import agentpy as ap class FirmAgent(ap.Agent): def setup(self, code, name, type_region, revenue_log, a_lst_product): self.firm_network = self.model.firm_network self.product_network = self.model.product_network # self parameter self.code = code self.name = name self.type_region = type_region self.size_stat = [] self.dct_prod_up_prod_stat = {} self.dct_prod_capacity = {} # parameter in trial self.dct_n_trial_up_prod_disrupted = {} self.dct_cand_alt_supp_up_prod_disrupted = {} self.dct_request_prod_from_firm = {} # external variable self.is_prf_size = self.model.is_prf_size self.is_prf_conn = bool(self.p.prf_conn) self.str_cap_limit_prob_type = str(self.p.cap_limit_prob_type) self.flt_cap_limit_level = float(self.p.cap_limit_level) self.flt_diff_new_conn = float(self.p.diff_new_conn) # initialize size_stat (self parameter) # (size, time step) self.size_stat.append((revenue_log, 0)) # init dct_prod_up_prod_stat (self parameter) for prod in a_lst_product: self.dct_prod_up_prod_stat[prod] = { # status: (Normal / Disrupted / Removed, time step) 'p_stat': [('N', 0)], # supply for each component and respective disrupted supplier # set_disrupt_firm is refreshed to empty at each update 's_stat': {up_prod: {'stat': True, 'set_disrupt_firm': set()} for up_prod in prod.a_predecessors()} # Note: do not use fromkeys as it's a shallow copy } # initialize extra capacity (self parameter) for product in a_lst_product: # initialize extra capacity based on discrete uniform distribution assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \ "cap_limit_prob_type other than uniform, normal" if self.str_cap_limit_prob_type == 'uniform': extra_cap_mean = \ self.size_stat[0][0] / self.flt_cap_limit_level extra_cap = self.model.nprandom.integers(extra_cap_mean-2, extra_cap_mean+2) extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap) self.dct_prod_capacity[product] = extra_cap elif self.str_cap_limit_prob_type == 'normal': extra_cap_mean = \ self.size_stat[0][0] / self.flt_cap_limit_level extra_cap = self.model.nprandom.normal(extra_cap_mean, 1) extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap) self.dct_prod_capacity[product] = extra_cap def remove_edge_to_cus(self, disrupted_prod): # parameter disrupted_prod is the product that self got disrupted lst_out_edge = list( self.firm_network.graph.out_edges( self.firm_network.positions[self], keys=True, data='Product')) for n1, n2, key, product_code in lst_out_edge: if product_code == disrupted_prod.code: # update customer up product supplier status customer = ap.AgentIter(self.model, n2).to_list()[0] for prod in customer.dct_prod_up_prod_stat.keys(): if disrupted_prod in \ customer.dct_prod_up_prod_stat[ prod]['s_stat'].keys(): customer.dct_prod_up_prod_stat[ prod]['s_stat'][disrupted_prod][ 'set_disrupt_firm'].add(self) # print(f"{self.name} disrupt {customer.name}'s " # f"{prod.code} due to {disrupted_prod.code}") # remove edge to customer self.firm_network.graph.remove_edge(n1, n2, key) def disrupt_cus_prod(self, prod, disrupted_up_prod): # parameter prod is the product that has disrupted_up_prod # parameter disrupted_up_prod is the product that # self's component exists disrupted supplier num_lost = \ len(self.dct_prod_up_prod_stat[prod]['s_stat'] [disrupted_up_prod]['set_disrupt_firm']) num_remain = \ len([u for u, _, _, d in self.firm_network.graph.in_edges(self.get_firm_network_node(), keys=True, data='Product') if d == disrupted_up_prod.code]) lost_percent = num_lost / (num_lost + num_remain) lst_size = \ [firm.size_stat[-1][0] for firm in self.model.a_lst_total_firms] std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \ / (max(lst_size) - min(lst_size) + 1) # calculate probability of disruption prob_disrupt = 1 - std_size * (1 - lost_percent) if self.model.nprandom.choice([True, False], p=[prob_disrupt, 1 - prob_disrupt]): self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0 self.dct_prod_up_prod_stat[ prod]['s_stat'][disrupted_up_prod]['stat'] = False status, _ = self.dct_prod_up_prod_stat[ prod]['p_stat'][-1] if status != 'D': self.dct_prod_up_prod_stat[ prod]['p_stat'].append(('D', self.model.t)) # print(f"{self.name}'s {prod.code} turn to D status due to " # f"disrupted supplier of {disrupted_up_prod.code}") def seek_alt_supply(self, product): # parameter product is the product that self is seeking # print(f"{self.name} seek alt supply for {product.code}") if self.dct_n_trial_up_prod_disrupted[ product] <= self.model.int_n_max_trial: if self.dct_n_trial_up_prod_disrupted[product] == 0: # select a list of candidate firm that has the product self.dct_cand_alt_supp_up_prod_disrupted[product] = \ self.model.a_lst_total_firms.select([ firm.is_prod_in_current_normal(product) for firm in self.model.a_lst_total_firms ]) if self.dct_cand_alt_supp_up_prod_disrupted[product]: # select based on connection lst_firm_connect = [] if self.is_prf_conn: for firm in \ self.dct_cand_alt_supp_up_prod_disrupted[product]: node_self = self.get_firm_network_node() node_firm = firm.get_firm_network_node() if self.model.firm_network.graph.\ has_edge(node_self, node_firm) or \ self.model.firm_network.graph.\ has_edge(node_firm, node_self): lst_firm_connect.append(firm) if len(lst_firm_connect) == 0: # select based on size or not if self.is_prf_size: lst_size = \ [firm.size_stat[-1][0] for firm in self.dct_cand_alt_supp_up_prod_disrupted[ product]] lst_prob = [size / sum(lst_size) for size in lst_size] select_alt_supply = self.model.nprandom.choice( self.dct_cand_alt_supp_up_prod_disrupted[product], p=lst_prob) else: select_alt_supply = self.model.nprandom.choice( self.dct_cand_alt_supp_up_prod_disrupted[product]) elif len(lst_firm_connect) > 0: # select based on size of connected firm or not if self.is_prf_size: lst_firm_size = \ [firm.size_stat[-1][0] for firm in lst_firm_connect] lst_prob = \ [size / sum(lst_firm_size) for size in lst_firm_size] select_alt_supply = \ self.model.nprandom.choice(lst_firm_connect, p=lst_prob) else: select_alt_supply = \ self.model.nprandom.choice(lst_firm_connect) # print( # f"{self.name} selct alt supply for {product.code} " # f"from {select_alt_supply.name}" # ) assert select_alt_supply.is_prod_in_current_normal(product), \ f"{select_alt_supply} \ does not produce requested product {product}" if product in select_alt_supply.dct_request_prod_from_firm.\ keys(): select_alt_supply.dct_request_prod_from_firm[ product].append(self) else: select_alt_supply.dct_request_prod_from_firm[product] = [ self ] # print( # select_alt_supply.name, 'dct_request_prod_from_firm', { # key.code: [v.name for v in value] # for key, value in # select_alt_supply.dct_request_prod_from_firm.items() # }) self.dct_n_trial_up_prod_disrupted[product] += 1 def handle_request(self): # print(self.name, 'handle_request') for product, lst_firm in self.dct_request_prod_from_firm.items(): if self.dct_prod_capacity[product] > 0: if len(lst_firm) == 0: continue elif len(lst_firm) == 1: self.accept_request(lst_firm[0], product) elif len(lst_firm) > 1: # handling based on connection lst_firm_connect = [] if self.is_prf_conn: for firm in lst_firm: node_self = self.get_firm_network_node() node_firm = firm.get_firm_network_node() if self.model.firm_network.graph.\ has_edge(node_self, node_firm) or \ self.model.firm_network.graph.\ has_edge(node_firm, node_self): lst_firm_connect.append(firm) if len(lst_firm_connect) == 0: # handling based on size or not if self.is_prf_size: lst_firm_size = \ [firm.size_stat[-1][0] for firm in lst_firm] lst_prob = \ [size / sum(lst_firm_size) for size in lst_firm_size] select_customer = \ self.model.nprandom.choice(lst_firm, p=lst_prob) else: select_customer = \ self.model.nprandom.choice(lst_firm) self.accept_request(select_customer, product) elif len(lst_firm_connect) > 0: # handling based on size of connected firm or not if self.is_prf_size: lst_firm_size = \ [firm.size_stat[-1][0] for firm in lst_firm_connect] lst_prob = \ [size / sum(lst_firm_size) for size in lst_firm_size] select_customer = \ self.model.nprandom.choice(lst_firm_connect, p=lst_prob) else: select_customer = \ self.model.nprandom.choice(lst_firm_connect) self.accept_request(select_customer, product) else: for down_firm in lst_firm: down_firm.dct_cand_alt_supp_up_prod_disrupted[ product].remove(self) # print( # f"{self.name} denied {product.code} request " # f"from {down_firm.name} for lack of capacity" # ) def accept_request(self, down_firm, product): # parameter product is the product that self is selling # connected firm has no probability for accepting request node_self = self.get_firm_network_node() node_d_firm = down_firm.get_firm_network_node() if self.model.firm_network.graph.has_edge(node_self, node_d_firm) or \ self.model.firm_network.graph.has_edge(node_d_firm, node_self): prod_accept = 1.0 else: prod_accept = self.flt_diff_new_conn if self.model.nprandom.choice([True, False], p=[prod_accept, 1 - prod_accept]): self.firm_network.graph.add_edges_from([ (self.firm_network.positions[self], self.firm_network.positions[down_firm], { 'Product': product.code }) ]) self.dct_prod_capacity[product] -= 1 self.dct_request_prod_from_firm[product].remove(down_firm) for prod in down_firm.dct_prod_up_prod_stat.keys(): if product in down_firm.dct_prod_up_prod_stat[ prod]['s_stat'].keys(): down_firm.dct_prod_up_prod_stat[ prod]['s_stat'][product]['stat'] = True down_firm.dct_prod_up_prod_stat[ prod]['p_stat'].append(('N', self.model.t)) del down_firm.dct_n_trial_up_prod_disrupted[product] del down_firm.dct_cand_alt_supp_up_prod_disrupted[product] # print( # f"{self.name} accept {product.code} request " # f"from {down_firm.name}" # ) else: down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self) # print( # f"{self.name} denied {product.code} request " # f"from {down_firm.name}" # ) def clean_before_trial(self): self.dct_request_prod_from_firm = {} def clean_before_time_step(self): self.dct_n_trial_up_prod_disrupted = \ dict.fromkeys(self.dct_n_trial_up_prod_disrupted.keys(), 0) self.dct_cand_alt_supp_up_prod_disrupted = {} # update the status of firm for prod in self.dct_prod_up_prod_stat.keys(): status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1] if ts != self.model.t: self.dct_prod_up_prod_stat[prod]['p_stat'].append( (status, self.model.t)) # refresh set_disrupt_firm for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys(): self.dct_prod_up_prod_stat[prod][ 's_stat'][up_prod]['set_disrupt_firm'] = set() def get_firm_network_node(self): return self.firm_network.positions[self] def is_prod_in_current_normal(self, prod): if prod in self.dct_prod_up_prod_stat.keys(): if self.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] == 'N': return True else: return False else: return False