iiabm-core/firm.py

334 lines
16 KiB
Python
Raw Permalink Normal View History

2023-09-10 22:35:48 +08:00
import agentpy as ap
class FirmAgent(ap.Agent):
2023-09-17 06:20:49 +08:00
def setup(self, code, type_region, revenue_log, a_lst_product):
2023-09-10 22:35:48 +08:00
self.firm_network = self.model.firm_network
self.product_network = self.model.product_network
# self parameter
self.code = code
self.type_region = type_region
self.size_stat = []
self.dct_prod_up_prod_stat = {}
self.dct_prod_capacity = {}
# parameter in trial
self.dct_n_trial_up_prod_disrupted = {}
self.dct_cand_alt_supp_up_prod_disrupted = {}
self.dct_request_prod_from_firm = {}
# external variable
self.is_prf_size = self.model.is_prf_size
self.is_prf_conn = bool(self.p.prf_conn)
self.str_cap_limit_prob_type = str(self.p.cap_limit_prob_type)
self.flt_cap_limit_level = float(self.p.cap_limit_level)
self.flt_diff_new_conn = float(self.p.diff_new_conn)
# initialize size_stat (self parameter)
# (size, time step)
self.size_stat.append((revenue_log, 0))
# init dct_prod_up_prod_stat (self parameter)
for prod in a_lst_product:
self.dct_prod_up_prod_stat[prod] = {
# status: (Normal / Disrupted / Removed, time step)
'p_stat': [('N', 0)],
# supply for each component and respective disrupted supplier
# set_disrupt_firm is refreshed to empty at each update
's_stat': {up_prod: {'stat': True,
'set_disrupt_firm': set()}
for up_prod in prod.a_predecessors()}
# Note: do not use fromkeys as it's a shallow copy
}
# initialize extra capacity (self parameter)
for product in a_lst_product:
# initialize extra capacity based on discrete uniform distribution
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
"cap_limit_prob_type other than uniform, normal"
if self.str_cap_limit_prob_type == 'uniform':
extra_cap_mean = \
self.size_stat[0][0] / self.flt_cap_limit_level
extra_cap = self.model.nprandom.integers(extra_cap_mean-2,
extra_cap_mean+2)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
self.dct_prod_capacity[product] = extra_cap
elif self.str_cap_limit_prob_type == 'normal':
extra_cap_mean = \
self.size_stat[0][0] / self.flt_cap_limit_level
extra_cap = self.model.nprandom.normal(extra_cap_mean, 1)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
self.dct_prod_capacity[product] = extra_cap
def remove_edge_to_cus(self, disrupted_prod):
# parameter disrupted_prod is the product that self got disrupted
lst_out_edge = list(
self.firm_network.graph.out_edges(
self.firm_network.positions[self], keys=True, data='Product'))
for n1, n2, key, product_code in lst_out_edge:
if product_code == disrupted_prod.code:
# update customer up product supplier status
customer = ap.AgentIter(self.model, n2).to_list()[0]
for prod in customer.dct_prod_up_prod_stat.keys():
if disrupted_prod in \
customer.dct_prod_up_prod_stat[
prod]['s_stat'].keys():
customer.dct_prod_up_prod_stat[
prod]['s_stat'][disrupted_prod][
'set_disrupt_firm'].add(self)
# print(f"{self.name} disrupt {customer.name}'s "
# f"{prod.code} due to {disrupted_prod.code}")
# remove edge to customer
self.firm_network.graph.remove_edge(n1, n2, key)
def disrupt_cus_prod(self, prod, disrupted_up_prod):
# parameter prod is the product that has disrupted_up_prod
# parameter disrupted_up_prod is the product that
# self's component exists disrupted supplier
num_lost = \
len(self.dct_prod_up_prod_stat[prod]['s_stat']
[disrupted_up_prod]['set_disrupt_firm'])
num_remain = \
len([u for u, _, _, d in
self.firm_network.graph.in_edges(self.get_firm_network_node(),
keys=True,
data='Product')
if d == disrupted_up_prod.code])
lost_percent = num_lost / (num_lost + num_remain)
lst_size = \
[firm.size_stat[-1][0] for firm in self.model.a_lst_total_firms]
std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \
/ (max(lst_size) - min(lst_size) + 1)
# calculate probability of disruption
prob_disrupt = 1 - std_size * (1 - lost_percent)
if self.model.nprandom.choice([True, False],
p=[prob_disrupt,
1 - prob_disrupt]):
self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0
self.dct_prod_up_prod_stat[
prod]['s_stat'][disrupted_up_prod]['stat'] = False
status, _ = self.dct_prod_up_prod_stat[
prod]['p_stat'][-1]
if status != 'D':
self.dct_prod_up_prod_stat[
prod]['p_stat'].append(('D', self.model.t))
# print(f"{self.name}'s {prod.code} turn to D status due to "
# f"disrupted supplier of {disrupted_up_prod.code}")
def seek_alt_supply(self, product):
# parameter product is the product that self is seeking
# print(f"{self.name} seek alt supply for {product.code}")
if self.dct_n_trial_up_prod_disrupted[
product] <= self.model.int_n_max_trial:
if self.dct_n_trial_up_prod_disrupted[product] == 0:
# select a list of candidate firm that has the product
self.dct_cand_alt_supp_up_prod_disrupted[product] = \
self.model.a_lst_total_firms.select([
firm.is_prod_in_current_normal(product)
for firm in self.model.a_lst_total_firms
])
if self.dct_cand_alt_supp_up_prod_disrupted[product]:
# select based on connection
lst_firm_connect = []
if self.is_prf_conn:
for firm in \
self.dct_cand_alt_supp_up_prod_disrupted[product]:
node_self = self.get_firm_network_node()
node_firm = firm.get_firm_network_node()
if self.model.firm_network.graph.\
has_edge(node_self, node_firm) or \
self.model.firm_network.graph.\
has_edge(node_firm, node_self):
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
# select based on size or not
if self.is_prf_size:
lst_size = \
[firm.size_stat[-1][0] for firm in
self.dct_cand_alt_supp_up_prod_disrupted[
product]]
lst_prob = [size / sum(lst_size)
for size in lst_size]
select_alt_supply = self.model.nprandom.choice(
self.dct_cand_alt_supp_up_prod_disrupted[product],
p=lst_prob)
else:
select_alt_supply = self.model.nprandom.choice(
self.dct_cand_alt_supp_up_prod_disrupted[product])
elif len(lst_firm_connect) > 0:
# select based on size of connected firm or not
if self.is_prf_size:
lst_firm_size = \
[firm.size_stat[-1][0]
for firm in lst_firm_connect]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect,
p=lst_prob)
else:
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect)
# print(
# f"{self.name} selct alt supply for {product.code} "
# f"from {select_alt_supply.name}"
# )
assert select_alt_supply.is_prod_in_current_normal(product), \
f"{select_alt_supply} \
does not produce requested product {product}"
if product in select_alt_supply.dct_request_prod_from_firm.\
keys():
select_alt_supply.dct_request_prod_from_firm[
product].append(self)
else:
select_alt_supply.dct_request_prod_from_firm[product] = [
self
]
# print(
# select_alt_supply.name, 'dct_request_prod_from_firm', {
# key.code: [v.name for v in value]
# for key, value in
# select_alt_supply.dct_request_prod_from_firm.items()
# })
self.dct_n_trial_up_prod_disrupted[product] += 1
def handle_request(self):
# print(self.name, 'handle_request')
for product, lst_firm in self.dct_request_prod_from_firm.items():
if self.dct_prod_capacity[product] > 0:
if len(lst_firm) == 0:
continue
elif len(lst_firm) == 1:
self.accept_request(lst_firm[0], product)
elif len(lst_firm) > 1:
# handling based on connection
lst_firm_connect = []
if self.is_prf_conn:
for firm in lst_firm:
node_self = self.get_firm_network_node()
node_firm = firm.get_firm_network_node()
if self.model.firm_network.graph.\
has_edge(node_self, node_firm) or \
self.model.firm_network.graph.\
has_edge(node_firm, node_self):
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
# handling based on size or not
if self.is_prf_size:
lst_firm_size = \
[firm.size_stat[-1][0] for firm in lst_firm]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_customer = \
self.model.nprandom.choice(lst_firm,
p=lst_prob)
else:
select_customer = \
self.model.nprandom.choice(lst_firm)
self.accept_request(select_customer, product)
elif len(lst_firm_connect) > 0:
# handling based on size of connected firm or not
if self.is_prf_size:
lst_firm_size = \
[firm.size_stat[-1][0]
for firm in lst_firm_connect]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_customer = \
self.model.nprandom.choice(lst_firm_connect,
p=lst_prob)
else:
select_customer = \
self.model.nprandom.choice(lst_firm_connect)
self.accept_request(select_customer, product)
else:
for down_firm in lst_firm:
down_firm.dct_cand_alt_supp_up_prod_disrupted[
product].remove(self)
# print(
# f"{self.name} denied {product.code} request "
# f"from {down_firm.name} for lack of capacity"
# )
def accept_request(self, down_firm, product):
# parameter product is the product that self is selling
# connected firm has no probability for accepting request
node_self = self.get_firm_network_node()
node_d_firm = down_firm.get_firm_network_node()
if self.model.firm_network.graph.has_edge(node_self, node_d_firm) or \
self.model.firm_network.graph.has_edge(node_d_firm, node_self):
prod_accept = 1.0
else:
prod_accept = self.flt_diff_new_conn
if self.model.nprandom.choice([True, False],
p=[prod_accept, 1 - prod_accept]):
self.firm_network.graph.add_edges_from([
(self.firm_network.positions[self],
self.firm_network.positions[down_firm], {
'Product': product.code
})
])
self.dct_prod_capacity[product] -= 1
self.dct_request_prod_from_firm[product].remove(down_firm)
for prod in down_firm.dct_prod_up_prod_stat.keys():
if product in down_firm.dct_prod_up_prod_stat[
prod]['s_stat'].keys():
down_firm.dct_prod_up_prod_stat[
prod]['s_stat'][product]['stat'] = True
down_firm.dct_prod_up_prod_stat[
prod]['p_stat'].append(('N', self.model.t))
del down_firm.dct_n_trial_up_prod_disrupted[product]
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
# print(
# f"{self.name} accept {product.code} request "
# f"from {down_firm.name}"
# )
else:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
# print(
# f"{self.name} denied {product.code} request "
# f"from {down_firm.name}"
# )
def clean_before_trial(self):
self.dct_request_prod_from_firm = {}
def clean_before_time_step(self):
self.dct_n_trial_up_prod_disrupted = \
dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0)
self.dct_cand_alt_supp_up_prod_disrupted = {}
# update the status of firm
for prod in self.dct_prod_up_prod_stat.keys():
status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if ts != self.model.t:
self.dct_prod_up_prod_stat[prod]['p_stat'].append(
(status, self.model.t))
# refresh set_disrupt_firm
for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys():
self.dct_prod_up_prod_stat[prod][
's_stat'][up_prod]['set_disrupt_firm'] = set()
def get_firm_network_node(self):
return self.firm_network.positions[self]
def is_prod_in_current_normal(self, prod):
if prod in self.dct_prod_up_prod_stat.keys():
if self.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] == 'N':
return True
else:
return False
else:
return False