import numpy as np import pandas as pd import matplotlib.pyplot as plt num_time_step = 200 num_iter = 10 env_data = pd.DataFrame(pd.read_excel('env_data.xlsx', engine='openpyxl', sheet_name=0)) assert env_data.shape[0] == num_iter * (num_time_step + 1) lst_df = [] for i in range(num_iter): df_tmp = env_data.iloc[i * (num_time_step + 1): (i + 1) * (num_time_step + 1), 1:] lst_df.append(df_tmp) lst_column = lst_df[0].columns[1:] for str_col in lst_column: x = np.arange(num_time_step+1) for df in lst_df: y = np.array(df[str_col]).flatten() plt.xlabel('t') plt.ylabel(str_col) plt.plot(x, y) # plt.show() # plt.close() plt.savefig(f'{str_col}.pdf', bbox_inches="tight") plt.close()