{ "cells": [ { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "85\n", "63\n", "51\n", "26\n", "30\n", "4\n", "7\n", "1\n", "17\n", "81\n" ] }, { "data": { "text/plain": [ "array([2, 2])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "\n", "np.random.randint(0.5, 3.5)\n", "p_remove = 0.9\n", "np.random.choice([True, False], p=[p_remove, 1-p_remove])\n", "rng = np.random.default_rng(0)\n", "for _ in range(10):\n", " print(rng.integers(0,100))\n", "np.random.choice([1, 2, 3], 2, p=[0.4, 0.4, 0.2])\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "share = 0.8\n", "list_succ_firms = [1, 1]\n", "round(share * len(list_succ_firms)) if round(share * len(list_succ_firms)) > 0 else 1" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.17307692307692307, 0.19230769230769232, 0.20192307692307693, 0.21153846153846154, 0.22115384615384615]\n", "[0.14899116146026878, 0.1819782155490595, 0.20111703154812216, 0.22226869439668717, 0.24564489704586234]\n", "[0.10801741721030356, 0.16114305076975205, 0.19682056666851946, 0.2403971829915773, 0.29362178235984765]\n", "[0.07643198434626533, 0.13926815562848321, 0.18799234648997357, 0.25376312466637047, 0.34254438886890737]\n" ] } ], "source": [ "import math\n", "size = [18,20,21,22,23]\n", "p = [s / sum(size) for s in size]\n", "print(p)\n", "for beta in [0.1, 0.2, 0.3]:\n", " damp_size = [math.exp(beta*s) for s in size]\n", " print([s / sum(damp_size) for s in damp_size])\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.16666666666666666, 0.5, 0.6666666666666666, 0.8333333333333334, 1.0]\n", "[0.8359588020779368, 0.9330329915368074, 0.960264500792218, 0.9819330445619127, 1.0]\n", "[0.408248290463863, 0.7071067811865476, 0.816496580927726, 0.9128709291752769, 1.0]\n", "[0.23849484685087588, 0.5743491774985174, 0.7229811807984657, 0.8642810744472068, 1.0]\n" ] } ], "source": [ "import math\n", "size = [18,20,21,22,23]\n", "p = [(s - min(size) + 1)/(max(size)-min(size)+1) for s in size]\n", "print(p)\n", "for beta in [0.1, 0.5, 0.8]:\n", " p = [((s - min(size) + 1)/(max(size)-min(size)+1))**beta for s in size]\n", " print(p)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32\n" ] } ], "source": [ "import multiprocess as mp\n", "\n", "print(mp.cpu_count())" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "71\n" ] } ], "source": [ "from orm import engine\n", "import pandas as pd\n", "import pickle\n", "str_sql = \"select e_id, count, max_max_ts, dct_lst_init_remove_firm_prod from iiabmdb.without_exp_experiment as a \" \\\n", "\"inner join \" \\\n", "\"(select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a \" \\\n", "\"inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b \" \\\n", "\"on a.id = b.s_id \" \\\n", "\"group by e_id) as b \" \\\n", "\"on a.id = b.e_id \" \\\n", "\"order by count desc;\"\n", "result = pd.read_sql(sql=str_sql, con=engine)\n", "result['dct_lst_init_remove_firm_prod'] = result['dct_lst_init_remove_firm_prod'].apply(lambda x: pickle.loads(x))\n", "# print(result)\n", "list_dct = result.loc[result['count']>=9, 'dct_lst_init_remove_firm_prod'].to_list()\n", "print(len(list_dct))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "probabilities do not sum to 1", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[2], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mnumpy\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mnp\u001b[39;00m\n\u001b[1;32m----> 3\u001b[0m np\u001b[39m.\u001b[39;49mrandom\u001b[39m.\u001b[39;49mchoice([\u001b[39m1\u001b[39;49m], p\u001b[39m=\u001b[39;49m[\u001b[39m0.9\u001b[39;49m])\n", "File \u001b[1;32mmtrand.pyx:933\u001b[0m, in \u001b[0;36mnumpy.random.mtrand.RandomState.choice\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mValueError\u001b[0m: probabilities do not sum to 1" ] } ], "source": [ "import numpy as np\n", "\n", "np.random.choice([1], p=[0.9])" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.004495606232695251" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prob_remove = 0\n", "prob_remove = np.random.uniform(\n", " prob_remove - 0.1, prob_remove + 0.1)\n", "prob_remove = 1 if prob_remove > 1 else prob_remove\n", "prob_remove = 0 if prob_remove < 0 else prob_remove\n", "prob_remove" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[8]\n" ] } ], "source": [ "nprandom = np.random.default_rng(0)\n", "lst_choose_firm = nprandom.choice(range(10),\n", " 1,\n", " replace=False\n", " )\n", "print(lst_choose_firm)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Cannot take a larger sample than population when replace is False", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[9], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m nprandom \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mrandom\u001b[39m.\u001b[39mdefault_rng(\u001b[39m0\u001b[39m)\n\u001b[1;32m----> 2\u001b[0m lst_choose_firm \u001b[39m=\u001b[39m nprandom\u001b[39m.\u001b[39;49mchoice([\u001b[39m1\u001b[39;49m,\u001b[39m2\u001b[39;49m],\n\u001b[0;32m 3\u001b[0m \u001b[39m3\u001b[39;49m,\n\u001b[0;32m 4\u001b[0m replace\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m\n\u001b[0;32m 5\u001b[0m )\n\u001b[0;32m 6\u001b[0m lst_choose_firm\n", "File \u001b[1;32m_generator.pyx:753\u001b[0m, in \u001b[0;36mnumpy.random._generator.Generator.choice\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mValueError\u001b[0m: Cannot take a larger sample than population when replace is False" ] } ], "source": [ "nprandom = np.random.default_rng(0)\n", "lst_choose_firm = nprandom.choice([1,2],\n", " 3,\n", " replace=False\n", " )\n", "lst_choose_firm" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n", "0 1\n", "0 2\n", "1 0\n", "1 1\n", "break\n" ] } ], "source": [ "\n", "for j in range(3):\n", " for k in range(3):\n", " print(j, k)\n", " if j == k == 1:\n", " print('break')\n", " break\n", " else:\n", " continue\n", " break\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.25\n", "2.25\n" ] } ], "source": [ "print(27 / (4 * 3))\n", "print(27 / 4 / 3)" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "bcdafc093860683ffb58d6956591562b7f8ed5d58147d17d71a5d4d6605a08df" } } }, "nbformat": 4, "nbformat_minor": 2 }