From bca657381f14b492129a8272bc7144b360399a66 Mon Sep 17 00:00:00 2001 From: SongQi Date: Tue, 7 Feb 2023 09:39:40 +0800 Subject: [PATCH] =?UTF-8?q?=E5=88=A0=E9=99=A4=20'=E6=88=91=E5=9B=BD?= =?UTF-8?q?=E9=87=91=E8=9E=8D=E6=9C=BA=E6=9E=84=E4=B8=8E=E5=AE=9E=E4=BD=93?= =?UTF-8?q?=E4=BC=81=E4=B8=9A=E7=9A=84=E6=8A=95=E8=9E=8D=E8=B5=84=E5=86=B3?= =?UTF-8?q?=E7=AD=96=E7=A0=94=E7=A9=B6.tex.bak'?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...金融机构与实体企业的投融资决策研究.tex.bak | 794 ------------------ 1 file changed, 794 deletions(-) delete mode 100644 我国金融机构与实体企业的投融资决策研究.tex.bak diff --git a/我国金融机构与实体企业的投融资决策研究.tex.bak b/我国金融机构与实体企业的投融资决策研究.tex.bak deleted file mode 100644 index 111a9c2..0000000 --- a/我国金融机构与实体企业的投融资决策研究.tex.bak +++ /dev/null @@ -1,794 +0,0 @@ -\documentclass[twoside]{cctart} -\usepackage{amsmath} -\usepackage{headrule,vatola,amssymb} -\usepackage{graphicx,multirow,bm} -\usepackage{booktabs,dcolumn}%С -\newcolumntype{z}[1]{D{.}{.}{#1}}%С -\usepackage{tabularx}%ڱԶ -\usepackage{slashbox}%б -%\usepackage{footmisc,perpage} -%\newcommand{\tabincell}[2]{\begin{tabular}{@{}#1@{}}#2\end{tabular}}% ڵ -%=========================Page Format (˲ֶ޸)================================ -\setlength{\voffset}{-5mm} \headsep 0.3 true cm \topmargin 0pt -\oddsidemargin 0pt \footskip 2mm \evensidemargin 0pt \textheight -24.5 true cm \textwidth 16.5 true cm \setcounter{page}{1} -\parindent 2\ccwd -\nofiles - -\TagsOnRight\baselineskip 12pt - -\catcode`@=11 \long\def\@makefntext#1{\parindent 1em\noindent -\hbox to 0pt{\hss$^{}$}#1} \catcode`\@=12 - -\catcode`@=11 -\def\evenhead{} -\def\oddhead{} -\headheight=8truemm -% \footheight=0pt -\def\@evenhead{\pushziti - \vbox{\hbox to\textwidth{\rlap{\rm\thepage}\hfil{\evenhead}\llap{}} - \protect\vspace{2truemm}\relax - \hrule depth0pt height0.15truemm width\textwidth - }\popziti} -\def\@oddhead{\pushziti - \vbox{\hbox to\textwidth{\rlap{}{\oddhead}\hfil\llap{\rm\thepage}} - \protect\vspace{2truemm}\relax - \hrule depth0pt height0.15truemm width\textwidth - }\popziti} -\def\@evenfoot{} -\def\@oddfoot{} -\catcode`@=12 - -\renewcommand{\baselinestretch}{1.2} -\def\d{\displaystyle} \def\n{\noindent} -\def\ST{\songti\rm\relax} -\def\HT{\heiti\bf\relax} -\def\FS{\fangsong\relax} -\def\KS{\kaishu\relax} -\def\sz{\small \zihao{-5}} -\def\vs{\vspace{0.3cm}} -\def\ay{\arraycolsep=1.5pt} - -\def\SEC#1#2#3{\vspace*{.2in} \begin{center} -{\LARGE\zihao{3}\HT #1}\\[.2in] -\zihao{4}\fangsong#2\\[.1in] -\small\zihao{-5}#3 \end{center}} - -\def\ESEC#1#2#3{\vskip.2in \begin{center} -{\Large \HT #1}\\[.2in] -\normalsize #2\\[.1in] -\footnotesize #3 \end{center}} - -\def\SUB#1{\vspace{.15in} \leftline{\large\bf\heiti\zihao{-4}#1} -\vspace{.07in}} -\def\sub#1{\leftline{\bf\heiti\zihao{5}#1}} - -\def\REFERENCE{\vspace*{.2in} -{\noindent\bf\heiti\zihao{5}ο} \vspace*{.1in}} -%========================================================================= - -\begin{document} - -%--------------------------ҳü------------------------------------- -\def\evenhead{{\protect\small{\zihao{-5}\songti \hfill ϵ~ ͳ~ ~~ ~ ~~ʵ~} -\hfill{\zihao{-5}\songti } \,XX\,{\zihao{-5}\songti }}} -\def\oddhead{{\protect{\zihao{-5}\songti }\small \,\,X\,{\zihao{-5}\songti } -\hfill {\small\zihao{-5}\songti{ٴ,:ҹڻʵҵͶʾо} - }\hfill}} - -%---------------------------ҳҳü--------------------------------- -\vspace*{-13mm} \thispagestyle{empty} \noindent \hbox to -\textwidth{\small{\zihao{-5}\songti }\,\,X\,{\zihao{-5}\songti - }\,\,X\,{\zihao{-5}\songti }\hfill {\zihao{5} -ϵͳʵ}\hfill Vol.X, No.X} \vskip -0.2mm -\par\noindent -\hbox to \textwidth{\small 2023 {\zihao{-5}\songti }\,\,X -{\zihao{-5}\songti }\hfill Systems Engineering --- Theory \& -Practice\hfill XXX., 2023} \vskip -0.3mm -\par\noindent -\rule[2mm]{\textwidth}{0.5pt}\hspace*{-\textwidth}\rule[1.5mm]{\textwidth}{0.5pt} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\ziju{0.025} \vskip -7mm \noindent {\small doi:\ -XXX \qquad \qquad {ͼ:}\ \ F832.5 %ͼŴӡйͼݷ෨(İ)вá -\qquad\qquad{ױ־:\ \ A}} - -%-----------------------ע-------------------------------------------------- -\footnotetext{{\HT ո:}\ 2023-XX-XX} -\footnotetext{{\HT -߼:}\ ٴ(1980-),,ɽ,ʿо,о:ڹ;(1993-), Ů,ֳ,ʿо,о:Ӧ;һ(1995-), Ů,ɽ,ʿо,о:Ӧ;־(1988-), ,ɽ̨,ʿ,о:߷,ڷչ;(1986-), ,,ʿ,о:ڿƼ,.} -\footnotetext{{\HT Ŀ:}\ -Ȼѧ(71901202,72271227,71932002,71850014);пԺ֧Ŀ(E1E90802A2,E1EG4401X2);йѧԺ괴´ٽ;Уҵרʽ.} -\footnotetext{{\HT Foundation item:}\ National Natural Science Foundation of China (71901202,72271227,71932002,71850014); Chinese Academy of Sciences (E1E90802A2, E1EG4401X2); Youth Innovation Promotion Association CAS; Fundamental Research Funds for the Central Universities.} -\footnotetext{{\HT øʽ:}\ -ٴ, , һ, ־, . ҹڻʵҵͶʾо.[J].ϵͳʵ, -2023, X(X): 1--10.} \footnotetext{{\HT Ӣøʽ:}\ Zhong C L, -Song Q, Jing Y H, Dong Z, He Z. Research on Investment and Financing Decision of Financial Institutions and Enterprises in China[J]. Systems Engineering --- Theory \& Practice, 2023, XX(X): 1--10.} - -%---------------------ĿߡλժҪؼ, ͼ(ṩ)------------------ -%\SEC{Ŀ}{}{λ} -\SEC{ҹڻʵҵͶʾо} -{ٴ$^1$, $^{1,*}$, һ$^{2}$, ־$^{1}$, $^{1,3,4}$} {(1. йѧԺѧѧԺ, , 100190; 2. йѧԺѧеѧԺ, , 100049; 3. йѧԺھ֪ʶصʵ, , 100190; 4. йѧԺѧ־üԤԤ߷ѧѧʵ, 100190)} - - -\vskip.05in {\narrower\zihao{5}\fangsong\noindent {\heiti ժ\quad -Ҫ}\ \ ``ڷʵ徭"ʵ, ͨݻģͿ̻ڻʵҵ֮Ͷʲݻ, оӰ춯̬ݻ·Ļ. , ̬״̬˫ڴٳҵľΪ. ֮, Ļ彨ģ˼·, ˫ݻΪתΪͶʽľ, ˵λ, ͨʵҵͽڻͶʾ, ضͶʱߵӰ. о, ɱơȷʽܹƶڻԼʵķʽʵҵ. , ʱгʳɱҵӯˮƽ͵ضԾӰ. , ĶԱȺͽģ͵ĽӦ. - - -\vskip.05in \noindent {\heiti ؼ}\ \ ʱ; ʵ徭; ݻ; 彨ģ -} - - - -%%%%%%%%%%%%%%%ӢIJ%%%%%%%%%%%%%%%%%%%%%%% -%\ESEC{ӢĿ}{}{λ} -\ESEC{Research on Investment and Financing Decision of Financial Institutions and Enterprises in China} {Zhong Conglin$^1$, Song Qi$^{1,*}$, Jing Yihan$^2$, Dong Zhi$^1$, and He Zhou$^{1,3,4}$} {(1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China; 2. Sino-Danish College at University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China; 4. MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation at UCAS, Beijing 100190, China)} - - - -\vskip.05in \rm \noindent {\narrower\small {\bf Abstract}\ \ Based on the realistic background of ``guiding financial services to serve the real economy", this paper constructs an evolutionary game model to describe the game evolution process of investment and financing behavior between financial institutions and real enterprises, and studies the mechanism that affects the dynamic evolution path. The analysis shows that both parties tend to make decisions that promote business cooperation in the stable state. In addition, based on the idea of agent-based modelling, this paper transforms the evolutionary game behavior of the two sides into the decision-making problem of the proportion allocation of investment and financing funds, and includes the geographical location factor. By simulating the optimization process of heterogeneous enterprises and financial institutions, it analyzes the influence of various factors on the proportion decision of investment and financing. It is found that by means of cost control, income distribution and government subsidies, financial institutions can be promoted to serve real enterprises in the way of indirect financing. In addition, this paper also finds that capital market financing costs, corporate profitability and geographical factors have a significant impact on decision-making. Finally, this paper compares and combines the results of the two models and puts forward some suggestions. - - - - - - -\vskip.05in \noindent{\bf Keywords}\ \ Financial capital; Real economy; Evolutionary game; agent-based modelling and simulation - - - - -} - - -\normalsize \normalsize \abovedisplayskip=2.0pt plus 2.0pt minus -2.0pt \belowdisplayskip=2.0pt plus 2.0pt minus 2.0pt \baselineskip -16pt - -%%%%%%%%%%%%%%%%%%%%%%%ע%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% ȫеı(šðšֺššŵ)``Ӣ"еı, ``"ӿո. - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\SUB{1\ \ }%һ - -ڽг, ʵҵͽڻͶʾߴ¿ɷΪ. ʵҵ, ʾ߿ԷΪֱʣƱʺծȯʵȣͼʣҪͨҵеȽڻ. Ӧ, ڻͶʾ߿ԷΪͶֱгͶڼг. Ŀǰҹϵ, ҵдȻռгĺĵλ$^{[1]}$, ʱгչѸ, ԼΪĽڽṹҲ˱仯$^{[2]}$. ֮ԵĿѧ: ҹڻʵҵͶʾӰֱʵıϵ? - -һⲻно, Ҳзdzʵʵ. Сָ, ҹӽҵʵ徭õķ, ˹ҹͶٽڻʵʵ徭õҪ$^{[3]}$. ѧ߷, ҹڻ``ʵ", ڻҵŴ, ˮƽ$^{[4]}$. ``ʵ"ҪоڻʵҵͶʾ, ͬģʽ. , ֱģʽ, ҵʽʹõɶȽϸߡֱгϿܻýϸߵʱõ, ٵгȷҲ; ڻѡҵģʽӶ, ʽȸ, ׷չΪ``ʵ"ҵ״̬, ƫ``ʵ徭"Ҫ. ڼʷʽ, ҵΪƵؿѡڻ, ʽ;ҪܵȽǿļල, ʳɱϸ$^{[5]}$, ʹ̷Խϵ; ڻҵΥԼ, ˫Ҳܷչúϵ, ˫ЭƥҲ̶ȵر֤ҵ$^{[6]}$. ȻԼֱʵо϶, ʵ֤չ, ̻ľߺͲĹ. ò۵ֵооԽ, δȫ濼ҪԼƵ. - -ͼҹʵ, ͨģ΢ߺͲо/ֱʱı仯, ӶΪƶṩ. , ȹݻģ, ͨѧþһԵĽ, ѧģ͵ƣ֮󹹽ģ, ɲѧģ͵ļоӰ, ӷģͿɸ߶ʵ. ͨģͽ(4.3), ƶҹͶʽṹӰ, ҲΪѧоƸṩµо˼·. - -ĵоݺͽۼ. (1) Ƚڻʵҵݻģ, ̬ͨݻ·ķ: ڻʵҵ\{``ʱʵ徭, ", ``ʱʵ, ֱ"\}Ϊݻȶ; ҵĻˮƽٵֱг, ڻٵʱгԼӻٽ˫``"չ; ҵ޷üʵʧ˫ٵļҵͶijɱֱӻ˫``"ƫ. (2) Ϊ˽һʵ, IJ彨ģ淽ضߺͺӰ. һ, ģͿͬʱȡͶʻʵΪ, ݻ``ѡһ"Ĺǿ. һ, ڼģʽµطжԵʵҵ״Ϊ˽$^{[7]}$, ģĿռ佻Ϊ, Ӷӷʵ. ͨģʵ鷢: ʱгʳɱӰʵҵļʱ; ʵҵľӪӯˮƽӰڻͶʾ; ʵҵɼӰڻͶʱ; ``"ռȽʵҵӰ. - -ĺ: ڶ, ײܽ᱾ĵĴµ; , ʵݹݻ, оضͶΪߵӰ; IJ, չݻģеĻ, ǵλõģ, оضͶϵͳӰ; 岿, ܽоɹ߽. - -\SUB{2\ \ }%һ -\sub{2.1\ \ ڻʵҵ֮Ͷо}% -ٽҵʵ徭õķ, һֱǿص$^{[3]}$. ڽڻʵҵ໥ӰͶг, ѧŴԴλΪ, ֮Ӱ. : Fraisse$^{[8]}$оŴԴöҵʻӰ. Schwert$^{[9]}$K-MоŴгı仯ʵ徭ûӰ. ΡƷ$^{[10]}$о˽ֶ֧ս˲ҵӰ. ھӰķ, ܿ$^{[6]}$òĺͻڻѧϰķʵ, ԵоиծṹҵŴȡӰ, Ǻϸ$^{[11]}$оӰҵԼ. ־º$^{[12]}$ ģķо. ײͬ, ĵпǵⲿ, ͬʱ۽ڽڻʵҵͶΪѡ, עؽгеʵЧܶ. - -\sub{2.2\ \ ݻĵͶо}% -огij۷֮һ. Evstigneev$^{[13]}$һں̬ĺݻҪصķǴͳۿ, ʲгĶ̬ģ. Ǯ$^{[14]}$˰ҵкС΢ҵгС΢Ŵг, С΢ҵΪԽǷΥԼĻ. $^{[15]}$־Ϊ, ˲۵δо. ڲ۵֧, ݻж̬·;̬ȶоߵȤ, صо, оӽǴܵĽǶΪҵ΢ĽǶȽо. - -ڿڻΪľϵݻ. ΰ$^{[16]}$о˻ƽ̨ΪܷԵIJݻ, صԹ̶ͷƺͶ̬ͷ˫Բľ˱Ƚ. κ$^{[17]}$``"``"ֻҵIJݻ·. Zhang$^{[18]}$о˶̬̼׼۸񱳾̵ݻģ. ҵ΢ӽdz, LiWang$^{[19]}$ԴΪ, оͷӰҵͶʹ漰ͻ. HuoFeng$^{[20]}$ҵڲγɵҵΪо, ڵѺʲ޵ʲҵСҵʵݻģ. XuLiu$^{[21]}$ѡʡֵмҵΪ, ݻ۵ķоС΢ҵԭ. ²ͬ, , ĵоʵҵûо嵽ҵ, ģIJֿǵߵ, ҿ˷աɱӰ, ҵΪչʷʽѡо, ҵеʱͶۺоָ. - -\sub{2.3\ \ 彨ģͶо}% -彨ģ(agent-based modelling and simulation, ABMS)ķһֱȽӱijֿԵ¶ϵģͷ淽, ΪӾоṩµо˼·;. ڶԱо, FarmerAxtell$^{[22]}$ܽABM Ӧڷɱ׼ģеĴͳ. ־յ$^{[23]}$ͨȽCGEģ彨ģģص, ˻彨ģĽо. ABMS΢о, ܶѧ߽Ͷߵ΢ӽǵо. , Ͷгȷ, Bertella$^{[24]}$ԱͶ߶ͶϳеԼǵȺ͸˶˹ƱĶ̬Ӱ. Fratri$^{[25]}$թĴرг۸񲨶Ĺϵ. һ$^{[26]}$ͨģ͹Ե, оͶ߾ܵӰ, ĽгĻ. һ, Ҳѧ߿չ˶ԷմȾͿƷյЧȷо. Mu$^{[27]}$ǿѧϰ㷨ƥģ, оҵ֮ĺ۾ṹҵ֮÷մȾĻ. $^{[28]}$Ͷо˾һDZڷճĴЧӦ. $^{[29]}$ڶ, оеƲȾ.$^{[30]}$ö潨ģίдģ, ͬ¹ίдгյЧ. ʽѡ, Fiedler$^{[31]}$һֶϵͳķ, ڴٽӦѡѡ. оͬ, ABMSչݻоӰķ, ͬʱʵƵķ, ӹ㷺طָŻеӰ. - -\sub{2.4\ \ 뱾оĴ}% -׿Կ, ڻʵҵ֮Ͷоһڵ, ȱ岩Ϊϵͳо. ݻĺͻģͷͶӦúܺõչʾ, ֧űĴ΢۽ǶȽģͷҹڻʵҵɵĸͶϵͳ. , ĵĴµΪ. һ, оӽǷ, Ĵ΢߽ģǶо``ʵ"һͶϵͳĺ, Դʵ֤о۵``", о油; ڶ, о, Ĵѧģ(ݻ)ֵõһԵĽ, ֮ſּ貢ģͿչо, ͶΪʵ, Զģͽ, Ǿноϵ; , о۷, ģȡֵʵ, ȫؽģʵ, ͨȷʶؼӰҪ, ǿоۺ߽ĿѧԺ. - -\SUB{3\ \ ݻо}%һ -ݻһֻڲԵIJ, ҪϵѡѧϰԴ, մﵽ̬. ڻʵҵڽʱʵ徭õоݻķ. , ݻ۶ΪȡԼ$^{[32]}$ , ʵ, ˫ڲĵĹкϢȫ, ޷趨˫Ϊȫ. ڶ, ݻעضʱĺݻ·Ŀ, ڻʵҵIJĹ̰ʱı仯͸ĽԼΪ, ͬʱ, ݻĵķҲڹ۲Ӱݻݻ·仯. , ݻĵоȺ岩, ȺÿڲĵÿһѡлѡһܹƽIJ$^{[33]}$, 봫ͳIJͬ, ݻIJֱӴﵽ״̬ѡ, ˸ʺϿ̻ʵͬһȺвͬڶ볤Чľ. - -\sub{3.1\ \ ģ塢Լ趨}% -\sub{3.1.1\ \ ģͲԼ} -IJΪ\{ʵҵ,ڻ\}. ʵҵIJԼΪ\{,ֱ\}, ڻIJԼΪ\{ʱʵ徭,ʱʵ\}. - -\sub{3.1.2\ \ 趨} -(1) ز趨 - -$A_C,A_F$ֱʵҵͽڻδDzĽµijʼ, ʵֵȡڲͬҵӪۺԼгֵ. ڻʽԼʵķʽʵҵ, ˫ܻöΪ$\Delta V$$^{[14]}$ . ڽڻ˵, Ϣáѯõ; ʵҵ, ʽӪ, Ҳõ. ˫ķ, ҹϵ, , $\gamma(0\le \gamma \le1)$ зָ, 趨˫õĶʵҵռΪ$\gamma$, ӦĽڻռΪ$1-\gamma$. - -ʵҵȡ``ֱ", ڻȡ``ʱʵ"ʱ, ˫ɴӸԲȡIJлöӦ, ֱΪ$R_1$ $R_2$. ǵʵҵ``ֱ"гʻڸַպͲȷ, ȻǹֲȷԵĵݼ, ͳһ趨ϵ$h(0\le h\le1)$бʾ$^{[19]}$. ҵʵԴ``ֱ"ԵΪ$(1-h)R_1$, ޷ֱʱ$h=1$, ֱΪ0. Ƶ, ڻȡ``ʱʵ"ʱ, õĶַܻͬʧ, ˴ϵΪ$k(0\le k \le1)$ $^{[19]}$, ʵΪ$(1-k)R_2$. - -Ϊרעо, ģûпǾӪնӰ. ģͻģʽ, ˫ķվǽϵ͵, ΪгļʱгΪ, ԴģͺЩ. - -(2)Գɱز趨 - -Ҫ˫ȡͬԵ, 趨˫ͬµijɱ. - -$C_C,C_F$ֱʾʵҵͽڻͶɱ$^{[14,21]}$. ⱳ,$C_C$ҵΪصĸijɱ, $C_F$ ӦָڻΪṩʷ񸶳ijɱ. Ϊ, Ϊֲ뷽ͬԵijɱ, ͶɱijֱڲͬIJ. ΪʵҵΪ``"ijɱ$aC_C$, Ϊ``ֱ"ijɱΪ$(1-a)C_C$. ʵҵʳɱռȵIJľӪԡԼгӰ. Ƶ, ڻʵ徭õijɱΪ$bC_F$, ڶԴҵȡѺơŴʽеļලȡʽķõȳɱ, ڻѡ``ʱʵ"ijɱΪ$(1-b)C_F$. ϲ$a,b$$0 \le a, b \le 1$ȡֵΧ. ʱгʵӪ, ߻, ڻʣʽɱԽϵ, ʵҵڵȴʵĹҪһijɱ. , ӻɱĽǶ, 赱ʵҵѰȴδɵĶʧ, Ϊ$L_C$. - -(3)ز趨 - -ǵáڷչĺ۾ߺ֧ʵ徭÷չľٴ, $S$ԽڻӦʵ徭õʱļԲ. 趨ȫ(ע趨ѭС0ļ), 1. - -\sub{3.2\ \ ֧ݻģ͵Ľ}% -ʵҵڻĵijʼ׶, ʵҵѡ``"ĸΪ$\alpha(0\le \alpha \le 1)$, ѡ``ֱ"ĸΪ$1-\alpha$; ڻѡ``ʱʵ徭"ĸΪ$\beta(0\le \beta \le 1)$, ѡ``ʱʵ"ĸΪ$1-\beta$. 趨ĵ֧±2ʾ. - -ʵҵ, ȡʲʱ, ΪڻȡͬIJԶòͬˮƽ: ڻѡ``ʱʵ徭"ʱ, ҵ$A_C+\gamma \Delta V-aC_C$; ``ʱʵ"ʱ, ҵҪѰʽȴδܻµĶɱ, Ϊ$A_C-aC_C-L_C$. ҵȡֱʲʱ, ۽ڻȡʲô, Ϊ$A_C-(1-a) C_C+(1-h) R_1$. - -ڽڻ, ȡ``ʱʵ徭"ʱ, Ϊ: ʵҵҲѡ``"ʱ, ڻΪ$ A_F+(1-\gamma)\Delta V-bC_F+S$; ҵȡ``ֱ"ʱ, ڻΪ$A_F-bC_F+S$. ڻȡ``ʱʵ"ʱ, ʵҵȡʲôIJ, ڻΪ$A_F-(1-b) C_F+(1-k) R_2$. - -\begin{center}{\sz {\textbf{1\ \ ݻģͲ }}}\\ -{\sz {\textbf{Table 1\ \ Evolutionary game model parameters table }}}\\ -\scalebox{0.8}{ -\begin{tabular}{ c c } \toprule - &\\ -\hline -$A_C$ &ʵҵδʷʽʱijʼ\\ -$A_F$ &ڻδʽ䷽ʽʱijʼ\\ -$\Delta V$&½ڻʽҵ, ˫ö\\ -$\gamma$ &öʵҵռ\\ -$h$&ʵҵȡֱʱķϵ\\ -$R_1$&ʵҵȡֱδǷ벻ȷʱ\\ -$(1-h) R_1$&ʵҵȡֱʵʵ\\ -$L_C$&ʵҵȡ``"δɹʱĶʧ\\ -$k$&ڻȡ``ʵ"ʱϵ\\ -$R_2$&ڻȡ``ʵ"δǷʱ\\ -$(1-k) R_2$&ڻȡ``ʵ"ʱʵ\\ -$C_C$&ʵҵΪʵʳɱ\\ -$C_F$&ڻṩʷijɱ\\ -$a$&ʵҵʲijɱռ\\ -$b$&ڻʵ徭õijɱռ\\ -$S$&ԽڻӦʵ徭ߵļԲ\\ -\bottomrule -\end{tabular}} -\end{center} -\vspace{2mm} - -\begin{center}{\sz {\textbf{2\ \ ĵ֧}}}\\ -{\sz {\textbf{Table 2 \ \ Payment matrix of the game}}}\\ -\scalebox{0.8}{ -\begin{tabular}{c c c} \toprule - &ڻʱʵ徭$\beta$&ڻʵ$1-\beta$\\ -\hline -ʵҵ$\alpha$ &$(A_C+\gamma \Delta V-aC_C,$ - &$(A_C-aC_C-L_C,$\\ - &$A_F+(1-\gamma)\Delta V-bC_F+S)$&$A_F-(1-b) C_F+(1-k)R_2)$\\ -ʵҵֱ$1-\alpha$ &$(A_C-(1-a) C_C+(1-h) R_1,$&$(A_C-(1-a) C_C+(1-h)R_1,$\\ - &$A_F-bC_F+S)$&$A_F-(1-b) C_F+(1-k)R_2)$\\ -\bottomrule -\end{tabular}} -\end{center} -\vspace{2mm} - - -\sub{3.3\ \ݻ}%һ - -\sub{3.3.1\ \ 븴ƶ̬}% - -֧ļ, ʵҵCȡ``"``ֱ"ʱ漰ƽֱ$U_{11}$$U_{12}$$U_1$, : -\begin{equation} -U_{11}=\beta(A_C+\gamma \Delta V-aC_C )+(1-\beta)(A_C-aC_C-L_C ) -\end{equation} -\begin{equation} -U_{12}=\beta(A_C-(1-a) C_C+(1-h) R_1 )+(1-\beta)(A_C-(1-a) C_C+(1-h) R_1 ) -\end{equation} -\begin{equation} -U_1=\alpha U_{11}+(1-\alpha) U_{12} -\end{equation} - -ڻFȡ``ʱʵ徭"``ʱʵ"ʱ漰ƽֱ$U_{21}$$U_{22}$ $U_2$, : -\begin{equation} -U_{21}=\alpha(A_F+(1-\gamma)\Delta V-bC_F+S)+(1-\alpha)(A_F-bC_F+S) -\end{equation} -\begin{equation} -U_{22}=\alpha(A_F-(1-b) C_F+(1-k) R_2 )+(1-\alpha)(A_F-(1-b) C_F+(1-k) R_2 ) -\end{equation} -\begin{equation} -U_2=\beta U_{21}+(1-\beta) U_{22} -\end{equation} - -ʵҵѡ``"$\alpha$ݻĸƶ̬Ϊ: -\begin{equation} -F_1 (\alpha)=\partial \alpha/ \partial t=\alpha(U_{11}-U_1 )=\alpha(1-\alpha)(\beta(\gamma \Delta V+L_C )-L_C-(1-h) R_1+(1-2a) C_C ) -\end{equation} - -ڻѡ``ʵ徭"$\beta$ݻĸƶ̬Ϊ: -\begin{equation} -F_2 (\beta)=\partial \beta / \partial t=\beta(U_{21}-U_2)=\beta(1-\beta)(\alpha(1-\gamma)\Delta V+S+(1-2b) C_F-(1-k) R_2 ) -\end{equation} - -\sub{3.3.2\ \ ESS}% - -۵õݻĸƶ̬, һָƽ, жESS. -$F_1(\alpha)=0,F_2(\beta)=0$, -õ5, ֱΪ: -$$(0,0),(1,0),(1,1),(0,1),(\frac{(1-k) R_2-S-(1-2b) C_F}{(1-\gamma)\Delta V},\frac{L_C+(1-h) R_1-(1-2a) C_C}{\gamma \Delta V+L_C})$$ -趨P: -\begin{equation} -\left(\begin{array}{c c} -a_{11}&a_{12}\\ -a_{21}&a_{22} -\end{array} \right) -\end{equation} - -: -\begin{equation} -a_{11}=\frac{\partial F_1 (\alpha)}{\partial \alpha}=(1-2\alpha)(\beta(\gamma \Delta V+L_C )-L_C-(1-h) R_1+(1-2a) C_C ) -\end{equation} -\begin{equation} -a_{12}=\partial F_1 (\alpha)/\partial \beta=\alpha(1-\alpha)(\gamma \Delta V+L_C ) -\end{equation} -\begin{equation} -a_{21}=\partial F_2 (\beta)/\partial \alpha=\beta(1-\beta) (1-\gamma)\Delta V -\end{equation} -\begin{equation} -a_{22}=\partial F_2 (\beta)/\partial \beta=(1-2\beta)(\alpha (1-\gamma)\Delta V-(1-k) R_2+S+(1-2b) C_F ) -\end{equation} - -ǾPʽΪdet(J), ļΪtr(J), ``+"Ŵ0, ``-" ŴС0, : -\begin{center}{\sz {\textbf{3\ \ ȶжϽ}}}\\ -{\sz {\textbf{Table 3\ \ Stability judgment results of equilibrium points}}}\\ -\scalebox{0.7}{ -\begin{tabular}{l c c r} \toprule - &det(J) &tr(J) &\\ -\hline -$A(0,0)$ &+ &- &ESS\\ -$B(1,0)$ &+ &+ &ȶ\\ -$C(1,1)$ &+ &- &ESS\\ -$D(0,1)$ &+ &+ &ȶ\\ -$E(\frac{(1-k) R_2-S-(1-2b) C_F}{(1-\gamma)\Delta V},\frac{L_C+(1-h) R_1-(1-2a) C_C}{\gamma \Delta V+L_C})$ & &0 &\\ -\bottomrule -\end{tabular}} -\end{center} -\vspace{2mm} -ݼʾ, A(0,0),C(1,1)ΪESS, ˵ڻʵҵʵҵѡ``ֱ"ҽڻѡ``ʱʵ"ʵҵѡ``"ҽڻѡ``ʱʵ徭"IJ. - -\sub{3.4\ \ʵݵİλݻ·}%һ -\sub{3.4.1\ \ λ÷}% -Ҫʵݶ԰λý, ΪĺǷ[0,1]ķΧ, ںۺݻ·оҪ. м谰ĺ01ķΧ. һǿǵ趨ڽλõĺֵӷʽΪͬʽӼIJʽʾ, ͬʱ𵽻, ʵ; һҲڵڲƵָ귶Χ, ýͱȽֱ. - -[0,1]Χʱ, ͨɵ²ʽ: -\begin{equation} -0\le (1-h) R_1-(1-a) C_C\le \gamma \Delta V-aC_C -\end{equation} -\begin{equation} -0\le (1-k) R_2-(1-b) C_F \le (1-\gamma)\Delta V+S-bC_F -\end{equation} - -, ݶʽĺԽз. - -ʵҵ״ʵԷ: -ͨ(14)ʽĹ۲Է, ҵδǰõʱ, $\gamma \Delta V-aC_C$һΪǼʸҵľЧ, $(1-h) R_1-(1-a) C_C$һӦΪҵֱͨʷʽõľЧ. 벻$A_C$ Ӧ, ҵڵľӪпԺʽӪ, ɽҵΪ: һӪ͹ֱʽõЧ; Ӫ͹ʽõЧ. - -ļٶͷ, ɽͬʹģ֮ȵͬҵڲͬ»õľ֮, (14)ʽеIJʽϵǷ. ԹƱļʶծȯʶ֮ͺֱʹģ, Խڻʹģ, Windݿ, ɻݺ: 20062017, ȫֱʹģʹģıʼС1. ǰղͬݡͬʡݻֱϽнֽҲͬ. , һ, ʵĹģ, ģ; ֱʹģھһʱӺ˻ػ½(ȻҲڲ̶ͬȵӵ,ģȻڼʹģ);, ʷʽ𲽽, ڻڵطʹеζȺƳ̶ȸ͵Ľڻ,ǾǷҵԸ(ֻ)򵱵صһЩ, Ӷ˼гģ. ,ʵݺʵ,ȻľλûҪ$L_C$, λ[0,1]ΧڵļǺ. - -ڽڻ״ʵԷ: ͨ(15)ʽĹ۲Է, ͬ$A_F$, $(1-\gamma)\Delta V+S-bC_F$ һؿΪǽڻѡ``ʱʵ徭"ԴľЧ, $(1-k) R_2-(1-b) C_F$ һӦΪǽڻͨʱʵķʽõľЧ. ڼг, ҵʼ, ݵĿɻ, ˴ڻΪҵ, ͬʱеķΪͶʱгϻõ, ѯѡѵ, ݵĹ. - -(15)ʽͬʱ``Ӫҵ"(÷$\varphi$ʾ), ҵеķϢռ(÷$\theta$ʾ)ָ, (15) ʽתΪʽ: -\begin{equation} -\theta-\frac{(1-b) C_F}{\varphi}\le 1-\theta+\frac{S}{\varphi}-\frac {bC_F}{\varphi} -\end{equation} - -дӼлõԴΪ; ӦߵļԲȻвȡijֲԴŻ, ǶԴҵ, ͨкǿ, , ˴ķԵ$\frac{S}{\varphi}$һ. ΪӪҵ, ΪʽӪͨijɱռ󲿷, Խ$\frac{C_F}{\varphi}$ һƵΪdzɱ(÷$\tau$ʾ). - -ٶͷ, (16)ʽԼΪ: -\begin{equation} -0 \le 1-2\times \theta+(1-2b)\times \tau -\end{equation} - -ʽֿԽһΪ: -\begin{equation} -b\le \frac{1}{2}(1+\frac{1-2\times \theta}{\tau}) -\end{equation} - -, ڰλõж, ת˶bȡֵΧж. ݵĿɻ, IJȡҵ201012202012µļ, (18)ʽȺҲಿֵֵ(ƽֵ). - -\begin{center}{\sz {\textbf{4\ \ (18)ʽҲಿֵ}}}\\ -{\sz {\textbf{Table 4 \ \ Part of the value on the right side of equation(18)}}} -\scalebox{0.75}{ -\begin{tabular}{c c c c c c c c c c c c } \toprule - & 2010&2011&2012&2013&2014&2015&2016&2017&2018&2019&2020\\ -\hline -ֵ &1.421&1.462&1.477&1.394&1.435&1.417&1.400&1.391&1.439&1.417&1.452\\ -\bottomrule -\end{tabular}} -\end{center} -\vspace{2mm} - -ͳƷ, ʽҲСֵΪ1.391. ģжڲ$b$Ķ, $b$Сڵ1ķǸ, , $b$һС1.391Ҫ. - -, ĻʵݿչʵԷ, ʵҵͽڻ֤˰ĺλ[0,1]֮ļ, ΪĶ̬·ͲӰƵȷ춨ʵ. - -\sub{3.4.2\ \ ͼ䶯}% -ĵļʵݷ, ͼ, Eǰ, ͼ1ʾ: -\vspace{2mm}\begin{center} -\includegraphics[scale=1]{Fig1.pdf}\\ -{\bf \sz ͼ1\ \̬ݻͼ}\\ -{\bf \sz Fig.1\ \ Dynamic evolution saddle point diagram} -\end{center}\vspace{2mm} -A(0,0),C(1,1)ΪESSȶ, ʾڻʵҵĸƶ̬߶ȶԼλ. аEж·A(0,0),C(1,1) ĸʵĹؼ. תΪ, ȡABEDCBEDıȽ. ֪, -\begin{equation} -M_1=\frac{1}{2}(\frac{L_C+(1-h) R_1-(1-2a) C_C}{\gamma \Delta V+L_C }+\frac{(1-k) R_2-S-(1-2b) C_F}{(1-\gamma)\Delta V}) -\end{equation} -\begin{equation} -M_2=1-\frac{1}{2}(\frac{L_C+(1-h) R_1-(1-2a) C_C}{\gamma \Delta V+L_C }+\frac{(1-k) R_2-S-(1-2b) C_F}{(1-\gamma)\Delta V}) -\end{equation} - -$M_2 \ge M_1$ʱ, ˫ijʼCBEDĸԽ, ԽпC(1,1)ƶ, ʵҵͽڻͬҵʽݻ. - -\sub{3.5\ \ 仯ݻ̵Ӱ}% - -ǰʵݷ˰λ÷Χ[0,1]֮, ĴС배λ. , 仯·ӰƿɱΪ԰Ӱ, ɸֱ۵תΪĴСӰ. Ҫı仯ݻ̺ͽӰ. - -$M_1$$M_2$ʽ$M_1$$M_2$෴, ˿ֻͨı䶯$M_1$Ӱ. õ, õӰı±5ʾ(``+"``-"ֱʾͬ䶯䶯, ÷$u$): -\begin{center}{\sz {\textbf{5\ \ $M_1$$M_2$ı䶯Ӱ}}}\\ -{\sz {\textbf{Table 5 \ \ parameter's influence on $M_1$$M_2$}}}\\ -\scalebox{1}{ -\begin{tabular}{l c c} \toprule -/&$\frac{\partial M_1}{\partial u}$&$\frac{\partial M_2}{\partial u}$\\ -\hline -$L_C,R_1,a,R_2,b$&+&-\\ -$\Delta V,h,k,S,$&-&+\\ -$C_C,C_F,\gamma $&&\\ -\bottomrule -\end{tabular}} -\end{center} -\vspace{2mm} - -ͨڲͬ, $M_1$$M_2$ĵ, ж仯, : - -$\Delta V$, $h$, $k$, $S$ʱ, $M_2$,ʵҵͽڻ˫ڼʵҵģʽĿԸ. ⲿֵѧʵҲʵеһЩʶԵľ, ҵģʽ˫ɹĹͬ, ԵIJ, ˫ȻѡԼ; ͬʱ, Ӧ»ķ, ѡӦԵȻ½. - -$L_C$, $R_1$, $R_2$, $a$, $b$ʱ, $M_2$. ʵ, ҵͽڻ``ֱ"Ժ``ʱʵ"IJܹõ½(ҵѡ``"ڻѡ``ʱʵ徭"ʱijɱܳɱռ½)ʱ, ѡ˫ҵģʽ(Ȼⲿֵijɱռʵжҵͽڻ趨, Ҳⲿɵ, ﲻϸ). , $L_C$ ϵʱ, ҵܻȥԺȡ``"IJ. - -ڵʱ, $\gamma, C_C, C_F$$M_1$$M_2$ Ӱ첻ж, ܵĴСõӰ, ﵥ. - -̽$C_C$, $C_F$Ӱ. ͨ󵼷, $M_1$$M_2$ Ӱܵ$a,b$ Ӱ. $a,b$ ķΧ[0,1/2]֮(ҵΪüijɱСΪֱijɱ), ڻȡ``ʱʵ徭"ʱijɱС``ʱʵ"IJijɱʱ, $C_C$ $C_F$ ,$M_2$. 仰˵, Ȼɱʱ, Բ˫ľ涼һʧ, ΪΧĹϵ, ʹö\{``"``ʱʵ徭"\}ijɱӵӰСһ. - -, ۲$\gamma$. $M_1$$\gamma$ĵ: -\begin{equation} -\frac{\partial M_1}{\partial \gamma}=\frac{[(1-k) R_2-S-(1-2b) C_F ] (\gamma \Delta V+L_C )^2-[L_C+(1-h) R_1-(1-2a) C_C][\Delta V(1-\gamma)]^2}{(\gamma \Delta V+L_C)^2 (1-\gamma)^2 \Delta V} -\end{equation} - -$\gamma$ɵӰ۱Ƚϸ, 漰Ӱ, 漰˫ڲͬµĴСԱ. ʵʹ, $\gamma$ ĴСܵ˫ǩͬʱЭʵݵӰ, ҲܵⲿӰ. , ˫ķ, ˫ǩͬʱ̶. Խϸʱ, ڻܹõһֵ϶; ෴,ҵгλõ״ʽõ, ̶һϵ͵ʱ, ǶҵʳɱĽԼ, ҲǶѳеʱľóɱĽԼ, ӦҲ. ͨʵҲԿ, $\gamma$Ӱʮָ, ܼ򵥵ֵͨ. - -\SUB{4\ \ 彨ģо}%һ - -ݻģƵһԵĽ, ȱ. һҵͽڻֱֻӡֲѡһΪ, ʵ߲``Ǻڼ". , ҵʱһʽԴڼģʽ, һʽԴֱг; ͬ, ڻὫʽһͨҵͶ, һʽֱгʱͶ. ѧģֳڻļʷΧܵ޵ʵ, оһؿܷdzҪ$^{[7]}$. - -, ½ڲ彨ģ淽(ABMS)ʵģ. ÷¶ϵؿ̻΢ľ߹ԼĽ, ڷҪضϵͳָӰ. ݻģ, ģеҵͽڻԾԲͬģʽͶʱ, $[0\%, 100\%]$ȡֵ(ڻɽʽ䵽гʱг, ҵͬ), Ӷһȱ. ڵڶȱ, ģҵ``ͽԭ"ѰΧڵļʽڻ, Ӷʵҵڻʱսʽ, Ӷо(ѰΧ)ͶʽӰ. - -\sub{4.1\ \ ģͱģ趨 }% - -\sub{4.1.1\ \ ģͱ }% - -ģͲ6ʾ, д󲿷ֲͱ1ݻģ͵IJһ. ΪȷʵҵͽڻԻ߱, ʷֱʹ$i, j$ӦԱע. - -\begin{center}{\sz {\textbf{6\ \ ģͲ(ͱ1ݻģ͵IJһ)}}}\\ -{\sz {\textbf{Table 6\ \ Agent-based model parameters}}}\\ -\scalebox{0.7}{ -\begin{tabular}{ c c c } \toprule - && ȡֵ\\ -\hline -$A_{C,i}$ &ʵҵδʷʽʱijʼ& 0\\ -$B_i$ &ʵҵʹģ& 1000(ҵλ)\\ -$v_i$ &ҵýڻʽоӪ &\{2,1.2,0.3\}\\ -$\gamma$ &öʵҵռ&\{0.2,0.4,0.6\}\\ -$h_i$&ʵҵȡֱʱķϵ&\{0.2,0.4,0.6\}\\ -$r_{1,i}$&ʵҵȡֱδǷ벻ȷʱ&0.3\\ -$c_{1,i}$&ʵҵüʺʳɱ&0.1\\ -$l_{1,i}$&ʵҵȡ``"δɹʱĶʧɱ&0.03\\ -$lo_i$ &ʵҵڻľ뷶Χ&\{0,1,2\}\\ -$A_{F,j}$ &ڻδʽ䷽ʽʱijʼ&0\\ -$k_j$&ڻȡ``ʵ"ʱϵ&\{0.1,0.2,0.3\}\\ -$p_{1,j}$&ڻȡ``ʵ徭"δɹʱĶʧɱ&\{0.02,0.04,0.06\}\\ -$f_{1,j}$ &ڻɹʵ徭ṩʷľӪɱ&\{0.06,0.08,0.10\}\\ -$f_{2,j}$ &ڻȡ``ʵ"ԵľӪɱ &\{0.01,0.03,0.05\}\\ -$d_j$ &ڻͶŵʽģҵʽģı&\{1,5,9\}\\ -$s_j$&ԽڻӦʵ徭ߵļԲ &\{0.001,0.003,0.005\}\\ -$\rho$ &ڻʱгδǷյʽ&\{0.1,0.25,0.4\}\\ -$BIndirect_i$ &ʵҵʵԴڼʵĽ& \\ -$BDirect_i$ &ʵҵʵԴֱʵĽ& \\ -$DIndirect_j$ &ڻʵͶʵ徭ʽ& \\ -$DDirect_j$ &ڻʵ``ʵ"ʽ& \\ -$m_i$ &ҵƻԴڼʵʽ& ʵҵ߱ \\ -$n_j$ &ڻƻͶ``"ҵʽ& ڻ߱ \\ -$\pi_i$ &ʵҵ& \\ -$\pi_j$ &ڻ& \\ -\bottomrule -\end{tabular}} -\end{center} -\vspace{2mm} - - -\sub{4.1.2\ \ ģ趨 }% - -ģ趨, ҵֲͨͬʷʽʽı$m_i$, ݵλòȡͽԭܹô. ҵÿһ, ͻԱмƻͶŴгʽ, Ϊʵ󻯺, ҵڲͬʷʽʶΧھܵѰʽ. ݻģ, ҵʽҪ$B_i$, ԼڻͶŵʽģҵʽģı$d_j$$^{[21,27]}$, ҵͽڻͶʱ߶Ӱ. ڻھʽҵģʽµķ, ڼҵģʽ, ݽҵƥ; ֱʷ, ģемƻͶ``ֱ"ҵʽͬʱг, гڲǷյ, ڻܹõҵڸгʵijɱһ¾Ϊ$\rho$. ʱгʽ𹩴ʱ, ҵܹȡԸֱͨʷʽȡõʽ, ෴, С, ҵֻõԸʽܹռıij˻. ҵͽڻҵʵʻõֱʶڻܹṩֱʶıʽʾ: -\begin{equation} -\pi_i=A_{C,i}+{BIndirect_i}(\gamma v_i-c_{1,i})-(m_iB_i-BIndirect_i)^+\frac{l_{1,i}}{m_i}+(1-h_i)r_{1,i}{BDirect_i}-\rho BDirect_i -\end{equation} -\begin{equation} -BDirect_i=min[(1-m_i)B_i,(1-m_i)B_i\frac{\sum(1-n_j)d_j}{\sum(1-m_i)}] -\end{equation} -\begin{equation} -\begin{split} -\pi_j=A_{F,j}+{DIndirect_j}((1-\gamma)v_i-f_{1,j}+s_j)-(n_jd_jB_i-DIndirect_j)^+\frac{p_{1,j}}{n_j} \\ -+(1-k_j)\rho DDirect_j-((1-n_j)d_jB_i-{DDirect_j})^+\frac{f_{2,j}}{1-n_j} -\end{split} -\end{equation} -\begin{equation} -DDirect_j=min[(1-n_j)d_jB_i,(1-n_j)d_jB_i\frac{\sum(1-m_i)}{\sum(1-n_j)d_j}] -\end{equation} - - -\sub{4.2\ \ ģʵ }% - -ģͱƵ, ȷ11(ģ)ĸָ(ģ). - -\sub{4.2.1\ \ ָ}% -ģ͵Ľۺʵ, ѡ$v_i$, $\gamma$, $\rho$, $s_j$, $d_j$, $f_{1,j}$, $f_{2,j}$, $p_{1,j}$, $k_j$, $lo_i$, $h_i$ 11 Ϊ, ÿؾ3, ȡֵ6 ʾ. Ϊ˽о⼯ڶͶʱߵ, ĺ$A_{C,i}$$A_{F,j}$˫Ӱ첢趨Ϊ0. Ϊ˾ֵܱ֤ʵ, $B_i$趨Ϊ1000 Ļҵλ, ۵ڻͶʵʽģֱΪ$B_i$1, 5, 9ʱԾߵӰǷ. $v_i$ڲͬҵʲϴ, IJȡֲϴȡֵ, ۲ǷԾ߲Ӱ. ǵͬҵʳɱͬ, IJȡ˽Ϊƽֵ0.1Ϊ$c_{1,i}$ȡֵ. $lo_i=0$ ʾҵܹнڻ,$lo_i=1, 2$ ֱʾҵܹлΧ1 2 λڵĽڻмҵĺ.ÿηģͽ64 (58 ҵ6 ҽڻ), λÿζָ$8 \times 8$ 񻷾, پ֮ľ. ģ;100ʱ䲽ֹͣ. - -IJPythonʵַģ, ߲ESTOPT$^{[34]}$. ģ͵11, ÿ3 ȡֵ, ʲ$L_{27}(3^{13})$ ʵ, $m_i$, $n_j$, $\pi_i$, $\pi_j$ ĸָΪ. ÿһʵظ10, ȡ4 ָľֵ. 270 ʵ, ¼ģ͵, 7ʾ. , 13жоӰֻ11, пհ(ֳ)ڹ. - -%\begin{table}[] -\begin{center}{\sz {\textbf{7\ \ ʵ}}}\\ -{\sz {\textbf{Table 7\ \ Simulation experiment results}}}\\ -\scalebox{0.7}{ -%\resizebox{\textwidth}{!}{ -\begin{tabular}{c|cccrcccrcccrr|rrrr} \toprule -ʵ& $lo_i$ & $h_i$ & $\gamma$ & $v_i$ & $k_j$ & $p_{1,j}$ & $f_{1,j}$ & $f_{2,j}$ & $d_j$ & $s_j$ & $\rho$ & 1 & 2 & $m_i$ & $n_j$ & $\pi_i$ & $\pi_j$ \\ -\midrule -1 & 0 & 0.2 & 0.2 & 2 & 0.1 & 0.02 & 0.06 & 0.01 & 1 & 0.001 & 0.1 & 0 & 0 & 0.5773 & 1.0000 & 6.8338 & 1540.9914 \\ -2 & 1 & 0.2 & 0.4 & 1.2 & 0.2 & 0.06 & 0.1 & 0.01 & 5 & 0.005 & 0.25 & 0 & 0 & 0.9836 & 0.4290 & 60.8209 & 1317.6819 \\ -3 & 2 & 0.2 & 0.6 & 0.3 & 0.3 & 0.04 & 0.08 & 0.01 & 9 & 0.003 & 0.4 & 0 & 0 & 0.9809 & 0.1764 & -14.8548 & 32.1848 \\ -4 & 0 & 0.4 & 0.2 & 1.2 & 0.2 & 0.04 & 0.1 & 0.05 & 1 & 0.003 & 0.4 & 1 & 0 & 0.7340 & 1.0000 & -11.2754 & 862.9968 \\ -5 & 1 & 0.4 & 0.4 & 0.3 & 0.3 & 0.02 & 0.08 & 0.05 & 5 & 0.001 & 0.1 & 1 & 0 & 0.0223 & 0.1048 & 15.7067 & 267.7707 \\ -6 & 2 & 0.4 & 0.6 & 2 & 0.1 & 0.06 & 0.06 & 0.05 & 9 & 0.005 & 0.25 & 1 & 0 & 0.9755 & 0.6278 & 609.6986 & 3698.2248 \\ -7 & 0 & 0.6 & 0.2 & 0.3 & 0.3 & 0.06 & 0.08 & 0.03 & 1 & 0.005 & 0.25 & 2 & 0 & 0.9886 & 0.4265 & -31.8833 & 66.0302 \\ -8 & 1 & 0.6 & 0.4 & 2 & 0.1 & 0.04 & 0.06 & 0.03 & 5 & 0.003 & 0.4 & 2 & 0 & 0.9905 & 0.4599 & 140.4664 & 2503.9586 \\ -9 & 2 & 0.6 & 0.6 & 1.2 & 0.2 & 0.02 & 0.1 & 0.03 & 9 & 0.001 & 0.1 & 2 & 0 & 0.6084 & 0.6112 & 335.5242 & 2294.4361 \\ -10 & 0 & 0.2 & 0.4 & 2 & 0.2 & 0.04 & 0.08 & 0.05 & 9 & 0.001 & 0.25 & 2 & 1 & 0.9669 & 0.9862 & 641.1201 & 9958.9978 \\ -11 & 1 & 0.2 & 0.6 & 1.2 & 0.3 & 0.02 & 0.06 & 0.05 & 1 & 0.005 & 0.4 & 2 & 1 & 0.9333 & 0.9118 & 30.6913 & 412.2126 \\ -12 & 2 & 0.2 & 0.2 & 0.3 & 0.1 & 0.06 & 0.1 & 0.05 & 5 & 0.003 & 0.1 & 2 & 1 & 0.0028 & 0.0687 & 49.9314 & 321.3499 \\ -13 & 0 & 0.4 & 0.4 & 1.2 & 0.3 & 0.06 & 0.06 & 0.03 & 9 & 0.003 & 0.1 & 0 & 1 & 0.9529 & 0.9869 & 349.0957 & 5897.0628 \\ -14 & 1 & 0.4 & 0.6 & 0.3 & 0.1 & 0.04 & 0.1 & 0.03 & 1 & 0.001 & 0.25 & 0 & 1 & 0.9501 & 0.0000 & -33.4433 & 93.0791 \\ -15 & 2 & 0.4 & 0.2 & 2 & 0.2 & 0.02 & 0.08 & 0.03 & 5 & 0.005 & 0.4 & 0 & 1 & 0.9714 & 0.9103 & 118.8344 & 6892.2585 \\ -16 & 0 & 0.6 & 0.4 & 0.3 & 0.1 & 0.02 & 0.1 & 0.01 & 9 & 0.005 & 0.4 & 1 & 1 & 0.9996 & 0.2811 & -17.0146 & 126.4364 \\ -17 & 1 & 0.6 & 0.6 & 2 & 0.2 & 0.06 & 0.08 & 0.01 & 1 & 0.003 & 0.1 & 1 & 1 & 0.3207 & 0.9867 & 85.8388 & 709.8276 \\ -18 & 2 & 0.6 & 0.2 & 1.2 & 0.3 & 0.04 & 0.06 & 0.01 & 5 & 0.001 & 0.25 & 1 & 1 & 0.9683 & 0.9129 & 47.9254 & 4088.7992 \\ -19 & 0 & 0.2 & 0.6 & 2 & 0.3 & 0.06 & 0.1 & 0.03 & 5 & 0.001 & 0.4 & 1 & 2 & 0.8787 & 1.0000 & 556.7526 & 3504.9875 \\ -20 & 1 & 0.2 & 0.2 & 1.2 & 0.1 & 0.04 & 0.08 & 0.03 & 9 & 0.005 & 0.1 & 1 & 2 & 0.2030 & 0.3036 & 97.4772 & 2157.4883 \\ -21 & 2 & 0.2 & 0.4 & 0.3 & 0.2 & 0.02 & 0.06 & 0.03 & 1 & 0.003 & 0.25 & 1 & 2 & 0.7070 & 0.0000 & -30.8275 & 199.9995 \\ -22 & 0 & 0.4 & 0.6 & 1.2 & 0.1 & 0.02 & 0.08 & 0.01 & 5 & 0.003 & 0.25 & 2 & 2 & 0.8648 & 1.0000 & 308.6999 & 2014.9947 \\ -23 & 1 & 0.4 & 0.2 & 0.3 & 0.2 & 0.06 & 0.06 & 0.01 & 9 & 0.001 & 0.4 & 2 & 2 & 1.0000 & 0.2090 & -31.9416 & 248.3482 \\ -24 & 2 & 0.4 & 0.4 & 2 & 0.3 & 0.04 & 0.1 & 0.01 & 1 & 0.005 & 0.1 & 2 & 2 & 0.4599 & 0.9985 & 47.1471 & 1103.4756 \\ -25 & 0 & 0.6 & 0.6 & 0.3 & 0.2 & 0.04 & 0.06 & 0.05 & 5 & 0.005 & 0.1 & 0 & 2 & 0.5135 & 0.0738 & -15.3067 & 381.3862 \\ -26 & 1 & 0.6 & 0.2 & 2 & 0.3 & 0.02 & 0.1 & 0.05 & 9 & 0.003 & 0.25 & 0 & 2 & 0.9966 & 0.4287 & 69.0216 & 3886.6850 \\ -27 & 2 & 0.6 & 0.4 & 1.2 & 0.1 & 0.06 & 0.08 & 0.05 & 1 & 0.001 & 0.4 & 0 & 2 & 0.8297 & 0.9973 & 13.6864 & 640.2274\\ \bottomrule -\end{tabular}} -%\end{table} -\end{center} -\vspace{0.05mm} - - -\sub{4.2.2\ \ ʵ}% - -, ÿָķ(ANOVA), 8ʾ. pֵ$F$ͳ$F$ֲõ. 0.10ˮƽ, $\rho$ ҵƻԴڼʵʽ$m_i$Ψһ, ˵ֱʵʳɱӰҵԴҪ. $lo_i$ $v_i$ $n_j$ . ͨԷ, ȻΪʵҵ, Ľ, ڻڿʽʱ, ܵҵԽڻΧӰ. $\gamma$$v_i$$d_j$$\pi_i$, һʵҵ, ڻнҵʱ۽ʵĿӪԼڻܹʹõȫͶҵʶȵıģӰDZȽҪ. , ʵ$v_i$ $\pi_j$ Ψһ. һ˵, 佻Ӱغܶ, ʵҵĻˮƽȽӰ쵽ڻˮƽ. - -\begin{center}{\sz {\textbf{8\ \ }}}\\ -{\sz {\textbf{Table 8\ \ ANOVA table}}}\\ -\scalebox{0.7}{ -\begin{tabular}{ccrrrrrrrrrrrr} - \toprule - & & \multicolumn{1}{c}{} & $m_i$ & \multicolumn{1}{c}{} & & $n_j$ & \multicolumn{1}{c}{} & & $\pi_i$ & \multicolumn{1}{c}{} & & $\pi_j$ & \multicolumn{1}{c}{} \\ - \cline{3-5} \cline{6-8} \cline{9-11} \cline{12-14} -Source & DOF & MS & F ratio & P value & MS & F ratio & P value & MS & F ratio & P value & MS & F ratio & P value \\ \midrule -$lo_i$ & 2 & 0.039 & 0.674 & 0.5593 & 0.237 & 7.845 & 0.0413 & 50966.46 & 3.368 & 0.1388 & 4582624 & 0.987 & 0.4485 \\ -$h_i$ & 2 & 0.028 & 0.489 & 0.6457 & 0.027 & 0.889 & 0.4792 & 21240.61 & 1.404 & 0.3453 & 1220718 & 0.263 & 0.7812 \\ -$\gamma$ & 2 & 0.011 & 0.184 & 0.8389 & 0.001 & 0.023 & 0.9774 & 67257.25 & 4.445 & 0.0963 & 2416561 & 0.52 & 0.6298 \\ -$v_i$ & 2 & 0.033 & 0.569 & 0.6062 & 1.306 & 43.239 & 0.002 & 158881.2 & 10.5 & 0.0256 & 28692472 & 6.177 & 0.0598 \\ -$k_j$ & 2 & 0.017 & 0.298 & 0.7578 & 0.041 & 1.365 & 0.3532 & 349.376 & 0.023 & 0.9773 & 2711505 & 0.584 & 0.5992 \\ -$p_{1,j}$ & 2 & 0.002 & 0.031 & 0.9694 & 0.019 & 0.626 & 0.5802 & 23434.15 & 1.549 & 0.3176 & 683915.6 & 0.147 & 0.8676 \\ -$f_{1,j}$ & 2 & 0.063 & 1.08 & 0.4216 & 0.033 & 1.098 & 0.4168 & 929.355 & 0.061 & 0.9413 & 2392257 & 0.515 & 0.6324 \\ -$f_{2,j}$ & 2 & 0.056 & 0.967 & 0.4545 & 0.047 & 1.569 & 0.314 & 34345.79 & 2.27 & 0.2194 & 4630322 & 0.997 & 0.4454 \\ -$d_j$ & 2 & 0.069 & 1.182 & 0.395 & 0.091 & 3.003 & 0.1598 & 108757.2 & 7.187 & 0.0474 & 14971123 & 3.223 & 0.1466 \\ -$s_j$ & 2 & 0.006 & 0.11 & 0.8988 & 0.024 & 0.778 & 0.5183 & 14705.79 & 0.972 & 0.4529 & 1493398 & 0.321 & 0.7422 \\ -$\rho$ & 2 & 0.818 & 14.087 & 0.0155 & 0.038 & 1.257 & 0.3771 & 22494.65 & 1.487 & 0.3291 & 3995696 & 0.86 & 0.489 \\ - & 4 & 0.058 & & & 0.03 & & & 15132.06 & & & 4645236 & & \\ \bottomrule -\end{tabular}} -\end{center} -\vspace{0.05mm} - -\sub{4.3\ \ ݻĽԱȷ}% - -ͨԷ: һ, $v_i$$\pi_i$$n_j$$\pi_j$֪, ʵҵӪˮƽӰ, ͬʱԽڻʽߺӰ. ԱݻĵĽԷ, ʵҵĻüʺˮƽ, ˫ҵҪ.һDZȽϷϿ͹ʵ, ڻԴڶ, Ӹ˵, ֻʵ徭, ܴõĻԾʽͨ, ܱ֤ڻ. ڶ, $\rho$$m_i$ , ݻģͽйҵֱʲijɱӰĽһµ. , Ȼ$\gamma$ݻģͽ׶εӰûȷıʾ, ģʵҲûбֳ$m_i$$n_j$Ӱ, $\pi_i$ Ӱ. $\gamma$ Ϊ˫ҵһЭָ, ʵҵһ״Ƶһ, ŻӰȽ. , ݻģͽ׶, ģп˵غҵҪڻͶʹĹģԱȵӰ, ʵ, $lo_i$$m_i$ȻûӰ, Ƕ$n_j$ǴӰ, ˵ʵҵ, رС΢ҵͨᰴվͽԭȥѰд, ھҵձԶĽڻ, ׽ҵϵ, Ҳ˵Ҫ˫ļҵĺ, ڻҪܿʵҵ, ҲϽڻԼطзչʵ. , $d_j$$\pi_i$Ӱ, Ҳ˵˽ڻʽ𹩸ܹʵҵҪӰ. - - -\SUB{5\ \˼}%һ -ͨڻʵҵ֮ݻģ, ģ˫ĵĶ̬, ָʵ, λõĺ. , ڻʵҵIJĻ\{``ʱʵ徭, ", ``ʱʵ, ֱ"\}ȶ㷢չ, ݷͺ֤, ͨɱơ䡢ȷʽ, Ӱ˫ҵģʽ, Ӱֱʵҵϵ. ĻͨģͲģʵ, ʵƺͷ, ˹ؼָӰ, ʵҵʱгٵʳɱҵʱ䡢ʵҵӯˮƽͶԽڻѰΧԽڻͶʱӰ. - -ݱĵо, ½: - -һ, ƽʱʵ徭ҵ, ͬʱǿԽгȶչҪ. ݻĵĽ, ڽڻʵ徭þ. , ӦȷලͼЧ, ϸڻʵ徭õָͼˮƽ, Ƽල͵, ָ֤ͼߵʵԡЧ. ָ, ڻʵҵʺʱռȡڻʽͶʵҵĹģʵҵӰ, , ӦʵڻʽͶˮƽͼʵĻ׼, Чٽڷʵ徭õķչ. - -ڶ, ʵҵӦƽʷʽѡ, ǿڻĺ, ͬߺˮƽ, ͺɱ, ʵ˫Ӯ. ݻĵĽ, ҵѰҼʺδɹijɱʧڼҵĴٳɾӰ. ʵ, ˫ΪϢԳơгλIJԭ, dzɸ߶Ѱɱ̸гɱҵظȺɱ, Դ˷ѺʽʹõĵЧ. , ڿʺʱ, ˫ҪЧعͨЭ, ͲȷԺڵȴɵĻɱ, Ӷʹʱõطʵ徭, ʱʹЧ, ٽҵչ. - -, ڻӦʵʵ徭õҪ, 㷺Э̻, Э, չҵصҵģʽ. ˽ڻʵҵʺʱռȶʵҵӰ, ˵ڻ, Ӧú趨, ʵҵռ, ʵҵͨʷʽг, ֤ƽ. ͬʱ, ڵλصо, , ڻӪҵҪܵؿС΢ҵ, ˫ɱϢɱ, ٽҵڻʽҵ. - -%%%%%%%%%%%%%%%%%%%%ͼƬ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%\vspace{2mm}\begin{center} -%\includegraphics[scale=1]{1r.eps}\\ -%{\bf \sz ͼ1\ \ -%ָ̬ܶȹƷֱ任Q-Q ͼ} -%\end{center}\vspace{2mm} - - -%%%%%%%%%%%%%%%%%%%%%ο%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\REFERENCE - -{\small \baselineskip 12pt - -%Ϊӳĵѧˮƽʹ³̶,Ҫ3 ڷ(ڿ). -%߿ڱվ: http://www.sysengi.comزĴȫ. -%οб밴õȺ˳,бõбλ: -%ӳɷݵϽDZʽ,ֱ$^{[1]}$ʽ,ӳɷݵƽ. -%ĵĸ,һɲǰ¼ʽ.úƴдйȫƴ,д;ŷߵдĸ;дд, -%: Zhang J T, Calms R B. ʱ,ڵߺ``," ``, et al". ֮öŷָ,``and". - -\REF{[1]} -,,. -زŴҹϵϵͳԷյӰ졪ϵڲģʵ֤о[J].ɽѧѧ(ѧ),2019,59(03):186-196.DOI:10.13471/j.cnki.jsysusse.2019.03.020.\\ -Li S Z, Ma J L, Zhu S S. The impact of real estate credit on the systemic risk of Chinese banking System: An empirical simulation based on the internal lending network of the banking system [J]. Journal of Zhongshan university (social science edition),2019,59(03):186-196. DOI:10.13471/j.cnki.jsysusse.2019.03.020. - -\REF{[2]} -,. -LSTMҵʲģ[J].ϵͳʵ,2021,41(08):2045-2055.\\ -Li Z M, Fang Y.Industry asset allocation model based on LSTM neural network[J].Systems Engineering --Theory \& Practice,2021,41(08):2045-2055. - - -\REF{[3]} -С.ܵŻĸгĴ·չ[J].й,2021(03):9-10.\\ -Zhou X C.Optimization reform of supervision and innovative development of market [J]. China Finance,2021(03):9-10. - -\REF{[4]} -Ȫ,Է,. -йʵ徭ʽЧʵˮƽ͸ڷʵ徭Чʺˮƽߵ֢?[J].,2019,35(02):58-73+114+198-199.DOI:10.19744/j.cnki.11-1235/f.2019.0020.\\ -Wang Z Q, Wang Y Z, Wang S H. Analysis of Capital Efficiency and Financial Risk in China's Real Economy -- What is the crux of the low efficiency and level of financial services in the real economy? [J]. Journal of Management World, 2019,35(02):58-73+114+198-199.DOI:10.19744/j.cnki.11-1235/f.2019.0020. - -\REF{[5]} -ά,,. -ֽǷ񻺽ӪҵԼ?[J].ϵͳʵ,2021,41(12):3129-3146.\\ -Xie W M, Wu H, Feng Y J. Does digital finance ease the financing constraints of private enterprises? [J]. Systems Engineering -- Theory \& Practice, 201,41(12):3129-3146. - -\REF{[6]} -ܿ,,. -иծṹҵŴȡ[J].о,2022,57(08):191-208.\\ -Zhou K G, Xing Z Y, Yang H S.Bank debt structure and corporate credit access [J]. Economic Research Journal,2022,57(08):191-208. - -\REF{[7]} -ΰ,,,. -ֽڡṹҵзճе181ҵ20112020ݵķ[J].人,2022(07):29-40.\\ -Liu W, Liu W Z, Dai B Q, Lv T.Digital Finance, Loan structure and risk taking of Commercial Banks: Based on the financial data of 181 commercial banks from 2011 to 2020 [J]. Wuhan Finance,2022(07):29-40. - -\REF{[8]} -Fraisse H, Hombert J, L M.The Competitive Effect of a Bank Megamerger on Credit Supply[J].Journal of Banking - Finance,2018:93,151161 - -\REF{[9]} -Schwert M. Bank Capital and Lending Relationships[J].Journal of Finance,2018,73(2): 787830 - - -\REF{[10]} -Ρ, Ʒ. -ս˲ҵ½ֻ֧׶ݻķ[J]. ˳, 2021,30(04):87C95.\\ -Liu G W, Shao Y F. Strategic emerging industries innovation financial support mechanism and two-stage evolutionary game analysis [J]. Operations Research and Management Research, 2021,30(04):87C95. - -\REF{[11]} -,ϸ. -ʱܸҵԼ?йй˾΢֤[J].֤ȯг,2019(05):41-47.\\ -Wu W X, Liu X X. Can Cooperation between Government and private capital improve corporate financing constraints? -- Micro evidence from Chinese listed companies [J]. Securities Market Review,2019(05):41-47. - - -\REF{[12]} -־,. -ʶо:۵ӽ[J].ϵͳʵ,2018,38(07):1698-1705.\\ -Li Z Y, Yu M.Research on interest rate pricing of online lending: Based on the perspective of arbitrageless pricing [J].Systems Engineering --Theory \& Practice,2018,38(07):1698-1705. - - -\REF{[13]} -Evstigneev I, Hens T, Potapova V, et al. Behavioral equilibrium and evolutionary dynamics in asset markets[J]. Journal of Mathematical Economics, 2020, 91:121C135. - -\REF{[14]} -Ǯ, . -С΢ҵŴʻƵݻķ[J]. 뾭, 2019(03):53C59.\\ -Qian Y, Wu L J. An Evolutionary Game Analysis of credit Financing Mechanism for Small and micro enterprises [J]. -Finance and Economics, 2019(03):53 -- 59. - -\REF{[15]} -,ϣ,־,־ΰ,ѩ,,,Ų. -־õIJۻ[J].ѧ,2022,35(01):50-54.\\ -Yang X G, Li S X, Cao Z G, Cui Z W, Qiao X, Weng Y, Yu N, Zhang B Y. The Game theory Foundation of digital economy[J]. Journal of Management Science, 2022,35(01):50-54. - -\REF{[16]} -ΰ, , һ. -̬ͷ»ƽ̨ΪܲԵݻķ[J]. ϵͳʵ, 2017, 37(05):1113C1122.\\ -Liu W, Xia L Q, Wang Y L. Evolutionary Game Analysis of Internet Financial Platform Behavior and Regulatory Strategy under dynamic Punishment Mechanism [J]. Systems Engineering-Theory \& Practice, 2017, 37(05):1113 -- 1122. - -\REF{[17]} -, . -SDݻģ͵ֻɢݻо[J]. ϵͳʵ, 2021, 41(5):1211-1228.\\ -Hu Q, Qi J Y.Cryptocurrency diffusion evolution simulation based on SD evolution game model[J]. Systems Engineering - Theory \& Practice, 2021, 41(5): 1211-1228. - -\REF{[18]} -Zhang S, Wang C, Yu C. The evolutionary game analysis and simulation with system dynamics of manufacturer's emissions abatement behavior under cap-and-trade regulation[J]. Applied Mathematics and Computation, 2019, 355:343C355. - -\REF{[19]} -Li S, Wang B. Evolutionary game simulation of corporate investing and financing behavior from a risk perspective[J]. Cluster Computing, 2019, 22(S3):5955C5964. - - -\REF{[20]} -Huo Y, Feng Z. Is collective financing feasible for small and micro-sized enterprises? An evolutionary game analysis of the credit market in China[J]. Economic Research-Ekonomska Istra?ivanja, 2019, 32(1):2959C2977. - -\REF{[21]} -Xu Y, Liu Q. Research on Financing of Small and Micro Enterprises in Post epidemic Period: Based on Evolutionary Game and Numerical Simulation[J]. Mathematical Problems in Engineering, 2021, 2021:1C7. - -\REF{[22]} -Farmer J D , Axtell R L . Agent-Based Modeling in Economics and Finance: Past, Present, and Future[J]. INET Oxford Working Papers, 2022. - -\REF{[23]} -־, , С. -彨ģĽ߷оӦ[J]. ѧ, 2009, 23(07):54C56.\\ -Zhao Z G, Xiong X, Zhang X T, Financial policy simulation research and application based on agent modeling [J]. Soft Science, 2009, 23(07):54 -- 56. - -\REF{[24]} -Bertella M A , Silva J N , Correa A L , et al. The Influence of Confidence and Social Networks on an Agent-Based Model of Stock Exchange[J]. Complexity, 2021, 2021(8C9):1-16. - - -\REF{[25]} -Fratri P, Sileno G, Klous S, et al. Manipulation of the Bitcoin market: an agent-based study[J]. Financial innovation, 2022, 8(1):60. DOI: 10.1186/s40854-022-00364-3. - - -\REF{[26]} -һ, . -ABMģ͵ͶͶʾ߷[J]. ѧѧ(ѧ), 2017, 31(06):27C35.\\ -Wang Y H, Wang G C. Analysis of Investor Sentiment and Investment Decision Based on ABM [J]. Journal of Chongqing University of Technology (Social Sciences), 2017, 31(06):27C35. - - -\REF{[27]} -Mu P, Chen T, Pan K, et al. A Network Evolution Model of Credit Risk Contagion between Banks and Enterprises Based on Agent-Based Model[J]. Journal of Mathematics, 2021, 2021:1C12. DOI: 10.1155/2021/6593218. - -\REF{[28]} -. -һӽмծ۸ȶоͶԵABM [J]. ʵ, 2020(10):19C27. \\ -Guo D. Price Stability of Inter-bank National Bonds from the perspective of currency Repatriation: agent-based modelling and simulation Based on Investor Heterogeneity [J]. Financial Theory and Practice, 2020(10):19C27. - -\REF{[29]} -, ij, . -agentĶƲȾģо[J]. Ӧо,2021,38(06):1709C1717. DOI:10.19734/j.issn.1001-3695.2020.06.0162.\\ -Zhang J Y, Xia C H, Gu Z. Research on Bankruptcy Contagion Model in Multiple Social Networks Based on agent[J]. Computer Application Research, 2021, 38(06):1709C1717.DOI:10.19734/j.issn.1001-3695.2020.06.0162. - - -\REF{[30]} -,.йӰίдչܿģо[J].ھѧо,2022,37(04):17-31.\\ -Yin W, Zhao Q C. Simulation and Research on Risk control Policy of entrusted loan of Shadow Banks in China [J]. Research of Financial Economics,202,37(04):17-31. - - -\REF{[31]} -Fiedler A . An agent-based negotiation protocol for supply chain finance[J]. Computers \& Industrial Engineering, 2022(168-):168. - - -\REF{[32]} -Smith J M. Evolution and the theory of games[J]. Cambridge: Cambridge University Press, 1982 - -\REF{[33]} -Taylor P D. Evolutionary stable strategies and game dynamics[J]. Mathematical Bio-sciences, 1978, 40(1): 145C -156. - - -%\REF{[34]} -%,ᳬ,˼. -%ջݽй÷չ:άںʵ֤[J].о,2020,55(04):37-52.\\ -%Li J J, Peng Y C, Ma S C.Inclusive finance and China's economic development: Multi-dimensional connotation and empirical analysis [J]. Economic Research Journal,20,55(04):37-52. - -\REF{[34]} -He Z, Luo C, Tan C-H, et al. Simulating an agent's decision-making process in black-box managerial environment: An estimation-and-optimisation approach[J]. Journal of Simulation, 2019, 13(2):111C127. DOI: 10.1080/17477778.2018.1440946. - - - - - - -\end{document}