mesa/computation.py

271 lines
13 KiB
Python
Raw Normal View History

2024-11-28 18:56:24 +08:00
import json
2024-08-24 11:20:13 +08:00
import os
import datetime
2024-11-28 18:56:24 +08:00
import networkx as nx
2024-12-08 18:43:33 +08:00
import pandas as pd
2024-08-24 16:13:37 +08:00
from mesa import Model
2024-08-24 11:20:13 +08:00
from typing import TYPE_CHECKING
from my_model import MyModel
2024-08-24 11:20:13 +08:00
if TYPE_CHECKING:
from controller_db import ControllerDB
class Computation:
def __init__(self, c_db: 'ControllerDB'):
# 控制不同进程 计算不同的样本 但使用同一个 数据库 c_db
self.c_db = c_db
self.pid = os.getpid()
def run(self, str_code='0', s_id=None):
sample_random = self.c_db.fetch_a_sample(s_id)
if sample_random is None:
return True
# lock this row by update is_done_flag to 0 将运行后的样本设置为 flag 0
self.c_db.lock_the_sample(sample_random)
print(
f"Pid {self.pid} ({str_code}) is running "
f"sample {sample_random.id} at {datetime.datetime.now()}")
# 将sample 对应的 experiment 的一系列值 和 参数值 传入 模型 中 包括列名 和 值
dct_exp = {column: getattr(sample_random.experiment, column)
for column in sample_random.experiment.__table__.c.keys()}
# 删除不需要的 主键
del dct_exp['id']
dct_sample_para = {'sample': sample_random,
'seed': sample_random.seed,
**dct_exp}
2024-11-28 18:56:24 +08:00
product_network_test = nx.adjacency_graph(json.loads(dct_sample_para['g_bom']))
model = MyModel(dct_sample_para)
2024-09-24 19:21:59 +08:00
for i in range(1):
2024-08-24 16:13:37 +08:00
model.step()
2024-09-24 19:21:59 +08:00
print(i, datetime.datetime.now())
model.end()
2024-08-24 11:20:13 +08:00
return False
2024-12-08 18:43:33 +08:00
def initialize_firm_network(self):
# Read the firm data
firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
firm['Code'] = firm['Code'].astype(str)
firm.fillna(0, inplace=True)
firm_attr = firm.loc[:, ["Code", "Type_Region", "Revenue_Log"]]
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
firm_product = []
grouped = firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list)
firm_product.append(grouped)
firm_attr['Product_Code'] = firm_attr['Code'].map(grouped)
firm_attr.set_index('Code', inplace=True)
grouped = firm_industry_relation.groupby('Firm_Code')
self.firm_prod_labels_dict = {code: group['Product_Code'].tolist() for code, group in grouped}
# 遍历'Product_Code' 与 index 交换
for index, row in firm_attr.iterrows():
id_index_list = []
for i in row['Product_Code']:
for key_values in self.id_code.items():
if int(key_values[0]) == i:
for id in key_values[1]:
id_index_list.append(id)
firm_attr.at[index, 'Product_Code'] = id_index_list
self.G_Firm.add_nodes_from(firm["Code"])
# Assign attributes to the firm nodes
firm_labels_dict = {code: firm_attr.loc[code].to_dict() for code in self.G_Firm.nodes}
nx.set_node_attributes(self.G_Firm, firm_labels_dict)
self.Firm = firm
def initialize_firm_product_network(self):
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
firm_industry_relation['Product_Code'] = firm_industry_relation['Product_Code'].apply(lambda x: [x])
# 将 'firm_prod' 表中的每一行作为图中的节点
self.G_FirmProd.add_nodes_from(firm_industry_relation.index)
# 为每个节点分配属性
# 遍历'Product_Code' 与 index 交换
for index, row in firm_industry_relation.iterrows():
id_index_list = []
for i in row['Product_Code']:
for key_values in self.id_code.items():
if int(key_values[0]) == i:
for id in key_values[1]:
id_index_list.append(id)
firm_industry_relation.at[index, 'Product_Code'] = id_index_list
firm_prod_labels_dict = {code: firm_industry_relation.loc[code].to_dict() for code in
firm_industry_relation.index}
nx.set_node_attributes(self.G_FirmProd, firm_prod_labels_dict)
def add_edges_to_firm_network(self):
""" Add edges between firms based on the product BOM relationships """
# Add edges to G_Firm according to G_bom
for node in nx.nodes(self.G_Firm):
lst_pred_product_code = []
for product_code in self.G_Firm.nodes[node]['Product_Code']:
lst_pred_product_code += list(self.G_bom.predecessors(product_code))
lst_pred_product_code = list(set(lst_pred_product_code))
lst_pred_product_code = list(sorted(lst_pred_product_code)) # Ensure consistency
for pred_product_code in lst_pred_product_code:
# Get a list of firms producing the component (pred_product_code)
lst_pred_firm = [firm_code for firm_code, product in self.firm_prod_labels_dict.items() if
pred_product_code in product]
# Select multiple suppliers (multi-sourcing)
n_pred_firm = self.int_netw_prf_n
if n_pred_firm > len(lst_pred_firm):
n_pred_firm = len(lst_pred_firm)
if self.is_prf_size:
# 获取 firm 的 size 列表
lst_pred_firm_size = [self.G_Firm.nodes[pred_firm]['Revenue_Log'] for pred_firm in lst_pred_firm]
# 检查 lst_pred_firm_size 是否为空或总和为 0
if len(lst_pred_firm_size) == 0 or sum(lst_pred_firm_size) == 0:
# print("警告: lst_pred_firm_size 为空或总和为 0无法生成概率分布")
lst_choose_firm = [] # 返回空结果,或根据需要处理
else:
# 计算总和
sum_pred_firm_size = sum(lst_pred_firm_size)
# 归一化生成 lst_prob
lst_prob = [size / sum_pred_firm_size for size in lst_pred_firm_size]
# 使用 np.isclose() 确保概率总和接近 1
if not np.isclose(sum(lst_prob), 1.0):
# print(f"警告: 概率总和为 {sum(lst_prob)},现在进行修正")
lst_prob = [prob / sum(lst_prob) for prob in lst_prob]
# 确保没有负值或 0
lst_prob = [max(0, prob) for prob in lst_prob]
# 根据修正后的概率选择 firm
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False, p=lst_prob)
else:
# 直接进行随机选择
lst_choose_firm = self.nprandom.choice(lst_pred_firm, n_pred_firm, replace=False)
# Add edges from predecessor firms to current node (firm)
lst_add_edge = [(pred_firm, node, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
self.G_Firm.add_edges_from(lst_add_edge)
# Add edges to firm-product network
self.add_edges_to_firm_product_network(node, pred_product_code, lst_choose_firm)
def add_edges_to_firm_product_network(self, node, pred_product_code, lst_choose_firm):
""" Helper function to add edges to the firm-product network """
set_node_prod_code = set(self.G_Firm.nodes[node]['Product_Code'])
set_pred_succ_code = set(self.G_bom.successors(pred_product_code))
lst_use_pred_prod_code = list(set_node_prod_code & set_pred_succ_code)
if len(lst_use_pred_prod_code) == 0:
print("错误")
pred_node_list = []
for pred_firm in lst_choose_firm:
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == pred_product_code and v['Firm_Code'] == pred_firm:
pred_node_list.append(n)
if len(pred_node_list) != 0:
pred_node = pred_node_list[0]
else:
pred_node = -1
current_node_list = []
for use_pred_prod_code in lst_use_pred_prod_code:
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == use_pred_prod_code and v['Firm_Code'] == node:
current_node_list.append(n)
if len(current_node_list) != 0:
current_node = current_node_list[0]
else:
current_node = -1
if current_node != -1 and pred_node != -1:
self.G_FirmProd.add_edge(pred_node, current_node)
def connect_unconnected_nodes(self):
""" Connect unconnected nodes in the firm network """
for node in nx.nodes(self.G_Firm):
if self.G_Firm.degree(node) == 0:
current_node_list = []
for product_code in self.G_Firm.nodes[node]['Product_Code']:
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v['Firm_Code'] == node and v1 == product_code:
current_node_list.append(n)
if len(current_node_list) != 0:
current_node = current_node_list[0]
else:
current_node = -1
lst_succ_product_code = list(self.G_bom.successors(product_code))
for succ_product_code in lst_succ_product_code:
lst_succ_firm = [firm_code for firm_code, product in self.firm_prod_labels_dict.items() if
succ_product_code in product]
n_succ_firm = self.int_netw_prf_n
if n_succ_firm > len(lst_succ_firm):
n_succ_firm = len(lst_succ_firm)
if self.is_prf_size:
lst_succ_firm_size = [self.G_Firm.nodes[succ_firm]['Revenue_Log'] for succ_firm in
lst_succ_firm]
if len(lst_succ_firm_size) == 0 or sum(lst_succ_firm_size) == 0:
# print("警告: lst_pred_firm_size 为空或总和为 0无法生成概率分布")
lst_choose_firm = [] # 返回空结果,或根据需要处理
else:
# 计算总和
sum_pred_firm_size = sum(lst_succ_firm_size)
# 归一化生成 lst_prob
lst_prob = [size / sum_pred_firm_size for size in lst_succ_firm_size]
# 使用 np.isclose() 确保概率总和接近 1
if not np.isclose(sum(lst_prob), 1.0):
# print(f"警告: 概率总和为 {sum(lst_prob)},现在进行修正")
lst_prob = [prob / sum(lst_prob) for prob in lst_prob]
# 确保没有负值或 0
lst_prob = [max(0, prob) for prob in lst_prob]
lst_choose_firm = self.nprandom.choice(lst_succ_firm, n_succ_firm, replace=False,
p=lst_prob)
else:
lst_choose_firm = self.nprandom.choice(lst_succ_firm, n_succ_firm, replace=False)
lst_add_edge = [(node, succ_firm, {'Product': product_code}) for succ_firm in
lst_choose_firm]
self.G_Firm.add_edges_from(lst_add_edge)
# Add edges to firm-product network
succ_node_list = []
for succ_firm in lst_choose_firm:
for n, v in self.G_FirmProd.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == succ_product_code and v['Firm_Code'] == succ_firm:
succ_node_list.append(n)
if len(succ_node_list) != 0:
succ_node = succ_node_list[0]
else:
succ_node = -1
if current_node != -1 and succ_node != -1:
self.G_FirmProd.add_edge(current_node, succ_node)
self.sample.g_firm = json.dumps(nx.adjacency_data(self.G_Firm))
self.firm_network = self.G_Firm # 直接使用 networkx 图对象
self.firm_prod_network = self.G_FirmProd # 直接使用 networkx 图对象