Compare commits
3 Commits
f8d91df954
...
64ed87da0b
Author | SHA1 | Date |
---|---|---|
HaoYizhi | 64ed87da0b | |
HaoYizhi | cf11c0c9bb | |
HaoYizhi | c29a75177c |
|
@ -0,0 +1,16 @@
|
|||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "C:\\Users\\ASUS\\OneDrive\\Project\\ScrAbm\\Dissertation\\IIabm\\model.py",
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": true
|
||||
}
|
||||
]
|
||||
}
|
Binary file not shown.
Binary file not shown.
117
firm.py
117
firm.py
|
@ -2,21 +2,118 @@ import agentpy as ap
|
|||
|
||||
|
||||
class FirmAgent(ap.Agent):
|
||||
def setup(self, code, name, type_region, revenue_log, list_product,
|
||||
capacity):
|
||||
def setup(self, code, name, type_region, revenue_log, a_list_product):
|
||||
self.firm_network = self.model.firm_network
|
||||
self.product_network = self.model.product_network
|
||||
|
||||
self.code = code
|
||||
self.name = name
|
||||
self.type_region = type_region
|
||||
self.revenue_log = revenue_log
|
||||
self.list_product = list_product
|
||||
self.capacity = capacity
|
||||
self.a_list_product = a_list_product
|
||||
self.dct_prod_capacity = dict.fromkeys(self.a_list_product)
|
||||
|
||||
self.dct_product_is_disrupted = dict.fromkeys(list_product, False)
|
||||
self.dct_product_is_removed = dict.fromkeys(list_product, False)
|
||||
self.a_list_up_product_removed = ap.AgentList(self.model, [])
|
||||
self.a_list_product_disrupted = ap.AgentList(self.model, [])
|
||||
self.a_list_product_removed = ap.AgentList(self.model, [])
|
||||
|
||||
def remove_edge_to_customer_if_removed(self, remove_product):
|
||||
t = self.firm_network.graph.out_edges(
|
||||
self.firm_network.positions[self], keys=True, data=True)
|
||||
print(t)
|
||||
self.dct_num_trial_up_product_removed = {}
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
||||
def remove_edge_to_cus_and_cus_up_prod(self, remove_product):
|
||||
list_out_edges = list(
|
||||
self.firm_network.graph.out_edges(
|
||||
self.firm_network.positions[self], keys=True, data='Product'))
|
||||
for n1, n2, key, product_code in list_out_edges:
|
||||
if product_code == remove_product.code:
|
||||
# remove edge
|
||||
# print(n1, n2, key, product_code)
|
||||
self.firm_network.graph.remove_edge(n1, n2, key)
|
||||
# remove customer up product if does not have alternative
|
||||
customer = ap.AgentIter(self.model, n2).to_list()[0]
|
||||
list_in_edges = list(
|
||||
self.firm_network.graph.in_edges(n2,
|
||||
keys=True,
|
||||
data='Product'))
|
||||
select_edges = [
|
||||
edge for edge in list_in_edges
|
||||
if edge[-1] == remove_product.code
|
||||
]
|
||||
if len(select_edges) == 0:
|
||||
if remove_product not in \
|
||||
customer.a_list_up_product_removed:
|
||||
customer.a_list_up_product_removed.append(
|
||||
remove_product)
|
||||
customer.dct_num_trial_up_product_removed[
|
||||
remove_product] = 0
|
||||
|
||||
# # disrupt customer
|
||||
# customer = ap.AgentIter(self.model, n2).to_list()[0]
|
||||
# for product in customer.a_list_product:
|
||||
# if product in remove_product.a_successors():
|
||||
# if product not in customer.a_list_product_disrupted:
|
||||
# customer.a_list_product_disrupted.append(
|
||||
# product)
|
||||
# print(customer.a_list_product_disrupted.code)
|
||||
|
||||
def seek_alt_supply(self):
|
||||
print(self.name, 'seek_alt_supply')
|
||||
for product in self.a_list_up_product_removed:
|
||||
if self.dct_num_trial_up_product_removed[
|
||||
product] <= self.model.int_n_max_trial:
|
||||
candidate_alt_supply = self.model.a_list_total_firms.select([
|
||||
product in firm.a_list_product
|
||||
for firm in self.model.a_list_total_firms
|
||||
])
|
||||
# print(candidate_alt_supply)
|
||||
# print(candidate_alt_supply.name)
|
||||
# print(candidate_alt_supply.a_list_product.code)
|
||||
# select based on size
|
||||
list_prob = [
|
||||
size / sum(candidate_alt_supply.revenue_log)
|
||||
for size in candidate_alt_supply.revenue_log
|
||||
]
|
||||
select_alt_supply = self.model.nprandom.choice(
|
||||
candidate_alt_supply, p=list_prob)
|
||||
print('select_alt_supply', select_alt_supply.name)
|
||||
assert product in select_alt_supply.a_list_product, \
|
||||
f"{select_alt_supply} \
|
||||
does not produce requested product {product}"
|
||||
|
||||
if product in select_alt_supply.dct_request_prod_from_firm.\
|
||||
keys():
|
||||
select_alt_supply.dct_request_prod_from_firm[
|
||||
product].append(self)
|
||||
else:
|
||||
select_alt_supply.dct_request_prod_from_firm[product] = [
|
||||
self
|
||||
]
|
||||
print({
|
||||
key.code: [v.name for v in value]
|
||||
for key, value in
|
||||
select_alt_supply.dct_request_prod_from_firm.items()
|
||||
})
|
||||
|
||||
self.dct_num_trial_up_product_removed[product] += 1
|
||||
|
||||
def handle_request(self):
|
||||
print(self.name, 'handle_request')
|
||||
for product, list_firm in self.dct_request_prod_from_firm.items():
|
||||
# if self.dct_prod_capacity[product] > 0:
|
||||
# if len(list_firm) == 1:
|
||||
# self.accept_request(list_firm[0], product)
|
||||
print(product.code, [firm.name for firm in list_firm])
|
||||
|
||||
def accept_request(self, down_firm, product):
|
||||
self.firm_network.graph.add_edges_from([
|
||||
(self.firm_network.positions[self],
|
||||
self.firm_network.positions[down_firm], {
|
||||
'Product': product.code
|
||||
})
|
||||
])
|
||||
self.dct_prod_capacity[product] -= 1
|
||||
self.dct_request_prod_from_firm[product].remove(down_firm)
|
||||
down_firm.a_list_up_product_removed.remove(product)
|
||||
|
||||
def clean_before_trial(self):
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
|
136
model.py
136
model.py
|
@ -3,16 +3,19 @@ import pandas as pd
|
|||
import numpy as np
|
||||
import networkx as nx
|
||||
from firm import FirmAgent
|
||||
from product import ProductAgent
|
||||
|
||||
sample = 0
|
||||
seed = 0
|
||||
n_iter = 3
|
||||
dct_list_init_remove_firm_prod = {0: ['1.4.4'], 2: ['1.1.3']}
|
||||
n_max_trial = 2
|
||||
dct_sample_para = {
|
||||
'sample': sample,
|
||||
'seed': seed,
|
||||
'n_iter': n_iter,
|
||||
'dct_list_init_remove_firm_prod': dct_list_init_remove_firm_prod
|
||||
'n_max_trial': n_max_trial,
|
||||
'dct_list_init_remove_firm_prod': dct_list_init_remove_firm_prod,
|
||||
}
|
||||
|
||||
|
||||
|
@ -20,8 +23,9 @@ class Model(ap.Model):
|
|||
def setup(self):
|
||||
self.sample = self.p.sample
|
||||
self.nprandom = np.random.default_rng(self.p.seed)
|
||||
self.dct_list_remove_firm_prod = self.p.dct_list_init_remove_firm_prod
|
||||
self.int_n_iter = int(self.p.n_iter)
|
||||
self.int_n_max_trial = int(self.p.n_max_trial)
|
||||
self.dct_list_remove_firm_prod = self.p.dct_list_init_remove_firm_prod
|
||||
|
||||
# init graph bom
|
||||
BomNodes = pd.read_csv('BomNodes.csv', index_col=0)
|
||||
|
@ -67,24 +71,34 @@ class Model(ap.Model):
|
|||
G_Firm.nodes[succ_firm]['Revenue_Log']
|
||||
for succ_firm in list_succ_firms
|
||||
]
|
||||
# list_prob = [
|
||||
# (v - min(list_revenue_log) + 1) /
|
||||
# (max(list_revenue_log) - min(list_revenue_log) + 1)
|
||||
# for v in list_revenue_log
|
||||
# ]
|
||||
# list_flag = [
|
||||
# self.nprandom.choice([1, 0], p=[prob, 1 - prob])
|
||||
# for prob in list_prob
|
||||
# ]
|
||||
# # print(list(zip(list_succ_firms,list_flag,list_prob)))
|
||||
# list_added_edges = [(node, succ_firm, {
|
||||
# 'Product': product_code
|
||||
# }) for succ_firm, flag in zip(list_succ_firms, list_flag)
|
||||
# if flag == 1]
|
||||
list_prob = [
|
||||
(v - min(list_revenue_log) + 1) /
|
||||
(max(list_revenue_log) - min(list_revenue_log) + 1)
|
||||
for v in list_revenue_log
|
||||
size / sum(list_revenue_log)
|
||||
for size in list_revenue_log
|
||||
]
|
||||
list_flag = [
|
||||
self.nprandom.choice([1, 0], p=[prob, 1 - prob])
|
||||
for prob in list_prob
|
||||
]
|
||||
# print(list(zip(list_succ_firms,list_flag,list_prob)))
|
||||
succ_firm = self.nprandom.choice(list_succ_firms,
|
||||
p=list_prob)
|
||||
list_added_edges = [(node, succ_firm, {
|
||||
'Product': product_code
|
||||
}) for succ_firm, flag in zip(list_succ_firms, list_flag)
|
||||
if flag == 1]
|
||||
})]
|
||||
G_Firm.add_edges_from(list_added_edges)
|
||||
# print('-' * 20)
|
||||
|
||||
self.firm_network = ap.Network(self, G_Firm)
|
||||
self.product_network = ap.Network(self, G_bom)
|
||||
# print([node.label for node in self.firm_network.nodes])
|
||||
# print([list(self.firm_network.graph.predecessors(node))
|
||||
# for node in self.firm_network.nodes])
|
||||
|
@ -92,6 +106,15 @@ class Model(ap.Model):
|
|||
# for node in self.firm_network.nodes])
|
||||
# print([v for v in self.firm_network.graph.nodes(data=True)])
|
||||
|
||||
# init product
|
||||
for ag_node, attr in self.product_network.graph.nodes(data=True):
|
||||
product_agent = ProductAgent(self,
|
||||
code=ag_node.label,
|
||||
name=attr['Name'])
|
||||
self.product_network.add_agents([product_agent], [ag_node])
|
||||
self.a_list_total_products = ap.AgentList(self,
|
||||
self.product_network.agents)
|
||||
|
||||
# init firm
|
||||
for ag_node, attr in self.firm_network.graph.nodes(data=True):
|
||||
firm_agent = FirmAgent(
|
||||
|
@ -100,38 +123,59 @@ class Model(ap.Model):
|
|||
name=attr['Name'],
|
||||
type_region=attr['Type_Region'],
|
||||
revenue_log=attr['Revenue_Log'],
|
||||
list_product=attr['Product_Code'],
|
||||
# init capacity as the degree of out edges
|
||||
capacity=self.firm_network.graph.out_degree(ag_node))
|
||||
a_list_product=self.a_list_total_products.select([
|
||||
code in attr['Product_Code']
|
||||
for code in self.a_list_total_products.code
|
||||
]))
|
||||
# init capacity based on discrete uniform distribution
|
||||
# list_out_edges = list(
|
||||
# self.firm_network.graph.out_edges(ag_node,
|
||||
# keys=True,
|
||||
# data='Product'))
|
||||
# for product in firm_agent.a_list_product:
|
||||
# capacity = len([
|
||||
# edge for edge in list_out_edges if edge[-1] ==
|
||||
# product.code])
|
||||
# firm_agent.dct_prod_capacity[product] = capacity
|
||||
for product in firm_agent.a_list_product:
|
||||
firm_agent.dct_prod_capacity[product] = self.nprandom.integers(
|
||||
firm_agent.revenue_log / 5, firm_agent.revenue_log / 5 + 2)
|
||||
# print(firm_agent.name, firm_agent.dct_prod_capacity)
|
||||
|
||||
self.firm_network.add_agents([firm_agent], [ag_node])
|
||||
self.a_list_total_firms = ap.AgentList(self, self.firm_network.agents)
|
||||
# print(list(zip(self.a_list_total_firms.code,
|
||||
# self.a_list_total_firms.name,
|
||||
# self.a_list_total_firms.capacity)))
|
||||
|
||||
# set the initial firm product that are removed
|
||||
# init dct_list_remove_firm_prod (from string to agent)
|
||||
t_dct = {}
|
||||
for firm_code, list_product in self.dct_list_remove_firm_prod.items():
|
||||
firm = self.a_list_total_firms.select(
|
||||
self.a_list_total_firms.code == firm_code)[0]
|
||||
for product in list_product:
|
||||
assert product in firm.list_product, \
|
||||
f"product {product} not in firm {firm_code}"
|
||||
firm.dct_product_is_removed[product] = True
|
||||
t_dct[firm] = self.a_list_total_products.select([
|
||||
code in list_product
|
||||
for code in self.a_list_total_products.code
|
||||
])
|
||||
self.dct_list_remove_firm_prod = t_dct
|
||||
|
||||
# set the initial firm product that are removed
|
||||
for firm, a_list_product in self.dct_list_remove_firm_prod.items():
|
||||
for product in a_list_product:
|
||||
assert product in firm.a_list_product, \
|
||||
f"product {product.code} not in firm {firm.code}"
|
||||
firm.a_list_product_removed.append(product)
|
||||
|
||||
def update(self):
|
||||
# Update the firm that is removed
|
||||
# update the firm that is removed
|
||||
self.dct_list_remove_firm_prod = {}
|
||||
for firm in self.a_list_total_firms:
|
||||
for product, flag in firm.dct_product_is_removed.items():
|
||||
if flag is True:
|
||||
if firm.code in self.dct_list_remove_firm_prod.keys():
|
||||
self.dct_list_remove_firm_prod[firm.code].append(
|
||||
product)
|
||||
else:
|
||||
self.dct_list_remove_firm_prod[firm.code] = [product]
|
||||
if len(firm.a_list_product_removed) > 0:
|
||||
self.dct_list_remove_firm_prod[
|
||||
firm] = firm.a_list_product_removed
|
||||
# print(self.dct_list_remove_firm_prod)
|
||||
|
||||
# Stop simulation if reached terminal number of iteration
|
||||
# stop simulation if reached terminal number of iteration
|
||||
if self.t == self.int_n_iter or len(
|
||||
self.dct_list_remove_firm_prod) == 0:
|
||||
self.stop()
|
||||
|
@ -141,14 +185,34 @@ class Model(ap.Model):
|
|||
dct_key_list = list(self.dct_list_remove_firm_prod.keys())
|
||||
self.nprandom.shuffle(dct_key_list)
|
||||
self.dct_list_remove_firm_prod = {
|
||||
key: self.dct_list_remove_firm_prod[key]
|
||||
key: self.dct_list_remove_firm_prod[key].shuffle()
|
||||
for key in dct_key_list
|
||||
}
|
||||
for firm_code, list_product in self.dct_list_remove_firm_prod.items():
|
||||
firm = self.a_list_total_firms.select(
|
||||
self.a_list_total_firms.code == firm_code)[0]
|
||||
for product in list_product:
|
||||
firm.remove_edge_to_customer_if_removed(product)
|
||||
# print(self.dct_list_remove_firm_prod)
|
||||
|
||||
# remove_edge_to_cus_and_cus_up_prod
|
||||
for firm, a_list_product in self.dct_list_remove_firm_prod.items():
|
||||
for product in a_list_product:
|
||||
firm.remove_edge_to_cus_and_cus_up_prod(product)
|
||||
|
||||
for n_trial in range(self.int_n_max_trial):
|
||||
print('=' * 20, n_trial, '=' * 20)
|
||||
# seek_alt_supply
|
||||
for firm in self.a_list_total_firms:
|
||||
if len(firm.a_list_up_product_removed) > 0:
|
||||
# print(firm.name)
|
||||
# print(firm.a_list_up_product_removed.code)
|
||||
firm.seek_alt_supply()
|
||||
|
||||
# handle_request
|
||||
for firm in self.a_list_total_firms:
|
||||
if len(firm.dct_request_prod_from_firm) > 0:
|
||||
firm.handle_request()
|
||||
|
||||
# reset dct_request_prod_from_firm
|
||||
self.a_list_total_firms.clean_before_trial()
|
||||
# do not use:
|
||||
# self.a_list_total_firms.dct_request_prod_from_firm = {} why?
|
||||
|
||||
def end(self):
|
||||
pass
|
||||
|
@ -189,6 +253,6 @@ class Model(ap.Model):
|
|||
|
||||
model = Model(dct_sample_para)
|
||||
model.setup()
|
||||
model.draw_network()
|
||||
model.update()
|
||||
model.step()
|
||||
# model.draw_network()
|
||||
|
|
BIN
network.png
BIN
network.png
Binary file not shown.
Before Width: | Height: | Size: 3.5 MiB After Width: | Height: | Size: 2.7 MiB |
|
@ -0,0 +1,16 @@
|
|||
import agentpy as ap
|
||||
|
||||
|
||||
class ProductAgent(ap.Agent):
|
||||
def setup(self, code, name):
|
||||
self.product_network = self.model.product_network
|
||||
|
||||
self.code = code
|
||||
self.name = name
|
||||
|
||||
def a_successors(self):
|
||||
nodes = self.product_network.graph.successors(
|
||||
self.product_network.positions[self])
|
||||
return ap.AgentList(
|
||||
self.model,
|
||||
[ap.AgentIter(self.model, node).to_list()[0] for node in nodes])
|
Binary file not shown.
|
@ -1,9 +1,48 @@
|
|||
agentpy==0.1.5
|
||||
alabaster==0.7.13
|
||||
Babel==2.12.1
|
||||
certifi @ file:///C:/b/abs_85o_6fm0se/croot/certifi_1671487778835/work/certifi
|
||||
charset-normalizer==3.0.1
|
||||
colorama==0.4.6
|
||||
cycler==0.11.0
|
||||
decorator==5.1.1
|
||||
dill==0.3.6
|
||||
docutils==0.19
|
||||
idna==3.4
|
||||
imagesize==1.4.1
|
||||
importlib-metadata==6.0.0
|
||||
Jinja2==3.1.2
|
||||
joblib==1.2.0
|
||||
kiwisolver==1.4.4
|
||||
MarkupSafe==2.1.2
|
||||
matplotlib==3.3.4
|
||||
matplotlib-inline==0.1.6
|
||||
multiprocess==0.70.14
|
||||
networkx==2.5
|
||||
numpy==1.20.3
|
||||
numpydoc==1.1.0
|
||||
packaging==23.0
|
||||
pandas==1.4.1
|
||||
pandas-stubs==1.2.0.39
|
||||
pygraphviz==1.9
|
||||
Pillow==9.4.0
|
||||
Pygments==2.14.0
|
||||
pygraphviz @ file:///C:/Users/ASUS/OneDrive/Project/ScrAbm/Dissertation/IIabm/pygraphviz-1.9-cp38-cp38-win_amd64.whl
|
||||
pyparsing==3.0.9
|
||||
python-dateutil==2.8.2
|
||||
pytz==2022.7.1
|
||||
requests==2.28.2
|
||||
SALib==1.4.7
|
||||
scipy==1.10.1
|
||||
six==1.16.0
|
||||
snowballstemmer==2.2.0
|
||||
Sphinx==6.1.3
|
||||
sphinxcontrib-applehelp==1.0.4
|
||||
sphinxcontrib-devhelp==1.0.2
|
||||
sphinxcontrib-htmlhelp==2.0.1
|
||||
sphinxcontrib-jsmath==1.0.1
|
||||
sphinxcontrib-qthelp==1.0.3
|
||||
sphinxcontrib-serializinghtml==1.1.5
|
||||
traitlets==5.9.0
|
||||
urllib3==1.26.14
|
||||
wincertstore==0.2
|
||||
zipp==3.15.0
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
agentpy==0.1.5
|
||||
matplotlib==3.3.4
|
||||
matplotlib-inline==0.1.6
|
||||
networkx==2.5
|
||||
numpy==1.20.3
|
||||
numpydoc==1.1.0
|
||||
pandas==1.4.1
|
||||
pandas-stubs==1.2.0.39
|
||||
pygraphviz==1.9
|
|
@ -0,0 +1,60 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"np.random.randint(0.5, 3.5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "bcdafc093860683ffb58d6956591562b7f8ed5d58147d17d71a5d4d6605a08df"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Reference in New Issue