优化图形

This commit is contained in:
Cricial 2025-02-08 21:25:56 +08:00
parent 5b2cf3a3e5
commit 0233f642e4
11 changed files with 30 additions and 26 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 MiB

After

Width:  |  Height:  |  Size: 7.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 304 KiB

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 MiB

After

Width:  |  Height:  |  Size: 1.9 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

After

Width:  |  Height:  |  Size: 9.1 MiB

View File

@ -58,7 +58,7 @@ for _, row in count_dcp.iterrows():
G_firm.add_edges_from(lst_add_edge)
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="dot", args="")
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
node_label = nx.get_node_attributes(G_firm, 'Revenue_Log')
# desensitize
node_label = {
@ -66,7 +66,7 @@ node_label = {
for key in node_label.keys()
}
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
node_size = list(map(lambda x: x**2, node_size))
node_size = list(map(lambda x: x**3, node_size))
edge_label = nx.get_edge_attributes(G_firm, "edge_label")
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
edge_width = nx.get_edge_attributes(G_firm, "edge_width")
@ -76,13 +76,13 @@ colors = [w for (n1, n2, _), w in colors.items()]
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
fig = plt.figure(figsize=(10, 8), dpi=300)
fig = plt.figure(figsize=(10, 8), dpi=500)
nx.draw(G_firm,
pos,
node_size=node_size,
labels=node_label,
font_size=6,
width=2,
width=1,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
@ -94,5 +94,5 @@ position = fig.add_axes([0.95, 0.05, 0.01, 0.3])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=4)
cb.outline.set_visible(False)
plt.savefig("output_result\\risk\\count_dcp_network")
plt.savefig("output_result\\risk\\count_dcp_network_twopi")
plt.close()

View File

@ -29,7 +29,7 @@ for code in g_bom.nodes:
index_list = count_prod[count_prod['id_product'] == code].index.tolist()
index = index_list[0] if len(index_list) == 1 else -1
node_attr['count'] = count_prod['count'].get(index, 0)
node_attr['node_size'] = count_prod['count'].get(index, 0)
node_attr['node_size'] = (count_prod['count'].get(index, 0) + 10) / 10
node_attr['node_color'] = count_prod['count'].get(index, 0)
labels_dict[code] = node_attr
nx.set_node_attributes(g_bom, labels_dict)
@ -50,7 +50,7 @@ nx.draw(g_bom,
pos,
node_size=list(nx.get_node_attributes(g_bom, 'node_size').values()),
labels=node_labels,
font_size=6,
font_size=3,
node_color=colors,
cmap=cmap,
vmin=vmin,
@ -79,7 +79,7 @@ count_dcp_prod.sort_values('count', inplace=True, ascending=False)
count_dcp_prod.to_csv('output_result\\risk\\count_dcp_prod.csv',
index=False,
encoding='utf-8-sig')
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 50]
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 1000]
# print(count_dcp_prod)
list_prod = count_dcp_prod['up_id_product'].tolist(
@ -102,7 +102,6 @@ for code in list_prod:
bom_labels_dict[code] = dct_attr
nx.set_node_attributes(g_bom, bom_labels_dict)
count_max = count_dcp_prod['count'].max()
count_min = count_dcp_prod['count'].min()
k = 5 / (count_max - count_min)
@ -135,26 +134,27 @@ pos_new = {}
for node, p in pos.items():
pos_new[node] = (p[1], p[0])
fig = plt.figure(figsize=(6, 10), dpi=300)
fig = plt.figure(figsize=(6, 6), dpi=500)
# plt.subplots_adjust(right=0.7)
nx.draw(g_bom,
pos_new,
node_size=25,
labels=node_labels,
font_size=5,
width=1.5,
width=0.5,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
edge_vmax=vmax)
edge_vmax=vmax,
alpha=1)
plt.axis('off')
axis = plt.gca()
axis.set_xlim([1.2*x for x in axis.get_xlim()])
axis.set_ylim([1.2*y for y in axis.get_ylim()])
axis.set_xlim([1 * x for x in axis.get_xlim()])
axis.set_ylim([1 * y for y in axis.get_ylim()])
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.75, 0.1, 0.01, 0.2])
position = fig.add_axes([0.85, 0.75, 0.01, 0.2])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=3)
cb.outline.set_visible(False)

View File

@ -70,19 +70,24 @@ with open("firm_network.pkl", 'rb') as f:
G_firm = pickle.load(f)
print(f"Successfully loaded cached data from firm_network.pkl")
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
node_label = nx.get_node_attributes(G_firm, 'Revenue_Log')
node_label = {key: key for key in node_label.keys()}
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
edge_label = nx.get_edge_attributes(G_firm, "Product")
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
# 1. 移除孤立节点
isolated_nodes = list(nx.isolates(G_firm)) # 找出所有没有连接的孤立节点
G_firm.remove_nodes_from(isolated_nodes) # 从图中移除这些节点
plt.figure(figsize=(12, 12), dpi=300)
nx.draw(G_firm, pos, node_size=node_size, labels=node_label, font_size=5)
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=4)
plt.savefig(f"output_result/risk/g_firm_sample_id_{sample_id}_de.png")
# 2. 重新布局和绘图
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
node_label = {key: key for key in nx.get_node_attributes(G_firm, 'Revenue_Log').keys()}
node_size = [value * 10 for value in nx.get_node_attributes(G_firm, 'Revenue_Log').values()] # 节点大小扩大10倍
edge_label = {(n1, n2): label for (n1, n2, _), label in nx.get_edge_attributes(G_firm, "Product").items()}
plt.figure(figsize=(12, 12), dpi=500)
nx.draw(G_firm, pos, node_size=node_size, labels=node_label, font_size=5, width=0.5)
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=2)
plt.axis('equal') # 锁定坐标轴比例,确保图形内容是正方形
plt.savefig(f"output_result/risk/g_firm_sample_id_{sample_id}_de.png", bbox_inches='tight', pad_inches=0.1)
plt.close()
# Count firm product
count_firm_prod = result.value_counts(subset=['id_firm', 'id_product'])
count_firm_prod.name = 'count'
@ -140,4 +145,3 @@ count_dcp.to_csv('output_result/risk/count_dcp.csv', index=False, encoding='utf-
# 输出结果
print(count_dcp)