优化图形
Before Width: | Height: | Size: 1.5 MiB After Width: | Height: | Size: 7.1 MiB |
After Width: | Height: | Size: 4.2 MiB |
After Width: | Height: | Size: 5.7 MiB |
Before Width: | Height: | Size: 304 KiB After Width: | Height: | Size: 1.8 MiB |
After Width: | Height: | Size: 1.7 MiB |
After Width: | Height: | Size: 1.8 MiB |
Before Width: | Height: | Size: 1.9 MiB After Width: | Height: | Size: 1.9 MiB |
Before Width: | Height: | Size: 2.2 MiB After Width: | Height: | Size: 9.1 MiB |
|
@ -58,7 +58,7 @@ for _, row in count_dcp.iterrows():
|
|||
G_firm.add_edges_from(lst_add_edge)
|
||||
|
||||
# dcp_networkx
|
||||
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="dot", args="")
|
||||
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
|
||||
node_label = nx.get_node_attributes(G_firm, 'Revenue_Log')
|
||||
# desensitize
|
||||
node_label = {
|
||||
|
@ -66,7 +66,7 @@ node_label = {
|
|||
for key in node_label.keys()
|
||||
}
|
||||
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
|
||||
node_size = list(map(lambda x: x**2, node_size))
|
||||
node_size = list(map(lambda x: x**3, node_size))
|
||||
edge_label = nx.get_edge_attributes(G_firm, "edge_label")
|
||||
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
|
||||
edge_width = nx.get_edge_attributes(G_firm, "edge_width")
|
||||
|
@ -76,13 +76,13 @@ colors = [w for (n1, n2, _), w in colors.items()]
|
|||
vmin = min(colors)
|
||||
vmax = max(colors)
|
||||
cmap = plt.cm.Blues
|
||||
fig = plt.figure(figsize=(10, 8), dpi=300)
|
||||
fig = plt.figure(figsize=(10, 8), dpi=500)
|
||||
nx.draw(G_firm,
|
||||
pos,
|
||||
node_size=node_size,
|
||||
labels=node_label,
|
||||
font_size=6,
|
||||
width=2,
|
||||
width=1,
|
||||
edge_color=colors,
|
||||
edge_cmap=cmap,
|
||||
edge_vmin=vmin,
|
||||
|
@ -94,5 +94,5 @@ position = fig.add_axes([0.95, 0.05, 0.01, 0.3])
|
|||
cb = plt.colorbar(sm, fraction=0.01, cax=position)
|
||||
cb.ax.tick_params(labelsize=4)
|
||||
cb.outline.set_visible(False)
|
||||
plt.savefig("output_result\\risk\\count_dcp_network")
|
||||
plt.savefig("output_result\\risk\\count_dcp_network_twopi")
|
||||
plt.close()
|
||||
|
|
|
@ -29,7 +29,7 @@ for code in g_bom.nodes:
|
|||
index_list = count_prod[count_prod['id_product'] == code].index.tolist()
|
||||
index = index_list[0] if len(index_list) == 1 else -1
|
||||
node_attr['count'] = count_prod['count'].get(index, 0)
|
||||
node_attr['node_size'] = count_prod['count'].get(index, 0)
|
||||
node_attr['node_size'] = (count_prod['count'].get(index, 0) + 10) / 10
|
||||
node_attr['node_color'] = count_prod['count'].get(index, 0)
|
||||
labels_dict[code] = node_attr
|
||||
nx.set_node_attributes(g_bom, labels_dict)
|
||||
|
@ -50,7 +50,7 @@ nx.draw(g_bom,
|
|||
pos,
|
||||
node_size=list(nx.get_node_attributes(g_bom, 'node_size').values()),
|
||||
labels=node_labels,
|
||||
font_size=6,
|
||||
font_size=3,
|
||||
node_color=colors,
|
||||
cmap=cmap,
|
||||
vmin=vmin,
|
||||
|
@ -79,7 +79,7 @@ count_dcp_prod.sort_values('count', inplace=True, ascending=False)
|
|||
count_dcp_prod.to_csv('output_result\\risk\\count_dcp_prod.csv',
|
||||
index=False,
|
||||
encoding='utf-8-sig')
|
||||
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 50]
|
||||
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 1000]
|
||||
# print(count_dcp_prod)
|
||||
|
||||
list_prod = count_dcp_prod['up_id_product'].tolist(
|
||||
|
@ -102,7 +102,6 @@ for code in list_prod:
|
|||
bom_labels_dict[code] = dct_attr
|
||||
nx.set_node_attributes(g_bom, bom_labels_dict)
|
||||
|
||||
|
||||
count_max = count_dcp_prod['count'].max()
|
||||
count_min = count_dcp_prod['count'].min()
|
||||
k = 5 / (count_max - count_min)
|
||||
|
@ -135,26 +134,27 @@ pos_new = {}
|
|||
for node, p in pos.items():
|
||||
pos_new[node] = (p[1], p[0])
|
||||
|
||||
fig = plt.figure(figsize=(6, 10), dpi=300)
|
||||
fig = plt.figure(figsize=(6, 6), dpi=500)
|
||||
# plt.subplots_adjust(right=0.7)
|
||||
nx.draw(g_bom,
|
||||
pos_new,
|
||||
node_size=25,
|
||||
labels=node_labels,
|
||||
font_size=5,
|
||||
width=1.5,
|
||||
width=0.5,
|
||||
edge_color=colors,
|
||||
edge_cmap=cmap,
|
||||
edge_vmin=vmin,
|
||||
edge_vmax=vmax)
|
||||
edge_vmax=vmax,
|
||||
alpha=1)
|
||||
plt.axis('off')
|
||||
axis = plt.gca()
|
||||
axis.set_xlim([1.2*x for x in axis.get_xlim()])
|
||||
axis.set_ylim([1.2*y for y in axis.get_ylim()])
|
||||
axis.set_xlim([1 * x for x in axis.get_xlim()])
|
||||
axis.set_ylim([1 * y for y in axis.get_ylim()])
|
||||
|
||||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
|
||||
sm._A = []
|
||||
position = fig.add_axes([0.75, 0.1, 0.01, 0.2])
|
||||
position = fig.add_axes([0.85, 0.75, 0.01, 0.2])
|
||||
cb = plt.colorbar(sm, fraction=0.01, cax=position)
|
||||
cb.ax.tick_params(labelsize=3)
|
||||
cb.outline.set_visible(False)
|
||||
|
|
|
@ -70,19 +70,24 @@ with open("firm_network.pkl", 'rb') as f:
|
|||
G_firm = pickle.load(f)
|
||||
print(f"Successfully loaded cached data from firm_network.pkl")
|
||||
|
||||
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
|
||||
node_label = nx.get_node_attributes(G_firm, 'Revenue_Log')
|
||||
node_label = {key: key for key in node_label.keys()}
|
||||
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
|
||||
edge_label = nx.get_edge_attributes(G_firm, "Product")
|
||||
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
|
||||
# 1. 移除孤立节点
|
||||
isolated_nodes = list(nx.isolates(G_firm)) # 找出所有没有连接的孤立节点
|
||||
G_firm.remove_nodes_from(isolated_nodes) # 从图中移除这些节点
|
||||
|
||||
plt.figure(figsize=(12, 12), dpi=300)
|
||||
nx.draw(G_firm, pos, node_size=node_size, labels=node_label, font_size=5)
|
||||
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=4)
|
||||
plt.savefig(f"output_result/risk/g_firm_sample_id_{sample_id}_de.png")
|
||||
# 2. 重新布局和绘图
|
||||
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
|
||||
node_label = {key: key for key in nx.get_node_attributes(G_firm, 'Revenue_Log').keys()}
|
||||
node_size = [value * 10 for value in nx.get_node_attributes(G_firm, 'Revenue_Log').values()] # 节点大小扩大10倍
|
||||
edge_label = {(n1, n2): label for (n1, n2, _), label in nx.get_edge_attributes(G_firm, "Product").items()}
|
||||
|
||||
plt.figure(figsize=(12, 12), dpi=500)
|
||||
nx.draw(G_firm, pos, node_size=node_size, labels=node_label, font_size=5, width=0.5)
|
||||
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=2)
|
||||
plt.axis('equal') # 锁定坐标轴比例,确保图形内容是正方形
|
||||
plt.savefig(f"output_result/risk/g_firm_sample_id_{sample_id}_de.png", bbox_inches='tight', pad_inches=0.1)
|
||||
plt.close()
|
||||
|
||||
|
||||
# Count firm product
|
||||
count_firm_prod = result.value_counts(subset=['id_firm', 'id_product'])
|
||||
count_firm_prod.name = 'count'
|
||||
|
@ -140,4 +145,3 @@ count_dcp.to_csv('output_result/risk/count_dcp.csv', index=False, encoding='utf-
|
|||
|
||||
# 输出结果
|
||||
print(count_dcp)
|
||||
|
||||
|
|