IIabm/model.py

500 lines
24 KiB
Python

import agentpy as ap
import pandas as pd
import networkx as nx
from firm import FirmAgent
from product import ProductAgent
from orm import db_session, Result
import platform
import json
class Model(ap.Model):
def setup(self):
# self para
self.sample = self.p.sample
self.int_stop_ts = 0
self.int_n_iter = int(self.p.n_iter)
self.product_network = None # agentpy network
self.firm_network = None # agentpy network
self.firm_prod_network = None # networkx
self.dct_lst_init_disrupt_firm_prod = \
self.p.dct_lst_init_disrupt_firm_prod
# external variable
self.int_n_max_trial = int(self.p.n_max_trial)
self.is_prf_size = bool(self.p.prf_size)
self.proactive_ratio = float(self.p.proactive_ratio)
self.remove_t = int(self.p.remove_t)
self.int_netw_prf_n = int(self.p.netw_prf_n)
# init graph bom
G_bom = nx.adjacency_graph(json.loads(self.p.g_bom))
self.product_network = ap.Network(self, G_bom)
# init graph firm
Firm = pd.read_csv("Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
Firm_attr = Firm.loc[:, ["Code", "Name", "Type_Region", "Revenue_Log"]]
firm_product = []
for _, row in Firm.loc[:, '1':].iterrows():
firm_product.append(row[row == 1].index.to_list())
Firm_attr.loc[:, 'Product_Code'] = firm_product
Firm_attr.set_index('Code', inplace=True)
G_Firm = nx.MultiDiGraph()
G_Firm.add_nodes_from(Firm["Code"])
firm_labels_dict = {}
for code in G_Firm.nodes:
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
nx.set_node_attributes(G_Firm, firm_labels_dict)
# init graph firm prod
Firm_Prod = pd.read_csv("Firm_amended.csv")
Firm_Prod.fillna(0, inplace=True)
firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()})
firm_prod = firm_prod[firm_prod['bool'] == 1].reset_index()
firm_prod.drop('bool', axis=1, inplace=True)
firm_prod.rename({'level_0': 'Firm_Code',
'level_1': 'Product_Code'}, axis=1, inplace=True)
firm_prod['Firm_Code'] = firm_prod['Firm_Code'].astype('string')
G_FirmProd = nx.MultiDiGraph()
G_FirmProd.add_nodes_from(firm_prod.index)
firm_prod_labels_dict = {}
for code in firm_prod.index:
firm_prod_labels_dict[code] = firm_prod.loc[code].to_dict()
nx.set_node_attributes(G_FirmProd, firm_prod_labels_dict)
# add edge to G_firm according to G_bom
for node in nx.nodes(G_Firm):
lst_pred_product_code = []
for product_code in G_Firm.nodes[node]['Product_Code']:
lst_pred_product_code += list(G_bom.predecessors(product_code))
lst_pred_product_code = list(set(lst_pred_product_code))
# to generate consistant graph
lst_pred_product_code = list(sorted(lst_pred_product_code))
for pred_product_code in lst_pred_product_code:
# for each product predecessor (component) the firm need
# get a list of firm producing this component
lst_pred_firm = \
Firm['Code'][Firm[pred_product_code] == 1].to_list()
# select multiple supplier (multi-sourcing)
n_pred_firm = self.int_netw_prf_n
if n_pred_firm > len(lst_pred_firm):
n_pred_firm = len(lst_pred_firm)
# based on size or not
if self.is_prf_size:
lst_pred_firm_size = \
[G_Firm.nodes[pred_firm]['Revenue_Log']
for pred_firm in lst_pred_firm]
lst_prob = \
[size / sum(lst_pred_firm_size)
for size in lst_pred_firm_size]
lst_choose_firm = self.nprandom.choice(lst_pred_firm,
n_pred_firm,
replace=False,
p=lst_prob)
else:
lst_choose_firm = self.nprandom.choice(lst_pred_firm,
n_pred_firm,
replace=False)
lst_add_edge = [(pred_firm, node,
{'Product': pred_product_code})
for pred_firm in lst_choose_firm]
G_Firm.add_edges_from(lst_add_edge)
# graph firm prod
set_node_prod_code = set(G_Firm.nodes[node]['Product_Code'])
set_pred_succ_code = set(G_bom.successors(pred_product_code))
lst_use_pred_prod_code = list(
set_node_prod_code & set_pred_succ_code)
for pred_firm in lst_choose_firm:
pred_node = [n for n, v in G_FirmProd.nodes(data=True)
if v['Firm_Code'] == pred_firm and
v['Product_Code'] == pred_product_code][0]
for use_pred_prod_code in lst_use_pred_prod_code:
current_node = \
[n for n, v in G_FirmProd.nodes(data=True)
if v['Firm_Code'] == node and
v['Product_Code'] == use_pred_prod_code][0]
G_FirmProd.add_edge(pred_node, current_node)
# nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm.csv')
# nx.to_pandas_adjacency(G_FirmProd).to_csv('adj_g_firm_prod.csv')
# unconnected node
for node in nx.nodes(G_Firm):
if G_Firm.degree(node) == 0:
for product_code in G_Firm.nodes[node]['Product_Code']:
# unconnect node does not have possible suppliers
# current node in graph firm prod
current_node = \
[n for n, v in G_FirmProd.nodes(data=True)
if v['Firm_Code'] == node and
v['Product_Code'] == product_code][0]
lst_succ_product_code = list(
G_bom.successors(product_code))
# different from for different types of product,
# finding a common supplier (the logic above),
# for different types of product,
# finding a custormer for each product
for succ_product_code in lst_succ_product_code:
# for each product successor (finished product)
# the firm sells to,
# get a list of firm producing this finished product
lst_succ_firm = Firm['Code'][
Firm[succ_product_code] == 1].to_list()
# select multiple customer (multi-selling)
n_succ_firm = self.int_netw_prf_n
if n_succ_firm > len(lst_succ_firm):
n_succ_firm = len(lst_succ_firm)
# based on size or not
if self.is_prf_size:
lst_succ_firm_size = \
[G_Firm.nodes[succ_firm]['Revenue_Log']
for succ_firm in lst_succ_firm]
lst_prob = \
[size / sum(lst_succ_firm_size)
for size in lst_succ_firm_size]
lst_choose_firm = \
self.nprandom.choice(lst_succ_firm,
n_succ_firm,
replace=False,
p=lst_prob)
else:
lst_choose_firm = \
self.nprandom.choice(lst_succ_firm,
n_succ_firm,
replace=False)
lst_add_edge = [(node, succ_firm,
{'Product': product_code})
for succ_firm in lst_choose_firm]
G_Firm.add_edges_from(lst_add_edge)
# graph firm prod
for succ_firm in lst_choose_firm:
succ_node = \
[n for n, v in G_FirmProd.nodes(data=True)
if v['Firm_Code'] == succ_firm and
v['Product_Code'] == succ_product_code][0]
G_FirmProd.add_edge(current_node, succ_node)
self.sample.g_firm = json.dumps(nx.adjacency_data(G_Firm))
self.firm_network = ap.Network(self, G_Firm)
self.firm_prod_network = G_FirmProd
# import matplotlib.pyplot as plt
# nx.draw(G_FirmProd)
# plt.show()
# init product
for ag_node, attr in self.product_network.graph.nodes(data=True):
product = ProductAgent(self, code=ag_node.label, name=attr['Name'])
self.product_network.add_agents([product], [ag_node])
self.a_lst_total_products = ap.AgentList(self,
self.product_network.agents)
# init firm
for ag_node, attr in self.firm_network.graph.nodes(data=True):
firm_agent = FirmAgent(
self,
code=ag_node.label,
name=attr['Name'],
type_region=attr['Type_Region'],
revenue_log=attr['Revenue_Log'],
a_lst_product=self.a_lst_total_products.select([
code in attr['Product_Code']
for code in self.a_lst_total_products.code
]))
self.firm_network.add_agents([firm_agent], [ag_node])
self.a_lst_total_firms = ap.AgentList(self, self.firm_network.agents)
# init dct_lst_init_disrupt_firm_prod (from string to agent)
t_dct = {}
for firm_code, lst_product in \
self.dct_lst_init_disrupt_firm_prod.items():
firm = self.a_lst_total_firms.select(
self.a_lst_total_firms.code == firm_code)[0]
t_dct[firm] = self.a_lst_total_products.select([
code in lst_product for code in self.a_lst_total_products.code
])
self.dct_lst_init_disrupt_firm_prod = t_dct
# set the initial firm product that are disrupted
# print('\n', '=' * 20, 'step', self.t, '=' * 20)
for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
for product in a_lst_product:
assert product in firm.dct_prod_up_prod_stat.keys(), \
f"product {product.code} not in firm {firm.code}"
firm.dct_prod_up_prod_stat[
product]['status'].append(('D', self.t))
# print(f"initial disruption {firm.name} {product.code}")
# proactive strategy
# get all the firm prod affected
for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
for product in a_lst_product:
init_node = \
[n for n, v in
self.firm_prod_network.nodes(data=True)
if v['Firm_Code'] == firm.code and
v['Product_Code'] == product.code][0]
dct_affected = \
nx.dfs_successors(self.firm_prod_network,
init_node)
lst_affected = set()
for i, (u, vs) in enumerate(dct_affected.items()):
# at least 2 hops away
if i > 0:
pred_node = self.firm_prod_network.nodes[u]
for v in vs:
succ_node = self.firm_prod_network.nodes[v]
lst_affected.add((succ_node['Firm_Code'],
succ_node['Product_Code']))
lst_affected = list(lst_affected)
lst_firm_proactive = \
[lst_affected[i] for i in
self.nprandom.choice(range(len(lst_affected)),
round(len(lst_affected) *
self.proactive_ratio),
replace=False)]
for firm_code, prod_code in lst_firm_proactive:
pro_firm_prod_code = \
[n for n, v in
self.firm_prod_network.nodes(data=True)
if v['Firm_Code'] == firm_code and
v['Product_Code'] == prod_code][0]
pro_firm_prod_node = \
self.firm_prod_network.nodes[pro_firm_prod_code]
pro_firm = \
self.a_lst_total_firms.select(
[firm.code == pro_firm_prod_node['Firm_Code']
for firm in self.a_lst_total_firms])[0]
lst_shortest_path = \
list(nx.all_shortest_paths(self.firm_prod_network,
source=init_node,
target=pro_firm_prod_code))
dct_drs = {}
for di_supp_code in self.firm_prod_network.predecessors(
pro_firm_prod_code):
di_supp_node = \
self.firm_prod_network.nodes[di_supp_code]
di_supp_prod = \
self.a_lst_total_products.select(
[product.code == di_supp_node['Product_Code']
for product in self.a_lst_total_products])[0]
di_supp_firm = \
self.a_lst_total_firms.select(
[firm.code == di_supp_node['Firm_Code']
for firm in self.a_lst_total_firms])[0]
lst_cand = self.a_lst_total_firms.select([
firm.is_prod_in_current_normal(di_supp_prod)
for firm in self.a_lst_total_firms
])
n2n_betweenness = \
sum([True if di_supp_code in path else False
for path in lst_shortest_path]) \
/ len(lst_shortest_path)
drs = n2n_betweenness / \
(len(lst_cand) * di_supp_firm.size_stat[-1][0])
dct_drs[di_supp_code] = drs
dct_drs = dict(sorted(
dct_drs.items(), key=lambda kv: kv[1], reverse=True))
for di_supp_code in dct_drs.keys():
di_supp_node = \
self.firm_prod_network.nodes[di_supp_code]
di_supp_prod = \
self.a_lst_total_products.select(
[product.code == di_supp_node['Product_Code']
for product in self.a_lst_total_products])[0]
# find a dfferent firm can produce the same product
# and is not a current supplier for the same product
lst_current_supp_code = \
[self.firm_prod_network.nodes[code]['Firm_Code']
for code in self.firm_prod_network.predecessors(
pro_firm_prod_code)
if self.firm_prod_network.nodes[code][
'Product_Code'] == di_supp_prod.code]
lst_cand = self.model.a_lst_total_firms.select([
firm.is_prod_in_current_normal(di_supp_prod)
and firm.code not in lst_current_supp_code
for firm in self.model.a_lst_total_firms
])
if len(lst_cand) > 0:
select_cand = self.nprandom.choice(lst_cand)
self.firm_network.graph.add_edges_from([
(self.firm_network.positions[select_cand],
self.firm_network.positions[pro_firm], {
'Product': di_supp_prod.code
})
])
# print(f"proactive add {select_cand.name} to "
# f"{pro_firm.name} "
# f"for {di_supp_node['Firm_Code']} "
# f"{di_supp_node['Product_Code']}")
# change capacity
select_cand.dct_prod_capacity[di_supp_prod] -= 1
break
# nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm_proactive.csv')
# draw network
# self.draw_network()
def update(self):
self.a_lst_total_firms.clean_before_time_step()
# reduce the size of disrupted firm
for firm in self.a_lst_total_firms:
for prod in firm.dct_prod_up_prod_stat.keys():
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
if status == 'D':
size = firm.size_stat[-1][0] - \
firm.size_stat[0][0] \
/ len(firm.dct_prod_up_prod_stat.keys()) \
/ self.remove_t
firm.size_stat.append((size, self.t))
# print(f'in ts {self.t}, reduce {firm.name} size '
# f'to {firm.size_stat[-1][0]} due to {prod.code}')
lst_is_disrupt = \
[stat == 'D' for stat, _ in
firm.dct_prod_up_prod_stat[prod]['status']
[-1 * self.remove_t:]]
if all(lst_is_disrupt):
# turn disrupted firm into removed firm
# when last self.remove_t times status is all disrupted
firm.dct_prod_up_prod_stat[
prod]['status'].append(('R', self.t))
# stop simulation if any firm still in disrupted except inital removal
if self.t > 0:
for firm in self.a_lst_total_firms:
for prod in firm.dct_prod_up_prod_stat.keys():
status, _ = firm.dct_prod_up_prod_stat[prod]['status'][-1]
is_init = \
firm in self.dct_lst_init_disrupt_firm_prod.keys() \
and prod in self.dct_lst_init_disrupt_firm_prod[firm]
if status == 'D' and not is_init:
# print("not stop because", firm.name, prod.code)
break
else:
continue
break
else:
self.int_stop_ts = self.t
self.stop()
if self.t == self.int_n_iter:
self.stop()
def step(self):
# print('\n', '=' * 20, 'step', self.t, '=' * 20)
# remove edge to customer and disrupt customer up product
for firm in self.a_lst_total_firms:
for prod in firm.dct_prod_up_prod_stat.keys():
# repetition of disrupted firm that last for multiple ts is ok,
# as their edge has already been removed
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
if status == 'D' and ts == self.t-1:
firm.remove_edge_to_cus_disrupt_cus_up_prod(prod)
for n_trial in range(self.int_n_max_trial):
# print('=' * 10, 'trial', n_trial, '=' * 10)
# seek_alt_supply
# shuffle self.a_lst_total_firms
self.a_lst_total_firms = self.a_lst_total_firms.shuffle()
is_stop_trial = True
for firm in self.a_lst_total_firms:
lst_seek_prod = []
for prod in firm.dct_prod_up_prod_stat.keys():
status = firm.dct_prod_up_prod_stat[prod]['status'][-1][0]
if status == 'D':
for supply in firm.dct_prod_up_prod_stat[
prod]['supply'].keys():
if not firm.dct_prod_up_prod_stat[
prod]['supply'][supply]:
lst_seek_prod.append(supply)
# commmon supply only seek once
lst_seek_prod = list(set(lst_seek_prod))
if len(lst_seek_prod) > 0:
is_stop_trial = False
for supply in lst_seek_prod:
firm.seek_alt_supply(supply)
if is_stop_trial:
break
# handle_request
# shuffle self.a_lst_total_firms
self.a_lst_total_firms = self.a_lst_total_firms.shuffle()
for firm in self.a_lst_total_firms:
if len(firm.dct_request_prod_from_firm) > 0:
firm.handle_request()
# reset dct_request_prod_from_firm
self.a_lst_total_firms.clean_before_trial()
# do not use:
# self.a_lst_total_firms.dct_request_prod_from_firm = {} why?
def end(self):
# print('/' * 20, 'output', '/' * 20)
qry_result = db_session.query(Result).filter_by(s_id=self.sample.id)
if qry_result.count() == 0:
lst_result_info = []
for firm in self.a_lst_total_firms:
for prod, dct_status_supply in \
firm.dct_prod_up_prod_stat.items():
lst_is_normal = [stat == 'N' for stat, _
in dct_status_supply['status']]
if not all(lst_is_normal):
# print(f"{firm.name} {prod.code}:")
# print(dct_status_supply['status'])
for status, ts in dct_status_supply['status']:
db_r = Result(s_id=self.sample.id,
id_firm=firm.code,
id_product=prod.code,
ts=ts,
status=status)
lst_result_info.append(db_r)
db_session.bulk_save_objects(lst_result_info)
db_session.commit()
self.sample.is_done_flag = 1
self.sample.computer_name = platform.node()
self.sample.stop_t = self.int_stop_ts
db_session.commit()
def draw_network(self):
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei'
pos = nx.nx_agraph.graphviz_layout(self.firm_network.graph,
prog="twopi",
args="")
node_label = nx.get_node_attributes(self.firm_network.graph, 'Name')
node_degree = dict(self.firm_network.graph.out_degree())
node_label = {
key: f"{key} {node_label[key]} {node_degree[key]}"
for key in node_label.keys()
}
node_size = list(
nx.get_node_attributes(self.firm_network.graph,
'Revenue_Log').values())
node_size = list(map(lambda x: x**2, node_size))
edge_label = nx.get_edge_attributes(self.firm_network.graph, "Product")
# multi(di)graphs, the keys are 3-tuples
edge_label = {(n1, n2): label
for (n1, n2, _), label in edge_label.items()}
plt.figure(figsize=(12, 12), dpi=300)
nx.draw(self.firm_network.graph,
pos,
node_size=node_size,
labels=node_label,
font_size=6)
nx.draw_networkx_edge_labels(self.firm_network.graph,
pos,
edge_label,
font_size=4)
plt.savefig("network.png")