add comments
This commit is contained in:
parent
1d66d8bb4e
commit
b84ab810d0
28
firm.py
28
firm.py
|
@ -6,7 +6,7 @@ class FirmAgent(ap.Agent):
|
|||
self.firm_network = self.model.firm_network
|
||||
self.product_network = self.model.product_network
|
||||
|
||||
# self para
|
||||
# self parameter
|
||||
self.code = code
|
||||
self.name = name
|
||||
self.type_region = type_region
|
||||
|
@ -14,7 +14,7 @@ class FirmAgent(ap.Agent):
|
|||
self.dct_prod_up_prod_stat = {}
|
||||
self.dct_prod_capacity = {}
|
||||
|
||||
# para in trial
|
||||
# parameter in trial
|
||||
self.dct_n_trial_up_prod_disrupted = {}
|
||||
self.dct_cand_alt_supp_up_prod_disrupted = {}
|
||||
self.dct_request_prod_from_firm = {}
|
||||
|
@ -26,14 +26,14 @@ class FirmAgent(ap.Agent):
|
|||
self.flt_cap_limit_level = float(self.p.cap_limit_level)
|
||||
self.flt_diff_new_conn = float(self.p.diff_new_conn)
|
||||
|
||||
# init size_stat (self para)
|
||||
# initialize size_stat (self parameter)
|
||||
# (size, time step)
|
||||
self.size_stat.append((revenue_log, 0))
|
||||
|
||||
# init dct_prod_up_prod_stat (self para)
|
||||
# init dct_prod_up_prod_stat (self parameter)
|
||||
for prod in a_lst_product:
|
||||
self.dct_prod_up_prod_stat[prod] = {
|
||||
# (Normal / Disrupted / Removed, time step)
|
||||
# status: (Normal / Disrupted / Removed, time step)
|
||||
'p_stat': [('N', 0)],
|
||||
# supply for each component and respective disrupted supplier
|
||||
# set_disrupt_firm is refreshed to empty at each update
|
||||
|
@ -43,9 +43,9 @@ class FirmAgent(ap.Agent):
|
|||
# Note: do not use fromkeys as it's a shallow copy
|
||||
}
|
||||
|
||||
# init extra capacity (self para)
|
||||
# initialize extra capacity (self parameter)
|
||||
for product in a_lst_product:
|
||||
# init extra capacity based on discrete uniform distribution
|
||||
# initialize extra capacity based on discrete uniform distribution
|
||||
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
|
||||
"cap_limit_prob_type other than uniform, normal"
|
||||
if self.str_cap_limit_prob_type == 'uniform':
|
||||
|
@ -63,7 +63,7 @@ class FirmAgent(ap.Agent):
|
|||
self.dct_prod_capacity[product] = extra_cap
|
||||
|
||||
def remove_edge_to_cus(self, disrupted_prod):
|
||||
# para disrupted_prod is the product that self got disrupted
|
||||
# parameter disrupted_prod is the product that self got disrupted
|
||||
lst_out_edge = list(
|
||||
self.firm_network.graph.out_edges(
|
||||
self.firm_network.positions[self], keys=True, data='Product'))
|
||||
|
@ -84,8 +84,8 @@ class FirmAgent(ap.Agent):
|
|||
self.firm_network.graph.remove_edge(n1, n2, key)
|
||||
|
||||
def disrupt_cus_prod(self, prod, disrupted_up_prod):
|
||||
# para prod is the product that has disrupted_up_prod
|
||||
# para disrupted_up_prod is the product that
|
||||
# parameter prod is the product that has disrupted_up_prod
|
||||
# parameter disrupted_up_prod is the product that
|
||||
# self's component exists disrupted supplier
|
||||
num_lost = \
|
||||
len(self.dct_prod_up_prod_stat[prod]['s_stat']
|
||||
|
@ -101,6 +101,8 @@ class FirmAgent(ap.Agent):
|
|||
[firm.size_stat[-1][0] for firm in self.model.a_lst_total_firms]
|
||||
std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \
|
||||
/ (max(lst_size) - min(lst_size) + 1)
|
||||
|
||||
# calculate probability of disruption
|
||||
prob_disrupt = 1 - std_size * (1 - lost_percent)
|
||||
if self.model.nprandom.choice([True, False],
|
||||
p=[prob_disrupt,
|
||||
|
@ -117,7 +119,7 @@ class FirmAgent(ap.Agent):
|
|||
# f"disrupted supplier of {disrupted_up_prod.code}")
|
||||
|
||||
def seek_alt_supply(self, product):
|
||||
# para product is the product that self is seeking
|
||||
# parameter product is the product that self is seeking
|
||||
# print(f"{self.name} seek alt supply for {product.code}")
|
||||
if self.dct_n_trial_up_prod_disrupted[
|
||||
product] <= self.model.int_n_max_trial:
|
||||
|
@ -258,8 +260,8 @@ class FirmAgent(ap.Agent):
|
|||
# )
|
||||
|
||||
def accept_request(self, down_firm, product):
|
||||
# para product is the product that self is selling
|
||||
# connected firm has no probability
|
||||
# parameter product is the product that self is selling
|
||||
# connected firm has no probability for accepting request
|
||||
node_self = self.get_firm_network_node()
|
||||
node_d_firm = down_firm.get_firm_network_node()
|
||||
if self.model.firm_network.graph.has_edge(node_self, node_d_firm) or \
|
||||
|
|
29
model.py
29
model.py
|
@ -10,7 +10,7 @@ import json
|
|||
|
||||
class Model(ap.Model):
|
||||
def setup(self):
|
||||
# self para
|
||||
# self parameter
|
||||
self.sample = self.p.sample
|
||||
self.int_stop_ts = 0
|
||||
self.int_n_iter = int(self.p.n_iter)
|
||||
|
@ -27,11 +27,11 @@ class Model(ap.Model):
|
|||
self.remove_t = int(self.p.remove_t)
|
||||
self.int_netw_prf_n = int(self.p.netw_prf_n)
|
||||
|
||||
# init graph bom
|
||||
# initialize graph bom
|
||||
G_bom = nx.adjacency_graph(json.loads(self.p.g_bom))
|
||||
self.product_network = ap.Network(self, G_bom)
|
||||
|
||||
# init graph firm
|
||||
# initialize graph firm
|
||||
Firm = pd.read_csv("Firm_amended.csv")
|
||||
Firm['Code'] = Firm['Code'].astype('string')
|
||||
Firm.fillna(0, inplace=True)
|
||||
|
@ -49,7 +49,7 @@ class Model(ap.Model):
|
|||
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
|
||||
nx.set_node_attributes(G_Firm, firm_labels_dict)
|
||||
|
||||
# init graph firm prod
|
||||
# initialize graph firm prod
|
||||
Firm_Prod = pd.read_csv("Firm_amended.csv")
|
||||
Firm_Prod.fillna(0, inplace=True)
|
||||
firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()})
|
||||
|
@ -122,11 +122,12 @@ class Model(ap.Model):
|
|||
# nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm.csv')
|
||||
# nx.to_pandas_adjacency(G_FirmProd).to_csv('adj_g_firm_prod.csv')
|
||||
|
||||
# unconnected node
|
||||
# connect unconnected nodes
|
||||
for node in nx.nodes(G_Firm):
|
||||
if G_Firm.degree(node) == 0:
|
||||
for product_code in G_Firm.nodes[node]['Product_Code']:
|
||||
# unconnect node does not have possible suppliers
|
||||
# unconnected node does not have possible suppliers,
|
||||
# therefore find possible customer instead
|
||||
# current node in graph firm prod
|
||||
current_node = \
|
||||
[n for n, v in G_FirmProd.nodes(data=True)
|
||||
|
@ -135,10 +136,10 @@ class Model(ap.Model):
|
|||
|
||||
lst_succ_product_code = list(
|
||||
G_bom.successors(product_code))
|
||||
# different from for different types of product,
|
||||
# different from: for different types of product,
|
||||
# finding a common supplier (the logic above),
|
||||
# for different types of product,
|
||||
# finding a custormer for each product
|
||||
# instead: for different types of product,
|
||||
# finding a customer for each product
|
||||
for succ_product_code in lst_succ_product_code:
|
||||
# for each product successor (finished product)
|
||||
# the firm sells to,
|
||||
|
@ -187,14 +188,14 @@ class Model(ap.Model):
|
|||
# nx.draw(G_FirmProd)
|
||||
# plt.show()
|
||||
|
||||
# init product
|
||||
# initialize product
|
||||
for ag_node, attr in self.product_network.graph.nodes(data=True):
|
||||
product = ProductAgent(self, code=ag_node.label, name=attr['Name'])
|
||||
self.product_network.add_agents([product], [ag_node])
|
||||
self.a_lst_total_products = ap.AgentList(self,
|
||||
self.product_network.agents)
|
||||
|
||||
# init firm
|
||||
# initialize firm
|
||||
for ag_node, attr in self.firm_network.graph.nodes(data=True):
|
||||
firm_agent = FirmAgent(
|
||||
self,
|
||||
|
@ -210,7 +211,7 @@ class Model(ap.Model):
|
|||
self.firm_network.add_agents([firm_agent], [ag_node])
|
||||
self.a_lst_total_firms = ap.AgentList(self, self.firm_network.agents)
|
||||
|
||||
# init dct_lst_init_disrupt_firm_prod (from string to agent)
|
||||
# initialize dct_lst_init_disrupt_firm_prod (from string to agent)
|
||||
t_dct = {}
|
||||
for firm_code, lst_product in \
|
||||
self.dct_lst_init_disrupt_firm_prod.items():
|
||||
|
@ -368,7 +369,7 @@ class Model(ap.Model):
|
|||
firm.dct_prod_up_prod_stat[
|
||||
prod]['p_stat'].append(('R', self.t))
|
||||
|
||||
# stop simulation if any firm still in disrupted except inital removal
|
||||
# stop simulation if any firm still in disrupted except initial removal
|
||||
if self.t > 0:
|
||||
for firm in self.a_lst_total_firms:
|
||||
for prod in firm.dct_prod_up_prod_stat.keys():
|
||||
|
@ -443,8 +444,6 @@ class Model(ap.Model):
|
|||
|
||||
# reset dct_request_prod_from_firm
|
||||
self.a_lst_total_firms.clean_before_trial()
|
||||
# do not use:
|
||||
# self.a_lst_total_firms.dct_request_prod_from_firm = {} why?
|
||||
|
||||
def end(self):
|
||||
# print('/' * 20, 'output', '/' * 20)
|
||||
|
|
|
@ -9,6 +9,7 @@ class ProductAgent(ap.Agent):
|
|||
self.name = name
|
||||
|
||||
def a_successors(self):
|
||||
# find successors of a product, return in AgentList (ProductAgent)
|
||||
nodes = self.product_network.graph.successors(
|
||||
self.product_network.positions[self])
|
||||
return ap.AgentList(
|
||||
|
@ -16,6 +17,7 @@ class ProductAgent(ap.Agent):
|
|||
[ap.AgentIter(self.model, node).to_list()[0] for node in nodes])
|
||||
|
||||
def a_predecessors(self):
|
||||
# find predecessors of a product, return in AgentList (ProductAgent)
|
||||
nodes = self.product_network.graph.predecessors(
|
||||
self.product_network.positions[self])
|
||||
return ap.AgentList(
|
||||
|
|
Loading…
Reference in New Issue