import json import random from deap import tools from sqlalchemy.orm import close_all_sessions from tqdm import tqdm import matplotlib.pyplot as plt from GA_Agent_0925.creating import creating from GA_Agent_0925.orm import connection from controller_db import ControllerDB from evaluate_func import fitness, get_vulnerable35_code, get_target_vulnerable_industries # ============================== # 遗传算法主函数(单进程) # ============================== def main(): # 1️⃣ 加载配置 with open("config.json", "r", encoding="utf-8") as f: cfg = json.load(f) random.seed(cfg["seed"]) print("\n📘 参数配置:") for k, v in cfg.items(): print(f" {k}: {v}") print("-" * 40) # 2️⃣ 初始化 ControllerDB(数据库连接) controller_db_obj = ControllerDB("without_exp", reset_flag=0) controller_db_obj.reset_db(force_drop=False) # 准备样本表 controller_db_obj.prepare_list_sample() # 2️⃣ 初始化工具箱 toolbox = creating() pop = toolbox.population(n=cfg["pop_size"]) hof = tools.HallOfFame(1) stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", lambda fits: sum(f[0] for f in fits) / len(fits)) stats.register("max", lambda fits: max(f[0] for f in fits)) best_list = [] avg_list = [] # ============================== # 主进化循环 # ============================== for gen in tqdm(range(cfg["n_gen"]), desc="进化中", ncols=90): # 计算未评估个体适应度 invalid_ind = [ind for ind in pop if not ind.fitness.valid] for ind in invalid_ind: controller_db_obj.reset_sample_db() controller_db_obj.prepare_list_sample() ind.fitness.values = fitness(ind, controller_db_obj=controller_db_obj) # 选择、交叉、变异 offspring = toolbox.select(pop, len(pop)) offspring = list(map(toolbox.clone, offspring)) for child1, child2 in zip(offspring[::2], offspring[1::2]): if random.random() < cfg["cx_prob"]: toolbox.mate(child1, child2) del child1.fitness.values, child2.fitness.values for mutant in offspring: if random.random() < cfg["mut_prob"]: toolbox.mutate(mutant) del mutant.fitness.values # 更新适应度 invalid_ind = [ind for ind in offspring if not ind.fitness.valid] for ind in invalid_ind: controller_db_obj.reset_sample_db() controller_db_obj.prepare_list_sample() ind.fitness.values = fitness(ind, controller_db_obj=controller_db_obj) pop[:] = offspring hof.update(pop) record = stats.compile(pop) best_list.append(record["max"]) avg_list.append(record["avg"]) # ============================== # 输出最优结果 # ============================== print("\n✅ 进化完成!") print(f"🏆 最优个体: {hof[0]}") print(f"🌟 最优适应度: {hof[0].fitness.values[0]:.4f}") # 绘制收敛曲线 plt.figure(figsize=(8, 5)) plt.plot(best_list, label="Best Fitness", linewidth=2) plt.plot(avg_list, label="Average Fitness", linestyle="--") plt.title("Genetic Algorithm Convergence") plt.xlabel("Generation") plt.ylabel("Fitness") plt.legend() plt.grid(True, alpha=0.3) plt.tight_layout() plt.show() # ============================== # 最优个体产业匹配 # ============================== print("\n📊 计算最优个体产业匹配情况...") if __name__ == "__main__": main()