2022-10-31 15:05:22 +08:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
|
2023-01-15 21:53:12 +08:00
|
|
|
num_time_step = 200
|
2022-10-31 15:05:22 +08:00
|
|
|
num_iter = 10
|
|
|
|
|
|
|
|
env_data = pd.DataFrame(pd.read_excel('env_data.xlsx', engine='openpyxl'))
|
|
|
|
|
|
|
|
assert env_data.shape[0] == num_iter * (num_time_step + 1)
|
|
|
|
|
|
|
|
lst_df = []
|
|
|
|
for i in range(num_iter):
|
|
|
|
df_tmp = env_data.iloc[i * (num_time_step + 1): (i + 1) * (num_time_step + 1), 1:]
|
|
|
|
lst_df.append(df_tmp)
|
|
|
|
# df_tmp = env_data.iloc[1: 21]
|
|
|
|
# lst_df.append(df_tmp)
|
|
|
|
|
|
|
|
|
|
|
|
x = np.array(env_data[['t']])
|
|
|
|
y = np.array(env_data[['out_w_avg_salary']])
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
plt.xlabel('t')
|
|
|
|
plt.ylabel('out_w_avg_salary')
|
|
|
|
plt.plot(x, y)
|
|
|
|
plt.show()
|