10.09添加git

This commit is contained in:
Cricial 2025-10-09 13:36:20 +08:00
commit 91f2122b65
95 changed files with 39866 additions and 0 deletions

3
.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
# 默认忽略的文件
/shelf/
/workspace.xml

219
.idea/csv-editor.xml Normal file
View File

@ -0,0 +1,219 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="CsvFileAttributes">
<option name="attributeMap">
<map>
<entry key="C:\Users\www\Desktop\python项目\数据\抽样第3次数据\firm_amended.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\device_salvage_values.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\firm_industry_relation.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_firm_data\Firm_amended.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_firm_data\firm_amended.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_firm_data\firms_devices.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_firm_data\firms_materials.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_firm_data\firms_products.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_product_data\BomCateNet.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_product_data\BomNodes.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_product_data\products_consumed_materials.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_product_data\products_materials_equipment.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_product_data\products_produced_products.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\input_product_data\合成结点.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\material_device_product_ids.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\oa_with_exp.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\oa_without_exp.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\xv_with_exp.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\xv_without_exp.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\input_data\产品消耗制造比例.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\resilience\Result_3.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\resilience\anova.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\resilience\anova_visualization.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\resilience\experiment_result.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_dcp.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_dcp_prod.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_firm.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_firm_prod.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\output_result\risk\count_prod.csv">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
</map>
</option>
</component>
</project>

View File

@ -0,0 +1,19 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="dataSourceStorageLocal" created-in="PY-242.23726.102">
<data-source name="iiabmdb_20250925@localhost" uuid="753dde79-ca3d-42e1-8fb4-13124f46b86d">
<database-info product="MySQL" version="8.0.36" jdbc-version="4.2" driver-name="Amazon Web Services (AWS) Advanced JDBC Wrapper" driver-version="Amazon Web Services (AWS) Advanced JDBC Wrapper 2.3.7 ( Revision: 7591851e8da4e1c705ba232a8bd07824a5cfd276 )" dbms="MYSQL" exact-version="8.0.36" exact-driver-version="2.3">
<extra-name-characters>#@</extra-name-characters>
<identifier-quote-string>`</identifier-quote-string>
</database-info>
<case-sensitivity plain-identifiers="lower" quoted-identifiers="lower" />
<secret-storage>master_key</secret-storage>
<user-name>iiabm_user</user-name>
<schema-mapping>
<introspection-scope>
<node kind="schema" qname="@" />
</introspection-scope>
</schema-mapping>
</data-source>
</component>
</project>

12
.idea/dataSources.xml Normal file
View File

@ -0,0 +1,12 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="DataSourceManagerImpl" format="xml" multifile-model="true">
<data-source source="LOCAL" name="iiabmdb_20250925@localhost" uuid="753dde79-ca3d-42e1-8fb4-13124f46b86d">
<driver-ref>mysql_aurora.aws_wrapper</driver-ref>
<synchronize>true</synchronize>
<jdbc-driver>software.amazon.jdbc.Driver</jdbc-driver>
<jdbc-url>jdbc:aws-wrapper:mysql://localhost:3306/iiabmdb_20250925</jdbc-url>
<working-dir>$ProjectFileDir$</working-dir>
</data-source>
</component>
</project>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,2 @@
#n:iiabmdb_20250925
!<md> [0, 0, null, null, -2147483648, -2147483648]

View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="DeveloperToolsToolWindowSettingsV1" lastSelectedContentNodeId="base64-encoder-decoder">
<developerToolsConfigurations />
</component>
</project>

8
.idea/encodings.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Encoding">
<file url="file://$PROJECT_DIR$/input_data/input_firm_data/firm_amended.csv" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/output_result/resilience/anova_visualization.csv" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/查看进度.py" charset="GBK" />
</component>
</project>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

10
.idea/mesa.iml Normal file
View File

@ -0,0 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/.venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.8" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

7
.idea/misc.xml Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.8" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/mesa.iml" filepath="$PROJECT_DIR$/.idea/mesa.iml" />
</modules>
</component>
</project>

11
.idea/sqldialects.xml Normal file
View File

@ -0,0 +1,11 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="SqlDialectMappings">
<file url="file://$PROJECT_DIR$/SQL_analysis_experiment.sql" dialect="MySQL" />
<file url="file://$PROJECT_DIR$/SQL_analysis_risk.sql" dialect="MySQL" />
<file url="file://$PROJECT_DIR$/SQL_db_user_create.sql" dialect="MySQL" />
<file url="file://$PROJECT_DIR$/SQL_export_high_risk_setting.sql" dialect="MySQL" />
<file url="file://$PROJECT_DIR$/SQL_migrate_db.sql" dialect="MySQL" />
<file url="file://$PROJECT_DIR$/iiabmdb_basic_info.sql" dialect="MySQL" />
</component>
</project>

7
.idea/vcs.xml Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/.." vcs="Git" />
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

29
11.py Normal file
View File

@ -0,0 +1,29 @@
import pickle
import os
from 查看进度 import visualize_progress
def load_cached_data(file_path):
"""
从指定的缓存文件加载数据
如果文件不存在或加载失败则返回空字典
"""
if not os.path.exists(file_path):
print(f"Warning: Cache file '{file_path}' does not exist.")
return {}
try:
with open(file_path, 'rb') as f:
data = pickle.load(f)
print(f"Successfully loaded cache from '{file_path}'.")
return data
except (pickle.UnpicklingError, FileNotFoundError, EOFError) as e:
print(f"Error loading cache from '{file_path}': {e}")
return {}
# 示例用法
# data_dct = load_cached_data("G_Firm_add_edges.pkl")
visualize_progress()

329
GA_Agent_0925/GA_random.py Normal file
View File

@ -0,0 +1,329 @@
# -*- coding: utf-8 -*- # 文件的编码格式设置为 UTF-8
from __future__ import division # 为了兼容 Python 2 和 3保证除法始终返回浮点数
import random # 导入 random 库,用于生成随机数
from deap import base # 从 DEAP 库导入 base 模块,提供一些遗传算法相关的功能
from deap import creator # 从 DEAP 库导入 creator 模块,用于定义个体和适应度
from deap import tools # 从 DEAP 库导入 tools 模块,提供常用的遗传算法工具(如交叉、变异等)
from my_model import MyModel
from sqlalchemy import text
import pandas as pd
from orm import connection
# 目标函数(适应度函数),用于评估个体的适应度
def fitness(individual):
"""
GA 适应度函数用于评估个体模型参数的效果
目标
- individual: 遗传算法中的个体参数列表
[n_max_trial, prf_size, prf_conn, cap_limit_prob_type, cap_limit_level,
diff_new_conn, netw_prf_n, s_r, S_r, x, k, production_increase_ratio]
- target_chain_set: 美国打击的产业链编号集合整数集合
适应度定义
- fitness = -error
- error = 脆弱产业集合与 target_chain_set 的差集大小
"""
# 1 将 GA 生成的个体参数传入 ABM 模型
"""
n_iter
g_bom
seed
sample
dct_lst_init_disrupt_firm_prod
remove_t
"""
dct_exp = {
'n_max_trial': individual[0],
'prf_size': individual[1],
'prf_conn': individual[2],
'cap_limit_prob_type': individual[3],
'cap_limit_level': individual[4],
'diff_new_conn': individual[5],
'netw_prf_n': individual[6],
's_r': individual[7],
'S_r': individual[8],
'x': individual[9],
'k': individual[10],
'production_increase_ratio': individual[11]
}
abm_model = MyModel(**dct_exp)
# 2 运行 ABM获取模拟结果的“脆弱产业集合”
abm_model.step()
abm_model.end()
simulated_vulnerable_industries=get_vulnerable100_code(connection)
# 3 获取目标集合(美国打击我们的产业集合)
target_vulnerable_industries = get_target_vulnerable_industries() # list / set
# 4 计算误差(集合差异度)
# 这里可以用 Jaccard 距离、集合交并比、或者简单的匹配数差
set_sim = set(simulated_vulnerable_industries)
set_target = set(target_vulnerable_industries)
error = len(set_sim.symmetric_difference(set_target)) # 差异元素个数
# 5 返回 fitnessGA 目标是最大化)
# 因为我们希望误差越小越好,所以 fitness = -error
return -error,
def creating():
"""
创建遗传算法工具箱用于优化 ABM 模型参数使生成的脆弱产业集合
与目标产业集合误差最小化fitness 最大化
"""
# 定义最大化适应度
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
# 定义个体类
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
# 定义每个基因的取值范围 / 类型及默认值
toolbox.register("n_max_trial", random.randint, 50, 500) # 最大尝试次数 [50,500]
toolbox.register("prf_size", random.uniform, 0.0, 1.0) # 是否规模偏好参数 [0,1]
toolbox.register("prf_conn", random.uniform, 0.0, 1.0) # 是否已有连接偏好 [0,1]
toolbox.register("cap_limit_prob_type", random.randint, 0, 2) # 额外产能分布类型 {0:正态,1:均匀,2:指数}
toolbox.register("cap_limit_level", random.uniform, 0.5, 2.0) # 额外产能均值放缩因子 [0.5,2.0]
toolbox.register("diff_new_conn", random.uniform, 0.0, 1.0) # 新供应关系构成概率 [0,1]
toolbox.register("netw_prf_n", random.randint, 1, 10) # 在网络中选择供应商目标数量 [1,10]
toolbox.register("s_r", random.uniform, 0.1, 0.5) # 补货下阈值 [0.1,0.5]
toolbox.register("S_r", random.uniform, 0.5, 1.0) # 补货上阈值 [0.5,1.0]
toolbox.register("x", random.uniform, 0.0, 0.1) # 每周期减少残值 [0.0,0.1]
toolbox.register("k", random.uniform, 0.1, 1.0) # 资源消耗比例 [0.1,1.0]
toolbox.register("production_increase_ratio", random.uniform, 0.5, 2.0) # 产品生产比例 [0.5,2.0]
# 个体由上述基因组成
toolbox.register(
"individual",
tools.initCycle,
creator.Individual,
(
toolbox.n_max_trial,
toolbox.prf_size,
toolbox.prf_conn,
toolbox.cap_limit_prob_type,
toolbox.cap_limit_level,
toolbox.diff_new_conn,
toolbox.netw_prf_n,
toolbox.s_r,
toolbox.S_r,
toolbox.x,
toolbox.k,
toolbox.production_increase_ratio
),
n=1
)
# 种群初始化
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# 注册 fitness 函数(需要在调用时传入目标产业集合)
# toolbox.register("evaluate", fitness) # 可以在 main 中使用 lambda 包装 target_chain_set
# 交叉、变异和选择操作
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
return toolbox
def main():
# 创建遗传算法的工具箱
ga = creating()
# 初始化种群大小为 50
pop = ga.population(n=50)
# 交叉概率、变异概率和代数
CXPB, MUTPB, NGEN = 0.5, 0.2, 500
print("Start of evolution")
# 评估整个种群的适应度
fitnesses = list(map(ga.evaluate, pop))
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
print(" Evaluated %i individuals" % len(pop))
# my_sql = Sql() # 创建 Sql 类的实例,用于与数据库交互
# 开始演化
for g in range(NGEN):
print("-- Generation %i --" % g)
# 选择下一代的个体
offspring = ga.select(pop, len(pop))
# 克隆选择的个体
offspring = list(map(ga.clone, offspring))
# 对后代进行交叉和变异
for child1, child2 in zip(offspring[::2], offspring[1::2]):
# 以 CXPB 的概率交叉两个个体
if random.random() < CXPB:
ga.mate(child1, child2)
# 交叉后的适应度值需要重新计算
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
# 以 MUTPB 的概率变异个体
if random.random() < MUTPB:
ga.mutate(mutant)
del mutant.fitness.values
# 评估适应度无效的个体
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(ga.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
print(" Evaluated %i individuals" % len(invalid_ind))
# 将种群完全替换为后代
pop[:] = offspring
# 收集所有个体的适应度并打印统计信息
fits = [ind.fitness.values[0] for ind in pop]
# 获取当前最好的个体并打印
best_ind = tools.selBest(pop, 1)[0]
print("Best individual is %s, %s" % (best_ind, best_ind.fitness.values))
# 将最优个体的信息插入数据库
result_string = '''INSERT INTO ga (generation, stu_beta, stu_nmb, gtu_mgf, gtu_discount, fitness, remark)
VALUES ({}, {}, {}, {}, {}, {}, 'Random2')'''.format(g, best_ind[0], best_ind[1], best_ind[2], best_ind[3], best_ind.fitness.values[0])
# my_sql.insert_one_row_and_return_new_id(result_string)
print("-- End of (successful) evolution --")
def get_target_vulnerable_industries():
"""
获取行业列表中所有产业链编号的集合整数形式
说明
- 输入的 industry_list 是一个字典列表每个字典包含
{"product": 产品名称, "category": 产品类别, "chain_id": 产业链编号}
- 某些 chain_id 可能是复合编号例如 "11 / 513742"需要拆分成单独整数
- 输出是一个 set包含所有 chain_id去重整数形式
参数
industry_list : list of dict
行业字典列表每个字典必须包含 "chain_id"
返回
set
所有产业链编号的整数集合
"""
industry_list = [
# ① 半导体设备类
{"product": "离子注入机", "category": "离子注入设备", "chain_id": 34538},
{"product": "刻蚀设备 / 湿法刻蚀设备", "category": "刻蚀机", "chain_id": 34529},
{"product": "沉积设备", "category": "薄膜生长设备CVD/PVD", "chain_id": 34539},
{"product": "CVD", "category": "薄膜生长设备", "chain_id": 34539},
{"product": "PVD", "category": "薄膜生长设备", "chain_id": 34539},
{"product": "CMP", "category": "化学机械抛光设备", "chain_id": 34530},
{"product": "光刻机", "category": "光刻机", "chain_id": 34533},
{"product": "涂胶显影机", "category": "涂胶显影设备", "chain_id": 34535},
{"product": "晶圆清洗设备", "category": "晶圆清洗机", "chain_id": 34531},
{"product": "测试设备", "category": "测试机", "chain_id": 34554},
{"product": "外延生长设备", "category": "薄膜生长设备", "chain_id": 34539},
# ② 半导体材料与化学品类
{"product": "三氯乙烯", "category": "清洗溶剂 → 通用湿电子化学品", "chain_id": 32438},
{"product": "丙酮", "category": "清洗溶剂 → 通用湿电子化学品", "chain_id": 32438},
{"product": "异丙醇", "category": "清洗溶剂 → 通用湿电子化学品", "chain_id": 32438},
{"product": "其他醇类", "category": "清洗溶剂 → 通用湿电子化学品", "chain_id": 32438},
{"product": "光刻胶", "category": "光刻胶及配套试剂", "chain_id": 32445},
{"product": "显影液", "category": "显影液", "chain_id": 46504},
{"product": "蚀刻液", "category": "蚀刻液", "chain_id": 56341},
{"product": "光阻去除剂", "category": "光阻去除剂", "chain_id": 32442},
# ③ 晶圆制造类
{"product": "晶圆", "category": "单晶硅片 / 多晶硅片", "chain_id": 32338},
{"product": "硅衬底", "category": "硅衬底", "chain_id": 36914},
{"product": "外延片", "category": "硅外延片 / GaN外延片 / SiC外延片等", "chain_id": 32338},
# ④ 封装与测试类
{"product": "封装", "category": "IC封装", "chain_id": 10},
{"product": "测试", "category": "芯片测试 / 晶圆测试", "chain_id": 513742},
{"product": "测试", "category": "芯片测试 / 晶圆测试", "chain_id": 11},
# ⑤ 芯片与设计EDA类
{"product": "芯片(通用)", "category": "集成电路制造", "chain_id": 317589},
{"product": "DRAM", "category": "存储芯片 → 集成电路制造", "chain_id": 317589},
{"product": "GPU", "category": "图形芯片 → 集成电路制造", "chain_id": 317589},
{"product": "处理器CPU/SoC", "category": "芯片设计", "chain_id": 9},
{"product": "高频芯片", "category": "芯片设计", "chain_id": 9},
{"product": "光子芯片(含激光)", "category": "芯片设计 / 功率半导体器件", "chain_id": 9},
{"product": "光子芯片(含激光)", "category": "芯片设计 / 功率半导体器件", "chain_id": 2717},
{"product": "先进节点制造设备", "category": "集成电路制造", "chain_id": 317589},
{"product": "EDA及IP服务", "category": "设计辅助", "chain_id": 2515},
{"product": "MPW服务", "category": "多项目晶圆流片", "chain_id": 2514},
{"product": "芯片设计验证", "category": "设计验证", "chain_id": 513738},
{"product": "过程工艺检测", "category": "制程检测", "chain_id": 513740}
]
# 提取所有 chain_id并去重
chain_ids = set()
for item in industry_list:
# 如果 chain_id 是字符串包含多个编号,用逗号或斜杠拆分
if isinstance(item["chain_id"], str):
for cid in item["chain_id"].replace("/", ",").split(","):
chain_ids.add(cid.strip())
else:
chain_ids.add(str(item["chain_id"]))
return chain_ids
import pandas as pd
from sqlalchemy import text # 用于 SQL 查询
def get_vulnerable100_code(connection):
"""
计算最脆弱前100产品的 Code 列表去重
参数
connection: 数据库连接对象用于执行 SQL
返回
List[int]: 最脆弱前100产品对应的 Code 列表
"""
# 读取映射表
bom_file = r"../input_data/input_product_data/BomNodes.csv" # 直接给出路径
mapping_df = pd.read_csv(bom_file)
# 执行 SQL 获取结果
with open("../SQL_analysis_risk.sql", "r", encoding="utf-8") as f:
str_sql = text(f.read())
result = pd.read_sql(sql=str_sql, con=connection)
# 统计每个 (id_firm, id_product) 出现次数
count_firm_prod = result.value_counts(subset=['id_firm', 'id_product'])
count_firm_prod.name = 'count'
count_firm_prod = count_firm_prod.to_frame().reset_index()
# 统计每个 id_product 的总 count
count_prod = (
count_firm_prod
.groupby("id_product")["count"]
.sum()
.reset_index()
)
# 按 count 升序取最脆弱前100 id_product
vulnerable100_index = count_prod.nsmallest(100, "count")["id_product"].tolist()
# 映射 Index -> Code 并去重
index_to_code = dict(zip(mapping_df["Index"], mapping_df["Code"]))
vulnerable100_code = list({index_to_code[i] for i in vulnerable100_index if i in index_to_code})
return vulnerable100_code
if __name__ == "__main__":
main()

116
GA_Agent_0925/ga.py Normal file
View File

@ -0,0 +1,116 @@
import numpy as np # 引入NumPy库用于高效的数值计算
from pySOT.utils import round_vars # 引入用于四舍五入的函数
from typing import TYPE_CHECKING # 引入类型检查工具
if TYPE_CHECKING:
from policy import Policy
class GeneticAlgorithm: # 定义一个遗传算法类
def __init__(self, the_policy: 'Policy'): # 初始化方法,接收一个 Policy 对象
self.n_variables = the_policy.dim # 从 policy 中获取问题的维度
self.lower_boundary = the_policy.lb # 获取决策变量的下界
self.upper_boundary = the_policy.ub # 获取决策变量的上界
self.integer_variables = the_policy.int_var # 获取整数变量的索引
self.sigma = 0.2 # 设置变异操作的标准差
self.p_mutation = 1.0 / the_policy.dim # 设置变异概率
self.tournament_size = 5 # 设置锦标赛选择的大小
self.p_cross = 0.9 # 设置交叉概率
pop_size = the_policy.arr_init_doe_points.shape[0] # 获取种群大小
self.lst_value = the_policy.lst_y_init_doe_points # 初始化每个个体的适应度值
# 如果种群大小是奇数,生成一个随机个体来确保种群大小是偶数
if pop_size % 2 == 1:
arr_random = np.random.rand(1, self.n_variables) # 生成一个随机的个体
arr_one_random = self.lower_boundary + arr_random * (self.upper_boundary - self.lower_boundary) # 将随机个体约束在边界内
self.lst_value.append(the_policy.eval(arr_one_random[0, :], is_init_points=True)) # 评估该个体的适应度
self.population = np.vstack((the_policy.arr_init_doe_points, arr_one_random)) # 将该个体加入到种群中
else:
self.population = np.copy(the_policy.arr_init_doe_points) # 直接使用初始种群
self.n_individuals = self.population.shape[0] # 获取种群中个体的数量
assert self.n_individuals == pop_size or self.n_individuals == pop_size + 1, 'Wrong pop size' # 确保种群大小正确
# 如果有整数变量,需要进行位置四舍五入
if len(self.integer_variables) > 0:
self.population[:, self.integer_variables] = np.round(self.population[:, self.integer_variables]) # 对整数变量四舍五入
for i in self.integer_variables:
ind = np.where(self.population[:, i] < self.lower_boundary[i]) # 如果超出了下界,修正为下界
self.population[ind, i] += 1
ind = np.where(self.population[:, i] > self.upper_boundary[i]) # 如果超出了上界,修正为上界
self.population[ind, i] -= 1
self.ind, self.best_individual, self.best_value = None, None, None # 初始化最优个体和最优值
self.pop_next, self.lst_pop_next_is_evaluated = None, None # 初始化下一代种群和评估标志
self.update_info() # 更新最优解信息
def update_info(self):
# 更新最优个体和适应度值
self.ind = np.argmin(self.lst_value) # 获取适应度最小的个体(假设目标是最小化)
self.best_individual = np.copy(self.population[self.ind, :]) # 复制最优个体
self.best_value = self.lst_value[self.ind] # 记录最优值
self.pop_next, self.lst_pop_next_is_evaluated = self._generate_next_population() # 生成下一代种群
self.lst_value = [] # 清空当前种群的适应度值
def _generate_next_population(self):
# 生成下一代种群
competitors = np.random.randint(0, self.n_individuals, (self.n_individuals, self.tournament_size)) # 随机选择竞赛个体
ind = np.argmin(np.array(self.lst_value)[competitors], axis=1) # 选择每轮锦标赛中的最优个体
winner_indices = np.zeros(self.n_individuals, dtype=int) # 用于存储胜利个体的索引
for i in range(self.tournament_size): # 进行锦标赛选择
winner_indices[np.where(ind == i)] = competitors[np.where(ind == i), i]
# 按照锦标赛结果将种群分为父母
parent1 = self.population[winner_indices[0: self.n_individuals // 2], :]
parent2 = self.population[winner_indices[self.n_individuals // 2: self.n_individuals], :]
# 交叉操作:对父母个体进行交叉
cross = np.where(np.random.rand(self.n_individuals // 2) < self.p_cross)[0] # 按照概率决定哪些个体进行交叉
nn = len(cross) # 计算交叉个体的数量
alpha = np.random.rand(nn, 1) # 生成交叉系数
# 创建新的染色体
parent1_new = np.multiply(alpha, parent1[cross, :]) + np.multiply(1 - alpha, parent2[cross, :])
parent2_new = np.multiply(alpha, parent2[cross, :]) + np.multiply(1 - alpha, parent1[cross, :])
parent1[cross, :] = parent1_new
parent2[cross, :] = parent2_new
arr_new_population = np.concatenate((parent1, parent2)) # 合并两个父代得到新的种群
# 变异操作
scale_factors = self.sigma * (self.upper_boundary - self.lower_boundary) # 计算变异的尺度
perturbation = np.random.randn(self.n_individuals, self.n_variables) # 生成扰动
perturbation = np.multiply(perturbation, scale_factors) # 根据尺度调整扰动
perturbation = np.multiply(
perturbation, (np.random.rand(self.n_individuals, self.n_variables) < self.p_mutation)
) # 根据变异概率决定哪些位置进行扰动
arr_new_population += perturbation # 将扰动添加到新种群
arr_new_population = np.maximum(np.reshape(self.lower_boundary, (1, self.n_variables)), arr_new_population) # 确保不超过下界
arr_new_population = np.minimum(np.reshape(self.upper_boundary, (1, self.n_variables)), arr_new_population) # 确保不超过上界
# 如果有整数变量,进行四舍五入
if len(self.integer_variables) > 0:
arr_new_population = round_vars(arr_new_population, self.integer_variables, self.lower_boundary,
self.upper_boundary)
assert arr_new_population.shape[0] == self.n_individuals, 'Wrong arr_new_population shape' # 确保新种群的大小正确
return arr_new_population, [False] * self.n_individuals # 返回新种群和评估标志(都设为未评估)
def select_next_point(self):
# 选择下一个要评估的个体
for idx_ind, is_evaluated in enumerate(self.lst_pop_next_is_evaluated):
if not is_evaluated: # 如果该个体没有被评估
return self.pop_next[idx_ind, :] # 返回该个体
def receive_sim_value(self, the_value):
# 接收评估结果,并更新适应度信息
self.lst_value.append(the_value) # 将评估值添加到适应度列表
idx_ind = 0
for idx_ind, is_evaluated in enumerate(self.lst_pop_next_is_evaluated):
if not is_evaluated: # 找到未评估的个体
self.lst_pop_next_is_evaluated[idx_ind] = True # 标记该个体为已评估
break
if idx_ind == len(self.lst_pop_next_is_evaluated) - 1:
assert idx_ind == self.n_individuals - 1, 'Wrong index' # 确保所有个体都已评估
self.update_info() # 更新最优解信息

View File

@ -0,0 +1,38 @@
## 通过现实的产业制裁矫正仿真模型的参数研究 (研究初始阶段)
- 1将现有制裁与产业链节点关联当作仿真模型验证的benchmark。
- 2找出现有ABM模型中武断设置的参数有哪些对这些参数设计多个可行取值。
- 3参考老师提供的ABM+GA代码优化模型的输出产业节点的风险等级将风险等级较高的节点视为制裁打击的先选产业(**更优**)
优化目标就是将这些风险等级较高的先选产业与现实打击的产业匹配上(不考虑先后顺序)
GA(找到模型的参数作为遗传的gene)maximize fitness = -errorABM生成的脆弱产业集合 - 美国打击我们的产业集合)
## 研究进度与研究计划
### 第一阶段
1. ~~弄清楚目标方向和基础内容~~
2. ~~遗传算法内容学习 以及一些基础 demo的构建 同时阅读代码 ga GA_random~~
3. ~~研究老师提供的ABM+GA代码优化模型的输出~~
### 第二阶段
1. ~~分析和查看制裁表以及对比目前的产业结点~~
2. ~~统计整理参数并制作excle和说明内容~~
3. ~~找出参数并设定参数范围,给出多个可行取值~~
### 第三阶段
1. ~~整理参数作为遗传算法的gene 开始遗传算法的构建~~
2. ~~增加函数的返回结果调用函数----ABM生成的脆弱产业集合~~
3. ~~实现 maximize fitness = -errorABM生成的脆弱产业集合 - 美国打击我们的产业集合)最大化最小值~~
1. ~~修改部分 my_model 和 firm 参数~~
2. ~~修改部分 step 逻辑~~
### 第四阶段
1. 运行GA代码
## 目标分析
1. **将现有制裁与产业链节点关联**,当作仿真模型验证的**benchmark**
1. 查看制裁表 对比 现在的产业结点
2. 作为调参方向
2. 找出现有ABM模型中**武断设置**的参数有哪些,对这些参数设计多个可行取值。
1. 找出参数 整理参数 以及给出多个可行取值
2. 作为遗传算法的gene
3. **实现 maximize fitness = -errorABM生成的脆弱产业集合 - 美国打击我们的产业集合)最大化最小值**
## 研究中出现的问题
1. ~~Q2.1 在于 min_stu_profit, total_payment, total_stu_waste, gtu_waste, gtu_profit = abm.run() 这些参数作为基因吗?~~
2. ~~Q2.2 这些参数输出什么内容来作为**评估准则** 是通过计算这个 ABM生成的脆弱产业集合 - 美国打击我们的产业集合?来判断适应度吗?~~
3. 参数的传递和确认 n_iter g_bom seed sample dct_lst_init_disrupt_firm_prod remove_t

View File

@ -0,0 +1,23 @@
from sqlalchemy import text
import pandas as pd
from orm import connection
# SQL query
with open("../SQL_analysis_risk.sql", "r", encoding="utf-8") as f:
str_sql = text(f.read())
result = pd.read_sql(sql=str_sql, con=connection)
# Count firm product
count_firm_prod = result.value_counts(subset=['id_firm', 'id_product'])
count_firm_prod.name = 'count'
count_firm_prod = count_firm_prod.to_frame().reset_index()
# Count product
count_prod = count_firm_prod.groupby('id_product')['count'].sum()
count_prod = count_prod.to_frame().reset_index()
count_prod.sort_values('count', inplace=True, ascending=False)
print(count_prod)
top100 = count_prod.head(100)['id_product'].tolist()

36
README.md Normal file
View File

@ -0,0 +1,36 @@
## 安装内容
1. 数据库推荐使用mysql 8.0以上版本
2. Python 3.8
3. 通过pip等方法安装*requirements_manual_selected_20230304.txt*文件中的包
## 前期准备工作
1. 复制整个代码到本地
2. 用root及密码登录mysql在本地数据库中创建一个数据库命名为*iiabmdb*
3. 在mysql中运行*SQL_db_user_create.sql*里的sql命令创建数据库用户。如果创建用户报错需打开该文件并运行第三行被注释掉的代码。该文件后面的sql命令也需要运行将数据库用户的权限赋予*iiabmdb*数据库
4. 之后直接运行controller.py文件如果没有报错则说明前期准备工作完成
## 运行程序
1. 将*conf_db_prefix.yaml*文件中的*db_prefix*改为*db_name_prefix: without_exp*
2. 打开命令行,进入代码所在目录,运行
```shell
python main.py --exp without_exp --job 6 --reset_db True
```
3. 等待运行完成1.2万个样本)。结束后,将*db_name_prefix: without_exp*改为*db_name_prefix: with_exp*,并运行
```shell
python main.py --exp with_exp --job 6 --reset_db True
```
4. 漫长的等待3.4万个样本),直到运行完成
## 获得结果,绘制图表
### 风险节点分析
1. 运行*risk_analysis_sum_result.py*文件该程序自动产生风险节点分析统计数据并放置到output_result/risk文件夹中
2. 依次运行*risk_analysis_prod_network.py**risk_analysis_firm_network.py*文件将自动产生相关结果放置到output_result/risk文件夹中
### 韧性影响因素分析
1. 运行*SQL_analysis_experiment.sql*文件将汇总结果手工复制至output_result/resilience文件夹*experiment_result.csv*文件中
2. 使用Minitab进行田口设计分析
3. 新建田口设计统计——DOE——田口——创建田口设计——混合水平设计因子数选项设置为8设计选项设置为L36水平^列为2^33^5因子选项中将列名依次修改为is_prf_sizeis_prf_connex_cap_typen_max_trialex_cap_paraprob_new_connt_max_trialn_sourcing
4. 将output_result/resilience文件夹*experiment_result.csv*文件中结果复制入田口设计表格右侧列
5. 依次对各个韧性指标进行田口设计分析统计——DOE——田口——分析田口设计从mean_count_firm_prodmean_max_ts_firm_prodmean_n_remove_firm_prodmean_end_ts中选择一个韧性指标图形选项勾选均值分析选项中显示响应表勾选均值拟合线性模型勾选均值点击确定
6. 手工汇总方差分析结果至output_result/resilience文件夹*anova.csv*文件中,汇总响应表结果至*anova_visualization.csv*文件中

View File

@ -0,0 +1,85 @@
select distinct experiment.idx_scenario,
n_max_trial, prf_size, prf_conn, cap_limit_prob_type, cap_limit_level, diff_new_conn, remove_t, netw_prf_n,
mean_count_firm_prod, mean_count_firm, mean_count_prod,
mean_max_ts_firm_prod, mean_max_ts_firm, mean_max_ts_prod,
mean_n_remove_firm_prod, mean_n_all_prod_remove_firm, mean_end_ts
from iiabmdb_20250925.with_exp_experiment as experiment
left join
(
select
idx_scenario,
sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL
sum(count_firm) / count(*) as mean_count_firm,
sum(count_prod) / count(*) as mean_count_prod,
sum(max_ts_firm_prod) / count(*) as mean_max_ts_firm_prod,
sum(max_ts_firm) / count(*) as mean_max_ts_firm,
sum(max_ts_prod) / count(*) as mean_max_ts_prod,
sum(n_remove_firm_prod) / count(*) as mean_n_remove_firm_prod,
sum(n_all_prod_remove_firm) / count(*) as mean_n_all_prod_remove_firm,
sum(end_ts) / count(*) as mean_end_ts
from (
select sample.id, idx_scenario,
count_firm_prod, count_firm, count_prod,
max_ts_firm_prod, max_ts_firm, max_ts_prod,
n_remove_firm_prod, n_all_prod_remove_firm, end_ts
from iiabmdb_20250925.with_exp_sample as sample
# 1 2 3 + 9
left join iiabmdb_20250925.with_exp_experiment as experiment
on sample.e_id = experiment.id
left join (select s_id,
count(distinct id_firm, id_product) as count_firm_prod,
count(distinct id_firm) as count_firm,
count(distinct id_product) as count_prod,
max(ts) as end_ts
from iiabmdb_20250925.with_exp_result group by s_id) as s_count
on sample.id = s_count.s_id
# 4
left join # firm prod
(select s_id, max(ts) as max_ts_firm_prod from
(select s_id, id_firm, id_product, min(ts) as ts
from iiabmdb_20250925.with_exp_result
where `status` = "D"
group by s_id, id_firm, id_product) as ts
group by s_id) as s_max_ts_firm_prod
on sample.id = s_max_ts_firm_prod.s_id
# 5
left join # firm
(select s_id, max(ts) as max_ts_firm from
(select s_id, id_firm, min(ts) as ts
from iiabmdb_20250925.with_exp_result
where `status` = "D"
group by s_id, id_firm) as ts
group by s_id) as s_max_ts_firm
on sample.id = s_max_ts_firm.s_id
# 6
left join # prod
(select s_id, max(ts) as max_ts_prod from
(select s_id, id_product, min(ts) as ts
from iiabmdb_20250925.with_exp_result
where `status` = "D"
group by s_id, id_product) as ts
group by s_id) as s_max_ts_prod
on sample.id = s_max_ts_prod.s_id
# 7
left join
(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod
from iiabmdb_20250925.with_exp_result
where `status` = "R"
group by s_id) as s_n_remove_firm_prod
on sample.id = s_n_remove_firm_prod.s_id
# 8
left join
(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from
(select s_id, id_firm, count(distinct id_product) as n_remove_prod
from iiabmdb_20250925.with_exp_result
where `status` = "R"
group by s_id, id_firm) as s_n_remove_prod
left join iiabmdb_20250925.firm_n_prod as firm_n_prod
on s_n_remove_prod.id_firm = firm_n_prod.code
where n_remove_prod = n_prod
group by s_id) as s_n_all_prod_remove_firm
on sample.id = s_n_all_prod_remove_firm.s_id
) as secnario_count
group by idx_scenario
) as secnario_mean
on experiment.idx_scenario = secnario_mean.idx_scenario;

12
SQL_analysis_risk.sql Normal file
View File

@ -0,0 +1,12 @@
select * from
(select s_id, id_firm, id_product, min(ts) as ts from iiabmdb_20250925.without_exp_result
where `status` = 'D'
group by s_id, id_firm, id_product) as s_disrupt
where s_id in
(select s_id from
(select s_id, id_firm, id_product, min(ts) as ts from iiabmdb_20250925.without_exp_result
where `status` = 'D'
group by s_id, id_firm, id_product) as t
group by s_id
having count(*) > 1)
order by s_id;

6
SQL_db_user_create.sql Normal file
View File

@ -0,0 +1,6 @@
CREATE USER 'iiabm_user'@'localhost' IDENTIFIED WITH authentication_plugin BY 'iiabm_pwd';
-- CREATE USER 'iiabm_user'@'localhost' IDENTIFIED BY 'iiabm_pwd';
GRANT ALL PRIVILEGES ON iiabmdb_20250925.* TO 'iiabm_user'@'localhost';
FLUSH PRIVILEGES;

View File

@ -0,0 +1,15 @@
select e_id, n_disrupt_sample, total_n_disrupt_firm_prod_experiment, dct_lst_init_disrupt_firm_prod from iiabmdb_20250925.without_exp_experiment as experiment
inner join (
select e_id, count(id) as n_disrupt_sample, sum(n_disrupt_firm_prod_sample) as total_n_disrupt_firm_prod_experiment from iiabmdb_20250925.without_exp_sample as sample
inner join (
select * from
(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb_20250925.without_exp_result group by s_id
) as count_disrupt_firm_prod_sample
where n_disrupt_firm_prod_sample > 1
) as disrupt_sample
on sample.id = disrupt_sample.s_id
group by e_id
) as disrupt_experiment
on experiment.id = disrupt_experiment.e_id
order by n_disrupt_sample desc, total_n_disrupt_firm_prod_experiment desc
limit 0, 95;

16
SQL_migrate_db.sql Normal file
View File

@ -0,0 +1,16 @@
-- 创建新的数据库
CREATE DATABASE iiabmdb2025211;
-- 重命名表到新数据库
RENAME TABLE
iiabmdb.test_experiment TO iiabmdb2025211.test_experiment,
iiabmdb.test_result TO iiabmdb2025211.test_result,
iiabmdb.test_sample TO iiabmdb2025211.test_sample;
RENAME TABLE
iiabmdb.with_exp_experiment TO iiabmdb2025211.with_exp_experiment,
iiabmdb.with_exp_result TO iiabmdb2025211.with_exp_result,
iiabmdb.with_exp_sample TO iiabmdb2025211.with_exp_sample,
iiabmdb.without_exp_experiment TO iiabmdb2025211.without_exp_experiment,
iiabmdb.without_exp_result TO iiabmdb2025211.without_exp_result,
iiabmdb.without_exp_sample TO iiabmdb2025211.without_exp_sample;

4
ToDo.md Normal file
View File

@ -0,0 +1,4 @@
## 下一步计划
1. 运行with_exp
2. 方差分析
3. 优化资源消耗逻辑

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
cache/firm_network备份.pkl vendored Normal file

Binary file not shown.

48
computation.py Normal file
View File

@ -0,0 +1,48 @@
import json
import os
import datetime
import time
import networkx as nx
import pandas as pd
from mesa import Model
from typing import TYPE_CHECKING
from my_model import MyModel
if TYPE_CHECKING:
from controller_db import ControllerDB
class Computation:
def __init__(self, c_db: 'ControllerDB'):
# 控制不同进程 计算不同的样本 但使用同一个 数据库 c_db
self.c_db = c_db
self.pid = os.getpid()
def run(self, str_code='0', s_id=None):
sample_random = self.c_db.fetch_a_sample(s_id)
if sample_random is None:
return True
# lock this row by update is_done_flag to 0 将运行后的样本设置为 flag 0
self.c_db.lock_the_sample(sample_random)
print(
f"Pid {self.pid} ({str_code}) is running "
f"sample {sample_random.id} at {datetime.datetime.now()}")
# 将sample 对应的 experiment 的一系列值 和 参数值 传入 模型 中 包括列名 和 值
dct_exp = {column: getattr(sample_random.experiment, column)
for column in sample_random.experiment.__table__.c.keys()}
# 删除不需要的 主键
del dct_exp['id']
dct_sample_para = {'sample': sample_random,
'seed': sample_random.seed,
**dct_exp}
model = MyModel(dct_sample_para)
model.step() # 运行仿真一步
model.end() # 汇总结果

10
conf_db.yaml Normal file
View File

@ -0,0 +1,10 @@
# read by orm
is_local_db: True
local:
user_name: iiabm_user
password: iiabm_pwd
db_name: iiabmdb_20250925
address: 'localhost'
port: 3306

1
conf_db_prefix.yaml Normal file
View File

@ -0,0 +1 @@
db_name_prefix: without_exp

12
conf_experiment.yaml Normal file
View File

@ -0,0 +1,12 @@
# read by ControllerDB
# run settings
meta_seed: 2
test: # only for test scenarios
n_sample: 1
n_iter: 100
not_test: # normal scenarios
n_sample: 50
n_iter: 100

383
controller_db.py Normal file
View File

@ -0,0 +1,383 @@
# -*- coding: utf-8 -*-
from orm import db_session, engine, Base, ins, connection
from orm import Experiment, Sample, Result
from sqlalchemy.exc import OperationalError
from sqlalchemy import text
import yaml
import random
import pandas as pd
import platform
import networkx as nx
import json
import pickle
class ControllerDB:
is_with_exp: bool
dct_parameter = None
is_test: bool = None
db_name_prefix: str = None
reset_flag: int
lst_saved_s_id: list
def __init__(self, prefix, reset_flag=0):
with open('conf_experiment.yaml') as yaml_file:
dct_conf_experiment = yaml.full_load(yaml_file)
assert prefix in ['test', 'without_exp', 'with_exp'], "db name not in test, without_exp, with_exp"
self.is_test = prefix == 'test'
self.is_with_exp = False if prefix == 'test' or prefix == 'without_exp' else True
self.db_name_prefix = prefix
dct_para_in_test = dct_conf_experiment['test'] if self.is_test else dct_conf_experiment['not_test']
self.dct_parameter = {'meta_seed': dct_conf_experiment['meta_seed'], **dct_para_in_test}
print(self.dct_parameter)
# 0, not reset; 1, reset self; 2, reset all
self.reset_flag = reset_flag
self.is_exist = False
self.lst_saved_s_id = []
self.experiment_data = []
self.batch_size = 5000
# 根据需求设置每批次的大小
def init_tables(self):
self.fill_experiment_table()
self.fill_sample_table()
def fill_experiment_table(self):
firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
firm['Code'] = firm['Code'].astype('string')
firm.fillna(0, inplace=True)
# fill dct_lst_init_disrupt_firm_prod
# 存储 公司-在供应链结点的位置.. 0 1.1
if self.is_with_exp:
# 对于方差分析时候使用
with open('SQL_export_high_risk_setting.sql', 'r') as f:
str_sql = text(f.read())
result = pd.read_sql(sql=str_sql, con=connection)
result['dct_lst_init_disrupt_firm_prod'] = \
result['dct_lst_init_disrupt_firm_prod'].apply(
lambda x: pickle.loads(x))
list_dct = result['dct_lst_init_disrupt_firm_prod'].to_list()
else:
# 行索引 (index):这一行在数据帧中的索引值。
# 行数据 (row):这一行的数据,是一个 pandas.Series 对象,包含该行的所有列和值。
# 读取企业与产品关系数据
firm_industry = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry['Firm_Code'] = firm_industry['Firm_Code'].astype('string')
# 假设已从 BOM 数据构建了 code_to_indices
bom_nodes = pd.read_csv("input_data/input_product_data/BomNodes.csv")
code_to_indices = bom_nodes.groupby('Code')['Index'].apply(list).to_dict()
# 初始化存储映射结果的列表
list_dct = []
# 遍历 firm_industry 数据
for _, row in firm_industry.iterrows():
firm_code = row['Firm_Code'] # 企业代码
product_code = row['Product_Code'] # 原始产品代码
# 使用 code_to_indices 映射 Product_Code 到 Product_Indices
mapped_indices = code_to_indices.get(product_code, []) # 如果找不到则返回空列表
# 构建企业到产品索引的映射
dct = {firm_code: mapped_indices}
list_dct.append(dct)
# fill g_bom
# 结点属性值 相当于 图上点的 原始 产品名称
bom_nodes = pd.read_csv('input_data/input_product_data/BomNodes.csv')
bom_nodes['Code'] = bom_nodes['Code'].astype(str)
bom_nodes.set_index('Index', inplace=True)
bom_cate_net = pd.read_csv('input_data/input_product_data/合成结点.csv')
g_bom = nx.from_pandas_edgelist(bom_cate_net, source='UPID', target='ID', create_using=nx.MultiDiGraph())
# 填充每一个结点 的具体内容 通过 相同的 code 并且通过BomNodes.loc[code].to_dict()字典化 格式类似 格式 { code0 : {level: 0 ,name: 工业互联网 }}
bom_labels_dict = {}
for index in g_bom.nodes:
try:
bom_labels_dict[index] = bom_nodes.loc[index].to_dict()
# print(bom_labels_dict[index])
except KeyError:
print(f"节点 {index} 不存在于 bom_nodes 中")
# 分配属性 给每一个结点 获得类似 格式:{1: {'label': 'A', 'value': 10},
nx.set_node_attributes(g_bom, bom_labels_dict)
# 改为json 格式
g_product_js = json.dumps(nx.adjacency_data(g_bom))
# insert exp
df_xv = pd.read_csv(
"input_data/"
f"xv_{'with_exp' if self.is_with_exp else 'without_exp'}.csv",
index_col=None)
# read the OA table
df_oa = pd.read_csv(
"input_data/"
f"oa_{'with_exp' if self.is_with_exp else 'without_exp'}.csv",
index_col=None)
# .shape[1] 列数 .iloc 访问特定的值 而不是标签
df_oa = df_oa.iloc[:, 0:df_xv.shape[1]]
# idx_scenario 是 0 指行 idx_init_removal 指 索引 0.. dct_init_removal 键 code 公司 g_product_js 图的json数据 dct_exp_para 解码 全局参数xv-
for idx_scenario, row in df_oa.iterrows():
dct_exp_para = {}
for idx_col, para_level in enumerate(row):
# 处理 NaN 值,替换为默认值(如 0 或其他合适的值)
para_level = para_level if not pd.isna(para_level) else 0
# 转换为整数
para_level = int(para_level)
dct_exp_para[df_xv.columns[idx_col]] = \
df_xv.iloc[para_level, idx_col]
# different initial removal 只会得到 键 和 值
for idx_init_removal, dct_init_removal in enumerate(list_dct):
self.add_experiment_1(idx_scenario,
idx_init_removal,
dct_init_removal,
g_product_js,
**dct_exp_para)
print(f"Inserted experiment for scenario {idx_scenario}, "
f"init_removal {idx_init_removal}!")
self.finalize_insertion()
def add_experiment_1(self, idx_scenario, idx_init_removal,
dct_lst_init_disrupt_firm_prod, g_bom,
n_max_trial, prf_size, prf_conn,
cap_limit_prob_type, cap_limit_level,
diff_new_conn, remove_t, netw_prf_n):
e = Experiment(
idx_scenario=idx_scenario,
idx_init_removal=idx_init_removal,
n_sample=int(self.dct_parameter['n_sample']),
n_iter=int(self.dct_parameter['n_iter']),
dct_lst_init_disrupt_firm_prod=dct_lst_init_disrupt_firm_prod,
g_bom=g_bom,
n_max_trial=n_max_trial,
prf_size=prf_size,
prf_conn=prf_conn,
cap_limit_prob_type=cap_limit_prob_type,
cap_limit_level=cap_limit_level,
diff_new_conn=diff_new_conn,
remove_t=remove_t,
netw_prf_n=netw_prf_n
)
# 这里我们不立即提交,而是先添加到批量保存的队列中
self.experiment_data.append(e)
# 当批量数据达到一定数量时再提交
if len(self.experiment_data) >= self.batch_size:
self._commit_batch()
# 辅助方法:批量提交
def _commit_batch(self):
db_session.bulk_save_objects(self.experiment_data)
db_session.commit()
self.experiment_data.clear() # 清空队列
def finalize_insertion(self):
if self.experiment_data:
self._commit_batch() # 提交剩余的数据
def fill_sample_table(self):
rng = random.Random(self.dct_parameter['meta_seed'])
# 根据样本数目 设置 32 位随机整数
lst_seed = [
rng.getrandbits(32)
for _ in range(int(self.dct_parameter['n_sample']))
]
lst_exp = db_session.query(Experiment).all()
lst_sample = []
for experiment in lst_exp:
# idx_sample: 1-50
for idx_sample in range(int(experiment.n_sample)):
s = Sample(e_id=experiment.id,
idx_sample=idx_sample + 1,
seed=lst_seed[idx_sample],
is_done_flag=-1)
lst_sample.append(s)
# 每当达到批量大小时提交一次
if len(lst_sample) >= self.batch_size:
db_session.bulk_save_objects(lst_sample)
db_session.commit()
print(f'Inserted {len(lst_sample)} samples!')
lst_sample.clear() # 清空已提交的样本列表
# 提交剩余的样本
if lst_sample:
db_session.bulk_save_objects(lst_sample)
db_session.commit()
print(f'Inserted {len(lst_sample)} samples!')
def reset_db(self, force_drop=False):
# first, check if tables exist
lst_table_obj = [
Base.metadata.tables[str_table]
for str_table in ins.get_table_names()
if str_table.startswith(self.db_name_prefix)
]
self.is_exist = len(lst_table_obj) > 0
if force_drop:
self.force_drop_db(lst_table_obj)
# while is_exist:
# a_table = random.choice(lst_table_obj)
# try:
# Base.metadata.drop_all(bind=engine, tables=[a_table])
# except KeyError:
# pass
# except OperationalError:
# pass
# else:
# lst_table_obj.remove(a_table)
# print(
# f"Table {a_table.name} is dropped "
# f"for exp: {self.db_name_prefix}!!!"
# )
# finally:
# is_exist = len(lst_table_obj) > 0
if self.is_exist:
print(
f"All tables exist. No need to reset "
f"for exp: {self.db_name_prefix}."
)
# change the is_done_flag from 0 to -1
# rerun the in-finished tasks
self.is_exist_reset_flag_resset_db()
# if self.reset_flag > 0:
# if self.reset_flag == 2:
# sample = db_session.query(Sample).filter(
# Sample.is_done_flag == 0)
# elif self.reset_flag == 1:
# sample = db_session.query(Sample).filter(
# Sample.is_done_flag == 0,
# Sample.computer_name == platform.node())
# else:
# raise ValueError('Wrong reset flag')
# if sample.count() > 0:
# for s in sample:
# qry_result = db_session.query(Result).filter_by(
# s_id=s.id)
# if qry_result.count() > 0:
# db_session.query(Result).filter(s_id=s.id).delete()
# db_session.commit()
# s.is_done_flag = -1
# db_session.commit()
# print(f"Reset the sample id {s.id} flag from 0 to -1")
else:
# 不存在则重新生成所有的表结构
Base.metadata.create_all(bind=engine)
self.init_tables()
print(
f"All tables are just created and initialized "
f"for exp: {self.db_name_prefix}."
)
def force_drop_db(self, lst_table_obj):
self.is_exist = len(lst_table_obj) > 0
while self.is_exist:
a_table = random.choice(lst_table_obj)
try:
Base.metadata.drop_all(bind=engine, tables=[a_table])
except KeyError:
pass
except OperationalError:
pass
else:
lst_table_obj.remove(a_table)
print(
f"Table {a_table.name} is dropped "
f"for exp: {self.db_name_prefix}!!!"
)
finally:
self.is_exist = len(lst_table_obj) > 0
def is_exist_reset_flag_resset_db(self):
if self.reset_flag > 0:
if self.reset_flag == 2:
sample = db_session.query(Sample).filter(
Sample.is_done_flag == 0)
elif self.reset_flag == 1:
sample = db_session.query(Sample).filter(
Sample.is_done_flag == 0,
Sample.computer_name == platform.node())
else:
raise ValueError('Wrong reset flag')
if sample.count() > 0:
for s in sample:
qry_result = db_session.query(Result).filter_by(
s_id=s.id)
if qry_result.count() > 0:
db_session.query(Result).filter(s_id=s.id).delete()
db_session.commit()
s.is_done_flag = -1
db_session.commit()
print(f"Reset the sample id {s.id} flag from 0 to -1")
def prepare_list_sample(self):
# 为了符合前面 重置表里面存在 重置本机 或者重置全部 或者不重置的部分 这个部分的 关于样本运行也得重新拿出来
# 查找一个风险事件中 50 个样本
res = db_session.execute(
text(f"SELECT count(*) FROM {self.db_name_prefix}_sample s, "
f"{self.db_name_prefix}_experiment e WHERE s.e_id=e.id"
)).scalar()
# 控制 n_sample数量 作为后面的参数
n_sample = 0 if res is None else res
print(f'There are a total of {n_sample} samples.')
# 查找 is_done_flag = -1 也就是没有运行的 样本 运行后会改为0
res = db_session.execute(
text(f"SELECT id FROM {self.db_name_prefix}_sample "
f"WHERE is_done_flag = -1"
))
for row in res:
s_id = row[0]
self.lst_saved_s_id.append(s_id)
@staticmethod
def select_random_sample(lst_s_id):
while 1:
if len(lst_s_id) == 0:
return None
s_id = random.choice(lst_s_id)
lst_s_id.remove(s_id)
res = db_session.query(Sample).filter(Sample.id == int(s_id),
Sample.is_done_flag == -1)
if res.count() == 1:
return res[0]
def fetch_a_sample(self, s_id=None):
# 由Computation 调用 返回 sample对象 同时给出 2中 指定访问模式 抓取特定的 样本 通过s_id
# 默认访问 flag为-1的 lst_saved_s_id
if s_id is not None:
res = db_session.query(Sample).filter(Sample.id == int(s_id))
if res.count() == 0:
return None
else:
return res[0]
sample = self.select_random_sample(self.lst_saved_s_id)
if sample is not None:
return sample
return None
@staticmethod
def lock_the_sample(sample: Sample):
sample.is_done_flag, sample.computer_name = 0, platform.node()
db_session.commit()
if __name__ == '__main__':
print("Testing the database connection...")
try:
controller_db = ControllerDB('test')
Base.metadata.create_all(bind=engine)
except Exception as e:
print("Failed to connect to the database!")
print(e)
exit(1)

Binary file not shown.

After

Width:  |  Height:  |  Size: 263 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 267 KiB

383
firm.py Normal file
View File

@ -0,0 +1,383 @@
from mesa import Agent
class FirmAgent(Agent):
def __init__(self, unique_id, model, type_region, revenue_log, a_lst_product,
production_output, demand_quantity, R, P, C,s_r,S_r,x):
# 调用超类的 __init__ 方法
super().__init__(unique_id, model)
# 初始化模型中的网络引用
self.firm_network = self.model.firm_network
self.product_network = self.model.product_network
# 初始化代理自身的属性
self.type_region = type_region
self.size_stat = []
self.dct_prod_up_prod_stat = {}
self.dct_prod_capacity = {}
# 企业涉及的产业
self.indus_i = a_lst_product
# 各资源库存信息,库存资源,库存量
self.R = R
# 包括库存时间的值 方便后面统计
self.R1 = {0: R}
# 设备资产信息,持有设备,设备数量, 增加 设备残值 [[1,2,3],[] ]
self.C = C
# 包括设备时间步的值
self.C1 = {0: C}
# 复制一份
self.C0 = C
# 产品库存信息 库存产品,库存量 ID 数量
self.P = P
# 包括 产品时间
self.P1 = {0: P}
# 企业i的供应商
self.upper_i = [self.model.agent_map[u] for u, v in self.firm_network.in_edges(self.unique_id)
if u in self.model.agent_map]
# 企业i的客户
self.downer_i = [self.model.agent_map[v] for u, v in self.firm_network.out_edges(self.unique_id)
if v in self.model.agent_map]
# 设备c的数量 (总量) 使用这个来判断设备数量
# self.n_equip_c = n_equip_c
# 设备c产量 根据设备量进行估算
self.c_yield = production_output
# 消耗材料量 根据设备量进行估算 { }
self.c_consumption = demand_quantity
# 设备c购买价格初始值
# self.c_price = c_price
# 资源r补货库存阈值 很重要设置
self.s_r = s_r
self.S_r = S_r
# 设备补货阙值 可选
# self.ss_r = 70
# 每一个周期步减少残值x
self.x = x
# 试验中的参数
self.dct_n_trial_up_prod_disrupted = {}
self.dct_cand_alt_supp_up_prod_disrupted = {}
self.dct_request_prod_from_firm = {}
# 外部变量
self.is_prf_size = self.model.is_prf_size
self.is_prf_conn = bool(self.model.prf_conn)
self.str_cap_limit_prob_type = str(self.model.cap_limit_prob_type)
self.flt_cap_limit_level = float(self.model.cap_limit_level)
self.flt_diff_new_conn = float(self.model.diff_new_conn)
# 初始化 size_stat
self.size_stat.append((revenue_log, 0))
# 初始化 dct_prod_up_prod_stat
for prod in a_lst_product:
self.dct_prod_up_prod_stat[prod] = {
'p_stat': [('N', 0)],
's_stat': {up_prod: {'stat': True, 'set_disrupt_firm': set()}
for up_prod in prod.a_predecessors()}
}
# 初始化额外容量 (dct_prod_capacity)
for product in a_lst_product:
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
"cap_limit_prob_type must be either 'uniform' or 'normal'"
extra_cap_mean = self.size_stat[0][0] / self.flt_cap_limit_level
if self.str_cap_limit_prob_type == 'uniform':
extra_cap = self.model.random.uniform(extra_cap_mean - 2, extra_cap_mean + 2)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
elif self.str_cap_limit_prob_type == 'normal':
extra_cap = self.model.random.normalvariate(extra_cap_mean, 1)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
self.dct_prod_capacity[product] = extra_cap
def remove_edge_to_cus(self, disrupted_prod):
# parameter disrupted_prod is the product that self got disrupted
lst_out_edge = list(
self.firm_network.out_edges(
self.unique_id, keys=True, data='Product'))
for n1, n2, key, product_code in lst_out_edge:
if product_code == disrupted_prod.unique_id:
# update customer up product supplier status
customer = next(agent for agent in self.model.company_agents if agent.unique_id == n2)
for prod in customer.dct_prod_up_prod_stat.keys():
if disrupted_prod in customer.dct_prod_up_prod_stat[prod]['s_stat'].keys():
customer.dct_prod_up_prod_stat[prod]['s_stat'][disrupted_prod][
'set_disrupt_firm'].add(self)
# print(f"{self.name} disrupt {customer.name}'s "
# f"{prod.code} due to {disrupted_prod.code}")
# remove edge to customer
self.firm_network.remove_edge(n1, n2, key)
def disrupt_cus_prod(self, prod, disrupted_up_prod):
# parameter prod is the product that has disrupted_up_prod
# parameter disrupted_up_prod is the product that
# self's component exists disrupted supplier
num_lost = \
len(self.dct_prod_up_prod_stat[prod]['s_stat']
[disrupted_up_prod]['set_disrupt_firm'])
num_remain = \
len([u for u, _, _, d in
self.firm_network.in_edges(self.get_firm_network_unique_id(),
keys=True,
data='Product')
if d == disrupted_up_prod.unique_id])
lost_percent = num_lost / (num_lost + num_remain)
lst_size = \
[firm.size_stat[-1][0] for firm in self.model.company_agents]
std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \
/ (max(lst_size) - min(lst_size) + 1)
# calculate probability of disruption
prob_disrupt = 1 - std_size * (1 - lost_percent)
if self.model.nprandom.choice([True, False],
p=[prob_disrupt,
1 - prob_disrupt]):
self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0
self.dct_prod_up_prod_stat[
prod]['s_stat'][disrupted_up_prod]['stat'] = False
status, _ = self.dct_prod_up_prod_stat[
prod]['p_stat'][-1]
if status != 'D':
self.dct_prod_up_prod_stat[
prod]['p_stat'].append(('D', self.model.t))
# print(f"{self.name}'s {prod.code} turn to D status due to "
# f"disrupted supplier of {disrupted_up_prod.code}")
def seek_alt_supply(self, product):
# 检查当前产品的尝试次数是否达到最大值
if self.dct_n_trial_up_prod_disrupted[product] <= self.model.int_n_max_trial:
# 初始化候选供应商列表
if self.dct_n_trial_up_prod_disrupted[product] == 0:
self.dct_cand_alt_supp_up_prod_disrupted[product] = [
firm for firm in self.model.company_agents if firm.is_prod_in_current_normal(product)
]
# 如果没有候选供应商,直接退出
if not self.dct_cand_alt_supp_up_prod_disrupted[product]:
# print(f"No valid candidates found for product {product.unique_id}")
return
# 查找与当前企业已连接的候选供应商
lst_firm_connect = []
if self.is_prf_conn:
lst_firm_connect = [
firm for firm in self.dct_cand_alt_supp_up_prod_disrupted[product]
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or
self.firm_network.has_edge(firm.unique_id, self.unique_id)
]
# 如果没有连接的供应商
if not lst_firm_connect:
candidates = self.dct_cand_alt_supp_up_prod_disrupted[product]
if self.is_prf_size: # 根据规模加权选择
lst_size = [firm.size_stat[-1][0] for firm in candidates]
total_size = sum(lst_size)
if total_size > 0:
lst_prob = [size / total_size for size in lst_size]
select_alt_supply = self.random.choices(candidates, weights=lst_prob)[0]
else: # 如果全是 0就均匀随机
select_alt_supply = self.random.choice(candidates)
else: # 随机选择
select_alt_supply = self.random.choice(candidates)
else: # 如果存在连接的供应商
if self.is_prf_size: # 根据规模加权选择
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_connect]
total_size = sum(lst_firm_size)
if total_size > 0:
lst_prob = [size / total_size for size in lst_firm_size]
select_alt_supply = self.random.choices(lst_firm_connect, weights=lst_prob)[0]
else: # 如果全是 0就均匀随机
select_alt_supply = self.random.choice(lst_firm_connect)
else: # 随机选择
select_alt_supply = self.random.choice(lst_firm_connect)
# 检查选中的供应商是否能够生产产品
if not select_alt_supply.is_prod_in_current_normal(product):
# print(f"Selected supplier {select_alt_supply.unique_id} cannot produce product {product.unique_id}")
# 打印供应商的生产状态字典
#print(f"Supplier production state: {select_alt_supply.dct_prod_up_prod_stat}")
# 检查产品是否存在于生产状态字典中
if product in select_alt_supply.dct_prod_up_prod_stat:
print(
f"Product {product.unique_id} production state: {select_alt_supply.dct_prod_up_prod_stat[product]['p_stat']}")
else:
print(f"Product {product.unique_id} not found in supplier production state.")
return
# 添加到供应商的请求字典
if product in select_alt_supply.dct_request_prod_from_firm:
select_alt_supply.dct_request_prod_from_firm[product].append(self)
else:
select_alt_supply.dct_request_prod_from_firm[product] = [self]
# 更新尝试次数
self.dct_n_trial_up_prod_disrupted[product] += 1
def handle_request(self):
for product, lst_firm in self.dct_request_prod_from_firm.items():
if self.dct_prod_capacity[product] > 0:
if len(lst_firm) == 0:
continue
elif len(lst_firm) == 1:
self.accept_request(lst_firm[0], product)
elif len(lst_firm) > 1:
lst_firm_connect = []
if self.is_prf_conn:
for firm in lst_firm:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or \
self.firm_network.has_edge(firm.unique_id, self.unique_id):
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_customer = self.random.choices(lst_firm, weights=lst_prob)[0]
else:
select_customer = self.random.choice(lst_firm)
self.accept_request(select_customer, product)
elif len(lst_firm_connect) > 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_connect]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_customer = self.random.choices(lst_firm_connect, weights=lst_prob)[0]
else:
select_customer = self.random.choice(lst_firm_connect)
self.accept_request(select_customer, product)
else:
for down_firm in lst_firm:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
def accept_request(self, down_firm, product):
if self.firm_network.has_edge(self.unique_id, down_firm.unique_id) or \
self.firm_network.has_edge(down_firm.unique_id, self.unique_id):
prod_accept = 1.0
else:
prod_accept = self.flt_diff_new_conn
if self.model.nprandom.choice([True, False], p=[prod_accept, 1 - prod_accept]):
self.firm_network.add_edge(self.unique_id, down_firm.unique_id, Product=product.unique_id)
self.dct_prod_capacity[product] -= 1
self.dct_request_prod_from_firm[product].remove(down_firm)
for prod in down_firm.dct_prod_up_prod_stat.keys():
if product in down_firm.dct_prod_up_prod_stat[prod]['s_stat']:
down_firm.dct_prod_up_prod_stat[prod]['s_stat'][product]['stat'] = True
down_firm.dct_prod_up_prod_stat[prod]['p_stat'].append(
('N', self.model.t))
del down_firm.dct_n_trial_up_prod_disrupted[product]
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
else:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
def seek_material_supply(self, material_type):
lst_firm_material_connect = [] # 符合条件 可选择的上游
upper_i_material = [] # 特定 资源的上游 企业集合
for firm in self.upper_i:
for sub_list in firm.R:
if sub_list[0] == material_type:
upper_i_material.append(firm)
# 没有 上游 没有 材料的情况,也就是紊乱的情况
if len(upper_i_material) == 0:
return -1
if self.is_prf_conn:
for firm in upper_i_material:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or self.firm_network.has_edge(
firm.unique_id, self.unique_id):
lst_firm_material_connect.append(firm)
if len(lst_firm_material_connect) == 0:
if self.is_prf_size:
lst_size = [firm.size_stat[-1][0] for firm in upper_i_material]
lst_prob = [size / sum(lst_size) for size in lst_size]
select_alt_supply = \
self.random.choices(upper_i_material, weights=lst_prob)[0]
else:
select_alt_supply = self.random.choice(upper_i_material)
elif len(lst_firm_material_connect) > 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_material_connect]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_alt_supply = self.random.choices(lst_firm_material_connect, weights=lst_prob)[0]
else:
select_alt_supply = self.random.choice(lst_firm_material_connect)
return select_alt_supply
def seek_machinery_supply(self, machinery_type):
lst_firm_machinery_connect = [] # 符合条件 可选择的上游
upper_i_machinery = [] # 特定 资源的上游 企业集合
for firm in self.upper_i:
for sub_list in firm.R:
if sub_list[0] == machinery_type:
upper_i_machinery.append(firm)
# 没有 上游 没有 材料的情况,也就是紊乱的情况
if len(upper_i_machinery) == 0:
return -1
if self.is_prf_conn:
for firm in upper_i_machinery:
if self.firm_network.has_edge(self.unique_id, firm.unique_id) or self.firm_network.has_edge(
firm.unique_id, self.unique_id):
lst_firm_machinery_connect.append(firm)
if len(lst_firm_machinery_connect) == 0:
if self.is_prf_size:
lst_size = [firm.size_stat[-1][0] for firm in upper_i_machinery]
lst_prob = [size / sum(lst_size) for size in lst_size]
select_alt_supply = \
self.random.choices(upper_i_machinery, weights=lst_prob)[0]
else:
select_alt_supply = self.random.choice(upper_i_machinery)
elif len(lst_firm_machinery_connect) > 0:
if self.is_prf_size:
lst_firm_size = [firm.size_stat[-1][0] for firm in lst_firm_machinery_connect]
lst_prob = [size / sum(lst_firm_size) for size in lst_firm_size]
select_alt_supply = self.random.choices(lst_firm_machinery_connect, weights=lst_prob)[0]
else:
select_alt_supply = self.random.choice(lst_firm_machinery_connect)
return select_alt_supply
def handle_material_request(self, mater_list):
for list_P in self.P:
if list_P[0] == mater_list[0]:
list_P[1] -= mater_list[1]
def handle_machinery_request(self, machi_list):
for list_C in self.C:
if list_C[0] == machi_list[0]:
list_C[1] -= machi_list[1]
def refresh_R(self):
self.R1[self.model.t] = self.R
def refresh_C(self):
self.C1[self.model.t] = self.C
def refresh_P(self):
self.P1[self.model.t] = self.P
def clean_before_trial(self):
self.dct_request_prod_from_firm = {}
def clean_before_time_step(self):
# Reset the number of trials and candidate suppliers for disrupted products
self.dct_n_trial_up_prod_disrupted = dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0)
self.dct_cand_alt_supp_up_prod_disrupted = {}
# Update the status of products and refresh disruption sets
for prod in self.dct_prod_up_prod_stat.keys():
status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if ts != self.model.t:
self.dct_prod_up_prod_stat[prod]['p_stat'].append((status, self.model.t))
# Refresh the set of disrupted firms
for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys():
self.dct_prod_up_prod_stat[prod]['s_stat'][up_prod]['set_disrupt_firm'] = set()
def get_firm_network_unique_id(self):
return self.unique_id
def is_prod_in_current_normal(self, prod):
if prod in self.dct_prod_up_prod_stat.keys():
if self.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] == 'N':
return True
else:
return False
else:
return False

BIN
firm_network.pkl Normal file

Binary file not shown.

BIN
iiabmdb_basic_info.sql Normal file

Binary file not shown.

View File

@ -0,0 +1,32 @@
设备id,设备残值
59,700
60,210
61,350
62,140
63,700
64,500
65,700
66,100000
67,250
68,350
69,25
70,35
71,140
72,140
73,210
74,500
75,70
76,21
77,350
78,70
79,350
80,21
81,210
82,70
83,140
84,70
85,50
86,70
87,70
88,70
89,70
1 设备id 设备残值
2 59 700
3 60 210
4 61 350
5 62 140
6 63 700
7 64 500
8 65 700
9 66 100000
10 67 250
11 68 350
12 69 25
13 70 35
14 71 140
15 72 140
16 73 210
17 74 500
18 75 70
19 76 21
20 77 350
21 78 70
22 79 350
23 80 21
24 81 210
25 82 70
26 83 140
27 84 70
28 85 50
29 86 70
30 87 70
31 88 70
32 89 70

View File

@ -0,0 +1,364 @@
Firm_Code,Product_Code
1,7
5,7
29954548,7
29954548,7
453289520,8
453289520,8
3472022914,2514
79412414,2514
490476776,2514
720737055,2515
850972471,2515
350343208,2714
37873062,2714
1266556718,2714
331545755,2715
3193516458,2715
41454763,2715
584019624,2716
185356903,2716
22751149,2716
27169556,2717
3346538900,2717
2541265952,2717
777299215,2718
18107611,2718
4067555184,32338
2313177432,32338
12098344,32338
104671744,32432
4208851809,32432
203314437,32433
2309668026,32434
333499553,32434
4315536490,32434
1270747834,32435
39894253,32435
287006714,32435
3352578733,32436
366828854,32436
5849940,32437
5849940,32437
29954548,32438
3227189464,32438
2961715231,32439
888478182,32439
631103677,32440
2319266522,32440
1194436218,32440
2327979389,32441
216898035,32441
3274238529,32443
61066955,32443
2348894245,32445
169978927,32445
142823313,32446
367669349,32446
2340606811,32447
3269940677,32447
1452048,32448
1452048,32448
892652617,32449
1555364428,32449
2475874929,32450
2353020496,32450
4076786740,32451
331450699,32451
632264618,34491
29930956,34491
632264618,34491
1092796483,34492
2353851293,34492
972774,34492
24459300,34493
3344266702,34493
2345050363,34494
33171435,34494
2961210947,34495
41454763,34495
3135349256,34495
2350883312,34496
2350883312,34496
3006753238,34498
2350111843,34498
2343704209,34499
15482118,34499
930767828,34501
930767828,34501
1010816593,34502
2321243819,34502
2353542014,34502
79889978,34503
37378925,34503
186257378,34503
1379191812,34505
24653920,34505
864536616,34509
25685135,34509
2349046160,34513
2313628561,34513
2346465051,34513
1253552935,34517
1253552935,34517
5971532,34518
3157495460,34518
2354584345,34519
29452962,34519
2311639124,34524
762165453,34524
2989649772,34525
25147774,34525
413876805,34526
11807506,34526
3384021594,34527
413876805,34527
80158773,34528
2343704209,34528
3312358902,34529
80169705,34529
27075840,34530
3077450214,34530
2311352797,34531
22324879,34531
4379631621,34532
2349616974,34532
423388486,34533
1679596339,34533
3164072929,34534
22324879,34534
1033972427,34535
3312358902,34535
354328758,34537
1044103384,34537
78979697,34538
2316430101,34538
2349076526,34539
2347561020,34539
11169556957,34543
2333843479,34543
22324879,34544
59234665,34544
4995239819,34545
2339136692,34545
3327312155,34546
1389529309,34546
18729484,34547
3287925122,34547
888662519,34548
443872531,34549
24673506,34549
3065971313,34550
830662620,34550
2347561020,34551
613464015,34551
2453696971,34552
43566171,34552
2311838590,34553
409663925,34553
3414534661,34554
3393219477,34554
11175750477,34555
2311838590,34555
2321857672,34556
146491012,34557
2311907103,34557
3464943902,34558
259923931,34558
3054059190,34566
186745206,34566
507827038,34566
2349737110,34567
505990558,34567
613464015,34568
221048382,34568
2348910693,34569
2342515031,34569
2360390148,34570
2317568755,34570
2349511062,34571
2349511062,34571
500189853,34572
18065940,34572
3006753238,34573
2333993502,34573
433384648,34574
344181818,34574
1104420298,36914
37873062,36914
1452048,46504
2349349655,46504
420984285,46505
2329836516,46505
27599908,49686
2350719552,49686
3216066502,49687
39698451,49687
2351643794,49688
2351192662,49688
865049663,49689
891649,49689
3424978618,49690
3145156061,49690
281599332,49691
24653920,49691
79938367,49692
864169770,49692
2310296367,49693
774611690,49693
2311838590,49694
2350442566,49694
654461595,49695
383463860,49695
463659395,49696
2347105663,49696
504638253,49697
519195163,49698
3221578464,49698
2316256865,49699
3269840248,49699
1675147952,49700
1675147952,49700
29223617,49701
2553848709,49701
168035745,49702
510149116,49702
2316430101,49704
5591349,49704
274839085,49705
4209347174,49705
413142822,49707
951988821,49707
1587526,49708
1587526,49708
3402194899,49709
730857,49709
27085933,49710
27085933,49710
3424978618,49711
24495941,49711
2424229017,49712
3118428071,49712
3297178263,49713
441623911,49713
2316150629,49714
2327057709,49714
2624175,49715
3483100980,49715
781386116,49715
3222821993,49716
10398718,49716
3042364033,49717
2333993502,49717
79938367,49718
2342518227,49718
3068358389,49719
20751117,49719
3449575456,49720
3449575456,49720
3440374619,49721
3168979780,49721
2962064709,49722
3151203276,49722
3449575456,49723
777299215,49723
24459300,49724
1675147952,49724
2334772533,49725
38567125,49725
2338894532,49726
270141231,49726
220783142,49727
3407754893,49727
9278530,49728
9278530,49728
2323580212,49729
2331160070,49729
2349345463,49730
2350687852,49730
2357754148,49731
2357754148,49731
3173999388,49733
501323741,49733
20751117,49734
20751117,49734
2311337085,56247
2950325617,56247
2350701298,56248
2322658897,56248
2347015781,56249
24610687,56249
181655991,56250
15482118,56250
2326956863,56319
2326956863,56319
3270918801,56320
7299120,56320
557266995,56321
557266995,56321
2357759100,56322
695879282,56322
2314301730,56322
3118917053,56323
648145286,56323
4091219112,56341
60716715,56341
2982872611,317586
3051771738,317586
1237811030,317586
814834276,317589
3339921892,317589
22324879,317589
2358215091,317620
6823511,317620
2318300058,431078
30918572,431078
173280333,431079
1217010297,431079
79412414,431079
227353488,431080
4728160558,431080
20751117,431081
2313858141,431081
2311676659,431082
1048928993,431082
966536464,431083
3464313484,431083
2347015781,431085
2357754148,431085
338952484,431086
27042865,431086
3104545193,431087
9620005,431087
864166372,431088
33822284,431088
3312199997,513687
3344266702,513687
591975267,513689
3357541349,513691
3357541349,513691
24673506,513693
708388905,513693
16116663,513695
784491064,513695
2329395956,513697
2348912438,513697
520408144,513697
2351592628,513699
300186799,513699
578803019,513701
2342515031,513701
3339921892,513701
343932526,513720
2349375343,513720
2311838590,513738
2311838590,513738
2325170042,513742
10437056,513742
2350111843,513744
2311838590,513744
2350111843,513746
3306665331,513746
23131812,513749
3120341363,513749
314846874,513751
1 Firm_Code Product_Code
2 1 7
3 5 7
4 29954548 7
5 29954548 7
6 453289520 8
7 453289520 8
8 3472022914 2514
9 79412414 2514
10 490476776 2514
11 720737055 2515
12 850972471 2515
13 350343208 2714
14 37873062 2714
15 1266556718 2714
16 331545755 2715
17 3193516458 2715
18 41454763 2715
19 584019624 2716
20 185356903 2716
21 22751149 2716
22 27169556 2717
23 3346538900 2717
24 2541265952 2717
25 777299215 2718
26 18107611 2718
27 4067555184 32338
28 2313177432 32338
29 12098344 32338
30 104671744 32432
31 4208851809 32432
32 203314437 32433
33 2309668026 32434
34 333499553 32434
35 4315536490 32434
36 1270747834 32435
37 39894253 32435
38 287006714 32435
39 3352578733 32436
40 366828854 32436
41 5849940 32437
42 5849940 32437
43 29954548 32438
44 3227189464 32438
45 2961715231 32439
46 888478182 32439
47 631103677 32440
48 2319266522 32440
49 1194436218 32440
50 2327979389 32441
51 216898035 32441
52 3274238529 32443
53 61066955 32443
54 2348894245 32445
55 169978927 32445
56 142823313 32446
57 367669349 32446
58 2340606811 32447
59 3269940677 32447
60 1452048 32448
61 1452048 32448
62 892652617 32449
63 1555364428 32449
64 2475874929 32450
65 2353020496 32450
66 4076786740 32451
67 331450699 32451
68 632264618 34491
69 29930956 34491
70 632264618 34491
71 1092796483 34492
72 2353851293 34492
73 972774 34492
74 24459300 34493
75 3344266702 34493
76 2345050363 34494
77 33171435 34494
78 2961210947 34495
79 41454763 34495
80 3135349256 34495
81 2350883312 34496
82 2350883312 34496
83 3006753238 34498
84 2350111843 34498
85 2343704209 34499
86 15482118 34499
87 930767828 34501
88 930767828 34501
89 1010816593 34502
90 2321243819 34502
91 2353542014 34502
92 79889978 34503
93 37378925 34503
94 186257378 34503
95 1379191812 34505
96 24653920 34505
97 864536616 34509
98 25685135 34509
99 2349046160 34513
100 2313628561 34513
101 2346465051 34513
102 1253552935 34517
103 1253552935 34517
104 5971532 34518
105 3157495460 34518
106 2354584345 34519
107 29452962 34519
108 2311639124 34524
109 762165453 34524
110 2989649772 34525
111 25147774 34525
112 413876805 34526
113 11807506 34526
114 3384021594 34527
115 413876805 34527
116 80158773 34528
117 2343704209 34528
118 3312358902 34529
119 80169705 34529
120 27075840 34530
121 3077450214 34530
122 2311352797 34531
123 22324879 34531
124 4379631621 34532
125 2349616974 34532
126 423388486 34533
127 1679596339 34533
128 3164072929 34534
129 22324879 34534
130 1033972427 34535
131 3312358902 34535
132 354328758 34537
133 1044103384 34537
134 78979697 34538
135 2316430101 34538
136 2349076526 34539
137 2347561020 34539
138 11169556957 34543
139 2333843479 34543
140 22324879 34544
141 59234665 34544
142 4995239819 34545
143 2339136692 34545
144 3327312155 34546
145 1389529309 34546
146 18729484 34547
147 3287925122 34547
148 888662519 34548
149 443872531 34549
150 24673506 34549
151 3065971313 34550
152 830662620 34550
153 2347561020 34551
154 613464015 34551
155 2453696971 34552
156 43566171 34552
157 2311838590 34553
158 409663925 34553
159 3414534661 34554
160 3393219477 34554
161 11175750477 34555
162 2311838590 34555
163 2321857672 34556
164 146491012 34557
165 2311907103 34557
166 3464943902 34558
167 259923931 34558
168 3054059190 34566
169 186745206 34566
170 507827038 34566
171 2349737110 34567
172 505990558 34567
173 613464015 34568
174 221048382 34568
175 2348910693 34569
176 2342515031 34569
177 2360390148 34570
178 2317568755 34570
179 2349511062 34571
180 2349511062 34571
181 500189853 34572
182 18065940 34572
183 3006753238 34573
184 2333993502 34573
185 433384648 34574
186 344181818 34574
187 1104420298 36914
188 37873062 36914
189 1452048 46504
190 2349349655 46504
191 420984285 46505
192 2329836516 46505
193 27599908 49686
194 2350719552 49686
195 3216066502 49687
196 39698451 49687
197 2351643794 49688
198 2351192662 49688
199 865049663 49689
200 891649 49689
201 3424978618 49690
202 3145156061 49690
203 281599332 49691
204 24653920 49691
205 79938367 49692
206 864169770 49692
207 2310296367 49693
208 774611690 49693
209 2311838590 49694
210 2350442566 49694
211 654461595 49695
212 383463860 49695
213 463659395 49696
214 2347105663 49696
215 504638253 49697
216 519195163 49698
217 3221578464 49698
218 2316256865 49699
219 3269840248 49699
220 1675147952 49700
221 1675147952 49700
222 29223617 49701
223 2553848709 49701
224 168035745 49702
225 510149116 49702
226 2316430101 49704
227 5591349 49704
228 274839085 49705
229 4209347174 49705
230 413142822 49707
231 951988821 49707
232 1587526 49708
233 1587526 49708
234 3402194899 49709
235 730857 49709
236 27085933 49710
237 27085933 49710
238 3424978618 49711
239 24495941 49711
240 2424229017 49712
241 3118428071 49712
242 3297178263 49713
243 441623911 49713
244 2316150629 49714
245 2327057709 49714
246 2624175 49715
247 3483100980 49715
248 781386116 49715
249 3222821993 49716
250 10398718 49716
251 3042364033 49717
252 2333993502 49717
253 79938367 49718
254 2342518227 49718
255 3068358389 49719
256 20751117 49719
257 3449575456 49720
258 3449575456 49720
259 3440374619 49721
260 3168979780 49721
261 2962064709 49722
262 3151203276 49722
263 3449575456 49723
264 777299215 49723
265 24459300 49724
266 1675147952 49724
267 2334772533 49725
268 38567125 49725
269 2338894532 49726
270 270141231 49726
271 220783142 49727
272 3407754893 49727
273 9278530 49728
274 9278530 49728
275 2323580212 49729
276 2331160070 49729
277 2349345463 49730
278 2350687852 49730
279 2357754148 49731
280 2357754148 49731
281 3173999388 49733
282 501323741 49733
283 20751117 49734
284 20751117 49734
285 2311337085 56247
286 2950325617 56247
287 2350701298 56248
288 2322658897 56248
289 2347015781 56249
290 24610687 56249
291 181655991 56250
292 15482118 56250
293 2326956863 56319
294 2326956863 56319
295 3270918801 56320
296 7299120 56320
297 557266995 56321
298 557266995 56321
299 2357759100 56322
300 695879282 56322
301 2314301730 56322
302 3118917053 56323
303 648145286 56323
304 4091219112 56341
305 60716715 56341
306 2982872611 317586
307 3051771738 317586
308 1237811030 317586
309 814834276 317589
310 3339921892 317589
311 22324879 317589
312 2358215091 317620
313 6823511 317620
314 2318300058 431078
315 30918572 431078
316 173280333 431079
317 1217010297 431079
318 79412414 431079
319 227353488 431080
320 4728160558 431080
321 20751117 431081
322 2313858141 431081
323 2311676659 431082
324 1048928993 431082
325 966536464 431083
326 3464313484 431083
327 2347015781 431085
328 2357754148 431085
329 338952484 431086
330 27042865 431086
331 3104545193 431087
332 9620005 431087
333 864166372 431088
334 33822284 431088
335 3312199997 513687
336 3344266702 513687
337 591975267 513689
338 3357541349 513691
339 3357541349 513691
340 24673506 513693
341 708388905 513693
342 16116663 513695
343 784491064 513695
344 2329395956 513697
345 2348912438 513697
346 520408144 513697
347 2351592628 513699
348 300186799 513699
349 578803019 513701
350 2342515031 513701
351 3339921892 513701
352 343932526 513720
353 2349375343 513720
354 2311838590 513738
355 2311838590 513738
356 2325170042 513742
357 10437056 513742
358 2350111843 513744
359 2311838590 513744
360 2350111843 513746
361 3306665331 513746
362 23131812 513749
363 3120341363 513749
364 314846874 513751

View File

@ -0,0 +1,306 @@
Code,固定资产原值(万元人民币),固定资产净值(万元人民币),资产总和(万元人民币),存货(万元人民币),企业名称,Type_Region,Revenue_Log
1,24895.67,19028.645,59296.0375,3736.5025,金三江(肇庆)硅材料股份有限公司,广东省,4.77
5,28523.3982120397,16482.5120486869,40960.480086326,2588.93324,福建省三明正元化工有限公司,福建省,4.61
29954548,757171.52339162,494430.604177194,1465408.31294514,133292.643730143,多氟多新材料股份有限公司,河南省,6.17
453289520,130115.029749624,82224.7896921481,479782.660674286,193520.088971571,拓荆科技股份有限公司,辽宁省,5.68
3472022914,737.674091690682,426.271863328108,1059.32276085326,66.95517,哈尔滨市丰赛农业技术开发有限公司,黑龙江省,3.03
79412414,21634.7036353221,11761.1518318531,91981.0940971428,12269.0431131106,无锡力芯微电子股份有限公司,江苏省,4.96
490476776,55936.0889760484,32323.191425171,80325.95,18149.98,成都旭光科技股份有限公司,四川省,4.9
720737055,4537.85989427612,2622.24472086527,6516.50685,315.444274666667,上海明波通信技术股份有限公司,上海市,3.81
850972471,10860.463202359,7923.85146086661,132707.358609333,8836.59633516667,杭州广立微电子股份有限公司,浙江省,5.12
350343208,29640.4180971984,17127.9924216384,42564.5551135,3903.95977783333,四川九洲光电科技股份有限公司,四川省,4.63
37873062,859499.995818288,498140.77960258,1507073.36388473,184703.551339833,杭州士兰微电子股份有限公司,浙江省,6.18
1266556718,37572.0587346531,22449.072071654,168567.630391833,10632.3104404292,科大国盾量子技术股份有限公司,安徽省,5.23
331545755,14213.7203367523,8213.53104442853,20411.3410498333,6911.28954133333,西安西驰电气股份有限公司,陕西省,4.31
3193516458,113416.479647353,79144.1733852397,412242.506193571,41347.21758,苏州华兴源创科技股份有限公司,江苏省,5.62
41454763,29933.175208967,18326.5778449736,160000.820546286,3281.00494028571,上海概伦电子股份有限公司,上海市,5.2
584019624,219826.879323823,127029.015271776,315678.182734271,19952.64066,安徽电力股份有限公司淮南田家庵发电分公司,安徽省,5.5
185356903,327.855151862525,189.454161479159,470.810115934781,29.7578533333333,淮南市西迈机械制造有限公司,安徽省,2.67
22751149,743338.086508,447941.053405333,1288765.41920833,263513.812713,新洋丰农业科技股份有限公司,湖北省,6.11
27169556,663046.74805,380037.692216667,4032516.77646667,455436.179933333,株洲中车时代电气股份有限公司,湖南省,6.61
3346538900,3093538.01873858,1787629.83596418,4442416.06385275,335021.89871525,广东小鹏汽车科技有限公司,广东省,6.65
2541265952,7294.77712894119,4215.35509291129,10475.5250795489,662.112236666667,深圳市福斯特半导体有限公司,广东省,4.02
777299215,6639.06682521613,3836.44676995298,9533.90484767932,602.59653,福州世强电子有限公司,福建省,3.98
18107611,34371080.0120577,19861649.5907558,49357931.615075,4949308.389283,浙江吉利控股集团有限公司,浙江省,7.69
4067555184,3565.42477650496,2060.31400608586,5120.06001079074,323.616655,大庆菲曼希精密设备制造有限公司,黑龙江省,3.71
2313177432,983.565455587575,568.362484437478,1412.43034780434,89.27356,常州卡思特摩光伏材料有限公司,江苏省,3.15
12098344,134382.308019667,35393.1831141667,190516.121775667,36019.3828761667,宁夏东方钽业股份有限公司,宁夏回族自治区,5.28
104671744,5409.61000573167,3125.99366440613,7768.36691292389,491.00458,青海利亚达化工有限公司,青海省,3.89
4208851809,71851.6551423333,52930.2237671667,445347.011300833,49697.6881215,西陇科学股份有限公司,广东省,5.65
203314437,3196.58773065962,1847.1780744218,4590.39863036412,290.13907,洛阳市洁晶清洗材料有限公司,河南省,3.66
2309668026,1229.45681948447,710.453105546847,1765.53793475543,111.59195,山西蓝光工程材料有限公司,山西省,3.25
333499553,371418.905166259,214627.883185702,533369.010089615,33711.928095,山西三维华邦集团有限公司,山西省,5.73
4315536490,737.674091690682,426.271863328108,1059.32276085326,66.95517,山西鑫远建材有限公司,山西省,3.03
1270747834,38359.0527679154,22166.1368930616,55084.7835643694,3481.66884,广东奥克化学有限公司,广东省,4.74
39894253,4989507.81666667,1332605.0,4381081.81666667,662222.116666667,中国石化上海石油化工股份有限公司,上海市,6.64
287006714,913508.252742451,527879.275480115,1311826.0425,111970.2725,宝武碳业科技股份有限公司,上海市,6.12
3352578733,491.782727793788,284.181242218739,706.215173902173,44.63678,吉林省泓昇新能源科技有限公司,吉林省,2.85
366828854,81536.6715771667,60716.0971225,275511.445341833,37270.9437623333,广东聚石化学股份有限公司,广东省,5.44
5849940,18652802.5217652,10302896.7482042,20855221.2857143,2169804.72857143,中国铝业股份有限公司,北京市,7.32
3227189464,32949.4427621838,19040.1432286555,47316.4166514455,2990.66426,安徽瑞柏新材料有限公司,安徽省,4.68
2961715231,9712.7088739273,5612.57953382009,13947.7496845679,881.576405,绍兴金冶环保科技有限公司,浙江省,4.14
888478182,491.782727793788,284.181242218739,706.215173902172,44.63678,东莞市道滘博尔日涂料助剂厂,广东省,2.85
631103677,5245.68242980039,3031.26658366655,7532.9618549565,476.125653333333,贵州忠辉重工有限公司,贵州省,3.88
2319266522,688.495818911303,397.853739106234,988.701243463042,62.491492,台州市路桥岩方涂料有限公司,浙江省,3.0
1194436218,245.891363896894,142.090621109369,353.107586951086,22.31839,平湖市金鹏工贸有限公司油漆分公司,浙江省,2.55
2327979389,9507.79940401323,5494.17068289562,13653.4933621087,862.977746666667,江苏赢新润滑科技有限公司,江苏省,4.14
216898035,39506.5457994343,22829.2264582387,56732.6189701411,3585.82132666667,河南长兴实业有限公司,河南省,4.75
3274238529,737.674091690682,426.271863328108,1059.32276085326,66.95517,杭州东宇活性炭有限公司,浙江省,3.03
61066955,140510.748267291,76204.8620044891,338602.933514714,28179.6880875714,浙江康盛股份有限公司,浙江省,5.53
2348894245,140155.923780404,84124.7869805446,297024.681265143,11981.7573048571,晶瑞电子材料股份有限公司,江苏省,5.47
169978927,1674991.23124933,1348118.9408745,2598689.7056225,65028.9291661667,合肥晶合集成电路股份有限公司,安徽省,6.41
142823313,110604.194319667,62639.2297726667,635987.119100167,97437.8679368333,重庆川仪自动化股份有限公司,重庆市,5.8
367669349,5105668.05830967,3059216.88747333,6702847.66086067,537603.399401,蓝思科技股份有限公司,湖南省,6.83
2340606811,4180.1531862472,2415.54055885928,6002.82897816846,379.41263,佛山市特能宝化学原料有限公司,广东省,3.78
3269940677,30244.6377593179,17477.1463964524,43432.2331949836,2745.16197,吉和昌新材料(荆门)有限公司,湖北省,4.64
1452048,28236967.2134157,17452589.831388,37654713.2389085,1884370.44367833,京东方科技集团股份有限公司,北京市,7.58
892652617,64751.3924928487,37417.196892134,92984.9978971192,5877.17603333333,兰州金川科技园有限公司,甘肃省,4.97
1555364428,70201.9843925632,40566.872326725,100812.216074535,6371.900345,稀美资源(广东)有限公司,广东省,5.0
2475874929,245.891363896894,142.090621109369,353.107586951086,22.31839,南亚贸易(惠州)有限公司,广东省,2.55
2353020496,26261.923728183,15429.0215205381,60979.99377175,4997.96087575,同宇新材料(广东)股份有限公司,广东省,4.79
4076786740,983.565455587575,568.362484437478,1412.43034780434,89.27356,内蒙古鑫钰祥商贸有限公司,内蒙古自治区,3.15
331450699,5409.61000573167,3125.99366440613,7768.36691292389,491.00458,绵阳诚勤电子科技有限责任公司,四川省,3.89
632264618,24466.2960693333,11125.104671,41893.9137386667,9131.4346385,精伦电子股份有限公司,湖北省,4.62
29930956,1113.70019512213,643.562059059886,1599.30784983333,492.828037833333,北京鼎实创新科技股份有限公司,北京市,3.2
1092796483,24644.7665540916,13962.6723778493,99636.0612445714,21795.4415151429,亚世光电(集团)股份有限公司,辽宁省,5.0
2353851293,1475.34818338136,852.543726656217,2118.64552170652,133.91034,深圳市弘佳光电科技有限公司,广东省,3.33
972774,34438.570245,21878.4732774,269601.932676,94545.1294942,北京神舟航天软件技术股份有限公司,北京市,5.43
24459300,11563.6630606667,6970.961253,604937.636983333,87424.1267993333,北京集创北方科技股份有限公司,北京市,5.78
3344266702,22275.8966165753,12988.7428133535,91231.4598907143,12065.8805295714,佛山市联动科技股份有限公司,广东省,4.96
2345050363,29345.4983293333,19251.4658936667,69568.8449763333,1262.94723833333,胜科纳米(苏州)股份有限公司,江苏省,4.84
33171435,608534.898068333,328118.5379995,1084751.64497883,61275.9548563333,广东风华高新科技股份有限公司,广东省,6.04
2961210947,1721.23954727826,994.634347765586,2471.7531086576,156.22873,深圳市泽晶伟创科技有限公司,广东省,3.39
3135349256,23988.7417005,21562.453113,213376.093520167,11441.7133435,北京华峰测控技术股份有限公司,北京市,5.33
2350883312,8360.30637249438,4831.08111771856,12005.6579563369,758.82526,无锡市辉煌电子材料有限公司,江苏省,4.08
3006753238,2041970.43921619,1162815.70513596,2626399.81194,236376.363264714,通富微电子股份有限公司,江苏省,6.42
2350111843,92789.448255777,62286.1122935528,131188.586355714,1480.14299457143,广东利扬芯片测试股份有限公司,广东省,5.12
2343704209,71514.6399746746,41325.4026142836,102697.23,7848.60666666667,麦斯克电子材料股份有限公司,河南省,5.01
15482118,136268.003408653,72622.7235243867,386138.298983975,75554.4652471667,上海复旦微电子集团股份有限公司,上海市,5.59
930767828,92087.5475024413,53213.6493681296,132240.5601055,24848.5958543333,中国科学院沈阳科学仪器股份有限公司,辽宁省,5.12
1010816593,190161.172017552,125995.43098285,489297.169029714,111575.164158429,青岛鼎信通讯股份有限公司,山东省,5.69
2321243819,8150.63908576382,5683.42656648055,78242.99176,8590.6279275,浙江铖昌科技股份有限公司,浙江省,4.89
2353542014,5346.21434766376,3089.35989131322,7677.3287915,3063.477861,深圳市力生美半导体股份有限公司,广东省,3.89
79889978,70662.4194063333,47709.2542268333,743263.198951833,57637.2210431667,杭州海兴电力科技股份有限公司,浙江省,5.87
37378925,35834.7159848466,22934.3345194324,85466.377199,12474.301626,欣灵电气股份有限公司,浙江省,4.93
186257378,9884.83282865514,5712.04296859665,14194.9249954336,897.199278,长春长光奥立红外技术有限公司,吉林省,4.15
1379191812,7376.74091690682,4262.71863328108,10593.2276085326,669.5517,宁波力创电子科技发展有限公司,浙江省,4.03
24653920,63925.6287144089,38626.1648407043,301902.830405857,49184.7394994286,圣邦微电子(北京)股份有限公司,北京市,5.48
864536616,449077.123100443,297167.27771169,1565844.03465357,259887.593897857,上海联影医疗科技股份有限公司,上海市,6.19
25685135,27225.0066035415,15732.2243314978,39095.9496671667,494.656998333333,北京确安科技股份有限公司,北京市,4.59
2349046160,7145.51529816667,4421.05037816667,275606.846605167,16789.3887331667,思瑞浦微电子科技(苏州)股份有限公司,江苏省,5.44
2313628561,14933.4672534613,8629.44352226417,21444.9198341667,3977.1318875,重庆阿泰可科技股份有限公司,重庆市,4.33
2346465051,2114.66572951329,1221.97934154058,3036.72524777934,191.938154,海南中藤科技股份有限公司,海南省,3.48
1253552935,4169.08448783333,2457.4742155,82802.5928295,7680.27564083333,深圳市力合微电子股份有限公司,广东省,4.92
5971532,1008031.2322245,724134.278732333,9825144.85496167,1410912.94534083,杭州海康威视数字技术股份有限公司,浙江省,6.99
3157495460,29634.8258561912,17809.9080543064,74174.9565917143,12596.5014271429,广东绿岛风空气系统股份有限公司,广东省,4.87
2354584345,1844.1852292267,1065.67965832027,2648.30690213314,167.387925,山西集目看看信息技术股份有限公司,山西省,3.42
29452962,456144.931192807,269318.787489444,1898148.98546986,206077.306495286,广电运通集团股份有限公司,广东省,6.28
2311639124,737.674091690682,426.271863328108,1059.32276085326,66.95517,府谷县鈺益来环保设备安装有限公司,陕西省,3.03
762165453,614.728409742234,355.226552773424,882.768967377713,55.795975,贵州大龙铁合金集团海鸿硅业有限公司,贵州省,2.95
2989649772,353266.3068118,314586.6119876,816569.9774388,71733.723177,江苏美科太阳能科技股份有限公司,江苏省,5.91
25147774,122743.43558,87339.0741283333,470955.22499,92968.234407,有研新材料股份有限公司,北京市,5.67
413876805,245.891363896894,142.090621109369,353.107586951086,22.31839,益阳同行机电设备有限公司,湖南省,2.55
11807506,19609298.1959302,12104435.9853224,39142373.2,5444482.05714286,比亚迪股份有限公司,广东省,7.59
3384021594,24097.3536618956,13924.8808687182,34604.5435212064,2187.20222,中电化合物半导体有限公司,浙江省,4.54
80158773,12635.7451105,6465.9750325,23799.6983851667,1474.810014,江苏华盛天龙光电设备股份有限公司,江苏省,4.38
3312358902,66438.2226519953,41878.7735649207,237082.540978857,87569.4877398571,沈阳芯源微电子设备股份有限公司,辽宁省,5.37
80169705,49057.3516709158,36516.8322531191,374401.3523425,149290.899493,深圳市联赢激光股份有限公司,广东省,5.57
27075840,240383.397345603,138907.79119652,345197.977003382,21818.458064,上海生物制品研究所有限责任公司,上海市,5.54
3077450214,25753.3271505,16846.9978213333,150584.844272833,21242.4322786667,安集微电子科技(上海)股份有限公司,上海市,5.18
2311352797,55205.024134511,31900.7387787705,79276.1183263333,6754.43288,阳光中科(福建)能源股份有限公司,福建省,4.9
22324879,32642.0785573127,18862.5299522688,46875.0321677567,2962.7662725,北京中电科电子装备有限公司,北京市,4.67
4379631621,245.891363896894,142.090621109369,353.107586951086,22.31839,深圳市铁盒科技有限公司,广东省,2.55
2349616974,31228.2032149055,18045.5088808899,44844.6635427879,2834.43553,无锡派斯克科技有限公司,江苏省,4.65
423388486,163646.093171967,112755.430119389,622443.151983429,242227.496705143,海目星激光科技集团股份有限公司,广东省,5.79
1679596339,7602.68963569803,4393.28521066349,10917.6969416667,4958.50469716667,上海广奕电子科技股份有限公司,上海市,4.04
3164072929,798499.18961975,624873.87844475,1327789.8413485,124088.77507875,芯联集成电路制造股份有限公司,浙江省,6.12
1033972427,36282.327026942,26200.1602546739,467572.046681333,150030.431427836,盛美半导体设备(上海)股份有限公司,上海市,5.67
354328758,4917.82727793788,2841.81242218739,7062.15173902172,446.3678,安徽索克菲尼仪表有限公司,安徽省,3.85
1044103384,424162.602722142,245106.321413662,609110.587490623,38499.22275,通威太阳能(安徽)有限公司,安徽省,5.78
78979697,3444820.24820822,2409945.69767362,8167350.12541314,1224407.85554914,晶科能源股份有限公司,江西省,6.91
2316430101,190407.310913344,133151.348506564,648884.637041571,104480.892502143,江苏卓胜微电子股份有限公司,江苏省,5.81
2349076526,438376.609971396,268726.318611834,2259548.69151771,771941.581803429,无锡先导智能装备股份有限公司,江苏省,6.35
2347561020,23605.5709341018,13640.6996264995,33898.3283473042,2142.56544,安徽北方微电子研究院集团有限公司,安徽省,4.53
11169556957,983.565455587577,568.362484437478,1412.43034780434,89.27356,安徽华鑫微纳集成电路有限公司,安徽省,3.15
2333843479,25746.1035943333,12125.48027,54175.2774613333,8385.40003966667,山东华光光电子股份有限公司,山东省,4.73
59234665,251695.047657333,199428.352979167,1787952.23306117,656252.890643167,浙江晶盛机电股份有限公司,浙江省,6.25
4995239819,491.782727793788,284.181242218739,706.215173902172,44.63678,江苏明纳供应链管理有限公司,江苏省,2.85
2339136692,640144.399809059,473982.97970632,1481467.957578,133298.837068571,弘元绿色能源股份有限公司,江苏省,6.17
3327312155,4794.88159598943,2770.76711163271,6885.59794554618,435.208605,合肥钛柯精密机械有限公司,安徽省,3.84
1389529309,32860.1214204911,18988.5280571493,47188.14844825,8239.6429645,深圳市哈德胜精密科技股份有限公司,广东省,4.67
18729484,505503.465899235,292109.898876642,725918.577254043,45882.146162,淮海工业集团有限公司,山西省,5.86
3287925122,8729.14341833971,5044.21704938262,12535.3193367636,792.302845,贵州通创科光电有限公司,贵州省,4.1
888662519,22130.2227507204,12788.1558998433,31779.6828255977,2008.6551,东莞市森富同纸品有限公司,广东省,4.5
443872531,217273.703527667,142463.186399833,490405.746949167,14931.5790275,惠州光弘科技股份有限公司,广东省,5.69
24673506,3731195.01695067,1819174.82755833,3657055.221448,291506.649439667,江苏长电科技股份有限公司,江苏省,6.56
3065971313,134201.385594667,87171.1758126667,197624.891468667,29697.253081,华羿微电子股份有限公司,陕西省,5.3
830662620,262637.565598167,177898.6218025,676303.217476167,73842.0312075,扬州扬杰电子科技股份有限公司,江苏省,5.83
613464015,17409.1331735,10325.6691753333,220548.5172555,35552.7344381667,贵州振华风光半导体股份有限公司,贵州省,5.34
2453696971,48907.0477203197,33449.653193481,182178.79532558,34675.6299895,罗博特科智能科技股份有限公司,江苏省,5.26
43566171,19425.4177478546,11225.1590676402,27895.4993691358,1763.15281,长白朝鲜族自治县天宝硅藻土功能制品有限公司,吉林省,4.45
2311838590,53398.0289114503,26546.600225041,80495.2837445714,310.151853,上海华岭集成电路技术股份有限公司,上海市,4.91
409663925,63931.7546131924,36943.5614884361,91807.9726072824,5802.7814,三河建华高科有限责任公司,河北省,4.96
3414534661,227798.54904047,146248.694269867,454874.703635286,46215.3088984286,厦门弘信电子科技集团股份有限公司,福建省,5.66
3393219477,245.891363896894,142.090621109369,353.107586951086,22.31839,吉林新环诚汽车科技有限公司,吉林省,2.55
11175750477,39342.618223503,22734.4993774991,56497.2139121738,3570.9424,强一半导体(合肥)有限公司,安徽省,4.75
2321857672,172615.737455619,99747.6160187774,247881.526039662,15667.50978,福建福顺半导体制造有限公司,福建省,5.39
146491012,172984.813296877,111150.023329549,555820.536672,166754.219868852,博众精工科技股份有限公司,江苏省,5.74
2311907103,61082.6578818333,46952.3648285,333112.031847833,76726.8203528333,苏州赛腾精密电子股份有限公司,江苏省,5.52
3464943902,368.837045845341,213.135931664054,529.661380426629,33.477585,南京波彩汽车服务有限公司,江苏省,2.72
259923931,1426.16991060198,824.125602434345,2048.0240043163,129.446662,甘肃明辰环保科技有限公司,甘肃省,3.31
3054059190,16474.7213810919,9520.07161432775,23658.2083257228,1495.33213,四川宏润达幕墙装饰工程有限公司,四川省,4.37
186745206,322457.554289333,214280.913465333,594869.173440333,31534.1938276667,四川东材科技集团股份有限公司,四川省,5.77
507827038,690052.603181786,422522.420147987,1589615.70303614,134419.051238286,潮州三环(集团)股份有限公司,广东省,6.2
2349737110,18351.1885185589,10604.4056748188,26352.8730443333,6196.09279783333,无锡红光微电子股份有限公司,江苏省,4.42
505990558,2704.80500286583,1562.99683220306,3884.18345646195,245.50229,铜陵佳友科技有限公司,安徽省,3.59
221048382,157338.070008167,103120.752683167,993163.7559685,352447.843621667,云南省贵金属新材料控股集团股份有限公司,云南省,6.0
2348910693,26926.1598385298,15632.4205943617,40928.6516936667,4641.11761583333,北京康美特科技股份有限公司,北京市,4.61
2342515031,55858.3214985777,32278.2527620118,80214.2735023883,5069.99426166667,苏州住友电木有限公司,江苏省,4.9
2360390148,6393.17546131924,3694.35614884361,9180.79726072824,580.27814,广东施奈仕实业有限公司,广东省,3.96
2317568755,11034.5563371667,7291.74244,86496.1049655,7858.70136516667,深圳科创新源新材料股份有限公司,广东省,4.94
2349511062,8646.87845536109,4996.67947221875,12417.1843111667,1190.53784783333,江苏明昊新材料科技股份有限公司,江苏省,4.09
500189853,22867.8968424112,13214.4277631714,32839.005586451,2075.61027,东莞升洋焊锡材料有限公司,广东省,4.52
18065940,191013.048499246,96582.5538206939,867380.822769857,143283.010690286,北京君正集成电路股份有限公司,北京市,5.94
2333993502,206465.644948888,142992.065005962,241630.438272143,17415.7935534286,合肥新汇成微电子股份有限公司,安徽省,5.38
433384648,13130.5988320941,7587.63916724033,18855.945143188,1191.802026,牡丹江市北亚硬质合金有限责任公司,黑龙江省,4.28
344181818,162948.972334805,104126.347671517,466055.759069286,79181.2545228571,青岛高测科技股份有限公司,山东省,5.67
1104420298,86588.4830698333,50706.5640115,1206682.12055083,213731.195733667,中微半导体设备(上海)股份有限公司,上海市,6.08
2349349655,8916.26246416139,5152.34553759312,12804.0280612,1116.3192482,苏州博洋化学股份有限公司,江苏省,4.11
420984285,223613.011910333,158257.78831,1015669.78454783,62168.8641543333,深圳新宙邦科技股份有限公司,广东省,6.01
2329836516,78826.6177775,56812.0715446667,203111.819117167,4786.47693733333,江阴江化微电子材料股份有限公司,江苏省,5.31
27599908,65243.1752206425,37701.3781343527,93691.2130710213,5921.81281333333,北京航天晨信科技有限责任公司,北京市,4.97
2350719552,1767.01581175,997.23466825,55246.80543625,11314.5121375,深圳好博窗控技术股份有限公司,广东省,4.74
3216066502,47519.3914293237,25919.6030558896,183625.261502,20677.0661462857,楚天龙股份有限公司,广东省,5.26
39698451,107938.314838978,39590.1075543603,412101.092700429,69378.6032017143,东方通信股份有限公司,浙江省,5.62
2351643794,24220.299343844,13995.9261792729,34781.097314682,2198.361415,亚洲信用卡厂(深圳)有限公司,广东省,4.54
2351192662,8851.83008107238,5548.49697731345,27867.47160725,3416.11452834962,河北晶禾电子技术股份有限公司,河北省,4.45
865049663,87774.8053041193,59882.7303796437,298504.191277714,43328.108973,国民技术股份有限公司,广东省,5.47
891649,85550.3230285109,36367.0451934161,230945.34964,25810.7164891429,恒宝股份有限公司,江苏省,5.36
3424978618,31885.9688027932,21504.6483379033,177114.294382333,56086.1265501667,深圳市智微智能科技股份有限公司,广东省,5.25
3145156061,245.891363896894,142.090621109369,353.107586951086,22.31839,北京中星微人工智能芯片技术有限公司,北京市,2.55
281599332,64820.07552,40154.6568665,558302.417650333,40598.0444641667,金卡智能集团股份有限公司,浙江省,5.75
79938367,364886.103943167,192426.6793045,3404308.61500033,438207.673933167,海信视像科技股份有限公司,山东省,6.53
864169770,170444.206583047,110508.776061746,469960.309361,24457.7740034286,深圳市聚飞光电股份有限公司,广东省,5.67
2310296367,37034.8887722,31909.4172092,800509.2176356,31554.9076322,澜起科技股份有限公司,上海市,5.9
774611690,87455.3617593286,50536.8975745657,125588.598425603,7937.90737666667,成都大唐线缆有限公司,四川省,5.1
2350442566,24785.8494808069,14322.7346078244,35593.2447646695,2249.693712,无锡友达电子有限公司,江苏省,4.55
654461595,14660.1619921667,11316.6484308333,119189.010378333,8316.87563333333,上海灿瑞科技股份有限公司,上海市,5.08
383463860,498520.151164562,288074.525237136,715890.321784631,45248.303886,广东虹勤通讯技术有限公司,广东省,5.85
463659395,164973.071000475,103647.445394252,518579.052314833,39793.0929578333,深圳市奋达科技股份有限公司,广东省,5.71
2347105663,7670.18126121354,4432.28587679994,11014.61699875,4603.6098265,深圳市百泰实业股份有限公司,广东省,4.04
504638253,84443.6902996838,49855.5442456137,204519.3508715,51230.2114925,珠海市杰理科技股份有限公司,广东省,5.31
519195163,1924.04639447068,1111.82817851309,2762.99,269.27,深圳市迪浦电子有限公司,广东省,3.44
3221578464,6393.17546131924,3694.35614884361,9180.79726072824,580.27814,北京电星互动文化传媒有限公司,北京市,3.96
2316256865,31675.2583182562,18154.1646929991,146872.233407667,30518.2317446667,广州慧智微电子股份有限公司,广东省,5.17
3269840248,368.837045845341,213.135931664054,529.661380426629,33.477585,安徽创矽电子科技有限公司,安徽省,2.72
1675147952,16925.06773,12545.4403666,86939.851294,9412.2279396,广州安凯微电子股份有限公司,广东省,4.94
29223617,49351.6354965,38030.0537195,336478.787652167,25356.7104388333,青岛东软载波科技股份有限公司,山东省,5.53
2553848709,15982.9386532981,9235.89037210901,22951.9931518205,1450.69535,深圳智微电子科技股份有限公司,广东省,4.36
168035745,4475.22282292347,2586.04930419052,6426.55808250976,406.194698,成都艾希联科技有限公司,四川省,3.81
510149116,4130.97491346782,2387.12243463741,5932.20746077824,374.948952,深圳市宝视达科技有限公司,广东省,3.77
5591349,214284.563403751,124927.075093795,1154545.83667914,44936.3798348571,北京四维图新科技股份有限公司,北京市,6.06
274839085,5072.9571540186,2931.45566990296,7284.9230285,1251.8898265,上海长合信息技术股份有限公司,上海市,3.86
4209347174,10573.3286475664,6109.89670770289,15183.6262388967,959.69077,四川锦路通科技有限公司,四川省,4.18
413142822,33691.2724915977,19012.8064225955,295228.181493667,9677.11797866667,北京弘高创意建筑设计股份有限公司,北京市,5.47
951988821,25605.8899302788,18756.1741981746,351800.143148667,88668.7767376667,武汉帝尔激光科技股份有限公司,湖北省,5.55
1587526,37281.2763304483,20821.6870507603,264083.505326,37562.7044782857,北京北信源软件股份有限公司,北京市,5.42
3402194899,614.728409742234,355.226552773424,882.768967377713,55.795975,吉林省依岚机器人科技有限公司,吉林省,2.95
730857,170484.678968513,98516.1639691628,244821.260286086,15474.0837333333,北京机械工业自动化研究所有限公司,北京市,5.39
27085933,39068.3169418316,24985.5123183443,81807.0237951429,3512.25453285714,观典防务技术股份有限公司,北京市,4.91
24495941,68018.9182948103,41411.5321373808,343277.487442714,80497.7686304286,瑞斯康达科技发展股份有限公司,北京市,5.54
2424229017,114276.893374667,77926.1367106667,500826.828284333,41132.540103,湖北鼎龙控股股份有限公司,湖北省,5.7
3118428071,245.891363896894,142.090621109369,353.107586951086,22.31839,浙江出彩智能科技有限公司,浙江省,2.55
3297178263,6721.03061318177,3883.81031032277,9651.60737666299,610.035993333333,安徽徽昂光电科技有限公司,安徽省,3.98
441623911,79201.8446421667,54549.9474813333,240891.492164333,46601.7746505,东莞铭普光磁股份有限公司,广东省,5.38
2316150629,3193.75060666667,2061.597836,93411.1801021667,20442.4057828333,深圳英集芯科技股份有限公司,广东省,4.97
2327057709,23544.9442314765,13440.4003796565,68644.06669975,18862.75571075,苏州华之杰电讯股份有限公司,江苏省,4.84
2624175,112528.502696921,68592.2842455949,676577.778208429,45047.728384,北京旋极信息技术股份有限公司,北京市,5.83
3483100980,491.782727793788,284.181242218739,706.215173902172,44.63678,公主岭市王岩口腔诊所有限公司,吉林省,2.85
781386116,141735.041227833,75482.3393631667,509573.936014,65785.0702958333,国光电器股份有限公司,广东省,5.71
3222821993,7991.46932664906,4617.94518605451,11475.9965759103,725.347675,象山金钇光电科技有限公司,浙江省,4.06
10398718,769033.670522573,491078.248113787,2870403.42429771,537996.506329429,中国长城科技集团股份有限公司,广东省,6.46
3042364033,245.891363896894,142.090621109369,353.107586951086,22.31839,上海津领信息科技有限公司,上海市,2.55
2342518227,9173.79330924141,5301.16214161011,13173.8503023333,3045.84492716667,江苏欧密格光电科技股份有限公司,江苏省,4.12
3068358389,1811.95903660257,1047.05745193863,2602.029095,298.473805182015,无锡汉咏科技股份有限公司,江苏省,3.42
20751117,15716.6102843333,8183.32674633333,416800.384882667,41335.5048401667,上海贝岭股份有限公司,上海市,5.62
3449575456,705.462014166667,404.564843666667,98147.2591208333,8331.321303,峰岹科技(深圳)股份有限公司,广东省,4.99
3440374619,5071.89578685606,2930.84234897554,7283.3988725,2753.40906483333,浙江信测通信股份有限公司,浙江省,3.86
3168979780,312036.140785158,180312.99818779,448093.527840928,28322.03691,华域视觉科技(上海)有限公司,上海市,5.65
2962064709,10650.3258155645,6154.39024033911,15294.1965483333,3870.76790783333,上海中基国威电子股份有限公司,上海市,4.18
3151203276,341884.6623548,201430.568992,477385.6924028,28574.494008,合肥颀中科技股份有限公司,安徽省,5.68
2334772533,28252.9257821369,16326.2170290132,40572.07333,8232.49431216667,南京泰通科技股份有限公司,江苏省,4.61
38567125,55215.5674613333,32280.1155033333,195121.699532833,23741.5776591667,杭州星帅尔电器股份有限公司,浙江省,5.29
2338894532,7130.84955300992,4120.62801217171,10240.1200215815,647.23331,宁波锦澄电子科技股份有限公司,浙江省,4.01
270141231,72968.2622364032,42165.3918142054,104784.676427735,6622.9822325,贵州雅光电子科技股份有限公司,贵州省,5.02
220783142,7868.5236447006,4546.89987549982,11299.4427824348,714.18848,麦歌恩电子(上海)有限公司,上海市,4.05
3407754893,232859.633511805,168326.909166578,411069.08997625,40891.55866,比亚迪半导体股份有限公司,广东省,5.61
9278530,70406.8938624773,40685.2811776494,101106.472396994,6390.49900333333,北京银联金卡科技有限公司,北京市,5.0
2323580212,16597.6670630403,9591.11692488244,23834.7621191983,1506.491325,深圳市美莱雅科技有限公司,广东省,4.38
2331160070,3255.79612835197,1881.39220000014,4675.42371666667,794.0237395,南通光合生物技术股份有限公司,江苏省,3.67
2349345463,74136.2462149135,42840.3222644749,106461.937465753,6728.994585,成都海威华芯科技有限公司,四川省,5.03
2350687852,11074.7830890728,6399.66684001862,15903.7302921667,4029.26472366667,江苏钜芯集成电路技术股份有限公司,江苏省,4.2
2357754148,8015.82834302686,4632.02127116739,11510.9768751667,3729.40010633333,广芯电子技术(上海)股份有限公司,上海市,4.06
3173999388,16720.6127449888,9662.16223543712,24011.3159126738,1517.65052,东方微电科技(武汉)有限公司,湖北省,4.38
501323741,66833.3625173174,43673.4697465961,220671.160353143,45867.2232541429,浙江大立科技股份有限公司,浙江省,5.34
2311337085,19127.0147477191,11036.5029958297,112145.035851286,36647.5253237143,上海安路信息科技股份有限公司,上海市,5.05
2950325617,19318.22026519,11163.2140011207,27741.5604758333,5855.69548783333,深圳市汇春科技股份有限公司,广东省,4.44
2350701298,2458.91363896894,1420.90621109369,3531.07586951086,223.1839,深圳市玛琪电子科技有限公司,广东省,3.55
2322658897,1721.23954727826,994.634347765586,2471.7531086576,156.22873,深圳市好通家实业有限公司,广东省,3.39
2347015781,41626.2975832227,25542.5692075516,141575.867817429,28732.6177297143,苏州盛科通信股份有限公司,江苏省,5.15
24610687,6738738.84243147,3834842.07575342,24477540.6526928,2602016.44544083,潍柴动力股份有限公司,山东省,7.39
181655991,273187.085037167,140652.672426167,1074612.49761317,1582.68336616667,网宿科技股份有限公司,上海市,6.03
2326956863,124019.549713435,73785.5926887248,540313.3684405,76558.826568734,南京国博电子股份有限公司,江苏省,5.73
3270918801,15859.9929713496,9164.84506155432,22775.4393583451,1439.536155,浙江康鹏半导体有限公司,浙江省,4.36
7299120,86887.22406325,46503.9275985,158305.75064575,29562.480612,北京通美晶体技术股份有限公司,北京市,5.2
557266995,12727.7263021028,7354.83551319098,18277.4077571667,1541.1883505,上海宇昂水性新材料科技股份有限公司,上海市,4.26
2357759100,9393.05010086134,5427.86172637791,13488.7098215315,852.562498,兰州华亚碳化硅有限公司,甘肃省,4.13
695879282,245.891363896894,142.090621109369,353.107586951086,22.31839,长兴县煤山石墨炉料厂,浙江省,2.55
2314301730,245.891363896894,142.090621109369,353.107586951086,22.31839,哈尔滨滨大阀门销售有限公司,黑龙江省,2.55
3118917053,3745.07570646035,2235.78648897479,34776.380083,7562.35984084442,钰泰半导体股份有限公司,江苏省,4.54
648145286,5614.51947564574,3244.4025153306,8062.62323538314,509.603238333333,东莞高辉光电科技有限公司,广东省,3.91
4091219112,614.728409742235,355.226552773424,882.768967377716,55.795975,深圳市盈享电子有限公司,广东省,2.95
60716715,592169.358539127,384961.940366283,1120885.29632114,52097.0039868571,东江环保股份有限公司,广东省,6.05
2982872611,8421.77921346862,4866.60377299591,12093.9348530747,764.4048575,长春精测光电技术有限公司,吉林省,4.08
3051771738,42617.058969,38615.9713255,335052.885705,119431.036400333,思特威(上海)电子科技股份有限公司,上海市,5.53
1237811030,14876.4275157621,8596.48257711685,21363.0090105407,1350.262595,上海华元创信软件有限公司,上海市,4.33
814834276,491.782727793788,284.181242218739,706.215173902172,44.63678,合肥迅驰电子科技有限责任公司,安徽省,2.85
3339921892,3196.58773065962,1847.1780744218,4590.39863036412,290.13907,安徽新芯威半导体有限公司,安徽省,3.66
2358215091,13289.0210914582,7679.18494938513,19083.4443966667,2443.928088,湖南康通电子股份有限公司,湖南省,4.28
6823511,78869.4760125386,47996.3703655252,256662.443677,49246.3736734781,龙芯中科技术股份有限公司,北京市,5.41
2318300058,9211.4190974,8204.0656666,166804.0972472,22511.6174346,上海南芯半导体科技股份有限公司,上海市,5.22
30918572,15257.2196295671,8816.52685645477,21909.8382375,6399.88976466667,先控捷联电气股份有限公司,河北省,4.34
173280333,248425.451059374,142652.70938459,878978.625317428,71268.6104547143,欧普照明股份有限公司,上海市,5.94
1217010297,90629.2798441586,52928.8445056824,472859.626137,86929.247462,湖南国科微电子股份有限公司,湖南省,5.67
227353488,175499.644065506,111018.373589625,674848.280106857,141511.018406,深圳麦格米特电气股份有限公司,广东省,5.83
4728160558,6146862.45588483,3440255.60792112,21708037.884611,3437661.391239,海尔智家股份有限公司,山东省,7.34
2313858141,16878.5286234786,10924.6070951714,54919.3020473333,8636.660643,苏州锴威特半导体股份有限公司,江苏省,4.74
2311676659,91225.6960057476,52715.6204315761,131002.914758853,8280.12269,西安航天远征流体控制股份有限公司,陕西省,5.12
1048928993,32609.7984571027,18843.8765948852,46828.6769476667,13303.533159,上海南麟电子股份有限公司,上海市,4.67
966536464,4523.96805911779,2614.21719417741,6496.557746,957.122635333333,安徽中瑞通信科技股份有限公司,安徽省,3.81
3464313484,16473.8484456667,14922.002517,126101.603055167,6330.15329883333,江苏帝奥微电子股份有限公司,江苏省,5.1
338952484,14110.7472545758,8154.02708718447,20263.468526,6999.23901883333,山东德佑电气股份有限公司,山东省,4.31
27042865,1497706.54820932,865463.716586106,2150752.82359567,291043.484399,许继集团有限公司,河南省,6.33
3104545193,105021.775873296,73402.8541622617,268651.229376429,36083.9444402857,深圳欧陆通电子股份有限公司,广东省,5.43
9620005,295597.151853333,194730.920618333,2678794.80455533,681912.489464,上海韦尔半导体股份有限公司,上海市,6.43
864166372,88655.6666795,53753.15834,298897.386987333,27638.9844123333,江苏云意电气股份有限公司,江苏省,5.48
33822284,7821705.81265451,4340541.90024414,31773080.975276,3117341.894336,珠海格力电器股份有限公司,广东省,7.5
3312199997,138830.090012117,91789.4512288681,333225.515573857,39124.2209532857,河北中瓷电子科技股份有限公司,河北省,5.52
591975267,4917.82727793788,2841.81242218739,7062.15173902172,446.3678,沧州凯润电子科技有限公司,河北省,3.85
3357541349,90822.4366201021,66907.2350655535,148235.929229143,6191.05493557143,杭州美迪凯光电科技股份有限公司,浙江省,5.17
708388905,3442.47909455651,1989.26869553117,4943.5062173152,312.45746,南通锦程塑料制品厂,江苏省,3.69
16116663,93258.3100837016,52399.5479796363,350692.109563571,26734.2883584286,珠海航宇微科技股份有限公司,广东省,5.54
784491064,36676.1406432416,26183.5340754385,78563.0454985714,4984.05170328571,腾景科技股份有限公司,福建省,4.9
2329395956,983.565455587575,568.362484437478,1412.43034780434,89.27356,辽阳县力通机械制造有限公司,辽宁省,3.15
2348912438,15033.7874138907,8687.41446389993,21588.9826805,6642.99890894431,广东圣帕新材料股份有限公司,广东省,4.33
520408144,223023.467054483,128876.193346198,320268.581364635,20242.77973,国巨电子(东莞)有限公司,广东省,5.51
2351592628,41820.4531887686,22960.7164579339,141041.529103571,26807.1478321429,无锡市德科立光电子技术股份有限公司,江苏省,5.15
300186799,1913582.75295502,1234953.81045746,2517803.40044929,175073.587292714,天水华天科技股份有限公司,甘肃省,6.4
578803019,16290.3028581692,9413.50364849573,23393.3776355094,1478.5933375,深圳市光脉电子有限公司,广东省,4.37
343932526,63566.4602922289,45042.3466785544,273327.568779,48343.29187,上海艾为电子技术股份有限公司,上海市,5.44
2349375343,4807.3848604464,2777.99223977234,6903.55301916667,1503.62640083333,苏州康尼格电子科技股份有限公司,江苏省,3.84
2325170042,10068.2861576175,5818.05318808436,14458.3696373333,1149.84855133333,深圳电通纬创微电子股份有限公司,广东省,4.16
10437056,194286.929344781,116962.315280927,419389.225194167,1602.69784816667,广电计量检测集团股份有限公司,广东省,5.62
3306665331,28691.8448431667,19979.0470871667,309295.834049333,16592.0700063333,芯原微电子(上海)股份有限公司,上海市,5.49
23131812,71270.701868413,40132.0804564047,330063.943783714,29776.0587888571,北京东方中科集成科技股份有限公司,北京市,5.52
3120341363,177544.316546708,129292.795388716,626033.402033857,102806.403100857,武汉精测电子集团股份有限公司,湖北省,5.8
314846874,1984.631183,1641.71031766667,17644.9277333333,1747.244057,赛卓电子科技(上海)股份有限公司,上海市,4.25
1 Code 固定资产原值(万元人民币) 固定资产净值(万元人民币) 资产总和(万元人民币) 存货(万元人民币) 企业名称 Type_Region Revenue_Log
2 1 24895.67 19028.645 59296.0375 3736.5025 金三江(肇庆)硅材料股份有限公司 广东省 4.77
3 5 28523.3982120397 16482.5120486869 40960.480086326 2588.93324 福建省三明正元化工有限公司 福建省 4.61
4 29954548 757171.52339162 494430.604177194 1465408.31294514 133292.643730143 多氟多新材料股份有限公司 河南省 6.17
5 453289520 130115.029749624 82224.7896921481 479782.660674286 193520.088971571 拓荆科技股份有限公司 辽宁省 5.68
6 3472022914 737.674091690682 426.271863328108 1059.32276085326 66.95517 哈尔滨市丰赛农业技术开发有限公司 黑龙江省 3.03
7 79412414 21634.7036353221 11761.1518318531 91981.0940971428 12269.0431131106 无锡力芯微电子股份有限公司 江苏省 4.96
8 490476776 55936.0889760484 32323.191425171 80325.95 18149.98 成都旭光科技股份有限公司 四川省 4.9
9 720737055 4537.85989427612 2622.24472086527 6516.50685 315.444274666667 上海明波通信技术股份有限公司 上海市 3.81
10 850972471 10860.463202359 7923.85146086661 132707.358609333 8836.59633516667 杭州广立微电子股份有限公司 浙江省 5.12
11 350343208 29640.4180971984 17127.9924216384 42564.5551135 3903.95977783333 四川九洲光电科技股份有限公司 四川省 4.63
12 37873062 859499.995818288 498140.77960258 1507073.36388473 184703.551339833 杭州士兰微电子股份有限公司 浙江省 6.18
13 1266556718 37572.0587346531 22449.072071654 168567.630391833 10632.3104404292 科大国盾量子技术股份有限公司 安徽省 5.23
14 331545755 14213.7203367523 8213.53104442853 20411.3410498333 6911.28954133333 西安西驰电气股份有限公司 陕西省 4.31
15 3193516458 113416.479647353 79144.1733852397 412242.506193571 41347.21758 苏州华兴源创科技股份有限公司 江苏省 5.62
16 41454763 29933.175208967 18326.5778449736 160000.820546286 3281.00494028571 上海概伦电子股份有限公司 上海市 5.2
17 584019624 219826.879323823 127029.015271776 315678.182734271 19952.64066 安徽电力股份有限公司淮南田家庵发电分公司 安徽省 5.5
18 185356903 327.855151862525 189.454161479159 470.810115934781 29.7578533333333 淮南市西迈机械制造有限公司 安徽省 2.67
19 22751149 743338.086508 447941.053405333 1288765.41920833 263513.812713 新洋丰农业科技股份有限公司 湖北省 6.11
20 27169556 663046.74805 380037.692216667 4032516.77646667 455436.179933333 株洲中车时代电气股份有限公司 湖南省 6.61
21 3346538900 3093538.01873858 1787629.83596418 4442416.06385275 335021.89871525 广东小鹏汽车科技有限公司 广东省 6.65
22 2541265952 7294.77712894119 4215.35509291129 10475.5250795489 662.112236666667 深圳市福斯特半导体有限公司 广东省 4.02
23 777299215 6639.06682521613 3836.44676995298 9533.90484767932 602.59653 福州世强电子有限公司 福建省 3.98
24 18107611 34371080.0120577 19861649.5907558 49357931.615075 4949308.389283 浙江吉利控股集团有限公司 浙江省 7.69
25 4067555184 3565.42477650496 2060.31400608586 5120.06001079074 323.616655 大庆菲曼希精密设备制造有限公司 黑龙江省 3.71
26 2313177432 983.565455587575 568.362484437478 1412.43034780434 89.27356 常州卡思特摩光伏材料有限公司 江苏省 3.15
27 12098344 134382.308019667 35393.1831141667 190516.121775667 36019.3828761667 宁夏东方钽业股份有限公司 宁夏回族自治区 5.28
28 104671744 5409.61000573167 3125.99366440613 7768.36691292389 491.00458 青海利亚达化工有限公司 青海省 3.89
29 4208851809 71851.6551423333 52930.2237671667 445347.011300833 49697.6881215 西陇科学股份有限公司 广东省 5.65
30 203314437 3196.58773065962 1847.1780744218 4590.39863036412 290.13907 洛阳市洁晶清洗材料有限公司 河南省 3.66
31 2309668026 1229.45681948447 710.453105546847 1765.53793475543 111.59195 山西蓝光工程材料有限公司 山西省 3.25
32 333499553 371418.905166259 214627.883185702 533369.010089615 33711.928095 山西三维华邦集团有限公司 山西省 5.73
33 4315536490 737.674091690682 426.271863328108 1059.32276085326 66.95517 山西鑫远建材有限公司 山西省 3.03
34 1270747834 38359.0527679154 22166.1368930616 55084.7835643694 3481.66884 广东奥克化学有限公司 广东省 4.74
35 39894253 4989507.81666667 1332605.0 4381081.81666667 662222.116666667 中国石化上海石油化工股份有限公司 上海市 6.64
36 287006714 913508.252742451 527879.275480115 1311826.0425 111970.2725 宝武碳业科技股份有限公司 上海市 6.12
37 3352578733 491.782727793788 284.181242218739 706.215173902173 44.63678 吉林省泓昇新能源科技有限公司 吉林省 2.85
38 366828854 81536.6715771667 60716.0971225 275511.445341833 37270.9437623333 广东聚石化学股份有限公司 广东省 5.44
39 5849940 18652802.5217652 10302896.7482042 20855221.2857143 2169804.72857143 中国铝业股份有限公司 北京市 7.32
40 3227189464 32949.4427621838 19040.1432286555 47316.4166514455 2990.66426 安徽瑞柏新材料有限公司 安徽省 4.68
41 2961715231 9712.7088739273 5612.57953382009 13947.7496845679 881.576405 绍兴金冶环保科技有限公司 浙江省 4.14
42 888478182 491.782727793788 284.181242218739 706.215173902172 44.63678 东莞市道滘博尔日涂料助剂厂 广东省 2.85
43 631103677 5245.68242980039 3031.26658366655 7532.9618549565 476.125653333333 贵州忠辉重工有限公司 贵州省 3.88
44 2319266522 688.495818911303 397.853739106234 988.701243463042 62.491492 台州市路桥岩方涂料有限公司 浙江省 3.0
45 1194436218 245.891363896894 142.090621109369 353.107586951086 22.31839 平湖市金鹏工贸有限公司油漆分公司 浙江省 2.55
46 2327979389 9507.79940401323 5494.17068289562 13653.4933621087 862.977746666667 江苏赢新润滑科技有限公司 江苏省 4.14
47 216898035 39506.5457994343 22829.2264582387 56732.6189701411 3585.82132666667 河南长兴实业有限公司 河南省 4.75
48 3274238529 737.674091690682 426.271863328108 1059.32276085326 66.95517 杭州东宇活性炭有限公司 浙江省 3.03
49 61066955 140510.748267291 76204.8620044891 338602.933514714 28179.6880875714 浙江康盛股份有限公司 浙江省 5.53
50 2348894245 140155.923780404 84124.7869805446 297024.681265143 11981.7573048571 晶瑞电子材料股份有限公司 江苏省 5.47
51 169978927 1674991.23124933 1348118.9408745 2598689.7056225 65028.9291661667 合肥晶合集成电路股份有限公司 安徽省 6.41
52 142823313 110604.194319667 62639.2297726667 635987.119100167 97437.8679368333 重庆川仪自动化股份有限公司 重庆市 5.8
53 367669349 5105668.05830967 3059216.88747333 6702847.66086067 537603.399401 蓝思科技股份有限公司 湖南省 6.83
54 2340606811 4180.1531862472 2415.54055885928 6002.82897816846 379.41263 佛山市特能宝化学原料有限公司 广东省 3.78
55 3269940677 30244.6377593179 17477.1463964524 43432.2331949836 2745.16197 吉和昌新材料(荆门)有限公司 湖北省 4.64
56 1452048 28236967.2134157 17452589.831388 37654713.2389085 1884370.44367833 京东方科技集团股份有限公司 北京市 7.58
57 892652617 64751.3924928487 37417.196892134 92984.9978971192 5877.17603333333 兰州金川科技园有限公司 甘肃省 4.97
58 1555364428 70201.9843925632 40566.872326725 100812.216074535 6371.900345 稀美资源(广东)有限公司 广东省 5.0
59 2475874929 245.891363896894 142.090621109369 353.107586951086 22.31839 南亚贸易(惠州)有限公司 广东省 2.55
60 2353020496 26261.923728183 15429.0215205381 60979.99377175 4997.96087575 同宇新材料(广东)股份有限公司 广东省 4.79
61 4076786740 983.565455587575 568.362484437478 1412.43034780434 89.27356 内蒙古鑫钰祥商贸有限公司 内蒙古自治区 3.15
62 331450699 5409.61000573167 3125.99366440613 7768.36691292389 491.00458 绵阳诚勤电子科技有限责任公司 四川省 3.89
63 632264618 24466.2960693333 11125.104671 41893.9137386667 9131.4346385 精伦电子股份有限公司 湖北省 4.62
64 29930956 1113.70019512213 643.562059059886 1599.30784983333 492.828037833333 北京鼎实创新科技股份有限公司 北京市 3.2
65 1092796483 24644.7665540916 13962.6723778493 99636.0612445714 21795.4415151429 亚世光电(集团)股份有限公司 辽宁省 5.0
66 2353851293 1475.34818338136 852.543726656217 2118.64552170652 133.91034 深圳市弘佳光电科技有限公司 广东省 3.33
67 972774 34438.570245 21878.4732774 269601.932676 94545.1294942 北京神舟航天软件技术股份有限公司 北京市 5.43
68 24459300 11563.6630606667 6970.961253 604937.636983333 87424.1267993333 北京集创北方科技股份有限公司 北京市 5.78
69 3344266702 22275.8966165753 12988.7428133535 91231.4598907143 12065.8805295714 佛山市联动科技股份有限公司 广东省 4.96
70 2345050363 29345.4983293333 19251.4658936667 69568.8449763333 1262.94723833333 胜科纳米(苏州)股份有限公司 江苏省 4.84
71 33171435 608534.898068333 328118.5379995 1084751.64497883 61275.9548563333 广东风华高新科技股份有限公司 广东省 6.04
72 2961210947 1721.23954727826 994.634347765586 2471.7531086576 156.22873 深圳市泽晶伟创科技有限公司 广东省 3.39
73 3135349256 23988.7417005 21562.453113 213376.093520167 11441.7133435 北京华峰测控技术股份有限公司 北京市 5.33
74 2350883312 8360.30637249438 4831.08111771856 12005.6579563369 758.82526 无锡市辉煌电子材料有限公司 江苏省 4.08
75 3006753238 2041970.43921619 1162815.70513596 2626399.81194 236376.363264714 通富微电子股份有限公司 江苏省 6.42
76 2350111843 92789.448255777 62286.1122935528 131188.586355714 1480.14299457143 广东利扬芯片测试股份有限公司 广东省 5.12
77 2343704209 71514.6399746746 41325.4026142836 102697.23 7848.60666666667 麦斯克电子材料股份有限公司 河南省 5.01
78 15482118 136268.003408653 72622.7235243867 386138.298983975 75554.4652471667 上海复旦微电子集团股份有限公司 上海市 5.59
79 930767828 92087.5475024413 53213.6493681296 132240.5601055 24848.5958543333 中国科学院沈阳科学仪器股份有限公司 辽宁省 5.12
80 1010816593 190161.172017552 125995.43098285 489297.169029714 111575.164158429 青岛鼎信通讯股份有限公司 山东省 5.69
81 2321243819 8150.63908576382 5683.42656648055 78242.99176 8590.6279275 浙江铖昌科技股份有限公司 浙江省 4.89
82 2353542014 5346.21434766376 3089.35989131322 7677.3287915 3063.477861 深圳市力生美半导体股份有限公司 广东省 3.89
83 79889978 70662.4194063333 47709.2542268333 743263.198951833 57637.2210431667 杭州海兴电力科技股份有限公司 浙江省 5.87
84 37378925 35834.7159848466 22934.3345194324 85466.377199 12474.301626 欣灵电气股份有限公司 浙江省 4.93
85 186257378 9884.83282865514 5712.04296859665 14194.9249954336 897.199278 长春长光奥立红外技术有限公司 吉林省 4.15
86 1379191812 7376.74091690682 4262.71863328108 10593.2276085326 669.5517 宁波力创电子科技发展有限公司 浙江省 4.03
87 24653920 63925.6287144089 38626.1648407043 301902.830405857 49184.7394994286 圣邦微电子(北京)股份有限公司 北京市 5.48
88 864536616 449077.123100443 297167.27771169 1565844.03465357 259887.593897857 上海联影医疗科技股份有限公司 上海市 6.19
89 25685135 27225.0066035415 15732.2243314978 39095.9496671667 494.656998333333 北京确安科技股份有限公司 北京市 4.59
90 2349046160 7145.51529816667 4421.05037816667 275606.846605167 16789.3887331667 思瑞浦微电子科技(苏州)股份有限公司 江苏省 5.44
91 2313628561 14933.4672534613 8629.44352226417 21444.9198341667 3977.1318875 重庆阿泰可科技股份有限公司 重庆市 4.33
92 2346465051 2114.66572951329 1221.97934154058 3036.72524777934 191.938154 海南中藤科技股份有限公司 海南省 3.48
93 1253552935 4169.08448783333 2457.4742155 82802.5928295 7680.27564083333 深圳市力合微电子股份有限公司 广东省 4.92
94 5971532 1008031.2322245 724134.278732333 9825144.85496167 1410912.94534083 杭州海康威视数字技术股份有限公司 浙江省 6.99
95 3157495460 29634.8258561912 17809.9080543064 74174.9565917143 12596.5014271429 广东绿岛风空气系统股份有限公司 广东省 4.87
96 2354584345 1844.1852292267 1065.67965832027 2648.30690213314 167.387925 山西集目看看信息技术股份有限公司 山西省 3.42
97 29452962 456144.931192807 269318.787489444 1898148.98546986 206077.306495286 广电运通集团股份有限公司 广东省 6.28
98 2311639124 737.674091690682 426.271863328108 1059.32276085326 66.95517 府谷县鈺益来环保设备安装有限公司 陕西省 3.03
99 762165453 614.728409742234 355.226552773424 882.768967377713 55.795975 贵州大龙铁合金集团海鸿硅业有限公司 贵州省 2.95
100 2989649772 353266.3068118 314586.6119876 816569.9774388 71733.723177 江苏美科太阳能科技股份有限公司 江苏省 5.91
101 25147774 122743.43558 87339.0741283333 470955.22499 92968.234407 有研新材料股份有限公司 北京市 5.67
102 413876805 245.891363896894 142.090621109369 353.107586951086 22.31839 益阳同行机电设备有限公司 湖南省 2.55
103 11807506 19609298.1959302 12104435.9853224 39142373.2 5444482.05714286 比亚迪股份有限公司 广东省 7.59
104 3384021594 24097.3536618956 13924.8808687182 34604.5435212064 2187.20222 中电化合物半导体有限公司 浙江省 4.54
105 80158773 12635.7451105 6465.9750325 23799.6983851667 1474.810014 江苏华盛天龙光电设备股份有限公司 江苏省 4.38
106 3312358902 66438.2226519953 41878.7735649207 237082.540978857 87569.4877398571 沈阳芯源微电子设备股份有限公司 辽宁省 5.37
107 80169705 49057.3516709158 36516.8322531191 374401.3523425 149290.899493 深圳市联赢激光股份有限公司 广东省 5.57
108 27075840 240383.397345603 138907.79119652 345197.977003382 21818.458064 上海生物制品研究所有限责任公司 上海市 5.54
109 3077450214 25753.3271505 16846.9978213333 150584.844272833 21242.4322786667 安集微电子科技(上海)股份有限公司 上海市 5.18
110 2311352797 55205.024134511 31900.7387787705 79276.1183263333 6754.43288 阳光中科(福建)能源股份有限公司 福建省 4.9
111 22324879 32642.0785573127 18862.5299522688 46875.0321677567 2962.7662725 北京中电科电子装备有限公司 北京市 4.67
112 4379631621 245.891363896894 142.090621109369 353.107586951086 22.31839 深圳市铁盒科技有限公司 广东省 2.55
113 2349616974 31228.2032149055 18045.5088808899 44844.6635427879 2834.43553 无锡派斯克科技有限公司 江苏省 4.65
114 423388486 163646.093171967 112755.430119389 622443.151983429 242227.496705143 海目星激光科技集团股份有限公司 广东省 5.79
115 1679596339 7602.68963569803 4393.28521066349 10917.6969416667 4958.50469716667 上海广奕电子科技股份有限公司 上海市 4.04
116 3164072929 798499.18961975 624873.87844475 1327789.8413485 124088.77507875 芯联集成电路制造股份有限公司 浙江省 6.12
117 1033972427 36282.327026942 26200.1602546739 467572.046681333 150030.431427836 盛美半导体设备(上海)股份有限公司 上海市 5.67
118 354328758 4917.82727793788 2841.81242218739 7062.15173902172 446.3678 安徽索克菲尼仪表有限公司 安徽省 3.85
119 1044103384 424162.602722142 245106.321413662 609110.587490623 38499.22275 通威太阳能(安徽)有限公司 安徽省 5.78
120 78979697 3444820.24820822 2409945.69767362 8167350.12541314 1224407.85554914 晶科能源股份有限公司 江西省 6.91
121 2316430101 190407.310913344 133151.348506564 648884.637041571 104480.892502143 江苏卓胜微电子股份有限公司 江苏省 5.81
122 2349076526 438376.609971396 268726.318611834 2259548.69151771 771941.581803429 无锡先导智能装备股份有限公司 江苏省 6.35
123 2347561020 23605.5709341018 13640.6996264995 33898.3283473042 2142.56544 安徽北方微电子研究院集团有限公司 安徽省 4.53
124 11169556957 983.565455587577 568.362484437478 1412.43034780434 89.27356 安徽华鑫微纳集成电路有限公司 安徽省 3.15
125 2333843479 25746.1035943333 12125.48027 54175.2774613333 8385.40003966667 山东华光光电子股份有限公司 山东省 4.73
126 59234665 251695.047657333 199428.352979167 1787952.23306117 656252.890643167 浙江晶盛机电股份有限公司 浙江省 6.25
127 4995239819 491.782727793788 284.181242218739 706.215173902172 44.63678 江苏明纳供应链管理有限公司 江苏省 2.85
128 2339136692 640144.399809059 473982.97970632 1481467.957578 133298.837068571 弘元绿色能源股份有限公司 江苏省 6.17
129 3327312155 4794.88159598943 2770.76711163271 6885.59794554618 435.208605 合肥钛柯精密机械有限公司 安徽省 3.84
130 1389529309 32860.1214204911 18988.5280571493 47188.14844825 8239.6429645 深圳市哈德胜精密科技股份有限公司 广东省 4.67
131 18729484 505503.465899235 292109.898876642 725918.577254043 45882.146162 淮海工业集团有限公司 山西省 5.86
132 3287925122 8729.14341833971 5044.21704938262 12535.3193367636 792.302845 贵州通创科光电有限公司 贵州省 4.1
133 888662519 22130.2227507204 12788.1558998433 31779.6828255977 2008.6551 东莞市森富同纸品有限公司 广东省 4.5
134 443872531 217273.703527667 142463.186399833 490405.746949167 14931.5790275 惠州光弘科技股份有限公司 广东省 5.69
135 24673506 3731195.01695067 1819174.82755833 3657055.221448 291506.649439667 江苏长电科技股份有限公司 江苏省 6.56
136 3065971313 134201.385594667 87171.1758126667 197624.891468667 29697.253081 华羿微电子股份有限公司 陕西省 5.3
137 830662620 262637.565598167 177898.6218025 676303.217476167 73842.0312075 扬州扬杰电子科技股份有限公司 江苏省 5.83
138 613464015 17409.1331735 10325.6691753333 220548.5172555 35552.7344381667 贵州振华风光半导体股份有限公司 贵州省 5.34
139 2453696971 48907.0477203197 33449.653193481 182178.79532558 34675.6299895 罗博特科智能科技股份有限公司 江苏省 5.26
140 43566171 19425.4177478546 11225.1590676402 27895.4993691358 1763.15281 长白朝鲜族自治县天宝硅藻土功能制品有限公司 吉林省 4.45
141 2311838590 53398.0289114503 26546.600225041 80495.2837445714 310.151853 上海华岭集成电路技术股份有限公司 上海市 4.91
142 409663925 63931.7546131924 36943.5614884361 91807.9726072824 5802.7814 三河建华高科有限责任公司 河北省 4.96
143 3414534661 227798.54904047 146248.694269867 454874.703635286 46215.3088984286 厦门弘信电子科技集团股份有限公司 福建省 5.66
144 3393219477 245.891363896894 142.090621109369 353.107586951086 22.31839 吉林新环诚汽车科技有限公司 吉林省 2.55
145 11175750477 39342.618223503 22734.4993774991 56497.2139121738 3570.9424 强一半导体(合肥)有限公司 安徽省 4.75
146 2321857672 172615.737455619 99747.6160187774 247881.526039662 15667.50978 福建福顺半导体制造有限公司 福建省 5.39
147 146491012 172984.813296877 111150.023329549 555820.536672 166754.219868852 博众精工科技股份有限公司 江苏省 5.74
148 2311907103 61082.6578818333 46952.3648285 333112.031847833 76726.8203528333 苏州赛腾精密电子股份有限公司 江苏省 5.52
149 3464943902 368.837045845341 213.135931664054 529.661380426629 33.477585 南京波彩汽车服务有限公司 江苏省 2.72
150 259923931 1426.16991060198 824.125602434345 2048.0240043163 129.446662 甘肃明辰环保科技有限公司 甘肃省 3.31
151 3054059190 16474.7213810919 9520.07161432775 23658.2083257228 1495.33213 四川宏润达幕墙装饰工程有限公司 四川省 4.37
152 186745206 322457.554289333 214280.913465333 594869.173440333 31534.1938276667 四川东材科技集团股份有限公司 四川省 5.77
153 507827038 690052.603181786 422522.420147987 1589615.70303614 134419.051238286 潮州三环(集团)股份有限公司 广东省 6.2
154 2349737110 18351.1885185589 10604.4056748188 26352.8730443333 6196.09279783333 无锡红光微电子股份有限公司 江苏省 4.42
155 505990558 2704.80500286583 1562.99683220306 3884.18345646195 245.50229 铜陵佳友科技有限公司 安徽省 3.59
156 221048382 157338.070008167 103120.752683167 993163.7559685 352447.843621667 云南省贵金属新材料控股集团股份有限公司 云南省 6.0
157 2348910693 26926.1598385298 15632.4205943617 40928.6516936667 4641.11761583333 北京康美特科技股份有限公司 北京市 4.61
158 2342515031 55858.3214985777 32278.2527620118 80214.2735023883 5069.99426166667 苏州住友电木有限公司 江苏省 4.9
159 2360390148 6393.17546131924 3694.35614884361 9180.79726072824 580.27814 广东施奈仕实业有限公司 广东省 3.96
160 2317568755 11034.5563371667 7291.74244 86496.1049655 7858.70136516667 深圳科创新源新材料股份有限公司 广东省 4.94
161 2349511062 8646.87845536109 4996.67947221875 12417.1843111667 1190.53784783333 江苏明昊新材料科技股份有限公司 江苏省 4.09
162 500189853 22867.8968424112 13214.4277631714 32839.005586451 2075.61027 东莞升洋焊锡材料有限公司 广东省 4.52
163 18065940 191013.048499246 96582.5538206939 867380.822769857 143283.010690286 北京君正集成电路股份有限公司 北京市 5.94
164 2333993502 206465.644948888 142992.065005962 241630.438272143 17415.7935534286 合肥新汇成微电子股份有限公司 安徽省 5.38
165 433384648 13130.5988320941 7587.63916724033 18855.945143188 1191.802026 牡丹江市北亚硬质合金有限责任公司 黑龙江省 4.28
166 344181818 162948.972334805 104126.347671517 466055.759069286 79181.2545228571 青岛高测科技股份有限公司 山东省 5.67
167 1104420298 86588.4830698333 50706.5640115 1206682.12055083 213731.195733667 中微半导体设备(上海)股份有限公司 上海市 6.08
168 2349349655 8916.26246416139 5152.34553759312 12804.0280612 1116.3192482 苏州博洋化学股份有限公司 江苏省 4.11
169 420984285 223613.011910333 158257.78831 1015669.78454783 62168.8641543333 深圳新宙邦科技股份有限公司 广东省 6.01
170 2329836516 78826.6177775 56812.0715446667 203111.819117167 4786.47693733333 江阴江化微电子材料股份有限公司 江苏省 5.31
171 27599908 65243.1752206425 37701.3781343527 93691.2130710213 5921.81281333333 北京航天晨信科技有限责任公司 北京市 4.97
172 2350719552 1767.01581175 997.23466825 55246.80543625 11314.5121375 深圳好博窗控技术股份有限公司 广东省 4.74
173 3216066502 47519.3914293237 25919.6030558896 183625.261502 20677.0661462857 楚天龙股份有限公司 广东省 5.26
174 39698451 107938.314838978 39590.1075543603 412101.092700429 69378.6032017143 东方通信股份有限公司 浙江省 5.62
175 2351643794 24220.299343844 13995.9261792729 34781.097314682 2198.361415 亚洲信用卡厂(深圳)有限公司 广东省 4.54
176 2351192662 8851.83008107238 5548.49697731345 27867.47160725 3416.11452834962 河北晶禾电子技术股份有限公司 河北省 4.45
177 865049663 87774.8053041193 59882.7303796437 298504.191277714 43328.108973 国民技术股份有限公司 广东省 5.47
178 891649 85550.3230285109 36367.0451934161 230945.34964 25810.7164891429 恒宝股份有限公司 江苏省 5.36
179 3424978618 31885.9688027932 21504.6483379033 177114.294382333 56086.1265501667 深圳市智微智能科技股份有限公司 广东省 5.25
180 3145156061 245.891363896894 142.090621109369 353.107586951086 22.31839 北京中星微人工智能芯片技术有限公司 北京市 2.55
181 281599332 64820.07552 40154.6568665 558302.417650333 40598.0444641667 金卡智能集团股份有限公司 浙江省 5.75
182 79938367 364886.103943167 192426.6793045 3404308.61500033 438207.673933167 海信视像科技股份有限公司 山东省 6.53
183 864169770 170444.206583047 110508.776061746 469960.309361 24457.7740034286 深圳市聚飞光电股份有限公司 广东省 5.67
184 2310296367 37034.8887722 31909.4172092 800509.2176356 31554.9076322 澜起科技股份有限公司 上海市 5.9
185 774611690 87455.3617593286 50536.8975745657 125588.598425603 7937.90737666667 成都大唐线缆有限公司 四川省 5.1
186 2350442566 24785.8494808069 14322.7346078244 35593.2447646695 2249.693712 无锡友达电子有限公司 江苏省 4.55
187 654461595 14660.1619921667 11316.6484308333 119189.010378333 8316.87563333333 上海灿瑞科技股份有限公司 上海市 5.08
188 383463860 498520.151164562 288074.525237136 715890.321784631 45248.303886 广东虹勤通讯技术有限公司 广东省 5.85
189 463659395 164973.071000475 103647.445394252 518579.052314833 39793.0929578333 深圳市奋达科技股份有限公司 广东省 5.71
190 2347105663 7670.18126121354 4432.28587679994 11014.61699875 4603.6098265 深圳市百泰实业股份有限公司 广东省 4.04
191 504638253 84443.6902996838 49855.5442456137 204519.3508715 51230.2114925 珠海市杰理科技股份有限公司 广东省 5.31
192 519195163 1924.04639447068 1111.82817851309 2762.99 269.27 深圳市迪浦电子有限公司 广东省 3.44
193 3221578464 6393.17546131924 3694.35614884361 9180.79726072824 580.27814 北京电星互动文化传媒有限公司 北京市 3.96
194 2316256865 31675.2583182562 18154.1646929991 146872.233407667 30518.2317446667 广州慧智微电子股份有限公司 广东省 5.17
195 3269840248 368.837045845341 213.135931664054 529.661380426629 33.477585 安徽创矽电子科技有限公司 安徽省 2.72
196 1675147952 16925.06773 12545.4403666 86939.851294 9412.2279396 广州安凯微电子股份有限公司 广东省 4.94
197 29223617 49351.6354965 38030.0537195 336478.787652167 25356.7104388333 青岛东软载波科技股份有限公司 山东省 5.53
198 2553848709 15982.9386532981 9235.89037210901 22951.9931518205 1450.69535 深圳智微电子科技股份有限公司 广东省 4.36
199 168035745 4475.22282292347 2586.04930419052 6426.55808250976 406.194698 成都艾希联科技有限公司 四川省 3.81
200 510149116 4130.97491346782 2387.12243463741 5932.20746077824 374.948952 深圳市宝视达科技有限公司 广东省 3.77
201 5591349 214284.563403751 124927.075093795 1154545.83667914 44936.3798348571 北京四维图新科技股份有限公司 北京市 6.06
202 274839085 5072.9571540186 2931.45566990296 7284.9230285 1251.8898265 上海长合信息技术股份有限公司 上海市 3.86
203 4209347174 10573.3286475664 6109.89670770289 15183.6262388967 959.69077 四川锦路通科技有限公司 四川省 4.18
204 413142822 33691.2724915977 19012.8064225955 295228.181493667 9677.11797866667 北京弘高创意建筑设计股份有限公司 北京市 5.47
205 951988821 25605.8899302788 18756.1741981746 351800.143148667 88668.7767376667 武汉帝尔激光科技股份有限公司 湖北省 5.55
206 1587526 37281.2763304483 20821.6870507603 264083.505326 37562.7044782857 北京北信源软件股份有限公司 北京市 5.42
207 3402194899 614.728409742234 355.226552773424 882.768967377713 55.795975 吉林省依岚机器人科技有限公司 吉林省 2.95
208 730857 170484.678968513 98516.1639691628 244821.260286086 15474.0837333333 北京机械工业自动化研究所有限公司 北京市 5.39
209 27085933 39068.3169418316 24985.5123183443 81807.0237951429 3512.25453285714 观典防务技术股份有限公司 北京市 4.91
210 24495941 68018.9182948103 41411.5321373808 343277.487442714 80497.7686304286 瑞斯康达科技发展股份有限公司 北京市 5.54
211 2424229017 114276.893374667 77926.1367106667 500826.828284333 41132.540103 湖北鼎龙控股股份有限公司 湖北省 5.7
212 3118428071 245.891363896894 142.090621109369 353.107586951086 22.31839 浙江出彩智能科技有限公司 浙江省 2.55
213 3297178263 6721.03061318177 3883.81031032277 9651.60737666299 610.035993333333 安徽徽昂光电科技有限公司 安徽省 3.98
214 441623911 79201.8446421667 54549.9474813333 240891.492164333 46601.7746505 东莞铭普光磁股份有限公司 广东省 5.38
215 2316150629 3193.75060666667 2061.597836 93411.1801021667 20442.4057828333 深圳英集芯科技股份有限公司 广东省 4.97
216 2327057709 23544.9442314765 13440.4003796565 68644.06669975 18862.75571075 苏州华之杰电讯股份有限公司 江苏省 4.84
217 2624175 112528.502696921 68592.2842455949 676577.778208429 45047.728384 北京旋极信息技术股份有限公司 北京市 5.83
218 3483100980 491.782727793788 284.181242218739 706.215173902172 44.63678 公主岭市王岩口腔诊所有限公司 吉林省 2.85
219 781386116 141735.041227833 75482.3393631667 509573.936014 65785.0702958333 国光电器股份有限公司 广东省 5.71
220 3222821993 7991.46932664906 4617.94518605451 11475.9965759103 725.347675 象山金钇光电科技有限公司 浙江省 4.06
221 10398718 769033.670522573 491078.248113787 2870403.42429771 537996.506329429 中国长城科技集团股份有限公司 广东省 6.46
222 3042364033 245.891363896894 142.090621109369 353.107586951086 22.31839 上海津领信息科技有限公司 上海市 2.55
223 2342518227 9173.79330924141 5301.16214161011 13173.8503023333 3045.84492716667 江苏欧密格光电科技股份有限公司 江苏省 4.12
224 3068358389 1811.95903660257 1047.05745193863 2602.029095 298.473805182015 无锡汉咏科技股份有限公司 江苏省 3.42
225 20751117 15716.6102843333 8183.32674633333 416800.384882667 41335.5048401667 上海贝岭股份有限公司 上海市 5.62
226 3449575456 705.462014166667 404.564843666667 98147.2591208333 8331.321303 峰岹科技(深圳)股份有限公司 广东省 4.99
227 3440374619 5071.89578685606 2930.84234897554 7283.3988725 2753.40906483333 浙江信测通信股份有限公司 浙江省 3.86
228 3168979780 312036.140785158 180312.99818779 448093.527840928 28322.03691 华域视觉科技(上海)有限公司 上海市 5.65
229 2962064709 10650.3258155645 6154.39024033911 15294.1965483333 3870.76790783333 上海中基国威电子股份有限公司 上海市 4.18
230 3151203276 341884.6623548 201430.568992 477385.6924028 28574.494008 合肥颀中科技股份有限公司 安徽省 5.68
231 2334772533 28252.9257821369 16326.2170290132 40572.07333 8232.49431216667 南京泰通科技股份有限公司 江苏省 4.61
232 38567125 55215.5674613333 32280.1155033333 195121.699532833 23741.5776591667 杭州星帅尔电器股份有限公司 浙江省 5.29
233 2338894532 7130.84955300992 4120.62801217171 10240.1200215815 647.23331 宁波锦澄电子科技股份有限公司 浙江省 4.01
234 270141231 72968.2622364032 42165.3918142054 104784.676427735 6622.9822325 贵州雅光电子科技股份有限公司 贵州省 5.02
235 220783142 7868.5236447006 4546.89987549982 11299.4427824348 714.18848 麦歌恩电子(上海)有限公司 上海市 4.05
236 3407754893 232859.633511805 168326.909166578 411069.08997625 40891.55866 比亚迪半导体股份有限公司 广东省 5.61
237 9278530 70406.8938624773 40685.2811776494 101106.472396994 6390.49900333333 北京银联金卡科技有限公司 北京市 5.0
238 2323580212 16597.6670630403 9591.11692488244 23834.7621191983 1506.491325 深圳市美莱雅科技有限公司 广东省 4.38
239 2331160070 3255.79612835197 1881.39220000014 4675.42371666667 794.0237395 南通光合生物技术股份有限公司 江苏省 3.67
240 2349345463 74136.2462149135 42840.3222644749 106461.937465753 6728.994585 成都海威华芯科技有限公司 四川省 5.03
241 2350687852 11074.7830890728 6399.66684001862 15903.7302921667 4029.26472366667 江苏钜芯集成电路技术股份有限公司 江苏省 4.2
242 2357754148 8015.82834302686 4632.02127116739 11510.9768751667 3729.40010633333 广芯电子技术(上海)股份有限公司 上海市 4.06
243 3173999388 16720.6127449888 9662.16223543712 24011.3159126738 1517.65052 东方微电科技(武汉)有限公司 湖北省 4.38
244 501323741 66833.3625173174 43673.4697465961 220671.160353143 45867.2232541429 浙江大立科技股份有限公司 浙江省 5.34
245 2311337085 19127.0147477191 11036.5029958297 112145.035851286 36647.5253237143 上海安路信息科技股份有限公司 上海市 5.05
246 2950325617 19318.22026519 11163.2140011207 27741.5604758333 5855.69548783333 深圳市汇春科技股份有限公司 广东省 4.44
247 2350701298 2458.91363896894 1420.90621109369 3531.07586951086 223.1839 深圳市玛琪电子科技有限公司 广东省 3.55
248 2322658897 1721.23954727826 994.634347765586 2471.7531086576 156.22873 深圳市好通家实业有限公司 广东省 3.39
249 2347015781 41626.2975832227 25542.5692075516 141575.867817429 28732.6177297143 苏州盛科通信股份有限公司 江苏省 5.15
250 24610687 6738738.84243147 3834842.07575342 24477540.6526928 2602016.44544083 潍柴动力股份有限公司 山东省 7.39
251 181655991 273187.085037167 140652.672426167 1074612.49761317 1582.68336616667 网宿科技股份有限公司 上海市 6.03
252 2326956863 124019.549713435 73785.5926887248 540313.3684405 76558.826568734 南京国博电子股份有限公司 江苏省 5.73
253 3270918801 15859.9929713496 9164.84506155432 22775.4393583451 1439.536155 浙江康鹏半导体有限公司 浙江省 4.36
254 7299120 86887.22406325 46503.9275985 158305.75064575 29562.480612 北京通美晶体技术股份有限公司 北京市 5.2
255 557266995 12727.7263021028 7354.83551319098 18277.4077571667 1541.1883505 上海宇昂水性新材料科技股份有限公司 上海市 4.26
256 2357759100 9393.05010086134 5427.86172637791 13488.7098215315 852.562498 兰州华亚碳化硅有限公司 甘肃省 4.13
257 695879282 245.891363896894 142.090621109369 353.107586951086 22.31839 长兴县煤山石墨炉料厂 浙江省 2.55
258 2314301730 245.891363896894 142.090621109369 353.107586951086 22.31839 哈尔滨滨大阀门销售有限公司 黑龙江省 2.55
259 3118917053 3745.07570646035 2235.78648897479 34776.380083 7562.35984084442 钰泰半导体股份有限公司 江苏省 4.54
260 648145286 5614.51947564574 3244.4025153306 8062.62323538314 509.603238333333 东莞高辉光电科技有限公司 广东省 3.91
261 4091219112 614.728409742235 355.226552773424 882.768967377716 55.795975 深圳市盈享电子有限公司 广东省 2.95
262 60716715 592169.358539127 384961.940366283 1120885.29632114 52097.0039868571 东江环保股份有限公司 广东省 6.05
263 2982872611 8421.77921346862 4866.60377299591 12093.9348530747 764.4048575 长春精测光电技术有限公司 吉林省 4.08
264 3051771738 42617.058969 38615.9713255 335052.885705 119431.036400333 思特威(上海)电子科技股份有限公司 上海市 5.53
265 1237811030 14876.4275157621 8596.48257711685 21363.0090105407 1350.262595 上海华元创信软件有限公司 上海市 4.33
266 814834276 491.782727793788 284.181242218739 706.215173902172 44.63678 合肥迅驰电子科技有限责任公司 安徽省 2.85
267 3339921892 3196.58773065962 1847.1780744218 4590.39863036412 290.13907 安徽新芯威半导体有限公司 安徽省 3.66
268 2358215091 13289.0210914582 7679.18494938513 19083.4443966667 2443.928088 湖南康通电子股份有限公司 湖南省 4.28
269 6823511 78869.4760125386 47996.3703655252 256662.443677 49246.3736734781 龙芯中科技术股份有限公司 北京市 5.41
270 2318300058 9211.4190974 8204.0656666 166804.0972472 22511.6174346 上海南芯半导体科技股份有限公司 上海市 5.22
271 30918572 15257.2196295671 8816.52685645477 21909.8382375 6399.88976466667 先控捷联电气股份有限公司 河北省 4.34
272 173280333 248425.451059374 142652.70938459 878978.625317428 71268.6104547143 欧普照明股份有限公司 上海市 5.94
273 1217010297 90629.2798441586 52928.8445056824 472859.626137 86929.247462 湖南国科微电子股份有限公司 湖南省 5.67
274 227353488 175499.644065506 111018.373589625 674848.280106857 141511.018406 深圳麦格米特电气股份有限公司 广东省 5.83
275 4728160558 6146862.45588483 3440255.60792112 21708037.884611 3437661.391239 海尔智家股份有限公司 山东省 7.34
276 2313858141 16878.5286234786 10924.6070951714 54919.3020473333 8636.660643 苏州锴威特半导体股份有限公司 江苏省 4.74
277 2311676659 91225.6960057476 52715.6204315761 131002.914758853 8280.12269 西安航天远征流体控制股份有限公司 陕西省 5.12
278 1048928993 32609.7984571027 18843.8765948852 46828.6769476667 13303.533159 上海南麟电子股份有限公司 上海市 4.67
279 966536464 4523.96805911779 2614.21719417741 6496.557746 957.122635333333 安徽中瑞通信科技股份有限公司 安徽省 3.81
280 3464313484 16473.8484456667 14922.002517 126101.603055167 6330.15329883333 江苏帝奥微电子股份有限公司 江苏省 5.1
281 338952484 14110.7472545758 8154.02708718447 20263.468526 6999.23901883333 山东德佑电气股份有限公司 山东省 4.31
282 27042865 1497706.54820932 865463.716586106 2150752.82359567 291043.484399 许继集团有限公司 河南省 6.33
283 3104545193 105021.775873296 73402.8541622617 268651.229376429 36083.9444402857 深圳欧陆通电子股份有限公司 广东省 5.43
284 9620005 295597.151853333 194730.920618333 2678794.80455533 681912.489464 上海韦尔半导体股份有限公司 上海市 6.43
285 864166372 88655.6666795 53753.15834 298897.386987333 27638.9844123333 江苏云意电气股份有限公司 江苏省 5.48
286 33822284 7821705.81265451 4340541.90024414 31773080.975276 3117341.894336 珠海格力电器股份有限公司 广东省 7.5
287 3312199997 138830.090012117 91789.4512288681 333225.515573857 39124.2209532857 河北中瓷电子科技股份有限公司 河北省 5.52
288 591975267 4917.82727793788 2841.81242218739 7062.15173902172 446.3678 沧州凯润电子科技有限公司 河北省 3.85
289 3357541349 90822.4366201021 66907.2350655535 148235.929229143 6191.05493557143 杭州美迪凯光电科技股份有限公司 浙江省 5.17
290 708388905 3442.47909455651 1989.26869553117 4943.5062173152 312.45746 南通锦程塑料制品厂 江苏省 3.69
291 16116663 93258.3100837016 52399.5479796363 350692.109563571 26734.2883584286 珠海航宇微科技股份有限公司 广东省 5.54
292 784491064 36676.1406432416 26183.5340754385 78563.0454985714 4984.05170328571 腾景科技股份有限公司 福建省 4.9
293 2329395956 983.565455587575 568.362484437478 1412.43034780434 89.27356 辽阳县力通机械制造有限公司 辽宁省 3.15
294 2348912438 15033.7874138907 8687.41446389993 21588.9826805 6642.99890894431 广东圣帕新材料股份有限公司 广东省 4.33
295 520408144 223023.467054483 128876.193346198 320268.581364635 20242.77973 国巨电子(东莞)有限公司 广东省 5.51
296 2351592628 41820.4531887686 22960.7164579339 141041.529103571 26807.1478321429 无锡市德科立光电子技术股份有限公司 江苏省 5.15
297 300186799 1913582.75295502 1234953.81045746 2517803.40044929 175073.587292714 天水华天科技股份有限公司 甘肃省 6.4
298 578803019 16290.3028581692 9413.50364849573 23393.3776355094 1478.5933375 深圳市光脉电子有限公司 广东省 4.37
299 343932526 63566.4602922289 45042.3466785544 273327.568779 48343.29187 上海艾为电子技术股份有限公司 上海市 5.44
300 2349375343 4807.3848604464 2777.99223977234 6903.55301916667 1503.62640083333 苏州康尼格电子科技股份有限公司 江苏省 3.84
301 2325170042 10068.2861576175 5818.05318808436 14458.3696373333 1149.84855133333 深圳电通纬创微电子股份有限公司 广东省 4.16
302 10437056 194286.929344781 116962.315280927 419389.225194167 1602.69784816667 广电计量检测集团股份有限公司 广东省 5.62
303 3306665331 28691.8448431667 19979.0470871667 309295.834049333 16592.0700063333 芯原微电子(上海)股份有限公司 上海市 5.49
304 23131812 71270.701868413 40132.0804564047 330063.943783714 29776.0587888571 北京东方中科集成科技股份有限公司 北京市 5.52
305 3120341363 177544.316546708 129292.795388716 626033.402033857 102806.403100857 武汉精测电子集团股份有限公司 湖北省 5.8
306 314846874 1984.631183 1641.71031766667 17644.9277333333 1747.244057 赛卓电子科技(上海)股份有限公司 上海市 4.25

View File

@ -0,0 +1,61 @@
Firm_Code,相关细分行业,设备id,种类,设备单价数值,固定资产原值(万元人民币),设备数量
2311639124,34524,72,设备,140,737.674091690682,5.26910065493344
762165453,34524,72,设备,140,614.728409742234,4.39091721244453
2989649772,34525,64,设备,500,353266.3068118,706.5326136236
25147774,34525,64,设备,500,122743.43558,245.48687116
413876805,34526,60,设备,210,245.891363896894,1.17091125665188
11807506,34526,60,设备,210,19609298.1959302,93377.6104568105
3384021594,34527,67,设备,250,24097.3536618956,96.3894146475824
413876805,34527,67,设备,250,245.891363896894,0.983565455587576
80158773,34528,69,设备,25,12635.7451105,505.42980442
2343704209,34528,69,设备,25,71514.6399746746,2860.58559898698
3312358902,34529,61,设备,350,66438.2226519953,189.823493291415
80169705,34529,61,设备,350,49057.3516709158,140.163861916902
27075840,34530,65,设备,700,240383.397345603,343.404853350861
3077450214,34530,65,设备,700,25753.3271505,36.7904673578571
2311352797,34531,71,设备,140,55205.024134511,394.321600960793
22324879,34531,71,设备,140,32642.0785573127,233.157703980805
4379631621,34532,73,设备,210,245.891363896894,1.17091125665188
2349616974,34532,73,设备,210,31228.2032149055,148.705729594788
423388486,34533,66,设备,100000,163646.093171967,1.63646093171967
1679596339,34533,66,设备,100000,7602.68963569803,0.0760268963569803
3164072929,34534,63,设备,700,798499.18961975,1140.71312802821
22324879,34534,63,设备,700,32642.0785573127,46.631540796161
1033972427,34535,59,设备,700,36282.327026942,51.8318957527743
3312358902,34535,59,设备,700,66438.2226519953,94.9117466457076
354328758,34537,62,设备,140,4917.82727793788,35.1273376995563
1044103384,34537,62,设备,140,424162.602722142,3029.73287658673
78979697,34538,74,设备,500,3444820.24820822,6889.64049641644
2316430101,34538,74,设备,500,190407.310913344,380.814621826688
2349076526,34539,68,设备,350,438376.609971396,1252.50459991827
2347561020,34539,68,设备,350,23605.5709341018,67.444488383148
11169556957,34543,70,设备,35,983.565455587577,28.1018701596451
2333843479,34543,70,设备,35,25746.1035943333,735.602959838094
22324879,34544,83,设备,140,32642.0785573127,233.157703980805
59234665,34544,83,设备,140,251695.047657333,1797.82176898095
4995239819,34545,81,设备,210,491.782727793788,2.34182251330375
2339136692,34545,81,设备,210,640144.399809059,3048.30666575742
3327312155,34546,84,设备,70,4794.88159598943,68.4983085141347
1389529309,34546,84,设备,70,32860.1214204911,469.430306007016
18729484,34547,87,设备,70,505503.465899235,7221.47808427479
3287925122,34547,87,设备,70,8729.14341833971,124.702048833424
888662519,34548,89,设备,70,22130.2227507204,316.146039296006
443872531,34549,85,设备,50,217273.703527667,4345.47407055334
24673506,34549,85,设备,50,3731195.01695067,74623.9003390134
3065971313,34550,75,设备,70,134201.385594667,1917.16265135239
830662620,34550,75,设备,70,262637.565598167,3751.96522283096
2347561020,34551,88,设备,70,23605.5709341018,337.22244191574
613464015,34551,88,设备,70,17409.1331735,248.701902478571
2453696971,34552,82,设备,70,48907.0477203197,698.672110290281
43566171,34552,82,设备,70,19425.4177478546,277.505967826494
2311838590,34553,80,设备,21,53398.0289114503,2542.76328149763
409663925,34553,80,设备,21,63931.7546131924,3044.36926729488
3414534661,34554,77,设备,350,227798.54904047,650.852997258486
3393219477,34554,77,设备,350,245.891363896894,0.702546753991126
11175750477,34555,76,设备,21,39342.618223503,1873.458010643
2311838590,34555,76,设备,21,53398.0289114503,2542.76328149763
2321857672,34556,78,设备,70,172615.737455619,2465.93910650884
146491012,34557,79,设备,350,172984.813296877,494.242323705363
2311907103,34557,79,设备,350,61082.6578818333,174.521879662381
3464943902,34558,86,设备,70,368.837045845341,5.26910065493344
259923931,34558,86,设备,70,1426.16991060198,20.3738558657426
1 Firm_Code 相关细分行业 设备id 种类 设备单价数值 固定资产原值(万元人民币) 设备数量
2 2311639124 34524 72 设备 140 737.674091690682 5.26910065493344
3 762165453 34524 72 设备 140 614.728409742234 4.39091721244453
4 2989649772 34525 64 设备 500 353266.3068118 706.5326136236
5 25147774 34525 64 设备 500 122743.43558 245.48687116
6 413876805 34526 60 设备 210 245.891363896894 1.17091125665188
7 11807506 34526 60 设备 210 19609298.1959302 93377.6104568105
8 3384021594 34527 67 设备 250 24097.3536618956 96.3894146475824
9 413876805 34527 67 设备 250 245.891363896894 0.983565455587576
10 80158773 34528 69 设备 25 12635.7451105 505.42980442
11 2343704209 34528 69 设备 25 71514.6399746746 2860.58559898698
12 3312358902 34529 61 设备 350 66438.2226519953 189.823493291415
13 80169705 34529 61 设备 350 49057.3516709158 140.163861916902
14 27075840 34530 65 设备 700 240383.397345603 343.404853350861
15 3077450214 34530 65 设备 700 25753.3271505 36.7904673578571
16 2311352797 34531 71 设备 140 55205.024134511 394.321600960793
17 22324879 34531 71 设备 140 32642.0785573127 233.157703980805
18 4379631621 34532 73 设备 210 245.891363896894 1.17091125665188
19 2349616974 34532 73 设备 210 31228.2032149055 148.705729594788
20 423388486 34533 66 设备 100000 163646.093171967 1.63646093171967
21 1679596339 34533 66 设备 100000 7602.68963569803 0.0760268963569803
22 3164072929 34534 63 设备 700 798499.18961975 1140.71312802821
23 22324879 34534 63 设备 700 32642.0785573127 46.631540796161
24 1033972427 34535 59 设备 700 36282.327026942 51.8318957527743
25 3312358902 34535 59 设备 700 66438.2226519953 94.9117466457076
26 354328758 34537 62 设备 140 4917.82727793788 35.1273376995563
27 1044103384 34537 62 设备 140 424162.602722142 3029.73287658673
28 78979697 34538 74 设备 500 3444820.24820822 6889.64049641644
29 2316430101 34538 74 设备 500 190407.310913344 380.814621826688
30 2349076526 34539 68 设备 350 438376.609971396 1252.50459991827
31 2347561020 34539 68 设备 350 23605.5709341018 67.444488383148
32 11169556957 34543 70 设备 35 983.565455587577 28.1018701596451
33 2333843479 34543 70 设备 35 25746.1035943333 735.602959838094
34 22324879 34544 83 设备 140 32642.0785573127 233.157703980805
35 59234665 34544 83 设备 140 251695.047657333 1797.82176898095
36 4995239819 34545 81 设备 210 491.782727793788 2.34182251330375
37 2339136692 34545 81 设备 210 640144.399809059 3048.30666575742
38 3327312155 34546 84 设备 70 4794.88159598943 68.4983085141347
39 1389529309 34546 84 设备 70 32860.1214204911 469.430306007016
40 18729484 34547 87 设备 70 505503.465899235 7221.47808427479
41 3287925122 34547 87 设备 70 8729.14341833971 124.702048833424
42 888662519 34548 89 设备 70 22130.2227507204 316.146039296006
43 443872531 34549 85 设备 50 217273.703527667 4345.47407055334
44 24673506 34549 85 设备 50 3731195.01695067 74623.9003390134
45 3065971313 34550 75 设备 70 134201.385594667 1917.16265135239
46 830662620 34550 75 设备 70 262637.565598167 3751.96522283096
47 2347561020 34551 88 设备 70 23605.5709341018 337.22244191574
48 613464015 34551 88 设备 70 17409.1331735 248.701902478571
49 2453696971 34552 82 设备 70 48907.0477203197 698.672110290281
50 43566171 34552 82 设备 70 19425.4177478546 277.505967826494
51 2311838590 34553 80 设备 21 53398.0289114503 2542.76328149763
52 409663925 34553 80 设备 21 63931.7546131924 3044.36926729488
53 3414534661 34554 77 设备 350 227798.54904047 650.852997258486
54 3393219477 34554 77 设备 350 245.891363896894 0.702546753991126
55 11175750477 34555 76 设备 21 39342.618223503 1873.458010643
56 2311838590 34555 76 设备 21 53398.0289114503 2542.76328149763
57 2321857672 34556 78 设备 70 172615.737455619 2465.93910650884
58 146491012 34557 79 设备 350 172984.813296877 494.242323705363
59 2311907103 34557 79 设备 350 61082.6578818333 174.521879662381
60 3464943902 34558 86 设备 70 368.837045845341 5.26910065493344
61 259923931 34558 86 设备 70 1426.16991060198 20.3738558657426

View File

@ -0,0 +1,105 @@
Firm_Code,相关细分行业,材料id,种类,材料单价数值,存货(万元人民币),材料数量
1,7,10,材料,70.0,3736.5025,40.0339553571429
5,7,10,材料,70.0,2588.93324,27.7385704285714
29954548,7,10,材料,70.0,133292.643730143,1428.13546853725
29954548,7,10,材料,70.0,133292.643730143,1428.13546853725
453289520,8,37,材料,9.7,193520.088971571,14962.8934771833
453289520,8,37,材料,9.7,193520.088971571,14962.8934771833
350343208,2714,91,材料,140.0,3903.95977783333,20.9140702383928
37873062,2714,91,材料,140.0,184703.551339833,989.483310749105
1266556718,2714,91,材料,140.0,10632.3104404292,56.9588059308707
331545755,2715,92,材料,21.0,6911.28954133333,246.831769333333
3193516458,2715,92,材料,21.0,41347.21758,1476.68634214286
41454763,2715,92,材料,21.0,3281.00494028571,117.178747867347
584019624,2716,93,材料,7.0,19952.64066,2137.78292785714
185356903,2716,93,材料,7.0,29.7578533333333,3.18834142857143
22751149,2716,93,材料,7.0,263513.812713,28233.6227906786
27169556,2717,90,材料,70.0,455436.179933333,4879.67335642857
3346538900,2717,90,材料,70.0,335021.89871525,3589.52034337768
2541265952,2717,90,材料,70.0,662.112236666667,7.09405967857143
777299215,2718,94,材料,21.0,602.59653,21.5213046428571
18107611,2718,94,材料,21.0,4949308.389283,176761.013902964
4067555184,32338,7,材料,4.0,323.616655,60.6781228125
2313177432,32338,7,材料,4.0,89.27356,16.7387925
12098344,32338,7,材料,4.0,36019.3828761667,6753.63428928126
104671744,32432,16,材料,0.77,491.00458,478.251214285714
4208851809,32432,16,材料,0.77,49697.6881215,48406.8390793831
203314437,32433,22,材料,2.0,290.13907,108.80215125
2309668026,32434,12,材料,0.79,111.59195,105.941724683544
333499553,32434,12,材料,0.79,33711.928095,32004.9950268987
4315536490,32434,12,材料,0.79,66.95517,63.5650348101266
1270747834,32435,25,材料,0.5,3481.66884,5222.50326
39894253,32435,25,材料,0.5,662222.116666667,993333.175000001
287006714,32435,25,材料,0.5,111970.2725,167955.40875
3352578733,32436,29,材料,1.6,44.63678,20.923490625
366828854,32436,29,材料,1.6,37270.9437623333,17470.7548885937
5849940,32437,26,材料,20.0,2169804.72857143,81367.6773214286
5849940,32437,26,材料,20.0,2169804.72857143,81367.6773214286
29954548,32438,27,材料,0.25,133292.643730143,399877.931190429
3227189464,32438,27,材料,0.25,2990.66426,8971.99278
2961715231,32439,31,材料,0.25,881.576405,2644.729215
888478182,32439,31,材料,0.25,44.63678,133.91034
631103677,32440,15,材料,0.6,476.125653333333,595.157066666666
2319266522,32440,15,材料,0.6,62.491492,78.114365
1194436218,32440,15,材料,0.6,22.31839,27.8979875
2327979389,32441,13,材料,2.28,862.977746666667,283.87425877193
216898035,32441,13,材料,2.28,3585.82132666667,1179.54648903509
3274238529,32443,23,材料,2.5,66.95517,20.086551
61066955,32443,23,材料,2.5,28179.6880875714,8453.90642627142
2348894245,32445,8,材料,22.78,11981.7573048571,394.482790985199
169978927,32445,8,材料,22.78,65028.9291661667,2140.98757131804
142823313,32446,20,材料,1.2,97437.8679368333,60898.6674605208
367669349,32446,20,材料,1.2,537603.399401,336002.124625625
2340606811,32447,28,材料,0.3,379.41263,948.531575
3269940677,32447,28,材料,0.3,2745.16197,6862.904925
1452048,32448,30,材料,10.0,1884370.44367833,141327.783275875
1452048,32448,30,材料,10.0,1884370.44367833,141327.783275875
892652617,32449,19,材料,100.0,5877.17603333333,44.07882025
1555364428,32449,19,材料,100.0,6371.900345,47.7892525875
2475874929,32450,24,材料,1.38,22.31839,12.1295597826087
2353020496,32450,24,材料,1.38,4997.96087575,2716.28308464674
4076786740,32451,17,材料,1.38,89.27356,48.5182391304348
331450699,32451,17,材料,1.38,491.00458,266.850315217391
3054059190,34566,105,材料,21.0,1495.33213,53.4047189285714
186745206,34566,105,材料,21.0,31534.1938276667,1126.22120813095
507827038,34566,105,材料,21.0,134419.051238286,4800.68040136736
2349737110,34567,103,材料,14.0,6196.09279783333,331.933542741071
505990558,34567,103,材料,14.0,245.50229,13.1519083928571
613464015,34568,107,材料,50.0,35552.7344381667,533.2910165725
221048382,34568,107,材料,50.0,352447.843621667,5286.71765432501
2348910693,34569,106,材料,8.0,4641.11761583333,435.104776484375
2342515031,34569,106,材料,8.0,5069.99426166667,475.31196203125
2360390148,34570,108,材料,28.0,580.27814,15.5431644642857
2317568755,34570,108,材料,28.0,7858.70136516667,210.500929424107
2349511062,34571,102,材料,21.0,1190.53784783333,42.5192088511904
2349511062,34571,102,材料,21.0,1190.53784783333,42.5192088511904
500189853,34572,104,材料,40.0,2075.61027,38.9176925625
18065940,34572,104,材料,40.0,143283.010690286,2686.55645044286
3006753238,34573,101,材料,21.0,236376.363264714,8442.01297373979
2333993502,34573,101,材料,21.0,17415.7935534286,621.992626908164
433384648,34574,109,材料,21.0,1191.802026,42.5643580714286
344181818,34574,109,材料,21.0,79181.2545228571,2827.9019472449
1104420298,36914,38,材料,700.0,213731.195733667,228.997709714643
37873062,36914,38,材料,700.0,184703.551339833,197.896662149821
1452048,46504,11,材料,35.0,1884370.44367833,40379.3666502499
2349349655,46504,11,材料,35.0,1116.3192482,23.9211267471429
420984285,46505,18,材料,15.5,62168.8641543333,3008.17084617742
2329836516,46505,18,材料,15.5,4786.47693733333,231.603722774193
2326956863,56319,34,材料,350.0,76558.826568734,164.054628361573
2326956863,56319,34,材料,350.0,76558.826568734,164.054628361573
3270918801,56320,32,材料,200.0,1439.536155,5.39826058125
7299120,56320,32,材料,200.0,29562.480612,110.859302295
557266995,56321,36,材料,2.8,1541.1883505,412.818308169643
557266995,56321,36,材料,2.8,1541.1883505,412.818308169643
2357759100,56322,33,材料,0.5,852.562498,1278.843747
695879282,56322,33,材料,0.5,22.31839,33.477585
2314301730,56322,33,材料,0.5,22.31839,33.477585
3118917053,56323,35,材料,1400.0,7562.35984084442,4.05126420045237
648145286,56323,35,材料,1400.0,509.603238333333,0.273001734821428
4091219112,56341,9,材料,2.0,55.795975,20.923490625
60716715,56341,9,材料,2.0,52097.0039868571,19536.3764950714
814834276,317589,95,材料,35.0,44.63678,0.956502428571429
3339921892,317589,95,材料,35.0,290.13907,6.21726578571429
22324879,317589,95,材料,35.0,2962.7662725,63.4878486964286
3357541349,513691,52,材料,700.0,6191.05493557143,6.6332731452551
3357541349,513691,52,材料,700.0,6191.05493557143,6.6332731452551
1 Firm_Code 相关细分行业 材料id 种类 材料单价数值 存货(万元人民币) 材料数量
2 1 7 10 材料 70.0 3736.5025 40.0339553571429
3 5 7 10 材料 70.0 2588.93324 27.7385704285714
4 29954548 7 10 材料 70.0 133292.643730143 1428.13546853725
5 29954548 7 10 材料 70.0 133292.643730143 1428.13546853725
6 453289520 8 37 材料 9.7 193520.088971571 14962.8934771833
7 453289520 8 37 材料 9.7 193520.088971571 14962.8934771833
8 350343208 2714 91 材料 140.0 3903.95977783333 20.9140702383928
9 37873062 2714 91 材料 140.0 184703.551339833 989.483310749105
10 1266556718 2714 91 材料 140.0 10632.3104404292 56.9588059308707
11 331545755 2715 92 材料 21.0 6911.28954133333 246.831769333333
12 3193516458 2715 92 材料 21.0 41347.21758 1476.68634214286
13 41454763 2715 92 材料 21.0 3281.00494028571 117.178747867347
14 584019624 2716 93 材料 7.0 19952.64066 2137.78292785714
15 185356903 2716 93 材料 7.0 29.7578533333333 3.18834142857143
16 22751149 2716 93 材料 7.0 263513.812713 28233.6227906786
17 27169556 2717 90 材料 70.0 455436.179933333 4879.67335642857
18 3346538900 2717 90 材料 70.0 335021.89871525 3589.52034337768
19 2541265952 2717 90 材料 70.0 662.112236666667 7.09405967857143
20 777299215 2718 94 材料 21.0 602.59653 21.5213046428571
21 18107611 2718 94 材料 21.0 4949308.389283 176761.013902964
22 4067555184 32338 7 材料 4.0 323.616655 60.6781228125
23 2313177432 32338 7 材料 4.0 89.27356 16.7387925
24 12098344 32338 7 材料 4.0 36019.3828761667 6753.63428928126
25 104671744 32432 16 材料 0.77 491.00458 478.251214285714
26 4208851809 32432 16 材料 0.77 49697.6881215 48406.8390793831
27 203314437 32433 22 材料 2.0 290.13907 108.80215125
28 2309668026 32434 12 材料 0.79 111.59195 105.941724683544
29 333499553 32434 12 材料 0.79 33711.928095 32004.9950268987
30 4315536490 32434 12 材料 0.79 66.95517 63.5650348101266
31 1270747834 32435 25 材料 0.5 3481.66884 5222.50326
32 39894253 32435 25 材料 0.5 662222.116666667 993333.175000001
33 287006714 32435 25 材料 0.5 111970.2725 167955.40875
34 3352578733 32436 29 材料 1.6 44.63678 20.923490625
35 366828854 32436 29 材料 1.6 37270.9437623333 17470.7548885937
36 5849940 32437 26 材料 20.0 2169804.72857143 81367.6773214286
37 5849940 32437 26 材料 20.0 2169804.72857143 81367.6773214286
38 29954548 32438 27 材料 0.25 133292.643730143 399877.931190429
39 3227189464 32438 27 材料 0.25 2990.66426 8971.99278
40 2961715231 32439 31 材料 0.25 881.576405 2644.729215
41 888478182 32439 31 材料 0.25 44.63678 133.91034
42 631103677 32440 15 材料 0.6 476.125653333333 595.157066666666
43 2319266522 32440 15 材料 0.6 62.491492 78.114365
44 1194436218 32440 15 材料 0.6 22.31839 27.8979875
45 2327979389 32441 13 材料 2.28 862.977746666667 283.87425877193
46 216898035 32441 13 材料 2.28 3585.82132666667 1179.54648903509
47 3274238529 32443 23 材料 2.5 66.95517 20.086551
48 61066955 32443 23 材料 2.5 28179.6880875714 8453.90642627142
49 2348894245 32445 8 材料 22.78 11981.7573048571 394.482790985199
50 169978927 32445 8 材料 22.78 65028.9291661667 2140.98757131804
51 142823313 32446 20 材料 1.2 97437.8679368333 60898.6674605208
52 367669349 32446 20 材料 1.2 537603.399401 336002.124625625
53 2340606811 32447 28 材料 0.3 379.41263 948.531575
54 3269940677 32447 28 材料 0.3 2745.16197 6862.904925
55 1452048 32448 30 材料 10.0 1884370.44367833 141327.783275875
56 1452048 32448 30 材料 10.0 1884370.44367833 141327.783275875
57 892652617 32449 19 材料 100.0 5877.17603333333 44.07882025
58 1555364428 32449 19 材料 100.0 6371.900345 47.7892525875
59 2475874929 32450 24 材料 1.38 22.31839 12.1295597826087
60 2353020496 32450 24 材料 1.38 4997.96087575 2716.28308464674
61 4076786740 32451 17 材料 1.38 89.27356 48.5182391304348
62 331450699 32451 17 材料 1.38 491.00458 266.850315217391
63 3054059190 34566 105 材料 21.0 1495.33213 53.4047189285714
64 186745206 34566 105 材料 21.0 31534.1938276667 1126.22120813095
65 507827038 34566 105 材料 21.0 134419.051238286 4800.68040136736
66 2349737110 34567 103 材料 14.0 6196.09279783333 331.933542741071
67 505990558 34567 103 材料 14.0 245.50229 13.1519083928571
68 613464015 34568 107 材料 50.0 35552.7344381667 533.2910165725
69 221048382 34568 107 材料 50.0 352447.843621667 5286.71765432501
70 2348910693 34569 106 材料 8.0 4641.11761583333 435.104776484375
71 2342515031 34569 106 材料 8.0 5069.99426166667 475.31196203125
72 2360390148 34570 108 材料 28.0 580.27814 15.5431644642857
73 2317568755 34570 108 材料 28.0 7858.70136516667 210.500929424107
74 2349511062 34571 102 材料 21.0 1190.53784783333 42.5192088511904
75 2349511062 34571 102 材料 21.0 1190.53784783333 42.5192088511904
76 500189853 34572 104 材料 40.0 2075.61027 38.9176925625
77 18065940 34572 104 材料 40.0 143283.010690286 2686.55645044286
78 3006753238 34573 101 材料 21.0 236376.363264714 8442.01297373979
79 2333993502 34573 101 材料 21.0 17415.7935534286 621.992626908164
80 433384648 34574 109 材料 21.0 1191.802026 42.5643580714286
81 344181818 34574 109 材料 21.0 79181.2545228571 2827.9019472449
82 1104420298 36914 38 材料 700.0 213731.195733667 228.997709714643
83 37873062 36914 38 材料 700.0 184703.551339833 197.896662149821
84 1452048 46504 11 材料 35.0 1884370.44367833 40379.3666502499
85 2349349655 46504 11 材料 35.0 1116.3192482 23.9211267471429
86 420984285 46505 18 材料 15.5 62168.8641543333 3008.17084617742
87 2329836516 46505 18 材料 15.5 4786.47693733333 231.603722774193
88 2326956863 56319 34 材料 350.0 76558.826568734 164.054628361573
89 2326956863 56319 34 材料 350.0 76558.826568734 164.054628361573
90 3270918801 56320 32 材料 200.0 1439.536155 5.39826058125
91 7299120 56320 32 材料 200.0 29562.480612 110.859302295
92 557266995 56321 36 材料 2.8 1541.1883505 412.818308169643
93 557266995 56321 36 材料 2.8 1541.1883505 412.818308169643
94 2357759100 56322 33 材料 0.5 852.562498 1278.843747
95 695879282 56322 33 材料 0.5 22.31839 33.477585
96 2314301730 56322 33 材料 0.5 22.31839 33.477585
97 3118917053 56323 35 材料 1400.0 7562.35984084442 4.05126420045237
98 648145286 56323 35 材料 1400.0 509.603238333333 0.273001734821428
99 4091219112 56341 9 材料 2.0 55.795975 20.923490625
100 60716715 56341 9 材料 2.0 52097.0039868571 19536.3764950714
101 814834276 317589 95 材料 35.0 44.63678 0.956502428571429
102 3339921892 317589 95 材料 35.0 290.13907 6.21726578571429
103 22324879 317589 95 材料 35.0 2962.7662725 63.4878486964286
104 3357541349 513691 52 材料 700.0 6191.05493557143 6.6332731452551
105 3357541349 513691 52 材料 700.0 6191.05493557143 6.6332731452551

View File

@ -0,0 +1,350 @@
Firm_Code,相关细分行业,产品id,下游,种类,产品单价数值,存货(万元人民币),产品数量
4067555184,32338,7,44,材料,28,323.616655,2.88943441964286
2313177432,32338,7,44,材料,28,89.27356,0.797085357142857
12098344,32338,7,45,材料,21,36019.3828761667,428.802177097223
2348894245,32445,8,90,材料,70,11981.7573048571,42.7919903744896
2348894245,32445,8,93,材料,7,22.31839,0.797085357142857
169978927,32445,8,90,材料,70,65028.9291661667,232.246175593453
169978927,32445,8,92,材料,21,65028.9291661667,774.153918644842
169978927,32445,8,94,材料,21,65028.9291661667,774.153918644842
4091219112,56341,9,90,材料,70,55.795975,0.199271339285714
60716715,56341,9,90,材料,70,52097.0039868571,186.06072852449
1,7,10,90,材料,70,3736.5025,13.3446517857143
5,7,10,90,材料,70,2588.93324,9.24619014285714
29954548,7,10,90,材料,70,133292.643730143,476.045156179082
29954548,7,10,90,材料,70,133292.643730143,476.045156179082
1452048,46504,11,90,材料,70,1884370.44367833,6729.89444170832
2349349655,46504,11,90,材料,70,1116.3192482,3.98685445785714
2309668026,32434,12,95,材料,35,111.59195,0.797085357142857
333499553,32434,12,95,材料,35,33711.928095,240.799486392857
4315536490,32434,12,95,材料,35,66.95517,0.478251214285714
2327979389,32441,13,95,材料,35,862.977746666667,6.16412676190476
216898035,32441,13,95,材料,35,3585.82132666667,25.6130094761905
631103677,32440,15,41,材料,1000,476.125653333333,0.119031413333333
2319266522,32440,15,41,材料,1000,62.491492,0.015622873
1194436218,32440,15,42,材料,1500,22.31839,0.00371973166666667
104671744,32432,16,95,材料,35,491.00458,3.50717557142857
4208851809,32432,16,95,材料,35,49697.6881215,354.983486582143
4076786740,32451,17,90,材料,70,89.27356,0.318834142857143
331450699,32451,17,90,材料,70,491.00458,1.75358778571429
420984285,46505,18,41,材料,1000,62168.8641543333,15.5422160385833
2329836516,46505,18,41,材料,1000,4786.47693733333,1.19661923433333
892652617,32449,19,50,材料,140,5877.17603333333,10.4949572023809
1555364428,32449,19,50,材料,140,6371.900345,11.3783934732143
1555364428,32449,19,52,材料,700,6371.900345,2.27567869464286
1555364428,32449,19,53,材料,1400,6371.900345,1.13783934732143
892652617,32449,19,54,材料,1400,5877.17603333333,1.04949572023809
892652617,32449,19,55,材料,2000,5877.17603333333,0.734647004166666
142823313,32446,20,41,材料,1000,97437.8679368333,24.3594669842083
367669349,32446,20,41,材料,1000,537603.399401,134.40084985025
203314437,32433,22,41,材料,1000,290.13907,0.0725347675
3274238529,32443,23,41,材料,1000,66.95517,0.0167387925
61066955,32443,23,41,材料,1000,28179.6880875714,7.04492202189285
2475874929,32450,24,90,材料,70,22.31839,0.0797085357142857
2353020496,32450,24,90,材料,70,4997.96087575,17.8498602705357
1270747834,32435,25,41,材料,1000,3481.66884,0.87041721
39894253,32435,25,41,材料,1000,662222.116666667,165.555529166667
287006714,32435,25,41,材料,1000,111970.2725,27.992568125
5849940,32437,26,95,材料,35,2169804.72857143,15498.6052040816
5849940,32437,26,95,材料,35,2169804.72857143,15498.6052040816
29954548,32438,27,44,材料,28,133292.643730143,1190.11289044771
3227189464,32438,27,44,材料,28,2990.66426,26.7023594642857
2340606811,32447,28,50,材料,140,379.41263,0.677522553571429
3269940677,32447,28,50,材料,140,2745.16197,4.90207494642857
3352578733,32436,29,50,材料,140,44.63678,0.0797085357142857
366828854,32436,29,50,材料,140,37270.9437623333,66.5552567184523
1452048,32448,30,95,材料,35,1884370.44367833,13459.7888834166
1452048,32448,30,95,材料,35,1884370.44367833,13459.7888834166
2961715231,32439,31,41,材料,1000,881.576405,0.22039410125
888478182,32439,31,41,材料,1000,44.63678,0.011159195
3270918801,56320,32,46,材料,1400,1439.536155,0.257060027678571
7299120,56320,32,46,材料,1400,29562.480612,5.279014395
2357759100,56322,33,47,材料,14000,852.562498,0.0152243303214286
695879282,56322,33,47,材料,14000,22.31839,0.000398542678571429
2314301730,56322,33,47,材料,14000,22.31839,0.000398542678571429
2326956863,56319,34,48,材料,350,76558.826568734,54.6848761205243
2326956863,56319,34,48,材料,350,76558.826568734,54.6848761205243
3118917053,56323,35,49,材料,1400,7562.35984084442,1.35042140015079
648145286,56323,35,49,材料,1400,509.603238333333,0.0910005782738095
557266995,56321,36,41,材料,1000,1541.1883505,0.385297087625
557266995,56321,36,41,材料,1000,1541.1883505,0.385297087625
453289520,8,37,95,材料,35,193520.088971571,1382.28634979694
453289520,8,37,95,材料,35,193520.088971571,1382.28634979694
1104420298,36914,38,51,材料,70000,213731.195733667,0.763325699048811
37873062,36914,38,51,材料,70000,184703.551339833,0.659655540499404
12098344,32338,44,40,材料,35,36019.3828761667,257.281306258334
12098344,32338,46,43,材料,1400,36019.3828761667,6.43203265645834
12098344,32338,46,43,材料,1400,36019.3828761667,6.43203265645834
12098344,32338,47,38,材料,700,36019.3828761667,12.8640653129167
12098344,32338,49,39,材料,14000,36019.3828761667,0.643203265645834
3357541349,513691,52,95,材料,35,6191.05493557143,44.2218209683674
3357541349,513691,52,95,材料,35,6191.05493557143,44.2218209683674
720737055,2515,56,58,设计,0,315.444274666667,9999999999999.0
850972471,2515,56,58,设计,0,8836.59633516667,9999999999999.0
3472022914,2514,57,58,设计,0,66.95517,9999999999999.0
79412414,2514,57,58,设计,0,12269.0431131106,9999999999999.0
490476776,2514,57,58,设计,0,18149.98,9999999999999.0
632264618,34491,58,90,材料,70,9131.4346385,32.6122665660714
29930956,34491,58,91,材料,140,492.828037833333,0.880050067559523
632264618,34491,58,92,材料,21,9131.4346385,108.707555220238
1092796483,34492,58,93,材料,7,21795.4415151429,778.408625540818
2353851293,34492,58,94,材料,21,133.91034,1.59417071428571
972774,34492,58,95,材料,35,94545.1294942,675.32235353
24459300,34493,58,97,测试,0,87424.1267993333,9999999999999.0
3344266702,34493,58,90,材料,70,12065.8805295714,43.092430462755
2345050363,34494,58,91,材料,140,1262.94723833333,2.25526292559523
33171435,34494,58,92,材料,21,61275.9548563333,729.475653051587
2961210947,34495,58,93,材料,7,156.22873,5.5795975
41454763,34495,58,94,材料,21,3281.00494028571,39.0595826224489
3135349256,34495,58,95,材料,35,11441.7133435,81.7265238821429
2350883312,34496,58,97,测试,0,758.82526,9999999999999.0
2350883312,34496,58,90,材料,70,758.82526,2.71009021428571
3006753238,34498,58,91,材料,140,236376.363264714,422.100648686989
2350111843,34498,58,92,材料,21,1480.14299457143,17.6207499353742
2343704209,34499,58,93,材料,7,7848.60666666667,280.307380952381
15482118,34499,58,94,材料,21,75554.4652471667,899.457919609127
930767828,34501,58,95,材料,35,24848.5958543333,177.489970388095
930767828,34501,58,97,测试,0,24848.5958543333,9999999999999.0
1010816593,34502,58,90,材料,70,111575.164158429,398.482729137246
2321243819,34502,58,91,材料,140,8590.6279275,15.3404070133929
2353542014,34502,58,92,材料,21,3063.477861,36.4699745357143
79889978,34503,58,93,材料,7,57637.2210431667,2058.4721801131
37378925,34503,58,94,材料,21,12474.301626,148.503590785714
186257378,34503,58,95,材料,35,897.199278,6.40856627142857
1379191812,34505,58,97,测试,0,669.5517,9999999999999.0
24653920,34505,58,90,材料,70,49184.7394994286,175.659783926531
864536616,34509,58,91,材料,140,259887.593897857,464.084989103316
25685135,34509,58,92,材料,21,494.656998333333,5.88877378968254
2349046160,34513,58,93,材料,7,16789.3887331667,599.621026184525
2313628561,34513,58,94,材料,21,3977.1318875,47.3468081845238
2346465051,34513,58,95,材料,35,191.938154,1.37098681428571
1253552935,34517,58,97,测试,0,7680.27564083333,9999999999999.0
1253552935,34517,58,90,材料,70,7680.27564083333,27.429555860119
5971532,34518,58,91,材料,140,1410912.94534083,2519.48740239434
3157495460,34518,58,92,材料,21,12596.5014271429,149.95835032313
2354584345,34519,58,93,材料,7,167.387925,5.97814017857143
29452962,34519,58,94,材料,21,206077.306495286,2453.30126780102
27599908,49686,58,95,材料,35,5921.81281333333,42.2986629523809
2350719552,49686,58,97,测试,0,11314.5121375,9999999999999.0
3216066502,49687,58,90,材料,70,20677.0661462857,73.8466648081632
39698451,49687,58,91,材料,140,69378.6032017143,123.890362860204
2351643794,49688,58,92,材料,21,2198.361415,26.1709692261905
2351192662,49688,58,93,材料,7,3416.11452834962,122.004090298201
865049663,49689,58,94,材料,21,43328.108973,515.810821107143
891649,49689,58,95,材料,35,25810.7164891429,184.362260636735
3424978618,49690,58,97,测试,0,56086.1265501667,9999999999999.0
3145156061,49690,58,90,材料,70,22.31839,0.0797085357142857
281599332,49691,58,91,材料,140,40598.0444641667,72.4965079717262
24653920,49691,58,92,材料,21,49184.7394994286,585.532613088436
79938367,49692,58,93,材料,7,438207.673933167,15650.2740690417
864169770,49692,58,94,材料,21,24457.7740034286,291.163976231293
2310296367,49693,58,95,材料,35,31554.9076322,225.392197372857
774611690,49693,58,97,测试,0,7937.90737666667,9999999999999.0
2311838590,49694,58,90,材料,70,310.151853,1.10768518928571
2350442566,49694,58,91,材料,140,2249.693712,4.0173102
654461595,49695,58,92,材料,21,8316.87563333333,99.0104242063492
383463860,49695,58,93,材料,7,45248.303886,1616.01085307143
463659395,49696,58,94,材料,21,39793.0929578333,473.727297117063
2347105663,49696,58,95,材料,35,4603.6098265,32.8829273321429
504638253,49697,58,97,测试,0,51230.2114925,9999999999999.0
519195163,49698,58,90,材料,70,269.27,0.961678571428571
3221578464,49698,58,91,材料,140,580.27814,1.03621096428571
2316256865,49699,58,92,材料,21,30518.2317446667,363.312282674604
3269840248,49699,58,93,材料,7,33.477585,1.19562803571429
1675147952,49700,58,94,材料,21,9412.2279396,112.050332614286
1675147952,49700,58,95,材料,35,9412.2279396,67.2301995685714
29223617,49701,58,97,测试,0,25356.7104388333,9999999999999.0
2553848709,49701,58,90,材料,70,1450.69535,5.18105482142857
168035745,49702,58,91,材料,140,406.194698,0.725347675
510149116,49702,58,92,材料,21,374.948952,4.463678
2316430101,49704,58,93,材料,7,104480.892502143,3731.46044650511
5591349,49704,58,94,材料,21,44936.3798348571,534.956902795918
274839085,49705,58,95,材料,35,1251.8898265,8.94207018928572
4209347174,49705,58,97,测试,0,959.69077,9999999999999.0
413142822,49707,58,90,材料,70,9677.11797866667,34.5611356380953
951988821,49707,58,91,材料,140,88668.7767376667,158.337101317262
1587526,49708,58,92,材料,21,37562.7044782857,447.175053312925
1587526,49708,58,93,材料,7,37562.7044782857,1341.52515993878
3402194899,49709,58,94,材料,21,55.795975,0.664237797619048
730857,49709,58,95,材料,35,15474.0837333333,110.529169523809
27085933,49710,58,97,测试,0,3512.25453285714,9999999999999.0
27085933,49710,58,90,材料,70,3512.25453285714,12.5437661887755
3424978618,49711,58,91,材料,140,56086.1265501667,100.153797411012
24495941,49711,58,92,材料,21,80497.7686304286,958.306769409864
2424229017,49712,58,93,材料,7,41132.540103,1469.01928939286
3118428071,49712,58,94,材料,21,22.31839,0.265695119047619
3297178263,49713,58,95,材料,35,610.035993333333,4.35739995238095
441623911,49713,58,97,测试,0,46601.7746505,9999999999999.0
2316150629,49714,58,90,材料,70,20442.4057828333,73.0085920815475
2327057709,49714,58,91,材料,140,18862.75571075,33.683492340625
2624175,49715,58,92,材料,21,45047.728384,536.282480761905
3483100980,49715,58,93,材料,7,44.63678,1.59417071428571
781386116,49715,58,94,材料,21,65785.0702958333,783.15559875992
3222821993,49716,58,95,材料,35,725.347675,5.18105482142857
10398718,49716,58,97,测试,0,537996.506329429,9999999999999.0
3042364033,49717,58,90,材料,70,22.31839,0.0797085357142857
2333993502,49717,58,91,材料,140,17415.7935534286,31.0996313454082
79938367,49718,58,92,材料,21,438207.673933167,5216.75802301389
2342518227,49718,58,93,材料,7,3045.84492716667,108.780175970238
3068358389,49719,58,94,材料,21,298.473805182015,3.55325958550018
20751117,49719,58,95,材料,35,41335.5048401667,295.253606001191
3449575456,49720,58,97,测试,0,8331.321303,9999999999999.0
3449575456,49720,58,90,材料,70,8331.321303,29.7547189392857
3440374619,49721,58,91,材料,140,2753.40906483333,4.91680190148809
3168979780,49721,58,92,材料,21,28322.03691,337.167106071429
2962064709,49722,58,93,材料,7,3870.76790783333,138.241710994048
3151203276,49722,58,94,材料,21,28574.494008,340.172547714286
3449575456,49723,58,95,材料,35,8331.321303,59.5094378785714
777299215,49723,58,97,测试,0,602.59653,9999999999999.0
24459300,49724,58,90,材料,70,87424.1267993333,312.229024283333
1675147952,49724,58,91,材料,140,9412.2279396,16.8075498921429
2334772533,49725,58,92,材料,21,8232.49431216667,98.0058846686508
38567125,49725,58,93,材料,7,23741.5776591667,847.913487827382
2338894532,49726,58,94,材料,21,647.23331,7.70515845238095
270141231,49726,58,95,材料,35,6622.9822325,47.3070159464286
220783142,49727,58,97,测试,0,714.18848,9999999999999.0
3407754893,49727,58,90,材料,70,40891.55866,146.041280928571
9278530,49728,58,91,材料,140,6390.49900333333,11.4116053630952
9278530,49728,58,92,材料,21,6390.49900333333,76.0773690873015
2323580212,49729,58,93,材料,7,1506.491325,53.8032616071429
2331160070,49729,58,94,材料,21,794.0237395,9.45266356547619
2349345463,49730,58,95,材料,35,6728.994585,48.0642470357143
2350687852,49730,58,97,测试,0,4029.26472366667,9999999999999.0
2357754148,49731,58,90,材料,70,3729.40010633333,13.3192860940476
2357754148,49731,58,91,材料,140,3729.40010633333,6.6596430470238
3173999388,49733,58,92,材料,21,1517.65052,18.0672680952381
501323741,49733,58,93,材料,7,45867.2232541429,1638.11511621939
20751117,49734,58,94,材料,21,41335.5048401667,492.089343335318
20751117,49734,58,95,材料,35,41335.5048401667,295.253606001191
2311337085,56247,58,97,测试,0,36647.5253237143,9999999999999.0
2950325617,56247,58,90,材料,70,5855.69548783333,20.9131981708333
2350701298,56248,58,91,材料,140,223.1839,0.398542678571429
2322658897,56248,58,92,材料,21,156.22873,1.85986583333333
2347015781,56249,58,93,材料,7,28732.6177297143,1026.16491891837
24610687,56249,58,94,材料,21,2602016.44544083,30976.386255248
181655991,56250,58,95,材料,35,1582.68336616667,11.3048811869048
15482118,56250,58,97,测试,0,75554.4652471667,9999999999999.0
2982872611,317586,58,90,材料,70,764.4048575,2.73001734821429
3051771738,317586,58,91,材料,140,119431.036400333,213.269707857738
1237811030,317586,58,92,材料,21,1350.262595,16.074554702381
2358215091,317620,58,93,材料,7,2443.928088,87.283146
6823511,317620,58,94,材料,21,49246.3736734781,586.266353255692
2318300058,431078,58,95,材料,35,22511.6174346,160.79726739
30918572,431078,58,97,测试,0,6399.88976466667,9999999999999.0
173280333,431079,58,90,材料,70,71268.6104547143,254.53075162398
1217010297,431079,58,91,材料,140,86929.247462,155.230799039286
79412414,431079,58,92,材料,21,12269.0431131106,146.06003706084
227353488,431080,58,93,材料,7,141511.018406,5053.96494307143
4728160558,431080,58,94,材料,21,3437661.391239,40924.5403718929
20751117,431081,58,95,材料,35,41335.5048401667,295.253606001191
2313858141,431081,58,97,测试,0,8636.660643,9999999999999.0
2311676659,431082,58,90,材料,70,8280.12269,29.57186675
1048928993,431082,58,91,材料,140,13303.533159,23.7563092125
966536464,431083,58,92,材料,21,957.122635333333,11.3943170873016
3464313484,431083,58,93,材料,7,6330.15329883333,226.076903529762
2347015781,431085,58,94,材料,21,28732.6177297143,342.054972972789
2357754148,431085,58,95,材料,35,3729.40010633333,26.6385721880952
338952484,431086,58,97,测试,0,6999.23901883333,9999999999999.0
27042865,431086,58,90,材料,70,291043.484399,1039.44101571071
3104545193,431087,58,91,材料,140,36083.9444402857,64.4356150719387
9620005,431087,58,92,材料,21,681912.489464,8118.00582695238
864166372,431088,58,93,材料,7,27638.9844123333,987.106586154761
33822284,431088,58,94,材料,21,3117341.894336,37111.2130278095
1033972427,34535,59,90,材料,70,150030.431427836,535.822969385129
3312358902,34535,59,91,材料,140,87569.4877398571,156.374085249745
413876805,34526,60,41,材料,1000,22.31839,0.0055795975
11807506,34526,60,41,材料,1000,5444482.05714286,1361.12051428571
3312358902,34529,61,90,材料,70,87569.4877398571,312.74817049949
80169705,34529,61,90,材料,70,149290.899493,533.181783903572
354328758,34537,62,50,材料,140,446.3678,0.797085357142857
1044103384,34537,62,50,材料,140,38499.22275,68.7486120535714
3164072929,34534,63,50,材料,140,124088.77507875,221.587098354911
22324879,34534,63,50,材料,140,2962.7662725,5.29065405803571
2989649772,34525,64,41,材料,1000,71733.723177,17.93343079425
25147774,34525,64,41,材料,1000,92968.234407,23.24205860175
27075840,34530,65,41,材料,1000,21818.458064,5.454614516
3077450214,34530,65,41,材料,1000,21242.4322786667,5.31060806966668
423388486,34533,66,90,材料,70,242227.496705143,865.098202518368
1679596339,34533,66,90,材料,70,4958.50469716667,17.7089453470238
3384021594,34527,67,41,材料,1000,2187.20222,0.546800555
413876805,34527,67,41,材料,1000,22.31839,0.0055795975
2349076526,34539,68,50,材料,140,771941.581803429,1378.46711036327
2347561020,34539,68,50,材料,140,2142.56544,3.82600971428571
80158773,34528,69,50,材料,140,1474.810014,2.63358931071429
2343704209,34528,69,50,材料,140,7848.60666666667,14.0153690476191
11169556957,34543,70,91,材料,140,89.27356,0.159417071428571
2333843479,34543,70,91,材料,140,8385.40003966667,14.9739286422619
2311352797,34531,71,41,材料,1000,6754.43288,1.68860822
22324879,34531,71,41,材料,1000,2962.7662725,0.740691568125
2311639124,34524,72,50,材料,140,66.95517,0.119562803571429
762165453,34524,72,50,材料,140,55.795975,0.0996356696428571
4379631621,34532,73,95,材料,35,22.31839,0.159417071428571
2349616974,34532,73,95,材料,35,2834.43553,20.2459680714286
78979697,34538,74,95,材料,35,1224407.85554914,8745.77039677957
2316430101,34538,74,95,材料,35,104480.892502143,746.292089301021
3065971313,34550,75,96,封装,0,29697.253081,9999999999999.0
830662620,34550,75,96,封装,0,73842.0312075,9999999999999.0
11175750477,34555,76,96,封装,0,3570.9424,9999999999999.0
2311838590,34555,76,96,封装,0,310.151853,9999999999999.0
3414534661,34554,77,100,测试,0,46215.3088984286,9999999999999.0
3393219477,34554,77,100,测试,0,22.31839,9999999999999.0
2321857672,34556,78,98,测试,0,15667.50978,9999999999999.0
146491012,34557,79,99,测试,0,166754.219868852,9999999999999.0
2311907103,34557,79,99,测试,0,76726.8203528333,9999999999999.0
2311838590,34553,80,96,封装,0,310.151853,9999999999999.0
409663925,34553,80,96,封装,0,5802.7814,9999999999999.0
4995239819,34545,81,96,封装,0,44.63678,9999999999999.0
2339136692,34545,81,96,封装,0,133298.837068571,9999999999999.0
2453696971,34552,82,96,封装,0,34675.6299895,9999999999999.0
43566171,34552,82,96,封装,0,1763.15281,9999999999999.0
22324879,34544,83,96,封装,0,2962.7662725,9999999999999.0
59234665,34544,83,96,封装,0,656252.890643167,9999999999999.0
3327312155,34546,84,96,封装,0,435.208605,9999999999999.0
1389529309,34546,84,96,封装,0,8239.6429645,9999999999999.0
443872531,34549,85,96,封装,0,14931.5790275,9999999999999.0
24673506,34549,85,96,封装,0,291506.649439667,9999999999999.0
3464943902,34558,86,96,封装,0,33.477585,9999999999999.0
259923931,34558,86,96,封装,0,129.446662,9999999999999.0
18729484,34547,87,96,封装,0,45882.146162,9999999999999.0
3287925122,34547,87,96,封装,0,792.302845,9999999999999.0
2347561020,34551,88,96,封装,0,2142.56544,9999999999999.0
613464015,34551,88,96,封装,0,35552.7344381667,9999999999999.0
888662519,34548,89,96,封装,0,2008.6551,9999999999999.0
27169556,2717,90,95,材料,35,455436.179933333,3253.11557095238
3346538900,2717,90,95,材料,35,335021.89871525,2393.01356225179
2541265952,2717,90,95,材料,35,662.112236666667,4.72937311904762
350343208,2714,91,95,材料,35,3903.95977783333,27.8854269845238
37873062,2714,91,95,材料,35,184703.551339833,1319.31108099881
1266556718,2714,91,95,材料,35,10632.3104404292,75.9450745744943
331545755,2715,92,95,材料,35,6911.28954133333,49.3663538666666
3193516458,2715,92,95,材料,35,41347.21758,295.337268428571
41454763,2715,92,95,材料,35,3281.00494028571,23.4357495734694
584019624,2716,93,95,材料,35,19952.64066,142.518861857143
185356903,2716,93,95,材料,35,29.7578533333333,0.212556095238095
22751149,2716,93,95,材料,35,263513.812713,1882.24151937857
777299215,2718,94,95,材料,35,602.59653,4.30426092857143
18107611,2718,94,95,材料,35,4949308.389283,35352.2027805929
814834276,317589,95,96,封装,0,44.63678,9999999999999.0
3339921892,317589,95,96,封装,0,290.13907,9999999999999.0
22324879,317589,95,96,封装,0,2962.7662725,9999999999999.0
2311838590,513738,97,95,材料,35,310.151853,2.21537037857143
2311838590,513738,97,95,材料,35,310.151853,2.21537037857143
3006753238,34573,101,96,封装,0,236376.363264714,9999999999999.0
2333993502,34573,101,96,封装,0,17415.7935534286,9999999999999.0
2349511062,34571,102,96,封装,0,1190.53784783333,9999999999999.0
2349511062,34571,102,96,封装,0,1190.53784783333,9999999999999.0
2349737110,34567,103,96,封装,0,6196.09279783333,9999999999999.0
505990558,34567,103,96,封装,0,245.50229,9999999999999.0
500189853,34572,104,96,封装,0,2075.61027,9999999999999.0
18065940,34572,104,96,封装,0,143283.010690286,9999999999999.0
3054059190,34566,105,96,封装,0,1495.33213,9999999999999.0
186745206,34566,105,96,封装,0,31534.1938276667,9999999999999.0
507827038,34566,105,96,封装,0,134419.051238286,9999999999999.0
2348910693,34569,106,96,封装,0,4641.11761583333,9999999999999.0
2342515031,34569,106,96,封装,0,5069.99426166667,9999999999999.0
613464015,34568,107,96,封装,0,35552.7344381667,9999999999999.0
221048382,34568,107,96,封装,0,352447.843621667,9999999999999.0
2360390148,34570,108,96,封装,0,580.27814,9999999999999.0
2317568755,34570,108,96,封装,0,7858.70136516667,9999999999999.0
433384648,34574,109,96,封装,0,1191.802026,9999999999999.0
344181818,34574,109,96,封装,0,79181.2545228571,9999999999999.0
1 Firm_Code 相关细分行业 产品id 下游 种类 产品单价数值 存货(万元人民币) 产品数量
2 4067555184 32338 7 44 材料 28 323.616655 2.88943441964286
3 2313177432 32338 7 44 材料 28 89.27356 0.797085357142857
4 12098344 32338 7 45 材料 21 36019.3828761667 428.802177097223
5 2348894245 32445 8 90 材料 70 11981.7573048571 42.7919903744896
6 2348894245 32445 8 93 材料 7 22.31839 0.797085357142857
7 169978927 32445 8 90 材料 70 65028.9291661667 232.246175593453
8 169978927 32445 8 92 材料 21 65028.9291661667 774.153918644842
9 169978927 32445 8 94 材料 21 65028.9291661667 774.153918644842
10 4091219112 56341 9 90 材料 70 55.795975 0.199271339285714
11 60716715 56341 9 90 材料 70 52097.0039868571 186.06072852449
12 1 7 10 90 材料 70 3736.5025 13.3446517857143
13 5 7 10 90 材料 70 2588.93324 9.24619014285714
14 29954548 7 10 90 材料 70 133292.643730143 476.045156179082
15 29954548 7 10 90 材料 70 133292.643730143 476.045156179082
16 1452048 46504 11 90 材料 70 1884370.44367833 6729.89444170832
17 2349349655 46504 11 90 材料 70 1116.3192482 3.98685445785714
18 2309668026 32434 12 95 材料 35 111.59195 0.797085357142857
19 333499553 32434 12 95 材料 35 33711.928095 240.799486392857
20 4315536490 32434 12 95 材料 35 66.95517 0.478251214285714
21 2327979389 32441 13 95 材料 35 862.977746666667 6.16412676190476
22 216898035 32441 13 95 材料 35 3585.82132666667 25.6130094761905
23 631103677 32440 15 41 材料 1000 476.125653333333 0.119031413333333
24 2319266522 32440 15 41 材料 1000 62.491492 0.015622873
25 1194436218 32440 15 42 材料 1500 22.31839 0.00371973166666667
26 104671744 32432 16 95 材料 35 491.00458 3.50717557142857
27 4208851809 32432 16 95 材料 35 49697.6881215 354.983486582143
28 4076786740 32451 17 90 材料 70 89.27356 0.318834142857143
29 331450699 32451 17 90 材料 70 491.00458 1.75358778571429
30 420984285 46505 18 41 材料 1000 62168.8641543333 15.5422160385833
31 2329836516 46505 18 41 材料 1000 4786.47693733333 1.19661923433333
32 892652617 32449 19 50 材料 140 5877.17603333333 10.4949572023809
33 1555364428 32449 19 50 材料 140 6371.900345 11.3783934732143
34 1555364428 32449 19 52 材料 700 6371.900345 2.27567869464286
35 1555364428 32449 19 53 材料 1400 6371.900345 1.13783934732143
36 892652617 32449 19 54 材料 1400 5877.17603333333 1.04949572023809
37 892652617 32449 19 55 材料 2000 5877.17603333333 0.734647004166666
38 142823313 32446 20 41 材料 1000 97437.8679368333 24.3594669842083
39 367669349 32446 20 41 材料 1000 537603.399401 134.40084985025
40 203314437 32433 22 41 材料 1000 290.13907 0.0725347675
41 3274238529 32443 23 41 材料 1000 66.95517 0.0167387925
42 61066955 32443 23 41 材料 1000 28179.6880875714 7.04492202189285
43 2475874929 32450 24 90 材料 70 22.31839 0.0797085357142857
44 2353020496 32450 24 90 材料 70 4997.96087575 17.8498602705357
45 1270747834 32435 25 41 材料 1000 3481.66884 0.87041721
46 39894253 32435 25 41 材料 1000 662222.116666667 165.555529166667
47 287006714 32435 25 41 材料 1000 111970.2725 27.992568125
48 5849940 32437 26 95 材料 35 2169804.72857143 15498.6052040816
49 5849940 32437 26 95 材料 35 2169804.72857143 15498.6052040816
50 29954548 32438 27 44 材料 28 133292.643730143 1190.11289044771
51 3227189464 32438 27 44 材料 28 2990.66426 26.7023594642857
52 2340606811 32447 28 50 材料 140 379.41263 0.677522553571429
53 3269940677 32447 28 50 材料 140 2745.16197 4.90207494642857
54 3352578733 32436 29 50 材料 140 44.63678 0.0797085357142857
55 366828854 32436 29 50 材料 140 37270.9437623333 66.5552567184523
56 1452048 32448 30 95 材料 35 1884370.44367833 13459.7888834166
57 1452048 32448 30 95 材料 35 1884370.44367833 13459.7888834166
58 2961715231 32439 31 41 材料 1000 881.576405 0.22039410125
59 888478182 32439 31 41 材料 1000 44.63678 0.011159195
60 3270918801 56320 32 46 材料 1400 1439.536155 0.257060027678571
61 7299120 56320 32 46 材料 1400 29562.480612 5.279014395
62 2357759100 56322 33 47 材料 14000 852.562498 0.0152243303214286
63 695879282 56322 33 47 材料 14000 22.31839 0.000398542678571429
64 2314301730 56322 33 47 材料 14000 22.31839 0.000398542678571429
65 2326956863 56319 34 48 材料 350 76558.826568734 54.6848761205243
66 2326956863 56319 34 48 材料 350 76558.826568734 54.6848761205243
67 3118917053 56323 35 49 材料 1400 7562.35984084442 1.35042140015079
68 648145286 56323 35 49 材料 1400 509.603238333333 0.0910005782738095
69 557266995 56321 36 41 材料 1000 1541.1883505 0.385297087625
70 557266995 56321 36 41 材料 1000 1541.1883505 0.385297087625
71 453289520 8 37 95 材料 35 193520.088971571 1382.28634979694
72 453289520 8 37 95 材料 35 193520.088971571 1382.28634979694
73 1104420298 36914 38 51 材料 70000 213731.195733667 0.763325699048811
74 37873062 36914 38 51 材料 70000 184703.551339833 0.659655540499404
75 12098344 32338 44 40 材料 35 36019.3828761667 257.281306258334
76 12098344 32338 46 43 材料 1400 36019.3828761667 6.43203265645834
77 12098344 32338 46 43 材料 1400 36019.3828761667 6.43203265645834
78 12098344 32338 47 38 材料 700 36019.3828761667 12.8640653129167
79 12098344 32338 49 39 材料 14000 36019.3828761667 0.643203265645834
80 3357541349 513691 52 95 材料 35 6191.05493557143 44.2218209683674
81 3357541349 513691 52 95 材料 35 6191.05493557143 44.2218209683674
82 720737055 2515 56 58 设计 0 315.444274666667 9999999999999.0
83 850972471 2515 56 58 设计 0 8836.59633516667 9999999999999.0
84 3472022914 2514 57 58 设计 0 66.95517 9999999999999.0
85 79412414 2514 57 58 设计 0 12269.0431131106 9999999999999.0
86 490476776 2514 57 58 设计 0 18149.98 9999999999999.0
87 632264618 34491 58 90 材料 70 9131.4346385 32.6122665660714
88 29930956 34491 58 91 材料 140 492.828037833333 0.880050067559523
89 632264618 34491 58 92 材料 21 9131.4346385 108.707555220238
90 1092796483 34492 58 93 材料 7 21795.4415151429 778.408625540818
91 2353851293 34492 58 94 材料 21 133.91034 1.59417071428571
92 972774 34492 58 95 材料 35 94545.1294942 675.32235353
93 24459300 34493 58 97 测试 0 87424.1267993333 9999999999999.0
94 3344266702 34493 58 90 材料 70 12065.8805295714 43.092430462755
95 2345050363 34494 58 91 材料 140 1262.94723833333 2.25526292559523
96 33171435 34494 58 92 材料 21 61275.9548563333 729.475653051587
97 2961210947 34495 58 93 材料 7 156.22873 5.5795975
98 41454763 34495 58 94 材料 21 3281.00494028571 39.0595826224489
99 3135349256 34495 58 95 材料 35 11441.7133435 81.7265238821429
100 2350883312 34496 58 97 测试 0 758.82526 9999999999999.0
101 2350883312 34496 58 90 材料 70 758.82526 2.71009021428571
102 3006753238 34498 58 91 材料 140 236376.363264714 422.100648686989
103 2350111843 34498 58 92 材料 21 1480.14299457143 17.6207499353742
104 2343704209 34499 58 93 材料 7 7848.60666666667 280.307380952381
105 15482118 34499 58 94 材料 21 75554.4652471667 899.457919609127
106 930767828 34501 58 95 材料 35 24848.5958543333 177.489970388095
107 930767828 34501 58 97 测试 0 24848.5958543333 9999999999999.0
108 1010816593 34502 58 90 材料 70 111575.164158429 398.482729137246
109 2321243819 34502 58 91 材料 140 8590.6279275 15.3404070133929
110 2353542014 34502 58 92 材料 21 3063.477861 36.4699745357143
111 79889978 34503 58 93 材料 7 57637.2210431667 2058.4721801131
112 37378925 34503 58 94 材料 21 12474.301626 148.503590785714
113 186257378 34503 58 95 材料 35 897.199278 6.40856627142857
114 1379191812 34505 58 97 测试 0 669.5517 9999999999999.0
115 24653920 34505 58 90 材料 70 49184.7394994286 175.659783926531
116 864536616 34509 58 91 材料 140 259887.593897857 464.084989103316
117 25685135 34509 58 92 材料 21 494.656998333333 5.88877378968254
118 2349046160 34513 58 93 材料 7 16789.3887331667 599.621026184525
119 2313628561 34513 58 94 材料 21 3977.1318875 47.3468081845238
120 2346465051 34513 58 95 材料 35 191.938154 1.37098681428571
121 1253552935 34517 58 97 测试 0 7680.27564083333 9999999999999.0
122 1253552935 34517 58 90 材料 70 7680.27564083333 27.429555860119
123 5971532 34518 58 91 材料 140 1410912.94534083 2519.48740239434
124 3157495460 34518 58 92 材料 21 12596.5014271429 149.95835032313
125 2354584345 34519 58 93 材料 7 167.387925 5.97814017857143
126 29452962 34519 58 94 材料 21 206077.306495286 2453.30126780102
127 27599908 49686 58 95 材料 35 5921.81281333333 42.2986629523809
128 2350719552 49686 58 97 测试 0 11314.5121375 9999999999999.0
129 3216066502 49687 58 90 材料 70 20677.0661462857 73.8466648081632
130 39698451 49687 58 91 材料 140 69378.6032017143 123.890362860204
131 2351643794 49688 58 92 材料 21 2198.361415 26.1709692261905
132 2351192662 49688 58 93 材料 7 3416.11452834962 122.004090298201
133 865049663 49689 58 94 材料 21 43328.108973 515.810821107143
134 891649 49689 58 95 材料 35 25810.7164891429 184.362260636735
135 3424978618 49690 58 97 测试 0 56086.1265501667 9999999999999.0
136 3145156061 49690 58 90 材料 70 22.31839 0.0797085357142857
137 281599332 49691 58 91 材料 140 40598.0444641667 72.4965079717262
138 24653920 49691 58 92 材料 21 49184.7394994286 585.532613088436
139 79938367 49692 58 93 材料 7 438207.673933167 15650.2740690417
140 864169770 49692 58 94 材料 21 24457.7740034286 291.163976231293
141 2310296367 49693 58 95 材料 35 31554.9076322 225.392197372857
142 774611690 49693 58 97 测试 0 7937.90737666667 9999999999999.0
143 2311838590 49694 58 90 材料 70 310.151853 1.10768518928571
144 2350442566 49694 58 91 材料 140 2249.693712 4.0173102
145 654461595 49695 58 92 材料 21 8316.87563333333 99.0104242063492
146 383463860 49695 58 93 材料 7 45248.303886 1616.01085307143
147 463659395 49696 58 94 材料 21 39793.0929578333 473.727297117063
148 2347105663 49696 58 95 材料 35 4603.6098265 32.8829273321429
149 504638253 49697 58 97 测试 0 51230.2114925 9999999999999.0
150 519195163 49698 58 90 材料 70 269.27 0.961678571428571
151 3221578464 49698 58 91 材料 140 580.27814 1.03621096428571
152 2316256865 49699 58 92 材料 21 30518.2317446667 363.312282674604
153 3269840248 49699 58 93 材料 7 33.477585 1.19562803571429
154 1675147952 49700 58 94 材料 21 9412.2279396 112.050332614286
155 1675147952 49700 58 95 材料 35 9412.2279396 67.2301995685714
156 29223617 49701 58 97 测试 0 25356.7104388333 9999999999999.0
157 2553848709 49701 58 90 材料 70 1450.69535 5.18105482142857
158 168035745 49702 58 91 材料 140 406.194698 0.725347675
159 510149116 49702 58 92 材料 21 374.948952 4.463678
160 2316430101 49704 58 93 材料 7 104480.892502143 3731.46044650511
161 5591349 49704 58 94 材料 21 44936.3798348571 534.956902795918
162 274839085 49705 58 95 材料 35 1251.8898265 8.94207018928572
163 4209347174 49705 58 97 测试 0 959.69077 9999999999999.0
164 413142822 49707 58 90 材料 70 9677.11797866667 34.5611356380953
165 951988821 49707 58 91 材料 140 88668.7767376667 158.337101317262
166 1587526 49708 58 92 材料 21 37562.7044782857 447.175053312925
167 1587526 49708 58 93 材料 7 37562.7044782857 1341.52515993878
168 3402194899 49709 58 94 材料 21 55.795975 0.664237797619048
169 730857 49709 58 95 材料 35 15474.0837333333 110.529169523809
170 27085933 49710 58 97 测试 0 3512.25453285714 9999999999999.0
171 27085933 49710 58 90 材料 70 3512.25453285714 12.5437661887755
172 3424978618 49711 58 91 材料 140 56086.1265501667 100.153797411012
173 24495941 49711 58 92 材料 21 80497.7686304286 958.306769409864
174 2424229017 49712 58 93 材料 7 41132.540103 1469.01928939286
175 3118428071 49712 58 94 材料 21 22.31839 0.265695119047619
176 3297178263 49713 58 95 材料 35 610.035993333333 4.35739995238095
177 441623911 49713 58 97 测试 0 46601.7746505 9999999999999.0
178 2316150629 49714 58 90 材料 70 20442.4057828333 73.0085920815475
179 2327057709 49714 58 91 材料 140 18862.75571075 33.683492340625
180 2624175 49715 58 92 材料 21 45047.728384 536.282480761905
181 3483100980 49715 58 93 材料 7 44.63678 1.59417071428571
182 781386116 49715 58 94 材料 21 65785.0702958333 783.15559875992
183 3222821993 49716 58 95 材料 35 725.347675 5.18105482142857
184 10398718 49716 58 97 测试 0 537996.506329429 9999999999999.0
185 3042364033 49717 58 90 材料 70 22.31839 0.0797085357142857
186 2333993502 49717 58 91 材料 140 17415.7935534286 31.0996313454082
187 79938367 49718 58 92 材料 21 438207.673933167 5216.75802301389
188 2342518227 49718 58 93 材料 7 3045.84492716667 108.780175970238
189 3068358389 49719 58 94 材料 21 298.473805182015 3.55325958550018
190 20751117 49719 58 95 材料 35 41335.5048401667 295.253606001191
191 3449575456 49720 58 97 测试 0 8331.321303 9999999999999.0
192 3449575456 49720 58 90 材料 70 8331.321303 29.7547189392857
193 3440374619 49721 58 91 材料 140 2753.40906483333 4.91680190148809
194 3168979780 49721 58 92 材料 21 28322.03691 337.167106071429
195 2962064709 49722 58 93 材料 7 3870.76790783333 138.241710994048
196 3151203276 49722 58 94 材料 21 28574.494008 340.172547714286
197 3449575456 49723 58 95 材料 35 8331.321303 59.5094378785714
198 777299215 49723 58 97 测试 0 602.59653 9999999999999.0
199 24459300 49724 58 90 材料 70 87424.1267993333 312.229024283333
200 1675147952 49724 58 91 材料 140 9412.2279396 16.8075498921429
201 2334772533 49725 58 92 材料 21 8232.49431216667 98.0058846686508
202 38567125 49725 58 93 材料 7 23741.5776591667 847.913487827382
203 2338894532 49726 58 94 材料 21 647.23331 7.70515845238095
204 270141231 49726 58 95 材料 35 6622.9822325 47.3070159464286
205 220783142 49727 58 97 测试 0 714.18848 9999999999999.0
206 3407754893 49727 58 90 材料 70 40891.55866 146.041280928571
207 9278530 49728 58 91 材料 140 6390.49900333333 11.4116053630952
208 9278530 49728 58 92 材料 21 6390.49900333333 76.0773690873015
209 2323580212 49729 58 93 材料 7 1506.491325 53.8032616071429
210 2331160070 49729 58 94 材料 21 794.0237395 9.45266356547619
211 2349345463 49730 58 95 材料 35 6728.994585 48.0642470357143
212 2350687852 49730 58 97 测试 0 4029.26472366667 9999999999999.0
213 2357754148 49731 58 90 材料 70 3729.40010633333 13.3192860940476
214 2357754148 49731 58 91 材料 140 3729.40010633333 6.6596430470238
215 3173999388 49733 58 92 材料 21 1517.65052 18.0672680952381
216 501323741 49733 58 93 材料 7 45867.2232541429 1638.11511621939
217 20751117 49734 58 94 材料 21 41335.5048401667 492.089343335318
218 20751117 49734 58 95 材料 35 41335.5048401667 295.253606001191
219 2311337085 56247 58 97 测试 0 36647.5253237143 9999999999999.0
220 2950325617 56247 58 90 材料 70 5855.69548783333 20.9131981708333
221 2350701298 56248 58 91 材料 140 223.1839 0.398542678571429
222 2322658897 56248 58 92 材料 21 156.22873 1.85986583333333
223 2347015781 56249 58 93 材料 7 28732.6177297143 1026.16491891837
224 24610687 56249 58 94 材料 21 2602016.44544083 30976.386255248
225 181655991 56250 58 95 材料 35 1582.68336616667 11.3048811869048
226 15482118 56250 58 97 测试 0 75554.4652471667 9999999999999.0
227 2982872611 317586 58 90 材料 70 764.4048575 2.73001734821429
228 3051771738 317586 58 91 材料 140 119431.036400333 213.269707857738
229 1237811030 317586 58 92 材料 21 1350.262595 16.074554702381
230 2358215091 317620 58 93 材料 7 2443.928088 87.283146
231 6823511 317620 58 94 材料 21 49246.3736734781 586.266353255692
232 2318300058 431078 58 95 材料 35 22511.6174346 160.79726739
233 30918572 431078 58 97 测试 0 6399.88976466667 9999999999999.0
234 173280333 431079 58 90 材料 70 71268.6104547143 254.53075162398
235 1217010297 431079 58 91 材料 140 86929.247462 155.230799039286
236 79412414 431079 58 92 材料 21 12269.0431131106 146.06003706084
237 227353488 431080 58 93 材料 7 141511.018406 5053.96494307143
238 4728160558 431080 58 94 材料 21 3437661.391239 40924.5403718929
239 20751117 431081 58 95 材料 35 41335.5048401667 295.253606001191
240 2313858141 431081 58 97 测试 0 8636.660643 9999999999999.0
241 2311676659 431082 58 90 材料 70 8280.12269 29.57186675
242 1048928993 431082 58 91 材料 140 13303.533159 23.7563092125
243 966536464 431083 58 92 材料 21 957.122635333333 11.3943170873016
244 3464313484 431083 58 93 材料 7 6330.15329883333 226.076903529762
245 2347015781 431085 58 94 材料 21 28732.6177297143 342.054972972789
246 2357754148 431085 58 95 材料 35 3729.40010633333 26.6385721880952
247 338952484 431086 58 97 测试 0 6999.23901883333 9999999999999.0
248 27042865 431086 58 90 材料 70 291043.484399 1039.44101571071
249 3104545193 431087 58 91 材料 140 36083.9444402857 64.4356150719387
250 9620005 431087 58 92 材料 21 681912.489464 8118.00582695238
251 864166372 431088 58 93 材料 7 27638.9844123333 987.106586154761
252 33822284 431088 58 94 材料 21 3117341.894336 37111.2130278095
253 1033972427 34535 59 90 材料 70 150030.431427836 535.822969385129
254 3312358902 34535 59 91 材料 140 87569.4877398571 156.374085249745
255 413876805 34526 60 41 材料 1000 22.31839 0.0055795975
256 11807506 34526 60 41 材料 1000 5444482.05714286 1361.12051428571
257 3312358902 34529 61 90 材料 70 87569.4877398571 312.74817049949
258 80169705 34529 61 90 材料 70 149290.899493 533.181783903572
259 354328758 34537 62 50 材料 140 446.3678 0.797085357142857
260 1044103384 34537 62 50 材料 140 38499.22275 68.7486120535714
261 3164072929 34534 63 50 材料 140 124088.77507875 221.587098354911
262 22324879 34534 63 50 材料 140 2962.7662725 5.29065405803571
263 2989649772 34525 64 41 材料 1000 71733.723177 17.93343079425
264 25147774 34525 64 41 材料 1000 92968.234407 23.24205860175
265 27075840 34530 65 41 材料 1000 21818.458064 5.454614516
266 3077450214 34530 65 41 材料 1000 21242.4322786667 5.31060806966668
267 423388486 34533 66 90 材料 70 242227.496705143 865.098202518368
268 1679596339 34533 66 90 材料 70 4958.50469716667 17.7089453470238
269 3384021594 34527 67 41 材料 1000 2187.20222 0.546800555
270 413876805 34527 67 41 材料 1000 22.31839 0.0055795975
271 2349076526 34539 68 50 材料 140 771941.581803429 1378.46711036327
272 2347561020 34539 68 50 材料 140 2142.56544 3.82600971428571
273 80158773 34528 69 50 材料 140 1474.810014 2.63358931071429
274 2343704209 34528 69 50 材料 140 7848.60666666667 14.0153690476191
275 11169556957 34543 70 91 材料 140 89.27356 0.159417071428571
276 2333843479 34543 70 91 材料 140 8385.40003966667 14.9739286422619
277 2311352797 34531 71 41 材料 1000 6754.43288 1.68860822
278 22324879 34531 71 41 材料 1000 2962.7662725 0.740691568125
279 2311639124 34524 72 50 材料 140 66.95517 0.119562803571429
280 762165453 34524 72 50 材料 140 55.795975 0.0996356696428571
281 4379631621 34532 73 95 材料 35 22.31839 0.159417071428571
282 2349616974 34532 73 95 材料 35 2834.43553 20.2459680714286
283 78979697 34538 74 95 材料 35 1224407.85554914 8745.77039677957
284 2316430101 34538 74 95 材料 35 104480.892502143 746.292089301021
285 3065971313 34550 75 96 封装 0 29697.253081 9999999999999.0
286 830662620 34550 75 96 封装 0 73842.0312075 9999999999999.0
287 11175750477 34555 76 96 封装 0 3570.9424 9999999999999.0
288 2311838590 34555 76 96 封装 0 310.151853 9999999999999.0
289 3414534661 34554 77 100 测试 0 46215.3088984286 9999999999999.0
290 3393219477 34554 77 100 测试 0 22.31839 9999999999999.0
291 2321857672 34556 78 98 测试 0 15667.50978 9999999999999.0
292 146491012 34557 79 99 测试 0 166754.219868852 9999999999999.0
293 2311907103 34557 79 99 测试 0 76726.8203528333 9999999999999.0
294 2311838590 34553 80 96 封装 0 310.151853 9999999999999.0
295 409663925 34553 80 96 封装 0 5802.7814 9999999999999.0
296 4995239819 34545 81 96 封装 0 44.63678 9999999999999.0
297 2339136692 34545 81 96 封装 0 133298.837068571 9999999999999.0
298 2453696971 34552 82 96 封装 0 34675.6299895 9999999999999.0
299 43566171 34552 82 96 封装 0 1763.15281 9999999999999.0
300 22324879 34544 83 96 封装 0 2962.7662725 9999999999999.0
301 59234665 34544 83 96 封装 0 656252.890643167 9999999999999.0
302 3327312155 34546 84 96 封装 0 435.208605 9999999999999.0
303 1389529309 34546 84 96 封装 0 8239.6429645 9999999999999.0
304 443872531 34549 85 96 封装 0 14931.5790275 9999999999999.0
305 24673506 34549 85 96 封装 0 291506.649439667 9999999999999.0
306 3464943902 34558 86 96 封装 0 33.477585 9999999999999.0
307 259923931 34558 86 96 封装 0 129.446662 9999999999999.0
308 18729484 34547 87 96 封装 0 45882.146162 9999999999999.0
309 3287925122 34547 87 96 封装 0 792.302845 9999999999999.0
310 2347561020 34551 88 96 封装 0 2142.56544 9999999999999.0
311 613464015 34551 88 96 封装 0 35552.7344381667 9999999999999.0
312 888662519 34548 89 96 封装 0 2008.6551 9999999999999.0
313 27169556 2717 90 95 材料 35 455436.179933333 3253.11557095238
314 3346538900 2717 90 95 材料 35 335021.89871525 2393.01356225179
315 2541265952 2717 90 95 材料 35 662.112236666667 4.72937311904762
316 350343208 2714 91 95 材料 35 3903.95977783333 27.8854269845238
317 37873062 2714 91 95 材料 35 184703.551339833 1319.31108099881
318 1266556718 2714 91 95 材料 35 10632.3104404292 75.9450745744943
319 331545755 2715 92 95 材料 35 6911.28954133333 49.3663538666666
320 3193516458 2715 92 95 材料 35 41347.21758 295.337268428571
321 41454763 2715 92 95 材料 35 3281.00494028571 23.4357495734694
322 584019624 2716 93 95 材料 35 19952.64066 142.518861857143
323 185356903 2716 93 95 材料 35 29.7578533333333 0.212556095238095
324 22751149 2716 93 95 材料 35 263513.812713 1882.24151937857
325 777299215 2718 94 95 材料 35 602.59653 4.30426092857143
326 18107611 2718 94 95 材料 35 4949308.389283 35352.2027805929
327 814834276 317589 95 96 封装 0 44.63678 9999999999999.0
328 3339921892 317589 95 96 封装 0 290.13907 9999999999999.0
329 22324879 317589 95 96 封装 0 2962.7662725 9999999999999.0
330 2311838590 513738 97 95 材料 35 310.151853 2.21537037857143
331 2311838590 513738 97 95 材料 35 310.151853 2.21537037857143
332 3006753238 34573 101 96 封装 0 236376.363264714 9999999999999.0
333 2333993502 34573 101 96 封装 0 17415.7935534286 9999999999999.0
334 2349511062 34571 102 96 封装 0 1190.53784783333 9999999999999.0
335 2349511062 34571 102 96 封装 0 1190.53784783333 9999999999999.0
336 2349737110 34567 103 96 封装 0 6196.09279783333 9999999999999.0
337 505990558 34567 103 96 封装 0 245.50229 9999999999999.0
338 500189853 34572 104 96 封装 0 2075.61027 9999999999999.0
339 18065940 34572 104 96 封装 0 143283.010690286 9999999999999.0
340 3054059190 34566 105 96 封装 0 1495.33213 9999999999999.0
341 186745206 34566 105 96 封装 0 31534.1938276667 9999999999999.0
342 507827038 34566 105 96 封装 0 134419.051238286 9999999999999.0
343 2348910693 34569 106 96 封装 0 4641.11761583333 9999999999999.0
344 2342515031 34569 106 96 封装 0 5069.99426166667 9999999999999.0
345 613464015 34568 107 96 封装 0 35552.7344381667 9999999999999.0
346 221048382 34568 107 96 封装 0 352447.843621667 9999999999999.0
347 2360390148 34570 108 96 封装 0 580.27814 9999999999999.0
348 2317568755 34570 108 96 封装 0 7858.70136516667 9999999999999.0
349 433384648 34574 109 96 封装 0 1191.802026 9999999999999.0
350 344181818 34574 109 96 封装 0 79181.2545228571 9999999999999.0

View File

@ -0,0 +1,87 @@
Code,32338,32445,56341,7,4654,32434,32441,32444,3244,32432,32451,4655,32449,32446,32442,32433,32443,3245,32435,32437,32438,32447,32436,32448,32439,5632,56322,56319,56323,56321,8,36914,2515,2514,9,34535,34526,34529,34537,34534,34525,3453,34533,34527,34539,34528,34543,34531,34524,34532,34538,3455,34555,34554,34556,34557,34553,34545,34552,34544,34546,34549,34558,34547,34551,34548,2717,2714,2715,2716,2718,317589,1,513738,51374,513742,11,34573,34571,34567,34572,34566,34569,34568,3457,34574
32338,1,,,,,,,,1,,,1,1,1,,1,1,,1,,1,1,1,,,1,1,1,1,,,1,,,,,1,,1,1,1,1,,1,1,1,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32445,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
56341,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4654,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32434,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32441,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32444,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3244,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32432,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32451,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4655,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32449,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32446,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32442,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32433,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32443,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3245,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32435,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32437,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32438,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32447,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32436,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32448,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32439,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5632,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
56322,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
56319,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
56323,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
56321,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
8,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
36914,1,,,,,,,,1,,,1,,1,,1,1,,1,,,,,,1,,,,,1,,,,,,,1,,,,1,1,,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2515,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2514,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
9,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34535,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34526,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34529,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34537,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34534,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34525,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3453,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34533,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34527,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34539,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34528,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34543,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34531,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34524,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34532,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34538,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3455,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34555,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34554,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34556,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34557,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34553,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34545,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34552,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34544,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34546,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34549,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34558,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34547,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34551,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34548,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2717,1,1,1,1,1,,,,,,1,,1,1,1,,1,1,1,,,1,,,1,,,,,,,,,,1,1,1,1,1,,,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2714,,1,1,1,1,,,,,,1,1,1,1,,,1,1,,,,1,,,1,,,,,,,,,,1,1,,1,1,,,1,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2715,,1,1,1,1,,,,,,1,1,1,1,,,1,1,,,,1,,,1,,,,,,,,,,1,1,,1,1,,,1,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2716,,1,1,1,1,,,,,,1,1,1,1,,,1,1,,,,1,,,1,,,,,,,,,,1,1,,1,1,,,1,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2718,,1,1,1,1,,,,,,1,1,1,1,,,1,1,,,,1,,,1,,,,,,,,,,1,1,,1,1,,,1,1,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
317589,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,,,,,1,,,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,,,,,,,,,,,,,,,1,1,1,1,1,,,1,,,,,,,,,,,,
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,1,,,,1,1,1,1,1,1,1,1,1,1,,,,,,1,,1,1,1,1,1,1,1,1,1,1,1,1,1
513738,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
51374,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,
513742,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,
11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,1,,,,,,,,,,,,,,
34573,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34571,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34567,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34572,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34566,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34569,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34568,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3457,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
34574,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 Code 32338 32445 56341 7 4654 32434 32441 32444 3244 32432 32451 4655 32449 32446 32442 32433 32443 3245 32435 32437 32438 32447 32436 32448 32439 5632 56322 56319 56323 56321 8 36914 2515 2514 9 34535 34526 34529 34537 34534 34525 3453 34533 34527 34539 34528 34543 34531 34524 34532 34538 3455 34555 34554 34556 34557 34553 34545 34552 34544 34546 34549 34558 34547 34551 34548 2717 2714 2715 2716 2718 317589 1 513738 51374 513742 11 34573 34571 34567 34572 34566 34569 34568 3457 34574
2 32338 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 32445
4 56341
5 7
6 4654
7 32434
8 32441
9 32444
10 3244
11 32432
12 32451
13 4655
14 32449
15 32446
16 32442
17 32433
18 32443
19 3245
20 32435
21 32437
22 32438
23 32447
24 32436
25 32448
26 32439
27 5632
28 56322
29 56319
30 56323
31 56321
32 8
33 36914 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34 2515
35 2514
36 9 1 1
37 34535
38 34526
39 34529
40 34537
41 34534
42 34525
43 3453
44 34533
45 34527
46 34539
47 34528
48 34543
49 34531
50 34524
51 34532
52 34538
53 3455
54 34555
55 34554
56 34556
57 34557
58 34553
59 34545
60 34552
61 34544
62 34546
63 34549
64 34558
65 34547
66 34551
67 34548
68 2717 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
69 2714 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70 2715 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
71 2716 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72 2718 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
73 317589 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
75 513738 1
76 51374 1 1
77 513742 1 1
78 11 1 1
79 34573
80 34571
81 34567
82 34572
83 34566
84 34569
85 34568
86 3457
87 34574

View File

@ -0,0 +1,201 @@
Code,Index,Name,产业种类
32338,7,硅原材料,0
32445,8,光刻胶及其配套试剂,0
56341,9,蚀刻液,0
7,10,氟化硅,0
46504,11,显影液,0
32434,12,聚羧酸减水剂,0
32441,13,金属保护液,0
32444,14,深孔镀铜液,0
32440,15,稀释剂,0
32432,16,高纯硼酸(核电),0
32451,17,电子级环氧树脂,0
46505,18,剥离液,0
32449,19,高纯金属有机化合物,0
32446,20,研磨液及配套化学品、研磨垫材料,0
32442,21,光阻去除剂,0
32433,22,多晶硅切削液,0
32443,23,钝化液,0
32450,24,电子级酚醛树脂,0
32435,25,表面活性剂,0
32437,26,磁性载体,0
32438,27,通用湿电子化学品,0
32447,28,电镀化学品及配套材料,0
32436,29,电子级阻燃材料及化学品,0
32448,30,液晶取向剂及配套化学品,0
32439,31,功能湿电子化学品,0
56320,32,磷化铟,0
56322,33,碳化硅,0
56319,34,砷化镓,0
56323,35,氮化镓,0
56321,36,氮化铝,0
8,37,氮化硅,0
36914,38,碳化硅衬底,0
36914,39,氮化镓衬底,0
36914,40,硅衬底,0
36914,41,氮化铝衬底,0
36914,42,深紫外LED衬底,0
36914,43,磷化铟衬底,0
32338,44,单晶硅片,0
32338,45,多晶硅片,0
32338,46,磷化铟单晶和单晶片,0
32338,47,碳化硅单晶和单晶片,0
32338,48,砷化镓单晶片,0
32338,49,氮化镓晶体和单晶片,0
32338,50,硅外延片,0
32338,51,碳化硅外延晶片,0
32338,52,氮化铝外延片,0
32338,53,氮化镓外延片,0
32338,54,磷化铟外延片,0
32338,55,LED外延片,0
2515,56,EDA及IP服务,2
2514,57,MPW服务,2
9,58,芯片设计,3
34535,59,涂胶显影设备,1
34526,60,硅片研磨机,1
34529,61,刻蚀机,1
34537,62,氧化/扩散炉,1
34534,63,晶圆测量设备,1
34525,64,单晶生长炉,1
34530,65,化学机械抛光设备,1
34533,66,光刻机,1
34527,67,晶硅切片机,1
34539,68,薄膜生长设备,1
34528,69,硅片倒角机,1
34543,70,等离子去胶机,1
34531,71,晶圆清洗机,1
34524,72,熔炼矿热炉,1
34532,73,半导体电镀设备,1
34538,74,离子注入设备,1
34550,75,切筋成型机,1
34555,76,探针卡,1
34554,77,测试机,1
34556,78,工艺检测设备,1
34557,79,晶圆检测设备,1
34553,80,探针台,1
34545,81,晶圆划片机,1
34552,82,分选机,1
34544,83,晶圆减薄机,1
34546,84,贴片机,1
34549,85,回流炉,1
34558,86,FT测试设备,1
34547,87,引线键合机,1
34551,88,植球机,1
34548,89,半导体塑封机,1
2717,90,功率半导体器件,1
2714,91,二极管,1
2715,92,晶体管,1
2716,93,晶闸管,1
2718,94,整流桥,1
317589,95,集成电路制造,1
10,96,IC封装,5
513738,97,芯片设计验证,4
513740,98,过程工艺检测,4
513742,99,晶圆测试,4
11,100,芯片测试,4
34573,101,晶圆凸块,0
34571,102,芯片粘结材料,0
34567,103,引线框架,0
34572,104,焊球,0
34566,105,封装基板,0
34569,106,半导体塑封料,0
34568,107,键合线,0
34570,108,底部填充料,0
34574,109,半导体切割材料,0
56249,9,芯片设计,0
56250,9,芯片设计,0
49731,9,芯片设计,0
49692,9,芯片设计,0
49709,9,芯片设计,0
49711,9,芯片设计,0
49714,9,芯片设计,0
34505,9,芯片设计,0
34491,9,芯片设计,0
34497,9,芯片设计,0
49687,9,芯片设计,0
34492,9,芯片设计,0
49724,9,芯片设计,0
49725,9,芯片设计,0
49715,9,芯片设计,0
49732,9,芯片设计,0
49718,9,芯片设计,0
49733,9,芯片设计,0
34518,9,芯片设计,0
49717,9,芯片设计,0
49734,9,芯片设计,0
34513,9,芯片设计,0
49702,9,芯片设计,0
56247,9,芯片设计,0
49726,9,芯片设计,0
49727,9,芯片设计,0
34519,9,芯片设计,0
49704,9,芯片设计,0
49693,9,芯片设计,0
34509,9,芯片设计,0
34517,9,芯片设计,0
34501,9,芯片设计,0
49698,9,芯片设计,0
49713,9,芯片设计,0
49723,9,芯片设计,0
49730,9,芯片设计,0
49701,9,芯片设计,0
49695,9,芯片设计,0
49696,9,芯片设计,0
34496,9,芯片设计,0
34502,9,芯片设计,0
34494,9,芯片设计,0
49691,9,芯片设计,0
49729,9,芯片设计,0
49708,9,芯片设计,0
49694,9,芯片设计,0
49707,9,芯片设计,0
49686,9,芯片设计,0
49699,9,芯片设计,0
49710,9,芯片设计,0
49705,9,芯片设计,0
34499,9,芯片设计,0
49722,9,芯片设计,0
49720,9,芯片设计,0
49721,9,芯片设计,0
49716,9,芯片设计,0
56248,9,芯片设计,0
34493,9,芯片设计,0
49688,9,芯片设计,0
49689,9,芯片设计,0
49690,9,芯片设计,0
34503,9,芯片设计,0
49697,9,芯片设计,0
49700,9,芯片设计,0
34500,9,芯片设计,0
49719,9,芯片设计,0
49728,9,芯片设计,0
49712,9,芯片设计,0
34495,9,芯片设计,0
34498,9,芯片设计,0
431078,9,芯片设计,0
431079,9,芯片设计,0
431080,9,芯片设计,0
431081,9,芯片设计,0
431082,9,芯片设计,0
431083,9,芯片设计,0
431084,9,芯片设计,0
431085,9,芯片设计,0
431086,9,芯片设计,0
431087,9,芯片设计,0
431088,9,芯片设计,0
317620,9,芯片设计,0
317586,9,芯片设计,0
513687,10,半导体封装,0
513689,10,半导体封装,0
513691,10,半导体封装,0
513693,10,半导体封装,0
513695,10,半导体封装,0
513697,10,半导体封装,0
513699,10,半导体封装,0
513701,10,半导体封装,0
513720,10,半导体封装,0
513744,11,半导体测试,0
513746,11,半导体测试,0
513748,11,半导体测试,0
513749,11,半导体测试,0
513751,11,半导体测试,0
1 Code Index Name 产业种类
2 32338 7 硅原材料 0
3 32445 8 光刻胶及其配套试剂 0
4 56341 9 蚀刻液 0
5 7 10 氟化硅 0
6 46504 11 显影液 0
7 32434 12 聚羧酸减水剂 0
8 32441 13 金属保护液 0
9 32444 14 深孔镀铜液 0
10 32440 15 稀释剂 0
11 32432 16 高纯硼酸(核电) 0
12 32451 17 电子级环氧树脂 0
13 46505 18 剥离液 0
14 32449 19 高纯金属有机化合物 0
15 32446 20 研磨液及配套化学品、研磨垫材料 0
16 32442 21 光阻去除剂 0
17 32433 22 多晶硅切削液 0
18 32443 23 钝化液 0
19 32450 24 电子级酚醛树脂 0
20 32435 25 表面活性剂 0
21 32437 26 磁性载体 0
22 32438 27 通用湿电子化学品 0
23 32447 28 电镀化学品及配套材料 0
24 32436 29 电子级阻燃材料及化学品 0
25 32448 30 液晶取向剂及配套化学品 0
26 32439 31 功能湿电子化学品 0
27 56320 32 磷化铟 0
28 56322 33 碳化硅 0
29 56319 34 砷化镓 0
30 56323 35 氮化镓 0
31 56321 36 氮化铝 0
32 8 37 氮化硅 0
33 36914 38 碳化硅衬底 0
34 36914 39 氮化镓衬底 0
35 36914 40 硅衬底 0
36 36914 41 氮化铝衬底 0
37 36914 42 深紫外LED衬底 0
38 36914 43 磷化铟衬底 0
39 32338 44 单晶硅片 0
40 32338 45 多晶硅片 0
41 32338 46 磷化铟单晶和单晶片 0
42 32338 47 碳化硅单晶和单晶片 0
43 32338 48 砷化镓单晶片 0
44 32338 49 氮化镓晶体和单晶片 0
45 32338 50 硅外延片 0
46 32338 51 碳化硅外延晶片 0
47 32338 52 氮化铝外延片 0
48 32338 53 氮化镓外延片 0
49 32338 54 磷化铟外延片 0
50 32338 55 LED外延片 0
51 2515 56 EDA及IP服务 2
52 2514 57 MPW服务 2
53 9 58 芯片设计 3
54 34535 59 涂胶显影设备 1
55 34526 60 硅片研磨机 1
56 34529 61 刻蚀机 1
57 34537 62 氧化/扩散炉 1
58 34534 63 晶圆测量设备 1
59 34525 64 单晶生长炉 1
60 34530 65 化学机械抛光设备 1
61 34533 66 光刻机 1
62 34527 67 晶硅切片机 1
63 34539 68 薄膜生长设备 1
64 34528 69 硅片倒角机 1
65 34543 70 等离子去胶机 1
66 34531 71 晶圆清洗机 1
67 34524 72 熔炼矿热炉 1
68 34532 73 半导体电镀设备 1
69 34538 74 离子注入设备 1
70 34550 75 切筋成型机 1
71 34555 76 探针卡 1
72 34554 77 测试机 1
73 34556 78 工艺检测设备 1
74 34557 79 晶圆检测设备 1
75 34553 80 探针台 1
76 34545 81 晶圆划片机 1
77 34552 82 分选机 1
78 34544 83 晶圆减薄机 1
79 34546 84 贴片机 1
80 34549 85 回流炉 1
81 34558 86 FT测试设备 1
82 34547 87 引线键合机 1
83 34551 88 植球机 1
84 34548 89 半导体塑封机 1
85 2717 90 功率半导体器件 1
86 2714 91 二极管 1
87 2715 92 晶体管 1
88 2716 93 晶闸管 1
89 2718 94 整流桥 1
90 317589 95 集成电路制造 1
91 10 96 IC封装 5
92 513738 97 芯片设计验证 4
93 513740 98 过程工艺检测 4
94 513742 99 晶圆测试 4
95 11 100 芯片测试 4
96 34573 101 晶圆凸块 0
97 34571 102 芯片粘结材料 0
98 34567 103 引线框架 0
99 34572 104 焊球 0
100 34566 105 封装基板 0
101 34569 106 半导体塑封料 0
102 34568 107 键合线 0
103 34570 108 底部填充料 0
104 34574 109 半导体切割材料 0
105 56249 9 芯片设计 0
106 56250 9 芯片设计 0
107 49731 9 芯片设计 0
108 49692 9 芯片设计 0
109 49709 9 芯片设计 0
110 49711 9 芯片设计 0
111 49714 9 芯片设计 0
112 34505 9 芯片设计 0
113 34491 9 芯片设计 0
114 34497 9 芯片设计 0
115 49687 9 芯片设计 0
116 34492 9 芯片设计 0
117 49724 9 芯片设计 0
118 49725 9 芯片设计 0
119 49715 9 芯片设计 0
120 49732 9 芯片设计 0
121 49718 9 芯片设计 0
122 49733 9 芯片设计 0
123 34518 9 芯片设计 0
124 49717 9 芯片设计 0
125 49734 9 芯片设计 0
126 34513 9 芯片设计 0
127 49702 9 芯片设计 0
128 56247 9 芯片设计 0
129 49726 9 芯片设计 0
130 49727 9 芯片设计 0
131 34519 9 芯片设计 0
132 49704 9 芯片设计 0
133 49693 9 芯片设计 0
134 34509 9 芯片设计 0
135 34517 9 芯片设计 0
136 34501 9 芯片设计 0
137 49698 9 芯片设计 0
138 49713 9 芯片设计 0
139 49723 9 芯片设计 0
140 49730 9 芯片设计 0
141 49701 9 芯片设计 0
142 49695 9 芯片设计 0
143 49696 9 芯片设计 0
144 34496 9 芯片设计 0
145 34502 9 芯片设计 0
146 34494 9 芯片设计 0
147 49691 9 芯片设计 0
148 49729 9 芯片设计 0
149 49708 9 芯片设计 0
150 49694 9 芯片设计 0
151 49707 9 芯片设计 0
152 49686 9 芯片设计 0
153 49699 9 芯片设计 0
154 49710 9 芯片设计 0
155 49705 9 芯片设计 0
156 34499 9 芯片设计 0
157 49722 9 芯片设计 0
158 49720 9 芯片设计 0
159 49721 9 芯片设计 0
160 49716 9 芯片设计 0
161 56248 9 芯片设计 0
162 34493 9 芯片设计 0
163 49688 9 芯片设计 0
164 49689 9 芯片设计 0
165 49690 9 芯片设计 0
166 34503 9 芯片设计 0
167 49697 9 芯片设计 0
168 49700 9 芯片设计 0
169 34500 9 芯片设计 0
170 49719 9 芯片设计 0
171 49728 9 芯片设计 0
172 49712 9 芯片设计 0
173 34495 9 芯片设计 0
174 34498 9 芯片设计 0
175 431078 9 芯片设计 0
176 431079 9 芯片设计 0
177 431080 9 芯片设计 0
178 431081 9 芯片设计 0
179 431082 9 芯片设计 0
180 431083 9 芯片设计 0
181 431084 9 芯片设计 0
182 431085 9 芯片设计 0
183 431086 9 芯片设计 0
184 431087 9 芯片设计 0
185 431088 9 芯片设计 0
186 317620 9 芯片设计 0
187 317586 9 芯片设计 0
188 513687 10 半导体封装 0
189 513689 10 半导体封装 0
190 513691 10 半导体封装 0
191 513693 10 半导体封装 0
192 513695 10 半导体封装 0
193 513697 10 半导体封装 0
194 513699 10 半导体封装 0
195 513701 10 半导体封装 0
196 513720 10 半导体封装 0
197 513744 11 半导体测试 0
198 513746 11 半导体测试 0
199 513748 11 半导体测试 0
200 513749 11 半导体测试 0
201 513751 11 半导体测试 0

View File

@ -0,0 +1,241 @@
,产业id,消耗材料id
0,36914,32338
1,36914,32338
2,36914,32338
3,36914,32440
4,36914,46505
5,36914,32446
6,36914,32433
7,36914,32443
8,36914,32435
9,36914,32439
10,36914,56321
11,36914,32440
12,36914,46505
13,36914,32446
14,36914,32433
15,36914,32443
16,36914,32435
17,36914,32439
18,36914,32338
19,32338,32338
20,32338,32440
21,32338,46505
22,32338,32446
23,32338,32433
24,32338,32443
25,32338,32435
26,32338,32438
27,32338,32338
28,32338,32440
29,32338,46505
30,32338,32446
31,32338,32433
32,32338,32443
33,32338,32435
34,32338,32438
35,32338,32440
36,32338,46505
37,32338,32446
38,32338,32433
39,32338,32443
40,32338,32435
41,32338,32438
42,32338,56320
43,32338,32440
44,32338,46505
45,32338,32446
46,32338,32433
47,32338,32443
48,32338,32435
49,32338,32438
50,32338,56322
51,32338,32440
52,32338,46505
53,32338,32446
54,32338,32433
55,32338,32443
56,32338,32435
57,32338,32438
58,32338,56319
59,32338,32440
60,32338,46505
61,32338,32446
62,32338,32433
63,32338,32443
64,32338,32435
65,32338,32438
66,32338,56323
67,32338,32449
68,32338,32446
69,32338,32433
70,32338,32443
71,32338,32435
72,32338,32447
73,32338,32436
74,32338,32438
75,32338,36914
76,32338,32449
77,32338,32446
78,32338,32433
79,32338,32443
80,32338,32435
81,32338,32447
82,32338,32436
83,32338,32438
84,32338,36914
85,32338,32449
86,32338,32446
87,32338,32433
88,32338,32443
89,32338,32435
90,32338,32447
91,32338,32436
92,32338,32438
93,32338,36914
94,32338,32449
95,32338,32446
96,32338,32433
97,32338,32443
98,32338,32435
99,32338,32447
100,32338,32436
101,32338,32438
102,32338,36914
103,32338,32449
104,32338,32446
105,32338,32433
106,32338,32443
107,32338,32435
108,32338,32447
109,32338,32436
110,32338,32438
111,32338,36914
112,32338,32449
113,32338,32446
114,32338,32433
115,32338,32443
116,32338,32435
117,32338,32447
118,32338,32436
119,32338,32438
120,32338,36914
121,2717,32338
122,2717,32445
123,2717,56341
124,2717,7
125,2717,46504
126,2717,32451
127,2717,32449
128,2717,32446
129,2717,32442
130,2717,32443
131,2717,32450
132,2717,32435
133,2717,32447
134,2717,32439
135,2717,32338
136,2717,32338
137,2714,32445
138,2714,56341
139,2714,7
140,2714,46504
141,2714,32451
142,2714,46505
143,2714,32449
144,2714,32446
145,2714,32443
146,2714,32450
147,2714,32447
148,2714,32439
149,2715,32445
150,2715,56341
151,2715,7
152,2715,46504
153,2715,32451
154,2715,46505
155,2715,32449
156,2715,32446
157,2715,32443
158,2715,32450
159,2715,32447
160,2715,32439
161,2716,32445
162,2716,56341
163,2716,7
164,2716,46504
165,2716,32451
166,2716,46505
167,2716,32449
168,2716,32446
169,2716,32443
170,2716,32450
171,2716,32447
172,2716,32439
173,2718,32445
174,2718,56341
175,2718,7
176,2718,46504
177,2718,32451
178,2718,46505
179,2718,32449
180,2718,32446
181,2718,32443
182,2718,32450
183,2718,32447
184,2718,32439
185,317589,32445
186,317589,56341
187,317589,7
188,317589,46504
189,317589,32434
190,317589,32441
191,317589,32444
192,317589,32440
193,317589,32432
194,317589,32451
195,317589,46505
196,317589,32449
197,317589,32446
198,317589,32442
199,317589,32433
200,317589,32443
201,317589,32450
202,317589,32435
203,317589,32437
204,317589,32438
205,317589,32447
206,317589,32436
207,317589,32448
208,317589,32439
209,317589,8
210,317589,32338
211,317589,32338
212,317589,32338
213,317589,32338
214,317589,32338
215,317589,32338
216,317589,32338
217,317589,32338
218,317589,32338
219,317589,32338
220,317589,32338
221,317589,32338
222,317589,2717
223,317589,2714
224,317589,2715
225,317589,2716
226,317589,2718
227,10,317589
228,10,34573
229,10,34571
230,10,34567
231,10,34572
232,10,34566
233,10,34569
234,10,34568
235,10,34570
236,10,34574
237,513740,317589
238,513742,317589
239,11,317589
1 产业id 消耗材料id
2 0 36914 32338
3 1 36914 32338
4 2 36914 32338
5 3 36914 32440
6 4 36914 46505
7 5 36914 32446
8 6 36914 32433
9 7 36914 32443
10 8 36914 32435
11 9 36914 32439
12 10 36914 56321
13 11 36914 32440
14 12 36914 46505
15 13 36914 32446
16 14 36914 32433
17 15 36914 32443
18 16 36914 32435
19 17 36914 32439
20 18 36914 32338
21 19 32338 32338
22 20 32338 32440
23 21 32338 46505
24 22 32338 32446
25 23 32338 32433
26 24 32338 32443
27 25 32338 32435
28 26 32338 32438
29 27 32338 32338
30 28 32338 32440
31 29 32338 46505
32 30 32338 32446
33 31 32338 32433
34 32 32338 32443
35 33 32338 32435
36 34 32338 32438
37 35 32338 32440
38 36 32338 46505
39 37 32338 32446
40 38 32338 32433
41 39 32338 32443
42 40 32338 32435
43 41 32338 32438
44 42 32338 56320
45 43 32338 32440
46 44 32338 46505
47 45 32338 32446
48 46 32338 32433
49 47 32338 32443
50 48 32338 32435
51 49 32338 32438
52 50 32338 56322
53 51 32338 32440
54 52 32338 46505
55 53 32338 32446
56 54 32338 32433
57 55 32338 32443
58 56 32338 32435
59 57 32338 32438
60 58 32338 56319
61 59 32338 32440
62 60 32338 46505
63 61 32338 32446
64 62 32338 32433
65 63 32338 32443
66 64 32338 32435
67 65 32338 32438
68 66 32338 56323
69 67 32338 32449
70 68 32338 32446
71 69 32338 32433
72 70 32338 32443
73 71 32338 32435
74 72 32338 32447
75 73 32338 32436
76 74 32338 32438
77 75 32338 36914
78 76 32338 32449
79 77 32338 32446
80 78 32338 32433
81 79 32338 32443
82 80 32338 32435
83 81 32338 32447
84 82 32338 32436
85 83 32338 32438
86 84 32338 36914
87 85 32338 32449
88 86 32338 32446
89 87 32338 32433
90 88 32338 32443
91 89 32338 32435
92 90 32338 32447
93 91 32338 32436
94 92 32338 32438
95 93 32338 36914
96 94 32338 32449
97 95 32338 32446
98 96 32338 32433
99 97 32338 32443
100 98 32338 32435
101 99 32338 32447
102 100 32338 32436
103 101 32338 32438
104 102 32338 36914
105 103 32338 32449
106 104 32338 32446
107 105 32338 32433
108 106 32338 32443
109 107 32338 32435
110 108 32338 32447
111 109 32338 32436
112 110 32338 32438
113 111 32338 36914
114 112 32338 32449
115 113 32338 32446
116 114 32338 32433
117 115 32338 32443
118 116 32338 32435
119 117 32338 32447
120 118 32338 32436
121 119 32338 32438
122 120 32338 36914
123 121 2717 32338
124 122 2717 32445
125 123 2717 56341
126 124 2717 7
127 125 2717 46504
128 126 2717 32451
129 127 2717 32449
130 128 2717 32446
131 129 2717 32442
132 130 2717 32443
133 131 2717 32450
134 132 2717 32435
135 133 2717 32447
136 134 2717 32439
137 135 2717 32338
138 136 2717 32338
139 137 2714 32445
140 138 2714 56341
141 139 2714 7
142 140 2714 46504
143 141 2714 32451
144 142 2714 46505
145 143 2714 32449
146 144 2714 32446
147 145 2714 32443
148 146 2714 32450
149 147 2714 32447
150 148 2714 32439
151 149 2715 32445
152 150 2715 56341
153 151 2715 7
154 152 2715 46504
155 153 2715 32451
156 154 2715 46505
157 155 2715 32449
158 156 2715 32446
159 157 2715 32443
160 158 2715 32450
161 159 2715 32447
162 160 2715 32439
163 161 2716 32445
164 162 2716 56341
165 163 2716 7
166 164 2716 46504
167 165 2716 32451
168 166 2716 46505
169 167 2716 32449
170 168 2716 32446
171 169 2716 32443
172 170 2716 32450
173 171 2716 32447
174 172 2716 32439
175 173 2718 32445
176 174 2718 56341
177 175 2718 7
178 176 2718 46504
179 177 2718 32451
180 178 2718 46505
181 179 2718 32449
182 180 2718 32446
183 181 2718 32443
184 182 2718 32450
185 183 2718 32447
186 184 2718 32439
187 185 317589 32445
188 186 317589 56341
189 187 317589 7
190 188 317589 46504
191 189 317589 32434
192 190 317589 32441
193 191 317589 32444
194 192 317589 32440
195 193 317589 32432
196 194 317589 32451
197 195 317589 46505
198 196 317589 32449
199 197 317589 32446
200 198 317589 32442
201 199 317589 32433
202 200 317589 32443
203 201 317589 32450
204 202 317589 32435
205 203 317589 32437
206 204 317589 32438
207 205 317589 32447
208 206 317589 32436
209 207 317589 32448
210 208 317589 32439
211 209 317589 8
212 210 317589 32338
213 211 317589 32338
214 212 317589 32338
215 213 317589 32338
216 214 317589 32338
217 215 317589 32338
218 216 317589 32338
219 217 317589 32338
220 218 317589 32338
221 219 317589 32338
222 220 317589 32338
223 221 317589 32338
224 222 317589 2717
225 223 317589 2714
226 224 317589 2715
227 225 317589 2716
228 226 317589 2718
229 227 10 317589
230 228 10 34573
231 229 10 34571
232 230 10 34567
233 231 10 34572
234 232 10 34566
235 233 10 34569
236 234 10 34568
237 235 10 34570
238 236 10 34574
239 237 513740 317589
240 238 513742 317589
241 239 11 317589

View File

@ -0,0 +1,96 @@
产品id,种类
7,材料
8,材料
9,材料
10,材料
11,材料
12,材料
13,材料
14,材料
15,材料
16,材料
17,材料
18,材料
19,材料
20,材料
21,材料
22,材料
23,材料
24,材料
25,材料
26,材料
27,材料
28,材料
29,材料
30,材料
31,材料
32,材料
33,材料
34,材料
35,材料
36,材料
37,材料
38,材料
39,材料
40,材料
41,材料
42,材料
43,材料
44,材料
45,材料
46,材料
47,材料
48,材料
49,材料
50,材料
51,材料
52,材料
53,材料
54,材料
55,材料
90,材料
91,材料
92,材料
93,材料
94,材料
95,材料
101,材料
102,材料
103,材料
104,材料
105,材料
106,材料
107,材料
108,材料
109,材料
59,设备
60,设备
61,设备
62,设备
63,设备
64,设备
65,设备
66,设备
67,设备
68,设备
69,设备
70,设备
71,设备
72,设备
73,设备
74,设备
75,设备
76,设备
77,设备
78,设备
79,设备
80,设备
81,设备
82,设备
83,设备
84,设备
85,设备
86,设备
87,设备
88,设备
89,设备
1 产品id 种类
2 7 材料
3 8 材料
4 9 材料
5 10 材料
6 11 材料
7 12 材料
8 13 材料
9 14 材料
10 15 材料
11 16 材料
12 17 材料
13 18 材料
14 19 材料
15 20 材料
16 21 材料
17 22 材料
18 23 材料
19 24 材料
20 25 材料
21 26 材料
22 27 材料
23 28 材料
24 29 材料
25 30 材料
26 31 材料
27 32 材料
28 33 材料
29 34 材料
30 35 材料
31 36 材料
32 37 材料
33 38 材料
34 39 材料
35 40 材料
36 41 材料
37 42 材料
38 43 材料
39 44 材料
40 45 材料
41 46 材料
42 47 材料
43 48 材料
44 49 材料
45 50 材料
46 51 材料
47 52 材料
48 53 材料
49 54 材料
50 55 材料
51 90 材料
52 91 材料
53 92 材料
54 93 材料
55 94 材料
56 95 材料
57 101 材料
58 102 材料
59 103 材料
60 104 材料
61 105 材料
62 106 材料
63 107 材料
64 108 材料
65 109 材料
66 59 设备
67 60 设备
68 61 设备
69 62 设备
70 63 设备
71 64 设备
72 65 设备
73 66 设备
74 67 设备
75 68 设备
76 69 设备
77 70 设备
78 71 设备
79 72 设备
80 73 设备
81 74 设备
82 75 设备
83 76 设备
84 77 设备
85 78 设备
86 79 设备
87 80 设备
88 81 设备
89 82 设备
90 83 设备
91 84 设备
92 85 设备
93 86 设备
94 87 设备
95 88 设备
96 89 设备

View File

@ -0,0 +1,382 @@
,产业id,制造产品id
0,2714,8
1,2714,9
2,2714,10
3,2714,11
4,2714,17
5,2714,18
6,2714,19
7,2714,20
8,2714,23
9,2714,24
10,2714,28
11,2714,31
12,2714,58
13,2714,59
14,2714,61
15,2714,62
16,2714,65
17,2714,66
18,2714,70
19,2715,8
20,2715,9
21,2715,10
22,2715,11
23,2715,17
24,2715,18
25,2715,19
26,2715,20
27,2715,23
28,2715,24
29,2715,28
30,2715,31
31,2715,58
32,2715,59
33,2715,61
34,2715,62
35,2715,65
36,2715,66
37,2715,70
38,2716,8
39,2716,9
40,2716,10
41,2716,11
42,2716,17
43,2716,18
44,2716,19
45,2716,20
46,2716,23
47,2716,24
48,2716,28
49,2716,31
50,2716,58
51,2716,59
52,2716,61
53,2716,62
54,2716,65
55,2716,66
56,2716,70
57,2717,2
58,2717,8
59,2717,9
60,2717,10
61,2717,11
62,2717,17
63,2717,19
64,2717,20
65,2717,21
66,2717,23
67,2717,24
68,2717,25
69,2717,28
70,2717,31
71,2717,44
72,2717,45
73,2717,58
74,2717,59
75,2717,60
76,2717,61
77,2717,62
78,2717,65
79,2717,66
80,2717,67
81,2717,68
82,2718,8
83,2718,9
84,2718,10
85,2718,11
86,2718,17
87,2718,18
88,2718,19
89,2718,20
90,2718,23
91,2718,24
92,2718,28
93,2718,31
94,2718,58
95,2718,59
96,2718,61
97,2718,62
98,2718,65
99,2718,66
100,2718,70
101,32338,2
102,32338,15
103,32338,18
104,32338,20
105,32338,22
106,32338,23
107,32338,25
108,32338,27
109,32338,64
110,32338,67
111,32338,60
112,32338,65
113,32338,71
114,32338,2
115,32338,15
116,32338,18
117,32338,20
118,32338,22
119,32338,23
120,32338,25
121,32338,27
122,32338,64
123,32338,67
124,32338,60
125,32338,65
126,32338,71
127,32338,15
128,32338,18
129,32338,20
130,32338,22
131,32338,23
132,32338,25
133,32338,27
134,32338,32
135,32338,64
136,32338,67
137,32338,60
138,32338,65
139,32338,71
140,32338,15
141,32338,18
142,32338,20
143,32338,22
144,32338,23
145,32338,25
146,32338,27
147,32338,33
148,32338,64
149,32338,67
150,32338,60
151,32338,65
152,32338,71
153,32338,15
154,32338,18
155,32338,20
156,32338,22
157,32338,23
158,32338,25
159,32338,27
160,32338,34
161,32338,64
162,32338,67
163,32338,60
164,32338,65
165,32338,71
166,32338,15
167,32338,18
168,32338,20
169,32338,22
170,32338,23
171,32338,25
172,32338,27
173,32338,35
174,32338,64
175,32338,67
176,32338,60
177,32338,65
178,32338,71
179,32338,19
180,32338,20
181,32338,22
182,32338,23
183,32338,25
184,32338,28
185,32338,29
186,32338,27
187,32338,40
188,32338,60
189,32338,62
190,32338,63
191,32338,64
192,32338,65
193,32338,67
194,32338,68
195,32338,69
196,32338,71
197,32338,72
198,32338,19
199,32338,20
200,32338,22
201,32338,23
202,32338,25
203,32338,28
204,32338,29
205,32338,27
206,32338,38
207,32338,60
208,32338,62
209,32338,63
210,32338,64
211,32338,65
212,32338,67
213,32338,68
214,32338,69
215,32338,71
216,32338,72
217,32338,19
218,32338,20
219,32338,22
220,32338,23
221,32338,25
222,32338,28
223,32338,29
224,32338,27
225,32338,41
226,32338,60
227,32338,62
228,32338,63
229,32338,64
230,32338,65
231,32338,67
232,32338,68
233,32338,69
234,32338,71
235,32338,72
236,32338,19
237,32338,20
238,32338,22
239,32338,23
240,32338,25
241,32338,28
242,32338,29
243,32338,27
244,32338,39
245,32338,60
246,32338,62
247,32338,63
248,32338,64
249,32338,65
250,32338,67
251,32338,68
252,32338,69
253,32338,71
254,32338,72
255,32338,19
256,32338,20
257,32338,22
258,32338,23
259,32338,25
260,32338,28
261,32338,29
262,32338,27
263,32338,43
264,32338,60
265,32338,62
266,32338,63
267,32338,64
268,32338,65
269,32338,67
270,32338,68
271,32338,69
272,32338,71
273,32338,72
274,32338,19
275,32338,20
276,32338,22
277,32338,23
278,32338,25
279,32338,28
280,32338,29
281,32338,27
282,32338,42
283,32338,60
284,32338,62
285,32338,63
286,32338,64
287,32338,65
288,32338,67
289,32338,68
290,32338,69
291,32338,71
292,32338,72
293,36914,47
294,36914,49
295,36914,44
296,36914,15
297,36914,18
298,36914,20
299,36914,22
300,36914,23
301,36914,25
302,36914,31
303,36914,36
304,36914,64
305,36914,67
306,36914,60
307,36914,65
308,36914,71
309,36914,15
310,36914,18
311,36914,20
312,36914,22
313,36914,23
314,36914,25
315,36914,31
316,36914,64
317,36914,67
318,36914,60
319,36914,65
320,36914,71
321,36914,46
322,317589,8
323,317589,9
324,317589,10
325,317589,11
326,317589,12
327,317589,13
328,317589,14
329,317589,15
330,317589,16
331,317589,17
332,317589,18
333,317589,19
334,317589,20
335,317589,21
336,317589,22
337,317589,23
338,317589,24
339,317589,25
340,317589,26
341,317589,27
342,317589,28
343,317589,29
344,317589,30
345,317589,31
346,317589,37
347,317589,44
348,317589,45
349,317589,46
350,317589,47
351,317589,48
352,317589,49
353,317589,50
354,317589,51
355,317589,52
356,317589,53
357,317589,54
358,317589,55
359,317589,58
360,317589,59
361,317589,60
362,317589,61
363,317589,62
364,317589,63
365,317589,64
366,317589,65
367,317589,66
368,317589,67
369,317589,68
370,317589,69
371,317589,70
372,317589,71
373,317589,72
374,317589,73
375,317589,74
376,317589,90
377,317589,91
378,317589,92
379,317589,93
380,317589,94
1 产业id 制造产品id
2 0 2714 8
3 1 2714 9
4 2 2714 10
5 3 2714 11
6 4 2714 17
7 5 2714 18
8 6 2714 19
9 7 2714 20
10 8 2714 23
11 9 2714 24
12 10 2714 28
13 11 2714 31
14 12 2714 58
15 13 2714 59
16 14 2714 61
17 15 2714 62
18 16 2714 65
19 17 2714 66
20 18 2714 70
21 19 2715 8
22 20 2715 9
23 21 2715 10
24 22 2715 11
25 23 2715 17
26 24 2715 18
27 25 2715 19
28 26 2715 20
29 27 2715 23
30 28 2715 24
31 29 2715 28
32 30 2715 31
33 31 2715 58
34 32 2715 59
35 33 2715 61
36 34 2715 62
37 35 2715 65
38 36 2715 66
39 37 2715 70
40 38 2716 8
41 39 2716 9
42 40 2716 10
43 41 2716 11
44 42 2716 17
45 43 2716 18
46 44 2716 19
47 45 2716 20
48 46 2716 23
49 47 2716 24
50 48 2716 28
51 49 2716 31
52 50 2716 58
53 51 2716 59
54 52 2716 61
55 53 2716 62
56 54 2716 65
57 55 2716 66
58 56 2716 70
59 57 2717 2
60 58 2717 8
61 59 2717 9
62 60 2717 10
63 61 2717 11
64 62 2717 17
65 63 2717 19
66 64 2717 20
67 65 2717 21
68 66 2717 23
69 67 2717 24
70 68 2717 25
71 69 2717 28
72 70 2717 31
73 71 2717 44
74 72 2717 45
75 73 2717 58
76 74 2717 59
77 75 2717 60
78 76 2717 61
79 77 2717 62
80 78 2717 65
81 79 2717 66
82 80 2717 67
83 81 2717 68
84 82 2718 8
85 83 2718 9
86 84 2718 10
87 85 2718 11
88 86 2718 17
89 87 2718 18
90 88 2718 19
91 89 2718 20
92 90 2718 23
93 91 2718 24
94 92 2718 28
95 93 2718 31
96 94 2718 58
97 95 2718 59
98 96 2718 61
99 97 2718 62
100 98 2718 65
101 99 2718 66
102 100 2718 70
103 101 32338 2
104 102 32338 15
105 103 32338 18
106 104 32338 20
107 105 32338 22
108 106 32338 23
109 107 32338 25
110 108 32338 27
111 109 32338 64
112 110 32338 67
113 111 32338 60
114 112 32338 65
115 113 32338 71
116 114 32338 2
117 115 32338 15
118 116 32338 18
119 117 32338 20
120 118 32338 22
121 119 32338 23
122 120 32338 25
123 121 32338 27
124 122 32338 64
125 123 32338 67
126 124 32338 60
127 125 32338 65
128 126 32338 71
129 127 32338 15
130 128 32338 18
131 129 32338 20
132 130 32338 22
133 131 32338 23
134 132 32338 25
135 133 32338 27
136 134 32338 32
137 135 32338 64
138 136 32338 67
139 137 32338 60
140 138 32338 65
141 139 32338 71
142 140 32338 15
143 141 32338 18
144 142 32338 20
145 143 32338 22
146 144 32338 23
147 145 32338 25
148 146 32338 27
149 147 32338 33
150 148 32338 64
151 149 32338 67
152 150 32338 60
153 151 32338 65
154 152 32338 71
155 153 32338 15
156 154 32338 18
157 155 32338 20
158 156 32338 22
159 157 32338 23
160 158 32338 25
161 159 32338 27
162 160 32338 34
163 161 32338 64
164 162 32338 67
165 163 32338 60
166 164 32338 65
167 165 32338 71
168 166 32338 15
169 167 32338 18
170 168 32338 20
171 169 32338 22
172 170 32338 23
173 171 32338 25
174 172 32338 27
175 173 32338 35
176 174 32338 64
177 175 32338 67
178 176 32338 60
179 177 32338 65
180 178 32338 71
181 179 32338 19
182 180 32338 20
183 181 32338 22
184 182 32338 23
185 183 32338 25
186 184 32338 28
187 185 32338 29
188 186 32338 27
189 187 32338 40
190 188 32338 60
191 189 32338 62
192 190 32338 63
193 191 32338 64
194 192 32338 65
195 193 32338 67
196 194 32338 68
197 195 32338 69
198 196 32338 71
199 197 32338 72
200 198 32338 19
201 199 32338 20
202 200 32338 22
203 201 32338 23
204 202 32338 25
205 203 32338 28
206 204 32338 29
207 205 32338 27
208 206 32338 38
209 207 32338 60
210 208 32338 62
211 209 32338 63
212 210 32338 64
213 211 32338 65
214 212 32338 67
215 213 32338 68
216 214 32338 69
217 215 32338 71
218 216 32338 72
219 217 32338 19
220 218 32338 20
221 219 32338 22
222 220 32338 23
223 221 32338 25
224 222 32338 28
225 223 32338 29
226 224 32338 27
227 225 32338 41
228 226 32338 60
229 227 32338 62
230 228 32338 63
231 229 32338 64
232 230 32338 65
233 231 32338 67
234 232 32338 68
235 233 32338 69
236 234 32338 71
237 235 32338 72
238 236 32338 19
239 237 32338 20
240 238 32338 22
241 239 32338 23
242 240 32338 25
243 241 32338 28
244 242 32338 29
245 243 32338 27
246 244 32338 39
247 245 32338 60
248 246 32338 62
249 247 32338 63
250 248 32338 64
251 249 32338 65
252 250 32338 67
253 251 32338 68
254 252 32338 69
255 253 32338 71
256 254 32338 72
257 255 32338 19
258 256 32338 20
259 257 32338 22
260 258 32338 23
261 259 32338 25
262 260 32338 28
263 261 32338 29
264 262 32338 27
265 263 32338 43
266 264 32338 60
267 265 32338 62
268 266 32338 63
269 267 32338 64
270 268 32338 65
271 269 32338 67
272 270 32338 68
273 271 32338 69
274 272 32338 71
275 273 32338 72
276 274 32338 19
277 275 32338 20
278 276 32338 22
279 277 32338 23
280 278 32338 25
281 279 32338 28
282 280 32338 29
283 281 32338 27
284 282 32338 42
285 283 32338 60
286 284 32338 62
287 285 32338 63
288 286 32338 64
289 287 32338 65
290 288 32338 67
291 289 32338 68
292 290 32338 69
293 291 32338 71
294 292 32338 72
295 293 36914 47
296 294 36914 49
297 295 36914 44
298 296 36914 15
299 297 36914 18
300 298 36914 20
301 299 36914 22
302 300 36914 23
303 301 36914 25
304 302 36914 31
305 303 36914 36
306 304 36914 64
307 305 36914 67
308 306 36914 60
309 307 36914 65
310 308 36914 71
311 309 36914 15
312 310 36914 18
313 311 36914 20
314 312 36914 22
315 313 36914 23
316 314 36914 25
317 315 36914 31
318 316 36914 64
319 317 36914 67
320 318 36914 60
321 319 36914 65
322 320 36914 71
323 321 36914 46
324 322 317589 8
325 323 317589 9
326 324 317589 10
327 325 317589 11
328 326 317589 12
329 327 317589 13
330 328 317589 14
331 329 317589 15
332 330 317589 16
333 331 317589 17
334 332 317589 18
335 333 317589 19
336 334 317589 20
337 335 317589 21
338 336 317589 22
339 337 317589 23
340 338 317589 24
341 339 317589 25
342 340 317589 26
343 341 317589 27
344 342 317589 28
345 343 317589 29
346 344 317589 30
347 345 317589 31
348 346 317589 37
349 347 317589 44
350 348 317589 45
351 349 317589 46
352 350 317589 47
353 351 317589 48
354 352 317589 49
355 353 317589 50
356 354 317589 51
357 355 317589 52
358 356 317589 53
359 357 317589 54
360 358 317589 55
361 359 317589 58
362 360 317589 59
363 361 317589 60
364 362 317589 61
365 363 317589 62
366 364 317589 63
367 365 317589 64
368 366 317589 65
369 367 317589 66
370 368 317589 67
371 369 317589 68
372 370 317589 69
373 371 317589 70
374 372 317589 71
375 373 317589 72
376 374 317589 73
377 375 317589 74
378 376 317589 90
379 377 317589 91
380 378 317589 92
381 379 317589 93
382 380 317589 94

View File

@ -0,0 +1,418 @@
ID,UPID
38,47
39,49
40,44
41,15
41,18
41,20
41,22
41,23
41,25
41,31
41,36
41,60
41,64
41,65
41,67
41,71
42,15
42,18
42,20
42,22
42,23
42,25
42,31
42,60
42,64
42,65
42,67
42,71
43,46
44,15
44,18
44,7
44,20
44,22
44,23
44,25
44,27
44,60
44,64
44,65
44,67
44,71
45,15
45,18
45,7
45,20
45,22
45,23
45,25
45,27
45,60
45,64
45,65
45,67
45,71
46,15
46,18
46,20
46,22
46,23
46,25
46,27
46,32
46,60
46,64
46,65
46,67
46,71
47,15
47,18
47,20
47,22
47,23
47,25
47,27
47,33
47,60
47,64
47,65
47,67
47,71
48,15
48,18
48,20
48,22
48,23
48,25
48,27
48,34
48,60
48,64
48,65
48,67
48,71
49,15
49,18
49,20
49,22
49,23
49,25
49,27
49,35
49,60
49,64
49,65
49,67
49,71
50,19
50,20
50,22
50,23
50,25
50,27
50,28
50,29
50,40
50,60
50,62
50,63
50,64
50,65
50,67
50,68
50,69
50,71
50,72
51,19
51,20
51,22
51,23
51,25
51,27
51,28
51,29
51,38
51,60
51,62
51,63
51,64
51,65
51,67
51,68
51,69
51,71
51,72
52,19
52,20
52,22
52,23
52,25
52,27
52,28
52,29
52,41
52,60
52,62
52,63
52,64
52,65
52,67
52,68
52,69
52,71
52,72
53,19
53,20
53,22
53,23
53,25
53,27
53,28
53,29
53,39
53,60
53,62
53,63
53,64
53,65
53,67
53,68
53,69
53,71
53,72
54,19
54,20
54,22
54,23
54,25
54,27
54,28
54,29
54,43
54,60
54,62
54,63
54,64
54,65
54,67
54,68
54,69
54,71
54,72
55,19
55,20
55,22
55,23
55,25
55,27
55,28
55,29
55,42
55,60
55,62
55,63
55,64
55,65
55,67
55,68
55,69
55,71
55,72
58,56
58,57
90,10
90,11
90,17
90,19
90,7
90,20
90,21
90,23
90,24
90,25
90,28
90,31
90,44
90,45
90,58
90,59
90,60
90,61
90,62
90,65
90,66
90,67
90,68
90,8
90,9
91,10
91,11
91,17
91,18
91,19
91,20
91,23
91,24
91,28
91,31
91,58
91,59
91,61
91,62
91,65
91,66
91,70
91,8
91,9
92,10
92,11
92,17
92,18
92,19
92,20
92,23
92,24
92,28
92,31
92,58
92,59
92,61
92,62
92,65
92,66
92,70
92,8
92,9
93,10
93,11
93,17
93,18
93,19
93,20
93,23
93,24
93,28
93,31
93,58
93,59
93,61
93,62
93,65
93,66
93,70
93,8
93,9
94,10
94,11
94,17
94,18
94,19
94,20
94,23
94,24
94,28
94,31
94,58
94,59
94,61
94,62
94,65
94,66
94,70
94,8
94,9
95,10
95,11
95,12
95,13
95,14
95,15
95,16
95,17
95,18
95,19
95,20
95,21
95,22
95,23
95,24
95,25
95,26
95,27
95,28
95,29
95,30
95,31
95,37
95,44
95,45
95,46
95,47
95,48
95,49
95,50
95,51
95,52
95,53
95,54
95,55
95,58
95,59
95,60
95,61
95,62
95,63
95,64
95,65
95,66
95,67
95,68
95,69
95,70
95,71
95,72
95,73
95,74
95,8
95,9
95,90
95,91
95,92
95,93
95,94
95,97
96,100
96,101
96,102
96,103
96,104
96,105
96,106
96,107
96,108
96,109
96,75
96,76
96,80
96,81
96,82
96,83
96,84
96,85
96,86
96,87
96,88
96,89
96,95
96,97
96,98
96,99
97,58
98,78
98,95
99,79
99,95
100,77
100,95
1 ID UPID
2 38 47
3 39 49
4 40 44
5 41 15
6 41 18
7 41 20
8 41 22
9 41 23
10 41 25
11 41 31
12 41 36
13 41 60
14 41 64
15 41 65
16 41 67
17 41 71
18 42 15
19 42 18
20 42 20
21 42 22
22 42 23
23 42 25
24 42 31
25 42 60
26 42 64
27 42 65
28 42 67
29 42 71
30 43 46
31 44 15
32 44 18
33 44 7
34 44 20
35 44 22
36 44 23
37 44 25
38 44 27
39 44 60
40 44 64
41 44 65
42 44 67
43 44 71
44 45 15
45 45 18
46 45 7
47 45 20
48 45 22
49 45 23
50 45 25
51 45 27
52 45 60
53 45 64
54 45 65
55 45 67
56 45 71
57 46 15
58 46 18
59 46 20
60 46 22
61 46 23
62 46 25
63 46 27
64 46 32
65 46 60
66 46 64
67 46 65
68 46 67
69 46 71
70 47 15
71 47 18
72 47 20
73 47 22
74 47 23
75 47 25
76 47 27
77 47 33
78 47 60
79 47 64
80 47 65
81 47 67
82 47 71
83 48 15
84 48 18
85 48 20
86 48 22
87 48 23
88 48 25
89 48 27
90 48 34
91 48 60
92 48 64
93 48 65
94 48 67
95 48 71
96 49 15
97 49 18
98 49 20
99 49 22
100 49 23
101 49 25
102 49 27
103 49 35
104 49 60
105 49 64
106 49 65
107 49 67
108 49 71
109 50 19
110 50 20
111 50 22
112 50 23
113 50 25
114 50 27
115 50 28
116 50 29
117 50 40
118 50 60
119 50 62
120 50 63
121 50 64
122 50 65
123 50 67
124 50 68
125 50 69
126 50 71
127 50 72
128 51 19
129 51 20
130 51 22
131 51 23
132 51 25
133 51 27
134 51 28
135 51 29
136 51 38
137 51 60
138 51 62
139 51 63
140 51 64
141 51 65
142 51 67
143 51 68
144 51 69
145 51 71
146 51 72
147 52 19
148 52 20
149 52 22
150 52 23
151 52 25
152 52 27
153 52 28
154 52 29
155 52 41
156 52 60
157 52 62
158 52 63
159 52 64
160 52 65
161 52 67
162 52 68
163 52 69
164 52 71
165 52 72
166 53 19
167 53 20
168 53 22
169 53 23
170 53 25
171 53 27
172 53 28
173 53 29
174 53 39
175 53 60
176 53 62
177 53 63
178 53 64
179 53 65
180 53 67
181 53 68
182 53 69
183 53 71
184 53 72
185 54 19
186 54 20
187 54 22
188 54 23
189 54 25
190 54 27
191 54 28
192 54 29
193 54 43
194 54 60
195 54 62
196 54 63
197 54 64
198 54 65
199 54 67
200 54 68
201 54 69
202 54 71
203 54 72
204 55 19
205 55 20
206 55 22
207 55 23
208 55 25
209 55 27
210 55 28
211 55 29
212 55 42
213 55 60
214 55 62
215 55 63
216 55 64
217 55 65
218 55 67
219 55 68
220 55 69
221 55 71
222 55 72
223 58 56
224 58 57
225 90 10
226 90 11
227 90 17
228 90 19
229 90 7
230 90 20
231 90 21
232 90 23
233 90 24
234 90 25
235 90 28
236 90 31
237 90 44
238 90 45
239 90 58
240 90 59
241 90 60
242 90 61
243 90 62
244 90 65
245 90 66
246 90 67
247 90 68
248 90 8
249 90 9
250 91 10
251 91 11
252 91 17
253 91 18
254 91 19
255 91 20
256 91 23
257 91 24
258 91 28
259 91 31
260 91 58
261 91 59
262 91 61
263 91 62
264 91 65
265 91 66
266 91 70
267 91 8
268 91 9
269 92 10
270 92 11
271 92 17
272 92 18
273 92 19
274 92 20
275 92 23
276 92 24
277 92 28
278 92 31
279 92 58
280 92 59
281 92 61
282 92 62
283 92 65
284 92 66
285 92 70
286 92 8
287 92 9
288 93 10
289 93 11
290 93 17
291 93 18
292 93 19
293 93 20
294 93 23
295 93 24
296 93 28
297 93 31
298 93 58
299 93 59
300 93 61
301 93 62
302 93 65
303 93 66
304 93 70
305 93 8
306 93 9
307 94 10
308 94 11
309 94 17
310 94 18
311 94 19
312 94 20
313 94 23
314 94 24
315 94 28
316 94 31
317 94 58
318 94 59
319 94 61
320 94 62
321 94 65
322 94 66
323 94 70
324 94 8
325 94 9
326 95 10
327 95 11
328 95 12
329 95 13
330 95 14
331 95 15
332 95 16
333 95 17
334 95 18
335 95 19
336 95 20
337 95 21
338 95 22
339 95 23
340 95 24
341 95 25
342 95 26
343 95 27
344 95 28
345 95 29
346 95 30
347 95 31
348 95 37
349 95 44
350 95 45
351 95 46
352 95 47
353 95 48
354 95 49
355 95 50
356 95 51
357 95 52
358 95 53
359 95 54
360 95 55
361 95 58
362 95 59
363 95 60
364 95 61
365 95 62
366 95 63
367 95 64
368 95 65
369 95 66
370 95 67
371 95 68
372 95 69
373 95 70
374 95 71
375 95 72
376 95 73
377 95 74
378 95 8
379 95 9
380 95 90
381 95 91
382 95 92
383 95 93
384 95 94
385 95 97
386 96 100
387 96 101
388 96 102
389 96 103
390 96 104
391 96 105
392 96 106
393 96 107
394 96 108
395 96 109
396 96 75
397 96 76
398 96 80
399 96 81
400 96 82
401 96 83
402 96 84
403 96 85
404 96 86
405 96 87
406 96 88
407 96 89
408 96 95
409 96 97
410 96 98
411 96 99
412 97 58
413 98 78
414 98 95
415 99 79
416 99 95
417 100 77
418 100 95

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,37 @@
X12,X1,X2,X3,X13,X14,X15,X16,X4,X5,X6,X7,X8,X9,X10,X11,X17,X18,X19,X20,X21,X22,X23
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1
2,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2
0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2
1,0,0,0,1,1,1,2,0,0,1,1,1,1,1,1,2,2,2,0,0,0,0
2,0,0,0,2,2,2,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1,1
0,0,0,1,0,1,2,0,1,1,0,0,0,1,1,1,1,2,2,0,1,1,2
1,0,0,1,1,2,0,1,1,1,0,0,0,1,1,1,2,0,0,1,2,2,0
2,0,0,1,2,0,1,2,1,1,0,0,0,1,1,1,0,1,1,2,0,0,1
0,0,1,0,0,2,1,0,1,1,0,1,1,0,0,1,2,1,2,1,0,2,1
1,0,1,0,1,0,2,1,1,1,0,1,1,0,0,1,0,2,0,2,1,0,2
2,0,1,0,2,1,0,2,1,1,0,1,1,0,0,1,1,0,1,0,2,1,0
0,0,1,1,1,2,0,2,0,1,1,0,1,0,1,0,1,0,2,2,1,0,1
1,0,1,1,2,0,1,0,0,1,1,0,1,0,1,0,2,1,0,0,2,1,2
2,0,1,1,0,1,2,1,0,1,1,0,1,0,1,0,0,2,1,1,0,2,0
0,0,1,1,1,2,1,0,1,0,1,1,0,1,0,0,0,2,1,2,2,1,0
1,0,1,1,2,0,2,1,1,0,1,1,0,1,0,0,1,0,2,0,0,2,1
2,0,1,1,0,1,0,2,1,0,1,1,0,1,0,0,2,1,0,1,1,0,2
0,1,0,1,1,0,2,2,1,0,0,1,1,0,1,0,2,0,1,1,0,1,2
1,1,0,1,2,1,0,0,1,0,0,1,1,0,1,0,0,1,2,2,1,2,0
2,1,0,1,0,2,1,1,1,0,0,1,1,0,1,0,1,2,0,0,2,0,1
0,1,0,1,1,1,2,2,0,1,1,1,0,0,0,1,0,1,0,0,2,2,1
1,1,0,1,2,2,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,2
2,1,0,1,0,0,1,1,0,1,1,1,0,0,0,1,2,0,2,2,1,1,0
0,1,0,0,2,1,0,1,1,1,1,0,1,1,0,0,2,2,0,2,0,1,1
1,1,0,0,0,2,1,2,1,1,1,0,1,1,0,0,0,0,1,0,1,2,2
2,1,0,0,1,0,2,0,1,1,1,0,1,1,0,0,1,1,2,1,2,0,0
0,1,1,1,2,1,1,1,0,0,0,0,1,1,0,1,0,0,2,1,2,0,2
1,1,1,1,0,2,2,2,0,0,0,0,1,1,0,1,1,1,0,2,0,1,0
2,1,1,1,1,0,0,0,0,0,0,0,1,1,0,1,2,2,1,0,1,2,1
0,1,1,0,2,2,2,1,1,0,1,0,0,0,1,1,2,1,1,0,1,0,0
1,1,1,0,0,0,0,2,1,0,1,0,0,0,1,1,0,2,2,1,2,1,1
2,1,1,0,1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,2,0,2,2
0,1,1,0,2,0,1,2,0,1,0,1,0,1,1,0,1,2,0,1,1,2,0
1,1,1,0,0,1,2,0,0,1,0,1,0,1,1,0,2,0,1,2,2,0,1
2,1,1,0,1,2,0,1,0,1,0,1,0,1,1,0,0,1,2,0,0,1,2
1 X12 X1 X2 X3 X13 X14 X15 X16 X4 X5 X6 X7 X8 X9 X10 X11 X17 X18 X19 X20 X21 X22 X23
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
4 2 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
5 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2
6 1 0 0 0 1 1 1 2 0 0 1 1 1 1 1 1 2 2 2 0 0 0 0
7 2 0 0 0 2 2 2 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1
8 0 0 0 1 0 1 2 0 1 1 0 0 0 1 1 1 1 2 2 0 1 1 2
9 1 0 0 1 1 2 0 1 1 1 0 0 0 1 1 1 2 0 0 1 2 2 0
10 2 0 0 1 2 0 1 2 1 1 0 0 0 1 1 1 0 1 1 2 0 0 1
11 0 0 1 0 0 2 1 0 1 1 0 1 1 0 0 1 2 1 2 1 0 2 1
12 1 0 1 0 1 0 2 1 1 1 0 1 1 0 0 1 0 2 0 2 1 0 2
13 2 0 1 0 2 1 0 2 1 1 0 1 1 0 0 1 1 0 1 0 2 1 0
14 0 0 1 1 1 2 0 2 0 1 1 0 1 0 1 0 1 0 2 2 1 0 1
15 1 0 1 1 2 0 1 0 0 1 1 0 1 0 1 0 2 1 0 0 2 1 2
16 2 0 1 1 0 1 2 1 0 1 1 0 1 0 1 0 0 2 1 1 0 2 0
17 0 0 1 1 1 2 1 0 1 0 1 1 0 1 0 0 0 2 1 2 2 1 0
18 1 0 1 1 2 0 2 1 1 0 1 1 0 1 0 0 1 0 2 0 0 2 1
19 2 0 1 1 0 1 0 2 1 0 1 1 0 1 0 0 2 1 0 1 1 0 2
20 0 1 0 1 1 0 2 2 1 0 0 1 1 0 1 0 2 0 1 1 0 1 2
21 1 1 0 1 2 1 0 0 1 0 0 1 1 0 1 0 0 1 2 2 1 2 0
22 2 1 0 1 0 2 1 1 1 0 0 1 1 0 1 0 1 2 0 0 2 0 1
23 0 1 0 1 1 1 2 2 0 1 1 1 0 0 0 1 0 1 0 0 2 2 1
24 1 1 0 1 2 2 0 0 0 1 1 1 0 0 0 1 1 2 1 1 0 0 2
25 2 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 2 0 2 2 1 1 0
26 0 1 0 0 2 1 0 1 1 1 1 0 1 1 0 0 2 2 0 2 0 1 1
27 1 1 0 0 0 2 1 2 1 1 1 0 1 1 0 0 0 0 1 0 1 2 2
28 2 1 0 0 1 0 2 0 1 1 1 0 1 1 0 0 1 1 2 1 2 0 0
29 0 1 1 1 2 1 1 1 0 0 0 0 1 1 0 1 0 0 2 1 2 0 2
30 1 1 1 1 0 2 2 2 0 0 0 0 1 1 0 1 1 1 0 2 0 1 0
31 2 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 2 2 1 0 1 2 1
32 0 1 1 0 2 2 2 1 1 0 1 0 0 0 1 1 2 1 1 0 1 0 0
33 1 1 1 0 0 0 0 2 1 0 1 0 0 0 1 1 0 2 2 1 2 1 1
34 2 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 2 0 2 2
35 0 1 1 0 2 0 1 2 0 1 0 1 0 1 1 0 1 2 0 1 1 2 0
36 1 1 1 0 0 1 2 0 0 1 0 1 0 1 1 0 2 0 1 2 2 0 1
37 2 1 1 0 1 2 0 1 0 1 0 1 0 1 1 0 0 1 2 0 0 1 2

View File

@ -0,0 +1,2 @@
X1,X2,X3,X4,X5,X6,X7,X8
0,0,0,0,0,0,0,0
1 X1 X2 X3 X4 X5 X6 X7 X8
2 0 0 0 0 0 0 0 0

View File

@ -0,0 +1,5 @@
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n
7,TRUE,TRUE,uniform,5,0.3,3,3
5,FALSE,FALSE,normal,10,0.5,5,2
3,,,,15,0.7,7,1
,,,,,
1 n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n
2 7,TRUE,TRUE,uniform,5,0.3,3,3
3 5,FALSE,FALSE,normal,10,0.5,5,2
4 3,,,,15,0.7,7,1
5 ,,,,,

View File

@ -0,0 +1,2 @@
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n
5,TRUE,TRUE,uniform,10,0.5,5,2
1 n_max_trial prf_size prf_conn cap_limit_prob_type cap_limit_level diff_new_conn remove_t netw_prf_n
2 5 TRUE TRUE uniform 10 0.5 5 2

View File

@ -0,0 +1,238 @@
IndustryID,MaterialID,Quantity
38,47,1.0
39,49,1.0
40,44,1.0
41,15,0.02
41,18,0.1
41,20,0.4
41,22,0.15
41,23,0.04
41,25,0.02
41,31,0.25
41,36,1.0
42,15,0.02
42,18,0.1
42,20,0.4
42,22,0.15
42,23,0.04
42,25,0.02
42,31,0.25
43,46,1.0
44,7,1.4
44,15,0.02
44,18,0.1
44,20,0.4
44,22,0.15
44,23,0.04
44,25,0.02
44,27,0.25
45,7,1.4
45,15,0.02
45,18,0.1
45,20,0.4
45,22,0.15
45,23,0.04
45,25,0.02
45,27,0.25
46,15,0.02
46,18,0.1
46,20,0.4
46,22,0.15
46,23,0.04
46,25,0.02
46,27,0.25
46,32,1.3
47,15,0.02
47,18,0.1
47,20,0.4
47,22,0.15
47,23,0.04
47,25,0.02
47,27,0.25
47,33,1.0
48,15,0.02
48,18,0.1
48,20,0.4
48,22,0.15
48,23,0.04
48,25,0.02
48,27,0.25
48,34,1.3
49,15,0.02
49,18,0.1
49,20,0.4
49,22,0.15
49,23,0.04
49,25,0.02
49,27,0.25
49,35,1.3
50,19,0.005
50,20,0.4
50,22,0.15
50,23,0.04
50,25,0.02
50,28,0.25
50,29,0.03
50,27,0.01
50,40,1.0
51,19,0.005
51,20,0.4
51,22,0.15
51,23,0.04
51,25,0.02
51,28,0.25
51,29,0.03
51,27,0.01
51,38,1.0
52,19,0.005
52,20,0.4
52,22,0.15
52,23,0.04
52,25,0.02
52,28,0.25
52,29,0.03
52,27,0.01
52,41,1.0
53,19,0.005
53,20,0.4
53,22,0.15
53,23,0.04
53,25,0.02
53,28,0.25
53,29,0.03
53,27,0.01
53,39,1.0
54,19,0.005
54,20,0.4
54,22,0.15
54,23,0.04
54,25,0.02
54,28,0.25
54,29,0.03
54,27,0.01
54,43,1.0
55,19,0.005
55,20,0.4
55,22,0.15
55,23,0.04
55,25,0.02
55,28,0.25
55,29,0.03
55,27,0.01
55,42,1.0
90,7,1.7
90,8,0.07
90,9,0.07
90,10,0.02
90,11,0.04
90,17,0.1
90,19,0.005
90,20,0.4
90,21,0.04
90,23,0.04
90,24,0.07
90,25,0.02
90,28,0.03
90,31,0.25
90,44,0.2
90,45,0.1
91,8,0.07
91,9,0.07
91,10,0.02
91,11,0.04
91,17,0.1
91,18,0.1
91,19,0.005
91,20,0.4
91,23,0.04
91,24,0.07
91,28,0.03
91,31,0.25
92,8,0.07
92,9,0.07
92,10,0.02
92,11,0.04
92,17,0.1
92,18,0.1
92,19,0.005
92,20,0.4
92,23,0.04
92,24,0.07
92,28,0.03
92,31,0.26
93,8,0.07
93,9,0.07
93,10,0.02
93,11,0.04
93,17,0.1
93,18,0.1
93,19,0.005
93,20,0.4
93,23,0.04
93,24,0.07
93,28,0.03
93,31,0.27
94,8,0.07
94,9,0.07
94,10,0.02
94,11,0.04
94,17,0.1
94,18,0.1
94,19,0.005
94,20,0.4
94,23,0.04
94,24,0.07
94,28,0.03
94,31,0.28
95,8,0.1
95,9,0.0
95,10,7.0
95,11,0.02
95,12,0.03
95,13,0.01
95,14,0.01
95,15,0.07
95,16,0.05
95,17,0.003
95,18,0.1
95,19,0.04
95,20,0.01
95,21,0.04
95,22,0.03
95,23,0.02
95,24,0.01
95,25,0.05
95,26,0.01
95,27,0.003
95,28,0.1
95,29,0.05
95,30,0.04
95,31,0.01
95,37,0.1
95,44,0.04
95,45,0.7
95,46,0.07
95,47,0.01
95,48,0.03
95,49,0.01
95,50,0.01
95,51,0.01
95,52,0.2
95,53,0.03
95,54,0.01
95,55,0.01
95,90,0.01
95,91,0.01
95,92,1.0
95,93,1.0
95,94,1.0
96,95,1.0
96,101,0.01
96,102,0.01
96,103,0.02
96,104,0.01
96,105,0.2
96,106,0.1
96,107,0.01
96,108,0.03
96,109,0.02
1 IndustryID MaterialID Quantity
2 38 47 1.0
3 39 49 1.0
4 40 44 1.0
5 41 15 0.02
6 41 18 0.1
7 41 20 0.4
8 41 22 0.15
9 41 23 0.04
10 41 25 0.02
11 41 31 0.25
12 41 36 1.0
13 42 15 0.02
14 42 18 0.1
15 42 20 0.4
16 42 22 0.15
17 42 23 0.04
18 42 25 0.02
19 42 31 0.25
20 43 46 1.0
21 44 7 1.4
22 44 15 0.02
23 44 18 0.1
24 44 20 0.4
25 44 22 0.15
26 44 23 0.04
27 44 25 0.02
28 44 27 0.25
29 45 7 1.4
30 45 15 0.02
31 45 18 0.1
32 45 20 0.4
33 45 22 0.15
34 45 23 0.04
35 45 25 0.02
36 45 27 0.25
37 46 15 0.02
38 46 18 0.1
39 46 20 0.4
40 46 22 0.15
41 46 23 0.04
42 46 25 0.02
43 46 27 0.25
44 46 32 1.3
45 47 15 0.02
46 47 18 0.1
47 47 20 0.4
48 47 22 0.15
49 47 23 0.04
50 47 25 0.02
51 47 27 0.25
52 47 33 1.0
53 48 15 0.02
54 48 18 0.1
55 48 20 0.4
56 48 22 0.15
57 48 23 0.04
58 48 25 0.02
59 48 27 0.25
60 48 34 1.3
61 49 15 0.02
62 49 18 0.1
63 49 20 0.4
64 49 22 0.15
65 49 23 0.04
66 49 25 0.02
67 49 27 0.25
68 49 35 1.3
69 50 19 0.005
70 50 20 0.4
71 50 22 0.15
72 50 23 0.04
73 50 25 0.02
74 50 28 0.25
75 50 29 0.03
76 50 27 0.01
77 50 40 1.0
78 51 19 0.005
79 51 20 0.4
80 51 22 0.15
81 51 23 0.04
82 51 25 0.02
83 51 28 0.25
84 51 29 0.03
85 51 27 0.01
86 51 38 1.0
87 52 19 0.005
88 52 20 0.4
89 52 22 0.15
90 52 23 0.04
91 52 25 0.02
92 52 28 0.25
93 52 29 0.03
94 52 27 0.01
95 52 41 1.0
96 53 19 0.005
97 53 20 0.4
98 53 22 0.15
99 53 23 0.04
100 53 25 0.02
101 53 28 0.25
102 53 29 0.03
103 53 27 0.01
104 53 39 1.0
105 54 19 0.005
106 54 20 0.4
107 54 22 0.15
108 54 23 0.04
109 54 25 0.02
110 54 28 0.25
111 54 29 0.03
112 54 27 0.01
113 54 43 1.0
114 55 19 0.005
115 55 20 0.4
116 55 22 0.15
117 55 23 0.04
118 55 25 0.02
119 55 28 0.25
120 55 29 0.03
121 55 27 0.01
122 55 42 1.0
123 90 7 1.7
124 90 8 0.07
125 90 9 0.07
126 90 10 0.02
127 90 11 0.04
128 90 17 0.1
129 90 19 0.005
130 90 20 0.4
131 90 21 0.04
132 90 23 0.04
133 90 24 0.07
134 90 25 0.02
135 90 28 0.03
136 90 31 0.25
137 90 44 0.2
138 90 45 0.1
139 91 8 0.07
140 91 9 0.07
141 91 10 0.02
142 91 11 0.04
143 91 17 0.1
144 91 18 0.1
145 91 19 0.005
146 91 20 0.4
147 91 23 0.04
148 91 24 0.07
149 91 28 0.03
150 91 31 0.25
151 92 8 0.07
152 92 9 0.07
153 92 10 0.02
154 92 11 0.04
155 92 17 0.1
156 92 18 0.1
157 92 19 0.005
158 92 20 0.4
159 92 23 0.04
160 92 24 0.07
161 92 28 0.03
162 92 31 0.26
163 93 8 0.07
164 93 9 0.07
165 93 10 0.02
166 93 11 0.04
167 93 17 0.1
168 93 18 0.1
169 93 19 0.005
170 93 20 0.4
171 93 23 0.04
172 93 24 0.07
173 93 28 0.03
174 93 31 0.27
175 94 8 0.07
176 94 9 0.07
177 94 10 0.02
178 94 11 0.04
179 94 17 0.1
180 94 18 0.1
181 94 19 0.005
182 94 20 0.4
183 94 23 0.04
184 94 24 0.07
185 94 28 0.03
186 94 31 0.28
187 95 8 0.1
188 95 9 0.0
189 95 10 7.0
190 95 11 0.02
191 95 12 0.03
192 95 13 0.01
193 95 14 0.01
194 95 15 0.07
195 95 16 0.05
196 95 17 0.003
197 95 18 0.1
198 95 19 0.04
199 95 20 0.01
200 95 21 0.04
201 95 22 0.03
202 95 23 0.02
203 95 24 0.01
204 95 25 0.05
205 95 26 0.01
206 95 27 0.003
207 95 28 0.1
208 95 29 0.05
209 95 30 0.04
210 95 31 0.01
211 95 37 0.1
212 95 44 0.04
213 95 45 0.7
214 95 46 0.07
215 95 47 0.01
216 95 48 0.03
217 95 49 0.01
218 95 50 0.01
219 95 51 0.01
220 95 52 0.2
221 95 53 0.03
222 95 54 0.01
223 95 55 0.01
224 95 90 0.01
225 95 91 0.01
226 95 92 1.0
227 95 93 1.0
228 95 94 1.0
229 96 95 1.0
230 96 101 0.01
231 96 102 0.01
232 96 103 0.02
233 96 104 0.01
234 96 105 0.2
235 96 106 0.1
236 96 107 0.01
237 96 108 0.03
238 96 109 0.02

69
main.py Normal file
View File

@ -0,0 +1,69 @@
import os
import random
import time
from multiprocessing import Process
import argparse
from matplotlib import pyplot as plt
from computation import Computation
from sqlalchemy.orm import close_all_sessions
import yaml
from controller_db import ControllerDB
def controll_db_and_process(exp_argument, reset_sample_argument, reset_db_argument):
from controller_db import ControllerDB
controller_db = ControllerDB(exp_argument, reset_flag=reset_sample_argument)
# controller_db.reset_db()
# force drop
controller_db.reset_db(force_drop=reset_db_argument)
# 准备样本表
controller_db.prepare_list_sample()
close_all_sessions()
# 调用 do_process 利用计算机进行多核处理 仿真 将数据库中
do_process(do_computation, controller_db)
def do_process(target: object, controller_db: ControllerDB, ):
process_list = []
for i in range(int(args.job)):
p = Process(target=do_computation, args=(controller_db,))
p.start()
process_list.append(p)
for i in process_list:
i.join()
# 所有子进程完成后刷新最终进度
# 显示最终进度后关闭图表
def do_computation(c_db):
exp = Computation(c_db)
while 1:
# time.sleep(random.uniform(0, 1))
is_all_done = exp.run()
if is_all_done:
break
if __name__ == '__main__':
# 输入参数
parser = argparse.ArgumentParser(description='setting')
parser.add_argument('--exp', type=str, default='without_exp')
parser.add_argument('--job', type=int, default='1')
parser.add_argument('--reset_sample', type=int, default='0')
parser.add_argument('--reset_db', type=bool, default=False)
args = parser.parse_args()
# 几核参与进程
assert args.job >= 1, 'Number of jobs should >= 1'
# 控制参数 利用 prefix_file_name 前缀名字 控制 2项不同的实验
prefix_file_name = 'conf_db_prefix.yaml'
if os.path.exists(prefix_file_name):
os.remove(prefix_file_name)
with open(prefix_file_name, 'w', encoding='utf-8') as file:
yaml.dump({'db_name_prefix': args.exp}, file)
# 数据库连接控制 和 进行模型运行
controll_db_and_process(args.exp, args.reset_sample, args.reset_db)

904
my_model.py Normal file
View File

@ -0,0 +1,904 @@
import json
import os
import pickle
from collections import Counter
from random import shuffle
import platform
import networkx as nx
import pandas as pd
from mesa import Model
from mesa.space import MultiGrid, NetworkGrid
from mesa.datacollection import DataCollector
import numpy as np
from mesa_viz_tornado.modules import NetworkModule
from firm import FirmAgent
from orm import db_session, Result
from product import ProductAgent
from mesa.visualization import ModularServer
class MyModel(Model):
def __init__(self, params):
"""
初始化模型并设置模型的主要参数
参数说明:
- params (dict): 包含模型所需的所有参数的字典
主要参数:
- prf_size (bool): 是否在选择供应商时考虑企业规模
- prf_conn (float): 企业建立新连接的概率
- cap_limit_prob_type (str): 产能限制的概率分布类型
- cap_limit_level (float): 产能限制的水平
- diff_new_conn (bool): 是否允许差异化的新连接
- g_bom (str): BOM物料清单图的 JSON 表示形式
- sample (object): 包含实验数据的样本对象
- n_iter (int): 仿真的迭代次数
- dct_lst_init_disrupt_firm_prod (dict): 初始企业-产品干扰的字典
- n_max_trial (int): 寻找新供应商的最大尝试次数
- remove_t (int): 在网络中移除节点的时间步
- netw_prf_n (int): 每个企业的首选供应商数量
- seed (int): 随机种子的值用于确保实验的可重复性
"""
#ga参数增加
self.k = params["k"]
self.production_increase_ratio = params["production_increase_ratio"]
self.s_r = params["s_r"]
self.S_r = params["S_r"]
self.x = params["x"]
# 仿真参数
self.agent_map = None
self.firm_prod_labels_dict = None
self.firm_relationship_cache = None
self.firm_product_cache = None
self.t = 0
self.is_prf_size = params['prf_size'] # 是否在选择供应商时考虑企业规模。
self.prf_conn = params['prf_conn'] # 企业建立新连接的概率。
self.cap_limit_prob_type = params['cap_limit_prob_type'] # 产能限制的概率分布类型。
self.cap_limit_level = params['cap_limit_level'] # 产能限制的水平。
self.diff_new_conn = params['diff_new_conn'] # 是否允许差异化的新连接。
# 初始化停止时间步,可能是用户通过参数传入
self.int_stop_ts = params.get('n_iter', 3) # 默认停止时间为 100
# 网络初始化
self.firm_network = nx.MultiDiGraph() # 企业之间的有向多重图。
self.firm_prod_network = nx.MultiDiGraph() # 企业与产品关系的有向多重图。
self.product_network = nx.MultiDiGraph() # 产品之间的有向多重图。
# BOM物料清单
self.g_bom = nx.adjacency_graph(json.loads(params['g_bom'])) # 表示 BOM 结构的图。
# 随机数生成器
self.nprandom = np.random.default_rng(params['seed']) # 基于固定种子的随机数生成器。
# 样本和实验参数
self.sample = params['sample'] # 仿真的样本对象。
self.int_n_iter = int(params['n_iter']) # 仿真的迭代次数。
self.dct_lst_init_disrupt_firm_prod = params['dct_lst_init_disrupt_firm_prod'] # 初始企业-产品干扰关系。
# 外部变量
self.int_n_max_trial = int(params['n_max_trial']) # 寻找新供应商的最大尝试次数。
self.remove_t = int(params['remove_t']) # 在网络中移除节点的时间步。
self.int_netw_prf_n = int(params['netw_prf_n']) # 每个企业的首选供应商数量。
# 数据收集器
self.data_collector = DataCollector(
agent_reporters={"Product": "name"} # 收集代理的名称。
)
self.product_agents = [] # 初始化产品代理列表
self.company_agents = [] # 初始化公司代理列表
# 初始化模型的网络和代理
# 检查缓存是否存在
cache_file = "firm_network.pkl"
if os.path.exists(cache_file):
# 从缓存加载 firm_network
with open(cache_file, 'rb') as f:
self.firm_network = pickle.load(f)
# print("Loaded firm network from cache.")
else:
# 执行完整的初始化流程
self.initialize_product_network(params)
self.initialize_firm_network()
self.build_firm_prod_labels_dict()
self.initialize_firm_product_network()
self.add_edges_to_firm_network()
self.connect_unconnected_nodes()
self.initialize_product_network(params) # 初始化产品网络。
self.resource_integration()
self.j_comp_consumed_produced()
self.initialize_agents() # 初始化代理。
self.initialize_disruptions() # 初始化干扰。
def initialize_product_network(self, params):
"""
初始化产品网络
参数:
- params (dict): 包含模型初始化参数的字典
功能:
1. 从参数中加载 BOM (Bill of Materials) 并构建产品网络
2. 加载产品节点数据并提取产品种类和索引
"""
try:
# 从参数中解析 BOM 图,并构建 NetworkX 的图结构
self.product_network = nx.adjacency_graph(json.loads(params['g_bom']))
except Exception as e:
print(f"Failed to initialize product network: {e}")
self.product_network = nx.MultiDiGraph() # 初始化为空图,以防后续出错
# 加载产品数据
try:
data = pd.read_csv('input_data/input_product_data/BomNodes.csv') # 读取产品节点数据
data['Code'] = data['Code'].astype('string') # 确保 Code 字段为字符串类型
# 保存产品数据和产品类别索引
self.type2 = data # 全量产品数据
self.id_code = data.groupby('Code')['Index'].apply(list) # 根据产品代码分组索引
except FileNotFoundError:
print("Error: File 'BomNodes.csv' not found.")
self.type2 = pd.DataFrame() # 设为空 DataFrame 以防后续出错
self.id_code = {}
except Exception as e:
print(f"Error loading product data: {e}")
self.type2 = pd.DataFrame()
self.id_code = {}
# 此处可以进一步处理设备折旧比值(如果有具体逻辑,可以在此补充)
def initialize_firm_network(self):
"""
初始化企业网络处理一个 Code 映射到多个 Index 的情况并缓存所有相关属性
"""
# 加载企业数据
firm_data = pd.read_csv("input_data/input_firm_data/firm_amended.csv", dtype={'Code': str})
firm_data['Code'] = firm_data['Code'].str.replace('.0', '', regex=False)
# 加载企业与产品关系数据
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv", dtype={'Firm_Code': str})
bom_nodes = pd.read_csv("input_data/input_product_data/BomNodes.csv")
# 构建 Code -> [Index] 的多值映射
code_to_indices = bom_nodes.groupby('Code')['Index'].apply(list).to_dict()
# 将 Product_Code 转换为 Product_Indices
firm_industry_relation['Product_Indices'] = firm_industry_relation['Product_Code'].map(code_to_indices)
# 检查并处理未映射的 Product_Code
unmapped_products = firm_industry_relation[firm_industry_relation['Product_Indices'].isna()]
if not unmapped_products.empty:
print("Warning: The following Product_Code values could not be mapped to Index:")
print(unmapped_products[['Firm_Code', 'Product_Code']])
firm_industry_relation['Product_Indices'] = firm_industry_relation['Product_Indices'].apply(
lambda x: x if isinstance(x, list) else []
)
# 按 Firm_Code 分组生成企业的 Product_Code 和 Product_Indices 映射
firm_product = (
firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list)
)
firm_product_indices = (
firm_industry_relation.groupby('Firm_Code')['Product_Indices']
.apply(lambda indices: [idx for sublist in indices for idx in sublist])
)
# 设置企业属性并添加到网络中
firm_attributes = firm_data.copy()
firm_attributes['Product_Indices'] = firm_attributes['Code'].map(firm_product)
firm_attributes['Product_Code'] = firm_attributes['Code'].map(firm_product_indices)
firm_attributes.set_index('Code', inplace=True)
self.firm_network.add_nodes_from(firm_data['Code'])
# 为企业节点分配属性
firm_labels_dict = {code: firm_attributes.loc[code].to_dict() for code in self.firm_network.nodes}
nx.set_node_attributes(self.firm_network, firm_labels_dict)
# 构建企业-产品映射缓存
self.firm_product_cache = firm_product_indices.to_dict()
# 构建企业关系缓存
self.firm_relationship_cache = {
firm: self.compute_firm_relationship(firm, self.firm_product_cache)
for firm in self.firm_product_cache
}
def compute_firm_relationship(self, firm, firm_product_cache):
"""计算单个企业的供应链关系"""
lst_pred_product_code = []
for product_code in firm_product_cache[firm]:
lst_pred_product_code += list(self.g_bom.predecessors(product_code))
return list(set(lst_pred_product_code)) # 返回唯一值列表
def build_firm_prod_labels_dict(self):
"""
构建企业与产品的映射关系字典
"""
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype(str)
self.firm_prod_labels_dict = (
firm_industry_relation.groupby('Firm_Code')['Product_Code']
.apply(list)
.to_dict()
)
def initialize_firm_product_network(self):
"""
初始化企业与产品的网络关系并引入缓存机制
功能:
1. 加载企业-行业关系数据
2. 为每个企业和产品建立网络节点
3. 将产品代码与索引进行映射并为网络节点分配属性
4. 缓存网络和相关数据以加速后续运行
"""
# 加载企业-行业关系数据
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype(str)
firm_industry_relation['Product_Code'] = firm_industry_relation['Product_Code'].apply(lambda x: [x])
# 映射产品代码到索引
firm_industry_relation['Product_Code'] = firm_industry_relation['Product_Code'].apply(
lambda codes: [idx for code in codes for idx in self.id_code.get(str(code), [])]
)
# 创建企业-产品网络图,同时附带属性
nodes_with_attributes = [
(index, firm_industry_relation.loc[index].to_dict())
for index in firm_industry_relation.index
]
self.firm_prod_network.add_nodes_from(nodes_with_attributes)
def compute_firm_supply_chain(self, firm_industry_relation, g_bom):
"""
根据 firm_industry_relation g_bom 生成供应链缓存
:param firm_industry_relation: 企业-产品关系 DataFrame
:param g_bom: BOM 网络图
:return: 缓存的供应链关系字典
"""
supply_chain_cache = {}
for firm_code, product_codes in firm_industry_relation.groupby('Firm_Code')['Product_Code']:
predecessors = set()
for product_code in product_codes:
predecessors.update(g_bom.predecessors(product_code))
supply_chain_cache[firm_code] = list(predecessors)
return supply_chain_cache
def add_edges_to_firm_network(self):
for firm in self.firm_relationship_cache:
lst_pred_product_code = self.firm_relationship_cache[firm]
for pred_product_code in lst_pred_product_code:
lst_pred_firm = [
f for f, products in self.firm_product_cache.items()
if pred_product_code in products
]
lst_choose_firm = self.select_firms(lst_pred_firm)
# 添加边
edges = [(pred_firm, firm, {'Product': pred_product_code}) for pred_firm in lst_choose_firm]
self.firm_network.add_edges_from(edges)
def select_firms(self, lst_pred_firm):
"""
根据企业列表选择供应商
"""
if not lst_pred_firm:
return [] # 如果列表为空,返回空列表
n_pred_firm = self.int_netw_prf_n # 最大选择的供应商数量
# 筛选有效节点并同步生成有效的企业规模
valid_firms = []
lst_pred_firm_size = []
for pred_firm in lst_pred_firm:
if pred_firm in self.firm_network.nodes and 'Revenue_Log' in self.firm_network.nodes[pred_firm]:
valid_firms.append(pred_firm)
lst_pred_firm_size.append(self.firm_network.nodes[pred_firm]['Revenue_Log'])
# 如果未启用企业规模加权,随机选择
if not self.is_prf_size:
return self.nprandom.choice(valid_firms, size=min(n_pred_firm, len(valid_firms)), replace=False)
# 如果考虑企业规模,计算概率分布
if lst_pred_firm_size:
total_size = sum(lst_pred_firm_size)
lst_prob = [size / total_size for size in lst_pred_firm_size]
else:
lst_prob = []
# 确保长度一致
if len(valid_firms) != len(lst_prob):
print(f"Error: valid_firms and lst_prob have different sizes. "
f"valid_firms: {len(valid_firms)}, lst_prob: {len(lst_prob)}")
return [] # 返回空列表以避免错误
# 调用 numpy.random.choice
return self.nprandom.choice(valid_firms, size=min(n_pred_firm, len(valid_firms)), replace=False, p=lst_prob)
def add_edges_to_firm_product_network(self, node, pred_product_code, lst_choose_firm):
""" Helper function to add edges to the firm-product network """
set_node_prod_code = set(self.firm_network.nodes[node]['Product_Code'])
set_pred_succ_code = set(self.g_bom.successors(pred_product_code))
lst_use_pred_prod_code = list(set_node_prod_code & set_pred_succ_code)
if len(lst_use_pred_prod_code) == 0:
print("错误")
pred_node_list = []
for pred_firm in lst_choose_firm:
for n, v in self.firm_prod_network.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == pred_product_code and v['Firm_Code'] == pred_firm:
pred_node_list.append(n)
if len(pred_node_list) != 0:
pred_node = pred_node_list[0]
else:
pred_node = -1
current_node_list = []
for use_pred_prod_code in lst_use_pred_prod_code:
for n, v in self.firm_prod_network.nodes(data=True):
for v1 in v['Product_Code']:
if v1 == use_pred_prod_code and v['Firm_Code'] == node:
current_node_list.append(n)
if len(current_node_list) != 0:
current_node = current_node_list[0]
else:
current_node = -1
if current_node != -1 and pred_node != -1:
self.firm_prod_network.add_edge(pred_node, current_node)
def connect_unconnected_nodes(self):
"""
连接企业网络中未连接的节点
功能:
- 遍历 G_Firm 图中未连接的节点
- 为未连接节点添加边连接到可能的下游企业
- 同时更新 G_FirmProd 网络反映企业与产品的关系
"""
# # 找出 Product_Code 是 float 的节点
# for node, data in self.firm_network.nodes(data=True):
# val = data.get('Product_Code')
# if isinstance(val, float):
# print(f"⚠️ 发现异常节点: Node={node}, Product_Code={val}")
for node in nx.nodes(self.firm_network):
# 如果节点没有任何连接,则处理该节点
if self.firm_network.degree(node) == 0:
# 获取当前节点的产品列表
product_codes = self.firm_network.nodes[node].get('Product_Code', [])
for product_code in product_codes:
# 查找与当前产品相关的 FirmProd 节点
current_node_list = [
n for n, v in self.firm_prod_network.nodes(data=True)
if v['Firm_Code'] == node and product_code in v['Product_Code']
]
current_node = current_node_list[0] if current_node_list else -1
# 查找当前产品的所有下游产品代码
succ_product_codes = list(self.g_bom.successors(product_code))
for succ_product_code in succ_product_codes:
# 查找生产下游产品的企业
succ_firms = [
firm_code for firm_code, products in self.firm_prod_labels_dict.items()
if succ_product_code in products
]
# 确定供应商数量限制
n_succ_firm = min(len(succ_firms), self.int_netw_prf_n)
if n_succ_firm == 0:
continue
# 选择供应商
if self.is_prf_size:
# 基于企业规模选择供应商
succ_firm_sizes = [
self.firm_network.nodes[succ_firm].get('Revenue_Log', 0)
for succ_firm in succ_firms
]
if sum(succ_firm_sizes) > 0:
probs = [size / sum(succ_firm_sizes) for size in succ_firm_sizes]
selected_firms = self.nprandom.choice(succ_firms, size=n_succ_firm, replace=False,
p=probs)
else:
selected_firms = []
else:
# 随机选择供应商
selected_firms = self.nprandom.choice(succ_firms, size=n_succ_firm, replace=False)
# 添加边到 G_Firm 图
edges = [(node, firm, {'Product': product_code}) for firm in selected_firms]
self.firm_network.add_edges_from(edges)
# 更新 G_FirmProd 网络
for succ_firm in selected_firms:
succ_node_list = [
n for n, v in self.firm_prod_network.nodes(data=True)
if v['Firm_Code'] == succ_firm and succ_product_code in v['Product_Code']
]
succ_node = succ_node_list[0] if succ_node_list else -1
if current_node != -1 and succ_node != -1:
self.firm_prod_network.add_edge(current_node, succ_node)
# 保存构建完成的 firm_network 到缓存
cache_file = "firm_network.pkl"
os.makedirs("cache", exist_ok=True)
with open(cache_file, 'wb') as f:
pickle.dump(self.firm_network, f)
# print("Firm network has been saved to cache.")
def initialize_agents(self):
"""
初始化代理并添加到模型中
功能:
1. 根据产品网络初始化产品代理
2. 根据企业网络初始化企业代理
"""
# 初始化产品代理
for ag_node, attr in self.product_network.nodes(data=True):
# 创建产品代理
product_agent = ProductAgent(
unique_id=ag_node,
model=self,
name=attr.get('Name', 'Unknown'), # 防止 Name 属性缺失
type2=0,
production_ratio=0
)
self.add_agent(product_agent)
# 初始化企业代理
for ag_node, attr in self.firm_network.nodes(data=True):
# 获取与企业相关的产品代理
a_lst_product = [
agent for agent in self.product_agents if agent.unique_id in attr.get('Product_Code', [])
]
# 获取企业的需求数量和生产输出
demand_quantity = self.data_materials.loc[self.data_materials['Firm_Code'] == int(ag_node)]
production_output = self.data_produced.loc[self.data_produced['Firm_Code'] == int(ag_node)]
# 获取企业的资源信息,同时处理 R、P、C 的情况
try:
R = self.firm_resource_R.loc[int(ag_node)]
P = self.firm_resource_P.get(int(ag_node))
C = self.firm_resource_C.loc[int(ag_node)]
except KeyError:
R, P, C = [], {}, [] # 如果任何资源不存在,返回空列表
# 在模型初始化时,构建 unique_id -> agent 的快速映射字典
self.agent_map = {agent.unique_id: agent for agent in self.company_agents}
# 创建企业代理
firm_agent = FirmAgent(
unique_id=ag_node,
model=self,
type_region=attr.get('Type_Region', 'Unknown'),
revenue_log=attr.get('Revenue_Log', 0),
a_lst_product=a_lst_product,
demand_quantity=demand_quantity,
production_output=production_output,
R=R,
P=P,
C=C,
s_r=self.s_r,
S_r=self.S_r,
x=self.x
)
self.add_agent(firm_agent)
def initialize_disruptions(self):
"""
初始化公司与其受干扰产品的映射并更新干扰状态
功能:
- 构建公司与受干扰产品的映射字典
- 更新公司与产品的生产状态为干扰状态
"""
# 构建公司与受干扰产品的映射字典
disruption_mapping = {}
for firm_code, lst_product_indices in self.dct_lst_init_disrupt_firm_prod.items():
# 查找企业对象
firm = next((f for f in self.company_agents if f.unique_id == firm_code), None)
if not firm:
print(f"Warning: Firm {firm_code} not found. Skipping.")
continue
# 查找有效的产品代理
valid_products = [
product for product in self.product_agents if product.unique_id in lst_product_indices
]
if not valid_products:
print(f"Warning: No valid products found for Firm {firm_code}. Skipping.")
continue
# 更新映射
disruption_mapping[firm] = valid_products
# 更新干扰字典
self.dct_lst_init_disrupt_firm_prod = disruption_mapping
# 设置初始干扰状态
for firm, disrupted_products in disruption_mapping.items():
for product in disrupted_products:
# 检查产品是否在企业的生产状态中
if product not in firm.dct_prod_up_prod_stat:
# print(
# f"Warning: Product {product.unique_id} not found in firm "
# f"{firm.unique_id}'s production status. Skipping."
# )
continue
# 更新产品状态为干扰状态,并记录干扰时间
firm.dct_prod_up_prod_stat[product]['p_stat'].append(('D', self.t))
def add_agent(self, agent):
if isinstance(agent, FirmAgent):
self.company_agents.append(agent)
elif isinstance(agent, ProductAgent):
self.product_agents.append(agent)
def resource_integration(self):
"""
整合企业资源包括材料设备和产品数据
功能:
- 加载并处理企业的材料设备和产品数据
- 合并设备数据与设备残值数据
- 按企业分组生成资源列表
"""
# 加载企业的材料、设备和产品数据
data_R = pd.read_csv("input_data/input_firm_data/firms_materials.csv")
data_C = pd.read_csv("input_data/input_firm_data/firms_devices.csv")
data_P = pd.read_csv("input_data/input_firm_data/firms_products.csv")
# 加载设备残值数据,并合并到设备数据中
device_salvage_values = pd.read_csv('input_data/device_salvage_values.csv')
self.device_salvage_values = device_salvage_values
# 合并设备数据和设备残值
data_merged_C = pd.merge(data_C, device_salvage_values, on='设备id', how='left')
# 按企业分组并生成资源列表
firm_resource_R = (
data_R.groupby('Firm_Code')[['材料id', '材料数量']]
.apply(lambda x: x.values.tolist())
)
firm_resource_C = (
data_merged_C.groupby('Firm_Code')[['设备id', '设备数量', '设备残值']]
.apply(lambda x: x.values.tolist())
)
firm_resource_P = (
data_P.groupby('Firm_Code')[['产品id', '产品数量']]
.apply(lambda x: x.values.tolist())
)
# 将结果存储到模型中
self.firm_resource_R = firm_resource_R
self.firm_resource_C = firm_resource_C
self.firm_resource_P = firm_resource_P
def j_comp_consumed_produced(self):
"""
处理企业的材料消耗与产品生产数据并计算生产比例
功能:
- 加载材料消耗数据产品生产数据和生产比例数据
- 按企业分组整理未消耗材料和未生产产品的数据
- 整理生产比例数据便于后续使用
"""
try:
# 加载数据
data_materials = pd.read_csv('input_data/input_firm_data/firms_materials.csv')
data_produced = pd.read_csv('input_data/input_firm_data/firms_products.csv')
data_production_ratio = pd.read_csv('input_data/产品消耗制造比例.csv')
# 处理未消耗材料数据
data_not_consumed = (
data_materials.groupby('Firm_Code')[['材料id', '材料数量']]
.apply(lambda x: dict(zip(x['材料id'], x['材料数量'])))
.reset_index(name='Materials_not_Consumed')
)
# 处理未生产产品数据
data_not_produced = (
data_produced.groupby('Firm_Code')[['产品id', '产品数量']]
.apply(lambda x: dict(zip(x['产品id'], x['产品数量'])))
.reset_index(name='Products_not_Produced')
)
# 整理生产比例数据
data_production_ratio = (
data_production_ratio.groupby('IndustryID')[['MaterialID', 'Quantity']]
.apply(lambda x: dict(zip(x['MaterialID'], x['Quantity'])))
.reset_index(name='Production_Ratio')
)
# 将处理后的数据存储到模型中
self.data_materials = data_not_consumed
self.data_produced = data_not_produced
self.data_production_ratio = data_production_ratio
except FileNotFoundError as e:
print(f"Error: Missing input file - {e.filename}")
self.data_materials, self.data_produced, self.data_production_ratio = None, None, None
except Exception as e:
print(f"Error during consumption and production computation: {e}")
self.data_materials, self.data_produced, self.data_production_ratio = None, None, None
def step(self):
"""
模拟一个时间步包括以下过程
1. 移除客户边和中断产品
2. 进行尝试过程寻找替代供应链
3. 判断资源和设备是否需要采购并处理采购
4. 资源消耗和产品生产
"""
while self.t < self.int_stop_ts: # 使用循环控制时间步
# 1. 移除客户边并中断客户上游产品
self._remove_disrupted_edges()
self._disrupt_upstream_products()
# 2. 尝试寻找替代供应链
self._trial_process()
# 3. 判断是否需要采购资源和设备
self._handle_material_purchase()
self._handle_machinery_purchase()
# 4. 资源消耗和产品生产
self._consume_resources_and_produce()
# 5. 刷新企业干扰字典
self._process_firms_step()
# 增加时间步
self.t += 1
# 子方法定义
def _remove_disrupted_edges(self):
"""移除被中断的客户边。"""
for firm in self.company_agents:
for prod, prod_stat in firm.dct_prod_up_prod_stat.items():
status, ts = prod_stat['p_stat'][-1]
if status == 'D' and ts == self.t - 1:
firm.remove_edge_to_cus(prod)
def _disrupt_upstream_products(self):
"""中断客户的上游产品。"""
for firm in self.company_agents:
for prod, prod_stat in firm.dct_prod_up_prod_stat.items():
for up_prod, up_stat in prod_stat['s_stat'].items():
if up_stat['set_disrupt_firm']:
firm.disrupt_cus_prod(prod, up_prod)
def _trial_process(self):
"""尝试寻找替代供应链。"""
for n_trial in range(self.int_n_max_trial):
shuffle(self.company_agents) # 打乱顺序
is_stop_trial = True
for firm in self.company_agents:
lst_seek_prod = [
supply for prod, prod_stat in firm.dct_prod_up_prod_stat.items()
if prod_stat['p_stat'][-1][0] == 'D'
for supply, supply_stat in prod_stat['s_stat'].items()
if not supply_stat['stat']
]
if lst_seek_prod:
is_stop_trial = False
for supply in set(lst_seek_prod):
firm.seek_alt_supply(supply)
if is_stop_trial:
break
# 处理请求
shuffle(self.company_agents)
for firm in self.company_agents:
if firm.dct_request_prod_from_firm:
firm.handle_request()
# 重置请求状态
for firm in self.company_agents:
firm.clean_before_trial()
def _handle_material_purchase(self):
"""
判断并处理资源的采购
"""
# 存储需要采购资源的企业及其需求
purchase_material_firms = {}
# 遍历所有企业,检查资源需求
for firm in self.company_agents:
if not firm.R: # 跳过没有资源的企业
continue
# 遍历资源列表,检查哪些资源需要补货
for resource_id, resource_quantity in firm.R:
if resource_quantity <= firm.s_r: # 如果资源低于阈值,记录需求
required_quantity = firm.S_r - resource_quantity
if firm not in purchase_material_firms:
purchase_material_firms[firm] = []
purchase_material_firms[firm].append((resource_id, required_quantity))
# 寻找供应商并处理补货
for firm, material_requests in purchase_material_firms.items():
for resource_id, required_quantity in material_requests:
# 寻找供应商
supplier = firm.seek_material_supply(resource_id)
if supplier != -1: # 如果找到供应商
# 供应商处理资源请求
supplier.handle_material_request([resource_id, required_quantity])
# 更新当前企业的资源数量
for resource in firm.R:
if resource[0] == resource_id:
resource[1] = firm.S_r
def _handle_machinery_purchase(self):
"""
判断并处理设备的采购
"""
# 存储需要采购设备的企业及其需求
purchase_machinery_firms = {}
# 遍历所有企业,检查设备需求
for firm in self.company_agents:
if not firm.C: # 跳过没有设备的企业
continue
# 检查设备残值,记录需要补充的设备
for equipment in firm.C:
equipment_id, equipment_quantity, equipment_salvage = equipment
equipment_salvage -= firm.x # 减少设备残值
if equipment_salvage <= 0: # 如果残值小于等于 0
equipment_quantity -= 1
required_quantity = 1 # 需要补充的设备数量
if firm not in purchase_machinery_firms:
purchase_machinery_firms[firm] = []
purchase_machinery_firms[firm].append((equipment_id, required_quantity))
# 寻找供应商并处理设备补充
for firm, machinery_requests in purchase_machinery_firms.items():
for equipment_id, required_quantity in machinery_requests:
# 寻找供应商
supplier = firm.seek_machinery_supply(equipment_id)
if supplier != -1: # 如果找到供应商
# 供应商处理设备请求
supplier.handle_machinery_request([equipment_id, required_quantity])
# 恢复企业的设备数量和残值
for equipment, initial_equipment in zip(firm.C, firm.C0):
if equipment[0] == equipment_id:
equipment[1] = initial_equipment[1] # 恢复数量
equipment[2] = initial_equipment[2] # 恢复残值
def _consume_resources_and_produce(self):
"""
消耗资源并生产产品
"""
k = self.k # 资源消耗比例
production_increase_ratio = self.production_increase_ratio # 产品生产比例
# 遍历每个企业
for firm in self.company_agents:
# 计算资源消耗
consumed_resources = self._calculate_consumed_resources(firm, k)
# 消耗资源
self._consume_resources(firm, consumed_resources)
# 生产产品
self._produce_products(firm, production_increase_ratio)
# 刷新资源和设备状态
firm.refresh_R()
firm.refresh_C()
firm.refresh_P()
def _calculate_consumed_resources(self, firm, k):
"""
计算企业的资源消耗量
"""
consumed_resources = {}
for industry in firm.indus_i:
consumed_quantity = sum(
product[1] * k
for product in firm.P
if product[0] == industry.unique_id
)
consumed_resources[industry.unique_id] = consumed_quantity
return consumed_resources
def _consume_resources(self, firm, consumed_resources):
"""
消耗企业的资源
"""
for resource in firm.R:
resource_id, resource_quantity = resource[0], resource[1]
if resource_id in consumed_resources:
resource[1] = max(0, resource_quantity - consumed_resources[resource_id])
def _produce_products(self, firm, production_increase_ratio):
"""
生产企业的产品
"""
for product in firm.P:
product[1] *= production_increase_ratio
def _process_firms_step(self):
"""
处理企业的状态更新包括
1. 刷新企业字典清理前置步骤
2. 减少中断企业的规模
3. 判断企业是否需要从中断状态转为移除状态
4. 判断是否停止模拟
"""
# 减少中断企业的规模
# 刷新企业字典
for firm in self.company_agents:
firm.clean_before_time_step()
for prod in firm.dct_prod_up_prod_stat.keys():
status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if status == 'D':
size = firm.size_stat[-1][0] - \
firm.size_stat[0][0] / len(firm.dct_prod_up_prod_stat.keys()) / self.remove_t
firm.size_stat.append((size, self.t))
lst_is_disrupt = [stat == 'D' for stat, _ in
firm.dct_prod_up_prod_stat[prod]['p_stat'][-self.remove_t:]]
if all(lst_is_disrupt):
# 转换中断企业为已移除企业
firm.dct_prod_up_prod_stat[prod]['p_stat'].append(('R', self.t))
# 判断是否需要停止模拟
if self.t > 0:
for firm in self.company_agents:
for prod in firm.dct_prod_up_prod_stat.keys():
status, _ = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
is_init = firm in self.dct_lst_init_disrupt_firm_prod.keys() and prod in \
self.dct_lst_init_disrupt_firm_prod[firm]
if status == 'D' and not is_init:
break
else:
continue
break
else:
self.int_stop_ts = self.t
def end(self):
"""
结束模型运行并保存结果
- 如果当前样本的结果未保存则保存所有生产状态为非正常状态的结果
- 更新样本状态为完成并记录相关信息
"""
# 检查当前样本结果是否已存在
if not db_session.query(Result).filter_by(s_id=self.sample.id).first():
# 生成需要保存的结果列表
lst_result_info = [
Result(
s_id=self.sample.id,
id_firm=firm.unique_id,
id_product=prod.unique_id,
ts=ts,
status=status
)
for firm in self.company_agents
for prod, dct_status_supply in firm.dct_prod_up_prod_stat.items()
if not all(stat == 'N' for stat, _ in dct_status_supply['p_stat'])
for status, ts in dct_status_supply['p_stat']
]
# 批量保存结果到数据库
if lst_result_info:
db_session.bulk_save_objects(lst_result_info)
db_session.commit()
# 更新样本状态为已完成
self.sample.is_done_flag = 1
self.sample.computer_name = platform.node()
self.sample.stop_t = self.int_stop_ts
db_session.commit()

114
orm.py Normal file
View File

@ -0,0 +1,114 @@
# -*- coding: utf-8 -*-
from sqlalchemy import create_engine, inspect, Inspector
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import (Column, Integer, DECIMAL, String, ForeignKey,
BigInteger, DateTime, PickleType, Boolean, Text)
from sqlalchemy.sql import func
from sqlalchemy.orm import relationship, Session
from sqlalchemy.pool import NullPool
import yaml
with open('conf_db.yaml') as file:
dct_conf_db_all = yaml.full_load(file)
is_local_db = dct_conf_db_all['is_local_db']
if is_local_db:
dct_conf_db = dct_conf_db_all['local']
else:
dct_conf_db = dct_conf_db_all['remote']
with open('conf_db_prefix.yaml') as file:
dct_conf_db_prefix = yaml.full_load(file)
db_name_prefix = dct_conf_db_prefix['db_name_prefix']
str_login = 'mysql://{}:{}@{}:{}/{}'.format(dct_conf_db['user_name'],
dct_conf_db['password'],
dct_conf_db['address'],
dct_conf_db['port'],
dct_conf_db['db_name'])
# print('DB is {}:{}/{}'.format(dct_conf_db['address'], dct_conf_db['port'], dct_conf_db['db_name']))
# must be null pool to avoid connection lost error
engine = create_engine(str_login, poolclass=NullPool)
connection = engine.connect()
ins: Inspector = inspect(engine)
Base = declarative_base()
db_session = Session(bind=engine)
class Experiment(Base):
__tablename__ = f"{db_name_prefix}_experiment"
id = Column(Integer, primary_key=True, autoincrement=True)
idx_scenario = Column(Integer, nullable=False)
idx_init_removal = Column(Integer, nullable=False)
# fixed parameters
n_sample = Column(Integer, nullable=False)
n_iter = Column(Integer, nullable=False)
# variables
dct_lst_init_disrupt_firm_prod = Column(PickleType, nullable=False)
g_bom = Column(Text(4294000000), nullable=False)
n_max_trial = Column(Integer, nullable=False)
prf_size = Column(Boolean, nullable=False)
prf_conn = Column(Boolean, nullable=False)
cap_limit_prob_type = Column(String(16), nullable=False)
cap_limit_level = Column(DECIMAL(8, 4), nullable=False)
diff_new_conn = Column(DECIMAL(8, 4), nullable=False)
remove_t = Column(Integer, nullable=False)
netw_prf_n = Column(Integer, nullable=False)
sample = relationship(
'Sample', back_populates='experiment', lazy='dynamic')
def __repr__(self):
return f'<Experiment: {self.id}>'
class Sample(Base):
__tablename__ = f"{db_name_prefix}_sample"
id = Column(Integer, primary_key=True, autoincrement=True)
e_id = Column(Integer, ForeignKey('{}.id'.format(
f"{db_name_prefix}_experiment")), nullable=False)
idx_sample = Column(Integer, nullable=False)
seed = Column(BigInteger, nullable=False)
# -1, waiting; 0, running; 1, done
is_done_flag = Column(Integer, nullable=False)
computer_name = Column(String(64), nullable=True)
ts_done = Column(DateTime(timezone=True), onupdate=func.now())
stop_t = Column(Integer, nullable=True)
g_firm = Column(Text(4294000000), nullable=True)
experiment = relationship(
'Experiment', back_populates='sample', uselist=False)
result = relationship('Result', back_populates='sample', lazy='dynamic')
def __repr__(self):
return f'<Sample id: {self.id}>'
class Result(Base):
__tablename__ = f"{db_name_prefix}_result"
id = Column(Integer, primary_key=True, autoincrement=True)
s_id = Column(Integer, ForeignKey('{}.id'.format(
f"{db_name_prefix}_sample")), nullable=False)
id_firm = Column(String(20), nullable=False)
id_product = Column(String(20), nullable=False)
ts = Column(Integer, nullable=False)
status = Column(String(5), nullable=False)
sample = relationship('Sample', back_populates='result', uselist=False)
def __repr__(self):
return f'<Product id: {self.id}>'
if __name__ == '__main__':
Base.metadata.drop_all()
Base.metadata.create_all()

View File

@ -0,0 +1,37 @@
idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts
0,7,true,true,uniform,5.0000,0.3000,3,3,23.0118,12.0966,10.9208,2.3949,2.2627,2.1432,17.9712,5.2286,4.2429
1,5,true,true,uniform,10.0000,0.5000,5,2,23.6147,12.3651,11.1158,2.4783,2.3402,2.2084,19.7716,5.7192,6.3352
2,3,true,true,uniform,15.0000,0.7000,7,1,23.8131,12.4362,11.1758,2.4971,2.3571,2.2202,20.4802,5.9284,8.3554
3,7,true,true,uniform,5.0000,0.3000,3,2,23.1015,12.1215,10.9832,2.3998,2.2672,2.1533,18.0282,5.2069,4.2573
4,5,true,true,uniform,10.0000,0.5000,5,1,23.6531,12.3587,11.1335,2.4798,2.3497,2.2006,19.9303,5.7653,6.3297
5,3,true,true,uniform,15.0000,0.7000,7,3,23.8027,12.4206,11.1808,2.4855,2.3440,2.2122,20.4480,5.8914,8.3417
6,7,true,true,normal,5.0000,0.5000,7,3,23.4065,12.2442,11.0676,2.4274,2.2884,2.1657,18.1994,5.1383,8.0524
7,5,true,true,normal,10.0000,0.7000,3,2,23.6724,12.3846,11.1478,2.4882,2.3560,2.2069,20.2585,5.9105,4.4891
8,3,true,true,normal,15.0000,0.3000,5,1,23.8876,12.4705,11.1949,2.5128,2.3771,2.2267,21.0337,6.1638,6.4699
9,7,true,false,uniform,5.0000,0.7000,5,3,23.2158,12.1493,11.0038,2.3922,2.2522,2.1448,17.9762,5.0893,6.0396
10,5,true,false,uniform,10.0000,0.3000,7,2,23.6446,12.3714,11.1451,2.4928,2.3562,2.2019,19.7577,5.6941,8.2886
11,3,true,false,uniform,15.0000,0.5000,3,1,23.6482,12.3693,11.1299,2.4926,2.3526,2.2126,20.4114,5.9598,4.5032
12,7,true,false,normal,10.0000,0.7000,3,1,23.5992,12.3406,11.1282,2.4888,2.3499,2.2080,20.1606,5.8764,4.4855
13,5,true,false,normal,15.0000,0.3000,5,3,23.9067,12.4726,11.2128,2.5158,2.3754,2.2349,21.1000,6.1884,6.4971
14,3,true,false,normal,5.0000,0.5000,7,2,23.3505,12.2381,11.0554,2.4291,2.2880,2.1638,18.0404,5.1278,8.0322
15,7,true,false,normal,10.0000,0.7000,5,3,23.7579,12.4185,11.1566,2.4926,2.3531,2.2097,20.3048,5.9067,6.4044
16,5,true,false,normal,15.0000,0.3000,7,2,23.9366,12.4882,11.2240,2.5103,2.3691,2.2349,21.0512,6.1764,8.4371
17,3,true,false,normal,5.0000,0.5000,3,1,23.2221,12.1836,11.0362,2.4251,2.2859,2.1636,18.0977,5.1811,4.2701
18,7,false,true,normal,10.0000,0.3000,7,1,23.7865,12.4352,11.1884,2.5154,2.3762,2.2331,20.4339,5.9379,8.4168
19,5,false,true,normal,15.0000,0.5000,3,3,23.8531,12.4417,11.1977,2.5074,2.3680,2.2295,21.1398,6.2040,4.5716
20,3,false,true,normal,5.0000,0.7000,5,2,23.3455,12.2257,11.0417,2.4463,2.3107,2.1834,18.1867,5.1787,6.1583
21,7,false,true,normal,10.0000,0.5000,7,1,23.7661,12.4257,11.1758,2.5011,2.3621,2.2171,20.3103,5.9265,8.3764
22,5,false,true,normal,15.0000,0.7000,3,3,23.8400,12.4474,11.1958,2.5232,2.3811,2.2309,21.0886,6.1686,4.5758
23,3,false,true,normal,5.0000,0.3000,5,2,23.3817,12.2242,11.0653,2.4457,2.3145,2.1733,18.2724,5.2284,6.1867
24,7,false,true,uniform,15.0000,0.5000,3,2,23.6771,12.3848,11.1518,2.4878,2.3501,2.2158,20.4269,5.9520,4.4966
25,5,false,true,uniform,5.0000,0.7000,5,1,23.2255,12.1838,11.0057,2.4267,2.2954,2.1646,17.9164,5.0859,6.0693
26,3,false,true,uniform,10.0000,0.3000,7,3,23.6568,12.3453,11.1349,2.4752,2.3366,2.1968,19.8899,5.7495,8.2448
27,7,false,false,normal,15.0000,0.5000,5,2,23.9008,12.4680,11.2055,2.5185,2.3842,2.2324,21.0758,6.1787,6.4714
28,5,false,false,normal,5.0000,0.7000,7,1,23.3699,12.2162,11.0539,2.4375,2.3057,2.1688,18.2183,5.1737,8.0625
29,3,false,false,normal,10.0000,0.3000,3,3,23.7661,12.3863,11.1735,2.5082,2.3703,2.2261,20.4958,6.0171,4.5486
30,7,false,false,uniform,15.0000,0.7000,7,2,23.7343,12.4002,11.1552,2.4928,2.3499,2.2208,20.3861,5.9198,8.3425
31,5,false,false,uniform,5.0000,0.3000,3,1,23.2069,12.1539,11.0173,2.4261,2.2949,2.1531,18.1564,5.2531,4.2924
32,3,false,false,uniform,10.0000,0.5000,5,3,23.6545,12.3541,11.1293,2.4773,2.3457,2.1979,19.8152,5.7312,6.3025
33,7,false,false,uniform,15.0000,0.3000,5,1,23.7966,12.4309,11.1808,2.5093,2.3741,2.2253,20.4918,5.9808,6.4246
34,5,false,false,uniform,5.0000,0.5000,7,3,23.2701,12.1920,11.0091,2.4265,2.2916,2.1562,17.9686,5.0829,7.9861
35,3,false,false,uniform,10.0000,0.7000,3,2,23.5493,12.3280,11.1103,2.4846,2.3451,2.1924,19.7385,5.7232,4.4177
1 idx_scenario n_max_trial prf_size prf_conn cap_limit_prob_type cap_limit_level diff_new_conn remove_t netw_prf_n mean_count_firm_prod mean_count_firm mean_count_prod mean_max_ts_firm_prod mean_max_ts_firm mean_max_ts_prod mean_n_remove_firm_prod mean_n_all_prod_remove_firm mean_end_ts
2 0 7 true true uniform 5.0000 0.3000 3 3 23.0118 12.0966 10.9208 2.3949 2.2627 2.1432 17.9712 5.2286 4.2429
3 1 5 true true uniform 10.0000 0.5000 5 2 23.6147 12.3651 11.1158 2.4783 2.3402 2.2084 19.7716 5.7192 6.3352
4 2 3 true true uniform 15.0000 0.7000 7 1 23.8131 12.4362 11.1758 2.4971 2.3571 2.2202 20.4802 5.9284 8.3554
5 3 7 true true uniform 5.0000 0.3000 3 2 23.1015 12.1215 10.9832 2.3998 2.2672 2.1533 18.0282 5.2069 4.2573
6 4 5 true true uniform 10.0000 0.5000 5 1 23.6531 12.3587 11.1335 2.4798 2.3497 2.2006 19.9303 5.7653 6.3297
7 5 3 true true uniform 15.0000 0.7000 7 3 23.8027 12.4206 11.1808 2.4855 2.3440 2.2122 20.4480 5.8914 8.3417
8 6 7 true true normal 5.0000 0.5000 7 3 23.4065 12.2442 11.0676 2.4274 2.2884 2.1657 18.1994 5.1383 8.0524
9 7 5 true true normal 10.0000 0.7000 3 2 23.6724 12.3846 11.1478 2.4882 2.3560 2.2069 20.2585 5.9105 4.4891
10 8 3 true true normal 15.0000 0.3000 5 1 23.8876 12.4705 11.1949 2.5128 2.3771 2.2267 21.0337 6.1638 6.4699
11 9 7 true false uniform 5.0000 0.7000 5 3 23.2158 12.1493 11.0038 2.3922 2.2522 2.1448 17.9762 5.0893 6.0396
12 10 5 true false uniform 10.0000 0.3000 7 2 23.6446 12.3714 11.1451 2.4928 2.3562 2.2019 19.7577 5.6941 8.2886
13 11 3 true false uniform 15.0000 0.5000 3 1 23.6482 12.3693 11.1299 2.4926 2.3526 2.2126 20.4114 5.9598 4.5032
14 12 7 true false normal 10.0000 0.7000 3 1 23.5992 12.3406 11.1282 2.4888 2.3499 2.2080 20.1606 5.8764 4.4855
15 13 5 true false normal 15.0000 0.3000 5 3 23.9067 12.4726 11.2128 2.5158 2.3754 2.2349 21.1000 6.1884 6.4971
16 14 3 true false normal 5.0000 0.5000 7 2 23.3505 12.2381 11.0554 2.4291 2.2880 2.1638 18.0404 5.1278 8.0322
17 15 7 true false normal 10.0000 0.7000 5 3 23.7579 12.4185 11.1566 2.4926 2.3531 2.2097 20.3048 5.9067 6.4044
18 16 5 true false normal 15.0000 0.3000 7 2 23.9366 12.4882 11.2240 2.5103 2.3691 2.2349 21.0512 6.1764 8.4371
19 17 3 true false normal 5.0000 0.5000 3 1 23.2221 12.1836 11.0362 2.4251 2.2859 2.1636 18.0977 5.1811 4.2701
20 18 7 false true normal 10.0000 0.3000 7 1 23.7865 12.4352 11.1884 2.5154 2.3762 2.2331 20.4339 5.9379 8.4168
21 19 5 false true normal 15.0000 0.5000 3 3 23.8531 12.4417 11.1977 2.5074 2.3680 2.2295 21.1398 6.2040 4.5716
22 20 3 false true normal 5.0000 0.7000 5 2 23.3455 12.2257 11.0417 2.4463 2.3107 2.1834 18.1867 5.1787 6.1583
23 21 7 false true normal 10.0000 0.5000 7 1 23.7661 12.4257 11.1758 2.5011 2.3621 2.2171 20.3103 5.9265 8.3764
24 22 5 false true normal 15.0000 0.7000 3 3 23.8400 12.4474 11.1958 2.5232 2.3811 2.2309 21.0886 6.1686 4.5758
25 23 3 false true normal 5.0000 0.3000 5 2 23.3817 12.2242 11.0653 2.4457 2.3145 2.1733 18.2724 5.2284 6.1867
26 24 7 false true uniform 15.0000 0.5000 3 2 23.6771 12.3848 11.1518 2.4878 2.3501 2.2158 20.4269 5.9520 4.4966
27 25 5 false true uniform 5.0000 0.7000 5 1 23.2255 12.1838 11.0057 2.4267 2.2954 2.1646 17.9164 5.0859 6.0693
28 26 3 false true uniform 10.0000 0.3000 7 3 23.6568 12.3453 11.1349 2.4752 2.3366 2.1968 19.8899 5.7495 8.2448
29 27 7 false false normal 15.0000 0.5000 5 2 23.9008 12.4680 11.2055 2.5185 2.3842 2.2324 21.0758 6.1787 6.4714
30 28 5 false false normal 5.0000 0.7000 7 1 23.3699 12.2162 11.0539 2.4375 2.3057 2.1688 18.2183 5.1737 8.0625
31 29 3 false false normal 10.0000 0.3000 3 3 23.7661 12.3863 11.1735 2.5082 2.3703 2.2261 20.4958 6.0171 4.5486
32 30 7 false false uniform 15.0000 0.7000 7 2 23.7343 12.4002 11.1552 2.4928 2.3499 2.2208 20.3861 5.9198 8.3425
33 31 5 false false uniform 5.0000 0.3000 3 1 23.2069 12.1539 11.0173 2.4261 2.2949 2.1531 18.1564 5.2531 4.2924
34 32 3 false false uniform 10.0000 0.5000 5 3 23.6545 12.3541 11.1293 2.4773 2.3457 2.1979 19.8152 5.7312 6.3025
35 33 7 false false uniform 15.0000 0.3000 5 1 23.7966 12.4309 11.1808 2.5093 2.3741 2.2253 20.4918 5.9808 6.4246
36 34 5 false false uniform 5.0000 0.5000 7 3 23.2701 12.1920 11.0091 2.4265 2.2916 2.1562 17.9686 5.0829 7.9861
37 35 3 false false uniform 10.0000 0.7000 3 2 23.5493 12.3280 11.1103 2.4846 2.3451 2.1924 19.7385 5.7232 4.4177

View File

@ -0,0 +1,10 @@
Unnamed: 0.1,Unnamed: 0,mean_end_ts,mean_n_remove_firm_prod,mean_max_ts_firm_prod,mean_count_firm_prod
p1,n_sourcing,0.319,0.145,0.043,0.186
p2,is_prf_size,0.607,0.608,0.005,0.111
p3,n_max_trial,0.003,0.135,0.0,0.0
p4,is_prf_conn,0.504,0.567,0.001,0.0
p5,ex_cap_type,0.403,0.667,0.329,0.444
p6,ex_cap_para,0.0,0.0,0.0,0.0
p7,prob_new_conn,0.017,0.334,0.01,0.007
p8,t_max_trial,0.0,0.014,0.939,0.1
p9,SamplingMethod,2.614e-34,2.27e-35,1.12e-63,6.47e-64
1 Unnamed: 0.1 Unnamed: 0 mean_end_ts mean_n_remove_firm_prod mean_max_ts_firm_prod mean_count_firm_prod
2 p1 n_sourcing 0.319 0.145 0.043 0.186
3 p2 is_prf_size 0.607 0.608 0.005 0.111
4 p3 n_max_trial 0.003 0.135 0.0 0.0
5 p4 is_prf_conn 0.504 0.567 0.001 0.0
6 p5 ex_cap_type 0.403 0.667 0.329 0.444
7 p6 ex_cap_para 0.0 0.0 0.0 0.0
8 p7 prob_new_conn 0.017 0.334 0.01 0.007
9 p8 t_max_trial 0.0 0.014 0.939 0.1
10 p9 SamplingMethod 2.614e-34 2.27e-35 1.12e-63 6.47e-64

View File

@ -0,0 +1,22 @@
自变量,level,系统恢复用时R1,产业-企业边累计扰乱次数R2,产业-企业边最大传导深度R3,产业-企业边断裂总数R4
采购策略P1,三供应商,3.549,62.11,1.715,22.14
采购策略P1,双供应商,3.743,62.43,1.759,21.71
采购策略P1,单供应商,3.668,62.21,1.736,22.17
是否规模偏好P2,倾向,3.681,62.13,1.715,22.06
是否规模偏好P2,不倾向,3.627,62.37,1.758,21.96
最大尝试次数P3,高,3.47,61.08,1.636,21.85
最大尝试次数P3,中,3.552,62.08,1.742,21.86
最大尝试次数P3,低,3.939,63.58,1.832,22.31
是否已有连接偏好P4,倾向,3.619,61.95,1.711,21.95
是否已有连接偏好P4,不倾向,3.689,62.55,1.762,22.07
额外产能分布P5,均匀分布,3.698,62.19,1.73,21.96
额外产能分布P5,正态分布,3.61,62.3,1.743,22.05
额外产能分布参数P6,高,2.949,61.48,1.808,12.41
额外产能分布参数P6,中,3.787,62.2,1.661,22.87
额外产能分布参数P6,低,4.224,63.06,1.741,30.75
新供应关系构成概率P7,低,3.882,62.41,1.749,22.2
新供应关系构成概率P7,中,3.543,62.44,1.756,22.01
新供应关系构成概率P7,高,3.535,61.9,1.705,21.82
最大尝试时间步P8,低,2.601,62.03,1.738,22.47
最大尝试时间步P8,中,3.656,62.31,1.733,21.78
最大尝试时间步P8,高,4.704,62.4,1.738,21.78
1 自变量 level 系统恢复用时R1 产业-企业边累计扰乱次数R2 产业-企业边最大传导深度R3 产业-企业边断裂总数R4
2 采购策略P1 三供应商 3.549 62.11 1.715 22.14
3 采购策略P1 双供应商 3.743 62.43 1.759 21.71
4 采购策略P1 单供应商 3.668 62.21 1.736 22.17
5 是否规模偏好P2 倾向 3.681 62.13 1.715 22.06
6 是否规模偏好P2 不倾向 3.627 62.37 1.758 21.96
7 最大尝试次数P3 3.47 61.08 1.636 21.85
8 最大尝试次数P3 3.552 62.08 1.742 21.86
9 最大尝试次数P3 3.939 63.58 1.832 22.31
10 是否已有连接偏好P4 倾向 3.619 61.95 1.711 21.95
11 是否已有连接偏好P4 不倾向 3.689 62.55 1.762 22.07
12 额外产能分布P5 均匀分布 3.698 62.19 1.73 21.96
13 额外产能分布P5 正态分布 3.61 62.3 1.743 22.05
14 额外产能分布参数P6 2.949 61.48 1.808 12.41
15 额外产能分布参数P6 3.787 62.2 1.661 22.87
16 额外产能分布参数P6 4.224 63.06 1.741 30.75
17 新供应关系构成概率P7 3.882 62.41 1.749 22.2
18 新供应关系构成概率P7 3.543 62.44 1.756 22.01
19 新供应关系构成概率P7 3.535 61.9 1.705 21.82
20 最大尝试时间步P8 2.601 62.03 1.738 22.47
21 最大尝试时间步P8 3.656 62.31 1.733 21.78
22 最大尝试时间步P8 4.704 62.4 1.738 21.78

View File

@ -0,0 +1,37 @@
idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts,
0,7,1,1,uniform,5.0000,0.3000,3,3,59.6916,15.7589,13.3347,1.5063,1.5032,1.3842,12.3074,1.5379,2.0400
1,5,1,1,uniform,10.0000,0.5000,5,2,61.8937,17.1126,13.8095,1.7284,1.7263,1.6042,22.7779,2.9611,3.7432
2,3,1,1,uniform,15.0000,0.7000,7,1,63.9568,18.2253,14.2779,1.8263,1.8221,1.7347,30.9263,3.7842,5.6253
3,7,1,1,uniform,5.0000,0.3000,3,2,59.5811,15.7474,13.3168,1.4958,1.4937,1.3884,12.8358,1.4621,2.0221
4,5,1,1,uniform,10.0000,0.5000,5,1,61.8200,17.0116,13.8053,1.7095,1.7084,1.6032,22.5474,2.9579,3.6811
5,3,1,1,uniform,15.0000,0.7000,7,3,63.8821,18.2547,14.2432,1.8421,1.8305,1.7295,30.9474,3.7411,5.6632
6,7,1,1,normal,5.0000,0.5000,7,3,59.9116,15.7516,13.3316,1.4905,1.4884,1.3674,12.2463,1.3326,3.1600
7,5,1,1,normal,10.0000,0.7000,3,2,61.3095,16.8326,13.7716,1.7011,1.7011,1.6011,22.4779,2.9642,2.4916
8,3,1,1,normal,15.0000,0.3000,5,1,63.6568,18.1316,14.2358,1.8253,1.8232,1.7242,31.1253,3.7400,4.3474
9,7,1,0,uniform,5.0000,0.7000,5,3,59.7158,15.6811,13.3000,1.4600,1.4568,1.3537,12.4063,1.3400,2.5316
10,5,1,0,uniform,10.0000,0.3000,7,2,63.0063,17.6695,14.0432,1.8063,1.8053,1.6747,22.6916,3.0042,5.1126
11,3,1,0,uniform,15.0000,0.5000,3,1,63.6779,18.3842,14.3547,1.8621,1.8600,1.7621,31.3663,4.0253,2.9632
12,7,1,0,normal,10.0000,0.7000,3,1,60.6295,16.3884,13.5811,1.6179,1.6147,1.5147,22.5221,2.7800,2.3495
13,5,1,0,normal,15.0000,0.3000,5,3,63.3484,18.0042,14.2074,1.8316,1.8263,1.7232,30.6379,3.7747,4.2979
14,3,1,0,normal,5.0000,0.5000,7,2,64.0737,18.3684,14.3000,1.8505,1.8484,1.7589,11.4789,1.1663,4.1400
15,7,1,0,normal,10.0000,0.7000,5,3,61.0337,16.5684,13.6053,1.6358,1.6347,1.5074,22.7474,2.8937,3.5147
16,5,1,0,normal,15.0000,0.3000,7,2,63.4747,18.0568,14.1989,1.8347,1.8305,1.7263,30.4063,3.7989,5.7295
17,3,1,0,normal,5.0000,0.5000,3,1,63.7158,18.2863,14.2958,1.8547,1.8537,1.7579,14.6568,2.1432,2.8368
18,7,0,1,normal,10.0000,0.3000,7,1,61.2326,16.6442,13.6789,1.6705,1.6684,1.5495,22.5453,2.8379,4.7474
19,5,0,1,normal,15.0000,0.5000,3,3,62.3863,17.4684,13.9905,1.7874,1.7853,1.6705,31.1558,3.8189,2.7926
20,3,0,1,normal,5.0000,0.7000,5,2,62.8305,17.6074,14.0811,1.7705,1.7695,1.6768,11.7621,1.2474,3.2684
21,7,0,1,normal,10.0000,0.5000,7,1,61.1832,16.5389,13.6874,1.6505,1.6484,1.5337,22.8484,2.8147,4.7326
22,5,0,1,normal,15.0000,0.7000,3,3,62.3305,17.5337,14.0011,1.7768,1.7747,1.6495,30.6705,3.7832,2.7316
23,3,0,1,normal,5.0000,0.3000,5,2,62.8821,17.6916,14.0905,1.7821,1.7821,1.6895,12.2158,1.3442,3.3484
24,7,0,1,uniform,15.0000,0.5000,3,2,62.2463,17.4084,13.9789,1.7979,1.7958,1.6674,30.6842,3.7126,2.7589
25,5,0,1,uniform,5.0000,0.7000,5,1,60.9453,16.4442,13.6316,1.6274,1.6263,1.5032,12.2347,1.2663,2.7368
26,3,0,1,uniform,10.0000,0.3000,7,3,63.3400,17.8968,14.1147,1.8084,1.8074,1.6937,22.7768,3.0442,5.2442
27,7,0,0,normal,15.0000,0.5000,5,2,62.6505,17.5074,14.0032,1.7811,1.7800,1.6758,30.0211,3.6116,4.1263
28,5,0,0,normal,5.0000,0.7000,7,1,60.9200,16.5126,13.6168,1.6368,1.6358,1.5168,11.9432,1.2495,3.3305
29,3,0,0,normal,10.0000,0.3000,3,3,63.9074,18.4432,14.3916,1.8811,1.8779,1.7789,25.4905,3.4789,3.0295
30,7,0,0,uniform,15.0000,0.7000,7,2,62.2442,17.2747,13.9400,1.7400,1.7358,1.6253,30.5084,3.6589,5.4421
31,5,0,0,uniform,5.0000,0.3000,3,1,61.9147,17.2211,13.9347,1.7558,1.7526,1.6453,12.8168,1.6895,2.4516
32,3,0,0,uniform,10.0000,0.5000,5,3,64.1074,18.3579,14.3558,1.8579,1.8568,1.7505,22.2800,3.0684,4.0642
33,7,0,0,uniform,15.0000,0.3000,5,1,62.8737,17.5600,14.0642,1.7895,1.7874,1.6684,30.5453,3.6695,4.2147
34,5,0,0,uniform,5.0000,0.5000,7,3,61.6337,16.9042,13.7632,1.7032,1.7011,1.5716,12.0011,1.2263,3.5221
35,3,0,0,uniform,10.0000,0.7000,3,2,62.9663,17.9737,14.2221,1.8221,1.8211,1.7211,22.6979,3.1600,2.7389
1 idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts,
2 0,7,1,1,uniform,5.0000,0.3000,3,3,59.6916,15.7589,13.3347,1.5063,1.5032,1.3842,12.3074,1.5379,2.0400
3 1,5,1,1,uniform,10.0000,0.5000,5,2,61.8937,17.1126,13.8095,1.7284,1.7263,1.6042,22.7779,2.9611,3.7432
4 2,3,1,1,uniform,15.0000,0.7000,7,1,63.9568,18.2253,14.2779,1.8263,1.8221,1.7347,30.9263,3.7842,5.6253
5 3,7,1,1,uniform,5.0000,0.3000,3,2,59.5811,15.7474,13.3168,1.4958,1.4937,1.3884,12.8358,1.4621,2.0221
6 4,5,1,1,uniform,10.0000,0.5000,5,1,61.8200,17.0116,13.8053,1.7095,1.7084,1.6032,22.5474,2.9579,3.6811
7 5,3,1,1,uniform,15.0000,0.7000,7,3,63.8821,18.2547,14.2432,1.8421,1.8305,1.7295,30.9474,3.7411,5.6632
8 6,7,1,1,normal,5.0000,0.5000,7,3,59.9116,15.7516,13.3316,1.4905,1.4884,1.3674,12.2463,1.3326,3.1600
9 7,5,1,1,normal,10.0000,0.7000,3,2,61.3095,16.8326,13.7716,1.7011,1.7011,1.6011,22.4779,2.9642,2.4916
10 8,3,1,1,normal,15.0000,0.3000,5,1,63.6568,18.1316,14.2358,1.8253,1.8232,1.7242,31.1253,3.7400,4.3474
11 9,7,1,0,uniform,5.0000,0.7000,5,3,59.7158,15.6811,13.3000,1.4600,1.4568,1.3537,12.4063,1.3400,2.5316
12 10,5,1,0,uniform,10.0000,0.3000,7,2,63.0063,17.6695,14.0432,1.8063,1.8053,1.6747,22.6916,3.0042,5.1126
13 11,3,1,0,uniform,15.0000,0.5000,3,1,63.6779,18.3842,14.3547,1.8621,1.8600,1.7621,31.3663,4.0253,2.9632
14 12,7,1,0,normal,10.0000,0.7000,3,1,60.6295,16.3884,13.5811,1.6179,1.6147,1.5147,22.5221,2.7800,2.3495
15 13,5,1,0,normal,15.0000,0.3000,5,3,63.3484,18.0042,14.2074,1.8316,1.8263,1.7232,30.6379,3.7747,4.2979
16 14,3,1,0,normal,5.0000,0.5000,7,2,64.0737,18.3684,14.3000,1.8505,1.8484,1.7589,11.4789,1.1663,4.1400
17 15,7,1,0,normal,10.0000,0.7000,5,3,61.0337,16.5684,13.6053,1.6358,1.6347,1.5074,22.7474,2.8937,3.5147
18 16,5,1,0,normal,15.0000,0.3000,7,2,63.4747,18.0568,14.1989,1.8347,1.8305,1.7263,30.4063,3.7989,5.7295
19 17,3,1,0,normal,5.0000,0.5000,3,1,63.7158,18.2863,14.2958,1.8547,1.8537,1.7579,14.6568,2.1432,2.8368
20 18,7,0,1,normal,10.0000,0.3000,7,1,61.2326,16.6442,13.6789,1.6705,1.6684,1.5495,22.5453,2.8379,4.7474
21 19,5,0,1,normal,15.0000,0.5000,3,3,62.3863,17.4684,13.9905,1.7874,1.7853,1.6705,31.1558,3.8189,2.7926
22 20,3,0,1,normal,5.0000,0.7000,5,2,62.8305,17.6074,14.0811,1.7705,1.7695,1.6768,11.7621,1.2474,3.2684
23 21,7,0,1,normal,10.0000,0.5000,7,1,61.1832,16.5389,13.6874,1.6505,1.6484,1.5337,22.8484,2.8147,4.7326
24 22,5,0,1,normal,15.0000,0.7000,3,3,62.3305,17.5337,14.0011,1.7768,1.7747,1.6495,30.6705,3.7832,2.7316
25 23,3,0,1,normal,5.0000,0.3000,5,2,62.8821,17.6916,14.0905,1.7821,1.7821,1.6895,12.2158,1.3442,3.3484
26 24,7,0,1,uniform,15.0000,0.5000,3,2,62.2463,17.4084,13.9789,1.7979,1.7958,1.6674,30.6842,3.7126,2.7589
27 25,5,0,1,uniform,5.0000,0.7000,5,1,60.9453,16.4442,13.6316,1.6274,1.6263,1.5032,12.2347,1.2663,2.7368
28 26,3,0,1,uniform,10.0000,0.3000,7,3,63.3400,17.8968,14.1147,1.8084,1.8074,1.6937,22.7768,3.0442,5.2442
29 27,7,0,0,normal,15.0000,0.5000,5,2,62.6505,17.5074,14.0032,1.7811,1.7800,1.6758,30.0211,3.6116,4.1263
30 28,5,0,0,normal,5.0000,0.7000,7,1,60.9200,16.5126,13.6168,1.6368,1.6358,1.5168,11.9432,1.2495,3.3305
31 29,3,0,0,normal,10.0000,0.3000,3,3,63.9074,18.4432,14.3916,1.8811,1.8779,1.7789,25.4905,3.4789,3.0295
32 30,7,0,0,uniform,15.0000,0.7000,7,2,62.2442,17.2747,13.9400,1.7400,1.7358,1.6253,30.5084,3.6589,5.4421
33 31,5,0,0,uniform,5.0000,0.3000,3,1,61.9147,17.2211,13.9347,1.7558,1.7526,1.6453,12.8168,1.6895,2.4516
34 32,3,0,0,uniform,10.0000,0.5000,5,3,64.1074,18.3579,14.3558,1.8579,1.8568,1.7505,22.2800,3.0684,4.0642
35 33,7,0,0,uniform,15.0000,0.3000,5,1,62.8737,17.5600,14.0642,1.7895,1.7874,1.6684,30.5453,3.6695,4.2147
36 34,5,0,0,uniform,5.0000,0.5000,7,3,61.6337,16.9042,13.7632,1.7032,1.7011,1.5716,12.0011,1.2263,3.5221
37 35,3,0,0,uniform,10.0000,0.7000,3,2,62.9663,17.9737,14.2221,1.8221,1.8211,1.7211,22.6979,3.1600,2.7389

23927
output_result/risk/count.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@ -0,0 +1,710 @@
up_id_product,down_id_product,count
46,52,8413
48,52,8375
48,55,8345
46,55,8328
45,52,8274
44,52,8248
49,52,8246
49,55,8197
44,55,8172
45,55,8151
47,52,8077
47,55,8016
55,99,7248
52,99,7163
50,99,7085
54,99,7066
51,99,7031
53,99,7010
54,55,5570
54,52,5539
53,55,5524
52,55,5462
51,55,5441
50,55,5440
53,52,5438
55,52,5379
51,52,5312
50,52,5296
55,55,5254
52,52,5177
45,99,5036
46,99,4997
48,99,4976
44,99,4960
49,99,4941
55,95,4906
52,95,4895
47,99,4812
53,95,4643
51,95,4628
50,95,4578
54,95,4539
95,99,3147
47,95,3060
44,95,3028
46,95,3026
48,95,3021
49,95,3013
45,95,2937
46,43,2771
48,43,2748
45,43,2740
49,43,2738
44,43,2721
47,43,2720
49,39,2461
45,39,2460
48,39,2452
44,39,2427
46,39,2409
47,39,2378
54,43,2375
53,43,2366
55,43,2364
50,43,2338
52,43,2328
51,43,2327
44,40,2305
45,40,2296
48,40,2289
46,40,2287
49,40,2265
47,40,2257
47,38,2240
49,38,2224
45,38,2214
46,38,2200
54,39,2195
53,39,2184
48,38,2183
55,39,2177
51,39,2162
50,39,2156
44,38,2154
52,39,2147
48,90,2100
49,90,2092
45,90,2088
46,90,2077
47,90,2062
44,90,2054
94,99,2051
93,99,2019
91,99,1996
54,40,1977
50,40,1976
53,40,1973
55,40,1966
51,40,1964
52,40,1937
54,38,1928
50,38,1910
51,38,1900
53,38,1893
55,38,1888
52,38,1883
42,55,1788
41,52,1779
95,55,1734
95,52,1729
42,52,1717
41,55,1699
53,90,1629
55,90,1628
54,90,1623
51,90,1619
52,90,1606
50,90,1597
94,52,1207
92,99,1179
94,55,1143
94,95,1124
91,52,1084
93,55,1073
93,52,1065
91,55,1057
93,95,1005
91,95,1005
90,99,997
95,95,798
41,99,778
42,99,765
92,95,670
92,55,644
92,52,625
95,43,563
95,39,543
90,95,523
95,40,495
42,95,464
95,38,453
41,95,441
90,52,419
95,90,407
41,43,403
20,55,402
42,43,394
90,55,390
20,52,384
41,39,381
42,39,376
41,40,345
41,38,341
7,95,340
42,40,334
42,38,332
60,55,318
60,52,316
64,55,308
67,55,300
42,90,299
23,52,299
25,52,297
65,55,296
23,55,296
71,55,296
65,52,295
25,55,294
64,52,292
67,52,290
22,52,288
22,55,287
41,90,284
71,52,282
18,52,259
15,48,258
27,49,255
18,46,252
28,51,250
27,47,250
68,55,250
29,55,250
63,55,250
72,51,249
41,53,249
43,53,249
38,53,249
69,55,249
23,49,249
42,53,249
39,53,249
23,45,248
69,52,248
68,52,248
94,43,248
20,44,248
65,45,248
40,51,247
41,51,247
38,51,247
39,51,247
71,54,247
15,46,247
63,50,247
43,51,247
42,51,247
71,51,246
62,53,246
25,44,246
39,55,246
72,50,246
67,48,246
40,53,246
43,55,246
68,51,246
40,55,246
38,55,246
18,44,246
69,51,246
23,50,246
65,46,246
20,48,246
67,49,245
72,54,245
22,50,245
33,47,245
62,51,244
68,54,244
64,46,244
23,44,244
67,51,244
18,48,244
23,47,244
69,53,244
19,52,243
65,47,243
60,45,243
65,54,243
67,44,243
28,52,243
67,54,243
60,54,243
71,49,243
20,46,243
19,51,242
20,54,242
63,53,242
65,48,242
62,52,242
64,54,242
25,49,242
71,45,242
27,46,242
69,50,241
27,55,241
67,46,241
64,50,241
64,45,241
18,45,241
60,44,241
20,49,241
19,55,241
19,54,241
63,52,241
60,48,240
25,53,240
25,50,240
15,49,240
28,54,240
72,55,240
60,49,240
27,48,240
20,53,240
19,50,240
23,46,240
40,52,239
60,53,239
38,52,239
67,47,239
39,52,239
35,49,239
68,50,239
64,53,239
43,52,239
22,53,239
20,47,238
25,51,238
65,53,238
15,44,238
18,49,238
60,47,238
28,53,238
27,51,238
29,50,238
27,53,238
29,53,238
68,53,237
67,53,237
23,48,237
67,50,237
34,48,237
72,52,237
32,46,237
27,50,237
63,51,236
19,53,236
23,54,236
71,48,236
25,45,236
15,47,236
22,48,236
20,50,236
27,44,236
22,46,235
20,51,235
38,50,235
41,50,235
39,50,235
64,51,235
22,44,235
67,45,235
40,50,235
42,50,235
28,50,235
27,54,235
27,52,235
43,50,235
60,50,234
18,55,234
25,47,234
25,48,234
65,49,234
62,54,233
64,49,233
62,55,233
71,46,233
65,50,233
72,53,233
22,47,233
22,45,233
29,51,233
15,45,232
65,44,232
22,49,232
18,47,232
64,48,232
71,53,232
23,53,231
27,45,231
20,45,231
63,54,231
28,55,231
22,54,231
22,51,230
71,47,230
60,51,230
60,46,230
62,50,230
25,46,229
25,54,229
29,54,228
50,45,227
23,51,227
48,45,227
49,45,227
55,45,227
51,45,227
54,45,227
52,45,227
7,45,227
53,45,227
47,45,227
65,51,227
71,44,227
64,44,227
45,45,227
46,45,227
44,45,227
46,44,226
7,44,226
51,44,226
45,44,226
50,44,226
55,44,226
47,44,226
48,44,226
44,44,226
49,44,226
53,44,226
54,44,226
52,44,226
69,54,225
29,52,224
64,47,224
39,54,222
41,54,222
38,54,222
42,54,222
43,54,222
40,54,222
71,50,221
91,40,208
93,43,208
91,43,204
93,39,199
93,40,198
94,40,190
91,39,189
94,38,184
93,38,182
91,38,182
94,39,181
90,43,158
90,39,130
90,38,130
92,43,130
90,40,127
91,90,124
94,90,120
93,90,120
20,95,118
23,95,113
92,40,109
92,39,107
92,38,107
15,95,97
19,95,90
62,95,90
28,95,90
9,95,88
18,95,88
7,90,86
64,95,86
66,95,83
60,95,79
24,95,79
72,95,78
22,99,74
31,95,73
8,95,73
17,94,72
28,94,71
67,95,71
27,95,70
17,99,70
66,91,69
63,95,69
9,94,69
18,94,69
28,99,69
59,94,69
24,94,68
31,93,68
65,99,68
11,94,68
29,99,68
23,94,68
66,93,67
70,91,67
28,93,67
10,93,67
8,91,67
70,93,67
15,55,66
10,94,66
66,94,66
64,99,66
59,93,66
31,94,66
18,93,65
62,94,65
11,93,65
8,94,65
59,99,65
9,93,65
62,91,64
24,91,64
25,99,64
19,94,64
18,91,64
10,91,64
61,93,64
61,91,64
8,93,64
9,91,64
24,93,64
31,91,63
43,95,63
39,95,63
19,93,63
61,94,62
59,91,62
11,91,62
38,95,62
71,99,62
40,95,62
23,93,62
65,94,61
20,93,61
23,91,61
79,99,61
10,99,61
20,94,61
29,95,60
71,95,60
19,91,60
70,95,60
17,95,60
65,95,60
25,95,60
61,95,60
22,95,60
10,95,60
59,95,60
62,93,59
17,93,59
92,90,59
70,94,58
20,91,58
15,52,58
28,91,58
65,91,57
17,91,57
62,99,57
18,99,57
65,93,55
70,99,55
69,95,55
11,95,53
8,99,52
68,95,52
97,95,50
9,99,49
30,95,49
74,95,49
26,95,49
19,99,49
73,95,49
37,95,48
16,95,48
13,95,48
12,95,48
49,53,45
23,90,45
52,53,45
65,90,40
18,92,40
25,41,40
28,92,39
46,53,39
44,53,39
48,53,39
11,92,39
59,92,39
60,90,39
71,42,39
31,92,39
62,92,38
66,99,38
70,92,38
18,41,38
17,92,38
23,42,38
64,42,38
15,42,38
31,42,38
9,92,38
24,99,38
65,92,38
25,90,37
65,43,37
67,90,37
71,90,37
23,92,37
65,41,37
67,42,37
20,92,37
20,42,37
24,92,37
45,53,36
71,43,36
20,90,36
50,53,36
31,41,36
60,41,36
53,53,36
10,92,36
61,92,36
25,40,36
19,92,36
67,41,36
8,92,36
22,43,35
25,43,35
9,90,35
7,39,35
22,90,35
20,41,35
18,42,35
61,90,35
71,39,34
71,41,34
7,40,34
23,41,34
66,92,34
22,42,34
60,42,34
25,38,33
55,53,33
25,42,33
65,39,33
54,53,33
65,38,33
22,41,33
66,90,33
47,53,33
51,53,33
65,42,33
7,43,33
22,39,33
64,41,33
7,38,32
36,41,32
15,99,32
18,90,32
15,41,32
65,40,32
59,90,31
18,43,31
18,40,31
17,90,31
71,40,31
8,90,31
19,90,30
11,90,30
28,90,30
24,90,30
90,90,30
62,90,30
22,38,30
71,38,29
10,90,29
22,40,28
63,99,28
68,90,28
25,39,27
18,38,26
67,99,25
64,39,24
18,39,24
31,90,24
15,90,23
72,99,22
60,43,21
99,99,20
20,99,18
23,99,18
64,38,17
38,99,17
60,39,17
23,43,17
60,99,16
64,43,15
20,39,15
31,52,14
67,39,14
43,99,13
60,40,13
99,53,12
64,90,12
23,40,12
20,43,12
27,90,12
64,40,11
60,38,11
27,43,11
40,99,10
31,55,10
39,99,10
15,43,10
27,40,10
23,38,9
20,40,9
20,38,9
95,53,9
23,39,8
33,95,7
69,99,7
90,53,6
15,40,6
61,99,6
67,43,6
31,99,5
15,38,5
15,39,4
99,95,4
27,39,4
67,40,4
67,38,4
33,38,3
13,99,2
27,99,2
35,95,2
32,95,1
11,99,1
32,43,1
68,99,1
34,95,1
73,99,1
1 up_id_product down_id_product count
2 46 52 8413
3 48 52 8375
4 48 55 8345
5 46 55 8328
6 45 52 8274
7 44 52 8248
8 49 52 8246
9 49 55 8197
10 44 55 8172
11 45 55 8151
12 47 52 8077
13 47 55 8016
14 55 99 7248
15 52 99 7163
16 50 99 7085
17 54 99 7066
18 51 99 7031
19 53 99 7010
20 54 55 5570
21 54 52 5539
22 53 55 5524
23 52 55 5462
24 51 55 5441
25 50 55 5440
26 53 52 5438
27 55 52 5379
28 51 52 5312
29 50 52 5296
30 55 55 5254
31 52 52 5177
32 45 99 5036
33 46 99 4997
34 48 99 4976
35 44 99 4960
36 49 99 4941
37 55 95 4906
38 52 95 4895
39 47 99 4812
40 53 95 4643
41 51 95 4628
42 50 95 4578
43 54 95 4539
44 95 99 3147
45 47 95 3060
46 44 95 3028
47 46 95 3026
48 48 95 3021
49 49 95 3013
50 45 95 2937
51 46 43 2771
52 48 43 2748
53 45 43 2740
54 49 43 2738
55 44 43 2721
56 47 43 2720
57 49 39 2461
58 45 39 2460
59 48 39 2452
60 44 39 2427
61 46 39 2409
62 47 39 2378
63 54 43 2375
64 53 43 2366
65 55 43 2364
66 50 43 2338
67 52 43 2328
68 51 43 2327
69 44 40 2305
70 45 40 2296
71 48 40 2289
72 46 40 2287
73 49 40 2265
74 47 40 2257
75 47 38 2240
76 49 38 2224
77 45 38 2214
78 46 38 2200
79 54 39 2195
80 53 39 2184
81 48 38 2183
82 55 39 2177
83 51 39 2162
84 50 39 2156
85 44 38 2154
86 52 39 2147
87 48 90 2100
88 49 90 2092
89 45 90 2088
90 46 90 2077
91 47 90 2062
92 44 90 2054
93 94 99 2051
94 93 99 2019
95 91 99 1996
96 54 40 1977
97 50 40 1976
98 53 40 1973
99 55 40 1966
100 51 40 1964
101 52 40 1937
102 54 38 1928
103 50 38 1910
104 51 38 1900
105 53 38 1893
106 55 38 1888
107 52 38 1883
108 42 55 1788
109 41 52 1779
110 95 55 1734
111 95 52 1729
112 42 52 1717
113 41 55 1699
114 53 90 1629
115 55 90 1628
116 54 90 1623
117 51 90 1619
118 52 90 1606
119 50 90 1597
120 94 52 1207
121 92 99 1179
122 94 55 1143
123 94 95 1124
124 91 52 1084
125 93 55 1073
126 93 52 1065
127 91 55 1057
128 93 95 1005
129 91 95 1005
130 90 99 997
131 95 95 798
132 41 99 778
133 42 99 765
134 92 95 670
135 92 55 644
136 92 52 625
137 95 43 563
138 95 39 543
139 90 95 523
140 95 40 495
141 42 95 464
142 95 38 453
143 41 95 441
144 90 52 419
145 95 90 407
146 41 43 403
147 20 55 402
148 42 43 394
149 90 55 390
150 20 52 384
151 41 39 381
152 42 39 376
153 41 40 345
154 41 38 341
155 7 95 340
156 42 40 334
157 42 38 332
158 60 55 318
159 60 52 316
160 64 55 308
161 67 55 300
162 42 90 299
163 23 52 299
164 25 52 297
165 65 55 296
166 23 55 296
167 71 55 296
168 65 52 295
169 25 55 294
170 64 52 292
171 67 52 290
172 22 52 288
173 22 55 287
174 41 90 284
175 71 52 282
176 18 52 259
177 15 48 258
178 27 49 255
179 18 46 252
180 28 51 250
181 27 47 250
182 68 55 250
183 29 55 250
184 63 55 250
185 72 51 249
186 41 53 249
187 43 53 249
188 38 53 249
189 69 55 249
190 23 49 249
191 42 53 249
192 39 53 249
193 23 45 248
194 69 52 248
195 68 52 248
196 94 43 248
197 20 44 248
198 65 45 248
199 40 51 247
200 41 51 247
201 38 51 247
202 39 51 247
203 71 54 247
204 15 46 247
205 63 50 247
206 43 51 247
207 42 51 247
208 71 51 246
209 62 53 246
210 25 44 246
211 39 55 246
212 72 50 246
213 67 48 246
214 40 53 246
215 43 55 246
216 68 51 246
217 40 55 246
218 38 55 246
219 18 44 246
220 69 51 246
221 23 50 246
222 65 46 246
223 20 48 246
224 67 49 245
225 72 54 245
226 22 50 245
227 33 47 245
228 62 51 244
229 68 54 244
230 64 46 244
231 23 44 244
232 67 51 244
233 18 48 244
234 23 47 244
235 69 53 244
236 19 52 243
237 65 47 243
238 60 45 243
239 65 54 243
240 67 44 243
241 28 52 243
242 67 54 243
243 60 54 243
244 71 49 243
245 20 46 243
246 19 51 242
247 20 54 242
248 63 53 242
249 65 48 242
250 62 52 242
251 64 54 242
252 25 49 242
253 71 45 242
254 27 46 242
255 69 50 241
256 27 55 241
257 67 46 241
258 64 50 241
259 64 45 241
260 18 45 241
261 60 44 241
262 20 49 241
263 19 55 241
264 19 54 241
265 63 52 241
266 60 48 240
267 25 53 240
268 25 50 240
269 15 49 240
270 28 54 240
271 72 55 240
272 60 49 240
273 27 48 240
274 20 53 240
275 19 50 240
276 23 46 240
277 40 52 239
278 60 53 239
279 38 52 239
280 67 47 239
281 39 52 239
282 35 49 239
283 68 50 239
284 64 53 239
285 43 52 239
286 22 53 239
287 20 47 238
288 25 51 238
289 65 53 238
290 15 44 238
291 18 49 238
292 60 47 238
293 28 53 238
294 27 51 238
295 29 50 238
296 27 53 238
297 29 53 238
298 68 53 237
299 67 53 237
300 23 48 237
301 67 50 237
302 34 48 237
303 72 52 237
304 32 46 237
305 27 50 237
306 63 51 236
307 19 53 236
308 23 54 236
309 71 48 236
310 25 45 236
311 15 47 236
312 22 48 236
313 20 50 236
314 27 44 236
315 22 46 235
316 20 51 235
317 38 50 235
318 41 50 235
319 39 50 235
320 64 51 235
321 22 44 235
322 67 45 235
323 40 50 235
324 42 50 235
325 28 50 235
326 27 54 235
327 27 52 235
328 43 50 235
329 60 50 234
330 18 55 234
331 25 47 234
332 25 48 234
333 65 49 234
334 62 54 233
335 64 49 233
336 62 55 233
337 71 46 233
338 65 50 233
339 72 53 233
340 22 47 233
341 22 45 233
342 29 51 233
343 15 45 232
344 65 44 232
345 22 49 232
346 18 47 232
347 64 48 232
348 71 53 232
349 23 53 231
350 27 45 231
351 20 45 231
352 63 54 231
353 28 55 231
354 22 54 231
355 22 51 230
356 71 47 230
357 60 51 230
358 60 46 230
359 62 50 230
360 25 46 229
361 25 54 229
362 29 54 228
363 50 45 227
364 23 51 227
365 48 45 227
366 49 45 227
367 55 45 227
368 51 45 227
369 54 45 227
370 52 45 227
371 7 45 227
372 53 45 227
373 47 45 227
374 65 51 227
375 71 44 227
376 64 44 227
377 45 45 227
378 46 45 227
379 44 45 227
380 46 44 226
381 7 44 226
382 51 44 226
383 45 44 226
384 50 44 226
385 55 44 226
386 47 44 226
387 48 44 226
388 44 44 226
389 49 44 226
390 53 44 226
391 54 44 226
392 52 44 226
393 69 54 225
394 29 52 224
395 64 47 224
396 39 54 222
397 41 54 222
398 38 54 222
399 42 54 222
400 43 54 222
401 40 54 222
402 71 50 221
403 91 40 208
404 93 43 208
405 91 43 204
406 93 39 199
407 93 40 198
408 94 40 190
409 91 39 189
410 94 38 184
411 93 38 182
412 91 38 182
413 94 39 181
414 90 43 158
415 90 39 130
416 90 38 130
417 92 43 130
418 90 40 127
419 91 90 124
420 94 90 120
421 93 90 120
422 20 95 118
423 23 95 113
424 92 40 109
425 92 39 107
426 92 38 107
427 15 95 97
428 19 95 90
429 62 95 90
430 28 95 90
431 9 95 88
432 18 95 88
433 7 90 86
434 64 95 86
435 66 95 83
436 60 95 79
437 24 95 79
438 72 95 78
439 22 99 74
440 31 95 73
441 8 95 73
442 17 94 72
443 28 94 71
444 67 95 71
445 27 95 70
446 17 99 70
447 66 91 69
448 63 95 69
449 9 94 69
450 18 94 69
451 28 99 69
452 59 94 69
453 24 94 68
454 31 93 68
455 65 99 68
456 11 94 68
457 29 99 68
458 23 94 68
459 66 93 67
460 70 91 67
461 28 93 67
462 10 93 67
463 8 91 67
464 70 93 67
465 15 55 66
466 10 94 66
467 66 94 66
468 64 99 66
469 59 93 66
470 31 94 66
471 18 93 65
472 62 94 65
473 11 93 65
474 8 94 65
475 59 99 65
476 9 93 65
477 62 91 64
478 24 91 64
479 25 99 64
480 19 94 64
481 18 91 64
482 10 91 64
483 61 93 64
484 61 91 64
485 8 93 64
486 9 91 64
487 24 93 64
488 31 91 63
489 43 95 63
490 39 95 63
491 19 93 63
492 61 94 62
493 59 91 62
494 11 91 62
495 38 95 62
496 71 99 62
497 40 95 62
498 23 93 62
499 65 94 61
500 20 93 61
501 23 91 61
502 79 99 61
503 10 99 61
504 20 94 61
505 29 95 60
506 71 95 60
507 19 91 60
508 70 95 60
509 17 95 60
510 65 95 60
511 25 95 60
512 61 95 60
513 22 95 60
514 10 95 60
515 59 95 60
516 62 93 59
517 17 93 59
518 92 90 59
519 70 94 58
520 20 91 58
521 15 52 58
522 28 91 58
523 65 91 57
524 17 91 57
525 62 99 57
526 18 99 57
527 65 93 55
528 70 99 55
529 69 95 55
530 11 95 53
531 8 99 52
532 68 95 52
533 97 95 50
534 9 99 49
535 30 95 49
536 74 95 49
537 26 95 49
538 19 99 49
539 73 95 49
540 37 95 48
541 16 95 48
542 13 95 48
543 12 95 48
544 49 53 45
545 23 90 45
546 52 53 45
547 65 90 40
548 18 92 40
549 25 41 40
550 28 92 39
551 46 53 39
552 44 53 39
553 48 53 39
554 11 92 39
555 59 92 39
556 60 90 39
557 71 42 39
558 31 92 39
559 62 92 38
560 66 99 38
561 70 92 38
562 18 41 38
563 17 92 38
564 23 42 38
565 64 42 38
566 15 42 38
567 31 42 38
568 9 92 38
569 24 99 38
570 65 92 38
571 25 90 37
572 65 43 37
573 67 90 37
574 71 90 37
575 23 92 37
576 65 41 37
577 67 42 37
578 20 92 37
579 20 42 37
580 24 92 37
581 45 53 36
582 71 43 36
583 20 90 36
584 50 53 36
585 31 41 36
586 60 41 36
587 53 53 36
588 10 92 36
589 61 92 36
590 25 40 36
591 19 92 36
592 67 41 36
593 8 92 36
594 22 43 35
595 25 43 35
596 9 90 35
597 7 39 35
598 22 90 35
599 20 41 35
600 18 42 35
601 61 90 35
602 71 39 34
603 71 41 34
604 7 40 34
605 23 41 34
606 66 92 34
607 22 42 34
608 60 42 34
609 25 38 33
610 55 53 33
611 25 42 33
612 65 39 33
613 54 53 33
614 65 38 33
615 22 41 33
616 66 90 33
617 47 53 33
618 51 53 33
619 65 42 33
620 7 43 33
621 22 39 33
622 64 41 33
623 7 38 32
624 36 41 32
625 15 99 32
626 18 90 32
627 15 41 32
628 65 40 32
629 59 90 31
630 18 43 31
631 18 40 31
632 17 90 31
633 71 40 31
634 8 90 31
635 19 90 30
636 11 90 30
637 28 90 30
638 24 90 30
639 90 90 30
640 62 90 30
641 22 38 30
642 71 38 29
643 10 90 29
644 22 40 28
645 63 99 28
646 68 90 28
647 25 39 27
648 18 38 26
649 67 99 25
650 64 39 24
651 18 39 24
652 31 90 24
653 15 90 23
654 72 99 22
655 60 43 21
656 99 99 20
657 20 99 18
658 23 99 18
659 64 38 17
660 38 99 17
661 60 39 17
662 23 43 17
663 60 99 16
664 64 43 15
665 20 39 15
666 31 52 14
667 67 39 14
668 43 99 13
669 60 40 13
670 99 53 12
671 64 90 12
672 23 40 12
673 20 43 12
674 27 90 12
675 64 40 11
676 60 38 11
677 27 43 11
678 40 99 10
679 31 55 10
680 39 99 10
681 15 43 10
682 27 40 10
683 23 38 9
684 20 40 9
685 20 38 9
686 95 53 9
687 23 39 8
688 33 95 7
689 69 99 7
690 90 53 6
691 15 40 6
692 61 99 6
693 67 43 6
694 31 99 5
695 15 38 5
696 15 39 4
697 99 95 4
698 27 39 4
699 67 40 4
700 67 38 4
701 33 38 3
702 13 99 2
703 27 99 2
704 35 95 2
705 32 95 1
706 11 99 1
707 32 43 1
708 68 99 1
709 34 95 1
710 73 99 1

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB

View File

@ -0,0 +1,155 @@
id_firm,count
2313177432,3832
4067555184,3742
12098344,3347
37873062,1425
1104420298,1217
3339921892,1049
814834276,1047
22324879,1031
2325170042,928
10437056,876
2541265952,492
27169556,433
3346538900,431
185356903,331
777299215,306
331545755,295
350343208,283
3193516458,279
41454763,276
584019624,276
1266556718,259
22751149,255
18107611,178
2311838590,30
1452048,30
29954548,29
5849940,20
557266995,20
453289520,20
3312358902,20
2350111843,20
2326956863,20
413876805,20
930767828,16
15482118,12
27085933,12
9278530,12
314846874,10
3352578733,10
3344266702,10
3118917053,10
3120341363,10
3384021594,10
3221578464,10
3270918801,10
3164072929,10
331450699,10
3227189464,10
3306665331,10
3269940677,10
3274238529,10
333499553,10
420984285,10
354328758,10
366828854,10
892652617,10
888478182,10
80169705,10
80158773,10
78979697,10
784491064,10
762165453,10
7299120,10
708388905,10
695879282,10
648145286,10
631103677,10
61066955,10
578803019,10
4379631621,10
423388486,10
300186799,10
4208851809,10
4076786740,10
39894253,10
367669349,10
3077450214,10
1,10
1033972427,10
2343704209,10
2333843479,10
2329836516,10
2327979389,10
2316430101,10
23131812,10
2311907103,10
2311639124,10
2311352797,10
2311337085,10
2309668026,10
216898035,10
203314437,10
169978927,10
1679596339,10
16116663,10
1555364428,10
142823313,10
1270747834,10
1194436218,10
11807506,10
11169556957,10
104671744,10
1044103384,10
2340606811,10
2319266522,10
2475874929,10
2349349655,10
287006714,10
2351592628,10
27075840,10
2349616974,10
24673506,10
2353020496,10
2357759100,10
2961715231,10
2349076526,10
2348894245,10
2989649772,10
25147774,10
2347561020,10
146491012,9
3312199997,8
1237811030,8
3440374619,8
343932526,8
25685135,8
504638253,8
2311676659,8
4315536490,8
2314301730,8
891649,8
2342515031,8
519195163,7
29223617,7
29452962,7
33171435,7
3157495460,6
774611690,6
1092796483,6
951988821,6
2358215091,6
2553848709,6
24610687,6
60716715,6
591975267,6
2310296367,6
5,6
3006753238,6
2322658897,6
2329395956,6
2342518227,6
972774,6
4209347174,3
33822284,3
1 id_firm count
2 2313177432 3832
3 4067555184 3742
4 12098344 3347
5 37873062 1425
6 1104420298 1217
7 3339921892 1049
8 814834276 1047
9 22324879 1031
10 2325170042 928
11 10437056 876
12 2541265952 492
13 27169556 433
14 3346538900 431
15 185356903 331
16 777299215 306
17 331545755 295
18 350343208 283
19 3193516458 279
20 41454763 276
21 584019624 276
22 1266556718 259
23 22751149 255
24 18107611 178
25 2311838590 30
26 1452048 30
27 29954548 29
28 5849940 20
29 557266995 20
30 453289520 20
31 3312358902 20
32 2350111843 20
33 2326956863 20
34 413876805 20
35 930767828 16
36 15482118 12
37 27085933 12
38 9278530 12
39 314846874 10
40 3352578733 10
41 3344266702 10
42 3118917053 10
43 3120341363 10
44 3384021594 10
45 3221578464 10
46 3270918801 10
47 3164072929 10
48 331450699 10
49 3227189464 10
50 3306665331 10
51 3269940677 10
52 3274238529 10
53 333499553 10
54 420984285 10
55 354328758 10
56 366828854 10
57 892652617 10
58 888478182 10
59 80169705 10
60 80158773 10
61 78979697 10
62 784491064 10
63 762165453 10
64 7299120 10
65 708388905 10
66 695879282 10
67 648145286 10
68 631103677 10
69 61066955 10
70 578803019 10
71 4379631621 10
72 423388486 10
73 300186799 10
74 4208851809 10
75 4076786740 10
76 39894253 10
77 367669349 10
78 3077450214 10
79 1 10
80 1033972427 10
81 2343704209 10
82 2333843479 10
83 2329836516 10
84 2327979389 10
85 2316430101 10
86 23131812 10
87 2311907103 10
88 2311639124 10
89 2311352797 10
90 2311337085 10
91 2309668026 10
92 216898035 10
93 203314437 10
94 169978927 10
95 1679596339 10
96 16116663 10
97 1555364428 10
98 142823313 10
99 1270747834 10
100 1194436218 10
101 11807506 10
102 11169556957 10
103 104671744 10
104 1044103384 10
105 2340606811 10
106 2319266522 10
107 2475874929 10
108 2349349655 10
109 287006714 10
110 2351592628 10
111 27075840 10
112 2349616974 10
113 24673506 10
114 2353020496 10
115 2357759100 10
116 2961715231 10
117 2349076526 10
118 2348894245 10
119 2989649772 10
120 25147774 10
121 2347561020 10
122 146491012 9
123 3312199997 8
124 1237811030 8
125 3440374619 8
126 343932526 8
127 25685135 8
128 504638253 8
129 2311676659 8
130 4315536490 8
131 2314301730 8
132 891649 8
133 2342515031 8
134 519195163 7
135 29223617 7
136 29452962 7
137 33171435 7
138 3157495460 6
139 774611690 6
140 1092796483 6
141 951988821 6
142 2358215091 6
143 2553848709 6
144 24610687 6
145 60716715 6
146 591975267 6
147 2310296367 6
148 5 6
149 3006753238 6
150 2322658897 6
151 2329395956 6
152 2342518227 6
153 972774 6
154 4209347174 3
155 33822284 3

View File

@ -0,0 +1,210 @@
id_firm,id_product,count
814834276,95,1047
3339921892,95,1041
22324879,95,1011
2325170042,99,928
10437056,99,876
2541265952,90,492
27169556,90,433
3346538900,90,431
2313177432,52,431
4067555184,52,426
2313177432,53,415
2313177432,55,411
4067555184,55,402
4067555184,53,402
2313177432,51,398
2313177432,54,397
4067555184,54,397
4067555184,50,395
2313177432,50,394
12098344,52,385
4067555184,51,383
12098344,53,377
12098344,54,368
12098344,50,361
12098344,55,354
12098344,51,346
185356903,93,331
777299215,94,306
331545755,92,295
350343208,91,283
3193516458,92,279
584019624,93,276
41454763,92,276
1266556718,91,259
22751149,93,255
2313177432,48,238
2313177432,49,237
4067555184,48,234
37873062,91,234
2313177432,46,233
1104420298,39,228
4067555184,46,225
2313177432,47,225
2313177432,45,223
4067555184,47,222
1104420298,40,222
2313177432,44,220
4067555184,49,219
37873062,39,219
37873062,38,218
4067555184,45,215
1104420298,43,214
4067555184,44,212
37873062,40,206
12098344,47,202
1104420298,38,202
37873062,43,200
12098344,49,196
37873062,41,192
12098344,48,191
12098344,45,189
12098344,46,186
1104420298,41,184
12098344,44,182
18107611,94,178
1104420298,42,167
37873062,42,156
557266995,36,20
1452048,30,20
2326956863,34,20
453289520,37,20
2350111843,11,20
2311838590,97,20
5849940,26,20
29954548,10,19
930767828,9,16
9278530,9,12
15482118,9,12
27085933,9,12
3312358902,59,10
3221578464,9,10
3227189464,27,10
3269940677,28,10
3270918801,32,10
3274238529,23,10
3306665331,11,10
3384021594,67,10
333499553,12,10
3352578733,29,10
892652617,19,10
3312358902,61,10
3344266702,10,10
331450699,17,10
366828854,29,10
354328758,62,10
420984285,18,10
367669349,20,10
4067555184,7,10
423388486,66,10
413876805,67,10
4379631621,73,10
3164072929,63,10
78979697,74,10
578803019,10,10
80158773,69,10
413876805,60,10
4076786740,17,10
80169705,61,10
7299120,32,10
888478182,31,10
762165453,72,10
61066955,23,10
631103677,15,10
648145286,35,10
695879282,33,10
4208851809,16,10
39894253,25,10
708388905,10,10
784491064,10,10
1,10,10
11169556957,70,10
1194436218,15,10
2347561020,68,10
2343704209,69,10
2340606811,28,10
2333843479,70,10
2329836516,18,10
11807506,60,10
2327979389,13,10
314846874,11,10
2319266522,15,10
2316430101,74,10
23131812,11,10
2313177432,7,10
2311907103,79,10
2311838590,11,10
2311639124,72,10
2349076526,68,10
2311352797,71,10
2311337085,9,10
12098344,7,10
2309668026,12,10
22324879,71,10
22324879,63,10
216898035,13,10
1270747834,25,10
142823313,20,10
203314437,22,10
169978927,8,10
1679596339,66,10
16116663,10,10
1555364428,19,10
2348894245,8,10
1452048,11,10
2349349655,11,10
104671744,16,10
3120341363,11,10
3118917053,35,10
3077450214,65,10
300186799,10,10
29954548,27,10
2989649772,64,10
2961715231,31,10
287006714,25,10
2349616974,73,10
27075840,65,10
1044103384,62,10
1033972427,59,10
2357759100,33,10
2353020496,24,10
25147774,64,10
2475874929,24,10
24673506,10,10
2351592628,10,10
146491012,79,9
504638253,9,8
891649,9,8
2342515031,10,8
2314301730,33,8
343932526,10,8
1237811030,9,8
3312199997,10,8
4315536490,12,8
2311676659,9,8
25685135,9,8
3440374619,9,8
3339921892,10,8
519195163,9,7
29452962,9,7
33171435,9,7
29223617,9,7
1092796483,9,6
951988821,9,6
774611690,9,6
3157495460,9,6
2322658897,9,6
60716715,9,6
591975267,10,6
5,10,6
2310296367,9,6
2329395956,10,6
2342518227,9,6
2358215091,9,6
24610687,9,6
2553848709,9,6
3006753238,9,6
972774,9,6
4209347174,9,3
33822284,9,3
1 id_firm id_product count
2 814834276 95 1047
3 3339921892 95 1041
4 22324879 95 1011
5 2325170042 99 928
6 10437056 99 876
7 2541265952 90 492
8 27169556 90 433
9 3346538900 90 431
10 2313177432 52 431
11 4067555184 52 426
12 2313177432 53 415
13 2313177432 55 411
14 4067555184 55 402
15 4067555184 53 402
16 2313177432 51 398
17 2313177432 54 397
18 4067555184 54 397
19 4067555184 50 395
20 2313177432 50 394
21 12098344 52 385
22 4067555184 51 383
23 12098344 53 377
24 12098344 54 368
25 12098344 50 361
26 12098344 55 354
27 12098344 51 346
28 185356903 93 331
29 777299215 94 306
30 331545755 92 295
31 350343208 91 283
32 3193516458 92 279
33 584019624 93 276
34 41454763 92 276
35 1266556718 91 259
36 22751149 93 255
37 2313177432 48 238
38 2313177432 49 237
39 4067555184 48 234
40 37873062 91 234
41 2313177432 46 233
42 1104420298 39 228
43 4067555184 46 225
44 2313177432 47 225
45 2313177432 45 223
46 4067555184 47 222
47 1104420298 40 222
48 2313177432 44 220
49 4067555184 49 219
50 37873062 39 219
51 37873062 38 218
52 4067555184 45 215
53 1104420298 43 214
54 4067555184 44 212
55 37873062 40 206
56 12098344 47 202
57 1104420298 38 202
58 37873062 43 200
59 12098344 49 196
60 37873062 41 192
61 12098344 48 191
62 12098344 45 189
63 12098344 46 186
64 1104420298 41 184
65 12098344 44 182
66 18107611 94 178
67 1104420298 42 167
68 37873062 42 156
69 557266995 36 20
70 1452048 30 20
71 2326956863 34 20
72 453289520 37 20
73 2350111843 11 20
74 2311838590 97 20
75 5849940 26 20
76 29954548 10 19
77 930767828 9 16
78 9278530 9 12
79 15482118 9 12
80 27085933 9 12
81 3312358902 59 10
82 3221578464 9 10
83 3227189464 27 10
84 3269940677 28 10
85 3270918801 32 10
86 3274238529 23 10
87 3306665331 11 10
88 3384021594 67 10
89 333499553 12 10
90 3352578733 29 10
91 892652617 19 10
92 3312358902 61 10
93 3344266702 10 10
94 331450699 17 10
95 366828854 29 10
96 354328758 62 10
97 420984285 18 10
98 367669349 20 10
99 4067555184 7 10
100 423388486 66 10
101 413876805 67 10
102 4379631621 73 10
103 3164072929 63 10
104 78979697 74 10
105 578803019 10 10
106 80158773 69 10
107 413876805 60 10
108 4076786740 17 10
109 80169705 61 10
110 7299120 32 10
111 888478182 31 10
112 762165453 72 10
113 61066955 23 10
114 631103677 15 10
115 648145286 35 10
116 695879282 33 10
117 4208851809 16 10
118 39894253 25 10
119 708388905 10 10
120 784491064 10 10
121 1 10 10
122 11169556957 70 10
123 1194436218 15 10
124 2347561020 68 10
125 2343704209 69 10
126 2340606811 28 10
127 2333843479 70 10
128 2329836516 18 10
129 11807506 60 10
130 2327979389 13 10
131 314846874 11 10
132 2319266522 15 10
133 2316430101 74 10
134 23131812 11 10
135 2313177432 7 10
136 2311907103 79 10
137 2311838590 11 10
138 2311639124 72 10
139 2349076526 68 10
140 2311352797 71 10
141 2311337085 9 10
142 12098344 7 10
143 2309668026 12 10
144 22324879 71 10
145 22324879 63 10
146 216898035 13 10
147 1270747834 25 10
148 142823313 20 10
149 203314437 22 10
150 169978927 8 10
151 1679596339 66 10
152 16116663 10 10
153 1555364428 19 10
154 2348894245 8 10
155 1452048 11 10
156 2349349655 11 10
157 104671744 16 10
158 3120341363 11 10
159 3118917053 35 10
160 3077450214 65 10
161 300186799 10 10
162 29954548 27 10
163 2989649772 64 10
164 2961715231 31 10
165 287006714 25 10
166 2349616974 73 10
167 27075840 65 10
168 1044103384 62 10
169 1033972427 59 10
170 2357759100 33 10
171 2353020496 24 10
172 25147774 64 10
173 2475874929 24 10
174 24673506 10 10
175 2351592628 10 10
176 146491012 79 9
177 504638253 9 8
178 891649 9 8
179 2342515031 10 8
180 2314301730 33 8
181 343932526 10 8
182 1237811030 9 8
183 3312199997 10 8
184 4315536490 12 8
185 2311676659 9 8
186 25685135 9 8
187 3440374619 9 8
188 3339921892 10 8
189 519195163 9 7
190 29452962 9 7
191 33171435 9 7
192 29223617 9 7
193 1092796483 9 6
194 951988821 9 6
195 774611690 9 6
196 3157495460 9 6
197 2322658897 9 6
198 60716715 9 6
199 591975267 10 6
200 5 10 6
201 2310296367 9 6
202 2329395956 10 6
203 2342518227 9 6
204 2358215091 9 6
205 24610687 9 6
206 2553848709 9 6
207 3006753238 9 6
208 972774 9 6
209 4209347174 9 3
210 33822284 9 3

View File

@ -0,0 +1,73 @@
id_product,count
95,3099
99,1804
90,1356
52,1242
53,1194
55,1167
54,1162
50,1150
51,1127
93,862
92,850
91,776
48,663
49,652
47,649
46,644
45,627
44,614
94,484
39,447
40,428
38,420
43,414
41,376
42,323
9,232
10,159
11,90
7,30
15,30
25,30
12,28
33,28
37,20
8,20
69,20
30,20
70,20
71,20
72,20
73,20
74,20
29,20
67,20
17,20
16,20
28,20
13,20
27,20
97,20
68,20
66,20
36,20
65,20
35,20
34,20
32,20
31,20
24,20
23,20
20,20
26,20
18,20
59,20
60,20
61,20
62,20
63,20
64,20
19,20
79,19
22,10
1 id_product count
2 95 3099
3 99 1804
4 90 1356
5 52 1242
6 53 1194
7 55 1167
8 54 1162
9 50 1150
10 51 1127
11 93 862
12 92 850
13 91 776
14 48 663
15 49 652
16 47 649
17 46 644
18 45 627
19 44 614
20 94 484
21 39 447
22 40 428
23 38 420
24 43 414
25 41 376
26 42 323
27 9 232
28 10 159
29 11 90
30 7 30
31 15 30
32 25 30
33 12 28
34 33 28
35 37 20
36 8 20
37 69 20
38 30 20
39 70 20
40 71 20
41 72 20
42 73 20
43 74 20
44 29 20
45 67 20
46 17 20
47 16 20
48 28 20
49 13 20
50 27 20
51 97 20
52 68 20
53 66 20
54 36 20
55 65 20
56 35 20
57 34 20
58 32 20
59 31 20
60 24 20
61 23 20
62 20 20
63 26 20
64 18 20
65 59 20
66 60 20
67 61 20
68 62 20
69 63 20
70 64 20
71 19 20
72 79 19
73 22 10

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 MiB

32
product.py Normal file
View File

@ -0,0 +1,32 @@
from mesa import Agent
class ProductAgent(Agent):
def __init__(self, unique_id, model, name, type2, production_ratio):
# 调用超类的 __init__ 方法
super().__init__(unique_id, model)
# 初始化代理属性
self.name = name
self.product_network = self.model.product_network
self.production_ratio = production_ratio
if type2 == 0:
self.is_equip = True
else:
self.is_mater = True
# depreciation ratio 折旧比值
# self.depreciation ratio
def a_successors(self):
# 从 product_network 中找到当前代理的后继节点
successors = list(self.model.product_network.successors(self.unique_id))
# 通过 unique_id 查找后继节点对应的代理对象,从 self.product_agents 中获取
return [agent for agent in self.model.product_agents if agent.unique_id in successors]
def a_predecessors(self):
# 找到当前代理的前驱节点
predecessors = list(self.model.product_network.predecessors(self.unique_id))
# 通过 unique_id 查找前驱节点对应的代理对象,直接从 self.product_agents 列表中获取
return [agent for agent in self.model.product_agents if agent.unique_id in predecessors]

55
requirements.txt Normal file
View File

@ -0,0 +1,55 @@
agentpy==0.1.5
alabaster==0.7.13
Babel==2.12.1
certifi @ file:///C:/b/abs_85o_6fm0se/croot/certifi_1671487778835/work/certifi
charset-normalizer==3.0.1
colorama==0.4.6
cycler==0.11.0
decorator==5.1.1
dill==0.3.6
docutils==0.19
greenlet==2.0.2
idna==3.4
imagesize==1.4.1
importlib-metadata==6.0.0
Jinja2==3.1.2
joblib==1.2.0
kiwisolver==1.4.4
MarkupSafe==2.1.2
matplotlib==3.3.4
matplotlib-inline==0.1.6
multiprocess==0.70.14
mysqlclient==2.1.1
networkx==2.5
numpy==1.20.3
numpydoc==1.1.0
packaging==23.0
pandas==1.4.1
pandas-stubs==1.2.0.39
Pillow==9.4.0
Pygments==2.14.0
pygraphviz @ file:///C:/Users/ASUS/Downloads/pygraphviz-1.9-cp38-cp38-win_amd64.whl
pyparsing==3.0.9
python-dateutil==2.8.2
pytz==2022.7.1
PyYAML==6.0
requests==2.28.2
SALib==1.4.7
scipy==1.10.1
six==1.16.0
snowballstemmer==2.2.0
Sphinx==6.1.3
sphinxcontrib-applehelp==1.0.4
sphinxcontrib-devhelp==1.0.2
sphinxcontrib-htmlhelp==2.0.1
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.3
sphinxcontrib-serializinghtml==1.1.5
SQLAlchemy==2.0.5.post1
traitlets==5.9.0
typing_extensions==4.5.0
urllib3==1.26.14
wincertstore==0.2
yapf @ file:///tmp/build/80754af9/yapf_1615749224965/work
zipp==3.15.0
mesa==2.1.5

View File

@ -0,0 +1,9 @@
agentpy==0.1.5
matplotlib==3.7.5
matplotlib-inline==0.1.6
networkx==2.5
numpy==1.20.3
numpydoc==1.1.0
pandas==1.4.1
pandas-stubs==1.2.0.39
pygraphviz==1.9

8
risk_analysis_count.py Normal file
View File

@ -0,0 +1,8 @@
import pandas as pd
count = pd.read_csv("output_result/risk/count.csv",
dtype={'s_id': str, 'id_firm': str})
print(count)
print(len(count['s_id'].unique()))
count_max_ts = count.groupby('s_id')['ts'].max()
print(count_max_ts.value_counts())

View File

@ -0,0 +1,128 @@
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
plt.rcParams['font.sans-serif'] = 'SimHei'
# count firm category
count_firm = pd.read_csv("output_result/risk/count_firm.csv")
print(count_firm.describe())
count_dcp = pd.read_csv("output_result/risk/count_dcp.csv",
dtype={
'up_id_firm': str,
'down_id_firm': str
})
count_dcp = count_dcp[count_dcp['count'] > 130]
list_firm = count_dcp['up_id_firm'].tolist(
) + count_dcp['down_id_firm'].tolist()
list_firm = list(set(list_firm))
# init graph firm
Firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
Firm_attr = Firm.loc[:, ["Code", "企业名称", "Type_Region", "Revenue_Log"]]
firm_industry_relation = pd.read_csv("input_data/firm_industry_relation.csv")
firm_industry_relation['Firm_Code'] = firm_industry_relation['Firm_Code'].astype('string')
firm_product = []
grouped = firm_industry_relation.groupby('Firm_Code')['Product_Code'].apply(list)
firm_product.append(grouped)
Firm_attr['Product_Code'] = Firm_attr['Code'].map(grouped)
Firm_attr.set_index('Code', inplace=True)
G_firm = nx.MultiDiGraph()
G_firm.add_nodes_from(list_firm)
firm_labels_dict = {}
for code in G_firm.nodes:
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
nx.set_node_attributes(G_firm, firm_labels_dict)
count_max = count_dcp['count'].max()
count_min = count_dcp['count'].min()
k = 15 / (count_max - count_min)
for _, row in count_dcp.iterrows():
# print(row)
lst_add_edge = [(
row['up_id_firm'],
row['down_id_firm'],
{
'up_id_product': row['up_id_product'],
'down_id_product': row['down_id_product'],
'edge_label': f"{row['up_id_product']} - {row['down_id_product']}",
'edge_width': k * (row['count'] - count_min),
'count': (row['count'])*18
})]
G_firm.add_edges_from(lst_add_edge)
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
node_label = nx.get_node_attributes(G_firm, '企业名称')
# desensitize
node_label = {key: f"{key} " for key, value in node_label.items()}
node_label = {
'343012684': '59',
'2944892892': '165',
'3269039233': '194',
'503176785': '73',
'3111033905': '178',
'3215814536': '190',
'413274977': '64',
'2317841563': '131',
'2354145351': '157',
'653528340': '88',
'888395016': '104',
'3069206426': '174',
'3299144127': '197',
'2624175': '8',
'25685135': '24',
'2348941764': '151',
'750610681': '95',
'2320475044': '133',
'571058167': '78',
'152008168': '44',
'448033045': '66',
'2321109759': '134',
'3445928818': '213'
}
node_size = list(nx.get_node_attributes(G_firm, 'Revenue_Log').values())
node_size = list(map(lambda x: x * 10, node_size))
edge_label = nx.get_edge_attributes(G_firm, "edge_label")
edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()}
edge_width = nx.get_edge_attributes(G_firm, "edge_width")
edge_width = [w for (n1, n2, _), w in edge_width.items()]
colors = nx.get_edge_attributes(G_firm, "count")
colors = [w for (n1, n2, _), w in colors.items()]
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
fig = plt.figure(figsize=(10, 8), dpi=500)
nx.draw(G_firm,
pos,
node_size=node_size,
labels=node_label,
font_size=8,
width=2,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
edge_vmax=vmax)
# nx.draw_networkx_edge_labels(G_firm, pos, font_size=6)
nx.draw_networkx_edge_labels(
G_firm,
pos,
edge_labels=edge_label,
font_size=5
)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.95, 0.05, 0.01, 0.3])
cb = plt.colorbar(sm, fraction=0.01, cax=position)
cb.ax.tick_params(labelsize=4)
cb.outline.set_visible(False)
plt.savefig("output_result\\risk\\count_dcp_network")
plt.close()

View File

@ -0,0 +1,223 @@
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
plt.rcParams['font.sans-serif'] = 'SimHei'
count_prod = pd.read_csv("output_result/risk/count_prod.csv")
print(count_prod)
# category
print(count_prod.describe())
# prod_networkx
# BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
# BomNodes.set_index('Code', inplace=True)
# BomCateNet = pd.read_csv('input_data/input_product_data/BomCateNet.csv', index_col=0)
# BomCateNet.fillna(0, inplace=True)
bom_nodes = pd.read_csv('input_data/input_product_data/BomNodes.csv')
bom_nodes['Code'] = bom_nodes['Code'].astype(str)
bom_nodes.set_index('Index', inplace=True)
bom_cate_net = pd.read_csv('input_data/input_product_data/合成结点.csv')
g_bom = nx.from_pandas_edgelist(bom_cate_net, source='UPID', target='ID', create_using=nx.MultiDiGraph())
labels_dict = {}
for code in g_bom.nodes:
node_attr = bom_nodes.loc[code].to_dict()
index_list = count_prod[count_prod['id_product'] == code].index.tolist()
index = index_list[0] if len(index_list) == 1 else -1
node_attr['count'] = count_prod['count'].get(index, 0)
node_attr['node_size'] = (count_prod['count'].get(index, 0))/10
node_attr['node_color'] = count_prod['count'].get(index, 0)
labels_dict[code] = node_attr
nx.set_node_attributes(g_bom, labels_dict)
# print(labels_dict)
pos = nx.nx_agraph.graphviz_layout(g_bom, prog="twopi", args="")
dict_node_name = nx.get_node_attributes(g_bom, 'Name')
node_labels = {}
for node in nx.nodes(g_bom):
node_labels[node] = f"{node} {str(dict_node_name[node])}"
# node_labels[node] = f"{str(dict_node_name[node])}"
colors = list(nx.get_node_attributes(g_bom, 'node_color').values())
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
# 创建绘图对象
fig = plt.figure(figsize=(10, 10), dpi=300)
ax = fig.add_subplot(111)
# 绘制网络图(优化样式参数)
nx.draw(g_bom, pos,
node_size=list(nx.get_node_attributes(g_bom, 'node_size').values()),
labels=node_labels,
font_size=3,
node_color=colors,
cmap=cmap,
vmin=vmin,
vmax=vmax,
edge_color='#808080', # 中性灰
width=0.3,
edgecolors='#404040',
linewidths=0.2)
# 创建颜色条(修正实现方式)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm.set_array([])
# 设置颜色条位置和样式
cax = fig.add_axes([0.88, 0.3, 0.015, 0.4]) # 右侧垂直对齐
cb = plt.colorbar(sm, cax=cax)
cb.ax.tick_params(labelsize=4, width=0.5, colors='#333333')
cb.outline.set_linewidth(0.5)
cb.set_label('Risk Level', fontsize=5, labelpad=2)
# 添加图元信息
ax.set_title("Production Risk Network", fontsize=6, pad=8, color='#2F2F2F')
plt.text(0.5, 0.02, 'Data: USTB Production System | Viz: DeepSeek-R1',
ha='center', fontsize=3, color='#666666',
transform=fig.transFigure)
# 调整边界和保存
plt.subplots_adjust(left=0.05, right=0.85, top=0.95, bottom=0.1) # 适应颜色条
plt.savefig(r"output_result/risk/count_prod_network.png", # 规范路径格式
dpi=600,
bbox_inches='tight',
pad_inches=0.05,
transparent=False)
plt.close()
# dcp_prod
count_dcp = pd.read_csv("output_result/risk/count_dcp.csv",
dtype={
'up_id_firm': str,
'down_id_firm': str
})
count_dcp_prod = count_dcp.groupby(
['up_id_product',
'down_id_product'])['count'].sum()
count_dcp_prod = count_dcp_prod.reset_index()
count_dcp_prod.sort_values('count', inplace=True, ascending=False)
count_dcp_prod.to_csv('output_result\\risk\\count_dcp_prod.csv',
index=False,
encoding='utf-8-sig')
count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 1000]
# print(count_dcp_prod)
list_prod = count_dcp_prod['up_id_product'].tolist(
) + count_dcp['down_id_product'].tolist()
list_prod = list(set(list_prod))
# init graph bom
BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv')
BomNodes.set_index('Index', inplace=True)
g_bom = nx.MultiDiGraph()
g_bom.add_nodes_from(list_prod)
bom_labels_dict = {}
for code in list_prod:
dct_attr = BomNodes.loc[code].to_dict()
bom_labels_dict[code] = dct_attr
nx.set_node_attributes(g_bom, bom_labels_dict)
count_max = count_dcp_prod['count'].max()
count_min = count_dcp_prod['count'].min()
k = 5 / (count_max - count_min)
for _, row in count_dcp_prod.iterrows():
# print(row)
lst_add_edge = [(
row['up_id_product'],
row['down_id_product'],
{
'count': row['count']
})]
g_bom.add_edges_from(lst_add_edge)
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(g_bom, prog="twopi", args="")
node_labels = nx.get_node_attributes(g_bom, 'Name')
temp = {}
for key, value in node_labels.items():
temp[key] = str(key) + " " + value
node_labels = temp
node_labels ={
38: 'SiC Substrate',
39: 'GaN Substrate',
40: 'Si Substrate',
41: 'AlN Substrate',
42: 'DUV LED Substrate',
43: 'InP Substrate',
44: 'Mono-Si Wafer',
45: 'Poly-Si Wafer',
46: 'InP Cryst./Wafer',
47: 'SiC Cryst./Wafer',
48: 'GaAs Wafer',
49: 'GaN Cryst./Wafer',
50: 'Si Epi Wafer',
51: 'SiC Epi Wafer',
52: 'AlN Epi',
53: 'GaN Epi',
54: 'InP Epi',
55: 'LED Epi Wafer',
90: 'Power Devices',
91: 'Diode',
92: 'Transistor',
93: 'Thyristor',
94: 'Rectifier',
95: 'IC Fab',
99: 'Wafer Test'
}
colors = nx.get_edge_attributes(g_bom, "count")
colors = [w for (n1, n2, _), w in colors.items()]
vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
pos_new = {node: (p[1], p[0]) for node, p in pos.items()} # 字典推导式优化
fig = plt.figure(figsize=(8, 8), dpi=300)
plt.subplots_adjust(right=0.85) # 关键调整右侧保留15%空白
# 使用Axes对象精准控制
main_ax = fig.add_axes([0.1, 0.1, 0.75, 0.8]) # 主图占左75%宽上下各留10%边距
nx.draw(g_bom, pos_new,
ax=main_ax,
node_size=50,
labels=node_labels,
font_size=5,
width=1.5,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
edge_vmax=vmax,
)
main_ax.axis('off')
# 颜色条定位系统
cbar_ax = fig.add_axes([0.86, 0.15, 0.015, 0.3]) # 右边缘86%位置底部15%起占30%高度
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = [] # 必需的空数组
# 微调颜色条样式
cbar = fig.colorbar(sm, cax=cbar_ax, orientation='vertical')
cbar.ax.tick_params(labelsize=4,
width=0.3, # 刻度线粗细
length=1.5, # 刻度线长度
pad=0.8) # 标签与条间距
cbar.outline.set_linewidth(0.5) # 边框线宽
# 输出前验证边界
print(f"Colorbar position: {cbar_ax.get_position().bounds}") # 应输出(0.86,0.15,0.015,0.3)
# 专业级保存参数
plt.savefig("output_result/risk/count_dcp_prod_network.png",
dpi=900,
bbox_inches='tight', # 自动裁剪白边
pad_inches=0.05, # 保留0.05英寸边距
metadata={'CreationDate': None}) # 避免时间戳污染元数据
plt.close()

491
risk_analysis_sum_result.py Normal file
View File

@ -0,0 +1,491 @@
import pickle
from sqlalchemy import text
from orm import engine, connection
import pandas as pd
import networkx as nx
import json
import matplotlib.pyplot as plt
# Prepare data
Firm = pd.read_csv("input_data/input_firm_data/Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
BomNodes = pd.read_csv('input_data/input_product_data/BomNodes.csv', index_col=0)
# SQL query
with open('SQL_analysis_risk.sql', 'r') as f:
str_sql = text(f.read())
result = pd.read_sql(sql=str_sql, con=connection)
result.to_csv('output_result/risk/count.csv', index=False, encoding='utf-8-sig')
print(result)
# G_bom
plt.rcParams['font.sans-serif'] = 'SimHei'
exp_id = 1
G_bom_df = pd.read_sql(
sql=text(f'select g_bom from iiabmdb.without_exp_experiment where id = {exp_id};'),
con=connection
)
if G_bom_df.empty:
raise ValueError(f"No g_bom found for exp_id = {exp_id}")
G_bom_str = G_bom_df['g_bom'].tolist()[0]
if G_bom_str is None:
raise ValueError(f"g_bom data is None for exp_id = {exp_id}")
G_bom = nx.adjacency_graph(json.loads(G_bom_str))
pos = nx.nx_agraph.graphviz_layout(G_bom, prog="twopi", args="")
node_labels = nx.get_node_attributes(G_bom, 'Name')
node_labels = {
7: 'Si Raw Mtl.',
8: 'Photoresist & Reagents',
9: 'Etch Solution',
10: 'SiF4',
11: 'Developer',
12: 'PCE Superplasticizer',
13: 'Metal Protectant',
14: 'Deep Hole Cu Plating',
15: 'Thinner',
16: 'HP Boric Acid (Nuc.)',
17: 'E-Grade Epoxy',
18: 'Stripper',
19: 'HP-MOC',
20: 'CMP Slurry & Consumables',
21: 'PR Remover',
22: 'Poly-Si Cutting Fluid',
23: 'Passivation',
24: 'E-Grade Phenolic',
25: 'Surfactant',
26: 'Mag. Carrier',
27: 'Wet Chems.',
28: 'Plating Chems.',
29: 'E-FR Materials',
30: 'LC Alignment Agent',
31: 'Func. Wet Chems.',
32: 'InP',
33: 'SiC',
34: 'GaAs',
35: 'GaN',
36: 'AlN',
37: 'Si3N4',
38: 'SiC Substrate',
39: 'GaN Substrate',
40: 'Si Wafer',
41: 'AlN Substrate',
42: 'DUV LED Substrate',
43: 'InP Substrate',
44: 'Mono-Si Wafer',
45: 'Poly-Si Wafer',
46: 'InP Cryst./Wafer',
47: 'SiC Cryst./Wafer',
48: 'GaAs Wafer',
49: 'GaN Cryst./Wafer',
50: 'Si Epi Wafer',
51: 'SiC Epi Wafer',
52: 'AlN Epi',
53: 'GaN Epi',
54: 'InP Epi',
55: 'LED Epi',
56: 'EDA/IP',
57: 'MPW Service',
58: 'IC Design',
59: 'Track System',
60: 'Wafer Grinder',
61: 'Etcher',
62: 'Ox/Diff Furnace',
63: 'Wafer Metrology',
64: 'Crystal Grower',
65: 'CMP Tool',
66: 'Stepper',
67: 'Wafer Dicer',
68: 'Deposition System',
69: 'Edge Profiler',
70: 'Descum Tool',
71: 'Clean System',
72: 'SAF',
73: 'Plating Eqpt.',
74: 'Implanter',
75: 'Trim/Form',
76: 'Probe Card',
77: 'ATE',
78: 'PCM Eqpt.',
79: 'Inspection Sys.',
80: 'Prober',
81: 'Dicing Saw',
82: 'Handler',
83: 'Backgrinder',
84: 'Die Bonder',
85: 'Reflow Oven',
86: 'FT Tester',
87: 'Wire Bonder',
88: 'BGA Mounter',
89: 'Molding Press',
90: 'Power Devices',
91: 'Diode',
92: 'Transistor',
93: 'Thyristor',
94: 'Rectifier',
95: 'IC Fab',
96: 'IC PKG',
97: 'DV',
98: 'IPM',
99: 'CP Test',
100: 'FT Test',
101: 'Bumping',
102: 'DA Materials',
103: 'Leadframe',
104: 'Solder Ball',
105: 'Substrate',
106: 'EMC',
107: 'Bond Wire',
108: 'Underfill',
109: 'Dicing Tape'
}
plt.figure(figsize=(12, 12), dpi=500)
plt.axis('off') # 关闭坐标轴边框
# 优化节点绘制参数
nx.draw_networkx_nodes(
G_bom, pos,
node_size=100, # 优化节点尺寸
linewidths=0.0 # 去除节点边框
)
# 优化边绘制参数
nx.draw_networkx_edges(
G_bom, pos,
width=0.3, # 更细的边宽
alpha=0.5 # 半透明边
)
# 优化标签参数
nx.draw_networkx_labels(
G_bom, pos,
labels=node_labels,
font_size=3, # 适当增大字号
font_family='sans-serif', # 使用无衬线字体
font_weight='bold', # 增强可读性
)
# 专业级保存参数设置
plt.savefig(
f"output_result/risk/g_bom_exp_id_{exp_id}.png",
bbox_inches='tight', # 去除图像白边
pad_inches=0.1, # 适当内边距
facecolor='white' # 保证背景纯白
)
plt.close()
# G_firm
plt.rcParams['font.sans-serif'] = 'SimHei'
sample_id = 1
# G_firm_df = pd.read_sql(
# sql=text(f'select g_firm from iiabmdb.without_exp_sample where id = {sample_id};'),
# con=connection
# )
#
# if G_firm_df.empty:
# raise ValueError(f"No g_firm found for sample_id = {sample_id}")
#
# G_firm_str = G_firm_df['g_firm'].tolist()[0]
# if G_firm_str is None:
# raise ValueError(f"g_firm data is None for sample_id = {sample_id}")
#
# G_firm = nx.adjacency_graph(json.loads(G_firm_str))
with open("firm_network.pkl", 'rb') as f:
G_firm = pickle.load(f)
print(f"Successfully loaded cached data from firm_network.pkl")
# 1. 移除孤立节点
isolated_nodes = list(nx.isolates(G_firm)) # 找出所有没有连接的孤立节点
G_firm.remove_nodes_from(isolated_nodes) # 从图中移除这些节点
# 2. 重新布局和绘图
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
node_label = {key: key for key in nx.get_node_attributes(G_firm, 'Revenue_Log').keys()}
# node_label = {
# "7": "1",
# "9": "2",
# "829768": "4",
# "863079": "5",
# "1452048": "6",
# "2010673": "7",
# "2624175": "8",
# "2728939": "9",
# "5278074": "10",
# "5849940": "11",
# "7299120": "12",
# "9746245": "13",
# "11807506": "14",
# "15613202": "15",
# "24284343": "19",
# "24673506": "20",
# "25036634": "21",
# "25685135": "24",
# "25945288": "25",
# "26162741": "26",
# "26516263": "27",
# "27075840": "28",
# "27731896": "29",
# "29954548": "30",
# "43407343": "33",
# "70634828": "36",
# "71271700": "37",
# "80158773": "39",
# "118882692": "40",
# "145511905": "42",
# "151606446": "43",
# "152008168": "44",
# "159511306": "45",
# "191912252": "46",
# "194210021": "47",
# "203314437": "48",
# "213386023": "49",
# "218633337": "50",
# "251189644": "53",
# "271860868": "55",
# "278221281": "56",
# "301209792": "57",
# "343012684": "59",
# "354897041": "60",
# "400488703": "62",
# "400692942": "63",
# "413274977": "64",
# "420984285": "65",
# "448033045": "66",
# "453289520": "67",
# "474279224": "68",
# "483081978": "69",
# "495782506": "70",
# "503176785": "73",
# "549184982": "75",
# "560866402": "76",
# "561545339": "77",
# "571058167": "78",
# "581407487": "79",
# "591452402": "80",
# "593312758": "81",
# "594378026": "82",
# "607512171": "83",
# "615763365": "84",
# "620220747": "85",
# "631449822": "86",
# "644292599": "87",
# "653528340": "88",
# "654825436": "89",
# "688155470": "92",
# "695995052": "93",
# "750610681": "95",
# "762985858": "96",
# "771821595": "97",
# "857978527": "100",
# "868012326": "101",
# "887840774": "102",
# "888356483": "103",
# "888395016": "104",
# "888478182": "105",
# "930767828": "107",
# "996174506": "108",
# "1033972427": "110",
# "1128343125": "111",
# "1217957486": "113",
# "1307012237": "115",
# "1375606900": "116",
# "1549474227": "118",
# "1606833003": "120",
# "1679596339": "121",
# "2310825263": "122",
# "2311838590": "124",
# "2312490120": "125",
# "2316990095": "128",
# "2317245827": "129",
# "2317841563": "131",
# "2320102626": "132",
# "2320475044": "133",
# "2321109759": "134",
# "2324787028": "137",
# "2324844174": "138",
# "2326478786": "139",
# "2327031723": "140",
# "2327979389": "141",
# "2329375731": "142",
# "2333843479": "143",
# "2337952436": "146",
# "2339188563": "147",
# "2339684065": "148",
# "2341555098": "149",
# "2343704209": "150",
# "2348941764": "151",
# "2352036411": "155",
# "2354145351": "157",
# "2424229017": "159",
# "2545430247": "161",
# "2820140348": "163",
# "2944892892": "165",
# "3025036704": "168",
# "3026382513": "169",
# "3045721313": "171",
# "3047163873": "172",
# "3048263744": "173",
# "3069206426": "174",
# "3070859372": "175",
# "3072715478": "176",
# "3103797386": "177",
# "3111033905": "178",
# "3113895788": "179",
# "3120341363": "180",
# "3122923980": "181",
# "3127420424": "182",
# "3133307899": "183",
# "3147511625": "184",
# "3177507356": "185",
# "3188903709": "186",
# "3195502499": "187",
# "3203777710": "188",
# "3211956484": "189",
# "3215814536": "190",
# "3221190269": "191",
# "3226664625": "192",
# "3267688490": "193",
# "3269039233": "194",
# "3269940677": "195",
# "3271705843": "196",
# "3299144127": "197",
# "3312358902": "198",
# "3344297292": "200",
# "3372913783": "201",
# "3373311444": "202",
# "3384021594": "203",
# "3395900897": "205",
# "3398677646": "206",
# "3407754893": "207",
# "3433628561": "209",
# "3445244192": "212",
# "3445928818": "213",
# "4208851809": "216",
# "5007015990": "218",
# "11164476478": "219",
# "517717050": "223",
# "737770776": "224",
# "872394725": "225",
# "2311581270": "226",
# "2313209417": "227",
# "2347013470": "228",
# "2350418059": "229",
# "3031009366": "234",
# "3089095447": "235",
# "3100891962": "236",
# "3188352290": "238",
# "3288105727": "239",
# "3462551351": "240"
# }
node_size = [value * 5 for value in nx.get_node_attributes(G_firm, 'Revenue_Log').values()]
edge_label = {(n1, n2): label for (n1, n2, _), label in nx.get_edge_attributes(G_firm, "Product").items()}
plt.figure(figsize=(15, 15), dpi=500)
plt.axis('off') # 完全关闭坐标轴系统
# 分层绘制网络组件
nodes = nx.draw_networkx_nodes(
G_firm, pos,
node_size=node_size, # 保持原始尺寸设置
)
edges = nx.draw_networkx_edges(
G_firm, pos,
width=0.3, # 保持原始线宽设置
)
# 优化节点标签
labels = nx.draw_networkx_labels(
G_firm, pos,
labels=node_label,
font_size=6, # 保持原始字号
)
# 增强边标签可读性
edge_labels = nx.draw_networkx_edge_labels(
G_firm, pos,
edge_labels=edge_label,
font_size=2,
label_pos=0.5, # 标签沿边偏移量
rotate=False, # 禁止自动旋转
)
# 专业级输出配置
plt.savefig(
f"output_result/risk/g_firm_sample_id_{sample_id}_de.png",
bbox_inches='tight',
pad_inches=0.05, # 更紧凑的边距
facecolor='white', # 强制白色背景
metadata={
'Title': f"Supply Chain Risk Map - Sample {sample_id}",
'Author': 'USTB Risk Analytics',
'Copyright': 'Confidential'
}
)
plt.close()
# Count firm product
count_firm_prod = result.value_counts(subset=['id_firm', 'id_product'])
count_firm_prod.name = 'count'
count_firm_prod = count_firm_prod.to_frame().reset_index()
count_firm_prod.to_csv('output_result/risk/count_firm_prod.csv', index=False, encoding='utf-8-sig')
print(count_firm_prod)
# Count firm
count_firm = count_firm_prod.groupby('id_firm')['count'].sum()
count_firm = count_firm.to_frame().reset_index()
count_firm.sort_values('count', inplace=True, ascending=False)
count_firm.to_csv('output_result/risk/count_firm.csv', index=False, encoding='utf-8-sig')
print(count_firm)
# Count product
count_prod = count_firm_prod.groupby('id_product')['count'].sum()
count_prod = count_prod.to_frame().reset_index()
count_prod.sort_values('count', inplace=True, ascending=False)
count_prod.to_csv('output_result/risk/count_prod.csv', index=False, encoding='utf-8-sig')
print(count_prod)
# DCP disruption causing probability
result_disrupt_ts_above_0 = result[result['ts'] > 0]
print(result_disrupt_ts_above_0)
result_dcp = pd.DataFrame(columns=[
's_id', 'up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product'
])
result_dcp_list = [] # 用列表收集数据避免DataFrame逐行增长的问题
for sid, group in result.groupby('s_id'):
ts_start = max(group['ts'])
while ts_start >= 1:
ts_end = ts_start - 1
while ts_end >= 0:
up = group.loc[group['ts'] == ts_end, ['id_firm', 'id_product']]
down = group.loc[group['ts'] == ts_start, ['id_firm', 'id_product']]
for _, up_row in up.iterrows():
for _, down_row in down.iterrows():
result_dcp_list.append([sid] + up_row.tolist() + down_row.tolist())
ts_end -= 1
ts_start -= 1
# 转换为DataFrame
result_dcp = pd.DataFrame(result_dcp_list, columns=[
's_id', 'up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product'
])
# 统计
count_dcp = result_dcp.value_counts(
subset=['up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product']
).reset_index(name='count')
# 保存文件
count_dcp.to_csv('output_result/risk/count_dcp.csv', index=False, encoding='utf-8-sig')
# 输出结果
print(count_dcp)

View File

@ -0,0 +1,50 @@
import pandas as pd
# 读取数据
df = pd.read_csv('input_data/input_firm_data/firm_amended.csv') # 替换为你的 CSV 文件路径
# 要分析的列
columns = [
"固定资产原值(万元人民币)",
"固定资产净值(万元人民币)",
"资产总和(万元人民币)",
"存货(万元人民币)"
]
# 字段类型定义(可人工定义,也可自动判断)
column_types = {
"固定资产原值(万元人民币)": "连续型",
"固定资产净值(万元人民币)": "连续型",
"资产总和(万元人民币)": "连续型",
"存货(万元人民币)": "连续型"
}
# 统计分析
summary = []
for col in columns:
data = df[col].dropna()
summary.append({
"字段名": col,
"类型": column_types[col],
"计数(非空)": data.count(),
"均值": data.mean(),
"标准差": data.std(),
"最小值": data.min(),
"中位数": data.median(),
"最大值": data.max()
})
# 转为 DataFrame 展示
summary_df = pd.DataFrame(summary)
# 设置列顺序
summary_df = summary_df[["字段名", "类型", "计数(非空)", "均值", "标准差", "最小值", "中位数", "最大值"]]
# 打印结果
print(summary_df)
# 保存为 Excel 文件
output_path = "企业规模数据描述性统计表.xlsx"
summary_df.to_excel(output_path, index=False)
print(f"统计结果已保存为 Excel 文件:{output_path}")

Binary file not shown.

0
执行sql语句.py Normal file
View File

53
查看进度.py Normal file
View File

@ -0,0 +1,53 @@
from matplotlib import rcParams, pyplot as plt
from sqlalchemy import func
from orm import db_session, Sample
# 创建全局绘图对象和轴
fig, ax = plt.subplots(figsize=(8, 5))
plt.ion() # 启用交互模式
def visualize_progress():
"""
可视化 `is_done_flag` 的分布动态更新进度条
"""
# 设置全局字体
rcParams['font.family'] = 'Microsoft YaHei' # 黑体,适用于中文
rcParams['font.size'] = 12
# 查询数据库中各 is_done_flag 的数量
result = db_session.query(
Sample.is_done_flag, func.count(Sample.id)
).group_by(Sample.is_done_flag).all()
# 转换为字典
data = {flag: count for flag, count in result}
# 填充缺失的标志为 0
for flag in [-1, 0, 1]:
data.setdefault(flag, 0)
# 准备数据
labels = ['未完成 (-1)', '计算中(0)', '完成 (1)']
values = [data[-1], data[0], data[1]]
# 清空之前的绘图内容
ax.clear()
# 创建柱状图
ax.bar(labels, values, color=['red', 'orange', 'green'])
ax.set_title('任务进度分布', fontsize=16)
ax.set_xlabel('任务状态', fontsize=14)
ax.set_ylabel('数量', fontsize=14)
ax.tick_params(axis='both', labelsize=12)
# 显示具体数量
for i, v in enumerate(values):
ax.text(i, v + 0.5, str(v), ha='center', fontsize=12)
# 刷新绘图
plt.pause(0) # 暂停一段时间以更新图表
# 关闭窗口时,停止交互模式
# plt.ioff()
visualize_progress()

115
绘制度.py Normal file
View File

@ -0,0 +1,115 @@
import pickle
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
# 1. 读取并处理数据
bom_nodes = pd.read_csv('input_data/input_product_data/BomNodes.csv')
bom_nodes['Code'] = bom_nodes['Code'].astype(str)
bom_nodes.set_index('Index', inplace=True)
bom_cate_net = pd.read_csv('input_data/input_product_data/合成结点.csv')
# 2. 构建图结构
g_bom = nx.from_pandas_edgelist(bom_cate_net, source='UPID', target='ID', create_using=nx.MultiDiGraph())
# 填充每一个结点的具体内容
bom_labels_dict = {}
for index in g_bom.nodes:
try:
bom_labels_dict[index] = bom_nodes.loc[index].to_dict()
except KeyError:
print(f"节点 {index} 不存在于 bom_nodes 中")
# 分配属性给每一个结点
nx.set_node_attributes(g_bom, bom_labels_dict)
# 3. 计算每个节点的度数
degrees = dict(g_bom.degree()) # 总度数(适用于有向图)
# 4. 统计每个度数的节点数量
degree_counts = {}
for degree in degrees.values():
if degree in degree_counts:
degree_counts[degree] += 1
else:
degree_counts[degree] = 1
# 转换为排序后的列表(横坐标:度数,纵坐标:节点数)
sorted_degrees = sorted(degree_counts.keys())
sorted_counts = [degree_counts[d] for d in sorted_degrees]
# 5. 绘制度分布图
plt.figure(figsize=(12, 8)) # 增大画布尺寸
bars = plt.bar(sorted_degrees, sorted_counts, width=0.8)
plt.title('Degree Distribution In Industrial Chain', fontsize=16)
plt.xlabel('Degree', fontsize=14)
plt.ylabel('Number of Nodes', fontsize=14)
plt.grid(True, linestyle='--', alpha=0.5)
plt.xticks(rotation=45) # 如果度数较多可以旋转x轴标签
plt.tight_layout() # 防止标签重叠
# 6. 在每个柱子上方标注数值
for bar in bars:
height = bar.get_height()
plt.text(
bar.get_x() + bar.get_width() / 2, # x坐标柱子中心
height + max(sorted_counts) * 0.02, # y坐标柱子顶部上方留出空间
f'{int(height)}', # 显示数值(转换为整数)
ha='center', # 水平居中
va='bottom', # 垂直底部对齐
fontsize=10, # 字体大小
color='black' # 字体颜色
)
# 7. 保存超高清图片300 DPI
output_path = "degree_distribution_with_labels.png" # 输出文件名
plt.savefig(output_path, dpi=500, bbox_inches='tight') # dpi=300 确保高分辨率
print(f"图片已保存至: {output_path}")
# 1. 加载企业网络数据
with open("firm_network.pkl", 'rb') as f:
G_firm = pickle.load(f)
print(f"Successfully loaded cached data from firm_network.pkl")
# 2. 计算企业网络的度分布
degrees_firm = dict(G_firm.degree()) # 总度数
degree_counts_firm = {}
for degree in degrees_firm.values():
if degree in degree_counts_firm:
degree_counts_firm[degree] += 1
else:
degree_counts_firm[degree] = 1
# 转换为排序后的列表
sorted_degrees_firm = sorted(degree_counts_firm.keys())
sorted_counts_firm = [degree_counts_firm[d] for d in sorted_degrees_firm]
# 3. 绘制企业网络的度分布图
plt.figure(figsize=(12, 6)) # 单独画布尺寸
plt.bar(sorted_degrees_firm, sorted_counts_firm, width=0.8)
plt.title('Degree Distribution of Firm Network', fontsize=16)
plt.xlabel('Degree (Number of Connections)', fontsize=14)
plt.ylabel('Number of Firms', fontsize=14)
plt.grid(True, linestyle='--', alpha=0.5)
plt.xticks(rotation=45)
plt.tight_layout()
# 在柱子上方标注数值
for bar in plt.gca().containers[0]: # 获取当前图中的柱子对象
height = bar.get_height()
plt.text(
bar.get_x() + bar.get_width() / 2,
height + max(sorted_counts_firm) * 0.02,
f'{int(height)}',
ha='center',
va='bottom',
fontsize=10,
color='black'
)
# 保存图片
plt.savefig("degree_distribution_firm.png", dpi=500, bbox_inches='tight')
print("企业度分布图已保存至: degree_distribution_firm.png")