import agentpy as ap import pandas as pd import numpy as np import random import networkx as nx from firm import FirmAgent from product import ProductAgent sample = 0 seed = 0 n_iter = 10 # dct_list_init_remove_firm_prod = {133: ['1.4.4.1'], 2: ['1.1.3']} # dct_list_init_remove_firm_prod = { # 135: ['1.3.2.1'], # 133: ['1.4.4.1'], # 2: ['1.1.3'] # } dct_list_init_remove_firm_prod = { 140: ['1.4.5.1'], 135: ['1.3.2.1'], 133: ['1.4.4.1'], 2: ['1.1.3'] } n_max_trial = 5 dct_sample_para = { 'sample': sample, 'seed': seed, 'n_iter': n_iter, 'n_max_trial': n_max_trial, 'dct_list_init_remove_firm_prod': dct_list_init_remove_firm_prod, } class Model(ap.Model): def setup(self): self.sample = self.p.sample self.random = random.Random(self.p.seed) self.nprandom = np.random.default_rng(self.p.seed) self.int_n_iter = int(self.p.n_iter) self.int_n_max_trial = int(self.p.n_max_trial) self.dct_list_remove_firm_prod = self.p.dct_list_init_remove_firm_prod # init graph bom BomNodes = pd.read_csv('BomNodes.csv', index_col=0) BomNodes.set_index('Code', inplace=True) BomCateNet = pd.read_csv('BomCateNet.csv', index_col=0) BomCateNet.fillna(0, inplace=True) G_bom = nx.from_pandas_adjacency(BomCateNet.T, create_using=nx.MultiDiGraph()) bom_labels_dict = {} for code in G_bom.nodes: bom_labels_dict[code] = BomNodes.loc[code].to_dict() nx.set_node_attributes(G_bom, bom_labels_dict) # init graph firm Firm = pd.read_csv("Firm_amended.csv") Firm.fillna(0, inplace=True) Firm_attr = Firm.loc[:, ["Code", "Name", "Type_Region", "Revenue_Log"]] firm_product = [] for _, row in Firm.loc[:, '1':].iterrows(): firm_product.append(row[row == 1].index.to_list()) Firm_attr.loc[:, 'Product_Code'] = firm_product Firm_attr.set_index('Code') G_Firm = nx.MultiDiGraph() G_Firm.add_nodes_from(Firm["Code"]) firm_labels_dict = {} for code in G_Firm.nodes: firm_labels_dict[code] = Firm_attr.loc[code].to_dict() nx.set_node_attributes(G_Firm, firm_labels_dict) # add edge to G_firm according to G_bom for node in nx.nodes(G_Firm): # print(node, '-' * 20) for product_code in G_Firm.nodes[node]['Product_Code']: # print(product_code) for succ_product_code in list(G_bom.successors(product_code)): # print(succ_product_code) list_succ_firms = Firm.index[Firm[succ_product_code] == 1].to_list() list_revenue_log = [ G_Firm.nodes[succ_firm]['Revenue_Log'] for succ_firm in list_succ_firms ] # list_prob = [ # (v - min(list_revenue_log) + 1) / # (max(list_revenue_log) - min(list_revenue_log) + 1) # for v in list_revenue_log # ] # list_flag = [ # self.nprandom.choice([1, 0], p=[prob, 1 - prob]) # for prob in list_prob # ] # # print(list(zip(list_succ_firms,list_flag,list_prob))) # list_added_edges = [(node, succ_firm, { # 'Product': product_code # }) for succ_firm, flag in zip(list_succ_firms, list_flag) # if flag == 1] list_prob = [ size / sum(list_revenue_log) for size in list_revenue_log ] succ_firm = self.nprandom.choice(list_succ_firms, p=list_prob) list_added_edges = [(node, succ_firm, { 'Product': product_code })] G_Firm.add_edges_from(list_added_edges) # print('-' * 20) self.firm_network = ap.Network(self, G_Firm) self.product_network = ap.Network(self, G_bom) # print([node.label for node in self.firm_network.nodes]) # print([list(self.firm_network.graph.predecessors(node)) # for node in self.firm_network.nodes]) # print([self.firm_network.graph.nodes[node.label]['Name'] # for node in self.firm_network.nodes]) # print([v for v in self.firm_network.graph.nodes(data=True)]) # init product for ag_node, attr in self.product_network.graph.nodes(data=True): product_agent = ProductAgent(self, code=ag_node.label, name=attr['Name']) self.product_network.add_agents([product_agent], [ag_node]) self.a_list_total_products = ap.AgentList(self, self.product_network.agents) # init firm for ag_node, attr in self.firm_network.graph.nodes(data=True): firm_agent = FirmAgent( self, code=attr['Code'], name=attr['Name'], type_region=attr['Type_Region'], revenue_log=attr['Revenue_Log'], a_list_product=self.a_list_total_products.select([ code in attr['Product_Code'] for code in self.a_list_total_products.code ])) # init capacity based on discrete uniform distribution # list_out_edges = list( # self.firm_network.graph.out_edges(ag_node, # keys=True, # data='Product')) # for product in firm_agent.a_list_product: # capacity = len([ # edge for edge in list_out_edges if edge[-1] == # product.code]) # firm_agent.dct_prod_capacity[product] = capacity for product in firm_agent.a_list_product: firm_agent.dct_prod_capacity[product] = self.nprandom.integers( firm_agent.revenue_log / 5, firm_agent.revenue_log / 5 + 2) # print(firm_agent.name, firm_agent.dct_prod_capacity) self.firm_network.add_agents([firm_agent], [ag_node]) self.a_list_total_firms = ap.AgentList(self, self.firm_network.agents) # print(list(zip(self.a_list_total_firms.code, # self.a_list_total_firms.name, # self.a_list_total_firms.capacity))) # init dct_list_remove_firm_prod (from string to agent) t_dct = {} for firm_code, list_product in self.dct_list_remove_firm_prod.items(): firm = self.a_list_total_firms.select( self.a_list_total_firms.code == firm_code)[0] t_dct[firm] = self.a_list_total_products.select([ code in list_product for code in self.a_list_total_products.code ]) self.dct_list_remove_firm_prod = t_dct # set the initial firm product that are removed for firm, a_list_product in self.dct_list_remove_firm_prod.items(): for product in a_list_product: assert product in firm.a_list_product, \ f"product {product.code} not in firm {firm.code}" firm.a_list_product_removed.append(product) # draw network self.draw_network() def update(self): self.a_list_total_firms.clean_before_time_step() # stop simulation if reached terminal number of iteration if self.t == self.int_n_iter or len( self.dct_list_remove_firm_prod) == 0: self.stop() def step(self): # shuffle self.dct_list_remove_firm_prod # dct_key_list = list(self.dct_list_remove_firm_prod.keys()) # self.nprandom.shuffle(dct_key_list) # self.dct_list_remove_firm_prod = { # key: self.dct_list_remove_firm_prod[key].shuffle() # for key in dct_key_list # } # print(self.dct_list_remove_firm_prod) print('\n', '=' * 20, 'step', self.t, '=' * 20) print( 'dct_list_remove_firm_prod', { key.name: value.code for key, value in self.dct_list_remove_firm_prod.items() }) # remove_edge_to_cus_and_cus_up_prod for firm, a_list_product in self.dct_list_remove_firm_prod.items(): for product in a_list_product: firm.remove_edge_to_cus_remove_cus_up_prod(product) for n_trial in range(self.int_n_max_trial): print('=' * 10, 'trial', n_trial, '=' * 10) # seek_alt_supply # shuffle self.a_list_total_firms self.a_list_total_firms = self.a_list_total_firms.shuffle() for firm in self.a_list_total_firms: if len(firm.a_list_up_product_removed) > 0: # print(firm.name) # print(firm.a_list_up_product_removed.code) firm.seek_alt_supply() # handle_request # shuffle self.a_list_total_firms self.a_list_total_firms = self.a_list_total_firms.shuffle() for firm in self.a_list_total_firms: if len(firm.dct_request_prod_from_firm) > 0: firm.handle_request() # reset dct_request_prod_from_firm self.a_list_total_firms.clean_before_trial() # do not use: # self.a_list_total_firms.dct_request_prod_from_firm = {} why? # based on a_list_up_product_removed, # update a_list_product_disrupted / a_list_product_removed / dct_list_remove_firm_prod self.dct_list_remove_firm_prod = {} for firm in self.a_list_total_firms: if len(firm.a_list_up_product_removed) > 0: print(firm.name, 'a_list_up_product_removed', [product.code for product in firm.a_list_up_product_removed]) for product in firm.a_list_product: n_up_product_removed = 0 for up_product_removed in firm.a_list_up_product_removed: if product in up_product_removed.a_successors(): n_up_product_removed += 1 if n_up_product_removed == 0: continue else: # update a_list_product_disrupted if product not in firm.a_list_product_disrupted: firm.a_list_product_disrupted.append(product) # update a_list_product_removed / dct_list_remove_firm_prod lost_percent = n_up_product_removed / len( product.a_predecessors()) list_revenue_log = self.a_list_total_firms.revenue_log std_size = (firm.revenue_log - min(list_revenue_log) + 1) / (max(list_revenue_log) - min(list_revenue_log) + 1) p_remove = 1 - std_size * (1 - lost_percent) # flag = self.nprandom.choice([1, 0], # p=[p_remove, 1 - p_remove]) flag = 1 if flag == 1: firm.a_list_product_removed.append(product) # if firm in # self.dct_list_remove_firm_prod[firm] = firm.a_list_product_removed if firm in self.dct_list_remove_firm_prod.keys(): self.dct_list_remove_firm_prod[firm].append( product) else: self.dct_list_remove_firm_prod[ firm] = ap.AgentList( self.model, [product]) # # update the firm that is removed # self.dct_list_remove_firm_prod = {} # for firm in self.a_list_total_firms: # if len(firm.a_list_product_removed) > 0: # self.dct_list_remove_firm_prod[ # firm] = firm.a_list_product_removed # print(self.dct_list_remove_firm_prod) print( 'dct_list_remove_firm_prod', { key.name: value.code for key, value in self.dct_list_remove_firm_prod.items() }) def end(self): pass def draw_network(self): import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = 'SimHei' pos = nx.nx_agraph.graphviz_layout(self.firm_network.graph, prog="twopi", args="") node_label = nx.get_node_attributes(self.firm_network.graph, 'Name') # print(node_label) node_degree = dict(self.firm_network.graph.out_degree()) node_label = { key: f"{node_label[key]} {node_degree[key]}" for key in node_label.keys() } node_size = list( nx.get_node_attributes(self.firm_network.graph, 'Revenue_Log').values()) node_size = list(map(lambda x: x**2, node_size)) edge_label = nx.get_edge_attributes(self.firm_network.graph, "Product") # multi(di)graphs, the keys are 3-tuples edge_label = {(n1, n2): label for (n1, n2, _), label in edge_label.items()} plt.figure(figsize=(12, 12), dpi=300) nx.draw(self.firm_network.graph, pos, node_size=node_size, labels=node_label, font_size=6) nx.draw_networkx_edge_labels(self.firm_network.graph, pos, edge_label, font_size=4) plt.savefig("network.png") model = Model(dct_sample_para) model.run()