IIabm/firm.py

302 lines
15 KiB
Python

import agentpy as ap
import math
class FirmAgent(ap.Agent):
def setup(self, code, name, type_region, revenue_log, a_lst_product):
self.firm_network = self.model.firm_network
self.product_network = self.model.product_network
self.code = code
self.name = name
self.type_region = type_region
self.revenue_log = revenue_log
self.a_lst_product = a_lst_product
self.dct_prod_capacity = {}
# self.a_lst_up_product_removed = ap.AgentList(self.model, [])
# self.a_lst_product_disrupted = ap.AgentList(self.model, [])
self.a_lst_product_removed = ap.AgentList(self.model, [])
self.dct_prod_up_prod_stat = {}
for prod in a_lst_product:
self.dct_prod_up_prod_stat[prod] = {
# Normal / Disrupted / Removed + time step
'status': [('N', 0)],
# have or have no supply
'supply': dict.fromkeys(prod.a_predecessors(), True)
}
# print(self.dct_prod_up_prod_stat)
self.dct_n_trial_up_prod_removed = {}
self.dct_cand_alt_supply_up_prod_removed = {}
self.dct_request_prod_from_firm = {}
# para
self.is_prf_size = self.model.is_prf_size
self.is_prf_conn = bool(self.p.prf_conn)
self.str_cap_limit_prob_type = str(self.p.cap_limit_prob_type)
self.flt_cap_limit_level = float(self.p.cap_limit_level)
self.flt_diff_new_conn = float(self.p.diff_new_conn)
self.flt_crit_supplier = float(self.p.crit_supplier)
# init extra capacity
for product in self.a_lst_product:
# init extra capacity based on discrete uniform distribution
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
"cap_limit_prob_type other than uniform, normal"
if self.str_cap_limit_prob_type == 'uniform':
extra_cap_mean = \
self.revenue_log / self.flt_cap_limit_level
extra_cap = self.model.nprandom.integers(extra_cap_mean-2,
extra_cap_mean+2)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
# print(firm_agent.name, extra_cap)
self.dct_prod_capacity[product] = extra_cap
elif self.str_cap_limit_prob_type == 'normal':
extra_cap_mean = \
self.revenue_log / self.flt_cap_limit_level
extra_cap = self.model.nprandom.normal(extra_cap_mean, 1)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
# print(firm_agent.name, extra_cap)
self.dct_prod_capacity[product] = extra_cap
def remove_edge_to_cus_remove_cus_up_prod(self, remove_product):
lst_out_edge = list(
self.firm_network.graph.out_edges(
self.firm_network.positions[self], keys=True, data='Product'))
for n1, n2, key, product_code in lst_out_edge:
if product_code == remove_product.code:
# remove edge
self.firm_network.graph.remove_edge(n1, n2, key)
# remove customer up product conditionally
customer = ap.AgentIter(self.model, n2).to_list()[0]
lst_in_edge = list(
self.firm_network.graph.in_edges(n2,
keys=True,
data='Product'))
lst_select_in_edge = [
edge for edge in lst_in_edge
if edge[-1] == remove_product.code
]
prod_remove = math.exp(-1 * self.flt_crit_supplier *
len(lst_select_in_edge))
if self.model.nprandom.choice([True, False],
p=[prod_remove,
1 - prod_remove]):
# if remove_product not in \
# customer.a_lst_up_product_removed:
# customer.a_lst_up_product_removed.append(
# remove_product)
# customer.dct_n_trial_up_prod_removed[
# remove_product] = 0
for prod in customer.dct_prod_up_prod_stat.keys():
if remove_product in \
customer.dct_prod_up_prod_stat[
prod]['supply'].keys():
customer.dct_prod_up_prod_stat[
prod]['supply'][remove_product] = False
customer.dct_prod_up_prod_stat[
prod]['status'].append(('D', self.model.t))
customer.dct_n_trial_up_prod_removed[
remove_product] = 0
print(self.name, remove_product.code, 'affect',
customer.name, prod.code)
# print(customer.dct_prod_up_prod_stat)
def seek_alt_supply(self, product):
# para product is the product that self is seeking
# for product in self.a_lst_up_product_removed:
print(f"{self.name} seek alt supply for {product.code}")
if self.dct_n_trial_up_prod_removed[
product] <= self.model.int_n_max_trial:
if self.dct_n_trial_up_prod_removed[product] == 0:
# select a list of candidate firm that has the product
self.dct_cand_alt_supply_up_prod_removed[product] = \
self.model.a_lst_total_firms.select([
product in firm.a_lst_product
and product not in firm.a_lst_product_removed
for firm in self.model.a_lst_total_firms
])
if self.dct_cand_alt_supply_up_prod_removed[product]:
# select based on connection
lst_firm_connect = []
if self.is_prf_conn:
for firm in \
self.dct_cand_alt_supply_up_prod_removed[product]:
out_edges = self.model.firm_network.graph.out_edges(
self.model.firm_network.positions[firm], keys=True)
in_edges = self.model.firm_network.graph.in_edges(
self.model.firm_network.positions[firm], keys=True)
lst_adj_firm = []
lst_adj_firm += \
[ap.AgentIter(self.model, edge[1]).to_list()[
0].code for edge in out_edges]
lst_adj_firm += \
[ap.AgentIter(self.model, edge[0]).to_list()[
0].code for edge in in_edges]
if self.code in lst_adj_firm:
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
# select based on size or not
if self.is_prf_size:
lst_size = \
[size for size in
self.dct_cand_alt_supply_up_prod_removed[
product].revenue_log]
lst_prob = [size / sum(lst_size)
for size in lst_size]
select_alt_supply = self.model.nprandom.choice(
self.dct_cand_alt_supply_up_prod_removed[product],
p=lst_prob)
else:
select_alt_supply = self.model.nprandom.choice(
self.dct_cand_alt_supply_up_prod_removed[product])
elif len(lst_firm_connect) > 0:
# select based on size of connected firm or not
if self.is_prf_size:
lst_firm_size = \
[firm.revenue_log for firm in lst_firm_connect]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect,
p=lst_prob)
else:
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect)
print(
f"{self.name} selct alt supply for {product.code} "
f"from {select_alt_supply.name}"
)
assert product in select_alt_supply.a_lst_product, \
f"{select_alt_supply} \
does not produce requested product {product}"
if product in select_alt_supply.dct_request_prod_from_firm.\
keys():
select_alt_supply.dct_request_prod_from_firm[
product].append(self)
else:
select_alt_supply.dct_request_prod_from_firm[product] = [
self
]
print(
select_alt_supply.name, 'dct_request_prod_from_firm', {
key.code: [v.name for v in value]
for key, value in
select_alt_supply.dct_request_prod_from_firm.items()
})
self.dct_n_trial_up_prod_removed[product] += 1
def handle_request(self):
print(self.name, 'handle_request')
for product, lst_firm in self.dct_request_prod_from_firm.items():
if self.dct_prod_capacity[product] > 0:
if len(lst_firm) == 0:
continue
elif len(lst_firm) == 1:
self.accept_request(lst_firm[0], product)
elif len(lst_firm) > 1:
# handling based on connection
lst_firm_connect = []
if self.is_prf_conn:
for firm in lst_firm:
out_edges = \
self.model.firm_network.graph.out_edges(
self.model.firm_network.positions[firm],
keys=True)
in_edges = \
self.model.firm_network.graph.in_edges(
self.model.firm_network.positions[firm],
keys=True)
lst_adj_firm = []
lst_adj_firm += \
[ap.AgentIter(self.model, edge[1]).to_list()[
0].code for edge in out_edges]
lst_adj_firm += \
[ap.AgentIter(self.model, edge[0]).to_list()[
0].code for edge in in_edges]
if self.code in lst_adj_firm:
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
# handling based on size or not
if self.is_prf_size:
lst_firm_size = \
[firm.revenue_log for firm in lst_firm]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_customer = \
self.model.nprandom.choice(lst_firm,
p=lst_prob)
else:
select_customer = \
self.model.nprandom.choice(lst_firm)
self.accept_request(select_customer, product)
elif len(lst_firm_connect) > 0:
# handling based on size of connected firm or not
if self.is_prf_size:
lst_firm_size = \
[firm.revenue_log for firm in lst_firm_connect]
lst_prob = \
[size / sum(lst_firm_size)
for size in lst_firm_size]
select_customer = \
self.model.nprandom.choice(lst_firm_connect,
p=lst_prob)
else:
select_customer = \
self.model.nprandom.choice(lst_firm_connect)
self.accept_request(select_customer, product)
def accept_request(self, down_firm, product):
# para product is the product that self is selling
prod_accept = self.flt_diff_new_conn
if self.model.nprandom.choice([True, False],
p=[prod_accept, 1 - prod_accept]):
self.firm_network.graph.add_edges_from([
(self.firm_network.positions[self],
self.firm_network.positions[down_firm], {
'Product': product.code
})
])
self.dct_prod_capacity[product] -= 1
self.dct_request_prod_from_firm[product].remove(down_firm)
# down_firm.a_lst_up_product_removed.remove(product)
for prod in down_firm.dct_prod_up_prod_stat.keys():
if product in down_firm.dct_prod_up_prod_stat[
prod]['supply'].keys():
down_firm.dct_prod_up_prod_stat[
prod]['supply'][product] = True
down_firm.dct_prod_up_prod_stat[
prod]['status'].append(('N', self.model.t))
# print(down_firm.dct_prod_up_prod_stat)
del down_firm.dct_n_trial_up_prod_removed[product]
del down_firm.dct_cand_alt_supply_up_prod_removed[product]
print(
f"{self.name} accept {product.code} request "
f"from {down_firm.name}"
)
else:
down_firm.dct_cand_alt_supply_up_prod_removed[product].remove(self)
def clean_before_trial(self):
self.dct_request_prod_from_firm = {}
def clean_before_time_step(self):
self.dct_n_trial_up_prod_removed = \
dict.fromkeys(self.dct_n_trial_up_prod_removed.keys(), 0)
self.dct_cand_alt_supply_up_prod_removed = {}
# self.a_lst_up_product_removed = ap.AgentList(self.model, [])
def get_firm_network_node(self):
return self.firm_network.positions[self]