This commit is contained in:
HaoYizhi 2023-07-08 16:23:44 +08:00
parent b17dec4dbe
commit dc025066f7
18 changed files with 866 additions and 65 deletions

View File

@ -0,0 +1,85 @@
select distinct experiment.idx_scenario,
n_max_trial, prf_size, prf_conn, cap_limit_prob_type, cap_limit_level, diff_new_conn, crit_supplier, proactive_ratio, remove_t, netw_prf_n,
mean_count_firm_prod, mean_count_firm, mean_count_prod,
mean_max_ts_firm_prod, mean_max_ts_firm, mean_max_ts_prod,
mean_n_remove_firm_prod, mean_n_all_prod_remove_firm, mean_end_ts
from iiabmdb.with_exp_experiment as experiment
left join
(
select
idx_scenario,
sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL
sum(count_firm) / count(*) as mean_count_firm,
sum(count_prod) / count(*) as mean_count_prod,
sum(max_ts_firm_prod) / count(*) as mean_max_ts_firm_prod,
sum(max_ts_firm) / count(*) as mean_max_ts_firm,
sum(max_ts_prod) / count(*) as mean_max_ts_prod,
sum(n_remove_firm_prod) / count(*) as mean_n_remove_firm_prod,
sum(n_all_prod_remove_firm) / count(*) as mean_n_all_prod_remove_firm,
sum(end_ts) / count(*) as mean_end_ts
from (
select sample.id, idx_scenario,
count_firm_prod, count_firm, count_prod,
max_ts_firm_prod, max_ts_firm, max_ts_prod,
n_remove_firm_prod, n_all_prod_remove_firm, end_ts
from iiabmdb.with_exp_sample as sample
# 1 2 3 + 9
left join iiabmdb.with_exp_experiment as experiment
on sample.e_id = experiment.id
left join (select s_id,
count(distinct id_firm, id_product) as count_firm_prod,
count(distinct id_firm) as count_firm,
count(distinct id_product) as count_prod,
max(ts) as end_ts
from iiabmdb.with_exp_result group by s_id) as s_count
on sample.id = s_count.s_id
# 4
left join # firm prod
(select s_id, max(ts) as max_ts_firm_prod from
(select s_id, id_firm, id_product, min(ts) as ts
from iiabmdb.with_exp_result
where `status` = "D"
group by s_id, id_firm, id_product) as ts
group by s_id) as s_max_ts_firm_prod
on sample.id = s_max_ts_firm_prod.s_id
# 5
left join # firm
(select s_id, max(ts) as max_ts_firm from
(select s_id, id_firm, min(ts) as ts
from iiabmdb.with_exp_result
where `status` = "D"
group by s_id, id_firm) as ts
group by s_id) as s_max_ts_firm
on sample.id = s_max_ts_firm.s_id
# 6
left join # prod
(select s_id, max(ts) as max_ts_prod from
(select s_id, id_product, min(ts) as ts
from iiabmdb.with_exp_result
where `status` = "D"
group by s_id, id_product) as ts
group by s_id) as s_max_ts_prod
on sample.id = s_max_ts_prod.s_id
# 7
left join
(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod
from iiabmdb.with_exp_result
where `status` = "R"
group by s_id) as s_n_remove_firm_prod
on sample.id = s_n_remove_firm_prod.s_id
# 8
left join
(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from
(select s_id, id_firm, count(distinct id_product) as n_remove_prod
from iiabmdb.with_exp_result
where `status` = "R"
group by s_id, id_firm) as s_n_remove_prod
left join iiabmdb_basic_info.firm_n_prod as firm_n_prod
on s_n_remove_prod.id_firm = firm_n_prod.code
where n_remove_prod = n_prod
group by s_id) as s_n_all_prod_remove_firm
on sample.id = s_n_all_prod_remove_firm.s_id
) as secnario_count
group by idx_scenario
) as secnario_mean
on experiment.idx_scenario = secnario_mean.idx_scenario;

View File

@ -0,0 +1,94 @@
select * from iiabmdb.with_exp_result limit 0, 20;
select count(distinct s_id) from iiabmdb.with_exp_result;
select count(*) from iiabmdb.with_exp_sample;
select distinct s_id, id_firm, id_product from iiabmdb.with_exp_result order by s_id, id_firm, id_product;
select distinct s_id, count(distinct id_firm, id_product) as count_firm_prod from iiabmdb.with_exp_result group by s_id;
select distinct s_id, count(distinct id_firm, id_product) as count_firm_prod
from iiabmdb.with_exp_result group by s_id;
select distinct s_id,
count(distinct id_firm, id_product) as count_firm_prod,
count(distinct id_firm) as count_firm,
count(distinct id_product) as count_prod
from iiabmdb.with_exp_result group by s_id;
# 控制问题需要处理,否则最后 experiment avg出来的东西不对
# 1 2 3
select
idx_scenario,
sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL
sum(count_firm) / count(*) as mean_count_firm,
sum(count_prod) / count(*) as mean_count_prod
from (
select sample.id, idx_scenario, count_firm_prod, count_firm, count_prod
from iiabmdb.with_exp_sample as sample
left join iiabmdb.with_exp_experiment as experiment
on sample.e_id = experiment.id
left join (select s_id,
count(distinct id_firm, id_product) as count_firm_prod,
count(distinct id_firm) as count_firm,
count(distinct id_product) as count_prod
from iiabmdb.with_exp_result group by s_id) as s_count
on sample.id = s_count.s_id) as secnario_count
group by idx_scenario;
# 4 5 6
select sample.id, idx_scenario, max_ts_firm_prod, max_ts_firm, max_ts_prod
from iiabmdb.with_exp_sample as sample
left join iiabmdb.with_exp_experiment as experiment
on sample.e_id = experiment.id
left join # firm prod
(select s_id, max(ts) as max_ts_firm_prod from
(select s_id, id_firm, id_product, min(ts) as ts
from iiabmdb.with_exp_result
where `status` = "D"
group by s_id, id_firm, id_product) as ts
group by s_id) as s_max_ts_firm_prod
on sample.id = s_max_ts_firm_prod.s_id
left join # firm
(select s_id, max(ts) as max_ts_firm from
(select s_id, id_firm, min(ts) as ts
from iiabmdb.with_exp_result
where `status` = "D"
group by s_id, id_firm) as ts
group by s_id) as s_max_ts_firm
on sample.id = s_max_ts_firm.s_id
left join # prod
(select s_id, max(ts) as max_ts_prod from
(select s_id, id_product, min(ts) as ts
from iiabmdb.with_exp_result
where `status` = "D"
group by s_id, id_product) as ts
group by s_id) as s_max_ts_prod
on sample.id = s_max_ts_prod.s_id;
# 7 8 9
select sample.id, idx_scenario, n_remove_firm_prod, n_all_prod_remove_firm, end_ts
from iiabmdb.with_exp_sample as sample
left join iiabmdb.with_exp_experiment as experiment
on sample.e_id = experiment.id
left join
(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod
from iiabmdb.with_exp_result
where `status` = "R"
group by s_id) as s_n_remove_firm_prod
on sample.id = s_n_remove_firm_prod.s_id
left join
(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from
(select s_id, id_firm, count(distinct id_product) as n_remove_prod
from iiabmdb.with_exp_result
where `status` = "R"
group by s_id, id_firm) as s_n_remove_prod
left join iiabmdb_basic_info.firm_n_prod as firm_n_prod
on s_n_remove_prod.id_firm = firm_n_prod.code
where n_remove_prod = n_prod
group by s_id) as s_n_all_prod_remove_firm
on sample.id = s_n_all_prod_remove_firm.s_id
left join
(select s_id, max(ts) as end_ts
from iiabmdb.with_exp_result
group by s_id) as s_end_ts
on sample.id = s_end_ts.s_id;

11
analysis/anova.csv Normal file
View File

@ -0,0 +1,11 @@
,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts
prf_size,0.004,0.004,0.004,0.004,0.004,0.004,0.973,0.953,0.018
prf_conn,0.884,0.884,0.841,0.841,0.841,0.841,0.821,0.888,0.63
cap_limit_prob_type,0.708,0.723,0.517,0.517,0.517,0.517,0.002,0.001,0.002
n_max_trial,0.611,0.613,0.724,0.724,0.724,0.724,0.898,0.869,0.796
cap_limit_level,0.243,0.254,0.118,0.118,0.118,0.118,0,0,0
diff_new_conn,0.216,0.229,0.058,0.058,0.058,0.058,0.002,0.002,0
crit_supplier,0,0,0,0,0,0,0,0,0
proactive_ratio,0.66,0.651,0.572,0.572,0.572,0.572,0.258,0.399,0.367
remove_t,0.464,0.465,0.546,0.546,0.546,0.546,0.026,0.186,0
netw_prf_n,0,0,0,0,0,0,0.019,0.069,0.003
1 mean_count_firm_prod mean_count_firm mean_count_prod mean_max_ts_firm_prod mean_max_ts_firm mean_max_ts_prod mean_n_remove_firm_prod mean_n_all_prod_remove_firm mean_end_ts
2 prf_size 0.004 0.004 0.004 0.004 0.004 0.004 0.973 0.953 0.018
3 prf_conn 0.884 0.884 0.841 0.841 0.841 0.841 0.821 0.888 0.63
4 cap_limit_prob_type 0.708 0.723 0.517 0.517 0.517 0.517 0.002 0.001 0.002
5 n_max_trial 0.611 0.613 0.724 0.724 0.724 0.724 0.898 0.869 0.796
6 cap_limit_level 0.243 0.254 0.118 0.118 0.118 0.118 0 0 0
7 diff_new_conn 0.216 0.229 0.058 0.058 0.058 0.058 0.002 0.002 0
8 crit_supplier 0 0 0 0 0 0 0 0 0
9 proactive_ratio 0.66 0.651 0.572 0.572 0.572 0.572 0.258 0.399 0.367
10 remove_t 0.464 0.465 0.546 0.546 0.546 0.546 0.026 0.186 0
11 netw_prf_n 0 0 0 0 0 0 0.019 0.069 0.003

BIN
analysis/anova.mpx Normal file

Binary file not shown.

BIN
analysis/anova.mpx.bak Normal file

Binary file not shown.

BIN
analysis/anova.xlsx Normal file

Binary file not shown.

BIN
analysis/anova_p_value.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

View File

@ -0,0 +1,15 @@
自变量,level,企业产品中断累计次数,企业产品中断最大传导次数,企业产品退出市场数量,网络恢复用时
对规模较大企业的倾向,倾向,2.168,0.8939,0.7698,2.214
对规模较大企业的倾向,不倾向,2.393,1.0197,0.7709,2.334
额外产能,高,2.197,0.8991,0.6667,2.05
额外产能,中,2.323,0.9772,0.7891,2.33
额外产能,低,2.322,0.9941,0.8553,2.442
可重构性,低,2.367,1.0258,0.8611,2.515
可重构性,中,2.228,0.9255,0.7274,2.195
可重构性,高,2.247,0.9191,0.7226,2.111
单一供应商重要性,低,1.915,0.7324,0.6919,2.111
单一供应商重要性,中,2.219,0.9477,0.7478,2.242
单一供应商重要性,高,2.708,1.1902,0.8713,2.469
多供应商策略,三供应商,2.066,0.8281,0.7193,2.189
多供应商策略,双供应商,2.253,0.9342,0.7568,2.23
多供应商策略,单供应商,2.523,1.1081,0.8349,2.402
1 自变量 level 企业产品中断累计次数 企业产品中断最大传导次数 企业产品退出市场数量 网络恢复用时
2 对规模较大企业的倾向 倾向 2.168 0.8939 0.7698 2.214
3 对规模较大企业的倾向 不倾向 2.393 1.0197 0.7709 2.334
4 额外产能 2.197 0.8991 0.6667 2.05
5 额外产能 2.323 0.9772 0.7891 2.33
6 额外产能 2.322 0.9941 0.8553 2.442
7 可重构性 2.367 1.0258 0.8611 2.515
8 可重构性 2.228 0.9255 0.7274 2.195
9 可重构性 2.247 0.9191 0.7226 2.111
10 单一供应商重要性 1.915 0.7324 0.6919 2.111
11 单一供应商重要性 2.219 0.9477 0.7478 2.242
12 单一供应商重要性 2.708 1.1902 0.8713 2.469
13 多供应商策略 三供应商 2.066 0.8281 0.7193 2.189
14 多供应商策略 双供应商 2.253 0.9342 0.7568 2.23
15 多供应商策略 单供应商 2.523 1.1081 0.8349 2.402

View File

@ -0,0 +1,28 @@
,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t
0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0
1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0
2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0
3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0
4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0
5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0
6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0
7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0
8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0
9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0
10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0
11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0
12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0
13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0
14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0
15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0
16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0
17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0
18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0
19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0
20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0
21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0
22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0
23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0
24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0
25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0
26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0
1 n_max_trial crit_supplier firm_pref_request firm_pref_accept netw_pref_cust_n netw_pref_cust_size cap_limit diff_new_conn diff_remove X10 X11 X12 X13 n_disrupt_s n_disrupt_t
2 0 15 2.0 2.0 2.0 0.5 2.0 4 0.5 0.5 0 0 0 0 888.0 2114.0
3 1 15 2.0 2.0 2.0 1.0 1.0 2 1.0 1.0 1 1 1 1 1297.0 2810.0
4 2 15 2.0 2.0 2.0 2.0 0.5 1 2.0 2.0 2 2 2 2 1826.0 3809.0
5 3 15 1.0 1.0 1.0 0.5 2.0 4 1.0 1.0 1 2 2 2 1372.0 3055.0
6 4 15 1.0 1.0 1.0 1.0 1.0 2 2.0 2.0 2 0 0 0 2118.0 4519.0
7 5 15 1.0 1.0 1.0 2.0 0.5 1 0.5 0.5 0 1 1 1 815.0 2073.0
8 6 15 0.5 0.5 0.5 0.5 2.0 4 2.0 2.0 2 1 1 1 2378.0 5528.0
9 7 15 0.5 0.5 0.5 1.0 1.0 2 0.5 0.5 0 2 2 2 968.0 2300.0
10 8 15 0.5 0.5 0.5 2.0 0.5 1 1.0 1.0 1 0 0 0 1531.0 3317.0
11 9 10 2.0 1.0 0.5 0.5 1.0 1 0.5 1.0 2 0 1 2 881.0 1972.0
12 10 10 2.0 1.0 0.5 1.0 0.5 4 1.0 2.0 0 1 2 0 1298.0 2763.0
13 11 10 2.0 1.0 0.5 2.0 2.0 2 2.0 0.5 1 2 0 1 1717.0 3837.0
14 12 10 1.0 0.5 2.0 0.5 1.0 1 1.0 2.0 0 2 0 1 1327.0 2855.0
15 13 10 1.0 0.5 2.0 1.0 0.5 4 2.0 0.5 1 0 1 2 2126.0 4788.0
16 14 10 1.0 0.5 2.0 2.0 2.0 2 0.5 1.0 2 1 2 0 801.0 1814.0
17 15 10 0.5 2.0 1.0 0.5 1.0 1 2.0 0.5 1 1 2 0 2442.0 5980.0
18 16 10 0.5 2.0 1.0 1.0 0.5 4 0.5 1.0 2 2 0 1 991.0 2186.0
19 17 10 0.5 2.0 1.0 2.0 2.0 2 1.0 2.0 0 0 1 2 1311.0 2776.0
20 18 5 2.0 0.5 1.0 0.5 0.5 2 0.5 2.0 1 0 2 1 879.0 1909.0
21 19 5 2.0 0.5 1.0 1.0 2.0 1 1.0 0.5 2 1 0 2 1354.0 3132.0
22 20 5 2.0 0.5 1.0 2.0 1.0 4 2.0 1.0 0 2 1 0 1727.0 3673.0
23 21 5 1.0 2.0 0.5 0.5 0.5 2 1.0 0.5 2 2 1 0 1379.0 3184.0
24 22 5 1.0 2.0 0.5 1.0 2.0 1 2.0 1.0 0 0 2 1 2145.0 4658.0
25 23 5 1.0 2.0 0.5 2.0 1.0 4 0.5 2.0 1 1 0 2 810.0 1764.0
26 24 5 0.5 1.0 2.0 0.5 0.5 2 2.0 1.0 0 1 0 2 2412.0 5783.0
27 25 5 0.5 1.0 2.0 1.0 2.0 1 0.5 2.0 1 2 1 0 915.0 1973.0
28 26 5 0.5 1.0 2.0 2.0 1.0 4 1.0 0.5 2 0 2 1 1336.0 3087.0

View File

@ -1,28 +1,37 @@
,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t
0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0
1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0
2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0
3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0
4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0
5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0
6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0
7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0
8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0
9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0
10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0
11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0
12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0
13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0
14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0
15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0
16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0
17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0
18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0
19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0
20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0
21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0
22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0
23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0
24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0
25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0
26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0
idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,proactive_ratio,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts
0,15,1,1,uniform,5.0000,0.3000,2.0000,0.3000,3,3,1.5512,1.5509,1.4943,0.4943,0.4943,0.4943,0.6731,0.2280,1.6345
1,10,1,1,uniform,10.0000,0.5000,1.0000,0.5000,5,2,2.2707,2.2663,1.9623,0.9623,0.9623,0.9623,0.7522,0.2531,2.2764
2,5,1,1,uniform,15.0000,0.7000,0.5000,0.7000,7,1,2.5655,2.5608,2.1337,1.1337,1.1337,1.1337,0.9021,0.2926,2.9874
3,15,1,1,uniform,5.0000,0.3000,2.0000,0.5000,5,2,1.7114,1.7105,1.6135,0.6135,0.6135,0.6135,0.6200,0.2120,1.9855
4,10,1,1,uniform,10.0000,0.5000,1.0000,0.7000,7,1,2.5322,2.5274,2.1114,1.1114,1.1114,1.1114,0.7952,0.2648,2.8876
5,5,1,1,uniform,15.0000,0.7000,0.5000,0.3000,3,3,2.6476,2.6406,2.1886,1.1886,1.1886,1.1886,1.0303,0.3255,1.9575
6,15,1,1,normal,5.0000,0.5000,0.5000,0.3000,5,1,2.5272,2.5240,2.1017,1.1017,1.1017,1.1017,0.6444,0.2194,2.1438
7,10,1,1,normal,10.0000,0.7000,2.0000,0.5000,7,3,1.5282,1.5282,1.4699,0.4699,0.4699,0.4699,0.6044,0.2116,2.2133
8,5,1,1,normal,15.0000,0.3000,1.0000,0.7000,3,2,2.2128,2.2109,1.9781,0.9781,0.9781,0.9781,0.9743,0.3023,1.9869
9,15,1,0,uniform,5.0000,0.7000,1.0000,0.3000,7,2,2.1539,2.1537,1.8821,0.8821,0.8821,0.8821,0.6004,0.2105,2.2248
10,10,1,0,uniform,10.0000,0.3000,0.5000,0.5000,3,1,2.6907,2.6804,2.2434,1.2434,1.2434,1.2434,1.2832,0.4072,2.3133
11,5,1,0,uniform,15.0000,0.5000,2.0000,0.7000,5,3,1.5537,1.5537,1.4971,0.4971,0.4971,0.4971,0.6411,0.2211,1.9853
12,15,1,0,normal,10.0000,0.7000,2.0000,0.7000,5,3,1.5175,1.5175,1.4638,0.4638,0.4638,0.4638,0.6046,0.2114,1.8941
13,10,1,0,normal,15.0000,0.3000,1.0000,0.3000,7,2,2.1682,2.1651,1.9512,0.9512,0.9512,0.9512,0.6973,0.2375,2.7838
14,5,1,0,normal,5.0000,0.5000,0.5000,0.5000,3,1,2.5267,2.5240,2.1029,1.1029,1.1029,1.1029,0.7956,0.2457,1.7884
15,15,1,0,normal,10.0000,0.7000,1.0000,0.3000,3,1,2.4596,2.4587,2.0507,1.0507,1.0507,1.0507,0.6937,0.2295,1.6522
16,10,1,0,normal,15.0000,0.3000,0.5000,0.5000,5,3,2.7004,2.6901,2.2154,1.2154,1.2154,1.2154,0.9398,0.3189,2.8446
17,5,1,0,normal,5.0000,0.5000,2.0000,0.7000,7,2,1.7141,1.7141,1.6295,0.6295,0.6295,0.6295,0.6053,0.2114,2.2872
18,15,0,1,normal,10.0000,0.3000,0.5000,0.7000,7,3,2.8486,2.8417,2.2505,1.2505,1.2505,1.2505,0.7427,0.2592,3.1507
19,10,0,1,normal,15.0000,0.5000,2.0000,0.3000,3,2,1.7124,1.7124,1.6343,0.6343,0.6343,0.6343,0.6604,0.2232,1.6145
20,5,0,1,normal,5.0000,0.7000,1.0000,0.5000,5,1,2.4396,2.4394,2.0387,1.0387,1.0387,1.0387,0.6063,0.2114,1.9457
21,15,0,1,normal,10.0000,0.5000,0.5000,0.7000,3,2,2.8352,2.8280,2.2059,1.2059,1.2059,1.2059,0.8535,0.2636,1.8619
22,10,0,1,normal,15.0000,0.7000,2.0000,0.3000,5,1,2.4427,2.4400,2.0472,1.0472,1.0472,1.0472,0.7229,0.2371,2.1480
23,5,0,1,normal,5.0000,0.3000,1.0000,0.5000,7,3,1.9760,1.9726,1.8200,0.8200,0.8200,0.8200,0.6333,0.2156,2.5817
24,15,0,1,uniform,15.0000,0.5000,2.0000,0.5000,7,1,2.4941,2.4874,2.0964,1.0964,1.0964,1.0964,0.8709,0.2819,3.1027
25,10,0,1,uniform,5.0000,0.7000,1.0000,0.7000,3,3,1.8998,1.8989,1.7728,0.7728,0.7728,0.7728,0.6528,0.2213,1.6143
26,5,0,1,uniform,10.0000,0.3000,0.5000,0.3000,5,2,2.9478,2.9360,2.3718,1.3718,1.3718,1.3718,1.0644,0.3634,3.0396
27,15,0,0,normal,15.0000,0.5000,1.0000,0.5000,3,3,1.9505,1.9486,1.7987,0.7987,0.7987,0.7987,0.7731,0.2469,1.7459
28,10,0,0,normal,5.0000,0.7000,0.5000,0.7000,5,2,2.7389,2.7375,2.1211,1.1211,1.1211,1.1211,0.6069,0.2114,1.9503
29,5,0,0,normal,10.0000,0.3000,2.0000,0.3000,7,1,2.5236,2.5166,2.1179,1.1179,1.1179,1.1179,0.6844,0.2288,2.8678
30,15,0,0,uniform,15.0000,0.7000,0.5000,0.5000,7,2,2.8101,2.8011,2.2076,1.2076,1.2076,1.2076,0.9796,0.3160,3.1324
31,10,0,0,uniform,5.0000,0.3000,2.0000,0.7000,3,1,2.4699,2.4632,2.0718,1.0718,1.0718,1.0718,0.9488,0.2821,1.9815
32,5,0,0,uniform,10.0000,0.5000,1.0000,0.3000,5,3,1.9579,1.9571,1.8257,0.8257,0.8257,0.8257,0.7234,0.2457,2.1928
33,15,0,0,uniform,15.0000,0.3000,1.0000,0.7000,5,1,2.6051,2.5958,2.1811,1.1811,1.1811,1.1811,1.0716,0.3459,3.0091
34,10,0,0,uniform,5.0000,0.5000,0.5000,0.3000,7,3,2.6592,2.6562,2.1402,1.1402,1.1402,1.1402,0.6135,0.2147,2.4573
35,5,0,0,uniform,10.0000,0.7000,2.0000,0.5000,3,2,1.7640,1.7640,1.6526,0.6526,0.6526,0.6526,0.6672,0.2246,1.6143

1 idx_scenario n_max_trial prf_size firm_pref_request prf_conn firm_pref_accept cap_limit_prob_type netw_pref_cust_n cap_limit_level netw_pref_cust_size diff_new_conn cap_limit crit_supplier proactive_ratio diff_remove remove_t X10 netw_prf_n X11 mean_count_firm_prod X12 mean_count_firm X13 mean_count_prod n_disrupt_s mean_max_ts_firm_prod n_disrupt_t mean_max_ts_firm mean_max_ts_prod mean_n_remove_firm_prod mean_n_all_prod_remove_firm mean_end_ts
2 0 15 1 2.0 1 2.0 uniform 0.5 5.0000 2.0 0.5 0.3000 4 2.0 2.0000 0.3000 0.5 3 0 3 0 1.5512 0 1.5509 0 1.4943 888.0 0.4943 2114.0 0.4943 0.4943 0.6731 0.2280 1.6345
3 1 15 10 1 2.0 1 2.0 uniform 1.0 10.0000 1.0 1.0 0.5000 2 2.0 1.0000 0.5000 1.0 5 1 2 1 2.2707 1 2.2663 1 1.9623 1297.0 0.9623 2810.0 0.9623 0.9623 0.7522 0.2531 2.2764
4 2 15 5 1 2.0 1 2.0 uniform 2.0 15.0000 0.5 2.0 0.7000 1 2.0 0.5000 0.7000 2.0 7 2 1 2 2.5655 2 2.5608 2 2.1337 1826.0 1.1337 3809.0 1.1337 1.1337 0.9021 0.2926 2.9874
5 3 15 1 1.0 1 1.0 uniform 0.5 5.0000 2.0 1.0 0.3000 4 1.0 2.0000 0.5000 1.0 5 1 2 2 1.7114 2 1.7105 2 1.6135 1372.0 0.6135 3055.0 0.6135 0.6135 0.6200 0.2120 1.9855
6 4 15 10 1 1.0 1 1.0 uniform 1.0 10.0000 1.0 2.0 0.5000 2 1.0 1.0000 0.7000 2.0 7 2 1 0 2.5322 0 2.5274 0 2.1114 2118.0 1.1114 4519.0 1.1114 1.1114 0.7952 0.2648 2.8876
7 5 15 5 1 1.0 1 1.0 uniform 2.0 15.0000 0.5 0.5 0.7000 1 1.0 0.5000 0.3000 0.5 3 0 3 1 2.6476 1 2.6406 1 2.1886 815.0 1.1886 2073.0 1.1886 1.1886 1.0303 0.3255 1.9575
8 6 15 1 0.5 1 0.5 normal 0.5 5.0000 2.0 2.0 0.5000 4 0.5 0.5000 0.3000 2.0 5 2 1 1 2.5272 1 2.5240 1 2.1017 2378.0 1.1017 5528.0 1.1017 1.1017 0.6444 0.2194 2.1438
9 7 15 10 1 0.5 1 0.5 normal 1.0 10.0000 1.0 0.5 0.7000 2 0.5 2.0000 0.5000 0.5 7 0 3 2 1.5282 2 1.5282 2 1.4699 968.0 0.4699 2300.0 0.4699 0.4699 0.6044 0.2116 2.2133
10 8 15 5 1 0.5 1 0.5 normal 2.0 15.0000 0.5 1.0 0.3000 1 0.5 1.0000 0.7000 1.0 3 1 2 0 2.2128 0 2.2109 0 1.9781 1531.0 0.9781 3317.0 0.9781 0.9781 0.9743 0.3023 1.9869
11 9 10 15 1 1.0 0 0.5 uniform 0.5 5.0000 1.0 0.5 0.7000 1 2.0 1.0000 0.3000 1.0 7 2 2 0 2.1539 1 2.1537 2 1.8821 881.0 0.8821 1972.0 0.8821 0.8821 0.6004 0.2105 2.2248
12 10 10 1 1.0 0 0.5 uniform 1.0 10.0000 0.5 1.0 0.3000 4 2.0 0.5000 0.5000 2.0 3 0 1 1 2.6907 2 2.6804 0 2.2434 1298.0 1.2434 2763.0 1.2434 1.2434 1.2832 0.4072 2.3133
13 11 10 5 1 1.0 0 0.5 uniform 2.0 15.0000 2.0 2.0 0.5000 2 2.0 2.0000 0.7000 0.5 5 1 3 2 1.5537 0 1.5537 1 1.4971 1717.0 0.4971 3837.0 0.4971 0.4971 0.6411 0.2211 1.9853
14 12 10 15 1 0.5 0 2.0 normal 0.5 10.0000 1.0 1.0 0.7000 1 1.0 2.0000 0.7000 2.0 5 0 3 2 1.5175 0 1.5175 1 1.4638 1327.0 0.4638 2855.0 0.4638 0.4638 0.6046 0.2114 1.8941
15 13 10 1 0.5 0 2.0 normal 1.0 15.0000 0.5 2.0 0.3000 4 1.0 1.0000 0.3000 0.5 7 1 2 0 2.1682 1 2.1651 2 1.9512 2126.0 0.9512 4788.0 0.9512 0.9512 0.6973 0.2375 2.7838
16 14 10 5 1 0.5 0 2.0 normal 2.0 5.0000 2.0 0.5 0.5000 2 1.0 0.5000 0.5000 1.0 3 2 1 1 2.5267 2 2.5240 0 2.1029 801.0 1.1029 1814.0 1.1029 1.1029 0.7956 0.2457 1.7884
17 15 10 15 1 2.0 0 1.0 normal 0.5 10.0000 1.0 2.0 0.7000 1 0.5 1.0000 0.3000 0.5 3 1 1 1 2.4596 2 2.4587 0 2.0507 2442.0 1.0507 5980.0 1.0507 1.0507 0.6937 0.2295 1.6522
18 16 10 1 2.0 0 1.0 normal 1.0 15.0000 0.5 0.5 0.3000 4 0.5 0.5000 0.5000 1.0 5 2 3 2 2.7004 0 2.6901 1 2.2154 991.0 1.2154 2186.0 1.2154 1.2154 0.9398 0.3189 2.8446
19 17 10 5 1 2.0 0 1.0 normal 2.0 5.0000 2.0 1.0 0.5000 2 0.5 2.0000 0.7000 2.0 7 0 2 0 1.7141 1 1.7141 2 1.6295 1311.0 0.6295 2776.0 0.6295 0.6295 0.6053 0.2114 2.2872
20 18 5 15 0 0.5 1 1.0 normal 0.5 10.0000 0.5 0.5 0.3000 2 2.0 0.5000 0.7000 2.0 7 1 3 0 2.8486 2 2.8417 1 2.2505 879.0 1.2505 1909.0 1.2505 1.2505 0.7427 0.2592 3.1507
21 19 5 10 0 0.5 1 1.0 normal 1.0 15.0000 2.0 1.0 0.5000 1 2.0 2.0000 0.3000 0.5 3 2 2 1 1.7124 0 1.7124 2 1.6343 1354.0 0.6343 3132.0 0.6343 0.6343 0.6604 0.2232 1.6145
22 20 5 0 0.5 1 1.0 normal 2.0 5.0000 1.0 2.0 0.7000 4 2.0 1.0000 0.5000 1.0 5 0 1 2 2.4396 1 2.4394 0 2.0387 1727.0 1.0387 3673.0 1.0387 1.0387 0.6063 0.2114 1.9457
23 21 5 15 0 2.0 1 0.5 normal 0.5 10.0000 0.5 1.0 0.5000 2 1.0 0.5000 0.7000 0.5 3 2 2 2 2.8352 1 2.8280 0 2.2059 1379.0 1.2059 3184.0 1.2059 1.2059 0.8535 0.2636 1.8619
24 22 5 10 0 2.0 1 0.5 normal 1.0 15.0000 2.0 2.0 0.7000 1 1.0 2.0000 0.3000 1.0 5 0 1 0 2.4427 2 2.4400 1 2.0472 2145.0 1.0472 4658.0 1.0472 1.0472 0.7229 0.2371 2.1480
25 23 5 0 2.0 1 0.5 normal 2.0 5.0000 1.0 0.5 0.3000 4 1.0 1.0000 0.5000 2.0 7 1 3 1 1.9760 0 1.9726 2 1.8200 810.0 0.8200 1764.0 0.8200 0.8200 0.6333 0.2156 2.5817
26 24 5 15 0 1.0 1 2.0 uniform 0.5 15.0000 0.5 2.0 0.5000 2 0.5 2.0000 0.5000 1.0 7 0 1 1 2.4941 0 2.4874 2 2.0964 2412.0 1.0964 5783.0 1.0964 1.0964 0.8709 0.2819 3.1027
27 25 5 10 0 1.0 1 2.0 uniform 1.0 5.0000 2.0 0.5 0.7000 1 0.5 1.0000 0.7000 2.0 3 1 3 2 1.8998 1 1.8989 0 1.7728 915.0 0.7728 1973.0 0.7728 0.7728 0.6528 0.2213 1.6143
28 26 5 0 1.0 1 2.0 uniform 2.0 10.0000 1.0 1.0 0.3000 4 0.5 0.5000 0.3000 0.5 5 2 2 0 2.9478 2 2.9360 1 2.3718 1336.0 1.3718 3087.0 1.3718 1.3718 1.0644 0.3634 3.0396
29 27 15 0 0 normal 15.0000 0.5000 1.0000 0.5000 3 3 1.9505 1.9486 1.7987 0.7987 0.7987 0.7987 0.7731 0.2469 1.7459
30 28 10 0 0 normal 5.0000 0.7000 0.5000 0.7000 5 2 2.7389 2.7375 2.1211 1.1211 1.1211 1.1211 0.6069 0.2114 1.9503
31 29 5 0 0 normal 10.0000 0.3000 2.0000 0.3000 7 1 2.5236 2.5166 2.1179 1.1179 1.1179 1.1179 0.6844 0.2288 2.8678
32 30 15 0 0 uniform 15.0000 0.7000 0.5000 0.5000 7 2 2.8101 2.8011 2.2076 1.2076 1.2076 1.2076 0.9796 0.3160 3.1324
33 31 10 0 0 uniform 5.0000 0.3000 2.0000 0.7000 3 1 2.4699 2.4632 2.0718 1.0718 1.0718 1.0718 0.9488 0.2821 1.9815
34 32 5 0 0 uniform 10.0000 0.5000 1.0000 0.3000 5 3 1.9579 1.9571 1.8257 0.8257 0.8257 0.8257 0.7234 0.2457 2.1928
35 33 15 0 0 uniform 15.0000 0.3000 1.0000 0.7000 5 1 2.6051 2.5958 2.1811 1.1811 1.1811 1.1811 1.0716 0.3459 3.0091
36 34 10 0 0 uniform 5.0000 0.5000 0.5000 0.3000 7 3 2.6592 2.6562 2.1402 1.1402 1.1402 1.1402 0.6135 0.2147 2.4573
37 35 5 0 0 uniform 10.0000 0.7000 2.0000 0.5000 3 2 1.7640 1.7640 1.6526 0.6526 0.6526 0.6526 0.6672 0.2246 1.6143

View File

@ -110,49 +110,16 @@ def anova(lst_col_seg, n_level, oa_file, result_file, alpha=0.1):
if __name__ == '__main__':
# prep data
str_sql = """
select * from
(select distinct idx_scenario, n_max_trial, crit_supplier,
firm_pref_request, firm_pref_accept, netw_pref_cust_n,
netw_pref_cust_size, cap_limit, diff_new_conn, diff_remove
from iiabmdb.with_exp_experiment) as a
inner join
(
select idx_scenario,
sum(n_disrupt_s) as n_disrupt_s, sum(n_disrupt_t) as n_disrupt_t from
iiabmdb.with_exp_experiment as a
inner join
(
select e_id, count(n_s_disrupt_t) as n_disrupt_s,
sum(n_s_disrupt_t) as n_disrupt_t from
iiabmdb.with_exp_sample as a
inner join
(select a.s_id as s_id, count(id) as n_s_disrupt_t from
iiabmdb.with_exp_result as a
inner join
(select distinct s_id from iiabmdb.with_exp_result where ts > 0) as b
on a.s_id = b.s_id
group by s_id
) as b
on a.id = b.s_id
group by e_id
) as b
on a.id = b.e_id
group by idx_scenario) as b
on a.idx_scenario = b.idx_scenario;
"""
result = pd.read_sql(sql=str_sql,
con=engine)
result = pd.read_csv("experiment_result.csv", index_col=None)
result.drop('idx_scenario', 1, inplace=True)
df_oa = pd.read_csv("oa_with_exp.csv", index_col=None)
result = pd.concat(
scenario_result = pd.concat(
[result.iloc[:, 0:10],
df_oa.iloc[:, -4:],
result.iloc[:, -2:]], axis=1)
result.to_csv('analysis\\experiment_result.csv')
# 9 factors (X), 4 for error (E), and 2 indicators (Y)
the_lst_col_seg = [10, 3, 2]
# 10 factors (X), 13 for error (E), and 9 indicators (Y)
the_lst_col_seg = [10, 13, 9]
the_n_level = 3
anova(the_lst_col_seg, the_n_level, "oa25.txt", result, 0.1)

Binary file not shown.

406
anova_visualization.ipynb Normal file

File diff suppressed because one or more lines are too long

14
anova_visualization.py Normal file
View File

@ -0,0 +1,14 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df_anova = pd.read_csv('analysis/anova.csv', index_col=0)
df_anova = df_anova.stack().reset_index()
df_anova.rename(columns={'level_0': 'x',
'level_1': 'y type',
0: 'p value'}, inplace=True)
print(df_anova)
sns.set_theme(style="whitegrid")
g = sns.catplot(data=df_anova, kind="bar", x="x", y="p value", hue="y type")
g.set_xticklabels(rotation=30)
plt.show()

Binary file not shown.

172
firm_n_prod.csv Normal file
View File

@ -0,0 +1,172 @@
code,n_prod
0,1
1,1
2,1
3,4
4,1
5,4
6,5
7,1
8,1
9,2
10,1
11,1
12,1
13,17
14,2
15,1
16,4
17,1
18,1
19,1
20,1
21,1
22,24
23,10
24,1
25,1
26,7
27,1
28,1
29,1
30,1
31,7
32,1
33,4
34,1
35,1
36,1
37,6
38,5
39,1
40,4
41,7
42,3
43,2
44,1
45,9
46,1
47,9
48,1
49,8
50,1
51,1
52,1
53,15
54,3
55,6
56,2
57,4
58,7
59,1
60,5
61,1
62,5
63,3
64,1
65,1
66,1
67,1
68,3
69,1
70,2
71,1
72,1
73,1
74,2
75,1
76,1
77,2
78,5
79,16
80,2
81,4
82,4
83,1
84,3
85,2
86,1
87,1
88,1
89,3
90,1
91,1
92,1
93,1
94,1
95,2
96,2
97,3
98,1
99,6
100,1
101,1
102,2
103,1
104,1
105,1
106,6
107,1
108,2
109,1
110,1
111,3
112,1
113,1
114,1
115,2
116,1
117,11
118,1
119,1
120,1
121,1
122,1
123,1
124,2
125,1
126,7
127,2
128,1
129,2
130,5
131,5
132,1
133,2
134,1
135,11
136,1
137,6
138,1
139,1
140,7
141,1
142,3
143,5
144,4
145,1
146,1
147,1
148,3
149,4
150,1
151,1
152,1
153,2
154,6
155,1
156,1
157,1
158,1
159,1
160,1
161,3
162,2
163,6
164,1
165,4
166,1
167,1
168,7
169,1
170,1
1 code n_prod
2 0 1
3 1 1
4 2 1
5 3 4
6 4 1
7 5 4
8 6 5
9 7 1
10 8 1
11 9 2
12 10 1
13 11 1
14 12 1
15 13 17
16 14 2
17 15 1
18 16 4
19 17 1
20 18 1
21 19 1
22 20 1
23 21 1
24 22 24
25 23 10
26 24 1
27 25 1
28 26 7
29 27 1
30 28 1
31 29 1
32 30 1
33 31 7
34 32 1
35 33 4
36 34 1
37 35 1
38 36 1
39 37 6
40 38 5
41 39 1
42 40 4
43 41 7
44 42 3
45 43 2
46 44 1
47 45 9
48 46 1
49 47 9
50 48 1
51 49 8
52 50 1
53 51 1
54 52 1
55 53 15
56 54 3
57 55 6
58 56 2
59 57 4
60 58 7
61 59 1
62 60 5
63 61 1
64 62 5
65 63 3
66 64 1
67 65 1
68 66 1
69 67 1
70 68 3
71 69 1
72 70 2
73 71 1
74 72 1
75 73 1
76 74 2
77 75 1
78 76 1
79 77 2
80 78 5
81 79 16
82 80 2
83 81 4
84 82 4
85 83 1
86 84 3
87 85 2
88 86 1
89 87 1
90 88 1
91 89 3
92 90 1
93 91 1
94 92 1
95 93 1
96 94 1
97 95 2
98 96 2
99 97 3
100 98 1
101 99 6
102 100 1
103 101 1
104 102 2
105 103 1
106 104 1
107 105 1
108 106 6
109 107 1
110 108 2
111 109 1
112 110 1
113 111 3
114 112 1
115 113 1
116 114 1
117 115 2
118 116 1
119 117 11
120 118 1
121 119 1
122 120 1
123 121 1
124 122 1
125 123 1
126 124 2
127 125 1
128 126 7
129 127 2
130 128 1
131 129 2
132 130 5
133 131 5
134 132 1
135 133 2
136 134 1
137 135 11
138 136 1
139 137 6
140 138 1
141 139 1
142 140 7
143 141 1
144 142 3
145 143 5
146 144 4
147 145 1
148 146 1
149 147 1
150 148 3
151 149 4
152 150 1
153 151 1
154 152 1
155 153 2
156 154 6
157 155 1
158 156 1
159 157 1
160 158 1
161 159 1
162 160 1
163 161 3
164 162 2
165 163 6
166 164 1
167 165 4
168 166 1
169 167 1
170 168 7
171 169 1
172 170 1

Binary file not shown.