mesa/firm.py

232 lines
12 KiB
Python
Raw Normal View History

2024-08-24 11:20:13 +08:00
from mesa import Agent
2024-08-24 11:20:13 +08:00
class FirmAgent(Agent):
def __init__(self, unique_id, model, type_region, revenue_log, a_lst_product):
2024-08-24 11:20:13 +08:00
# 调用超类的 __init__ 方法
super().__init__(unique_id, model)
# 初始化模型中的网络引用
self.firm_network = self.model.firm_network
self.product_network = self.model.product_network
# 初始化代理自身的属性
self.type_region = type_region
self.size_stat = []
self.dct_prod_up_prod_stat = {}
self.dct_prod_capacity = {}
# 试验中的参数
self.dct_n_trial_up_prod_disrupted = {}
self.dct_cand_alt_supp_up_prod_disrupted = {}
self.dct_request_prod_from_firm = {}
# 外部变量
self.is_prf_size = self.model.is_prf_size
self.is_prf_conn = bool(self.model.prf_conn)
self.str_cap_limit_prob_type = str(self.model.cap_limit_prob_type)
self.flt_cap_limit_level = float(self.model.cap_limit_level)
self.flt_diff_new_conn = float(self.model.diff_new_conn)
# 初始化 size_stat
self.size_stat.append((revenue_log, 0))
# 初始化 dct_prod_up_prod_stat
for prod in a_lst_product:
self.dct_prod_up_prod_stat[prod] = {
'p_stat': [('N', 0)],
's_stat': {up_prod: {'stat': True, 'set_disrupt_firm': set()}
for up_prod in prod.a_predecessors()}
}
# 初始化额外容量 (dct_prod_capacity)
for product in a_lst_product:
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
"cap_limit_prob_type must be either 'uniform' or 'normal'"
extra_cap_mean = self.size_stat[0][0] / self.flt_cap_limit_level
if self.str_cap_limit_prob_type == 'uniform':
extra_cap = self.model.random.uniform(extra_cap_mean - 2, extra_cap_mean + 2)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
2024-08-24 11:20:13 +08:00
elif self.str_cap_limit_prob_type == 'normal':
extra_cap = self.model.random.normalvariate(extra_cap_mean, 1)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
2024-08-24 11:20:13 +08:00
self.dct_prod_capacity[product] = extra_cap
def remove_edge_to_cus(self, disrupted_prod):
# parameter disrupted_prod is the product that self got disrupted
2024-08-24 11:20:13 +08:00
lst_out_edge = list(
self.firm_network.out_edges(
self.unique_id, keys=True, data='Product'))
for n1, n2, key, product_code in lst_out_edge:
if product_code == disrupted_prod.unique_id:
# update customer up product supplier status
customer = next(agent for agent in self.model.company_agents if agent.unique_id == n2)
2024-08-24 11:20:13 +08:00
for prod in customer.dct_prod_up_prod_stat.keys():
if disrupted_prod in customer.dct_prod_up_prod_stat[prod]['s_stat'].keys():
customer.dct_prod_up_prod_stat[prod]['s_stat'][disrupted_prod][
'set_disrupt_firm'].add(self)
# print(f"{self.name} disrupt {customer.name}'s "
# f"{prod.code} due to {disrupted_prod.code}")
# remove edge to customer
self.firm_network.remove_edge(n1, n2, key)
2024-08-24 11:20:13 +08:00
def disrupt_cus_prod(self, prod, disrupted_up_prod):
# parameter prod is the product that has disrupted_up_prod
# parameter disrupted_up_prod is the product that
# self's component exists disrupted supplier
num_lost = \
len(self.dct_prod_up_prod_stat[prod]['s_stat']
[disrupted_up_prod]['set_disrupt_firm'])
num_remain = \
len([u for u, _, _, d in
self.firm_network.in_edges(self.get_firm_network_unique_id(),
keys=True,
data='Product')
if d == disrupted_up_prod.unique_id])
2024-08-24 11:20:13 +08:00
lost_percent = num_lost / (num_lost + num_remain)
lst_size = \
[firm.size_stat[-1][0] for firm in self.model.company_agents]
std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \
/ (max(lst_size) - min(lst_size) + 1)
2024-08-24 11:20:13 +08:00
# calculate probability of disruption
2024-08-24 11:20:13 +08:00
prob_disrupt = 1 - std_size * (1 - lost_percent)
if self.model.nprandom.choice([True, False],
p=[prob_disrupt,
1 - prob_disrupt]):
2024-08-24 11:20:13 +08:00
self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0
self.dct_prod_up_prod_stat[
prod]['s_stat'][disrupted_up_prod]['stat'] = False
status, _ = self.dct_prod_up_prod_stat[
prod]['p_stat'][-1]
2024-08-24 11:20:13 +08:00
if status != 'D':
self.dct_prod_up_prod_stat[
prod]['p_stat'].append(('D', self.model.t))
# print(f"{self.name}'s {prod.code} turn to D status due to "
# f"disrupted supplier of {disrupted_up_prod.code}")
2024-08-24 11:20:13 +08:00
def seek_alt_supply(self, product):
if self.dct_n_trial_up_prod_disrupted[product] <= self.model.int_n_max_trial:
if self.dct_n_trial_up_prod_disrupted[product] == 0:
self.dct_cand_alt_supp_up_prod_disrupted[product] = [
firm for firm in self.model.company_agents
2024-08-24 11:20:13 +08:00
if firm.is_prod_in_current_normal(product)]
if self.dct_cand_alt_supp_up_prod_disrupted[product]:
lst_firm_connect = []
if self.is_prf_conn:
for firm in self.dct_cand_alt_supp_up_prod_disrupted[product]:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or \
self.firm_network.has_edge(firm.unique_id, self.unique_id):
2024-08-24 11:20:13 +08:00
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
if self.is_prf_size:
lst_size = [firm.size_stat[-1][0] for firm in self.dct_cand_alt_supp_up_prod_disrupted[product]]
lst_prob = [size / sum(lst_size) for size in lst_size]
select_alt_supply = \
self.random.choices(self.dct_cand_alt_supp_up_prod_disrupted[product], weights=lst_prob)[0]
2024-08-24 11:20:13 +08:00
else:
select_alt_supply = self.random.choice(self.dct_cand_alt_supp_up_prod_disrupted[product])
elif len(lst_firm_connect) > 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_connect]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_alt_supply = self.random.choices(lst_firm_connect, weights=lst_prob)[0]
else:
select_alt_supply = self.random.choice(lst_firm_connect)
assert select_alt_supply.is_prod_in_current_normal(product)
if product in select_alt_supply.dct_request_prod_from_firm:
select_alt_supply.dct_request_prod_from_firm[product].append(self)
else:
select_alt_supply.dct_request_prod_from_firm[product] = [self]
self.dct_n_trial_up_prod_disrupted[product] += 1
def handle_request(self):
for product, lst_firm in self.dct_request_prod_from_firm.items():
if self.dct_prod_capacity[product] > 0:
if len(lst_firm) == 0:
continue
elif len(lst_firm) == 1:
self.accept_request(lst_firm[0], product)
elif len(lst_firm) > 1:
lst_firm_connect = []
if self.is_prf_conn:
for firm in lst_firm:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or \
self.firm_network.has_edge(firm.unique_id, self.unique_id):
2024-08-24 11:20:13 +08:00
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_customer = self.random.choices(lst_firm, weights=lst_prob)[0]
else:
select_customer = self.random.choice(lst_firm)
self.accept_request(select_customer, product)
elif len(lst_firm_connect) > 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_connect]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_customer = self.random.choices(lst_firm_connect, weights=lst_prob)[0]
else:
select_customer = self.random.choice(lst_firm_connect)
self.accept_request(select_customer, product)
else:
for down_firm in lst_firm:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
def accept_request(self, down_firm, product):
if self.firm_network.has_edge(self.unique_id, down_firm.unique_id) or \
self.firm_network.has_edge(down_firm.unique_id, self.unique_id):
prod_accept = 1.0
else:
prod_accept = self.flt_diff_new_conn
if self.model.nprandom.choice([True, False], p=[prod_accept, 1 - prod_accept]):
self.firm_network.add_edge(self.unique_id, down_firm.unique_id, Product=product.unique_id)
self.dct_prod_capacity[product] -= 1
self.dct_request_prod_from_firm[product].remove(down_firm)
for prod in down_firm.dct_prod_up_prod_stat.keys():
if product in down_firm.dct_prod_up_prod_stat[prod]['s_stat']:
down_firm.dct_prod_up_prod_stat[prod]['s_stat'][product]['stat'] = True
down_firm.dct_prod_up_prod_stat[prod]['p_stat'].append(
('N', self.model.t))
del down_firm.dct_n_trial_up_prod_disrupted[product]
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
else:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
2024-08-24 11:20:13 +08:00
def clean_before_trial(self):
self.dct_request_prod_from_firm = {}
2024-08-24 11:20:13 +08:00
def clean_before_time_step(self):
# Reset the number of trials and candidate suppliers for disrupted products
self.dct_n_trial_up_prod_disrupted = dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0)
self.dct_cand_alt_supp_up_prod_disrupted = {}
# Update the status of products and refresh disruption sets
for prod in self.dct_prod_up_prod_stat.keys():
status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if ts != self.model.t:
self.dct_prod_up_prod_stat[prod]['p_stat'].append((status, self.model.t))
2024-08-24 11:20:13 +08:00
# Refresh the set of disrupted firms
for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys():
self.dct_prod_up_prod_stat[prod]['s_stat'][up_prod]['set_disrupt_firm'] = set()
def get_firm_network_unique_id(self):
return self.unique_id
def is_prod_in_current_normal(self, prod):
if prod in self.dct_prod_up_prod_stat.keys():
if self.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] == 'N':
return True
else:
return False
else:
return False