salary02/experiment.py

69 lines
2.2 KiB
Python
Raw Normal View History

2023-01-19 11:37:21 +08:00
import numpy as np
import pandas as pd
from env import Env
import datetime
idx_start = 10 # first index is 1 !
n_sample = 30
df_xv = pd.read_csv("xv.csv", header=None, index_col=None).transpose()
lst_xv_keys = [
'alpha',
'percent_search',
'is_RH_ratio',
'is_FH_ratio'
]
df_xv.columns = lst_xv_keys
df_oa = pd.read_fwf("oa25.txt", header=None, widths=[1]*6)
n_row, n_col = df_oa.shape
model_para = {
"n_worker": 1000,
"n_firm": 100
}
2023-02-12 23:43:40 +08:00
lst_op_key = ['out_w_avg_salary', 'out_w_gini_salary', 'out_f_avg_profit', 'out_f_avg_yield',
'out_f_gini_profit', 'out_w_percent_hired']
2023-01-19 11:37:21 +08:00
lst_2d_op_avg = []
lst_2d_xv = []
for idx_row in range(idx_start-1, n_row, 1):
print(f"Running the {idx_row + 1}-th experiment at {datetime.datetime.now()}.")
lst_value = []
for idx_col, k in enumerate(lst_xv_keys):
oa_idx_level = int(df_oa.iat[idx_row, idx_col])
lst_value.append(df_xv.iloc[oa_idx_level][k])
lst_2d_xv.append(lst_value)
dct_merge = {**model_para, **dict(zip(lst_xv_keys, lst_value))}
# pprint.pprint(dct_merge)
lst_2d_op = []
for i in range(n_sample):
print(f"-- {i + 1}-th sample at {datetime.datetime.now()}.")
the_model = Env(dct_merge)
while 1:
the_model.step()
if not the_model.running:
break
lst_2d_op.append([the_model.out_w_avg_salary, the_model.out_w_gini_salary,
2023-02-12 23:43:40 +08:00
the_model.out_f_avg_profit, the_model.out_f_avg_yield,
the_model.out_f_gini_profit, the_model.out_w_percent_hired])
2023-01-19 11:37:21 +08:00
arr_op = np.array(lst_2d_op)
lst_2d_op_avg.append(arr_op.mean(axis=0).tolist())
# these codes below should be outside of loop. but temply inside
arr_op_avg = np.array(lst_2d_op_avg)
df_final = pd.concat([pd.DataFrame(lst_2d_xv, columns=lst_xv_keys).reset_index(drop=True),
df_oa.iloc[:, len(lst_xv_keys):].reset_index(drop=True)], axis=1)
df_final = pd.concat([df_final.reset_index(drop=True),
pd.DataFrame(lst_2d_op_avg, columns=lst_op_key).reset_index(drop=True)], axis=1)
df_final.to_excel(f'result/experiment_result_{idx_row + 1}.xlsx')
df_final.to_csv(f'result/experiment_result_{idx_row + 1}.csv')