remove disrupt to removed, 3 status (Normal / Affected / Removed) + size_stat
This commit is contained in:
parent
fe58a2cf9a
commit
baf60ffd76
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -79,8 +79,8 @@ class ControllerDB:
|
|||
for product_code in row.index[row == 1].to_list():
|
||||
dct = {code: [product_code]}
|
||||
list_dct.append(dct)
|
||||
# list_dct = [{'140': ['1.4.5.1']}]
|
||||
list_dct = [{'133': ['1.4.4.1']}]
|
||||
list_dct = [{'140': ['1.4.5.1']}]
|
||||
# list_dct = [{'133': ['1.4.4.1']}]
|
||||
# list_dct = [{'2': ['1.1.3']}]
|
||||
# list_dct = [{'135': ['1.3.2.1']}]
|
||||
# list_dct = [{'79': ['2.1.3.4']}]
|
||||
|
@ -128,7 +128,7 @@ class ControllerDB:
|
|||
dct_lst_init_disrupt_firm_prod, g_bom,
|
||||
n_max_trial, prf_size, prf_conn,
|
||||
cap_limit_prob_type, cap_limit_level,
|
||||
diff_new_conn, crit_supplier, diff_disrupt,
|
||||
diff_new_conn, crit_supplier,
|
||||
proactive_ratio, remove_t, netw_prf_n):
|
||||
e = Experiment(
|
||||
idx_scenario=idx_scenario,
|
||||
|
@ -144,7 +144,6 @@ class ControllerDB:
|
|||
cap_limit_level=cap_limit_level,
|
||||
diff_new_conn=diff_new_conn,
|
||||
crit_supplier=crit_supplier,
|
||||
diff_disrupt=diff_disrupt,
|
||||
proactive_ratio=proactive_ratio,
|
||||
remove_t=remove_t,
|
||||
netw_prf_n=netw_prf_n
|
||||
|
|
30
firm.py
30
firm.py
|
@ -11,8 +11,7 @@ class FirmAgent(ap.Agent):
|
|||
self.code = code
|
||||
self.name = name
|
||||
self.type_region = type_region
|
||||
self.ori_size = revenue_log
|
||||
self.size = revenue_log
|
||||
self.size_stat = []
|
||||
self.dct_prod_up_prod_stat = {}
|
||||
self.dct_prod_capacity = {}
|
||||
|
||||
|
@ -29,11 +28,15 @@ class FirmAgent(ap.Agent):
|
|||
self.flt_diff_new_conn = float(self.p.diff_new_conn)
|
||||
self.flt_crit_supplier = float(self.p.crit_supplier)
|
||||
|
||||
# init size_stat (self para)
|
||||
# (size, time step), ts -1 denotes initialization
|
||||
self.size_stat.append((revenue_log, -1))
|
||||
|
||||
# init dct_prod_up_prod_stat (self para)
|
||||
for prod in a_lst_product:
|
||||
self.dct_prod_up_prod_stat[prod] = {
|
||||
# (Normal / Affected / Disrupted / Removed, time step)
|
||||
'status': [('N', 0)],
|
||||
# (Normal / Affected / Removed, time step)
|
||||
'status': [('N', -1)], # ts -1 denotes initialization
|
||||
# have or have no supply
|
||||
'supply': dict.fromkeys(prod.a_predecessors(), True)
|
||||
}
|
||||
|
@ -45,7 +48,7 @@ class FirmAgent(ap.Agent):
|
|||
"cap_limit_prob_type other than uniform, normal"
|
||||
if self.str_cap_limit_prob_type == 'uniform':
|
||||
extra_cap_mean = \
|
||||
self.size / self.flt_cap_limit_level
|
||||
self.size_stat[0][0] / self.flt_cap_limit_level
|
||||
extra_cap = self.model.nprandom.integers(extra_cap_mean-2,
|
||||
extra_cap_mean+2)
|
||||
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
|
||||
|
@ -53,7 +56,7 @@ class FirmAgent(ap.Agent):
|
|||
self.dct_prod_capacity[product] = extra_cap
|
||||
elif self.str_cap_limit_prob_type == 'normal':
|
||||
extra_cap_mean = \
|
||||
self.size / self.flt_cap_limit_level
|
||||
self.size_stat[0][0] / self.flt_cap_limit_level
|
||||
extra_cap = self.model.nprandom.normal(extra_cap_mean, 1)
|
||||
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
|
||||
# print(firm_agent.name, extra_cap)
|
||||
|
@ -133,7 +136,7 @@ class FirmAgent(ap.Agent):
|
|||
lst_size = \
|
||||
[size for size in
|
||||
self.dct_cand_alt_supp_up_prod_disrupted[
|
||||
product].size]
|
||||
product].size_stat[-1][0]]
|
||||
lst_prob = [size / sum(lst_size)
|
||||
for size in lst_size]
|
||||
select_alt_supply = self.model.nprandom.choice(
|
||||
|
@ -146,7 +149,8 @@ class FirmAgent(ap.Agent):
|
|||
# select based on size of connected firm or not
|
||||
if self.is_prf_size:
|
||||
lst_firm_size = \
|
||||
[firm.size for firm in lst_firm_connect]
|
||||
[firm.size_stat[-1][0]
|
||||
for firm in lst_firm_connect]
|
||||
lst_prob = \
|
||||
[size / sum(lst_firm_size)
|
||||
for size in lst_firm_size]
|
||||
|
@ -215,7 +219,7 @@ class FirmAgent(ap.Agent):
|
|||
# handling based on size or not
|
||||
if self.is_prf_size:
|
||||
lst_firm_size = \
|
||||
[firm.size for firm in lst_firm]
|
||||
[firm.size_stat[-1][0] for firm in lst_firm]
|
||||
lst_prob = \
|
||||
[size / sum(lst_firm_size)
|
||||
for size in lst_firm_size]
|
||||
|
@ -230,7 +234,8 @@ class FirmAgent(ap.Agent):
|
|||
# handling based on size of connected firm or not
|
||||
if self.is_prf_size:
|
||||
lst_firm_size = \
|
||||
[firm.size for firm in lst_firm_connect]
|
||||
[firm.size_stat[-1][0]
|
||||
for firm in lst_firm_connect]
|
||||
lst_prob = \
|
||||
[size / sum(lst_firm_size)
|
||||
for size in lst_firm_size]
|
||||
|
@ -273,6 +278,11 @@ class FirmAgent(ap.Agent):
|
|||
else:
|
||||
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
|
||||
|
||||
print(
|
||||
f"{self.name} denied {product.code} request "
|
||||
f"from {down_firm.name}"
|
||||
)
|
||||
|
||||
def clean_before_trial(self):
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
||||
|
|
67
model.py
67
model.py
|
@ -22,7 +22,6 @@ class Model(ap.Model):
|
|||
# external variable
|
||||
self.int_n_max_trial = int(self.p.n_max_trial)
|
||||
self.is_prf_size = bool(self.p.prf_size)
|
||||
self.flt_diff_disrupt = float(self.p.diff_disrupt)
|
||||
self.proactive_ratio = float(self.p.proactive_ratio)
|
||||
self.remove_t = int(self.p.remove_t)
|
||||
self.int_netw_prf_n = int(self.p.netw_prf_n)
|
||||
|
@ -227,7 +226,8 @@ class Model(ap.Model):
|
|||
assert product in firm.dct_prod_up_prod_stat.keys(), \
|
||||
f"product {product.code} not in firm {firm.code}"
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['status'].append(('D', self.t))
|
||||
product]['status'].append(('A', self.t))
|
||||
print(f"initial removal {firm.name} {product.code}")
|
||||
|
||||
# proactive strategy
|
||||
# get all the firm prod affected
|
||||
|
@ -297,7 +297,7 @@ class Model(ap.Model):
|
|||
for path in lst_shortest_path]) \
|
||||
/ len(lst_shortest_path)
|
||||
drs = n2n_betweenness / \
|
||||
(len(lst_cand) * di_supp_firm.size)
|
||||
(len(lst_cand) * di_supp_firm.size_stat[-1][0])
|
||||
dct_drs[di_supp_code] = drs
|
||||
dct_drs = dict(sorted(
|
||||
dct_drs.items(), key=lambda kv: kv[1], reverse=True))
|
||||
|
@ -341,23 +341,25 @@ class Model(ap.Model):
|
|||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
|
||||
if status == 'D':
|
||||
firm.size -= \
|
||||
firm.ori_size \
|
||||
if status == 'A':
|
||||
size = firm.size_stat[-1][0] - \
|
||||
firm.size_stat[0][0] \
|
||||
/ len(firm.dct_prod_up_prod_stat.keys()) \
|
||||
/ self.remove_t
|
||||
print(self.t, firm.name, prod.code, firm.size)
|
||||
firm.size_stat.append((size, self.t))
|
||||
print(f'in ts {self.t}, reduce {firm.name} size '
|
||||
f'to {firm.size_stat[-1][0]} due to {prod.code}')
|
||||
if self.t - ts + 1 == self.remove_t:
|
||||
# turn disrupted firm into removed firm
|
||||
firm.dct_prod_up_prod_stat[
|
||||
prod]['status'].append(('R', self.t))
|
||||
|
||||
# stop simulation if all firm returned to normal except inital removal
|
||||
# stop simulation if any firm still in affected except inital removal
|
||||
if self.t > 0:
|
||||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
|
||||
if status == 'D' and ts != 0:
|
||||
if status == 'A' and ts != 0:
|
||||
print("not stop because", firm.name, prod.code)
|
||||
break
|
||||
else:
|
||||
|
@ -374,7 +376,7 @@ class Model(ap.Model):
|
|||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
|
||||
if status == 'D' and ts == self.t-1:
|
||||
if status == 'A' and ts == self.t-1:
|
||||
firm.remove_edge_to_cus_affect_cus_up_prod(prod)
|
||||
|
||||
for n_trial in range(self.int_n_max_trial):
|
||||
|
@ -387,7 +389,7 @@ class Model(ap.Model):
|
|||
lst_seek_prod = []
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
status = firm.dct_prod_up_prod_stat[prod]['status'][-1][0]
|
||||
if status != 'N':
|
||||
if status == 'A':
|
||||
for supply in firm.dct_prod_up_prod_stat[
|
||||
prod]['supply'].keys():
|
||||
if not firm.dct_prod_up_prod_stat[
|
||||
|
@ -414,49 +416,6 @@ class Model(ap.Model):
|
|||
# do not use:
|
||||
# self.a_lst_total_firms.dct_request_prod_from_firm = {} why?
|
||||
|
||||
# turn affected firm into disrupted firm conditionally
|
||||
for firm in self.a_lst_total_firms:
|
||||
for product in firm.dct_prod_up_prod_stat.keys():
|
||||
status = firm.dct_prod_up_prod_stat[product]['status'][-1][0]
|
||||
if status == 'A':
|
||||
print(firm.name, 'affected product:', product.code)
|
||||
n_up_product_lost = \
|
||||
sum([not stat for stat in
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['supply'].values()])
|
||||
if n_up_product_lost == 0:
|
||||
continue
|
||||
else:
|
||||
lost_percent = n_up_product_lost / len(
|
||||
product.a_predecessors())
|
||||
# firm (affected) + other firm (same product, normal)
|
||||
lst_firm = [firm]
|
||||
lst_firm += \
|
||||
[firm for firm
|
||||
in self.a_lst_total_firms
|
||||
if firm.is_prod_in_current_normal(product)]
|
||||
lst_size = [firm.size for firm in lst_firm]
|
||||
std_size = (firm.size - min(lst_size) +
|
||||
1) / (max(lst_size) - min(lst_size) + 1)
|
||||
prob_disrupt = 1 - std_size * (1 - lost_percent)
|
||||
# damp prob
|
||||
prob_disrupt = prob_disrupt ** self.flt_diff_disrupt
|
||||
# sample prob
|
||||
prob_disrupt = self.nprandom.uniform(
|
||||
prob_disrupt - 0.1, prob_disrupt + 0.1)
|
||||
prob_disrupt = 1 if prob_disrupt > 1 else prob_disrupt
|
||||
prob_disrupt = 0 if prob_disrupt < 0 else prob_disrupt
|
||||
if self.nprandom.choice([True, False],
|
||||
p=[prob_disrupt,
|
||||
1 - prob_disrupt]):
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['status'].append(('D', self.t))
|
||||
print(firm.name, 'disrupted product:',
|
||||
product.code)
|
||||
else:
|
||||
firm.dct_prod_up_prod_stat[
|
||||
product]['status'].append(('N', self.t))
|
||||
|
||||
def end(self):
|
||||
print('/' * 20, 'output', '/' * 20)
|
||||
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11
|
||||
0,0,0,0,0,0,0,0,0,0,0
|
||||
X1,X2,X3,X4,X5,X6,X7,X8,X9,X10
|
||||
0,0,0,0,0,0,0,0,0,0
|
||||
|
|
|
1
orm.py
1
orm.py
|
@ -61,7 +61,6 @@ class Experiment(Base):
|
|||
cap_limit_level = Column(DECIMAL(8, 4), nullable=False)
|
||||
diff_new_conn = Column(DECIMAL(8, 4), nullable=False)
|
||||
crit_supplier = Column(DECIMAL(8, 4), nullable=False)
|
||||
diff_disrupt = Column(DECIMAL(8, 4), nullable=False)
|
||||
proactive_ratio = Column(DECIMAL(8, 4), nullable=False)
|
||||
remove_t = Column(Integer, nullable=False)
|
||||
netw_prf_n = Column(Integer, nullable=False)
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_disrupt,proactive_ratio,remove_t,netw_prf_n
|
||||
10,TRUE,TRUE,uniform,10,0.5,0.1,0.01,1,5,2
|
||||
n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,proactive_ratio,remove_t,netw_prf_n
|
||||
10,TRUE,TRUE,uniform,10,0.1,0.1,1,5,2
|
||||
|
|
|
Loading…
Reference in New Issue