '产业种类'].values[0]
@ -317,10 +317,10 @@ class MyModel(Model):
self.product_agents.append(agent) self.product_agents.append(agent)
def resource_integration(self): def resource_integration(self):
data_R = pd.read_csv("测试数据 companies_materials.csv") data_R = pd.read_csv("input_data/input_firm_data/firms_materials.csv")
data_C = pd.read_csv("测试数据 companies_devices.csv") data_C = pd.read_csv("input_data/input_firm_data/firms_devices.csv")
data_P = pd.read_csv("测试数据 companies_products.csv") data_P = pd.read_csv("input_data/input_firm_data/firms_products.csv")
device_salvage_values = pd.read_csv('测试数据 device_salvage_values.csv') device_salvage_values = pd.read_csv('input_data/device_salvage_values.csv')
self.device_salvage_values = device_salvage_values self.device_salvage_values = device_salvage_values
@ -339,8 +339,8 @@ class MyModel(Model):
self.firm_resource_P = firm_resource_P self.firm_resource_P = firm_resource_P
def j_comp_consumed_produced(self): def j_comp_consumed_produced(self):
data_consumed = pd.read_csv('测试数据 consumed_materials.csv') data_consumed = pd.read_csv('input_data/input_product_data/products_consumed_materials.csv')
data_produced = pd.read_csv('测试数据 produced_products.csv') data_produced = pd.read_csv('input_data/input_product_data/products_produced_products.csv')
data_consumed = (data_consumed.groupby('产业id')[['消耗材料id', '消耗量']] data_consumed = (data_consumed.groupby('产业id')[['消耗材料id', '消耗量']]
.apply(lambda x: x.values.tolist())) .apply(lambda x: x.values.tolist()))

View File

@ -0,0 +1,76 @@
s_id,id_firm,id_product,ts
1441,13,2.1.3.4,0
1441,126,2.1.3,1
1441,97,2.1.3,1
1441,106,2.1.3,1
1566,13,2.1.3.7,0
1566,126,2.1.3,1
2073,14,1.3.3.4,0
2073,75,1.3.3,1
2621,85,1.3.1,1
2621,21,1.3.1.3,0
2621,100,1.3.1,1
3386,22,2.1.3.7,0
3386,108,2.1.3,1
4249,23,2.3.1,0
4249,84,2.3,1
4440,25,1.3.1.7,0
4440,100,1.3.1,1
4624,74,2.1.3,1
4624,26,2.1.3.4,0
5015,31,1.3.3.3,0
5015,75,1.3.3,1
5015,97,1.3.3,1
5720,94,1.1,1
5720,36,1.1.1,0
5720,126,1.1,1
7349,80,1.3.4,1
7349,45,1.3.4.2,0
7349,77,1.3.4,1
7399,79,2.1.4.1,1
7399,45,2.1.4.1.1,0
8285,99,1.3.1,1
8285,49,1.3.1.4,0
8601,93,1.3.1,1
8601,50,1.3.1.5,0
8601,85,1.3.1,1
9072,53,1.4.3.4,0
9072,142,1.4.3,1
9382,41,1.4.5,1
9382,53,1.4.5.6,0
10098,99,1.3.3,1
10098,57,1.3.3.3,0
10121,57,2.3.1,0
10121,124,2.3,1
10521,81,1.3.4,1
10521,58,1.3.4.3,0
10521,80,1.3.4,1
11675,93,1.3.1,1
11675,68,1.3.1.3,0
11678,99,1.3.1,1
11678,85,1.3.1,1
11678,68,1.3.1.3,0
12837,126,2.1.3,1
12837,74,2.1.3,1
12837,73,2.1.3,1
12837,79,2.1.3.2,0
13084,108,2.1.3,1
13084,73,2.1.3,1
13084,106,2.1.3,1
13084,79,2.1.3.7,0
13084,148,2.1.3,1
13084,126,2.1.3,1
16647,115,1.1.3,0
16647,94,1.1,1
16903,85,2.1.1,1
16903,117,2.1.1.4,0
17379,119,1.3.1.1,0
17379,100,1.3.1,1
17922,126,2.1.1.5,0
17922,80,2.1.1,1
18824,85,2.1.1,1
18824,131,2.1.1.5,0
19562,135,2.2,0
19562,98,2,1
21447,159,2.1.2,1
21447,149,2.1.2.2,0
1 s_id id_firm id_product ts
2 1441 13 2.1.3.4 0
3 1441 126 2.1.3 1
4 1441 97 2.1.3 1
5 1441 106 2.1.3 1
6 1566 13 2.1.3.7 0
7 1566 126 2.1.3 1
8 2073 14 1.3.3.4 0
9 2073 75 1.3.3 1
10 2621 85 1.3.1 1
11 2621 21 1.3.1.3 0
12 2621 100 1.3.1 1
13 3386 22 2.1.3.7 0
14 3386 108 2.1.3 1
15 4249 23 2.3.1 0
16 4249 84 2.3 1
17 4440 25 1.3.1.7 0
18 4440 100 1.3.1 1
19 4624 74 2.1.3 1
20 4624 26 2.1.3.4 0
21 5015 31 1.3.3.3 0
22 5015 75 1.3.3 1
23 5015 97 1.3.3 1
24 5720 94 1.1 1
25 5720 36 1.1.1 0
26 5720 126 1.1 1
27 7349 80 1.3.4 1
28 7349 45 1.3.4.2 0
29 7349 77 1.3.4 1
30 7399 79 2.1.4.1 1
31 7399 45 2.1.4.1.1 0
32 8285 99 1.3.1 1
33 8285 49 1.3.1.4 0
34 8601 93 1.3.1 1
35 8601 50 1.3.1.5 0
36 8601 85 1.3.1 1
37 9072 53 1.4.3.4 0
38 9072 142 1.4.3 1
39 9382 41 1.4.5 1
40 9382 53 1.4.5.6 0
41 10098 99 1.3.3 1
42 10098 57 1.3.3.3 0
43 10121 57 2.3.1 0
44 10121 124 2.3 1
45 10521 81 1.3.4 1
46 10521 58 1.3.4.3 0
47 10521 80 1.3.4 1
48 11675 93 1.3.1 1
49 11675 68 1.3.1.3 0
50 11678 99 1.3.1 1
51 11678 85 1.3.1 1
52 11678 68 1.3.1.3 0
53 12837 126 2.1.3 1
54 12837 74 2.1.3 1
55 12837 73 2.1.3 1
56 12837 79 2.1.3.2 0
57 13084 108 2.1.3 1
58 13084 73 2.1.3 1
59 13084 106 2.1.3 1
60 13084 79 2.1.3.7 0
61 13084 148 2.1.3 1
62 13084 126 2.1.3 1
63 16647 115 1.1.3 0
64 16647 94 1.1 1
65 16903 85 2.1.1 1
66 16903 117 2.1.1.4 0
67 17379 119 1.3.1.1 0
68 17379 100 1.3.1 1
69 17922 126 2.1.1.5 0
70 17922 80 2.1.1 1
71 18824 85 2.1.1 1
72 18824 131 2.1.1.5 0
73 19562 135 2.2 0
74 19562 98 2 1
75 21447 159 2.1.2 1
76 21447 149 2.1.2.2 0

View File

@ -0,0 +1,46 @@
up_id_firm,up_id_product,down_id_firm,down_id_product,count
115,1.1.3,94,1.1,1
45,1.3.4.2,80,1.3.4,1
49,1.3.1.4,99,1.3.1,1
50,1.3.1.5,85,1.3.1,1
50,1.3.1.5,93,1.3.1,1
53,1.4.3.4,142,1.4.3,1
53,1.4.5.6,41,1.4.5,1
57,1.3.3.3,99,1.3.3,1
57,2.3.1,124,2.3,1
58,1.3.4.3,80,1.3.4,1
58,1.3.4.3,81,1.3.4,1
68,1.3.1.3,85,1.3.1,1
68,1.3.1.3,93,1.3.1,1
68,1.3.1.3,99,1.3.1,1
79,2.1.3.2,126,2.1.3,1
79,2.1.3.2,73,2.1.3,1
79,2.1.3.2,74,2.1.3,1
79,2.1.3.7,106,2.1.3,1
79,2.1.3.7,108,2.1.3,1
79,2.1.3.7,126,2.1.3,1
79,2.1.3.7,148,2.1.3,1
45,2.1.4.1.1,79,2.1.4.1,1
45,1.3.4.2,77,1.3.4,1
117,2.1.1.4,85,2.1.1,1
36,1.1.1,94,1.1,1
119,1.3.1.1,100,1.3.1,1
126,2.1.1.5,80,2.1.1,1
13,2.1.3.4,106,2.1.3,1
13,2.1.3.4,126,2.1.3,1
13,2.1.3.4,97,2.1.3,1
13,2.1.3.7,126,2.1.3,1
131,2.1.1.5,85,2.1.1,1
135,2.2,98,2,1
14,1.3.3.4,75,1.3.3,1
149,2.1.2.2,159,2.1.2,1
21,1.3.1.3,100,1.3.1,1
21,1.3.1.3,85,1.3.1,1
22,2.1.3.7,108,2.1.3,1
23,2.3.1,84,2.3,1
25,1.3.1.7,100,1.3.1,1
26,2.1.3.4,74,2.1.3,1
31,1.3.3.3,75,1.3.3,1
31,1.3.3.3,97,1.3.3,1
36,1.1.1,126,1.1,1
79,2.1.3.7,73,2.1.3,1
1 up_id_firm up_id_product down_id_firm down_id_product count
2 115 1.1.3 94 1.1 1
3 45 1.3.4.2 80 1.3.4 1
4 49 1.3.1.4 99 1.3.1 1
5 50 1.3.1.5 85 1.3.1 1
6 50 1.3.1.5 93 1.3.1 1
7 53 1.4.3.4 142 1.4.3 1
8 53 1.4.5.6 41 1.4.5 1
9 57 1.3.3.3 99 1.3.3 1
10 57 2.3.1 124 2.3 1
11 58 1.3.4.3 80 1.3.4 1
12 58 1.3.4.3 81 1.3.4 1
13 68 1.3.1.3 85 1.3.1 1
14 68 1.3.1.3 93 1.3.1 1
15 68 1.3.1.3 99 1.3.1 1
16 79 2.1.3.2 126 2.1.3 1
17 79 2.1.3.2 73 2.1.3 1
18 79 2.1.3.2 74 2.1.3 1
19 79 2.1.3.7 106 2.1.3 1
20 79 2.1.3.7 108 2.1.3 1
21 79 2.1.3.7 126 2.1.3 1
22 79 2.1.3.7 148 2.1.3 1
23 45 2.1.4.1.1 79 2.1.4.1 1
24 45 1.3.4.2 77 1.3.4 1
25 117 2.1.1.4 85 2.1.1 1
26 36 1.1.1 94 1.1 1
27 119 1.3.1.1 100 1.3.1 1
28 126 2.1.1.5 80 2.1.1 1
29 13 2.1.3.4 106 2.1.3 1
30 13 2.1.3.4 126 2.1.3 1
31 13 2.1.3.4 97 2.1.3 1
32 13 2.1.3.7 126 2.1.3 1
33 131 2.1.1.5 85 2.1.1 1
34 135 2.2 98 2 1
35 14 1.3.3.4 75 1.3.3 1
36 149 2.1.2.2 159 2.1.2 1
37 21 1.3.1.3 100 1.3.1 1
38 21 1.3.1.3 85 1.3.1 1
39 22 2.1.3.7 108 2.1.3 1
40 23 2.3.1 84 2.3 1
41 25 1.3.1.7 100 1.3.1 1
42 26 2.1.3.4 74 2.1.3 1
43 31 1.3.3.3 75 1.3.3 1
44 31 1.3.3.3 97 1.3.3 1
45 36 1.1.1 126 1.1 1
46 79 2.1.3.7 73 2.1.3 1

View File

@ -0,0 +1,23 @@
up_id_product,down_id_product,count
2.1.3.7,2.1.3,7
1.3.1.3,1.3.1,5
2.1.3.4,2.1.3,4
2.1.3.2,2.1.3,3
1.3.3.3,1.3.3,3
1.1.1,1.1,2
1.3.4.2,1.3.4,2
2.1.1.5,2.1.1,2
1.3.4.3,1.3.4,2
2.3.1,2.3,2
1.3.1.5,1.3.1,2
1.3.3.4,1.3.3,1
1.1.3,1.1,1
1.4.5.6,1.4.5,1
2.1.1.4,2.1.1,1
1.3.1.7,1.3.1,1
2.1.2.2,2.1.2,1
1.3.1.4,1.3.1,1
1.3.1.1,1.3.1,1
2.1.4.1.1,2.1.4.1,1
2.2,2,1
1.4.3.4,1.4.3,1
1 up_id_product down_id_product count
2 2.1.3.7 2.1.3 7
3 1.3.1.3 1.3.1 5
4 2.1.3.4 2.1.3 4
5 2.1.3.2 2.1.3 3
6 1.3.3.3 1.3.3 3
7 1.1.1 1.1 2
8 1.3.4.2 1.3.4 2
9 2.1.1.5 2.1.1 2
10 1.3.4.3 1.3.4 2
11 2.3.1 2.3 2
12 1.3.1.5 1.3.1 2
13 1.3.3.4 1.3.3 1
14 1.1.3 1.1 1
15 1.4.5.6 1.4.5 1
16 2.1.1.4 2.1.1 1
17 1.3.1.7 1.3.1 1
18 2.1.2.2 2.1.2 1
19 1.3.1.4 1.3.1 1
20 1.3.1.1 1.3.1 1
21 2.1.4.1.1 2.1.4.1 1
22 2.2 2 1
23 1.4.3.4 1.4.3 1

View File

@ -0,0 +1,46 @@
id_firm,count
126,6
85,5
100,3
80,3
79,3
99,3
57,2
74,2
13,2
97,2
94,2
93,2
108,2
45,2
68,2
53,2
106,2
73,2
75,2
58,1
124,1
77,1
117,1
81,1
84,1
98,1
115,1
49,1
50,1
159,1
131,1
135,1
14,1
142,1
148,1
149,1
21,1
119,1
22,1
23,1
25,1
26,1
31,1
41,1
36,1
1 id_firm count
2 126 6
3 85 5
4 100 3
5 80 3
6 79 3
7 99 3
8 57 2
9 74 2
10 13 2
11 97 2
12 94 2
13 93 2
14 108 2
15 45 2
16 68 2
17 53 2
18 106 2
19 73 2
20 75 2
21 58 1
22 124 1
23 77 1
24 117 1
25 81 1
26 84 1
27 98 1
28 115 1
29 49 1
30 50 1
31 159 1
32 131 1
33 135 1
34 14 1
35 142 1
36 148 1
37 149 1
38 21 1
39 119 1
40 22 1
41 23 1
42 25 1
43 26 1
44 31 1
45 41 1
46 36 1

View File

@ -0,0 +1,58 @@
id_firm,id_product,count
126,2.1.3,4
100,1.3.1,3
85,1.3.1,3
106,2.1.3,2
68,1.3.1.3,2
73,2.1.3,2
74,2.1.3,2
75,1.3.3,2
85,2.1.1,2
80,1.3.4,2
93,1.3.1,2
94,1.1,2
108,2.1.3,2
99,1.3.1,2
53,1.4.5.6,1
57,1.3.3.3,1
57,2.3.1,1
58,1.3.4.3,1
98,2,1
97,2.1.3,1
97,1.3.3,1
77,1.3.4,1
79,2.1.3.2,1
79,2.1.3.7,1
79,2.1.4.1,1
50,1.3.1.5,1
80,2.1.1,1
81,1.3.4,1
84,2.3,1
53,1.4.3.4,1
45,2.1.4.1.1,1
49,1.3.1.4,1
45,1.3.4.2,1
115,1.1.3,1
117,2.1.1.4,1
119,1.3.1.1,1
124,2.3,1
126,1.1,1
126,2.1.1.5,1
13,2.1.3.4,1
13,2.1.3.7,1
131,2.1.1.5,1
135,2.2,1
14,1.3.3.4,1
142,1.4.3,1
148,2.1.3,1
149,2.1.2.2,1
159,2.1.2,1
21,1.3.1.3,1
22,2.1.3.7,1
23,2.3.1,1
25,1.3.1.7,1
26,2.1.3.4,1
31,1.3.3.3,1
36,1.1.1,1
41,1.4.5,1
99,1.3.3,1
1 id_firm id_product count
2 126 2.1.3 4
3 100 1.3.1 3
4 85 1.3.1 3
5 106 2.1.3 2
6 68 1.3.1.3 2
7 73 2.1.3 2
8 74 2.1.3 2
9 75 1.3.3 2
10 85 2.1.1 2
11 80 1.3.4 2
12 93 1.3.1 2
13 94 1.1 2
14 108 2.1.3 2
15 99 1.3.1 2
16 53 1.4.5.6 1
17 57 1.3.3.3 1
18 57 2.3.1 1
19 58 1.3.4.3 1
20 98 2 1
21 97 2.1.3 1
22 97 1.3.3 1
23 77 1.3.4 1
24 79 2.1.3.2 1
25 79 2.1.3.7 1
26 79 2.1.4.1 1
27 50 1.3.1.5 1
28 80 2.1.1 1
29 81 1.3.4 1
30 84 2.3 1
31 53 1.4.3.4 1
32 45 2.1.4.1.1 1
33 49 1.3.1.4 1
34 45 1.3.4.2 1
35 115 1.1.3 1
36 117 2.1.1.4 1
37 119 1.3.1.1 1
38 124 2.3 1
39 126 1.1 1
40 126 2.1.1.5 1
41 13 2.1.3.4 1
42 13 2.1.3.7 1
43 131 2.1.1.5 1
44 135 2.2 1
45 14 1.3.3.4 1
46 142 1.4.3 1
47 148 2.1.3 1
48 149 2.1.2.2 1
49 159 2.1.2 1
50 21 1.3.1.3 1
51 22 2.1.3.7 1
52 23 2.3.1 1
53 25 1.3.1.7 1
54 26 2.1.3.4 1
55 31 1.3.3.3 1
56 36 1.1.1 1
57 41 1.4.5 1
58 99 1.3.3 1

View File

@ -0,0 +1,35 @@
id_product,count
2.1.3,14
1.3.1,10
1.3.4,4
1.3.3,4
1.1,3
2.1.3.7,3
1.3.1.3,3
2.1.1,3
2.3,2
2.1.3.4,2
2.1.1.5,2
2.3.1,2
1.3.3.3,2
1.3.3.4,1
2.1.2.2,1
1.1.3,1
2.2,1
2.1.4.1.1,1
2.1.4.1,1
1.3.1.1,1
1.3.1.4,1
2.1.3.2,1
1.3.1.5,1
2.1.2,1
1.3.4.2,1
1.3.1.7,1
2.1.1.4,1
2,1
1.4.5.6,1
1.1.1,1
1.4.3.4,1
1.4.3,1
1.3.4.3,1
1.4.5,1
1 id_product count
2 2.1.3 14
3 1.3.1 10
4 1.3.4 4
5 1.3.3 4
6 1.1 3
7 2.1.3.7 3
8 1.3.1.3 3
9 2.1.1 3
10 2.3 2
11 2.1.3.4 2
12 2.1.1.5 2
13 2.3.1 2
14 1.3.3.3 2
15 1.3.3.4 1
16 2.1.2.2 1
17 1.1.3 1
18 2.2 1
19 2.1.4.1.1 1
20 2.1.4.1 1
21 1.3.1.1 1
22 1.3.1.4 1
23 2.1.3.2 1
24 1.3.1.5 1
25 2.1.2 1
26 1.3.4.2 1
27 1.3.1.7 1
28 2.1.1.4 1
29 2 1
30 1.4.5.6 1
31 1.1.1 1
32 1.4.3.4 1
33 1.4.3 1
34 1.3.4.3 1
35 1.4.5 1

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

8
risk_analysis_count.py Normal file
View File

@ -0,0 +1,8 @@
import pandas as pd
count = pd.read_csv("output_result/risk/count.csv",
dtype={'s_id': str, 'id_firm': str})
print(count)
print(len(count['s_id'].unique()))
count_max_ts = count.groupby('s_id')['ts'].max()
print(count_max_ts.value_counts())

View File

@ -0,0 +1,99 @@
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
plt.rcParams['font.sans-serif'] = 'SimHei'
# count firm category
count_firm = pd.read_csv("output_result/risk/count_firm.csv")
print(count_firm.describe())
count_dcp = pd.read_csv("output_result/risk/count_dcp.csv",
dtype={
'up_id_firm': str,
'down_id_firm': str
})
# print(count_dcp)
count_dcp = count_dcp[count_dcp['count'] > 35]
list_firm = count_dcp['up_id_firm'].tolist(
) + count_dcp['down_id_firm'].tolist()
list_firm = list(set(list_firm))
# init graph firm
Firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
Firm_attr = Firm.loc[:, ["Code", "Type_Region", "Revenue_Log"]]
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
firm_product = []
grouped = firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list)
firm_product.append(grouped)
Firm_attr['Product_Code'] = Firm_attr['Code'].map(grouped)
Firm_attr.set_index('Code', inplace=True)
G_firm = nx.MultiDiGraph()
G_firm.add_nodes_from(list_firm)
firm_labels_dict = {}
for code in G_firm.nodes:
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
nx.set_node_attributes(G_firm, firm_labels_dict)
count_max = count_dcp['count'].max()
count_min = count_dcp['count'].min()
k = 5 / (count_max - count_min)
for _, row in count_dcp.iterrows():
# print(row)
lst_add_edge = [(
row['up_id_firm'],
row['down_id_firm'],
{
'up_id_product': row['up_id_product'],
'down_id_product': row['down_id_product'],
'edge_label': f"{row['up_id_product']} - {row['down_id_product']}",
'edge_width': k * (row['count'] - count_min),
'count': row['count']
})]
G_firm.add_edges_from(lst_add_edge)
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="dot", args="")
node_label = nx.get_node_attributes(G_firm, 'Revenue_Log')
# desensitize
node_label = {
key: key
for key in node_label.keys()
}
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
node_size = list(map(lambda x: x**2, node_size))
edge_label = nx.get_edge_attributes(G_firm, "edge_label")
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
edge_width = nx.get_edge_attributes(G_firm, "edge_width")
edge_width = [w for (n1, n2, _), w in edge_width.items()]
colors = nx.get_edge_attributes(G_firm, "count")
colors = [w for (n1, n2, _), w in colors.items()]
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
fig = plt.figure(figsize=(10, 8), dpi=300)
nx.draw(G_firm,
pos,
node_size=node_size,
labels=node_label,
font_size=8,
width=3,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
edge_vmax=vmax)
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=6)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.95, 0.05, 0.01, 0.3])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=10)
cb.outline.set_visible(False)
plt.savefig("output_result\\risk\\count_dcp_network")
plt.close()

View File

@ -0,0 +1,155 @@
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
plt.rcParams['font.sans-serif'] = 'SimHei'
count_prod = pd.read_csv("output_result/risk/count_prod.csv")
print(count_prod)
# category
print(count_prod.describe())
# prod_networkx
BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
BomNodes.set_index('Code', inplace=True)
BomCateNet = pd.read_csv('input_data/input_product_data/BomCateNet.csv', index_col=0)
BomCateNet.fillna(0, inplace=True)
G = nx.from_pandas_adjacency(BomCateNet.T, create_using=nx.MultiDiGraph())
labels_dict = {}
for code in G.nodes:
node_attr = BomNodes.loc[code].to_dict()
index_list = count_prod[count_prod['id_product'] == code].index.tolist()
index = index_list[0] if len(index_list) == 1 else -1
node_attr['count'] = count_prod['count'].get(index, 0)
node_attr['node_size'] = count_prod['count'].get(index, 0)
node_attr['node_color'] = count_prod['count'].get(index, 0)
labels_dict[code] = node_attr
nx.set_node_attributes(G, labels_dict)
# print(labels_dict)
pos = nx.nx_agraph.graphviz_layout(G, prog="twopi", args="")
dict_node_name = nx.get_node_attributes(G, 'Name')
node_labels = {}
for node in nx.nodes(G):
node_labels[node] = f"{node} {str(dict_node_name[node])}"
# node_labels[node] = f"{str(dict_node_name[node])}"
colors = list(nx.get_node_attributes(G, 'node_color').values())
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
fig = plt.figure(figsize=(10, 10), dpi=300)
nx.draw(G,
pos,
node_size=list(nx.get_node_attributes(G, 'node_size').values()),
labels=node_labels,
font_size=6,
node_color=colors,
cmap=cmap,
vmin=vmin,
vmax=vmax,
edge_color='grey')
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.01, 0.05, 0.01, 0.3])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=8)
cb.outline.set_visible(False)
plt.savefig("output_result\\risk\\count_prod_network")
plt.close()
# dcp_prod
count_dcp = pd.read_csv("output_result/risk/count_dcp.csv",
dtype={
'up_id_firm': str,
'down_id_firm': str
})
count_dcp_prod = count_dcp.groupby(
['up_id_product',
'down_id_product'])['count'].sum()
count_dcp_prod = count_dcp_prod.reset_index()
count_dcp_prod.sort_values('count', inplace=True, ascending=False)
count_dcp_prod.to_csv('output_result\\risk\\count_dcp_prod.csv',
index=False,
encoding='utf-8-sig')
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 50]
# print(count_dcp_prod)
list_prod = count_dcp_prod['up_id_product'].tolist(
) + count_dcp['down_id_product'].tolist()
list_prod = list(set(list_prod))
# init graph bom
BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
BomNodes.set_index('Code', inplace=True)
g_bom = nx.MultiDiGraph()
g_bom.add_nodes_from(list_prod)
bom_labels_dict = {}
for code in list_prod:
dct_attr = BomNodes.loc[code].to_dict()
bom_labels_dict[code] = dct_attr
nx.set_node_attributes(g_bom, bom_labels_dict)
count_max = count_dcp_prod['count'].max()
count_min = count_dcp_prod['count'].min()
k = 5 / (count_max - count_min)
for _, row in count_dcp_prod.iterrows():
# print(row)
lst_add_edge = [(
row['up_id_product'],
row['down_id_product'],
{
'count': row['count']
})]
g_bom.add_edges_from(lst_add_edge)
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(g_bom, prog="dot", args="")
node_labels = nx.get_node_attributes(g_bom, 'Name')
# rename node 1
# node_labels['1'] = '解决方案'
temp = {}
for key, value in node_labels.items():
temp[key] = key + " " + value
node_labels = temp
colors = nx.get_edge_attributes(g_bom, "count")
colors = [w for (n1, n2, _), w in colors.items()]
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
pos_new = {}
for node, p in pos.items():
pos_new[node] = (p[1], p[0])
fig = plt.figure(figsize=(6, 10), dpi=300)
# plt.subplots_adjust(right=0.7)
nx.draw(g_bom,
pos_new,
node_size=50,
labels=node_labels,
font_size=5,
width=1.5,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
edge_vmax=vmax)
plt.axis('off')
axis = plt.gca()
axis.set_xlim([1.2*x for x in axis.get_xlim()])
axis.set_ylim([1.2*y for y in axis.get_ylim()])
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.75, 0.1, 0.01, 0.2])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=8)
cb.outline.set_visible(False)
plt.savefig("output_result\\risk\\count_dcp_prod_network")
plt.close()

139
risk_analysis_sum_result.py Normal file
View File

@ -0,0 +1,139 @@
from sqlalchemy import text
from orm import engine, connection
import pandas as pd
import networkx as nx
import json
import matplotlib.pyplot as plt
# prep data
Firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
with open('SQL_analysis_risk.sql', 'r') as f:
str_sql = text(f.read())
result = pd.read_sql(sql=str_sql,
con=connection)
result.to_csv('output_result\\risk\\count.csv',
index=False,
encoding='utf-8-sig')
print(result)
# G bom
plt.rcParams['font.sans-serif'] = 'SimHei'
exp_id = 1
G_bom_str = pd.read_sql(
sql=text(f'select g_bom from iiabmdb.without_exp_experiment '
f'where id = {exp_id};'),
con=connection)['g_bom'].tolist()[0]
G_bom = nx.adjacency_graph(json.loads(G_bom_str))
pos = nx.nx_agraph.graphviz_layout(G_bom, prog="twopi", args="")
node_labels = nx.get_node_attributes(G_bom, 'Name')
# rename node 1
# node_labels['1'] = '工业互联网'
# node_labels['1.1'] = '工业自动化硬件'
# node_labels['1.4'] = '工业互联网安全管理'
# node_labels['1.2.1'] = '网络互联服务'
# node_labels['1.2.2'] = '标识解析服务'
# node_labels['1.2.3'] = '数据互通服务'
# node_labels['1.3.1'] = '设计研发软件'
# node_labels['1.3.2'] = '采购供应软件'
# node_labels['1.3.3'] = '生产制造软件'
# node_labels['1.3.4'] = '企业运营软件'
# node_labels['1.3.5'] = '仓储物流软件'
plt.figure(figsize=(12, 12), dpi=300)
nx.draw_networkx_nodes(G_bom, pos)
nx.draw_networkx_edges(G_bom, pos)
nx.draw_networkx_labels(G_bom, pos, labels=node_labels, font_size=6)
# plt.show()
plt.savefig(f"output_result\\risk\\g_bom_exp_id_{exp_id}.png")
plt.close()
# G firm
plt.rcParams['font.sans-serif'] = 'SimHei'
sample_id = 1
G_firm_str = pd.read_sql(
sql=text(f'select g_firm from iiabmdb.without_exp_sample '
f'where id = {exp_id};'),
con=connection)['g_firm'].tolist()[0]
G_firm = nx.adjacency_graph(json.loads(G_firm_str))
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
# desensitize
node_label = nx.get_node_attributes(G_firm, 'Revenue_Log')
node_label = {
key: key
for key in node_label.keys()
}
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
node_size = list(map(lambda x: x**2, node_size))
edge_label = nx.get_edge_attributes(G_firm, "Product")
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
plt.figure(figsize=(12, 12), dpi=300)
nx.draw(G_firm, pos, node_size=node_size, labels=node_label, font_size=6)
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=4)
# plt.show()
plt.savefig(f"output_result\\risk\\g_firm_sample_id_{exp_id}_de.png")
plt.close()
# count firm product
count_firm_prod = result.value_counts(subset=['id_firm', 'id_product'])
count_firm_prod.name = 'count'
count_firm_prod = count_firm_prod.to_frame().reset_index()
count_firm_prod.to_csv('output_result\\risk\\count_firm_prod.csv',
index=False,
encoding='utf-8-sig')
print(count_firm_prod)
# count firm
count_firm = count_firm_prod.groupby('id_firm')['count'].sum()
count_firm = count_firm.to_frame().reset_index()
count_firm.sort_values('count', inplace=True, ascending=False)
count_firm.to_csv('output_result\\risk\\count_firm.csv',
index=False,
encoding='utf-8-sig')
print(count_firm)
# count product
count_prod = count_firm_prod.groupby('id_product')['count'].sum()
count_prod = count_prod.to_frame().reset_index()
count_prod.sort_values('count', inplace=True, ascending=False)
count_prod.to_csv('output_result\\risk\\count_prod.csv',
index=False,
encoding='utf-8-sig')
print(count_prod)
# DCP disruption causing probability
result_disrupt_ts_above_0 = result[result['ts'] > 0]
print(result_disrupt_ts_above_0)
result_dcp = pd.DataFrame(columns=[
's_id', 'up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product'
])
for sid, group in result.groupby('s_id'):
ts_start = max(group['ts'])
while ts_start >= 1:
ts_end = ts_start - 1
while ts_end >= 0:
up = group.loc[group['ts'] == ts_end, ['id_firm', 'id_product']]
down = group.loc[group['ts'] == ts_start,
['id_firm', 'id_product']]
for _, up_row in up.iterrows():
for _, down_row in down.iterrows():
row = [sid]
row += up_row.tolist()
row += down_row.tolist()
result_dcp.loc[len(result_dcp.index)] = row
ts_end -= 1
ts_start -= 1
count_dcp = result_dcp.value_counts(
subset=['up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product'])
count_dcp.name = 'count'
count_dcp = count_dcp.to_frame().reset_index()
count_dcp.to_csv('output_result\\risk\\count_dcp.csv',
index=False, encoding='utf-8-sig')
print(count_dcp)

60
可视化测试.py Normal file
View File

@ -0,0 +1,60 @@
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import rcParams
# 设置中文字体和符号显示
rcParams['font.sans-serif'] = ['SimHei'] # 或者使用 ['Microsoft YaHei']
rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 定义节点和边
nodes = {
0: '原材料供应商',
1: '零部件制造商',
2: '产品制造商',
3: '分销商',
4: '零售商'
}
edges = [
(0, 1), # 原材料供应商 -> 零部件制造商
(1, 2), # 零部件制造商 -> 产品制造商
(2, 3), # 产品制造商 -> 分销商
(3, 4) # 分销商 -> 零售商
]
# 定义节点的三维坐标 (x, y, z)
positions = {
0: (0, 0, 0), # 原材料供应商
1: (1, 0, 1), # 零部件制造商
2: (2, 0, 2), # 产品制造商
3: (3, 0, 3), # 分销商
4: (4, 0, 4) # 零售商
}
# 创建3D图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 绘制节点
for node, (x, y, z) in positions.items():
ax.scatter(x, y, z, color='b', s=100) # 绘制每个节点
ax.text(x, y, z, nodes[node], size=12, zorder=1, color='k') # 添加节点标签
# 绘制边(箭头)
for start, end in edges:
start_pos = positions[start]
end_pos = positions[end]
ax.plot([start_pos[0], end_pos[0]],
[start_pos[1], end_pos[1]],
[start_pos[2], end_pos[2]], color='r') # 连接每对节点
# 设置坐标轴标签
ax.set_xlabel('X轴')
ax.set_ylabel('Y轴')
ax.set_zlabel('Z轴')
# 设置视角以便更好地观察3D图形
ax.view_init(elev=20., azim=-35) # 角度可根据需要调整
# 显示3D图形
plt.show()

View File

@ -1,54 +0,0 @@
import pandas as pd
import numpy as np
# 设置随机种子
np.random.seed(42)
num_companies = 170 # 企业ID范围
# 生成企业和设备数据
num_rows = 220 # 每个表的行数
company_ids = np.arange(num_companies)
# 第二步生成剩余的随机企业ID
remaining_ids = np.random.randint(0, num_companies, size=num_rows - num_companies)
# 合并两部分的企业ID
all_company_ids = np.concatenate([company_ids, remaining_ids])
# 第三步对企业ID进行升序排序
all_company_ids.sort()
device_ids = np.random.randint(51, 107, size=num_rows)
material_ids = np.random.randint(0, 51, size=num_rows)
product_ids = np.random.randint(0, 107, size=num_rows)
device_quantities = np.random.randint(50, 200, size=num_rows)
material_quantities = np.random.randint(100,200, size=num_rows)
product_quantities = np.random.randint(20, 100, size=num_rows)
# 创建三个表格的数据框
df_devices = pd.DataFrame({
'Firm_Code': all_company_ids,
'设备id': device_ids,
'设备数量': device_quantities
})
df_materials = pd.DataFrame({
'Firm_Code': all_company_ids,
'材料id': material_ids,
'材料数量': material_quantities
})
df_products = pd.DataFrame({
'Firm_Code': all_company_ids,
'产品id': product_ids,
'产品数量': product_quantities
})
# 保存为CSV文件
df_devices.to_csv('测试数据 companies_devices.csv', index=False)
df_materials.to_csv('测试数据 companies_materials.csv', index=False)
df_products.to_csv('测试数据 companies_products.csv', index=False)

View File

@ -1,42 +0,0 @@
import pandas as pd
import numpy as np
# 设置随机种子,确保结果可重复
np.random.seed(42)
# 定义产业数量
num_industries = 107
# 创建产业ID列表
industry_ids = [i for i in range(0, num_industries + 1)]
# 为每个产业生成随机的材料id、消耗量、产品id和制造量
consumed_materials_data = []
produced_products_data = []
for industry in industry_ids:
# 每个产业消耗的材料生成1到3个随机材料ID和消耗量
num_materials = np.random.randint(1, 4)
for _ in range(num_materials):
material_id = np.random.randint(0, 100)
consumption_quantity = np.random.randint(50, 500)
consumed_materials_data.append([industry, material_id, consumption_quantity])
# 每个产业制造的产品生成1到3个随机产品ID和制造量
num_products = np.random.randint(1, 4)
for _ in range(num_products):
product_id = np.random.randint(100, 201)
production_quantity = np.random.randint(100, 1000)
produced_products_data.append([industry, product_id, production_quantity])
# 创建两个数据框
df_consumed_materials = pd.DataFrame(consumed_materials_data, columns=['产业id', '消耗材料id', '消耗量'])
df_produced_products = pd.DataFrame(produced_products_data, columns=['产业id', '制造产品id', '制造量'])
# 保存两个数据框为CSV文件
file_path_consumed = '测试数据 consumed_materials.csv'
file_path_produced = '测试数据 produced_products.csv'
df_consumed_materials.to_csv(file_path_consumed, index=False)
df_produced_products.to_csv(file_path_produced, index=False)

View File

@ -1,14 +0,0 @@
import pandas as pd
import random
import numpy as np
# 生成170条测试数据的函数
data = pd.read_csv('input_data/BomNodes.csv')
# 生成数据
df = pd.DataFrame(data)
df['产业种类'] = [random.choice([0, 1]) for _ in range(107)]
# 显示前几行
# 保存数据到CSV文件
df.to_csv('input_data/测试 BomNodes.csv', index=False)

View File

@ -1,34 +0,0 @@
import pandas as pd
import random
import numpy as np
# 生成170条测试数据的函数
def generate_test_data(num_rows=170):
data = {
'Code': [i for i in range(0, num_rows)], # 生成0到170的公司ID
'原材料': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 原材料
'库存商品': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 库存商品
'设备数量': [round(random.uniform(100, 1000), 2) for _ in range(num_rows)], # 固定资产原值
'Revenue': [round(random.uniform(10000, 100000), 2) for _ in range(num_rows)], # Revenue
'Total Employees (People)': [random.randint(50, 1000) for _ in range(num_rows)], # 员工总数
'Type_Region': [random.choice(['Urban', 'Rural', 'Suburban']) for _ in range(num_rows)], # 区域类型
'Self-supply Business (Yes/No)': [random.choice(['Yes', 'No']) for _ in range(num_rows)] # 自营业务
}
df = pd.DataFrame(data)
# 添加Revenue_Log列
df['Revenue_Log'] = np.log(df['Revenue'])
df['production_output'] = df['设备数量'] / 10+np.random.randint(100, 500, size=len(df))
df['demand_quantity'] = df['原材料'] / 10 +np.random.randint(100, 500, size=len(df))
return df
# 生成数据
df_test_data = generate_test_data()
# 显示前几行
print(df_test_data.head())
# 保存数据到CSV文件
df_test_data.to_csv('input_data/测试 Firm_amended 170.csv', index=False)

View File

@ -1,25 +0,0 @@
import pandas as pd
import numpy as np
# 设置数据行数
total_rows = 106 # 总共100行
material_count = 50 # 前61行为材料
# 生成产品id
product_ids = np.arange(1, total_rows + 1)
# 生成种类前70行是材料后面是设备
categories = ['材料'] * material_count + ['设备'] * (total_rows - material_count)
# 创建数据框
df_products = pd.DataFrame({
'产品id': product_ids,
'种类': categories
})
# 保存为CSV文件
file_path_products = '测试数据 products_materials_equipment.csv'
df_products.to_csv(file_path_products, index=False) # index=False 不保存行索引
# 打印文件路径
print(f"CSV 文件已生成,路径为: {file_path_products}")

View File

@ -1,42 +0,0 @@
import pandas as pd
import numpy as np
# 设置随机种子,以便结果可重复
np.random.seed(42)
# 定义生成数据的行数
num_rows = 170 # 生成 100 行数据
# 创建空列表来存储生成的ID
material_ids = []
device_ids = []
product_ids = []
# 生成材料、设备、产品的ID确保同一行内的ID不重复
for _ in range(num_rows):
mat_id = np.random.randint(1, 51) # 材料ID范围 0-99
dev_id = np.random.randint(51, 107) # 设备ID范围 100-199
# 确保产品ID在当前行与材料ID和设备ID不重复
while True:
prod_id = np.random.randint(0, 107)
if prod_id != mat_id and prod_id != dev_id:
break
material_ids.append(mat_id)
device_ids.append(dev_id)
product_ids.append(prod_id)
# 创建数据框将三个ID列结合起来
df_ids = pd.DataFrame({
'材料id': material_ids,
'设备id': device_ids,
'产品id': product_ids
})
# 指定文件路径并保存为CSV文件
file_path_ids = '测试数据 material_device_product_ids.csv'
df_ids.to_csv(file_path_ids, index=False) # index=False 表示不保存行索引
# 打印文件路径
print(f"CSV 文件已生成,路径为: {file_path_ids}")

View File

@ -1,24 +0,0 @@
import pandas as pd
import numpy as np
# 设置随机种子以确保结果可重复
np.random.seed(42)
# 定义行数,即生成多少个设备
num_rows = 56
# 生成设备id例如100到200之间的设备ID
device_ids = (i for i in range(51, 107))
# 生成设备残值假设范围在1000到10000之间
device_salvage_values = np.random.randint(10, 1000, size=num_rows)
# 创建数据框将设备id和设备残值结合起来
df_devices = pd.DataFrame({
'设备id': device_ids,
'设备残值': device_salvage_values
})
# 保存为CSV文件
file_path_devices = '测试数据 device_salvage_values.csv'
df_devices.to_csv(file_path_devices, index=False)

View File

@ -1,17 +0,0 @@
import pandas as pd
Firm_Prod = pd.read_csv("input_data/Firm_amended.csv")
Firm_Prod.fillna(0, inplace=True)
# Stack the firm-product relationships into a DataFrame
firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()})
firm_prod = firm_prod[firm_prod['bool'] == 1].reset_index()
firm_prod.drop('bool', axis=1, inplace=True)
firm_prod.rename({'level_0': 'Firm_Code', 'level_1': 'Product_Code'}, axis=1, inplace=True)
firm_prod['Firm_Code'] = firm_prod['Firm_Code'].astype('string')
# 保存为新的 CSV 文件
output_file_path = 'input_data/firm_industry_relation.csv'
firm_prod.to_csv(output_file_path, index=False)
print(f"新的 CSV 文件已保存到: {output_file_path}")