diff --git a/.vscode/launch.json b/.vscode/launch.json
index e582557..87ed9da 100644
--- a/.vscode/launch.json
+++ b/.vscode/launch.json
@@ -12,9 +12,9 @@
"console": "integratedTerminal",
"justMyCode": true,
"args": [
- "--exp", "test",
+ "--exp", "with_exp",
"--reset_db", "True",
- "--job", "1"
+ "--job", "24"
]
}
]
diff --git a/SQL_analysis_experiment.sql b/SQL_analysis_experiment.sql
new file mode 100644
index 0000000..7894992
--- /dev/null
+++ b/SQL_analysis_experiment.sql
@@ -0,0 +1,85 @@
+select distinct experiment.idx_scenario,
+n_max_trial, prf_size, prf_conn, cap_limit_prob_type, cap_limit_level, diff_new_conn, remove_t, netw_prf_n,
+mean_count_firm_prod, mean_count_firm, mean_count_prod,
+mean_max_ts_firm_prod, mean_max_ts_firm, mean_max_ts_prod,
+mean_n_remove_firm_prod, mean_n_all_prod_remove_firm, mean_end_ts
+from iiabmdb.with_exp_experiment as experiment
+left join
+(
+select
+idx_scenario,
+sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL
+sum(count_firm) / count(*) as mean_count_firm,
+sum(count_prod) / count(*) as mean_count_prod,
+sum(max_ts_firm_prod) / count(*) as mean_max_ts_firm_prod,
+sum(max_ts_firm) / count(*) as mean_max_ts_firm,
+sum(max_ts_prod) / count(*) as mean_max_ts_prod,
+sum(n_remove_firm_prod) / count(*) as mean_n_remove_firm_prod,
+sum(n_all_prod_remove_firm) / count(*) as mean_n_all_prod_remove_firm,
+sum(end_ts) / count(*) as mean_end_ts
+from (
+select sample.id, idx_scenario,
+count_firm_prod, count_firm, count_prod,
+max_ts_firm_prod, max_ts_firm, max_ts_prod,
+n_remove_firm_prod, n_all_prod_remove_firm, end_ts
+from iiabmdb.with_exp_sample as sample
+# 1 2 3 + 9
+left join iiabmdb.with_exp_experiment as experiment
+on sample.e_id = experiment.id
+left join (select s_id,
+count(distinct id_firm, id_product) as count_firm_prod,
+count(distinct id_firm) as count_firm,
+count(distinct id_product) as count_prod,
+max(ts) as end_ts
+from iiabmdb.with_exp_result group by s_id) as s_count
+on sample.id = s_count.s_id
+# 4
+left join # firm prod
+(select s_id, max(ts) as max_ts_firm_prod from
+(select s_id, id_firm, id_product, min(ts) as ts
+from iiabmdb.with_exp_result
+where `status` = "D"
+group by s_id, id_firm, id_product) as ts
+group by s_id) as s_max_ts_firm_prod
+on sample.id = s_max_ts_firm_prod.s_id
+# 5
+left join # firm
+(select s_id, max(ts) as max_ts_firm from
+(select s_id, id_firm, min(ts) as ts
+from iiabmdb.with_exp_result
+where `status` = "D"
+group by s_id, id_firm) as ts
+group by s_id) as s_max_ts_firm
+on sample.id = s_max_ts_firm.s_id
+# 6
+left join # prod
+(select s_id, max(ts) as max_ts_prod from
+(select s_id, id_product, min(ts) as ts
+from iiabmdb.with_exp_result
+where `status` = "D"
+group by s_id, id_product) as ts
+group by s_id) as s_max_ts_prod
+on sample.id = s_max_ts_prod.s_id
+# 7
+left join
+(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod
+from iiabmdb.with_exp_result
+where `status` = "R"
+group by s_id) as s_n_remove_firm_prod
+on sample.id = s_n_remove_firm_prod.s_id
+# 8
+left join
+(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from
+(select s_id, id_firm, count(distinct id_product) as n_remove_prod
+from iiabmdb.with_exp_result
+where `status` = "R"
+group by s_id, id_firm) as s_n_remove_prod
+left join iiabmdb_basic_info.firm_n_prod as firm_n_prod
+on s_n_remove_prod.id_firm = firm_n_prod.code
+where n_remove_prod = n_prod
+group by s_id) as s_n_all_prod_remove_firm
+on sample.id = s_n_all_prod_remove_firm.s_id
+) as secnario_count
+group by idx_scenario
+) as secnario_mean
+on experiment.idx_scenario = secnario_mean.idx_scenario;
\ No newline at end of file
diff --git a/SQL_analysis_experiment_test.sql b/SQL_analysis_experiment_test.sql
new file mode 100644
index 0000000..8099a32
--- /dev/null
+++ b/SQL_analysis_experiment_test.sql
@@ -0,0 +1,94 @@
+select * from iiabmdb.with_exp_result limit 0, 20;
+select count(distinct s_id) from iiabmdb.with_exp_result;
+select count(*) from iiabmdb.with_exp_sample;
+
+select distinct s_id, id_firm, id_product from iiabmdb.with_exp_result order by s_id, id_firm, id_product;
+
+select distinct s_id, count(distinct id_firm, id_product) as count_firm_prod from iiabmdb.with_exp_result group by s_id;
+
+select distinct s_id, count(distinct id_firm, id_product) as count_firm_prod
+from iiabmdb.with_exp_result group by s_id;
+
+select distinct s_id,
+count(distinct id_firm, id_product) as count_firm_prod,
+count(distinct id_firm) as count_firm,
+count(distinct id_product) as count_prod
+from iiabmdb.with_exp_result group by s_id;
+
+# 控制问题需要处理,否则最后 experiment avg出来的东西不对
+# 1 2 3
+select
+idx_scenario,
+sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL
+sum(count_firm) / count(*) as mean_count_firm,
+sum(count_prod) / count(*) as mean_count_prod
+from (
+select sample.id, idx_scenario, count_firm_prod, count_firm, count_prod
+from iiabmdb.with_exp_sample as sample
+left join iiabmdb.with_exp_experiment as experiment
+on sample.e_id = experiment.id
+left join (select s_id,
+count(distinct id_firm, id_product) as count_firm_prod,
+count(distinct id_firm) as count_firm,
+count(distinct id_product) as count_prod
+from iiabmdb.with_exp_result group by s_id) as s_count
+on sample.id = s_count.s_id) as secnario_count
+group by idx_scenario;
+
+# 4 5 6
+select sample.id, idx_scenario, max_ts_firm_prod, max_ts_firm, max_ts_prod
+from iiabmdb.with_exp_sample as sample
+left join iiabmdb.with_exp_experiment as experiment
+on sample.e_id = experiment.id
+left join # firm prod
+(select s_id, max(ts) as max_ts_firm_prod from
+(select s_id, id_firm, id_product, min(ts) as ts
+from iiabmdb.with_exp_result
+where `status` = "D"
+group by s_id, id_firm, id_product) as ts
+group by s_id) as s_max_ts_firm_prod
+on sample.id = s_max_ts_firm_prod.s_id
+left join # firm
+(select s_id, max(ts) as max_ts_firm from
+(select s_id, id_firm, min(ts) as ts
+from iiabmdb.with_exp_result
+where `status` = "D"
+group by s_id, id_firm) as ts
+group by s_id) as s_max_ts_firm
+on sample.id = s_max_ts_firm.s_id
+left join # prod
+(select s_id, max(ts) as max_ts_prod from
+(select s_id, id_product, min(ts) as ts
+from iiabmdb.with_exp_result
+where `status` = "D"
+group by s_id, id_product) as ts
+group by s_id) as s_max_ts_prod
+on sample.id = s_max_ts_prod.s_id;
+
+# 7 8 9
+select sample.id, idx_scenario, n_remove_firm_prod, n_all_prod_remove_firm, end_ts
+from iiabmdb.with_exp_sample as sample
+left join iiabmdb.with_exp_experiment as experiment
+on sample.e_id = experiment.id
+left join
+(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod
+from iiabmdb.with_exp_result
+where `status` = "R"
+group by s_id) as s_n_remove_firm_prod
+on sample.id = s_n_remove_firm_prod.s_id
+left join
+(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from
+(select s_id, id_firm, count(distinct id_product) as n_remove_prod
+from iiabmdb.with_exp_result
+where `status` = "R"
+group by s_id, id_firm) as s_n_remove_prod
+left join iiabmdb_basic_info.firm_n_prod as firm_n_prod
+on s_n_remove_prod.id_firm = firm_n_prod.code
+where n_remove_prod = n_prod
+group by s_id) as s_n_all_prod_remove_firm
+on sample.id = s_n_all_prod_remove_firm.s_id
+left join
+(select s_id, max(ts) as end_ts
+from iiabmdb.with_exp_result
+group by s_id) as s_end_ts
+on sample.id = s_end_ts.s_id;
\ No newline at end of file
diff --git a/SQL_analysis_risk.sql b/SQL_analysis_risk.sql
new file mode 100644
index 0000000..621186e
--- /dev/null
+++ b/SQL_analysis_risk.sql
@@ -0,0 +1,12 @@
+select * from
+(select s_id, id_firm, id_product, min(ts) as ts from iiabmdb.without_exp_result
+where `status` = 'D'
+group by s_id, id_firm, id_product) as s_disrupt
+where s_id in
+(select s_id from
+(select s_id, id_firm, id_product, min(ts) as ts from iiabmdb.without_exp_result
+where `status` = 'D'
+group by s_id, id_firm, id_product) as t
+group by s_id
+having count(*) > 1)
+order by s_id;
\ No newline at end of file
diff --git a/SQL_export_high_risk_setting.sql b/SQL_export_high_risk_setting.sql
index abf784a..cfa3a17 100644
--- a/SQL_export_high_risk_setting.sql
+++ b/SQL_export_high_risk_setting.sql
@@ -1,19 +1,15 @@
-select count(*) from iiabmdb.without_exp_sample;
-
-select distinct s_id from iiabmdb.without_exp_result where ts > 0;
-select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id order by max_ts;
-select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a
-inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b
-on a.id = b.s_id
+select e_id, n_disrupt_sample, total_n_disrupt_firm_prod_experiment, dct_lst_init_disrupt_firm_prod from iiabmdb.without_exp_experiment as experiment
+inner join (
+select e_id, count(id) as n_disrupt_sample, sum(n_disrupt_firm_prod_sample) as total_n_disrupt_firm_prod_experiment from iiabmdb.without_exp_sample as sample
+inner join (
+select * from
+(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb.without_exp_result group by s_id
+) as count_disrupt_firm_prod_sample
+where n_disrupt_firm_prod_sample > 1
+) as disrupt_sample
+on sample.id = disrupt_sample.s_id
group by e_id
-order by count desc;
-
-select e_id, count, max_max_ts, dct_lst_init_remove_firm_prod from iiabmdb.without_exp_experiment as a
-inner join
-(select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a
-inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b
-on a.id = b.s_id
-group by e_id) as b
-on a.id = b.e_id
-where count > 10
-order by count desc;
+) as disrupt_experiment
+on experiment.id = disrupt_experiment.e_id
+order by n_disrupt_sample desc, total_n_disrupt_firm_prod_experiment desc
+limit 0, 95;
\ No newline at end of file
diff --git a/SQL_find_high_risk_setting.sql b/SQL_find_high_risk_setting.sql
new file mode 100644
index 0000000..21e7d21
--- /dev/null
+++ b/SQL_find_high_risk_setting.sql
@@ -0,0 +1,44 @@
+select max(ts_done) from iiabmdb.without_exp_sample;
+select min(ts_done) from iiabmdb.without_exp_sample;
+select count(*) from iiabmdb.without_exp_sample;
+
+select distinct s_id from iiabmdb.without_exp_result where ts > 0;
+select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id order by max_ts;
+select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a
+inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b
+on a.id = b.s_id
+group by e_id
+order by count desc;
+
+select e_id, count, max_max_ts, dct_lst_init_remove_firm_prod from iiabmdb.without_exp_experiment as a
+inner join
+(select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a
+inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b
+on a.id = b.s_id
+group by e_id) as b
+on a.id = b.e_id
+where count > 10
+order by count desc;
+
+select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id;
+select * from iiabmdb.without_exp_result order by s_id limit 0,50;
+select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod from iiabmdb.without_exp_result group by s_id;
+select * from
+(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb.without_exp_result group by s_id) as count_disrupt_firm_prod_sample
+where n_disrupt_firm_prod_sample > 1;
+
+select e_id, n_disrupt_sample, total_n_disrupt_firm_prod_experiment, dct_lst_init_disrupt_firm_prod from iiabmdb.without_exp_experiment as experiment
+inner join (
+select e_id, count(id) as n_disrupt_sample, sum(n_disrupt_firm_prod_sample) as total_n_disrupt_firm_prod_experiment from iiabmdb.without_exp_sample as sample
+inner join (
+select * from
+(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb.without_exp_result group by s_id
+) as count_disrupt_firm_prod_sample
+where n_disrupt_firm_prod_sample > 1
+) as disrupt_sample
+on sample.id = disrupt_sample.s_id
+group by e_id
+) as disrupt_experiment
+on experiment.id = disrupt_experiment.e_id
+order by n_disrupt_sample desc, total_n_disrupt_firm_prod_experiment desc
+limit 0, 95; # 20% of 475 experiment
\ No newline at end of file
diff --git a/SQL_migrate_db.sql b/SQL_migrate_db.sql
index 57fe3c6..0d1cc6e 100644
--- a/SQL_migrate_db.sql
+++ b/SQL_migrate_db.sql
@@ -1,7 +1,13 @@
-CREATE DATABASE iiabmdb_dissertation;
-RENAME TABLE iiabmdb.not_test_experiment TO iiabmdb_dissertation.not_test_experiment,
-iiabmdb.not_test_result TO iiabmdb_dissertation.not_test_result,
-iiabmdb.not_test_sample TO iiabmdb_dissertation.not_test_sample,
-iiabmdb.test_experiment TO iiabmdb_dissertation.test_experiment,
-iiabmdb.test_result TO iiabmdb_dissertation.test_result,
-iiabmdb.test_sample TO iiabmdb_dissertation.test_sample;
\ No newline at end of file
+CREATE DATABASE iiabmdb20230818;
+RENAME TABLE iiabmdb.not_test_experiment TO iiabmdb20230818.not_test_experiment,
+iiabmdb.not_test_result TO iiabmdb20230818.not_test_result,
+iiabmdb.not_test_sample TO iiabmdb20230818.not_test_sample,
+iiabmdb.test_experiment TO iiabmdb20230818.test_experiment,
+iiabmdb.test_result TO iiabmdb20230818.test_result,
+iiabmdb.test_sample TO iiabmdb20230818.test_sample;
+RENAME TABLE iiabmdb.with_exp_experiment TO iiabmdb20230818.with_exp_experiment,
+iiabmdb.with_exp_result TO iiabmdb20230818.with_exp_result,
+iiabmdb.with_exp_sample TO iiabmdb20230818.with_exp_sample,
+iiabmdb.without_exp_experiment TO iiabmdb20230818.without_exp_experiment,
+iiabmdb.without_exp_result TO iiabmdb20230818.without_exp_result,
+iiabmdb.without_exp_sample TO iiabmdb20230818.without_exp_sample;
\ No newline at end of file
diff --git a/__pycache__/controller_db.cpython-38.pyc b/__pycache__/controller_db.cpython-38.pyc
index d75a0e9..fc15b58 100644
Binary files a/__pycache__/controller_db.cpython-38.pyc and b/__pycache__/controller_db.cpython-38.pyc differ
diff --git a/__pycache__/firm.cpython-38.pyc b/__pycache__/firm.cpython-38.pyc
index f35eab2..5fc7d84 100644
Binary files a/__pycache__/firm.cpython-38.pyc and b/__pycache__/firm.cpython-38.pyc differ
diff --git a/__pycache__/model.cpython-38.pyc b/__pycache__/model.cpython-38.pyc
index b7c8463..d206e5a 100644
Binary files a/__pycache__/model.cpython-38.pyc and b/__pycache__/model.cpython-38.pyc differ
diff --git a/__pycache__/orm.cpython-38.pyc b/__pycache__/orm.cpython-38.pyc
index 03a1404..318ee56 100644
Binary files a/__pycache__/orm.cpython-38.pyc and b/__pycache__/orm.cpython-38.pyc differ
diff --git a/analysis/20230818anova.mpx b/analysis/20230818anova.mpx
new file mode 100644
index 0000000..2122333
Binary files /dev/null and b/analysis/20230818anova.mpx differ
diff --git a/analysis/20230818anova_l36.mpx b/analysis/20230818anova_l36.mpx
new file mode 100644
index 0000000..11f5f35
Binary files /dev/null and b/analysis/20230818anova_l36.mpx differ
diff --git a/analysis/20230818anova_l36.mpx.bak b/analysis/20230818anova_l36.mpx.bak
new file mode 100644
index 0000000..11f5f35
Binary files /dev/null and b/analysis/20230818anova_l36.mpx.bak differ
diff --git a/analysis/20230818anova_l36_clean.mpx b/analysis/20230818anova_l36_clean.mpx
new file mode 100644
index 0000000..960a6d2
Binary files /dev/null and b/analysis/20230818anova_l36_clean.mpx differ
diff --git a/analysis/20230818anova_visualization.csv b/analysis/20230818anova_visualization.csv
new file mode 100644
index 0000000..ebae0aa
--- /dev/null
+++ b/analysis/20230818anova_visualization.csv
@@ -0,0 +1,22 @@
+自变量,level,系统恢复用时R1,产业-企业边累计扰乱次数R2,产业-企业边最大传导深度R3,产业-企业边断裂总数R4
+采购策略P1,三供应商,2.144,2.826,1.156,0.7541
+采购策略P1,双供应商,2.146,2.65,1.133,0.7615
+采购策略P1,单供应商,2.261,2.519,1.121,0.7919
+是否规模偏好P2,倾向,2.196,2.661,1.137,0.7657
+是否规模偏好P2,不倾向,2.171,2.669,1.137,0.7726
+最大尝试次数P3,高,2.141,2.652,1.13,0.739
+最大尝试次数P3,中,2.124,2.652,1.127,0.7431
+最大尝试次数P3,低,2.286,2.691,1.154,0.8254
+是否已有连接偏好P4,倾向,2.191,2.663,1.133,0.7579
+是否已有连接偏好P4,不倾向,2.177,2.668,1.141,0.7804
+额外产能分布P5,均匀分布,2.316,2.681,1.158,0.8403
+额外产能分布P5,正态分布,2.052,2.65,1.115,0.698
+额外产能分布参数P6,高,1.914,2.624,1.098,0.6299
+额外产能分布参数P6,中,2.202,2.666,1.142,0.7655
+额外产能分布参数P6,低,2.436,2.705,1.171,0.9121
+新供应关系构成概率P7,低,2.24,2.672,1.143,0.764
+新供应关系构成概率P7,中,2.132,2.674,1.143,0.7859
+新供应关系构成概率P7,高,2.179,2.649,1.124,0.7575
+最大尝试时间步P8,低,1.726,2.646,1.123,0.7782
+最大尝试时间步P8,中,2.186,2.682,1.144,0.7599
+最大尝试时间步P8,高,2.64,2.667,1.143,0.7694
diff --git a/analysis/20230818experiment_result.csv b/analysis/20230818experiment_result.csv
new file mode 100644
index 0000000..15d7480
--- /dev/null
+++ b/analysis/20230818experiment_result.csv
@@ -0,0 +1,37 @@
+idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts
+0,7,1,1,uniform,5.0000,0.3000,3,3,2.7598,2.7598,2.1107,1.1107,1.1107,1.1107,0.6027,0.2120,1.5501
+1,5,1,1,uniform,10.0000,0.5000,5,2,2.6596,2.6566,2.1535,1.1535,1.1535,1.1535,0.8261,0.2897,2.2541
+2,3,1,1,uniform,15.0000,0.7000,7,1,2.5573,2.5528,2.1501,1.1501,1.1501,1.1501,0.9518,0.3141,3.1143
+3,7,1,1,uniform,5.0000,0.3000,3,2,2.5783,2.5783,2.0834,1.0834,1.0834,1.0834,0.6046,0.2135,1.5524
+4,5,1,1,uniform,10.0000,0.5000,5,1,2.5453,2.5423,2.1400,1.1400,1.1400,1.1400,0.8240,0.2836,2.3499
+5,3,1,1,uniform,15.0000,0.7000,7,3,2.9137,2.9097,2.2402,1.2402,1.2402,1.2402,1.0712,0.3611,3.2996
+6,7,1,1,normal,5.0000,0.5000,7,3,2.7848,2.7848,2.1185,1.1185,1.1185,1.1185,0.6004,0.2107,2.1802
+7,5,1,1,normal,10.0000,0.7000,3,2,2.6091,2.6088,2.1046,1.1046,1.1046,1.1046,0.6552,0.2284,1.5981
+8,3,1,1,normal,15.0000,0.3000,5,1,2.5823,2.5783,2.1762,1.1762,1.1762,1.1762,0.8678,0.3120,2.5343
+9,7,1,0,uniform,5.0000,0.7000,5,3,2.7691,2.7691,2.1124,1.1124,1.1124,1.1124,0.6025,0.2118,1.8684
+10,5,1,0,uniform,10.0000,0.3000,7,2,2.6766,2.6731,2.1655,1.1655,1.1655,1.1655,0.8362,0.2966,2.8036
+11,3,1,0,uniform,15.0000,0.5000,3,1,2.5941,2.5893,2.1825,1.1825,1.1825,1.1825,1.0888,0.3741,2.0465
+12,7,1,0,normal,10.0000,0.7000,3,1,2.4720,2.4718,2.0773,1.0773,1.0773,1.0773,0.6884,0.2366,1.6459
+13,5,1,0,normal,15.0000,0.3000,5,3,2.8442,2.8432,2.1760,1.1760,1.1760,1.1760,0.8109,0.2829,2.2358
+14,3,1,0,normal,5.0000,0.5000,7,2,2.6057,2.6057,2.0962,1.0962,1.0962,1.0962,0.6008,0.2107,2.1912
+15,7,1,0,normal,10.0000,0.7000,5,3,2.7996,2.7996,2.1341,1.1341,1.1341,1.1341,0.6543,0.2293,1.9642
+16,5,1,0,normal,15.0000,0.3000,7,2,2.6585,2.6575,2.1436,1.1436,1.1436,1.1436,0.7589,0.2680,2.6227
+17,3,1,0,normal,5.0000,0.5000,3,1,2.4956,2.4947,2.0983,1.0983,1.0983,1.0983,0.7387,0.2604,1.7211
+18,7,0,1,normal,10.0000,0.3000,7,1,2.5093,2.5072,2.1162,1.1162,1.1162,1.1162,0.6743,0.2309,2.6040
+19,5,0,1,normal,15.0000,0.5000,3,3,2.8149,2.8137,2.1324,1.1324,1.1324,1.1324,0.7996,0.2737,1.7251
+20,3,0,1,normal,5.0000,0.7000,5,2,2.6480,2.6480,2.0899,1.0899,1.0899,1.0899,0.6000,0.2105,1.8632
+21,7,0,1,normal,10.0000,0.5000,7,1,2.4686,2.4684,2.0800,1.0800,1.0800,1.0800,0.6415,0.2192,2.3998
+22,5,0,1,normal,15.0000,0.7000,3,3,2.8133,2.8120,2.1316,1.1316,1.1316,1.1316,0.7968,0.2722,1.7206
+23,3,0,1,normal,5.0000,0.3000,5,2,2.6480,2.6480,2.0899,1.0899,1.0899,1.0899,0.6000,0.2105,1.8632
+24,7,0,1,uniform,15.0000,0.5000,3,2,2.6798,2.6745,2.1838,1.1838,1.1838,1.1838,1.0057,0.3528,1.9152
+25,5,0,1,uniform,5.0000,0.7000,5,1,2.4497,2.4491,2.0638,1.0638,1.0638,1.0638,0.6088,0.2131,1.9509
+26,3,0,1,uniform,10.0000,0.3000,7,3,2.9055,2.9040,2.2318,1.2318,1.2318,1.2318,0.9118,0.3242,2.9552
+27,7,0,0,normal,15.0000,0.5000,5,2,2.7160,2.7156,2.1539,1.1539,1.1539,1.1539,0.7907,0.2747,2.2006
+28,5,0,0,normal,5.0000,0.7000,7,1,2.4379,2.4377,2.0512,1.0512,1.0512,1.0512,0.6013,0.2109,2.2356
+29,3,0,0,normal,10.0000,0.3000,3,3,2.7853,2.7851,2.1053,1.1053,1.1053,1.1053,0.6840,0.2392,1.6286
+30,7,0,0,uniform,15.0000,0.7000,7,2,2.6798,2.6756,2.1821,1.1821,1.1821,1.1821,0.9777,0.3358,3.0720
+31,5,0,0,uniform,5.0000,0.3000,3,1,2.5038,2.5011,2.1131,1.1131,1.1131,1.1131,0.7916,0.2853,1.7922
+32,3,0,0,uniform,10.0000,0.5000,5,3,2.9141,2.9126,2.2385,1.2385,1.2385,1.2385,0.9076,0.3204,2.4032
+33,7,0,0,uniform,15.0000,0.3000,5,1,2.6078,2.6002,2.2034,1.2034,1.2034,1.2034,1.0257,0.3629,2.7425
+34,5,0,0,uniform,5.0000,0.5000,7,3,2.8112,2.8112,2.1438,1.1438,1.1438,1.1438,0.6072,0.2149,2.2006
+35,3,0,0,uniform,10.0000,0.7000,3,2,2.6438,2.6417,2.1543,1.1543,1.1543,1.1543,0.8821,0.3116,1.8120
diff --git a/analysis/anova.csv b/analysis/anova.csv
new file mode 100644
index 0000000..9771bc9
--- /dev/null
+++ b/analysis/anova.csv
@@ -0,0 +1,11 @@
+,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts
+prf_size,0.004,0.004,0.004,0.004,0.004,0.004,0.973,0.953,0.018
+prf_conn,0.884,0.884,0.841,0.841,0.841,0.841,0.821,0.888,0.63
+cap_limit_prob_type,0.708,0.723,0.517,0.517,0.517,0.517,0.002,0.001,0.002
+n_max_trial,0.611,0.613,0.724,0.724,0.724,0.724,0.898,0.869,0.796
+cap_limit_level,0.243,0.254,0.118,0.118,0.118,0.118,0,0,0
+diff_new_conn,0.216,0.229,0.058,0.058,0.058,0.058,0.002,0.002,0
+crit_supplier,0,0,0,0,0,0,0,0,0
+proactive_ratio,0.66,0.651,0.572,0.572,0.572,0.572,0.258,0.399,0.367
+remove_t,0.464,0.465,0.546,0.546,0.546,0.546,0.026,0.186,0
+netw_prf_n,0,0,0,0,0,0,0.019,0.069,0.003
diff --git a/analysis/anova.mpx.bak b/analysis/anova.mpx.bak
new file mode 100644
index 0000000..2122333
Binary files /dev/null and b/analysis/anova.mpx.bak differ
diff --git a/analysis/anova.xlsx b/analysis/anova.xlsx
new file mode 100644
index 0000000..55eb306
Binary files /dev/null and b/analysis/anova.xlsx differ
diff --git a/analysis/anova_l36.mpx b/analysis/anova_l36.mpx
new file mode 100644
index 0000000..e2c076e
Binary files /dev/null and b/analysis/anova_l36.mpx differ
diff --git a/analysis/anova_l36.mpx.bak b/analysis/anova_l36.mpx.bak
new file mode 100644
index 0000000..11f5f35
Binary files /dev/null and b/analysis/anova_l36.mpx.bak differ
diff --git a/analysis/anova_l36_clean.mpx.bak b/analysis/anova_l36_clean.mpx.bak
new file mode 100644
index 0000000..960a6d2
Binary files /dev/null and b/analysis/anova_l36_clean.mpx.bak differ
diff --git a/analysis/anova_p_value.png b/analysis/anova_p_value.png
new file mode 100644
index 0000000..7e940e8
Binary files /dev/null and b/analysis/anova_p_value.png differ
diff --git a/analysis/count.csv b/analysis/count.csv
index 9b72392..7ed69c7 100644
--- a/analysis/count.csv
+++ b/analysis/count.csv
@@ -1,3539 +1,31922 @@
-s_id,id_firm,id_product,ts,is_disrupted,is_removed
-8257,49,1.3.1.4,0,1,1.0
-8257,100,1.3.1,1,1,
-1369,13,2.1.3.3,0,1,1.0
-1369,106,2.1.3,1,1,1.0
-21519,149,2.1.2.4,0,1,1.0
-21519,58,2.1.2,1,1,
-15317,99,2.1,0,1,1.0
-15317,102,2,1,1,
-3165,22,2.1.3.3,0,1,1.0
-3165,148,2.1.3,1,1,
-5733,36,1.1.1,0,1,1.0
-5733,94,1.1,1,1,
-19407,135,2.1.3.5,0,1,1.0
-19407,148,2.1.3,1,1,
-13052,79,2.1.3.7,0,1,1.0
-13052,106,2.1.3,1,1,
-5599,33,2.1.2.4,0,1,1.0
-5599,79,2.1.2,1,1,1.0
-11157,62,2.1.2.4,0,1,1.0
-11157,159,2.1.2,1,1,
-22232,157,1.4.1,0,1,1.0
-22232,126,1.4,1,1,
-9164,53,1.4.3.6,0,1,1.0
-9164,142,1.4.3,1,1,1.0
-9164,126,1.4,2,1,1.0
-9164,170,1,3,1,1.0
-1515,13,2.1.3.6,0,1,1.0
-1515,74,2.1.3,1,1,
-8906,53,1.4.2.3,0,1,1.0
-8906,142,1.4.2,1,1,1.0
-8906,126,1.4,2,1,
-17853,126,1.4,0,1,1.0
-17853,170,1,1,1,
-21799,153,1.3.1.4,0,1,1.0
-21799,39,1.3.1,1,1,1.0
-4105,23,1.4.2.7,0,1,1.0
-4105,142,1.4.2,1,1,1.0
-4105,126,1.4,2,1,1.0
-4105,170,1,3,1,1.0
-265,3,1.3.1.6,0,1,1.0
-265,39,1.3.1,1,1,1.0
-4133,23,1.4.2.7,0,1,1.0
-4133,142,1.4.2,1,1,
-9153,53,1.4.3.6,0,1,1.0
-9153,142,1.4.3,1,1,
-19557,135,2.2,0,1,1.0
-19557,102,2,1,1,
-15307,99,2.1,0,1,1.0
-15307,102,2,1,1,
-23269,167,1.1.1,0,1,1.0
-23269,106,1.1,1,1,
-10688,60,2.1.1.1,0,1,1.0
-10688,148,2.1.1,1,1,1.0
-7749,47,2.1.1.1,0,1,1.0
-7749,148,2.1.1,1,1,1.0
-20568,142,1.4.3,0,1,1.0
-20568,126,1.4,1,1,
-15624,103,1.1.1,0,1,1.0
-15624,86,1.1,1,1,
-20531,142,1.4.2,0,1,1.0
-20531,126,1.4,1,1,1.0
-20531,170,1,2,1,1.0
-3208,22,2.1.3.4,0,1,1.0
-3208,148,2.1.3,1,1,
-8937,53,1.4.2.3,0,1,1.0
-8937,142,1.4.2,1,1,1.0
-8937,126,1.4,2,1,
-17870,126,1.4,0,1,1.0
-17870,170,1,1,1,
-13057,79,2.1.3.7,0,1,1.0
-13057,148,2.1.3,1,1,
-20567,142,1.4.3,0,1,1.0
-20567,126,1.4,1,1,
-13692,82,2.1.2.1,0,1,1.0
-13692,79,2.1.2,1,1,1.0
-19120,135,1.3.2.1,0,1,1.0
-19120,58,1.3.2,1,1,1.0
-3737,22,2.3.1,0,1,1.0
-3737,95,2.3,1,1,1.0
-9977,56,1.1.1,0,1,1.0
-9977,86,1.1,1,1,1.0
-10708,60,2.1.1.2,0,1,1.0
-10708,106,2.1.1,1,1,
-18799,131,2.1.1.4,0,1,1.0
-18799,80,2.1.1,1,1,1.0
-11345,63,1.4.4.5,0,1,1.0
-11345,0,1.4.4,1,1,1.0
-22248,157,1.4.1,0,1,1.0
-22248,126,1.4,1,1,
-10857,60,2.1.1.5,0,1,1.0
-10857,80,2.1.1,1,1,
-12657,79,1.3.1.6,0,1,1.0
-12657,85,1.3.1,1,1,
-3299,22,2.1.3.5,0,1,1.0
-3299,108,2.1.3,1,1,1.0
-12831,79,2.1.3.2,0,1,1.0
-12831,97,2.1.3,1,1,
-4135,23,1.4.2.7,0,1,1.0
-4135,142,1.4.2,1,1,
-15346,99,2.1,0,1,1.0
-15346,102,2,1,1,
-15346,98,2,1,1,1.0
-6890,41,1.4.5,0,1,1.0
-6890,126,1.4,1,1,
-18573,130,1.3.5,0,1,1.0
-18573,106,1.3,1,1,
-12769,79,2.1.3.1,0,1,1.0
-12769,74,2.1.3,1,1,1.0
-18594,130,1.3.5,0,1,1.0
-18594,106,1.3,1,1,
-18594,29,1.3,1,1,
-9470,53,1.4.5.8,0,1,1.0
-9470,41,1.4.5,1,1,
-15483,101,1.1.1,0,1,1.0
-15483,86,1.1,1,1,
-1462,13,2.1.3.5,0,1,1.0
-1462,74,2.1.3,1,1,
-1272,13,2.1.3.1,0,1,1.0
-1272,74,2.1.3,1,1,
-13807,82,2.1.2.4,0,1,1.0
-13807,58,2.1.2,1,1,
-22549,161,2.3.3,0,1,1.0
-22549,95,2.3,1,1,1.0
-13307,79,2.3.3,0,1,1.0
-13307,155,2.3,1,1,
-20549,142,1.4.2,0,1,1.0
-20549,126,1.4,1,1,
-3738,22,2.3.1,0,1,1.0
-3738,155,2.3,1,1,1.0
-17349,118,1.3.3.6,0,1,1.0
-17349,75,1.3.3,1,1,1.0
-21549,149,2.1.2.4,0,1,1.0
-21549,79,2.1.2,1,1,1.0
-10257,58,1.2.2,0,1,1.0
-10257,106,1.2,1,1,
-9455,53,1.4.5.8,0,1,1.0
-9455,41,1.4.5,1,1,1.0
-9455,126,1.4,2,1,1.0
-9455,170,1,3,1,1.0
-17876,126,1.4,0,1,1.0
-17876,170,1,1,1,1.0
-19140,135,1.3.2.1,0,1,1.0
-19140,130,1.3.2,1,1,1.0
-19140,58,1.3.2,1,1,1.0
-19140,106,1.3,2,1,1.0
-19140,29,1.3,2,1,1.0
-19140,170,1,3,1,1.0
-4116,23,1.4.2.7,0,1,1.0
-4116,142,1.4.2,1,1,1.0
-4116,126,1.4,2,1,
-9484,53,1.4.5.8,0,1,1.0
-9484,41,1.4.5,1,1,
-22230,157,1.4.1,0,1,1.0
-22230,126,1.4,1,1,
-17602,124,1.2.1,0,1,1.0
-17602,106,1.2,1,1,
-6107,38,2.1.1.2,0,1,1.0
-6107,148,2.1.1,1,1,
-11707,69,1.1.1,0,1,1.0
-11707,126,1.1,1,1,
-8905,53,1.4.2.3,0,1,1.0
-8905,142,1.4.2,1,1,1.0
-8905,126,1.4,2,1,1.0
-8905,170,1,3,1,1.0
-299,3,1.3.1.6,0,1,1.0
-299,99,1.3.1,1,1,1.0
-1486,13,2.1.3.5,0,1,1.0
-1486,126,2.1.3,1,1,
-2099,14,1.3.3.4,0,1,1.0
-2099,75,1.3.3,1,1,1.0
-9172,53,1.4.3.6,0,1,1.0
-9172,142,1.4.3,1,1,
-20204,140,1.4.5.1,0,1,1.0
-20204,41,1.4.5,1,1,1.0
-20204,126,1.4,2,1,
-12507,78,2.1.1.5,0,1,1.0
-12507,106,2.1.1,1,1,
-6883,41,1.4.5,0,1,1.0
-6883,126,1.4,1,1,
-8499,49,2.1.2.2,0,1,1.0
-8499,84,2.1.2,1,1,1.0
-4799,26,2.1.3.7,0,1,1.0
-4799,74,2.1.3,1,1,1.0
-4757,26,2.1.3.7,0,1,1.0
-4757,73,2.1.3,1,1,
-1958,13,2.3.2,0,1,1.0
-1958,99,2.3,1,1,1.0
-23137,165,2.1.2.3,0,1,1.0
-23137,79,2.1.2,1,1,1.0
-107,2,1.1.3,0,1,1.0
-107,106,1.1,1,1,
-10349,58,1.3.1.6,0,1,1.0
-10349,100,1.3.1,1,1,1.0
-1352,13,2.1.3.3,0,1,1.0
-1352,148,2.1.3,1,1,1.0
-9459,53,1.4.5.8,0,1,1.0
-9459,41,1.4.5,1,1,1.0
-9459,126,1.4,2,1,
-20212,140,1.4.5.1,0,1,1.0
-20212,41,1.4.5,1,1,1.0
-20212,126,1.4,2,1,
-8242,49,1.3.1.1,0,1,1.0
-8242,100,1.3.1,1,1,1.0
-6748,41,1.4.3.2,0,1,1.0
-6748,142,1.4.3,1,1,
-22236,157,1.4.1,0,1,1.0
-22236,126,1.4,1,1,
-8944,53,1.4.2.3,0,1,1.0
-8944,142,1.4.2,1,1,
-12981,79,2.1.3.5,0,1,1.0
-12981,106,2.1.3,1,1,1.0
-9468,53,1.4.5.8,0,1,1.0
-9468,41,1.4.5,1,1,1.0
-9468,126,1.4,2,1,1.0
-9468,170,1,3,1,1.0
-6743,41,1.4.3.2,0,1,1.0
-6743,142,1.4.3,1,1,
-4599,26,2.1.3.3,0,1,1.0
-4599,126,2.1.3,1,1,1.0
-12919,79,2.1.3.4,0,1,1.0
-12919,73,2.1.3,1,1,1.0
-11192,62,2.1.2.4,0,1,1.0
-11192,58,2.1.2,1,1,1.0
-2391,16,2.3.3,0,1,1.0
-2391,126,2.3,1,1,
-19103,135,1.3.2.1,0,1,1.0
-19103,130,1.3.2,1,1,1.0
-19103,58,1.3.2,1,1,1.0
-19103,106,1.3,2,1,1.0
-21037,144,2.1.2.4,0,1,1.0
-21037,79,2.1.2,1,1,1.0
-21507,149,2.1.2.4,0,1,1.0
-21507,159,2.1.2,1,1,
-10669,60,2.1.1.1,0,1,1.0
-10669,106,2.1.1,1,1,
-2715,22,1.2.2,0,1,1.0
-2715,126,1.2,1,1,1.0
-15107,99,1.1.2,0,1,1.0
-15107,105,1.1,1,1,
-21441,149,2.1.2.2,0,1,1.0
-21441,84,2.1.2,1,1,
-17880,126,1.4,0,1,1.0
-17880,170,1,1,1,
-20599,142,1.4.3,0,1,1.0
-20599,126,1.4,1,1,
-17392,119,1.3.1.1,0,1,1.0
-17392,85,1.3.1,1,1,1.0
-21491,149,2.1.2.3,0,1,1.0
-21491,159,2.1.2,1,1,1.0
-17859,126,1.4,0,1,1.0
-17859,170,1,1,1,1.0
-6718,41,1.4.3.2,0,1,1.0
-6718,142,1.4.3,1,1,1.0
-6718,126,1.4,2,1,1.0
-6718,170,1,3,1,1.0
-15340,99,2.1,0,1,1.0
-15340,102,2,1,1,1.0
-15340,98,2,1,1,
-6879,41,1.4.5,0,1,1.0
-6879,126,1.4,1,1,
-11302,63,1.4.4.5,0,1,1.0
-11302,0,1.4.4,1,1,1.0
-20506,142,1.4.2,0,1,1.0
-20506,126,1.4,1,1,
-17852,126,1.4,0,1,1.0
-17852,170,1,1,1,1.0
-11331,63,1.4.4.5,0,1,1.0
-11331,0,1.4.4,1,1,
-11331,40,1.4.4,1,1,1.0
-807,6,2.1.2.4,0,1,1.0
-807,79,2.1.2,1,1,
-4128,23,1.4.2.7,0,1,1.0
-4128,142,1.4.2,1,1,
-15207,99,1.3.1,0,1,1.0
-15207,106,1.3,1,1,
-4139,23,1.4.2.7,0,1,1.0
-4139,142,1.4.2,1,1,
-23558,168,2.3.2,0,1,1.0
-23558,95,2.3,1,1,1.0
-18567,130,1.3.5,0,1,1.0
-18567,29,1.3,1,1,1.0
-18567,106,1.3,1,1,
-22205,157,1.4.1,0,1,1.0
-22205,126,1.4,1,1,
-10237,57,2.3.3,0,1,1.0
-10237,155,2.3,1,1,1.0
-1057,10,1.3.3.5,0,1,1.0
-1057,99,1.3.3,1,1,
-958,9,1.3.3.6,0,1,1.0
-958,97,1.3.3,1,1,
-22499,161,2.3.2,0,1,1.0
-22499,124,2.3,1,1,1.0
-20589,142,1.4.3,0,1,1.0
-20589,126,1.4,1,1,
-2599,20,1.3.1.2,0,1,1.0
-2599,100,1.3.1,1,1,1.0
-6747,41,1.4.3.2,0,1,1.0
-6747,142,1.4.3,1,1,1.0
-6747,126,1.4,2,1,1.0
-6747,170,1,3,1,
-20202,140,1.4.5.1,0,1,1.0
-20202,41,1.4.5,1,1,1.0
-20202,126,1.4,2,1,
-18857,132,1.3.3.2,0,1,1.0
-18857,97,1.3.3,1,1,
-17863,126,1.4,0,1,1.0
-17863,170,1,1,1,1.0
-17407,120,1.2.3,0,1,1.0
-17407,67,1.2,1,1,
-3007,22,2.1.1.5,0,1,1.0
-3007,80,2.1.1,1,1,
-17607,124,1.2.1,0,1,1.0
-17607,126,1.2,1,1,
-12972,79,2.1.3.5,0,1,1.0
-12972,74,2.1.3,1,1,
-10757,60,2.1.1.3,0,1,1.0
-10757,80,2.1.1,1,1,
-21492,149,2.1.2.3,0,1,1.0
-21492,159,2.1.2,1,1,1.0
-14057,85,1.3.1,0,1,1.0
-14057,106,1.3,1,1,
-18552,130,1.3.5,0,1,1.0
-18552,106,1.3,1,1,
-1482,13,2.1.3.5,0,1,1.0
-1482,148,2.1.3,1,1,1.0
-13015,79,2.1.3.6,0,1,1.0
-13015,97,2.1.3,1,1,
-19101,135,1.3.2.1,0,1,1.0
-19101,130,1.3.2,1,1,1.0
-5657,35,1.1.3,0,1,1.0
-5657,105,1.1,1,1,
-11858,71,1.3.1.2,0,1,1.0
-11858,39,1.3.1,1,1,1.0
-20569,142,1.4.3,0,1,1.0
-20569,126,1.4,1,1,
-20545,142,1.4.2,0,1,1.0
-20545,126,1.4,1,1,
-22243,157,1.4.1,0,1,1.0
-22243,126,1.4,1,1,
-6099,38,2.1.1.1,0,1,1.0
-6099,106,2.1.1,1,1,1.0
-19144,135,1.3.2.1,0,1,1.0
-19144,130,1.3.2,1,1,1.0
-2807,22,2.1.1.1,0,1,1.0
-2807,106,2.1.1,1,1,
-8945,53,1.4.2.3,0,1,1.0
-8945,142,1.4.2,1,1,1.0
-8945,126,1.4,2,1,
-1907,13,2.3.1,0,1,1.0
-1907,124,2.3,1,1,
-13657,82,2.1.2.1,0,1,1.0
-13657,159,2.1.2,1,1,
-17565,123,1.1.2,0,1,1.0
-17565,126,1.1,1,1,1.0
-6866,41,1.4.5,0,1,1.0
-6866,126,1.4,1,1,
-18559,130,1.3.5,0,1,1.0
-18559,106,1.3,1,1,1.0
-11399,64,1.1.2,0,1,1.0
-11399,105,1.1,1,1,1.0
-7008,42,1.3.1.4,0,1,1.0
-7008,99,1.3.1,1,1,
-20565,142,1.4.3,0,1,1.0
-20565,126,1.4,1,1,
-15457,101,1.1.1,0,1,1.0
-15457,106,1.1,1,1,
-19131,135,1.3.2.1,0,1,1.0
-19131,58,1.3.2,1,1,1.0
-4557,26,2.1.3.3,0,1,1.0
-4557,126,2.1.3,1,1,
-157,3,1.3.1.4,0,1,1.0
-157,99,1.3.1,1,1,
-5699,35,1.1.3,0,1,1.0
-5699,105,1.1,1,1,1.0
-8057,47,2.1.2.4,0,1,1.0
-8057,79,2.1.2,1,1,
-13792,82,2.1.2.3,0,1,1.0
-13792,159,2.1.2,1,1,1.0
-13338,79,2.3.3,0,1,1.0
-13338,126,2.3,1,1,1.0
-7682,46,1.3.1.2,0,1,1.0
-7682,93,1.3.1,1,1,
-11092,62,2.1.2.2,0,1,1.0
-11092,159,2.1.2,1,1,1.0
-1431,13,2.1.3.4,0,1,1.0
-1431,74,2.1.3,1,1,1.0
-15314,99,2.1,0,1,1.0
-15314,98,2,1,1,1.0
-10207,57,2.3.3,0,1,1.0
-10207,99,2.3,1,1,
-2292,16,2.3.1,0,1,1.0
-2292,99,2.3,1,1,1.0
-4242,23,2.3.1,0,1,1.0
-4242,95,2.3,1,1,1.0
-6723,41,1.4.3.2,0,1,1.0
-6723,142,1.4.3,1,1,
-6704,41,1.4.3.2,0,1,1.0
-6704,142,1.4.3,1,1,1.0
-6704,126,1.4,2,1,
-15305,99,2.1,0,1,1.0
-15305,98,2,1,1,1.0
-15305,102,2,1,1,1.0
-15305,170,1,2,1,
-6299,38,2.1.1.5,0,1,1.0
-6299,148,2.1.1,1,1,1.0
-9167,53,1.4.3.6,0,1,1.0
-9167,142,1.4.3,1,1,
-23082,165,2.1.2.2,0,1,1.0
-23082,159,2.1.2,1,1,
-15325,99,2.1,0,1,1.0
-15325,98,2,1,1,1.0
-15325,102,2,1,1,
-15344,99,2.1,0,1,1.0
-15344,98,2,1,1,
-9157,53,1.4.3.6,0,1,1.0
-9157,142,1.4.3,1,1,
-23007,165,2.1.2.1,0,1,1.0
-23007,81,2.1.2,1,1,
-8299,49,1.3.1.4,0,1,1.0
-8299,99,1.3.1,1,1,1.0
-8615,50,1.3.1.5,0,1,1.0
-8615,39,1.3.1,1,1,1.0
-12817,79,2.1.3.2,0,1,1.0
-12817,108,2.1.3,1,1,1.0
-3002,22,2.1.1.5,0,1,1.0
-3002,106,2.1.1,1,1,
-18587,130,1.3.5,0,1,1.0
-18587,29,1.3,1,1,1.0
-6701,41,1.4.3.2,0,1,1.0
-6701,142,1.4.3,1,1,
-19114,135,1.3.2.1,0,1,1.0
-19114,130,1.3.2,1,1,1.0
-20534,142,1.4.2,0,1,1.0
-20534,126,1.4,1,1,
-18157,127,1.1.3,0,1,1.0
-18157,126,1.1,1,1,
-4407,25,1.3.1.7,0,1,1.0
-4407,85,1.3.1,1,1,
-7099,43,1.3.1.5,0,1,1.0
-7099,93,1.3.1,1,1,1.0
-1451,13,2.1.3.5,0,1,1.0
-1451,97,2.1.3,1,1,
-11592,68,1.3.1.1,0,1,1.0
-11592,93,1.3.1,1,1,1.0
-5399,32,1.2.3,0,1,1.0
-5399,106,1.2,1,1,1.0
-11344,63,1.4.4.5,0,1,1.0
-11344,0,1.4.4,1,1,
-11344,40,1.4.4,1,1,1.0
-15319,99,2.1,0,1,1.0
-15319,98,2,1,1,
-15319,102,2,1,1,
-9471,53,1.4.5.8,0,1,1.0
-9471,41,1.4.5,1,1,
-17894,126,1.4,0,1,1.0
-17894,170,1,1,1,1.0
-2357,16,2.3.3,0,1,1.0
-2357,126,2.3,1,1,
-6884,41,1.4.5,0,1,1.0
-6884,126,1.4,1,1,
-12851,79,2.1.3.3,0,1,1.0
-12851,126,2.1.3,1,1,
-20657,143,2.1.1.2,0,1,1.0
-20657,148,2.1.1,1,1,
-6721,41,1.4.3.2,0,1,1.0
-6721,142,1.4.3,1,1,
-20587,142,1.4.3,0,1,1.0
-20587,126,1.4,1,1,1.0
-20587,170,1,2,1,1.0
-19137,135,1.3.2.1,0,1,1.0
-19137,130,1.3.2,1,1,1.0
-19137,58,1.3.2,1,1,1.0
-19137,106,1.3,2,1,1.0
-5607,34,1.3.3.3,0,1,1.0
-5607,75,1.3.3,1,1,
-16638,115,1.1.3,0,1,1.0
-16638,86,1.1,1,1,1.0
-17878,126,1.4,0,1,1.0
-17878,170,1,1,1,1.0
-11314,63,1.4.4.5,0,1,1.0
-11314,0,1.4.4,1,1,
-11314,40,1.4.4,1,1,1.0
-20542,142,1.4.2,0,1,1.0
-20542,126,1.4,1,1,
-18589,130,1.3.5,0,1,1.0
-18589,106,1.3,1,1,
-15341,99,2.1,0,1,1.0
-15341,102,2,1,1,
-20742,143,2.1.1.3,0,1,1.0
-20742,148,2.1.1,1,1,1.0
-17871,126,1.4,0,1,1.0
-17871,170,1,1,1,
-10707,60,2.1.1.2,0,1,1.0
-10707,106,2.1.1,1,1,
-4136,23,1.4.2.7,0,1,1.0
-4136,142,1.4.2,1,1,
-20503,142,1.4.2,0,1,1.0
-20503,126,1.4,1,1,
-17856,126,1.4,0,1,1.0
-17856,170,1,1,1,1.0
-15642,103,1.1.1,0,1,1.0
-15642,106,1.1,1,1,1.0
-13707,82,2.1.2.2,0,1,1.0
-13707,81,2.1.2,1,1,
-9184,53,1.4.3.6,0,1,1.0
-9184,142,1.4.3,1,1,
-9469,53,1.4.5.8,0,1,1.0
-9469,41,1.4.5,1,1,
-15674,104,1.1.1,0,1,1.0
-15674,126,1.1,1,1,
-20525,142,1.4.2,0,1,1.0
-20525,126,1.4,1,1,
-19105,135,1.3.2.1,0,1,1.0
-19105,58,1.3.2,1,1,1.0
-3357,22,2.1.3.7,0,1,1.0
-3357,106,2.1.3,1,1,
-20570,142,1.4.3,0,1,1.0
-20570,126,1.4,1,1,
-9488,53,1.4.5.8,0,1,1.0
-9488,41,1.4.5,1,1,
-11309,63,1.4.4.5,0,1,1.0
-11309,40,1.4.4,1,1,1.0
-11309,0,1.4.4,1,1,
-13238,79,2.3.1,0,1,1.0
-13238,124,2.3,1,1,1.0
-3099,22,2.1.3.1,0,1,1.0
-3099,126,2.1.3,1,1,1.0
-4465,26,2.1.3.1,0,1,1.0
-4465,106,2.1.3,1,1,
-20516,142,1.4.2,0,1,1.0
-20516,126,1.4,1,1,
-15329,99,2.1,0,1,1.0
-15329,102,2,1,1,
-6891,41,1.4.5,0,1,1.0
-6891,126,1.4,1,1,
-999,9,1.3.3.6,0,1,1.0
-999,97,1.3.3,1,1,1.0
-10907,61,1.3.3.3,0,1,1.0
-10907,97,1.3.3,1,1,
-5388,32,1.2.3,0,1,1.0
-5388,106,1.2,1,1,1.0
-1457,13,2.1.3.5,0,1,1.0
-1457,108,2.1.3,1,1,
-4649,26,2.1.3.4,0,1,1.0
-4649,97,2.1.3,1,1,1.0
-23299,167,1.1.1,0,1,1.0
-23299,105,1.1,1,1,1.0
-3819,22,2.3.3,0,1,1.0
-3819,126,2.3,1,1,
-16407,111,1.3.4.1,0,1,1.0
-16407,81,1.3.4,1,1,
-21407,149,2.1.2.2,0,1,1.0
-21407,81,2.1.2,1,1,
-7607,45,2.1.4.2.2,0,1,1.0
-7607,79,2.1.4.2,1,1,
-8515,49,2.1.2.3,0,1,1.0
-8515,81,2.1.2,1,1,1.0
-12809,79,2.1.3.2,0,1,1.0
-12809,106,2.1.3,1,1,
-17858,126,1.4,0,1,1.0
-17858,170,1,1,1,1.0
-17862,126,1.4,0,1,1.0
-17862,170,1,1,1,1.0
-11333,63,1.4.4.5,0,1,1.0
-11333,40,1.4.4,1,1,1.0
-11333,0,1.4.4,1,1,1.0
-11333,126,1.4,2,1,
-20563,142,1.4.3,0,1,1.0
-20563,126,1.4,1,1,1.0
-20563,170,1,2,1,1.0
-20234,140,1.4.5.1,0,1,1.0
-20234,41,1.4.5,1,1,
-1344,13,2.1.3.2,0,1,1.0
-1344,148,2.1.3,1,1,1.0
-9200,53,1.4.3.6,0,1,1.0
-9200,142,1.4.3,1,1,
-18187,127,1.1.3,0,1,1.0
-18187,126,1.1,1,1,1.0
-18593,130,1.3.5,0,1,1.0
-18593,29,1.3,1,1,1.0
-18593,106,1.3,1,1,
-20227,140,1.4.5.1,0,1,1.0
-20227,41,1.4.5,1,1,
-11807,70,1.3.3.4,0,1,1.0
-11807,97,1.3.3,1,1,
-13652,82,2.1.2.1,0,1,1.0
-13652,84,2.1.2,1,1,
-17886,126,1.4,0,1,1.0
-17886,170,1,1,1,1.0
-17449,120,1.2.3,0,1,1.0
-17449,126,1.2,1,1,1.0
-12542,78,2.1.1.5,0,1,1.0
-12542,80,2.1.1,1,1,1.0
-199,3,1.3.1.4,0,1,1.0
-199,85,1.3.1,1,1,1.0
-6900,41,1.4.5,0,1,1.0
-6900,126,1.4,1,1,
-20561,142,1.4.3,0,1,1.0
-20561,126,1.4,1,1,1.0
-20561,170,1,2,1,1.0
-8369,49,1.3.3.1,0,1,1.0
-8369,99,1.3.3,1,1,
-8291,49,1.3.1.4,0,1,1.0
-8291,85,1.3.1,1,1,
-16891,117,2.1.1.3,0,1,1.0
-16891,85,2.1.1,1,1,
-9177,53,1.4.3.6,0,1,1.0
-9177,142,1.4.3,1,1,
-9462,53,1.4.5.8,0,1,1.0
-9462,41,1.4.5,1,1,1.0
-9462,126,1.4,2,1,
-11326,63,1.4.4.5,0,1,1.0
-11326,40,1.4.4,1,1,1.0
-8909,53,1.4.2.3,0,1,1.0
-8909,142,1.4.2,1,1,1.0
-8909,126,1.4,2,1,
-8917,53,1.4.2.3,0,1,1.0
-8917,142,1.4.2,1,1,
-15333,99,2.1,0,1,1.0
-15333,102,2,1,1,1.0
-15333,98,2,1,1,1.0
-15333,170,1,2,1,
-6705,41,1.4.3.2,0,1,1.0
-6705,142,1.4.3,1,1,1.0
-6705,126,1.4,2,1,1.0
-6705,170,1,3,1,1.0
-23349,168,1.1.2,0,1,1.0
-23349,86,1.1,1,1,1.0
-20593,142,1.4.3,0,1,1.0
-20593,126,1.4,1,1,
-9457,53,1.4.5.8,0,1,1.0
-9457,41,1.4.5,1,1,
-6725,41,1.4.3.2,0,1,1.0
-6725,142,1.4.3,1,1,
-4106,23,1.4.2.7,0,1,1.0
-4106,142,1.4.2,1,1,1.0
-4106,126,1.4,2,1,
-22210,157,1.4.1,0,1,1.0
-22210,126,1.4,1,1,
-1554,13,2.1.3.7,0,1,1.0
-1554,126,2.1.3,1,1,
-17900,126,1.4,0,1,1.0
-17900,170,1,1,1,1.0
-4102,23,1.4.2.7,0,1,1.0
-4102,142,1.4.2,1,1,1.0
-4102,126,1.4,2,1,
-12862,79,2.1.3.3,0,1,1.0
-12862,108,2.1.3,1,1,
-5292,31,2.1.4.2.1,0,1,1.0
-5292,79,2.1.4.2,1,1,1.0
-12967,79,2.1.3.5,0,1,1.0
-12967,97,2.1.3,1,1,
-12812,79,2.1.3.2,0,1,1.0
-12812,106,2.1.3,1,1,
-21015,144,2.1.2.4,0,1,1.0
-21015,58,2.1.2,1,1,1.0
-15335,99,2.1,0,1,1.0
-15335,98,2,1,1,1.0
-15335,102,2,1,1,1.0
-15335,170,1,2,1,1.0
-11619,68,1.3.1.2,0,1,1.0
-11619,85,1.3.1,1,1,
-19109,135,1.3.2.1,0,1,1.0
-19109,130,1.3.2,1,1,1.0
-19109,58,1.3.2,1,1,1.0
-19109,106,1.3,2,1,1.0
-13349,79,2.3.3,0,1,1.0
-13349,126,2.3,1,1,1.0
-20523,142,1.4.2,0,1,1.0
-20523,126,1.4,1,1,
-5692,35,1.1.3,0,1,1.0
-5692,86,1.1,1,1,1.0
-23641,168,2.3.3,0,1,1.0
-23641,84,2.3,1,1,
-742,6,2.1.2.2,0,1,1.0
-742,58,2.1.2,1,1,1.0
-20206,140,1.4.5.1,0,1,1.0
-20206,41,1.4.5,1,1,1.0
-20206,126,1.4,2,1,
-12332,78,2.1.1.1,0,1,1.0
-12332,85,2.1.1,1,1,
-9163,53,1.4.3.6,0,1,1.0
-9163,142,1.4.3,1,1,1.0
-9163,126,1.4,2,1,1.0
-9163,170,1,3,1,1.0
-19118,135,1.3.2.1,0,1,1.0
-19118,58,1.3.2,1,1,1.0
-11752,70,1.3.3.2,0,1,1.0
-11752,99,1.3.3,1,1,
-11857,71,1.3.1.2,0,1,1.0
-11857,100,1.3.1,1,1,
-20203,140,1.4.5.1,0,1,1.0
-20203,41,1.4.5,1,1,
-4558,26,2.1.3.3,0,1,1.0
-4558,108,2.1.3,1,1,1.0
-19141,135,1.3.2.1,0,1,1.0
-19141,130,1.3.2,1,1,1.0
-21107,146,1.3.1.1,0,1,1.0
-21107,93,1.3.1,1,1,
-20215,140,1.4.5.1,0,1,1.0
-20215,41,1.4.5,1,1,1.0
-20215,126,1.4,2,1,
-19116,135,1.3.2.1,0,1,1.0
-19116,58,1.3.2,1,1,1.0
-19116,130,1.3.2,1,1,1.0
-19116,106,1.3,2,1,1.0
-19116,29,1.3,2,1,
-13308,79,2.3.3,0,1,1.0
-13308,84,2.3,1,1,1.0
-22158,156,1.3.1.7,0,1,1.0
-22158,39,1.3.1,1,1,1.0
-18569,130,1.3.5,0,1,1.0
-18569,106,1.3,1,1,
-18569,29,1.3,1,1,
-8943,53,1.4.2.3,0,1,1.0
-8943,142,1.4.2,1,1,
-4140,23,1.4.2.7,0,1,1.0
-4140,142,1.4.2,1,1,1.0
-4140,126,1.4,2,1,
-12658,79,1.3.1.6,0,1,1.0
-12658,93,1.3.1,1,1,1.0
-8938,53,1.4.2.3,0,1,1.0
-8938,142,1.4.2,1,1,
-8915,53,1.4.2.3,0,1,1.0
-8915,142,1.4.2,1,1,1.0
-8915,126,1.4,2,1,
-14269,88,1.1.3,0,1,1.0
-14269,94,1.1,1,1,
-20507,142,1.4.2,0,1,1.0
-20507,126,1.4,1,1,
-18138,127,1.1.1,0,1,1.0
-18138,106,1.1,1,1,1.0
-19143,135,1.3.2.1,0,1,1.0
-19143,58,1.3.2,1,1,1.0
-19143,130,1.3.2,1,1,1.0
-19143,29,1.3,2,1,
-19143,106,1.3,2,1,
-9456,53,1.4.5.8,0,1,1.0
-9456,41,1.4.5,1,1,1.0
-9456,126,1.4,2,1,
-9458,53,1.4.5.8,0,1,1.0
-9458,41,1.4.5,1,1,1.0
-9458,126,1.4,2,1,
-2457,18,1.3.3.2,0,1,1.0
-2457,99,1.3.3,1,1,
-11307,63,1.4.4.5,0,1,1.0
-11307,40,1.4.4,1,1,
-11307,0,1.4.4,1,1,
-1436,13,2.1.3.4,0,1,1.0
-1436,74,2.1.3,1,1,
-20221,140,1.4.5.1,0,1,1.0
-20221,41,1.4.5,1,1,
-20501,142,1.4.2,0,1,1.0
-20501,126,1.4,1,1,
-18565,130,1.3.5,0,1,1.0
-18565,106,1.3,1,1,
-18565,29,1.3,1,1,
-20699,143,2.1.1.2,0,1,1.0
-20699,80,2.1.1,1,1,1.0
-9483,53,1.4.5.8,0,1,1.0
-9483,41,1.4.5,1,1,
-20597,142,1.4.3,0,1,1.0
-20597,126,1.4,1,1,1.0
-20597,170,1,2,1,1.0
-10191,57,2.3.2,0,1,1.0
-10191,155,2.3,1,1,1.0
-11907,72,1.3.1.2,0,1,1.0
-11907,100,1.3.1,1,1,
-3215,22,2.1.3.4,0,1,1.0
-3215,108,2.1.3,1,1,1.0
-20509,142,1.4.2,0,1,1.0
-20509,126,1.4,1,1,1.0
-20509,170,1,2,1,
-23642,168,2.3.3,0,1,1.0
-23642,126,2.3,1,1,1.0
-21115,146,1.3.1.1,0,1,1.0
-21115,85,1.3.1,1,1,
-18579,130,1.3.5,0,1,1.0
-18579,29,1.3,1,1,
-6733,41,1.4.3.2,0,1,1.0
-6733,142,1.4.3,1,1,
-22203,157,1.4.1,0,1,1.0
-22203,126,1.4,1,1,
-18555,130,1.3.5,0,1,1.0
-18555,29,1.3,1,1,
-18555,106,1.3,1,1,1.0
-12399,78,2.1.1.2,0,1,1.0
-12399,148,2.1.1,1,1,1.0
-20899,144,2.1.2.1,0,1,1.0
-20899,79,2.1.2,1,1,1.0
-1992,13,2.3.2,0,1,1.0
-1992,126,2.3,1,1,1.0
-12249,77,1.3.3.6,0,1,1.0
-12249,97,1.3.3,1,1,1.0
-14757,95,2.3,0,1,1.0
-14757,98,2,1,1,
-7592,45,2.1.4.2.1,0,1,1.0
-7592,79,2.1.4.2,1,1,1.0
-6709,41,1.4.3.2,0,1,1.0
-6709,142,1.4.3,1,1,1.0
-6709,126,1.4,2,1,
-15327,99,2.1,0,1,1.0
-15327,102,2,1,1,
-15327,98,2,1,1,
-849,6,2.1.2.4,0,1,1.0
-849,58,2.1.2,1,1,1.0
-6867,41,1.4.5,0,1,1.0
-6867,126,1.4,1,1,
-3942,23,1.3.3.1,0,1,1.0
-3942,75,1.3.3,1,1,1.0
-1399,13,2.1.3.3,0,1,1.0
-1399,74,2.1.3,1,1,
-17884,126,1.4,0,1,1.0
-17884,170,1,1,1,
-11315,63,1.4.4.5,0,1,1.0
-11315,0,1.4.4,1,1,
-11315,40,1.4.4,1,1,
-752,6,2.1.2.3,0,1,1.0
-752,81,2.1.2,1,1,
-20572,142,1.4.3,0,1,1.0
-20572,126,1.4,1,1,
-19117,135,1.3.2.1,0,1,1.0
-19117,58,1.3.2,1,1,1.0
-21563,150,1.1.1,0,1,1.0
-21563,126,1.1,1,1,1.0
-14708,95,1.2.3,0,1,1.0
-14708,67,1.2,1,1,1.0
-6715,41,1.4.3.2,0,1,1.0
-6715,142,1.4.3,1,1,1.0
-6715,126,1.4,2,1,
-7699,46,1.3.1.2,0,1,1.0
-7699,39,1.3.1,1,1,1.0
-19145,135,1.3.2.1,0,1,1.0
-19145,130,1.3.2,1,1,1.0
-19145,58,1.3.2,1,1,1.0
-19145,29,1.3,2,1,
-1555,13,2.1.3.7,0,1,1.0
-1555,74,2.1.3,1,1,
-8903,53,1.4.2.3,0,1,1.0
-8903,142,1.4.2,1,1,
-1799,13,2.1.4.1.4,0,1,1.0
-1799,79,2.1.4.1,1,1,1.0
-5057,31,2.1.4.1.1,0,1,1.0
-5057,81,2.1.4.1,1,1,
-4107,23,1.4.2.7,0,1,1.0
-4107,142,1.4.2,1,1,
-9174,53,1.4.3.6,0,1,1.0
-9174,142,1.4.3,1,1,
-6892,41,1.4.5,0,1,1.0
-6892,126,1.4,1,1,
-16315,111,1.3.1.6,0,1,1.0
-16315,99,1.3.1,1,1,
-17889,126,1.4,0,1,1.0
-17889,170,1,1,1,
-1807,13,2.1.4.2.1,0,1,1.0
-1807,81,2.1.4.2,1,1,
-8931,53,1.4.2.3,0,1,1.0
-8931,142,1.4.2,1,1,1.0
-8931,126,1.4,2,1,
-6942,42,1.3.1.1,0,1,1.0
-6942,85,1.3.1,1,1,1.0
-18578,130,1.3.5,0,1,1.0
-18578,106,1.3,1,1,
-13019,79,2.1.3.6,0,1,1.0
-13019,97,2.1.3,1,1,
-23182,165,2.1.2.4,0,1,1.0
-23182,79,2.1.2,1,1,
-17885,126,1.4,0,1,1.0
-17885,170,1,1,1,1.0
-8557,49,2.1.2.4,0,1,1.0
-8557,84,2.1.2,1,1,
-8913,53,1.4.2.3,0,1,1.0
-8913,142,1.4.2,1,1,1.0
-8913,126,1.4,2,1,1.0
-8913,170,1,3,1,1.0
-12907,79,2.1.3.4,0,1,1.0
-12907,148,2.1.3,1,1,
-20548,142,1.4.2,0,1,1.0
-20548,126,1.4,1,1,
-1594,13,2.1.3.7,0,1,1.0
-1594,106,2.1.3,1,1,1.0
-19129,135,1.3.2.1,0,1,1.0
-19129,130,1.3.2,1,1,1.0
-19129,58,1.3.2,1,1,1.0
-19129,106,1.3,2,1,
-19129,29,1.3,2,1,
-18292,129,1.1.2,0,1,1.0
-18292,94,1.1,1,1,1.0
-2057,14,1.3.3.4,0,1,1.0
-2057,75,1.3.3,1,1,
-18600,130,1.3.5,0,1,1.0
-18600,29,1.3,1,1,1.0
-18600,106,1.3,1,1,
-10299,58,1.2.2,0,1,1.0
-10299,67,1.2,1,1,1.0
-4115,23,1.4.2.7,0,1,1.0
-4115,142,1.4.2,1,1,1.0
-4115,126,1.4,2,1,
-20246,140,1.4.5.1,0,1,1.0
-20246,41,1.4.5,1,1,
-1208,13,1.2.2,0,1,1.0
-1208,126,1.2,1,1,1.0
-2392,16,2.3.3,0,1,1.0
-2392,126,2.3,1,1,1.0
-3107,22,2.1.3.2,0,1,1.0
-3107,126,2.1.3,1,1,
-2608,21,1.3.1.3,0,1,1.0
-2608,85,1.3.1,1,1,
-19128,135,1.3.2.1,0,1,1.0
-19128,58,1.3.2,1,1,1.0
-19128,130,1.3.2,1,1,1.0
-19128,29,1.3,2,1,
-13086,79,2.1.3.7,0,1,1.0
-13086,97,2.1.3,1,1,
-21591,150,1.1.1,0,1,1.0
-21591,105,1.1,1,1,
-11642,68,1.3.1.2,0,1,1.0
-11642,85,1.3.1,1,1,1.0
-11336,63,1.4.4.5,0,1,1.0
-11336,0,1.4.4,1,1,
-1581,13,2.1.3.7,0,1,1.0
-1581,108,2.1.3,1,1,
-5392,32,1.2.3,0,1,1.0
-5392,106,1.2,1,1,1.0
-6887,41,1.4.5,0,1,1.0
-6887,126,1.4,1,1,1.0
-6887,170,1,2,1,1.0
-20225,140,1.4.5.1,0,1,1.0
-20225,41,1.4.5,1,1,
-8932,53,1.4.2.3,0,1,1.0
-8932,142,1.4.2,1,1,1.0
-8932,126,1.4,2,1,
-9479,53,1.4.5.8,0,1,1.0
-9479,41,1.4.5,1,1,1.0
-9479,126,1.4,2,1,
-20595,142,1.4.3,0,1,1.0
-20595,126,1.4,1,1,
-23507,168,2.3.1,0,1,1.0
-23507,99,2.3,1,1,
-21007,144,2.1.2.4,0,1,1.0
-21007,84,2.1.2,1,1,
-23674,169,1.1.1,0,1,1.0
-23674,126,1.1,1,1,
-1562,13,2.1.3.7,0,1,1.0
-1562,108,2.1.3,1,1,
-15477,101,1.1.1,0,1,1.0
-15477,86,1.1,1,1,1.0
-14458,90,1.3.1.7,0,1,1.0
-14458,99,1.3.1,1,1,
-19127,135,1.3.2.1,0,1,1.0
-19127,58,1.3.2,1,1,1.0
-22225,157,1.4.1,0,1,1.0
-22225,126,1.4,1,1,
-22408,161,2.3.1,0,1,1.0
-22408,124,2.3,1,1,1.0
-21065,145,1.3.1.4,0,1,1.0
-21065,99,1.3.1,1,1,
-20562,142,1.4.3,0,1,1.0
-20562,126,1.4,1,1,
-23637,168,2.3.3,0,1,1.0
-23637,124,2.3,1,1,1.0
-20559,142,1.4.3,0,1,1.0
-20559,126,1.4,1,1,1.0
-20559,170,1,2,1,
-11038,62,2.1.2.1,0,1,1.0
-11038,159,2.1.2,1,1,1.0
-9452,53,1.4.5.8,0,1,1.0
-9452,41,1.4.5,1,1,1.0
-9452,126,1.4,2,1,
-6860,41,1.4.5,0,1,1.0
-6860,126,1.4,1,1,
-22214,157,1.4.1,0,1,1.0
-22214,126,1.4,1,1,1.0
-22214,170,1,2,1,1.0
-9463,53,1.4.5.8,0,1,1.0
-9463,41,1.4.5,1,1,1.0
-9463,126,1.4,2,1,1.0
-9463,170,1,3,1,1.0
-20407,141,1.3.3.2,0,1,1.0
-20407,99,1.3.3,1,1,
-20584,142,1.4.3,0,1,1.0
-20584,126,1.4,1,1,
-18688,131,2.1.1.2,0,1,1.0
-18688,106,2.1.1,1,1,1.0
-18699,131,2.1.1.2,0,1,1.0
-18699,106,2.1.1,1,1,1.0
-4150,23,1.4.2.7,0,1,1.0
-4150,142,1.4.2,1,1,
-17399,119,1.3.1.1,0,1,1.0
-17399,93,1.3.1,1,1,1.0
-18597,130,1.3.5,0,1,1.0
-18597,106,1.3,1,1,1.0
-11199,62,2.1.2.4,0,1,1.0
-11199,58,2.1.2,1,1,1.0
-14374,89,1.2.1,0,1,1.0
-14374,67,1.2,1,1,
-17869,126,1.4,0,1,1.0
-17869,170,1,1,1,
-20588,142,1.4.3,0,1,1.0
-20588,126,1.4,1,1,
-23357,168,1.3.3.1,0,1,1.0
-23357,97,1.3.3,1,1,
-19449,135,2.1.3.5,0,1,1.0
-19449,97,2.1.3,1,1,1.0
-12588,79,1.3.1.1,0,1,1.0
-12588,100,1.3.1,1,1,1.0
-12922,79,2.1.3.4,0,1,1.0
-12922,148,2.1.3,1,1,
-6707,41,1.4.3.2,0,1,1.0
-6707,142,1.4.3,1,1,
-6739,41,1.4.3.2,0,1,1.0
-6739,142,1.4.3,1,1,
-4715,26,2.1.3.6,0,1,1.0
-4715,73,2.1.3,1,1,1.0
-18202,128,1.1.2,0,1,1.0
-18202,106,1.1,1,1,
-12786,79,2.1.3.1,0,1,1.0
-12786,73,2.1.3,1,1,
-21765,153,1.3.1.4,0,1,1.0
-21765,100,1.3.1,1,1,1.0
-4132,23,1.4.2.7,0,1,1.0
-4132,142,1.4.2,1,1,1.0
-4132,126,1.4,2,1,
-11319,63,1.4.4.5,0,1,1.0
-11319,0,1.4.4,1,1,1.0
-11319,40,1.4.4,1,1,
-20992,144,2.1.2.3,0,1,1.0
-20992,79,2.1.2,1,1,1.0
-6938,42,1.3.1.1,0,1,1.0
-6938,85,1.3.1,1,1,1.0
-16349,111,1.3.1.6,0,1,1.0
-16349,85,1.3.1,1,1,1.0
-13569,81,2.1.4.1,0,1,1.0
-13569,102,2.1.4,1,1,1.0
-11069,62,2.1.2.2,0,1,1.0
-11069,58,2.1.2,1,1,
-12916,79,2.1.3.4,0,1,1.0
-12916,74,2.1.3,1,1,1.0
-6731,41,1.4.3.2,0,1,1.0
-6731,142,1.4.3,1,1,1.0
-6731,126,1.4,2,1,
-8099,47,2.1.2.4,0,1,1.0
-8099,84,2.1.2,1,1,1.0
-22228,157,1.4.1,0,1,1.0
-22228,126,1.4,1,1,
-22949,163,2.1.4.2.2,0,1,1.0
-22949,81,2.1.4.2,1,1,1.0
-18564,130,1.3.5,0,1,1.0
-18564,29,1.3,1,1,
-18564,106,1.3,1,1,1.0
-18149,127,1.1.1,0,1,1.0
-18149,106,1.1,1,1,1.0
-19102,135,1.3.2.1,0,1,1.0
-19102,130,1.3.2,1,1,1.0
-19102,58,1.3.2,1,1,1.0
-19102,106,1.3,2,1,1.0
-19102,29,1.3,2,1,
-8911,53,1.4.2.3,0,1,1.0
-8911,142,1.4.2,1,1,1.0
-8911,126,1.4,2,1,
-18133,127,1.1.1,0,1,1.0
-18133,105,1.1,1,1,
-12607,79,1.3.1.4,0,1,1.0
-12607,99,1.3.1,1,1,
-21508,149,2.1.2.4,0,1,1.0
-21508,84,2.1.2,1,1,1.0
-19158,135,1.3.4.1,0,1,1.0
-19158,81,1.3.4,1,1,1.0
-7949,47,2.1.2.1,0,1,1.0
-7949,84,2.1.2,1,1,1.0
-20577,142,1.4.3,0,1,1.0
-20577,126,1.4,1,1,
-19007,134,1.3.3.5,0,1,1.0
-19007,75,1.3.3,1,1,
-12557,79,1.3.1.1,0,1,1.0
-12557,99,1.3.1,1,1,
-20248,140,1.4.5.1,0,1,1.0
-20248,41,1.4.5,1,1,
-11303,63,1.4.4.5,0,1,1.0
-11303,40,1.4.4,1,1,
-11303,0,1.4.4,1,1,
-18557,130,1.3.5,0,1,1.0
-18557,106,1.3,1,1,
-21741,153,1.3.1.1,0,1,1.0
-21741,93,1.3.1,1,1,1.0
-11317,63,1.4.4.5,0,1,1.0
-11317,0,1.4.4,1,1,
-6703,41,1.4.3.2,0,1,1.0
-6703,142,1.4.3,1,1,
-4383,24,1.1.1,0,1,1.0
-4383,86,1.1,1,1,
-23274,167,1.1.1,0,1,1.0
-23274,126,1.1,1,1,
-7665,46,1.3.1.2,0,1,1.0
-7665,39,1.3.1,1,1,1.0
-14207,87,1.1.1,0,1,1.0
-14207,105,1.1,1,1,
-6349,39,1.3.1,0,1,1.0
-6349,106,1.3,1,1,1.0
-18576,130,1.3.5,0,1,1.0
-18576,106,1.3,1,1,1.0
-18576,29,1.3,1,1,
-2282,16,2.3.1,0,1,1.0
-2282,124,2.3,1,1,
-7669,46,1.3.1.2,0,1,1.0
-7669,100,1.3.1,1,1,
-4146,23,1.4.2.7,0,1,1.0
-4146,142,1.4.2,1,1,
-4125,23,1.4.2.7,0,1,1.0
-4125,142,1.4.2,1,1,
-19138,135,1.3.2.1,0,1,1.0
-19138,130,1.3.2,1,1,1.0
-19138,58,1.3.2,1,1,1.0
-19138,106,1.3,2,1,
-19138,29,1.3,2,1,
-16533,113,1.1.1,0,1,1.0
-16533,94,1.1,1,1,
-6871,41,1.4.5,0,1,1.0
-6871,126,1.4,1,1,
-19515,135,2.1.3.7,0,1,1.0
-19515,74,2.1.3,1,1,
-20214,140,1.4.5.1,0,1,1.0
-20214,41,1.4.5,1,1,1.0
-20214,126,1.4,2,1,1.0
-20214,170,1,3,1,1.0
-14224,87,1.1.1,0,1,1.0
-14224,86,1.1,1,1,
-14958,97,1.3.3,0,1,1.0
-14958,29,1.3,1,1,
-8007,47,2.1.2.3,0,1,1.0
-8007,81,2.1.2,1,1,
-2857,22,2.1.1.2,0,1,1.0
-2857,106,2.1.1,1,1,
-10115,57,2.3.1,0,1,1.0
-10115,99,2.3,1,1,1.0
-4111,23,1.4.2.7,0,1,1.0
-4111,142,1.4.2,1,1,1.0
-4111,126,1.4,2,1,
-6889,41,1.4.5,0,1,1.0
-6889,126,1.4,1,1,
-11599,68,1.3.1.1,0,1,1.0
-11599,99,1.3.1,1,1,1.0
-19126,135,1.3.2.1,0,1,1.0
-19126,130,1.3.2,1,1,1.0
-16432,111,1.3.4.1,0,1,1.0
-16432,77,1.3.4,1,1,
-15334,99,2.1,0,1,1.0
-15334,98,2,1,1,1.0
-15334,102,2,1,1,1.0
-15334,170,1,2,1,1.0
-11557,68,1.3.1.1,0,1,1.0
-11557,100,1.3.1,1,1,
-11058,62,2.1.2.2,0,1,1.0
-11058,58,2.1.2,1,1,1.0
-5008,31,1.3.3.3,0,1,1.0
-5008,99,1.3.3,1,1,
-7115,43,1.3.1.6,0,1,1.0
-7115,85,1.3.1,1,1,
-9189,53,1.4.3.6,0,1,1.0
-9189,142,1.4.3,1,1,
-5749,36,1.1.1,0,1,1.0
-5749,106,1.1,1,1,1.0
-5658,35,1.1.3,0,1,1.0
-5658,126,1.1,1,1,1.0
-20537,142,1.4.2,0,1,1.0
-20537,126,1.4,1,1,1.0
-20537,170,1,2,1,1.0
-20524,142,1.4.2,0,1,1.0
-20524,126,1.4,1,1,
-18562,130,1.3.5,0,1,1.0
-18562,29,1.3,1,1,
-20758,143,2.1.1.4,0,1,1.0
-20758,85,2.1.1,1,1,1.0
-9152,53,1.4.3.6,0,1,1.0
-9152,142,1.4.3,1,1,1.0
-9152,126,1.4,2,1,
-20585,142,1.4.3,0,1,1.0
-20585,126,1.4,1,1,
-7407,45,2.1.4.1.2,0,1,1.0
-7407,79,2.1.4.1,1,1,
-23519,168,2.3.1,0,1,1.0
-23519,84,2.3,1,1,
-8939,53,1.4.2.3,0,1,1.0
-8939,142,1.4.2,1,1,
-23157,165,2.1.2.4,0,1,1.0
-23157,81,2.1.2,1,1,
-6716,41,1.4.3.2,0,1,1.0
-6716,142,1.4.3,1,1,1.0
-6716,126,1.4,2,1,
-5465,33,2.1.2.2,0,1,1.0
-5465,58,2.1.2,1,1,1.0
-8926,53,1.4.2.3,0,1,1.0
-8926,142,1.4.2,1,1,1.0
-8926,126,1.4,2,1,
-13002,79,2.1.3.6,0,1,1.0
-13002,148,2.1.3,1,1,
-20515,142,1.4.2,0,1,1.0
-20515,126,1.4,1,1,
-8108,47,2.1.3.6,0,1,1.0
-8108,97,2.1.3,1,1,
-17860,126,1.4,0,1,1.0
-17860,170,1,1,1,
-8947,53,1.4.2.3,0,1,1.0
-8947,142,1.4.2,1,1,1.0
-8947,126,1.4,2,1,1.0
-8947,170,1,3,1,
-8308,49,1.3.1.6,0,1,1.0
-8308,99,1.3.1,1,1,
-2288,16,2.3.1,0,1,1.0
-2288,95,2.3,1,1,1.0
-3837,22,2.3.3,0,1,1.0
-3837,84,2.3,1,1,1.0
-15649,103,1.1.1,0,1,1.0
-15649,105,1.1,1,1,1.0
-9156,53,1.4.3.6,0,1,1.0
-9156,142,1.4.3,1,1,1.0
-9156,126,1.4,2,1,
-23407,168,1.3.3.2,0,1,1.0
-23407,75,1.3.3,1,1,
-11757,70,1.3.3.2,0,1,1.0
-11757,99,1.3.3,1,1,
-9154,53,1.4.3.6,0,1,1.0
-9154,142,1.4.3,1,1,1.0
-9154,126,1.4,2,1,
-4357,24,1.1.1,0,1,1.0
-4357,86,1.1,1,1,
-10949,61,1.3.3.3,0,1,1.0
-10949,97,1.3.3,1,1,1.0
-20535,142,1.4.2,0,1,1.0
-20535,126,1.4,1,1,
-4352,24,1.1.1,0,1,1.0
-4352,106,1.1,1,1,
-7938,47,2.1.2.1,0,1,1.0
-7938,58,2.1.2,1,1,1.0
-1157,12,1.2.1,0,1,1.0
-1157,106,1.2,1,1,
-11311,63,1.4.4.5,0,1,1.0
-11311,40,1.4.4,1,1,
-11311,0,1.4.4,1,1,
-20205,140,1.4.5.1,0,1,1.0
-20205,41,1.4.5,1,1,1.0
-20205,126,1.4,2,1,1.0
-20205,170,1,3,1,1.0
-16782,117,2.1.1.1,0,1,1.0
-16782,80,2.1.1,1,1,
-20576,142,1.4.3,0,1,1.0
-20576,126,1.4,1,1,1.0
-20576,170,1,2,1,
-3307,22,2.1.3.6,0,1,1.0
-3307,106,2.1.3,1,1,
-5707,36,1.1.1,0,1,1.0
-5707,86,1.1,1,1,
-6712,41,1.4.3.2,0,1,1.0
-6712,142,1.4.3,1,1,1.0
-6712,126,1.4,2,1,
-17657,124,2.3,0,1,1.0
-17657,98,2,1,1,
-8914,53,1.4.2.3,0,1,1.0
-8914,142,1.4.2,1,1,1.0
-8914,126,1.4,2,1,1.0
-8914,170,1,3,1,1.0
-9175,53,1.4.3.6,0,1,1.0
-9175,142,1.4.3,1,1,
-20526,142,1.4.2,0,1,1.0
-20526,126,1.4,1,1,1.0
-20526,170,1,2,1,
-9485,53,1.4.5.8,0,1,1.0
-9485,41,1.4.5,1,1,
-8910,53,1.4.2.3,0,1,1.0
-8910,142,1.4.2,1,1,
-20554,142,1.4.3,0,1,1.0
-20554,126,1.4,1,1,
-15607,103,1.1.1,0,1,1.0
-15607,126,1.1,1,1,
-11324,63,1.4.4.5,0,1,1.0
-11324,40,1.4.4,1,1,
-11340,63,1.4.4.5,0,1,1.0
-11340,0,1.4.4,1,1,1.0
-8215,49,1.3.1.1,0,1,1.0
-8215,99,1.3.1,1,1,
-15192,99,1.2.1,0,1,1.0
-15192,67,1.2,1,1,1.0
-19299,135,2.1.3.2,0,1,1.0
-19299,108,2.1.3,1,1,1.0
-23694,169,1.1.1,0,1,1.0
-23694,106,1.1,1,1,
-22223,157,1.4.1,0,1,1.0
-22223,126,1.4,1,1,
-1908,13,2.3.1,0,1,1.0
-1908,126,2.3,1,1,1.0
-11339,63,1.4.4.5,0,1,1.0
-11339,0,1.4.4,1,1,
-11339,40,1.4.4,1,1,1.0
-357,4,1.2.2,0,1,1.0
-357,106,1.2,1,1,
-20521,142,1.4.2,0,1,1.0
-20521,126,1.4,1,1,
-4207,23,2.3.1,0,1,1.0
-4207,99,2.3,1,1,
-6706,41,1.4.3.2,0,1,1.0
-6706,142,1.4.3,1,1,1.0
-6706,126,1.4,2,1,
-16307,111,1.3.1.6,0,1,1.0
-16307,99,1.3.1,1,1,
-3332,22,2.1.3.6,0,1,1.0
-3332,97,2.1.3,1,1,
-11942,72,1.3.1.2,0,1,1.0
-11942,99,1.3.1,1,1,1.0
-15343,99,2.1,0,1,1.0
-15343,102,2,1,1,
-18553,130,1.3.5,0,1,1.0
-18553,106,1.3,1,1,
-4249,23,2.3.1,0,1,1.0
-4249,95,2.3,1,1,1.0
-21057,145,1.3.1.4,0,1,1.0
-21057,100,1.3.1,1,1,
-2557,20,1.3.1.2,0,1,1.0
-2557,39,1.3.1,1,1,
-20223,140,1.4.5.1,0,1,1.0
-20223,41,1.4.5,1,1,
-5649,34,1.3.3.3,0,1,1.0
-5649,75,1.3.3,1,1,1.0
-22241,157,1.4.1,0,1,1.0
-22241,126,1.4,1,1,
-2849,22,2.1.1.1,0,1,1.0
-2849,85,2.1.1,1,1,1.0
-12836,79,2.1.3.2,0,1,1.0
-12836,148,2.1.3,1,1,
-11334,63,1.4.4.5,0,1,1.0
-11334,0,1.4.4,1,1,
-18591,130,1.3.5,0,1,1.0
-18591,29,1.3,1,1,
-3319,22,2.1.3.6,0,1,1.0
-3319,126,2.1.3,1,1,
-22208,157,1.4.1,0,1,1.0
-22208,126,1.4,1,1,1.0
-22208,170,1,2,1,1.0
-7249,45,1.3.3.1,0,1,1.0
-7249,97,1.3.3,1,1,1.0
-13059,79,2.1.3.7,0,1,1.0
-13059,97,2.1.3,1,1,
-9196,53,1.4.3.6,0,1,1.0
-9196,142,1.4.3,1,1,
-11341,63,1.4.4.5,0,1,1.0
-11341,0,1.4.4,1,1,
-6873,41,1.4.5,0,1,1.0
-6873,126,1.4,1,1,
-12407,78,2.1.1.3,0,1,1.0
-12407,80,2.1.1,1,1,
-17891,126,1.4,0,1,1.0
-17891,170,1,1,1,
-2215,16,1.1.3,0,1,1.0
-2215,106,1.1,1,1,1.0
-10219,57,2.3.3,0,1,1.0
-10219,99,2.3,1,1,
-14557,92,1.3.3.4,0,1,1.0
-14557,97,1.3.3,1,1,
-5558,33,2.1.2.4,0,1,1.0
-5558,58,2.1.2,1,1,1.0
-3399,22,2.1.3.7,0,1,1.0
-3399,74,2.1.3,1,1,1.0
-17868,126,1.4,0,1,1.0
-17868,170,1,1,1,1.0
-19791,137,2.1.4.1.3,0,1,1.0
-19791,79,2.1.4.1,1,1,1.0
-15304,99,2.1,0,1,1.0
-15304,98,2,1,1,1.0
-16732,116,1.3.1.7,0,1,1.0
-16732,100,1.3.1,1,1,
-6877,41,1.4.5,0,1,1.0
-6877,126,1.4,1,1,
-20213,140,1.4.5.1,0,1,1.0
-20213,41,1.4.5,1,1,1.0
-20213,126,1.4,2,1,1.0
-20213,170,1,3,1,1.0
-7757,47,2.1.1.2,0,1,1.0
-7757,80,2.1.1,1,1,
-11607,68,1.3.1.2,0,1,1.0
-11607,85,1.3.1,1,1,
-19113,135,1.3.2.1,0,1,1.0
-19113,58,1.3.2,1,1,1.0
-18560,130,1.3.5,0,1,1.0
-18560,106,1.3,1,1,
-18560,29,1.3,1,1,1.0
-16949,117,2.1.1.4,0,1,1.0
-16949,148,2.1.1,1,1,1.0
-6915,42,1.3.1.1,0,1,1.0
-6915,39,1.3.1,1,1,1.0
-13049,79,2.1.3.6,0,1,1.0
-13049,108,2.1.3,1,1,1.0
-22231,157,1.4.1,0,1,1.0
-22231,126,1.4,1,1,1.0
-22231,170,1,2,1,1.0
-8920,53,1.4.2.3,0,1,1.0
-8920,142,1.4.2,1,1,
-665,6,2.1.2.1,0,1,1.0
-665,84,2.1.2,1,1,1.0
-11349,63,1.4.4.5,0,1,1.0
-11349,40,1.4.4,1,1,
-9186,53,1.4.3.6,0,1,1.0
-9186,142,1.4.3,1,1,1.0
-9186,126,1.4,2,1,
-11392,64,1.1.2,0,1,1.0
-11392,126,1.1,1,1,1.0
-3365,22,2.1.3.7,0,1,1.0
-3365,106,2.1.3,1,1,
-20518,142,1.4.2,0,1,1.0
-20518,126,1.4,1,1,
-20578,142,1.4.3,0,1,1.0
-20578,126,1.4,1,1,
-15328,99,2.1,0,1,1.0
-15328,98,2,1,1,
-15328,102,2,1,1,
-9487,53,1.4.5.8,0,1,1.0
-9487,41,1.4.5,1,1,1.0
-9487,126,1.4,2,1,
-11328,63,1.4.4.5,0,1,1.0
-11328,0,1.4.4,1,1,
-11328,40,1.4.4,1,1,
-22542,161,2.3.3,0,1,1.0
-22542,155,2.3,1,1,1.0
-11305,63,1.4.4.5,0,1,1.0
-11305,40,1.4.4,1,1,1.0
-11305,0,1.4.4,1,1,1.0
-11305,126,1.4,2,1,
-19532,135,2.1.3.7,0,1,1.0
-19532,97,2.1.3,1,1,
-4112,23,1.4.2.7,0,1,1.0
-4112,142,1.4.2,1,1,1.0
-4112,126,1.4,2,1,
-20530,142,1.4.2,0,1,1.0
-20530,126,1.4,1,1,
-20208,140,1.4.5.1,0,1,1.0
-20208,41,1.4.5,1,1,1.0
-20208,126,1.4,2,1,
-3157,22,2.1.3.3,0,1,1.0
-3157,106,2.1.3,1,1,
-16715,116,1.3.1.7,0,1,1.0
-16715,39,1.3.1,1,1,1.0
-8142,47,2.1.3.6,0,1,1.0
-8142,108,2.1.3,1,1,1.0
-20209,140,1.4.5.1,0,1,1.0
-20209,41,1.4.5,1,1,1.0
-20209,126,1.4,2,1,
-13282,79,2.3.2,0,1,1.0
-13282,99,2.3,1,1,
-1319,13,2.1.3.2,0,1,1.0
-1319,73,2.1.3,1,1,1.0
-10232,57,2.3.3,0,1,1.0
-10232,155,2.3,1,1,
-9166,53,1.4.3.6,0,1,1.0
-9166,142,1.4.3,1,1,1.0
-9166,126,1.4,2,1,
-12502,78,2.1.1.5,0,1,1.0
-12502,80,2.1.1,1,1,
-20514,142,1.4.2,0,1,1.0
-20514,126,1.4,1,1,1.0
-20514,170,1,2,1,1.0
-658,6,2.1.2.1,0,1,1.0
-658,159,2.1.2,1,1,1.0
-8119,47,2.1.3.6,0,1,1.0
-8119,148,2.1.3,1,1,
-2299,16,2.3.1,0,1,1.0
-2299,84,2.3,1,1,1.0
-13337,79,2.3.3,0,1,1.0
-13337,126,2.3,1,1,1.0
-13337,102,2,2,1,
-16542,113,1.1.1,0,1,1.0
-16542,126,1.1,1,1,1.0
-12807,79,2.1.3.2,0,1,1.0
-12807,106,2.1.3,1,1,
-20201,140,1.4.5.1,0,1,1.0
-20201,41,1.4.5,1,1,
-4134,23,1.4.2.7,0,1,1.0
-4134,142,1.4.2,1,1,
-6897,41,1.4.5,0,1,1.0
-6897,126,1.4,1,1,1.0
-6897,170,1,2,1,1.0
-1254,13,2.1.3.1,0,1,1.0
-1254,97,2.1.3,1,1,
-23192,165,2.1.2.4,0,1,1.0
-23192,159,2.1.2,1,1,1.0
-17893,126,1.4,0,1,1.0
-17893,170,1,1,1,
-3932,23,1.3.3.1,0,1,1.0
-3932,99,1.3.3,1,1,
-18657,131,2.1.1.2,0,1,1.0
-18657,106,2.1.1,1,1,
-20230,140,1.4.5.1,0,1,1.0
-20230,41,1.4.5,1,1,
-12859,79,2.1.3.3,0,1,1.0
-12859,74,2.1.3,1,1,
-2007,13,2.3.3,0,1,1.0
-2007,155,2.3,1,1,
-19123,135,1.3.2.1,0,1,1.0
-19123,58,1.3.2,1,1,1.0
-19123,130,1.3.2,1,1,1.0
-19123,106,1.3,2,1,
-1422,13,2.1.3.4,0,1,1.0
-1422,108,2.1.3,1,1,
-1552,13,2.1.3.7,0,1,1.0
-1552,106,2.1.3,1,1,
-12949,79,2.1.3.4,0,1,1.0
-12949,108,2.1.3,1,1,1.0
-2258,16,2.3.1,0,1,1.0
-2258,99,2.3,1,1,1.0
-9187,53,1.4.3.6,0,1,1.0
-9187,142,1.4.3,1,1,1.0
-9187,126,1.4,2,1,
-17851,126,1.4,0,1,1.0
-17851,170,1,1,1,
-19142,135,1.3.2.1,0,1,1.0
-19142,130,1.3.2,1,1,1.0
-19142,58,1.3.2,1,1,1.0
-19142,106,1.3,2,1,
-19249,135,2.1.3.1,0,1,1.0
-19249,148,2.1.3,1,1,1.0
-1360,13,2.1.3.3,0,1,1.0
-1360,97,2.1.3,1,1,
-20541,142,1.4.2,0,1,1.0
-20541,126,1.4,1,1,
-20538,142,1.4.2,0,1,1.0
-20538,126,1.4,1,1,
-18575,130,1.3.5,0,1,1.0
-18575,29,1.3,1,1,1.0
-18575,106,1.3,1,1,
-12936,79,2.1.3.4,0,1,1.0
-12936,73,2.1.3,1,1,
-17896,126,1.4,0,1,1.0
-17896,170,1,1,1,1.0
-14233,87,1.1.1,0,1,1.0
-14233,105,1.1,1,1,
-6746,41,1.4.3.2,0,1,1.0
-6746,142,1.4.3,1,1,
-657,6,2.1.2.1,0,1,1.0
-657,159,2.1.2,1,1,
-9486,53,1.4.5.8,0,1,1.0
-9486,41,1.4.5,1,1,
-17875,126,1.4,0,1,1.0
-17875,170,1,1,1,1.0
-6738,41,1.4.3.2,0,1,1.0
-6738,142,1.4.3,1,1,
-10057,57,1.3.3.3,0,1,1.0
-10057,99,1.3.3,1,1,
-22212,157,1.4.1,0,1,1.0
-22212,126,1.4,1,1,
-4120,23,1.4.2.7,0,1,1.0
-4120,142,1.4.2,1,1,
-13215,79,2.3.1,0,1,1.0
-13215,126,2.3,1,1,1.0
-6736,41,1.4.3.2,0,1,1.0
-6736,142,1.4.3,1,1,1.0
-6736,126,1.4,2,1,
-1152,12,1.2.1,0,1,1.0
-1152,97,1.2,1,1,
-18758,131,2.1.1.4,0,1,1.0
-18758,106,2.1.1,1,1,
-13008,79,2.1.3.6,0,1,1.0
-13008,108,2.1.3,1,1,1.0
-6750,41,1.4.3.2,0,1,1.0
-6750,142,1.4.3,1,1,
-1366,13,2.1.3.3,0,1,1.0
-1366,106,2.1.3,1,1,1.0
-20245,140,1.4.5.1,0,1,1.0
-20245,41,1.4.5,1,1,1.0
-20245,126,1.4,2,1,
-4142,23,1.4.2.7,0,1,1.0
-4142,142,1.4.2,1,1,
-23592,168,2.3.2,0,1,1.0
-23592,99,2.3,1,1,1.0
-23657,169,1.1.1,0,1,1.0
-23657,105,1.1,1,1,
-5365,32,1.2.3,0,1,1.0
-5365,97,1.2,1,1,1.0
-12649,79,1.3.1.4,0,1,1.0
-12649,100,1.3.1,1,1,1.0
-607,6,1.3.1.2,0,1,1.0
-607,99,1.3.1,1,1,
-15633,103,1.1.1,0,1,1.0
-15633,94,1.1,1,1,
-9494,53,1.4.5.8,0,1,1.0
-9494,41,1.4.5,1,1,
-11330,63,1.4.4.5,0,1,1.0
-11330,0,1.4.4,1,1,
-17864,126,1.4,0,1,1.0
-17864,170,1,1,1,1.0
-23057,165,2.1.2.2,0,1,1.0
-23057,79,2.1.2,1,1,
-16908,117,2.1.1.4,0,1,1.0
-16908,80,2.1.1,1,1,1.0
-22215,157,1.4.1,0,1,1.0
-22215,126,1.4,1,1,
-17883,126,1.4,0,1,1.0
-17883,170,1,1,1,
-1309,13,2.1.3.2,0,1,1.0
-1309,73,2.1.3,1,1,1.0
-9176,53,1.4.3.6,0,1,1.0
-9176,142,1.4.3,1,1,1.0
-9176,126,1.4,2,1,
-6880,41,1.4.5,0,1,1.0
-6880,126,1.4,1,1,
-9491,53,1.4.5.8,0,1,1.0
-9491,41,1.4.5,1,1,
-15336,99,2.1,0,1,1.0
-15336,98,2,1,1,
-6876,41,1.4.5,0,1,1.0
-6876,126,1.4,1,1,1.0
-6876,170,1,2,1,
-19349,135,2.1.3.3,0,1,1.0
-19349,126,2.1.3,1,1,1.0
-18554,130,1.3.5,0,1,1.0
-18554,29,1.3,1,1,
-22249,157,1.4.1,0,1,1.0
-22249,126,1.4,1,1,
-10849,60,2.1.1.4,0,1,1.0
-10849,80,2.1.1,1,1,1.0
-792,6,2.1.2.3,0,1,1.0
-792,84,2.1.2,1,1,1.0
-19358,135,2.1.3.4,0,1,1.0
-19358,106,2.1.3,1,1,
-6852,41,1.4.5,0,1,1.0
-6852,126,1.4,1,1,
-7499,45,2.1.4.1.3,0,1,1.0
-7499,79,2.1.4.1,1,1,1.0
-8930,53,1.4.2.3,0,1,1.0
-8930,142,1.4.2,1,1,
-6726,41,1.4.3.2,0,1,1.0
-6726,142,1.4.3,1,1,1.0
-6726,126,1.4,2,1,
-17877,126,1.4,0,1,1.0
-17877,170,1,1,1,1.0
-22457,161,2.3.2,0,1,1.0
-22457,95,2.3,1,1,
-4191,23,2.1.3.6,0,1,1.0
-4191,97,2.1.3,1,1,
-4103,23,1.4.2.7,0,1,1.0
-4103,142,1.4.2,1,1,
-22221,157,1.4.1,0,1,1.0
-22221,126,1.4,1,1,
-13032,79,2.1.3.6,0,1,1.0
-13032,106,2.1.3,1,1,
-5557,33,2.1.2.4,0,1,1.0
-5557,84,2.1.2,1,1,
-9489,53,1.4.5.8,0,1,1.0
-9489,41,1.4.5,1,1,
-6868,41,1.4.5,0,1,1.0
-6868,126,1.4,1,1,
-17257,117,2.1.4.2.2,0,1,1.0
-17257,79,2.1.4.2,1,1,
-2157,15,1.3.3.5,0,1,1.0
-2157,75,1.3.3,1,1,
-3207,22,2.1.3.4,0,1,1.0
-3207,97,2.1.3,1,1,
-1472,13,2.1.3.5,0,1,1.0
-1472,97,2.1.3,1,1,
-12799,79,2.1.3.1,0,1,1.0
-12799,74,2.1.3,1,1,
-17007,117,2.1.4.1.1,0,1,1.0
-17007,81,2.1.4.1,1,1,
-4315,23,2.3.3,0,1,1.0
-4315,99,2.3,1,1,1.0
-16791,117,2.1.1.1,0,1,1.0
-16791,80,2.1.1,1,1,
-4137,23,1.4.2.7,0,1,1.0
-4137,142,1.4.2,1,1,1.0
-4137,126,1.4,2,1,
-19107,135,1.3.2.1,0,1,1.0
-19107,130,1.3.2,1,1,1.0
-19107,58,1.3.2,1,1,1.0
-19107,29,1.3,2,1,
-19107,106,1.3,2,1,
-2569,20,1.3.1.2,0,1,1.0
-2569,93,1.3.1,1,1,
-23457,168,1.3.3.4,0,1,1.0
-23457,97,1.3.3,1,1,
-15616,103,1.1.1,0,1,1.0
-15616,106,1.1,1,1,
-20573,142,1.4.3,0,1,1.0
-20573,126,1.4,1,1,
-23607,168,2.3.3,0,1,1.0
-23607,99,2.3,1,1,
-20247,140,1.4.5.1,0,1,1.0
-20247,41,1.4.5,1,1,1.0
-20247,126,1.4,2,1,1.0
-20247,170,1,3,1,
-11338,63,1.4.4.5,0,1,1.0
-11338,0,1.4.4,1,1,1.0
-11338,40,1.4.4,1,1,1.0
-11338,126,1.4,2,1,
-158,3,1.3.1.4,0,1,1.0
-158,85,1.3.1,1,1,
-9467,53,1.4.5.8,0,1,1.0
-9467,41,1.4.5,1,1,
-8901,53,1.4.2.3,0,1,1.0
-8901,142,1.4.2,1,1,
-20566,142,1.4.3,0,1,1.0
-20566,126,1.4,1,1,
-19125,135,1.3.2.1,0,1,1.0
-19125,130,1.3.2,1,1,1.0
-19125,58,1.3.2,1,1,1.0
-19125,106,1.3,2,1,1.0
-19125,29,1.3,2,1,
-20242,140,1.4.5.1,0,1,1.0
-20242,41,1.4.5,1,1,
-18308,129,1.2.3,0,1,1.0
-18308,97,1.2,1,1,1.0
-20229,140,1.4.5.1,0,1,1.0
-20229,41,1.4.5,1,1,1.0
-20229,126,1.4,2,1,
-8929,53,1.4.2.3,0,1,1.0
-8929,142,1.4.2,1,1,1.0
-8929,126,1.4,2,1,
-12772,79,2.1.3.1,0,1,1.0
-12772,97,2.1.3,1,1,
-9197,53,1.4.3.6,0,1,1.0
-9197,142,1.4.3,1,1,1.0
-9197,126,1.4,2,1,1.0
-9197,170,1,3,1,
-12382,78,2.1.1.2,0,1,1.0
-12382,80,2.1.1,1,1,
-17890,126,1.4,0,1,1.0
-17890,170,1,1,1,1.0
-10749,60,2.1.1.2,0,1,1.0
-10749,80,2.1.1,1,1,1.0
-6853,41,1.4.5,0,1,1.0
-6853,126,1.4,1,1,
-14299,88,1.1.3,0,1,1.0
-14299,86,1.1,1,1,1.0
-11346,63,1.4.4.5,0,1,1.0
-11346,0,1.4.4,1,1,
-9496,53,1.4.5.8,0,1,1.0
-9496,41,1.4.5,1,1,
-4144,23,1.4.2.7,0,1,1.0
-4144,142,1.4.2,1,1,
-17588,123,1.1.2,0,1,1.0
-17588,94,1.1,1,1,1.0
-1412,13,2.1.3.4,0,1,1.0
-1412,97,2.1.3,1,1,
-5469,33,2.1.2.2,0,1,1.0
-5469,81,2.1.2,1,1,
-19111,135,1.3.2.1,0,1,1.0
-19111,58,1.3.2,1,1,1.0
-19111,130,1.3.2,1,1,1.0
-19111,106,1.3,2,1,
-6307,39,1.3.1,0,1,1.0
-6307,29,1.3,1,1,
-8921,53,1.4.2.3,0,1,1.0
-8921,142,1.4.2,1,1,
-15310,99,2.1,0,1,1.0
-15310,98,2,1,1,
-20552,142,1.4.3,0,1,1.0
-20552,126,1.4,1,1,
-22222,157,1.4.1,0,1,1.0
-22222,126,1.4,1,1,
-19099,135,1.1.3,0,1,1.0
-19099,94,1.1,1,1,1.0
-20564,142,1.4.3,0,1,1.0
-20564,126,1.4,1,1,1.0
-20564,170,1,2,1,1.0
-20540,142,1.4.2,0,1,1.0
-20540,126,1.4,1,1,
-3257,22,2.1.3.5,0,1,1.0
-3257,106,2.1.3,1,1,
-15320,99,2.1,0,1,1.0
-15320,102,2,1,1,
-15320,98,2,1,1,1.0
-8199,48,1.2.2,0,1,1.0
-8199,126,1.2,1,1,1.0
-6724,41,1.4.3.2,0,1,1.0
-6724,142,1.4.3,1,1,
-20218,140,1.4.5.1,0,1,1.0
-20218,41,1.4.5,1,1,1.0
-20218,126,1.4,2,1,1.0
-20218,170,1,3,1,1.0
-8946,53,1.4.2.3,0,1,1.0
-8946,142,1.4.2,1,1,
-4057,23,1.3.3.4,0,1,1.0
-4057,99,1.3.3,1,1,
-16527,113,1.1.1,0,1,1.0
-16527,105,1.1,1,1,1.0
-8649,50,1.3.1.5,0,1,1.0
-8649,85,1.3.1,1,1,1.0
-18958,133,1.4.4.1,0,1,1.0
-18958,40,1.4.4,1,1,1.0
-6735,41,1.4.3.2,0,1,1.0
-6735,142,1.4.3,1,1,
-18563,130,1.3.5,0,1,1.0
-18563,29,1.3,1,1,1.0
-15249,99,1.3.1,0,1,1.0
-15249,106,1.3,1,1,1.0
-7157,44,1.1.1,0,1,1.0
-7157,106,1.1,1,1,
-6732,41,1.4.3.2,0,1,1.0
-6732,142,1.4.3,1,1,1.0
-6732,126,1.4,2,1,
-15308,99,2.1,0,1,1.0
-15308,98,2,1,1,
-15308,102,2,1,1,
-14899,96,1.2.3,0,1,1.0
-14899,126,1.2,1,1,1.0
-6728,41,1.4.3.2,0,1,1.0
-6728,142,1.4.3,1,1,
-11711,69,1.1.1,0,1,1.0
-11711,94,1.1,1,1,1.0
-15347,99,2.1,0,1,1.0
-15347,102,2,1,1,
-15347,98,2,1,1,1.0
-6729,41,1.4.3.2,0,1,1.0
-6729,142,1.4.3,1,1,1.0
-6729,126,1.4,2,1,
-99,1,2.1.1.5,0,1,1.0
-99,148,2.1.1,1,1,1.0
-8249,49,1.3.1.1,0,1,1.0
-8249,99,1.3.1,1,1,1.0
-9490,53,1.4.5.8,0,1,1.0
-9490,41,1.4.5,1,1,1.0
-9490,126,1.4,2,1,
-22202,157,1.4.1,0,1,1.0
-22202,126,1.4,1,1,
-6741,41,1.4.3.2,0,1,1.0
-6741,142,1.4.3,1,1,
-4101,23,1.4.2.7,0,1,1.0
-4101,142,1.4.2,1,1,
-11308,63,1.4.4.5,0,1,1.0
-11308,40,1.4.4,1,1,1.0
-23683,169,1.1.1,0,1,1.0
-23683,106,1.1,1,1,
-22204,157,1.4.1,0,1,1.0
-22204,126,1.4,1,1,
-17866,126,1.4,0,1,1.0
-17866,170,1,1,1,1.0
-9188,53,1.4.3.6,0,1,1.0
-9188,142,1.4.3,1,1,
-20551,142,1.4.3,0,1,1.0
-20551,126,1.4,1,1,
-20536,142,1.4.2,0,1,1.0
-20536,126,1.4,1,1,
-16808,117,2.1.1.2,0,1,1.0
-16808,85,2.1.1,1,1,1.0
-1058,10,1.3.3.5,0,1,1.0
-1058,75,1.3.3,1,1,
-8916,53,1.4.2.3,0,1,1.0
-8916,142,1.4.2,1,1,1.0
-8916,126,1.4,2,1,
-20211,140,1.4.5.1,0,1,1.0
-20211,41,1.4.5,1,1,1.0
-20211,126,1.4,2,1,
-11407,65,1.2.1,0,1,1.0
-11407,126,1.2,1,1,
-5457,33,2.1.2.2,0,1,1.0
-5457,79,2.1.2,1,1,
-20216,140,1.4.5.1,0,1,1.0
-20216,41,1.4.5,1,1,1.0
-20216,126,1.4,2,1,
-9482,53,1.4.5.8,0,1,1.0
-9482,41,1.4.5,1,1,1.0
-9482,126,1.4,2,1,
-20222,140,1.4.5.1,0,1,1.0
-20222,41,1.4.5,1,1,
-4114,23,1.4.2.7,0,1,1.0
-4114,142,1.4.2,1,1,1.0
-4114,126,1.4,2,1,1.0
-4114,170,1,3,1,1.0
-20574,142,1.4.3,0,1,1.0
-20574,126,1.4,1,1,
-6745,41,1.4.3.2,0,1,1.0
-6745,142,1.4.3,1,1,1.0
-6745,126,1.4,2,1,
-2042,13,2.3.3,0,1,1.0
-2042,124,2.3,1,1,1.0
-12857,79,2.1.3.3,0,1,1.0
-12857,148,2.1.3,1,1,
-16157,108,2.2,0,1,1.0
-16157,102,2,1,1,
-17874,126,1.4,0,1,1.0
-17874,170,1,1,1,
-8928,53,1.4.2.3,0,1,1.0
-8928,142,1.4.2,1,1,
-19134,135,1.3.2.1,0,1,1.0
-19134,58,1.3.2,1,1,1.0
-19134,130,1.3.2,1,1,1.0
-19134,106,1.3,2,1,
-14441,89,1.3.3.1,0,1,1.0
-14441,75,1.3.3,1,1,
-20598,142,1.4.3,0,1,1.0
-20598,126,1.4,1,1,
-1508,13,2.1.3.6,0,1,1.0
-1508,74,2.1.3,1,1,
-7132,43,1.3.1.6,0,1,1.0
-7132,39,1.3.1,1,1,
-18595,130,1.3.5,0,1,1.0
-18595,106,1.3,1,1,
-9966,56,1.1.1,0,1,1.0
-9966,126,1.1,1,1,
-23215,166,1.2.3,0,1,1.0
-23215,67,1.2,1,1,1.0
-1915,13,2.3.1,0,1,1.0
-1915,95,2.3,1,1,1.0
-1549,13,2.1.3.6,0,1,1.0
-1549,126,2.1.3,1,1,1.0
-6858,41,1.4.5,0,1,1.0
-6858,126,1.4,1,1,1.0
-6858,170,1,2,1,1.0
-19507,135,2.1.3.7,0,1,1.0
-19507,106,2.1.3,1,1,
-20517,142,1.4.2,0,1,1.0
-20517,126,1.4,1,1,
-17898,126,1.4,0,1,1.0
-17898,170,1,1,1,1.0
-20224,140,1.4.5.1,0,1,1.0
-20224,41,1.4.5,1,1,
-13842,82,2.1.2.4,0,1,1.0
-13842,159,2.1.2,1,1,1.0
-12819,79,2.1.3.2,0,1,1.0
-12819,74,2.1.3,1,1,1.0
-15142,99,1.1.2,0,1,1.0
-15142,105,1.1,1,1,1.0
-1446,13,2.1.3.4,0,1,1.0
-1446,108,2.1.3,1,1,
-9475,53,1.4.5.8,0,1,1.0
-9475,41,1.4.5,1,1,
-8924,53,1.4.2.3,0,1,1.0
-8924,142,1.4.2,1,1,
-10099,57,1.3.3.3,0,1,1.0
-10099,97,1.3.3,1,1,1.0
-6949,42,1.3.1.1,0,1,1.0
-6949,85,1.3.1,1,1,1.0
-6869,41,1.4.5,0,1,1.0
-6869,126,1.4,1,1,
-14742,95,1.2.3,0,1,1.0
-14742,67,1.2,1,1,1.0
-6865,41,1.4.5,0,1,1.0
-6865,126,1.4,1,1,
-6708,41,1.4.3.2,0,1,1.0
-6708,142,1.4.3,1,1,1.0
-6708,126,1.4,2,1,
-22507,161,2.3.3,0,1,1.0
-22507,95,2.3,1,1,
-4415,25,1.3.1.7,0,1,1.0
-4415,100,1.3.1,1,1,1.0
-21357,149,2.1.2.1,0,1,1.0
-21357,58,2.1.2,1,1,
-738,6,2.1.2.2,0,1,1.0
-738,79,2.1.2,1,1,1.0
-15321,99,2.1,0,1,1.0
-15321,102,2,1,1,
-15321,98,2,1,1,1.0
-22220,157,1.4.1,0,1,1.0
-22220,126,1.4,1,1,
-15306,99,2.1,0,1,1.0
-15306,98,2,1,1,1.0
-15306,102,2,1,1,
-18299,129,1.1.2,0,1,1.0
-18299,105,1.1,1,1,1.0
-21719,153,1.3.1.1,0,1,1.0
-21719,39,1.3.1,1,1,
-8592,49,2.1.2.4,0,1,1.0
-8592,58,2.1.2,1,1,1.0
-11337,63,1.4.4.5,0,1,1.0
-11337,0,1.4.4,1,1,1.0
-20600,142,1.4.3,0,1,1.0
-20600,126,1.4,1,1,
-22219,157,1.4.1,0,1,1.0
-22219,126,1.4,1,1,
-1249,13,1.2.2,0,1,1.0
-1249,106,1.2,1,1,1.0
-8927,53,1.4.2.3,0,1,1.0
-8927,142,1.4.2,1,1,
-19008,134,1.3.3.5,0,1,1.0
-19008,97,1.3.3,1,1,
-20008,139,1.3.3.7,0,1,1.0
-20008,99,1.3.3,1,1,
-21437,149,2.1.2.2,0,1,1.0
-21437,81,2.1.2,1,1,1.0
-11888,71,1.3.1.2,0,1,1.0
-11888,99,1.3.1,1,1,1.0
-8115,47,2.1.3.6,0,1,1.0
-8115,126,2.1.3,1,1,
-6702,41,1.4.3.2,0,1,1.0
-6702,142,1.4.3,1,1,1.0
-6702,126,1.4,2,1,
-23661,169,1.1.1,0,1,1.0
-23661,86,1.1,1,1,1.0
-15345,99,2.1,0,1,1.0
-15345,98,2,1,1,
-15345,102,2,1,1,
-10007,56,1.3.1.7,0,1,1.0
-10007,93,1.3.1,1,1,
-22229,157,1.4.1,0,1,1.0
-22229,126,1.4,1,1,
-9961,56,1.1.1,0,1,1.0
-9961,105,1.1,1,1,1.0
-12805,79,2.1.3.2,0,1,1.0
-12805,106,2.1.3,1,1,
-7941,47,2.1.2.1,0,1,1.0
-7941,58,2.1.2,1,1,1.0
-17857,126,1.4,0,1,1.0
-17857,170,1,1,1,1.0
-20580,142,1.4.3,0,1,1.0
-20580,126,1.4,1,1,
-23542,168,2.3.1,0,1,1.0
-23542,155,2.3,1,1,1.0
-6864,41,1.4.5,0,1,1.0
-6864,126,1.4,1,1,1.0
-6864,170,1,2,1,1.0
-14707,95,1.2.3,0,1,1.0
-14707,126,1.2,1,1,
-6862,41,1.4.5,0,1,1.0
-6862,126,1.4,1,1,
-23088,165,2.1.2.2,0,1,1.0
-23088,84,2.1.2,1,1,1.0
-18561,130,1.3.5,0,1,1.0
-18561,106,1.3,1,1,1.0
-4113,23,1.4.2.7,0,1,1.0
-4113,142,1.4.2,1,1,1.0
-4113,126,1.4,2,1,1.0
-4113,170,1,3,1,1.0
-3757,22,2.3.2,0,1,1.0
-3757,84,2.3,1,1,
-3199,22,2.1.3.3,0,1,1.0
-3199,148,2.1.3,1,1,1.0
-8419,49,2.1.2.1,0,1,1.0
-8419,79,2.1.2,1,1,
-20504,142,1.4.2,0,1,1.0
-20504,126,1.4,1,1,
-6057,38,2.1.1.1,0,1,1.0
-6057,106,2.1.1,1,1,
-21142,146,1.3.1.1,0,1,1.0
-21142,100,1.3.1,1,1,1.0
-13066,79,2.1.3.7,0,1,1.0
-13066,148,2.1.3,1,1,1.0
-17861,126,1.4,0,1,1.0
-17861,170,1,1,1,1.0
-7907,47,2.1.2.1,0,1,1.0
-7907,84,2.1.2,1,1,
-18757,131,2.1.1.4,0,1,1.0
-18757,80,2.1.1,1,1,
-22157,156,1.3.1.7,0,1,1.0
-22157,85,1.3.1,1,1,
-19132,135,1.3.2.1,0,1,1.0
-19132,130,1.3.2,1,1,1.0
-4607,26,2.1.3.4,0,1,1.0
-4607,126,2.1.3,1,1,
-19135,135,1.3.2.1,0,1,1.0
-19135,58,1.3.2,1,1,1.0
-20586,142,1.4.3,0,1,1.0
-20586,126,1.4,1,1,
-11306,63,1.4.4.5,0,1,1.0
-11306,0,1.4.4,1,1,1.0
-11306,40,1.4.4,1,1,
-9151,53,1.4.3.6,0,1,1.0
-9151,142,1.4.3,1,1,
-20532,142,1.4.2,0,1,1.0
-20532,126,1.4,1,1,
-22234,157,1.4.1,0,1,1.0
-22234,126,1.4,1,1,
-757,6,2.1.2.3,0,1,1.0
-757,81,2.1.2,1,1,
-8922,53,1.4.2.3,0,1,1.0
-8922,142,1.4.2,1,1,
-11321,63,1.4.4.5,0,1,1.0
-11321,40,1.4.4,1,1,
-1281,13,2.1.3.1,0,1,1.0
-1281,74,2.1.3,1,1,
-19357,135,2.1.3.4,0,1,1.0
-19357,108,2.1.3,1,1,
-14341,89,1.1.2,0,1,1.0
-14341,86,1.1,1,1,
-4182,23,2.1.3.6,0,1,1.0
-4182,148,2.1.3,1,1,
-11320,63,1.4.4.5,0,1,1.0
-11320,40,1.4.4,1,1,
-6875,41,1.4.5,0,1,1.0
-6875,126,1.4,1,1,
-14732,95,1.2.3,0,1,1.0
-14732,126,1.2,1,1,
-13841,82,2.1.2.4,0,1,1.0
-13841,84,2.1.2,1,1,
-20228,140,1.4.5.1,0,1,1.0
-20228,41,1.4.5,1,1,
-22207,157,1.4.1,0,1,1.0
-22207,126,1.4,1,1,
-16919,117,2.1.1.4,0,1,1.0
-16919,85,2.1.1,1,1,
-1490,13,2.1.3.5,0,1,1.0
-1490,73,2.1.3,1,1,
-3707,22,2.3.1,0,1,1.0
-3707,95,2.3,1,1,
-4307,23,2.3.3,0,1,1.0
-4307,126,2.3,1,1,
-9480,53,1.4.5.8,0,1,1.0
-9480,41,1.4.5,1,1,
-14549,91,1.2.1,0,1,1.0
-14549,67,1.2,1,1,1.0
-4123,23,1.4.2.7,0,1,1.0
-4123,142,1.4.2,1,1,
-22218,157,1.4.1,0,1,1.0
-22218,126,1.4,1,1,
-8107,47,2.1.3.6,0,1,1.0
-8107,148,2.1.3,1,1,
-11615,68,1.3.1.2,0,1,1.0
-11615,99,1.3.1,1,1,
-3792,22,2.3.2,0,1,1.0
-3792,155,2.3,1,1,1.0
-12638,79,1.3.1.4,0,1,1.0
-12638,100,1.3.1,1,1,1.0
-4699,26,2.1.3.5,0,1,1.0
-4699,97,2.1.3,1,1,1.0
-22519,161,2.3.3,0,1,1.0
-22519,155,2.3,1,1,
-6893,41,1.4.5,0,1,1.0
-6893,126,1.4,1,1,
-13208,79,2.3.1,0,1,1.0
-13208,84,2.3,1,1,1.0
-4457,26,2.1.3.1,0,1,1.0
-4457,148,2.1.3,1,1,
-19149,135,1.3.2.1,0,1,1.0
-19149,130,1.3.2,1,1,1.0
-2232,16,1.1.3,0,1,1.0
-2232,94,1.1,1,1,
-7507,45,2.1.4.1.4,0,1,1.0
-7507,81,2.1.4.1,1,1,
-1466,13,2.1.3.5,0,1,1.0
-1466,106,2.1.3,1,1,1.0
-15637,103,1.1.1,0,1,1.0
-15637,86,1.1,1,1,1.0
-4104,23,1.4.2.7,0,1,1.0
-4104,142,1.4.2,1,1,1.0
-4104,126,1.4,2,1,
-9182,53,1.4.3.6,0,1,1.0
-9182,142,1.4.3,1,1,1.0
-9182,126,1.4,2,1,
-23049,165,2.1.2.1,0,1,1.0
-23049,81,2.1.2,1,1,1.0
-9466,53,1.4.5.8,0,1,1.0
-9466,41,1.4.5,1,1,1.0
-9466,126,1.4,2,1,
-1301,13,2.1.3.2,0,1,1.0
-1301,97,2.1.3,1,1,
-4349,23,2.3.3,0,1,1.0
-4349,124,2.3,1,1,1.0
-18570,130,1.3.5,0,1,1.0
-18570,106,1.3,1,1,
-18570,29,1.3,1,1,1.0
-1957,13,2.3.2,0,1,1.0
-1957,95,2.3,1,1,
-1409,13,2.1.3.4,0,1,1.0
-1409,148,2.1.3,1,1,
-12810,79,2.1.3.2,0,1,1.0
-12810,148,2.1.3,1,1,
-11733,69,1.1.1,0,1,1.0
-11733,126,1.1,1,1,
-21557,150,1.1.1,0,1,1.0
-21557,126,1.1,1,1,
-3742,22,2.3.1,0,1,1.0
-3742,84,2.3,1,1,1.0
-11719,69,1.1.1,0,1,1.0
-11719,86,1.1,1,1,
-18207,128,1.1.2,0,1,1.0
-18207,126,1.1,1,1,
-1587,13,2.1.3.7,0,1,1.0
-1587,108,2.1.3,1,1,
-1587,74,2.1.3,1,1,
-18574,130,1.3.5,0,1,1.0
-18574,106,1.3,1,1,
-11343,63,1.4.4.5,0,1,1.0
-11343,40,1.4.4,1,1,1.0
-11343,0,1.4.4,1,1,1.0
-11343,126,1.4,2,1,
-21157,147,1.1.2,0,1,1.0
-21157,105,1.1,1,1,
-9957,56,1.1.1,0,1,1.0
-9957,106,1.1,1,1,
-3315,22,2.1.3.6,0,1,1.0
-3315,148,2.1.3,1,1,
-19857,137,2.1.4.2.1,0,1,1.0
-19857,81,2.1.4.2,1,1,
-14608,93,1.3.1,0,1,1.0
-14608,106,1.3,1,1,
-1541,13,2.1.3.6,0,1,1.0
-1541,73,2.1.3,1,1,
-6898,41,1.4.5,0,1,1.0
-6898,126,1.4,1,1,
-8908,53,1.4.2.3,0,1,1.0
-8908,142,1.4.2,1,1,1.0
-8908,126,1.4,2,1,
-1757,13,2.1.4.1.4,0,1,1.0
-1757,81,2.1.4.1,1,1,
-20522,142,1.4.2,0,1,1.0
-20522,126,1.4,1,1,
-1402,13,2.1.3.4,0,1,1.0
-1402,148,2.1.3,1,1,1.0
-10199,57,2.3.2,0,1,1.0
-10199,99,2.3,1,1,1.0
-15348,99,2.1,0,1,1.0
-15348,98,2,1,1,1.0
-15348,102,2,1,1,
-6882,41,1.4.5,0,1,1.0
-6882,126,1.4,1,1,
-11347,63,1.4.4.5,0,1,1.0
-11347,0,1.4.4,1,1,1.0
-11347,40,1.4.4,1,1,1.0
-11347,126,1.4,2,1,
-20449,141,1.3.3.2,0,1,1.0
-20449,75,1.3.3,1,1,1.0
-9193,53,1.4.3.6,0,1,1.0
-9193,142,1.4.3,1,1,
-11310,63,1.4.4.5,0,1,1.0
-11310,0,1.4.4,1,1,
-21082,145,1.3.1.4,0,1,1.0
-21082,85,1.3.1,1,1,
-18581,130,1.3.5,0,1,1.0
-18581,29,1.3,1,1,
-18581,106,1.3,1,1,
-21169,147,1.1.2,0,1,1.0
-21169,105,1.1,1,1,
-9451,53,1.4.5.8,0,1,1.0
-9451,41,1.4.5,1,1,
-19148,135,1.3.2.1,0,1,1.0
-19148,130,1.3.2,1,1,1.0
-19148,58,1.3.2,1,1,1.0
-19148,106,1.3,2,1,
-4141,23,1.4.2.7,0,1,1.0
-4141,142,1.4.2,1,1,
-1302,13,2.1.3.2,0,1,1.0
-1302,126,2.1.3,1,1,1.0
-20249,140,1.4.5.1,0,1,1.0
-20249,41,1.4.5,1,1,
-19136,135,1.3.2.1,0,1,1.0
-19136,58,1.3.2,1,1,1.0
-19136,130,1.3.2,1,1,1.0
-19136,106,1.3,2,1,
-10157,57,2.3.2,0,1,1.0
-10157,155,2.3,1,1,
-2108,14,1.3.4.3,0,1,1.0
-2108,80,1.3.4,1,1,1.0
-4148,23,1.4.2.7,0,1,1.0
-4148,142,1.4.2,1,1,
-6713,41,1.4.3.2,0,1,1.0
-6713,142,1.4.3,1,1,1.0
-6713,126,1.4,2,1,1.0
-6713,170,1,3,1,1.0
-12049,74,1.3.3.2,0,1,1.0
-12049,97,1.3.3,1,1,1.0
-16841,117,2.1.1.2,0,1,1.0
-16841,106,2.1.1,1,1,
-7957,47,2.1.2.2,0,1,1.0
-7957,159,2.1.2,1,1,
-12962,79,2.1.3.5,0,1,1.0
-12962,108,2.1.3,1,1,
-22238,157,1.4.1,0,1,1.0
-22238,126,1.4,1,1,
-7769,47,2.1.1.2,0,1,1.0
-7769,106,2.1.1,1,1,
-15302,99,2.1,0,1,1.0
-15302,98,2,1,1,1.0
-15302,102,2,1,1,1.0
-15302,170,1,2,1,1.0
-20237,140,1.4.5.1,0,1,1.0
-20237,41,1.4.5,1,1,1.0
-20237,126,1.4,2,1,
-12852,79,2.1.3.3,0,1,1.0
-12852,126,2.1.3,1,1,1.0
-20591,142,1.4.3,0,1,1.0
-20591,126,1.4,1,1,
-1657,13,2.1.4.1.2,0,1,1.0
-1657,79,2.1.4.1,1,1,
-4130,23,1.4.2.7,0,1,1.0
-4130,142,1.4.2,1,1,
-8457,49,2.1.2.2,0,1,1.0
-8457,79,2.1.2,1,1,
-9169,53,1.4.3.6,0,1,1.0
-9169,142,1.4.3,1,1,
-8907,53,1.4.2.3,0,1,1.0
-8907,142,1.4.2,1,1,
-3957,23,1.3.3.2,0,1,1.0
-3957,75,1.3.3,1,1,
-692,6,2.1.2.1,0,1,1.0
-692,81,2.1.2,1,1,1.0
-2249,16,1.1.3,0,1,1.0
-2249,86,1.1,1,1,1.0
-20236,140,1.4.5.1,0,1,1.0
-20236,41,1.4.5,1,1,
-20207,140,1.4.5.1,0,1,1.0
-20207,41,1.4.5,1,1,
-257,3,1.3.1.6,0,1,1.0
-257,85,1.3.1,1,1,
-19965,138,1.3.1.5,0,1,1.0
-19965,100,1.3.1,1,1,1.0
-18582,130,1.3.5,0,1,1.0
-18582,106,1.3,1,1,
-18582,29,1.3,1,1,
-4269,23,2.3.2,0,1,1.0
-4269,99,2.3,1,1,
-17879,126,1.4,0,1,1.0
-17879,170,1,1,1,1.0
-10892,60,2.1.1.5,0,1,1.0
-10892,148,2.1.1,1,1,1.0
-4157,23,2.1.3.6,0,1,1.0
-4157,97,2.1.3,1,1,
-8933,53,1.4.2.3,0,1,1.0
-8933,142,1.4.2,1,1,
-4549,26,2.1.3.2,0,1,1.0
-4549,126,2.1.3,1,1,1.0
-6894,41,1.4.5,0,1,1.0
-6894,126,1.4,1,1,
-4149,23,1.4.2.7,0,1,1.0
-4149,142,1.4.2,1,1,
-20942,144,2.1.2.2,0,1,1.0
-20942,81,2.1.2,1,1,1.0
-16507,113,1.1.1,0,1,1.0
-16507,94,1.1,1,1,
-12996,79,2.1.3.5,0,1,1.0
-12996,148,2.1.3,1,1,
-4109,23,1.4.2.7,0,1,1.0
-4109,142,1.4.2,1,1,1.0
-4109,126,1.4,2,1,
-17855,126,1.4,0,1,1.0
-17855,170,1,1,1,1.0
-20543,142,1.4.2,0,1,1.0
-20543,126,1.4,1,1,
-16607,115,1.1.3,0,1,1.0
-16607,86,1.1,1,1,
-15316,99,2.1,0,1,1.0
-15316,98,2,1,1,
-6249,38,2.1.1.4,0,1,1.0
-6249,85,2.1.1,1,1,1.0
-1316,13,2.1.3.2,0,1,1.0
-1316,106,2.1.3,1,1,1.0
-7992,47,2.1.2.2,0,1,1.0
-7992,58,2.1.2,1,1,1.0
-18558,130,1.3.5,0,1,1.0
-18558,106,1.3,1,1,
-18558,29,1.3,1,1,
-17872,126,1.4,0,1,1.0
-17872,170,1,1,1,1.0
-17415,120,1.2.3,0,1,1.0
-17415,126,1.2,1,1,1.0
-9460,53,1.4.5.8,0,1,1.0
-9460,41,1.4.5,1,1,
-1416,13,2.1.3.4,0,1,1.0
-1416,97,2.1.3,1,1,1.0
-3719,22,2.3.1,0,1,1.0
-3719,99,2.3,1,1,
-6878,41,1.4.5,0,1,1.0
-6878,126,1.4,1,1,
-16642,115,1.1.3,0,1,1.0
-16642,105,1.1,1,1,1.0
-9454,53,1.4.5.8,0,1,1.0
-9454,41,1.4.5,1,1,1.0
-9454,126,1.4,2,1,
-15318,99,2.1,0,1,1.0
-15318,98,2,1,1,
-15318,102,2,1,1,1.0
-23599,168,2.3.2,0,1,1.0
-23599,155,2.3,1,1,1.0
-19057,135,1.1.3,0,1,1.0
-19057,86,1.1,1,1,
-21708,153,1.3.1.1,0,1,1.0
-21708,100,1.3.1,1,1,1.0
-9195,53,1.4.3.6,0,1,1.0
-9195,142,1.4.3,1,1,1.0
-9195,126,1.4,2,1,
-15323,99,2.1,0,1,1.0
-15323,102,2,1,1,
-358,4,1.2.2,0,1,1.0
-358,97,1.2,1,1,1.0
-6717,41,1.4.3.2,0,1,1.0
-6717,142,1.4.3,1,1,
-9465,53,1.4.5.8,0,1,1.0
-9465,41,1.4.5,1,1,1.0
-9465,126,1.4,2,1,
-9474,53,1.4.5.8,0,1,1.0
-9474,41,1.4.5,1,1,
-20583,142,1.4.3,0,1,1.0
-20583,126,1.4,1,1,
-18588,130,1.3.5,0,1,1.0
-18588,106,1.3,1,1,
-15657,104,1.1.1,0,1,1.0
-15657,94,1.1,1,1,
-15342,99,2.1,0,1,1.0
-15342,98,2,1,1,
-4143,23,1.4.2.7,0,1,1.0
-4143,142,1.4.2,1,1,
-20957,144,2.1.2.3,0,1,1.0
-20957,84,2.1.2,1,1,
-6727,41,1.4.3.2,0,1,1.0
-6727,142,1.4.3,1,1,
-21099,145,1.3.1.4,0,1,1.0
-21099,99,1.3.1,1,1,1.0
-14457,90,1.3.1.7,0,1,1.0
-14457,99,1.3.1,1,1,
-18192,127,1.1.3,0,1,1.0
-18192,86,1.1,1,1,1.0
-13892,83,1.3.3.2,0,1,1.0
-13892,99,1.3.3,1,1,1.0
-21192,147,1.1.2,0,1,1.0
-21192,94,1.1,1,1,1.0
-9497,53,1.4.5.8,0,1,1.0
-9497,41,1.4.5,1,1,1.0
-9497,126,1.4,2,1,1.0
-9497,170,1,3,1,
-6749,41,1.4.3.2,0,1,1.0
-6749,142,1.4.3,1,1,
-8941,53,1.4.2.3,0,1,1.0
-8941,142,1.4.2,1,1,
-9191,53,1.4.3.6,0,1,1.0
-9191,142,1.4.3,1,1,
-22224,157,1.4.1,0,1,1.0
-22224,126,1.4,1,1,
-18551,130,1.3.5,0,1,1.0
-18551,29,1.3,1,1,
-18551,106,1.3,1,1,1.0
-11457,66,1.2.1,0,1,1.0
-11457,126,1.2,1,1,
-22233,157,1.4.1,0,1,1.0
-22233,126,1.4,1,1,
-22211,157,1.4.1,0,1,1.0
-22211,126,1.4,1,1,1.0
-22211,170,1,2,1,1.0
-16357,111,1.3.3.1,0,1,1.0
-16357,99,1.3.3,1,1,
-20241,140,1.4.5.1,0,1,1.0
-20241,41,1.4.5,1,1,
-18257,129,1.1.2,0,1,1.0
-18257,86,1.1,1,1,
-1942,13,2.3.1,0,1,1.0
-1942,155,2.3,1,1,1.0
-1559,13,2.1.3.7,0,1,1.0
-1559,148,2.1.3,1,1,
-3838,22,2.3.3,0,1,1.0
-3838,95,2.3,1,1,1.0
-7015,42,1.3.1.4,0,1,1.0
-7015,39,1.3.1,1,1,1.0
-6157,38,2.1.1.3,0,1,1.0
-6157,148,2.1.1,1,1,
-4507,26,2.1.3.2,0,1,1.0
-4507,73,2.1.3,1,1,
-14607,93,1.3.1,0,1,1.0
-14607,29,1.3,1,1,
-19104,135,1.3.2.1,0,1,1.0
-19104,130,1.3.2,1,1,1.0
-8912,53,1.4.2.3,0,1,1.0
-8912,142,1.4.2,1,1,1.0
-8912,126,1.4,2,1,
-9159,53,1.4.3.6,0,1,1.0
-9159,142,1.4.3,1,1,1.0
-9159,126,1.4,2,1,
-12952,79,2.1.3.5,0,1,1.0
-12952,97,2.1.3,1,1,
-18407,130,1.3.4.1,0,1,1.0
-18407,77,1.3.4,1,1,
-9178,53,1.4.3.6,0,1,1.0
-9178,142,1.4.3,1,1,
-19150,135,1.3.2.1,0,1,1.0
-19150,130,1.3.2,1,1,1.0
-19150,58,1.3.2,1,1,1.0
-19150,29,1.3,2,1,
-12207,77,1.3.3.6,0,1,1.0
-12207,99,1.3.3,1,1,
-15339,99,2.1,0,1,1.0
-15339,102,2,1,1,
-6710,41,1.4.3.2,0,1,1.0
-6710,142,1.4.3,1,1,
-17895,126,1.4,0,1,1.0
-17895,170,1,1,1,1.0
-15311,99,2.1,0,1,1.0
-15311,98,2,1,1,
-15311,102,2,1,1,
-23692,169,1.1.1,0,1,1.0
-23692,86,1.1,1,1,1.0
-6859,41,1.4.5,0,1,1.0
-6859,126,1.4,1,1,1.0
-6859,170,1,2,1,
-17892,126,1.4,0,1,1.0
-17892,170,1,1,1,1.0
-702,6,2.1.2.2,0,1,1.0
-702,58,2.1.2,1,1,
-2349,16,2.3.2,0,1,1.0
-2349,99,2.3,1,1,1.0
-6856,41,1.4.5,0,1,1.0
-6856,126,1.4,1,1,
-4124,23,1.4.2.7,0,1,1.0
-4124,142,1.4.2,1,1,
-4341,23,2.3.3,0,1,1.0
-4341,95,2.3,1,1,1.0
-22206,157,1.4.1,0,1,1.0
-22206,126,1.4,1,1,
-22541,161,2.3.3,0,1,1.0
-22541,124,2.3,1,1,1.0
-11322,63,1.4.4.5,0,1,1.0
-11322,40,1.4.4,1,1,
-11322,0,1.4.4,1,1,
-6881,41,1.4.5,0,1,1.0
-6881,126,1.4,1,1,1.0
-6881,170,1,2,1,1.0
-9495,53,1.4.5.8,0,1,1.0
-9495,41,1.4.5,1,1,1.0
-9495,126,1.4,2,1,
-20250,140,1.4.5.1,0,1,1.0
-20250,41,1.4.5,1,1,
-20520,142,1.4.2,0,1,1.0
-20520,126,1.4,1,1,
-20560,142,1.4.3,0,1,1.0
-20560,126,1.4,1,1,
-13291,79,2.3.2,0,1,1.0
-13291,126,2.3,1,1,
-18584,130,1.3.5,0,1,1.0
-18584,29,1.3,1,1,1.0
-18584,106,1.3,1,1,1.0
-18584,170,1,2,1,1.0
-6958,42,1.3.1.3,0,1,1.0
-6958,99,1.3.1,1,1,
-1359,13,2.1.3.3,0,1,1.0
-1359,148,2.1.3,1,1,
-18585,130,1.3.5,0,1,1.0
-18585,106,1.3,1,1,
-4138,23,1.4.2.7,0,1,1.0
-4138,142,1.4.2,1,1,
-23302,168,1.1.2,0,1,1.0
-23302,105,1.1,1,1,
-2957,22,2.1.1.4,0,1,1.0
-2957,85,2.1.1,1,1,
-20556,142,1.4.3,0,1,1.0
-20556,126,1.4,1,1,
-1557,13,2.1.3.7,0,1,1.0
-1557,106,2.1.3,1,1,
-20217,140,1.4.5.1,0,1,1.0
-20217,41,1.4.5,1,1,
-18638,131,2.1.1.1,0,1,1.0
-18638,85,2.1.1,1,1,1.0
-22957,164,1.3.3.6,0,1,1.0
-22957,75,1.3.3,1,1,
-20233,140,1.4.5.1,0,1,1.0
-20233,41,1.4.5,1,1,
-3807,22,2.3.3,0,1,1.0
-3807,99,2.3,1,1,
-22213,157,1.4.1,0,1,1.0
-22213,126,1.4,1,1,1.0
-22213,170,1,2,1,1.0
-6885,41,1.4.5,0,1,1.0
-6885,126,1.4,1,1,
-6252,38,2.1.1.5,0,1,1.0
-6252,148,2.1.1,1,1,
-1481,13,2.1.3.5,0,1,1.0
-1481,126,2.1.3,1,1,
-12959,79,2.1.3.5,0,1,1.0
-12959,106,2.1.3,1,1,
-22217,157,1.4.1,0,1,1.0
-22217,126,1.4,1,1,
-22245,157,1.4.1,0,1,1.0
-22245,126,1.4,1,1,
-20707,143,2.1.1.3,0,1,1.0
-20707,85,2.1.1,1,1,
-13342,79,2.3.3,0,1,1.0
-13342,95,2.3,1,1,1.0
-17865,126,1.4,0,1,1.0
-17865,170,1,1,1,1.0
-15332,99,2.1,0,1,1.0
-15332,102,2,1,1,
-12449,78,2.1.1.3,0,1,1.0
-12449,85,2.1.1,1,1,1.0
-22099,154,2.1.4.2.2,0,1,1.0
-22099,81,2.1.4.2,1,1,1.0
-20547,142,1.4.2,0,1,1.0
-20547,126,1.4,1,1,1.0
-20547,170,1,2,1,1.0
-1182,12,1.2.1,0,1,1.0
-1182,126,1.2,1,1,
-9170,53,1.4.3.6,0,1,1.0
-9170,142,1.4.3,1,1,
-4131,23,1.4.2.7,0,1,1.0
-4131,142,1.4.2,1,1,1.0
-4131,126,1.4,2,1,
-10107,57,2.3.1,0,1,1.0
-10107,99,2.3,1,1,
-791,6,2.1.2.3,0,1,1.0
-791,84,2.1.2,1,1,
-9983,56,1.1.1,0,1,1.0
-9983,94,1.1,1,1,
-20571,142,1.4.3,0,1,1.0
-20571,126,1.4,1,1,
-9161,53,1.4.3.6,0,1,1.0
-9161,142,1.4.3,1,1,1.0
-9161,126,1.4,2,1,
-957,9,1.3.3.6,0,1,1.0
-957,75,1.3.3,1,1,
-15301,99,2.1,0,1,1.0
-15301,102,2,1,1,
-22487,161,2.3.2,0,1,1.0
-22487,155,2.3,1,1,1.0
-20511,142,1.4.2,0,1,1.0
-20511,126,1.4,1,1,1.0
-20511,170,1,2,1,1.0
-2208,16,1.1.3,0,1,1.0
-2208,86,1.1,1,1,1.0
-6899,41,1.4.5,0,1,1.0
-6899,126,1.4,1,1,
-7108,43,1.3.1.6,0,1,1.0
-7108,85,1.3.1,1,1,
-22242,157,1.4.1,0,1,1.0
-22242,126,1.4,1,1,
-22237,157,1.4.1,0,1,1.0
-22237,126,1.4,1,1,1.0
-22237,170,1,2,1,1.0
-10691,60,2.1.1.1,0,1,1.0
-10691,85,2.1.1,1,1,
-20596,142,1.4.3,0,1,1.0
-20596,126,1.4,1,1,
-1507,13,2.1.3.6,0,1,1.0
-1507,106,2.1.3,1,1,
-23249,166,1.2.3,0,1,1.0
-23249,106,1.2,1,1,1.0
-18598,130,1.3.5,0,1,1.0
-18598,29,1.3,1,1,
-699,6,2.1.2.1,0,1,1.0
-699,81,2.1.2,1,1,1.0
-4118,23,1.4.2.7,0,1,1.0
-4118,142,1.4.2,1,1,1.0
-4118,126,1.4,2,1,1.0
-4118,170,1,3,1,1.0
-115,2,1.1.3,0,1,1.0
-115,86,1.1,1,1,1.0
-9453,53,1.4.5.8,0,1,1.0
-9453,41,1.4.5,1,1,
-13241,79,2.3.1,0,1,1.0
-13241,95,2.3,1,1,1.0
-20240,140,1.4.5.1,0,1,1.0
-20240,41,1.4.5,1,1,1.0
-20240,126,1.4,2,1,
-15615,103,1.1.1,0,1,1.0
-15615,94,1.1,1,1,1.0
-9493,53,1.4.5.8,0,1,1.0
-9493,41,1.4.5,1,1,
-18599,130,1.3.5,0,1,1.0
-18599,106,1.3,1,1,
-18599,29,1.3,1,1,
-14257,88,1.1.3,0,1,1.0
-14257,94,1.1,1,1,
-4110,23,1.4.2.7,0,1,1.0
-4110,142,1.4.2,1,1,
-6861,41,1.4.5,0,1,1.0
-6861,126,1.4,1,1,1.0
-6861,170,1,2,1,1.0
-6265,38,2.1.1.5,0,1,1.0
-6265,85,2.1.1,1,1,1.0
-9492,53,1.4.5.8,0,1,1.0
-9492,41,1.4.5,1,1,
-18592,130,1.3.5,0,1,1.0
-18592,106,1.3,1,1,
-18592,29,1.3,1,1,1.0
-4049,23,1.3.3.3,0,1,1.0
-4049,75,1.3.3,1,1,1.0
-16242,109,1.3.3.1,0,1,1.0
-16242,97,1.3.3,1,1,1.0
-4127,23,1.4.2.7,0,1,1.0
-4127,142,1.4.2,1,1,
-4741,26,2.1.3.6,0,1,1.0
-4741,126,2.1.3,1,1,
-22250,157,1.4.1,0,1,1.0
-22250,126,1.4,1,1,
-20528,142,1.4.2,0,1,1.0
-20528,126,1.4,1,1,
-20244,140,1.4.5.1,0,1,1.0
-20244,41,1.4.5,1,1,
-6744,41,1.4.3.2,0,1,1.0
-6744,142,1.4.3,1,1,
-20592,142,1.4.3,0,1,1.0
-20592,126,1.4,1,1,
-9158,53,1.4.3.6,0,1,1.0
-9158,142,1.4.3,1,1,1.0
-9158,126,1.4,2,1,
-17899,126,1.4,0,1,1.0
-17899,170,1,1,1,
-3057,22,2.1.3.1,0,1,1.0
-3057,97,2.1.3,1,1,
-4119,23,1.4.2.7,0,1,1.0
-4119,142,1.4.2,1,1,
-8925,53,1.4.2.3,0,1,1.0
-8925,142,1.4.2,1,1,
-22458,161,2.3.2,0,1,1.0
-22458,84,2.3,1,1,1.0
-11388,64,1.1.2,0,1,1.0
-11388,105,1.1,1,1,1.0
-16807,117,2.1.1.2,0,1,1.0
-16807,80,2.1.1,1,1,
-1502,13,2.1.3.6,0,1,1.0
-1502,148,2.1.3,1,1,
-19106,135,1.3.2.1,0,1,1.0
-19106,130,1.3.2,1,1,1.0
-19106,58,1.3.2,1,1,1.0
-19106,106,1.3,2,1,
-6886,41,1.4.5,0,1,1.0
-6886,126,1.4,1,1,
-8141,47,2.1.3.6,0,1,1.0
-8141,108,2.1.3,1,1,
-20508,142,1.4.2,0,1,1.0
-20508,126,1.4,1,1,1.0
-20508,170,1,2,1,1.0
-20533,142,1.4.2,0,1,1.0
-20533,126,1.4,1,1,
-7937,47,2.1.2.1,0,1,1.0
-7937,79,2.1.2,1,1,1.0
-11007,62,2.1.2.1,0,1,1.0
-11007,81,2.1.2,1,1,
-8207,49,1.3.1.1,0,1,1.0
-8207,39,1.3.1,1,1,
-6855,41,1.4.5,0,1,1.0
-6855,126,1.4,1,1,
-20210,140,1.4.5.1,0,1,1.0
-20210,41,1.4.5,1,1,
-15652,104,1.1.1,0,1,1.0
-15652,106,1.1,1,1,
-8357,49,1.3.3.1,0,1,1.0
-8357,97,1.3.3,1,1,
-15349,99,2.1,0,1,1.0
-15349,102,2,1,1,
-15349,98,2,1,1,
-4707,26,2.1.3.6,0,1,1.0
-4707,106,2.1.3,1,1,
-12592,79,1.3.1.1,0,1,1.0
-12592,39,1.3.1,1,1,1.0
-1459,13,2.1.3.5,0,1,1.0
-1459,74,2.1.3,1,1,
-11335,63,1.4.4.5,0,1,1.0
-11335,40,1.4.4,1,1,
-22907,163,2.1.4.2.2,0,1,1.0
-22907,79,2.1.4.2,1,1,
-22407,161,2.3.1,0,1,1.0
-22407,84,2.3,1,1,
-9198,53,1.4.3.6,0,1,1.0
-9198,142,1.4.3,1,1,
-8940,53,1.4.2.3,0,1,1.0
-8940,142,1.4.2,1,1,1.0
-8940,126,1.4,2,1,
-4257,23,2.3.2,0,1,1.0
-4257,124,2.3,1,1,
-14349,89,1.1.2,0,1,1.0
-14349,126,1.1,1,1,1.0
-6907,42,1.3.1.1,0,1,1.0
-6907,85,1.3.1,1,1,
-17887,126,1.4,0,1,1.0
-17887,170,1,1,1,1.0
-6742,41,1.4.3.2,0,1,1.0
-6742,142,1.4.3,1,1,1.0
-6742,126,1.4,2,1,1.0
-6742,170,1,3,1,1.0
-20550,142,1.4.2,0,1,1.0
-20550,126,1.4,1,1,
-9461,53,1.4.5.8,0,1,1.0
-9461,41,1.4.5,1,1,1.0
-9461,126,1.4,2,1,
-7183,44,1.1.1,0,1,1.0
-7183,106,1.1,1,1,
-9173,53,1.4.3.6,0,1,1.0
-9173,142,1.4.3,1,1,
-9199,53,1.4.3.6,0,1,1.0
-9199,142,1.4.3,1,1,
-8382,49,1.3.3.1,0,1,1.0
-8382,97,1.3.3,1,1,
-11716,69,1.1.1,0,1,1.0
-11716,126,1.1,1,1,
-19108,135,1.3.2.1,0,1,1.0
-19108,130,1.3.2,1,1,1.0
-13081,79,2.1.3.7,0,1,1.0
-13081,148,2.1.3,1,1,1.0
-15350,99,2.1,0,1,1.0
-15350,102,2,1,1,1.0
-15350,98,2,1,1,
-19110,135,1.3.2.1,0,1,1.0
-19110,58,1.3.2,1,1,1.0
-19110,130,1.3.2,1,1,1.0
-19110,106,1.3,2,1,1.0
-19110,29,1.3,2,1,
-6720,41,1.4.3.2,0,1,1.0
-6720,142,1.4.3,1,1,
-20594,142,1.4.3,0,1,1.0
-20594,126,1.4,1,1,
-7799,47,2.1.1.2,0,1,1.0
-7799,148,2.1.1,1,1,1.0
-23415,168,1.3.3.2,0,1,1.0
-23415,75,1.3.3,1,1,
-17907,126,2.1.1.5,0,1,1.0
-17907,85,2.1.1,1,1,
-8902,53,1.4.2.3,0,1,1.0
-8902,142,1.4.2,1,1,1.0
-8902,126,1.4,2,1,
-8407,49,2.1.2.1,0,1,1.0
-8407,84,2.1.2,1,1,
-15683,104,1.1.1,0,1,1.0
-15683,106,1.1,1,1,
-19307,135,2.1.3.3,0,1,1.0
-19307,126,2.1.3,1,1,
-9155,53,1.4.3.6,0,1,1.0
-9155,142,1.4.3,1,1,1.0
-9155,126,1.4,2,1,1.0
-9155,170,1,3,1,1.0
-6287,38,2.1.1.5,0,1,1.0
-6287,80,2.1.1,1,1,1.0
-2882,22,2.1.1.2,0,1,1.0
-2882,106,2.1.1,1,1,
-17882,126,1.4,0,1,1.0
-17882,170,1,1,1,1.0
-9179,53,1.4.3.6,0,1,1.0
-9179,142,1.4.3,1,1,1.0
-9179,126,1.4,2,1,
-6142,38,2.1.1.2,0,1,1.0
-6142,148,2.1.1,1,1,1.0
-20546,142,1.4.2,0,1,1.0
-20546,126,1.4,1,1,
-20502,142,1.4.2,0,1,1.0
-20502,126,1.4,1,1,
-12388,78,2.1.1.2,0,1,1.0
-12388,85,2.1.1,1,1,1.0
-23632,168,2.3.3,0,1,1.0
-23632,126,2.3,1,1,
-16907,117,2.1.1.4,0,1,1.0
-16907,80,2.1.1,1,1,
-13207,79,2.3.1,0,1,1.0
-13207,126,2.3,1,1,
-9478,53,1.4.5.8,0,1,1.0
-9478,41,1.4.5,1,1,
-11350,63,1.4.4.5,0,1,1.0
-11350,0,1.4.4,1,1,1.0
-11350,40,1.4.4,1,1,
-20527,142,1.4.2,0,1,1.0
-20527,126,1.4,1,1,
-9165,53,1.4.3.6,0,1,1.0
-9165,142,1.4.3,1,1,1.0
-9165,126,1.4,2,1,
-20557,142,1.4.3,0,1,1.0
-20557,126,1.4,1,1,
-10138,57,2.3.1,0,1,1.0
-10138,126,2.3,1,1,1.0
-15303,99,2.1,0,1,1.0
-15303,98,2,1,1,
-15303,102,2,1,1,
-2907,22,2.1.1.3,0,1,1.0
-2907,148,2.1.1,1,1,
-19999,138,1.3.1.5,0,1,1.0
-19999,100,1.3.1,1,1,1.0
-20582,142,1.4.3,0,1,1.0
-20582,126,1.4,1,1,
-13096,79,2.1.3.7,0,1,1.0
-13096,74,2.1.3,1,1,
-4122,23,1.4.2.7,0,1,1.0
-4122,142,1.4.2,1,1,
-20239,140,1.4.5.1,0,1,1.0
-20239,41,1.4.5,1,1,
-18692,131,2.1.1.2,0,1,1.0
-18692,106,2.1.1,1,1,1.0
-9183,53,1.4.3.6,0,1,1.0
-9183,142,1.4.3,1,1,
-15313,99,2.1,0,1,1.0
-15313,98,2,1,1,1.0
-6874,41,1.4.5,0,1,1.0
-6874,126,1.4,1,1,
-6711,41,1.4.3.2,0,1,1.0
-6711,142,1.4.3,1,1,1.0
-6711,126,1.4,2,1,
-19399,135,2.1.3.4,0,1,1.0
-19399,108,2.1.3,1,1,1.0
-19257,135,2.1.3.2,0,1,1.0
-19257,73,2.1.3,1,1,
-21757,153,1.3.1.4,0,1,1.0
-21757,39,1.3.1,1,1,
-6857,41,1.4.5,0,1,1.0
-6857,126,1.4,1,1,
-20238,140,1.4.5.1,0,1,1.0
-20238,41,1.4.5,1,1,
-4108,23,1.4.2.7,0,1,1.0
-4108,142,1.4.2,1,1,1.0
-4108,126,1.4,2,1,
-17707,125,1.2.3,0,1,1.0
-17707,126,1.2,1,1,
-12357,78,2.1.1.2,0,1,1.0
-12357,148,2.1.1,1,1,
-1449,13,2.1.3.4,0,1,1.0
-1449,126,2.1.3,1,1,
-20539,142,1.4.2,0,1,1.0
-20539,126,1.4,1,1,
-13619,81,2.1.4.2,0,1,1.0
-13619,102,2.1.4,1,1,1.0
-20512,142,1.4.2,0,1,1.0
-20512,126,1.4,1,1,
-707,6,2.1.2.2,0,1,1.0
-707,159,2.1.2,1,1,
-21857,154,2.1.4.1.2,0,1,1.0
-21857,79,2.1.4.1,1,1,
-20519,142,1.4.2,0,1,1.0
-20519,126,1.4,1,1,
-8948,53,1.4.2.3,0,1,1.0
-8948,142,1.4.2,1,1,
-6734,41,1.4.3.2,0,1,1.0
-6734,142,1.4.3,1,1,
-20510,142,1.4.2,0,1,1.0
-20510,126,1.4,1,1,
-13742,82,2.1.2.2,0,1,1.0
-13742,79,2.1.2,1,1,1.0
-13607,81,2.1.4.2,0,1,1.0
-13607,115,2.1.4,1,1,1.0
-13607,84,2.1.4,1,1,
-8936,53,1.4.2.3,0,1,1.0
-8936,142,1.4.2,1,1,
-20220,140,1.4.5.1,0,1,1.0
-20220,41,1.4.5,1,1,
-21577,150,1.1.1,0,1,1.0
-21577,105,1.1,1,1,1.0
-12665,79,1.3.1.6,0,1,1.0
-12665,100,1.3.1,1,1,1.0
-6719,41,1.4.3.2,0,1,1.0
-6719,142,1.4.3,1,1,
-15338,99,2.1,0,1,1.0
-15338,98,2,1,1,
-12752,79,2.1.3.1,0,1,1.0
-12752,126,2.1.3,1,1,
-8208,49,1.3.1.1,0,1,1.0
-8208,39,1.3.1,1,1,1.0
-12886,79,2.1.3.3,0,1,1.0
-12886,73,2.1.3,1,1,1.0
-17867,126,1.4,0,1,1.0
-17867,170,1,1,1,1.0
-18590,130,1.3.5,0,1,1.0
-18590,106,1.3,1,1,
-8307,49,1.3.1.6,0,1,1.0
-8307,100,1.3.1,1,1,
-21742,153,1.3.1.1,0,1,1.0
-21742,93,1.3.1,1,1,1.0
-11316,63,1.4.4.5,0,1,1.0
-11316,40,1.4.4,1,1,1.0
-15324,99,2.1,0,1,1.0
-15324,102,2,1,1,
-9160,53,1.4.3.6,0,1,1.0
-9160,142,1.4.3,1,1,
-22244,157,1.4.1,0,1,1.0
-22244,126,1.4,1,1,
-5532,33,2.1.2.3,0,1,1.0
-5532,84,2.1.2,1,1,
-15330,99,2.1,0,1,1.0
-15330,102,2,1,1,
-12816,79,2.1.3.2,0,1,1.0
-12816,108,2.1.3,1,1,1.0
-1407,13,2.1.3.4,0,1,1.0
-1407,74,2.1.3,1,1,
-4117,23,1.4.2.7,0,1,1.0
-4117,142,1.4.2,1,1,
-19065,135,1.1.3,0,1,1.0
-19065,94,1.1,1,1,1.0
-9473,53,1.4.5.8,0,1,1.0
-9473,41,1.4.5,1,1,
-7192,44,1.1.1,0,1,1.0
-7192,86,1.1,1,1,1.0
-5199,31,2.1.4.1.3,0,1,1.0
-5199,79,2.1.4.1,1,1,1.0
-19549,135,2.1.3.7,0,1,1.0
-19549,73,2.1.3,1,1,1.0
-5007,31,1.3.3.3,0,1,1.0
-5007,75,1.3.3,1,1,
-15312,99,2.1,0,1,1.0
-15312,98,2,1,1,
-15312,102,2,1,1,
-20513,142,1.4.2,0,1,1.0
-20513,126,1.4,1,1,1.0
-20513,170,1,2,1,1.0
-9477,53,1.4.5.8,0,1,1.0
-9477,41,1.4.5,1,1,
-18572,130,1.3.5,0,1,1.0
-18572,106,1.3,1,1,
-18572,29,1.3,1,1,
-2165,15,1.3.3.5,0,1,1.0
-2165,99,1.3.3,1,1,
-16952,117,2.1.1.5,0,1,1.0
-16952,106,2.1.1,1,1,
-16757,117,2.1.1.1,0,1,1.0
-16757,80,2.1.1,1,1,
-19121,135,1.3.2.1,0,1,1.0
-19121,58,1.3.2,1,1,1.0
-19121,130,1.3.2,1,1,1.0
-19121,29,1.3,2,1,1.0
-19121,106,1.3,2,1,
-1257,13,2.1.3.1,0,1,1.0
-1257,126,2.1.3,1,1,
-20243,140,1.4.5.1,0,1,1.0
-20243,41,1.4.5,1,1,
-12937,79,2.1.3.4,0,1,1.0
-12937,73,2.1.3,1,1,
-12937,74,2.1.3,1,1,
-1988,13,2.3.2,0,1,1.0
-1988,124,2.3,1,1,1.0
-18556,130,1.3.5,0,1,1.0
-18556,29,1.3,1,1,
-11057,62,2.1.2.2,0,1,1.0
-11057,81,2.1.2,1,1,
-21487,149,2.1.2.3,0,1,1.0
-21487,58,2.1.2,1,1,1.0
-23283,167,1.1.1,0,1,1.0
-23283,126,1.1,1,1,
-12957,79,2.1.3.5,0,1,1.0
-12957,74,2.1.3,1,1,
-12349,78,2.1.1.1,0,1,1.0
-12349,85,2.1.1,1,1,1.0
-9185,53,1.4.3.6,0,1,1.0
-9185,142,1.4.3,1,1,
-21583,150,1.1.1,0,1,1.0
-21583,86,1.1,1,1,
-3249,22,2.1.3.4,0,1,1.0
-3249,148,2.1.3,1,1,1.0
-7657,46,1.3.1.2,0,1,1.0
-7657,85,1.3.1,1,1,
-13219,79,2.3.1,0,1,1.0
-13219,124,2.3,1,1,
-6872,41,1.4.5,0,1,1.0
-6872,126,1.4,1,1,
-20544,142,1.4.2,0,1,1.0
-20544,126,1.4,1,1,
-18707,131,2.1.1.3,0,1,1.0
-18707,85,2.1.1,1,1,
-2799,22,1.3.3.6,0,1,1.0
-2799,99,1.3.3,1,1,1.0
-2257,16,2.3.1,0,1,1.0
-2257,126,2.3,1,1,
-18116,127,1.1.1,0,1,1.0
-18116,105,1.1,1,1,
-20231,140,1.4.5.1,0,1,1.0
-20231,41,1.4.5,1,1,1.0
-20231,126,1.4,2,1,
-11442,65,1.2.1,0,1,1.0
-11442,67,1.2,1,1,1.0
-22209,157,1.4.1,0,1,1.0
-22209,126,1.4,1,1,1.0
-22209,170,1,2,1,
-2399,16,2.3.3,0,1,1.0
-2399,95,2.3,1,1,1.0
-22227,157,1.4.1,0,1,1.0
-22227,126,1.4,1,1,
-7692,46,1.3.1.2,0,1,1.0
-7692,100,1.3.1,1,1,1.0
-4145,23,1.4.2.7,0,1,1.0
-4145,142,1.4.2,1,1,1.0
-4145,126,1.4,2,1,
-9190,53,1.4.3.6,0,1,1.0
-9190,142,1.4.3,1,1,1.0
-9190,126,1.4,2,1,
-13257,79,2.3.2,0,1,1.0
-13257,99,2.3,1,1,
-3849,22,2.3.3,0,1,1.0
-3849,99,2.3,1,1,1.0
-15407,100,1.3.1,0,1,1.0
-15407,29,1.3,1,1,
-2338,16,2.3.2,0,1,1.0
-2338,84,2.3,1,1,1.0
-16987,117,2.1.1.5,0,1,1.0
-16987,148,2.1.1,1,1,1.0
-11899,71,1.3.1.2,0,1,1.0
-11899,99,1.3.1,1,1,1.0
-16707,116,1.3.1.7,0,1,1.0
-16707,93,1.3.1,1,1,
-13757,82,2.1.2.3,0,1,1.0
-13757,58,2.1.2,1,1,
-6863,41,1.4.5,0,1,1.0
-6863,126,1.4,1,1,1.0
-6863,170,1,2,1,1.0
-19146,135,1.3.2.1,0,1,1.0
-19146,130,1.3.2,1,1,1.0
-16857,117,2.1.1.3,0,1,1.0
-16857,85,2.1.1,1,1,
-14307,89,1.1.2,0,1,1.0
-14307,86,1.1,1,1,
-7107,43,1.3.1.6,0,1,1.0
-7107,85,1.3.1,1,1,
-9171,53,1.4.3.6,0,1,1.0
-9171,142,1.4.3,1,1,
-9476,53,1.4.5.8,0,1,1.0
-9476,41,1.4.5,1,1,1.0
-9476,126,1.4,2,1,
-23257,167,1.1.1,0,1,1.0
-23257,105,1.1,1,1,
-8918,53,1.4.2.3,0,1,1.0
-8918,142,1.4.2,1,1,1.0
-8918,126,1.4,2,1,1.0
-8918,170,1,3,1,1.0
-4126,23,1.4.2.7,0,1,1.0
-4126,142,1.4.2,1,1,1.0
-4126,126,1.4,2,1,
-22247,157,1.4.1,0,1,1.0
-22247,126,1.4,1,1,1.0
-22247,170,1,2,1,1.0
-19130,135,1.3.2.1,0,1,1.0
-19130,130,1.3.2,1,1,1.0
-19130,58,1.3.2,1,1,1.0
-19130,106,1.3,2,1,1.0
-2307,16,2.3.2,0,1,1.0
-2307,124,2.3,1,1,
-9481,53,1.4.5.8,0,1,1.0
-9481,41,1.4.5,1,1,1.0
-9481,126,1.4,2,1,
-9194,53,1.4.3.6,0,1,1.0
-9194,142,1.4.3,1,1,
-1262,13,2.1.3.1,0,1,1.0
-1262,148,2.1.3,1,1,
-6722,41,1.4.3.2,0,1,1.0
-6722,142,1.4.3,1,1,
-6854,41,1.4.5,0,1,1.0
-6854,126,1.4,1,1,
-4007,23,1.3.3.3,0,1,1.0
-4007,99,1.3.3,1,1,
-13702,82,2.1.2.2,0,1,1.0
-13702,79,2.1.2,1,1,
-13007,79,2.1.3.6,0,1,1.0
-13007,108,2.1.3,1,1,
-22235,157,1.4.1,0,1,1.0
-22235,126,1.4,1,1,
-4299,23,2.3.2,0,1,1.0
-4299,155,2.3,1,1,1.0
-23499,168,1.3.3.4,0,1,1.0
-23499,97,1.3.3,1,1,1.0
-9500,53,1.4.5.8,0,1,1.0
-9500,41,1.4.5,1,1,
-315,3,1.3.4.1,0,1,1.0
-315,80,1.3.4,1,1,1.0
-22226,157,1.4.1,0,1,1.0
-22226,126,1.4,1,1,1.0
-22226,170,1,2,1,
-20219,140,1.4.5.1,0,1,1.0
-20219,41,1.4.5,1,1,
-1252,13,2.1.3.1,0,1,1.0
-1252,74,2.1.3,1,1,
-17881,126,1.4,0,1,1.0
-17881,170,1,1,1,1.0
-23242,166,1.2.3,0,1,1.0
-23242,67,1.2,1,1,1.0
-11325,63,1.4.4.5,0,1,1.0
-11325,0,1.4.4,1,1,
-1440,13,2.1.3.4,0,1,1.0
-1440,73,2.1.3,1,1,
-19112,135,1.3.2.1,0,1,1.0
-19112,130,1.3.2,1,1,1.0
-11301,63,1.4.4.5,0,1,1.0
-11301,40,1.4.4,1,1,
-22246,157,1.4.1,0,1,1.0
-22246,126,1.4,1,1,
-1982,13,2.3.2,0,1,1.0
-1982,155,2.3,1,1,
-23449,168,1.3.3.2,0,1,1.0
-23449,97,1.3.3,1,1,1.0
-1259,13,2.1.3.1,0,1,1.0
-1259,74,2.1.3,1,1,
-18107,127,1.1.1,0,1,1.0
-18107,86,1.1,1,1,
-11432,65,1.2.1,0,1,1.0
-11432,106,1.2,1,1,
-23557,168,2.3.2,0,1,1.0
-23557,124,2.3,1,1,
-17888,126,1.4,0,1,1.0
-17888,170,1,1,1,1.0
-1207,13,1.2.2,0,1,1.0
-1207,106,1.2,1,1,
-5537,33,2.1.2.3,0,1,1.0
-5537,159,2.1.2,1,1,1.0
-22657,163,2.1.4.1.1,0,1,1.0
-22657,81,2.1.4.1,1,1,
-8923,53,1.4.2.3,0,1,1.0
-8923,142,1.4.2,1,1,
-17854,126,1.4,0,1,1.0
-17854,170,1,1,1,1.0
-21457,149,2.1.2.3,0,1,1.0
-21457,79,2.1.2,1,1,
-7807,47,2.1.1.3,0,1,1.0
-7807,80,2.1.1,1,1,
-6737,41,1.4.3.2,0,1,1.0
-6737,142,1.4.3,1,1,1.0
-6737,126,1.4,2,1,
-10982,62,1.3.1.2,0,1,1.0
-10982,99,1.3.1,1,1,
-19133,135,1.3.2.1,0,1,1.0
-19133,58,1.3.2,1,1,1.0
-4499,26,2.1.3.1,0,1,1.0
-4499,106,2.1.3,1,1,1.0
-22999,164,1.3.3.6,0,1,1.0
-22999,99,1.3.3,1,1,1.0
-20232,140,1.4.5.1,0,1,1.0
-20232,41,1.4.5,1,1,1.0
-20232,126,1.4,2,1,
-18596,130,1.3.5,0,1,1.0
-18596,106,1.3,1,1,
-11329,63,1.4.4.5,0,1,1.0
-11329,40,1.4.4,1,1,
-11329,0,1.4.4,1,1,
-7919,47,2.1.2.1,0,1,1.0
-7919,81,2.1.2,1,1,
-13358,80,1.3.4,0,1,1.0
-13358,29,1.3,1,1,
-18649,131,2.1.1.1,0,1,1.0
-18649,106,2.1.1,1,1,1.0
-10307,58,1.3.1.6,0,1,1.0
-10307,100,1.3.1,1,1,
-22432,161,2.3.1,0,1,1.0
-22432,126,2.3,1,1,
-4319,23,2.3.3,0,1,1.0
-4319,84,2.3,1,1,
-18577,130,1.3.5,0,1,1.0
-18577,29,1.3,1,1,
-18577,106,1.3,1,1,
-9498,53,1.4.5.8,0,1,1.0
-9498,41,1.4.5,1,1,
-6740,41,1.4.3.2,0,1,1.0
-6740,142,1.4.3,1,1,1.0
-6740,126,1.4,2,1,
-20579,142,1.4.3,0,1,1.0
-20579,126,1.4,1,1,
-7007,42,1.3.1.4,0,1,1.0
-7007,85,1.3.1,1,1,
-12909,79,2.1.3.4,0,1,1.0
-12909,126,2.1.3,1,1,
-20555,142,1.4.3,0,1,1.0
-20555,126,1.4,1,1,
-17569,123,1.1.2,0,1,1.0
-17569,126,1.1,1,1,
-6851,41,1.4.5,0,1,1.0
-6851,126,1.4,1,1,
-20235,140,1.4.5.1,0,1,1.0
-20235,41,1.4.5,1,1,
-19139,135,1.3.2.1,0,1,1.0
-19139,58,1.3.2,1,1,1.0
-4147,23,1.4.2.7,0,1,1.0
-4147,142,1.4.2,1,1,1.0
-4147,126,1.4,2,1,1.0
-4147,170,1,3,1,
-399,4,1.2.2,0,1,1.0
-399,97,1.2,1,1,1.0
-20907,144,2.1.2.2,0,1,1.0
-20907,84,2.1.2,1,1,
-8934,53,1.4.2.3,0,1,1.0
-8934,142,1.4.2,1,1,
-7049,42,1.3.1.4,0,1,1.0
-7049,39,1.3.1,1,1,1.0
-12767,79,2.1.3.1,0,1,1.0
-12767,126,2.1.3,1,1,
-8449,49,2.1.2.1,0,1,1.0
-8449,79,2.1.2,1,1,1.0
-11312,63,1.4.4.5,0,1,1.0
-11312,40,1.4.4,1,1,1.0
-11312,0,1.4.4,1,1,
-837,6,2.1.2.4,0,1,1.0
-837,58,2.1.2,1,1,1.0
-8092,47,2.1.2.4,0,1,1.0
-8092,79,2.1.2,1,1,1.0
-12751,79,2.1.3.1,0,1,1.0
-12751,73,2.1.3,1,1,
-1266,13,2.1.3.1,0,1,1.0
-1266,73,2.1.3,1,1,1.0
-17873,126,1.4,0,1,1.0
-17873,170,1,1,1,
-11142,62,2.1.2.3,0,1,1.0
-11142,84,2.1.2,1,1,1.0
-11313,63,1.4.4.5,0,1,1.0
-11313,40,1.4.4,1,1,
-11313,0,1.4.4,1,1,1.0
-9992,56,1.1.1,0,1,1.0
-9992,106,1.1,1,1,1.0
-6895,41,1.4.5,0,1,1.0
-6895,126,1.4,1,1,
-6896,41,1.4.5,0,1,1.0
-6896,126,1.4,1,1,
-20575,142,1.4.3,0,1,1.0
-20575,126,1.4,1,1,
-8949,53,1.4.2.3,0,1,1.0
-8949,142,1.4.2,1,1,
-15322,99,2.1,0,1,1.0
-15322,102,2,1,1,
-5049,31,1.3.3.3,0,1,1.0
-5049,99,1.3.3,1,1,1.0
-20226,140,1.4.5.1,0,1,1.0
-20226,41,1.4.5,1,1,1.0
-20226,126,1.4,2,1,
-1586,13,2.1.3.7,0,1,1.0
-1586,97,2.1.3,1,1,
-12541,78,2.1.1.5,0,1,1.0
-12541,80,2.1.1,1,1,
-20857,144,2.1.2.1,0,1,1.0
-20857,84,2.1.2,1,1,
-1532,13,2.1.3.6,0,1,1.0
-1532,74,2.1.3,1,1,
-20529,142,1.4.2,0,1,1.0
-20529,126,1.4,1,1,
-18571,130,1.3.5,0,1,1.0
-18571,29,1.3,1,1,
-6870,41,1.4.5,0,1,1.0
-6870,126,1.4,1,1,
-8492,49,2.1.2.2,0,1,1.0
-8492,79,2.1.2,1,1,1.0
-19122,135,1.3.2.1,0,1,1.0
-19122,58,1.3.2,1,1,1.0
-19122,130,1.3.2,1,1,1.0
-19122,106,1.3,2,1,1.0
-12007,74,1.3.3.2,0,1,1.0
-12007,97,1.3.3,1,1,
-18583,130,1.3.5,0,1,1.0
-18583,106,1.3,1,1,
-6714,41,1.4.3.2,0,1,1.0
-6714,142,1.4.3,1,1,1.0
-6714,126,1.4,2,1,1.0
-6714,170,1,3,1,1.0
-15309,99,2.1,0,1,1.0
-15309,98,2,1,1,1.0
-15309,102,2,1,1,
-10957,62,1.3.1.2,0,1,1.0
-10957,39,1.3.1,1,1,
-9181,53,1.4.3.6,0,1,1.0
-9181,142,1.4.3,1,1,1.0
-9181,126,1.4,2,1,
-14357,89,1.2.1,0,1,1.0
-14357,97,1.2,1,1,
-9464,53,1.4.5.8,0,1,1.0
-9464,41,1.4.5,1,1,1.0
-9464,126,1.4,2,1,1.0
-9464,170,1,3,1,1.0
-17592,123,1.1.2,0,1,1.0
-17592,105,1.1,1,1,1.0
-15331,99,2.1,0,1,1.0
-15331,102,2,1,1,1.0
-8332,49,1.3.1.6,0,1,1.0
-8332,100,1.3.1,1,1,
-22201,157,1.4.1,0,1,1.0
-22201,126,1.4,1,1,
-11332,63,1.4.4.5,0,1,1.0
-11332,40,1.4.4,1,1,1.0
-21199,147,1.1.2,0,1,1.0
-21199,94,1.1,1,1,1.0
-19119,135,1.3.2.1,0,1,1.0
-19119,130,1.3.2,1,1,1.0
-19207,135,2.1.3.1,0,1,1.0
-19207,148,2.1.3,1,1,
-10008,56,1.3.1.7,0,1,1.0
-10008,100,1.3.1,1,1,1.0
-19124,135,1.3.2.1,0,1,1.0
-19124,130,1.3.2,1,1,1.0
-19124,58,1.3.2,1,1,1.0
-19124,29,1.3,2,1,
-19124,106,1.3,2,1,
-17207,117,2.1.4.2.1,0,1,1.0
-17207,81,2.1.4.2,1,1,
-16508,113,1.1.1,0,1,1.0
-16508,105,1.1,1,1,1.0
-20590,142,1.4.3,0,1,1.0
-20590,126,1.4,1,1,
-18586,130,1.3.5,0,1,1.0
-18586,106,1.3,1,1,1.0
-18586,29,1.3,1,1,
-15315,99,2.1,0,1,1.0
-15315,102,2,1,1,
-15315,98,2,1,1,
-10192,57,2.3.2,0,1,1.0
-10192,126,2.3,1,1,1.0
-10832,60,2.1.1.4,0,1,1.0
-10832,80,2.1.1,1,1,
-15326,99,2.1,0,1,1.0
-15326,102,2,1,1,1.0
-15611,103,1.1.1,0,1,1.0
-15611,94,1.1,1,1,1.0
-6888,41,1.4.5,0,1,1.0
-6888,126,1.4,1,1,
-19457,135,2.1.3.6,0,1,1.0
-19457,74,2.1.3,1,1,
-8950,53,1.4.2.3,0,1,1.0
-8950,142,1.4.2,1,1,
-18007,126,2.2,0,1,1.0
-18007,102,2,1,1,
-20581,142,1.4.3,0,1,1.0
-20581,126,1.4,1,1,1.0
-20581,170,1,2,1,1.0
-21392,149,2.1.2.1,0,1,1.0
-21392,79,2.1.2,1,1,1.0
-642,6,1.3.1.2,0,1,1.0
-642,100,1.3.1,1,1,1.0
-4129,23,1.4.2.7,0,1,1.0
-4129,142,1.4.2,1,1,1.0
-4129,126,1.4,2,1,
-15337,99,2.1,0,1,1.0
-15337,98,2,1,1,1.0
-15337,102,2,1,1,
-22240,157,1.4.1,0,1,1.0
-22240,126,1.4,1,1,
-2749,22,1.2.2,0,1,1.0
-2749,106,1.2,1,1,1.0
-12781,79,2.1.3.1,0,1,1.0
-12781,126,2.1.3,1,1,
-2342,16,2.3.2,0,1,1.0
-2342,124,2.3,1,1,1.0
-20553,142,1.4.3,0,1,1.0
-20553,126,1.4,1,1,
-1386,13,2.1.3.3,0,1,1.0
-1386,73,2.1.3,1,1,
-9168,53,1.4.3.6,0,1,1.0
-9168,142,1.4.3,1,1,1.0
-9168,126,1.4,2,1,1.0
-9168,170,1,3,1,1.0
-19147,135,1.3.2.1,0,1,1.0
-19147,130,1.3.2,1,1,1.0
-22807,163,2.1.4.1.4,0,1,1.0
-22807,81,2.1.4.1,1,1,
-19315,135,2.1.3.3,0,1,1.0
-19315,108,2.1.3,1,1,1.0
-608,6,1.3.1.2,0,1,1.0
-608,85,1.3.1,1,1,
-20807,143,2.1.1.5,0,1,1.0
-20807,85,2.1.1,1,1,
-4265,23,2.3.2,0,1,1.0
-4265,155,2.3,1,1,1.0
-11327,63,1.4.4.5,0,1,1.0
-11327,40,1.4.4,1,1,
-11327,0,1.4.4,1,1,
-20802,143,2.1.1.5,0,1,1.0
-20802,80,2.1.1,1,1,
-11323,63,1.4.4.5,0,1,1.0
-11323,0,1.4.4,1,1,
-11323,40,1.4.4,1,1,1.0
-8219,49,1.3.1.1,0,1,1.0
-8219,100,1.3.1,1,1,
-11342,63,1.4.4.5,0,1,1.0
-11342,0,1.4.4,1,1,
-11342,40,1.4.4,1,1,1.0
-19115,135,1.3.2.1,0,1,1.0
-19115,130,1.3.2,1,1,1.0
-23008,165,2.1.2.1,0,1,1.0
-23008,58,2.1.2,1,1,1.0
-8904,53,1.4.2.3,0,1,1.0
-8904,142,1.4.2,1,1,1.0
-8904,126,1.4,2,1,
-7899,47,2.1.1.4,0,1,1.0
-7899,85,2.1.1,1,1,1.0
-19499,135,2.1.3.6,0,1,1.0
-19499,108,2.1.3,1,1,1.0
-13832,82,2.1.2.4,0,1,1.0
-13832,84,2.1.2,1,1,
-2915,22,2.1.1.3,0,1,1.0
-2915,85,2.1.1,1,1,1.0
-21566,150,1.1.1,0,1,1.0
-21566,106,1.1,1,1,
-1357,13,2.1.3.3,0,1,1.0
-1357,126,2.1.3,1,1,
-8935,53,1.4.2.3,0,1,1.0
-8935,142,1.4.2,1,1,
-23099,165,2.1.2.2,0,1,1.0
-23099,58,2.1.2,1,1,1.0
-6730,41,1.4.3.2,0,1,1.0
-6730,142,1.4.3,1,1,
-17357,119,1.3.1.1,0,1,1.0
-17357,99,1.3.1,1,1,
-17897,126,1.4,0,1,1.0
-17897,170,1,1,1,1.0
-7265,45,1.3.4.1,0,1,1.0
-7265,81,1.3.4,1,1,1.0
-21707,153,1.3.1.1,0,1,1.0
-21707,85,1.3.1,1,1,
-22239,157,1.4.1,0,1,1.0
-22239,126,1.4,1,1,
-20558,142,1.4.3,0,1,1.0
-20558,126,1.4,1,1,1.0
-20558,170,1,2,1,1.0
-11318,63,1.4.4.5,0,1,1.0
-11318,40,1.4.4,1,1,1.0
-2757,22,1.3.3.6,0,1,1.0
-2757,99,1.3.3,1,1,
-9472,53,1.4.5.8,0,1,1.0
-9472,41,1.4.5,1,1,
-13857,83,1.3.3.2,0,1,1.0
-13857,75,1.3.3,1,1,
-20791,143,2.1.1.4,0,1,1.0
-20791,80,2.1.1,1,1,
-12946,79,2.1.3.4,0,1,1.0
-12946,74,2.1.3,1,1,
-2207,16,1.1.3,0,1,1.0
-2207,106,1.1,1,1,
-3349,22,2.1.3.6,0,1,1.0
-3349,106,2.1.3,1,1,1.0
-4657,26,2.1.3.5,0,1,1.0
-4657,126,2.1.3,1,1,
-18566,130,1.3.5,0,1,1.0
-18566,106,1.3,1,1,
-8157,48,1.2.2,0,1,1.0
-8157,126,1.2,1,1,
-11304,63,1.4.4.5,0,1,1.0
-11304,40,1.4.4,1,1,1.0
-18568,130,1.3.5,0,1,1.0
-18568,29,1.3,1,1,
-9499,53,1.4.5.8,0,1,1.0
-9499,41,1.4.5,1,1,
-5407,33,2.1.2.1,0,1,1.0
-5407,81,2.1.2,1,1,
-20505,142,1.4.2,0,1,1.0
-20505,126,1.4,1,1,
-14499,90,1.3.1.7,0,1,1.0
-14499,85,1.3.1,1,1,1.0
-4121,23,1.4.2.7,0,1,1.0
-4121,142,1.4.2,1,1,
-9192,53,1.4.3.6,0,1,1.0
-9192,142,1.4.3,1,1,1.0
-9192,126,1.4,2,1,1.0
-9192,170,1,3,1,1.0
-22216,157,1.4.1,0,1,1.0
-22216,126,1.4,1,1,
-9180,53,1.4.3.6,0,1,1.0
-9180,142,1.4.3,1,1,
-18291,129,1.1.2,0,1,1.0
-18291,94,1.1,1,1,
-12757,79,2.1.3.1,0,1,1.0
-12757,74,2.1.3,1,1,
-841,6,2.1.2.4,0,1,1.0
-841,79,2.1.2,1,1,1.0
-11348,63,1.4.4.5,0,1,1.0
-11348,40,1.4.4,1,1,1.0
-11348,0,1.4.4,1,1,
-1267,13,2.1.3.1,0,1,1.0
-1267,97,2.1.3,1,1,
-4392,24,1.1.1,0,1,1.0
-4392,126,1.1,1,1,1.0
-18580,130,1.3.5,0,1,1.0
-18580,29,1.3,1,1,
-2707,22,1.2.2,0,1,1.0
-2707,126,1.2,1,1,
-10999,62,1.3.1.2,0,1,1.0
-10999,100,1.3.1,1,1,1.0
-1567,13,2.1.3.7,0,1,1.0
-1567,148,2.1.3,1,1,
-5588,33,2.1.2.4,0,1,1.0
-5588,79,2.1.2,1,1,1.0
-2365,16,2.3.3,0,1,1.0
-2365,95,2.3,1,1,1.0
-9162,53,1.4.3.6,0,1,1.0
-9162,142,1.4.3,1,1,1.0
-9162,126,1.4,2,1,
-8919,53,1.4.2.3,0,1,1.0
-8919,142,1.4.2,1,1,
-8942,53,1.4.2.3,0,1,1.0
-8942,142,1.4.2,1,1,
-11908,72,1.3.1.2,0,1,1.0
-11908,99,1.3.1,1,1,
+s_id,id_firm,id_product,ts
+2,126,1.4,1
+2,0,1.4.4,0
+4,0,1.4.4,0
+4,126,1.4,1
+5,126,1.4,1
+5,0,1.4.4,0
+6,170,1,2
+6,0,1.4.4,0
+6,126,1.4,1
+7,126,1.4,1
+7,0,1.4.4,0
+8,0,1.4.4,0
+8,126,1.4,1
+9,170,1,2
+9,0,1.4.4,0
+9,126,1.4,1
+10,126,1.4,1
+10,0,1.4.4,0
+11,0,1.4.4,0
+11,126,1.4,1
+14,0,1.4.4,0
+14,126,1.4,1
+16,0,1.4.4,0
+16,126,1.4,1
+22,126,1.4,1
+22,170,1,2
+22,0,1.4.4,0
+23,126,1.4,1
+23,0,1.4.4,0
+26,126,1.4,1
+26,170,1,2
+26,0,1.4.4,0
+28,126,1.4,1
+28,0,1.4.4,0
+29,126,1.4,1
+29,170,1,2
+29,0,1.4.4,0
+31,0,1.4.4,0
+31,126,1.4,1
+32,0,1.4.4,0
+32,126,1.4,1
+33,0,1.4.4,0
+33,126,1.4,1
+34,0,1.4.4,0
+34,126,1.4,1
+36,126,1.4,1
+36,0,1.4.4,0
+39,126,1.4,1
+39,0,1.4.4,0
+41,126,1.4,1
+41,0,1.4.4,0
+43,0,1.4.4,0
+43,170,1,2
+43,126,1.4,1
+44,0,1.4.4,0
+44,126,1.4,1
+47,0,1.4.4,0
+47,126,1.4,1
+48,0,1.4.4,0
+48,126,1.4,1
+52,1,2.1.1.5,0
+52,85,2.1.1,1
+54,1,2.1.1.5,0
+54,85,2.1.1,1
+55,1,2.1.1.5,0
+55,106,2.1.1,1
+56,85,2.1.1,1
+56,1,2.1.1.5,0
+57,80,2.1.1,1
+57,1,2.1.1.5,0
+58,85,2.1.1,1
+58,1,2.1.1.5,0
+60,85,2.1.1,1
+60,1,2.1.1.5,0
+61,1,2.1.1.5,0
+61,80,2.1.1,1
+61,148,2.1.1,1
+62,1,2.1.1.5,0
+62,148,2.1.1,1
+64,85,2.1.1,1
+64,148,2.1.1,1
+64,1,2.1.1.5,0
+66,106,2.1.1,1
+66,1,2.1.1.5,0
+70,1,2.1.1.5,0
+70,80,2.1.1,1
+72,106,2.1.1,1
+72,1,2.1.1.5,0
+73,148,2.1.1,1
+73,80,2.1.1,1
+73,1,2.1.1.5,0
+76,80,2.1.1,1
+76,1,2.1.1.5,0
+78,1,2.1.1.5,0
+78,80,2.1.1,1
+79,1,2.1.1.5,0
+79,106,2.1.1,1
+81,85,2.1.1,1
+81,1,2.1.1.5,0
+82,1,2.1.1.5,0
+82,80,2.1.1,1
+83,1,2.1.1.5,0
+83,80,2.1.1,1
+84,106,2.1.1,1
+84,1,2.1.1.5,0
+85,148,2.1.1,1
+85,1,2.1.1.5,0
+86,1,2.1.1.5,0
+86,106,2.1.1,1
+88,148,2.1.1,1
+88,1,2.1.1.5,0
+89,80,2.1.1,1
+89,1,2.1.1.5,0
+91,1,2.1.1.5,0
+91,148,2.1.1,1
+92,148,2.1.1,1
+92,1,2.1.1.5,0
+93,85,2.1.1,1
+93,1,2.1.1.5,0
+94,106,2.1.1,1
+94,1,2.1.1.5,0
+94,80,2.1.1,1
+97,1,2.1.1.5,0
+97,85,2.1.1,1
+98,85,2.1.1,1
+98,1,2.1.1.5,0
+102,2,1.1.3,0
+102,86,1.1,1
+104,2,1.1.3,0
+104,106,1.1,1
+105,2,1.1.3,0
+105,94,1.1,1
+105,105,1.1,1
+106,2,1.1.3,0
+106,105,1.1,1
+107,86,1.1,1
+107,2,1.1.3,0
+108,86,1.1,1
+108,2,1.1.3,0
+108,126,1.1,1
+110,2,1.1.3,0
+110,105,1.1,1
+111,106,1.1,1
+111,94,1.1,1
+111,2,1.1.3,0
+114,94,1.1,1
+114,2,1.1.3,0
+114,105,1.1,1
+116,126,1.1,1
+116,2,1.1.3,0
+122,106,1.1,1
+122,2,1.1.3,0
+123,106,1.1,1
+123,2,1.1.3,0
+124,2,1.1.3,0
+124,126,1.1,1
+126,126,1.1,1
+126,106,1.1,1
+126,2,1.1.3,0
+128,105,1.1,1
+128,2,1.1.3,0
+129,2,1.1.3,0
+129,94,1.1,1
+131,2,1.1.3,0
+131,94,1.1,1
+132,2,1.1.3,0
+132,86,1.1,1
+133,2,1.1.3,0
+133,106,1.1,1
+134,2,1.1.3,0
+134,94,1.1,1
+135,106,1.1,1
+135,2,1.1.3,0
+135,105,1.1,1
+136,2,1.1.3,0
+136,94,1.1,1
+137,2,1.1.3,0
+137,126,1.1,1
+138,105,1.1,1
+138,2,1.1.3,0
+139,86,1.1,1
+139,2,1.1.3,0
+140,126,1.1,1
+140,94,1.1,1
+140,2,1.1.3,0
+141,86,1.1,1
+141,2,1.1.3,0
+143,86,1.1,1
+143,106,1.1,1
+143,2,1.1.3,0
+144,2,1.1.3,0
+144,105,1.1,1
+147,2,1.1.3,0
+147,105,1.1,1
+148,94,1.1,1
+148,2,1.1.3,0
+148,86,1.1,1
+149,106,1.1,1
+149,2,1.1.3,0
+150,2,1.1.3,0
+150,106,1.1,1
+151,100,1.3.1,1
+151,3,1.3.1.4,0
+152,3,1.3.1.4,0
+152,85,1.3.1,1
+152,99,1.3.1,1
+154,100,1.3.1,1
+154,3,1.3.1.4,0
+154,93,1.3.1,1
+155,3,1.3.1.4,0
+155,93,1.3.1,1
+155,99,1.3.1,1
+157,3,1.3.1.4,0
+157,100,1.3.1,1
+158,39,1.3.1,1
+158,3,1.3.1.4,0
+159,3,1.3.1.4,0
+159,39,1.3.1,1
+160,3,1.3.1.4,0
+160,93,1.3.1,1
+161,93,1.3.1,1
+161,3,1.3.1.4,0
+161,85,1.3.1,1
+161,99,1.3.1,1
+164,100,1.3.1,1
+164,3,1.3.1.4,0
+164,99,1.3.1,1
+166,85,1.3.1,1
+166,99,1.3.1,1
+166,3,1.3.1.4,0
+166,39,1.3.1,1
+170,3,1.3.1.4,0
+170,85,1.3.1,1
+172,3,1.3.1.4,0
+172,85,1.3.1,1
+173,100,1.3.1,1
+173,3,1.3.1.4,0
+175,3,1.3.1.4,0
+175,93,1.3.1,1
+176,85,1.3.1,1
+176,3,1.3.1.4,0
+177,3,1.3.1.4,0
+177,93,1.3.1,1
+178,100,1.3.1,1
+178,3,1.3.1.4,0
+179,85,1.3.1,1
+179,99,1.3.1,1
+179,3,1.3.1.4,0
+181,85,1.3.1,1
+181,3,1.3.1.4,0
+183,3,1.3.1.4,0
+183,85,1.3.1,1
+184,3,1.3.1.4,0
+184,39,1.3.1,1
+185,100,1.3.1,1
+185,3,1.3.1.4,0
+186,85,1.3.1,1
+186,106,1.3,2
+186,93,1.3.1,1
+186,3,1.3.1.4,0
+186,39,1.3.1,1
+188,3,1.3.1.4,0
+188,99,1.3.1,1
+189,3,1.3.1.4,0
+189,100,1.3.1,1
+191,93,1.3.1,1
+191,3,1.3.1.4,0
+191,39,1.3.1,1
+192,3,1.3.1.4,0
+192,93,1.3.1,1
+193,100,1.3.1,1
+193,93,1.3.1,1
+193,3,1.3.1.4,0
+194,100,1.3.1,1
+194,85,1.3.1,1
+194,3,1.3.1.4,0
+195,100,1.3.1,1
+195,3,1.3.1.4,0
+197,85,1.3.1,1
+197,3,1.3.1.4,0
+197,100,1.3.1,1
+198,3,1.3.1.4,0
+198,39,1.3.1,1
+202,39,1.3.1,1
+202,3,1.3.1.5,0
+202,85,1.3.1,1
+203,99,1.3.1,1
+203,39,1.3.1,1
+203,100,1.3.1,1
+203,3,1.3.1.5,0
+204,3,1.3.1.5,0
+204,100,1.3.1,1
+205,93,1.3.1,1
+205,3,1.3.1.5,0
+205,85,1.3.1,1
+206,3,1.3.1.5,0
+206,100,1.3.1,1
+207,93,1.3.1,1
+207,3,1.3.1.5,0
+208,85,1.3.1,1
+208,3,1.3.1.5,0
+209,3,1.3.1.5,0
+209,39,1.3.1,1
+210,39,1.3.1,1
+210,3,1.3.1.5,0
+211,100,1.3.1,1
+211,3,1.3.1.5,0
+212,99,1.3.1,1
+212,3,1.3.1.5,0
+212,100,1.3.1,1
+214,3,1.3.1.5,0
+214,99,1.3.1,1
+216,93,1.3.1,1
+216,3,1.3.1.5,0
+216,85,1.3.1,1
+217,100,1.3.1,1
+217,3,1.3.1.5,0
+219,39,1.3.1,1
+219,85,1.3.1,1
+219,100,1.3.1,1
+219,99,1.3.1,1
+219,3,1.3.1.5,0
+220,3,1.3.1.5,0
+220,85,1.3.1,1
+221,93,1.3.1,1
+221,3,1.3.1.5,0
+222,3,1.3.1.5,0
+222,39,1.3.1,1
+223,99,1.3.1,1
+223,93,1.3.1,1
+223,39,1.3.1,1
+223,100,1.3.1,1
+223,3,1.3.1.5,0
+223,106,1.3,2
+224,106,1.3,2
+224,39,1.3.1,1
+224,85,1.3.1,1
+224,3,1.3.1.5,0
+225,100,1.3.1,1
+225,3,1.3.1.5,0
+227,3,1.3.1.5,0
+227,93,1.3.1,1
+228,39,1.3.1,1
+228,3,1.3.1.5,0
+229,3,1.3.1.5,0
+229,85,1.3.1,1
+229,39,1.3.1,1
+231,93,1.3.1,1
+231,39,1.3.1,1
+231,3,1.3.1.5,0
+232,85,1.3.1,1
+232,3,1.3.1.5,0
+232,93,1.3.1,1
+232,29,1.3,2
+234,39,1.3.1,1
+234,3,1.3.1.5,0
+236,93,1.3.1,1
+236,29,1.3,2
+236,3,1.3.1.5,0
+236,100,1.3.1,1
+236,85,1.3.1,1
+238,93,1.3.1,1
+238,3,1.3.1.5,0
+238,85,1.3.1,1
+239,3,1.3.1.5,0
+239,93,1.3.1,1
+239,39,1.3.1,1
+241,3,1.3.1.5,0
+241,39,1.3.1,1
+242,39,1.3.1,1
+242,3,1.3.1.5,0
+242,99,1.3.1,1
+243,3,1.3.1.5,0
+243,85,1.3.1,1
+244,100,1.3.1,1
+244,3,1.3.1.5,0
+244,99,1.3.1,1
+245,85,1.3.1,1
+245,93,1.3.1,1
+245,3,1.3.1.5,0
+246,3,1.3.1.5,0
+246,99,1.3.1,1
+247,100,1.3.1,1
+247,39,1.3.1,1
+247,3,1.3.1.5,0
+248,39,1.3.1,1
+248,93,1.3.1,1
+248,3,1.3.1.5,0
+252,39,1.3.1,1
+252,100,1.3.1,1
+252,3,1.3.1.6,0
+254,85,1.3.1,1
+254,3,1.3.1.6,0
+255,3,1.3.1.6,0
+255,99,1.3.1,1
+256,99,1.3.1,1
+256,3,1.3.1.6,0
+257,3,1.3.1.6,0
+257,39,1.3.1,1
+258,39,1.3.1,1
+258,3,1.3.1.6,0
+260,3,1.3.1.6,0
+260,39,1.3.1,1
+260,100,1.3.1,1
+261,3,1.3.1.6,0
+261,85,1.3.1,1
+261,99,1.3.1,1
+262,3,1.3.1.6,0
+262,99,1.3.1,1
+264,39,1.3.1,1
+264,3,1.3.1.6,0
+264,85,1.3.1,1
+266,93,1.3.1,1
+266,3,1.3.1.6,0
+266,85,1.3.1,1
+269,39,1.3.1,1
+269,85,1.3.1,1
+269,3,1.3.1.6,0
+274,93,1.3.1,1
+274,3,1.3.1.6,0
+274,99,1.3.1,1
+275,39,1.3.1,1
+275,3,1.3.1.6,0
+279,99,1.3.1,1
+279,3,1.3.1.6,0
+279,39,1.3.1,1
+281,100,1.3.1,1
+281,3,1.3.1.6,0
+282,3,1.3.1.6,0
+282,39,1.3.1,1
+283,3,1.3.1.6,0
+283,85,1.3.1,1
+284,3,1.3.1.6,0
+284,39,1.3.1,1
+285,99,1.3.1,1
+285,3,1.3.1.6,0
+286,3,1.3.1.6,0
+286,100,1.3.1,1
+288,3,1.3.1.6,0
+288,99,1.3.1,1
+289,99,1.3.1,1
+289,3,1.3.1.6,0
+290,93,1.3.1,1
+290,3,1.3.1.6,0
+291,3,1.3.1.6,0
+291,99,1.3.1,1
+292,39,1.3.1,1
+292,106,1.3,2
+292,3,1.3.1.6,0
+292,85,1.3.1,1
+292,100,1.3.1,1
+293,39,1.3.1,1
+293,3,1.3.1.6,0
+293,93,1.3.1,1
+294,39,1.3.1,1
+294,100,1.3.1,1
+294,3,1.3.1.6,0
+295,85,1.3.1,1
+295,93,1.3.1,1
+295,3,1.3.1.6,0
+298,106,1.3,2
+298,39,1.3.1,1
+298,3,1.3.1.6,0
+298,100,1.3.1,1
+300,3,1.3.1.6,0
+300,100,1.3.1,1
+300,93,1.3.1,1
+304,3,1.3.4.1,0
+304,77,1.3.4,1
+304,81,1.3.4,1
+305,80,1.3.4,1
+305,77,1.3.4,1
+305,3,1.3.4.1,0
+307,3,1.3.4.1,0
+307,77,1.3.4,1
+309,3,1.3.4.1,0
+309,80,1.3.4,1
+310,3,1.3.4.1,0
+310,80,1.3.4,1
+311,80,1.3.4,1
+311,3,1.3.4.1,0
+320,80,1.3.4,1
+320,3,1.3.4.1,0
+322,3,1.3.4.1,0
+322,81,1.3.4,1
+327,3,1.3.4.1,0
+327,81,1.3.4,1
+328,3,1.3.4.1,0
+328,80,1.3.4,1
+329,77,1.3.4,1
+329,80,1.3.4,1
+329,3,1.3.4.1,0
+331,80,1.3.4,1
+331,3,1.3.4.1,0
+332,3,1.3.4.1,0
+332,81,1.3.4,1
+333,3,1.3.4.1,0
+333,77,1.3.4,1
+336,3,1.3.4.1,0
+336,81,1.3.4,1
+336,77,1.3.4,1
+339,3,1.3.4.1,0
+339,77,1.3.4,1
+341,3,1.3.4.1,0
+341,77,1.3.4,1
+343,80,1.3.4,1
+343,3,1.3.4.1,0
+344,80,1.3.4,1
+344,3,1.3.4.1,0
+347,80,1.3.4,1
+347,3,1.3.4.1,0
+349,80,1.3.4,1
+349,3,1.3.4.1,0
+350,3,1.3.4.1,0
+350,80,1.3.4,1
+352,106,1.2,1
+352,97,1.2,1
+352,126,1.2,1
+352,4,1.2.2,0
+352,67,1.2,1
+353,97,1.2,1
+353,4,1.2.2,0
+353,106,1.2,1
+354,106,1.2,1
+354,4,1.2.2,0
+355,4,1.2.2,0
+355,126,1.2,1
+355,97,1.2,1
+356,97,1.2,1
+356,4,1.2.2,0
+357,4,1.2.2,0
+357,97,1.2,1
+358,4,1.2.2,0
+358,126,1.2,1
+360,97,1.2,1
+360,4,1.2.2,0
+361,4,1.2.2,0
+361,106,1.2,1
+361,126,1.2,1
+364,126,1.2,1
+364,4,1.2.2,0
+364,97,1.2,1
+366,4,1.2.2,0
+366,97,1.2,1
+367,4,1.2.2,0
+367,106,1.2,1
+369,106,1.2,1
+369,4,1.2.2,0
+372,97,1.2,1
+372,4,1.2.2,0
+373,97,1.2,1
+373,67,1.2,1
+373,4,1.2.2,0
+374,4,1.2.2,0
+374,97,1.2,1
+376,4,1.2.2,0
+376,67,1.2,1
+377,126,1.2,1
+377,4,1.2.2,0
+378,4,1.2.2,0
+378,97,1.2,1
+379,4,1.2.2,0
+379,67,1.2,1
+381,4,1.2.2,0
+381,97,1.2,1
+381,67,1.2,1
+382,97,1.2,1
+382,4,1.2.2,0
+383,67,1.2,1
+383,4,1.2.2,0
+384,67,1.2,1
+384,4,1.2.2,0
+386,126,1.2,1
+386,106,1.2,1
+386,4,1.2.2,0
+388,4,1.2.2,0
+388,97,1.2,1
+389,4,1.2.2,0
+389,126,1.2,1
+390,97,1.2,1
+390,4,1.2.2,0
+391,4,1.2.2,0
+391,126,1.2,1
+393,170,1,2
+393,4,1.2.2,0
+393,67,1.2,1
+393,97,1.2,1
+394,67,1.2,1
+394,4,1.2.2,0
+394,97,1.2,1
+397,106,1.2,1
+397,4,1.2.2,0
+398,106,1.2,1
+398,4,1.2.2,0
+398,126,1.2,1
+399,126,1.2,1
+399,4,1.2.2,0
+404,41,1.4.5,1
+404,5,1.4.5.3,0
+405,41,1.4.5,1
+405,5,1.4.5.3,0
+406,41,1.4.5,1
+406,5,1.4.5.3,0
+409,41,1.4.5,1
+409,5,1.4.5.3,0
+410,5,1.4.5.3,0
+410,41,1.4.5,1
+414,41,1.4.5,1
+414,5,1.4.5.3,0
+416,5,1.4.5.3,0
+416,41,1.4.5,1
+419,5,1.4.5.3,0
+419,41,1.4.5,1
+424,5,1.4.5.3,0
+424,41,1.4.5,1
+425,41,1.4.5,1
+425,170,1,3
+425,126,1.4,2
+425,5,1.4.5.3,0
+426,5,1.4.5.3,0
+426,41,1.4.5,1
+428,5,1.4.5.3,0
+428,41,1.4.5,1
+429,5,1.4.5.3,0
+429,41,1.4.5,1
+431,5,1.4.5.3,0
+431,41,1.4.5,1
+432,41,1.4.5,1
+432,5,1.4.5.3,0
+433,41,1.4.5,1
+433,5,1.4.5.3,0
+434,5,1.4.5.3,0
+434,41,1.4.5,1
+436,5,1.4.5.3,0
+436,41,1.4.5,1
+442,41,1.4.5,1
+442,5,1.4.5.3,0
+443,41,1.4.5,1
+443,5,1.4.5.3,0
+444,5,1.4.5.3,0
+444,41,1.4.5,1
+447,5,1.4.5.3,0
+447,41,1.4.5,1
+449,41,1.4.5,1
+449,5,1.4.5.3,0
+451,41,1.4.5,1
+451,5,1.4.5.4,0
+452,5,1.4.5.4,0
+452,41,1.4.5,1
+453,170,1,3
+453,126,1.4,2
+453,5,1.4.5.4,0
+453,41,1.4.5,1
+454,41,1.4.5,1
+454,5,1.4.5.4,0
+455,126,1.4,2
+455,41,1.4.5,1
+455,5,1.4.5.4,0
+455,170,1,3
+456,41,1.4.5,1
+456,5,1.4.5.4,0
+457,170,1,3
+457,5,1.4.5.4,0
+457,41,1.4.5,1
+457,126,1.4,2
+458,41,1.4.5,1
+458,126,1.4,2
+458,5,1.4.5.4,0
+458,170,1,3
+459,41,1.4.5,1
+459,5,1.4.5.4,0
+460,126,1.4,2
+460,5,1.4.5.4,0
+460,41,1.4.5,1
+460,170,1,3
+461,5,1.4.5.4,0
+461,126,1.4,2
+461,170,1,3
+461,41,1.4.5,1
+464,170,1,3
+464,5,1.4.5.4,0
+464,41,1.4.5,1
+464,126,1.4,2
+466,41,1.4.5,1
+466,5,1.4.5.4,0
+469,5,1.4.5.4,0
+469,41,1.4.5,1
+470,170,1,3
+470,41,1.4.5,1
+470,5,1.4.5.4,0
+470,126,1.4,2
+472,5,1.4.5.4,0
+472,41,1.4.5,1
+473,5,1.4.5.4,0
+473,41,1.4.5,1
+474,5,1.4.5.4,0
+474,126,1.4,2
+474,41,1.4.5,1
+474,170,1,3
+475,5,1.4.5.4,0
+475,41,1.4.5,1
+476,5,1.4.5.4,0
+476,41,1.4.5,1
+478,5,1.4.5.4,0
+478,41,1.4.5,1
+479,5,1.4.5.4,0
+479,41,1.4.5,1
+481,126,1.4,2
+481,170,1,3
+481,5,1.4.5.4,0
+481,41,1.4.5,1
+482,5,1.4.5.4,0
+482,41,1.4.5,1
+483,41,1.4.5,1
+483,5,1.4.5.4,0
+484,5,1.4.5.4,0
+484,41,1.4.5,1
+486,5,1.4.5.4,0
+486,41,1.4.5,1
+489,41,1.4.5,1
+489,5,1.4.5.4,0
+489,126,1.4,2
+489,170,1,3
+491,170,1,3
+491,126,1.4,2
+491,5,1.4.5.4,0
+491,41,1.4.5,1
+492,41,1.4.5,1
+492,5,1.4.5.4,0
+493,5,1.4.5.4,0
+493,41,1.4.5,1
+494,170,1,3
+494,5,1.4.5.4,0
+494,41,1.4.5,1
+494,126,1.4,2
+497,5,1.4.5.4,0
+497,41,1.4.5,1
+498,126,1.4,2
+498,5,1.4.5.4,0
+498,170,1,3
+498,41,1.4.5,1
+499,170,1,3
+499,126,1.4,2
+499,41,1.4.5,1
+499,5,1.4.5.4,0
+501,170,1,3
+501,126,1.4,2
+501,41,1.4.5,1
+501,5,1.4.5.5,0
+502,41,1.4.5,1
+502,170,1,3
+502,126,1.4,2
+502,5,1.4.5.5,0
+503,41,1.4.5,1
+503,5,1.4.5.5,0
+504,41,1.4.5,1
+504,5,1.4.5.5,0
+505,41,1.4.5,1
+505,5,1.4.5.5,0
+506,41,1.4.5,1
+506,5,1.4.5.5,0
+507,41,1.4.5,1
+507,5,1.4.5.5,0
+508,41,1.4.5,1
+508,126,1.4,2
+508,5,1.4.5.5,0
+508,170,1,3
+509,41,1.4.5,1
+509,5,1.4.5.5,0
+510,5,1.4.5.5,0
+510,41,1.4.5,1
+511,41,1.4.5,1
+511,5,1.4.5.5,0
+514,41,1.4.5,1
+514,5,1.4.5.5,0
+516,41,1.4.5,1
+516,5,1.4.5.5,0
+519,5,1.4.5.5,0
+519,41,1.4.5,1
+520,5,1.4.5.5,0
+520,41,1.4.5,1
+522,126,1.4,2
+522,41,1.4.5,1
+522,5,1.4.5.5,0
+522,170,1,3
+523,5,1.4.5.5,0
+523,126,1.4,2
+523,170,1,3
+523,41,1.4.5,1
+524,5,1.4.5.5,0
+524,41,1.4.5,1
+525,5,1.4.5.5,0
+525,41,1.4.5,1
+526,5,1.4.5.5,0
+526,41,1.4.5,1
+528,5,1.4.5.5,0
+528,41,1.4.5,1
+529,5,1.4.5.5,0
+529,41,1.4.5,1
+531,5,1.4.5.5,0
+531,41,1.4.5,1
+532,5,1.4.5.5,0
+532,41,1.4.5,1
+533,41,1.4.5,1
+533,5,1.4.5.5,0
+534,5,1.4.5.5,0
+534,41,1.4.5,1
+536,5,1.4.5.5,0
+536,41,1.4.5,1
+539,41,1.4.5,1
+539,5,1.4.5.5,0
+541,170,1,3
+541,126,1.4,2
+541,5,1.4.5.5,0
+541,41,1.4.5,1
+542,41,1.4.5,1
+542,126,1.4,2
+542,170,1,3
+542,5,1.4.5.5,0
+543,5,1.4.5.5,0
+543,41,1.4.5,1
+544,5,1.4.5.5,0
+544,41,1.4.5,1
+547,5,1.4.5.5,0
+547,41,1.4.5,1
+548,126,1.4,2
+548,5,1.4.5.5,0
+548,170,1,3
+548,41,1.4.5,1
+549,41,1.4.5,1
+549,5,1.4.5.5,0
+551,170,1,3
+551,126,1.4,2
+551,41,1.4.5,1
+551,5,1.4.5.9,0
+552,5,1.4.5.9,0
+552,41,1.4.5,1
+553,41,1.4.5,1
+553,5,1.4.5.9,0
+554,41,1.4.5,1
+554,5,1.4.5.9,0
+555,41,1.4.5,1
+555,5,1.4.5.9,0
+556,41,1.4.5,1
+556,5,1.4.5.9,0
+557,41,1.4.5,1
+557,5,1.4.5.9,0
+558,41,1.4.5,1
+558,5,1.4.5.9,0
+559,41,1.4.5,1
+559,5,1.4.5.9,0
+560,5,1.4.5.9,0
+560,41,1.4.5,1
+561,5,1.4.5.9,0
+561,126,1.4,2
+561,170,1,3
+561,41,1.4.5,1
+564,41,1.4.5,1
+564,5,1.4.5.9,0
+566,126,1.4,2
+566,5,1.4.5.9,0
+566,170,1,3
+566,41,1.4.5,1
+569,5,1.4.5.9,0
+569,41,1.4.5,1
+570,5,1.4.5.9,0
+570,41,1.4.5,1
+572,5,1.4.5.9,0
+572,41,1.4.5,1
+573,5,1.4.5.9,0
+573,41,1.4.5,1
+574,5,1.4.5.9,0
+574,126,1.4,2
+574,41,1.4.5,1
+574,170,1,3
+575,5,1.4.5.9,0
+575,41,1.4.5,1
+576,126,1.4,2
+576,5,1.4.5.9,0
+576,41,1.4.5,1
+576,170,1,3
+578,5,1.4.5.9,0
+578,41,1.4.5,1
+579,41,1.4.5,1
+579,170,1,3
+579,126,1.4,2
+579,5,1.4.5.9,0
+581,5,1.4.5.9,0
+581,41,1.4.5,1
+582,5,1.4.5.9,0
+582,41,1.4.5,1
+583,5,1.4.5.9,0
+583,170,1,3
+583,41,1.4.5,1
+583,126,1.4,2
+584,5,1.4.5.9,0
+584,41,1.4.5,1
+586,5,1.4.5.9,0
+586,41,1.4.5,1
+589,41,1.4.5,1
+589,5,1.4.5.9,0
+591,170,1,3
+591,126,1.4,2
+591,5,1.4.5.9,0
+591,41,1.4.5,1
+592,41,1.4.5,1
+592,5,1.4.5.9,0
+593,5,1.4.5.9,0
+593,41,1.4.5,1
+594,5,1.4.5.9,0
+594,41,1.4.5,1
+597,5,1.4.5.9,0
+597,41,1.4.5,1
+598,41,1.4.5,1
+598,5,1.4.5.9,0
+599,41,1.4.5,1
+599,5,1.4.5.9,0
+602,39,1.3.1,1
+602,100,1.3.1,1
+602,6,1.3.1.2,0
+605,99,1.3.1,1
+605,6,1.3.1.2,0
+605,100,1.3.1,1
+606,93,1.3.1,1
+606,6,1.3.1.2,0
+607,39,1.3.1,1
+607,6,1.3.1.2,0
+608,39,1.3.1,1
+608,6,1.3.1.2,0
+608,100,1.3.1,1
+610,6,1.3.1.2,0
+610,99,1.3.1,1
+611,39,1.3.1,1
+611,6,1.3.1.2,0
+611,99,1.3.1,1
+612,6,1.3.1.2,0
+612,100,1.3.1,1
+614,100,1.3.1,1
+614,6,1.3.1.2,0
+614,39,1.3.1,1
+616,6,1.3.1.2,0
+616,93,1.3.1,1
+619,93,1.3.1,1
+619,6,1.3.1.2,0
+619,100,1.3.1,1
+620,6,1.3.1.2,0
+620,85,1.3.1,1
+621,6,1.3.1.2,0
+621,100,1.3.1,1
+621,93,1.3.1,1
+622,6,1.3.1.2,0
+622,39,1.3.1,1
+623,99,1.3.1,1
+623,6,1.3.1.2,0
+624,39,1.3.1,1
+624,106,1.3,2
+624,6,1.3.1.2,0
+624,100,1.3.1,1
+625,93,1.3.1,1
+625,6,1.3.1.2,0
+626,6,1.3.1.2,0
+626,85,1.3.1,1
+626,93,1.3.1,1
+627,93,1.3.1,1
+627,6,1.3.1.2,0
+628,6,1.3.1.2,0
+628,39,1.3.1,1
+629,6,1.3.1.2,0
+629,85,1.3.1,1
+629,39,1.3.1,1
+631,85,1.3.1,1
+631,6,1.3.1.2,0
+632,6,1.3.1.2,0
+632,100,1.3.1,1
+633,93,1.3.1,1
+633,6,1.3.1.2,0
+634,6,1.3.1.2,0
+634,39,1.3.1,1
+636,100,1.3.1,1
+636,99,1.3.1,1
+636,93,1.3.1,1
+636,6,1.3.1.2,0
+637,6,1.3.1.2,0
+637,99,1.3.1,1
+639,6,1.3.1.2,0
+639,39,1.3.1,1
+639,100,1.3.1,1
+641,39,1.3.1,1
+641,6,1.3.1.2,0
+642,100,1.3.1,1
+642,6,1.3.1.2,0
+643,6,1.3.1.2,0
+643,100,1.3.1,1
+643,93,1.3.1,1
+643,85,1.3.1,1
+644,6,1.3.1.2,0
+644,93,1.3.1,1
+647,6,1.3.1.2,0
+647,99,1.3.1,1
+648,99,1.3.1,1
+648,39,1.3.1,1
+648,6,1.3.1.2,0
+652,6,2.1.2.1,0
+652,81,2.1.2,1
+652,58,2.1.2,1
+653,58,2.1.2,1
+653,79,2.1.2,1
+653,81,2.1.2,1
+653,6,2.1.2.1,0
+654,84,2.1.2,1
+654,6,2.1.2.1,0
+657,79,2.1.2,1
+657,6,2.1.2.1,0
+658,79,2.1.2,1
+658,6,2.1.2.1,0
+660,6,2.1.2.1,0
+660,84,2.1.2,1
+664,159,2.1.2,1
+664,84,2.1.2,1
+664,6,2.1.2.1,0
+666,58,2.1.2,1
+666,6,2.1.2.1,0
+666,84,2.1.2,1
+669,6,2.1.2.1,0
+669,81,2.1.2,1
+669,58,2.1.2,1
+670,6,2.1.2.1,0
+670,58,2.1.2,1
+672,6,2.1.2.1,0
+672,79,2.1.2,1
+673,6,2.1.2.1,0
+673,79,2.1.2,1
+673,81,2.1.2,1
+675,79,2.1.2,1
+675,6,2.1.2.1,0
+676,58,2.1.2,1
+676,6,2.1.2.1,0
+676,81,2.1.2,1
+679,6,2.1.2.1,0
+679,84,2.1.2,1
+681,6,2.1.2.1,0
+681,81,2.1.2,1
+681,58,2.1.2,1
+682,6,2.1.2.1,0
+682,58,2.1.2,1
+683,79,2.1.2,1
+683,6,2.1.2.1,0
+684,6,2.1.2.1,0
+684,58,2.1.2,1
+685,6,2.1.2.1,0
+685,81,2.1.2,1
+686,81,2.1.2,1
+686,6,2.1.2.1,0
+687,6,2.1.2.1,0
+687,84,2.1.2,1
+687,159,2.1.2,1
+688,79,2.1.2,1
+688,6,2.1.2.1,0
+689,6,2.1.2.1,0
+689,84,2.1.2,1
+693,84,2.1.2,1
+693,6,2.1.2.1,0
+694,81,2.1.2,1
+694,6,2.1.2.1,0
+697,6,2.1.2.1,0
+697,81,2.1.2,1
+698,6,2.1.2.1,0
+698,81,2.1.2,1
+701,81,2.1.2,1
+701,159,2.1.2,1
+701,58,2.1.2,1
+701,6,2.1.2.2,0
+702,6,2.1.2.2,0
+702,58,2.1.2,1
+702,84,2.1.2,1
+705,58,2.1.2,1
+705,6,2.1.2.2,0
+706,6,2.1.2.2,0
+706,79,2.1.2,1
+707,6,2.1.2.2,0
+707,84,2.1.2,1
+708,58,2.1.2,1
+708,6,2.1.2.2,0
+710,58,2.1.2,1
+710,6,2.1.2.2,0
+711,58,2.1.2,1
+711,159,2.1.2,1
+711,6,2.1.2.2,0
+714,6,2.1.2.2,0
+714,159,2.1.2,1
+714,79,2.1.2,1
+716,6,2.1.2.2,0
+716,81,2.1.2,1
+716,84,2.1.2,1
+716,159,2.1.2,1
+717,159,2.1.2,1
+717,6,2.1.2.2,0
+722,81,2.1.2,1
+722,6,2.1.2.2,0
+723,6,2.1.2.2,0
+723,81,2.1.2,1
+724,6,2.1.2.2,0
+724,58,2.1.2,1
+726,6,2.1.2.2,0
+726,79,2.1.2,1
+728,79,2.1.2,1
+728,6,2.1.2.2,0
+729,159,2.1.2,1
+729,6,2.1.2.2,0
+729,79,2.1.2,1
+731,6,2.1.2.2,0
+731,79,2.1.2,1
+732,81,2.1.2,1
+732,6,2.1.2.2,0
+732,79,2.1.2,1
+733,6,2.1.2.2,0
+733,159,2.1.2,1
+735,6,2.1.2.2,0
+735,79,2.1.2,1
+735,84,2.1.2,1
+736,6,2.1.2.2,0
+736,159,2.1.2,1
+737,6,2.1.2.2,0
+737,84,2.1.2,1
+737,159,2.1.2,1
+739,81,2.1.2,1
+739,6,2.1.2.2,0
+741,81,2.1.2,1
+741,6,2.1.2.2,0
+742,81,2.1.2,1
+742,58,2.1.2,1
+742,6,2.1.2.2,0
+743,81,2.1.2,1
+743,79,2.1.2,1
+743,6,2.1.2.2,0
+744,81,2.1.2,1
+744,6,2.1.2.2,0
+748,84,2.1.2,1
+748,6,2.1.2.2,0
+751,6,2.1.2.3,0
+751,79,2.1.2,1
+752,159,2.1.2,1
+752,79,2.1.2,1
+752,6,2.1.2.3,0
+752,84,2.1.2,1
+753,6,2.1.2.3,0
+753,159,2.1.2,1
+754,6,2.1.2.3,0
+754,81,2.1.2,1
+755,58,2.1.2,1
+755,6,2.1.2.3,0
+759,58,2.1.2,1
+759,6,2.1.2.3,0
+760,6,2.1.2.3,0
+760,58,2.1.2,1
+761,159,2.1.2,1
+761,84,2.1.2,1
+761,6,2.1.2.3,0
+764,6,2.1.2.3,0
+764,79,2.1.2,1
+764,84,2.1.2,1
+766,58,2.1.2,1
+766,79,2.1.2,1
+766,6,2.1.2.3,0
+770,6,2.1.2.3,0
+770,79,2.1.2,1
+772,6,2.1.2.3,0
+772,84,2.1.2,1
+775,6,2.1.2.3,0
+775,159,2.1.2,1
+776,58,2.1.2,1
+776,6,2.1.2.3,0
+777,84,2.1.2,1
+777,6,2.1.2.3,0
+778,58,2.1.2,1
+778,6,2.1.2.3,0
+779,6,2.1.2.3,0
+779,79,2.1.2,1
+781,6,2.1.2.3,0
+781,81,2.1.2,1
+781,58,2.1.2,1
+782,6,2.1.2.3,0
+782,79,2.1.2,1
+783,6,2.1.2.3,0
+783,58,2.1.2,1
+784,84,2.1.2,1
+784,6,2.1.2.3,0
+789,58,2.1.2,1
+789,6,2.1.2.3,0
+791,79,2.1.2,1
+791,6,2.1.2.3,0
+793,84,2.1.2,1
+793,6,2.1.2.3,0
+798,6,2.1.2.3,0
+798,84,2.1.2,1
+801,6,2.1.2.4,0
+801,58,2.1.2,1
+804,58,2.1.2,1
+804,6,2.1.2.4,0
+805,79,2.1.2,1
+805,6,2.1.2.4,0
+805,84,2.1.2,1
+806,6,2.1.2.4,0
+806,58,2.1.2,1
+808,81,2.1.2,1
+808,6,2.1.2.4,0
+809,58,2.1.2,1
+809,6,2.1.2.4,0
+811,159,2.1.2,1
+811,6,2.1.2.4,0
+814,81,2.1.2,1
+814,6,2.1.2.4,0
+814,159,2.1.2,1
+819,6,2.1.2.4,0
+819,79,2.1.2,1
+820,6,2.1.2.4,0
+820,81,2.1.2,1
+821,6,2.1.2.4,0
+821,159,2.1.2,1
+822,84,2.1.2,1
+822,6,2.1.2.4,0
+823,81,2.1.2,1
+823,84,2.1.2,1
+823,6,2.1.2.4,0
+824,159,2.1.2,1
+824,6,2.1.2.4,0
+824,58,2.1.2,1
+826,6,2.1.2.4,0
+826,159,2.1.2,1
+827,159,2.1.2,1
+827,6,2.1.2.4,0
+828,79,2.1.2,1
+828,6,2.1.2.4,0
+829,6,2.1.2.4,0
+829,84,2.1.2,1
+831,79,2.1.2,1
+831,58,2.1.2,1
+831,6,2.1.2.4,0
+834,6,2.1.2.4,0
+834,81,2.1.2,1
+836,6,2.1.2.4,0
+836,79,2.1.2,1
+836,58,2.1.2,1
+837,6,2.1.2.4,0
+837,84,2.1.2,1
+838,159,2.1.2,1
+838,6,2.1.2.4,0
+839,159,2.1.2,1
+839,6,2.1.2.4,0
+841,79,2.1.2,1
+841,6,2.1.2.4,0
+842,58,2.1.2,1
+842,159,2.1.2,1
+842,6,2.1.2.4,0
+843,6,2.1.2.4,0
+843,81,2.1.2,1
+844,6,2.1.2.4,0
+844,58,2.1.2,1
+846,79,2.1.2,1
+846,6,2.1.2.4,0
+847,6,2.1.2.4,0
+847,79,2.1.2,1
+849,84,2.1.2,1
+849,6,2.1.2.4,0
+850,81,2.1.2,1
+850,6,2.1.2.4,0
+854,7,2.2,0
+854,102,2,1
+856,98,2,1
+856,7,2.2,0
+857,98,2,1
+857,7,2.2,0
+858,98,2,1
+858,7,2.2,0
+860,98,2,1
+860,7,2.2,0
+861,98,2,1
+861,7,2.2,0
+864,98,2,1
+864,7,2.2,0
+869,102,2,1
+869,7,2.2,0
+872,7,2.2,0
+872,98,2,1
+873,102,2,1
+873,7,2.2,0
+876,98,2,1
+876,7,2.2,0
+878,98,2,1
+878,7,2.2,0
+879,7,2.2,0
+879,98,2,1
+881,98,2,1
+881,7,2.2,0
+882,98,2,1
+882,7,2.2,0
+883,7,2.2,0
+883,102,2,1
+884,98,2,1
+884,7,2.2,0
+885,102,2,1
+885,7,2.2,0
+889,7,2.2,0
+889,98,2,1
+890,7,2.2,0
+890,102,2,1
+893,7,2.2,0
+893,98,2,1
+894,7,2.2,0
+894,98,2,1
+897,7,2.2,0
+897,98,2,1
+899,102,2,1
+899,7,2.2,0
+902,8,1.4.1.1,0
+902,157,1.4.1,1
+904,157,1.4.1,1
+904,8,1.4.1.1,0
+905,8,1.4.1.1,0
+905,157,1.4.1,1
+906,8,1.4.1.1,0
+906,157,1.4.1,1
+907,8,1.4.1.1,0
+907,157,1.4.1,1
+908,8,1.4.1.1,0
+908,157,1.4.1,1
+909,157,1.4.1,1
+909,8,1.4.1.1,0
+910,157,1.4.1,1
+910,8,1.4.1.1,0
+911,8,1.4.1.1,0
+911,157,1.4.1,1
+914,8,1.4.1.1,0
+914,157,1.4.1,1
+916,157,1.4.1,1
+916,8,1.4.1.1,0
+920,157,1.4.1,1
+920,8,1.4.1.1,0
+922,8,1.4.1.1,0
+922,157,1.4.1,1
+923,8,1.4.1.1,0
+923,157,1.4.1,1
+925,8,1.4.1.1,0
+925,157,1.4.1,1
+926,157,1.4.1,1
+926,8,1.4.1.1,0
+928,157,1.4.1,1
+928,8,1.4.1.1,0
+929,157,1.4.1,1
+929,8,1.4.1.1,0
+931,8,1.4.1.1,0
+931,157,1.4.1,1
+932,157,1.4.1,1
+932,8,1.4.1.1,0
+933,8,1.4.1.1,0
+933,157,1.4.1,1
+934,157,1.4.1,1
+934,8,1.4.1.1,0
+936,8,1.4.1.1,0
+936,157,1.4.1,1
+939,157,1.4.1,1
+939,8,1.4.1.1,0
+941,8,1.4.1.1,0
+941,157,1.4.1,1
+942,157,1.4.1,1
+942,8,1.4.1.1,0
+943,157,1.4.1,1
+943,8,1.4.1.1,0
+944,157,1.4.1,1
+944,8,1.4.1.1,0
+947,8,1.4.1.1,0
+947,157,1.4.1,1
+948,8,1.4.1.1,0
+948,157,1.4.1,1
+952,9,1.3.3.6,0
+952,75,1.3.3,1
+954,9,1.3.3.6,0
+954,97,1.3.3,1
+955,9,1.3.3.6,0
+955,97,1.3.3,1
+956,99,1.3.3,1
+956,9,1.3.3.6,0
+958,9,1.3.3.6,0
+958,75,1.3.3,1
+959,9,1.3.3.6,0
+959,99,1.3.3,1
+960,75,1.3.3,1
+960,9,1.3.3.6,0
+961,75,1.3.3,1
+961,9,1.3.3.6,0
+961,99,1.3.3,1
+966,9,1.3.3.6,0
+966,99,1.3.3,1
+969,97,1.3.3,1
+969,9,1.3.3.6,0
+970,99,1.3.3,1
+970,9,1.3.3.6,0
+972,9,1.3.3.6,0
+972,75,1.3.3,1
+972,99,1.3.3,1
+973,99,1.3.3,1
+973,9,1.3.3.6,0
+976,75,1.3.3,1
+976,9,1.3.3.6,0
+979,9,1.3.3.6,0
+979,97,1.3.3,1
+982,9,1.3.3.6,0
+982,99,1.3.3,1
+984,97,1.3.3,1
+984,9,1.3.3.6,0
+985,99,1.3.3,1
+985,9,1.3.3.6,0
+986,75,1.3.3,1
+986,9,1.3.3.6,0
+990,99,1.3.3,1
+990,9,1.3.3.6,0
+991,75,1.3.3,1
+991,9,1.3.3.6,0
+993,75,1.3.3,1
+993,99,1.3.3,1
+993,9,1.3.3.6,0
+994,75,1.3.3,1
+994,9,1.3.3.6,0
+994,99,1.3.3,1
+995,9,1.3.3.6,0
+995,99,1.3.3,1
+997,9,1.3.3.6,0
+997,75,1.3.3,1
+998,97,1.3.3,1
+998,9,1.3.3.6,0
+999,99,1.3.3,1
+999,9,1.3.3.6,0
+999,97,1.3.3,1
+1001,9,1.3.3.7,0
+1001,99,1.3.3,1
+1002,97,1.3.3,1
+1002,99,1.3.3,1
+1002,29,1.3,2
+1002,9,1.3.3.7,0
+1004,9,1.3.3.7,0
+1004,75,1.3.3,1
+1005,75,1.3.3,1
+1005,9,1.3.3.7,0
+1005,97,1.3.3,1
+1006,9,1.3.3.7,0
+1006,99,1.3.3,1
+1006,75,1.3.3,1
+1007,75,1.3.3,1
+1007,9,1.3.3.7,0
+1008,9,1.3.3.7,0
+1008,99,1.3.3,1
+1008,75,1.3.3,1
+1009,97,1.3.3,1
+1009,9,1.3.3.7,0
+1010,99,1.3.3,1
+1010,75,1.3.3,1
+1010,9,1.3.3.7,0
+1012,9,1.3.3.7,0
+1012,99,1.3.3,1
+1012,170,1,3
+1012,29,1.3,2
+1014,99,1.3.3,1
+1014,9,1.3.3.7,0
+1014,75,1.3.3,1
+1014,97,1.3.3,1
+1019,9,1.3.3.7,0
+1019,99,1.3.3,1
+1019,29,1.3,2
+1020,99,1.3.3,1
+1020,9,1.3.3.7,0
+1020,75,1.3.3,1
+1022,75,1.3.3,1
+1022,99,1.3.3,1
+1022,9,1.3.3.7,0
+1023,99,1.3.3,1
+1023,97,1.3.3,1
+1023,75,1.3.3,1
+1023,9,1.3.3.7,0
+1024,9,1.3.3.7,0
+1024,97,1.3.3,1
+1026,99,1.3.3,1
+1026,75,1.3.3,1
+1026,9,1.3.3.7,0
+1028,9,1.3.3.7,0
+1028,75,1.3.3,1
+1029,75,1.3.3,1
+1029,9,1.3.3.7,0
+1029,99,1.3.3,1
+1030,9,1.3.3.7,0
+1030,99,1.3.3,1
+1031,97,1.3.3,1
+1031,9,1.3.3.7,0
+1031,99,1.3.3,1
+1032,75,1.3.3,1
+1032,9,1.3.3.7,0
+1033,75,1.3.3,1
+1033,9,1.3.3.7,0
+1033,170,1,3
+1033,29,1.3,2
+1034,75,1.3.3,1
+1034,9,1.3.3.7,0
+1035,99,1.3.3,1
+1035,9,1.3.3.7,0
+1036,99,1.3.3,1
+1036,97,1.3.3,1
+1036,9,1.3.3.7,0
+1037,9,1.3.3.7,0
+1037,99,1.3.3,1
+1038,9,1.3.3.7,0
+1038,99,1.3.3,1
+1039,9,1.3.3.7,0
+1039,75,1.3.3,1
+1040,99,1.3.3,1
+1040,9,1.3.3.7,0
+1041,75,1.3.3,1
+1041,9,1.3.3.7,0
+1042,9,1.3.3.7,0
+1042,97,1.3.3,1
+1042,99,1.3.3,1
+1043,75,1.3.3,1
+1043,106,1.3,2
+1043,97,1.3.3,1
+1043,9,1.3.3.7,0
+1044,9,1.3.3.7,0
+1044,75,1.3.3,1
+1044,97,1.3.3,1
+1045,9,1.3.3.7,0
+1045,97,1.3.3,1
+1047,9,1.3.3.7,0
+1047,97,1.3.3,1
+1048,99,1.3.3,1
+1048,9,1.3.3.7,0
+1049,99,1.3.3,1
+1049,9,1.3.3.7,0
+1052,75,1.3.3,1
+1052,10,1.3.3.5,0
+1054,75,1.3.3,1
+1054,10,1.3.3.5,0
+1055,97,1.3.3,1
+1055,10,1.3.3.5,0
+1056,10,1.3.3.5,0
+1056,75,1.3.3,1
+1057,75,1.3.3,1
+1057,10,1.3.3.5,0
+1058,75,1.3.3,1
+1058,10,1.3.3.5,0
+1059,75,1.3.3,1
+1059,10,1.3.3.5,0
+1060,10,1.3.3.5,0
+1060,99,1.3.3,1
+1061,97,1.3.3,1
+1061,10,1.3.3.5,0
+1061,99,1.3.3,1
+1064,75,1.3.3,1
+1064,99,1.3.3,1
+1064,10,1.3.3.5,0
+1066,10,1.3.3.5,0
+1066,75,1.3.3,1
+1066,99,1.3.3,1
+1069,99,1.3.3,1
+1069,10,1.3.3.5,0
+1070,75,1.3.3,1
+1070,10,1.3.3.5,0
+1072,99,1.3.3,1
+1072,75,1.3.3,1
+1072,10,1.3.3.5,0
+1073,75,1.3.3,1
+1073,10,1.3.3.5,0
+1076,75,1.3.3,1
+1076,99,1.3.3,1
+1076,10,1.3.3.5,0
+1077,10,1.3.3.5,0
+1077,99,1.3.3,1
+1078,10,1.3.3.5,0
+1078,97,1.3.3,1
+1079,97,1.3.3,1
+1079,10,1.3.3.5,0
+1081,99,1.3.3,1
+1081,10,1.3.3.5,0
+1081,75,1.3.3,1
+1082,75,1.3.3,1
+1082,10,1.3.3.5,0
+1083,10,1.3.3.5,0
+1083,97,1.3.3,1
+1084,10,1.3.3.5,0
+1084,75,1.3.3,1
+1085,99,1.3.3,1
+1085,10,1.3.3.5,0
+1086,75,1.3.3,1
+1086,97,1.3.3,1
+1086,10,1.3.3.5,0
+1087,97,1.3.3,1
+1087,10,1.3.3.5,0
+1088,10,1.3.3.5,0
+1088,97,1.3.3,1
+1089,10,1.3.3.5,0
+1089,97,1.3.3,1
+1090,99,1.3.3,1
+1090,10,1.3.3.5,0
+1091,10,1.3.3.5,0
+1091,75,1.3.3,1
+1092,99,1.3.3,1
+1092,10,1.3.3.5,0
+1093,97,1.3.3,1
+1093,10,1.3.3.5,0
+1094,10,1.3.3.5,0
+1094,99,1.3.3,1
+1094,97,1.3.3,1
+1097,10,1.3.3.5,0
+1097,75,1.3.3,1
+1098,75,1.3.3,1
+1098,10,1.3.3.5,0
+1100,97,1.3.3,1
+1100,99,1.3.3,1
+1100,10,1.3.3.5,0
+1101,11,1.4.4.2,0
+1101,0,1.4.4,1
+1102,11,1.4.4.2,0
+1102,0,1.4.4,1
+1102,40,1.4.4,1
+1103,126,1.4,2
+1103,40,1.4.4,1
+1103,11,1.4.4.2,0
+1103,0,1.4.4,1
+1104,0,1.4.4,1
+1104,11,1.4.4.2,0
+1105,11,1.4.4.2,0
+1105,0,1.4.4,1
+1105,40,1.4.4,1
+1105,126,1.4,2
+1106,40,1.4.4,1
+1106,11,1.4.4.2,0
+1106,0,1.4.4,1
+1107,0,1.4.4,1
+1107,11,1.4.4.2,0
+1107,126,1.4,2
+1108,11,1.4.4.2,0
+1108,0,1.4.4,1
+1109,170,1,3
+1109,40,1.4.4,1
+1109,126,1.4,2
+1109,11,1.4.4.2,0
+1109,0,1.4.4,1
+1110,11,1.4.4.2,0
+1110,0,1.4.4,1
+1110,126,1.4,2
+1111,126,1.4,2
+1111,0,1.4.4,1
+1111,40,1.4.4,1
+1111,11,1.4.4.2,0
+1114,0,1.4.4,1
+1114,11,1.4.4.2,0
+1114,40,1.4.4,1
+1116,40,1.4.4,1
+1116,11,1.4.4.2,0
+1116,0,1.4.4,1
+1117,11,1.4.4.2,0
+1117,40,1.4.4,1
+1119,0,1.4.4,1
+1119,11,1.4.4.2,0
+1119,40,1.4.4,1
+1119,126,1.4,2
+1119,170,1,3
+1120,11,1.4.4.2,0
+1120,0,1.4.4,1
+1121,126,1.4,2
+1121,11,1.4.4.2,0
+1121,40,1.4.4,1
+1122,11,1.4.4.2,0
+1122,0,1.4.4,1
+1123,0,1.4.4,1
+1123,40,1.4.4,1
+1123,126,1.4,2
+1123,11,1.4.4.2,0
+1123,170,1,3
+1124,40,1.4.4,1
+1124,11,1.4.4.2,0
+1124,126,1.4,2
+1124,0,1.4.4,1
+1125,11,1.4.4.2,0
+1125,0,1.4.4,1
+1126,0,1.4.4,1
+1126,126,1.4,2
+1126,40,1.4.4,1
+1126,11,1.4.4.2,0
+1126,170,1,3
+1127,40,1.4.4,1
+1127,11,1.4.4.2,0
+1128,40,1.4.4,1
+1128,0,1.4.4,1
+1128,11,1.4.4.2,0
+1129,170,1,3
+1129,126,1.4,2
+1129,11,1.4.4.2,0
+1129,40,1.4.4,1
+1129,0,1.4.4,1
+1131,0,1.4.4,1
+1131,40,1.4.4,1
+1131,11,1.4.4.2,0
+1132,0,1.4.4,1
+1132,11,1.4.4.2,0
+1132,126,1.4,2
+1132,40,1.4.4,1
+1132,170,1,3
+1133,0,1.4.4,1
+1133,11,1.4.4.2,0
+1134,40,1.4.4,1
+1134,11,1.4.4.2,0
+1134,0,1.4.4,1
+1135,11,1.4.4.2,0
+1135,40,1.4.4,1
+1136,40,1.4.4,1
+1136,11,1.4.4.2,0
+1136,0,1.4.4,1
+1136,126,1.4,2
+1137,40,1.4.4,1
+1137,11,1.4.4.2,0
+1138,11,1.4.4.2,0
+1138,40,1.4.4,1
+1139,11,1.4.4.2,0
+1139,0,1.4.4,1
+1139,40,1.4.4,1
+1140,11,1.4.4.2,0
+1140,40,1.4.4,1
+1141,11,1.4.4.2,0
+1141,0,1.4.4,1
+1142,11,1.4.4.2,0
+1142,40,1.4.4,1
+1142,0,1.4.4,1
+1143,170,1,3
+1143,40,1.4.4,1
+1143,0,1.4.4,1
+1143,126,1.4,2
+1143,11,1.4.4.2,0
+1144,170,1,3
+1144,0,1.4.4,1
+1144,40,1.4.4,1
+1144,11,1.4.4.2,0
+1144,126,1.4,2
+1145,11,1.4.4.2,0
+1145,40,1.4.4,1
+1146,40,1.4.4,1
+1146,11,1.4.4.2,0
+1147,0,1.4.4,1
+1147,126,1.4,2
+1147,11,1.4.4.2,0
+1148,126,1.4,2
+1148,11,1.4.4.2,0
+1148,0,1.4.4,1
+1148,40,1.4.4,1
+1148,170,1,3
+1149,40,1.4.4,1
+1149,126,1.4,2
+1149,11,1.4.4.2,0
+1150,126,1.4,2
+1150,40,1.4.4,1
+1150,11,1.4.4.2,0
+1152,126,1.2,1
+1152,12,1.2.1,0
+1154,12,1.2.1,0
+1154,67,1.2,1
+1156,97,1.2,1
+1156,12,1.2.1,0
+1157,67,1.2,1
+1157,12,1.2.1,0
+1158,97,1.2,1
+1158,12,1.2.1,0
+1161,12,1.2.1,0
+1161,67,1.2,1
+1164,12,1.2.1,0
+1164,97,1.2,1
+1166,106,1.2,1
+1166,12,1.2.1,0
+1169,12,1.2.1,0
+1169,126,1.2,1
+1172,97,1.2,1
+1172,12,1.2.1,0
+1173,106,1.2,1
+1173,12,1.2.1,0
+1176,126,1.2,1
+1176,12,1.2.1,0
+1176,67,1.2,1
+1177,126,1.2,1
+1177,12,1.2.1,0
+1178,12,1.2.1,0
+1178,97,1.2,1
+1179,12,1.2.1,0
+1179,106,1.2,1
+1181,12,1.2.1,0
+1181,106,1.2,1
+1182,67,1.2,1
+1182,12,1.2.1,0
+1183,67,1.2,1
+1183,12,1.2.1,0
+1184,106,1.2,1
+1184,12,1.2.1,0
+1185,126,1.2,1
+1185,12,1.2.1,0
+1186,126,1.2,1
+1186,97,1.2,1
+1186,12,1.2.1,0
+1190,106,1.2,1
+1190,12,1.2.1,0
+1192,12,1.2.1,0
+1192,126,1.2,1
+1193,12,1.2.1,0
+1193,97,1.2,1
+1194,12,1.2.1,0
+1194,67,1.2,1
+1197,67,1.2,1
+1197,12,1.2.1,0
+1199,106,1.2,1
+1199,12,1.2.1,0
+1202,67,1.2,1
+1202,13,1.2.2,0
+1204,13,1.2.2,0
+1204,106,1.2,1
+1204,67,1.2,1
+1205,67,1.2,1
+1205,13,1.2.2,0
+1206,13,1.2.2,0
+1206,67,1.2,1
+1207,106,1.2,1
+1207,13,1.2.2,0
+1208,106,1.2,1
+1208,67,1.2,1
+1208,13,1.2.2,0
+1211,13,1.2.2,0
+1211,67,1.2,1
+1211,106,1.2,1
+1211,126,1.2,1
+1214,13,1.2.2,0
+1214,106,1.2,1
+1214,126,1.2,1
+1214,97,1.2,1
+1216,13,1.2.2,0
+1216,106,1.2,1
+1216,67,1.2,1
+1220,13,1.2.2,0
+1220,97,1.2,1
+1220,126,1.2,1
+1222,106,1.2,1
+1222,13,1.2.2,0
+1223,13,1.2.2,0
+1223,67,1.2,1
+1223,126,1.2,1
+1226,126,1.2,1
+1226,13,1.2.2,0
+1227,97,1.2,1
+1227,13,1.2.2,0
+1228,126,1.2,1
+1228,13,1.2.2,0
+1229,67,1.2,1
+1229,106,1.2,1
+1229,13,1.2.2,0
+1230,126,1.2,1
+1230,13,1.2.2,0
+1231,67,1.2,1
+1231,126,1.2,1
+1231,13,1.2.2,0
+1233,13,1.2.2,0
+1233,67,1.2,1
+1234,97,1.2,1
+1234,13,1.2.2,0
+1236,97,1.2,1
+1236,67,1.2,1
+1236,13,1.2.2,0
+1237,106,1.2,1
+1237,13,1.2.2,0
+1239,13,1.2.2,0
+1239,67,1.2,1
+1242,126,1.2,1
+1242,13,1.2.2,0
+1243,97,1.2,1
+1243,13,1.2.2,0
+1243,126,1.2,1
+1244,13,1.2.2,0
+1244,126,1.2,1
+1247,13,1.2.2,0
+1247,97,1.2,1
+1248,106,1.2,1
+1248,13,1.2.2,0
+1249,126,1.2,1
+1249,13,1.2.2,0
+1250,97,1.2,1
+1250,13,1.2.2,0
+1250,106,1.2,1
+1251,106,2.1.3,1
+1251,13,2.1.3.1,0
+1252,74,2.1.3,1
+1252,13,2.1.3.1,0
+1252,97,2.1.3,1
+1252,108,2.1.3,1
+1253,148,2.1.3,1
+1253,74,2.1.3,1
+1253,73,2.1.3,1
+1253,99,2.1,2
+1253,108,2.1.3,1
+1253,97,2.1.3,1
+1253,13,2.1.3.1,0
+1254,97,2.1.3,1
+1254,13,2.1.3.1,0
+1254,73,2.1.3,1
+1255,97,2.1.3,1
+1255,13,2.1.3.1,0
+1255,73,2.1.3,1
+1256,13,2.1.3.1,0
+1256,108,2.1.3,1
+1257,148,2.1.3,1
+1257,74,2.1.3,1
+1257,13,2.1.3.1,0
+1258,73,2.1.3,1
+1258,13,2.1.3.1,0
+1259,74,2.1.3,1
+1259,13,2.1.3.1,0
+1260,13,2.1.3.1,0
+1260,74,2.1.3,1
+1261,74,2.1.3,1
+1261,126,2.1.3,1
+1261,106,2.1.3,1
+1261,13,2.1.3.1,0
+1261,99,2.1,2
+1261,97,2.1.3,1
+1264,74,2.1.3,1
+1264,126,2.1.3,1
+1264,148,2.1.3,1
+1264,13,2.1.3.1,0
+1264,106,2.1.3,1
+1266,13,2.1.3.1,0
+1266,106,2.1.3,1
+1266,97,2.1.3,1
+1266,74,2.1.3,1
+1267,126,2.1.3,1
+1267,13,2.1.3.1,0
+1269,13,2.1.3.1,0
+1269,73,2.1.3,1
+1269,108,2.1.3,1
+1269,106,2.1.3,1
+1270,148,2.1.3,1
+1270,13,2.1.3.1,0
+1270,97,2.1.3,1
+1271,108,2.1.3,1
+1271,148,2.1.3,1
+1271,13,2.1.3.1,0
+1272,108,2.1.3,1
+1272,73,2.1.3,1
+1272,13,2.1.3.1,0
+1273,126,2.1.3,1
+1273,13,2.1.3.1,0
+1273,74,2.1.3,1
+1273,106,2.1.3,1
+1273,148,2.1.3,1
+1273,108,2.1.3,1
+1274,148,2.1.3,1
+1274,73,2.1.3,1
+1274,74,2.1.3,1
+1274,13,2.1.3.1,0
+1276,148,2.1.3,1
+1276,74,2.1.3,1
+1276,13,2.1.3.1,0
+1277,74,2.1.3,1
+1277,126,2.1.3,1
+1277,13,2.1.3.1,0
+1278,13,2.1.3.1,0
+1278,108,2.1.3,1
+1279,73,2.1.3,1
+1279,74,2.1.3,1
+1279,13,2.1.3.1,0
+1281,108,2.1.3,1
+1281,13,2.1.3.1,0
+1281,106,2.1.3,1
+1282,74,2.1.3,1
+1282,13,2.1.3.1,0
+1283,13,2.1.3.1,0
+1283,106,2.1.3,1
+1284,97,2.1.3,1
+1284,13,2.1.3.1,0
+1285,108,2.1.3,1
+1285,13,2.1.3.1,0
+1286,13,2.1.3.1,0
+1286,74,2.1.3,1
+1287,13,2.1.3.1,0
+1287,126,2.1.3,1
+1288,13,2.1.3.1,0
+1288,74,2.1.3,1
+1289,148,2.1.3,1
+1289,73,2.1.3,1
+1289,108,2.1.3,1
+1289,13,2.1.3.1,0
+1291,13,2.1.3.1,0
+1291,73,2.1.3,1
+1291,106,2.1.3,1
+1292,13,2.1.3.1,0
+1292,97,2.1.3,1
+1292,126,2.1.3,1
+1292,73,2.1.3,1
+1293,73,2.1.3,1
+1293,13,2.1.3.1,0
+1293,108,2.1.3,1
+1294,106,2.1.3,1
+1294,73,2.1.3,1
+1294,13,2.1.3.1,0
+1295,97,2.1.3,1
+1295,13,2.1.3.1,0
+1296,13,2.1.3.1,0
+1296,126,2.1.3,1
+1297,73,2.1.3,1
+1297,148,2.1.3,1
+1297,13,2.1.3.1,0
+1297,126,2.1.3,1
+1298,106,2.1.3,1
+1298,108,2.1.3,1
+1298,97,2.1.3,1
+1298,13,2.1.3.1,0
+1299,126,2.1.3,1
+1299,106,2.1.3,1
+1299,108,2.1.3,1
+1299,13,2.1.3.1,0
+1300,13,2.1.3.1,0
+1300,126,2.1.3,1
+1300,148,2.1.3,1
+1300,106,2.1.3,1
+1301,106,2.1.3,1
+1301,13,2.1.3.2,0
+1302,13,2.1.3.2,0
+1302,97,2.1.3,1
+1302,74,2.1.3,1
+1302,108,2.1.3,1
+1302,106,2.1.3,1
+1303,106,2.1.3,1
+1303,126,2.1.3,1
+1303,74,2.1.3,1
+1303,73,2.1.3,1
+1303,97,2.1.3,1
+1303,13,2.1.3.2,0
+1304,73,2.1.3,1
+1304,13,2.1.3.2,0
+1305,97,2.1.3,1
+1305,13,2.1.3.2,0
+1306,13,2.1.3.2,0
+1306,126,2.1.3,1
+1306,97,2.1.3,1
+1306,148,2.1.3,1
+1307,73,2.1.3,1
+1307,13,2.1.3.2,0
+1308,73,2.1.3,1
+1308,13,2.1.3.2,0
+1308,106,2.1.3,1
+1309,13,2.1.3.2,0
+1309,97,2.1.3,1
+1310,74,2.1.3,1
+1310,13,2.1.3.2,0
+1310,126,2.1.3,1
+1311,108,2.1.3,1
+1311,106,2.1.3,1
+1311,13,2.1.3.2,0
+1314,13,2.1.3.2,0
+1314,106,2.1.3,1
+1314,126,2.1.3,1
+1315,148,2.1.3,1
+1315,13,2.1.3.2,0
+1316,13,2.1.3.2,0
+1316,73,2.1.3,1
+1316,126,2.1.3,1
+1316,148,2.1.3,1
+1319,13,2.1.3.2,0
+1319,148,2.1.3,1
+1319,126,2.1.3,1
+1319,73,2.1.3,1
+1320,148,2.1.3,1
+1320,73,2.1.3,1
+1320,13,2.1.3.2,0
+1322,74,2.1.3,1
+1322,13,2.1.3.2,0
+1323,73,2.1.3,1
+1323,13,2.1.3.2,0
+1323,126,2.1.3,1
+1323,97,2.1.3,1
+1326,108,2.1.3,1
+1326,97,2.1.3,1
+1326,13,2.1.3.2,0
+1327,148,2.1.3,1
+1327,97,2.1.3,1
+1327,13,2.1.3.2,0
+1327,108,2.1.3,1
+1328,13,2.1.3.2,0
+1328,73,2.1.3,1
+1329,108,2.1.3,1
+1329,13,2.1.3.2,0
+1329,97,2.1.3,1
+1330,13,2.1.3.2,0
+1330,148,2.1.3,1
+1331,97,2.1.3,1
+1331,13,2.1.3.2,0
+1331,73,2.1.3,1
+1332,13,2.1.3.2,0
+1332,73,2.1.3,1
+1333,13,2.1.3.2,0
+1333,73,2.1.3,1
+1334,73,2.1.3,1
+1334,13,2.1.3.2,0
+1335,106,2.1.3,1
+1335,13,2.1.3.2,0
+1336,13,2.1.3.2,0
+1336,106,2.1.3,1
+1336,108,2.1.3,1
+1336,74,2.1.3,1
+1336,73,2.1.3,1
+1337,13,2.1.3.2,0
+1337,106,2.1.3,1
+1338,126,2.1.3,1
+1338,13,2.1.3.2,0
+1339,148,2.1.3,1
+1339,73,2.1.3,1
+1339,13,2.1.3.2,0
+1339,97,2.1.3,1
+1340,108,2.1.3,1
+1340,13,2.1.3.2,0
+1341,13,2.1.3.2,0
+1341,73,2.1.3,1
+1341,108,2.1.3,1
+1342,106,2.1.3,1
+1342,13,2.1.3.2,0
+1342,97,2.1.3,1
+1342,73,2.1.3,1
+1343,73,2.1.3,1
+1343,74,2.1.3,1
+1343,126,2.1.3,1
+1343,13,2.1.3.2,0
+1344,74,2.1.3,1
+1344,13,2.1.3.2,0
+1344,73,2.1.3,1
+1345,148,2.1.3,1
+1345,97,2.1.3,1
+1345,13,2.1.3.2,0
+1346,13,2.1.3.2,0
+1346,108,2.1.3,1
+1347,106,2.1.3,1
+1347,126,2.1.3,1
+1347,13,2.1.3.2,0
+1348,13,2.1.3.2,0
+1348,73,2.1.3,1
+1349,106,2.1.3,1
+1349,148,2.1.3,1
+1349,108,2.1.3,1
+1349,13,2.1.3.2,0
+1349,97,2.1.3,1
+1350,13,2.1.3.2,0
+1350,126,2.1.3,1
+1350,108,2.1.3,1
+1350,106,2.1.3,1
+1351,13,2.1.3.3,0
+1351,126,2.1.3,1
+1352,126,2.1.3,1
+1352,74,2.1.3,1
+1352,13,2.1.3.3,0
+1352,73,2.1.3,1
+1353,73,2.1.3,1
+1353,13,2.1.3.3,0
+1354,126,2.1.3,1
+1354,13,2.1.3.3,0
+1354,74,2.1.3,1
+1355,148,2.1.3,1
+1355,108,2.1.3,1
+1355,13,2.1.3.3,0
+1355,73,2.1.3,1
+1356,13,2.1.3.3,0
+1356,148,2.1.3,1
+1356,73,2.1.3,1
+1356,126,2.1.3,1
+1357,13,2.1.3.3,0
+1357,74,2.1.3,1
+1358,73,2.1.3,1
+1358,126,2.1.3,1
+1358,13,2.1.3.3,0
+1359,106,2.1.3,1
+1359,13,2.1.3.3,0
+1360,13,2.1.3.3,0
+1360,148,2.1.3,1
+1360,126,2.1.3,1
+1360,106,2.1.3,1
+1361,106,2.1.3,1
+1361,148,2.1.3,1
+1361,13,2.1.3.3,0
+1364,108,2.1.3,1
+1364,73,2.1.3,1
+1364,13,2.1.3.3,0
+1364,126,2.1.3,1
+1364,106,2.1.3,1
+1365,108,2.1.3,1
+1365,13,2.1.3.3,0
+1366,13,2.1.3.3,0
+1366,97,2.1.3,1
+1366,108,2.1.3,1
+1369,13,2.1.3.3,0
+1369,108,2.1.3,1
+1370,126,2.1.3,1
+1370,148,2.1.3,1
+1370,13,2.1.3.3,0
+1370,74,2.1.3,1
+1372,126,2.1.3,1
+1372,108,2.1.3,1
+1372,73,2.1.3,1
+1372,13,2.1.3.3,0
+1372,148,2.1.3,1
+1373,126,2.1.3,1
+1373,13,2.1.3.3,0
+1373,74,2.1.3,1
+1373,148,2.1.3,1
+1373,108,2.1.3,1
+1374,108,2.1.3,1
+1374,13,2.1.3.3,0
+1375,13,2.1.3.3,0
+1375,148,2.1.3,1
+1376,106,2.1.3,1
+1376,13,2.1.3.3,0
+1376,108,2.1.3,1
+1377,126,2.1.3,1
+1377,13,2.1.3.3,0
+1378,13,2.1.3.3,0
+1378,73,2.1.3,1
+1379,148,2.1.3,1
+1379,106,2.1.3,1
+1379,13,2.1.3.3,0
+1380,13,2.1.3.3,0
+1380,126,2.1.3,1
+1381,97,2.1.3,1
+1381,13,2.1.3.3,0
+1381,148,2.1.3,1
+1381,106,2.1.3,1
+1382,13,2.1.3.3,0
+1382,108,2.1.3,1
+1383,13,2.1.3.3,0
+1383,73,2.1.3,1
+1384,73,2.1.3,1
+1384,13,2.1.3.3,0
+1384,126,2.1.3,1
+1386,126,2.1.3,1
+1386,13,2.1.3.3,0
+1386,73,2.1.3,1
+1386,108,2.1.3,1
+1387,13,2.1.3.3,0
+1387,108,2.1.3,1
+1388,74,2.1.3,1
+1388,13,2.1.3.3,0
+1389,97,2.1.3,1
+1389,108,2.1.3,1
+1389,13,2.1.3.3,0
+1389,126,2.1.3,1
+1389,73,2.1.3,1
+1389,99,2.1,2
+1390,126,2.1.3,1
+1390,106,2.1.3,1
+1390,13,2.1.3.3,0
+1390,97,2.1.3,1
+1391,13,2.1.3.3,0
+1391,73,2.1.3,1
+1392,13,2.1.3.3,0
+1392,97,2.1.3,1
+1392,74,2.1.3,1
+1392,148,2.1.3,1
+1392,73,2.1.3,1
+1393,13,2.1.3.3,0
+1393,106,2.1.3,1
+1393,108,2.1.3,1
+1394,106,2.1.3,1
+1394,13,2.1.3.3,0
+1394,108,2.1.3,1
+1395,13,2.1.3.3,0
+1395,106,2.1.3,1
+1397,13,2.1.3.3,0
+1397,97,2.1.3,1
+1397,108,2.1.3,1
+1397,148,2.1.3,1
+1397,126,2.1.3,1
+1398,126,2.1.3,1
+1398,148,2.1.3,1
+1398,13,2.1.3.3,0
+1398,106,2.1.3,1
+1399,13,2.1.3.3,0
+1399,99,2.1,2
+1399,108,2.1.3,1
+1399,74,2.1.3,1
+1400,74,2.1.3,1
+1400,13,2.1.3.3,0
+1400,148,2.1.3,1
+1400,97,2.1.3,1
+1401,97,2.1.3,1
+1401,108,2.1.3,1
+1401,13,2.1.3.4,0
+1402,126,2.1.3,1
+1402,74,2.1.3,1
+1402,13,2.1.3.4,0
+1403,13,2.1.3.4,0
+1403,97,2.1.3,1
+1403,74,2.1.3,1
+1403,73,2.1.3,1
+1403,148,2.1.3,1
+1404,13,2.1.3.4,0
+1404,126,2.1.3,1
+1404,97,2.1.3,1
+1405,126,2.1.3,1
+1405,74,2.1.3,1
+1405,73,2.1.3,1
+1405,13,2.1.3.4,0
+1406,13,2.1.3.4,0
+1406,73,2.1.3,1
+1406,148,2.1.3,1
+1407,126,2.1.3,1
+1407,73,2.1.3,1
+1407,108,2.1.3,1
+1407,13,2.1.3.4,0
+1408,106,2.1.3,1
+1408,13,2.1.3.4,0
+1409,74,2.1.3,1
+1409,13,2.1.3.4,0
+1410,97,2.1.3,1
+1410,13,2.1.3.4,0
+1410,148,2.1.3,1
+1411,108,2.1.3,1
+1411,148,2.1.3,1
+1411,13,2.1.3.4,0
+1411,97,2.1.3,1
+1412,106,2.1.3,1
+1412,108,2.1.3,1
+1412,13,2.1.3.4,0
+1414,126,2.1.3,1
+1414,148,2.1.3,1
+1414,13,2.1.3.4,0
+1414,73,2.1.3,1
+1416,74,2.1.3,1
+1416,13,2.1.3.4,0
+1416,97,2.1.3,1
+1416,148,2.1.3,1
+1417,108,2.1.3,1
+1417,13,2.1.3.4,0
+1419,106,2.1.3,1
+1419,13,2.1.3.4,0
+1420,13,2.1.3.4,0
+1420,97,2.1.3,1
+1421,108,2.1.3,1
+1421,13,2.1.3.4,0
+1421,126,2.1.3,1
+1422,148,2.1.3,1
+1422,13,2.1.3.4,0
+1422,73,2.1.3,1
+1422,126,2.1.3,1
+1423,73,2.1.3,1
+1423,13,2.1.3.4,0
+1423,108,2.1.3,1
+1423,126,2.1.3,1
+1424,73,2.1.3,1
+1424,13,2.1.3.4,0
+1424,97,2.1.3,1
+1425,13,2.1.3.4,0
+1425,73,2.1.3,1
+1426,13,2.1.3.4,0
+1426,97,2.1.3,1
+1426,73,2.1.3,1
+1427,97,2.1.3,1
+1427,13,2.1.3.4,0
+1428,13,2.1.3.4,0
+1428,106,2.1.3,1
+1429,73,2.1.3,1
+1429,74,2.1.3,1
+1429,148,2.1.3,1
+1429,13,2.1.3.4,0
+1430,106,2.1.3,1
+1430,13,2.1.3.4,0
+1430,108,2.1.3,1
+1431,74,2.1.3,1
+1431,13,2.1.3.4,0
+1432,73,2.1.3,1
+1432,13,2.1.3.4,0
+1433,13,2.1.3.4,0
+1433,73,2.1.3,1
+1434,13,2.1.3.4,0
+1434,97,2.1.3,1
+1434,148,2.1.3,1
+1435,148,2.1.3,1
+1435,13,2.1.3.4,0
+1436,126,2.1.3,1
+1436,13,2.1.3.4,0
+1436,97,2.1.3,1
+1436,106,2.1.3,1
+1436,74,2.1.3,1
+1437,13,2.1.3.4,0
+1437,97,2.1.3,1
+1438,106,2.1.3,1
+1438,13,2.1.3.4,0
+1439,126,2.1.3,1
+1439,73,2.1.3,1
+1439,13,2.1.3.4,0
+1440,108,2.1.3,1
+1440,13,2.1.3.4,0
+1440,148,2.1.3,1
+1441,13,2.1.3.4,0
+1441,126,2.1.3,1
+1441,73,2.1.3,1
+1441,106,2.1.3,1
+1442,73,2.1.3,1
+1442,126,2.1.3,1
+1442,13,2.1.3.4,0
+1443,74,2.1.3,1
+1443,13,2.1.3.4,0
+1443,97,2.1.3,1
+1444,106,2.1.3,1
+1444,13,2.1.3.4,0
+1444,97,2.1.3,1
+1445,108,2.1.3,1
+1445,13,2.1.3.4,0
+1447,73,2.1.3,1
+1447,13,2.1.3.4,0
+1448,126,2.1.3,1
+1448,108,2.1.3,1
+1448,13,2.1.3.4,0
+1448,106,2.1.3,1
+1449,74,2.1.3,1
+1449,108,2.1.3,1
+1449,13,2.1.3.4,0
+1449,148,2.1.3,1
+1450,108,2.1.3,1
+1450,13,2.1.3.4,0
+1450,106,2.1.3,1
+1450,97,2.1.3,1
+1451,126,2.1.3,1
+1451,13,2.1.3.5,0
+1452,74,2.1.3,1
+1452,13,2.1.3.5,0
+1452,108,2.1.3,1
+1453,13,2.1.3.5,0
+1453,148,2.1.3,1
+1453,108,2.1.3,1
+1454,74,2.1.3,1
+1454,13,2.1.3.5,0
+1455,74,2.1.3,1
+1455,106,2.1.3,1
+1455,13,2.1.3.5,0
+1455,73,2.1.3,1
+1456,13,2.1.3.5,0
+1456,74,2.1.3,1
+1456,108,2.1.3,1
+1457,126,2.1.3,1
+1457,13,2.1.3.5,0
+1458,73,2.1.3,1
+1458,108,2.1.3,1
+1458,13,2.1.3.5,0
+1459,106,2.1.3,1
+1459,13,2.1.3.5,0
+1460,74,2.1.3,1
+1460,13,2.1.3.5,0
+1460,106,2.1.3,1
+1460,148,2.1.3,1
+1461,106,2.1.3,1
+1461,13,2.1.3.5,0
+1461,73,2.1.3,1
+1461,108,2.1.3,1
+1462,13,2.1.3.5,0
+1462,126,2.1.3,1
+1464,126,2.1.3,1
+1464,148,2.1.3,1
+1464,13,2.1.3.5,0
+1464,73,2.1.3,1
+1466,106,2.1.3,1
+1466,73,2.1.3,1
+1466,126,2.1.3,1
+1466,13,2.1.3.5,0
+1469,13,2.1.3.5,0
+1469,148,2.1.3,1
+1469,97,2.1.3,1
+1470,74,2.1.3,1
+1470,13,2.1.3.5,0
+1470,126,2.1.3,1
+1471,13,2.1.3.5,0
+1471,106,2.1.3,1
+1472,73,2.1.3,1
+1472,13,2.1.3.5,0
+1473,106,2.1.3,1
+1473,13,2.1.3.5,0
+1473,108,2.1.3,1
+1473,126,2.1.3,1
+1474,108,2.1.3,1
+1474,13,2.1.3.5,0
+1476,106,2.1.3,1
+1476,74,2.1.3,1
+1476,148,2.1.3,1
+1476,13,2.1.3.5,0
+1477,126,2.1.3,1
+1477,106,2.1.3,1
+1477,13,2.1.3.5,0
+1478,13,2.1.3.5,0
+1478,74,2.1.3,1
+1479,148,2.1.3,1
+1479,13,2.1.3.5,0
+1480,148,2.1.3,1
+1480,13,2.1.3.5,0
+1481,97,2.1.3,1
+1481,13,2.1.3.5,0
+1481,106,2.1.3,1
+1482,13,2.1.3.5,0
+1482,148,2.1.3,1
+1482,74,2.1.3,1
+1483,13,2.1.3.5,0
+1483,106,2.1.3,1
+1484,108,2.1.3,1
+1484,73,2.1.3,1
+1484,13,2.1.3.5,0
+1485,106,2.1.3,1
+1485,126,2.1.3,1
+1485,148,2.1.3,1
+1485,13,2.1.3.5,0
+1487,13,2.1.3.5,0
+1487,108,2.1.3,1
+1487,106,2.1.3,1
+1488,97,2.1.3,1
+1488,13,2.1.3.5,0
+1489,126,2.1.3,1
+1489,73,2.1.3,1
+1489,108,2.1.3,1
+1489,148,2.1.3,1
+1489,13,2.1.3.5,0
+1490,13,2.1.3.5,0
+1490,148,2.1.3,1
+1491,13,2.1.3.5,0
+1491,108,2.1.3,1
+1492,13,2.1.3.5,0
+1492,97,2.1.3,1
+1492,108,2.1.3,1
+1492,106,2.1.3,1
+1492,73,2.1.3,1
+1493,74,2.1.3,1
+1493,13,2.1.3.5,0
+1494,97,2.1.3,1
+1494,13,2.1.3.5,0
+1494,74,2.1.3,1
+1495,126,2.1.3,1
+1495,13,2.1.3.5,0
+1497,13,2.1.3.5,0
+1497,97,2.1.3,1
+1498,106,2.1.3,1
+1498,13,2.1.3.5,0
+1498,73,2.1.3,1
+1498,74,2.1.3,1
+1499,97,2.1.3,1
+1499,108,2.1.3,1
+1499,13,2.1.3.5,0
+1499,148,2.1.3,1
+1500,148,2.1.3,1
+1500,13,2.1.3.5,0
+1503,13,2.1.3.6,0
+1503,108,2.1.3,1
+1504,74,2.1.3,1
+1504,13,2.1.3.6,0
+1505,108,2.1.3,1
+1505,74,2.1.3,1
+1505,13,2.1.3.6,0
+1506,13,2.1.3.6,0
+1506,126,2.1.3,1
+1506,73,2.1.3,1
+1507,73,2.1.3,1
+1507,13,2.1.3.6,0
+1509,126,2.1.3,1
+1509,13,2.1.3.6,0
+1510,97,2.1.3,1
+1510,13,2.1.3.6,0
+1514,74,2.1.3,1
+1514,13,2.1.3.6,0
+1515,148,2.1.3,1
+1515,13,2.1.3.6,0
+1516,74,2.1.3,1
+1516,13,2.1.3.6,0
+1516,73,2.1.3,1
+1516,97,2.1.3,1
+1516,148,2.1.3,1
+1517,108,2.1.3,1
+1517,13,2.1.3.6,0
+1519,13,2.1.3.6,0
+1519,108,2.1.3,1
+1522,74,2.1.3,1
+1522,13,2.1.3.6,0
+1524,126,2.1.3,1
+1524,13,2.1.3.6,0
+1527,97,2.1.3,1
+1527,13,2.1.3.6,0
+1527,148,2.1.3,1
+1528,13,2.1.3.6,0
+1528,106,2.1.3,1
+1529,97,2.1.3,1
+1529,106,2.1.3,1
+1529,13,2.1.3.6,0
+1531,108,2.1.3,1
+1531,13,2.1.3.6,0
+1531,126,2.1.3,1
+1532,74,2.1.3,1
+1532,13,2.1.3.6,0
+1533,13,2.1.3.6,0
+1533,74,2.1.3,1
+1534,74,2.1.3,1
+1534,148,2.1.3,1
+1534,13,2.1.3.6,0
+1535,108,2.1.3,1
+1535,106,2.1.3,1
+1535,13,2.1.3.6,0
+1536,13,2.1.3.6,0
+1536,108,2.1.3,1
+1536,74,2.1.3,1
+1537,13,2.1.3.6,0
+1537,108,2.1.3,1
+1538,148,2.1.3,1
+1538,13,2.1.3.6,0
+1539,126,2.1.3,1
+1539,148,2.1.3,1
+1539,74,2.1.3,1
+1539,13,2.1.3.6,0
+1541,73,2.1.3,1
+1541,148,2.1.3,1
+1541,13,2.1.3.6,0
+1543,74,2.1.3,1
+1543,13,2.1.3.6,0
+1543,97,2.1.3,1
+1544,13,2.1.3.6,0
+1544,73,2.1.3,1
+1544,97,2.1.3,1
+1547,13,2.1.3.6,0
+1547,97,2.1.3,1
+1548,106,2.1.3,1
+1548,97,2.1.3,1
+1548,13,2.1.3.6,0
+1548,73,2.1.3,1
+1549,126,2.1.3,1
+1549,148,2.1.3,1
+1549,13,2.1.3.6,0
+1550,13,2.1.3.6,0
+1550,108,2.1.3,1
+1550,97,2.1.3,1
+1551,106,2.1.3,1
+1551,13,2.1.3.7,0
+1552,126,2.1.3,1
+1552,13,2.1.3.7,0
+1552,73,2.1.3,1
+1553,126,2.1.3,1
+1553,74,2.1.3,1
+1553,73,2.1.3,1
+1553,99,2.1,2
+1553,108,2.1.3,1
+1553,13,2.1.3.7,0
+1554,108,2.1.3,1
+1554,13,2.1.3.7,0
+1555,108,2.1.3,1
+1555,13,2.1.3.7,0
+1556,73,2.1.3,1
+1556,106,2.1.3,1
+1556,13,2.1.3.7,0
+1556,108,2.1.3,1
+1556,97,2.1.3,1
+1558,108,2.1.3,1
+1558,13,2.1.3.7,0
+1559,13,2.1.3.7,0
+1559,97,2.1.3,1
+1560,148,2.1.3,1
+1560,97,2.1.3,1
+1560,13,2.1.3.7,0
+1561,74,2.1.3,1
+1561,108,2.1.3,1
+1561,13,2.1.3.7,0
+1562,13,2.1.3.7,0
+1562,106,2.1.3,1
+1564,73,2.1.3,1
+1564,13,2.1.3.7,0
+1564,106,2.1.3,1
+1564,108,2.1.3,1
+1565,106,2.1.3,1
+1565,13,2.1.3.7,0
+1566,73,2.1.3,1
+1566,74,2.1.3,1
+1566,13,2.1.3.7,0
+1566,108,2.1.3,1
+1567,13,2.1.3.7,0
+1567,106,2.1.3,1
+1567,148,2.1.3,1
+1570,13,2.1.3.7,0
+1570,97,2.1.3,1
+1571,148,2.1.3,1
+1571,13,2.1.3.7,0
+1572,13,2.1.3.7,0
+1572,97,2.1.3,1
+1573,108,2.1.3,1
+1573,13,2.1.3.7,0
+1574,97,2.1.3,1
+1574,13,2.1.3.7,0
+1576,126,2.1.3,1
+1576,73,2.1.3,1
+1576,13,2.1.3.7,0
+1577,108,2.1.3,1
+1577,148,2.1.3,1
+1577,13,2.1.3.7,0
+1578,13,2.1.3.7,0
+1578,106,2.1.3,1
+1579,73,2.1.3,1
+1579,97,2.1.3,1
+1579,13,2.1.3.7,0
+1580,13,2.1.3.7,0
+1580,108,2.1.3,1
+1581,13,2.1.3.7,0
+1581,73,2.1.3,1
+1581,148,2.1.3,1
+1581,97,2.1.3,1
+1582,126,2.1.3,1
+1582,13,2.1.3.7,0
+1583,13,2.1.3.7,0
+1583,97,2.1.3,1
+1584,73,2.1.3,1
+1584,148,2.1.3,1
+1584,13,2.1.3.7,0
+1585,97,2.1.3,1
+1585,13,2.1.3.7,0
+1585,74,2.1.3,1
+1586,106,2.1.3,1
+1586,97,2.1.3,1
+1586,73,2.1.3,1
+1586,108,2.1.3,1
+1586,13,2.1.3.7,0
+1587,13,2.1.3.7,0
+1587,148,2.1.3,1
+1588,106,2.1.3,1
+1588,13,2.1.3.7,0
+1589,108,2.1.3,1
+1589,13,2.1.3.7,0
+1589,148,2.1.3,1
+1589,126,2.1.3,1
+1589,73,2.1.3,1
+1590,106,2.1.3,1
+1590,97,2.1.3,1
+1590,13,2.1.3.7,0
+1590,108,2.1.3,1
+1590,126,2.1.3,1
+1590,148,2.1.3,1
+1591,13,2.1.3.7,0
+1591,73,2.1.3,1
+1591,106,2.1.3,1
+1591,126,2.1.3,1
+1592,13,2.1.3.7,0
+1592,126,2.1.3,1
+1592,106,2.1.3,1
+1593,13,2.1.3.7,0
+1593,97,2.1.3,1
+1593,108,2.1.3,1
+1594,13,2.1.3.7,0
+1594,73,2.1.3,1
+1594,97,2.1.3,1
+1597,106,2.1.3,1
+1597,13,2.1.3.7,0
+1598,73,2.1.3,1
+1598,74,2.1.3,1
+1598,97,2.1.3,1
+1598,13,2.1.3.7,0
+1599,74,2.1.3,1
+1599,108,2.1.3,1
+1599,13,2.1.3.7,0
+1599,148,2.1.3,1
+1599,97,2.1.3,1
+1600,108,2.1.3,1
+1600,97,2.1.3,1
+1600,13,2.1.3.7,0
+1602,81,2.1.4.1,1
+1602,13,2.1.4.1.1,0
+1606,13,2.1.4.1.1,0
+1606,79,2.1.4.1,1
+1609,79,2.1.4.1,1
+1609,13,2.1.4.1.1,0
+1619,13,2.1.4.1.1,0
+1619,79,2.1.4.1,1
+1627,81,2.1.4.1,1
+1627,13,2.1.4.1.1,0
+1629,79,2.1.4.1,1
+1629,13,2.1.4.1.1,0
+1631,13,2.1.4.1.1,0
+1631,79,2.1.4.1,1
+1632,79,2.1.4.1,1
+1632,13,2.1.4.1.1,0
+1633,13,2.1.4.1.1,0
+1633,79,2.1.4.1,1
+1635,13,2.1.4.1.1,0
+1635,81,2.1.4.1,1
+1639,81,2.1.4.1,1
+1639,13,2.1.4.1.1,0
+1648,13,2.1.4.1.1,0
+1648,81,2.1.4.1,1
+1652,81,2.1.4.1,1
+1652,13,2.1.4.1.2,0
+1653,79,2.1.4.1,1
+1653,13,2.1.4.1.2,0
+1656,81,2.1.4.1,1
+1656,13,2.1.4.1.2,0
+1657,13,2.1.4.1.2,0
+1657,79,2.1.4.1,1
+1661,79,2.1.4.1,1
+1661,13,2.1.4.1.2,0
+1664,13,2.1.4.1.2,0
+1664,81,2.1.4.1,1
+1670,13,2.1.4.1.2,0
+1670,79,2.1.4.1,1
+1672,13,2.1.4.1.2,0
+1672,79,2.1.4.1,1
+1674,79,2.1.4.1,1
+1674,13,2.1.4.1.2,0
+1676,79,2.1.4.1,1
+1676,13,2.1.4.1.2,0
+1679,79,2.1.4.1,1
+1679,13,2.1.4.1.2,0
+1681,13,2.1.4.1.2,0
+1681,81,2.1.4.1,1
+1683,13,2.1.4.1.2,0
+1683,79,2.1.4.1,1
+1690,81,2.1.4.1,1
+1690,13,2.1.4.1.2,0
+1692,79,2.1.4.1,1
+1692,13,2.1.4.1.2,0
+1693,81,2.1.4.1,1
+1693,13,2.1.4.1.2,0
+1698,79,2.1.4.1,1
+1698,13,2.1.4.1.2,0
+1705,13,2.1.4.1.3,0
+1705,79,2.1.4.1,1
+1706,13,2.1.4.1.3,0
+1706,81,2.1.4.1,1
+1707,13,2.1.4.1.3,0
+1707,81,2.1.4.1,1
+1714,79,2.1.4.1,1
+1714,81,2.1.4.1,1
+1714,13,2.1.4.1.3,0
+1716,13,2.1.4.1.3,0
+1716,79,2.1.4.1,1
+1716,81,2.1.4.1,1
+1720,13,2.1.4.1.3,0
+1720,79,2.1.4.1,1
+1722,13,2.1.4.1.3,0
+1722,79,2.1.4.1,1
+1723,13,2.1.4.1.3,0
+1723,79,2.1.4.1,1
+1723,81,2.1.4.1,1
+1734,81,2.1.4.1,1
+1734,13,2.1.4.1.3,0
+1741,13,2.1.4.1.3,0
+1741,81,2.1.4.1,1
+1744,79,2.1.4.1,1
+1744,13,2.1.4.1.3,0
+1747,13,2.1.4.1.3,0
+1747,79,2.1.4.1,1
+1751,79,2.1.4.1,1
+1751,13,2.1.4.1.4,0
+1752,81,2.1.4.1,1
+1752,13,2.1.4.1.4,0
+1753,13,2.1.4.1.4,0
+1753,79,2.1.4.1,1
+1755,81,2.1.4.1,1
+1755,13,2.1.4.1.4,0
+1756,13,2.1.4.1.4,0
+1756,79,2.1.4.1,1
+1757,79,2.1.4.1,1
+1757,13,2.1.4.1.4,0
+1758,81,2.1.4.1,1
+1758,13,2.1.4.1.4,0
+1766,79,2.1.4.1,1
+1766,13,2.1.4.1.4,0
+1769,13,2.1.4.1.4,0
+1769,81,2.1.4.1,1
+1769,79,2.1.4.1,1
+1770,81,2.1.4.1,1
+1770,13,2.1.4.1.4,0
+1771,13,2.1.4.1.4,0
+1771,81,2.1.4.1,1
+1772,81,2.1.4.1,1
+1772,13,2.1.4.1.4,0
+1773,13,2.1.4.1.4,0
+1773,79,2.1.4.1,1
+1773,81,2.1.4.1,1
+1778,81,2.1.4.1,1
+1778,13,2.1.4.1.4,0
+1779,81,2.1.4.1,1
+1779,13,2.1.4.1.4,0
+1782,81,2.1.4.1,1
+1782,13,2.1.4.1.4,0
+1786,13,2.1.4.1.4,0
+1786,81,2.1.4.1,1
+1790,81,2.1.4.1,1
+1790,13,2.1.4.1.4,0
+1791,13,2.1.4.1.4,0
+1791,81,2.1.4.1,1
+1802,81,2.1.4.2,1
+1802,13,2.1.4.2.1,0
+1804,13,2.1.4.2.1,0
+1804,81,2.1.4.2,1
+1807,13,2.1.4.2.1,0
+1807,81,2.1.4.2,1
+1810,79,2.1.4.2,1
+1810,13,2.1.4.2.1,0
+1811,13,2.1.4.2.1,0
+1811,79,2.1.4.2,1
+1822,81,2.1.4.2,1
+1822,13,2.1.4.2.1,0
+1823,13,2.1.4.2.1,0
+1823,79,2.1.4.2,1
+1828,79,2.1.4.2,1
+1828,13,2.1.4.2.1,0
+1831,13,2.1.4.2.1,0
+1831,79,2.1.4.2,1
+1834,81,2.1.4.2,1
+1834,13,2.1.4.2.1,0
+1851,13,2.1.4.2.2,0
+1851,79,2.1.4.2,1
+1858,81,2.1.4.2,1
+1858,13,2.1.4.2.2,0
+1860,13,2.1.4.2.2,0
+1860,79,2.1.4.2,1
+1866,79,2.1.4.2,1
+1866,13,2.1.4.2.2,0
+1870,13,2.1.4.2.2,0
+1870,81,2.1.4.2,1
+1876,13,2.1.4.2.2,0
+1876,81,2.1.4.2,1
+1877,81,2.1.4.2,1
+1877,13,2.1.4.2.2,0
+1879,81,2.1.4.2,1
+1879,13,2.1.4.2.2,0
+1882,79,2.1.4.2,1
+1882,13,2.1.4.2.2,0
+1884,13,2.1.4.2.2,0
+1884,79,2.1.4.2,1
+1885,13,2.1.4.2.2,0
+1885,81,2.1.4.2,1
+1886,13,2.1.4.2.2,0
+1886,79,2.1.4.2,1
+1887,13,2.1.4.2.2,0
+1887,81,2.1.4.2,1
+1889,79,2.1.4.2,1
+1889,13,2.1.4.2.2,0
+1891,13,2.1.4.2.2,0
+1891,81,2.1.4.2,1
+1892,79,2.1.4.2,1
+1892,13,2.1.4.2.2,0
+1893,81,2.1.4.2,1
+1893,13,2.1.4.2.2,0
+1902,124,2.3,1
+1902,95,2.3,1
+1902,13,2.3.1,0
+1904,13,2.3.1,0
+1904,124,2.3,1
+1906,13,2.3.1,0
+1906,126,2.3,1
+1907,84,2.3,1
+1907,13,2.3.1,0
+1908,99,2.3,1
+1908,13,2.3.1,0
+1909,13,2.3.1,0
+1909,84,2.3,1
+1910,99,2.3,1
+1910,13,2.3.1,0
+1914,155,2.3,1
+1914,13,2.3.1,0
+1916,155,2.3,1
+1916,13,2.3.1,0
+1916,124,2.3,1
+1919,13,2.3.1,0
+1919,155,2.3,1
+1919,124,2.3,1
+1920,13,2.3.1,0
+1920,84,2.3,1
+1923,124,2.3,1
+1923,13,2.3.1,0
+1926,124,2.3,1
+1926,99,2.3,1
+1926,13,2.3.1,0
+1927,124,2.3,1
+1927,13,2.3.1,0
+1928,13,2.3.1,0
+1928,155,2.3,1
+1929,99,2.3,1
+1929,95,2.3,1
+1929,13,2.3.1,0
+1931,13,2.3.1,0
+1931,124,2.3,1
+1931,126,2.3,1
+1933,13,2.3.1,0
+1933,84,2.3,1
+1934,13,2.3.1,0
+1934,84,2.3,1
+1936,13,2.3.1,0
+1936,124,2.3,1
+1937,13,2.3.1,0
+1937,99,2.3,1
+1938,126,2.3,1
+1938,13,2.3.1,0
+1939,13,2.3.1,0
+1939,95,2.3,1
+1941,13,2.3.1,0
+1941,84,2.3,1
+1943,84,2.3,1
+1943,13,2.3.1,0
+1944,13,2.3.1,0
+1944,155,2.3,1
+1945,13,2.3.1,0
+1945,155,2.3,1
+1947,99,2.3,1
+1947,84,2.3,1
+1947,155,2.3,1
+1947,124,2.3,1
+1947,13,2.3.1,0
+1948,13,2.3.1,0
+1948,124,2.3,1
+1949,99,2.3,1
+1949,13,2.3.1,0
+1949,124,2.3,1
+1950,155,2.3,1
+1950,13,2.3.1,0
+1951,124,2.3,1
+1951,13,2.3.2,0
+1952,124,2.3,1
+1952,13,2.3.2,0
+1955,126,2.3,1
+1955,13,2.3.2,0
+1955,155,2.3,1
+1958,95,2.3,1
+1958,126,2.3,1
+1958,13,2.3.2,0
+1960,13,2.3.2,0
+1960,124,2.3,1
+1961,124,2.3,1
+1961,95,2.3,1
+1961,13,2.3.2,0
+1964,13,2.3.2,0
+1964,126,2.3,1
+1964,95,2.3,1
+1964,99,2.3,1
+1964,84,2.3,1
+1966,13,2.3.2,0
+1966,124,2.3,1
+1966,95,2.3,1
+1970,13,2.3.2,0
+1970,155,2.3,1
+1970,95,2.3,1
+1972,126,2.3,1
+1972,13,2.3.2,0
+1976,126,2.3,1
+1976,13,2.3.2,0
+1976,95,2.3,1
+1977,126,2.3,1
+1977,13,2.3.2,0
+1978,155,2.3,1
+1978,13,2.3.2,0
+1979,126,2.3,1
+1979,13,2.3.2,0
+1981,84,2.3,1
+1981,13,2.3.2,0
+1982,13,2.3.2,0
+1982,84,2.3,1
+1983,13,2.3.2,0
+1983,95,2.3,1
+1984,84,2.3,1
+1984,13,2.3.2,0
+1986,13,2.3.2,0
+1986,124,2.3,1
+1987,13,2.3.2,0
+1987,99,2.3,1
+1988,124,2.3,1
+1988,13,2.3.2,0
+1989,126,2.3,1
+1989,84,2.3,1
+1989,13,2.3.2,0
+1989,155,2.3,1
+1990,155,2.3,1
+1990,13,2.3.2,0
+1991,155,2.3,1
+1991,13,2.3.2,0
+1991,84,2.3,1
+1993,95,2.3,1
+1993,84,2.3,1
+1993,13,2.3.2,0
+1993,98,2,2
+1994,124,2.3,1
+1994,13,2.3.2,0
+1994,84,2.3,1
+1997,13,2.3.2,0
+1997,95,2.3,1
+1998,13,2.3.2,0
+1998,99,2.3,1
+1998,84,2.3,1
+1999,155,2.3,1
+1999,13,2.3.2,0
+2000,126,2.3,1
+2000,13,2.3.2,0
+2002,124,2.3,1
+2002,13,2.3.3,0
+2004,13,2.3.3,0
+2004,95,2.3,1
+2005,13,2.3.3,0
+2005,99,2.3,1
+2006,13,2.3.3,0
+2006,95,2.3,1
+2007,126,2.3,1
+2007,13,2.3.3,0
+2008,13,2.3.3,0
+2008,84,2.3,1
+2009,13,2.3.3,0
+2009,84,2.3,1
+2010,155,2.3,1
+2010,13,2.3.3,0
+2016,124,2.3,1
+2016,95,2.3,1
+2016,126,2.3,1
+2016,13,2.3.3,0
+2020,13,2.3.3,0
+2020,95,2.3,1
+2022,126,2.3,1
+2022,84,2.3,1
+2022,13,2.3.3,0
+2024,155,2.3,1
+2024,13,2.3.3,0
+2026,13,2.3.3,0
+2026,84,2.3,1
+2027,126,2.3,1
+2027,13,2.3.3,0
+2028,124,2.3,1
+2028,13,2.3.3,0
+2029,13,2.3.3,0
+2029,124,2.3,1
+2031,13,2.3.3,0
+2031,99,2.3,1
+2031,95,2.3,1
+2032,13,2.3.3,0
+2032,95,2.3,1
+2034,84,2.3,1
+2034,13,2.3.3,0
+2035,126,2.3,1
+2035,13,2.3.3,0
+2036,126,2.3,1
+2036,13,2.3.3,0
+2037,13,2.3.3,0
+2037,126,2.3,1
+2039,13,2.3.3,0
+2039,155,2.3,1
+2042,95,2.3,1
+2042,13,2.3.3,0
+2043,99,2.3,1
+2043,13,2.3.3,0
+2043,95,2.3,1
+2044,13,2.3.3,0
+2044,84,2.3,1
+2047,155,2.3,1
+2047,84,2.3,1
+2047,13,2.3.3,0
+2048,13,2.3.3,0
+2048,99,2.3,1
+2049,124,2.3,1
+2049,13,2.3.3,0
+2052,97,1.3.3,1
+2052,99,1.3.3,1
+2052,14,1.3.3.4,0
+2053,14,1.3.3.4,0
+2053,97,1.3.3,1
+2054,75,1.3.3,1
+2054,14,1.3.3.4,0
+2055,99,1.3.3,1
+2055,14,1.3.3.4,0
+2056,97,1.3.3,1
+2056,14,1.3.3.4,0
+2057,97,1.3.3,1
+2057,14,1.3.3.4,0
+2058,75,1.3.3,1
+2058,14,1.3.3.4,0
+2059,99,1.3.3,1
+2059,14,1.3.3.4,0
+2060,14,1.3.3.4,0
+2060,75,1.3.3,1
+2061,75,1.3.3,1
+2061,14,1.3.3.4,0
+2061,99,1.3.3,1
+2061,97,1.3.3,1
+2064,99,1.3.3,1
+2064,14,1.3.3.4,0
+2066,99,1.3.3,1
+2066,14,1.3.3.4,0
+2070,97,1.3.3,1
+2070,14,1.3.3.4,0
+2072,14,1.3.3.4,0
+2072,75,1.3.3,1
+2073,99,1.3.3,1
+2073,14,1.3.3.4,0
+2076,14,1.3.3.4,0
+2076,75,1.3.3,1
+2076,97,1.3.3,1
+2078,97,1.3.3,1
+2078,14,1.3.3.4,0
+2079,14,1.3.3.4,0
+2079,99,1.3.3,1
+2079,97,1.3.3,1
+2081,99,1.3.3,1
+2081,14,1.3.3.4,0
+2082,75,1.3.3,1
+2082,14,1.3.3.4,0
+2083,99,1.3.3,1
+2083,14,1.3.3.4,0
+2084,97,1.3.3,1
+2084,14,1.3.3.4,0
+2088,14,1.3.3.4,0
+2088,99,1.3.3,1
+2089,75,1.3.3,1
+2089,14,1.3.3.4,0
+2091,75,1.3.3,1
+2091,14,1.3.3.4,0
+2093,75,1.3.3,1
+2093,99,1.3.3,1
+2093,14,1.3.3.4,0
+2094,97,1.3.3,1
+2094,75,1.3.3,1
+2094,14,1.3.3.4,0
+2097,14,1.3.3.4,0
+2097,75,1.3.3,1
+2098,14,1.3.3.4,0
+2098,75,1.3.3,1
+2098,99,1.3.3,1
+2101,14,1.3.4.3,0
+2101,81,1.3.4,1
+2102,81,1.3.4,1
+2102,80,1.3.4,1
+2102,77,1.3.4,1
+2102,14,1.3.4.3,0
+2103,14,1.3.4.3,0
+2103,80,1.3.4,1
+2104,77,1.3.4,1
+2104,81,1.3.4,1
+2104,14,1.3.4.3,0
+2105,80,1.3.4,1
+2105,77,1.3.4,1
+2105,14,1.3.4.3,0
+2106,77,1.3.4,1
+2106,14,1.3.4.3,0
+2106,81,1.3.4,1
+2107,77,1.3.4,1
+2107,14,1.3.4.3,0
+2108,77,1.3.4,1
+2108,14,1.3.4.3,0
+2109,106,1.3,2
+2109,14,1.3.4.3,0
+2109,77,1.3.4,1
+2110,77,1.3.4,1
+2110,81,1.3.4,1
+2110,14,1.3.4.3,0
+2111,14,1.3.4.3,0
+2111,77,1.3.4,1
+2112,81,1.3.4,1
+2112,14,1.3.4.3,0
+2114,14,1.3.4.3,0
+2114,81,1.3.4,1
+2114,80,1.3.4,1
+2116,14,1.3.4.3,0
+2116,81,1.3.4,1
+2117,81,1.3.4,1
+2117,14,1.3.4.3,0
+2119,14,1.3.4.3,0
+2119,81,1.3.4,1
+2120,77,1.3.4,1
+2120,14,1.3.4.3,0
+2122,77,1.3.4,1
+2122,14,1.3.4.3,0
+2123,14,1.3.4.3,0
+2123,77,1.3.4,1
+2123,80,1.3.4,1
+2123,81,1.3.4,1
+2124,80,1.3.4,1
+2124,14,1.3.4.3,0
+2126,14,1.3.4.3,0
+2126,77,1.3.4,1
+2126,80,1.3.4,1
+2127,81,1.3.4,1
+2127,14,1.3.4.3,0
+2128,81,1.3.4,1
+2128,14,1.3.4.3,0
+2129,80,1.3.4,1
+2129,77,1.3.4,1
+2129,14,1.3.4.3,0
+2131,80,1.3.4,1
+2131,14,1.3.4.3,0
+2131,77,1.3.4,1
+2132,106,1.3,2
+2132,29,1.3,2
+2132,14,1.3.4.3,0
+2132,81,1.3.4,1
+2132,170,1,3
+2132,77,1.3.4,1
+2133,80,1.3.4,1
+2133,14,1.3.4.3,0
+2134,77,1.3.4,1
+2134,14,1.3.4.3,0
+2135,14,1.3.4.3,0
+2135,81,1.3.4,1
+2136,14,1.3.4.3,0
+2136,81,1.3.4,1
+2136,80,1.3.4,1
+2137,80,1.3.4,1
+2137,14,1.3.4.3,0
+2138,80,1.3.4,1
+2138,14,1.3.4.3,0
+2139,77,1.3.4,1
+2139,14,1.3.4.3,0
+2140,81,1.3.4,1
+2140,14,1.3.4.3,0
+2140,80,1.3.4,1
+2141,81,1.3.4,1
+2141,14,1.3.4.3,0
+2142,80,1.3.4,1
+2142,14,1.3.4.3,0
+2143,81,1.3.4,1
+2143,77,1.3.4,1
+2143,14,1.3.4.3,0
+2144,14,1.3.4.3,0
+2144,80,1.3.4,1
+2145,81,1.3.4,1
+2145,14,1.3.4.3,0
+2146,80,1.3.4,1
+2146,14,1.3.4.3,0
+2147,14,1.3.4.3,0
+2147,77,1.3.4,1
+2148,14,1.3.4.3,0
+2148,80,1.3.4,1
+2148,81,1.3.4,1
+2150,14,1.3.4.3,0
+2150,81,1.3.4,1
+2151,99,1.3.3,1
+2151,15,1.3.3.5,0
+2152,29,1.3,2
+2152,15,1.3.3.5,0
+2152,97,1.3.3,1
+2152,99,1.3.3,1
+2154,15,1.3.3.5,0
+2154,75,1.3.3,1
+2155,75,1.3.3,1
+2155,99,1.3.3,1
+2155,15,1.3.3.5,0
+2156,97,1.3.3,1
+2156,15,1.3.3.5,0
+2157,75,1.3.3,1
+2157,15,1.3.3.5,0
+2158,97,1.3.3,1
+2158,15,1.3.3.5,0
+2159,29,1.3,2
+2159,97,1.3.3,1
+2159,15,1.3.3.5,0
+2160,15,1.3.3.5,0
+2160,75,1.3.3,1
+2161,15,1.3.3.5,0
+2161,75,1.3.3,1
+2161,99,1.3.3,1
+2162,99,1.3.3,1
+2162,15,1.3.3.5,0
+2164,97,1.3.3,1
+2164,15,1.3.3.5,0
+2164,75,1.3.3,1
+2166,15,1.3.3.5,0
+2166,75,1.3.3,1
+2166,97,1.3.3,1
+2169,99,1.3.3,1
+2169,15,1.3.3.5,0
+2170,15,1.3.3.5,0
+2170,75,1.3.3,1
+2172,75,1.3.3,1
+2172,15,1.3.3.5,0
+2173,99,1.3.3,1
+2173,15,1.3.3.5,0
+2173,97,1.3.3,1
+2173,75,1.3.3,1
+2174,15,1.3.3.5,0
+2174,99,1.3.3,1
+2176,99,1.3.3,1
+2176,15,1.3.3.5,0
+2178,75,1.3.3,1
+2178,15,1.3.3.5,0
+2179,75,1.3.3,1
+2179,15,1.3.3.5,0
+2180,99,1.3.3,1
+2180,15,1.3.3.5,0
+2181,97,1.3.3,1
+2181,15,1.3.3.5,0
+2182,97,1.3.3,1
+2182,15,1.3.3.5,0
+2183,75,1.3.3,1
+2183,15,1.3.3.5,0
+2184,75,1.3.3,1
+2184,15,1.3.3.5,0
+2185,15,1.3.3.5,0
+2185,99,1.3.3,1
+2185,97,1.3.3,1
+2186,99,1.3.3,1
+2186,15,1.3.3.5,0
+2186,97,1.3.3,1
+2189,75,1.3.3,1
+2189,15,1.3.3.5,0
+2191,15,1.3.3.5,0
+2191,97,1.3.3,1
+2192,15,1.3.3.5,0
+2192,97,1.3.3,1
+2192,99,1.3.3,1
+2193,75,1.3.3,1
+2193,15,1.3.3.5,0
+2194,15,1.3.3.5,0
+2194,75,1.3.3,1
+2194,97,1.3.3,1
+2197,97,1.3.3,1
+2197,15,1.3.3.5,0
+2198,97,1.3.3,1
+2198,15,1.3.3.5,0
+2198,75,1.3.3,1
+2199,15,1.3.3.5,0
+2199,97,1.3.3,1
+2202,126,1.1,1
+2202,16,1.1.3,0
+2204,16,1.1.3,0
+2204,126,1.1,1
+2205,16,1.1.3,0
+2205,86,1.1,1
+2205,105,1.1,1
+2207,16,1.1.3,0
+2207,106,1.1,1
+2208,86,1.1,1
+2208,16,1.1.3,0
+2209,16,1.1.3,0
+2209,94,1.1,1
+2210,86,1.1,1
+2210,16,1.1.3,0
+2211,16,1.1.3,0
+2211,106,1.1,1
+2211,126,1.1,1
+2211,94,1.1,1
+2211,105,1.1,1
+2214,86,1.1,1
+2214,16,1.1.3,0
+2214,126,1.1,1
+2216,106,1.1,1
+2216,94,1.1,1
+2216,16,1.1.3,0
+2219,16,1.1.3,0
+2219,126,1.1,1
+2219,105,1.1,1
+2219,170,1,2
+2222,16,1.1.3,0
+2222,105,1.1,1
+2228,16,1.1.3,0
+2228,86,1.1,1
+2229,105,1.1,1
+2229,16,1.1.3,0
+2229,106,1.1,1
+2232,86,1.1,1
+2232,16,1.1.3,0
+2233,16,1.1.3,0
+2233,94,1.1,1
+2236,106,1.1,1
+2236,86,1.1,1
+2236,16,1.1.3,0
+2238,106,1.1,1
+2238,16,1.1.3,0
+2239,16,1.1.3,0
+2239,106,1.1,1
+2241,106,1.1,1
+2241,16,1.1.3,0
+2242,16,1.1.3,0
+2242,126,1.1,1
+2242,106,1.1,1
+2243,126,1.1,1
+2243,16,1.1.3,0
+2244,16,1.1.3,0
+2244,126,1.1,1
+2245,16,1.1.3,0
+2245,105,1.1,1
+2247,86,1.1,1
+2247,106,1.1,1
+2247,16,1.1.3,0
+2248,126,1.1,1
+2248,86,1.1,1
+2248,16,1.1.3,0
+2252,95,2.3,1
+2252,16,2.3.1,0
+2254,126,2.3,1
+2254,16,2.3.1,0
+2255,16,2.3.1,0
+2255,124,2.3,1
+2256,99,2.3,1
+2256,16,2.3.1,0
+2256,155,2.3,1
+2258,99,2.3,1
+2258,16,2.3.1,0
+2259,16,2.3.1,0
+2259,95,2.3,1
+2260,16,2.3.1,0
+2260,95,2.3,1
+2260,126,2.3,1
+2261,84,2.3,1
+2261,99,2.3,1
+2261,16,2.3.1,0
+2264,16,2.3.1,0
+2264,124,2.3,1
+2266,16,2.3.1,0
+2266,99,2.3,1
+2266,95,2.3,1
+2270,84,2.3,1
+2270,16,2.3.1,0
+2272,16,2.3.1,0
+2272,84,2.3,1
+2273,99,2.3,1
+2273,16,2.3.1,0
+2277,16,2.3.1,0
+2277,95,2.3,1
+2278,16,2.3.1,0
+2278,84,2.3,1
+2279,84,2.3,1
+2279,16,2.3.1,0
+2281,155,2.3,1
+2281,16,2.3.1,0
+2281,124,2.3,1
+2282,99,2.3,1
+2282,16,2.3.1,0
+2286,95,2.3,1
+2286,124,2.3,1
+2286,84,2.3,1
+2286,16,2.3.1,0
+2291,16,2.3.1,0
+2291,95,2.3,1
+2292,16,2.3.1,0
+2292,155,2.3,1
+2293,124,2.3,1
+2293,155,2.3,1
+2293,16,2.3.1,0
+2294,84,2.3,1
+2294,155,2.3,1
+2294,16,2.3.1,0
+2296,16,2.3.1,0
+2296,126,2.3,1
+2297,16,2.3.1,0
+2297,99,2.3,1
+2298,95,2.3,1
+2298,16,2.3.1,0
+2304,84,2.3,1
+2304,16,2.3.2,0
+2306,16,2.3.2,0
+2306,124,2.3,1
+2307,16,2.3.2,0
+2307,95,2.3,1
+2308,16,2.3.2,0
+2308,84,2.3,1
+2308,126,2.3,1
+2309,16,2.3.2,0
+2309,84,2.3,1
+2310,16,2.3.2,0
+2310,95,2.3,1
+2310,126,2.3,1
+2310,155,2.3,1
+2311,155,2.3,1
+2311,84,2.3,1
+2311,16,2.3.2,0
+2314,16,2.3.2,0
+2314,126,2.3,1
+2316,155,2.3,1
+2316,16,2.3.2,0
+2320,84,2.3,1
+2320,16,2.3.2,0
+2322,124,2.3,1
+2322,126,2.3,1
+2322,16,2.3.2,0
+2322,99,2.3,1
+2322,84,2.3,1
+2323,95,2.3,1
+2323,124,2.3,1
+2323,16,2.3.2,0
+2324,155,2.3,1
+2324,16,2.3.2,0
+2326,99,2.3,1
+2326,126,2.3,1
+2326,16,2.3.2,0
+2327,126,2.3,1
+2327,16,2.3.2,0
+2328,124,2.3,1
+2328,16,2.3.2,0
+2333,126,2.3,1
+2333,16,2.3.2,0
+2334,84,2.3,1
+2334,16,2.3.2,0
+2336,126,2.3,1
+2336,16,2.3.2,0
+2338,124,2.3,1
+2338,16,2.3.2,0
+2339,16,2.3.2,0
+2339,124,2.3,1
+2341,16,2.3.2,0
+2341,99,2.3,1
+2345,95,2.3,1
+2345,16,2.3.2,0
+2347,16,2.3.2,0
+2347,155,2.3,1
+2348,155,2.3,1
+2348,16,2.3.2,0
+2348,84,2.3,1
+2350,124,2.3,1
+2350,16,2.3.2,0
+2351,16,2.3.3,0
+2351,126,2.3,1
+2352,84,2.3,1
+2352,155,2.3,1
+2352,16,2.3.3,0
+2354,16,2.3.3,0
+2354,84,2.3,1
+2355,155,2.3,1
+2355,84,2.3,1
+2355,16,2.3.3,0
+2356,16,2.3.3,0
+2356,95,2.3,1
+2357,155,2.3,1
+2357,16,2.3.3,0
+2359,16,2.3.3,0
+2359,84,2.3,1
+2360,126,2.3,1
+2360,16,2.3.3,0
+2360,155,2.3,1
+2360,84,2.3,1
+2360,124,2.3,1
+2364,16,2.3.3,0
+2364,95,2.3,1
+2366,16,2.3.3,0
+2366,155,2.3,1
+2372,16,2.3.3,0
+2372,84,2.3,1
+2373,155,2.3,1
+2373,124,2.3,1
+2373,16,2.3.3,0
+2374,16,2.3.3,0
+2374,99,2.3,1
+2379,84,2.3,1
+2379,126,2.3,1
+2379,16,2.3.3,0
+2383,16,2.3.3,0
+2383,84,2.3,1
+2384,95,2.3,1
+2384,16,2.3.3,0
+2386,16,2.3.3,0
+2386,95,2.3,1
+2388,16,2.3.3,0
+2388,99,2.3,1
+2389,16,2.3.3,0
+2389,124,2.3,1
+2389,126,2.3,1
+2389,84,2.3,1
+2390,126,2.3,1
+2390,16,2.3.3,0
+2393,99,2.3,1
+2393,126,2.3,1
+2393,16,2.3.3,0
+2394,16,2.3.3,0
+2394,126,2.3,1
+2394,124,2.3,1
+2395,16,2.3.3,0
+2395,95,2.3,1
+2397,16,2.3.3,0
+2397,126,2.3,1
+2398,16,2.3.3,0
+2398,124,2.3,1
+2399,126,2.3,1
+2399,16,2.3.3,0
+2402,142,1.4.2,1
+2402,17,1.4.2.4,0
+2404,142,1.4.2,1
+2404,17,1.4.2.4,0
+2405,142,1.4.2,1
+2405,17,1.4.2.4,0
+2406,17,1.4.2.4,0
+2406,142,1.4.2,1
+2407,142,1.4.2,1
+2407,17,1.4.2.4,0
+2408,17,1.4.2.4,0
+2408,142,1.4.2,1
+2409,17,1.4.2.4,0
+2409,142,1.4.2,1
+2410,142,1.4.2,1
+2410,17,1.4.2.4,0
+2411,17,1.4.2.4,0
+2411,142,1.4.2,1
+2414,142,1.4.2,1
+2414,17,1.4.2.4,0
+2416,142,1.4.2,1
+2416,17,1.4.2.4,0
+2420,17,1.4.2.4,0
+2420,142,1.4.2,1
+2422,142,1.4.2,1
+2422,17,1.4.2.4,0
+2423,17,1.4.2.4,0
+2423,142,1.4.2,1
+2426,17,1.4.2.4,0
+2426,142,1.4.2,1
+2428,142,1.4.2,1
+2428,17,1.4.2.4,0
+2429,142,1.4.2,1
+2429,17,1.4.2.4,0
+2431,142,1.4.2,1
+2431,17,1.4.2.4,0
+2432,17,1.4.2.4,0
+2432,142,1.4.2,1
+2433,142,1.4.2,1
+2433,17,1.4.2.4,0
+2434,142,1.4.2,1
+2434,17,1.4.2.4,0
+2436,142,1.4.2,1
+2436,17,1.4.2.4,0
+2439,142,1.4.2,1
+2439,17,1.4.2.4,0
+2441,17,1.4.2.4,0
+2441,142,1.4.2,1
+2443,142,1.4.2,1
+2443,17,1.4.2.4,0
+2444,17,1.4.2.4,0
+2444,142,1.4.2,1
+2447,17,1.4.2.4,0
+2447,142,1.4.2,1
+2448,17,1.4.2.4,0
+2448,142,1.4.2,1
+2452,18,1.3.3.2,0
+2452,97,1.3.3,1
+2455,97,1.3.3,1
+2455,18,1.3.3.2,0
+2456,97,1.3.3,1
+2456,18,1.3.3.2,0
+2457,97,1.3.3,1
+2457,18,1.3.3.2,0
+2458,97,1.3.3,1
+2458,18,1.3.3.2,0
+2461,75,1.3.3,1
+2461,18,1.3.3.2,0
+2464,99,1.3.3,1
+2464,18,1.3.3.2,0
+2466,99,1.3.3,1
+2466,18,1.3.3.2,0
+2469,97,1.3.3,1
+2469,18,1.3.3.2,0
+2472,75,1.3.3,1
+2472,18,1.3.3.2,0
+2476,75,1.3.3,1
+2476,99,1.3.3,1
+2476,18,1.3.3.2,0
+2477,18,1.3.3.2,0
+2477,99,1.3.3,1
+2478,18,1.3.3.2,0
+2478,97,1.3.3,1
+2479,18,1.3.3.2,0
+2479,97,1.3.3,1
+2482,75,1.3.3,1
+2482,18,1.3.3.2,0
+2483,18,1.3.3.2,0
+2483,75,1.3.3,1
+2484,18,1.3.3.2,0
+2484,75,1.3.3,1
+2485,99,1.3.3,1
+2485,18,1.3.3.2,0
+2486,97,1.3.3,1
+2486,18,1.3.3.2,0
+2490,99,1.3.3,1
+2490,18,1.3.3.2,0
+2493,18,1.3.3.2,0
+2493,75,1.3.3,1
+2494,99,1.3.3,1
+2494,97,1.3.3,1
+2494,18,1.3.3.2,0
+2495,99,1.3.3,1
+2495,18,1.3.3.2,0
+2497,18,1.3.3.2,0
+2497,97,1.3.3,1
+2502,142,1.4.2,1
+2502,19,1.4.2.1,0
+2504,142,1.4.2,1
+2504,19,1.4.2.1,0
+2505,19,1.4.2.1,0
+2505,142,1.4.2,1
+2506,142,1.4.2,1
+2506,19,1.4.2.1,0
+2507,142,1.4.2,1
+2507,19,1.4.2.1,0
+2508,19,1.4.2.1,0
+2508,142,1.4.2,1
+2509,142,1.4.2,1
+2509,19,1.4.2.1,0
+2510,142,1.4.2,1
+2510,19,1.4.2.1,0
+2511,142,1.4.2,1
+2511,19,1.4.2.1,0
+2514,142,1.4.2,1
+2514,19,1.4.2.1,0
+2516,142,1.4.2,1
+2516,19,1.4.2.1,0
+2520,19,1.4.2.1,0
+2520,142,1.4.2,1
+2522,142,1.4.2,1
+2522,19,1.4.2.1,0
+2523,142,1.4.2,1
+2523,19,1.4.2.1,0
+2526,142,1.4.2,1
+2526,19,1.4.2.1,0
+2528,19,1.4.2.1,0
+2528,142,1.4.2,1
+2529,142,1.4.2,1
+2529,19,1.4.2.1,0
+2531,142,1.4.2,1
+2531,19,1.4.2.1,0
+2532,142,1.4.2,1
+2532,19,1.4.2.1,0
+2533,142,1.4.2,1
+2533,19,1.4.2.1,0
+2534,142,1.4.2,1
+2534,19,1.4.2.1,0
+2536,19,1.4.2.1,0
+2536,142,1.4.2,1
+2539,142,1.4.2,1
+2539,19,1.4.2.1,0
+2541,19,1.4.2.1,0
+2541,142,1.4.2,1
+2543,142,1.4.2,1
+2543,19,1.4.2.1,0
+2544,19,1.4.2.1,0
+2544,142,1.4.2,1
+2547,142,1.4.2,1
+2547,19,1.4.2.1,0
+2548,142,1.4.2,1
+2548,19,1.4.2.1,0
+2552,93,1.3.1,1
+2552,20,1.3.1.2,0
+2553,100,1.3.1,1
+2553,20,1.3.1.2,0
+2554,39,1.3.1,1
+2554,20,1.3.1.2,0
+2555,93,1.3.1,1
+2555,20,1.3.1.2,0
+2556,20,1.3.1.2,0
+2556,39,1.3.1,1
+2557,20,1.3.1.2,0
+2557,39,1.3.1,1
+2558,39,1.3.1,1
+2558,20,1.3.1.2,0
+2559,20,1.3.1.2,0
+2559,100,1.3.1,1
+2560,20,1.3.1.2,0
+2560,39,1.3.1,1
+2561,93,1.3.1,1
+2561,85,1.3.1,1
+2561,20,1.3.1.2,0
+2564,93,1.3.1,1
+2564,39,1.3.1,1
+2564,99,1.3.1,1
+2564,20,1.3.1.2,0
+2566,20,1.3.1.2,0
+2566,99,1.3.1,1
+2569,100,1.3.1,1
+2569,20,1.3.1.2,0
+2570,20,1.3.1.2,0
+2570,39,1.3.1,1
+2572,20,1.3.1.2,0
+2572,99,1.3.1,1
+2573,100,1.3.1,1
+2573,20,1.3.1.2,0
+2573,93,1.3.1,1
+2576,39,1.3.1,1
+2576,20,1.3.1.2,0
+2576,85,1.3.1,1
+2577,20,1.3.1.2,0
+2577,93,1.3.1,1
+2578,20,1.3.1.2,0
+2578,39,1.3.1,1
+2579,100,1.3.1,1
+2579,20,1.3.1.2,0
+2581,39,1.3.1,1
+2581,20,1.3.1.2,0
+2581,100,1.3.1,1
+2582,39,1.3.1,1
+2582,20,1.3.1.2,0
+2583,20,1.3.1.2,0
+2583,93,1.3.1,1
+2584,93,1.3.1,1
+2584,20,1.3.1.2,0
+2585,85,1.3.1,1
+2585,20,1.3.1.2,0
+2586,20,1.3.1.2,0
+2586,99,1.3.1,1
+2588,20,1.3.1.2,0
+2588,99,1.3.1,1
+2589,93,1.3.1,1
+2589,20,1.3.1.2,0
+2590,99,1.3.1,1
+2590,20,1.3.1.2,0
+2591,20,1.3.1.2,0
+2591,39,1.3.1,1
+2592,20,1.3.1.2,0
+2592,100,1.3.1,1
+2593,99,1.3.1,1
+2593,20,1.3.1.2,0
+2594,85,1.3.1,1
+2594,20,1.3.1.2,0
+2594,93,1.3.1,1
+2597,20,1.3.1.2,0
+2597,93,1.3.1,1
+2598,100,1.3.1,1
+2598,20,1.3.1.2,0
+2600,20,1.3.1.2,0
+2600,100,1.3.1,1
+2602,85,1.3.1,1
+2602,21,1.3.1.3,0
+2603,39,1.3.1,1
+2603,100,1.3.1,1
+2603,21,1.3.1.3,0
+2603,93,1.3.1,1
+2604,21,1.3.1.3,0
+2604,39,1.3.1,1
+2605,21,1.3.1.3,0
+2605,93,1.3.1,1
+2605,85,1.3.1,1
+2606,21,1.3.1.3,0
+2606,100,1.3.1,1
+2607,39,1.3.1,1
+2607,21,1.3.1.3,0
+2608,99,1.3.1,1
+2608,21,1.3.1.3,0
+2608,85,1.3.1,1
+2609,21,1.3.1.3,0
+2609,39,1.3.1,1
+2610,100,1.3.1,1
+2610,21,1.3.1.3,0
+2610,85,1.3.1,1
+2611,99,1.3.1,1
+2611,100,1.3.1,1
+2611,85,1.3.1,1
+2611,21,1.3.1.3,0
+2611,93,1.3.1,1
+2614,21,1.3.1.3,0
+2614,99,1.3.1,1
+2614,85,1.3.1,1
+2616,21,1.3.1.3,0
+2616,85,1.3.1,1
+2616,99,1.3.1,1
+2617,100,1.3.1,1
+2617,21,1.3.1.3,0
+2619,99,1.3.1,1
+2619,39,1.3.1,1
+2619,21,1.3.1.3,0
+2620,85,1.3.1,1
+2620,21,1.3.1.3,0
+2621,21,1.3.1.3,0
+2621,93,1.3.1,1
+2622,100,1.3.1,1
+2622,21,1.3.1.3,0
+2622,39,1.3.1,1
+2623,99,1.3.1,1
+2623,39,1.3.1,1
+2623,93,1.3.1,1
+2623,85,1.3.1,1
+2623,100,1.3.1,1
+2623,21,1.3.1.3,0
+2624,39,1.3.1,1
+2624,93,1.3.1,1
+2624,21,1.3.1.3,0
+2625,100,1.3.1,1
+2625,21,1.3.1.3,0
+2626,93,1.3.1,1
+2626,99,1.3.1,1
+2626,21,1.3.1.3,0
+2628,93,1.3.1,1
+2628,21,1.3.1.3,0
+2629,29,1.3,2
+2629,39,1.3.1,1
+2629,21,1.3.1.3,0
+2629,93,1.3.1,1
+2631,85,1.3.1,1
+2631,21,1.3.1.3,0
+2631,100,1.3.1,1
+2631,39,1.3.1,1
+2632,93,1.3.1,1
+2632,106,1.3,2
+2632,21,1.3.1.3,0
+2632,85,1.3.1,1
+2633,39,1.3.1,1
+2633,21,1.3.1.3,0
+2634,21,1.3.1.3,0
+2634,39,1.3.1,1
+2635,99,1.3.1,1
+2635,93,1.3.1,1
+2635,100,1.3.1,1
+2635,21,1.3.1.3,0
+2636,93,1.3.1,1
+2636,85,1.3.1,1
+2636,21,1.3.1.3,0
+2636,39,1.3.1,1
+2637,21,1.3.1.3,0
+2637,99,1.3.1,1
+2639,100,1.3.1,1
+2639,93,1.3.1,1
+2639,21,1.3.1.3,0
+2640,21,1.3.1.3,0
+2640,100,1.3.1,1
+2641,39,1.3.1,1
+2641,100,1.3.1,1
+2641,21,1.3.1.3,0
+2642,99,1.3.1,1
+2642,21,1.3.1.3,0
+2642,93,1.3.1,1
+2643,100,1.3.1,1
+2643,21,1.3.1.3,0
+2643,85,1.3.1,1
+2643,93,1.3.1,1
+2644,21,1.3.1.3,0
+2644,85,1.3.1,1
+2644,99,1.3.1,1
+2645,21,1.3.1.3,0
+2645,100,1.3.1,1
+2645,93,1.3.1,1
+2646,21,1.3.1.3,0
+2646,100,1.3.1,1
+2647,85,1.3.1,1
+2647,21,1.3.1.3,0
+2648,21,1.3.1.3,0
+2648,99,1.3.1,1
+2648,85,1.3.1,1
+2649,21,1.3.1.3,0
+2649,100,1.3.1,1
+2650,99,1.3.1,1
+2650,85,1.3.1,1
+2650,21,1.3.1.3,0
+2652,22,1.2.1,0
+2652,106,1.2,1
+2657,67,1.2,1
+2657,22,1.2.1,0
+2658,22,1.2.1,0
+2658,126,1.2,1
+2660,22,1.2.1,0
+2660,106,1.2,1
+2661,126,1.2,1
+2661,22,1.2.1,0
+2661,106,1.2,1
+2664,67,1.2,1
+2664,22,1.2.1,0
+2672,22,1.2.1,0
+2672,67,1.2,1
+2678,67,1.2,1
+2678,22,1.2.1,0
+2681,97,1.2,1
+2681,22,1.2.1,0
+2682,22,1.2.1,0
+2682,67,1.2,1
+2684,22,1.2.1,0
+2684,67,1.2,1
+2685,22,1.2.1,0
+2685,106,1.2,1
+2688,22,1.2.1,0
+2688,126,1.2,1
+2694,22,1.2.1,0
+2694,106,1.2,1
+2697,67,1.2,1
+2697,22,1.2.1,0
+2702,22,1.2.2,0
+2702,126,1.2,1
+2705,22,1.2.2,0
+2705,106,1.2,1
+2706,106,1.2,1
+2706,22,1.2.2,0
+2707,67,1.2,1
+2707,22,1.2.2,0
+2708,97,1.2,1
+2708,22,1.2.2,0
+2710,126,1.2,1
+2710,67,1.2,1
+2710,22,1.2.2,0
+2711,22,1.2.2,0
+2711,97,1.2,1
+2711,67,1.2,1
+2714,106,1.2,1
+2714,22,1.2.2,0
+2714,67,1.2,1
+2716,22,1.2.2,0
+2716,106,1.2,1
+2716,97,1.2,1
+2722,22,1.2.2,0
+2722,67,1.2,1
+2726,106,1.2,1
+2726,22,1.2.2,0
+2728,67,1.2,1
+2728,22,1.2.2,0
+2729,22,1.2.2,0
+2729,97,1.2,1
+2731,106,1.2,1
+2731,22,1.2.2,0
+2732,22,1.2.2,0
+2732,67,1.2,1
+2733,97,1.2,1
+2733,22,1.2.2,0
+2734,67,1.2,1
+2734,22,1.2.2,0
+2735,106,1.2,1
+2735,22,1.2.2,0
+2736,106,1.2,1
+2736,22,1.2.2,0
+2736,97,1.2,1
+2736,67,1.2,1
+2739,22,1.2.2,0
+2739,67,1.2,1
+2740,106,1.2,1
+2740,22,1.2.2,0
+2741,22,1.2.2,0
+2741,97,1.2,1
+2742,22,1.2.2,0
+2742,126,1.2,1
+2744,97,1.2,1
+2744,22,1.2.2,0
+2744,67,1.2,1
+2745,22,1.2.2,0
+2745,106,1.2,1
+2747,67,1.2,1
+2747,22,1.2.2,0
+2753,97,1.3.3,1
+2753,22,1.3.3.6,0
+2754,22,1.3.3.6,0
+2754,75,1.3.3,1
+2756,22,1.3.3.6,0
+2756,99,1.3.3,1
+2757,75,1.3.3,1
+2757,22,1.3.3.6,0
+2759,22,1.3.3.6,0
+2759,97,1.3.3,1
+2760,97,1.3.3,1
+2760,22,1.3.3.6,0
+2776,99,1.3.3,1
+2776,22,1.3.3.6,0
+2778,22,1.3.3.6,0
+2778,97,1.3.3,1
+2779,22,1.3.3.6,0
+2779,99,1.3.3,1
+2781,22,1.3.3.6,0
+2781,97,1.3.3,1
+2781,99,1.3.3,1
+2782,75,1.3.3,1
+2782,22,1.3.3.6,0
+2784,22,1.3.3.6,0
+2784,75,1.3.3,1
+2786,75,1.3.3,1
+2786,22,1.3.3.6,0
+2789,22,1.3.3.6,0
+2789,97,1.3.3,1
+2791,97,1.3.3,1
+2791,22,1.3.3.6,0
+2793,99,1.3.3,1
+2793,22,1.3.3.6,0
+2794,22,1.3.3.6,0
+2794,97,1.3.3,1
+2798,106,1.3,2
+2798,29,1.3,2
+2798,97,1.3.3,1
+2798,22,1.3.3.6,0
+2801,148,2.1.1,1
+2801,22,2.1.1.1,0
+2802,22,2.1.1.1,0
+2802,106,2.1.1,1
+2805,80,2.1.1,1
+2805,22,2.1.1.1,0
+2805,85,2.1.1,1
+2806,106,2.1.1,1
+2806,22,2.1.1.1,0
+2809,80,2.1.1,1
+2809,22,2.1.1.1,0
+2810,22,2.1.1.1,0
+2810,106,2.1.1,1
+2811,22,2.1.1.1,0
+2811,80,2.1.1,1
+2819,106,2.1.1,1
+2819,22,2.1.1.1,0
+2820,85,2.1.1,1
+2820,22,2.1.1.1,0
+2822,148,2.1.1,1
+2822,22,2.1.1.1,0
+2822,80,2.1.1,1
+2823,80,2.1.1,1
+2823,85,2.1.1,1
+2823,22,2.1.1.1,0
+2825,22,2.1.1.1,0
+2825,80,2.1.1,1
+2828,22,2.1.1.1,0
+2828,80,2.1.1,1
+2829,22,2.1.1.1,0
+2829,106,2.1.1,1
+2831,80,2.1.1,1
+2831,22,2.1.1.1,0
+2832,106,2.1.1,1
+2832,22,2.1.1.1,0
+2833,22,2.1.1.1,0
+2833,148,2.1.1,1
+2834,85,2.1.1,1
+2834,22,2.1.1.1,0
+2837,106,2.1.1,1
+2837,22,2.1.1.1,0
+2839,106,2.1.1,1
+2839,22,2.1.1.1,0
+2840,106,2.1.1,1
+2840,148,2.1.1,1
+2840,22,2.1.1.1,0
+2841,106,2.1.1,1
+2841,22,2.1.1.1,0
+2842,80,2.1.1,1
+2842,22,2.1.1.1,0
+2843,106,2.1.1,1
+2843,22,2.1.1.1,0
+2844,22,2.1.1.1,0
+2844,80,2.1.1,1
+2848,22,2.1.1.1,0
+2848,80,2.1.1,1
+2849,148,2.1.1,1
+2849,22,2.1.1.1,0
+2851,148,2.1.1,1
+2851,22,2.1.1.2,0
+2852,22,2.1.1.2,0
+2852,85,2.1.1,1
+2854,148,2.1.1,1
+2854,22,2.1.1.2,0
+2855,106,2.1.1,1
+2855,22,2.1.1.2,0
+2855,80,2.1.1,1
+2856,106,2.1.1,1
+2856,22,2.1.1.2,0
+2857,106,2.1.1,1
+2857,22,2.1.1.2,0
+2859,148,2.1.1,1
+2859,22,2.1.1.2,0
+2862,148,2.1.1,1
+2862,22,2.1.1.2,0
+2862,106,2.1.1,1
+2866,22,2.1.1.2,0
+2866,106,2.1.1,1
+2870,80,2.1.1,1
+2870,22,2.1.1.2,0
+2872,22,2.1.1.2,0
+2872,80,2.1.1,1
+2873,85,2.1.1,1
+2873,22,2.1.1.2,0
+2874,22,2.1.1.2,0
+2874,148,2.1.1,1
+2876,85,2.1.1,1
+2876,80,2.1.1,1
+2876,22,2.1.1.2,0
+2878,22,2.1.1.2,0
+2878,80,2.1.1,1
+2879,148,2.1.1,1
+2879,22,2.1.1.2,0
+2881,85,2.1.1,1
+2881,22,2.1.1.2,0
+2883,22,2.1.1.2,0
+2883,80,2.1.1,1
+2884,22,2.1.1.2,0
+2884,80,2.1.1,1
+2886,148,2.1.1,1
+2886,22,2.1.1.2,0
+2888,22,2.1.1.2,0
+2888,106,2.1.1,1
+2889,80,2.1.1,1
+2889,22,2.1.1.2,0
+2894,22,2.1.1.2,0
+2894,80,2.1.1,1
+2898,80,2.1.1,1
+2898,22,2.1.1.2,0
+2898,148,2.1.1,1
+2902,22,2.1.1.3,0
+2902,85,2.1.1,1
+2904,106,2.1.1,1
+2904,22,2.1.1.3,0
+2906,148,2.1.1,1
+2906,22,2.1.1.3,0
+2907,80,2.1.1,1
+2907,22,2.1.1.3,0
+2908,22,2.1.1.3,0
+2908,80,2.1.1,1
+2909,106,2.1.1,1
+2909,22,2.1.1.3,0
+2910,22,2.1.1.3,0
+2910,80,2.1.1,1
+2911,22,2.1.1.3,0
+2911,85,2.1.1,1
+2919,148,2.1.1,1
+2919,22,2.1.1.3,0
+2919,106,2.1.1,1
+2920,85,2.1.1,1
+2920,22,2.1.1.3,0
+2923,148,2.1.1,1
+2923,80,2.1.1,1
+2923,22,2.1.1.3,0
+2928,22,2.1.1.3,0
+2928,80,2.1.1,1
+2929,22,2.1.1.3,0
+2929,106,2.1.1,1
+2931,80,2.1.1,1
+2931,99,2.1,2
+2931,85,2.1.1,1
+2931,22,2.1.1.3,0
+2932,80,2.1.1,1
+2932,22,2.1.1.3,0
+2933,22,2.1.1.3,0
+2933,80,2.1.1,1
+2936,85,2.1.1,1
+2936,22,2.1.1.3,0
+2937,22,2.1.1.3,0
+2937,106,2.1.1,1
+2938,22,2.1.1.3,0
+2938,148,2.1.1,1
+2939,22,2.1.1.3,0
+2939,80,2.1.1,1
+2943,22,2.1.1.3,0
+2943,148,2.1.1,1
+2944,106,2.1.1,1
+2944,85,2.1.1,1
+2944,22,2.1.1.3,0
+2947,85,2.1.1,1
+2947,148,2.1.1,1
+2947,22,2.1.1.3,0
+2948,106,2.1.1,1
+2948,80,2.1.1,1
+2948,22,2.1.1.3,0
+2950,148,2.1.1,1
+2950,22,2.1.1.3,0
+2951,106,2.1.1,1
+2951,22,2.1.1.4,0
+2952,22,2.1.1.4,0
+2952,85,2.1.1,1
+2954,80,2.1.1,1
+2954,22,2.1.1.4,0
+2955,22,2.1.1.4,0
+2955,85,2.1.1,1
+2956,85,2.1.1,1
+2956,22,2.1.1.4,0
+2958,22,2.1.1.4,0
+2958,80,2.1.1,1
+2959,85,2.1.1,1
+2959,22,2.1.1.4,0
+2961,22,2.1.1.4,0
+2961,148,2.1.1,1
+2964,22,2.1.1.4,0
+2964,148,2.1.1,1
+2966,22,2.1.1.4,0
+2966,80,2.1.1,1
+2973,106,2.1.1,1
+2973,22,2.1.1.4,0
+2974,22,2.1.1.4,0
+2974,148,2.1.1,1
+2976,148,2.1.1,1
+2976,85,2.1.1,1
+2976,22,2.1.1.4,0
+2978,80,2.1.1,1
+2978,22,2.1.1.4,0
+2979,22,2.1.1.4,0
+2979,106,2.1.1,1
+2982,106,2.1.1,1
+2982,22,2.1.1.4,0
+2983,22,2.1.1.4,0
+2983,85,2.1.1,1
+2985,22,2.1.1.4,0
+2985,106,2.1.1,1
+2986,85,2.1.1,1
+2986,80,2.1.1,1
+2986,22,2.1.1.4,0
+2990,148,2.1.1,1
+2990,22,2.1.1.4,0
+2991,80,2.1.1,1
+2991,22,2.1.1.4,0
+2992,22,2.1.1.4,0
+2992,106,2.1.1,1
+2992,80,2.1.1,1
+2994,22,2.1.1.4,0
+2994,85,2.1.1,1
+2997,85,2.1.1,1
+2997,22,2.1.1.4,0
+2998,80,2.1.1,1
+2998,22,2.1.1.4,0
+3000,22,2.1.1.4,0
+3000,106,2.1.1,1
+3006,148,2.1.1,1
+3006,22,2.1.1.5,0
+3007,85,2.1.1,1
+3007,22,2.1.1.5,0
+3008,22,2.1.1.5,0
+3008,106,2.1.1,1
+3010,22,2.1.1.5,0
+3010,106,2.1.1,1
+3022,106,2.1.1,1
+3022,22,2.1.1.5,0
+3025,22,2.1.1.5,0
+3025,80,2.1.1,1
+3026,22,2.1.1.5,0
+3026,106,2.1.1,1
+3028,22,2.1.1.5,0
+3028,106,2.1.1,1
+3029,22,2.1.1.5,0
+3029,80,2.1.1,1
+3030,148,2.1.1,1
+3030,22,2.1.1.5,0
+3031,85,2.1.1,1
+3031,80,2.1.1,1
+3031,22,2.1.1.5,0
+3032,85,2.1.1,1
+3032,22,2.1.1.5,0
+3034,148,2.1.1,1
+3034,22,2.1.1.5,0
+3036,85,2.1.1,1
+3036,22,2.1.1.5,0
+3040,22,2.1.1.5,0
+3040,106,2.1.1,1
+3041,22,2.1.1.5,0
+3041,148,2.1.1,1
+3042,148,2.1.1,1
+3042,22,2.1.1.5,0
+3043,148,2.1.1,1
+3043,106,2.1.1,1
+3043,22,2.1.1.5,0
+3047,148,2.1.1,1
+3047,22,2.1.1.5,0
+3050,22,2.1.1.5,0
+3050,106,2.1.1,1
+3052,22,2.1.3.1,0
+3052,74,2.1.3,1
+3052,73,2.1.3,1
+3052,97,2.1.3,1
+3052,108,2.1.3,1
+3053,126,2.1.3,1
+3053,148,2.1.3,1
+3053,22,2.1.3.1,0
+3053,108,2.1.3,1
+3054,106,2.1.3,1
+3054,148,2.1.3,1
+3054,22,2.1.3.1,0
+3055,108,2.1.3,1
+3055,22,2.1.3.1,0
+3055,97,2.1.3,1
+3056,148,2.1.3,1
+3056,22,2.1.3.1,0
+3056,106,2.1.3,1
+3056,126,2.1.3,1
+3057,73,2.1.3,1
+3057,22,2.1.3.1,0
+3058,22,2.1.3.1,0
+3058,74,2.1.3,1
+3058,126,2.1.3,1
+3060,22,2.1.3.1,0
+3060,106,2.1.3,1
+3060,74,2.1.3,1
+3061,126,2.1.3,1
+3061,108,2.1.3,1
+3061,148,2.1.3,1
+3061,22,2.1.3.1,0
+3062,126,2.1.3,1
+3062,22,2.1.3.1,0
+3062,108,2.1.3,1
+3064,22,2.1.3.1,0
+3064,73,2.1.3,1
+3066,74,2.1.3,1
+3066,97,2.1.3,1
+3066,22,2.1.3.1,0
+3066,108,2.1.3,1
+3067,148,2.1.3,1
+3067,22,2.1.3.1,0
+3067,106,2.1.3,1
+3070,126,2.1.3,1
+3070,73,2.1.3,1
+3070,22,2.1.3.1,0
+3071,108,2.1.3,1
+3071,126,2.1.3,1
+3071,22,2.1.3.1,0
+3072,106,2.1.3,1
+3072,22,2.1.3.1,0
+3072,148,2.1.3,1
+3073,148,2.1.3,1
+3073,106,2.1.3,1
+3073,108,2.1.3,1
+3073,22,2.1.3.1,0
+3074,97,2.1.3,1
+3074,22,2.1.3.1,0
+3075,108,2.1.3,1
+3075,22,2.1.3.1,0
+3075,73,2.1.3,1
+3076,74,2.1.3,1
+3076,73,2.1.3,1
+3076,108,2.1.3,1
+3076,22,2.1.3.1,0
+3078,22,2.1.3.1,0
+3078,74,2.1.3,1
+3079,106,2.1.3,1
+3079,74,2.1.3,1
+3079,22,2.1.3.1,0
+3080,148,2.1.3,1
+3080,22,2.1.3.1,0
+3081,108,2.1.3,1
+3081,22,2.1.3.1,0
+3081,74,2.1.3,1
+3082,73,2.1.3,1
+3082,22,2.1.3.1,0
+3084,22,2.1.3.1,0
+3084,73,2.1.3,1
+3084,148,2.1.3,1
+3085,22,2.1.3.1,0
+3085,97,2.1.3,1
+3085,108,2.1.3,1
+3085,126,2.1.3,1
+3086,73,2.1.3,1
+3086,22,2.1.3.1,0
+3086,97,2.1.3,1
+3087,97,2.1.3,1
+3087,22,2.1.3.1,0
+3088,22,2.1.3.1,0
+3088,97,2.1.3,1
+3089,74,2.1.3,1
+3089,108,2.1.3,1
+3089,22,2.1.3.1,0
+3089,126,2.1.3,1
+3090,22,2.1.3.1,0
+3090,106,2.1.3,1
+3090,108,2.1.3,1
+3090,148,2.1.3,1
+3091,106,2.1.3,1
+3091,126,2.1.3,1
+3091,22,2.1.3.1,0
+3092,97,2.1.3,1
+3092,148,2.1.3,1
+3092,22,2.1.3.1,0
+3093,22,2.1.3.1,0
+3093,74,2.1.3,1
+3093,106,2.1.3,1
+3094,22,2.1.3.1,0
+3094,73,2.1.3,1
+3094,108,2.1.3,1
+3095,108,2.1.3,1
+3095,22,2.1.3.1,0
+3097,22,2.1.3.1,0
+3097,108,2.1.3,1
+3097,148,2.1.3,1
+3097,126,2.1.3,1
+3097,73,2.1.3,1
+3098,108,2.1.3,1
+3098,126,2.1.3,1
+3098,74,2.1.3,1
+3098,22,2.1.3.1,0
+3099,74,2.1.3,1
+3099,108,2.1.3,1
+3099,148,2.1.3,1
+3099,22,2.1.3.1,0
+3100,126,2.1.3,1
+3100,22,2.1.3.1,0
+3102,22,2.1.3.2,0
+3102,148,2.1.3,1
+3102,97,2.1.3,1
+3104,22,2.1.3.2,0
+3104,108,2.1.3,1
+3105,106,2.1.3,1
+3105,126,2.1.3,1
+3105,22,2.1.3.2,0
+3105,73,2.1.3,1
+3106,108,2.1.3,1
+3106,97,2.1.3,1
+3106,22,2.1.3.2,0
+3106,73,2.1.3,1
+3106,126,2.1.3,1
+3107,97,2.1.3,1
+3107,22,2.1.3.2,0
+3108,108,2.1.3,1
+3108,22,2.1.3.2,0
+3109,106,2.1.3,1
+3109,22,2.1.3.2,0
+3110,22,2.1.3.2,0
+3110,108,2.1.3,1
+3111,22,2.1.3.2,0
+3111,108,2.1.3,1
+3111,106,2.1.3,1
+3112,126,2.1.3,1
+3112,22,2.1.3.2,0
+3114,108,2.1.3,1
+3114,73,2.1.3,1
+3114,97,2.1.3,1
+3114,106,2.1.3,1
+3114,22,2.1.3.2,0
+3116,22,2.1.3.2,0
+3116,97,2.1.3,1
+3116,74,2.1.3,1
+3117,148,2.1.3,1
+3117,108,2.1.3,1
+3117,22,2.1.3.2,0
+3119,22,2.1.3.2,0
+3119,148,2.1.3,1
+3121,126,2.1.3,1
+3121,148,2.1.3,1
+3121,106,2.1.3,1
+3121,22,2.1.3.2,0
+3121,108,2.1.3,1
+3122,73,2.1.3,1
+3122,22,2.1.3.2,0
+3123,148,2.1.3,1
+3123,108,2.1.3,1
+3123,97,2.1.3,1
+3123,22,2.1.3.2,0
+3124,97,2.1.3,1
+3124,22,2.1.3.2,0
+3124,126,2.1.3,1
+3124,73,2.1.3,1
+3125,108,2.1.3,1
+3125,22,2.1.3.2,0
+3125,73,2.1.3,1
+3126,97,2.1.3,1
+3126,73,2.1.3,1
+3126,22,2.1.3.2,0
+3128,22,2.1.3.2,0
+3128,74,2.1.3,1
+3129,22,2.1.3.2,0
+3129,97,2.1.3,1
+3129,74,2.1.3,1
+3131,97,2.1.3,1
+3131,74,2.1.3,1
+3131,22,2.1.3.2,0
+3132,22,2.1.3.2,0
+3132,108,2.1.3,1
+3132,97,2.1.3,1
+3133,97,2.1.3,1
+3133,22,2.1.3.2,0
+3134,106,2.1.3,1
+3134,22,2.1.3.2,0
+3135,22,2.1.3.2,0
+3135,108,2.1.3,1
+3136,73,2.1.3,1
+3136,22,2.1.3.2,0
+3137,126,2.1.3,1
+3137,22,2.1.3.2,0
+3138,22,2.1.3.2,0
+3138,97,2.1.3,1
+3139,22,2.1.3.2,0
+3139,108,2.1.3,1
+3140,148,2.1.3,1
+3140,22,2.1.3.2,0
+3141,74,2.1.3,1
+3141,22,2.1.3.2,0
+3142,22,2.1.3.2,0
+3142,108,2.1.3,1
+3142,97,2.1.3,1
+3143,22,2.1.3.2,0
+3143,74,2.1.3,1
+3144,74,2.1.3,1
+3144,22,2.1.3.2,0
+3144,97,2.1.3,1
+3145,108,2.1.3,1
+3145,22,2.1.3.2,0
+3147,97,2.1.3,1
+3147,73,2.1.3,1
+3147,22,2.1.3.2,0
+3148,74,2.1.3,1
+3148,97,2.1.3,1
+3148,22,2.1.3.2,0
+3150,22,2.1.3.2,0
+3150,97,2.1.3,1
+3151,106,2.1.3,1
+3151,22,2.1.3.3,0
+3152,22,2.1.3.3,0
+3152,148,2.1.3,1
+3152,73,2.1.3,1
+3152,97,2.1.3,1
+3152,106,2.1.3,1
+3153,22,2.1.3.3,0
+3153,108,2.1.3,1
+3154,97,2.1.3,1
+3154,22,2.1.3.3,0
+3155,97,2.1.3,1
+3155,22,2.1.3.3,0
+3155,74,2.1.3,1
+3156,22,2.1.3.3,0
+3156,97,2.1.3,1
+3157,73,2.1.3,1
+3157,22,2.1.3.3,0
+3158,22,2.1.3.3,0
+3158,97,2.1.3,1
+3159,73,2.1.3,1
+3159,22,2.1.3.3,0
+3160,73,2.1.3,1
+3160,22,2.1.3.3,0
+3161,126,2.1.3,1
+3161,148,2.1.3,1
+3161,97,2.1.3,1
+3161,22,2.1.3.3,0
+3164,22,2.1.3.3,0
+3164,74,2.1.3,1
+3164,97,2.1.3,1
+3166,73,2.1.3,1
+3166,97,2.1.3,1
+3166,74,2.1.3,1
+3166,22,2.1.3.3,0
+3167,106,2.1.3,1
+3167,148,2.1.3,1
+3167,22,2.1.3.3,0
+3169,73,2.1.3,1
+3169,126,2.1.3,1
+3169,97,2.1.3,1
+3169,22,2.1.3.3,0
+3170,73,2.1.3,1
+3170,108,2.1.3,1
+3170,22,2.1.3.3,0
+3171,22,2.1.3.3,0
+3171,126,2.1.3,1
+3171,108,2.1.3,1
+3172,22,2.1.3.3,0
+3172,106,2.1.3,1
+3172,126,2.1.3,1
+3172,73,2.1.3,1
+3173,73,2.1.3,1
+3173,126,2.1.3,1
+3173,97,2.1.3,1
+3173,22,2.1.3.3,0
+3174,22,2.1.3.3,0
+3174,148,2.1.3,1
+3174,73,2.1.3,1
+3174,74,2.1.3,1
+3175,22,2.1.3.3,0
+3175,73,2.1.3,1
+3176,73,2.1.3,1
+3176,74,2.1.3,1
+3176,22,2.1.3.3,0
+3177,22,2.1.3.3,0
+3177,108,2.1.3,1
+3179,22,2.1.3.3,0
+3179,126,2.1.3,1
+3179,97,2.1.3,1
+3181,97,2.1.3,1
+3181,73,2.1.3,1
+3181,22,2.1.3.3,0
+3182,106,2.1.3,1
+3182,22,2.1.3.3,0
+3183,22,2.1.3.3,0
+3183,97,2.1.3,1
+3184,22,2.1.3.3,0
+3184,108,2.1.3,1
+3185,22,2.1.3.3,0
+3185,74,2.1.3,1
+3185,108,2.1.3,1
+3185,148,2.1.3,1
+3186,106,2.1.3,1
+3186,148,2.1.3,1
+3186,22,2.1.3.3,0
+3186,73,2.1.3,1
+3187,97,2.1.3,1
+3187,108,2.1.3,1
+3187,22,2.1.3.3,0
+3188,22,2.1.3.3,0
+3188,148,2.1.3,1
+3189,73,2.1.3,1
+3189,22,2.1.3.3,0
+3191,74,2.1.3,1
+3191,22,2.1.3.3,0
+3191,148,2.1.3,1
+3191,108,2.1.3,1
+3192,22,2.1.3.3,0
+3192,108,2.1.3,1
+3192,148,2.1.3,1
+3192,73,2.1.3,1
+3193,73,2.1.3,1
+3193,22,2.1.3.3,0
+3193,74,2.1.3,1
+3194,74,2.1.3,1
+3194,22,2.1.3.3,0
+3194,73,2.1.3,1
+3195,148,2.1.3,1
+3195,22,2.1.3.3,0
+3196,148,2.1.3,1
+3196,22,2.1.3.3,0
+3196,108,2.1.3,1
+3197,126,2.1.3,1
+3197,106,2.1.3,1
+3197,22,2.1.3.3,0
+3198,108,2.1.3,1
+3198,22,2.1.3.3,0
+3198,97,2.1.3,1
+3199,22,2.1.3.3,0
+3199,106,2.1.3,1
+3199,148,2.1.3,1
+3200,126,2.1.3,1
+3200,22,2.1.3.3,0
+3200,106,2.1.3,1
+3202,126,2.1.3,1
+3202,22,2.1.3.4,0
+3203,22,2.1.3.4,0
+3203,74,2.1.3,1
+3203,73,2.1.3,1
+3203,126,2.1.3,1
+3204,106,2.1.3,1
+3204,22,2.1.3.4,0
+3205,148,2.1.3,1
+3205,22,2.1.3.4,0
+3205,73,2.1.3,1
+3205,74,2.1.3,1
+3206,22,2.1.3.4,0
+3206,74,2.1.3,1
+3207,73,2.1.3,1
+3207,22,2.1.3.4,0
+3208,22,2.1.3.4,0
+3208,73,2.1.3,1
+3209,126,2.1.3,1
+3209,22,2.1.3.4,0
+3210,22,2.1.3.4,0
+3210,106,2.1.3,1
+3210,74,2.1.3,1
+3211,22,2.1.3.4,0
+3211,106,2.1.3,1
+3211,73,2.1.3,1
+3214,22,2.1.3.4,0
+3214,74,2.1.3,1
+3216,22,2.1.3.4,0
+3216,106,2.1.3,1
+3216,73,2.1.3,1
+3216,108,2.1.3,1
+3217,148,2.1.3,1
+3217,22,2.1.3.4,0
+3219,97,2.1.3,1
+3219,126,2.1.3,1
+3219,108,2.1.3,1
+3219,22,2.1.3.4,0
+3220,106,2.1.3,1
+3220,22,2.1.3.4,0
+3220,74,2.1.3,1
+3220,108,2.1.3,1
+3221,22,2.1.3.4,0
+3221,126,2.1.3,1
+3222,97,2.1.3,1
+3222,22,2.1.3.4,0
+3223,106,2.1.3,1
+3223,73,2.1.3,1
+3223,148,2.1.3,1
+3223,22,2.1.3.4,0
+3224,74,2.1.3,1
+3224,22,2.1.3.4,0
+3224,126,2.1.3,1
+3224,73,2.1.3,1
+3226,74,2.1.3,1
+3226,106,2.1.3,1
+3226,22,2.1.3.4,0
+3227,108,2.1.3,1
+3227,22,2.1.3.4,0
+3228,22,2.1.3.4,0
+3228,73,2.1.3,1
+3229,73,2.1.3,1
+3229,22,2.1.3.4,0
+3229,108,2.1.3,1
+3230,148,2.1.3,1
+3230,22,2.1.3.4,0
+3231,126,2.1.3,1
+3231,22,2.1.3.4,0
+3232,148,2.1.3,1
+3232,74,2.1.3,1
+3232,73,2.1.3,1
+3232,22,2.1.3.4,0
+3233,22,2.1.3.4,0
+3233,97,2.1.3,1
+3234,74,2.1.3,1
+3234,22,2.1.3.4,0
+3235,22,2.1.3.4,0
+3235,74,2.1.3,1
+3236,73,2.1.3,1
+3236,108,2.1.3,1
+3236,22,2.1.3.4,0
+3237,126,2.1.3,1
+3237,97,2.1.3,1
+3237,22,2.1.3.4,0
+3238,22,2.1.3.4,0
+3238,148,2.1.3,1
+3239,22,2.1.3.4,0
+3239,97,2.1.3,1
+3240,126,2.1.3,1
+3240,22,2.1.3.4,0
+3241,106,2.1.3,1
+3241,73,2.1.3,1
+3241,22,2.1.3.4,0
+3242,22,2.1.3.4,0
+3242,108,2.1.3,1
+3242,73,2.1.3,1
+3242,97,2.1.3,1
+3243,73,2.1.3,1
+3243,22,2.1.3.4,0
+3243,106,2.1.3,1
+3244,74,2.1.3,1
+3244,22,2.1.3.4,0
+3244,73,2.1.3,1
+3245,22,2.1.3.4,0
+3245,97,2.1.3,1
+3246,22,2.1.3.4,0
+3246,108,2.1.3,1
+3247,74,2.1.3,1
+3247,22,2.1.3.4,0
+3248,148,2.1.3,1
+3248,22,2.1.3.4,0
+3248,97,2.1.3,1
+3250,126,2.1.3,1
+3250,148,2.1.3,1
+3250,22,2.1.3.4,0
+3251,148,2.1.3,1
+3251,22,2.1.3.5,0
+3252,22,2.1.3.5,0
+3252,126,2.1.3,1
+3252,73,2.1.3,1
+3252,108,2.1.3,1
+3253,97,2.1.3,1
+3253,22,2.1.3.5,0
+3253,74,2.1.3,1
+3253,73,2.1.3,1
+3253,108,2.1.3,1
+3254,106,2.1.3,1
+3254,148,2.1.3,1
+3254,22,2.1.3.5,0
+3255,148,2.1.3,1
+3255,97,2.1.3,1
+3255,22,2.1.3.5,0
+3255,73,2.1.3,1
+3256,97,2.1.3,1
+3256,22,2.1.3.5,0
+3257,73,2.1.3,1
+3257,22,2.1.3.5,0
+3258,22,2.1.3.5,0
+3258,73,2.1.3,1
+3258,108,2.1.3,1
+3259,74,2.1.3,1
+3259,22,2.1.3.5,0
+3260,126,2.1.3,1
+3260,22,2.1.3.5,0
+3261,22,2.1.3.5,0
+3261,148,2.1.3,1
+3262,22,2.1.3.5,0
+3262,108,2.1.3,1
+3264,74,2.1.3,1
+3264,106,2.1.3,1
+3264,97,2.1.3,1
+3264,22,2.1.3.5,0
+3264,108,2.1.3,1
+3266,22,2.1.3.5,0
+3266,106,2.1.3,1
+3267,126,2.1.3,1
+3267,22,2.1.3.5,0
+3269,22,2.1.3.5,0
+3269,73,2.1.3,1
+3269,74,2.1.3,1
+3270,22,2.1.3.5,0
+3270,74,2.1.3,1
+3270,106,2.1.3,1
+3272,22,2.1.3.5,0
+3272,106,2.1.3,1
+3272,97,2.1.3,1
+3272,73,2.1.3,1
+3272,148,2.1.3,1
+3272,108,2.1.3,1
+3273,74,2.1.3,1
+3273,97,2.1.3,1
+3273,22,2.1.3.5,0
+3274,106,2.1.3,1
+3274,22,2.1.3.5,0
+3276,22,2.1.3.5,0
+3276,108,2.1.3,1
+3276,97,2.1.3,1
+3277,22,2.1.3.5,0
+3277,74,2.1.3,1
+3278,22,2.1.3.5,0
+3278,97,2.1.3,1
+3279,73,2.1.3,1
+3279,97,2.1.3,1
+3279,22,2.1.3.5,0
+3280,22,2.1.3.5,0
+3280,108,2.1.3,1
+3281,73,2.1.3,1
+3281,108,2.1.3,1
+3281,22,2.1.3.5,0
+3282,73,2.1.3,1
+3282,22,2.1.3.5,0
+3283,22,2.1.3.5,0
+3283,73,2.1.3,1
+3284,22,2.1.3.5,0
+3284,126,2.1.3,1
+3285,22,2.1.3.5,0
+3285,108,2.1.3,1
+3286,126,2.1.3,1
+3286,148,2.1.3,1
+3286,22,2.1.3.5,0
+3286,97,2.1.3,1
+3286,108,2.1.3,1
+3287,74,2.1.3,1
+3287,22,2.1.3.5,0
+3288,126,2.1.3,1
+3288,22,2.1.3.5,0
+3289,22,2.1.3.5,0
+3289,74,2.1.3,1
+3291,73,2.1.3,1
+3291,22,2.1.3.5,0
+3291,148,2.1.3,1
+3292,22,2.1.3.5,0
+3292,148,2.1.3,1
+3292,126,2.1.3,1
+3293,73,2.1.3,1
+3293,22,2.1.3.5,0
+3293,97,2.1.3,1
+3294,22,2.1.3.5,0
+3294,97,2.1.3,1
+3294,126,2.1.3,1
+3295,148,2.1.3,1
+3295,22,2.1.3.5,0
+3295,74,2.1.3,1
+3296,148,2.1.3,1
+3296,126,2.1.3,1
+3296,22,2.1.3.5,0
+3297,108,2.1.3,1
+3297,22,2.1.3.5,0
+3298,22,2.1.3.5,0
+3298,108,2.1.3,1
+3300,126,2.1.3,1
+3300,148,2.1.3,1
+3300,108,2.1.3,1
+3300,22,2.1.3.5,0
+3302,22,2.1.3.6,0
+3302,74,2.1.3,1
+3302,148,2.1.3,1
+3303,97,2.1.3,1
+3303,22,2.1.3.6,0
+3303,73,2.1.3,1
+3303,108,2.1.3,1
+3304,97,2.1.3,1
+3304,22,2.1.3.6,0
+3305,22,2.1.3.6,0
+3305,73,2.1.3,1
+3306,22,2.1.3.6,0
+3306,74,2.1.3,1
+3306,126,2.1.3,1
+3307,74,2.1.3,1
+3307,22,2.1.3.6,0
+3308,22,2.1.3.6,0
+3308,74,2.1.3,1
+3309,97,2.1.3,1
+3309,22,2.1.3.6,0
+3310,73,2.1.3,1
+3310,22,2.1.3.6,0
+3311,22,2.1.3.6,0
+3311,73,2.1.3,1
+3311,108,2.1.3,1
+3311,97,2.1.3,1
+3312,126,2.1.3,1
+3312,108,2.1.3,1
+3312,22,2.1.3.6,0
+3314,106,2.1.3,1
+3314,22,2.1.3.6,0
+3316,22,2.1.3.6,0
+3316,97,2.1.3,1
+3319,97,2.1.3,1
+3319,22,2.1.3.6,0
+3320,74,2.1.3,1
+3320,22,2.1.3.6,0
+3321,108,2.1.3,1
+3321,22,2.1.3.6,0
+3322,73,2.1.3,1
+3322,22,2.1.3.6,0
+3323,126,2.1.3,1
+3323,106,2.1.3,1
+3323,22,2.1.3.6,0
+3324,22,2.1.3.6,0
+3324,106,2.1.3,1
+3326,106,2.1.3,1
+3326,74,2.1.3,1
+3326,148,2.1.3,1
+3326,73,2.1.3,1
+3326,22,2.1.3.6,0
+3327,22,2.1.3.6,0
+3327,148,2.1.3,1
+3328,22,2.1.3.6,0
+3328,74,2.1.3,1
+3329,22,2.1.3.6,0
+3329,73,2.1.3,1
+3329,108,2.1.3,1
+3330,126,2.1.3,1
+3330,22,2.1.3.6,0
+3331,74,2.1.3,1
+3331,22,2.1.3.6,0
+3331,106,2.1.3,1
+3332,74,2.1.3,1
+3332,22,2.1.3.6,0
+3333,22,2.1.3.6,0
+3333,73,2.1.3,1
+3334,22,2.1.3.6,0
+3334,126,2.1.3,1
+3336,22,2.1.3.6,0
+3336,73,2.1.3,1
+3340,108,2.1.3,1
+3340,22,2.1.3.6,0
+3340,106,2.1.3,1
+3341,22,2.1.3.6,0
+3341,148,2.1.3,1
+3342,22,2.1.3.6,0
+3342,148,2.1.3,1
+3342,126,2.1.3,1
+3343,22,2.1.3.6,0
+3343,126,2.1.3,1
+3344,74,2.1.3,1
+3344,22,2.1.3.6,0
+3344,73,2.1.3,1
+3347,74,2.1.3,1
+3347,22,2.1.3.6,0
+3348,74,2.1.3,1
+3348,22,2.1.3.6,0
+3348,73,2.1.3,1
+3349,22,2.1.3.6,0
+3349,106,2.1.3,1
+3349,108,2.1.3,1
+3350,126,2.1.3,1
+3350,108,2.1.3,1
+3350,22,2.1.3.6,0
+3351,148,2.1.3,1
+3351,22,2.1.3.7,0
+3352,126,2.1.3,1
+3352,22,2.1.3.7,0
+3352,148,2.1.3,1
+3354,97,2.1.3,1
+3354,22,2.1.3.7,0
+3354,73,2.1.3,1
+3355,106,2.1.3,1
+3355,22,2.1.3.7,0
+3356,22,2.1.3.7,0
+3356,74,2.1.3,1
+3356,148,2.1.3,1
+3357,73,2.1.3,1
+3357,22,2.1.3.7,0
+3358,22,2.1.3.7,0
+3358,74,2.1.3,1
+3359,73,2.1.3,1
+3359,22,2.1.3.7,0
+3360,74,2.1.3,1
+3360,22,2.1.3.7,0
+3360,106,2.1.3,1
+3361,22,2.1.3.7,0
+3361,106,2.1.3,1
+3361,148,2.1.3,1
+3361,74,2.1.3,1
+3364,126,2.1.3,1
+3364,74,2.1.3,1
+3364,22,2.1.3.7,0
+3364,97,2.1.3,1
+3366,22,2.1.3.7,0
+3366,126,2.1.3,1
+3366,97,2.1.3,1
+3366,148,2.1.3,1
+3369,22,2.1.3.7,0
+3369,148,2.1.3,1
+3369,126,2.1.3,1
+3369,97,2.1.3,1
+3370,74,2.1.3,1
+3370,22,2.1.3.7,0
+3371,108,2.1.3,1
+3371,22,2.1.3.7,0
+3372,148,2.1.3,1
+3372,108,2.1.3,1
+3372,73,2.1.3,1
+3372,106,2.1.3,1
+3372,22,2.1.3.7,0
+3372,97,2.1.3,1
+3373,74,2.1.3,1
+3373,106,2.1.3,1
+3373,148,2.1.3,1
+3373,22,2.1.3.7,0
+3374,22,2.1.3.7,0
+3374,73,2.1.3,1
+3374,108,2.1.3,1
+3376,106,2.1.3,1
+3376,108,2.1.3,1
+3376,22,2.1.3.7,0
+3377,22,2.1.3.7,0
+3377,106,2.1.3,1
+3378,22,2.1.3.7,0
+3378,73,2.1.3,1
+3379,73,2.1.3,1
+3379,22,2.1.3.7,0
+3379,106,2.1.3,1
+3380,126,2.1.3,1
+3380,106,2.1.3,1
+3380,22,2.1.3.7,0
+3381,108,2.1.3,1
+3381,22,2.1.3.7,0
+3381,106,2.1.3,1
+3382,74,2.1.3,1
+3382,22,2.1.3.7,0
+3383,22,2.1.3.7,0
+3383,73,2.1.3,1
+3384,22,2.1.3.7,0
+3384,97,2.1.3,1
+3385,106,2.1.3,1
+3385,22,2.1.3.7,0
+3385,108,2.1.3,1
+3385,74,2.1.3,1
+3386,148,2.1.3,1
+3386,126,2.1.3,1
+3386,22,2.1.3.7,0
+3386,97,2.1.3,1
+3386,108,2.1.3,1
+3387,22,2.1.3.7,0
+3387,108,2.1.3,1
+3388,22,2.1.3.7,0
+3388,108,2.1.3,1
+3389,74,2.1.3,1
+3389,22,2.1.3.7,0
+3389,148,2.1.3,1
+3389,126,2.1.3,1
+3390,106,2.1.3,1
+3390,22,2.1.3.7,0
+3391,74,2.1.3,1
+3391,126,2.1.3,1
+3391,22,2.1.3.7,0
+3392,22,2.1.3.7,0
+3392,108,2.1.3,1
+3392,106,2.1.3,1
+3393,22,2.1.3.7,0
+3393,73,2.1.3,1
+3393,74,2.1.3,1
+3394,106,2.1.3,1
+3394,73,2.1.3,1
+3394,22,2.1.3.7,0
+3395,22,2.1.3.7,0
+3395,126,2.1.3,1
+3396,148,2.1.3,1
+3396,106,2.1.3,1
+3396,22,2.1.3.7,0
+3397,106,2.1.3,1
+3397,73,2.1.3,1
+3397,22,2.1.3.7,0
+3398,106,2.1.3,1
+3398,22,2.1.3.7,0
+3399,74,2.1.3,1
+3399,106,2.1.3,1
+3399,22,2.1.3.7,0
+3400,126,2.1.3,1
+3400,22,2.1.3.7,0
+3400,97,2.1.3,1
+3400,106,2.1.3,1
+3402,81,2.1.4.1,1
+3402,22,2.1.4.1.1,0
+3405,22,2.1.4.1.1,0
+3405,79,2.1.4.1,1
+3407,79,2.1.4.1,1
+3407,22,2.1.4.1.1,0
+3409,81,2.1.4.1,1
+3409,22,2.1.4.1.1,0
+3424,22,2.1.4.1.1,0
+3424,79,2.1.4.1,1
+3426,81,2.1.4.1,1
+3426,22,2.1.4.1.1,0
+3428,22,2.1.4.1.1,0
+3428,79,2.1.4.1,1
+3429,81,2.1.4.1,1
+3429,22,2.1.4.1.1,0
+3431,81,2.1.4.1,1
+3431,22,2.1.4.1.1,0
+3434,22,2.1.4.1.1,0
+3434,81,2.1.4.1,1
+3436,81,2.1.4.1,1
+3436,79,2.1.4.1,1
+3436,22,2.1.4.1.1,0
+3437,81,2.1.4.1,1
+3437,22,2.1.4.1.1,0
+3439,79,2.1.4.1,1
+3439,22,2.1.4.1.1,0
+3441,81,2.1.4.1,1
+3441,22,2.1.4.1.1,0
+3444,81,2.1.4.1,1
+3444,22,2.1.4.1.1,0
+3444,79,2.1.4.1,1
+3447,79,2.1.4.1,1
+3447,22,2.1.4.1.1,0
+3452,81,2.1.4.1,1
+3452,22,2.1.4.1.2,0
+3457,81,2.1.4.1,1
+3457,22,2.1.4.1.2,0
+3459,79,2.1.4.1,1
+3459,22,2.1.4.1.2,0
+3460,79,2.1.4.1,1
+3460,22,2.1.4.1.2,0
+3461,22,2.1.4.1.2,0
+3461,81,2.1.4.1,1
+3466,79,2.1.4.1,1
+3466,22,2.1.4.1.2,0
+3469,22,2.1.4.1.2,0
+3469,79,2.1.4.1,1
+3470,22,2.1.4.1.2,0
+3470,81,2.1.4.1,1
+3476,79,2.1.4.1,1
+3476,22,2.1.4.1.2,0
+3477,22,2.1.4.1.2,0
+3477,81,2.1.4.1,1
+3478,81,2.1.4.1,1
+3478,22,2.1.4.1.2,0
+3481,79,2.1.4.1,1
+3481,22,2.1.4.1.2,0
+3484,22,2.1.4.1.2,0
+3484,79,2.1.4.1,1
+3489,79,2.1.4.1,1
+3489,22,2.1.4.1.2,0
+3497,102,2.1.4,2
+3497,22,2.1.4.1.2,0
+3497,84,2.1.4,2
+3497,81,2.1.4.1,1
+3498,81,2.1.4.1,1
+3498,22,2.1.4.1.2,0
+3499,22,2.1.4.1.2,0
+3499,81,2.1.4.1,1
+3502,22,2.1.4.1.3,0
+3502,81,2.1.4.1,1
+3503,22,2.1.4.1.3,0
+3503,81,2.1.4.1,1
+3503,79,2.1.4.1,1
+3504,22,2.1.4.1.3,0
+3504,79,2.1.4.1,1
+3505,81,2.1.4.1,1
+3505,22,2.1.4.1.3,0
+3507,79,2.1.4.1,1
+3507,22,2.1.4.1.3,0
+3508,81,2.1.4.1,1
+3508,22,2.1.4.1.3,0
+3509,79,2.1.4.1,1
+3509,22,2.1.4.1.3,0
+3511,22,2.1.4.1.3,0
+3511,81,2.1.4.1,1
+3514,22,2.1.4.1.3,0
+3514,81,2.1.4.1,1
+3516,79,2.1.4.1,1
+3516,22,2.1.4.1.3,0
+3520,79,2.1.4.1,1
+3520,22,2.1.4.1.3,0
+3528,79,2.1.4.1,1
+3528,22,2.1.4.1.3,0
+3531,81,2.1.4.1,1
+3531,22,2.1.4.1.3,0
+3532,79,2.1.4.1,1
+3532,22,2.1.4.1.3,0
+3533,79,2.1.4.1,1
+3533,22,2.1.4.1.3,0
+3534,22,2.1.4.1.3,0
+3534,79,2.1.4.1,1
+3536,81,2.1.4.1,1
+3536,79,2.1.4.1,1
+3536,22,2.1.4.1.3,0
+3539,79,2.1.4.1,1
+3539,22,2.1.4.1.3,0
+3541,81,2.1.4.1,1
+3541,22,2.1.4.1.3,0
+3542,22,2.1.4.1.3,0
+3542,79,2.1.4.1,1
+3545,22,2.1.4.1.3,0
+3545,81,2.1.4.1,1
+3548,79,2.1.4.1,1
+3548,81,2.1.4.1,1
+3548,22,2.1.4.1.3,0
+3553,22,2.1.4.1.4,0
+3553,79,2.1.4.1,1
+3555,81,2.1.4.1,1
+3555,22,2.1.4.1.4,0
+3557,22,2.1.4.1.4,0
+3557,81,2.1.4.1,1
+3560,81,2.1.4.1,1
+3560,22,2.1.4.1.4,0
+3564,79,2.1.4.1,1
+3564,22,2.1.4.1.4,0
+3564,81,2.1.4.1,1
+3583,79,2.1.4.1,1
+3583,22,2.1.4.1.4,0
+3584,22,2.1.4.1.4,0
+3584,79,2.1.4.1,1
+3589,79,2.1.4.1,1
+3589,22,2.1.4.1.4,0
+3599,22,2.1.4.1.4,0
+3599,81,2.1.4.1,1
+3601,22,2.1.4.2.1,0
+3601,79,2.1.4.2,1
+3604,22,2.1.4.2.1,0
+3604,79,2.1.4.2,1
+3605,81,2.1.4.2,1
+3605,22,2.1.4.2.1,0
+3609,79,2.1.4.2,1
+3609,22,2.1.4.2.1,0
+3611,81,2.1.4.2,1
+3611,22,2.1.4.2.1,0
+3614,22,2.1.4.2.1,0
+3614,81,2.1.4.2,1
+3616,22,2.1.4.2.1,0
+3616,81,2.1.4.2,1
+3620,79,2.1.4.2,1
+3620,22,2.1.4.2.1,0
+3622,22,2.1.4.2.1,0
+3622,79,2.1.4.2,1
+3623,79,2.1.4.2,1
+3623,22,2.1.4.2.1,0
+3626,79,2.1.4.2,1
+3626,22,2.1.4.2.1,0
+3629,79,2.1.4.2,1
+3629,22,2.1.4.2.1,0
+3629,81,2.1.4.2,1
+3631,81,2.1.4.2,1
+3631,22,2.1.4.2.1,0
+3632,79,2.1.4.2,1
+3632,22,2.1.4.2.1,0
+3633,79,2.1.4.2,1
+3633,22,2.1.4.2.1,0
+3634,22,2.1.4.2.1,0
+3634,79,2.1.4.2,1
+3639,81,2.1.4.2,1
+3639,22,2.1.4.2.1,0
+3641,79,2.1.4.2,1
+3641,22,2.1.4.2.1,0
+3643,81,2.1.4.2,1
+3643,22,2.1.4.2.1,0
+3647,22,2.1.4.2.1,0
+3647,79,2.1.4.2,1
+3654,22,2.1.4.2.2,0
+3654,81,2.1.4.2,1
+3655,79,2.1.4.2,1
+3655,22,2.1.4.2.2,0
+3655,81,2.1.4.2,1
+3656,22,2.1.4.2.2,0
+3656,79,2.1.4.2,1
+3657,22,2.1.4.2.2,0
+3657,81,2.1.4.2,1
+3658,79,2.1.4.2,1
+3658,22,2.1.4.2.2,0
+3659,22,2.1.4.2.2,0
+3659,79,2.1.4.2,1
+3660,79,2.1.4.2,1
+3660,22,2.1.4.2.2,0
+3661,22,2.1.4.2.2,0
+3661,81,2.1.4.2,1
+3670,22,2.1.4.2.2,0
+3670,81,2.1.4.2,1
+3672,81,2.1.4.2,1
+3672,22,2.1.4.2.2,0
+3673,81,2.1.4.2,1
+3673,22,2.1.4.2.2,0
+3676,79,2.1.4.2,1
+3676,22,2.1.4.2.2,0
+3682,81,2.1.4.2,1
+3682,22,2.1.4.2.2,0
+3683,79,2.1.4.2,1
+3683,22,2.1.4.2.2,0
+3686,81,2.1.4.2,1
+3686,22,2.1.4.2.2,0
+3689,22,2.1.4.2.2,0
+3689,79,2.1.4.2,1
+3698,79,2.1.4.2,1
+3698,22,2.1.4.2.2,0
+3702,155,2.3,1
+3702,124,2.3,1
+3702,22,2.3.1,0
+3702,99,2.3,1
+3703,22,2.3.1,0
+3703,124,2.3,1
+3705,22,2.3.1,0
+3705,84,2.3,1
+3705,155,2.3,1
+3706,22,2.3.1,0
+3706,95,2.3,1
+3708,22,2.3.1,0
+3708,84,2.3,1
+3710,84,2.3,1
+3710,22,2.3.1,0
+3711,22,2.3.1,0
+3711,155,2.3,1
+3711,84,2.3,1
+3714,22,2.3.1,0
+3714,124,2.3,1
+3716,22,2.3.1,0
+3716,95,2.3,1
+3719,126,2.3,1
+3719,22,2.3.1,0
+3720,22,2.3.1,0
+3720,99,2.3,1
+3723,126,2.3,1
+3723,155,2.3,1
+3723,22,2.3.1,0
+3726,124,2.3,1
+3726,22,2.3.1,0
+3728,124,2.3,1
+3728,22,2.3.1,0
+3729,22,2.3.1,0
+3729,126,2.3,1
+3732,22,2.3.1,0
+3732,95,2.3,1
+3733,84,2.3,1
+3733,22,2.3.1,0
+3734,22,2.3.1,0
+3734,155,2.3,1
+3736,99,2.3,1
+3736,22,2.3.1,0
+3736,155,2.3,1
+3738,22,2.3.1,0
+3738,155,2.3,1
+3739,22,2.3.1,0
+3739,95,2.3,1
+3741,22,2.3.1,0
+3741,99,2.3,1
+3743,22,2.3.1,0
+3743,95,2.3,1
+3748,99,2.3,1
+3748,22,2.3.1,0
+3752,22,2.3.2,0
+3752,99,2.3,1
+3753,22,2.3.2,0
+3753,155,2.3,1
+3754,22,2.3.2,0
+3754,155,2.3,1
+3754,99,2.3,1
+3755,22,2.3.2,0
+3755,84,2.3,1
+3756,22,2.3.2,0
+3756,155,2.3,1
+3757,84,2.3,1
+3757,22,2.3.2,0
+3759,95,2.3,1
+3759,22,2.3.2,0
+3760,22,2.3.2,0
+3760,155,2.3,1
+3761,124,2.3,1
+3761,22,2.3.2,0
+3761,84,2.3,1
+3766,22,2.3.2,0
+3766,126,2.3,1
+3766,95,2.3,1
+3769,124,2.3,1
+3769,22,2.3.2,0
+3769,95,2.3,1
+3772,124,2.3,1
+3772,22,2.3.2,0
+3772,84,2.3,1
+3773,84,2.3,1
+3773,155,2.3,1
+3773,22,2.3.2,0
+3776,99,2.3,1
+3776,22,2.3.2,0
+3776,84,2.3,1
+3777,22,2.3.2,0
+3777,124,2.3,1
+3778,22,2.3.2,0
+3778,84,2.3,1
+3779,99,2.3,1
+3779,22,2.3.2,0
+3781,155,2.3,1
+3781,99,2.3,1
+3781,95,2.3,1
+3781,22,2.3.2,0
+3782,124,2.3,1
+3782,155,2.3,1
+3782,22,2.3.2,0
+3783,124,2.3,1
+3783,22,2.3.2,0
+3784,22,2.3.2,0
+3784,99,2.3,1
+3785,155,2.3,1
+3785,22,2.3.2,0
+3785,124,2.3,1
+3786,95,2.3,1
+3786,99,2.3,1
+3786,22,2.3.2,0
+3786,155,2.3,1
+3788,155,2.3,1
+3788,22,2.3.2,0
+3790,99,2.3,1
+3790,155,2.3,1
+3790,124,2.3,1
+3790,22,2.3.2,0
+3791,84,2.3,1
+3791,22,2.3.2,0
+3792,22,2.3.2,0
+3792,99,2.3,1
+3793,126,2.3,1
+3793,84,2.3,1
+3793,22,2.3.2,0
+3794,155,2.3,1
+3794,22,2.3.2,0
+3797,99,2.3,1
+3797,22,2.3.2,0
+3798,155,2.3,1
+3798,22,2.3.2,0
+3798,126,2.3,1
+3802,84,2.3,1
+3802,22,2.3.3,0
+3805,95,2.3,1
+3805,22,2.3.3,0
+3807,126,2.3,1
+3807,84,2.3,1
+3807,22,2.3.3,0
+3807,124,2.3,1
+3808,22,2.3.3,0
+3808,99,2.3,1
+3809,126,2.3,1
+3809,22,2.3.3,0
+3810,124,2.3,1
+3810,22,2.3.3,0
+3810,95,2.3,1
+3811,22,2.3.3,0
+3811,95,2.3,1
+3811,155,2.3,1
+3811,99,2.3,1
+3814,95,2.3,1
+3814,99,2.3,1
+3814,22,2.3.3,0
+3816,22,2.3.3,0
+3816,95,2.3,1
+3816,99,2.3,1
+3819,155,2.3,1
+3819,22,2.3.3,0
+3820,22,2.3.3,0
+3820,99,2.3,1
+3822,22,2.3.3,0
+3822,95,2.3,1
+3823,95,2.3,1
+3823,22,2.3.3,0
+3823,126,2.3,1
+3826,126,2.3,1
+3826,22,2.3.3,0
+3827,22,2.3.3,0
+3827,155,2.3,1
+3828,99,2.3,1
+3828,22,2.3.3,0
+3829,99,2.3,1
+3829,22,2.3.3,0
+3830,126,2.3,1
+3830,22,2.3.3,0
+3832,124,2.3,1
+3832,22,2.3.3,0
+3833,124,2.3,1
+3833,22,2.3.3,0
+3834,22,2.3.3,0
+3834,84,2.3,1
+3835,99,2.3,1
+3835,22,2.3.3,0
+3836,22,2.3.3,0
+3836,84,2.3,1
+3837,95,2.3,1
+3837,124,2.3,1
+3837,22,2.3.3,0
+3839,22,2.3.3,0
+3839,95,2.3,1
+3841,155,2.3,1
+3841,22,2.3.3,0
+3842,99,2.3,1
+3842,22,2.3.3,0
+3842,155,2.3,1
+3844,126,2.3,1
+3844,22,2.3.3,0
+3847,124,2.3,1
+3847,22,2.3.3,0
+3852,105,1.1,1
+3852,23,1.1.2,0
+3854,106,1.1,1
+3854,23,1.1.2,0
+3857,86,1.1,1
+3857,23,1.1.2,0
+3858,23,1.1.2,0
+3858,126,1.1,1
+3860,86,1.1,1
+3860,23,1.1.2,0
+3861,23,1.1.2,0
+3861,106,1.1,1
+3864,106,1.1,1
+3864,23,1.1.2,0
+3866,106,1.1,1
+3866,94,1.1,1
+3866,23,1.1.2,0
+3873,86,1.1,1
+3873,23,1.1.2,0
+3878,23,1.1.2,0
+3878,105,1.1,1
+3879,23,1.1.2,0
+3879,105,1.1,1
+3882,105,1.1,1
+3882,23,1.1.2,0
+3884,94,1.1,1
+3884,23,1.1.2,0
+3885,23,1.1.2,0
+3885,106,1.1,1
+3886,105,1.1,1
+3886,86,1.1,1
+3886,23,1.1.2,0
+3889,23,1.1.2,0
+3889,94,1.1,1
+3893,23,1.1.2,0
+3893,94,1.1,1
+3897,23,1.1.2,0
+3897,106,1.1,1
+3897,86,1.1,1
+3900,23,1.1.2,0
+3900,94,1.1,1
+3902,75,1.3.3,1
+3902,23,1.3.3.1,0
+3904,75,1.3.3,1
+3904,23,1.3.3.1,0
+3907,97,1.3.3,1
+3907,23,1.3.3.1,0
+3908,23,1.3.3.1,0
+3908,75,1.3.3,1
+3910,23,1.3.3.1,0
+3910,75,1.3.3,1
+3910,99,1.3.3,1
+3911,97,1.3.3,1
+3911,23,1.3.3.1,0
+3911,99,1.3.3,1
+3914,23,1.3.3.1,0
+3914,97,1.3.3,1
+3920,23,1.3.3.1,0
+3920,97,1.3.3,1
+3926,23,1.3.3.1,0
+3926,75,1.3.3,1
+3926,97,1.3.3,1
+3928,23,1.3.3.1,0
+3928,97,1.3.3,1
+3933,75,1.3.3,1
+3933,23,1.3.3.1,0
+3934,23,1.3.3.1,0
+3934,97,1.3.3,1
+3936,23,1.3.3.1,0
+3936,99,1.3.3,1
+3938,97,1.3.3,1
+3938,23,1.3.3.1,0
+3941,99,1.3.3,1
+3941,23,1.3.3.1,0
+3943,23,1.3.3.1,0
+3943,99,1.3.3,1
+3944,75,1.3.3,1
+3944,23,1.3.3.1,0
+3947,23,1.3.3.1,0
+3947,75,1.3.3,1
+3948,99,1.3.3,1
+3948,97,1.3.3,1
+3948,23,1.3.3.1,0
+3954,99,1.3.3,1
+3954,23,1.3.3.2,0
+3958,23,1.3.3.2,0
+3958,97,1.3.3,1
+3961,97,1.3.3,1
+3961,23,1.3.3.2,0
+3972,23,1.3.3.2,0
+3972,99,1.3.3,1
+3984,23,1.3.3.2,0
+3984,97,1.3.3,1
+3986,75,1.3.3,1
+3986,23,1.3.3.2,0
+3989,23,1.3.3.2,0
+3989,75,1.3.3,1
+3991,97,1.3.3,1
+3991,23,1.3.3.2,0
+3994,75,1.3.3,1
+3994,23,1.3.3.2,0
+3997,99,1.3.3,1
+3997,23,1.3.3.2,0
+4004,99,1.3.3,1
+4004,23,1.3.3.3,0
+4005,23,1.3.3.3,0
+4005,97,1.3.3,1
+4006,23,1.3.3.3,0
+4006,99,1.3.3,1
+4006,75,1.3.3,1
+4007,99,1.3.3,1
+4007,23,1.3.3.3,0
+4008,23,1.3.3.3,0
+4008,99,1.3.3,1
+4010,97,1.3.3,1
+4010,23,1.3.3.3,0
+4014,23,1.3.3.3,0
+4014,99,1.3.3,1
+4016,97,1.3.3,1
+4016,99,1.3.3,1
+4016,23,1.3.3.3,0
+4020,97,1.3.3,1
+4020,23,1.3.3.3,0
+4022,23,1.3.3.3,0
+4022,75,1.3.3,1
+4023,97,1.3.3,1
+4023,23,1.3.3.3,0
+4026,23,1.3.3.3,0
+4026,75,1.3.3,1
+4026,97,1.3.3,1
+4028,23,1.3.3.3,0
+4028,75,1.3.3,1
+4029,75,1.3.3,1
+4029,23,1.3.3.3,0
+4031,75,1.3.3,1
+4031,23,1.3.3.3,0
+4031,99,1.3.3,1
+4034,97,1.3.3,1
+4034,23,1.3.3.3,0
+4035,23,1.3.3.3,0
+4035,97,1.3.3,1
+4036,97,1.3.3,1
+4036,99,1.3.3,1
+4036,23,1.3.3.3,0
+4036,75,1.3.3,1
+4037,23,1.3.3.3,0
+4037,97,1.3.3,1
+4040,23,1.3.3.3,0
+4040,97,1.3.3,1
+4041,75,1.3.3,1
+4041,23,1.3.3.3,0
+4041,99,1.3.3,1
+4044,97,1.3.3,1
+4044,29,1.3,2
+4044,106,1.3,2
+4044,99,1.3.3,1
+4044,23,1.3.3.3,0
+4045,97,1.3.3,1
+4045,23,1.3.3.3,0
+4047,99,1.3.3,1
+4047,23,1.3.3.3,0
+4047,75,1.3.3,1
+4052,97,1.3.3,1
+4052,23,1.3.3.4,0
+4054,97,1.3.3,1
+4054,23,1.3.3.4,0
+4055,97,1.3.3,1
+4055,23,1.3.3.4,0
+4056,23,1.3.3.4,0
+4056,99,1.3.3,1
+4057,75,1.3.3,1
+4057,23,1.3.3.4,0
+4058,23,1.3.3.4,0
+4058,99,1.3.3,1
+4059,23,1.3.3.4,0
+4059,75,1.3.3,1
+4061,75,1.3.3,1
+4061,23,1.3.3.4,0
+4066,75,1.3.3,1
+4066,97,1.3.3,1
+4066,23,1.3.3.4,0
+4066,99,1.3.3,1
+4070,97,1.3.3,1
+4070,23,1.3.3.4,0
+4072,23,1.3.3.4,0
+4072,99,1.3.3,1
+4074,99,1.3.3,1
+4074,23,1.3.3.4,0
+4078,99,1.3.3,1
+4078,23,1.3.3.4,0
+4079,23,1.3.3.4,0
+4079,97,1.3.3,1
+4081,75,1.3.3,1
+4081,23,1.3.3.4,0
+4081,99,1.3.3,1
+4082,99,1.3.3,1
+4082,23,1.3.3.4,0
+4083,97,1.3.3,1
+4083,23,1.3.3.4,0
+4084,75,1.3.3,1
+4084,23,1.3.3.4,0
+4085,97,1.3.3,1
+4085,23,1.3.3.4,0
+4085,99,1.3.3,1
+4086,23,1.3.3.4,0
+4086,97,1.3.3,1
+4087,23,1.3.3.4,0
+4087,97,1.3.3,1
+4089,23,1.3.3.4,0
+4089,99,1.3.3,1
+4090,23,1.3.3.4,0
+4090,97,1.3.3,1
+4091,75,1.3.3,1
+4091,23,1.3.3.4,0
+4093,97,1.3.3,1
+4093,23,1.3.3.4,0
+4093,75,1.3.3,1
+4094,23,1.3.3.4,0
+4094,99,1.3.3,1
+4098,97,1.3.3,1
+4098,23,1.3.3.4,0
+4098,99,1.3.3,1
+4101,170,1,3
+4101,142,1.4.2,1
+4101,126,1.4,2
+4101,23,1.4.2.7,0
+4102,142,1.4.2,1
+4102,170,1,3
+4102,126,1.4,2
+4102,23,1.4.2.7,0
+4103,23,1.4.2.7,0
+4103,170,1,3
+4103,126,1.4,2
+4103,142,1.4.2,1
+4104,126,1.4,2
+4104,23,1.4.2.7,0
+4104,142,1.4.2,1
+4104,170,1,3
+4105,126,1.4,2
+4105,170,1,3
+4105,23,1.4.2.7,0
+4105,142,1.4.2,1
+4106,23,1.4.2.7,0
+4106,142,1.4.2,1
+4106,126,1.4,2
+4106,170,1,3
+4107,170,1,3
+4107,142,1.4.2,1
+4107,126,1.4,2
+4107,23,1.4.2.7,0
+4108,142,1.4.2,1
+4108,126,1.4,2
+4108,23,1.4.2.7,0
+4108,170,1,3
+4109,170,1,3
+4109,23,1.4.2.7,0
+4109,126,1.4,2
+4109,142,1.4.2,1
+4110,126,1.4,2
+4110,142,1.4.2,1
+4110,23,1.4.2.7,0
+4110,170,1,3
+4111,142,1.4.2,1
+4111,126,1.4,2
+4111,170,1,3
+4111,23,1.4.2.7,0
+4112,126,1.4,2
+4112,142,1.4.2,1
+4112,23,1.4.2.7,0
+4112,170,1,3
+4113,126,1.4,2
+4113,23,1.4.2.7,0
+4113,170,1,3
+4113,142,1.4.2,1
+4114,142,1.4.2,1
+4114,23,1.4.2.7,0
+4114,170,1,3
+4114,126,1.4,2
+4115,170,1,3
+4115,126,1.4,2
+4115,23,1.4.2.7,0
+4115,142,1.4.2,1
+4116,126,1.4,2
+4116,142,1.4.2,1
+4116,170,1,3
+4116,23,1.4.2.7,0
+4117,126,1.4,2
+4117,142,1.4.2,1
+4117,170,1,3
+4117,23,1.4.2.7,0
+4118,142,1.4.2,1
+4118,170,1,3
+4118,126,1.4,2
+4118,23,1.4.2.7,0
+4119,142,1.4.2,1
+4119,23,1.4.2.7,0
+4119,126,1.4,2
+4119,170,1,3
+4120,142,1.4.2,1
+4120,170,1,3
+4120,23,1.4.2.7,0
+4120,126,1.4,2
+4121,170,1,3
+4121,126,1.4,2
+4121,23,1.4.2.7,0
+4121,142,1.4.2,1
+4122,23,1.4.2.7,0
+4122,126,1.4,2
+4122,142,1.4.2,1
+4122,170,1,3
+4123,142,1.4.2,1
+4123,126,1.4,2
+4123,23,1.4.2.7,0
+4123,170,1,3
+4124,126,1.4,2
+4124,23,1.4.2.7,0
+4124,142,1.4.2,1
+4124,170,1,3
+4125,23,1.4.2.7,0
+4125,170,1,3
+4125,142,1.4.2,1
+4125,126,1.4,2
+4126,126,1.4,2
+4126,23,1.4.2.7,0
+4126,142,1.4.2,1
+4126,170,1,3
+4127,126,1.4,2
+4127,23,1.4.2.7,0
+4127,170,1,3
+4127,142,1.4.2,1
+4128,142,1.4.2,1
+4128,23,1.4.2.7,0
+4128,170,1,3
+4128,126,1.4,2
+4129,170,1,3
+4129,126,1.4,2
+4129,142,1.4.2,1
+4129,23,1.4.2.7,0
+4130,142,1.4.2,1
+4130,170,1,3
+4130,126,1.4,2
+4130,23,1.4.2.7,0
+4131,126,1.4,2
+4131,170,1,3
+4131,142,1.4.2,1
+4131,23,1.4.2.7,0
+4132,23,1.4.2.7,0
+4132,126,1.4,2
+4132,142,1.4.2,1
+4132,170,1,3
+4133,23,1.4.2.7,0
+4133,170,1,3
+4133,142,1.4.2,1
+4133,126,1.4,2
+4134,142,1.4.2,1
+4134,126,1.4,2
+4134,170,1,3
+4134,23,1.4.2.7,0
+4135,170,1,3
+4135,126,1.4,2
+4135,142,1.4.2,1
+4135,23,1.4.2.7,0
+4136,23,1.4.2.7,0
+4136,142,1.4.2,1
+4136,170,1,3
+4136,126,1.4,2
+4137,126,1.4,2
+4137,23,1.4.2.7,0
+4137,170,1,3
+4137,142,1.4.2,1
+4138,170,1,3
+4138,23,1.4.2.7,0
+4138,126,1.4,2
+4138,142,1.4.2,1
+4139,126,1.4,2
+4139,170,1,3
+4139,23,1.4.2.7,0
+4139,142,1.4.2,1
+4140,170,1,3
+4140,23,1.4.2.7,0
+4140,142,1.4.2,1
+4140,126,1.4,2
+4141,170,1,3
+4141,23,1.4.2.7,0
+4141,126,1.4,2
+4141,142,1.4.2,1
+4142,126,1.4,2
+4142,170,1,3
+4142,23,1.4.2.7,0
+4142,142,1.4.2,1
+4143,23,1.4.2.7,0
+4143,142,1.4.2,1
+4143,170,1,3
+4143,126,1.4,2
+4144,170,1,3
+4144,142,1.4.2,1
+4144,23,1.4.2.7,0
+4144,126,1.4,2
+4145,170,1,3
+4145,23,1.4.2.7,0
+4145,142,1.4.2,1
+4145,126,1.4,2
+4146,170,1,3
+4146,23,1.4.2.7,0
+4146,142,1.4.2,1
+4146,126,1.4,2
+4147,170,1,3
+4147,126,1.4,2
+4147,142,1.4.2,1
+4147,23,1.4.2.7,0
+4148,126,1.4,2
+4148,142,1.4.2,1
+4148,170,1,3
+4148,23,1.4.2.7,0
+4149,170,1,3
+4149,142,1.4.2,1
+4149,126,1.4,2
+4149,23,1.4.2.7,0
+4150,170,1,3
+4150,142,1.4.2,1
+4150,126,1.4,2
+4150,23,1.4.2.7,0
+4152,74,2.1.3,1
+4152,73,2.1.3,1
+4152,97,2.1.3,1
+4152,23,2.1.3.6,0
+4154,148,2.1.3,1
+4154,23,2.1.3.6,0
+4155,106,2.1.3,1
+4155,108,2.1.3,1
+4155,23,2.1.3.6,0
+4156,148,2.1.3,1
+4156,23,2.1.3.6,0
+4157,97,2.1.3,1
+4157,23,2.1.3.6,0
+4158,23,2.1.3.6,0
+4158,74,2.1.3,1
+4158,126,2.1.3,1
+4159,23,2.1.3.6,0
+4159,74,2.1.3,1
+4160,23,2.1.3.6,0
+4160,106,2.1.3,1
+4161,74,2.1.3,1
+4161,106,2.1.3,1
+4161,148,2.1.3,1
+4161,23,2.1.3.6,0
+4164,23,2.1.3.6,0
+4164,126,2.1.3,1
+4164,97,2.1.3,1
+4166,106,2.1.3,1
+4166,23,2.1.3.6,0
+4166,126,2.1.3,1
+4166,148,2.1.3,1
+4169,148,2.1.3,1
+4169,23,2.1.3.6,0
+4170,73,2.1.3,1
+4170,23,2.1.3.6,0
+4172,126,2.1.3,1
+4172,97,2.1.3,1
+4172,23,2.1.3.6,0
+4173,148,2.1.3,1
+4173,126,2.1.3,1
+4173,23,2.1.3.6,0
+4173,97,2.1.3,1
+4173,73,2.1.3,1
+4174,23,2.1.3.6,0
+4174,73,2.1.3,1
+4175,73,2.1.3,1
+4175,23,2.1.3.6,0
+4176,23,2.1.3.6,0
+4176,108,2.1.3,1
+4176,97,2.1.3,1
+4177,106,2.1.3,1
+4177,23,2.1.3.6,0
+4178,23,2.1.3.6,0
+4178,106,2.1.3,1
+4179,23,2.1.3.6,0
+4179,148,2.1.3,1
+4179,108,2.1.3,1
+4181,23,2.1.3.6,0
+4181,73,2.1.3,1
+4181,106,2.1.3,1
+4182,23,2.1.3.6,0
+4182,73,2.1.3,1
+4182,148,2.1.3,1
+4183,23,2.1.3.6,0
+4183,74,2.1.3,1
+4184,108,2.1.3,1
+4184,23,2.1.3.6,0
+4185,23,2.1.3.6,0
+4185,148,2.1.3,1
+4186,74,2.1.3,1
+4186,23,2.1.3.6,0
+4187,23,2.1.3.6,0
+4187,126,2.1.3,1
+4188,106,2.1.3,1
+4188,23,2.1.3.6,0
+4189,23,2.1.3.6,0
+4189,148,2.1.3,1
+4191,73,2.1.3,1
+4191,23,2.1.3.6,0
+4191,108,2.1.3,1
+4192,148,2.1.3,1
+4192,73,2.1.3,1
+4192,23,2.1.3.6,0
+4193,23,2.1.3.6,0
+4193,148,2.1.3,1
+4194,148,2.1.3,1
+4194,23,2.1.3.6,0
+4194,126,2.1.3,1
+4195,108,2.1.3,1
+4195,23,2.1.3.6,0
+4197,23,2.1.3.6,0
+4197,106,2.1.3,1
+4198,23,2.1.3.6,0
+4198,108,2.1.3,1
+4198,148,2.1.3,1
+4199,126,2.1.3,1
+4199,148,2.1.3,1
+4199,23,2.1.3.6,0
+4202,99,2.3,1
+4202,23,2.3.1,0
+4204,124,2.3,1
+4204,23,2.3.1,0
+4205,126,2.3,1
+4205,23,2.3.1,0
+4206,23,2.3.1,0
+4206,84,2.3,1
+4208,23,2.3.1,0
+4208,126,2.3,1
+4210,124,2.3,1
+4210,23,2.3.1,0
+4211,124,2.3,1
+4211,95,2.3,1
+4211,23,2.3.1,0
+4216,155,2.3,1
+4216,23,2.3.1,0
+4216,126,2.3,1
+4216,124,2.3,1
+4222,124,2.3,1
+4222,155,2.3,1
+4222,23,2.3.1,0
+4226,99,2.3,1
+4226,126,2.3,1
+4226,23,2.3.1,0
+4227,124,2.3,1
+4227,23,2.3.1,0
+4228,95,2.3,1
+4228,23,2.3.1,0
+4229,23,2.3.1,0
+4229,95,2.3,1
+4231,23,2.3.1,0
+4231,155,2.3,1
+4231,99,2.3,1
+4232,23,2.3.1,0
+4232,95,2.3,1
+4233,23,2.3.1,0
+4233,99,2.3,1
+4234,23,2.3.1,0
+4234,99,2.3,1
+4235,155,2.3,1
+4235,23,2.3.1,0
+4236,95,2.3,1
+4236,99,2.3,1
+4236,23,2.3.1,0
+4238,126,2.3,1
+4238,23,2.3.1,0
+4239,124,2.3,1
+4239,23,2.3.1,0
+4240,126,2.3,1
+4240,124,2.3,1
+4240,155,2.3,1
+4240,23,2.3.1,0
+4240,95,2.3,1
+4243,23,2.3.1,0
+4243,126,2.3,1
+4244,124,2.3,1
+4244,23,2.3.1,0
+4244,95,2.3,1
+4248,23,2.3.1,0
+4248,84,2.3,1
+4252,95,2.3,1
+4252,23,2.3.2,0
+4254,84,2.3,1
+4254,23,2.3.2,0
+4255,95,2.3,1
+4255,23,2.3.2,0
+4255,99,2.3,1
+4256,23,2.3.2,0
+4256,84,2.3,1
+4257,23,2.3.2,0
+4257,99,2.3,1
+4258,23,2.3.2,0
+4258,99,2.3,1
+4259,124,2.3,1
+4259,23,2.3.2,0
+4260,84,2.3,1
+4260,23,2.3.2,0
+4261,99,2.3,1
+4261,23,2.3.2,0
+4264,23,2.3.2,0
+4264,155,2.3,1
+4266,84,2.3,1
+4266,99,2.3,1
+4266,23,2.3.2,0
+4269,155,2.3,1
+4269,23,2.3.2,0
+4270,23,2.3.2,0
+4270,99,2.3,1
+4273,99,2.3,1
+4273,126,2.3,1
+4273,23,2.3.2,0
+4276,23,2.3.2,0
+4276,95,2.3,1
+4277,23,2.3.2,0
+4277,155,2.3,1
+4278,23,2.3.2,0
+4278,84,2.3,1
+4279,95,2.3,1
+4279,84,2.3,1
+4279,23,2.3.2,0
+4280,23,2.3.2,0
+4280,155,2.3,1
+4280,124,2.3,1
+4281,23,2.3.2,0
+4281,84,2.3,1
+4281,124,2.3,1
+4282,99,2.3,1
+4282,23,2.3.2,0
+4283,23,2.3.2,0
+4283,84,2.3,1
+4284,95,2.3,1
+4284,23,2.3.2,0
+4285,23,2.3.2,0
+4285,99,2.3,1
+4285,126,2.3,1
+4285,124,2.3,1
+4286,23,2.3.2,0
+4286,84,2.3,1
+4287,23,2.3.2,0
+4287,155,2.3,1
+4289,23,2.3.2,0
+4289,155,2.3,1
+4291,23,2.3.2,0
+4291,95,2.3,1
+4293,124,2.3,1
+4293,99,2.3,1
+4293,23,2.3.2,0
+4294,124,2.3,1
+4294,23,2.3.2,0
+4294,155,2.3,1
+4297,23,2.3.2,0
+4297,126,2.3,1
+4298,23,2.3.2,0
+4298,124,2.3,1
+4302,126,2.3,1
+4302,95,2.3,1
+4302,23,2.3.3,0
+4302,99,2.3,1
+4305,84,2.3,1
+4305,23,2.3.3,0
+4305,99,2.3,1
+4306,23,2.3.3,0
+4306,155,2.3,1
+4307,95,2.3,1
+4307,23,2.3.3,0
+4308,23,2.3.3,0
+4308,124,2.3,1
+4310,99,2.3,1
+4310,23,2.3.3,0
+4311,84,2.3,1
+4311,23,2.3.3,0
+4314,126,2.3,1
+4314,99,2.3,1
+4314,155,2.3,1
+4314,23,2.3.3,0
+4316,23,2.3.3,0
+4316,124,2.3,1
+4316,99,2.3,1
+4319,124,2.3,1
+4319,23,2.3.3,0
+4322,23,2.3.3,0
+4322,99,2.3,1
+4324,155,2.3,1
+4324,23,2.3.3,0
+4326,84,2.3,1
+4326,23,2.3.3,0
+4327,23,2.3.3,0
+4327,95,2.3,1
+4328,95,2.3,1
+4328,23,2.3.3,0
+4329,23,2.3.3,0
+4329,95,2.3,1
+4331,23,2.3.3,0
+4331,99,2.3,1
+4331,124,2.3,1
+4332,23,2.3.3,0
+4332,84,2.3,1
+4333,84,2.3,1
+4333,23,2.3.3,0
+4336,23,2.3.3,0
+4336,99,2.3,1
+4336,124,2.3,1
+4337,124,2.3,1
+4337,23,2.3.3,0
+4338,124,2.3,1
+4338,23,2.3.3,0
+4340,23,2.3.3,0
+4340,155,2.3,1
+4341,84,2.3,1
+4341,23,2.3.3,0
+4341,124,2.3,1
+4344,23,2.3.3,0
+4344,95,2.3,1
+4347,99,2.3,1
+4347,23,2.3.3,0
+4348,23,2.3.3,0
+4348,99,2.3,1
+4348,126,2.3,1
+4349,23,2.3.3,0
+4349,95,2.3,1
+4349,155,2.3,1
+4352,24,1.1.1,0
+4352,86,1.1,1
+4356,94,1.1,1
+4356,24,1.1.1,0
+4357,24,1.1.1,0
+4357,94,1.1,1
+4361,24,1.1.1,0
+4361,126,1.1,1
+4362,126,1.1,1
+4362,24,1.1.1,0
+4364,24,1.1.1,0
+4364,106,1.1,1
+4369,24,1.1.1,0
+4369,126,1.1,1
+4376,106,1.1,1
+4376,24,1.1.1,0
+4376,86,1.1,1
+4378,24,1.1.1,0
+4378,105,1.1,1
+4382,24,1.1.1,0
+4382,94,1.1,1
+4383,24,1.1.1,0
+4383,94,1.1,1
+4384,94,1.1,1
+4384,24,1.1.1,0
+4386,126,1.1,1
+4386,24,1.1.1,0
+4390,24,1.1.1,0
+4390,94,1.1,1
+4393,24,1.1.1,0
+4393,126,1.1,1
+4394,94,1.1,1
+4394,126,1.1,1
+4394,24,1.1.1,0
+4399,126,1.1,1
+4399,24,1.1.1,0
+4402,100,1.3.1,1
+4402,85,1.3.1,1
+4402,25,1.3.1.7,0
+4403,25,1.3.1.7,0
+4403,93,1.3.1,1
+4404,25,1.3.1.7,0
+4404,85,1.3.1,1
+4405,93,1.3.1,1
+4405,25,1.3.1.7,0
+4405,100,1.3.1,1
+4406,39,1.3.1,1
+4406,100,1.3.1,1
+4406,25,1.3.1.7,0
+4407,25,1.3.1.7,0
+4407,39,1.3.1,1
+4408,39,1.3.1,1
+4408,25,1.3.1.7,0
+4408,93,1.3.1,1
+4408,100,1.3.1,1
+4409,25,1.3.1.7,0
+4409,85,1.3.1,1
+4410,85,1.3.1,1
+4410,100,1.3.1,1
+4410,25,1.3.1.7,0
+4411,25,1.3.1.7,0
+4411,99,1.3.1,1
+4411,85,1.3.1,1
+4411,39,1.3.1,1
+4414,25,1.3.1.7,0
+4414,39,1.3.1,1
+4416,25,1.3.1.7,0
+4416,29,1.3,2
+4416,39,1.3.1,1
+4416,93,1.3.1,1
+4416,85,1.3.1,1
+4420,99,1.3.1,1
+4420,25,1.3.1.7,0
+4420,100,1.3.1,1
+4420,85,1.3.1,1
+4421,100,1.3.1,1
+4421,25,1.3.1.7,0
+4422,25,1.3.1.7,0
+4422,99,1.3.1,1
+4423,99,1.3.1,1
+4423,25,1.3.1.7,0
+4426,25,1.3.1.7,0
+4426,100,1.3.1,1
+4426,39,1.3.1,1
+4427,25,1.3.1.7,0
+4427,93,1.3.1,1
+4428,25,1.3.1.7,0
+4428,85,1.3.1,1
+4429,25,1.3.1.7,0
+4429,100,1.3.1,1
+4430,100,1.3.1,1
+4430,25,1.3.1.7,0
+4431,29,1.3,2
+4431,100,1.3.1,1
+4431,93,1.3.1,1
+4431,25,1.3.1.7,0
+4432,25,1.3.1.7,0
+4432,39,1.3.1,1
+4432,85,1.3.1,1
+4433,29,1.3,2
+4433,93,1.3.1,1
+4433,25,1.3.1.7,0
+4434,85,1.3.1,1
+4434,25,1.3.1.7,0
+4434,29,1.3,2
+4436,85,1.3.1,1
+4436,25,1.3.1.7,0
+4437,25,1.3.1.7,0
+4437,99,1.3.1,1
+4438,25,1.3.1.7,0
+4438,99,1.3.1,1
+4439,93,1.3.1,1
+4439,25,1.3.1.7,0
+4440,93,1.3.1,1
+4440,25,1.3.1.7,0
+4440,85,1.3.1,1
+4441,39,1.3.1,1
+4441,25,1.3.1.7,0
+4443,25,1.3.1.7,0
+4443,93,1.3.1,1
+4443,85,1.3.1,1
+4444,25,1.3.1.7,0
+4444,39,1.3.1,1
+4444,100,1.3.1,1
+4445,100,1.3.1,1
+4445,25,1.3.1.7,0
+4446,100,1.3.1,1
+4446,25,1.3.1.7,0
+4447,93,1.3.1,1
+4447,100,1.3.1,1
+4447,25,1.3.1.7,0
+4448,106,1.3,2
+4448,99,1.3.1,1
+4448,85,1.3.1,1
+4448,25,1.3.1.7,0
+4448,100,1.3.1,1
+4449,100,1.3.1,1
+4449,25,1.3.1.7,0
+4450,25,1.3.1.7,0
+4450,100,1.3.1,1
+4451,26,2.1.3.1,0
+4451,108,2.1.3,1
+4452,26,2.1.3.1,0
+4452,106,2.1.3,1
+4452,148,2.1.3,1
+4454,97,2.1.3,1
+4454,26,2.1.3.1,0
+4455,26,2.1.3.1,0
+4455,126,2.1.3,1
+4455,106,2.1.3,1
+4456,73,2.1.3,1
+4456,26,2.1.3.1,0
+4457,26,2.1.3.1,0
+4457,97,2.1.3,1
+4458,26,2.1.3.1,0
+4458,106,2.1.3,1
+4459,73,2.1.3,1
+4459,26,2.1.3.1,0
+4460,97,2.1.3,1
+4460,148,2.1.3,1
+4460,26,2.1.3.1,0
+4461,73,2.1.3,1
+4461,26,2.1.3.1,0
+4461,106,2.1.3,1
+4464,26,2.1.3.1,0
+4464,73,2.1.3,1
+4464,108,2.1.3,1
+4464,126,2.1.3,1
+4469,26,2.1.3.1,0
+4469,106,2.1.3,1
+4469,148,2.1.3,1
+4469,126,2.1.3,1
+4470,73,2.1.3,1
+4470,26,2.1.3.1,0
+4472,97,2.1.3,1
+4472,26,2.1.3.1,0
+4473,97,2.1.3,1
+4473,126,2.1.3,1
+4473,26,2.1.3.1,0
+4476,26,2.1.3.1,0
+4476,97,2.1.3,1
+4476,73,2.1.3,1
+4476,108,2.1.3,1
+4477,106,2.1.3,1
+4477,26,2.1.3.1,0
+4478,26,2.1.3.1,0
+4478,148,2.1.3,1
+4479,108,2.1.3,1
+4479,26,2.1.3.1,0
+4481,97,2.1.3,1
+4481,26,2.1.3.1,0
+4481,73,2.1.3,1
+4482,74,2.1.3,1
+4482,26,2.1.3.1,0
+4483,73,2.1.3,1
+4483,26,2.1.3.1,0
+4485,26,2.1.3.1,0
+4485,148,2.1.3,1
+4486,26,2.1.3.1,0
+4486,126,2.1.3,1
+4487,26,2.1.3.1,0
+4487,108,2.1.3,1
+4487,106,2.1.3,1
+4488,108,2.1.3,1
+4488,26,2.1.3.1,0
+4489,106,2.1.3,1
+4489,26,2.1.3.1,0
+4491,97,2.1.3,1
+4491,26,2.1.3.1,0
+4491,126,2.1.3,1
+4492,73,2.1.3,1
+4492,108,2.1.3,1
+4492,26,2.1.3.1,0
+4493,73,2.1.3,1
+4493,106,2.1.3,1
+4493,26,2.1.3.1,0
+4494,97,2.1.3,1
+4494,26,2.1.3.1,0
+4497,106,2.1.3,1
+4497,26,2.1.3.1,0
+4498,106,2.1.3,1
+4498,148,2.1.3,1
+4498,26,2.1.3.1,0
+4501,26,2.1.3.2,0
+4501,108,2.1.3,1
+4502,74,2.1.3,1
+4502,26,2.1.3.2,0
+4503,108,2.1.3,1
+4503,26,2.1.3.2,0
+4504,126,2.1.3,1
+4504,73,2.1.3,1
+4504,26,2.1.3.2,0
+4505,74,2.1.3,1
+4505,26,2.1.3.2,0
+4505,148,2.1.3,1
+4506,73,2.1.3,1
+4506,26,2.1.3.2,0
+4507,26,2.1.3.2,0
+4507,73,2.1.3,1
+4508,74,2.1.3,1
+4508,26,2.1.3.2,0
+4508,148,2.1.3,1
+4509,74,2.1.3,1
+4509,26,2.1.3.2,0
+4510,148,2.1.3,1
+4510,73,2.1.3,1
+4510,26,2.1.3.2,0
+4511,26,2.1.3.2,0
+4511,148,2.1.3,1
+4511,73,2.1.3,1
+4511,74,2.1.3,1
+4512,26,2.1.3.2,0
+4512,108,2.1.3,1
+4514,74,2.1.3,1
+4514,148,2.1.3,1
+4514,26,2.1.3.2,0
+4516,108,2.1.3,1
+4516,97,2.1.3,1
+4516,74,2.1.3,1
+4516,26,2.1.3.2,0
+4517,26,2.1.3.2,0
+4517,106,2.1.3,1
+4519,26,2.1.3.2,0
+4519,106,2.1.3,1
+4519,97,2.1.3,1
+4519,108,2.1.3,1
+4520,73,2.1.3,1
+4520,26,2.1.3.2,0
+4522,108,2.1.3,1
+4522,26,2.1.3.2,0
+4522,97,2.1.3,1
+4523,106,2.1.3,1
+4523,26,2.1.3.2,0
+4524,26,2.1.3.2,0
+4524,73,2.1.3,1
+4526,108,2.1.3,1
+4526,26,2.1.3.2,0
+4527,74,2.1.3,1
+4527,26,2.1.3.2,0
+4528,126,2.1.3,1
+4528,26,2.1.3.2,0
+4529,73,2.1.3,1
+4529,126,2.1.3,1
+4529,26,2.1.3.2,0
+4532,26,2.1.3.2,0
+4532,73,2.1.3,1
+4532,74,2.1.3,1
+4533,74,2.1.3,1
+4533,26,2.1.3.2,0
+4534,148,2.1.3,1
+4534,26,2.1.3.2,0
+4535,108,2.1.3,1
+4535,26,2.1.3.2,0
+4535,148,2.1.3,1
+4536,26,2.1.3.2,0
+4536,148,2.1.3,1
+4537,26,2.1.3.2,0
+4537,126,2.1.3,1
+4539,126,2.1.3,1
+4539,74,2.1.3,1
+4539,26,2.1.3.2,0
+4540,108,2.1.3,1
+4540,26,2.1.3.2,0
+4540,97,2.1.3,1
+4541,26,2.1.3.2,0
+4541,106,2.1.3,1
+4543,73,2.1.3,1
+4543,26,2.1.3.2,0
+4544,73,2.1.3,1
+4544,26,2.1.3.2,0
+4544,108,2.1.3,1
+4545,108,2.1.3,1
+4545,26,2.1.3.2,0
+4547,106,2.1.3,1
+4547,73,2.1.3,1
+4547,26,2.1.3.2,0
+4548,106,2.1.3,1
+4548,26,2.1.3.2,0
+4548,74,2.1.3,1
+4548,73,2.1.3,1
+4549,126,2.1.3,1
+4549,26,2.1.3.2,0
+4549,97,2.1.3,1
+4550,148,2.1.3,1
+4550,26,2.1.3.2,0
+4552,26,2.1.3.3,0
+4552,74,2.1.3,1
+4552,108,2.1.3,1
+4554,108,2.1.3,1
+4554,73,2.1.3,1
+4554,26,2.1.3.3,0
+4555,97,2.1.3,1
+4555,26,2.1.3.3,0
+4556,97,2.1.3,1
+4556,73,2.1.3,1
+4556,106,2.1.3,1
+4556,26,2.1.3.3,0
+4556,108,2.1.3,1
+4557,26,2.1.3.3,0
+4557,108,2.1.3,1
+4558,148,2.1.3,1
+4558,97,2.1.3,1
+4558,26,2.1.3.3,0
+4559,74,2.1.3,1
+4559,26,2.1.3.3,0
+4560,26,2.1.3.3,0
+4560,74,2.1.3,1
+4561,106,2.1.3,1
+4561,126,2.1.3,1
+4561,97,2.1.3,1
+4561,73,2.1.3,1
+4561,26,2.1.3.3,0
+4564,148,2.1.3,1
+4564,108,2.1.3,1
+4564,74,2.1.3,1
+4564,26,2.1.3.3,0
+4566,26,2.1.3.3,0
+4566,106,2.1.3,1
+4566,73,2.1.3,1
+4566,126,2.1.3,1
+4570,148,2.1.3,1
+4570,73,2.1.3,1
+4570,26,2.1.3.3,0
+4571,97,2.1.3,1
+4571,26,2.1.3.3,0
+4572,26,2.1.3.3,0
+4572,97,2.1.3,1
+4573,106,2.1.3,1
+4573,97,2.1.3,1
+4573,26,2.1.3.3,0
+4576,108,2.1.3,1
+4576,97,2.1.3,1
+4576,26,2.1.3.3,0
+4578,26,2.1.3.3,0
+4578,74,2.1.3,1
+4579,148,2.1.3,1
+4579,74,2.1.3,1
+4579,26,2.1.3.3,0
+4580,148,2.1.3,1
+4580,106,2.1.3,1
+4580,26,2.1.3.3,0
+4582,73,2.1.3,1
+4582,26,2.1.3.3,0
+4583,74,2.1.3,1
+4583,26,2.1.3.3,0
+4585,26,2.1.3.3,0
+4585,148,2.1.3,1
+4586,26,2.1.3.3,0
+4586,106,2.1.3,1
+4586,97,2.1.3,1
+4587,26,2.1.3.3,0
+4587,106,2.1.3,1
+4589,106,2.1.3,1
+4589,26,2.1.3.3,0
+4590,26,2.1.3.3,0
+4590,108,2.1.3,1
+4590,74,2.1.3,1
+4591,106,2.1.3,1
+4591,26,2.1.3.3,0
+4593,126,2.1.3,1
+4593,26,2.1.3.3,0
+4594,148,2.1.3,1
+4594,26,2.1.3.3,0
+4594,97,2.1.3,1
+4595,26,2.1.3.3,0
+4595,148,2.1.3,1
+4596,26,2.1.3.3,0
+4596,126,2.1.3,1
+4596,108,2.1.3,1
+4597,74,2.1.3,1
+4597,26,2.1.3.3,0
+4598,148,2.1.3,1
+4598,73,2.1.3,1
+4598,26,2.1.3.3,0
+4599,106,2.1.3,1
+4599,26,2.1.3.3,0
+4599,108,2.1.3,1
+4600,126,2.1.3,1
+4600,108,2.1.3,1
+4600,26,2.1.3.3,0
+4602,26,2.1.3.4,0
+4602,108,2.1.3,1
+4602,73,2.1.3,1
+4604,108,2.1.3,1
+4604,73,2.1.3,1
+4604,26,2.1.3.4,0
+4606,26,2.1.3.4,0
+4606,126,2.1.3,1
+4606,73,2.1.3,1
+4607,26,2.1.3.4,0
+4607,74,2.1.3,1
+4608,26,2.1.3.4,0
+4608,148,2.1.3,1
+4608,97,2.1.3,1
+4609,97,2.1.3,1
+4609,26,2.1.3.4,0
+4610,148,2.1.3,1
+4610,26,2.1.3.4,0
+4610,73,2.1.3,1
+4611,126,2.1.3,1
+4611,26,2.1.3.4,0
+4611,148,2.1.3,1
+4611,108,2.1.3,1
+4611,74,2.1.3,1
+4612,126,2.1.3,1
+4612,26,2.1.3.4,0
+4614,148,2.1.3,1
+4614,26,2.1.3.4,0
+4614,97,2.1.3,1
+4615,26,2.1.3.4,0
+4615,126,2.1.3,1
+4616,126,2.1.3,1
+4616,26,2.1.3.4,0
+4617,126,2.1.3,1
+4617,26,2.1.3.4,0
+4619,26,2.1.3.4,0
+4619,148,2.1.3,1
+4619,73,2.1.3,1
+4620,148,2.1.3,1
+4620,26,2.1.3.4,0
+4621,26,2.1.3.4,0
+4621,108,2.1.3,1
+4621,148,2.1.3,1
+4622,73,2.1.3,1
+4622,26,2.1.3.4,0
+4623,97,2.1.3,1
+4623,74,2.1.3,1
+4623,26,2.1.3.4,0
+4626,26,2.1.3.4,0
+4626,148,2.1.3,1
+4627,126,2.1.3,1
+4627,26,2.1.3.4,0
+4628,26,2.1.3.4,0
+4628,74,2.1.3,1
+4629,106,2.1.3,1
+4629,74,2.1.3,1
+4629,26,2.1.3.4,0
+4631,108,2.1.3,1
+4631,26,2.1.3.4,0
+4631,73,2.1.3,1
+4631,97,2.1.3,1
+4632,106,2.1.3,1
+4632,108,2.1.3,1
+4632,26,2.1.3.4,0
+4633,126,2.1.3,1
+4633,26,2.1.3.4,0
+4634,26,2.1.3.4,0
+4634,73,2.1.3,1
+4635,106,2.1.3,1
+4635,26,2.1.3.4,0
+4635,126,2.1.3,1
+4635,108,2.1.3,1
+4636,106,2.1.3,1
+4636,97,2.1.3,1
+4636,126,2.1.3,1
+4636,148,2.1.3,1
+4636,26,2.1.3.4,0
+4637,108,2.1.3,1
+4637,26,2.1.3.4,0
+4638,26,2.1.3.4,0
+4638,97,2.1.3,1
+4639,106,2.1.3,1
+4639,26,2.1.3.4,0
+4640,26,2.1.3.4,0
+4640,108,2.1.3,1
+4640,126,2.1.3,1
+4641,126,2.1.3,1
+4641,26,2.1.3.4,0
+4642,148,2.1.3,1
+4642,26,2.1.3.4,0
+4643,26,2.1.3.4,0
+4643,106,2.1.3,1
+4643,74,2.1.3,1
+4644,126,2.1.3,1
+4644,26,2.1.3.4,0
+4645,148,2.1.3,1
+4645,26,2.1.3.4,0
+4647,73,2.1.3,1
+4647,26,2.1.3.4,0
+4648,26,2.1.3.4,0
+4648,74,2.1.3,1
+4648,126,2.1.3,1
+4649,26,2.1.3.4,0
+4649,108,2.1.3,1
+4649,126,2.1.3,1
+4649,106,2.1.3,1
+4650,108,2.1.3,1
+4650,26,2.1.3.4,0
+4650,148,2.1.3,1
+4652,74,2.1.3,1
+4652,148,2.1.3,1
+4652,26,2.1.3.5,0
+4652,97,2.1.3,1
+4652,106,2.1.3,1
+4653,26,2.1.3.5,0
+4653,73,2.1.3,1
+4653,148,2.1.3,1
+4654,73,2.1.3,1
+4654,26,2.1.3.5,0
+4655,74,2.1.3,1
+4655,26,2.1.3.5,0
+4656,26,2.1.3.5,0
+4656,148,2.1.3,1
+4656,97,2.1.3,1
+4656,126,2.1.3,1
+4657,26,2.1.3.5,0
+4657,74,2.1.3,1
+4658,97,2.1.3,1
+4658,26,2.1.3.5,0
+4659,26,2.1.3.5,0
+4659,97,2.1.3,1
+4660,73,2.1.3,1
+4660,108,2.1.3,1
+4660,26,2.1.3.5,0
+4661,148,2.1.3,1
+4661,74,2.1.3,1
+4661,26,2.1.3.5,0
+4661,106,2.1.3,1
+4664,73,2.1.3,1
+4664,106,2.1.3,1
+4664,108,2.1.3,1
+4664,26,2.1.3.5,0
+4666,74,2.1.3,1
+4666,97,2.1.3,1
+4666,26,2.1.3.5,0
+4666,108,2.1.3,1
+4669,126,2.1.3,1
+4669,26,2.1.3.5,0
+4670,108,2.1.3,1
+4670,26,2.1.3.5,0
+4671,26,2.1.3.5,0
+4671,148,2.1.3,1
+4672,106,2.1.3,1
+4672,26,2.1.3.5,0
+4673,106,2.1.3,1
+4673,26,2.1.3.5,0
+4674,26,2.1.3.5,0
+4674,97,2.1.3,1
+4674,73,2.1.3,1
+4675,73,2.1.3,1
+4675,26,2.1.3.5,0
+4676,148,2.1.3,1
+4676,74,2.1.3,1
+4676,26,2.1.3.5,0
+4677,106,2.1.3,1
+4677,26,2.1.3.5,0
+4678,73,2.1.3,1
+4678,26,2.1.3.5,0
+4679,126,2.1.3,1
+4679,26,2.1.3.5,0
+4681,74,2.1.3,1
+4681,26,2.1.3.5,0
+4681,106,2.1.3,1
+4682,108,2.1.3,1
+4682,26,2.1.3.5,0
+4683,97,2.1.3,1
+4683,26,2.1.3.5,0
+4684,74,2.1.3,1
+4684,26,2.1.3.5,0
+4685,97,2.1.3,1
+4685,108,2.1.3,1
+4685,26,2.1.3.5,0
+4686,26,2.1.3.5,0
+4686,74,2.1.3,1
+4686,73,2.1.3,1
+4686,148,2.1.3,1
+4686,97,2.1.3,1
+4687,26,2.1.3.5,0
+4687,106,2.1.3,1
+4688,74,2.1.3,1
+4688,26,2.1.3.5,0
+4689,106,2.1.3,1
+4689,26,2.1.3.5,0
+4691,26,2.1.3.5,0
+4691,106,2.1.3,1
+4692,108,2.1.3,1
+4692,26,2.1.3.5,0
+4692,106,2.1.3,1
+4693,74,2.1.3,1
+4693,148,2.1.3,1
+4693,26,2.1.3.5,0
+4694,73,2.1.3,1
+4694,26,2.1.3.5,0
+4694,74,2.1.3,1
+4696,26,2.1.3.5,0
+4696,108,2.1.3,1
+4697,74,2.1.3,1
+4697,26,2.1.3.5,0
+4698,106,2.1.3,1
+4698,26,2.1.3.5,0
+4698,126,2.1.3,1
+4698,74,2.1.3,1
+4699,26,2.1.3.5,0
+4699,74,2.1.3,1
+4702,148,2.1.3,1
+4702,26,2.1.3.6,0
+4702,97,2.1.3,1
+4703,74,2.1.3,1
+4703,26,2.1.3.6,0
+4703,73,2.1.3,1
+4703,126,2.1.3,1
+4704,73,2.1.3,1
+4704,26,2.1.3.6,0
+4706,26,2.1.3.6,0
+4706,108,2.1.3,1
+4707,106,2.1.3,1
+4707,26,2.1.3.6,0
+4708,108,2.1.3,1
+4708,26,2.1.3.6,0
+4709,26,2.1.3.6,0
+4709,73,2.1.3,1
+4710,97,2.1.3,1
+4710,26,2.1.3.6,0
+4711,26,2.1.3.6,0
+4711,126,2.1.3,1
+4714,148,2.1.3,1
+4714,108,2.1.3,1
+4714,26,2.1.3.6,0
+4716,73,2.1.3,1
+4716,26,2.1.3.6,0
+4719,73,2.1.3,1
+4719,74,2.1.3,1
+4719,26,2.1.3.6,0
+4720,148,2.1.3,1
+4720,26,2.1.3.6,0
+4723,73,2.1.3,1
+4723,74,2.1.3,1
+4723,26,2.1.3.6,0
+4725,73,2.1.3,1
+4725,26,2.1.3.6,0
+4728,26,2.1.3.6,0
+4728,74,2.1.3,1
+4731,73,2.1.3,1
+4731,26,2.1.3.6,0
+4731,148,2.1.3,1
+4733,106,2.1.3,1
+4733,26,2.1.3.6,0
+4735,26,2.1.3.6,0
+4735,126,2.1.3,1
+4737,106,2.1.3,1
+4737,26,2.1.3.6,0
+4741,26,2.1.3.6,0
+4741,108,2.1.3,1
+4743,126,2.1.3,1
+4743,26,2.1.3.6,0
+4743,106,2.1.3,1
+4744,26,2.1.3.6,0
+4744,108,2.1.3,1
+4745,148,2.1.3,1
+4745,26,2.1.3.6,0
+4746,26,2.1.3.6,0
+4746,108,2.1.3,1
+4747,73,2.1.3,1
+4747,108,2.1.3,1
+4747,126,2.1.3,1
+4747,26,2.1.3.6,0
+4748,106,2.1.3,1
+4748,26,2.1.3.6,0
+4751,97,2.1.3,1
+4751,26,2.1.3.7,0
+4751,108,2.1.3,1
+4752,26,2.1.3.7,0
+4752,97,2.1.3,1
+4752,108,2.1.3,1
+4753,148,2.1.3,1
+4753,73,2.1.3,1
+4753,26,2.1.3.7,0
+4754,108,2.1.3,1
+4754,26,2.1.3.7,0
+4754,148,2.1.3,1
+4755,97,2.1.3,1
+4755,74,2.1.3,1
+4755,26,2.1.3.7,0
+4756,26,2.1.3.7,0
+4756,73,2.1.3,1
+4757,26,2.1.3.7,0
+4757,97,2.1.3,1
+4758,26,2.1.3.7,0
+4758,73,2.1.3,1
+4758,126,2.1.3,1
+4759,108,2.1.3,1
+4759,26,2.1.3.7,0
+4760,26,2.1.3.7,0
+4760,108,2.1.3,1
+4761,73,2.1.3,1
+4761,26,2.1.3.7,0
+4761,148,2.1.3,1
+4767,26,2.1.3.7,0
+4767,126,2.1.3,1
+4769,26,2.1.3.7,0
+4769,73,2.1.3,1
+4769,108,2.1.3,1
+4770,108,2.1.3,1
+4770,73,2.1.3,1
+4770,26,2.1.3.7,0
+4770,106,2.1.3,1
+4771,26,2.1.3.7,0
+4771,108,2.1.3,1
+4772,26,2.1.3.7,0
+4772,108,2.1.3,1
+4773,26,2.1.3.7,0
+4773,126,2.1.3,1
+4773,73,2.1.3,1
+4773,148,2.1.3,1
+4773,108,2.1.3,1
+4774,26,2.1.3.7,0
+4774,148,2.1.3,1
+4776,74,2.1.3,1
+4776,26,2.1.3.7,0
+4776,97,2.1.3,1
+4776,108,2.1.3,1
+4778,108,2.1.3,1
+4778,26,2.1.3.7,0
+4779,126,2.1.3,1
+4779,74,2.1.3,1
+4779,26,2.1.3.7,0
+4781,108,2.1.3,1
+4781,126,2.1.3,1
+4781,26,2.1.3.7,0
+4782,74,2.1.3,1
+4782,73,2.1.3,1
+4782,26,2.1.3.7,0
+4783,26,2.1.3.7,0
+4783,148,2.1.3,1
+4784,26,2.1.3.7,0
+4784,97,2.1.3,1
+4785,26,2.1.3.7,0
+4785,106,2.1.3,1
+4785,126,2.1.3,1
+4787,26,2.1.3.7,0
+4787,106,2.1.3,1
+4788,26,2.1.3.7,0
+4788,126,2.1.3,1
+4791,73,2.1.3,1
+4791,26,2.1.3.7,0
+4791,108,2.1.3,1
+4793,106,2.1.3,1
+4793,26,2.1.3.7,0
+4794,74,2.1.3,1
+4794,26,2.1.3.7,0
+4794,108,2.1.3,1
+4795,26,2.1.3.7,0
+4795,106,2.1.3,1
+4796,26,2.1.3.7,0
+4796,108,2.1.3,1
+4797,148,2.1.3,1
+4797,74,2.1.3,1
+4797,126,2.1.3,1
+4797,26,2.1.3.7,0
+4798,148,2.1.3,1
+4798,26,2.1.3.7,0
+4798,126,2.1.3,1
+4799,126,2.1.3,1
+4799,26,2.1.3.7,0
+4801,27,1.4.4.2,0
+4801,0,1.4.4,1
+4802,27,1.4.4.2,0
+4802,170,1,3
+4802,40,1.4.4,1
+4802,126,1.4,2
+4802,0,1.4.4,1
+4803,126,1.4,2
+4803,40,1.4.4,1
+4803,27,1.4.4.2,0
+4803,0,1.4.4,1
+4804,0,1.4.4,1
+4804,27,1.4.4.2,0
+4805,27,1.4.4.2,0
+4805,0,1.4.4,1
+4805,40,1.4.4,1
+4805,126,1.4,2
+4806,40,1.4.4,1
+4806,0,1.4.4,1
+4806,27,1.4.4.2,0
+4807,27,1.4.4.2,0
+4807,0,1.4.4,1
+4808,27,1.4.4.2,0
+4808,0,1.4.4,1
+4809,40,1.4.4,1
+4809,27,1.4.4.2,0
+4809,0,1.4.4,1
+4810,27,1.4.4.2,0
+4810,0,1.4.4,1
+4811,0,1.4.4,1
+4811,40,1.4.4,1
+4811,27,1.4.4.2,0
+4814,27,1.4.4.2,0
+4814,0,1.4.4,1
+4814,40,1.4.4,1
+4816,40,1.4.4,1
+4816,27,1.4.4.2,0
+4816,0,1.4.4,1
+4817,27,1.4.4.2,0
+4817,40,1.4.4,1
+4819,40,1.4.4,1
+4819,126,1.4,2
+4819,27,1.4.4.2,0
+4819,0,1.4.4,1
+4820,27,1.4.4.2,0
+4820,0,1.4.4,1
+4821,126,1.4,2
+4821,40,1.4.4,1
+4821,27,1.4.4.2,0
+4822,27,1.4.4.2,0
+4822,0,1.4.4,1
+4823,0,1.4.4,1
+4823,40,1.4.4,1
+4823,27,1.4.4.2,0
+4824,40,1.4.4,1
+4824,0,1.4.4,1
+4824,27,1.4.4.2,0
+4825,27,1.4.4.2,0
+4825,0,1.4.4,1
+4826,40,1.4.4,1
+4826,27,1.4.4.2,0
+4826,0,1.4.4,1
+4827,40,1.4.4,1
+4827,27,1.4.4.2,0
+4828,40,1.4.4,1
+4828,0,1.4.4,1
+4828,27,1.4.4.2,0
+4829,170,1,3
+4829,126,1.4,2
+4829,40,1.4.4,1
+4829,27,1.4.4.2,0
+4829,0,1.4.4,1
+4831,40,1.4.4,1
+4831,0,1.4.4,1
+4831,27,1.4.4.2,0
+4832,40,1.4.4,1
+4832,27,1.4.4.2,0
+4832,0,1.4.4,1
+4833,0,1.4.4,1
+4833,27,1.4.4.2,0
+4834,126,1.4,2
+4834,0,1.4.4,1
+4834,40,1.4.4,1
+4834,27,1.4.4.2,0
+4835,27,1.4.4.2,0
+4835,40,1.4.4,1
+4836,27,1.4.4.2,0
+4836,40,1.4.4,1
+4836,0,1.4.4,1
+4836,126,1.4,2
+4837,40,1.4.4,1
+4837,27,1.4.4.2,0
+4838,27,1.4.4.2,0
+4838,40,1.4.4,1
+4839,0,1.4.4,1
+4839,40,1.4.4,1
+4839,27,1.4.4.2,0
+4840,27,1.4.4.2,0
+4840,40,1.4.4,1
+4840,126,1.4,2
+4841,0,1.4.4,1
+4841,27,1.4.4.2,0
+4842,27,1.4.4.2,0
+4842,40,1.4.4,1
+4842,0,1.4.4,1
+4843,27,1.4.4.2,0
+4843,40,1.4.4,1
+4843,0,1.4.4,1
+4844,40,1.4.4,1
+4844,0,1.4.4,1
+4844,27,1.4.4.2,0
+4845,27,1.4.4.2,0
+4845,40,1.4.4,1
+4846,27,1.4.4.2,0
+4846,40,1.4.4,1
+4847,27,1.4.4.2,0
+4847,0,1.4.4,1
+4848,126,1.4,2
+4848,0,1.4.4,1
+4848,40,1.4.4,1
+4848,170,1,3
+4848,27,1.4.4.2,0
+4849,40,1.4.4,1
+4849,27,1.4.4.2,0
+4850,27,1.4.4.2,0
+4850,40,1.4.4,1
+4854,102,2,1
+4854,28,2.2,0
+4856,28,2.2,0
+4856,98,2,1
+4857,98,2,1
+4857,28,2.2,0
+4858,28,2.2,0
+4858,98,2,1
+4861,102,2,1
+4861,28,2.2,0
+4864,28,2.2,0
+4864,98,2,1
+4872,102,2,1
+4872,28,2.2,0
+4873,102,2,1
+4873,28,2.2,0
+4876,28,2.2,0
+4876,102,2,1
+4878,28,2.2,0
+4878,98,2,1
+4879,98,2,1
+4879,28,2.2,0
+4882,28,2.2,0
+4882,98,2,1
+4883,28,2.2,0
+4883,102,2,1
+4884,102,2,1
+4884,28,2.2,0
+4892,102,2,1
+4892,28,2.2,0
+4893,98,2,1
+4893,28,2.2,0
+4894,98,2,1
+4894,28,2.2,0
+4895,28,2.2,0
+4895,102,2,1
+4897,28,2.2,0
+4897,102,2,1
+4899,102,2,1
+4899,28,2.2,0
+4901,29,1.3,0
+4901,170,1,1
+4902,29,1.3,0
+4902,170,1,1
+4903,29,1.3,0
+4903,170,1,1
+4904,170,1,1
+4904,29,1.3,0
+4905,29,1.3,0
+4905,170,1,1
+4906,170,1,1
+4906,29,1.3,0
+4907,170,1,1
+4907,29,1.3,0
+4908,170,1,1
+4908,29,1.3,0
+4909,29,1.3,0
+4909,170,1,1
+4910,29,1.3,0
+4910,170,1,1
+4911,29,1.3,0
+4911,170,1,1
+4914,170,1,1
+4914,29,1.3,0
+4916,170,1,1
+4916,29,1.3,0
+4919,29,1.3,0
+4919,170,1,1
+4920,170,1,1
+4920,29,1.3,0
+4922,170,1,1
+4922,29,1.3,0
+4923,170,1,1
+4923,29,1.3,0
+4924,170,1,1
+4924,29,1.3,0
+4925,170,1,1
+4925,29,1.3,0
+4926,170,1,1
+4926,29,1.3,0
+4928,29,1.3,0
+4928,170,1,1
+4929,29,1.3,0
+4929,170,1,1
+4930,29,1.3,0
+4930,170,1,1
+4931,170,1,1
+4931,29,1.3,0
+4932,29,1.3,0
+4932,170,1,1
+4933,170,1,1
+4933,29,1.3,0
+4934,29,1.3,0
+4934,170,1,1
+4935,170,1,1
+4935,29,1.3,0
+4936,29,1.3,0
+4936,170,1,1
+4939,170,1,1
+4939,29,1.3,0
+4940,29,1.3,0
+4940,170,1,1
+4941,170,1,1
+4941,29,1.3,0
+4942,170,1,1
+4942,29,1.3,0
+4943,170,1,1
+4943,29,1.3,0
+4944,29,1.3,0
+4944,170,1,1
+4945,170,1,1
+4945,29,1.3,0
+4946,29,1.3,0
+4946,170,1,1
+4947,170,1,1
+4947,29,1.3,0
+4948,170,1,1
+4948,29,1.3,0
+4949,29,1.3,0
+4949,170,1,1
+4950,29,1.3,0
+4950,170,1,1
+4951,142,1.4.2,1
+4951,30,1.4.2.6,0
+4952,142,1.4.2,1
+4952,30,1.4.2.6,0
+4953,142,1.4.2,1
+4953,30,1.4.2.6,0
+4954,142,1.4.2,1
+4954,30,1.4.2.6,0
+4955,142,1.4.2,1
+4955,30,1.4.2.6,0
+4956,30,1.4.2.6,0
+4956,142,1.4.2,1
+4957,30,1.4.2.6,0
+4957,142,1.4.2,1
+4958,142,1.4.2,1
+4958,126,1.4,2
+4958,30,1.4.2.6,0
+4958,170,1,3
+4959,142,1.4.2,1
+4959,30,1.4.2.6,0
+4960,142,1.4.2,1
+4960,30,1.4.2.6,0
+4961,30,1.4.2.6,0
+4961,142,1.4.2,1
+4964,142,1.4.2,1
+4964,30,1.4.2.6,0
+4966,142,1.4.2,1
+4966,30,1.4.2.6,0
+4969,142,1.4.2,1
+4969,30,1.4.2.6,0
+4970,30,1.4.2.6,0
+4970,142,1.4.2,1
+4972,126,1.4,2
+4972,30,1.4.2.6,0
+4972,142,1.4.2,1
+4972,170,1,3
+4973,30,1.4.2.6,0
+4973,142,1.4.2,1
+4974,30,1.4.2.6,0
+4974,126,1.4,2
+4974,142,1.4.2,1
+4974,170,1,3
+4975,30,1.4.2.6,0
+4975,142,1.4.2,1
+4976,126,1.4,2
+4976,30,1.4.2.6,0
+4976,142,1.4.2,1
+4976,170,1,3
+4978,142,1.4.2,1
+4978,30,1.4.2.6,0
+4979,170,1,3
+4979,126,1.4,2
+4979,30,1.4.2.6,0
+4979,142,1.4.2,1
+4981,30,1.4.2.6,0
+4981,142,1.4.2,1
+4982,30,1.4.2.6,0
+4982,126,1.4,2
+4982,142,1.4.2,1
+4982,170,1,3
+4983,142,1.4.2,1
+4983,30,1.4.2.6,0
+4984,142,1.4.2,1
+4984,30,1.4.2.6,0
+4986,142,1.4.2,1
+4986,30,1.4.2.6,0
+4989,30,1.4.2.6,0
+4989,142,1.4.2,1
+4991,30,1.4.2.6,0
+4991,142,1.4.2,1
+4992,142,1.4.2,1
+4992,30,1.4.2.6,0
+4993,30,1.4.2.6,0
+4993,142,1.4.2,1
+4994,142,1.4.2,1
+4994,30,1.4.2.6,0
+4997,30,1.4.2.6,0
+4997,142,1.4.2,1
+4998,142,1.4.2,1
+4998,30,1.4.2.6,0
+5002,31,1.3.3.3,0
+5002,99,1.3.3,1
+5002,97,1.3.3,1
+5002,75,1.3.3,1
+5004,75,1.3.3,1
+5004,31,1.3.3.3,0
+5005,75,1.3.3,1
+5005,99,1.3.3,1
+5005,31,1.3.3.3,0
+5006,31,1.3.3.3,0
+5006,75,1.3.3,1
+5007,97,1.3.3,1
+5007,31,1.3.3.3,0
+5008,31,1.3.3.3,0
+5008,97,1.3.3,1
+5010,31,1.3.3.3,0
+5010,75,1.3.3,1
+5011,31,1.3.3.3,0
+5011,99,1.3.3,1
+5011,97,1.3.3,1
+5011,75,1.3.3,1
+5014,75,1.3.3,1
+5014,31,1.3.3.3,0
+5020,31,1.3.3.3,0
+5020,99,1.3.3,1
+5022,99,1.3.3,1
+5022,31,1.3.3.3,0
+5024,29,1.3,2
+5024,97,1.3.3,1
+5024,106,1.3,2
+5024,31,1.3.3.3,0
+5028,99,1.3.3,1
+5028,31,1.3.3.3,0
+5032,31,1.3.3.3,0
+5032,97,1.3.3,1
+5033,75,1.3.3,1
+5033,31,1.3.3.3,0
+5034,75,1.3.3,1
+5034,31,1.3.3.3,0
+5036,99,1.3.3,1
+5036,75,1.3.3,1
+5036,31,1.3.3.3,0
+5041,97,1.3.3,1
+5041,31,1.3.3.3,0
+5043,97,1.3.3,1
+5043,31,1.3.3.3,0
+5043,75,1.3.3,1
+5049,31,1.3.3.3,0
+5049,97,1.3.3,1
+5051,31,2.1.4.1.1,0
+5051,79,2.1.4.1,1
+5052,31,2.1.4.1.1,0
+5052,79,2.1.4.1,1
+5054,31,2.1.4.1.1,0
+5054,81,2.1.4.1,1
+5055,81,2.1.4.1,1
+5055,31,2.1.4.1.1,0
+5057,31,2.1.4.1.1,0
+5057,81,2.1.4.1,1
+5059,81,2.1.4.1,1
+5059,31,2.1.4.1.1,0
+5060,79,2.1.4.1,1
+5060,31,2.1.4.1.1,0
+5061,31,2.1.4.1.1,0
+5061,79,2.1.4.1,1
+5064,31,2.1.4.1.1,0
+5064,81,2.1.4.1,1
+5070,31,2.1.4.1.1,0
+5070,79,2.1.4.1,1
+5072,81,2.1.4.1,1
+5072,31,2.1.4.1.1,0
+5073,31,2.1.4.1.1,0
+5073,79,2.1.4.1,1
+5078,79,2.1.4.1,1
+5078,31,2.1.4.1.1,0
+5089,81,2.1.4.1,1
+5089,31,2.1.4.1.1,0
+5091,79,2.1.4.1,1
+5091,31,2.1.4.1.1,0
+5094,81,2.1.4.1,1
+5094,31,2.1.4.1.1,0
+5101,31,2.1.4.1.2,0
+5101,79,2.1.4.1,1
+5104,81,2.1.4.1,1
+5104,31,2.1.4.1.2,0
+5108,81,2.1.4.1,1
+5108,31,2.1.4.1.2,0
+5114,31,2.1.4.1.2,0
+5114,79,2.1.4.1,1
+5116,81,2.1.4.1,1
+5116,31,2.1.4.1.2,0
+5121,31,2.1.4.1.2,0
+5121,81,2.1.4.1,1
+5122,31,2.1.4.1.2,0
+5122,81,2.1.4.1,1
+5123,31,2.1.4.1.2,0
+5123,79,2.1.4.1,1
+5123,81,2.1.4.1,1
+5126,31,2.1.4.1.2,0
+5126,81,2.1.4.1,1
+5135,31,2.1.4.1.2,0
+5135,81,2.1.4.1,1
+5144,31,2.1.4.1.2,0
+5144,79,2.1.4.1,1
+5154,31,2.1.4.1.3,0
+5154,81,2.1.4.1,1
+5156,31,2.1.4.1.3,0
+5156,79,2.1.4.1,1
+5157,31,2.1.4.1.3,0
+5157,81,2.1.4.1,1
+5158,79,2.1.4.1,1
+5158,31,2.1.4.1.3,0
+5159,81,2.1.4.1,1
+5159,31,2.1.4.1.3,0
+5160,31,2.1.4.1.3,0
+5160,81,2.1.4.1,1
+5164,79,2.1.4.1,1
+5164,31,2.1.4.1.3,0
+5172,81,2.1.4.1,1
+5172,31,2.1.4.1.3,0
+5174,31,2.1.4.1.3,0
+5174,79,2.1.4.1,1
+5179,31,2.1.4.1.3,0
+5179,79,2.1.4.1,1
+5182,31,2.1.4.1.3,0
+5182,79,2.1.4.1,1
+5189,79,2.1.4.1,1
+5189,31,2.1.4.1.3,0
+5193,79,2.1.4.1,1
+5193,31,2.1.4.1.3,0
+5194,81,2.1.4.1,1
+5194,31,2.1.4.1.3,0
+5194,79,2.1.4.1,1
+5197,31,2.1.4.1.3,0
+5197,79,2.1.4.1,1
+5202,81,2.1.4.1,1
+5202,31,2.1.4.1.4,0
+5211,31,2.1.4.1.4,0
+5211,81,2.1.4.1,1
+5216,81,2.1.4.1,1
+5216,31,2.1.4.1.4,0
+5229,31,2.1.4.1.4,0
+5229,79,2.1.4.1,1
+5231,31,2.1.4.1.4,0
+5231,79,2.1.4.1,1
+5232,31,2.1.4.1.4,0
+5232,79,2.1.4.1,1
+5233,31,2.1.4.1.4,0
+5233,79,2.1.4.1,1
+5234,81,2.1.4.1,1
+5234,31,2.1.4.1.4,0
+5239,79,2.1.4.1,1
+5239,31,2.1.4.1.4,0
+5244,81,2.1.4.1,1
+5244,31,2.1.4.1.4,0
+5248,79,2.1.4.1,1
+5248,31,2.1.4.1.4,0
+5252,31,2.1.4.2.1,0
+5252,81,2.1.4.2,1
+5253,31,2.1.4.2.1,0
+5253,79,2.1.4.2,1
+5255,81,2.1.4.2,1
+5255,31,2.1.4.2.1,0
+5260,79,2.1.4.2,1
+5260,31,2.1.4.2.1,0
+5269,79,2.1.4.2,1
+5269,31,2.1.4.2.1,0
+5272,81,2.1.4.2,1
+5272,31,2.1.4.2.1,0
+5274,31,2.1.4.2.1,0
+5274,79,2.1.4.2,1
+5276,79,2.1.4.2,1
+5276,31,2.1.4.2.1,0
+5276,81,2.1.4.2,1
+5278,81,2.1.4.2,1
+5278,31,2.1.4.2.1,0
+5279,31,2.1.4.2.1,0
+5279,81,2.1.4.2,1
+5281,81,2.1.4.2,1
+5281,31,2.1.4.2.1,0
+5282,31,2.1.4.2.1,0
+5282,79,2.1.4.2,1
+5289,79,2.1.4.2,1
+5289,31,2.1.4.2.1,0
+5291,79,2.1.4.2,1
+5291,31,2.1.4.2.1,0
+5292,31,2.1.4.2.1,0
+5292,79,2.1.4.2,1
+5297,31,2.1.4.2.1,0
+5297,81,2.1.4.2,1
+5298,81,2.1.4.2,1
+5298,31,2.1.4.2.1,0
+5302,31,2.1.4.2.2,0
+5302,79,2.1.4.2,1
+5306,31,2.1.4.2.2,0
+5306,81,2.1.4.2,1
+5308,79,2.1.4.2,1
+5308,31,2.1.4.2.2,0
+5309,79,2.1.4.2,1
+5309,31,2.1.4.2.2,0
+5310,31,2.1.4.2.2,0
+5310,81,2.1.4.2,1
+5314,31,2.1.4.2.2,0
+5314,79,2.1.4.2,1
+5320,31,2.1.4.2.2,0
+5320,79,2.1.4.2,1
+5324,79,2.1.4.2,1
+5324,31,2.1.4.2.2,0
+5331,31,2.1.4.2.2,0
+5331,79,2.1.4.2,1
+5332,31,2.1.4.2.2,0
+5332,81,2.1.4.2,1
+5334,81,2.1.4.2,1
+5334,31,2.1.4.2.2,0
+5344,81,2.1.4.2,1
+5344,31,2.1.4.2.2,0
+5344,79,2.1.4.2,1
+5349,81,2.1.4.2,1
+5349,31,2.1.4.2.2,0
+5352,32,1.2.3,0
+5352,106,1.2,1
+5354,126,1.2,1
+5354,32,1.2.3,0
+5356,32,1.2.3,0
+5356,67,1.2,1
+5357,67,1.2,1
+5357,32,1.2.3,0
+5358,97,1.2,1
+5358,32,1.2.3,0
+5360,106,1.2,1
+5360,32,1.2.3,0
+5361,106,1.2,1
+5361,32,1.2.3,0
+5364,32,1.2.3,0
+5364,106,1.2,1
+5366,97,1.2,1
+5366,32,1.2.3,0
+5372,126,1.2,1
+5372,32,1.2.3,0
+5373,106,1.2,1
+5373,32,1.2.3,0
+5374,32,1.2.3,0
+5374,126,1.2,1
+5376,106,1.2,1
+5376,32,1.2.3,0
+5376,67,1.2,1
+5378,32,1.2.3,0
+5378,97,1.2,1
+5379,126,1.2,1
+5379,32,1.2.3,0
+5382,97,1.2,1
+5382,32,1.2.3,0
+5383,97,1.2,1
+5383,32,1.2.3,0
+5384,67,1.2,1
+5384,32,1.2.3,0
+5386,126,1.2,1
+5386,32,1.2.3,0
+5387,32,1.2.3,0
+5387,106,1.2,1
+5388,32,1.2.3,0
+5388,126,1.2,1
+5389,32,1.2.3,0
+5389,106,1.2,1
+5389,170,1,2
+5391,32,1.2.3,0
+5391,126,1.2,1
+5392,126,1.2,1
+5392,32,1.2.3,0
+5393,32,1.2.3,0
+5393,67,1.2,1
+5394,32,1.2.3,0
+5394,106,1.2,1
+5395,32,1.2.3,0
+5395,126,1.2,1
+5397,32,1.2.3,0
+5397,97,1.2,1
+5401,58,2.1.2,1
+5401,33,2.1.2.1,0
+5402,79,2.1.2,1
+5402,33,2.1.2.1,0
+5403,159,2.1.2,1
+5403,33,2.1.2.1,0
+5404,33,2.1.2.1,0
+5404,79,2.1.2,1
+5408,33,2.1.2.1,0
+5408,79,2.1.2,1
+5409,58,2.1.2,1
+5409,33,2.1.2.1,0
+5410,33,2.1.2.1,0
+5410,58,2.1.2,1
+5411,79,2.1.2,1
+5411,84,2.1.2,1
+5411,33,2.1.2.1,0
+5412,84,2.1.2,1
+5412,33,2.1.2.1,0
+5414,33,2.1.2.1,0
+5414,159,2.1.2,1
+5414,79,2.1.2,1
+5414,84,2.1.2,1
+5416,33,2.1.2.1,0
+5416,81,2.1.2,1
+5422,81,2.1.2,1
+5422,33,2.1.2.1,0
+5423,33,2.1.2.1,0
+5423,84,2.1.2,1
+5424,79,2.1.2,1
+5424,33,2.1.2.1,0
+5424,84,2.1.2,1
+5426,159,2.1.2,1
+5426,33,2.1.2.1,0
+5431,33,2.1.2.1,0
+5431,79,2.1.2,1
+5432,81,2.1.2,1
+5432,33,2.1.2.1,0
+5435,33,2.1.2.1,0
+5435,81,2.1.2,1
+5435,159,2.1.2,1
+5439,79,2.1.2,1
+5439,33,2.1.2.1,0
+5440,33,2.1.2.1,0
+5440,159,2.1.2,1
+5441,79,2.1.2,1
+5441,33,2.1.2.1,0
+5441,84,2.1.2,1
+5444,84,2.1.2,1
+5444,159,2.1.2,1
+5444,33,2.1.2.1,0
+5446,33,2.1.2.1,0
+5446,159,2.1.2,1
+5447,159,2.1.2,1
+5447,58,2.1.2,1
+5447,33,2.1.2.1,0
+5448,33,2.1.2.1,0
+5448,159,2.1.2,1
+5450,159,2.1.2,1
+5450,33,2.1.2.1,0
+5451,33,2.1.2.2,0
+5451,79,2.1.2,1
+5452,33,2.1.2.2,0
+5452,58,2.1.2,1
+5455,33,2.1.2.2,0
+5455,79,2.1.2,1
+5456,33,2.1.2.2,0
+5456,159,2.1.2,1
+5457,33,2.1.2.2,0
+5457,79,2.1.2,1
+5457,159,2.1.2,1
+5458,81,2.1.2,1
+5458,33,2.1.2.2,0
+5459,79,2.1.2,1
+5459,33,2.1.2.2,0
+5460,33,2.1.2.2,0
+5460,84,2.1.2,1
+5461,81,2.1.2,1
+5461,84,2.1.2,1
+5461,33,2.1.2.2,0
+5464,33,2.1.2.2,0
+5464,159,2.1.2,1
+5464,79,2.1.2,1
+5469,33,2.1.2.2,0
+5469,58,2.1.2,1
+5469,159,2.1.2,1
+5470,79,2.1.2,1
+5470,33,2.1.2.2,0
+5472,33,2.1.2.2,0
+5472,79,2.1.2,1
+5476,79,2.1.2,1
+5476,81,2.1.2,1
+5476,33,2.1.2.2,0
+5477,84,2.1.2,1
+5477,33,2.1.2.2,0
+5478,58,2.1.2,1
+5478,33,2.1.2.2,0
+5479,81,2.1.2,1
+5479,84,2.1.2,1
+5479,33,2.1.2.2,0
+5481,33,2.1.2.2,0
+5481,81,2.1.2,1
+5482,33,2.1.2.2,0
+5482,58,2.1.2,1
+5483,33,2.1.2.2,0
+5483,79,2.1.2,1
+5484,159,2.1.2,1
+5484,33,2.1.2.2,0
+5485,33,2.1.2.2,0
+5485,159,2.1.2,1
+5486,33,2.1.2.2,0
+5486,81,2.1.2,1
+5488,84,2.1.2,1
+5488,33,2.1.2.2,0
+5489,84,2.1.2,1
+5489,33,2.1.2.2,0
+5489,79,2.1.2,1
+5489,58,2.1.2,1
+5493,159,2.1.2,1
+5493,33,2.1.2.2,0
+5494,79,2.1.2,1
+5494,33,2.1.2.2,0
+5495,33,2.1.2.2,0
+5495,159,2.1.2,1
+5497,58,2.1.2,1
+5497,33,2.1.2.2,0
+5498,159,2.1.2,1
+5498,33,2.1.2.2,0
+5502,81,2.1.2,1
+5502,33,2.1.2.3,0
+5505,81,2.1.2,1
+5505,33,2.1.2.3,0
+5506,33,2.1.2.3,0
+5506,79,2.1.2,1
+5506,159,2.1.2,1
+5507,84,2.1.2,1
+5507,33,2.1.2.3,0
+5508,33,2.1.2.3,0
+5508,81,2.1.2,1
+5509,79,2.1.2,1
+5509,33,2.1.2.3,0
+5510,58,2.1.2,1
+5510,33,2.1.2.3,0
+5510,159,2.1.2,1
+5511,79,2.1.2,1
+5511,81,2.1.2,1
+5511,33,2.1.2.3,0
+5514,58,2.1.2,1
+5514,33,2.1.2.3,0
+5514,84,2.1.2,1
+5517,159,2.1.2,1
+5517,33,2.1.2.3,0
+5520,33,2.1.2.3,0
+5520,159,2.1.2,1
+5522,58,2.1.2,1
+5522,33,2.1.2.3,0
+5523,58,2.1.2,1
+5523,79,2.1.2,1
+5523,33,2.1.2.3,0
+5526,79,2.1.2,1
+5526,33,2.1.2.3,0
+5528,58,2.1.2,1
+5528,33,2.1.2.3,0
+5529,81,2.1.2,1
+5529,33,2.1.2.3,0
+5531,33,2.1.2.3,0
+5531,79,2.1.2,1
+5533,79,2.1.2,1
+5533,33,2.1.2.3,0
+5534,33,2.1.2.3,0
+5534,58,2.1.2,1
+5536,33,2.1.2.3,0
+5536,79,2.1.2,1
+5537,159,2.1.2,1
+5537,33,2.1.2.3,0
+5542,33,2.1.2.3,0
+5542,58,2.1.2,1
+5542,84,2.1.2,1
+5543,58,2.1.2,1
+5543,33,2.1.2.3,0
+5544,33,2.1.2.3,0
+5544,84,2.1.2,1
+5544,58,2.1.2,1
+5545,33,2.1.2.3,0
+5545,159,2.1.2,1
+5548,84,2.1.2,1
+5548,33,2.1.2.3,0
+5548,58,2.1.2,1
+5549,84,2.1.2,1
+5549,33,2.1.2.3,0
+5550,159,2.1.2,1
+5550,33,2.1.2.3,0
+5551,33,2.1.2.4,0
+5551,159,2.1.2,1
+5551,79,2.1.2,1
+5552,81,2.1.2,1
+5552,33,2.1.2.4,0
+5552,79,2.1.2,1
+5554,33,2.1.2.4,0
+5554,81,2.1.2,1
+5555,33,2.1.2.4,0
+5555,79,2.1.2,1
+5556,33,2.1.2.4,0
+5556,79,2.1.2,1
+5556,159,2.1.2,1
+5557,33,2.1.2.4,0
+5557,81,2.1.2,1
+5558,33,2.1.2.4,0
+5558,81,2.1.2,1
+5561,81,2.1.2,1
+5561,33,2.1.2.4,0
+5561,84,2.1.2,1
+5561,79,2.1.2,1
+5564,33,2.1.2.4,0
+5564,159,2.1.2,1
+5566,79,2.1.2,1
+5566,33,2.1.2.4,0
+5570,33,2.1.2.4,0
+5570,84,2.1.2,1
+5572,58,2.1.2,1
+5572,33,2.1.2.4,0
+5575,79,2.1.2,1
+5575,33,2.1.2.4,0
+5576,33,2.1.2.4,0
+5576,159,2.1.2,1
+5576,84,2.1.2,1
+5578,33,2.1.2.4,0
+5578,84,2.1.2,1
+5579,81,2.1.2,1
+5579,33,2.1.2.4,0
+5581,33,2.1.2.4,0
+5581,81,2.1.2,1
+5583,84,2.1.2,1
+5583,33,2.1.2.4,0
+5584,33,2.1.2.4,0
+5584,81,2.1.2,1
+5585,33,2.1.2.4,0
+5585,159,2.1.2,1
+5587,159,2.1.2,1
+5587,33,2.1.2.4,0
+5589,79,2.1.2,1
+5589,33,2.1.2.4,0
+5590,79,2.1.2,1
+5590,33,2.1.2.4,0
+5591,33,2.1.2.4,0
+5591,58,2.1.2,1
+5593,79,2.1.2,1
+5593,33,2.1.2.4,0
+5595,33,2.1.2.4,0
+5595,159,2.1.2,1
+5600,79,2.1.2,1
+5600,33,2.1.2.4,0
+5602,34,1.3.3.3,0
+5602,97,1.3.3,1
+5604,97,1.3.3,1
+5604,34,1.3.3.3,0
+5605,99,1.3.3,1
+5605,34,1.3.3.3,0
+5606,34,1.3.3.3,0
+5606,75,1.3.3,1
+5607,75,1.3.3,1
+5607,34,1.3.3.3,0
+5608,75,1.3.3,1
+5608,106,1.3,2
+5608,34,1.3.3.3,0
+5610,34,1.3.3.3,0
+5610,97,1.3.3,1
+5611,34,1.3.3.3,0
+5611,99,1.3.3,1
+5614,75,1.3.3,1
+5614,97,1.3.3,1
+5614,34,1.3.3.3,0
+5616,34,1.3.3.3,0
+5616,97,1.3.3,1
+5616,99,1.3.3,1
+5620,75,1.3.3,1
+5620,34,1.3.3.3,0
+5622,75,1.3.3,1
+5622,34,1.3.3.3,0
+5623,99,1.3.3,1
+5623,97,1.3.3,1
+5623,34,1.3.3.3,0
+5626,34,1.3.3.3,0
+5626,97,1.3.3,1
+5626,99,1.3.3,1
+5628,75,1.3.3,1
+5628,34,1.3.3.3,0
+5629,97,1.3.3,1
+5629,34,1.3.3.3,0
+5631,97,1.3.3,1
+5631,34,1.3.3.3,0
+5631,75,1.3.3,1
+5632,75,1.3.3,1
+5632,34,1.3.3.3,0
+5633,99,1.3.3,1
+5633,34,1.3.3.3,0
+5634,97,1.3.3,1
+5634,34,1.3.3.3,0
+5635,99,1.3.3,1
+5635,34,1.3.3.3,0
+5636,99,1.3.3,1
+5636,97,1.3.3,1
+5636,34,1.3.3.3,0
+5637,34,1.3.3.3,0
+5637,97,1.3.3,1
+5638,34,1.3.3.3,0
+5638,99,1.3.3,1
+5639,34,1.3.3.3,0
+5639,75,1.3.3,1
+5641,75,1.3.3,1
+5641,34,1.3.3.3,0
+5643,99,1.3.3,1
+5643,75,1.3.3,1
+5643,34,1.3.3.3,0
+5644,75,1.3.3,1
+5644,34,1.3.3.3,0
+5647,34,1.3.3.3,0
+5647,75,1.3.3,1
+5648,75,1.3.3,1
+5648,97,1.3.3,1
+5648,34,1.3.3.3,0
+5649,99,1.3.3,1
+5649,34,1.3.3.3,0
+5652,86,1.1,1
+5652,35,1.1.3,0
+5654,105,1.1,1
+5654,35,1.1.3,0
+5655,126,1.1,1
+5655,35,1.1.3,0
+5656,105,1.1,1
+5656,35,1.1.3,0
+5657,105,1.1,1
+5657,35,1.1.3,0
+5658,35,1.1.3,0
+5658,94,1.1,1
+5660,105,1.1,1
+5660,35,1.1.3,0
+5661,35,1.1.3,0
+5661,86,1.1,1
+5664,35,1.1.3,0
+5664,106,1.1,1
+5666,105,1.1,1
+5666,35,1.1.3,0
+5669,126,1.1,1
+5669,35,1.1.3,0
+5672,35,1.1.3,0
+5672,94,1.1,1
+5673,35,1.1.3,0
+5673,94,1.1,1
+5674,35,1.1.3,0
+5674,126,1.1,1
+5676,35,1.1.3,0
+5676,86,1.1,1
+5676,94,1.1,1
+5678,35,1.1.3,0
+5678,86,1.1,1
+5679,35,1.1.3,0
+5679,94,1.1,1
+5681,106,1.1,1
+5681,35,1.1.3,0
+5682,86,1.1,1
+5682,35,1.1.3,0
+5683,105,1.1,1
+5683,35,1.1.3,0
+5684,35,1.1.3,0
+5684,94,1.1,1
+5685,35,1.1.3,0
+5685,106,1.1,1
+5686,35,1.1.3,0
+5686,106,1.1,1
+5689,35,1.1.3,0
+5689,86,1.1,1
+5690,106,1.1,1
+5690,35,1.1.3,0
+5691,106,1.1,1
+5691,35,1.1.3,0
+5693,105,1.1,1
+5693,35,1.1.3,0
+5694,35,1.1.3,0
+5694,105,1.1,1
+5695,35,1.1.3,0
+5695,106,1.1,1
+5697,94,1.1,1
+5697,35,1.1.3,0
+5698,35,1.1.3,0
+5698,126,1.1,1
+5700,35,1.1.3,0
+5700,94,1.1,1
+5704,106,1.1,1
+5704,36,1.1.1,0
+5706,105,1.1,1
+5706,36,1.1.1,0
+5707,86,1.1,1
+5707,36,1.1.1,0
+5711,94,1.1,1
+5711,36,1.1.1,0
+5714,94,1.1,1
+5714,36,1.1.1,0
+5723,106,1.1,1
+5723,36,1.1.1,0
+5726,105,1.1,1
+5726,36,1.1.1,0
+5728,36,1.1.1,0
+5728,86,1.1,1
+5729,36,1.1.1,0
+5729,105,1.1,1
+5731,126,1.1,1
+5731,36,1.1.1,0
+5732,94,1.1,1
+5732,36,1.1.1,0
+5733,36,1.1.1,0
+5733,86,1.1,1
+5734,36,1.1.1,0
+5734,105,1.1,1
+5736,36,1.1.1,0
+5736,86,1.1,1
+5738,36,1.1.1,0
+5738,126,1.1,1
+5740,106,1.1,1
+5740,36,1.1.1,0
+5742,94,1.1,1
+5742,36,1.1.1,0
+5743,36,1.1.1,0
+5743,86,1.1,1
+5744,126,1.1,1
+5744,36,1.1.1,0
+5745,36,1.1.1,0
+5745,126,1.1,1
+5749,94,1.1,1
+5749,36,1.1.1,0
+5751,157,1.4.1,1
+5751,37,1.4.1.2,0
+5753,157,1.4.1,1
+5753,37,1.4.1.2,0
+5754,126,1.4,2
+5754,37,1.4.1.2,0
+5754,157,1.4.1,1
+5754,170,1,3
+5755,157,1.4.1,1
+5755,37,1.4.1.2,0
+5757,157,1.4.1,1
+5757,37,1.4.1.2,0
+5758,37,1.4.1.2,0
+5758,157,1.4.1,1
+5760,126,1.4,2
+5760,37,1.4.1.2,0
+5760,157,1.4.1,1
+5760,170,1,3
+5761,37,1.4.1.2,0
+5761,157,1.4.1,1
+5764,157,1.4.1,1
+5764,37,1.4.1.2,0
+5766,157,1.4.1,1
+5766,37,1.4.1.2,0
+5769,157,1.4.1,1
+5769,37,1.4.1.2,0
+5773,157,1.4.1,1
+5773,37,1.4.1.2,0
+5774,157,1.4.1,1
+5774,37,1.4.1.2,0
+5778,157,1.4.1,1
+5778,37,1.4.1.2,0
+5781,37,1.4.1.2,0
+5781,157,1.4.1,1
+5782,37,1.4.1.2,0
+5782,157,1.4.1,1
+5783,37,1.4.1.2,0
+5783,157,1.4.1,1
+5789,37,1.4.1.2,0
+5789,157,1.4.1,1
+5791,37,1.4.1.2,0
+5791,157,1.4.1,1
+5793,157,1.4.1,1
+5793,37,1.4.1.2,0
+5798,157,1.4.1,1
+5798,37,1.4.1.2,0
+5802,157,1.4.1,1
+5802,37,1.4.1.4,0
+5804,157,1.4.1,1
+5804,37,1.4.1.4,0
+5805,157,1.4.1,1
+5805,37,1.4.1.4,0
+5807,157,1.4.1,1
+5807,37,1.4.1.4,0
+5809,37,1.4.1.4,0
+5809,157,1.4.1,1
+5809,170,1,3
+5809,126,1.4,2
+5810,126,1.4,2
+5810,37,1.4.1.4,0
+5810,157,1.4.1,1
+5810,170,1,3
+5811,157,1.4.1,1
+5811,37,1.4.1.4,0
+5816,157,1.4.1,1
+5816,37,1.4.1.4,0
+5820,157,1.4.1,1
+5820,37,1.4.1.4,0
+5822,37,1.4.1.4,0
+5822,157,1.4.1,1
+5825,157,1.4.1,1
+5825,37,1.4.1.4,0
+5826,157,1.4.1,1
+5826,37,1.4.1.4,0
+5828,37,1.4.1.4,0
+5828,157,1.4.1,1
+5829,157,1.4.1,1
+5829,37,1.4.1.4,0
+5831,37,1.4.1.4,0
+5831,157,1.4.1,1
+5832,37,1.4.1.4,0
+5832,157,1.4.1,1
+5834,37,1.4.1.4,0
+5834,157,1.4.1,1
+5841,37,1.4.1.4,0
+5841,157,1.4.1,1
+5848,157,1.4.1,1
+5848,37,1.4.1.4,0
+5851,142,1.4.2,1
+5851,37,1.4.2.2,0
+5852,142,1.4.2,1
+5852,37,1.4.2.2,0
+5853,142,1.4.2,1
+5853,37,1.4.2.2,0
+5854,142,1.4.2,1
+5854,37,1.4.2.2,0
+5855,142,1.4.2,1
+5855,37,1.4.2.2,0
+5856,37,1.4.2.2,0
+5856,142,1.4.2,1
+5856,126,1.4,2
+5856,170,1,3
+5857,37,1.4.2.2,0
+5857,142,1.4.2,1
+5858,37,1.4.2.2,0
+5858,142,1.4.2,1
+5859,142,1.4.2,1
+5859,37,1.4.2.2,0
+5860,142,1.4.2,1
+5860,37,1.4.2.2,0
+5861,142,1.4.2,1
+5861,37,1.4.2.2,0
+5861,126,1.4,2
+5861,170,1,3
+5864,142,1.4.2,1
+5864,170,1,3
+5864,37,1.4.2.2,0
+5864,126,1.4,2
+5866,142,1.4.2,1
+5866,37,1.4.2.2,0
+5869,142,1.4.2,1
+5869,37,1.4.2.2,0
+5870,142,1.4.2,1
+5870,37,1.4.2.2,0
+5872,37,1.4.2.2,0
+5872,142,1.4.2,1
+5873,142,1.4.2,1
+5873,37,1.4.2.2,0
+5874,126,1.4,2
+5874,142,1.4.2,1
+5874,37,1.4.2.2,0
+5874,170,1,3
+5875,37,1.4.2.2,0
+5875,170,1,3
+5875,142,1.4.2,1
+5875,126,1.4,2
+5876,126,1.4,2
+5876,37,1.4.2.2,0
+5876,142,1.4.2,1
+5876,170,1,3
+5878,142,1.4.2,1
+5878,37,1.4.2.2,0
+5879,142,1.4.2,1
+5879,37,1.4.2.2,0
+5881,37,1.4.2.2,0
+5881,142,1.4.2,1
+5882,37,1.4.2.2,0
+5882,142,1.4.2,1
+5883,142,1.4.2,1
+5883,37,1.4.2.2,0
+5884,37,1.4.2.2,0
+5884,142,1.4.2,1
+5884,126,1.4,2
+5884,170,1,3
+5886,142,1.4.2,1
+5886,37,1.4.2.2,0
+5889,142,1.4.2,1
+5889,37,1.4.2.2,0
+5891,37,1.4.2.2,0
+5891,142,1.4.2,1
+5892,37,1.4.2.2,0
+5892,142,1.4.2,1
+5893,142,1.4.2,1
+5893,37,1.4.2.2,0
+5894,142,1.4.2,1
+5894,37,1.4.2.2,0
+5897,170,1,3
+5897,126,1.4,2
+5897,142,1.4.2,1
+5897,37,1.4.2.2,0
+5898,142,1.4.2,1
+5898,37,1.4.2.2,0
+5901,170,1,3
+5901,142,1.4.3,1
+5901,126,1.4,2
+5901,37,1.4.3.1,0
+5902,142,1.4.3,1
+5902,170,1,3
+5902,37,1.4.3.1,0
+5902,126,1.4,2
+5903,142,1.4.3,1
+5903,37,1.4.3.1,0
+5904,142,1.4.3,1
+5904,37,1.4.3.1,0
+5905,142,1.4.3,1
+5905,37,1.4.3.1,0
+5906,142,1.4.3,1
+5906,37,1.4.3.1,0
+5907,37,1.4.3.1,0
+5907,142,1.4.3,1
+5908,37,1.4.3.1,0
+5908,142,1.4.3,1
+5909,142,1.4.3,1
+5909,37,1.4.3.1,0
+5910,126,1.4,2
+5910,37,1.4.3.1,0
+5910,142,1.4.3,1
+5910,170,1,3
+5911,142,1.4.3,1
+5911,37,1.4.3.1,0
+5911,126,1.4,2
+5911,170,1,3
+5914,142,1.4.3,1
+5914,37,1.4.3.1,0
+5916,142,1.4.3,1
+5916,37,1.4.3.1,0
+5919,142,1.4.3,1
+5919,37,1.4.3.1,0
+5920,142,1.4.3,1
+5920,37,1.4.3.1,0
+5922,37,1.4.3.1,0
+5922,142,1.4.3,1
+5923,142,1.4.3,1
+5923,37,1.4.3.1,0
+5924,142,1.4.3,1
+5924,37,1.4.3.1,0
+5925,142,1.4.3,1
+5925,37,1.4.3.1,0
+5926,37,1.4.3.1,0
+5926,142,1.4.3,1
+5928,142,1.4.3,1
+5928,37,1.4.3.1,0
+5929,142,1.4.3,1
+5929,37,1.4.3.1,0
+5931,37,1.4.3.1,0
+5931,142,1.4.3,1
+5932,37,1.4.3.1,0
+5932,142,1.4.3,1
+5933,142,1.4.3,1
+5933,37,1.4.3.1,0
+5934,142,1.4.3,1
+5934,37,1.4.3.1,0
+5936,142,1.4.3,1
+5936,170,1,3
+5936,126,1.4,2
+5936,37,1.4.3.1,0
+5939,142,1.4.3,1
+5939,37,1.4.3.1,0
+5941,37,1.4.3.1,0
+5941,142,1.4.3,1
+5942,37,1.4.3.1,0
+5942,142,1.4.3,1
+5943,142,1.4.3,1
+5943,37,1.4.3.1,0
+5943,170,1,3
+5943,126,1.4,2
+5944,37,1.4.3.1,0
+5944,170,1,3
+5944,142,1.4.3,1
+5944,126,1.4,2
+5947,37,1.4.3.1,0
+5947,142,1.4.3,1
+5948,142,1.4.3,1
+5948,37,1.4.3.1,0
+5951,0,1.4.4,1
+5951,37,1.4.4.3,0
+5952,0,1.4.4,1
+5952,37,1.4.4.3,0
+5952,40,1.4.4,1
+5953,0,1.4.4,1
+5953,40,1.4.4,1
+5953,37,1.4.4.3,0
+5954,37,1.4.4.3,0
+5954,0,1.4.4,1
+5955,0,1.4.4,1
+5955,40,1.4.4,1
+5955,37,1.4.4.3,0
+5955,126,1.4,2
+5956,40,1.4.4,1
+5956,0,1.4.4,1
+5956,37,1.4.4.3,0
+5956,126,1.4,2
+5956,170,1,3
+5957,37,1.4.4.3,0
+5957,0,1.4.4,1
+5958,37,1.4.4.3,0
+5958,0,1.4.4,1
+5959,40,1.4.4,1
+5959,37,1.4.4.3,0
+5959,0,1.4.4,1
+5960,37,1.4.4.3,0
+5960,0,1.4.4,1
+5961,126,1.4,2
+5961,0,1.4.4,1
+5961,40,1.4.4,1
+5961,37,1.4.4.3,0
+5964,0,1.4.4,1
+5964,37,1.4.4.3,0
+5964,40,1.4.4,1
+5966,40,1.4.4,1
+5966,0,1.4.4,1
+5966,126,1.4,2
+5966,170,1,3
+5966,37,1.4.4.3,0
+5967,37,1.4.4.3,0
+5967,40,1.4.4,1
+5969,37,1.4.4.3,0
+5969,40,1.4.4,1
+5969,0,1.4.4,1
+5970,126,1.4,2
+5970,37,1.4.4.3,0
+5970,0,1.4.4,1
+5971,40,1.4.4,1
+5971,37,1.4.4.3,0
+5972,0,1.4.4,1
+5972,126,1.4,2
+5972,170,1,3
+5972,37,1.4.4.3,0
+5973,0,1.4.4,1
+5973,40,1.4.4,1
+5973,37,1.4.4.3,0
+5974,40,1.4.4,1
+5974,37,1.4.4.3,0
+5974,0,1.4.4,1
+5975,0,1.4.4,1
+5975,37,1.4.4.3,0
+5976,0,1.4.4,1
+5976,126,1.4,2
+5976,37,1.4.4.3,0
+5976,40,1.4.4,1
+5976,170,1,3
+5977,37,1.4.4.3,0
+5977,40,1.4.4,1
+5978,40,1.4.4,1
+5978,0,1.4.4,1
+5978,37,1.4.4.3,0
+5979,0,1.4.4,1
+5979,37,1.4.4.3,0
+5979,40,1.4.4,1
+5981,40,1.4.4,1
+5981,37,1.4.4.3,0
+5981,0,1.4.4,1
+5982,40,1.4.4,1
+5982,37,1.4.4.3,0
+5982,0,1.4.4,1
+5983,0,1.4.4,1
+5983,37,1.4.4.3,0
+5984,40,1.4.4,1
+5984,0,1.4.4,1
+5984,37,1.4.4.3,0
+5985,40,1.4.4,1
+5985,37,1.4.4.3,0
+5985,126,1.4,2
+5986,40,1.4.4,1
+5986,170,1,3
+5986,126,1.4,2
+5986,0,1.4.4,1
+5986,37,1.4.4.3,0
+5987,40,1.4.4,1
+5987,37,1.4.4.3,0
+5988,37,1.4.4.3,0
+5988,40,1.4.4,1
+5989,37,1.4.4.3,0
+5989,0,1.4.4,1
+5989,40,1.4.4,1
+5990,37,1.4.4.3,0
+5990,40,1.4.4,1
+5991,37,1.4.4.3,0
+5991,0,1.4.4,1
+5992,40,1.4.4,1
+5992,37,1.4.4.3,0
+5992,0,1.4.4,1
+5993,37,1.4.4.3,0
+5993,170,1,3
+5993,40,1.4.4,1
+5993,0,1.4.4,1
+5993,126,1.4,2
+5994,40,1.4.4,1
+5994,0,1.4.4,1
+5994,37,1.4.4.3,0
+5995,37,1.4.4.3,0
+5995,40,1.4.4,1
+5996,37,1.4.4.3,0
+5996,40,1.4.4,1
+5997,37,1.4.4.3,0
+5997,0,1.4.4,1
+5998,0,1.4.4,1
+5998,40,1.4.4,1
+5998,37,1.4.4.3,0
+5999,40,1.4.4,1
+5999,37,1.4.4.3,0
+6000,40,1.4.4,1
+6000,37,1.4.4.3,0
+6001,41,1.4.5,1
+6001,37,1.4.5.2,0
+6002,37,1.4.5.2,0
+6002,41,1.4.5,1
+6003,41,1.4.5,1
+6003,37,1.4.5.2,0
+6004,126,1.4,2
+6004,37,1.4.5.2,0
+6004,170,1,3
+6004,41,1.4.5,1
+6005,41,1.4.5,1
+6005,37,1.4.5.2,0
+6006,41,1.4.5,1
+6006,37,1.4.5.2,0
+6007,41,1.4.5,1
+6007,37,1.4.5.2,0
+6008,41,1.4.5,1
+6008,126,1.4,2
+6008,37,1.4.5.2,0
+6008,170,1,3
+6009,37,1.4.5.2,0
+6009,41,1.4.5,1
+6010,126,1.4,2
+6010,37,1.4.5.2,0
+6010,41,1.4.5,1
+6010,170,1,3
+6011,41,1.4.5,1
+6011,37,1.4.5.2,0
+6014,41,1.4.5,1
+6014,37,1.4.5.2,0
+6016,41,1.4.5,1
+6016,37,1.4.5.2,0
+6019,37,1.4.5.2,0
+6019,41,1.4.5,1
+6020,41,1.4.5,1
+6020,37,1.4.5.2,0
+6022,126,1.4,2
+6022,41,1.4.5,1
+6022,170,1,3
+6022,37,1.4.5.2,0
+6023,37,1.4.5.2,0
+6023,41,1.4.5,1
+6024,37,1.4.5.2,0
+6024,41,1.4.5,1
+6025,41,1.4.5,1
+6025,37,1.4.5.2,0
+6026,41,1.4.5,1
+6026,37,1.4.5.2,0
+6028,41,1.4.5,1
+6028,37,1.4.5.2,0
+6029,37,1.4.5.2,0
+6029,41,1.4.5,1
+6031,37,1.4.5.2,0
+6031,41,1.4.5,1
+6032,41,1.4.5,1
+6032,37,1.4.5.2,0
+6033,41,1.4.5,1
+6033,37,1.4.5.2,0
+6034,41,1.4.5,1
+6034,37,1.4.5.2,0
+6036,41,1.4.5,1
+6036,37,1.4.5.2,0
+6039,41,1.4.5,1
+6039,37,1.4.5.2,0
+6041,170,1,3
+6041,126,1.4,2
+6041,41,1.4.5,1
+6041,37,1.4.5.2,0
+6042,41,1.4.5,1
+6042,37,1.4.5.2,0
+6043,41,1.4.5,1
+6043,37,1.4.5.2,0
+6043,170,1,3
+6043,126,1.4,2
+6044,37,1.4.5.2,0
+6044,170,1,3
+6044,41,1.4.5,1
+6044,126,1.4,2
+6047,41,1.4.5,1
+6047,37,1.4.5.2,0
+6048,37,1.4.5.2,0
+6048,41,1.4.5,1
+6049,41,1.4.5,1
+6049,37,1.4.5.2,0
+6052,38,2.1.1.1,0
+6052,148,2.1.1,1
+6052,85,2.1.1,1
+6052,80,2.1.1,1
+6054,106,2.1.1,1
+6054,38,2.1.1.1,0
+6057,148,2.1.1,1
+6057,38,2.1.1.1,0
+6058,38,2.1.1.1,0
+6058,80,2.1.1,1
+6058,148,2.1.1,1
+6061,148,2.1.1,1
+6061,85,2.1.1,1
+6061,38,2.1.1.1,0
+6064,38,2.1.1.1,0
+6064,80,2.1.1,1
+6064,85,2.1.1,1
+6066,85,2.1.1,1
+6066,38,2.1.1.1,0
+6066,80,2.1.1,1
+6070,80,2.1.1,1
+6070,38,2.1.1.1,0
+6072,38,2.1.1.1,0
+6072,85,2.1.1,1
+6076,80,2.1.1,1
+6076,38,2.1.1.1,0
+6078,38,2.1.1.1,0
+6078,80,2.1.1,1
+6079,38,2.1.1.1,0
+6079,80,2.1.1,1
+6081,38,2.1.1.1,0
+6081,148,2.1.1,1
+6082,106,2.1.1,1
+6082,38,2.1.1.1,0
+6083,38,2.1.1.1,0
+6083,85,2.1.1,1
+6086,38,2.1.1.1,0
+6086,80,2.1.1,1
+6087,38,2.1.1.1,0
+6087,85,2.1.1,1
+6088,148,2.1.1,1
+6088,38,2.1.1.1,0
+6089,80,2.1.1,1
+6089,38,2.1.1.1,0
+6091,80,2.1.1,1
+6091,38,2.1.1.1,0
+6093,85,2.1.1,1
+6093,38,2.1.1.1,0
+6094,106,2.1.1,1
+6094,38,2.1.1.1,0
+6095,148,2.1.1,1
+6095,38,2.1.1.1,0
+6097,85,2.1.1,1
+6097,38,2.1.1.1,0
+6099,106,2.1.1,1
+6099,38,2.1.1.1,0
+6100,38,2.1.1.1,0
+6100,106,2.1.1,1
+6102,38,2.1.1.2,0
+6102,106,2.1.1,1
+6104,106,2.1.1,1
+6104,38,2.1.1.2,0
+6105,148,2.1.1,1
+6105,106,2.1.1,1
+6105,38,2.1.1.2,0
+6108,38,2.1.1.2,0
+6108,80,2.1.1,1
+6109,106,2.1.1,1
+6109,38,2.1.1.2,0
+6110,38,2.1.1.2,0
+6110,80,2.1.1,1
+6111,106,2.1.1,1
+6111,148,2.1.1,1
+6111,38,2.1.1.2,0
+6114,38,2.1.1.2,0
+6114,106,2.1.1,1
+6115,148,2.1.1,1
+6115,38,2.1.1.2,0
+6116,148,2.1.1,1
+6116,38,2.1.1.2,0
+6119,106,2.1.1,1
+6119,38,2.1.1.2,0
+6120,85,2.1.1,1
+6120,38,2.1.1.2,0
+6123,106,2.1.1,1
+6123,38,2.1.1.2,0
+6123,80,2.1.1,1
+6129,38,2.1.1.2,0
+6129,80,2.1.1,1
+6132,38,2.1.1.2,0
+6132,148,2.1.1,1
+6139,148,2.1.1,1
+6139,85,2.1.1,1
+6139,38,2.1.1.2,0
+6141,106,2.1.1,1
+6141,38,2.1.1.2,0
+6142,38,2.1.1.2,0
+6142,85,2.1.1,1
+6142,106,2.1.1,1
+6142,80,2.1.1,1
+6147,38,2.1.1.2,0
+6147,148,2.1.1,1
+6150,38,2.1.1.2,0
+6150,106,2.1.1,1
+6154,85,2.1.1,1
+6154,38,2.1.1.3,0
+6158,38,2.1.1.3,0
+6158,85,2.1.1,1
+6159,38,2.1.1.3,0
+6159,85,2.1.1,1
+6160,85,2.1.1,1
+6160,38,2.1.1.3,0
+6164,38,2.1.1.3,0
+6164,106,2.1.1,1
+6164,148,2.1.1,1
+6166,38,2.1.1.3,0
+6166,85,2.1.1,1
+6166,148,2.1.1,1
+6169,106,2.1.1,1
+6169,38,2.1.1.3,0
+6171,38,2.1.1.3,0
+6171,148,2.1.1,1
+6172,106,2.1.1,1
+6172,38,2.1.1.3,0
+6176,80,2.1.1,1
+6176,38,2.1.1.3,0
+6177,148,2.1.1,1
+6177,38,2.1.1.3,0
+6178,38,2.1.1.3,0
+6178,80,2.1.1,1
+6179,38,2.1.1.3,0
+6179,85,2.1.1,1
+6181,38,2.1.1.3,0
+6181,106,2.1.1,1
+6182,38,2.1.1.3,0
+6182,106,2.1.1,1
+6183,38,2.1.1.3,0
+6183,106,2.1.1,1
+6184,106,2.1.1,1
+6184,38,2.1.1.3,0
+6186,38,2.1.1.3,0
+6186,148,2.1.1,1
+6186,80,2.1.1,1
+6189,106,2.1.1,1
+6189,38,2.1.1.3,0
+6191,80,2.1.1,1
+6191,38,2.1.1.3,0
+6193,85,2.1.1,1
+6193,38,2.1.1.3,0
+6194,106,2.1.1,1
+6194,148,2.1.1,1
+6194,38,2.1.1.3,0
+6195,38,2.1.1.3,0
+6195,106,2.1.1,1
+6197,38,2.1.1.3,0
+6197,106,2.1.1,1
+6202,38,2.1.1.4,0
+6202,148,2.1.1,1
+6205,38,2.1.1.4,0
+6205,148,2.1.1,1
+6205,85,2.1.1,1
+6206,148,2.1.1,1
+6206,38,2.1.1.4,0
+6207,38,2.1.1.4,0
+6207,106,2.1.1,1
+6208,80,2.1.1,1
+6208,38,2.1.1.4,0
+6209,106,2.1.1,1
+6209,38,2.1.1.4,0
+6210,38,2.1.1.4,0
+6210,80,2.1.1,1
+6211,106,2.1.1,1
+6211,38,2.1.1.4,0
+6214,38,2.1.1.4,0
+6214,148,2.1.1,1
+6223,148,2.1.1,1
+6223,38,2.1.1.4,0
+6228,38,2.1.1.4,0
+6228,106,2.1.1,1
+6229,38,2.1.1.4,0
+6229,80,2.1.1,1
+6231,38,2.1.1.4,0
+6231,148,2.1.1,1
+6232,38,2.1.1.4,0
+6232,85,2.1.1,1
+6233,38,2.1.1.4,0
+6233,148,2.1.1,1
+6234,106,2.1.1,1
+6234,38,2.1.1.4,0
+6236,38,2.1.1.4,0
+6236,106,2.1.1,1
+6241,80,2.1.1,1
+6241,38,2.1.1.4,0
+6243,38,2.1.1.4,0
+6243,106,2.1.1,1
+6244,80,2.1.1,1
+6244,38,2.1.1.4,0
+6247,80,2.1.1,1
+6247,38,2.1.1.4,0
+6248,85,2.1.1,1
+6248,38,2.1.1.4,0
+6248,106,2.1.1,1
+6254,80,2.1.1,1
+6254,38,2.1.1.5,0
+6255,80,2.1.1,1
+6255,38,2.1.1.5,0
+6255,85,2.1.1,1
+6258,38,2.1.1.5,0
+6258,85,2.1.1,1
+6260,38,2.1.1.5,0
+6260,80,2.1.1,1
+6266,38,2.1.1.5,0
+6266,148,2.1.1,1
+6272,80,2.1.1,1
+6272,38,2.1.1.5,0
+6276,148,2.1.1,1
+6276,85,2.1.1,1
+6276,38,2.1.1.5,0
+6279,38,2.1.1.5,0
+6279,85,2.1.1,1
+6281,80,2.1.1,1
+6281,38,2.1.1.5,0
+6281,106,2.1.1,1
+6282,106,2.1.1,1
+6282,38,2.1.1.5,0
+6284,38,2.1.1.5,0
+6284,148,2.1.1,1
+6285,106,2.1.1,1
+6285,38,2.1.1.5,0
+6286,85,2.1.1,1
+6286,38,2.1.1.5,0
+6286,148,2.1.1,1
+6286,80,2.1.1,1
+6289,106,2.1.1,1
+6289,38,2.1.1.5,0
+6291,38,2.1.1.5,0
+6291,106,2.1.1,1
+6293,106,2.1.1,1
+6293,38,2.1.1.5,0
+6294,85,2.1.1,1
+6294,38,2.1.1.5,0
+6295,148,2.1.1,1
+6295,38,2.1.1.5,0
+6297,38,2.1.1.5,0
+6297,148,2.1.1,1
+6298,38,2.1.1.5,0
+6298,106,2.1.1,1
+6304,39,1.3.1,0
+6304,29,1.3,1
+6305,106,1.3,1
+6305,29,1.3,1
+6305,39,1.3.1,0
+6307,39,1.3.1,0
+6307,106,1.3,1
+6309,106,1.3,1
+6309,39,1.3.1,0
+6314,106,1.3,1
+6314,39,1.3.1,0
+6316,39,1.3.1,0
+6316,29,1.3,1
+6328,29,1.3,1
+6328,39,1.3.1,0
+6336,39,1.3.1,0
+6336,106,1.3,1
+6339,29,1.3,1
+6339,39,1.3.1,0
+6343,39,1.3.1,0
+6343,106,1.3,1
+6344,39,1.3.1,0
+6344,106,1.3,1
+6347,106,1.3,1
+6347,39,1.3.1,0
+6348,106,1.3,1
+6348,29,1.3,1
+6348,39,1.3.1,0
+6354,40,1.4.2.1,0
+6354,142,1.4.2,1
+6355,142,1.4.2,1
+6355,40,1.4.2.1,0
+6357,40,1.4.2.1,0
+6357,142,1.4.2,1
+6358,40,1.4.2.1,0
+6358,142,1.4.2,1
+6372,142,1.4.2,1
+6372,40,1.4.2.1,0
+6376,40,1.4.2.1,0
+6376,142,1.4.2,1
+6378,40,1.4.2.1,0
+6378,142,1.4.2,1
+6379,40,1.4.2.1,0
+6379,142,1.4.2,1
+6381,40,1.4.2.1,0
+6381,142,1.4.2,1
+6383,142,1.4.2,1
+6383,40,1.4.2.1,0
+6386,142,1.4.2,1
+6386,40,1.4.2.1,0
+6389,40,1.4.2.1,0
+6389,142,1.4.2,1
+6393,142,1.4.2,1
+6393,40,1.4.2.1,0
+6394,142,1.4.2,1
+6394,40,1.4.2.1,0
+6401,170,1,3
+6401,142,1.4.2,1
+6401,126,1.4,2
+6401,40,1.4.2.5,0
+6402,40,1.4.2.5,0
+6402,142,1.4.2,1
+6403,142,1.4.2,1
+6403,40,1.4.2.5,0
+6404,40,1.4.2.5,0
+6404,142,1.4.2,1
+6405,142,1.4.2,1
+6405,40,1.4.2.5,0
+6406,40,1.4.2.5,0
+6406,142,1.4.2,1
+6406,126,1.4,2
+6406,170,1,3
+6407,40,1.4.2.5,0
+6407,142,1.4.2,1
+6408,40,1.4.2.5,0
+6408,142,1.4.2,1
+6409,40,1.4.2.5,0
+6409,142,1.4.2,1
+6410,126,1.4,2
+6410,40,1.4.2.5,0
+6410,142,1.4.2,1
+6410,170,1,3
+6411,40,1.4.2.5,0
+6411,142,1.4.2,1
+6414,142,1.4.2,1
+6414,170,1,3
+6414,40,1.4.2.5,0
+6414,126,1.4,2
+6416,142,1.4.2,1
+6416,40,1.4.2.5,0
+6419,142,1.4.2,1
+6419,40,1.4.2.5,0
+6420,142,1.4.2,1
+6420,170,1,3
+6420,40,1.4.2.5,0
+6420,126,1.4,2
+6422,40,1.4.2.5,0
+6422,126,1.4,2
+6422,142,1.4.2,1
+6422,170,1,3
+6423,142,1.4.2,1
+6423,40,1.4.2.5,0
+6424,142,1.4.2,1
+6424,40,1.4.2.5,0
+6425,40,1.4.2.5,0
+6425,170,1,3
+6425,142,1.4.2,1
+6425,126,1.4,2
+6426,40,1.4.2.5,0
+6426,142,1.4.2,1
+6428,40,1.4.2.5,0
+6428,142,1.4.2,1
+6429,170,1,3
+6429,126,1.4,2
+6429,40,1.4.2.5,0
+6429,142,1.4.2,1
+6431,40,1.4.2.5,0
+6431,142,1.4.2,1
+6432,40,1.4.2.5,0
+6432,142,1.4.2,1
+6433,142,1.4.2,1
+6433,40,1.4.2.5,0
+6434,142,1.4.2,1
+6434,40,1.4.2.5,0
+6434,126,1.4,2
+6434,170,1,3
+6436,142,1.4.2,1
+6436,40,1.4.2.5,0
+6439,40,1.4.2.5,0
+6439,142,1.4.2,1
+6441,142,1.4.2,1
+6441,40,1.4.2.5,0
+6442,126,1.4,2
+6442,170,1,3
+6442,40,1.4.2.5,0
+6442,142,1.4.2,1
+6443,142,1.4.2,1
+6443,40,1.4.2.5,0
+6444,142,1.4.2,1
+6444,40,1.4.2.5,0
+6447,142,1.4.2,1
+6447,40,1.4.2.5,0
+6448,40,1.4.2.5,0
+6448,142,1.4.2,1
+6451,40,1.4.3.3,0
+6451,142,1.4.3,1
+6452,40,1.4.3.3,0
+6452,142,1.4.3,1
+6453,40,1.4.3.3,0
+6453,142,1.4.3,1
+6454,142,1.4.3,1
+6454,40,1.4.3.3,0
+6455,142,1.4.3,1
+6455,40,1.4.3.3,0
+6457,40,1.4.3.3,0
+6457,142,1.4.3,1
+6460,142,1.4.3,1
+6460,40,1.4.3.3,0
+6461,142,1.4.3,1
+6461,40,1.4.3.3,0
+6464,142,1.4.3,1
+6464,40,1.4.3.3,0
+6466,142,1.4.3,1
+6466,40,1.4.3.3,0
+6472,142,1.4.3,1
+6472,40,1.4.3.3,0
+6476,40,1.4.3.3,0
+6476,142,1.4.3,1
+6478,40,1.4.3.3,0
+6478,142,1.4.3,1
+6479,40,1.4.3.3,0
+6479,142,1.4.3,1
+6481,142,1.4.3,1
+6481,40,1.4.3.3,0
+6483,40,1.4.3.3,0
+6483,142,1.4.3,1
+6486,142,1.4.3,1
+6486,40,1.4.3.3,0
+6493,142,1.4.3,1
+6493,40,1.4.3.3,0
+6494,142,1.4.3,1
+6494,40,1.4.3.3,0
+6497,142,1.4.3,1
+6497,40,1.4.3.3,0
+6498,126,1.4,2
+6498,142,1.4.3,1
+6498,40,1.4.3.3,0
+6498,170,1,3
+6502,126,1.4,1
+6502,40,1.4.4,0
+6504,40,1.4.4,0
+6504,126,1.4,1
+6505,126,1.4,1
+6505,40,1.4.4,0
+6506,126,1.4,1
+6506,40,1.4.4,0
+6507,126,1.4,1
+6507,40,1.4.4,0
+6507,170,1,2
+6508,40,1.4.4,0
+6508,126,1.4,1
+6509,40,1.4.4,0
+6509,126,1.4,1
+6510,126,1.4,1
+6510,40,1.4.4,0
+6511,40,1.4.4,0
+6511,126,1.4,1
+6514,126,1.4,1
+6514,40,1.4.4,0
+6516,126,1.4,1
+6516,40,1.4.4,0
+6516,170,1,2
+6522,126,1.4,1
+6522,40,1.4.4,0
+6523,126,1.4,1
+6523,40,1.4.4,0
+6526,126,1.4,1
+6526,40,1.4.4,0
+6528,126,1.4,1
+6528,40,1.4.4,0
+6529,40,1.4.4,0
+6529,126,1.4,1
+6531,40,1.4.4,0
+6531,126,1.4,1
+6531,170,1,2
+6532,40,1.4.4,0
+6532,126,1.4,1
+6533,40,1.4.4,0
+6533,170,1,2
+6533,126,1.4,1
+6534,40,1.4.4,0
+6534,126,1.4,1
+6536,126,1.4,1
+6536,40,1.4.4,0
+6539,40,1.4.4,0
+6539,126,1.4,1
+6539,170,1,2
+6541,126,1.4,1
+6541,170,1,2
+6541,40,1.4.4,0
+6543,126,1.4,1
+6543,40,1.4.4,0
+6544,40,1.4.4,0
+6544,126,1.4,1
+6547,40,1.4.4,0
+6547,170,1,2
+6547,126,1.4,1
+6548,40,1.4.4,0
+6548,126,1.4,1
+6552,157,1.4.1,1
+6552,41,1.4.1.2,0
+6554,157,1.4.1,1
+6554,41,1.4.1.2,0
+6556,41,1.4.1.2,0
+6556,157,1.4.1,1
+6557,41,1.4.1.2,0
+6557,157,1.4.1,1
+6558,41,1.4.1.2,0
+6558,157,1.4.1,1
+6559,157,1.4.1,1
+6559,41,1.4.1.2,0
+6560,41,1.4.1.2,0
+6560,157,1.4.1,1
+6561,41,1.4.1.2,0
+6561,157,1.4.1,1
+6569,157,1.4.1,1
+6569,41,1.4.1.2,0
+6570,157,1.4.1,1
+6570,41,1.4.1.2,0
+6572,41,1.4.1.2,0
+6572,157,1.4.1,1
+6573,157,1.4.1,1
+6573,41,1.4.1.2,0
+6574,157,1.4.1,1
+6574,41,1.4.1.2,0
+6575,41,1.4.1.2,0
+6575,157,1.4.1,1
+6576,157,1.4.1,1
+6576,41,1.4.1.2,0
+6578,157,1.4.1,1
+6578,41,1.4.1.2,0
+6579,157,1.4.1,1
+6579,41,1.4.1.2,0
+6584,41,1.4.1.2,0
+6584,157,1.4.1,1
+6586,41,1.4.1.2,0
+6586,157,1.4.1,1
+6589,157,1.4.1,1
+6589,41,1.4.1.2,0
+6591,157,1.4.1,1
+6591,41,1.4.1.2,0
+6592,157,1.4.1,1
+6592,41,1.4.1.2,0
+6593,157,1.4.1,1
+6593,170,1,3
+6593,126,1.4,2
+6593,41,1.4.1.2,0
+6594,157,1.4.1,1
+6594,41,1.4.1.2,0
+6597,41,1.4.1.2,0
+6597,157,1.4.1,1
+6603,157,1.4.1,1
+6603,41,1.4.1.5,0
+6604,157,1.4.1,1
+6604,41,1.4.1.5,0
+6605,126,1.4,2
+6605,41,1.4.1.5,0
+6605,157,1.4.1,1
+6605,170,1,3
+6606,41,1.4.1.5,0
+6606,157,1.4.1,1
+6607,41,1.4.1.5,0
+6607,157,1.4.1,1
+6609,157,1.4.1,1
+6609,41,1.4.1.5,0
+6610,157,1.4.1,1
+6610,41,1.4.1.5,0
+6611,41,1.4.1.5,0
+6611,157,1.4.1,1
+6616,157,1.4.1,1
+6616,41,1.4.1.5,0
+6619,157,1.4.1,1
+6619,41,1.4.1.5,0
+6620,157,1.4.1,1
+6620,41,1.4.1.5,0
+6622,41,1.4.1.5,0
+6622,157,1.4.1,1
+6625,41,1.4.1.5,0
+6625,157,1.4.1,1
+6626,41,1.4.1.5,0
+6626,157,1.4.1,1
+6628,157,1.4.1,1
+6628,41,1.4.1.5,0
+6629,157,1.4.1,1
+6629,41,1.4.1.5,0
+6631,157,1.4.1,1
+6631,126,1.4,2
+6631,170,1,3
+6631,41,1.4.1.5,0
+6632,157,1.4.1,1
+6632,126,1.4,2
+6632,41,1.4.1.5,0
+6632,170,1,3
+6633,41,1.4.1.5,0
+6633,157,1.4.1,1
+6634,41,1.4.1.5,0
+6634,157,1.4.1,1
+6641,157,1.4.1,1
+6641,41,1.4.1.5,0
+6643,157,1.4.1,1
+6643,41,1.4.1.5,0
+6644,157,1.4.1,1
+6644,41,1.4.1.5,0
+6647,41,1.4.1.5,0
+6647,157,1.4.1,1
+6648,157,1.4.1,1
+6648,41,1.4.1.5,0
+6651,41,1.4.3.1,0
+6651,142,1.4.3,1
+6652,41,1.4.3.1,0
+6652,142,1.4.3,1
+6652,170,1,3
+6652,126,1.4,2
+6653,41,1.4.3.1,0
+6653,142,1.4.3,1
+6654,142,1.4.3,1
+6654,41,1.4.3.1,0
+6655,142,1.4.3,1
+6655,41,1.4.3.1,0
+6656,41,1.4.3.1,0
+6656,142,1.4.3,1
+6657,41,1.4.3.1,0
+6657,142,1.4.3,1
+6658,41,1.4.3.1,0
+6658,142,1.4.3,1
+6658,126,1.4,2
+6658,170,1,3
+6659,170,1,3
+6659,126,1.4,2
+6659,41,1.4.3.1,0
+6659,142,1.4.3,1
+6660,142,1.4.3,1
+6660,41,1.4.3.1,0
+6661,41,1.4.3.1,0
+6661,142,1.4.3,1
+6664,142,1.4.3,1
+6664,41,1.4.3.1,0
+6666,41,1.4.3.1,0
+6666,142,1.4.3,1
+6669,142,1.4.3,1
+6669,41,1.4.3.1,0
+6670,41,1.4.3.1,0
+6670,142,1.4.3,1
+6672,126,1.4,2
+6672,41,1.4.3.1,0
+6672,142,1.4.3,1
+6672,170,1,3
+6673,142,1.4.3,1
+6673,41,1.4.3.1,0
+6674,126,1.4,2
+6674,142,1.4.3,1
+6674,41,1.4.3.1,0
+6674,170,1,3
+6675,41,1.4.3.1,0
+6675,170,1,3
+6675,142,1.4.3,1
+6675,126,1.4,2
+6676,126,1.4,2
+6676,41,1.4.3.1,0
+6676,142,1.4.3,1
+6676,170,1,3
+6678,142,1.4.3,1
+6678,41,1.4.3.1,0
+6679,142,1.4.3,1
+6679,41,1.4.3.1,0
+6681,126,1.4,2
+6681,170,1,3
+6681,142,1.4.3,1
+6681,41,1.4.3.1,0
+6682,41,1.4.3.1,0
+6682,142,1.4.3,1
+6683,170,1,3
+6683,41,1.4.3.1,0
+6683,142,1.4.3,1
+6683,126,1.4,2
+6684,142,1.4.3,1
+6684,41,1.4.3.1,0
+6686,142,1.4.3,1
+6686,41,1.4.3.1,0
+6689,41,1.4.3.1,0
+6689,126,1.4,2
+6689,170,1,3
+6689,142,1.4.3,1
+6691,142,1.4.3,1
+6691,41,1.4.3.1,0
+6692,41,1.4.3.1,0
+6692,142,1.4.3,1
+6693,142,1.4.3,1
+6693,41,1.4.3.1,0
+6694,170,1,3
+6694,41,1.4.3.1,0
+6694,142,1.4.3,1
+6694,126,1.4,2
+6697,41,1.4.3.1,0
+6697,142,1.4.3,1
+6698,126,1.4,2
+6698,142,1.4.3,1
+6698,170,1,3
+6698,41,1.4.3.1,0
+6701,170,1,3
+6701,142,1.4.3,1
+6701,126,1.4,2
+6701,41,1.4.3.2,0
+6702,41,1.4.3.2,0
+6702,142,1.4.3,1
+6702,170,1,3
+6702,126,1.4,2
+6703,170,1,3
+6703,126,1.4,2
+6703,142,1.4.3,1
+6703,41,1.4.3.2,0
+6704,126,1.4,2
+6704,142,1.4.3,1
+6704,170,1,3
+6704,41,1.4.3.2,0
+6705,126,1.4,2
+6705,41,1.4.3.2,0
+6705,170,1,3
+6705,142,1.4.3,1
+6706,142,1.4.3,1
+6706,126,1.4,2
+6706,41,1.4.3.2,0
+6706,170,1,3
+6707,170,1,3
+6707,41,1.4.3.2,0
+6707,142,1.4.3,1
+6707,126,1.4,2
+6708,41,1.4.3.2,0
+6708,142,1.4.3,1
+6708,126,1.4,2
+6708,170,1,3
+6709,170,1,3
+6709,126,1.4,2
+6709,41,1.4.3.2,0
+6709,142,1.4.3,1
+6710,126,1.4,2
+6710,142,1.4.3,1
+6710,41,1.4.3.2,0
+6710,170,1,3
+6711,142,1.4.3,1
+6711,126,1.4,2
+6711,170,1,3
+6711,41,1.4.3.2,0
+6712,126,1.4,2
+6712,142,1.4.3,1
+6712,41,1.4.3.2,0
+6712,170,1,3
+6713,126,1.4,2
+6713,170,1,3
+6713,41,1.4.3.2,0
+6713,142,1.4.3,1
+6714,142,1.4.3,1
+6714,170,1,3
+6714,41,1.4.3.2,0
+6714,126,1.4,2
+6715,170,1,3
+6715,126,1.4,2
+6715,41,1.4.3.2,0
+6715,142,1.4.3,1
+6716,126,1.4,2
+6716,142,1.4.3,1
+6716,170,1,3
+6716,41,1.4.3.2,0
+6717,126,1.4,2
+6717,142,1.4.3,1
+6717,41,1.4.3.2,0
+6717,170,1,3
+6718,41,1.4.3.2,0
+6718,142,1.4.3,1
+6718,170,1,3
+6718,126,1.4,2
+6719,142,1.4.3,1
+6719,126,1.4,2
+6719,170,1,3
+6719,41,1.4.3.2,0
+6720,142,1.4.3,1
+6720,170,1,3
+6720,41,1.4.3.2,0
+6720,126,1.4,2
+6721,170,1,3
+6721,126,1.4,2
+6721,41,1.4.3.2,0
+6721,142,1.4.3,1
+6722,126,1.4,2
+6722,41,1.4.3.2,0
+6722,142,1.4.3,1
+6722,170,1,3
+6723,142,1.4.3,1
+6723,126,1.4,2
+6723,170,1,3
+6723,41,1.4.3.2,0
+6724,126,1.4,2
+6724,142,1.4.3,1
+6724,41,1.4.3.2,0
+6724,170,1,3
+6725,41,1.4.3.2,0
+6725,170,1,3
+6725,142,1.4.3,1
+6725,126,1.4,2
+6726,126,1.4,2
+6726,41,1.4.3.2,0
+6726,142,1.4.3,1
+6726,170,1,3
+6727,126,1.4,2
+6727,170,1,3
+6727,142,1.4.3,1
+6727,41,1.4.3.2,0
+6728,41,1.4.3.2,0
+6728,142,1.4.3,1
+6728,170,1,3
+6728,126,1.4,2
+6729,41,1.4.3.2,0
+6729,170,1,3
+6729,126,1.4,2
+6729,142,1.4.3,1
+6730,142,1.4.3,1
+6730,170,1,3
+6730,126,1.4,2
+6730,41,1.4.3.2,0
+6731,126,1.4,2
+6731,170,1,3
+6731,142,1.4.3,1
+6731,41,1.4.3.2,0
+6732,126,1.4,2
+6732,41,1.4.3.2,0
+6732,142,1.4.3,1
+6732,170,1,3
+6733,170,1,3
+6733,41,1.4.3.2,0
+6733,142,1.4.3,1
+6733,126,1.4,2
+6734,41,1.4.3.2,0
+6734,142,1.4.3,1
+6734,126,1.4,2
+6734,170,1,3
+6735,170,1,3
+6735,126,1.4,2
+6735,142,1.4.3,1
+6735,41,1.4.3.2,0
+6736,41,1.4.3.2,0
+6736,142,1.4.3,1
+6736,170,1,3
+6736,126,1.4,2
+6737,126,1.4,2
+6737,170,1,3
+6737,142,1.4.3,1
+6737,41,1.4.3.2,0
+6738,170,1,3
+6738,126,1.4,2
+6738,142,1.4.3,1
+6738,41,1.4.3.2,0
+6739,41,1.4.3.2,0
+6739,126,1.4,2
+6739,170,1,3
+6739,142,1.4.3,1
+6740,170,1,3
+6740,142,1.4.3,1
+6740,41,1.4.3.2,0
+6740,126,1.4,2
+6741,170,1,3
+6741,126,1.4,2
+6741,142,1.4.3,1
+6741,41,1.4.3.2,0
+6742,41,1.4.3.2,0
+6742,126,1.4,2
+6742,170,1,3
+6742,142,1.4.3,1
+6743,142,1.4.3,1
+6743,41,1.4.3.2,0
+6743,170,1,3
+6743,126,1.4,2
+6744,170,1,3
+6744,41,1.4.3.2,0
+6744,142,1.4.3,1
+6744,126,1.4,2
+6745,170,1,3
+6745,41,1.4.3.2,0
+6745,142,1.4.3,1
+6745,126,1.4,2
+6746,170,1,3
+6746,142,1.4.3,1
+6746,126,1.4,2
+6746,41,1.4.3.2,0
+6747,41,1.4.3.2,0
+6747,170,1,3
+6747,126,1.4,2
+6747,142,1.4.3,1
+6748,126,1.4,2
+6748,142,1.4.3,1
+6748,170,1,3
+6748,41,1.4.3.2,0
+6749,170,1,3
+6749,142,1.4.3,1
+6749,126,1.4,2
+6749,41,1.4.3.2,0
+6750,170,1,3
+6750,142,1.4.3,1
+6750,126,1.4,2
+6750,41,1.4.3.2,0
+6751,41,1.4.3.4,0
+6751,142,1.4.3,1
+6752,142,1.4.3,1
+6752,41,1.4.3.4,0
+6753,41,1.4.3.4,0
+6753,142,1.4.3,1
+6754,142,1.4.3,1
+6754,41,1.4.3.4,0
+6755,142,1.4.3,1
+6755,41,1.4.3.4,0
+6756,41,1.4.3.4,0
+6756,142,1.4.3,1
+6757,170,1,3
+6757,41,1.4.3.4,0
+6757,142,1.4.3,1
+6757,126,1.4,2
+6758,41,1.4.3.4,0
+6758,142,1.4.3,1
+6759,170,1,3
+6759,126,1.4,2
+6759,41,1.4.3.4,0
+6759,142,1.4.3,1
+6760,126,1.4,2
+6760,142,1.4.3,1
+6760,41,1.4.3.4,0
+6760,170,1,3
+6761,41,1.4.3.4,0
+6761,142,1.4.3,1
+6764,142,1.4.3,1
+6764,41,1.4.3.4,0
+6766,41,1.4.3.4,0
+6766,142,1.4.3,1
+6769,142,1.4.3,1
+6769,41,1.4.3.4,0
+6770,41,1.4.3.4,0
+6770,142,1.4.3,1
+6772,41,1.4.3.4,0
+6772,142,1.4.3,1
+6773,142,1.4.3,1
+6773,41,1.4.3.4,0
+6774,142,1.4.3,1
+6774,41,1.4.3.4,0
+6775,41,1.4.3.4,0
+6775,170,1,3
+6775,142,1.4.3,1
+6775,126,1.4,2
+6776,126,1.4,2
+6776,41,1.4.3.4,0
+6776,142,1.4.3,1
+6776,170,1,3
+6778,142,1.4.3,1
+6778,41,1.4.3.4,0
+6779,41,1.4.3.4,0
+6779,170,1,3
+6779,126,1.4,2
+6779,142,1.4.3,1
+6781,142,1.4.3,1
+6781,41,1.4.3.4,0
+6782,126,1.4,2
+6782,41,1.4.3.4,0
+6782,142,1.4.3,1
+6782,170,1,3
+6783,142,1.4.3,1
+6783,41,1.4.3.4,0
+6784,41,1.4.3.4,0
+6784,142,1.4.3,1
+6784,126,1.4,2
+6784,170,1,3
+6786,41,1.4.3.4,0
+6786,142,1.4.3,1
+6786,170,1,3
+6786,126,1.4,2
+6789,142,1.4.3,1
+6789,41,1.4.3.4,0
+6791,142,1.4.3,1
+6791,41,1.4.3.4,0
+6792,41,1.4.3.4,0
+6792,142,1.4.3,1
+6793,142,1.4.3,1
+6793,41,1.4.3.4,0
+6793,170,1,3
+6793,126,1.4,2
+6794,142,1.4.3,1
+6794,41,1.4.3.4,0
+6797,41,1.4.3.4,0
+6797,142,1.4.3,1
+6798,142,1.4.3,1
+6798,41,1.4.3.4,0
+6801,170,1,3
+6801,142,1.4.3,1
+6801,126,1.4,2
+6801,41,1.4.3.5,0
+6802,142,1.4.3,1
+6802,41,1.4.3.5,0
+6803,41,1.4.3.5,0
+6803,142,1.4.3,1
+6804,142,1.4.3,1
+6804,41,1.4.3.5,0
+6805,142,1.4.3,1
+6805,41,1.4.3.5,0
+6806,41,1.4.3.5,0
+6806,142,1.4.3,1
+6807,41,1.4.3.5,0
+6807,142,1.4.3,1
+6808,41,1.4.3.5,0
+6808,142,1.4.3,1
+6808,126,1.4,2
+6808,170,1,3
+6809,170,1,3
+6809,126,1.4,2
+6809,41,1.4.3.5,0
+6809,142,1.4.3,1
+6810,142,1.4.3,1
+6810,41,1.4.3.5,0
+6811,142,1.4.3,1
+6811,126,1.4,2
+6811,170,1,3
+6811,41,1.4.3.5,0
+6814,142,1.4.3,1
+6814,41,1.4.3.5,0
+6816,126,1.4,2
+6816,142,1.4.3,1
+6816,170,1,3
+6816,41,1.4.3.5,0
+6819,142,1.4.3,1
+6819,126,1.4,2
+6819,170,1,3
+6819,41,1.4.3.5,0
+6820,41,1.4.3.5,0
+6820,142,1.4.3,1
+6822,126,1.4,2
+6822,41,1.4.3.5,0
+6822,142,1.4.3,1
+6822,170,1,3
+6823,142,1.4.3,1
+6823,41,1.4.3.5,0
+6824,126,1.4,2
+6824,142,1.4.3,1
+6824,41,1.4.3.5,0
+6824,170,1,3
+6825,142,1.4.3,1
+6825,41,1.4.3.5,0
+6826,126,1.4,2
+6826,41,1.4.3.5,0
+6826,142,1.4.3,1
+6826,170,1,3
+6828,41,1.4.3.5,0
+6828,142,1.4.3,1
+6828,170,1,3
+6828,126,1.4,2
+6829,142,1.4.3,1
+6829,41,1.4.3.5,0
+6831,142,1.4.3,1
+6831,41,1.4.3.5,0
+6832,41,1.4.3.5,0
+6832,142,1.4.3,1
+6833,142,1.4.3,1
+6833,41,1.4.3.5,0
+6834,142,1.4.3,1
+6834,41,1.4.3.5,0
+6836,142,1.4.3,1
+6836,41,1.4.3.5,0
+6839,41,1.4.3.5,0
+6839,126,1.4,2
+6839,170,1,3
+6839,142,1.4.3,1
+6841,142,1.4.3,1
+6841,41,1.4.3.5,0
+6842,41,1.4.3.5,0
+6842,142,1.4.3,1
+6843,142,1.4.3,1
+6843,41,1.4.3.5,0
+6844,142,1.4.3,1
+6844,41,1.4.3.5,0
+6847,41,1.4.3.5,0
+6847,142,1.4.3,1
+6848,142,1.4.3,1
+6848,41,1.4.3.5,0
+6851,41,1.4.5,0
+6851,126,1.4,1
+6851,170,1,2
+6852,41,1.4.5,0
+6852,170,1,2
+6852,126,1.4,1
+6853,170,1,2
+6853,126,1.4,1
+6853,41,1.4.5,0
+6854,126,1.4,1
+6854,41,1.4.5,0
+6854,170,1,2
+6855,126,1.4,1
+6855,41,1.4.5,0
+6855,170,1,2
+6856,170,1,2
+6856,41,1.4.5,0
+6856,126,1.4,1
+6857,126,1.4,1
+6857,41,1.4.5,0
+6857,170,1,2
+6858,170,1,2
+6858,41,1.4.5,0
+6858,126,1.4,1
+6859,41,1.4.5,0
+6859,170,1,2
+6859,126,1.4,1
+6860,170,1,2
+6860,41,1.4.5,0
+6860,126,1.4,1
+6861,126,1.4,1
+6861,170,1,2
+6861,41,1.4.5,0
+6862,170,1,2
+6862,126,1.4,1
+6862,41,1.4.5,0
+6863,41,1.4.5,0
+6863,170,1,2
+6863,126,1.4,1
+6864,126,1.4,1
+6864,41,1.4.5,0
+6864,170,1,2
+6865,126,1.4,1
+6865,170,1,2
+6865,41,1.4.5,0
+6866,41,1.4.5,0
+6866,126,1.4,1
+6866,170,1,2
+6867,41,1.4.5,0
+6867,126,1.4,1
+6867,170,1,2
+6868,126,1.4,1
+6868,41,1.4.5,0
+6868,170,1,2
+6869,41,1.4.5,0
+6869,170,1,2
+6869,126,1.4,1
+6870,126,1.4,1
+6870,170,1,2
+6870,41,1.4.5,0
+6871,170,1,2
+6871,41,1.4.5,0
+6871,126,1.4,1
+6872,126,1.4,1
+6872,170,1,2
+6872,41,1.4.5,0
+6873,170,1,2
+6873,126,1.4,1
+6873,41,1.4.5,0
+6874,41,1.4.5,0
+6874,170,1,2
+6874,126,1.4,1
+6875,126,1.4,1
+6875,41,1.4.5,0
+6875,170,1,2
+6876,126,1.4,1
+6876,170,1,2
+6876,41,1.4.5,0
+6877,126,1.4,1
+6877,41,1.4.5,0
+6877,170,1,2
+6878,170,1,2
+6878,126,1.4,1
+6878,41,1.4.5,0
+6879,126,1.4,1
+6879,170,1,2
+6879,41,1.4.5,0
+6880,41,1.4.5,0
+6880,126,1.4,1
+6880,170,1,2
+6881,41,1.4.5,0
+6881,126,1.4,1
+6881,170,1,2
+6882,170,1,2
+6882,41,1.4.5,0
+6882,126,1.4,1
+6883,170,1,2
+6883,41,1.4.5,0
+6883,126,1.4,1
+6884,41,1.4.5,0
+6884,170,1,2
+6884,126,1.4,1
+6885,170,1,2
+6885,41,1.4.5,0
+6885,126,1.4,1
+6886,41,1.4.5,0
+6886,126,1.4,1
+6886,170,1,2
+6887,126,1.4,1
+6887,41,1.4.5,0
+6887,170,1,2
+6888,41,1.4.5,0
+6888,170,1,2
+6888,126,1.4,1
+6889,126,1.4,1
+6889,170,1,2
+6889,41,1.4.5,0
+6890,41,1.4.5,0
+6890,126,1.4,1
+6890,170,1,2
+6891,41,1.4.5,0
+6891,126,1.4,1
+6891,170,1,2
+6892,126,1.4,1
+6892,41,1.4.5,0
+6892,170,1,2
+6893,170,1,2
+6893,126,1.4,1
+6893,41,1.4.5,0
+6894,41,1.4.5,0
+6894,126,1.4,1
+6894,170,1,2
+6895,170,1,2
+6895,126,1.4,1
+6895,41,1.4.5,0
+6896,126,1.4,1
+6896,170,1,2
+6896,41,1.4.5,0
+6897,170,1,2
+6897,126,1.4,1
+6897,41,1.4.5,0
+6898,41,1.4.5,0
+6898,170,1,2
+6898,126,1.4,1
+6899,170,1,2
+6899,41,1.4.5,0
+6899,126,1.4,1
+6900,170,1,2
+6900,41,1.4.5,0
+6900,126,1.4,1
+6901,42,1.3.1.1,0
+6901,100,1.3.1,1
+6902,42,1.3.1.1,0
+6902,39,1.3.1,1
+6903,42,1.3.1.1,0
+6903,39,1.3.1,1
+6903,99,1.3.1,1
+6903,93,1.3.1,1
+6905,42,1.3.1.1,0
+6905,99,1.3.1,1
+6905,100,1.3.1,1
+6906,42,1.3.1.1,0
+6906,93,1.3.1,1
+6907,39,1.3.1,1
+6907,42,1.3.1.1,0
+6908,39,1.3.1,1
+6908,42,1.3.1.1,0
+6909,42,1.3.1.1,0
+6909,85,1.3.1,1
+6910,85,1.3.1,1
+6910,42,1.3.1.1,0
+6911,42,1.3.1.1,0
+6911,99,1.3.1,1
+6914,85,1.3.1,1
+6914,42,1.3.1.1,0
+6919,99,1.3.1,1
+6919,42,1.3.1.1,0
+6919,93,1.3.1,1
+6920,99,1.3.1,1
+6920,39,1.3.1,1
+6920,100,1.3.1,1
+6920,42,1.3.1.1,0
+6921,42,1.3.1.1,0
+6921,93,1.3.1,1
+6922,93,1.3.1,1
+6922,42,1.3.1.1,0
+6925,42,1.3.1.1,0
+6925,39,1.3.1,1
+6927,42,1.3.1.1,0
+6927,99,1.3.1,1
+6928,42,1.3.1.1,0
+6928,39,1.3.1,1
+6929,39,1.3.1,1
+6929,100,1.3.1,1
+6929,42,1.3.1.1,0
+6930,42,1.3.1.1,0
+6930,100,1.3.1,1
+6931,42,1.3.1.1,0
+6931,39,1.3.1,1
+6932,39,1.3.1,1
+6932,42,1.3.1.1,0
+6932,100,1.3.1,1
+6933,42,1.3.1.1,0
+6933,85,1.3.1,1
+6934,100,1.3.1,1
+6934,42,1.3.1.1,0
+6936,39,1.3.1,1
+6936,100,1.3.1,1
+6936,42,1.3.1.1,0
+6936,93,1.3.1,1
+6937,85,1.3.1,1
+6937,42,1.3.1.1,0
+6938,42,1.3.1.1,0
+6938,99,1.3.1,1
+6939,100,1.3.1,1
+6939,42,1.3.1.1,0
+6940,100,1.3.1,1
+6940,42,1.3.1.1,0
+6941,39,1.3.1,1
+6941,42,1.3.1.1,0
+6943,42,1.3.1.1,0
+6943,85,1.3.1,1
+6944,93,1.3.1,1
+6944,42,1.3.1.1,0
+6944,99,1.3.1,1
+6947,100,1.3.1,1
+6947,42,1.3.1.1,0
+6948,85,1.3.1,1
+6948,99,1.3.1,1
+6948,42,1.3.1.1,0
+6949,99,1.3.1,1
+6949,42,1.3.1.1,0
+6949,100,1.3.1,1
+6952,42,1.3.1.3,0
+6952,100,1.3.1,1
+6952,93,1.3.1,1
+6953,100,1.3.1,1
+6953,42,1.3.1.3,0
+6954,42,1.3.1.3,0
+6954,99,1.3.1,1
+6955,39,1.3.1,1
+6955,42,1.3.1.3,0
+6955,85,1.3.1,1
+6956,42,1.3.1.3,0
+6956,39,1.3.1,1
+6957,99,1.3.1,1
+6957,42,1.3.1.3,0
+6959,42,1.3.1.3,0
+6959,85,1.3.1,1
+6960,99,1.3.1,1
+6960,42,1.3.1.3,0
+6960,39,1.3.1,1
+6960,100,1.3.1,1
+6961,42,1.3.1.3,0
+6961,85,1.3.1,1
+6962,93,1.3.1,1
+6962,42,1.3.1.3,0
+6962,99,1.3.1,1
+6964,99,1.3.1,1
+6964,42,1.3.1.3,0
+6964,39,1.3.1,1
+6966,42,1.3.1.3,0
+6966,100,1.3.1,1
+6966,93,1.3.1,1
+6969,39,1.3.1,1
+6969,100,1.3.1,1
+6969,42,1.3.1.3,0
+6969,93,1.3.1,1
+6970,42,1.3.1.3,0
+6970,99,1.3.1,1
+6970,39,1.3.1,1
+6970,93,1.3.1,1
+6971,100,1.3.1,1
+6971,42,1.3.1.3,0
+6972,42,1.3.1.3,0
+6972,99,1.3.1,1
+6972,100,1.3.1,1
+6972,85,1.3.1,1
+6973,99,1.3.1,1
+6973,42,1.3.1.3,0
+6974,100,1.3.1,1
+6974,42,1.3.1.3,0
+6975,39,1.3.1,1
+6975,42,1.3.1.3,0
+6976,100,1.3.1,1
+6976,39,1.3.1,1
+6976,42,1.3.1.3,0
+6977,85,1.3.1,1
+6977,42,1.3.1.3,0
+6978,42,1.3.1.3,0
+6978,85,1.3.1,1
+6979,42,1.3.1.3,0
+6979,85,1.3.1,1
+6979,99,1.3.1,1
+6980,100,1.3.1,1
+6980,42,1.3.1.3,0
+6981,93,1.3.1,1
+6981,42,1.3.1.3,0
+6982,39,1.3.1,1
+6982,42,1.3.1.3,0
+6983,39,1.3.1,1
+6983,42,1.3.1.3,0
+6984,42,1.3.1.3,0
+6984,85,1.3.1,1
+6986,42,1.3.1.3,0
+6986,100,1.3.1,1
+6986,99,1.3.1,1
+6987,42,1.3.1.3,0
+6987,93,1.3.1,1
+6987,100,1.3.1,1
+6989,39,1.3.1,1
+6989,42,1.3.1.3,0
+6989,93,1.3.1,1
+6990,42,1.3.1.3,0
+6990,93,1.3.1,1
+6991,39,1.3.1,1
+6991,42,1.3.1.3,0
+6991,99,1.3.1,1
+6992,39,1.3.1,1
+6992,100,1.3.1,1
+6992,42,1.3.1.3,0
+6992,85,1.3.1,1
+6992,99,1.3.1,1
+6993,42,1.3.1.3,0
+6993,106,1.3,2
+6993,85,1.3.1,1
+6993,39,1.3.1,1
+6994,39,1.3.1,1
+6994,93,1.3.1,1
+6994,42,1.3.1.3,0
+6995,99,1.3.1,1
+6995,42,1.3.1.3,0
+6997,42,1.3.1.3,0
+6997,39,1.3.1,1
+6998,39,1.3.1,1
+6998,42,1.3.1.3,0
+6998,93,1.3.1,1
+6998,29,1.3,2
+6998,100,1.3.1,1
+7000,99,1.3.1,1
+7000,93,1.3.1,1
+7000,42,1.3.1.3,0
+7002,93,1.3.1,1
+7002,106,1.3,2
+7002,42,1.3.1.4,0
+7002,100,1.3.1,1
+7002,29,1.3,2
+7003,93,1.3.1,1
+7003,39,1.3.1,1
+7003,42,1.3.1.4,0
+7003,99,1.3.1,1
+7004,42,1.3.1.4,0
+7004,85,1.3.1,1
+7005,42,1.3.1.4,0
+7005,99,1.3.1,1
+7006,42,1.3.1.4,0
+7006,85,1.3.1,1
+7007,39,1.3.1,1
+7007,42,1.3.1.4,0
+7008,99,1.3.1,1
+7008,42,1.3.1.4,0
+7009,42,1.3.1.4,0
+7009,100,1.3.1,1
+7010,39,1.3.1,1
+7010,42,1.3.1.4,0
+7011,42,1.3.1.4,0
+7011,99,1.3.1,1
+7017,100,1.3.1,1
+7017,42,1.3.1.4,0
+7019,100,1.3.1,1
+7019,42,1.3.1.4,0
+7020,42,1.3.1.4,0
+7020,93,1.3.1,1
+7022,85,1.3.1,1
+7022,42,1.3.1.4,0
+7023,42,1.3.1.4,0
+7023,93,1.3.1,1
+7024,99,1.3.1,1
+7024,42,1.3.1.4,0
+7026,39,1.3.1,1
+7026,42,1.3.1.4,0
+7027,85,1.3.1,1
+7027,42,1.3.1.4,0
+7028,42,1.3.1.4,0
+7028,39,1.3.1,1
+7029,42,1.3.1.4,0
+7029,85,1.3.1,1
+7029,39,1.3.1,1
+7030,42,1.3.1.4,0
+7030,93,1.3.1,1
+7031,85,1.3.1,1
+7031,42,1.3.1.4,0
+7031,99,1.3.1,1
+7032,42,1.3.1.4,0
+7032,93,1.3.1,1
+7033,42,1.3.1.4,0
+7033,85,1.3.1,1
+7034,42,1.3.1.4,0
+7034,85,1.3.1,1
+7038,42,1.3.1.4,0
+7038,100,1.3.1,1
+7039,39,1.3.1,1
+7039,93,1.3.1,1
+7039,42,1.3.1.4,0
+7039,99,1.3.1,1
+7040,42,1.3.1.4,0
+7040,93,1.3.1,1
+7041,85,1.3.1,1
+7041,42,1.3.1.4,0
+7041,99,1.3.1,1
+7043,42,1.3.1.4,0
+7043,39,1.3.1,1
+7043,85,1.3.1,1
+7044,39,1.3.1,1
+7044,93,1.3.1,1
+7044,42,1.3.1.4,0
+7047,42,1.3.1.4,0
+7047,93,1.3.1,1
+7047,39,1.3.1,1
+7048,99,1.3.1,1
+7048,85,1.3.1,1
+7048,42,1.3.1.4,0
+7049,93,1.3.1,1
+7049,42,1.3.1.4,0
+7052,100,1.3.1,1
+7052,43,1.3.1.5,0
+7054,43,1.3.1.5,0
+7054,93,1.3.1,1
+7054,39,1.3.1,1
+7055,39,1.3.1,1
+7055,85,1.3.1,1
+7055,43,1.3.1.5,0
+7056,43,1.3.1.5,0
+7056,85,1.3.1,1
+7057,39,1.3.1,1
+7057,43,1.3.1.5,0
+7058,43,1.3.1.5,0
+7058,93,1.3.1,1
+7058,100,1.3.1,1
+7059,43,1.3.1.5,0
+7059,39,1.3.1,1
+7060,93,1.3.1,1
+7060,99,1.3.1,1
+7060,39,1.3.1,1
+7060,29,1.3,2
+7060,170,1,3
+7060,43,1.3.1.5,0
+7060,106,1.3,2
+7060,100,1.3.1,1
+7061,43,1.3.1.5,0
+7061,99,1.3.1,1
+7061,93,1.3.1,1
+7061,39,1.3.1,1
+7064,99,1.3.1,1
+7064,43,1.3.1.5,0
+7064,39,1.3.1,1
+7066,39,1.3.1,1
+7066,43,1.3.1.5,0
+7066,99,1.3.1,1
+7066,85,1.3.1,1
+7067,43,1.3.1.5,0
+7067,93,1.3.1,1
+7069,43,1.3.1.5,0
+7069,93,1.3.1,1
+7070,43,1.3.1.5,0
+7070,99,1.3.1,1
+7070,39,1.3.1,1
+7070,93,1.3.1,1
+7071,100,1.3.1,1
+7071,43,1.3.1.5,0
+7072,43,1.3.1.5,0
+7072,85,1.3.1,1
+7073,100,1.3.1,1
+7073,93,1.3.1,1
+7073,43,1.3.1.5,0
+7074,99,1.3.1,1
+7074,39,1.3.1,1
+7074,43,1.3.1.5,0
+7076,100,1.3.1,1
+7076,85,1.3.1,1
+7076,43,1.3.1.5,0
+7076,39,1.3.1,1
+7076,99,1.3.1,1
+7077,99,1.3.1,1
+7077,43,1.3.1.5,0
+7078,39,1.3.1,1
+7078,43,1.3.1.5,0
+7079,93,1.3.1,1
+7079,43,1.3.1.5,0
+7079,99,1.3.1,1
+7080,100,1.3.1,1
+7080,93,1.3.1,1
+7080,43,1.3.1.5,0
+7081,85,1.3.1,1
+7081,100,1.3.1,1
+7081,43,1.3.1.5,0
+7082,39,1.3.1,1
+7082,43,1.3.1.5,0
+7083,43,1.3.1.5,0
+7083,39,1.3.1,1
+7084,85,1.3.1,1
+7084,43,1.3.1.5,0
+7084,29,1.3,2
+7085,100,1.3.1,1
+7085,43,1.3.1.5,0
+7085,99,1.3.1,1
+7086,39,1.3.1,1
+7086,43,1.3.1.5,0
+7087,43,1.3.1.5,0
+7087,99,1.3.1,1
+7089,100,1.3.1,1
+7089,43,1.3.1.5,0
+7089,93,1.3.1,1
+7090,100,1.3.1,1
+7090,43,1.3.1.5,0
+7090,85,1.3.1,1
+7091,99,1.3.1,1
+7091,43,1.3.1.5,0
+7092,93,1.3.1,1
+7092,39,1.3.1,1
+7092,43,1.3.1.5,0
+7092,85,1.3.1,1
+7093,85,1.3.1,1
+7093,39,1.3.1,1
+7093,43,1.3.1.5,0
+7094,39,1.3.1,1
+7094,43,1.3.1.5,0
+7094,85,1.3.1,1
+7097,85,1.3.1,1
+7097,43,1.3.1.5,0
+7098,39,1.3.1,1
+7098,99,1.3.1,1
+7098,43,1.3.1.5,0
+7099,93,1.3.1,1
+7099,99,1.3.1,1
+7099,43,1.3.1.5,0
+7099,100,1.3.1,1
+7099,85,1.3.1,1
+7100,99,1.3.1,1
+7100,85,1.3.1,1
+7100,100,1.3.1,1
+7100,43,1.3.1.5,0
+7102,85,1.3.1,1
+7102,39,1.3.1,1
+7102,99,1.3.1,1
+7102,43,1.3.1.6,0
+7103,100,1.3.1,1
+7103,93,1.3.1,1
+7103,43,1.3.1.6,0
+7104,43,1.3.1.6,0
+7104,39,1.3.1,1
+7105,93,1.3.1,1
+7105,100,1.3.1,1
+7105,43,1.3.1.6,0
+7105,85,1.3.1,1
+7106,43,1.3.1.6,0
+7106,85,1.3.1,1
+7108,43,1.3.1.6,0
+7108,85,1.3.1,1
+7109,85,1.3.1,1
+7109,43,1.3.1.6,0
+7110,39,1.3.1,1
+7110,43,1.3.1.6,0
+7111,43,1.3.1.6,0
+7111,100,1.3.1,1
+7114,43,1.3.1.6,0
+7114,93,1.3.1,1
+7116,43,1.3.1.6,0
+7116,100,1.3.1,1
+7116,99,1.3.1,1
+7117,43,1.3.1.6,0
+7117,93,1.3.1,1
+7119,106,1.3,2
+7119,99,1.3.1,1
+7119,43,1.3.1.6,0
+7119,100,1.3.1,1
+7119,39,1.3.1,1
+7120,39,1.3.1,1
+7120,43,1.3.1.6,0
+7121,43,1.3.1.6,0
+7121,93,1.3.1,1
+7122,43,1.3.1.6,0
+7122,100,1.3.1,1
+7122,85,1.3.1,1
+7123,100,1.3.1,1
+7123,93,1.3.1,1
+7123,43,1.3.1.6,0
+7124,100,1.3.1,1
+7124,43,1.3.1.6,0
+7127,85,1.3.1,1
+7127,43,1.3.1.6,0
+7128,39,1.3.1,1
+7128,43,1.3.1.6,0
+7131,93,1.3.1,1
+7131,99,1.3.1,1
+7131,43,1.3.1.6,0
+7134,99,1.3.1,1
+7134,43,1.3.1.6,0
+7135,85,1.3.1,1
+7135,43,1.3.1.6,0
+7135,100,1.3.1,1
+7136,39,1.3.1,1
+7136,43,1.3.1.6,0
+7137,93,1.3.1,1
+7137,43,1.3.1.6,0
+7138,93,1.3.1,1
+7138,43,1.3.1.6,0
+7139,43,1.3.1.6,0
+7139,93,1.3.1,1
+7139,100,1.3.1,1
+7140,100,1.3.1,1
+7140,43,1.3.1.6,0
+7141,85,1.3.1,1
+7141,43,1.3.1.6,0
+7142,93,1.3.1,1
+7142,43,1.3.1.6,0
+7142,99,1.3.1,1
+7143,99,1.3.1,1
+7143,43,1.3.1.6,0
+7144,43,1.3.1.6,0
+7144,99,1.3.1,1
+7144,93,1.3.1,1
+7147,39,1.3.1,1
+7147,43,1.3.1.6,0
+7148,99,1.3.1,1
+7148,43,1.3.1.6,0
+7148,39,1.3.1,1
+7148,100,1.3.1,1
+7150,99,1.3.1,1
+7150,43,1.3.1.6,0
+7152,105,1.1,1
+7152,44,1.1.1,0
+7154,105,1.1,1
+7154,44,1.1.1,0
+7156,44,1.1.1,0
+7156,106,1.1,1
+7157,106,1.1,1
+7157,44,1.1.1,0
+7158,44,1.1.1,0
+7158,94,1.1,1
+7161,44,1.1.1,0
+7161,86,1.1,1
+7164,86,1.1,1
+7164,44,1.1.1,0
+7173,106,1.1,1
+7173,44,1.1.1,0
+7176,44,1.1.1,0
+7176,86,1.1,1
+7178,86,1.1,1
+7178,44,1.1.1,0
+7179,86,1.1,1
+7179,44,1.1.1,0
+7181,94,1.1,1
+7181,44,1.1.1,0
+7182,126,1.1,1
+7182,44,1.1.1,0
+7183,94,1.1,1
+7183,44,1.1.1,0
+7184,86,1.1,1
+7184,44,1.1.1,0
+7185,44,1.1.1,0
+7185,105,1.1,1
+7186,44,1.1.1,0
+7186,106,1.1,1
+7192,106,1.1,1
+7192,44,1.1.1,0
+7193,94,1.1,1
+7193,44,1.1.1,0
+7194,44,1.1.1,0
+7194,106,1.1,1
+7194,86,1.1,1
+7199,44,1.1.1,0
+7199,105,1.1,1
+7202,45,1.3.3.1,0
+7202,97,1.3.3,1
+7204,45,1.3.3.1,0
+7204,75,1.3.3,1
+7205,75,1.3.3,1
+7205,45,1.3.3.1,0
+7206,45,1.3.3.1,0
+7206,75,1.3.3,1
+7209,45,1.3.3.1,0
+7209,97,1.3.3,1
+7210,75,1.3.3,1
+7210,45,1.3.3.1,0
+7211,45,1.3.3.1,0
+7211,99,1.3.3,1
+7214,75,1.3.3,1
+7214,45,1.3.3.1,0
+7220,99,1.3.3,1
+7220,45,1.3.3.1,0
+7223,45,1.3.3.1,0
+7223,75,1.3.3,1
+7229,45,1.3.3.1,0
+7229,75,1.3.3,1
+7229,97,1.3.3,1
+7231,99,1.3.3,1
+7231,45,1.3.3.1,0
+7232,99,1.3.3,1
+7232,45,1.3.3.1,0
+7233,99,1.3.3,1
+7233,45,1.3.3.1,0
+7239,99,1.3.3,1
+7239,45,1.3.3.1,0
+7242,97,1.3.3,1
+7242,45,1.3.3.1,0
+7243,45,1.3.3.1,0
+7243,75,1.3.3,1
+7247,99,1.3.3,1
+7247,45,1.3.3.1,0
+7252,81,1.3.4,1
+7252,45,1.3.4.1,0
+7256,45,1.3.4.1,0
+7256,77,1.3.4,1
+7257,45,1.3.4.1,0
+7257,81,1.3.4,1
+7258,77,1.3.4,1
+7258,45,1.3.4.1,0
+7259,77,1.3.4,1
+7259,45,1.3.4.1,0
+7260,81,1.3.4,1
+7260,45,1.3.4.1,0
+7261,77,1.3.4,1
+7261,45,1.3.4.1,0
+7269,45,1.3.4.1,0
+7269,81,1.3.4,1
+7270,45,1.3.4.1,0
+7270,77,1.3.4,1
+7270,81,1.3.4,1
+7272,77,1.3.4,1
+7272,45,1.3.4.1,0
+7273,45,1.3.4.1,0
+7273,77,1.3.4,1
+7273,81,1.3.4,1
+7278,77,1.3.4,1
+7278,45,1.3.4.1,0
+7282,80,1.3.4,1
+7282,45,1.3.4.1,0
+7283,45,1.3.4.1,0
+7283,81,1.3.4,1
+7286,80,1.3.4,1
+7286,45,1.3.4.1,0
+7287,80,1.3.4,1
+7287,45,1.3.4.1,0
+7288,81,1.3.4,1
+7288,45,1.3.4.1,0
+7289,77,1.3.4,1
+7289,45,1.3.4.1,0
+7290,81,1.3.4,1
+7290,45,1.3.4.1,0
+7292,45,1.3.4.1,0
+7292,81,1.3.4,1
+7293,77,1.3.4,1
+7293,45,1.3.4.1,0
+7293,81,1.3.4,1
+7294,77,1.3.4,1
+7294,45,1.3.4.1,0
+7294,81,1.3.4,1
+7297,77,1.3.4,1
+7297,45,1.3.4.1,0
+7298,80,1.3.4,1
+7298,77,1.3.4,1
+7298,45,1.3.4.1,0
+7298,81,1.3.4,1
+7302,45,1.3.4.2,0
+7302,80,1.3.4,1
+7302,77,1.3.4,1
+7303,45,1.3.4.2,0
+7303,81,1.3.4,1
+7304,80,1.3.4,1
+7304,45,1.3.4.2,0
+7305,80,1.3.4,1
+7305,77,1.3.4,1
+7305,45,1.3.4.2,0
+7306,45,1.3.4.2,0
+7306,77,1.3.4,1
+7307,45,1.3.4.2,0
+7307,80,1.3.4,1
+7308,81,1.3.4,1
+7308,77,1.3.4,1
+7308,45,1.3.4.2,0
+7309,80,1.3.4,1
+7309,45,1.3.4.2,0
+7310,81,1.3.4,1
+7310,45,1.3.4.2,0
+7310,77,1.3.4,1
+7311,80,1.3.4,1
+7311,45,1.3.4.2,0
+7314,45,1.3.4.2,0
+7314,77,1.3.4,1
+7314,81,1.3.4,1
+7314,80,1.3.4,1
+7316,77,1.3.4,1
+7316,81,1.3.4,1
+7316,45,1.3.4.2,0
+7317,81,1.3.4,1
+7317,45,1.3.4.2,0
+7320,77,1.3.4,1
+7320,29,1.3,2
+7320,170,1,3
+7320,45,1.3.4.2,0
+7321,45,1.3.4.2,0
+7321,80,1.3.4,1
+7322,80,1.3.4,1
+7322,45,1.3.4.2,0
+7323,45,1.3.4.2,0
+7323,80,1.3.4,1
+7324,81,1.3.4,1
+7324,45,1.3.4.2,0
+7326,45,1.3.4.2,0
+7326,77,1.3.4,1
+7326,80,1.3.4,1
+7328,45,1.3.4.2,0
+7328,106,1.3,2
+7328,77,1.3.4,1
+7329,80,1.3.4,1
+7329,45,1.3.4.2,0
+7329,77,1.3.4,1
+7330,45,1.3.4.2,0
+7330,81,1.3.4,1
+7331,77,1.3.4,1
+7331,80,1.3.4,1
+7331,45,1.3.4.2,0
+7332,77,1.3.4,1
+7332,80,1.3.4,1
+7332,45,1.3.4.2,0
+7333,45,1.3.4.2,0
+7333,77,1.3.4,1
+7334,106,1.3,2
+7334,81,1.3.4,1
+7334,45,1.3.4.2,0
+7336,106,1.3,2
+7336,77,1.3.4,1
+7336,29,1.3,2
+7336,170,1,3
+7336,81,1.3.4,1
+7336,45,1.3.4.2,0
+7337,45,1.3.4.2,0
+7337,80,1.3.4,1
+7338,81,1.3.4,1
+7338,45,1.3.4.2,0
+7339,77,1.3.4,1
+7339,45,1.3.4.2,0
+7340,80,1.3.4,1
+7340,45,1.3.4.2,0
+7341,81,1.3.4,1
+7341,77,1.3.4,1
+7341,45,1.3.4.2,0
+7342,80,1.3.4,1
+7342,45,1.3.4.2,0
+7343,80,1.3.4,1
+7343,45,1.3.4.2,0
+7343,77,1.3.4,1
+7344,45,1.3.4.2,0
+7344,77,1.3.4,1
+7344,80,1.3.4,1
+7345,45,1.3.4.2,0
+7345,81,1.3.4,1
+7346,80,1.3.4,1
+7346,45,1.3.4.2,0
+7347,80,1.3.4,1
+7347,45,1.3.4.2,0
+7348,81,1.3.4,1
+7348,77,1.3.4,1
+7348,45,1.3.4.2,0
+7349,80,1.3.4,1
+7349,29,1.3,2
+7349,170,1,3
+7349,81,1.3.4,1
+7349,45,1.3.4.2,0
+7349,106,1.3,2
+7350,45,1.3.4.2,0
+7350,80,1.3.4,1
+7351,45,2.1.4.1.1,0
+7351,79,2.1.4.1,1
+7354,45,2.1.4.1.1,0
+7354,81,2.1.4.1,1
+7356,79,2.1.4.1,1
+7356,45,2.1.4.1.1,0
+7357,45,2.1.4.1.1,0
+7357,81,2.1.4.1,1
+7358,81,2.1.4.1,1
+7358,45,2.1.4.1.1,0
+7360,81,2.1.4.1,1
+7360,45,2.1.4.1.1,0
+7361,81,2.1.4.1,1
+7361,45,2.1.4.1.1,0
+7370,45,2.1.4.1.1,0
+7370,81,2.1.4.1,1
+7372,81,2.1.4.1,1
+7372,45,2.1.4.1.1,0
+7376,79,2.1.4.1,1
+7376,45,2.1.4.1.1,0
+7378,81,2.1.4.1,1
+7378,45,2.1.4.1.1,0
+7382,79,2.1.4.1,1
+7382,45,2.1.4.1.1,0
+7383,45,2.1.4.1.1,0
+7383,81,2.1.4.1,1
+7391,45,2.1.4.1.1,0
+7391,79,2.1.4.1,1
+7393,79,2.1.4.1,1
+7393,81,2.1.4.1,1
+7393,45,2.1.4.1.1,0
+7399,45,2.1.4.1.1,0
+7399,81,2.1.4.1,1
+7402,45,2.1.4.1.2,0
+7402,79,2.1.4.1,1
+7403,45,2.1.4.1.2,0
+7403,79,2.1.4.1,1
+7404,45,2.1.4.1.2,0
+7404,81,2.1.4.1,1
+7406,81,2.1.4.1,1
+7406,45,2.1.4.1.2,0
+7407,79,2.1.4.1,1
+7407,45,2.1.4.1.2,0
+7408,45,2.1.4.1.2,0
+7408,79,2.1.4.1,1
+7410,81,2.1.4.1,1
+7410,45,2.1.4.1.2,0
+7411,79,2.1.4.1,1
+7411,45,2.1.4.1.2,0
+7414,79,2.1.4.1,1
+7414,45,2.1.4.1.2,0
+7414,81,2.1.4.1,1
+7416,45,2.1.4.1.2,0
+7416,79,2.1.4.1,1
+7416,81,2.1.4.1,1
+7419,79,2.1.4.1,1
+7419,45,2.1.4.1.2,0
+7420,45,2.1.4.1.2,0
+7420,81,2.1.4.1,1
+7422,45,2.1.4.1.2,0
+7422,79,2.1.4.1,1
+7424,45,2.1.4.1.2,0
+7424,79,2.1.4.1,1
+7426,81,2.1.4.1,1
+7426,45,2.1.4.1.2,0
+7429,45,2.1.4.1.2,0
+7429,81,2.1.4.1,1
+7434,45,2.1.4.1.2,0
+7434,79,2.1.4.1,1
+7443,81,2.1.4.1,1
+7443,45,2.1.4.1.2,0
+7444,81,2.1.4.1,1
+7444,45,2.1.4.1.2,0
+7447,45,2.1.4.1.2,0
+7447,81,2.1.4.1,1
+7450,45,2.1.4.1.2,0
+7450,81,2.1.4.1,1
+7458,79,2.1.4.1,1
+7458,45,2.1.4.1.3,0
+7460,79,2.1.4.1,1
+7460,45,2.1.4.1.3,0
+7461,79,2.1.4.1,1
+7461,45,2.1.4.1.3,0
+7472,45,2.1.4.1.3,0
+7472,79,2.1.4.1,1
+7478,81,2.1.4.1,1
+7478,45,2.1.4.1.3,0
+7481,45,2.1.4.1.3,0
+7481,79,2.1.4.1,1
+7482,81,2.1.4.1,1
+7482,45,2.1.4.1.3,0
+7483,45,2.1.4.1.3,0
+7483,79,2.1.4.1,1
+7484,45,2.1.4.1.3,0
+7484,79,2.1.4.1,1
+7486,81,2.1.4.1,1
+7486,45,2.1.4.1.3,0
+7491,45,2.1.4.1.3,0
+7491,79,2.1.4.1,1
+7493,79,2.1.4.1,1
+7493,45,2.1.4.1.3,0
+7494,81,2.1.4.1,1
+7494,45,2.1.4.1.3,0
+7498,45,2.1.4.1.3,0
+7498,81,2.1.4.1,1
+7502,45,2.1.4.1.4,0
+7502,79,2.1.4.1,1
+7504,45,2.1.4.1.4,0
+7504,81,2.1.4.1,1
+7505,79,2.1.4.1,1
+7505,45,2.1.4.1.4,0
+7509,81,2.1.4.1,1
+7509,45,2.1.4.1.4,0
+7510,79,2.1.4.1,1
+7510,45,2.1.4.1.4,0
+7514,79,2.1.4.1,1
+7514,45,2.1.4.1.4,0
+7516,79,2.1.4.1,1
+7516,45,2.1.4.1.4,0
+7520,79,2.1.4.1,1
+7520,45,2.1.4.1.4,0
+7523,45,2.1.4.1.4,0
+7523,81,2.1.4.1,1
+7524,79,2.1.4.1,1
+7524,45,2.1.4.1.4,0
+7526,81,2.1.4.1,1
+7526,79,2.1.4.1,1
+7526,45,2.1.4.1.4,0
+7528,45,2.1.4.1.4,0
+7528,79,2.1.4.1,1
+7531,45,2.1.4.1.4,0
+7531,79,2.1.4.1,1
+7532,81,2.1.4.1,1
+7532,45,2.1.4.1.4,0
+7532,79,2.1.4.1,1
+7536,81,2.1.4.1,1
+7536,45,2.1.4.1.4,0
+7538,81,2.1.4.1,1
+7538,45,2.1.4.1.4,0
+7542,79,2.1.4.1,1
+7542,45,2.1.4.1.4,0
+7547,45,2.1.4.1.4,0
+7547,79,2.1.4.1,1
+7548,79,2.1.4.1,1
+7548,45,2.1.4.1.4,0
+7552,45,2.1.4.2.1,0
+7552,79,2.1.4.2,1
+7556,45,2.1.4.2.1,0
+7556,79,2.1.4.2,1
+7560,81,2.1.4.2,1
+7560,45,2.1.4.2.1,0
+7561,81,2.1.4.2,1
+7561,45,2.1.4.2.1,0
+7570,45,2.1.4.2.1,0
+7570,81,2.1.4.2,1
+7573,45,2.1.4.2.1,0
+7573,81,2.1.4.2,1
+7578,79,2.1.4.2,1
+7578,45,2.1.4.2.1,0
+7583,45,2.1.4.2.1,0
+7583,81,2.1.4.2,1
+7586,81,2.1.4.2,1
+7586,45,2.1.4.2.1,0
+7589,81,2.1.4.2,1
+7589,45,2.1.4.2.1,0
+7593,45,2.1.4.2.1,0
+7593,79,2.1.4.2,1
+7594,81,2.1.4.2,1
+7594,45,2.1.4.2.1,0
+7595,45,2.1.4.2.1,0
+7595,81,2.1.4.2,1
+7597,79,2.1.4.2,1
+7597,45,2.1.4.2.1,0
+7602,81,2.1.4.2,1
+7602,45,2.1.4.2.2,0
+7603,45,2.1.4.2.2,0
+7603,79,2.1.4.2,1
+7611,79,2.1.4.2,1
+7611,81,2.1.4.2,1
+7611,45,2.1.4.2.2,0
+7619,45,2.1.4.2.2,0
+7619,79,2.1.4.2,1
+7622,79,2.1.4.2,1
+7622,45,2.1.4.2.2,0
+7623,45,2.1.4.2.2,0
+7623,79,2.1.4.2,1
+7623,81,2.1.4.2,1
+7636,81,2.1.4.2,1
+7636,45,2.1.4.2.2,0
+7639,81,2.1.4.2,1
+7639,45,2.1.4.2.2,0
+7641,45,2.1.4.2.2,0
+7641,79,2.1.4.2,1
+7644,79,2.1.4.2,1
+7644,45,2.1.4.2.2,0
+7647,45,2.1.4.2.2,0
+7647,81,2.1.4.2,1
+7651,93,1.3.1,1
+7651,46,1.3.1.2,0
+7652,99,1.3.1,1
+7652,93,1.3.1,1
+7652,29,1.3,2
+7652,46,1.3.1.2,0
+7654,93,1.3.1,1
+7654,46,1.3.1.2,0
+7655,39,1.3.1,1
+7655,46,1.3.1.2,0
+7656,100,1.3.1,1
+7656,46,1.3.1.2,0
+7657,46,1.3.1.2,0
+7657,85,1.3.1,1
+7658,46,1.3.1.2,0
+7658,93,1.3.1,1
+7659,46,1.3.1.2,0
+7659,39,1.3.1,1
+7660,39,1.3.1,1
+7660,46,1.3.1.2,0
+7660,100,1.3.1,1
+7661,85,1.3.1,1
+7661,93,1.3.1,1
+7661,99,1.3.1,1
+7661,46,1.3.1.2,0
+7664,100,1.3.1,1
+7664,46,1.3.1.2,0
+7664,99,1.3.1,1
+7666,39,1.3.1,1
+7666,99,1.3.1,1
+7666,46,1.3.1.2,0
+7669,46,1.3.1.2,0
+7669,39,1.3.1,1
+7670,93,1.3.1,1
+7670,46,1.3.1.2,0
+7672,85,1.3.1,1
+7672,99,1.3.1,1
+7672,46,1.3.1.2,0
+7673,39,1.3.1,1
+7673,46,1.3.1.2,0
+7674,100,1.3.1,1
+7674,46,1.3.1.2,0
+7675,39,1.3.1,1
+7675,46,1.3.1.2,0
+7676,46,1.3.1.2,0
+7676,100,1.3.1,1
+7677,46,1.3.1.2,0
+7677,100,1.3.1,1
+7678,99,1.3.1,1
+7678,46,1.3.1.2,0
+7679,99,1.3.1,1
+7679,100,1.3.1,1
+7679,46,1.3.1.2,0
+7680,100,1.3.1,1
+7680,46,1.3.1.2,0
+7681,93,1.3.1,1
+7681,46,1.3.1.2,0
+7682,93,1.3.1,1
+7682,46,1.3.1.2,0
+7683,46,1.3.1.2,0
+7683,85,1.3.1,1
+7684,93,1.3.1,1
+7684,46,1.3.1.2,0
+7685,46,1.3.1.2,0
+7685,99,1.3.1,1
+7686,46,1.3.1.2,0
+7686,93,1.3.1,1
+7689,46,1.3.1.2,0
+7689,100,1.3.1,1
+7690,100,1.3.1,1
+7690,46,1.3.1.2,0
+7691,85,1.3.1,1
+7691,46,1.3.1.2,0
+7691,100,1.3.1,1
+7693,46,1.3.1.2,0
+7693,93,1.3.1,1
+7694,100,1.3.1,1
+7694,46,1.3.1.2,0
+7697,106,1.3,2
+7697,39,1.3.1,1
+7697,100,1.3.1,1
+7697,46,1.3.1.2,0
+7698,93,1.3.1,1
+7698,46,1.3.1.2,0
+7699,99,1.3.1,1
+7699,46,1.3.1.2,0
+7700,99,1.3.1,1
+7700,100,1.3.1,1
+7700,46,1.3.1.2,0
+7704,148,2.1.1,1
+7704,47,2.1.1.1,0
+7705,80,2.1.1,1
+7705,85,2.1.1,1
+7705,47,2.1.1.1,0
+7706,80,2.1.1,1
+7706,47,2.1.1.1,0
+7707,80,2.1.1,1
+7707,47,2.1.1.1,0
+7709,47,2.1.1.1,0
+7709,80,2.1.1,1
+7710,47,2.1.1.1,0
+7710,80,2.1.1,1
+7711,80,2.1.1,1
+7711,47,2.1.1.1,0
+7714,47,2.1.1.1,0
+7714,148,2.1.1,1
+7714,80,2.1.1,1
+7717,148,2.1.1,1
+7717,47,2.1.1.1,0
+7719,148,2.1.1,1
+7719,47,2.1.1.1,0
+7719,85,2.1.1,1
+7719,106,2.1.1,1
+7720,47,2.1.1.1,0
+7720,148,2.1.1,1
+7726,47,2.1.1.1,0
+7726,106,2.1.1,1
+7726,80,2.1.1,1
+7727,47,2.1.1.1,0
+7727,148,2.1.1,1
+7728,47,2.1.1.1,0
+7728,85,2.1.1,1
+7729,148,2.1.1,1
+7729,47,2.1.1.1,0
+7731,47,2.1.1.1,0
+7731,148,2.1.1,1
+7731,106,2.1.1,1
+7732,85,2.1.1,1
+7732,47,2.1.1.1,0
+7733,47,2.1.1.1,0
+7733,80,2.1.1,1
+7734,80,2.1.1,1
+7734,47,2.1.1.1,0
+7735,47,2.1.1.1,0
+7735,148,2.1.1,1
+7738,47,2.1.1.1,0
+7738,85,2.1.1,1
+7739,80,2.1.1,1
+7739,47,2.1.1.1,0
+7741,85,2.1.1,1
+7741,47,2.1.1.1,0
+7743,47,2.1.1.1,0
+7743,148,2.1.1,1
+7744,47,2.1.1.1,0
+7744,148,2.1.1,1
+7744,106,2.1.1,1
+7745,47,2.1.1.1,0
+7745,106,2.1.1,1
+7747,47,2.1.1.1,0
+7747,85,2.1.1,1
+7748,85,2.1.1,1
+7748,47,2.1.1.1,0
+7749,148,2.1.1,1
+7749,47,2.1.1.1,0
+7752,47,2.1.1.2,0
+7752,148,2.1.1,1
+7754,85,2.1.1,1
+7754,47,2.1.1.2,0
+7755,47,2.1.1.2,0
+7755,80,2.1.1,1
+7755,85,2.1.1,1
+7756,80,2.1.1,1
+7756,47,2.1.1.2,0
+7757,80,2.1.1,1
+7757,47,2.1.1.2,0
+7758,47,2.1.1.2,0
+7758,148,2.1.1,1
+7759,47,2.1.1.2,0
+7759,85,2.1.1,1
+7760,80,2.1.1,1
+7760,47,2.1.1.2,0
+7761,47,2.1.1.2,0
+7761,85,2.1.1,1
+7764,85,2.1.1,1
+7764,80,2.1.1,1
+7764,47,2.1.1.2,0
+7766,47,2.1.1.2,0
+7766,85,2.1.1,1
+7766,148,2.1.1,1
+7769,148,2.1.1,1
+7769,47,2.1.1.2,0
+7770,148,2.1.1,1
+7770,47,2.1.1.2,0
+7772,47,2.1.1.2,0
+7772,80,2.1.1,1
+7773,106,2.1.1,1
+7773,47,2.1.1.2,0
+7774,47,2.1.1.2,0
+7774,106,2.1.1,1
+7776,47,2.1.1.2,0
+7776,85,2.1.1,1
+7778,47,2.1.1.2,0
+7778,80,2.1.1,1
+7779,85,2.1.1,1
+7779,47,2.1.1.2,0
+7781,47,2.1.1.2,0
+7781,80,2.1.1,1
+7781,106,2.1.1,1
+7782,85,2.1.1,1
+7782,47,2.1.1.2,0
+7783,47,2.1.1.2,0
+7783,85,2.1.1,1
+7784,47,2.1.1.2,0
+7784,106,2.1.1,1
+7785,106,2.1.1,1
+7785,148,2.1.1,1
+7785,47,2.1.1.2,0
+7786,80,2.1.1,1
+7786,47,2.1.1.2,0
+7786,85,2.1.1,1
+7786,148,2.1.1,1
+7787,47,2.1.1.2,0
+7787,148,2.1.1,1
+7789,80,2.1.1,1
+7789,47,2.1.1.2,0
+7790,106,2.1.1,1
+7790,47,2.1.1.2,0
+7792,47,2.1.1.2,0
+7792,148,2.1.1,1
+7793,80,2.1.1,1
+7793,47,2.1.1.2,0
+7793,148,2.1.1,1
+7794,47,2.1.1.2,0
+7794,148,2.1.1,1
+7794,85,2.1.1,1
+7797,47,2.1.1.2,0
+7797,80,2.1.1,1
+7797,148,2.1.1,1
+7797,106,2.1.1,1
+7798,47,2.1.1.2,0
+7798,148,2.1.1,1
+7800,47,2.1.1.2,0
+7800,148,2.1.1,1
+7806,80,2.1.1,1
+7806,47,2.1.1.3,0
+7807,47,2.1.1.3,0
+7807,80,2.1.1,1
+7809,47,2.1.1.3,0
+7809,85,2.1.1,1
+7810,148,2.1.1,1
+7810,47,2.1.1.3,0
+7810,80,2.1.1,1
+7814,47,2.1.1.3,0
+7814,106,2.1.1,1
+7814,85,2.1.1,1
+7816,85,2.1.1,1
+7816,47,2.1.1.3,0
+7822,47,2.1.1.3,0
+7822,85,2.1.1,1
+7824,47,2.1.1.3,0
+7824,85,2.1.1,1
+7825,80,2.1.1,1
+7825,47,2.1.1.3,0
+7827,85,2.1.1,1
+7827,47,2.1.1.3,0
+7828,106,2.1.1,1
+7828,47,2.1.1.3,0
+7829,148,2.1.1,1
+7829,80,2.1.1,1
+7829,47,2.1.1.3,0
+7832,80,2.1.1,1
+7832,47,2.1.1.3,0
+7833,47,2.1.1.3,0
+7833,148,2.1.1,1
+7834,80,2.1.1,1
+7834,47,2.1.1.3,0
+7836,106,2.1.1,1
+7836,47,2.1.1.3,0
+7839,47,2.1.1.3,0
+7839,85,2.1.1,1
+7841,85,2.1.1,1
+7841,47,2.1.1.3,0
+7843,47,2.1.1.3,0
+7843,80,2.1.1,1
+7843,106,2.1.1,1
+7845,148,2.1.1,1
+7845,47,2.1.1.3,0
+7847,47,2.1.1.3,0
+7847,80,2.1.1,1
+7851,106,2.1.1,1
+7851,47,2.1.1.4,0
+7852,47,2.1.1.4,0
+7852,148,2.1.1,1
+7854,80,2.1.1,1
+7854,47,2.1.1.4,0
+7855,47,2.1.1.4,0
+7855,80,2.1.1,1
+7855,106,2.1.1,1
+7856,148,2.1.1,1
+7856,47,2.1.1.4,0
+7859,47,2.1.1.4,0
+7859,80,2.1.1,1
+7860,47,2.1.1.4,0
+7860,85,2.1.1,1
+7861,47,2.1.1.4,0
+7861,85,2.1.1,1
+7866,106,2.1.1,1
+7866,80,2.1.1,1
+7866,47,2.1.1.4,0
+7866,85,2.1.1,1
+7869,106,2.1.1,1
+7869,148,2.1.1,1
+7869,47,2.1.1.4,0
+7872,47,2.1.1.4,0
+7872,148,2.1.1,1
+7873,106,2.1.1,1
+7873,47,2.1.1.4,0
+7873,80,2.1.1,1
+7874,148,2.1.1,1
+7874,47,2.1.1.4,0
+7875,80,2.1.1,1
+7875,47,2.1.1.4,0
+7876,148,2.1.1,1
+7876,47,2.1.1.4,0
+7876,80,2.1.1,1
+7877,47,2.1.1.4,0
+7877,85,2.1.1,1
+7879,47,2.1.1.4,0
+7879,148,2.1.1,1
+7879,85,2.1.1,1
+7882,47,2.1.1.4,0
+7882,80,2.1.1,1
+7883,47,2.1.1.4,0
+7883,80,2.1.1,1
+7884,80,2.1.1,1
+7884,47,2.1.1.4,0
+7885,148,2.1.1,1
+7885,47,2.1.1.4,0
+7887,47,2.1.1.4,0
+7887,106,2.1.1,1
+7889,148,2.1.1,1
+7889,47,2.1.1.4,0
+7889,80,2.1.1,1
+7891,85,2.1.1,1
+7891,47,2.1.1.4,0
+7893,47,2.1.1.4,0
+7893,80,2.1.1,1
+7893,85,2.1.1,1
+7894,47,2.1.1.4,0
+7894,148,2.1.1,1
+7895,148,2.1.1,1
+7895,47,2.1.1.4,0
+7897,47,2.1.1.4,0
+7897,80,2.1.1,1
+7897,148,2.1.1,1
+7898,85,2.1.1,1
+7898,47,2.1.1.4,0
+7898,106,2.1.1,1
+7900,47,2.1.1.4,0
+7900,148,2.1.1,1
+7902,81,2.1.2,1
+7902,58,2.1.2,1
+7902,47,2.1.2.1,0
+7903,159,2.1.2,1
+7903,47,2.1.2.1,0
+7904,79,2.1.2,1
+7904,47,2.1.2.1,0
+7905,84,2.1.2,1
+7905,47,2.1.2.1,0
+7906,47,2.1.2.1,0
+7906,58,2.1.2,1
+7907,58,2.1.2,1
+7907,47,2.1.2.1,0
+7908,58,2.1.2,1
+7908,47,2.1.2.1,0
+7909,47,2.1.2.1,0
+7909,84,2.1.2,1
+7910,58,2.1.2,1
+7910,47,2.1.2.1,0
+7911,58,2.1.2,1
+7911,47,2.1.2.1,0
+7914,58,2.1.2,1
+7914,84,2.1.2,1
+7914,47,2.1.2.1,0
+7916,58,2.1.2,1
+7916,47,2.1.2.1,0
+7916,81,2.1.2,1
+7920,47,2.1.2.1,0
+7920,79,2.1.2,1
+7926,47,2.1.2.1,0
+7926,79,2.1.2,1
+7928,159,2.1.2,1
+7928,47,2.1.2.1,0
+7932,47,2.1.2.1,0
+7932,84,2.1.2,1
+7934,84,2.1.2,1
+7934,47,2.1.2.1,0
+7936,47,2.1.2.1,0
+7936,84,2.1.2,1
+7939,47,2.1.2.1,0
+7939,58,2.1.2,1
+7940,84,2.1.2,1
+7940,47,2.1.2.1,0
+7942,47,2.1.2.1,0
+7942,58,2.1.2,1
+7943,81,2.1.2,1
+7943,47,2.1.2.1,0
+7943,58,2.1.2,1
+7944,47,2.1.2.1,0
+7944,79,2.1.2,1
+7944,58,2.1.2,1
+7945,159,2.1.2,1
+7945,47,2.1.2.1,0
+7945,79,2.1.2,1
+7947,79,2.1.2,1
+7947,47,2.1.2.1,0
+7949,159,2.1.2,1
+7949,47,2.1.2.1,0
+7954,58,2.1.2,1
+7954,47,2.1.2.2,0
+7955,47,2.1.2.2,0
+7955,159,2.1.2,1
+7956,58,2.1.2,1
+7956,47,2.1.2.2,0
+7957,47,2.1.2.2,0
+7957,159,2.1.2,1
+7959,47,2.1.2.2,0
+7959,58,2.1.2,1
+7960,47,2.1.2.2,0
+7960,58,2.1.2,1
+7960,159,2.1.2,1
+7960,84,2.1.2,1
+7961,79,2.1.2,1
+7961,47,2.1.2.2,0
+7964,47,2.1.2.2,0
+7964,58,2.1.2,1
+7964,159,2.1.2,1
+7970,58,2.1.2,1
+7970,47,2.1.2.2,0
+7971,84,2.1.2,1
+7971,81,2.1.2,1
+7971,47,2.1.2.2,0
+7972,47,2.1.2.2,0
+7972,81,2.1.2,1
+7973,47,2.1.2.2,0
+7973,79,2.1.2,1
+7973,58,2.1.2,1
+7975,79,2.1.2,1
+7975,47,2.1.2.2,0
+7976,58,2.1.2,1
+7976,47,2.1.2.2,0
+7977,47,2.1.2.2,0
+7977,79,2.1.2,1
+7978,159,2.1.2,1
+7978,47,2.1.2.2,0
+7979,84,2.1.2,1
+7979,47,2.1.2.2,0
+7980,84,2.1.2,1
+7980,47,2.1.2.2,0
+7981,47,2.1.2.2,0
+7981,84,2.1.2,1
+7982,79,2.1.2,1
+7982,47,2.1.2.2,0
+7983,47,2.1.2.2,0
+7983,58,2.1.2,1
+7984,47,2.1.2.2,0
+7984,81,2.1.2,1
+7986,47,2.1.2.2,0
+7986,84,2.1.2,1
+7991,84,2.1.2,1
+7991,47,2.1.2.2,0
+7992,84,2.1.2,1
+7992,47,2.1.2.2,0
+7993,47,2.1.2.2,0
+7993,58,2.1.2,1
+7994,79,2.1.2,1
+7994,47,2.1.2.2,0
+7994,58,2.1.2,1
+7996,47,2.1.2.2,0
+7996,79,2.1.2,1
+7997,47,2.1.2.2,0
+7997,79,2.1.2,1
+8000,84,2.1.2,1
+8000,81,2.1.2,1
+8000,47,2.1.2.2,0
+8001,47,2.1.2.3,0
+8001,79,2.1.2,1
+8004,159,2.1.2,1
+8004,47,2.1.2.3,0
+8005,81,2.1.2,1
+8005,47,2.1.2.3,0
+8006,47,2.1.2.3,0
+8006,84,2.1.2,1
+8007,79,2.1.2,1
+8007,47,2.1.2.3,0
+8008,81,2.1.2,1
+8008,47,2.1.2.3,0
+8009,47,2.1.2.3,0
+8009,58,2.1.2,1
+8010,47,2.1.2.3,0
+8010,79,2.1.2,1
+8016,81,2.1.2,1
+8016,47,2.1.2.3,0
+8019,79,2.1.2,1
+8019,58,2.1.2,1
+8019,84,2.1.2,1
+8019,47,2.1.2.3,0
+8020,58,2.1.2,1
+8020,47,2.1.2.3,0
+8021,47,2.1.2.3,0
+8021,81,2.1.2,1
+8021,159,2.1.2,1
+8023,47,2.1.2.3,0
+8023,84,2.1.2,1
+8023,79,2.1.2,1
+8024,47,2.1.2.3,0
+8024,58,2.1.2,1
+8024,81,2.1.2,1
+8026,84,2.1.2,1
+8026,47,2.1.2.3,0
+8026,81,2.1.2,1
+8027,47,2.1.2.3,0
+8027,79,2.1.2,1
+8028,79,2.1.2,1
+8028,47,2.1.2.3,0
+8029,81,2.1.2,1
+8029,47,2.1.2.3,0
+8031,47,2.1.2.3,0
+8031,79,2.1.2,1
+8031,159,2.1.2,1
+8032,159,2.1.2,1
+8032,47,2.1.2.3,0
+8032,58,2.1.2,1
+8034,81,2.1.2,1
+8034,47,2.1.2.3,0
+8035,79,2.1.2,1
+8035,159,2.1.2,1
+8035,47,2.1.2.3,0
+8035,84,2.1.2,1
+8037,47,2.1.2.3,0
+8037,84,2.1.2,1
+8037,159,2.1.2,1
+8038,47,2.1.2.3,0
+8038,84,2.1.2,1
+8039,47,2.1.2.3,0
+8039,58,2.1.2,1
+8040,81,2.1.2,1
+8040,47,2.1.2.3,0
+8041,47,2.1.2.3,0
+8041,58,2.1.2,1
+8042,159,2.1.2,1
+8042,47,2.1.2.3,0
+8046,47,2.1.2.3,0
+8046,79,2.1.2,1
+8047,47,2.1.2.3,0
+8047,81,2.1.2,1
+8048,47,2.1.2.3,0
+8048,81,2.1.2,1
+8048,159,2.1.2,1
+8050,47,2.1.2.3,0
+8050,159,2.1.2,1
+8052,47,2.1.2.4,0
+8052,84,2.1.2,1
+8053,81,2.1.2,1
+8053,79,2.1.2,1
+8053,47,2.1.2.4,0
+8053,58,2.1.2,1
+8055,58,2.1.2,1
+8055,47,2.1.2.4,0
+8056,84,2.1.2,1
+8056,79,2.1.2,1
+8056,47,2.1.2.4,0
+8057,47,2.1.2.4,0
+8057,84,2.1.2,1
+8059,58,2.1.2,1
+8059,47,2.1.2.4,0
+8061,81,2.1.2,1
+8061,47,2.1.2.4,0
+8064,84,2.1.2,1
+8064,47,2.1.2.4,0
+8066,47,2.1.2.4,0
+8066,79,2.1.2,1
+8066,81,2.1.2,1
+8066,159,2.1.2,1
+8069,159,2.1.2,1
+8069,47,2.1.2.4,0
+8070,58,2.1.2,1
+8070,47,2.1.2.4,0
+8071,47,2.1.2.4,0
+8071,79,2.1.2,1
+8071,84,2.1.2,1
+8071,81,2.1.2,1
+8072,159,2.1.2,1
+8072,47,2.1.2.4,0
+8076,84,2.1.2,1
+8076,47,2.1.2.4,0
+8076,81,2.1.2,1
+8077,84,2.1.2,1
+8077,47,2.1.2.4,0
+8078,79,2.1.2,1
+8078,47,2.1.2.4,0
+8079,47,2.1.2.4,0
+8079,79,2.1.2,1
+8081,84,2.1.2,1
+8081,47,2.1.2.4,0
+8081,159,2.1.2,1
+8082,79,2.1.2,1
+8082,47,2.1.2.4,0
+8083,47,2.1.2.4,0
+8083,58,2.1.2,1
+8084,47,2.1.2.4,0
+8084,79,2.1.2,1
+8085,159,2.1.2,1
+8085,79,2.1.2,1
+8085,84,2.1.2,1
+8085,47,2.1.2.4,0
+8087,47,2.1.2.4,0
+8087,159,2.1.2,1
+8089,81,2.1.2,1
+8089,47,2.1.2.4,0
+8091,81,2.1.2,1
+8091,47,2.1.2.4,0
+8092,159,2.1.2,1
+8092,47,2.1.2.4,0
+8093,84,2.1.2,1
+8093,47,2.1.2.4,0
+8093,79,2.1.2,1
+8094,84,2.1.2,1
+8094,47,2.1.2.4,0
+8094,58,2.1.2,1
+8097,79,2.1.2,1
+8097,47,2.1.2.4,0
+8097,159,2.1.2,1
+8099,84,2.1.2,1
+8099,81,2.1.2,1
+8099,47,2.1.2.4,0
+8102,47,2.1.3.6,0
+8102,108,2.1.3,1
+8104,148,2.1.3,1
+8104,47,2.1.3.6,0
+8104,74,2.1.3,1
+8105,106,2.1.3,1
+8105,74,2.1.3,1
+8105,47,2.1.3.6,0
+8106,73,2.1.3,1
+8106,97,2.1.3,1
+8106,47,2.1.3.6,0
+8107,126,2.1.3,1
+8107,47,2.1.3.6,0
+8107,73,2.1.3,1
+8107,148,2.1.3,1
+8108,73,2.1.3,1
+8108,106,2.1.3,1
+8108,47,2.1.3.6,0
+8109,47,2.1.3.6,0
+8109,73,2.1.3,1
+8110,148,2.1.3,1
+8110,47,2.1.3.6,0
+8110,108,2.1.3,1
+8111,47,2.1.3.6,0
+8111,106,2.1.3,1
+8111,148,2.1.3,1
+8114,47,2.1.3.6,0
+8114,73,2.1.3,1
+8114,106,2.1.3,1
+8114,97,2.1.3,1
+8115,106,2.1.3,1
+8115,47,2.1.3.6,0
+8116,106,2.1.3,1
+8116,47,2.1.3.6,0
+8119,108,2.1.3,1
+8119,47,2.1.3.6,0
+8120,74,2.1.3,1
+8120,47,2.1.3.6,0
+8122,47,2.1.3.6,0
+8122,126,2.1.3,1
+8122,74,2.1.3,1
+8123,74,2.1.3,1
+8123,47,2.1.3.6,0
+8123,97,2.1.3,1
+8126,73,2.1.3,1
+8126,74,2.1.3,1
+8126,47,2.1.3.6,0
+8128,47,2.1.3.6,0
+8128,73,2.1.3,1
+8129,74,2.1.3,1
+8129,47,2.1.3.6,0
+8131,47,2.1.3.6,0
+8131,97,2.1.3,1
+8131,148,2.1.3,1
+8132,108,2.1.3,1
+8132,47,2.1.3.6,0
+8132,106,2.1.3,1
+8133,47,2.1.3.6,0
+8133,73,2.1.3,1
+8134,47,2.1.3.6,0
+8134,126,2.1.3,1
+8135,74,2.1.3,1
+8135,47,2.1.3.6,0
+8136,126,2.1.3,1
+8136,106,2.1.3,1
+8136,47,2.1.3.6,0
+8136,148,2.1.3,1
+8136,97,2.1.3,1
+8137,47,2.1.3.6,0
+8137,108,2.1.3,1
+8138,97,2.1.3,1
+8138,47,2.1.3.6,0
+8139,47,2.1.3.6,0
+8139,126,2.1.3,1
+8139,108,2.1.3,1
+8139,73,2.1.3,1
+8141,97,2.1.3,1
+8141,47,2.1.3.6,0
+8142,108,2.1.3,1
+8142,47,2.1.3.6,0
+8142,73,2.1.3,1
+8143,47,2.1.3.6,0
+8143,108,2.1.3,1
+8144,47,2.1.3.6,0
+8144,106,2.1.3,1
+8145,47,2.1.3.6,0
+8145,106,2.1.3,1
+8146,47,2.1.3.6,0
+8146,108,2.1.3,1
+8148,47,2.1.3.6,0
+8148,148,2.1.3,1
+8151,126,1.2,1
+8151,48,1.2.2,0
+8152,48,1.2.2,0
+8152,97,1.2,1
+8154,106,1.2,1
+8154,48,1.2.2,0
+8155,97,1.2,1
+8155,106,1.2,1
+8155,48,1.2.2,0
+8156,106,1.2,1
+8156,48,1.2.2,0
+8156,67,1.2,1
+8157,106,1.2,1
+8157,48,1.2.2,0
+8158,48,1.2.2,0
+8158,67,1.2,1
+8159,67,1.2,1
+8159,48,1.2.2,0
+8160,106,1.2,1
+8160,48,1.2.2,0
+8161,106,1.2,1
+8161,126,1.2,1
+8161,97,1.2,1
+8161,48,1.2.2,0
+8164,48,1.2.2,0
+8164,97,1.2,1
+8166,67,1.2,1
+8166,126,1.2,1
+8166,48,1.2.2,0
+8169,106,1.2,1
+8169,48,1.2.2,0
+8169,126,1.2,1
+8170,48,1.2.2,0
+8170,126,1.2,1
+8172,106,1.2,1
+8172,48,1.2.2,0
+8173,126,1.2,1
+8173,48,1.2.2,0
+8173,97,1.2,1
+8173,106,1.2,1
+8174,126,1.2,1
+8174,48,1.2.2,0
+8176,48,1.2.2,0
+8176,97,1.2,1
+8176,67,1.2,1
+8177,48,1.2.2,0
+8177,126,1.2,1
+8178,48,1.2.2,0
+8178,67,1.2,1
+8179,48,1.2.2,0
+8179,67,1.2,1
+8181,106,1.2,1
+8181,48,1.2.2,0
+8182,48,1.2.2,0
+8182,67,1.2,1
+8183,97,1.2,1
+8183,48,1.2.2,0
+8184,67,1.2,1
+8184,48,1.2.2,0
+8185,106,1.2,1
+8185,48,1.2.2,0
+8186,126,1.2,1
+8186,106,1.2,1
+8186,48,1.2.2,0
+8187,48,1.2.2,0
+8187,97,1.2,1
+8188,106,1.2,1
+8188,48,1.2.2,0
+8189,48,1.2.2,0
+8189,106,1.2,1
+8190,126,1.2,1
+8190,48,1.2.2,0
+8191,67,1.2,1
+8191,48,1.2.2,0
+8193,126,1.2,1
+8193,48,1.2.2,0
+8194,106,1.2,1
+8194,48,1.2.2,0
+8197,48,1.2.2,0
+8197,126,1.2,1
+8198,67,1.2,1
+8198,97,1.2,1
+8198,48,1.2.2,0
+8199,106,1.2,1
+8199,48,1.2.2,0
+8200,48,1.2.2,0
+8200,97,1.2,1
+8202,100,1.3.1,1
+8202,49,1.3.1.1,0
+8203,93,1.3.1,1
+8203,49,1.3.1.1,0
+8206,49,1.3.1.1,0
+8206,39,1.3.1,1
+8207,93,1.3.1,1
+8207,49,1.3.1.1,0
+8208,85,1.3.1,1
+8208,49,1.3.1.1,0
+8208,100,1.3.1,1
+8209,49,1.3.1.1,0
+8209,93,1.3.1,1
+8210,99,1.3.1,1
+8210,49,1.3.1.1,0
+8211,49,1.3.1.1,0
+8211,93,1.3.1,1
+8214,93,1.3.1,1
+8214,49,1.3.1.1,0
+8216,49,1.3.1.1,0
+8216,99,1.3.1,1
+8219,100,1.3.1,1
+8219,49,1.3.1.1,0
+8220,93,1.3.1,1
+8220,49,1.3.1.1,0
+8222,93,1.3.1,1
+8222,39,1.3.1,1
+8222,49,1.3.1.1,0
+8226,100,1.3.1,1
+8226,49,1.3.1.1,0
+8229,49,1.3.1.1,0
+8229,93,1.3.1,1
+8229,39,1.3.1,1
+8231,39,1.3.1,1
+8231,49,1.3.1.1,0
+8232,85,1.3.1,1
+8232,49,1.3.1.1,0
+8233,49,1.3.1.1,0
+8233,100,1.3.1,1
+8234,39,1.3.1,1
+8234,49,1.3.1.1,0
+8235,85,1.3.1,1
+8235,49,1.3.1.1,0
+8235,99,1.3.1,1
+8236,93,1.3.1,1
+8236,99,1.3.1,1
+8236,49,1.3.1.1,0
+8237,99,1.3.1,1
+8237,49,1.3.1.1,0
+8237,100,1.3.1,1
+8239,85,1.3.1,1
+8239,49,1.3.1.1,0
+8241,49,1.3.1.1,0
+8241,100,1.3.1,1
+8243,49,1.3.1.1,0
+8243,93,1.3.1,1
+8244,49,1.3.1.1,0
+8244,100,1.3.1,1
+8247,39,1.3.1,1
+8247,49,1.3.1.1,0
+8248,49,1.3.1.1,0
+8248,39,1.3.1,1
+8248,85,1.3.1,1
+8248,93,1.3.1,1
+8249,93,1.3.1,1
+8249,49,1.3.1.1,0
+8249,99,1.3.1,1
+8251,49,1.3.1.4,0
+8251,99,1.3.1,1
+8252,39,1.3.1,1
+8252,49,1.3.1.4,0
+8252,85,1.3.1,1
+8253,49,1.3.1.4,0
+8253,100,1.3.1,1
+8254,39,1.3.1,1
+8254,49,1.3.1.4,0
+8255,49,1.3.1.4,0
+8255,85,1.3.1,1
+8256,99,1.3.1,1
+8256,49,1.3.1.4,0
+8257,93,1.3.1,1
+8257,49,1.3.1.4,0
+8258,85,1.3.1,1
+8258,49,1.3.1.4,0
+8259,49,1.3.1.4,0
+8259,93,1.3.1,1
+8260,49,1.3.1.4,0
+8260,39,1.3.1,1
+8260,100,1.3.1,1
+8260,99,1.3.1,1
+8261,100,1.3.1,1
+8261,49,1.3.1.4,0
+8261,39,1.3.1,1
+8264,49,1.3.1.4,0
+8264,93,1.3.1,1
+8264,39,1.3.1,1
+8269,49,1.3.1.4,0
+8269,93,1.3.1,1
+8270,39,1.3.1,1
+8270,49,1.3.1.4,0
+8272,49,1.3.1.4,0
+8272,39,1.3.1,1
+8273,49,1.3.1.4,0
+8273,93,1.3.1,1
+8273,85,1.3.1,1
+8275,49,1.3.1.4,0
+8275,93,1.3.1,1
+8276,100,1.3.1,1
+8276,49,1.3.1.4,0
+8278,49,1.3.1.4,0
+8278,85,1.3.1,1
+8279,93,1.3.1,1
+8279,49,1.3.1.4,0
+8281,39,1.3.1,1
+8281,49,1.3.1.4,0
+8282,99,1.3.1,1
+8282,49,1.3.1.4,0
+8283,39,1.3.1,1
+8283,49,1.3.1.4,0
+8285,100,1.3.1,1
+8285,49,1.3.1.4,0
+8289,85,1.3.1,1
+8289,49,1.3.1.4,0
+8290,99,1.3.1,1
+8290,49,1.3.1.4,0
+8292,39,1.3.1,1
+8292,49,1.3.1.4,0
+8292,99,1.3.1,1
+8293,49,1.3.1.4,0
+8293,85,1.3.1,1
+8293,93,1.3.1,1
+8294,49,1.3.1.4,0
+8294,85,1.3.1,1
+8294,99,1.3.1,1
+8295,100,1.3.1,1
+8295,99,1.3.1,1
+8295,49,1.3.1.4,0
+8297,49,1.3.1.4,0
+8297,99,1.3.1,1
+8298,85,1.3.1,1
+8298,99,1.3.1,1
+8298,49,1.3.1.4,0
+8298,100,1.3.1,1
+8300,99,1.3.1,1
+8300,100,1.3.1,1
+8300,49,1.3.1.4,0
+8301,49,1.3.1.6,0
+8301,100,1.3.1,1
+8302,49,1.3.1.6,0
+8302,93,1.3.1,1
+8306,49,1.3.1.6,0
+8306,93,1.3.1,1
+8307,49,1.3.1.6,0
+8307,85,1.3.1,1
+8308,93,1.3.1,1
+8308,49,1.3.1.6,0
+8309,49,1.3.1.6,0
+8309,99,1.3.1,1
+8310,49,1.3.1.6,0
+8310,93,1.3.1,1
+8311,39,1.3.1,1
+8311,49,1.3.1.6,0
+8311,100,1.3.1,1
+8314,85,1.3.1,1
+8314,99,1.3.1,1
+8314,49,1.3.1.6,0
+8316,49,1.3.1.6,0
+8316,39,1.3.1,1
+8317,49,1.3.1.6,0
+8317,93,1.3.1,1
+8320,99,1.3.1,1
+8320,49,1.3.1.6,0
+8320,29,1.3,2
+8320,85,1.3.1,1
+8320,100,1.3.1,1
+8322,49,1.3.1.6,0
+8322,39,1.3.1,1
+8323,49,1.3.1.6,0
+8323,93,1.3.1,1
+8323,99,1.3.1,1
+8323,85,1.3.1,1
+8324,93,1.3.1,1
+8324,39,1.3.1,1
+8324,49,1.3.1.6,0
+8326,85,1.3.1,1
+8326,49,1.3.1.6,0
+8328,93,1.3.1,1
+8328,49,1.3.1.6,0
+8331,93,1.3.1,1
+8331,39,1.3.1,1
+8331,49,1.3.1.6,0
+8332,49,1.3.1.6,0
+8332,100,1.3.1,1
+8332,99,1.3.1,1
+8333,39,1.3.1,1
+8333,49,1.3.1.6,0
+8335,93,1.3.1,1
+8335,49,1.3.1.6,0
+8336,93,1.3.1,1
+8336,85,1.3.1,1
+8336,49,1.3.1.6,0
+8337,100,1.3.1,1
+8337,49,1.3.1.6,0
+8338,85,1.3.1,1
+8338,106,1.3,2
+8338,93,1.3.1,1
+8338,49,1.3.1.6,0
+8338,29,1.3,2
+8339,85,1.3.1,1
+8339,49,1.3.1.6,0
+8340,93,1.3.1,1
+8340,49,1.3.1.6,0
+8341,99,1.3.1,1
+8341,39,1.3.1,1
+8341,49,1.3.1.6,0
+8342,93,1.3.1,1
+8342,39,1.3.1,1
+8342,49,1.3.1.6,0
+8343,49,1.3.1.6,0
+8343,85,1.3.1,1
+8344,49,1.3.1.6,0
+8344,93,1.3.1,1
+8347,49,1.3.1.6,0
+8347,39,1.3.1,1
+8348,85,1.3.1,1
+8348,49,1.3.1.6,0
+8348,93,1.3.1,1
+8350,100,1.3.1,1
+8350,49,1.3.1.6,0
+8352,49,1.3.3.1,0
+8352,75,1.3.3,1
+8354,49,1.3.3.1,0
+8354,99,1.3.3,1
+8357,49,1.3.3.1,0
+8357,75,1.3.3,1
+8358,49,1.3.3.1,0
+8358,97,1.3.3,1
+8359,49,1.3.3.1,0
+8359,75,1.3.3,1
+8361,49,1.3.3.1,0
+8361,75,1.3.3,1
+8364,75,1.3.3,1
+8364,49,1.3.3.1,0
+8366,49,1.3.3.1,0
+8366,75,1.3.3,1
+8366,99,1.3.3,1
+8370,75,1.3.3,1
+8370,49,1.3.3.1,0
+8372,97,1.3.3,1
+8372,49,1.3.3.1,0
+8373,99,1.3.3,1
+8373,49,1.3.3.1,0
+8376,49,1.3.3.1,0
+8376,75,1.3.3,1
+8379,75,1.3.3,1
+8379,99,1.3.3,1
+8379,49,1.3.3.1,0
+8382,97,1.3.3,1
+8382,49,1.3.3.1,0
+8384,49,1.3.3.1,0
+8384,97,1.3.3,1
+8386,75,1.3.3,1
+8386,49,1.3.3.1,0
+8389,97,1.3.3,1
+8389,49,1.3.3.1,0
+8391,75,1.3.3,1
+8391,49,1.3.3.1,0
+8393,49,1.3.3.1,0
+8393,75,1.3.3,1
+8394,49,1.3.3.1,0
+8394,97,1.3.3,1
+8398,99,1.3.3,1
+8398,49,1.3.3.1,0
+8401,49,2.1.2.1,0
+8401,79,2.1.2,1
+8402,84,2.1.2,1
+8402,49,2.1.2.1,0
+8404,49,2.1.2.1,0
+8404,81,2.1.2,1
+8405,58,2.1.2,1
+8405,159,2.1.2,1
+8405,49,2.1.2.1,0
+8406,58,2.1.2,1
+8406,49,2.1.2.1,0
+8407,49,2.1.2.1,0
+8407,84,2.1.2,1
+8408,49,2.1.2.1,0
+8408,159,2.1.2,1
+8408,58,2.1.2,1
+8409,49,2.1.2.1,0
+8409,58,2.1.2,1
+8411,49,2.1.2.1,0
+8411,81,2.1.2,1
+8416,49,2.1.2.1,0
+8416,79,2.1.2,1
+8420,49,2.1.2.1,0
+8420,79,2.1.2,1
+8422,49,2.1.2.1,0
+8422,58,2.1.2,1
+8423,49,2.1.2.1,0
+8423,58,2.1.2,1
+8425,49,2.1.2.1,0
+8425,159,2.1.2,1
+8426,84,2.1.2,1
+8426,58,2.1.2,1
+8426,49,2.1.2.1,0
+8428,49,2.1.2.1,0
+8428,79,2.1.2,1
+8431,81,2.1.2,1
+8431,49,2.1.2.1,0
+8432,49,2.1.2.1,0
+8432,58,2.1.2,1
+8433,49,2.1.2.1,0
+8433,58,2.1.2,1
+8436,159,2.1.2,1
+8436,49,2.1.2.1,0
+8436,79,2.1.2,1
+8437,79,2.1.2,1
+8437,49,2.1.2.1,0
+8442,159,2.1.2,1
+8442,49,2.1.2.1,0
+8442,79,2.1.2,1
+8443,49,2.1.2.1,0
+8443,58,2.1.2,1
+8443,81,2.1.2,1
+8444,49,2.1.2.1,0
+8444,159,2.1.2,1
+8447,49,2.1.2.1,0
+8447,58,2.1.2,1
+8448,49,2.1.2.1,0
+8448,58,2.1.2,1
+8451,49,2.1.2.2,0
+8451,58,2.1.2,1
+8452,81,2.1.2,1
+8452,159,2.1.2,1
+8452,49,2.1.2.2,0
+8453,79,2.1.2,1
+8453,49,2.1.2.2,0
+8454,49,2.1.2.2,0
+8454,79,2.1.2,1
+8455,81,2.1.2,1
+8455,49,2.1.2.2,0
+8455,84,2.1.2,1
+8457,49,2.1.2.2,0
+8457,84,2.1.2,1
+8458,49,2.1.2.2,0
+8458,84,2.1.2,1
+8466,49,2.1.2.2,0
+8466,58,2.1.2,1
+8466,159,2.1.2,1
+8470,84,2.1.2,1
+8470,49,2.1.2.2,0
+8472,159,2.1.2,1
+8472,49,2.1.2.2,0
+8473,159,2.1.2,1
+8473,49,2.1.2.2,0
+8475,58,2.1.2,1
+8475,49,2.1.2.2,0
+8476,159,2.1.2,1
+8476,49,2.1.2.2,0
+8476,58,2.1.2,1
+8478,159,2.1.2,1
+8478,49,2.1.2.2,0
+8479,49,2.1.2.2,0
+8479,58,2.1.2,1
+8479,159,2.1.2,1
+8481,49,2.1.2.2,0
+8481,159,2.1.2,1
+8482,49,2.1.2.2,0
+8482,84,2.1.2,1
+8483,49,2.1.2.2,0
+8483,58,2.1.2,1
+8485,49,2.1.2.2,0
+8485,159,2.1.2,1
+8486,49,2.1.2.2,0
+8486,58,2.1.2,1
+8489,58,2.1.2,1
+8489,49,2.1.2.2,0
+8491,49,2.1.2.2,0
+8491,58,2.1.2,1
+8494,49,2.1.2.2,0
+8494,58,2.1.2,1
+8497,49,2.1.2.2,0
+8497,159,2.1.2,1
+8498,79,2.1.2,1
+8498,49,2.1.2.2,0
+8502,58,2.1.2,1
+8502,49,2.1.2.3,0
+8502,84,2.1.2,1
+8503,81,2.1.2,1
+8503,79,2.1.2,1
+8503,49,2.1.2.3,0
+8504,58,2.1.2,1
+8504,49,2.1.2.3,0
+8505,84,2.1.2,1
+8505,58,2.1.2,1
+8505,49,2.1.2.3,0
+8507,49,2.1.2.3,0
+8507,58,2.1.2,1
+8508,58,2.1.2,1
+8508,49,2.1.2.3,0
+8509,49,2.1.2.3,0
+8509,159,2.1.2,1
+8510,81,2.1.2,1
+8510,49,2.1.2.3,0
+8511,49,2.1.2.3,0
+8511,159,2.1.2,1
+8511,81,2.1.2,1
+8514,159,2.1.2,1
+8514,49,2.1.2.3,0
+8516,58,2.1.2,1
+8516,49,2.1.2.3,0
+8516,81,2.1.2,1
+8516,159,2.1.2,1
+8520,84,2.1.2,1
+8520,49,2.1.2.3,0
+8522,81,2.1.2,1
+8522,49,2.1.2.3,0
+8523,159,2.1.2,1
+8523,49,2.1.2.3,0
+8525,79,2.1.2,1
+8525,49,2.1.2.3,0
+8528,49,2.1.2.3,0
+8528,84,2.1.2,1
+8531,84,2.1.2,1
+8531,49,2.1.2.3,0
+8532,49,2.1.2.3,0
+8532,58,2.1.2,1
+8533,49,2.1.2.3,0
+8533,58,2.1.2,1
+8534,58,2.1.2,1
+8534,49,2.1.2.3,0
+8536,49,2.1.2.3,0
+8536,79,2.1.2,1
+8536,84,2.1.2,1
+8536,81,2.1.2,1
+8536,58,2.1.2,1
+8539,84,2.1.2,1
+8539,49,2.1.2.3,0
+8541,49,2.1.2.3,0
+8541,84,2.1.2,1
+8542,49,2.1.2.3,0
+8542,159,2.1.2,1
+8543,49,2.1.2.3,0
+8543,81,2.1.2,1
+8543,58,2.1.2,1
+8544,79,2.1.2,1
+8544,49,2.1.2.3,0
+8544,159,2.1.2,1
+8547,159,2.1.2,1
+8547,49,2.1.2.3,0
+8548,49,2.1.2.3,0
+8548,58,2.1.2,1
+8549,49,2.1.2.3,0
+8549,159,2.1.2,1
+8550,84,2.1.2,1
+8550,81,2.1.2,1
+8550,49,2.1.2.3,0
+8552,49,2.1.2.4,0
+8552,81,2.1.2,1
+8554,49,2.1.2.4,0
+8554,79,2.1.2,1
+8555,81,2.1.2,1
+8555,49,2.1.2.4,0
+8557,49,2.1.2.4,0
+8557,81,2.1.2,1
+8558,58,2.1.2,1
+8558,49,2.1.2.4,0
+8559,49,2.1.2.4,0
+8559,159,2.1.2,1
+8560,58,2.1.2,1
+8560,49,2.1.2.4,0
+8561,49,2.1.2.4,0
+8561,159,2.1.2,1
+8564,81,2.1.2,1
+8564,49,2.1.2.4,0
+8566,49,2.1.2.4,0
+8566,58,2.1.2,1
+8570,84,2.1.2,1
+8570,49,2.1.2.4,0
+8572,81,2.1.2,1
+8572,49,2.1.2.4,0
+8573,49,2.1.2.4,0
+8573,79,2.1.2,1
+8575,58,2.1.2,1
+8575,49,2.1.2.4,0
+8582,159,2.1.2,1
+8582,49,2.1.2.4,0
+8582,58,2.1.2,1
+8583,49,2.1.2.4,0
+8583,58,2.1.2,1
+8586,84,2.1.2,1
+8586,49,2.1.2.4,0
+8589,81,2.1.2,1
+8589,49,2.1.2.4,0
+8590,81,2.1.2,1
+8590,84,2.1.2,1
+8590,49,2.1.2.4,0
+8592,49,2.1.2.4,0
+8592,84,2.1.2,1
+8593,58,2.1.2,1
+8593,49,2.1.2.4,0
+8593,159,2.1.2,1
+8594,49,2.1.2.4,0
+8594,79,2.1.2,1
+8598,49,2.1.2.4,0
+8598,159,2.1.2,1
+8600,84,2.1.2,1
+8600,49,2.1.2.4,0
+8600,159,2.1.2,1
+8601,50,1.3.1.5,0
+8601,100,1.3.1,1
+8602,85,1.3.1,1
+8602,93,1.3.1,1
+8602,29,1.3,2
+8602,99,1.3.1,1
+8602,50,1.3.1.5,0
+8603,99,1.3.1,1
+8603,29,1.3,2
+8603,50,1.3.1.5,0
+8603,39,1.3.1,1
+8603,93,1.3.1,1
+8603,85,1.3.1,1
+8604,50,1.3.1.5,0
+8604,93,1.3.1,1
+8605,93,1.3.1,1
+8605,39,1.3.1,1
+8605,50,1.3.1.5,0
+8605,100,1.3.1,1
+8606,99,1.3.1,1
+8606,39,1.3.1,1
+8606,93,1.3.1,1
+8606,100,1.3.1,1
+8606,50,1.3.1.5,0
+8607,50,1.3.1.5,0
+8607,85,1.3.1,1
+8608,39,1.3.1,1
+8608,99,1.3.1,1
+8608,50,1.3.1.5,0
+8609,50,1.3.1.5,0
+8609,85,1.3.1,1
+8610,85,1.3.1,1
+8610,50,1.3.1.5,0
+8611,85,1.3.1,1
+8611,106,1.3,2
+8611,29,1.3,2
+8611,100,1.3.1,1
+8611,93,1.3.1,1
+8611,50,1.3.1.5,0
+8611,170,1,3
+8611,39,1.3.1,1
+8612,99,1.3.1,1
+8612,50,1.3.1.5,0
+8614,50,1.3.1.5,0
+8614,100,1.3.1,1
+8614,93,1.3.1,1
+8614,85,1.3.1,1
+8616,100,1.3.1,1
+8616,50,1.3.1.5,0
+8616,99,1.3.1,1
+8616,93,1.3.1,1
+8617,100,1.3.1,1
+8617,50,1.3.1.5,0
+8619,99,1.3.1,1
+8619,93,1.3.1,1
+8619,50,1.3.1.5,0
+8619,100,1.3.1,1
+8620,50,1.3.1.5,0
+8620,39,1.3.1,1
+8621,100,1.3.1,1
+8621,50,1.3.1.5,0
+8622,100,1.3.1,1
+8622,50,1.3.1.5,0
+8622,85,1.3.1,1
+8623,50,1.3.1.5,0
+8623,85,1.3.1,1
+8624,93,1.3.1,1
+8624,50,1.3.1.5,0
+8625,39,1.3.1,1
+8625,50,1.3.1.5,0
+8626,39,1.3.1,1
+8626,50,1.3.1.5,0
+8626,99,1.3.1,1
+8627,100,1.3.1,1
+8627,50,1.3.1.5,0
+8628,50,1.3.1.5,0
+8628,85,1.3.1,1
+8629,39,1.3.1,1
+8629,99,1.3.1,1
+8629,50,1.3.1.5,0
+8630,50,1.3.1.5,0
+8630,99,1.3.1,1
+8631,85,1.3.1,1
+8631,50,1.3.1.5,0
+8631,100,1.3.1,1
+8631,39,1.3.1,1
+8631,106,1.3,2
+8631,29,1.3,2
+8632,93,1.3.1,1
+8632,50,1.3.1.5,0
+8632,85,1.3.1,1
+8633,39,1.3.1,1
+8633,50,1.3.1.5,0
+8634,93,1.3.1,1
+8634,50,1.3.1.5,0
+8635,85,1.3.1,1
+8635,50,1.3.1.5,0
+8635,100,1.3.1,1
+8635,93,1.3.1,1
+8636,93,1.3.1,1
+8636,50,1.3.1.5,0
+8636,99,1.3.1,1
+8636,85,1.3.1,1
+8637,100,1.3.1,1
+8637,50,1.3.1.5,0
+8637,99,1.3.1,1
+8639,50,1.3.1.5,0
+8639,99,1.3.1,1
+8639,39,1.3.1,1
+8640,50,1.3.1.5,0
+8640,93,1.3.1,1
+8640,99,1.3.1,1
+8640,85,1.3.1,1
+8641,50,1.3.1.5,0
+8641,93,1.3.1,1
+8641,100,1.3.1,1
+8642,93,1.3.1,1
+8642,100,1.3.1,1
+8642,50,1.3.1.5,0
+8643,39,1.3.1,1
+8643,100,1.3.1,1
+8643,93,1.3.1,1
+8643,50,1.3.1.5,0
+8644,99,1.3.1,1
+8644,93,1.3.1,1
+8644,50,1.3.1.5,0
+8646,100,1.3.1,1
+8646,50,1.3.1.5,0
+8647,100,1.3.1,1
+8647,50,1.3.1.5,0
+8647,85,1.3.1,1
+8648,85,1.3.1,1
+8648,50,1.3.1.5,0
+8648,100,1.3.1,1
+8648,93,1.3.1,1
+8649,50,1.3.1.5,0
+8649,100,1.3.1,1
+8650,99,1.3.1,1
+8650,50,1.3.1.5,0
+8652,51,1.4.2.1,0
+8652,142,1.4.2,1
+8654,142,1.4.2,1
+8654,51,1.4.2.1,0
+8655,142,1.4.2,1
+8655,51,1.4.2.1,0
+8656,142,1.4.2,1
+8656,51,1.4.2.1,0
+8657,51,1.4.2.1,0
+8657,142,1.4.2,1
+8658,51,1.4.2.1,0
+8658,142,1.4.2,1
+8659,51,1.4.2.1,0
+8659,142,1.4.2,1
+8660,51,1.4.2.1,0
+8660,142,1.4.2,1
+8661,142,1.4.2,1
+8661,51,1.4.2.1,0
+8664,51,1.4.2.1,0
+8664,142,1.4.2,1
+8666,142,1.4.2,1
+8666,51,1.4.2.1,0
+8670,51,1.4.2.1,0
+8670,142,1.4.2,1
+8672,51,1.4.2.1,0
+8672,142,1.4.2,1
+8673,51,1.4.2.1,0
+8673,142,1.4.2,1
+8676,142,1.4.2,1
+8676,51,1.4.2.1,0
+8678,51,1.4.2.1,0
+8678,142,1.4.2,1
+8679,51,1.4.2.1,0
+8679,142,1.4.2,1
+8681,51,1.4.2.1,0
+8681,142,1.4.2,1
+8682,51,1.4.2.1,0
+8682,142,1.4.2,1
+8683,142,1.4.2,1
+8683,51,1.4.2.1,0
+8684,142,1.4.2,1
+8684,51,1.4.2.1,0
+8686,142,1.4.2,1
+8686,51,1.4.2.1,0
+8689,51,1.4.2.1,0
+8689,142,1.4.2,1
+8691,142,1.4.2,1
+8691,51,1.4.2.1,0
+8693,142,1.4.2,1
+8693,51,1.4.2.1,0
+8694,142,1.4.2,1
+8694,51,1.4.2.1,0
+8697,142,1.4.2,1
+8697,51,1.4.2.1,0
+8698,142,1.4.2,1
+8698,51,1.4.2.1,0
+8701,170,1,3
+8701,52,1.4.5.5,0
+8701,126,1.4,2
+8701,41,1.4.5,1
+8702,52,1.4.5.5,0
+8702,41,1.4.5,1
+8703,170,1,3
+8703,126,1.4,2
+8703,52,1.4.5.5,0
+8703,41,1.4.5,1
+8704,52,1.4.5.5,0
+8704,41,1.4.5,1
+8705,41,1.4.5,1
+8705,52,1.4.5.5,0
+8706,52,1.4.5.5,0
+8706,41,1.4.5,1
+8707,170,1,3
+8707,41,1.4.5,1
+8707,126,1.4,2
+8707,52,1.4.5.5,0
+8708,41,1.4.5,1
+8708,126,1.4,2
+8708,170,1,3
+8708,52,1.4.5.5,0
+8709,52,1.4.5.5,0
+8709,41,1.4.5,1
+8710,126,1.4,2
+8710,41,1.4.5,1
+8710,52,1.4.5.5,0
+8710,170,1,3
+8711,41,1.4.5,1
+8711,52,1.4.5.5,0
+8714,52,1.4.5.5,0
+8714,170,1,3
+8714,41,1.4.5,1
+8714,126,1.4,2
+8716,126,1.4,2
+8716,52,1.4.5.5,0
+8716,170,1,3
+8716,41,1.4.5,1
+8719,52,1.4.5.5,0
+8719,126,1.4,2
+8719,170,1,3
+8719,41,1.4.5,1
+8720,170,1,3
+8720,52,1.4.5.5,0
+8720,41,1.4.5,1
+8720,126,1.4,2
+8722,41,1.4.5,1
+8722,52,1.4.5.5,0
+8723,52,1.4.5.5,0
+8723,41,1.4.5,1
+8724,52,1.4.5.5,0
+8724,41,1.4.5,1
+8725,52,1.4.5.5,0
+8725,41,1.4.5,1
+8726,41,1.4.5,1
+8726,52,1.4.5.5,0
+8728,52,1.4.5.5,0
+8728,41,1.4.5,1
+8729,41,1.4.5,1
+8729,52,1.4.5.5,0
+8731,126,1.4,2
+8731,170,1,3
+8731,52,1.4.5.5,0
+8731,41,1.4.5,1
+8732,41,1.4.5,1
+8732,52,1.4.5.5,0
+8733,52,1.4.5.5,0
+8733,41,1.4.5,1
+8734,41,1.4.5,1
+8734,52,1.4.5.5,0
+8736,41,1.4.5,1
+8736,170,1,3
+8736,126,1.4,2
+8736,52,1.4.5.5,0
+8739,52,1.4.5.5,0
+8739,41,1.4.5,1
+8741,170,1,3
+8741,126,1.4,2
+8741,41,1.4.5,1
+8741,52,1.4.5.5,0
+8742,52,1.4.5.5,0
+8742,41,1.4.5,1
+8742,126,1.4,2
+8742,170,1,3
+8743,52,1.4.5.5,0
+8743,41,1.4.5,1
+8744,170,1,3
+8744,52,1.4.5.5,0
+8744,41,1.4.5,1
+8744,126,1.4,2
+8747,41,1.4.5,1
+8747,170,1,3
+8747,126,1.4,2
+8747,52,1.4.5.5,0
+8748,126,1.4,2
+8748,170,1,3
+8748,52,1.4.5.5,0
+8748,41,1.4.5,1
+8749,170,1,3
+8749,126,1.4,2
+8749,41,1.4.5,1
+8749,52,1.4.5.5,0
+8756,53,1.4.1.3,0
+8756,157,1.4.1,1
+8757,157,1.4.1,1
+8757,53,1.4.1.3,0
+8759,157,1.4.1,1
+8759,53,1.4.1.3,0
+8761,53,1.4.1.3,0
+8761,157,1.4.1,1
+8770,53,1.4.1.3,0
+8770,157,1.4.1,1
+8772,53,1.4.1.3,0
+8772,157,1.4.1,1
+8776,157,1.4.1,1
+8776,53,1.4.1.3,0
+8784,157,1.4.1,1
+8784,53,1.4.1.3,0
+8792,53,1.4.1.3,0
+8792,157,1.4.1,1
+8797,53,1.4.1.3,0
+8797,157,1.4.1,1
+8798,157,1.4.1,1
+8798,53,1.4.1.3,0
+8801,170,1,3
+8801,53,1.4.1.4,0
+8801,157,1.4.1,1
+8801,126,1.4,2
+8802,157,1.4.1,1
+8802,53,1.4.1.4,0
+8803,157,1.4.1,1
+8803,53,1.4.1.4,0
+8806,53,1.4.1.4,0
+8806,157,1.4.1,1
+8807,53,1.4.1.4,0
+8807,157,1.4.1,1
+8808,126,1.4,2
+8808,157,1.4.1,1
+8808,53,1.4.1.4,0
+8808,170,1,3
+8809,157,1.4.1,1
+8809,53,1.4.1.4,0
+8810,157,1.4.1,1
+8810,53,1.4.1.4,0
+8814,53,1.4.1.4,0
+8814,157,1.4.1,1
+8816,53,1.4.1.4,0
+8816,157,1.4.1,1
+8819,53,1.4.1.4,0
+8819,157,1.4.1,1
+8822,53,1.4.1.4,0
+8822,157,1.4.1,1
+8823,157,1.4.1,1
+8823,53,1.4.1.4,0
+8823,126,1.4,2
+8823,170,1,3
+8824,157,1.4.1,1
+8824,53,1.4.1.4,0
+8828,157,1.4.1,1
+8828,53,1.4.1.4,0
+8829,157,1.4.1,1
+8829,53,1.4.1.4,0
+8831,53,1.4.1.4,0
+8831,157,1.4.1,1
+8833,53,1.4.1.4,0
+8833,157,1.4.1,1
+8836,53,1.4.1.4,0
+8836,157,1.4.1,1
+8839,53,1.4.1.4,0
+8839,157,1.4.1,1
+8842,157,1.4.1,1
+8842,53,1.4.1.4,0
+8843,157,1.4.1,1
+8843,53,1.4.1.4,0
+8844,157,1.4.1,1
+8844,53,1.4.1.4,0
+8847,53,1.4.1.4,0
+8847,157,1.4.1,1
+8851,157,1.4.1,1
+8851,53,1.4.1.5,0
+8852,157,1.4.1,1
+8852,53,1.4.1.5,0
+8853,157,1.4.1,1
+8853,53,1.4.1.5,0
+8854,53,1.4.1.5,0
+8854,157,1.4.1,1
+8855,157,1.4.1,1
+8855,53,1.4.1.5,0
+8856,53,1.4.1.5,0
+8856,157,1.4.1,1
+8858,53,1.4.1.5,0
+8858,157,1.4.1,1
+8859,157,1.4.1,1
+8859,53,1.4.1.5,0
+8860,53,1.4.1.5,0
+8860,157,1.4.1,1
+8861,53,1.4.1.5,0
+8861,157,1.4.1,1
+8864,157,1.4.1,1
+8864,53,1.4.1.5,0
+8869,53,1.4.1.5,0
+8869,157,1.4.1,1
+8873,157,1.4.1,1
+8873,53,1.4.1.5,0
+8874,157,1.4.1,1
+8874,53,1.4.1.5,0
+8875,53,1.4.1.5,0
+8875,157,1.4.1,1
+8876,157,1.4.1,1
+8876,53,1.4.1.5,0
+8881,53,1.4.1.5,0
+8881,157,1.4.1,1
+8882,53,1.4.1.5,0
+8882,157,1.4.1,1
+8886,53,1.4.1.5,0
+8886,157,1.4.1,1
+8889,53,1.4.1.5,0
+8889,157,1.4.1,1
+8891,157,1.4.1,1
+8891,53,1.4.1.5,0
+8892,157,1.4.1,1
+8892,53,1.4.1.5,0
+8893,157,1.4.1,1
+8893,53,1.4.1.5,0
+8894,157,1.4.1,1
+8894,53,1.4.1.5,0
+8897,53,1.4.1.5,0
+8897,157,1.4.1,1
+8898,157,1.4.1,1
+8898,53,1.4.1.5,0
+8901,170,1,3
+8901,53,1.4.2.3,0
+8901,142,1.4.2,1
+8901,126,1.4,2
+8902,53,1.4.2.3,0
+8902,142,1.4.2,1
+8902,170,1,3
+8902,126,1.4,2
+8903,170,1,3
+8903,126,1.4,2
+8903,142,1.4.2,1
+8903,53,1.4.2.3,0
+8904,126,1.4,2
+8904,53,1.4.2.3,0
+8904,142,1.4.2,1
+8904,170,1,3
+8905,53,1.4.2.3,0
+8905,126,1.4,2
+8905,170,1,3
+8905,142,1.4.2,1
+8906,142,1.4.2,1
+8906,126,1.4,2
+8906,53,1.4.2.3,0
+8906,170,1,3
+8907,53,1.4.2.3,0
+8907,170,1,3
+8907,142,1.4.2,1
+8907,126,1.4,2
+8908,142,1.4.2,1
+8908,126,1.4,2
+8908,53,1.4.2.3,0
+8908,170,1,3
+8909,53,1.4.2.3,0
+8909,170,1,3
+8909,126,1.4,2
+8909,142,1.4.2,1
+8910,126,1.4,2
+8910,142,1.4.2,1
+8910,170,1,3
+8910,53,1.4.2.3,0
+8911,142,1.4.2,1
+8911,53,1.4.2.3,0
+8911,126,1.4,2
+8911,170,1,3
+8912,126,1.4,2
+8912,142,1.4.2,1
+8912,53,1.4.2.3,0
+8912,170,1,3
+8913,126,1.4,2
+8913,53,1.4.2.3,0
+8913,170,1,3
+8913,142,1.4.2,1
+8914,142,1.4.2,1
+8914,170,1,3
+8914,53,1.4.2.3,0
+8914,126,1.4,2
+8915,53,1.4.2.3,0
+8915,170,1,3
+8915,126,1.4,2
+8915,142,1.4.2,1
+8916,126,1.4,2
+8916,53,1.4.2.3,0
+8916,142,1.4.2,1
+8916,170,1,3
+8917,53,1.4.2.3,0
+8917,126,1.4,2
+8917,142,1.4.2,1
+8917,170,1,3
+8918,142,1.4.2,1
+8918,170,1,3
+8918,126,1.4,2
+8918,53,1.4.2.3,0
+8919,142,1.4.2,1
+8919,53,1.4.2.3,0
+8919,126,1.4,2
+8919,170,1,3
+8920,53,1.4.2.3,0
+8920,142,1.4.2,1
+8920,170,1,3
+8920,126,1.4,2
+8921,170,1,3
+8921,126,1.4,2
+8921,142,1.4.2,1
+8921,53,1.4.2.3,0
+8922,126,1.4,2
+8922,142,1.4.2,1
+8922,170,1,3
+8922,53,1.4.2.3,0
+8923,142,1.4.2,1
+8923,53,1.4.2.3,0
+8923,126,1.4,2
+8923,170,1,3
+8924,126,1.4,2
+8924,53,1.4.2.3,0
+8924,142,1.4.2,1
+8924,170,1,3
+8925,170,1,3
+8925,53,1.4.2.3,0
+8925,142,1.4.2,1
+8925,126,1.4,2
+8926,126,1.4,2
+8926,142,1.4.2,1
+8926,53,1.4.2.3,0
+8926,170,1,3
+8927,126,1.4,2
+8927,170,1,3
+8927,142,1.4.2,1
+8927,53,1.4.2.3,0
+8928,53,1.4.2.3,0
+8928,142,1.4.2,1
+8928,170,1,3
+8928,126,1.4,2
+8929,170,1,3
+8929,53,1.4.2.3,0
+8929,126,1.4,2
+8929,142,1.4.2,1
+8930,142,1.4.2,1
+8930,170,1,3
+8930,126,1.4,2
+8930,53,1.4.2.3,0
+8931,126,1.4,2
+8931,170,1,3
+8931,53,1.4.2.3,0
+8931,142,1.4.2,1
+8932,126,1.4,2
+8932,53,1.4.2.3,0
+8932,142,1.4.2,1
+8932,170,1,3
+8933,53,1.4.2.3,0
+8933,170,1,3
+8933,142,1.4.2,1
+8933,126,1.4,2
+8934,53,1.4.2.3,0
+8934,142,1.4.2,1
+8934,126,1.4,2
+8934,170,1,3
+8935,53,1.4.2.3,0
+8935,170,1,3
+8935,126,1.4,2
+8935,142,1.4.2,1
+8936,53,1.4.2.3,0
+8936,142,1.4.2,1
+8936,170,1,3
+8936,126,1.4,2
+8937,126,1.4,2
+8937,170,1,3
+8937,142,1.4.2,1
+8937,53,1.4.2.3,0
+8938,53,1.4.2.3,0
+8938,170,1,3
+8938,126,1.4,2
+8938,142,1.4.2,1
+8939,126,1.4,2
+8939,170,1,3
+8939,53,1.4.2.3,0
+8939,142,1.4.2,1
+8940,170,1,3
+8940,142,1.4.2,1
+8940,53,1.4.2.3,0
+8940,126,1.4,2
+8941,170,1,3
+8941,126,1.4,2
+8941,142,1.4.2,1
+8941,53,1.4.2.3,0
+8942,126,1.4,2
+8942,170,1,3
+8942,53,1.4.2.3,0
+8942,142,1.4.2,1
+8943,142,1.4.2,1
+8943,53,1.4.2.3,0
+8943,170,1,3
+8943,126,1.4,2
+8944,170,1,3
+8944,142,1.4.2,1
+8944,53,1.4.2.3,0
+8944,126,1.4,2
+8945,170,1,3
+8945,142,1.4.2,1
+8945,126,1.4,2
+8945,53,1.4.2.3,0
+8946,170,1,3
+8946,142,1.4.2,1
+8946,126,1.4,2
+8946,53,1.4.2.3,0
+8947,53,1.4.2.3,0
+8947,170,1,3
+8947,126,1.4,2
+8947,142,1.4.2,1
+8948,126,1.4,2
+8948,53,1.4.2.3,0
+8948,142,1.4.2,1
+8948,170,1,3
+8949,170,1,3
+8949,53,1.4.2.3,0
+8949,142,1.4.2,1
+8949,126,1.4,2
+8950,170,1,3
+8950,142,1.4.2,1
+8950,126,1.4,2
+8950,53,1.4.2.3,0
+8954,142,1.4.2,1
+8954,53,1.4.2.4,0
+8957,142,1.4.2,1
+8957,53,1.4.2.4,0
+8959,142,1.4.2,1
+8959,53,1.4.2.4,0
+8964,142,1.4.2,1
+8964,53,1.4.2.4,0
+8966,53,1.4.2.4,0
+8966,142,1.4.2,1
+8981,53,1.4.2.4,0
+8981,142,1.4.2,1
+8984,142,1.4.2,1
+8984,53,1.4.2.4,0
+8994,142,1.4.2,1
+8994,53,1.4.2.4,0
+9004,126,1.4,2
+9004,53,1.4.3.3,0
+9004,142,1.4.3,1
+9004,170,1,3
+9005,142,1.4.3,1
+9005,53,1.4.3.3,0
+9006,142,1.4.3,1
+9006,53,1.4.3.3,0
+9007,142,1.4.3,1
+9007,53,1.4.3.3,0
+9008,53,1.4.3.3,0
+9008,142,1.4.3,1
+9009,142,1.4.3,1
+9009,53,1.4.3.3,0
+9010,142,1.4.3,1
+9010,53,1.4.3.3,0
+9016,53,1.4.3.3,0
+9016,142,1.4.3,1
+9020,53,1.4.3.3,0
+9020,142,1.4.3,1
+9022,53,1.4.3.3,0
+9022,142,1.4.3,1
+9023,53,1.4.3.3,0
+9023,142,1.4.3,1
+9024,142,1.4.3,1
+9024,53,1.4.3.3,0
+9025,53,1.4.3.3,0
+9025,142,1.4.3,1
+9026,53,1.4.3.3,0
+9026,142,1.4.3,1
+9031,142,1.4.3,1
+9031,53,1.4.3.3,0
+9032,53,1.4.3.3,0
+9032,142,1.4.3,1
+9034,142,1.4.3,1
+9034,53,1.4.3.3,0
+9039,53,1.4.3.3,0
+9039,142,1.4.3,1
+9041,53,1.4.3.3,0
+9041,142,1.4.3,1
+9042,53,1.4.3.3,0
+9042,142,1.4.3,1
+9043,142,1.4.3,1
+9043,53,1.4.3.3,0
+9048,142,1.4.3,1
+9048,53,1.4.3.3,0
+9051,170,1,3
+9051,53,1.4.3.4,0
+9051,142,1.4.3,1
+9051,126,1.4,2
+9052,53,1.4.3.4,0
+9052,142,1.4.3,1
+9052,170,1,3
+9052,126,1.4,2
+9053,142,1.4.3,1
+9053,53,1.4.3.4,0
+9054,142,1.4.3,1
+9054,53,1.4.3.4,0
+9055,142,1.4.3,1
+9055,53,1.4.3.4,0
+9056,142,1.4.3,1
+9056,53,1.4.3.4,0
+9057,142,1.4.3,1
+9057,53,1.4.3.4,0
+9058,53,1.4.3.4,0
+9058,142,1.4.3,1
+9059,142,1.4.3,1
+9059,53,1.4.3.4,0
+9060,126,1.4,2
+9060,142,1.4.3,1
+9060,170,1,3
+9060,53,1.4.3.4,0
+9061,142,1.4.3,1
+9061,53,1.4.3.4,0
+9061,126,1.4,2
+9061,170,1,3
+9064,142,1.4.3,1
+9064,53,1.4.3.4,0
+9066,53,1.4.3.4,0
+9066,142,1.4.3,1
+9069,142,1.4.3,1
+9069,53,1.4.3.4,0
+9070,53,1.4.3.4,0
+9070,142,1.4.3,1
+9072,53,1.4.3.4,0
+9072,142,1.4.3,1
+9073,53,1.4.3.4,0
+9073,142,1.4.3,1
+9074,142,1.4.3,1
+9074,53,1.4.3.4,0
+9075,170,1,3
+9075,53,1.4.3.4,0
+9075,142,1.4.3,1
+9075,126,1.4,2
+9076,53,1.4.3.4,0
+9076,142,1.4.3,1
+9078,142,1.4.3,1
+9078,53,1.4.3.4,0
+9079,142,1.4.3,1
+9079,53,1.4.3.4,0
+9081,53,1.4.3.4,0
+9081,142,1.4.3,1
+9082,53,1.4.3.4,0
+9082,142,1.4.3,1
+9083,53,1.4.3.4,0
+9083,170,1,3
+9083,142,1.4.3,1
+9083,126,1.4,2
+9084,142,1.4.3,1
+9084,53,1.4.3.4,0
+9086,142,1.4.3,1
+9086,53,1.4.3.4,0
+9089,126,1.4,2
+9089,170,1,3
+9089,53,1.4.3.4,0
+9089,142,1.4.3,1
+9091,53,1.4.3.4,0
+9091,142,1.4.3,1
+9092,142,1.4.3,1
+9092,53,1.4.3.4,0
+9093,142,1.4.3,1
+9093,53,1.4.3.4,0
+9094,170,1,3
+9094,142,1.4.3,1
+9094,53,1.4.3.4,0
+9094,126,1.4,2
+9097,53,1.4.3.4,0
+9097,170,1,3
+9097,126,1.4,2
+9097,142,1.4.3,1
+9098,142,1.4.3,1
+9098,53,1.4.3.4,0
+9101,53,1.4.3.5,0
+9101,142,1.4.3,1
+9102,142,1.4.3,1
+9102,53,1.4.3.5,0
+9103,142,1.4.3,1
+9103,53,1.4.3.5,0
+9104,142,1.4.3,1
+9104,53,1.4.3.5,0
+9105,142,1.4.3,1
+9105,53,1.4.3.5,0
+9106,142,1.4.3,1
+9106,126,1.4,2
+9106,53,1.4.3.5,0
+9106,170,1,3
+9107,142,1.4.3,1
+9107,53,1.4.3.5,0
+9108,142,1.4.3,1
+9108,126,1.4,2
+9108,53,1.4.3.5,0
+9108,170,1,3
+9109,53,1.4.3.5,0
+9109,170,1,3
+9109,126,1.4,2
+9109,142,1.4.3,1
+9110,142,1.4.3,1
+9110,53,1.4.3.5,0
+9111,53,1.4.3.5,0
+9111,142,1.4.3,1
+9114,142,1.4.3,1
+9114,53,1.4.3.5,0
+9116,126,1.4,2
+9116,53,1.4.3.5,0
+9116,142,1.4.3,1
+9116,170,1,3
+9119,142,1.4.3,1
+9119,53,1.4.3.5,0
+9120,53,1.4.3.5,0
+9120,142,1.4.3,1
+9122,53,1.4.3.5,0
+9122,142,1.4.3,1
+9123,53,1.4.3.5,0
+9123,142,1.4.3,1
+9124,142,1.4.3,1
+9124,53,1.4.3.5,0
+9125,53,1.4.3.5,0
+9125,142,1.4.3,1
+9126,53,1.4.3.5,0
+9126,142,1.4.3,1
+9128,142,1.4.3,1
+9128,53,1.4.3.5,0
+9129,170,1,3
+9129,53,1.4.3.5,0
+9129,126,1.4,2
+9129,142,1.4.3,1
+9131,53,1.4.3.5,0
+9131,142,1.4.3,1
+9132,126,1.4,2
+9132,53,1.4.3.5,0
+9132,142,1.4.3,1
+9132,170,1,3
+9133,142,1.4.3,1
+9133,53,1.4.3.5,0
+9134,53,1.4.3.5,0
+9134,142,1.4.3,1
+9134,126,1.4,2
+9134,170,1,3
+9136,142,1.4.3,1
+9136,53,1.4.3.5,0
+9139,53,1.4.3.5,0
+9139,142,1.4.3,1
+9141,53,1.4.3.5,0
+9141,142,1.4.3,1
+9142,142,1.4.3,1
+9142,53,1.4.3.5,0
+9143,142,1.4.3,1
+9143,53,1.4.3.5,0
+9144,170,1,3
+9144,142,1.4.3,1
+9144,53,1.4.3.5,0
+9144,126,1.4,2
+9147,53,1.4.3.5,0
+9147,142,1.4.3,1
+9148,142,1.4.3,1
+9148,53,1.4.3.5,0
+9151,170,1,3
+9151,53,1.4.3.6,0
+9151,142,1.4.3,1
+9151,126,1.4,2
+9152,53,1.4.3.6,0
+9152,142,1.4.3,1
+9152,170,1,3
+9152,126,1.4,2
+9153,170,1,3
+9153,126,1.4,2
+9153,142,1.4.3,1
+9153,53,1.4.3.6,0
+9154,126,1.4,2
+9154,53,1.4.3.6,0
+9154,142,1.4.3,1
+9154,170,1,3
+9155,53,1.4.3.6,0
+9155,126,1.4,2
+9155,170,1,3
+9155,142,1.4.3,1
+9156,142,1.4.3,1
+9156,126,1.4,2
+9156,53,1.4.3.6,0
+9156,170,1,3
+9157,53,1.4.3.6,0
+9157,170,1,3
+9157,142,1.4.3,1
+9157,126,1.4,2
+9158,142,1.4.3,1
+9158,126,1.4,2
+9158,53,1.4.3.6,0
+9158,170,1,3
+9159,53,1.4.3.6,0
+9159,170,1,3
+9159,126,1.4,2
+9159,142,1.4.3,1
+9160,126,1.4,2
+9160,142,1.4.3,1
+9160,170,1,3
+9160,53,1.4.3.6,0
+9161,142,1.4.3,1
+9161,53,1.4.3.6,0
+9161,126,1.4,2
+9161,170,1,3
+9162,126,1.4,2
+9162,142,1.4.3,1
+9162,53,1.4.3.6,0
+9162,170,1,3
+9163,126,1.4,2
+9163,53,1.4.3.6,0
+9163,170,1,3
+9163,142,1.4.3,1
+9164,142,1.4.3,1
+9164,170,1,3
+9164,53,1.4.3.6,0
+9164,126,1.4,2
+9165,53,1.4.3.6,0
+9165,170,1,3
+9165,126,1.4,2
+9165,142,1.4.3,1
+9166,126,1.4,2
+9166,53,1.4.3.6,0
+9166,142,1.4.3,1
+9166,170,1,3
+9167,53,1.4.3.6,0
+9167,126,1.4,2
+9167,142,1.4.3,1
+9167,170,1,3
+9168,142,1.4.3,1
+9168,170,1,3
+9168,126,1.4,2
+9168,53,1.4.3.6,0
+9169,142,1.4.3,1
+9169,53,1.4.3.6,0
+9169,126,1.4,2
+9169,170,1,3
+9170,53,1.4.3.6,0
+9170,142,1.4.3,1
+9170,170,1,3
+9170,126,1.4,2
+9171,170,1,3
+9171,126,1.4,2
+9171,142,1.4.3,1
+9171,53,1.4.3.6,0
+9172,126,1.4,2
+9172,142,1.4.3,1
+9172,170,1,3
+9172,53,1.4.3.6,0
+9173,142,1.4.3,1
+9173,53,1.4.3.6,0
+9173,126,1.4,2
+9173,170,1,3
+9174,126,1.4,2
+9174,53,1.4.3.6,0
+9174,142,1.4.3,1
+9174,170,1,3
+9175,170,1,3
+9175,53,1.4.3.6,0
+9175,142,1.4.3,1
+9175,126,1.4,2
+9176,126,1.4,2
+9176,142,1.4.3,1
+9176,53,1.4.3.6,0
+9176,170,1,3
+9177,126,1.4,2
+9177,170,1,3
+9177,142,1.4.3,1
+9177,53,1.4.3.6,0
+9178,53,1.4.3.6,0
+9178,142,1.4.3,1
+9178,170,1,3
+9178,126,1.4,2
+9179,170,1,3
+9179,53,1.4.3.6,0
+9179,126,1.4,2
+9179,142,1.4.3,1
+9180,142,1.4.3,1
+9180,170,1,3
+9180,126,1.4,2
+9180,53,1.4.3.6,0
+9181,126,1.4,2
+9181,170,1,3
+9181,53,1.4.3.6,0
+9181,142,1.4.3,1
+9182,126,1.4,2
+9182,53,1.4.3.6,0
+9182,142,1.4.3,1
+9182,170,1,3
+9183,53,1.4.3.6,0
+9183,170,1,3
+9183,142,1.4.3,1
+9183,126,1.4,2
+9184,53,1.4.3.6,0
+9184,142,1.4.3,1
+9184,126,1.4,2
+9184,170,1,3
+9185,53,1.4.3.6,0
+9185,170,1,3
+9185,126,1.4,2
+9185,142,1.4.3,1
+9186,53,1.4.3.6,0
+9186,142,1.4.3,1
+9186,170,1,3
+9186,126,1.4,2
+9187,126,1.4,2
+9187,170,1,3
+9187,142,1.4.3,1
+9187,53,1.4.3.6,0
+9188,53,1.4.3.6,0
+9188,170,1,3
+9188,126,1.4,2
+9188,142,1.4.3,1
+9189,126,1.4,2
+9189,170,1,3
+9189,53,1.4.3.6,0
+9189,142,1.4.3,1
+9190,170,1,3
+9190,142,1.4.3,1
+9190,53,1.4.3.6,0
+9190,126,1.4,2
+9191,170,1,3
+9191,126,1.4,2
+9191,142,1.4.3,1
+9191,53,1.4.3.6,0
+9192,126,1.4,2
+9192,170,1,3
+9192,53,1.4.3.6,0
+9192,142,1.4.3,1
+9193,142,1.4.3,1
+9193,53,1.4.3.6,0
+9193,170,1,3
+9193,126,1.4,2
+9194,170,1,3
+9194,142,1.4.3,1
+9194,53,1.4.3.6,0
+9194,126,1.4,2
+9195,170,1,3
+9195,142,1.4.3,1
+9195,126,1.4,2
+9195,53,1.4.3.6,0
+9196,170,1,3
+9196,142,1.4.3,1
+9196,126,1.4,2
+9196,53,1.4.3.6,0
+9197,53,1.4.3.6,0
+9197,170,1,3
+9197,126,1.4,2
+9197,142,1.4.3,1
+9198,126,1.4,2
+9198,53,1.4.3.6,0
+9198,142,1.4.3,1
+9198,170,1,3
+9199,170,1,3
+9199,53,1.4.3.6,0
+9199,142,1.4.3,1
+9199,126,1.4,2
+9200,170,1,3
+9200,142,1.4.3,1
+9200,126,1.4,2
+9200,53,1.4.3.6,0
+9201,53,1.4.4.4,0
+9201,0,1.4.4,1
+9202,40,1.4.4,1
+9202,0,1.4.4,1
+9202,53,1.4.4.4,0
+9203,0,1.4.4,1
+9203,53,1.4.4.4,0
+9203,40,1.4.4,1
+9204,0,1.4.4,1
+9204,53,1.4.4.4,0
+9205,0,1.4.4,1
+9205,53,1.4.4.4,0
+9205,40,1.4.4,1
+9206,40,1.4.4,1
+9206,0,1.4.4,1
+9206,126,1.4,2
+9206,53,1.4.4.4,0
+9206,170,1,3
+9207,53,1.4.4.4,0
+9207,0,1.4.4,1
+9208,53,1.4.4.4,0
+9208,0,1.4.4,1
+9209,40,1.4.4,1
+9209,53,1.4.4.4,0
+9209,0,1.4.4,1
+9210,0,1.4.4,1
+9210,53,1.4.4.4,0
+9210,126,1.4,2
+9211,126,1.4,2
+9211,0,1.4.4,1
+9211,53,1.4.4.4,0
+9211,40,1.4.4,1
+9214,0,1.4.4,1
+9214,53,1.4.4.4,0
+9214,40,1.4.4,1
+9216,0,1.4.4,1
+9216,53,1.4.4.4,0
+9216,40,1.4.4,1
+9217,53,1.4.4.4,0
+9217,40,1.4.4,1
+9219,53,1.4.4.4,0
+9219,40,1.4.4,1
+9219,0,1.4.4,1
+9220,126,1.4,2
+9220,53,1.4.4.4,0
+9220,0,1.4.4,1
+9221,40,1.4.4,1
+9221,53,1.4.4.4,0
+9222,53,1.4.4.4,0
+9222,0,1.4.4,1
+9223,53,1.4.4.4,0
+9223,40,1.4.4,1
+9223,0,1.4.4,1
+9224,40,1.4.4,1
+9224,53,1.4.4.4,0
+9224,0,1.4.4,1
+9225,53,1.4.4.4,0
+9225,0,1.4.4,1
+9226,0,1.4.4,1
+9226,126,1.4,2
+9226,40,1.4.4,1
+9226,53,1.4.4.4,0
+9226,170,1,3
+9227,40,1.4.4,1
+9227,53,1.4.4.4,0
+9228,40,1.4.4,1
+9228,53,1.4.4.4,0
+9228,170,1,3
+9228,0,1.4.4,1
+9228,126,1.4,2
+9229,53,1.4.4.4,0
+9229,0,1.4.4,1
+9229,40,1.4.4,1
+9231,40,1.4.4,1
+9231,53,1.4.4.4,0
+9231,0,1.4.4,1
+9232,0,1.4.4,1
+9232,126,1.4,2
+9232,53,1.4.4.4,0
+9232,40,1.4.4,1
+9232,170,1,3
+9233,0,1.4.4,1
+9233,53,1.4.4.4,0
+9234,126,1.4,2
+9234,0,1.4.4,1
+9234,53,1.4.4.4,0
+9234,40,1.4.4,1
+9235,40,1.4.4,1
+9235,126,1.4,2
+9235,53,1.4.4.4,0
+9236,40,1.4.4,1
+9236,0,1.4.4,1
+9236,53,1.4.4.4,0
+9237,53,1.4.4.4,0
+9237,40,1.4.4,1
+9238,53,1.4.4.4,0
+9238,40,1.4.4,1
+9239,53,1.4.4.4,0
+9239,0,1.4.4,1
+9239,40,1.4.4,1
+9240,53,1.4.4.4,0
+9240,40,1.4.4,1
+9241,53,1.4.4.4,0
+9241,0,1.4.4,1
+9242,53,1.4.4.4,0
+9242,40,1.4.4,1
+9242,0,1.4.4,1
+9243,53,1.4.4.4,0
+9243,40,1.4.4,1
+9243,0,1.4.4,1
+9244,40,1.4.4,1
+9244,53,1.4.4.4,0
+9244,0,1.4.4,1
+9245,53,1.4.4.4,0
+9245,40,1.4.4,1
+9246,40,1.4.4,1
+9246,53,1.4.4.4,0
+9247,53,1.4.4.4,0
+9247,0,1.4.4,1
+9248,53,1.4.4.4,0
+9248,0,1.4.4,1
+9248,40,1.4.4,1
+9249,40,1.4.4,1
+9249,53,1.4.4.4,0
+9250,53,1.4.4.4,0
+9250,40,1.4.4,1
+9251,53,1.4.5.2,0
+9251,41,1.4.5,1
+9252,53,1.4.5.2,0
+9252,41,1.4.5,1
+9253,41,1.4.5,1
+9253,53,1.4.5.2,0
+9254,41,1.4.5,1
+9254,53,1.4.5.2,0
+9255,41,1.4.5,1
+9255,53,1.4.5.2,0
+9256,41,1.4.5,1
+9256,53,1.4.5.2,0
+9257,53,1.4.5.2,0
+9257,170,1,3
+9257,41,1.4.5,1
+9257,126,1.4,2
+9258,53,1.4.5.2,0
+9258,41,1.4.5,1
+9259,41,1.4.5,1
+9259,53,1.4.5.2,0
+9260,41,1.4.5,1
+9260,53,1.4.5.2,0
+9261,53,1.4.5.2,0
+9261,126,1.4,2
+9261,170,1,3
+9261,41,1.4.5,1
+9264,53,1.4.5.2,0
+9264,41,1.4.5,1
+9266,53,1.4.5.2,0
+9266,41,1.4.5,1
+9269,53,1.4.5.2,0
+9269,41,1.4.5,1
+9270,53,1.4.5.2,0
+9270,170,1,3
+9270,41,1.4.5,1
+9270,126,1.4,2
+9272,41,1.4.5,1
+9272,53,1.4.5.2,0
+9273,53,1.4.5.2,0
+9273,41,1.4.5,1
+9274,53,1.4.5.2,0
+9274,41,1.4.5,1
+9275,53,1.4.5.2,0
+9275,41,1.4.5,1
+9276,41,1.4.5,1
+9276,53,1.4.5.2,0
+9278,41,1.4.5,1
+9278,53,1.4.5.2,0
+9279,41,1.4.5,1
+9279,53,1.4.5.2,0
+9281,53,1.4.5.2,0
+9281,41,1.4.5,1
+9282,41,1.4.5,1
+9282,53,1.4.5.2,0
+9283,53,1.4.5.2,0
+9283,41,1.4.5,1
+9284,41,1.4.5,1
+9284,53,1.4.5.2,0
+9284,126,1.4,2
+9284,170,1,3
+9286,41,1.4.5,1
+9286,53,1.4.5.2,0
+9289,53,1.4.5.2,0
+9289,41,1.4.5,1
+9291,170,1,3
+9291,126,1.4,2
+9291,41,1.4.5,1
+9291,53,1.4.5.2,0
+9292,41,1.4.5,1
+9292,53,1.4.5.2,0
+9293,41,1.4.5,1
+9293,53,1.4.5.2,0
+9293,170,1,3
+9293,126,1.4,2
+9294,170,1,3
+9294,41,1.4.5,1
+9294,53,1.4.5.2,0
+9294,126,1.4,2
+9297,41,1.4.5,1
+9297,53,1.4.5.2,0
+9298,41,1.4.5,1
+9298,53,1.4.5.2,0
+9299,41,1.4.5,1
+9299,53,1.4.5.2,0
+9301,53,1.4.5.3,0
+9301,41,1.4.5,1
+9302,53,1.4.5.3,0
+9302,41,1.4.5,1
+9303,41,1.4.5,1
+9303,53,1.4.5.3,0
+9304,41,1.4.5,1
+9304,53,1.4.5.3,0
+9305,53,1.4.5.3,0
+9305,41,1.4.5,1
+9307,41,1.4.5,1
+9307,53,1.4.5.3,0
+9308,53,1.4.5.3,0
+9308,41,1.4.5,1
+9311,41,1.4.5,1
+9311,53,1.4.5.3,0
+9314,53,1.4.5.3,0
+9314,41,1.4.5,1
+9319,53,1.4.5.3,0
+9319,41,1.4.5,1
+9320,53,1.4.5.3,0
+9320,41,1.4.5,1
+9322,41,1.4.5,1
+9322,53,1.4.5.3,0
+9323,53,1.4.5.3,0
+9323,41,1.4.5,1
+9324,53,1.4.5.3,0
+9324,41,1.4.5,1
+9325,41,1.4.5,1
+9325,170,1,3
+9325,53,1.4.5.3,0
+9325,126,1.4,2
+9326,41,1.4.5,1
+9326,53,1.4.5.3,0
+9328,53,1.4.5.3,0
+9328,41,1.4.5,1
+9332,41,1.4.5,1
+9332,53,1.4.5.3,0
+9334,41,1.4.5,1
+9334,53,1.4.5.3,0
+9336,41,1.4.5,1
+9336,53,1.4.5.3,0
+9339,53,1.4.5.3,0
+9339,41,1.4.5,1
+9341,53,1.4.5.3,0
+9341,41,1.4.5,1
+9343,41,1.4.5,1
+9343,53,1.4.5.3,0
+9347,41,1.4.5,1
+9347,53,1.4.5.3,0
+9348,41,1.4.5,1
+9348,53,1.4.5.3,0
+9351,53,1.4.5.6,0
+9351,41,1.4.5,1
+9352,53,1.4.5.6,0
+9352,41,1.4.5,1
+9352,170,1,3
+9352,126,1.4,2
+9353,170,1,3
+9353,126,1.4,2
+9353,41,1.4.5,1
+9353,53,1.4.5.6,0
+9354,126,1.4,2
+9354,53,1.4.5.6,0
+9354,170,1,3
+9354,41,1.4.5,1
+9355,41,1.4.5,1
+9355,53,1.4.5.6,0
+9356,126,1.4,2
+9356,41,1.4.5,1
+9356,53,1.4.5.6,0
+9356,170,1,3
+9357,53,1.4.5.6,0
+9357,170,1,3
+9357,41,1.4.5,1
+9357,126,1.4,2
+9358,53,1.4.5.6,0
+9358,41,1.4.5,1
+9359,41,1.4.5,1
+9359,53,1.4.5.6,0
+9360,41,1.4.5,1
+9360,53,1.4.5.6,0
+9361,41,1.4.5,1
+9361,53,1.4.5.6,0
+9364,53,1.4.5.6,0
+9364,41,1.4.5,1
+9366,53,1.4.5.6,0
+9366,41,1.4.5,1
+9369,53,1.4.5.6,0
+9369,126,1.4,2
+9369,170,1,3
+9369,41,1.4.5,1
+9370,53,1.4.5.6,0
+9370,41,1.4.5,1
+9372,41,1.4.5,1
+9372,53,1.4.5.6,0
+9373,53,1.4.5.6,0
+9373,41,1.4.5,1
+9374,53,1.4.5.6,0
+9374,41,1.4.5,1
+9375,53,1.4.5.6,0
+9375,41,1.4.5,1
+9376,126,1.4,2
+9376,41,1.4.5,1
+9376,53,1.4.5.6,0
+9376,170,1,3
+9378,41,1.4.5,1
+9378,53,1.4.5.6,0
+9379,41,1.4.5,1
+9379,53,1.4.5.6,0
+9381,53,1.4.5.6,0
+9381,41,1.4.5,1
+9382,41,1.4.5,1
+9382,53,1.4.5.6,0
+9383,53,1.4.5.6,0
+9383,41,1.4.5,1
+9384,41,1.4.5,1
+9384,53,1.4.5.6,0
+9386,41,1.4.5,1
+9386,53,1.4.5.6,0
+9389,53,1.4.5.6,0
+9389,41,1.4.5,1
+9391,53,1.4.5.6,0
+9391,41,1.4.5,1
+9392,41,1.4.5,1
+9392,53,1.4.5.6,0
+9393,41,1.4.5,1
+9393,53,1.4.5.6,0
+9393,170,1,3
+9393,126,1.4,2
+9394,53,1.4.5.6,0
+9394,41,1.4.5,1
+9397,41,1.4.5,1
+9397,53,1.4.5.6,0
+9398,126,1.4,2
+9398,53,1.4.5.6,0
+9398,170,1,3
+9398,41,1.4.5,1
+9399,41,1.4.5,1
+9399,53,1.4.5.6,0
+9401,170,1,3
+9401,53,1.4.5.7,0
+9401,126,1.4,2
+9401,41,1.4.5,1
+9402,53,1.4.5.7,0
+9402,41,1.4.5,1
+9403,170,1,3
+9403,126,1.4,2
+9403,41,1.4.5,1
+9403,53,1.4.5.7,0
+9404,41,1.4.5,1
+9404,53,1.4.5.7,0
+9405,53,1.4.5.7,0
+9405,126,1.4,2
+9405,41,1.4.5,1
+9405,170,1,3
+9406,126,1.4,2
+9406,41,1.4.5,1
+9406,53,1.4.5.7,0
+9406,170,1,3
+9407,53,1.4.5.7,0
+9407,170,1,3
+9407,41,1.4.5,1
+9407,126,1.4,2
+9408,41,1.4.5,1
+9408,126,1.4,2
+9408,53,1.4.5.7,0
+9408,170,1,3
+9409,41,1.4.5,1
+9409,53,1.4.5.7,0
+9410,126,1.4,2
+9410,41,1.4.5,1
+9410,170,1,3
+9410,53,1.4.5.7,0
+9411,53,1.4.5.7,0
+9411,126,1.4,2
+9411,170,1,3
+9411,41,1.4.5,1
+9414,170,1,3
+9414,53,1.4.5.7,0
+9414,41,1.4.5,1
+9414,126,1.4,2
+9416,126,1.4,2
+9416,53,1.4.5.7,0
+9416,170,1,3
+9416,41,1.4.5,1
+9419,53,1.4.5.7,0
+9419,41,1.4.5,1
+9420,53,1.4.5.7,0
+9420,170,1,3
+9420,41,1.4.5,1
+9420,126,1.4,2
+9422,126,1.4,2
+9422,41,1.4.5,1
+9422,170,1,3
+9422,53,1.4.5.7,0
+9423,53,1.4.5.7,0
+9423,41,1.4.5,1
+9424,53,1.4.5.7,0
+9424,41,1.4.5,1
+9425,53,1.4.5.7,0
+9425,41,1.4.5,1
+9426,41,1.4.5,1
+9426,53,1.4.5.7,0
+9428,53,1.4.5.7,0
+9428,41,1.4.5,1
+9428,170,1,3
+9428,126,1.4,2
+9429,41,1.4.5,1
+9429,170,1,3
+9429,53,1.4.5.7,0
+9429,126,1.4,2
+9431,53,1.4.5.7,0
+9431,41,1.4.5,1
+9432,41,1.4.5,1
+9432,53,1.4.5.7,0
+9433,53,1.4.5.7,0
+9433,41,1.4.5,1
+9434,41,1.4.5,1
+9434,53,1.4.5.7,0
+9434,126,1.4,2
+9434,170,1,3
+9436,41,1.4.5,1
+9436,53,1.4.5.7,0
+9439,53,1.4.5.7,0
+9439,41,1.4.5,1
+9441,53,1.4.5.7,0
+9441,41,1.4.5,1
+9442,41,1.4.5,1
+9442,53,1.4.5.7,0
+9443,41,1.4.5,1
+9443,53,1.4.5.7,0
+9444,53,1.4.5.7,0
+9444,41,1.4.5,1
+9447,41,1.4.5,1
+9447,53,1.4.5.7,0
+9448,41,1.4.5,1
+9448,53,1.4.5.7,0
+9449,41,1.4.5,1
+9449,53,1.4.5.7,0
+9451,170,1,3
+9451,53,1.4.5.8,0
+9451,126,1.4,2
+9451,41,1.4.5,1
+9452,53,1.4.5.8,0
+9452,41,1.4.5,1
+9452,170,1,3
+9452,126,1.4,2
+9453,170,1,3
+9453,126,1.4,2
+9453,41,1.4.5,1
+9453,53,1.4.5.8,0
+9454,126,1.4,2
+9454,53,1.4.5.8,0
+9454,170,1,3
+9454,41,1.4.5,1
+9455,53,1.4.5.8,0
+9455,126,1.4,2
+9455,41,1.4.5,1
+9455,170,1,3
+9456,126,1.4,2
+9456,41,1.4.5,1
+9456,53,1.4.5.8,0
+9456,170,1,3
+9457,53,1.4.5.8,0
+9457,170,1,3
+9457,41,1.4.5,1
+9457,126,1.4,2
+9458,41,1.4.5,1
+9458,126,1.4,2
+9458,53,1.4.5.8,0
+9458,170,1,3
+9459,53,1.4.5.8,0
+9459,170,1,3
+9459,126,1.4,2
+9459,41,1.4.5,1
+9460,126,1.4,2
+9460,41,1.4.5,1
+9460,170,1,3
+9460,53,1.4.5.8,0
+9461,53,1.4.5.8,0
+9461,126,1.4,2
+9461,170,1,3
+9461,41,1.4.5,1
+9462,126,1.4,2
+9462,53,1.4.5.8,0
+9462,41,1.4.5,1
+9462,170,1,3
+9463,126,1.4,2
+9463,53,1.4.5.8,0
+9463,170,1,3
+9463,41,1.4.5,1
+9464,170,1,3
+9464,53,1.4.5.8,0
+9464,41,1.4.5,1
+9464,126,1.4,2
+9465,53,1.4.5.8,0
+9465,170,1,3
+9465,126,1.4,2
+9465,41,1.4.5,1
+9466,126,1.4,2
+9466,53,1.4.5.8,0
+9466,170,1,3
+9466,41,1.4.5,1
+9467,53,1.4.5.8,0
+9467,126,1.4,2
+9467,41,1.4.5,1
+9467,170,1,3
+9468,41,1.4.5,1
+9468,170,1,3
+9468,126,1.4,2
+9468,53,1.4.5.8,0
+9469,53,1.4.5.8,0
+9469,126,1.4,2
+9469,170,1,3
+9469,41,1.4.5,1
+9470,53,1.4.5.8,0
+9470,170,1,3
+9470,41,1.4.5,1
+9470,126,1.4,2
+9471,170,1,3
+9471,126,1.4,2
+9471,41,1.4.5,1
+9471,53,1.4.5.8,0
+9472,126,1.4,2
+9472,41,1.4.5,1
+9472,170,1,3
+9472,53,1.4.5.8,0
+9473,53,1.4.5.8,0
+9473,126,1.4,2
+9473,170,1,3
+9473,41,1.4.5,1
+9474,126,1.4,2
+9474,53,1.4.5.8,0
+9474,41,1.4.5,1
+9474,170,1,3
+9475,41,1.4.5,1
+9475,170,1,3
+9475,53,1.4.5.8,0
+9475,126,1.4,2
+9476,126,1.4,2
+9476,41,1.4.5,1
+9476,53,1.4.5.8,0
+9476,170,1,3
+9477,126,1.4,2
+9477,170,1,3
+9477,53,1.4.5.8,0
+9477,41,1.4.5,1
+9478,53,1.4.5.8,0
+9478,41,1.4.5,1
+9478,170,1,3
+9478,126,1.4,2
+9479,41,1.4.5,1
+9479,170,1,3
+9479,53,1.4.5.8,0
+9479,126,1.4,2
+9480,170,1,3
+9480,126,1.4,2
+9480,41,1.4.5,1
+9480,53,1.4.5.8,0
+9481,126,1.4,2
+9481,170,1,3
+9481,53,1.4.5.8,0
+9481,41,1.4.5,1
+9482,126,1.4,2
+9482,53,1.4.5.8,0
+9482,41,1.4.5,1
+9482,170,1,3
+9483,53,1.4.5.8,0
+9483,170,1,3
+9483,41,1.4.5,1
+9483,126,1.4,2
+9484,41,1.4.5,1
+9484,53,1.4.5.8,0
+9484,126,1.4,2
+9484,170,1,3
+9485,53,1.4.5.8,0
+9485,170,1,3
+9485,126,1.4,2
+9485,41,1.4.5,1
+9486,53,1.4.5.8,0
+9486,41,1.4.5,1
+9486,170,1,3
+9486,126,1.4,2
+9487,126,1.4,2
+9487,170,1,3
+9487,41,1.4.5,1
+9487,53,1.4.5.8,0
+9488,53,1.4.5.8,0
+9488,170,1,3
+9488,126,1.4,2
+9488,41,1.4.5,1
+9489,41,1.4.5,1
+9489,126,1.4,2
+9489,170,1,3
+9489,53,1.4.5.8,0
+9490,170,1,3
+9490,53,1.4.5.8,0
+9490,41,1.4.5,1
+9490,126,1.4,2
+9491,170,1,3
+9491,126,1.4,2
+9491,41,1.4.5,1
+9491,53,1.4.5.8,0
+9492,41,1.4.5,1
+9492,126,1.4,2
+9492,170,1,3
+9492,53,1.4.5.8,0
+9493,41,1.4.5,1
+9493,53,1.4.5.8,0
+9493,170,1,3
+9493,126,1.4,2
+9494,170,1,3
+9494,41,1.4.5,1
+9494,53,1.4.5.8,0
+9494,126,1.4,2
+9495,170,1,3
+9495,41,1.4.5,1
+9495,126,1.4,2
+9495,53,1.4.5.8,0
+9496,170,1,3
+9496,126,1.4,2
+9496,53,1.4.5.8,0
+9496,41,1.4.5,1
+9497,53,1.4.5.8,0
+9497,41,1.4.5,1
+9497,170,1,3
+9497,126,1.4,2
+9498,126,1.4,2
+9498,53,1.4.5.8,0
+9498,170,1,3
+9498,41,1.4.5,1
+9499,170,1,3
+9499,53,1.4.5.8,0
+9499,126,1.4,2
+9499,41,1.4.5,1
+9500,170,1,3
+9500,126,1.4,2
+9500,41,1.4.5,1
+9500,53,1.4.5.8,0
+9501,157,1.4.1,1
+9501,54,1.4.1.3,0
+9507,157,1.4.1,1
+9507,54,1.4.1.3,0
+9510,54,1.4.1.3,0
+9510,157,1.4.1,1
+9520,54,1.4.1.3,0
+9520,157,1.4.1,1
+9526,157,1.4.1,1
+9526,54,1.4.1.3,0
+9532,54,1.4.1.3,0
+9532,157,1.4.1,1
+9536,54,1.4.1.3,0
+9536,157,1.4.1,1
+9539,157,1.4.1,1
+9539,54,1.4.1.3,0
+9541,157,1.4.1,1
+9541,54,1.4.1.3,0
+9543,54,1.4.1.3,0
+9543,157,1.4.1,1
+9554,142,1.4.2,1
+9554,54,1.4.2.4,0
+9555,142,1.4.2,1
+9555,54,1.4.2.4,0
+9558,54,1.4.2.4,0
+9558,142,1.4.2,1
+9561,142,1.4.2,1
+9561,54,1.4.2.4,0
+9570,54,1.4.2.4,0
+9570,142,1.4.2,1
+9572,142,1.4.2,1
+9572,54,1.4.2.4,0
+9579,54,1.4.2.4,0
+9579,142,1.4.2,1
+9582,54,1.4.2.4,0
+9582,142,1.4.2,1
+9583,142,1.4.2,1
+9583,54,1.4.2.4,0
+9586,142,1.4.2,1
+9586,54,1.4.2.4,0
+9589,54,1.4.2.4,0
+9589,142,1.4.2,1
+9591,142,1.4.2,1
+9591,54,1.4.2.4,0
+9597,54,1.4.2.4,0
+9597,142,1.4.2,1
+9601,0,1.4.4,1
+9601,54,1.4.4.3,0
+9602,0,1.4.4,1
+9602,40,1.4.4,1
+9602,54,1.4.4.3,0
+9603,0,1.4.4,1
+9603,54,1.4.4.3,0
+9603,40,1.4.4,1
+9604,0,1.4.4,1
+9604,54,1.4.4.3,0
+9605,40,1.4.4,1
+9605,126,1.4,2
+9605,0,1.4.4,1
+9605,54,1.4.4.3,0
+9605,170,1,3
+9606,54,1.4.4.3,0
+9606,40,1.4.4,1
+9606,0,1.4.4,1
+9607,54,1.4.4.3,0
+9607,0,1.4.4,1
+9608,54,1.4.4.3,0
+9608,0,1.4.4,1
+9609,40,1.4.4,1
+9609,54,1.4.4.3,0
+9609,0,1.4.4,1
+9610,54,1.4.4.3,0
+9610,0,1.4.4,1
+9611,0,1.4.4,1
+9611,40,1.4.4,1
+9611,54,1.4.4.3,0
+9614,170,1,3
+9614,40,1.4.4,1
+9614,54,1.4.4.3,0
+9614,0,1.4.4,1
+9614,126,1.4,2
+9616,40,1.4.4,1
+9616,0,1.4.4,1
+9616,126,1.4,2
+9616,54,1.4.4.3,0
+9616,170,1,3
+9617,54,1.4.4.3,0
+9617,40,1.4.4,1
+9619,40,1.4.4,1
+9619,54,1.4.4.3,0
+9619,0,1.4.4,1
+9620,126,1.4,2
+9620,54,1.4.4.3,0
+9620,0,1.4.4,1
+9621,126,1.4,2
+9621,40,1.4.4,1
+9621,54,1.4.4.3,0
+9622,0,1.4.4,1
+9622,54,1.4.4.3,0
+9623,54,1.4.4.3,0
+9623,0,1.4.4,1
+9623,40,1.4.4,1
+9624,40,1.4.4,1
+9624,126,1.4,2
+9624,0,1.4.4,1
+9624,54,1.4.4.3,0
+9625,54,1.4.4.3,0
+9625,0,1.4.4,1
+9626,0,1.4.4,1
+9626,126,1.4,2
+9626,54,1.4.4.3,0
+9626,40,1.4.4,1
+9626,170,1,3
+9627,40,1.4.4,1
+9627,54,1.4.4.3,0
+9627,126,1.4,2
+9628,40,1.4.4,1
+9628,170,1,3
+9628,0,1.4.4,1
+9628,54,1.4.4.3,0
+9628,126,1.4,2
+9629,54,1.4.4.3,0
+9629,170,1,3
+9629,126,1.4,2
+9629,40,1.4.4,1
+9629,0,1.4.4,1
+9631,40,1.4.4,1
+9631,0,1.4.4,1
+9631,54,1.4.4.3,0
+9632,54,1.4.4.3,0
+9632,0,1.4.4,1
+9632,40,1.4.4,1
+9633,0,1.4.4,1
+9633,54,1.4.4.3,0
+9634,40,1.4.4,1
+9634,0,1.4.4,1
+9634,54,1.4.4.3,0
+9635,54,1.4.4.3,0
+9635,40,1.4.4,1
+9636,40,1.4.4,1
+9636,54,1.4.4.3,0
+9636,0,1.4.4,1
+9637,40,1.4.4,1
+9637,54,1.4.4.3,0
+9638,54,1.4.4.3,0
+9638,40,1.4.4,1
+9639,0,1.4.4,1
+9639,54,1.4.4.3,0
+9639,40,1.4.4,1
+9640,54,1.4.4.3,0
+9640,40,1.4.4,1
+9640,126,1.4,2
+9641,0,1.4.4,1
+9641,54,1.4.4.3,0
+9642,54,1.4.4.3,0
+9642,40,1.4.4,1
+9642,0,1.4.4,1
+9643,54,1.4.4.3,0
+9643,40,1.4.4,1
+9643,0,1.4.4,1
+9644,40,1.4.4,1
+9644,0,1.4.4,1
+9644,54,1.4.4.3,0
+9645,54,1.4.4.3,0
+9645,40,1.4.4,1
+9646,54,1.4.4.3,0
+9646,40,1.4.4,1
+9647,54,1.4.4.3,0
+9647,0,1.4.4,1
+9648,0,1.4.4,1
+9648,40,1.4.4,1
+9648,54,1.4.4.3,0
+9649,40,1.4.4,1
+9649,54,1.4.4.3,0
+9650,40,1.4.4,1
+9650,54,1.4.4.3,0
+9654,157,1.4.1,1
+9654,55,1.4.1.1,0
+9657,157,1.4.1,1
+9657,55,1.4.1.1,0
+9658,55,1.4.1.1,0
+9658,157,1.4.1,1
+9659,157,1.4.1,1
+9659,55,1.4.1.1,0
+9660,157,1.4.1,1
+9660,55,1.4.1.1,0
+9664,55,1.4.1.1,0
+9664,157,1.4.1,1
+9666,157,1.4.1,1
+9666,55,1.4.1.1,0
+9670,157,1.4.1,1
+9670,55,1.4.1.1,0
+9675,157,1.4.1,1
+9675,55,1.4.1.1,0
+9678,157,1.4.1,1
+9678,55,1.4.1.1,0
+9679,157,1.4.1,1
+9679,55,1.4.1.1,0
+9682,55,1.4.1.1,0
+9682,157,1.4.1,1
+9683,55,1.4.1.1,0
+9683,157,1.4.1,1
+9686,55,1.4.1.1,0
+9686,157,1.4.1,1
+9689,157,1.4.1,1
+9689,55,1.4.1.1,0
+9694,55,1.4.1.1,0
+9694,157,1.4.1,1
+9697,157,1.4.1,1
+9697,55,1.4.1.1,0
+9701,157,1.4.1,1
+9701,55,1.4.1.2,0
+9702,157,1.4.1,1
+9702,55,1.4.1.2,0
+9703,157,1.4.1,1
+9703,55,1.4.1.2,0
+9705,157,1.4.1,1
+9705,55,1.4.1.2,0
+9706,55,1.4.1.2,0
+9706,157,1.4.1,1
+9709,157,1.4.1,1
+9709,55,1.4.1.2,0
+9714,55,1.4.1.2,0
+9714,157,1.4.1,1
+9716,157,1.4.1,1
+9716,55,1.4.1.2,0
+9720,55,1.4.1.2,0
+9720,157,1.4.1,1
+9722,157,1.4.1,1
+9722,55,1.4.1.2,0
+9725,157,1.4.1,1
+9725,55,1.4.1.2,0
+9726,157,1.4.1,1
+9726,55,1.4.1.2,0
+9729,157,1.4.1,1
+9729,55,1.4.1.2,0
+9731,55,1.4.1.2,0
+9731,157,1.4.1,1
+9732,55,1.4.1.2,0
+9732,157,1.4.1,1
+9733,55,1.4.1.2,0
+9733,157,1.4.1,1
+9734,157,1.4.1,1
+9734,55,1.4.1.2,0
+9736,55,1.4.1.2,0
+9736,157,1.4.1,1
+9742,157,1.4.1,1
+9742,55,1.4.1.2,0
+9744,55,1.4.1.2,0
+9744,157,1.4.1,1
+9747,157,1.4.1,1
+9747,55,1.4.1.2,0
+9748,157,1.4.1,1
+9748,55,1.4.1.2,0
+9752,157,1.4.1,1
+9752,55,1.4.1.3,0
+9754,157,1.4.1,1
+9754,55,1.4.1.3,0
+9755,157,1.4.1,1
+9755,55,1.4.1.3,0
+9761,55,1.4.1.3,0
+9761,157,1.4.1,1
+9766,157,1.4.1,1
+9766,55,1.4.1.3,0
+9769,157,1.4.1,1
+9769,55,1.4.1.3,0
+9772,157,1.4.1,1
+9772,55,1.4.1.3,0
+9779,55,1.4.1.3,0
+9779,157,1.4.1,1
+9781,55,1.4.1.3,0
+9781,157,1.4.1,1
+9782,55,1.4.1.3,0
+9782,157,1.4.1,1
+9783,55,1.4.1.3,0
+9783,157,1.4.1,1
+9784,55,1.4.1.3,0
+9784,157,1.4.1,1
+9792,157,1.4.1,1
+9792,55,1.4.1.3,0
+9794,55,1.4.1.3,0
+9794,157,1.4.1,1
+9798,55,1.4.1.3,0
+9798,157,1.4.1,1
+9804,142,1.4.2,1
+9804,55,1.4.2.1,0
+9805,142,1.4.2,1
+9805,55,1.4.2.1,0
+9806,142,1.4.2,1
+9806,55,1.4.2.1,0
+9807,55,1.4.2.1,0
+9807,142,1.4.2,1
+9808,55,1.4.2.1,0
+9808,142,1.4.2,1
+9809,142,1.4.2,1
+9809,55,1.4.2.1,0
+9810,142,1.4.2,1
+9810,55,1.4.2.1,0
+9811,55,1.4.2.1,0
+9811,142,1.4.2,1
+9822,142,1.4.2,1
+9822,55,1.4.2.1,0
+9823,55,1.4.2.1,0
+9823,142,1.4.2,1
+9829,55,1.4.2.1,0
+9829,142,1.4.2,1
+9831,55,1.4.2.1,0
+9831,142,1.4.2,1
+9832,55,1.4.2.1,0
+9832,142,1.4.2,1
+9834,142,1.4.2,1
+9834,55,1.4.2.1,0
+9836,142,1.4.2,1
+9836,55,1.4.2.1,0
+9839,142,1.4.2,1
+9839,55,1.4.2.1,0
+9843,142,1.4.2,1
+9843,55,1.4.2.1,0
+9844,55,1.4.2.1,0
+9844,142,1.4.2,1
+9847,142,1.4.2,1
+9847,55,1.4.2.1,0
+9848,142,1.4.2,1
+9848,55,1.4.2.1,0
+9851,170,1,3
+9851,55,1.4.2.2,0
+9851,142,1.4.2,1
+9851,126,1.4,2
+9852,142,1.4.2,1
+9852,55,1.4.2.2,0
+9853,142,1.4.2,1
+9853,55,1.4.2.2,0
+9854,142,1.4.2,1
+9854,55,1.4.2.2,0
+9855,142,1.4.2,1
+9855,55,1.4.2.2,0
+9856,142,1.4.2,1
+9856,55,1.4.2.2,0
+9857,55,1.4.2.2,0
+9857,142,1.4.2,1
+9858,55,1.4.2.2,0
+9858,142,1.4.2,1
+9859,142,1.4.2,1
+9859,55,1.4.2.2,0
+9860,126,1.4,2
+9860,142,1.4.2,1
+9860,170,1,3
+9860,55,1.4.2.2,0
+9861,142,1.4.2,1
+9861,126,1.4,2
+9861,170,1,3
+9861,55,1.4.2.2,0
+9864,142,1.4.2,1
+9864,170,1,3
+9864,55,1.4.2.2,0
+9864,126,1.4,2
+9866,126,1.4,2
+9866,55,1.4.2.2,0
+9866,142,1.4.2,1
+9866,170,1,3
+9869,142,1.4.2,1
+9869,55,1.4.2.2,0
+9869,126,1.4,2
+9869,170,1,3
+9870,55,1.4.2.2,0
+9870,142,1.4.2,1
+9872,142,1.4.2,1
+9872,55,1.4.2.2,0
+9873,55,1.4.2.2,0
+9873,142,1.4.2,1
+9874,142,1.4.2,1
+9874,55,1.4.2.2,0
+9875,170,1,3
+9875,142,1.4.2,1
+9875,126,1.4,2
+9875,55,1.4.2.2,0
+9876,142,1.4.2,1
+9876,55,1.4.2.2,0
+9878,142,1.4.2,1
+9878,55,1.4.2.2,0
+9879,55,1.4.2.2,0
+9879,142,1.4.2,1
+9881,55,1.4.2.2,0
+9881,142,1.4.2,1
+9882,55,1.4.2.2,0
+9882,142,1.4.2,1
+9883,55,1.4.2.2,0
+9883,142,1.4.2,1
+9884,142,1.4.2,1
+9884,55,1.4.2.2,0
+9886,142,1.4.2,1
+9886,55,1.4.2.2,0
+9889,55,1.4.2.2,0
+9889,126,1.4,2
+9889,170,1,3
+9889,142,1.4.2,1
+9891,55,1.4.2.2,0
+9891,142,1.4.2,1
+9892,126,1.4,2
+9892,170,1,3
+9892,55,1.4.2.2,0
+9892,142,1.4.2,1
+9893,142,1.4.2,1
+9893,55,1.4.2.2,0
+9894,55,1.4.2.2,0
+9894,142,1.4.2,1
+9897,142,1.4.2,1
+9897,55,1.4.2.2,0
+9898,142,1.4.2,1
+9898,55,1.4.2.2,0
+9901,55,1.4.4.4,0
+9901,0,1.4.4,1
+9902,55,1.4.4.4,0
+9902,40,1.4.4,1
+9902,0,1.4.4,1
+9903,55,1.4.4.4,0
+9903,0,1.4.4,1
+9903,40,1.4.4,1
+9904,55,1.4.4.4,0
+9904,0,1.4.4,1
+9905,55,1.4.4.4,0
+9905,0,1.4.4,1
+9905,40,1.4.4,1
+9905,126,1.4,2
+9906,40,1.4.4,1
+9906,0,1.4.4,1
+9906,126,1.4,2
+9906,55,1.4.4.4,0
+9906,170,1,3
+9907,55,1.4.4.4,0
+9907,0,1.4.4,1
+9908,55,1.4.4.4,0
+9908,0,1.4.4,1
+9909,40,1.4.4,1
+9909,0,1.4.4,1
+9909,55,1.4.4.4,0
+9910,55,1.4.4.4,0
+9910,0,1.4.4,1
+9911,0,1.4.4,1
+9911,126,1.4,2
+9911,40,1.4.4,1
+9911,170,1,3
+9911,55,1.4.4.4,0
+9914,170,1,3
+9914,40,1.4.4,1
+9914,0,1.4.4,1
+9914,55,1.4.4.4,0
+9914,126,1.4,2
+9916,40,1.4.4,1
+9916,55,1.4.4.4,0
+9916,0,1.4.4,1
+9917,55,1.4.4.4,0
+9917,40,1.4.4,1
+9919,0,1.4.4,1
+9919,55,1.4.4.4,0
+9919,40,1.4.4,1
+9919,126,1.4,2
+9919,170,1,3
+9920,55,1.4.4.4,0
+9920,0,1.4.4,1
+9921,40,1.4.4,1
+9921,55,1.4.4.4,0
+9922,55,1.4.4.4,0
+9922,0,1.4.4,1
+9923,55,1.4.4.4,0
+9923,0,1.4.4,1
+9923,40,1.4.4,1
+9924,40,1.4.4,1
+9924,55,1.4.4.4,0
+9924,126,1.4,2
+9924,0,1.4.4,1
+9925,170,1,3
+9925,0,1.4.4,1
+9925,126,1.4,2
+9925,55,1.4.4.4,0
+9926,0,1.4.4,1
+9926,126,1.4,2
+9926,55,1.4.4.4,0
+9926,40,1.4.4,1
+9926,170,1,3
+9927,40,1.4.4,1
+9927,55,1.4.4.4,0
+9928,40,1.4.4,1
+9928,170,1,3
+9928,0,1.4.4,1
+9928,126,1.4,2
+9928,55,1.4.4.4,0
+9929,0,1.4.4,1
+9929,55,1.4.4.4,0
+9929,40,1.4.4,1
+9931,40,1.4.4,1
+9931,55,1.4.4.4,0
+9931,0,1.4.4,1
+9931,126,1.4,2
+9931,170,1,3
+9932,55,1.4.4.4,0
+9932,0,1.4.4,1
+9932,126,1.4,2
+9932,40,1.4.4,1
+9932,170,1,3
+9933,55,1.4.4.4,0
+9933,0,1.4.4,1
+9934,55,1.4.4.4,0
+9934,0,1.4.4,1
+9934,40,1.4.4,1
+9934,126,1.4,2
+9934,170,1,3
+9935,40,1.4.4,1
+9935,55,1.4.4.4,0
+9935,126,1.4,2
+9936,40,1.4.4,1
+9936,0,1.4.4,1
+9936,55,1.4.4.4,0
+9937,55,1.4.4.4,0
+9937,40,1.4.4,1
+9938,40,1.4.4,1
+9938,55,1.4.4.4,0
+9939,0,1.4.4,1
+9939,40,1.4.4,1
+9939,55,1.4.4.4,0
+9939,126,1.4,2
+9939,170,1,3
+9940,55,1.4.4.4,0
+9940,40,1.4.4,1
+9941,55,1.4.4.4,0
+9941,0,1.4.4,1
+9942,55,1.4.4.4,0
+9942,40,1.4.4,1
+9942,0,1.4.4,1
+9943,55,1.4.4.4,0
+9943,170,1,3
+9943,40,1.4.4,1
+9943,0,1.4.4,1
+9943,126,1.4,2
+9944,170,1,3
+9944,0,1.4.4,1
+9944,55,1.4.4.4,0
+9944,40,1.4.4,1
+9944,126,1.4,2
+9945,55,1.4.4.4,0
+9945,40,1.4.4,1
+9946,55,1.4.4.4,0
+9946,40,1.4.4,1
+9947,0,1.4.4,1
+9947,126,1.4,2
+9947,55,1.4.4.4,0
+9948,0,1.4.4,1
+9948,40,1.4.4,1
+9948,55,1.4.4.4,0
+9949,40,1.4.4,1
+9949,55,1.4.4.4,0
+9950,55,1.4.4.4,0
+9950,40,1.4.4,1
+9961,105,1.1,1
+9961,56,1.1.1,0
+9966,105,1.1,1
+9966,56,1.1.1,0
+9973,94,1.1,1
+9973,56,1.1.1,0
+9979,86,1.1,1
+9979,56,1.1.1,0
+9984,94,1.1,1
+9984,56,1.1.1,0
+9993,56,1.1.1,0
+9993,86,1.1,1
+9994,56,1.1.1,0
+9994,106,1.1,1
+10002,39,1.3.1,1
+10002,85,1.3.1,1
+10002,99,1.3.1,1
+10002,56,1.3.1.7,0
+10003,93,1.3.1,1
+10003,56,1.3.1.7,0
+10004,85,1.3.1,1
+10004,56,1.3.1.7,0
+10005,39,1.3.1,1
+10005,99,1.3.1,1
+10005,85,1.3.1,1
+10005,56,1.3.1.7,0
+10006,93,1.3.1,1
+10006,56,1.3.1.7,0
+10007,93,1.3.1,1
+10007,56,1.3.1.7,0
+10008,85,1.3.1,1
+10008,56,1.3.1.7,0
+10009,56,1.3.1.7,0
+10009,39,1.3.1,1
+10010,39,1.3.1,1
+10010,56,1.3.1.7,0
+10010,99,1.3.1,1
+10011,100,1.3.1,1
+10011,56,1.3.1.7,0
+10014,100,1.3.1,1
+10014,99,1.3.1,1
+10014,56,1.3.1.7,0
+10014,85,1.3.1,1
+10016,106,1.3,2
+10016,100,1.3.1,1
+10016,99,1.3.1,1
+10016,56,1.3.1.7,0
+10019,100,1.3.1,1
+10019,56,1.3.1.7,0
+10019,93,1.3.1,1
+10020,93,1.3.1,1
+10020,56,1.3.1.7,0
+10021,93,1.3.1,1
+10021,56,1.3.1.7,0
+10021,99,1.3.1,1
+10022,56,1.3.1.7,0
+10022,39,1.3.1,1
+10023,100,1.3.1,1
+10023,93,1.3.1,1
+10023,56,1.3.1.7,0
+10024,56,1.3.1.7,0
+10024,100,1.3.1,1
+10024,39,1.3.1,1
+10025,39,1.3.1,1
+10025,56,1.3.1.7,0
+10026,56,1.3.1.7,0
+10026,85,1.3.1,1
+10028,56,1.3.1.7,0
+10028,85,1.3.1,1
+10029,56,1.3.1.7,0
+10029,85,1.3.1,1
+10029,93,1.3.1,1
+10031,85,1.3.1,1
+10031,39,1.3.1,1
+10031,56,1.3.1.7,0
+10032,56,1.3.1.7,0
+10032,85,1.3.1,1
+10033,85,1.3.1,1
+10033,56,1.3.1.7,0
+10034,93,1.3.1,1
+10034,56,1.3.1.7,0
+10035,56,1.3.1.7,0
+10035,100,1.3.1,1
+10035,93,1.3.1,1
+10036,100,1.3.1,1
+10036,85,1.3.1,1
+10036,56,1.3.1.7,0
+10037,93,1.3.1,1
+10037,56,1.3.1.7,0
+10038,56,1.3.1.7,0
+10038,99,1.3.1,1
+10039,56,1.3.1.7,0
+10039,99,1.3.1,1
+10039,39,1.3.1,1
+10039,100,1.3.1,1
+10039,93,1.3.1,1
+10040,100,1.3.1,1
+10040,56,1.3.1.7,0
+10041,100,1.3.1,1
+10041,56,1.3.1.7,0
+10042,100,1.3.1,1
+10042,56,1.3.1.7,0
+10042,99,1.3.1,1
+10044,56,1.3.1.7,0
+10044,99,1.3.1,1
+10047,85,1.3.1,1
+10047,56,1.3.1.7,0
+10048,99,1.3.1,1
+10048,56,1.3.1.7,0
+10048,100,1.3.1,1
+10049,56,1.3.1.7,0
+10049,93,1.3.1,1
+10050,56,1.3.1.7,0
+10050,85,1.3.1,1
+10050,93,1.3.1,1
+10053,97,1.3.3,1
+10053,57,1.3.3.3,0
+10053,99,1.3.3,1
+10054,57,1.3.3.3,0
+10054,75,1.3.3,1
+10055,75,1.3.3,1
+10055,57,1.3.3.3,0
+10056,97,1.3.3,1
+10056,57,1.3.3.3,0
+10057,57,1.3.3.3,0
+10057,75,1.3.3,1
+10058,97,1.3.3,1
+10058,57,1.3.3.3,0
+10060,57,1.3.3.3,0
+10060,75,1.3.3,1
+10061,97,1.3.3,1
+10061,57,1.3.3.3,0
+10064,99,1.3.3,1
+10064,57,1.3.3.3,0
+10064,97,1.3.3,1
+10069,99,1.3.3,1
+10069,57,1.3.3.3,0
+10069,29,1.3,2
+10070,75,1.3.3,1
+10070,57,1.3.3.3,0
+10072,99,1.3.3,1
+10072,57,1.3.3.3,0
+10073,57,1.3.3.3,0
+10073,99,1.3.3,1
+10073,75,1.3.3,1
+10077,29,1.3,2
+10077,170,1,3
+10077,57,1.3.3.3,0
+10077,106,1.3,2
+10077,97,1.3.3,1
+10079,57,1.3.3.3,0
+10079,170,1,3
+10079,99,1.3.3,1
+10079,106,1.3,2
+10079,75,1.3.3,1
+10081,57,1.3.3.3,0
+10081,97,1.3.3,1
+10082,99,1.3.3,1
+10082,57,1.3.3.3,0
+10083,75,1.3.3,1
+10083,57,1.3.3.3,0
+10084,57,1.3.3.3,0
+10084,97,1.3.3,1
+10088,99,1.3.3,1
+10088,57,1.3.3.3,0
+10089,57,1.3.3.3,0
+10089,99,1.3.3,1
+10092,57,1.3.3.3,0
+10092,99,1.3.3,1
+10093,99,1.3.3,1
+10093,57,1.3.3.3,0
+10094,106,1.3,2
+10094,57,1.3.3.3,0
+10094,170,1,3
+10094,99,1.3.3,1
+10094,75,1.3.3,1
+10094,29,1.3,2
+10097,99,1.3.3,1
+10097,57,1.3.3.3,0
+10097,75,1.3.3,1
+10098,57,1.3.3.3,0
+10098,99,1.3.3,1
+10101,57,2.3.1,0
+10101,126,2.3,1
+10102,126,2.3,1
+10102,57,2.3.1,0
+10104,84,2.3,1
+10104,57,2.3.1,0
+10105,126,2.3,1
+10105,95,2.3,1
+10105,57,2.3.1,0
+10107,57,2.3.1,0
+10107,95,2.3,1
+10108,57,2.3.1,0
+10108,84,2.3,1
+10109,84,2.3,1
+10109,57,2.3.1,0
+10111,57,2.3.1,0
+10111,126,2.3,1
+10114,155,2.3,1
+10114,99,2.3,1
+10114,57,2.3.1,0
+10119,99,2.3,1
+10119,57,2.3.1,0
+10120,57,2.3.1,0
+10120,124,2.3,1
+10121,95,2.3,1
+10121,57,2.3.1,0
+10122,99,2.3,1
+10122,57,2.3.1,0
+10124,57,2.3.1,0
+10124,95,2.3,1
+10126,126,2.3,1
+10126,57,2.3.1,0
+10126,95,2.3,1
+10128,95,2.3,1
+10128,57,2.3.1,0
+10129,124,2.3,1
+10129,126,2.3,1
+10129,57,2.3.1,0
+10131,57,2.3.1,0
+10131,95,2.3,1
+10132,155,2.3,1
+10132,57,2.3.1,0
+10133,57,2.3.1,0
+10133,95,2.3,1
+10136,126,2.3,1
+10136,57,2.3.1,0
+10137,95,2.3,1
+10137,124,2.3,1
+10137,57,2.3.1,0
+10139,57,2.3.1,0
+10139,99,2.3,1
+10141,124,2.3,1
+10141,57,2.3.1,0
+10142,124,2.3,1
+10142,57,2.3.1,0
+10143,95,2.3,1
+10143,57,2.3.1,0
+10144,57,2.3.1,0
+10144,124,2.3,1
+10145,57,2.3.1,0
+10145,124,2.3,1
+10148,57,2.3.1,0
+10148,126,2.3,1
+10148,155,2.3,1
+10148,95,2.3,1
+10149,126,2.3,1
+10149,57,2.3.1,0
+10150,57,2.3.1,0
+10150,155,2.3,1
+10152,95,2.3,1
+10152,57,2.3.2,0
+10152,99,2.3,1
+10152,84,2.3,1
+10152,124,2.3,1
+10155,57,2.3.2,0
+10155,124,2.3,1
+10157,155,2.3,1
+10157,57,2.3.2,0
+10157,84,2.3,1
+10161,57,2.3.2,0
+10161,99,2.3,1
+10162,57,2.3.2,0
+10162,126,2.3,1
+10162,155,2.3,1
+10164,57,2.3.2,0
+10164,84,2.3,1
+10166,124,2.3,1
+10166,57,2.3.2,0
+10166,84,2.3,1
+10170,126,2.3,1
+10170,57,2.3.2,0
+10170,84,2.3,1
+10171,57,2.3.2,0
+10171,155,2.3,1
+10172,155,2.3,1
+10172,57,2.3.2,0
+10173,57,2.3.2,0
+10173,155,2.3,1
+10174,57,2.3.2,0
+10174,95,2.3,1
+10176,155,2.3,1
+10176,57,2.3.2,0
+10179,57,2.3.2,0
+10179,124,2.3,1
+10179,95,2.3,1
+10182,95,2.3,1
+10182,124,2.3,1
+10182,57,2.3.2,0
+10183,57,2.3.2,0
+10183,95,2.3,1
+10189,57,2.3.2,0
+10189,99,2.3,1
+10191,126,2.3,1
+10191,57,2.3.2,0
+10192,126,2.3,1
+10192,57,2.3.2,0
+10193,155,2.3,1
+10193,57,2.3.2,0
+10194,95,2.3,1
+10194,126,2.3,1
+10194,57,2.3.2,0
+10195,155,2.3,1
+10195,57,2.3.2,0
+10197,57,2.3.2,0
+10197,99,2.3,1
+10198,95,2.3,1
+10198,57,2.3.2,0
+10198,124,2.3,1
+10199,95,2.3,1
+10199,57,2.3.2,0
+10199,124,2.3,1
+10202,124,2.3,1
+10202,99,2.3,1
+10202,57,2.3.3,0
+10203,57,2.3.3,0
+10203,155,2.3,1
+10207,57,2.3.3,0
+10207,84,2.3,1
+10209,57,2.3.3,0
+10209,99,2.3,1
+10211,126,2.3,1
+10211,124,2.3,1
+10211,57,2.3.3,0
+10211,155,2.3,1
+10214,155,2.3,1
+10214,57,2.3.3,0
+10214,124,2.3,1
+10214,84,2.3,1
+10216,57,2.3.3,0
+10216,84,2.3,1
+10220,126,2.3,1
+10220,57,2.3.3,0
+10220,99,2.3,1
+10220,84,2.3,1
+10222,95,2.3,1
+10222,57,2.3.3,0
+10223,57,2.3.3,0
+10223,95,2.3,1
+10226,99,2.3,1
+10226,155,2.3,1
+10226,57,2.3.3,0
+10228,99,2.3,1
+10228,57,2.3.3,0
+10231,84,2.3,1
+10231,57,2.3.3,0
+10232,124,2.3,1
+10232,57,2.3.3,0
+10233,57,2.3.3,0
+10233,124,2.3,1
+10234,57,2.3.3,0
+10234,95,2.3,1
+10235,155,2.3,1
+10235,57,2.3.3,0
+10235,126,2.3,1
+10236,99,2.3,1
+10236,57,2.3.3,0
+10236,124,2.3,1
+10238,126,2.3,1
+10238,57,2.3.3,0
+10239,57,2.3.3,0
+10239,84,2.3,1
+10241,126,2.3,1
+10241,57,2.3.3,0
+10243,57,2.3.3,0
+10243,84,2.3,1
+10243,95,2.3,1
+10244,95,2.3,1
+10244,57,2.3.3,0
+10248,155,2.3,1
+10248,57,2.3.3,0
+10250,57,2.3.3,0
+10250,95,2.3,1
+10251,126,1.2,1
+10251,58,1.2.2,0
+10252,58,1.2.2,0
+10252,106,1.2,1
+10254,67,1.2,1
+10254,58,1.2.2,0
+10254,126,1.2,1
+10255,67,1.2,1
+10255,126,1.2,1
+10255,58,1.2.2,0
+10256,58,1.2.2,0
+10256,126,1.2,1
+10257,67,1.2,1
+10257,58,1.2.2,0
+10258,106,1.2,1
+10258,58,1.2.2,0
+10259,67,1.2,1
+10259,58,1.2.2,0
+10260,58,1.2.2,0
+10260,67,1.2,1
+10262,106,1.2,1
+10262,126,1.2,1
+10262,58,1.2.2,0
+10264,67,1.2,1
+10264,58,1.2.2,0
+10264,126,1.2,1
+10266,58,1.2.2,0
+10266,126,1.2,1
+10269,126,1.2,1
+10269,58,1.2.2,0
+10272,58,1.2.2,0
+10272,67,1.2,1
+10273,106,1.2,1
+10273,58,1.2.2,0
+10274,126,1.2,1
+10274,58,1.2.2,0
+10276,126,1.2,1
+10276,97,1.2,1
+10276,58,1.2.2,0
+10277,126,1.2,1
+10277,58,1.2.2,0
+10278,58,1.2.2,0
+10278,97,1.2,1
+10279,106,1.2,1
+10279,58,1.2.2,0
+10279,97,1.2,1
+10281,97,1.2,1
+10281,126,1.2,1
+10281,58,1.2.2,0
+10282,106,1.2,1
+10282,58,1.2.2,0
+10283,106,1.2,1
+10283,58,1.2.2,0
+10284,97,1.2,1
+10284,58,1.2.2,0
+10285,58,1.2.2,0
+10285,126,1.2,1
+10286,126,1.2,1
+10286,58,1.2.2,0
+10288,126,1.2,1
+10288,58,1.2.2,0
+10289,126,1.2,1
+10289,58,1.2.2,0
+10289,97,1.2,1
+10290,106,1.2,1
+10290,126,1.2,1
+10290,58,1.2.2,0
+10291,126,1.2,1
+10291,67,1.2,1
+10291,58,1.2.2,0
+10292,58,1.2.2,0
+10292,106,1.2,1
+10293,67,1.2,1
+10293,106,1.2,1
+10293,58,1.2.2,0
+10294,106,1.2,1
+10294,58,1.2.2,0
+10295,58,1.2.2,0
+10295,106,1.2,1
+10297,67,1.2,1
+10297,58,1.2.2,0
+10298,67,1.2,1
+10298,126,1.2,1
+10298,58,1.2.2,0
+10298,97,1.2,1
+10302,58,1.3.1.6,0
+10302,85,1.3.1,1
+10302,99,1.3.1,1
+10303,93,1.3.1,1
+10303,58,1.3.1.6,0
+10303,99,1.3.1,1
+10303,100,1.3.1,1
+10304,39,1.3.1,1
+10304,58,1.3.1.6,0
+10304,93,1.3.1,1
+10305,39,1.3.1,1
+10305,58,1.3.1.6,0
+10305,85,1.3.1,1
+10306,93,1.3.1,1
+10306,39,1.3.1,1
+10306,58,1.3.1.6,0
+10306,100,1.3.1,1
+10307,99,1.3.1,1
+10307,58,1.3.1.6,0
+10308,39,1.3.1,1
+10308,100,1.3.1,1
+10308,58,1.3.1.6,0
+10309,58,1.3.1.6,0
+10309,39,1.3.1,1
+10310,85,1.3.1,1
+10310,58,1.3.1.6,0
+10312,58,1.3.1.6,0
+10312,100,1.3.1,1
+10314,58,1.3.1.6,0
+10314,100,1.3.1,1
+10314,93,1.3.1,1
+10316,58,1.3.1.6,0
+10316,85,1.3.1,1
+10316,39,1.3.1,1
+10316,93,1.3.1,1
+10317,100,1.3.1,1
+10317,58,1.3.1.6,0
+10319,100,1.3.1,1
+10319,58,1.3.1.6,0
+10319,93,1.3.1,1
+10320,58,1.3.1.6,0
+10320,39,1.3.1,1
+10321,100,1.3.1,1
+10321,58,1.3.1.6,0
+10322,93,1.3.1,1
+10322,58,1.3.1.6,0
+10322,39,1.3.1,1
+10323,58,1.3.1.6,0
+10323,85,1.3.1,1
+10323,39,1.3.1,1
+10325,39,1.3.1,1
+10325,58,1.3.1.6,0
+10326,39,1.3.1,1
+10326,93,1.3.1,1
+10326,58,1.3.1.6,0
+10327,85,1.3.1,1
+10327,58,1.3.1.6,0
+10328,58,1.3.1.6,0
+10328,85,1.3.1,1
+10329,93,1.3.1,1
+10329,85,1.3.1,1
+10329,58,1.3.1.6,0
+10330,100,1.3.1,1
+10330,58,1.3.1.6,0
+10331,85,1.3.1,1
+10331,39,1.3.1,1
+10331,58,1.3.1.6,0
+10332,93,1.3.1,1
+10332,58,1.3.1.6,0
+10332,85,1.3.1,1
+10334,58,1.3.1.6,0
+10334,39,1.3.1,1
+10335,58,1.3.1.6,0
+10335,100,1.3.1,1
+10336,39,1.3.1,1
+10336,58,1.3.1.6,0
+10337,58,1.3.1.6,0
+10337,85,1.3.1,1
+10339,93,1.3.1,1
+10339,39,1.3.1,1
+10339,99,1.3.1,1
+10339,29,1.3,2
+10339,58,1.3.1.6,0
+10341,58,1.3.1.6,0
+10341,93,1.3.1,1
+10343,85,1.3.1,1
+10343,93,1.3.1,1
+10343,58,1.3.1.6,0
+10344,58,1.3.1.6,0
+10344,85,1.3.1,1
+10344,99,1.3.1,1
+10345,58,1.3.1.6,0
+10345,100,1.3.1,1
+10347,85,1.3.1,1
+10347,58,1.3.1.6,0
+10348,85,1.3.1,1
+10348,99,1.3.1,1
+10348,58,1.3.1.6,0
+10348,93,1.3.1,1
+10349,58,1.3.1.6,0
+10349,93,1.3.1,1
+10349,99,1.3.1,1
+10352,29,1.3,1
+10352,58,1.3.2,0
+10354,58,1.3.2,0
+10354,29,1.3,1
+10355,106,1.3,1
+10355,29,1.3,1
+10355,170,1,2
+10355,58,1.3.2,0
+10356,29,1.3,1
+10356,58,1.3.2,0
+10357,29,1.3,1
+10357,58,1.3.2,0
+10357,170,1,2
+10358,170,1,2
+10358,29,1.3,1
+10358,58,1.3.2,0
+10359,29,1.3,1
+10359,58,1.3.2,0
+10360,29,1.3,1
+10360,58,1.3.2,0
+10361,106,1.3,1
+10361,58,1.3.2,0
+10361,29,1.3,1
+10364,170,1,2
+10364,106,1.3,1
+10364,29,1.3,1
+10364,58,1.3.2,0
+10366,106,1.3,1
+10366,29,1.3,1
+10366,58,1.3.2,0
+10366,170,1,2
+10369,106,1.3,1
+10369,58,1.3.2,0
+10372,29,1.3,1
+10372,58,1.3.2,0
+10373,106,1.3,1
+10373,58,1.3.2,0
+10373,29,1.3,1
+10374,58,1.3.2,0
+10374,106,1.3,1
+10376,106,1.3,1
+10376,170,1,2
+10376,29,1.3,1
+10376,58,1.3.2,0
+10377,106,1.3,1
+10377,58,1.3.2,0
+10378,29,1.3,1
+10378,58,1.3.2,0
+10379,29,1.3,1
+10379,106,1.3,1
+10379,58,1.3.2,0
+10381,29,1.3,1
+10381,58,1.3.2,0
+10381,106,1.3,1
+10382,29,1.3,1
+10382,58,1.3.2,0
+10383,29,1.3,1
+10383,58,1.3.2,0
+10384,29,1.3,1
+10384,58,1.3.2,0
+10385,58,1.3.2,0
+10385,106,1.3,1
+10386,106,1.3,1
+10386,29,1.3,1
+10386,58,1.3.2,0
+10387,58,1.3.2,0
+10387,106,1.3,1
+10388,106,1.3,1
+10388,58,1.3.2,0
+10389,58,1.3.2,0
+10389,29,1.3,1
+10390,106,1.3,1
+10390,58,1.3.2,0
+10391,58,1.3.2,0
+10391,170,1,2
+10391,29,1.3,1
+10392,106,1.3,1
+10392,58,1.3.2,0
+10393,29,1.3,1
+10393,58,1.3.2,0
+10393,106,1.3,1
+10394,58,1.3.2,0
+10394,170,1,2
+10394,29,1.3,1
+10394,106,1.3,1
+10395,58,1.3.2,0
+10395,106,1.3,1
+10397,58,1.3.2,0
+10397,29,1.3,1
+10398,106,1.3,1
+10398,58,1.3.2,0
+10398,29,1.3,1
+10399,106,1.3,1
+10399,58,1.3.2,0
+10400,58,1.3.2,0
+10400,106,1.3,1
+10402,77,1.3.4,1
+10402,81,1.3.4,1
+10402,58,1.3.4.1,0
+10405,81,1.3.4,1
+10405,58,1.3.4.1,0
+10405,77,1.3.4,1
+10406,80,1.3.4,1
+10406,58,1.3.4.1,0
+10407,80,1.3.4,1
+10407,58,1.3.4.1,0
+10409,77,1.3.4,1
+10409,58,1.3.4.1,0
+10411,58,1.3.4.1,0
+10411,77,1.3.4,1
+10414,58,1.3.4.1,0
+10414,77,1.3.4,1
+10416,77,1.3.4,1
+10416,58,1.3.4.1,0
+10422,58,1.3.4.1,0
+10422,77,1.3.4,1
+10423,81,1.3.4,1
+10423,58,1.3.4.1,0
+10424,81,1.3.4,1
+10424,58,1.3.4.1,0
+10426,58,1.3.4.1,0
+10426,81,1.3.4,1
+10428,58,1.3.4.1,0
+10428,81,1.3.4,1
+10429,80,1.3.4,1
+10429,58,1.3.4.1,0
+10429,81,1.3.4,1
+10431,77,1.3.4,1
+10431,58,1.3.4.1,0
+10434,77,1.3.4,1
+10434,58,1.3.4.1,0
+10439,80,1.3.4,1
+10439,58,1.3.4.1,0
+10441,80,1.3.4,1
+10441,58,1.3.4.1,0
+10442,80,1.3.4,1
+10442,58,1.3.4.1,0
+10443,77,1.3.4,1
+10443,58,1.3.4.1,0
+10443,81,1.3.4,1
+10444,77,1.3.4,1
+10444,58,1.3.4.1,0
+10447,58,1.3.4.1,0
+10447,77,1.3.4,1
+10448,58,1.3.4.1,0
+10448,80,1.3.4,1
+10451,81,1.3.4,1
+10451,58,1.3.4.2,0
+10452,58,1.3.4.2,0
+10452,77,1.3.4,1
+10452,81,1.3.4,1
+10452,80,1.3.4,1
+10453,58,1.3.4.2,0
+10453,80,1.3.4,1
+10454,58,1.3.4.2,0
+10454,77,1.3.4,1
+10454,81,1.3.4,1
+10455,81,1.3.4,1
+10455,58,1.3.4.2,0
+10456,81,1.3.4,1
+10456,58,1.3.4.2,0
+10457,77,1.3.4,1
+10457,58,1.3.4.2,0
+10459,58,1.3.4.2,0
+10459,77,1.3.4,1
+10460,58,1.3.4.2,0
+10460,77,1.3.4,1
+10461,77,1.3.4,1
+10461,58,1.3.4.2,0
+10461,80,1.3.4,1
+10461,81,1.3.4,1
+10464,58,1.3.4.2,0
+10464,80,1.3.4,1
+10466,80,1.3.4,1
+10466,106,1.3,2
+10466,77,1.3.4,1
+10466,58,1.3.4.2,0
+10466,81,1.3.4,1
+10469,81,1.3.4,1
+10469,58,1.3.4.2,0
+10470,80,1.3.4,1
+10470,58,1.3.4.2,0
+10471,58,1.3.4.2,0
+10471,81,1.3.4,1
+10472,77,1.3.4,1
+10472,81,1.3.4,1
+10472,58,1.3.4.2,0
+10473,58,1.3.4.2,0
+10473,29,1.3,2
+10473,77,1.3.4,1
+10473,170,1,3
+10473,81,1.3.4,1
+10474,80,1.3.4,1
+10474,58,1.3.4.2,0
+10476,77,1.3.4,1
+10476,58,1.3.4.2,0
+10477,58,1.3.4.2,0
+10477,81,1.3.4,1
+10478,81,1.3.4,1
+10478,58,1.3.4.2,0
+10479,29,1.3,2
+10479,81,1.3.4,1
+10479,58,1.3.4.2,0
+10481,81,1.3.4,1
+10481,58,1.3.4.2,0
+10482,77,1.3.4,1
+10482,58,1.3.4.2,0
+10482,81,1.3.4,1
+10483,58,1.3.4.2,0
+10483,77,1.3.4,1
+10484,106,1.3,2
+10484,58,1.3.4.2,0
+10484,77,1.3.4,1
+10484,170,1,3
+10484,29,1.3,2
+10485,58,1.3.4.2,0
+10485,80,1.3.4,1
+10485,81,1.3.4,1
+10486,77,1.3.4,1
+10486,80,1.3.4,1
+10486,58,1.3.4.2,0
+10487,58,1.3.4.2,0
+10487,81,1.3.4,1
+10489,58,1.3.4.2,0
+10489,77,1.3.4,1
+10489,81,1.3.4,1
+10490,81,1.3.4,1
+10490,58,1.3.4.2,0
+10491,81,1.3.4,1
+10491,58,1.3.4.2,0
+10492,58,1.3.4.2,0
+10492,81,1.3.4,1
+10493,81,1.3.4,1
+10493,58,1.3.4.2,0
+10493,77,1.3.4,1
+10494,80,1.3.4,1
+10494,58,1.3.4.2,0
+10495,58,1.3.4.2,0
+10495,80,1.3.4,1
+10497,58,1.3.4.2,0
+10497,77,1.3.4,1
+10498,80,1.3.4,1
+10498,58,1.3.4.2,0
+10498,81,1.3.4,1
+10499,58,1.3.4.2,0
+10499,106,1.3,2
+10499,29,1.3,2
+10499,81,1.3.4,1
+10500,81,1.3.4,1
+10500,58,1.3.4.2,0
+10502,81,1.3.4,1
+10502,58,1.3.4.3,0
+10502,77,1.3.4,1
+10504,58,1.3.4.3,0
+10504,77,1.3.4,1
+10505,80,1.3.4,1
+10505,58,1.3.4.3,0
+10505,81,1.3.4,1
+10506,58,1.3.4.3,0
+10506,77,1.3.4,1
+10507,80,1.3.4,1
+10507,58,1.3.4.3,0
+10508,81,1.3.4,1
+10508,58,1.3.4.3,0
+10509,80,1.3.4,1
+10509,58,1.3.4.3,0
+10510,58,1.3.4.3,0
+10510,80,1.3.4,1
+10511,81,1.3.4,1
+10511,58,1.3.4.3,0
+10511,80,1.3.4,1
+10514,80,1.3.4,1
+10514,58,1.3.4.3,0
+10514,77,1.3.4,1
+10516,58,1.3.4.3,0
+10516,77,1.3.4,1
+10516,80,1.3.4,1
+10516,81,1.3.4,1
+10519,81,1.3.4,1
+10519,58,1.3.4.3,0
+10520,58,1.3.4.3,0
+10520,77,1.3.4,1
+10521,81,1.3.4,1
+10521,58,1.3.4.3,0
+10521,80,1.3.4,1
+10522,81,1.3.4,1
+10522,58,1.3.4.3,0
+10523,81,1.3.4,1
+10523,58,1.3.4.3,0
+10526,77,1.3.4,1
+10526,80,1.3.4,1
+10526,58,1.3.4.3,0
+10527,81,1.3.4,1
+10527,58,1.3.4.3,0
+10528,58,1.3.4.3,0
+10528,77,1.3.4,1
+10529,81,1.3.4,1
+10529,58,1.3.4.3,0
+10529,106,1.3,2
+10529,29,1.3,2
+10530,81,1.3.4,1
+10530,58,1.3.4.3,0
+10531,77,1.3.4,1
+10531,58,1.3.4.3,0
+10532,81,1.3.4,1
+10532,80,1.3.4,1
+10532,58,1.3.4.3,0
+10533,58,1.3.4.3,0
+10533,77,1.3.4,1
+10534,77,1.3.4,1
+10534,58,1.3.4.3,0
+10535,58,1.3.4.3,0
+10535,80,1.3.4,1
+10536,77,1.3.4,1
+10536,80,1.3.4,1
+10536,58,1.3.4.3,0
+10537,81,1.3.4,1
+10537,58,1.3.4.3,0
+10538,80,1.3.4,1
+10538,58,1.3.4.3,0
+10539,81,1.3.4,1
+10539,77,1.3.4,1
+10539,58,1.3.4.3,0
+10541,77,1.3.4,1
+10541,58,1.3.4.3,0
+10542,81,1.3.4,1
+10542,58,1.3.4.3,0
+10542,80,1.3.4,1
+10543,58,1.3.4.3,0
+10543,80,1.3.4,1
+10544,77,1.3.4,1
+10544,58,1.3.4.3,0
+10544,81,1.3.4,1
+10545,80,1.3.4,1
+10545,58,1.3.4.3,0
+10546,80,1.3.4,1
+10546,58,1.3.4.3,0
+10547,77,1.3.4,1
+10547,58,1.3.4.3,0
+10547,81,1.3.4,1
+10548,106,1.3,2
+10548,58,1.3.4.3,0
+10548,29,1.3,2
+10548,81,1.3.4,1
+10548,77,1.3.4,1
+10549,80,1.3.4,1
+10549,81,1.3.4,1
+10549,58,1.3.4.3,0
+10550,80,1.3.4,1
+10550,29,1.3,2
+10550,58,1.3.4.3,0
+10550,81,1.3.4,1
+10557,99,2.1,1
+10557,58,2.1.2,0
+10558,58,2.1.2,0
+10558,99,2.1,1
+10561,58,2.1.2,0
+10561,99,2.1,1
+10564,99,2.1,1
+10564,58,2.1.2,0
+10566,58,2.1.2,0
+10566,99,2.1,1
+10576,58,2.1.2,0
+10576,99,2.1,1
+10586,99,2.1,1
+10586,58,2.1.2,0
+10591,58,2.1.2,0
+10591,98,2,2
+10591,102,2,2
+10591,99,2.1,1
+10601,59,1.4.2.5,0
+10601,142,1.4.2,1
+10602,59,1.4.2.5,0
+10602,142,1.4.2,1
+10602,170,1,3
+10602,126,1.4,2
+10603,142,1.4.2,1
+10603,59,1.4.2.5,0
+10604,142,1.4.2,1
+10604,59,1.4.2.5,0
+10605,126,1.4,2
+10605,59,1.4.2.5,0
+10605,170,1,3
+10605,142,1.4.2,1
+10606,59,1.4.2.5,0
+10606,142,1.4.2,1
+10607,59,1.4.2.5,0
+10607,142,1.4.2,1
+10608,142,1.4.2,1
+10608,126,1.4,2
+10608,59,1.4.2.5,0
+10608,170,1,3
+10609,170,1,3
+10609,126,1.4,2
+10609,59,1.4.2.5,0
+10609,142,1.4.2,1
+10610,142,1.4.2,1
+10610,59,1.4.2.5,0
+10611,59,1.4.2.5,0
+10611,142,1.4.2,1
+10614,142,1.4.2,1
+10614,170,1,3
+10614,59,1.4.2.5,0
+10614,126,1.4,2
+10616,59,1.4.2.5,0
+10616,142,1.4.2,1
+10619,142,1.4.2,1
+10619,59,1.4.2.5,0
+10620,142,1.4.2,1
+10620,59,1.4.2.5,0
+10622,59,1.4.2.5,0
+10622,142,1.4.2,1
+10623,142,1.4.2,1
+10623,59,1.4.2.5,0
+10624,59,1.4.2.5,0
+10624,142,1.4.2,1
+10625,59,1.4.2.5,0
+10625,142,1.4.2,1
+10626,126,1.4,2
+10626,142,1.4.2,1
+10626,59,1.4.2.5,0
+10626,170,1,3
+10628,142,1.4.2,1
+10628,170,1,3
+10628,126,1.4,2
+10628,59,1.4.2.5,0
+10629,142,1.4.2,1
+10629,59,1.4.2.5,0
+10631,59,1.4.2.5,0
+10631,142,1.4.2,1
+10632,59,1.4.2.5,0
+10632,142,1.4.2,1
+10633,170,1,3
+10633,59,1.4.2.5,0
+10633,142,1.4.2,1
+10633,126,1.4,2
+10634,142,1.4.2,1
+10634,59,1.4.2.5,0
+10636,142,1.4.2,1
+10636,170,1,3
+10636,126,1.4,2
+10636,59,1.4.2.5,0
+10639,142,1.4.2,1
+10639,59,1.4.2.5,0
+10641,142,1.4.2,1
+10641,59,1.4.2.5,0
+10642,126,1.4,2
+10642,170,1,3
+10642,59,1.4.2.5,0
+10642,142,1.4.2,1
+10643,142,1.4.2,1
+10643,59,1.4.2.5,0
+10643,170,1,3
+10643,126,1.4,2
+10644,142,1.4.2,1
+10644,59,1.4.2.5,0
+10647,142,1.4.2,1
+10647,59,1.4.2.5,0
+10648,126,1.4,2
+10648,142,1.4.2,1
+10648,59,1.4.2.5,0
+10648,170,1,3
+10652,80,2.1.1,1
+10652,60,2.1.1.1,0
+10654,80,2.1.1,1
+10654,60,2.1.1.1,0
+10655,106,2.1.1,1
+10655,60,2.1.1.1,0
+10657,60,2.1.1.1,0
+10657,80,2.1.1,1
+10658,85,2.1.1,1
+10658,60,2.1.1.1,0
+10659,60,2.1.1.1,0
+10659,85,2.1.1,1
+10661,106,2.1.1,1
+10661,148,2.1.1,1
+10661,60,2.1.1.1,0
+10664,148,2.1.1,1
+10664,60,2.1.1.1,0
+10666,60,2.1.1.1,0
+10666,148,2.1.1,1
+10670,80,2.1.1,1
+10670,60,2.1.1.1,0
+10672,106,2.1.1,1
+10672,60,2.1.1.1,0
+10673,148,2.1.1,1
+10673,60,2.1.1.1,0
+10673,85,2.1.1,1
+10675,60,2.1.1.1,0
+10675,80,2.1.1,1
+10676,85,2.1.1,1
+10676,60,2.1.1.1,0
+10678,148,2.1.1,1
+10678,60,2.1.1.1,0
+10679,60,2.1.1.1,0
+10679,80,2.1.1,1
+10681,85,2.1.1,1
+10681,60,2.1.1.1,0
+10682,80,2.1.1,1
+10682,60,2.1.1.1,0
+10686,60,2.1.1.1,0
+10686,148,2.1.1,1
+10691,148,2.1.1,1
+10691,60,2.1.1.1,0
+10692,60,2.1.1.1,0
+10692,85,2.1.1,1
+10692,80,2.1.1,1
+10693,80,2.1.1,1
+10693,60,2.1.1.1,0
+10697,60,2.1.1.1,0
+10697,80,2.1.1,1
+10701,60,2.1.1.2,0
+10701,106,2.1.1,1
+10702,80,2.1.1,1
+10702,60,2.1.1.2,0
+10706,60,2.1.1.2,0
+10706,85,2.1.1,1
+10707,80,2.1.1,1
+10707,60,2.1.1.2,0
+10709,80,2.1.1,1
+10709,60,2.1.1.2,0
+10711,80,2.1.1,1
+10711,60,2.1.1.2,0
+10714,60,2.1.1.2,0
+10714,148,2.1.1,1
+10714,80,2.1.1,1
+10720,60,2.1.1.2,0
+10720,80,2.1.1,1
+10722,148,2.1.1,1
+10722,60,2.1.1.2,0
+10723,60,2.1.1.2,0
+10723,85,2.1.1,1
+10725,60,2.1.1.2,0
+10725,80,2.1.1,1
+10728,60,2.1.1.2,0
+10728,85,2.1.1,1
+10731,85,2.1.1,1
+10731,60,2.1.1.2,0
+10732,106,2.1.1,1
+10732,60,2.1.1.2,0
+10734,80,2.1.1,1
+10734,60,2.1.1.2,0
+10736,85,2.1.1,1
+10736,60,2.1.1.2,0
+10739,148,2.1.1,1
+10739,60,2.1.1.2,0
+10741,80,2.1.1,1
+10741,148,2.1.1,1
+10741,60,2.1.1.2,0
+10744,85,2.1.1,1
+10744,60,2.1.1.2,0
+10747,80,2.1.1,1
+10747,60,2.1.1.2,0
+10748,106,2.1.1,1
+10748,60,2.1.1.2,0
+10749,106,2.1.1,1
+10749,60,2.1.1.2,0
+10752,80,2.1.1,1
+10752,60,2.1.1.3,0
+10754,60,2.1.1.3,0
+10754,85,2.1.1,1
+10755,106,2.1.1,1
+10755,60,2.1.1.3,0
+10757,148,2.1.1,1
+10757,60,2.1.1.3,0
+10759,80,2.1.1,1
+10759,60,2.1.1.3,0
+10761,80,2.1.1,1
+10761,60,2.1.1.3,0
+10764,60,2.1.1.3,0
+10764,80,2.1.1,1
+10764,148,2.1.1,1
+10766,60,2.1.1.3,0
+10766,148,2.1.1,1
+10772,80,2.1.1,1
+10772,60,2.1.1.3,0
+10773,106,2.1.1,1
+10773,60,2.1.1.3,0
+10776,148,2.1.1,1
+10776,85,2.1.1,1
+10776,60,2.1.1.3,0
+10779,60,2.1.1.3,0
+10779,80,2.1.1,1
+10781,60,2.1.1.3,0
+10781,80,2.1.1,1
+10781,148,2.1.1,1
+10782,85,2.1.1,1
+10782,60,2.1.1.3,0
+10784,60,2.1.1.3,0
+10784,85,2.1.1,1
+10785,106,2.1.1,1
+10785,60,2.1.1.3,0
+10785,148,2.1.1,1
+10786,148,2.1.1,1
+10786,60,2.1.1.3,0
+10792,60,2.1.1.3,0
+10792,80,2.1.1,1
+10792,85,2.1.1,1
+10793,60,2.1.1.3,0
+10793,148,2.1.1,1
+10794,80,2.1.1,1
+10794,60,2.1.1.3,0
+10802,85,2.1.1,1
+10802,60,2.1.1.4,0
+10804,60,2.1.1.4,0
+10804,106,2.1.1,1
+10806,60,2.1.1.4,0
+10806,80,2.1.1,1
+10808,60,2.1.1.4,0
+10808,106,2.1.1,1
+10810,80,2.1.1,1
+10810,60,2.1.1.4,0
+10811,80,2.1.1,1
+10811,60,2.1.1.4,0
+10812,148,2.1.1,1
+10812,60,2.1.1.4,0
+10823,60,2.1.1.4,0
+10823,85,2.1.1,1
+10828,60,2.1.1.4,0
+10828,80,2.1.1,1
+10831,60,2.1.1.4,0
+10831,106,2.1.1,1
+10833,60,2.1.1.4,0
+10833,106,2.1.1,1
+10836,85,2.1.1,1
+10836,60,2.1.1.4,0
+10839,85,2.1.1,1
+10839,60,2.1.1.4,0
+10841,148,2.1.1,1
+10841,60,2.1.1.4,0
+10842,60,2.1.1.4,0
+10842,148,2.1.1,1
+10843,60,2.1.1.4,0
+10843,148,2.1.1,1
+10844,80,2.1.1,1
+10844,106,2.1.1,1
+10844,60,2.1.1.4,0
+10847,85,2.1.1,1
+10847,60,2.1.1.4,0
+10849,60,2.1.1.4,0
+10849,85,2.1.1,1
+10852,80,2.1.1,1
+10852,60,2.1.1.5,0
+10854,60,2.1.1.5,0
+10854,148,2.1.1,1
+10855,85,2.1.1,1
+10855,60,2.1.1.5,0
+10856,60,2.1.1.5,0
+10856,80,2.1.1,1
+10857,148,2.1.1,1
+10857,60,2.1.1.5,0
+10858,60,2.1.1.5,0
+10858,80,2.1.1,1
+10860,80,2.1.1,1
+10860,60,2.1.1.5,0
+10866,80,2.1.1,1
+10866,60,2.1.1.5,0
+10869,60,2.1.1.5,0
+10869,85,2.1.1,1
+10873,106,2.1.1,1
+10873,85,2.1.1,1
+10873,148,2.1.1,1
+10873,60,2.1.1.5,0
+10877,85,2.1.1,1
+10877,60,2.1.1.5,0
+10879,60,2.1.1.5,0
+10879,80,2.1.1,1
+10882,80,2.1.1,1
+10882,60,2.1.1.5,0
+10883,60,2.1.1.5,0
+10883,106,2.1.1,1
+10885,148,2.1.1,1
+10885,60,2.1.1.5,0
+10887,60,2.1.1.5,0
+10887,106,2.1.1,1
+10888,148,2.1.1,1
+10888,60,2.1.1.5,0
+10890,60,2.1.1.5,0
+10890,85,2.1.1,1
+10891,80,2.1.1,1
+10891,60,2.1.1.5,0
+10892,60,2.1.1.5,0
+10892,80,2.1.1,1
+10893,80,2.1.1,1
+10893,85,2.1.1,1
+10893,60,2.1.1.5,0
+10894,80,2.1.1,1
+10894,60,2.1.1.5,0
+10897,106,2.1.1,1
+10897,60,2.1.1.5,0
+10902,61,1.3.3.3,0
+10902,75,1.3.3,1
+10902,99,1.3.3,1
+10904,97,1.3.3,1
+10904,61,1.3.3.3,0
+10905,61,1.3.3.3,0
+10905,97,1.3.3,1
+10906,97,1.3.3,1
+10906,61,1.3.3.3,0
+10907,61,1.3.3.3,0
+10907,75,1.3.3,1
+10908,61,1.3.3.3,0
+10908,75,1.3.3,1
+10910,61,1.3.3.3,0
+10910,75,1.3.3,1
+10911,75,1.3.3,1
+10911,61,1.3.3.3,0
+10914,99,1.3.3,1
+10914,61,1.3.3.3,0
+10914,97,1.3.3,1
+10916,61,1.3.3.3,0
+10916,99,1.3.3,1
+10920,97,1.3.3,1
+10920,61,1.3.3.3,0
+10922,75,1.3.3,1
+10922,61,1.3.3.3,0
+10923,61,1.3.3.3,0
+10923,75,1.3.3,1
+10924,61,1.3.3.3,0
+10924,99,1.3.3,1
+10926,61,1.3.3.3,0
+10926,75,1.3.3,1
+10928,61,1.3.3.3,0
+10928,97,1.3.3,1
+10929,106,1.3,2
+10929,61,1.3.3.3,0
+10929,97,1.3.3,1
+10929,29,1.3,2
+10929,99,1.3.3,1
+10931,99,1.3.3,1
+10931,61,1.3.3.3,0
+10932,75,1.3.3,1
+10932,61,1.3.3.3,0
+10933,61,1.3.3.3,0
+10933,97,1.3.3,1
+10934,75,1.3.3,1
+10934,61,1.3.3.3,0
+10935,99,1.3.3,1
+10935,61,1.3.3.3,0
+10936,61,1.3.3.3,0
+10936,97,1.3.3,1
+10937,61,1.3.3.3,0
+10937,97,1.3.3,1
+10938,61,1.3.3.3,0
+10938,99,1.3.3,1
+10939,61,1.3.3.3,0
+10939,99,1.3.3,1
+10939,75,1.3.3,1
+10940,99,1.3.3,1
+10940,61,1.3.3.3,0
+10941,61,1.3.3.3,0
+10941,99,1.3.3,1
+10943,97,1.3.3,1
+10943,61,1.3.3.3,0
+10944,97,1.3.3,1
+10944,61,1.3.3.3,0
+10945,99,1.3.3,1
+10945,61,1.3.3.3,0
+10947,75,1.3.3,1
+10947,61,1.3.3.3,0
+10948,97,1.3.3,1
+10948,75,1.3.3,1
+10948,61,1.3.3.3,0
+10948,99,1.3.3,1
+10952,100,1.3.1,1
+10952,62,1.3.1.2,0
+10953,39,1.3.1,1
+10953,62,1.3.1.2,0
+10954,62,1.3.1.2,0
+10954,39,1.3.1,1
+10954,100,1.3.1,1
+10955,93,1.3.1,1
+10955,62,1.3.1.2,0
+10955,99,1.3.1,1
+10957,39,1.3.1,1
+10957,62,1.3.1.2,0
+10959,62,1.3.1.2,0
+10959,39,1.3.1,1
+10964,85,1.3.1,1
+10964,99,1.3.1,1
+10964,62,1.3.1.2,0
+10966,62,1.3.1.2,0
+10966,100,1.3.1,1
+10970,100,1.3.1,1
+10970,62,1.3.1.2,0
+10971,93,1.3.1,1
+10971,62,1.3.1.2,0
+10972,62,1.3.1.2,0
+10972,100,1.3.1,1
+10973,85,1.3.1,1
+10973,62,1.3.1.2,0
+10976,99,1.3.1,1
+10976,62,1.3.1.2,0
+10976,93,1.3.1,1
+10977,62,1.3.1.2,0
+10977,100,1.3.1,1
+10978,85,1.3.1,1
+10978,62,1.3.1.2,0
+10979,93,1.3.1,1
+10979,62,1.3.1.2,0
+10979,85,1.3.1,1
+10981,85,1.3.1,1
+10981,62,1.3.1.2,0
+10981,39,1.3.1,1
+10982,85,1.3.1,1
+10982,62,1.3.1.2,0
+10984,85,1.3.1,1
+10984,62,1.3.1.2,0
+10986,85,1.3.1,1
+10986,39,1.3.1,1
+10986,62,1.3.1.2,0
+10987,93,1.3.1,1
+10987,62,1.3.1.2,0
+10989,85,1.3.1,1
+10989,62,1.3.1.2,0
+10991,62,1.3.1.2,0
+10991,39,1.3.1,1
+10993,99,1.3.1,1
+10993,62,1.3.1.2,0
+10994,39,1.3.1,1
+10994,85,1.3.1,1
+10994,62,1.3.1.2,0
+10995,100,1.3.1,1
+10995,62,1.3.1.2,0
+10997,85,1.3.1,1
+10997,62,1.3.1.2,0
+10998,62,1.3.1.2,0
+10998,100,1.3.1,1
+11001,58,2.1.2,1
+11001,62,2.1.2.1,0
+11002,159,2.1.2,1
+11002,62,2.1.2.1,0
+11003,79,2.1.2,1
+11003,62,2.1.2.1,0
+11004,62,2.1.2.1,0
+11004,81,2.1.2,1
+11006,62,2.1.2.1,0
+11006,81,2.1.2,1
+11007,62,2.1.2.1,0
+11007,84,2.1.2,1
+11008,159,2.1.2,1
+11008,62,2.1.2.1,0
+11010,79,2.1.2,1
+11010,62,2.1.2.1,0
+11010,159,2.1.2,1
+11011,62,2.1.2.1,0
+11011,159,2.1.2,1
+11011,81,2.1.2,1
+11014,81,2.1.2,1
+11014,62,2.1.2.1,0
+11020,81,2.1.2,1
+11020,62,2.1.2.1,0
+11022,58,2.1.2,1
+11022,62,2.1.2.1,0
+11025,58,2.1.2,1
+11025,62,2.1.2.1,0
+11028,62,2.1.2.1,0
+11028,84,2.1.2,1
+11029,62,2.1.2.1,0
+11029,159,2.1.2,1
+11029,81,2.1.2,1
+11032,79,2.1.2,1
+11032,62,2.1.2.1,0
+11033,62,2.1.2.1,0
+11033,58,2.1.2,1
+11034,84,2.1.2,1
+11034,62,2.1.2.1,0
+11038,62,2.1.2.1,0
+11038,81,2.1.2,1
+11039,62,2.1.2.1,0
+11039,81,2.1.2,1
+11042,62,2.1.2.1,0
+11042,159,2.1.2,1
+11045,81,2.1.2,1
+11045,62,2.1.2.1,0
+11047,62,2.1.2.1,0
+11047,84,2.1.2,1
+11048,79,2.1.2,1
+11048,62,2.1.2.1,0
+11053,62,2.1.2.2,0
+11053,58,2.1.2,1
+11054,62,2.1.2.2,0
+11054,84,2.1.2,1
+11055,62,2.1.2.2,0
+11055,79,2.1.2,1
+11056,62,2.1.2.2,0
+11056,84,2.1.2,1
+11058,58,2.1.2,1
+11058,62,2.1.2.2,0
+11061,62,2.1.2.2,0
+11061,159,2.1.2,1
+11074,62,2.1.2.2,0
+11074,79,2.1.2,1
+11074,159,2.1.2,1
+11075,58,2.1.2,1
+11075,62,2.1.2.2,0
+11077,62,2.1.2.2,0
+11077,81,2.1.2,1
+11081,81,2.1.2,1
+11081,62,2.1.2.2,0
+11081,58,2.1.2,1
+11082,58,2.1.2,1
+11082,62,2.1.2.2,0
+11084,62,2.1.2.2,0
+11084,79,2.1.2,1
+11085,62,2.1.2.2,0
+11085,81,2.1.2,1
+11086,81,2.1.2,1
+11086,84,2.1.2,1
+11086,79,2.1.2,1
+11086,62,2.1.2.2,0
+11086,58,2.1.2,1
+11089,79,2.1.2,1
+11089,62,2.1.2.2,0
+11091,62,2.1.2.2,0
+11091,58,2.1.2,1
+11092,62,2.1.2.2,0
+11092,58,2.1.2,1
+11093,84,2.1.2,1
+11093,62,2.1.2.2,0
+11097,159,2.1.2,1
+11097,62,2.1.2.2,0
+11099,159,2.1.2,1
+11099,62,2.1.2.2,0
+11100,62,2.1.2.2,0
+11100,159,2.1.2,1
+11101,62,2.1.2.3,0
+11101,58,2.1.2,1
+11102,62,2.1.2.3,0
+11102,58,2.1.2,1
+11103,79,2.1.2,1
+11103,62,2.1.2.3,0
+11105,62,2.1.2.3,0
+11105,159,2.1.2,1
+11107,79,2.1.2,1
+11107,62,2.1.2.3,0
+11114,81,2.1.2,1
+11114,62,2.1.2.3,0
+11116,62,2.1.2.3,0
+11116,84,2.1.2,1
+11120,81,2.1.2,1
+11120,62,2.1.2.3,0
+11122,62,2.1.2.3,0
+11122,58,2.1.2,1
+11123,62,2.1.2.3,0
+11123,81,2.1.2,1
+11123,84,2.1.2,1
+11124,62,2.1.2.3,0
+11124,159,2.1.2,1
+11125,58,2.1.2,1
+11125,62,2.1.2.3,0
+11129,58,2.1.2,1
+11129,62,2.1.2.3,0
+11129,79,2.1.2,1
+11133,62,2.1.2.3,0
+11133,84,2.1.2,1
+11136,84,2.1.2,1
+11136,62,2.1.2.3,0
+11139,79,2.1.2,1
+11139,62,2.1.2.3,0
+11141,62,2.1.2.3,0
+11141,58,2.1.2,1
+11142,62,2.1.2.3,0
+11142,79,2.1.2,1
+11143,79,2.1.2,1
+11143,159,2.1.2,1
+11143,62,2.1.2.3,0
+11145,84,2.1.2,1
+11145,62,2.1.2.3,0
+11147,62,2.1.2.3,0
+11147,81,2.1.2,1
+11148,79,2.1.2,1
+11148,62,2.1.2.3,0
+11149,159,2.1.2,1
+11149,62,2.1.2.3,0
+11152,62,2.1.2.4,0
+11152,58,2.1.2,1
+11154,62,2.1.2.4,0
+11154,159,2.1.2,1
+11156,62,2.1.2.4,0
+11156,58,2.1.2,1
+11157,62,2.1.2.4,0
+11157,58,2.1.2,1
+11158,84,2.1.2,1
+11158,62,2.1.2.4,0
+11160,62,2.1.2.4,0
+11160,159,2.1.2,1
+11160,79,2.1.2,1
+11161,62,2.1.2.4,0
+11161,79,2.1.2,1
+11161,84,2.1.2,1
+11164,62,2.1.2.4,0
+11164,84,2.1.2,1
+11166,62,2.1.2.4,0
+11166,84,2.1.2,1
+11169,62,2.1.2.4,0
+11169,81,2.1.2,1
+11169,79,2.1.2,1
+11173,84,2.1.2,1
+11173,62,2.1.2.4,0
+11173,159,2.1.2,1
+11173,58,2.1.2,1
+11174,62,2.1.2.4,0
+11174,159,2.1.2,1
+11175,79,2.1.2,1
+11175,62,2.1.2.4,0
+11177,62,2.1.2.4,0
+11177,79,2.1.2,1
+11179,62,2.1.2.4,0
+11179,159,2.1.2,1
+11181,62,2.1.2.4,0
+11181,58,2.1.2,1
+11183,79,2.1.2,1
+11183,62,2.1.2.4,0
+11186,81,2.1.2,1
+11186,62,2.1.2.4,0
+11186,159,2.1.2,1
+11189,58,2.1.2,1
+11189,159,2.1.2,1
+11189,62,2.1.2.4,0
+11193,58,2.1.2,1
+11193,159,2.1.2,1
+11193,62,2.1.2.4,0
+11194,159,2.1.2,1
+11194,62,2.1.2.4,0
+11197,62,2.1.2.4,0
+11197,81,2.1.2,1
+11198,79,2.1.2,1
+11198,62,2.1.2.4,0
+11198,58,2.1.2,1
+11198,81,2.1.2,1
+11208,63,1.4.1.1,0
+11208,157,1.4.1,1
+11209,157,1.4.1,1
+11209,63,1.4.1.1,0
+11210,63,1.4.1.1,0
+11210,157,1.4.1,1
+11211,157,1.4.1,1
+11211,63,1.4.1.1,0
+11216,63,1.4.1.1,0
+11216,157,1.4.1,1
+11220,63,1.4.1.1,0
+11220,157,1.4.1,1
+11223,157,1.4.1,1
+11223,63,1.4.1.1,0
+11225,63,1.4.1.1,0
+11225,157,1.4.1,1
+11226,157,1.4.1,1
+11226,63,1.4.1.1,0
+11228,157,1.4.1,1
+11228,63,1.4.1.1,0
+11231,63,1.4.1.1,0
+11231,157,1.4.1,1
+11232,63,1.4.1.1,0
+11232,157,1.4.1,1
+11236,157,1.4.1,1
+11236,63,1.4.1.1,0
+11239,63,1.4.1.1,0
+11239,157,1.4.1,1
+11241,157,1.4.1,1
+11241,63,1.4.1.1,0
+11243,63,1.4.1.1,0
+11243,157,1.4.1,1
+11244,157,1.4.1,1
+11244,63,1.4.1.1,0
+11248,157,1.4.1,1
+11248,63,1.4.1.1,0
+11252,126,1.4,2
+11252,63,1.4.2.4,0
+11252,142,1.4.2,1
+11260,142,1.4.2,1
+11260,63,1.4.2.4,0
+11275,63,1.4.2.4,0
+11275,142,1.4.2,1
+11278,142,1.4.2,1
+11278,63,1.4.2.4,0
+11282,63,1.4.2.4,0
+11282,142,1.4.2,1
+11284,142,1.4.2,1
+11284,63,1.4.2.4,0
+11289,63,1.4.2.4,0
+11289,142,1.4.2,1
+11292,63,1.4.2.4,0
+11292,142,1.4.2,1
+11301,170,1,3
+11301,63,1.4.4.5,0
+11301,126,1.4,2
+11301,0,1.4.4,1
+11301,40,1.4.4,1
+11302,170,1,3
+11302,40,1.4.4,1
+11302,63,1.4.4.5,0
+11302,126,1.4,2
+11302,0,1.4.4,1
+11303,0,1.4.4,1
+11303,170,1,3
+11303,126,1.4,2
+11303,63,1.4.4.5,0
+11303,40,1.4.4,1
+11304,126,1.4,2
+11304,0,1.4.4,1
+11304,63,1.4.4.5,0
+11304,40,1.4.4,1
+11304,170,1,3
+11305,40,1.4.4,1
+11305,126,1.4,2
+11305,0,1.4.4,1
+11305,63,1.4.4.5,0
+11305,170,1,3
+11306,63,1.4.4.5,0
+11306,40,1.4.4,1
+11306,0,1.4.4,1
+11306,126,1.4,2
+11306,170,1,3
+11307,170,1,3
+11307,63,1.4.4.5,0
+11307,126,1.4,2
+11307,40,1.4.4,1
+11307,0,1.4.4,1
+11308,40,1.4.4,1
+11308,126,1.4,2
+11308,63,1.4.4.5,0
+11308,170,1,3
+11308,0,1.4.4,1
+11309,170,1,3
+11309,40,1.4.4,1
+11309,63,1.4.4.5,0
+11309,126,1.4,2
+11309,0,1.4.4,1
+11310,126,1.4,2
+11310,40,1.4.4,1
+11310,0,1.4.4,1
+11310,63,1.4.4.5,0
+11310,170,1,3
+11311,0,1.4.4,1
+11311,126,1.4,2
+11311,40,1.4.4,1
+11311,170,1,3
+11311,63,1.4.4.5,0
+11312,126,1.4,2
+11312,40,1.4.4,1
+11312,0,1.4.4,1
+11312,63,1.4.4.5,0
+11312,170,1,3
+11313,126,1.4,2
+11313,170,1,3
+11313,40,1.4.4,1
+11313,0,1.4.4,1
+11313,63,1.4.4.5,0
+11314,170,1,3
+11314,63,1.4.4.5,0
+11314,40,1.4.4,1
+11314,0,1.4.4,1
+11314,126,1.4,2
+11315,170,1,3
+11315,0,1.4.4,1
+11315,40,1.4.4,1
+11315,126,1.4,2
+11315,63,1.4.4.5,0
+11316,40,1.4.4,1
+11316,0,1.4.4,1
+11316,63,1.4.4.5,0
+11316,126,1.4,2
+11316,170,1,3
+11317,126,1.4,2
+11317,40,1.4.4,1
+11317,170,1,3
+11317,63,1.4.4.5,0
+11317,0,1.4.4,1
+11318,63,1.4.4.5,0
+11318,40,1.4.4,1
+11318,170,1,3
+11318,126,1.4,2
+11318,0,1.4.4,1
+11319,0,1.4.4,1
+11319,63,1.4.4.5,0
+11319,40,1.4.4,1
+11319,126,1.4,2
+11319,170,1,3
+11320,170,1,3
+11320,40,1.4.4,1
+11320,0,1.4.4,1
+11320,63,1.4.4.5,0
+11320,126,1.4,2
+11321,170,1,3
+11321,40,1.4.4,1
+11321,0,1.4.4,1
+11321,126,1.4,2
+11321,63,1.4.4.5,0
+11322,40,1.4.4,1
+11322,0,1.4.4,1
+11322,126,1.4,2
+11322,63,1.4.4.5,0
+11322,170,1,3
+11323,0,1.4.4,1
+11323,40,1.4.4,1
+11323,126,1.4,2
+11323,170,1,3
+11323,63,1.4.4.5,0
+11324,63,1.4.4.5,0
+11324,0,1.4.4,1
+11324,126,1.4,2
+11324,40,1.4.4,1
+11324,170,1,3
+11325,40,1.4.4,1
+11325,170,1,3
+11325,63,1.4.4.5,0
+11325,0,1.4.4,1
+11325,126,1.4,2
+11326,0,1.4.4,1
+11326,126,1.4,2
+11326,40,1.4.4,1
+11326,63,1.4.4.5,0
+11326,170,1,3
+11327,126,1.4,2
+11327,170,1,3
+11327,63,1.4.4.5,0
+11327,40,1.4.4,1
+11327,0,1.4.4,1
+11328,40,1.4.4,1
+11328,170,1,3
+11328,0,1.4.4,1
+11328,63,1.4.4.5,0
+11328,126,1.4,2
+11329,170,1,3
+11329,126,1.4,2
+11329,40,1.4.4,1
+11329,63,1.4.4.5,0
+11329,0,1.4.4,1
+11330,170,1,3
+11330,126,1.4,2
+11330,0,1.4.4,1
+11330,40,1.4.4,1
+11330,63,1.4.4.5,0
+11331,40,1.4.4,1
+11331,0,1.4.4,1
+11331,126,1.4,2
+11331,170,1,3
+11331,63,1.4.4.5,0
+11332,0,1.4.4,1
+11332,63,1.4.4.5,0
+11332,126,1.4,2
+11332,40,1.4.4,1
+11332,170,1,3
+11333,0,1.4.4,1
+11333,40,1.4.4,1
+11333,63,1.4.4.5,0
+11333,170,1,3
+11333,126,1.4,2
+11334,0,1.4.4,1
+11334,63,1.4.4.5,0
+11334,40,1.4.4,1
+11334,126,1.4,2
+11334,170,1,3
+11335,63,1.4.4.5,0
+11335,170,1,3
+11335,126,1.4,2
+11335,40,1.4.4,1
+11335,0,1.4.4,1
+11336,63,1.4.4.5,0
+11336,40,1.4.4,1
+11336,170,1,3
+11336,126,1.4,2
+11336,0,1.4.4,1
+11337,126,1.4,2
+11337,40,1.4.4,1
+11337,63,1.4.4.5,0
+11337,170,1,3
+11337,0,1.4.4,1
+11338,63,1.4.4.5,0
+11338,40,1.4.4,1
+11338,0,1.4.4,1
+11338,170,1,3
+11338,126,1.4,2
+11339,0,1.4.4,1
+11339,40,1.4.4,1
+11339,126,1.4,2
+11339,170,1,3
+11339,63,1.4.4.5,0
+11340,170,1,3
+11340,63,1.4.4.5,0
+11340,126,1.4,2
+11340,0,1.4.4,1
+11340,40,1.4.4,1
+11341,170,1,3
+11341,0,1.4.4,1
+11341,40,1.4.4,1
+11341,126,1.4,2
+11341,63,1.4.4.5,0
+11342,63,1.4.4.5,0
+11342,126,1.4,2
+11342,170,1,3
+11342,40,1.4.4,1
+11342,0,1.4.4,1
+11343,63,1.4.4.5,0
+11343,170,1,3
+11343,40,1.4.4,1
+11343,0,1.4.4,1
+11343,126,1.4,2
+11344,170,1,3
+11344,0,1.4.4,1
+11344,40,1.4.4,1
+11344,63,1.4.4.5,0
+11344,126,1.4,2
+11345,0,1.4.4,1
+11345,170,1,3
+11345,40,1.4.4,1
+11345,126,1.4,2
+11345,63,1.4.4.5,0
+11346,0,1.4.4,1
+11346,40,1.4.4,1
+11346,170,1,3
+11346,63,1.4.4.5,0
+11346,126,1.4,2
+11347,63,1.4.4.5,0
+11347,170,1,3
+11347,126,1.4,2
+11347,0,1.4.4,1
+11347,40,1.4.4,1
+11348,126,1.4,2
+11348,63,1.4.4.5,0
+11348,0,1.4.4,1
+11348,40,1.4.4,1
+11348,170,1,3
+11349,170,1,3
+11349,0,1.4.4,1
+11349,126,1.4,2
+11349,63,1.4.4.5,0
+11349,40,1.4.4,1
+11350,170,1,3
+11350,40,1.4.4,1
+11350,63,1.4.4.5,0
+11350,126,1.4,2
+11350,0,1.4.4,1
+11352,126,1.1,1
+11352,64,1.1.2,0
+11354,64,1.1.2,0
+11354,94,1.1,1
+11356,94,1.1,1
+11356,64,1.1.2,0
+11357,94,1.1,1
+11357,64,1.1.2,0
+11358,64,1.1.2,0
+11358,126,1.1,1
+11360,64,1.1.2,0
+11360,105,1.1,1
+11361,126,1.1,1
+11361,105,1.1,1
+11361,106,1.1,1
+11361,64,1.1.2,0
+11362,126,1.1,1
+11362,64,1.1.2,0
+11364,64,1.1.2,0
+11364,94,1.1,1
+11366,64,1.1.2,0
+11366,106,1.1,1
+11369,126,1.1,1
+11369,64,1.1.2,0
+11372,64,1.1.2,0
+11372,94,1.1,1
+11373,105,1.1,1
+11373,64,1.1.2,0
+11376,64,1.1.2,0
+11376,126,1.1,1
+11376,105,1.1,1
+11376,86,1.1,1
+11378,64,1.1.2,0
+11378,106,1.1,1
+11379,94,1.1,1
+11379,64,1.1.2,0
+11380,126,1.1,1
+11380,105,1.1,1
+11380,64,1.1.2,0
+11381,106,1.1,1
+11381,126,1.1,1
+11381,64,1.1.2,0
+11382,94,1.1,1
+11382,64,1.1.2,0
+11383,64,1.1.2,0
+11383,86,1.1,1
+11384,106,1.1,1
+11384,64,1.1.2,0
+11385,64,1.1.2,0
+11385,126,1.1,1
+11386,86,1.1,1
+11386,64,1.1.2,0
+11386,106,1.1,1
+11387,126,1.1,1
+11387,64,1.1.2,0
+11389,64,1.1.2,0
+11389,86,1.1,1
+11390,126,1.1,1
+11390,64,1.1.2,0
+11391,64,1.1.2,0
+11391,94,1.1,1
+11393,64,1.1.2,0
+11393,105,1.1,1
+11394,106,1.1,1
+11394,64,1.1.2,0
+11394,105,1.1,1
+11397,64,1.1.2,0
+11397,105,1.1,1
+11399,64,1.1.2,0
+11399,126,1.1,1
+11404,67,1.2,1
+11404,65,1.2.1,0
+11406,106,1.2,1
+11406,65,1.2.1,0
+11407,65,1.2.1,0
+11407,106,1.2,1
+11408,65,1.2.1,0
+11408,97,1.2,1
+11411,65,1.2.1,0
+11411,170,1,2
+11411,97,1.2,1
+11414,106,1.2,1
+11414,65,1.2.1,0
+11414,126,1.2,1
+11419,65,1.2.1,0
+11419,126,1.2,1
+11422,65,1.2.1,0
+11422,67,1.2,1
+11423,65,1.2.1,0
+11423,97,1.2,1
+11426,65,1.2.1,0
+11426,106,1.2,1
+11428,106,1.2,1
+11428,65,1.2.1,0
+11429,65,1.2.1,0
+11429,67,1.2,1
+11431,65,1.2.1,0
+11431,126,1.2,1
+11432,65,1.2.1,0
+11432,97,1.2,1
+11433,65,1.2.1,0
+11433,106,1.2,1
+11434,65,1.2.1,0
+11434,126,1.2,1
+11436,65,1.2.1,0
+11436,106,1.2,1
+11438,65,1.2.1,0
+11438,126,1.2,1
+11439,65,1.2.1,0
+11439,97,1.2,1
+11440,65,1.2.1,0
+11440,106,1.2,1
+11441,65,1.2.1,0
+11441,126,1.2,1
+11443,65,1.2.1,0
+11443,106,1.2,1
+11444,67,1.2,1
+11444,65,1.2.1,0
+11444,97,1.2,1
+11447,97,1.2,1
+11447,65,1.2.1,0
+11449,106,1.2,1
+11449,65,1.2.1,0
+11454,97,1.2,1
+11454,66,1.2.1,0
+11456,97,1.2,1
+11456,66,1.2.1,0
+11457,67,1.2,1
+11457,66,1.2.1,0
+11458,106,1.2,1
+11458,66,1.2.1,0
+11460,97,1.2,1
+11460,66,1.2.1,0
+11461,126,1.2,1
+11461,67,1.2,1
+11461,66,1.2.1,0
+11464,66,1.2.1,0
+11464,67,1.2,1
+11464,126,1.2,1
+11466,97,1.2,1
+11466,67,1.2,1
+11466,66,1.2.1,0
+11472,67,1.2,1
+11472,66,1.2.1,0
+11473,106,1.2,1
+11473,66,1.2.1,0
+11476,66,1.2.1,0
+11476,97,1.2,1
+11478,66,1.2.1,0
+11478,97,1.2,1
+11479,66,1.2.1,0
+11479,67,1.2,1
+11481,106,1.2,1
+11481,66,1.2.1,0
+11482,67,1.2,1
+11482,66,1.2.1,0
+11483,66,1.2.1,0
+11483,97,1.2,1
+11484,66,1.2.1,0
+11484,67,1.2,1
+11485,66,1.2.1,0
+11485,126,1.2,1
+11486,126,1.2,1
+11486,97,1.2,1
+11486,66,1.2.1,0
+11489,106,1.2,1
+11489,66,1.2.1,0
+11490,66,1.2.1,0
+11490,106,1.2,1
+11491,66,1.2.1,0
+11491,67,1.2,1
+11492,106,1.2,1
+11492,66,1.2.1,0
+11493,66,1.2.1,0
+11493,67,1.2,1
+11494,126,1.2,1
+11494,66,1.2.1,0
+11495,106,1.2,1
+11495,66,1.2.1,0
+11497,67,1.2,1
+11497,66,1.2.1,0
+11499,106,1.2,1
+11499,66,1.2.1,0
+11502,67,1.2,0
+11502,170,1,1
+11504,170,1,1
+11504,67,1.2,0
+11505,67,1.2,0
+11505,170,1,1
+11506,170,1,1
+11506,67,1.2,0
+11507,67,1.2,0
+11507,170,1,1
+11509,67,1.2,0
+11509,170,1,1
+11522,170,1,1
+11522,67,1.2,0
+11523,170,1,1
+11523,67,1.2,0
+11526,170,1,1
+11526,67,1.2,0
+11528,67,1.2,0
+11528,170,1,1
+11529,170,1,1
+11529,67,1.2,0
+11530,170,1,1
+11530,67,1.2,0
+11531,170,1,1
+11531,67,1.2,0
+11532,170,1,1
+11532,67,1.2,0
+11535,67,1.2,0
+11535,170,1,1
+11536,67,1.2,0
+11536,170,1,1
+11539,170,1,1
+11539,67,1.2,0
+11540,67,1.2,0
+11540,170,1,1
+11543,170,1,1
+11543,67,1.2,0
+11544,170,1,1
+11544,67,1.2,0
+11546,170,1,1
+11546,67,1.2,0
+11550,170,1,1
+11550,67,1.2,0
+11551,93,1.3.1,1
+11551,68,1.3.1.1,0
+11552,68,1.3.1.1,0
+11552,93,1.3.1,1
+11554,68,1.3.1.1,0
+11554,85,1.3.1,1
+11555,93,1.3.1,1
+11555,68,1.3.1.1,0
+11557,68,1.3.1.1,0
+11557,85,1.3.1,1
+11558,39,1.3.1,1
+11558,68,1.3.1.1,0
+11559,68,1.3.1.1,0
+11559,39,1.3.1,1
+11560,68,1.3.1.1,0
+11560,93,1.3.1,1
+11561,39,1.3.1,1
+11561,68,1.3.1.1,0
+11564,100,1.3.1,1
+11564,68,1.3.1.1,0
+11564,99,1.3.1,1
+11566,93,1.3.1,1
+11566,68,1.3.1.1,0
+11569,39,1.3.1,1
+11569,99,1.3.1,1
+11569,68,1.3.1.1,0
+11571,100,1.3.1,1
+11571,68,1.3.1.1,0
+11572,68,1.3.1.1,0
+11572,100,1.3.1,1
+11573,99,1.3.1,1
+11573,68,1.3.1.1,0
+11574,93,1.3.1,1
+11574,100,1.3.1,1
+11574,68,1.3.1.1,0
+11575,68,1.3.1.1,0
+11575,93,1.3.1,1
+11576,39,1.3.1,1
+11576,68,1.3.1.1,0
+11576,93,1.3.1,1
+11577,68,1.3.1.1,0
+11577,93,1.3.1,1
+11578,99,1.3.1,1
+11578,68,1.3.1.1,0
+11581,68,1.3.1.1,0
+11581,99,1.3.1,1
+11582,68,1.3.1.1,0
+11582,100,1.3.1,1
+11583,39,1.3.1,1
+11583,68,1.3.1.1,0
+11584,68,1.3.1.1,0
+11584,39,1.3.1,1
+11585,68,1.3.1.1,0
+11585,100,1.3.1,1
+11586,85,1.3.1,1
+11586,68,1.3.1.1,0
+11589,39,1.3.1,1
+11589,100,1.3.1,1
+11589,68,1.3.1.1,0
+11589,93,1.3.1,1
+11592,93,1.3.1,1
+11592,68,1.3.1.1,0
+11592,85,1.3.1,1
+11593,68,1.3.1.1,0
+11593,39,1.3.1,1
+11593,93,1.3.1,1
+11593,100,1.3.1,1
+11594,100,1.3.1,1
+11594,99,1.3.1,1
+11594,68,1.3.1.1,0
+11595,85,1.3.1,1
+11595,29,1.3,2
+11595,68,1.3.1.1,0
+11595,93,1.3.1,1
+11597,68,1.3.1.1,0
+11597,93,1.3.1,1
+11598,68,1.3.1.1,0
+11598,100,1.3.1,1
+11602,39,1.3.1,1
+11602,68,1.3.1.2,0
+11602,99,1.3.1,1
+11603,68,1.3.1.2,0
+11603,93,1.3.1,1
+11603,100,1.3.1,1
+11604,68,1.3.1.2,0
+11604,85,1.3.1,1
+11606,85,1.3.1,1
+11606,99,1.3.1,1
+11606,68,1.3.1.2,0
+11607,93,1.3.1,1
+11607,68,1.3.1.2,0
+11608,39,1.3.1,1
+11608,68,1.3.1.2,0
+11608,100,1.3.1,1
+11610,68,1.3.1.2,0
+11610,93,1.3.1,1
+11616,100,1.3.1,1
+11616,93,1.3.1,1
+11616,68,1.3.1.2,0
+11617,100,1.3.1,1
+11617,68,1.3.1.2,0
+11619,99,1.3.1,1
+11619,68,1.3.1.2,0
+11623,100,1.3.1,1
+11623,68,1.3.1.2,0
+11623,93,1.3.1,1
+11624,68,1.3.1.2,0
+11624,93,1.3.1,1
+11627,100,1.3.1,1
+11627,68,1.3.1.2,0
+11628,68,1.3.1.2,0
+11628,39,1.3.1,1
+11631,68,1.3.1.2,0
+11631,99,1.3.1,1
+11632,99,1.3.1,1
+11632,68,1.3.1.2,0
+11633,39,1.3.1,1
+11633,68,1.3.1.2,0
+11634,68,1.3.1.2,0
+11634,39,1.3.1,1
+11639,68,1.3.1.2,0
+11639,39,1.3.1,1
+11641,85,1.3.1,1
+11641,68,1.3.1.2,0
+11642,93,1.3.1,1
+11642,68,1.3.1.2,0
+11643,68,1.3.1.2,0
+11643,39,1.3.1,1
+11644,68,1.3.1.2,0
+11644,85,1.3.1,1
+11644,99,1.3.1,1
+11645,93,1.3.1,1
+11645,68,1.3.1.2,0
+11646,68,1.3.1.2,0
+11646,100,1.3.1,1
+11647,39,1.3.1,1
+11647,68,1.3.1.2,0
+11648,85,1.3.1,1
+11648,68,1.3.1.2,0
+11649,93,1.3.1,1
+11649,100,1.3.1,1
+11649,85,1.3.1,1
+11649,68,1.3.1.2,0
+11650,68,1.3.1.2,0
+11650,93,1.3.1,1
+11650,85,1.3.1,1
+11652,68,1.3.1.3,0
+11652,93,1.3.1,1
+11652,39,1.3.1,1
+11652,99,1.3.1,1
+11653,68,1.3.1.3,0
+11653,93,1.3.1,1
+11653,85,1.3.1,1
+11653,39,1.3.1,1
+11653,99,1.3.1,1
+11654,68,1.3.1.3,0
+11654,100,1.3.1,1
+11654,85,1.3.1,1
+11654,99,1.3.1,1
+11655,93,1.3.1,1
+11655,99,1.3.1,1
+11655,68,1.3.1.3,0
+11656,68,1.3.1.3,0
+11656,99,1.3.1,1
+11656,39,1.3.1,1
+11657,93,1.3.1,1
+11657,68,1.3.1.3,0
+11658,39,1.3.1,1
+11658,93,1.3.1,1
+11658,68,1.3.1.3,0
+11659,99,1.3.1,1
+11659,68,1.3.1.3,0
+11660,39,1.3.1,1
+11660,68,1.3.1.3,0
+11661,39,1.3.1,1
+11661,68,1.3.1.3,0
+11664,100,1.3.1,1
+11664,68,1.3.1.3,0
+11664,93,1.3.1,1
+11664,85,1.3.1,1
+11665,99,1.3.1,1
+11665,68,1.3.1.3,0
+11666,85,1.3.1,1
+11666,39,1.3.1,1
+11666,68,1.3.1.3,0
+11667,68,1.3.1.3,0
+11667,93,1.3.1,1
+11667,99,1.3.1,1
+11669,68,1.3.1.3,0
+11669,100,1.3.1,1
+11669,99,1.3.1,1
+11669,93,1.3.1,1
+11670,68,1.3.1.3,0
+11670,93,1.3.1,1
+11670,106,1.3,2
+11672,68,1.3.1.3,0
+11672,85,1.3.1,1
+11673,100,1.3.1,1
+11673,68,1.3.1.3,0
+11673,39,1.3.1,1
+11674,93,1.3.1,1
+11674,100,1.3.1,1
+11674,68,1.3.1.3,0
+11676,68,1.3.1.3,0
+11676,99,1.3.1,1
+11676,85,1.3.1,1
+11677,93,1.3.1,1
+11677,68,1.3.1.3,0
+11678,68,1.3.1.3,0
+11678,39,1.3.1,1
+11679,39,1.3.1,1
+11679,85,1.3.1,1
+11679,68,1.3.1.3,0
+11680,93,1.3.1,1
+11680,68,1.3.1.3,0
+11680,100,1.3.1,1
+11681,68,1.3.1.3,0
+11681,100,1.3.1,1
+11682,85,1.3.1,1
+11682,39,1.3.1,1
+11682,68,1.3.1.3,0
+11682,29,1.3,2
+11683,100,1.3.1,1
+11683,68,1.3.1.3,0
+11684,68,1.3.1.3,0
+11684,39,1.3.1,1
+11686,39,1.3.1,1
+11686,85,1.3.1,1
+11686,68,1.3.1.3,0
+11688,68,1.3.1.3,0
+11688,100,1.3.1,1
+11688,93,1.3.1,1
+11689,39,1.3.1,1
+11689,68,1.3.1.3,0
+11689,100,1.3.1,1
+11690,99,1.3.1,1
+11690,68,1.3.1.3,0
+11692,100,1.3.1,1
+11692,93,1.3.1,1
+11692,68,1.3.1.3,0
+11693,68,1.3.1.3,0
+11693,93,1.3.1,1
+11693,99,1.3.1,1
+11693,100,1.3.1,1
+11694,93,1.3.1,1
+11694,68,1.3.1.3,0
+11697,68,1.3.1.3,0
+11697,39,1.3.1,1
+11697,99,1.3.1,1
+11698,68,1.3.1.3,0
+11698,93,1.3.1,1
+11699,100,1.3.1,1
+11699,93,1.3.1,1
+11699,99,1.3.1,1
+11699,68,1.3.1.3,0
+11699,85,1.3.1,1
+11700,68,1.3.1.3,0
+11700,100,1.3.1,1
+11706,106,1.1,1
+11706,69,1.1.1,0
+11707,69,1.1.1,0
+11707,94,1.1,1
+11708,86,1.1,1
+11708,69,1.1.1,0
+11711,126,1.1,1
+11711,69,1.1.1,0
+11714,69,1.1.1,0
+11714,106,1.1,1
+11719,69,1.1.1,0
+11719,94,1.1,1
+11722,69,1.1.1,0
+11722,105,1.1,1
+11723,69,1.1.1,0
+11723,94,1.1,1
+11726,69,1.1.1,0
+11726,105,1.1,1
+11728,94,1.1,1
+11728,69,1.1.1,0
+11729,105,1.1,1
+11729,69,1.1.1,0
+11731,69,1.1.1,0
+11731,126,1.1,1
+11732,86,1.1,1
+11732,69,1.1.1,0
+11733,94,1.1,1
+11733,69,1.1.1,0
+11734,69,1.1.1,0
+11734,94,1.1,1
+11736,69,1.1.1,0
+11736,105,1.1,1
+11743,69,1.1.1,0
+11743,86,1.1,1
+11744,94,1.1,1
+11744,69,1.1.1,0
+11745,126,1.1,1
+11745,69,1.1.1,0
+11749,69,1.1.1,0
+11749,105,1.1,1
+11752,70,1.3.3.2,0
+11752,99,1.3.3,1
+11755,70,1.3.3.2,0
+11755,99,1.3.3,1
+11756,70,1.3.3.2,0
+11756,75,1.3.3,1
+11757,70,1.3.3.2,0
+11757,75,1.3.3,1
+11758,70,1.3.3.2,0
+11758,99,1.3.3,1
+11764,70,1.3.3.2,0
+11764,97,1.3.3,1
+11773,97,1.3.3,1
+11773,70,1.3.3.2,0
+11776,99,1.3.3,1
+11776,70,1.3.3.2,0
+11776,97,1.3.3,1
+11778,75,1.3.3,1
+11778,70,1.3.3.2,0
+11779,75,1.3.3,1
+11779,70,1.3.3.2,0
+11781,99,1.3.3,1
+11781,70,1.3.3.2,0
+11782,70,1.3.3.2,0
+11782,97,1.3.3,1
+11784,97,1.3.3,1
+11784,70,1.3.3.2,0
+11786,70,1.3.3.2,0
+11786,99,1.3.3,1
+11786,75,1.3.3,1
+11788,70,1.3.3.2,0
+11788,99,1.3.3,1
+11790,70,1.3.3.2,0
+11790,97,1.3.3,1
+11792,70,1.3.3.2,0
+11792,97,1.3.3,1
+11793,97,1.3.3,1
+11793,70,1.3.3.2,0
+11794,70,1.3.3.2,0
+11794,75,1.3.3,1
+11794,99,1.3.3,1
+11797,70,1.3.3.2,0
+11797,75,1.3.3,1
+11803,70,1.3.3.4,0
+11803,97,1.3.3,1
+11803,99,1.3.3,1
+11804,97,1.3.3,1
+11804,70,1.3.3.4,0
+11805,70,1.3.3.4,0
+11805,97,1.3.3,1
+11805,75,1.3.3,1
+11806,97,1.3.3,1
+11806,70,1.3.3.4,0
+11808,70,1.3.3.4,0
+11808,97,1.3.3,1
+11810,70,1.3.3.4,0
+11810,75,1.3.3,1
+11811,70,1.3.3.4,0
+11811,99,1.3.3,1
+11814,70,1.3.3.4,0
+11814,99,1.3.3,1
+11814,75,1.3.3,1
+11814,97,1.3.3,1
+11816,70,1.3.3.4,0
+11816,97,1.3.3,1
+11819,99,1.3.3,1
+11819,70,1.3.3.4,0
+11820,75,1.3.3,1
+11820,70,1.3.3.4,0
+11822,97,1.3.3,1
+11822,70,1.3.3.4,0
+11823,99,1.3.3,1
+11823,75,1.3.3,1
+11823,70,1.3.3.4,0
+11826,99,1.3.3,1
+11826,70,1.3.3.4,0
+11827,99,1.3.3,1
+11827,70,1.3.3.4,0
+11828,70,1.3.3.4,0
+11828,75,1.3.3,1
+11829,99,1.3.3,1
+11829,70,1.3.3.4,0
+11830,99,1.3.3,1
+11830,70,1.3.3.4,0
+11831,99,1.3.3,1
+11831,70,1.3.3.4,0
+11832,75,1.3.3,1
+11832,70,1.3.3.4,0
+11833,75,1.3.3,1
+11833,70,1.3.3.4,0
+11835,70,1.3.3.4,0
+11835,99,1.3.3,1
+11836,70,1.3.3.4,0
+11836,75,1.3.3,1
+11836,99,1.3.3,1
+11838,97,1.3.3,1
+11838,70,1.3.3.4,0
+11839,70,1.3.3.4,0
+11839,75,1.3.3,1
+11840,70,1.3.3.4,0
+11840,99,1.3.3,1
+11841,70,1.3.3.4,0
+11841,99,1.3.3,1
+11842,70,1.3.3.4,0
+11842,99,1.3.3,1
+11843,99,1.3.3,1
+11843,70,1.3.3.4,0
+11844,75,1.3.3,1
+11844,70,1.3.3.4,0
+11844,99,1.3.3,1
+11847,70,1.3.3.4,0
+11847,75,1.3.3,1
+11852,71,1.3.1.2,0
+11852,85,1.3.1,1
+11853,39,1.3.1,1
+11853,71,1.3.1.2,0
+11854,71,1.3.1.2,0
+11854,85,1.3.1,1
+11855,93,1.3.1,1
+11855,71,1.3.1.2,0
+11856,71,1.3.1.2,0
+11856,39,1.3.1,1
+11857,85,1.3.1,1
+11857,71,1.3.1.2,0
+11858,85,1.3.1,1
+11858,71,1.3.1.2,0
+11859,71,1.3.1.2,0
+11859,39,1.3.1,1
+11860,71,1.3.1.2,0
+11860,39,1.3.1,1
+11861,100,1.3.1,1
+11861,71,1.3.1.2,0
+11861,39,1.3.1,1
+11864,71,1.3.1.2,0
+11864,100,1.3.1,1
+11866,71,1.3.1.2,0
+11866,99,1.3.1,1
+11869,39,1.3.1,1
+11869,100,1.3.1,1
+11869,99,1.3.1,1
+11869,71,1.3.1.2,0
+11869,93,1.3.1,1
+11870,71,1.3.1.2,0
+11870,99,1.3.1,1
+11872,71,1.3.1.2,0
+11872,100,1.3.1,1
+11873,100,1.3.1,1
+11873,85,1.3.1,1
+11873,71,1.3.1.2,0
+11873,39,1.3.1,1
+11875,39,1.3.1,1
+11875,71,1.3.1.2,0
+11876,99,1.3.1,1
+11876,71,1.3.1.2,0
+11877,71,1.3.1.2,0
+11877,99,1.3.1,1
+11878,93,1.3.1,1
+11878,71,1.3.1.2,0
+11879,71,1.3.1.2,0
+11879,93,1.3.1,1
+11879,39,1.3.1,1
+11881,93,1.3.1,1
+11881,71,1.3.1.2,0
+11882,39,1.3.1,1
+11882,71,1.3.1.2,0
+11883,71,1.3.1.2,0
+11883,39,1.3.1,1
+11884,71,1.3.1.2,0
+11884,39,1.3.1,1
+11886,71,1.3.1.2,0
+11886,99,1.3.1,1
+11887,71,1.3.1.2,0
+11887,85,1.3.1,1
+11888,93,1.3.1,1
+11888,71,1.3.1.2,0
+11889,93,1.3.1,1
+11889,71,1.3.1.2,0
+11890,100,1.3.1,1
+11890,71,1.3.1.2,0
+11891,99,1.3.1,1
+11891,71,1.3.1.2,0
+11892,39,1.3.1,1
+11892,71,1.3.1.2,0
+11892,99,1.3.1,1
+11893,71,1.3.1.2,0
+11893,100,1.3.1,1
+11894,93,1.3.1,1
+11894,71,1.3.1.2,0
+11894,85,1.3.1,1
+11897,99,1.3.1,1
+11897,71,1.3.1.2,0
+11898,71,1.3.1.2,0
+11898,99,1.3.1,1
+11899,93,1.3.1,1
+11899,71,1.3.1.2,0
+11900,93,1.3.1,1
+11900,71,1.3.1.2,0
+11901,93,1.3.1,1
+11901,72,1.3.1.2,0
+11902,85,1.3.1,1
+11902,72,1.3.1.2,0
+11904,93,1.3.1,1
+11904,72,1.3.1.2,0
+11904,100,1.3.1,1
+11905,72,1.3.1.2,0
+11905,39,1.3.1,1
+11905,85,1.3.1,1
+11906,72,1.3.1.2,0
+11906,85,1.3.1,1
+11907,85,1.3.1,1
+11907,72,1.3.1.2,0
+11908,85,1.3.1,1
+11908,72,1.3.1.2,0
+11909,93,1.3.1,1
+11909,72,1.3.1.2,0
+11910,85,1.3.1,1
+11910,72,1.3.1.2,0
+11911,100,1.3.1,1
+11911,72,1.3.1.2,0
+11914,39,1.3.1,1
+11914,100,1.3.1,1
+11914,72,1.3.1.2,0
+11914,93,1.3.1,1
+11914,85,1.3.1,1
+11916,39,1.3.1,1
+11916,72,1.3.1.2,0
+11917,72,1.3.1.2,0
+11917,93,1.3.1,1
+11920,72,1.3.1.2,0
+11920,93,1.3.1,1
+11920,39,1.3.1,1
+11922,72,1.3.1.2,0
+11922,39,1.3.1,1
+11923,99,1.3.1,1
+11923,72,1.3.1.2,0
+11923,93,1.3.1,1
+11924,93,1.3.1,1
+11924,39,1.3.1,1
+11924,72,1.3.1.2,0
+11926,72,1.3.1.2,0
+11926,39,1.3.1,1
+11928,93,1.3.1,1
+11928,72,1.3.1.2,0
+11929,99,1.3.1,1
+11929,72,1.3.1.2,0
+11931,72,1.3.1.2,0
+11931,100,1.3.1,1
+11931,99,1.3.1,1
+11932,72,1.3.1.2,0
+11932,93,1.3.1,1
+11933,72,1.3.1.2,0
+11933,85,1.3.1,1
+11934,72,1.3.1.2,0
+11934,85,1.3.1,1
+11935,99,1.3.1,1
+11935,100,1.3.1,1
+11935,72,1.3.1.2,0
+11936,93,1.3.1,1
+11936,99,1.3.1,1
+11936,72,1.3.1.2,0
+11936,100,1.3.1,1
+11936,39,1.3.1,1
+11936,85,1.3.1,1
+11937,72,1.3.1.2,0
+11937,85,1.3.1,1
+11938,100,1.3.1,1
+11938,72,1.3.1.2,0
+11939,85,1.3.1,1
+11939,72,1.3.1.2,0
+11941,72,1.3.1.2,0
+11941,93,1.3.1,1
+11942,39,1.3.1,1
+11942,72,1.3.1.2,0
+11942,93,1.3.1,1
+11943,29,1.3,2
+11943,72,1.3.1.2,0
+11943,39,1.3.1,1
+11943,85,1.3.1,1
+11944,39,1.3.1,1
+11944,93,1.3.1,1
+11944,72,1.3.1.2,0
+11945,72,1.3.1.2,0
+11945,100,1.3.1,1
+11947,93,1.3.1,1
+11947,72,1.3.1.2,0
+11948,85,1.3.1,1
+11948,93,1.3.1,1
+11948,39,1.3.1,1
+11948,72,1.3.1.2,0
+11949,100,1.3.1,1
+11949,72,1.3.1.2,0
+11950,99,1.3.1,1
+11950,100,1.3.1,1
+11950,72,1.3.1.2,0
+11950,93,1.3.1,1
+11952,99,2.1,1
+11952,73,2.1.3,0
+11955,73,2.1.3,0
+11955,99,2.1,1
+11970,73,2.1.3,0
+11970,99,2.1,1
+11973,73,2.1.3,0
+11973,99,2.1,1
+11981,99,2.1,1
+11981,73,2.1.3,0
+11982,99,2.1,1
+11982,73,2.1.3,0
+11986,73,2.1.3,0
+11986,99,2.1,1
+11991,73,2.1.3,0
+11991,99,2.1,1
+11994,73,2.1.3,0
+11994,99,2.1,1
+11998,99,2.1,1
+11998,73,2.1.3,0
+12002,74,1.3.3.2,0
+12002,75,1.3.3,1
+12004,74,1.3.3.2,0
+12004,99,1.3.3,1
+12007,75,1.3.3,1
+12007,74,1.3.3.2,0
+12011,97,1.3.3,1
+12011,74,1.3.3.2,0
+12011,75,1.3.3,1
+12014,75,1.3.3,1
+12014,74,1.3.3.2,0
+12020,74,1.3.3.2,0
+12020,75,1.3.3,1
+12022,75,1.3.3,1
+12022,74,1.3.3.2,0
+12026,74,1.3.3.2,0
+12026,97,1.3.3,1
+12028,97,1.3.3,1
+12028,74,1.3.3.2,0
+12029,75,1.3.3,1
+12029,74,1.3.3.2,0
+12032,74,1.3.3.2,0
+12032,75,1.3.3,1
+12033,99,1.3.3,1
+12033,74,1.3.3.2,0
+12034,74,1.3.3.2,0
+12034,75,1.3.3,1
+12036,97,1.3.3,1
+12036,74,1.3.3.2,0
+12039,74,1.3.3.2,0
+12039,75,1.3.3,1
+12040,97,1.3.3,1
+12040,74,1.3.3.2,0
+12044,74,1.3.3.2,0
+12044,75,1.3.3,1
+12044,97,1.3.3,1
+12056,99,2.1,1
+12056,74,2.1.3,0
+12058,74,2.1.3,0
+12058,99,2.1,1
+12061,74,2.1.3,0
+12061,99,2.1,1
+12070,74,2.1.3,0
+12070,99,2.1,1
+12073,74,2.1.3,0
+12073,99,2.1,1
+12097,99,2.1,1
+12097,74,2.1.3,0
+12102,106,1.3,1
+12102,75,1.3.3,0
+12104,29,1.3,1
+12104,75,1.3.3,0
+12105,106,1.3,1
+12105,29,1.3,1
+12105,170,1,2
+12105,75,1.3.3,0
+12106,106,1.3,1
+12106,75,1.3.3,0
+12108,75,1.3.3,0
+12108,106,1.3,1
+12109,106,1.3,1
+12109,75,1.3.3,0
+12110,29,1.3,1
+12110,75,1.3.3,0
+12111,106,1.3,1
+12111,75,1.3.3,0
+12111,170,1,2
+12111,29,1.3,1
+12114,75,1.3.3,0
+12114,106,1.3,1
+12114,29,1.3,1
+12116,75,1.3.3,0
+12116,29,1.3,1
+12122,106,1.3,1
+12122,75,1.3.3,0
+12123,106,1.3,1
+12123,29,1.3,1
+12123,75,1.3.3,0
+12124,106,1.3,1
+12124,75,1.3.3,0
+12126,29,1.3,1
+12126,106,1.3,1
+12126,75,1.3.3,0
+12128,29,1.3,1
+12128,75,1.3.3,0
+12129,106,1.3,1
+12129,170,1,2
+12129,75,1.3.3,0
+12131,106,1.3,1
+12131,29,1.3,1
+12131,75,1.3.3,0
+12132,75,1.3.3,0
+12132,29,1.3,1
+12133,29,1.3,1
+12133,75,1.3.3,0
+12134,75,1.3.3,0
+12134,29,1.3,1
+12135,75,1.3.3,0
+12135,106,1.3,1
+12136,75,1.3.3,0
+12136,29,1.3,1
+12137,75,1.3.3,0
+12137,106,1.3,1
+12137,170,1,2
+12138,75,1.3.3,0
+12138,106,1.3,1
+12139,75,1.3.3,0
+12139,29,1.3,1
+12141,75,1.3.3,0
+12141,106,1.3,1
+12142,106,1.3,1
+12142,75,1.3.3,0
+12143,106,1.3,1
+12143,170,1,2
+12143,75,1.3.3,0
+12143,29,1.3,1
+12145,75,1.3.3,0
+12145,170,1,2
+12145,106,1.3,1
+12147,106,1.3,1
+12147,75,1.3.3,0
+12149,106,1.3,1
+12149,75,1.3.3,0
+12150,75,1.3.3,0
+12150,106,1.3,1
+12151,93,1.3.1,1
+12151,76,1.3.1.3,0
+12152,39,1.3.1,1
+12152,76,1.3.1.3,0
+12152,99,1.3.1,1
+12153,76,1.3.1.3,0
+12153,99,1.3.1,1
+12154,76,1.3.1.3,0
+12154,39,1.3.1,1
+12155,100,1.3.1,1
+12155,39,1.3.1,1
+12155,76,1.3.1.3,0
+12156,76,1.3.1.3,0
+12156,99,1.3.1,1
+12156,85,1.3.1,1
+12156,100,1.3.1,1
+12157,76,1.3.1.3,0
+12157,100,1.3.1,1
+12157,39,1.3.1,1
+12157,99,1.3.1,1
+12157,93,1.3.1,1
+12158,39,1.3.1,1
+12158,100,1.3.1,1
+12158,76,1.3.1.3,0
+12159,76,1.3.1.3,0
+12159,39,1.3.1,1
+12160,99,1.3.1,1
+12160,76,1.3.1.3,0
+12161,76,1.3.1.3,0
+12161,39,1.3.1,1
+12161,93,1.3.1,1
+12161,100,1.3.1,1
+12161,99,1.3.1,1
+12162,76,1.3.1.3,0
+12162,100,1.3.1,1
+12164,100,1.3.1,1
+12164,76,1.3.1.3,0
+12164,93,1.3.1,1
+12164,39,1.3.1,1
+12166,39,1.3.1,1
+12166,76,1.3.1.3,0
+12166,99,1.3.1,1
+12166,93,1.3.1,1
+12167,100,1.3.1,1
+12167,76,1.3.1.3,0
+12167,93,1.3.1,1
+12170,76,1.3.1.3,0
+12170,39,1.3.1,1
+12171,93,1.3.1,1
+12171,100,1.3.1,1
+12171,76,1.3.1.3,0
+12171,99,1.3.1,1
+12172,76,1.3.1.3,0
+12172,39,1.3.1,1
+12173,93,1.3.1,1
+12173,76,1.3.1.3,0
+12173,85,1.3.1,1
+12174,39,1.3.1,1
+12174,76,1.3.1.3,0
+12174,85,1.3.1,1
+12175,76,1.3.1.3,0
+12175,99,1.3.1,1
+12175,39,1.3.1,1
+12176,39,1.3.1,1
+12176,76,1.3.1.3,0
+12176,100,1.3.1,1
+12176,85,1.3.1,1
+12177,76,1.3.1.3,0
+12177,99,1.3.1,1
+12178,76,1.3.1.3,0
+12178,39,1.3.1,1
+12179,76,1.3.1.3,0
+12179,99,1.3.1,1
+12179,100,1.3.1,1
+12181,85,1.3.1,1
+12181,76,1.3.1.3,0
+12181,99,1.3.1,1
+12181,39,1.3.1,1
+12182,106,1.3,2
+12182,100,1.3.1,1
+12182,99,1.3.1,1
+12182,76,1.3.1.3,0
+12183,85,1.3.1,1
+12183,76,1.3.1.3,0
+12184,85,1.3.1,1
+12184,76,1.3.1.3,0
+12185,76,1.3.1.3,0
+12185,85,1.3.1,1
+12185,99,1.3.1,1
+12185,29,1.3,2
+12185,100,1.3.1,1
+12186,93,1.3.1,1
+12186,100,1.3.1,1
+12186,99,1.3.1,1
+12186,76,1.3.1.3,0
+12187,76,1.3.1.3,0
+12187,85,1.3.1,1
+12188,85,1.3.1,1
+12188,76,1.3.1.3,0
+12188,93,1.3.1,1
+12189,85,1.3.1,1
+12189,76,1.3.1.3,0
+12190,100,1.3.1,1
+12190,93,1.3.1,1
+12190,76,1.3.1.3,0
+12190,85,1.3.1,1
+12191,76,1.3.1.3,0
+12191,106,1.3,2
+12191,99,1.3.1,1
+12191,85,1.3.1,1
+12192,76,1.3.1.3,0
+12192,39,1.3.1,1
+12193,39,1.3.1,1
+12193,99,1.3.1,1
+12193,76,1.3.1.3,0
+12194,85,1.3.1,1
+12194,39,1.3.1,1
+12194,76,1.3.1.3,0
+12194,100,1.3.1,1
+12195,76,1.3.1.3,0
+12195,85,1.3.1,1
+12195,93,1.3.1,1
+12196,106,1.3,2
+12196,93,1.3.1,1
+12196,76,1.3.1.3,0
+12197,100,1.3.1,1
+12197,85,1.3.1,1
+12197,76,1.3.1.3,0
+12198,85,1.3.1,1
+12198,99,1.3.1,1
+12198,76,1.3.1.3,0
+12198,39,1.3.1,1
+12199,93,1.3.1,1
+12199,76,1.3.1.3,0
+12200,100,1.3.1,1
+12200,76,1.3.1.3,0
+12202,77,1.3.3.6,0
+12202,97,1.3.3,1
+12203,97,1.3.3,1
+12203,77,1.3.3.6,0
+12205,75,1.3.3,1
+12205,77,1.3.3.6,0
+12206,77,1.3.3.6,0
+12206,75,1.3.3,1
+12207,77,1.3.3.6,0
+12207,99,1.3.3,1
+12208,77,1.3.3.6,0
+12208,75,1.3.3,1
+12209,77,1.3.3.6,0
+12209,75,1.3.3,1
+12210,77,1.3.3.6,0
+12210,75,1.3.3,1
+12211,77,1.3.3.6,0
+12211,97,1.3.3,1
+12211,75,1.3.3,1
+12214,99,1.3.3,1
+12214,77,1.3.3.6,0
+12216,97,1.3.3,1
+12216,99,1.3.3,1
+12216,77,1.3.3.6,0
+12217,99,1.3.3,1
+12217,77,1.3.3.6,0
+12217,106,1.3,2
+12220,77,1.3.3.6,0
+12220,99,1.3.3,1
+12222,77,1.3.3.6,0
+12222,75,1.3.3,1
+12226,77,1.3.3.6,0
+12226,75,1.3.3,1
+12226,97,1.3.3,1
+12227,77,1.3.3.6,0
+12227,99,1.3.3,1
+12228,75,1.3.3,1
+12228,77,1.3.3.6,0
+12229,77,1.3.3.6,0
+12229,75,1.3.3,1
+12231,99,1.3.3,1
+12231,77,1.3.3.6,0
+12232,97,1.3.3,1
+12232,77,1.3.3.6,0
+12233,77,1.3.3.6,0
+12233,97,1.3.3,1
+12234,77,1.3.3.6,0
+12234,99,1.3.3,1
+12235,99,1.3.3,1
+12235,77,1.3.3.6,0
+12236,99,1.3.3,1
+12236,77,1.3.3.6,0
+12236,97,1.3.3,1
+12238,77,1.3.3.6,0
+12238,99,1.3.3,1
+12239,77,1.3.3.6,0
+12239,75,1.3.3,1
+12240,97,1.3.3,1
+12240,77,1.3.3.6,0
+12241,75,1.3.3,1
+12241,77,1.3.3.6,0
+12242,97,1.3.3,1
+12242,77,1.3.3.6,0
+12243,75,1.3.3,1
+12243,77,1.3.3.6,0
+12244,75,1.3.3,1
+12244,99,1.3.3,1
+12244,77,1.3.3.6,0
+12247,99,1.3.3,1
+12247,77,1.3.3.6,0
+12247,75,1.3.3,1
+12250,77,1.3.3.6,0
+12250,97,1.3.3,1
+12252,77,1.3.4,0
+12252,29,1.3,1
+12254,29,1.3,1
+12254,77,1.3.4,0
+12256,77,1.3.4,0
+12256,29,1.3,1
+12257,29,1.3,1
+12257,77,1.3.4,0
+12258,77,1.3.4,0
+12258,29,1.3,1
+12259,29,1.3,1
+12259,77,1.3.4,0
+12261,29,1.3,1
+12261,77,1.3.4,0
+12261,170,1,2
+12261,106,1.3,1
+12264,106,1.3,1
+12264,77,1.3.4,0
+12266,77,1.3.4,0
+12266,106,1.3,1
+12266,29,1.3,1
+12272,106,1.3,1
+12272,77,1.3.4,0
+12273,77,1.3.4,0
+12273,29,1.3,1
+12274,77,1.3.4,0
+12274,106,1.3,1
+12278,29,1.3,1
+12278,77,1.3.4,0
+12279,29,1.3,1
+12279,77,1.3.4,0
+12281,77,1.3.4,0
+12281,29,1.3,1
+12281,106,1.3,1
+12282,29,1.3,1
+12282,77,1.3.4,0
+12283,29,1.3,1
+12283,77,1.3.4,0
+12284,77,1.3.4,0
+12284,170,1,2
+12284,29,1.3,1
+12286,106,1.3,1
+12286,77,1.3.4,0
+12286,29,1.3,1
+12289,77,1.3.4,0
+12289,106,1.3,1
+12291,77,1.3.4,0
+12291,29,1.3,1
+12293,106,1.3,1
+12293,170,1,2
+12293,77,1.3.4,0
+12293,29,1.3,1
+12297,77,1.3.4,0
+12297,29,1.3,1
+12298,106,1.3,1
+12298,29,1.3,1
+12298,77,1.3.4,0
+12302,148,2.1.1,1
+12302,78,2.1.1.1,0
+12302,106,2.1.1,1
+12303,148,2.1.1,1
+12303,78,2.1.1.1,0
+12303,85,2.1.1,1
+12304,106,2.1.1,1
+12304,78,2.1.1.1,0
+12304,80,2.1.1,1
+12305,78,2.1.1.1,0
+12305,148,2.1.1,1
+12306,80,2.1.1,1
+12306,78,2.1.1.1,0
+12307,85,2.1.1,1
+12307,78,2.1.1.1,0
+12308,85,2.1.1,1
+12308,78,2.1.1.1,0
+12314,106,2.1.1,1
+12314,78,2.1.1.1,0
+12322,106,2.1.1,1
+12322,78,2.1.1.1,0
+12323,78,2.1.1.1,0
+12323,148,2.1.1,1
+12323,80,2.1.1,1
+12324,78,2.1.1.1,0
+12324,148,2.1.1,1
+12327,85,2.1.1,1
+12327,78,2.1.1.1,0
+12328,78,2.1.1.1,0
+12328,106,2.1.1,1
+12329,80,2.1.1,1
+12329,85,2.1.1,1
+12329,78,2.1.1.1,0
+12332,78,2.1.1.1,0
+12332,80,2.1.1,1
+12332,85,2.1.1,1
+12333,78,2.1.1.1,0
+12333,106,2.1.1,1
+12334,106,2.1.1,1
+12334,78,2.1.1.1,0
+12335,85,2.1.1,1
+12335,78,2.1.1.1,0
+12336,78,2.1.1.1,0
+12336,106,2.1.1,1
+12339,148,2.1.1,1
+12339,78,2.1.1.1,0
+12341,85,2.1.1,1
+12341,78,2.1.1.1,0
+12342,78,2.1.1.1,0
+12342,106,2.1.1,1
+12343,78,2.1.1.1,0
+12343,80,2.1.1,1
+12344,78,2.1.1.1,0
+12344,85,2.1.1,1
+12345,78,2.1.1.1,0
+12345,85,2.1.1,1
+12347,80,2.1.1,1
+12347,78,2.1.1.1,0
+12348,106,2.1.1,1
+12348,78,2.1.1.1,0
+12348,148,2.1.1,1
+12348,80,2.1.1,1
+12352,148,2.1.1,1
+12352,85,2.1.1,1
+12352,78,2.1.1.2,0
+12353,85,2.1.1,1
+12353,78,2.1.1.2,0
+12354,80,2.1.1,1
+12354,78,2.1.1.2,0
+12355,78,2.1.1.2,0
+12355,148,2.1.1,1
+12356,106,2.1.1,1
+12356,80,2.1.1,1
+12356,78,2.1.1.2,0
+12357,78,2.1.1.2,0
+12357,85,2.1.1,1
+12358,80,2.1.1,1
+12358,78,2.1.1.2,0
+12358,148,2.1.1,1
+12360,148,2.1.1,1
+12360,78,2.1.1.2,0
+12360,85,2.1.1,1
+12361,78,2.1.1.2,0
+12361,80,2.1.1,1
+12361,106,2.1.1,1
+12366,78,2.1.1.2,0
+12366,80,2.1.1,1
+12372,85,2.1.1,1
+12372,78,2.1.1.2,0
+12373,148,2.1.1,1
+12373,78,2.1.1.2,0
+12376,148,2.1.1,1
+12376,78,2.1.1.2,0
+12376,80,2.1.1,1
+12377,85,2.1.1,1
+12377,78,2.1.1.2,0
+12379,148,2.1.1,1
+12379,85,2.1.1,1
+12379,78,2.1.1.2,0
+12381,148,2.1.1,1
+12381,78,2.1.1.2,0
+12382,78,2.1.1.2,0
+12382,80,2.1.1,1
+12382,85,2.1.1,1
+12383,78,2.1.1.2,0
+12383,80,2.1.1,1
+12384,78,2.1.1.2,0
+12384,148,2.1.1,1
+12386,78,2.1.1.2,0
+12386,106,2.1.1,1
+12389,85,2.1.1,1
+12389,78,2.1.1.2,0
+12393,80,2.1.1,1
+12393,85,2.1.1,1
+12393,78,2.1.1.2,0
+12394,106,2.1.1,1
+12394,148,2.1.1,1
+12394,78,2.1.1.2,0
+12397,106,2.1.1,1
+12397,78,2.1.1.2,0
+12398,106,2.1.1,1
+12398,78,2.1.1.2,0
+12400,148,2.1.1,1
+12400,78,2.1.1.2,0
+12402,78,2.1.1.3,0
+12402,148,2.1.1,1
+12402,85,2.1.1,1
+12404,80,2.1.1,1
+12404,78,2.1.1.3,0
+12405,78,2.1.1.3,0
+12405,148,2.1.1,1
+12406,106,2.1.1,1
+12406,78,2.1.1.3,0
+12407,78,2.1.1.3,0
+12407,85,2.1.1,1
+12411,106,2.1.1,1
+12411,148,2.1.1,1
+12411,78,2.1.1.3,0
+12414,78,2.1.1.3,0
+12414,85,2.1.1,1
+12416,78,2.1.1.3,0
+12416,80,2.1.1,1
+12420,80,2.1.1,1
+12420,78,2.1.1.3,0
+12423,78,2.1.1.3,0
+12423,85,2.1.1,1
+12425,80,2.1.1,1
+12425,78,2.1.1.3,0
+12426,148,2.1.1,1
+12426,78,2.1.1.3,0
+12426,106,2.1.1,1
+12429,106,2.1.1,1
+12429,78,2.1.1.3,0
+12434,78,2.1.1.3,0
+12434,85,2.1.1,1
+12436,106,2.1.1,1
+12436,78,2.1.1.3,0
+12439,85,2.1.1,1
+12439,78,2.1.1.3,0
+12441,85,2.1.1,1
+12441,148,2.1.1,1
+12441,78,2.1.1.3,0
+12443,78,2.1.1.3,0
+12443,106,2.1.1,1
+12447,80,2.1.1,1
+12447,78,2.1.1.3,0
+12448,85,2.1.1,1
+12448,78,2.1.1.3,0
+12449,106,2.1.1,1
+12449,78,2.1.1.3,0
+12449,148,2.1.1,1
+12450,78,2.1.1.3,0
+12450,106,2.1.1,1
+12452,78,2.1.1.4,0
+12452,80,2.1.1,1
+12454,78,2.1.1.4,0
+12454,85,2.1.1,1
+12455,106,2.1.1,1
+12455,78,2.1.1.4,0
+12456,80,2.1.1,1
+12456,78,2.1.1.4,0
+12457,78,2.1.1.4,0
+12457,85,2.1.1,1
+12459,85,2.1.1,1
+12459,78,2.1.1.4,0
+12460,148,2.1.1,1
+12460,78,2.1.1.4,0
+12461,78,2.1.1.4,0
+12461,80,2.1.1,1
+12464,80,2.1.1,1
+12464,78,2.1.1.4,0
+12464,85,2.1.1,1
+12466,78,2.1.1.4,0
+12466,148,2.1.1,1
+12470,80,2.1.1,1
+12470,78,2.1.1.4,0
+12472,106,2.1.1,1
+12472,78,2.1.1.4,0
+12473,148,2.1.1,1
+12473,78,2.1.1.4,0
+12473,80,2.1.1,1
+12476,78,2.1.1.4,0
+12476,106,2.1.1,1
+12478,78,2.1.1.4,0
+12478,85,2.1.1,1
+12478,99,2.1,2
+12479,80,2.1.1,1
+12479,78,2.1.1.4,0
+12481,78,2.1.1.4,0
+12481,80,2.1.1,1
+12481,106,2.1.1,1
+12482,148,2.1.1,1
+12482,78,2.1.1.4,0
+12484,78,2.1.1.4,0
+12484,148,2.1.1,1
+12485,78,2.1.1.4,0
+12485,148,2.1.1,1
+12486,148,2.1.1,1
+12486,78,2.1.1.4,0
+12487,148,2.1.1,1
+12487,78,2.1.1.4,0
+12488,85,2.1.1,1
+12488,78,2.1.1.4,0
+12489,78,2.1.1.4,0
+12489,80,2.1.1,1
+12490,148,2.1.1,1
+12490,78,2.1.1.4,0
+12491,78,2.1.1.4,0
+12491,85,2.1.1,1
+12493,85,2.1.1,1
+12493,78,2.1.1.4,0
+12493,106,2.1.1,1
+12494,106,2.1.1,1
+12494,78,2.1.1.4,0
+12498,78,2.1.1.4,0
+12498,148,2.1.1,1
+12502,78,2.1.1.5,0
+12502,148,2.1.1,1
+12504,80,2.1.1,1
+12504,78,2.1.1.5,0
+12514,78,2.1.1.5,0
+12514,148,2.1.1,1
+12522,80,2.1.1,1
+12522,78,2.1.1.5,0
+12526,85,2.1.1,1
+12526,78,2.1.1.5,0
+12533,78,2.1.1.5,0
+12533,106,2.1.1,1
+12536,148,2.1.1,1
+12536,78,2.1.1.5,0
+12541,85,2.1.1,1
+12541,78,2.1.1.5,0
+12542,80,2.1.1,1
+12542,78,2.1.1.5,0
+12547,80,2.1.1,1
+12547,78,2.1.1.5,0
+12549,78,2.1.1.5,0
+12549,85,2.1.1,1
+12552,39,1.3.1,1
+12552,79,1.3.1.1,0
+12552,93,1.3.1,1
+12553,39,1.3.1,1
+12553,79,1.3.1.1,0
+12554,39,1.3.1,1
+12554,79,1.3.1.1,0
+12555,39,1.3.1,1
+12555,79,1.3.1.1,0
+12555,99,1.3.1,1
+12556,39,1.3.1,1
+12556,100,1.3.1,1
+12556,79,1.3.1.1,0
+12557,79,1.3.1.1,0
+12557,39,1.3.1,1
+12559,79,1.3.1.1,0
+12559,39,1.3.1,1
+12560,39,1.3.1,1
+12560,79,1.3.1.1,0
+12561,79,1.3.1.1,0
+12561,85,1.3.1,1
+12566,79,1.3.1.1,0
+12566,39,1.3.1,1
+12566,100,1.3.1,1
+12570,79,1.3.1.1,0
+12570,39,1.3.1,1
+12573,100,1.3.1,1
+12573,85,1.3.1,1
+12573,79,1.3.1.1,0
+12573,93,1.3.1,1
+12574,93,1.3.1,1
+12574,99,1.3.1,1
+12574,79,1.3.1.1,0
+12575,39,1.3.1,1
+12575,79,1.3.1.1,0
+12576,39,1.3.1,1
+12576,79,1.3.1.1,0
+12576,85,1.3.1,1
+12578,79,1.3.1.1,0
+12578,85,1.3.1,1
+12579,99,1.3.1,1
+12579,85,1.3.1,1
+12579,79,1.3.1.1,0
+12581,93,1.3.1,1
+12581,79,1.3.1.1,0
+12582,39,1.3.1,1
+12582,79,1.3.1.1,0
+12583,79,1.3.1.1,0
+12583,85,1.3.1,1
+12584,93,1.3.1,1
+12584,79,1.3.1.1,0
+12585,79,1.3.1.1,0
+12585,85,1.3.1,1
+12585,100,1.3.1,1
+12585,93,1.3.1,1
+12586,99,1.3.1,1
+12586,79,1.3.1.1,0
+12587,79,1.3.1.1,0
+12587,100,1.3.1,1
+12591,79,1.3.1.1,0
+12591,93,1.3.1,1
+12592,93,1.3.1,1
+12592,100,1.3.1,1
+12592,79,1.3.1.1,0
+12593,79,1.3.1.1,0
+12593,100,1.3.1,1
+12594,39,1.3.1,1
+12594,79,1.3.1.1,0
+12596,93,1.3.1,1
+12596,79,1.3.1.1,0
+12597,85,1.3.1,1
+12597,79,1.3.1.1,0
+12598,79,1.3.1.1,0
+12598,99,1.3.1,1
+12599,93,1.3.1,1
+12599,85,1.3.1,1
+12599,79,1.3.1.1,0
+12600,79,1.3.1.1,0
+12600,93,1.3.1,1
+12600,99,1.3.1,1
+12602,79,1.3.1.4,0
+12602,93,1.3.1,1
+12602,99,1.3.1,1
+12604,79,1.3.1.4,0
+12604,99,1.3.1,1
+12605,39,1.3.1,1
+12605,79,1.3.1.4,0
+12605,100,1.3.1,1
+12606,39,1.3.1,1
+12606,100,1.3.1,1
+12606,79,1.3.1.4,0
+12606,99,1.3.1,1
+12607,79,1.3.1.4,0
+12607,39,1.3.1,1
+12608,100,1.3.1,1
+12608,79,1.3.1.4,0
+12609,79,1.3.1.4,0
+12609,85,1.3.1,1
+12610,79,1.3.1.4,0
+12610,93,1.3.1,1
+12611,79,1.3.1.4,0
+12611,100,1.3.1,1
+12612,100,1.3.1,1
+12612,99,1.3.1,1
+12612,79,1.3.1.4,0
+12614,79,1.3.1.4,0
+12614,85,1.3.1,1
+12616,39,1.3.1,1
+12616,100,1.3.1,1
+12616,93,1.3.1,1
+12616,79,1.3.1.4,0
+12617,93,1.3.1,1
+12617,79,1.3.1.4,0
+12617,99,1.3.1,1
+12620,100,1.3.1,1
+12620,85,1.3.1,1
+12620,79,1.3.1.4,0
+12621,79,1.3.1.4,0
+12621,93,1.3.1,1
+12621,100,1.3.1,1
+12621,99,1.3.1,1
+12622,93,1.3.1,1
+12622,79,1.3.1.4,0
+12623,100,1.3.1,1
+12623,99,1.3.1,1
+12623,79,1.3.1.4,0
+12623,39,1.3.1,1
+12624,93,1.3.1,1
+12624,79,1.3.1.4,0
+12625,39,1.3.1,1
+12625,79,1.3.1.4,0
+12626,79,1.3.1.4,0
+12626,93,1.3.1,1
+12626,99,1.3.1,1
+12628,93,1.3.1,1
+12628,79,1.3.1.4,0
+12629,79,1.3.1.4,0
+12629,39,1.3.1,1
+12631,93,1.3.1,1
+12631,39,1.3.1,1
+12631,79,1.3.1.4,0
+12632,93,1.3.1,1
+12632,39,1.3.1,1
+12632,79,1.3.1.4,0
+12633,39,1.3.1,1
+12633,79,1.3.1.4,0
+12634,79,1.3.1.4,0
+12634,39,1.3.1,1
+12636,100,1.3.1,1
+12636,85,1.3.1,1
+12636,99,1.3.1,1
+12636,79,1.3.1.4,0
+12637,79,1.3.1.4,0
+12637,99,1.3.1,1
+12639,79,1.3.1.4,0
+12639,93,1.3.1,1
+12639,39,1.3.1,1
+12639,100,1.3.1,1
+12641,100,1.3.1,1
+12641,39,1.3.1,1
+12641,79,1.3.1.4,0
+12642,79,1.3.1.4,0
+12642,39,1.3.1,1
+12643,39,1.3.1,1
+12643,79,1.3.1.4,0
+12643,99,1.3.1,1
+12643,100,1.3.1,1
+12644,39,1.3.1,1
+12644,79,1.3.1.4,0
+12647,39,1.3.1,1
+12647,79,1.3.1.4,0
+12648,79,1.3.1.4,0
+12648,39,1.3.1,1
+12649,99,1.3.1,1
+12649,100,1.3.1,1
+12649,79,1.3.1.4,0
+12652,93,1.3.1,1
+12652,79,1.3.1.6,0
+12652,100,1.3.1,1
+12653,39,1.3.1,1
+12653,79,1.3.1.6,0
+12653,99,1.3.1,1
+12654,93,1.3.1,1
+12654,79,1.3.1.6,0
+12655,79,1.3.1.6,0
+12655,100,1.3.1,1
+12655,39,1.3.1,1
+12656,39,1.3.1,1
+12656,79,1.3.1.6,0
+12657,79,1.3.1.6,0
+12657,100,1.3.1,1
+12657,85,1.3.1,1
+12658,79,1.3.1.6,0
+12658,93,1.3.1,1
+12660,79,1.3.1.6,0
+12660,100,1.3.1,1
+12661,79,1.3.1.6,0
+12661,93,1.3.1,1
+12661,85,1.3.1,1
+12664,39,1.3.1,1
+12664,100,1.3.1,1
+12664,79,1.3.1.6,0
+12669,29,1.3,2
+12669,99,1.3.1,1
+12669,79,1.3.1.6,0
+12669,93,1.3.1,1
+12672,99,1.3.1,1
+12672,79,1.3.1.6,0
+12673,100,1.3.1,1
+12673,79,1.3.1.6,0
+12673,39,1.3.1,1
+12674,99,1.3.1,1
+12674,79,1.3.1.6,0
+12674,39,1.3.1,1
+12675,100,1.3.1,1
+12675,79,1.3.1.6,0
+12676,79,1.3.1.6,0
+12676,93,1.3.1,1
+12676,99,1.3.1,1
+12677,100,1.3.1,1
+12677,79,1.3.1.6,0
+12679,85,1.3.1,1
+12679,39,1.3.1,1
+12679,79,1.3.1.6,0
+12682,79,1.3.1.6,0
+12682,100,1.3.1,1
+12682,39,1.3.1,1
+12682,85,1.3.1,1
+12683,79,1.3.1.6,0
+12683,85,1.3.1,1
+12684,79,1.3.1.6,0
+12684,85,1.3.1,1
+12686,85,1.3.1,1
+12686,99,1.3.1,1
+12686,93,1.3.1,1
+12686,79,1.3.1.6,0
+12687,79,1.3.1.6,0
+12687,100,1.3.1,1
+12689,85,1.3.1,1
+12689,79,1.3.1.6,0
+12689,100,1.3.1,1
+12690,100,1.3.1,1
+12690,99,1.3.1,1
+12690,79,1.3.1.6,0
+12691,79,1.3.1.6,0
+12691,93,1.3.1,1
+12692,79,1.3.1.6,0
+12692,100,1.3.1,1
+12693,100,1.3.1,1
+12693,39,1.3.1,1
+12693,79,1.3.1.6,0
+12694,85,1.3.1,1
+12694,79,1.3.1.6,0
+12697,79,1.3.1.6,0
+12697,93,1.3.1,1
+12697,100,1.3.1,1
+12699,93,1.3.1,1
+12699,100,1.3.1,1
+12699,79,1.3.1.6,0
+12700,99,1.3.1,1
+12700,79,1.3.1.6,0
+12702,79,2.1.2,0
+12702,99,2.1,1
+12705,79,2.1.2,0
+12705,99,2.1,1
+12706,99,2.1,1
+12706,79,2.1.2,0
+12707,99,2.1,1
+12707,79,2.1.2,0
+12708,99,2.1,1
+12708,79,2.1.2,0
+12711,98,2,2
+12711,99,2.1,1
+12711,170,1,3
+12711,79,2.1.2,0
+12711,102,2,2
+12722,99,2.1,1
+12722,79,2.1.2,0
+12723,99,2.1,1
+12723,79,2.1.2,0
+12729,99,2.1,1
+12729,170,1,3
+12729,98,2,2
+12729,102,2,2
+12729,79,2.1.2,0
+12736,99,2.1,1
+12736,79,2.1.2,0
+12741,79,2.1.2,0
+12741,99,2.1,1
+12743,79,2.1.2,0
+12743,99,2.1,1
+12744,79,2.1.2,0
+12744,99,2.1,1
+12751,126,2.1.3,1
+12751,79,2.1.3.1,0
+12752,126,2.1.3,1
+12752,79,2.1.3.1,0
+12753,79,2.1.3.1,0
+12753,73,2.1.3,1
+12754,108,2.1.3,1
+12754,73,2.1.3,1
+12754,79,2.1.3.1,0
+12755,79,2.1.3.1,0
+12755,126,2.1.3,1
+12755,74,2.1.3,1
+12756,97,2.1.3,1
+12756,106,2.1.3,1
+12756,79,2.1.3.1,0
+12756,73,2.1.3,1
+12757,79,2.1.3.1,0
+12757,73,2.1.3,1
+12757,108,2.1.3,1
+12758,73,2.1.3,1
+12758,79,2.1.3.1,0
+12758,126,2.1.3,1
+12759,106,2.1.3,1
+12759,79,2.1.3.1,0
+12760,79,2.1.3.1,0
+12760,73,2.1.3,1
+12761,74,2.1.3,1
+12761,108,2.1.3,1
+12761,79,2.1.3.1,0
+12761,99,2.1,2
+12761,148,2.1.3,1
+12761,97,2.1.3,1
+12762,148,2.1.3,1
+12762,79,2.1.3.1,0
+12762,126,2.1.3,1
+12764,108,2.1.3,1
+12764,74,2.1.3,1
+12764,79,2.1.3.1,0
+12764,97,2.1.3,1
+12764,106,2.1.3,1
+12764,148,2.1.3,1
+12765,106,2.1.3,1
+12765,79,2.1.3.1,0
+12766,106,2.1.3,1
+12766,73,2.1.3,1
+12766,126,2.1.3,1
+12766,79,2.1.3.1,0
+12769,79,2.1.3.1,0
+12769,73,2.1.3,1
+12769,74,2.1.3,1
+12770,79,2.1.3.1,0
+12770,74,2.1.3,1
+12770,106,2.1.3,1
+12772,97,2.1.3,1
+12772,126,2.1.3,1
+12772,73,2.1.3,1
+12772,148,2.1.3,1
+12772,79,2.1.3.1,0
+12773,73,2.1.3,1
+12773,79,2.1.3.1,0
+12774,148,2.1.3,1
+12774,79,2.1.3.1,0
+12776,126,2.1.3,1
+12776,79,2.1.3.1,0
+12776,97,2.1.3,1
+12777,108,2.1.3,1
+12777,79,2.1.3.1,0
+12778,79,2.1.3.1,0
+12778,73,2.1.3,1
+12779,73,2.1.3,1
+12779,79,2.1.3.1,0
+12779,97,2.1.3,1
+12780,97,2.1.3,1
+12780,106,2.1.3,1
+12780,79,2.1.3.1,0
+12780,108,2.1.3,1
+12781,79,2.1.3.1,0
+12781,74,2.1.3,1
+12781,97,2.1.3,1
+12782,79,2.1.3.1,0
+12782,73,2.1.3,1
+12783,74,2.1.3,1
+12783,79,2.1.3.1,0
+12784,73,2.1.3,1
+12784,79,2.1.3.1,0
+12784,126,2.1.3,1
+12785,126,2.1.3,1
+12785,148,2.1.3,1
+12785,79,2.1.3.1,0
+12786,79,2.1.3.1,0
+12786,97,2.1.3,1
+12786,106,2.1.3,1
+12786,108,2.1.3,1
+12786,73,2.1.3,1
+12787,79,2.1.3.1,0
+12787,148,2.1.3,1
+12787,74,2.1.3,1
+12789,126,2.1.3,1
+12789,79,2.1.3.1,0
+12789,74,2.1.3,1
+12790,126,2.1.3,1
+12790,148,2.1.3,1
+12790,79,2.1.3.1,0
+12790,97,2.1.3,1
+12791,73,2.1.3,1
+12791,79,2.1.3.1,0
+12791,148,2.1.3,1
+12792,106,2.1.3,1
+12792,79,2.1.3.1,0
+12792,148,2.1.3,1
+12793,79,2.1.3.1,0
+12793,126,2.1.3,1
+12793,97,2.1.3,1
+12794,79,2.1.3.1,0
+12794,108,2.1.3,1
+12794,74,2.1.3,1
+12795,97,2.1.3,1
+12795,79,2.1.3.1,0
+12796,108,2.1.3,1
+12796,106,2.1.3,1
+12796,79,2.1.3.1,0
+12797,97,2.1.3,1
+12797,79,2.1.3.1,0
+12798,99,2.1,2
+12798,97,2.1.3,1
+12798,79,2.1.3.1,0
+12798,73,2.1.3,1
+12799,74,2.1.3,1
+12799,79,2.1.3.1,0
+12799,148,2.1.3,1
+12799,97,2.1.3,1
+12799,126,2.1.3,1
+12800,108,2.1.3,1
+12800,148,2.1.3,1
+12800,97,2.1.3,1
+12800,106,2.1.3,1
+12800,79,2.1.3.1,0
+12801,79,2.1.3.2,0
+12801,126,2.1.3,1
+12802,126,2.1.3,1
+12802,79,2.1.3.2,0
+12802,108,2.1.3,1
+12802,73,2.1.3,1
+12803,79,2.1.3.2,0
+12803,74,2.1.3,1
+12803,73,2.1.3,1
+12803,148,2.1.3,1
+12804,106,2.1.3,1
+12804,74,2.1.3,1
+12804,79,2.1.3.2,0
+12805,79,2.1.3.2,0
+12805,73,2.1.3,1
+12805,74,2.1.3,1
+12806,106,2.1.3,1
+12806,79,2.1.3.2,0
+12807,79,2.1.3.2,0
+12807,108,2.1.3,1
+12807,74,2.1.3,1
+12808,79,2.1.3.2,0
+12808,126,2.1.3,1
+12808,97,2.1.3,1
+12809,79,2.1.3.2,0
+12809,73,2.1.3,1
+12810,148,2.1.3,1
+12810,73,2.1.3,1
+12810,79,2.1.3.2,0
+12811,126,2.1.3,1
+12811,79,2.1.3.2,0
+12811,148,2.1.3,1
+12811,97,2.1.3,1
+12812,148,2.1.3,1
+12812,79,2.1.3.2,0
+12813,148,2.1.3,1
+12813,79,2.1.3.2,0
+12814,108,2.1.3,1
+12814,74,2.1.3,1
+12814,79,2.1.3.2,0
+12815,106,2.1.3,1
+12815,79,2.1.3.2,0
+12816,106,2.1.3,1
+12816,73,2.1.3,1
+12816,79,2.1.3.2,0
+12816,108,2.1.3,1
+12816,148,2.1.3,1
+12819,106,2.1.3,1
+12819,79,2.1.3.2,0
+12819,73,2.1.3,1
+12819,97,2.1.3,1
+12820,126,2.1.3,1
+12820,79,2.1.3.2,0
+12820,74,2.1.3,1
+12820,106,2.1.3,1
+12822,126,2.1.3,1
+12822,97,2.1.3,1
+12822,79,2.1.3.2,0
+12823,148,2.1.3,1
+12823,108,2.1.3,1
+12823,74,2.1.3,1
+12823,79,2.1.3.2,0
+12824,108,2.1.3,1
+12824,79,2.1.3.2,0
+12826,74,2.1.3,1
+12826,106,2.1.3,1
+12826,79,2.1.3.2,0
+12827,106,2.1.3,1
+12827,79,2.1.3.2,0
+12828,79,2.1.3.2,0
+12828,97,2.1.3,1
+12829,73,2.1.3,1
+12829,74,2.1.3,1
+12829,79,2.1.3.2,0
+12830,106,2.1.3,1
+12830,108,2.1.3,1
+12830,79,2.1.3.2,0
+12831,79,2.1.3.2,0
+12831,148,2.1.3,1
+12831,74,2.1.3,1
+12831,106,2.1.3,1
+12832,148,2.1.3,1
+12832,74,2.1.3,1
+12832,79,2.1.3.2,0
+12833,79,2.1.3.2,0
+12833,73,2.1.3,1
+12834,79,2.1.3.2,0
+12834,97,2.1.3,1
+12835,79,2.1.3.2,0
+12835,97,2.1.3,1
+12835,126,2.1.3,1
+12836,126,2.1.3,1
+12836,79,2.1.3.2,0
+12836,148,2.1.3,1
+12836,97,2.1.3,1
+12836,74,2.1.3,1
+12837,79,2.1.3.2,0
+12837,108,2.1.3,1
+12837,74,2.1.3,1
+12838,106,2.1.3,1
+12838,79,2.1.3.2,0
+12839,148,2.1.3,1
+12839,108,2.1.3,1
+12839,79,2.1.3.2,0
+12840,126,2.1.3,1
+12840,148,2.1.3,1
+12840,79,2.1.3.2,0
+12841,79,2.1.3.2,0
+12841,148,2.1.3,1
+12841,74,2.1.3,1
+12842,108,2.1.3,1
+12842,126,2.1.3,1
+12842,79,2.1.3.2,0
+12842,73,2.1.3,1
+12843,106,2.1.3,1
+12843,79,2.1.3.2,0
+12843,97,2.1.3,1
+12844,106,2.1.3,1
+12844,97,2.1.3,1
+12844,79,2.1.3.2,0
+12846,126,2.1.3,1
+12846,106,2.1.3,1
+12846,79,2.1.3.2,0
+12847,97,2.1.3,1
+12847,79,2.1.3.2,0
+12848,79,2.1.3.2,0
+12848,108,2.1.3,1
+12848,126,2.1.3,1
+12848,97,2.1.3,1
+12849,126,2.1.3,1
+12849,79,2.1.3.2,0
+12850,79,2.1.3.2,0
+12850,97,2.1.3,1
+12850,106,2.1.3,1
+12850,108,2.1.3,1
+12850,74,2.1.3,1
+12851,148,2.1.3,1
+12851,79,2.1.3.3,0
+12852,79,2.1.3.3,0
+12852,97,2.1.3,1
+12852,108,2.1.3,1
+12853,148,2.1.3,1
+12853,79,2.1.3.3,0
+12854,148,2.1.3,1
+12854,73,2.1.3,1
+12854,79,2.1.3.3,0
+12855,74,2.1.3,1
+12855,79,2.1.3.3,0
+12855,73,2.1.3,1
+12857,126,2.1.3,1
+12857,79,2.1.3.3,0
+12857,74,2.1.3,1
+12858,106,2.1.3,1
+12858,79,2.1.3.3,0
+12858,73,2.1.3,1
+12859,79,2.1.3.3,0
+12859,97,2.1.3,1
+12860,73,2.1.3,1
+12860,126,2.1.3,1
+12860,148,2.1.3,1
+12860,79,2.1.3.3,0
+12861,74,2.1.3,1
+12861,108,2.1.3,1
+12861,73,2.1.3,1
+12861,79,2.1.3.3,0
+12862,97,2.1.3,1
+12862,79,2.1.3.3,0
+12862,108,2.1.3,1
+12864,126,2.1.3,1
+12864,79,2.1.3.3,0
+12864,106,2.1.3,1
+12866,74,2.1.3,1
+12866,79,2.1.3.3,0
+12866,126,2.1.3,1
+12867,79,2.1.3.3,0
+12867,126,2.1.3,1
+12869,79,2.1.3.3,0
+12869,126,2.1.3,1
+12869,106,2.1.3,1
+12869,148,2.1.3,1
+12870,79,2.1.3.3,0
+12870,126,2.1.3,1
+12872,74,2.1.3,1
+12872,79,2.1.3.3,0
+12873,108,2.1.3,1
+12873,79,2.1.3.3,0
+12873,74,2.1.3,1
+12874,79,2.1.3.3,0
+12874,97,2.1.3,1
+12874,73,2.1.3,1
+12875,148,2.1.3,1
+12875,79,2.1.3.3,0
+12875,73,2.1.3,1
+12876,148,2.1.3,1
+12876,73,2.1.3,1
+12876,74,2.1.3,1
+12876,79,2.1.3.3,0
+12877,108,2.1.3,1
+12877,74,2.1.3,1
+12877,79,2.1.3.3,0
+12878,79,2.1.3.3,0
+12878,148,2.1.3,1
+12878,74,2.1.3,1
+12879,108,2.1.3,1
+12879,73,2.1.3,1
+12879,74,2.1.3,1
+12879,79,2.1.3.3,0
+12880,126,2.1.3,1
+12880,79,2.1.3.3,0
+12881,74,2.1.3,1
+12881,79,2.1.3.3,0
+12881,73,2.1.3,1
+12882,74,2.1.3,1
+12882,108,2.1.3,1
+12882,73,2.1.3,1
+12882,79,2.1.3.3,0
+12883,79,2.1.3.3,0
+12883,73,2.1.3,1
+12884,74,2.1.3,1
+12884,79,2.1.3.3,0
+12884,148,2.1.3,1
+12885,106,2.1.3,1
+12885,126,2.1.3,1
+12885,97,2.1.3,1
+12885,79,2.1.3.3,0
+12886,126,2.1.3,1
+12886,74,2.1.3,1
+12886,79,2.1.3.3,0
+12886,97,2.1.3,1
+12888,74,2.1.3,1
+12888,79,2.1.3.3,0
+12889,106,2.1.3,1
+12889,79,2.1.3.3,0
+12890,108,2.1.3,1
+12890,97,2.1.3,1
+12890,79,2.1.3.3,0
+12890,148,2.1.3,1
+12891,73,2.1.3,1
+12891,79,2.1.3.3,0
+12891,106,2.1.3,1
+12892,106,2.1.3,1
+12892,108,2.1.3,1
+12892,79,2.1.3.3,0
+12892,97,2.1.3,1
+12893,79,2.1.3.3,0
+12893,74,2.1.3,1
+12893,108,2.1.3,1
+12894,79,2.1.3.3,0
+12894,97,2.1.3,1
+12894,108,2.1.3,1
+12895,108,2.1.3,1
+12895,79,2.1.3.3,0
+12895,74,2.1.3,1
+12895,126,2.1.3,1
+12897,79,2.1.3.3,0
+12897,73,2.1.3,1
+12898,74,2.1.3,1
+12898,97,2.1.3,1
+12898,79,2.1.3.3,0
+12899,79,2.1.3.3,0
+12899,148,2.1.3,1
+12899,126,2.1.3,1
+12901,79,2.1.3.4,0
+12901,106,2.1.3,1
+12902,79,2.1.3.4,0
+12902,148,2.1.3,1
+12902,97,2.1.3,1
+12902,108,2.1.3,1
+12904,73,2.1.3,1
+12904,106,2.1.3,1
+12904,79,2.1.3.4,0
+12905,79,2.1.3.4,0
+12905,126,2.1.3,1
+12905,106,2.1.3,1
+12906,97,2.1.3,1
+12906,79,2.1.3.4,0
+12907,126,2.1.3,1
+12907,79,2.1.3.4,0
+12907,108,2.1.3,1
+12907,74,2.1.3,1
+12908,74,2.1.3,1
+12908,79,2.1.3.4,0
+12909,79,2.1.3.4,0
+12909,73,2.1.3,1
+12910,79,2.1.3.4,0
+12910,126,2.1.3,1
+12911,126,2.1.3,1
+12911,79,2.1.3.4,0
+12911,106,2.1.3,1
+12911,73,2.1.3,1
+12912,148,2.1.3,1
+12912,79,2.1.3.4,0
+12912,108,2.1.3,1
+12914,74,2.1.3,1
+12914,108,2.1.3,1
+12914,79,2.1.3.4,0
+12914,106,2.1.3,1
+12915,148,2.1.3,1
+12915,79,2.1.3.4,0
+12916,74,2.1.3,1
+12916,79,2.1.3.4,0
+12916,108,2.1.3,1
+12917,108,2.1.3,1
+12917,79,2.1.3.4,0
+12919,148,2.1.3,1
+12919,79,2.1.3.4,0
+12920,108,2.1.3,1
+12920,79,2.1.3.4,0
+12920,73,2.1.3,1
+12920,106,2.1.3,1
+12921,106,2.1.3,1
+12921,79,2.1.3.4,0
+12921,97,2.1.3,1
+12922,97,2.1.3,1
+12922,148,2.1.3,1
+12922,79,2.1.3.4,0
+12923,108,2.1.3,1
+12923,148,2.1.3,1
+12923,79,2.1.3.4,0
+12923,74,2.1.3,1
+12924,79,2.1.3.4,0
+12924,97,2.1.3,1
+12925,79,2.1.3.4,0
+12925,73,2.1.3,1
+12926,106,2.1.3,1
+12926,108,2.1.3,1
+12926,79,2.1.3.4,0
+12927,97,2.1.3,1
+12927,79,2.1.3.4,0
+12928,79,2.1.3.4,0
+12928,74,2.1.3,1
+12929,97,2.1.3,1
+12929,106,2.1.3,1
+12929,79,2.1.3.4,0
+12930,126,2.1.3,1
+12930,148,2.1.3,1
+12930,79,2.1.3.4,0
+12931,79,2.1.3.4,0
+12931,73,2.1.3,1
+12931,148,2.1.3,1
+12931,74,2.1.3,1
+12932,79,2.1.3.4,0
+12932,126,2.1.3,1
+12933,108,2.1.3,1
+12933,79,2.1.3.4,0
+12934,79,2.1.3.4,0
+12934,97,2.1.3,1
+12935,126,2.1.3,1
+12935,148,2.1.3,1
+12935,108,2.1.3,1
+12935,79,2.1.3.4,0
+12936,73,2.1.3,1
+12936,148,2.1.3,1
+12936,79,2.1.3.4,0
+12939,148,2.1.3,1
+12939,74,2.1.3,1
+12939,79,2.1.3.4,0
+12940,106,2.1.3,1
+12940,97,2.1.3,1
+12940,74,2.1.3,1
+12940,79,2.1.3.4,0
+12941,74,2.1.3,1
+12941,79,2.1.3.4,0
+12942,79,2.1.3.4,0
+12942,126,2.1.3,1
+12942,108,2.1.3,1
+12943,79,2.1.3.4,0
+12943,126,2.1.3,1
+12943,148,2.1.3,1
+12944,79,2.1.3.4,0
+12944,148,2.1.3,1
+12944,108,2.1.3,1
+12945,74,2.1.3,1
+12945,79,2.1.3.4,0
+12947,79,2.1.3.4,0
+12947,148,2.1.3,1
+12947,97,2.1.3,1
+12948,79,2.1.3.4,0
+12948,97,2.1.3,1
+12948,73,2.1.3,1
+12949,97,2.1.3,1
+12949,148,2.1.3,1
+12949,79,2.1.3.4,0
+12952,73,2.1.3,1
+12952,97,2.1.3,1
+12952,79,2.1.3.5,0
+12952,148,2.1.3,1
+12952,126,2.1.3,1
+12954,108,2.1.3,1
+12954,97,2.1.3,1
+12954,79,2.1.3.5,0
+12955,106,2.1.3,1
+12955,79,2.1.3.5,0
+12956,126,2.1.3,1
+12956,73,2.1.3,1
+12956,79,2.1.3.5,0
+12956,108,2.1.3,1
+12957,79,2.1.3.5,0
+12957,108,2.1.3,1
+12957,74,2.1.3,1
+12958,97,2.1.3,1
+12958,79,2.1.3.5,0
+12959,79,2.1.3.5,0
+12959,73,2.1.3,1
+12960,148,2.1.3,1
+12960,97,2.1.3,1
+12960,79,2.1.3.5,0
+12961,108,2.1.3,1
+12961,97,2.1.3,1
+12961,79,2.1.3.5,0
+12961,74,2.1.3,1
+12961,126,2.1.3,1
+12962,148,2.1.3,1
+12962,79,2.1.3.5,0
+12964,97,2.1.3,1
+12964,126,2.1.3,1
+12964,74,2.1.3,1
+12964,79,2.1.3.5,0
+12966,79,2.1.3.5,0
+12966,74,2.1.3,1
+12966,126,2.1.3,1
+12966,108,2.1.3,1
+12967,79,2.1.3.5,0
+12967,106,2.1.3,1
+12969,108,2.1.3,1
+12969,79,2.1.3.5,0
+12969,106,2.1.3,1
+12969,73,2.1.3,1
+12969,126,2.1.3,1
+12969,148,2.1.3,1
+12970,79,2.1.3.5,0
+12970,73,2.1.3,1
+12970,148,2.1.3,1
+12971,79,2.1.3.5,0
+12971,108,2.1.3,1
+12972,74,2.1.3,1
+12972,79,2.1.3.5,0
+12973,74,2.1.3,1
+12973,126,2.1.3,1
+12973,73,2.1.3,1
+12973,148,2.1.3,1
+12973,79,2.1.3.5,0
+12973,97,2.1.3,1
+12974,79,2.1.3.5,0
+12974,126,2.1.3,1
+12975,79,2.1.3.5,0
+12975,126,2.1.3,1
+12975,73,2.1.3,1
+12976,73,2.1.3,1
+12976,126,2.1.3,1
+12976,79,2.1.3.5,0
+12977,126,2.1.3,1
+12977,79,2.1.3.5,0
+12978,73,2.1.3,1
+12978,79,2.1.3.5,0
+12979,73,2.1.3,1
+12979,74,2.1.3,1
+12979,148,2.1.3,1
+12979,79,2.1.3.5,0
+12979,126,2.1.3,1
+12980,126,2.1.3,1
+12980,148,2.1.3,1
+12980,79,2.1.3.5,0
+12981,79,2.1.3.5,0
+12981,97,2.1.3,1
+12981,73,2.1.3,1
+12982,79,2.1.3.5,0
+12982,73,2.1.3,1
+12982,148,2.1.3,1
+12982,74,2.1.3,1
+12983,79,2.1.3.5,0
+12983,73,2.1.3,1
+12984,148,2.1.3,1
+12984,73,2.1.3,1
+12984,79,2.1.3.5,0
+12985,79,2.1.3.5,0
+12985,97,2.1.3,1
+12985,148,2.1.3,1
+12986,126,2.1.3,1
+12986,106,2.1.3,1
+12986,74,2.1.3,1
+12986,79,2.1.3.5,0
+12987,79,2.1.3.5,0
+12987,108,2.1.3,1
+12988,97,2.1.3,1
+12988,79,2.1.3.5,0
+12989,79,2.1.3.5,0
+12989,126,2.1.3,1
+12989,148,2.1.3,1
+12989,73,2.1.3,1
+12990,126,2.1.3,1
+12990,106,2.1.3,1
+12990,79,2.1.3.5,0
+12990,108,2.1.3,1
+12991,73,2.1.3,1
+12991,79,2.1.3.5,0
+12991,148,2.1.3,1
+12991,108,2.1.3,1
+12993,106,2.1.3,1
+12993,79,2.1.3.5,0
+12993,73,2.1.3,1
+12994,79,2.1.3.5,0
+12994,106,2.1.3,1
+12994,73,2.1.3,1
+12995,108,2.1.3,1
+12995,79,2.1.3.5,0
+12997,106,2.1.3,1
+12997,108,2.1.3,1
+12997,97,2.1.3,1
+12997,79,2.1.3.5,0
+12997,73,2.1.3,1
+12998,126,2.1.3,1
+12998,79,2.1.3.5,0
+12998,97,2.1.3,1
+12998,73,2.1.3,1
+12999,126,2.1.3,1
+12999,79,2.1.3.5,0
+13000,126,2.1.3,1
+13000,97,2.1.3,1
+13000,79,2.1.3.5,0
+13000,106,2.1.3,1
+13001,148,2.1.3,1
+13001,79,2.1.3.6,0
+13001,106,2.1.3,1
+13001,108,2.1.3,1
+13002,79,2.1.3.6,0
+13002,73,2.1.3,1
+13004,108,2.1.3,1
+13004,73,2.1.3,1
+13004,106,2.1.3,1
+13004,79,2.1.3.6,0
+13005,79,2.1.3.6,0
+13005,97,2.1.3,1
+13005,73,2.1.3,1
+13006,148,2.1.3,1
+13006,97,2.1.3,1
+13006,79,2.1.3.6,0
+13007,97,2.1.3,1
+13007,79,2.1.3.6,0
+13008,148,2.1.3,1
+13008,79,2.1.3.6,0
+13008,73,2.1.3,1
+13008,108,2.1.3,1
+13009,74,2.1.3,1
+13009,79,2.1.3.6,0
+13010,79,2.1.3.6,0
+13010,73,2.1.3,1
+13011,108,2.1.3,1
+13011,74,2.1.3,1
+13011,126,2.1.3,1
+13011,97,2.1.3,1
+13011,79,2.1.3.6,0
+13012,148,2.1.3,1
+13012,79,2.1.3.6,0
+13014,79,2.1.3.6,0
+13014,73,2.1.3,1
+13016,79,2.1.3.6,0
+13016,108,2.1.3,1
+13019,79,2.1.3.6,0
+13019,73,2.1.3,1
+13019,97,2.1.3,1
+13020,108,2.1.3,1
+13020,126,2.1.3,1
+13020,73,2.1.3,1
+13020,79,2.1.3.6,0
+13021,108,2.1.3,1
+13021,79,2.1.3.6,0
+13022,106,2.1.3,1
+13022,79,2.1.3.6,0
+13023,108,2.1.3,1
+13023,79,2.1.3.6,0
+13024,79,2.1.3.6,0
+13024,73,2.1.3,1
+13024,148,2.1.3,1
+13024,74,2.1.3,1
+13026,126,2.1.3,1
+13026,79,2.1.3.6,0
+13026,108,2.1.3,1
+13027,126,2.1.3,1
+13027,79,2.1.3.6,0
+13027,106,2.1.3,1
+13028,79,2.1.3.6,0
+13028,148,2.1.3,1
+13029,106,2.1.3,1
+13029,74,2.1.3,1
+13029,79,2.1.3.6,0
+13030,148,2.1.3,1
+13030,108,2.1.3,1
+13030,79,2.1.3.6,0
+13031,97,2.1.3,1
+13031,79,2.1.3.6,0
+13032,97,2.1.3,1
+13032,79,2.1.3.6,0
+13033,108,2.1.3,1
+13033,79,2.1.3.6,0
+13034,73,2.1.3,1
+13034,79,2.1.3.6,0
+13035,79,2.1.3.6,0
+13035,148,2.1.3,1
+13036,106,2.1.3,1
+13036,97,2.1.3,1
+13036,79,2.1.3.6,0
+13036,73,2.1.3,1
+13036,126,2.1.3,1
+13037,79,2.1.3.6,0
+13037,148,2.1.3,1
+13038,126,2.1.3,1
+13038,79,2.1.3.6,0
+13039,79,2.1.3.6,0
+13039,73,2.1.3,1
+13040,126,2.1.3,1
+13040,106,2.1.3,1
+13040,148,2.1.3,1
+13040,79,2.1.3.6,0
+13040,108,2.1.3,1
+13040,97,2.1.3,1
+13041,79,2.1.3.6,0
+13041,74,2.1.3,1
+13042,79,2.1.3.6,0
+13042,106,2.1.3,1
+13043,79,2.1.3.6,0
+13043,73,2.1.3,1
+13043,74,2.1.3,1
+13044,74,2.1.3,1
+13044,79,2.1.3.6,0
+13044,106,2.1.3,1
+13047,74,2.1.3,1
+13047,79,2.1.3.6,0
+13048,74,2.1.3,1
+13048,79,2.1.3.6,0
+13048,108,2.1.3,1
+13049,74,2.1.3,1
+13049,79,2.1.3.6,0
+13050,148,2.1.3,1
+13050,106,2.1.3,1
+13050,79,2.1.3.6,0
+13051,126,2.1.3,1
+13051,79,2.1.3.7,0
+13052,74,2.1.3,1
+13052,79,2.1.3.7,0
+13052,73,2.1.3,1
+13052,97,2.1.3,1
+13052,106,2.1.3,1
+13053,79,2.1.3.7,0
+13053,148,2.1.3,1
+13053,97,2.1.3,1
+13054,74,2.1.3,1
+13054,106,2.1.3,1
+13054,79,2.1.3.7,0
+13055,106,2.1.3,1
+13055,73,2.1.3,1
+13055,79,2.1.3.7,0
+13055,148,2.1.3,1
+13056,106,2.1.3,1
+13056,79,2.1.3.7,0
+13057,79,2.1.3.7,0
+13057,108,2.1.3,1
+13057,148,2.1.3,1
+13057,73,2.1.3,1
+13058,79,2.1.3.7,0
+13058,73,2.1.3,1
+13058,97,2.1.3,1
+13058,148,2.1.3,1
+13059,79,2.1.3.7,0
+13059,73,2.1.3,1
+13060,148,2.1.3,1
+13060,73,2.1.3,1
+13060,79,2.1.3.7,0
+13061,126,2.1.3,1
+13061,79,2.1.3.7,0
+13061,106,2.1.3,1
+13061,97,2.1.3,1
+13062,148,2.1.3,1
+13062,79,2.1.3.7,0
+13062,126,2.1.3,1
+13064,73,2.1.3,1
+13064,74,2.1.3,1
+13064,79,2.1.3.7,0
+13064,97,2.1.3,1
+13064,106,2.1.3,1
+13064,148,2.1.3,1
+13066,106,2.1.3,1
+13066,73,2.1.3,1
+13066,79,2.1.3.7,0
+13066,108,2.1.3,1
+13067,148,2.1.3,1
+13067,79,2.1.3.7,0
+13070,73,2.1.3,1
+13070,79,2.1.3.7,0
+13072,74,2.1.3,1
+13072,79,2.1.3.7,0
+13073,126,2.1.3,1
+13073,97,2.1.3,1
+13073,106,2.1.3,1
+13073,79,2.1.3.7,0
+13074,79,2.1.3.7,0
+13074,126,2.1.3,1
+13075,79,2.1.3.7,0
+13075,73,2.1.3,1
+13075,108,2.1.3,1
+13076,74,2.1.3,1
+13076,79,2.1.3.7,0
+13077,97,2.1.3,1
+13077,79,2.1.3.7,0
+13077,148,2.1.3,1
+13078,79,2.1.3.7,0
+13078,73,2.1.3,1
+13079,126,2.1.3,1
+13079,97,2.1.3,1
+13079,79,2.1.3.7,0
+13081,73,2.1.3,1
+13081,74,2.1.3,1
+13081,79,2.1.3.7,0
+13082,148,2.1.3,1
+13082,126,2.1.3,1
+13082,73,2.1.3,1
+13082,79,2.1.3.7,0
+13083,79,2.1.3.7,0
+13083,73,2.1.3,1
+13084,73,2.1.3,1
+13084,79,2.1.3.7,0
+13085,79,2.1.3.7,0
+13085,126,2.1.3,1
+13086,74,2.1.3,1
+13086,73,2.1.3,1
+13086,148,2.1.3,1
+13086,79,2.1.3.7,0
+13087,108,2.1.3,1
+13087,79,2.1.3.7,0
+13087,74,2.1.3,1
+13089,73,2.1.3,1
+13089,97,2.1.3,1
+13089,79,2.1.3.7,0
+13090,74,2.1.3,1
+13090,79,2.1.3.7,0
+13090,108,2.1.3,1
+13091,97,2.1.3,1
+13091,79,2.1.3.7,0
+13092,108,2.1.3,1
+13092,79,2.1.3.7,0
+13092,73,2.1.3,1
+13092,97,2.1.3,1
+13093,106,2.1.3,1
+13093,79,2.1.3.7,0
+13093,74,2.1.3,1
+13094,74,2.1.3,1
+13094,108,2.1.3,1
+13094,79,2.1.3.7,0
+13095,97,2.1.3,1
+13095,79,2.1.3.7,0
+13097,79,2.1.3.7,0
+13097,126,2.1.3,1
+13098,79,2.1.3.7,0
+13098,97,2.1.3,1
+13098,73,2.1.3,1
+13098,106,2.1.3,1
+13099,126,2.1.3,1
+13099,148,2.1.3,1
+13099,79,2.1.3.7,0
+13100,126,2.1.3,1
+13100,148,2.1.3,1
+13100,79,2.1.3.7,0
+13101,115,2.1.4,1
+13101,79,2.1.4.1,0
+13102,79,2.1.4.1,0
+13102,84,2.1.4,1
+13102,115,2.1.4,1
+13103,115,2.1.4,1
+13103,79,2.1.4.1,0
+13104,84,2.1.4,1
+13104,79,2.1.4.1,0
+13104,115,2.1.4,1
+13105,79,2.1.4.1,0
+13105,84,2.1.4,1
+13105,102,2.1.4,1
+13106,84,2.1.4,1
+13106,115,2.1.4,1
+13106,79,2.1.4.1,0
+13107,79,2.1.4.1,0
+13107,84,2.1.4,1
+13108,79,2.1.4.1,0
+13108,84,2.1.4,1
+13108,115,2.1.4,1
+13109,79,2.1.4.1,0
+13109,84,2.1.4,1
+13110,84,2.1.4,1
+13110,115,2.1.4,1
+13110,79,2.1.4.1,0
+13111,99,2.1,2
+13111,98,2,3
+13111,170,1,4
+13111,102,2,3
+13111,102,2.1.4,1
+13111,115,2.1.4,1
+13111,84,2.1.4,1
+13111,79,2.1.4.1,0
+13112,79,2.1.4.1,0
+13112,115,2.1.4,1
+13114,115,2.1.4,1
+13114,102,2.1.4,1
+13114,79,2.1.4.1,0
+13114,84,2.1.4,1
+13116,84,2.1.4,1
+13116,99,2.1,2
+13116,79,2.1.4.1,0
+13116,170,1,4
+13116,115,2.1.4,1
+13116,98,2,3
+13116,102,2,3
+13116,102,2.1.4,1
+13117,115,2.1.4,1
+13117,79,2.1.4.1,0
+13119,79,2.1.4.1,0
+13119,115,2.1.4,1
+13119,102,2.1.4,1
+13120,79,2.1.4.1,0
+13120,99,2.1,2
+13120,115,2.1.4,1
+13120,84,2.1.4,1
+13121,79,2.1.4.1,0
+13121,115,2.1.4,1
+13122,115,2.1.4,1
+13122,84,2.1.4,1
+13122,79,2.1.4.1,0
+13123,99,2.1,2
+13123,115,2.1.4,1
+13123,84,2.1.4,1
+13123,102,2.1.4,1
+13123,79,2.1.4.1,0
+13124,79,2.1.4.1,0
+13124,102,2.1.4,1
+13126,79,2.1.4.1,0
+13126,102,2.1.4,1
+13126,84,2.1.4,1
+13127,79,2.1.4.1,0
+13127,102,2.1.4,1
+13128,79,2.1.4.1,0
+13128,84,2.1.4,1
+13129,84,2.1.4,1
+13129,79,2.1.4.1,0
+13130,115,2.1.4,1
+13130,79,2.1.4.1,0
+13131,84,2.1.4,1
+13131,102,2.1.4,1
+13131,79,2.1.4.1,0
+13132,99,2.1,2
+13132,79,2.1.4.1,0
+13132,84,2.1.4,1
+13133,84,2.1.4,1
+13133,79,2.1.4.1,0
+13134,84,2.1.4,1
+13134,79,2.1.4.1,0
+13135,115,2.1.4,1
+13135,79,2.1.4.1,0
+13135,102,2.1.4,1
+13136,115,2.1.4,1
+13136,102,2.1.4,1
+13136,84,2.1.4,1
+13136,99,2.1,2
+13136,79,2.1.4.1,0
+13137,79,2.1.4.1,0
+13137,102,2.1.4,1
+13138,102,2.1.4,1
+13138,79,2.1.4.1,0
+13139,115,2.1.4,1
+13139,84,2.1.4,1
+13139,79,2.1.4.1,0
+13140,102,2.1.4,1
+13140,79,2.1.4.1,0
+13140,115,2.1.4,1
+13140,99,2.1,2
+13141,79,2.1.4.1,0
+13141,115,2.1.4,1
+13141,84,2.1.4,1
+13142,115,2.1.4,1
+13142,102,2.1.4,1
+13142,79,2.1.4.1,0
+13143,84,2.1.4,1
+13143,102,2.1.4,1
+13143,79,2.1.4.1,0
+13144,79,2.1.4.1,0
+13144,84,2.1.4,1
+13144,102,2.1.4,1
+13145,99,2.1,2
+13145,79,2.1.4.1,0
+13145,102,2.1.4,1
+13147,84,2.1.4,1
+13147,99,2.1,2
+13147,115,2.1.4,1
+13147,79,2.1.4.1,0
+13148,98,2,3
+13148,115,2.1.4,1
+13148,84,2.1.4,1
+13148,99,2.1,2
+13148,102,2,3
+13148,102,2.1.4,1
+13148,79,2.1.4.1,0
+13148,170,1,4
+13149,79,2.1.4.1,0
+13149,115,2.1.4,1
+13149,102,2.1.4,1
+13150,79,2.1.4.1,0
+13150,102,2.1.4,1
+13150,115,2.1.4,1
+13151,115,2.1.4,1
+13151,79,2.1.4.2,0
+13152,115,2.1.4,1
+13152,79,2.1.4.2,0
+13152,84,2.1.4,1
+13153,115,2.1.4,1
+13153,79,2.1.4.2,0
+13154,84,2.1.4,1
+13154,115,2.1.4,1
+13154,79,2.1.4.2,0
+13155,79,2.1.4.2,0
+13155,102,2.1.4,1
+13155,84,2.1.4,1
+13156,84,2.1.4,1
+13156,115,2.1.4,1
+13156,79,2.1.4.2,0
+13157,79,2.1.4.2,0
+13157,84,2.1.4,1
+13158,79,2.1.4.2,0
+13158,84,2.1.4,1
+13158,115,2.1.4,1
+13159,79,2.1.4.2,0
+13159,84,2.1.4,1
+13160,84,2.1.4,1
+13160,115,2.1.4,1
+13160,79,2.1.4.2,0
+13161,99,2.1,2
+13161,98,2,3
+13161,170,1,4
+13161,102,2,3
+13161,102,2.1.4,1
+13161,115,2.1.4,1
+13161,84,2.1.4,1
+13161,79,2.1.4.2,0
+13162,79,2.1.4.2,0
+13162,115,2.1.4,1
+13164,115,2.1.4,1
+13164,102,2.1.4,1
+13164,84,2.1.4,1
+13164,79,2.1.4.2,0
+13166,79,2.1.4.2,0
+13166,102,2.1.4,1
+13166,84,2.1.4,1
+13166,115,2.1.4,1
+13167,115,2.1.4,1
+13167,79,2.1.4.2,0
+13169,79,2.1.4.2,0
+13169,115,2.1.4,1
+13169,102,2.1.4,1
+13170,79,2.1.4.2,0
+13170,115,2.1.4,1
+13170,84,2.1.4,1
+13171,79,2.1.4.2,0
+13171,115,2.1.4,1
+13172,115,2.1.4,1
+13172,84,2.1.4,1
+13172,79,2.1.4.2,0
+13173,115,2.1.4,1
+13173,84,2.1.4,1
+13173,102,2.1.4,1
+13173,79,2.1.4.2,0
+13174,79,2.1.4.2,0
+13174,102,2.1.4,1
+13176,99,2.1,2
+13176,102,2,3
+13176,102,2.1.4,1
+13176,170,1,4
+13176,84,2.1.4,1
+13176,98,2,3
+13176,79,2.1.4.2,0
+13177,79,2.1.4.2,0
+13177,102,2.1.4,1
+13178,79,2.1.4.2,0
+13178,84,2.1.4,1
+13179,84,2.1.4,1
+13179,79,2.1.4.2,0
+13180,115,2.1.4,1
+13180,79,2.1.4.2,0
+13181,79,2.1.4.2,0
+13181,99,2.1,2
+13181,84,2.1.4,1
+13181,102,2.1.4,1
+13182,79,2.1.4.2,0
+13182,84,2.1.4,1
+13183,84,2.1.4,1
+13183,79,2.1.4.2,0
+13184,79,2.1.4.2,0
+13184,84,2.1.4,1
+13185,115,2.1.4,1
+13185,79,2.1.4.2,0
+13185,102,2.1.4,1
+13186,115,2.1.4,1
+13186,102,2.1.4,1
+13186,84,2.1.4,1
+13186,99,2.1,2
+13186,79,2.1.4.2,0
+13187,79,2.1.4.2,0
+13187,102,2.1.4,1
+13188,102,2.1.4,1
+13188,79,2.1.4.2,0
+13189,115,2.1.4,1
+13189,84,2.1.4,1
+13189,79,2.1.4.2,0
+13190,102,2.1.4,1
+13190,79,2.1.4.2,0
+13190,115,2.1.4,1
+13190,99,2.1,2
+13191,79,2.1.4.2,0
+13191,115,2.1.4,1
+13191,84,2.1.4,1
+13192,115,2.1.4,1
+13192,102,2.1.4,1
+13192,79,2.1.4.2,0
+13193,79,2.1.4.2,0
+13193,102,2.1.4,1
+13193,84,2.1.4,1
+13194,79,2.1.4.2,0
+13194,84,2.1.4,1
+13194,102,2.1.4,1
+13195,102,2.1.4,1
+13195,79,2.1.4.2,0
+13197,79,2.1.4.2,0
+13197,84,2.1.4,1
+13197,115,2.1.4,1
+13198,84,2.1.4,1
+13198,99,2.1,2
+13198,115,2.1.4,1
+13198,79,2.1.4.2,0
+13198,102,2.1.4,1
+13199,115,2.1.4,1
+13199,102,2.1.4,1
+13199,79,2.1.4.2,0
+13200,79,2.1.4.2,0
+13200,102,2.1.4,1
+13200,115,2.1.4,1
+13201,99,2.3,1
+13201,79,2.3.1,0
+13202,84,2.3,1
+13202,79,2.3.1,0
+13203,79,2.3.1,0
+13203,124,2.3,1
+13204,84,2.3,1
+13204,79,2.3.1,0
+13205,155,2.3,1
+13205,79,2.3.1,0
+13206,155,2.3,1
+13206,79,2.3.1,0
+13207,79,2.3.1,0
+13207,99,2.3,1
+13208,79,2.3.1,0
+13208,124,2.3,1
+13209,95,2.3,1
+13209,79,2.3.1,0
+13210,79,2.3.1,0
+13210,155,2.3,1
+13211,124,2.3,1
+13211,79,2.3.1,0
+13211,99,2.3,1
+13211,95,2.3,1
+13214,79,2.3.1,0
+13214,84,2.3,1
+13214,95,2.3,1
+13216,79,2.3.1,0
+13216,126,2.3,1
+13216,99,2.3,1
+13216,84,2.3,1
+13219,79,2.3.1,0
+13219,95,2.3,1
+13221,155,2.3,1
+13221,79,2.3.1,0
+13222,95,2.3,1
+13222,155,2.3,1
+13222,79,2.3.1,0
+13223,99,2.3,1
+13223,95,2.3,1
+13223,84,2.3,1
+13223,79,2.3.1,0
+13224,79,2.3.1,0
+13224,95,2.3,1
+13226,84,2.3,1
+13226,79,2.3.1,0
+13228,99,2.3,1
+13228,79,2.3.1,0
+13229,124,2.3,1
+13229,84,2.3,1
+13229,79,2.3.1,0
+13231,95,2.3,1
+13231,126,2.3,1
+13231,79,2.3.1,0
+13232,79,2.3.1,0
+13232,124,2.3,1
+13233,79,2.3.1,0
+13233,99,2.3,1
+13234,84,2.3,1
+13234,79,2.3.1,0
+13235,79,2.3.1,0
+13235,99,2.3,1
+13235,124,2.3,1
+13235,126,2.3,1
+13236,79,2.3.1,0
+13236,155,2.3,1
+13237,79,2.3.1,0
+13237,126,2.3,1
+13239,79,2.3.1,0
+13239,84,2.3,1
+13241,79,2.3.1,0
+13241,95,2.3,1
+13241,126,2.3,1
+13243,79,2.3.1,0
+13243,126,2.3,1
+13243,155,2.3,1
+13244,95,2.3,1
+13244,79,2.3.1,0
+13247,124,2.3,1
+13247,79,2.3.1,0
+13248,79,2.3.1,0
+13248,155,2.3,1
+13251,155,2.3,1
+13251,79,2.3.2,0
+13252,84,2.3,1
+13252,155,2.3,1
+13252,79,2.3.2,0
+13254,79,2.3.2,0
+13254,124,2.3,1
+13255,79,2.3.2,0
+13255,99,2.3,1
+13255,95,2.3,1
+13256,79,2.3.2,0
+13256,95,2.3,1
+13257,79,2.3.2,0
+13257,95,2.3,1
+13258,79,2.3.2,0
+13258,84,2.3,1
+13259,95,2.3,1
+13259,79,2.3.2,0
+13260,79,2.3.2,0
+13260,95,2.3,1
+13261,79,2.3.2,0
+13261,126,2.3,1
+13264,79,2.3.2,0
+13264,99,2.3,1
+13264,155,2.3,1
+13264,124,2.3,1
+13269,79,2.3.2,0
+13269,155,2.3,1
+13272,155,2.3,1
+13272,79,2.3.2,0
+13273,99,2.3,1
+13273,95,2.3,1
+13273,124,2.3,1
+13273,126,2.3,1
+13273,79,2.3.2,0
+13276,124,2.3,1
+13276,79,2.3.2,0
+13278,95,2.3,1
+13278,79,2.3.2,0
+13279,99,2.3,1
+13279,84,2.3,1
+13279,79,2.3.2,0
+13281,79,2.3.2,0
+13281,124,2.3,1
+13281,95,2.3,1
+13282,79,2.3.2,0
+13282,155,2.3,1
+13283,124,2.3,1
+13283,79,2.3.2,0
+13284,79,2.3.2,0
+13284,155,2.3,1
+13285,126,2.3,1
+13285,79,2.3.2,0
+13286,79,2.3.2,0
+13286,124,2.3,1
+13287,99,2.3,1
+13287,124,2.3,1
+13287,79,2.3.2,0
+13289,99,2.3,1
+13289,84,2.3,1
+13289,79,2.3.2,0
+13294,99,2.3,1
+13294,126,2.3,1
+13294,79,2.3.2,0
+13297,84,2.3,1
+13297,79,2.3.2,0
+13298,95,2.3,1
+13298,79,2.3.2,0
+13298,126,2.3,1
+13299,124,2.3,1
+13299,79,2.3.2,0
+13299,155,2.3,1
+13300,99,2.3,1
+13300,126,2.3,1
+13300,79,2.3.2,0
+13304,84,2.3,1
+13304,79,2.3.3,0
+13304,99,2.3,1
+13304,124,2.3,1
+13305,124,2.3,1
+13305,79,2.3.3,0
+13305,126,2.3,1
+13306,124,2.3,1
+13306,84,2.3,1
+13306,79,2.3.3,0
+13306,126,2.3,1
+13308,79,2.3.3,0
+13308,84,2.3,1
+13309,99,2.3,1
+13309,79,2.3.3,0
+13316,79,2.3.3,0
+13316,84,2.3,1
+13316,155,2.3,1
+13316,126,2.3,1
+13320,84,2.3,1
+13320,155,2.3,1
+13320,79,2.3.3,0
+13322,124,2.3,1
+13322,155,2.3,1
+13322,79,2.3.3,0
+13323,99,2.3,1
+13323,126,2.3,1
+13323,79,2.3.3,0
+13326,124,2.3,1
+13326,79,2.3.3,0
+13327,126,2.3,1
+13327,79,2.3.3,0
+13328,79,2.3.3,0
+13328,84,2.3,1
+13329,124,2.3,1
+13329,79,2.3.3,0
+13329,99,2.3,1
+13331,95,2.3,1
+13331,126,2.3,1
+13331,79,2.3.3,0
+13332,79,2.3.3,0
+13332,95,2.3,1
+13333,79,2.3.3,0
+13333,95,2.3,1
+13334,79,2.3.3,0
+13334,126,2.3,1
+13339,79,2.3.3,0
+13339,124,2.3,1
+13339,155,2.3,1
+13340,124,2.3,1
+13340,79,2.3.3,0
+13341,155,2.3,1
+13341,79,2.3.3,0
+13341,95,2.3,1
+13343,155,2.3,1
+13343,79,2.3.3,0
+13344,79,2.3.3,0
+13344,124,2.3,1
+13344,155,2.3,1
+13345,155,2.3,1
+13345,79,2.3.3,0
+13347,79,2.3.3,0
+13347,95,2.3,1
+13348,95,2.3,1
+13348,79,2.3.3,0
+13348,84,2.3,1
+13349,126,2.3,1
+13349,79,2.3.3,0
+13350,99,2.3,1
+13350,79,2.3.3,0
+13352,80,1.3.4,0
+13352,106,1.3,1
+13354,80,1.3.4,0
+13354,29,1.3,1
+13355,80,1.3.4,0
+13355,29,1.3,1
+13355,106,1.3,1
+13357,106,1.3,1
+13357,80,1.3.4,0
+13358,80,1.3.4,0
+13358,106,1.3,1
+13359,29,1.3,1
+13359,80,1.3.4,0
+13360,80,1.3.4,0
+13360,29,1.3,1
+13361,80,1.3.4,0
+13361,29,1.3,1
+13364,170,1,2
+13364,106,1.3,1
+13364,29,1.3,1
+13364,80,1.3.4,0
+13366,29,1.3,1
+13366,80,1.3.4,0
+13369,106,1.3,1
+13369,80,1.3.4,0
+13372,29,1.3,1
+13372,80,1.3.4,0
+13373,106,1.3,1
+13373,29,1.3,1
+13373,80,1.3.4,0
+13376,106,1.3,1
+13376,170,1,2
+13376,29,1.3,1
+13376,80,1.3.4,0
+13378,29,1.3,1
+13378,80,1.3.4,0
+13379,106,1.3,1
+13379,80,1.3.4,0
+13381,80,1.3.4,0
+13381,29,1.3,1
+13381,106,1.3,1
+13383,80,1.3.4,0
+13383,29,1.3,1
+13385,80,1.3.4,0
+13385,106,1.3,1
+13389,80,1.3.4,0
+13389,29,1.3,1
+13390,80,1.3.4,0
+13390,106,1.3,1
+13392,106,1.3,1
+13392,80,1.3.4,0
+13394,80,1.3.4,0
+13394,106,1.3,1
+13394,29,1.3,1
+13395,80,1.3.4,0
+13395,106,1.3,1
+13397,80,1.3.4,0
+13397,29,1.3,1
+13398,170,1,2
+13398,80,1.3.4,0
+13398,106,1.3,1
+13399,106,1.3,1
+13399,80,1.3.4,0
+13400,80,1.3.4,0
+13400,106,1.3,1
+13407,99,2.1,1
+13407,80,2.1.1,0
+13409,80,2.1.1,0
+13409,99,2.1,1
+13414,80,2.1.1,0
+13414,99,2.1,1
+13416,99,2.1,1
+13416,80,2.1.1,0
+13429,99,2.1,1
+13429,80,2.1.1,0
+13431,99,2.1,1
+13431,80,2.1.1,0
+13432,99,2.1,1
+13432,80,2.1.1,0
+13439,80,2.1.1,0
+13439,99,2.1,1
+13452,29,1.3,1
+13452,81,1.3.4,0
+13454,106,1.3,1
+13454,81,1.3.4,0
+13455,170,1,2
+13455,81,1.3.4,0
+13455,29,1.3,1
+13455,106,1.3,1
+13456,81,1.3.4,0
+13456,29,1.3,1
+13457,29,1.3,1
+13457,81,1.3.4,0
+13458,81,1.3.4,0
+13458,29,1.3,1
+13460,29,1.3,1
+13460,81,1.3.4,0
+13461,81,1.3.4,0
+13461,106,1.3,1
+13464,29,1.3,1
+13464,81,1.3.4,0
+13466,106,1.3,1
+13466,81,1.3.4,0
+13469,81,1.3.4,0
+13469,106,1.3,1
+13472,81,1.3.4,0
+13472,29,1.3,1
+13473,106,1.3,1
+13473,81,1.3.4,0
+13476,106,1.3,1
+13476,170,1,2
+13476,29,1.3,1
+13476,81,1.3.4,0
+13477,106,1.3,1
+13477,81,1.3.4,0
+13478,81,1.3.4,0
+13478,106,1.3,1
+13479,29,1.3,1
+13479,81,1.3.4,0
+13479,106,1.3,1
+13482,29,1.3,1
+13482,81,1.3.4,0
+13483,81,1.3.4,0
+13483,106,1.3,1
+13484,81,1.3.4,0
+13484,29,1.3,1
+13486,106,1.3,1
+13486,81,1.3.4,0
+13486,29,1.3,1
+13487,81,1.3.4,0
+13487,106,1.3,1
+13488,81,1.3.4,0
+13488,106,1.3,1
+13489,81,1.3.4,0
+13489,29,1.3,1
+13491,81,1.3.4,0
+13491,29,1.3,1
+13493,81,1.3.4,0
+13493,29,1.3,1
+13493,106,1.3,1
+13494,106,1.3,1
+13494,170,1,2
+13494,29,1.3,1
+13494,81,1.3.4,0
+13497,106,1.3,1
+13497,81,1.3.4,0
+13498,81,1.3.4,0
+13498,170,1,2
+13498,29,1.3,1
+13499,106,1.3,1
+13499,81,1.3.4,0
+13504,81,2.1.2,0
+13504,99,2.1,1
+13506,99,2.1,1
+13506,81,2.1.2,0
+13509,81,2.1.2,0
+13509,99,2.1,1
+13510,99,2.1,1
+13510,81,2.1.2,0
+13514,99,2.1,1
+13514,81,2.1.2,0
+13520,99,2.1,1
+13520,81,2.1.2,0
+13523,99,2.1,1
+13523,81,2.1.2,0
+13528,99,2.1,1
+13528,81,2.1.2,0
+13532,99,2.1,1
+13532,81,2.1.2,0
+13539,81,2.1.2,0
+13539,99,2.1,1
+13543,81,2.1.2,0
+13543,99,2.1,1
+13547,99,2.1,1
+13547,81,2.1.2,0
+13548,99,2.1,1
+13548,81,2.1.2,0
+13551,115,2.1.4,1
+13551,81,2.1.4.1,0
+13552,115,2.1.4,1
+13552,84,2.1.4,1
+13552,81,2.1.4.1,0
+13553,115,2.1.4,1
+13553,81,2.1.4.1,0
+13554,81,2.1.4.1,0
+13554,84,2.1.4,1
+13554,115,2.1.4,1
+13555,102,2.1.4,1
+13555,81,2.1.4.1,0
+13555,84,2.1.4,1
+13556,84,2.1.4,1
+13556,115,2.1.4,1
+13556,81,2.1.4.1,0
+13557,84,2.1.4,1
+13557,81,2.1.4.1,0
+13558,81,2.1.4.1,0
+13558,84,2.1.4,1
+13558,115,2.1.4,1
+13559,81,2.1.4.1,0
+13559,84,2.1.4,1
+13560,84,2.1.4,1
+13560,115,2.1.4,1
+13560,81,2.1.4.1,0
+13561,81,2.1.4.1,0
+13561,98,2,3
+13561,115,2.1.4,1
+13561,102,2,3
+13561,102,2.1.4,1
+13561,170,1,4
+13561,99,2.1,2
+13561,84,2.1.4,1
+13562,81,2.1.4.1,0
+13562,115,2.1.4,1
+13564,115,2.1.4,1
+13564,102,2.1.4,1
+13564,84,2.1.4,1
+13564,81,2.1.4.1,0
+13566,84,2.1.4,1
+13566,115,2.1.4,1
+13566,102,2.1.4,1
+13566,81,2.1.4.1,0
+13567,81,2.1.4.1,0
+13567,115,2.1.4,1
+13569,115,2.1.4,1
+13569,81,2.1.4.1,0
+13569,102,2.1.4,1
+13570,115,2.1.4,1
+13570,81,2.1.4.1,0
+13570,84,2.1.4,1
+13571,115,2.1.4,1
+13571,81,2.1.4.1,0
+13572,81,2.1.4.1,0
+13572,115,2.1.4,1
+13572,84,2.1.4,1
+13573,99,2.1,2
+13573,81,2.1.4.1,0
+13573,115,2.1.4,1
+13573,84,2.1.4,1
+13573,102,2.1.4,1
+13574,81,2.1.4.1,0
+13574,102,2.1.4,1
+13576,81,2.1.4.1,0
+13576,102,2.1.4,1
+13576,84,2.1.4,1
+13577,81,2.1.4.1,0
+13577,102,2.1.4,1
+13578,81,2.1.4.1,0
+13578,84,2.1.4,1
+13579,81,2.1.4.1,0
+13579,84,2.1.4,1
+13580,115,2.1.4,1
+13580,81,2.1.4.1,0
+13581,81,2.1.4.1,0
+13581,99,2.1,2
+13581,84,2.1.4,1
+13581,102,2.1.4,1
+13582,81,2.1.4.1,0
+13582,84,2.1.4,1
+13583,84,2.1.4,1
+13583,81,2.1.4.1,0
+13584,84,2.1.4,1
+13584,81,2.1.4.1,0
+13585,115,2.1.4,1
+13585,102,2.1.4,1
+13585,81,2.1.4.1,0
+13586,115,2.1.4,1
+13586,102,2.1.4,1
+13586,84,2.1.4,1
+13586,99,2.1,2
+13586,81,2.1.4.1,0
+13587,102,2,3
+13587,102,2.1.4,1
+13587,170,1,4
+13587,99,2.1,2
+13587,81,2.1.4.1,0
+13587,98,2,3
+13588,81,2.1.4.1,0
+13588,102,2.1.4,1
+13589,115,2.1.4,1
+13589,84,2.1.4,1
+13589,81,2.1.4.1,0
+13590,102,2.1.4,1
+13590,81,2.1.4.1,0
+13590,115,2.1.4,1
+13591,81,2.1.4.1,0
+13591,115,2.1.4,1
+13591,84,2.1.4,1
+13592,102,2,3
+13592,102,2.1.4,1
+13592,98,2,3
+13592,99,2.1,2
+13592,170,1,4
+13592,115,2.1.4,1
+13592,81,2.1.4.1,0
+13593,84,2.1.4,1
+13593,81,2.1.4.1,0
+13593,102,2.1.4,1
+13594,81,2.1.4.1,0
+13594,102,2,3
+13594,102,2.1.4,1
+13594,170,1,4
+13594,84,2.1.4,1
+13594,99,2.1,2
+13594,98,2,3
+13595,81,2.1.4.1,0
+13595,102,2.1.4,1
+13597,84,2.1.4,1
+13597,99,2.1,2
+13597,115,2.1.4,1
+13597,81,2.1.4.1,0
+13598,84,2.1.4,1
+13598,102,2.1.4,1
+13598,115,2.1.4,1
+13598,81,2.1.4.1,0
+13599,115,2.1.4,1
+13599,99,2.1,2
+13599,170,1,4
+13599,98,2,3
+13599,81,2.1.4.1,0
+13599,102,2,3
+13599,102,2.1.4,1
+13600,102,2.1.4,1
+13600,115,2.1.4,1
+13600,81,2.1.4.1,0
+13601,115,2.1.4,1
+13601,81,2.1.4.2,0
+13602,115,2.1.4,1
+13602,84,2.1.4,1
+13602,81,2.1.4.2,0
+13603,81,2.1.4.2,0
+13603,99,2.1,2
+13603,115,2.1.4,1
+13604,81,2.1.4.2,0
+13604,84,2.1.4,1
+13604,115,2.1.4,1
+13605,102,2.1.4,1
+13605,81,2.1.4.2,0
+13605,84,2.1.4,1
+13606,84,2.1.4,1
+13606,115,2.1.4,1
+13606,81,2.1.4.2,0
+13607,84,2.1.4,1
+13607,81,2.1.4.2,0
+13608,84,2.1.4,1
+13608,81,2.1.4.2,0
+13608,170,1,4
+13608,102,2,3
+13608,99,2.1,2
+13608,98,2,3
+13608,115,2.1.4,1
+13609,81,2.1.4.2,0
+13609,84,2.1.4,1
+13610,81,2.1.4.2,0
+13610,84,2.1.4,1
+13610,115,2.1.4,1
+13611,81,2.1.4.2,0
+13611,98,2,3
+13611,115,2.1.4,1
+13611,102,2,3
+13611,102,2.1.4,1
+13611,170,1,4
+13611,99,2.1,2
+13611,84,2.1.4,1
+13612,81,2.1.4.2,0
+13612,115,2.1.4,1
+13614,115,2.1.4,1
+13614,102,2.1.4,1
+13614,84,2.1.4,1
+13614,81,2.1.4.2,0
+13616,84,2.1.4,1
+13616,99,2.1,2
+13616,170,1,4
+13616,81,2.1.4.2,0
+13616,115,2.1.4,1
+13616,98,2,3
+13616,102,2,3
+13616,102,2.1.4,1
+13617,81,2.1.4.2,0
+13617,115,2.1.4,1
+13619,102,2.1.4,1
+13619,115,2.1.4,1
+13619,81,2.1.4.2,0
+13620,115,2.1.4,1
+13620,81,2.1.4.2,0
+13620,84,2.1.4,1
+13621,81,2.1.4.2,0
+13621,99,2.1,2
+13621,115,2.1.4,1
+13622,81,2.1.4.2,0
+13622,115,2.1.4,1
+13622,84,2.1.4,1
+13623,99,2.1,2
+13623,81,2.1.4.2,0
+13623,115,2.1.4,1
+13623,84,2.1.4,1
+13623,102,2.1.4,1
+13624,81,2.1.4.2,0
+13624,102,2.1.4,1
+13626,81,2.1.4.2,0
+13626,102,2.1.4,1
+13626,84,2.1.4,1
+13627,81,2.1.4.2,0
+13627,102,2.1.4,1
+13628,81,2.1.4.2,0
+13628,84,2.1.4,1
+13629,81,2.1.4.2,0
+13629,84,2.1.4,1
+13630,81,2.1.4.2,0
+13630,99,2.1,2
+13630,115,2.1.4,1
+13631,84,2.1.4,1
+13631,81,2.1.4.2,0
+13631,102,2.1.4,1
+13632,81,2.1.4.2,0
+13632,84,2.1.4,1
+13633,81,2.1.4.2,0
+13633,84,2.1.4,1
+13634,81,2.1.4.2,0
+13634,84,2.1.4,1
+13635,81,2.1.4.2,0
+13635,99,2.1,2
+13635,115,2.1.4,1
+13635,102,2.1.4,1
+13636,115,2.1.4,1
+13636,102,2.1.4,1
+13636,84,2.1.4,1
+13636,99,2.1,2
+13636,81,2.1.4.2,0
+13637,81,2.1.4.2,0
+13637,102,2.1.4,1
+13638,81,2.1.4.2,0
+13638,102,2.1.4,1
+13639,115,2.1.4,1
+13639,81,2.1.4.2,0
+13639,84,2.1.4,1
+13640,102,2.1.4,1
+13640,81,2.1.4.2,0
+13640,115,2.1.4,1
+13640,99,2.1,2
+13641,81,2.1.4.2,0
+13641,115,2.1.4,1
+13641,84,2.1.4,1
+13642,81,2.1.4.2,0
+13642,115,2.1.4,1
+13642,102,2.1.4,1
+13643,84,2.1.4,1
+13643,81,2.1.4.2,0
+13643,102,2.1.4,1
+13644,81,2.1.4.2,0
+13644,102,2,3
+13644,102,2.1.4,1
+13644,170,1,4
+13644,84,2.1.4,1
+13644,99,2.1,2
+13644,98,2,3
+13645,81,2.1.4.2,0
+13645,102,2.1.4,1
+13647,84,2.1.4,1
+13647,115,2.1.4,1
+13647,81,2.1.4.2,0
+13648,98,2,3
+13648,115,2.1.4,1
+13648,81,2.1.4.2,0
+13648,84,2.1.4,1
+13648,99,2.1,2
+13648,102,2,3
+13648,102,2.1.4,1
+13648,170,1,4
+13649,115,2.1.4,1
+13649,102,2.1.4,1
+13649,81,2.1.4.2,0
+13650,102,2.1.4,1
+13650,115,2.1.4,1
+13650,81,2.1.4.2,0
+13651,79,2.1.2,1
+13651,82,2.1.2.1,0
+13652,79,2.1.2,1
+13652,82,2.1.2.1,0
+13652,159,2.1.2,1
+13654,82,2.1.2.1,0
+13654,159,2.1.2,1
+13655,81,2.1.2,1
+13655,159,2.1.2,1
+13655,82,2.1.2.1,0
+13658,81,2.1.2,1
+13658,82,2.1.2.1,0
+13659,82,2.1.2.1,0
+13659,79,2.1.2,1
+13660,82,2.1.2.1,0
+13660,81,2.1.2,1
+13666,82,2.1.2.1,0
+13666,84,2.1.2,1
+13666,159,2.1.2,1
+13669,79,2.1.2,1
+13669,82,2.1.2.1,0
+13669,58,2.1.2,1
+13673,82,2.1.2.1,0
+13673,79,2.1.2,1
+13673,81,2.1.2,1
+13674,81,2.1.2,1
+13674,58,2.1.2,1
+13674,82,2.1.2.1,0
+13676,82,2.1.2.1,0
+13676,81,2.1.2,1
+13677,84,2.1.2,1
+13677,82,2.1.2.1,0
+13678,58,2.1.2,1
+13678,82,2.1.2.1,0
+13679,82,2.1.2.1,0
+13679,79,2.1.2,1
+13679,58,2.1.2,1
+13680,82,2.1.2.1,0
+13680,84,2.1.2,1
+13681,82,2.1.2.1,0
+13681,84,2.1.2,1
+13682,159,2.1.2,1
+13682,84,2.1.2,1
+13682,82,2.1.2.1,0
+13683,84,2.1.2,1
+13683,82,2.1.2.1,0
+13684,58,2.1.2,1
+13684,82,2.1.2.1,0
+13688,82,2.1.2.1,0
+13688,84,2.1.2,1
+13691,159,2.1.2,1
+13691,82,2.1.2.1,0
+13691,58,2.1.2,1
+13696,82,2.1.2.1,0
+13696,159,2.1.2,1
+13698,82,2.1.2.1,0
+13698,84,2.1.2,1
+13700,81,2.1.2,1
+13700,79,2.1.2,1
+13700,82,2.1.2.1,0
+13705,84,2.1.2,1
+13705,82,2.1.2.2,0
+13706,81,2.1.2,1
+13706,82,2.1.2.2,0
+13709,81,2.1.2,1
+13709,82,2.1.2.2,0
+13711,79,2.1.2,1
+13711,82,2.1.2.2,0
+13711,58,2.1.2,1
+13714,58,2.1.2,1
+13714,82,2.1.2.2,0
+13716,79,2.1.2,1
+13716,82,2.1.2.2,0
+13719,82,2.1.2.2,0
+13719,159,2.1.2,1
+13720,82,2.1.2.2,0
+13720,79,2.1.2,1
+13722,159,2.1.2,1
+13722,82,2.1.2.2,0
+13723,82,2.1.2.2,0
+13723,81,2.1.2,1
+13723,84,2.1.2,1
+13724,58,2.1.2,1
+13724,82,2.1.2.2,0
+13732,82,2.1.2.2,0
+13732,81,2.1.2,1
+13733,81,2.1.2,1
+13733,82,2.1.2.2,0
+13736,82,2.1.2.2,0
+13736,159,2.1.2,1
+13738,82,2.1.2.2,0
+13738,79,2.1.2,1
+13739,82,2.1.2.2,0
+13739,84,2.1.2,1
+13741,79,2.1.2,1
+13741,82,2.1.2.2,0
+13742,79,2.1.2,1
+13742,82,2.1.2.2,0
+13743,82,2.1.2.2,0
+13743,159,2.1.2,1
+13743,79,2.1.2,1
+13745,79,2.1.2,1
+13745,82,2.1.2.2,0
+13747,82,2.1.2.2,0
+13747,79,2.1.2,1
+13748,159,2.1.2,1
+13748,82,2.1.2.2,0
+13748,58,2.1.2,1
+13748,81,2.1.2,1
+13750,81,2.1.2,1
+13750,82,2.1.2.2,0
+13752,81,2.1.2,1
+13752,82,2.1.2.3,0
+13752,79,2.1.2,1
+13753,82,2.1.2.3,0
+13753,159,2.1.2,1
+13754,84,2.1.2,1
+13754,159,2.1.2,1
+13754,79,2.1.2,1
+13754,82,2.1.2.3,0
+13755,84,2.1.2,1
+13755,82,2.1.2.3,0
+13756,82,2.1.2.3,0
+13756,81,2.1.2,1
+13757,82,2.1.2.3,0
+13757,58,2.1.2,1
+13758,82,2.1.2.3,0
+13758,79,2.1.2,1
+13759,82,2.1.2.3,0
+13759,79,2.1.2,1
+13761,79,2.1.2,1
+13761,82,2.1.2.3,0
+13764,159,2.1.2,1
+13764,82,2.1.2.3,0
+13764,58,2.1.2,1
+13770,79,2.1.2,1
+13770,82,2.1.2.3,0
+13772,82,2.1.2.3,0
+13772,79,2.1.2,1
+13776,82,2.1.2.3,0
+13776,79,2.1.2,1
+13777,84,2.1.2,1
+13777,82,2.1.2.3,0
+13778,79,2.1.2,1
+13778,82,2.1.2.3,0
+13779,159,2.1.2,1
+13779,82,2.1.2.3,0
+13782,81,2.1.2,1
+13782,82,2.1.2.3,0
+13783,82,2.1.2.3,0
+13783,84,2.1.2,1
+13784,159,2.1.2,1
+13784,82,2.1.2.3,0
+13785,82,2.1.2.3,0
+13785,81,2.1.2,1
+13786,82,2.1.2.3,0
+13786,159,2.1.2,1
+13789,81,2.1.2,1
+13789,82,2.1.2.3,0
+13790,159,2.1.2,1
+13790,82,2.1.2.3,0
+13791,84,2.1.2,1
+13791,82,2.1.2.3,0
+13797,82,2.1.2.3,0
+13797,84,2.1.2,1
+13798,79,2.1.2,1
+13798,82,2.1.2.3,0
+13802,82,2.1.2.4,0
+13802,79,2.1.2,1
+13804,58,2.1.2,1
+13804,82,2.1.2.4,0
+13805,159,2.1.2,1
+13805,82,2.1.2.4,0
+13806,82,2.1.2.4,0
+13806,84,2.1.2,1
+13808,82,2.1.2.4,0
+13808,84,2.1.2,1
+13809,81,2.1.2,1
+13809,82,2.1.2.4,0
+13810,82,2.1.2.4,0
+13810,58,2.1.2,1
+13811,58,2.1.2,1
+13811,82,2.1.2.4,0
+13814,58,2.1.2,1
+13814,82,2.1.2.4,0
+13814,79,2.1.2,1
+13816,82,2.1.2.4,0
+13816,84,2.1.2,1
+13816,159,2.1.2,1
+13820,82,2.1.2.4,0
+13820,159,2.1.2,1
+13822,159,2.1.2,1
+13822,82,2.1.2.4,0
+13823,58,2.1.2,1
+13823,82,2.1.2.4,0
+13825,58,2.1.2,1
+13825,82,2.1.2.4,0
+13826,79,2.1.2,1
+13826,58,2.1.2,1
+13826,82,2.1.2.4,0
+13828,58,2.1.2,1
+13828,82,2.1.2.4,0
+13829,84,2.1.2,1
+13829,82,2.1.2.4,0
+13829,58,2.1.2,1
+13832,82,2.1.2.4,0
+13832,58,2.1.2,1
+13832,81,2.1.2,1
+13833,84,2.1.2,1
+13833,82,2.1.2.4,0
+13834,84,2.1.2,1
+13834,82,2.1.2.4,0
+13836,82,2.1.2.4,0
+13836,58,2.1.2,1
+13839,58,2.1.2,1
+13839,82,2.1.2.4,0
+13841,79,2.1.2,1
+13841,82,2.1.2.4,0
+13843,82,2.1.2.4,0
+13843,84,2.1.2,1
+13844,159,2.1.2,1
+13844,82,2.1.2.4,0
+13848,79,2.1.2,1
+13848,82,2.1.2.4,0
+13848,84,2.1.2,1
+13852,75,1.3.3,1
+13852,83,1.3.3.2,0
+13853,97,1.3.3,1
+13853,83,1.3.3.2,0
+13856,99,1.3.3,1
+13856,83,1.3.3.2,0
+13857,99,1.3.3,1
+13857,83,1.3.3.2,0
+13858,83,1.3.3.2,0
+13858,75,1.3.3,1
+13860,99,1.3.3,1
+13860,83,1.3.3.2,0
+13861,75,1.3.3,1
+13861,83,1.3.3.2,0
+13864,75,1.3.3,1
+13864,83,1.3.3.2,0
+13864,97,1.3.3,1
+13869,83,1.3.3.2,0
+13869,97,1.3.3,1
+13872,97,1.3.3,1
+13872,83,1.3.3.2,0
+13873,99,1.3.3,1
+13873,83,1.3.3.2,0
+13874,83,1.3.3.2,0
+13874,99,1.3.3,1
+13876,99,1.3.3,1
+13876,83,1.3.3.2,0
+13876,75,1.3.3,1
+13877,83,1.3.3.2,0
+13877,99,1.3.3,1
+13878,83,1.3.3.2,0
+13878,75,1.3.3,1
+13879,83,1.3.3.2,0
+13879,97,1.3.3,1
+13882,83,1.3.3.2,0
+13882,75,1.3.3,1
+13883,83,1.3.3.2,0
+13883,97,1.3.3,1
+13884,83,1.3.3.2,0
+13884,99,1.3.3,1
+13885,83,1.3.3.2,0
+13885,97,1.3.3,1
+13886,83,1.3.3.2,0
+13886,75,1.3.3,1
+13886,97,1.3.3,1
+13888,83,1.3.3.2,0
+13888,99,1.3.3,1
+13890,83,1.3.3.2,0
+13890,97,1.3.3,1
+13892,97,1.3.3,1
+13892,83,1.3.3.2,0
+13893,75,1.3.3,1
+13893,83,1.3.3.2,0
+13894,83,1.3.3.2,0
+13894,99,1.3.3,1
+13897,97,1.3.3,1
+13897,83,1.3.3.2,0
+13902,84,2.1.2,0
+13902,99,2.1,1
+13905,84,2.1.2,0
+13905,99,2.1,1
+13909,99,2.1,1
+13909,84,2.1.2,0
+13910,84,2.1.2,0
+13910,99,2.1,1
+13916,99,2.1,1
+13916,84,2.1.2,0
+13920,84,2.1.2,0
+13920,99,2.1,1
+13926,84,2.1.2,0
+13926,99,2.1,1
+13928,99,2.1,1
+13928,84,2.1.2,0
+13931,99,2.1,1
+13931,84,2.1.2,0
+13933,99,2.1,1
+13933,84,2.1.2,0
+13934,84,2.1.2,0
+13934,99,2.1,1
+13944,84,2.1.2,0
+13944,99,2.1,1
+13947,99,2.1,1
+13947,84,2.1.2,0
+13948,99,2.1,1
+13948,84,2.1.2,0
+13955,84,2.1.4,0
+13955,99,2.1,1
+13956,99,2.1,1
+13956,84,2.1.4,0
+13957,99,2.1,1
+13957,84,2.1.4,0
+13958,99,2.1,1
+13958,84,2.1.4,0
+13958,98,2,2
+13958,102,2,2
+13958,170,1,3
+13959,98,2,2
+13959,102,2,2
+13959,170,1,3
+13959,84,2.1.4,0
+13959,99,2.1,1
+13960,84,2.1.4,0
+13960,99,2.1,1
+13970,84,2.1.4,0
+13970,99,2.1,1
+13973,99,2.1,1
+13973,84,2.1.4,0
+13976,84,2.1.4,0
+13976,99,2.1,1
+13978,99,2.1,1
+13978,84,2.1.4,0
+13981,99,2.1,1
+13981,84,2.1.4,0
+13982,99,2.1,1
+13982,84,2.1.4,0
+13983,84,2.1.4,0
+13983,99,2.1,1
+13986,99,2.1,1
+13986,84,2.1.4,0
+13989,99,2.1,1
+13989,84,2.1.4,0
+13993,84,2.1.4,0
+13993,99,2.1,1
+13994,84,2.1.4,0
+13994,99,2.1,1
+14004,84,2.3,0
+14004,102,2,1
+14009,102,2,1
+14009,84,2.3,0
+14011,98,2,1
+14011,84,2.3,0
+14014,102,2,1
+14014,84,2.3,0
+14016,102,2,1
+14016,84,2.3,0
+14022,98,2,1
+14022,84,2.3,0
+14026,84,2.3,0
+14026,98,2,1
+14026,102,2,1
+14029,98,2,1
+14029,84,2.3,0
+14033,98,2,1
+14033,84,2.3,0
+14036,84,2.3,0
+14036,102,2,1
+14039,98,2,1
+14039,84,2.3,0
+14041,98,2,1
+14041,84,2.3,0
+14044,84,2.3,0
+14044,102,2,1
+14047,98,2,1
+14047,84,2.3,0
+14052,29,1.3,1
+14052,85,1.3.1,0
+14054,106,1.3,1
+14054,85,1.3.1,0
+14056,29,1.3,1
+14056,85,1.3.1,0
+14057,106,1.3,1
+14057,85,1.3.1,0
+14058,85,1.3.1,0
+14058,29,1.3,1
+14059,29,1.3,1
+14059,85,1.3.1,0
+14060,85,1.3.1,0
+14060,29,1.3,1
+14064,85,1.3.1,0
+14064,29,1.3,1
+14066,85,1.3.1,0
+14066,29,1.3,1
+14077,106,1.3,1
+14077,85,1.3.1,0
+14081,85,1.3.1,0
+14081,106,1.3,1
+14082,29,1.3,1
+14082,85,1.3.1,0
+14083,29,1.3,1
+14083,85,1.3.1,0
+14084,85,1.3.1,0
+14084,29,1.3,1
+14086,29,1.3,1
+14086,85,1.3.1,0
+14091,85,1.3.1,0
+14091,106,1.3,1
+14091,170,1,2
+14093,106,1.3,1
+14093,85,1.3.1,0
+14093,29,1.3,1
+14094,29,1.3,1
+14094,85,1.3.1,0
+14097,85,1.3.1,0
+14097,29,1.3,1
+14102,99,2.1,1
+14102,85,2.1.1,0
+14106,99,2.1,1
+14106,85,2.1.1,0
+14108,85,2.1.1,0
+14108,99,2.1,1
+14111,85,2.1.1,0
+14111,99,2.1,1
+14122,85,2.1.1,0
+14122,99,2.1,1
+14123,99,2.1,1
+14123,85,2.1.1,0
+14126,99,2.1,1
+14126,85,2.1.1,0
+14128,99,2.1,1
+14128,85,2.1.1,0
+14129,99,2.1,1
+14129,85,2.1.1,0
+14131,85,2.1.1,0
+14131,99,2.1,1
+14133,99,2.1,1
+14133,85,2.1.1,0
+14136,85,2.1.1,0
+14136,99,2.1,1
+14139,85,2.1.1,0
+14139,99,2.1,1
+14141,170,1,3
+14141,85,2.1.1,0
+14141,99,2.1,1
+14141,98,2,2
+14141,102,2,2
+14143,99,2.1,1
+14143,85,2.1.1,0
+14147,99,2.1,1
+14147,85,2.1.1,0
+14148,170,1,3
+14148,99,2.1,1
+14148,85,2.1.1,0
+14148,98,2,2
+14148,102,2,2
+14152,86,1.1,0
+14152,170,1,1
+14157,86,1.1,0
+14157,170,1,1
+14159,86,1.1,0
+14159,170,1,1
+14161,170,1,1
+14161,86,1.1,0
+14164,170,1,1
+14164,86,1.1,0
+14166,170,1,1
+14166,86,1.1,0
+14169,86,1.1,0
+14169,170,1,1
+14172,170,1,1
+14172,86,1.1,0
+14174,86,1.1,0
+14174,170,1,1
+14176,86,1.1,0
+14176,170,1,1
+14183,86,1.1,0
+14183,170,1,1
+14186,86,1.1,0
+14186,170,1,1
+14189,170,1,1
+14189,86,1.1,0
+14194,170,1,1
+14194,86,1.1,0
+14195,86,1.1,0
+14195,170,1,1
+14197,170,1,1
+14197,86,1.1,0
+14198,170,1,1
+14198,86,1.1,0
+14199,86,1.1,0
+14199,170,1,1
+14206,94,1.1,1
+14206,87,1.1.1,0
+14207,87,1.1.1,0
+14207,86,1.1,1
+14208,87,1.1.1,0
+14208,126,1.1,1
+14211,87,1.1.1,0
+14211,94,1.1,1
+14214,87,1.1.1,0
+14214,105,1.1,1
+14219,126,1.1,1
+14219,87,1.1.1,0
+14222,87,1.1.1,0
+14222,94,1.1,1
+14223,106,1.1,1
+14223,87,1.1.1,0
+14226,86,1.1,1
+14226,87,1.1.1,0
+14228,87,1.1.1,0
+14228,86,1.1,1
+14231,94,1.1,1
+14231,87,1.1.1,0
+14232,86,1.1,1
+14232,87,1.1.1,0
+14234,106,1.1,1
+14234,87,1.1.1,0
+14236,126,1.1,1
+14236,105,1.1,1
+14236,87,1.1.1,0
+14239,126,1.1,1
+14239,87,1.1.1,0
+14242,94,1.1,1
+14242,87,1.1.1,0
+14243,87,1.1.1,0
+14243,94,1.1,1
+14244,87,1.1.1,0
+14244,94,1.1,1
+14252,106,1.1,1
+14252,88,1.1.3,0
+14253,126,1.1,1
+14253,88,1.1.3,0
+14253,106,1.1,1
+14254,86,1.1,1
+14254,88,1.1.3,0
+14255,88,1.1.3,0
+14255,86,1.1,1
+14255,94,1.1,1
+14256,88,1.1.3,0
+14256,86,1.1,1
+14256,105,1.1,1
+14256,106,1.1,1
+14257,86,1.1,1
+14257,88,1.1.3,0
+14258,105,1.1,1
+14258,88,1.1.3,0
+14258,170,1,2
+14260,86,1.1,1
+14260,105,1.1,1
+14260,88,1.1.3,0
+14260,106,1.1,1
+14261,86,1.1,1
+14261,88,1.1.3,0
+14262,105,1.1,1
+14262,126,1.1,1
+14262,88,1.1.3,0
+14264,88,1.1.3,0
+14264,106,1.1,1
+14264,105,1.1,1
+14266,106,1.1,1
+14266,105,1.1,1
+14266,94,1.1,1
+14266,88,1.1.3,0
+14269,88,1.1.3,0
+14269,106,1.1,1
+14270,126,1.1,1
+14270,88,1.1.3,0
+14272,86,1.1,1
+14272,88,1.1.3,0
+14273,88,1.1.3,0
+14273,126,1.1,1
+14274,88,1.1.3,0
+14274,106,1.1,1
+14276,105,1.1,1
+14276,88,1.1.3,0
+14276,86,1.1,1
+14278,86,1.1,1
+14278,88,1.1.3,0
+14279,86,1.1,1
+14279,88,1.1.3,0
+14281,86,1.1,1
+14281,105,1.1,1
+14281,88,1.1.3,0
+14282,106,1.1,1
+14282,88,1.1.3,0
+14283,170,1,2
+14283,88,1.1.3,0
+14283,86,1.1,1
+14284,88,1.1.3,0
+14284,105,1.1,1
+14285,88,1.1.3,0
+14285,94,1.1,1
+14285,126,1.1,1
+14286,105,1.1,1
+14286,126,1.1,1
+14286,88,1.1.3,0
+14286,94,1.1,1
+14287,88,1.1.3,0
+14287,106,1.1,1
+14289,94,1.1,1
+14289,88,1.1.3,0
+14291,94,1.1,1
+14291,88,1.1.3,0
+14292,126,1.1,1
+14292,88,1.1.3,0
+14292,105,1.1,1
+14293,88,1.1.3,0
+14293,86,1.1,1
+14293,106,1.1,1
+14294,106,1.1,1
+14294,105,1.1,1
+14294,88,1.1.3,0
+14295,88,1.1.3,0
+14295,126,1.1,1
+14297,86,1.1,1
+14297,88,1.1.3,0
+14298,105,1.1,1
+14298,88,1.1.3,0
+14298,94,1.1,1
+14299,126,1.1,1
+14299,88,1.1.3,0
+14300,126,1.1,1
+14300,88,1.1.3,0
+14302,106,1.1,1
+14302,89,1.1.2,0
+14303,89,1.1.2,0
+14303,126,1.1,1
+14304,89,1.1.2,0
+14304,86,1.1,1
+14306,89,1.1.2,0
+14306,105,1.1,1
+14307,89,1.1.2,0
+14307,105,1.1,1
+14308,106,1.1,1
+14308,89,1.1.2,0
+14310,106,1.1,1
+14310,89,1.1.2,0
+14314,89,1.1.2,0
+14314,105,1.1,1
+14314,126,1.1,1
+14316,105,1.1,1
+14316,89,1.1.2,0
+14322,89,1.1.2,0
+14322,106,1.1,1
+14323,105,1.1,1
+14323,89,1.1.2,0
+14324,89,1.1.2,0
+14324,94,1.1,1
+14326,89,1.1.2,0
+14326,86,1.1,1
+14328,126,1.1,1
+14328,89,1.1.2,0
+14331,89,1.1.2,0
+14331,86,1.1,1
+14331,105,1.1,1
+14332,105,1.1,1
+14332,89,1.1.2,0
+14333,89,1.1.2,0
+14333,106,1.1,1
+14336,126,1.1,1
+14336,106,1.1,1
+14336,89,1.1.2,0
+14337,105,1.1,1
+14337,89,1.1.2,0
+14341,89,1.1.2,0
+14341,86,1.1,1
+14342,89,1.1.2,0
+14342,106,1.1,1
+14342,126,1.1,1
+14347,106,1.1,1
+14347,89,1.1.2,0
+14354,89,1.2.1,0
+14354,106,1.2,1
+14355,97,1.2,1
+14355,89,1.2.1,0
+14356,97,1.2,1
+14356,89,1.2.1,0
+14357,106,1.2,1
+14357,89,1.2.1,0
+14358,106,1.2,1
+14358,89,1.2.1,0
+14360,97,1.2,1
+14360,89,1.2.1,0
+14366,89,1.2.1,0
+14366,67,1.2,1
+14372,89,1.2.1,0
+14372,106,1.2,1
+14373,126,1.2,1
+14373,89,1.2.1,0
+14376,126,1.2,1
+14376,89,1.2.1,0
+14378,67,1.2,1
+14378,89,1.2.1,0
+14379,97,1.2,1
+14379,89,1.2.1,0
+14382,89,1.2.1,0
+14382,97,1.2,1
+14383,89,1.2.1,0
+14383,106,1.2,1
+14384,89,1.2.1,0
+14384,97,1.2,1
+14386,126,1.2,1
+14386,89,1.2.1,0
+14393,106,1.2,1
+14393,89,1.2.1,0
+14394,89,1.2.1,0
+14394,97,1.2,1
+14399,106,1.2,1
+14399,89,1.2.1,0
+14402,89,1.3.3.1,0
+14402,97,1.3.3,1
+14403,89,1.3.3.1,0
+14403,99,1.3.3,1
+14404,89,1.3.3.1,0
+14404,97,1.3.3,1
+14405,97,1.3.3,1
+14405,89,1.3.3.1,0
+14406,97,1.3.3,1
+14406,89,1.3.3.1,0
+14407,89,1.3.3.1,0
+14407,97,1.3.3,1
+14411,75,1.3.3,1
+14411,89,1.3.3.1,0
+14416,75,1.3.3,1
+14416,97,1.3.3,1
+14416,89,1.3.3.1,0
+14420,89,1.3.3.1,0
+14420,97,1.3.3,1
+14422,89,1.3.3.1,0
+14422,75,1.3.3,1
+14423,89,1.3.3.1,0
+14423,97,1.3.3,1
+14432,106,1.3,2
+14432,89,1.3.3.1,0
+14432,97,1.3.3,1
+14433,89,1.3.3.1,0
+14433,99,1.3.3,1
+14434,75,1.3.3,1
+14434,89,1.3.3.1,0
+14436,75,1.3.3,1
+14436,89,1.3.3.1,0
+14438,89,1.3.3.1,0
+14438,99,1.3.3,1
+14439,89,1.3.3.1,0
+14439,75,1.3.3,1
+14441,97,1.3.3,1
+14441,89,1.3.3.1,0
+14442,89,1.3.3.1,0
+14442,99,1.3.3,1
+14443,89,1.3.3.1,0
+14443,97,1.3.3,1
+14444,89,1.3.3.1,0
+14444,75,1.3.3,1
+14445,99,1.3.3,1
+14445,89,1.3.3.1,0
+14447,75,1.3.3,1
+14447,89,1.3.3.1,0
+14452,39,1.3.1,1
+14452,100,1.3.1,1
+14452,90,1.3.1.7,0
+14452,93,1.3.1,1
+14453,85,1.3.1,1
+14453,106,1.3,2
+14453,99,1.3.1,1
+14453,100,1.3.1,1
+14453,39,1.3.1,1
+14453,90,1.3.1.7,0
+14454,93,1.3.1,1
+14454,90,1.3.1.7,0
+14455,99,1.3.1,1
+14455,39,1.3.1,1
+14455,90,1.3.1.7,0
+14456,90,1.3.1.7,0
+14456,85,1.3.1,1
+14457,93,1.3.1,1
+14457,90,1.3.1.7,0
+14458,39,1.3.1,1
+14458,90,1.3.1.7,0
+14459,90,1.3.1.7,0
+14459,93,1.3.1,1
+14460,39,1.3.1,1
+14460,90,1.3.1.7,0
+14461,90,1.3.1.7,0
+14461,39,1.3.1,1
+14461,93,1.3.1,1
+14462,93,1.3.1,1
+14462,99,1.3.1,1
+14462,90,1.3.1.7,0
+14464,100,1.3.1,1
+14464,93,1.3.1,1
+14464,39,1.3.1,1
+14464,90,1.3.1.7,0
+14466,106,1.3,2
+14466,99,1.3.1,1
+14466,90,1.3.1.7,0
+14466,93,1.3.1,1
+14469,39,1.3.1,1
+14469,85,1.3.1,1
+14469,90,1.3.1.7,0
+14470,90,1.3.1.7,0
+14470,85,1.3.1,1
+14472,90,1.3.1.7,0
+14472,39,1.3.1,1
+14473,39,1.3.1,1
+14473,90,1.3.1.7,0
+14473,100,1.3.1,1
+14473,85,1.3.1,1
+14474,90,1.3.1.7,0
+14474,93,1.3.1,1
+14475,39,1.3.1,1
+14475,90,1.3.1.7,0
+14476,39,1.3.1,1
+14476,93,1.3.1,1
+14476,90,1.3.1.7,0
+14477,93,1.3.1,1
+14477,90,1.3.1.7,0
+14478,90,1.3.1.7,0
+14478,39,1.3.1,1
+14479,93,1.3.1,1
+14479,39,1.3.1,1
+14479,90,1.3.1.7,0
+14480,90,1.3.1.7,0
+14480,100,1.3.1,1
+14481,85,1.3.1,1
+14481,90,1.3.1.7,0
+14481,39,1.3.1,1
+14482,90,1.3.1.7,0
+14482,100,1.3.1,1
+14483,39,1.3.1,1
+14483,90,1.3.1.7,0
+14484,90,1.3.1.7,0
+14484,99,1.3.1,1
+14485,90,1.3.1.7,0
+14485,99,1.3.1,1
+14486,39,1.3.1,1
+14486,93,1.3.1,1
+14486,90,1.3.1.7,0
+14487,100,1.3.1,1
+14487,90,1.3.1.7,0
+14489,39,1.3.1,1
+14489,90,1.3.1.7,0
+14490,100,1.3.1,1
+14490,90,1.3.1.7,0
+14490,93,1.3.1,1
+14490,99,1.3.1,1
+14491,39,1.3.1,1
+14491,90,1.3.1.7,0
+14492,39,1.3.1,1
+14492,106,1.3,2
+14492,93,1.3.1,1
+14492,85,1.3.1,1
+14492,90,1.3.1.7,0
+14492,100,1.3.1,1
+14493,29,1.3,2
+14493,39,1.3.1,1
+14493,85,1.3.1,1
+14493,90,1.3.1.7,0
+14494,100,1.3.1,1
+14494,90,1.3.1.7,0
+14494,85,1.3.1,1
+14495,99,1.3.1,1
+14495,90,1.3.1.7,0
+14497,99,1.3.1,1
+14497,39,1.3.1,1
+14497,90,1.3.1.7,0
+14498,90,1.3.1.7,0
+14498,39,1.3.1,1
+14498,93,1.3.1,1
+14499,99,1.3.1,1
+14499,100,1.3.1,1
+14499,90,1.3.1.7,0
+14500,99,1.3.1,1
+14500,100,1.3.1,1
+14500,85,1.3.1,1
+14500,90,1.3.1.7,0
+14500,93,1.3.1,1
+14502,67,1.2,1
+14502,91,1.2.1,0
+14504,91,1.2.1,0
+14504,67,1.2,1
+14506,67,1.2,1
+14506,91,1.2.1,0
+14507,126,1.2,1
+14507,91,1.2.1,0
+14508,67,1.2,1
+14508,91,1.2.1,0
+14510,91,1.2.1,0
+14510,106,1.2,1
+14511,91,1.2.1,0
+14511,97,1.2,1
+14514,91,1.2.1,0
+14514,106,1.2,1
+14514,97,1.2,1
+14522,97,1.2,1
+14522,91,1.2.1,0
+14526,106,1.2,1
+14526,67,1.2,1
+14526,91,1.2.1,0
+14528,126,1.2,1
+14528,91,1.2.1,0
+14529,97,1.2,1
+14529,91,1.2.1,0
+14532,91,1.2.1,0
+14532,97,1.2,1
+14533,91,1.2.1,0
+14533,126,1.2,1
+14534,91,1.2.1,0
+14534,126,1.2,1
+14536,67,1.2,1
+14536,97,1.2,1
+14536,91,1.2.1,0
+14540,126,1.2,1
+14540,91,1.2.1,0
+14541,91,1.2.1,0
+14541,67,1.2,1
+14543,126,1.2,1
+14543,91,1.2.1,0
+14544,106,1.2,1
+14544,91,1.2.1,0
+14552,92,1.3.3.4,0
+14552,99,1.3.3,1
+14552,75,1.3.3,1
+14554,92,1.3.3.4,0
+14554,99,1.3.3,1
+14555,75,1.3.3,1
+14555,99,1.3.3,1
+14555,92,1.3.3.4,0
+14556,92,1.3.3.4,0
+14556,75,1.3.3,1
+14557,92,1.3.3.4,0
+14557,75,1.3.3,1
+14558,97,1.3.3,1
+14558,92,1.3.3.4,0
+14559,75,1.3.3,1
+14559,92,1.3.3.4,0
+14560,92,1.3.3.4,0
+14560,75,1.3.3,1
+14561,97,1.3.3,1
+14561,92,1.3.3.4,0
+14564,75,1.3.3,1
+14564,97,1.3.3,1
+14564,106,1.3,2
+14564,92,1.3.3.4,0
+14566,92,1.3.3.4,0
+14566,75,1.3.3,1
+14570,75,1.3.3,1
+14570,92,1.3.3.4,0
+14572,92,1.3.3.4,0
+14572,75,1.3.3,1
+14573,75,1.3.3,1
+14573,92,1.3.3.4,0
+14573,97,1.3.3,1
+14576,92,1.3.3.4,0
+14576,97,1.3.3,1
+14578,92,1.3.3.4,0
+14578,97,1.3.3,1
+14579,92,1.3.3.4,0
+14579,75,1.3.3,1
+14581,92,1.3.3.4,0
+14581,75,1.3.3,1
+14582,75,1.3.3,1
+14582,92,1.3.3.4,0
+14583,75,1.3.3,1
+14583,92,1.3.3.4,0
+14584,92,1.3.3.4,0
+14584,97,1.3.3,1
+14585,97,1.3.3,1
+14585,92,1.3.3.4,0
+14586,97,1.3.3,1
+14586,75,1.3.3,1
+14586,92,1.3.3.4,0
+14586,99,1.3.3,1
+14586,29,1.3,2
+14588,92,1.3.3.4,0
+14588,99,1.3.3,1
+14589,92,1.3.3.4,0
+14589,75,1.3.3,1
+14590,92,1.3.3.4,0
+14590,99,1.3.3,1
+14591,97,1.3.3,1
+14591,92,1.3.3.4,0
+14592,99,1.3.3,1
+14592,92,1.3.3.4,0
+14593,92,1.3.3.4,0
+14593,97,1.3.3,1
+14594,92,1.3.3.4,0
+14594,97,1.3.3,1
+14595,92,1.3.3.4,0
+14595,97,1.3.3,1
+14597,99,1.3.3,1
+14597,92,1.3.3.4,0
+14598,75,1.3.3,1
+14598,92,1.3.3.4,0
+14599,92,1.3.3.4,0
+14599,99,1.3.3,1
+14602,29,1.3,1
+14602,93,1.3.1,0
+14605,106,1.3,1
+14605,93,1.3.1,0
+14606,106,1.3,1
+14606,93,1.3.1,0
+14607,93,1.3.1,0
+14607,29,1.3,1
+14609,106,1.3,1
+14609,93,1.3.1,0
+14611,93,1.3.1,0
+14611,29,1.3,1
+14616,106,1.3,1
+14616,93,1.3.1,0
+14622,106,1.3,1
+14622,93,1.3.1,0
+14623,106,1.3,1
+14623,93,1.3.1,0
+14623,29,1.3,1
+14626,29,1.3,1
+14626,93,1.3.1,0
+14629,106,1.3,1
+14629,93,1.3.1,0
+14629,29,1.3,1
+14631,93,1.3.1,0
+14631,29,1.3,1
+14632,29,1.3,1
+14632,93,1.3.1,0
+14633,93,1.3.1,0
+14633,29,1.3,1
+14634,93,1.3.1,0
+14634,29,1.3,1
+14636,29,1.3,1
+14636,93,1.3.1,0
+14638,93,1.3.1,0
+14638,106,1.3,1
+14641,106,1.3,1
+14641,93,1.3.1,0
+14643,93,1.3.1,0
+14643,29,1.3,1
+14648,29,1.3,1
+14648,93,1.3.1,0
+14655,94,1.1,0
+14655,170,1,1
+14659,94,1.1,0
+14659,170,1,1
+14673,170,1,1
+14673,94,1.1,0
+14675,170,1,1
+14675,94,1.1,0
+14678,94,1.1,0
+14678,170,1,1
+14679,170,1,1
+14679,94,1.1,0
+14685,94,1.1,0
+14685,170,1,1
+14686,94,1.1,0
+14686,170,1,1
+14692,170,1,1
+14692,94,1.1,0
+14702,67,1.2,1
+14702,95,1.2.3,0
+14704,95,1.2.3,0
+14704,67,1.2,1
+14705,126,1.2,1
+14705,95,1.2.3,0
+14706,95,1.2.3,0
+14706,97,1.2,1
+14707,95,1.2.3,0
+14707,67,1.2,1
+14708,95,1.2.3,0
+14708,106,1.2,1
+14711,95,1.2.3,0
+14711,67,1.2,1
+14711,97,1.2,1
+14714,95,1.2.3,0
+14714,97,1.2,1
+14722,67,1.2,1
+14722,95,1.2.3,0
+14723,106,1.2,1
+14723,95,1.2.3,0
+14723,97,1.2,1
+14726,97,1.2,1
+14726,95,1.2.3,0
+14727,97,1.2,1
+14727,95,1.2.3,0
+14729,95,1.2.3,0
+14729,97,1.2,1
+14731,97,1.2,1
+14731,95,1.2.3,0
+14733,67,1.2,1
+14733,95,1.2.3,0
+14734,95,1.2.3,0
+14734,67,1.2,1
+14734,126,1.2,1
+14735,106,1.2,1
+14735,97,1.2,1
+14735,95,1.2.3,0
+14736,97,1.2,1
+14736,106,1.2,1
+14736,95,1.2.3,0
+14736,67,1.2,1
+14737,95,1.2.3,0
+14737,106,1.2,1
+14738,95,1.2.3,0
+14738,126,1.2,1
+14739,95,1.2.3,0
+14739,126,1.2,1
+14739,67,1.2,1
+14739,170,1,2
+14741,95,1.2.3,0
+14741,67,1.2,1
+14743,97,1.2,1
+14743,95,1.2.3,0
+14744,106,1.2,1
+14744,95,1.2.3,0
+14744,97,1.2,1
+14745,126,1.2,1
+14745,95,1.2.3,0
+14748,95,1.2.3,0
+14748,67,1.2,1
+14752,95,2.3,0
+14752,98,2,1
+14755,95,2.3,0
+14755,102,2,1
+14756,98,2,1
+14756,95,2.3,0
+14757,102,2,1
+14757,95,2.3,0
+14758,95,2.3,0
+14758,98,2,1
+14759,95,2.3,0
+14759,98,2,1
+14760,95,2.3,0
+14760,102,2,1
+14761,98,2,1
+14761,95,2.3,0
+14764,98,2,1
+14764,95,2.3,0
+14764,102,2,1
+14766,95,2.3,0
+14766,102,2,1
+14766,98,2,1
+14778,95,2.3,0
+14778,98,2,1
+14779,95,2.3,0
+14779,102,2,1
+14783,98,2,1
+14783,95,2.3,0
+14784,98,2,1
+14784,95,2.3,0
+14786,95,2.3,0
+14786,98,2,1
+14789,95,2.3,0
+14789,98,2,1
+14793,98,2,1
+14793,95,2.3,0
+14794,95,2.3,0
+14794,98,2,1
+14797,102,2,1
+14797,95,2.3,0
+14806,96,1.2.1,0
+14806,126,1.2,1
+14807,97,1.2,1
+14807,96,1.2.1,0
+14808,96,1.2.1,0
+14808,126,1.2,1
+14814,106,1.2,1
+14814,96,1.2.1,0
+14819,96,1.2.1,0
+14819,126,1.2,1
+14822,67,1.2,1
+14822,96,1.2.1,0
+14823,126,1.2,1
+14823,96,1.2.1,0
+14829,67,1.2,1
+14829,96,1.2.1,0
+14831,97,1.2,1
+14831,96,1.2.1,0
+14832,96,1.2.1,0
+14832,126,1.2,1
+14833,67,1.2,1
+14833,96,1.2.1,0
+14835,126,1.2,1
+14835,96,1.2.1,0
+14836,97,1.2,1
+14836,96,1.2.1,0
+14838,96,1.2.1,0
+14838,126,1.2,1
+14841,97,1.2,1
+14841,96,1.2.1,0
+14843,96,1.2.1,0
+14843,97,1.2,1
+14847,97,1.2,1
+14847,96,1.2.1,0
+14852,67,1.2,1
+14852,96,1.2.3,0
+14852,170,1,2
+14854,97,1.2,1
+14854,96,1.2.3,0
+14855,96,1.2.3,0
+14855,106,1.2,1
+14856,96,1.2.3,0
+14856,67,1.2,1
+14857,106,1.2,1
+14857,96,1.2.3,0
+14861,126,1.2,1
+14861,96,1.2.3,0
+14864,96,1.2.3,0
+14864,67,1.2,1
+14866,126,1.2,1
+14866,106,1.2,1
+14866,96,1.2.3,0
+14871,96,1.2.3,0
+14871,126,1.2,1
+14872,97,1.2,1
+14872,96,1.2.3,0
+14876,96,1.2.3,0
+14876,126,1.2,1
+14878,126,1.2,1
+14878,96,1.2.3,0
+14879,67,1.2,1
+14879,97,1.2,1
+14879,96,1.2.3,0
+14881,96,1.2.3,0
+14881,126,1.2,1
+14882,96,1.2.3,0
+14882,67,1.2,1
+14883,126,1.2,1
+14883,96,1.2.3,0
+14884,96,1.2.3,0
+14884,106,1.2,1
+14886,106,1.2,1
+14886,97,1.2,1
+14886,96,1.2.3,0
+14888,96,1.2.3,0
+14888,97,1.2,1
+14888,170,1,2
+14889,96,1.2.3,0
+14889,67,1.2,1
+14891,96,1.2.3,0
+14891,67,1.2,1
+14892,97,1.2,1
+14892,106,1.2,1
+14892,96,1.2.3,0
+14893,96,1.2.3,0
+14893,126,1.2,1
+14894,126,1.2,1
+14894,67,1.2,1
+14894,96,1.2.3,0
+14897,67,1.2,1
+14897,126,1.2,1
+14897,96,1.2.3,0
+14898,96,1.2.3,0
+14898,106,1.2,1
+14899,126,1.2,1
+14899,96,1.2.3,0
+14900,126,1.2,1
+14900,96,1.2.3,0
+14901,170,1,1
+14901,97,1.2,0
+14903,97,1.2,0
+14903,170,1,1
+14905,97,1.2,0
+14905,170,1,1
+14906,170,1,1
+14906,97,1.2,0
+14908,170,1,1
+14908,97,1.2,0
+14911,97,1.2,0
+14911,170,1,1
+14914,170,1,1
+14914,97,1.2,0
+14916,170,1,1
+14916,97,1.2,0
+14919,97,1.2,0
+14919,170,1,1
+14920,97,1.2,0
+14920,170,1,1
+14923,170,1,1
+14923,97,1.2,0
+14924,97,1.2,0
+14924,170,1,1
+14928,170,1,1
+14928,97,1.2,0
+14933,170,1,1
+14933,97,1.2,0
+14934,97,1.2,0
+14934,170,1,1
+14941,97,1.2,0
+14941,170,1,1
+14945,97,1.2,0
+14945,170,1,1
+14948,97,1.2,0
+14948,170,1,1
+14952,29,1.3,1
+14952,97,1.3.3,0
+14954,97,1.3.3,0
+14954,106,1.3,1
+14956,97,1.3.3,0
+14956,29,1.3,1
+14957,97,1.3.3,0
+14957,29,1.3,1
+14958,97,1.3.3,0
+14958,29,1.3,1
+14959,29,1.3,1
+14959,97,1.3.3,0
+14960,97,1.3.3,0
+14960,106,1.3,1
+14966,106,1.3,1
+14966,97,1.3.3,0
+14966,29,1.3,1
+14969,106,1.3,1
+14969,97,1.3.3,0
+14972,29,1.3,1
+14972,97,1.3.3,0
+14973,29,1.3,1
+14973,97,1.3.3,0
+14974,97,1.3.3,0
+14974,106,1.3,1
+14977,106,1.3,1
+14977,97,1.3.3,0
+14978,106,1.3,1
+14978,97,1.3.3,0
+14979,29,1.3,1
+14979,170,1,2
+14979,97,1.3.3,0
+14981,97,1.3.3,0
+14981,106,1.3,1
+14982,29,1.3,1
+14982,97,1.3.3,0
+14983,97,1.3.3,0
+14983,29,1.3,1
+14984,29,1.3,1
+14984,97,1.3.3,0
+14986,97,1.3.3,0
+14986,29,1.3,1
+14986,106,1.3,1
+14991,97,1.3.3,0
+14991,29,1.3,1
+14992,97,1.3.3,0
+14992,106,1.3,1
+14993,29,1.3,1
+14993,106,1.3,1
+14993,97,1.3.3,0
+14994,106,1.3,1
+14994,97,1.3.3,0
+14994,29,1.3,1
+14997,29,1.3,1
+14997,97,1.3.3,0
+14998,106,1.3,1
+14998,29,1.3,1
+14998,97,1.3.3,0
+14999,106,1.3,1
+14999,97,1.3.3,0
+15022,97,2.1.3,0
+15022,99,2.1,1
+15029,99,2.1,1
+15029,97,2.1.3,0
+15032,99,2.1,1
+15032,97,2.1.3,0
+15041,97,2.1.3,0
+15041,99,2.1,1
+15048,99,2.1,1
+15048,97,2.1.3,0
+15051,98,2,0
+15051,170,1,1
+15052,170,1,1
+15052,98,2,0
+15053,170,1,1
+15053,98,2,0
+15054,98,2,0
+15054,170,1,1
+15055,98,2,0
+15055,170,1,1
+15056,98,2,0
+15056,170,1,1
+15057,98,2,0
+15057,170,1,1
+15058,98,2,0
+15058,170,1,1
+15059,98,2,0
+15059,170,1,1
+15060,98,2,0
+15060,170,1,1
+15061,98,2,0
+15061,170,1,1
+15064,170,1,1
+15064,98,2,0
+15066,170,1,1
+15066,98,2,0
+15069,98,2,0
+15069,170,1,1
+15070,170,1,1
+15070,98,2,0
+15072,170,1,1
+15072,98,2,0
+15073,170,1,1
+15073,98,2,0
+15074,98,2,0
+15074,170,1,1
+15075,98,2,0
+15075,170,1,1
+15076,98,2,0
+15076,170,1,1
+15078,98,2,0
+15078,170,1,1
+15079,98,2,0
+15079,170,1,1
+15080,170,1,1
+15080,98,2,0
+15081,98,2,0
+15081,170,1,1
+15082,170,1,1
+15082,98,2,0
+15083,98,2,0
+15083,170,1,1
+15084,98,2,0
+15084,170,1,1
+15085,98,2,0
+15085,170,1,1
+15086,98,2,0
+15086,170,1,1
+15089,170,1,1
+15089,98,2,0
+15090,170,1,1
+15090,98,2,0
+15091,170,1,1
+15091,98,2,0
+15092,170,1,1
+15092,98,2,0
+15093,170,1,1
+15093,98,2,0
+15094,170,1,1
+15094,98,2,0
+15095,98,2,0
+15095,170,1,1
+15096,170,1,1
+15096,98,2,0
+15097,98,2,0
+15097,170,1,1
+15098,170,1,1
+15098,98,2,0
+15099,170,1,1
+15099,98,2,0
+15100,98,2,0
+15100,170,1,1
+15105,99,1.1.2,0
+15105,126,1.1,1
+15105,106,1.1,1
+15106,99,1.1.2,0
+15106,106,1.1,1
+15107,86,1.1,1
+15107,99,1.1.2,0
+15108,86,1.1,1
+15108,99,1.1.2,0
+15109,99,1.1.2,0
+15109,105,1.1,1
+15116,126,1.1,1
+15116,99,1.1.2,0
+15119,94,1.1,1
+15119,105,1.1,1
+15119,99,1.1.2,0
+15119,106,1.1,1
+15122,86,1.1,1
+15122,105,1.1,1
+15122,99,1.1.2,0
+15123,99,1.1.2,0
+15123,86,1.1,1
+15124,99,1.1.2,0
+15124,106,1.1,1
+15129,99,1.1.2,0
+15129,86,1.1,1
+15131,99,1.1.2,0
+15131,106,1.1,1
+15132,94,1.1,1
+15132,99,1.1.2,0
+15133,99,1.1.2,0
+15133,94,1.1,1
+15136,94,1.1,1
+15136,99,1.1.2,0
+15138,94,1.1,1
+15138,99,1.1.2,0
+15139,105,1.1,1
+15139,99,1.1.2,0
+15144,99,1.1.2,0
+15144,105,1.1,1
+15145,105,1.1,1
+15145,99,1.1.2,0
+15147,99,1.1.2,0
+15147,126,1.1,1
+15148,94,1.1,1
+15148,99,1.1.2,0
+15148,126,1.1,1
+15150,99,1.1.2,0
+15150,126,1.1,1
+15152,126,1.2,1
+15152,67,1.2,1
+15152,99,1.2.1,0
+15154,97,1.2,1
+15154,99,1.2.1,0
+15158,99,1.2.1,0
+15158,106,1.2,1
+15161,99,1.2.1,0
+15161,67,1.2,1
+15182,99,1.2.1,0
+15182,106,1.2,1
+15186,99,1.2.1,0
+15186,67,1.2,1
+15186,106,1.2,1
+15191,97,1.2,1
+15191,99,1.2.1,0
+15193,99,1.2.1,0
+15193,67,1.2,1
+15194,97,1.2,1
+15194,99,1.2.1,0
+15202,106,1.3,1
+15202,99,1.3.1,0
+15206,29,1.3,1
+15206,99,1.3.1,0
+15207,29,1.3,1
+15207,99,1.3.1,0
+15210,29,1.3,1
+15210,99,1.3.1,0
+15211,29,1.3,1
+15211,106,1.3,1
+15211,99,1.3.1,0
+15214,29,1.3,1
+15214,106,1.3,1
+15214,170,1,2
+15214,99,1.3.1,0
+15219,106,1.3,1
+15219,99,1.3.1,0
+15222,29,1.3,1
+15222,99,1.3.1,0
+15223,106,1.3,1
+15223,99,1.3.1,0
+15226,106,1.3,1
+15226,99,1.3.1,0
+15228,99,1.3.1,0
+15228,106,1.3,1
+15231,99,1.3.1,0
+15231,106,1.3,1
+15232,99,1.3.1,0
+15232,106,1.3,1
+15234,99,1.3.1,0
+15234,106,1.3,1
+15236,99,1.3.1,0
+15236,106,1.3,1
+15238,106,1.3,1
+15238,99,1.3.1,0
+15239,99,1.3.1,0
+15239,29,1.3,1
+15241,29,1.3,1
+15241,99,1.3.1,0
+15244,106,1.3,1
+15244,99,1.3.1,0
+15245,99,1.3.1,0
+15245,106,1.3,1
+15247,99,1.3.1,0
+15247,29,1.3,1
+15250,99,1.3.1,0
+15250,106,1.3,1
+15252,29,1.3,1
+15252,99,1.3.3,0
+15254,29,1.3,1
+15254,99,1.3.3,0
+15255,99,1.3.3,0
+15255,29,1.3,1
+15255,106,1.3,1
+15256,99,1.3.3,0
+15256,29,1.3,1
+15257,29,1.3,1
+15257,99,1.3.3,0
+15258,99,1.3.3,0
+15258,29,1.3,1
+15259,29,1.3,1
+15259,99,1.3.3,0
+15260,29,1.3,1
+15260,99,1.3.3,0
+15261,106,1.3,1
+15261,99,1.3.3,0
+15261,29,1.3,1
+15264,170,1,2
+15264,106,1.3,1
+15264,29,1.3,1
+15264,99,1.3.3,0
+15266,106,1.3,1
+15266,99,1.3.3,0
+15272,29,1.3,1
+15272,99,1.3.3,0
+15273,106,1.3,1
+15273,99,1.3.3,0
+15276,99,1.3.3,0
+15276,106,1.3,1
+15276,29,1.3,1
+15278,99,1.3.3,0
+15278,29,1.3,1
+15279,99,1.3.3,0
+15279,29,1.3,1
+15279,106,1.3,1
+15281,99,1.3.3,0
+15281,29,1.3,1
+15282,99,1.3.3,0
+15282,106,1.3,1
+15283,99,1.3.3,0
+15283,106,1.3,1
+15285,99,1.3.3,0
+15285,106,1.3,1
+15286,106,1.3,1
+15286,99,1.3.3,0
+15288,170,1,2
+15288,99,1.3.3,0
+15288,106,1.3,1
+15289,99,1.3.3,0
+15289,29,1.3,1
+15290,106,1.3,1
+15290,99,1.3.3,0
+15291,29,1.3,1
+15291,99,1.3.3,0
+15294,106,1.3,1
+15294,29,1.3,1
+15294,99,1.3.3,0
+15295,99,1.3.3,0
+15295,170,1,2
+15295,106,1.3,1
+15297,99,1.3.3,0
+15297,29,1.3,1
+15298,99,1.3.3,0
+15298,29,1.3,1
+15298,106,1.3,1
+15300,99,1.3.3,0
+15300,106,1.3,1
+15301,99,2.1,0
+15301,102,2,1
+15301,98,2,1
+15301,170,1,2
+15302,98,2,1
+15302,99,2.1,0
+15302,102,2,1
+15302,170,1,2
+15303,102,2,1
+15303,170,1,2
+15303,98,2,1
+15303,99,2.1,0
+15304,170,1,2
+15304,102,2,1
+15304,99,2.1,0
+15304,98,2,1
+15305,98,2,1
+15305,170,1,2
+15305,99,2.1,0
+15305,102,2,1
+15306,102,2,1
+15306,170,1,2
+15306,98,2,1
+15306,99,2.1,0
+15307,99,2.1,0
+15307,98,2,1
+15307,102,2,1
+15307,170,1,2
+15308,99,2.1,0
+15308,98,2,1
+15308,102,2,1
+15308,170,1,2
+15309,98,2,1
+15309,99,2.1,0
+15309,170,1,2
+15309,102,2,1
+15310,98,2,1
+15310,102,2,1
+15310,99,2.1,0
+15310,170,1,2
+15311,98,2,1
+15311,99,2.1,0
+15311,170,1,2
+15311,102,2,1
+15312,170,1,2
+15312,102,2,1
+15312,98,2,1
+15312,99,2.1,0
+15313,170,1,2
+15313,99,2.1,0
+15313,102,2,1
+15313,98,2,1
+15314,170,1,2
+15314,99,2.1,0
+15314,102,2,1
+15314,98,2,1
+15315,98,2,1
+15315,102,2,1
+15315,170,1,2
+15315,99,2.1,0
+15316,98,2,1
+15316,102,2,1
+15316,99,2.1,0
+15316,170,1,2
+15317,170,1,2
+15317,98,2,1
+15317,102,2,1
+15317,99,2.1,0
+15318,102,2,1
+15318,98,2,1
+15318,170,1,2
+15318,99,2.1,0
+15319,99,2.1,0
+15319,170,1,2
+15319,98,2,1
+15319,102,2,1
+15320,170,1,2
+15320,98,2,1
+15320,99,2.1,0
+15320,102,2,1
+15321,170,1,2
+15321,99,2.1,0
+15321,98,2,1
+15321,102,2,1
+15322,98,2,1
+15322,102,2,1
+15322,170,1,2
+15322,99,2.1,0
+15323,98,2,1
+15323,99,2.1,0
+15323,102,2,1
+15323,170,1,2
+15324,98,2,1
+15324,102,2,1
+15324,170,1,2
+15324,99,2.1,0
+15325,102,2,1
+15325,170,1,2
+15325,98,2,1
+15325,99,2.1,0
+15326,170,1,2
+15326,98,2,1
+15326,102,2,1
+15326,99,2.1,0
+15327,102,2,1
+15327,99,2.1,0
+15327,98,2,1
+15327,170,1,2
+15328,170,1,2
+15328,102,2,1
+15328,98,2,1
+15328,99,2.1,0
+15329,99,2.1,0
+15329,98,2,1
+15329,102,2,1
+15329,170,1,2
+15330,98,2,1
+15330,102,2,1
+15330,99,2.1,0
+15330,170,1,2
+15331,99,2.1,0
+15331,170,1,2
+15331,102,2,1
+15331,98,2,1
+15332,102,2,1
+15332,99,2.1,0
+15332,170,1,2
+15332,98,2,1
+15333,102,2,1
+15333,98,2,1
+15333,99,2.1,0
+15333,170,1,2
+15334,99,2.1,0
+15334,170,1,2
+15334,102,2,1
+15334,98,2,1
+15335,170,1,2
+15335,102,2,1
+15335,99,2.1,0
+15335,98,2,1
+15336,170,1,2
+15336,99,2.1,0
+15336,98,2,1
+15336,102,2,1
+15337,98,2,1
+15337,102,2,1
+15337,99,2.1,0
+15337,170,1,2
+15338,99,2.1,0
+15338,170,1,2
+15338,102,2,1
+15338,98,2,1
+15339,170,1,2
+15339,102,2,1
+15339,99,2.1,0
+15339,98,2,1
+15340,102,2,1
+15340,99,2.1,0
+15340,98,2,1
+15340,170,1,2
+15341,98,2,1
+15341,170,1,2
+15341,102,2,1
+15341,99,2.1,0
+15342,99,2.1,0
+15342,102,2,1
+15342,170,1,2
+15342,98,2,1
+15343,99,2.1,0
+15343,98,2,1
+15343,102,2,1
+15343,170,1,2
+15344,102,2,1
+15344,99,2.1,0
+15344,170,1,2
+15344,98,2,1
+15345,98,2,1
+15345,102,2,1
+15345,99,2.1,0
+15345,170,1,2
+15346,102,2,1
+15346,98,2,1
+15346,99,2.1,0
+15346,170,1,2
+15347,99,2.1,0
+15347,102,2,1
+15347,170,1,2
+15347,98,2,1
+15348,102,2,1
+15348,98,2,1
+15348,99,2.1,0
+15348,170,1,2
+15349,98,2,1
+15349,99,2.1,0
+15349,102,2,1
+15349,170,1,2
+15350,102,2,1
+15350,99,2.1,0
+15350,170,1,2
+15350,98,2,1
+15354,98,2,1
+15354,99,2.3,0
+15355,102,2,1
+15355,99,2.3,0
+15355,98,2,1
+15357,98,2,1
+15357,99,2.3,0
+15361,102,2,1
+15361,99,2.3,0
+15373,99,2.3,0
+15373,102,2,1
+15374,99,2.3,0
+15374,102,2,1
+15381,98,2,1
+15381,99,2.3,0
+15382,98,2,1
+15382,99,2.3,0
+15386,98,2,1
+15386,99,2.3,0
+15390,102,2,1
+15390,99,2.3,0
+15393,99,2.3,0
+15393,102,2,1
+15394,102,2,1
+15394,99,2.3,0
+15398,99,2.3,0
+15398,98,2,1
+15398,102,2,1
+15404,29,1.3,1
+15404,100,1.3.1,0
+15405,29,1.3,1
+15405,100,1.3.1,0
+15408,100,1.3.1,0
+15408,29,1.3,1
+15409,29,1.3,1
+15409,100,1.3.1,0
+15410,106,1.3,1
+15410,100,1.3.1,0
+15411,106,1.3,1
+15411,100,1.3.1,0
+15416,106,1.3,1
+15416,100,1.3.1,0
+15422,29,1.3,1
+15422,100,1.3.1,0
+15423,100,1.3.1,0
+15423,29,1.3,1
+15426,29,1.3,1
+15426,106,1.3,1
+15426,100,1.3.1,0
+15428,29,1.3,1
+15428,100,1.3.1,0
+15429,29,1.3,1
+15429,106,1.3,1
+15429,100,1.3.1,0
+15431,100,1.3.1,0
+15431,29,1.3,1
+15435,100,1.3.1,0
+15435,106,1.3,1
+15439,106,1.3,1
+15439,100,1.3.1,0
+15441,100,1.3.1,0
+15441,29,1.3,1
+15444,29,1.3,1
+15444,100,1.3.1,0
+15447,100,1.3.1,0
+15447,106,1.3,1
+15448,106,1.3,1
+15448,100,1.3.1,0
+15450,100,1.3.1,0
+15450,106,1.3,1
+15452,105,1.1,1
+15452,101,1.1.1,0
+15455,106,1.1,1
+15455,101,1.1.1,0
+15456,105,1.1,1
+15456,101,1.1.1,0
+15457,101,1.1.1,0
+15457,86,1.1,1
+15458,101,1.1.1,0
+15458,94,1.1,1
+15461,94,1.1,1
+15461,101,1.1.1,0
+15464,86,1.1,1
+15464,101,1.1.1,0
+15466,126,1.1,1
+15466,101,1.1.1,0
+15473,126,1.1,1
+15473,101,1.1.1,0
+15478,106,1.1,1
+15478,101,1.1.1,0
+15481,101,1.1.1,0
+15481,106,1.1,1
+15482,105,1.1,1
+15482,101,1.1.1,0
+15483,86,1.1,1
+15483,101,1.1.1,0
+15484,94,1.1,1
+15484,101,1.1.1,0
+15485,105,1.1,1
+15485,101,1.1.1,0
+15486,101,1.1.1,0
+15486,86,1.1,1
+15493,101,1.1.1,0
+15493,94,1.1,1
+15494,94,1.1,1
+15494,106,1.1,1
+15494,101,1.1.1,0
+15501,170,1,1
+15501,102,2,0
+15502,170,1,1
+15502,102,2,0
+15503,170,1,1
+15503,102,2,0
+15504,170,1,1
+15504,102,2,0
+15505,102,2,0
+15505,170,1,1
+15506,170,1,1
+15506,102,2,0
+15507,102,2,0
+15507,170,1,1
+15508,102,2,0
+15508,170,1,1
+15509,102,2,0
+15509,170,1,1
+15510,102,2,0
+15510,170,1,1
+15511,102,2,0
+15511,170,1,1
+15514,102,2,0
+15514,170,1,1
+15516,102,2,0
+15516,170,1,1
+15519,102,2,0
+15519,170,1,1
+15520,170,1,1
+15520,102,2,0
+15522,102,2,0
+15522,170,1,1
+15523,170,1,1
+15523,102,2,0
+15524,170,1,1
+15524,102,2,0
+15525,170,1,1
+15525,102,2,0
+15526,170,1,1
+15526,102,2,0
+15528,170,1,1
+15528,102,2,0
+15529,170,1,1
+15529,102,2,0
+15530,102,2,0
+15530,170,1,1
+15531,102,2,0
+15531,170,1,1
+15532,102,2,0
+15532,170,1,1
+15533,170,1,1
+15533,102,2,0
+15534,102,2,0
+15534,170,1,1
+15535,102,2,0
+15535,170,1,1
+15536,102,2,0
+15536,170,1,1
+15539,102,2,0
+15539,170,1,1
+15540,102,2,0
+15540,170,1,1
+15541,170,1,1
+15541,102,2,0
+15542,170,1,1
+15542,102,2,0
+15543,170,1,1
+15543,102,2,0
+15544,170,1,1
+15544,102,2,0
+15545,170,1,1
+15545,102,2,0
+15546,170,1,1
+15546,102,2,0
+15547,102,2,0
+15547,170,1,1
+15548,170,1,1
+15548,102,2,0
+15549,170,1,1
+15549,102,2,0
+15550,170,1,1
+15550,102,2,0
+15552,99,2.1,1
+15552,102,2.1.4,0
+15554,102,2.1.4,0
+15554,99,2.1,1
+15555,102,2.1.4,0
+15555,99,2.1,1
+15556,99,2.1,1
+15556,102,2.1.4,0
+15557,99,2.1,1
+15557,102,2.1.4,0
+15559,102,2.1.4,0
+15559,99,2.1,1
+15560,102,2.1.4,0
+15560,99,2.1,1
+15561,102,2.1.4,0
+15561,99,2.1,1
+15564,99,2.1,1
+15564,102,2.1.4,0
+15566,102,2.1.4,0
+15566,99,2.1,1
+15572,102,2.1.4,0
+15572,99,2.1,1
+15573,99,2.1,1
+15573,102,2.1.4,0
+15576,99,2.1,1
+15576,102,2.1.4,0
+15578,99,2.1,1
+15578,170,1,3
+15578,98,2,2
+15578,102,2,2
+15578,102,2.1.4,0
+15579,99,2.1,1
+15579,102,2.1.4,0
+15583,99,2.1,1
+15583,102,2.1.4,0
+15584,102,2.1.4,0
+15584,99,2.1,1
+15591,102,2.1.4,0
+15591,99,2.1,1
+15597,102,2.1.4,0
+15597,99,2.1,1
+15598,102,2.1.4,0
+15598,99,2.1,1
+15602,103,1.1.1,0
+15602,86,1.1,1
+15606,105,1.1,1
+15606,103,1.1.1,0
+15607,103,1.1.1,0
+15607,106,1.1,1
+15608,103,1.1.1,0
+15608,86,1.1,1
+15611,103,1.1.1,0
+15611,86,1.1,1
+15614,103,1.1.1,0
+15614,105,1.1,1
+15616,105,1.1,1
+15616,103,1.1.1,0
+15619,126,1.1,1
+15619,103,1.1.1,0
+15622,103,1.1.1,0
+15622,105,1.1,1
+15623,94,1.1,1
+15623,103,1.1.1,0
+15626,103,1.1.1,0
+15626,94,1.1,1
+15627,103,1.1.1,0
+15627,126,1.1,1
+15628,103,1.1.1,0
+15628,86,1.1,1
+15631,103,1.1.1,0
+15631,126,1.1,1
+15632,103,1.1.1,0
+15632,94,1.1,1
+15633,103,1.1.1,0
+15633,86,1.1,1
+15634,103,1.1.1,0
+15634,126,1.1,1
+15642,126,1.1,1
+15642,103,1.1.1,0
+15643,105,1.1,1
+15643,103,1.1.1,0
+15644,103,1.1.1,0
+15644,94,1.1,1
+15644,105,1.1,1
+15649,126,1.1,1
+15649,103,1.1.1,0
+15656,94,1.1,1
+15656,104,1.1.1,0
+15657,105,1.1,1
+15657,104,1.1.1,0
+15661,105,1.1,1
+15661,104,1.1.1,0
+15664,86,1.1,1
+15664,104,1.1.1,0
+15669,104,1.1.1,0
+15669,94,1.1,1
+15672,104,1.1.1,0
+15672,94,1.1,1
+15673,126,1.1,1
+15673,104,1.1.1,0
+15676,105,1.1,1
+15676,104,1.1.1,0
+15678,106,1.1,1
+15678,104,1.1.1,0
+15679,104,1.1.1,0
+15679,106,1.1,1
+15682,104,1.1.1,0
+15682,86,1.1,1
+15683,104,1.1.1,0
+15683,86,1.1,1
+15684,104,1.1.1,0
+15684,86,1.1,1
+15685,105,1.1,1
+15685,104,1.1.1,0
+15685,126,1.1,1
+15689,126,1.1,1
+15689,104,1.1.1,0
+15692,104,1.1.1,0
+15692,105,1.1,1
+15693,94,1.1,1
+15693,104,1.1.1,0
+15694,104,1.1.1,0
+15694,86,1.1,1
+15701,170,1,1
+15701,105,1.1,0
+15702,105,1.1,0
+15702,170,1,1
+15703,105,1.1,0
+15703,170,1,1
+15704,170,1,1
+15704,105,1.1,0
+15706,170,1,1
+15706,105,1.1,0
+15708,105,1.1,0
+15708,170,1,1
+15710,105,1.1,0
+15710,170,1,1
+15716,105,1.1,0
+15716,170,1,1
+15719,105,1.1,0
+15719,170,1,1
+15720,105,1.1,0
+15720,170,1,1
+15722,170,1,1
+15722,105,1.1,0
+15729,170,1,1
+15729,105,1.1,0
+15731,105,1.1,0
+15731,170,1,1
+15732,170,1,1
+15732,105,1.1,0
+15740,105,1.1,0
+15740,170,1,1
+15741,105,1.1,0
+15741,170,1,1
+15743,170,1,1
+15743,105,1.1,0
+15750,170,1,1
+15750,105,1.1,0
+15753,170,1,1
+15753,106,1.1,0
+15756,106,1.1,0
+15756,170,1,1
+15760,106,1.1,0
+15760,170,1,1
+15761,170,1,1
+15761,106,1.1,0
+15773,106,1.1,0
+15773,170,1,1
+15776,106,1.1,0
+15776,170,1,1
+15780,106,1.1,0
+15780,170,1,1
+15781,106,1.1,0
+15781,170,1,1
+15784,106,1.1,0
+15784,170,1,1
+15785,106,1.1,0
+15785,170,1,1
+15789,106,1.1,0
+15789,170,1,1
+15790,106,1.1,0
+15790,170,1,1
+15796,170,1,1
+15796,106,1.1,0
+15797,170,1,1
+15797,106,1.1,0
+15798,170,1,1
+15798,106,1.1,0
+15799,106,1.1,0
+15799,170,1,1
+15801,106,1.2,0
+15801,170,1,1
+15804,170,1,1
+15804,106,1.2,0
+15807,106,1.2,0
+15807,170,1,1
+15809,106,1.2,0
+15809,170,1,1
+15810,170,1,1
+15810,106,1.2,0
+15816,106,1.2,0
+15816,170,1,1
+15819,170,1,1
+15819,106,1.2,0
+15820,170,1,1
+15820,106,1.2,0
+15824,170,1,1
+15824,106,1.2,0
+15825,106,1.2,0
+15825,170,1,1
+15826,170,1,1
+15826,106,1.2,0
+15829,170,1,1
+15829,106,1.2,0
+15836,106,1.2,0
+15836,170,1,1
+15839,106,1.2,0
+15839,170,1,1
+15840,106,1.2,0
+15840,170,1,1
+15841,106,1.2,0
+15841,170,1,1
+15842,106,1.2,0
+15842,170,1,1
+15844,106,1.2,0
+15844,170,1,1
+15846,170,1,1
+15846,106,1.2,0
+15847,170,1,1
+15847,106,1.2,0
+15849,106,1.2,0
+15849,170,1,1
+15850,170,1,1
+15850,106,1.2,0
+15851,106,1.3,0
+15851,170,1,1
+15852,170,1,1
+15852,106,1.3,0
+15853,170,1,1
+15853,106,1.3,0
+15854,170,1,1
+15854,106,1.3,0
+15855,106,1.3,0
+15855,170,1,1
+15856,170,1,1
+15856,106,1.3,0
+15857,106,1.3,0
+15857,170,1,1
+15858,170,1,1
+15858,106,1.3,0
+15859,106,1.3,0
+15859,170,1,1
+15860,106,1.3,0
+15860,170,1,1
+15861,106,1.3,0
+15861,170,1,1
+15864,106,1.3,0
+15864,170,1,1
+15866,106,1.3,0
+15866,170,1,1
+15869,106,1.3,0
+15869,170,1,1
+15870,170,1,1
+15870,106,1.3,0
+15872,106,1.3,0
+15872,170,1,1
+15873,106,1.3,0
+15873,170,1,1
+15874,170,1,1
+15874,106,1.3,0
+15875,170,1,1
+15875,106,1.3,0
+15876,170,1,1
+15876,106,1.3,0
+15878,170,1,1
+15878,106,1.3,0
+15879,170,1,1
+15879,106,1.3,0
+15880,106,1.3,0
+15880,170,1,1
+15881,106,1.3,0
+15881,170,1,1
+15882,170,1,1
+15882,106,1.3,0
+15883,170,1,1
+15883,106,1.3,0
+15884,106,1.3,0
+15884,170,1,1
+15885,106,1.3,0
+15885,170,1,1
+15886,170,1,1
+15886,106,1.3,0
+15889,170,1,1
+15889,106,1.3,0
+15890,106,1.3,0
+15890,170,1,1
+15891,170,1,1
+15891,106,1.3,0
+15892,106,1.3,0
+15892,170,1,1
+15893,106,1.3,0
+15893,170,1,1
+15894,106,1.3,0
+15894,170,1,1
+15895,170,1,1
+15895,106,1.3,0
+15896,170,1,1
+15896,106,1.3,0
+15897,170,1,1
+15897,106,1.3,0
+15898,170,1,1
+15898,106,1.3,0
+15899,106,1.3,0
+15899,170,1,1
+15900,106,1.3,0
+15900,170,1,1
+15902,106,2.1.1,0
+15902,99,2.1,1
+15904,106,2.1.1,0
+15904,99,2.1,1
+15905,106,2.1.1,0
+15905,99,2.1,1
+15906,99,2.1,1
+15906,106,2.1.1,0
+15907,99,2.1,1
+15907,106,2.1.1,0
+15908,99,2.1,1
+15908,106,2.1.1,0
+15910,99,2.1,1
+15910,106,2.1.1,0
+15911,106,2.1.1,0
+15911,99,2.1,1
+15914,106,2.1.1,0
+15914,99,2.1,1
+15916,106,2.1.1,0
+15916,99,2.1,1
+15920,106,2.1.1,0
+15920,99,2.1,1
+15923,106,2.1.1,0
+15923,99,2.1,1
+15926,99,2.1,1
+15926,106,2.1.1,0
+15932,106,2.1.1,0
+15932,99,2.1,1
+15933,99,2.1,1
+15933,106,2.1.1,0
+15934,106,2.1.1,0
+15934,99,2.1,1
+15936,99,2.1,1
+15936,106,2.1.1,0
+15943,99,2.1,1
+15943,106,2.1.1,0
+15944,106,2.1.1,0
+15944,99,2.1,1
+15947,99,2.1,1
+15947,106,2.1.1,0
+15948,106,2.1.1,0
+15948,99,2.1,1
+15957,99,2.1,1
+15957,106,2.1.3,0
+15961,106,2.1.3,0
+15961,99,2.1,1
+15964,106,2.1.3,0
+15964,99,2.1,1
+15966,99,2.1,1
+15966,106,2.1.3,0
+15976,99,2.1,1
+15976,106,2.1.3,0
+15978,99,2.1,1
+15978,106,2.1.3,0
+15993,99,2.1,1
+15993,106,2.1.3,0
+16008,102,2,1
+16008,106,2.2,0
+16022,106,2.2,0
+16022,98,2,1
+16026,98,2,1
+16026,106,2.2,0
+16028,98,2,1
+16028,106,2.2,0
+16029,98,2,1
+16029,106,2.2,0
+16031,98,2,1
+16031,106,2.2,0
+16031,102,2,1
+16032,106,2.2,0
+16032,102,2,1
+16033,98,2,1
+16033,106,2.2,0
+16043,98,2,1
+16043,106,2.2,0
+16044,106,2.2,0
+16044,98,2,1
+16051,107,1.4.3.3,0
+16051,142,1.4.3,1
+16052,142,1.4.3,1
+16052,107,1.4.3.3,0
+16053,142,1.4.3,1
+16053,107,1.4.3.3,0
+16054,142,1.4.3,1
+16054,107,1.4.3.3,0
+16055,142,1.4.3,1
+16055,107,1.4.3.3,0
+16056,107,1.4.3.3,0
+16056,142,1.4.3,1
+16057,107,1.4.3.3,0
+16057,142,1.4.3,1
+16058,107,1.4.3.3,0
+16058,142,1.4.3,1
+16059,142,1.4.3,1
+16059,107,1.4.3.3,0
+16060,107,1.4.3.3,0
+16060,142,1.4.3,1
+16061,142,1.4.3,1
+16061,107,1.4.3.3,0
+16064,142,1.4.3,1
+16064,107,1.4.3.3,0
+16066,142,1.4.3,1
+16066,107,1.4.3.3,0
+16070,142,1.4.3,1
+16070,107,1.4.3.3,0
+16072,107,1.4.3.3,0
+16072,142,1.4.3,1
+16073,107,1.4.3.3,0
+16073,142,1.4.3,1
+16074,142,1.4.3,1
+16074,107,1.4.3.3,0
+16075,107,1.4.3.3,0
+16075,142,1.4.3,1
+16076,107,1.4.3.3,0
+16076,142,1.4.3,1
+16078,142,1.4.3,1
+16078,107,1.4.3.3,0
+16079,107,1.4.3.3,0
+16079,142,1.4.3,1
+16081,142,1.4.3,1
+16081,107,1.4.3.3,0
+16082,107,1.4.3.3,0
+16082,142,1.4.3,1
+16083,142,1.4.3,1
+16083,107,1.4.3.3,0
+16084,142,1.4.3,1
+16084,107,1.4.3.3,0
+16086,107,1.4.3.3,0
+16086,142,1.4.3,1
+16089,107,1.4.3.3,0
+16089,142,1.4.3,1
+16091,107,1.4.3.3,0
+16091,142,1.4.3,1
+16092,107,1.4.3.3,0
+16092,142,1.4.3,1
+16093,142,1.4.3,1
+16093,107,1.4.3.3,0
+16093,170,1,3
+16093,126,1.4,2
+16094,142,1.4.3,1
+16094,107,1.4.3.3,0
+16097,107,1.4.3.3,0
+16097,170,1,3
+16097,126,1.4,2
+16097,142,1.4.3,1
+16098,142,1.4.3,1
+16098,107,1.4.3.3,0
+16104,108,2.1.3,0
+16104,99,2.1,1
+16108,108,2.1.3,0
+16108,99,2.1,1
+16110,99,2.1,1
+16110,108,2.1.3,0
+16126,99,2.1,1
+16126,108,2.1.3,0
+16129,108,2.1.3,0
+16129,99,2.1,1
+16134,108,2.1.3,0
+16134,99,2.1,1
+16139,108,2.1.3,0
+16139,99,2.1,1
+16143,99,2.1,1
+16143,108,2.1.3,0
+16154,108,2.2,0
+16154,98,2,1
+16156,98,2,1
+16156,108,2.2,0
+16157,98,2,1
+16157,108,2.2,0
+16158,98,2,1
+16158,108,2.2,0
+16160,98,2,1
+16160,108,2.2,0
+16182,98,2,1
+16182,108,2.2,0
+16194,102,2,1
+16194,108,2.2,0
+16202,97,1.3.3,1
+16202,109,1.3.3.1,0
+16204,97,1.3.3,1
+16204,109,1.3.3.1,0
+16205,109,1.3.3.1,0
+16205,99,1.3.3,1
+16206,109,1.3.3.1,0
+16206,75,1.3.3,1
+16207,97,1.3.3,1
+16207,109,1.3.3.1,0
+16208,109,1.3.3.1,0
+16208,75,1.3.3,1
+16209,99,1.3.3,1
+16209,109,1.3.3.1,0
+16210,97,1.3.3,1
+16210,109,1.3.3.1,0
+16211,99,1.3.3,1
+16211,109,1.3.3.1,0
+16211,75,1.3.3,1
+16214,99,1.3.3,1
+16214,109,1.3.3.1,0
+16214,97,1.3.3,1
+16216,99,1.3.3,1
+16216,109,1.3.3.1,0
+16219,99,1.3.3,1
+16219,109,1.3.3.1,0
+16220,75,1.3.3,1
+16220,109,1.3.3.1,0
+16222,109,1.3.3.1,0
+16222,75,1.3.3,1
+16223,99,1.3.3,1
+16223,109,1.3.3.1,0
+16226,109,1.3.3.1,0
+16226,75,1.3.3,1
+16226,97,1.3.3,1
+16228,75,1.3.3,1
+16228,109,1.3.3.1,0
+16229,109,1.3.3.1,0
+16229,97,1.3.3,1
+16231,97,1.3.3,1
+16231,109,1.3.3.1,0
+16232,109,1.3.3.1,0
+16232,75,1.3.3,1
+16233,75,1.3.3,1
+16233,109,1.3.3.1,0
+16234,109,1.3.3.1,0
+16234,75,1.3.3,1
+16236,99,1.3.3,1
+16236,109,1.3.3.1,0
+16236,97,1.3.3,1
+16237,97,1.3.3,1
+16237,109,1.3.3.1,0
+16239,109,1.3.3.1,0
+16239,75,1.3.3,1
+16241,99,1.3.3,1
+16241,109,1.3.3.1,0
+16242,109,1.3.3.1,0
+16242,99,1.3.3,1
+16243,75,1.3.3,1
+16243,109,1.3.3.1,0
+16244,109,1.3.3.1,0
+16244,97,1.3.3,1
+16244,99,1.3.3,1
+16245,97,1.3.3,1
+16245,109,1.3.3.1,0
+16247,109,1.3.3.1,0
+16247,75,1.3.3,1
+16248,109,1.3.3.1,0
+16248,75,1.3.3,1
+16249,99,1.3.3,1
+16249,109,1.3.3.1,0
+16250,99,1.3.3,1
+16250,109,1.3.3.1,0
+16252,75,1.3.3,1
+16252,110,1.3.3.5,0
+16253,97,1.3.3,1
+16253,99,1.3.3,1
+16253,110,1.3.3.5,0
+16254,110,1.3.3.5,0
+16254,75,1.3.3,1
+16254,99,1.3.3,1
+16255,110,1.3.3.5,0
+16255,99,1.3.3,1
+16256,110,1.3.3.5,0
+16256,75,1.3.3,1
+16257,99,1.3.3,1
+16257,106,1.3,2
+16257,29,1.3,2
+16257,110,1.3.3.5,0
+16257,170,1,3
+16258,110,1.3.3.5,0
+16258,97,1.3.3,1
+16259,99,1.3.3,1
+16259,110,1.3.3.5,0
+16260,97,1.3.3,1
+16260,110,1.3.3.5,0
+16261,97,1.3.3,1
+16261,110,1.3.3.5,0
+16264,110,1.3.3.5,0
+16264,99,1.3.3,1
+16264,75,1.3.3,1
+16264,97,1.3.3,1
+16266,110,1.3.3.5,0
+16266,97,1.3.3,1
+16267,110,1.3.3.5,0
+16267,99,1.3.3,1
+16272,99,1.3.3,1
+16272,110,1.3.3.5,0
+16273,110,1.3.3.5,0
+16273,97,1.3.3,1
+16274,97,1.3.3,1
+16274,110,1.3.3.5,0
+16276,110,1.3.3.5,0
+16276,75,1.3.3,1
+16276,97,1.3.3,1
+16277,110,1.3.3.5,0
+16277,97,1.3.3,1
+16278,110,1.3.3.5,0
+16278,97,1.3.3,1
+16279,97,1.3.3,1
+16279,110,1.3.3.5,0
+16281,97,1.3.3,1
+16281,110,1.3.3.5,0
+16281,99,1.3.3,1
+16282,110,1.3.3.5,0
+16282,97,1.3.3,1
+16283,97,1.3.3,1
+16283,110,1.3.3.5,0
+16284,110,1.3.3.5,0
+16284,99,1.3.3,1
+16286,106,1.3,2
+16286,97,1.3.3,1
+16286,99,1.3.3,1
+16286,110,1.3.3.5,0
+16288,110,1.3.3.5,0
+16288,99,1.3.3,1
+16289,110,1.3.3.5,0
+16289,75,1.3.3,1
+16291,75,1.3.3,1
+16291,110,1.3.3.5,0
+16292,110,1.3.3.5,0
+16292,99,1.3.3,1
+16292,97,1.3.3,1
+16293,99,1.3.3,1
+16293,110,1.3.3.5,0
+16294,99,1.3.3,1
+16294,110,1.3.3.5,0
+16295,97,1.3.3,1
+16295,110,1.3.3.5,0
+16297,99,1.3.3,1
+16297,110,1.3.3.5,0
+16298,110,1.3.3.5,0
+16298,99,1.3.3,1
+16303,39,1.3.1,1
+16303,111,1.3.1.6,0
+16304,111,1.3.1.6,0
+16304,100,1.3.1,1
+16306,111,1.3.1.6,0
+16306,100,1.3.1,1
+16307,100,1.3.1,1
+16307,39,1.3.1,1
+16307,111,1.3.1.6,0
+16308,99,1.3.1,1
+16308,111,1.3.1.6,0
+16309,111,1.3.1.6,0
+16309,39,1.3.1,1
+16310,39,1.3.1,1
+16310,111,1.3.1.6,0
+16311,39,1.3.1,1
+16311,93,1.3.1,1
+16311,111,1.3.1.6,0
+16311,99,1.3.1,1
+16314,111,1.3.1.6,0
+16314,99,1.3.1,1
+16316,100,1.3.1,1
+16316,99,1.3.1,1
+16316,111,1.3.1.6,0
+16317,100,1.3.1,1
+16317,111,1.3.1.6,0
+16320,106,1.3,2
+16320,111,1.3.1.6,0
+16320,93,1.3.1,1
+16320,29,1.3,2
+16320,100,1.3.1,1
+16321,111,1.3.1.6,0
+16321,100,1.3.1,1
+16322,111,1.3.1.6,0
+16322,93,1.3.1,1
+16323,99,1.3.1,1
+16323,111,1.3.1.6,0
+16326,39,1.3.1,1
+16326,111,1.3.1.6,0
+16326,85,1.3.1,1
+16327,100,1.3.1,1
+16327,111,1.3.1.6,0
+16328,111,1.3.1.6,0
+16328,39,1.3.1,1
+16329,111,1.3.1.6,0
+16329,93,1.3.1,1
+16330,99,1.3.1,1
+16330,111,1.3.1.6,0
+16331,85,1.3.1,1
+16331,111,1.3.1.6,0
+16331,100,1.3.1,1
+16333,39,1.3.1,1
+16333,111,1.3.1.6,0
+16334,85,1.3.1,1
+16334,111,1.3.1.6,0
+16336,111,1.3.1.6,0
+16336,100,1.3.1,1
+16336,99,1.3.1,1
+16339,39,1.3.1,1
+16339,111,1.3.1.6,0
+16341,39,1.3.1,1
+16341,111,1.3.1.6,0
+16344,39,1.3.1,1
+16344,100,1.3.1,1
+16344,111,1.3.1.6,0
+16345,85,1.3.1,1
+16345,111,1.3.1.6,0
+16346,100,1.3.1,1
+16346,111,1.3.1.6,0
+16347,99,1.3.1,1
+16347,111,1.3.1.6,0
+16349,100,1.3.1,1
+16349,85,1.3.1,1
+16349,111,1.3.1.6,0
+16355,97,1.3.3,1
+16355,75,1.3.3,1
+16355,111,1.3.3.1,0
+16357,75,1.3.3,1
+16357,111,1.3.3.1,0
+16358,111,1.3.3.1,0
+16358,99,1.3.3,1
+16358,75,1.3.3,1
+16359,111,1.3.3.1,0
+16359,75,1.3.3,1
+16360,111,1.3.3.1,0
+16360,75,1.3.3,1
+16361,111,1.3.3.1,0
+16361,97,1.3.3,1
+16364,111,1.3.3.1,0
+16364,99,1.3.3,1
+16366,97,1.3.3,1
+16366,111,1.3.3.1,0
+16369,111,1.3.3.1,0
+16369,99,1.3.3,1
+16372,97,1.3.3,1
+16372,111,1.3.3.1,0
+16376,111,1.3.3.1,0
+16376,97,1.3.3,1
+16377,99,1.3.3,1
+16377,111,1.3.3.1,0
+16378,75,1.3.3,1
+16378,111,1.3.3.1,0
+16379,99,1.3.3,1
+16379,111,1.3.3.1,0
+16381,75,1.3.3,1
+16381,97,1.3.3,1
+16381,111,1.3.3.1,0
+16383,97,1.3.3,1
+16383,111,1.3.3.1,0
+16384,111,1.3.3.1,0
+16384,99,1.3.3,1
+16386,97,1.3.3,1
+16386,111,1.3.3.1,0
+16389,99,1.3.3,1
+16389,75,1.3.3,1
+16389,111,1.3.3.1,0
+16391,97,1.3.3,1
+16391,111,1.3.3.1,0
+16393,111,1.3.3.1,0
+16393,97,1.3.3,1
+16397,111,1.3.3.1,0
+16397,97,1.3.3,1
+16398,75,1.3.3,1
+16398,111,1.3.3.1,0
+16398,97,1.3.3,1
+16402,111,1.3.4.1,0
+16402,80,1.3.4,1
+16402,77,1.3.4,1
+16403,111,1.3.4.1,0
+16403,80,1.3.4,1
+16404,111,1.3.4.1,0
+16404,80,1.3.4,1
+16405,81,1.3.4,1
+16405,111,1.3.4.1,0
+16407,111,1.3.4.1,0
+16407,77,1.3.4,1
+16408,80,1.3.4,1
+16408,111,1.3.4.1,0
+16410,111,1.3.4.1,0
+16410,77,1.3.4,1
+16411,80,1.3.4,1
+16411,81,1.3.4,1
+16411,111,1.3.4.1,0
+16414,111,1.3.4.1,0
+16414,77,1.3.4,1
+16414,80,1.3.4,1
+16416,77,1.3.4,1
+16416,111,1.3.4.1,0
+16416,80,1.3.4,1
+16423,77,1.3.4,1
+16423,111,1.3.4.1,0
+16423,80,1.3.4,1
+16425,111,1.3.4.1,0
+16425,80,1.3.4,1
+16426,77,1.3.4,1
+16426,80,1.3.4,1
+16426,111,1.3.4.1,0
+16431,81,1.3.4,1
+16431,111,1.3.4.1,0
+16432,111,1.3.4.1,0
+16432,81,1.3.4,1
+16433,111,1.3.4.1,0
+16433,80,1.3.4,1
+16434,77,1.3.4,1
+16434,111,1.3.4.1,0
+16436,80,1.3.4,1
+16436,111,1.3.4.1,0
+16437,81,1.3.4,1
+16437,111,1.3.4.1,0
+16440,80,1.3.4,1
+16440,111,1.3.4.1,0
+16440,81,1.3.4,1
+16441,81,1.3.4,1
+16441,111,1.3.4.1,0
+16442,80,1.3.4,1
+16442,111,1.3.4.1,0
+16444,81,1.3.4,1
+16444,111,1.3.4.1,0
+16447,111,1.3.4.1,0
+16447,80,1.3.4,1
+16448,81,1.3.4,1
+16448,111,1.3.4.1,0
+16452,112,1.3.3.7,0
+16452,75,1.3.3,1
+16452,106,1.3,2
+16452,97,1.3.3,1
+16452,99,1.3.3,1
+16453,106,1.3,2
+16453,112,1.3.3.7,0
+16453,99,1.3.3,1
+16454,112,1.3.3.7,0
+16454,75,1.3.3,1
+16454,99,1.3.3,1
+16455,112,1.3.3.7,0
+16455,99,1.3.3,1
+16456,112,1.3.3.7,0
+16456,75,1.3.3,1
+16457,112,1.3.3.7,0
+16457,75,1.3.3,1
+16458,75,1.3.3,1
+16458,112,1.3.3.7,0
+16459,75,1.3.3,1
+16459,112,1.3.3.7,0
+16460,97,1.3.3,1
+16460,112,1.3.3.7,0
+16461,112,1.3.3.7,0
+16461,99,1.3.3,1
+16461,75,1.3.3,1
+16461,97,1.3.3,1
+16464,97,1.3.3,1
+16464,112,1.3.3.7,0
+16464,99,1.3.3,1
+16466,97,1.3.3,1
+16466,99,1.3.3,1
+16466,75,1.3.3,1
+16466,112,1.3.3.7,0
+16467,112,1.3.3.7,0
+16467,99,1.3.3,1
+16469,99,1.3.3,1
+16469,112,1.3.3.7,0
+16469,29,1.3,2
+16470,112,1.3.3.7,0
+16470,75,1.3.3,1
+16472,75,1.3.3,1
+16472,112,1.3.3.7,0
+16472,99,1.3.3,1
+16473,112,1.3.3.7,0
+16473,75,1.3.3,1
+16474,99,1.3.3,1
+16474,112,1.3.3.7,0
+16476,112,1.3.3.7,0
+16476,75,1.3.3,1
+16476,97,1.3.3,1
+16477,112,1.3.3.7,0
+16477,99,1.3.3,1
+16478,112,1.3.3.7,0
+16478,75,1.3.3,1
+16479,112,1.3.3.7,0
+16479,75,1.3.3,1
+16479,97,1.3.3,1
+16481,75,1.3.3,1
+16481,97,1.3.3,1
+16481,112,1.3.3.7,0
+16482,75,1.3.3,1
+16482,112,1.3.3.7,0
+16483,106,1.3,2
+16483,97,1.3.3,1
+16483,112,1.3.3.7,0
+16484,112,1.3.3.7,0
+16484,97,1.3.3,1
+16485,112,1.3.3.7,0
+16485,97,1.3.3,1
+16485,99,1.3.3,1
+16486,112,1.3.3.7,0
+16486,99,1.3.3,1
+16486,75,1.3.3,1
+16486,97,1.3.3,1
+16487,112,1.3.3.7,0
+16487,99,1.3.3,1
+16488,97,1.3.3,1
+16488,112,1.3.3.7,0
+16489,112,1.3.3.7,0
+16489,75,1.3.3,1
+16490,97,1.3.3,1
+16490,112,1.3.3.7,0
+16491,75,1.3.3,1
+16491,112,1.3.3.7,0
+16492,99,1.3.3,1
+16492,112,1.3.3.7,0
+16493,106,1.3,2
+16493,112,1.3.3.7,0
+16493,29,1.3,2
+16493,75,1.3.3,1
+16494,75,1.3.3,1
+16494,97,1.3.3,1
+16494,112,1.3.3.7,0
+16495,112,1.3.3.7,0
+16495,97,1.3.3,1
+16497,75,1.3.3,1
+16497,112,1.3.3.7,0
+16498,75,1.3.3,1
+16498,97,1.3.3,1
+16498,112,1.3.3.7,0
+16499,112,1.3.3.7,0
+16499,97,1.3.3,1
+16500,99,1.3.3,1
+16500,112,1.3.3.7,0
+16500,97,1.3.3,1
+16505,113,1.1.1,0
+16505,105,1.1,1
+16506,113,1.1.1,0
+16506,86,1.1,1
+16507,126,1.1,1
+16507,113,1.1.1,0
+16508,86,1.1,1
+16508,113,1.1.1,0
+16511,113,1.1.1,0
+16511,105,1.1,1
+16514,113,1.1.1,0
+16514,105,1.1,1
+16516,126,1.1,1
+16516,113,1.1.1,0
+16519,113,1.1.1,0
+16519,126,1.1,1
+16526,106,1.1,1
+16526,113,1.1.1,0
+16528,113,1.1.1,0
+16528,86,1.1,1
+16529,113,1.1.1,0
+16529,106,1.1,1
+16531,113,1.1.1,0
+16531,126,1.1,1
+16532,113,1.1.1,0
+16532,94,1.1,1
+16534,105,1.1,1
+16534,113,1.1.1,0
+16536,126,1.1,1
+16536,113,1.1.1,0
+16536,106,1.1,1
+16540,113,1.1.1,0
+16540,106,1.1,1
+16543,113,1.1.1,0
+16543,105,1.1,1
+16544,106,1.1,1
+16544,113,1.1.1,0
+16545,126,1.1,1
+16545,113,1.1.1,0
+16551,170,1,3
+16551,114,1.3.5.1,0
+16551,130,1.3.5,1
+16551,29,1.3,2
+16551,106,1.3,2
+16552,130,1.3.5,1
+16552,114,1.3.5.1,0
+16553,170,1,3
+16553,130,1.3.5,1
+16553,29,1.3,2
+16553,106,1.3,2
+16553,114,1.3.5.1,0
+16554,130,1.3.5,1
+16554,114,1.3.5.1,0
+16555,106,1.3,2
+16555,114,1.3.5.1,0
+16555,130,1.3.5,1
+16555,29,1.3,2
+16555,170,1,3
+16556,114,1.3.5.1,0
+16556,130,1.3.5,1
+16557,130,1.3.5,1
+16557,114,1.3.5.1,0
+16558,114,1.3.5.1,0
+16558,130,1.3.5,1
+16559,114,1.3.5.1,0
+16559,130,1.3.5,1
+16560,114,1.3.5.1,0
+16560,130,1.3.5,1
+16561,114,1.3.5.1,0
+16561,29,1.3,2
+16561,170,1,3
+16561,106,1.3,2
+16561,130,1.3.5,1
+16564,130,1.3.5,1
+16564,114,1.3.5.1,0
+16566,114,1.3.5.1,0
+16566,130,1.3.5,1
+16569,114,1.3.5.1,0
+16569,130,1.3.5,1
+16570,114,1.3.5.1,0
+16570,130,1.3.5,1
+16572,106,1.3,2
+16572,114,1.3.5.1,0
+16572,29,1.3,2
+16572,130,1.3.5,1
+16572,170,1,3
+16573,114,1.3.5.1,0
+16573,130,1.3.5,1
+16574,114,1.3.5.1,0
+16574,130,1.3.5,1
+16575,130,1.3.5,1
+16575,114,1.3.5.1,0
+16576,114,1.3.5.1,0
+16576,130,1.3.5,1
+16578,29,1.3,2
+16578,170,1,3
+16578,114,1.3.5.1,0
+16578,130,1.3.5,1
+16578,106,1.3,2
+16579,130,1.3.5,1
+16579,114,1.3.5.1,0
+16581,130,1.3.5,1
+16581,114,1.3.5.1,0
+16582,29,1.3,2
+16582,106,1.3,2
+16582,114,1.3.5.1,0
+16582,130,1.3.5,1
+16582,170,1,3
+16583,114,1.3.5.1,0
+16583,130,1.3.5,1
+16584,114,1.3.5.1,0
+16584,130,1.3.5,1
+16586,114,1.3.5.1,0
+16586,130,1.3.5,1
+16589,29,1.3,2
+16589,130,1.3.5,1
+16589,170,1,3
+16589,106,1.3,2
+16589,114,1.3.5.1,0
+16591,114,1.3.5.1,0
+16591,170,1,3
+16591,29,1.3,2
+16591,106,1.3,2
+16591,130,1.3.5,1
+16592,130,1.3.5,1
+16592,114,1.3.5.1,0
+16593,114,1.3.5.1,0
+16593,29,1.3,2
+16593,106,1.3,2
+16593,170,1,3
+16593,130,1.3.5,1
+16594,170,1,3
+16594,29,1.3,2
+16594,130,1.3.5,1
+16594,106,1.3,2
+16594,114,1.3.5.1,0
+16597,130,1.3.5,1
+16597,114,1.3.5.1,0
+16598,130,1.3.5,1
+16598,114,1.3.5.1,0
+16599,114,1.3.5.1,0
+16599,130,1.3.5,1
+16602,86,1.1,1
+16602,115,1.1.3,0
+16604,115,1.1.3,0
+16604,105,1.1,1
+16606,94,1.1,1
+16606,115,1.1.3,0
+16607,115,1.1.3,0
+16607,106,1.1,1
+16608,105,1.1,1
+16608,115,1.1.3,0
+16610,94,1.1,1
+16610,115,1.1.3,0
+16611,115,1.1.3,0
+16611,126,1.1,1
+16614,94,1.1,1
+16614,115,1.1.3,0
+16620,105,1.1,1
+16620,115,1.1.3,0
+16622,126,1.1,1
+16622,115,1.1.3,0
+16622,86,1.1,1
+16623,106,1.1,1
+16623,115,1.1.3,0
+16623,105,1.1,1
+16623,94,1.1,1
+16623,86,1.1,1
+16626,106,1.1,1
+16626,105,1.1,1
+16626,115,1.1.3,0
+16627,105,1.1,1
+16627,115,1.1.3,0
+16628,115,1.1.3,0
+16628,105,1.1,1
+16629,115,1.1.3,0
+16629,94,1.1,1
+16631,86,1.1,1
+16631,115,1.1.3,0
+16631,94,1.1,1
+16634,115,1.1.3,0
+16634,86,1.1,1
+16634,126,1.1,1
+16636,126,1.1,1
+16636,115,1.1.3,0
+16636,86,1.1,1
+16639,126,1.1,1
+16639,115,1.1.3,0
+16639,94,1.1,1
+16643,115,1.1.3,0
+16643,94,1.1,1
+16644,94,1.1,1
+16644,86,1.1,1
+16644,115,1.1.3,0
+16645,115,1.1.3,0
+16645,105,1.1,1
+16647,115,1.1.3,0
+16647,106,1.1,1
+16649,105,1.1,1
+16649,115,1.1.3,0
+16652,115,2.1.4,0
+16652,99,2.1,1
+16654,115,2.1.4,0
+16654,99,2.1,1
+16658,99,2.1,1
+16658,98,2,2
+16658,102,2,2
+16658,115,2.1.4,0
+16658,170,1,3
+16661,99,2.1,1
+16661,115,2.1.4,0
+16664,99,2.1,1
+16664,115,2.1.4,0
+16666,98,2,2
+16666,115,2.1.4,0
+16666,102,2,2
+16666,99,2.1,1
+16666,170,1,3
+16672,115,2.1.4,0
+16672,99,2.1,1
+16679,115,2.1.4,0
+16679,170,1,3
+16679,102,2,2
+16679,99,2.1,1
+16679,98,2,2
+16681,99,2.1,1
+16681,115,2.1.4,0
+16682,99,2.1,1
+16682,115,2.1.4,0
+16684,99,2.1,1
+16684,115,2.1.4,0
+16686,115,2.1.4,0
+16686,99,2.1,1
+16689,115,2.1.4,0
+16689,99,2.1,1
+16691,98,2,2
+16691,99,2.1,1
+16691,115,2.1.4,0
+16691,102,2,2
+16693,99,2.1,1
+16693,115,2.1.4,0
+16694,99,2.1,1
+16694,115,2.1.4,0
+16697,115,2.1.4,0
+16697,99,2.1,1
+16698,115,2.1.4,0
+16698,99,2.1,1
+16701,116,1.3.1.7,0
+16701,93,1.3.1,1
+16702,116,1.3.1.7,0
+16702,99,1.3.1,1
+16703,85,1.3.1,1
+16703,39,1.3.1,1
+16703,116,1.3.1.7,0
+16703,99,1.3.1,1
+16704,93,1.3.1,1
+16704,116,1.3.1.7,0
+16704,39,1.3.1,1
+16705,93,1.3.1,1
+16705,116,1.3.1.7,0
+16705,85,1.3.1,1
+16706,116,1.3.1.7,0
+16706,39,1.3.1,1
+16707,85,1.3.1,1
+16707,116,1.3.1.7,0
+16708,93,1.3.1,1
+16708,116,1.3.1.7,0
+16709,39,1.3.1,1
+16709,116,1.3.1.7,0
+16710,85,1.3.1,1
+16710,116,1.3.1.7,0
+16711,116,1.3.1.7,0
+16711,93,1.3.1,1
+16712,116,1.3.1.7,0
+16712,100,1.3.1,1
+16714,93,1.3.1,1
+16714,106,1.3,2
+16714,116,1.3.1.7,0
+16714,99,1.3.1,1
+16716,116,1.3.1.7,0
+16716,100,1.3.1,1
+16717,116,1.3.1.7,0
+16717,93,1.3.1,1
+16719,100,1.3.1,1
+16719,93,1.3.1,1
+16719,116,1.3.1.7,0
+16720,39,1.3.1,1
+16720,116,1.3.1.7,0
+16722,116,1.3.1.7,0
+16722,85,1.3.1,1
+16723,93,1.3.1,1
+16723,99,1.3.1,1
+16723,116,1.3.1.7,0
+16723,39,1.3.1,1
+16724,116,1.3.1.7,0
+16724,39,1.3.1,1
+16725,93,1.3.1,1
+16725,116,1.3.1.7,0
+16726,99,1.3.1,1
+16726,116,1.3.1.7,0
+16727,100,1.3.1,1
+16727,116,1.3.1.7,0
+16728,116,1.3.1.7,0
+16728,39,1.3.1,1
+16729,116,1.3.1.7,0
+16729,39,1.3.1,1
+16729,99,1.3.1,1
+16731,39,1.3.1,1
+16731,116,1.3.1.7,0
+16731,100,1.3.1,1
+16732,93,1.3.1,1
+16732,116,1.3.1.7,0
+16733,99,1.3.1,1
+16733,116,1.3.1.7,0
+16734,39,1.3.1,1
+16734,116,1.3.1.7,0
+16735,116,1.3.1.7,0
+16735,99,1.3.1,1
+16736,39,1.3.1,1
+16736,99,1.3.1,1
+16736,116,1.3.1.7,0
+16737,93,1.3.1,1
+16737,116,1.3.1.7,0
+16738,93,1.3.1,1
+16738,100,1.3.1,1
+16738,116,1.3.1.7,0
+16739,85,1.3.1,1
+16739,116,1.3.1.7,0
+16740,100,1.3.1,1
+16740,116,1.3.1.7,0
+16741,99,1.3.1,1
+16741,85,1.3.1,1
+16741,116,1.3.1.7,0
+16742,116,1.3.1.7,0
+16742,39,1.3.1,1
+16743,99,1.3.1,1
+16743,116,1.3.1.7,0
+16744,39,1.3.1,1
+16744,85,1.3.1,1
+16744,116,1.3.1.7,0
+16746,100,1.3.1,1
+16746,99,1.3.1,1
+16746,116,1.3.1.7,0
+16747,116,1.3.1.7,0
+16747,93,1.3.1,1
+16748,116,1.3.1.7,0
+16748,39,1.3.1,1
+16748,93,1.3.1,1
+16749,93,1.3.1,1
+16749,99,1.3.1,1
+16749,85,1.3.1,1
+16749,116,1.3.1.7,0
+16750,100,1.3.1,1
+16750,116,1.3.1.7,0
+16756,85,2.1.1,1
+16756,117,2.1.1.1,0
+16757,117,2.1.1.1,0
+16757,106,2.1.1,1
+16759,117,2.1.1.1,0
+16759,85,2.1.1,1
+16760,117,2.1.1.1,0
+16760,148,2.1.1,1
+16761,117,2.1.1.1,0
+16761,85,2.1.1,1
+16766,117,2.1.1.1,0
+16766,106,2.1.1,1
+16773,106,2.1.1,1
+16773,117,2.1.1.1,0
+16779,117,2.1.1.1,0
+16779,106,2.1.1,1
+16781,80,2.1.1,1
+16781,117,2.1.1.1,0
+16781,106,2.1.1,1
+16784,80,2.1.1,1
+16784,117,2.1.1.1,0
+16786,85,2.1.1,1
+16786,106,2.1.1,1
+16786,117,2.1.1.1,0
+16791,80,2.1.1,1
+16791,117,2.1.1.1,0
+16793,85,2.1.1,1
+16793,117,2.1.1.1,0
+16794,117,2.1.1.1,0
+16794,85,2.1.1,1
+16797,148,2.1.1,1
+16797,117,2.1.1.1,0
+16798,85,2.1.1,1
+16798,117,2.1.1.1,0
+16800,148,2.1.1,1
+16800,117,2.1.1.1,0
+16804,80,2.1.1,1
+16804,117,2.1.1.2,0
+16808,117,2.1.1.2,0
+16808,106,2.1.1,1
+16809,117,2.1.1.2,0
+16809,80,2.1.1,1
+16811,117,2.1.1.2,0
+16811,85,2.1.1,1
+16814,106,2.1.1,1
+16814,117,2.1.1.2,0
+16814,85,2.1.1,1
+16816,117,2.1.1.2,0
+16816,80,2.1.1,1
+16823,80,2.1.1,1
+16823,117,2.1.1.2,0
+16825,80,2.1.1,1
+16825,117,2.1.1.2,0
+16826,148,2.1.1,1
+16826,117,2.1.1.2,0
+16826,106,2.1.1,1
+16829,117,2.1.1.2,0
+16829,80,2.1.1,1
+16831,80,2.1.1,1
+16831,117,2.1.1.2,0
+16833,117,2.1.1.2,0
+16833,106,2.1.1,1
+16834,117,2.1.1.2,0
+16834,85,2.1.1,1
+16836,80,2.1.1,1
+16836,117,2.1.1.2,0
+16838,117,2.1.1.2,0
+16838,148,2.1.1,1
+16841,85,2.1.1,1
+16841,117,2.1.1.2,0
+16843,117,2.1.1.2,0
+16843,106,2.1.1,1
+16845,117,2.1.1.2,0
+16845,106,2.1.1,1
+16848,85,2.1.1,1
+16848,117,2.1.1.2,0
+16851,148,2.1.1,1
+16851,117,2.1.1.3,0
+16852,117,2.1.1.3,0
+16852,80,2.1.1,1
+16855,117,2.1.1.3,0
+16855,80,2.1.1,1
+16856,80,2.1.1,1
+16856,117,2.1.1.3,0
+16858,117,2.1.1.3,0
+16858,148,2.1.1,1
+16866,117,2.1.1.3,0
+16866,80,2.1.1,1
+16870,80,2.1.1,1
+16870,117,2.1.1.3,0
+16872,117,2.1.1.3,0
+16872,80,2.1.1,1
+16873,80,2.1.1,1
+16873,85,2.1.1,1
+16873,117,2.1.1.3,0
+16876,117,2.1.1.3,0
+16876,106,2.1.1,1
+16879,117,2.1.1.3,0
+16879,148,2.1.1,1
+16883,117,2.1.1.3,0
+16883,85,2.1.1,1
+16889,117,2.1.1.3,0
+16889,80,2.1.1,1
+16891,80,2.1.1,1
+16891,117,2.1.1.3,0
+16892,80,2.1.1,1
+16892,117,2.1.1.3,0
+16893,117,2.1.1.3,0
+16893,85,2.1.1,1
+16894,117,2.1.1.3,0
+16894,85,2.1.1,1
+16898,85,2.1.1,1
+16898,117,2.1.1.3,0
+16899,106,2.1.1,1
+16899,117,2.1.1.3,0
+16904,117,2.1.1.4,0
+16904,85,2.1.1,1
+16905,117,2.1.1.4,0
+16905,148,2.1.1,1
+16907,117,2.1.1.4,0
+16907,85,2.1.1,1
+16908,117,2.1.1.4,0
+16908,148,2.1.1,1
+16914,106,2.1.1,1
+16914,117,2.1.1.4,0
+16914,80,2.1.1,1
+16916,117,2.1.1.4,0
+16916,85,2.1.1,1
+16920,80,2.1.1,1
+16920,117,2.1.1.4,0
+16922,106,2.1.1,1
+16922,80,2.1.1,1
+16922,117,2.1.1.4,0
+16923,85,2.1.1,1
+16923,117,2.1.1.4,0
+16929,117,2.1.1.4,0
+16929,80,2.1.1,1
+16932,80,2.1.1,1
+16932,117,2.1.1.4,0
+16936,117,2.1.1.4,0
+16936,148,2.1.1,1
+16939,106,2.1.1,1
+16939,117,2.1.1.4,0
+16942,80,2.1.1,1
+16942,117,2.1.1.4,0
+16943,148,2.1.1,1
+16943,117,2.1.1.4,0
+16944,117,2.1.1.4,0
+16944,148,2.1.1,1
+16952,80,2.1.1,1
+16952,117,2.1.1.5,0
+16954,117,2.1.1.5,0
+16954,106,2.1.1,1
+16956,106,2.1.1,1
+16956,117,2.1.1.5,0
+16957,117,2.1.1.5,0
+16957,106,2.1.1,1
+16961,117,2.1.1.5,0
+16961,106,2.1.1,1
+16961,85,2.1.1,1
+16964,148,2.1.1,1
+16964,117,2.1.1.5,0
+16969,148,2.1.1,1
+16969,117,2.1.1.5,0
+16970,85,2.1.1,1
+16970,117,2.1.1.5,0
+16978,117,2.1.1.5,0
+16978,148,2.1.1,1
+16979,117,2.1.1.5,0
+16979,85,2.1.1,1
+16981,117,2.1.1.5,0
+16981,106,2.1.1,1
+16982,117,2.1.1.5,0
+16982,85,2.1.1,1
+16983,117,2.1.1.5,0
+16983,85,2.1.1,1
+16984,106,2.1.1,1
+16984,117,2.1.1.5,0
+16985,148,2.1.1,1
+16985,117,2.1.1.5,0
+16989,148,2.1.1,1
+16989,117,2.1.1.5,0
+16991,80,2.1.1,1
+16991,117,2.1.1.5,0
+17003,79,2.1.4.1,1
+17003,117,2.1.4.1.1,0
+17008,117,2.1.4.1.1,0
+17008,79,2.1.4.1,1
+17011,117,2.1.4.1.1,0
+17011,81,2.1.4.1,1
+17014,117,2.1.4.1.1,0
+17014,79,2.1.4.1,1
+17016,117,2.1.4.1.1,0
+17016,79,2.1.4.1,1
+17020,79,2.1.4.1,1
+17020,117,2.1.4.1.1,0
+17022,117,2.1.4.1.1,0
+17022,79,2.1.4.1,1
+17023,117,2.1.4.1.1,0
+17023,81,2.1.4.1,1
+17028,81,2.1.4.1,1
+17028,117,2.1.4.1.1,0
+17032,117,2.1.4.1.1,0
+17032,81,2.1.4.1,1
+17033,117,2.1.4.1.1,0
+17033,79,2.1.4.1,1
+17034,117,2.1.4.1.1,0
+17034,79,2.1.4.1,1
+17042,117,2.1.4.1.1,0
+17042,79,2.1.4.1,1
+17043,81,2.1.4.1,1
+17043,117,2.1.4.1.1,0
+17048,117,2.1.4.1.1,0
+17048,81,2.1.4.1,1
+17054,117,2.1.4.1.2,0
+17054,79,2.1.4.1,1
+17055,117,2.1.4.1.2,0
+17055,81,2.1.4.1,1
+17061,117,2.1.4.1.2,0
+17061,81,2.1.4.1,1
+17078,81,2.1.4.1,1
+17078,117,2.1.4.1.2,0
+17082,117,2.1.4.1.2,0
+17082,79,2.1.4.1,1
+17083,81,2.1.4.1,1
+17083,117,2.1.4.1.2,0
+17086,117,2.1.4.1.2,0
+17086,79,2.1.4.1,1
+17089,81,2.1.4.1,1
+17089,117,2.1.4.1.2,0
+17091,79,2.1.4.1,1
+17091,117,2.1.4.1.2,0
+17097,79,2.1.4.1,1
+17097,117,2.1.4.1.2,0
+17098,79,2.1.4.1,1
+17098,81,2.1.4.1,1
+17098,117,2.1.4.1.2,0
+17101,117,2.1.4.1.3,0
+17101,79,2.1.4.1,1
+17105,117,2.1.4.1.3,0
+17105,79,2.1.4.1,1
+17106,117,2.1.4.1.3,0
+17106,79,2.1.4.1,1
+17110,117,2.1.4.1.3,0
+17110,81,2.1.4.1,1
+17116,117,2.1.4.1.3,0
+17116,81,2.1.4.1,1
+17119,79,2.1.4.1,1
+17119,117,2.1.4.1.3,0
+17126,117,2.1.4.1.3,0
+17126,79,2.1.4.1,1
+17128,79,2.1.4.1,1
+17128,117,2.1.4.1.3,0
+17131,117,2.1.4.1.3,0
+17131,79,2.1.4.1,1
+17132,117,2.1.4.1.3,0
+17132,81,2.1.4.1,1
+17133,117,2.1.4.1.3,0
+17133,81,2.1.4.1,1
+17143,81,2.1.4.1,1
+17143,117,2.1.4.1.3,0
+17154,117,2.1.4.1.4,0
+17154,79,2.1.4.1,1
+17155,117,2.1.4.1.4,0
+17155,79,2.1.4.1,1
+17156,81,2.1.4.1,1
+17156,117,2.1.4.1.4,0
+17158,117,2.1.4.1.4,0
+17158,79,2.1.4.1,1
+17170,81,2.1.4.1,1
+17170,117,2.1.4.1.4,0
+17172,117,2.1.4.1.4,0
+17172,79,2.1.4.1,1
+17189,81,2.1.4.1,1
+17189,117,2.1.4.1.4,0
+17193,79,2.1.4.1,1
+17193,117,2.1.4.1.4,0
+17194,79,2.1.4.1,1
+17194,117,2.1.4.1.4,0
+17194,81,2.1.4.1,1
+17197,117,2.1.4.1.4,0
+17197,79,2.1.4.1,1
+17198,81,2.1.4.1,1
+17198,117,2.1.4.1.4,0
+17204,117,2.1.4.2.1,0
+17204,79,2.1.4.2,1
+17206,117,2.1.4.2.1,0
+17206,79,2.1.4.2,1
+17208,117,2.1.4.2.1,0
+17208,79,2.1.4.2,1
+17209,117,2.1.4.2.1,0
+17209,79,2.1.4.2,1
+17216,117,2.1.4.2.1,0
+17216,81,2.1.4.2,1
+17222,117,2.1.4.2.1,0
+17222,79,2.1.4.2,1
+17224,81,2.1.4.2,1
+17224,117,2.1.4.2.1,0
+17224,79,2.1.4.2,1
+17227,117,2.1.4.2.1,0
+17227,81,2.1.4.2,1
+17232,117,2.1.4.2.1,0
+17232,81,2.1.4.2,1
+17242,117,2.1.4.2.1,0
+17242,79,2.1.4.2,1
+17243,81,2.1.4.2,1
+17243,117,2.1.4.2.1,0
+17251,117,2.1.4.2.2,0
+17251,79,2.1.4.2,1
+17255,79,2.1.4.2,1
+17255,117,2.1.4.2.2,0
+17257,79,2.1.4.2,1
+17257,117,2.1.4.2.2,0
+17258,81,2.1.4.2,1
+17258,117,2.1.4.2.2,0
+17264,81,2.1.4.2,1
+17264,117,2.1.4.2.2,0
+17276,117,2.1.4.2.2,0
+17276,79,2.1.4.2,1
+17276,81,2.1.4.2,1
+17281,117,2.1.4.2.2,0
+17281,79,2.1.4.2,1
+17283,117,2.1.4.2.2,0
+17283,79,2.1.4.2,1
+17284,117,2.1.4.2.2,0
+17284,79,2.1.4.2,1
+17289,117,2.1.4.2.2,0
+17289,81,2.1.4.2,1
+17293,79,2.1.4.2,1
+17293,117,2.1.4.2.2,0
+17297,79,2.1.4.2,1
+17297,117,2.1.4.2.2,0
+17302,118,1.3.3.6,0
+17302,99,1.3.3,1
+17302,97,1.3.3,1
+17304,75,1.3.3,1
+17304,118,1.3.3.6,0
+17305,97,1.3.3,1
+17305,118,1.3.3.6,0
+17305,99,1.3.3,1
+17306,118,1.3.3.6,0
+17306,75,1.3.3,1
+17307,118,1.3.3.6,0
+17307,97,1.3.3,1
+17308,75,1.3.3,1
+17308,118,1.3.3.6,0
+17309,75,1.3.3,1
+17309,118,1.3.3.6,0
+17310,97,1.3.3,1
+17310,118,1.3.3.6,0
+17311,75,1.3.3,1
+17311,118,1.3.3.6,0
+17311,97,1.3.3,1
+17314,75,1.3.3,1
+17314,99,1.3.3,1
+17314,97,1.3.3,1
+17314,118,1.3.3.6,0
+17316,97,1.3.3,1
+17316,118,1.3.3.6,0
+17322,118,1.3.3.6,0
+17322,97,1.3.3,1
+17323,118,1.3.3.6,0
+17323,97,1.3.3,1
+17326,118,1.3.3.6,0
+17326,97,1.3.3,1
+17327,118,1.3.3.6,0
+17327,97,1.3.3,1
+17328,118,1.3.3.6,0
+17328,97,1.3.3,1
+17329,97,1.3.3,1
+17329,118,1.3.3.6,0
+17331,118,1.3.3.6,0
+17331,75,1.3.3,1
+17331,97,1.3.3,1
+17332,97,1.3.3,1
+17332,118,1.3.3.6,0
+17333,75,1.3.3,1
+17333,118,1.3.3.6,0
+17334,75,1.3.3,1
+17334,118,1.3.3.6,0
+17336,99,1.3.3,1
+17336,97,1.3.3,1
+17336,118,1.3.3.6,0
+17337,97,1.3.3,1
+17337,118,1.3.3.6,0
+17338,118,1.3.3.6,0
+17338,99,1.3.3,1
+17339,99,1.3.3,1
+17339,118,1.3.3.6,0
+17341,97,1.3.3,1
+17341,118,1.3.3.6,0
+17343,97,1.3.3,1
+17343,118,1.3.3.6,0
+17344,118,1.3.3.6,0
+17344,97,1.3.3,1
+17345,118,1.3.3.6,0
+17345,99,1.3.3,1
+17347,118,1.3.3.6,0
+17347,97,1.3.3,1
+17350,99,1.3.3,1
+17350,118,1.3.3.6,0
+17352,119,1.3.1.1,0
+17352,100,1.3.1,1
+17352,99,1.3.1,1
+17354,85,1.3.1,1
+17354,99,1.3.1,1
+17354,100,1.3.1,1
+17354,119,1.3.1.1,0
+17355,119,1.3.1.1,0
+17355,100,1.3.1,1
+17356,119,1.3.1.1,0
+17356,85,1.3.1,1
+17357,85,1.3.1,1
+17357,119,1.3.1.1,0
+17358,119,1.3.1.1,0
+17358,93,1.3.1,1
+17359,119,1.3.1.1,0
+17359,93,1.3.1,1
+17360,85,1.3.1,1
+17360,119,1.3.1.1,0
+17361,119,1.3.1.1,0
+17361,93,1.3.1,1
+17361,85,1.3.1,1
+17362,119,1.3.1.1,0
+17362,99,1.3.1,1
+17364,119,1.3.1.1,0
+17364,99,1.3.1,1
+17364,93,1.3.1,1
+17366,85,1.3.1,1
+17366,39,1.3.1,1
+17366,119,1.3.1.1,0
+17369,119,1.3.1.1,0
+17369,100,1.3.1,1
+17369,85,1.3.1,1
+17369,39,1.3.1,1
+17369,93,1.3.1,1
+17372,119,1.3.1.1,0
+17372,99,1.3.1,1
+17373,100,1.3.1,1
+17373,119,1.3.1.1,0
+17373,93,1.3.1,1
+17373,85,1.3.1,1
+17373,39,1.3.1,1
+17374,39,1.3.1,1
+17374,119,1.3.1.1,0
+17376,85,1.3.1,1
+17376,100,1.3.1,1
+17376,119,1.3.1.1,0
+17377,85,1.3.1,1
+17377,119,1.3.1.1,0
+17378,119,1.3.1.1,0
+17378,39,1.3.1,1
+17379,119,1.3.1.1,0
+17379,85,1.3.1,1
+17381,85,1.3.1,1
+17381,99,1.3.1,1
+17381,119,1.3.1.1,0
+17382,93,1.3.1,1
+17382,119,1.3.1.1,0
+17383,119,1.3.1.1,0
+17383,99,1.3.1,1
+17384,119,1.3.1.1,0
+17384,85,1.3.1,1
+17385,119,1.3.1.1,0
+17385,93,1.3.1,1
+17386,100,1.3.1,1
+17386,119,1.3.1.1,0
+17388,119,1.3.1.1,0
+17388,93,1.3.1,1
+17389,119,1.3.1.1,0
+17389,39,1.3.1,1
+17391,85,1.3.1,1
+17391,119,1.3.1.1,0
+17393,119,1.3.1.1,0
+17393,93,1.3.1,1
+17394,119,1.3.1.1,0
+17394,39,1.3.1,1
+17394,85,1.3.1,1
+17397,119,1.3.1.1,0
+17397,39,1.3.1,1
+17398,39,1.3.1,1
+17398,119,1.3.1.1,0
+17399,85,1.3.1,1
+17399,119,1.3.1.1,0
+17400,100,1.3.1,1
+17400,119,1.3.1.1,0
+17402,120,1.2.3,0
+17402,106,1.2,1
+17404,120,1.2.3,0
+17404,97,1.2,1
+17405,106,1.2,1
+17405,120,1.2.3,0
+17406,120,1.2.3,0
+17406,67,1.2,1
+17407,120,1.2.3,0
+17407,97,1.2,1
+17408,120,1.2.3,0
+17408,67,1.2,1
+17409,97,1.2,1
+17409,120,1.2.3,0
+17410,120,1.2.3,0
+17410,67,1.2,1
+17411,126,1.2,1
+17411,97,1.2,1
+17411,120,1.2.3,0
+17412,126,1.2,1
+17412,120,1.2.3,0
+17414,120,1.2.3,0
+17414,126,1.2,1
+17416,106,1.2,1
+17416,120,1.2.3,0
+17419,120,1.2.3,0
+17419,126,1.2,1
+17422,106,1.2,1
+17422,120,1.2.3,0
+17423,126,1.2,1
+17423,120,1.2.3,0
+17424,120,1.2.3,0
+17424,97,1.2,1
+17426,120,1.2.3,0
+17426,67,1.2,1
+17427,120,1.2.3,0
+17427,126,1.2,1
+17428,67,1.2,1
+17428,120,1.2.3,0
+17429,106,1.2,1
+17429,120,1.2.3,0
+17431,120,1.2.3,0
+17431,106,1.2,1
+17432,120,1.2.3,0
+17432,97,1.2,1
+17433,120,1.2.3,0
+17433,106,1.2,1
+17434,67,1.2,1
+17434,120,1.2.3,0
+17435,126,1.2,1
+17435,120,1.2.3,0
+17436,126,1.2,1
+17436,120,1.2.3,0
+17437,106,1.2,1
+17437,120,1.2.3,0
+17438,120,1.2.3,0
+17438,106,1.2,1
+17439,97,1.2,1
+17439,120,1.2.3,0
+17441,97,1.2,1
+17441,120,1.2.3,0
+17442,120,1.2.3,0
+17442,126,1.2,1
+17443,120,1.2.3,0
+17443,67,1.2,1
+17444,120,1.2.3,0
+17444,67,1.2,1
+17447,97,1.2,1
+17447,126,1.2,1
+17447,120,1.2.3,0
+17448,120,1.2.3,0
+17448,67,1.2,1
+17449,126,1.2,1
+17449,120,1.2.3,0
+17452,121,1.4.2.4,0
+17452,142,1.4.2,1
+17454,142,1.4.2,1
+17454,121,1.4.2.4,0
+17455,142,1.4.2,1
+17455,121,1.4.2.4,0
+17456,121,1.4.2.4,0
+17456,142,1.4.2,1
+17457,121,1.4.2.4,0
+17457,142,1.4.2,1
+17458,142,1.4.2,1
+17458,121,1.4.2.4,0
+17459,142,1.4.2,1
+17459,121,1.4.2.4,0
+17460,121,1.4.2.4,0
+17460,142,1.4.2,1
+17461,121,1.4.2.4,0
+17461,142,1.4.2,1
+17464,121,1.4.2.4,0
+17464,142,1.4.2,1
+17466,121,1.4.2.4,0
+17466,142,1.4.2,1
+17470,121,1.4.2.4,0
+17470,142,1.4.2,1
+17472,121,1.4.2.4,0
+17472,142,1.4.2,1
+17473,142,1.4.2,1
+17473,121,1.4.2.4,0
+17476,121,1.4.2.4,0
+17476,142,1.4.2,1
+17478,121,1.4.2.4,0
+17478,142,1.4.2,1
+17479,142,1.4.2,1
+17479,121,1.4.2.4,0
+17481,121,1.4.2.4,0
+17481,142,1.4.2,1
+17482,121,1.4.2.4,0
+17482,142,1.4.2,1
+17483,142,1.4.2,1
+17483,121,1.4.2.4,0
+17484,121,1.4.2.4,0
+17484,142,1.4.2,1
+17486,142,1.4.2,1
+17486,121,1.4.2.4,0
+17489,121,1.4.2.4,0
+17489,142,1.4.2,1
+17491,121,1.4.2.4,0
+17491,142,1.4.2,1
+17493,142,1.4.2,1
+17493,121,1.4.2.4,0
+17494,142,1.4.2,1
+17494,121,1.4.2.4,0
+17497,121,1.4.2.4,0
+17497,142,1.4.2,1
+17498,142,1.4.2,1
+17498,121,1.4.2.4,0
+17501,170,1,3
+17501,142,1.4.2,1
+17501,126,1.4,2
+17501,122,1.4.2.6,0
+17502,142,1.4.2,1
+17502,170,1,3
+17502,122,1.4.2.6,0
+17502,126,1.4,2
+17503,142,1.4.2,1
+17503,122,1.4.2.6,0
+17504,142,1.4.2,1
+17504,122,1.4.2.6,0
+17505,142,1.4.2,1
+17505,122,1.4.2.6,0
+17506,122,1.4.2.6,0
+17506,142,1.4.2,1
+17507,142,1.4.2,1
+17507,122,1.4.2.6,0
+17508,122,1.4.2.6,0
+17508,142,1.4.2,1
+17509,142,1.4.2,1
+17509,122,1.4.2.6,0
+17510,122,1.4.2.6,0
+17510,142,1.4.2,1
+17511,142,1.4.2,1
+17511,126,1.4,2
+17511,170,1,3
+17511,122,1.4.2.6,0
+17514,122,1.4.2.6,0
+17514,142,1.4.2,1
+17516,142,1.4.2,1
+17516,122,1.4.2.6,0
+17519,142,1.4.2,1
+17519,122,1.4.2.6,0
+17520,142,1.4.2,1
+17520,170,1,3
+17520,126,1.4,2
+17520,122,1.4.2.6,0
+17522,122,1.4.2.6,0
+17522,142,1.4.2,1
+17523,142,1.4.2,1
+17523,122,1.4.2.6,0
+17524,122,1.4.2.6,0
+17524,126,1.4,2
+17524,142,1.4.2,1
+17524,170,1,3
+17525,122,1.4.2.6,0
+17525,142,1.4.2,1
+17526,122,1.4.2.6,0
+17526,142,1.4.2,1
+17528,122,1.4.2.6,0
+17528,142,1.4.2,1
+17529,122,1.4.2.6,0
+17529,170,1,3
+17529,126,1.4,2
+17529,142,1.4.2,1
+17531,122,1.4.2.6,0
+17531,142,1.4.2,1
+17532,122,1.4.2.6,0
+17532,142,1.4.2,1
+17533,142,1.4.2,1
+17533,122,1.4.2.6,0
+17534,142,1.4.2,1
+17534,122,1.4.2.6,0
+17536,142,1.4.2,1
+17536,170,1,3
+17536,126,1.4,2
+17536,122,1.4.2.6,0
+17539,122,1.4.2.6,0
+17539,142,1.4.2,1
+17541,122,1.4.2.6,0
+17541,142,1.4.2,1
+17542,126,1.4,2
+17542,170,1,3
+17542,122,1.4.2.6,0
+17542,142,1.4.2,1
+17543,122,1.4.2.6,0
+17543,142,1.4.2,1
+17544,142,1.4.2,1
+17544,122,1.4.2.6,0
+17547,142,1.4.2,1
+17547,122,1.4.2.6,0
+17548,126,1.4,2
+17548,142,1.4.2,1
+17548,122,1.4.2.6,0
+17548,170,1,3
+17554,123,1.1.2,0
+17554,106,1.1,1
+17556,123,1.1.2,0
+17556,86,1.1,1
+17557,86,1.1,1
+17557,123,1.1.2,0
+17558,123,1.1.2,0
+17558,105,1.1,1
+17560,123,1.1.2,0
+17560,106,1.1,1
+17561,123,1.1.2,0
+17561,86,1.1,1
+17564,86,1.1,1
+17564,123,1.1.2,0
+17564,126,1.1,1
+17572,106,1.1,1
+17572,123,1.1.2,0
+17573,106,1.1,1
+17573,123,1.1.2,0
+17576,105,1.1,1
+17576,123,1.1.2,0
+17577,123,1.1.2,0
+17577,105,1.1,1
+17578,123,1.1.2,0
+17578,86,1.1,1
+17579,126,1.1,1
+17579,123,1.1.2,0
+17579,106,1.1,1
+17581,126,1.1,1
+17581,123,1.1.2,0
+17582,86,1.1,1
+17582,123,1.1.2,0
+17583,123,1.1.2,0
+17583,105,1.1,1
+17584,123,1.1.2,0
+17584,105,1.1,1
+17585,106,1.1,1
+17585,126,1.1,1
+17585,123,1.1.2,0
+17585,105,1.1,1
+17586,126,1.1,1
+17586,94,1.1,1
+17586,123,1.1.2,0
+17587,123,1.1.2,0
+17587,106,1.1,1
+17589,126,1.1,1
+17589,123,1.1.2,0
+17591,123,1.1.2,0
+17591,94,1.1,1
+17592,105,1.1,1
+17592,123,1.1.2,0
+17592,94,1.1,1
+17593,123,1.1.2,0
+17593,86,1.1,1
+17594,123,1.1.2,0
+17594,126,1.1,1
+17595,123,1.1.2,0
+17595,106,1.1,1
+17597,94,1.1,1
+17597,123,1.1.2,0
+17600,123,1.1.2,0
+17600,105,1.1,1
+17604,126,1.2,1
+17604,124,1.2.1,0
+17605,97,1.2,1
+17605,124,1.2.1,0
+17606,67,1.2,1
+17606,124,1.2.1,0
+17607,124,1.2.1,0
+17607,97,1.2,1
+17608,124,1.2.1,0
+17608,97,1.2,1
+17611,126,1.2,1
+17611,124,1.2.1,0
+17614,97,1.2,1
+17614,124,1.2.1,0
+17616,124,1.2.1,0
+17616,106,1.2,1
+17619,124,1.2.1,0
+17619,126,1.2,1
+17622,126,1.2,1
+17622,124,1.2.1,0
+17626,124,1.2.1,0
+17626,97,1.2,1
+17627,97,1.2,1
+17627,124,1.2.1,0
+17631,124,1.2.1,0
+17631,126,1.2,1
+17634,97,1.2,1
+17634,124,1.2.1,0
+17639,124,1.2.1,0
+17639,97,1.2,1
+17641,67,1.2,1
+17641,124,1.2.1,0
+17652,124,2.3,0
+17652,98,2,1
+17656,98,2,1
+17656,124,2.3,0
+17657,98,2,1
+17657,124,2.3,0
+17658,98,2,1
+17658,124,2.3,0
+17660,98,2,1
+17660,124,2.3,0
+17664,124,2.3,0
+17664,98,2,1
+17672,124,2.3,0
+17672,98,2,1
+17673,124,2.3,0
+17673,98,2,1
+17677,124,2.3,0
+17677,102,2,1
+17678,124,2.3,0
+17678,98,2,1
+17682,124,2.3,0
+17682,102,2,1
+17684,98,2,1
+17684,124,2.3,0
+17691,124,2.3,0
+17691,102,2,1
+17698,98,2,1
+17698,170,1,2
+17698,124,2.3,0
+17700,102,2,1
+17700,124,2.3,0
+17702,97,1.2,1
+17702,125,1.2.3,0
+17704,67,1.2,1
+17704,125,1.2.3,0
+17705,126,1.2,1
+17705,125,1.2.3,0
+17706,125,1.2.3,0
+17706,67,1.2,1
+17707,97,1.2,1
+17707,125,1.2.3,0
+17708,67,1.2,1
+17708,125,1.2.3,0
+17710,106,1.2,1
+17710,125,1.2.3,0
+17711,126,1.2,1
+17711,97,1.2,1
+17711,125,1.2.3,0
+17714,125,1.2.3,0
+17714,106,1.2,1
+17714,97,1.2,1
+17716,125,1.2.3,0
+17716,126,1.2,1
+17719,106,1.2,1
+17719,125,1.2.3,0
+17722,67,1.2,1
+17722,125,1.2.3,0
+17723,125,1.2.3,0
+17723,126,1.2,1
+17726,126,1.2,1
+17726,106,1.2,1
+17726,125,1.2.3,0
+17728,126,1.2,1
+17728,125,1.2.3,0
+17729,67,1.2,1
+17729,125,1.2.3,0
+17731,97,1.2,1
+17731,125,1.2.3,0
+17732,125,1.2.3,0
+17732,67,1.2,1
+17733,125,1.2.3,0
+17733,67,1.2,1
+17734,67,1.2,1
+17734,125,1.2.3,0
+17736,67,1.2,1
+17736,106,1.2,1
+17736,125,1.2.3,0
+17738,126,1.2,1
+17738,125,1.2.3,0
+17739,125,1.2.3,0
+17739,97,1.2,1
+17740,126,1.2,1
+17740,125,1.2.3,0
+17741,125,1.2.3,0
+17741,106,1.2,1
+17742,125,1.2.3,0
+17742,126,1.2,1
+17743,125,1.2.3,0
+17743,97,1.2,1
+17744,97,1.2,1
+17744,126,1.2,1
+17744,125,1.2.3,0
+17745,106,1.2,1
+17745,125,1.2.3,0
+17747,97,1.2,1
+17747,125,1.2.3,0
+17751,126,1.1,0
+17751,170,1,1
+17754,170,1,1
+17754,126,1.1,0
+17755,126,1.1,0
+17755,170,1,1
+17757,126,1.1,0
+17757,170,1,1
+17758,170,1,1
+17758,126,1.1,0
+17764,170,1,1
+17764,126,1.1,0
+17770,126,1.1,0
+17770,170,1,1
+17774,126,1.1,0
+17774,170,1,1
+17775,126,1.1,0
+17775,170,1,1
+17778,170,1,1
+17778,126,1.1,0
+17780,126,1.1,0
+17780,170,1,1
+17782,170,1,1
+17782,126,1.1,0
+17783,126,1.1,0
+17783,170,1,1
+17784,170,1,1
+17784,126,1.1,0
+17791,170,1,1
+17791,126,1.1,0
+17792,170,1,1
+17792,126,1.1,0
+17793,170,1,1
+17793,126,1.1,0
+17794,170,1,1
+17794,126,1.1,0
+17795,126,1.1,0
+17795,170,1,1
+17796,170,1,1
+17796,126,1.1,0
+17800,126,1.1,0
+17800,170,1,1
+17802,126,1.2,0
+17802,170,1,1
+17803,170,1,1
+17803,126,1.2,0
+17808,170,1,1
+17808,126,1.2,0
+17810,126,1.2,0
+17810,170,1,1
+17811,170,1,1
+17811,126,1.2,0
+17814,126,1.2,0
+17814,170,1,1
+17822,126,1.2,0
+17822,170,1,1
+17825,126,1.2,0
+17825,170,1,1
+17830,170,1,1
+17830,126,1.2,0
+17831,126,1.2,0
+17831,170,1,1
+17832,170,1,1
+17832,126,1.2,0
+17833,126,1.2,0
+17833,170,1,1
+17834,170,1,1
+17834,126,1.2,0
+17835,126,1.2,0
+17835,170,1,1
+17842,170,1,1
+17842,126,1.2,0
+17843,170,1,1
+17843,126,1.2,0
+17845,126,1.2,0
+17845,170,1,1
+17847,170,1,1
+17847,126,1.2,0
+17848,170,1,1
+17848,126,1.2,0
+17849,170,1,1
+17849,126,1.2,0
+17851,126,1.4,0
+17851,170,1,1
+17852,126,1.4,0
+17852,170,1,1
+17853,126,1.4,0
+17853,170,1,1
+17854,126,1.4,0
+17854,170,1,1
+17855,170,1,1
+17855,126,1.4,0
+17856,126,1.4,0
+17856,170,1,1
+17857,170,1,1
+17857,126,1.4,0
+17858,126,1.4,0
+17858,170,1,1
+17859,170,1,1
+17859,126,1.4,0
+17860,126,1.4,0
+17860,170,1,1
+17861,126,1.4,0
+17861,170,1,1
+17862,126,1.4,0
+17862,170,1,1
+17863,170,1,1
+17863,126,1.4,0
+17864,170,1,1
+17864,126,1.4,0
+17865,170,1,1
+17865,126,1.4,0
+17866,126,1.4,0
+17866,170,1,1
+17867,126,1.4,0
+17867,170,1,1
+17868,170,1,1
+17868,126,1.4,0
+17869,126,1.4,0
+17869,170,1,1
+17870,126,1.4,0
+17870,170,1,1
+17871,126,1.4,0
+17871,170,1,1
+17872,170,1,1
+17872,126,1.4,0
+17873,126,1.4,0
+17873,170,1,1
+17874,170,1,1
+17874,126,1.4,0
+17875,170,1,1
+17875,126,1.4,0
+17876,126,1.4,0
+17876,170,1,1
+17877,170,1,1
+17877,126,1.4,0
+17878,170,1,1
+17878,126,1.4,0
+17879,126,1.4,0
+17879,170,1,1
+17880,126,1.4,0
+17880,170,1,1
+17881,126,1.4,0
+17881,170,1,1
+17882,126,1.4,0
+17882,170,1,1
+17883,170,1,1
+17883,126,1.4,0
+17884,126,1.4,0
+17884,170,1,1
+17885,170,1,1
+17885,126,1.4,0
+17886,170,1,1
+17886,126,1.4,0
+17887,126,1.4,0
+17887,170,1,1
+17888,126,1.4,0
+17888,170,1,1
+17889,170,1,1
+17889,126,1.4,0
+17890,126,1.4,0
+17890,170,1,1
+17891,126,1.4,0
+17891,170,1,1
+17892,170,1,1
+17892,126,1.4,0
+17893,170,1,1
+17893,126,1.4,0
+17894,126,1.4,0
+17894,170,1,1
+17895,170,1,1
+17895,126,1.4,0
+17896,126,1.4,0
+17896,170,1,1
+17897,126,1.4,0
+17897,170,1,1
+17898,170,1,1
+17898,126,1.4,0
+17899,170,1,1
+17899,126,1.4,0
+17900,126,1.4,0
+17900,170,1,1
+17902,126,2.1.1.5,0
+17902,85,2.1.1,1
+17905,80,2.1.1,1
+17905,126,2.1.1.5,0
+17906,80,2.1.1,1
+17906,126,2.1.1.5,0
+17907,126,2.1.1.5,0
+17907,80,2.1.1,1
+17908,80,2.1.1,1
+17908,126,2.1.1.5,0
+17910,126,2.1.1.5,0
+17910,85,2.1.1,1
+17911,126,2.1.1.5,0
+17911,80,2.1.1,1
+17911,106,2.1.1,1
+17911,148,2.1.1,1
+17911,85,2.1.1,1
+17914,126,2.1.1.5,0
+17914,80,2.1.1,1
+17916,126,2.1.1.5,0
+17916,80,2.1.1,1
+17917,126,2.1.1.5,0
+17917,148,2.1.1,1
+17920,85,2.1.1,1
+17920,126,2.1.1.5,0
+17922,126,2.1.1.5,0
+17922,85,2.1.1,1
+17923,106,2.1.1,1
+17923,126,2.1.1.5,0
+17924,126,2.1.1.5,0
+17924,85,2.1.1,1
+17925,80,2.1.1,1
+17925,126,2.1.1.5,0
+17926,80,2.1.1,1
+17926,126,2.1.1.5,0
+17926,106,2.1.1,1
+17928,126,2.1.1.5,0
+17928,80,2.1.1,1
+17929,126,2.1.1.5,0
+17929,106,2.1.1,1
+17933,126,2.1.1.5,0
+17933,80,2.1.1,1
+17934,85,2.1.1,1
+17934,126,2.1.1.5,0
+17937,126,2.1.1.5,0
+17937,148,2.1.1,1
+17938,85,2.1.1,1
+17938,126,2.1.1.5,0
+17939,126,2.1.1.5,0
+17939,85,2.1.1,1
+17941,85,2.1.1,1
+17941,126,2.1.1.5,0
+17943,126,2.1.1.5,0
+17943,80,2.1.1,1
+17945,126,2.1.1.5,0
+17945,106,2.1.1,1
+17948,106,2.1.1,1
+17948,148,2.1.1,1
+17948,126,2.1.1.5,0
+17948,80,2.1.1,1
+17954,99,2.1,1
+17954,126,2.1.3,0
+17956,99,2.1,1
+17956,126,2.1.3,0
+17959,126,2.1.3,0
+17959,99,2.1,1
+17960,99,2.1,1
+17960,126,2.1.3,0
+17966,99,2.1,1
+17966,126,2.1.3,0
+17983,126,2.1.3,0
+17983,99,2.1,1
+17984,99,2.1,1
+17984,126,2.1.3,0
+17986,126,2.1.3,0
+17986,99,2.1,1
+17997,99,2.1,1
+17997,126,2.1.3,0
+18004,126,2.2,0
+18004,98,2,1
+18006,102,2,1
+18006,126,2.2,0
+18010,98,2,1
+18010,126,2.2,0
+18014,98,2,1
+18014,126,2.2,0
+18019,126,2.2,0
+18019,102,2,1
+18022,126,2.2,0
+18022,98,2,1
+18026,126,2.2,0
+18026,102,2,1
+18032,126,2.2,0
+18032,102,2,1
+18034,98,2,1
+18034,126,2.2,0
+18039,126,2.2,0
+18039,98,2,1
+18043,126,2.2,0
+18043,102,2,1
+18047,98,2,1
+18047,126,2.2,0
+18052,126,2.3,0
+18052,102,2,1
+18054,98,2,1
+18054,126,2.3,0
+18055,126,2.3,0
+18055,98,2,1
+18056,102,2,1
+18056,126,2.3,0
+18058,102,2,1
+18058,126,2.3,0
+18059,126,2.3,0
+18059,98,2,1
+18060,98,2,1
+18060,126,2.3,0
+18066,126,2.3,0
+18066,98,2,1
+18072,102,2,1
+18072,126,2.3,0
+18073,126,2.3,0
+18073,98,2,1
+18074,102,2,1
+18074,126,2.3,0
+18076,126,2.3,0
+18076,102,2,1
+18079,98,2,1
+18079,126,2.3,0
+18081,126,2.3,0
+18081,102,2,1
+18081,98,2,1
+18082,98,2,1
+18082,126,2.3,0
+18084,102,2,1
+18084,126,2.3,0
+18086,126,2.3,0
+18086,102,2,1
+18091,126,2.3,0
+18091,102,2,1
+18093,102,2,1
+18093,126,2.3,0
+18094,126,2.3,0
+18094,98,2,1
+18095,126,2.3,0
+18095,102,2,1
+18097,102,2,1
+18097,126,2.3,0
+18098,126,2.3,0
+18098,102,2,1
+18104,105,1.1,1
+18104,127,1.1.1,0
+18105,106,1.1,1
+18105,127,1.1.1,0
+18106,126,1.1,1
+18106,127,1.1.1,0
+18111,94,1.1,1
+18111,127,1.1.1,0
+18114,94,1.1,1
+18114,127,1.1.1,0
+18116,105,1.1,1
+18116,127,1.1.1,0
+18128,127,1.1.1,0
+18128,126,1.1,1
+18129,105,1.1,1
+18129,127,1.1.1,0
+18132,127,1.1.1,0
+18132,106,1.1,1
+18133,127,1.1.1,0
+18133,94,1.1,1
+18134,86,1.1,1
+18134,127,1.1.1,0
+18136,126,1.1,1
+18136,127,1.1.1,0
+18143,127,1.1.1,0
+18143,106,1.1,1
+18144,105,1.1,1
+18144,127,1.1.1,0
+18144,126,1.1,1
+18149,127,1.1.1,0
+18149,94,1.1,1
+18151,127,1.1.3,0
+18151,126,1.1,1
+18152,94,1.1,1
+18152,105,1.1,1
+18152,106,1.1,1
+18152,127,1.1.3,0
+18154,94,1.1,1
+18154,127,1.1.3,0
+18155,106,1.1,1
+18155,127,1.1.3,0
+18156,86,1.1,1
+18156,127,1.1.3,0
+18157,94,1.1,1
+18157,127,1.1.3,0
+18158,127,1.1.3,0
+18158,126,1.1,1
+18159,127,1.1.3,0
+18159,94,1.1,1
+18160,106,1.1,1
+18160,127,1.1.3,0
+18161,106,1.1,1
+18161,127,1.1.3,0
+18161,86,1.1,1
+18164,127,1.1.3,0
+18164,126,1.1,1
+18166,126,1.1,1
+18166,127,1.1.3,0
+18172,126,1.1,1
+18172,127,1.1.3,0
+18173,127,1.1.3,0
+18173,105,1.1,1
+18173,86,1.1,1
+18173,126,1.1,1
+18176,94,1.1,1
+18176,127,1.1.3,0
+18177,106,1.1,1
+18177,127,1.1.3,0
+18178,127,1.1.3,0
+18178,106,1.1,1
+18179,105,1.1,1
+18179,86,1.1,1
+18179,127,1.1.3,0
+18181,127,1.1.3,0
+18181,105,1.1,1
+18182,105,1.1,1
+18182,127,1.1.3,0
+18183,127,1.1.3,0
+18183,126,1.1,1
+18184,94,1.1,1
+18184,127,1.1.3,0
+18185,106,1.1,1
+18185,127,1.1.3,0
+18186,105,1.1,1
+18186,94,1.1,1
+18186,127,1.1.3,0
+18187,94,1.1,1
+18187,126,1.1,1
+18187,127,1.1.3,0
+18189,106,1.1,1
+18189,127,1.1.3,0
+18190,94,1.1,1
+18190,127,1.1.3,0
+18191,127,1.1.3,0
+18191,94,1.1,1
+18193,105,1.1,1
+18193,127,1.1.3,0
+18193,126,1.1,1
+18194,127,1.1.3,0
+18194,126,1.1,1
+18194,105,1.1,1
+18197,127,1.1.3,0
+18197,86,1.1,1
+18198,106,1.1,1
+18198,105,1.1,1
+18198,127,1.1.3,0
+18204,106,1.1,1
+18204,128,1.1.2,0
+18205,128,1.1.2,0
+18205,105,1.1,1
+18206,86,1.1,1
+18206,128,1.1.2,0
+18207,106,1.1,1
+18207,128,1.1.2,0
+18208,86,1.1,1
+18208,128,1.1.2,0
+18211,128,1.1.2,0
+18211,94,1.1,1
+18212,128,1.1.2,0
+18212,126,1.1,1
+18214,128,1.1.2,0
+18214,105,1.1,1
+18216,94,1.1,1
+18216,128,1.1.2,0
+18222,126,1.1,1
+18222,128,1.1.2,0
+18223,94,1.1,1
+18223,126,1.1,1
+18223,128,1.1.2,0
+18226,126,1.1,1
+18226,106,1.1,1
+18226,128,1.1.2,0
+18227,128,1.1.2,0
+18227,94,1.1,1
+18228,128,1.1.2,0
+18228,86,1.1,1
+18229,105,1.1,1
+18229,128,1.1.2,0
+18231,105,1.1,1
+18231,128,1.1.2,0
+18231,94,1.1,1
+18232,128,1.1.2,0
+18232,86,1.1,1
+18233,128,1.1.2,0
+18233,86,1.1,1
+18234,86,1.1,1
+18234,128,1.1.2,0
+18235,126,1.1,1
+18235,128,1.1.2,0
+18236,105,1.1,1
+18236,128,1.1.2,0
+18237,126,1.1,1
+18237,128,1.1.2,0
+18239,105,1.1,1
+18239,128,1.1.2,0
+18241,86,1.1,1
+18241,128,1.1.2,0
+18242,106,1.1,1
+18242,128,1.1.2,0
+18243,128,1.1.2,0
+18243,106,1.1,1
+18244,126,1.1,1
+18244,128,1.1.2,0
+18244,105,1.1,1
+18247,128,1.1.2,0
+18247,86,1.1,1
+18249,105,1.1,1
+18249,128,1.1.2,0
+18252,86,1.1,1
+18252,129,1.1.2,0
+18253,129,1.1.2,0
+18253,106,1.1,1
+18254,105,1.1,1
+18254,129,1.1.2,0
+18255,126,1.1,1
+18255,129,1.1.2,0
+18256,106,1.1,1
+18256,129,1.1.2,0
+18257,105,1.1,1
+18257,129,1.1.2,0
+18258,129,1.1.2,0
+18258,94,1.1,1
+18259,105,1.1,1
+18259,129,1.1.2,0
+18260,86,1.1,1
+18260,129,1.1.2,0
+18261,86,1.1,1
+18261,129,1.1.2,0
+18261,105,1.1,1
+18272,126,1.1,1
+18272,129,1.1.2,0
+18273,94,1.1,1
+18273,129,1.1.2,0
+18276,129,1.1.2,0
+18276,94,1.1,1
+18278,94,1.1,1
+18278,129,1.1.2,0
+18279,106,1.1,1
+18279,129,1.1.2,0
+18282,106,1.1,1
+18282,129,1.1.2,0
+18283,129,1.1.2,0
+18283,106,1.1,1
+18284,105,1.1,1
+18284,129,1.1.2,0
+18285,126,1.1,1
+18285,129,1.1.2,0
+18286,86,1.1,1
+18286,105,1.1,1
+18286,129,1.1.2,0
+18290,126,1.1,1
+18290,129,1.1.2,0
+18291,105,1.1,1
+18291,129,1.1.2,0
+18293,105,1.1,1
+18293,129,1.1.2,0
+18293,86,1.1,1
+18294,129,1.1.2,0
+18294,106,1.1,1
+18294,94,1.1,1
+18297,129,1.1.2,0
+18297,105,1.1,1
+18304,106,1.2,1
+18304,129,1.2.3,0
+18305,126,1.2,1
+18305,129,1.2.3,0
+18306,97,1.2,1
+18306,129,1.2.3,0
+18307,106,1.2,1
+18307,129,1.2.3,0
+18308,129,1.2.3,0
+18308,97,1.2,1
+18310,97,1.2,1
+18310,129,1.2.3,0
+18314,129,1.2.3,0
+18314,67,1.2,1
+18314,126,1.2,1
+18316,106,1.2,1
+18316,129,1.2.3,0
+18320,129,1.2.3,0
+18320,126,1.2,1
+18322,126,1.2,1
+18322,129,1.2.3,0
+18326,129,1.2.3,0
+18326,97,1.2,1
+18328,67,1.2,1
+18328,129,1.2.3,0
+18329,106,1.2,1
+18329,129,1.2.3,0
+18331,129,1.2.3,0
+18331,126,1.2,1
+18332,129,1.2.3,0
+18332,126,1.2,1
+18335,106,1.2,1
+18335,129,1.2.3,0
+18336,97,1.2,1
+18336,129,1.2.3,0
+18336,106,1.2,1
+18339,129,1.2.3,0
+18339,106,1.2,1
+18341,106,1.2,1
+18341,129,1.2.3,0
+18343,129,1.2.3,0
+18343,67,1.2,1
+18345,129,1.2.3,0
+18345,106,1.2,1
+18347,129,1.2.3,0
+18347,106,1.2,1
+18352,29,1.3,1
+18352,130,1.3.2,0
+18354,29,1.3,1
+18354,130,1.3.2,0
+18355,130,1.3.2,0
+18355,29,1.3,1
+18355,106,1.3,1
+18356,29,1.3,1
+18356,170,1,2
+18356,130,1.3.2,0
+18357,130,1.3.2,0
+18357,29,1.3,1
+18358,29,1.3,1
+18358,130,1.3.2,0
+18359,29,1.3,1
+18359,130,1.3.2,0
+18360,29,1.3,1
+18360,130,1.3.2,0
+18361,130,1.3.2,0
+18361,106,1.3,1
+18361,29,1.3,1
+18364,130,1.3.2,0
+18364,106,1.3,1
+18364,29,1.3,1
+18366,106,1.3,1
+18366,29,1.3,1
+18366,130,1.3.2,0
+18369,106,1.3,1
+18369,130,1.3.2,0
+18372,29,1.3,1
+18372,130,1.3.2,0
+18373,130,1.3.2,0
+18373,106,1.3,1
+18373,29,1.3,1
+18374,130,1.3.2,0
+18374,106,1.3,1
+18376,29,1.3,1
+18376,106,1.3,1
+18376,130,1.3.2,0
+18377,130,1.3.2,0
+18377,106,1.3,1
+18377,170,1,2
+18378,29,1.3,1
+18378,130,1.3.2,0
+18379,29,1.3,1
+18379,106,1.3,1
+18379,130,1.3.2,0
+18381,29,1.3,1
+18381,130,1.3.2,0
+18381,106,1.3,1
+18382,29,1.3,1
+18382,130,1.3.2,0
+18383,130,1.3.2,0
+18383,29,1.3,1
+18384,130,1.3.2,0
+18384,29,1.3,1
+18385,170,1,2
+18385,106,1.3,1
+18385,130,1.3.2,0
+18386,106,1.3,1
+18386,130,1.3.2,0
+18386,29,1.3,1
+18387,106,1.3,1
+18387,130,1.3.2,0
+18388,130,1.3.2,0
+18388,106,1.3,1
+18389,130,1.3.2,0
+18389,29,1.3,1
+18390,106,1.3,1
+18390,130,1.3.2,0
+18391,130,1.3.2,0
+18391,29,1.3,1
+18392,106,1.3,1
+18392,170,1,2
+18392,130,1.3.2,0
+18393,130,1.3.2,0
+18393,106,1.3,1
+18393,170,1,2
+18393,29,1.3,1
+18394,130,1.3.2,0
+18394,170,1,2
+18394,29,1.3,1
+18394,106,1.3,1
+18395,130,1.3.2,0
+18395,170,1,2
+18395,106,1.3,1
+18397,29,1.3,1
+18397,130,1.3.2,0
+18398,29,1.3,1
+18398,106,1.3,1
+18398,170,1,2
+18398,130,1.3.2,0
+18399,106,1.3,1
+18399,130,1.3.2,0
+18400,130,1.3.2,0
+18400,170,1,2
+18400,106,1.3,1
+18405,130,1.3.4.1,0
+18405,80,1.3.4,1
+18406,130,1.3.4.1,0
+18406,77,1.3.4,1
+18408,130,1.3.4.1,0
+18408,80,1.3.4,1
+18410,130,1.3.4.1,0
+18410,77,1.3.4,1
+18414,130,1.3.4.1,0
+18414,80,1.3.4,1
+18414,81,1.3.4,1
+18416,81,1.3.4,1
+18416,130,1.3.4.1,0
+18416,80,1.3.4,1
+18424,81,1.3.4,1
+18424,130,1.3.4.1,0
+18426,80,1.3.4,1
+18426,130,1.3.4.1,0
+18428,130,1.3.4.1,0
+18428,77,1.3.4,1
+18429,77,1.3.4,1
+18429,81,1.3.4,1
+18429,130,1.3.4.1,0
+18431,130,1.3.4.1,0
+18431,80,1.3.4,1
+18431,77,1.3.4,1
+18432,130,1.3.4.1,0
+18432,77,1.3.4,1
+18433,80,1.3.4,1
+18433,130,1.3.4.1,0
+18434,81,1.3.4,1
+18434,130,1.3.4.1,0
+18436,81,1.3.4,1
+18436,77,1.3.4,1
+18436,130,1.3.4.1,0
+18438,81,1.3.4,1
+18438,130,1.3.4.1,0
+18439,81,1.3.4,1
+18439,130,1.3.4.1,0
+18441,130,1.3.4.1,0
+18441,77,1.3.4,1
+18447,81,1.3.4,1
+18447,130,1.3.4.1,0
+18448,77,1.3.4,1
+18448,130,1.3.4.1,0
+18449,130,1.3.4.1,0
+18449,81,1.3.4,1
+18452,81,1.3.4,1
+18452,130,1.3.4.2,0
+18453,81,1.3.4,1
+18453,130,1.3.4.2,0
+18454,77,1.3.4,1
+18454,130,1.3.4.2,0
+18455,130,1.3.4.2,0
+18455,80,1.3.4,1
+18455,77,1.3.4,1
+18456,106,1.3,2
+18456,130,1.3.4.2,0
+18456,77,1.3.4,1
+18456,81,1.3.4,1
+18457,130,1.3.4.2,0
+18457,77,1.3.4,1
+18458,81,1.3.4,1
+18458,77,1.3.4,1
+18458,130,1.3.4.2,0
+18459,130,1.3.4.2,0
+18459,77,1.3.4,1
+18460,130,1.3.4.2,0
+18460,81,1.3.4,1
+18461,81,1.3.4,1
+18461,130,1.3.4.2,0
+18461,77,1.3.4,1
+18464,77,1.3.4,1
+18464,81,1.3.4,1
+18464,130,1.3.4.2,0
+18466,130,1.3.4.2,0
+18466,80,1.3.4,1
+18469,81,1.3.4,1
+18469,130,1.3.4.2,0
+18469,80,1.3.4,1
+18470,77,1.3.4,1
+18470,130,1.3.4.2,0
+18470,29,1.3,2
+18470,106,1.3,2
+18470,81,1.3.4,1
+18471,81,1.3.4,1
+18471,130,1.3.4.2,0
+18472,77,1.3.4,1
+18472,130,1.3.4.2,0
+18473,130,1.3.4.2,0
+18473,81,1.3.4,1
+18473,77,1.3.4,1
+18473,29,1.3,2
+18473,80,1.3.4,1
+18475,130,1.3.4.2,0
+18475,80,1.3.4,1
+18476,130,1.3.4.2,0
+18476,80,1.3.4,1
+18476,106,1.3,2
+18476,81,1.3.4,1
+18476,29,1.3,2
+18476,170,1,3
+18477,130,1.3.4.2,0
+18477,80,1.3.4,1
+18478,77,1.3.4,1
+18478,130,1.3.4.2,0
+18479,77,1.3.4,1
+18479,130,1.3.4.2,0
+18479,29,1.3,2
+18479,80,1.3.4,1
+18481,77,1.3.4,1
+18481,80,1.3.4,1
+18481,130,1.3.4.2,0
+18481,29,1.3,2
+18482,80,1.3.4,1
+18482,81,1.3.4,1
+18482,130,1.3.4.2,0
+18483,80,1.3.4,1
+18483,170,1,3
+18483,130,1.3.4.2,0
+18483,106,1.3,2
+18484,29,1.3,2
+18484,77,1.3.4,1
+18484,130,1.3.4.2,0
+18484,106,1.3,2
+18484,170,1,3
+18485,130,1.3.4.2,0
+18485,81,1.3.4,1
+18486,80,1.3.4,1
+18486,81,1.3.4,1
+18486,130,1.3.4.2,0
+18487,81,1.3.4,1
+18487,130,1.3.4.2,0
+18488,80,1.3.4,1
+18488,130,1.3.4.2,0
+18489,130,1.3.4.2,0
+18489,80,1.3.4,1
+18490,81,1.3.4,1
+18490,130,1.3.4.2,0
+18491,130,1.3.4.2,0
+18491,77,1.3.4,1
+18492,81,1.3.4,1
+18492,130,1.3.4.2,0
+18492,80,1.3.4,1
+18493,80,1.3.4,1
+18493,130,1.3.4.2,0
+18494,77,1.3.4,1
+18494,130,1.3.4.2,0
+18494,81,1.3.4,1
+18495,130,1.3.4.2,0
+18495,81,1.3.4,1
+18497,77,1.3.4,1
+18497,130,1.3.4.2,0
+18497,81,1.3.4,1
+18498,80,1.3.4,1
+18498,77,1.3.4,1
+18498,130,1.3.4.2,0
+18500,81,1.3.4,1
+18500,130,1.3.4.2,0
+18502,130,1.3.4.3,0
+18502,80,1.3.4,1
+18503,80,1.3.4,1
+18503,81,1.3.4,1
+18503,130,1.3.4.3,0
+18504,80,1.3.4,1
+18504,130,1.3.4.3,0
+18505,130,1.3.4.3,0
+18505,77,1.3.4,1
+18506,81,1.3.4,1
+18506,130,1.3.4.3,0
+18507,77,1.3.4,1
+18507,130,1.3.4.3,0
+18507,81,1.3.4,1
+18508,106,1.3,2
+18508,81,1.3.4,1
+18508,77,1.3.4,1
+18508,130,1.3.4.3,0
+18509,130,1.3.4.3,0
+18509,77,1.3.4,1
+18510,130,1.3.4.3,0
+18510,77,1.3.4,1
+18511,130,1.3.4.3,0
+18511,80,1.3.4,1
+18511,81,1.3.4,1
+18511,77,1.3.4,1
+18514,77,1.3.4,1
+18514,130,1.3.4.3,0
+18514,81,1.3.4,1
+18516,80,1.3.4,1
+18516,29,1.3,2
+18516,77,1.3.4,1
+18516,130,1.3.4.3,0
+18519,130,1.3.4.3,0
+18519,80,1.3.4,1
+18520,80,1.3.4,1
+18520,130,1.3.4.3,0
+18521,130,1.3.4.3,0
+18521,106,1.3,2
+18521,80,1.3.4,1
+18522,81,1.3.4,1
+18522,77,1.3.4,1
+18522,130,1.3.4.3,0
+18523,29,1.3,2
+18523,77,1.3.4,1
+18523,130,1.3.4.3,0
+18523,80,1.3.4,1
+18524,130,1.3.4.3,0
+18524,81,1.3.4,1
+18526,130,1.3.4.3,0
+18526,81,1.3.4,1
+18527,130,1.3.4.3,0
+18527,80,1.3.4,1
+18528,77,1.3.4,1
+18528,106,1.3,2
+18528,29,1.3,2
+18528,130,1.3.4.3,0
+18529,80,1.3.4,1
+18529,77,1.3.4,1
+18529,130,1.3.4.3,0
+18531,80,1.3.4,1
+18531,81,1.3.4,1
+18531,130,1.3.4.3,0
+18532,130,1.3.4.3,0
+18532,80,1.3.4,1
+18532,77,1.3.4,1
+18533,130,1.3.4.3,0
+18533,77,1.3.4,1
+18534,130,1.3.4.3,0
+18534,81,1.3.4,1
+18535,130,1.3.4.3,0
+18535,81,1.3.4,1
+18536,77,1.3.4,1
+18536,81,1.3.4,1
+18536,130,1.3.4.3,0
+18537,81,1.3.4,1
+18537,130,1.3.4.3,0
+18539,81,1.3.4,1
+18539,130,1.3.4.3,0
+18540,81,1.3.4,1
+18540,130,1.3.4.3,0
+18541,81,1.3.4,1
+18541,130,1.3.4.3,0
+18541,106,1.3,2
+18541,77,1.3.4,1
+18541,29,1.3,2
+18542,130,1.3.4.3,0
+18542,81,1.3.4,1
+18543,80,1.3.4,1
+18543,77,1.3.4,1
+18543,130,1.3.4.3,0
+18544,130,1.3.4.3,0
+18544,77,1.3.4,1
+18544,80,1.3.4,1
+18547,77,1.3.4,1
+18547,130,1.3.4.3,0
+18547,81,1.3.4,1
+18548,80,1.3.4,1
+18548,130,1.3.4.3,0
+18548,77,1.3.4,1
+18549,130,1.3.4.3,0
+18549,81,1.3.4,1
+18551,130,1.3.5,0
+18551,29,1.3,1
+18551,106,1.3,1
+18551,170,1,2
+18552,29,1.3,1
+18552,106,1.3,1
+18552,170,1,2
+18552,130,1.3.5,0
+18553,29,1.3,1
+18553,106,1.3,1
+18553,170,1,2
+18553,130,1.3.5,0
+18554,106,1.3,1
+18554,170,1,2
+18554,29,1.3,1
+18554,130,1.3.5,0
+18555,106,1.3,1
+18555,29,1.3,1
+18555,130,1.3.5,0
+18555,170,1,2
+18556,29,1.3,1
+18556,170,1,2
+18556,130,1.3.5,0
+18556,106,1.3,1
+18557,106,1.3,1
+18557,29,1.3,1
+18557,130,1.3.5,0
+18557,170,1,2
+18558,29,1.3,1
+18558,106,1.3,1
+18558,170,1,2
+18558,130,1.3.5,0
+18559,170,1,2
+18559,130,1.3.5,0
+18559,29,1.3,1
+18559,106,1.3,1
+18560,29,1.3,1
+18560,170,1,2
+18560,106,1.3,1
+18560,130,1.3.5,0
+18561,130,1.3.5,0
+18561,106,1.3,1
+18561,170,1,2
+18561,29,1.3,1
+18562,170,1,2
+18562,130,1.3.5,0
+18562,106,1.3,1
+18562,29,1.3,1
+18563,29,1.3,1
+18563,106,1.3,1
+18563,170,1,2
+18563,130,1.3.5,0
+18564,130,1.3.5,0
+18564,170,1,2
+18564,106,1.3,1
+18564,29,1.3,1
+18565,29,1.3,1
+18565,130,1.3.5,0
+18565,106,1.3,1
+18565,170,1,2
+18566,29,1.3,1
+18566,106,1.3,1
+18566,170,1,2
+18566,130,1.3.5,0
+18567,106,1.3,1
+18567,170,1,2
+18567,29,1.3,1
+18567,130,1.3.5,0
+18568,106,1.3,1
+18568,29,1.3,1
+18568,170,1,2
+18568,130,1.3.5,0
+18569,130,1.3.5,0
+18569,29,1.3,1
+18569,106,1.3,1
+18569,170,1,2
+18570,29,1.3,1
+18570,170,1,2
+18570,106,1.3,1
+18570,130,1.3.5,0
+18571,170,1,2
+18571,130,1.3.5,0
+18571,106,1.3,1
+18571,29,1.3,1
+18572,29,1.3,1
+18572,106,1.3,1
+18572,130,1.3.5,0
+18572,170,1,2
+18573,130,1.3.5,0
+18573,106,1.3,1
+18573,170,1,2
+18573,29,1.3,1
+18574,106,1.3,1
+18574,29,1.3,1
+18574,170,1,2
+18574,130,1.3.5,0
+18575,106,1.3,1
+18575,29,1.3,1
+18575,130,1.3.5,0
+18575,170,1,2
+18576,106,1.3,1
+18576,170,1,2
+18576,29,1.3,1
+18576,130,1.3.5,0
+18577,130,1.3.5,0
+18577,106,1.3,1
+18577,170,1,2
+18577,29,1.3,1
+18578,130,1.3.5,0
+18578,106,1.3,1
+18578,170,1,2
+18578,29,1.3,1
+18579,130,1.3.5,0
+18579,29,1.3,1
+18579,106,1.3,1
+18579,170,1,2
+18580,130,1.3.5,0
+18580,106,1.3,1
+18580,29,1.3,1
+18580,170,1,2
+18581,130,1.3.5,0
+18581,106,1.3,1
+18581,29,1.3,1
+18581,170,1,2
+18582,130,1.3.5,0
+18582,29,1.3,1
+18582,170,1,2
+18582,106,1.3,1
+18583,130,1.3.5,0
+18583,29,1.3,1
+18583,170,1,2
+18583,106,1.3,1
+18584,106,1.3,1
+18584,170,1,2
+18584,29,1.3,1
+18584,130,1.3.5,0
+18585,130,1.3.5,0
+18585,106,1.3,1
+18585,170,1,2
+18585,29,1.3,1
+18586,170,1,2
+18586,106,1.3,1
+18586,29,1.3,1
+18586,130,1.3.5,0
+18587,106,1.3,1
+18587,29,1.3,1
+18587,130,1.3.5,0
+18587,170,1,2
+18588,106,1.3,1
+18588,130,1.3.5,0
+18588,170,1,2
+18588,29,1.3,1
+18589,130,1.3.5,0
+18589,29,1.3,1
+18589,170,1,2
+18589,106,1.3,1
+18590,29,1.3,1
+18590,106,1.3,1
+18590,130,1.3.5,0
+18590,170,1,2
+18591,130,1.3.5,0
+18591,170,1,2
+18591,106,1.3,1
+18591,29,1.3,1
+18592,130,1.3.5,0
+18592,106,1.3,1
+18592,170,1,2
+18592,29,1.3,1
+18593,29,1.3,1
+18593,130,1.3.5,0
+18593,106,1.3,1
+18593,170,1,2
+18594,130,1.3.5,0
+18594,170,1,2
+18594,29,1.3,1
+18594,106,1.3,1
+18595,130,1.3.5,0
+18595,29,1.3,1
+18595,170,1,2
+18595,106,1.3,1
+18596,130,1.3.5,0
+18596,106,1.3,1
+18596,29,1.3,1
+18596,170,1,2
+18597,29,1.3,1
+18597,130,1.3.5,0
+18597,170,1,2
+18597,106,1.3,1
+18598,29,1.3,1
+18598,106,1.3,1
+18598,170,1,2
+18598,130,1.3.5,0
+18599,130,1.3.5,0
+18599,29,1.3,1
+18599,170,1,2
+18599,106,1.3,1
+18600,130,1.3.5,0
+18600,29,1.3,1
+18600,170,1,2
+18600,106,1.3,1
+18606,85,2.1.1,1
+18606,131,2.1.1.1,0
+18607,106,2.1.1,1
+18607,131,2.1.1.1,0
+18608,131,2.1.1.1,0
+18608,80,2.1.1,1
+18610,131,2.1.1.1,0
+18610,148,2.1.1,1
+18611,106,2.1.1,1
+18611,131,2.1.1.1,0
+18614,106,2.1.1,1
+18614,131,2.1.1.1,0
+18622,131,2.1.1.1,0
+18622,148,2.1.1,1
+18624,148,2.1.1,1
+18624,131,2.1.1.1,0
+18626,148,2.1.1,1
+18626,131,2.1.1.1,0
+18627,85,2.1.1,1
+18627,131,2.1.1.1,0
+18628,131,2.1.1.1,0
+18628,85,2.1.1,1
+18631,131,2.1.1.1,0
+18631,85,2.1.1,1
+18633,131,2.1.1.1,0
+18633,85,2.1.1,1
+18636,148,2.1.1,1
+18636,131,2.1.1.1,0
+18636,85,2.1.1,1
+18640,131,2.1.1.1,0
+18640,148,2.1.1,1
+18641,131,2.1.1.1,0
+18641,148,2.1.1,1
+18644,80,2.1.1,1
+18644,131,2.1.1.1,0
+18645,148,2.1.1,1
+18645,131,2.1.1.1,0
+18654,85,2.1.1,1
+18654,131,2.1.1.2,0
+18656,148,2.1.1,1
+18656,131,2.1.1.2,0
+18660,131,2.1.1.2,0
+18660,148,2.1.1,1
+18664,131,2.1.1.2,0
+18664,148,2.1.1,1
+18666,85,2.1.1,1
+18666,131,2.1.1.2,0
+18666,106,2.1.1,1
+18670,148,2.1.1,1
+18670,131,2.1.1.2,0
+18672,131,2.1.1.2,0
+18672,106,2.1.1,1
+18681,131,2.1.1.2,0
+18681,106,2.1.1,1
+18682,131,2.1.1.2,0
+18682,80,2.1.1,1
+18683,131,2.1.1.2,0
+18683,85,2.1.1,1
+18684,131,2.1.1.2,0
+18684,85,2.1.1,1
+18685,85,2.1.1,1
+18685,106,2.1.1,1
+18685,131,2.1.1.2,0
+18687,131,2.1.1.2,0
+18687,106,2.1.1,1
+18694,106,2.1.1,1
+18694,131,2.1.1.2,0
+18697,85,2.1.1,1
+18697,131,2.1.1.2,0
+18702,131,2.1.1.3,0
+18702,106,2.1.1,1
+18704,80,2.1.1,1
+18704,131,2.1.1.3,0
+18705,131,2.1.1.3,0
+18705,85,2.1.1,1
+18706,148,2.1.1,1
+18706,131,2.1.1.3,0
+18707,131,2.1.1.3,0
+18707,85,2.1.1,1
+18709,80,2.1.1,1
+18709,131,2.1.1.3,0
+18710,131,2.1.1.3,0
+18710,148,2.1.1,1
+18711,106,2.1.1,1
+18711,85,2.1.1,1
+18711,131,2.1.1.3,0
+18716,131,2.1.1.3,0
+18716,106,2.1.1,1
+18720,85,2.1.1,1
+18720,131,2.1.1.3,0
+18722,131,2.1.1.3,0
+18722,85,2.1.1,1
+18723,148,2.1.1,1
+18723,106,2.1.1,1
+18723,131,2.1.1.3,0
+18726,80,2.1.1,1
+18726,131,2.1.1.3,0
+18728,131,2.1.1.3,0
+18728,106,2.1.1,1
+18729,131,2.1.1.3,0
+18729,85,2.1.1,1
+18732,131,2.1.1.3,0
+18732,148,2.1.1,1
+18733,131,2.1.1.3,0
+18733,85,2.1.1,1
+18734,80,2.1.1,1
+18734,131,2.1.1.3,0
+18736,80,2.1.1,1
+18736,131,2.1.1.3,0
+18736,85,2.1.1,1
+18744,80,2.1.1,1
+18744,148,2.1.1,1
+18744,131,2.1.1.3,0
+18748,106,2.1.1,1
+18748,148,2.1.1,1
+18748,131,2.1.1.3,0
+18749,148,2.1.1,1
+18749,131,2.1.1.3,0
+18755,131,2.1.1.4,0
+18755,80,2.1.1,1
+18756,85,2.1.1,1
+18756,131,2.1.1.4,0
+18757,131,2.1.1.4,0
+18757,80,2.1.1,1
+18758,85,2.1.1,1
+18758,131,2.1.1.4,0
+18760,131,2.1.1.4,0
+18760,106,2.1.1,1
+18761,85,2.1.1,1
+18761,148,2.1.1,1
+18761,131,2.1.1.4,0
+18766,131,2.1.1.4,0
+18766,106,2.1.1,1
+18770,148,2.1.1,1
+18770,131,2.1.1.4,0
+18772,80,2.1.1,1
+18772,131,2.1.1.4,0
+18776,106,2.1.1,1
+18776,80,2.1.1,1
+18776,131,2.1.1.4,0
+18779,131,2.1.1.4,0
+18779,106,2.1.1,1
+18779,148,2.1.1,1
+18781,131,2.1.1.4,0
+18781,85,2.1.1,1
+18783,85,2.1.1,1
+18783,131,2.1.1.4,0
+18784,85,2.1.1,1
+18784,131,2.1.1.4,0
+18786,131,2.1.1.4,0
+18786,106,2.1.1,1
+18789,131,2.1.1.4,0
+18789,148,2.1.1,1
+18793,80,2.1.1,1
+18793,131,2.1.1.4,0
+18799,106,2.1.1,1
+18799,131,2.1.1.4,0
+18804,148,2.1.1,1
+18804,131,2.1.1.5,0
+18805,148,2.1.1,1
+18805,131,2.1.1.5,0
+18808,131,2.1.1.5,0
+18808,148,2.1.1,1
+18809,131,2.1.1.5,0
+18809,85,2.1.1,1
+18814,106,2.1.1,1
+18814,131,2.1.1.5,0
+18814,80,2.1.1,1
+18814,85,2.1.1,1
+18816,131,2.1.1.5,0
+18816,148,2.1.1,1
+18823,131,2.1.1.5,0
+18823,85,2.1.1,1
+18834,80,2.1.1,1
+18834,131,2.1.1.5,0
+18836,131,2.1.1.5,0
+18836,80,2.1.1,1
+18836,106,2.1.1,1
+18837,131,2.1.1.5,0
+18837,148,2.1.1,1
+18844,106,2.1.1,1
+18844,148,2.1.1,1
+18844,131,2.1.1.5,0
+18847,85,2.1.1,1
+18847,131,2.1.1.5,0
+18848,131,2.1.1.5,0
+18848,80,2.1.1,1
+18852,132,1.3.3.2,0
+18852,97,1.3.3,1
+18855,132,1.3.3.2,0
+18855,99,1.3.3,1
+18856,132,1.3.3.2,0
+18856,75,1.3.3,1
+18857,97,1.3.3,1
+18857,132,1.3.3.2,0
+18858,75,1.3.3,1
+18858,132,1.3.3.2,0
+18860,97,1.3.3,1
+18860,132,1.3.3.2,0
+18861,75,1.3.3,1
+18861,132,1.3.3.2,0
+18864,132,1.3.3.2,0
+18864,97,1.3.3,1
+18866,132,1.3.3.2,0
+18866,97,1.3.3,1
+18869,132,1.3.3.2,0
+18869,99,1.3.3,1
+18870,75,1.3.3,1
+18870,132,1.3.3.2,0
+18872,132,1.3.3.2,0
+18872,75,1.3.3,1
+18873,99,1.3.3,1
+18873,132,1.3.3.2,0
+18876,132,1.3.3.2,0
+18876,75,1.3.3,1
+18878,75,1.3.3,1
+18878,132,1.3.3.2,0
+18879,132,1.3.3.2,0
+18879,97,1.3.3,1
+18882,75,1.3.3,1
+18882,132,1.3.3.2,0
+18883,75,1.3.3,1
+18883,132,1.3.3.2,0
+18884,75,1.3.3,1
+18884,132,1.3.3.2,0
+18886,99,1.3.3,1
+18886,132,1.3.3.2,0
+18890,99,1.3.3,1
+18890,132,1.3.3.2,0
+18891,97,1.3.3,1
+18891,132,1.3.3.2,0
+18892,132,1.3.3.2,0
+18892,99,1.3.3,1
+18893,75,1.3.3,1
+18893,132,1.3.3.2,0
+18894,132,1.3.3.2,0
+18894,97,1.3.3,1
+18895,132,1.3.3.2,0
+18895,97,1.3.3,1
+18897,132,1.3.3.2,0
+18897,75,1.3.3,1
+18902,157,1.4.1,1
+18902,133,1.4.1.3,0
+18903,157,1.4.1,1
+18903,133,1.4.1.3,0
+18908,133,1.4.1.3,0
+18908,157,1.4.1,1
+18914,133,1.4.1.3,0
+18914,157,1.4.1,1
+18923,133,1.4.1.3,0
+18923,157,1.4.1,1
+18925,157,1.4.1,1
+18925,133,1.4.1.3,0
+18928,133,1.4.1.3,0
+18928,157,1.4.1,1
+18929,157,1.4.1,1
+18929,133,1.4.1.3,0
+18931,157,1.4.1,1
+18931,133,1.4.1.3,0
+18933,157,1.4.1,1
+18933,133,1.4.1.3,0
+18934,133,1.4.1.3,0
+18934,157,1.4.1,1
+18936,133,1.4.1.3,0
+18936,157,1.4.1,1
+18943,133,1.4.1.3,0
+18943,157,1.4.1,1
+18944,157,1.4.1,1
+18944,133,1.4.1.3,0
+18951,133,1.4.4.1,0
+18951,40,1.4.4,1
+18952,0,1.4.4,1
+18952,133,1.4.4.1,0
+18953,133,1.4.4.1,0
+18953,0,1.4.4,1
+18954,133,1.4.4.1,0
+18954,0,1.4.4,1
+18955,40,1.4.4,1
+18955,133,1.4.4.1,0
+18955,0,1.4.4,1
+18956,133,1.4.4.1,0
+18956,0,1.4.4,1
+18957,133,1.4.4.1,0
+18957,0,1.4.4,1
+18958,40,1.4.4,1
+18958,133,1.4.4.1,0
+18959,40,1.4.4,1
+18959,133,1.4.4.1,0
+18960,0,1.4.4,1
+18960,133,1.4.4.1,0
+18960,126,1.4,2
+18961,40,1.4.4,1
+18961,133,1.4.4.1,0
+18961,0,1.4.4,1
+18964,0,1.4.4,1
+18964,133,1.4.4.1,0
+18964,40,1.4.4,1
+18966,133,1.4.4.1,0
+18966,40,1.4.4,1
+18969,40,1.4.4,1
+18969,133,1.4.4.1,0
+18969,126,1.4,2
+18970,133,1.4.4.1,0
+18970,0,1.4.4,1
+18971,133,1.4.4.1,0
+18971,40,1.4.4,1
+18972,133,1.4.4.1,0
+18972,0,1.4.4,1
+18973,0,1.4.4,1
+18973,133,1.4.4.1,0
+18973,40,1.4.4,1
+18974,40,1.4.4,1
+18974,133,1.4.4.1,0
+18976,0,1.4.4,1
+18976,133,1.4.4.1,0
+18978,0,1.4.4,1
+18978,133,1.4.4.1,0
+18979,0,1.4.4,1
+18979,40,1.4.4,1
+18979,133,1.4.4.1,0
+18981,40,1.4.4,1
+18981,133,1.4.4.1,0
+18982,0,1.4.4,1
+18982,133,1.4.4.1,0
+18983,0,1.4.4,1
+18983,133,1.4.4.1,0
+18984,133,1.4.4.1,0
+18984,0,1.4.4,1
+18986,40,1.4.4,1
+18986,133,1.4.4.1,0
+18989,40,1.4.4,1
+18989,133,1.4.4.1,0
+18990,133,1.4.4.1,0
+18990,40,1.4.4,1
+18991,133,1.4.4.1,0
+18991,0,1.4.4,1
+18991,126,1.4,2
+18992,133,1.4.4.1,0
+18992,40,1.4.4,1
+18992,0,1.4.4,1
+18993,133,1.4.4.1,0
+18993,40,1.4.4,1
+18993,0,1.4.4,1
+18994,40,1.4.4,1
+18994,133,1.4.4.1,0
+18995,133,1.4.4.1,0
+18995,40,1.4.4,1
+18996,40,1.4.4,1
+18996,133,1.4.4.1,0
+18997,133,1.4.4.1,0
+18997,40,1.4.4,1
+18998,133,1.4.4.1,0
+18998,40,1.4.4,1
+19000,40,1.4.4,1
+19000,133,1.4.4.1,0
+19002,29,1.3,2
+19002,134,1.3.3.5,0
+19002,97,1.3.3,1
+19002,99,1.3.3,1
+19004,134,1.3.3.5,0
+19004,99,1.3.3,1
+19005,97,1.3.3,1
+19005,75,1.3.3,1
+19005,134,1.3.3.5,0
+19006,97,1.3.3,1
+19006,134,1.3.3.5,0
+19007,99,1.3.3,1
+19007,134,1.3.3.5,0
+19008,75,1.3.3,1
+19008,134,1.3.3.5,0
+19009,106,1.3,2
+19009,134,1.3.3.5,0
+19009,75,1.3.3,1
+19010,134,1.3.3.5,0
+19010,75,1.3.3,1
+19011,99,1.3.3,1
+19011,134,1.3.3.5,0
+19011,97,1.3.3,1
+19011,75,1.3.3,1
+19014,97,1.3.3,1
+19014,134,1.3.3.5,0
+19016,99,1.3.3,1
+19016,134,1.3.3.5,0
+19022,97,1.3.3,1
+19022,134,1.3.3.5,0
+19023,134,1.3.3.5,0
+19023,99,1.3.3,1
+19026,134,1.3.3.5,0
+19026,97,1.3.3,1
+19028,134,1.3.3.5,0
+19028,75,1.3.3,1
+19029,75,1.3.3,1
+19029,134,1.3.3.5,0
+19031,134,1.3.3.5,0
+19031,75,1.3.3,1
+19032,75,1.3.3,1
+19032,134,1.3.3.5,0
+19033,75,1.3.3,1
+19033,134,1.3.3.5,0
+19034,97,1.3.3,1
+19034,134,1.3.3.5,0
+19035,134,1.3.3.5,0
+19035,99,1.3.3,1
+19036,99,1.3.3,1
+19036,75,1.3.3,1
+19036,134,1.3.3.5,0
+19037,134,1.3.3.5,0
+19037,99,1.3.3,1
+19039,99,1.3.3,1
+19039,134,1.3.3.5,0
+19040,134,1.3.3.5,0
+19040,97,1.3.3,1
+19041,134,1.3.3.5,0
+19041,99,1.3.3,1
+19042,99,1.3.3,1
+19042,134,1.3.3.5,0
+19043,134,1.3.3.5,0
+19043,75,1.3.3,1
+19044,75,1.3.3,1
+19044,134,1.3.3.5,0
+19044,97,1.3.3,1
+19047,134,1.3.3.5,0
+19047,75,1.3.3,1
+19048,97,1.3.3,1
+19048,99,1.3.3,1
+19048,134,1.3.3.5,0
+19049,99,1.3.3,1
+19049,134,1.3.3.5,0
+19052,94,1.1,1
+19052,105,1.1,1
+19052,135,1.1.3,0
+19054,86,1.1,1
+19054,135,1.1.3,0
+19055,126,1.1,1
+19055,135,1.1.3,0
+19056,126,1.1,1
+19056,135,1.1.3,0
+19057,135,1.1.3,0
+19057,86,1.1,1
+19058,106,1.1,1
+19058,135,1.1.3,0
+19059,135,1.1.3,0
+19059,105,1.1,1
+19060,135,1.1.3,0
+19060,126,1.1,1
+19061,135,1.1.3,0
+19061,105,1.1,1
+19062,135,1.1.3,0
+19062,126,1.1,1
+19064,106,1.1,1
+19064,135,1.1.3,0
+19064,105,1.1,1
+19064,86,1.1,1
+19064,170,1,2
+19066,135,1.1.3,0
+19066,126,1.1,1
+19072,105,1.1,1
+19072,135,1.1.3,0
+19078,94,1.1,1
+19078,135,1.1.3,0
+19081,135,1.1.3,0
+19081,106,1.1,1
+19082,135,1.1.3,0
+19082,94,1.1,1
+19083,86,1.1,1
+19083,135,1.1.3,0
+19084,86,1.1,1
+19084,135,1.1.3,0
+19086,105,1.1,1
+19086,135,1.1.3,0
+19088,106,1.1,1
+19088,135,1.1.3,0
+19089,135,1.1.3,0
+19089,94,1.1,1
+19091,135,1.1.3,0
+19091,86,1.1,1
+19091,126,1.1,1
+19093,135,1.1.3,0
+19093,94,1.1,1
+19094,94,1.1,1
+19094,135,1.1.3,0
+19094,86,1.1,1
+19097,135,1.1.3,0
+19097,94,1.1,1
+19098,106,1.1,1
+19098,135,1.1.3,0
+19099,126,1.1,1
+19099,135,1.1.3,0
+19101,170,1,3
+19101,58,1.3.2,1
+19101,130,1.3.2,1
+19101,29,1.3,2
+19101,106,1.3,2
+19101,135,1.3.2.1,0
+19102,29,1.3,2
+19102,135,1.3.2.1,0
+19102,170,1,3
+19102,106,1.3,2
+19102,58,1.3.2,1
+19102,130,1.3.2,1
+19103,170,1,3
+19103,130,1.3.2,1
+19103,29,1.3,2
+19103,58,1.3.2,1
+19103,106,1.3,2
+19103,135,1.3.2.1,0
+19104,58,1.3.2,1
+19104,130,1.3.2,1
+19104,135,1.3.2.1,0
+19104,29,1.3,2
+19104,170,1,3
+19104,106,1.3,2
+19105,135,1.3.2.1,0
+19105,106,1.3,2
+19105,130,1.3.2,1
+19105,58,1.3.2,1
+19105,29,1.3,2
+19105,170,1,3
+19106,130,1.3.2,1
+19106,135,1.3.2.1,0
+19106,29,1.3,2
+19106,106,1.3,2
+19106,58,1.3.2,1
+19106,170,1,3
+19107,170,1,3
+19107,130,1.3.2,1
+19107,29,1.3,2
+19107,58,1.3.2,1
+19107,106,1.3,2
+19107,135,1.3.2.1,0
+19108,130,1.3.2,1
+19108,135,1.3.2.1,0
+19108,106,1.3,2
+19108,58,1.3.2,1
+19108,170,1,3
+19108,29,1.3,2
+19109,135,1.3.2.1,0
+19109,130,1.3.2,1
+19109,170,1,3
+19109,29,1.3,2
+19109,58,1.3.2,1
+19109,106,1.3,2
+19110,130,1.3.2,1
+19110,29,1.3,2
+19110,135,1.3.2.1,0
+19110,58,1.3.2,1
+19110,106,1.3,2
+19110,170,1,3
+19111,29,1.3,2
+19111,170,1,3
+19111,58,1.3.2,1
+19111,135,1.3.2.1,0
+19111,106,1.3,2
+19111,130,1.3.2,1
+19112,58,1.3.2,1
+19112,135,1.3.2.1,0
+19112,130,1.3.2,1
+19112,29,1.3,2
+19112,106,1.3,2
+19112,170,1,3
+19113,106,1.3,2
+19113,130,1.3.2,1
+19113,170,1,3
+19113,135,1.3.2.1,0
+19113,29,1.3,2
+19113,58,1.3.2,1
+19114,130,1.3.2,1
+19114,135,1.3.2.1,0
+19114,170,1,3
+19114,106,1.3,2
+19114,58,1.3.2,1
+19114,29,1.3,2
+19115,135,1.3.2.1,0
+19115,170,1,3
+19115,29,1.3,2
+19115,130,1.3.2,1
+19115,58,1.3.2,1
+19115,106,1.3,2
+19116,29,1.3,2
+19116,135,1.3.2.1,0
+19116,106,1.3,2
+19116,58,1.3.2,1
+19116,170,1,3
+19116,130,1.3.2,1
+19117,29,1.3,2
+19117,106,1.3,2
+19117,135,1.3.2.1,0
+19117,170,1,3
+19117,58,1.3.2,1
+19117,130,1.3.2,1
+19118,130,1.3.2,1
+19118,29,1.3,2
+19118,170,1,3
+19118,106,1.3,2
+19118,135,1.3.2.1,0
+19118,58,1.3.2,1
+19119,130,1.3.2,1
+19119,58,1.3.2,1
+19119,29,1.3,2
+19119,135,1.3.2.1,0
+19119,106,1.3,2
+19119,170,1,3
+19120,29,1.3,2
+19120,170,1,3
+19120,135,1.3.2.1,0
+19120,130,1.3.2,1
+19120,58,1.3.2,1
+19120,106,1.3,2
+19121,170,1,3
+19121,135,1.3.2.1,0
+19121,106,1.3,2
+19121,130,1.3.2,1
+19121,29,1.3,2
+19121,58,1.3.2,1
+19122,106,1.3,2
+19122,29,1.3,2
+19122,130,1.3.2,1
+19122,58,1.3.2,1
+19122,170,1,3
+19122,135,1.3.2.1,0
+19123,135,1.3.2.1,0
+19123,106,1.3,2
+19123,58,1.3.2,1
+19123,29,1.3,2
+19123,170,1,3
+19123,130,1.3.2,1
+19124,130,1.3.2,1
+19124,106,1.3,2
+19124,29,1.3,2
+19124,58,1.3.2,1
+19124,135,1.3.2.1,0
+19124,170,1,3
+19125,58,1.3.2,1
+19125,170,1,3
+19125,135,1.3.2.1,0
+19125,106,1.3,2
+19125,29,1.3,2
+19125,130,1.3.2,1
+19126,130,1.3.2,1
+19126,106,1.3,2
+19126,58,1.3.2,1
+19126,29,1.3,2
+19126,135,1.3.2.1,0
+19126,170,1,3
+19127,58,1.3.2,1
+19127,135,1.3.2.1,0
+19127,106,1.3,2
+19127,170,1,3
+19127,29,1.3,2
+19127,130,1.3.2,1
+19128,29,1.3,2
+19128,170,1,3
+19128,130,1.3.2,1
+19128,106,1.3,2
+19128,58,1.3.2,1
+19128,135,1.3.2.1,0
+19129,58,1.3.2,1
+19129,135,1.3.2.1,0
+19129,170,1,3
+19129,29,1.3,2
+19129,106,1.3,2
+19129,130,1.3.2,1
+19130,58,1.3.2,1
+19130,170,1,3
+19130,29,1.3,2
+19130,106,1.3,2
+19130,130,1.3.2,1
+19130,135,1.3.2.1,0
+19131,130,1.3.2,1
+19131,106,1.3,2
+19131,170,1,3
+19131,58,1.3.2,1
+19131,135,1.3.2.1,0
+19131,29,1.3,2
+19132,29,1.3,2
+19132,106,1.3,2
+19132,130,1.3.2,1
+19132,58,1.3.2,1
+19132,135,1.3.2.1,0
+19132,170,1,3
+19133,29,1.3,2
+19133,106,1.3,2
+19133,170,1,3
+19133,135,1.3.2.1,0
+19133,130,1.3.2,1
+19133,58,1.3.2,1
+19134,106,1.3,2
+19134,58,1.3.2,1
+19134,29,1.3,2
+19134,135,1.3.2.1,0
+19134,170,1,3
+19134,130,1.3.2,1
+19135,130,1.3.2,1
+19135,170,1,3
+19135,29,1.3,2
+19135,106,1.3,2
+19135,135,1.3.2.1,0
+19135,58,1.3.2,1
+19136,106,1.3,2
+19136,58,1.3.2,1
+19136,135,1.3.2.1,0
+19136,170,1,3
+19136,29,1.3,2
+19136,130,1.3.2,1
+19137,106,1.3,2
+19137,130,1.3.2,1
+19137,58,1.3.2,1
+19137,135,1.3.2.1,0
+19137,29,1.3,2
+19137,170,1,3
+19138,58,1.3.2,1
+19138,106,1.3,2
+19138,29,1.3,2
+19138,170,1,3
+19138,130,1.3.2,1
+19138,135,1.3.2.1,0
+19139,29,1.3,2
+19139,135,1.3.2.1,0
+19139,58,1.3.2,1
+19139,130,1.3.2,1
+19139,170,1,3
+19139,106,1.3,2
+19140,170,1,3
+19140,58,1.3.2,1
+19140,135,1.3.2.1,0
+19140,29,1.3,2
+19140,106,1.3,2
+19140,130,1.3.2,1
+19141,170,1,3
+19141,29,1.3,2
+19141,106,1.3,2
+19141,135,1.3.2.1,0
+19141,130,1.3.2,1
+19141,58,1.3.2,1
+19142,58,1.3.2,1
+19142,170,1,3
+19142,130,1.3.2,1
+19142,135,1.3.2.1,0
+19142,29,1.3,2
+19142,106,1.3,2
+19143,29,1.3,2
+19143,106,1.3,2
+19143,170,1,3
+19143,130,1.3.2,1
+19143,135,1.3.2.1,0
+19143,58,1.3.2,1
+19144,170,1,3
+19144,29,1.3,2
+19144,130,1.3.2,1
+19144,135,1.3.2.1,0
+19144,106,1.3,2
+19144,58,1.3.2,1
+19145,29,1.3,2
+19145,135,1.3.2.1,0
+19145,170,1,3
+19145,130,1.3.2,1
+19145,106,1.3,2
+19145,58,1.3.2,1
+19146,29,1.3,2
+19146,170,1,3
+19146,106,1.3,2
+19146,58,1.3.2,1
+19146,130,1.3.2,1
+19146,135,1.3.2.1,0
+19147,170,1,3
+19147,58,1.3.2,1
+19147,130,1.3.2,1
+19147,106,1.3,2
+19147,135,1.3.2.1,0
+19147,29,1.3,2
+19148,29,1.3,2
+19148,106,1.3,2
+19148,170,1,3
+19148,58,1.3.2,1
+19148,130,1.3.2,1
+19148,135,1.3.2.1,0
+19149,58,1.3.2,1
+19149,135,1.3.2.1,0
+19149,170,1,3
+19149,106,1.3,2
+19149,29,1.3,2
+19149,130,1.3.2,1
+19150,170,1,3
+19150,58,1.3.2,1
+19150,106,1.3,2
+19150,135,1.3.2.1,0
+19150,130,1.3.2,1
+19150,29,1.3,2
+19152,135,1.3.4.1,0
+19152,80,1.3.4,1
+19153,135,1.3.4.1,0
+19153,81,1.3.4,1
+19154,77,1.3.4,1
+19154,135,1.3.4.1,0
+19158,77,1.3.4,1
+19158,135,1.3.4.1,0
+19159,81,1.3.4,1
+19159,135,1.3.4.1,0
+19160,135,1.3.4.1,0
+19160,77,1.3.4,1
+19161,81,1.3.4,1
+19161,135,1.3.4.1,0
+19164,135,1.3.4.1,0
+19164,81,1.3.4,1
+19166,135,1.3.4.1,0
+19166,81,1.3.4,1
+19170,77,1.3.4,1
+19170,135,1.3.4.1,0
+19171,81,1.3.4,1
+19171,135,1.3.4.1,0
+19172,81,1.3.4,1
+19172,135,1.3.4.1,0
+19173,135,1.3.4.1,0
+19173,80,1.3.4,1
+19176,135,1.3.4.1,0
+19176,77,1.3.4,1
+19177,80,1.3.4,1
+19177,135,1.3.4.1,0
+19178,80,1.3.4,1
+19178,135,1.3.4.1,0
+19182,135,1.3.4.1,0
+19182,77,1.3.4,1
+19182,80,1.3.4,1
+19183,77,1.3.4,1
+19183,135,1.3.4.1,0
+19184,80,1.3.4,1
+19184,135,1.3.4.1,0
+19185,81,1.3.4,1
+19185,135,1.3.4.1,0
+19191,80,1.3.4,1
+19191,135,1.3.4.1,0
+19193,80,1.3.4,1
+19193,135,1.3.4.1,0
+19194,135,1.3.4.1,0
+19194,80,1.3.4,1
+19195,135,1.3.4.1,0
+19195,80,1.3.4,1
+19201,135,2.1.3.1,0
+19201,126,2.1.3,1
+19202,135,2.1.3.1,0
+19202,73,2.1.3,1
+19204,74,2.1.3,1
+19204,135,2.1.3.1,0
+19205,148,2.1.3,1
+19205,135,2.1.3.1,0
+19205,73,2.1.3,1
+19205,74,2.1.3,1
+19206,97,2.1.3,1
+19206,135,2.1.3.1,0
+19207,135,2.1.3.1,0
+19207,74,2.1.3,1
+19208,97,2.1.3,1
+19208,135,2.1.3.1,0
+19208,148,2.1.3,1
+19209,135,2.1.3.1,0
+19209,73,2.1.3,1
+19210,126,2.1.3,1
+19210,73,2.1.3,1
+19210,108,2.1.3,1
+19210,135,2.1.3.1,0
+19211,135,2.1.3.1,0
+19211,73,2.1.3,1
+19213,148,2.1.3,1
+19213,135,2.1.3.1,0
+19214,135,2.1.3.1,0
+19214,97,2.1.3,1
+19216,135,2.1.3.1,0
+19216,148,2.1.3,1
+19216,73,2.1.3,1
+19216,108,2.1.3,1
+19217,135,2.1.3.1,0
+19217,108,2.1.3,1
+19219,135,2.1.3.1,0
+19219,148,2.1.3,1
+19219,126,2.1.3,1
+19219,108,2.1.3,1
+19220,148,2.1.3,1
+19220,135,2.1.3.1,0
+19222,135,2.1.3.1,0
+19222,108,2.1.3,1
+19223,74,2.1.3,1
+19223,73,2.1.3,1
+19223,135,2.1.3.1,0
+19223,97,2.1.3,1
+19224,106,2.1.3,1
+19224,73,2.1.3,1
+19224,135,2.1.3.1,0
+19225,108,2.1.3,1
+19225,148,2.1.3,1
+19225,135,2.1.3.1,0
+19225,73,2.1.3,1
+19226,148,2.1.3,1
+19226,126,2.1.3,1
+19226,135,2.1.3.1,0
+19227,97,2.1.3,1
+19227,135,2.1.3.1,0
+19227,148,2.1.3,1
+19228,73,2.1.3,1
+19228,135,2.1.3.1,0
+19229,135,2.1.3.1,0
+19229,97,2.1.3,1
+19229,106,2.1.3,1
+19230,135,2.1.3.1,0
+19230,126,2.1.3,1
+19231,148,2.1.3,1
+19231,135,2.1.3.1,0
+19231,73,2.1.3,1
+19232,135,2.1.3.1,0
+19232,106,2.1.3,1
+19233,135,2.1.3.1,0
+19233,73,2.1.3,1
+19234,74,2.1.3,1
+19234,135,2.1.3.1,0
+19235,74,2.1.3,1
+19235,135,2.1.3.1,0
+19235,106,2.1.3,1
+19236,106,2.1.3,1
+19236,74,2.1.3,1
+19236,135,2.1.3.1,0
+19236,126,2.1.3,1
+19236,108,2.1.3,1
+19238,135,2.1.3.1,0
+19238,108,2.1.3,1
+19239,135,2.1.3.1,0
+19239,73,2.1.3,1
+19240,126,2.1.3,1
+19240,106,2.1.3,1
+19240,135,2.1.3.1,0
+19240,74,2.1.3,1
+19241,97,2.1.3,1
+19241,135,2.1.3.1,0
+19242,135,2.1.3.1,0
+19242,126,2.1.3,1
+19242,108,2.1.3,1
+19243,74,2.1.3,1
+19243,135,2.1.3.1,0
+19243,97,2.1.3,1
+19244,74,2.1.3,1
+19244,148,2.1.3,1
+19244,135,2.1.3.1,0
+19244,97,2.1.3,1
+19245,135,2.1.3.1,0
+19245,74,2.1.3,1
+19247,135,2.1.3.1,0
+19247,74,2.1.3,1
+19247,108,2.1.3,1
+19248,135,2.1.3.1,0
+19248,73,2.1.3,1
+19248,74,2.1.3,1
+19250,108,2.1.3,1
+19250,135,2.1.3.1,0
+19251,126,2.1.3,1
+19251,135,2.1.3.2,0
+19252,73,2.1.3,1
+19252,135,2.1.3.2,0
+19253,135,2.1.3.2,0
+19253,108,2.1.3,1
+19253,126,2.1.3,1
+19254,106,2.1.3,1
+19254,135,2.1.3.2,0
+19254,148,2.1.3,1
+19255,106,2.1.3,1
+19255,135,2.1.3.2,0
+19255,97,2.1.3,1
+19256,74,2.1.3,1
+19256,135,2.1.3.2,0
+19257,135,2.1.3.2,0
+19257,74,2.1.3,1
+19258,135,2.1.3.2,0
+19258,73,2.1.3,1
+19259,73,2.1.3,1
+19259,135,2.1.3.2,0
+19260,108,2.1.3,1
+19260,135,2.1.3.2,0
+19260,74,2.1.3,1
+19261,74,2.1.3,1
+19261,126,2.1.3,1
+19261,135,2.1.3.2,0
+19261,97,2.1.3,1
+19261,73,2.1.3,1
+19262,97,2.1.3,1
+19262,135,2.1.3.2,0
+19262,148,2.1.3,1
+19264,73,2.1.3,1
+19264,135,2.1.3.2,0
+19264,148,2.1.3,1
+19264,97,2.1.3,1
+19264,126,2.1.3,1
+19266,135,2.1.3.2,0
+19266,106,2.1.3,1
+19267,135,2.1.3.2,0
+19267,106,2.1.3,1
+19269,135,2.1.3.2,0
+19269,126,2.1.3,1
+19270,126,2.1.3,1
+19270,135,2.1.3.2,0
+19270,74,2.1.3,1
+19270,106,2.1.3,1
+19271,135,2.1.3.2,0
+19271,108,2.1.3,1
+19272,73,2.1.3,1
+19272,108,2.1.3,1
+19272,148,2.1.3,1
+19272,135,2.1.3.2,0
+19273,106,2.1.3,1
+19273,73,2.1.3,1
+19273,135,2.1.3.2,0
+19273,126,2.1.3,1
+19273,74,2.1.3,1
+19274,106,2.1.3,1
+19274,135,2.1.3.2,0
+19275,73,2.1.3,1
+19275,148,2.1.3,1
+19275,135,2.1.3.2,0
+19276,73,2.1.3,1
+19276,74,2.1.3,1
+19276,135,2.1.3.2,0
+19276,148,2.1.3,1
+19277,126,2.1.3,1
+19277,135,2.1.3.2,0
+19278,73,2.1.3,1
+19278,135,2.1.3.2,0
+19279,135,2.1.3.2,0
+19279,106,2.1.3,1
+19280,135,2.1.3.2,0
+19280,148,2.1.3,1
+19281,135,2.1.3.2,0
+19281,73,2.1.3,1
+19281,106,2.1.3,1
+19282,135,2.1.3.2,0
+19282,108,2.1.3,1
+19282,106,2.1.3,1
+19283,106,2.1.3,1
+19283,135,2.1.3.2,0
+19284,135,2.1.3.2,0
+19284,108,2.1.3,1
+19284,73,2.1.3,1
+19285,97,2.1.3,1
+19285,126,2.1.3,1
+19285,148,2.1.3,1
+19285,135,2.1.3.2,0
+19286,106,2.1.3,1
+19286,135,2.1.3.2,0
+19286,97,2.1.3,1
+19286,108,2.1.3,1
+19288,135,2.1.3.2,0
+19288,97,2.1.3,1
+19289,106,2.1.3,1
+19289,135,2.1.3.2,0
+19289,73,2.1.3,1
+19290,126,2.1.3,1
+19290,106,2.1.3,1
+19290,135,2.1.3.2,0
+19290,74,2.1.3,1
+19291,73,2.1.3,1
+19291,135,2.1.3.2,0
+19291,106,2.1.3,1
+19292,135,2.1.3.2,0
+19292,126,2.1.3,1
+19293,108,2.1.3,1
+19293,135,2.1.3.2,0
+19293,106,2.1.3,1
+19294,135,2.1.3.2,0
+19294,148,2.1.3,1
+19295,135,2.1.3.2,0
+19295,74,2.1.3,1
+19297,135,2.1.3.2,0
+19297,148,2.1.3,1
+19297,108,2.1.3,1
+19298,106,2.1.3,1
+19298,108,2.1.3,1
+19298,126,2.1.3,1
+19298,135,2.1.3.2,0
+19299,74,2.1.3,1
+19299,108,2.1.3,1
+19299,148,2.1.3,1
+19299,135,2.1.3.2,0
+19301,135,2.1.3.3,0
+19301,126,2.1.3,1
+19302,135,2.1.3.3,0
+19302,106,2.1.3,1
+19302,148,2.1.3,1
+19303,106,2.1.3,1
+19303,97,2.1.3,1
+19303,135,2.1.3.3,0
+19303,74,2.1.3,1
+19303,73,2.1.3,1
+19303,148,2.1.3,1
+19304,106,2.1.3,1
+19304,74,2.1.3,1
+19304,135,2.1.3.3,0
+19305,108,2.1.3,1
+19305,135,2.1.3.3,0
+19305,106,2.1.3,1
+19306,74,2.1.3,1
+19306,126,2.1.3,1
+19306,135,2.1.3.3,0
+19307,135,2.1.3.3,0
+19307,73,2.1.3,1
+19307,108,2.1.3,1
+19308,135,2.1.3.3,0
+19308,74,2.1.3,1
+19309,135,2.1.3.3,0
+19309,73,2.1.3,1
+19310,97,2.1.3,1
+19310,135,2.1.3.3,0
+19311,135,2.1.3.3,0
+19311,74,2.1.3,1
+19311,108,2.1.3,1
+19312,148,2.1.3,1
+19312,135,2.1.3.3,0
+19314,73,2.1.3,1
+19314,135,2.1.3.3,0
+19314,148,2.1.3,1
+19314,97,2.1.3,1
+19316,135,2.1.3.3,0
+19316,106,2.1.3,1
+19316,148,2.1.3,1
+19317,135,2.1.3.3,0
+19317,126,2.1.3,1
+19319,135,2.1.3.3,0
+19319,108,2.1.3,1
+19319,73,2.1.3,1
+19319,106,2.1.3,1
+19319,148,2.1.3,1
+19320,97,2.1.3,1
+19320,135,2.1.3.3,0
+19321,148,2.1.3,1
+19321,135,2.1.3.3,0
+19321,108,2.1.3,1
+19322,97,2.1.3,1
+19322,135,2.1.3.3,0
+19323,148,2.1.3,1
+19323,106,2.1.3,1
+19323,73,2.1.3,1
+19323,135,2.1.3.3,0
+19324,148,2.1.3,1
+19324,135,2.1.3.3,0
+19326,126,2.1.3,1
+19326,106,2.1.3,1
+19326,135,2.1.3.3,0
+19327,106,2.1.3,1
+19327,135,2.1.3.3,0
+19328,73,2.1.3,1
+19328,135,2.1.3.3,0
+19329,135,2.1.3.3,0
+19329,73,2.1.3,1
+19329,108,2.1.3,1
+19330,135,2.1.3.3,0
+19330,148,2.1.3,1
+19330,108,2.1.3,1
+19331,135,2.1.3.3,0
+19331,74,2.1.3,1
+19332,74,2.1.3,1
+19332,135,2.1.3.3,0
+19333,97,2.1.3,1
+19333,135,2.1.3.3,0
+19334,73,2.1.3,1
+19334,135,2.1.3.3,0
+19335,106,2.1.3,1
+19335,97,2.1.3,1
+19335,135,2.1.3.3,0
+19336,74,2.1.3,1
+19336,148,2.1.3,1
+19336,135,2.1.3.3,0
+19336,108,2.1.3,1
+19337,97,2.1.3,1
+19337,135,2.1.3.3,0
+19338,135,2.1.3.3,0
+19338,126,2.1.3,1
+19339,126,2.1.3,1
+19339,74,2.1.3,1
+19339,135,2.1.3.3,0
+19340,135,2.1.3.3,0
+19340,148,2.1.3,1
+19340,126,2.1.3,1
+19341,135,2.1.3.3,0
+19341,97,2.1.3,1
+19342,126,2.1.3,1
+19342,135,2.1.3.3,0
+19343,148,2.1.3,1
+19343,135,2.1.3.3,0
+19343,73,2.1.3,1
+19343,97,2.1.3,1
+19344,74,2.1.3,1
+19344,73,2.1.3,1
+19344,135,2.1.3.3,0
+19347,135,2.1.3.3,0
+19347,73,2.1.3,1
+19347,148,2.1.3,1
+19348,106,2.1.3,1
+19348,99,2.1,2
+19348,74,2.1.3,1
+19348,73,2.1.3,1
+19348,135,2.1.3.3,0
+19349,126,2.1.3,1
+19349,135,2.1.3.3,0
+19350,74,2.1.3,1
+19350,148,2.1.3,1
+19350,108,2.1.3,1
+19350,135,2.1.3.3,0
+19352,73,2.1.3,1
+19352,97,2.1.3,1
+19352,74,2.1.3,1
+19352,135,2.1.3.4,0
+19352,148,2.1.3,1
+19353,135,2.1.3.4,0
+19353,108,2.1.3,1
+19353,148,2.1.3,1
+19354,74,2.1.3,1
+19354,135,2.1.3.4,0
+19355,148,2.1.3,1
+19355,97,2.1.3,1
+19355,135,2.1.3.4,0
+19355,106,2.1.3,1
+19356,108,2.1.3,1
+19356,135,2.1.3.4,0
+19356,148,2.1.3,1
+19356,74,2.1.3,1
+19357,135,2.1.3.4,0
+19357,106,2.1.3,1
+19358,148,2.1.3,1
+19358,126,2.1.3,1
+19358,73,2.1.3,1
+19358,135,2.1.3.4,0
+19358,97,2.1.3,1
+19359,135,2.1.3.4,0
+19359,73,2.1.3,1
+19360,73,2.1.3,1
+19360,108,2.1.3,1
+19360,135,2.1.3.4,0
+19360,106,2.1.3,1
+19361,135,2.1.3.4,0
+19361,74,2.1.3,1
+19361,97,2.1.3,1
+19364,106,2.1.3,1
+19364,97,2.1.3,1
+19364,108,2.1.3,1
+19364,135,2.1.3.4,0
+19364,126,2.1.3,1
+19364,73,2.1.3,1
+19366,135,2.1.3.4,0
+19366,97,2.1.3,1
+19366,148,2.1.3,1
+19366,73,2.1.3,1
+19366,106,2.1.3,1
+19369,73,2.1.3,1
+19369,126,2.1.3,1
+19369,108,2.1.3,1
+19369,106,2.1.3,1
+19369,135,2.1.3.4,0
+19370,73,2.1.3,1
+19370,135,2.1.3.4,0
+19372,108,2.1.3,1
+19372,126,2.1.3,1
+19372,74,2.1.3,1
+19372,135,2.1.3.4,0
+19373,126,2.1.3,1
+19373,106,2.1.3,1
+19373,135,2.1.3.4,0
+19373,97,2.1.3,1
+19376,126,2.1.3,1
+19376,135,2.1.3.4,0
+19376,74,2.1.3,1
+19376,108,2.1.3,1
+19376,73,2.1.3,1
+19377,135,2.1.3.4,0
+19377,148,2.1.3,1
+19378,73,2.1.3,1
+19378,135,2.1.3.4,0
+19379,135,2.1.3.4,0
+19379,148,2.1.3,1
+19381,148,2.1.3,1
+19381,135,2.1.3.4,0
+19381,106,2.1.3,1
+19381,97,2.1.3,1
+19382,74,2.1.3,1
+19382,135,2.1.3.4,0
+19383,135,2.1.3.4,0
+19383,73,2.1.3,1
+19384,73,2.1.3,1
+19384,108,2.1.3,1
+19384,135,2.1.3.4,0
+19384,148,2.1.3,1
+19385,97,2.1.3,1
+19385,135,2.1.3.4,0
+19386,74,2.1.3,1
+19386,135,2.1.3.4,0
+19386,108,2.1.3,1
+19388,135,2.1.3.4,0
+19388,74,2.1.3,1
+19389,126,2.1.3,1
+19389,106,2.1.3,1
+19389,135,2.1.3.4,0
+19389,73,2.1.3,1
+19390,135,2.1.3.4,0
+19390,148,2.1.3,1
+19391,135,2.1.3.4,0
+19391,74,2.1.3,1
+19392,97,2.1.3,1
+19392,106,2.1.3,1
+19392,135,2.1.3.4,0
+19393,73,2.1.3,1
+19393,135,2.1.3.4,0
+19393,97,2.1.3,1
+19394,74,2.1.3,1
+19394,73,2.1.3,1
+19394,135,2.1.3.4,0
+19395,108,2.1.3,1
+19395,135,2.1.3.4,0
+19397,106,2.1.3,1
+19397,135,2.1.3.4,0
+19397,108,2.1.3,1
+19397,74,2.1.3,1
+19397,126,2.1.3,1
+19398,135,2.1.3.4,0
+19398,106,2.1.3,1
+19398,73,2.1.3,1
+19398,74,2.1.3,1
+19399,135,2.1.3.4,0
+19399,126,2.1.3,1
+19399,106,2.1.3,1
+19400,106,2.1.3,1
+19400,135,2.1.3.4,0
+19400,126,2.1.3,1
+19401,135,2.1.3.5,0
+19401,108,2.1.3,1
+19404,73,2.1.3,1
+19404,97,2.1.3,1
+19404,135,2.1.3.5,0
+19405,148,2.1.3,1
+19405,108,2.1.3,1
+19405,135,2.1.3.5,0
+19406,73,2.1.3,1
+19406,135,2.1.3.5,0
+19407,126,2.1.3,1
+19407,135,2.1.3.5,0
+19407,73,2.1.3,1
+19407,108,2.1.3,1
+19408,135,2.1.3.5,0
+19408,74,2.1.3,1
+19409,135,2.1.3.5,0
+19409,73,2.1.3,1
+19410,135,2.1.3.5,0
+19410,73,2.1.3,1
+19410,108,2.1.3,1
+19411,126,2.1.3,1
+19411,135,2.1.3.5,0
+19411,73,2.1.3,1
+19411,97,2.1.3,1
+19412,97,2.1.3,1
+19412,135,2.1.3.5,0
+19412,108,2.1.3,1
+19414,135,2.1.3.5,0
+19414,148,2.1.3,1
+19416,135,2.1.3.5,0
+19416,73,2.1.3,1
+19416,97,2.1.3,1
+19416,148,2.1.3,1
+19417,135,2.1.3.5,0
+19417,126,2.1.3,1
+19419,135,2.1.3.5,0
+19419,108,2.1.3,1
+19420,148,2.1.3,1
+19420,73,2.1.3,1
+19420,135,2.1.3.5,0
+19421,108,2.1.3,1
+19421,148,2.1.3,1
+19421,135,2.1.3.5,0
+19422,126,2.1.3,1
+19422,97,2.1.3,1
+19422,135,2.1.3.5,0
+19423,108,2.1.3,1
+19423,135,2.1.3.5,0
+19423,73,2.1.3,1
+19423,148,2.1.3,1
+19424,73,2.1.3,1
+19424,135,2.1.3.5,0
+19424,74,2.1.3,1
+19425,148,2.1.3,1
+19425,135,2.1.3.5,0
+19426,73,2.1.3,1
+19426,135,2.1.3.5,0
+19426,97,2.1.3,1
+19427,135,2.1.3.5,0
+19427,148,2.1.3,1
+19428,135,2.1.3.5,0
+19428,74,2.1.3,1
+19429,135,2.1.3.5,0
+19429,97,2.1.3,1
+19429,74,2.1.3,1
+19430,135,2.1.3.5,0
+19430,126,2.1.3,1
+19431,135,2.1.3.5,0
+19431,74,2.1.3,1
+19431,126,2.1.3,1
+19432,135,2.1.3.5,0
+19432,97,2.1.3,1
+19433,97,2.1.3,1
+19433,135,2.1.3.5,0
+19434,108,2.1.3,1
+19434,135,2.1.3.5,0
+19435,126,2.1.3,1
+19435,135,2.1.3.5,0
+19436,73,2.1.3,1
+19436,108,2.1.3,1
+19436,135,2.1.3.5,0
+19436,106,2.1.3,1
+19439,135,2.1.3.5,0
+19439,108,2.1.3,1
+19439,97,2.1.3,1
+19440,106,2.1.3,1
+19440,74,2.1.3,1
+19440,148,2.1.3,1
+19440,108,2.1.3,1
+19440,135,2.1.3.5,0
+19440,97,2.1.3,1
+19441,135,2.1.3.5,0
+19441,106,2.1.3,1
+19441,74,2.1.3,1
+19442,135,2.1.3.5,0
+19442,126,2.1.3,1
+19442,73,2.1.3,1
+19442,74,2.1.3,1
+19443,135,2.1.3.5,0
+19443,97,2.1.3,1
+19443,106,2.1.3,1
+19444,106,2.1.3,1
+19444,108,2.1.3,1
+19444,135,2.1.3.5,0
+19445,135,2.1.3.5,0
+19445,97,2.1.3,1
+19447,73,2.1.3,1
+19447,148,2.1.3,1
+19447,135,2.1.3.5,0
+19448,148,2.1.3,1
+19448,97,2.1.3,1
+19448,135,2.1.3.5,0
+19449,108,2.1.3,1
+19449,148,2.1.3,1
+19449,97,2.1.3,1
+19449,135,2.1.3.5,0
+19449,126,2.1.3,1
+19450,108,2.1.3,1
+19450,135,2.1.3.5,0
+19450,74,2.1.3,1
+19450,106,2.1.3,1
+19452,135,2.1.3.6,0
+19452,108,2.1.3,1
+19452,106,2.1.3,1
+19455,135,2.1.3.6,0
+19455,148,2.1.3,1
+19455,97,2.1.3,1
+19457,126,2.1.3,1
+19457,135,2.1.3.6,0
+19458,135,2.1.3.6,0
+19458,148,2.1.3,1
+19459,106,2.1.3,1
+19459,135,2.1.3.6,0
+19460,108,2.1.3,1
+19460,135,2.1.3.6,0
+19460,74,2.1.3,1
+19461,73,2.1.3,1
+19461,135,2.1.3.6,0
+19464,135,2.1.3.6,0
+19464,126,2.1.3,1
+19464,74,2.1.3,1
+19464,148,2.1.3,1
+19464,108,2.1.3,1
+19466,135,2.1.3.6,0
+19466,74,2.1.3,1
+19466,126,2.1.3,1
+19467,135,2.1.3.6,0
+19467,148,2.1.3,1
+19469,148,2.1.3,1
+19469,135,2.1.3.6,0
+19470,97,2.1.3,1
+19470,135,2.1.3.6,0
+19471,148,2.1.3,1
+19471,126,2.1.3,1
+19471,135,2.1.3.6,0
+19472,108,2.1.3,1
+19472,135,2.1.3.6,0
+19472,73,2.1.3,1
+19472,148,2.1.3,1
+19473,106,2.1.3,1
+19473,108,2.1.3,1
+19473,135,2.1.3.6,0
+19473,148,2.1.3,1
+19478,73,2.1.3,1
+19478,135,2.1.3.6,0
+19479,97,2.1.3,1
+19479,73,2.1.3,1
+19479,135,2.1.3.6,0
+19481,135,2.1.3.6,0
+19481,74,2.1.3,1
+19482,135,2.1.3.6,0
+19482,73,2.1.3,1
+19483,135,2.1.3.6,0
+19483,148,2.1.3,1
+19484,106,2.1.3,1
+19484,73,2.1.3,1
+19484,135,2.1.3.6,0
+19485,97,2.1.3,1
+19485,135,2.1.3.6,0
+19486,148,2.1.3,1
+19486,108,2.1.3,1
+19486,135,2.1.3.6,0
+19487,135,2.1.3.6,0
+19487,74,2.1.3,1
+19488,106,2.1.3,1
+19488,135,2.1.3.6,0
+19489,135,2.1.3.6,0
+19489,74,2.1.3,1
+19489,108,2.1.3,1
+19490,135,2.1.3.6,0
+19490,97,2.1.3,1
+19491,97,2.1.3,1
+19491,135,2.1.3.6,0
+19492,106,2.1.3,1
+19492,135,2.1.3.6,0
+19492,108,2.1.3,1
+19492,97,2.1.3,1
+19493,73,2.1.3,1
+19493,135,2.1.3.6,0
+19493,97,2.1.3,1
+19494,126,2.1.3,1
+19494,135,2.1.3.6,0
+19494,97,2.1.3,1
+19495,135,2.1.3.6,0
+19495,97,2.1.3,1
+19497,135,2.1.3.6,0
+19497,73,2.1.3,1
+19498,126,2.1.3,1
+19498,135,2.1.3.6,0
+19498,97,2.1.3,1
+19499,108,2.1.3,1
+19499,135,2.1.3.6,0
+19500,126,2.1.3,1
+19500,148,2.1.3,1
+19500,135,2.1.3.6,0
+19500,97,2.1.3,1
+19500,106,2.1.3,1
+19502,74,2.1.3,1
+19502,148,2.1.3,1
+19502,135,2.1.3.7,0
+19502,108,2.1.3,1
+19503,135,2.1.3.7,0
+19503,108,2.1.3,1
+19504,73,2.1.3,1
+19504,135,2.1.3.7,0
+19505,74,2.1.3,1
+19505,108,2.1.3,1
+19505,135,2.1.3.7,0
+19505,73,2.1.3,1
+19506,126,2.1.3,1
+19506,135,2.1.3.7,0
+19507,135,2.1.3.7,0
+19507,74,2.1.3,1
+19507,148,2.1.3,1
+19508,135,2.1.3.7,0
+19508,106,2.1.3,1
+19509,135,2.1.3.7,0
+19509,97,2.1.3,1
+19510,135,2.1.3.7,0
+19510,73,2.1.3,1
+19510,108,2.1.3,1
+19510,126,2.1.3,1
+19511,126,2.1.3,1
+19511,135,2.1.3.7,0
+19511,73,2.1.3,1
+19511,108,2.1.3,1
+19511,97,2.1.3,1
+19512,135,2.1.3.7,0
+19512,108,2.1.3,1
+19512,106,2.1.3,1
+19514,135,2.1.3.7,0
+19514,148,2.1.3,1
+19514,108,2.1.3,1
+19514,126,2.1.3,1
+19516,135,2.1.3.7,0
+19516,106,2.1.3,1
+19516,97,2.1.3,1
+19516,74,2.1.3,1
+19517,108,2.1.3,1
+19517,135,2.1.3.7,0
+19519,135,2.1.3.7,0
+19519,74,2.1.3,1
+19519,73,2.1.3,1
+19519,97,2.1.3,1
+19519,108,2.1.3,1
+19519,106,2.1.3,1
+19520,148,2.1.3,1
+19520,135,2.1.3.7,0
+19520,108,2.1.3,1
+19521,135,2.1.3.7,0
+19521,148,2.1.3,1
+19522,73,2.1.3,1
+19522,135,2.1.3.7,0
+19523,99,2.1,2
+19523,73,2.1.3,1
+19523,135,2.1.3.7,0
+19523,97,2.1.3,1
+19523,74,2.1.3,1
+19524,97,2.1.3,1
+19524,135,2.1.3.7,0
+19524,73,2.1.3,1
+19525,73,2.1.3,1
+19525,135,2.1.3.7,0
+19526,148,2.1.3,1
+19526,135,2.1.3.7,0
+19526,73,2.1.3,1
+19526,97,2.1.3,1
+19527,106,2.1.3,1
+19527,135,2.1.3.7,0
+19528,97,2.1.3,1
+19528,135,2.1.3.7,0
+19529,135,2.1.3.7,0
+19529,74,2.1.3,1
+19529,108,2.1.3,1
+19530,108,2.1.3,1
+19530,148,2.1.3,1
+19530,126,2.1.3,1
+19530,135,2.1.3.7,0
+19531,97,2.1.3,1
+19531,135,2.1.3.7,0
+19531,74,2.1.3,1
+19532,135,2.1.3.7,0
+19532,108,2.1.3,1
+19533,74,2.1.3,1
+19533,135,2.1.3.7,0
+19534,108,2.1.3,1
+19534,135,2.1.3.7,0
+19536,106,2.1.3,1
+19536,74,2.1.3,1
+19536,135,2.1.3.7,0
+19537,106,2.1.3,1
+19537,135,2.1.3.7,0
+19538,74,2.1.3,1
+19538,135,2.1.3.7,0
+19539,135,2.1.3.7,0
+19539,97,2.1.3,1
+19540,135,2.1.3.7,0
+19540,148,2.1.3,1
+19542,135,2.1.3.7,0
+19542,148,2.1.3,1
+19542,73,2.1.3,1
+19543,73,2.1.3,1
+19543,135,2.1.3.7,0
+19543,97,2.1.3,1
+19544,106,2.1.3,1
+19544,135,2.1.3.7,0
+19544,97,2.1.3,1
+19545,135,2.1.3.7,0
+19545,106,2.1.3,1
+19547,135,2.1.3.7,0
+19547,73,2.1.3,1
+19547,108,2.1.3,1
+19548,126,2.1.3,1
+19548,74,2.1.3,1
+19548,135,2.1.3.7,0
+19548,108,2.1.3,1
+19550,135,2.1.3.7,0
+19550,74,2.1.3,1
+19550,106,2.1.3,1
+19557,135,2.2,0
+19557,102,2,1
+19561,98,2,1
+19561,135,2.2,0
+19576,98,2,1
+19576,135,2.2,0
+19578,102,2,1
+19578,135,2.2,0
+19584,98,2,1
+19584,135,2.2,0
+19593,135,2.2,0
+19593,98,2,1
+19597,135,2.2,0
+19597,102,2,1
+19602,67,1.2,1
+19602,136,1.2.1,0
+19604,106,1.2,1
+19604,136,1.2.1,0
+19606,136,1.2.1,0
+19606,67,1.2,1
+19607,67,1.2,1
+19607,136,1.2.1,0
+19608,136,1.2.1,0
+19608,67,1.2,1
+19611,97,1.2,1
+19611,67,1.2,1
+19611,106,1.2,1
+19611,136,1.2.1,0
+19614,136,1.2.1,0
+19614,67,1.2,1
+19616,136,1.2.1,0
+19616,126,1.2,1
+19619,136,1.2.1,0
+19619,106,1.2,1
+19622,97,1.2,1
+19622,136,1.2.1,0
+19626,126,1.2,1
+19626,136,1.2.1,0
+19626,67,1.2,1
+19627,97,1.2,1
+19627,136,1.2.1,0
+19628,136,1.2.1,0
+19628,97,1.2,1
+19629,67,1.2,1
+19629,136,1.2.1,0
+19631,136,1.2.1,0
+19631,126,1.2,1
+19632,136,1.2.1,0
+19632,67,1.2,1
+19633,136,1.2.1,0
+19633,97,1.2,1
+19634,67,1.2,1
+19634,136,1.2.1,0
+19636,126,1.2,1
+19636,136,1.2.1,0
+19640,106,1.2,1
+19640,136,1.2.1,0
+19643,136,1.2.1,0
+19643,67,1.2,1
+19644,126,1.2,1
+19644,136,1.2.1,0
+19644,67,1.2,1
+19647,97,1.2,1
+19647,136,1.2.1,0
+19649,126,1.2,1
+19649,136,1.2.1,0
+19654,137,2.1.4.1.1,0
+19654,79,2.1.4.1,1
+19655,137,2.1.4.1.1,0
+19655,79,2.1.4.1,1
+19657,79,2.1.4.1,1
+19657,137,2.1.4.1.1,0
+19666,79,2.1.4.1,1
+19666,137,2.1.4.1.1,0
+19666,81,2.1.4.1,1
+19672,137,2.1.4.1.1,0
+19672,79,2.1.4.1,1
+19676,79,2.1.4.1,1
+19676,137,2.1.4.1.1,0
+19677,137,2.1.4.1.1,0
+19677,81,2.1.4.1,1
+19686,81,2.1.4.1,1
+19686,137,2.1.4.1.1,0
+19694,79,2.1.4.1,1
+19694,137,2.1.4.1.1,0
+19697,137,2.1.4.1.1,0
+19697,79,2.1.4.1,1
+19698,79,2.1.4.1,1
+19698,137,2.1.4.1.1,0
+19700,81,2.1.4.1,1
+19700,137,2.1.4.1.1,0
+19704,137,2.1.4.1.2,0
+19704,79,2.1.4.1,1
+19705,79,2.1.4.1,1
+19705,137,2.1.4.1.2,0
+19706,137,2.1.4.1.2,0
+19706,79,2.1.4.1,1
+19709,81,2.1.4.1,1
+19709,137,2.1.4.1.2,0
+19722,81,2.1.4.1,1
+19722,137,2.1.4.1.2,0
+19727,81,2.1.4.1,1
+19727,137,2.1.4.1.2,0
+19728,79,2.1.4.1,1
+19728,137,2.1.4.1.2,0
+19731,137,2.1.4.1.2,0
+19731,79,2.1.4.1,1
+19732,137,2.1.4.1.2,0
+19732,81,2.1.4.1,1
+19734,81,2.1.4.1,1
+19734,137,2.1.4.1.2,0
+19736,81,2.1.4.1,1
+19736,79,2.1.4.1,1
+19736,137,2.1.4.1.2,0
+19741,81,2.1.4.1,1
+19741,137,2.1.4.1.2,0
+19743,137,2.1.4.1.2,0
+19743,79,2.1.4.1,1
+19744,137,2.1.4.1.2,0
+19744,79,2.1.4.1,1
+19747,137,2.1.4.1.2,0
+19747,79,2.1.4.1,1
+19752,137,2.1.4.1.3,0
+19752,79,2.1.4.1,1
+19754,137,2.1.4.1.3,0
+19754,79,2.1.4.1,1
+19757,137,2.1.4.1.3,0
+19757,79,2.1.4.1,1
+19759,81,2.1.4.1,1
+19759,137,2.1.4.1.3,0
+19760,137,2.1.4.1.3,0
+19760,79,2.1.4.1,1
+19773,137,2.1.4.1.3,0
+19773,79,2.1.4.1,1
+19774,137,2.1.4.1.3,0
+19774,79,2.1.4.1,1
+19776,137,2.1.4.1.3,0
+19776,81,2.1.4.1,1
+19777,81,2.1.4.1,1
+19777,137,2.1.4.1.3,0
+19779,137,2.1.4.1.3,0
+19779,79,2.1.4.1,1
+19779,81,2.1.4.1,1
+19787,81,2.1.4.1,1
+19787,137,2.1.4.1.3,0
+19789,81,2.1.4.1,1
+19789,137,2.1.4.1.3,0
+19791,79,2.1.4.1,1
+19791,137,2.1.4.1.3,0
+19797,137,2.1.4.1.3,0
+19797,81,2.1.4.1,1
+19798,79,2.1.4.1,1
+19798,137,2.1.4.1.3,0
+19807,79,2.1.4.1,1
+19807,137,2.1.4.1.4,0
+19808,81,2.1.4.1,1
+19808,137,2.1.4.1.4,0
+19810,137,2.1.4.1.4,0
+19810,81,2.1.4.1,1
+19811,137,2.1.4.1.4,0
+19811,81,2.1.4.1,1
+19811,79,2.1.4.1,1
+19816,137,2.1.4.1.4,0
+19816,81,2.1.4.1,1
+19820,137,2.1.4.1.4,0
+19820,79,2.1.4.1,1
+19824,137,2.1.4.1.4,0
+19824,79,2.1.4.1,1
+19826,137,2.1.4.1.4,0
+19826,81,2.1.4.1,1
+19827,81,2.1.4.1,1
+19827,137,2.1.4.1.4,0
+19829,137,2.1.4.1.4,0
+19829,79,2.1.4.1,1
+19834,137,2.1.4.1.4,0
+19834,79,2.1.4.1,1
+19836,79,2.1.4.1,1
+19836,137,2.1.4.1.4,0
+19839,81,2.1.4.1,1
+19839,137,2.1.4.1.4,0
+19841,79,2.1.4.1,1
+19841,137,2.1.4.1.4,0
+19842,137,2.1.4.1.4,0
+19842,81,2.1.4.1,1
+19842,79,2.1.4.1,1
+19843,81,2.1.4.1,1
+19843,137,2.1.4.1.4,0
+19844,137,2.1.4.1.4,0
+19844,79,2.1.4.1,1
+19851,137,2.1.4.2.1,0
+19851,79,2.1.4.2,1
+19852,137,2.1.4.2.1,0
+19852,79,2.1.4.2,1
+19855,137,2.1.4.2.1,0
+19855,79,2.1.4.2,1
+19857,137,2.1.4.2.1,0
+19857,81,2.1.4.2,1
+19859,81,2.1.4.2,1
+19859,137,2.1.4.2.1,0
+19861,137,2.1.4.2.1,0
+19861,79,2.1.4.2,1
+19864,79,2.1.4.2,1
+19864,137,2.1.4.2.1,0
+19870,79,2.1.4.2,1
+19870,137,2.1.4.2.1,0
+19876,137,2.1.4.2.1,0
+19876,81,2.1.4.2,1
+19877,81,2.1.4.2,1
+19877,137,2.1.4.2.1,0
+19878,81,2.1.4.2,1
+19878,137,2.1.4.2.1,0
+19879,137,2.1.4.2.1,0
+19879,79,2.1.4.2,1
+19882,81,2.1.4.2,1
+19882,137,2.1.4.2.1,0
+19884,137,2.1.4.2.1,0
+19884,79,2.1.4.2,1
+19893,79,2.1.4.2,1
+19893,137,2.1.4.2.1,0
+19894,81,2.1.4.2,1
+19894,137,2.1.4.2.1,0
+19902,137,2.1.4.2.2,0
+19902,79,2.1.4.2,1
+19904,137,2.1.4.2.2,0
+19904,79,2.1.4.2,1
+19909,81,2.1.4.2,1
+19909,137,2.1.4.2.2,0
+19911,79,2.1.4.2,1
+19911,137,2.1.4.2.2,0
+19916,137,2.1.4.2.2,0
+19916,81,2.1.4.2,1
+19922,137,2.1.4.2.2,0
+19922,79,2.1.4.2,1
+19923,137,2.1.4.2.2,0
+19923,79,2.1.4.2,1
+19924,137,2.1.4.2.2,0
+19924,79,2.1.4.2,1
+19927,81,2.1.4.2,1
+19927,137,2.1.4.2.2,0
+19928,79,2.1.4.2,1
+19928,137,2.1.4.2.2,0
+19929,137,2.1.4.2.2,0
+19929,79,2.1.4.2,1
+19931,81,2.1.4.2,1
+19931,137,2.1.4.2.2,0
+19933,81,2.1.4.2,1
+19933,137,2.1.4.2.2,0
+19936,79,2.1.4.2,1
+19936,137,2.1.4.2.2,0
+19941,81,2.1.4.2,1
+19941,137,2.1.4.2.2,0
+19943,81,2.1.4.2,1
+19943,137,2.1.4.2.2,0
+19947,137,2.1.4.2.2,0
+19947,81,2.1.4.2,1
+19948,137,2.1.4.2.2,0
+19948,81,2.1.4.2,1
+19951,93,1.3.1,1
+19951,138,1.3.1.5,0
+19952,39,1.3.1,1
+19952,100,1.3.1,1
+19952,99,1.3.1,1
+19952,138,1.3.1.5,0
+19952,93,1.3.1,1
+19953,93,1.3.1,1
+19953,100,1.3.1,1
+19953,138,1.3.1.5,0
+19954,100,1.3.1,1
+19954,138,1.3.1.5,0
+19954,39,1.3.1,1
+19954,99,1.3.1,1
+19955,99,1.3.1,1
+19955,138,1.3.1.5,0
+19956,39,1.3.1,1
+19956,138,1.3.1.5,0
+19957,100,1.3.1,1
+19957,39,1.3.1,1
+19957,138,1.3.1.5,0
+19958,39,1.3.1,1
+19958,138,1.3.1.5,0
+19959,138,1.3.1.5,0
+19959,93,1.3.1,1
+19960,100,1.3.1,1
+19960,93,1.3.1,1
+19960,138,1.3.1.5,0
+19961,85,1.3.1,1
+19961,99,1.3.1,1
+19961,138,1.3.1.5,0
+19964,100,1.3.1,1
+19964,138,1.3.1.5,0
+19964,93,1.3.1,1
+19964,39,1.3.1,1
+19964,85,1.3.1,1
+19966,39,1.3.1,1
+19966,138,1.3.1.5,0
+19966,100,1.3.1,1
+19967,93,1.3.1,1
+19967,99,1.3.1,1
+19967,138,1.3.1.5,0
+19969,85,1.3.1,1
+19969,39,1.3.1,1
+19969,138,1.3.1.5,0
+19970,93,1.3.1,1
+19970,138,1.3.1.5,0
+19972,100,1.3.1,1
+19972,138,1.3.1.5,0
+19972,39,1.3.1,1
+19973,99,1.3.1,1
+19973,138,1.3.1.5,0
+19973,85,1.3.1,1
+19973,39,1.3.1,1
+19974,99,1.3.1,1
+19974,138,1.3.1.5,0
+19975,39,1.3.1,1
+19975,99,1.3.1,1
+19975,138,1.3.1.5,0
+19976,85,1.3.1,1
+19976,138,1.3.1.5,0
+19976,93,1.3.1,1
+19977,138,1.3.1.5,0
+19977,93,1.3.1,1
+19978,99,1.3.1,1
+19978,138,1.3.1.5,0
+19979,85,1.3.1,1
+19979,93,1.3.1,1
+19979,138,1.3.1.5,0
+19981,93,1.3.1,1
+19981,138,1.3.1.5,0
+19982,39,1.3.1,1
+19982,138,1.3.1.5,0
+19983,100,1.3.1,1
+19983,85,1.3.1,1
+19983,138,1.3.1.5,0
+19984,138,1.3.1.5,0
+19984,39,1.3.1,1
+19985,85,1.3.1,1
+19985,138,1.3.1.5,0
+19985,99,1.3.1,1
+19986,106,1.3,2
+19986,99,1.3.1,1
+19986,138,1.3.1.5,0
+19986,100,1.3.1,1
+19986,39,1.3.1,1
+19987,93,1.3.1,1
+19987,138,1.3.1.5,0
+19987,85,1.3.1,1
+19988,93,1.3.1,1
+19988,85,1.3.1,1
+19988,138,1.3.1.5,0
+19989,85,1.3.1,1
+19989,100,1.3.1,1
+19989,138,1.3.1.5,0
+19990,100,1.3.1,1
+19990,138,1.3.1.5,0
+19991,138,1.3.1.5,0
+19991,93,1.3.1,1
+19991,39,1.3.1,1
+19992,100,1.3.1,1
+19992,138,1.3.1.5,0
+19993,99,1.3.1,1
+19993,93,1.3.1,1
+19993,138,1.3.1.5,0
+19994,39,1.3.1,1
+19994,85,1.3.1,1
+19994,138,1.3.1.5,0
+19995,85,1.3.1,1
+19995,138,1.3.1.5,0
+19995,93,1.3.1,1
+19997,138,1.3.1.5,0
+19997,99,1.3.1,1
+19997,39,1.3.1,1
+19998,99,1.3.1,1
+19998,100,1.3.1,1
+19998,85,1.3.1,1
+19998,138,1.3.1.5,0
+19999,93,1.3.1,1
+19999,99,1.3.1,1
+19999,138,1.3.1.5,0
+20000,85,1.3.1,1
+20000,138,1.3.1.5,0
+20000,93,1.3.1,1
+20002,139,1.3.3.7,0
+20002,75,1.3.3,1
+20003,99,1.3.3,1
+20003,139,1.3.3.7,0
+20003,97,1.3.3,1
+20004,97,1.3.3,1
+20004,139,1.3.3.7,0
+20005,75,1.3.3,1
+20005,139,1.3.3.7,0
+20005,97,1.3.3,1
+20006,99,1.3.3,1
+20006,139,1.3.3.7,0
+20006,75,1.3.3,1
+20007,99,1.3.3,1
+20007,139,1.3.3.7,0
+20008,97,1.3.3,1
+20008,139,1.3.3.7,0
+20009,106,1.3,2
+20009,75,1.3.3,1
+20009,139,1.3.3.7,0
+20010,139,1.3.3.7,0
+20010,75,1.3.3,1
+20011,139,1.3.3.7,0
+20011,75,1.3.3,1
+20011,99,1.3.3,1
+20011,97,1.3.3,1
+20014,139,1.3.3.7,0
+20014,75,1.3.3,1
+20016,75,1.3.3,1
+20016,99,1.3.3,1
+20016,139,1.3.3.7,0
+20016,97,1.3.3,1
+20019,139,1.3.3.7,0
+20019,97,1.3.3,1
+20019,29,1.3,2
+20020,97,1.3.3,1
+20020,139,1.3.3.7,0
+20022,139,1.3.3.7,0
+20022,75,1.3.3,1
+20023,29,1.3,2
+20023,97,1.3.3,1
+20023,99,1.3.3,1
+20023,139,1.3.3.7,0
+20026,99,1.3.3,1
+20026,139,1.3.3.7,0
+20026,97,1.3.3,1
+20027,97,1.3.3,1
+20027,139,1.3.3.7,0
+20028,139,1.3.3.7,0
+20028,97,1.3.3,1
+20029,97,1.3.3,1
+20029,139,1.3.3.7,0
+20031,139,1.3.3.7,0
+20031,170,1,3
+20031,75,1.3.3,1
+20031,99,1.3.3,1
+20031,106,1.3,2
+20031,29,1.3,2
+20032,97,1.3.3,1
+20032,139,1.3.3.7,0
+20033,75,1.3.3,1
+20033,139,1.3.3.7,0
+20033,170,1,3
+20033,29,1.3,2
+20034,75,1.3.3,1
+20034,139,1.3.3.7,0
+20036,75,1.3.3,1
+20036,139,1.3.3.7,0
+20037,97,1.3.3,1
+20037,139,1.3.3.7,0
+20038,139,1.3.3.7,0
+20038,99,1.3.3,1
+20039,97,1.3.3,1
+20039,139,1.3.3.7,0
+20040,139,1.3.3.7,0
+20040,97,1.3.3,1
+20041,75,1.3.3,1
+20041,139,1.3.3.7,0
+20043,106,1.3,2
+20043,97,1.3.3,1
+20043,99,1.3.3,1
+20043,139,1.3.3.7,0
+20044,75,1.3.3,1
+20044,97,1.3.3,1
+20044,139,1.3.3.7,0
+20045,99,1.3.3,1
+20045,139,1.3.3.7,0
+20047,139,1.3.3.7,0
+20047,75,1.3.3,1
+20048,99,1.3.3,1
+20048,97,1.3.3,1
+20048,75,1.3.3,1
+20048,139,1.3.3.7,0
+20049,99,1.3.3,1
+20049,139,1.3.3.7,0
+20050,97,1.3.3,1
+20050,139,1.3.3.7,0
+20052,157,1.4.1,1
+20052,140,1.4.1.1,0
+20055,140,1.4.1.1,0
+20055,157,1.4.1,1
+20056,140,1.4.1.1,0
+20056,157,1.4.1,1
+20072,140,1.4.1.1,0
+20072,157,1.4.1,1
+20083,140,1.4.1.1,0
+20083,157,1.4.1,1
+20084,140,1.4.1.1,0
+20084,157,1.4.1,1
+20101,140,1.4.1.4,0
+20101,157,1.4.1,1
+20103,157,1.4.1,1
+20103,140,1.4.1.4,0
+20104,157,1.4.1,1
+20104,140,1.4.1.4,0
+20105,140,1.4.1.4,0
+20105,157,1.4.1,1
+20106,140,1.4.1.4,0
+20106,157,1.4.1,1
+20108,140,1.4.1.4,0
+20108,157,1.4.1,1
+20111,157,1.4.1,1
+20111,140,1.4.1.4,0
+20114,157,1.4.1,1
+20114,140,1.4.1.4,0
+20119,157,1.4.1,1
+20119,140,1.4.1.4,0
+20120,140,1.4.1.4,0
+20120,157,1.4.1,1
+20123,140,1.4.1.4,0
+20123,157,1.4.1,1
+20124,157,1.4.1,1
+20124,140,1.4.1.4,0
+20125,140,1.4.1.4,0
+20125,157,1.4.1,1
+20126,157,1.4.1,1
+20126,140,1.4.1.4,0
+20132,140,1.4.1.4,0
+20132,157,1.4.1,1
+20133,140,1.4.1.4,0
+20133,157,1.4.1,1
+20134,140,1.4.1.4,0
+20134,157,1.4.1,1
+20136,157,1.4.1,1
+20136,140,1.4.1.4,0
+20139,157,1.4.1,1
+20139,140,1.4.1.4,0
+20139,126,1.4,2
+20139,170,1,3
+20141,140,1.4.1.4,0
+20141,157,1.4.1,1
+20142,157,1.4.1,1
+20142,140,1.4.1.4,0
+20143,157,1.4.1,1
+20143,140,1.4.1.4,0
+20144,157,1.4.1,1
+20144,140,1.4.1.4,0
+20147,140,1.4.1.4,0
+20147,157,1.4.1,1
+20148,157,1.4.1,1
+20148,140,1.4.1.4,0
+20151,157,1.4.1,1
+20151,140,1.4.1.5,0
+20152,140,1.4.1.5,0
+20152,157,1.4.1,1
+20157,157,1.4.1,1
+20157,140,1.4.1.5,0
+20158,140,1.4.1.5,0
+20158,157,1.4.1,1
+20164,157,1.4.1,1
+20164,140,1.4.1.5,0
+20166,157,1.4.1,1
+20166,140,1.4.1.5,0
+20170,140,1.4.1.5,0
+20170,157,1.4.1,1
+20172,140,1.4.1.5,0
+20172,157,1.4.1,1
+20173,140,1.4.1.5,0
+20173,157,1.4.1,1
+20174,157,1.4.1,1
+20174,140,1.4.1.5,0
+20178,140,1.4.1.5,0
+20178,157,1.4.1,1
+20179,140,1.4.1.5,0
+20179,157,1.4.1,1
+20183,140,1.4.1.5,0
+20183,157,1.4.1,1
+20184,140,1.4.1.5,0
+20184,157,1.4.1,1
+20186,157,1.4.1,1
+20186,140,1.4.1.5,0
+20189,157,1.4.1,1
+20189,140,1.4.1.5,0
+20189,126,1.4,2
+20189,170,1,3
+20192,157,1.4.1,1
+20192,140,1.4.1.5,0
+20201,170,1,3
+20201,126,1.4,2
+20201,140,1.4.5.1,0
+20201,41,1.4.5,1
+20202,41,1.4.5,1
+20202,170,1,3
+20202,140,1.4.5.1,0
+20202,126,1.4,2
+20203,170,1,3
+20203,126,1.4,2
+20203,41,1.4.5,1
+20203,140,1.4.5.1,0
+20204,126,1.4,2
+20204,140,1.4.5.1,0
+20204,170,1,3
+20204,41,1.4.5,1
+20205,126,1.4,2
+20205,140,1.4.5.1,0
+20205,41,1.4.5,1
+20205,170,1,3
+20206,140,1.4.5.1,0
+20206,126,1.4,2
+20206,41,1.4.5,1
+20206,170,1,3
+20207,170,1,3
+20207,41,1.4.5,1
+20207,126,1.4,2
+20207,140,1.4.5.1,0
+20208,41,1.4.5,1
+20208,126,1.4,2
+20208,140,1.4.5.1,0
+20208,170,1,3
+20209,170,1,3
+20209,140,1.4.5.1,0
+20209,126,1.4,2
+20209,41,1.4.5,1
+20210,126,1.4,2
+20210,140,1.4.5.1,0
+20210,41,1.4.5,1
+20210,170,1,3
+20211,126,1.4,2
+20211,170,1,3
+20211,41,1.4.5,1
+20211,140,1.4.5.1,0
+20212,126,1.4,2
+20212,41,1.4.5,1
+20212,170,1,3
+20212,140,1.4.5.1,0
+20213,126,1.4,2
+20213,170,1,3
+20213,41,1.4.5,1
+20213,140,1.4.5.1,0
+20214,140,1.4.5.1,0
+20214,170,1,3
+20214,41,1.4.5,1
+20214,126,1.4,2
+20215,170,1,3
+20215,140,1.4.5.1,0
+20215,126,1.4,2
+20215,41,1.4.5,1
+20216,140,1.4.5.1,0
+20216,126,1.4,2
+20216,170,1,3
+20216,41,1.4.5,1
+20217,140,1.4.5.1,0
+20217,126,1.4,2
+20217,41,1.4.5,1
+20217,170,1,3
+20218,41,1.4.5,1
+20218,140,1.4.5.1,0
+20218,170,1,3
+20218,126,1.4,2
+20219,140,1.4.5.1,0
+20219,126,1.4,2
+20219,170,1,3
+20219,41,1.4.5,1
+20220,170,1,3
+20220,41,1.4.5,1
+20220,140,1.4.5.1,0
+20220,126,1.4,2
+20221,170,1,3
+20221,140,1.4.5.1,0
+20221,126,1.4,2
+20221,41,1.4.5,1
+20222,126,1.4,2
+20222,41,1.4.5,1
+20222,170,1,3
+20222,140,1.4.5.1,0
+20223,126,1.4,2
+20223,170,1,3
+20223,140,1.4.5.1,0
+20223,41,1.4.5,1
+20224,126,1.4,2
+20224,140,1.4.5.1,0
+20224,41,1.4.5,1
+20224,170,1,3
+20225,140,1.4.5.1,0
+20225,41,1.4.5,1
+20225,170,1,3
+20225,126,1.4,2
+20226,126,1.4,2
+20226,140,1.4.5.1,0
+20226,41,1.4.5,1
+20226,170,1,3
+20227,140,1.4.5.1,0
+20227,126,1.4,2
+20227,170,1,3
+20227,41,1.4.5,1
+20228,41,1.4.5,1
+20228,170,1,3
+20228,140,1.4.5.1,0
+20228,126,1.4,2
+20229,41,1.4.5,1
+20229,170,1,3
+20229,126,1.4,2
+20229,140,1.4.5.1,0
+20230,140,1.4.5.1,0
+20230,170,1,3
+20230,126,1.4,2
+20230,41,1.4.5,1
+20231,140,1.4.5.1,0
+20231,126,1.4,2
+20231,170,1,3
+20231,41,1.4.5,1
+20232,140,1.4.5.1,0
+20232,126,1.4,2
+20232,41,1.4.5,1
+20232,170,1,3
+20233,170,1,3
+20233,41,1.4.5,1
+20233,140,1.4.5.1,0
+20233,126,1.4,2
+20234,41,1.4.5,1
+20234,140,1.4.5.1,0
+20234,126,1.4,2
+20234,170,1,3
+20235,170,1,3
+20235,140,1.4.5.1,0
+20235,126,1.4,2
+20235,41,1.4.5,1
+20236,41,1.4.5,1
+20236,170,1,3
+20236,126,1.4,2
+20236,140,1.4.5.1,0
+20237,126,1.4,2
+20237,170,1,3
+20237,140,1.4.5.1,0
+20237,41,1.4.5,1
+20238,140,1.4.5.1,0
+20238,170,1,3
+20238,126,1.4,2
+20238,41,1.4.5,1
+20239,140,1.4.5.1,0
+20239,41,1.4.5,1
+20239,126,1.4,2
+20239,170,1,3
+20240,170,1,3
+20240,140,1.4.5.1,0
+20240,41,1.4.5,1
+20240,126,1.4,2
+20241,170,1,3
+20241,126,1.4,2
+20241,41,1.4.5,1
+20241,140,1.4.5.1,0
+20242,140,1.4.5.1,0
+20242,41,1.4.5,1
+20242,126,1.4,2
+20242,170,1,3
+20243,41,1.4.5,1
+20243,170,1,3
+20243,140,1.4.5.1,0
+20243,126,1.4,2
+20244,170,1,3
+20244,41,1.4.5,1
+20244,140,1.4.5.1,0
+20244,126,1.4,2
+20245,170,1,3
+20245,41,1.4.5,1
+20245,140,1.4.5.1,0
+20245,126,1.4,2
+20246,170,1,3
+20246,140,1.4.5.1,0
+20246,126,1.4,2
+20246,41,1.4.5,1
+20247,41,1.4.5,1
+20247,170,1,3
+20247,126,1.4,2
+20247,140,1.4.5.1,0
+20248,126,1.4,2
+20248,140,1.4.5.1,0
+20248,170,1,3
+20248,41,1.4.5,1
+20249,170,1,3
+20249,140,1.4.5.1,0
+20249,126,1.4,2
+20249,41,1.4.5,1
+20250,170,1,3
+20250,126,1.4,2
+20250,41,1.4.5,1
+20250,140,1.4.5.1,0
+20251,41,1.4.5,1
+20251,140,1.4.5.3,0
+20252,140,1.4.5.3,0
+20252,41,1.4.5,1
+20253,41,1.4.5,1
+20253,140,1.4.5.3,0
+20256,140,1.4.5.3,0
+20256,41,1.4.5,1
+20257,41,1.4.5,1
+20257,140,1.4.5.3,0
+20258,41,1.4.5,1
+20258,126,1.4,2
+20258,140,1.4.5.3,0
+20258,170,1,3
+20259,140,1.4.5.3,0
+20259,41,1.4.5,1
+20260,41,1.4.5,1
+20260,140,1.4.5.3,0
+20261,41,1.4.5,1
+20261,140,1.4.5.3,0
+20266,140,1.4.5.3,0
+20266,41,1.4.5,1
+20270,140,1.4.5.3,0
+20270,41,1.4.5,1
+20272,126,1.4,2
+20272,41,1.4.5,1
+20272,170,1,3
+20272,140,1.4.5.3,0
+20273,140,1.4.5.3,0
+20273,41,1.4.5,1
+20279,140,1.4.5.3,0
+20279,41,1.4.5,1
+20281,140,1.4.5.3,0
+20281,41,1.4.5,1
+20283,140,1.4.5.3,0
+20283,41,1.4.5,1
+20289,140,1.4.5.3,0
+20289,41,1.4.5,1
+20291,140,1.4.5.3,0
+20291,41,1.4.5,1
+20292,41,1.4.5,1
+20292,140,1.4.5.3,0
+20294,140,1.4.5.3,0
+20294,41,1.4.5,1
+20298,41,1.4.5,1
+20298,140,1.4.5.3,0
+20299,41,1.4.5,1
+20299,140,1.4.5.3,0
+20301,41,1.4.5,1
+20301,140,1.4.5.4,0
+20302,140,1.4.5.4,0
+20302,41,1.4.5,1
+20303,41,1.4.5,1
+20303,140,1.4.5.4,0
+20304,140,1.4.5.4,0
+20304,41,1.4.5,1
+20305,140,1.4.5.4,0
+20305,41,1.4.5,1
+20306,140,1.4.5.4,0
+20306,41,1.4.5,1
+20307,41,1.4.5,1
+20307,140,1.4.5.4,0
+20308,41,1.4.5,1
+20308,126,1.4,2
+20308,140,1.4.5.4,0
+20308,170,1,3
+20309,170,1,3
+20309,140,1.4.5.4,0
+20309,126,1.4,2
+20309,41,1.4.5,1
+20310,126,1.4,2
+20310,140,1.4.5.4,0
+20310,41,1.4.5,1
+20310,170,1,3
+20311,126,1.4,2
+20311,170,1,3
+20311,41,1.4.5,1
+20311,140,1.4.5.4,0
+20314,41,1.4.5,1
+20314,140,1.4.5.4,0
+20316,140,1.4.5.4,0
+20316,126,1.4,2
+20316,170,1,3
+20316,41,1.4.5,1
+20319,41,1.4.5,1
+20319,140,1.4.5.4,0
+20320,140,1.4.5.4,0
+20320,41,1.4.5,1
+20322,140,1.4.5.4,0
+20322,41,1.4.5,1
+20323,126,1.4,2
+20323,170,1,3
+20323,140,1.4.5.4,0
+20323,41,1.4.5,1
+20324,126,1.4,2
+20324,140,1.4.5.4,0
+20324,41,1.4.5,1
+20324,170,1,3
+20325,140,1.4.5.4,0
+20325,41,1.4.5,1
+20325,170,1,3
+20325,126,1.4,2
+20326,41,1.4.5,1
+20326,140,1.4.5.4,0
+20328,140,1.4.5.4,0
+20328,41,1.4.5,1
+20329,140,1.4.5.4,0
+20329,41,1.4.5,1
+20331,140,1.4.5.4,0
+20331,41,1.4.5,1
+20332,41,1.4.5,1
+20332,140,1.4.5.4,0
+20333,170,1,3
+20333,41,1.4.5,1
+20333,140,1.4.5.4,0
+20333,126,1.4,2
+20334,41,1.4.5,1
+20334,140,1.4.5.4,0
+20336,41,1.4.5,1
+20336,140,1.4.5.4,0
+20339,140,1.4.5.4,0
+20339,41,1.4.5,1
+20341,140,1.4.5.4,0
+20341,41,1.4.5,1
+20342,140,1.4.5.4,0
+20342,41,1.4.5,1
+20342,126,1.4,2
+20342,170,1,3
+20343,41,1.4.5,1
+20343,170,1,3
+20343,140,1.4.5.4,0
+20343,126,1.4,2
+20344,140,1.4.5.4,0
+20344,41,1.4.5,1
+20347,140,1.4.5.4,0
+20347,41,1.4.5,1
+20348,126,1.4,2
+20348,140,1.4.5.4,0
+20348,170,1,3
+20348,41,1.4.5,1
+20349,170,1,3
+20349,140,1.4.5.4,0
+20349,126,1.4,2
+20349,41,1.4.5,1
+20351,41,1.4.5,1
+20351,140,1.4.5.9,0
+20352,140,1.4.5.9,0
+20352,41,1.4.5,1
+20353,41,1.4.5,1
+20353,140,1.4.5.9,0
+20354,140,1.4.5.9,0
+20354,41,1.4.5,1
+20355,140,1.4.5.9,0
+20355,41,1.4.5,1
+20356,140,1.4.5.9,0
+20356,126,1.4,2
+20356,41,1.4.5,1
+20356,170,1,3
+20357,170,1,3
+20357,41,1.4.5,1
+20357,126,1.4,2
+20357,140,1.4.5.9,0
+20358,41,1.4.5,1
+20358,126,1.4,2
+20358,140,1.4.5.9,0
+20358,170,1,3
+20359,170,1,3
+20359,140,1.4.5.9,0
+20359,126,1.4,2
+20359,41,1.4.5,1
+20360,126,1.4,2
+20360,140,1.4.5.9,0
+20360,41,1.4.5,1
+20360,170,1,3
+20361,41,1.4.5,1
+20361,140,1.4.5.9,0
+20364,140,1.4.5.9,0
+20364,170,1,3
+20364,41,1.4.5,1
+20364,126,1.4,2
+20366,140,1.4.5.9,0
+20366,126,1.4,2
+20366,170,1,3
+20366,41,1.4.5,1
+20369,41,1.4.5,1
+20369,140,1.4.5.9,0
+20370,140,1.4.5.9,0
+20370,41,1.4.5,1
+20372,140,1.4.5.9,0
+20372,41,1.4.5,1
+20373,126,1.4,2
+20373,170,1,3
+20373,140,1.4.5.9,0
+20373,41,1.4.5,1
+20374,126,1.4,2
+20374,140,1.4.5.9,0
+20374,41,1.4.5,1
+20374,170,1,3
+20375,41,1.4.5,1
+20375,140,1.4.5.9,0
+20376,41,1.4.5,1
+20376,140,1.4.5.9,0
+20378,140,1.4.5.9,0
+20378,41,1.4.5,1
+20379,140,1.4.5.9,0
+20379,41,1.4.5,1
+20381,140,1.4.5.9,0
+20381,41,1.4.5,1
+20382,140,1.4.5.9,0
+20382,126,1.4,2
+20382,41,1.4.5,1
+20382,170,1,3
+20383,140,1.4.5.9,0
+20383,41,1.4.5,1
+20384,41,1.4.5,1
+20384,140,1.4.5.9,0
+20384,126,1.4,2
+20384,170,1,3
+20386,41,1.4.5,1
+20386,170,1,3
+20386,126,1.4,2
+20386,140,1.4.5.9,0
+20389,140,1.4.5.9,0
+20389,41,1.4.5,1
+20389,126,1.4,2
+20389,170,1,3
+20391,170,1,3
+20391,126,1.4,2
+20391,41,1.4.5,1
+20391,140,1.4.5.9,0
+20392,41,1.4.5,1
+20392,140,1.4.5.9,0
+20393,41,1.4.5,1
+20393,170,1,3
+20393,140,1.4.5.9,0
+20393,126,1.4,2
+20394,140,1.4.5.9,0
+20394,41,1.4.5,1
+20397,140,1.4.5.9,0
+20397,41,1.4.5,1
+20398,41,1.4.5,1
+20398,140,1.4.5.9,0
+20399,41,1.4.5,1
+20399,140,1.4.5.9,0
+20402,141,1.3.3.2,0
+20402,75,1.3.3,1
+20406,141,1.3.3.2,0
+20406,75,1.3.3,1
+20407,141,1.3.3.2,0
+20407,75,1.3.3,1
+20408,97,1.3.3,1
+20408,141,1.3.3.2,0
+20410,97,1.3.3,1
+20410,141,1.3.3.2,0
+20411,141,1.3.3.2,0
+20411,99,1.3.3,1
+20414,75,1.3.3,1
+20414,141,1.3.3.2,0
+20414,99,1.3.3,1
+20422,97,1.3.3,1
+20422,141,1.3.3.2,0
+20423,99,1.3.3,1
+20423,141,1.3.3.2,0
+20426,141,1.3.3.2,0
+20426,75,1.3.3,1
+20426,97,1.3.3,1
+20427,99,1.3.3,1
+20427,141,1.3.3.2,0
+20428,141,1.3.3.2,0
+20428,97,1.3.3,1
+20429,97,1.3.3,1
+20429,141,1.3.3.2,0
+20431,141,1.3.3.2,0
+20431,75,1.3.3,1
+20432,97,1.3.3,1
+20432,141,1.3.3.2,0
+20433,75,1.3.3,1
+20433,141,1.3.3.2,0
+20434,75,1.3.3,1
+20434,141,1.3.3.2,0
+20436,99,1.3.3,1
+20436,75,1.3.3,1
+20436,141,1.3.3.2,0
+20440,99,1.3.3,1
+20440,141,1.3.3.2,0
+20442,99,1.3.3,1
+20442,141,1.3.3.2,0
+20443,141,1.3.3.2,0
+20443,97,1.3.3,1
+20444,99,1.3.3,1
+20444,141,1.3.3.2,0
+20447,141,1.3.3.2,0
+20447,75,1.3.3,1
+20449,99,1.3.3,1
+20449,141,1.3.3.2,0
+20454,157,1.4.1,1
+20454,142,1.4.1.1,0
+20455,142,1.4.1.1,0
+20455,157,1.4.1,1
+20456,142,1.4.1.1,0
+20456,157,1.4.1,1
+20457,157,1.4.1,1
+20457,142,1.4.1.1,0
+20464,142,1.4.1.1,0
+20464,157,1.4.1,1
+20479,157,1.4.1,1
+20479,142,1.4.1.1,0
+20484,142,1.4.1.1,0
+20484,157,1.4.1,1
+20491,157,1.4.1,1
+20491,142,1.4.1.1,0
+20492,142,1.4.1.1,0
+20492,157,1.4.1,1
+20493,142,1.4.1.1,0
+20493,157,1.4.1,1
+20501,126,1.4,1
+20501,142,1.4.2,0
+20501,170,1,2
+20502,142,1.4.2,0
+20502,170,1,2
+20502,126,1.4,1
+20503,170,1,2
+20503,126,1.4,1
+20503,142,1.4.2,0
+20504,126,1.4,1
+20504,142,1.4.2,0
+20504,170,1,2
+20505,126,1.4,1
+20505,142,1.4.2,0
+20505,170,1,2
+20506,142,1.4.2,0
+20506,170,1,2
+20506,126,1.4,1
+20507,126,1.4,1
+20507,142,1.4.2,0
+20507,170,1,2
+20508,142,1.4.2,0
+20508,170,1,2
+20508,126,1.4,1
+20509,142,1.4.2,0
+20509,170,1,2
+20509,126,1.4,1
+20510,142,1.4.2,0
+20510,170,1,2
+20510,126,1.4,1
+20511,126,1.4,1
+20511,170,1,2
+20511,142,1.4.2,0
+20512,170,1,2
+20512,126,1.4,1
+20512,142,1.4.2,0
+20513,170,1,2
+20513,126,1.4,1
+20513,142,1.4.2,0
+20514,126,1.4,1
+20514,170,1,2
+20514,142,1.4.2,0
+20515,126,1.4,1
+20515,170,1,2
+20515,142,1.4.2,0
+20516,142,1.4.2,0
+20516,126,1.4,1
+20516,170,1,2
+20517,142,1.4.2,0
+20517,126,1.4,1
+20517,170,1,2
+20518,126,1.4,1
+20518,142,1.4.2,0
+20518,170,1,2
+20519,170,1,2
+20519,142,1.4.2,0
+20519,126,1.4,1
+20520,126,1.4,1
+20520,170,1,2
+20520,142,1.4.2,0
+20521,170,1,2
+20521,142,1.4.2,0
+20521,126,1.4,1
+20522,126,1.4,1
+20522,170,1,2
+20522,142,1.4.2,0
+20523,142,1.4.2,0
+20523,170,1,2
+20523,126,1.4,1
+20524,142,1.4.2,0
+20524,170,1,2
+20524,126,1.4,1
+20525,126,1.4,1
+20525,142,1.4.2,0
+20525,170,1,2
+20526,142,1.4.2,0
+20526,126,1.4,1
+20526,170,1,2
+20527,126,1.4,1
+20527,170,1,2
+20527,142,1.4.2,0
+20528,170,1,2
+20528,142,1.4.2,0
+20528,126,1.4,1
+20529,142,1.4.2,0
+20529,126,1.4,1
+20529,170,1,2
+20530,142,1.4.2,0
+20530,126,1.4,1
+20530,170,1,2
+20531,142,1.4.2,0
+20531,126,1.4,1
+20531,170,1,2
+20532,142,1.4.2,0
+20532,170,1,2
+20532,126,1.4,1
+20533,142,1.4.2,0
+20533,170,1,2
+20533,126,1.4,1
+20534,170,1,2
+20534,126,1.4,1
+20534,142,1.4.2,0
+20535,170,1,2
+20535,142,1.4.2,0
+20535,126,1.4,1
+20536,126,1.4,1
+20536,170,1,2
+20536,142,1.4.2,0
+20537,126,1.4,1
+20537,142,1.4.2,0
+20537,170,1,2
+20538,170,1,2
+20538,126,1.4,1
+20538,142,1.4.2,0
+20539,126,1.4,1
+20539,170,1,2
+20539,142,1.4.2,0
+20540,126,1.4,1
+20540,170,1,2
+20540,142,1.4.2,0
+20541,142,1.4.2,0
+20541,126,1.4,1
+20541,170,1,2
+20542,126,1.4,1
+20542,142,1.4.2,0
+20542,170,1,2
+20543,170,1,2
+20543,126,1.4,1
+20543,142,1.4.2,0
+20544,126,1.4,1
+20544,170,1,2
+20544,142,1.4.2,0
+20545,142,1.4.2,0
+20545,170,1,2
+20545,126,1.4,1
+20546,126,1.4,1
+20546,142,1.4.2,0
+20546,170,1,2
+20547,170,1,2
+20547,142,1.4.2,0
+20547,126,1.4,1
+20548,170,1,2
+20548,142,1.4.2,0
+20548,126,1.4,1
+20549,170,1,2
+20549,142,1.4.2,0
+20549,126,1.4,1
+20550,142,1.4.2,0
+20550,170,1,2
+20550,126,1.4,1
+20551,126,1.4,1
+20551,142,1.4.3,0
+20551,170,1,2
+20552,142,1.4.3,0
+20552,170,1,2
+20552,126,1.4,1
+20553,170,1,2
+20553,126,1.4,1
+20553,142,1.4.3,0
+20554,126,1.4,1
+20554,142,1.4.3,0
+20554,170,1,2
+20555,126,1.4,1
+20555,142,1.4.3,0
+20555,170,1,2
+20556,142,1.4.3,0
+20556,170,1,2
+20556,126,1.4,1
+20557,126,1.4,1
+20557,142,1.4.3,0
+20557,170,1,2
+20558,142,1.4.3,0
+20558,170,1,2
+20558,126,1.4,1
+20559,142,1.4.3,0
+20559,170,1,2
+20559,126,1.4,1
+20560,142,1.4.3,0
+20560,170,1,2
+20560,126,1.4,1
+20561,126,1.4,1
+20561,170,1,2
+20561,142,1.4.3,0
+20562,170,1,2
+20562,126,1.4,1
+20562,142,1.4.3,0
+20563,170,1,2
+20563,126,1.4,1
+20563,142,1.4.3,0
+20564,126,1.4,1
+20564,170,1,2
+20564,142,1.4.3,0
+20565,126,1.4,1
+20565,170,1,2
+20565,142,1.4.3,0
+20566,142,1.4.3,0
+20566,126,1.4,1
+20566,170,1,2
+20567,142,1.4.3,0
+20567,126,1.4,1
+20567,170,1,2
+20568,126,1.4,1
+20568,142,1.4.3,0
+20568,170,1,2
+20569,170,1,2
+20569,142,1.4.3,0
+20569,126,1.4,1
+20570,126,1.4,1
+20570,170,1,2
+20570,142,1.4.3,0
+20571,170,1,2
+20571,142,1.4.3,0
+20571,126,1.4,1
+20572,126,1.4,1
+20572,170,1,2
+20572,142,1.4.3,0
+20573,142,1.4.3,0
+20573,170,1,2
+20573,126,1.4,1
+20574,142,1.4.3,0
+20574,170,1,2
+20574,126,1.4,1
+20575,126,1.4,1
+20575,142,1.4.3,0
+20575,170,1,2
+20576,142,1.4.3,0
+20576,126,1.4,1
+20576,170,1,2
+20577,126,1.4,1
+20577,170,1,2
+20577,142,1.4.3,0
+20578,170,1,2
+20578,142,1.4.3,0
+20578,126,1.4,1
+20579,142,1.4.3,0
+20579,126,1.4,1
+20579,170,1,2
+20580,142,1.4.3,0
+20580,126,1.4,1
+20580,170,1,2
+20581,142,1.4.3,0
+20581,126,1.4,1
+20581,170,1,2
+20582,142,1.4.3,0
+20582,170,1,2
+20582,126,1.4,1
+20583,142,1.4.3,0
+20583,170,1,2
+20583,126,1.4,1
+20584,170,1,2
+20584,126,1.4,1
+20584,142,1.4.3,0
+20585,170,1,2
+20585,142,1.4.3,0
+20585,126,1.4,1
+20586,126,1.4,1
+20586,170,1,2
+20586,142,1.4.3,0
+20587,126,1.4,1
+20587,142,1.4.3,0
+20587,170,1,2
+20588,170,1,2
+20588,126,1.4,1
+20588,142,1.4.3,0
+20589,126,1.4,1
+20589,170,1,2
+20589,142,1.4.3,0
+20590,126,1.4,1
+20590,170,1,2
+20590,142,1.4.3,0
+20591,142,1.4.3,0
+20591,126,1.4,1
+20591,170,1,2
+20592,126,1.4,1
+20592,142,1.4.3,0
+20592,170,1,2
+20593,170,1,2
+20593,126,1.4,1
+20593,142,1.4.3,0
+20594,126,1.4,1
+20594,170,1,2
+20594,142,1.4.3,0
+20595,142,1.4.3,0
+20595,170,1,2
+20595,126,1.4,1
+20596,126,1.4,1
+20596,142,1.4.3,0
+20596,170,1,2
+20597,170,1,2
+20597,142,1.4.3,0
+20597,126,1.4,1
+20598,170,1,2
+20598,142,1.4.3,0
+20598,126,1.4,1
+20599,170,1,2
+20599,142,1.4.3,0
+20599,126,1.4,1
+20600,142,1.4.3,0
+20600,170,1,2
+20600,126,1.4,1
+20601,143,2.1.1.1,0
+20601,106,2.1.1,1
+20602,143,2.1.1.1,0
+20602,85,2.1.1,1
+20604,143,2.1.1.1,0
+20604,85,2.1.1,1
+20606,148,2.1.1,1
+20606,143,2.1.1.1,0
+20609,143,2.1.1.1,0
+20609,106,2.1.1,1
+20610,143,2.1.1.1,0
+20610,80,2.1.1,1
+20610,106,2.1.1,1
+20614,85,2.1.1,1
+20614,143,2.1.1.1,0
+20616,85,2.1.1,1
+20616,143,2.1.1.1,0
+20616,106,2.1.1,1
+20616,80,2.1.1,1
+20620,85,2.1.1,1
+20620,143,2.1.1.1,0
+20622,143,2.1.1.1,0
+20622,80,2.1.1,1
+20623,106,2.1.1,1
+20623,143,2.1.1.1,0
+20624,143,2.1.1.1,0
+20624,106,2.1.1,1
+20626,143,2.1.1.1,0
+20626,85,2.1.1,1
+20626,106,2.1.1,1
+20629,143,2.1.1.1,0
+20629,85,2.1.1,1
+20633,143,2.1.1.1,0
+20633,80,2.1.1,1
+20634,143,2.1.1.1,0
+20634,148,2.1.1,1
+20635,106,2.1.1,1
+20635,148,2.1.1,1
+20635,143,2.1.1.1,0
+20636,80,2.1.1,1
+20636,143,2.1.1.1,0
+20638,148,2.1.1,1
+20638,143,2.1.1.1,0
+20639,148,2.1.1,1
+20639,143,2.1.1.1,0
+20639,85,2.1.1,1
+20643,148,2.1.1,1
+20643,106,2.1.1,1
+20643,143,2.1.1.1,0
+20644,143,2.1.1.1,0
+20644,148,2.1.1,1
+20647,143,2.1.1.1,0
+20647,106,2.1.1,1
+20648,143,2.1.1.1,0
+20648,106,2.1.1,1
+20648,148,2.1.1,1
+20650,148,2.1.1,1
+20650,143,2.1.1.1,0
+20652,80,2.1.1,1
+20652,143,2.1.1.2,0
+20654,143,2.1.1.2,0
+20654,148,2.1.1,1
+20655,143,2.1.1.2,0
+20655,85,2.1.1,1
+20657,143,2.1.1.2,0
+20657,85,2.1.1,1
+20658,85,2.1.1,1
+20658,143,2.1.1.2,0
+20660,85,2.1.1,1
+20660,143,2.1.1.2,0
+20661,148,2.1.1,1
+20661,143,2.1.1.2,0
+20672,143,2.1.1.2,0
+20672,148,2.1.1,1
+20672,85,2.1.1,1
+20673,148,2.1.1,1
+20673,143,2.1.1.2,0
+20676,143,2.1.1.2,0
+20676,106,2.1.1,1
+20677,148,2.1.1,1
+20677,85,2.1.1,1
+20677,143,2.1.1.2,0
+20678,85,2.1.1,1
+20678,143,2.1.1.2,0
+20679,143,2.1.1.2,0
+20679,80,2.1.1,1
+20681,143,2.1.1.2,0
+20681,148,2.1.1,1
+20682,106,2.1.1,1
+20682,143,2.1.1.2,0
+20683,143,2.1.1.2,0
+20683,148,2.1.1,1
+20686,143,2.1.1.2,0
+20686,106,2.1.1,1
+20687,143,2.1.1.2,0
+20687,148,2.1.1,1
+20691,80,2.1.1,1
+20691,143,2.1.1.2,0
+20692,143,2.1.1.2,0
+20692,85,2.1.1,1
+20692,80,2.1.1,1
+20693,143,2.1.1.2,0
+20693,85,2.1.1,1
+20694,143,2.1.1.2,0
+20694,80,2.1.1,1
+20698,85,2.1.1,1
+20698,80,2.1.1,1
+20698,143,2.1.1.2,0
+20699,143,2.1.1.2,0
+20699,85,2.1.1,1
+20704,143,2.1.1.3,0
+20704,106,2.1.1,1
+20705,148,2.1.1,1
+20705,80,2.1.1,1
+20705,143,2.1.1.3,0
+20705,85,2.1.1,1
+20706,143,2.1.1.3,0
+20706,85,2.1.1,1
+20708,106,2.1.1,1
+20708,80,2.1.1,1
+20708,143,2.1.1.3,0
+20709,106,2.1.1,1
+20709,143,2.1.1.3,0
+20711,80,2.1.1,1
+20711,148,2.1.1,1
+20711,143,2.1.1.3,0
+20714,80,2.1.1,1
+20714,143,2.1.1.3,0
+20716,143,2.1.1.3,0
+20716,106,2.1.1,1
+20722,106,2.1.1,1
+20722,143,2.1.1.3,0
+20724,143,2.1.1.3,0
+20724,106,2.1.1,1
+20726,143,2.1.1.3,0
+20726,85,2.1.1,1
+20729,143,2.1.1.3,0
+20729,85,2.1.1,1
+20731,106,2.1.1,1
+20731,99,2.1,2
+20731,143,2.1.1.3,0
+20731,85,2.1.1,1
+20732,85,2.1.1,1
+20732,143,2.1.1.3,0
+20733,143,2.1.1.3,0
+20733,80,2.1.1,1
+20734,148,2.1.1,1
+20734,143,2.1.1.3,0
+20735,143,2.1.1.3,0
+20735,148,2.1.1,1
+20737,143,2.1.1.3,0
+20737,148,2.1.1,1
+20738,106,2.1.1,1
+20738,143,2.1.1.3,0
+20739,143,2.1.1.3,0
+20739,148,2.1.1,1
+20740,106,2.1.1,1
+20740,148,2.1.1,1
+20740,143,2.1.1.3,0
+20741,106,2.1.1,1
+20741,143,2.1.1.3,0
+20743,143,2.1.1.3,0
+20743,80,2.1.1,1
+20748,80,2.1.1,1
+20748,143,2.1.1.3,0
+20748,148,2.1.1,1
+20752,143,2.1.1.4,0
+20752,80,2.1.1,1
+20754,143,2.1.1.4,0
+20754,106,2.1.1,1
+20756,106,2.1.1,1
+20756,143,2.1.1.4,0
+20757,80,2.1.1,1
+20757,143,2.1.1.4,0
+20758,148,2.1.1,1
+20758,143,2.1.1.4,0
+20759,143,2.1.1.4,0
+20759,80,2.1.1,1
+20761,106,2.1.1,1
+20761,143,2.1.1.4,0
+20764,143,2.1.1.4,0
+20764,106,2.1.1,1
+20764,85,2.1.1,1
+20766,143,2.1.1.4,0
+20766,148,2.1.1,1
+20767,148,2.1.1,1
+20767,143,2.1.1.4,0
+20769,148,2.1.1,1
+20769,143,2.1.1.4,0
+20770,85,2.1.1,1
+20770,143,2.1.1.4,0
+20772,85,2.1.1,1
+20772,143,2.1.1.4,0
+20774,143,2.1.1.4,0
+20774,106,2.1.1,1
+20775,143,2.1.1.4,0
+20775,80,2.1.1,1
+20776,143,2.1.1.4,0
+20776,85,2.1.1,1
+20777,143,2.1.1.4,0
+20777,148,2.1.1,1
+20778,148,2.1.1,1
+20778,143,2.1.1.4,0
+20781,143,2.1.1.4,0
+20781,85,2.1.1,1
+20781,80,2.1.1,1
+20782,143,2.1.1.4,0
+20782,148,2.1.1,1
+20783,143,2.1.1.4,0
+20783,80,2.1.1,1
+20784,143,2.1.1.4,0
+20784,80,2.1.1,1
+20786,80,2.1.1,1
+20786,143,2.1.1.4,0
+20789,106,2.1.1,1
+20789,143,2.1.1.4,0
+20790,143,2.1.1.4,0
+20790,106,2.1.1,1
+20794,143,2.1.1.4,0
+20794,85,2.1.1,1
+20795,85,2.1.1,1
+20795,143,2.1.1.4,0
+20797,143,2.1.1.4,0
+20797,148,2.1.1,1
+20798,80,2.1.1,1
+20798,143,2.1.1.4,0
+20798,148,2.1.1,1
+20799,106,2.1.1,1
+20799,148,2.1.1,1
+20799,143,2.1.1.4,0
+20800,143,2.1.1.4,0
+20800,106,2.1.1,1
+20802,143,2.1.1.5,0
+20802,148,2.1.1,1
+20802,106,2.1.1,1
+20804,143,2.1.1.5,0
+20804,85,2.1.1,1
+20805,143,2.1.1.5,0
+20805,148,2.1.1,1
+20806,143,2.1.1.5,0
+20806,85,2.1.1,1
+20807,106,2.1.1,1
+20807,143,2.1.1.5,0
+20809,148,2.1.1,1
+20809,143,2.1.1.5,0
+20810,143,2.1.1.5,0
+20810,148,2.1.1,1
+20814,143,2.1.1.5,0
+20814,106,2.1.1,1
+20814,85,2.1.1,1
+20820,80,2.1.1,1
+20820,143,2.1.1.5,0
+20822,143,2.1.1.5,0
+20822,85,2.1.1,1
+20823,143,2.1.1.5,0
+20823,80,2.1.1,1
+20824,143,2.1.1.5,0
+20824,148,2.1.1,1
+20826,148,2.1.1,1
+20826,143,2.1.1.5,0
+20829,143,2.1.1.5,0
+20829,85,2.1.1,1
+20831,143,2.1.1.5,0
+20831,148,2.1.1,1
+20832,80,2.1.1,1
+20832,143,2.1.1.5,0
+20833,143,2.1.1.5,0
+20833,85,2.1.1,1
+20834,143,2.1.1.5,0
+20834,80,2.1.1,1
+20839,143,2.1.1.5,0
+20839,80,2.1.1,1
+20844,143,2.1.1.5,0
+20844,85,2.1.1,1
+20847,80,2.1.1,1
+20847,143,2.1.1.5,0
+20848,85,2.1.1,1
+20848,143,2.1.1.5,0
+20848,148,2.1.1,1
+20852,84,2.1.2,1
+20852,144,2.1.2.1,0
+20853,58,2.1.2,1
+20853,144,2.1.2.1,0
+20854,144,2.1.2.1,0
+20854,84,2.1.2,1
+20855,84,2.1.2,1
+20855,79,2.1.2,1
+20855,144,2.1.2.1,0
+20856,79,2.1.2,1
+20856,159,2.1.2,1
+20856,144,2.1.2.1,0
+20857,144,2.1.2.1,0
+20857,159,2.1.2,1
+20858,144,2.1.2.1,0
+20858,79,2.1.2,1
+20859,79,2.1.2,1
+20859,144,2.1.2.1,0
+20864,79,2.1.2,1
+20864,144,2.1.2.1,0
+20869,79,2.1.2,1
+20869,81,2.1.2,1
+20869,144,2.1.2.1,0
+20870,84,2.1.2,1
+20870,144,2.1.2.1,0
+20872,81,2.1.2,1
+20872,144,2.1.2.1,0
+20873,159,2.1.2,1
+20873,84,2.1.2,1
+20873,144,2.1.2.1,0
+20874,79,2.1.2,1
+20874,58,2.1.2,1
+20874,144,2.1.2.1,0
+20875,144,2.1.2.1,0
+20875,79,2.1.2,1
+20877,84,2.1.2,1
+20877,144,2.1.2.1,0
+20878,79,2.1.2,1
+20878,144,2.1.2.1,0
+20881,144,2.1.2.1,0
+20881,84,2.1.2,1
+20881,159,2.1.2,1
+20882,81,2.1.2,1
+20882,144,2.1.2.1,0
+20883,144,2.1.2.1,0
+20883,81,2.1.2,1
+20884,144,2.1.2.1,0
+20884,79,2.1.2,1
+20886,144,2.1.2.1,0
+20886,81,2.1.2,1
+20886,58,2.1.2,1
+20889,144,2.1.2.1,0
+20889,84,2.1.2,1
+20889,159,2.1.2,1
+20889,79,2.1.2,1
+20889,58,2.1.2,1
+20890,144,2.1.2.1,0
+20890,81,2.1.2,1
+20891,159,2.1.2,1
+20891,144,2.1.2.1,0
+20892,144,2.1.2.1,0
+20892,81,2.1.2,1
+20892,79,2.1.2,1
+20893,79,2.1.2,1
+20893,144,2.1.2.1,0
+20894,58,2.1.2,1
+20894,144,2.1.2.1,0
+20894,79,2.1.2,1
+20895,84,2.1.2,1
+20895,144,2.1.2.1,0
+20898,144,2.1.2.1,0
+20898,58,2.1.2,1
+20900,81,2.1.2,1
+20900,144,2.1.2.1,0
+20902,159,2.1.2,1
+20902,144,2.1.2.2,0
+20902,79,2.1.2,1
+20903,144,2.1.2.2,0
+20903,79,2.1.2,1
+20904,144,2.1.2.2,0
+20904,84,2.1.2,1
+20905,58,2.1.2,1
+20905,144,2.1.2.2,0
+20906,58,2.1.2,1
+20906,79,2.1.2,1
+20906,144,2.1.2.2,0
+20907,144,2.1.2.2,0
+20907,58,2.1.2,1
+20908,81,2.1.2,1
+20908,144,2.1.2.2,0
+20909,144,2.1.2.2,0
+20909,58,2.1.2,1
+20910,79,2.1.2,1
+20910,144,2.1.2.2,0
+20911,81,2.1.2,1
+20911,144,2.1.2.2,0
+20914,79,2.1.2,1
+20914,84,2.1.2,1
+20914,144,2.1.2.2,0
+20916,144,2.1.2.2,0
+20916,84,2.1.2,1
+20920,144,2.1.2.2,0
+20920,81,2.1.2,1
+20922,58,2.1.2,1
+20922,144,2.1.2.2,0
+20923,144,2.1.2.2,0
+20923,58,2.1.2,1
+20926,81,2.1.2,1
+20926,144,2.1.2.2,0
+20928,84,2.1.2,1
+20928,144,2.1.2.2,0
+20931,144,2.1.2.2,0
+20931,79,2.1.2,1
+20932,159,2.1.2,1
+20932,144,2.1.2.2,0
+20933,144,2.1.2.2,0
+20933,79,2.1.2,1
+20934,144,2.1.2.2,0
+20934,58,2.1.2,1
+20938,81,2.1.2,1
+20938,144,2.1.2.2,0
+20939,81,2.1.2,1
+20939,144,2.1.2.2,0
+20940,144,2.1.2.2,0
+20940,81,2.1.2,1
+20942,159,2.1.2,1
+20942,144,2.1.2.2,0
+20943,144,2.1.2.2,0
+20943,58,2.1.2,1
+20944,81,2.1.2,1
+20944,144,2.1.2.2,0
+20945,81,2.1.2,1
+20945,144,2.1.2.2,0
+20947,144,2.1.2.2,0
+20947,84,2.1.2,1
+20948,144,2.1.2.2,0
+20948,81,2.1.2,1
+20948,84,2.1.2,1
+20951,58,2.1.2,1
+20951,159,2.1.2,1
+20951,144,2.1.2.3,0
+20952,159,2.1.2,1
+20952,144,2.1.2.3,0
+20953,58,2.1.2,1
+20953,144,2.1.2.3,0
+20955,79,2.1.2,1
+20955,144,2.1.2.3,0
+20956,84,2.1.2,1
+20956,144,2.1.2.3,0
+20959,144,2.1.2.3,0
+20959,159,2.1.2,1
+20960,84,2.1.2,1
+20960,144,2.1.2.3,0
+20961,58,2.1.2,1
+20961,144,2.1.2.3,0
+20964,81,2.1.2,1
+20964,144,2.1.2.3,0
+20966,144,2.1.2.3,0
+20966,84,2.1.2,1
+20970,58,2.1.2,1
+20970,144,2.1.2.3,0
+20973,144,2.1.2.3,0
+20973,58,2.1.2,1
+20974,159,2.1.2,1
+20974,144,2.1.2.3,0
+20974,79,2.1.2,1
+20976,81,2.1.2,1
+20976,144,2.1.2.3,0
+20976,58,2.1.2,1
+20979,144,2.1.2.3,0
+20979,84,2.1.2,1
+20982,79,2.1.2,1
+20982,144,2.1.2.3,0
+20984,84,2.1.2,1
+20984,144,2.1.2.3,0
+20986,144,2.1.2.3,0
+20986,58,2.1.2,1
+20991,159,2.1.2,1
+20991,144,2.1.2.3,0
+20993,79,2.1.2,1
+20993,144,2.1.2.3,0
+20997,58,2.1.2,1
+20997,144,2.1.2.3,0
+20998,144,2.1.2.3,0
+20998,159,2.1.2,1
+20999,144,2.1.2.3,0
+20999,81,2.1.2,1
+21001,58,2.1.2,1
+21001,144,2.1.2.4,0
+21002,144,2.1.2.4,0
+21002,84,2.1.2,1
+21002,159,2.1.2,1
+21003,58,2.1.2,1
+21003,144,2.1.2.4,0
+21005,144,2.1.2.4,0
+21005,84,2.1.2,1
+21008,144,2.1.2.4,0
+21008,58,2.1.2,1
+21009,81,2.1.2,1
+21009,144,2.1.2.4,0
+21010,79,2.1.2,1
+21010,144,2.1.2.4,0
+21016,81,2.1.2,1
+21016,144,2.1.2.4,0
+21022,144,2.1.2.4,0
+21022,79,2.1.2,1
+21024,79,2.1.2,1
+21024,144,2.1.2.4,0
+21028,84,2.1.2,1
+21028,144,2.1.2.4,0
+21032,159,2.1.2,1
+21032,144,2.1.2.4,0
+21032,79,2.1.2,1
+21034,58,2.1.2,1
+21034,144,2.1.2.4,0
+21038,159,2.1.2,1
+21038,144,2.1.2.4,0
+21041,58,2.1.2,1
+21041,144,2.1.2.4,0
+21042,79,2.1.2,1
+21042,58,2.1.2,1
+21042,144,2.1.2.4,0
+21043,81,2.1.2,1
+21043,144,2.1.2.4,0
+21044,81,2.1.2,1
+21044,144,2.1.2.4,0
+21044,79,2.1.2,1
+21045,81,2.1.2,1
+21045,144,2.1.2.4,0
+21047,144,2.1.2.4,0
+21047,81,2.1.2,1
+21048,144,2.1.2.4,0
+21048,81,2.1.2,1
+21050,159,2.1.2,1
+21050,144,2.1.2.4,0
+21050,81,2.1.2,1
+21052,100,1.3.1,1
+21052,145,1.3.1.4,0
+21053,145,1.3.1.4,0
+21053,100,1.3.1,1
+21053,93,1.3.1,1
+21054,39,1.3.1,1
+21054,145,1.3.1.4,0
+21055,39,1.3.1,1
+21055,145,1.3.1.4,0
+21055,85,1.3.1,1
+21055,100,1.3.1,1
+21056,145,1.3.1.4,0
+21056,39,1.3.1,1
+21056,100,1.3.1,1
+21057,145,1.3.1.4,0
+21057,85,1.3.1,1
+21058,145,1.3.1.4,0
+21058,100,1.3.1,1
+21059,145,1.3.1.4,0
+21059,39,1.3.1,1
+21060,100,1.3.1,1
+21060,145,1.3.1.4,0
+21061,145,1.3.1.4,0
+21061,93,1.3.1,1
+21061,85,1.3.1,1
+21064,39,1.3.1,1
+21064,85,1.3.1,1
+21064,100,1.3.1,1
+21064,145,1.3.1.4,0
+21064,93,1.3.1,1
+21064,99,1.3.1,1
+21066,145,1.3.1.4,0
+21066,85,1.3.1,1
+21066,100,1.3.1,1
+21069,99,1.3.1,1
+21069,93,1.3.1,1
+21069,100,1.3.1,1
+21069,145,1.3.1.4,0
+21071,93,1.3.1,1
+21071,145,1.3.1.4,0
+21072,145,1.3.1.4,0
+21072,99,1.3.1,1
+21073,145,1.3.1.4,0
+21073,39,1.3.1,1
+21074,145,1.3.1.4,0
+21074,85,1.3.1,1
+21075,145,1.3.1.4,0
+21075,39,1.3.1,1
+21076,100,1.3.1,1
+21076,145,1.3.1.4,0
+21078,99,1.3.1,1
+21078,145,1.3.1.4,0
+21079,99,1.3.1,1
+21079,145,1.3.1.4,0
+21081,93,1.3.1,1
+21081,145,1.3.1.4,0
+21082,145,1.3.1.4,0
+21082,39,1.3.1,1
+21083,99,1.3.1,1
+21083,145,1.3.1.4,0
+21084,99,1.3.1,1
+21084,145,1.3.1.4,0
+21085,145,1.3.1.4,0
+21085,99,1.3.1,1
+21086,145,1.3.1.4,0
+21086,93,1.3.1,1
+21087,145,1.3.1.4,0
+21087,99,1.3.1,1
+21089,39,1.3.1,1
+21089,145,1.3.1.4,0
+21091,39,1.3.1,1
+21091,145,1.3.1.4,0
+21092,100,1.3.1,1
+21092,93,1.3.1,1
+21092,145,1.3.1.4,0
+21093,99,1.3.1,1
+21093,145,1.3.1.4,0
+21094,145,1.3.1.4,0
+21094,93,1.3.1,1
+21097,145,1.3.1.4,0
+21097,93,1.3.1,1
+21098,145,1.3.1.4,0
+21098,93,1.3.1,1
+21102,146,1.3.1.1,0
+21102,85,1.3.1,1
+21104,146,1.3.1.1,0
+21104,100,1.3.1,1
+21105,93,1.3.1,1
+21105,146,1.3.1.1,0
+21106,93,1.3.1,1
+21106,146,1.3.1.1,0
+21107,99,1.3.1,1
+21107,146,1.3.1.1,0
+21108,39,1.3.1,1
+21108,146,1.3.1.1,0
+21109,85,1.3.1,1
+21109,146,1.3.1.1,0
+21110,39,1.3.1,1
+21110,146,1.3.1.1,0
+21111,39,1.3.1,1
+21111,146,1.3.1.1,0
+21111,100,1.3.1,1
+21111,99,1.3.1,1
+21114,39,1.3.1,1
+21114,100,1.3.1,1
+21114,99,1.3.1,1
+21114,93,1.3.1,1
+21114,85,1.3.1,1
+21114,146,1.3.1.1,0
+21116,99,1.3.1,1
+21116,93,1.3.1,1
+21116,146,1.3.1.1,0
+21119,146,1.3.1.1,0
+21119,99,1.3.1,1
+21120,85,1.3.1,1
+21120,146,1.3.1.1,0
+21121,100,1.3.1,1
+21121,146,1.3.1.1,0
+21122,146,1.3.1.1,0
+21122,39,1.3.1,1
+21123,146,1.3.1.1,0
+21123,39,1.3.1,1
+21124,39,1.3.1,1
+21124,146,1.3.1.1,0
+21124,85,1.3.1,1
+21125,146,1.3.1.1,0
+21125,100,1.3.1,1
+21126,93,1.3.1,1
+21126,99,1.3.1,1
+21126,146,1.3.1.1,0
+21127,146,1.3.1.1,0
+21127,100,1.3.1,1
+21128,93,1.3.1,1
+21128,146,1.3.1.1,0
+21129,146,1.3.1.1,0
+21129,99,1.3.1,1
+21131,85,1.3.1,1
+21131,100,1.3.1,1
+21131,146,1.3.1.1,0
+21132,106,1.3,2
+21132,146,1.3.1.1,0
+21132,85,1.3.1,1
+21133,39,1.3.1,1
+21133,146,1.3.1.1,0
+21134,93,1.3.1,1
+21134,146,1.3.1.1,0
+21135,99,1.3.1,1
+21135,146,1.3.1.1,0
+21136,39,1.3.1,1
+21136,85,1.3.1,1
+21136,146,1.3.1.1,0
+21138,93,1.3.1,1
+21138,146,1.3.1.1,0
+21139,85,1.3.1,1
+21139,146,1.3.1.1,0
+21140,99,1.3.1,1
+21140,146,1.3.1.1,0
+21141,39,1.3.1,1
+21141,146,1.3.1.1,0
+21142,146,1.3.1.1,0
+21142,93,1.3.1,1
+21143,85,1.3.1,1
+21143,146,1.3.1.1,0
+21144,146,1.3.1.1,0
+21144,85,1.3.1,1
+21145,146,1.3.1.1,0
+21145,100,1.3.1,1
+21147,85,1.3.1,1
+21147,146,1.3.1.1,0
+21148,106,1.3,2
+21148,100,1.3.1,1
+21148,146,1.3.1.1,0
+21152,105,1.1,1
+21152,86,1.1,1
+21152,147,1.1.2,0
+21154,147,1.1.2,0
+21154,86,1.1,1
+21155,147,1.1.2,0
+21155,105,1.1,1
+21156,105,1.1,1
+21156,147,1.1.2,0
+21157,86,1.1,1
+21157,147,1.1.2,0
+21158,147,1.1.2,0
+21158,94,1.1,1
+21160,86,1.1,1
+21160,147,1.1.2,0
+21161,147,1.1.2,0
+21161,126,1.1,1
+21164,147,1.1.2,0
+21164,94,1.1,1
+21166,126,1.1,1
+21166,147,1.1.2,0
+21170,126,1.1,1
+21170,147,1.1.2,0
+21170,106,1.1,1
+21172,86,1.1,1
+21172,147,1.1.2,0
+21173,106,1.1,1
+21173,147,1.1.2,0
+21173,126,1.1,1
+21176,126,1.1,1
+21176,94,1.1,1
+21176,147,1.1.2,0
+21178,106,1.1,1
+21178,147,1.1.2,0
+21179,147,1.1.2,0
+21179,94,1.1,1
+21181,147,1.1.2,0
+21181,86,1.1,1
+21182,94,1.1,1
+21182,147,1.1.2,0
+21183,147,1.1.2,0
+21183,94,1.1,1
+21184,147,1.1.2,0
+21184,94,1.1,1
+21185,94,1.1,1
+21185,147,1.1.2,0
+21186,106,1.1,1
+21186,86,1.1,1
+21186,147,1.1.2,0
+21187,105,1.1,1
+21187,147,1.1.2,0
+21189,86,1.1,1
+21189,147,1.1.2,0
+21190,147,1.1.2,0
+21190,106,1.1,1
+21191,106,1.1,1
+21191,147,1.1.2,0
+21192,106,1.1,1
+21192,147,1.1.2,0
+21193,147,1.1.2,0
+21193,106,1.1,1
+21194,86,1.1,1
+21194,94,1.1,1
+21194,147,1.1.2,0
+21195,94,1.1,1
+21195,147,1.1.2,0
+21197,105,1.1,1
+21197,147,1.1.2,0
+21198,94,1.1,1
+21198,147,1.1.2,0
+21199,147,1.1.2,0
+21199,126,1.1,1
+21204,98,2,2
+21204,102,2,2
+21204,148,2.1.1,0
+21204,99,2.1,1
+21204,170,1,3
+21205,99,2.1,1
+21205,148,2.1.1,0
+21209,99,2.1,1
+21209,148,2.1.1,0
+21210,99,2.1,1
+21210,148,2.1.1,0
+21220,148,2.1.1,0
+21220,99,2.1,1
+21222,148,2.1.1,0
+21222,99,2.1,1
+21228,99,2.1,1
+21228,148,2.1.1,0
+21234,148,2.1.1,0
+21234,99,2.1,1
+21241,148,2.1.1,0
+21241,99,2.1,1
+21244,148,2.1.1,0
+21244,99,2.1,1
+21252,148,2.1.3,0
+21252,99,2.1,1
+21255,99,2.1,1
+21255,148,2.1.3,0
+21257,99,2.1,1
+21257,148,2.1.3,0
+21259,99,2.1,1
+21259,148,2.1.3,0
+21264,99,2.1,1
+21264,148,2.1.3,0
+21272,148,2.1.3,0
+21272,99,2.1,1
+21278,99,2.1,1
+21278,148,2.1.3,0
+21281,148,2.1.3,0
+21281,99,2.1,1
+21283,148,2.1.3,0
+21283,99,2.1,1
+21289,148,2.1.3,0
+21289,99,2.1,1
+21294,148,2.1.3,0
+21294,99,2.1,1
+21306,148,2.2,0
+21306,102,2,1
+21307,98,2,1
+21307,148,2.2,0
+21311,102,2,1
+21311,148,2.2,0
+21314,148,2.2,0
+21314,98,2,1
+21322,102,2,1
+21322,148,2.2,0
+21323,102,2,1
+21323,148,2.2,0
+21329,98,2,1
+21329,148,2.2,0
+21333,98,2,1
+21333,148,2.2,0
+21339,148,2.2,0
+21339,98,2,1
+21344,98,2,1
+21344,148,2.2,0
+21354,58,2.1.2,1
+21354,149,2.1.2.1,0
+21356,79,2.1.2,1
+21356,149,2.1.2.1,0
+21357,149,2.1.2.1,0
+21357,58,2.1.2,1
+21357,81,2.1.2,1
+21360,79,2.1.2,1
+21360,149,2.1.2.1,0
+21361,79,2.1.2,1
+21361,159,2.1.2,1
+21361,149,2.1.2.1,0
+21364,149,2.1.2.1,0
+21364,81,2.1.2,1
+21364,159,2.1.2,1
+21366,79,2.1.2,1
+21366,149,2.1.2.1,0
+21371,81,2.1.2,1
+21371,149,2.1.2.1,0
+21372,149,2.1.2.1,0
+21372,79,2.1.2,1
+21373,149,2.1.2.1,0
+21373,58,2.1.2,1
+21376,84,2.1.2,1
+21376,79,2.1.2,1
+21376,149,2.1.2.1,0
+21378,58,2.1.2,1
+21378,149,2.1.2.1,0
+21379,81,2.1.2,1
+21379,58,2.1.2,1
+21379,149,2.1.2.1,0
+21381,149,2.1.2.1,0
+21381,79,2.1.2,1
+21381,58,2.1.2,1
+21384,149,2.1.2.1,0
+21384,79,2.1.2,1
+21386,84,2.1.2,1
+21386,99,2.1,2
+21386,79,2.1.2,1
+21386,58,2.1.2,1
+21386,149,2.1.2.1,0
+21391,81,2.1.2,1
+21391,149,2.1.2.1,0
+21393,79,2.1.2,1
+21393,159,2.1.2,1
+21393,149,2.1.2.1,0
+21395,149,2.1.2.1,0
+21395,159,2.1.2,1
+21397,159,2.1.2,1
+21397,149,2.1.2.1,0
+21398,149,2.1.2.1,0
+21398,81,2.1.2,1
+21402,149,2.1.2.2,0
+21402,79,2.1.2,1
+21402,84,2.1.2,1
+21403,159,2.1.2,1
+21403,58,2.1.2,1
+21403,149,2.1.2.2,0
+21404,58,2.1.2,1
+21404,149,2.1.2.2,0
+21405,81,2.1.2,1
+21405,149,2.1.2.2,0
+21406,149,2.1.2.2,0
+21406,81,2.1.2,1
+21407,149,2.1.2.2,0
+21407,58,2.1.2,1
+21408,79,2.1.2,1
+21408,149,2.1.2.2,0
+21409,149,2.1.2.2,0
+21409,58,2.1.2,1
+21414,149,2.1.2.2,0
+21414,84,2.1.2,1
+21414,81,2.1.2,1
+21416,81,2.1.2,1
+21416,149,2.1.2.2,0
+21419,79,2.1.2,1
+21419,149,2.1.2.2,0
+21420,149,2.1.2.2,0
+21420,58,2.1.2,1
+21421,149,2.1.2.2,0
+21421,159,2.1.2,1
+21422,58,2.1.2,1
+21422,149,2.1.2.2,0
+21424,149,2.1.2.2,0
+21424,84,2.1.2,1
+21426,84,2.1.2,1
+21426,149,2.1.2.2,0
+21428,58,2.1.2,1
+21428,149,2.1.2.2,0
+21429,149,2.1.2.2,0
+21429,79,2.1.2,1
+21431,149,2.1.2.2,0
+21431,58,2.1.2,1
+21431,159,2.1.2,1
+21433,84,2.1.2,1
+21433,149,2.1.2.2,0
+21434,149,2.1.2.2,0
+21434,58,2.1.2,1
+21439,159,2.1.2,1
+21439,149,2.1.2.2,0
+21440,149,2.1.2.2,0
+21440,84,2.1.2,1
+21441,79,2.1.2,1
+21441,149,2.1.2.2,0
+21441,159,2.1.2,1
+21444,149,2.1.2.2,0
+21444,159,2.1.2,1
+21447,58,2.1.2,1
+21447,149,2.1.2.2,0
+21448,149,2.1.2.2,0
+21448,58,2.1.2,1
+21454,58,2.1.2,1
+21454,149,2.1.2.3,0
+21455,149,2.1.2.3,0
+21455,79,2.1.2,1
+21456,58,2.1.2,1
+21456,149,2.1.2.3,0
+21457,149,2.1.2.3,0
+21457,81,2.1.2,1
+21458,58,2.1.2,1
+21458,149,2.1.2.3,0
+21460,84,2.1.2,1
+21460,149,2.1.2.3,0
+21461,84,2.1.2,1
+21461,149,2.1.2.3,0
+21464,79,2.1.2,1
+21464,149,2.1.2.3,0
+21466,79,2.1.2,1
+21466,149,2.1.2.3,0
+21469,79,2.1.2,1
+21469,149,2.1.2.3,0
+21469,81,2.1.2,1
+21470,149,2.1.2.3,0
+21470,81,2.1.2,1
+21472,84,2.1.2,1
+21472,149,2.1.2.3,0
+21473,159,2.1.2,1
+21473,81,2.1.2,1
+21473,149,2.1.2.3,0
+21478,81,2.1.2,1
+21478,149,2.1.2.3,0
+21479,58,2.1.2,1
+21479,149,2.1.2.3,0
+21481,81,2.1.2,1
+21481,149,2.1.2.3,0
+21483,159,2.1.2,1
+21483,149,2.1.2.3,0
+21486,81,2.1.2,1
+21486,149,2.1.2.3,0
+21488,159,2.1.2,1
+21488,149,2.1.2.3,0
+21489,79,2.1.2,1
+21489,149,2.1.2.3,0
+21491,81,2.1.2,1
+21491,149,2.1.2.3,0
+21494,58,2.1.2,1
+21494,149,2.1.2.3,0
+21494,79,2.1.2,1
+21495,149,2.1.2.3,0
+21495,159,2.1.2,1
+21497,79,2.1.2,1
+21497,149,2.1.2.3,0
+21501,149,2.1.2.4,0
+21501,79,2.1.2,1
+21502,58,2.1.2,1
+21502,149,2.1.2.4,0
+21502,159,2.1.2,1
+21503,79,2.1.2,1
+21503,149,2.1.2.4,0
+21503,159,2.1.2,1
+21504,149,2.1.2.4,0
+21504,79,2.1.2,1
+21507,79,2.1.2,1
+21507,149,2.1.2.4,0
+21508,79,2.1.2,1
+21508,149,2.1.2.4,0
+21510,149,2.1.2.4,0
+21510,159,2.1.2,1
+21512,149,2.1.2.4,0
+21512,84,2.1.2,1
+21512,159,2.1.2,1
+21514,149,2.1.2.4,0
+21514,81,2.1.2,1
+21514,58,2.1.2,1
+21516,58,2.1.2,1
+21516,149,2.1.2.4,0
+21517,159,2.1.2,1
+21517,149,2.1.2.4,0
+21519,149,2.1.2.4,0
+21519,58,2.1.2,1
+21520,149,2.1.2.4,0
+21520,58,2.1.2,1
+21522,58,2.1.2,1
+21522,149,2.1.2.4,0
+21523,81,2.1.2,1
+21523,149,2.1.2.4,0
+21523,79,2.1.2,1
+21526,149,2.1.2.4,0
+21526,58,2.1.2,1
+21526,79,2.1.2,1
+21528,58,2.1.2,1
+21528,149,2.1.2.4,0
+21529,58,2.1.2,1
+21529,149,2.1.2.4,0
+21531,84,2.1.2,1
+21531,149,2.1.2.4,0
+21532,149,2.1.2.4,0
+21532,84,2.1.2,1
+21533,159,2.1.2,1
+21533,149,2.1.2.4,0
+21534,149,2.1.2.4,0
+21534,58,2.1.2,1
+21536,149,2.1.2.4,0
+21536,79,2.1.2,1
+21536,159,2.1.2,1
+21541,81,2.1.2,1
+21541,149,2.1.2.4,0
+21542,149,2.1.2.4,0
+21542,79,2.1.2,1
+21547,58,2.1.2,1
+21547,149,2.1.2.4,0
+21552,86,1.1,1
+21552,150,1.1.1,0
+21556,150,1.1.1,0
+21556,86,1.1,1
+21557,150,1.1.1,0
+21557,94,1.1,1
+21558,106,1.1,1
+21558,150,1.1.1,0
+21561,105,1.1,1
+21561,150,1.1.1,0
+21564,86,1.1,1
+21564,105,1.1,1
+21564,150,1.1.1,0
+21566,150,1.1.1,0
+21566,126,1.1,1
+21569,105,1.1,1
+21569,150,1.1.1,0
+21576,150,1.1.1,0
+21576,94,1.1,1
+21578,126,1.1,1
+21578,150,1.1.1,0
+21582,150,1.1.1,0
+21582,105,1.1,1
+21584,150,1.1.1,0
+21584,94,1.1,1
+21586,106,1.1,1
+21586,150,1.1.1,0
+21592,126,1.1,1
+21592,150,1.1.1,0
+21593,94,1.1,1
+21593,150,1.1.1,0
+21594,150,1.1.1,0
+21594,105,1.1,1
+21599,150,1.1.1,0
+21599,106,1.1,1
+21601,170,1,3
+21601,151,1.3.5.1,0
+21601,130,1.3.5,1
+21601,29,1.3,2
+21601,106,1.3,2
+21602,130,1.3.5,1
+21602,151,1.3.5.1,0
+21603,151,1.3.5.1,0
+21603,170,1,3
+21603,130,1.3.5,1
+21603,29,1.3,2
+21603,106,1.3,2
+21604,151,1.3.5.1,0
+21604,130,1.3.5,1
+21605,106,1.3,2
+21605,130,1.3.5,1
+21605,29,1.3,2
+21605,151,1.3.5.1,0
+21605,170,1,3
+21606,151,1.3.5.1,0
+21606,130,1.3.5,1
+21607,151,1.3.5.1,0
+21607,130,1.3.5,1
+21608,130,1.3.5,1
+21608,106,1.3,2
+21608,151,1.3.5.1,0
+21608,170,1,3
+21608,29,1.3,2
+21609,130,1.3.5,1
+21609,170,1,3
+21609,29,1.3,2
+21609,151,1.3.5.1,0
+21609,106,1.3,2
+21610,130,1.3.5,1
+21610,151,1.3.5.1,0
+21611,130,1.3.5,1
+21611,151,1.3.5.1,0
+21614,130,1.3.5,1
+21614,170,1,3
+21614,106,1.3,2
+21614,151,1.3.5.1,0
+21614,29,1.3,2
+21616,29,1.3,2
+21616,106,1.3,2
+21616,170,1,3
+21616,151,1.3.5.1,0
+21616,130,1.3.5,1
+21619,151,1.3.5.1,0
+21619,130,1.3.5,1
+21619,29,1.3,2
+21619,106,1.3,2
+21619,170,1,3
+21620,130,1.3.5,1
+21620,151,1.3.5.1,0
+21622,130,1.3.5,1
+21622,151,1.3.5.1,0
+21623,151,1.3.5.1,0
+21623,130,1.3.5,1
+21624,130,1.3.5,1
+21624,151,1.3.5.1,0
+21624,106,1.3,2
+21624,29,1.3,2
+21624,170,1,3
+21625,130,1.3.5,1
+21625,151,1.3.5.1,0
+21626,130,1.3.5,1
+21626,151,1.3.5.1,0
+21626,106,1.3,2
+21626,29,1.3,2
+21626,170,1,3
+21628,29,1.3,2
+21628,151,1.3.5.1,0
+21628,170,1,3
+21628,130,1.3.5,1
+21628,106,1.3,2
+21629,130,1.3.5,1
+21629,151,1.3.5.1,0
+21631,130,1.3.5,1
+21631,151,1.3.5.1,0
+21632,151,1.3.5.1,0
+21632,130,1.3.5,1
+21633,130,1.3.5,1
+21633,151,1.3.5.1,0
+21634,130,1.3.5,1
+21634,151,1.3.5.1,0
+21636,106,1.3,2
+21636,151,1.3.5.1,0
+21636,170,1,3
+21636,29,1.3,2
+21636,130,1.3.5,1
+21639,130,1.3.5,1
+21639,151,1.3.5.1,0
+21641,151,1.3.5.1,0
+21641,130,1.3.5,1
+21642,130,1.3.5,1
+21642,151,1.3.5.1,0
+21643,130,1.3.5,1
+21643,151,1.3.5.1,0
+21644,151,1.3.5.1,0
+21644,130,1.3.5,1
+21647,130,1.3.5,1
+21647,151,1.3.5.1,0
+21648,29,1.3,2
+21648,106,1.3,2
+21648,170,1,3
+21648,130,1.3.5,1
+21648,151,1.3.5.1,0
+21649,170,1,3
+21649,151,1.3.5.1,0
+21649,106,1.3,2
+21649,29,1.3,2
+21649,130,1.3.5,1
+21651,152,1.4.4.1,0
+21651,0,1.4.4,1
+21652,126,1.4,2
+21652,152,1.4.4.1,0
+21652,40,1.4.4,1
+21653,152,1.4.4.1,0
+21653,40,1.4.4,1
+21654,0,1.4.4,1
+21654,152,1.4.4.1,0
+21655,40,1.4.4,1
+21655,0,1.4.4,1
+21655,152,1.4.4.1,0
+21656,152,1.4.4.1,0
+21656,0,1.4.4,1
+21657,152,1.4.4.1,0
+21657,0,1.4.4,1
+21657,126,1.4,2
+21658,152,1.4.4.1,0
+21658,0,1.4.4,1
+21659,40,1.4.4,1
+21659,0,1.4.4,1
+21659,152,1.4.4.1,0
+21660,152,1.4.4.1,0
+21660,0,1.4.4,1
+21661,152,1.4.4.1,0
+21661,40,1.4.4,1
+21661,0,1.4.4,1
+21664,0,1.4.4,1
+21664,152,1.4.4.1,0
+21664,40,1.4.4,1
+21666,0,1.4.4,1
+21666,152,1.4.4.1,0
+21667,126,1.4,2
+21667,152,1.4.4.1,0
+21667,40,1.4.4,1
+21669,152,1.4.4.1,0
+21669,40,1.4.4,1
+21670,0,1.4.4,1
+21670,152,1.4.4.1,0
+21671,152,1.4.4.1,0
+21671,40,1.4.4,1
+21672,0,1.4.4,1
+21672,152,1.4.4.1,0
+21673,152,1.4.4.1,0
+21673,40,1.4.4,1
+21674,40,1.4.4,1
+21674,152,1.4.4.1,0
+21676,0,1.4.4,1
+21676,40,1.4.4,1
+21676,152,1.4.4.1,0
+21677,152,1.4.4.1,0
+21677,40,1.4.4,1
+21677,126,1.4,2
+21678,0,1.4.4,1
+21678,152,1.4.4.1,0
+21679,152,1.4.4.1,0
+21679,0,1.4.4,1
+21679,40,1.4.4,1
+21681,40,1.4.4,1
+21681,0,1.4.4,1
+21681,126,1.4,2
+21681,170,1,3
+21681,152,1.4.4.1,0
+21682,40,1.4.4,1
+21682,152,1.4.4.1,0
+21683,152,1.4.4.1,0
+21683,40,1.4.4,1
+21684,0,1.4.4,1
+21684,152,1.4.4.1,0
+21685,152,1.4.4.1,0
+21685,40,1.4.4,1
+21686,152,1.4.4.1,0
+21686,0,1.4.4,1
+21686,40,1.4.4,1
+21687,152,1.4.4.1,0
+21687,126,1.4,2
+21687,40,1.4.4,1
+21688,40,1.4.4,1
+21688,152,1.4.4.1,0
+21689,152,1.4.4.1,0
+21689,0,1.4.4,1
+21689,40,1.4.4,1
+21690,152,1.4.4.1,0
+21690,40,1.4.4,1
+21691,126,1.4,2
+21691,170,1,3
+21691,152,1.4.4.1,0
+21691,40,1.4.4,1
+21692,152,1.4.4.1,0
+21692,40,1.4.4,1
+21693,170,1,3
+21693,40,1.4.4,1
+21693,0,1.4.4,1
+21693,126,1.4,2
+21693,152,1.4.4.1,0
+21694,152,1.4.4.1,0
+21694,0,1.4.4,1
+21694,40,1.4.4,1
+21695,40,1.4.4,1
+21695,152,1.4.4.1,0
+21697,152,1.4.4.1,0
+21697,0,1.4.4,1
+21698,152,1.4.4.1,0
+21698,40,1.4.4,1
+21698,0,1.4.4,1
+21699,40,1.4.4,1
+21699,152,1.4.4.1,0
+21700,152,1.4.4.1,0
+21700,40,1.4.4,1
+21702,153,1.3.1.1,0
+21702,85,1.3.1,1
+21704,39,1.3.1,1
+21704,153,1.3.1.1,0
+21704,99,1.3.1,1
+21705,39,1.3.1,1
+21705,153,1.3.1.1,0
+21705,85,1.3.1,1
+21706,153,1.3.1.1,0
+21706,85,1.3.1,1
+21707,99,1.3.1,1
+21707,153,1.3.1.1,0
+21708,153,1.3.1.1,0
+21708,99,1.3.1,1
+21709,153,1.3.1.1,0
+21709,99,1.3.1,1
+21710,153,1.3.1.1,0
+21710,93,1.3.1,1
+21711,100,1.3.1,1
+21711,153,1.3.1.1,0
+21714,153,1.3.1.1,0
+21714,39,1.3.1,1
+21716,153,1.3.1.1,0
+21716,85,1.3.1,1
+21716,100,1.3.1,1
+21720,153,1.3.1.1,0
+21720,93,1.3.1,1
+21722,99,1.3.1,1
+21722,153,1.3.1.1,0
+21723,99,1.3.1,1
+21723,153,1.3.1.1,0
+21724,99,1.3.1,1
+21724,153,1.3.1.1,0
+21727,153,1.3.1.1,0
+21727,93,1.3.1,1
+21728,99,1.3.1,1
+21728,153,1.3.1.1,0
+21729,93,1.3.1,1
+21729,153,1.3.1.1,0
+21731,93,1.3.1,1
+21731,153,1.3.1.1,0
+21731,100,1.3.1,1
+21732,99,1.3.1,1
+21732,153,1.3.1.1,0
+21733,153,1.3.1.1,0
+21733,93,1.3.1,1
+21734,85,1.3.1,1
+21734,153,1.3.1.1,0
+21736,39,1.3.1,1
+21736,85,1.3.1,1
+21736,153,1.3.1.1,0
+21739,93,1.3.1,1
+21739,153,1.3.1.1,0
+21740,85,1.3.1,1
+21740,153,1.3.1.1,0
+21740,93,1.3.1,1
+21740,99,1.3.1,1
+21740,100,1.3.1,1
+21741,85,1.3.1,1
+21741,153,1.3.1.1,0
+21742,100,1.3.1,1
+21742,153,1.3.1.1,0
+21743,153,1.3.1.1,0
+21743,39,1.3.1,1
+21745,100,1.3.1,1
+21745,153,1.3.1.1,0
+21746,93,1.3.1,1
+21746,153,1.3.1.1,0
+21747,99,1.3.1,1
+21747,153,1.3.1.1,0
+21748,153,1.3.1.1,0
+21748,93,1.3.1,1
+21750,100,1.3.1,1
+21750,153,1.3.1.1,0
+21752,39,1.3.1,1
+21752,153,1.3.1.4,0
+21753,99,1.3.1,1
+21753,39,1.3.1,1
+21753,153,1.3.1.4,0
+21754,93,1.3.1,1
+21754,153,1.3.1.4,0
+21756,153,1.3.1.4,0
+21756,93,1.3.1,1
+21757,93,1.3.1,1
+21757,153,1.3.1.4,0
+21758,39,1.3.1,1
+21758,99,1.3.1,1
+21758,153,1.3.1.4,0
+21759,153,1.3.1.4,0
+21759,85,1.3.1,1
+21760,153,1.3.1.4,0
+21760,85,1.3.1,1
+21761,39,1.3.1,1
+21761,153,1.3.1.4,0
+21762,99,1.3.1,1
+21762,153,1.3.1.4,0
+21766,93,1.3.1,1
+21766,153,1.3.1.4,0
+21766,99,1.3.1,1
+21769,39,1.3.1,1
+21769,153,1.3.1.4,0
+21770,153,1.3.1.4,0
+21770,39,1.3.1,1
+21772,39,1.3.1,1
+21772,153,1.3.1.4,0
+21773,99,1.3.1,1
+21773,153,1.3.1.4,0
+21773,85,1.3.1,1
+21774,93,1.3.1,1
+21774,153,1.3.1.4,0
+21774,39,1.3.1,1
+21776,106,1.3,2
+21776,99,1.3.1,1
+21776,85,1.3.1,1
+21776,39,1.3.1,1
+21776,153,1.3.1.4,0
+21777,153,1.3.1.4,0
+21777,100,1.3.1,1
+21778,153,1.3.1.4,0
+21778,39,1.3.1,1
+21781,153,1.3.1.4,0
+21781,99,1.3.1,1
+21782,153,1.3.1.4,0
+21782,85,1.3.1,1
+21782,100,1.3.1,1
+21783,153,1.3.1.4,0
+21783,100,1.3.1,1
+21784,93,1.3.1,1
+21784,153,1.3.1.4,0
+21785,153,1.3.1.4,0
+21785,99,1.3.1,1
+21786,100,1.3.1,1
+21786,99,1.3.1,1
+21786,153,1.3.1.4,0
+21786,39,1.3.1,1
+21787,153,1.3.1.4,0
+21787,93,1.3.1,1
+21787,85,1.3.1,1
+21788,153,1.3.1.4,0
+21788,93,1.3.1,1
+21789,153,1.3.1.4,0
+21789,99,1.3.1,1
+21790,99,1.3.1,1
+21790,153,1.3.1.4,0
+21790,100,1.3.1,1
+21791,153,1.3.1.4,0
+21791,85,1.3.1,1
+21792,99,1.3.1,1
+21792,100,1.3.1,1
+21792,153,1.3.1.4,0
+21794,153,1.3.1.4,0
+21794,99,1.3.1,1
+21795,99,1.3.1,1
+21795,153,1.3.1.4,0
+21798,153,1.3.1.4,0
+21798,100,1.3.1,1
+21798,93,1.3.1,1
+21799,99,1.3.1,1
+21799,153,1.3.1.4,0
+21800,85,1.3.1,1
+21800,100,1.3.1,1
+21800,153,1.3.1.4,0
+21802,79,2.1.4.1,1
+21802,154,2.1.4.1.1,0
+21803,154,2.1.4.1.1,0
+21803,79,2.1.4.1,1
+21804,154,2.1.4.1.1,0
+21804,79,2.1.4.1,1
+21806,79,2.1.4.1,1
+21806,154,2.1.4.1.1,0
+21808,154,2.1.4.1.1,0
+21808,79,2.1.4.1,1
+21809,154,2.1.4.1.1,0
+21809,79,2.1.4.1,1
+21814,154,2.1.4.1.1,0
+21814,81,2.1.4.1,1
+21823,154,2.1.4.1.1,0
+21823,81,2.1.4.1,1
+21829,154,2.1.4.1.1,0
+21829,79,2.1.4.1,1
+21832,154,2.1.4.1.1,0
+21832,81,2.1.4.1,1
+21834,154,2.1.4.1.1,0
+21834,79,2.1.4.1,1
+21839,79,2.1.4.1,1
+21839,154,2.1.4.1.1,0
+21842,79,2.1.4.1,1
+21842,154,2.1.4.1.1,0
+21848,79,2.1.4.1,1
+21848,154,2.1.4.1.1,0
+21852,79,2.1.4.1,1
+21852,154,2.1.4.1.2,0
+21855,154,2.1.4.1.2,0
+21855,79,2.1.4.1,1
+21856,79,2.1.4.1,1
+21856,154,2.1.4.1.2,0
+21858,81,2.1.4.1,1
+21858,154,2.1.4.1.2,0
+21859,154,2.1.4.1.2,0
+21859,79,2.1.4.1,1
+21860,154,2.1.4.1.2,0
+21860,81,2.1.4.1,1
+21870,79,2.1.4.1,1
+21870,154,2.1.4.1.2,0
+21873,154,2.1.4.1.2,0
+21873,81,2.1.4.1,1
+21878,79,2.1.4.1,1
+21878,154,2.1.4.1.2,0
+21879,154,2.1.4.1.2,0
+21879,79,2.1.4.1,1
+21881,154,2.1.4.1.2,0
+21881,81,2.1.4.1,1
+21882,154,2.1.4.1.2,0
+21882,79,2.1.4.1,1
+21883,79,2.1.4.1,1
+21883,154,2.1.4.1.2,0
+21886,154,2.1.4.1.2,0
+21886,81,2.1.4.1,1
+21889,81,2.1.4.1,1
+21889,154,2.1.4.1.2,0
+21891,81,2.1.4.1,1
+21891,154,2.1.4.1.2,0
+21893,154,2.1.4.1.2,0
+21893,79,2.1.4.1,1
+21894,81,2.1.4.1,1
+21894,154,2.1.4.1.2,0
+21901,154,2.1.4.1.3,0
+21901,79,2.1.4.1,1
+21902,154,2.1.4.1.3,0
+21902,79,2.1.4.1,1
+21903,154,2.1.4.1.3,0
+21903,79,2.1.4.1,1
+21905,81,2.1.4.1,1
+21905,154,2.1.4.1.3,0
+21906,79,2.1.4.1,1
+21906,154,2.1.4.1.3,0
+21911,154,2.1.4.1.3,0
+21911,79,2.1.4.1,1
+21911,81,2.1.4.1,1
+21920,154,2.1.4.1.3,0
+21920,81,2.1.4.1,1
+21923,81,2.1.4.1,1
+21923,154,2.1.4.1.3,0
+21926,154,2.1.4.1.3,0
+21926,79,2.1.4.1,1
+21926,81,2.1.4.1,1
+21929,81,2.1.4.1,1
+21929,154,2.1.4.1.3,0
+21933,81,2.1.4.1,1
+21933,154,2.1.4.1.3,0
+21936,154,2.1.4.1.3,0
+21936,79,2.1.4.1,1
+21943,81,2.1.4.1,1
+21943,154,2.1.4.1.3,0
+21951,79,2.1.4.1,1
+21951,154,2.1.4.1.4,0
+21952,79,2.1.4.1,1
+21952,154,2.1.4.1.4,0
+21954,154,2.1.4.1.4,0
+21954,79,2.1.4.1,1
+21956,79,2.1.4.1,1
+21956,154,2.1.4.1.4,0
+21957,154,2.1.4.1.4,0
+21957,81,2.1.4.1,1
+21959,154,2.1.4.1.4,0
+21959,79,2.1.4.1,1
+21960,154,2.1.4.1.4,0
+21960,79,2.1.4.1,1
+21972,81,2.1.4.1,1
+21972,154,2.1.4.1.4,0
+21976,154,2.1.4.1.4,0
+21976,79,2.1.4.1,1
+21979,154,2.1.4.1.4,0
+21979,81,2.1.4.1,1
+21981,154,2.1.4.1.4,0
+21981,81,2.1.4.1,1
+21983,81,2.1.4.1,1
+21983,154,2.1.4.1.4,0
+21984,154,2.1.4.1.4,0
+21984,81,2.1.4.1,1
+21986,154,2.1.4.1.4,0
+21986,79,2.1.4.1,1
+21991,79,2.1.4.1,1
+21991,154,2.1.4.1.4,0
+21993,81,2.1.4.1,1
+21993,154,2.1.4.1.4,0
+21993,79,2.1.4.1,1
+21995,81,2.1.4.1,1
+21995,154,2.1.4.1.4,0
+22003,154,2.1.4.2.1,0
+22003,79,2.1.4.2,1
+22004,154,2.1.4.2.1,0
+22004,81,2.1.4.2,1
+22006,79,2.1.4.2,1
+22006,154,2.1.4.2.1,0
+22007,154,2.1.4.2.1,0
+22007,79,2.1.4.2,1
+22008,81,2.1.4.2,1
+22008,154,2.1.4.2.1,0
+22010,154,2.1.4.2.1,0
+22010,81,2.1.4.2,1
+22014,81,2.1.4.2,1
+22014,154,2.1.4.2.1,0
+22016,79,2.1.4.2,1
+22016,154,2.1.4.2.1,0
+22023,81,2.1.4.2,1
+22023,154,2.1.4.2.1,0
+22031,154,2.1.4.2.1,0
+22031,79,2.1.4.2,1
+22036,154,2.1.4.2.1,0
+22036,79,2.1.4.2,1
+22037,81,2.1.4.2,1
+22037,154,2.1.4.2.1,0
+22041,81,2.1.4.2,1
+22041,154,2.1.4.2.1,0
+22044,79,2.1.4.2,1
+22044,154,2.1.4.2.1,0
+22048,79,2.1.4.2,1
+22048,154,2.1.4.2.1,0
+22048,81,2.1.4.2,1
+22052,81,2.1.4.2,1
+22052,154,2.1.4.2.2,0
+22054,154,2.1.4.2.2,0
+22054,79,2.1.4.2,1
+22055,81,2.1.4.2,1
+22055,154,2.1.4.2.2,0
+22056,79,2.1.4.2,1
+22056,154,2.1.4.2.2,0
+22057,154,2.1.4.2.2,0
+22057,79,2.1.4.2,1
+22064,154,2.1.4.2.2,0
+22064,81,2.1.4.2,1
+22066,79,2.1.4.2,1
+22066,154,2.1.4.2.2,0
+22070,79,2.1.4.2,1
+22070,154,2.1.4.2.2,0
+22071,81,2.1.4.2,1
+22071,154,2.1.4.2.2,0
+22078,79,2.1.4.2,1
+22078,154,2.1.4.2.2,0
+22082,79,2.1.4.2,1
+22082,154,2.1.4.2.2,0
+22091,79,2.1.4.2,1
+22091,154,2.1.4.2.2,0
+22092,79,2.1.4.2,1
+22092,154,2.1.4.2.2,0
+22094,154,2.1.4.2.2,0
+22094,81,2.1.4.2,1
+22097,154,2.1.4.2.2,0
+22097,79,2.1.4.2,1
+22102,155,2.3,0
+22102,102,2,1
+22104,102,2,1
+22104,155,2.3,0
+22107,155,2.3,0
+22107,102,2,1
+22111,102,2,1
+22111,155,2.3,0
+22123,102,2,1
+22123,155,2.3,0
+22126,98,2,1
+22126,155,2.3,0
+22128,102,2,1
+22128,155,2.3,0
+22133,155,2.3,0
+22133,102,2,1
+22139,155,2.3,0
+22139,102,2,1
+22141,155,2.3,0
+22141,98,2,1
+22142,102,2,1
+22142,155,2.3,0
+22143,98,2,1
+22143,155,2.3,0
+22147,98,2,1
+22147,155,2.3,0
+22151,156,1.3.1.7,0
+22151,99,1.3.1,1
+22152,93,1.3.1,1
+22152,156,1.3.1.7,0
+22154,156,1.3.1.7,0
+22154,39,1.3.1,1
+22155,100,1.3.1,1
+22155,156,1.3.1.7,0
+22156,156,1.3.1.7,0
+22156,85,1.3.1,1
+22157,39,1.3.1,1
+22157,156,1.3.1.7,0
+22158,156,1.3.1.7,0
+22158,39,1.3.1,1
+22159,156,1.3.1.7,0
+22159,85,1.3.1,1
+22160,39,1.3.1,1
+22160,156,1.3.1.7,0
+22161,100,1.3.1,1
+22161,85,1.3.1,1
+22161,156,1.3.1.7,0
+22161,99,1.3.1,1
+22164,156,1.3.1.7,0
+22164,85,1.3.1,1
+22166,156,1.3.1.7,0
+22166,29,1.3,2
+22166,39,1.3.1,1
+22166,85,1.3.1,1
+22167,100,1.3.1,1
+22167,156,1.3.1.7,0
+22169,99,1.3.1,1
+22169,156,1.3.1.7,0
+22170,156,1.3.1.7,0
+22170,39,1.3.1,1
+22172,85,1.3.1,1
+22172,156,1.3.1.7,0
+22172,100,1.3.1,1
+22173,156,1.3.1.7,0
+22173,93,1.3.1,1
+22174,99,1.3.1,1
+22174,156,1.3.1.7,0
+22176,156,1.3.1.7,0
+22176,100,1.3.1,1
+22176,85,1.3.1,1
+22176,93,1.3.1,1
+22178,93,1.3.1,1
+22178,156,1.3.1.7,0
+22179,156,1.3.1.7,0
+22179,85,1.3.1,1
+22181,93,1.3.1,1
+22181,99,1.3.1,1
+22181,156,1.3.1.7,0
+22182,39,1.3.1,1
+22182,156,1.3.1.7,0
+22183,39,1.3.1,1
+22183,156,1.3.1.7,0
+22184,39,1.3.1,1
+22184,156,1.3.1.7,0
+22185,100,1.3.1,1
+22185,156,1.3.1.7,0
+22186,100,1.3.1,1
+22186,156,1.3.1.7,0
+22186,99,1.3.1,1
+22186,93,1.3.1,1
+22188,156,1.3.1.7,0
+22188,100,1.3.1,1
+22189,85,1.3.1,1
+22189,156,1.3.1.7,0
+22191,85,1.3.1,1
+22191,156,1.3.1.7,0
+22192,99,1.3.1,1
+22192,156,1.3.1.7,0
+22193,93,1.3.1,1
+22193,100,1.3.1,1
+22193,39,1.3.1,1
+22193,156,1.3.1.7,0
+22194,156,1.3.1.7,0
+22194,99,1.3.1,1
+22194,93,1.3.1,1
+22195,93,1.3.1,1
+22195,85,1.3.1,1
+22195,156,1.3.1.7,0
+22197,156,1.3.1.7,0
+22197,39,1.3.1,1
+22198,85,1.3.1,1
+22198,156,1.3.1.7,0
+22200,100,1.3.1,1
+22200,156,1.3.1.7,0
+22201,157,1.4.1,0
+22201,126,1.4,1
+22201,170,1,2
+22202,170,1,2
+22202,157,1.4.1,0
+22202,126,1.4,1
+22203,157,1.4.1,0
+22203,170,1,2
+22203,126,1.4,1
+22204,126,1.4,1
+22204,170,1,2
+22204,157,1.4.1,0
+22205,126,1.4,1
+22205,157,1.4.1,0
+22205,170,1,2
+22206,170,1,2
+22206,126,1.4,1
+22206,157,1.4.1,0
+22207,126,1.4,1
+22207,157,1.4.1,0
+22207,170,1,2
+22208,157,1.4.1,0
+22208,170,1,2
+22208,126,1.4,1
+22209,157,1.4.1,0
+22209,170,1,2
+22209,126,1.4,1
+22210,157,1.4.1,0
+22210,170,1,2
+22210,126,1.4,1
+22211,126,1.4,1
+22211,157,1.4.1,0
+22211,170,1,2
+22212,170,1,2
+22212,126,1.4,1
+22212,157,1.4.1,0
+22213,170,1,2
+22213,157,1.4.1,0
+22213,126,1.4,1
+22214,126,1.4,1
+22214,157,1.4.1,0
+22214,170,1,2
+22215,157,1.4.1,0
+22215,126,1.4,1
+22215,170,1,2
+22216,126,1.4,1
+22216,170,1,2
+22216,157,1.4.1,0
+22217,126,1.4,1
+22217,170,1,2
+22217,157,1.4.1,0
+22218,126,1.4,1
+22218,157,1.4.1,0
+22218,170,1,2
+22219,157,1.4.1,0
+22219,170,1,2
+22219,126,1.4,1
+22220,126,1.4,1
+22220,170,1,2
+22220,157,1.4.1,0
+22221,157,1.4.1,0
+22221,170,1,2
+22221,126,1.4,1
+22222,126,1.4,1
+22222,157,1.4.1,0
+22222,170,1,2
+22223,157,1.4.1,0
+22223,170,1,2
+22223,126,1.4,1
+22224,170,1,2
+22224,126,1.4,1
+22224,157,1.4.1,0
+22225,157,1.4.1,0
+22225,126,1.4,1
+22225,170,1,2
+22226,126,1.4,1
+22226,170,1,2
+22226,157,1.4.1,0
+22227,126,1.4,1
+22227,157,1.4.1,0
+22227,170,1,2
+22228,170,1,2
+22228,157,1.4.1,0
+22228,126,1.4,1
+22229,126,1.4,1
+22229,170,1,2
+22229,157,1.4.1,0
+22230,126,1.4,1
+22230,170,1,2
+22230,157,1.4.1,0
+22231,126,1.4,1
+22231,170,1,2
+22231,157,1.4.1,0
+22232,170,1,2
+22232,157,1.4.1,0
+22232,126,1.4,1
+22233,157,1.4.1,0
+22233,170,1,2
+22233,126,1.4,1
+22234,157,1.4.1,0
+22234,170,1,2
+22234,126,1.4,1
+22235,157,1.4.1,0
+22235,170,1,2
+22235,126,1.4,1
+22236,157,1.4.1,0
+22236,126,1.4,1
+22236,170,1,2
+22237,126,1.4,1
+22237,157,1.4.1,0
+22237,170,1,2
+22238,157,1.4.1,0
+22238,170,1,2
+22238,126,1.4,1
+22239,126,1.4,1
+22239,170,1,2
+22239,157,1.4.1,0
+22240,157,1.4.1,0
+22240,126,1.4,1
+22240,170,1,2
+22241,157,1.4.1,0
+22241,126,1.4,1
+22241,170,1,2
+22242,157,1.4.1,0
+22242,126,1.4,1
+22242,170,1,2
+22243,157,1.4.1,0
+22243,170,1,2
+22243,126,1.4,1
+22244,126,1.4,1
+22244,170,1,2
+22244,157,1.4.1,0
+22245,157,1.4.1,0
+22245,170,1,2
+22245,126,1.4,1
+22246,126,1.4,1
+22246,157,1.4.1,0
+22246,170,1,2
+22247,170,1,2
+22247,126,1.4,1
+22247,157,1.4.1,0
+22248,170,1,2
+22248,157,1.4.1,0
+22248,126,1.4,1
+22249,170,1,2
+22249,157,1.4.1,0
+22249,126,1.4,1
+22250,170,1,2
+22250,157,1.4.1,0
+22250,126,1.4,1
+22251,158,1.4.4.1,0
+22251,0,1.4.4,1
+22252,158,1.4.4.1,0
+22252,0,1.4.4,1
+22252,40,1.4.4,1
+22253,0,1.4.4,1
+22253,40,1.4.4,1
+22253,158,1.4.4.1,0
+22254,158,1.4.4.1,0
+22254,40,1.4.4,1
+22255,158,1.4.4.1,0
+22255,40,1.4.4,1
+22255,0,1.4.4,1
+22256,158,1.4.4.1,0
+22256,0,1.4.4,1
+22257,40,1.4.4,1
+22257,158,1.4.4.1,0
+22258,0,1.4.4,1
+22258,158,1.4.4.1,0
+22259,158,1.4.4.1,0
+22259,0,1.4.4,1
+22260,158,1.4.4.1,0
+22260,40,1.4.4,1
+22261,158,1.4.4.1,0
+22261,0,1.4.4,1
+22261,40,1.4.4,1
+22264,0,1.4.4,1
+22264,158,1.4.4.1,0
+22264,40,1.4.4,1
+22266,0,1.4.4,1
+22266,158,1.4.4.1,0
+22266,40,1.4.4,1
+22269,158,1.4.4.1,0
+22269,40,1.4.4,1
+22270,40,1.4.4,1
+22270,158,1.4.4.1,0
+22271,40,1.4.4,1
+22271,158,1.4.4.1,0
+22272,0,1.4.4,1
+22272,126,1.4,2
+22272,158,1.4.4.1,0
+22272,170,1,3
+22273,158,1.4.4.1,0
+22273,0,1.4.4,1
+22274,158,1.4.4.1,0
+22274,40,1.4.4,1
+22276,40,1.4.4,1
+22276,158,1.4.4.1,0
+22278,158,1.4.4.1,0
+22278,0,1.4.4,1
+22279,158,1.4.4.1,0
+22279,0,1.4.4,1
+22279,40,1.4.4,1
+22281,0,1.4.4,1
+22281,158,1.4.4.1,0
+22282,40,1.4.4,1
+22282,0,1.4.4,1
+22282,158,1.4.4.1,0
+22283,0,1.4.4,1
+22283,158,1.4.4.1,0
+22284,158,1.4.4.1,0
+22284,0,1.4.4,1
+22286,0,1.4.4,1
+22286,158,1.4.4.1,0
+22289,158,1.4.4.1,0
+22289,0,1.4.4,1
+22290,158,1.4.4.1,0
+22290,40,1.4.4,1
+22291,158,1.4.4.1,0
+22291,0,1.4.4,1
+22292,158,1.4.4.1,0
+22292,0,1.4.4,1
+22293,158,1.4.4.1,0
+22293,40,1.4.4,1
+22293,0,1.4.4,1
+22294,0,1.4.4,1
+22294,158,1.4.4.1,0
+22295,158,1.4.4.1,0
+22295,40,1.4.4,1
+22297,0,1.4.4,1
+22297,158,1.4.4.1,0
+22298,158,1.4.4.1,0
+22298,0,1.4.4,1
+22299,40,1.4.4,1
+22299,158,1.4.4.1,0
+22300,40,1.4.4,1
+22300,158,1.4.4.1,0
+22304,159,2.1.2,0
+22304,99,2.1,1
+22322,159,2.1.2,0
+22322,99,2.1,1
+22329,99,2.1,1
+22329,170,1,3
+22329,98,2,2
+22329,102,2,2
+22329,159,2.1.2,0
+22331,99,2.1,1
+22331,159,2.1.2,0
+22332,99,2.1,1
+22332,159,2.1.2,0
+22333,99,2.1,1
+22333,159,2.1.2,0
+22334,159,2.1.2,0
+22334,99,2.1,1
+22339,159,2.1.2,0
+22339,99,2.1,1
+22351,157,1.4.1,1
+22351,160,1.4.1.3,0
+22352,160,1.4.1.3,0
+22352,157,1.4.1,1
+22353,157,1.4.1,1
+22353,160,1.4.1.3,0
+22354,157,1.4.1,1
+22354,160,1.4.1.3,0
+22355,160,1.4.1.3,0
+22355,157,1.4.1,1
+22356,160,1.4.1.3,0
+22356,157,1.4.1,1
+22357,160,1.4.1.3,0
+22357,157,1.4.1,1
+22358,160,1.4.1.3,0
+22358,157,1.4.1,1
+22359,157,1.4.1,1
+22359,160,1.4.1.3,0
+22360,157,1.4.1,1
+22360,160,1.4.1.3,0
+22361,160,1.4.1.3,0
+22361,157,1.4.1,1
+22364,160,1.4.1.3,0
+22364,157,1.4.1,1
+22366,157,1.4.1,1
+22366,160,1.4.1.3,0
+22369,157,1.4.1,1
+22369,160,1.4.1.3,0
+22370,160,1.4.1.3,0
+22370,157,1.4.1,1
+22372,160,1.4.1.3,0
+22372,157,1.4.1,1
+22373,157,1.4.1,1
+22373,160,1.4.1.3,0
+22375,160,1.4.1.3,0
+22375,157,1.4.1,1
+22376,157,1.4.1,1
+22376,160,1.4.1.3,0
+22378,157,1.4.1,1
+22378,160,1.4.1.3,0
+22379,160,1.4.1.3,0
+22379,157,1.4.1,1
+22381,160,1.4.1.3,0
+22381,157,1.4.1,1
+22382,160,1.4.1.3,0
+22382,157,1.4.1,1
+22383,160,1.4.1.3,0
+22383,157,1.4.1,1
+22384,160,1.4.1.3,0
+22384,157,1.4.1,1
+22386,160,1.4.1.3,0
+22386,157,1.4.1,1
+22389,160,1.4.1.3,0
+22389,157,1.4.1,1
+22391,160,1.4.1.3,0
+22391,157,1.4.1,1
+22392,157,1.4.1,1
+22392,160,1.4.1.3,0
+22393,157,1.4.1,1
+22393,160,1.4.1.3,0
+22394,160,1.4.1.3,0
+22394,157,1.4.1,1
+22397,160,1.4.1.3,0
+22397,157,1.4.1,1
+22398,157,1.4.1,1
+22398,160,1.4.1.3,0
+22402,126,2.3,1
+22402,155,2.3,1
+22402,161,2.3.1,0
+22403,161,2.3.1,0
+22403,155,2.3,1
+22404,161,2.3.1,0
+22404,99,2.3,1
+22405,161,2.3.1,0
+22405,99,2.3,1
+22405,84,2.3,1
+22406,161,2.3.1,0
+22406,95,2.3,1
+22407,161,2.3.1,0
+22407,99,2.3,1
+22408,95,2.3,1
+22408,161,2.3.1,0
+22410,99,2.3,1
+22410,161,2.3.1,0
+22411,161,2.3.1,0
+22411,155,2.3,1
+22411,126,2.3,1
+22414,161,2.3.1,0
+22414,126,2.3,1
+22416,161,2.3.1,0
+22416,84,2.3,1
+22420,126,2.3,1
+22420,95,2.3,1
+22420,161,2.3.1,0
+22422,161,2.3.1,0
+22422,84,2.3,1
+22423,124,2.3,1
+22423,155,2.3,1
+22423,161,2.3.1,0
+22423,95,2.3,1
+22426,161,2.3.1,0
+22426,95,2.3,1
+22427,161,2.3.1,0
+22427,126,2.3,1
+22428,161,2.3.1,0
+22428,84,2.3,1
+22429,155,2.3,1
+22429,161,2.3.1,0
+22431,99,2.3,1
+22431,84,2.3,1
+22431,161,2.3.1,0
+22432,161,2.3.1,0
+22432,84,2.3,1
+22434,161,2.3.1,0
+22434,124,2.3,1
+22438,161,2.3.1,0
+22438,95,2.3,1
+22439,161,2.3.1,0
+22439,84,2.3,1
+22440,161,2.3.1,0
+22440,155,2.3,1
+22441,161,2.3.1,0
+22441,84,2.3,1
+22442,95,2.3,1
+22442,99,2.3,1
+22442,161,2.3.1,0
+22443,99,2.3,1
+22443,124,2.3,1
+22443,161,2.3.1,0
+22444,99,2.3,1
+22444,126,2.3,1
+22444,161,2.3.1,0
+22445,161,2.3.1,0
+22445,99,2.3,1
+22447,126,2.3,1
+22447,161,2.3.1,0
+22448,124,2.3,1
+22448,161,2.3.1,0
+22448,99,2.3,1
+22448,84,2.3,1
+22452,126,2.3,1
+22452,161,2.3.2,0
+22453,161,2.3.2,0
+22453,126,2.3,1
+22453,99,2.3,1
+22453,155,2.3,1
+22454,155,2.3,1
+22454,95,2.3,1
+22454,161,2.3.2,0
+22454,126,2.3,1
+22456,161,2.3.2,0
+22456,95,2.3,1
+22458,124,2.3,1
+22458,161,2.3.2,0
+22459,161,2.3.2,0
+22459,84,2.3,1
+22461,155,2.3,1
+22461,161,2.3.2,0
+22464,161,2.3.2,0
+22464,124,2.3,1
+22466,155,2.3,1
+22466,161,2.3.2,0
+22466,99,2.3,1
+22467,161,2.3.2,0
+22467,126,2.3,1
+22470,161,2.3.2,0
+22470,95,2.3,1
+22472,161,2.3.2,0
+22472,99,2.3,1
+22474,126,2.3,1
+22474,161,2.3.2,0
+22476,161,2.3.2,0
+22476,155,2.3,1
+22481,155,2.3,1
+22481,161,2.3.2,0
+22481,99,2.3,1
+22482,95,2.3,1
+22482,161,2.3.2,0
+22482,84,2.3,1
+22484,161,2.3.2,0
+22484,155,2.3,1
+22486,95,2.3,1
+22486,161,2.3.2,0
+22486,155,2.3,1
+22487,155,2.3,1
+22487,126,2.3,1
+22487,161,2.3.2,0
+22488,161,2.3.2,0
+22488,95,2.3,1
+22489,126,2.3,1
+22489,161,2.3.2,0
+22491,155,2.3,1
+22491,161,2.3.2,0
+22491,95,2.3,1
+22492,126,2.3,1
+22492,161,2.3.2,0
+22493,126,2.3,1
+22493,124,2.3,1
+22493,161,2.3.2,0
+22494,95,2.3,1
+22494,84,2.3,1
+22494,161,2.3.2,0
+22495,99,2.3,1
+22495,161,2.3.2,0
+22496,155,2.3,1
+22496,161,2.3.2,0
+22497,84,2.3,1
+22497,161,2.3.2,0
+22502,95,2.3,1
+22502,161,2.3.3,0
+22504,126,2.3,1
+22504,161,2.3.3,0
+22505,95,2.3,1
+22505,161,2.3.3,0
+22505,124,2.3,1
+22506,84,2.3,1
+22506,161,2.3.3,0
+22508,95,2.3,1
+22508,126,2.3,1
+22508,161,2.3.3,0
+22509,161,2.3.3,0
+22509,95,2.3,1
+22511,126,2.3,1
+22511,124,2.3,1
+22511,95,2.3,1
+22511,161,2.3.3,0
+22511,84,2.3,1
+22512,155,2.3,1
+22512,161,2.3.3,0
+22514,161,2.3.3,0
+22514,126,2.3,1
+22514,84,2.3,1
+22519,161,2.3.3,0
+22519,126,2.3,1
+22520,161,2.3.3,0
+22520,124,2.3,1
+22521,155,2.3,1
+22521,161,2.3.3,0
+22523,161,2.3.3,0
+22523,155,2.3,1
+22523,84,2.3,1
+22523,124,2.3,1
+22524,126,2.3,1
+22524,161,2.3.3,0
+22526,126,2.3,1
+22526,161,2.3.3,0
+22526,95,2.3,1
+22528,84,2.3,1
+22528,161,2.3.3,0
+22529,155,2.3,1
+22529,161,2.3.3,0
+22531,84,2.3,1
+22531,161,2.3.3,0
+22531,124,2.3,1
+22532,155,2.3,1
+22532,161,2.3.3,0
+22532,84,2.3,1
+22533,155,2.3,1
+22533,161,2.3.3,0
+22534,161,2.3.3,0
+22534,155,2.3,1
+22536,95,2.3,1
+22536,155,2.3,1
+22536,84,2.3,1
+22536,161,2.3.3,0
+22537,161,2.3.3,0
+22537,99,2.3,1
+22539,161,2.3.3,0
+22539,99,2.3,1
+22541,161,2.3.3,0
+22541,95,2.3,1
+22542,124,2.3,1
+22542,126,2.3,1
+22542,161,2.3.3,0
+22544,161,2.3.3,0
+22544,99,2.3,1
+22545,126,2.3,1
+22545,161,2.3.3,0
+22547,126,2.3,1
+22547,161,2.3.3,0
+22548,155,2.3,1
+22548,161,2.3.3,0
+22548,126,2.3,1
+22550,155,2.3,1
+22550,161,2.3.3,0
+22550,124,2.3,1
+22551,162,1.4.5.6,0
+22551,41,1.4.5,1
+22552,41,1.4.5,1
+22552,162,1.4.5.6,0
+22553,41,1.4.5,1
+22553,162,1.4.5.6,0
+22554,41,1.4.5,1
+22554,162,1.4.5.6,0
+22555,162,1.4.5.6,0
+22555,41,1.4.5,1
+22556,41,1.4.5,1
+22556,162,1.4.5.6,0
+22557,170,1,3
+22557,162,1.4.5.6,0
+22557,41,1.4.5,1
+22557,126,1.4,2
+22558,41,1.4.5,1
+22558,126,1.4,2
+22558,162,1.4.5.6,0
+22558,170,1,3
+22559,162,1.4.5.6,0
+22559,41,1.4.5,1
+22560,162,1.4.5.6,0
+22560,41,1.4.5,1
+22561,41,1.4.5,1
+22561,162,1.4.5.6,0
+22564,170,1,3
+22564,162,1.4.5.6,0
+22564,41,1.4.5,1
+22564,126,1.4,2
+22566,162,1.4.5.6,0
+22566,126,1.4,2
+22566,170,1,3
+22566,41,1.4.5,1
+22569,162,1.4.5.6,0
+22569,41,1.4.5,1
+22570,170,1,3
+22570,162,1.4.5.6,0
+22570,41,1.4.5,1
+22570,126,1.4,2
+22572,41,1.4.5,1
+22572,162,1.4.5.6,0
+22573,162,1.4.5.6,0
+22573,41,1.4.5,1
+22574,162,1.4.5.6,0
+22574,41,1.4.5,1
+22575,41,1.4.5,1
+22575,162,1.4.5.6,0
+22576,126,1.4,2
+22576,41,1.4.5,1
+22576,162,1.4.5.6,0
+22576,170,1,3
+22578,162,1.4.5.6,0
+22578,41,1.4.5,1
+22578,170,1,3
+22578,126,1.4,2
+22579,162,1.4.5.6,0
+22579,41,1.4.5,1
+22581,126,1.4,2
+22581,170,1,3
+22581,162,1.4.5.6,0
+22581,41,1.4.5,1
+22582,162,1.4.5.6,0
+22582,126,1.4,2
+22582,41,1.4.5,1
+22582,170,1,3
+22583,41,1.4.5,1
+22583,162,1.4.5.6,0
+22584,41,1.4.5,1
+22584,162,1.4.5.6,0
+22584,126,1.4,2
+22584,170,1,3
+22586,162,1.4.5.6,0
+22586,41,1.4.5,1
+22586,170,1,3
+22586,126,1.4,2
+22589,162,1.4.5.6,0
+22589,41,1.4.5,1
+22591,162,1.4.5.6,0
+22591,41,1.4.5,1
+22592,162,1.4.5.6,0
+22592,41,1.4.5,1
+22593,41,1.4.5,1
+22593,170,1,3
+22593,126,1.4,2
+22593,162,1.4.5.6,0
+22594,162,1.4.5.6,0
+22594,41,1.4.5,1
+22597,41,1.4.5,1
+22597,162,1.4.5.6,0
+22598,162,1.4.5.6,0
+22598,41,1.4.5,1
+22599,41,1.4.5,1
+22599,162,1.4.5.6,0
+22601,170,1,3
+22601,162,1.4.5.7,0
+22601,126,1.4,2
+22601,41,1.4.5,1
+22602,41,1.4.5,1
+22602,162,1.4.5.7,0
+22603,41,1.4.5,1
+22603,162,1.4.5.7,0
+22604,41,1.4.5,1
+22604,162,1.4.5.7,0
+22605,162,1.4.5.7,0
+22605,41,1.4.5,1
+22606,162,1.4.5.7,0
+22606,126,1.4,2
+22606,41,1.4.5,1
+22606,170,1,3
+22607,41,1.4.5,1
+22607,162,1.4.5.7,0
+22608,41,1.4.5,1
+22608,162,1.4.5.7,0
+22609,162,1.4.5.7,0
+22609,41,1.4.5,1
+22610,162,1.4.5.7,0
+22610,41,1.4.5,1
+22611,41,1.4.5,1
+22611,162,1.4.5.7,0
+22614,41,1.4.5,1
+22614,162,1.4.5.7,0
+22616,41,1.4.5,1
+22616,162,1.4.5.7,0
+22619,162,1.4.5.7,0
+22619,41,1.4.5,1
+22620,162,1.4.5.7,0
+22620,41,1.4.5,1
+22622,126,1.4,2
+22622,41,1.4.5,1
+22622,162,1.4.5.7,0
+22622,170,1,3
+22623,162,1.4.5.7,0
+22623,126,1.4,2
+22623,170,1,3
+22623,41,1.4.5,1
+22624,162,1.4.5.7,0
+22624,41,1.4.5,1
+22625,41,1.4.5,1
+22625,162,1.4.5.7,0
+22626,126,1.4,2
+22626,41,1.4.5,1
+22626,162,1.4.5.7,0
+22626,170,1,3
+22628,162,1.4.5.7,0
+22628,41,1.4.5,1
+22628,170,1,3
+22628,126,1.4,2
+22629,41,1.4.5,1
+22629,170,1,3
+22629,126,1.4,2
+22629,162,1.4.5.7,0
+22631,41,1.4.5,1
+22631,162,1.4.5.7,0
+22632,41,1.4.5,1
+22632,162,1.4.5.7,0
+22633,162,1.4.5.7,0
+22633,170,1,3
+22633,41,1.4.5,1
+22633,126,1.4,2
+22634,162,1.4.5.7,0
+22634,41,1.4.5,1
+22636,41,1.4.5,1
+22636,162,1.4.5.7,0
+22639,162,1.4.5.7,0
+22639,41,1.4.5,1
+22641,162,1.4.5.7,0
+22641,41,1.4.5,1
+22642,162,1.4.5.7,0
+22642,41,1.4.5,1
+22643,162,1.4.5.7,0
+22643,41,1.4.5,1
+22644,162,1.4.5.7,0
+22644,41,1.4.5,1
+22647,41,1.4.5,1
+22647,162,1.4.5.7,0
+22648,126,1.4,2
+22648,170,1,3
+22648,162,1.4.5.7,0
+22648,41,1.4.5,1
+22649,170,1,3
+22649,162,1.4.5.7,0
+22649,126,1.4,2
+22649,41,1.4.5,1
+22652,163,2.1.4.1.1,0
+22652,79,2.1.4.1,1
+22655,163,2.1.4.1.1,0
+22655,81,2.1.4.1,1
+22658,81,2.1.4.1,1
+22658,163,2.1.4.1.1,0
+22660,79,2.1.4.1,1
+22660,163,2.1.4.1.1,0
+22661,79,2.1.4.1,1
+22661,163,2.1.4.1.1,0
+22664,163,2.1.4.1.1,0
+22664,79,2.1.4.1,1
+22666,81,2.1.4.1,1
+22666,163,2.1.4.1.1,0
+22669,79,2.1.4.1,1
+22669,163,2.1.4.1.1,0
+22673,163,2.1.4.1.1,0
+22673,79,2.1.4.1,1
+22674,79,2.1.4.1,1
+22674,163,2.1.4.1.1,0
+22676,163,2.1.4.1.1,0
+22676,81,2.1.4.1,1
+22679,81,2.1.4.1,1
+22679,163,2.1.4.1.1,0
+22681,81,2.1.4.1,1
+22681,163,2.1.4.1.1,0
+22681,79,2.1.4.1,1
+22686,163,2.1.4.1.1,0
+22686,79,2.1.4.1,1
+22693,163,2.1.4.1.1,0
+22693,79,2.1.4.1,1
+22697,163,2.1.4.1.1,0
+22697,81,2.1.4.1,1
+22701,163,2.1.4.1.2,0
+22701,79,2.1.4.1,1
+22702,163,2.1.4.1.2,0
+22702,79,2.1.4.1,1
+22705,81,2.1.4.1,1
+22705,163,2.1.4.1.2,0
+22706,163,2.1.4.1.2,0
+22706,79,2.1.4.1,1
+22708,79,2.1.4.1,1
+22708,163,2.1.4.1.2,0
+22709,81,2.1.4.1,1
+22709,163,2.1.4.1.2,0
+22710,79,2.1.4.1,1
+22710,163,2.1.4.1.2,0
+22723,163,2.1.4.1.2,0
+22723,79,2.1.4.1,1
+22729,81,2.1.4.1,1
+22729,163,2.1.4.1.2,0
+22732,163,2.1.4.1.2,0
+22732,81,2.1.4.1,1
+22734,163,2.1.4.1.2,0
+22734,81,2.1.4.1,1
+22738,163,2.1.4.1.2,0
+22738,81,2.1.4.1,1
+22739,79,2.1.4.1,1
+22739,163,2.1.4.1.2,0
+22741,79,2.1.4.1,1
+22741,163,2.1.4.1.2,0
+22742,163,2.1.4.1.2,0
+22742,79,2.1.4.1,1
+22752,163,2.1.4.1.3,0
+22752,84,2.1.4,2
+22752,115,2.1.4,2
+22752,79,2.1.4.1,1
+22759,163,2.1.4.1.3,0
+22759,79,2.1.4.1,1
+22769,79,2.1.4.1,1
+22769,163,2.1.4.1.3,0
+22770,163,2.1.4.1.3,0
+22770,81,2.1.4.1,1
+22772,163,2.1.4.1.3,0
+22772,81,2.1.4.1,1
+22777,163,2.1.4.1.3,0
+22777,81,2.1.4.1,1
+22781,81,2.1.4.1,1
+22781,163,2.1.4.1.3,0
+22789,81,2.1.4.1,1
+22789,163,2.1.4.1.3,0
+22790,81,2.1.4.1,1
+22790,163,2.1.4.1.3,0
+22792,102,2.1.4,2
+22792,79,2.1.4.1,1
+22792,163,2.1.4.1.3,0
+22797,81,2.1.4.1,1
+22797,163,2.1.4.1.3,0
+22802,163,2.1.4.1.4,0
+22802,79,2.1.4.1,1
+22804,81,2.1.4.1,1
+22804,163,2.1.4.1.4,0
+22806,163,2.1.4.1.4,0
+22806,79,2.1.4.1,1
+22808,79,2.1.4.1,1
+22808,163,2.1.4.1.4,0
+22809,163,2.1.4.1.4,0
+22809,79,2.1.4.1,1
+22811,79,2.1.4.1,1
+22811,163,2.1.4.1.4,0
+22814,163,2.1.4.1.4,0
+22814,81,2.1.4.1,1
+22819,79,2.1.4.1,1
+22819,163,2.1.4.1.4,0
+22822,163,2.1.4.1.4,0
+22822,79,2.1.4.1,1
+22823,163,2.1.4.1.4,0
+22823,79,2.1.4.1,1
+22828,79,2.1.4.1,1
+22828,163,2.1.4.1.4,0
+22831,81,2.1.4.1,1
+22831,163,2.1.4.1.4,0
+22833,163,2.1.4.1.4,0
+22833,81,2.1.4.1,1
+22841,81,2.1.4.1,1
+22841,163,2.1.4.1.4,0
+22847,81,2.1.4.1,1
+22847,163,2.1.4.1.4,0
+22848,163,2.1.4.1.4,0
+22848,81,2.1.4.1,1
+22850,163,2.1.4.1.4,0
+22850,81,2.1.4.1,1
+22852,163,2.1.4.2.1,0
+22852,79,2.1.4.2,1
+22855,163,2.1.4.2.1,0
+22855,79,2.1.4.2,1
+22856,163,2.1.4.2.1,0
+22856,81,2.1.4.2,1
+22857,163,2.1.4.2.1,0
+22857,79,2.1.4.2,1
+22858,79,2.1.4.2,1
+22858,163,2.1.4.2.1,0
+22859,81,2.1.4.2,1
+22859,163,2.1.4.2.1,0
+22864,163,2.1.4.2.1,0
+22864,79,2.1.4.2,1
+22866,79,2.1.4.2,1
+22866,163,2.1.4.2.1,0
+22869,79,2.1.4.2,1
+22869,163,2.1.4.2.1,0
+22870,163,2.1.4.2.1,0
+22870,81,2.1.4.2,1
+22883,79,2.1.4.2,1
+22883,163,2.1.4.2.1,0
+22886,163,2.1.4.2.1,0
+22886,79,2.1.4.2,1
+22886,81,2.1.4.2,1
+22887,81,2.1.4.2,1
+22887,163,2.1.4.2.1,0
+22889,79,2.1.4.2,1
+22889,163,2.1.4.2.1,0
+22891,81,2.1.4.2,1
+22891,163,2.1.4.2.1,0
+22894,163,2.1.4.2.1,0
+22894,79,2.1.4.2,1
+22898,163,2.1.4.2.1,0
+22898,79,2.1.4.2,1
+22899,163,2.1.4.2.1,0
+22899,81,2.1.4.2,1
+22900,81,2.1.4.2,1
+22900,163,2.1.4.2.1,0
+22902,163,2.1.4.2.2,0
+22902,79,2.1.4.2,1
+22903,79,2.1.4.2,1
+22903,163,2.1.4.2.2,0
+22903,81,2.1.4.2,1
+22904,163,2.1.4.2.2,0
+22904,81,2.1.4.2,1
+22906,163,2.1.4.2.2,0
+22906,79,2.1.4.2,1
+22909,81,2.1.4.2,1
+22909,163,2.1.4.2.2,0
+22914,163,2.1.4.2.2,0
+22914,79,2.1.4.2,1
+22916,81,2.1.4.2,1
+22916,163,2.1.4.2.2,0
+22919,79,2.1.4.2,1
+22919,163,2.1.4.2.2,0
+22929,81,2.1.4.2,1
+22929,79,2.1.4.2,1
+22929,163,2.1.4.2.2,0
+22931,81,2.1.4.2,1
+22931,163,2.1.4.2.2,0
+22933,81,2.1.4.2,1
+22933,163,2.1.4.2.2,0
+22940,81,2.1.4.2,1
+22940,163,2.1.4.2.2,0
+22943,163,2.1.4.2.2,0
+22943,79,2.1.4.2,1
+22948,163,2.1.4.2.2,0
+22948,79,2.1.4.2,1
+22948,81,2.1.4.2,1
+22952,164,1.3.3.6,0
+22952,75,1.3.3,1
+22952,99,1.3.3,1
+22954,75,1.3.3,1
+22954,164,1.3.3.6,0
+22955,164,1.3.3.6,0
+22955,75,1.3.3,1
+22955,99,1.3.3,1
+22956,164,1.3.3.6,0
+22956,75,1.3.3,1
+22957,75,1.3.3,1
+22957,164,1.3.3.6,0
+22958,164,1.3.3.6,0
+22958,97,1.3.3,1
+22959,164,1.3.3.6,0
+22959,97,1.3.3,1
+22960,97,1.3.3,1
+22960,164,1.3.3.6,0
+22961,97,1.3.3,1
+22961,164,1.3.3.6,0
+22961,99,1.3.3,1
+22964,75,1.3.3,1
+22964,164,1.3.3.6,0
+22964,97,1.3.3,1
+22969,99,1.3.3,1
+22969,164,1.3.3.6,0
+22972,164,1.3.3.6,0
+22972,75,1.3.3,1
+22973,99,1.3.3,1
+22973,164,1.3.3.6,0
+22976,164,1.3.3.6,0
+22976,75,1.3.3,1
+22976,97,1.3.3,1
+22977,164,1.3.3.6,0
+22977,99,1.3.3,1
+22978,164,1.3.3.6,0
+22978,75,1.3.3,1
+22979,75,1.3.3,1
+22979,164,1.3.3.6,0
+22981,75,1.3.3,1
+22981,164,1.3.3.6,0
+22982,75,1.3.3,1
+22982,164,1.3.3.6,0
+22983,75,1.3.3,1
+22983,164,1.3.3.6,0
+22984,164,1.3.3.6,0
+22984,97,1.3.3,1
+22985,99,1.3.3,1
+22985,164,1.3.3.6,0
+22986,164,1.3.3.6,0
+22986,99,1.3.3,1
+22986,97,1.3.3,1
+22987,99,1.3.3,1
+22987,164,1.3.3.6,0
+22988,99,1.3.3,1
+22988,164,1.3.3.6,0
+22989,164,1.3.3.6,0
+22989,75,1.3.3,1
+22990,99,1.3.3,1
+22990,164,1.3.3.6,0
+22991,164,1.3.3.6,0
+22991,99,1.3.3,1
+22992,97,1.3.3,1
+22992,164,1.3.3.6,0
+22993,164,1.3.3.6,0
+22993,75,1.3.3,1
+22994,75,1.3.3,1
+22994,164,1.3.3.6,0
+22994,99,1.3.3,1
+22995,99,1.3.3,1
+22995,164,1.3.3.6,0
+22997,164,1.3.3.6,0
+22997,99,1.3.3,1
+22999,99,1.3.3,1
+22999,164,1.3.3.6,0
+23004,58,2.1.2,1
+23004,165,2.1.2.1,0
+23005,165,2.1.2.1,0
+23005,58,2.1.2,1
+23005,79,2.1.2,1
+23006,159,2.1.2,1
+23006,165,2.1.2.1,0
+23010,165,2.1.2.1,0
+23010,159,2.1.2,1
+23011,165,2.1.2.1,0
+23011,84,2.1.2,1
+23011,58,2.1.2,1
+23014,165,2.1.2.1,0
+23014,58,2.1.2,1
+23016,165,2.1.2.1,0
+23016,159,2.1.2,1
+23020,58,2.1.2,1
+23020,159,2.1.2,1
+23020,165,2.1.2.1,0
+23022,165,2.1.2.1,0
+23022,84,2.1.2,1
+23023,159,2.1.2,1
+23023,165,2.1.2.1,0
+23025,58,2.1.2,1
+23025,165,2.1.2.1,0
+23029,165,2.1.2.1,0
+23029,79,2.1.2,1
+23031,165,2.1.2.1,0
+23031,159,2.1.2,1
+23032,79,2.1.2,1
+23032,159,2.1.2,1
+23032,165,2.1.2.1,0
+23033,81,2.1.2,1
+23033,165,2.1.2.1,0
+23034,81,2.1.2,1
+23034,165,2.1.2.1,0
+23036,159,2.1.2,1
+23036,165,2.1.2.1,0
+23039,81,2.1.2,1
+23039,165,2.1.2.1,0
+23041,58,2.1.2,1
+23041,165,2.1.2.1,0
+23042,84,2.1.2,1
+23042,165,2.1.2.1,0
+23042,58,2.1.2,1
+23044,84,2.1.2,1
+23044,165,2.1.2.1,0
+23048,79,2.1.2,1
+23048,165,2.1.2.1,0
+23048,84,2.1.2,1
+23048,159,2.1.2,1
+23049,84,2.1.2,1
+23049,81,2.1.2,1
+23049,165,2.1.2.1,0
+23052,81,2.1.2,1
+23052,165,2.1.2.2,0
+23054,165,2.1.2.2,0
+23054,79,2.1.2,1
+23057,165,2.1.2.2,0
+23057,79,2.1.2,1
+23058,165,2.1.2.2,0
+23058,81,2.1.2,1
+23059,165,2.1.2.2,0
+23059,159,2.1.2,1
+23060,165,2.1.2.2,0
+23060,81,2.1.2,1
+23061,165,2.1.2.2,0
+23061,84,2.1.2,1
+23064,81,2.1.2,1
+23064,165,2.1.2.2,0
+23066,165,2.1.2.2,0
+23066,79,2.1.2,1
+23066,58,2.1.2,1
+23069,79,2.1.2,1
+23069,58,2.1.2,1
+23069,165,2.1.2.2,0
+23072,165,2.1.2.2,0
+23072,84,2.1.2,1
+23073,165,2.1.2.2,0
+23073,159,2.1.2,1
+23073,79,2.1.2,1
+23073,84,2.1.2,1
+23074,79,2.1.2,1
+23074,165,2.1.2.2,0
+23075,165,2.1.2.2,0
+23075,159,2.1.2,1
+23076,84,2.1.2,1
+23076,159,2.1.2,1
+23076,165,2.1.2.2,0
+23078,165,2.1.2.2,0
+23078,84,2.1.2,1
+23079,165,2.1.2.2,0
+23079,81,2.1.2,1
+23079,58,2.1.2,1
+23081,165,2.1.2.2,0
+23081,84,2.1.2,1
+23084,159,2.1.2,1
+23084,165,2.1.2.2,0
+23086,79,2.1.2,1
+23086,165,2.1.2.2,0
+23090,165,2.1.2.2,0
+23090,159,2.1.2,1
+23091,81,2.1.2,1
+23091,165,2.1.2.2,0
+23092,165,2.1.2.2,0
+23092,79,2.1.2,1
+23092,159,2.1.2,1
+23093,81,2.1.2,1
+23093,165,2.1.2.2,0
+23094,84,2.1.2,1
+23094,159,2.1.2,1
+23094,165,2.1.2.2,0
+23098,79,2.1.2,1
+23098,165,2.1.2.2,0
+23103,165,2.1.2.3,0
+23103,58,2.1.2,1
+23104,84,2.1.2,1
+23104,165,2.1.2.3,0
+23105,165,2.1.2.3,0
+23105,159,2.1.2,1
+23106,165,2.1.2.3,0
+23106,58,2.1.2,1
+23106,79,2.1.2,1
+23108,165,2.1.2.3,0
+23108,84,2.1.2,1
+23110,165,2.1.2.3,0
+23110,81,2.1.2,1
+23111,58,2.1.2,1
+23111,165,2.1.2.3,0
+23112,81,2.1.2,1
+23112,165,2.1.2.3,0
+23114,79,2.1.2,1
+23114,84,2.1.2,1
+23114,165,2.1.2.3,0
+23116,165,2.1.2.3,0
+23116,159,2.1.2,1
+23119,159,2.1.2,1
+23119,58,2.1.2,1
+23119,165,2.1.2.3,0
+23122,165,2.1.2.3,0
+23122,79,2.1.2,1
+23124,58,2.1.2,1
+23124,165,2.1.2.3,0
+23124,79,2.1.2,1
+23125,58,2.1.2,1
+23125,165,2.1.2.3,0
+23126,84,2.1.2,1
+23126,165,2.1.2.3,0
+23126,159,2.1.2,1
+23129,165,2.1.2.3,0
+23129,159,2.1.2,1
+23131,165,2.1.2.3,0
+23131,159,2.1.2,1
+23131,58,2.1.2,1
+23132,81,2.1.2,1
+23132,165,2.1.2.3,0
+23133,165,2.1.2.3,0
+23133,79,2.1.2,1
+23134,165,2.1.2.3,0
+23134,79,2.1.2,1
+23136,159,2.1.2,1
+23136,165,2.1.2.3,0
+23138,165,2.1.2.3,0
+23138,159,2.1.2,1
+23139,165,2.1.2.3,0
+23139,81,2.1.2,1
+23140,159,2.1.2,1
+23140,84,2.1.2,1
+23140,165,2.1.2.3,0
+23142,81,2.1.2,1
+23142,165,2.1.2.3,0
+23142,58,2.1.2,1
+23142,79,2.1.2,1
+23143,84,2.1.2,1
+23143,81,2.1.2,1
+23143,165,2.1.2.3,0
+23144,84,2.1.2,1
+23144,81,2.1.2,1
+23144,165,2.1.2.3,0
+23147,165,2.1.2.3,0
+23147,58,2.1.2,1
+23148,81,2.1.2,1
+23148,165,2.1.2.3,0
+23149,81,2.1.2,1
+23149,165,2.1.2.3,0
+23154,84,2.1.2,1
+23154,165,2.1.2.4,0
+23155,58,2.1.2,1
+23155,81,2.1.2,1
+23155,165,2.1.2.4,0
+23157,58,2.1.2,1
+23157,165,2.1.2.4,0
+23157,159,2.1.2,1
+23158,79,2.1.2,1
+23158,165,2.1.2.4,0
+23160,84,2.1.2,1
+23160,165,2.1.2.4,0
+23161,58,2.1.2,1
+23161,165,2.1.2.4,0
+23164,79,2.1.2,1
+23164,165,2.1.2.4,0
+23164,159,2.1.2,1
+23169,165,2.1.2.4,0
+23169,58,2.1.2,1
+23170,81,2.1.2,1
+23170,165,2.1.2.4,0
+23172,165,2.1.2.4,0
+23172,84,2.1.2,1
+23173,165,2.1.2.4,0
+23173,159,2.1.2,1
+23174,79,2.1.2,1
+23174,58,2.1.2,1
+23174,165,2.1.2.4,0
+23178,81,2.1.2,1
+23178,165,2.1.2.4,0
+23179,165,2.1.2.4,0
+23179,81,2.1.2,1
+23179,79,2.1.2,1
+23181,165,2.1.2.4,0
+23181,81,2.1.2,1
+23181,79,2.1.2,1
+23182,165,2.1.2.4,0
+23182,81,2.1.2,1
+23183,81,2.1.2,1
+23183,165,2.1.2.4,0
+23184,84,2.1.2,1
+23184,165,2.1.2.4,0
+23186,81,2.1.2,1
+23186,84,2.1.2,1
+23186,165,2.1.2.4,0
+23187,79,2.1.2,1
+23187,165,2.1.2.4,0
+23189,165,2.1.2.4,0
+23189,79,2.1.2,1
+23190,165,2.1.2.4,0
+23190,159,2.1.2,1
+23190,81,2.1.2,1
+23191,84,2.1.2,1
+23191,165,2.1.2.4,0
+23194,81,2.1.2,1
+23194,165,2.1.2.4,0
+23195,159,2.1.2,1
+23195,165,2.1.2.4,0
+23197,58,2.1.2,1
+23197,165,2.1.2.4,0
+23198,159,2.1.2,1
+23198,165,2.1.2.4,0
+23198,58,2.1.2,1
+23198,84,2.1.2,1
+23202,166,1.2.3,0
+23202,97,1.2,1
+23204,166,1.2.3,0
+23204,106,1.2,1
+23206,67,1.2,1
+23206,166,1.2.3,0
+23207,106,1.2,1
+23207,166,1.2.3,0
+23208,126,1.2,1
+23208,166,1.2.3,0
+23210,166,1.2.3,0
+23210,67,1.2,1
+23211,106,1.2,1
+23211,166,1.2.3,0
+23211,67,1.2,1
+23214,166,1.2.3,0
+23214,126,1.2,1
+23214,106,1.2,1
+23219,106,1.2,1
+23219,166,1.2.3,0
+23221,106,1.2,1
+23221,166,1.2.3,0
+23222,67,1.2,1
+23222,166,1.2.3,0
+23223,97,1.2,1
+23223,166,1.2.3,0
+23226,166,1.2.3,0
+23226,106,1.2,1
+23227,106,1.2,1
+23227,166,1.2.3,0
+23228,166,1.2.3,0
+23228,97,1.2,1
+23229,67,1.2,1
+23229,166,1.2.3,0
+23232,97,1.2,1
+23232,166,1.2.3,0
+23233,97,1.2,1
+23233,166,1.2.3,0
+23234,166,1.2.3,0
+23234,126,1.2,1
+23235,126,1.2,1
+23235,166,1.2.3,0
+23236,126,1.2,1
+23236,166,1.2.3,0
+23236,67,1.2,1
+23237,166,1.2.3,0
+23237,126,1.2,1
+23238,106,1.2,1
+23238,166,1.2.3,0
+23239,126,1.2,1
+23239,166,1.2.3,0
+23240,126,1.2,1
+23240,166,1.2.3,0
+23241,97,1.2,1
+23241,166,1.2.3,0
+23242,126,1.2,1
+23242,166,1.2.3,0
+23243,126,1.2,1
+23243,166,1.2.3,0
+23244,126,1.2,1
+23244,166,1.2.3,0
+23244,97,1.2,1
+23247,67,1.2,1
+23247,166,1.2.3,0
+23248,166,1.2.3,0
+23248,106,1.2,1
+23254,167,1.1.1,0
+23254,105,1.1,1
+23256,167,1.1.1,0
+23256,126,1.1,1
+23257,167,1.1.1,0
+23257,105,1.1,1
+23258,167,1.1.1,0
+23258,94,1.1,1
+23261,106,1.1,1
+23261,167,1.1.1,0
+23264,94,1.1,1
+23264,167,1.1.1,0
+23266,126,1.1,1
+23266,167,1.1.1,0
+23269,126,1.1,1
+23269,167,1.1.1,0
+23276,106,1.1,1
+23276,167,1.1.1,0
+23277,167,1.1.1,0
+23277,105,1.1,1
+23278,167,1.1.1,0
+23278,94,1.1,1
+23281,126,1.1,1
+23281,167,1.1.1,0
+23282,167,1.1.1,0
+23282,106,1.1,1
+23283,126,1.1,1
+23283,167,1.1.1,0
+23284,94,1.1,1
+23284,167,1.1.1,0
+23286,86,1.1,1
+23286,167,1.1.1,0
+23289,167,1.1.1,0
+23289,106,1.1,1
+23292,126,1.1,1
+23292,94,1.1,1
+23292,167,1.1.1,0
+23293,167,1.1.1,0
+23293,106,1.1,1
+23294,167,1.1.1,0
+23294,126,1.1,1
+23294,105,1.1,1
+23299,126,1.1,1
+23299,167,1.1.1,0
+23301,168,1.1.2,0
+23301,126,1.1,1
+23302,168,1.1.2,0
+23302,106,1.1,1
+23304,168,1.1.2,0
+23304,105,1.1,1
+23305,168,1.1.2,0
+23305,105,1.1,1
+23306,86,1.1,1
+23306,168,1.1.2,0
+23310,168,1.1.2,0
+23310,126,1.1,1
+23311,168,1.1.2,0
+23311,94,1.1,1
+23314,86,1.1,1
+23314,168,1.1.2,0
+23314,106,1.1,1
+23316,105,1.1,1
+23316,168,1.1.2,0
+23319,105,1.1,1
+23319,168,1.1.2,0
+23326,106,1.1,1
+23326,168,1.1.2,0
+23328,86,1.1,1
+23328,168,1.1.2,0
+23329,126,1.1,1
+23329,86,1.1,1
+23329,168,1.1.2,0
+23331,168,1.1.2,0
+23331,94,1.1,1
+23332,168,1.1.2,0
+23332,94,1.1,1
+23333,168,1.1.2,0
+23333,105,1.1,1
+23334,86,1.1,1
+23334,168,1.1.2,0
+23339,168,1.1.2,0
+23339,94,1.1,1
+23341,126,1.1,1
+23341,168,1.1.2,0
+23343,94,1.1,1
+23343,168,1.1.2,0
+23343,86,1.1,1
+23344,168,1.1.2,0
+23344,86,1.1,1
+23345,105,1.1,1
+23345,168,1.1.2,0
+23348,168,1.1.2,0
+23348,126,1.1,1
+23349,168,1.1.2,0
+23349,126,1.1,1
+23353,99,1.3.3,1
+23353,168,1.3.3.1,0
+23354,168,1.3.3.1,0
+23354,97,1.3.3,1
+23356,97,1.3.3,1
+23356,168,1.3.3.1,0
+23359,168,1.3.3.1,0
+23359,99,1.3.3,1
+23364,168,1.3.3.1,0
+23364,99,1.3.3,1
+23364,97,1.3.3,1
+23373,97,1.3.3,1
+23373,168,1.3.3.1,0
+23373,75,1.3.3,1
+23376,99,1.3.3,1
+23376,168,1.3.3.1,0
+23378,99,1.3.3,1
+23378,168,1.3.3.1,0
+23381,168,1.3.3.1,0
+23381,99,1.3.3,1
+23381,75,1.3.3,1
+23382,168,1.3.3.1,0
+23382,75,1.3.3,1
+23383,75,1.3.3,1
+23383,168,1.3.3.1,0
+23383,29,1.3,2
+23384,99,1.3.3,1
+23384,168,1.3.3.1,0
+23390,99,1.3.3,1
+23390,168,1.3.3.1,0
+23391,75,1.3.3,1
+23391,168,1.3.3.1,0
+23393,99,1.3.3,1
+23393,168,1.3.3.1,0
+23394,168,1.3.3.1,0
+23394,99,1.3.3,1
+23397,168,1.3.3.1,0
+23397,97,1.3.3,1
+23402,168,1.3.3.2,0
+23402,75,1.3.3,1
+23406,99,1.3.3,1
+23406,168,1.3.3.2,0
+23407,168,1.3.3.2,0
+23407,97,1.3.3,1
+23408,75,1.3.3,1
+23408,168,1.3.3.2,0
+23411,99,1.3.3,1
+23411,168,1.3.3.2,0
+23416,99,1.3.3,1
+23416,168,1.3.3.2,0
+23422,99,1.3.3,1
+23422,168,1.3.3.2,0
+23423,168,1.3.3.2,0
+23423,97,1.3.3,1
+23429,99,1.3.3,1
+23429,168,1.3.3.2,0
+23431,168,1.3.3.2,0
+23431,75,1.3.3,1
+23432,99,1.3.3,1
+23432,168,1.3.3.2,0
+23433,168,1.3.3.2,0
+23433,75,1.3.3,1
+23441,99,1.3.3,1
+23441,168,1.3.3.2,0
+23451,168,1.3.3.4,0
+23451,99,1.3.3,1
+23452,168,1.3.3.4,0
+23452,75,1.3.3,1
+23454,168,1.3.3.4,0
+23454,75,1.3.3,1
+23456,168,1.3.3.4,0
+23456,75,1.3.3,1
+23457,168,1.3.3.4,0
+23457,75,1.3.3,1
+23458,75,1.3.3,1
+23458,168,1.3.3.4,0
+23459,97,1.3.3,1
+23459,168,1.3.3.4,0
+23460,97,1.3.3,1
+23460,168,1.3.3.4,0
+23469,99,1.3.3,1
+23469,168,1.3.3.4,0
+23472,97,1.3.3,1
+23472,168,1.3.3.4,0
+23473,168,1.3.3.4,0
+23473,97,1.3.3,1
+23476,99,1.3.3,1
+23476,75,1.3.3,1
+23476,168,1.3.3.4,0
+23477,168,1.3.3.4,0
+23477,97,1.3.3,1
+23478,75,1.3.3,1
+23478,168,1.3.3.4,0
+23479,75,1.3.3,1
+23479,168,1.3.3.4,0
+23483,168,1.3.3.4,0
+23483,75,1.3.3,1
+23484,75,1.3.3,1
+23484,168,1.3.3.4,0
+23489,168,1.3.3.4,0
+23489,99,1.3.3,1
+23491,97,1.3.3,1
+23491,168,1.3.3.4,0
+23492,168,1.3.3.4,0
+23492,97,1.3.3,1
+23494,75,1.3.3,1
+23494,168,1.3.3.4,0
+23495,99,1.3.3,1
+23495,168,1.3.3.4,0
+23497,168,1.3.3.4,0
+23497,99,1.3.3,1
+23497,75,1.3.3,1
+23498,97,1.3.3,1
+23498,168,1.3.3.4,0
+23499,99,1.3.3,1
+23499,168,1.3.3.4,0
+23499,97,1.3.3,1
+23500,99,1.3.3,1
+23500,168,1.3.3.4,0
+23502,84,2.3,1
+23502,168,2.3.1,0
+23503,168,2.3.1,0
+23503,155,2.3,1
+23504,155,2.3,1
+23504,95,2.3,1
+23504,168,2.3.1,0
+23504,126,2.3,1
+23505,168,2.3.1,0
+23505,99,2.3,1
+23505,95,2.3,1
+23506,168,2.3.1,0
+23506,84,2.3,1
+23507,168,2.3.1,0
+23507,84,2.3,1
+23508,168,2.3.1,0
+23508,95,2.3,1
+23509,168,2.3.1,0
+23509,99,2.3,1
+23510,168,2.3.1,0
+23510,84,2.3,1
+23514,168,2.3.1,0
+23514,84,2.3,1
+23514,95,2.3,1
+23514,98,2,2
+23514,126,2.3,1
+23514,99,2.3,1
+23517,168,2.3.1,0
+23517,124,2.3,1
+23520,155,2.3,1
+23520,95,2.3,1
+23520,168,2.3.1,0
+23522,95,2.3,1
+23522,168,2.3.1,0
+23523,168,2.3.1,0
+23523,84,2.3,1
+23523,126,2.3,1
+23524,168,2.3.1,0
+23524,124,2.3,1
+23526,84,2.3,1
+23526,168,2.3.1,0
+23528,99,2.3,1
+23528,168,2.3.1,0
+23529,99,2.3,1
+23529,155,2.3,1
+23529,168,2.3.1,0
+23530,168,2.3.1,0
+23530,155,2.3,1
+23531,84,2.3,1
+23531,168,2.3.1,0
+23532,168,2.3.1,0
+23532,84,2.3,1
+23533,168,2.3.1,0
+23533,95,2.3,1
+23534,95,2.3,1
+23534,168,2.3.1,0
+23535,126,2.3,1
+23535,168,2.3.1,0
+23536,126,2.3,1
+23536,168,2.3.1,0
+23536,84,2.3,1
+23537,155,2.3,1
+23537,168,2.3.1,0
+23539,168,2.3.1,0
+23539,124,2.3,1
+23540,124,2.3,1
+23540,168,2.3.1,0
+23540,95,2.3,1
+23541,124,2.3,1
+23541,168,2.3.1,0
+23543,84,2.3,1
+23543,99,2.3,1
+23543,168,2.3.1,0
+23544,84,2.3,1
+23544,168,2.3.1,0
+23544,99,2.3,1
+23545,168,2.3.1,0
+23545,126,2.3,1
+23547,168,2.3.1,0
+23547,126,2.3,1
+23547,84,2.3,1
+23547,155,2.3,1
+23549,168,2.3.1,0
+23549,155,2.3,1
+23549,126,2.3,1
+23550,95,2.3,1
+23550,124,2.3,1
+23550,168,2.3.1,0
+23552,155,2.3,1
+23552,168,2.3.2,0
+23552,126,2.3,1
+23553,99,2.3,1
+23553,168,2.3.2,0
+23555,168,2.3.2,0
+23555,126,2.3,1
+23555,84,2.3,1
+23556,168,2.3.2,0
+23556,84,2.3,1
+23556,155,2.3,1
+23558,168,2.3.2,0
+23558,155,2.3,1
+23559,99,2.3,1
+23559,168,2.3.2,0
+23560,168,2.3.2,0
+23560,84,2.3,1
+23560,126,2.3,1
+23561,126,2.3,1
+23561,95,2.3,1
+23561,168,2.3.2,0
+23564,168,2.3.2,0
+23564,95,2.3,1
+23566,168,2.3.2,0
+23566,126,2.3,1
+23569,126,2.3,1
+23569,168,2.3.2,0
+23570,124,2.3,1
+23570,168,2.3.2,0
+23573,168,2.3.2,0
+23573,84,2.3,1
+23576,84,2.3,1
+23576,168,2.3.2,0
+23577,168,2.3.2,0
+23577,155,2.3,1
+23578,95,2.3,1
+23578,168,2.3.2,0
+23579,155,2.3,1
+23579,168,2.3.2,0
+23579,124,2.3,1
+23581,168,2.3.2,0
+23581,126,2.3,1
+23583,168,2.3.2,0
+23583,84,2.3,1
+23584,124,2.3,1
+23584,168,2.3.2,0
+23586,168,2.3.2,0
+23586,126,2.3,1
+23586,99,2.3,1
+23586,84,2.3,1
+23590,95,2.3,1
+23590,168,2.3.2,0
+23591,124,2.3,1
+23591,168,2.3.2,0
+23592,95,2.3,1
+23592,124,2.3,1
+23592,168,2.3.2,0
+23593,168,2.3.2,0
+23593,95,2.3,1
+23593,99,2.3,1
+23597,168,2.3.2,0
+23597,124,2.3,1
+23598,168,2.3.2,0
+23598,99,2.3,1
+23600,155,2.3,1
+23600,124,2.3,1
+23600,168,2.3.2,0
+23602,168,2.3.3,0
+23602,155,2.3,1
+23603,168,2.3.3,0
+23603,155,2.3,1
+23604,168,2.3.3,0
+23604,99,2.3,1
+23606,99,2.3,1
+23606,168,2.3.3,0
+23606,155,2.3,1
+23607,168,2.3.3,0
+23607,124,2.3,1
+23608,95,2.3,1
+23608,168,2.3.3,0
+23609,124,2.3,1
+23609,168,2.3.3,0
+23610,84,2.3,1
+23610,168,2.3.3,0
+23611,99,2.3,1
+23611,168,2.3.3,0
+23614,168,2.3.3,0
+23614,124,2.3,1
+23619,95,2.3,1
+23619,99,2.3,1
+23619,168,2.3.3,0
+23621,155,2.3,1
+23621,168,2.3.3,0
+23623,168,2.3.3,0
+23623,99,2.3,1
+23623,84,2.3,1
+23624,124,2.3,1
+23624,168,2.3.3,0
+23626,99,2.3,1
+23626,168,2.3.3,0
+23626,95,2.3,1
+23628,126,2.3,1
+23628,168,2.3.3,0
+23629,95,2.3,1
+23629,84,2.3,1
+23629,168,2.3.3,0
+23631,155,2.3,1
+23631,168,2.3.3,0
+23631,126,2.3,1
+23632,99,2.3,1
+23632,168,2.3.3,0
+23633,168,2.3.3,0
+23633,99,2.3,1
+23634,99,2.3,1
+23634,168,2.3.3,0
+23635,168,2.3.3,0
+23635,95,2.3,1
+23635,124,2.3,1
+23636,126,2.3,1
+23636,168,2.3.3,0
+23636,155,2.3,1
+23640,99,2.3,1
+23640,168,2.3.3,0
+23640,124,2.3,1
+23641,168,2.3.3,0
+23641,126,2.3,1
+23641,84,2.3,1
+23642,168,2.3.3,0
+23642,155,2.3,1
+23643,168,2.3.3,0
+23643,84,2.3,1
+23644,84,2.3,1
+23644,168,2.3.3,0
+23644,99,2.3,1
+23645,126,2.3,1
+23645,168,2.3.3,0
+23647,168,2.3.3,0
+23647,84,2.3,1
+23648,124,2.3,1
+23648,168,2.3.3,0
+23648,84,2.3,1
+23648,95,2.3,1
+23650,155,2.3,1
+23650,168,2.3.3,0
+23656,94,1.1,1
+23656,169,1.1.1,0
+23657,169,1.1.1,0
+23657,86,1.1,1
+23661,169,1.1.1,0
+23661,86,1.1,1
+23664,106,1.1,1
+23664,169,1.1.1,0
+23669,106,1.1,1
+23669,169,1.1.1,0
+23672,169,1.1.1,0
+23672,105,1.1,1
+23673,169,1.1.1,0
+23673,105,1.1,1
+23676,169,1.1.1,0
+23676,86,1.1,1
+23677,105,1.1,1
+23677,169,1.1.1,0
+23678,94,1.1,1
+23678,169,1.1.1,0
+23679,169,1.1.1,0
+23679,106,1.1,1
+23681,169,1.1.1,0
+23681,105,1.1,1
+23682,105,1.1,1
+23682,169,1.1.1,0
+23683,86,1.1,1
+23683,169,1.1.1,0
+23684,105,1.1,1
+23684,169,1.1.1,0
+23686,126,1.1,1
+23686,106,1.1,1
+23686,169,1.1.1,0
+23690,126,1.1,1
+23690,169,1.1.1,0
+23692,105,1.1,1
+23692,169,1.1.1,0
+23693,169,1.1.1,0
+23693,86,1.1,1
+23694,169,1.1.1,0
+23694,86,1.1,1
+23695,169,1.1.1,0
+23695,105,1.1,1
+23699,169,1.1.1,0
+23699,105,1.1,1
diff --git a/analysis/count_dcp.csv b/analysis/count_dcp.csv
index ca63932..d4160fe 100644
--- a/analysis/count_dcp.csv
+++ b/analysis/count_dcp.csv
@@ -1,700 +1,1908 @@
up_id_firm,up_name_firm,up_id_product,up_name_product,down_id_firm,down_name_firm,down_id_product,down_name_product,count
-126,华为,1.4,工业互联网安全,170,Pseudo1,1,供给,118
-142,深信服,1.4.3,网络安全,126,华为,1.4,工业互联网安全,96
-41,启明星辰,1.4.5,数据安全,126,华为,1.4,工业互联网安全,92
-142,深信服,1.4.2,控制安全,126,华为,1.4,工业互联网安全,92
-53,天融信,1.4.3.6,沙箱类设备,142,深信服,1.4.3,网络安全,50
-23,和利时,1.4.2.7,工控原生安全,142,深信服,1.4.2,控制安全,50
-157,新华三,1.4.1,设备安全,126,华为,1.4,工业互联网安全,50
+126,华为,1.4,工业互联网安全,170,Pseudo1,1,供给,926
+41,启明星辰,1.4.5,数据安全,170,Pseudo1,1,供给,290
+41,启明星辰,1.4.5,数据安全,126,华为,1.4,工业互联网安全,290
+106,阿里巴巴,1.3,工业软件,170,Pseudo1,1,供给,212
+142,深信服,1.4.3,网络安全,126,华为,1.4,工业互联网安全,211
+142,深信服,1.4.3,网络安全,170,Pseudo1,1,供给,211
+29,京东工业品,1.3,工业软件,170,Pseudo1,1,供给,210
+142,深信服,1.4.2,控制安全,126,华为,1.4,工业互联网安全,205
+142,深信服,1.4.2,控制安全,170,Pseudo1,1,供给,204
+40,奇安信,1.4.4,平台安全,126,华为,1.4,工业互联网安全,152
+0,360科技,1.4.4,平台安全,126,华为,1.4,工业互联网安全,149
+98,Microsoft Azure,2,工业互联网平台,170,Pseudo1,1,供给,119
+102,Amazon AWS,2,工业互联网平台,170,Pseudo1,1,供给,118
+0,360科技,1.4.4,平台安全,170,Pseudo1,1,供给,100
+40,奇安信,1.4.4,平台安全,170,Pseudo1,1,供给,99
+99,Siemens,2.1,PaaS,102,Amazon AWS,2,工业互联网平台,79
+99,Siemens,2.1,PaaS,98,Microsoft Azure,2,工业互联网平台,79
+130,金蝶,1.3.2,采购供应,29,京东工业品,1.3,工业软件,77
+58,用友,1.3.2,采购供应,29,京东工业品,1.3,工业软件,77
+99,Siemens,2.1,PaaS,170,Pseudo1,1,供给,77
+130,金蝶,1.3.5,仓储物流,29,京东工业品,1.3,工业软件,75
+130,金蝶,1.3.5,仓储物流,106,阿里巴巴,1.3,工业软件,75
+130,金蝶,1.3.5,仓储物流,170,Pseudo1,1,供给,75
+130,金蝶,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,73
+58,用友,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,73
+157,新华三,1.4.1,设备安全,126,华为,1.4,工业互联网安全,63
+157,新华三,1.4.1,设备安全,170,Pseudo1,1,供给,63
+130,金蝶,1.3.2,采购供应,170,Pseudo1,1,供给,59
+58,用友,1.3.2,采购供应,170,Pseudo1,1,供给,58
+63,长扬科技,1.4.4.5,安全态势感知,40,奇安信,1.4.4,平台安全,50
+53,天融信,1.4.3.6,沙箱类设备,126,华为,1.4,工业互联网安全,50
53,天融信,1.4.5.8,数据加密,41,启明星辰,1.4.5,数据安全,50
-41,启明星辰,1.4.3.2,流量检测,142,深信服,1.4.3,网络安全,50
+53,天融信,1.4.5.8,数据加密,170,Pseudo1,1,供给,50
+53,天融信,1.4.5.8,数据加密,126,华为,1.4,工业互联网安全,50
+63,长扬科技,1.4.4.5,安全态势感知,170,Pseudo1,1,供给,50
+53,天融信,1.4.3.6,沙箱类设备,170,Pseudo1,1,供给,50
+53,天融信,1.4.3.6,沙箱类设备,142,深信服,1.4.3,网络安全,50
+135,浪潮,1.3.2.1,供应链管理SCM,106,阿里巴巴,1.3,工业软件,50
+135,浪潮,1.3.2.1,供应链管理SCM,130,金蝶,1.3.2,采购供应,50
+135,浪潮,1.3.2.1,供应链管理SCM,170,Pseudo1,1,供给,50
+135,浪潮,1.3.2.1,供应链管理SCM,29,京东工业品,1.3,工业软件,50
+135,浪潮,1.3.2.1,供应链管理SCM,58,用友,1.3.2,采购供应,50
53,天融信,1.4.2.3,工控漏洞扫描,142,深信服,1.4.2,控制安全,50
+53,天融信,1.4.2.3,工控漏洞扫描,170,Pseudo1,1,供给,50
+23,和利时,1.4.2.7,工控原生安全,126,华为,1.4,工业互联网安全,50
+53,天融信,1.4.2.3,工控漏洞扫描,126,华为,1.4,工业互联网安全,50
+63,长扬科技,1.4.4.5,安全态势感知,126,华为,1.4,工业互联网安全,50
+23,和利时,1.4.2.7,工控原生安全,170,Pseudo1,1,供给,50
+41,启明星辰,1.4.3.2,流量检测,126,华为,1.4,工业互联网安全,50
+140,山石网科,1.4.5.1,恶意代码检测系统,170,Pseudo1,1,供给,50
140,山石网科,1.4.5.1,恶意代码检测系统,41,启明星辰,1.4.5,数据安全,50
-99,Siemens,2.1,PaaS,102,Amazon AWS,2,工业互联网平台,41
-135,浪潮,1.3.2.1,供应链管理SCM,130,金蝶,1.3.2,采购供应,40
-130,金蝶,1.3.5,仓储物流,106,阿里巴巴,1.3,工业软件,39
-63,长扬科技,1.4.4.5,安全态势感知,0,360科技,1.4.4,平台安全,38
-63,长扬科技,1.4.4.5,安全态势感知,40,奇安信,1.4.4,平台安全,38
-135,浪潮,1.3.2.1,供应链管理SCM,58,用友,1.3.2,采购供应,36
-99,Siemens,2.1,PaaS,98,Microsoft Azure,2,工业互联网平台,36
-130,金蝶,1.3.5,仓储物流,29,京东工业品,1.3,工业软件,33
-130,金蝶,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23
-135,浪潮,1.3.2.1,供应链管理SCM,106,阿里巴巴,1.3,工业软件,23
-53,天融信,1.4.3.6,沙箱类设备,126,华为,1.4,工业互联网安全,23
-41,启明星辰,1.4.3.2,流量检测,126,华为,1.4,工业互联网安全,23
-58,用友,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23
-53,天融信,1.4.5.8,数据加密,126,华为,1.4,工业互联网安全,21
-140,山石网科,1.4.5.1,恶意代码检测系统,126,华为,1.4,工业互联网安全,21
-142,深信服,1.4.3,网络安全,170,Pseudo1,1,供给,21
-53,天融信,1.4.2.3,工控漏洞扫描,126,华为,1.4,工业互联网安全,21
-23,和利时,1.4.2.7,工控原生安全,126,华为,1.4,工业互联网安全,21
-41,启明星辰,1.4.5,数据安全,170,Pseudo1,1,供给,19
-142,深信服,1.4.2,控制安全,170,Pseudo1,1,供给,19
-130,金蝶,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14
-58,用友,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14
-135,浪潮,1.3.2.1,供应链管理SCM,29,京东工业品,1.3,工业软件,14
-157,新华三,1.4.1,设备安全,170,Pseudo1,1,供给,9
-41,启明星辰,1.4.3.2,流量检测,170,Pseudo1,1,供给,6
-53,天融信,1.4.3.6,沙箱类设备,170,Pseudo1,1,供给,6
-99,Siemens,2.1,PaaS,170,Pseudo1,1,供给,5
-53,天融信,1.4.2.3,工控漏洞扫描,170,Pseudo1,1,供给,5
-40,奇安信,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5
-98,Microsoft Azure,2,工业互联网平台,170,Pseudo1,1,供给,5
-63,长扬科技,1.4.4.5,安全态势感知,126,华为,1.4,工业互联网安全,5
-140,山石网科,1.4.5.1,恶意代码检测系统,170,Pseudo1,1,供给,5
-23,和利时,1.4.2.7,工控原生安全,170,Pseudo1,1,供给,5
-53,天融信,1.4.5.8,数据加密,170,Pseudo1,1,供给,5
-0,360科技,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5
-102,Amazon AWS,2,工业互联网平台,170,Pseudo1,1,供给,5
-131,九物互联,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,4
-42,山大华天,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,4
-13,东方国信,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,4
-79,PTC,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,4
-78,OutSystems,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,3
-68,中望软件,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,3
-13,东方国信,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3
-13,东方国信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,3
-13,东方国信,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,3
-13,东方国信,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,3
-79,PTC,2.3.3,协议转换,126,华为,2.3,边缘层,3
-69,紫光集团,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3
-79,PTC,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,3
-43,神舟软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,3
-16,东土科技,2.3.3,协议转换,126,华为,2.3,边缘层,3
-79,PTC,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,3
+41,启明星辰,1.4.3.2,流量检测,142,深信服,1.4.3,网络安全,50
+63,长扬科技,1.4.4.5,安全态势感知,0,360科技,1.4.4,平台安全,50
+41,启明星辰,1.4.3.2,流量检测,170,Pseudo1,1,供给,50
+23,和利时,1.4.2.7,工控原生安全,142,深信服,1.4.2,控制安全,50
+140,山石网科,1.4.5.1,恶意代码检测系统,126,华为,1.4,工业互联网安全,50
+102,Amazon AWS,2.1.4,工业大数据,99,Siemens,2.1,PaaS,49
+115,富士康,2.1.4,工业大数据,99,Siemens,2.1,PaaS,47
+84,Bosch,2.1.4,工业大数据,99,Siemens,2.1,PaaS,43
+53,天融信,1.4.5.7,数据恢复,41,启明星辰,1.4.5,数据安全,35
+53,天融信,1.4.5.6,数据容灾备份,41,启明星辰,1.4.5,数据安全,35
+52,天空卫士,1.4.5.5,敏感数据发现与监控,41,启明星辰,1.4.5,数据安全,35
+5,安华金和,1.4.5.9,数据防火墙,41,启明星辰,1.4.5,数据安全,35
+5,安华金和,1.4.5.5,敏感数据发现与监控,41,启明星辰,1.4.5,数据安全,35
+114,富勒科技,1.3.5.1,仓储物流管理WMS,130,金蝶,1.3.5,仓储物流,35
+140,山石网科,1.4.5.4,数据脱敏,41,启明星辰,1.4.5,数据安全,35
+140,山石网科,1.4.5.9,数据防火墙,41,启明星辰,1.4.5,数据安全,35
+37,绿盟,1.4.5.2,数据防泄漏系统,41,启明星辰,1.4.5,数据安全,35
+151,唯智信息,1.3.5.1,仓储物流管理WMS,130,金蝶,1.3.5,仓储物流,35
+162,壹进制,1.4.5.6,数据容灾备份,41,启明星辰,1.4.5,数据安全,35
+77,Oracle,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,35
+162,壹进制,1.4.5.7,数据恢复,41,启明星辰,1.4.5,数据安全,35
+5,安华金和,1.4.5.4,数据脱敏,41,启明星辰,1.4.5,数据安全,35
+53,天融信,1.4.5.2,数据防泄漏系统,41,启明星辰,1.4.5,数据安全,35
+37,绿盟,1.4.4.3,接入认证,40,奇安信,1.4.4,平台安全,34
+37,绿盟,1.4.2.2,工控主机卫士,142,深信服,1.4.2,控制安全,34
+27,江南天安,1.4.4.2,密钥管理,40,奇安信,1.4.4,平台安全,34
+27,江南天安,1.4.4.2,密钥管理,0,360科技,1.4.4,平台安全,34
+53,天融信,1.4.4.4,工业应用行为监控,40,奇安信,1.4.4,平台安全,34
+37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,142,深信服,1.4.3,网络安全,34
+37,绿盟,1.4.4.3,接入认证,0,360科技,1.4.4,平台安全,34
+11,北信源,1.4.4.2,密钥管理,0,360科技,1.4.4,平台安全,34
+30,可信华泰,1.4.2.6,隐私计算,142,深信服,1.4.2,控制安全,34
+53,天融信,1.4.3.4,攻击溯源,142,深信服,1.4.3,网络安全,34
+11,北信源,1.4.4.2,密钥管理,40,奇安信,1.4.4,平台安全,34
+54,网御星云,1.4.4.3,接入认证,0,360科技,1.4.4,平台安全,34
+40,奇安信,1.4.2.5,安全日志与审计,142,深信服,1.4.2,控制安全,34
+41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,142,深信服,1.4.3,网络安全,34
+122,国民技术,1.4.2.6,隐私计算,142,深信服,1.4.2,控制安全,34
+54,网御星云,1.4.4.3,接入认证,40,奇安信,1.4.4,平台安全,34
+55,威努特,1.4.2.2,工控主机卫士,142,深信服,1.4.2,控制安全,34
+55,威努特,1.4.4.4,工业应用行为监控,0,360科技,1.4.4,平台安全,34
+55,威努特,1.4.4.4,工业应用行为监控,40,奇安信,1.4.4,平台安全,34
+53,天融信,1.4.3.5,负载均衡,142,深信服,1.4.3,网络安全,34
+99,Siemens,1.3.3,生产制造,29,京东工业品,1.3,工业软件,34
+59,优特捷,1.4.2.5,安全日志与审计,142,深信服,1.4.2,控制安全,34
+41,启明星辰,1.4.3.4,攻击溯源,142,深信服,1.4.3,网络安全,34
+41,启明星辰,1.4.3.5,负载均衡,142,深信服,1.4.3,网络安全,34
+53,天融信,1.4.4.4,工业应用行为监控,0,360科技,1.4.4,平台安全,34
+160,亚信科技,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,33
+107,安恒信息,1.4.3.3,APT检测,142,深信服,1.4.3,网络安全,33
+75,IBM,1.3.3,生产制造,106,阿里巴巴,1.3,工业软件,33
+152,卫士通,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,31
+93,Cadence,1.3.1,设计研发,29,京东工业品,1.3,工业软件,31
+81,SAP,1.3.4,企业运营管理,106,阿里巴巴,1.3,工业软件,31
+81,SAP,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,31
+85,Dassault,1.3.1,设计研发,29,京东工业品,1.3,工业软件,31
+8,梆梆安全,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,30
+97,General Electric,1.3.3,生产制造,29,京东工业品,1.3,工业软件,30
+81,SAP,2.1.4.1,工业大数据存储,84,Bosch,2.1.4,工业大数据,29
+79,PTC,2.1.4.1,工业大数据存储,84,Bosch,2.1.4,工业大数据,29
+79,PTC,2.1.4.1,工业大数据存储,115,富士康,2.1.4,工业大数据,29
+51,天地和兴,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,28
+121,广州智臣,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,28
+79,PTC,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,28
+100,Synopsys,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,28
+81,SAP,2.1.4.1,工业大数据存储,115,富士康,2.1.4,工业大数据,28
+17,国保金泰,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,28
+19,国泰网信,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,28
+99,Siemens,1.3.3,生产制造,106,阿里巴巴,1.3,工业软件,28
+79,PTC,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,28
+81,SAP,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,28
+81,SAP,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,28
+99,Siemens,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,27
+53,天融信,1.4.1.5,统一威胁管理系统,157,新华三,1.4.1,设备安全,26
+158,信大捷安,1.4.4.1,身份鉴别与访问控制,0,360科技,1.4.4,平台安全,26
+97,General Electric,1.3.3,生产制造,106,阿里巴巴,1.3,工业软件,26
+58,用友,1.3.4.2,客户关系管理CRM,81,SAP,1.3.4,企业运营管理,26
+41,启明星辰,1.4.1.5,统一威胁管理系统,157,新华三,1.4.1,设备安全,25
+41,启明星辰,1.4.1.2,下一代防火墙,157,新华三,1.4.1,设备安全,25
+140,山石网科,1.4.1.4,入侵检测系统,157,新华三,1.4.1,设备安全,25
+39,Autodesk,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,25
+67,中国移动,1.2,工业互联网网络,170,Pseudo1,1,供给,25
+53,天融信,1.4.5.3,数据审计系统,41,启明星辰,1.4.5,数据安全,25
+53,天融信,1.4.1.4,入侵检测系统,157,新华三,1.4.1,设备安全,24
+133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,24
+80,Salesforce,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,24
+152,卫士通,1.4.4.1,身份鉴别与访问控制,0,360科技,1.4.4,平台安全,24
+5,安华金和,1.4.5.3,数据审计系统,41,启明星辰,1.4.5,数据安全,23
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,23
+106,阿里巴巴,1.2,工业互联网网络,170,Pseudo1,1,供给,23
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,23
+77,Oracle,1.3.4,企业运营管理,106,阿里巴巴,1.3,工业软件,23
+45,石化盈科,1.3.4.2,客户关系管理CRM,80,Salesforce,1.3.4,企业运营管理,23
+75,IBM,1.3.3,生产制造,29,京东工业品,1.3,工业软件,23
+112,东华测试,1.3.3.7,故障预测与健康管理PHM,75,IBM,1.3.3,生产制造,23
+80,Salesforce,1.3.4,企业运营管理,106,阿里巴巴,1.3,工业软件,23
+79,PTC,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,23
+81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,23
+53,天融信,1.4.3.3,APT检测,142,深信服,1.4.3,网络安全,22
+126,华为,1.1,工业自动化,170,Pseudo1,1,供给,22
+106,阿里巴巴,2.1.1,开发工具,99,Siemens,2.1,PaaS,22
+81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,22
+55,威努特,1.4.1.2,下一代防火墙,157,新华三,1.4.1,设备安全,22
+130,金蝶,1.3.4.2,客户关系管理CRM,81,SAP,1.3.4,企业运营管理,22
+100,Synopsys,1.3.1,设计研发,29,京东工业品,1.3,工业软件,22
+14,东华软件,1.3.4.3,人力资源管理HRM,81,SAP,1.3.4,企业运营管理,22
+79,PTC,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,22
+140,山石网科,1.4.5.3,数据审计系统,41,启明星辰,1.4.5,数据安全,22
+93,Cadence,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,22
+40,奇安信,1.4.3.3,APT检测,142,深信服,1.4.3,网络安全,21
+118,工邦邦,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,21
+105,Intel,1.1,工业自动化,170,Pseudo1,1,供给,21
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,97,General Electric,1.3.3,生产制造,21
+37,绿盟,1.4.1.2,下一代防火墙,157,新华三,1.4.1,设备安全,21
+58,用友,1.3.4.3,人力资源管理HRM,81,SAP,1.3.4,企业运营管理,21
+158,信大捷安,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,21
+97,General Electric,1.2,工业互联网网络,170,Pseudo1,1,供给,21
+126,华为,1.2,工业互联网网络,170,Pseudo1,1,供给,21
+133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,0,360科技,1.4.4,平台安全,21
+50,索为系统,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,21
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,75,IBM,1.3.3,生产制造,20
+11,北信源,1.4.4.2,密钥管理,126,华为,1.4,工业互联网安全,20
+45,石化盈科,1.3.4.2,客户关系管理CRM,77,Oracle,1.3.4,企业运营管理,20
+55,威努特,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,20
+130,金蝶,1.3.4.3,人力资源管理HRM,77,Oracle,1.3.4,企业运营管理,20
+86,Dell EMC,1.1,工业自动化,170,Pseudo1,1,供给,20
+13,东方国信,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,20
+85,Dassault,2.1.1,开发工具,99,Siemens,2.1,PaaS,20
+85,Dassault,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,20
+130,金蝶,1.3.4.3,人力资源管理HRM,81,SAP,1.3.4,企业运营管理,20
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,20
+50,索为系统,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,20
+79,PTC,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,20
+14,东华软件,1.3.4.3,人力资源管理HRM,77,Oracle,1.3.4,企业运营管理,20
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,19
+43,神舟软件,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,19
+138,启明信息,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,19
+37,绿盟,1.4.1.4,入侵检测系统,157,新华三,1.4.1,设备安全,19
+22,航天云网,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,19
+112,东华测试,1.3.3.7,故障预测与健康管理PHM,97,General Electric,1.3.3,生产制造,19
+22,航天云网,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,19
+79,PTC,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,19
+58,用友,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,19
+79,PTC,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,19
+130,金蝶,1.3.4.2,客户关系管理CRM,77,Oracle,1.3.4,企业运营管理,19
+58,用友,1.2.2,标识解析,126,华为,1.2,工业互联网网络,19
+63,长扬科技,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,18
+14,东华软件,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,18
+13,东方国信,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,18
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,18
+22,航天云网,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,18
+22,航天云网,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,18
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,18
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,18
+4,爱创科技,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,18
+79,PTC,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,18
+68,中望软件,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,18
+25,华大九天,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,18
+39,Autodesk,1.3.1,设计研发,29,京东工业品,1.3,工业软件,18
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,18
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,18
+15,东软集团,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,18
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,17
+13,东方国信,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,17
+13,东方国信,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,17
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,17
+42,山大华天,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,17
+13,东方国信,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,17
+58,用友,1.3.4.3,人力资源管理HRM,77,Oracle,1.3.4,企业运营管理,17
+135,浪潮,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,17
+55,威努特,1.4.4.4,工业应用行为监控,126,华为,1.4,工业互联网安全,17
+58,用友,1.3.4.2,客户关系管理CRM,77,Oracle,1.3.4,企业运营管理,17
+140,山石网科,1.4.1.5,统一威胁管理系统,157,新华三,1.4.1,设备安全,17
+130,金蝶,1.3.4.2,客户关系管理CRM,80,Salesforce,1.3.4,企业运营管理,17
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,75,IBM,1.3.3,生产制造,17
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,17
+138,启明信息,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,17
+55,威努特,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,17
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,17
+50,索为系统,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,17
+99,Siemens,1.3.1,设计研发,29,京东工业品,1.3,工业软件,17
+52,天空卫士,1.4.5.5,敏感数据发现与监控,170,Pseudo1,1,供给,17
+3,艾克斯特,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,17
+15,东软集团,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,17
+106,阿里巴巴,1.1,工业自动化,170,Pseudo1,1,供给,17
+52,天空卫士,1.4.5.5,敏感数据发现与监控,126,华为,1.4,工业互联网安全,17
+112,东华测试,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,17
+13,东方国信,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,17
+79,PTC,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,17
+7,百望,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,17
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,17
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,17
+70,ABB,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,17
+50,索为系统,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,16
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,16
+95,Schneider,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,16
+48,曙光信息,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,16
+135,浪潮,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,16
+130,金蝶,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,16
+13,东方国信,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,16
+26,寄云科技,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,16
+73,FANUC,2.1.3,工业物联网,99,Siemens,2.1,PaaS,16
+79,PTC,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,16
+13,东方国信,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,16
+22,航天云网,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,16
+49,数码大方,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,16
+135,浪潮,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,16
+79,PTC,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,16
+164,震坤行,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,16
+116,概伦电子,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,16
+119,广联达,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,16
+164,震坤行,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,16
+5,安华金和,1.4.5.4,数据脱敏,126,华为,1.4,工业互联网安全,15
+58,用友,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,15
+102,Amazon AWS,2.1.4,工业大数据,170,Pseudo1,1,供给,15
+43,神舟软件,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,15
+138,启明信息,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,15
+102,Amazon AWS,2.1.4,工业大数据,98,Microsoft Azure,2,工业互联网平台,15
+115,富士康,2.1.4,工业大数据,98,Microsoft Azure,2,工业互联网平台,15
+116,概伦电子,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,15
+138,启明信息,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,15
+79,PTC,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,15
+23,和利时,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,15
+58,用友,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,15
+5,安华金和,1.4.5.4,数据脱敏,170,Pseudo1,1,供给,15
+53,天融信,1.4.5.7,数据恢复,126,华为,1.4,工业互联网安全,15
+58,用友,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,15
+53,天融信,1.4.5.7,数据恢复,170,Pseudo1,1,供给,15
+115,富士康,2.1.4,工业大数据,102,Amazon AWS,2,工业互联网平台,15
+26,寄云科技,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,15
+68,中望软件,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,15
+22,航天云网,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,15
+102,Amazon AWS,2.1.4,工业大数据,102,Amazon AWS,2,工业互联网平台,15
+79,PTC,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,15
+84,Bosch,2.1.2,工业模型库,99,Siemens,2.1,PaaS,15
+55,威努特,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,15
+135,浪潮,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,15
+140,山石网科,1.4.5.9,数据防火墙,170,Pseudo1,1,供给,15
+135,浪潮,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,15
+45,石化盈科,1.3.4.2,客户关系管理CRM,81,SAP,1.3.4,企业运营管理,15
+135,浪潮,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,15
+77,Oracle,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,15
+140,山石网科,1.4.5.9,数据防火墙,126,华为,1.4,工业互联网安全,15
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,15
+79,PTC,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,15
+22,航天云网,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,15
+26,寄云科技,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,15
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,15
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,15
+13,东方国信,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,15
+84,Bosch,2.1.4,工业大数据,98,Microsoft Azure,2,工业互联网平台,14
+25,华大九天,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,14
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,14
+126,华为,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,14
+135,浪潮,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,14
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,14
+151,唯智信息,1.3.5.1,仓储物流管理WMS,106,阿里巴巴,1.3,工业软件,14
+151,唯智信息,1.3.5.1,仓储物流管理WMS,170,Pseudo1,1,供给,14
+135,浪潮,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,14
+151,唯智信息,1.3.5.1,仓储物流管理WMS,29,京东工业品,1.3,工业软件,14
+9,北京航天测控,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,14
+79,PTC,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,14
+133,蓝盾股份,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,14
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,14
+40,奇安信,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,14
+109,宝信软件,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,14
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,14
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,14
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,14
+135,浪潮,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,14
+13,东方国信,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,14
+115,富士康,2.1.4,工业大数据,170,Pseudo1,1,供给,14
+68,中望软件,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,14
+13,东方国信,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,14
+84,Bosch,2.1.4,工业大数据,170,Pseudo1,1,供给,14
+13,东方国信,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,14
+13,东方国信,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,14
+79,PTC,2.1.2,工业模型库,99,Siemens,2.1,PaaS,14
+79,PTC,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,14
+13,东方国信,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,14
+47,首自信,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,14
+22,航天云网,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,14
+13,东方国信,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,14
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,14
+45,石化盈科,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,14
+46,适创科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,14
+84,Bosch,2.1.4,工业大数据,102,Amazon AWS,2,工业互联网平台,14
+68,中望软件,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,14
+68,中望软件,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,14
+13,东方国信,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,14
+135,浪潮,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,14
+144,树根互联,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,14
+138,启明信息,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,14
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,14
+42,山大华天,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,14
+43,神舟软件,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,14
+88,HPE,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,14
+56,芯愿景,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,14
+42,山大华天,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,14
+56,芯愿景,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,14
+79,PTC,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,14
+22,航天云网,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,14
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,14
+79,PTC,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,13
+135,浪潮,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,13
+79,PTC,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,13
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,13
+79,PTC,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,13
+135,浪潮,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,13
+148,腾讯,2.1.3,工业物联网,99,Siemens,2.1,PaaS,13
+135,浪潮,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,13
+79,PTC,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,13
+140,山石网科,1.4.5.4,数据脱敏,126,华为,1.4,工业互联网安全,13
+43,神舟软件,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,13
+126,华为,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,13
+79,PTC,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,13
+79,PTC,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,13
+50,索为系统,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,13
+79,PTC,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,13
+47,首自信,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,13
+47,首自信,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,13
+45,石化盈科,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,13
+45,石化盈科,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,13
+43,神舟软件,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,13
+14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,13
+79,PTC,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,13
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,13
+14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,13
+109,宝信软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,13
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,13
+13,东方国信,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,13
+56,芯愿景,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,13
+135,浪潮,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,13
+23,和利时,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,13
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,13
+22,航天云网,2.3.2,边缘数据处理,155,小米,2.3,边缘层,13
+22,航天云网,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,13
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,13
+22,航天云网,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,13
+88,HPE,1.1.3,工业服务器,105,Intel,1.1,工业自动化,13
+22,航天云网,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,13
+22,航天云网,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,13
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,13
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,13
+22,航天云网,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,13
+22,航天云网,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,13
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,13
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,13
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,13
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,13
+13,东方国信,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,13
+13,东方国信,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,13
+13,东方国信,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,13
+168,中控技术,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,13
+13,东方国信,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,13
+13,东方国信,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,13
+55,威努特,1.4.4.4,工业应用行为监控,170,Pseudo1,1,供给,13
+13,东方国信,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,13
+140,山石网科,1.4.5.4,数据脱敏,170,Pseudo1,1,供给,13
+71,Altair,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,13
+74,HoneyWell,2.1.3,工业物联网,99,Siemens,2.1,PaaS,13
+135,浪潮,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,13
+79,PTC,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,13
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,97,General Electric,1.3.3,生产制造,13
+108,百度,2.1.3,工业物联网,99,Siemens,2.1,PaaS,13
+26,寄云科技,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,13
+54,网御星云,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,13
+3,艾克斯特,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,13
+3,艾克斯特,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,13
+81,SAP,2.1.2,工业模型库,99,Siemens,2.1,PaaS,13
+15,东软集团,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,13
+79,PTC,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,13
+77,Oracle,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,13
+13,东方国信,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,13
+3,艾克斯特,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,13
+116,概伦电子,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,13
+79,PTC,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,12
+162,壹进制,1.4.5.6,数据容灾备份,126,华为,1.4,工业互联网安全,12
+162,壹进制,1.4.5.6,数据容灾备份,170,Pseudo1,1,供给,12
+22,航天云网,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,12
+95,Schneider,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,12
+82,Uptake,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,12
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,12
+3,艾克斯特,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,12
+45,石化盈科,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,12
+79,PTC,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,12
+20,海基科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,12
+163,优也科技,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,12
+168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,12
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,12
+41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,126,华为,1.4,工业互联网安全,12
+22,航天云网,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,12
+42,山大华天,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,12
+41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,170,Pseudo1,1,供给,12
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,12
+79,PTC,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,12
+81,SAP,2.1.4.2,工业大数据管理,99,Siemens,2.1,PaaS,12
+79,PTC,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,12
+96,Cisco,1.2.3,数据互通,126,华为,1.2,工业互联网网络,12
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,12
+42,山大华天,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,12
+23,和利时,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,12
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,12
+26,寄云科技,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,12
+42,山大华天,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,12
+26,寄云科技,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,12
+26,寄云科技,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,12
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,12
+22,航天云网,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,12
+22,航天云网,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,12
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,12
+22,航天云网,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,12
+79,PTC,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,12
+46,适创科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,12
+109,宝信软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,12
+70,ABB,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,12
+58,用友,1.3.4.2,客户关系管理CRM,80,Salesforce,1.3.4,企业运营管理,12
+13,东方国信,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,12
+48,曙光信息,1.2.2,标识解析,126,华为,1.2,工业互联网网络,12
+13,东方国信,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,12
+49,数码大方,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,12
+13,东方国信,2.3.1,工业数据接入,124,海尔,2.3,边缘层,12
+135,浪潮,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,12
+59,优特捷,1.4.2.5,安全日志与审计,126,华为,1.4,工业互联网安全,12
+49,数码大方,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,12
+59,优特捷,1.4.2.5,安全日志与审计,170,Pseudo1,1,供给,12
+13,东方国信,1.2.2,标识解析,126,华为,1.2,工业互联网网络,12
+136,美的,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,12
+49,数码大方,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,12
+64,中电智科,1.1.2,工业控制器,126,华为,1.1,工业自动化,12
+111,鼎捷软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,12
+49,数码大方,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,12
+132,科远智慧,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,12
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,12
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,12
+135,浪潮,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,12
+135,浪潮,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,12
+126,华为,2.1.3,工业物联网,99,Siemens,2.1,PaaS,12
+47,首自信,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,12
+88,HPE,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,12
+58,用友,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,12
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,12
+135,浪潮,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,12
+47,首自信,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,12
+79,PTC,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,12
+58,用友,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,12
+13,东方国信,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,12
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,12
+135,浪潮,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,12
+47,首自信,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,12
+47,首自信,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,12
+47,首自信,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,12
+135,浪潮,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,11
+135,浪潮,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,11
+79,PTC,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,11
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,11
+78,OutSystems,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,11
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,11
+114,富勒科技,1.3.5.1,仓储物流管理WMS,106,阿里巴巴,1.3,工业软件,11
+126,华为,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,11
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,11
+135,浪潮,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,11
+79,PTC,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,11
+77,Oracle,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,11
+28,金山云,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,11
+135,浪潮,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,11
+161,研华科技,2.3.3,协议转换,126,华为,2.3,边缘层,11
+161,研华科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,11
+6,安世亚太,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,11
+22,航天云网,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,11
+97,General Electric,2.1.3,工业物联网,99,Siemens,2.1,PaaS,11
+22,航天云网,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,11
+135,浪潮,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,11
+75,IBM,1.3.3,生产制造,170,Pseudo1,1,供给,11
+114,富勒科技,1.3.5.1,仓储物流管理WMS,170,Pseudo1,1,供给,11
+74,HoneyWell,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,11
+154,西格数据,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,11
+22,航天云网,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,11
+22,航天云网,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,11
+22,航天云网,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,11
+13,东方国信,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,11
+22,航天云网,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,11
+58,用友,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,11
+58,用友,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,11
+13,东方国信,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,11
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,11
+57,亚控科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,11
+13,东方国信,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,11
+13,东方国信,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,11
+13,东方国信,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,11
+56,芯愿景,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,11
+22,航天云网,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,11
+13,东方国信,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,11
+54,网御星云,1.4.4.3,接入认证,126,华为,1.4,工业互联网安全,11
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,11
+114,富勒科技,1.3.5.1,仓储物流管理WMS,29,京东工业品,1.3,工业软件,11
+25,华大九天,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,11
+26,寄云科技,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,11
+26,寄云科技,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,11
+89,Rockwell,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,11
+9,北京航天测控,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,11
+149,天泽智云,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,11
+26,寄云科技,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,11
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,11
+53,天融信,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,11
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,11
+20,海基科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,11
+13,东方国信,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,11
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,11
+79,PTC,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,11
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,11
+13,东方国信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,11
+41,启明星辰,1.4.3.5,负载均衡,126,华为,1.4,工业互联网安全,11
+41,启明星辰,1.4.3.5,负载均衡,170,Pseudo1,1,供给,11
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,11
+66,中国联通,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,11
+18,国能智深,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,11
+48,曙光信息,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,11
+168,中控技术,2.3.3,协议转换,99,Siemens,2.3,边缘层,11
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,11
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,11
+47,首自信,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,11
+124,海尔,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,11
+47,首自信,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,11
+47,首自信,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,11
+13,东方国信,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,11
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,11
+14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,11
+120,广州数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,11
+79,PTC,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,11
+45,石化盈科,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,11
+143,沈阳自动化研究所,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,11
+166,中国电子科技网络信息安全,1.2.3,数据互通,126,华为,1.2,工业互联网网络,11
+95,Schneider,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,11
+45,石化盈科,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,11
+47,首自信,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,11
+79,PTC,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,11
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,11
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,11
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,11
+38,牛刀,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,11
+33,蓝谷信息,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,11
+33,蓝谷信息,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,11
+60,宇动源,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,11
+149,天泽智云,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,11
+13,东方国信,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,11
+22,航天云网,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,11
+79,PTC,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,11
+135,浪潮,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,11
+22,航天云网,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,11
+83,Emerson,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,11
+38,牛刀,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,11
+135,浪潮,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,11
+135,浪潮,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,11
+38,牛刀,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,11
+62,云道智造,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,11
+147,拓邦股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,11
+135,浪潮,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,11
+4,爱创科技,1.2.2,标识解析,126,华为,1.2,工业互联网网络,11
+79,PTC,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,11
+79,PTC,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,11
+168,中控技术,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,10
+22,航天云网,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,10
+22,航天云网,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,10
+68,中望软件,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,10
+60,宇动源,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,10
+22,航天云网,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,10
+82,Uptake,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,10
+22,航天云网,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,10
+2,706所,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,10
+68,中望软件,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,10
+60,宇动源,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,10
+6,安世亚太,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,10
+68,中望软件,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,10
+22,航天云网,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,10
+65,中国电信,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,10
+83,Emerson,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,10
+22,航天云网,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,10
+168,中控技术,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,10
+22,航天云网,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,10
+79,PTC,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,10
+22,航天云网,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,10
+41,启明星辰,1.4.3.4,攻击溯源,170,Pseudo1,1,供给,10
+79,PTC,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,10
+78,OutSystems,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,10
+79,PTC,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,10
+37,绿盟,1.4.4.3,接入认证,126,华为,1.4,工业互联网安全,10
+78,OutSystems,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,10
+40,奇安信,1.4.2.5,安全日志与审计,126,华为,1.4,工业互联网安全,10
+40,奇安信,1.4.2.5,安全日志与审计,170,Pseudo1,1,供给,10
+79,PTC,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,10
+79,PTC,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,10
+49,数码大方,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,10
+49,数码大方,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,10
+41,启明星辰,1.4.3.4,攻击溯源,126,华为,1.4,工业互联网安全,10
+49,数码大方,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,10
+22,航天云网,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,10
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,10
+48,曙光信息,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,10
+42,山大华天,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,10
+47,首自信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,10
+42,山大华天,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,10
+47,首自信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,10
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,10
+47,首自信,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,10
+79,PTC,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,10
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,10
+79,PTC,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,10
+79,PTC,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,10
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,10
+33,蓝谷信息,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,10
+33,蓝谷信息,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,10
+31,昆仑数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,10
+22,航天云网,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,10
+88,HPE,1.1.3,工业服务器,126,华为,1.1,工业自动化,10
+22,航天云网,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,10
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,10
+23,和利时,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,10
+71,Altair,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,10
+23,和利时,2.3.3,协议转换,99,Siemens,2.3,边缘层,10
+71,Altair,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,10
+25,华大九天,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,10
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,10
+54,网御星云,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,10
+26,寄云科技,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,10
+26,寄云科技,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,10
+26,寄云科技,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,10
+165,智能云科,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,10
+26,寄云科技,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,10
+27,江南天安,1.4.4.2,密钥管理,126,华为,1.4,工业互联网安全,10
+46,适创科技,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,10
+79,PTC,2.1.4.1,工业大数据存储,99,Siemens,2.1,PaaS,10
+84,Bosch,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,10
+78,OutSystems,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,10
+78,OutSystems,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,10
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,10
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,10
+79,PTC,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,10
+166,中国电子科技网络信息安全,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,10
+26,寄云科技,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,10
+144,树根互联,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,10
+162,壹进制,1.4.5.7,数据恢复,126,华为,1.4,工业互联网安全,10
+13,东方国信,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,10
+13,东方国信,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,10
+13,东方国信,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,10
+161,研华科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,10
+135,浪潮,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,10
+161,研华科技,2.3.3,协议转换,155,小米,2.3,边缘层,10
+162,壹进制,1.4.5.7,数据恢复,170,Pseudo1,1,供给,10
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,10
+163,优也科技,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,10
+137,美林数据,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,10
+13,东方国信,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,10
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,10
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,10
+149,天泽智云,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,10
+129,华中数控,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,10
+117,格创东智,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,10
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,10
+127,华为海思,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,10
+127,华为海思,1.1.3,工业服务器,126,华为,1.1,工业自动化,10
+16,东土科技,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,10
+119,广联达,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,10
+142,深信服,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,10
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,10
+130,金蝶,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,10
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,10
+125,华数机器人,1.2.3,数据互通,126,华为,1.2,工业互联网网络,10
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,10
+154,西格数据,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,10
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,10
+126,华为,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,10
+154,西格数据,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,10
+135,浪潮,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,10
+154,西格数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,10
+148,腾讯,2.1.1,开发工具,99,Siemens,2.1,PaaS,10
+135,浪潮,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,10
+1,51WORLD,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,10
+135,浪潮,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,10
+1,51WORLD,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,10
+135,浪潮,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,10
+144,树根互联,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,9
+13,东方国信,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,9
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,9
+79,PTC,2.3.3,协议转换,124,海尔,2.3,边缘层,9
+168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,9
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,9
+79,PTC,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,9
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,9
+26,寄云科技,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,9
+13,东方国信,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,9
+31,昆仑数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,9
+122,国民技术,1.4.2.6,隐私计算,170,Pseudo1,1,供给,9
+149,天泽智云,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,9
+47,首自信,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,9
+22,航天云网,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,9
+79,PTC,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,9
+70,ABB,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,9
+122,国民技术,1.4.2.6,隐私计算,126,华为,1.4,工业互联网安全,9
+13,东方国信,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,9
+31,昆仑数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,9
+23,和利时,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,9
+57,亚控科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,9
+33,蓝谷信息,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,9
+135,浪潮,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,9
+22,航天云网,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,9
+38,牛刀,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,9
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,9
+33,蓝谷信息,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,9
+161,研华科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,9
+22,航天云网,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,9
+81,SAP,1.3.4,企业运营管理,170,Pseudo1,1,供给,9
+22,航天云网,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,9
+4,爱创科技,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,9
+26,寄云科技,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,9
+80,Salesforce,2.1.1,开发工具,99,Siemens,2.1,PaaS,9
+32,兰光创新,1.2.3,数据互通,126,华为,1.2,工业互联网网络,9
+32,兰光创新,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,9
+78,OutSystems,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,9
+16,东土科技,2.3.3,协议转换,84,Bosch,2.3,边缘层,9
+53,天融信,1.4.4.4,工业应用行为监控,126,华为,1.4,工业互联网安全,9
+16,东土科技,2.3.3,协议转换,126,华为,2.3,边缘层,9
+79,PTC,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,9
+120,广州数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,9
+77,Oracle,1.3.4,企业运营管理,170,Pseudo1,1,供给,9
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,9
+23,和利时,2.3.1,工业数据接入,124,海尔,2.3,边缘层,9
+23,和利时,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,9
+117,格创东智,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,9
+147,拓邦股份,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,9
+118,工邦邦,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,9
+79,PTC,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,9
+127,华为海思,1.1.3,工业服务器,105,Intel,1.1,工业自动化,9
+60,宇动源,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,9
+16,东土科技,1.1.3,工业服务器,126,华为,1.1,工业自动化,9
+143,沈阳自动化研究所,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,9
+49,数码大方,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,9
+135,浪潮,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,9
+119,广联达,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,9
+28,金山云,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,9
+23,和利时,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,9
+127,华为海思,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,9
+55,威努特,1.4.2.2,工控主机卫士,170,Pseudo1,1,供给,9
+23,和利时,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,9
+79,PTC,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,9
+45,石化盈科,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,9
+116,概伦电子,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,9
+16,东土科技,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,9
+22,航天云网,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,9
+22,航天云网,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9
+53,天融信,1.4.5.6,数据容灾备份,126,华为,1.4,工业互联网安全,9
+53,天融信,1.4.5.6,数据容灾备份,170,Pseudo1,1,供给,9
+120,广州数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,9
+132,科远智慧,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,9
+56,芯愿景,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,9
+120,广州数控,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,9
+22,航天云网,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,9
+79,PTC,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,9
+79,PTC,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,9
+117,格创东智,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,9
+129,华中数控,1.1.2,工业控制器,105,Intel,1.1,工业自动化,9
+4,爱创科技,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,9
+55,威努特,1.4.2.2,工控主机卫士,126,华为,1.4,工业互联网安全,9
+22,航天云网,2.3.3,协议转换,95,Schneider,2.3,边缘层,9
+22,航天云网,2.3.3,协议转换,99,Siemens,2.3,边缘层,9
+130,金蝶,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,9
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,9
+22,航天云网,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,9
+116,概伦电子,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,9
+2,706所,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,9
+62,云道智造,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,9
+78,OutSystems,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,9
+137,美林数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,9
+6,安世亚太,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,9
+6,安世亚太,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,9
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,9
+2,706所,1.1.3,工业服务器,105,Intel,1.1,工业自动化,9
+163,优也科技,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,9
+62,云道智造,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,9
+20,海基科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,9
+165,智能云科,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,9
+13,东方国信,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9
+165,智能云科,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,9
+135,浪潮,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,9
+135,浪潮,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,9
+137,美林数据,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,9
+137,美林数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,9
+26,寄云科技,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,9
+111,鼎捷软件,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,9
+163,优也科技,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,9
+135,浪潮,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,9
+11,北信源,1.4.4.2,密钥管理,170,Pseudo1,1,供给,9
+26,寄云科技,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,9
+169,中芯国际,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,9
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,9
+94,Mitsubishi,1.1,工业自动化,170,Pseudo1,1,供给,9
+49,数码大方,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,9
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,9
+165,智能云科,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,9
+164,震坤行,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,9
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,9
+135,浪潮,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,9
+26,寄云科技,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,9
+26,寄云科技,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,9
+135,浪潮,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,9
+137,美林数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,9
+6,安世亚太,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,9
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,9
+137,美林数据,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,9
+106,阿里巴巴,2.1.3,工业物联网,99,Siemens,2.1,PaaS,9
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,9
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,9
+163,优也科技,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9
+161,研华科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,9
+45,石化盈科,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,9
+6,安世亚太,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,9
+58,用友,2.1.2,工业模型库,99,Siemens,2.1,PaaS,9
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,9
+53,天融信,1.4.3.4,攻击溯源,126,华为,1.4,工业互联网安全,9
+155,小米,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,9
+26,寄云科技,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,9
+165,智能云科,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,9
+6,安世亚太,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,9
+53,天融信,1.4.3.4,攻击溯源,170,Pseudo1,1,供给,9
+22,航天云网,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,9
+13,东方国信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,9
+47,首自信,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,9
+82,Uptake,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,9
+47,首自信,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,9
+68,中望软件,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,9
+6,安世亚太,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,9
+79,PTC,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,9
+13,东方国信,2.3.2,边缘数据处理,126,华为,2.3,边缘层,9
+79,PTC,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,9
+115,富士康,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,9
+22,航天云网,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,9
+81,SAP,2.1.4.1,工业大数据存储,99,Siemens,2.1,PaaS,9
+79,PTC,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,9
+125,华数机器人,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,9
+125,华数机器人,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,9
+137,美林数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9
+26,寄云科技,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,9
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,9
+96,Cisco,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,9
+13,东方国信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,9
+49,数码大方,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,9
+83,Emerson,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,9
+26,寄云科技,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,9
+22,航天云网,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,9
+47,首自信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,9
+165,智能云科,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,9
+115,富士康,1.1.3,工业服务器,105,Intel,1.1,工业自动化,9
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,9
+137,美林数据,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,9
+78,OutSystems,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,8
+78,OutSystems,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,8
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,8
+78,OutSystems,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,8
+26,寄云科技,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,8
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,8
+26,寄云科技,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,8
+38,牛刀,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,8
+26,寄云科技,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,8
+13,东方国信,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,8
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,8
+144,树根互联,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,8
+13,东方国信,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,8
+66,中国联通,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,8
+13,东方国信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,8
+66,中国联通,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,8
+33,蓝谷信息,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,8
+13,东方国信,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,8
+13,东方国信,2.3.1,工业数据接入,155,小米,2.3,边缘层,8
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,8
+64,中电智科,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,8
+35,凌昊智能,1.1.3,工业服务器,105,Intel,1.1,工业自动化,8
+144,树根互联,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,8
+64,中电智科,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8
+35,凌昊智能,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,8
+13,东方国信,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,8
+63,长扬科技,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,8
+6,安世亚太,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,8
+62,云道智造,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,8
+6,安世亚太,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,8
+62,云道智造,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,8
+37,绿盟,1.4.2.2,工控主机卫士,126,华为,1.4,工业互联网安全,8
+37,绿盟,1.4.2.2,工控主机卫士,170,Pseudo1,1,供给,8
+6,安世亚太,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,8
+62,云道智造,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,8
+62,云道智造,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,8
+13,东方国信,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,8
+33,蓝谷信息,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,8
+68,中望软件,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,8
+60,宇动源,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,8
+68,中望软件,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,8
+6,安世亚太,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,8
+152,卫士通,1.4.4.1,身份鉴别与访问控制,126,华为,1.4,工业互联网安全,8
+128,华伍股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,8
+128,华伍股份,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,8
+13,东方国信,2.3.3,协议转换,95,Schneider,2.3,边缘层,8
+3,艾克斯特,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,8
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,8
+6,安世亚太,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,8
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,8
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,8
+13,东方国信,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,8
+3,艾克斯特,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,8
+70,ABB,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,8
+70,ABB,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,8
+58,用友,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,8
+144,树根互联,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,8
+31,昆仑数据,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,8
+31,昆仑数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,8
+31,昆仑数据,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,8
+31,昆仑数据,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,8
+147,拓邦股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,8
+144,树根互联,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,8
+149,天泽智云,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,8
+154,西格数据,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,8
+99,Siemens,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,8
+23,和利时,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,8
+6,安世亚太,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,8
+79,PTC,2.3.3,协议转换,155,小米,2.3,边缘层,8
+22,航天云网,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,8
+53,天融信,1.4.3.5,负载均衡,170,Pseudo1,1,供给,8
+22,航天云网,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,8
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,8
+106,阿里巴巴,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,8
+22,航天云网,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,8
+168,中控技术,2.3.3,协议转换,84,Bosch,2.3,边缘层,8
+22,航天云网,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,8
+154,西格数据,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,8
+168,中控技术,2.3.3,协议转换,155,小米,2.3,边缘层,8
+47,首自信,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,8
+22,航天云网,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,8
+79,PTC,2.3.2,边缘数据处理,155,小米,2.3,边缘层,8
+22,航天云网,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,8
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,8
+168,中控技术,2.3.2,边缘数据处理,126,华为,2.3,边缘层,8
+79,PTC,2.3.3,协议转换,126,华为,2.3,边缘层,8
+16,东土科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,8
+79,PTC,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,8
+16,东土科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,8
+168,中控技术,2.3.1,工业数据接入,155,小米,2.3,边缘层,8
+16,东土科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,8
+47,首自信,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,8
+22,航天云网,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,8
+89,Rockwell,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,8
+22,航天云网,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,8
+161,研华科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,8
+47,首自信,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,8
+89,Rockwell,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,8
+2,706所,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,8
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,8
+47,首自信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,8
+135,浪潮,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,8
+163,优也科技,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,8
+22,航天云网,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,8
+53,天融信,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,8
+82,Uptake,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,8
+22,航天云网,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,8
+82,Uptake,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,8
+47,首自信,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,8
+161,研华科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,8
+47,首自信,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,8
+18,国能智深,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,8
+163,优也科技,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,8
+135,浪潮,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,8
+22,航天云网,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,8
+22,航天云网,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,8
+163,优也科技,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,8
+161,研华科技,2.3.3,协议转换,84,Bosch,2.3,边缘层,8
+53,天融信,1.4.3.5,负载均衡,126,华为,1.4,工业互联网安全,8
+89,Rockwell,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,8
+22,航天云网,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,8
+22,航天云网,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,8
+5,安华金和,1.4.5.5,敏感数据发现与监控,170,Pseudo1,1,供给,8
+143,沈阳自动化研究所,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,8
+131,九物互联,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,8
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,8
+5,安华金和,1.4.5.9,数据防火墙,126,华为,1.4,工业互联网安全,8
+23,和利时,2.3.3,协议转换,124,海尔,2.3,边缘层,8
+123,海得控制,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8
+123,海得控制,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,8
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,8
+165,智能云科,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,8
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,8
+124,海尔,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,8
+79,PTC,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,8
+79,PTC,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,8
+5,安华金和,1.4.5.5,敏感数据发现与监控,126,华为,1.4,工业互联网安全,8
+45,石化盈科,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,8
+99,Siemens,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,8
+49,数码大方,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,8
+57,亚控科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,8
+57,亚控科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,8
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,8
+154,西格数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,8
+154,西格数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,8
+78,OutSystems,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,8
+154,西格数据,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,8
+12,大唐软件,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,8
+23,和利时,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,8
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,8
+131,九物互联,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,8
+168,中控技术,2.3.1,工业数据接入,126,华为,2.3,边缘层,8
+117,格创东智,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,8
+79,PTC,2.3.1,工业数据接入,155,小米,2.3,边缘层,8
+168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,8
+165,智能云科,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,8
+22,航天云网,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,8
+47,首自信,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,8
+22,航天云网,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,8
+159,徐工集团,2.1.2,工业模型库,99,Siemens,2.1,PaaS,8
+49,数码大方,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,8
+79,PTC,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,8
+119,广联达,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,8
+99,Siemens,1.3.3,生产制造,170,Pseudo1,1,供给,8
+167,中环股份,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,8
+135,浪潮,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,8
+23,和利时,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,8
+46,适创科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,8
+1,51WORLD,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,8
+5,安华金和,1.4.5.9,数据防火墙,170,Pseudo1,1,供给,8
+118,工邦邦,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,8
+49,数码大方,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,7
+49,数码大方,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,7
+137,美林数据,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,7
+135,浪潮,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,7
+49,数码大方,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,7
+135,浪潮,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,7
+135,浪潮,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,7
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,7
+137,美林数据,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,7
+47,首自信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,7
+47,首自信,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,7
+13,东方国信,2.3.3,协议转换,84,Bosch,2.3,边缘层,7
+58,用友,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,7
+131,九物互联,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,7
+45,石化盈科,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,7
+45,石化盈科,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,7
+130,金蝶,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,7
+6,安世亚太,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,7
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,7
+57,亚控科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,7
+45,石化盈科,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,7
+58,用友,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,7
+57,亚控科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7
+44,圣邦微电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,7
+57,亚控科技,2.3.3,协议转换,84,Bosch,2.3,边缘层,7
+53,天融信,1.4.5.2,数据防泄漏系统,170,Pseudo1,1,供给,7
+13,东方国信,2.3.3,协议转换,126,华为,2.3,边缘层,7
+58,用友,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,7
+47,首自信,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,7
+137,美林数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,7
+47,首自信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,7
+13,东方国信,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,7
+47,首自信,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,7
+47,首自信,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,7
+13,东方国信,2.3.2,边缘数据处理,155,小米,2.3,边缘层,7
+144,树根互联,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,7
+47,首自信,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,7
+135,浪潮,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,7
+135,浪潮,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,7
+135,浪潮,1.1.3,工业服务器,126,华为,1.1,工业自动化,7
+42,山大华天,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,7
+42,山大华天,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,7
+53,天融信,1.4.5.2,数据防泄漏系统,126,华为,1.4,工业互联网安全,7
+135,浪潮,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,7
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,7
+49,数码大方,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,7
+12,大唐软件,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,7
+9,北京航天测控,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,7
+79,PTC,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,7
+168,中控技术,2.3.3,协议转换,124,海尔,2.3,边缘层,7
+117,格创东智,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,7
+117,格创东智,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,7
+60,宇动源,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,7
+117,格创东智,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,7
+119,广联达,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,7
+12,大唐软件,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,7
+23,和利时,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,7
+12,大唐软件,1.2.1,网络互联,126,华为,1.2,工业互联网网络,7
+79,PTC,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,7
+23,和利时,2.3.1,工业数据接入,126,华为,2.3,边缘层,7
+91,Moxa,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,7
+168,中控技术,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,7
+79,PTC,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,7
+23,和利时,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,7
+23,和利时,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7
+23,和利时,2.3.2,边缘数据处理,155,小米,2.3,边缘层,7
+123,海得控制,1.1.2,工业控制器,126,华为,1.1,工业自动化,7
+23,和利时,2.3.3,协议转换,95,Schneider,2.3,边缘层,7
+123,海得控制,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,7
+24,华大电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,7
+24,华大电子,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,7
+125,华数机器人,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,7
+25,华大九天,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,7
+26,寄云科技,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,7
+168,中控技术,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7
+168,中控技术,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,7
+168,中控技术,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,7
+18,国能智深,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,7
+89,Rockwell,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,7
+26,寄云科技,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,7
+79,PTC,2.3.3,协议转换,84,Bosch,2.3,边缘层,7
+22,航天云网,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,7
+82,Uptake,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,7
+22,航天云网,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,7
+82,Uptake,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,7
+22,航天云网,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,7
+22,航天云网,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,7
+82,Uptake,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,7
+161,研华科技,2.3.3,协议转换,124,海尔,2.3,边缘层,7
+115,富士康,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,7
+82,Uptake,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,7
+161,研华科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,7
+161,研华科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,7
+117,格创东智,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,7
+82,Uptake,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,7
+22,航天云网,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,7
+89,Rockwell,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,7
+16,东土科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7
+16,东土科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,7
+16,东土科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,7
+163,优也科技,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,7
+84,Bosch,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,7
+22,航天云网,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,7
+79,PTC,2.3.1,工业数据接入,124,海尔,2.3,边缘层,7
+111,鼎捷软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,7
+87,Texas Instruments,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,7
+22,航天云网,2.3.1,工业数据接入,155,小米,2.3,边缘层,7
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,7
+88,HPE,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,7
+20,海基科技,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,7
+163,优也科技,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,7
+26,寄云科技,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,7
+79,PTC,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,7
+149,天泽智云,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,7
+37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,170,Pseudo1,1,供给,7
+33,蓝谷信息,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,7
+166,中国电子科技网络信息安全,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,7
+33,蓝谷信息,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,7
+65,中国电信,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,7
+166,中国电子科技网络信息安全,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,7
+1,51WORLD,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,7
+35,凌昊智能,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,7
+64,中电智科,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,7
+13,东方国信,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,7
+62,云道智造,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,7
+62,云道智造,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,7
+165,智能云科,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,7
+37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,126,华为,1.4,工业互联网安全,7
+165,智能云科,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,7
+149,天泽智云,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,7
+33,蓝谷信息,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,7
+37,绿盟,1.4.5.2,数据防泄漏系统,126,华为,1.4,工业互联网安全,7
+37,绿盟,1.4.5.2,数据防泄漏系统,170,Pseudo1,1,供给,7
+165,智能云科,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,7
+165,智能云科,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,7
+38,牛刀,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,7
+13,东方国信,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,7
+38,牛刀,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,7
+165,智能云科,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,7
+13,东方国信,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,7
+165,智能云科,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,7
+38,牛刀,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,7
+38,牛刀,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,7
+165,智能云科,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,7
+38,牛刀,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,7
+154,西格数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,7
+22,航天云网,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,7
+71,Altair,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,7
+71,Altair,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,7
+96,Cisco,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,7
+78,OutSystems,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,7
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,7
+26,寄云科技,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,7
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,7
+128,华伍股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,7
+68,中望软件,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,7
+168,中控技术,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,7
+96,Cisco,1.2.1,网络互联,126,华为,1.2,工业互联网网络,7
+26,寄云科技,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,7
+95,Schneider,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,7
+126,华为,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,7
+26,寄云科技,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,7
+70,ABB,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,7
+149,天泽智云,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,7
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,7
+13,东方国信,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,7
+7,百望,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,7
+69,紫光集团,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,7
+13,东方国信,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,7
+13,东方国信,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,7
+135,浪潮,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,6
+96,Cisco,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,6
+135,浪潮,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,6
+135,浪潮,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,6
+108,百度,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,6
+103,STMicroelectronics ,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,6
+91,Moxa,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,6
+82,Uptake,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,6
+113,飞腾信息,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,6
+96,Cisco,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,6
+103,STMicroelectronics ,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,6
+91,Moxa,1.2.1,网络互联,126,华为,1.2,工业互联网网络,6
+135,浪潮,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,6
+99,Siemens,1.1.2,工业控制器,105,Intel,1.1,工业自动化,6
+99,Siemens,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,6
+95,Schneider,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,6
+6,安世亚太,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,6
+82,Uptake,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,6
+117,格创东智,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,6
+57,亚控科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,6
+78,OutSystems,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,6
+57,亚控科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,6
+78,OutSystems,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,6
+78,OutSystems,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6
+74,HoneyWell,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,6
+129,华中数控,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,6
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,6
+129,华中数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,6
+68,中望软件,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,6
+68,中望软件,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,6
+13,东方国信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,6
+65,中国电信,1.2.1,网络互联,126,华为,1.2,工业互联网网络,6
+13,东方国信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,6
+13,东方国信,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,6
+62,云道智造,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,6
+62,云道智造,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,6
+6,安世亚太,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6
+13,东方国信,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,6
+60,宇动源,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,6
+60,宇动源,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,6
+60,宇动源,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,6
+60,宇动源,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,6
+57,亚控科技,2.3.3,协议转换,155,小米,2.3,边缘层,6
+126,华为,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,6
+57,亚控科技,2.3.3,协议转换,124,海尔,2.3,边缘层,6
+131,九物互联,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,6
+80,Salesforce,1.3.4,企业运营管理,170,Pseudo1,1,供给,6
+117,格创东智,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6
+79,PTC,2.3.3,协议转换,95,Schneider,2.3,边缘层,6
+79,PTC,2.3.2,边缘数据处理,126,华为,2.3,边缘层,6
+79,PTC,2.3.1,工业数据接入,126,华为,2.3,边缘层,6
+135,浪潮,1.1.3,工业服务器,105,Intel,1.1,工业自动化,6
+79,PTC,2.1.4.2,工业大数据管理,99,Siemens,2.1,PaaS,6
+132,科远智慧,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,6
+117,格创东智,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,6
+117,格创东智,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,6
+131,九物互联,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,6
+79,PTC,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,6
+54,网御星云,1.4.4.3,接入认证,170,Pseudo1,1,供给,6
+131,九物互联,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,6
+117,格创东智,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,6
+131,九物互联,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,6
+117,格创东智,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,6
+117,格创东智,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,6
+131,九物互联,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,6
+131,九物互联,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6
+131,九物互联,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,6
+130,金蝶,1.3.4.2,客户关系管理CRM,29,京东工业品,1.3,工业软件,6
+131,九物互联,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,6
+136,美的,1.2.1,网络互联,126,华为,1.2,工业互联网网络,6
+168,中控技术,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,6
+16,东土科技,1.1.3,工业服务器,105,Intel,1.1,工业自动化,6
+22,航天云网,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,6
+23,和利时,2.3.3,协议转换,84,Bosch,2.3,边缘层,6
+22,航天云网,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,6
+23,和利时,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,6
+23,和利时,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,6
+38,牛刀,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,6
+23,和利时,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,6
+23,和利时,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,6
+22,航天云网,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,6
+38,牛刀,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,6
+161,研华科技,2.3.1,工业数据接入,155,小米,2.3,边缘层,6
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,6
+45,石化盈科,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,6
+45,石化盈科,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,6
+144,树根互联,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6
+23,和利时,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,6
+168,中控技术,1.1.2,工业控制器,126,华为,1.1,工业自动化,6
+148,腾讯,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,6
+37,绿盟,1.4.4.3,接入认证,170,Pseudo1,1,供给,6
+23,和利时,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,6
+149,天泽智云,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,6
+140,山石网科,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,6
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,6
+38,牛刀,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,6
+38,牛刀,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,6
+38,牛刀,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,6
+168,中控技术,2.3.3,协议转换,95,Schneider,2.3,边缘层,6
+144,树根互联,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,6
+26,寄云科技,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,6
+26,寄云科技,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,6
+144,树根互联,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,6
+144,树根互联,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,6
+26,寄云科技,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,6
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,6
+144,树根互联,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,6
+168,中控技术,2.3.2,边缘数据处理,155,小米,2.3,边缘层,6
+144,树根互联,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,6
+22,航天云网,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,6
+26,寄云科技,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,6
+26,寄云科技,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,6
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,6
+168,中控技术,2.3.1,工业数据接入,124,海尔,2.3,边缘层,6
+169,中芯国际,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,6
+147,拓邦股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,6
+44,圣邦微电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,6
+2,706所,1.1.3,工业服务器,126,华为,1.1,工业自动化,6
+168,中控技术,1.1.2,工业控制器,105,Intel,1.1,工业自动化,6
+26,寄云科技,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,6
+49,数码大方,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,6
+31,昆仑数据,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,6
+33,蓝谷信息,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6
+49,数码大方,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,6
+49,数码大方,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,6
+35,凌昊智能,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,6
+49,数码大方,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,6
+22,航天云网,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,6
+49,数码大方,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,6
+163,优也科技,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,6
+33,蓝谷信息,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,6
+149,天泽智云,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6
+47,首自信,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,6
+149,天泽智云,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,6
+16,东土科技,2.3.3,协议转换,155,小米,2.3,边缘层,6
+31,昆仑数据,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,6
+165,智能云科,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,6
+33,蓝谷信息,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,6
+32,兰光创新,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,6
+30,可信华泰,1.4.2.6,隐私计算,126,华为,1.4,工业互联网安全,6
+165,智能云科,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,6
+16,东土科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,6
+33,蓝谷信息,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,6
+47,首自信,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,6
+22,航天云网,2.3.3,协议转换,124,海尔,2.3,边缘层,6
+49,数码大方,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,6
+30,可信华泰,1.4.2.6,隐私计算,170,Pseudo1,1,供给,6
+136,美的,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,6
+31,昆仑数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,6
+22,航天云网,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,6
+22,航天云网,2.3.3,协议转换,126,华为,2.3,边缘层,6
+149,天泽智云,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,5
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,5
+89,Rockwell,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,5
+147,拓邦股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,5
+113,飞腾信息,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,5
+68,中望软件,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,5
+26,寄云科技,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,5
+126,华为,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,5
+26,寄云科技,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,5
+33,蓝谷信息,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,5
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,5
+26,寄云科技,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,5
+66,中国联通,1.2.1,网络互联,126,华为,1.2,工业互联网网络,5
+78,OutSystems,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,5
+26,寄云科技,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,5
+144,树根互联,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,5
+26,寄云科技,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,5
+26,寄云科技,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,5
+127,华为海思,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,5
+31,昆仑数据,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,5
+32,兰光创新,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,5
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,5
+60,宇动源,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,5
+150,唯捷创芯,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5
+38,牛刀,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,5
+22,航天云网,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,5
+129,华中数控,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,5
+129,华中数控,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5
+38,牛刀,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,5
+113,飞腾信息,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5
+149,天泽智云,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,5
+13,东方国信,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,5
+62,云道智造,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,5
+22,航天云网,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,5
+62,云道智造,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,5
+129,华中数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,5
+62,云道智造,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,5
+82,Uptake,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,5
+60,宇动源,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,5
+22,航天云网,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,5
+82,Uptake,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,5
+22,航天云网,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,5
+13,东方国信,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,5
+36,龙芯中科,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,5
+3,艾克斯特,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,5
+82,Uptake,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,5
+128,华伍股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,5
+36,龙芯中科,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,5
+13,东方国信,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,5
+62,云道智造,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,5
+22,航天云网,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,5
+128,华伍股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5
+69,紫光集团,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5
+60,宇动源,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,5
+60,宇动源,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,5
+62,云道智造,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,5
+89,Rockwell,1.1.2,工业控制器,126,华为,1.1,工业自动化,5
+33,蓝谷信息,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,5
+81,SAP,2.1.4.1,工业大数据存储,170,Pseudo1,1,供给,5
+168,中控技术,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,5
+23,和利时,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5
+47,首自信,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,5
+131,九物互联,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,5
+168,中控技术,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5
+117,格创东智,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,5
+22,航天云网,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,5
+46,适创科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,5
+16,东土科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,5
+23,和利时,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,5
+168,中控技术,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,5
+45,石化盈科,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,5
+45,石化盈科,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,5
+143,沈阳自动化研究所,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,5
+81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2,工业互联网平台,5
+103,STMicroelectronics ,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,5
+104,Infineon,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5
+117,格创东智,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,5
+117,格创东智,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,5
+95,Schneider,1.2.3,数据互通,126,华为,1.2,工业互联网网络,5
+22,航天云网,2.3.3,协议转换,155,小米,2.3,边缘层,5
+22,航天云网,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,5
+117,格创东智,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,5
+117,格创东智,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,5
+117,格创东智,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,5
+47,首自信,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,5
+22,航天云网,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,5
+167,中环股份,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,5
+99,Siemens,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,5
+49,数码大方,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,5
+99,Siemens,1.1.2,工业控制器,126,华为,1.1,工业自动化,5
+47,首自信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,5
+135,浪潮,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,5
+99,Siemens,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,5
+23,和利时,1.1.2,工业控制器,105,Intel,1.1,工业自动化,5
+117,格创东智,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,5
+101,Analog Devices,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,5
+23,和利时,2.3.1,工业数据接入,155,小米,2.3,边缘层,5
+22,航天云网,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,5
+22,航天云网,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,5
+16,东土科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,5
+82,Uptake,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,5
+81,SAP,2.1.4.1,工业大数据存储,98,Microsoft Azure,2,工业互联网平台,5
+22,航天云网,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,5
+79,PTC,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,5
+130,金蝶,1.3.4.2,客户关系管理CRM,106,阿里巴巴,1.3,工业软件,5
+22,航天云网,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,5
+104,Infineon,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,5
+154,西格数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,5
+16,东土科技,2.3.3,协议转换,124,海尔,2.3,边缘层,5
+16,东土科技,2.3.1,工业数据接入,155,小米,2.3,边缘层,5
+49,数码大方,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,5
+149,天泽智云,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,5
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,5
+13,东方国信,2.3.3,协议转换,124,海尔,2.3,边缘层,5
+168,中控技术,2.3.3,协议转换,126,华为,2.3,边缘层,5
+57,亚控科技,2.3.3,协议转换,126,华为,2.3,边缘层,5
+22,航天云网,2.3.1,工业数据接入,124,海尔,2.3,边缘层,5
+49,数码大方,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,5
+81,SAP,2.1.4.2,工业大数据管理,98,Microsoft Azure,2,工业互联网平台,5
+57,亚控科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,5
+49,数码大方,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,5
+115,富士康,1.1.3,工业服务器,126,华为,1.1,工业自动化,5
+57,亚控科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,5
+81,SAP,2.1.4.2,工业大数据管理,170,Pseudo1,1,供给,5
+161,研华科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,5
+167,中环股份,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,5
+124,海尔,1.2.1,网络互联,126,华为,1.2,工业互联网网络,5
+81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2,工业互联网平台,5
+117,格创东智,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,5
+79,PTC,2.3.3,协议转换,99,Siemens,2.3,边缘层,5
+23,和利时,2.3.3,协议转换,155,小米,2.3,边缘层,5
+168,中控技术,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,5
+117,格创东智,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,4
+13,东方国信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,4
+16,东土科技,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,4
+33,蓝谷信息,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,4
+33,蓝谷信息,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,4
+78,OutSystems,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,4
+23,和利时,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,4
+112,东华测试,1.3.3.7,故障预测与健康管理PHM,106,阿里巴巴,1.3,工业软件,4
+124,海尔,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,4
+82,Uptake,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,4
+26,寄云科技,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,4
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,4
+155,小米,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,4
+22,航天云网,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,4
+26,寄云科技,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,4
+25,华大九天,1.3.1.7,电子设计自动化EDA,29,京东工业品,1.3,工业软件,4
+127,华为海思,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4
+22,航天云网,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,4
+127,华为海思,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,4
+22,航天云网,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,4
+31,昆仑数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,4
+115,富士康,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,4
+127,华为海思,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4
+161,研华科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,4
+123,海得控制,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,4
+150,唯捷创芯,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4
+129,华中数控,1.1.2,工业控制器,126,华为,1.1,工业自动化,4
+126,华为,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,4
+117,格创东智,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,4
+161,研华科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,4
+22,航天云网,2.3.3,协议转换,84,Bosch,2.3,边缘层,4
+62,云道智造,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,4
+16,东土科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,4
+13,东方国信,2.3.3,协议转换,155,小米,2.3,边缘层,4
+144,树根互联,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,4
+131,九物互联,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,4
+169,中芯国际,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,4
+101,Analog Devices,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,4
+47,首自信,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,4
+47,首自信,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,4
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,29,京东工业品,1.3,工业软件,4
+53,天融信,1.4.4.4,工业应用行为监控,170,Pseudo1,1,供给,4
+47,首自信,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,4
+6,安世亚太,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,4
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,29,京东工业品,1.3,工业软件,4
+130,金蝶,1.3.4.3,人力资源管理HRM,29,京东工业品,1.3,工业软件,4
+99,Siemens,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,4
+60,宇动源,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,4
+101,Analog Devices,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,4
+60,宇动源,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,4
+38,牛刀,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,4
+60,宇动源,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,4
+131,九物互联,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,4
+131,九物互联,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,4
+101,Analog Devices,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4
+144,树根互联,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,4
+130,金蝶,1.3.4.3,人力资源管理HRM,106,阿里巴巴,1.3,工业软件,4
+45,石化盈科,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,4
+57,亚控科技,2.3.1,工业数据接入,155,小米,2.3,边缘层,4
+45,石化盈科,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,4
+57,亚控科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,4
+44,圣邦微电子,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4
+57,亚控科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,4
+44,圣邦微电子,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4
+104,Infineon,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4
+13,东方国信,2.3.3,协议转换,99,Siemens,2.3,边缘层,4
+149,天泽智云,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,4
+91,Moxa,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,4
+58,用友,1.3.4.2,客户关系管理CRM,29,京东工业品,1.3,工业软件,4
+103,STMicroelectronics ,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4
+168,中控技术,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,4
+165,智能云科,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,4
+131,九物互联,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,4
+89,Rockwell,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,4
+47,首自信,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,4
+60,宇动源,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,4
+62,云道智造,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,4
+62,云道智造,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,4
+87,Texas Instruments,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,4
+50,索为系统,1.3.1.5,产品数据管理PDM,29,京东工业品,1.3,工业软件,4
+62,云道智造,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,4
+167,中环股份,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4
+165,智能云科,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,4
+87,Texas Instruments,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,4
+136,美的,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,4
+135,浪潮,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,4
+62,云道智造,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,4
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,4
+36,龙芯中科,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,4
+36,龙芯中科,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4
+35,凌昊智能,1.1.3,工业服务器,126,华为,1.1,工业自动化,4
+64,中电智科,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,4
+149,天泽智云,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,4
+49,数码大方,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,4
+65,中国电信,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,4
+62,云道智造,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,4
+45,石化盈科,1.3.4.2,客户关系管理CRM,106,阿里巴巴,1.3,工业软件,4
+163,优也科技,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,4
+49,数码大方,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,4
+62,云道智造,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,4
+20,海基科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,4
+137,美林数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,4
+148,腾讯,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,4
+62,云道智造,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,4
+62,云道智造,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,4
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,170,Pseudo1,1,供给,3
+49,数码大方,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,3
+45,石化盈科,1.3.4.2,客户关系管理CRM,29,京东工业品,1.3,工业软件,3
+45,石化盈科,1.3.4.2,客户关系管理CRM,170,Pseudo1,1,供给,3
+131,九物互联,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,3
+23,和利时,2.3.2,边缘数据处理,126,华为,2.3,边缘层,3
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,3
+23,和利时,2.3.3,协议转换,126,华为,2.3,边缘层,3
+135,浪潮,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,3
+53,天融信,1.4.1.4,入侵检测系统,170,Pseudo1,1,供给,3
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,3
+79,PTC,2.1.4.1,工业大数据存储,102,Amazon AWS,2,工业互联网平台,3
+117,格创东智,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,3
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,3
+49,数码大方,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,3
+79,PTC,2.1.4.1,工业大数据存储,98,Microsoft Azure,2,工业互联网平台,3
+16,东土科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,3
+99,Siemens,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,3
+117,格创东智,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,3
+22,航天云网,2.3.1,工业数据接入,126,华为,2.3,边缘层,3
+99,Siemens,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,3
+133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,126,华为,1.4,工业互联网安全,3
+168,中控技术,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,3
+49,数码大方,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,3
+16,东土科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,3
+47,首自信,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,3
+131,九物互联,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,3
+79,PTC,2.1.4.1,工业大数据存储,170,Pseudo1,1,供给,3
+22,航天云网,2.3.2,边缘数据处理,126,华为,2.3,边缘层,3
+23,和利时,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,3
117,格创东智,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,3
-79,PTC,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,3
-79,PTC,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3
-79,PTC,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,3
-79,PTC,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,3
-32,兰光创新,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,3
-103,STMicroelectronics ,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,3
-169,中芯国际,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
-47,首自信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,2
-74,HoneyWell,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,2
-72,ANSYS,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2
-57,亚控科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2
-22,航天云网,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,2
-71,Altair,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2
-47,首自信,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2
-70,ABB,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,2
-22,航天云网,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,2
-104,Infineon,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
-57,亚控科技,2.3.3,协议转换,155,小米,2.3,边缘层,2
-57,亚控科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,2
-47,首自信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,2
-22,航天云网,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2
-22,航天云网,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2
-48,曙光信息,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2
-145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,2
-49,数码大方,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,2
-78,OutSystems,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,2
-57,亚控科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2
-6,安世亚太,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,2
-78,OutSystems,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2
-79,PTC,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,2
-168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,2
-135,浪潮,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2
-135,浪潮,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2
-167,中环股份,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2
-79,PTC,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,2
-168,中控技术,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,2
-22,航天云网,2.3.3,协议转换,99,Siemens,2.3,边缘层,2
-79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,2
-138,启明信息,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,2
-56,芯愿景,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
-14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,2
-167,中环股份,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
-166,中国电子科技网络信息安全,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2
-103,STMicroelectronics ,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
-47,首自信,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,2
-117,格创东智,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,2
-22,航天云网,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2
-47,首自信,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,2
-49,数码大方,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,2
-165,智能云科,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2
-58,用友,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2
-103,STMicroelectronics ,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
-153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2
-60,宇动源,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2
-49,数码大方,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2
-60,宇动源,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2
-115,富士康,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2
-16,东土科技,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,2
-16,东土科技,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2
-161,研华科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2
-6,安世亚太,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2
-6,安世亚太,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2
-16,东土科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2
-16,东土科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,2
-6,安世亚太,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,2
-6,安世亚太,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,2
-161,研华科技,2.3.3,协议转换,155,小米,2.3,边缘层,2
-16,东土科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2
-6,安世亚太,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2
-169,中芯国际,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
-6,安世亚太,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2
-49,数码大方,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,2
-153,武汉开目,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,2
-61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,2
-135,浪潮,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,2
-49,数码大方,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,2
-147,拓邦股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2
-168,中控技术,2.3.3,协议转换,126,华为,2.3,边缘层,2
-147,拓邦股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2
-64,中电智科,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2
-149,天泽智云,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,2
-101,Analog Devices,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
-149,天泽智云,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,2
-62,云道智造,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2
-22,航天云网,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2
-49,数码大方,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2
-62,云道智造,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2
-106,阿里巴巴,1.3,工业软件,170,Pseudo1,1,供给,2
-22,航天云网,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2
-150,唯捷创芯,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
-49,数码大方,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,2
-33,蓝谷信息,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2
-22,航天云网,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,2
-79,PTC,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,2
-150,唯捷创芯,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2
-13,东方国信,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,2
-82,Uptake,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2
-38,牛刀,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,2
-26,寄云科技,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2
-13,东方国信,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2
-13,东方国信,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2
-9,北京航天测控,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,2
-42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2
-26,寄云科技,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,2
-13,东方国信,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,2
-13,东方国信,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,2
-127,华为海思,1.1.3,工业服务器,126,华为,1.1,工业自动化,2
-24,华大电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
-90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,2
-79,PTC,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,2
-44,圣邦微电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
-127,华为海思,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
-13,东方国信,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,2
-111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,2
-31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,2
-46,适创科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,2
-29,京东工业品,1.3,工业软件,170,Pseudo1,1,供给,2
+96,Cisco,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,3
+117,格创东智,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,3
+161,研华科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,3
+53,天融信,1.4.1.4,入侵检测系统,126,华为,1.4,工业互联网安全,3
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,106,阿里巴巴,1.3,工业软件,3
+16,东土科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,3
+23,和利时,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,3
+165,智能云科,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,3
+57,亚控科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,3
+150,唯捷创芯,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,3
+82,Uptake,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,3
+127,华为海思,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,3
+152,卫士通,1.4.4.1,身份鉴别与访问控制,170,Pseudo1,1,供给,3
+89,Rockwell,1.2.1,网络互联,126,华为,1.2,工业互联网网络,3
+60,宇动源,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,3
+38,牛刀,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,3
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,3
+150,唯捷创芯,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,3
+60,宇动源,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,3
+150,唯捷创芯,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3
+38,牛刀,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,3
+41,启明星辰,1.4.1.5,统一威胁管理系统,170,Pseudo1,1,供给,3
+113,飞腾信息,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,3
+129,华中数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,3
+149,天泽智云,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,3
+149,天泽智云,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,3
+149,天泽智云,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,3
+69,紫光集团,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,3
+69,紫光集团,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3
+22,航天云网,1.2.2,标识解析,126,华为,1.2,工业互联网网络,3
+22,航天云网,1.2.1,网络互联,126,华为,1.2,工业互联网网络,3
+36,龙芯中科,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,3
+41,启明星辰,1.4.1.5,统一威胁管理系统,126,华为,1.4,工业互联网安全,3
+27,江南天安,1.4.4.2,密钥管理,170,Pseudo1,1,供给,3
+78,OutSystems,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,3
+106,阿里巴巴,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,3
+58,用友,1.3.4.3,人力资源管理HRM,29,京东工业品,1.3,工业软件,3
+58,用友,1.3.4.2,客户关系管理CRM,106,阿里巴巴,1.3,工业软件,3
+144,树根互联,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,3
+144,树根互联,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,3
+78,OutSystems,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,3
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,3
+161,研华科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,3
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,3
+104,Infineon,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3
+154,西格数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,3
+144,树根互联,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,3
+13,东方国信,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,3
+22,航天云网,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,3
+130,金蝶,1.3.4.2,客户关系管理CRM,170,Pseudo1,1,供给,3
+13,东方国信,2.3.1,工业数据接入,126,华为,2.3,边缘层,3
+13,东方国信,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,3
+87,Texas Instruments,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
87,Texas Instruments,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
-13,东方国信,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,2
-3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,2
-88,HPE,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2
-13,东方国信,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,2
-4,爱创科技,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,2
-13,东方国信,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2
-82,Uptake,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,2
-113,飞腾信息,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
-89,Rockwell,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,2
-13,东方国信,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2
-13,东方国信,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,2
-13,东方国信,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2
-129,华中数控,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2
-79,PTC,2.3.1,工业数据接入,126,华为,2.3,边缘层,2
-127,华为海思,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
-79,PTC,2.3.1,工业数据接入,124,海尔,2.3,边缘层,2
-123,海得控制,1.1.2,工业控制器,126,华为,1.1,工业自动化,2
-131,九物互联,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2
-38,牛刀,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2
-79,PTC,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2
-23,和利时,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2
-99,Siemens,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2
-23,和利时,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2
-120,广州数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2
-99,Siemens,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,2
-35,凌昊智能,1.1.3,工业服务器,105,Intel,1.1,工业自动化,2
-135,浪潮,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2
-113,飞腾信息,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2
-79,PTC,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2
-34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,2
-46,适创科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,2
-117,格创东智,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2
-79,PTC,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,2
-13,东方国信,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,2
-23,和利时,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2
-95,Schneider,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2
-79,PTC,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,2
-95,Schneider,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2
-38,牛刀,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,2
-79,PTC,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2
-79,PTC,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2
-79,PTC,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2
-109,宝信软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1
-104,Infineon,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
-49,数码大方,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1
-36,龙芯中科,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+93,Cadence,1.3.1,设计研发,170,Pseudo1,1,供给,2
+112,东华测试,1.3.3.7,故障预测与健康管理PHM,29,京东工业品,1.3,工业软件,2
+85,Dassault,1.3.1,设计研发,170,Pseudo1,1,供给,2
+104,Infineon,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+88,HPE,1.1.3,工业服务器,170,Pseudo1,1,供给,2
+85,Dassault,2.1.1,开发工具,98,Microsoft Azure,2,工业互联网平台,2
+85,Dassault,2.1.1,开发工具,170,Pseudo1,1,供给,2
+97,General Electric,1.3.3,生产制造,170,Pseudo1,1,供给,2
+117,格创东智,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2
+100,Synopsys,1.3.1,设计研发,170,Pseudo1,1,供给,2
+82,Uptake,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,2
+107,安恒信息,1.4.3.3,APT检测,126,华为,1.4,工业互联网安全,2
+99,Siemens,1.3.1,设计研发,170,Pseudo1,1,供给,2
+96,Cisco,1.2.3,数据互通,170,Pseudo1,1,供给,2
+82,Uptake,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,2
+89,Rockwell,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,2
+168,中控技术,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,2
+169,中芯国际,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,106,阿里巴巴,1.3,工业软件,2
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,170,Pseudo1,1,供给,2
+107,安恒信息,1.4.3.3,APT检测,170,Pseudo1,1,供给,2
+169,中芯国际,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2
+101,Analog Devices,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2
+85,Dassault,2.1.1,开发工具,102,Amazon AWS,2,工业互联网平台,2
+3,艾克斯特,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,2
+6,安世亚太,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,2
+15,东软集团,1.3.3.5,企业资产管理系统EAM,29,京东工业品,1.3,工业软件,2
+39,Autodesk,1.3.1,设计研发,170,Pseudo1,1,供给,2
+58,用友,1.3.4.2,客户关系管理CRM,170,Pseudo1,1,供给,2
+26,寄云科技,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2
+149,天泽智云,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,2
+37,绿盟,1.4.1.4,入侵检测系统,170,Pseudo1,1,供给,2
+3,艾克斯特,1.3.1.5,产品数据管理PDM,29,京东工业品,1.3,工业软件,2
+140,山石网科,1.4.5.3,数据审计系统,126,华为,1.4,工业互联网安全,2
+74,HoneyWell,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,2
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,2
+140,山石网科,1.4.5.3,数据审计系统,170,Pseudo1,1,供给,2
+13,东方国信,2.1.3.1,物联网服务,99,Siemens,2.1,PaaS,2
+24,华大电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
+43,神舟软件,1.3.1.5,产品数据管理PDM,29,京东工业品,1.3,工业软件,2
+69,紫光集团,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+13,东方国信,2.1.3.3,工业引擎服务,99,Siemens,2.1,PaaS,2
+56,芯愿景,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
+37,绿盟,1.4.1.4,入侵检测系统,126,华为,1.4,工业互联网安全,2
+37,绿盟,1.4.1.2,下一代防火墙,170,Pseudo1,1,供给,2
+56,芯愿景,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
+56,芯愿景,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2
+33,蓝谷信息,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2
+37,绿盟,1.4.1.2,下一代防火墙,126,华为,1.4,工业互联网安全,2
+14,东华软件,1.3.4.3,人力资源管理HRM,106,阿里巴巴,1.3,工业软件,2
+131,九物互联,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,2
+79,PTC,2.1.2,工业模型库,102,Amazon AWS,2,工业互联网平台,2
+58,用友,1.3.4.3,人力资源管理HRM,106,阿里巴巴,1.3,工业软件,2
+79,PTC,2.1.4.2,工业大数据管理,98,Microsoft Azure,2,工业互联网平台,2
+79,PTC,2.1.4.2,工业大数据管理,170,Pseudo1,1,供给,2
+117,格创东智,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,2
+79,PTC,2.1.4.2,工业大数据管理,102,Amazon AWS,2,工业互联网平台,2
+117,格创东智,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,2
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,106,阿里巴巴,1.3,工业软件,2
+49,数码大方,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,2
+50,索为系统,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,2
+49,数码大方,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,2
+23,和利时,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,2
+79,PTC,2.1.3.1,物联网服务,99,Siemens,2.1,PaaS,2
+6,安世亚太,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,2
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,170,Pseudo1,1,供给,2
+79,PTC,2.1.2,工业模型库,170,Pseudo1,1,供给,2
+79,PTC,2.1.2,工业模型库,98,Microsoft Azure,2,工业互联网平台,2
+24,华大电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+124,海尔,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,2
+43,神舟软件,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,1
108,百度,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1
-49,数码大方,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
-35,凌昊智能,1.1.3,工业服务器,126,华为,1.1,工业自动化,1
-49,数码大方,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
-104,Infineon,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
-56,芯愿景,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
-38,牛刀,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1
-39,Autodesk,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1
-36,龙芯中科,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
-36,龙芯中科,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
-103,STMicroelectronics ,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
-38,牛刀,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1
-35,凌昊智能,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
-38,牛刀,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
-50,索为系统,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,1
-38,牛刀,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
-50,索为系统,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,1
-46,适创科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1
-39,Autodesk,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1
-45,石化盈科,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1
-45,石化盈科,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1
-45,石化盈科,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1
-47,首自信,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1
-47,首自信,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
-45,石化盈科,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1
-45,石化盈科,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1
-47,首自信,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1
-47,首自信,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
-47,首自信,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
-47,首自信,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
-47,首自信,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1
-47,首自信,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
-45,石化盈科,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1
-47,首自信,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1
-47,首自信,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1
-47,首自信,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1
-45,石化盈科,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1
-46,适创科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1
-47,首自信,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1
-44,圣邦微电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
-49,数码大方,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
-49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1
-4,爱创科技,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1
-49,数码大方,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
-111,鼎捷软件,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1
-49,数码大方,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1
-111,鼎捷软件,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1
-111,鼎捷软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1
-49,数码大方,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1
-49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
-111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1
-47,首自信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
-49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1
-42,山大华天,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1
-42,山大华天,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,1
-42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1
-42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
-47,首自信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1
-43,神舟软件,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,1
-43,神舟软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1
-56,芯愿景,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
-119,广联达,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1
-56,芯愿景,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
-82,Uptake,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1
-81,SAP,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,1
-81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,1
-81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,1
-80,Salesforce,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,1
-79,PTC,2.3.3,协议转换,95,Schneider,2.3,边缘层,1
-79,PTC,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
-79,PTC,2.3.3,协议转换,155,小米,2.3,边缘层,1
-79,PTC,2.3.3,协议转换,102,Amazon AWS,2,工业互联网平台,1
-79,PTC,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1
-79,PTC,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1
-79,PTC,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
-79,PTC,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
-79,PTC,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1
-79,PTC,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
-79,PTC,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1
-79,PTC,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1
-79,PTC,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1
-79,PTC,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1
-79,PTC,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1
-79,PTC,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1
-79,PTC,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1
-79,PTC,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,1
-79,PTC,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1
-79,PTC,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1
-79,PTC,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,1
-79,PTC,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1
-79,PTC,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,1
-81,SAP,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,1
-82,Uptake,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
-79,PTC,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,1
-82,Uptake,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
-10,北京英贝思,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1
-10,北京英贝思,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1
-99,Siemens,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
-100,Synopsys,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1
-97,General Electric,1.3.3,生产制造,29,京东工业品,1.3,工业软件,1
-96,Cisco,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1
-95,Schneider,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1
-93,Cadence,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1
-93,Cadence,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1
-92,Omron,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1
-91,Moxa,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
-90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1
-9,北京航天测控,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1
-89,Rockwell,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1
-89,Rockwell,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1
-89,Rockwell,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
-89,Rockwell,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
-88,HPE,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
-87,Texas Instruments,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
-85,Dassault,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1
-83,Emerson,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1
-83,Emerson,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1
-82,Uptake,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
-82,Uptake,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
-82,Uptake,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1
-82,Uptake,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1
-82,Uptake,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
-79,PTC,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1
-79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
-56,芯愿景,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
-62,云道智造,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1
-62,云道智造,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1
-62,云道智造,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1
-62,云道智造,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
-60,宇动源,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
-60,宇动源,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1
-60,宇动源,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1
-60,宇动源,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
-60,宇动源,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1
-60,宇动源,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1
-60,宇动源,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1
-6,安世亚太,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1
-6,安世亚太,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
-6,安世亚太,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
-6,安世亚太,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1
-6,安世亚太,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1
-6,安世亚太,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
-103,STMicroelectronics ,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
-58,用友,1.3.2,采购供应,170,Pseudo1,1,供给,1
-58,用友,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,1
-58,用友,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1
-57,亚控科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
-57,亚控科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1
-57,亚控科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
-57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1
-57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,1
-56,芯愿景,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1
-56,芯愿景,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1
-62,云道智造,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1
-62,云道智造,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
-79,PTC,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1
-62,云道智造,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
-79,PTC,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1
-79,PTC,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
-78,OutSystems,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
-78,OutSystems,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
-78,OutSystems,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1
-78,OutSystems,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1
-78,OutSystems,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
-77,Oracle,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1
-77,Oracle,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,1
-72,ANSYS,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
-71,Altair,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1
-71,Altair,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
-70,ABB,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1
-69,紫光集团,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
-69,紫光集团,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
-68,中望软件,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1
-68,中望软件,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1
-68,中望软件,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1
-68,中望软件,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
-66,中国联通,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
-65,中国电信,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
-65,中国电信,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
-65,中国电信,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
-64,中电智科,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
-101,Analog Devices,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
-62,云道智造,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
-62,云道智造,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1
-33,蓝谷信息,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
-23,和利时,2.3.3,协议转换,99,Siemens,2.3,边缘层,1
-33,蓝谷信息,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
-137,美林数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1
-135,浪潮,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,1
-135,浪潮,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1
-135,浪潮,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1
-135,浪潮,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
-135,浪潮,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1
-135,浪潮,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1
-137,美林数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1
-135,浪潮,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1
-139,容知日新,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,1
-14,东华软件,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,1
-117,格创东智,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1
-117,格创东智,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
-141,上海新华控制,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1
-141,上海新华控制,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1
-135,浪潮,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,1
-135,浪潮,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1
-116,概伦电子,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1
-117,格创东智,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
-131,九物互联,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,1
-132,科远智慧,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1
-133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,1
-134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1
-134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,1
-135,浪潮,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
-117,格创东智,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
-135,浪潮,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,1
-135,浪潮,1.3.2.1,供应链管理SCM,170,Pseudo1,1,供给,1
-117,格创东智,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,1
-135,浪潮,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1
-135,浪潮,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,1
-135,浪潮,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1
-135,浪潮,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1
-117,格创东智,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1
-116,概伦电子,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1
-150,唯捷创芯,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
-149,天泽智云,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1
-146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
-146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1
-146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1
-149,天泽智云,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1
-149,天泽智云,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
-149,天泽智云,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
-149,天泽智云,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1
-145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1
-149,天泽智云,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
-149,天泽智云,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
-149,天泽智云,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1
-149,天泽智云,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
-15,东软集团,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1
-15,东软集团,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1
-145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1
-144,树根互联,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
-143,沈阳自动化研究所,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
-143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
-144,树根互联,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
-144,树根互联,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1
-144,树根互联,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
-144,树根互联,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
-144,树根互联,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
-144,树根互联,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1
-144,树根互联,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1
-144,树根互联,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
-131,九物互联,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
-131,九物互联,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1
-131,九物互联,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1
-13,东方国信,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1
-128,华伍股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
-129,华中数控,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1
-129,华中数控,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1
-129,华中数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1
-13,东方国信,1.2.2,标识解析,126,华为,1.2,工业互联网网络,1
-13,东方国信,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1
-13,东方国信,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,1
-127,华为海思,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
-13,东方国信,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,1
-13,东方国信,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1
-13,东方国信,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,1
-13,东方国信,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1
-13,东方国信,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,1
-13,东方国信,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1
-128,华伍股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,1
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,1
+13,东方国信,2.3.2,边缘数据处理,98,Microsoft Azure,2,工业互联网平台,1
+44,圣邦微电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,106,阿里巴巴,1.3,工业软件,1
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,29,京东工业品,1.3,工业软件,1
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,99,Siemens,2.1,PaaS,1
+58,用友,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,1
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,106,阿里巴巴,1.3,工业软件,1
+58,用友,2.1.2,工业模型库,98,Microsoft Azure,2,工业互联网平台,1
+43,神舟软件,1.3.1.5,产品数据管理PDM,170,Pseudo1,1,供给,1
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,106,阿里巴巴,1.3,工业软件,1
+168,中控技术,2.3.1,工业数据接入,98,Microsoft Azure,2,工业互联网平台,1
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,29,京东工业品,1.3,工业软件,1
+42,山大华天,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,1
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,29,京东工业品,1.3,工业软件,1
+58,用友,2.1.2,工业模型库,102,Amazon AWS,2,工业互联网平台,1
+42,山大华天,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1
+22,航天云网,2.1.4.1.2,分布式数据库,102,Amazon AWS,2.1.4,工业大数据,1
+95,Schneider,1.2.3,数据互通,170,Pseudo1,1,供给,1
+56,芯愿景,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,1
+135,浪潮,2.1.3.7,制造类API,99,Siemens,2.1,PaaS,1
+50,索为系统,1.3.1.5,产品数据管理PDM,170,Pseudo1,1,供给,1
+135,浪潮,2.1.3.3,工业引擎服务,99,Siemens,2.1,PaaS,1
+167,中环股份,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+49,数码大方,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,1
+53,天融信,1.4.3.3,APT检测,126,华为,1.4,工业互联网安全,1
+138,启明信息,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,1
+53,天融信,1.4.3.3,APT检测,170,Pseudo1,1,供给,1
+99,Siemens,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
+135,浪潮,1.1.3,工业服务器,170,Pseudo1,1,供给,1
+14,东华软件,1.3.4.3,人力资源管理HRM,170,Pseudo1,1,供给,1
+14,东华软件,1.3.4.3,人力资源管理HRM,29,京东工业品,1.3,工业软件,1
+53,天融信,1.4.5.3,数据审计系统,126,华为,1.4,工业互联网安全,1
+53,天融信,1.4.5.3,数据审计系统,170,Pseudo1,1,供给,1
+140,山石网科,1.4.1.4,入侵检测系统,126,华为,1.4,工业互联网安全,1
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,29,京东工业品,1.3,工业软件,1
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,106,阿里巴巴,1.3,工业软件,1
+140,山石网科,1.4.1.4,入侵检测系统,170,Pseudo1,1,供给,1
+140,山石网科,1.4.1.5,统一威胁管理系统,126,华为,1.4,工业互联网安全,1
+103,STMicroelectronics ,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+140,山石网科,1.4.1.5,统一威胁管理系统,170,Pseudo1,1,供给,1
+41,启明星辰,1.4.1.2,下一代防火墙,170,Pseudo1,1,供给,1
+46,适创科技,1.3.1.2,计算机辅助工程CAE,29,京东工业品,1.3,工业软件,1
+46,适创科技,1.3.1.2,计算机辅助工程CAE,106,阿里巴巴,1.3,工业软件,1
+131,九物互联,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
+96,Cisco,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
+56,芯愿景,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+168,中控技术,1.3.3.1,制造执行系统MES,29,京东工业品,1.3,工业软件,1
+89,Rockwell,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,1
+41,启明星辰,1.4.1.2,下一代防火墙,126,华为,1.4,工业互联网安全,1
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,106,阿里巴巴,1.3,工业软件,1
+22,航天云网,1.3.3.6,运维保障系统MRO,29,京东工业品,1.3,工业软件,1
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,29,京东工业品,1.3,工业软件,1
+113,飞腾信息,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
+5,安华金和,1.4.5.3,数据审计系统,170,Pseudo1,1,供给,1
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,106,阿里巴巴,1.3,工业软件,1
+77,Oracle,1.3.3.6,运维保障系统MRO,106,阿里巴巴,1.3,工业软件,1
127,华为海思,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
-117,格创东智,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1
-123,海得控制,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,1
-119,广联达,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1
-12,大唐软件,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
-12,大唐软件,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
-12,大唐软件,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1
-120,广州数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,1
-123,海得控制,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,106,阿里巴巴,1.3,工业软件,1
+78,OutSystems,2.1.1.4,组态建模工具,99,Siemens,2.1,PaaS,1
+78,OutSystems,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
+26,寄云科技,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,1
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,29,京东工业品,1.3,工业软件,1
+22,航天云网,2.1.1.3,流程开发工具,99,Siemens,2.1,PaaS,1
+124,海尔,2.3,边缘层,170,Pseudo1,1,供给,1
+79,PTC,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,1
+25,华大九天,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,1
124,海尔,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
-126,华为,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,1
-124,海尔,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
-124,海尔,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1
-125,华数机器人,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1
-118,工邦邦,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1
-126,华为,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1
-126,华为,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1
-13,东方国信,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1
-13,东方国信,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,1
-13,东方国信,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1
-13,东方国信,2.3.3,协议转换,124,海尔,2.3,边缘层,1
-13,东方国信,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1
-13,东方国信,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
-13,东方国信,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1
-13,东方国信,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
-13,东方国信,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1
-13,东方国信,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
-13,东方国信,2.3.3,协议转换,155,小米,2.3,边缘层,1
-13,东方国信,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,1
-117,格创东智,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1
-130,金蝶,1.3.2,采购供应,170,Pseudo1,1,供给,1
-117,格创东智,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1
-130,金蝶,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1
-117,格创东智,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1
-130,金蝶,1.3.5,仓储物流,170,Pseudo1,1,供给,1
-13,东方国信,2.3.1,工业数据接入,155,小米,2.3,边缘层,1
-13,东方国信,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
-13,东方国信,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1
-13,东方国信,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1
-13,东方国信,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1
-13,东方国信,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,1
-13,东方国信,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1
-13,东方国信,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1
-13,东方国信,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,1
-13,东方国信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1
-13,东方国信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
-13,东方国信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
-13,东方国信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1
-13,东方国信,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,1
-13,东方国信,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1
-13,东方国信,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1
-13,东方国信,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1
-150,唯捷创芯,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
-153,武汉开目,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
-33,蓝谷信息,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1
-23,和利时,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,1
-22,航天云网,2.3.3,协议转换,95,Schneider,2.3,边缘层,1
-23,和利时,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1
-23,和利时,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1
-23,和利时,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1
-23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1
-23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1
-115,富士康,1.1.3,工业服务器,105,Intel,1.1,工业自动化,1
-22,航天云网,2.3.3,协议转换,126,华为,2.3,边缘层,1
-113,飞腾信息,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
-23,和利时,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
-23,和利时,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1
-23,和利时,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
-23,和利时,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
-23,和利时,2.3.3,协议转换,124,海尔,2.3,边缘层,1
-1,51WORLD,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1
-22,航天云网,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1
-23,和利时,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
-22,航天云网,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1
-22,航天云网,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1
-22,航天云网,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1
-22,航天云网,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,1
-22,航天云网,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1
-22,航天云网,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1
-22,航天云网,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1
-22,航天云网,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
-22,航天云网,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
-22,航天云网,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
-22,航天云网,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1
-22,航天云网,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
-22,航天云网,2.3.1,工业数据接入,155,小米,2.3,边缘层,1
-22,航天云网,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
-22,航天云网,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1
-23,和利时,2.3.3,协议转换,126,华为,2.3,边缘层,1
-23,和利时,2.3.3,协议转换,95,Schneider,2.3,边缘层,1
-153,武汉开目,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1
-31,昆仑数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1
-3,艾克斯特,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1
-3,艾克斯特,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1
-3,艾克斯特,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1
-3,艾克斯特,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,1
-31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1
-31,昆仑数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1
-31,昆仑数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1
-26,寄云科技,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
-32,兰光创新,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1
-33,蓝谷信息,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1
-33,蓝谷信息,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1
-33,蓝谷信息,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1
-33,蓝谷信息,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
-33,蓝谷信息,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1
-3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
-26,寄云科技,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1
-119,广联达,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1
-26,寄云科技,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1
-24,华大电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
-24,华大电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
-25,华大九天,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1
-25,华大九天,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1
-26,寄云科技,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1
-26,寄云科技,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
-22,航天云网,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1
-22,航天云网,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
-22,航天云网,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
-163,优也科技,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1
-161,研华科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
-161,研华科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1
-161,研华科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1
-161,研华科技,2.3.3,协议转换,124,海尔,2.3,边缘层,1
-163,优也科技,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1
-163,优也科技,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1
-163,优也科技,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1
-161,研华科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
-164,震坤行,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1
-164,震坤行,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1
-165,智能云科,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1
-165,智能云科,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
-165,智能云科,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1
-165,智能云科,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1
-161,研华科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
-161,研华科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
-22,航天云网,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
-116,概伦电子,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1
-153,武汉开目,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1
-153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1
-154,西格数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1
-154,西格数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1
-156,芯禾科技,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1
-156,芯禾科技,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1
-16,东土科技,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,1
-161,研华科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1
-16,东土科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1
-16,东土科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
-16,东土科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
-16,东土科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1
-16,东土科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1
-16,东土科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
-165,智能云科,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
-165,智能云科,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1
-165,智能云科,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
-20,海基科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1
-169,中芯国际,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
-169,中芯国际,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
-18,国能智深,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1
-2,706所,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,1
-2,706所,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
-20,海基科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
-20,海基科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1
-165,智能云科,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1
-21,Hexagon,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,1
-22,航天云网,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1
-22,航天云网,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1
-22,航天云网,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1
-22,航天云网,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1
-22,航天云网,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
-168,中控技术,2.3.3,协议转换,99,Siemens,2.3,边缘层,1
-168,中控技术,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
-168,中控技术,2.3.3,协议转换,124,海尔,2.3,边缘层,1
-168,中控技术,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
-168,中控技术,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1
-168,中控技术,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
-168,中控技术,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
-168,中控技术,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1
-168,中控技术,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
-168,中控技术,2.3.1,工业数据接入,155,小米,2.3,边缘层,1
-168,中控技术,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1
-168,中控技术,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1
-168,中控技术,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1
-168,中控技术,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1
-167,中环股份,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
-166,中国电子科技网络信息安全,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,1
-165,智能云科,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,1
-22,航天云网,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
+24,华大电子,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
+158,信大捷安,1.4.4.1,身份鉴别与访问控制,126,华为,1.4,工业互联网安全,1
+116,概伦电子,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,1
+158,信大捷安,1.4.4.1,身份鉴别与访问控制,170,Pseudo1,1,供给,1
+159,徐工集团,2.1.2,工业模型库,102,Amazon AWS,2,工业互联网平台,1
+159,徐工集团,2.1.2,工业模型库,170,Pseudo1,1,供给,1
+159,徐工集团,2.1.2,工业模型库,98,Microsoft Azure,2,工业互联网平台,1
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,1
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1
+23,和利时,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
+16,东土科技,1.1.3,工业服务器,170,Pseudo1,1,供给,1
+22,航天云网,1.3.3.6,运维保障系统MRO,106,阿里巴巴,1.3,工业软件,1
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,1
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,1
+40,奇安信,1.4.3.3,APT检测,170,Pseudo1,1,供给,1
+40,奇安信,1.4.3.3,APT检测,126,华为,1.4,工业互联网安全,1
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,170,Pseudo1,1,供给,1
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,29,京东工业品,1.3,工业软件,1
+4,爱创科技,1.2.2,标识解析,170,Pseudo1,1,供给,1
+89,Rockwell,1.3.3.1,制造执行系统MES,106,阿里巴巴,1.3,工业软件,1
+148,腾讯,2.1.1,开发工具,102,Amazon AWS,2,工业互联网平台,1
+148,腾讯,2.1.1,开发工具,170,Pseudo1,1,供给,1
+163,优也科技,2.1.4.1.3,实时数据库,84,Bosch,2.1.4,工业大数据,1
+22,航天云网,2.1.4.1.2,分布式数据库,84,Bosch,2.1.4,工业大数据,1
+148,腾讯,2.1.1,开发工具,98,Microsoft Azure,2,工业互联网平台,1
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,1
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1
+22,航天云网,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,1
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,1
+149,天泽智云,2.1.2.1,数据算法模型,99,Siemens,2.1,PaaS,1
+163,优也科技,2.1.4.1.3,实时数据库,115,富士康,2.1.4,工业大数据,1
+63,长扬科技,1.4.2.4,安全隔离与信息交换系统,126,华为,1.4,工业互联网安全,1
+13,东方国信,2.1.3.7,制造类API,99,Siemens,2.1,PaaS,1
+163,优也科技,2.1.4.1.3,实时数据库,102,Amazon AWS,2.1.4,工业大数据,1
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1
+65,中国电信,1.2.1,网络互联,170,Pseudo1,1,供给,1
+68,中望软件,1.3.1.1,计算机辅助设计CAD,29,京东工业品,1.3,工业软件,1
+32,兰光创新,1.2.3,数据互通,170,Pseudo1,1,供给,1
+68,中望软件,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,1
+68,中望软件,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1
+5,安华金和,1.4.5.3,数据审计系统,126,华为,1.4,工业互联网安全,1
diff --git a/analysis/count_dcp_network.png b/analysis/count_dcp_network.png
new file mode 100644
index 0000000..da3864c
Binary files /dev/null and b/analysis/count_dcp_network.png differ
diff --git a/analysis/count_dcp_prod.csv b/analysis/count_dcp_prod.csv
index ab522b0..7475df0 100644
--- a/analysis/count_dcp_prod.csv
+++ b/analysis/count_dcp_prod.csv
@@ -1,98 +1,227 @@
up_id_product,up_name_product,down_id_product,down_name_product,count
-1.4,工业互联网安全,1,供给,118
-1.4.3,网络安全,1.4,工业互联网安全,96
-1.4.5,数据安全,1.4,工业互联网安全,92
-1.4.2,控制安全,1.4,工业互联网安全,92
-2.1,PaaS,2,工业互联网平台,77
-1.4.4.5,安全态势感知,1.4.4,平台安全,76
-1.3.2.1,供应链管理SCM,1.3.2,采购供应,76
-1.3.2,采购供应,1.3,工业软件,74
-1.3.5,仓储物流,1.3,工业软件,72
-1.1.1,工业计算芯片,1.1,工业自动化,67
-1.4.5.8,数据加密,1.4.5,数据安全,50
-1.4.5.1,恶意代码检测系统,1.4.5,数据安全,50
+1.4,工业互联网安全,1,供给,926
+1.3,工业软件,1,供给,422
+2.1.3.5,容器服务,2.1.3,工业物联网,397
+2.1.3.4,应用管理服务,2.1.3,工业物联网,396
+2.1.3.3,工业引擎服务,2.1.3,工业物联网,396
+2.1.3.6,微服务,2.1.3,工业物联网,396
+2.1.3.1,物联网服务,2.1.3,工业物联网,390
+2.1.3.7,制造类API,2.1.3,工业物联网,390
+2.1.3.2,平台基础服务,2.1.3,工业物联网,389
+2.3.2,边缘数据处理,2.3,边缘层,332
+2.3.1,工业数据接入,2.3,边缘层,323
+1.3.1.2,计算机辅助工程CAE,1.3.1,设计研发,323
+2.3.3,协议转换,2.3,边缘层,321
+1.3.1.1,计算机辅助设计CAD,1.3.1,设计研发,317
+2.1.2.4,行业机理模型,2.1.2,工业模型库,307
+1.3.1.7,电子设计自动化EDA,1.3.1,设计研发,306
+1.3.1.5,产品数据管理PDM,1.3.1,设计研发,304
+2.1.2.3,研发仿真模型,2.1.2,工业模型库,303
+2.1.2.1,数据算法模型,2.1.2,工业模型库,302
+1.3.1.3,计算机辅助制造CAM,1.3.1,设计研发,302
+2.1.2.2,业务流程模型,2.1.2,工业模型库,301
+1.3.1.6,产品生命周期管理PLM,1.3.1,设计研发,301
+1.4.4,平台安全,1.4,工业互联网安全,301
+1.3.2,采购供应,1.3,工业软件,300
+1.3.1.4,计算机辅助工艺过程设计CAPP,1.3.1,设计研发,299
+1.4.5,数据安全,1,供给,290
+1.4.5,数据安全,1.4,工业互联网安全,290
+1.1.3,工业服务器,1.1,工业自动化,278
+1.1.2,工业控制器,1.1,工业自动化,276
+1.1.1,工业计算芯片,1.1,工业自动化,268
+1.3.1,设计研发,1.3,工业软件,241
+2,工业互联网平台,1,供给,237
+2.1.1.1,算法建模工具,2.1.1,开发工具,231
+1.2.3,数据互通,1.2,工业互联网网络,229
+2.1.1.2,低代码开发工具,2.1.1,开发工具,225
+1.2.2,标识解析,1.2,工业互联网网络,222
+2.1.1.4,组态建模工具,2.1.1,开发工具,221
+1.2.1,网络互联,1.2,工业互联网网络,218
+2.1.1.3,流程开发工具,2.1.1,开发工具,214
+2.1.1.5,数字孪生建模工具,2.1.1,开发工具,212
+1.4.3,网络安全,1.4,工业互联网安全,211
+1.4.3,网络安全,1,供给,211
+1.4.2,控制安全,1.4,工业互联网安全,205
+1.4.2,控制安全,1,供给,204
+1.4.4,平台安全,1,供给,199
+1.3.3.4,可编程逻揖控制系统PLC,1.3.3,生产制造,177
+1.3.3.1,制造执行系统MES,1.3.3,生产制造,176
+1.3.3.2,分布式控制系统DCS,1.3.3,生产制造,175
+1.3.3.5,企业资产管理系统EAM,1.3.3,生产制造,174
+1.3.3,生产制造,1.3,工业软件,174
+1.3.4.3,人力资源管理HRM,1.3.4,企业运营管理,173
+1.3.4.2,客户关系管理CRM,1.3.4,企业运营管理,171
+1.3.3.3,数据采集与监视控制系统SCADA,1.3.3,生产制造,170
+1.3.3.6,运维保障系统MRO,1.3.3,生产制造,169
+1.3.4,企业运营管理,1.3,工业软件,167
+1.3.3.7,故障预测与健康管理PHM,1.3.3,生产制造,166
+1.3.4.1,企业资源计划ERP,1.3.4,企业运营管理,166
+2.1.4.1,工业大数据存储,2.1.4,工业大数据,161
+2.1,PaaS,2,工业互联网平台,158
+2.1.4.2,工业大数据管理,2.1.4,工业大数据,156
+1.3.5,仓储物流,1.3,工业软件,150
+1.4.4.1,身份鉴别与访问控制,1.4.4,平台安全,147
+2.1.4,工业大数据,2.1,PaaS,139
+1.4.4.4,工业应用行为监控,1.4.4,平台安全,136
+1.4.4.2,密钥管理,1.4.4,平台安全,136
+1.4.4.3,接入认证,1.4.4,平台安全,136
+2.1.4.1.2,分布式数据库,2.1.4.1,工业大数据存储,130
+2.1.4.1.4,时序数据库,2.1.4.1,工业大数据存储,129
+2.1.4.2.1,数据质量管理,2.1.4.2,工业大数据管理,127
+2.1.4.2.2,数据安全管理,2.1.4.2,工业大数据管理,125
+2.1.4.1.3,实时数据库,2.1.4.1,工业大数据存储,124
+2.1.4.1.1,关系型数据库,2.1.4.1,工业大数据存储,122
+1.3.2,采购供应,1,供给,117
+2.3,边缘层,2,工业互联网平台,109
+1.4.4.5,安全态势感知,1.4.4,平台安全,100
+1.3.2.1,供应链管理SCM,1.3,工业软件,100
+1.3.2.1,供应链管理SCM,1.3.2,采购供应,100
+2.2,IaaS,2,工业互联网平台,91
+1.4.2.1,工控安全监测与审计,1.4.2,控制安全,90
+1.2,工业互联网网络,1,供给,90
+1.1,工业自动化,1,供给,89
+2.1.4,工业大数据,2,工业互联网平台,88
+2.1.3,工业物联网,2.1,PaaS,87
+1.4.2.4,安全隔离与信息交换系统,1.4.2,控制安全,85
+1.4.1.3,防毒墙,1.4.1,设备安全,83
+1.4.1.1,工业防火墙,1.4.1,设备安全,81
+2.1,PaaS,1,供给,77
+1.4.3.3,APT检测,1.4.3,网络安全,76
+1.3.5,仓储物流,1,供给,75
+1.4.5.4,数据脱敏,1.4.5,数据安全,70
+1.4.5.5,敏感数据发现与监控,1.4.5,数据安全,70
+1.4.5.3,数据审计系统,1.4.5,数据安全,70
+1.4.5.2,数据防泄漏系统,1.4.5,数据安全,70
+1.4.5.6,数据容灾备份,1.4.5,数据安全,70
+1.3.5.1,仓储物流管理WMS,1.3.5,仓储物流,70
+1.4.5.7,数据恢复,1.4.5,数据安全,70
+1.4.5.9,数据防火墙,1.4.5,数据安全,70
+1.4.1.2,下一代防火墙,1.4.1,设备安全,68
+1.4.3.5,负载均衡,1.4.3,网络安全,68
+1.4.3.4,攻击溯源,1.4.3,网络安全,68
+1.4.3.1,网络漏洞扫描和补丁管理,1.4.3,网络安全,68
+1.4.1.5,统一威胁管理系统,1.4.1,设备安全,68
+1.4.1.4,入侵检测系统,1.4.1,设备安全,68
+1.4.2.2,工控主机卫士,1.4.2,控制安全,68
+1.4.2.6,隐私计算,1.4.2,控制安全,68
+1.4.2.5,安全日志与审计,1.4.2,控制安全,68
+1.4.1,设备安全,1,供给,63
+1.4.1,设备安全,1.4,工业互联网安全,63
+2.1.1,开发工具,2.1,PaaS,61
+2.1.2,工业模型库,2.1,PaaS,59
+1.4.4.5,安全态势感知,1.4,工业互联网安全,50
+1.4.4.5,安全态势感知,1,供给,50
1.4.3.6,沙箱类设备,1.4.3,网络安全,50
-1.4.2.7,工控原生安全,1.4.2,控制安全,50
+1.3.5.1,仓储物流管理WMS,1.3,工业软件,50
+1.4.2.3,工控漏洞扫描,1,供给,50
+1.4.2.3,工控漏洞扫描,1.4,工业互联网安全,50
+1.4.5.1,恶意代码检测系统,1,供给,50
1.4.2.3,工控漏洞扫描,1.4.2,控制安全,50
-1.4.1,设备安全,1.4,工业互联网安全,50
+1.3.2.1,供应链管理SCM,1,供给,50
+1.4.5.1,恶意代码检测系统,1.4,工业互联网安全,50
+1.4.3.6,沙箱类设备,1.4,工业互联网安全,50
+1.4.5.8,数据加密,1,供给,50
+1.4.2.7,工控原生安全,1.4.2,控制安全,50
+1.4.2.7,工控原生安全,1.4,工业互联网安全,50
+1.4.3.2,流量检测,1,供给,50
+1.4.3.2,流量检测,1.4,工业互联网安全,50
1.4.3.2,流量检测,1.4.3,网络安全,50
-2.3.3,协议转换,2.3,边缘层,37
-1.3.2.1,供应链管理SCM,1.3,工业软件,37
-2.3.1,工业数据接入,2.3,边缘层,33
-2.1.3.6,微服务,2.1.3,工业物联网,33
-2.3.2,边缘数据处理,2.3,边缘层,30
-2.1.3.4,应用管理服务,2.1.3,工业物联网,30
-2.1.2.4,行业机理模型,2.1.2,工业模型库,30
-2.1.2.2,业务流程模型,2.1.2,工业模型库,28
-2.1.3.7,制造类API,2.1.3,工业物联网,28
-1.3.1.1,计算机辅助设计CAD,1.3.1,设计研发,28
-2.1.2.1,数据算法模型,2.1.2,工业模型库,27
-1.3.1.2,计算机辅助工程CAE,1.3.1,设计研发,26
-2.1.3.1,物联网服务,2.1.3,工业物联网,25
-1.1.2,工业控制器,1.1,工业自动化,24
-2.1.3.5,容器服务,2.1.3,工业物联网,24
-1.4.3.6,沙箱类设备,1.4,工业互联网安全,23
-2.1.1.2,低代码开发工具,2.1.1,开发工具,23
-1.1.3,工业服务器,1.1,工业自动化,23
-1.4.3.2,流量检测,1.4,工业互联网安全,23
-2.1.3.3,工业引擎服务,2.1.3,工业物联网,23
-1.4.5.1,恶意代码检测系统,1.4,工业互联网安全,21
-1.4.5.8,数据加密,1.4,工业互联网安全,21
-1.4.2.3,工控漏洞扫描,1.4,工业互联网安全,21
-2.1.3.2,平台基础服务,2.1.3,工业物联网,21
-1.4.2.7,工控原生安全,1.4,工业互联网安全,21
-1.4.3,网络安全,1,供给,21
-1.3.1.4,计算机辅助工艺过程设计CAPP,1.3.1,设计研发,20
-1.4.5,数据安全,1,供给,19
-1.4.2,控制安全,1,供给,19
-2.1.2.3,研发仿真模型,2.1.2,工业模型库,18
-2.1.1.5,数字孪生建模工具,2.1.1,开发工具,18
-1.3.1.6,产品生命周期管理PLM,1.3.1,设计研发,18
-1.2.3,数据互通,1.2,工业互联网网络,17
-2.1.1.1,算法建模工具,2.1.1,开发工具,15
-2.1.1.4,组态建模工具,2.1.1,开发工具,14
-1.3.3.2,分布式控制系统DCS,1.3.3,生产制造,14
-1.2.2,标识解析,1.2,工业互联网网络,13
-1.2.1,网络互联,1.2,工业互联网网络,13
-2.1.1.3,流程开发工具,2.1.1,开发工具,12
-1.3.1.7,电子设计自动化EDA,1.3.1,设计研发,12
-1.3.3.3,数据采集与监视控制系统SCADA,1.3.3,生产制造,11
-2,工业互联网平台,1,供给,10
-1.3.3.6,运维保障系统MRO,1.3.3,生产制造,10
-1.3.3.1,制造执行系统MES,1.3.3,生产制造,10
-1.4.4,平台安全,1.4,工业互联网安全,10
-1.4.1,设备安全,1,供给,9
-1.3.1,设计研发,1.3,工业软件,8
-1.3.3.4,可编程逻揖控制系统PLC,1.3.3,生产制造,7
-1.3.4.1,企业资源计划ERP,1.3.4,企业运营管理,6
-1.3.3.5,企业资产管理系统EAM,1.3.3,生产制造,6
-1.4.3.6,沙箱类设备,1,供给,6
-1.4.3.2,流量检测,1,供给,6
-1.4.5.1,恶意代码检测系统,1,供给,5
-1.4.4.5,安全态势感知,1.4,工业互联网安全,5
-2.1,PaaS,1,供给,5
-1.4.2.7,工控原生安全,1,供给,5
-1.3.1.5,产品数据管理PDM,1.3.1,设计研发,5
-1.4.5.8,数据加密,1,供给,5
-1.4.2.3,工控漏洞扫描,1,供给,5
-2.1.4.2.2,数据安全管理,2.1.4.2,工业大数据管理,5
-2.1.4.2.1,数据质量管理,2.1.4.2,工业大数据管理,5
-1.3,工业软件,1,供给,4
-2.1.4.1.4,时序数据库,2.1.4.1,工业大数据存储,4
-2.3,边缘层,2,工业互联网平台,3
-2.2,IaaS,2,工业互联网平台,3
-2.1.4.1.1,关系型数据库,2.1.4.1,工业大数据存储,3
-2.1.4.1.2,分布式数据库,2.1.4.1,工业大数据存储,3
-2.1.4.1.3,实时数据库,2.1.4.1,工业大数据存储,3
-2.1.4.2,工业大数据管理,2.1.4,工业大数据,3
-1.3.1.3,计算机辅助制造CAM,1.3.1,设计研发,2
-1.3.2,采购供应,1,供给,2
-1.3.3,生产制造,1.3,工业软件,1
-2.3.3,协议转换,2,工业互联网平台,1
-1.3.4.3,人力资源管理HRM,1.3.4,企业运营管理,1
-2.1.4.1,工业大数据存储,2.1.4,工业大数据,1
-1.3.3.7,故障预测与健康管理PHM,1.3.3,生产制造,1
-1.3.4,企业运营管理,1.3,工业软件,1
-1.3.5,仓储物流,1,供给,1
-1.4.4.1,身份鉴别与访问控制,1.4.4,平台安全,1
-1.3.2.1,供应链管理SCM,1,供给,1
+1.4.5.8,数据加密,1.4.5,数据安全,50
+1.4.5.8,数据加密,1.4,工业互联网安全,50
+1.4.3.6,沙箱类设备,1,供给,50
+1.4.5.1,恶意代码检测系统,1.4.5,数据安全,50
+1.4.2.7,工控原生安全,1,供给,50
+2.1.4,工业大数据,1,供给,43
+1.4.4.2,密钥管理,1.4,工业互联网安全,30
+1.4.5.4,数据脱敏,1,供给,28
+1.4.5.4,数据脱敏,1.4,工业互联网安全,28
+1.4.4.4,工业应用行为监控,1.4,工业互联网安全,26
+1.4.5.5,敏感数据发现与监控,1,供给,25
+1.4.5.7,数据恢复,1.4,工业互联网安全,25
+1.4.5.7,数据恢复,1,供给,25
+1.3.5.1,仓储物流管理WMS,1,供给,25
+1.3.4.2,客户关系管理CRM,1.3,工业软件,25
+1.4.5.5,敏感数据发现与监控,1.4,工业互联网安全,25
+1.3.4,企业运营管理,1,供给,24
+1.4.5.9,数据防火墙,1.4,工业互联网安全,23
+1.4.5.9,数据防火墙,1,供给,23
+1.4.2.5,安全日志与审计,1.4,工业互联网安全,22
+1.4.2.5,安全日志与审计,1,供给,22
+1.3.3,生产制造,1,供给,21
+1.4.4.3,接入认证,1.4,工业互联网安全,21
+1.4.5.6,数据容灾备份,1.4,工业互联网安全,21
+1.4.5.6,数据容灾备份,1,供给,21
+1.4.3.5,负载均衡,1.4,工业互联网安全,19
+1.4.3.4,攻击溯源,1.4,工业互联网安全,19
+1.4.3.1,网络漏洞扫描和补丁管理,1.4,工业互联网安全,19
+1.4.3.1,网络漏洞扫描和补丁管理,1,供给,19
+1.4.3.4,攻击溯源,1,供给,19
+2.1.4.1,工业大数据存储,2.1,PaaS,19
+1.4.3.5,负载均衡,1,供给,19
+2.1.4.2,工业大数据管理,2.1,PaaS,18
+1.3.3.7,故障预测与健康管理PHM,1.3,工业软件,18
+1.4.4.4,工业应用行为监控,1,供给,17
+1.4.2.2,工控主机卫士,1,供给,17
+1.4.2.2,工控主机卫士,1.4,工业互联网安全,17
+2.1.4.1,工业大数据存储,2,工业互联网平台,16
+1.3.4.3,人力资源管理HRM,1.3,工业软件,16
+1.4.2.6,隐私计算,1,供给,15
+1.4.2.6,隐私计算,1.4,工业互联网安全,15
+1.4.5.2,数据防泄漏系统,1,供给,14
+2.1.4.2,工业大数据管理,2,工业互联网平台,14
+1.3.1.5,产品数据管理PDM,1.3,工业软件,14
+1.4.5.2,数据防泄漏系统,1.4,工业互联网安全,14
+1.3.3.3,数据采集与监视控制系统SCADA,1.3,工业软件,13
+1.4.4.2,密钥管理,1,供给,12
+1.4.4.1,身份鉴别与访问控制,1.4,工业互联网安全,12
+1.4.4.3,接入认证,1,供给,12
+1.3.1.7,电子设计自动化EDA,1.3,工业软件,12
+1.3.1,设计研发,1,供给,10
+1.3.1.3,计算机辅助制造CAM,1.3,工业软件,10
+1.3.1.6,产品生命周期管理PLM,1.3,工业软件,10
+1.3.4.2,客户关系管理CRM,1,供给,8
+2.1.2,工业模型库,2,工业互联网平台,8
+2.1.4.1,工业大数据存储,1,供给,8
+1.3.3.5,企业资产管理系统EAM,1.3,工业软件,7
+2.1.4.2,工业大数据管理,1,供给,7
+2.1.1,开发工具,2,工业互联网平台,6
+1.4.1.4,入侵检测系统,1.4,工业互联网安全,6
+1.4.1.4,入侵检测系统,1,供给,6
+1.3.1.2,计算机辅助工程CAE,1.3,工业软件,4
+1.4.1.5,统一威胁管理系统,1,供给,4
+1.4.4.1,身份鉴别与访问控制,1,供给,4
+2.1.3.1,物联网服务,2.1,PaaS,4
+1.4.3.3,APT检测,1,供给,4
+1.4.5.3,数据审计系统,1,供给,4
+1.4.1.5,统一威胁管理系统,1.4,工业互联网安全,4
+1.3.3.7,故障预测与健康管理PHM,1,供给,4
+1.3.1.4,计算机辅助工艺过程设计CAPP,1.3,工业软件,4
+1.4.5.3,数据审计系统,1.4,工业互联网安全,4
+1.4.3.3,APT检测,1.4,工业互联网安全,4
+1.2.3,数据互通,1,供给,4
+1.1.3,工业服务器,1,供给,4
+1.3.1.1,计算机辅助设计CAD,1.3,工业软件,3
+1.3.3.6,运维保障系统MRO,1.3,工业软件,3
+1.4.1.2,下一代防火墙,1,供给,3
+2.1.1,开发工具,1,供给,3
+1.3.3.3,数据采集与监视控制系统SCADA,1,供给,3
+2.1.3.3,工业引擎服务,2.1,PaaS,3
+2.1.2,工业模型库,1,供给,3
+2.1.4.1.3,实时数据库,2.1.4,工业大数据,3
+1.4.1.2,下一代防火墙,1.4,工业互联网安全,3
+2.1.1.3,流程开发工具,2.1,PaaS,2
+2.1.4.1.2,分布式数据库,2.1.4,工业大数据,2
+1.3.1.5,产品数据管理PDM,1,供给,2
+2.1.3.7,制造类API,2.1,PaaS,2
+1.3.3.1,制造执行系统MES,1.3,工业软件,2
+1.3.3.4,可编程逻揖控制系统PLC,1.3,工业软件,2
+2.1.1.4,组态建模工具,2.1,PaaS,1
+2.1.2.1,数据算法模型,2.1,PaaS,1
+1.3.4.3,人力资源管理HRM,1,供给,1
+2.3,边缘层,1,供给,1
+1.2.2,标识解析,1,供给,1
+2.3.1,工业数据接入,2,工业互联网平台,1
+1.2.1,网络互联,1,供给,1
+2.3.2,边缘数据处理,2,工业互联网平台,1
+1.3.3.5,企业资产管理系统EAM,1,供给,1
+1.4.2.4,安全隔离与信息交换系统,1.4,工业互联网安全,1
diff --git a/analysis/count_dcp_prod_network.png b/analysis/count_dcp_prod_network.png
new file mode 100644
index 0000000..e137d04
Binary files /dev/null and b/analysis/count_dcp_prod_network.png differ
diff --git a/analysis/count_firm.csv b/analysis/count_firm.csv
index 1caf1b0..07c560e 100644
--- a/analysis/count_firm.csv
+++ b/analysis/count_firm.csv
@@ -1,144 +1,172 @@
id_firm,Name,count
-126,华为,468
-142,深信服,300
-41,启明星辰,200
-53,天融信,150
-106,阿里巴巴,146
-170,Pseudo1,125
-99,Siemens,120
-79,PTC,117
-130,金蝶,91
-13,东方国信,80
-135,浪潮,73
-23,和利时,71
-58,用友,62
-97,General Electric,54
-29,京东工业品,52
-63,长扬科技,50
-85,Dassault,50
-157,新华三,50
-140,山石网科,50
-148,腾讯,49
-102,Amazon AWS,47
-22,航天云网,46
-40,奇安信,39
-0,360科技,38
-98,Microsoft Azure,38
-84,Bosch,35
-81,SAP,35
-74,HoneyWell,32
-100,Synopsys,29
-86,Dell EMC,28
-80,Salesforce,28
-108,百度,25
-105,Intel,25
-49,数码大方,24
-47,首自信,24
-95,Schneider,22
-39,Autodesk,21
-168,中控技术,20
-6,安世亚太,20
-16,东土科技,20
-94,Mitsubishi,19
-75,IBM,19
-73,FANUC,18
-124,海尔,18
-117,格创东智,17
-26,寄云科技,17
-155,小米,17
-159,徐工集团,16
-57,亚控科技,13
-149,天泽智云,13
-93,Cadence,13
-62,云道智造,13
-82,Uptake,12
-78,OutSystems,12
-161,研华科技,12
-60,宇动源,11
-165,智能云科,11
-33,蓝谷信息,10
-42,山大华天,10
-67,中国移动,10
-131,九物互联,10
-38,牛刀,10
-103,STMicroelectronics ,9
-144,树根互联,9
-56,芯愿景,8
-143,沈阳自动化研究所,8
-127,华为海思,8
-153,武汉开目,8
-3,艾克斯特,7
-45,石化盈科,7
-68,中望软件,7
-31,昆仑数据,6
-46,适创科技,6
-111,鼎捷软件,6
-89,Rockwell,6
-150,唯捷创芯,6
-169,中芯国际,6
-69,紫光集团,5
-113,飞腾信息,5
-167,中环股份,5
-129,华中数控,5
-43,神舟软件,5
-71,Altair,4
-104,Infineon,4
-77,Oracle,4
-123,海得控制,4
-145,思普软件,4
-35,凌昊智能,4
-163,优也科技,4
-24,华大电子,4
-32,兰光创新,4
-115,富士康,4
-147,拓邦股份,4
-9,北京航天测控,3
-88,HPE,3
-87,Texas Instruments,3
-120,广州数控,3
-12,大唐软件,3
-64,中电智科,3
-90,Mentor Graphics,3
-101,Analog Devices,3
-116,概伦电子,3
-166,中国电子科技网络信息安全,3
-119,广联达,3
-70,ABB,3
-20,海基科技,3
-65,中国电信,3
-72,ANSYS,3
-4,爱创科技,3
-36,龙芯中科,3
-44,圣邦微电子,3
-146,苏州浩辰,3
-14,东华软件,3
-83,Emerson,2
-138,启明信息,2
-10,北京英贝思,2
-128,华伍股份,2
-15,东软集团,2
-154,西格数据,2
-156,芯禾科技,2
-48,曙光信息,2
-50,索为系统,2
-141,上海新华控制,2
-61,元年科技,2
-164,震坤行,2
-2,706所,2
-134,朗坤智慧,2
-137,美林数据,2
-25,华大九天,2
-34,力控科技,2
-132,科远智慧,1
-92,Omron,1
-21,Hexagon,1
-96,Cisco,1
-18,国能智深,1
-118,工邦邦,1
-91,Moxa,1
-125,华数机器人,1
-133,蓝盾股份,1
-109,宝信软件,1
-139,容知日新,1
-66,中国联通,1
-1,51WORLD,1
+126,华为,1955
+170,Pseudo1,1525
+106,阿里巴巴,1446
+99,Siemens,1342
+79,PTC,1271
+97,General Electric,991
+142,深信服,969
+81,SAP,883
+41,启明星辰,842
+85,Dassault,705
+148,腾讯,697
+22,航天云网,657
+58,用友,546
+84,Bosch,543
+13,东方国信,501
+80,Salesforce,499
+39,Autodesk,486
+93,Cadence,485
+53,天融信,484
+73,FANUC,472
+100,Synopsys,459
+75,IBM,454
+29,京东工业品,453
+108,百度,441
+40,奇安信,426
+157,新华三,418
+74,HoneyWell,400
+135,浪潮,396
+0,360科技,352
+102,Amazon AWS,313
+130,金蝶,307
+23,和利时,272
+47,首自信,267
+26,寄云科技,252
+159,徐工集团,243
+98,Microsoft Azure,233
+77,Oracle,227
+49,数码大方,221
+95,Schneider,216
+105,Intel,201
+124,海尔,195
+67,中国移动,191
+140,山石网科,190
+37,绿盟,188
+155,小米,182
+86,Dell EMC,179
+45,石化盈科,178
+168,中控技术,175
+94,Mitsubishi,174
+117,格创东智,160
+115,富士康,155
+55,威努特,153
+6,安世亚太,148
+5,安华金和,128
+143,沈阳自动化研究所,126
+3,艾克斯特,124
+62,云道智造,119
+78,OutSystems,115
+38,牛刀,112
+33,蓝谷信息,111
+42,山大华天,109
+60,宇动源,107
+57,亚控科技,107
+165,智能云科,106
+144,树根互联,106
+16,东土科技,104
+31,昆仑数据,103
+68,中望软件,101
+82,Uptake,100
+149,天泽智云,98
+137,美林数据,93
+163,优也科技,92
+154,西格数据,92
+161,研华科技,90
+131,九物互联,86
+111,鼎捷软件,79
+63,长扬科技,76
+43,神舟软件,75
+14,东华软件,72
+162,壹进制,70
+153,武汉开目,69
+54,网御星云,68
+9,北京航天测控,65
+89,Rockwell,64
+133,蓝盾股份,52
+70,ABB,51
+129,华中数控,47
+127,华为海思,47
+56,芯愿景,46
+27,江南天安,45
+76,MasterCAM,45
+11,北信源,45
+50,索为系统,45
+96,Cisco,45
+116,概伦电子,44
+152,卫士通,43
+138,启明信息,43
+90,Mentor Graphics,42
+21,Hexagon,42
+112,东华测试,41
+25,华大九天,39
+71,Altair,38
+158,信大捷安,38
+72,ANSYS,38
+146,苏州浩辰,38
+48,曙光信息,38
+46,适创科技,38
+88,HPE,37
+139,容知日新,37
+156,芯禾科技,37
+15,东软集团,36
+20,海基科技,36
+120,广州数控,36
+10,北京英贝思,36
+145,思普软件,35
+151,唯智信息,35
+52,天空卫士,35
+119,广联达,35
+114,富勒科技,35
+92,Omron,34
+30,可信华泰,34
+4,爱创科技,34
+109,宝信软件,34
+110,晨科软件,34
+122,国民技术,34
+59,优特捷,34
+164,震坤行,34
+61,元年科技,33
+147,拓邦股份,33
+160,亚信科技,33
+107,安恒信息,33
+2,706所,33
+134,朗坤智慧,32
+35,凌昊智能,32
+1,51WORLD,31
+64,中电智科,31
+118,工邦邦,31
+166,中国电子科技网络信息安全,31
+34,力控科技,31
+8,梆梆安全,30
+125,华数机器人,30
+128,华伍股份,29
+66,中国联通,28
+123,海得控制,28
+32,兰光创新,28
+17,国保金泰,28
+51,天地和兴,28
+19,国泰网信,28
+121,广州智臣,28
+12,大唐软件,27
+132,科远智慧,27
+83,Emerson,27
+65,中国电信,25
+7,百望,24
+136,美的,24
+141,上海新华控制,24
+18,国能智深,24
+169,中芯国际,22
+44,圣邦微电子,21
+103,STMicroelectronics ,21
+167,中环股份,21
+36,龙芯中科,21
+91,Moxa,20
+28,金山云,20
+69,紫光集团,20
+113,飞腾信息,19
+87,Texas Instruments,18
+104,Infineon,18
+101,Analog Devices,18
+24,华大电子,17
+150,唯捷创芯,17
diff --git a/analysis/count_firm_prod.csv b/analysis/count_firm_prod.csv
index b3ab1fd..7d1f831 100644
--- a/analysis/count_firm_prod.csv
+++ b/analysis/count_firm_prod.csv
@@ -1,358 +1,476 @@
id_firm,name_firm,id_product,name_product,count
-126,华为,1.4,工业互联网安全,385
-142,深信服,1.4.3,网络安全,150
-41,启明星辰,1.4.5,数据安全,150
-142,深信服,1.4.2,控制安全,150
-170,Pseudo1,1,供给,125
-106,阿里巴巴,1.3,工业软件,67
-29,京东工业品,1.3,工业软件,52
-53,天融信,1.4.2.3,工控漏洞扫描,50
-41,启明星辰,1.4.3.2,流量检测,50
+170,Pseudo1,1,供给,1525
+126,华为,1.4,工业互联网安全,1012
+41,启明星辰,1.4.5,数据安全,640
+142,深信服,1.4.2,控制安全,529
+39,Autodesk,1.3.1,设计研发,486
+93,Cadence,1.3.1,设计研发,485
+73,FANUC,2.1.3,工业物联网,472
+100,Synopsys,1.3.1,设计研发,459
+75,IBM,1.3.3,生产制造,454
+29,京东工业品,1.3,工业软件,453
+108,百度,2.1.3,工业物联网,434
+106,阿里巴巴,1.3,工业软件,433
+142,深信服,1.4.3,网络安全,430
+97,General Electric,1.3.3,生产制造,424
+99,Siemens,1.3.3,生产制造,418
+157,新华三,1.4.1,设备安全,418
+85,Dassault,1.3.1,设计研发,412
+99,Siemens,1.3.1,设计研发,404
+148,腾讯,2.1.3,工业物联网,402
+97,General Electric,2.1.3,工业物联网,385
+74,HoneyWell,2.1.3,工业物联网,383
+106,阿里巴巴,2.1.3,工业物联网,372
+126,华为,2.1.3,工业物联网,362
+40,奇安信,1.4.4,平台安全,357
+0,360科技,1.4.4,平台安全,352
+99,Siemens,2.1,PaaS,323
+79,PTC,2.1.4.1,工业大数据存储,317
+80,Salesforce,2.1.1,开发工具,310
+85,Dassault,2.1.1,开发工具,293
+148,腾讯,2.1.1,开发工具,285
+58,用友,2.1.2,工业模型库,281
+79,PTC,2.1.2,工业模型库,280
+81,SAP,2.1.4.1,工业大数据存储,278
+106,阿里巴巴,2.1.1,开发工具,271
+159,徐工集团,2.1.2,工业模型库,243
+81,SAP,2.1.2,工业模型库,235
+98,Microsoft Azure,2,工业互联网平台,233
+84,Bosch,2.1.2,工业模型库,230
+81,SAP,1.3.4,企业运营管理,209
+102,Amazon AWS,2,工业互联网平台,203
+105,Intel,1.1,工业自动化,201
+77,Oracle,1.3.4,企业运营管理,194
+67,中国移动,1.2,工业互联网网络,191
+126,华为,1.2,工业互联网网络,190
+95,Schneider,2.3,边缘层,190
+80,Salesforce,1.3.4,企业运营管理,189
+106,阿里巴巴,1.2,工业互联网网络,188
+84,Bosch,2.3,边缘层,182
+97,General Electric,1.2,工业互联网网络,182
+155,小米,2.3,边缘层,182
+79,PTC,2.1.4.2,工业大数据管理,181
+124,海尔,2.3,边缘层,179
+86,Dell EMC,1.1,工业自动化,179
+126,华为,1.1,工业自动化,178
+94,Mitsubishi,1.1,工业自动化,174
+126,华为,2.3,边缘层,174
+106,阿里巴巴,1.1,工业自动化,172
+99,Siemens,2.3,边缘层,166
+81,SAP,2.1.4.2,工业大数据管理,161
+115,富士康,2.1.4,工业大数据,131
+84,Bosch,2.1.4,工业大数据,131
+130,金蝶,1.3.5,仓储物流,120
+102,Amazon AWS,2.1.4,工业大数据,110
+130,金蝶,1.3.2,采购供应,88
+58,用友,1.3.2,采购供应,88
23,和利时,1.4.2.7,工控原生安全,50
-63,长扬科技,1.4.4.5,安全态势感知,50
-157,新华三,1.4.1,设备安全,50
-53,天融信,1.4.5.8,数据加密,50
-140,山石网科,1.4.5.1,恶意代码检测系统,50
-135,浪潮,1.3.2.1,供应链管理SCM,50
-130,金蝶,1.3.5,仓储物流,50
-99,Siemens,2.1,PaaS,50
53,天融信,1.4.3.6,沙箱类设备,50
-102,Amazon AWS,2,工业互联网平台,45
-130,金蝶,1.3.2,采购供应,40
-40,奇安信,1.4.4,平台安全,39
-0,360科技,1.4.4,平台安全,38
-98,Microsoft Azure,2,工业互联网平台,38
-58,用友,1.3.2,采购供应,36
-148,腾讯,2.1.3,工业物联网,32
-74,HoneyWell,2.1.3,工业物联网,30
-100,Synopsys,1.3.1,设计研发,29
-85,Dassault,1.3.1,设计研发,29
-86,Dell EMC,1.1,工业自动化,28
-99,Siemens,1.3.1,设计研发,27
-97,General Electric,2.1.3,工业物联网,27
-106,阿里巴巴,2.1.3,工业物联网,27
-126,华为,2.1.3,工业物联网,26
-105,Intel,1.1,工业自动化,25
-80,Salesforce,2.1.1,开发工具,25
-79,PTC,2.1.2,工业模型库,25
-108,百度,2.1.3,工业物联网,24
-84,Bosch,2.1.2,工业模型库,22
-58,用友,2.1.2,工业模型库,22
-39,Autodesk,1.3.1,设计研发,21
-97,General Electric,1.3.3,生产制造,21
-106,阿里巴巴,1.1,工业自动化,21
-85,Dassault,2.1.1,开发工具,21
-126,华为,1.1,工业自动化,21
-99,Siemens,1.3.3,生产制造,20
-99,Siemens,2.3,边缘层,20
-106,阿里巴巴,2.1.1,开发工具,19
-126,华为,2.3,边缘层,19
-75,IBM,1.3.3,生产制造,19
-94,Mitsubishi,1.1,工业自动化,19
-73,FANUC,2.1.3,工业物联网,18
-81,SAP,2.1.2,工业模型库,18
-95,Schneider,2.3,边缘层,18
-155,小米,2.3,边缘层,17
-148,腾讯,2.1.1,开发工具,17
-124,海尔,2.3,边缘层,16
-159,徐工集团,2.1.2,工业模型库,16
-126,华为,1.2,工业互联网网络,15
-93,Cadence,1.3.1,设计研发,13
-106,阿里巴巴,1.2,工业互联网网络,12
-84,Bosch,2.3,边缘层,12
-13,东方国信,2.1.3.7,制造类API,11
-13,东方国信,2.1.3.4,应用管理服务,11
-13,东方国信,2.1.3.5,容器服务,10
-79,PTC,2.1.3.2,平台基础服务,10
-67,中国移动,1.2,工业互联网网络,10
-79,PTC,2.1.3.1,物联网服务,9
-79,PTC,2.1.3.4,应用管理服务,9
-103,STMicroelectronics ,1.1.1,工业计算芯片,9
-13,东方国信,2.1.3.1,物联网服务,9
-13,东方国信,2.1.3.3,工业引擎服务,8
-79,PTC,2.1.3.5,容器服务,8
-79,PTC,2.1.4.1,工业大数据存储,7
-13,东方国信,2.1.3.6,微服务,7
-79,PTC,2.1.3.7,制造类API,7
-81,SAP,2.1.4.1,工业大数据存储,7
-81,SAP,2.1.4.2,工业大数据管理,7
-79,PTC,2.1.3.6,微服务,7
-79,PTC,2.3.3,协议转换,6
-79,PTC,2.1.3.3,工业引擎服务,6
-16,东土科技,2.3.1,工业数据接入,6
-150,唯捷创芯,1.1.1,工业计算芯片,6
-49,数码大方,1.3.1.1,计算机辅助设计CAD,6
-79,PTC,2.3.1,工业数据接入,6
-47,首自信,2.1.3.6,微服务,6
-56,芯愿景,1.1.1,工业计算芯片,6
-169,中芯国际,1.1.1,工业计算芯片,6
-97,General Electric,1.2,工业互联网网络,6
-46,适创科技,1.3.1.2,计算机辅助工程CAE,6
-47,首自信,2.1.2.1,数据算法模型,6
-13,东方国信,2.1.3.2,平台基础服务,6
-16,东土科技,1.1.3,工业服务器,5
-161,研华科技,2.3.3,协议转换,5
-16,东土科技,2.3.3,协议转换,5
-22,航天云网,2.1.3.6,微服务,5
-168,中控技术,2.3.3,协议转换,5
-13,东方国信,2.3.2,边缘数据处理,5
-22,航天云网,2.3.1,工业数据接入,5
-153,武汉开目,1.3.1.1,计算机辅助设计CAD,5
-69,紫光集团,1.1.1,工业计算芯片,5
-22,航天云网,2.3.3,协议转换,5
-127,华为海思,1.1.1,工业计算芯片,5
-6,安世亚太,2.1.2.1,数据算法模型,5
-79,PTC,2.1.4.2,工业大数据管理,5
-23,和利时,2.3.3,协议转换,5
-42,山大华天,1.3.1.1,计算机辅助设计CAD,5
-113,飞腾信息,1.1.1,工业计算芯片,5
-167,中环股份,1.1.1,工业计算芯片,5
-78,OutSystems,2.1.1.5,数字孪生建模工具,4
-32,兰光创新,1.2.3,数据互通,4
-68,中望软件,1.3.1.2,计算机辅助工程CAE,4
-78,OutSystems,2.1.1.2,低代码开发工具,4
-6,安世亚太,2.1.2.4,行业机理模型,4
-165,智能云科,2.1.2.2,业务流程模型,4
-24,华大电子,1.1.1,工业计算芯片,4
-62,云道智造,2.1.2.2,业务流程模型,4
-23,和利时,2.3.2,边缘数据处理,4
-16,东土科技,2.3.2,边缘数据处理,4
-6,安世亚太,2.1.2.3,研发仿真模型,4
-22,航天云网,2.1.3.4,应用管理服务,4
-71,Altair,1.3.1.2,计算机辅助工程CAE,4
-161,研华科技,2.3.2,边缘数据处理,4
-168,中控技术,2.3.2,边缘数据处理,4
-35,凌昊智能,1.1.3,工业服务器,4
-33,蓝谷信息,2.1.2.4,行业机理模型,4
-57,亚控科技,2.3.3,协议转换,4
-129,华中数控,1.1.2,工业控制器,4
-13,东方国信,2.3.1,工业数据接入,4
-104,Infineon,1.1.1,工业计算芯片,4
-131,九物互联,2.1.1.2,低代码开发工具,4
-95,Schneider,1.2.3,数据互通,4
-149,天泽智云,2.1.2.4,行业机理模型,4
-42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,4
-135,浪潮,2.1.3.7,制造类API,4
-117,格创东智,2.1.1.4,组态建模工具,4
-82,Uptake,2.1.2.4,行业机理模型,4
-57,亚控科技,2.3.2,边缘数据处理,4
-43,神舟软件,1.3.1.6,产品生命周期管理PLM,4
-145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,4
-123,海得控制,1.1.2,工业控制器,4
-38,牛刀,2.1.1.5,数字孪生建模工具,4
-149,天泽智云,2.1.2.3,研发仿真模型,4
-147,拓邦股份,1.1.2,工业控制器,4
-6,安世亚太,2.1.2.2,业务流程模型,4
-4,爱创科技,1.2.2,标识解析,3
-36,龙芯中科,1.1.1,工业计算芯片,3
-33,蓝谷信息,2.1.2.2,业务流程模型,3
-115,富士康,1.1.3,工业服务器,3
-49,数码大方,2.1.2.1,数据算法模型,3
-49,数码大方,1.3.3.1,制造执行系统MES,3
-23,和利时,2.1.3.6,微服务,3
-49,数码大方,2.1.2.2,业务流程模型,3
-64,中电智科,1.1.2,工业控制器,3
-49,数码大方,1.3.1.6,产品生命周期管理PLM,3
-49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,3
-47,首自信,2.1.2.4,行业机理模型,3
-47,首自信,2.1.1.2,低代码开发工具,3
-62,云道智造,2.1.2.4,行业机理模型,3
-117,格创东智,2.1.1.2,低代码开发工具,3
-60,宇动源,2.1.1.1,算法建模工具,3
-26,寄云科技,2.1.3.1,物联网服务,3
-117,格创东智,2.1.1.1,算法建模工具,3
-26,寄云科技,2.1.3.3,工业引擎服务,3
-44,圣邦微电子,1.1.1,工业计算芯片,3
-62,云道智造,1.3.1.2,计算机辅助工程CAE,3
-26,寄云科技,2.1.3.6,微服务,3
-6,安世亚太,1.3.1.2,计算机辅助工程CAE,3
-57,亚控科技,2.3.1,工业数据接入,3
-3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,3
-116,概伦电子,1.3.1.7,电子设计自动化EDA,3
-3,艾克斯特,1.3.1.6,产品生命周期管理PLM,3
-31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,3
-60,宇动源,2.1.1.2,低代码开发工具,3
-65,中国电信,1.2.1,网络互联,3
-23,和利时,2.3.1,工业数据接入,3
-68,中望软件,1.3.1.1,计算机辅助设计CAD,3
-87,Texas Instruments,1.1.1,工业计算芯片,3
-149,天泽智云,2.1.2.2,业务流程模型,3
-120,广州数控,1.2.3,数据互通,3
-146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,3
-144,树根互联,2.1.2.4,行业机理模型,3
-22,航天云网,2.1.3.7,制造类API,3
-80,Salesforce,1.3.4,企业运营管理,3
-81,SAP,1.3.4,企业运营管理,3
-82,Uptake,2.1.2.1,数据算法模型,3
-82,Uptake,2.1.2.2,业务流程模型,3
-111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,3
-135,浪潮,2.1.3.4,应用管理服务,3
-12,大唐软件,1.2.1,网络互联,3
-135,浪潮,2.1.3.3,工业引擎服务,3
-88,HPE,1.1.3,工业服务器,3
-89,Rockwell,1.1.2,工业控制器,3
-9,北京航天测控,1.3.3.6,运维保障系统MRO,3
-135,浪潮,1.1.3,工业服务器,3
-90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,3
-131,九物互联,2.1.1.4,组态建模工具,3
-13,东方国信,1.2.2,标识解析,3
-101,Analog Devices,1.1.1,工业计算芯片,3
-127,华为海思,1.1.3,工业服务器,3
-153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,3
-79,PTC,2.3.2,边缘数据处理,3
-161,研华科技,2.3.1,工业数据接入,3
-168,中控技术,1.3.3.2,分布式控制系统DCS,3
-22,航天云网,2.1.3.3,工业引擎服务,3
-72,ANSYS,1.3.1.2,计算机辅助工程CAE,3
-22,航天云网,1.2.2,标识解析,3
-20,海基科技,1.3.1.2,计算机辅助工程CAE,3
-119,广联达,1.3.1.1,计算机辅助设计CAD,3
-168,中控技术,2.3.1,工业数据接入,3
-79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,3
-165,智能云科,2.1.2.1,数据算法模型,3
-79,PTC,1.3.1.6,产品生命周期管理PLM,3
-79,PTC,1.3.1.1,计算机辅助设计CAD,3
-166,中国电子科技网络信息安全,1.2.3,数据互通,3
-165,智能云科,2.1.2.4,行业机理模型,3
-58,用友,1.3.1.6,产品生命周期管理PLM,2
-117,格创东智,2.1.1.3,流程开发工具,2
-70,ABB,1.3.3.2,分布式控制系统DCS,2
-10,北京英贝思,1.3.3.5,企业资产管理系统EAM,2
-102,Amazon AWS,2.1.4,工业大数据,2
-99,Siemens,1.1.2,工业控制器,2
-74,HoneyWell,1.3.3.2,分布式控制系统DCS,2
-77,Oracle,1.3.3.6,运维保障系统MRO,2
-77,Oracle,1.3.4,企业运营管理,2
-49,数码大方,2.1.2.4,行业机理模型,2
-50,索为系统,1.3.1.5,产品数据管理PDM,2
-89,Rockwell,1.2.1,网络互联,2
-58,用友,1.2.2,标识解析,2
-78,OutSystems,2.1.1.1,算法建模工具,2
-56,芯愿景,1.3.1.7,电子设计自动化EDA,2
-111,鼎捷软件,1.3.4.1,企业资源计划ERP,2
-57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,2
-78,OutSystems,2.1.1.3,流程开发工具,2
-61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,2
-83,Emerson,1.3.3.2,分布式控制系统DCS,2
-82,Uptake,2.1.2.3,研发仿真模型,2
-60,宇动源,2.1.1.5,数字孪生建模工具,2
-60,宇动源,2.1.1.4,组态建模工具,2
-62,云道智造,2.1.2.1,数据算法模型,2
-33,蓝谷信息,2.1.2.3,研发仿真模型,2
-48,曙光信息,1.2.2,标识解析,2
-22,航天云网,1.3.3.6,运维保障系统MRO,2
-26,寄云科技,2.1.3.2,平台基础服务,2
-144,树根互联,2.1.2.2,业务流程模型,2
-25,华大九天,1.3.1.7,电子设计自动化EDA,2
-23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,2
-138,启明信息,1.3.1.5,产品数据管理PDM,2
-23,和利时,1.3.3.1,制造执行系统MES,2
-22,航天云网,2.3.2,边缘数据处理,2
-22,航天云网,2.1.3.5,容器服务,2
-14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,2
-22,航天云网,2.1.3.1,物联网服务,2
-22,航天云网,2.1.1.5,数字孪生建模工具,2
-22,航天云网,2.1.1.3,流程开发工具,2
-22,航天云网,2.1.1.2,低代码开发工具,2
-22,航天云网,2.1.1.1,算法建模工具,2
-141,上海新华控制,1.3.3.2,分布式控制系统DCS,2
-26,寄云科技,2.1.3.5,容器服务,2
-2,706所,1.1.3,工业服务器,2
-124,海尔,1.2.1,网络互联,2
-168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,2
-143,沈阳自动化研究所,2.1.1.2,低代码开发工具,2
-168,中控技术,1.1.2,工业控制器,2
-143,沈阳自动化研究所,2.1.1.3,流程开发工具,2
-164,震坤行,1.3.3.6,运维保障系统MRO,2
-163,优也科技,2.1.4.2.2,数据安全管理,2
-143,沈阳自动化研究所,2.1.1.4,组态建模工具,2
-156,芯禾科技,1.3.1.7,电子设计自动化EDA,2
-143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,2
-144,树根互联,2.1.2.1,数据算法模型,2
-15,东软集团,1.3.3.5,企业资产管理系统EAM,2
-149,天泽智云,2.1.2.1,数据算法模型,2
-26,寄云科技,2.1.3.4,应用管理服务,2
-144,树根互联,2.1.2.3,研发仿真模型,2
-26,寄云科技,2.1.3.7,制造类API,2
-135,浪潮,2.1.3.1,物联网服务,2
-117,格创东智,2.1.1.5,数字孪生建模工具,2
-134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,2
-13,东方国信,2.3.3,协议转换,2
-38,牛刀,2.1.1.2,低代码开发工具,2
-38,牛刀,2.1.1.1,算法建模工具,2
-13,东方国信,2.1.4.1.4,时序数据库,2
-34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,2
-135,浪潮,2.1.3.2,平台基础服务,2
-128,华伍股份,1.1.2,工业控制器,2
-47,首自信,2.1.2.2,业务流程模型,2
-135,浪潮,2.1.3.5,容器服务,2
-135,浪潮,2.1.3.6,微服务,2
-131,九物互联,2.1.1.1,算法建模工具,2
-99,Siemens,1.2.1,网络互联,1
-13,东方国信,2.1.4.1.2,分布式数据库,1
-131,九物互联,2.1.1.3,流程开发工具,1
-111,鼎捷软件,1.3.3.1,制造执行系统MES,1
-129,华中数控,1.2.3,数据互通,1
-13,东方国信,2.1.4.2.1,数据质量管理,1
-126,华为,2.1.1.5,数字孪生建模工具,1
-130,金蝶,1.3.4.1,企业资源计划ERP,1
-96,Cisco,1.2.3,数据互通,1
-91,Moxa,1.2.1,网络互联,1
-132,科远智慧,1.3.3.2,分布式控制系统DCS,1
-133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,1
-92,Omron,1.3.3.4,可编程逻揖控制系统PLC,1
-108,百度,2.2,IaaS,1
-14,东华软件,1.3.4.3,人力资源管理HRM,1
-125,华数机器人,1.2.3,数据互通,1
-139,容知日新,1.3.3.7,故障预测与健康管理PHM,1
-89,Rockwell,1.3.3.1,制造执行系统MES,1
-135,浪潮,1.3.4.1,企业资源计划ERP,1
-137,美林数据,2.1.4.2.1,数据质量管理,1
-137,美林数据,2.1.4.1.3,实时数据库,1
-84,Bosch,2.1.4,工业大数据,1
-135,浪潮,2.2,IaaS,1
-109,宝信软件,1.3.3.1,制造执行系统MES,1
-18,国能智深,1.3.3.2,分布式控制系统DCS,1
-154,西格数据,2.1.4.1.2,分布式数据库,1
-45,石化盈科,1.3.4.1,企业资源计划ERP,1
-115,富士康,2.1.4,工业大数据,1
-38,牛刀,2.1.1.3,流程开发工具,1
-38,牛刀,2.1.1.4,组态建模工具,1
-117,格创东智,2.1.4.2.1,数据质量管理,1
-117,格创东智,2.1.4.1.1,关系型数据库,1
-42,山大华天,1.3.1.3,计算机辅助制造CAM,1
-43,神舟软件,1.3.1.5,产品数据管理PDM,1
-45,石化盈科,1.3.3.1,制造执行系统MES,1
-45,石化盈科,2.1.4.1.2,分布式数据库,1
-31,昆仑数据,2.1.4.2.1,数据质量管理,1
-45,石化盈科,2.1.4.1.3,实时数据库,1
-45,石化盈科,2.1.4.1.4,时序数据库,1
-45,石化盈科,2.1.4.2.1,数据质量管理,1
-45,石化盈科,2.1.4.2.2,数据安全管理,1
-49,数码大方,2.1.2.3,研发仿真模型,1
-47,首自信,2.1.1.1,算法建模工具,1
-47,首自信,2.1.1.3,流程开发工具,1
-47,首自信,2.1.1.4,组态建模工具,1
-33,蓝谷信息,2.1.2.1,数据算法模型,1
-31,昆仑数据,2.1.4.1.3,实时数据库,1
-154,西格数据,2.1.4.2.2,数据安全管理,1
-70,ABB,1.3.3.4,可编程逻揖控制系统PLC,1
-163,优也科技,2.1.4.1.1,关系型数据库,1
-163,优也科技,2.1.4.1.4,时序数据库,1
-165,智能云科,2.1.2.3,研发仿真模型,1
-168,中控技术,1.3.3.1,制造执行系统MES,1
-47,首自信,2.1.2.3,研发仿真模型,1
-21,Hexagon,1.3.1.3,计算机辅助制造CAM,1
-22,航天云网,2.1.1.4,组态建模工具,1
-22,航天云网,2.1.3.2,平台基础服务,1
-23,和利时,1.3.3.2,分布式控制系统DCS,1
-31,昆仑数据,2.1.4.1.1,关系型数据库,1
-66,中国联通,1.2.1,网络互联,1
-23,和利时,1.3.3.4,可编程逻揖控制系统PLC,1
-118,工邦邦,1.3.3.6,运维保障系统MRO,1
-1,51WORLD,2.1.1.5,数字孪生建模工具,1
-62,云道智造,2.1.2.3,研发仿真模型,1
-117,格创东智,2.1.4.2.2,数据安全管理,1
-3,艾克斯特,1.3.4.1,企业资源计划ERP,1
-60,宇动源,2.1.1.3,流程开发工具,1
-126,华为,2.2,IaaS,1
+53,天融信,1.4.2.3,工控漏洞扫描,50
+63,长扬科技,1.4.4.5,安全态势感知,50
+135,浪潮,1.3.2.1,供应链管理SCM,50
+41,启明星辰,1.4.3.2,流量检测,50
+140,山石网科,1.4.5.1,恶意代码检测系统,50
+53,天融信,1.4.5.8,数据加密,50
+13,东方国信,2.1.3.4,应用管理服务,46
+54,网御星云,1.4.4.3,接入认证,45
+53,天融信,1.4.4.4,工业应用行为监控,45
+11,北信源,1.4.4.2,密钥管理,45
+76,MasterCAM,1.3.1.3,计算机辅助制造CAM,45
+50,索为系统,1.3.1.5,产品数据管理PDM,45
+37,绿盟,1.4.4.3,接入认证,45
+79,PTC,2.1.3.2,平台基础服务,45
+55,威努特,1.4.4.4,工业应用行为监控,45
+27,江南天安,1.4.4.2,密钥管理,45
+116,概伦电子,1.3.1.7,电子设计自动化EDA,44
+135,浪潮,2.1.3.2,平台基础服务,44
+79,PTC,2.1.3.1,物联网服务,44
+135,浪潮,2.1.3.3,工业引擎服务,44
+152,卫士通,1.4.4.1,身份鉴别与访问控制,43
+22,航天云网,2.1.3.4,应用管理服务,43
+22,航天云网,2.1.3.5,容器服务,43
+22,航天云网,2.1.3.3,工业引擎服务,43
+13,东方国信,2.1.3.1,物联网服务,43
+79,PTC,2.1.3.5,容器服务,43
+79,PTC,2.1.3.4,应用管理服务,43
+14,东华软件,1.3.4.3,人力资源管理HRM,43
+13,东方国信,2.1.3.7,制造类API,43
+22,航天云网,2.1.3.7,制造类API,43
+13,东方国信,2.1.3.5,容器服务,43
+138,启明信息,1.3.1.5,产品数据管理PDM,43
+13,东方国信,2.1.3.2,平台基础服务,43
+13,东方国信,2.1.3.3,工业引擎服务,43
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,42
+135,浪潮,2.1.3.7,制造类API,42
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,42
+79,PTC,2.1.3.3,工业引擎服务,42
+135,浪潮,2.1.3.5,容器服务,42
+79,PTC,2.1.3.7,制造类API,42
+135,浪潮,2.1.3.1,物联网服务,42
+79,PTC,2.1.3.6,微服务,42
+112,东华测试,1.3.3.7,故障预测与健康管理PHM,41
+26,寄云科技,2.1.3.4,应用管理服务,41
+22,航天云网,2.1.3.1,物联网服务,41
+45,石化盈科,1.3.4.2,客户关系管理CRM,41
+22,航天云网,2.1.3.2,平台基础服务,40
+43,神舟软件,1.3.1.5,产品数据管理PDM,40
+42,山大华天,1.3.1.3,计算机辅助制造CAM,40
+58,用友,1.3.4.3,人力资源管理HRM,40
+130,金蝶,1.3.4.2,客户关系管理CRM,40
+26,寄云科技,2.1.3.5,容器服务,40
+26,寄云科技,2.1.3.2,平台基础服务,40
+58,用友,1.3.4.2,客户关系管理CRM,40
+56,芯愿景,1.3.1.7,电子设计自动化EDA,39
+25,华大九天,1.3.1.7,电子设计自动化EDA,39
+68,中望软件,1.3.1.3,计算机辅助制造CAM,39
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,38
+48,曙光信息,1.2.2,标识解析,38
+46,适创科技,1.3.1.2,计算机辅助工程CAE,38
+135,浪潮,2.1.3.4,应用管理服务,38
+133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,38
+3,艾克斯特,1.3.1.5,产品数据管理PDM,38
+130,金蝶,1.3.4.3,人力资源管理HRM,38
+71,Altair,1.3.1.2,计算机辅助工程CAE,38
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,38
+158,信大捷安,1.4.4.1,身份鉴别与访问控制,38
+22,航天云网,2.1.3.6,微服务,38
+58,用友,1.3.1.6,产品生命周期管理PLM,38
+9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,38
+23,和利时,2.1.3.6,微服务,38
+88,HPE,1.1.3,工业服务器,37
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,37
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,37
+58,用友,1.2.2,标识解析,36
+120,广州数控,1.2.3,数据互通,36
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,36
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,36
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,36
+15,东软集团,1.3.3.5,企业资产管理系统EAM,36
+20,海基科技,1.3.1.2,计算机辅助工程CAE,36
+26,寄云科技,2.1.3.7,制造类API,36
+135,浪潮,2.1.3.6,微服务,36
+26,寄云科技,2.1.3.3,工业引擎服务,35
+42,山大华天,1.3.1.1,计算机辅助设计CAD,35
+162,壹进制,1.4.5.7,数据恢复,35
+37,绿盟,1.4.5.2,数据防泄漏系统,35
+162,壹进制,1.4.5.6,数据容灾备份,35
+119,广联达,1.3.1.1,计算机辅助设计CAD,35
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,35
+140,山石网科,1.4.5.4,数据脱敏,35
+168,中控技术,2.3.1,工业数据接入,35
+114,富勒科技,1.3.5.1,仓储物流管理WMS,35
+140,山石网科,1.4.5.9,数据防火墙,35
+53,天融信,1.4.5.7,数据恢复,35
+5,安华金和,1.4.5.5,敏感数据发现与监控,35
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,35
+53,天融信,1.4.5.2,数据防泄漏系统,35
+5,安华金和,1.4.5.9,数据防火墙,35
+151,唯智信息,1.3.5.1,仓储物流管理WMS,35
+53,天融信,1.4.5.6,数据容灾备份,35
+52,天空卫士,1.4.5.5,敏感数据发现与监控,35
+5,安华金和,1.4.5.4,数据脱敏,35
+47,首自信,2.1.3.6,微服务,35
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,34
+55,威努特,1.4.2.2,工控主机卫士,34
+79,PTC,2.3.1,工业数据接入,34
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,34
+109,宝信软件,1.3.3.1,制造执行系统MES,34
+59,优特捷,1.4.2.5,安全日志与审计,34
+53,天融信,1.4.3.5,负载均衡,34
+53,天融信,1.4.3.4,攻击溯源,34
+30,可信华泰,1.4.2.6,隐私计算,34
+122,国民技术,1.4.2.6,隐私计算,34
+37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,34
+110,晨科软件,1.3.3.5,企业资产管理系统EAM,34
+37,绿盟,1.4.2.2,工控主机卫士,34
+4,爱创科技,1.2.2,标识解析,34
+40,奇安信,1.4.2.5,安全日志与审计,34
+47,首自信,2.1.1.2,低代码开发工具,34
+41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,34
+41,启明星辰,1.4.3.4,攻击溯源,34
+41,启明星辰,1.4.3.5,负载均衡,34
+164,震坤行,1.3.3.6,运维保障系统MRO,34
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,34
+2,706所,1.1.3,工业服务器,33
+107,安恒信息,1.4.3.3,APT检测,33
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,33
+49,数码大方,1.3.1.6,产品生命周期管理PLM,33
+13,东方国信,2.1.3.6,微服务,33
+160,亚信科技,1.4.1.3,防毒墙,33
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,33
+26,寄云科技,2.1.3.1,物联网服务,33
+68,中望软件,1.3.1.1,计算机辅助设计CAD,33
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,33
+147,拓邦股份,1.1.2,工业控制器,33
+79,PTC,1.3.1.1,计算机辅助设计CAD,33
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,33
+77,Oracle,1.3.3.6,运维保障系统MRO,33
+23,和利时,2.3.2,边缘数据处理,32
+6,安世亚太,2.1.2.4,行业机理模型,32
+79,PTC,1.3.1.6,产品生命周期管理PLM,32
+47,首自信,2.1.2.3,研发仿真模型,32
+35,凌昊智能,1.1.3,工业服务器,32
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,32
+168,中控技术,2.3.3,协议转换,32
+127,华为海思,1.1.3,工业服务器,32
+118,工邦邦,1.3.3.6,运维保障系统MRO,31
+64,中电智科,1.1.2,工业控制器,31
+13,东方国信,2.3.1,工业数据接入,31
+161,研华科技,2.3.1,工业数据接入,31
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,31
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,31
+1,51WORLD,2.1.1.5,数字孪生建模工具,31
+22,航天云网,2.3.2,边缘数据处理,31
+70,ABB,1.3.3.4,可编程逻揖控制系统PLC,31
+144,树根互联,2.1.2.1,数据算法模型,31
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,31
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,31
+166,中国电子科技网络信息安全,1.2.3,数据互通,31
+57,亚控科技,2.3.1,工业数据接入,31
+161,研华科技,2.3.3,协议转换,31
+47,首自信,2.1.2.4,行业机理模型,30
+49,数码大方,2.1.2.3,研发仿真模型,30
+47,首自信,2.1.2.2,业务流程模型,30
+13,东方国信,2.3.2,边缘数据处理,30
+13,东方国信,1.2.2,标识解析,30
+79,PTC,2.3.2,边缘数据处理,30
+8,梆梆安全,1.4.1.1,工业防火墙,30
+33,蓝谷信息,2.1.2.2,业务流程模型,30
+144,树根互联,2.1.2.2,业务流程模型,30
+125,华数机器人,1.2.3,数据互通,30
+165,智能云科,2.1.2.3,研发仿真模型,30
+47,首自信,2.1.1.4,组态建模工具,30
+47,首自信,2.1.1.1,算法建模工具,29
+78,OutSystems,2.1.1.4,组态建模工具,29
+13,东方国信,2.3.3,协议转换,29
+6,安世亚太,2.1.2.2,业务流程模型,29
+128,华伍股份,1.1.2,工业控制器,29
+49,数码大方,1.3.1.1,计算机辅助设计CAD,29
+68,中望软件,1.3.1.2,计算机辅助工程CAE,29
+22,航天云网,2.3.3,协议转换,29
+14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,29
+168,中控技术,2.3.2,边缘数据处理,28
+121,广州智臣,1.4.2.4,安全隔离与信息交换系统,28
+62,云道智造,1.3.1.2,计算机辅助工程CAE,28
+96,Cisco,1.2.3,数据互通,28
+33,蓝谷信息,2.1.2.3,研发仿真模型,28
+123,海得控制,1.1.2,工业控制器,28
+32,兰光创新,1.2.3,数据互通,28
+17,国保金泰,1.4.2.4,安全隔离与信息交换系统,28
+51,天地和兴,1.4.2.1,工控安全监测与审计,28
+6,安世亚太,2.1.2.1,数据算法模型,28
+66,中国联通,1.2.1,网络互联,28
+161,研华科技,2.3.2,边缘数据处理,28
+19,国泰网信,1.4.2.1,工控安全监测与审计,28
+23,和利时,2.3.3,协议转换,28
+149,天泽智云,2.1.2.2,业务流程模型,27
+79,PTC,2.3.3,协议转换,27
+78,OutSystems,2.1.1.1,算法建模工具,27
+126,华为,2.1.1.5,数字孪生建模工具,27
+165,智能云科,2.1.2.4,行业机理模型,27
+132,科远智慧,1.3.3.2,分布式控制系统DCS,27
+135,浪潮,1.1.3,工业服务器,27
+22,航天云网,2.1.1.1,算法建模工具,27
+26,寄云科技,2.1.3.6,微服务,27
+23,和利时,1.3.3.4,可编程逻揖控制系统PLC,27
+33,蓝谷信息,2.1.2.4,行业机理模型,27
+9,北京航天测控,1.3.3.6,运维保障系统MRO,27
+12,大唐软件,1.2.1,网络互联,27
+83,Emerson,1.3.3.2,分布式控制系统DCS,27
+47,首自信,2.1.2.1,数据算法模型,26
+16,东土科技,1.1.3,工业服务器,26
+82,Uptake,2.1.2.4,行业机理模型,26
+16,东土科技,2.3.1,工业数据接入,26
+53,天融信,1.4.1.5,统一威胁管理系统,26
+78,OutSystems,2.1.1.2,低代码开发工具,26
+95,Schneider,1.2.3,数据互通,26
+16,东土科技,2.3.2,边缘数据处理,26
+49,数码大方,2.1.2.1,数据算法模型,26
+16,东土科技,2.3.3,协议转换,26
+168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,26
+22,航天云网,1.2.2,标识解析,26
+165,智能云科,2.1.2.2,业务流程模型,26
+38,牛刀,2.1.1.1,算法建模工具,26
+149,天泽智云,2.1.2.4,行业机理模型,26
+22,航天云网,2.1.1.4,组态建模工具,26
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,26
+33,蓝谷信息,2.1.2.1,数据算法模型,26
+82,Uptake,2.1.2.3,研发仿真模型,26
+6,安世亚太,2.1.2.3,研发仿真模型,25
+82,Uptake,2.1.2.1,数据算法模型,25
+22,航天云网,2.1.1.3,流程开发工具,25
+53,天融信,1.4.5.3,数据审计系统,25
+129,华中数控,1.1.2,工业控制器,25
+143,沈阳自动化研究所,2.1.1.1,算法建模工具,25
+23,和利时,2.3.1,工业数据接入,25
+57,亚控科技,2.3.3,协议转换,25
+65,中国电信,1.2.1,网络互联,25
+41,启明星辰,1.4.1.2,下一代防火墙,25
+49,数码大方,2.1.2.2,业务流程模型,25
+140,山石网科,1.4.1.4,入侵检测系统,25
+41,启明星辰,1.4.1.5,统一威胁管理系统,25
+57,亚控科技,2.3.2,边缘数据处理,25
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,25
+49,数码大方,2.1.2.4,行业机理模型,24
+22,航天云网,2.1.1.2,低代码开发工具,24
+62,云道智造,2.1.2.1,数据算法模型,24
+7,百望,2.2,IaaS,24
+168,中控技术,1.1.2,工业控制器,24
+18,国能智深,1.3.3.2,分布式控制系统DCS,24
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,24
+53,天融信,1.4.1.4,入侵检测系统,24
+149,天泽智云,2.1.2.3,研发仿真模型,24
+45,石化盈科,1.3.4.1,企业资源计划ERP,24
+136,美的,1.2.1,网络互联,24
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,24
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,24
+135,浪潮,1.3.4.1,企业资源计划ERP,24
+22,航天云网,2.3.1,工业数据接入,24
+115,富士康,1.1.3,工业服务器,24
+38,牛刀,2.1.1.3,流程开发工具,24
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,24
+62,云道智造,2.1.2.4,行业机理模型,23
+62,云道智造,2.1.2.3,研发仿真模型,23
+144,树根互联,2.1.2.3,研发仿真模型,23
+5,安华金和,1.4.5.3,数据审计系统,23
+89,Rockwell,1.3.3.1,制造执行系统MES,23
+58,用友,1.3.4.1,企业资源计划ERP,23
+60,宇动源,2.1.1.5,数字孪生建模工具,23
+111,鼎捷软件,1.3.3.1,制造执行系统MES,23
+82,Uptake,2.1.2.2,业务流程模型,23
+60,宇动源,2.1.1.1,算法建模工具,23
+165,智能云科,2.1.2.1,数据算法模型,23
+22,航天云网,2.1.4.1.3,实时数据库,22
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,22
+55,威努特,1.4.1.2,下一代防火墙,22
+60,宇动源,2.1.1.2,低代码开发工具,22
+144,树根互联,2.1.2.4,行业机理模型,22
+169,中芯国际,1.1.1,工业计算芯片,22
+53,天融信,1.4.3.3,APT检测,22
+129,华中数控,1.2.3,数据互通,22
+89,Rockwell,1.1.2,工业控制器,22
+78,OutSystems,2.1.1.3,流程开发工具,22
+3,艾克斯特,1.3.4.1,企业资源计划ERP,22
+131,九物互联,2.1.1.3,流程开发工具,22
+140,山石网科,1.4.5.3,数据审计系统,22
+38,牛刀,2.1.1.4,组态建模工具,22
+99,Siemens,1.1.2,工业控制器,22
+37,绿盟,1.4.1.2,下一代防火墙,21
+103,STMicroelectronics ,1.1.1,工业计算芯片,21
+62,云道智造,2.1.2.2,业务流程模型,21
+149,天泽智云,2.1.2.1,数据算法模型,21
+36,龙芯中科,1.1.1,工业计算芯片,21
+47,首自信,2.1.1.3,流程开发工具,21
+45,石化盈科,2.1.4.1.2,分布式数据库,21
+44,圣邦微电子,1.1.1,工业计算芯片,21
+167,中环股份,1.1.1,工业计算芯片,21
+40,奇安信,1.4.3.3,APT检测,21
+130,金蝶,1.3.4.1,企业资源计划ERP,21
+49,数码大方,1.3.3.1,制造执行系统MES,21
+60,宇动源,2.1.1.3,流程开发工具,20
+91,Moxa,1.2.1,网络互联,20
+69,紫光集团,1.1.1,工业计算芯片,20
+70,ABB,1.3.3.2,分布式控制系统DCS,20
+22,航天云网,2.1.1.5,数字孪生建模工具,20
+38,牛刀,2.1.1.2,低代码开发工具,20
+55,威努特,1.4.2.1,工控安全监测与审计,20
+28,金山云,2.2,IaaS,20
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,20
+22,航天云网,2.1.4.2.1,数据质量管理,20
+38,牛刀,2.1.1.5,数字孪生建模工具,20
+23,和利时,1.3.3.1,制造执行系统MES,19
+45,石化盈科,2.1.4.1.4,时序数据库,19
+89,Rockwell,1.2.1,网络互联,19
+37,绿盟,1.4.1.4,入侵检测系统,19
+113,飞腾信息,1.1.1,工业计算芯片,19
+13,东方国信,2.1.4.1.4,时序数据库,19
+23,和利时,1.1.2,工业控制器,19
+60,宇动源,2.1.1.4,组态建模工具,19
+163,优也科技,2.1.4.2.1,数据质量管理,19
+117,格创东智,2.1.1.2,低代码开发工具,19
+117,格创东智,2.1.1.3,流程开发工具,19
+87,Texas Instruments,1.1.1,工业计算芯片,18
+131,九物互联,2.1.1.1,算法建模工具,18
+137,美林数据,2.1.4.2.2,数据安全管理,18
+131,九物互联,2.1.1.4,组态建模工具,18
+154,西格数据,2.1.4.1.2,分布式数据库,18
+63,长扬科技,1.4.1.1,工业防火墙,18
+104,Infineon,1.1.1,工业计算芯片,18
+101,Analog Devices,1.1.1,工业计算芯片,18
+22,航天云网,1.3.3.6,运维保障系统MRO,18
+45,石化盈科,1.3.3.1,制造执行系统MES,18
+168,中控技术,1.3.3.1,制造执行系统MES,17
+24,华大电子,1.1.1,工业计算芯片,17
+13,东方国信,2.1.4.2.2,数据安全管理,17
+31,昆仑数据,2.1.4.2.1,数据质量管理,17
+13,东方国信,2.1.4.1.2,分布式数据库,17
+96,Cisco,1.2.1,网络互联,17
+22,航天云网,2.1.4.2.2,数据安全管理,17
+22,航天云网,2.1.4.1.2,分布式数据库,17
+117,格创东智,2.1.1.1,算法建模工具,17
+163,优也科技,2.1.4.1.4,时序数据库,17
+140,山石网科,1.4.1.5,统一威胁管理系统,17
+154,西格数据,2.1.4.1.4,时序数据库,17
+55,威努特,1.4.1.1,工业防火墙,17
+74,HoneyWell,1.3.3.2,分布式控制系统DCS,17
+117,格创东智,2.1.1.5,数字孪生建模工具,17
+150,唯捷创芯,1.1.1,工业计算芯片,17
+137,美林数据,2.1.4.1.4,时序数据库,17
+163,优也科技,2.1.4.1.1,关系型数据库,16
+124,海尔,1.2.1,网络互联,16
+45,石化盈科,2.1.4.1.1,关系型数据库,16
+117,格创东智,2.1.1.4,组态建模工具,16
+22,航天云网,2.1.4.1.1,关系型数据库,16
+31,昆仑数据,2.1.4.1.1,关系型数据库,16
+137,美林数据,2.1.4.2.1,数据质量管理,16
+163,优也科技,2.1.4.1.2,分布式数据库,15
+137,美林数据,2.1.4.1.2,分布式数据库,15
+55,威努特,1.4.1.3,防毒墙,15
+117,格创东智,2.1.4.1.1,关系型数据库,15
+131,九物互联,2.1.1.2,低代码开发工具,15
+31,昆仑数据,2.1.4.1.3,实时数据库,15
+154,西格数据,2.1.4.2.1,数据质量管理,15
+127,华为海思,1.1.1,工业计算芯片,15
+154,西格数据,2.1.4.2.2,数据安全管理,15
+137,美林数据,2.1.4.1.3,实时数据库,15
+22,航天云网,1.2.1,网络互联,15
+45,石化盈科,2.1.4.1.3,实时数据库,14
+45,石化盈科,2.1.4.2.1,数据质量管理,14
+40,奇安信,1.4.2.1,工控安全监测与审计,14
+163,优也科技,2.1.4.2.2,数据安全管理,14
+133,蓝盾股份,1.4.1.3,防毒墙,14
+154,西格数据,2.1.4.1.1,关系型数据库,14
+31,昆仑数据,2.1.4.2.2,数据安全管理,13
+168,中控技术,1.3.3.2,分布式控制系统DCS,13
+131,九物互联,2.1.1.5,数字孪生建模工具,13
+54,网御星云,1.4.2.4,安全隔离与信息交换系统,13
+154,西格数据,2.1.4.1.3,实时数据库,13
+13,东方国信,2.1.4.1.3,实时数据库,12
+117,格创东智,2.1.4.1.3,实时数据库,12
+13,东方国信,2.1.4.1.1,关系型数据库,12
+126,华为,2.2,IaaS,12
+117,格创东智,2.1.4.2.2,数据安全管理,12
+137,美林数据,2.1.4.1.1,关系型数据库,12
+31,昆仑数据,2.1.4.1.2,分布式数据库,11
+117,格创东智,2.1.4.2.1,数据质量管理,11
+45,石化盈科,2.1.4.2.2,数据安全管理,11
+53,天融信,1.4.1.3,防毒墙,11
+117,格创东智,2.1.4.1.2,分布式数据库,11
+78,OutSystems,2.1.1.5,数字孪生建模工具,11
+117,格创东智,2.1.4.1.4,时序数据库,11
+163,优也科技,2.1.4.1.3,实时数据库,11
+31,昆仑数据,2.1.4.1.4,时序数据库,11
+142,深信服,1.4.1.1,工业防火墙,10
+106,阿里巴巴,2.2,IaaS,10
+13,东方国信,2.1.4.2.1,数据质量管理,10
+54,网御星云,1.4.1.3,防毒墙,10
+148,腾讯,2.2,IaaS,10
+23,和利时,1.3.3.2,分布式控制系统DCS,10
+22,航天云网,2.1.4.1.4,时序数据库,9
+99,Siemens,1.2.1,网络互联,9
+53,天融信,1.4.2.4,安全隔离与信息交换系统,8
+63,长扬科技,1.4.2.4,安全隔离与信息交换系统,8
+135,浪潮,2.2,IaaS,7
+56,芯愿景,1.1.1,工业计算芯片,7
+108,百度,2.2,IaaS,7
+140,山石网科,1.4.1.1,工业防火墙,6
diff --git a/analysis/count_prod.csv b/analysis/count_prod.csv
index 494f17d..caea6ca 100644
--- a/analysis/count_prod.csv
+++ b/analysis/count_prod.csv
@@ -1,82 +1,108 @@
id_product,Name,count
-1.4,工业互联网安全,385
-2.1.3,工业物联网,184
-1.4.5,数据安全,150
-1.4.3,网络安全,150
-1.4.2,控制安全,150
-1,供给,125
-1.3,工业软件,119
-1.3.1,设计研发,119
-1.1,工业自动化,114
-2.1.2,工业模型库,103
-2.3,边缘层,102
-2,工业互联网平台,83
-2.1.1,开发工具,82
-1.4.4,平台安全,77
-1.3.2,采购供应,76
-1.1.1,工业计算芯片,67
-1.3.3,生产制造,60
-2.1,PaaS,50
-1.3.5,仓储物流,50
+2.1.3,工业物联网,2810
+1.3.1,设计研发,2246
+1,供给,1525
+1.3.3,生产制造,1296
+2.1.2,工业模型库,1269
+2.1.1,开发工具,1159
+2.3,边缘层,1073
+1.4,工业互联网安全,1012
+1.1,工业自动化,904
+1.3,工业软件,886
+1.2,工业互联网网络,751
+1.4.4,平台安全,709
+1.4.5,数据安全,640
+2.1.4.1,工业大数据存储,595
+1.3.4,企业运营管理,592
+1.4.2,控制安全,529
+2,工业互联网平台,436
+1.4.3,网络安全,430
+1.4.1,设备安全,418
+2.1.4,工业大数据,372
+2.1.4.2,工业大数据管理,342
+2.1,PaaS,323
+1.1.1,工业计算芯片,255
+2.1.3.6,微服务,249
+2.1.2.3,研发仿真模型,241
+2.1.2.2,业务流程模型,241
+1.3.1.2,计算机辅助工程CAE,241
+2.1.2.4,行业机理模型,237
+2.3.1,工业数据接入,237
+1.3.1.1,计算机辅助设计CAD,236
+1.1.2,工业控制器,233
+2.1.2.1,数据算法模型,230
+2.3.2,边缘数据处理,230
+2.3.3,协议转换,227
+2.1.3.2,平台基础服务,212
+2.1.3.4,应用管理服务,211
+1.1.3,工业服务器,211
+2.1.3.5,容器服务,211
+2.1.3.3,工业引擎服务,207
+1.3.1.4,计算机辅助工艺过程设计CAPP,207
+2.1.3.7,制造类API,206
+2.1.3.1,物联网服务,203
+1.3.1.7,电子设计自动化EDA,201
+1.2.3,数据互通,201
+1.3.1.6,产品生命周期管理PLM,200
+1.2.1,网络互联,200
+2.1.1.1,算法建模工具,192
+2.1.1.4,组态建模工具,191
+2.1.1.5,数字孪生建模工具,184
+2.1.1.2,低代码开发工具,184
+2.1.1.3,流程开发工具,177
+1.3.2,采购供应,176
+1.3.1.5,产品数据管理PDM,166
+1.3.1.3,计算机辅助制造CAM,166
+1.2.2,标识解析,164
+1.3.3.2,分布式控制系统DCS,162
+1.3.3.1,制造执行系统MES,155
+1.3.3.4,可编程逻揖控制系统PLC,147
+1.3.3.6,运维保障系统MRO,143
+1.3.4.1,企业资源计划ERP,139
+1.3.3.5,企业资产管理系统EAM,138
+1.3.3.3,数据采集与监视控制系统SCADA,134
+2.1.4.1.2,分布式数据库,125
+2.1.4.2.1,数据质量管理,122
+1.3.4.3,人力资源管理HRM,121
+1.3.4.2,客户关系管理CRM,121
+2.1.4.1.4,时序数据库,120
+1.3.5,仓储物流,120
+1.4.4.1,身份鉴别与访问控制,119
+2.1.4.2.2,数据安全管理,117
+2.1.4.1.1,关系型数据库,117
+1.3.3.7,故障预测与健康管理PHM,116
+2.1.4.1.3,实时数据库,114
+1.4.2.1,工控安全监测与审计,90
+2.2,IaaS,90
+1.4.4.3,接入认证,90
+1.4.4.4,工业应用行为监控,90
+1.4.4.2,密钥管理,90
+1.4.2.4,安全隔离与信息交换系统,85
+1.4.1.3,防毒墙,83
+1.4.1.1,工业防火墙,81
+1.4.3.3,APT检测,76
+1.4.5.9,数据防火墙,70
+1.4.5.7,数据恢复,70
+1.4.5.6,数据容灾备份,70
+1.4.5.5,敏感数据发现与监控,70
+1.4.5.4,数据脱敏,70
+1.4.5.3,数据审计系统,70
+1.4.5.2,数据防泄漏系统,70
+1.3.5.1,仓储物流管理WMS,70
+1.4.3.4,攻击溯源,68
+1.4.3.5,负载均衡,68
+1.4.3.1,网络漏洞扫描和补丁管理,68
+1.4.2.6,隐私计算,68
+1.4.2.5,安全日志与审计,68
+1.4.2.2,工控主机卫士,68
+1.4.1.5,统一威胁管理系统,68
+1.4.1.4,入侵检测系统,68
+1.4.1.2,下一代防火墙,68
1.3.2.1,供应链管理SCM,50
-1.4.5.8,数据加密,50
1.4.5.1,恶意代码检测系统,50
1.4.4.5,安全态势感知,50
1.4.3.6,沙箱类设备,50
1.4.3.2,流量检测,50
1.4.2.7,工控原生安全,50
1.4.2.3,工控漏洞扫描,50
-1.4.1,设备安全,50
-1.2,工业互联网网络,43
-2.3.3,协议转换,37
-2.3.1,工业数据接入,33
-2.1.3.6,微服务,33
-2.3.2,边缘数据处理,30
-2.1.2.4,行业机理模型,30
-2.1.3.4,应用管理服务,29
-1.3.1.1,计算机辅助设计CAD,28
-2.1.2.2,业务流程模型,28
-2.1.2.1,数据算法模型,27
-2.1.3.7,制造类API,27
-1.3.1.2,计算机辅助工程CAE,26
-2.1.3.1,物联网服务,25
-1.1.2,工业控制器,24
-2.1.3.5,容器服务,24
-2.1.3.3,工业引擎服务,23
-2.1.1.2,低代码开发工具,23
-1.1.3,工业服务器,23
-2.1.3.2,平台基础服务,21
-1.3.1.4,计算机辅助工艺过程设计CAPP,20
-2.1.2.3,研发仿真模型,18
-2.1.1.5,数字孪生建模工具,18
-1.3.1.6,产品生命周期管理PLM,18
-1.2.3,数据互通,17
-2.1.1.1,算法建模工具,15
-2.1.1.4,组态建模工具,14
-2.1.4.1,工业大数据存储,14
-1.3.3.2,分布式控制系统DCS,14
-1.2.2,标识解析,13
-1.2.1,网络互联,13
-2.1.4.2,工业大数据管理,12
-1.3.1.7,电子设计自动化EDA,12
-2.1.1.3,流程开发工具,12
-1.3.3.3,数据采集与监视控制系统SCADA,11
-1.3.3.1,制造执行系统MES,10
-1.3.3.6,运维保障系统MRO,10
-1.3.4,企业运营管理,8
-1.3.3.4,可编程逻揖控制系统PLC,7
-1.3.3.5,企业资产管理系统EAM,6
-1.3.4.1,企业资源计划ERP,6
-2.1.4.2.1,数据质量管理,5
-2.1.4.2.2,数据安全管理,5
-1.3.1.5,产品数据管理PDM,5
-2.1.4,工业大数据,4
-2.1.4.1.4,时序数据库,4
-2.1.4.1.1,关系型数据库,3
-2.1.4.1.2,分布式数据库,3
-2.1.4.1.3,实时数据库,3
-2.2,IaaS,3
-1.3.1.3,计算机辅助制造CAM,2
-1.3.3.7,故障预测与健康管理PHM,1
-1.4.4.1,身份鉴别与访问控制,1
-1.3.4.3,人力资源管理HRM,1
+1.4.5.8,数据加密,50
diff --git a/analysis/count_prod_network.png b/analysis/count_prod_network.png
new file mode 100644
index 0000000..7c779a7
Binary files /dev/null and b/analysis/count_prod_network.png differ
diff --git a/analysis/count_prod_pie.png b/analysis/count_prod_pie.png
index b7e8737..8d36d6e 100644
Binary files a/analysis/count_prod_pie.png and b/analysis/count_prod_pie.png differ
diff --git a/analysis/dissertation_count.csv b/analysis/dissertation_count.csv
new file mode 100644
index 0000000..9b72392
--- /dev/null
+++ b/analysis/dissertation_count.csv
@@ -0,0 +1,3539 @@
+s_id,id_firm,id_product,ts,is_disrupted,is_removed
+8257,49,1.3.1.4,0,1,1.0
+8257,100,1.3.1,1,1,
+1369,13,2.1.3.3,0,1,1.0
+1369,106,2.1.3,1,1,1.0
+21519,149,2.1.2.4,0,1,1.0
+21519,58,2.1.2,1,1,
+15317,99,2.1,0,1,1.0
+15317,102,2,1,1,
+3165,22,2.1.3.3,0,1,1.0
+3165,148,2.1.3,1,1,
+5733,36,1.1.1,0,1,1.0
+5733,94,1.1,1,1,
+19407,135,2.1.3.5,0,1,1.0
+19407,148,2.1.3,1,1,
+13052,79,2.1.3.7,0,1,1.0
+13052,106,2.1.3,1,1,
+5599,33,2.1.2.4,0,1,1.0
+5599,79,2.1.2,1,1,1.0
+11157,62,2.1.2.4,0,1,1.0
+11157,159,2.1.2,1,1,
+22232,157,1.4.1,0,1,1.0
+22232,126,1.4,1,1,
+9164,53,1.4.3.6,0,1,1.0
+9164,142,1.4.3,1,1,1.0
+9164,126,1.4,2,1,1.0
+9164,170,1,3,1,1.0
+1515,13,2.1.3.6,0,1,1.0
+1515,74,2.1.3,1,1,
+8906,53,1.4.2.3,0,1,1.0
+8906,142,1.4.2,1,1,1.0
+8906,126,1.4,2,1,
+17853,126,1.4,0,1,1.0
+17853,170,1,1,1,
+21799,153,1.3.1.4,0,1,1.0
+21799,39,1.3.1,1,1,1.0
+4105,23,1.4.2.7,0,1,1.0
+4105,142,1.4.2,1,1,1.0
+4105,126,1.4,2,1,1.0
+4105,170,1,3,1,1.0
+265,3,1.3.1.6,0,1,1.0
+265,39,1.3.1,1,1,1.0
+4133,23,1.4.2.7,0,1,1.0
+4133,142,1.4.2,1,1,
+9153,53,1.4.3.6,0,1,1.0
+9153,142,1.4.3,1,1,
+19557,135,2.2,0,1,1.0
+19557,102,2,1,1,
+15307,99,2.1,0,1,1.0
+15307,102,2,1,1,
+23269,167,1.1.1,0,1,1.0
+23269,106,1.1,1,1,
+10688,60,2.1.1.1,0,1,1.0
+10688,148,2.1.1,1,1,1.0
+7749,47,2.1.1.1,0,1,1.0
+7749,148,2.1.1,1,1,1.0
+20568,142,1.4.3,0,1,1.0
+20568,126,1.4,1,1,
+15624,103,1.1.1,0,1,1.0
+15624,86,1.1,1,1,
+20531,142,1.4.2,0,1,1.0
+20531,126,1.4,1,1,1.0
+20531,170,1,2,1,1.0
+3208,22,2.1.3.4,0,1,1.0
+3208,148,2.1.3,1,1,
+8937,53,1.4.2.3,0,1,1.0
+8937,142,1.4.2,1,1,1.0
+8937,126,1.4,2,1,
+17870,126,1.4,0,1,1.0
+17870,170,1,1,1,
+13057,79,2.1.3.7,0,1,1.0
+13057,148,2.1.3,1,1,
+20567,142,1.4.3,0,1,1.0
+20567,126,1.4,1,1,
+13692,82,2.1.2.1,0,1,1.0
+13692,79,2.1.2,1,1,1.0
+19120,135,1.3.2.1,0,1,1.0
+19120,58,1.3.2,1,1,1.0
+3737,22,2.3.1,0,1,1.0
+3737,95,2.3,1,1,1.0
+9977,56,1.1.1,0,1,1.0
+9977,86,1.1,1,1,1.0
+10708,60,2.1.1.2,0,1,1.0
+10708,106,2.1.1,1,1,
+18799,131,2.1.1.4,0,1,1.0
+18799,80,2.1.1,1,1,1.0
+11345,63,1.4.4.5,0,1,1.0
+11345,0,1.4.4,1,1,1.0
+22248,157,1.4.1,0,1,1.0
+22248,126,1.4,1,1,
+10857,60,2.1.1.5,0,1,1.0
+10857,80,2.1.1,1,1,
+12657,79,1.3.1.6,0,1,1.0
+12657,85,1.3.1,1,1,
+3299,22,2.1.3.5,0,1,1.0
+3299,108,2.1.3,1,1,1.0
+12831,79,2.1.3.2,0,1,1.0
+12831,97,2.1.3,1,1,
+4135,23,1.4.2.7,0,1,1.0
+4135,142,1.4.2,1,1,
+15346,99,2.1,0,1,1.0
+15346,102,2,1,1,
+15346,98,2,1,1,1.0
+6890,41,1.4.5,0,1,1.0
+6890,126,1.4,1,1,
+18573,130,1.3.5,0,1,1.0
+18573,106,1.3,1,1,
+12769,79,2.1.3.1,0,1,1.0
+12769,74,2.1.3,1,1,1.0
+18594,130,1.3.5,0,1,1.0
+18594,106,1.3,1,1,
+18594,29,1.3,1,1,
+9470,53,1.4.5.8,0,1,1.0
+9470,41,1.4.5,1,1,
+15483,101,1.1.1,0,1,1.0
+15483,86,1.1,1,1,
+1462,13,2.1.3.5,0,1,1.0
+1462,74,2.1.3,1,1,
+1272,13,2.1.3.1,0,1,1.0
+1272,74,2.1.3,1,1,
+13807,82,2.1.2.4,0,1,1.0
+13807,58,2.1.2,1,1,
+22549,161,2.3.3,0,1,1.0
+22549,95,2.3,1,1,1.0
+13307,79,2.3.3,0,1,1.0
+13307,155,2.3,1,1,
+20549,142,1.4.2,0,1,1.0
+20549,126,1.4,1,1,
+3738,22,2.3.1,0,1,1.0
+3738,155,2.3,1,1,1.0
+17349,118,1.3.3.6,0,1,1.0
+17349,75,1.3.3,1,1,1.0
+21549,149,2.1.2.4,0,1,1.0
+21549,79,2.1.2,1,1,1.0
+10257,58,1.2.2,0,1,1.0
+10257,106,1.2,1,1,
+9455,53,1.4.5.8,0,1,1.0
+9455,41,1.4.5,1,1,1.0
+9455,126,1.4,2,1,1.0
+9455,170,1,3,1,1.0
+17876,126,1.4,0,1,1.0
+17876,170,1,1,1,1.0
+19140,135,1.3.2.1,0,1,1.0
+19140,130,1.3.2,1,1,1.0
+19140,58,1.3.2,1,1,1.0
+19140,106,1.3,2,1,1.0
+19140,29,1.3,2,1,1.0
+19140,170,1,3,1,1.0
+4116,23,1.4.2.7,0,1,1.0
+4116,142,1.4.2,1,1,1.0
+4116,126,1.4,2,1,
+9484,53,1.4.5.8,0,1,1.0
+9484,41,1.4.5,1,1,
+22230,157,1.4.1,0,1,1.0
+22230,126,1.4,1,1,
+17602,124,1.2.1,0,1,1.0
+17602,106,1.2,1,1,
+6107,38,2.1.1.2,0,1,1.0
+6107,148,2.1.1,1,1,
+11707,69,1.1.1,0,1,1.0
+11707,126,1.1,1,1,
+8905,53,1.4.2.3,0,1,1.0
+8905,142,1.4.2,1,1,1.0
+8905,126,1.4,2,1,1.0
+8905,170,1,3,1,1.0
+299,3,1.3.1.6,0,1,1.0
+299,99,1.3.1,1,1,1.0
+1486,13,2.1.3.5,0,1,1.0
+1486,126,2.1.3,1,1,
+2099,14,1.3.3.4,0,1,1.0
+2099,75,1.3.3,1,1,1.0
+9172,53,1.4.3.6,0,1,1.0
+9172,142,1.4.3,1,1,
+20204,140,1.4.5.1,0,1,1.0
+20204,41,1.4.5,1,1,1.0
+20204,126,1.4,2,1,
+12507,78,2.1.1.5,0,1,1.0
+12507,106,2.1.1,1,1,
+6883,41,1.4.5,0,1,1.0
+6883,126,1.4,1,1,
+8499,49,2.1.2.2,0,1,1.0
+8499,84,2.1.2,1,1,1.0
+4799,26,2.1.3.7,0,1,1.0
+4799,74,2.1.3,1,1,1.0
+4757,26,2.1.3.7,0,1,1.0
+4757,73,2.1.3,1,1,
+1958,13,2.3.2,0,1,1.0
+1958,99,2.3,1,1,1.0
+23137,165,2.1.2.3,0,1,1.0
+23137,79,2.1.2,1,1,1.0
+107,2,1.1.3,0,1,1.0
+107,106,1.1,1,1,
+10349,58,1.3.1.6,0,1,1.0
+10349,100,1.3.1,1,1,1.0
+1352,13,2.1.3.3,0,1,1.0
+1352,148,2.1.3,1,1,1.0
+9459,53,1.4.5.8,0,1,1.0
+9459,41,1.4.5,1,1,1.0
+9459,126,1.4,2,1,
+20212,140,1.4.5.1,0,1,1.0
+20212,41,1.4.5,1,1,1.0
+20212,126,1.4,2,1,
+8242,49,1.3.1.1,0,1,1.0
+8242,100,1.3.1,1,1,1.0
+6748,41,1.4.3.2,0,1,1.0
+6748,142,1.4.3,1,1,
+22236,157,1.4.1,0,1,1.0
+22236,126,1.4,1,1,
+8944,53,1.4.2.3,0,1,1.0
+8944,142,1.4.2,1,1,
+12981,79,2.1.3.5,0,1,1.0
+12981,106,2.1.3,1,1,1.0
+9468,53,1.4.5.8,0,1,1.0
+9468,41,1.4.5,1,1,1.0
+9468,126,1.4,2,1,1.0
+9468,170,1,3,1,1.0
+6743,41,1.4.3.2,0,1,1.0
+6743,142,1.4.3,1,1,
+4599,26,2.1.3.3,0,1,1.0
+4599,126,2.1.3,1,1,1.0
+12919,79,2.1.3.4,0,1,1.0
+12919,73,2.1.3,1,1,1.0
+11192,62,2.1.2.4,0,1,1.0
+11192,58,2.1.2,1,1,1.0
+2391,16,2.3.3,0,1,1.0
+2391,126,2.3,1,1,
+19103,135,1.3.2.1,0,1,1.0
+19103,130,1.3.2,1,1,1.0
+19103,58,1.3.2,1,1,1.0
+19103,106,1.3,2,1,1.0
+21037,144,2.1.2.4,0,1,1.0
+21037,79,2.1.2,1,1,1.0
+21507,149,2.1.2.4,0,1,1.0
+21507,159,2.1.2,1,1,
+10669,60,2.1.1.1,0,1,1.0
+10669,106,2.1.1,1,1,
+2715,22,1.2.2,0,1,1.0
+2715,126,1.2,1,1,1.0
+15107,99,1.1.2,0,1,1.0
+15107,105,1.1,1,1,
+21441,149,2.1.2.2,0,1,1.0
+21441,84,2.1.2,1,1,
+17880,126,1.4,0,1,1.0
+17880,170,1,1,1,
+20599,142,1.4.3,0,1,1.0
+20599,126,1.4,1,1,
+17392,119,1.3.1.1,0,1,1.0
+17392,85,1.3.1,1,1,1.0
+21491,149,2.1.2.3,0,1,1.0
+21491,159,2.1.2,1,1,1.0
+17859,126,1.4,0,1,1.0
+17859,170,1,1,1,1.0
+6718,41,1.4.3.2,0,1,1.0
+6718,142,1.4.3,1,1,1.0
+6718,126,1.4,2,1,1.0
+6718,170,1,3,1,1.0
+15340,99,2.1,0,1,1.0
+15340,102,2,1,1,1.0
+15340,98,2,1,1,
+6879,41,1.4.5,0,1,1.0
+6879,126,1.4,1,1,
+11302,63,1.4.4.5,0,1,1.0
+11302,0,1.4.4,1,1,1.0
+20506,142,1.4.2,0,1,1.0
+20506,126,1.4,1,1,
+17852,126,1.4,0,1,1.0
+17852,170,1,1,1,1.0
+11331,63,1.4.4.5,0,1,1.0
+11331,0,1.4.4,1,1,
+11331,40,1.4.4,1,1,1.0
+807,6,2.1.2.4,0,1,1.0
+807,79,2.1.2,1,1,
+4128,23,1.4.2.7,0,1,1.0
+4128,142,1.4.2,1,1,
+15207,99,1.3.1,0,1,1.0
+15207,106,1.3,1,1,
+4139,23,1.4.2.7,0,1,1.0
+4139,142,1.4.2,1,1,
+23558,168,2.3.2,0,1,1.0
+23558,95,2.3,1,1,1.0
+18567,130,1.3.5,0,1,1.0
+18567,29,1.3,1,1,1.0
+18567,106,1.3,1,1,
+22205,157,1.4.1,0,1,1.0
+22205,126,1.4,1,1,
+10237,57,2.3.3,0,1,1.0
+10237,155,2.3,1,1,1.0
+1057,10,1.3.3.5,0,1,1.0
+1057,99,1.3.3,1,1,
+958,9,1.3.3.6,0,1,1.0
+958,97,1.3.3,1,1,
+22499,161,2.3.2,0,1,1.0
+22499,124,2.3,1,1,1.0
+20589,142,1.4.3,0,1,1.0
+20589,126,1.4,1,1,
+2599,20,1.3.1.2,0,1,1.0
+2599,100,1.3.1,1,1,1.0
+6747,41,1.4.3.2,0,1,1.0
+6747,142,1.4.3,1,1,1.0
+6747,126,1.4,2,1,1.0
+6747,170,1,3,1,
+20202,140,1.4.5.1,0,1,1.0
+20202,41,1.4.5,1,1,1.0
+20202,126,1.4,2,1,
+18857,132,1.3.3.2,0,1,1.0
+18857,97,1.3.3,1,1,
+17863,126,1.4,0,1,1.0
+17863,170,1,1,1,1.0
+17407,120,1.2.3,0,1,1.0
+17407,67,1.2,1,1,
+3007,22,2.1.1.5,0,1,1.0
+3007,80,2.1.1,1,1,
+17607,124,1.2.1,0,1,1.0
+17607,126,1.2,1,1,
+12972,79,2.1.3.5,0,1,1.0
+12972,74,2.1.3,1,1,
+10757,60,2.1.1.3,0,1,1.0
+10757,80,2.1.1,1,1,
+21492,149,2.1.2.3,0,1,1.0
+21492,159,2.1.2,1,1,1.0
+14057,85,1.3.1,0,1,1.0
+14057,106,1.3,1,1,
+18552,130,1.3.5,0,1,1.0
+18552,106,1.3,1,1,
+1482,13,2.1.3.5,0,1,1.0
+1482,148,2.1.3,1,1,1.0
+13015,79,2.1.3.6,0,1,1.0
+13015,97,2.1.3,1,1,
+19101,135,1.3.2.1,0,1,1.0
+19101,130,1.3.2,1,1,1.0
+5657,35,1.1.3,0,1,1.0
+5657,105,1.1,1,1,
+11858,71,1.3.1.2,0,1,1.0
+11858,39,1.3.1,1,1,1.0
+20569,142,1.4.3,0,1,1.0
+20569,126,1.4,1,1,
+20545,142,1.4.2,0,1,1.0
+20545,126,1.4,1,1,
+22243,157,1.4.1,0,1,1.0
+22243,126,1.4,1,1,
+6099,38,2.1.1.1,0,1,1.0
+6099,106,2.1.1,1,1,1.0
+19144,135,1.3.2.1,0,1,1.0
+19144,130,1.3.2,1,1,1.0
+2807,22,2.1.1.1,0,1,1.0
+2807,106,2.1.1,1,1,
+8945,53,1.4.2.3,0,1,1.0
+8945,142,1.4.2,1,1,1.0
+8945,126,1.4,2,1,
+1907,13,2.3.1,0,1,1.0
+1907,124,2.3,1,1,
+13657,82,2.1.2.1,0,1,1.0
+13657,159,2.1.2,1,1,
+17565,123,1.1.2,0,1,1.0
+17565,126,1.1,1,1,1.0
+6866,41,1.4.5,0,1,1.0
+6866,126,1.4,1,1,
+18559,130,1.3.5,0,1,1.0
+18559,106,1.3,1,1,1.0
+11399,64,1.1.2,0,1,1.0
+11399,105,1.1,1,1,1.0
+7008,42,1.3.1.4,0,1,1.0
+7008,99,1.3.1,1,1,
+20565,142,1.4.3,0,1,1.0
+20565,126,1.4,1,1,
+15457,101,1.1.1,0,1,1.0
+15457,106,1.1,1,1,
+19131,135,1.3.2.1,0,1,1.0
+19131,58,1.3.2,1,1,1.0
+4557,26,2.1.3.3,0,1,1.0
+4557,126,2.1.3,1,1,
+157,3,1.3.1.4,0,1,1.0
+157,99,1.3.1,1,1,
+5699,35,1.1.3,0,1,1.0
+5699,105,1.1,1,1,1.0
+8057,47,2.1.2.4,0,1,1.0
+8057,79,2.1.2,1,1,
+13792,82,2.1.2.3,0,1,1.0
+13792,159,2.1.2,1,1,1.0
+13338,79,2.3.3,0,1,1.0
+13338,126,2.3,1,1,1.0
+7682,46,1.3.1.2,0,1,1.0
+7682,93,1.3.1,1,1,
+11092,62,2.1.2.2,0,1,1.0
+11092,159,2.1.2,1,1,1.0
+1431,13,2.1.3.4,0,1,1.0
+1431,74,2.1.3,1,1,1.0
+15314,99,2.1,0,1,1.0
+15314,98,2,1,1,1.0
+10207,57,2.3.3,0,1,1.0
+10207,99,2.3,1,1,
+2292,16,2.3.1,0,1,1.0
+2292,99,2.3,1,1,1.0
+4242,23,2.3.1,0,1,1.0
+4242,95,2.3,1,1,1.0
+6723,41,1.4.3.2,0,1,1.0
+6723,142,1.4.3,1,1,
+6704,41,1.4.3.2,0,1,1.0
+6704,142,1.4.3,1,1,1.0
+6704,126,1.4,2,1,
+15305,99,2.1,0,1,1.0
+15305,98,2,1,1,1.0
+15305,102,2,1,1,1.0
+15305,170,1,2,1,
+6299,38,2.1.1.5,0,1,1.0
+6299,148,2.1.1,1,1,1.0
+9167,53,1.4.3.6,0,1,1.0
+9167,142,1.4.3,1,1,
+23082,165,2.1.2.2,0,1,1.0
+23082,159,2.1.2,1,1,
+15325,99,2.1,0,1,1.0
+15325,98,2,1,1,1.0
+15325,102,2,1,1,
+15344,99,2.1,0,1,1.0
+15344,98,2,1,1,
+9157,53,1.4.3.6,0,1,1.0
+9157,142,1.4.3,1,1,
+23007,165,2.1.2.1,0,1,1.0
+23007,81,2.1.2,1,1,
+8299,49,1.3.1.4,0,1,1.0
+8299,99,1.3.1,1,1,1.0
+8615,50,1.3.1.5,0,1,1.0
+8615,39,1.3.1,1,1,1.0
+12817,79,2.1.3.2,0,1,1.0
+12817,108,2.1.3,1,1,1.0
+3002,22,2.1.1.5,0,1,1.0
+3002,106,2.1.1,1,1,
+18587,130,1.3.5,0,1,1.0
+18587,29,1.3,1,1,1.0
+6701,41,1.4.3.2,0,1,1.0
+6701,142,1.4.3,1,1,
+19114,135,1.3.2.1,0,1,1.0
+19114,130,1.3.2,1,1,1.0
+20534,142,1.4.2,0,1,1.0
+20534,126,1.4,1,1,
+18157,127,1.1.3,0,1,1.0
+18157,126,1.1,1,1,
+4407,25,1.3.1.7,0,1,1.0
+4407,85,1.3.1,1,1,
+7099,43,1.3.1.5,0,1,1.0
+7099,93,1.3.1,1,1,1.0
+1451,13,2.1.3.5,0,1,1.0
+1451,97,2.1.3,1,1,
+11592,68,1.3.1.1,0,1,1.0
+11592,93,1.3.1,1,1,1.0
+5399,32,1.2.3,0,1,1.0
+5399,106,1.2,1,1,1.0
+11344,63,1.4.4.5,0,1,1.0
+11344,0,1.4.4,1,1,
+11344,40,1.4.4,1,1,1.0
+15319,99,2.1,0,1,1.0
+15319,98,2,1,1,
+15319,102,2,1,1,
+9471,53,1.4.5.8,0,1,1.0
+9471,41,1.4.5,1,1,
+17894,126,1.4,0,1,1.0
+17894,170,1,1,1,1.0
+2357,16,2.3.3,0,1,1.0
+2357,126,2.3,1,1,
+6884,41,1.4.5,0,1,1.0
+6884,126,1.4,1,1,
+12851,79,2.1.3.3,0,1,1.0
+12851,126,2.1.3,1,1,
+20657,143,2.1.1.2,0,1,1.0
+20657,148,2.1.1,1,1,
+6721,41,1.4.3.2,0,1,1.0
+6721,142,1.4.3,1,1,
+20587,142,1.4.3,0,1,1.0
+20587,126,1.4,1,1,1.0
+20587,170,1,2,1,1.0
+19137,135,1.3.2.1,0,1,1.0
+19137,130,1.3.2,1,1,1.0
+19137,58,1.3.2,1,1,1.0
+19137,106,1.3,2,1,1.0
+5607,34,1.3.3.3,0,1,1.0
+5607,75,1.3.3,1,1,
+16638,115,1.1.3,0,1,1.0
+16638,86,1.1,1,1,1.0
+17878,126,1.4,0,1,1.0
+17878,170,1,1,1,1.0
+11314,63,1.4.4.5,0,1,1.0
+11314,0,1.4.4,1,1,
+11314,40,1.4.4,1,1,1.0
+20542,142,1.4.2,0,1,1.0
+20542,126,1.4,1,1,
+18589,130,1.3.5,0,1,1.0
+18589,106,1.3,1,1,
+15341,99,2.1,0,1,1.0
+15341,102,2,1,1,
+20742,143,2.1.1.3,0,1,1.0
+20742,148,2.1.1,1,1,1.0
+17871,126,1.4,0,1,1.0
+17871,170,1,1,1,
+10707,60,2.1.1.2,0,1,1.0
+10707,106,2.1.1,1,1,
+4136,23,1.4.2.7,0,1,1.0
+4136,142,1.4.2,1,1,
+20503,142,1.4.2,0,1,1.0
+20503,126,1.4,1,1,
+17856,126,1.4,0,1,1.0
+17856,170,1,1,1,1.0
+15642,103,1.1.1,0,1,1.0
+15642,106,1.1,1,1,1.0
+13707,82,2.1.2.2,0,1,1.0
+13707,81,2.1.2,1,1,
+9184,53,1.4.3.6,0,1,1.0
+9184,142,1.4.3,1,1,
+9469,53,1.4.5.8,0,1,1.0
+9469,41,1.4.5,1,1,
+15674,104,1.1.1,0,1,1.0
+15674,126,1.1,1,1,
+20525,142,1.4.2,0,1,1.0
+20525,126,1.4,1,1,
+19105,135,1.3.2.1,0,1,1.0
+19105,58,1.3.2,1,1,1.0
+3357,22,2.1.3.7,0,1,1.0
+3357,106,2.1.3,1,1,
+20570,142,1.4.3,0,1,1.0
+20570,126,1.4,1,1,
+9488,53,1.4.5.8,0,1,1.0
+9488,41,1.4.5,1,1,
+11309,63,1.4.4.5,0,1,1.0
+11309,40,1.4.4,1,1,1.0
+11309,0,1.4.4,1,1,
+13238,79,2.3.1,0,1,1.0
+13238,124,2.3,1,1,1.0
+3099,22,2.1.3.1,0,1,1.0
+3099,126,2.1.3,1,1,1.0
+4465,26,2.1.3.1,0,1,1.0
+4465,106,2.1.3,1,1,
+20516,142,1.4.2,0,1,1.0
+20516,126,1.4,1,1,
+15329,99,2.1,0,1,1.0
+15329,102,2,1,1,
+6891,41,1.4.5,0,1,1.0
+6891,126,1.4,1,1,
+999,9,1.3.3.6,0,1,1.0
+999,97,1.3.3,1,1,1.0
+10907,61,1.3.3.3,0,1,1.0
+10907,97,1.3.3,1,1,
+5388,32,1.2.3,0,1,1.0
+5388,106,1.2,1,1,1.0
+1457,13,2.1.3.5,0,1,1.0
+1457,108,2.1.3,1,1,
+4649,26,2.1.3.4,0,1,1.0
+4649,97,2.1.3,1,1,1.0
+23299,167,1.1.1,0,1,1.0
+23299,105,1.1,1,1,1.0
+3819,22,2.3.3,0,1,1.0
+3819,126,2.3,1,1,
+16407,111,1.3.4.1,0,1,1.0
+16407,81,1.3.4,1,1,
+21407,149,2.1.2.2,0,1,1.0
+21407,81,2.1.2,1,1,
+7607,45,2.1.4.2.2,0,1,1.0
+7607,79,2.1.4.2,1,1,
+8515,49,2.1.2.3,0,1,1.0
+8515,81,2.1.2,1,1,1.0
+12809,79,2.1.3.2,0,1,1.0
+12809,106,2.1.3,1,1,
+17858,126,1.4,0,1,1.0
+17858,170,1,1,1,1.0
+17862,126,1.4,0,1,1.0
+17862,170,1,1,1,1.0
+11333,63,1.4.4.5,0,1,1.0
+11333,40,1.4.4,1,1,1.0
+11333,0,1.4.4,1,1,1.0
+11333,126,1.4,2,1,
+20563,142,1.4.3,0,1,1.0
+20563,126,1.4,1,1,1.0
+20563,170,1,2,1,1.0
+20234,140,1.4.5.1,0,1,1.0
+20234,41,1.4.5,1,1,
+1344,13,2.1.3.2,0,1,1.0
+1344,148,2.1.3,1,1,1.0
+9200,53,1.4.3.6,0,1,1.0
+9200,142,1.4.3,1,1,
+18187,127,1.1.3,0,1,1.0
+18187,126,1.1,1,1,1.0
+18593,130,1.3.5,0,1,1.0
+18593,29,1.3,1,1,1.0
+18593,106,1.3,1,1,
+20227,140,1.4.5.1,0,1,1.0
+20227,41,1.4.5,1,1,
+11807,70,1.3.3.4,0,1,1.0
+11807,97,1.3.3,1,1,
+13652,82,2.1.2.1,0,1,1.0
+13652,84,2.1.2,1,1,
+17886,126,1.4,0,1,1.0
+17886,170,1,1,1,1.0
+17449,120,1.2.3,0,1,1.0
+17449,126,1.2,1,1,1.0
+12542,78,2.1.1.5,0,1,1.0
+12542,80,2.1.1,1,1,1.0
+199,3,1.3.1.4,0,1,1.0
+199,85,1.3.1,1,1,1.0
+6900,41,1.4.5,0,1,1.0
+6900,126,1.4,1,1,
+20561,142,1.4.3,0,1,1.0
+20561,126,1.4,1,1,1.0
+20561,170,1,2,1,1.0
+8369,49,1.3.3.1,0,1,1.0
+8369,99,1.3.3,1,1,
+8291,49,1.3.1.4,0,1,1.0
+8291,85,1.3.1,1,1,
+16891,117,2.1.1.3,0,1,1.0
+16891,85,2.1.1,1,1,
+9177,53,1.4.3.6,0,1,1.0
+9177,142,1.4.3,1,1,
+9462,53,1.4.5.8,0,1,1.0
+9462,41,1.4.5,1,1,1.0
+9462,126,1.4,2,1,
+11326,63,1.4.4.5,0,1,1.0
+11326,40,1.4.4,1,1,1.0
+8909,53,1.4.2.3,0,1,1.0
+8909,142,1.4.2,1,1,1.0
+8909,126,1.4,2,1,
+8917,53,1.4.2.3,0,1,1.0
+8917,142,1.4.2,1,1,
+15333,99,2.1,0,1,1.0
+15333,102,2,1,1,1.0
+15333,98,2,1,1,1.0
+15333,170,1,2,1,
+6705,41,1.4.3.2,0,1,1.0
+6705,142,1.4.3,1,1,1.0
+6705,126,1.4,2,1,1.0
+6705,170,1,3,1,1.0
+23349,168,1.1.2,0,1,1.0
+23349,86,1.1,1,1,1.0
+20593,142,1.4.3,0,1,1.0
+20593,126,1.4,1,1,
+9457,53,1.4.5.8,0,1,1.0
+9457,41,1.4.5,1,1,
+6725,41,1.4.3.2,0,1,1.0
+6725,142,1.4.3,1,1,
+4106,23,1.4.2.7,0,1,1.0
+4106,142,1.4.2,1,1,1.0
+4106,126,1.4,2,1,
+22210,157,1.4.1,0,1,1.0
+22210,126,1.4,1,1,
+1554,13,2.1.3.7,0,1,1.0
+1554,126,2.1.3,1,1,
+17900,126,1.4,0,1,1.0
+17900,170,1,1,1,1.0
+4102,23,1.4.2.7,0,1,1.0
+4102,142,1.4.2,1,1,1.0
+4102,126,1.4,2,1,
+12862,79,2.1.3.3,0,1,1.0
+12862,108,2.1.3,1,1,
+5292,31,2.1.4.2.1,0,1,1.0
+5292,79,2.1.4.2,1,1,1.0
+12967,79,2.1.3.5,0,1,1.0
+12967,97,2.1.3,1,1,
+12812,79,2.1.3.2,0,1,1.0
+12812,106,2.1.3,1,1,
+21015,144,2.1.2.4,0,1,1.0
+21015,58,2.1.2,1,1,1.0
+15335,99,2.1,0,1,1.0
+15335,98,2,1,1,1.0
+15335,102,2,1,1,1.0
+15335,170,1,2,1,1.0
+11619,68,1.3.1.2,0,1,1.0
+11619,85,1.3.1,1,1,
+19109,135,1.3.2.1,0,1,1.0
+19109,130,1.3.2,1,1,1.0
+19109,58,1.3.2,1,1,1.0
+19109,106,1.3,2,1,1.0
+13349,79,2.3.3,0,1,1.0
+13349,126,2.3,1,1,1.0
+20523,142,1.4.2,0,1,1.0
+20523,126,1.4,1,1,
+5692,35,1.1.3,0,1,1.0
+5692,86,1.1,1,1,1.0
+23641,168,2.3.3,0,1,1.0
+23641,84,2.3,1,1,
+742,6,2.1.2.2,0,1,1.0
+742,58,2.1.2,1,1,1.0
+20206,140,1.4.5.1,0,1,1.0
+20206,41,1.4.5,1,1,1.0
+20206,126,1.4,2,1,
+12332,78,2.1.1.1,0,1,1.0
+12332,85,2.1.1,1,1,
+9163,53,1.4.3.6,0,1,1.0
+9163,142,1.4.3,1,1,1.0
+9163,126,1.4,2,1,1.0
+9163,170,1,3,1,1.0
+19118,135,1.3.2.1,0,1,1.0
+19118,58,1.3.2,1,1,1.0
+11752,70,1.3.3.2,0,1,1.0
+11752,99,1.3.3,1,1,
+11857,71,1.3.1.2,0,1,1.0
+11857,100,1.3.1,1,1,
+20203,140,1.4.5.1,0,1,1.0
+20203,41,1.4.5,1,1,
+4558,26,2.1.3.3,0,1,1.0
+4558,108,2.1.3,1,1,1.0
+19141,135,1.3.2.1,0,1,1.0
+19141,130,1.3.2,1,1,1.0
+21107,146,1.3.1.1,0,1,1.0
+21107,93,1.3.1,1,1,
+20215,140,1.4.5.1,0,1,1.0
+20215,41,1.4.5,1,1,1.0
+20215,126,1.4,2,1,
+19116,135,1.3.2.1,0,1,1.0
+19116,58,1.3.2,1,1,1.0
+19116,130,1.3.2,1,1,1.0
+19116,106,1.3,2,1,1.0
+19116,29,1.3,2,1,
+13308,79,2.3.3,0,1,1.0
+13308,84,2.3,1,1,1.0
+22158,156,1.3.1.7,0,1,1.0
+22158,39,1.3.1,1,1,1.0
+18569,130,1.3.5,0,1,1.0
+18569,106,1.3,1,1,
+18569,29,1.3,1,1,
+8943,53,1.4.2.3,0,1,1.0
+8943,142,1.4.2,1,1,
+4140,23,1.4.2.7,0,1,1.0
+4140,142,1.4.2,1,1,1.0
+4140,126,1.4,2,1,
+12658,79,1.3.1.6,0,1,1.0
+12658,93,1.3.1,1,1,1.0
+8938,53,1.4.2.3,0,1,1.0
+8938,142,1.4.2,1,1,
+8915,53,1.4.2.3,0,1,1.0
+8915,142,1.4.2,1,1,1.0
+8915,126,1.4,2,1,
+14269,88,1.1.3,0,1,1.0
+14269,94,1.1,1,1,
+20507,142,1.4.2,0,1,1.0
+20507,126,1.4,1,1,
+18138,127,1.1.1,0,1,1.0
+18138,106,1.1,1,1,1.0
+19143,135,1.3.2.1,0,1,1.0
+19143,58,1.3.2,1,1,1.0
+19143,130,1.3.2,1,1,1.0
+19143,29,1.3,2,1,
+19143,106,1.3,2,1,
+9456,53,1.4.5.8,0,1,1.0
+9456,41,1.4.5,1,1,1.0
+9456,126,1.4,2,1,
+9458,53,1.4.5.8,0,1,1.0
+9458,41,1.4.5,1,1,1.0
+9458,126,1.4,2,1,
+2457,18,1.3.3.2,0,1,1.0
+2457,99,1.3.3,1,1,
+11307,63,1.4.4.5,0,1,1.0
+11307,40,1.4.4,1,1,
+11307,0,1.4.4,1,1,
+1436,13,2.1.3.4,0,1,1.0
+1436,74,2.1.3,1,1,
+20221,140,1.4.5.1,0,1,1.0
+20221,41,1.4.5,1,1,
+20501,142,1.4.2,0,1,1.0
+20501,126,1.4,1,1,
+18565,130,1.3.5,0,1,1.0
+18565,106,1.3,1,1,
+18565,29,1.3,1,1,
+20699,143,2.1.1.2,0,1,1.0
+20699,80,2.1.1,1,1,1.0
+9483,53,1.4.5.8,0,1,1.0
+9483,41,1.4.5,1,1,
+20597,142,1.4.3,0,1,1.0
+20597,126,1.4,1,1,1.0
+20597,170,1,2,1,1.0
+10191,57,2.3.2,0,1,1.0
+10191,155,2.3,1,1,1.0
+11907,72,1.3.1.2,0,1,1.0
+11907,100,1.3.1,1,1,
+3215,22,2.1.3.4,0,1,1.0
+3215,108,2.1.3,1,1,1.0
+20509,142,1.4.2,0,1,1.0
+20509,126,1.4,1,1,1.0
+20509,170,1,2,1,
+23642,168,2.3.3,0,1,1.0
+23642,126,2.3,1,1,1.0
+21115,146,1.3.1.1,0,1,1.0
+21115,85,1.3.1,1,1,
+18579,130,1.3.5,0,1,1.0
+18579,29,1.3,1,1,
+6733,41,1.4.3.2,0,1,1.0
+6733,142,1.4.3,1,1,
+22203,157,1.4.1,0,1,1.0
+22203,126,1.4,1,1,
+18555,130,1.3.5,0,1,1.0
+18555,29,1.3,1,1,
+18555,106,1.3,1,1,1.0
+12399,78,2.1.1.2,0,1,1.0
+12399,148,2.1.1,1,1,1.0
+20899,144,2.1.2.1,0,1,1.0
+20899,79,2.1.2,1,1,1.0
+1992,13,2.3.2,0,1,1.0
+1992,126,2.3,1,1,1.0
+12249,77,1.3.3.6,0,1,1.0
+12249,97,1.3.3,1,1,1.0
+14757,95,2.3,0,1,1.0
+14757,98,2,1,1,
+7592,45,2.1.4.2.1,0,1,1.0
+7592,79,2.1.4.2,1,1,1.0
+6709,41,1.4.3.2,0,1,1.0
+6709,142,1.4.3,1,1,1.0
+6709,126,1.4,2,1,
+15327,99,2.1,0,1,1.0
+15327,102,2,1,1,
+15327,98,2,1,1,
+849,6,2.1.2.4,0,1,1.0
+849,58,2.1.2,1,1,1.0
+6867,41,1.4.5,0,1,1.0
+6867,126,1.4,1,1,
+3942,23,1.3.3.1,0,1,1.0
+3942,75,1.3.3,1,1,1.0
+1399,13,2.1.3.3,0,1,1.0
+1399,74,2.1.3,1,1,
+17884,126,1.4,0,1,1.0
+17884,170,1,1,1,
+11315,63,1.4.4.5,0,1,1.0
+11315,0,1.4.4,1,1,
+11315,40,1.4.4,1,1,
+752,6,2.1.2.3,0,1,1.0
+752,81,2.1.2,1,1,
+20572,142,1.4.3,0,1,1.0
+20572,126,1.4,1,1,
+19117,135,1.3.2.1,0,1,1.0
+19117,58,1.3.2,1,1,1.0
+21563,150,1.1.1,0,1,1.0
+21563,126,1.1,1,1,1.0
+14708,95,1.2.3,0,1,1.0
+14708,67,1.2,1,1,1.0
+6715,41,1.4.3.2,0,1,1.0
+6715,142,1.4.3,1,1,1.0
+6715,126,1.4,2,1,
+7699,46,1.3.1.2,0,1,1.0
+7699,39,1.3.1,1,1,1.0
+19145,135,1.3.2.1,0,1,1.0
+19145,130,1.3.2,1,1,1.0
+19145,58,1.3.2,1,1,1.0
+19145,29,1.3,2,1,
+1555,13,2.1.3.7,0,1,1.0
+1555,74,2.1.3,1,1,
+8903,53,1.4.2.3,0,1,1.0
+8903,142,1.4.2,1,1,
+1799,13,2.1.4.1.4,0,1,1.0
+1799,79,2.1.4.1,1,1,1.0
+5057,31,2.1.4.1.1,0,1,1.0
+5057,81,2.1.4.1,1,1,
+4107,23,1.4.2.7,0,1,1.0
+4107,142,1.4.2,1,1,
+9174,53,1.4.3.6,0,1,1.0
+9174,142,1.4.3,1,1,
+6892,41,1.4.5,0,1,1.0
+6892,126,1.4,1,1,
+16315,111,1.3.1.6,0,1,1.0
+16315,99,1.3.1,1,1,
+17889,126,1.4,0,1,1.0
+17889,170,1,1,1,
+1807,13,2.1.4.2.1,0,1,1.0
+1807,81,2.1.4.2,1,1,
+8931,53,1.4.2.3,0,1,1.0
+8931,142,1.4.2,1,1,1.0
+8931,126,1.4,2,1,
+6942,42,1.3.1.1,0,1,1.0
+6942,85,1.3.1,1,1,1.0
+18578,130,1.3.5,0,1,1.0
+18578,106,1.3,1,1,
+13019,79,2.1.3.6,0,1,1.0
+13019,97,2.1.3,1,1,
+23182,165,2.1.2.4,0,1,1.0
+23182,79,2.1.2,1,1,
+17885,126,1.4,0,1,1.0
+17885,170,1,1,1,1.0
+8557,49,2.1.2.4,0,1,1.0
+8557,84,2.1.2,1,1,
+8913,53,1.4.2.3,0,1,1.0
+8913,142,1.4.2,1,1,1.0
+8913,126,1.4,2,1,1.0
+8913,170,1,3,1,1.0
+12907,79,2.1.3.4,0,1,1.0
+12907,148,2.1.3,1,1,
+20548,142,1.4.2,0,1,1.0
+20548,126,1.4,1,1,
+1594,13,2.1.3.7,0,1,1.0
+1594,106,2.1.3,1,1,1.0
+19129,135,1.3.2.1,0,1,1.0
+19129,130,1.3.2,1,1,1.0
+19129,58,1.3.2,1,1,1.0
+19129,106,1.3,2,1,
+19129,29,1.3,2,1,
+18292,129,1.1.2,0,1,1.0
+18292,94,1.1,1,1,1.0
+2057,14,1.3.3.4,0,1,1.0
+2057,75,1.3.3,1,1,
+18600,130,1.3.5,0,1,1.0
+18600,29,1.3,1,1,1.0
+18600,106,1.3,1,1,
+10299,58,1.2.2,0,1,1.0
+10299,67,1.2,1,1,1.0
+4115,23,1.4.2.7,0,1,1.0
+4115,142,1.4.2,1,1,1.0
+4115,126,1.4,2,1,
+20246,140,1.4.5.1,0,1,1.0
+20246,41,1.4.5,1,1,
+1208,13,1.2.2,0,1,1.0
+1208,126,1.2,1,1,1.0
+2392,16,2.3.3,0,1,1.0
+2392,126,2.3,1,1,1.0
+3107,22,2.1.3.2,0,1,1.0
+3107,126,2.1.3,1,1,
+2608,21,1.3.1.3,0,1,1.0
+2608,85,1.3.1,1,1,
+19128,135,1.3.2.1,0,1,1.0
+19128,58,1.3.2,1,1,1.0
+19128,130,1.3.2,1,1,1.0
+19128,29,1.3,2,1,
+13086,79,2.1.3.7,0,1,1.0
+13086,97,2.1.3,1,1,
+21591,150,1.1.1,0,1,1.0
+21591,105,1.1,1,1,
+11642,68,1.3.1.2,0,1,1.0
+11642,85,1.3.1,1,1,1.0
+11336,63,1.4.4.5,0,1,1.0
+11336,0,1.4.4,1,1,
+1581,13,2.1.3.7,0,1,1.0
+1581,108,2.1.3,1,1,
+5392,32,1.2.3,0,1,1.0
+5392,106,1.2,1,1,1.0
+6887,41,1.4.5,0,1,1.0
+6887,126,1.4,1,1,1.0
+6887,170,1,2,1,1.0
+20225,140,1.4.5.1,0,1,1.0
+20225,41,1.4.5,1,1,
+8932,53,1.4.2.3,0,1,1.0
+8932,142,1.4.2,1,1,1.0
+8932,126,1.4,2,1,
+9479,53,1.4.5.8,0,1,1.0
+9479,41,1.4.5,1,1,1.0
+9479,126,1.4,2,1,
+20595,142,1.4.3,0,1,1.0
+20595,126,1.4,1,1,
+23507,168,2.3.1,0,1,1.0
+23507,99,2.3,1,1,
+21007,144,2.1.2.4,0,1,1.0
+21007,84,2.1.2,1,1,
+23674,169,1.1.1,0,1,1.0
+23674,126,1.1,1,1,
+1562,13,2.1.3.7,0,1,1.0
+1562,108,2.1.3,1,1,
+15477,101,1.1.1,0,1,1.0
+15477,86,1.1,1,1,1.0
+14458,90,1.3.1.7,0,1,1.0
+14458,99,1.3.1,1,1,
+19127,135,1.3.2.1,0,1,1.0
+19127,58,1.3.2,1,1,1.0
+22225,157,1.4.1,0,1,1.0
+22225,126,1.4,1,1,
+22408,161,2.3.1,0,1,1.0
+22408,124,2.3,1,1,1.0
+21065,145,1.3.1.4,0,1,1.0
+21065,99,1.3.1,1,1,
+20562,142,1.4.3,0,1,1.0
+20562,126,1.4,1,1,
+23637,168,2.3.3,0,1,1.0
+23637,124,2.3,1,1,1.0
+20559,142,1.4.3,0,1,1.0
+20559,126,1.4,1,1,1.0
+20559,170,1,2,1,
+11038,62,2.1.2.1,0,1,1.0
+11038,159,2.1.2,1,1,1.0
+9452,53,1.4.5.8,0,1,1.0
+9452,41,1.4.5,1,1,1.0
+9452,126,1.4,2,1,
+6860,41,1.4.5,0,1,1.0
+6860,126,1.4,1,1,
+22214,157,1.4.1,0,1,1.0
+22214,126,1.4,1,1,1.0
+22214,170,1,2,1,1.0
+9463,53,1.4.5.8,0,1,1.0
+9463,41,1.4.5,1,1,1.0
+9463,126,1.4,2,1,1.0
+9463,170,1,3,1,1.0
+20407,141,1.3.3.2,0,1,1.0
+20407,99,1.3.3,1,1,
+20584,142,1.4.3,0,1,1.0
+20584,126,1.4,1,1,
+18688,131,2.1.1.2,0,1,1.0
+18688,106,2.1.1,1,1,1.0
+18699,131,2.1.1.2,0,1,1.0
+18699,106,2.1.1,1,1,1.0
+4150,23,1.4.2.7,0,1,1.0
+4150,142,1.4.2,1,1,
+17399,119,1.3.1.1,0,1,1.0
+17399,93,1.3.1,1,1,1.0
+18597,130,1.3.5,0,1,1.0
+18597,106,1.3,1,1,1.0
+11199,62,2.1.2.4,0,1,1.0
+11199,58,2.1.2,1,1,1.0
+14374,89,1.2.1,0,1,1.0
+14374,67,1.2,1,1,
+17869,126,1.4,0,1,1.0
+17869,170,1,1,1,
+20588,142,1.4.3,0,1,1.0
+20588,126,1.4,1,1,
+23357,168,1.3.3.1,0,1,1.0
+23357,97,1.3.3,1,1,
+19449,135,2.1.3.5,0,1,1.0
+19449,97,2.1.3,1,1,1.0
+12588,79,1.3.1.1,0,1,1.0
+12588,100,1.3.1,1,1,1.0
+12922,79,2.1.3.4,0,1,1.0
+12922,148,2.1.3,1,1,
+6707,41,1.4.3.2,0,1,1.0
+6707,142,1.4.3,1,1,
+6739,41,1.4.3.2,0,1,1.0
+6739,142,1.4.3,1,1,
+4715,26,2.1.3.6,0,1,1.0
+4715,73,2.1.3,1,1,1.0
+18202,128,1.1.2,0,1,1.0
+18202,106,1.1,1,1,
+12786,79,2.1.3.1,0,1,1.0
+12786,73,2.1.3,1,1,
+21765,153,1.3.1.4,0,1,1.0
+21765,100,1.3.1,1,1,1.0
+4132,23,1.4.2.7,0,1,1.0
+4132,142,1.4.2,1,1,1.0
+4132,126,1.4,2,1,
+11319,63,1.4.4.5,0,1,1.0
+11319,0,1.4.4,1,1,1.0
+11319,40,1.4.4,1,1,
+20992,144,2.1.2.3,0,1,1.0
+20992,79,2.1.2,1,1,1.0
+6938,42,1.3.1.1,0,1,1.0
+6938,85,1.3.1,1,1,1.0
+16349,111,1.3.1.6,0,1,1.0
+16349,85,1.3.1,1,1,1.0
+13569,81,2.1.4.1,0,1,1.0
+13569,102,2.1.4,1,1,1.0
+11069,62,2.1.2.2,0,1,1.0
+11069,58,2.1.2,1,1,
+12916,79,2.1.3.4,0,1,1.0
+12916,74,2.1.3,1,1,1.0
+6731,41,1.4.3.2,0,1,1.0
+6731,142,1.4.3,1,1,1.0
+6731,126,1.4,2,1,
+8099,47,2.1.2.4,0,1,1.0
+8099,84,2.1.2,1,1,1.0
+22228,157,1.4.1,0,1,1.0
+22228,126,1.4,1,1,
+22949,163,2.1.4.2.2,0,1,1.0
+22949,81,2.1.4.2,1,1,1.0
+18564,130,1.3.5,0,1,1.0
+18564,29,1.3,1,1,
+18564,106,1.3,1,1,1.0
+18149,127,1.1.1,0,1,1.0
+18149,106,1.1,1,1,1.0
+19102,135,1.3.2.1,0,1,1.0
+19102,130,1.3.2,1,1,1.0
+19102,58,1.3.2,1,1,1.0
+19102,106,1.3,2,1,1.0
+19102,29,1.3,2,1,
+8911,53,1.4.2.3,0,1,1.0
+8911,142,1.4.2,1,1,1.0
+8911,126,1.4,2,1,
+18133,127,1.1.1,0,1,1.0
+18133,105,1.1,1,1,
+12607,79,1.3.1.4,0,1,1.0
+12607,99,1.3.1,1,1,
+21508,149,2.1.2.4,0,1,1.0
+21508,84,2.1.2,1,1,1.0
+19158,135,1.3.4.1,0,1,1.0
+19158,81,1.3.4,1,1,1.0
+7949,47,2.1.2.1,0,1,1.0
+7949,84,2.1.2,1,1,1.0
+20577,142,1.4.3,0,1,1.0
+20577,126,1.4,1,1,
+19007,134,1.3.3.5,0,1,1.0
+19007,75,1.3.3,1,1,
+12557,79,1.3.1.1,0,1,1.0
+12557,99,1.3.1,1,1,
+20248,140,1.4.5.1,0,1,1.0
+20248,41,1.4.5,1,1,
+11303,63,1.4.4.5,0,1,1.0
+11303,40,1.4.4,1,1,
+11303,0,1.4.4,1,1,
+18557,130,1.3.5,0,1,1.0
+18557,106,1.3,1,1,
+21741,153,1.3.1.1,0,1,1.0
+21741,93,1.3.1,1,1,1.0
+11317,63,1.4.4.5,0,1,1.0
+11317,0,1.4.4,1,1,
+6703,41,1.4.3.2,0,1,1.0
+6703,142,1.4.3,1,1,
+4383,24,1.1.1,0,1,1.0
+4383,86,1.1,1,1,
+23274,167,1.1.1,0,1,1.0
+23274,126,1.1,1,1,
+7665,46,1.3.1.2,0,1,1.0
+7665,39,1.3.1,1,1,1.0
+14207,87,1.1.1,0,1,1.0
+14207,105,1.1,1,1,
+6349,39,1.3.1,0,1,1.0
+6349,106,1.3,1,1,1.0
+18576,130,1.3.5,0,1,1.0
+18576,106,1.3,1,1,1.0
+18576,29,1.3,1,1,
+2282,16,2.3.1,0,1,1.0
+2282,124,2.3,1,1,
+7669,46,1.3.1.2,0,1,1.0
+7669,100,1.3.1,1,1,
+4146,23,1.4.2.7,0,1,1.0
+4146,142,1.4.2,1,1,
+4125,23,1.4.2.7,0,1,1.0
+4125,142,1.4.2,1,1,
+19138,135,1.3.2.1,0,1,1.0
+19138,130,1.3.2,1,1,1.0
+19138,58,1.3.2,1,1,1.0
+19138,106,1.3,2,1,
+19138,29,1.3,2,1,
+16533,113,1.1.1,0,1,1.0
+16533,94,1.1,1,1,
+6871,41,1.4.5,0,1,1.0
+6871,126,1.4,1,1,
+19515,135,2.1.3.7,0,1,1.0
+19515,74,2.1.3,1,1,
+20214,140,1.4.5.1,0,1,1.0
+20214,41,1.4.5,1,1,1.0
+20214,126,1.4,2,1,1.0
+20214,170,1,3,1,1.0
+14224,87,1.1.1,0,1,1.0
+14224,86,1.1,1,1,
+14958,97,1.3.3,0,1,1.0
+14958,29,1.3,1,1,
+8007,47,2.1.2.3,0,1,1.0
+8007,81,2.1.2,1,1,
+2857,22,2.1.1.2,0,1,1.0
+2857,106,2.1.1,1,1,
+10115,57,2.3.1,0,1,1.0
+10115,99,2.3,1,1,1.0
+4111,23,1.4.2.7,0,1,1.0
+4111,142,1.4.2,1,1,1.0
+4111,126,1.4,2,1,
+6889,41,1.4.5,0,1,1.0
+6889,126,1.4,1,1,
+11599,68,1.3.1.1,0,1,1.0
+11599,99,1.3.1,1,1,1.0
+19126,135,1.3.2.1,0,1,1.0
+19126,130,1.3.2,1,1,1.0
+16432,111,1.3.4.1,0,1,1.0
+16432,77,1.3.4,1,1,
+15334,99,2.1,0,1,1.0
+15334,98,2,1,1,1.0
+15334,102,2,1,1,1.0
+15334,170,1,2,1,1.0
+11557,68,1.3.1.1,0,1,1.0
+11557,100,1.3.1,1,1,
+11058,62,2.1.2.2,0,1,1.0
+11058,58,2.1.2,1,1,1.0
+5008,31,1.3.3.3,0,1,1.0
+5008,99,1.3.3,1,1,
+7115,43,1.3.1.6,0,1,1.0
+7115,85,1.3.1,1,1,
+9189,53,1.4.3.6,0,1,1.0
+9189,142,1.4.3,1,1,
+5749,36,1.1.1,0,1,1.0
+5749,106,1.1,1,1,1.0
+5658,35,1.1.3,0,1,1.0
+5658,126,1.1,1,1,1.0
+20537,142,1.4.2,0,1,1.0
+20537,126,1.4,1,1,1.0
+20537,170,1,2,1,1.0
+20524,142,1.4.2,0,1,1.0
+20524,126,1.4,1,1,
+18562,130,1.3.5,0,1,1.0
+18562,29,1.3,1,1,
+20758,143,2.1.1.4,0,1,1.0
+20758,85,2.1.1,1,1,1.0
+9152,53,1.4.3.6,0,1,1.0
+9152,142,1.4.3,1,1,1.0
+9152,126,1.4,2,1,
+20585,142,1.4.3,0,1,1.0
+20585,126,1.4,1,1,
+7407,45,2.1.4.1.2,0,1,1.0
+7407,79,2.1.4.1,1,1,
+23519,168,2.3.1,0,1,1.0
+23519,84,2.3,1,1,
+8939,53,1.4.2.3,0,1,1.0
+8939,142,1.4.2,1,1,
+23157,165,2.1.2.4,0,1,1.0
+23157,81,2.1.2,1,1,
+6716,41,1.4.3.2,0,1,1.0
+6716,142,1.4.3,1,1,1.0
+6716,126,1.4,2,1,
+5465,33,2.1.2.2,0,1,1.0
+5465,58,2.1.2,1,1,1.0
+8926,53,1.4.2.3,0,1,1.0
+8926,142,1.4.2,1,1,1.0
+8926,126,1.4,2,1,
+13002,79,2.1.3.6,0,1,1.0
+13002,148,2.1.3,1,1,
+20515,142,1.4.2,0,1,1.0
+20515,126,1.4,1,1,
+8108,47,2.1.3.6,0,1,1.0
+8108,97,2.1.3,1,1,
+17860,126,1.4,0,1,1.0
+17860,170,1,1,1,
+8947,53,1.4.2.3,0,1,1.0
+8947,142,1.4.2,1,1,1.0
+8947,126,1.4,2,1,1.0
+8947,170,1,3,1,
+8308,49,1.3.1.6,0,1,1.0
+8308,99,1.3.1,1,1,
+2288,16,2.3.1,0,1,1.0
+2288,95,2.3,1,1,1.0
+3837,22,2.3.3,0,1,1.0
+3837,84,2.3,1,1,1.0
+15649,103,1.1.1,0,1,1.0
+15649,105,1.1,1,1,1.0
+9156,53,1.4.3.6,0,1,1.0
+9156,142,1.4.3,1,1,1.0
+9156,126,1.4,2,1,
+23407,168,1.3.3.2,0,1,1.0
+23407,75,1.3.3,1,1,
+11757,70,1.3.3.2,0,1,1.0
+11757,99,1.3.3,1,1,
+9154,53,1.4.3.6,0,1,1.0
+9154,142,1.4.3,1,1,1.0
+9154,126,1.4,2,1,
+4357,24,1.1.1,0,1,1.0
+4357,86,1.1,1,1,
+10949,61,1.3.3.3,0,1,1.0
+10949,97,1.3.3,1,1,1.0
+20535,142,1.4.2,0,1,1.0
+20535,126,1.4,1,1,
+4352,24,1.1.1,0,1,1.0
+4352,106,1.1,1,1,
+7938,47,2.1.2.1,0,1,1.0
+7938,58,2.1.2,1,1,1.0
+1157,12,1.2.1,0,1,1.0
+1157,106,1.2,1,1,
+11311,63,1.4.4.5,0,1,1.0
+11311,40,1.4.4,1,1,
+11311,0,1.4.4,1,1,
+20205,140,1.4.5.1,0,1,1.0
+20205,41,1.4.5,1,1,1.0
+20205,126,1.4,2,1,1.0
+20205,170,1,3,1,1.0
+16782,117,2.1.1.1,0,1,1.0
+16782,80,2.1.1,1,1,
+20576,142,1.4.3,0,1,1.0
+20576,126,1.4,1,1,1.0
+20576,170,1,2,1,
+3307,22,2.1.3.6,0,1,1.0
+3307,106,2.1.3,1,1,
+5707,36,1.1.1,0,1,1.0
+5707,86,1.1,1,1,
+6712,41,1.4.3.2,0,1,1.0
+6712,142,1.4.3,1,1,1.0
+6712,126,1.4,2,1,
+17657,124,2.3,0,1,1.0
+17657,98,2,1,1,
+8914,53,1.4.2.3,0,1,1.0
+8914,142,1.4.2,1,1,1.0
+8914,126,1.4,2,1,1.0
+8914,170,1,3,1,1.0
+9175,53,1.4.3.6,0,1,1.0
+9175,142,1.4.3,1,1,
+20526,142,1.4.2,0,1,1.0
+20526,126,1.4,1,1,1.0
+20526,170,1,2,1,
+9485,53,1.4.5.8,0,1,1.0
+9485,41,1.4.5,1,1,
+8910,53,1.4.2.3,0,1,1.0
+8910,142,1.4.2,1,1,
+20554,142,1.4.3,0,1,1.0
+20554,126,1.4,1,1,
+15607,103,1.1.1,0,1,1.0
+15607,126,1.1,1,1,
+11324,63,1.4.4.5,0,1,1.0
+11324,40,1.4.4,1,1,
+11340,63,1.4.4.5,0,1,1.0
+11340,0,1.4.4,1,1,1.0
+8215,49,1.3.1.1,0,1,1.0
+8215,99,1.3.1,1,1,
+15192,99,1.2.1,0,1,1.0
+15192,67,1.2,1,1,1.0
+19299,135,2.1.3.2,0,1,1.0
+19299,108,2.1.3,1,1,1.0
+23694,169,1.1.1,0,1,1.0
+23694,106,1.1,1,1,
+22223,157,1.4.1,0,1,1.0
+22223,126,1.4,1,1,
+1908,13,2.3.1,0,1,1.0
+1908,126,2.3,1,1,1.0
+11339,63,1.4.4.5,0,1,1.0
+11339,0,1.4.4,1,1,
+11339,40,1.4.4,1,1,1.0
+357,4,1.2.2,0,1,1.0
+357,106,1.2,1,1,
+20521,142,1.4.2,0,1,1.0
+20521,126,1.4,1,1,
+4207,23,2.3.1,0,1,1.0
+4207,99,2.3,1,1,
+6706,41,1.4.3.2,0,1,1.0
+6706,142,1.4.3,1,1,1.0
+6706,126,1.4,2,1,
+16307,111,1.3.1.6,0,1,1.0
+16307,99,1.3.1,1,1,
+3332,22,2.1.3.6,0,1,1.0
+3332,97,2.1.3,1,1,
+11942,72,1.3.1.2,0,1,1.0
+11942,99,1.3.1,1,1,1.0
+15343,99,2.1,0,1,1.0
+15343,102,2,1,1,
+18553,130,1.3.5,0,1,1.0
+18553,106,1.3,1,1,
+4249,23,2.3.1,0,1,1.0
+4249,95,2.3,1,1,1.0
+21057,145,1.3.1.4,0,1,1.0
+21057,100,1.3.1,1,1,
+2557,20,1.3.1.2,0,1,1.0
+2557,39,1.3.1,1,1,
+20223,140,1.4.5.1,0,1,1.0
+20223,41,1.4.5,1,1,
+5649,34,1.3.3.3,0,1,1.0
+5649,75,1.3.3,1,1,1.0
+22241,157,1.4.1,0,1,1.0
+22241,126,1.4,1,1,
+2849,22,2.1.1.1,0,1,1.0
+2849,85,2.1.1,1,1,1.0
+12836,79,2.1.3.2,0,1,1.0
+12836,148,2.1.3,1,1,
+11334,63,1.4.4.5,0,1,1.0
+11334,0,1.4.4,1,1,
+18591,130,1.3.5,0,1,1.0
+18591,29,1.3,1,1,
+3319,22,2.1.3.6,0,1,1.0
+3319,126,2.1.3,1,1,
+22208,157,1.4.1,0,1,1.0
+22208,126,1.4,1,1,1.0
+22208,170,1,2,1,1.0
+7249,45,1.3.3.1,0,1,1.0
+7249,97,1.3.3,1,1,1.0
+13059,79,2.1.3.7,0,1,1.0
+13059,97,2.1.3,1,1,
+9196,53,1.4.3.6,0,1,1.0
+9196,142,1.4.3,1,1,
+11341,63,1.4.4.5,0,1,1.0
+11341,0,1.4.4,1,1,
+6873,41,1.4.5,0,1,1.0
+6873,126,1.4,1,1,
+12407,78,2.1.1.3,0,1,1.0
+12407,80,2.1.1,1,1,
+17891,126,1.4,0,1,1.0
+17891,170,1,1,1,
+2215,16,1.1.3,0,1,1.0
+2215,106,1.1,1,1,1.0
+10219,57,2.3.3,0,1,1.0
+10219,99,2.3,1,1,
+14557,92,1.3.3.4,0,1,1.0
+14557,97,1.3.3,1,1,
+5558,33,2.1.2.4,0,1,1.0
+5558,58,2.1.2,1,1,1.0
+3399,22,2.1.3.7,0,1,1.0
+3399,74,2.1.3,1,1,1.0
+17868,126,1.4,0,1,1.0
+17868,170,1,1,1,1.0
+19791,137,2.1.4.1.3,0,1,1.0
+19791,79,2.1.4.1,1,1,1.0
+15304,99,2.1,0,1,1.0
+15304,98,2,1,1,1.0
+16732,116,1.3.1.7,0,1,1.0
+16732,100,1.3.1,1,1,
+6877,41,1.4.5,0,1,1.0
+6877,126,1.4,1,1,
+20213,140,1.4.5.1,0,1,1.0
+20213,41,1.4.5,1,1,1.0
+20213,126,1.4,2,1,1.0
+20213,170,1,3,1,1.0
+7757,47,2.1.1.2,0,1,1.0
+7757,80,2.1.1,1,1,
+11607,68,1.3.1.2,0,1,1.0
+11607,85,1.3.1,1,1,
+19113,135,1.3.2.1,0,1,1.0
+19113,58,1.3.2,1,1,1.0
+18560,130,1.3.5,0,1,1.0
+18560,106,1.3,1,1,
+18560,29,1.3,1,1,1.0
+16949,117,2.1.1.4,0,1,1.0
+16949,148,2.1.1,1,1,1.0
+6915,42,1.3.1.1,0,1,1.0
+6915,39,1.3.1,1,1,1.0
+13049,79,2.1.3.6,0,1,1.0
+13049,108,2.1.3,1,1,1.0
+22231,157,1.4.1,0,1,1.0
+22231,126,1.4,1,1,1.0
+22231,170,1,2,1,1.0
+8920,53,1.4.2.3,0,1,1.0
+8920,142,1.4.2,1,1,
+665,6,2.1.2.1,0,1,1.0
+665,84,2.1.2,1,1,1.0
+11349,63,1.4.4.5,0,1,1.0
+11349,40,1.4.4,1,1,
+9186,53,1.4.3.6,0,1,1.0
+9186,142,1.4.3,1,1,1.0
+9186,126,1.4,2,1,
+11392,64,1.1.2,0,1,1.0
+11392,126,1.1,1,1,1.0
+3365,22,2.1.3.7,0,1,1.0
+3365,106,2.1.3,1,1,
+20518,142,1.4.2,0,1,1.0
+20518,126,1.4,1,1,
+20578,142,1.4.3,0,1,1.0
+20578,126,1.4,1,1,
+15328,99,2.1,0,1,1.0
+15328,98,2,1,1,
+15328,102,2,1,1,
+9487,53,1.4.5.8,0,1,1.0
+9487,41,1.4.5,1,1,1.0
+9487,126,1.4,2,1,
+11328,63,1.4.4.5,0,1,1.0
+11328,0,1.4.4,1,1,
+11328,40,1.4.4,1,1,
+22542,161,2.3.3,0,1,1.0
+22542,155,2.3,1,1,1.0
+11305,63,1.4.4.5,0,1,1.0
+11305,40,1.4.4,1,1,1.0
+11305,0,1.4.4,1,1,1.0
+11305,126,1.4,2,1,
+19532,135,2.1.3.7,0,1,1.0
+19532,97,2.1.3,1,1,
+4112,23,1.4.2.7,0,1,1.0
+4112,142,1.4.2,1,1,1.0
+4112,126,1.4,2,1,
+20530,142,1.4.2,0,1,1.0
+20530,126,1.4,1,1,
+20208,140,1.4.5.1,0,1,1.0
+20208,41,1.4.5,1,1,1.0
+20208,126,1.4,2,1,
+3157,22,2.1.3.3,0,1,1.0
+3157,106,2.1.3,1,1,
+16715,116,1.3.1.7,0,1,1.0
+16715,39,1.3.1,1,1,1.0
+8142,47,2.1.3.6,0,1,1.0
+8142,108,2.1.3,1,1,1.0
+20209,140,1.4.5.1,0,1,1.0
+20209,41,1.4.5,1,1,1.0
+20209,126,1.4,2,1,
+13282,79,2.3.2,0,1,1.0
+13282,99,2.3,1,1,
+1319,13,2.1.3.2,0,1,1.0
+1319,73,2.1.3,1,1,1.0
+10232,57,2.3.3,0,1,1.0
+10232,155,2.3,1,1,
+9166,53,1.4.3.6,0,1,1.0
+9166,142,1.4.3,1,1,1.0
+9166,126,1.4,2,1,
+12502,78,2.1.1.5,0,1,1.0
+12502,80,2.1.1,1,1,
+20514,142,1.4.2,0,1,1.0
+20514,126,1.4,1,1,1.0
+20514,170,1,2,1,1.0
+658,6,2.1.2.1,0,1,1.0
+658,159,2.1.2,1,1,1.0
+8119,47,2.1.3.6,0,1,1.0
+8119,148,2.1.3,1,1,
+2299,16,2.3.1,0,1,1.0
+2299,84,2.3,1,1,1.0
+13337,79,2.3.3,0,1,1.0
+13337,126,2.3,1,1,1.0
+13337,102,2,2,1,
+16542,113,1.1.1,0,1,1.0
+16542,126,1.1,1,1,1.0
+12807,79,2.1.3.2,0,1,1.0
+12807,106,2.1.3,1,1,
+20201,140,1.4.5.1,0,1,1.0
+20201,41,1.4.5,1,1,
+4134,23,1.4.2.7,0,1,1.0
+4134,142,1.4.2,1,1,
+6897,41,1.4.5,0,1,1.0
+6897,126,1.4,1,1,1.0
+6897,170,1,2,1,1.0
+1254,13,2.1.3.1,0,1,1.0
+1254,97,2.1.3,1,1,
+23192,165,2.1.2.4,0,1,1.0
+23192,159,2.1.2,1,1,1.0
+17893,126,1.4,0,1,1.0
+17893,170,1,1,1,
+3932,23,1.3.3.1,0,1,1.0
+3932,99,1.3.3,1,1,
+18657,131,2.1.1.2,0,1,1.0
+18657,106,2.1.1,1,1,
+20230,140,1.4.5.1,0,1,1.0
+20230,41,1.4.5,1,1,
+12859,79,2.1.3.3,0,1,1.0
+12859,74,2.1.3,1,1,
+2007,13,2.3.3,0,1,1.0
+2007,155,2.3,1,1,
+19123,135,1.3.2.1,0,1,1.0
+19123,58,1.3.2,1,1,1.0
+19123,130,1.3.2,1,1,1.0
+19123,106,1.3,2,1,
+1422,13,2.1.3.4,0,1,1.0
+1422,108,2.1.3,1,1,
+1552,13,2.1.3.7,0,1,1.0
+1552,106,2.1.3,1,1,
+12949,79,2.1.3.4,0,1,1.0
+12949,108,2.1.3,1,1,1.0
+2258,16,2.3.1,0,1,1.0
+2258,99,2.3,1,1,1.0
+9187,53,1.4.3.6,0,1,1.0
+9187,142,1.4.3,1,1,1.0
+9187,126,1.4,2,1,
+17851,126,1.4,0,1,1.0
+17851,170,1,1,1,
+19142,135,1.3.2.1,0,1,1.0
+19142,130,1.3.2,1,1,1.0
+19142,58,1.3.2,1,1,1.0
+19142,106,1.3,2,1,
+19249,135,2.1.3.1,0,1,1.0
+19249,148,2.1.3,1,1,1.0
+1360,13,2.1.3.3,0,1,1.0
+1360,97,2.1.3,1,1,
+20541,142,1.4.2,0,1,1.0
+20541,126,1.4,1,1,
+20538,142,1.4.2,0,1,1.0
+20538,126,1.4,1,1,
+18575,130,1.3.5,0,1,1.0
+18575,29,1.3,1,1,1.0
+18575,106,1.3,1,1,
+12936,79,2.1.3.4,0,1,1.0
+12936,73,2.1.3,1,1,
+17896,126,1.4,0,1,1.0
+17896,170,1,1,1,1.0
+14233,87,1.1.1,0,1,1.0
+14233,105,1.1,1,1,
+6746,41,1.4.3.2,0,1,1.0
+6746,142,1.4.3,1,1,
+657,6,2.1.2.1,0,1,1.0
+657,159,2.1.2,1,1,
+9486,53,1.4.5.8,0,1,1.0
+9486,41,1.4.5,1,1,
+17875,126,1.4,0,1,1.0
+17875,170,1,1,1,1.0
+6738,41,1.4.3.2,0,1,1.0
+6738,142,1.4.3,1,1,
+10057,57,1.3.3.3,0,1,1.0
+10057,99,1.3.3,1,1,
+22212,157,1.4.1,0,1,1.0
+22212,126,1.4,1,1,
+4120,23,1.4.2.7,0,1,1.0
+4120,142,1.4.2,1,1,
+13215,79,2.3.1,0,1,1.0
+13215,126,2.3,1,1,1.0
+6736,41,1.4.3.2,0,1,1.0
+6736,142,1.4.3,1,1,1.0
+6736,126,1.4,2,1,
+1152,12,1.2.1,0,1,1.0
+1152,97,1.2,1,1,
+18758,131,2.1.1.4,0,1,1.0
+18758,106,2.1.1,1,1,
+13008,79,2.1.3.6,0,1,1.0
+13008,108,2.1.3,1,1,1.0
+6750,41,1.4.3.2,0,1,1.0
+6750,142,1.4.3,1,1,
+1366,13,2.1.3.3,0,1,1.0
+1366,106,2.1.3,1,1,1.0
+20245,140,1.4.5.1,0,1,1.0
+20245,41,1.4.5,1,1,1.0
+20245,126,1.4,2,1,
+4142,23,1.4.2.7,0,1,1.0
+4142,142,1.4.2,1,1,
+23592,168,2.3.2,0,1,1.0
+23592,99,2.3,1,1,1.0
+23657,169,1.1.1,0,1,1.0
+23657,105,1.1,1,1,
+5365,32,1.2.3,0,1,1.0
+5365,97,1.2,1,1,1.0
+12649,79,1.3.1.4,0,1,1.0
+12649,100,1.3.1,1,1,1.0
+607,6,1.3.1.2,0,1,1.0
+607,99,1.3.1,1,1,
+15633,103,1.1.1,0,1,1.0
+15633,94,1.1,1,1,
+9494,53,1.4.5.8,0,1,1.0
+9494,41,1.4.5,1,1,
+11330,63,1.4.4.5,0,1,1.0
+11330,0,1.4.4,1,1,
+17864,126,1.4,0,1,1.0
+17864,170,1,1,1,1.0
+23057,165,2.1.2.2,0,1,1.0
+23057,79,2.1.2,1,1,
+16908,117,2.1.1.4,0,1,1.0
+16908,80,2.1.1,1,1,1.0
+22215,157,1.4.1,0,1,1.0
+22215,126,1.4,1,1,
+17883,126,1.4,0,1,1.0
+17883,170,1,1,1,
+1309,13,2.1.3.2,0,1,1.0
+1309,73,2.1.3,1,1,1.0
+9176,53,1.4.3.6,0,1,1.0
+9176,142,1.4.3,1,1,1.0
+9176,126,1.4,2,1,
+6880,41,1.4.5,0,1,1.0
+6880,126,1.4,1,1,
+9491,53,1.4.5.8,0,1,1.0
+9491,41,1.4.5,1,1,
+15336,99,2.1,0,1,1.0
+15336,98,2,1,1,
+6876,41,1.4.5,0,1,1.0
+6876,126,1.4,1,1,1.0
+6876,170,1,2,1,
+19349,135,2.1.3.3,0,1,1.0
+19349,126,2.1.3,1,1,1.0
+18554,130,1.3.5,0,1,1.0
+18554,29,1.3,1,1,
+22249,157,1.4.1,0,1,1.0
+22249,126,1.4,1,1,
+10849,60,2.1.1.4,0,1,1.0
+10849,80,2.1.1,1,1,1.0
+792,6,2.1.2.3,0,1,1.0
+792,84,2.1.2,1,1,1.0
+19358,135,2.1.3.4,0,1,1.0
+19358,106,2.1.3,1,1,
+6852,41,1.4.5,0,1,1.0
+6852,126,1.4,1,1,
+7499,45,2.1.4.1.3,0,1,1.0
+7499,79,2.1.4.1,1,1,1.0
+8930,53,1.4.2.3,0,1,1.0
+8930,142,1.4.2,1,1,
+6726,41,1.4.3.2,0,1,1.0
+6726,142,1.4.3,1,1,1.0
+6726,126,1.4,2,1,
+17877,126,1.4,0,1,1.0
+17877,170,1,1,1,1.0
+22457,161,2.3.2,0,1,1.0
+22457,95,2.3,1,1,
+4191,23,2.1.3.6,0,1,1.0
+4191,97,2.1.3,1,1,
+4103,23,1.4.2.7,0,1,1.0
+4103,142,1.4.2,1,1,
+22221,157,1.4.1,0,1,1.0
+22221,126,1.4,1,1,
+13032,79,2.1.3.6,0,1,1.0
+13032,106,2.1.3,1,1,
+5557,33,2.1.2.4,0,1,1.0
+5557,84,2.1.2,1,1,
+9489,53,1.4.5.8,0,1,1.0
+9489,41,1.4.5,1,1,
+6868,41,1.4.5,0,1,1.0
+6868,126,1.4,1,1,
+17257,117,2.1.4.2.2,0,1,1.0
+17257,79,2.1.4.2,1,1,
+2157,15,1.3.3.5,0,1,1.0
+2157,75,1.3.3,1,1,
+3207,22,2.1.3.4,0,1,1.0
+3207,97,2.1.3,1,1,
+1472,13,2.1.3.5,0,1,1.0
+1472,97,2.1.3,1,1,
+12799,79,2.1.3.1,0,1,1.0
+12799,74,2.1.3,1,1,
+17007,117,2.1.4.1.1,0,1,1.0
+17007,81,2.1.4.1,1,1,
+4315,23,2.3.3,0,1,1.0
+4315,99,2.3,1,1,1.0
+16791,117,2.1.1.1,0,1,1.0
+16791,80,2.1.1,1,1,
+4137,23,1.4.2.7,0,1,1.0
+4137,142,1.4.2,1,1,1.0
+4137,126,1.4,2,1,
+19107,135,1.3.2.1,0,1,1.0
+19107,130,1.3.2,1,1,1.0
+19107,58,1.3.2,1,1,1.0
+19107,29,1.3,2,1,
+19107,106,1.3,2,1,
+2569,20,1.3.1.2,0,1,1.0
+2569,93,1.3.1,1,1,
+23457,168,1.3.3.4,0,1,1.0
+23457,97,1.3.3,1,1,
+15616,103,1.1.1,0,1,1.0
+15616,106,1.1,1,1,
+20573,142,1.4.3,0,1,1.0
+20573,126,1.4,1,1,
+23607,168,2.3.3,0,1,1.0
+23607,99,2.3,1,1,
+20247,140,1.4.5.1,0,1,1.0
+20247,41,1.4.5,1,1,1.0
+20247,126,1.4,2,1,1.0
+20247,170,1,3,1,
+11338,63,1.4.4.5,0,1,1.0
+11338,0,1.4.4,1,1,1.0
+11338,40,1.4.4,1,1,1.0
+11338,126,1.4,2,1,
+158,3,1.3.1.4,0,1,1.0
+158,85,1.3.1,1,1,
+9467,53,1.4.5.8,0,1,1.0
+9467,41,1.4.5,1,1,
+8901,53,1.4.2.3,0,1,1.0
+8901,142,1.4.2,1,1,
+20566,142,1.4.3,0,1,1.0
+20566,126,1.4,1,1,
+19125,135,1.3.2.1,0,1,1.0
+19125,130,1.3.2,1,1,1.0
+19125,58,1.3.2,1,1,1.0
+19125,106,1.3,2,1,1.0
+19125,29,1.3,2,1,
+20242,140,1.4.5.1,0,1,1.0
+20242,41,1.4.5,1,1,
+18308,129,1.2.3,0,1,1.0
+18308,97,1.2,1,1,1.0
+20229,140,1.4.5.1,0,1,1.0
+20229,41,1.4.5,1,1,1.0
+20229,126,1.4,2,1,
+8929,53,1.4.2.3,0,1,1.0
+8929,142,1.4.2,1,1,1.0
+8929,126,1.4,2,1,
+12772,79,2.1.3.1,0,1,1.0
+12772,97,2.1.3,1,1,
+9197,53,1.4.3.6,0,1,1.0
+9197,142,1.4.3,1,1,1.0
+9197,126,1.4,2,1,1.0
+9197,170,1,3,1,
+12382,78,2.1.1.2,0,1,1.0
+12382,80,2.1.1,1,1,
+17890,126,1.4,0,1,1.0
+17890,170,1,1,1,1.0
+10749,60,2.1.1.2,0,1,1.0
+10749,80,2.1.1,1,1,1.0
+6853,41,1.4.5,0,1,1.0
+6853,126,1.4,1,1,
+14299,88,1.1.3,0,1,1.0
+14299,86,1.1,1,1,1.0
+11346,63,1.4.4.5,0,1,1.0
+11346,0,1.4.4,1,1,
+9496,53,1.4.5.8,0,1,1.0
+9496,41,1.4.5,1,1,
+4144,23,1.4.2.7,0,1,1.0
+4144,142,1.4.2,1,1,
+17588,123,1.1.2,0,1,1.0
+17588,94,1.1,1,1,1.0
+1412,13,2.1.3.4,0,1,1.0
+1412,97,2.1.3,1,1,
+5469,33,2.1.2.2,0,1,1.0
+5469,81,2.1.2,1,1,
+19111,135,1.3.2.1,0,1,1.0
+19111,58,1.3.2,1,1,1.0
+19111,130,1.3.2,1,1,1.0
+19111,106,1.3,2,1,
+6307,39,1.3.1,0,1,1.0
+6307,29,1.3,1,1,
+8921,53,1.4.2.3,0,1,1.0
+8921,142,1.4.2,1,1,
+15310,99,2.1,0,1,1.0
+15310,98,2,1,1,
+20552,142,1.4.3,0,1,1.0
+20552,126,1.4,1,1,
+22222,157,1.4.1,0,1,1.0
+22222,126,1.4,1,1,
+19099,135,1.1.3,0,1,1.0
+19099,94,1.1,1,1,1.0
+20564,142,1.4.3,0,1,1.0
+20564,126,1.4,1,1,1.0
+20564,170,1,2,1,1.0
+20540,142,1.4.2,0,1,1.0
+20540,126,1.4,1,1,
+3257,22,2.1.3.5,0,1,1.0
+3257,106,2.1.3,1,1,
+15320,99,2.1,0,1,1.0
+15320,102,2,1,1,
+15320,98,2,1,1,1.0
+8199,48,1.2.2,0,1,1.0
+8199,126,1.2,1,1,1.0
+6724,41,1.4.3.2,0,1,1.0
+6724,142,1.4.3,1,1,
+20218,140,1.4.5.1,0,1,1.0
+20218,41,1.4.5,1,1,1.0
+20218,126,1.4,2,1,1.0
+20218,170,1,3,1,1.0
+8946,53,1.4.2.3,0,1,1.0
+8946,142,1.4.2,1,1,
+4057,23,1.3.3.4,0,1,1.0
+4057,99,1.3.3,1,1,
+16527,113,1.1.1,0,1,1.0
+16527,105,1.1,1,1,1.0
+8649,50,1.3.1.5,0,1,1.0
+8649,85,1.3.1,1,1,1.0
+18958,133,1.4.4.1,0,1,1.0
+18958,40,1.4.4,1,1,1.0
+6735,41,1.4.3.2,0,1,1.0
+6735,142,1.4.3,1,1,
+18563,130,1.3.5,0,1,1.0
+18563,29,1.3,1,1,1.0
+15249,99,1.3.1,0,1,1.0
+15249,106,1.3,1,1,1.0
+7157,44,1.1.1,0,1,1.0
+7157,106,1.1,1,1,
+6732,41,1.4.3.2,0,1,1.0
+6732,142,1.4.3,1,1,1.0
+6732,126,1.4,2,1,
+15308,99,2.1,0,1,1.0
+15308,98,2,1,1,
+15308,102,2,1,1,
+14899,96,1.2.3,0,1,1.0
+14899,126,1.2,1,1,1.0
+6728,41,1.4.3.2,0,1,1.0
+6728,142,1.4.3,1,1,
+11711,69,1.1.1,0,1,1.0
+11711,94,1.1,1,1,1.0
+15347,99,2.1,0,1,1.0
+15347,102,2,1,1,
+15347,98,2,1,1,1.0
+6729,41,1.4.3.2,0,1,1.0
+6729,142,1.4.3,1,1,1.0
+6729,126,1.4,2,1,
+99,1,2.1.1.5,0,1,1.0
+99,148,2.1.1,1,1,1.0
+8249,49,1.3.1.1,0,1,1.0
+8249,99,1.3.1,1,1,1.0
+9490,53,1.4.5.8,0,1,1.0
+9490,41,1.4.5,1,1,1.0
+9490,126,1.4,2,1,
+22202,157,1.4.1,0,1,1.0
+22202,126,1.4,1,1,
+6741,41,1.4.3.2,0,1,1.0
+6741,142,1.4.3,1,1,
+4101,23,1.4.2.7,0,1,1.0
+4101,142,1.4.2,1,1,
+11308,63,1.4.4.5,0,1,1.0
+11308,40,1.4.4,1,1,1.0
+23683,169,1.1.1,0,1,1.0
+23683,106,1.1,1,1,
+22204,157,1.4.1,0,1,1.0
+22204,126,1.4,1,1,
+17866,126,1.4,0,1,1.0
+17866,170,1,1,1,1.0
+9188,53,1.4.3.6,0,1,1.0
+9188,142,1.4.3,1,1,
+20551,142,1.4.3,0,1,1.0
+20551,126,1.4,1,1,
+20536,142,1.4.2,0,1,1.0
+20536,126,1.4,1,1,
+16808,117,2.1.1.2,0,1,1.0
+16808,85,2.1.1,1,1,1.0
+1058,10,1.3.3.5,0,1,1.0
+1058,75,1.3.3,1,1,
+8916,53,1.4.2.3,0,1,1.0
+8916,142,1.4.2,1,1,1.0
+8916,126,1.4,2,1,
+20211,140,1.4.5.1,0,1,1.0
+20211,41,1.4.5,1,1,1.0
+20211,126,1.4,2,1,
+11407,65,1.2.1,0,1,1.0
+11407,126,1.2,1,1,
+5457,33,2.1.2.2,0,1,1.0
+5457,79,2.1.2,1,1,
+20216,140,1.4.5.1,0,1,1.0
+20216,41,1.4.5,1,1,1.0
+20216,126,1.4,2,1,
+9482,53,1.4.5.8,0,1,1.0
+9482,41,1.4.5,1,1,1.0
+9482,126,1.4,2,1,
+20222,140,1.4.5.1,0,1,1.0
+20222,41,1.4.5,1,1,
+4114,23,1.4.2.7,0,1,1.0
+4114,142,1.4.2,1,1,1.0
+4114,126,1.4,2,1,1.0
+4114,170,1,3,1,1.0
+20574,142,1.4.3,0,1,1.0
+20574,126,1.4,1,1,
+6745,41,1.4.3.2,0,1,1.0
+6745,142,1.4.3,1,1,1.0
+6745,126,1.4,2,1,
+2042,13,2.3.3,0,1,1.0
+2042,124,2.3,1,1,1.0
+12857,79,2.1.3.3,0,1,1.0
+12857,148,2.1.3,1,1,
+16157,108,2.2,0,1,1.0
+16157,102,2,1,1,
+17874,126,1.4,0,1,1.0
+17874,170,1,1,1,
+8928,53,1.4.2.3,0,1,1.0
+8928,142,1.4.2,1,1,
+19134,135,1.3.2.1,0,1,1.0
+19134,58,1.3.2,1,1,1.0
+19134,130,1.3.2,1,1,1.0
+19134,106,1.3,2,1,
+14441,89,1.3.3.1,0,1,1.0
+14441,75,1.3.3,1,1,
+20598,142,1.4.3,0,1,1.0
+20598,126,1.4,1,1,
+1508,13,2.1.3.6,0,1,1.0
+1508,74,2.1.3,1,1,
+7132,43,1.3.1.6,0,1,1.0
+7132,39,1.3.1,1,1,
+18595,130,1.3.5,0,1,1.0
+18595,106,1.3,1,1,
+9966,56,1.1.1,0,1,1.0
+9966,126,1.1,1,1,
+23215,166,1.2.3,0,1,1.0
+23215,67,1.2,1,1,1.0
+1915,13,2.3.1,0,1,1.0
+1915,95,2.3,1,1,1.0
+1549,13,2.1.3.6,0,1,1.0
+1549,126,2.1.3,1,1,1.0
+6858,41,1.4.5,0,1,1.0
+6858,126,1.4,1,1,1.0
+6858,170,1,2,1,1.0
+19507,135,2.1.3.7,0,1,1.0
+19507,106,2.1.3,1,1,
+20517,142,1.4.2,0,1,1.0
+20517,126,1.4,1,1,
+17898,126,1.4,0,1,1.0
+17898,170,1,1,1,1.0
+20224,140,1.4.5.1,0,1,1.0
+20224,41,1.4.5,1,1,
+13842,82,2.1.2.4,0,1,1.0
+13842,159,2.1.2,1,1,1.0
+12819,79,2.1.3.2,0,1,1.0
+12819,74,2.1.3,1,1,1.0
+15142,99,1.1.2,0,1,1.0
+15142,105,1.1,1,1,1.0
+1446,13,2.1.3.4,0,1,1.0
+1446,108,2.1.3,1,1,
+9475,53,1.4.5.8,0,1,1.0
+9475,41,1.4.5,1,1,
+8924,53,1.4.2.3,0,1,1.0
+8924,142,1.4.2,1,1,
+10099,57,1.3.3.3,0,1,1.0
+10099,97,1.3.3,1,1,1.0
+6949,42,1.3.1.1,0,1,1.0
+6949,85,1.3.1,1,1,1.0
+6869,41,1.4.5,0,1,1.0
+6869,126,1.4,1,1,
+14742,95,1.2.3,0,1,1.0
+14742,67,1.2,1,1,1.0
+6865,41,1.4.5,0,1,1.0
+6865,126,1.4,1,1,
+6708,41,1.4.3.2,0,1,1.0
+6708,142,1.4.3,1,1,1.0
+6708,126,1.4,2,1,
+22507,161,2.3.3,0,1,1.0
+22507,95,2.3,1,1,
+4415,25,1.3.1.7,0,1,1.0
+4415,100,1.3.1,1,1,1.0
+21357,149,2.1.2.1,0,1,1.0
+21357,58,2.1.2,1,1,
+738,6,2.1.2.2,0,1,1.0
+738,79,2.1.2,1,1,1.0
+15321,99,2.1,0,1,1.0
+15321,102,2,1,1,
+15321,98,2,1,1,1.0
+22220,157,1.4.1,0,1,1.0
+22220,126,1.4,1,1,
+15306,99,2.1,0,1,1.0
+15306,98,2,1,1,1.0
+15306,102,2,1,1,
+18299,129,1.1.2,0,1,1.0
+18299,105,1.1,1,1,1.0
+21719,153,1.3.1.1,0,1,1.0
+21719,39,1.3.1,1,1,
+8592,49,2.1.2.4,0,1,1.0
+8592,58,2.1.2,1,1,1.0
+11337,63,1.4.4.5,0,1,1.0
+11337,0,1.4.4,1,1,1.0
+20600,142,1.4.3,0,1,1.0
+20600,126,1.4,1,1,
+22219,157,1.4.1,0,1,1.0
+22219,126,1.4,1,1,
+1249,13,1.2.2,0,1,1.0
+1249,106,1.2,1,1,1.0
+8927,53,1.4.2.3,0,1,1.0
+8927,142,1.4.2,1,1,
+19008,134,1.3.3.5,0,1,1.0
+19008,97,1.3.3,1,1,
+20008,139,1.3.3.7,0,1,1.0
+20008,99,1.3.3,1,1,
+21437,149,2.1.2.2,0,1,1.0
+21437,81,2.1.2,1,1,1.0
+11888,71,1.3.1.2,0,1,1.0
+11888,99,1.3.1,1,1,1.0
+8115,47,2.1.3.6,0,1,1.0
+8115,126,2.1.3,1,1,
+6702,41,1.4.3.2,0,1,1.0
+6702,142,1.4.3,1,1,1.0
+6702,126,1.4,2,1,
+23661,169,1.1.1,0,1,1.0
+23661,86,1.1,1,1,1.0
+15345,99,2.1,0,1,1.0
+15345,98,2,1,1,
+15345,102,2,1,1,
+10007,56,1.3.1.7,0,1,1.0
+10007,93,1.3.1,1,1,
+22229,157,1.4.1,0,1,1.0
+22229,126,1.4,1,1,
+9961,56,1.1.1,0,1,1.0
+9961,105,1.1,1,1,1.0
+12805,79,2.1.3.2,0,1,1.0
+12805,106,2.1.3,1,1,
+7941,47,2.1.2.1,0,1,1.0
+7941,58,2.1.2,1,1,1.0
+17857,126,1.4,0,1,1.0
+17857,170,1,1,1,1.0
+20580,142,1.4.3,0,1,1.0
+20580,126,1.4,1,1,
+23542,168,2.3.1,0,1,1.0
+23542,155,2.3,1,1,1.0
+6864,41,1.4.5,0,1,1.0
+6864,126,1.4,1,1,1.0
+6864,170,1,2,1,1.0
+14707,95,1.2.3,0,1,1.0
+14707,126,1.2,1,1,
+6862,41,1.4.5,0,1,1.0
+6862,126,1.4,1,1,
+23088,165,2.1.2.2,0,1,1.0
+23088,84,2.1.2,1,1,1.0
+18561,130,1.3.5,0,1,1.0
+18561,106,1.3,1,1,1.0
+4113,23,1.4.2.7,0,1,1.0
+4113,142,1.4.2,1,1,1.0
+4113,126,1.4,2,1,1.0
+4113,170,1,3,1,1.0
+3757,22,2.3.2,0,1,1.0
+3757,84,2.3,1,1,
+3199,22,2.1.3.3,0,1,1.0
+3199,148,2.1.3,1,1,1.0
+8419,49,2.1.2.1,0,1,1.0
+8419,79,2.1.2,1,1,
+20504,142,1.4.2,0,1,1.0
+20504,126,1.4,1,1,
+6057,38,2.1.1.1,0,1,1.0
+6057,106,2.1.1,1,1,
+21142,146,1.3.1.1,0,1,1.0
+21142,100,1.3.1,1,1,1.0
+13066,79,2.1.3.7,0,1,1.0
+13066,148,2.1.3,1,1,1.0
+17861,126,1.4,0,1,1.0
+17861,170,1,1,1,1.0
+7907,47,2.1.2.1,0,1,1.0
+7907,84,2.1.2,1,1,
+18757,131,2.1.1.4,0,1,1.0
+18757,80,2.1.1,1,1,
+22157,156,1.3.1.7,0,1,1.0
+22157,85,1.3.1,1,1,
+19132,135,1.3.2.1,0,1,1.0
+19132,130,1.3.2,1,1,1.0
+4607,26,2.1.3.4,0,1,1.0
+4607,126,2.1.3,1,1,
+19135,135,1.3.2.1,0,1,1.0
+19135,58,1.3.2,1,1,1.0
+20586,142,1.4.3,0,1,1.0
+20586,126,1.4,1,1,
+11306,63,1.4.4.5,0,1,1.0
+11306,0,1.4.4,1,1,1.0
+11306,40,1.4.4,1,1,
+9151,53,1.4.3.6,0,1,1.0
+9151,142,1.4.3,1,1,
+20532,142,1.4.2,0,1,1.0
+20532,126,1.4,1,1,
+22234,157,1.4.1,0,1,1.0
+22234,126,1.4,1,1,
+757,6,2.1.2.3,0,1,1.0
+757,81,2.1.2,1,1,
+8922,53,1.4.2.3,0,1,1.0
+8922,142,1.4.2,1,1,
+11321,63,1.4.4.5,0,1,1.0
+11321,40,1.4.4,1,1,
+1281,13,2.1.3.1,0,1,1.0
+1281,74,2.1.3,1,1,
+19357,135,2.1.3.4,0,1,1.0
+19357,108,2.1.3,1,1,
+14341,89,1.1.2,0,1,1.0
+14341,86,1.1,1,1,
+4182,23,2.1.3.6,0,1,1.0
+4182,148,2.1.3,1,1,
+11320,63,1.4.4.5,0,1,1.0
+11320,40,1.4.4,1,1,
+6875,41,1.4.5,0,1,1.0
+6875,126,1.4,1,1,
+14732,95,1.2.3,0,1,1.0
+14732,126,1.2,1,1,
+13841,82,2.1.2.4,0,1,1.0
+13841,84,2.1.2,1,1,
+20228,140,1.4.5.1,0,1,1.0
+20228,41,1.4.5,1,1,
+22207,157,1.4.1,0,1,1.0
+22207,126,1.4,1,1,
+16919,117,2.1.1.4,0,1,1.0
+16919,85,2.1.1,1,1,
+1490,13,2.1.3.5,0,1,1.0
+1490,73,2.1.3,1,1,
+3707,22,2.3.1,0,1,1.0
+3707,95,2.3,1,1,
+4307,23,2.3.3,0,1,1.0
+4307,126,2.3,1,1,
+9480,53,1.4.5.8,0,1,1.0
+9480,41,1.4.5,1,1,
+14549,91,1.2.1,0,1,1.0
+14549,67,1.2,1,1,1.0
+4123,23,1.4.2.7,0,1,1.0
+4123,142,1.4.2,1,1,
+22218,157,1.4.1,0,1,1.0
+22218,126,1.4,1,1,
+8107,47,2.1.3.6,0,1,1.0
+8107,148,2.1.3,1,1,
+11615,68,1.3.1.2,0,1,1.0
+11615,99,1.3.1,1,1,
+3792,22,2.3.2,0,1,1.0
+3792,155,2.3,1,1,1.0
+12638,79,1.3.1.4,0,1,1.0
+12638,100,1.3.1,1,1,1.0
+4699,26,2.1.3.5,0,1,1.0
+4699,97,2.1.3,1,1,1.0
+22519,161,2.3.3,0,1,1.0
+22519,155,2.3,1,1,
+6893,41,1.4.5,0,1,1.0
+6893,126,1.4,1,1,
+13208,79,2.3.1,0,1,1.0
+13208,84,2.3,1,1,1.0
+4457,26,2.1.3.1,0,1,1.0
+4457,148,2.1.3,1,1,
+19149,135,1.3.2.1,0,1,1.0
+19149,130,1.3.2,1,1,1.0
+2232,16,1.1.3,0,1,1.0
+2232,94,1.1,1,1,
+7507,45,2.1.4.1.4,0,1,1.0
+7507,81,2.1.4.1,1,1,
+1466,13,2.1.3.5,0,1,1.0
+1466,106,2.1.3,1,1,1.0
+15637,103,1.1.1,0,1,1.0
+15637,86,1.1,1,1,1.0
+4104,23,1.4.2.7,0,1,1.0
+4104,142,1.4.2,1,1,1.0
+4104,126,1.4,2,1,
+9182,53,1.4.3.6,0,1,1.0
+9182,142,1.4.3,1,1,1.0
+9182,126,1.4,2,1,
+23049,165,2.1.2.1,0,1,1.0
+23049,81,2.1.2,1,1,1.0
+9466,53,1.4.5.8,0,1,1.0
+9466,41,1.4.5,1,1,1.0
+9466,126,1.4,2,1,
+1301,13,2.1.3.2,0,1,1.0
+1301,97,2.1.3,1,1,
+4349,23,2.3.3,0,1,1.0
+4349,124,2.3,1,1,1.0
+18570,130,1.3.5,0,1,1.0
+18570,106,1.3,1,1,
+18570,29,1.3,1,1,1.0
+1957,13,2.3.2,0,1,1.0
+1957,95,2.3,1,1,
+1409,13,2.1.3.4,0,1,1.0
+1409,148,2.1.3,1,1,
+12810,79,2.1.3.2,0,1,1.0
+12810,148,2.1.3,1,1,
+11733,69,1.1.1,0,1,1.0
+11733,126,1.1,1,1,
+21557,150,1.1.1,0,1,1.0
+21557,126,1.1,1,1,
+3742,22,2.3.1,0,1,1.0
+3742,84,2.3,1,1,1.0
+11719,69,1.1.1,0,1,1.0
+11719,86,1.1,1,1,
+18207,128,1.1.2,0,1,1.0
+18207,126,1.1,1,1,
+1587,13,2.1.3.7,0,1,1.0
+1587,108,2.1.3,1,1,
+1587,74,2.1.3,1,1,
+18574,130,1.3.5,0,1,1.0
+18574,106,1.3,1,1,
+11343,63,1.4.4.5,0,1,1.0
+11343,40,1.4.4,1,1,1.0
+11343,0,1.4.4,1,1,1.0
+11343,126,1.4,2,1,
+21157,147,1.1.2,0,1,1.0
+21157,105,1.1,1,1,
+9957,56,1.1.1,0,1,1.0
+9957,106,1.1,1,1,
+3315,22,2.1.3.6,0,1,1.0
+3315,148,2.1.3,1,1,
+19857,137,2.1.4.2.1,0,1,1.0
+19857,81,2.1.4.2,1,1,
+14608,93,1.3.1,0,1,1.0
+14608,106,1.3,1,1,
+1541,13,2.1.3.6,0,1,1.0
+1541,73,2.1.3,1,1,
+6898,41,1.4.5,0,1,1.0
+6898,126,1.4,1,1,
+8908,53,1.4.2.3,0,1,1.0
+8908,142,1.4.2,1,1,1.0
+8908,126,1.4,2,1,
+1757,13,2.1.4.1.4,0,1,1.0
+1757,81,2.1.4.1,1,1,
+20522,142,1.4.2,0,1,1.0
+20522,126,1.4,1,1,
+1402,13,2.1.3.4,0,1,1.0
+1402,148,2.1.3,1,1,1.0
+10199,57,2.3.2,0,1,1.0
+10199,99,2.3,1,1,1.0
+15348,99,2.1,0,1,1.0
+15348,98,2,1,1,1.0
+15348,102,2,1,1,
+6882,41,1.4.5,0,1,1.0
+6882,126,1.4,1,1,
+11347,63,1.4.4.5,0,1,1.0
+11347,0,1.4.4,1,1,1.0
+11347,40,1.4.4,1,1,1.0
+11347,126,1.4,2,1,
+20449,141,1.3.3.2,0,1,1.0
+20449,75,1.3.3,1,1,1.0
+9193,53,1.4.3.6,0,1,1.0
+9193,142,1.4.3,1,1,
+11310,63,1.4.4.5,0,1,1.0
+11310,0,1.4.4,1,1,
+21082,145,1.3.1.4,0,1,1.0
+21082,85,1.3.1,1,1,
+18581,130,1.3.5,0,1,1.0
+18581,29,1.3,1,1,
+18581,106,1.3,1,1,
+21169,147,1.1.2,0,1,1.0
+21169,105,1.1,1,1,
+9451,53,1.4.5.8,0,1,1.0
+9451,41,1.4.5,1,1,
+19148,135,1.3.2.1,0,1,1.0
+19148,130,1.3.2,1,1,1.0
+19148,58,1.3.2,1,1,1.0
+19148,106,1.3,2,1,
+4141,23,1.4.2.7,0,1,1.0
+4141,142,1.4.2,1,1,
+1302,13,2.1.3.2,0,1,1.0
+1302,126,2.1.3,1,1,1.0
+20249,140,1.4.5.1,0,1,1.0
+20249,41,1.4.5,1,1,
+19136,135,1.3.2.1,0,1,1.0
+19136,58,1.3.2,1,1,1.0
+19136,130,1.3.2,1,1,1.0
+19136,106,1.3,2,1,
+10157,57,2.3.2,0,1,1.0
+10157,155,2.3,1,1,
+2108,14,1.3.4.3,0,1,1.0
+2108,80,1.3.4,1,1,1.0
+4148,23,1.4.2.7,0,1,1.0
+4148,142,1.4.2,1,1,
+6713,41,1.4.3.2,0,1,1.0
+6713,142,1.4.3,1,1,1.0
+6713,126,1.4,2,1,1.0
+6713,170,1,3,1,1.0
+12049,74,1.3.3.2,0,1,1.0
+12049,97,1.3.3,1,1,1.0
+16841,117,2.1.1.2,0,1,1.0
+16841,106,2.1.1,1,1,
+7957,47,2.1.2.2,0,1,1.0
+7957,159,2.1.2,1,1,
+12962,79,2.1.3.5,0,1,1.0
+12962,108,2.1.3,1,1,
+22238,157,1.4.1,0,1,1.0
+22238,126,1.4,1,1,
+7769,47,2.1.1.2,0,1,1.0
+7769,106,2.1.1,1,1,
+15302,99,2.1,0,1,1.0
+15302,98,2,1,1,1.0
+15302,102,2,1,1,1.0
+15302,170,1,2,1,1.0
+20237,140,1.4.5.1,0,1,1.0
+20237,41,1.4.5,1,1,1.0
+20237,126,1.4,2,1,
+12852,79,2.1.3.3,0,1,1.0
+12852,126,2.1.3,1,1,1.0
+20591,142,1.4.3,0,1,1.0
+20591,126,1.4,1,1,
+1657,13,2.1.4.1.2,0,1,1.0
+1657,79,2.1.4.1,1,1,
+4130,23,1.4.2.7,0,1,1.0
+4130,142,1.4.2,1,1,
+8457,49,2.1.2.2,0,1,1.0
+8457,79,2.1.2,1,1,
+9169,53,1.4.3.6,0,1,1.0
+9169,142,1.4.3,1,1,
+8907,53,1.4.2.3,0,1,1.0
+8907,142,1.4.2,1,1,
+3957,23,1.3.3.2,0,1,1.0
+3957,75,1.3.3,1,1,
+692,6,2.1.2.1,0,1,1.0
+692,81,2.1.2,1,1,1.0
+2249,16,1.1.3,0,1,1.0
+2249,86,1.1,1,1,1.0
+20236,140,1.4.5.1,0,1,1.0
+20236,41,1.4.5,1,1,
+20207,140,1.4.5.1,0,1,1.0
+20207,41,1.4.5,1,1,
+257,3,1.3.1.6,0,1,1.0
+257,85,1.3.1,1,1,
+19965,138,1.3.1.5,0,1,1.0
+19965,100,1.3.1,1,1,1.0
+18582,130,1.3.5,0,1,1.0
+18582,106,1.3,1,1,
+18582,29,1.3,1,1,
+4269,23,2.3.2,0,1,1.0
+4269,99,2.3,1,1,
+17879,126,1.4,0,1,1.0
+17879,170,1,1,1,1.0
+10892,60,2.1.1.5,0,1,1.0
+10892,148,2.1.1,1,1,1.0
+4157,23,2.1.3.6,0,1,1.0
+4157,97,2.1.3,1,1,
+8933,53,1.4.2.3,0,1,1.0
+8933,142,1.4.2,1,1,
+4549,26,2.1.3.2,0,1,1.0
+4549,126,2.1.3,1,1,1.0
+6894,41,1.4.5,0,1,1.0
+6894,126,1.4,1,1,
+4149,23,1.4.2.7,0,1,1.0
+4149,142,1.4.2,1,1,
+20942,144,2.1.2.2,0,1,1.0
+20942,81,2.1.2,1,1,1.0
+16507,113,1.1.1,0,1,1.0
+16507,94,1.1,1,1,
+12996,79,2.1.3.5,0,1,1.0
+12996,148,2.1.3,1,1,
+4109,23,1.4.2.7,0,1,1.0
+4109,142,1.4.2,1,1,1.0
+4109,126,1.4,2,1,
+17855,126,1.4,0,1,1.0
+17855,170,1,1,1,1.0
+20543,142,1.4.2,0,1,1.0
+20543,126,1.4,1,1,
+16607,115,1.1.3,0,1,1.0
+16607,86,1.1,1,1,
+15316,99,2.1,0,1,1.0
+15316,98,2,1,1,
+6249,38,2.1.1.4,0,1,1.0
+6249,85,2.1.1,1,1,1.0
+1316,13,2.1.3.2,0,1,1.0
+1316,106,2.1.3,1,1,1.0
+7992,47,2.1.2.2,0,1,1.0
+7992,58,2.1.2,1,1,1.0
+18558,130,1.3.5,0,1,1.0
+18558,106,1.3,1,1,
+18558,29,1.3,1,1,
+17872,126,1.4,0,1,1.0
+17872,170,1,1,1,1.0
+17415,120,1.2.3,0,1,1.0
+17415,126,1.2,1,1,1.0
+9460,53,1.4.5.8,0,1,1.0
+9460,41,1.4.5,1,1,
+1416,13,2.1.3.4,0,1,1.0
+1416,97,2.1.3,1,1,1.0
+3719,22,2.3.1,0,1,1.0
+3719,99,2.3,1,1,
+6878,41,1.4.5,0,1,1.0
+6878,126,1.4,1,1,
+16642,115,1.1.3,0,1,1.0
+16642,105,1.1,1,1,1.0
+9454,53,1.4.5.8,0,1,1.0
+9454,41,1.4.5,1,1,1.0
+9454,126,1.4,2,1,
+15318,99,2.1,0,1,1.0
+15318,98,2,1,1,
+15318,102,2,1,1,1.0
+23599,168,2.3.2,0,1,1.0
+23599,155,2.3,1,1,1.0
+19057,135,1.1.3,0,1,1.0
+19057,86,1.1,1,1,
+21708,153,1.3.1.1,0,1,1.0
+21708,100,1.3.1,1,1,1.0
+9195,53,1.4.3.6,0,1,1.0
+9195,142,1.4.3,1,1,1.0
+9195,126,1.4,2,1,
+15323,99,2.1,0,1,1.0
+15323,102,2,1,1,
+358,4,1.2.2,0,1,1.0
+358,97,1.2,1,1,1.0
+6717,41,1.4.3.2,0,1,1.0
+6717,142,1.4.3,1,1,
+9465,53,1.4.5.8,0,1,1.0
+9465,41,1.4.5,1,1,1.0
+9465,126,1.4,2,1,
+9474,53,1.4.5.8,0,1,1.0
+9474,41,1.4.5,1,1,
+20583,142,1.4.3,0,1,1.0
+20583,126,1.4,1,1,
+18588,130,1.3.5,0,1,1.0
+18588,106,1.3,1,1,
+15657,104,1.1.1,0,1,1.0
+15657,94,1.1,1,1,
+15342,99,2.1,0,1,1.0
+15342,98,2,1,1,
+4143,23,1.4.2.7,0,1,1.0
+4143,142,1.4.2,1,1,
+20957,144,2.1.2.3,0,1,1.0
+20957,84,2.1.2,1,1,
+6727,41,1.4.3.2,0,1,1.0
+6727,142,1.4.3,1,1,
+21099,145,1.3.1.4,0,1,1.0
+21099,99,1.3.1,1,1,1.0
+14457,90,1.3.1.7,0,1,1.0
+14457,99,1.3.1,1,1,
+18192,127,1.1.3,0,1,1.0
+18192,86,1.1,1,1,1.0
+13892,83,1.3.3.2,0,1,1.0
+13892,99,1.3.3,1,1,1.0
+21192,147,1.1.2,0,1,1.0
+21192,94,1.1,1,1,1.0
+9497,53,1.4.5.8,0,1,1.0
+9497,41,1.4.5,1,1,1.0
+9497,126,1.4,2,1,1.0
+9497,170,1,3,1,
+6749,41,1.4.3.2,0,1,1.0
+6749,142,1.4.3,1,1,
+8941,53,1.4.2.3,0,1,1.0
+8941,142,1.4.2,1,1,
+9191,53,1.4.3.6,0,1,1.0
+9191,142,1.4.3,1,1,
+22224,157,1.4.1,0,1,1.0
+22224,126,1.4,1,1,
+18551,130,1.3.5,0,1,1.0
+18551,29,1.3,1,1,
+18551,106,1.3,1,1,1.0
+11457,66,1.2.1,0,1,1.0
+11457,126,1.2,1,1,
+22233,157,1.4.1,0,1,1.0
+22233,126,1.4,1,1,
+22211,157,1.4.1,0,1,1.0
+22211,126,1.4,1,1,1.0
+22211,170,1,2,1,1.0
+16357,111,1.3.3.1,0,1,1.0
+16357,99,1.3.3,1,1,
+20241,140,1.4.5.1,0,1,1.0
+20241,41,1.4.5,1,1,
+18257,129,1.1.2,0,1,1.0
+18257,86,1.1,1,1,
+1942,13,2.3.1,0,1,1.0
+1942,155,2.3,1,1,1.0
+1559,13,2.1.3.7,0,1,1.0
+1559,148,2.1.3,1,1,
+3838,22,2.3.3,0,1,1.0
+3838,95,2.3,1,1,1.0
+7015,42,1.3.1.4,0,1,1.0
+7015,39,1.3.1,1,1,1.0
+6157,38,2.1.1.3,0,1,1.0
+6157,148,2.1.1,1,1,
+4507,26,2.1.3.2,0,1,1.0
+4507,73,2.1.3,1,1,
+14607,93,1.3.1,0,1,1.0
+14607,29,1.3,1,1,
+19104,135,1.3.2.1,0,1,1.0
+19104,130,1.3.2,1,1,1.0
+8912,53,1.4.2.3,0,1,1.0
+8912,142,1.4.2,1,1,1.0
+8912,126,1.4,2,1,
+9159,53,1.4.3.6,0,1,1.0
+9159,142,1.4.3,1,1,1.0
+9159,126,1.4,2,1,
+12952,79,2.1.3.5,0,1,1.0
+12952,97,2.1.3,1,1,
+18407,130,1.3.4.1,0,1,1.0
+18407,77,1.3.4,1,1,
+9178,53,1.4.3.6,0,1,1.0
+9178,142,1.4.3,1,1,
+19150,135,1.3.2.1,0,1,1.0
+19150,130,1.3.2,1,1,1.0
+19150,58,1.3.2,1,1,1.0
+19150,29,1.3,2,1,
+12207,77,1.3.3.6,0,1,1.0
+12207,99,1.3.3,1,1,
+15339,99,2.1,0,1,1.0
+15339,102,2,1,1,
+6710,41,1.4.3.2,0,1,1.0
+6710,142,1.4.3,1,1,
+17895,126,1.4,0,1,1.0
+17895,170,1,1,1,1.0
+15311,99,2.1,0,1,1.0
+15311,98,2,1,1,
+15311,102,2,1,1,
+23692,169,1.1.1,0,1,1.0
+23692,86,1.1,1,1,1.0
+6859,41,1.4.5,0,1,1.0
+6859,126,1.4,1,1,1.0
+6859,170,1,2,1,
+17892,126,1.4,0,1,1.0
+17892,170,1,1,1,1.0
+702,6,2.1.2.2,0,1,1.0
+702,58,2.1.2,1,1,
+2349,16,2.3.2,0,1,1.0
+2349,99,2.3,1,1,1.0
+6856,41,1.4.5,0,1,1.0
+6856,126,1.4,1,1,
+4124,23,1.4.2.7,0,1,1.0
+4124,142,1.4.2,1,1,
+4341,23,2.3.3,0,1,1.0
+4341,95,2.3,1,1,1.0
+22206,157,1.4.1,0,1,1.0
+22206,126,1.4,1,1,
+22541,161,2.3.3,0,1,1.0
+22541,124,2.3,1,1,1.0
+11322,63,1.4.4.5,0,1,1.0
+11322,40,1.4.4,1,1,
+11322,0,1.4.4,1,1,
+6881,41,1.4.5,0,1,1.0
+6881,126,1.4,1,1,1.0
+6881,170,1,2,1,1.0
+9495,53,1.4.5.8,0,1,1.0
+9495,41,1.4.5,1,1,1.0
+9495,126,1.4,2,1,
+20250,140,1.4.5.1,0,1,1.0
+20250,41,1.4.5,1,1,
+20520,142,1.4.2,0,1,1.0
+20520,126,1.4,1,1,
+20560,142,1.4.3,0,1,1.0
+20560,126,1.4,1,1,
+13291,79,2.3.2,0,1,1.0
+13291,126,2.3,1,1,
+18584,130,1.3.5,0,1,1.0
+18584,29,1.3,1,1,1.0
+18584,106,1.3,1,1,1.0
+18584,170,1,2,1,1.0
+6958,42,1.3.1.3,0,1,1.0
+6958,99,1.3.1,1,1,
+1359,13,2.1.3.3,0,1,1.0
+1359,148,2.1.3,1,1,
+18585,130,1.3.5,0,1,1.0
+18585,106,1.3,1,1,
+4138,23,1.4.2.7,0,1,1.0
+4138,142,1.4.2,1,1,
+23302,168,1.1.2,0,1,1.0
+23302,105,1.1,1,1,
+2957,22,2.1.1.4,0,1,1.0
+2957,85,2.1.1,1,1,
+20556,142,1.4.3,0,1,1.0
+20556,126,1.4,1,1,
+1557,13,2.1.3.7,0,1,1.0
+1557,106,2.1.3,1,1,
+20217,140,1.4.5.1,0,1,1.0
+20217,41,1.4.5,1,1,
+18638,131,2.1.1.1,0,1,1.0
+18638,85,2.1.1,1,1,1.0
+22957,164,1.3.3.6,0,1,1.0
+22957,75,1.3.3,1,1,
+20233,140,1.4.5.1,0,1,1.0
+20233,41,1.4.5,1,1,
+3807,22,2.3.3,0,1,1.0
+3807,99,2.3,1,1,
+22213,157,1.4.1,0,1,1.0
+22213,126,1.4,1,1,1.0
+22213,170,1,2,1,1.0
+6885,41,1.4.5,0,1,1.0
+6885,126,1.4,1,1,
+6252,38,2.1.1.5,0,1,1.0
+6252,148,2.1.1,1,1,
+1481,13,2.1.3.5,0,1,1.0
+1481,126,2.1.3,1,1,
+12959,79,2.1.3.5,0,1,1.0
+12959,106,2.1.3,1,1,
+22217,157,1.4.1,0,1,1.0
+22217,126,1.4,1,1,
+22245,157,1.4.1,0,1,1.0
+22245,126,1.4,1,1,
+20707,143,2.1.1.3,0,1,1.0
+20707,85,2.1.1,1,1,
+13342,79,2.3.3,0,1,1.0
+13342,95,2.3,1,1,1.0
+17865,126,1.4,0,1,1.0
+17865,170,1,1,1,1.0
+15332,99,2.1,0,1,1.0
+15332,102,2,1,1,
+12449,78,2.1.1.3,0,1,1.0
+12449,85,2.1.1,1,1,1.0
+22099,154,2.1.4.2.2,0,1,1.0
+22099,81,2.1.4.2,1,1,1.0
+20547,142,1.4.2,0,1,1.0
+20547,126,1.4,1,1,1.0
+20547,170,1,2,1,1.0
+1182,12,1.2.1,0,1,1.0
+1182,126,1.2,1,1,
+9170,53,1.4.3.6,0,1,1.0
+9170,142,1.4.3,1,1,
+4131,23,1.4.2.7,0,1,1.0
+4131,142,1.4.2,1,1,1.0
+4131,126,1.4,2,1,
+10107,57,2.3.1,0,1,1.0
+10107,99,2.3,1,1,
+791,6,2.1.2.3,0,1,1.0
+791,84,2.1.2,1,1,
+9983,56,1.1.1,0,1,1.0
+9983,94,1.1,1,1,
+20571,142,1.4.3,0,1,1.0
+20571,126,1.4,1,1,
+9161,53,1.4.3.6,0,1,1.0
+9161,142,1.4.3,1,1,1.0
+9161,126,1.4,2,1,
+957,9,1.3.3.6,0,1,1.0
+957,75,1.3.3,1,1,
+15301,99,2.1,0,1,1.0
+15301,102,2,1,1,
+22487,161,2.3.2,0,1,1.0
+22487,155,2.3,1,1,1.0
+20511,142,1.4.2,0,1,1.0
+20511,126,1.4,1,1,1.0
+20511,170,1,2,1,1.0
+2208,16,1.1.3,0,1,1.0
+2208,86,1.1,1,1,1.0
+6899,41,1.4.5,0,1,1.0
+6899,126,1.4,1,1,
+7108,43,1.3.1.6,0,1,1.0
+7108,85,1.3.1,1,1,
+22242,157,1.4.1,0,1,1.0
+22242,126,1.4,1,1,
+22237,157,1.4.1,0,1,1.0
+22237,126,1.4,1,1,1.0
+22237,170,1,2,1,1.0
+10691,60,2.1.1.1,0,1,1.0
+10691,85,2.1.1,1,1,
+20596,142,1.4.3,0,1,1.0
+20596,126,1.4,1,1,
+1507,13,2.1.3.6,0,1,1.0
+1507,106,2.1.3,1,1,
+23249,166,1.2.3,0,1,1.0
+23249,106,1.2,1,1,1.0
+18598,130,1.3.5,0,1,1.0
+18598,29,1.3,1,1,
+699,6,2.1.2.1,0,1,1.0
+699,81,2.1.2,1,1,1.0
+4118,23,1.4.2.7,0,1,1.0
+4118,142,1.4.2,1,1,1.0
+4118,126,1.4,2,1,1.0
+4118,170,1,3,1,1.0
+115,2,1.1.3,0,1,1.0
+115,86,1.1,1,1,1.0
+9453,53,1.4.5.8,0,1,1.0
+9453,41,1.4.5,1,1,
+13241,79,2.3.1,0,1,1.0
+13241,95,2.3,1,1,1.0
+20240,140,1.4.5.1,0,1,1.0
+20240,41,1.4.5,1,1,1.0
+20240,126,1.4,2,1,
+15615,103,1.1.1,0,1,1.0
+15615,94,1.1,1,1,1.0
+9493,53,1.4.5.8,0,1,1.0
+9493,41,1.4.5,1,1,
+18599,130,1.3.5,0,1,1.0
+18599,106,1.3,1,1,
+18599,29,1.3,1,1,
+14257,88,1.1.3,0,1,1.0
+14257,94,1.1,1,1,
+4110,23,1.4.2.7,0,1,1.0
+4110,142,1.4.2,1,1,
+6861,41,1.4.5,0,1,1.0
+6861,126,1.4,1,1,1.0
+6861,170,1,2,1,1.0
+6265,38,2.1.1.5,0,1,1.0
+6265,85,2.1.1,1,1,1.0
+9492,53,1.4.5.8,0,1,1.0
+9492,41,1.4.5,1,1,
+18592,130,1.3.5,0,1,1.0
+18592,106,1.3,1,1,
+18592,29,1.3,1,1,1.0
+4049,23,1.3.3.3,0,1,1.0
+4049,75,1.3.3,1,1,1.0
+16242,109,1.3.3.1,0,1,1.0
+16242,97,1.3.3,1,1,1.0
+4127,23,1.4.2.7,0,1,1.0
+4127,142,1.4.2,1,1,
+4741,26,2.1.3.6,0,1,1.0
+4741,126,2.1.3,1,1,
+22250,157,1.4.1,0,1,1.0
+22250,126,1.4,1,1,
+20528,142,1.4.2,0,1,1.0
+20528,126,1.4,1,1,
+20244,140,1.4.5.1,0,1,1.0
+20244,41,1.4.5,1,1,
+6744,41,1.4.3.2,0,1,1.0
+6744,142,1.4.3,1,1,
+20592,142,1.4.3,0,1,1.0
+20592,126,1.4,1,1,
+9158,53,1.4.3.6,0,1,1.0
+9158,142,1.4.3,1,1,1.0
+9158,126,1.4,2,1,
+17899,126,1.4,0,1,1.0
+17899,170,1,1,1,
+3057,22,2.1.3.1,0,1,1.0
+3057,97,2.1.3,1,1,
+4119,23,1.4.2.7,0,1,1.0
+4119,142,1.4.2,1,1,
+8925,53,1.4.2.3,0,1,1.0
+8925,142,1.4.2,1,1,
+22458,161,2.3.2,0,1,1.0
+22458,84,2.3,1,1,1.0
+11388,64,1.1.2,0,1,1.0
+11388,105,1.1,1,1,1.0
+16807,117,2.1.1.2,0,1,1.0
+16807,80,2.1.1,1,1,
+1502,13,2.1.3.6,0,1,1.0
+1502,148,2.1.3,1,1,
+19106,135,1.3.2.1,0,1,1.0
+19106,130,1.3.2,1,1,1.0
+19106,58,1.3.2,1,1,1.0
+19106,106,1.3,2,1,
+6886,41,1.4.5,0,1,1.0
+6886,126,1.4,1,1,
+8141,47,2.1.3.6,0,1,1.0
+8141,108,2.1.3,1,1,
+20508,142,1.4.2,0,1,1.0
+20508,126,1.4,1,1,1.0
+20508,170,1,2,1,1.0
+20533,142,1.4.2,0,1,1.0
+20533,126,1.4,1,1,
+7937,47,2.1.2.1,0,1,1.0
+7937,79,2.1.2,1,1,1.0
+11007,62,2.1.2.1,0,1,1.0
+11007,81,2.1.2,1,1,
+8207,49,1.3.1.1,0,1,1.0
+8207,39,1.3.1,1,1,
+6855,41,1.4.5,0,1,1.0
+6855,126,1.4,1,1,
+20210,140,1.4.5.1,0,1,1.0
+20210,41,1.4.5,1,1,
+15652,104,1.1.1,0,1,1.0
+15652,106,1.1,1,1,
+8357,49,1.3.3.1,0,1,1.0
+8357,97,1.3.3,1,1,
+15349,99,2.1,0,1,1.0
+15349,102,2,1,1,
+15349,98,2,1,1,
+4707,26,2.1.3.6,0,1,1.0
+4707,106,2.1.3,1,1,
+12592,79,1.3.1.1,0,1,1.0
+12592,39,1.3.1,1,1,1.0
+1459,13,2.1.3.5,0,1,1.0
+1459,74,2.1.3,1,1,
+11335,63,1.4.4.5,0,1,1.0
+11335,40,1.4.4,1,1,
+22907,163,2.1.4.2.2,0,1,1.0
+22907,79,2.1.4.2,1,1,
+22407,161,2.3.1,0,1,1.0
+22407,84,2.3,1,1,
+9198,53,1.4.3.6,0,1,1.0
+9198,142,1.4.3,1,1,
+8940,53,1.4.2.3,0,1,1.0
+8940,142,1.4.2,1,1,1.0
+8940,126,1.4,2,1,
+4257,23,2.3.2,0,1,1.0
+4257,124,2.3,1,1,
+14349,89,1.1.2,0,1,1.0
+14349,126,1.1,1,1,1.0
+6907,42,1.3.1.1,0,1,1.0
+6907,85,1.3.1,1,1,
+17887,126,1.4,0,1,1.0
+17887,170,1,1,1,1.0
+6742,41,1.4.3.2,0,1,1.0
+6742,142,1.4.3,1,1,1.0
+6742,126,1.4,2,1,1.0
+6742,170,1,3,1,1.0
+20550,142,1.4.2,0,1,1.0
+20550,126,1.4,1,1,
+9461,53,1.4.5.8,0,1,1.0
+9461,41,1.4.5,1,1,1.0
+9461,126,1.4,2,1,
+7183,44,1.1.1,0,1,1.0
+7183,106,1.1,1,1,
+9173,53,1.4.3.6,0,1,1.0
+9173,142,1.4.3,1,1,
+9199,53,1.4.3.6,0,1,1.0
+9199,142,1.4.3,1,1,
+8382,49,1.3.3.1,0,1,1.0
+8382,97,1.3.3,1,1,
+11716,69,1.1.1,0,1,1.0
+11716,126,1.1,1,1,
+19108,135,1.3.2.1,0,1,1.0
+19108,130,1.3.2,1,1,1.0
+13081,79,2.1.3.7,0,1,1.0
+13081,148,2.1.3,1,1,1.0
+15350,99,2.1,0,1,1.0
+15350,102,2,1,1,1.0
+15350,98,2,1,1,
+19110,135,1.3.2.1,0,1,1.0
+19110,58,1.3.2,1,1,1.0
+19110,130,1.3.2,1,1,1.0
+19110,106,1.3,2,1,1.0
+19110,29,1.3,2,1,
+6720,41,1.4.3.2,0,1,1.0
+6720,142,1.4.3,1,1,
+20594,142,1.4.3,0,1,1.0
+20594,126,1.4,1,1,
+7799,47,2.1.1.2,0,1,1.0
+7799,148,2.1.1,1,1,1.0
+23415,168,1.3.3.2,0,1,1.0
+23415,75,1.3.3,1,1,
+17907,126,2.1.1.5,0,1,1.0
+17907,85,2.1.1,1,1,
+8902,53,1.4.2.3,0,1,1.0
+8902,142,1.4.2,1,1,1.0
+8902,126,1.4,2,1,
+8407,49,2.1.2.1,0,1,1.0
+8407,84,2.1.2,1,1,
+15683,104,1.1.1,0,1,1.0
+15683,106,1.1,1,1,
+19307,135,2.1.3.3,0,1,1.0
+19307,126,2.1.3,1,1,
+9155,53,1.4.3.6,0,1,1.0
+9155,142,1.4.3,1,1,1.0
+9155,126,1.4,2,1,1.0
+9155,170,1,3,1,1.0
+6287,38,2.1.1.5,0,1,1.0
+6287,80,2.1.1,1,1,1.0
+2882,22,2.1.1.2,0,1,1.0
+2882,106,2.1.1,1,1,
+17882,126,1.4,0,1,1.0
+17882,170,1,1,1,1.0
+9179,53,1.4.3.6,0,1,1.0
+9179,142,1.4.3,1,1,1.0
+9179,126,1.4,2,1,
+6142,38,2.1.1.2,0,1,1.0
+6142,148,2.1.1,1,1,1.0
+20546,142,1.4.2,0,1,1.0
+20546,126,1.4,1,1,
+20502,142,1.4.2,0,1,1.0
+20502,126,1.4,1,1,
+12388,78,2.1.1.2,0,1,1.0
+12388,85,2.1.1,1,1,1.0
+23632,168,2.3.3,0,1,1.0
+23632,126,2.3,1,1,
+16907,117,2.1.1.4,0,1,1.0
+16907,80,2.1.1,1,1,
+13207,79,2.3.1,0,1,1.0
+13207,126,2.3,1,1,
+9478,53,1.4.5.8,0,1,1.0
+9478,41,1.4.5,1,1,
+11350,63,1.4.4.5,0,1,1.0
+11350,0,1.4.4,1,1,1.0
+11350,40,1.4.4,1,1,
+20527,142,1.4.2,0,1,1.0
+20527,126,1.4,1,1,
+9165,53,1.4.3.6,0,1,1.0
+9165,142,1.4.3,1,1,1.0
+9165,126,1.4,2,1,
+20557,142,1.4.3,0,1,1.0
+20557,126,1.4,1,1,
+10138,57,2.3.1,0,1,1.0
+10138,126,2.3,1,1,1.0
+15303,99,2.1,0,1,1.0
+15303,98,2,1,1,
+15303,102,2,1,1,
+2907,22,2.1.1.3,0,1,1.0
+2907,148,2.1.1,1,1,
+19999,138,1.3.1.5,0,1,1.0
+19999,100,1.3.1,1,1,1.0
+20582,142,1.4.3,0,1,1.0
+20582,126,1.4,1,1,
+13096,79,2.1.3.7,0,1,1.0
+13096,74,2.1.3,1,1,
+4122,23,1.4.2.7,0,1,1.0
+4122,142,1.4.2,1,1,
+20239,140,1.4.5.1,0,1,1.0
+20239,41,1.4.5,1,1,
+18692,131,2.1.1.2,0,1,1.0
+18692,106,2.1.1,1,1,1.0
+9183,53,1.4.3.6,0,1,1.0
+9183,142,1.4.3,1,1,
+15313,99,2.1,0,1,1.0
+15313,98,2,1,1,1.0
+6874,41,1.4.5,0,1,1.0
+6874,126,1.4,1,1,
+6711,41,1.4.3.2,0,1,1.0
+6711,142,1.4.3,1,1,1.0
+6711,126,1.4,2,1,
+19399,135,2.1.3.4,0,1,1.0
+19399,108,2.1.3,1,1,1.0
+19257,135,2.1.3.2,0,1,1.0
+19257,73,2.1.3,1,1,
+21757,153,1.3.1.4,0,1,1.0
+21757,39,1.3.1,1,1,
+6857,41,1.4.5,0,1,1.0
+6857,126,1.4,1,1,
+20238,140,1.4.5.1,0,1,1.0
+20238,41,1.4.5,1,1,
+4108,23,1.4.2.7,0,1,1.0
+4108,142,1.4.2,1,1,1.0
+4108,126,1.4,2,1,
+17707,125,1.2.3,0,1,1.0
+17707,126,1.2,1,1,
+12357,78,2.1.1.2,0,1,1.0
+12357,148,2.1.1,1,1,
+1449,13,2.1.3.4,0,1,1.0
+1449,126,2.1.3,1,1,
+20539,142,1.4.2,0,1,1.0
+20539,126,1.4,1,1,
+13619,81,2.1.4.2,0,1,1.0
+13619,102,2.1.4,1,1,1.0
+20512,142,1.4.2,0,1,1.0
+20512,126,1.4,1,1,
+707,6,2.1.2.2,0,1,1.0
+707,159,2.1.2,1,1,
+21857,154,2.1.4.1.2,0,1,1.0
+21857,79,2.1.4.1,1,1,
+20519,142,1.4.2,0,1,1.0
+20519,126,1.4,1,1,
+8948,53,1.4.2.3,0,1,1.0
+8948,142,1.4.2,1,1,
+6734,41,1.4.3.2,0,1,1.0
+6734,142,1.4.3,1,1,
+20510,142,1.4.2,0,1,1.0
+20510,126,1.4,1,1,
+13742,82,2.1.2.2,0,1,1.0
+13742,79,2.1.2,1,1,1.0
+13607,81,2.1.4.2,0,1,1.0
+13607,115,2.1.4,1,1,1.0
+13607,84,2.1.4,1,1,
+8936,53,1.4.2.3,0,1,1.0
+8936,142,1.4.2,1,1,
+20220,140,1.4.5.1,0,1,1.0
+20220,41,1.4.5,1,1,
+21577,150,1.1.1,0,1,1.0
+21577,105,1.1,1,1,1.0
+12665,79,1.3.1.6,0,1,1.0
+12665,100,1.3.1,1,1,1.0
+6719,41,1.4.3.2,0,1,1.0
+6719,142,1.4.3,1,1,
+15338,99,2.1,0,1,1.0
+15338,98,2,1,1,
+12752,79,2.1.3.1,0,1,1.0
+12752,126,2.1.3,1,1,
+8208,49,1.3.1.1,0,1,1.0
+8208,39,1.3.1,1,1,1.0
+12886,79,2.1.3.3,0,1,1.0
+12886,73,2.1.3,1,1,1.0
+17867,126,1.4,0,1,1.0
+17867,170,1,1,1,1.0
+18590,130,1.3.5,0,1,1.0
+18590,106,1.3,1,1,
+8307,49,1.3.1.6,0,1,1.0
+8307,100,1.3.1,1,1,
+21742,153,1.3.1.1,0,1,1.0
+21742,93,1.3.1,1,1,1.0
+11316,63,1.4.4.5,0,1,1.0
+11316,40,1.4.4,1,1,1.0
+15324,99,2.1,0,1,1.0
+15324,102,2,1,1,
+9160,53,1.4.3.6,0,1,1.0
+9160,142,1.4.3,1,1,
+22244,157,1.4.1,0,1,1.0
+22244,126,1.4,1,1,
+5532,33,2.1.2.3,0,1,1.0
+5532,84,2.1.2,1,1,
+15330,99,2.1,0,1,1.0
+15330,102,2,1,1,
+12816,79,2.1.3.2,0,1,1.0
+12816,108,2.1.3,1,1,1.0
+1407,13,2.1.3.4,0,1,1.0
+1407,74,2.1.3,1,1,
+4117,23,1.4.2.7,0,1,1.0
+4117,142,1.4.2,1,1,
+19065,135,1.1.3,0,1,1.0
+19065,94,1.1,1,1,1.0
+9473,53,1.4.5.8,0,1,1.0
+9473,41,1.4.5,1,1,
+7192,44,1.1.1,0,1,1.0
+7192,86,1.1,1,1,1.0
+5199,31,2.1.4.1.3,0,1,1.0
+5199,79,2.1.4.1,1,1,1.0
+19549,135,2.1.3.7,0,1,1.0
+19549,73,2.1.3,1,1,1.0
+5007,31,1.3.3.3,0,1,1.0
+5007,75,1.3.3,1,1,
+15312,99,2.1,0,1,1.0
+15312,98,2,1,1,
+15312,102,2,1,1,
+20513,142,1.4.2,0,1,1.0
+20513,126,1.4,1,1,1.0
+20513,170,1,2,1,1.0
+9477,53,1.4.5.8,0,1,1.0
+9477,41,1.4.5,1,1,
+18572,130,1.3.5,0,1,1.0
+18572,106,1.3,1,1,
+18572,29,1.3,1,1,
+2165,15,1.3.3.5,0,1,1.0
+2165,99,1.3.3,1,1,
+16952,117,2.1.1.5,0,1,1.0
+16952,106,2.1.1,1,1,
+16757,117,2.1.1.1,0,1,1.0
+16757,80,2.1.1,1,1,
+19121,135,1.3.2.1,0,1,1.0
+19121,58,1.3.2,1,1,1.0
+19121,130,1.3.2,1,1,1.0
+19121,29,1.3,2,1,1.0
+19121,106,1.3,2,1,
+1257,13,2.1.3.1,0,1,1.0
+1257,126,2.1.3,1,1,
+20243,140,1.4.5.1,0,1,1.0
+20243,41,1.4.5,1,1,
+12937,79,2.1.3.4,0,1,1.0
+12937,73,2.1.3,1,1,
+12937,74,2.1.3,1,1,
+1988,13,2.3.2,0,1,1.0
+1988,124,2.3,1,1,1.0
+18556,130,1.3.5,0,1,1.0
+18556,29,1.3,1,1,
+11057,62,2.1.2.2,0,1,1.0
+11057,81,2.1.2,1,1,
+21487,149,2.1.2.3,0,1,1.0
+21487,58,2.1.2,1,1,1.0
+23283,167,1.1.1,0,1,1.0
+23283,126,1.1,1,1,
+12957,79,2.1.3.5,0,1,1.0
+12957,74,2.1.3,1,1,
+12349,78,2.1.1.1,0,1,1.0
+12349,85,2.1.1,1,1,1.0
+9185,53,1.4.3.6,0,1,1.0
+9185,142,1.4.3,1,1,
+21583,150,1.1.1,0,1,1.0
+21583,86,1.1,1,1,
+3249,22,2.1.3.4,0,1,1.0
+3249,148,2.1.3,1,1,1.0
+7657,46,1.3.1.2,0,1,1.0
+7657,85,1.3.1,1,1,
+13219,79,2.3.1,0,1,1.0
+13219,124,2.3,1,1,
+6872,41,1.4.5,0,1,1.0
+6872,126,1.4,1,1,
+20544,142,1.4.2,0,1,1.0
+20544,126,1.4,1,1,
+18707,131,2.1.1.3,0,1,1.0
+18707,85,2.1.1,1,1,
+2799,22,1.3.3.6,0,1,1.0
+2799,99,1.3.3,1,1,1.0
+2257,16,2.3.1,0,1,1.0
+2257,126,2.3,1,1,
+18116,127,1.1.1,0,1,1.0
+18116,105,1.1,1,1,
+20231,140,1.4.5.1,0,1,1.0
+20231,41,1.4.5,1,1,1.0
+20231,126,1.4,2,1,
+11442,65,1.2.1,0,1,1.0
+11442,67,1.2,1,1,1.0
+22209,157,1.4.1,0,1,1.0
+22209,126,1.4,1,1,1.0
+22209,170,1,2,1,
+2399,16,2.3.3,0,1,1.0
+2399,95,2.3,1,1,1.0
+22227,157,1.4.1,0,1,1.0
+22227,126,1.4,1,1,
+7692,46,1.3.1.2,0,1,1.0
+7692,100,1.3.1,1,1,1.0
+4145,23,1.4.2.7,0,1,1.0
+4145,142,1.4.2,1,1,1.0
+4145,126,1.4,2,1,
+9190,53,1.4.3.6,0,1,1.0
+9190,142,1.4.3,1,1,1.0
+9190,126,1.4,2,1,
+13257,79,2.3.2,0,1,1.0
+13257,99,2.3,1,1,
+3849,22,2.3.3,0,1,1.0
+3849,99,2.3,1,1,1.0
+15407,100,1.3.1,0,1,1.0
+15407,29,1.3,1,1,
+2338,16,2.3.2,0,1,1.0
+2338,84,2.3,1,1,1.0
+16987,117,2.1.1.5,0,1,1.0
+16987,148,2.1.1,1,1,1.0
+11899,71,1.3.1.2,0,1,1.0
+11899,99,1.3.1,1,1,1.0
+16707,116,1.3.1.7,0,1,1.0
+16707,93,1.3.1,1,1,
+13757,82,2.1.2.3,0,1,1.0
+13757,58,2.1.2,1,1,
+6863,41,1.4.5,0,1,1.0
+6863,126,1.4,1,1,1.0
+6863,170,1,2,1,1.0
+19146,135,1.3.2.1,0,1,1.0
+19146,130,1.3.2,1,1,1.0
+16857,117,2.1.1.3,0,1,1.0
+16857,85,2.1.1,1,1,
+14307,89,1.1.2,0,1,1.0
+14307,86,1.1,1,1,
+7107,43,1.3.1.6,0,1,1.0
+7107,85,1.3.1,1,1,
+9171,53,1.4.3.6,0,1,1.0
+9171,142,1.4.3,1,1,
+9476,53,1.4.5.8,0,1,1.0
+9476,41,1.4.5,1,1,1.0
+9476,126,1.4,2,1,
+23257,167,1.1.1,0,1,1.0
+23257,105,1.1,1,1,
+8918,53,1.4.2.3,0,1,1.0
+8918,142,1.4.2,1,1,1.0
+8918,126,1.4,2,1,1.0
+8918,170,1,3,1,1.0
+4126,23,1.4.2.7,0,1,1.0
+4126,142,1.4.2,1,1,1.0
+4126,126,1.4,2,1,
+22247,157,1.4.1,0,1,1.0
+22247,126,1.4,1,1,1.0
+22247,170,1,2,1,1.0
+19130,135,1.3.2.1,0,1,1.0
+19130,130,1.3.2,1,1,1.0
+19130,58,1.3.2,1,1,1.0
+19130,106,1.3,2,1,1.0
+2307,16,2.3.2,0,1,1.0
+2307,124,2.3,1,1,
+9481,53,1.4.5.8,0,1,1.0
+9481,41,1.4.5,1,1,1.0
+9481,126,1.4,2,1,
+9194,53,1.4.3.6,0,1,1.0
+9194,142,1.4.3,1,1,
+1262,13,2.1.3.1,0,1,1.0
+1262,148,2.1.3,1,1,
+6722,41,1.4.3.2,0,1,1.0
+6722,142,1.4.3,1,1,
+6854,41,1.4.5,0,1,1.0
+6854,126,1.4,1,1,
+4007,23,1.3.3.3,0,1,1.0
+4007,99,1.3.3,1,1,
+13702,82,2.1.2.2,0,1,1.0
+13702,79,2.1.2,1,1,
+13007,79,2.1.3.6,0,1,1.0
+13007,108,2.1.3,1,1,
+22235,157,1.4.1,0,1,1.0
+22235,126,1.4,1,1,
+4299,23,2.3.2,0,1,1.0
+4299,155,2.3,1,1,1.0
+23499,168,1.3.3.4,0,1,1.0
+23499,97,1.3.3,1,1,1.0
+9500,53,1.4.5.8,0,1,1.0
+9500,41,1.4.5,1,1,
+315,3,1.3.4.1,0,1,1.0
+315,80,1.3.4,1,1,1.0
+22226,157,1.4.1,0,1,1.0
+22226,126,1.4,1,1,1.0
+22226,170,1,2,1,
+20219,140,1.4.5.1,0,1,1.0
+20219,41,1.4.5,1,1,
+1252,13,2.1.3.1,0,1,1.0
+1252,74,2.1.3,1,1,
+17881,126,1.4,0,1,1.0
+17881,170,1,1,1,1.0
+23242,166,1.2.3,0,1,1.0
+23242,67,1.2,1,1,1.0
+11325,63,1.4.4.5,0,1,1.0
+11325,0,1.4.4,1,1,
+1440,13,2.1.3.4,0,1,1.0
+1440,73,2.1.3,1,1,
+19112,135,1.3.2.1,0,1,1.0
+19112,130,1.3.2,1,1,1.0
+11301,63,1.4.4.5,0,1,1.0
+11301,40,1.4.4,1,1,
+22246,157,1.4.1,0,1,1.0
+22246,126,1.4,1,1,
+1982,13,2.3.2,0,1,1.0
+1982,155,2.3,1,1,
+23449,168,1.3.3.2,0,1,1.0
+23449,97,1.3.3,1,1,1.0
+1259,13,2.1.3.1,0,1,1.0
+1259,74,2.1.3,1,1,
+18107,127,1.1.1,0,1,1.0
+18107,86,1.1,1,1,
+11432,65,1.2.1,0,1,1.0
+11432,106,1.2,1,1,
+23557,168,2.3.2,0,1,1.0
+23557,124,2.3,1,1,
+17888,126,1.4,0,1,1.0
+17888,170,1,1,1,1.0
+1207,13,1.2.2,0,1,1.0
+1207,106,1.2,1,1,
+5537,33,2.1.2.3,0,1,1.0
+5537,159,2.1.2,1,1,1.0
+22657,163,2.1.4.1.1,0,1,1.0
+22657,81,2.1.4.1,1,1,
+8923,53,1.4.2.3,0,1,1.0
+8923,142,1.4.2,1,1,
+17854,126,1.4,0,1,1.0
+17854,170,1,1,1,1.0
+21457,149,2.1.2.3,0,1,1.0
+21457,79,2.1.2,1,1,
+7807,47,2.1.1.3,0,1,1.0
+7807,80,2.1.1,1,1,
+6737,41,1.4.3.2,0,1,1.0
+6737,142,1.4.3,1,1,1.0
+6737,126,1.4,2,1,
+10982,62,1.3.1.2,0,1,1.0
+10982,99,1.3.1,1,1,
+19133,135,1.3.2.1,0,1,1.0
+19133,58,1.3.2,1,1,1.0
+4499,26,2.1.3.1,0,1,1.0
+4499,106,2.1.3,1,1,1.0
+22999,164,1.3.3.6,0,1,1.0
+22999,99,1.3.3,1,1,1.0
+20232,140,1.4.5.1,0,1,1.0
+20232,41,1.4.5,1,1,1.0
+20232,126,1.4,2,1,
+18596,130,1.3.5,0,1,1.0
+18596,106,1.3,1,1,
+11329,63,1.4.4.5,0,1,1.0
+11329,40,1.4.4,1,1,
+11329,0,1.4.4,1,1,
+7919,47,2.1.2.1,0,1,1.0
+7919,81,2.1.2,1,1,
+13358,80,1.3.4,0,1,1.0
+13358,29,1.3,1,1,
+18649,131,2.1.1.1,0,1,1.0
+18649,106,2.1.1,1,1,1.0
+10307,58,1.3.1.6,0,1,1.0
+10307,100,1.3.1,1,1,
+22432,161,2.3.1,0,1,1.0
+22432,126,2.3,1,1,
+4319,23,2.3.3,0,1,1.0
+4319,84,2.3,1,1,
+18577,130,1.3.5,0,1,1.0
+18577,29,1.3,1,1,
+18577,106,1.3,1,1,
+9498,53,1.4.5.8,0,1,1.0
+9498,41,1.4.5,1,1,
+6740,41,1.4.3.2,0,1,1.0
+6740,142,1.4.3,1,1,1.0
+6740,126,1.4,2,1,
+20579,142,1.4.3,0,1,1.0
+20579,126,1.4,1,1,
+7007,42,1.3.1.4,0,1,1.0
+7007,85,1.3.1,1,1,
+12909,79,2.1.3.4,0,1,1.0
+12909,126,2.1.3,1,1,
+20555,142,1.4.3,0,1,1.0
+20555,126,1.4,1,1,
+17569,123,1.1.2,0,1,1.0
+17569,126,1.1,1,1,
+6851,41,1.4.5,0,1,1.0
+6851,126,1.4,1,1,
+20235,140,1.4.5.1,0,1,1.0
+20235,41,1.4.5,1,1,
+19139,135,1.3.2.1,0,1,1.0
+19139,58,1.3.2,1,1,1.0
+4147,23,1.4.2.7,0,1,1.0
+4147,142,1.4.2,1,1,1.0
+4147,126,1.4,2,1,1.0
+4147,170,1,3,1,
+399,4,1.2.2,0,1,1.0
+399,97,1.2,1,1,1.0
+20907,144,2.1.2.2,0,1,1.0
+20907,84,2.1.2,1,1,
+8934,53,1.4.2.3,0,1,1.0
+8934,142,1.4.2,1,1,
+7049,42,1.3.1.4,0,1,1.0
+7049,39,1.3.1,1,1,1.0
+12767,79,2.1.3.1,0,1,1.0
+12767,126,2.1.3,1,1,
+8449,49,2.1.2.1,0,1,1.0
+8449,79,2.1.2,1,1,1.0
+11312,63,1.4.4.5,0,1,1.0
+11312,40,1.4.4,1,1,1.0
+11312,0,1.4.4,1,1,
+837,6,2.1.2.4,0,1,1.0
+837,58,2.1.2,1,1,1.0
+8092,47,2.1.2.4,0,1,1.0
+8092,79,2.1.2,1,1,1.0
+12751,79,2.1.3.1,0,1,1.0
+12751,73,2.1.3,1,1,
+1266,13,2.1.3.1,0,1,1.0
+1266,73,2.1.3,1,1,1.0
+17873,126,1.4,0,1,1.0
+17873,170,1,1,1,
+11142,62,2.1.2.3,0,1,1.0
+11142,84,2.1.2,1,1,1.0
+11313,63,1.4.4.5,0,1,1.0
+11313,40,1.4.4,1,1,
+11313,0,1.4.4,1,1,1.0
+9992,56,1.1.1,0,1,1.0
+9992,106,1.1,1,1,1.0
+6895,41,1.4.5,0,1,1.0
+6895,126,1.4,1,1,
+6896,41,1.4.5,0,1,1.0
+6896,126,1.4,1,1,
+20575,142,1.4.3,0,1,1.0
+20575,126,1.4,1,1,
+8949,53,1.4.2.3,0,1,1.0
+8949,142,1.4.2,1,1,
+15322,99,2.1,0,1,1.0
+15322,102,2,1,1,
+5049,31,1.3.3.3,0,1,1.0
+5049,99,1.3.3,1,1,1.0
+20226,140,1.4.5.1,0,1,1.0
+20226,41,1.4.5,1,1,1.0
+20226,126,1.4,2,1,
+1586,13,2.1.3.7,0,1,1.0
+1586,97,2.1.3,1,1,
+12541,78,2.1.1.5,0,1,1.0
+12541,80,2.1.1,1,1,
+20857,144,2.1.2.1,0,1,1.0
+20857,84,2.1.2,1,1,
+1532,13,2.1.3.6,0,1,1.0
+1532,74,2.1.3,1,1,
+20529,142,1.4.2,0,1,1.0
+20529,126,1.4,1,1,
+18571,130,1.3.5,0,1,1.0
+18571,29,1.3,1,1,
+6870,41,1.4.5,0,1,1.0
+6870,126,1.4,1,1,
+8492,49,2.1.2.2,0,1,1.0
+8492,79,2.1.2,1,1,1.0
+19122,135,1.3.2.1,0,1,1.0
+19122,58,1.3.2,1,1,1.0
+19122,130,1.3.2,1,1,1.0
+19122,106,1.3,2,1,1.0
+12007,74,1.3.3.2,0,1,1.0
+12007,97,1.3.3,1,1,
+18583,130,1.3.5,0,1,1.0
+18583,106,1.3,1,1,
+6714,41,1.4.3.2,0,1,1.0
+6714,142,1.4.3,1,1,1.0
+6714,126,1.4,2,1,1.0
+6714,170,1,3,1,1.0
+15309,99,2.1,0,1,1.0
+15309,98,2,1,1,1.0
+15309,102,2,1,1,
+10957,62,1.3.1.2,0,1,1.0
+10957,39,1.3.1,1,1,
+9181,53,1.4.3.6,0,1,1.0
+9181,142,1.4.3,1,1,1.0
+9181,126,1.4,2,1,
+14357,89,1.2.1,0,1,1.0
+14357,97,1.2,1,1,
+9464,53,1.4.5.8,0,1,1.0
+9464,41,1.4.5,1,1,1.0
+9464,126,1.4,2,1,1.0
+9464,170,1,3,1,1.0
+17592,123,1.1.2,0,1,1.0
+17592,105,1.1,1,1,1.0
+15331,99,2.1,0,1,1.0
+15331,102,2,1,1,1.0
+8332,49,1.3.1.6,0,1,1.0
+8332,100,1.3.1,1,1,
+22201,157,1.4.1,0,1,1.0
+22201,126,1.4,1,1,
+11332,63,1.4.4.5,0,1,1.0
+11332,40,1.4.4,1,1,1.0
+21199,147,1.1.2,0,1,1.0
+21199,94,1.1,1,1,1.0
+19119,135,1.3.2.1,0,1,1.0
+19119,130,1.3.2,1,1,1.0
+19207,135,2.1.3.1,0,1,1.0
+19207,148,2.1.3,1,1,
+10008,56,1.3.1.7,0,1,1.0
+10008,100,1.3.1,1,1,1.0
+19124,135,1.3.2.1,0,1,1.0
+19124,130,1.3.2,1,1,1.0
+19124,58,1.3.2,1,1,1.0
+19124,29,1.3,2,1,
+19124,106,1.3,2,1,
+17207,117,2.1.4.2.1,0,1,1.0
+17207,81,2.1.4.2,1,1,
+16508,113,1.1.1,0,1,1.0
+16508,105,1.1,1,1,1.0
+20590,142,1.4.3,0,1,1.0
+20590,126,1.4,1,1,
+18586,130,1.3.5,0,1,1.0
+18586,106,1.3,1,1,1.0
+18586,29,1.3,1,1,
+15315,99,2.1,0,1,1.0
+15315,102,2,1,1,
+15315,98,2,1,1,
+10192,57,2.3.2,0,1,1.0
+10192,126,2.3,1,1,1.0
+10832,60,2.1.1.4,0,1,1.0
+10832,80,2.1.1,1,1,
+15326,99,2.1,0,1,1.0
+15326,102,2,1,1,1.0
+15611,103,1.1.1,0,1,1.0
+15611,94,1.1,1,1,1.0
+6888,41,1.4.5,0,1,1.0
+6888,126,1.4,1,1,
+19457,135,2.1.3.6,0,1,1.0
+19457,74,2.1.3,1,1,
+8950,53,1.4.2.3,0,1,1.0
+8950,142,1.4.2,1,1,
+18007,126,2.2,0,1,1.0
+18007,102,2,1,1,
+20581,142,1.4.3,0,1,1.0
+20581,126,1.4,1,1,1.0
+20581,170,1,2,1,1.0
+21392,149,2.1.2.1,0,1,1.0
+21392,79,2.1.2,1,1,1.0
+642,6,1.3.1.2,0,1,1.0
+642,100,1.3.1,1,1,1.0
+4129,23,1.4.2.7,0,1,1.0
+4129,142,1.4.2,1,1,1.0
+4129,126,1.4,2,1,
+15337,99,2.1,0,1,1.0
+15337,98,2,1,1,1.0
+15337,102,2,1,1,
+22240,157,1.4.1,0,1,1.0
+22240,126,1.4,1,1,
+2749,22,1.2.2,0,1,1.0
+2749,106,1.2,1,1,1.0
+12781,79,2.1.3.1,0,1,1.0
+12781,126,2.1.3,1,1,
+2342,16,2.3.2,0,1,1.0
+2342,124,2.3,1,1,1.0
+20553,142,1.4.3,0,1,1.0
+20553,126,1.4,1,1,
+1386,13,2.1.3.3,0,1,1.0
+1386,73,2.1.3,1,1,
+9168,53,1.4.3.6,0,1,1.0
+9168,142,1.4.3,1,1,1.0
+9168,126,1.4,2,1,1.0
+9168,170,1,3,1,1.0
+19147,135,1.3.2.1,0,1,1.0
+19147,130,1.3.2,1,1,1.0
+22807,163,2.1.4.1.4,0,1,1.0
+22807,81,2.1.4.1,1,1,
+19315,135,2.1.3.3,0,1,1.0
+19315,108,2.1.3,1,1,1.0
+608,6,1.3.1.2,0,1,1.0
+608,85,1.3.1,1,1,
+20807,143,2.1.1.5,0,1,1.0
+20807,85,2.1.1,1,1,
+4265,23,2.3.2,0,1,1.0
+4265,155,2.3,1,1,1.0
+11327,63,1.4.4.5,0,1,1.0
+11327,40,1.4.4,1,1,
+11327,0,1.4.4,1,1,
+20802,143,2.1.1.5,0,1,1.0
+20802,80,2.1.1,1,1,
+11323,63,1.4.4.5,0,1,1.0
+11323,0,1.4.4,1,1,
+11323,40,1.4.4,1,1,1.0
+8219,49,1.3.1.1,0,1,1.0
+8219,100,1.3.1,1,1,
+11342,63,1.4.4.5,0,1,1.0
+11342,0,1.4.4,1,1,
+11342,40,1.4.4,1,1,1.0
+19115,135,1.3.2.1,0,1,1.0
+19115,130,1.3.2,1,1,1.0
+23008,165,2.1.2.1,0,1,1.0
+23008,58,2.1.2,1,1,1.0
+8904,53,1.4.2.3,0,1,1.0
+8904,142,1.4.2,1,1,1.0
+8904,126,1.4,2,1,
+7899,47,2.1.1.4,0,1,1.0
+7899,85,2.1.1,1,1,1.0
+19499,135,2.1.3.6,0,1,1.0
+19499,108,2.1.3,1,1,1.0
+13832,82,2.1.2.4,0,1,1.0
+13832,84,2.1.2,1,1,
+2915,22,2.1.1.3,0,1,1.0
+2915,85,2.1.1,1,1,1.0
+21566,150,1.1.1,0,1,1.0
+21566,106,1.1,1,1,
+1357,13,2.1.3.3,0,1,1.0
+1357,126,2.1.3,1,1,
+8935,53,1.4.2.3,0,1,1.0
+8935,142,1.4.2,1,1,
+23099,165,2.1.2.2,0,1,1.0
+23099,58,2.1.2,1,1,1.0
+6730,41,1.4.3.2,0,1,1.0
+6730,142,1.4.3,1,1,
+17357,119,1.3.1.1,0,1,1.0
+17357,99,1.3.1,1,1,
+17897,126,1.4,0,1,1.0
+17897,170,1,1,1,1.0
+7265,45,1.3.4.1,0,1,1.0
+7265,81,1.3.4,1,1,1.0
+21707,153,1.3.1.1,0,1,1.0
+21707,85,1.3.1,1,1,
+22239,157,1.4.1,0,1,1.0
+22239,126,1.4,1,1,
+20558,142,1.4.3,0,1,1.0
+20558,126,1.4,1,1,1.0
+20558,170,1,2,1,1.0
+11318,63,1.4.4.5,0,1,1.0
+11318,40,1.4.4,1,1,1.0
+2757,22,1.3.3.6,0,1,1.0
+2757,99,1.3.3,1,1,
+9472,53,1.4.5.8,0,1,1.0
+9472,41,1.4.5,1,1,
+13857,83,1.3.3.2,0,1,1.0
+13857,75,1.3.3,1,1,
+20791,143,2.1.1.4,0,1,1.0
+20791,80,2.1.1,1,1,
+12946,79,2.1.3.4,0,1,1.0
+12946,74,2.1.3,1,1,
+2207,16,1.1.3,0,1,1.0
+2207,106,1.1,1,1,
+3349,22,2.1.3.6,0,1,1.0
+3349,106,2.1.3,1,1,1.0
+4657,26,2.1.3.5,0,1,1.0
+4657,126,2.1.3,1,1,
+18566,130,1.3.5,0,1,1.0
+18566,106,1.3,1,1,
+8157,48,1.2.2,0,1,1.0
+8157,126,1.2,1,1,
+11304,63,1.4.4.5,0,1,1.0
+11304,40,1.4.4,1,1,1.0
+18568,130,1.3.5,0,1,1.0
+18568,29,1.3,1,1,
+9499,53,1.4.5.8,0,1,1.0
+9499,41,1.4.5,1,1,
+5407,33,2.1.2.1,0,1,1.0
+5407,81,2.1.2,1,1,
+20505,142,1.4.2,0,1,1.0
+20505,126,1.4,1,1,
+14499,90,1.3.1.7,0,1,1.0
+14499,85,1.3.1,1,1,1.0
+4121,23,1.4.2.7,0,1,1.0
+4121,142,1.4.2,1,1,
+9192,53,1.4.3.6,0,1,1.0
+9192,142,1.4.3,1,1,1.0
+9192,126,1.4,2,1,1.0
+9192,170,1,3,1,1.0
+22216,157,1.4.1,0,1,1.0
+22216,126,1.4,1,1,
+9180,53,1.4.3.6,0,1,1.0
+9180,142,1.4.3,1,1,
+18291,129,1.1.2,0,1,1.0
+18291,94,1.1,1,1,
+12757,79,2.1.3.1,0,1,1.0
+12757,74,2.1.3,1,1,
+841,6,2.1.2.4,0,1,1.0
+841,79,2.1.2,1,1,1.0
+11348,63,1.4.4.5,0,1,1.0
+11348,40,1.4.4,1,1,1.0
+11348,0,1.4.4,1,1,
+1267,13,2.1.3.1,0,1,1.0
+1267,97,2.1.3,1,1,
+4392,24,1.1.1,0,1,1.0
+4392,126,1.1,1,1,1.0
+18580,130,1.3.5,0,1,1.0
+18580,29,1.3,1,1,
+2707,22,1.2.2,0,1,1.0
+2707,126,1.2,1,1,
+10999,62,1.3.1.2,0,1,1.0
+10999,100,1.3.1,1,1,1.0
+1567,13,2.1.3.7,0,1,1.0
+1567,148,2.1.3,1,1,
+5588,33,2.1.2.4,0,1,1.0
+5588,79,2.1.2,1,1,1.0
+2365,16,2.3.3,0,1,1.0
+2365,95,2.3,1,1,1.0
+9162,53,1.4.3.6,0,1,1.0
+9162,142,1.4.3,1,1,1.0
+9162,126,1.4,2,1,
+8919,53,1.4.2.3,0,1,1.0
+8919,142,1.4.2,1,1,
+8942,53,1.4.2.3,0,1,1.0
+8942,142,1.4.2,1,1,
+11908,72,1.3.1.2,0,1,1.0
+11908,99,1.3.1,1,1,
diff --git a/analysis/dissertation_count_dcp.csv b/analysis/dissertation_count_dcp.csv
new file mode 100644
index 0000000..ca63932
--- /dev/null
+++ b/analysis/dissertation_count_dcp.csv
@@ -0,0 +1,700 @@
+up_id_firm,up_name_firm,up_id_product,up_name_product,down_id_firm,down_name_firm,down_id_product,down_name_product,count
+126,华为,1.4,工业互联网安全,170,Pseudo1,1,供给,118
+142,深信服,1.4.3,网络安全,126,华为,1.4,工业互联网安全,96
+41,启明星辰,1.4.5,数据安全,126,华为,1.4,工业互联网安全,92
+142,深信服,1.4.2,控制安全,126,华为,1.4,工业互联网安全,92
+53,天融信,1.4.3.6,沙箱类设备,142,深信服,1.4.3,网络安全,50
+23,和利时,1.4.2.7,工控原生安全,142,深信服,1.4.2,控制安全,50
+157,新华三,1.4.1,设备安全,126,华为,1.4,工业互联网安全,50
+53,天融信,1.4.5.8,数据加密,41,启明星辰,1.4.5,数据安全,50
+41,启明星辰,1.4.3.2,流量检测,142,深信服,1.4.3,网络安全,50
+53,天融信,1.4.2.3,工控漏洞扫描,142,深信服,1.4.2,控制安全,50
+140,山石网科,1.4.5.1,恶意代码检测系统,41,启明星辰,1.4.5,数据安全,50
+99,Siemens,2.1,PaaS,102,Amazon AWS,2,工业互联网平台,41
+135,浪潮,1.3.2.1,供应链管理SCM,130,金蝶,1.3.2,采购供应,40
+130,金蝶,1.3.5,仓储物流,106,阿里巴巴,1.3,工业软件,39
+63,长扬科技,1.4.4.5,安全态势感知,0,360科技,1.4.4,平台安全,38
+63,长扬科技,1.4.4.5,安全态势感知,40,奇安信,1.4.4,平台安全,38
+135,浪潮,1.3.2.1,供应链管理SCM,58,用友,1.3.2,采购供应,36
+99,Siemens,2.1,PaaS,98,Microsoft Azure,2,工业互联网平台,36
+130,金蝶,1.3.5,仓储物流,29,京东工业品,1.3,工业软件,33
+130,金蝶,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23
+135,浪潮,1.3.2.1,供应链管理SCM,106,阿里巴巴,1.3,工业软件,23
+53,天融信,1.4.3.6,沙箱类设备,126,华为,1.4,工业互联网安全,23
+41,启明星辰,1.4.3.2,流量检测,126,华为,1.4,工业互联网安全,23
+58,用友,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23
+53,天融信,1.4.5.8,数据加密,126,华为,1.4,工业互联网安全,21
+140,山石网科,1.4.5.1,恶意代码检测系统,126,华为,1.4,工业互联网安全,21
+142,深信服,1.4.3,网络安全,170,Pseudo1,1,供给,21
+53,天融信,1.4.2.3,工控漏洞扫描,126,华为,1.4,工业互联网安全,21
+23,和利时,1.4.2.7,工控原生安全,126,华为,1.4,工业互联网安全,21
+41,启明星辰,1.4.5,数据安全,170,Pseudo1,1,供给,19
+142,深信服,1.4.2,控制安全,170,Pseudo1,1,供给,19
+130,金蝶,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14
+58,用友,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14
+135,浪潮,1.3.2.1,供应链管理SCM,29,京东工业品,1.3,工业软件,14
+157,新华三,1.4.1,设备安全,170,Pseudo1,1,供给,9
+41,启明星辰,1.4.3.2,流量检测,170,Pseudo1,1,供给,6
+53,天融信,1.4.3.6,沙箱类设备,170,Pseudo1,1,供给,6
+99,Siemens,2.1,PaaS,170,Pseudo1,1,供给,5
+53,天融信,1.4.2.3,工控漏洞扫描,170,Pseudo1,1,供给,5
+40,奇安信,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5
+98,Microsoft Azure,2,工业互联网平台,170,Pseudo1,1,供给,5
+63,长扬科技,1.4.4.5,安全态势感知,126,华为,1.4,工业互联网安全,5
+140,山石网科,1.4.5.1,恶意代码检测系统,170,Pseudo1,1,供给,5
+23,和利时,1.4.2.7,工控原生安全,170,Pseudo1,1,供给,5
+53,天融信,1.4.5.8,数据加密,170,Pseudo1,1,供给,5
+0,360科技,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5
+102,Amazon AWS,2,工业互联网平台,170,Pseudo1,1,供给,5
+131,九物互联,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,4
+42,山大华天,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,4
+13,东方国信,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,4
+79,PTC,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,4
+78,OutSystems,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,3
+68,中望软件,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,3
+13,东方国信,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3
+13,东方国信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,3
+13,东方国信,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,3
+13,东方国信,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,3
+79,PTC,2.3.3,协议转换,126,华为,2.3,边缘层,3
+69,紫光集团,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3
+79,PTC,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,3
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,3
+16,东土科技,2.3.3,协议转换,126,华为,2.3,边缘层,3
+79,PTC,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,3
+117,格创东智,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,3
+79,PTC,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,3
+79,PTC,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3
+79,PTC,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,3
+79,PTC,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,3
+32,兰光创新,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,3
+103,STMicroelectronics ,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,3
+169,中芯国际,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+47,首自信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,2
+74,HoneyWell,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,2
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2
+57,亚控科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2
+22,航天云网,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,2
+71,Altair,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2
+47,首自信,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2
+70,ABB,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,2
+22,航天云网,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,2
+104,Infineon,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+57,亚控科技,2.3.3,协议转换,155,小米,2.3,边缘层,2
+57,亚控科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,2
+47,首自信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,2
+22,航天云网,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2
+22,航天云网,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2
+48,曙光信息,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,2
+49,数码大方,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,2
+78,OutSystems,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,2
+57,亚控科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2
+6,安世亚太,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,2
+78,OutSystems,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2
+79,PTC,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,2
+168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,2
+135,浪潮,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2
+135,浪潮,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2
+167,中环股份,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2
+79,PTC,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,2
+168,中控技术,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,2
+22,航天云网,2.3.3,协议转换,99,Siemens,2.3,边缘层,2
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,2
+138,启明信息,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,2
+56,芯愿景,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,2
+167,中环股份,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
+166,中国电子科技网络信息安全,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2
+103,STMicroelectronics ,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
+47,首自信,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,2
+117,格创东智,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,2
+22,航天云网,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2
+47,首自信,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,2
+49,数码大方,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,2
+165,智能云科,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2
+58,用友,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2
+103,STMicroelectronics ,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2
+60,宇动源,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2
+49,数码大方,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2
+60,宇动源,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2
+115,富士康,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2
+16,东土科技,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,2
+16,东土科技,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2
+161,研华科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2
+6,安世亚太,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2
+6,安世亚太,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2
+16,东土科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2
+16,东土科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,2
+6,安世亚太,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,2
+6,安世亚太,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,2
+161,研华科技,2.3.3,协议转换,155,小米,2.3,边缘层,2
+16,东土科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2
+6,安世亚太,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2
+169,中芯国际,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
+6,安世亚太,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2
+49,数码大方,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,2
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,2
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,2
+135,浪潮,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,2
+49,数码大方,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,2
+147,拓邦股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2
+168,中控技术,2.3.3,协议转换,126,华为,2.3,边缘层,2
+147,拓邦股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2
+64,中电智科,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2
+149,天泽智云,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,2
+101,Analog Devices,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
+149,天泽智云,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,2
+62,云道智造,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2
+22,航天云网,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2
+49,数码大方,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2
+62,云道智造,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2
+106,阿里巴巴,1.3,工业软件,170,Pseudo1,1,供给,2
+22,航天云网,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2
+150,唯捷创芯,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
+49,数码大方,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,2
+33,蓝谷信息,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2
+22,航天云网,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,2
+79,PTC,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,2
+150,唯捷创芯,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2
+13,东方国信,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,2
+82,Uptake,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2
+38,牛刀,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,2
+26,寄云科技,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2
+13,东方国信,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2
+13,东方国信,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2
+9,北京航天测控,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,2
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2
+26,寄云科技,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,2
+13,东方国信,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,2
+13,东方国信,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,2
+127,华为海思,1.1.3,工业服务器,126,华为,1.1,工业自动化,2
+24,华大电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,2
+79,PTC,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,2
+44,圣邦微电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+127,华为海思,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
+13,东方国信,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,2
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,2
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,2
+46,适创科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,2
+29,京东工业品,1.3,工业软件,170,Pseudo1,1,供给,2
+87,Texas Instruments,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
+13,东方国信,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,2
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,2
+88,HPE,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2
+13,东方国信,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,2
+4,爱创科技,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,2
+13,东方国信,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2
+82,Uptake,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,2
+113,飞腾信息,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2
+89,Rockwell,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,2
+13,东方国信,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2
+13,东方国信,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,2
+13,东方国信,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2
+129,华中数控,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2
+79,PTC,2.3.1,工业数据接入,126,华为,2.3,边缘层,2
+127,华为海思,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2
+79,PTC,2.3.1,工业数据接入,124,海尔,2.3,边缘层,2
+123,海得控制,1.1.2,工业控制器,126,华为,1.1,工业自动化,2
+131,九物互联,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2
+38,牛刀,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2
+79,PTC,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2
+23,和利时,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2
+99,Siemens,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2
+23,和利时,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2
+120,广州数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2
+99,Siemens,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,2
+35,凌昊智能,1.1.3,工业服务器,105,Intel,1.1,工业自动化,2
+135,浪潮,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2
+113,飞腾信息,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2
+79,PTC,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,2
+46,适创科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,2
+117,格创东智,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2
+79,PTC,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,2
+13,东方国信,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,2
+23,和利时,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2
+95,Schneider,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2
+79,PTC,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,2
+95,Schneider,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2
+38,牛刀,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,2
+79,PTC,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2
+79,PTC,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2
+79,PTC,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2
+109,宝信软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1
+104,Infineon,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
+49,数码大方,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1
+36,龙芯中科,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+108,百度,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1
+49,数码大方,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
+35,凌昊智能,1.1.3,工业服务器,126,华为,1.1,工业自动化,1
+49,数码大方,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
+104,Infineon,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+56,芯愿景,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
+38,牛刀,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1
+39,Autodesk,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1
+36,龙芯中科,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+36,龙芯中科,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
+103,STMicroelectronics ,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+38,牛刀,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1
+35,凌昊智能,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
+38,牛刀,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
+50,索为系统,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,1
+38,牛刀,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
+50,索为系统,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,1
+46,适创科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1
+39,Autodesk,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1
+45,石化盈科,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1
+45,石化盈科,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1
+45,石化盈科,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1
+47,首自信,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1
+47,首自信,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
+45,石化盈科,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1
+45,石化盈科,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1
+47,首自信,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1
+47,首自信,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
+47,首自信,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
+47,首自信,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
+47,首自信,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1
+47,首自信,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
+45,石化盈科,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1
+47,首自信,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1
+47,首自信,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1
+47,首自信,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1
+45,石化盈科,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1
+46,适创科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1
+47,首自信,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1
+44,圣邦微电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+49,数码大方,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1
+4,爱创科技,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1
+49,数码大方,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1
+49,数码大方,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1
+111,鼎捷软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1
+49,数码大方,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1
+47,首自信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1
+42,山大华天,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1
+42,山大华天,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,1
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
+47,首自信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1
+43,神舟软件,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,1
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1
+56,芯愿景,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+119,广联达,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1
+56,芯愿景,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+82,Uptake,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1
+81,SAP,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,1
+81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,1
+81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,1
+80,Salesforce,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,1
+79,PTC,2.3.3,协议转换,95,Schneider,2.3,边缘层,1
+79,PTC,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
+79,PTC,2.3.3,协议转换,155,小米,2.3,边缘层,1
+79,PTC,2.3.3,协议转换,102,Amazon AWS,2,工业互联网平台,1
+79,PTC,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1
+79,PTC,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1
+79,PTC,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
+79,PTC,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
+79,PTC,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1
+79,PTC,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
+79,PTC,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1
+79,PTC,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1
+79,PTC,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1
+79,PTC,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1
+79,PTC,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1
+79,PTC,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1
+79,PTC,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1
+79,PTC,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,1
+79,PTC,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1
+79,PTC,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1
+79,PTC,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,1
+79,PTC,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1
+79,PTC,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,1
+81,SAP,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,1
+82,Uptake,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
+79,PTC,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,1
+82,Uptake,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1
+99,Siemens,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
+100,Synopsys,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1
+97,General Electric,1.3.3,生产制造,29,京东工业品,1.3,工业软件,1
+96,Cisco,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1
+95,Schneider,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1
+93,Cadence,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1
+93,Cadence,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1
+91,Moxa,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1
+9,北京航天测控,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1
+89,Rockwell,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1
+89,Rockwell,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1
+89,Rockwell,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
+89,Rockwell,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
+88,HPE,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
+87,Texas Instruments,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+85,Dassault,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1
+83,Emerson,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1
+83,Emerson,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1
+82,Uptake,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
+82,Uptake,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
+82,Uptake,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1
+82,Uptake,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1
+82,Uptake,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
+79,PTC,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
+56,芯愿景,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
+62,云道智造,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1
+62,云道智造,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1
+62,云道智造,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1
+62,云道智造,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
+60,宇动源,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
+60,宇动源,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1
+60,宇动源,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1
+60,宇动源,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
+60,宇动源,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1
+60,宇动源,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1
+60,宇动源,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1
+6,安世亚太,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1
+6,安世亚太,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
+6,安世亚太,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
+103,STMicroelectronics ,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
+58,用友,1.3.2,采购供应,170,Pseudo1,1,供给,1
+58,用友,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,1
+58,用友,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1
+57,亚控科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
+57,亚控科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1
+57,亚控科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,1
+56,芯愿景,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1
+56,芯愿景,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1
+62,云道智造,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1
+62,云道智造,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
+79,PTC,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1
+62,云道智造,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
+79,PTC,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1
+79,PTC,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
+78,OutSystems,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
+78,OutSystems,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
+78,OutSystems,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1
+78,OutSystems,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1
+78,OutSystems,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
+77,Oracle,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1
+77,Oracle,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,1
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
+71,Altair,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1
+71,Altair,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
+70,ABB,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1
+69,紫光集团,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1
+69,紫光集团,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+68,中望软件,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1
+68,中望软件,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1
+68,中望软件,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1
+68,中望软件,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
+66,中国联通,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
+65,中国电信,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1
+65,中国电信,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
+65,中国电信,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
+64,中电智科,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
+101,Analog Devices,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+62,云道智造,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
+62,云道智造,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1
+33,蓝谷信息,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
+23,和利时,2.3.3,协议转换,99,Siemens,2.3,边缘层,1
+33,蓝谷信息,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
+137,美林数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1
+135,浪潮,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,1
+135,浪潮,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1
+135,浪潮,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1
+135,浪潮,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
+135,浪潮,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1
+135,浪潮,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1
+137,美林数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1
+135,浪潮,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,1
+14,东华软件,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,1
+117,格创东智,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1
+117,格创东智,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1
+135,浪潮,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,1
+135,浪潮,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1
+116,概伦电子,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1
+117,格创东智,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
+131,九物互联,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,1
+132,科远智慧,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1
+133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,1
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,1
+135,浪潮,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
+117,格创东智,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
+135,浪潮,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,1
+135,浪潮,1.3.2.1,供应链管理SCM,170,Pseudo1,1,供给,1
+117,格创东智,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,1
+135,浪潮,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1
+135,浪潮,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,1
+135,浪潮,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1
+135,浪潮,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1
+117,格创东智,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1
+116,概伦电子,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1
+150,唯捷创芯,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+149,天泽智云,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1
+149,天泽智云,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1
+149,天泽智云,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
+149,天泽智云,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
+149,天泽智云,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1
+149,天泽智云,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
+149,天泽智云,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
+149,天泽智云,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1
+149,天泽智云,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
+15,东软集团,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1
+15,东软集团,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1
+144,树根互联,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
+144,树根互联,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1
+144,树根互联,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1
+144,树根互联,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1
+144,树根互联,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
+144,树根互联,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
+144,树根互联,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1
+144,树根互联,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1
+144,树根互联,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1
+131,九物互联,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
+131,九物互联,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1
+131,九物互联,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1
+13,东方国信,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1
+128,华伍股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,1
+129,华中数控,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1
+129,华中数控,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1
+129,华中数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1
+13,东方国信,1.2.2,标识解析,126,华为,1.2,工业互联网网络,1
+13,东方国信,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1
+13,东方国信,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,1
+127,华为海思,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
+13,东方国信,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,1
+13,东方国信,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1
+13,东方国信,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,1
+13,东方国信,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1
+13,东方国信,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,1
+13,东方国信,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1
+128,华伍股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,1
+127,华为海思,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1
+117,格创东智,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1
+123,海得控制,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,1
+119,广联达,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1
+12,大唐软件,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
+12,大唐软件,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
+12,大唐软件,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1
+120,广州数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,1
+123,海得控制,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1
+124,海尔,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1
+126,华为,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,1
+124,海尔,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1
+124,海尔,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1
+125,华数机器人,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1
+118,工邦邦,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1
+126,华为,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1
+126,华为,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1
+13,东方国信,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1
+13,东方国信,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,1
+13,东方国信,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1
+13,东方国信,2.3.3,协议转换,124,海尔,2.3,边缘层,1
+13,东方国信,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1
+13,东方国信,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
+13,东方国信,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1
+13,东方国信,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
+13,东方国信,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1
+13,东方国信,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
+13,东方国信,2.3.3,协议转换,155,小米,2.3,边缘层,1
+13,东方国信,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,1
+117,格创东智,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1
+130,金蝶,1.3.2,采购供应,170,Pseudo1,1,供给,1
+117,格创东智,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1
+130,金蝶,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1
+117,格创东智,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1
+130,金蝶,1.3.5,仓储物流,170,Pseudo1,1,供给,1
+13,东方国信,2.3.1,工业数据接入,155,小米,2.3,边缘层,1
+13,东方国信,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
+13,东方国信,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1
+13,东方国信,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1
+13,东方国信,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1
+13,东方国信,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,1
+13,东方国信,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1
+13,东方国信,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1
+13,东方国信,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,1
+13,东方国信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1
+13,东方国信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
+13,东方国信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
+13,东方国信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1
+13,东方国信,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,1
+13,东方国信,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1
+13,东方国信,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1
+13,东方国信,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1
+150,唯捷创芯,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1
+33,蓝谷信息,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1
+23,和利时,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,1
+22,航天云网,2.3.3,协议转换,95,Schneider,2.3,边缘层,1
+23,和利时,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1
+23,和利时,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1
+23,和利时,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1
+115,富士康,1.1.3,工业服务器,105,Intel,1.1,工业自动化,1
+22,航天云网,2.3.3,协议转换,126,华为,2.3,边缘层,1
+113,飞腾信息,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+23,和利时,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
+23,和利时,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1
+23,和利时,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
+23,和利时,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
+23,和利时,2.3.3,协议转换,124,海尔,2.3,边缘层,1
+1,51WORLD,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1
+22,航天云网,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1
+23,和利时,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
+22,航天云网,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1
+22,航天云网,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1
+22,航天云网,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1
+22,航天云网,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,1
+22,航天云网,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1
+22,航天云网,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1
+22,航天云网,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1
+22,航天云网,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
+22,航天云网,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
+22,航天云网,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1
+22,航天云网,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1
+22,航天云网,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
+22,航天云网,2.3.1,工业数据接入,155,小米,2.3,边缘层,1
+22,航天云网,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
+22,航天云网,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1
+23,和利时,2.3.3,协议转换,126,华为,2.3,边缘层,1
+23,和利时,2.3.3,协议转换,95,Schneider,2.3,边缘层,1
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1
+31,昆仑数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1
+3,艾克斯特,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,1
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1
+31,昆仑数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1
+31,昆仑数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1
+26,寄云科技,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1
+32,兰光创新,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1
+33,蓝谷信息,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1
+33,蓝谷信息,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1
+33,蓝谷信息,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1
+33,蓝谷信息,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1
+33,蓝谷信息,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1
+26,寄云科技,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1
+119,广联达,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1
+26,寄云科技,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1
+24,华大电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+24,华大电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+25,华大九天,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1
+25,华大九天,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1
+26,寄云科技,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1
+26,寄云科技,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1
+22,航天云网,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1
+22,航天云网,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1
+22,航天云网,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1
+163,优也科技,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1
+161,研华科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
+161,研华科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1
+161,研华科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1
+161,研华科技,2.3.3,协议转换,124,海尔,2.3,边缘层,1
+163,优也科技,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1
+163,优也科技,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1
+163,优也科技,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1
+161,研华科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
+164,震坤行,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1
+164,震坤行,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1
+165,智能云科,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1
+165,智能云科,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1
+165,智能云科,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1
+165,智能云科,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1
+161,研华科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
+161,研华科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
+22,航天云网,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1
+116,概伦电子,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1
+154,西格数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1
+154,西格数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1
+16,东土科技,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,1
+161,研华科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1
+16,东土科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1
+16,东土科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1
+16,东土科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
+16,东土科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1
+16,东土科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1
+16,东土科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
+165,智能云科,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1
+165,智能云科,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1
+165,智能云科,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1
+20,海基科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1
+169,中芯国际,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1
+169,中芯国际,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1
+18,国能智深,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1
+2,706所,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,1
+2,706所,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1
+20,海基科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1
+20,海基科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1
+165,智能云科,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,1
+22,航天云网,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1
+22,航天云网,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1
+22,航天云网,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1
+22,航天云网,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1
+22,航天云网,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1
+168,中控技术,2.3.3,协议转换,99,Siemens,2.3,边缘层,1
+168,中控技术,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
+168,中控技术,2.3.3,协议转换,124,海尔,2.3,边缘层,1
+168,中控技术,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1
+168,中控技术,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1
+168,中控技术,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1
+168,中控技术,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1
+168,中控技术,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1
+168,中控技术,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1
+168,中控技术,2.3.1,工业数据接入,155,小米,2.3,边缘层,1
+168,中控技术,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1
+168,中控技术,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1
+168,中控技术,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1
+168,中控技术,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1
+167,中环股份,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1
+166,中国电子科技网络信息安全,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,1
+165,智能云科,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,1
+22,航天云网,2.3.3,协议转换,84,Bosch,2.3,边缘层,1
diff --git a/analysis/count_dcp_network20230407.png b/analysis/dissertation_count_dcp_network20230407.png
similarity index 100%
rename from analysis/count_dcp_network20230407.png
rename to analysis/dissertation_count_dcp_network20230407.png
diff --git a/analysis/count_dcp_network20230526_de.png b/analysis/dissertation_count_dcp_network20230526_de.png
similarity index 100%
rename from analysis/count_dcp_network20230526_de.png
rename to analysis/dissertation_count_dcp_network20230526_de.png
diff --git a/analysis/dissertation_count_dcp_prod.csv b/analysis/dissertation_count_dcp_prod.csv
new file mode 100644
index 0000000..ab522b0
--- /dev/null
+++ b/analysis/dissertation_count_dcp_prod.csv
@@ -0,0 +1,98 @@
+up_id_product,up_name_product,down_id_product,down_name_product,count
+1.4,工业互联网安全,1,供给,118
+1.4.3,网络安全,1.4,工业互联网安全,96
+1.4.5,数据安全,1.4,工业互联网安全,92
+1.4.2,控制安全,1.4,工业互联网安全,92
+2.1,PaaS,2,工业互联网平台,77
+1.4.4.5,安全态势感知,1.4.4,平台安全,76
+1.3.2.1,供应链管理SCM,1.3.2,采购供应,76
+1.3.2,采购供应,1.3,工业软件,74
+1.3.5,仓储物流,1.3,工业软件,72
+1.1.1,工业计算芯片,1.1,工业自动化,67
+1.4.5.8,数据加密,1.4.5,数据安全,50
+1.4.5.1,恶意代码检测系统,1.4.5,数据安全,50
+1.4.3.6,沙箱类设备,1.4.3,网络安全,50
+1.4.2.7,工控原生安全,1.4.2,控制安全,50
+1.4.2.3,工控漏洞扫描,1.4.2,控制安全,50
+1.4.1,设备安全,1.4,工业互联网安全,50
+1.4.3.2,流量检测,1.4.3,网络安全,50
+2.3.3,协议转换,2.3,边缘层,37
+1.3.2.1,供应链管理SCM,1.3,工业软件,37
+2.3.1,工业数据接入,2.3,边缘层,33
+2.1.3.6,微服务,2.1.3,工业物联网,33
+2.3.2,边缘数据处理,2.3,边缘层,30
+2.1.3.4,应用管理服务,2.1.3,工业物联网,30
+2.1.2.4,行业机理模型,2.1.2,工业模型库,30
+2.1.2.2,业务流程模型,2.1.2,工业模型库,28
+2.1.3.7,制造类API,2.1.3,工业物联网,28
+1.3.1.1,计算机辅助设计CAD,1.3.1,设计研发,28
+2.1.2.1,数据算法模型,2.1.2,工业模型库,27
+1.3.1.2,计算机辅助工程CAE,1.3.1,设计研发,26
+2.1.3.1,物联网服务,2.1.3,工业物联网,25
+1.1.2,工业控制器,1.1,工业自动化,24
+2.1.3.5,容器服务,2.1.3,工业物联网,24
+1.4.3.6,沙箱类设备,1.4,工业互联网安全,23
+2.1.1.2,低代码开发工具,2.1.1,开发工具,23
+1.1.3,工业服务器,1.1,工业自动化,23
+1.4.3.2,流量检测,1.4,工业互联网安全,23
+2.1.3.3,工业引擎服务,2.1.3,工业物联网,23
+1.4.5.1,恶意代码检测系统,1.4,工业互联网安全,21
+1.4.5.8,数据加密,1.4,工业互联网安全,21
+1.4.2.3,工控漏洞扫描,1.4,工业互联网安全,21
+2.1.3.2,平台基础服务,2.1.3,工业物联网,21
+1.4.2.7,工控原生安全,1.4,工业互联网安全,21
+1.4.3,网络安全,1,供给,21
+1.3.1.4,计算机辅助工艺过程设计CAPP,1.3.1,设计研发,20
+1.4.5,数据安全,1,供给,19
+1.4.2,控制安全,1,供给,19
+2.1.2.3,研发仿真模型,2.1.2,工业模型库,18
+2.1.1.5,数字孪生建模工具,2.1.1,开发工具,18
+1.3.1.6,产品生命周期管理PLM,1.3.1,设计研发,18
+1.2.3,数据互通,1.2,工业互联网网络,17
+2.1.1.1,算法建模工具,2.1.1,开发工具,15
+2.1.1.4,组态建模工具,2.1.1,开发工具,14
+1.3.3.2,分布式控制系统DCS,1.3.3,生产制造,14
+1.2.2,标识解析,1.2,工业互联网网络,13
+1.2.1,网络互联,1.2,工业互联网网络,13
+2.1.1.3,流程开发工具,2.1.1,开发工具,12
+1.3.1.7,电子设计自动化EDA,1.3.1,设计研发,12
+1.3.3.3,数据采集与监视控制系统SCADA,1.3.3,生产制造,11
+2,工业互联网平台,1,供给,10
+1.3.3.6,运维保障系统MRO,1.3.3,生产制造,10
+1.3.3.1,制造执行系统MES,1.3.3,生产制造,10
+1.4.4,平台安全,1.4,工业互联网安全,10
+1.4.1,设备安全,1,供给,9
+1.3.1,设计研发,1.3,工业软件,8
+1.3.3.4,可编程逻揖控制系统PLC,1.3.3,生产制造,7
+1.3.4.1,企业资源计划ERP,1.3.4,企业运营管理,6
+1.3.3.5,企业资产管理系统EAM,1.3.3,生产制造,6
+1.4.3.6,沙箱类设备,1,供给,6
+1.4.3.2,流量检测,1,供给,6
+1.4.5.1,恶意代码检测系统,1,供给,5
+1.4.4.5,安全态势感知,1.4,工业互联网安全,5
+2.1,PaaS,1,供给,5
+1.4.2.7,工控原生安全,1,供给,5
+1.3.1.5,产品数据管理PDM,1.3.1,设计研发,5
+1.4.5.8,数据加密,1,供给,5
+1.4.2.3,工控漏洞扫描,1,供给,5
+2.1.4.2.2,数据安全管理,2.1.4.2,工业大数据管理,5
+2.1.4.2.1,数据质量管理,2.1.4.2,工业大数据管理,5
+1.3,工业软件,1,供给,4
+2.1.4.1.4,时序数据库,2.1.4.1,工业大数据存储,4
+2.3,边缘层,2,工业互联网平台,3
+2.2,IaaS,2,工业互联网平台,3
+2.1.4.1.1,关系型数据库,2.1.4.1,工业大数据存储,3
+2.1.4.1.2,分布式数据库,2.1.4.1,工业大数据存储,3
+2.1.4.1.3,实时数据库,2.1.4.1,工业大数据存储,3
+2.1.4.2,工业大数据管理,2.1.4,工业大数据,3
+1.3.1.3,计算机辅助制造CAM,1.3.1,设计研发,2
+1.3.2,采购供应,1,供给,2
+1.3.3,生产制造,1.3,工业软件,1
+2.3.3,协议转换,2,工业互联网平台,1
+1.3.4.3,人力资源管理HRM,1.3.4,企业运营管理,1
+2.1.4.1,工业大数据存储,2.1.4,工业大数据,1
+1.3.3.7,故障预测与健康管理PHM,1.3.3,生产制造,1
+1.3.4,企业运营管理,1.3,工业软件,1
+1.3.5,仓储物流,1,供给,1
+1.4.4.1,身份鉴别与访问控制,1.4.4,平台安全,1
+1.3.2.1,供应链管理SCM,1,供给,1
diff --git a/analysis/count_dcp_prod_network20230407.png b/analysis/dissertation_count_dcp_prod_network20230407.png
similarity index 100%
rename from analysis/count_dcp_prod_network20230407.png
rename to analysis/dissertation_count_dcp_prod_network20230407.png
diff --git a/analysis/dissertation_count_firm.csv b/analysis/dissertation_count_firm.csv
new file mode 100644
index 0000000..1caf1b0
--- /dev/null
+++ b/analysis/dissertation_count_firm.csv
@@ -0,0 +1,144 @@
+id_firm,Name,count
+126,华为,468
+142,深信服,300
+41,启明星辰,200
+53,天融信,150
+106,阿里巴巴,146
+170,Pseudo1,125
+99,Siemens,120
+79,PTC,117
+130,金蝶,91
+13,东方国信,80
+135,浪潮,73
+23,和利时,71
+58,用友,62
+97,General Electric,54
+29,京东工业品,52
+63,长扬科技,50
+85,Dassault,50
+157,新华三,50
+140,山石网科,50
+148,腾讯,49
+102,Amazon AWS,47
+22,航天云网,46
+40,奇安信,39
+0,360科技,38
+98,Microsoft Azure,38
+84,Bosch,35
+81,SAP,35
+74,HoneyWell,32
+100,Synopsys,29
+86,Dell EMC,28
+80,Salesforce,28
+108,百度,25
+105,Intel,25
+49,数码大方,24
+47,首自信,24
+95,Schneider,22
+39,Autodesk,21
+168,中控技术,20
+6,安世亚太,20
+16,东土科技,20
+94,Mitsubishi,19
+75,IBM,19
+73,FANUC,18
+124,海尔,18
+117,格创东智,17
+26,寄云科技,17
+155,小米,17
+159,徐工集团,16
+57,亚控科技,13
+149,天泽智云,13
+93,Cadence,13
+62,云道智造,13
+82,Uptake,12
+78,OutSystems,12
+161,研华科技,12
+60,宇动源,11
+165,智能云科,11
+33,蓝谷信息,10
+42,山大华天,10
+67,中国移动,10
+131,九物互联,10
+38,牛刀,10
+103,STMicroelectronics ,9
+144,树根互联,9
+56,芯愿景,8
+143,沈阳自动化研究所,8
+127,华为海思,8
+153,武汉开目,8
+3,艾克斯特,7
+45,石化盈科,7
+68,中望软件,7
+31,昆仑数据,6
+46,适创科技,6
+111,鼎捷软件,6
+89,Rockwell,6
+150,唯捷创芯,6
+169,中芯国际,6
+69,紫光集团,5
+113,飞腾信息,5
+167,中环股份,5
+129,华中数控,5
+43,神舟软件,5
+71,Altair,4
+104,Infineon,4
+77,Oracle,4
+123,海得控制,4
+145,思普软件,4
+35,凌昊智能,4
+163,优也科技,4
+24,华大电子,4
+32,兰光创新,4
+115,富士康,4
+147,拓邦股份,4
+9,北京航天测控,3
+88,HPE,3
+87,Texas Instruments,3
+120,广州数控,3
+12,大唐软件,3
+64,中电智科,3
+90,Mentor Graphics,3
+101,Analog Devices,3
+116,概伦电子,3
+166,中国电子科技网络信息安全,3
+119,广联达,3
+70,ABB,3
+20,海基科技,3
+65,中国电信,3
+72,ANSYS,3
+4,爱创科技,3
+36,龙芯中科,3
+44,圣邦微电子,3
+146,苏州浩辰,3
+14,东华软件,3
+83,Emerson,2
+138,启明信息,2
+10,北京英贝思,2
+128,华伍股份,2
+15,东软集团,2
+154,西格数据,2
+156,芯禾科技,2
+48,曙光信息,2
+50,索为系统,2
+141,上海新华控制,2
+61,元年科技,2
+164,震坤行,2
+2,706所,2
+134,朗坤智慧,2
+137,美林数据,2
+25,华大九天,2
+34,力控科技,2
+132,科远智慧,1
+92,Omron,1
+21,Hexagon,1
+96,Cisco,1
+18,国能智深,1
+118,工邦邦,1
+91,Moxa,1
+125,华数机器人,1
+133,蓝盾股份,1
+109,宝信软件,1
+139,容知日新,1
+66,中国联通,1
+1,51WORLD,1
diff --git a/analysis/dissertation_count_firm_prod.csv b/analysis/dissertation_count_firm_prod.csv
new file mode 100644
index 0000000..b3ab1fd
--- /dev/null
+++ b/analysis/dissertation_count_firm_prod.csv
@@ -0,0 +1,358 @@
+id_firm,name_firm,id_product,name_product,count
+126,华为,1.4,工业互联网安全,385
+142,深信服,1.4.3,网络安全,150
+41,启明星辰,1.4.5,数据安全,150
+142,深信服,1.4.2,控制安全,150
+170,Pseudo1,1,供给,125
+106,阿里巴巴,1.3,工业软件,67
+29,京东工业品,1.3,工业软件,52
+53,天融信,1.4.2.3,工控漏洞扫描,50
+41,启明星辰,1.4.3.2,流量检测,50
+23,和利时,1.4.2.7,工控原生安全,50
+63,长扬科技,1.4.4.5,安全态势感知,50
+157,新华三,1.4.1,设备安全,50
+53,天融信,1.4.5.8,数据加密,50
+140,山石网科,1.4.5.1,恶意代码检测系统,50
+135,浪潮,1.3.2.1,供应链管理SCM,50
+130,金蝶,1.3.5,仓储物流,50
+99,Siemens,2.1,PaaS,50
+53,天融信,1.4.3.6,沙箱类设备,50
+102,Amazon AWS,2,工业互联网平台,45
+130,金蝶,1.3.2,采购供应,40
+40,奇安信,1.4.4,平台安全,39
+0,360科技,1.4.4,平台安全,38
+98,Microsoft Azure,2,工业互联网平台,38
+58,用友,1.3.2,采购供应,36
+148,腾讯,2.1.3,工业物联网,32
+74,HoneyWell,2.1.3,工业物联网,30
+100,Synopsys,1.3.1,设计研发,29
+85,Dassault,1.3.1,设计研发,29
+86,Dell EMC,1.1,工业自动化,28
+99,Siemens,1.3.1,设计研发,27
+97,General Electric,2.1.3,工业物联网,27
+106,阿里巴巴,2.1.3,工业物联网,27
+126,华为,2.1.3,工业物联网,26
+105,Intel,1.1,工业自动化,25
+80,Salesforce,2.1.1,开发工具,25
+79,PTC,2.1.2,工业模型库,25
+108,百度,2.1.3,工业物联网,24
+84,Bosch,2.1.2,工业模型库,22
+58,用友,2.1.2,工业模型库,22
+39,Autodesk,1.3.1,设计研发,21
+97,General Electric,1.3.3,生产制造,21
+106,阿里巴巴,1.1,工业自动化,21
+85,Dassault,2.1.1,开发工具,21
+126,华为,1.1,工业自动化,21
+99,Siemens,1.3.3,生产制造,20
+99,Siemens,2.3,边缘层,20
+106,阿里巴巴,2.1.1,开发工具,19
+126,华为,2.3,边缘层,19
+75,IBM,1.3.3,生产制造,19
+94,Mitsubishi,1.1,工业自动化,19
+73,FANUC,2.1.3,工业物联网,18
+81,SAP,2.1.2,工业模型库,18
+95,Schneider,2.3,边缘层,18
+155,小米,2.3,边缘层,17
+148,腾讯,2.1.1,开发工具,17
+124,海尔,2.3,边缘层,16
+159,徐工集团,2.1.2,工业模型库,16
+126,华为,1.2,工业互联网网络,15
+93,Cadence,1.3.1,设计研发,13
+106,阿里巴巴,1.2,工业互联网网络,12
+84,Bosch,2.3,边缘层,12
+13,东方国信,2.1.3.7,制造类API,11
+13,东方国信,2.1.3.4,应用管理服务,11
+13,东方国信,2.1.3.5,容器服务,10
+79,PTC,2.1.3.2,平台基础服务,10
+67,中国移动,1.2,工业互联网网络,10
+79,PTC,2.1.3.1,物联网服务,9
+79,PTC,2.1.3.4,应用管理服务,9
+103,STMicroelectronics ,1.1.1,工业计算芯片,9
+13,东方国信,2.1.3.1,物联网服务,9
+13,东方国信,2.1.3.3,工业引擎服务,8
+79,PTC,2.1.3.5,容器服务,8
+79,PTC,2.1.4.1,工业大数据存储,7
+13,东方国信,2.1.3.6,微服务,7
+79,PTC,2.1.3.7,制造类API,7
+81,SAP,2.1.4.1,工业大数据存储,7
+81,SAP,2.1.4.2,工业大数据管理,7
+79,PTC,2.1.3.6,微服务,7
+79,PTC,2.3.3,协议转换,6
+79,PTC,2.1.3.3,工业引擎服务,6
+16,东土科技,2.3.1,工业数据接入,6
+150,唯捷创芯,1.1.1,工业计算芯片,6
+49,数码大方,1.3.1.1,计算机辅助设计CAD,6
+79,PTC,2.3.1,工业数据接入,6
+47,首自信,2.1.3.6,微服务,6
+56,芯愿景,1.1.1,工业计算芯片,6
+169,中芯国际,1.1.1,工业计算芯片,6
+97,General Electric,1.2,工业互联网网络,6
+46,适创科技,1.3.1.2,计算机辅助工程CAE,6
+47,首自信,2.1.2.1,数据算法模型,6
+13,东方国信,2.1.3.2,平台基础服务,6
+16,东土科技,1.1.3,工业服务器,5
+161,研华科技,2.3.3,协议转换,5
+16,东土科技,2.3.3,协议转换,5
+22,航天云网,2.1.3.6,微服务,5
+168,中控技术,2.3.3,协议转换,5
+13,东方国信,2.3.2,边缘数据处理,5
+22,航天云网,2.3.1,工业数据接入,5
+153,武汉开目,1.3.1.1,计算机辅助设计CAD,5
+69,紫光集团,1.1.1,工业计算芯片,5
+22,航天云网,2.3.3,协议转换,5
+127,华为海思,1.1.1,工业计算芯片,5
+6,安世亚太,2.1.2.1,数据算法模型,5
+79,PTC,2.1.4.2,工业大数据管理,5
+23,和利时,2.3.3,协议转换,5
+42,山大华天,1.3.1.1,计算机辅助设计CAD,5
+113,飞腾信息,1.1.1,工业计算芯片,5
+167,中环股份,1.1.1,工业计算芯片,5
+78,OutSystems,2.1.1.5,数字孪生建模工具,4
+32,兰光创新,1.2.3,数据互通,4
+68,中望软件,1.3.1.2,计算机辅助工程CAE,4
+78,OutSystems,2.1.1.2,低代码开发工具,4
+6,安世亚太,2.1.2.4,行业机理模型,4
+165,智能云科,2.1.2.2,业务流程模型,4
+24,华大电子,1.1.1,工业计算芯片,4
+62,云道智造,2.1.2.2,业务流程模型,4
+23,和利时,2.3.2,边缘数据处理,4
+16,东土科技,2.3.2,边缘数据处理,4
+6,安世亚太,2.1.2.3,研发仿真模型,4
+22,航天云网,2.1.3.4,应用管理服务,4
+71,Altair,1.3.1.2,计算机辅助工程CAE,4
+161,研华科技,2.3.2,边缘数据处理,4
+168,中控技术,2.3.2,边缘数据处理,4
+35,凌昊智能,1.1.3,工业服务器,4
+33,蓝谷信息,2.1.2.4,行业机理模型,4
+57,亚控科技,2.3.3,协议转换,4
+129,华中数控,1.1.2,工业控制器,4
+13,东方国信,2.3.1,工业数据接入,4
+104,Infineon,1.1.1,工业计算芯片,4
+131,九物互联,2.1.1.2,低代码开发工具,4
+95,Schneider,1.2.3,数据互通,4
+149,天泽智云,2.1.2.4,行业机理模型,4
+42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,4
+135,浪潮,2.1.3.7,制造类API,4
+117,格创东智,2.1.1.4,组态建模工具,4
+82,Uptake,2.1.2.4,行业机理模型,4
+57,亚控科技,2.3.2,边缘数据处理,4
+43,神舟软件,1.3.1.6,产品生命周期管理PLM,4
+145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,4
+123,海得控制,1.1.2,工业控制器,4
+38,牛刀,2.1.1.5,数字孪生建模工具,4
+149,天泽智云,2.1.2.3,研发仿真模型,4
+147,拓邦股份,1.1.2,工业控制器,4
+6,安世亚太,2.1.2.2,业务流程模型,4
+4,爱创科技,1.2.2,标识解析,3
+36,龙芯中科,1.1.1,工业计算芯片,3
+33,蓝谷信息,2.1.2.2,业务流程模型,3
+115,富士康,1.1.3,工业服务器,3
+49,数码大方,2.1.2.1,数据算法模型,3
+49,数码大方,1.3.3.1,制造执行系统MES,3
+23,和利时,2.1.3.6,微服务,3
+49,数码大方,2.1.2.2,业务流程模型,3
+64,中电智科,1.1.2,工业控制器,3
+49,数码大方,1.3.1.6,产品生命周期管理PLM,3
+49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,3
+47,首自信,2.1.2.4,行业机理模型,3
+47,首自信,2.1.1.2,低代码开发工具,3
+62,云道智造,2.1.2.4,行业机理模型,3
+117,格创东智,2.1.1.2,低代码开发工具,3
+60,宇动源,2.1.1.1,算法建模工具,3
+26,寄云科技,2.1.3.1,物联网服务,3
+117,格创东智,2.1.1.1,算法建模工具,3
+26,寄云科技,2.1.3.3,工业引擎服务,3
+44,圣邦微电子,1.1.1,工业计算芯片,3
+62,云道智造,1.3.1.2,计算机辅助工程CAE,3
+26,寄云科技,2.1.3.6,微服务,3
+6,安世亚太,1.3.1.2,计算机辅助工程CAE,3
+57,亚控科技,2.3.1,工业数据接入,3
+3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,3
+116,概伦电子,1.3.1.7,电子设计自动化EDA,3
+3,艾克斯特,1.3.1.6,产品生命周期管理PLM,3
+31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,3
+60,宇动源,2.1.1.2,低代码开发工具,3
+65,中国电信,1.2.1,网络互联,3
+23,和利时,2.3.1,工业数据接入,3
+68,中望软件,1.3.1.1,计算机辅助设计CAD,3
+87,Texas Instruments,1.1.1,工业计算芯片,3
+149,天泽智云,2.1.2.2,业务流程模型,3
+120,广州数控,1.2.3,数据互通,3
+146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,3
+144,树根互联,2.1.2.4,行业机理模型,3
+22,航天云网,2.1.3.7,制造类API,3
+80,Salesforce,1.3.4,企业运营管理,3
+81,SAP,1.3.4,企业运营管理,3
+82,Uptake,2.1.2.1,数据算法模型,3
+82,Uptake,2.1.2.2,业务流程模型,3
+111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,3
+135,浪潮,2.1.3.4,应用管理服务,3
+12,大唐软件,1.2.1,网络互联,3
+135,浪潮,2.1.3.3,工业引擎服务,3
+88,HPE,1.1.3,工业服务器,3
+89,Rockwell,1.1.2,工业控制器,3
+9,北京航天测控,1.3.3.6,运维保障系统MRO,3
+135,浪潮,1.1.3,工业服务器,3
+90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,3
+131,九物互联,2.1.1.4,组态建模工具,3
+13,东方国信,1.2.2,标识解析,3
+101,Analog Devices,1.1.1,工业计算芯片,3
+127,华为海思,1.1.3,工业服务器,3
+153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,3
+79,PTC,2.3.2,边缘数据处理,3
+161,研华科技,2.3.1,工业数据接入,3
+168,中控技术,1.3.3.2,分布式控制系统DCS,3
+22,航天云网,2.1.3.3,工业引擎服务,3
+72,ANSYS,1.3.1.2,计算机辅助工程CAE,3
+22,航天云网,1.2.2,标识解析,3
+20,海基科技,1.3.1.2,计算机辅助工程CAE,3
+119,广联达,1.3.1.1,计算机辅助设计CAD,3
+168,中控技术,2.3.1,工业数据接入,3
+79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,3
+165,智能云科,2.1.2.1,数据算法模型,3
+79,PTC,1.3.1.6,产品生命周期管理PLM,3
+79,PTC,1.3.1.1,计算机辅助设计CAD,3
+166,中国电子科技网络信息安全,1.2.3,数据互通,3
+165,智能云科,2.1.2.4,行业机理模型,3
+58,用友,1.3.1.6,产品生命周期管理PLM,2
+117,格创东智,2.1.1.3,流程开发工具,2
+70,ABB,1.3.3.2,分布式控制系统DCS,2
+10,北京英贝思,1.3.3.5,企业资产管理系统EAM,2
+102,Amazon AWS,2.1.4,工业大数据,2
+99,Siemens,1.1.2,工业控制器,2
+74,HoneyWell,1.3.3.2,分布式控制系统DCS,2
+77,Oracle,1.3.3.6,运维保障系统MRO,2
+77,Oracle,1.3.4,企业运营管理,2
+49,数码大方,2.1.2.4,行业机理模型,2
+50,索为系统,1.3.1.5,产品数据管理PDM,2
+89,Rockwell,1.2.1,网络互联,2
+58,用友,1.2.2,标识解析,2
+78,OutSystems,2.1.1.1,算法建模工具,2
+56,芯愿景,1.3.1.7,电子设计自动化EDA,2
+111,鼎捷软件,1.3.4.1,企业资源计划ERP,2
+57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,2
+78,OutSystems,2.1.1.3,流程开发工具,2
+61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,2
+83,Emerson,1.3.3.2,分布式控制系统DCS,2
+82,Uptake,2.1.2.3,研发仿真模型,2
+60,宇动源,2.1.1.5,数字孪生建模工具,2
+60,宇动源,2.1.1.4,组态建模工具,2
+62,云道智造,2.1.2.1,数据算法模型,2
+33,蓝谷信息,2.1.2.3,研发仿真模型,2
+48,曙光信息,1.2.2,标识解析,2
+22,航天云网,1.3.3.6,运维保障系统MRO,2
+26,寄云科技,2.1.3.2,平台基础服务,2
+144,树根互联,2.1.2.2,业务流程模型,2
+25,华大九天,1.3.1.7,电子设计自动化EDA,2
+23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,2
+138,启明信息,1.3.1.5,产品数据管理PDM,2
+23,和利时,1.3.3.1,制造执行系统MES,2
+22,航天云网,2.3.2,边缘数据处理,2
+22,航天云网,2.1.3.5,容器服务,2
+14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,2
+22,航天云网,2.1.3.1,物联网服务,2
+22,航天云网,2.1.1.5,数字孪生建模工具,2
+22,航天云网,2.1.1.3,流程开发工具,2
+22,航天云网,2.1.1.2,低代码开发工具,2
+22,航天云网,2.1.1.1,算法建模工具,2
+141,上海新华控制,1.3.3.2,分布式控制系统DCS,2
+26,寄云科技,2.1.3.5,容器服务,2
+2,706所,1.1.3,工业服务器,2
+124,海尔,1.2.1,网络互联,2
+168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,2
+143,沈阳自动化研究所,2.1.1.2,低代码开发工具,2
+168,中控技术,1.1.2,工业控制器,2
+143,沈阳自动化研究所,2.1.1.3,流程开发工具,2
+164,震坤行,1.3.3.6,运维保障系统MRO,2
+163,优也科技,2.1.4.2.2,数据安全管理,2
+143,沈阳自动化研究所,2.1.1.4,组态建模工具,2
+156,芯禾科技,1.3.1.7,电子设计自动化EDA,2
+143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,2
+144,树根互联,2.1.2.1,数据算法模型,2
+15,东软集团,1.3.3.5,企业资产管理系统EAM,2
+149,天泽智云,2.1.2.1,数据算法模型,2
+26,寄云科技,2.1.3.4,应用管理服务,2
+144,树根互联,2.1.2.3,研发仿真模型,2
+26,寄云科技,2.1.3.7,制造类API,2
+135,浪潮,2.1.3.1,物联网服务,2
+117,格创东智,2.1.1.5,数字孪生建模工具,2
+134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,2
+13,东方国信,2.3.3,协议转换,2
+38,牛刀,2.1.1.2,低代码开发工具,2
+38,牛刀,2.1.1.1,算法建模工具,2
+13,东方国信,2.1.4.1.4,时序数据库,2
+34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,2
+135,浪潮,2.1.3.2,平台基础服务,2
+128,华伍股份,1.1.2,工业控制器,2
+47,首自信,2.1.2.2,业务流程模型,2
+135,浪潮,2.1.3.5,容器服务,2
+135,浪潮,2.1.3.6,微服务,2
+131,九物互联,2.1.1.1,算法建模工具,2
+99,Siemens,1.2.1,网络互联,1
+13,东方国信,2.1.4.1.2,分布式数据库,1
+131,九物互联,2.1.1.3,流程开发工具,1
+111,鼎捷软件,1.3.3.1,制造执行系统MES,1
+129,华中数控,1.2.3,数据互通,1
+13,东方国信,2.1.4.2.1,数据质量管理,1
+126,华为,2.1.1.5,数字孪生建模工具,1
+130,金蝶,1.3.4.1,企业资源计划ERP,1
+96,Cisco,1.2.3,数据互通,1
+91,Moxa,1.2.1,网络互联,1
+132,科远智慧,1.3.3.2,分布式控制系统DCS,1
+133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,1
+92,Omron,1.3.3.4,可编程逻揖控制系统PLC,1
+108,百度,2.2,IaaS,1
+14,东华软件,1.3.4.3,人力资源管理HRM,1
+125,华数机器人,1.2.3,数据互通,1
+139,容知日新,1.3.3.7,故障预测与健康管理PHM,1
+89,Rockwell,1.3.3.1,制造执行系统MES,1
+135,浪潮,1.3.4.1,企业资源计划ERP,1
+137,美林数据,2.1.4.2.1,数据质量管理,1
+137,美林数据,2.1.4.1.3,实时数据库,1
+84,Bosch,2.1.4,工业大数据,1
+135,浪潮,2.2,IaaS,1
+109,宝信软件,1.3.3.1,制造执行系统MES,1
+18,国能智深,1.3.3.2,分布式控制系统DCS,1
+154,西格数据,2.1.4.1.2,分布式数据库,1
+45,石化盈科,1.3.4.1,企业资源计划ERP,1
+115,富士康,2.1.4,工业大数据,1
+38,牛刀,2.1.1.3,流程开发工具,1
+38,牛刀,2.1.1.4,组态建模工具,1
+117,格创东智,2.1.4.2.1,数据质量管理,1
+117,格创东智,2.1.4.1.1,关系型数据库,1
+42,山大华天,1.3.1.3,计算机辅助制造CAM,1
+43,神舟软件,1.3.1.5,产品数据管理PDM,1
+45,石化盈科,1.3.3.1,制造执行系统MES,1
+45,石化盈科,2.1.4.1.2,分布式数据库,1
+31,昆仑数据,2.1.4.2.1,数据质量管理,1
+45,石化盈科,2.1.4.1.3,实时数据库,1
+45,石化盈科,2.1.4.1.4,时序数据库,1
+45,石化盈科,2.1.4.2.1,数据质量管理,1
+45,石化盈科,2.1.4.2.2,数据安全管理,1
+49,数码大方,2.1.2.3,研发仿真模型,1
+47,首自信,2.1.1.1,算法建模工具,1
+47,首自信,2.1.1.3,流程开发工具,1
+47,首自信,2.1.1.4,组态建模工具,1
+33,蓝谷信息,2.1.2.1,数据算法模型,1
+31,昆仑数据,2.1.4.1.3,实时数据库,1
+154,西格数据,2.1.4.2.2,数据安全管理,1
+70,ABB,1.3.3.4,可编程逻揖控制系统PLC,1
+163,优也科技,2.1.4.1.1,关系型数据库,1
+163,优也科技,2.1.4.1.4,时序数据库,1
+165,智能云科,2.1.2.3,研发仿真模型,1
+168,中控技术,1.3.3.1,制造执行系统MES,1
+47,首自信,2.1.2.3,研发仿真模型,1
+21,Hexagon,1.3.1.3,计算机辅助制造CAM,1
+22,航天云网,2.1.1.4,组态建模工具,1
+22,航天云网,2.1.3.2,平台基础服务,1
+23,和利时,1.3.3.2,分布式控制系统DCS,1
+31,昆仑数据,2.1.4.1.1,关系型数据库,1
+66,中国联通,1.2.1,网络互联,1
+23,和利时,1.3.3.4,可编程逻揖控制系统PLC,1
+118,工邦邦,1.3.3.6,运维保障系统MRO,1
+1,51WORLD,2.1.1.5,数字孪生建模工具,1
+62,云道智造,2.1.2.3,研发仿真模型,1
+117,格创东智,2.1.4.2.2,数据安全管理,1
+3,艾克斯特,1.3.4.1,企业资源计划ERP,1
+60,宇动源,2.1.1.3,流程开发工具,1
+126,华为,2.2,IaaS,1
diff --git a/analysis/dissertation_count_prod.csv b/analysis/dissertation_count_prod.csv
new file mode 100644
index 0000000..494f17d
--- /dev/null
+++ b/analysis/dissertation_count_prod.csv
@@ -0,0 +1,82 @@
+id_product,Name,count
+1.4,工业互联网安全,385
+2.1.3,工业物联网,184
+1.4.5,数据安全,150
+1.4.3,网络安全,150
+1.4.2,控制安全,150
+1,供给,125
+1.3,工业软件,119
+1.3.1,设计研发,119
+1.1,工业自动化,114
+2.1.2,工业模型库,103
+2.3,边缘层,102
+2,工业互联网平台,83
+2.1.1,开发工具,82
+1.4.4,平台安全,77
+1.3.2,采购供应,76
+1.1.1,工业计算芯片,67
+1.3.3,生产制造,60
+2.1,PaaS,50
+1.3.5,仓储物流,50
+1.3.2.1,供应链管理SCM,50
+1.4.5.8,数据加密,50
+1.4.5.1,恶意代码检测系统,50
+1.4.4.5,安全态势感知,50
+1.4.3.6,沙箱类设备,50
+1.4.3.2,流量检测,50
+1.4.2.7,工控原生安全,50
+1.4.2.3,工控漏洞扫描,50
+1.4.1,设备安全,50
+1.2,工业互联网网络,43
+2.3.3,协议转换,37
+2.3.1,工业数据接入,33
+2.1.3.6,微服务,33
+2.3.2,边缘数据处理,30
+2.1.2.4,行业机理模型,30
+2.1.3.4,应用管理服务,29
+1.3.1.1,计算机辅助设计CAD,28
+2.1.2.2,业务流程模型,28
+2.1.2.1,数据算法模型,27
+2.1.3.7,制造类API,27
+1.3.1.2,计算机辅助工程CAE,26
+2.1.3.1,物联网服务,25
+1.1.2,工业控制器,24
+2.1.3.5,容器服务,24
+2.1.3.3,工业引擎服务,23
+2.1.1.2,低代码开发工具,23
+1.1.3,工业服务器,23
+2.1.3.2,平台基础服务,21
+1.3.1.4,计算机辅助工艺过程设计CAPP,20
+2.1.2.3,研发仿真模型,18
+2.1.1.5,数字孪生建模工具,18
+1.3.1.6,产品生命周期管理PLM,18
+1.2.3,数据互通,17
+2.1.1.1,算法建模工具,15
+2.1.1.4,组态建模工具,14
+2.1.4.1,工业大数据存储,14
+1.3.3.2,分布式控制系统DCS,14
+1.2.2,标识解析,13
+1.2.1,网络互联,13
+2.1.4.2,工业大数据管理,12
+1.3.1.7,电子设计自动化EDA,12
+2.1.1.3,流程开发工具,12
+1.3.3.3,数据采集与监视控制系统SCADA,11
+1.3.3.1,制造执行系统MES,10
+1.3.3.6,运维保障系统MRO,10
+1.3.4,企业运营管理,8
+1.3.3.4,可编程逻揖控制系统PLC,7
+1.3.3.5,企业资产管理系统EAM,6
+1.3.4.1,企业资源计划ERP,6
+2.1.4.2.1,数据质量管理,5
+2.1.4.2.2,数据安全管理,5
+1.3.1.5,产品数据管理PDM,5
+2.1.4,工业大数据,4
+2.1.4.1.4,时序数据库,4
+2.1.4.1.1,关系型数据库,3
+2.1.4.1.2,分布式数据库,3
+2.1.4.1.3,实时数据库,3
+2.2,IaaS,3
+1.3.1.3,计算机辅助制造CAM,2
+1.3.3.7,故障预测与健康管理PHM,1
+1.4.4.1,身份鉴别与访问控制,1
+1.3.4.3,人力资源管理HRM,1
diff --git a/analysis/count_prod.xlsx b/analysis/dissertation_count_prod.xlsx
similarity index 100%
rename from analysis/count_prod.xlsx
rename to analysis/dissertation_count_prod.xlsx
diff --git a/analysis/count_prod_network20230406.png b/analysis/dissertation_count_prod_network20230406.png
similarity index 100%
rename from analysis/count_prod_network20230406.png
rename to analysis/dissertation_count_prod_network20230406.png
diff --git a/analysis/dissertation_count_prod_pie.png b/analysis/dissertation_count_prod_pie.png
new file mode 100644
index 0000000..b7e8737
Binary files /dev/null and b/analysis/dissertation_count_prod_pie.png differ
diff --git a/analysis/dissertation_g_bom_exp_id_1.png b/analysis/dissertation_g_bom_exp_id_1.png
new file mode 100644
index 0000000..7ff2bf1
Binary files /dev/null and b/analysis/dissertation_g_bom_exp_id_1.png differ
diff --git a/analysis/g_firm_sample_id_1.png b/analysis/dissertation_g_firm_sample_id_1.png
similarity index 100%
rename from analysis/g_firm_sample_id_1.png
rename to analysis/dissertation_g_firm_sample_id_1.png
diff --git a/analysis/dissertation_g_firm_sample_id_1_de.png b/analysis/dissertation_g_firm_sample_id_1_de.png
new file mode 100644
index 0000000..175abef
Binary files /dev/null and b/analysis/dissertation_g_firm_sample_id_1_de.png differ
diff --git a/analysis/experiment_result-L27.csv b/analysis/experiment_result-L27.csv
new file mode 100644
index 0000000..7708325
--- /dev/null
+++ b/analysis/experiment_result-L27.csv
@@ -0,0 +1,28 @@
+,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t
+0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0
+1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0
+2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0
+3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0
+4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0
+5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0
+6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0
+7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0
+8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0
+9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0
+10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0
+11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0
+12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0
+13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0
+14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0
+15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0
+16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0
+17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0
+18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0
+19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0
+20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0
+21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0
+22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0
+23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0
+24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0
+25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0
+26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0
diff --git a/analysis/experiment_result.csv b/analysis/experiment_result.csv
index 7708325..dcdbc05 100644
--- a/analysis/experiment_result.csv
+++ b/analysis/experiment_result.csv
@@ -1,28 +1,37 @@
-,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t
-0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0
-1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0
-2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0
-3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0
-4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0
-5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0
-6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0
-7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0
-8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0
-9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0
-10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0
-11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0
-12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0
-13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0
-14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0
-15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0
-16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0
-17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0
-18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0
-19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0
-20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0
-21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0
-22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0
-23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0
-24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0
-25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0
-26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0
+idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts
+0,7,1,1,uniform,5.0000,0.3000,3,3,2.6375,2.6375,2.0861,1.0861,1.0861,1.0861,0.6034,0.2116,1.5507
+1,5,1,1,uniform,10.0000,0.5000,5,2,2.7680,2.7657,2.2021,1.2021,1.2021,1.2021,0.8602,0.3032,2.2992
+2,3,1,1,uniform,15.0000,0.7000,7,1,2.5724,2.5693,2.1728,1.1728,1.1728,1.1728,0.9326,0.3135,3.0844
+3,7,1,1,uniform,5.0000,0.3000,3,2,2.6731,2.6731,2.1181,1.1181,1.1181,1.1181,0.6080,0.2147,1.5562
+4,5,1,1,uniform,10.0000,0.5000,5,1,2.5528,2.5499,2.1568,1.1568,1.1568,1.1568,0.8128,0.2853,2.3352
+5,3,1,1,uniform,15.0000,0.7000,7,3,2.7758,2.7731,2.2036,1.2036,1.2036,1.2036,1.0053,0.3469,3.1764
+6,7,1,1,normal,5.0000,0.5000,7,3,2.8051,2.8051,2.1349,1.1349,1.1349,1.1349,0.6017,0.2112,2.1840
+7,5,1,1,normal,10.0000,0.7000,3,2,2.4440,2.4432,2.0097,1.0097,1.0097,1.0097,0.6482,0.2261,1.5912
+8,3,1,1,normal,15.0000,0.3000,5,1,2.5905,2.5857,2.1907,1.1907,1.1907,1.1907,0.8535,0.3027,2.5069
+9,7,1,0,uniform,5.0000,0.7000,5,3,2.6484,2.6484,2.0897,1.0897,1.0897,1.0897,0.6034,0.2116,1.8699
+10,5,1,0,uniform,10.0000,0.3000,7,2,2.7800,2.7777,2.2126,1.2126,1.2126,1.2126,0.8669,0.3067,2.8625
+11,3,1,0,uniform,15.0000,0.5000,3,1,2.6061,2.6008,2.2017,1.2017,1.2017,1.2017,1.0899,0.3779,2.0444
+12,7,1,0,normal,10.0000,0.7000,3,1,2.4703,2.4701,2.0848,1.0848,1.0848,1.0848,0.6754,0.2326,1.6291
+13,5,1,0,normal,15.0000,0.3000,5,3,2.8619,2.8602,2.1882,1.1882,1.1882,1.1882,0.8069,0.2745,2.2118
+14,3,1,0,normal,5.0000,0.5000,7,2,2.4358,2.4358,2.0008,1.0008,1.0008,1.0008,0.6013,0.2105,2.1909
+15,7,1,0,normal,10.0000,0.7000,5,3,2.8232,2.8225,2.1522,1.1522,1.1522,1.1522,0.6636,0.2312,1.9735
+16,5,1,0,normal,15.0000,0.3000,7,2,2.4954,2.4939,2.0549,1.0549,1.0549,1.0549,0.7598,0.2646,2.6013
+17,3,1,0,normal,5.0000,0.5000,3,1,2.4886,2.4880,2.1011,1.1011,1.1011,1.1011,0.7004,0.2467,1.6741
+18,7,0,1,normal,10.0000,0.3000,7,1,2.5133,2.5112,2.1253,1.1253,1.1253,1.1253,0.6949,0.2459,2.6966
+19,5,0,1,normal,15.0000,0.5000,3,3,2.8387,2.8366,2.1686,1.1686,1.1686,1.1686,0.8318,0.2914,1.7528
+20,3,0,1,normal,5.0000,0.7000,5,2,2.4606,2.4606,1.9937,0.9937,0.9937,0.9937,0.6004,0.2105,1.8640
+21,7,0,1,normal,10.0000,0.5000,7,1,2.4653,2.4642,2.0829,1.0829,1.0829,1.0829,0.6514,0.2267,2.4522
+22,5,0,1,normal,15.0000,0.7000,3,3,2.8364,2.8343,2.1667,1.1667,1.1667,1.1667,0.8267,0.2888,1.7461
+23,3,0,1,normal,5.0000,0.3000,5,2,2.4608,2.4608,1.9939,0.9939,0.9939,0.9939,0.6006,0.2107,1.8651
+24,7,0,1,uniform,15.0000,0.5000,3,2,2.5840,2.5794,2.1474,1.1474,1.1474,1.1474,0.9568,0.3301,1.8722
+25,5,0,1,uniform,5.0000,0.7000,5,1,2.4339,2.4339,2.0541,1.0541,1.0541,1.0541,0.6048,0.2118,1.9189
+26,3,0,1,uniform,10.0000,0.3000,7,3,2.7619,2.7602,2.1701,1.1701,1.1701,1.1701,0.8429,0.2994,2.8086
+27,7,0,0,normal,15.0000,0.5000,5,2,2.5179,2.5160,2.0465,1.0465,1.0465,1.0465,0.7621,0.2688,2.1512
+28,5,0,0,normal,5.0000,0.7000,7,1,2.4286,2.4284,2.0486,1.0486,1.0486,1.0486,0.6006,0.2105,2.2440
+29,3,0,0,normal,10.0000,0.3000,3,3,2.7964,2.7962,2.1312,1.1312,1.1312,1.1312,0.6960,0.2406,1.6377
+30,7,0,0,uniform,15.0000,0.7000,7,2,2.5851,2.5806,2.1476,1.1476,1.1476,1.1476,0.9295,0.3154,2.9756
+31,5,0,0,uniform,5.0000,0.3000,3,1,2.4966,2.4952,2.1103,1.1103,1.1103,1.1103,0.8017,0.2952,1.7958
+32,3,0,0,uniform,10.0000,0.5000,5,3,2.7703,2.7686,2.1771,1.1771,1.1771,1.1771,0.8387,0.2956,2.3099
+33,7,0,0,uniform,15.0000,0.3000,5,1,2.6002,2.5941,2.2002,1.2002,1.2002,1.2002,1.0322,0.3707,2.7615
+34,5,0,0,uniform,5.0000,0.5000,7,3,2.6827,2.6827,2.0994,1.0994,1.0994,1.0994,0.6025,0.2122,2.1867
+35,3,0,0,uniform,10.0000,0.7000,3,2,2.5514,2.5495,2.1181,1.1181,1.1181,1.1181,0.8352,0.2867,1.7676
diff --git a/analysis/g_bom_exp_id_1.png b/analysis/g_bom_exp_id_1.png
index 7ff2bf1..ad12be6 100644
Binary files a/analysis/g_bom_exp_id_1.png and b/analysis/g_bom_exp_id_1.png differ
diff --git a/analysis/g_firm_sample_id_1_de.png b/analysis/g_firm_sample_id_1_de.png
index 175abef..de74bae 100644
Binary files a/analysis/g_firm_sample_id_1_de.png and b/analysis/g_firm_sample_id_1_de.png differ
diff --git a/analysis_count.py b/analysis_count.py
index eb7e27c..9a8a70d 100644
--- a/analysis_count.py
+++ b/analysis_count.py
@@ -5,4 +5,4 @@ print(count)
print(len(count['s_id'].unique()))
count_max_ts = count.groupby('s_id')['ts'].max()
print(count_max_ts.value_counts())
-print(count_max_ts.value_counts()/1593)
\ No newline at end of file
+print(count_max_ts.value_counts()/1593)
diff --git a/analysis_firm_network.py b/analysis_firm_network.py
index 5cd6beb..a6dab56 100644
--- a/analysis_firm_network.py
+++ b/analysis_firm_network.py
@@ -6,7 +6,6 @@ plt.rcParams['font.sans-serif'] = 'SimHei'
# count firm category
count_firm = pd.read_csv("analysis\\count_firm.csv")
-count_firm = count_firm[count_firm['count'] > 4]
print(count_firm.describe())
count_dcp = pd.read_csv("analysis\\count_dcp.csv",
@@ -15,7 +14,7 @@ count_dcp = pd.read_csv("analysis\\count_dcp.csv",
'down_id_firm': str
})
# print(count_dcp)
-count_dcp = count_dcp[count_dcp['count'] > 2]
+count_dcp = count_dcp[count_dcp['count'] > 35]
list_firm = count_dcp['up_id_firm'].tolist(
) + count_dcp['down_id_firm'].tolist()
@@ -53,7 +52,6 @@ for _, row in count_dcp.iterrows():
'up_name_product': row['up_name_product'],
'down_id_product': row['down_id_product'],
'down_name_product': row['down_name_product'],
- # 'edge_label': f"{row['up_id_product']} {row['up_name_product']} - {row['down_id_product']} {row['down_name_product']}",
'edge_label': f"{row['up_id_product']} - {row['down_id_product']}",
'edge_width': k * (row['count'] - count_min),
'count': row['count']
@@ -87,7 +85,7 @@ nx.draw(G_firm,
pos,
node_size=node_size,
labels=node_label,
- font_size=6,
+ font_size=8,
width=3,
edge_color=colors,
edge_cmap=cmap,
@@ -96,7 +94,9 @@ nx.draw(G_firm,
nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=6)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
-position = fig.add_axes([0.9, 0.05, 0.01, 0.3])
-plt.colorbar(sm, fraction=0.01, cax=position)
-plt.savefig("analysis\\count_dcp_network20230526_de")
+position = fig.add_axes([0.95, 0.05, 0.01, 0.3])
+cb = plt.colorbar(sm, fraction=0.01, cax=position)
+cb.ax.tick_params(labelsize=10)
+cb.outline.set_visible(False)
+plt.savefig("analysis\\count_dcp_network")
plt.close()
diff --git a/analysis_prod_network.py b/analysis_prod_network.py
index 6742eaf..c4f6bf3 100644
--- a/analysis_prod_network.py
+++ b/analysis_prod_network.py
@@ -1,8 +1,6 @@
import pandas as pd
-import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
-import math
plt.rcParams['font.sans-serif'] = 'SimHei'
@@ -32,7 +30,7 @@ for code in G.nodes:
index_list = count_prod[count_prod['id_product'] == code].index.tolist()
index = index_list[0] if len(index_list) == 1 else -1
node_attr['count'] = count_prod['count'].get(index, 0)
- node_attr['node_size'] = 5 * count_prod['count'].get(index, 0)
+ node_attr['node_size'] = count_prod['count'].get(index, 0)
node_attr['node_color'] = count_prod['count'].get(index, 0)
labels_dict[code] = node_attr
nx.set_node_attributes(G, labels_dict)
@@ -62,8 +60,10 @@ nx.draw(G,
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
position = fig.add_axes([0.01, 0.05, 0.01, 0.3])
-plt.colorbar(sm, fraction=0.01, cax=position)
-# plt.savefig("analysis\\count_prod_network")
+cb = plt.colorbar(sm, fraction=0.01, cax=position)
+cb.ax.tick_params(labelsize=8)
+cb.outline.set_visible(False)
+plt.savefig("analysis\\count_prod_network")
plt.close()
# dcp_prod
@@ -72,13 +72,17 @@ count_dcp = pd.read_csv("analysis\\count_dcp.csv",
'up_id_firm': str,
'down_id_firm': str
})
-count_dcp_prod = count_dcp.groupby(['up_id_product','up_name_product', 'down_id_product', 'down_name_product'])['count'].sum()
+count_dcp_prod = count_dcp.groupby(
+ ['up_id_product',
+ 'up_name_product',
+ 'down_id_product',
+ 'down_name_product'])['count'].sum()
count_dcp_prod = count_dcp_prod.reset_index()
count_dcp_prod.sort_values('count', inplace=True, ascending=False)
count_dcp_prod.to_csv('analysis\\count_dcp_prod.csv',
- index=False,
- encoding='utf-8-sig')
-count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 2]
+ index=False,
+ encoding='utf-8-sig')
+count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 50]
# print(count_dcp_prod)
list_prod = count_dcp_prod['up_id_product'].tolist(
@@ -116,6 +120,8 @@ for _, row in count_dcp_prod.iterrows():
# dcp_networkx
pos = nx.nx_agraph.graphviz_layout(g_bom, prog="dot", args="")
node_labels = nx.get_node_attributes(g_bom, 'Name')
+# rename node 1
+node_labels['1'] = '解决方案'
temp = {}
for key, value in node_labels.items():
temp[key] = key + " " + value
@@ -126,28 +132,7 @@ vmin = min(colors)
vmax = max(colors)
cmap = plt.cm.Blues
-# dct_row = {}
-# for node, p in pos.items():
-# if p[1] not in dct_row.keys():
-# dct_row[p[1]] = {node: p}
-# else:
-# dct_row[p[1]][node] = p
-# dct_row = dict(sorted(dct_row.items(), key=lambda d: d[0], reverse=True))
-# dct_up = dct_row[max(dct_row.keys())]
-# dct_up = dict(sorted(dct_up.items(), key=lambda d: d[1][0], reverse=True))
-# h = list(dct_row.keys())[0] - list(dct_row.keys())[1]
-# n = len(dct_up.items())
-# arr_h = np.linspace(list(dct_row.keys())[0]-h/2, list(dct_row.keys())[0]+2*h, num=n)
-# dct_up_new = {}
-# for index, (node, p) in enumerate(dct_up.items()):
-# dct_up_new[node] = (p[0], arr_h[index])
-# pos_new = {}
-# for row, dct in dct_row.items():
-# if row == list(dct_row.keys())[0]:
-# pos_new.update(dct_up_new)
-# else:
-# pos_new.update(dct)
-pos_new ={}
+pos_new = {}
for node, p in pos.items():
pos_new[node] = (p[1], p[0])
@@ -157,8 +142,8 @@ nx.draw(g_bom,
pos_new,
node_size=50,
labels=node_labels,
- font_size=6,
- width = 1.5,
+ font_size=5,
+ width=1.5,
edge_color=colors,
edge_cmap=cmap,
edge_vmin=vmin,
@@ -170,7 +155,9 @@ axis.set_ylim([1.2*y for y in axis.get_ylim()])
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax))
sm._A = []
-position=fig.add_axes([0.1, 0.4, 0.01, 0.2])
-plt.colorbar(sm, fraction=0.01, cax=position)
-# plt.savefig("analysis\\count_dcp_prod_network")
-plt.close()
\ No newline at end of file
+position = fig.add_axes([0.75, 0.1, 0.01, 0.2])
+cb = plt.colorbar(sm, fraction=0.01, cax=position)
+cb.ax.tick_params(labelsize=8)
+cb.outline.set_visible(False)
+plt.savefig("analysis\\count_dcp_prod_network")
+plt.close()
diff --git a/sum_result.py b/analysis_sum_result.py
similarity index 81%
rename from sum_result.py
rename to analysis_sum_result.py
index 73223fe..395d02f 100644
--- a/sum_result.py
+++ b/analysis_sum_result.py
@@ -10,20 +10,13 @@ Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
BomNodes = pd.read_csv('BomNodes.csv', index_col=0)
-result = pd.read_sql(sql='select * from iiabmdb_dissertation.not_test_result where ts > 0;',
+with open('SQL_analysis_risk.sql', 'r') as f:
+ str_sql = f.read()
+result = pd.read_sql(sql=str_sql,
con=engine)
-lst_s_id = list(set(result['s_id'].to_list()))
-for s_id in lst_s_id:
- query = pd.read_sql(
- sql=f'select * from iiabmdb_dissertation.not_test_result where ts = 0 and s_id = {s_id};',
- con=engine)
- result = pd.concat([result, query])
-result.set_index('id', inplace=True)
-result.sort_index(inplace=True)
-result['id_firm'] = result['id_firm'].astype('string')
-# result.to_csv('analysis\\count.csv',
-# index=False,
-# encoding='utf-8-sig')
+result.to_csv('analysis\\count.csv',
+ index=False,
+ encoding='utf-8-sig')
print(result)
# G bom
@@ -31,17 +24,20 @@ plt.rcParams['font.sans-serif'] = 'SimHei'
exp_id = 1
G_bom_str = pd.read_sql(
- sql=f'select g_bom from iiabmdb_dissertation.not_test_experiment where id = {exp_id};',
+ sql=f'select g_bom from iiabmdb.without_exp_experiment '
+ f'where id = {exp_id};',
con=engine)['g_bom'].tolist()[0]
G_bom = nx.adjacency_graph(json.loads(G_bom_str))
pos = nx.nx_agraph.graphviz_layout(G_bom, prog="twopi", args="")
node_labels = nx.get_node_attributes(G_bom, 'Name')
+# rename node 1
+node_labels['1'] = '解决方案'
plt.figure(figsize=(12, 12), dpi=300)
nx.draw_networkx_nodes(G_bom, pos)
nx.draw_networkx_edges(G_bom, pos)
nx.draw_networkx_labels(G_bom, pos, labels=node_labels, font_size=6)
# plt.show()
-# plt.savefig(f"analysis\\g_bom_exp_id_{exp_id}.png")
+plt.savefig(f"analysis\\g_bom_exp_id_{exp_id}.png")
plt.close()
# G firm
@@ -49,7 +45,7 @@ plt.rcParams['font.sans-serif'] = 'SimHei'
sample_id = 1
G_firm_str = pd.read_sql(
- sql=f'select g_firm from iiabmdb_dissertation.not_test_sample where id = {exp_id};',
+ sql=f'select g_firm from iiabmdb.without_exp_sample where id = {exp_id};',
con=engine)['g_firm'].tolist()[0]
G_firm = nx.adjacency_graph(json.loads(G_firm_str))
pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="")
@@ -91,9 +87,9 @@ count_firm_prod.rename(columns={'Name': 'name_product'}, inplace=True)
count_firm_prod = count_firm_prod[[
'id_firm', 'name_firm', 'id_product', 'name_product', 'count'
]]
-# count_firm_prod.to_csv('analysis\\count_firm_prod.csv',
-# index=False,
-# encoding='utf-8-sig')
+count_firm_prod.to_csv('analysis\\count_firm_prod.csv',
+ index=False,
+ encoding='utf-8-sig')
print(count_firm_prod)
# count firm
@@ -107,9 +103,9 @@ count_firm = pd.merge(count_firm,
count_firm.drop('Code', axis=1, inplace=True)
count_firm.sort_values('count', inplace=True, ascending=False)
count_firm = count_firm[['id_firm', 'Name', 'count']]
-# count_firm.to_csv('analysis\\count_firm.csv',
-# index=False,
-# encoding='utf-8-sig')
+count_firm.to_csv('analysis\\count_firm.csv',
+ index=False,
+ encoding='utf-8-sig')
print(count_firm)
# count product
@@ -123,14 +119,13 @@ count_prod = pd.merge(count_prod,
count_prod.drop('Code', axis=1, inplace=True)
count_prod.sort_values('count', inplace=True, ascending=False)
count_prod = count_prod[['id_product', 'Name', 'count']]
-# count_prod.to_csv('analysis\\count_prod.csv',
-# index=False,
-# encoding='utf-8-sig')
+count_prod.to_csv('analysis\\count_prod.csv',
+ index=False,
+ encoding='utf-8-sig')
print(count_prod)
# DCP disruption causing probability
-result_disrupt_ts_above_0 = result[(result['ts'] > 0)
- & (result['is_disrupted'] == 1)]
+result_disrupt_ts_above_0 = result[result['ts'] > 0]
print(result_disrupt_ts_above_0)
result_dcp = pd.DataFrame(columns=[
's_id', 'up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product'
@@ -188,5 +183,5 @@ count_dcp = count_dcp[[
'down_id_firm', 'down_name_firm', 'down_id_product', 'down_name_product',
'count'
]]
-# count_dcp.to_csv('analysis\\count_dcp.csv', index=False, encoding='utf-8-sig')
+count_dcp.to_csv('analysis\\count_dcp.csv', index=False, encoding='utf-8-sig')
print(count_dcp)
diff --git a/anova.py b/anova.py
index 032b0b0..40eb89c 100644
--- a/anova.py
+++ b/anova.py
@@ -110,49 +110,16 @@ def anova(lst_col_seg, n_level, oa_file, result_file, alpha=0.1):
if __name__ == '__main__':
# prep data
- str_sql = """
- select * from
- (select distinct idx_scenario, n_max_trial, crit_supplier,
- firm_pref_request, firm_pref_accept, netw_pref_cust_n,
- netw_pref_cust_size, cap_limit, diff_new_conn, diff_remove
- from iiabmdb.with_exp_experiment) as a
- inner join
- (
- select idx_scenario,
- sum(n_disrupt_s) as n_disrupt_s, sum(n_disrupt_t) as n_disrupt_t from
- iiabmdb.with_exp_experiment as a
- inner join
- (
- select e_id, count(n_s_disrupt_t) as n_disrupt_s,
- sum(n_s_disrupt_t) as n_disrupt_t from
- iiabmdb.with_exp_sample as a
- inner join
- (select a.s_id as s_id, count(id) as n_s_disrupt_t from
- iiabmdb.with_exp_result as a
- inner join
- (select distinct s_id from iiabmdb.with_exp_result where ts > 0) as b
- on a.s_id = b.s_id
- group by s_id
- ) as b
- on a.id = b.s_id
- group by e_id
- ) as b
- on a.id = b.e_id
- group by idx_scenario) as b
- on a.idx_scenario = b.idx_scenario;
-
- """
- result = pd.read_sql(sql=str_sql,
- con=engine)
+ result = pd.read_csv("experiment_result.csv", index_col=None)
result.drop('idx_scenario', 1, inplace=True)
df_oa = pd.read_csv("oa_with_exp.csv", index_col=None)
- result = pd.concat(
+ scenario_result = pd.concat(
[result.iloc[:, 0:10],
df_oa.iloc[:, -4:],
result.iloc[:, -2:]], axis=1)
result.to_csv('analysis\\experiment_result.csv')
- # 9 factors (X), 4 for error (E), and 2 indicators (Y)
- the_lst_col_seg = [10, 3, 2]
+ # 10 factors (X), 13 for error (E), and 9 indicators (Y)
+ the_lst_col_seg = [10, 13, 9]
the_n_level = 3
anova(the_lst_col_seg, the_n_level, "oa25.txt", result, 0.1)
diff --git a/anova.xlsx b/anova.xlsx
deleted file mode 100644
index 30fa7a8..0000000
Binary files a/anova.xlsx and /dev/null differ
diff --git a/anova_visualization.ipynb b/anova_visualization.ipynb
new file mode 100644
index 0000000..802b8e5
--- /dev/null
+++ b/anova_visualization.ipynb
@@ -0,0 +1,573 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 自变量 | \n",
+ " level | \n",
+ " 系统恢复用时R1 | \n",
+ " 产业-企业边累计扰乱次数R2 | \n",
+ " 产业-企业边最大传导深度R3 | \n",
+ " 产业-企业边断裂总数R4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 15 | \n",
+ " 新供应关系构成概率P7 | \n",
+ " 低 | \n",
+ " 2.240 | \n",
+ " 2.672 | \n",
+ " 1.143 | \n",
+ " 0.7640 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 新供应关系构成概率P7 | \n",
+ " 中 | \n",
+ " 2.132 | \n",
+ " 2.674 | \n",
+ " 1.143 | \n",
+ " 0.7859 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 新供应关系构成概率P7 | \n",
+ " 高 | \n",
+ " 2.179 | \n",
+ " 2.649 | \n",
+ " 1.124 | \n",
+ " 0.7575 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 是否已有连接偏好P4 | \n",
+ " 不倾向 | \n",
+ " 2.177 | \n",
+ " 2.668 | \n",
+ " 1.141 | \n",
+ " 0.7804 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 是否已有连接偏好P4 | \n",
+ " 倾向 | \n",
+ " 2.191 | \n",
+ " 2.663 | \n",
+ " 1.133 | \n",
+ " 0.7579 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 是否规模偏好P2 | \n",
+ " 不倾向 | \n",
+ " 2.171 | \n",
+ " 2.669 | \n",
+ " 1.137 | \n",
+ " 0.7726 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 是否规模偏好P2 | \n",
+ " 倾向 | \n",
+ " 2.196 | \n",
+ " 2.661 | \n",
+ " 1.137 | \n",
+ " 0.7657 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 最大尝试时间步P8 | \n",
+ " 低 | \n",
+ " 1.726 | \n",
+ " 2.646 | \n",
+ " 1.123 | \n",
+ " 0.7782 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 最大尝试时间步P8 | \n",
+ " 中 | \n",
+ " 2.186 | \n",
+ " 2.682 | \n",
+ " 1.144 | \n",
+ " 0.7599 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 最大尝试时间步P8 | \n",
+ " 高 | \n",
+ " 2.640 | \n",
+ " 2.667 | \n",
+ " 1.143 | \n",
+ " 0.7694 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 最大尝试次数P3 | \n",
+ " 低 | \n",
+ " 2.286 | \n",
+ " 2.691 | \n",
+ " 1.154 | \n",
+ " 0.8254 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 最大尝试次数P3 | \n",
+ " 中 | \n",
+ " 2.124 | \n",
+ " 2.652 | \n",
+ " 1.127 | \n",
+ " 0.7431 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 最大尝试次数P3 | \n",
+ " 高 | \n",
+ " 2.141 | \n",
+ " 2.652 | \n",
+ " 1.130 | \n",
+ " 0.7390 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 采购策略P1 | \n",
+ " 单供应商 | \n",
+ " 2.261 | \n",
+ " 2.519 | \n",
+ " 1.121 | \n",
+ " 0.7919 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 采购策略P1 | \n",
+ " 双供应商 | \n",
+ " 2.146 | \n",
+ " 2.650 | \n",
+ " 1.133 | \n",
+ " 0.7615 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " 采购策略P1 | \n",
+ " 三供应商 | \n",
+ " 2.144 | \n",
+ " 2.826 | \n",
+ " 1.156 | \n",
+ " 0.7541 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 额外产能分布P5 | \n",
+ " 均匀分布 | \n",
+ " 2.316 | \n",
+ " 2.681 | \n",
+ " 1.158 | \n",
+ " 0.8403 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 额外产能分布P5 | \n",
+ " 正态分布 | \n",
+ " 2.052 | \n",
+ " 2.650 | \n",
+ " 1.115 | \n",
+ " 0.6980 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 额外产能分布参数P6 | \n",
+ " 低 | \n",
+ " 2.436 | \n",
+ " 2.705 | \n",
+ " 1.171 | \n",
+ " 0.9121 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 额外产能分布参数P6 | \n",
+ " 中 | \n",
+ " 2.202 | \n",
+ " 2.666 | \n",
+ " 1.142 | \n",
+ " 0.7655 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 额外产能分布参数P6 | \n",
+ " 高 | \n",
+ " 1.914 | \n",
+ " 2.624 | \n",
+ " 1.098 | \n",
+ " 0.6299 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 自变量 level 系统恢复用时R1 产业-企业边累计扰乱次数R2 产业-企业边最大传导深度R3 产业-企业边断裂总数R4\n",
+ "15 新供应关系构成概率P7 低 2.240 2.672 1.143 0.7640\n",
+ "16 新供应关系构成概率P7 中 2.132 2.674 1.143 0.7859\n",
+ "17 新供应关系构成概率P7 高 2.179 2.649 1.124 0.7575\n",
+ "9 是否已有连接偏好P4 不倾向 2.177 2.668 1.141 0.7804\n",
+ "8 是否已有连接偏好P4 倾向 2.191 2.663 1.133 0.7579\n",
+ "4 是否规模偏好P2 不倾向 2.171 2.669 1.137 0.7726\n",
+ "3 是否规模偏好P2 倾向 2.196 2.661 1.137 0.7657\n",
+ "18 最大尝试时间步P8 低 1.726 2.646 1.123 0.7782\n",
+ "19 最大尝试时间步P8 中 2.186 2.682 1.144 0.7599\n",
+ "20 最大尝试时间步P8 高 2.640 2.667 1.143 0.7694\n",
+ "7 最大尝试次数P3 低 2.286 2.691 1.154 0.8254\n",
+ "6 最大尝试次数P3 中 2.124 2.652 1.127 0.7431\n",
+ "5 最大尝试次数P3 高 2.141 2.652 1.130 0.7390\n",
+ "2 采购策略P1 单供应商 2.261 2.519 1.121 0.7919\n",
+ "1 采购策略P1 双供应商 2.146 2.650 1.133 0.7615\n",
+ "0 采购策略P1 三供应商 2.144 2.826 1.156 0.7541\n",
+ "10 额外产能分布P5 均匀分布 2.316 2.681 1.158 0.8403\n",
+ "11 额外产能分布P5 正态分布 2.052 2.650 1.115 0.6980\n",
+ "14 额外产能分布参数P6 低 2.436 2.705 1.171 0.9121\n",
+ "13 额外产能分布参数P6 中 2.202 2.666 1.142 0.7655\n",
+ "12 额外产能分布参数P6 高 1.914 2.624 1.098 0.6299"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "config = {\"figure.dpi\": 300,\n",
+ " \"font.family\": 'serif',\n",
+ " \"font.serif\": ['SimSun']}\n",
+ "df = pd.read_csv('analysis/anova_visualization.csv', encoding='utf-8-sig')\n",
+ "df['sort_index'] = df['level'].map({'不倾向':0,\n",
+ " '倾向':1,\n",
+ " '低':0,\n",
+ " '中':1,\n",
+ " '高':2,\n",
+ " '单供应商':0,\n",
+ " '双供应商':1,\n",
+ " '三供应商':2})\n",
+ "df.sort_values(['自变量', 'sort_index'], inplace=True)\n",
+ "df.drop(columns='sort_index', inplace=True)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\1808291987.py:10: UserWarning: \n",
+ "The markers list has fewer values (1) than needed (3) and will cycle, which may produce an uninterpretable plot.\n",
+ " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAVjCAYAAAAmTdnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeZyN5f/H8fdZZx9mYZixlUhF2iS+vpWQqEiLJFlaKZESbfYkvyjqWyllaReVSotSSoqSlDYREmObxcyY9ay/P8YcM845M+fMnDGD1/PxmIf73Pd9XffnDGnMe67rY3C73W4BAAAAAAAAAAAAqFHGmi4AAAAAAAAAAAAAAMEdAAAAAAAAAAAAUCsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAABxjcnJytHjxYl155ZVatGhRTZfj5csvv9TWrVtrugwtX768ynM4HA7t2rUrBNUcfWvWrNErr7wim81W06UAAAAACBDBHQAAAADUcg6HQ7///rvmzZunW2+9VR07dtQjjzyizZs3a8qUKfr5559rusQy3njjDV1++eW6++679dtvv9VIDZs2bdKIESM0dOhQZWZmVnqedevW6aqrrtKyZctCWN3RsXz5ck2dOlWXXXaZ3nvvPblcrpouCQAAAEAFDG63213TRQAAAAAAiu3bt09///23tm7dqr///lubN2/WH3/8oaKiIr9jkpKS9O677yoxMfEoVurfhRdeqH379nleDx06VKNGjTqqNTzyyCNavHixJKl+/fp64okndMEFFwQ9z5gxY/T+++9Lkvr06aNx48YpKioqpLVWl65du2rnzp2SJKvVqvHjx+u6666r4aoAAAAAlMdc0wUAAAAAwImksLBQu3fvVmpqqnbt2qXU1FTP8fbt23Xw4MGA5jGbzapbt67i4uJUt25dffDBB7r55psrHJebm6vt27erTZs2Qdf+/PPPq0mTJrr88sv93pOenl4mtLv77rs1bNiwoJ9VFfv37/eEbZJUr149JSUlBT1PZmamPv30U8/r7OxsZWZmHhPB3T///OMJ7SIjI/XBBx+ocePGNVwVAAAAgIoQ3AEAAABAFdhsNh08eFBZWVk6cOCAsrKylJWVpczMTGVmZiojI0MZGRnav3+/9u/fr+zsbL9zxcbG6uSTT1ZCQoLi4+OVmJio+Ph4JSQkeM6VvI6NjZXBYAi63vz8fF177bW6+OKLdcsttyghISGgccuWLdNzzz0nk8kkt9utK664wud9P/74o+e4WbNmuuuuuypVZ1XMmTPH09ctJSVFL730kuLj4/3en5GRofj4eK86X3vtNc9Kx//85z/63//+J5PJVO6zt23bpjp16gT8ea0uq1at8hz369eP0A4AAAA4RhDcAQAAAEAQvvrqK82YMUN5eXnKy8uTzWaT0WiU0WiU1WpVeHi4wsLCPL9GREQoMjJSrVu3VkxMjGJiYhQbG6uYmBjFxcUpMTHR82G1Wqu9fovF4nkfX331VdDjnU6nxowZoxYtWujUU0/1ul46uOvXr99RD+127typt99+W5IUERGh5557rtzQbteuXRo4cKAuueQSPfLII57zBw8e1KuvvipJatKkiZ588skKQ7utW7dq0KBBio+P16uvvqo6deqE4B1Vzscffyyp+Pd78ODBAY3Zv3+/li9frptuuqkaKwMAAABQHoI7AAAAAAjCxRdfrIsvvrjGnv/8888rMjJSAwcOrFQoVjocvPbaazV16tSAxo0ePVoffvihrFarnnzySZ+hnSStXr1akhQWFqY+ffoEXV9VPfbYY7Lb7ZKkW2+9VRaLRVu3bvV5b25urkaNGqXU1FS9+uqrioqK8vTie+6555STkyOz2az777/fs3LSnwMHDuiee+5RWlqa0tLSdOutt2r+/PmKjo4ut94lS5aoT58+FYaCpX3//fcqKCjw++dw165d2rBhgyTpqquuCmib0NzcXN1xxx36448/tHv3bo0dOzbgemqL/Px89enTR5MnT1b79u1ruhwAAACgUgjuAAAAAOAoeeONN1RYWKibbrrJs/ItGG63W4sXL1Zqaqo+++wzTZs2TU2aNAlqjso8t7S4uDh169bN57UdO3Zo+/btkqQePXqobt26Qc/vdrsrvUrv66+/1pdfful5/cwzz+iZZ54JePycOXMUHR2tLl26eFbbORwO3X333UHXsnHjRg0bNkxz585VeHh4uc9csmSJpk+frqZNm1Y47759+zRq1CgdOHBAY8eO9bma7qOPPvIcL126tEy/P3/cbrcn8Jw3b54OHjyoyZMny2g0+h0zYsQILV++vMK5S0RGRiomJkbJyclq27atLr74YnXo0CHg8eXJycnR/fffr3/++Sck8wEAAAA1heAOAAAAACopIyMjqF5mXbp00dVXX6133nlHkyZN0nnnnRfU89avX6/U1FRJxVtS9urVS9OmTVOPHj0CnsNsrr5/BpYOzW644Yagxx84cEC333677rjjDnXt2jWosQcPHtT48eMlSY0aNdJrr72mhg0bSpIefPBB7dixQ0888YRSUlIqnOuWW26R3W5Xhw4d9MILLygsLExFRUW69tpr1alTJ919992KjIwM+v35YrFYtGHDBl166aVBj502bZrCw8PVr1+/MueXLVsmSapbt64uueQSDRw4sMK55s+f7wn4zGaznE6nsrKyyt1m9MEHH9SwYcO0ceNGTZo0SU6nU1Jxb8OHHnrI8/mXpMLCQuXk5Ojvv//WDz/8oNdee00LFixQ8+bNNX78eF1wwQVBvXe3260DBw5oz549WrlypZYsWaI9e/YENQcAAABQGxHcAQAAAEAljRo1SmeddZaGDx8eUH+6pKQkPfHEExoyZIgGDBigAQMG6P7771dYWFhAzzty5VSfPn100UUXBVVzST8+l8sV1LhAfPjhh5KKg7OYmBi/W1T6YrfbNWbMGP3111+65557NHPmTHXv3j3g8VOmTNHevXvVsGFDLVy4sExo9Mgjj6h79+66+uqr9dJLL6lNmzZ+51m8eLFWr16tiy66SE8//bTn9yYsLExTp05V37599dlnn+nZZ59Vq1atAq7Pn5I/N507d9b9999fpo758+erfv36WrBggef8X3/95dnOs0+fPrrmmmvKzPfnn39q8+bNkqQnnnhCjz/+uFq0aFFuYJuenq7PP/9ckmQymfTaa6/p7LPPrrD2hg0bqmHDhjrttNO0ZMkSbdy4UZI0cOBAv38uO3XqpMGDBys1NVUPPPCAfvjhBw0ZMkT33nuvbrvttgqfuXTpUj300ENyuVxyu90V3g8AAAAcawjuAAAAAKCSHn30UfXu3VsrV67UE088EVCQ07FjR/Xt21dvv/22Xn31Vf3000+aO3duhSv3MjMz9cEHH3he9+/fXxMmTKhU3WazWTabzet8amqq6tWrF1AIeaStW7fq999/l1TcY61nz56Vqk0qDvHuu+8+NW/eXKecckqF97/99tt6//33Vb9+fS1cuFCNGjUqcz0qKkp33HGHHn30UQ0ePFhvvfWWWrRo4TXPpk2bNGXKFF1zzTWaNGmS17aiZ555pi6//HItW7ZMN9xwg15++WWdc845lX6fkjy97aKjo9W8eXPP+ZKVbhaLpcz5gwcPeo6HDx/uVeObb74pSbrwwgt14YUX6u2339Znn31W7u/H008/rfz8fEnSoEGDAgrtjlR6O9CIiIgK709JSdHLL7+sgQMHasOGDZoxY4bi4+O9gsgjXXLJJVq6dKnndV5ent56660y5wAAAIBjmf/N6gEAAAAA5WrSpIlGjRqlzZs367rrrtOiRYsCGnfvvfcqKipKkvT777/rvvvuq3DMa6+9psLCQklSixYtNHbs2ErX7a9v2apVq9StWze9/vrrPoO98pQEJ1FRUVq7dq3++uuvoD9KtrEMCwvTrFmzAgrtfv75Z02ZMkX16tXTggUL/PaJu+qqqxQeHq7c3FxNmTLF63peXp7uvfdejRo1So899pjfXoBDhgyRJOXn5+vRRx8N5FNTrpLgLhRyc3O1bNkyhYeH6+GHH5Ykde/eXc8++6zfFZZbt27VkiVLJElNmzbVyJEjQ1ZPRaxWqyZOnOh5PW3aNGVkZJQ7JjY2Vi1btvR8nH322Zo6darnvycAAADgWEdwBwAAAABVcOONN6pVq1ay2WwaP368pk2bVuGYuLg4DRo0yPN6zZo1nt51vhQUFOj111+XVLya6amnniqzwilY/oK7iIgI7d27V5MnT1a3bt08W19WxGazecKfQYMGKS4urlJ1ORwOScVbMAbS4+6ff/7R0KFD1ahRI7355ptlVqYdKSYmRu3atZMk/fLLL17XDxw4oMcff9wTzPnTunVrz2q99PT0CmusSCiDu0WLFikvL0/Dhw9Xs2bNJEndunXT3r17vbZZLTFjxgw5nU4ZDAZNnTq1Sn+uKqNVq1Zq27atpOLVhIGG36WZzWbVrVs3xJUBAAAANYPgDgAAAACqwGQy6YEHHvC8XrBggebPn1/huOuvv75MgLZnzx6/97766qvKysqSJI0bN87nNo/B8Bfcld4i02q16swzzwxovk8//VSZmZmKjY2tMPgqT0lwF8hWnbt379Ytt9yic845R4sXL1bjxo0rHPOf//xHknTaaad5Xbv22mv10ksvad26dRXOU9K/rU+fPhXeW5Hyes8Fw2azaeHChWrbtm2Z34Pw8HBdccUVmjlzpnJycsqM+fTTT/Xll19KKu5LVxJsHm2lt+b86quvaqQGAAAAoLYguAMAAACAKurQoUOZXmevvPJKhWMaNGjgCUoiIyN16qmn+rwvMzNTL7zwgqTicKmiHmCBCCS4e+CBB/xuO3mkhQsXSpLuvvtuxcbGVrouu90uqXirzPKkp6frtttu08CBA/Xcc88pOjo6oPmvuOIKDRw4UDNnzvS6FhMTo+XLl2vAgAEaOnSo3G6333kuu+wyXXvttbrrrru8rm3YsEHvvvtuQPVIksFgCPje8rzxxhvKz8/Xk08+6RUGDhkyRBkZGZo+fbrnXGZmpiZNmiRJOumkk3TvvfeGpI7KaNiwoef433//rbE6AAAAgNogND/aBwAAAAAnuJtuukk//fSTpOLVYDt37qxwFdill16q77//XsOGDVNMTIzPe2bPnq3c3FydeeaZmjBhQkhq9RcWlQ58/IV7R/r222/122+/6YwzztCNN95YpbpKVtxVFNzFxsbq6aefLndrTF/q1avn6f12pJJnJiUlacKECeUGam3atFGbNm28zn/22WcaPXq0bDabHA6H+vbtW2FNgX6ey3Pw4EG98MILeuyxx9SoUSOv682aNVO3bt20ZMkSderUST169NDkyZOVmZkpi8WiGTNmHPUtMksr3Z8uNze3xuoAAAAAagOCOwAAAAAIga5duyo2NlY5OTkyGAwB9dy69tprZTabdf311/u8vnnzZi1evFj169fX//73v4C2kAyEv1CqMiHSnDlzZDQaNXHixDL92p5++mk1btxYvXr1CriPW6Ar7iwWi5o2beoJ+kKhJLQ86aSTVK9evaDnfu211zR9+nS5XC5J0vjx4+V2u/3+3pYIRXA3Y8YMDRgwQJdeeqnfe4YPH64VK1booYce0vbt2/XJJ59IkkaNGqXWrVtXuYaqOHjwoOc4Pj6+BisBAAAAah7BHQAAAACEgNVqVffu3bV48WL17dvX7wq6EjfccINGjBihfv36+bzudDr10EMPKSwsTHPmzFFSUlJ1lF1GsCHSN998ox9++EHDhw/36oe3YsUK/fXXX5o7d65GjhypSy+9tMJtIUuCu4oCyoKCAt1yyy2eFY6htHbtWp1xxhlVnsftdmvChAlyu91+f4+lqgd3brdbzZs318CBA8u9r2XLlrr22mu1aNEizZ49W5LUuXNn3XzzzVV6fijs37/fcxxIr0IAAADgeEZwBwAAAAAhcvfddysqKkr33Xdfhfdu27ZNgwcPVseOHXXvvfd6bb348ssva9OmTXruuedCEiSV5q9/WzAhktvt1syZM9WuXTvdeeedZa5lZWVpy5YtkqStW7dq+vTpOumkk9SyZUu/85WEdlLFK+4iIyM1d+5cTZgwQYmJiWrTpo3q16+v2NhYRUREBPweShs+fLg2b96ss88+u0wvuKqq6HNa1R53BoOhwtCuxB133KG3335bbrdbUVFRevzxx0PWY68qfvjhB8/xf//73xqsBAAAAKh5BHcAAAAAECJJSUl68MEHA7o3KipKWVlZ+u6777RmzRotWrRIbdu2lVQcdj3//POaMWOGLrzwwpDX6S+4CybEWbJkidLT0/XCCy94bYW5Zs0az5aRZ511lubNm1emj5kvpbemDKTfWnR0tGbOnBlwvRWxWCyeZzdt2jRk81bkaAVnDodDU6ZM8fze5+Xl6f7779dTTz2l6Ojoo1KDL3/88Yf++OMPSVJERISuuuqqGqsFAAAAqA2qvpk+AAAAACBopVeV3X777Z7QTpLS0tL0f//3f7rssssCnm/hwoUaN25cQPeWhGpHCjREOnDggJ5//nm9+OKLPrfw/PLLLz3Hd9xxR4WhnRTcirvapKioSHl5eVWeJzc3V1u3bvV8ZGZmSir+vJQ+v3v37qDndrlcGjNmjFauXCmTyaTOnTtLklatWqV+/fpp586dVa6/MgoKCjRp0iRPmHjXXXepQYMGNVILAAAAUFuw4g4AAAAAaoDZfPifY3379i1z7YILLghqrnfeeUfTpk2T2+1WfHy8Ro0aVe79/oK7QG3btk2TJk3S6aef7nXNbrdr5cqVkqSTTjrJExJVxGazeY4DWXHnz7p165SUlKQmTZpUeo5AOZ1O3XfffcrJydHcuXMrFTiWhKUrV670fN5K279/v3r27FnpGl0ul8aNG6ePPvpIVqtVTz75pLp166ZZs2bp+eef15YtW9S7d2/deeedGjRokGflYXXbsWOHxo4dq59//lmSNHDgQN12221H5dkAAABAbUZwBwAAAAAVyMnJUVpaWkjnLB2e7dy5U0VFRZWaZ+PGjRo3bpxn1dKcOXMUHx+vQYMG+R0TyFaZ5a2+O/fcc/1e+/bbb3Xw4EFJ0m233RbwKr7SK+6qEtz98ccfGjJkiPr166e+fft6bePpT0lwWFhYqK1btwY0Zt68efr8888lSffcc4+eeeaZMoFsIEo+P1deeaVmzJjhOf/iiy9q5syZSklJKbOC8eeff9b1118f0NyFhYW67777tGLFCsXGxuqZZ57xhML33HOPwsLCNHv2bOXl5emJJ57Q4sWLNXbsWHXu3DnkW3i6XC4dOHBAv/32mz799FMtW7ZMNptNdevW1cMPP6xevXqF9HkAAADAsYrgDgAAAAAqYDAY9OCDD+qXX36plvkHDx4c0vmmTZumuLg4v2GIv+Cu9Kq3QAOvI73//vuSpEaNGgUVxpR+dlW2yoyMjJTdbterr76qV199NejxGzZsqNQKt6+//lrffvutLrrooqDG+fu9qKoDBw5o2LBh2rBhg5o1a6bnn39eJ598cpl7hg0bphYtWuiBBx7QwYMH9c8//2jYsGFq3Lixrr32Wl199dWqX79+0M9++OGH9cgjj5Q553K5PO81PDxcZ511li677DL16dNHkZGRlX+jAAAAwHGG4A4AAAAAKhATE6N58+ZpwYIFOvnkk3Xqqaeqbt26iomJkdVqDXieV155RVOnTvU6/8UXX2jJkiWy2+26//77Q1m6T/62yiy96q8y4Vlubq5nddjw4cM92y6WPM9o9N9mvfSKu4iIiKCfXaJ0P71XXnlF7du3D2jc1Vdfrd9//10dOnTQggULAhozY8YMzZ07V5K0YMECnX/++UHXWx3+/PNPjRw5Ujt27FDnzp01ffp01alTx+e9Xbt21bvvvqtRo0bpt99+k1S8AvSpp57SM888o7POOkvnnnuuzj33XJ1zzjmKiYmp8PkjRoxQly5dvM6bTCbFxsYqLi4u6JWJAAAAwImCr5QBAAAAIADR0dEaPnx4pccfOHBA//vf/zyvzWazHA6H5/U111yjXr166eabb1ZCQkKVaq2Iv1VepYO7YALJEsuWLVNhYaFOPfVU9e7d23P++++/10svvaSZM2eqbt26PseGqsddTQVC55xzTqXGhXrF3euvv67HH39ckvTQQw+Vu2VqiSZNmujtt9/WG2+8odmzZ3u2OnU4HPrxxx/1448/Kj4+Xj169ND48eMrnC8pKUktW7as2hsBAAAATlD+f9wRAAAAABAyTz/9tLKzsyVJHTp00KmnnlrmeuPGjdWmTRu9+OKL1V5L6dVtpeXm5nqO/YVn/lbrSdKbb74pSXrwwQfLrK674IILVFBQoGuuuUabNm3yObZ0cFeVrRMru8VnTQlVcJeVlaURI0Zo8uTJOvPMM7V06dKAQrsSJpNJN910kz799FP17dvXs1pSku688059/fXXAYV2AAAAAKqG4A4AAAAAqtnGjRu1aNEiScUr2SZOnOgzsLn++uv11ltvae/evdVWi7/QTpJ27drlOU5OTvZ5T+lVeaWtWrVKmzZt0hVXXKEOHTqUuWYwGDRx4kTt3btXN9xwg77++muv8aWDu6pslVmZ4M5ut3tC1WPRBx98oB49emjDhg1q0KCBnnrqKTVv3jzoebKzs7Vs2TJNnjxZK1as0KBBg9S5c2eNHDmyUiswAQAAAASP4A4AAAAAqpHNZtMDDzwgp9MpSRo6dKiaNWvm897LLrtMiYmJevTRR6utntLbcx5p586dkqT4+HjFxsb6vKewsNDrnNPp1JNPPqnExEQ9/PDDPse1bNlS1113nfLz83XnnXfq448/9jtvVYI7g8EQ9JgpU6Z4Qktf7686lbeCsSL//vuvbr75Zi1evFjjx4/XypUrVVhYqH79+mnr1q1BzeV0OnXvvfdq2rRpGjp0qCIjI/XQQw9pzpw5la4PAAAAQPDocQcAAAAA1Wj27NmeEOXcc8/V0KFDJfneItFkMunWW2/VxIkT9cUXX6hLly4hr6e84O7ff/+VJL/BolQcRDqdzjIr255//nn99ddfeuGFFxQfH+937F133aWlS5eqoKBAY8aMUaNGjXTmmWdKKhuYVWWrzJKANFCLFi3yrIaUpA0bNuiNN95Q//79Q/4sX6oS3G3fvl0PPvigWrRoUeZ8amqqevbsWel5v/rqKw0YMEDvvPNOmS0zAQAAAFQ/gjsAAAAAqCbffPON5s2bJ0mqW7euZs6c6Qm8Sgd3pY+vueYaPfvss5oyZYrat2+v6OjokNbkb6vMgoICbd68WZJ0xhlnlDtHfn6+YmJi5HQ6NX/+fP3vf//TqFGjdOGFF3ruKSoqUlZWlrKyspSdne05Pvnkk/X777/LbrfrpZde0tNPPy2pbHBXlfccTJj27bffasqUKWXONWvWTLNmzVKzZs3UsWNHSdKvv/6qDRs2KDk5WfXr11e9evUUERGhDRs2SCpe5Wc2V+6f11UJ7i688EI1btzY57Xu3btr5MiRQc03duxY/frrr4qNjdW0adMI7QAAAIAaQHAHAAAAANUgNTVVo0ePlsvlkslk0v/93/+pYcOGnuv+Ahur1apRo0bpoYce0sMPP6zZs2eHtK6S4K5OnTo6++yzPec3bNjgufbf//7X59iGDRvq9ttv96yImzNnjp5++mlZrVZ99913+vjjjz0hXUFBgWdcvXr11L59e7Vr104jR47U7bffLklavXq1557c3FzPcVRUVKXfX6DB3YYNGzR8+HDZ7XbVqVNHVqtVaWlpatiwoYYNG6bhw4drwYIFOvPMM5WYmKi0tDQtWLBAqampXnPVq1ev0vX6WnkZKF+rJ0vmi4mJCbrPXckWpY0bN64wvAUAAABQPehxBwAAAAAhVlRUpBEjRigrK0uS9PDDD+uiiy4qc4+/FXeSdPXVV6t169b69NNPtWDBgpDWZrVaNXHiRH399de69tprPed/+OEHSVJYWJjat2/vNW7gwIH67LPP1L9/f8+qwVtvvVVNmzaVzWbT2rVrtWnTJu3Zs0c2m03nn3++7r//fn344YdavXq1Zs6cqX79+umiiy5S69atJRWHhyVKB3dVWXEXSI+6P//8U3fccYfy8/MVGxurefPmqX79+p7rV111lbp3767bbrtNmzZtUsOGDXXfffdp+fLlGjdunMLCwsrMd/HFF1e63qpst+lrbFWCQAAAAAA1j+AOAAAAAELI6XTq3nvv1W+//SZJuvnmm3XjjTd63Vd6xd2RYYvBYNAjjzwig8GgJ554QmvXrg1ZfXFxcbrhhhs8q6tKfPrpp5Kkjh07Kjw8XDt37tTvv//uuX7mmWfKarWWGRMWFqZJkyZ5Xp9++ukaP368Vq9erVdffVW33nqrWrZs6VXD5ZdfLpPJpLFjx3rO5eTkSCp+77GxsZV+f3l5eZ5jg8Hgdf2nn37SwIEDlZ2drTp16ujll1/2BImlTZw4USkpKRo4cKDWr18vSbJYLBowYIDmz5/v+Vx07NhRY8aMqXS9JX8O3G63HA6H56P0n4/S50uHdb62PSW4AwAAAI5tbJUJAAAAACE0adIkrVixQpLUt29fv6FOecGdJJ199tkaMmSI5s2bp2HDhumll17SueeeWy01//zzz9q+fbsk6aabbpJUvOpt5MiRSkpK0siRI9WqVSufYzt06KC77rpL5513nqcnXEV69+6ts88+u8xWnenp6ZKKV+GVrOirjMLCQnXq1Ek33XST2rVrV+baN998o7vvvlsFBQVKSUnR3Llz/W4nGRYWpmeffVbXX3+9br75Zk2fPl2XXXaZJOncc8/V+PHjFRUVpZ49e1a6VunwdpfLli3TsmXLvK6npqb63bbSZrN5nSO4AwAAAI5tBHcAAAAAECIzZ87UokWLJEkDBgzwrJrzpXTA4q/f3ahRo7RmzRr9+eefuu222/Tyyy+XCbtC5d1335UktWzZUv/5z38kFa/Me+WVV3Trrbfqqquu0hVXXKF7771XycnJXuNHjBgR1PMSEhKUkJBQ5lxaWpokKTExsTJvwWPgwIG65ZZbvM6//vrrmjZtmux2u84880w9//zzFT6rYcOGmjt3rgYMGKCRI0dq4MCBGjNmjCwWi6677roq1Vmi5Pe+S5cuZVYg+vPnn39q5MiRklSmj+CR84WipmNJeVvPAgAAAMcStsoEAAAAgBB4/PHH9eKLL0qSbrvtNo0bN85vaCeV7U/mL2iwWq2aOXOmoqOjlZeXpyFDhuijjz4Kad379u3T0qVLJRX3rCstOjpaL774olq1aqUPP/xQPXv21AsvvOBZJRZKO3bskCSfwWAwLBZLmdc2m00PP/ywJk+eLLvdrv79++v1118POCA89dRTNX/+fNWtW1evvPKKrr76am3cuLFKNZZWst1lZGSkmjZtWuFHgwYNPGN9BXehcKwFXzabTfv37/e83rlzZw1WAwAAAFQNwR0AAAAAVIHL5dKkSZM0f/58WSwWPfbYYxo9enRA40qUDvGO1Lx5c82ePVtms1kFBQW69957NW3atJCFZ88++6yKiop0/vnnq3fv3l7XY2NjNW/ePKWkpKigoEBPPvmk+vfvr3379oXk+VLx9papqamSpKZNm4Zs3u3bt6tfv35asmSJYmJi9NRTT2nChAlevfoq0rp1a73xxhtq2rSpNm/erOuvv17jx49XRkZGlWv01aeuPOHh4erZs6dmzpyp888/3+t6eX+WAlWZFXeFhYWe49J9Bo+GpUuXlvnvYdGiRUF/XgEAAIDaguAOAAAAACopLy9Pd955p9544w0lJCRowYIFuuaaawIaWzpgqSgo6dSpkyZMmOB5vWDBAvXp00dr166tXOGHbNu2Te+++66sVqsmTZrk9774+Hg999xzioiIkCT98ssvGjRokM8ea5Xx66+/ej4Hp556akjmXLRokfr06aPff/9dF110kT766KMq9aNr3ry53n77bXXs2FEul0uLFi1S165dNX369CqFmHa7XXXq1NEFF1wQ0P2tWrXSU089pSuuuEJRUVFe10OxWi7Q8G/79u3atGmTFi9erN9//91zfuHChfrqq6+0efPmkISbpeXk5Gjz5s3atGmT1qxZoyeeeEJTpkwpc8+vv/6qvn376p133tFPP/2kzZs3e3o4AgAAALUdPe4AAAAAoBL27NmjoUOHatOmTfrvf/+radOmqV69egGPDya4k6S+ffvKZrPp0Ucfldvt1ubNmzVo0CB1795dt956q84888yg6nc4HBo7dqzsdrseeughnXzyyeXe36pVK02cONHTh2379u16//33Q9LrbdWqVZ7jtm3bVmmu1NRUTZw4UatWrVJ8fLwmTpyoq666qsJxgfwe1K1bVy+99JJmzZqll156Sfn5+Zo3b54WLlyoTp066ZJLLlH79u110kknBVzv3XffrW7duvkM4SojFCvuAp3jlltu8ayULG3nzp264447JEnDhw/X3XffXeWaSqxYsUIPPvhghff98ccfeuihhzyvU1JS9OWXX4asDgAAAKC6ENwBAAAAQJC+/PJLPfjgg8rPz9dDDz2kgQMHltvPzpfS4Uig214OGDBAUVFRevjhhz3jly9fruXLl+v0009X37591alTJzVu3LjCuebMmaONGzfq+uuv16BBgwJ6/lVXXaWlS5dqzZo1kqRPP/20wuDu008/1S+//KJTTjlFTZs2VePGjZWYmCiTySRJ2rx5sxYvXixJatCggVq0aBFQLUdyOp169dVXNXv2bNlsNg0cOFAjRoxQTExMQOMD/T0wmUy67777dNFFF2ns2LHatWuXnE6nvv76a3399deSpHr16qlt27Zq2rSpTjrpJLVs2dJvIBlIqBiMUAR3gX4uaiIIu/rqq3X11Vcf9ecCAAAARwvBHQAAAAAEyGaz6YknntArr7yiTp06ady4cWrWrFml5iodsAQTtvTp00dJSUm67777lJmZ6Tn/xx9/aOLEiZKk5ORk3Xrrrbrxxht9zrFq1So9//zz6tixo8aPHx9U3Y888oh69+4th8PhCd/Kc8455+jAgQNavHixNmzYIEkyGo2KjIyU0+lUQUGB597rrrsu6ABUktauXatp06Zp06ZN6tatm0aNGqXmzZsHNUdJT7TSvdrKc9555+n999/Xs88+q1dffbVMT7W0tDStWLFCUvHWn9dee22VVxIGonTgtmTJEi1ZsqRS89AfDgAAAKg5BHcAAAAAEIANGzZo3LhxysnJ0VNPPVWlfmlS2bAu2KCkY8eOWrp0qUaNGqX169d7zlutVt100026+OKL/a66+/XXXzVy5EhddNFFeuqpp2Q2B/fPwlNOOUU9e/bUhx9+qAEDBlR4f/369XXDDTfohhtu0IYNG/Too4/qt99+U25ubpn7GjdurFtuuSWoWnbs2KEnnnhCn3/+uTp16qQlS5aoTZs2Qc1RoqRfX15eXsBjoqOjNXbsWPXv318zZszQ8uXLPT3m6tSpo2nTpqlLly6VqqcySgd33bt318iRI4MaP3bsWP36668h610IAAAAIHgEdwAAAABQjvz8fM2cOVMff/yxbrnlFg0YMEDh4eFVnrcqwZ0kJSUl6bXXXtObb76pWbNmebaKPOOMM/yO2bx5s+644w5deeWVmjBhQkAr5nx5+OGH1bt3b3Xq1CmocWeffbYWLVqkCRMmlFkNlpiYqBdffFEREREBzbN7924999xz+uCDD9S1a1e99957Ov3004Oq5UglYVV+fn7QYxs3bqzZs2dr+/btWrRokd577z3Nnj1bF1xwQZVqClbpP0cxMTFBrzos+fwXFRWFtC4AAAAAgSO4AwAAAIByOJ1OJSQk6PPPP1d0dHTI5i29OqqyQYnRaNSNN96oyy67TNu3by83tPv+++9133336a677vK7hWag6tatG3RoV8JsNuvRRx/Vrl27tHbtWnXq1EmPPfaYkpKSAhr/2muvaf78+bryyiv1ySefKCUlpVJ1HKlki8xAt8r05aSTTtIDDzyg++67TxaLJSR1BaMkfDQajWrYsGHQ4yMjI3XFFVeod+/eoS4NAAAAQIAM7pJ9PAAAAAAAR81pp52mpk2bql+/frr22mtDGgoeadOmTZo8ebKmTp2qk046qdqeE4y///5baWlp6tChQ1Dj9u3bp8TExEqvFvSnXbt2uvLKK3XzzTerUaNGIZ37aDlw4IDee+89XX755QEHoaU5nc6Qf14BAAAABIfgDgAAAABqwJo1a4IOrSrL6XTK7XYH3c/uRJKZman4+PiaLgMAAADACY7gDgAAAAAAAAAAAKgFjDVdAAAAAAAAAAAAAACCOwAAAAAAAAAAAKBWILgDAAAAAAAAAAAAagGCOwAAAAAAAAAAAKAWMNd0AQAAAAAAAAAAAKjY+vXr9dFHH2n9+vXas2eP8vPzFR0drYSEBLVu3VodO3ZUjx49ZLVaa7pUnwoKCvTRRx9p7dq1+v3335WZmam8vDxFRkYqMTFRbdu2VefOndW1a1cZjZVbe7Zv3z69//77+v7777V582ZlZWXJbDYrLi5OrVu31sUXX6wrrrii1n6ODG63213TRQAAAAAAAAAAAMC3jRs36tFHH9Xff/+tXr16qVOnTmrQoIHsdrv27Nmj1atX64MPPpDdble9evU0adIkdenSpabLLuP111/X7NmzlZ+fr+7du6tDhw5q3LixYmJilJubq61bt+qzzz7Td999pyZNmujRRx9V+/btA54/Pz9fs2bN0ptvvqkLLrhAXbt2VfPmzWW1WrV//36tXbtW77zzjvLz85WUlKTHH39cHTt2rMZ3XDkEdwAAAAAAAAAAALXUK6+8omnTpumcc87Rk08+qaSkJJ/3/fPPP7r99tu1Y8cOGQwGjR8/Xv379z/K1XpzOp0aPXq0Pv74Y51yyil6/vnn1aRJE7/3r1ixQvfee6/sdrseeeQR3XjjjRU+IyMjQzfffLO2bdum+fPn67zzzvN53969e3XLLbfo77//ltFo1NSpU3X11VdX+r1VB4I7AAAAAAAAAACAWmjRokUaP368mjVrpqVLlyoiIqLc+3fs2KHevXuroKBAZrNZb7zxhtq2bXuUqvXt0Ucf1auvvqr4+Hh98MEHqlevXoVjPvzwQ40ePVoGg0HPPPOMunXrVu79Q4YM0XfffacuXbroueeeK/fe1NRUXXHFFcrPz5fZbNaCBQvUrl27oN5TdarcBqEAAAAAAAAAAACoNmlpaZo+fbokacCAARWGdpLUtGlTXX/99ZIkh8OhGTNmVGuNFdm4caNee+01SdI999wTUGgnSVdeeaXOO+88ud1uTZo0SXl5eeU+47vvvpMkhYWFVTh3SkqKBg4cKKn4czRu3DjVpjVuBHcAAAAAAAAAAAC1zLJlyzyBVdOmTQMed/nll3uOf/jhB+3evTvktQXqzTfflNvtVlhYmHr37h3U2Ouuu05ScYC5YsUKv/f9/PPPnuOffvpJ+fn5Fc5dupbt27dr3bp1QdVWnQjuAAAAAAAAAAAAapmSVWSStGXLloDHtWrVSiaTyfP6xx9/DGldwfj+++8lSaeccorCw8ODGlu6T93atWv93udyuTzHe/fu1fLlyyuc++STT1ZkZKTn9R9//BFUbdWJ4A4AAAAAAAAAAKCW2bdvn+d4zpw5Sk9PD2ic1WpVTEyM5/X+/ftDXlug0tLSKj22fv36Ac1zwQUXlAkqk5OTA5o/Ojrac2y32ytRYfUguAMAAAAAAAAAAKhlSvddy8nJ0VtvvRXwWIvF4jkuvSLtaLNarZKKVwxmZWUFNdbhcHiOy1ut16pVK73yyiu6+eab9dhjj6l9+/YBzZ+bm+s5btiwYVC1VSeCOwAAAAAAAAAAgFqmTZs2ZV4XFhYGNM7pdJYJyUqvXDvaWrRoIUmy2Wx64YUXghq7Y8cOz/Hpp59e7r3nnXeexo4dq2uuuSaguf/9919PLzyj0VhmW86aZq7pAoATjcvlUkFBgdd5s9ksg8FQAxUBAAAAAAAAAGqb4cOHKycnR7/88otSUlJ07bXXymazVThu06ZNZbZ+bNWqVUDjqkOXLl20YcMGSdKCBQt02mmn6bLLLvN7v9vt9qy0K+lVZzQadfnll4e0ro8//thz3LVrVzVo0CCk81cFwR1wlBUUFGjTpk01XQYAAAAAAAAAoJYbMmSI5zgjI0MZGRkVjlmyZInnuGHDhsrLy9Ovv/5aLfVVpFWrVoqLi9OBAwfkcrn0wAMP6LffflP37t3LHZeXl6fXX39dUnGwlpiYGLKadu3apXnz5kmS4uLi9OCDD4Zs7lBgq0wAAAAAAAAAAIDjgNPp1KpVqzyvu3btWoPVSJGRkRo6dKhMJpOk4voWLlyomTNnKj093ecYp9Op5557Tjk5OTrllFPUv3//kNWzefNm3XLLLcrOzlZKSormz5+v5OTkkM0fCqy4AwAAAAAAAAAAOA6sWrXKE4jVq1evxoM7qbhX34gRI/S///3Ps4Xn+vXr9euvv6pr16668sorVadOHUnSwYMH9dxzz+mXX35R27ZtNWLECFmt1ko/u7CwUOnp6fr999/12Wefafny5QoPD9cdd9yh2267TTExMSF5j6FkcLvd7pouAjiR5OXlsVUmAAAAAAAAACCk8vLyNHr0aGVnZ8toNOrhhx/WaaedVtNlefz777+aM2eO/vnnnzLnzWazzj//fDVt2lQfffSRHA6HrrvuOl166aUyGAySirfcjIqKCup5Cxcu1GOPPVbmXJMmTTRjxgy1bdu2Su+lOhHcAUcZwR0AAAAAAAAAINSef/55ffPNN5KKe+N169athivy5nA49Pjjj+uPP/7weT0iIkITJ05U48aNy5yvTHCXmZmp7du3Kzc3V9u3b9fGjRu1cuVK5efn6z//+Y8efPBBtWjRotLvpboQ3AFHWVFRkX777Tev861atZLFYqmBimqWw+HQn3/+WebcaaedJrOZnXwBAABQ/fh6FAAAADUtFF+TLl26VOPGjZMkjR49WoMGDQppjaGwZcsWjR07Vtu3b9fQoUNls9m0ePFiHThwoMx9kZGRGjhwoC688ELPudatWyssLKzKNWRnZ+v555/X/PnzZTabNXr0aA0ZMqTK84YS/xIBjrKSpb1HslgsVdqr91jl6/NhsVhOyBATAAAARx9fjwIAAKCmVfVr0h9//FGTJ0+WwWDQuHHjdOONN4a6xCpbvny5xowZI0l67rnndNFFF0mShg8frjfffFNz5szxBHj5+fmaM2eOtmzZoiFDhshoNPr9vnqw6tSpowceeEBJSUl6/PHH9fjjjysrK0ujRo0KyfyhYKzpAgAAAAAAAAAAABC8v/76S3fddZdcLpemTZtWa0O7UaNGqaioSDNmzPCEdpIUFhamwYMHa8WKFerfv3+ZgO6LL77QnDlzqqWmIUOG6Pzzz5ckzZkzR19//XW1PKcyCO4AAAAAAAAAAACOMVu3btWQIUOUm5urmTNnqk+fPjVdkpetW7dq7Nixcjqd6tevn9++e9HR0ZowYYJeeOEFRUdHe86vXr1aH374YbXUdvvtt3uOp0+fLpfLVS3PCRbBHQAAAAAAAAAAwDFk27ZtGjRokHJycjR79mz16NGjpkvyacqUKSooKFBkZKRGjhxZ4f0dOnTQpEmTVLduXc+5d955R3v27Al5bR07dlRkZKSk4oDx22+/DfkzKoPgDgAAAAAAAAAA4Bixfft2DRw4UNnZ2XrmmWfUtWvXmi7Jpy1btmjNmjWSpMsvv1xxcXEBjWvYsKHGjBnj6fFns9n0xhtvhLw+k8mk008/3fN6xYoVIX9GZRDcAQAAAAAAAAAAHAN27dqlwYMHKysrS08//bQ6d+5c0yX5tXLlSs9xsHU2a9ZMvXr18rz+4osvQlZXaQkJCZ7jP//8s1qeESyCOwAAAAAAAAAAgFouLS1NQ4YMUUZGhmbNmlWrQztJ+uuvvzzHp512WtDju3XrJpPJJEnauXOn8vPz/d67detWffLJJ8rOzg7qGSWr+iQFPba6ENwBAAAAAAAAAADUYrm5ubr11lu1a9cuTZ8+PeDtMdPT07Vu3bpqrs63rKwsz3FiYmLQ42NjY9WwYUPP64MHD/q874svvlDv3r11zz336MYbb5Tdbg/4GXl5eWWeVxsQ3AEAAAAAAAAAANRSDodDI0aM0KZNmzRhwgRdfvnlAY/94IMPNHPmzGqszr+IiAjPscPhqNQc4eHhnmN/PfImTpzoCeu2bNmir7/+OuD509PTPcdNmjSpVI2hRnAHAAAAAAAAAABQS02ZMkXffvuthg8frn79+gU1ds2aNTUWSJ188sme4927d1dqjpLtKxs3biyr1ep1PSMjQ/v37y9zLjc3N6C5XS6X/v77b8/rCy+8sFI1hhrBHQAAAAAAAAAAQC20ZMkSvfXWW7rqqqt09913BzV2z549WrNmjZo2ber3no8//lg9evTQeeedp5EjRyozM7OqJXtcccUVnuNVq1YFPf7AgQNKS0uTJL9bg9apU6dMnzqLxaL//Oc/Ac2/fv16FRQUSJISEhIC3n60uhHcAQAAAAAAAAAA1DKbN2/WlClTdNZZZ2nKlClBjXW5XJo0aZLsdruaNWvm856ffvpJ9913n7Zt26aDBw/q008/1YgRI+R2u0NQvdSyZUv16dNHkrRgwQJPSBaoL7/8UpIUGRmpgQMH+rzHbDbrkksu8bxu37696tWrF9D8b731lud4xIgRioqKCqq+6kJwBwAAAAAAAAAAUIs4HA7df//9MpvNmjVrls9tIv3Ztm2b7rzzTq1cuVKS/95tK1askMvlKnNu3bp1+ueffypd95EefvhhnX766dq3b58eeOABr+f5s2fPHi1btkwGg0FDhgxRYmKi33tHjx7tCd0CDR2//fZbffTRR5Kkyy+/POgtSKuTuaYLAAAAAAAAAAAAwGEfffSRNm3aJIvFoquuuirgcTabTfn5+WXO+Vtx50+g4VogYmJiNH/+fN1111369NNPlZubq2nTpql+/fp+x2zbtk1PPvmkHA6HhgwZUuHWl02aNNELL7ygYcOG6bvvvtNbb71VbhD3+eefa8yYMXK73erevbsee+yxSr+/6kBwBwAAAAAAAAAAUIvk5ORIkux2u7Kysio9T3x8vGJiYnxe69q1q+bPn18mqGvZsmXQQV9F6tatq1deeUUvv/yy5s6dq65du6pnz576z3/+o5SUFIWHhys7O1tbt27VV199pdWrV6tp06a65557dMoppwT0jHbt2undd9/VhAkTNGHCBE9fwJYtW6pu3brKzs7Wpk2btHz5cm3YsEFxcXEaOXKkBg0aJIPBENL3W1UEdwAAAAAAAAAAAMehpk2b+r12zjnnaObMmXr66ae1b98+tWvXTuPHj5fJZAp5HSaTSbfffrtuvPFGLVu2TN9++61mz56tjIwM2e121alTRw0aNNBZZ52lCy+8UGeccUbQz2jSpInmz5+vX375RR988IHef/99paamKi8vT9HR0YqLi9MZZ5yh6667Tj169FBkZGTI32coGNyh6jIIICA2m02//vqr1/k2bdoEtU/x8cJut2vjxo1lzp155pmyWCw1VBEAAABOJHw9CgAAgJrG16SH8f1zyVjTBQAAAAAAAAAAAAAguAMAAAAAAAAAAABqBYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAXNNFwAAAAAAAAAAAHCiMhgMSkxMVFhYmAwGg9xut4xG1l2dqAjuAAAAAAAAAAAAaojZbFbTpk1rugzUEkS2AAAAAAAAAAAAQC3AijsAAAAAAAAAAIAa4nLYZNv3j2xpO+W2F8pgCZe1XmNZk5rJaLbWdHk4ygjuAAAAAAAAAAAAjrLC3VuUs+5j5f25Rm6n3eu6wWRR1GkdFNuup8KTW9RAhagJBHcAAAAAAAAAAABHiauoQBlfLNTBDZ+Xe5/baVfub6uU+9sqxZzdTQldBskYFnGUqkRNoccdAAAAAAAAAADAUeA4mKHU+WMrDO2OdHDD50qdP1aOgxnVVBlqC4I7AAAAAAAAAACAauYqKtCe1yfJnpFaqfH2jFTteWOyXEUFIa4MtQnBHQAAAAAAAAAAQDXL+GJhpUO7Evb0Xcr48pUQVYTaiOAOAAAAAAAAAACgGhXu3hL09pj+HPzpMxXu3hKSuVD7ENwBAAAAAAAAAABUo5x1H4d4vk9COh9qD4I7AAAAAAAAAACAauJy2JT355qQzpn353dyOWwhnRO1A8EdAAAAAAAAAABACLiddtnSdqpo73bPOdu+f+R22kP/nP07QjonageCOwAAAAAAAAAAgAC53W6/1/a8OUW7XrxHBdt+9pyzpe2sljps+/+tlnlRs8w1XQAAAAAAAAAAAEBt43bYZT+wV/aMVNkydsuemSp7eqrsmbvVeNj/ZIqM9RpjiU9W4Y7fJdPh+MVtL6ye+uxF1TIvahbBHQAAAAAAAAAAOCG53W658nNky9gle8Zu2TNSZc/YLVtGqhxZ+yW3y+c4e8Zu38FdQnLxgdPhOWewhFdL7QZLWLXMi5pFcAcAAAAAAAAAAI57jpwMFe3+W7aM1DKr51yFeUHPZcvYpfDGrbzOW+NTJEn27P2Hz9VrXPmiy2Gt36Ra5kXNIrgDAAAAAAAAAADHPLfbLWdetoxmi4zhUV7X8zatUcbn80PyLHvGbp/nLYnFwV3Rnq2ec9akZjKYLHI77SF5tiQZTBZZ6zcN2XyoPQjuAAAAAAAAAADAMaO83nOuwjwl9rhDsedc6jXOkpASshrsGak+z5vr1JNMZtnSdsplL5LREiaj2aqo0zoo97dVIXt+1GkdZTRbQzYfag+COwAAAAAAAAAAUKuUrJ6zZ6YG1XtO8h+qhTa4873izmA0qfEds2WOTZDBZPGcj23XM6TBXWy7HiGbC7ULwR0AAAAAAAAAAKhRzrxs5fz8RZV7z0mSzU+oZq6TKIPZKrfDFtyEBqMscUmyxCfLkpgiS3yKrImN/N5uiWvgdS48uYVizu6mgxs+D+7ZPsScc6nCk1tUeR7UTgR3AAAAAAAAAACg2pRePWcwmhTeqJX3PU6HDnz1ekie52/FncFglCW+oWz7d/i8bgyPliUhWZaEFFkP/WpJSJElLqnM6rnKSugySIX//uG3vkBYEhsp4ZKBVa4FtRfBHQAAAAAAAAAAqDKv3nMZqcUfpVbPRZzcVg1vGO811hQTL4MlXG57YZXrcGSnye2wy2D2Dtus9ZrI7bAVr54rCeYSkmVNSJExMlYGg6HKz/fHGBahhjdO0J43Jsuevivo8ZbERmrYf7yMYRHVUB1qC4I7AAAAAAAAAAAQkDK95w5taRlo7zmpnN5wBoMsCcmy7d0WgiJdsh/YI2u9Jl6X6vUeWa3hXEXMMQlKGfy4Mr5YGNS2mTHnXKqESwYS2p0ACO4AAAAAAAAAAEC50pe/pKLdf1ep95xUvBrOZS+S0RLmdS3o4M5glLlufVlLrZwr3uayePWczyE1GNqVMIZFqF7PoYo5q4ty1n2ivD+/k9tp97rPYLIo6rSOim3Xg552JxCCOwAAAAAAAAAATkBHrp5z5B5Q/IXX+7y3KHWLivb8HZLn2jP3KCypmdd5a3yKfEWCXr3n4lNkSQxd77maEp7cQuG9W8h1+VDZ9u+Qbf+/ctuLZLCEyVq/iaz1m8pottZ0mTjKCO4AAAAAAAAAADiOFfee23NoS8tSvecyUuUqyi9zb932vXxux2hJSA5dcJeR6jO4C0s+RZGnnFscysUfvd5zNc1othaHeKyqgwjuAAAAAAAAAAA45lW191wJe+ZuhTVs7nXekpASkjqN4VFyFRX4vBZ5yjmKPOWckDwHOFYR3AEAAAAAAAAAcAw78M1iZf/wYZV6z5WwZ4QguKug99zxvHquMhwOh1JTU2W1WmU0GuVyuVS/fn2ZTKaaLg01gOAOAAAAAAAAAIBaxO12y5WfI1vGLtkzdh/6SFXcxf19bjFpMJlCEtpJki0j1ed5a0Ky1zljeJQnmLMmHN7e0hLXQAbzsdt77mhzu91KT08vcy4xMZHg7gRFcAcAAAAAAAAAQA0o7j23V/aM1OLec6W2ufQVxEWd3tFncBeqbSyl4v5zvpjjG6pO+16sngOqGcEdAAAAAAAAAADVJFS956TibSx9CUVw51k9l9jI93WzVQldB1X5OQDKR3AHAAAAAAAAAEA1Kfj7J+19+7GQzOVvNZwlLkkyGCsOAb16zx3e5pLVc0DtQHAHAAAAAAAAAEAA/PWes2WkKvq0jorvfKPXGHN8w5A93+ZnxZ3BZJElLkn2zD2S6D0HHMsI7gAAAAAAAAAAKMXttMueudezpaU9M9UT0vnqPSdJtvSdPs9b6taXjGbJ5ahyXY7MPXK7nDIYTV7XEi69RQZLGKvngGMcwR0AAAAAAAAA4ITkdjlVuGuT1+q5YHvPSf77zxlM5uLVcH62uayIMTy6eLVcQoqsCclyOx0+g7vI5mdXan4AtQvBHQAAAAAAAADguOV22OXMz5E5NsHn9T1vTJacVV8NZz+wtzhUM3l/292SkFx+cGcwyhKXJEt8Mr3ngBMcwR0AAAAAAAAA4Jjm3Xsu1bPNpSNrvyxxSWo87H9e4wxGkyzxDWVP873NZVBcTtmz9suakOx1yZKQImmd1+o5S3yKLIkpssQlyWCi9xwAgjsAAAAAAAAAwDHC7bDLfuCI3nPpqbJn7vbbe06S7Af2ye20+wzHrAkpoQnuJNkzUn0Gd3Xb91Ld9r1YPQegQgR3AAAAAAAAAIBaKe+v71W4c1OVes9Jktwu2Q/skzWxkdclS7x30BYIr9VzCSkKT2np815TVJ1KPQPAiYfgDgAAAAAAAABw1B1ePZeqyFPOlcHsvRou949vlffHtyF5nj0j1Xdwl5jifxC95wAcZQR3AAAAAAAAAIBq4Xa75czLLt7S0kfvuZLVc41ue0rW+k28xld2NZwv9oxUn+ct8Sn0ngNQaxDcAQAAAAAAAACqpPTqOVvG7oB7z5WwZaT6DO6sCeWshguSLWO3z/Nhyaeo6b0LWD0HoFYguAMAAAAAAAAABC1/2y/KWfdR1XrPHeJ3NVwlgrvi1XMlW1qW2uIyLsnn/QR2AGoTgrta5q+//tK7776rH374Qbt27VJBQYGioqJUv359tW3bVt26ddOFF15Yo/8zKSoq0llnnSWXq/L/I166dKlOO+00n9cuueQSpab6/h91RV555RW1b9++0nUBAAAAAAAAJ7ojV89FNGut8JSWXve5CnOV//f6kDzTf3DX0PeA0r3nElOKt7ak9xyA4wDBXS2xe/duTZ06VWvWrFH//v01btw4NW7cWC6XS7t379Y333yj1157TYsXL9YZZ5yhp556Sk2bNq2RWrdu3Vql0C4iIkL16tULYUWH+QsDAQAAAAAAABwWaO85SdJ/r/cZ3FVmNZw/dj/bWBqtEYpscZ6METFeq+foPQfgeERwVwv88ssvuuOOO5SQkKCPPvpIDRuW/SmSpKQknX322erbt6+GDBmi33//Xddff72WLFmiRo0aHfV6t2zZUua11WpVUlKSzOby/zjl5uYqLS1Nd955pxITE8u9t27duoqLiwuqrnr16ik2NjaoMQAAAAAAAMDxrKq95yTJlulnNVy8n9VwwTIY5Xa7/V5u0PfB0DwHAI4BBHc1LDMzU0OHDlVWVpZef/11r9CutAYNGuipp55Snz59dODAAY0ZM0ZvvPHGUay2WElwFx0drYceekhXXHGFwsLCKhx35513aseOHRoyZEiF9w4YMEB33313lWsFAAAAAAAATkSOnHTtfm1ClXvPSZI93XdwZ7SEyRybKEdOekDzlNd7jtVzAFCM4K6GzZkzR5mZmWrVqpWaN29e4f2tWrVSp06dtGrVKq1fv14//PCDzj///KNQ6WF///23TCaTXnjhBZ133nkBjVm7dq2++OILLViwQBYL/xMGAAAAAAAAglW8em7PoS0ti7e3NMcmKv7iG7zuNUXWCUloJ0n2zD1yu90++8ZZElPKBnc+es9ZE1NkiU+m9xwABIDgroZ9+umnkiS73R7wmI4dO2rVqlWSpJUrVx714G7Lli3q3bt3wKGdy+XStGnTdNFFF6lDhw7VXB0AAAAAAABw7CrTe+7QlpZ+e89JstZv6jO4M5gtMtetL8eBvVWvyV4o58FMmWMTvK7FtOmsiKatWT0HACFCcFeD8vPztW/fPknS1q1btWrVKl144YUVjmvcuLHn+N9//622+nzJz89XamqqbrjB+4sBf959911t2bJFM2fOrMbKAAAAAAAAgGOHr9VzJR+uovyA5yleDeeSwWD0umaJT65acGcwyly3vqwJKXI7inzeEt36v5WfHwDgheCuBhUUFJR5PX369ICCu4iICM+xzWYLeV3lKSws1IABA9SmTZuA7i8oKNDs2bPVq1cvnXLKKdVcHQAAAAAAAHBs2PXSfbJn+O4dFwy3wyZHTrosdep7XbMmJKtg608VzlHce66455w1IVmW+JTibS5ZPQcARx3BXQ2Kj49XvXr1lJaWJkme1XcVOXDggOe4YcOG1VKbP/Hx8XrkkUcCvn/+/PnKyMjQ0KFDq7EqAAAAAAAAoOaUXT2XKvuhFXSO7P1qMmKuDEaT1xhLfMOQBHeSZE9P9RncWRJSDr/w0XvOkpAsa0IKvecAoBYhuKtBBoNBs2bN0qxZs5SVlaWBAwcGNO63337zHJ966qnVVV6VZWZm6uWXX1bPnj3VrFmzmi4HAAAAAAAAqDRfvedsh3711XuuhCNrvyzx3j98b0lIlraEpjZ75m6p+dle5yOan6Wka8fQew4AjiEEdzXsvPPO02uvvRbw/W63W5999pkkyWw2q0ePHtVVWpW98MILys3N1a233lqledauXauPP/5YGzZs0N69e1VYWKh69erpnHPOUd++fXX++eeHqGIAAAAAKN/69ev10Ucfaf369dqzZ4/y8/MVHR2thIQEtW7dWh07dlSPHj1ktVprutQKbdq0SR9//LF++OEH7dixQwcPHpTFYlGjRo3UqVMn3XTTTUpOTg5oru+//z7gH0b15/nnn9cll1xSpTkAIFTs2ftl27OtzOq5YHvPeebK2O0nuEvxcXeASq+eS0hRWIPmPm+z1KnvcyUeAKD2Irg7xqxcuVKpqcVL6Lt27ar4+Pgarsi3ffv26c0331S7du3UqlWrSs3hdDo1fvx4LVmyRFJxb7/4+Hi5XC6lpqYqNTVVH374ofr27auJEyfKZPLecgAAAAAAQmHjxo169NFH9ffff6tXr166++671aBBA9ntdu3Zs0erV6/WBx98oKVLl+qJJ57QpEmT1KVLl5ou26edO3dq6tSpWrlypdq1a6devXrp5JNPVnR0tPbu3auXX35Z8+bN01tvvaWpU6eqZ8+eR6Wu1q1bH5XnAIB0ePWcMSxCRkuY1/WDP32mrO/eC8mzbJmpitS5XuetAQR3xb3nSra0TD50zOo5ADieEdwdQ5xOp2bPni1JioyM1OjRo2u4Iv9eeOEFFRUV6aabbqr0HOPGjdOyZct0xx136KqrrtLJJ5/sufbjjz9q8uTJ+uuvv/T222+roKBAM2bMCEXpNcbhcJyQe4k7HI6AzgEAAADVIZCvR1977TX93//9n84++2x9+OGHql+/7MqF1q1bq1u3brr55ps1bNgw/fvvv7rrrrv08MMPq1+/ftVaf7C++eYbjRkzRhaLRc8884w6d+5c5vqpp56qU045Rd27d1d+fr7uu+8+WSwWXXzxxeXOW/I5i4yMrNRqw4SEBMXFxclutwc9FgDK43bY5cjaK3vmHjkyUot/zdwte+ZuuYvyldhntCJanOc1zlgnKWQ1FO3f6fvvt9hD/z8xGGWuW1/m+BRZ4hvKHJ8sS0KyzPHJMkbE+Px+kcMlycXfmcDxgu+RHnaivu/SDG63213TRSAw8+bN0/Tp0yVJM2bM0JVXXlnDFfm2b98+de3aVZGRkVq9erUsluB++ueSSy6R1WrVvn37NH/+fJ111lk+78vLy9N1112nrVu3SpL+7//+T717965q+dXOZrPp119/rekyAAAAAATgiy++0Msvv6wGDRpo2rRpCgvzXpVR2t69e/Xggw+qqKhIJpNJEyZM0CmnnHKUqi3fL7/8opkzZyo6OloPP/ywUlJ8r/TIzMzU8OHDPa9POukkTZ06tdy5//jjDz366KO64447dNFFF4W0bgCokNstgy1PprwMGfMyZcrL8Bwb87NkkP9vf+a37Kyikzt4nTdlpSp27cKQlGePa6zc9j5+uN3tljEvQ67IOMnITlIAUJ42bdocE9vRhwIr7o4Rv/32m5588klJ0tixY2ttaCdJL7/8smw2m6699tqgQ7sS27dv12OPPeY3tJOkqKgoTZw40bOqb9asWbriiivYMhMAAABASGRlZemNN96QJHXv3r3C0E6SGjRooEsuuUSffPKJnE6n3nzzTY0bN666S63Qvn379Mwzz8jpdGrEiBF+QztJOnjwYJnXgbxvADiaDAXZCtv9myekM+ZlyOgoqtRcprxMn+ddUZVrT+M2GOSKiJMzKl6uqAQ5oxLkjPHTY85gkCs6sVLPAQAcvwjujgH79+/X8OHD5XA4NH78eN144401XZJf2dnZWrx4sSTpiiuuqNQcQ4YMUXp6uq655poK7z3//PPVqlUrbdq0Sbt379bq1av56U4AAAAAIfHtt9+qoKBAUnEgF6gOHTrok08+kST9+eefSk9PV2JizX5jdu7cucrPz9fZZ59dYR/ypk2b6oorrtAvv/yi2NhY3XDDDUepSgBQqdVzmXKbw+SM9d6y0mjLU8SWr0PyOFNehu8yLBFyWSNltOX7vO4yhxcHc9EJZUI6Vs8BAKqK4K6Wy8nJ0e233660tDT93//9n3r16lXTJZXr7bffVn5+vurUqaOzzz67UnME2xfv4osv1qZNmyRJ33//PcEdAAAAgJD47bffPMc7d+5U27ZtAxrXrFkzGY1GuVwuSdKmTZvUqVOnaqkxED/99JP++OMPSQr430v9+/dX//79q7MsACc6l0PGvAOHtrXMlLH09paOQklSUXIb5Z/pveuUMyohZGUY/QR3kuSMrid3YU5xIFcSzEXFyxmVILc1UvLRew4AgKoiuKvFDh48qJtvvlnbtm3TM888o0suuaSmSyqX2+3WokWLJEkXXHCBjEbjUXnu6aef7jn+888/j8ozq8Npp51W6a1Fj2UOh8PzTYQSp59+usxm/noCAABA9Svv69GS1XaStGzZMt1+++0Br5yLjY1VVlaWJCk8PFxnnnlmyGoOVknbBaPRqH79+ik6OjrkzygsLP4me+PGjWv0vQKoXdxut1z52bJn7JYjc7fsmXvkyCw+dmTvl9z+e89JUowKdYqfv1NS18TJlXegyjUa7QU6o8VJMkXEeNffprUMhqPz/S0AJza+R3qY3W4/pr/PHwon3u/6MSI7O1s333yztm7dqhdeeEEdOng3ya1tfvjhB+3cuVOSdO655x615zZq1MhzfOBA1b9gqylms/mEDO584XMBAACAmuTr69GcnBy98847Gj58eEBzlB5vMBhq7OvbHTt26Mcff5QkNW/eXHFxcdXynJJvKplMJr6WB05wbrdLacuelT09VfaMVLmKfG81GQhH5m6ZzWYZfKxssyYmqzCY4M5glCUuSZb4ZFkSUg59JMuakCJjZKzPZwBATTpRv0fqruCHOk4EBHe10IEDBzRkyBD9+++/eumll3TeeefVdEkB+eyzzzzHp5566lF7blRUlOc4P7/yXwwCAAAAQGlt2rTR5s2bPa9LVpVVxOl0elbbSVL9+vVDXVrAVqxY4Tk+5ZRTaqwOAMc+t9stZ1627JmpsmfslstWoLrtvVu6GAxGFWz/Vc6D/regDJSrME+u/ByZoup4XbMkpKhwx+9e543h0bIkFIdz1oRSIV1ckgymE+8b4ACAYw/BXS1TstKuJLQ755xzarqkgH399eGmwM2bNz9qzy3pGyFJkZGRR+25AAAAAI5v9957r3Jzc7VhwwY1atRIN9xwQ0DjNm/eLLvd7nndpk2b6iqxQt99953nuHHjxjVWB4Bjh9thl/3AXtkzUmXL2F0c1KWnyp65W67CPM99Bmu46px/pZ/VcCkqCEFwJ0m2jF2K8BHchTc6Vc6cDFbPAQCOOwR3tUhubq5uueUW/fPPP5o3b57OPvvsmi4pYP/8849nm0xJqlu3bqXmmTNnjl555RUlJSXpxRdfVL169SocU3qVXWxsbKWeCwAAAABHSkxM1NNPPx30uNKr3Jo1a3ZUf7DxSL/++qvn+Mh/X/32229699139eOPP2rfvn0KCwtTYmKizjjjDF166aXq1KlTlb75vW/fPi1btkzr1q3T9u3blZWVpcjISDVq1EhdunRRnz59VKeO9zfjAVS/4t5zObJl7JI9Y7fsGcWr6GwZqXJk7ZfcrornsBXKmXtA5ph4r2uW+GQVbN9Y5TqN4dFyFeT6vBbT5mLFtLm4ys8AAKC2IbirJWw2m+68805t2bJFc+fODSi0s9vtGjVqlJ544glFREQchSr9++mnnzzHYWFhldp7d/369XrqqackSRkZGXrnnXc0dOjQCsft27fPc8zWLwAAAABqksPh0Hvvved53b9//xqrZe/evcrOzva8LgnJDh48qIkTJ2rZsmVeY/bt26fff/9db7/9ttq3b6/HHnusTF/xQC1atEhTp05VUVFRmfNZWVnavXu3fvjhB82dO1ePPvqoOnfuHPT8ACov/fP5yt24sszqucqyZ6T6Du4SUgKfpHTvucQUWeJZPQcAOLER3NUCbrdbDzzwgNavX6/nnntO559/fkDj/vzzT61Zs6bGQztJ+vnnnz3HNptNDofD05w8UBs2bCjz+sh/4PmzdetWz/GZZ54Z1DMBAAAAIJTee+89paamSlJQ22tWh3///bfM66ioKGVmZmrgwIHasmWL2rRpowEDBqh9+/ZKSEhQenq6Pv30U/3vf/9TXl6evv/+ew0cOFCLFy9WQkJCwM9duHChHnvsMbVv315XX3212rZtq6SkJNlsNv3555+aN2+eVq1apfT0dA0fPlwzZ87UZZddFuq3D5wwyvSeO7SlpT1jtxJ73CFzrI//dt3ukIR2UnFwF9HMeztgX8EdvecAAAgMwV0t8Oyzz+qjjz7S448/rosuuijgcZ9++qmaNGlSjZUFrnR45na7lZ6ergYNGgQ1R+ltLi0Wi3r37h3QuJKeDVarVRdffHFQzwQAAACAUMnJydGsWbMkSSaTSY8//risVmuN1bN///4yr61Wq0aNGqWtW7fqwQcf1KBBg8qsZElOTtbNN9+szp0768Ybb1RGRoZSU1M1ZswYvfzyywE987vvvtMnn3yiyZMn6/rrry9zLTIyUh06dNAFF1ygadOmaeHChXI4HHrggQd0+umn15p/3wK1lVfvuYzU4o8jes+VsKXv8hncWROSQ1aTLWO3z/PW+k1Vp30ves8BAFAJBHc17Ouvv9b//vc/DRs2TH369Al4XGpqqt566y3997//9Xl99+7dmjhxotatW6dGjRrpwQcfVMeOHUNVtpfS/e2k4u1hgtWxY0cZjUa5XC5dfvnlatasWYVj9uzZo3Xr1kmSevbsWeneegAAAABQVVOnTlV6erok6eGHH1a7du1qtJ6srKwyr5ctW6a1a9dq4sSJ5a4EPOmkk/TUU09p4MCBkqTVq1dr9erV6tSpU4XP/PDDDzV8+HCv0K40g8GgMWPGaN26dfrjjz9UUFCgKVOmaO7cuYG9MeA45m/1XDC950rYM1Klk9t6nQ9qG0s/ilfPpchcp57P6+boukroOqjKzwEA4EREcFeD0tLSNHbsWF1wwQUaMWJEwOM2bNigsWPHKi8vz+9PJI4dO1Y//PCDJGnz5s2688479cknn6hhw4Yhqf1IpfsmVFajRo3Ur18/vfHGG4qMjAxozOzZs+VwOBQTE6P77ruvyjUAAAAAQGW8++67Wrp0qaTif4/deOONNVuQpPz8/DKvP/zwQ3Xv3j2g7Tvbt2+vbt266fPPP5ckvfLKK+UGdyWraE455RQNGzaswvnNZrOGDh3q+bfwN998o3/++SegH+AEjmcHf/lS6R89F5K57BmpPs8HHNz56D1nTUyRJT6Z1XMAAFQjgrsa9Mwzz+jAgQP6+++/1bNnz4DG5OTkKCMjw/PaX3D322+/lXldUFCgX3/9tdqCO7fbXea1yWSq1DwPPPCA9uzZo/fff19XXXWV2rb1/smwEgsWLNB7770nq9WqJ554QvXr16/UMwEAAACgKn788UeNHz9eBoNB48aNqxWhnSTZ7fYyry0Wix566KGAx19zzTWe4G716tXKzMxUfHy8z3vPP/98rV+/Xna7PeB+5507d1ZkZKTy8/Pldrv18ccf68477wy4PqC2K2/1XJ12l6tOO+/vBVnig2s7Uh57pu9tLE3RcTJYw+W2FUo6vHqueEtLes8BAFDTCO5qUMkWKmlpaUpLS6vUHP6Cu9atW3tW3EnF/0Br1apVpZ4RiJNPPll//vmnJMloNCouLq5S84SFhenZZ5/Vyy+/rMGDB6t9+/bq0qWLTj/9dCUmJsrhcGjLli166623tHLlSjVp0kSTJ09Whw4dQvl2AAAAACAgf/31l+666y65XC5NmzYtqBYI1e3IAO2aa64Jqhd5u3btZDAYisMHp1MbNmxQly5d/N4fHR0dVH1Wq1Xt2rXT119/LUnauHFjUOOB2qK499yeQ6Fcqd5zGalyFeX7HGNL3+nzvCW+6ttYHn6G7xV3BoNB9a8cIVNULKvnAACohQjujnH+grvp06d7etwlJSXpvvvuq9ZG3w8//LAeeughZWRkaMCAAQoPD6/0XCaTSbfffruuvfZavffee/r44481a9YsZWdnKzw8XPHx8TrjjDM0ffp09ezZs0abvQMAAAA4cW3dulVDhgxRbm6uZs6cqR49etR0SWUc2YKgvNDNl+joaCUnJys1tfib/5s2bQp6joo0b97cE9xt2bIlpHMDoeZ22FW4e3OVe89J/rexNEXVkTEs0m/gV5Eyq+cSG8ntdvsM5aJata/U/AAAoPoR3NWg554LzZ7lviQnJ+vFF1+stvmP1K5dO88WKqESHx+vW265RbfccktI5wUAAACAqtq2bZsGDRqknJwczZ49W127dq3pkrxERUWVeV1UVBT0HHXr1vUEdwcOHAhJXaUlJSV5jkPROx2oKrfDLmdhrszR3jsJuWwF2vPq+JA8x57hextLg8EgS0KKinaXE2SX9J47FNDRew4AgOMLwR0AAAAAAEHYvn27Bg4cqOzsbD3zzDPq3LlzTZfkU926dcu8LigoCHqO0rupVCb4q0jpVYGVqQ+oDF+952yHfnVk7Vd4o1OVPPBRr3GmyFgZI2LkKjhY5RqcuQfkKsqXMSzS61pJcFe299yhkI7ecwAAHPcI7gAAAAAACNCuXbs0ePBgZWVl1erQTirehrK0kj7rwbDZbJ7jYHvYBcLpdHqOj9zaE6iqsr3nUmUv1X+uvK0o7Zm+V8NJkiUhWUW7/gpJfbaM3QpPPsXrfPzF/ZXQZSCr5wAAOEER3AEAAAAAEIC0tDQNGTJEGRkZmjVrVq0O7SSpcePGCg8PV2FhoaTi7T2DVXqVXWxsrM978vPzNX36dK1bt05t27bVpEmTAu5Fnp9/ODyJiYkJuj6gtNzfv1HRnq1lVs8F23tOkpx52XIW5MoU4R1WWxNSKhXc+Vw9F9fA573m2ISg5wcAAMcPgjsAAAAAACqQm5urW2+9Vbt27dKMGTMC7mmXnp6u7du3q127dtVcoTej0ajTTjtNGzZskCRt2VJOzyw/SvedS0lJ8XnP448/rkWLFkmStm7dqvbt2+uqq64KaP7MzEzPcdOmTYOuDycOz+q5zL2KbNnO50q0nJ8+U+G/f4TkefbM3TKltPQ6b0nw/d+BJHrPAQCAkCC4AwAAAACgHA6HQyNGjNCmTZs0adIkXX755QGP/eCDD/TZZ5/prbfeqsYK/evatasnuNu4caMOHjwY8Mo2m82m/fv3e16fffbZPu9bvnx5mdc7d+4MuL7SqwBbt24d8Dgcnzy95w5tZ3lk77mS1XNN75knU1Qdr/GW+OTQBXcZqQr3E9zRew4AAFQngjsAAAAAAMoxZcoUffvttxo+fLj69esX1Ng1a9aoSZMm1VRZxbp3764nnnhCUnEA+c0336hnz54Bjf3333/ldrslSQ0bNlTjxo193udwOMq8PvfccwOa3+1269dff/W87tixY0DjcOyrbO+5EvbM3b6Du8RyVsMFyZ6R6vN8ZItz1fTeBayeAwAA1YbgDgAAAAAAP5YsWaK33npLV111le6+++6gxu7Zs0dr1qzRsGHD/N7z8ccf65lnnlFaWpr+85//aMKECYqPj69q2R6NGzdWt27d9Pnnn0uSFixYEHBwt3btWs9x//79/d7XokULz6q+//73vwEHcL/++qvS0tIkSY0aNdIFF1wQ0Dgcm3I3rdHBn7+sUu+5EraMVIU3Ps3rvDU++OCu7Oq5QyvnDq2e88VgMAb9DAAAgGAQ3AEAAAAA4MPmzZs1ZcoUnXXWWZoyZUpQY10ulyZNmiS73a5mzZr5vOenn37SfffdJ5erOMD49NNPlZGRoVdffTWkq3lGjx6tr776Sna7Xb/88ou+/PJLXXLJJRWOK9kCMy4uTtdff73f+6655hpPcHfxxRcHXNeCBQs8x7fddhsrmI5RR66eizq1vayJjbzuc+ZkqGDrTyF5pr/VcJaEZN8DSnrPxSfLkpgiS/zhbS7pPQcAAGobgjsAAAAAAI7gcDh0//33y2w2a9asWbJarQGP3bZtm/7v//5PK1eulCS/W2WuWLHCE9qVWLdunf755x+ddNJJlS/+CM2aNdPo0aM1bdo0SdIjjzyipUuXqn79+n7HrF69Wj/88IOMRqNmzJihOnW8tyUscc0112jZsmVau3at/vnnn4Bq+v777/XJJ59IKu6dV14wiJrn1XsuI1W2jN0+V8+ZImJ8BneWhFBuY7nb53lz3foKb3yazHEN6D0HAACOWQR3AAAAAAAcYdmyZdq0aZMsFouuuuqqgMfZbDbl55ft0eVvxZ0/R4Z5oTB48GClp6dr7ty5ysjI0KBBgzR37lw1auQdsGzcuFH33nuvLBaLJk+erE6dOpU7t9Fo1LPPPqvhw4frrbfeUsuWLXXdddf5XcX0008/aeTIkXK5XGrZsqWeffZZVjzVElXtPSeVtxouRMGdwSi30+7nkknJAx8NzXMAAABqCMEdAAAAAABHyMrKkiTZ7XbPcWXEx8crJibG57WuXbtq/vz5ZYK6li1bBh30BWr06NFq27atJk2apG3btqlXr17q16+fOnTooLp162rv3r368ssv9f7776tZs2aaNGmS2rVrF9Dc0dHRevnll7Vw4UI9/vjjmjNnji655BKdc845ql+/vqxWq/bs2aPPP/9cn3zyiVwul66++mqNGTNGcXFx1fJ+Ebiivdu1790ZVe49J0k2f6vh6iTKYLbK7bAFNE95vedYPQcAAI5nBHcAAAAAAFSTpk2b+r12zjnnaObMmXr66ae1b98+tWvXTuPHj5fJZKq2erp166ZOnTpp5cqVWr58ub7++mstWbJEBQUFSkxM1BlnnKHp06erR48eMpuD+5aByWTSzTffrL59++rDDz/UN998oxUrVigzM1MGg0Hx8fFKTk7WnXfeqUsvvVQtWrSopncJ6fDqudIr56xJJ6lu+yu97jVFxspxYG9InutvxZ3BYJQlvqFs+3eUOnmo91zJtpbxKbImpsgSn0zvOQAAcMIiuAMAAAAA4AiDBw/W4MGDq/05PXv2VM+ePav9OaVFRERU63Ojo6N1ww036IYbbqiW+XFYce+5rDJbWtoOHTuy07xWz0XkZfkO7mLiZbCEy20vrHJNjuw0uR12Gczeq+Jiz7lUrqICes8BAACUg+AOAAAAAACgFvNePRd87zlJsvvZxtJgMBSvhtu3vfJFlqyei0+WqyhfJnMdr1tiz72s8vMDAACcIAjuAAAAAAAAaim3260ds2+VqzC3ynM5stPlshfJaAnzumZJTAkouKP3HAAAQPUiuAMAAAAAADhKSlbP2TN2e7a1tGekymUvUuPbn/K632AwyBLXQEV7/g7F02XP3KOwpGZeV6zxKcrzPPTw6jlLYoos8SVBXQq95wAAAKoZwR0AAAAAAEAIFfeey/aEcvbM3bKlF//qyNrv1XuuhMtWIKM1wuu8JSE5RMGdZM9I9RncRZ3WQdakpqyeAwAAqGEEdwAAAAAAAJVkP7BXRfu2V6n3nGeujD0Ka3iy13lLQkrlCzxy9VxcQ5+3Wes1lrVe48o/BwAAACFBcAcAAAAAAOBHyeo5U0SUz1VoB1YvUe7GlSF5lj0jtdLBHb3nAAAAjg8EdwAAAAAA4ITnr/dcyeq55MGPKzylhdc4a0JyyGqwZaT6PO95ho/ec9bEFFnik+k9BwAAcJwguAMAAAAAACcET++5zFTZD/WcKw7qUsvtPSdJ9sxUn8Fdlbax9HrGbp/nLQkpanTHbFbPAQAAnAAI7gAAAAAAwHHJlrFbeZvWeq2eqwx7hv9QrVJKVs8d2t7SEp/ic5tMSTKYzLImNqrccwAAAHBMIbgDAAAAAADHnNKr50xRdWX1EaDZM1J14KvXQ/I8u59tLC1xSZLB6He1Xtnec4dCOnrPAQAAwA+COwAAAAAAUGuV7T2XKnup/nMlq+fqdLhKCZfc5DU2lNtY2vysuDOYLLIkJEsuZ5nVc/SeAwAAQGUQ3AEAAAAAgBrlq/ec7dCvFfWek8pZDVe3vmQ0SS5nlWt0ZO6R2+WUwWjyutbo9qdkMBir/AwAAACA4A4AAAAAABx1rqJ8pS9/ucq95yT//ecMJrMscQ38Bnu+Bx3Rey4hpXiLy/jk4i0xfQ0htAMAAECIENwBAAAAAICQ8ayeOxTIyWhU7Fldve4zWMKU+8dqyemo8jPtB/bJ7XTIYPL+NoclIdlncEfvOQAAANRGBHcAAAAAACBogfSekyRLfEPfwZ3RJEt8Q9nTdla9GJdD9qz9siYke10Kb3K65HbTew4AAADHBII7AAAAAADg05Gr54LtPSeVrIaz+1zFZk1ICUlwZwyPljMvS/IR3NVt30tq36vKzwAAAACOBoI7AAAAAMAJy2AwKDExUWFhYTIYDHK73TIa6VcmSfs/eFr5m9dVqfecJMntkv3APlkTG3ldssR7B21+ldN7jtVzAAAAOF4Q3AEAAAAATlhms1lNmzat6TKOiuLVc1lltrS0Z+5R/WtGy2i2et/vsFc9tDvEnpHqO7hLTPE6d7j3XIqsCcn0ngMAAMAJheAOAAAAAIDjSEnvucN953z3nivhyNwra/0mXuctCd6hWmXZM1J9ng9LbqE6F/Ri9RwAAABwCMEdAAAAAOCE5XLYZNv3j2xpO+W2F8pgCZe1XmNZk5r5XIVWW3j1nstIlS1jd1C950rYMlJ9BnfWEAR3xohoWeJTZIyM9XndmpCihC6DqvwcAAAA4HhBcAcAAAAAOOEU7t6inHUfK+/PNXI77V7XDSaLok7roNh2PRWe3KIGKixf1nfv6cBXr4dkLn+r4SwJAfafMxhliWtweEvLhOTi1XMJKTL5CewAAAAA+EZwBwAAAAA4YbiKCpTxxUId3PB5ufe5nXbl/rZKub+tUszZ3ZTQZZCMYRHVUpOv3nMlq+fiO9+o6NM6eo2xxCWF7PmBBnclq+cO954rDunoPQcAAACEDsEdAAAAAOCE4DiYoT2vT/IbVPlzcMPnKvz3DzW8cYLMMQmVfn6wveckyZ62SzrN+3xo+8/t9nneaI1Qvd4jZalTj9VzAAAAwFFCcAcAAAAAOO65igoqFdqVsGekas8bk5Uy+PEKV9657EUq2v13lXvPSZIt089quPiGkgyS3EHNV8IYHu1ZMRfW4CS/98W0vrBS8wMAAACoHII7AAAAAMBxL+OLhZUO7UrY03cp48tXVK/HHeXe58japz2vja/Ssw4/03fNRkuYzHUS5chO8z/YYJQlLunwlpbxKbImpsgSnyxjZKwMBkNIagQAAAAQOgR3AAAAAIDjWuHuLRX2tAvUwZ8+U0zbSxSe3MLvPZa4hpLBGPTqOl/smXvkdrt9hmyWhBQ5stN89J471H+O3nMAAADAMYfgDgAAAABwXMtZ93GI5/tE4b39B3cGs0XmOvXkyNpX5We57YVyHsyUOda7t15ij9tltEbQew4AAAA4jhDcAQAAAACOWy6HTXl/rgnpnHl/fifX5UNlNFv93mNJSKlUcFe695z10K/G8Ejfz6ibFPT8AAAAAGo3gjsAAAAAwDHJ7XTIkZspZ06GHDnpcmSny5GTLku9xqpz7mWSJNu+f+R22kP8XLts+3eUu12mNSFZBVt/8n3RYJQlrsGhLS2TD21xSe85AAAAAAR3AAAAAIBayO12y5WfI0d2mhw5GXLklPya7vlw5mb57CMX33mA59iWtrNa6rPt/7f8PncJKcW95xJSZIkv6T1XvIKO3nMAAAAA/CG4AwAAAAAcdW632+fKssyVryv3z+/kzMmo/Eo50+F/6rrthZUtsVxue1G512PO6qLYcy6tlmcDAAAAOH4R3AEAAAAAQsrlsB3evjIn/fBKuex0OQ4Wv2506wyfPdpcRflyHNhbtQKcDs+hwRJetbn8MFjCyr9uNFXLcwEAAAAc3wjuAAAAAAABc7uccuZmeW9dmV0cyDkPpsuZl13hPI6cdJ/BnTk2oco12rP3e46t9RpXeT5frPWbVMu8AAAAAE5sBHcAAAAAAEmH+soVHJTBEiajjxVlWd+9p8yv3vDZVy5YjpwMn+dNsYlVnrtoz1bPsTWpmQwmS+W33fTBYLLIWr9pyOYDAAAAgBIEdwAAAABwgnAVFZTavvLwNpbOUsduh01J145V1Knne403hkWGJLSTJEd2us/z5koGdwZrhMx1EmWOSZS5bj25nQ4ZTGYZzVZFndZBub+tqkq5ZUSd1lFGszVk8wEAAABACYI7AAAAADgOuJ32Q1tXZpTdxjI7Xc5DfeVchXkBzeXI8ROq1an6argSTn/P8BXcmcwyxybKHJtw6NfEUq/ryRybIGN4lN9nxbbrGdLgLrZdj5DNBQAAAAClEdwBAAAAQC3ndjnlzMuWIyddpqi6stSt73VP3l8/aP97T4bkeX6DuxBsY1nhM2LildBtiCecM8UmyhQVK4PBWOlnhSe3UMzZ3XRww+eVnqNEzDmXKjy5RZXnAQAAAABfCO4AAAAAoAYV95XL9drC0lmyYi4nXY6DmZLLKUmKu7Cf4v57ndc8RyNUq0z/OWNEzBEr5BJlrpMoS0KKz/sNJrPqnH9F0M+pSEKXQSr89w/ZM1IrPYclsZESLhkYwqoAAAAAoCyCOwAAAACoZi5bgQp3bfZsYek8osec214U8FxHZzVchs/zxrBIGawRctsKJEkGS3hxX7nYhOLecnVKVskd3tLSaAkLWV1VYQyLUMMbJ2jPG5NlT98V9HhLYiM17D9exrCIaqgOAAAAAIoR3AEAAABAJbmdDjkOZnoCOXNUXUWcdKbXfY6cDO19c3JInukvVDNF15UMRsntCsEzfIeDBoNBDfo+IGN4dHEoFx4lg8FQ5ecdLeaYBKUMflwZXywMatvMmHMuVcIlAwntAAAAAFQ7gjsAAAAA8MHtdhX3lctOl+Pgoa0rs4sDOs92lrlZktyeMVGtOvgM7syxCSGry5GT5vO8wWiSOSbeb+h2xN0yRdcts4Wl6dAWluaYxHJX70U0bV3JymsHY1iE6vUcqpizuihn3SfK+/M7uZ12r/sMJouiTuuo2HY96GkHAAAA4KghuAMAAABwQnM7HTr484pSgVzGoRV0mZLLEdRc/kIzozVCxvBouQpzq1yvvxV3UnEPOkdOumdFXElPOU8oV7KFZUy8DCZLlWs5loUnt1B47xZyXT5Utv07ZNv/r9z2IhksYbLWbyJr/aYymq01XSYAAACAEwzBHQAAAIDjjste5AngnIcCOYM1XHXb9/K+2WhU+ufzJWdwIZ0v5a12M8cmyBaC4E4up1xFBT63bUy6erSMYeEyWtnSMVBGs7U4xGNVHQAAAIBagOAOAAAAwDHF7XLKeTDTs12lw8cWlq6Cg17jLPHJPoM7g8Eoc0yCHFn7qlybMzdLbqfd52o2c2yibPt3lD/Boe0uS7awNJWskCv1YYyI9ttXzhwTV+X3AAAAAACoOQR3AI4Z69ev10cffaT169drz549ys/PV3R0tBISEtS6dWt17NhRPXr0kNVae7Y0+v777zVw4MAqzfH888/rkksuCfj+TZs26f3339e6deu0c+dO5ebmKjo6WnXr1tXpp5+u9u3b68orr1RUVFSV6gIA4Gg58M1i2dL+LdtXzu0Keh5HTrrcbrfP0MscmxiS4E5yy3EwU5a6Sd7PqFNPpqi63oFcnUO/xiTIFF1XBqMpBHUgUA6HQ6mpqbJarTIajXK5XKpfv75MJn4fAAAAABx9BHcAar2NGzfq0Ucf1d9//61evXrp7rvvVoMGDWS327Vnzx6tXr1aH3zwgZYuXaonnnhCkyZNUpcuXWq67JBp3bp1QPdt375dU6dO1ffff6+ePXvq5ptvVqNGjSRJ+/bt0/fff6933nlHH3/8sWbOnKn7779fffv2rc7SAQDw4irMK7MyrmTFnKsoTw2ue8DnmLzNP8i2d1uVn+122OQqOChTZKzXNXOdxCrPbwyLlLlOoty2Ip/XE7rfqsTLbqvycxBabrdb6elltzhNTEwkuAMAAABQIwjuANRqr7zyiqZNm6ZzzjlHn3zyiZKSyv70+tlnn62ePXvq9ttv1+23364dO3borrvu0vjx49W/f/8aqtpbZGRkpVYCJiYmqn79+hXet3z5ct1///1q3Lix3n//fZ188sle93Tr1k1Dhw7VsGHDtHHjRo0bN07//vuvRo8eHXRdAAD44nLYPP3kvLawPJguR3a63LYC/+PtRTJawrzOm2MTQxLcScWr7nwGdzEJ5Y4zmK0yxybIFJsos4/tK82xiT57zpWZw8/2lgAAAAAAlCC4A1BrLVq0SFOnTlWzZs300ksvKSLC/zfDmjVrprlz56p3794qKCjQ1KlTdcYZZ6ht27ZHsWL/xo0bp6uvvrpa5l61apXuuecexcbGasGCBapXr57fexMTEzV37lxdccUVSktL09y5c9WmTRt17969WmoDABz/Dqx6W3lbfpQjJ02u/JwqzeU8mCFjfLLXeXNs1VfDlXDkZCisgfcPuFjrNVFYo1N9BnLm2AQZI2MJ3gAAAAAA1Y7gDkCtlJaWpunTp0uSBgwYUG5oV6Jp06a6/vrrtWDBAjkcDs2YMUOvvvpqdZdao4qKijRu3Di5XC716dOn3NCuRN26dXX77bdr6tSpkqQZM2aoS5cuMpv5XwIAnKjcbrdc+Tk+trA8vHIuZcjjMkfHeY21Z6fJtndrSOpw5GTI4jO4K381XEWMkbEyx9YrDuDCI33eE936v4pu/d8qPQcAAAAAgKriu7QAaqVly5YpLy9PUnEgF6jLL79cCxYskCT98MMP2r17t5KTvb8BeLz4+uuvtXfvXknBf55Kgrt///1XGzZsULt27aqlRgBAzXMVFfgN5JyHfnU7bOXO4cjJ8BncVTVUK/uMdJ/nzXX8/2CKwRpxaOvKeoe3sKxzeKWcKSbB5/abAAAAAADURgR3AGql7777znO8ZcsWXXjhhQGNa9WqlUwmk5xOpyTpxx9/VK9evaqlxtrgyM9ToBISEtSgQQNP6Pfjjz8S3AHAMcrtsEsGgwwm7y/ts9YsVda378hVlF/l5zhz0qXkU7zOm+uEcBvLbN/BnTWxsaLbXCRzzJHBXKKM4VEhez4AAAAAADWN4A5ArbRv3z7P8Zw5c9S7d28lJlb8jUGr1aqYmBhlZWVJkvbv319dJdYKpT9Pb7/9tvr166eWLVsGNDYhIcET3B3vnycAOFa5XU45c7PkOHhoC8vsw6vlSlbKOfOy1OCGcYo8+SzvCYymkIR2Ujmr4Srdf84gU3Rc8Sq5Q0FceKNTfd5prd9E9XuNqORzAAAAAAA4dhDcAaiV3G635zgnJ0dvvfWWhg8fHtBYi8XiOXa5XCGvrTYp/Xmy2+2aP3++pk2bFtBYq9XqOS5ZoQgAOHrcbrdcBble21c6S/eZO5gpuSr+O9rfSrWQroYLMrgzRkSX3b7y0IepJKiLjve5ShAAAAAAgBMZ/1IGUCu1adNGmzdv9rwuLCwMaJzT6fSstpOk+vXrh7q0WqVNmzZauXKl53WgnydJysjI8BwnJSWFtC4AgOSyFcqRky5jeLTM0XW9ruf++rXSPnwmJM/yG6rFHIXgrk49xf33+uJArmQby5gEGa3hIXs2AAAAAAAnCoI7ALXSvffeq9zcXG3YsEGNGjXSDTfcENC4zZs3y263e163adOmukqsFQYPHqxdu3bpu+++U3x8vG677baAxmVnZ2vnzp2e18f75wkAQs3ttMtxMPPQyrgMObJLtq5M95xzFeZKkuK7DFTdC3p7zWGOTQhZPY6cDJ/nK7WNpdFU3EvO00cuQaaYRIUlNfV9uyVMcRf2Df45AAAAAADAC8EdgFopMTFRTz/9dNDjVqxY4Tlu1qyZmjdvHsqyQmLfvn1atmyZ1q1bp+3btysrK0uRkZFq1KiRunTpoj59+qhOnToBzRUVFRXw1pilffHFF55tNmNiYtS+ffug5wCA45nLXiTb/n/lOJheKpQ7vIWlMzdLkruiaSSVt8Vk6II7Z06az/Om6DqS0Sy5HIfPRdWVuU7xFpamUltYFm9pWU+m6DoyGIwhqw0AAAAAAASO4A7AccPhcOi9997zvO7fv38NVuPbokWLNHXqVBUVFZU5n5WVpd27d+uHH37Q3Llz9eijj6pz587VVsfbb7/tOb766qsVFhZWbc8CgNrE7XbLVZjnCeBMkbEKT2npdZ89I1W7FzwQkmf66z9niqn+FXcGg1FJfUbJGBFzaAvLeBlMFp/3AgAAAACAmkdwB+C48d577yk1NVWSgtpe82hZuHChHnvsMbVv315XX3212rZtq6SkJNlsNv3555+aN2+eVq1apfT0dA0fPlwzZ87UZZddFvI61qxZow0bNkgqXm03dOjQkD8DAGqKy150eFXcoS0sHTnpxSvnDr122w/3A41ufaHP4M4cWy9kNfkL1YyWMBkjY+XKzwloHoPZenjryth6h1bIHeopV8d/vVGtLqhU3QAAAAAA4OgjuANwXMjJydGsWbMkSSaTSY8//risVmvNFlXKd999p08++USTJ0/W9ddfX+ZaZGSkOnTooAsuuEDTpk3TwoUL5XA49MADD+j0009XkyZNQlaHw+HQ1KlTPa/Hjx+v+Pj4kM0PAEeD22lX3qa1h0O5UltYugoOBjWX31AtIloGs1Vuh63K9ToP+l5xJxX3oLPl50gGo8wx8TLXqSdTSSBXZgvLRBkjYmQwGKpcDwAAAAAAqL0I7gAcF6ZOnar09OJvjD788MNq165dDVdU1ocffqjhw4d7hXalGQwGjRkzRuvWrdMff/yhgoICTZkyRXPnzg1ZHc8995y2bNkiSbrlllvUq1evkM0NAFXhdrvkzMs51Euu+MNgDVfsWV193G3Q/qWzFWiPufL46z9nMBhkjk2UPXN3lZ/hzMuR22GXwey9RWX9q+6R0RIuU3RdGYymKj8LAAAAAAAc2wjuABzz3n33XS1dulSSNHbsWN144401W1ApJSsjTjnlFA0bNqzC+81ms4YOHaoRI0ZIkr755hv9888/atasWZVrWbNmjZ5//nlJ0k033aT777+/ynMCQKCK+8plyJGTVmaFXOkVc3I6yoyx1m/qM7gzmMwyRdeVM/dAletyHMyQ2+2SwWD0umauE1hwZwyLlMmzMu6ILSxjE2WOSfAZ2kmSNSGlyu8BAAAAAAAcPwjuABzTfvzxR40fP14Gg0Hjxo2rVaGdJJ1//vlav3697Ha7zObA/srt3LmzIiMjlZ+fL7fbrY8//lh33nlnlerYtm2bRo4cKZfLpdtuu02jR4+u0nwAUJ6stR/InpFaJqhz2wqCnsffNpZS8RaToQju5HTImZctc3Sc1yVTTKIMJkvx1pV1DgVyMYcCujqHAzpjWGTV6wAAAAAAABDBHYBj2F9//aW77rpLLpdL06ZNU58+fWq6JJ+io6ODut9qtapdu3b6+uuvJUkbN26s0vP37t2r2267TdnZ2Ro5cmSVQ0AAJxa3yyln7oHilXGlesq57UWqd4Xvv08ObvxS9rSdVX62qzBXLluBjNYIr2vm2EQV7d5StQcYjDJFx8lVmCf5CO4SL7tV9a64k75yAAAAAADgqCG4A3BM2rp1q4YMGaLc3FzNnDlTPXr0qOmSQqp58+ae4K6kJ11lpKWladCgQdq1a5cefPBBDR48OEQVAjgeuN1uufJzyt3C0nkwU3K7vAcbjErseYfPvmzmmMSQBHdS8ao7a2Ij72fEJlQ41hgZW7xVpZ8tLE3RceX2lTNawqpUOwAAAAAAQLAI7gAcc7Zt26ZBgwYpJydHs2fPVteu3v2PjnVJSUme4+zs7ErNkZaWpoEDB2rHjh0aP358rdtGFEDNOPDtuyr4Z6OcJSvnHLbKTeR2yZmb5TNACyRUC5QjJ91ncGeJT5YlsdGhYC7xcEB3aAtLU0wCwRsAAAAAADjmENwBOKZs375dAwcOVHZ2tp555hl17ty5pkuqFpGRh/slFRQE3xcqIyNDgwYN0vbt2zVx4kT169cvlOUBqAXcDrscBzPKrI47vJVlupIHPipTeJTXONv+f1T4z68hqcGRk+4nuEus2sQms8wxCTLXSZTB5PvL1dhzuyv23O5Vew4AAAAAAEAtQ3AH4Jixa9cuDR48WFlZWcd1aCdJTqfTc1w6xAtEVlaWhgwZom3bthHaAcco96HVbGW2rTwUyjkPbWfpzMsqdw5nTrrP4K7KoVopjpx0Sad6P6NOec8wyBQTV2oLy8Mr5kwlv0bFymAwhqxOAAAAAACAYwXBHYBjQlpamoYMGaKMjAzNmjXrmAjt8vPzNX36dK1bt05t27bVpEmTZLVaAx5bIiYmJqhn3nbbbfrrr7/0/+zdd3iUVf7+8XtqeiGFXkURFUGUItgLfldcFVBRsVEUUVF3FUVXRWkqigKy7lpXxIYuikoRbKwKoqDyE1ARpEMiJCG9Tvv9kWSYITPJTDLJTOD9ui4unmeec87zmQBhMveccyZNmkRoB0Qgl8slSTIYDDWu5X3/sQrWfSJ7YY7kdNS4Hgx7frasLTvVeDz0wV1NlrQOij2uj/cylklpMiWmyhyf4ncWHQAAAAAAwNGOd00ARLyioiLdfPPN2rt3r2bOnBnwnnbZ2dnasWOH+vbt28gV+vbkk0/q3XfflSRt27ZN/fv315AhQwLqe/DgQfdxp04133j3xWaz6c4779SGDRs0YcKEgPe0Kyoq0vr163XWWWcF1B5A7ZwVZYeWriyoniVXfZ4le0GOWl/zsGI6nlizs8Mue/6BkNThL1RrSHBnsERX7SOXJnNCmqzpHX22i257rFoPf7De9wEAAAAAADhaEdwBiGh2u1133XWXNm/erMmTJ+uSSy4JuO/HH3+sTz/9VAsWLGjECv1bsWKF1/mePXsC7rt9+3b3cY8ePQLqM2nSJK1atUq33nqrbrnlloDvtXr1ak2dOlWrVq0KuA9wtHI57LIXHqwZyOVXBnL2wmw5S4vqHMdfqGZqgtlwfoM7o1nmxBTvWXKJqe7lK82JaTJGx/mcKQgAAAAAAIDQILgDENGmTp2q1atXa/z48UEv+7hmzRp17Oh7NkhTsNvtXuennXZaQP1cLpc2btzoPh84cGCdfV566SV98MEHGjp0qO65556g6lyzZk3As/qAI5nL5ZSjOF8Gs9Xn3nCFG1Yqa/HzklwNvpfDb6iW2uCxq9kLc3zfo0UrJfX7q1cgZ05Mkyk+iX3lAAAAAAAAwozgDkDEWrhwoRYsWKAhQ4bozjvvDKpvZmam1qxZo9tuu81vm2XLlmnu3LnKysrSGWecoUcffVQpKSkNLdvtuOOO0/r16yVJZ511VkABnCRt3LhRWVlZkqT27dvr9NNPr7X96tWrNWvWLJ1++umaNm1aUDWWlJTok08+0QUXXBBUP6C5cblccpaXyJ6fJYfHEpZ2zyUsCw9KDrtSLxqjpL6Da4xhiklUKEI7SbIX+AnVEtPrNZ4xOr5yCcvqEC4xTVFtuvpsa4qOU+qgUfW6DwAAAAAAABoXwR2AiLRlyxZNnTpVp5xyiqZOnRpUX6fTqcmTJ8tms6lz584+2/z000+699575XQ6JUnLly9XTk6O3njjjZAtA3fFFVe4g7tzzz034H7z5s1zH99yyy211nPgwAFNmDBB7dq103PPPSezObhv6zNnzlReXp7frxPQXLgcNtnysqqWrsyuscecvSBbroqygMbyN1PNFMrZcPlZPh83J6RIMsgzIDSYrZWBXFKaTAlph/aY81jO0miNCVltAAAAAAAACB+COwARx26367777pPZbNbs2bNltVoD7rt9+3Y99dRTWrlypST5XSrz888/d4d21datW6edO3eqS5cu9S/ewxVXXKElS5bou+++086dOwPq8/333+uTTz6RJPXu3VtXX311re0ffvhh5efn6+WXX1ZSUlLAtWVmZuqf//ynFi5cKMn/1wmIBC6nQ47Cg7IX5MgYHStres2/r+WZ25Tx+kMhuZ/fUC2pfrPhfN7Dz4w7g8mstEvGyRSbVDWDLl3GmHj2lQMAAAAAADhKENwBiDhLly7V5s2bZbFYNGTIkID7VVRUqKSkxOuxYGeSHR7mNYTRaNTzzz+v8ePHa8GCBerWrZuuuuoqv2/A//TTT7r77rvldDrVrVs3Pf/887W+Wb9u3Tp99dVXMplMGjNmTMB12e12FRUVeT3GjDuEi8vlkrOkQPb8rMoZcoXZsud7L2HpKMqTXJX/NhNOuVDpl9RcAre+S0z64i9UM0bFymCNDnjmniSZ4pJlTkw9bD+5VFmSW/ntk3jKhUHXDAAAAAAAgCMDwR2AiFNQUCBJstlsysvLq/c4KSkpSkhI8Hntwgsv1GuvveYV1HXr1i3kAVZ8fLxeffVVvf7663ryySf1wgsv6Pzzz9epp56qli1bymq1KjMzU5999pk++eQTOZ1ODRs2TPfff79atGhR69j5+fmSJIfD0aCvk8SMOzQul92m0p0bfS5h6SjIkcthC3gsf6GaKT5ZMhjdAV9DOAqyfT5uMBhkTkyTLXuvpMog7/BAzmsJy4RUGcyWBtcDAAAAAACAowfBHYAjVqdOnfxeO/XUU/XMM8/oueee0/79+9W3b19NmjRJJpMp5HWYTCaNHj1aw4cP1+LFi/XNN9/o888/18GDB2UwGJSSkqK2bdvq9ttv10UXXaTjjjsu5DXUJj09XbGxsU16TxwZnPYKOTxCOIM1WvHdB9Ro53La9ee700NyT3uhn1DNaJIpIcVv6BbcPQ7K5XTIYKz5/aDlpXfKYKncc84Yxb8bAAAAAAAAhBbBHYCIc8MNN2j06NGNfp/Bgwdr8ODBjX6favHx8br22mt17bXXhmS8Cy+8UL///ntIxgIO53I65CjKk70g69AMOY8lLB2F2XIU53v1iWp7nM/gzmiNkTE6Ts6y4gbXZc/3H8yZE9MCC+4MRpkSUqr2kDtsxlxiusyJqZWz93yIantsfUsHAAAAAAAA6kRwBwDAUa7gp09ly/3TaxlLR+HBoJed9LeMpVQZqlWEILhzVZTKWVYsY3Scj3ukqlySMTaxZiCXlO4O6kzxLXzOpgMAAAAAAADCjeAOAIAjjLO81GM/ucpfLoddqeff4LN93poPZc/b3+D7Oopy5XLYZDDV3NfNnJimigO7GnwPgzVGjpJ8n8Fd2l9uUfpf75DREtXg+wAAAAAAAADhQHAHAEAz4rLbZC/MqZoZ572MpaOwcsacryUpDWarUs67XgaDocY1c2JaSII7ySV7Ya4syS1rXDElptbd3WT2WLLS9xKWvgI7d/eYhIYUDwAAAAAAAIQdwR0AABEs7/vFKtvzmxzVS1gW59VrHJe9Qs7SIplia4Zb5kBCtQDZC7J9BneW5FZV+8r5DuRMiWkyxSXK4GdvOQAAAAAAAOBoQHAHAEATcLlccpYW1VjCsjqQaz1ikoxma41+Zbt/VcmWtSGpwV6Q7Se4S2vw2MaYhMpx/OyLlzxgiJIHDGnwfQAAAAAAAIAjGcEdAAAh4KwoqwrjDi1h6fAK6XLkspX77e8oyJExpU2Nx0MRqlWzF2QrqnWXoO9hsETLnFQ1Qy4hreo4TSbPJSzZVw4AAAAAAABoMII7AADqKX/tEhX+vFL2wmw5S4saNJa9IFsWX8FdUmiDO18sae0U3fFEryUsTR5LWhqj43zujQcAAAAAAAAgtAjuAABHNZfLKUdRfuWsuMKqpSvzs6pmzlXOlmt91QOKantsjb6O0iJVHNgZkjr8hWoNm3FnkCk++VAgl5Tus1VMpx6KuaFHA+4DAAAAAAAAIBQI7gAARyyXyyVnWbHHXnLegVzlr4OS017rOPaCbJ/BXWiXsczx+bg5MdVvH2N0fOXylYnVS1emHVrSMjFN5oQUGUyWkNUIAAAAAAAAoHER3AEAmi1n1Z5xvvZXK9ywUtkrXpGroqzB9/E/G85/qBb0PfKzfN8jubXie57nMWvu0HKWRmtMyO4PAAAAAAAAIPwI7gAAEcnldMhReNBjZlzNJSydpYVKu+Q2JZ5yYY3+Bmt0SEI7qZbZcH6WnqyTwShzQorHDLk0Rbfv7vse8clqeen4+t0HAAAAAAAAQLNCcAcAaHIul0uO4nw5qgM5H0tYOoryJJezzrH8LzFZz1DN5z38zIbzM+POFJd0aOnKxFSZE9O9l7SMT5bBaApZfQAAAAAAAACODAR3AICQq9xXLkcGa5Qsya1qXC/btUmZbz0WknvZ85tgGUs/4aDRGqOU82+QKS65MphLSpcpIUVGszVk9wYAAAAAAABw9CC4AwAExWmvkMNrdpzHEpaF2bLnZ8tVUSpJSuwzWGn/N6bGGKEM1RyFvoM7U1ySZDRLTnvAYxlMFpmqZ8YlpcmcUDljzpLa1m+f5AFDgi0ZAAAAAAAAAHwiuAMAeHE5bCrP3HZo6cp8j4CuIEvOkoKAx7IX+AnVEkI5G873PQwGo8yJqbLn7a96wChTfItDoZzH0pXVv4yxiTIYDCGrDQAAAAAAAACCQXAHIKwMBoPS0tIUFRUlg8Egl8slo9EY7rKOSC6XS86SAncgZ7BEKfaYXjXaOctLlfH6QyG5p98lJi1RMsYmBhUC+r1HfrZcLpfPwC198DgZzFaZE1NlSkhhXzkAAAAAAAAAEY3gDkBYmc1mderUKdxlHBGc5aUey1dmey1l6aj63WWvcLeP7nSSz+DOGJMgg9nq1ba+7AVZfq+ZE9NUEWBwZ7BG15gdZ/ZY0tKfmC49g64ZAAAAAAAAAMKF4A4AmpnCTV9X7ilXtYSlo2pfOWd5SVDj2PP9LTFpkDkxTbaDGQ2u1VlSIKe9QkaztcY1c2KqKv7cLpnMMid47ivncZyYJlNimoxRsSxhCQAAAAAAAOCIR3AHIKyc9gpV7N+piqw9ctnKZLBEy5reQdZWnX2GPUcil9MhR1Ge7IWH9pST06HkgUN9tj/4xXw5inIbfF97YY5cLqcMhppLk5oTU0MS3EkGOQoPytiidY0raReNkS6+Vaa4JJ81AAAAAAAAAMDRhuAOQFiUZWxVwbplKv5tjVwOW43rBpNFcScMUGLfwYpue1wYKgwNl8slZ2lRjeUrHVX7zNkLsmUvPCg5HV79jNHxfoM7c2JaSII7OexyFBfIHJ9c45Ip0f/yk56MMQney1YmVs+SS62cMRefIoPJ93815qT0hlQPAAAAAAAAAEccgjsATcpZXqqcL15X4frPam3ncthUtOlrFW36Wgm9Byn1gptkjIppoirrr+DH5SrL2Fa5fGX1vnK28qDHcZYVyVlRKqO15nM2J6aqPGNrKMqVvSDbZ3BnTkyTwRLtP5BLrFzS0miNDkkdAAAAAAAAAACCOwBNyF6Yo8y3JsuWsy+ofoXrP1PZ7l/V5rpHZU5IbaTqanI5bLIXHnQHcPb8bDkKsmUvzFGrK++XwWiq0ad4yzqVbv9/Ibm/vSBH1rT2NR43BzgbrlZGk8wJqX5DxRZnXqkWZ1/NvnIAAAAAAAAA0IQI7gA0CWd5ab1Cu2q2nH3KfHuK2o18MiQz71wupxxF+YctX3lolpy9IFuOojxJLp/9HUV5MifWDBFDEqpVsRdk+wzuAlnG0hSXLHNSusyJqTJ5zJirnEGXLlN87fvK+VveEgAAAAAAAADQeHhnFkCTyPni9XqHdtVs2XuV8+V8pV98a7365//wiYp/+7YqnDsoOe31rsVekN0kwZ0vlpQ2srbs5LF8ZVUg517CMkUGkyVkdQAAAAAAAAAAmgbBHYBGV5axtc497QJV+NOnSuh1vqLbHidJqsjJUPGvq9yz5OwF2Wo1bIKs6R1q9LXnZ6ls968hqaMyVDu+xuO+wrxgGMxW98w4U0yCzzZxx/VR3HF9GnQfAAAAAAAAAEDkIbgD0OgK1i0L8XifKPryyuDOnJCi3NXvS45Ds+fs+Qd8BnehnQ2X4/Nxc1K6/04Go8wJKTInpcuUmOqxfGX1EpZpMsYksK8cAAAAAAAAABylCO4izO+//64PPvhAa9eu1d69e1VaWqq4uDi1bNlSvXr10qBBg3T22WeH/Y39888/X/v21W/Zw/nz56t///4BtS0sLNQ777yjzz77TH/88YdcLpfat2+vfv366brrrlPXrl3rVQOajtNeoeLf1oR0zOLfvpXzknEymq0yWqNlbdlJFZnb3Nf9hmoNnA3nyV6Q5fNxS4vWij2+v3svObNHQGeKT5bBaApZDQAAAAAAAACAIwvBXYTIyMjQ9OnTtWbNGo0YMUKPPPKIOnToIKfTqYyMDH3zzTd688039d///lcnnXSSZs2apU6dOoW77Ho54YQTAmr37bff6r777lN2draGDRumSZMmKSUlRRs3btScOXP0zjvv6G9/+5tuvbV++52haVTs3ymXwxbSMV0OmyoO7HIvlxnV+hjv4C7fd6hmTqxlNlwdjFGxh/aSS0xXdMcTfd8jKV2tr7y/3vcBAAAAAAAAABy9CO4iwM8//6xbb71VqampWrp0qdq0aeN1vVWrVurdu7eGDx+uUaNG6ZdfftHVV1+thQsXqn379mGqWkpOTlaLFi2C6pOenq7ExMQ6261cuVJ33nmnbDab7r33Xo0dO9Z9rV27djrnnHN03XXX6dlnn1VmZqYee+yxYMtHE6nI2tM44x7Y7Q7uzEktva7ZC4ObcWcwWSqXrkyqmiGXkCZz0mFLWEbFhvYJAAAAAAAAAABwGIK7MDt48KDGjRunvLw8vfXWWzVCO0+tW7fWrFmzNHToUOXm5ur+++/X22+/3YTVerv++ut15513hnzcXbt26Z577pHNZtPZZ5/tFdpVi4mJ0ezZs3XxxRfrnXfe0QknnKCrr7465LWg4Vy2skYat9x9bDBbvK7ZC7J99jHGJippwBCZE1K9lrA0xiaGfflZAAAAAAAAAACM4S7gaPfCCy/o4MGDOv744wPar6179+4688wzJUk//vij1q5d29glNrkpU6aopKRERqNR99/vf8nBjh076tJLL5UkPfHEE8rK8r08IsLLYIlupHGj3MfG6DjFduurxD6DlXL+DUruf7nvPgaDUs+/QUl9Byvu+P6KatNVprgkQjsAAAAAAAAAQEQguAuz5cuXS5JstsD3ABs4cKD7eOXKlSGvKZx++OEHrVq1SlLl8zzuuONqbT906FBJUmlpqf797383en0InjW9Q+OM27Kj+zix1/lqfdUDSvu/MUoeMESxx53WKPcEAAAAAAAAAKAxEdyFUUlJifbv3y9J2rZtm77++uuA+nXocCgI2b17d6PUFi4vv/yy+/jyy33PmvLUp08fJScnS5L++9//qqioqLFKQz1ZW3WWwWSpu2EQDCaLrC07hXRMAAAAAAAAAADCjeAujEpLS73OZ8yYEVC/mJgY93FFRUVIawqnwsJCrV692n1+1lln1dnHZDLplFNOkVT5tfjf//7XSNWhvoxmq+JOGBDSMeNOGCij2RrSMQEAAAAAAAAACDeCuzBKSUlRenq6+7x69l1dcnNz3cdt2rQJeV3hsnLlSveSoZ07d1aLFi0C6nfiiSe6jz///PNGqQ0Nk9h3cIjHuzik4wEAAAAAAAAAEAkI7sLIYDBo9uzZ6tu3r4477jjdf//9AfXbtGmT+/j4449vrPKa3Pr1693HPXr0CLif5z54v/zyS0hrQmhEtz1OCb0HhWSshFMvUnTb2vc+BAAAAAAAAACgOTKHu4CjXZ8+ffTmm28G3N7lcunTTz+VJJnNZl18cWTMPPruu++0bNkyrV+/Xn/++afKysqUnp6uU089VcOHD1e/fv3qHGPr1q3u43bt2gV875YtW7qP9+7dq7KyMkVHRwf3BNDoUi+4SWW7f5UtZ1+9x7CktVfq+TeGsCoAAAAAAAAAACIHM+6amZUrV2rfvsrg48ILL1RKSkpY63E4HHrooYd000036d1339WePXuUkJAgq9Wqffv2afHixbrhhhv0yCOPyOFw1DrWH3/84T5u27ZtwDV4BndOp1M7d+4M+nmg8RmjYtTmukdlSWtfr/6WtPZqM2KSjFExdTcGAAAAAAAAAKAZYsZdM+JwODRnzhxJUmxsrCZMmBDmiqRHHnlES5Ys0a233qohQ4bomGOOcV/74YcfNGXKFP3+++967733VFpaqpkzZ/ocx+l0eu3dl5SUFHAN8fHxXud5eXnBPYkIYbfbZTAYwl1GyBkMBplMJhkMBpkTUtVu5JPK+eJ1Fa7/LOAxEk69SKnn3+gO7VwulxwOh1wuV2OVDQAAgKOE3W4P6DEAAACgsfCa9JCj9Xl7IrhrRl5//XVt3rxZkjRlyhR16NAhrPUsXbpU+/fv1/z583XKKafUuN6nTx+98847uuqqq7Rt2zYtXrxYZ511li6//PIabUtKSrzOg1nqMioqqtaxmovffvst3CU0mtTUVHXq1EkGg0HGqBilDx6nhFMuUMG6T1T827dyOWw1+hhMFsWdMFCJfS/22tPO5XJp165dysnJacqnAAAAgKPIr7/+Gu4SAAAAcJTjNenRi+Cumdi0aZOeffZZSdLEiRN16aWXhrkiaceOHXr88cd9hnbV4uLi9Nhjj+mGG26QJM2ePVt//etfZTKZvNoVFxd7nQcT3B3e9vCxEH45OTlyOBzq1KmTzObKbzvRbY9T9OXHyXnJOFUc2KWKA7vlspXLYImStWVHWVt2ktFs9RrHbrdr165dzXZWJQAAAAAAAAAAtSG4awYOHDig8ePHy263a9KkSbruuuvCXZJGjRql7OxsXXHFFXW27devn7p3767NmzcrIyNDq1at0jnnnOPV5vAlIoNZAtHpdHqdG41s3RiJ8vLyVFRUpI4dO6pFixbux41ma2WI5zGrzpfc3Fzt3r2bqdIAAAAAAAAAgCMWwV2EKygo0NixY5WVlaWnnnpKl112WbhLkiT3DLpAnXvuue5lPr///vsawV1cXJzXeVlZWcBjl5eX1zoWIofdbtf27dsVExOj9PR0paSk1Jh96cnhcOjgwYPKyspSaWlpE1YKAAAAAAAAAEDTI7iLYIWFhRo9erS2b9+uuXPn6vzzzw93SfV24oknuo997eUWGxsrg8Hgnml3eBhXm4qKihpjNUcnnHCCLBZLuMtoUk6nUzabTfv375fVapXRaJTT6VRqaqqMRqNcLpeSk5OVnJwc7lIBAABwhLLb7TX2DznxxBPdS7wDAAAAjY3XpIfYbDafGcLR5Oj7U28m8vPzNXr0aG3btk0vvviiBgwYEO6SGqR9+/bu49zc3BrXDQaDkpOT3dfy8/MDHruwsNDrPCUlpZ5VhpfZbD7qgrtq2dnZXudpaWlH5X9KAAAAiAxH82tzAAAARIaj9TVpMNtoHanYDCwC5ebm6qabbtKOHTv0yiuvNPvQTvJevrKkpMRnm65du7qPMzMzAx57//797mOLxaJOnTrVo0IAAAAAAAAAAIDwIriLMNUz7Xbv3q1XXnlFffr0CXdJIeF0Ot3H/payPPbYY93HGRkZAY/tGdx17NjxqPwUAgAAAAAAAAAAaP4I7iJIUVGRxowZo507d+rVV1/VqaeeGu6SfHrhhRc0cOBADR06VFlZWQH18Zxll5iY6LNNz5493cebN28OuJ6tW7e6j3v16hVwPwAAAAAAAAAAgEhCcBchKioqdPvtt2vr1q168cUX1bt37zr72Gw2jR8/XqWlpU1QYaUff/xRs2bNUk5Ojn799Ve9//77AfXznBXnObPO03nnnSeTySRJ+uOPP1RUVBTQ2L/88ov7+IILLgioDwAAAAAAAAAAQKQhuIsALpdLDzzwgH788Uc999xz6tevX0D9fvvtN61Zs0YxMTGNXOEh69ev9zovLy8PqN+2bdvcx54z6zylpKS4n7vT6dR3331X57gVFRX6+eefJVUuwXnmmWcGVA8AAAAAAAAAAECkIbiLAM8//7yWLl2qadOm6Zxzzgm43/Lly9WxY8dGrKwmz2UuLRaLLr/88oD6ffvtt5Ikq9Wqc88912+70aNHu48//PDDgMYtLCyUJF133XWKjo4OqB4AAAAAAAAAAIBIQ3AXZl999ZX++c9/6rbbbtPQoUMD7rdv3z4tWLDAb3CXkZGhsWPHqnfv3rr00kvdwVlDDRw4UEZj5V+bSy65RJ07d66zT2ZmptatWydJGjx4sJKTk/22Pfvss9W/f39J0v/+9z/t2bOn1rGrl+qMj4/XzTffHMAzAAAAAAAAAAAAiEwEd2GUlZWliRMn6vTTT9ddd90VcL/169dr1KhRKi4u9hvcTZw4UV999ZVKSkq0ZcsW3X777crMzGxwze3bt9c111wjqXJpykDMmTNHdrtdCQkJuvfee+tsP2XKFCUlJclms+npp5/2227Tpk367LPPJEmPPvporYEgAAAAAAAAAABApDOHu4Cj2dy5c5Wbm6s//vhDgwcPDqhPQUGBcnJy3Of+grtNmzZ5nZeWlmrjxo1q06ZN/Quu8sADDygzM1MfffSRhgwZol69evltO2/ePC1atEhWq1VPP/20WrZsWef4nTt31pw5czR27FitWLFCb7zxhm644QavNnl5ebr33nvlcrk0cuRIXXbZZQ1+XgAAAAAAAAAAAOFEcBdG2dnZkipn3mVlZdVrDH/BXY8ePbR27Vr3ucViUffu3et1j8NFRUXp+eef16uvvqqRI0eqf//+uuCCC3TiiScqLS1NdrtdW7du1YIFC7Ry5Up17NhRU6ZM0YABAwK+x4ABA/TWW2/p7rvv1vTp07V161ZdffXVatGihf7f//t/evbZZ5WRkaH77ruPJTIBAAAAAAAAAMARgeCumfMX3M2YMUOPPfaY1q1bp1atWunee+/127Y+TCaTxo4dqyuvvFKLFi3SsmXLNHv2bOXn5ys6OlopKSk66aSTNGPGDA0ePFhWqzXoe/Ts2VNLly7VRx99pMWLF2vs2LEqLi5Wu3btdPbZZ+uGG25Qly5dQvacAAAAAAAAAAAAwsngcrlc4S4COJpUVFRo48aNNR4/+eST6xVwNnc2m00bNmzweqxnz56yWCxhqggAAABHE16PAgAAINx4TXoI759LxnAXAAAAAAAAAAAAAIDgDgAAAAAAAAAAAIgIBHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAAAAAEQAgjsAAAAAAAAAAAAgAhDcAQAAAAAAAAAAABGA4A4AAAAAAAAAAACIAAR3AAAAAAAAAAAAQAQguAMAAAAAAAAAAAAiAMEdAAAAAAAAAAAAEAEI7gAAAAAAAAAAAIAIQHAHAAAAAAAAAAAARACCOwAAAAAAAAAAACACENwBAAAAAAAAAAAAEYDgDgAAAAAAAAAAAIgABHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAAAAAEQAgjsAAAAAAAAAAAAgAhDcAQAAAAAAAAAAABGA4A4AAAAAAAAAAACIAAR3AAAAAAAAAAAAQAQguAMAAAAAAAAAAAAiAMEdAAAAAAAAAAAAEAEI7gAAAAAAAAAAAIAIQHAHAAAAAAAAAAAARACCOwAAAAAAAAAAACACENwBAAAAAAAAAAAAEYDgDgAAAAAAAAAAAIgABHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABzOEuAAAC9eOPP2rp0qX68ccflZmZqZKSEsXHxys1NVU9evTQwIEDdfHFF8tqtYa7VL82b96sjz76SOvWrdOePXtUVFSk+Ph4JScn68QTT1T//v116aWXKi4uLiT3WrZsmdauXatdu3apsLBQFotF7du315lnnqkbbrhBbdu2DcGzAgAAAAAAAACEgsHlcrnCXQRwNKmoqNDGjRtrPH7yySdHdODUWGw2mzZs2OD1WM+ePWWxWNznGzZs0LRp0/THH3/osssu05lnnqnWrVvLZrMpMzNTq1at0scffyybzab09HRNnjxZF1xwQVM/lVrt2LFD06dP1/fff6/BgwfrnHPOUfv27SVJ+/fv1/fff6/3339fJSUlSkxM1H333afhw4fX61579uzR9OnTtXLlSvXt21eDBw/WMccco/j4eP3555969dVX9dNPPyk2NlbTp0/X4MGDQ/lUAQAAmpVAXo8CAAAAjYnXpIfw/jkz7gBEuPnz5+uJJ57Qqaeeqk8++UStWrXyut67d28NHjxYY8eO1dixY7Vr1y7dcccdmjRpkkaMGBGmqr2tWLFC9913nzp06KCPPvpIxxxzTI02gwYN0rhx43Tbbbdpw4YNeuSRR7R7925NmDAhqHt99dVXuvfee2W1WvWvf/2rRoDZo0cPde/eXRdccIFKSkp07733KiYmRuedd16DniMAAAAAAAAAoOHY4w5AxHr33Xc1ffp0dezYUa+88kqN0M5T586d9fLLLysmJkYul0vTp0/Xzz//3ITV+vb111/rb3/7m2JiYjRv3jyfoV21tLQ0vfzyy0pPT5ckvfzyy1qxYkVQ97rjjjsUHR2tN954w++sQ89P6jidTs2dOzfgewAAAAAAAAAAGg/BHYCIlJWVpRkzZkiSrr/+esXExNTZp1OnTrr66qslSXa7XTNnzmzUGutSXl6uRx55RE6nU0OHDnUHcrVJTk7W2LFj3eczZ86U3W6vs9/u3bt1zz33yG63a/bs2eratavftrm5uV7nsbGxdY4PAAAAAAAAAGh8BHcAItKSJUtUXFwsqTKQC9Qll1ziPl67dq0yMjJCXlugvvrqK/3555+S6v8cdu/erfXr19fZ5+GHH1ZhYaHOPfdc9enTp9a23bt315gxY9StWzedfvrpmjhxYsC1AQAAAAAAAAAaD8EdgIj07bffuo+3bt0acL/u3bvLZDK5z3/44YeQ1hWM+j6H1NRUtW7d2n1e13NYuXKlvv/+e0nS0KFDA7rH/fffr8WLF+v111/XySefHHBtAAAAAAAAAIDGQ3AHICLt37/fffzCCy8oOzs7oH5Wq1UJCQnu8wMHDoS8tkB5Pof33ntPW7ZsCbhvamqq+7iu5/Dqq69KkoxGo84444wgqwQAAAAAAAAARAqCOwARyeVyuY8LCgq0YMGCgPtaLBb3sdPpDGldwfB8DjabTa+99lrAfa1Wq/vY4XD4bbdr1y6tW7dOktS1a1fFx8fXo1IAAAAAAAAAQCQguAMQkQ5fvrGsrCygfg6HQ3l5ee7zli1bhrKsoNT3OUhSTk6O+7hVq1Z+233++efu42OPPTaI6gAAAAAAAAAAkcYc7gIAwJd77rlHRUVFWr9+vdq3b69rr702oH5btmyRzWZzn4dz/7aRI0dq7969+vbbb5WSkqJbbrkloH75+fnas2eP+7y25+C5j16HDh3qXywAAAAAAAAAIOwI7gBEpLS0ND333HNB9/Ocgda5c2d17do1lGUFJS4uTk888UTQ/b744gv3MpsJCQnq37+/37YbN250H6enp3td27Rpkz744AP98MMP2r9/v6KiopSWlqaTTjpJF110kc4880wZDIag6wMAAAAAAAAANA6COwBHDLvdrkWLFrnPR4wYEcZq6u+9995zHw8bNkxRUVE+2/3555/Kz893nyclJUmSCgsL9dhjj2nJkiU1+uzfv1+//PKL3nvvPfXv31+PP/642rdvH+JnAAAAAAAAAACoD/a4A3DEWLRokfbt2ydJQS2vGUnWrFmj9evXS6qcbTdu3Di/bXfv3u11HhcXp4MHD+raa6/VkiVLdPLJJ2vGjBn63//+p40bN2rlypWaOHGi4uLiJEnff/+9brzxRq/99AAAAAAAAAAA4UNwB+CIUFBQoNmzZ0uSTCaTnnzySVmt1vAWFSS73a7p06e7zydNmqSUlBS/7Q8cOOB1brVa9fe//13btm3Tgw8+qP/+978aMmSI2rRpI6vVqrZt22r06NF6//33lZqaKknat2+f7r///sZ5QgAAAAAAAACAoBDcATgiTJ8+XdnZ2ZKkhx56SH379g1zRcH717/+pa1bt0qSxowZo8suu6zW9nl5eV7nS5Ys0XfffadJkyZp5MiRfvev69Kli2bNmuU+X7VqlVatWtWw4gEAAAAAAAAADUZwB6DZ++CDD/Thhx9KkiZOnKjrrrsuvAXVw5o1a/Tvf/9bknTDDTfovvvuq7NPSUmJ1/nixYv1f//3fwEtEdq/f38NGjTIfT5//vwgKwYAAAAAAAAAhBrBHYBm7YcfftCkSZNkMBg0adIkjR49OtwlBW379u26++675XQ6dcstt+jhhx/2O1vOk81m8zq3WCz6xz/+EfB9r7jiCvfxqlWrdPDgwcCLBgAAAAAAAACEHMEdgGbr999/1x133CGn06knnniiWc60+/PPP3XLLbcoPz9fd999tyZMmBBwX7PZ7HV+xRVXqHXr1gH379u3rzsgdDgcWr9+fcB9AQAAAAAAAAChR3AHoFnatm2bRo0apaKiIj3zzDMaOnRouEsKWlZWlm666Sbt3btXDz74oG6//fag+sfGxnqdX3DBBUH1j4+PV9u2bd3nmzdvDqo/AAAAAAAAACC0CO4ANDvbt2/XTTfdpIKCAs2ZM0cXX3xxuEsKWlZWlm688Ubt2rVLkyZN0siRI4MeIy4uzuu8vLw86DGSk5Pdx7m5uUH3BwAAAAAAAACEjrnuJgAQOXbs2KEbb7xR+fn5mjt3rs4777xwlxS0nJwc3XTTTdqxY4cee+wxXXPNNfUaxzN0k6TS0tKgx4iOjnYf1yf4AwAAAAAAAACEDsEdgGZj7969GjlypPLy8pptaJeXl6dRo0Zp+/btDQrtJKlr165e59nZ2UGPUVFR4T6Oj4+vdy0AAAAAAAAAgIZjqUwAzUJWVpZGjRqlnJwczZ49u1mGdiUlJbrlllv0+++/65FHHmlQaCdJHTp08Joxt3379qDH8Jxll5iY2KB6AAAAAAAAAAANQ3AHIOIVFRXp5ptv1t69ezVjxgxdeOGFAfXLzs7WunXrGrm6wNhsNt15553asGGDJkyYoOuuuy6gfkVFRfrmm298XjMajTrhhBPc51u3bg26rvz8fPdxu3btgu4PAAAAAAAAAAgdgjsAEc1ut+uuu+7S5s2b9eijj+qSSy4JuO/HH3+sZ555phGrC9ykSZO0atUq3XrrrbrlllsC7rd69Wo9+OCDfq97hpgbNmxQYWFhwGNXVFTowIED7vPevXsH3BcAAAAAAAAAEHoEdwAi2tSpU7V69WqNHz8+6KUl16xZo44dOzZSZYF76aWX9MEHH2jo0KG65557guq7Zs0aderUye/1//u//3Mf2+12v7PzfNm9e7dcLpckqU2bNurQoUNQtQEAAAAAAAAAQovgDkDEWrhwoRYsWKAhQ4bozjvvDKpvZmZmnaHXsmXLdPHFF6tPnz66++67dfDgwYaWXMPq1as1a9YsnX766Zo2bVpQfUtKSvTJJ5/U+hw6dOigQYMGuc/nzZsX8Pjfffed+3jEiBFB1QYAAAAAAAAACD2COwARacuWLZo6dapOOeUUTZ06Nai+TqdTkydPls1mU+fOnX22+emnn3Tvvfdq+/btKiws1PLly3XXXXe5Z6CFwoEDBzRhwgS1a9dOzz33nMxmc1D9Z86cqby8PL/PodqECRNksVgkST///LO+/PLLgMZfsWKFJKlFixa6+uqrg6oNAAAAAAAAABB6BHcAIo7dbtd9990ns9ms2bNny2q1Btx3+/btuv3227Vy5UpJ8rtU5ueffy6n0+n12Lp167Rz58561324hx9+WPn5+Zo9e7aSkpIC7peZmamHHnpIb731liT/z6Fa586dNWHCBK/7eu5d58uqVau0du1aGY1GzZw5M6j6AAAAAAAAAACNI7jpHwDQBJYuXarNmzfLYrFoyJAhAferqKhQSUmJ12N1zVY73OFhXn2tW7dOX331lUwmk8aMGRNwP7vdrqKiIq/HAnkOI0eOVHZ2tl5++WXl5OTopptu0ssvv6z27dvXaLthwwbdc889slgsmjJlis4888yA6wMAAAAAAAAANB6COwARp6CgQJJks9mUl5dX73FSUlKUkJDg89qFF16o1157zSuo69atW9BBnz/5+fmSJIfD0aDnINU9467ahAkT1KtXL02ePFnbt2/XZZddpmuuuUYDBgxQcnKy/vzzT3355Zf66KOP1LlzZ02ePFl9+/ZtUG0AAAAAAAAAgNAhuANwxOrUqZPfa6eeeqqeeeYZPffcc9q/f7/69u2rSZMmyWQyNWGFdUtPT1dsbGzA7QcNGqQzzzxTK1eu1IoVK/TVV19p4cKFKi0tVVpamk466STNmDFDF198cdB77gEAAAAAAAAAGpfB5XK5wl0EcDSpqKjQxo0bazx+8sknB7WX25HCZrNpw4YNXo/17NlTFoslTBUBAADgaMLrUQAAAIQbr0kP4f1zyRjuAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAAARgeAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAAAAAEQAgjsAAAAAAAAAAAAgAhDcAQAAAAAAAAAAABGA4A4AAAAAAAAAAACIAAR3AAAAAAAAAAAAQAQguAMAAAAAAAAAAAAiAMEdAAAAAAAAAAAAEAEI7gAAAAAAAAAAAIAIQHAHAAAAAAAAAAAARABzuAsAcHQzGAxKS0tTVFSUDAaDXC6XjEY+UwAAAAAAAAAAOPoQ3AEIK7PZrE6dOoW7DAAAAAAAAAAAwo5pLQAAAAAAAAAAAEAEYMYdgLCqsDm0I6NAu/4sUHmFQ1FWkzq1TlSXtomyWkzhLg8AAAAAAAAAgCZDcAcgLLbsztXib7Zr9YYM2ezOGtctZqPO6NlWl551jLp1bBGGCgEAAAAAAAAAaFoEdwCaVEmZXa8t3qTl3+2qtZ3N7tT/ftqr//20V385vZNGXdpDsdF8ywIAAAAAAAAAHLl4FzzC/P777/rggw+0du1a7d27V6WlpYqLi1PLli3Vq1cvDRo0SGeffbYMBkO4S3X78ccf9fHHH+vHH39URkaGKioqlJCQoDZt2uiUU07RJZdcotNOOy3g8c4//3zt27evXrXMnz9f/fv3r1dfNL6c/FI9/MK32nugKKh+y7/bpU3bczRt3EClJsU0UnUAAAAAAAAAAIQXwV2EyMjI0PTp07VmzRqNGDFCjzzyiDp06CCn06mMjAx98803evPNN/Xf//5XJ510kmbNmqVOnTqFteYtW7ZoypQp2r59u66//no98cQTatu2rSoqKrRnzx598cUXWrBggd566y2dccYZevrpp5WamtqoNZ1wwgmNOj7qr6TMXq/QrtreA0V65MU1mnnX2cy8AwAAAAAAAAAckXj3OwL8/PPPuvXWW5WamqqlS5eqTZs2XtdbtWql3r17a/jw4Ro1apR++eUXXX311Vq4cKHat28flpq//PJL3XPPPerRo4c++eQTJSUleV1v06aN+vXrpyuuuEKjR4/W6tWrNWLECL333ns12vqSnJysFi2C29csPT1diYmJQfVB03lt8aZ6h3bV9uwv1GtLftEdV/YKUVUAAAAAAAAAAEQOgrswO3jwoMaNG6e8vDy99dZbNUI7T61bt9asWbM0dOhQ5ebm6v7779fbb7/dhNVW2rZtm/72t7/JbDbrueeeqzWI69atm6ZOnapx48Zp586dmjZtmp5++uk673H99dfrzjvvDGXZCKMtu3Pr3NMuUMvX7NSgfh3VrWNwwS4AAAAAAAAAAJHOGO4CjnYvvPCCDh48qOOPP15du3ats3337t115plnSqrcW27t2rWNXWINzz77rMrLy3X66acrJSWlzvbnnXeejj32WEnSkiVLtGfPnsYuERFm8TfbQzreklWhHQ8AAAAAAAAAgEhAcBdmy5cvlyTZbLaA+wwcONB9vHLlypDXVJuSkhJ9/fXXkoKrecCAAZIkp9Pp7o+jQ4XNodUbMkI65qqfM1Rhc4R0TAAAAAAAAAAAwo2lMsOopKRE+/fvl1S5/OTXX3+ts88+u85+HTp0cB/v3r270erzZd++faqoqJAkrVmzRps3b1b37t3r7Oe5F9+uXaFZMhHNw46MAtnszpCOabM7tTOzwL1c5ruf/a7Nu3KVkhitFolRSk2MrjqOVmpStJLjo2Qy8TkFAAAAAAAAAEBkI7gLo9LSUq/zGTNmBBTcxcTEuI+rQ7Sm4lmzzWbTs88+q5deeqnOfrGxse7jpq4Z4bXrz4JGGdczuDMaDfrht/1+2xoMUnJ8lFpUBXqpSR7BXtVjKUnRSoqPksloaJR6AQAAAAAAAACoC8FdGKWkpCg9PV1ZWVmS5J59V5fc3Fz3cZs2bRqlNn86duyo6OholZWVSapfzW3btm2U2hCZyisaZ0nLco+lMi3m2mfTuVxSbmG5cgvLtX1fvt92RoOUnBDlDvVSqoO9JO/zRAI+AAAAAAAAAEAjILgLI4PBoNmzZ2v27NnKy8vTjTfeGFC/TZs2uY+PP/74xirPp+TkZM2cOVMvv/yyysvLdddddwXUL5w1I7yirKbGGddyaNxQLcXpdEkHC8p1sKBcUi0Bn9Gg5PgopSRVBnnVoV71bL4WCZXXkuKiZCTgAwAAAAAAAAAEiOAuzPr06aM333wz4PYul0uffvqpJMlsNuviiy9urNL8GjRokAYNGhRw++LiYq1atUqS1KJFCw0cODCo+3333XdatmyZ1q9frz///FNlZWVKT0/XqaeequHDh6tfv35BjYem1al1YqOM27nNoXEPHCxplHv443S6dLCgTAcLyvRHLe1MRoNaJBxaojMl6VDAdyjki1ZinJWADwAAAAAAAABAcNfcrFy5Uvv27ZMkXXjhhUpJSQlzRXX74IMPVFJSGawMGzZMFosloH4Oh0OTJk3SwoULJVXu7ZeSkiKn06l9+/Zp3759Wrx4sYYPH67HHntMJlPjzOxqKna7XQbDkRHeGAwGmc2V3166tE2UxWwM2aw4qXJpTM/g7o+9/mfHhZPD6VJ2fpmy88tqbecZ8LVIiFJKYtVyne7Qr/I8IdZyxPwdAQAAiBR2uz2gx45kDodDY8aM0ZAhQzRkyJBwlwMAAHDU4TXpIUfr8/ZEcNeMOBwOzZkzR5IUGxurCRMmhLmiuhUVFenFF1+UJLVs2VLjxo0LuO8jjzyiJUuW6NZbb9WQIUN0zDHHuK/98MMPmjJlin7//Xe99957Ki0t1cyZM0Nef1P67bffwl1CyBgMBvXq1Usmk0lWi0ln9Gyr//20N2Tjn9mrraxVS2Xa7A4dk+5SSmycCkudKixxqLDUocIyh5yhywobVaABn9EoJUSblBBjUkKsSfHRRiXEVp1Hm6qOjYqxGgn4AAAAGuDXX3/1e+3333/Xt99+qy1btig7O1tlZWWKjY1VYmKijjnmGJ188sk6/fTT3R9ki3QVFRWaN2+efvjhB5122mnasGFDvcb59ddfNW3atAbVcu+99+q0005r0BgAAABHitpek+LI1jx+koAk6fXXX9fmzZslSVOmTFGHDh3CXFHdZs2apaysLFksFj3zzDNKTAxs2cSlS5dq//79mj9/vk455ZQa1/v06aN33nlHV111lbZt26bFixfrrLPO0uWXXx7iZ4D6cLlcys3NVVpamiTp0rOOCWlw99czD4W4ebkHNfCEBJ81lJQ7VVjqUFFp5e/ev6qvOeR0hay0RuV0SvklDuWXOKQc/+1MRik+pirQc/8yep/HmhRtMRDwAQAABGjbtm16/fXXtW/fPp1xxhkaNmyYUlNTZbfblZOTo40bN2rVqlX65ptv9Pbbb2vMmDERG0IVFRUpNzdXGzZs0MqVK5WRkRHukiTJ68OaAAAAOHo4nU5NmzZN55xzjs4555xwlxN2BHfNxKZNm/Tss89KkiZOnKhLL700zBXV7csvv9Sbb74ps9msp556Kqi96Hbs2KHHH3/cZ2hXLS4uTo899phuuOEGSdLs2bP117/+tdkvmXmkOHDggDu469axhf5yeict/25Xg8f9y4DO6taxhfs8KyvLZzuDwaC4aJPiok1SC59NJEnOqoCv6LBAr/pXkcdjrmYS8DmcUn6xQ/nFjlrbmU1SQoypzpAvioAPAAAc5ZYvX6433nhDxx9/vGbOnKkWLWq+wBwwYIAuvfRSPfXUU9q/f7+effZZjRw5Mqj9wRvTb7/9punTp8vlcsnViC9so6Oj6zXbMCkpyefXFQAAAN6O1BUgNm/e3GSh3ZYtWzRs2DDZbDZ98cUXat++fZPcN1DN40/uKHfgwAGNHz9edrtdkyZN0nXXXRfukuq0detW3X///bJarZo1a5YuvPDCgPuOGjVK2dnZuuKKK+ps269fP3Xv3l2bN29WRkaGVq1aRSIfIUpLS5Wbm+v+4XvUpT20aXuO9h4oqveYHVolaNRfT3Kf5+bmqrS0tEF1Gg0GxUebFB9tUusAAr7CUkfVcpyeYd+h0K+orPkEfHaHlFvkUG5RXQGfoeaMvapf8dWPx5oUZSbgAwAAR54vvvhC8+fPV+vWrTVx4kRFRUX5bdumTRtNnDhRDz74oMrLyzV//nx16dJFxx57bBNW7FuXLl30xBNPuM8rKir0/fffa8mSJSG9z0033cTPZAAAAI2AFSBCw+l06uGHH5bNZmuyewaL4C7CFRQUaOzYscrKytJTTz2lyy67LNwl1SkjI0Njx46Vw+HQSy+9pAEDBgTVv3oGXaDOPfdc9xKi33//fbP9IfGEE06QxWIJdxkh53K5ZDAYFBtt1rRxA/XIi2u0Z39h0ON0aJWgqbcOUGy02T1ufHy8evbsGeqSG8ThdKmguEK5BWU6WFhe+XtBuQ4WlCnX4zy/qLzZLNFpd7gCCviirSa1SIhSi8RopSRGqUVCtFokRiklMUop7uNoxUTxXw8AAIgcdru9xv4hJ554osxms7Kzs7VgwQJJlR8w7Nu3b53j9ezZU//v//0/zZ8/Xw6HQx9//LHmzZvXGKU32NChQ/Xrr79q+/btkqQOHTrU+/V1WVlZg8cAAAA4WtX2mlSS3nzzTT311FPq3bu3XnrpJbVs2dLnOLt27dJtt92m3bt369lnn9VDDz2ka665ptHrD8S6det08803y+Vyyel0+mzToUMHnXDCCfrtt98arY758+fr559/brTxQ4F3TyNYYWGhRo8ere3bt2vu3Lk6//zzw11Snf7880/deOONKi4u1uuvv94kP7CdeOKJ7uPG/Afd2Mxm8xEZ3HlKTYrRzLvO1muLNwW1bOZfBnTWqL+e5A7tpMqlMCPx62WRFB1lVcuU+FrbOZwu5ReV62B+mQ4WllX+XnDoV05+mXILypRXVN5sZvCVVTiUmVOizJySWtvFRJmUkhhdFfBV/kpNilaLhGilJEUrteoaAR8AAAiX6tfmy5cvV3FxsaTK/dcCff156aWXav78+ZKkH374QVlZWWrbtm2j1dsQaWlp7uDOZDLV+zV29ZtKDRkDAAAAh1S/Jn333Xf15JNPqnPnznr11VcVExPjt8+xxx6rV155RZdffrlKS0v15JNPqmfPnurVq1cTVu7bKaecog8//NB9XlZWpuXLl+vVV191P2YymRp1ic+9e/dqzpw5jTZ+qPCuaITKz8/X6NGjtW3bNr344otBz1oLh3379ummm25ScXGx5s+fr+7duzfJfT3Xn83NzW2Se6L+YqPNuuOqUzSofyctWbVdq37OkM1e8xMWFrNRZ/Zqq7+eeYzXnnZHCpPR4A6tauNwOJVXVDljrzLkK1dOfqlyq2bxVf/Kb0YBX2m5Q/uyirUvq7jWdjFR5hqhXkpidbAXVXmeEK1oAj4AANBIvv32W/fx1q1bdfbZZwfUr3v37jKZTHI4Klcs+OGHH5rF6ikAAACILFlZWZoxY4Yk6frrr681tKvWqVMnXX311Zo3b57sdrtmzpypN954o7FLrVNsbKy6devm9VjPnj31v//9T9u2bWuSGh599FEZjcYmuVdD8G5nBMrNzdWoUaO0e/duvfLKK+rTp0+4S6rTnj17dOONN8pms+nNN99U165dm+zecXFx7uOSktpn+iBydOvYQveMOE3jrzpFOzMLtDOzQOU2h6IsJnVuk6jObRJltZjCXWbYmUxGpSbFKDUpRurgv53d4VReoXeYVx325RRUzt7LLShXXlF50xXfQKXldu3LKtK+rNr3RYyNNrtD0Oowrzrkq/7VIjFK0Vb+ywMAAMHZv3+/+/iFF17Q5ZdfrrS0tDr7Wa1WJSQkKC8vT1LlvuUAAABAsJYsWeJeAaJTp04B97vkkkvcy7WvXbtWGRkZEbsCRGpqapMEd4sWLdKqVav07LPP6p577mn0+zUE72JGmOqZdtWh3amnnhrukuq0d+9e3XTTTbLb7XrjjTfUpUuXJr2/53q4sbGxTXpvNJzVYlK3ji2OyFl1TclsMiotOUZpybV/6sZmrw74SqvCPY/ZfB6BX0FxRRNV3nAlZXaVlBVp74HaA764GEtVkBflFeodHvIRGAMAgGoujyUNCgoKtGDBAo0fPz6gvp7LRfrbwwMAAACoDStAhEZOTo6efPJJnXfeebrkkksI7hC4oqIijRkzRjt37tR//vMf9e7dO9wl1Wn//v0aOXKkKioq9Oabb6pz584NGu+FF17Q/Pnz1apVK7300ktKT0+vs4/nLLvExMQG3R840lnMRqW3iFF6i7oCPod7Oc7qGXvVe+8d9DgvLLE1UeUNV1xqU3GpTXv2F9baLj7GUiPMqxn0RcliJuADAOBId/LJJ2vLli3u87KysoD6ORwO92w7SWrZsmWoSwMAAMBRgBUgQmPatGlyOByaPHlyuEsJCMFdhKioqNDtt9+urVu36uWXXw4otLPZbPr73/+up59+OqC1bUMtPz9fY8aMUXFxsd54442AQrv9+/fr6aef1syZM2tc+/HHHzVr1ixJlQn4+++/r3HjxgU0ZrVjjz028CeAiGC327Vv3z5ZrVYZjUY5nU61bNlSJhOhSDhZzCa1TIlVy5TaZ7FW2BzuWXq5BeXKKfDYf89jmc6i0uYT8BWV2lRUatPuP2sP+BJiLX5n7Xku0UnABwBA83XPPfeoqKhI69evV/v27XXttdcG1G/Lli2y2Q69/jn55JMbq0QAAAAcwVgBouG+/PJLLVu2TFOnTlWrVq3CXU5ACO4igMvl0gMPPKAff/xR//rXv9SvX7+A+v32229as2ZNWEK76qAxIyNDb7zxRsCB2U8//eT1iVVP69ev9zovLw9sLy7P9W979uwZUB9EDpfLpezsbK/H0tLSCO6aCavFpNapcWqdGldru3KbQ7lVM/ZyC6t+97EfX3GZvYkqb7jCEpsKS2zaVUfAlxhnrTljLyHKI+yLUYvEKJlNkb8xLgAAR5u0tDQ999xzQff7/PPP3cedO3du0j3AI8n+/fu1ZMkSrVu3Tjt27FBeXp5iY2PVvn17XXDBBRo6dKiSkpLCXSYAAEDEYgWIhikqKtJjjz2m/v37a/jw4eEuJ2AEdxHg+eef19KlS/Xkk0/qnHPOCbjf8uXL1bFjx0aszL9HH31UP//8s1566SWddNJJAferrWbPZS4tFosuv/zygMasXufXarXq3HPPDbgWAE0nKsCAr6zC7p69dzC/TAcLa+6/d7CgTCXNKOArKK5QQXGFdmYW1NouKd5aNUsvWqkeIV+LhGilVoV8yQkEfAAARDq73a5Fixa5z0eMGBHGasLn3Xff1fTp02t8IDMvL08ZGRlau3atXn75ZU2bNk3nnXdemKoEAACIbKwA0TBPP/20CgoKNG3atHCXEhSCuzD76quv9M9//lO33Xabhg4dGnC/ffv2acGCBTrrrLN8Xs/IyNBjjz2mdevWqX379nrwwQc1cODAkNT8zjvv6IMPPtC0adOCGnPDhg367LPPNHLkSJ/XBw4c6F4q8ZJLLglo6c3MzEytW7dOkjR48GAlJycHXA+AyBNtNattWrzapsXX2q6s3O4O9apn8R2sDvvcAV+pSssdTVR5w+UXVSi/qEI7MvwHfAaDlBQX5RHqVc7cS3UvzVkZ8iXHR8lEwAcAQFgsWrRI+/btk6Sg3lw5krz++ut6/PHH1b9/fw0bNky9evVSq1atVFFRod9++03/+c9/9PXXXys7O1vjx4/XM888o7/85S/hLhsAACDisAJE/f3www969913df/994dtAlR9EdyFUVZWliZOnKjTTz9dd911V8D91q9fr4kTJ6q4uNjvX7iJEydq7dq1kirT9dtvv12ffPKJ2rRp06Cat2zZoieeeELDhg3TVVddFVAfl8ulr7/+Wg888IAcDoffmtu3b69rrrlGb7/9tmJja99Xq9qcOXNkt9uVkJCge++9N+DnAaB5i44yq21U3QFfSZlNuYWH9tzzXJbTczZfWUXzCPhcLimvqFx5ReXanpHvt53BICXFR7mX50ytmrnnHfJFEfABABBiBQUFmj17tiTJZDLpySeflNVqDW9RTezbb7/VJ598oilTpujqq6/2uhYbG6sBAwbo9NNP1xNPPKHXX39ddrtdDzzwgE488cRm94YKAABAJGIFiMqtvh5++GH16NFDN910U7jLCRrBXRjNnTtXubm5+uOPPzR48OCA+hQUFCgnJ8d97u8Hm02bNnmdl5aWauPGjQ0O7mbMmKHy8nJ99913AX8iMjc312s93dp+GHvggQeUmZmpjz76SEOGDFGvXr38tp03b54WLVokq9Wqp59++qhdpxeAf7HRFsVGW9Quve6A79BMvcNn7h0K+sqbU8BXWK68wnJt3+c/4DMapOSEKLXw2IMvtWrmXvUefKmJ0UqMj5LJaGjCZwAAQPM0ffp09/7NDz30kPr27Rvmipre4sWLNX78+BqhnSeDwaD7779f69at06+//qrS0lJNnTpVL7/8chNWCgAAcGRiBYjK7cn27t2r999/XyaTKdzlBI3gLoyqf6DLyspSVlZWvcbwF4L16NHDPeNOqtwzrnv37vW6h6fqmjMyMuo9Rm3BXVRUlJ5//nm9+uqrGjlypPr3768LLrhAJ554otLS0mS327V161YtWLBAK1euVMeOHTVlyhQNGDCg3vUAQHXA175lgt82LpdLJWV2n4FeddCXW1CunIIyVdiaR8DndKkyqCwo1zbVEvAZDUqOP7Qsp2fQl5J4aOnOpLgoGQn4AABHqQ8++EAffvihpMoVUK677rrwFtTEDIbK1wDHHnusbrvttjrbm81mjRs3zr36zDfffKOdO3cGtGUCAAAAfGMFCGnz5s165ZVXNG7cOB1//PHhLqdeCO6aOX8h2IwZM9x73LVq1Ur33ntvRCw7YrFY6pz1ZzKZNHbsWF155ZVatGiRli1bptmzZys/P1/R0dFKSUnRSSedpBkzZmjw4MFH3TceAOFhMBgUF2NRXIxFHVrVHvAVl9q8grzK47LK4/xD5xV2ZxM+g/pzOl3usPKPWtqZjAYlJxxaorN61t7hvxLjrAR8AIAjyg8//KBJkybJYDDokUceOepCO0nq16+ffvzxR9lsNpnNgb3VcN555yk2NlYlJSVyuVxatmyZbr/99kauFAAA4Mh1tK8A4XA49NBDD6lLly669dZbw11OvRHchdG//vWvRhu7bdu2eumll0I+7kcffRTyMf1JSUnRmDFjNGbMmCa7JwA0lMFgUHysVfGxVnVs7b9ddcCXc/j+e1WB30GPoM/uaB4Bn8PpUk5+mXLyy2ptZzIaqmbtHRbyJXiHfQmxBHwAgMj3+++/64477pDT6dQTTzyhoUOHhruksImPr3158sNZrVb17dtXX331lSRpw4YNjVEWAADAUeFoXwFCqtxe69dff9WCBQua9YQfgjsAAMLAM+Dr1DrRbzuXy6WiUpsO5h8K8nILK8Ox6pl71YGf3eFqwmdQfw6nS9l5pcrOK621ndlkOGxZzsN+JVUHfBb38lwAADSlbdu2adSoUSoqKtIzzzyjiy++ONwlNTtdu3Z1B3dbt24NczUAAADNEytASLt379Zzzz2nG2+8Ub169Qp3OQ1CcAcAQAQzGAxKiLUqIdaqTm1qD/gKiis8ZuyVKsdj9l518JdX2HwCPrvDpazcUmXl1hXwGb322jt85l714/ExBHwAgNDZvn27brrpJhUUFGjOnDm68MILw11Ss9SqVSv3cX6+/z13AQAA4BsrQFSaNGmS0tPT9be//S3cpTQYwR0AAEcAg8GgpPgoJcVHqUtb/+2cTpcKSyoOLc1ZPZPPc/ZefpkOFpbL6WwuAZ9TB3JLdaCOgM9iNtYI81okRCn1sJAvjoAPAFCHHTt26MYbb1R+fr7mzp2r8847L9wlNVuxsbHu49LS2v8vBwAAgDdWgKi0cOFCrVmzRvPmzVNMTEy4y2kwgjsAAI4iRqNnwJfkt53T6VJ+cfmhGXueoZ7nfnzNKOCz2Z3af7BE+w+W1NrOaja6Z+y1SIxWauJhx1XXYqPNBHwAcBTau3evRo4cqby8PEK7EHA4HO5jzxAPAAAAtWMFiEpZWVl66qmndNVVV2nAgAHhLickCO6Ao5DL5ZLT6ZTLFf432+12u8/HeDMcCL+EGLMSYszq2CrObxuH06XC4grlFpYpr7BcuYVlyi2sPM8tKFdeYalyCyuUX1imZpLvSXIpr6BUeQW1f+rfajGpRUK0WiRGqUVCtJITrEpJiFZyYpSSEypn86UkRinaSsAHAJEsmNejOTk5Gj16tHJycjR79mxCuyolJSWaMWOG1q1bp169emny5MmyWq0B962WkJDQWCUCAAAcUVgB4pCpU6cqKipKEydODHcpIUNwBxwFXC6XSkpKVFBQoKKiIp9vToSLr/Bwx44dvMkNNEPxRik+SeqQJElRVb8q9+VzuSSH0ymHwyW7wym7o+rY6XFc9XvzZKv8ZStWYY5UmCPtqbpiMFTuw2cyGWU2GWoeGyt/Nxr5vgcA4RDo61GHw6EdO3bolltuUbt27dShQwfl5eUpPj5eZrP/H62zs7O1Y8cO9e3bN+S1R4onn3xS7777rqTK5Zr69++vIUOGBNT34MGD7uNOnTo1RnkAAABHFFaAOOTPP//UihUrZDAY1L9//3qNcdFFF9V47PHHHw/49WxjILgDjmAul0sHDhxQfn6+1xI0ANDUqsMrs0mKkslvO5fLJYfT5RXm2R0uORzOqpCv8rg5BXwuV+UynTa7s9Z2BmNVwGc8FOpVhnzVxwaZjAR8ABAOLpdLe/bsUVlZmdq2basWLVqoqKhIRUVFkqTo6Gilp6crPj6+Rt+PP/5Yn376qRYsWNDUZTeZFStWeJ3v2bPHT8uatm/f7j7u0aNHyGoCAAA4EmVlZWnUqFGsAFElNTVVixcvDrrfpZde6j5+6aWX1LJlS6/rrVu3bnBtDUFwBxyhXC6XMjIyVFBQEO5S6hQdHR3uEgBECIPB4A6t6uJyueRySa7KE7kqf5NU9Xj1tSOEw1k5a9GgyiBUqvx6GQySofLE45pBTFwGgMDV9XrUZrOpVatWateunSwWS43rZWVl2rNnj9q0aaPk5GSva2vWrFHHjh1DWW7EOXxFj9NOOy2gfi6XSxs3bnSfDxw4MKR1AQAAHEmKiop08803a+/evZo5c2bAe9odyStAWCwWdevWrUFjdO7cWe3btw9RRaFR97tiAJqd5hTaAUB9GQwGGY0GmYyGqqUnjbKYjbKYTbJaTIqyVv2yGGU1V10zGapmrhlkNErG6tCrGXFJcroqf1XOTnTJ5nDJZneqwu5Uuc2pcptD5RUOVdgqf9ns1UuSOuVwuuR0utzBJwCgdna7XQ6HQyaTyWdo5ykzM1PZ2dnu5TczMzO1Zs2aWpeAXLZsmS6++GL16dNHd999t9fSkc3Fcccd5z4+66yzAg7gNm7cqKysLElS+/btdfrppzdKfQAAAM2d3W7XXXfdpc2bN+vRRx/VJZdcEnDfjz/+WM8880wjVodQY8YdcAQ6cOCAz9AuOjpaCQkJiouLk9lsjoh95JxOp8rKyrwei46OltHI5woANB2ny+UOtSqX6Kzcf8/pcMrurFqq01EZeB1pjEZD5XKcRqPMRoOMXnvxHQpGjRHwfwYANIbaXo+Wl5drx44dSkhIUKdOnWQwGORwOFReXq7CwkIVFxfL6fReCjkrK0smk0lJSUmaPHmybDabOnfu7PPeP/30k+699173GMuXL1dOTo7eeOONJnut7rnHn6/9/gJxxRVXaP369ZKkc889N+B+8+bNcx/fcsstEfHzCQAAQCSaOnWqVq9erfHjx+uaa64Jqu/RsALEkYbgDjjCuFwu5efnez1mMBjUvn17n3tuhJvT6ZTJ5L3fldlsJrgD0PRqn0Qh6VDA5953ryrgc9i9Az5HMwr4XJLsDsnucFWd+d6Lz2Ssmq1oqgz4TGZjZdhX/ZiJgA9A8+Tv9ajBYFBmZqaMRqM6deokq9UqqXI5nujoaCUlJcnlcikrK0s5OTle/ffs2aMHH3xQK1eulCS/b5R8/vnnNYK/devWaefOnerSpUuonmKt9u7d6z4OZm86T1dccYWWLFmi7777Tjt37gyoz/fff69PPvlEktS7d29dffXV9bo3AADAkW7hwoVasGCBhgwZojvvvDOovtUrQNx2221+2yxbtkxz585VVlaWzjjjDD366KNKSUlpaNloAII74AhTUlIih8Ph9VikhnYA0NwYDQYZzSZZ6ngF5XS65HB6Bnw+wr5mFvA5nFX12nwHe9W8Ar6qWXsEfACao7y8PJWVlclgMGjbtm21trXb7e4lNXfv3i2Hw6HffvvNfd3fjDt/Dg/zGsvq1auVmZnpPv/44481evRoJSYmBjWO0WjU888/r/Hjx2vBggXq1q2brrrqKr8z6H766Sfdfffdcjqd6tatm55//nlm2wEAAPiwZcsWTZ06VaeccoqmTp0aVF+n03nUrABxpCG4A44why+RGR0dTWgHAE3MaDTIaAwu4Kveg+7QcWXAZ3c41UTv34ZEfQM+z9l8lYFf5WO8kQsgXKo/DOdyuWp8MM4fo9Go6OhoFRcXq3fv3vrkk0+UkpKihIQEn+0vvPBCvfbaa15BXbdu3YIO+gJRUlKivXv3yuVyqaCgQD/88INeffVVrzb79u3TFVdcoZEjR6pbt25KSkpy11SX+Ph4vfrqq3r99df15JNP6oUXXtD555+vU089VS1btpTValVmZqY+++wzffLJJ3I6nRo2bJjuv/9+tWjRIuTPFwAAoLmz2+267777ZDabNXv2bPcKEIHYvn27nnrqqaNmBYhgVFRU1HoeCQjugCNMUVGR17m/NwkAAOEXTMBnr9qDz141g8/hcB02k8+pZjSBL8iAz3vGnvdMvspjAj4A4WQwGGQ0GuVwOJSQkKDi4mKddNJJ+uSTT9SpUye//U499VQ988wzeu6557R//3717dtXkyZNqrF0Zyhs3LhRN954Y53tdu/erSlTpng99vvvvwd0D5PJpNGjR2v48OFavHixvvnmG33++ec6ePCgDAaDUlJS1LZtW91+++266KKLdNxxx9XruQAAABwNli5dqs2bN8tisWjIkCEB96uoqFBJSYnXY81pBYjrr7++Ue+5ceNGr/P169frmGOOadR7BsvgYu4h0KQqKipqfHOQpJNPPjmoT0344nK5tHnzZq/HOnfurJiYmAaN25icTqdKS0u9HouJiWGPOwCoB+fhwd5hy3VWh33NKeALlK8lOc2HLddJwAfAl1C9Hi0tLfXa381gMOj444/n+w4AAADqZLPZtGHDBq/Hfv75Z82YMaPBY6ekpGjNmjU+r/3000+67rrraqwA8eGHH4b8w2T+VoAoLCz0atehQwddeOGFXts/dejQoV7vn9tsNu3YsUNS5ev1rVu36t///rfXLL+EhATdeuutOvXUU5WQkKCYmBh16NChgc+2YZhxBxxBfH0SwmzmnzkAHC2MRoOsRpOsltpfXDuch0I898w9Z839+JpTwOdwVC5lV27z38agyoDPe0nOwwI+k1EmIwEfgOAd/saGy+WSy+Xi+wkAAADCqrmtALFnzx699tprXo+9/fbb9brn/v37demll9baprCwUDNnznSf9+vXT2+88Ua97hcqzLgDmlhjzriz2+3aunWr12PHHXdcRId3zLgDgMjkcrnkdLl8BHxO2e3ee/Mdaa8mqwO+6hDPc889Aj7gyBOq16PN8bU4AAAAIoOvGXc9e/aUxWIJU0Xh05jvnzcX/AQBAACAGgwGg0wGg0xG1TqD7/CAz+4O+jyW6XQ2r4DPJVU9D0et7bwCvuqlOs3GGvvyEfABAAAAAIBAEdwBAACg3oIK+Jwun0tyusO+oyDgO7QHX+VynSYCPgAAAAAA4IHgDgAAAI3OYDBU7S8nKZCAz+GS3XnYzD3P2XxO15EX8BnkEeYZvcM+o9F9bCTgAwAAAADgiEVwBwAAgIjhGfBFqfaAz+H02IPP6RnsNdOAzyXZHC7ZHA5J/kO+wwO+Q7P4qn43EvABAAAAANBcEdwBAACg2TEYDDKbDDIHHPDV3HPPexafS80k3wsu4POxJKfZvS9f5TUCPgAAAAAAIgfBHQAAAI5YhwI+o6JqaXd4wOe1B5/TcxZfMwv47E7ZJAUb8LmDPfexQUYDAR8AAAAAAI2N4A4AAABHvWADPs8lOQ/twef0unbEBnzVe+6ZDVXLch7aj4+ADwAAAACAhiG4AwAAYbNv3z61bduWN/mbQHFxseLi4sJdRrPnGfDVxnfA53FcNbuvWQZ8dqm2gM9okM8lOQ8P+EzG2r+GAAAAAAAcjQjuAABA2MyZM0e7du3So48+qhNPPDHc5dTptddek9Vq1dVXXy2zufm8jNq3b5+uuOIKDR8+XKNHj1ZycnK4S6ph586d6ty5c6ONX1FRoblz52rs2LFKSEhotPtUCyrgc7i8luP0nsV36Fpz4XRJzgADPu8wryrsMx56zGwyymgk2AcAAAAAHD2azztOAADgiPPbb79py5YtuvLKK3Xttdfqb3/7W5OEKvXVu3dvXXPNNXrrrbc0efJk9e3bN9wlBaRdu3a68847NWXKFL311lu67bbbNHLkyIgKH8ePH69WrVrp5ptv1oABA0I+/qxZs/Sf//xHS5Ys0YwZM9SvX7+Q36M+DAZD5ZKTCjDgO2zPPc9lOu2Oyll+zYXTJVXYnVLAAZ/3nnve+/IR8AEAAAAAjgyR824NAAA4quTn5+uPP/6QJDkcDmVlZckY4UvnnXLKKbr88sv14Ycf6oYbbtD111+viRMnymKxhLu0Ol133XX6/vvvtWLFCj399NP69NNP9fzzzys9PT3cpUmSYmJitGrVKq1atapR75ORkaFbb71VH3/8sTp06NCo9wold8Bnrjvg8wrznB4z9xxO93HzDPictbYzGlVjzz2z6VCwZ6parpOADwAAAAAQyQjuAABAWKxdu1ZOZ+Ub8RdffLGeffbZiA/uJOmuu+7S0qVLZbPZ9MYbb8hms2ny5MnhLisgjzzyiL799lsVFhbq559/1vXXX6/3339f8fHx9RrP5XIpPz8/JEtvRkdHS5JatmypefPmNXi8w7311lt66623JEkvvfRSswrtgmEwGGQxG2SpI+Bzug7tsWc/bEnOZhvwOaUKp7My5KuF0WjwsSTnoYDPXLX/HgEfAAAAACAcCO4AAEBYfPXVV5Kk448/XjNmzGgWoZ1UuezkxRdfrI8//liS9P777+sf//iHoqKiAh7DbreHZZnK9PR0XXvttXrppZckVe4r9+OPP+qcc84JeiyXy6VJkyZp7dq1mj9/vlq1atWg2qq/HhaLRV27dm3QWL60aNHCfdwc9lNsbEaDQUazSZY6/hpWB3w19tyze8/ma14Bn0sVTpcqVHvAZzIaKoM9o49gz+N3o4GADwAAAAAQOgR3AACgyTkcDn3++eeyWCx6+umngwq9IsEVV1zhDu5MJpNMJlPAfQsLC3XzzTfr8ssv14gRIxqrRL+uueYad3DXqlWreu3TVx3avffee5KkG2+8scHhXTBfQzSdgAM+p0sOZ8099+zVs/qqZvM1p4DP4aysN5CAzx3mGQ0ymY2HhX0EfAAAAACAwBHcAQCAJrd27Vrl5ubqjjvu0PHHHx9UX5vNVq895b788ksVFBRoyJAhQfc9XJ8+fRQXF6fi4mJdccUVAc+eKyws1JgxY/Tzzz/r559/lsvl0nXXXVdrnx07driXFA2V9PR05eXlacKECcrMzAy6/7x589yhnVQ5c6+h4Z2hKtSw2Wzatm1bvcaoTW5urvvY5Wo+4VFzYTQaZDQGF/B5LsnpGfDZHS45m2HAJ1sQAZ/nzL2qvfeqQz4DAV+Tq9xD0uw185s/BwAAAADhQnAHAAB8WrhwoZKTk3XhhRf6beNyufTAAw/o4osv1rnnnut+fOnSpTrzzDOVlJTks9+iRYvUuXNnjRs3Lui6Jk+eLKPRqEceeSSoAK+0tFQTJ07U8uXLNXny5AbNDjObzRo5cqQyMzN1//33B9THM7STKr92U6dOlaRaw7s1a9ZoypQpjRI23XfffSEba+fOnbrhhhv0xhtv1OtrW/2G+YEDBzR48OCQ1eULwV34BBPw2R1OOZzVe/B57r9X9ZjTqRBn2o0q2IDPM8yrPK5etrPymGApdAwGQ7Ob+Q0AAIAji8FgUFpamqKiomQwGORyuZrNliIIPYI7AADgU25urh566CH93//9n0aPHu1zKcPPP/9cH374oT766CPdfvvtGj9+vIxGo1atWqUZM2boiSee0BlnnOHVp6ioSJ9++qmef/55Wa3WoGpau3atFi5cKJfLpW3btmnu3LlKSUkJqG91yLdy5UqtXLkyqPvW5oMPPqh3X5fLpSlTpkjyH96NGDFCCQkJOnjwoE466SS1bdtWiYmJiouLq/ON+++//1433nijJOnuu+/W7bff7rPdv/71L82ZM0eSNH/+fPXv37++T6neqsO0du3a6csvvwz5+HPnztU///lPSQr5DEaEntFokNVY9/Kp7oDPUbnnnlew57FsZzOawOcO+MrrCvhq7L/nEfCZKpfrJOADAAAAmgez2axOnTqFuwxECII7AADgU/XsgxUrVujLL7/0+eavw+GQVBm6LFiwQMOGDVP79u1lsVi0f/9+jR492u/4tV0LxA8//KAZM2ZoxowZAbX3nJ03ZMgQjR07tkH3D6W63li/9NJLm6iS8GnKWXDVf2/R/LkDPkvtIZ/DediMvcP246u+1qwCPodLDodD5Tb/bQyqDPi8l+SsCvY8jk3GozvgczpdqrA5VG5zyOWSDAYpymKS1WKS0Xj0fl0AAAAAhAfBHQAA8Mkz6Jo3b5769OlTo82sWbP0wgsvSJL+85//qH379pLknkmXlpam+fPnh6ymvXv3ugO3QYMGuZeaDITn80lOTlbXrl1DVhcarilnwdlstSQdOCKZjEaZjJI12ICvaiZfdcBXHfY1l4DPJVXtIehQeS3tqgO+6hDvaAn4ysrtyisqV1GpTb4+O2AwSPExFiXHRyk6ih+dAQAA0HgqbA7tyCjQrj8LVF7hUJTVpE6tE9WlbWKdP8fgyMNPHwAAwCezObiXCV26dHEfVy+raTKZGi0gO//884NaatMzuDuS3niWpN9//13z58/X5MmTg/5zixTVYZrNZtO2bdtCPn5ubm6NewGHCyTgc7lccrpcNZfkdDplt7vkqJrNZ3c4fYZBkcgz4KuNV8BXvVSn+VDYV71sZ6QHfA6nSzl5pcovrqi1ncslFZbYVFhiU1KcVanJMTIxAw8AAAAhtGV3rhZ/s12rN2TIZq/5gVaL2agzerbVpWcdo24dW4ShQoRD83xnBwAANDrPoCtYkRgeHcnB3cyZM/X111/rwIEDmjNnjmJjYxs85tdff61vvvlGt9xyi1q2bBmCKmtXvXzlgQMHNHjw4Ea9V1lZWaOOjyObwWCQyWCoV8Dn3o/PHfYd+QHfoT34KpfrNIU54LPbndqXVaQKH2+K1Ca/uEKl5Xa1S4+X2WxspOoAAABwtCgps+u1xZu0/Ltdtbaz2Z3630979b+f9uovp3fSqEt7KDY68t5zQWjxJwwAAHxqSPhWPeMukhiNR+YbrZ9//rm+/vprSZVh2w033KCXXnpJqampDRr39NNP18qVKzVo0CBdc801Gjt2bIPHrE15eeVCfu3atdOXX34Z8vHnzp2rf/7zn7JYLE26nx6OXkEFfE5XZZjn9F6S0yvsc7qOvIDPII/ZekbvsM946LFQBXwOp6teoV21CrtT+7KL1L5lAjPvAAAAUG85+aV6+IVvtfdAUVD9ln+3S5u252jauIFKTYpppOoQCQjuAACATw0JuiI9uKvPG8Br1qzR/v37NWTIkHrdv6ioSBMnTtQ//vEPtWvXrl5jHK64uFiPP/64+zw2NlYnnXSSCgoKGhyyWa1WPfroozrttNP0yCOP6L333tP111+vm2++WUlJSQ0tvYbq4C4lJSXkY0uV+y2OHz9eV199td8ZhAsXLtTgwYNDMmMRCJTBYKgMp0ySFFjAZ3c4vZbkdDTXgM/lGfD5D/kMBnnM1vOcxVf1u7Hy2FhHwJeTV1rv0K5ahc2pnLxStUzh+wQAAACCV1Jmr1doV23vgSI98uIazbzrbGbeHcH4kwUAAD41JLgLxew2p9MZ0llynmMdPm5JSUmdYU2LFi1022236eSTT67Xvn0bN27U559/rtWrV2vcuHEaPXp0UHv0+TJjxgzt27dPkpScnKzXX39d3bt3b9CYh/vrX/+qbt266bbbbtNLL72kd999V7fccotuvPFGRUVFhew+vXv31t///nede+65IRvT07XXXuv3msvl0vTp0/XGG29oxYoV+ve//x2Ry73i6OYZ8EXVEfA5nC6fS3J6z+JzqZnke3K5JJvDJVsgAZ/HkpzJCVGKiar8t1xWbq9zT7tA5RdXKDHOqugovk8AAAAgOK8t3lTv0K7anv2Fem3JL7rjyl4hqgqRhp80AACATw0JzfzNeFizZo0qKip0zjnn1Nr/u+++09y5czV37tyQzcDyF9zZbDYNHz5cb7zxhlq08L/Rc/fu3dWrVy/9/e9/18KFC4MO3TZu3ChJKi0t1axZs/TRRx9p9uzZOv7444N8JpW++uorvfvuu5KkhIQEvfrqqyEP7ap169ZNCxcu1J133ql169Zp5syZeueddzRhwoSA9qPbvn17nctT3nTTTZKkHTt2hKTmYPzrX//SkiVLJFUuN/qPf/xDM2bMOOL2QsTRwWAwyFy15GRt0frhAV/lLL7q/fg8Z/E1s4DP7pRNksHgUCuPWXF5ReUhvVdeUblaVwV3LpdLpeV2ORx2OZ2VX61yW2XA+NuOHBlN3j92V39rMcjgdS6D129V17y/D3meGuR14tW3ut/h38bcj3s96LtvjXo9Hvfd3/c9fd7XT59g6vXsX2vfw7+uh41Z5z39XPc9RnD35P8ZAACOLlt259a5p12glq/ZqUH9OqpbR//vY6D5IrgDAAA+NcZSmUVFRRo/fryuvPJKTZgwwecst7KyMj388MPas2ePrrzySr3wwgvq1q1bvWup5i+4s1gsOuOMM/SPf/xD//73v2sd46abbtJtt92mZ599Vg888EBQ99+0aZPXeWpqqo455pigxqiWnZ2tBx98UFLl8pgvv/yyevToUa+xAtWiRQv95z//0YMPPqglS5Zo37597hBzypQpat++vd++a9eu1WOPPdZs9pb76KOPlJqaqokTJ4a7FKDRBBvweYZ57mNn5AZ8URaTjFX70DmdLhWV2kI6flGpTU6ny708Z05+mUrLKtxLce6r+hT1/C93qMwWSV8ZNAfeAa33g0GHhT4DYd99D28X8D0PC2I9OwVc72GF1BV++rxvoPf0kcr6+xr4DbIPv2egYa2vhD7Qe9ZRS80Q2nN831+jGuMGGuTXGtQH1vfwQmp88MBnm8PuG4J6D+8XaJhfV711fgggkA8e1HU9gA8WHP5BicP71fk9I6A/88C+V9TsX/s9fd237npr+9rV/jUI9HtG0P/efT2v+n7/cl+v+Y/Z378D7/Hqvqe/72+19a3rvsH+2621Hh99gvnQUG33Pfz7VzD/DmrU5HGQnhzjvrb4m+2+O9fTklXbdc+I00I6JiIDwR0AAAg5f58gj46OllS5l9jChQvrHGffvn2aPHmy3nzzzQZ/Kt2z/+HB4vXXX6+LLrpICxYs0DXXXON3jPPOO08dO3bU66+/rvPPP1/9+vUL+P7VM+6kyv3jnnjiCVksliCeQSW73a577rlHOTk5SkxM1EsvvaTevXsHPU59WK1WzZw5U4mJiXr77bclSatXr9bQoUP1wgsv6LTTfP/AcM011yg9PV0FBQU68cQT1apVKyUlJTHTAGgGPAO+2tQa8HnM5muqgC/Kcuj7fIXNEfJ9/1yuynGrl8uMsphUWhbae+Do5fn31eXrQe/WjVwNAACor2PbJ2vW3ytXHKqwObR6Q0ZIx1/1c4bGX3WKrBb/S+mjeSK4AwAAPjUkVPE3W89zeckHH3xQF154YY02FRUVuvjiiyVJp556ql588cWQBDw226HZFofX16FDB11wwQV68skn1a9fP78z4QwGg4YNG6bZs2frgQce0OLFixUXF1fnvbOyspSRcegF+ogRI9ShQ4d6PY/p06fr+++/V0pKil599VWdeOKJ9RqnvgwGgx599FEZjUa9+eabkqSCggLdc889+uSTT/zuFXjBBRf4HXPPnj1q1apVg/f8q0tZWZkyMjLqPdMRgH9BBXyHzdbzDvtccjgrf28Is/lQHdXLVoZauUdw53k/AAAAQJKO7ZDsPt6RUSBb1eoMoWKzO7Uzs4DlMo9A/HQBAAB8ashSmf5ERR1akK1FixZq3759jV/t2rVzt+nXr5/i4+NDcu+yskNTIXwt5Xn99dertLRUEydOlN1u9zvO0KFDZTQatW/fPs2aNSuge3/33XfuY6vVqptvvjmIyg9555139Pbbb6tVq1Z68803mzy08/Twww/rL3/5i/v8zz//1KefflqvsZYvX66//OUvWrhwYa1f+4Z68MEHNWTIEM2bN6/ZLNsJHGkMBoPMZqOirWbFxViUFB+l1KQYtUyJVdv0eHVsnaAubZN0bPskdWmTqA4t49UmLVYtW8QoJTFKiXFWxUWbFWUxyWT0/6EOz897NNY/d89xmUAMAACAw3nuubzrz4JGucfOzMYZF+HFjDsAAOBTQ4INfzPkGiMMDFRpaan72Fdw179/f3Xq1EkbNmzQiy++qDvuuMPnOK1bt9YZZ5yhb775Rm+99ZYuvfRS9erVq9Z7r1mzxn08ZMgQpaenB13/999/r+nTp6tbt256+eWX1bp166DHqK/9+/erVatWXo8ZDAY9+eST2r59u7Zs2SKpcuZdfVitVu3bt08PPfSQHnrooQbXW5cnnnhCGzdu1DPPPNPo9wJQP5UBn6HOmWwul6tyll71zL2qJTmt5kPf5xsrVGuKcBAAAADNl9l06AVjeUXjrQKBIw/BHQAA8KkxgjtfgVlT8ZxxZzbXfAlkMBh05ZVX6plnntG///1vXXDBBerevbvPsS6++GJ98803cjqdmjJliv773//WGkp6zri78cYbg659w4YNGj9+vPr06aO5c+cqISEh6DHqa926dbr55pv1wAMP6Nprr/W6FhMTo+eff14jRoxQTk6OzjrrrHrdw3OJzBkzZujkk0+us8+KFSs0Z84cSdKrr76qNm3a1Nnn5ptvVkZGho477jg98MAD9aoVQGQxGAyymA2y1BLwRTXSnh+e49pDvOwRAAAAmj/P5d+jrI3/mhRHDoI7AADgU2MsJRhscBfKGjxn3MXExPhsM2zYMM2ZM0c2m00PP/yw3nvvPZ+B3HnnnSeTySSHw6FNmzZp6dKluvTSS32OuWfPHu3bt09S5dKfxx13XFB1b9iwQaNHj9ZFF12kyZMny2KxSJIyMzNVUlJSa9/MzEz3cW5urrZt2+azXW5urlef6nZZWVm68847VVZWpscee0zFxcU1lvns2LGjFi5cqN9//11dunQJ6rlV8wzu2rRpo65du9bZx3PWYocOHdSpU6c6+1QHtj169KjXrEcAzZPVYpLBENpZcQZD5bjVWqbEKiXRqq0lByRJXdsnS5LenNKn8ntP1c2rSzhUi8vr3LNE12EP+rzm9dhh7fzcs/a+vu/p7//jQ2P67l/bGIHe09+fm+d4h305677nYV8bHVZLve5Zxxh13fPwGmurK9C6a9zTq96a11w+GgZ8T68/c399/f078B7g8L9Xh9fie4wg7+nrz7LGPfz93fRzzzpqqevfUUD39Pfv2k8/X/f1ul8A30vq/Lfrs966v5f4/HsZSF111BPMv4PD29f5/ahGvXXc0+/3kpr3DPh7RgDfS2qOVfN+wdRd6/eSAP/t1Ri3jq+hr/vW99/e4Se+vgaBfs8I/HvPYc8liO9xddYSyPfEOr/HBXtP1Nf+g4d+Zu/UOrFR7tG5TeOMi/AiuAMAABErlMGd54y72NhYn23S0tI0YMAAffPNN9q4caPefvttXX/99TXapaSk6NRTT9W6deskSS+++KLf4M5ztt3hM9bqsmHDBo0dO1Z///vfdd1113ldy8rK0ujRo1VYWBjQWPPnz9f8+fPrbDdx4kS/155++mkZDAaNGTPG6/HWrVs3aOlOz+AOAELNaDQoPsaiwhJbyMaMj7HIGMAeeyajoWovPjbBAwAAzZ+vgNc7JA0u5HT5GKjuDw74eNDHPUPxYSW/H1I6rBDvgPTQmdl06IPAXdomymI2yhbClRosZiPB3RGK4A4AAPjkdAb3YjKQkM3fEpqhqqE2+fn57uP4+Hi/7aqXwZSk5557TpdddpkSE2u+EO7Xr587uNu6das2btzoc4nHr7/+WlLlDLFBgwYFVfO///1v/fOf/1SfPn1qXOvZs6feeecd5eTkqHv37kpOTnZf++yzzzRhwgR9+OGH9Z4FV1ZWphEjRuiXX36RJLVs2VK33nqrrrjiinqNV5vqWYRNpTFmkwKIbMnxUSEN7pLjo0I2FgAAQHNR/TO9/x/t+bCSP1aLSWf0bKv//bQ3ZGOe2aut1yoQOHIQ3AEAAJ+CDc082/sL6MIZ3P3555/u45YtW/ptN2jQID366KOy2WzKz8/Xu+++q1tuuaVGu169enmdf//99zWCu4qKCq1atUqSdM011wQdUP373/+u9fpxxx3nc+nNQYMGqUePHvrHP/6ht956q9b993xxuVyaOHGiO7RLTEzUvHnzAlrCsj48Z9zVZw/Aiy66KKj2ofx7BaB5iI4yKynOqvziigaPlRRnVXQUP0oDAAAgOJeedUxIg7u/nnlMyMZCZOGnDQAA4FOw4Ybdbncf+5vR1JAxG8ozuGvTpo3fdomJierdu7fWrl0rqXL2mq/grmfPnl7nBw4cqNFm9erVKikpkcVi0TXXXFPf0utl4sSJGj58uObNm6fRo0cH1ff555/X8uXLJVXOhnvuuecaLbSTvPc+nDFjhs+Zi4dbsWKF5syZI0l69dVXa/0zrXbzzTcrIyOD4A44SqUmx6i03K6KBixPZLUYlZrse59UAAAAoDbdOrbQX07vpOXf7WrwWH8Z0FndOrYIQVWIRAR3AADAp2CXEwxlyFYtlAFLZmamJCk6Olqpqam1tj399NPdwd2GDRuUl5fntRSlJLVo0ULJycnKy8uTpBrXpcpwSZIGDx6stLS0hj2BIPXs2VPDhg3Ts88+q9NOO63GDEF/PvzwQ82dO1dS5QzJqVOnasCAAY1ZqioqDs2AadOmTUAhYXp6uvu4Q4cO6tSpU519zObKl74Ed8DRyWQ0qF16vPZlF6nCFvz3AavFqHZp8VV71gEAAADBG3VpD23anqO9B4rqPUaHVgka9deTQlgVIg3BHQAA8MkziFu9erX27dtXo83WrVvdx57hiz8Oh8N9nJWVpW3bttVoY7PZfB43VPWMu2OPPbbOtv3793cfu1wu7d6922cw1717d3333XeSVGMfuoqKCn3xxReS6rf8YyhMnDhRX3/9te666y4tWrRIKSkptbb/9ttv9fDDD7vP//GPf2jo0KGNXWZAf3dCqTFCZgDNg9lsVPuWCcrJKw1q2cykOKtSk2MI7QAAANAgsdFmTRs3UI+8uEZ79hcG3b9DqwRNvXWAYqOJdo5k/OkCAACfPMONpUuXKiam5tJg2dnZ7uPy8nL3sb/Zep7B3dNPP62nn3661hpCFdxVVFTo4MGDkqQTTzyxzvbdu3eXwWBwP4+ysjKf7S666CJ99913GjBggPr27et17ZtvvlFBQYFOPfVU9ejRo4HPoH6SkpI0adIk3Xnnnbrrrrv0n//8x2s/OU+//PKLxo8f7/6a33nnnU0WOIYyoI3E+wGILCajQS1TYpUYZ1VeUbmKSm3y9d+WwSDFx1iUHB/FnnYAAAAImdSkGM2862y9tnhTUMtm/mVAZ43660mEdkcB/oQBAIBPnsHd448/XmNGmSTNmjVLL7zwgqTAgjvPMZ966ildfvnlNdqUl5e7948L1UysP//8013TCSecUGf7+Ph4denSRdu3b5ckdezY0We7q6++Wq1atdI555wjg8F7FsbSpUslhW+2XbWLLrpIw4YN0wcffKAJEyZo9uzZMhqNXm22bt2q0aNHq7i4WJJ0++23a/z48U1Wo+efc2Zmps+ZmIfLyspyH+/ZsyegWXTVbTz/rgI4ekVHmdU6yiyn06UKm0PlNodcrsrALspiktVikpEZdgAAAGgEsdFm3XHVKRrUv5OWrNquVT9nyOZjL2aL2agze7XVX888hj3tjiIEdwAAwKdglhM0m801gitfgg1MQhWw/P777+7jfv36BdTnrLPO0vbt23XKKaeodevWPtuYzWZdeOGFNR4vKirSF198oTZt2mjQoEH1KzqEJk2apI0bN2rFihV67LHHNHnyZPef144dOzRq1Cj3Xn133323br/99iatzzO4mzhxYtD9x4wZE1T70tLSoO8B4MhlNBoUHWVmVh0AAACaXLeOLXTPiNM0/qpTtDOzQDszC1RucyjKYlLnNonq3CZRVosp3GWiifGTCQAA8CmQ5QQtFouGDRum2267zWtWmtNZ81Ni0qHApGXLln5nsUlS27Ztde211+qqq64KsmrfNm3a5L5vIHvcSdINN9ygbdu26bHHHgv6fp999pnKysp0/fXXy2wO/8utmJgYzZkzR8OHD9e7774rm82madOm6Y8//tDo0aPdS57ed999uvnmm5u8Ps+/a/Pnz/faY9Cf//73v+79+D799FN16tSpzj6DBg2Sw+HQJZdcUv9iAQAAAAAIMavFpG4dWzCrDpII7gAAgB/Vs6AsFovi4+N9thk3bpzPYMrfUpktWrTQs88+q4suukgWi8Vnm6ioKH3++ecymUL3ibJffvlFknTmmWcG3KdDhw569dVX63W/RYsWKTY2VsOHD69X/8bQtWtXzZ07V2PHjtUHH3ygAwcOaNOmTcrLy5PZbNbUqVM1bNiwsNQWFRWlyy+/XBdddJF69+7daPeZOXOmTj75ZBmNRhUVFfn9ew3g6OJyuVRRUSGDweDe39RisQQ0kxwAAAAAQs1YdxMAAHA0MhqNGjFihD7//HN1797dZxt/s8n8zbjr3bu3LrnkEr+hXbVQhnZ2u10///yzJGnw4MEhG9efjIwMrV27VkOHDlViYmKj3y8YAwcO1PTp0yVJq1atUl5enmJiYvT888+HLbSTpBEjRuipp57ShRdeKKvV2mj36dWrlyTpueee06BBg7R169ZGuxeA5sPlcslut8tms6miokI2m83vB1AAAACAxmC327Vr1y5lZmZq//79yszMlMPhCHdZCBNm3AEAAJ/GjBlT79kGkfSG57p161RQUKD09HQNHDiw0e+3aNEiSZVLbUaagwcP6tNPP/V6LCUlJSwzz3JycvwGvIEoKipyH+fm5io2NrbOPuXl5Zo8ebK+/vprSdKoUaP09ttv17psKwAAAAAAjc3lcrm3saiWlpYW0g82o/kguAMAAD41ZImwhgQyobZy5UpJ0mWXXdboL3hdLpcWLVqkc889V126dPHbrqKiQsuWLdOQIUMatR5Pn376qaZMmaKsrCxJlfsI7t+/X/v27dP111+va665RnfddZdSUlKarJ7JkyeHJOS9+uqr69UvKytLI0eO1FtvvaU2bdo0uA4AAAAAAICGIrgDAAAh11jLOZSWlgbV3uVy6YsvvpDVatVNN93UKDV5Wrt2rfbs2aNp06b5bWOz2XTXXXdp5cqV2r9/v2699dZGrWnXrl2aNm2ae5ZZdHS0xo0bpzFjxmj9+vW69957lZWVpXfeeUcff/yxRo8ereuvv17JycmNWte1116rmJgY7dy5Uz169FD79u2VkJCg+Pj4gELjjz76yP11XrRokdq3b1/vWqKiourdFwAAAAAAIJQI7gAAQMg1VnD37bffBtX+u+++0969e3X11VerVatWjVKTp4ULF+qEE07Q6aef7vO60+nU/fff754F+OyzzyoqKkojR44MeS0HDhzQv/71Ly1cuFA2m00mk0mXX3657rzzTrVt21aS1L9/fy1evFhPPPGEPvroIxUXF2vu3Ll65ZVXdPnll2v48OE66aSTQl5btYbMOIyOjnYfx8XFRdx+ggAAAAAAAPVBcAcAAEKuIcHdpEmTFBcXp9jYWEVHR8tqtcpoNGrHjh1699133e0CmZW1YMECRUVFec1qy8zMVElJSb3r86eiokKffvqpbrnlFm3bts1nm1deeUXLli3zeuyJJ56Q1WrViBEjQlLHnj179Nprr+n9999XWVmZLBaLhg4dqltvvdXn8p0tWrTQU089paFDh+rJJ5/U5s2bVVpaqgULFmjBggU65phjdMkll+icc85Rjx49GrSEaiT773//q9zcXI0dOzbcpQAAAAAAgKMYwR0AAAg5u91e775/+ctftH79en3zzTf6f//v//ndA61Dhw61jpOdna0vvvhCt956q9q1a+d+PCsrS2PGjFFBQUG9a6zN3LlzNXfu3KD6TJkyRVFRUbriiivqdU+Xy6XVq1fr3Xff1RdffCGHw6H09HTddNNNuu666wKabThgwAAtWrRIH3/8sV544QXt2LFDkrR9+3b3c0pJSVHfvn3Vs2dP9erVS926dVNSUlK9ao4k8+fP1+OPPy5J6tKliwYNGhTmigAAAAAAwNGK4A4AAISczWard9+BAwdq4MCBuuOOO7Rnzx69/PLLeu+997wCvNatW+uUU06pdZz58+erZcuWNWZQ9ezZU/PmzdOqVat0wgknqEuXLkpMTFR8fLxMJlO96w6H7du3a9myZVq0aJH27t0rq9Wq8847AzAGAQABAABJREFUT0OHDtW5554rszm4l3pGo1FDhgzRZZddps8//1zz58/XunXr3NcPHjyoFStWaMWKFe7HUlJSdMwxx6hNmzZKT09X165ddeWVV3qNW15err179zbsyR4mKyvLfbxnz556h8UrVqzQnDlz3Of33Xef3nrrrUZdIhQAAAAAAMAfgjsAABByDZlx56lDhw6aMmWKTj/9dN1zzz1yuVwym82aMmVKraFUbm6u3nrrLT333HOKioqqcf2kk05qtsHMr7/+qpUrV+rTTz/V5s2blZiYqAEDBuhvf/ubzjvvPMXHxzf4HkajURdddJEuuugi/fHHH3r//fe1bNky/fnnnzXaHjx4UAcPHpTJZNLZZ5+tTp061WhjsVj0yiuv6IMPPmhwbb6MGTMmZGOVlpZq3LhxWrhwYZPsiwgAAAAAAOCJ4A4AAIRcRUWF0tPTNWrUqJCMN3jwYH344YfKyMjQo48+qr59+9ba/rXXXtPw4cN1xhlnhOT+4ZSZmanvv/9ea9eu1TfffKPi4mL17NlTgwYN0qOPPqpevXo16kzBY489VhMnTtT999+vH3/8UV988YW++uorr338jjnmGP3zn/9U165dfY5hNBr1+OOP6/jjj1dCQoJOOOEEpaWlKSEhQTExMY1WOwAAAAAAQHNDcAcAAELuhhtu0LRp02S1WkM25uOPP660tLSA2ubk5OjRRx8N2b3DZeXKlXr55ZfVvXt39e7dWzfccIO6desWliU9DQaD+vTpoz59+mjixInuQPGHH37QzTffrM6dO9fZf+TIkU1SKwAAAAAAQHNFcAcAAELu5JNPDvmYgYZ2kjR9+vSQ3z8czjvvPJ133nnhLsOnNm3aaMiQIRoyZEi4SwEAAAAAADhiGMNdAAAAAAAAAAAAAACCOwAAAAAAAAAAACAiENwBAAAAAAAAAAAAEYDgDgAAAAAAAAAAAIgABHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAOD/s3fXcVGl3wPHP4N0magodnfr6tq1a2K3GAgqdnd3d7diu9jt2q6uLXatBShi0M3M7w9+zBekZmAId8/79eLlMPc+zz0zDMN4zz3nEUIIIUQ6IIk7IYQQQgghhBBCCCGEEEIIIdIBSdwJIYQQQgghhBBCCCGEEEIIkQ5I4k4IIYQQQgghhBBCCCGEEEKIdEASd0IIIYQQQgghhBBCCCGEEEKkA5K4E0IIke5FRETw119/MX78eCZPnqzTuT98+IC/v3+Sxj58+BA/Pz+dxpOQw4cP8/LlyySNdXd3JyAgQMcRJY9SqUzrEISWrly5gru7e1qHIYQQQgghhBBCCPGvJYk7IYQQ6ZKHhweHDh1i+PDh1KhRg169evHHH3+wd+9etm7dqrPjrFu3jpYtW3Lr1i2txz548IAGDRqwfv16QkNDdRZTfG7fvk3Lli0ZNmwYr1690mrskSNHqFWrFtOnT9d6bErw9/enZcuW3LhxI61DidPRo0fx9PRM1WMeOXKEefPmERYWlqrH1cbNmzf57bffmDFjBl5eXmkdjhBCCCGEEEIIIcS/jiTuhBBCpDk/Pz9u3rzJ1q1bGTFiBHXr1qVevXqMGTOG48eP4+3tHWP/BQsWJCnR9qPQ0FBOnz6Nu7s7dnZ2zJs3j4iICI3Hd+vWjV9++YVFixZha2vLw4cPkx1TQoyMjFAqlZw4cYL+/fvj4+Oj8divX78SEBDAzp07adasGWvXrk3BSBO3e/duXr58Sc+ePZk3b16qJD618eDBA5o3b87BgwdT5Xjfv39n9uzZbN68ma5du6bbqjYjIyPCwsJwdnamUaNGOk2iCyGEEEIIIYQQQgjQT+sAhBBC/DeEhITg7u6Om5sbHz584M2bN/zzzz+8efMGDw+PWPsrFAqyZctG9uzZyZEjB1mzZiVTpkyYmJhgYGDAmzdvqFKlSrJiOn36NL6+vurvCxQoQIYMGbSaY/LkyVy7do1//vmHbt26sXnzZipVqpSsuOJjaGgIQMaMGdmzZw8ZM2bUeOy3b9/Ut+3s7HB0dNR5fJry8/Nj48aNAKhUKlxcXChcuDBt27bV2TEuXrxI5cqVMTc3T9J4IyMjfH19GTt2LGPHjtVZXJp48OABp0+fpnfv3ql6XE3o6//vo2PNmjVp2bJlGkYjhBBCCCGEEEII8e8jiTshhBDJolKp8Pb25uvXr3h5efHlyxc8PT359OkTnz9/5tOnT3h4ePDlyxdUKpV6nL6+PjY2NuTPn5/q1auTK1cucuXKhbW1tfrfqERVSnF2dlbfnjJlCh06dNB6jmzZsmFnZ8fq1asJDg5m5cqVbNmyRZdhqhkZGQFgbm5O1qxZtRr7+fNn9W17e3v09NKu6H716tXqKsoqVaqwadMm9WPThSNHjjB27FjKlCnDpk2bkpS8i56gOnfuHGZmZhqN27VrFytWrMDa2hoXFxeNj/fp0ydat24NQPfu3dNl0g5iPi9jx44lS5YsaRiNEEIIIYQQQgghxL+PJO6EEEIk2eLFi7l06RIKhQJjY2OMjY0xMTHBzMwMMzMz8uTJQ8mSJbGwsMDCwgJLS0ssLS158OAB8+bNo3jx4gwYMICiRYumeuyurq7cv38fgPbt29OpU6ckz9WpUyfWrl2LUqkkPDw8wX3v3r1Lnjx5sLKy0vo42lYDRvfPP/8AYGVlRc6cObUeHxwcTGBgYLITNS9evGD79u0AZM6cmalTpxIQEEBAQECy5o1y6dIlJkyYQEREBPfv38fe3j5JyTsDAwP17YwZM2JpaanROBMTEwD09PS0eq4CAwPVt0uWLKnxuOfPn1OkSJFEE7GhoaEsWbKEfv36aVWp+aPoz4sQQgghhBBCCCGE0D1J3AkhhEiy4cOHM3z4cK3GfPr0CScnJ1QqFadOneL06dO0a9eOSZMm6bTqKjErV64EIH/+/EyYMCFZc+XIkYNy5cpx//79BCulbt++jYODA4UKFcLZ2RljY2OtjpPUxJ2Pjw9fv34FoHTp0lqPDwkJwcnJic+fP7N9+/YkJ+8iIiKYOHGiOrn5/ft3mjVrlqS5NHX//n369OnDxo0btUreJSdJmprWrVvH8+fPcXJyokmTJvEm8GbNmsWePXs4d+4cq1atSnKyPC0rNXUhIiKCzp07M2LECKpVq5bW4QghhBBCCCGEEELEIok7IcS/ikqlIigknLBwJQb6epgY6aNQKNI6LPH//Pz8cHBw4Pv370DkmnJOTk40bdo0Rgu+lObq6qquFJw1a5a6SupH3t7eKJVKjeZs3749tWvXply5cjHWk4sSlVwJDAzk4cOHjB49mmXLlmn1+kxqMunNmzfq29om7qKSdteuXQOgR48ebNu2LUnJu02bNvHgwQMA2rZty6xZs9Lt7+fPkrgzMjLi1atXGifR379/T7du3Th16lSSfobJSdy5uLgwbtw4jfY1MTHBwsKCggULUqFCBWxtbSlQoECSjw2gVCqZO3eu+jUohBBCCCGEEEIIkR5J4k4I8dN7+9GXy/fcePH+O6/dfPAPClNvMzcxoJBNRormzUydCjbks9as3Z3QvYCAAPr378+LFy8wMDDA0dGRfv36pfg6dnGZO3cuAL169aJy5crx7nfixAmmT58eY22+xCxbtkyj/U6fPs3ixYsZMWKExnPHlzTZtWuXxnGuWLGCFStWaHzMH7148SJJybvbt2+rn5tWrVoxc+bMdJu0A9J1bNFFT3hfv3493v1mzpzJ8ePHMTIyYunSpUmumkxOQrN58+Y0aNCAly9f4ujoqG6P2rlzZ/r3769OoPv7++Pp6cmdO3fYt28fN27cYM2aNbRp04bx48djYWGh8TFVKhXfv3/nxo0bODs7c+fOnSTHL4QQQgghhBBCCJEaJHEnhPhp3XryiT8uvOLxP1/j3cc/KIwHL7/w4OUX9v/5klIFs9KufhEql8iRipEKX19fHB0duXfvHtbW1ixdupTy5ctrNPbVq1fcunWLzp076ySWEydOcOfOHUqUKMGwYcPi3GfJkiV0796dLl26kDVrVoKCgihZsiRZs2bFwsIiRrLx6NGjjBs3jjFjxtC9e3edxBifqGTSp0+fmD17NgMHDsTS0pIuXbpgY2ODQqGgUKFCsVpwLliwABcXFwCOHDmSpPX1fmRmZqbxvp6engwdOpTw8HBatGhB69atdZoY8/X1Zc6cOQwfPlwnjw1+noq76Im7hJJxUa/ZbNmyUaNGjSQfL6GfW0REBD4+PvHGYWhoiKGhIZUrV6ZUqVLcvHkTgJ49e5Ijx//eky0tLcmVKxcVKlSgZ8+ezJkzB2dnZ1xcXHj9+jVbt27F1NQ0wTinTp3KsWPHCAoKSnTdSSGEEEIIIYQQQoj0RBJ3iVi5ciUDBw5M6zCEENH4BoSy7qArl++5az328T9fefzPV+pUsMGxdRkszVK/2uu/5u3bt/Tv359//vmHmjVrsmDBAo2rfT5+/IijoyPu7u68fv2acePGJSuh4u3tzezZszE1NWXx4sVxVvvdvXuXtWvX4uLiwpIlS/jtt98SnHPz5s2EhYUxc+ZMHjx4wIwZM+JtvZkUX758IVu2bDHuy549Oy9evOD3339n4sSJNG3alNq1a8c7x/PnzwHInTs3xYoVU9+vVCr5+vWrzpJdcfH29qZPnz54eXnRo0cPxo0bR9OmTTEwMGDAgAFUqVIlWfNHREQwbNgwbt26xV9//cWqVauStI7fzyq1E4zxJe7Cw8MZOXIkT58+Zfv27TEScXGJHndCbXL19fWZNGkS7u7uXLhwgQcPHrB27dpE24IOHjyYPn36AJGvc1dXVyZMmEBwcHCC44QQQgghhBBCCCHSmiTuErBy5UpWrVoliTsh0pE3Hj5M3XCDb77JO/l66Z4bD19/YZpjdfJL+8wUc+bMGSZMmEBAQACDBw+mf//+Gq+R9e7dO3r37o27e2SCdseOHbx9+5alS5dibm6epHhmzpyJl5cX8+bNo2DBgnHus3TpUgA+f/5Mjx492LBhQ7wVSidOnODJkycAmJqakidPHoKCgnSWuIuIiKBz586cPXs2xv16enrMnz+f5s2bM2zYMK5cucL06dMxMDCINUdwcLA6cVepUqVY2+vXr4+trS29e/eO9zlJKn9/f/r27cvLly8ZN24cPXv2BMDAwIDnz58zePBgnR7v06dPdO3alQMHDlCkSJFkzfWztMpMD4m78PBwRowYwalTpwCws7PTKHmnjREjRnDhwgUgsjXs4MGDE0z4ZcmSJcYFAnnz5uXPP//kxIkTOotJCCGEEEIIIYQQIiWky8Sdp6enTk/2JMXq1atZuXLlT3PiToj/gjcePoxffS3GGnbJ8c03mHGrrjJnQE1J3unY169fmT9/PocOHSJv3rysX7+eChUqaDz++vXrDB06FG9vbyAyKdasWTPq1q1LaGhokmLauXMnR48epU2bNrRq1SrOff7880/+/vtvIDK5NGXKlHiTdoGBgSxcuBCAUqVKsWzZMvLkyZOk2OLz9u1bPD0949yWPXt2xowZw/jx43FxcUGlUqnX7ovu0aNH6laBP67np6enh1KpZP/+/Rw4cICGDRsyd+7cJCdGo/v69St9+vTB3d2dVatW0aBBA/W26AnGqKRictja2vLs2TNMTU1ZvXp1spN28PMk7pIS5/Pnz+nRowffv39P1rGj/0yje/v2rc6Td0WKFCFv3ry8f/8ePz8/Hj9+TLly5bSaI7H2mkIIIYQQQgghhBDpQbpL3Hl6emJnZ8fp06fTLIb9+/ezfPnyNDu+ECI234BQpm64obOkXRT/oDCmrL/OipH1pG2mDnz8+JF9+/axbds2QkNDcXBwYMCAARpVoIWGhhIcHMyWLVtYu3YtSqUSU1NTevXqRa9evbCwsEhyXCdOnGD27NkUL16cKVOmxLmPv78/s2bNAiITSytWrKBevXrxzrlkyRLc3d2pXr06q1atirHmm0ql0kni5/79+4SEhMS7vU2bNuzatYtHjx5x8OBB2rVrFys5d/36dfXtX3/9NdYchoaGhIeHo6+vT+PGjXWStHv//j0ODg5YWFjg4uKCjY1NjO1xVQbqQubMmalevXqKzJ1eaVrBGl2xYsXYunUrx48fp1SpUuTLlw9zc3ON1i08cuQIc+bMAeDgwYPkzJkz3n112TIWoHDhwrx//x4g3oS2EEIIIYQQQgghxM8uXSXuopJ2USdl0kqjRo1wdnbWSRWAEEI31h10TXZ7zPh88w1m/cGHjOwWu42g0ExwcDAdO3bkxYsXKJVKMmTIQIMGDfD19WXy5MkEBwerv4KCguL8NyIiIsaczZo1Y8yYMcmq2AkMDGTRokXs3LmTDBky0Lt3b27cuIG3tzfe3t74+Pjg6+uLr68vr1+/xt3dHYVCwfz58xNM2v311184OztTtWpV1q5di7GxcYztd+7cYenSpfTv3z/OZJmmrl69CkBYWFicyS6FQsHgwYNxdHQEwM3NLVbi7tq1awAULVo0VgIN/pdEK1CgAC1btkxyrNGPN3r0aNq3b4+Tk1Oc6wimVOIupSRlHT53d/cY6wmmlKQmiIsXL07x4sW1Hhc9uWdpaanxepW6EP3YYWG6vYhDCCGEEEIIIYQQIr1IN4m7qKTdu3fv0rw9VaZMmdi2bRs9evTgxYsXaRqLEAJuPfnE5XvuKXqMS/fcqFMxN1VKxl89IuJnbGxMpUqVePbsGRC5NtuZM2di7GNmZkb+/PnJmzcvuXPnJleuXFhbW5M5c2YOHjyIi4sLYWFhlCpVivHjx8dKQCWFiYkJrq6uqFQqwsPDGT16tHpbjhw5KFeuHKVKlcLY2JgjR44AMGzYMJo2bRrvnF5eXowaNYoSJUqwZs2aWEk7iGxJ2apVK/r06UOZMmUYOXIkVatW1Sp2Hx8fLly4gEKhSHAds9q1a2NjY8O3b9+oW7dujG1+fn48fPgQiFzLLi5RcxsZGWkVX1w+fvzIpk2b2L59O4UKFYp3v+jJvG/fviX7uEqlMtlz/EilUqlvnz9/XuPqsV27drFixQqsra1xcXHR+HifPn2idevWWseZlIq7n5W/v7/6dubMmdMwEiGEEEIIIYQQQoiUk24Sd1evXuXdu3cJ7hMaGsoff/xB586dUzyeTJkyMW/evCSdRBNC6NYfF16l2nEkcZd0ffv2Zf/+/YSGhqJQKChRogS//PILlSpVolSpUlhbW8cac+HCBUaOHImbmxtWVlYMGTKEtm3b6iwZoVAomDRpEh06dEClUlGxYkWaN29OgwYN1C3+PD091e/17dq1o2/fvvHOFxISwoABAzA2Nmb9+vUJtpVs164dBgYGjB07lu7du1OvXj1GjRqVYEIrurVr1xIUFIS5uXmCz4dCocDJyQk9PT0yZcoUY9u1a9fU69vFtx6Zn58fAPr6yf9IYG1tzebNmxPdL3rFXXptbRm9AtTKyirOysG4RCX49PT0tKpGCwwM1C7A/5fWFzulpjdv3gCRjzkp1YJCCCGEEEIIIYQQP4N0k7hr27Ytfn5+zJ07N87tKpWKESNG8Oeff1K4cOEkta3SlqYn6YQQKeftR18e//M1VY71+J+vvPvoSz5ry1Q53r9Njhw56Nu3L3p6erRq1YpcuXLFu+/79++ZM2cO58+fx8jICEdHR/r27auT9dV+VLZsWQYNGkTp0qWpU6dOjG3h4eEMGzaMr1+/Urt2baZNmxbvPGFhYYwYMYJ3796xZ88esmXLluixbW1tCQ4OZvLkyVy4cIGrV6/i6OiIk5NTgomyy5cvs2XLFgDy5cuX6HHatm0b5/2nTp0CoGDBgpQtWxaAhQsXMnLkSCCygkmTloMXLlygUqVKWFrq/ndDF22pbW1t1dWeuhK9ii89fx5IbuLO39+f8PDwWEnf9Ob9+/e8ffsWgAoVKqRqi04hhBBCCCGEEEKI1JRuEncAPXv2JCwsjMWLF8faNmvWLM6ePQuAnZ1daocmxH+W57ekVYFoSqlUEhwcc+064yCVusLo5F9vUvT4Pzrx11va1CucqseMLkcW0zQ7ti4MHDgwwe0BAQGsW7eOLVu2EBoaSpMmTRg5cmSca6/dvXsXHx8fateunWCrSE0MGDAgzvvnzJnDnTt3KF26NEuXLo03mebv78/IkSO5evUqW7ZsoUCBAhofu2PHjnz//p0lS5YQFhbGqlWrePjwIevWrYuzkk6pVDJlyhR1q0ZtW2xGCQkJ4dKlSwDqikJvb2/27t2rTtx5e3ur94+qzPuRn58fY8eOVVfT6SJhklLrk+myZWZoaCjwc63HFxAQEO+2+H6+f//9N9OnT2fu3LnptvoRYNmyZerb8f0+CyGEEEIIIYQQQvwbpKvEHUS28voxcRcaGsqrV5Gt8hQKRYx1Z1Laf6kFlRBx6TPrbFqHkKpO/PWGE6mcLIzu6CLbNDt2SoqIiODAgQOsWLECLy8vypcvz9ixY6lQoUK8Y3Lnzs2CBQuYPHky7dq1o1OnTuTIkUNnMW3ZsgVnZ2fy5cvHhg0bMDMzi3O/o0ePsnTpUtzc3Gjfvj3+/v4cP36cgIAAAgMD8ff3JzAwkMDAQPV9Ubf9/PwICQkhICAAAwMDdcLq8uXLuLq6Ur58+VjHCw8PVyfUihQpgr29fZIe36VLlwgMDCRDhgzY2ka+rv7+++8YSTMfHx/17aCgoDjnWbFiBd7e3nh7e9OlSxe2bt2qbjOaVFFJMV2LLzmVFFExpudqux9VrFhR6zENGjTg9OnT9OrVi379+jF48OB0tW6eUqlk+fLlHDt2DAAnJydq1qyZxlEJIYQQQgghhBBCpJx0l7iLi6GhIRs3bmTixIkcPnwYBweHWPv4+Piwf/9++vTpo/NtQgghkkalUnH27FmWLl3K69evsbGxYfHixTRr1izRsTly5GDbtm2MHz+e1atXs379epo2bYqjoyNFihRJVlxnzpxh/vz5WFlZsWnTpgSryO7fv4+bmxsA+/fvj/Pvgr6+Pjly5CB37tzkzp2bc+fOAZEtLO3s7MiZMyempqZ06NCBp0+fAvDly5c4j2doaMjRo0cJCQmhYMGCSb6AxMXFBYhMzEQlPE+ePBmjguzDhw/q29++fYs1x507d9ixY4f6MVarVi3Bqi5N6TLBFp0uK/mi1pwzMjLS2ZwpzdXVNd5tEydO5MiRI3FumzRpEteuXWPNmjW4urqybNkyLCwsUipMjXz79o0bN26wZcsWXF1dMTExYdSoUXTt2jVN4xJCCCGEEEIIIYRIaT9F4g4iTxg6ODhw+PBhRowYEWv769ev2b9/f4psE0IIoR2lUsnZs2dZvXo1z549I1OmTIwbN44uXbpoVcFkaGjIggULyJw5M9u3b+fIkSMcO3aMVq1aMXr0aDJnzqx1bLdu3WLUqFGYmZmxceNG8uTJk+D+9vb27N27V50UsrS0pFKlSly4cAGAX375hc2bN8do53nw4EEAateuTfHixdX3L168mNatWxMcHJxgu824Wodqw9PTk8uXL6vjB/j8+TPnz5+PsZZZ1LpwBgYGfPv2DX9/f/U6g76+vowdOxalUknhwoWZP38+pUqVSlZcUaIn2OJKGGorqkVmVLJNF37GxF1CsSbUbtbCwoJRo0YxZswYrl27RteuXXF2dk6RNQ3j0rJlyxhVfiEhIeqKx0KFCtG7d2+6d++e4LqZQgghhBBCCCGEEP8WP03iDhJuW5na24QQQsT2/ft3Dh8+jLOzMx8+fMDMzAwnJyfs7e3VCSFtKRQKRo0aRUhICHv37kWpVOLi4sKVK1fYtGkTxYoV03iuO3fu4OjoiEqlYs2aNTGSavHJlSsXLVq0wMPDgx49elCrVi0ASpcurd6u6Rp8BQsWZPjw4Zw/f55ChQppHLe2Dh48SEREBJUqVVK341y5ciUhISFkz55dvV9U4q5AgQL4+/vz+vVrypUrh0qlYvTo0bx//57WrVszZcoUTExMdBZf9MSdLtdVCw0NJSQkRCfJNj8/PwCdPu70zNbWlvXr1/P69WueP3/O9OnTWbhwYaoce/369THar27YsIE9e/YAMHfuXMqWLZsqcQghhBBCCCGEEEKkBz9V4k4IIUT68+7dO65fv87Fixe5evUqYWFhmJiY0KlTJzp27IiRkRH//PMPAQEBBAQE4O/vr74dtSZc9O/j+lIoFGTMmJGcOXPy6dMnALy8vBg0aBAnT57UKHF24sQJxo4dS0REBCtXrqRKlSqx9vny5Qvu7u58+PABNzc3VCoV/fv3Z+rUqTGSQcHBwerbxsbGWj1fdnZ2dOzYUasx2ggLC2P37t0A9O3bF4h87Hv37gWgaNGi6n1fvHgBQL58+VCpVLi6ulKuXDkWL17MlStXmDx5coq0JgwPD0dPT4/69eszbNgwnJyc6NOnD61atUrSmnLDhw8nb968/P777zqrkIta/8/U1FQn86V3CoUCe3t7xo8fD8CxY8cYOXJkstcz1ETOnDljVJna2dmpE3e7du2SxJ0QQgghhBBCCCH+UyRxl848f/4cFxcXbt68iZubG0FBQZiZmZE9e3bKlStHo0aNqF27drqqBgwJCeHAgQOcPHmS58+fExISQq5cuShfvjxdunRJ1gm3lJxbCKEbHh4eTJkyJcZ9QUFB7NmzR33yPS6mpqaEhYURFhZGzpw56dy5MxkzZiRTpkyxvqKqngIDA2nXrh2vX78GIpOGHz58IH/+/PEe5/379yxbtoxjx44B0LFjRwICAli/fj0eHh64u7vj7u6Oh4cHQUFB5MmTh4oVK1KxYkUqV64MxG5BGL1iTNuKLIVCoXWyTxvHjx/n06dPVK1alTp16uDm5saECRPU2+vWrQv8L0kJkYk7MzMzrly5gkKhYO/evWzcuFGn1XDRtW/fnoYNG2JjY8Po0aN59+4dkyZNYseOHWzcuFG9Jp+mBg4cSJYsWWK0AU2ur1+/ApE/X23aeQYFBQGR7Tu1Gefr66tdgP9PpVIlaVxcfv/9d2bMmEFQUBAqlUqnrUe1UahQISpVqsSdO3c4ceIEY8aMSVJbXCGEEEIIIYQQQoifUZom7iIiIjRuL/Zv5+HhwaxZs7h+/TpdunRh0qRJ5MmTB6VSiYeHB1euXMHZ2Zn9+/dTqlQplixZQr58+dI6bJ48ecLQoUN59+4d9erVY+3ateTOnZvnz5+zevVq2rdvT7du3Rg7diwGBgbpZm6huY0TGqXo/EqlMkb1EkRWMEWtd7Ro5x2evk3+GliaKlEgCyO6VEq14/0bVK9enerVq3P9+vUY9xsYGFCkSBGKFi1Kvnz5yJcvHzly5CBHjhxYWVlhbGxM9+7duXnzJrly5aJfv36JHsvU1JRly5bRpk0b9RpYFhYWCY5RKBScOXNG/f3evXvV1WcAmTNnpnr16vTu3ZtatWpplDSKnmRJ7PipbfPmzQCMGjUKiKycikrAFC1alAYNGgCo1+gDKFeuHBYWFqxevZq3b9+ye/fuFG3l2bNnTyDyff7o0aMAVK5cmaVLl2JqakpAQIDGc7m6ujJ48GBy5szJpk2bYrQCTQ4vLy8gck3EpCQwP378mGKJz+h0mbgzMzOjZs2anD17lvLly1OwYEGdza2tDh06cOfOHfUFPA4ODmkWixBCCCGEEEIIIURqSrPEXUhICH369GHDhg0pWnnwM3jw4AF9+/Yla9asHD9+HGtr6xjbc+TIQYUKFejQoQO9evXi8ePHdOzYkQMHDsRoLZXaHj58SI8ePQgICKBTp05MmzZNvS1nzpzUqlWLfv364ezsjJubG2vWrFEnY9JybqGdHFlStk2cUqkkKChmBamJiYn651m6UNZUTdyVLpg1xR/zv9Hw4cPp2LEjFSpUoE6dOlStWpVSpUolqe1hYooUKYKjoyMrV66kTJkyZM2aNcH98+TJQ48ePdiwYYP6vkyZMtGiRQt+//13KlasqPX7R9T6ZwBZsmTR7gGkoHPnzvH8+XOaNWumrkju2LEjBgYGWFhY0KhRI/UFM+fPnwciE6w1atTAwMAAhUJB9+7dUzRpF0WlUjFz5kyUSiUAt2/fpmbNmkmez9fXly5durBlyxby5MmTrNgCAwPVrTLbtGnDnDlzNB67adMm5s+fT+7cudXPsSbc3NzUSdW01KxZM65evRrj725a+P3335k9ezY+Pj7s3r0be3t7+TsvhBBCCCGEEEKI/4Q0S9zt27ePW7du0bt3b0qWLImJiQkmJibqqoDdu3djZGSEsbGx+t8vX76kVbgp5tu3b/Tr1w9vb2927twZK2kXXc6cOVmyZAmtW7fm+/fvjB49ml27dqVitP/j7e2Nk5MTAQEBFC1alEmTJsXaR09Pj4ULF9KgQQMuXrzI0qVLGT58eJrOLX4+tSvYsP/Pl6l2vDoV0i4Z/jMrW7Ys165di5XEUqlUBAcHa91OMjF9+/blzZs3dO7cWaP9+/Xrh4uLCwqFAicnJ9q2bZusi0ai/z2ysrJK8jy6pFQqWbp0KRkzZlSvUwaRFYX29vYx9g0ODlZXSFauXBlzc3MAypcvz5EjR+jevXuKx7t9+3bu3LmDqakppUuXplixYuoqQU0dPnyYyZMnq6vO8uTJg5ubW7ITd1EtRCHmmoCa0GUFnCaiEp+62v/333+nTJkyaXphEERWXrds2ZIdO3bg7u7OpUuXqFevXprGJIQQQgghhBBCCJEa0iRxFxYWxqZNm1AoFNy7d4979+7F2K5SqZg+fXpahJbq1q5dy7dv3yhevLhGFQ7FixenZs2aXL58mTt37nDz5k2qVq2aCpHGtHjxYj5//gxEtmPT14/7pWRpaYmdnR0rV65k/fr1NG3alOLFi6fZ3OLnk9/aklIFs/L4n68pfqxSBbOSz9oyxY/zbxVX5dmePXs4evQoGzZswMzMTKN5bt++TebMmRN8TzQ0NGTx4sUax2Zubs7SpUspWrSoTtZB+/jxo/p2cpNEunLkyBFevnzJ7NmzyZYtW4L7Xr58Wb0WW7NmzdT3161bl/nz5/P06VNKlCiRYrE+ffqURYsWkSFDBpYsWUK5cuVo2bIlpUuXplWrVhrNceTIEaZMmYJKpUKhUDBlyhSNE7mJ+eeff9S3tf27om0iLbm0TRQmFp9CoUjzpF2UDh06sGPHDgB27twpiTshhBBCCCGEEEL8J6RJz6FDhw7x6dMnVCpVnF9Agtv+TU6dOgVEJjM1VaNGDfXt6GsUpZYPHz7g4uICQP78+aldu3aC+7du3RqI/JkuWbIkzeYWP6+29QqnynHa1S+SKsf5r/jw4QMLFizgzp07ODg4aLxumbm5OYMGDcLe3p7Lly/r7L2/atWqOknaAbx79w4AfX198ubNq5M5kyMwMJAlS5ZQs2ZN2rZtm+j+zs7OAGTPnh1bW1v1/Y0bNwZg/fr1KRMokVXVgwcPJiQkhEmTJlG3bl0yZ87M3LlzmTRpEpcvX050jv379zNmzBiUSiUZMmRgzpw5OkvaAbx8GVnlq6+vT7ly5bQam94r7n6mz1JFixalfPnyAFy9epX379+nbUBCCCGEEEIIIYQQqSBNEnelSpXC2dmZvXv3sn//fvbt28eePXvYtm0b06dPR6FQsHLlShYtWsSsWbOYNGkSo0ePplu3bmkRbooJDAzE09MTgNevX2t0shJiVnekxUmsLVu2qBONmlRG2NjYUKxYMQAuXrwYo5IhNecWP68qJXNSu0LuFD1GnQo2VC6RI0WP8V8SFBTEwIED1ck6bZJ3xYsX58CBA1hZWeHg4ECzZs3Yv38/oaGhKR12nMLDw2Pd9/TpUwAKFSqEkZFRaocUy6pVq4iIiGD+/PmJ7vvo0SP+/vtvAHr27BljHcI8efJQqlQpTp06xfPnz3UeZ2hoKE5OTri5ucWqkPv111/p1KkTgwYN4saNG/HOsWHDBiZOnIhSqcTY2Jjly5erL+LQlUePHgFQunRpTE21W/MyKpGWWgkybY8TERGRQpGkjA4dOgCRj3P37t1pHI0QQgghhBBCCCFEykuTxF3JkiWpXLky5cqVo0yZMpQtW5by5ctTrVo1KleuDEDDhg1p1qwZbdu2pWvXrvTu3ZsuXbqkRbgpJqpNWZR58+ZpNC76WlGpfSJbqVRy5swZ9fe1atXSaFzUzxXg7NmzqT63+Pn1bV2WLJZJX5MsIVksjXFsXSZF5v4vioiIYPTo0Tx79gyIbL3XpEkTxo4dq/Fad6ampsydO5eZM2fy4cMHJk6cSP369dm4caN6LdSUEB4ezsOHD9m6dSuDBw+mSZMm3Lx5M8Y+YWFhPHjwAIj5/qMtXbVUfP36NTt27GDx4sVkzZo10f2jknt58+aNs0qtXbt2KJVKZs6cqZP4ooSFhTF06FAePHjA/Pnz4/ybPmrUKIoXL46DgwOnT5+ONX7ixIksXLgQiFy7b9u2bTRs2FCncSqVSu7cuQNAgwYNtB4flRhLrcRd9ETct2/f4v2K+rzwsyXumjZtql6D0cXFheDg4DSOSAghhBBCCCGEECJlpUniTkTKkiULVlZW6u+jqu8S8/37d/Vta2trnceVkHv37uHl5QVEnljXdO2fkiVLqm+fO3cu1ecWPz9LM0OmOVbH3MRAp/OamxgwzbE6lmaGie8sEqVSqZg4caI6CZ8/f362b9/O0qVLKVu2LHp62v3Zad++PTt37iR79ux4eXmxYMEC6tevz+bNm3Vy4YK3tzeXLl1i6dKl2NnZUblyZezs7Hj48CGtWrXiyJEjMdoTQ+QafH5+fgDUrFkzScd98OAB/fr1S3b8ERERjBs3jiFDhmi03umJEyf4+++/USgUzJ49O85qspYtW2JmZsbNmzfZs2dPsmOEyKTb8OHDuXfvHhs3bqRFixZx7mdoaMjq1avJnj07Q4cOZe3atahUKjw9PenZsyf79+8H/leVGdVGUZcePXqEr68vAL/99pvW46O3/E4N0RPA1atXj/fr+PHjQOpf8JNcJiYm6teLt7c3x44dS+OIhBBCCCGEEEIIIVKWfloH8F+mUChYunQpS5cuxdvbGzs7O43GRbXwAtRtIlPLvXv3YhxbX1+zl1CRIv9bO+zZs2dERESQIUOGVJtb/Dvkt7ZkzoCaTFl/nW++ya+6yGJpzDTH6uS3ttRBdCI8PJxx48Zx5MgRILLF3fjx4zWusotP2bJl2b9/P46Ojjx//pzv378zb948du/ezbx586hYsaJG8/j7+/Ps2TMeP37Mo0ePcHV15e3bt0DkWmY1a9Zk1qxZNGjQAGPj+Ks7d+3aBUCmTJmSnLgLCAjQam3TKD9WS61bt45SpUphb2+f6FhPT0+mTZsGgJ2dHVWqVIlzP3Nzc9q3b8/WrVuZO3cuFSpUSNbfmsDAQAYNGkRAQACHDh0iR46EW9JmzZqV9evX06lTJ5YsWcJff/3F8+fP8fb2BqB58+bMnDkz2a+r+Fy9ehWAKlWqkC9fPq3HR7VW1VVFZWKivyYSam86duxYDh48+NMl7gA6duyobpO5a9cu2rVrl6R5ohLugPr1JIQQQgghhBBCCJHeSOIujVWuXBlnZ2eN91epVOpKFn19fZo0aZJSocXp5cuX6tu5c2u+5lj27NnVt0NDQ3n//j0FChRItbnFv0d+a0tWjKzH+oMPuXTPLcnz1Klgg2PrMlJppyP+/v4MGzaMy5cvY2FhwcyZM/n99991Nn/OnDnZtWsXjo6O6jaG79+/x87OjpUrV1K3bt14xw4dOpT79+/z8ePHWNtKlSpF27ZtadKkCVmyZEk0jqdPn6orezt16hRjfTht+Pj4xEgiaCp6NZe/vz/v3r1j9uzZiY4LDQ1lyJAheHt7U69ePUaPHp3g/g4ODuzdu5egoCAcHBzYs2cPuXLl0jpeT09PhgwZQo0aNejfvz8GBppVzBYqVIg5c+YwYMAA9Xp8RkZGTJ48OclJG01FVaYltT13VMIuLRJ3mggPDycsLEzjn0VKiR53Yo+hRIkSlClThocPH/L48WPu3r2rccI+SkBAAHfv3lV/f/78+SRVVAohhBBCCCGEEEKktJ8qcRccHIxKpeLQoUOxtn3+/BkgRbalJxcuXMDd3R2IXAdQkxPNuvTq1Sv1bW1O4lpZWaFQKNQnnV+/fh0ruZaSc/8MwsPDUSgUyZ7jx/ZsSqUy1U4g61JCMZub6DO8SwVqV8iFy8VXPP7nm8bzliqYhTZ1C1O5RI5EjyM08/LlSwYPHszbt28pXbo0S5YswcbGRqPnNvo+ie1vamrK+vXrcXBwUJ+ADwsLY9SoUZw9exZLy7grJwsXLszJkyfV32fIkIHmzZvTvXt3SpUqpfHxQ0NDmTBhAkqlkqxZs9KjR49Ex6hUqjj38fHx4fPnz1q//qKquSIiIjA1NWXOnDmJxq5SqRg7diz37t2jYsWKLF68GD09vQTHZMmSBTs7O9atW4enpyfdunVjzZo1MSqcE+Pm5sa8efOYNm2aepymj/f8+fOx1tgLDQ3lypUrVKhQIcXe4x8/fsyrV6/Inz8/jRo1StL7Q/SfkTbjQ0JC1Lfje93EJXrlZmKvg4wZM+Lg4IBCoUjye1/0cdrECZE/w6CgIP755x8eP36svn/btm04OjpiamqqXs/uR+3atePhw4cATJo0iQULFpArVy7Mzc3jbMEbFBREWFgY/v7+vHnzhjVr1qjbcUPk5z59fX3atWtH7ty5MTQ0xMjICCMjI40fjxDi30/b90qlUhnrs3hYWFiqtU8WQgghhBA/r6jzCYnd91/wX33c0aXbxF1c7Q7XrVsHwLhx4+IdlxLb0ouIiAiWLVsGRJ7AHjlyZKrH8O3b/xIkGTNm1Hicvr4+JiYmBAYGApEnrVNz7p/B06dPdTpfVKu/4ODgn651aFBQkEb7lcpvSameFfng6c+1h5947ebLPx99CQj635u7mYk+Ba0tKWRjya9lcpInh7lWxxAJO3PmDNOmTSM8PBwHBwf69OmDgYGBxs/v169fgcgTXZqMUSgULFmyBDs7O969eweAr68vFy9epFGjRnGOadeuHZs3byYgIICaNWsycuRI8ubNC2j+Oohau+/x48dkyJCBqVOnYmRklOj4kJCQOPfx9PTk8+fPeHp6xptwjEtUm8Pw8HCNYlcqlUyfPp3jx49TpUoVFi5ciEql0mhsz549OXnyJO/fv8fd3Z3OnTszcuRIbG1tNYrVwsKCuXPnoqenp/Hz/PDhQ1asWMHt27eByHakvXv35uvXr+zcuZNTp05x5swZatWqRceOHalatarW6yYmJGoNPQcHhyS3lIxKwGn6M4oSvc2lNmOjjmdmZpbgmN9++41hw4ZhYWERI0moraj1/yDy74s2j/HIkSNMnTo11v07d+5k586dWFtbqysef9SgQQPmz59PQEAAr169onXr1gDs27ePwoULx9p/ypQpHD16NMF4Dhw4wIEDB9TfOzo66mTtSSHEv0NSPitGRESok3TBwZFt3Z88eaLTuIQQQgghxH+HfJb870q3iTtfX18yZ86s/v7GjRucPn0aIFWvWExuBZQubdu2jWfPngEwffp08uTJk+oxBAQEqG8ntAZUXAwNDdXJtah/U2tu8e+WJ4c5nXJEnrhVqVQEh0YQFq7EQF8PY8MM6er3+N8iODiYFStWsHv3bsqXL8/EiRMpWLBgnPsOHDiQiIgIsmfPTrZs2cicOTMWFha8f/+eN2/eAGiVXLawsGDevHl069ZNfQVOQr/3FhYWdOjQASsrKzp16qTFo4wUFhbG5MmTOX36NCYmJkyfPp1ff/01wTFRVcCenp5xbv/w4QMqlYoTJ05oFVNUS0FNrjwKCQlh6tSpnD59mvbt2zNq1CiN1w6FyNaUU6ZMoW/fvoSHhxMQEMC0adM4evQojo6OVK1aNcHxmrYRValU/PXXX2zfvp1bt24BkQm7jh070rVrV3UFVosWLZg7dy63b9/m0qVLXLp0CSsrKxo2bEiNGjWoWLFista98/Hx4ciRI5QrVy5ZbV6jfjZx/YyePn3Kvn37yJgxI+bm5pibm2NoaEhoaKh6DTfQ/m9g586d6dOnT4L7VKtWTeP5njx5gomJiboSLYpKpVKvAQja/d4CtGzZkpYtW2o1JoqpqSlXrlzReP9p06ap13QUQgghhBBCCCGE+Jmk28Sdj49PjMSdkZERK1asULcxMjQ0xNDQEH19ffT19VPkxPyHDx/SzZXXjx49YvHixQCMGTOGFi1apEkc0U+Oa9tOKvqJyOhJutSYW/x3KBQKTIz0MZFuZynmzp07TJ8+nQwZMrBw4ULq16+f4P7Lly/n0aNHnDp1ij179sR5BXuhQoW0iqFo0aJ07NiRnTt3AmBjY5Pg/gMHDkzS34kPHz4wYcIEHj16RP78+Zk7dy5FixZNdFz27Nnx9PRk8+bNWFpaUrhwYQwNDYmIiODRo0fqC1EWL16Mubk5zZs31yieqCqwxCqmvLy8GDFiBG/fvmXy5Mm0atVKo/l/VKFCBYYPH878+fPV9929e5d+/foxZswYOnbsmKR5IbId9bFjxzh06BBubpHrVebPn58OHTpga2sbKwlXsGBB1q9fz5kzZ9i6dSvPnj3Dy8uL3bt3s3v3bgwMDChSpAglS5akYMGC5MmTB2trazJnzoylpWWiSab9+/cTFhbGuHHjkvWZIqqtWlwVezlz5qRMmTLcvn0bFxcX/P3945xDm9+HSZMmaZ3oS8z169f5448/8PT0JHPmzGTLlg1TU1O+fv3Khw8fgMjErJWVlU6PK4QQQgghhBBCCCHSaeJOpVLx/Plz8ufPr76vQoUKaRZPaGioxpUDKeHz588MHDiQ8PBwJk+eTNeuXdMsluSIvkaELlubpfTcQohIgYGBLF++nLt372Jvb0/Tpk01quDS09OjbNmylC1blt69ezN16lT++usv9fYMGTLQpk0brePp378/N2/exMzMjIoVKya4r7aJGKVSyb59+1i1ahVKpZKBAwfSvXt3DAwMNBpfu3Zt9u/fj7e3d5ytAaMYGRlRpkwZjeOKSgYl1MbxwoULzJgxgwoVKrBo0aJkJ1c6derEp0+f2L59OzY2NvTv35+aNWtiYWGh9VwfP37k8uXLnDlzhvv376NSqbCwsKBFixbY2tom+nMEaNy4MY0bN+bOnTvs3LmTy5cvo1QqCQsL48mTJ3G2kVAoFBgaGpIpUybmzp1LuXLlYmz39/dn9+7d9O/fX6PEbEKiKu0yZ85MeHh4jN+RzJkz06ZNG9q0aUNgYCC7du1i/fr1MarzSpYsqdUafrpO2gHY29tjb2/PkydPcHFx4ejRozHW0gN03qZUCCGEEEIIIYQQQkRKl4k7iGzT9Ntvv6V1GAD4+fmRNWvWNDm2r68vjo6OeHl5MX/+/CS3mNIVMzMzvL29gf+t26Cp6CeazczMUnXun0GJEiU0TgrEJzw8XN16MIqxsbFW7fHSwo8VWMlpdydSTkBAAHXr1mXq1KlJrkjKkycPa9eupWPHjjx9+hR9fX2mTJkSK5GiCRMTEw4cOEBERIROXzM3b95k3rx5fPr0iV69etG5c2eyZMmi1RxjxozB0NCQP//8k2/fvqlbXEYxNzendOnSDBs2jOLFi2s8b9RFCiqVigwZMsS4qOTr168sWLCAZ8+eMWvWrEQrIbUxbtw48uXLR7NmzbRagzQgIIDbt29z8+ZNrly5wsuXLwHIly8fnTp1om7dulSvXj1J7301a9akZs2aeHh4cP78eS5cuMCtW7diJZggMjk8evRoOnToEOf74Zo1ayhZsiT9+vVLdjIqX758TJs2jVatWiV40Y+JiQmDBg2iRIkSDBo0CIj8+zVz5sx08x5YqVIlKlWqhL29PU5OTup1Jc3MzBg1alS6iVMIIXRBF59Hw8PD1Z+RosYXKFAg3X8WF0IIIYQQaS88PDzWxcglS5b8T36WDAsL4+nTp2kdRppK05+6s7MzVlZWsRJ0efLkoUuXLmkUVUwqlYqvX7+mSeLOz8+P3r17888//7BixQqdnoRNqujJtcRatf0o+v6mpqapOvfPQF9fP9mJO4VCESuhoqenl66rIqJXS0aXnmP+r8qePTsNGjRI9jxGRkZ06dKFa9eu0b9/f60SVz/SZbXRly9fmDp1Kkqlkj59+tCwYUOt2/ZGsbCwYPLkyUyePFln8UHkB5eaNWsycuTIGI/977//Zs2aNXTt2pV58+alSPvobt26JbpPYGAgZ86cwdXVlfv37/Ps2TMsLCwoVKgQNWrUoF+/flSsWJFcuXLpLC4bGxvs7Oyws7PD39+f69ev8+jRI168eMGLFy9wd3dn1KhR8cb/8eNHrl27xrZt23TyYbh///5a7d+4cWOqVq2KQqFg8uTJFC5cONkx6FrhwoVZu3YtzZs3J3fu3CxdujRZv7dCCJHe6OrzqJ6eXqy/wQYGBv/Jky1CCCGEECL5dHG++GekUqnSOoQ0l2b/g/D09GTJkiVYWlpSvXp1LC0tAciUKRPOzs7kyJEjrUKL5enTp8lunaUtHx8fevfuzevXr1m3bh3Vq1dP1ePHJ3PmzLi7uwORMWoqNDQ0RhVdXNUrKTm3ECJ96dChAx06dEjrMGKwsLBg7ty5mJubp3Uo8Ro2bBjZs2ePdX+FChXYunVr6gf0g8DAQHx8fKhatSotWrQgX758qfqebG5uTqNGjWjUqJH6voCAgAQTsBkzZmTt2rXqzyFpYe3atem+WrxgwYKsXr2amjVrygloIYQQQgghhBBCiBSUZmdeZs+eTUBAAIGBgdStWxdbW1u6du2aLq80//LlS6oe7/v37/Tq1Yv379+zceNGKleunKrHT0ihQoV49OgRAB4eHhqP8/LyipEpL1SoUKrOLYQQiTEyMkpyhV1qiStpB6TpOqzRZcuWjR49eqR1GDEklhAzNTVN80rt9J60i1K3bt20DkEIIYQQQgghhBDiXy9NetFdunSJ06dPA5Flj4GBgezZs4cWLVrQo0cPzpw5E2+7kk+fPqVmqPz+++/06tUr1Y4XVWmXHpN2QIzE6sePHzUe5+npqb5tampK7ty5U3VuIYQQQgghhBBCCCGEEEKI9C5NEnc1atRg27Zt9OnTh2LFigGRCTyVSsXNmzcZMmQI9erVY+XKlXz+/Fk97u3bt7Rq1Yq3b9+mSpy5c+dm8eLFqXIsAH9/f+zt7Xn79i2bNm2iYsWKqXZsTZUtW1Z9+/nz5/EmWH/08uVL9e3SpUvHuf5SSs4thBBCCCGEEEIIIYQQQgiR3qVJq0wDAwOqVatGtWrVGDlyJB8+fODMmTOcOXOGBw8eAJFVVKtWrWLt2rXUrVuX9u3bs2PHDry9vWnfvn2KrEUTlTxUKpWEh4cTFhZGSEgIoaGhLFiwgObNm+v8mFFCQ0NxcnLi5cuXbNiwgQoVKiQ6JiwsjGHDhrFgwQJMTExSLLboKleuTKZMmfD29sbf359Xr15ptP7f48eP1bcbNmyY6nMLIYQQQgghhBBCCCGEEEKkd2m2xl10efLkwd7eHnt7ez58+MDhw4c5evQo7969Izw8nD///JM///wTAIVCgZ+fH35+fqka48mTJ1MscadSqRg7dix37txh9erVVK1aVaNxT58+5fr166mWtAPQ19enYcOGHDhwAIC//vpLo+Ta7du3gcifX3zJtZScWwghhBBCCCGEEEIIIYQQIr1LF4m76PLkycPAgQMZOHAgd+/eZc+ePZw5c4bg4GAgMjmjUCiwsLCgZs2aOjuuSqUiIiKC8PBwdbVdaGio+svDw4OwsDAMDAx0dswoq1at4vjx48ydO5c6depoPO7UqVPkzZtX5/EkpmfPnhw8eJCIiAgOHz5Mz549E9z/5cuXvH79GoAmTZokuAZdSs4thBBCCCGEEEIIIYQQQgiRnqW7xF10FStWpGLFikycOJFDhw6xc+dO3r17B4Cfnx8+Pj7MmDGDXLlypXGkSXfp0iVWrlxJ//79ad26tcbj3N3d2bNnD7Vq1Ypzu4eHB1OnTuXWrVvY2Ngwbtw4atSooZOYixQpgq2tLS4uLjx58oQ7d+5QqVKlePf/448/AMiQIQODBg1Ks7mFEEIIIYQQQgghhBBCCCHSM720DkATlpaW2NnZcerUKVatWkWVKlVQqVT89ddftGjRgj179qR1iEni5eXFmDFj+OWXXxg8eLDG4+7du0evXr0ICAiIt+JuzJgxXLp0icDAQF68eIGTkxMfP37UVeiMGjUKGxsbAObOnYtKpYpzP09PT3bv3g3AoEGDKFiwYJrOLYQQQgghhBBCCCGEEEIIkV6l64q7HykUCho0aECDBg1wdXVl9erVXLx4kWnTpnHp0iVmz55N5syZ0zpMja1YsYLv37/z6tUrmjZtqtEYX19fvn79qv4+vsTdo0ePYnwfFBTEw4cPsba2TnrA0WTJkoU1a9bQtWtXXF1dmTt3LuPGjYuxT2hoKEOHDiU4OJjGjRvTr1+/NJ9bCCGEEEIIIYQQQgghhBAivfqpEnfRlS1blrVr1/L06VOWLVvGhQsXsLW1ZdmyZVSoUCGtw9PIly9fgMjKOy8vryTNEV/irnTp0ty8eVP9vYGBAcWLF0/SMeJTtGhR9u/fz6BBg9i6dSseHh7Y29uTM2dO9c/l6dOn9OjRgzFjxqBQKNLF3EIIIYQQQgghhBBCCCGEEOnRT5u4i1KiRAnWrl3LzZs3mT9/PnZ2dowbN44uXbqkdWipIr7E3bx589Rr3OXIkYMRI0bEu29y5M+fnz/++INTp05x8OBBBg8ejI+PDzlz5qRChQrMmjWLUqVKpbu5hRBCCCGEEEIIIYQQQggh0huFKr4FxH5SR44cYf78+TRt2pTx48endThCxBIaGsrDhw9j3V+mTBkMDQ2TNXd4eDgvX76McV+RIkXQ10+/OXqlUklQUFCM+0xMTNDT+ymW4BRCCCGEED85XX0e/Rk/iwshhBBCiPQhLCwMV1fXGPeVLVsWAwODNIoo7aTk+fOfxb/uzHjLli05efIkERERbNy4Ma3DEUIIIYQQQgghhBBCCCGEEEIj/8pL/ywsLJg0aVJahyGEEEIIIYQQQgghhBBCCCGExv51FXdCCCGEEEIIIYQQQgghhBBC/IwkcSeEEEIIIYQQQgghhBBCCCFEOiCJOyGEEEIIIYQQQgghhBBCCCHSgXSduDt69CgqlSqtwxBCCCGEEEIIIYQQQgghhBAixaXbxN369esZPXo0M2bMwN/fn+DgYMLDw9M6LCGEEEIIIYQQQgghhBBCCCFShH5aBxCXvXv3smTJElQqFbt372b37t0xtmfIkAEDAwP1l6GhIQYGBhgZGWFoaIixsTHGxsYYGRlhYmKCiYkJpqammJmZYW5ujqWlJRkzZiRTpkxky5YNa2trTExM0ujRCiGEEEIIIYQQQgghhBBCCJFOE3deXl6oVCoUCkWcrTLDw8MJDw8nKChIfZ9CoUjWMbNnz07lypWpX78+jRo1wtDQMFnzCSGEEEIIIYQQQgghhBBCCKGNdJm4GzhwIFmzZmXatGnUrFkTQ0NDwsLC1F8hISGEhoaqv0JCQggODiYkJCTJ7TQ/f/7MiRMnOHHiBJkyZaJfv37Y2dklOyEohBBCCCGEEEIIIYQQQgghhCbSZeIOoHPnzkybNo0JEyZQoEABjcdFREQQFBREUFAQgYGB+Pv7ExAQgJ+fH35+fvj6+vLt2ze+ffvG58+fef/+Pe/fv4+R8Pv+/Ttz587l+vXrrFixAgMDg5R4iEII8Z90+vRpcubMSbly5dI6FKED165dw8vLi1atWqV1KP9Jq1ev5pdffqFixYppHYpIIf7+/vzzzz+ULVtW67GhoaE8fvyYChUqpEBkIrrXr1/z/ft3KleunNahAPDq1SsKFy6cpLEeHh5kzZoVIyMjHUclhBBCCCGEEEITemkdgK5lyJABc3NzrKysyJcvH6VKlaJq1ao0aNCAVq1aYWdnx9ChQ5k+fTpr167lxIkT3Llzh23bttGhQweMjIzULTovXbrEokWL0vohCSHEv4pCoaBjx44MHTqUjx8/pnU48Tp37hwfPnxIdL/Dhw/z+fPnVIgofVqzZg1jxozB3t5eo+crLezatYvQ0NAE9/H29ubQoUNJrtzXhoeHR6LxaOry5ct07tyZVq1asX///hhtxFOKl5dXqr3m7927R0RERLLm8PT01FE0kW7cuMHDhw91OmdCgoODad++Pd27d+fSpUtaj+/UqRM9evTg77//ToHoUsfWrVuZPHkyz58/T+tQ4nXlyhW6du1Kz549uX37dlqHQ//+/enWrRsXLlyIc+mBhOzYsYPff/+d48ePp1B0QgghhBBCCCES8q9L3CWFkZER1apVY/r06Rw+fBhra2t18m779u3p4j/fQgjxb9G4cWN69+7NyZMnadq0KXv37k3rkOJ07do1mjRpwoQJExJMSJ04cYIGDRowdepU3NzcUjHCtPfw4UNu3boFwNWrV2nRokW6PNE7f/58GjZsiLOzc7wJM6VSyZgxY2jcuDG7d+/WWWItLjdv3qRJkyacPn062XNFrcn79OlTtm/fjo+PT7LnTMznz5/57bffWLduHb6+vgQEBKTI15UrV+jevTv9+vUjICAgyfFu2LABe3t77t69q5PH/+zZM9q1a4ednV2SEmnaMjY2BiJfN46OjvTu3VvjBLOhoSEKhYIbN25gZ2dH586d+fLli3p7cHBwisSsDX9/f5YuXcq9e/fi3SciIoK9e/fSsmVLunbtytWrV3VybD8/P/bu3auThP2TJ08AuH79Ol27dmXcuHHJnjM5DA0NuXXrFv369WPYsGGxtr9+/Tresffv38fDw4Phw4fTsWNHHjx4kJKhCiGEEEIIIYT4wb86cbdhwwatk2758+dnyJAhqFQqFAoFSqVSqu6EEELHhg4dSv78+QkMDGTy5MksXrw4rUOKxcTEhLCwMA4cOECTJk04c+ZMnPsZGxsTGhrK7t27+e233zh79mwqR5p2Nm/eHOP7Zs2aUa9evTSKJn4mJiZ4enoyY8YMmjVrFmdyy8TEBAB3d3emTp1KixYt+P79e4rE06pVKxo3bszgwYPp378/3759S/JcGTJkUN/etm0bOXPm1EWICTIxMSEwMJDFixdTpUoVKlasmCJfffr0ISwsjMuXL9OzZ88kV95NnDiR/Pnz07lzZ/r375/sytCoFup///03jo6OrF+/PlnzaXo8gBIlSjB37lz09TXvdh+1r5GREZ06dSJbtmxAZDKsY8eOLF68GF9fX90GrYFnz54xe/Zs6tevz5o1a+jXrx9v3ryJc9/oLRuVSiVFihTRSQympqb8+eefNG/enOvXrydrrqiLGABKlSrFqFGjkhtegtavX8/+/fvj3R71nJUoUYIZM2bE2Pb27VtatmzJsmXLCAsLi7EtLCyMx48fq7/X09MjR44cOoxcCCGEEEIIIURi/tWJu7JlyzJ69Gj8/f21GpcvX74Y39+/fz/Gf8aFEEIkj6GhIRMnTlR/v27dunRX3Wxqaqq+3aNHDxo1ahTnflEnR/X19VmwYEG8+/3bPH36lFOnTqm/t7S0pEqVKjGet/QiKimXMWNG5syZQ8aMGWPtEz0xUKxYMTZu3EjmzJlTLKbhw4dTqlQpzp8/T9u2beNNWCRGTy/yo5y+vj5ZsmTRZYjxiv5cbdq0CVdX10S/ol8Epcn+rq6ujBgxAoh8vxg2bFiMJKW2JkyYQOPGjTl//jzNmjVj9+7dSZ4retKsefPm9OnTJ8lzaSJ64q5KlSpkz549SeOLFy+Ora2t+v4MGTKwePFi9uzZQ6NGjdi+fXuy25Im5PPnz5w8eZIZM2bQoEEDbG1t2bZtmzqR7u3tTZ8+fWJUBP74GAAmT56ss0RShgwZWLJkCQYGBvTs2ZOJEycmqQrx3bt3eHh4qGOdM2dOiv8+NmrUiBkzZuDg4BBn8j/qdVq8eHEsLCxibDt48CDh4eGsXr2azp07x7iY4fHjx4SEhACQLVs21q1blyoXBAghhBBCCCGE+J9/deKuWrVqFCtWjFmzZmk17scTQ82bN8fGxkaXoQkhxH9erVq1KFy4sPr7R48eaT3H0aNHmTdvni7DUot+cr5v374oFIo494tKYpiYmNC0adMUiSU9mjdvHkqlEoAiRYqwb98+Fi5cyPv379M4stiiTvpXrlyZypUrx7mPnp6eer9q1aqRJ0+eFI9p6tSpKBQKPDw8cHBw0PpCI0C9dpWZmZmuQ4xX9N8NAwMDjIyMEv2KPkaT/Y2MjNSfx6ysrKhRo0ayYtbT02POnDnkzp2bkJAQpk6dyrp165L9+H/99Vd18jSl6OnpaVVh96Oo5zGuxGehQoVYsGABPj4+zJo1i/bt2yfYQlET/v7+PHv2jCNHjjB//nzs7e2pWbMmtWrVYujQoTg7O+Pm5oaJiQkFChSgatWqNG/enG7dutGiRQtcXV1jzRk9cadrZmZmLF68GCMjI/bv30/nzp35+vWrVnNcvnxZfbtJkyYUK1ZM12HGUqBAAezs7Lh8+TJt2rTh5cuXMbbH95wFBQWxZ88eAMqXL8/y5ctjXMxw8+ZN9e1evXphaWmZAtELIYQQQgghhEjIvzpxBzB69GiOHj3KhQsXNB7j5+envt2rVy8WLFiAtbV1SoQnhBD/aS1btgQiq9saN26s1dhjx44xZswYNm/ezJw5c3Qem6bVPSl5Qjm9unTpkrqtnKGhIQsXLlSfRB46dChBQUFpHGFM6fVnWbZsWXVr0Q8fPrB9+3at54hKnqZm4i45lW9pydzcnKlTp6q/X7ZsGZ8+fdJ6nrR4/MlJDkavyoxLnTp16N27NxBZbdWhQ4c4k2fx+fDhA3379qVly5b8+uuvNGjQACcnJzZt2sTDhw8xNTWlbt266ovgGjZsyPXr17l//z6nTp1ix44dLFq0iEmTJjF06FDq168f6xgp/btZpEgRBgwYAESuVWdvb09gYKDG46O3SO7Ro4fO44uPo6MjZmZmfPz4EXt7+xjJ//hep9u2bcPb25uiRYuyadMmcuXKFWN7VOLOyMiIdu3apVzwQgghhBBCCCHilfTLd9OZwMBAbt26Rf78+WO0uixQoAAdOnRg0qRJnDhxQqOrRqNa9JQqVYrRo0enWMxCCN1TqVSoQoNQRYSjyKCPwtAk3kopkTRBQUE6S8zY2NigUCgYP348xsbGGq/1deXKFcaNG6du67Z161YUCgVjx47VSVyg+YnilK62SW+Cg4OZPXu2+vvhw4dTvHhxIPJil6NHjzJixAhWrlyZbp4bTauV0uK9olOnTpw/fx6A58+faz0+quIuqh1oaviZ31Nr165NpUqVuHPnDhEREbi5uWndBjAtEnfJOWbU72FC72mDBw/m9OnTuLm54e/vz+TJkzl06JBG81tbW7NgwQJMTU0T/F3r27cvbm5uWFhYaN1GMjWe8x49euDs7Mznz595+vQpy5YtY9y4cert79+/Z8+ePbH+b+Dt7c2dO3eAyKre0qVLp3isUSwtLWnTpg07duzA09OTXbt24ejoCMT9nHl7e7Nx40Zy587Nxo0bMTc3j7E9LCyMu3fvAvDbb7+RKVOmZMXn5uZGgwYNNNrX0NAQCwsLcufOTZkyZWjSpAmVK1fW+v3G19eXQ4cOcfnyZZ49e4a3tzeGhoZkypSJYsWK8csvv9CmTZtY7UOFEEIIIYQQIj35VyTuDh48yLx589TrM7Ro0YLJkyer/zM6cOBADh06xOzZs5k7d26i87m5uaFQKBg5cuRPfXJKiP+K0M/v8H98lRCPl4R8eoMy+H9XnOsZm2OUswBGuYpgXqoWhtnzpmGk/w5fv37Fzs4Od3d3nc05ceLEGGveJcWWLVtQKBSMGTNGR1Fp5r/2d2LJkiW8ffsWiGx32rNnT/U2AwMD5s+fT/v27Zk5cyaTJ09OmyB/oOnPKC0SjdWrVydjxoz4+PhQtmxZrceHhYUBaZe48/Pz0yjhHhAQoL6taYI+pSo3e/bsyZ07d8iYMSNFixbVenxa/M4n55iJVdwBGBsbM2jQIPX7p6enp8bz6+vrp3g7xeS0CtWUsbExHTt2ZMWKFQCcOnUqRuJu586dlCxZMta4U6dOER4eDhDj/TC1tGzZkh07dgDEqBKM6/1s6dKlGBsbs2XLljjXCbx79676d7V9+/bJji1XrlzcunWLL1++MHLkSB4/fgxAhQoVmD17NtmyZQMif9e/f//Ow4cPOXz4MDt37mTnzp3q/QoWLJjoscLDw9m6dSurVq2iatWqdOjQgRIlSmBmZsb379958OABO3fuZPbs2SxbtozJkyfTqlWrZD9GIYQQQgghhEgJP33ibtGiRWzcuFF9xTlErnn0zz//cODAAQCyZMlC7969WbVqFc2bN6dmzZoJzvnhwwdKlCjBL7/8kqKxCyGSJ/DlHbyvHyT4w9N491EG+xP09iFBbx/i/ZcLxnlKkKlGa0wLV0rFSP9dbGxs2L59O+fOnaNEiRLky5cPc3NzzMzMYp1cjoiISFalxNevX8maNWtyQxY6cufOHXU7xzx58rBo0aJYP/MSJUowZMgQFi5ciL6+PuPHj0+LUH8ahoaGTJgwgXfv3iXppH9UwkDTxN2BAwfImzcvVatW1fpYPx4TULcX1Eb16tWTfGxdaNy4MePGjaNChQpJSjilRYI3rsRdeHg4I0aMoFq1anTp0iXesVHxJvZe3Lx5cxYuXIiXl1eyXh8pIbWSpS1atFAn7nLnzq2+PzAwkLNnzzJs2LBYY44cOQJEvidqWl32oydPnrB8+XKWLFmidRK+bNmy5MuXDw8PjxiJqB9fp48ePeLcuXNs3bo1RneS6K5cuQJAvnz5qFKlisYx+Pv7x6rei4rB0tISS0tL6tWrp07ctWnTJkYyztLSkhw5clC8eHHat2/P4cOHmTBhAvfu3aNLly7s3LmTQoUKxXv8wMBABg8ezPXr15k/fz7NmjWLsT1LliwUKlSI1q1bM2vWLHbs2MGYMWMICAiga9euGj9OIYQQQgghhEgtaZq4O3z4MLa2tkkev3PnTjZs2IBCoUChUKiTd4ULF8bOzi7Gvr169WLnzp1MmTKFY8eOJfif4pcvX8oVmEKkYxGBfnw5s5GAx1e1Hhv84Smf9j7FvFQtsja2J4OptEpKChsbG42SDJMmTaJAgQLY29trfbLb19eX+vXr065dO/r376++Mv9n9+XLl5/ysfj5+TFu3DiUSiUmJiasXLmSjBkzxrmvvb09t27dYtu2bSiVSiZMmPCvq0wMCAhAoVBgamqa7LmS81koKolmZGSU6L4HDhxg4sSJmJiYsG7duiQnZ6In7rZv3061atUSHXPq1CmGDBkCaN4SdNOmTcyfPz/GxVm6kpzKqJR4LX///j3Bxxl1zJCQEHXF4tSpUzl9+jSnT58GSDB5B4m3/9XX18fe3p6NGzcycuRIbcJPcan1/pEvXz4KFizIP//8g4ODg/r+Q4cOUbNmTYyNjWPs7+7urm4t2a1btyQldZ89e0avXr3w9vZm4MCBrFmzBkNDQ63mmDBhAiEhIeTPn19934/P2fXr19m0aROFCxcGIqvv/Pz8mDRpknqfy5cvA5GJNU2f823btrF582a2b98eb0IQYiaOE6ugtLW15cuXL8yfP5/v378zYcIE9uzZE+/+06dP58qVK/Tt2zdW0i66qNbcDx48wNXVldmzZ/PLL78kmBQUQgghhBBCiLSQZom7d+/eqU/ktWzZUuvxz549Y86cOeqEnYmJCR07dqR169YUK1Ys1v5mZmb06dOHBQsWsGzZsnjXQVKpVLx+/ZrffvtN65iEECkvxPMtn/bMIsJfs1Zr8fF/fIWgd4+x7jwRw+zxn2gSyePo6IitrS2XL19m8eLFWFlZaTz26tWrBAcH4+zsjIuLC3Z2djg5OWmUoIjLihUrGDhwYJomkEJDQ2nWrBl9+/alV69eP00yS6VSMWrUKN69e4dCoWD27Nnqde3ioqenx8KFC2nfvj07duzg27dvzJ07V+uT0XF59eoVL168oGnTpsmeKzkuXLjAihUrWLhwIWXKlNHp3C9evMDOzo7v379rPObq1atxfv6JS2BgIH379mXfvn0UKVJE6/iiJ+5SQ0hISKoeLzEpUXF3+PBh5syZk+h+e/fuZe/evTHuU6lUTJ8+HYg7eRf1PqNJu8levXrRtWtXDA0NCQoKStUWrOmFk5MTT548oV69eur7olos/uiPP/5QJ1znzJmj0c8wIVevXmXEiBEsXbo0zgrJ8PBwfH19Y90f9R4UvQ1t1O9paGgo3759o23btup9tm3bxtq1a9X7Tpo0iQ8fPvD8+XMUCgV16tTRqKXt0aNH1c+LnZ1dosk7bXTv3p2tW7fy+fNn7t27h6ura5zthJ89e8bBgwcBaNKkSaLz6unp0atXL4YNG0Z4eDgbN25M9s9NCCGEEEIIIXQtzRJ3ixcvJjw8nOnTp/P69Wu6dOkS51oLcYmIiGDs2LGEh4eTIUMGunTpQv/+/RNd6L5bt25s2bKFHTt28Pvvv1O+fPlY+4SFhbFgwQKNYxFCpJ4Qz7d8dJ4SYw275Ijw/4bHjsnk6j5dkncpJH/+/Dg4OLBixQratm3Lhg0bNE4uHD58WH27VKlSNGjQIMlJO4is4Nu4cWOMKorUdufOHby9vZk3bx6XL19m3rx5P8Xfm5UrV3LhwgUAxo4dq1HSzNLSktWrV9OpUyeOHz/Ox48fWbVqVaJ/qxOTJ08enJycKF26NHnzpt2alZcvX+bt27d07tyZQYMG4eDgoLOETtGiRdmyZQsHDx6kTJkyFChQgIwZM2JmZhZr37Zt2+Lh4cFvv/3G1KlTE5x32bJl6qqVhg0bJrnKJGpdvdQSGhqaqsdLTEok3Hv27EnFihUxNzcnT548sarjKleujJ+fH3Z2dkyYMCFJx9B0nThDQ0NevXqFo6MjrVu3ZtCgQUk6XlJ9/PgRa2vrVD1mdC1atKBFixbq769du4ZCoaBcuXIx9gsLC2Pfvn0AtGrVKsnrq06ZMoUzZ86ov//48SOPHj2KdTyITNL+uH9ijh8/zvHjx+Pd7uzsDESuRxd1jKR0Hvn06ZNOk3eGhobUrl1bvfTBjRs34kzcnTx5Un1b0/em6O16o/62CSGEEEIIIUR6kiaJO1dXV06fPo1CoSAgIID169ezadMmfvvtN3r06BHnf8qic3Z25tmzZ5QsWZKZM2fGuVB8XIyMjOjduzfz589n7NixHD58ONZJYENDQxo2bJjkxyaESBkRgX582jNLZ0m7KMpgfz7unomNw2Jpm5lC7O3t2bNnD56envTq1Ys//vgj0ZOynz9/5urVyFaohQoVYu3atXGun6ONXr160bRpU6pXr07p0qWTNVdS/fnnn+rb169fp2XLlmzbti3B6rW0dvLkSVatWgWAg4NDnC0G79y5Q8WKFWMlNAoVKsS6devo3bs3d+/epV27dsyfP5/KlSsnOR4jIyPatm3LiBEj2L17t8bJCF0KDw/n0qVLQOSJ4sWLF3Pr1i3WrFmTaDvCuISGhsaqRixRogQlSpRIcJxSqcTLywuAggULJpoU9ff/3/vniBEjkpxojF5x5+fnp1FlTkBAgPq2JvsDBAUFAemv4i6lJPb5N6mifi81XW/0xo0bDBo0CF9fX1auXMnXr1+ZPHlyqqztN2fOHA4ePMiWLVsoVapUih9PEzt27KBNmzax7j979ixeXl5YWFgwevToGL9/Dx48oEyZMok+Z58+fVInjvLmzcvMmTMTbD1rYGDAkiVL2LVrF7ly5aJo0aJkzJgRc3Nz9c932bJlrF69Wj2mdevWzJ07N9HH2alTJyDywoGjR4/Gu9/evXuZPHkyABs3bqRWrVqJzp1U0SuCP3/+HOc+b968Ud/esmULS5YsSXTezJkzY2FhgZ+fH9+/f8fPzy/OCyOEEEIIIYQQIq2kSeIuqjVL9LU8wsPDOXHiBCdOnKBcuXLY2dnFeUVzaGgoa9asoW/fvgwaNEjrE3adO3dmw4YNvHv3jvnz58dY10EIkX59ObMx2e0x4xPh/42vZzaRvdXQFJn/v87ExITOnTuzfPlyvn79ypw5c1i+fHmCY3bu3El4eDgZM2ZkzZo1yU7aQWQ1QaNGjRg5ciSHDh2KtVZRSlMqleq1qAAqVKjA+PHj03XS7sqVK4waNQqVSkWXLl3iXfdq9uzZREREMHToUOrWrRtjW8WKFVmxYgX9+/fH3d0dOzs7+vXrh5OTU5KTbp07d2bt2rWsWrVKvW5aavrrr7/w9vZWf+/o6Ejv3r2TlLRbuHAhjx8/Zt26dVq3EvXy8lJXmNjY2CS6/5cvX4DIBI42bWt/FBERob49YMAArcdHr3bRhK4r/EJCQpJVvZuUiruPHz+SM2fOFKnWO3fuHEOHDk30eXJxccHFxUXr+Xfv3s33799ZsGCBTtrdxmfevHls3boViLzQIj0k796/f8+1a9eYNWtWrG1RsQ4ZMoSsWbPG2DZnzhwCAgIYMmRIghcEbtu2jbCwMEqUKMGWLVvInDlzojHp6+vHWss7yvXr12O0wITI5QkePHhAyZIl432PevfuHffu3aNQoUIxkuxxiZ54T877iCaiJ9Piq7yNSvADnDhxgl69emmUBDcxMcHPz089tyTuhBBCCCGEEOlJmiTuVq9ezdevX3nx4gV3797l7t273Lp1S/0fsgcPHjBixAgA9uzZw5AhQzA1NQUiK+KOHTtGtmzZknRsExMTunbtysqVK9m1axdVq1aV9eyESOcCX94h4PHVFD2G/+MrmJeqhWmRSil6nP+qdu3asWLFClQqFX/++WeCayeFhISwd+9eMmTIwOLFi3W2Xg5A7969adWqFfPmzWPKlCk6m1cTt2/fVlcMGBgYMH/+/DRt9ZiY27dvM2jQIMLCwnBwcIg3aQeRj+fRo0f07duX8uXLM2HChBgnTmvVqsXq1asZNGgQwcHBrFq1ijNnzjBs2DAaNGigdWyWlpa0a9eOdevWUadOnThbX6ek6K3ZqlWrpv7MEpfv37/HuFApuv3797NhwwYg8uT/ihUrtEpmfvjwQX1bk9fS169fAciePbvG1VdxiV5xt3379gQrhCCyUqZPnz7UqVMnwefqR5s2bWL+/PmoVKo4qxKTYsuWLRw7dowdO3aoP1umtDdv3tCtWzcaNWqUaDvTpGjYsCFbtmwhPDycokWLxkoONmnSBG9v7xjtHJcuXcrevXsxNzfn7NmzGh3nx3kjIiIYPnw4p06d0iregwcPqtcki4+Pj0+6SN5t376d2rVrx0rMXbx4kQcPHlCsWLE41xUMCQnhxYsXDBgwgDJlyrBq1apYbZH9/PzYu3cvefPmZePGjRol7RLi6enJqFGjUCqV1K1bl7CwMK5du8b379/p3bs3SqWSX375hebNm9O4ceMYSbwjR44A0KNHD9avX4+3tzeZMmWK8zjR197Mnj17smJOTFRiDYj3+SlWrBiXL19Wfx9fZV50SqUSHx8fILKKO0uWLPG+TwshhBBCCCFEWkizNe6yZs1K9erV1VddBwcHc+PGDc6dO8fZs2fV/5navn07x48fZ/jw4eo2NUlN2kXp1q0bmzZtIigoiAkTJlC0aFEKFCiQvAckhEgx3tcTPsGns+PcOCSJuxSSI0cOypYty4MHDzA0NEzwBPyBAwf4/v07Y8aMoWbNmgnO6+vry8WLF2nZsqVGcZQoUYJffvmFXbt2Ua9ePWrXrq3V40iOqHV6ADp27Jiuk3Y3b96kf//+BAcHM2rUKPr06ZPg/tFPAOfOnZv8+fPH2qd27dps2rSJvn374u/vz8uXL3FycqJixYr07NmTevXqaZWY6dGjBzt37mTUqFEcPnw41ZIw/v7+6kSFQqFg1KhRCe7v4uLC/PnzE5334sWLnD9/nsaNG2scy6NHjwDQ09PTqG14VFvNnDlzanyMuERVdllbW8dKaPzozp07jBgxgo8fP/L8+XMAjZN3pqamtGjRAltbW42rGZ88eRKjIjC6v/76i8WLFwMwePBg1q5dm+KtVt3d3enVqxdfvnxh9+7dGBsbM3bsWJ0fp0qVKvFui2qRmiVLFnU7x6iKQ4VCkeR1JzNkyMCiRYvUbVpLlChB5syZsbS0jDMxPGrUKK5evUqzZs2YOHGiRsdIyQq/xPj7++Pi4sKiRYtibYuqGp88eXKcjzUwMFB9+9dff41zLdM9e/ZgYGDA+vXrk/1/Gx8fH/r06YOXlxc1a9ZkxYoV6rUJy5cvz8CBAxk4cCDnz5/n/PnzlChRAmdnZ8zNzYmIiMDFxYUcOXLQqlUrdu/ejYeHR7yJO09PTyDyZ5PcZGNi3r59q74d33uco6MjX758wdXVlaJFi2rUuvPly5fqFrxRyW5J3AkhhBBCCCHSkzRL3P3I2NiYunXrUrduXaZOncq1a9c4cOAAFy5c4MuXL0yYMIF9+/Yxa9YsChUqlKxjZcqUiRYtWrBv3z78/f1xcHBg7969iZ58EkKkvtDP7wj+8DRVjhX8/gmhn99jmD39JlTSoz///JP69esn2gKufv36PHjwAHt7+3irfcLCwti4cSMtW7akd+/eCc737ds37O3tefLkibqiRxPdu3fnxo0bTJw4kePHj2NhkfJrG/r5+anbZJqZmeHk5JTix0yqU6dOMWrUKIyNjVm7dm2s1pdxiUqq5MqVS50YiUvlypXZt28fTk5O6hOyUZX3lpaWNGrUiEqVKlGsWDGKFCmSYDtDGxsb6tWrx7lz51i4cKF6zaWUdvz4cfVJ+aZNm1KmTJkE97e3t8fKygqlUkmJEiXIli0bFhYWGBoasmLFClauXImFhQWrVq1KtHLtR66urkBkxUli7WRDQ0PV7T0TW2MyMbly5WL79u1UrVo13t/7kJAQ1qxZw4YNG9QVetbW1rx69YpXr15RuHDhRI/TuXNnOnfurFVsL168YPz48fEm76JcuXIFZ2dnevbsyefPn3FycopRwahQKFAoFCiVylhjo7eknDFjBvPmzYv3OMHBwQQHB6u/37JlC0ZGRgwbNkybh5Wg0NBQzp07R+3atWO9Dvz9/dXPvy5aDv9IX19f43a1UUlSQ0PDJCcLU9OBAwcwNTWNdYHHyZMnefz4Me3bt493vc6oqrQsWbLEWV0eGhrK7t27WbZsWbIvHgwKCqJv3768ePGCOnXqsHz58lgJTxsbG3bv3s2AAQO4du0aT58+ZevWrQwcOJALFy7g4eHBnDlzMDIywsLCAnd393gTZVGJu9y5c6dI69coERER6rVuTU1N422xa2lpqdEaftGdOXNGfbt58+ZJD1IIIYQQQgghUki6SdxFp6+vT506dahTpw5eXl7s37+fXbt2cf/+fVq3bk2/fv3o27dvsto8de3alX379qFQKHBzc6NXr15s3LgxxVu+CPGzCfNOvOWQJhT6Buibx31ldoSPV8xjhhijp6cHgM+d03ENSTE+d0+T6RfbeLcn9Dh08VwZZPr53oNGjx5N7ty5GTBgQIIVcs2bN8fLy4sePXrEu4bOkSNHMDc3Z9y4cQmus+Pj44OjoyMvX74EYMGCBYSFhdG/f/9E461fvz42Nja4ubkxe/Zs5syZk+iY5HJxcVGfvO/Xr1+6vVBkx44dzJ49myJFirB8+fI4K+fiEpW40+QkbqFChdi/fz+jRo3i4sWL6vt9fX35448/+OOPP8iSJQvDhw+nffv2Cc7VvXt3zp07x65du2jcuDG//PKLRvEmx+7du4HIiiVNK8cSqwjNmTOn1kk7gPv37wPEmzyILqpNJiQ/cWdtbR3vHCqVipMnT7J48WI+fPhA1qxZad68OS1btqR06dJxjjl58iTPnz9n6NChyYoLoFWrVuTKlYtbt27x8uVLnj9/jpWVFTY2Nnz//p3z589jYGDAunXr+PXXX4HIdn9r1qzh8OHDFClShO/fv/Po0SPevHkDRLbVU6lUqFQqlEol379/V7/3TJo0Sd0RIrV9/PiRPXv2cPDgQRo3bhzn+2/UuobAT5EsSy8iIiLYvn07rVu3jvH/jYCAAObMmUPevHnjrZyMiIjA19cXgLJly6orTaP7+vUrQ4YMSfZ7lo+PD05OTty7d4/u3bszbty4eP9/ZGJiwpo1a7Czs+P+/fvqiyd27NhBqVKlaNWqFRCZ4H3x4gWNGjWKcx53d3cA8uTJk6zYE/PHH3+oj2VnZ4elpaVO5g0NDWXfvn3A/6p6hRBCCCGEECK9SZeJu+isrKxwcnKiT58+7Nu3j82bN7N8+XKuXLnCkiVLktzuqVixYpQvX5779++jUCh48eIFmzdvTpH2RUL8zD6sSjwRognjvKXI1X16nNu+bNF8zaOU5nfnFH534l+vJ6HHoYvnquCEP5I9R2ozMTHh+fPnDB48WKP9nZ2dE90nvivrE7J06VLCw8PV7cHio6enR8eOHVm0aBEuLi40b95cfQI/JSiVSrZv3w5EVj307NkzxY6VVIGBgUyePJnjx4/Tq1cvhg4dqlWLOm3bDVpaWrJu3Tr27NnDvHnz1BVsefLkYfLkyRq3MP3ll18oVKgQr1+/ZvLkyRw5cgRjY2OtYtHGjRs3ePo0sgK4V69e5M6dO8WOlZhXr16pT2pr8vqNqpKByIo5XQsNDeXEiRNs2rSJFy9eUKFCBQYNGkSTJk0SfC1t27aNuXPnolQqKVq0KE2bNk12LFWrVqVKlSoEBARgYGCgrtx0cXFRJ+5+fM6srKxiVO1GJTHicu7cOQYMGJDsOJNCpVLx119/sWvXLs6fP0+NGjXYsmVLvN0oov/craysUivMn96ZM2dwd3enbdu2Me5fsWIFvr6+7NmzJ94KRk9PT3XbxZIlS3L+/PlY+1hbW2NrG/9FQprw8PDAwcGBd+/eMWXKlDjX2vuRkZERK1asoE2bNhQqVIgHDx5w584dDhw4oL5gytraWt2G90eBgYHqNeR0uf7sj86fP8+MGTOAyPf5gQMH6mxuZ2dn9WNwcnJKtxfSCCGEEEIIIf7b0n3iLoqhoSHdunWjY8eOODs7s3btWmxtbZk/fz516tRJdHyLFi1YvHgxRYoUUd/XunVr7t+/j56eHsOHD8fe3j4lH4IQQvwrRZ2Uz5Url3rtr/Subdu2LF++nLCwMCZNmsSJEydSLOFz5swZ3NzcABg7dmyartkUl5cvXzJ48GAUCgU7duyIUb0VFham0dpimq4/9qNOnTpRp04dlixZwuXLl9m9e7fWyYUOHTowZ84c3r17x8qVKxk5cmSSYtHEli1bgMgKLUdHxxQ7jiaiWr1lzpw50bUgAfWJakh+xV2UiIgIHj16xIkTJzh69ChhYWG0bNmSRYsWUbRo0QTH+vv7M2XKFI4dO6a+b/z48RQpUiTGZ7WkUigUKdIaMq3t3r2bHTt2UKBAAVavXp1oK9uPHz+qb8e1zpqI2+bNm6lcuXKMquMHDx7g7OzMkiVLKF68eLxjoxLqAPnz58fPz4+QkJAEW/9qy9XVlQEDBpA5c2YOHDiQYDxRCbko2bNnZ/fu3VhYWDB69GicnJxijM+fP3+MVpLRvXv3Tn1bF7+n0QUFBXH//n327t3LyZMnAWjfvj2TJ09O8t+YH7m7u7NixQoAatWqJf/3E0IIIYQQQqRbP03iLoqbmxstW7akTZs2LF++nIEDBzJmzBi6deuW4LjSpUuzdu3aGAvM//bbb6xYsYJFixYlqUWVEEKI/1EoFDo9MZmSsmbNSv369Tl9+jTu7u6sW7dO43WatKFSqVi7di0AtWvXjrf12I9atGgR44R7ct2+fTvWfVHrCTo7O+Pg4EC3bt1iVc5t2bKFp0+f0rdv3wRPDGtbcRedtbU18+fPx9/fP0mJllatWrFw4ULCwsLYunUrbdq0oWDBgkmOJz5PnjxRt/YcN24cZmZmOj+GNs6ePQtAs2bNNDqp7eX1v5bEya248/X1Va+p5e/vT5YsWWjZsiWNGjXCwMAAf39/bt26RURERJxfQUFBrFq1ivfv3wNQoUIF2rZtS+3atSW5FI1KpeLy5cs4Ozvj5+cHRFY4DxgwgG7dumn0c49qhwho3Pr2v+7mzZu4urrGWDfN39+fESNGMHbs2ETfx6Ne1xCZ3MqePTsPHjygatWqOolv69atLFu2DDs7OwYMGBDnxSBfv35FoVDQtm3bOLuJ5MmTh+vXr6NUKunXr1+Mbfnz58fLywtPT89Yv4/R235qsk5lfKZNm8bs2bPV30dERKgrr7Nnz06rVq3o0qUL5cqVS/IxfhQWFsbw4cMJDAykQoUKLFu2LFZSUwghhBBCCCHSi58qcffw4UP69u3Lzp07KVCgAJMmTcLW1paJEyeSMWPGBNcoaNWqFfb29gwdOlS9JkOmTJk4efIkFhYWqfUQhBDiXyuqNdjPwtbWltOnI9dQ3LRpEx07dkxy++X4/Pnnnzx9+hQjIyMmTZqk8bgNGzYQHh6u01iiu337NnPnzqVKlSocPXo03rWvDA0NOXHiBCdPnqRu3br0798/2SdSPTw84kwcJbU6KlOmTNStW5ezZ88SFhbGvHnzWLduXbJijMuqVasAqFGjhk7aOSaHq6srT548AdB4fbVPnz6pbyc3cWdpaUmuXLm4e/cuAN++fWPr1q1s3bo11r6ZMmXCysqKbNmyYWJiwvXr1wkKCkJPT4/ff/+dvn37UrJkyWTF82/z9etXXFxc2Lt3Lx8+fIixrXXr1vTq1UvjuaLW6cuaNat83tXQ+vXrMTc35/fff1ffN2PGDNq1a5fohYLwv+RWhgwZKFSoEMWKFePq1avJTtyFhIQwcuRIDA0NOXLkSIJrzNnZ2aFSqejcuXO8P/fg4GAWLlwYK3lVoEABIHINzd9++y3GtmfPngGRj61EiRJJfiyDBw+OMfetW7fUCUY7OzscHBySPHd8pk2bxv3796levTqrV6/G1NRU58cQQgghhBBCCF35aRJ3N27cwMnJiaCgoBj3ly1bFhcXF0JCQhIcX61aNbJnz86GDRuYPv1/61PJSQwhhEieqITdz3bleu3atbG0tMTX15eQkBBWrVqlXlNHF5RKJcuXLwdgwIAB5M2bV+Oxuk4g/ujLly+sW7cu0bV9oiooVSoVV69epW7duslK3B06dIiJEyeyYMECmjRpkuR5ftS8eXN1BdrFixe5e/cuFStW1Nn8rq6u/PnnnxgbGzNt2jSdzZtUUQmyevXqUapUKY3GRCXuLCwsyJgxY7JjcHJyUreYrVixIkWKFCFXrlzkzJmT7Nmzkz17drJly4ahoSHfv39n+/btODs7ExoaSsuWLenfv3+sykhXV1eKFy+e7trJpgZ/f38uX77MsWPHuHz5MmFhYUBk4nPAgAEsXbqUgIAAreeNSrQkVDGrS/PmzcPBwSHeiwHic+XKFS5evMjEiRNRKBQpFF3iHj16xJUrV+jYsSMmJibq+/v166dOaCUmKnFXvHhxjIyMKF68OPv372f48OHJis3IyIihQ4fGu55hlLdv3/Lq1SsAHB0dcXR0ZMSI2GsJ16tXL87xuXPnxsTEhIsXL8ZK3N2/fx+AQoUKJSvxlTlzZmxsbNTfW1tbs3jxYj5//syePXuwt7fX6WeKFStWsH//fho1asTixYv/k+8xQgghhBBCiJ/LT5G4CwoKYuTIkQQGBsb5n3l9fX2N2nTZ2tqyceNGnJycUvykqBBC/FdEtbf62a5eNzAwoH79+hw6dAiITCqNGDGCTJky6WT+w4cP8/z5c4oXL57u1tGJXkmSkOgnrpcuXUrDhg2TfMxDhw4xbtw4lEolI0eORE9PL9ZJ4aSqU6cOxsbGBAcHA5GJLV0m7hYuXIhKpWLw4MFaJWBTgru7u7pSdNCgQRqPi2q9mtxquyiFChVi7dq1VK1aNcbrJDo3Nze2bt3KH3/8QXh4OLa2tvTp0yfelo13795l4MCB9O3blw4dOuhsXav0LjQ0lPbt2/PPP/+o71MoFHTo0IHhw4eTKVMm9UUA2vD391evSaZpgje5bty4wZEjR5g+fToVKlSIsS2qijg0NJRv376p73dzc2Po0KH4+/sTEBDArFmzyJAhQ6rE+6Nly5YB0K5duxj3a5q0Cw8Px9XVFYBKlSoBUKJECZ48ecLXr18TvVgiMYkl7QCOHz+uvt2oUaM4E4aHDh2iZcuWcSbH9PT0KFeuHBcvXkSpVKr3CQkJ4dGjRwCxfrbJlSFDBtq2bcuaNWtwc3Pj8uXLia7fqKl169axcuVKWrVqxezZs9PstSWEEEIIIYQQ2vgpEncmJiZs2LCBXr164ePjk+R52rRpw5o1a9i4cSMTJ07UYYRC/HvlGbBGJ/Mo9OM/AZut16IY3xsZG6tPFH0+vJQQt+dxDUsRRjbFyW4b/1pnCT0OXT1XP5uoZMnPlriDyIRPVOIuNDSUGzduaJzUSkhwcDDLly/HwMCAuXPnJmsNuLQU/QRn7ty5E93f3d2dYsWKJbpfeHg4w4cPZ+nSpRqv+5cQExMTqlSpwpUrVwDU/+rCpUuX+Pvvvylfvjw9e/bU2bxJtWDBAsLDw2nevLlWyRgPDw+AGFUuyVWnTp0477979y47duzg9OnTWFhY0L17d7p3746VlVWC8/Xs2RN/f3+mT5/O9u3bGT16NA0aNNBZvOmVoaEh8+bNo3PnzoSHh2NjY8O8efOoXLlysua9c+eOuiI6uXNpysjIiC9fvuDk5BTvPsePH4+RXIru4MGDWFlZxVkhlpLCw8Nxdnbm8uXLFC9enLJlyyZpnsePH6svZvnll1+AyMo7AwMDjh07Ro8ePZIVZ2hoqLoaMz6HDx8GItujTpw4UR1PlB07drBkyRLOnj3LwoUL40y8V6lShRs3bnD//n31RRA3b95UH7tGjRrJehxxad++PevWrUOpVLJz506dJO5WrVrF8uXL6dSpE1OnTk3Tak4hhBBCCCGE0MZPcyaxRIkS7Nixg5YtWyZ5jjx58lCxYkUOHDhAv379yJYtmw4jFOLfySBT9hQ/RoaMMU/mGpiYqBN3JnlLpWriziRvySQ/5tR4rtIbpVKpTtxZWlqmcTTaq1atWozv3dzcdDLv+vXr8fDwYMSIEclaByitaVuZYG1tjYuLi8b76zKhWa1aNXXCLjAwkG/fvmndru9HoaGhzJ49G1NTUxYsWJDmlRq3b9/m5MmTWFlZaXUBUlhYmLpVpi4Td9H5+/tz/Phx9u7dy+PHjylSpAhTpkzB1tYWY2NjjecZOHAg/v7+bNmyBScnJ37//XemT5+uk/ae6VnZsmXp27cvf//9N2vWrNHJ++mNGzeAyOri1ErcRVVJFi9eXJ1ASoybm5s6QVuvXj369euXYvFFefPmDQMHDsTc3ByVSsW7d+/w9vYGoGPHjkme9+LFi0DkxQS//vorAMbGxlStWpX9+/cnO3H35s0bevbsGaNiMT5fv36NN7kOcO7cOQYMGMCmTZtiJbSi1uM7e/asOnF3+fJlIPLvQlRSUpdy585NjRo1uHr1KleuXOH9+/fJqnBeunQpa9asoUePHowfP16HkQohhBBCCCFEykvTBYmmTJnChw8fNN6/SJEi6iuHk6p169YEBwezYcOGZM0jhEgd5qVqpvLxaqXq8X52USc6AXLkyJF2gSRR1qxZY8StizV1Pnz4wMaNG6lWrRp9+vRJ9nxpSdtElZ6eHlmyZNH4S5fJ3h+rz3RRWbFlyxbevn3LpEmT0rxFZkhIiHp9vRkzZpA5c2aNx7q5uREREQGg08fh5eXF/v376du3L9WrV2fatGlYW1uzZcsWjh07RseOHRNM2qlUKvz9/fHw8OD58+fcvn2b8+fPU7x4cXWF56lTp+jcuXOM95p/KycnJ1auXKmz34uoREvVqlUxMzPTyZyJSW570wYNGqRKrAUKFMDZ2ZkWLVrg6ekZ4/VVpUqVJM977tw5AGrVqhXjtV+rVi1evnzJ3bt3kzw3QLFixdi6dSvDhg1j48aNnDlzhuvXr+Pq6oqrqytNmzYFIhOn9+/fV98f9XXlyhX12qWNGzdm0aJFcb5XlitXDkNDQ/U64kqlUt2it3LlyjprKf2jqKSpSqVi9+7dSZ5n+fLlrFmzht69e0vSTgghhBBCCPFTSrOKu6dPn7J3715u3LjBhAkTtDpZevfuXdzd3ZN0XHNzcxQKBXv37sXBwUGq7oRI5wyz58M4TwmCPzxN8WMZ5y2JYfa0PTn/s/nZE3cABQsWxNPTE4Dy5csne74ZM2ZgaWnJokWLdJIITEtpXWGmjYIFC6pv58+fX6vEVlzc3NxYu3Ytbdq0oU2bNskNL9lmzZrFixcv6NevH/Xq1dNqbPS10/Lly5esOD59+sSsWbN4/Pix+rOYvr4+NWrUoGnTppiamuLu7s6WLVvw9fXFz88PPz8/fH198ff3j3Gfv78/SqUShUJBxowZyZYtm/qrcePGXLt2jRcvXvD69WtmzpzJwoULkxV7eqevr5/s122U169f8+rVKwCaNGmikzk18TO952XOnJlu3brRqlUrHBwc1Em1pK5D9+TJE168eAHEXiOvbt26zJkzhx07diR7/c1ixYrF2ZL4xYsXnDp1CoBJkybF2QLz8OHDhISEYGBgwMSJE+N9vRkZGVGjRg0uXrzI0aNHyZ07t/rvpC7aScenfv36WFlZ4eXlhYuLC0OGDNGqYhciK95XrVpF7969GTNmTApFKoQQQgghhBApK80SdytXrgTg/fv39O3bV6uxulifLiQkhA0bNjBu3LhkzyWESFmZqrfmUyok7jJVb5Xix/i3iZ64y5MnT9oFkgyVK1fm+vXr2NraJvuE6tGjR/nrr7/Ytm1bout5Cd3KmTMnNjY2fPr0iUmTJiV7vilTplCoUCGmTJmig+iSJ6oFZevWrRk2bJjW458+/d/7pyZrECYkZ86ceHh4xLiAKjw8nMuXL6srvKKzsLDAxsYGGxsbvn79yuvXrylatCgTJkzAysoKKysrsmXLFmel1pMnT2jXrh0RERGcOnWK+fPnp3hiaM2aNbRu3ZqcOXOm6HFS2sGDB4HItUdTM3H3M67naW5uTt++fdX/H0nqBQt79+4FIls+1qoVs3o/f/78lC9fnpMnT9K7d2/KlCmTvKDjsHjxYpRKJba2tnG2Rg0ODmbbtm0AtGzZMtGLbVq0aMHFixfZuXMnuXLlAiLbfjZr1kznsUfR19endevWrF+/Hm9vb44fP07btm01Hr93714WLVpE165dNU7abdmyhfz58yfYVlQIIYQQQgghUluaXBb79OlT/vzzTyCyFYo2X0kZE9/Xnj171FePCiHSL9MilTBL4ZaZ5qVqYVq4Uooe498o+ppwhQsXTsNIkq5Lly6MGDGC2bNnJ2ue0NBQ5syZw8yZM6lUSV5LaWHq1KmsWbOGmjWT935x7tw5Xr9+zapVq7Su9tC169evM3bsWBo1asTMmTOTPAeAlZUV2bMnfy3OoUOHxrqvcOHC2NraMmrUKJYvX46Liws3b97k9u3bHDp0iJUrV1KhQgUAsmfPToMGDShbtizW1tbxtlcsWbIk3bt3B8DMzCxFk3bh4eFMmDCBly9f/vRJu9DQUPVak7a2tpibmyd5rtevX7Np0yZdhZZqTp48qdX+FhYW6tthYWFaH8/Ly0udLO3Xr1+cr9XOnTujUqmYP3++1vMn5tatW1y4cAFzc3NGjRoV5z7Ozs54eXlhYGCAk5NTonM2aNAAU1NTnjx5om4B2rRp0xRfb7JDhw7q9p07d+7UeNyFCxeYNm0aLVu21OrijQMHDhAeHq51nEIIIYQQQgiRktLksthnz57RqVMnjIyM0NfXV3/p6emRIUMGFAqF+j+8CoUixtoLCxYsoE+fPmTJkiXJxw8JCWHZsmWEhoaydu3adHE1vRAiYdka9yH43RMi/L/pfO4M5lnI2the5/P+F7x+/RqIbI9WqFChNI4mabJkyYKjo2Oy5wkJCWHYsGG0atUq+UGJJPmxyiWpgoOD2blzZ5q3f3348CEDBgygY8eOjB8/Pt7Elb+/f7zJGTc3N3ULwBo1augkrlq1alGlShV8fHzo2LEjv/32G1ZWVvj6+nL//n1q166t1Xxubm7kypUrzsc3ZMgQTpw4QcOGDXUSe1wCAgIYMmQI7u7uHDhwIMWOk1r27dvH169fMTAwwMHBIVlzffr0iefPn2u8vy7WltSFpUuXalVp6O/vr77t4+OjdSv9tWvXEhISQv78+eNtrdukSRPmzJnDzZs3OX78uM4q15RKJXPmzAGgdOnSuLm5kTFjRgwNDdX7fPr0iVWrVgHQrVs3bGxsEp3XxMSEBg0acPToUSCyElEXfysTkydPHqpXr85ff/3F48ePefDgAeXKlUtwzIsXLxgxYgTVq1dn9uzZGr8OX716xatXr37ajgFCCCGEEEKIf680Sdy1bt2a1q1bJ2nsggULaNu2LQUKFEhWDBcuXMDV1ZX9+/fTo0cP8ufPn6z5hBApK4OpBdadJ+KxYzLKYP/EB2hIz9gc684TyWBqkfjOIpaoNZRKlCgR53o6/yUWFhb06tUrrcMQOtC8efMYa+alhEePHnHmzBkA3N3defbsGcWLF1dvv379OiNGjGD48OF069Yt3nnCwsKws7MjNDSUMmXKULp0aYoUKaJey27KlCkolUpAt2tTrVixgkyZMqlPkIeGhjJ06FBu3brFli1b4mzVF58zZ86wc+dOGjduTOvWrSlatKh6m6mpKevWrUuxE+ufP3+mb9++vHnzhv3792NmZpYix0kt/v7+rF27FoCuXbuSO3fuZM3n7e2Nr6+vxvunh8SdUqnEzc0NpVKpcZVm9Nav37590+pClCdPnrB7924UCgXTp0+Pt12okZERvXr1YsmSJUyePJnSpUsne81JgMDAQNq1a0exYsV49OgRXbt2JUOGDJQuXZoKFSpQsWJFNm3aRGBgIHnz5mXQoEEazx3955knT55kv5401b59e/766y8gsuouocSdv78/gwYNwtrammXLlsVbwRuXqHUz8+aV9Y2FEEIIIYQQ6cvPs4K8jjVt2hSAiIgIFixYkMbRCCE0YZg9H7m6TyeDedIrbqPLYJ6FXN2nY5g9+SfO/qseP34MQN26ddM2ECF+Ej4+PkyZMoX27dtTuHBhDh06RKNGjejRowe3b98G4NChQyxZsoQtW7YkmLQDMDAwwMXFhenTp/P27VumT59O9+7dqV27NrVr1+bq1atAZCtLXf6eZs6cWX1SPywsjBEjRnDt2jVCQ0NxcnJSV+Nqonfv3mzYsIH79+/TokUL2rdvz/79+wkKCgIiW2ZGb2WoKy9fvqRjx448efKEyZMnU6RIEZ0fI7UtXLgQLy8vcubMqVWCJj7fv3+PsZZpYqLa2qclb29vwsPDtYo7+uv106dPGo8LDg5mzJgxREREYGdnR7Vq1RLcv0ePHuTIkQN/f3+GDBlCSEiIxseKj7m5OV26dGHOnDkcPXqUa9euMWPGDKysrNizZw8DBgxQV93mypWLq1evEhwcnOi8y5cv58iRI+rv3759y8iRI4mIiEh2zIlp2LChurvKyZMn+fYt/m4L06ZN49OnT6xYsULjtrDfvn1j7NixXLhwASsrK0xNTXUStxBCCCGEEELoyn82cRe95dL58+c5f/58GkYjhNCUYfZ82DgsxrxU8lrimZeqhY3DYknaJcOjR4/4+PEjenp62NrapnU4QqRrKpWKP/74g99//509e/bQr18/lixZQokSJZg/fz6//fYbPXv2xNnZGQsLC3bt2kWxYsU0nr9ixYrs2rWLkSNHxtpmZmbGvHnzUmSNuKCgIJycnNTVgxCZzNi8ebNW8xQsWJCdO3cyZswYnj17xsSJE6lTpw6LFi3i69evOok1esLh77//pkuXLnh4eGBraxtve8OfyZ07d9izZw96enrMmzcvWWvbRdG24i49JO68vLyAyGpKTb18+VJ9O/rarYmZPHkyL168oEaNGowePTrR/U1MTBg8eDAQueb34MGDdZK8iy5z5sy0atWKqVOnUqpUqRjbbty4weDBg/n1119ZsmQJoaGhcc6xe/dudWvNunXrqtsQnz59mgkTJiQpeRd9TGLjDQ0N1d1ZQkND2bdvX5z73bt3jyNHjqBQKHBycuL3339P9KtBgwbUrFlTvSahtMkUQgghhBBCpEf/2cSdjY2N+spqlUrF1KlTE7yaUwiRfmQwtSB7q6Hk7DAe47wltRprnLckOTuOJ3urodIeM5nOnj0LQP369XXS7uu/5MGDB8ycOTNdnOQWybNs2TKuXLmS4D7Pnj2jS5cujB8/nm/fvuHg4MCQIUNi7DNlyhTq1q3LjBkz2LNnjzr5oA2FQoGDgwNDhw5V31esWDF27dpF6dKltZ4vMZ6ennTp0oXLly8DkD9/fqZOncq1a9eYNWuW1vPp6enRu3dv9u3bR758+fDx8WH9+vU0bNiQ9evXJ7vSJ+pzXnBwMPb29vj6+pI/f36t1zrWJgGRWnx9fRk/fjwqlYqhQ4fyyy+/6GReb29vrV6LUe9pSqWSb9++afQVPTGoi+czKtHr6emp8Zg3b96ob2uauFu4cCGHDx/ml19+YdWqVfG2yPxR27ZtqVq1KgAXL16kb9++6upSXXny5Ant2rXj5s2b5MmTh927d7N161aqVKkC/K+l6rRp02KN3blzJ9OnTwegc+fOrF69msWLF6uXFTh48CA9e/bky5cvicahVCrx9fXl7du3XLhwQX3/oUOH+Oeff/D19VW38v1Rhw4d1LfXr1/PpUuX8PHxiZFsjPpZBwUF8ebNG42+3NzcYrzO5POLEEIIIYQQIj1KkzXukuvbt2/JXuMOoE6dOrx8+RKFQoGXlxdOTk5s2rTpp1/fRIj/CtMilTAtUonQz+/xf3yFkI+vCPn4T4w18PSMzTGyLoiRdWHMS9XCMLusY6ILSqWSkydPkiFDhhhJApG4Bw8eYG9vj5+fH0FBQcycOTNdrAuVlk6cOIG/v3+ME7U/g0WLFrF+/XqMjIxYvXo1NWvWjLXPyZMnGTFihPpEcatWreKsisuQIQOLFy9m+PDhnD17lsaNG9OxY0fat2+vVeUdgIODA15eXtSoUYMGDRqkyOvr+vXrjBw5ki9fvmBtbc3gwYNp1apVglV9mlZulShRgj/++IOhQ4dy9epVAgMDWbRoETdu3GD16tUYGxsnKeb79+8Dke9fSqUSAwMDFi1apPXnvrRI3CXU2jAiIoJhw4bx9u1bOnbsSN++fROdL+o1kVi116dPn9SJF03Wgw4PDwfgxYsXVK9ePdH9fxRfBVj05E7UMeLz7t07AB4+fEidOnU0Oq6Pj4/6tiYJqfnz57Np0ybq1KnDihUrMDIy0ug4EPncz5s3j5YtW+Ln58f169fp2rUrCxYs0GptvbiEhYWxefNmVq9eTXBwMG3atGHChAnq6svq1atz8eJFpk2bhoeHB4cPH2bKlCkYGhqiVCqZN28eW7duRU9Pj1GjRtGnTx8ALC0tWbNmDd26dePr16/cvHmTVq1aMX36dOrXrx9vPB4eHjRo0CDW/bdv36ZJkyYA/Pnnn9jY2MTaJ3/+/FStWpWbN28SEBCAo6MjAJMmTUq0hbA2pOJOCCGEEEIIkR79lIk7V1dXKlWqlOx5ateuzcaNG4HI/0T/+uuvssaBED8hw+x5yZK9KxB5tb8qNBhVRBiKDAYoDI3/80mRlHDixAnevXtHjx490vW6UCqVKskn1qNXw0VERMR7sjj6fomdUH706BF9+vTBz88PgAMHDqBQKJgxY8Z/9nV67tw5Ro0aRUREBAYGBur2aD+KiIhIdoWiSqVK9Gek6X7Lli1j/fr1QGTyw8nJiTVr1vDrr7/G2K9Ro0Y0b96cw4cPU6JECWbMmBHvnIaGhqxYsYINGzawcuVKduzYwY4dO8iTJw+VKlWiRIkS5M+fnyxZspA1a1bMzMwwNjbGyMgoxutHX1+fyZMnx3mMiIgIQkJCCAwMxMfHBz8/P3x8fMiUKRPlypVL9LkJDQ1lxYoVbNy4EQMDAwYMGICjo6M6mbZu3TqyZcuGlZUVWbNmJWPGjJiZmeHm5sb169cBNGrZaWFhwbp16xgzZgzHjh0D4P/Yu+/wpsr+j+OfdNEyC1KQXZZSQEQQeUDZIAooS0DZyEYQBNlTQDbIkC2yRKYMWSICgoAoSwGZoqyCrEKB7jb5/dFfY0tXkqbtQd6v6/J6TpJz7vNNm4Y855PvfR84cEBz587VRx99lOzxCT3vM2fOxLmvZ8+eDnUixn5tODO4279/v7JmzSpfX19lzZrVev/BgwcVEREhKXpNw8eNHz9e+/fvV9OmTTVq1CibzuXh4SEp+veZWCgXFRWlEydOSIr+vY4fPz7ZcWMCthIlSmjTpk021XLt2jVruJNYkBg7rL148aJeeOGFRMc7dOiQJGnNmjVq06aNsmXLlmwNvr6+OnfunKSkp/sMDQ3V8OHD9e2336pJkyYaPXp0gr+T5OTNm1ejR49W3759ZbFY9Mcff6hJkybq16+fWrdu7dC0tocPH9aoUaP0559/6rnnntPHH3+cYHBZvXp1VahQQePHj9f69esVFRWloKAgDRgwQD/88IMKFCig8ePHW7vzYhQpUkSLFy9W27ZtrZ2Y3bt3V/ny5fXRRx/F21+KnuEk5ufqiOXLlyf5eO3atVM0PgAAAAAY1RMX3Pn6+uqtt95yylgvvfSSvLy8lClTJk2ePNmhbwYDMBaTySRTBi9JXuldyn+W2WzW3Llz5evr69AF9LR048YNtW7dWv7+/ikax5Zp5x4+fBhvPSFbrF27ViaTSaNHj06z8C40NFTBwcHJ7vfo0b/dqw8ePEh0SumYLpmY6fFs9dtvv6lPnz7WIGTIkCFyd3dXgwYN4u27adMmDR06NNFp1Wyxe/dum35HMYGZPcLCwtS9e/d44Z2bm5smTpyonDlzqmnTptbAJDEmk0ldunTRm2++qVmzZmnbtm26evWqrl69qo0bNyZ6nIeHhzJkyGAdP/ZryWKxKCwsTGFhYdYAKPb5KlWqpLZt2yb7HI8fP67hw4fr0qVLatasmXr06KFnn302zj7FihXTwYMHtXPnzkSnKsySxbZpit3c3DRp0iQ9fPhQe/fulRS9jpsjXF1dNXfuXLVq1UpBQUEqU6aMOnfu7NBYsbvCnLk+WWBgoKZOnarTp0/L29tbOXPmlLu7u/7880/rPo93X06cOFHLly9Xly5d1LdvX5vfQ4oVK2bd7t+/vz766CPlzp3bep/FYtHatWutv8P169crV65cyb7nP/76sldinYUlSpSQyWSSxWLRhAkT9PDhQ/n5+cXrljxy5Ih1vcWbN2+qdevWWrNmjby8kv5M0K1bNw0ZMkQhISGJBth///23+vTpo6tXr2ry5Ml6++23HXiG/6pXr56uXr2qadOmSYp+7p9++qm+/vprdezYUQ0bNkz2/UKKfs7z5s3TTz/9pIIFC2ry5Mlq0KBBkuFfpkyZNHbsWPXp00e///67hgwZIn9/f7Vo0UIDBw5MtAv1+eef19KlS9W5c2frGoJHjx5V69atlS9fPr3++utq166d8uTJ48BPBAAAAAAQ44kL7pYtW6acOXM6ZSx3d3d1795dTZo0cdqYAPBft3HjRl27dk2rV69O9mJoesubN6+WL1+u1atXq0SJEipSpIiyZMmizJkzG67DzWKxpFlNgYGBatu2rS5dumTzMbYEOzdu3EjRl2DMZrMGDhwod3d31a1bN85jTZo0kaenp65fv65SpUopV65cypIli8PTJqYWV1fXePeZTCYNGDDArnEKFCigSZMmqV+/ftq2bZu+//57nTx5MtFgJDw8PNFpBhNTqFAhTZ8+XSVLJr1W6J07dzRt2jR99913atKkiebPn698+fIluG+tWrVUq1YtDRkyRDt37tSUKVN09erVOPvY8xpxdXXVlClT1KhRI/n7+6doOnM/Pz/NnDlTPXr00NixYxP8XdkidsedLQG4rerXr6/69etr//79mjhxos6fPx/n8ezZs1s7qMxms0aOHKktW7Zo0qRJatiwoV3nqlOnjmbMmKHr16/rxIkT6tChQ5L7Z8uWLcEpDx9n72vwcYkFobly5VKDBg20efNm3bt3T2PHjrVpvDfffNOmf6fq1aun6tWr6/Lly3ruuefiPBYVFaWlS5dqxowZKl26tDZs2OC0ddG6du2q27dvx/miwOXLl7V8+XJdvnw5wWl1pejX4N69e7V48WIdP35cVapU0YwZM1S7dm2b19oLDg7W7NmztXLlSr344ouaMGGCde29pJQoUUJr1qxR586ddeHCBev9YWFhunfvnlP/JgAAAADgafXEBXe5cuVy6ngx6yUAAJJ348YNjR8/XuPHj1eJEiXSuxyb5MuXT3379k3vMgwld+7cWrZsmbZt26YSJUqocOHCypw5szJlymS4QDO2evXqpXcJaS537tzq0KGDOnTooLCwMJ06dUoXL17UpUuXdPPmTd27d0/3799XcHCwQkJCFBoaqvDwcEVERCTb/TRhwoQkQ7vw8HAtWLBAP/zwg9566y3t2bPHpmkHpejA7Y033tCrr76qVq1aWaezq1y5cqLToSYma9asmjdvnjp16qSmTZvadezjXnvtNW3YsCFFa4nFDpdCQkJSVE9CXnvtNb3yyisaMWKENmzYICl6qshPP/1U3t7eunv3rgYOHKgHDx7om2++UZEiRew+R6ZMmfTVV19pzpw5OnPmTIKBm6urq7JkyaLy5curVatWNn0Gj+mYi1lTzVa+vr7q1KlTkgHkuHHjlDt3bn333Xe6e/duotOUZsyYUaVLl1abNm1UvXp1m2vImDGj/Pz84tx34MABTZgwQRaLRdOmTbMpvLTXsGHDlD17ds2cOVO1a9fWqFGj5OPjk+C+Z8+e1YYNG7Rz504VKFBAtWrV0vTp0+36AmJUVJQ2bNigzz//XFmzZtXs2bPtfl558uTR6tWrNWLECG3ZskW9e/dWp06dbOoQBAAAAAAkz2RJ6YIxAOwSHh6ukydPxrv/hRdeSPEFj8jIyDjffpak4sWL2/zt6/RgNpvjXfj08vJyaH0XpC6LxaL27duratWq6tixY3qXA8AGUVFR1v/MZrN1/S6LxZJs56nFYtGRI0f08ssvpyjQ3bFjh7744gs1atRILVq0cPjfJLPZbIh/GxYsWKB169apRYsWatKkibJnz54q54mMjFSdOnVUsGBBDRw4UCVLltSBAwc0duxYtWzZUq1atTLEzyO2ESNG6NVXX1WtWrVs/j1HRkbKxcXFUM/l0KFDmjdvniwWi9555x3Vq1fP4Q5NW/3000+qVKlSoj+3R48eacWKFapQoYJeeOEFu9fWs1gs2r59u+bMmSNfX181a9ZMVatWTfGXNXbt2pUqgWZac9bn0SfxszgAAACMISIiwrrOeIwyZco4tK72ky41r58/KQjugDRGcBcXwd2TIzQ0VFu2bNE777yT3qUAQLoJCAhQ9uzZ06Q7NSAgQDly5LDeXr16terWrStvb+9UP/fTKigoSF999ZUaNGiQ6JSwT6ILFy5o3759atSokZ555pn0LsdwCO4AAACQ3gju/kVw9wROlQkASB+enp6EdgCeerGDtLQ+V4sWLdLs3E+rTJkyqWvXruldhtMVL15cxYsXT+8yAAAAAAA2oKUFAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAOApcffuXd2/fz+9ywAAAAAAJILgDgCQpnbs2KHff/89vcuAkxw4cEAbN25M7zKeWnPmzNGxY8fS5dznz59PlXHPnj2rrl276tatW6kyvi0CAwO1YMECPXjwIN1qSExkZKRDx0VERDi5Ejypzp8/r9q1a+vTTz/V7du307scAAAAAMBjCO4AAGnKZDKpRYsW6tOnj27cuJHe5STqhx9+0NWrV5Pdb9OmTekaMKS3uXPnauDAgerYsaNNP6/08PXXXys8PDzJfe7fv6+NGzc6HIrY4/r168nWY6t9+/bpvffeU6NGjbR27VqFhIQ4ZVxbjBw5Uu3atdPJkyedNmZUVJSGDh2qH3/8UW+//bZ++OEHp41tDxcXF02dOlXVq1fXhAkTDPVe9cEHH2jBggV2v1Y7dOigiRMnptn71aVLl7R///5UGTs4OFiDBw8mdHJQpUqV1K1bNy1btkx16tTR/PnzFRUVld5lAQAAAAD+H8EdACBNvf7663r//fe1fft21atXT6tXr07vkhJ04MABvfnmmxo6dGiSgdS2bdtUq1YtjRo1SteuXUvDCtPfyZMndfjwYUnS/v379dZbb2nr1q3pXFV8kyZNUu3atfXVV18lGpiZzWYNHDhQr7/+ulauXOm0YC0hv/76q958803t2LEjxWN5eHhIks6cOaNly5YpMDAwxWPaytPTU4cOHdI777yj559/3in/lSxZUqdOnZIk3bt3T0uXLk3V30ViYn6uQUFBWrx4sT744IN0qeNxDx8+1IEDBzR16lQ1adJEJ06csPnYixcv6ssvv7S+XwUEBKRipdKjR4/UsWNHde7cWWfOnFFAQIBT/rt165a6du2q9evXq23btikO7y5cuKAxY8bo7t27TnrmT4aOHTvq1VdfVUhIiKZNm6Zhw4ald0kAAAAAgP/nlt4FAACePn369NGuXbt06dIljRgxQv7+/urbt296lxWHl5eXIiIitG7dOm3atEnTpk3T66+/Hm8/T09PhYeHa+XKlVq7dq2mT5+uOnXqpEPFae/LL7+Mc7t+/fqqUaNGOlWTOC8vL928eVNjxozR0qVLtW7dOmXLli3ePpLk7++vUaNGacmSJVq1apWyZ8/u9HoaNWqkc+fO6cMPP1TNmjX16aefKkeOHA6N5erqat1eunSpw+M4IkOGDJKkPHnyaP369U4bt1u3bvr9999VrFgxLVq0yBqipSV3d3frdp48efTFF1+kSx2P++mnn6xTXp47d049e/bU2rVrlTt37iSPCw8P17179yRFT5mZLVs2eXt7p2qtMa+Pffv2ad++falyjr/++kt9+vTRV199JZPJ5NAYRYsW1aVLl1SnTh11795d7du3j/P7T0iNGjW0atWqZH/utgoMDNTt27dVrFgxp4xnC5PJpJEjR6pevXqKjIy0BqF+fn42jxHTPezr65t6hQIAAADAU4jgDgCQ5jw8PDRs2DB16tRJkjR//nxVrVpVL7/8cjpX9q+MGTNat9u1a5doGBdzcdrNzU2TJ09+akK7M2fO6LvvvrPezpo1qypUqBDn52YUMaFctmzZNH78+HihnfTv71GSnn/+ec2ePTtVQrsYffv21S+//KLdu3eradOm+vLLL1W4cGG7x3FxiZ48wc3NLU1DO+nfn5mLi4tTzx0TRubIkSPdwjIXFxeZTCZZLBYVKFAgzX+2idmzZ49129vbWytWrLApPLp586YsFoskqXbt2vroo49SrcYYscOvwYMHq3379k4bu2bNmvL399eLL76oOXPmOBzaSf9Oi9qwYUNNmTJF3377raZMmaLnn38+wf2vX7+u69ev6/bt204J7m7evKmOHTvq9u3bWrhwocqUKWPzscePH9eDBw9UrVo1h85dqFAh1a5dW999950yZMggHx8fm4+9ceOG2rZtq7CwMC1fvpzwDgAAAACciKkyAQDpokqVKnG6C2Kmx7PH5s2bNXHiRGeWZeXm9u93W7p27ZroheGY8MLLy0v16tVLlVqMaOLEiTKbzZKk4sWLa82aNZoyZYquXLmSzpXFFxMgvPzyy4mGwy4uLtb9KlasqAIFCqR6TaNGjZLJZNL169fVuXNnPXr0yO5xYsKYTJkyObvEZMWEhv9Vsd8DjCA0NFS7du2y3h48eLDNr9N//vnHul22bFlnl5ag2N2gqaVgwYIJBvH28vb21qRJk2QymXT+/Hm9++67OnPmTIL7HjlyRJLUtGlTp0wPW7VqVV24cEH3799Xhw4drOPbIjQ0VF26dFH37t0dXmO0bt26MplMGj16tHLmzGnTMf/884/atm2rq1ev6tatW2rbtq0uX77s0PkBAAAAAPEZ64oEAKSQxWJRSGSoIs1RcnNxlZebZ4q+iY/U9fbbb2vatGnKmDFjgtNQJmXLli0aOHCgoqKiZDabNXjwYKfWZutF5+SmVPsv2rt3r37++WdJ0d2TU6ZMUeHChdW2bVv16dNHK1assHa5GYE9v8uYaQjTQpkyZVSjRg3t3r1bV69e1bJly9SjRw+7xogJT/+LwV1MKJlejBZM7t69W0FBQZKkIkWK6O2337b52L/++su6/eKLLzq9toSkRfDpzNdIxYoV1aRJE33zzTcKDg7WrFmzNGfOnHj7xUz7OXPmTFWoUCHF5503b56WLl0qKfrLBQ8ePLD52KxZs0qKfm3s3r07RXUMHDhQAwcOdOjYmzdvqk2bNlq+fLkKFSqUojoAAAAAAAR3AP4Drtz31/4rh3Ux4JL+undVQeHB1scyeWRUkewFVDSHr14rWEEFvfOlY6X/DSEhIQoJCXHKWPnz55fJZNKQIUPk6empgIAAm4776aefNHjwYEVFRUmSlixZIpPJpEGDBjmlLsn2QM5oF/dTW2hoqMaNG2e93bdvX5UoUUKS1KFDB23evFn9+vXT559/bpifja0BQnqE/O+++671gvu5c+fsPj4muEiPoDQmEPX39090WsGUSO/gzmhf+ti8ebN1u3v37nb9fV24cEFS9O+sVKlSTq8tIWnx9x8TXDtL7969tXnzZoWHhyfYPXz//n3t3LlTUvTfXEqnUA0NDdW3334rT09Pffrpp2rQoIFdx3t6elq3O3bsaJ1+OiFRUVHWKWBTS+x6JOnatWuqVauWTcd6eHgoS5Ysypcvn1544QW9+eabevnll+2q12KxaP/+/dq2bZt+++033bx5U+Hh4fL29tbzzz+vatWq6Z133jHklM4AAAAAEBvBHYAn1rHrJ7Xp7Pc6c/vPRPcJCg/WyZvndPLmOW08s0N+PsXUsERdlctbOg0r/W+5e/eu2rZtK39/f6eNOWzYMA0bNixFYyxevFgmk8nhjgFHGe3ifmr77LPPdOnSJUnR053GXrfK3d1dkyZNUrNmzTR27FiNGDEifYp8jK2/o/QIGitVqqRs2bIpMDDQrrWtYsR0CKZHcBfzc82TJ4/Wr1/vtHG7deum33//3emhjL2MEjxLUkBAgH766SdJ0euS1a9f367jY0LhokWLpllokRZTZUZGRjp1vNy5c6tu3bravHmz2rZtKyk6DPr9999VtmxZTZw4UaGhoZIUZ1rJ+/fvK2PGjHavybhx40aFhYVp0aJFDq3xGvvv3sPDI8kg8ebNm+rQoYN69+5t81qso0aNUvHixdW0adN4oZwt8ubNq8OHD+vOnTv6+OOP9ccff0iSXnrpJY0bN876MwwJCdG9e/d08uRJbdq0SStWrNCKFSus+xUpUiTZc509e1bDhg1TWFiYmjZtqnbt2snHx0cPHz7UiRMn9PXXX+vTTz/V3LlzNXHiRFWtWtXu5wMAAAAAaYXgDsAT52HYI315bLUOXLF9HZgYZ27/qTO3/9RrBSuoQ7nmypIhcypU+N+WP39+LVu2TD/88IP8/PxUqFAhZc6cWZkyZYoXkERFRaXo4u3du3f1zDPPpLRkOMnRo0e1bNkySVKBAgU0derUeL9zPz8/9e7dW1OmTJGbm5uGDBmSHqU+MTw8PDR06FBdvnw5Tghqq5jgwtbgbt26dSpYsKBeeeUVu8/1uJiOVxcXlxR3HsUW855Bx92/Vq9ebQ1pu3btavf76vnz5yVJpUsn/6WVI0eOaMKECZo3b57Na54lJC1+fqkxtW2/fv1UuXJlNWnSRFL0+962bduUIUMGa0D94osvys/Pz3rM9OnTdebMGc2cOVO5c+eON+Z3332nkJAQ1atXz7ouqsVi0YoVK/T55587FNpJccPR5ILujBkz6sKFC+rZs6deeOEF9e/fXxUrVkzymDt37mjlypWaNWuWWrZsqfbt21un57SFi4uLsmbNqqxZs6pGjRrW4K5JkyZxwrisWbMqd+7cKlGihJo1a6ZNmzZp6NChOn78uFq2bKkVK1aoaNGiiZ7nyJEj6ty5s1588UWtXr06zs/lmWeeka+vr9566y2NGTNGK1asUNeuXTVt2jS9+eabNj8XAAAAAEhLBHcAniiX71/TuH2f615IYIrG2X/lsP64fV5Dq/Zi+kwH5M+f36aQYfjw4SpcuLA6duxod/fKgwcPVLNmTb3zzjvq3r17ii4gG8mdO3eeyOfy8OFDDR48WGazWV5eXvr888+VLVu2BPft2LGjDh8+rKVLl8psNmvo0KGGCkGcISgoSCaTySndSw0bNnT42JjgLiYMSMq6des0bNgweXl5af78+SkO71I7WHN2N5W9nPWanTt3rkqVKuVwh09kZKRWrVolScqXL1+c10tQUJDCwsKSPP7evXu6f/++JKlw4cJJTkl87tw59ejRQ8HBwWrbtq2WLVvm8PtV7J/f+PHjNX78eIfGScrjz71ixYr65ZdfUjRmnjx5rKGdFB26VatWTQULFtSECRNkMplUt25d6/P7559/tG7dOkVERKhx48b67LPP4gViFStW1Mcff6wJEyaoefPmat26tXx8fDRmzBiVLVvW4VrtCe5id8x5eHgob968yY4fs3bmw4cP5eLikqL3u9i1Jjd9ccOGDXXnzh1NmjRJ9+7d09ChQ61/A48LDw9X3759FRwcrDfeeCPRUNtkMlnDwNOnT2vAgAF6/vnnbermAwAAAIC0RnAH4Ilx+f41jdrzWZw17FLiXkigRu6Zpk9q9CW8SyVdunRRw4YNtW/fPk2bNk0+Pj42H7t//36Fhobqq6++0vr169W2bVv16NHDpoAiIbNmzVLPnj3TNUAKDw9X/fr11bVrV3Xo0OGJCbMsFov69++vy5cvy2Qyady4cdZ17RLi4uKiKVOmqFmzZlq+fLkCAgI0YcIEu6eRS8iff/6p8+fPq169eikeKyX27NmjWbNmacqUKXrhhRecOvb58+fVtm1b3bt3z+Zj9u/fb/M6c8HBweratavWrFmj4sWLO1qmteMutaT2+Gnh888/16xZs+Th4aHZs2c7FN798MMP+ueffyRJnTp1ihN6+Pv7q127djavDzp16lRNnTrVpn0vXryodu3aadmyZQ51Psd+f+vTp49atGhh9xiJadKkiW7cuKGgoCDrfVFRUXr06JHTziFFh2F79uzRxx9/LE9PTzVu3DjePuPGjYvT+XfhwoV4wV327Nm1cOFCTZs2TQsWLNDixYvVuHFj9ejRI0X12fOFGHd3d7m4uMhsNqtx48YqUKBAssfEvGeXKVNGPXv2jPf42bNnk/y3ICXatGmjJUuW6NatWzp+/LhOnDiR4HTC+/bt082bNyVFv7clxdXVVV26dFGfPn0UHh6u6dOna+bMmalSPwAAAACkBMEdgCfCw7BHGrfvc6eFdjGCwoP16b5ZmlJ3GNNmpgJfX1917txZs2bNUtOmTbVw4UKbw4VNmzZZt0uVKqVatWo5HNpJ0R18X3zxhTp37uzwGCl19OhR3b9/XxMnTtS+ffs0ceLEBKdVM5rPP/9ce/bskSQNGjTIptAsa9asmjNnjt59911t3bpVN27c0OzZs1M8pWKBAgXUo0cPlS5dWgULFkzRWCmxb98+Xbp0Se+995569eqlzp07O21NtOeee06LFy/Whg0b9MILL6hw4cLKli2btfsltqZNm+r69euqW7euRo0aleS4M2bMsHat1K5dO8mp52wR0xFnNpttDo5sERPYpcY0iPZIabA+Z84czZo1S1J0aP/BBx84FN4tWLBAUnRX5eNT+z333HNavny5fv31V5UsWVJ58uRRlixZ4nRGLVy4UFOmTJGLi4sOHz6szJnT5t+62D8/Ly8vp06nmi1bNtWuXVutWrWy3vfo0SNFRkYqJCQkyaljHzx4IHd3d5umlz1y5Ih8fX0TXd9tx44d2rFjhySpXr16GjVqVKKdyC4uLvr444+VN29ejRkzRmvWrNG3336r3r176/3330+2luTY8v7j6upq19qRSU3Junr1ao0cOVIjR47Ue++9Z/OYtvLw8FDVqlW1bt06SdKhQ4cSDO6uXLli3V61apXatGkjd3f3RMetUqWKNcDcs2ePIiMjk+0ABAAAAIC0xv9LAfBE+PLY6hRPj5mYeyGBWnxsjT6slPILZ4ivY8eOWrVqlW7evKkOHTrom2++UZ48eZI85tatW9q/f78kqWjRopo3b16KLzZ36NBB9erVU6VKlWxa5yk17Nq1y7r9888/6+2339bSpUtTrWPBGbZv367Zs2dLkjp37pzgFKlHjx5VuXLl4gUdRYsW1fz58/X+++/r2LFjeueddzRp0iSH13OSosOLpk2bql+/flq5cmW6XHCNjIzU3r17JUWHS9OmTdPhw4c1d+7cJC8YJyY8PDxeN6Kfn1+cNbQSYjabdfv2bUlSkSJFkg1GYncj9evXL8VBY2hoqCTpxo0bqlSpUorGSkhyU0AmZvLkyfriiy+cVsevv/5q8xcOkuJIeLdnzx7rumBhYWF666231Lt3bzVp0sQaqhQrVkzFihVLdIyTJ09Kiv57TKvQTkrdNe7Wrl0b728mpkP1zp07SXaTXb9+Xb169VLbtm317rvvJvk3u23btkR/V7dv39bo0aNlMpnUr18/m78U0rJlS2XOnFkDBgxQaGioJk6cKJPJpA4dOth0fGyxQzhbgzt7AvHE3l+//fZbjRo1ShaLRZ988ok8PDzUtGlTm8e1VeyO4Fu3biW4T+ypXC9fvqxHjx4pe/bsiY6ZOXNmZc+eXXfv3lV4eLgCAgKUK1cu5xUNAAAAAE5AcAfA8I5dP6kDV46k6jn2Xzms1wpVULm8zp3yDtGdFu+9955mzpypu3fvavz48clOTbVixQpFRkYqW7Zsmjt3rlMuNufNm1d16tTRxx9/rI0bNybaQZFazGaztTNDkl566SUNGTLE0KHdTz/9pP79+8tisahly5b6+OOPE9xv3LhxioqKUp8+fVS9evU4j5UrV06zZs1S9+7d5e/vr7Zt26pbt27q0aOHw6Hbe++9p3nz5mn27Nnq3bu3Q2OkxMGDB61rhknRU8K+//77DoV2U6ZM0R9//KH58+fbPZXo7du3rRfh8+fPn+z+d+7ckRR98d6eaWsTExOs5cuXT7t3707xeDHee+89HTt2LF6H4e3bt22qu3///ipdurQyZcokX19fh98/qlatqoiICL300kuaM2eOQ2MkxJ7XSUxoHuP27dv67rvvVKdOHXl7e9s0xqlTpyRJL774os3nNbqE/lZiXt+XLl1KMrgrUaKEBg0apA8++EBff/21Ro8erQoVKsTbLyoqSjt27NDXX38d77HIyEj16dNH9+/f14QJE9SoUaM4j4eFhWnEiBHq2rVrgmuovf322woICLCu+zdr1iy1atXK7veA2OtMuri4aODAgdq4cWOyxw0bNkzDhg2z+TzHjh1LNLy2WCwaNmyYPDw89NZbb9k8pi1ivweEh4cnuM8bb7yh7777TgcPHlTdunWTDO1ixA48E+pkBgAAAID0RnAHwPA2nf0+jc6zk+AulbzzzjuaNWuWLBaLdu3aleRUZmFhYVq9erVcXV01bdo0FSpUyGl1vP/++2rUqJEmTpyokSNHOm1cWxw5csTaMeDu7q5Jkyal61SPyTly5Ih69eqliIgIde7cOdHQTop+PqdOnVLXrl1VtmxZDR06NM6UZlWqVNGcOXPUq1cvhYaGavbs2fr+++/10UcfqVatWnbXljVrVr3zzjuaP3++qlWrprJlyzryFB22fft263bFihXVr1+/RPe9d+9enIvrsa1du1YLFy6UJPXu3VuzZs2yK8y8evWqdduW19Ldu3clSbly5UpyCjxbFS1aVOXLl3do3bak1K1bV3369NErr7xivW/btm0aOnSoGjZsqOHDhydb/+NTStorMDDQGopGRUU5dZpHW/3www86efKk3N3dZbFYFBkZqVKlSumLL76wuZstICBA/v7+ktI3uEuLaU9j/h6OHTumKlWqJLlvrVq11LlzZy1YsEBt27ZVz5499cEHH8TZ59ChQ8qYMaMKFy4c7/jJkyfrxIkTmjFjhmrXrh3v8QwZMmjz5s369ttvVbduXXXr1i3elzTat2+vQ4cOac+ePQoKCtKjR4/sfp3FdL1Kkqenp8aPH69q1arp2WefVcGCBeN14dWsWVMhISEaPHiw3n777WTHnz59ulavXq0XX3xR8+bNS3JfZ7ynPO7hw4fW7cQCOQ8PD7uC9aCgIAUGRs/gULBgQYI7AAAAAIbknMVYACCVXLnvrzO3/0yTc525fUFX7vunybmeNrlz57YGOR4eHkl2Faxbt0737t3Txx9/rNdeey3JcR88eKBvv/3W5jr8/Pz0v//9T19//bX27dtn83HOELNOjyS1aNHC0KHdr7/+qq5duyo0NFT9+/dPMrST4nYQ5cuXT76+vvH2qVq1qhYtWmTtfrpw4YJ69Oih9957Tzt27Ei0myIx7dq1kxTdXRUc7Ny1L5Py6NEjfffdd5KipwLs379/kvuvX79elSpVSvC/adOmWff78ccf7e5ai+mkcnFxUcmSJZPdP2ZazWeffdau8yRm1KhR6tOnj8qVK+eU8WK0b99eFStWlMlkUlRUlCZPnqyPPvpIwcHBWrlypbp06RJn2s/UENO9JUl//PGHU9fws0VERIQmT54sSerVq5f1iw6ZMmWyawrKmNeIJJteIwnV4ajYQc7Zs2cdHsdWx48flxQdiD948CDZ/Xv37i0/Pz+ZzWbNnDlTy5cvj/P41q1bEwylV65cqTVr1mj+/PkJhnYxMmTIILPZrO3bt2vlypUJ7jNixAh5enoqf/78DoXDISEh1m0PDw+5uLioXr16KleunHLmzKkcOXLE+S/mSwSZMmWK91hC/8WsK+vq6prsvomt7ZcSly5dsm478vpNyIEDB6wddw0aNHDKmAAAAADgbHTcAUjSraC7Cd7v7ZlVHq7xp/sKCg9WUERIvPs9XNzk7ZXwRZ07wXEviGYwe8rFxUXenlm1/8phB6p23IErR1TQO59Dz8MZP6tcmZ5xoOr0tWvXLtWsWTPZi8k1a9bU77//ro4dOyb6zfyIiAh98cUXevvtt/X++0mvORgQEKCOHTvq9OnTunXrljp16mRTvW3atNGhQ4c0bNgwbd26VVmyZLHpuJR4+PChdZrMTJkyqUePHql+Tkd999136t+/vzw9PTVv3rx4U18mJCa4y5s3b5ww6nEvv/yy1qxZox49elgvyB47dkzHjh1T1qxZVadOHZUvX17PP/+8ihcvbr1onJD8+fOrRo0a+uGHHzRlyhSNGDHCrufpqK1bt1qDwnr16umFF5Lu0u3YsaN8fHxkNpvl5+ennDlzKkuWLPLw8NCsWbP0+eefK0uWLJo9e7YqVqxoVy0nTpyQJD3//PPJTgcZHh5und4zuTUmpei/r7Zt2+rChQt21ZQW9u/fr3fffVfz5s2zaYpQR9y4ccO6HRUVpV27dqlZs2apcq6ErFixQpcuXdJLL72kTp06WTsz7RUT3Lm7u+u5556z69ht27ZpxowZ+vLLL5UvXz67z505c2Z5e3vr/v372rZtm8qVK6f69evbPMWnraKiorR//37rlzhu376tdu3aad26dUl2gbm5uWnUqFFq0aKFpOi/7TZt2kiK/nvZuXOnJk6cGOeYnTt3atGiRVq5cmWy0xx7eHgoODhYNWrU0CeffJLgPnnz5tW4ceMcnjY49pcWEutijy32FJH2SKxrODXF/F4lKWPGjE5ZRzMiIkJz586VFP2FouQ+ZwAAAABAeiG4A5CknlsSXgNlZI2PVCpX/IuAW8/v1ro/tsa7v6RPcY2q2TfBsfrvHpfoOS4GXLK9WCf48//P58jzcMbPak2LuXZWnP4GDBigfPny6YMPPkiyQ65BgwbWC6pBQUEJ7vPtt98qc+bMGjx4cKL7SNHT2HXp0sUaKkyePFkRERHq3r17svXWrFlT+fPn17Vr1zRu3DjrGkOpaf369dYpzbp166ZnnjFmQLt8+XKNGzdOxYsX18yZMxPsnEtITHBnSydQ0aJFtXbtWvXv318//vij9f4HDx7om2++0TfffKMcOXKob9++yQYlbdq00Q8//KCvv/5ar7/+uv73v//ZVG9KxHTOZMiQIckpMmNLbkq6Z5991u7QTpJ+++03SdGBaHJipsmUbAvucuTIoaVLl2rv3r0qUqSIChQoIJPJpGvXrll/L8OHD1e9evUSHePcuXNq3769JGnDhg1O6/SLkZrrVP7999/W7Zdeekk7duxIs+AuICBAc+bMUcaMGTV58uQEw6fw8HCbuuFiwt3ChQsrIiLC5g66nTt3asiQIYqKilKbNm20dOnSJNeNS0yjRo20ZMkSmc1mjR49WqNHj3b6lIpmszlOsOTq6qpWrVrZdJ6yZcuqcuXKOnjwYJyOsZ9++kkhISFx3lOuXr2qVatWac2aNTZ1x8WEcckFlfXr1092rMTE7rjLmDFjsvtHRUU5dJ60mOr0cd988411mte2bdsqa9asKRovJCREQ4YM0enTp+Xj46MFCxakyRd3AAAAAMARBHcADMtiseive1eT39GJ/rp3JV2+Wf4k8/Ly0rlz5/Thhx/atP9XX32V7D6OfLN++vTpioyMVK9evZLcz8XFRS1atNDUqVO1fv16NWjQQK+++qrd57OV2WzWsmXLJEV3icUEGUYSHBysESNGaOvWrerQoYP69OmT5HSmj7O3WyRr1qyaP3++Vq1apYkTJ1q7RgoUKKARI0bYvGba//73PxUtWlQXL17UiBEj9O2336ZqmHPo0CGdOXNGktShQweHupCc5c8//7Re1Lbl9Xvz5k3rdt68eW06xzPPPKMmTZrEuS/2mlMZM2ZMMsCI3QWYNWtWh9eJCwkJ0d27d1Otuy4hsafo6969u7p37y5/f/80+Z1PnDhRgYGBmjZtWqJh2aVLl9SuXTubp/A8f/68w1Oa+vv7q02bNlq2bJndU/z269dPWbJk0ebNm3X9+nWFh4c7HB4lxdPTU88884zKly+vVq1a2bXuZYsWLXTo0KE4r/WtW7eqfPnyccKw/Pnza968eXGmBk6Kve+LP//8s55//nm7/k5if8EluWDLYrE8McHd7t27NWbMGEnR7/M9e/Z0aJyIiAhdvHhRBw8e1IoVK3Tz5k21aNFCffr0SZd1KwEAAADAVgR3AAwrPCpcQeFpt3aVFD19ZWhkWJqe80kXE/DkzZvXuvaX0TVt2lQzZ85URESEhg8frm3btqVa4PP999/r2rVrkqRBgwbZFYilhQsXLujDDz+UyWTS8uXL43RvRURE2HSR2tYL2Y979913Va1aNX322Wfat2+fVq5cKR8fH7vGaN68ucaPH6/Lly/r888/T3Y9vpRYvHixJClXrlzq0qVLqp3HFt9//70kKXv27MmuBSlJt27dsm7b0nFnJCNHjtTBgwe1cOFC+fn5pck5T58+LSk6nKxataoKFSqkr776SgMHDkzV8x4+fFgbN25Uq1atkuzEeu6557Rs2TL99NNP8vPzU/78+ZU5c+Y4QdO9e/dUrVo1SdHvPS1btkxRbY50ynl4eKhnz54OBy8xDhw4oLx586pw4cIpGichb7zxhp5//nnr2EFBQdq9e3e8mk0mk13vdfasRXjs2DF1795dpUqV0uLFi23+dyJ2x11ywV3s8G3YsGEaNizhWQISEtMxnppCQkL022+/afXq1dq+fbskqVmzZhoxYoRD/8a8/vrrunz5svV2lixZNHnyZL355ptOqxkAAAAAUgvBHQDDinJwLZaUijBHpst5n3QmkynJNcmM5JlnnlHNmjW1Y8cO+fv7a/78+erdu7fTz2OxWDRv3jxJUtWqVVWnTh2bjnvrrbfirLGVUkeOHIl3X8x6gl999ZU6d+6s1q1bx+sQWbx4sc6cOaOuXbsmuZ6To+szSdEh0qRJk/To0aNk12lLSKNGjTRlyhRFRERoyZIlatKkiYoUKeJwPYk5ffq0dWrPwYMHK1OmTE4/hz127twpKXqaPVsuat++fdu6bWvHnTOZzWbNnTvX5g6xGAEBAdqyZYskqXXr1vr888+dstZVUiIjI63BXZkyZWQymVS3bl2tWLFCvXr1smlKQkcEBwdr6NChevHFFzVo0KBk9y9evLiKFy+e6OMx69tJUsWKFZ+Y9+eE/Pbbb+rUqZPq1KmjLl26qHTp0k4dP3YguHPnToWEhMQLxB89eqTw8HCbx4zp3g8PD0/yde/v769u3bopJCRER44c0YgRIzRhwgSbzhE7uEtuCuawsH+/lDR48OBkp/CVojvZV69erezZs9tUj60++eQTjRv37zTpUVFR1s7rXLlyqVGjRmrZsqVefPFFh8+xaNEi3bt3T7du3dKpU6e0c+dO9enTR/PmzdOQIUMcmp4YAAAAANIKwR0Aw3J1cUmX87q78NboiCdtitGGDRtqx44dkqIv8LVo0cLpa3Dt2rVLZ86cUYYMGTR8+HCbj1u4cKEiI1MvQD5y5IgmTJigChUqaPPmzYlOGebh4aFt27Zp+/btql69urp3756iC6mSdP369QSDI0dCOyl6/ajq1atr586dioiI0MSJEzV//vwU1ZiQ2bNnS5IqV66c5LpuaeHEiRPWYOnxqSwT888//1i3nRXcDR48WIMHD7ZpXxcXF9WoUUODBg1S7ty5FRUVpYCAAFWuXDnJ48yxvsDh4eGhq1evpnpwd/bsWWuHUcz0ks2aNdP8+fO1cuVKdezYMVXOO3nyZEVFRWnu3LlO6cz95ZdfJEV3GiUVvD8JMmbMKLPZrB07dmjnzp1asGCBqlSpkirn2rx5s3x8fPT888/Huf/q1atq37697t+/b9d4W7du1dat8dfMTcyGDRtUpEgRm7p6YwfyOXPmTHLf4OBgFSlSRG3atFHjxo3l5eWV7Pjly5dXrVq1bJ6+2FYffvih6tata719+PBha1jdtm1bde7cOcXnKFCggHWq2dq1a6t3797asmWLhg8frrZt26pbt27q06ePXZ2RAAAAAJBWuDoNwLA8XD2UySNjmk6XmckjozzdntyuhPQQE9i5pFPQ6qiqVasqa9asevDggcLCwjR79mzrmjrOYDabNXPmTEnSBx98YNfaUM4OEB93584dzZ8/P9kOjZgOHYvFov3796t69eopCu42btyoYcOGOX26sgYNGlg70H788UcdO3bM4fW8EnLixAnt2rVLnp6e+uSTT5w2rqOWLFkiSapRo4ZKlSpl0zExwV2WLFmULVs2p9QxfPjwJEPMc+fOxVnTsUSJEtq4caMk6fLly+rRo0eyU5vG/LxdXV21evVqu9dYc8TBgwet2zFdOfny5VO1atW0YMECNWvWLNlpCe21Z88ebdu2TV9//XWyf5e22r9/v6To8PFJe39+XOwgc/LkyQmGdlFRURo+fLgaN26sChUqOHSeW7du6eeff1aDBg3iBTp+fn5asmSJfv31V5UqVUoFChRQ5syZ43Tfzp07V9OnT49zXOPGjXXu3DlNmjQpyQ5JR8SsXent7Z1sJ2jOnDm1bds2u4Kqhg0bWrdXr16t+vXrO/wli9iyZ88eZ83KPHnyaNq0abp165ZWrVqljh07Ov01azKZ9NZbbylz5szq1q2b5s2bJ5PJpD59+jj1PAAAAADgDAR3AJL0eYOxCd7v7ZnwRcv6z9VU9cLxuyE8kuhim1xzSJzbGTw95eLiIm/PrCqSvYBO3jxnR8UpUyR7QZlMJoeeh7N+Vk+amOmtUmv6uNTi7u6umjVrWoOEjRs3ql+/fvL29nbK+Js2bdK5c+dUokSJVOvQcdQbb7xh036xOzKmT5+u2rVrO3zOjRs3avDgwTKbzfr444/l4uISp+MiJapVqyZPT09rl9SSJUucGtxNmTJFFotFH374YZoER0nx9/e3dor26tXL5uNipl515jSZGTNmTLRbU0q6i7JQoUIKDg7W2bNnE+0Ge/TokfXv880330yzn/1PP/0kKTrkLF++vPX+Vq1aac+ePZo/f7769+/vtPNdu3ZNn376qb744gsVLVrUKWNeuXJFf/31lyTFWbcyOfv379dvv/2W4jXpnC32dLxly5aN93hUVJQGDBigLVu2aPv27Vq4cKFdzzvGt99+q6ioKL366qsJPu7n55foOot3797VwoULJUlFihTRw4cPrR1xTZs21YQJE7Ro0SK7a0pKTCBvy9+GI2sUxpg3b54+++wzbdq0SV988YXT/713dXVV06ZNNXfuXF27dk379u1T9erVnXqOGDVq1FCtWrW0a9cuzZs3T7Vq1dILL7yQKucCAAAAAEcR3AFIUq5M9n3zP5NHRmXysO+CTs6McS/8enl5Wb9pXTSHb5oGd8Vy+Epy7Hmkxc/KiGLCkictuJOiA5+YYCA8PFyHDh2yOdRKSmhoqGbOnCl3d3dNmDAhRWvApafYF3rz5cuX7P7+/v7xppdLSGRkpPr27avp06fbvO5fUry8vFShQgVr4BLzv86wd+9e/fLLLypbtmyc7rH0MnnyZEVGRqpBgwY2d9tJ0VOUSorT5ZLeKleurNWrV2vkyJEJPr5ixQoFBwfLZDKpa9euaVJTYGCgjh8/Lim6Kzf2+oFVqlRRmTJltHz5crVs2dKmvwlbBAQE6LPPPnNaeBASEqJp06ZZb9saYB05ckQ9e/ZUSEiI7ty5oxEjRtjU9RQUFORwrbaKiIiwboeGhsY5p8Vi0ciRI61rIQYHB6tz584OhXfffPONTCZTosFdUmbMmGGta8SIERoy5N8vJb399tuaPHmyfvjhhxR9AeJxMcFdsWLF4j22d+9e9ezZ0651+ZJz9OhRde/eXfPnz5enp6fTxpX+nY7WbDZrxYoVqRbcSVKLFi20a9cuWSwWzZkzR3Pnzk21cwEAAACAI57MK4kAnhqvFaygjWd2pNn5Xi1o/zf0n2Zms9ka3Dl76ri0EDMNXoxr1645ZdwFCxbo+vXr6tevX6LdGU8Cezs08uTJo/Xr19u8vzMDzYoVK1oDu+DgYAUEBCTZDWaL8PBwjRs3ThkzZtTkyZNT1LHiDEeOHNH27dvl4+OjYcOG2XxcRESE9QK/kYK7119/Xb1799aHH36o7Nmzx3ksJCTEOiXoG2+8oeeeey5Navr222+tIVHsaQJj9O7dWx07dtSIESOc1j1VpkwZp4wTY968edq+fbv19nvvvWf3GCtXrlRgYKAmTpyY7Hp7X3zxhebMmWP3ORxVv379ZPdxJLw7fPiw/vrrLz333HPJrhf3uOPHj2vNmjWSoqfufXwdxqxZs+qNN97QJ598oooVKypLlix2jZ+YmL/rIkWKxHusWrVqWrp0qcLDw1W8eHGZTCYNHz5cderUsWvNuuXLl1t/v5kzZ1b58uVTZQ3WfPnyqXLlytq/f79++uknXblyJdW6bMuXLy+TySSLxaK9e/cqMDDQab8TAAAAAHAGgjsAhlbQO5/8fIrpzO0/U/1cfj7FVdDbOR0UT4v79+9bt3Pnzp1+hTjomWeeUe7cua3rBDljTZ2rV6/qiy++UMWKFdWpU6cUj5ee7A2qXFxcUhyWOerx7jN71nFKzOLFi3Xp0iWNHz8+3afIDAsLs673NmbMmHhBV1KuXbumqKgoSbZNqWerwYMHa/DgwQ4fX7lyZWXIkEHLli1T79694zz21VdfKSAgQG5ubmm6BtW6deskRb+fvfbaa/Eef+2111ShQgXt379f69evV5MmTdKsNlv17t1bAQEBWrNmjapUqaJJkyYle8yDBw/UokUL63t6oUKFVKpUKd25cyfZ6VV79+6tvHnzymQyyc/PTzly5FCWLFnidCteuHBBefLkcXh9tPXr12vUqFGSpO3bt9vc7WjPe3pMEPt46JaciIgIjRgxQhaLRblz59bw4cMT3K9NmzbauHGjPv30U02YMMGucyQkJCREgYGBkuK//8V4fMrgIUOGqFWrVqpQoYJNP8Nz587piy++kBTdVb9y5cpUDdFbtGih/fv3y2KxaOXKlRo4cGCqnCdz5szKmjWrAgMDFRUVpVOnTtn9ewcAAACA1ERwB8DwGpZ4PU2Cu4YlXk/1c/zXPOnBnRTdqRAT3CW0dpK9xowZo6xZs2rq1KlOCQLTU3p3mNkjdseJr6+vXcFWQq5du6Z58+apSZMmhghnPv30U50/f17dunVTjRo17Do2Zq0zKTqQcZbhw4erXr16iT5+7ty5JKcXdXd3V/369bV48WI1a9bMGhDdv39fCxYskCQ1b95cvr6+Tqs5Kfv379fZs2clSe3atUv09T948GA1a9ZMEyZM0GuvvaZcuXKlSX22cnFx0ZgxY1S8eHE1bdpUmTJlSvaYMWPGWN/Pu3Tpol69eiXbaRdbs2bNknx87969Wr9+vT777DOHOgxjd+d6eHgoQ4YMdo+RlA0bNmjPnj2SpFdeecWuY6dNm6bz58/LZDJp4sSJ1nVSLRZLnP1Kly6tunXrasOGDfrf//6nRo0apajmmG47FxcXm3+m+fLlU6tWrdSzZ0999dVXSb42Hj16pN69eys8PFwmk0mTJ09O9c7XmjVrysfHR7dv39b69evVu3dvm6bk/Pvvv3Xt2jVVrFjR5tetp6enNfgMCAhIUd0AAAAA4GxP9hVFAE+FcnlfSPUpLF8rWEHl8pZO1XP8F8UO7goUKJB+haRAzDRqDRs2jNedYK/Nmzfr4MGDmjFjhnx8fJxRHmz07LPPKn/+/HJzc0u048UeI0eOVNGiRRNdfy0tbd26VatXr1bjxo310Ucf2X38mTNnrNu2rEFoq4wZMypHjhyJ/mdLd1W7du0UFhYWpwNp1qxZevDggbJnzx6vEy+1WCwWTZkyRZLk7e2tFi1aJLpvqVKl1KZNGwUGBqp///7Wbkajadu2rU2h3ZYtW7Rt2za5urpq/Pjx6tevn12hnS06deoki8Wili1bau3atU4d216//fabmjZtqi5dumjAgAHq06ePhg4dan3cnn8HDhw4oMWLF0uSevbsmWzX1kcffSQ3NzeNGjXKGhI76sKFC5Ki17ezp5Px/fffV4YMGdSnT59Ep7w0m836+OOP9ffff0uSPvzwQ6euzZcYNzc3NW7cWFL054utW7cme8zu3bv11ltvqVOnTnZ1AD969Mi6/SRO9Q0AAADgv43gDsAT4f1yLZTdK1uqjJ3dK5s6lGueKmP/18VeE65YsWLpWInjWrZsqX79+mncuHEpGic8PFzjx4/X2LFjVb58eSdVB3uMGjVKc+fOTXCKQ3v88MMPunjxombPnm1Tt0dq+vnnnzVo0CDVqVNHY8eOdXgMSfLx8TFMd9ijR4/04MEDFSpUSLVq1dKOHTu0evVqnThxQl9//bUkqX///tbupdT2zTffWAPODz/8MNkg5MMPP1SePHl06NAhTZ06NS1KTBU3b97U6NGj5eLiovHjx6dad2mGDBnUo0cPRUREaNiwYZo1a1aqnMcWZcuW1RdffKHatWvrzJkz2r59uzV89fb2tnm632vXrqlfv36yWCx6/fXX9cEHH8R5/PGOO0kqXLiwmjZtqpCQEHXq1ClF66r+8ccfkmT3+52rq6smT56so0ePatCgQQkGz+PGjbN2IDZp0kQ9evRwuE57NW/e3DrV8YoVK5Ldf9KkSdZ1Kbdu3WrtokvKo0ePFBwcbL39pH5+AQAAAPDfRXAH4ImQJUNmDa3aS5k8Mjp13EweGTW0ai9lyeDYujtPu4sXL0qKnqqraNGi6VyNY3LkyKEuXbrEmYrNEWFhYercuXOKpz+D46pUqaKqVaumeJzQ0FB9+eWX6T7968mTJ/XBBx+oRYsWmjlzZqKv0didI4+7du2ajh07Jil6Tbn08scff+irr77SwIEDVb9+fbVr184aPMR0IY0dO1b9+/eX2WzWa6+9lmZTlF65csUa3JcuXVrvvvtussdkypRJ48ePl4uLixYtWqQlS5akcpXOZ7FYNGjQID148ECffPKJGjZsmKrna9SokXU61M8//1zLli1L1fMlJXv27GrevLk2btwYZ7pXW9eADAoKUo8ePXTv3j299NJLmjhxYrx1NRMK7qTo0Nfb21u3b99W+/btdfXqVYeeQ0zQ7Mh7XoECBTRx4kRt2bJFH3/8cZzOu7lz52r58uWSokPB0aNHO1SfowoUKGDtXPzjjz/0+++/J7l/zJShUvT0u7ZMo3rq1Cnr76dkyZI2r5kIAAAAAGmF4A7AE6Ogdz59UqOv0zrvsntl0yc1+qqgNxdsHPXnn9FrD/r5+cnLyyudq0lfWbJkUYcOHdK7DDhBgwYN4qyZlxpOnTql77//XpLk7+8fb9q8n3/+WV27dlXfvn01bNiwRNdLjIiIUNu2bdWgQQMNHjxYK1as0K+//qqbN2/q5s2bGjlypMxmsyTpjTfeSNXnJEnBwcE6ceKE1q1bp6+++sp6f//+/bV3716VLVtWX375pb755hvrxfmiRYuqVatWCg8P16VLl+Tt7a1x48bFC0JSQ3h4uPr166egoCBlzJhRU6dOtXltx0qVKlk7kcaPH29dly+9Xb58OckwN8ZXX32lgwcPavDgwWrePPW7zt3c3OKcZ9KkSbp161aqnzcprq6ucaafzZ8/f7LHhIeHq2fPnjp37pxKlSqlhQsXKmPG+F8qivm7e1zOnDk1ZswYSdLVq1fVsmVLa4htq6ioKP3+++/KkSOHdbpne9WpU0ddu3bVtm3b1KFDB927d08LFizQ9OnTJUnly5fX559/Lnd3d4fGT4nYayYm13VXokQJ63aDBg1s6pLevn27dTstuwkBAAAAwFYpay8AgDRW0DufptQdpsXH1mj/lcMOj/NawQrqUK45nXYpFHOxsXr16ulbCPCECAwM1LRp07RmzRq98cYbmjRpkhYvXqx27dpp9uzZevnll7Vx40Z9/fXXWrx4cbJr0rm7u2v9+vU6duyYJk+erPXr1ye4X7FixZz+d3rt2jVt2bJFFy5c0Llz53ThwgX5+/tbO1lihxmbNm1S4cKFEx2rbNmyWrp0qfW40NBQp9aaELPZrAEDBujEiRNydXXV1KlT5evra9cYH3zwgY4ePaqff/5ZU6dOlb+/v4YOHer0NeLscfr0aU2cOFHFixfX66+/rtq1ayt79uxx9rl48aKmTJmi7t27q127dmlWW/369a3BUEREhM6fP5/u07fGPn9yU6RGRESoT58+OnjwoMqXL6+5c+cqS5Ysdp/z9ddfV5MmTbR+/XrdunVL7777rgYMGKDWrVvbFFgfP35c9+/fV5s2bVIUrPXp00e3bt3S+vXr9eabb+revXuSpJdeekkLFixIty/k1K5dWzly5FBAQIC2b9+uQYMGJTqFaadOnazTlJYunfxaxX///bc2btwoSapXr57q1KnjtLoBAAAAwFnouAPwxMmSIbM+rPS+BlXpIT+f4nYd6+dTXIOqfKAPK71PaJdCp06d0o0bN+Ti4pLqU6wBTzqLxaJvvvlGb7zxhlatWqVu3brps88+k5+fnyZNmqS6deuqffv2+uqrr5QlSxZ9/fXXyYZ2sZUrV05ff/21Pv7443iPZcqUSRMnTky0ay85t2/f1i+//KKVK1dq3rx51vtnz56tfv36ad68edqzZ48ePXqkOnXqaPjw4dq8ebM1iJOUZLhw4sQJDRkyRCaTSdmyZdP169f17rvv6siRIw7Va6tRo0Zp+/btcnNz06effqqaNWvaPYaLi4umTZtmDSVXrVqlFi1a6MKFC06tNaZ7K6H1yB735ptvavv27apYsaKmTJmi1157Te+//77WrVunBw8eKDIyUgMGDFDDhg3Vp08fp9aZnIIFC6p48X//3c6TJ0+anj8h169ft24nFVSFhISoe/fu2rVrl9544w0tWbJE2bIlPgNAcr+roUOHqkCBApKiu/jGjh2rd955R7/88kuyNe/du1dS3M40R5hMJg0YMEA5c+a0hnYFCxbUokWLkg0x7RX755Hcz8bDw0ONGzeWFP2zWbNmTaL71q5d29o1t2nTpjhr1z3u2rVr6t69u0JDQ1WpUiWNHz/enqcAAAAAAGmGjjsAT6xyeV9Qubwv6Mp9fx24ckR/BlzSX/euKCj834s2mTwyqkj2giqWw1evFnyZaTGdaOfOnZKkmjVrqlChQulczZPl999/1+bNmzV06NA0mQ4QqWfGjBkqV66cqlSpkug+Z8+e1SeffGJda65z587q3bt3nH1GjhypgIAAjRkzRlWrVlXJkiXtDjVMJpM6d+6syMhIa1fT888/r0mTJsWZTs5WvXv31k8//aSgoKAEH/fy8lL58uVVuXJlVapUSX5+fnFezydPnkz2HBcuXFCXLl0UERGhSZMmqVSpUmrTpo3u3r2r9u3b6+OPP1a7du2c+ncSERGh4cOHa8OGDcqYMaNmzJiRorURc+TIocWLF6tly5a6fv26Tp8+rcaNG6t9+/bq0qWLsmbNmuKaY4KO2GuRJcXLy0udOnVSixYttGDBAi1ZskQHDhzQJ598omLFislkMmnEiBEprssRjRo10uTJk9WgQQNDrI0a83cpJR7c3b59Wz179tQff/yhwYMH2/SajOk8jYiISPDxzJkza8GCBWrZsqU1NDt16pTatm2r5557TmvXrk102sddu3apRo0adoX7Cdm0aZMmTZqkO3fuWO+7cuWKWrdurd69e6e4S9dsNuvRo0cKCAjQnj17rPdv3LhR5cuXV86cOZU5c+YEv1TQvHlzLVq0SJK0YMEC+fn5qWzZsvLy8orX0dq7d2/5+vpq3LhxatCggVq0aKHXXntNuXPnVmhoqK5evardu3dr7dq1MpvN6tKli3r37p3itW0BAAAAILXw/1YAPPEKeuezBnIWi0WhkWGKMEfK3cVNnm4ZCEZSgdls1vbt2+Xq6prmHRtPut9//10dO3bUw4cPFRISorFjxz71r9Ft27bp0aNHabLOljNNnTpVCxYsUIYMGTRnzhy99tpr8fbZvn27+vXrZw1eGjVqlGBXnKurq6ZNm6a+fftq586dev3119WiRQs1a9bM7ovznTt31u3bt1W5cmXVqlXL4dfXO++8o++++y7OfYUKFVLNmjVVtWpVvfzyyymaEvL06dN6//33FRERoTlz5qhatWqSpCVLlqhdu3YKCAjQ+PHjtWvXLg0ZMkR+fn4OnyvGw4cP1atXL/3888/y8fHRvHnzbJpeLzl58uTRl19+qdatW+vOnTuKiIjQwoULtWrVKrVp00bvvvuucufO7fD49gZ3MbJkyaJ+/fqpefPmGjdunHbv3q3Tp09Lil4PrE2bNmrWrFmaTu3Zvn17lShRQq+++qrNx9y9ezfV6vn111+TfPy3335Tr169lDNnTq1evVqlSpWyadyYLsmwsLBE9ylSpIgWLFigdu3aKTg4WDVq1NB7772nggULJvo7OXbsmC5evKgJEybYVEdCLly4oNGjR1ufu6+vr7p3766///5bCxcu1OnTp9W1a1eVKVNGjRo1Ut26dZUzZ067z3P9+nXVqlUr3v1HjhzRm2++KSk6hExobUFfX1+98sor+vXXXxUUFKQuXbpIkoYPH67WrVvH279hw4aqVauWvv32W+3Zs0fLly/X/fv35e7uLm9vbxUtWlQ9e/ZUo0aNHHouAAAAAJCWCO4A/KeYTCZ5uXsqfVZleXps27ZNly9fVrt27eJMe2Y0FovFpqnlEjs2RlRUVKIXzGPvl9xF9VOnTqlTp056+PChJGndunUymUwaM2bMUxve/fDDD+rfv7+ioqLk7u5unR7tcVFRUXF+1o6wWCw2BR+27DdjxgwtWLBAUvSF+R49emju3Lnxwog6deqoQYMG2rRpk/z8/DRmzJhEx/Tw8NCsWbO0cOFCff7551q+fLmWL1+uAgUKqHz58vLz85Ovr69y5MihZ555RpkyZZKnp6cyZIj7BQU3N7dEu6mioqIUFham4OBgBQYG6uHDhwoMDJS3t7defPHFOPtWqVJFDRo00LZt21SvXj21a9dOZcqUSfLnYqsjR46oe/fu8vHx0eeff64iRYpYH3vuuee0atUqdenSRZcuXdKvv/6qRo0aqUyZMnr77bf1yiuvqFChQol2IyXm2LFj6t+/v65du6Z69eppxIgR8dZ+S4nChQtb6/7rr78kRQeFc+bM0YIFC1SlShXVrVtXNWrUkLe3t83jWiwWa9dWYt1bySlQoIDmzp2r77//XmPGjNGtW7f0999/a/To0Zo3b54GDRqk+vXrOzS2vdzc3OKF3J07d1ZQUJBy586tXLlyycfHRzlz5lT27Nl19+7dONOuOjtkTGxqysjISM2bN0+rVq1S9+7d9e6778rV1dXmcWP+7UkquJOkMmXKaObMmdaAMDlr1qzRq6++6tDf4unTp7VgwQLt2LFDZrNZhQoVUo8ePfTWW29Zn1utWrU0aNAgXbx4USdOnNCJEyc0duxYVahQQdWrV1epUqVUsmRJm9b2y58/v86dO2d3nTGWL19u1/6ZM2dWy5Yt1bJlS4fPCQAAAABGQHAHALCL2WzW3Llz5evrq48++ii9y0nSjRs31Lp1a/n7+6donP/973/J7vPw4UObOzFiW7t2rUwmk0aPHp1m4V1oaGiS6wDFePTokXX7wYMHCggISHC/8PBwSdGvjcT2Schvv/2mPn36WEOyIUOGyN3dXQ0aNIi376ZNmzR06FBrF4sjdu/ebdPvKCYws0dYWJi6d+8eL7xzc3PTxIkTlTNnTjVt2jTZ0MFkMqlLly568803NWvWLG3btk1Xr17V1atXtXHjxkSP8/DwUIYMGazjx34tWSwWhYWFKSwsLF7wYzKZVKlSJbVt2zbBcYcOHaqGDRumaCrJx23YsEHDhw9X/fr1NWLECGXKlCnePoUKFdLq1av10Ucf6eDBg5JkDRFi6q5evXqcNfcSEx4ervnz52vu3LnKli2bZs6cqbp16zrt+cRWoEABrVq1Sh988IEOHz5svT8yMlJ79uzRiRMndOPGDeuaXLaI/TuL+Vtz1Ouvv66KFStq9OjR2rJliyTp1q1b6tu3r86fP59u7+ljx47V3r17tXXrVm3fvj3RkD5nzpzy8fFx2nlDQ0P1zz//JPjY999/r0yZMmnnzp1Jrn2XmJj3NVt+Z1WqVElyut0YgYGB2rFjh3UKSVv98ssvWrBggfbv3y9JqlChgpo3b6769evHCyPLlCmjTZs2aePGjZo/f76uXr0qs9msX375xRpymkwmFShQQEWLFlXOnDn1zDPPKEeOHPL19bV2zgIAAAAAHEdwZ3BBQUF66623tGzZsgSnkQGAtLZx40Zdu3ZNq1evduhiZlrKmzevli9frtWrV6tEiRIqUqSIsmTJosyZMxuuw81isaRZTYGBgWrbtq0uXbpk8zGJBTux3bhxQ5UqVXK4LrPZrIEDB8rd3T1esNKkSRN5enrq+vXrKlWqlHLlyqUsWbLY3XWV2hLqyDGZTBowYIBd4xQoUECTJk1Sv379tG3bNn3//fc6efJkoh1X4eHhdoc6hQoV0vTp01WyZMlE98mRI4fTQruIiAhNnTpVmzZt0meffaY6deokub+3t7e+/PJLLV26VNOmTbN2LjVs2FAdO3bUc889l+w5f/zxR40fP163b99Wly5d9P777ztlzbmkZMuWTV9++aVmzpypRYsWyWw2K0eOHPrkk09Uu3btBNfzSkrs37mjHXeP1zd16lRVqVJFn3zyiTXEnz9/vqpWrary5cun+Bz2yp07t5o3b67mzZvr77//1pw5c/Ttt9/G26979+5OfZ/09PSUj4+Pbt++LUlxfjf16tVL0di2dtzZY/HixXr77bdVrly5ZPe9ePGiNm/erK1bt+rKlSvKlSuXunbtqqZNmya7Lq27u7uaNWumxo0ba8uWLVqzZo2OHTtmDVQtFouuXLmiK1euWI8pV65coh3TAAAAAAD7ENwZWFhYmAYPHpziThFnCwsLU9myZVPU9bBx48ZE16qpWbOmw8952bJlqlixosN1AUjajRs3NH78eI0fP14lSpRI73Jski9fPvXt2ze9yzCU3Llza9myZdq2bZtKlCihwoULK3PmzMqUKZPhAs3YUnoh/UmUO3dudejQQR06dFBYWJhOnTqlixcv6tKlS7p586bu3bun+/fvKzg4WCEhIQoNDVV4eLgiIiKSDXkmTJiQZGjnLCaTSTdu3FDfvn1VpEgRbd26VTly5LD52Pbt26t27dqaMWOGvL29NXTo0GSPO378uGbPnq2jR4+qdevW6tixo13TU6aUh4eHPv74Y9WoUUOffPKJPvvsMxUtWtShsWIHPyntuIutUaNGKlmypHr06KGrV6/KYrFo37596RLcxVa4cGFNnjxZdevW1UcffWR9zp06dUpwbbOUWrp0qb788ktduXLFad1isac3dXNzzv/dunfvnnbu3KnVq1cn+HhoaKh+//13HT58WD/88IPOnTunkiVLql69eqpSpYpeeuklu6b6lKJrb9SokRo1aqQbN25oy5Yt+v777/XHH39Yg0kvLy999tlnqlGjRoqfIwAAAAAgGsGdwURFRenOnTvat2+fli1bpvPnz6d3SfFcvHgxRaGdl5eXU6c5ii2xMBBAylksFg0aNEjdunV7KgOU/5qYQAhPjgwZMqh8+fJ2BStRUVHW/8xmc5yOmcyZM6dWqVbPPfecRo4cqZMnT2rAgAF6+eWXHRonf/78mjx5crL7nThxQlOmTFFkZKSaNGmiGTNmJDgVZ1opX758gp1j9oiIiFDWrFlVp04dNWzY0EmVRYtZT/D999/XuXPnVLhwYaeOnxK1a9fWhx9+qM2bN2vAgAHx1sVzlqJFi+rTTz916pihoaEqVaqU2rZt67R/L5csWaL+/fvH+7tdtmyZtm/frlu3bsnX11fPPfecunTpokqVKjl1Dcc8efKoc+fO1vUIf/vtNx05ckR58+YltAMAAAAAJyO4M4iuXbvq6NGjCg4Otn6D1aguXLgQ57aHh4dy586d7DeKHz16pNu3b6tHjx7KmTNnkvt6e3vbfbHBx8cn1ae/Ap5mYWFheuutt/TOO++kdykAbOTq6mp3l42zFC1aVOvXr5e7u7vDgZ293NzcNHr0aPn6+qbJ+dJCjhw5dODAgWTXR3RUzpw5tXTpUm3atMlwX8po3769OnfunN5l2M3Ly0vr16936pjt27dP8LNx1apV1ahRozT9DJwpUya9+uqrcdbzBAAAAAA4D8GdQYwdO9Y6FVJkZKQOHDigMWPGWL8ZbyQxwV3mzJk1ZMgQNWjQQBkyZEj2uB49eujy5cs2dXi0bt1avXr1SnGtAJzH09OT0A6AzTJmzJjm50yLqT/Tmru7e6qfI3v27Grfvn2qn8deafHcnxSJfaHtvxRSAwAAAACiEdwZxONTR/r6+mrTpk36/fff06mixP35559ydXXV/Pnzbf4G/aFDh7Rr1y4tWbKEizAAAAAAAAAAAAAJcEnvApC49Pimui0uXLighg0b2hzamc1mjR8/XtWqVVOlSpVSuToAAAAAAAAAAIAnEx13sEtwcLD8/f313nvv2XzM+vXrdeHCBU2dOjUVKwMAAAAAAAAAAHiy0XEHu4SGhqp169Z64YUXbNo/JCREM2bM0Ntvv61ixYqlcnUAAAAAAAAAAABPLjruYJccOXJo2LBhNu+/ePFi3b17V926dUvFqgAAAAAAAAAAAJ58dNwh1QQEBGjRokWqV6+efH1907scAAAAAAAAAAAAQ6PjDqlm/vz5evTokTp16pSicQ4dOqRt27bp+PHj+ueffxQaGiofHx+VK1dOzZs31yuvvOKkigEAAAAAAAAAANIPwR1Sxc2bN7Vy5UpVqFBBJUqUcGiMqKgojRgxQuvWrZMkeXl5KUeOHDKbzfL395e/v782b96s5s2ba9SoUXJ1dXXmU0hzkZGRMplMKR7DYrHEuc9sNstsNqdo3PTwJNYMAACA/w57P4+azeZ4n8UjIiLi3QcAAAA8LjIy0qb7ngZP6/OOjeAOqWL+/PkKCwtTmzZtHB5j+PDh2rJli7p27apGjRqpSJEi1seOHDmi0aNH69y5c1qzZo1CQkI0ZcoUZ5Sebs6cOePU8TJkyCCTyaSQkBC5uT1Zf+ohISHpXQIAAACeYo58Ho0J6SwWi8LCwiRJp0+fdnZpAAAAeErwWfLp9WRdzccT4ebNm1q7dq28vb1Vs2ZNh8bYunWrbt68qWXLlqls2bLxHn/55Ze1cuVKNWvWTBcvXtTmzZtVpUoVNWzYMIXV//fQuQYAAACkPj53AwAAAHAGl/QuAP89ixYtUnh4uOrVqyd3d3eHxvj77781bNiwBEO7GJkyZdKoUaOst6dPn66oqCiHzvdfFDMlT3h4eDpXAgAAAPz3xXTZMTUmAAAAgJQguINTBQYGau3atZKkBg0aODRGhw4d1K1bNzVt2jTZfV955RXrGnrXr1/X/v37HTrnf1HMN36Dg4PTuRIAAADgvy/mczdfJgQAAACQEkyVCadas2aNgoODlS1bNr300ksOjWHvunjVq1fX2bNnJUm//PKLqlWr5tB505ufn5/DHYqxBQYG6tatW9bb4eHh8vT0lMlkSvHYqeXxNUS8vLzSqRIAAAA8jVL6eTQyMlLh4eEymUzy8PCQJOXJk0eZM2d2Wo0AAAD474qMjIy3pl3JkiXl5vb0RTgRERE6c+ZMepeRrp6+3zpSjcVi0erVqyVJ//vf/+TikjYNnSVLlrRuP8l/0G5ubk4J7ry9vXX79m3rbbPZrLt37ypXrlwpHjs1JLYWSFq9fgAAAPB0S+nnUbPZrH/++UeSrF+Wc3FxUbZs2fhMCwAAAIc563rxk4ap55kqE07066+/6urVq5Kk8uXLp9l58+fPb92+d+9emp3XqNzc3OTp6Rnnvrt37+ru3bu86QEAAABOFBkZqWvXrikoKCjO/ZkzZya0AwAAAOAQOu7gNN9//711+/nnn0+z82bKlMm6zXpu0Xx8fKwhaoxbt24pICBA2bJlU5YsWeTq6mqIiwlmszneOiCRkZGGqA0AAAD/ffZ8HjWbzTKbzQoJCdGDBw8S/P8fLi4ueuaZZ1KtXgAAAAD/bQR3cJq9e/dat4sWLZpm5409tU3GjBnT7LxGljlzZuXJk0c3btyIc39kZKS1+84oLBZLvE5Ak8lk6DX5AAAA8N/hzM+jLi4uKliwYLwZMAAAAADAVrS0wCkuXboUp8PL29vboXHmzZunypUrq3HjxnHWaUtK7G+5Zs2a1aHz/hd5e3vLx8cnvcsAAAAAngoxoZ2Xl1d6lwIAAADgCUZwB6c4duyYdTtDhgwOLZp59OhRffbZZ7p7965Onz6tb775xqbjbt68ad0uVqyY3ef9L3vmmWf07LPPKkOGDOldSpJCQ0Pj/AcAAACkpZR8HnVxcVHWrFlVqFAhQjsAAAAAKcZUmXCK3377zbodHh6uyMhIubnZ9/I6fvx4nNthYWE2HXfx4kXrdpkyZew653+dyWRS9uzZlT17doWGhiowMFAPHz5UZGRkvOmAAAAAANjG1dVVmTJlUpYsWZQ5c2bWZwYAAADgNAR3cIrY4ZnFYtGdO3f07LPP2jVG7Gku3d3d1bBhQ5uOO3jwoCTJw8ND1atXt+ucTxNPT095enoqd+7c1nU8Yq8PmF4iIiJ0+vTpOPcVLlzYoa5NAAAAwF72fB41mUxycXFhPWYAAAAAqYbg7j/q+vXrGjVqlA4fPqz8+fNr8ODBqly5cqqdL/b6dpIUGRlp9xiVK1eWi4uLzGaz6tevL19f32SPuXHjhg4fPixJqlevnsNr6z1tTCaT9aJDekuo88/Nzc3ujk0AAADAEXweBQAAAGAk6X/VHol68OCBdfv+/ft2HTtw4EDt3btXwcHBOn/+vHr06KEbN244ucJ/BQYGpniM/Pnz691335UkZcyY0aZjZsyYocjISGXJkkX9+vVLcQ0AAAAAAAAAAADpheDOoG7evKk///zTenv37t12HX/q1Kk4t0NCQnTy5Emn1JaQx7+l6urq6tA4gwYNUo0aNbRp0yb9/vvvSe67ZMkSbdiwQR4eHpo8ebJy5crl0DkBAAAAAAAAAACMgLk/DCIoKEhRUVEKDAzU2bNnNXPmTIWFhVkfnzdvnsLCwlS/fn09++yzcnNzk6enpzw8PBIcr3Tp0vr111+tt93d3VWiRIlUq79IkSI6c+aMJMnFxUXZs2d3aJwMGTJo9uzZWrRokdq3b6+KFSuqVq1aKlmypHLmzKnIyEhduHBBq1at0p49e1SwYEGNHj1alSpVcubTAQAAAAAAAAAASHMmS0IT+iPNtWnTJk7QZovx48erSZMmCT4We4273Llzq1+/fqpTp44zSk3Q4cOHNWTIEN29e1etW7dW3759UzxmQECANmzYoP379+v8+fMKDAyUp6encuTIoVKlSqlatWqqV69eouGlUYWHhyfY/fjCCy88cc/FGSIiInTixIk495UpU0bu7u7pVBEAAACeJnweBQAAQHrjM+m/uH5OcAekOd544uIfJQAAAKQnPo8CAAAgvfGZ9F9cP2eNOwAAAAAAAAAAAMAQCO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgzuCCgoJUs2ZNXbt2Lb1LAQAAAAAAAAAAQCpyS+8CkLiwsDANHjxY/v7+6V1KPDVr1nS4rmXLlqlixYo27fvw4UOtXLlSO3fu1J9//imLxaL8+fPrlVdeUatWrVS0aFGHagAAAAAAAAAAADAaOu4MJioqSjdv3tTatWv1zjvvaMeOHeldktP5+fnZtN/Bgwf1xhtvaOrUqSpWrJiWLVumrVu3qmfPnvr555/VoEEDzZ8/P5WrBQAAAAAAAAAASBt03BlE165ddfToUQUHBysqKiq9y7GJt7e3smfPbtcxPj4+ypo1a7L77dmzR7169VJERIT69eunLl26WB/Lly+fqlWrplatWmnatGm6ceOGRo0aZW/5AAAAAAAAAAAAhkJwZxBjx45VWFiYJCkyMlIHDhzQmDFjZLFY0rmyxLVu3Vq9evVy+riXL19W3759FRERoapVq8YJ7WJ4eXlp+vTpevPNN7Vy5Ur5+fmpRYsWTq8FAAAAAAAAAAAgrTBVpkH4+Pgof/78yp8/v3x9fdWqVSuVKVMmvctKF6NHj1ZwcLBcXFw0YMCARPcrWLCg3nrrLUnS+PHjdfv27bQqEQAAAAAAAAAAwOkI7gwsY8aM6V1Cmjty5Ij2798vSapcubKKFy+e5P6NGzeWJIWEhGju3LmpXh8AAAAAAAAAAEBqIbiDoSxcuNC63bBhw2T3f/nll+Xt7S1JWrt2rR49epRapQEAAAAAAAAAAKQqgjsYxsOHD3XgwAHr7SpVqiR7jKurq8qWLStJCg8P148//phK1QEAAAAAAAAAAKQugjsYxp49exQRESFJ8vX1Vfbs2W06rmTJktbtH374IVVqAwAAAAAAAAAASG0EdzCM48ePW7dLly5t83Gx18H7448/nFoTAAAAAAAAAABAWnFL7wLw33Do0CFt27ZNx48f1z///KPQ0FD5+PioXLlyat68uV555ZVkx7hw4YJ1O1++fDafO1euXNbta9euKTQ0VJ6envY9AQAAAAAAAAAAgHRGcIcUiYqK0ogRI7Ru3TpJkpeXl3LkyCGz2Sx/f3/5+/tr8+bNat68uUaNGiVXV9dEx/rzzz+t23nz5rW5htjBndls1qVLl1SiRAkHng0AAAAAAAAAAED6IbhDigwfPlxbtmxR165d1ahRIxUpUsT62JEjRzR69GidO3dOa9asUUhIiKZMmZLgOGazWffu3bPezpYtm801ZM6cOc7t+/fv2/ckDCIyMlImkym9y0hzkZGRNt0HAAAApAY+jwIAACC98Zn0X0/r846N4A4O27p1q27evKlly5apbNmy8R5/+eWXtXLlSjVr1kwXL17U5s2bVaVKFTVs2DDevsHBwXFu2zPVZYYMGZIc60lx5syZ9C7BME6fPp3eJQAAAOApxudRAAAApDc+kz69XNK7ADy5/v77bw0bNizB0C5GpkyZNGrUKOvt6dOnKyoqKt5+QUFBcW7bE9w9vu/jYwEAAAAAAAAAADwJCO7gkA4dOqhbt25q2rRpsvu+8sor1jXnrl+/rv3798fb5/EpIi0Wi821mM3mOLddXHhZAwAAAAAAAACAJw9TZcIhbdq0sWv/6tWr6+zZs5KkX375RdWqVYvzeKZMmeLcDg0NtXnssLCwJMcCAAAAAAAAAAB4EhDcIU2ULFnSup3QWm4ZM2aUyWSydto9HsYlJTw8PN5YTyI/Pz+5u7undxlpLjIyMt58zSVLlpSbG29PAAAASH18HgUAAEB64zPpvyIiIhLMEJ4mT99vHekif/781u179+7Fe9xkMsnb29v6WGBgoM1jP3z4MM7tHDlyOFhl+nJzc3sqg7uE8LMAAABAeuLzKAAAANLb0/qZ1J5ltP6rWAwMaSL29JXBwcEJ7lO0aFHr9o0bN2we++bNm9Ztd3d3FSpUyIEKAQAAAAAAAAAA0hfBHdKE2Wy2bic2lWWxYsWs29evX7d57NjBXcGCBZ/KbyEAAAAAAAAAAIAnH8Ed7DZv3jxVrlxZjRs31u3bt206JnaXXdasWRPcp0yZMtbts2fP2lzPhQsXrNsvvviizccBAAAAAAAAAAAYCcEd7HL06FF99tlnunv3rk6fPq1vvvnGpuNid8XF7qyLrUaNGnJ1dZUk/fnnn3r06JFNY//xxx/W7Vq1atl0DAAAAAAAAAAAgNEQ3MEux48fj3M7LCzMpuMuXrxo3Y7dWRdbjhw59Morr0iKnlrz0KFDyY4bHh6u33//XVL0FJyvvfaaTfUAAAAAAAAAAAAYDcEd7BJ7mkt3d3c1bNjQpuMOHjwoSfLw8FD16tUT3e/999+3bm/cuNGmcR8+fChJatWqlTw9PW2qBwAAAAAAAAAAwGgI7v6jrl+/ri5duuill17SW2+9ZQ3OUqpy5cpycYl+2dSvX1++vr7JHnPjxg0dPnxYklSvXj15e3snum/VqlVVsWJFSdKPP/6oq1evJjl2zFSdmTNnVqdOnWx4BgAAAAAAAAAAAMZEcGdgDx48sG7fv3/frmMHDhyovXv3Kjg4WOfPn1ePHj1048aNFNeUP39+vfvuu5Kip6a0xYwZMxQZGaksWbKoX79+ye4/evRoZcuWTREREZo8eXKi+506dUo7d+6UJI0cOTLJQBAAAAAAAAAAAMDoCO4M6ubNm/rzzz+tt3fv3m3X8adOnYpzOyQkRCdPnnRKbYMGDVKNGjW0adMm6/pyiVmyZIk2bNggDw8PTZ48Wbly5Up2fF9fX82YMUMeHh7asWOHli9fHm+f+/fvq1+/frJYLGrfvr3efvtth58PAAAAAAAAAACAEbildwGIFhQUpKioKAUGBurs2bOaOXOmwsLCrI/PmzdPYWFhql+/vp599lm5ubnJ09NTHh4eCY5XunRp/frrr9bb7u7uKlGihFNqzZAhg2bPnq1Fixapffv2qlixomrVqqWSJUsqZ86cioyM1IULF7Rq1Srt2bNHBQsW1OjRo1WpUiWbz1GpUiWtWLFCvXv31qeffqoLFy6oRYsWyp49u3777TdNmzZN169fV//+/ZkiEwAAAAAAAAAA/CeYLBaLJb2LgNSmTZs4QZstxo8fryZNmiT42PXr1zVq1CgdPnxYuXPnVr9+/VSnTh1nlBpHQECANmzYoP379+v8+fMKDAyUp6encuTIoVKlSqlatWqqV69eogFjcoKDg7Vp0yZt3rxZly9fVlBQkPLly6eKFSuqTZs2Kly4sJOfUeoLDw9PsPvxhRdecPjn9CSLiIjQiRMn4txXpkwZubu7p1NFAAAAeJrweRQAAADpjc+k/+L6OcEdkOZ444mLf5QAAACQnvg8CgAAgPTGZ9J/cf2cNe4AAAAAAAAAAAAAQyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDmfSfZwAAIDgSURBVAAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuDC4oKEg1a9bUtWvX0rsUAAAAAAAAAAAApCK39C4AiQsLC9PgwYPl7++f3qUk6ejRo/r222919OhRXb9+XeHh4cqSJYvy5MmjsmXLqn79+ipfvrzN49WsWdPh57xs2TJVrFjRoWMBAAAAAAAAAADSE8GdwURFRenOnTvat2+fli1bpvPnz6d3SYk6f/68Ro8erb/++kutW7fW+PHjlTdvXoWHh+vq1avatWuXVq1apRUrVujVV1/V5MmT9cwzz6RqTX5+fqk6PgAAAAAAAAAAQGohuDOIrl276ujRowoODlZUVFR6l5Os3bt3q2/fvipdurS2b9+ubNmyxXk8T548euWVV9S0aVO9//77OnDggFq2bKk1a9bE2zch3t7eyp49u101+fj4KGvWrHYdAwAAAAAAAAAAYBQEdwYxduxYhYWFSZIiIyN14MABjRkzRhaLJZ0ri+/ixYvq06eP3NzcNHPmzCSDuOeee05jxoxRt27ddOnSJY0dO1aTJ09O9hytW7dWr169nFk2AAAAAAAAAACAobmkdwGI5uPjo/z58yt//vzy9fVVq1atVKZMmfQuK0HTpk1TWFiY/ve//ylHjhzJ7l+jRg0VK1ZMkrRlyxZdvXo1tUsEAAAAAAAAAAB44hDcGVjGjBnTu4R4goODtW/fPklSRESEzcdVqlRJkmQ2m63HAwAAAAAAAAAA4F8Ed7CLv7+/wsPDJUk///yzzp49a9Nx+fPnt25fvnw5VWoDAAAAAAAAAOBpEhwcrLp16+qXX35J71IcFhUVpdatW2v9+vXpXYohsMYd7BISEmLdjoiI0LRp07RgwYJkj4vdPRgT/AEAAAAAAAAAAMc8ePBA/fv316VLl9K7FIeFhYVp9OjROnz4sJo0aeL08c+ePatt27bp119/1eXLl/Xw4UO5u7srf/78eu2119SmTRvlzZvX6edNCYI72KVgwYLy9PRUaGioJOnmzZs2HXfv3j3rttH+CAAAAAAAAAAAMDqLxaJ79+7pxo0b2rNnj9atW6cbN26kd1l2CwwM1M2bN7V//36tXbtWf/31l9PPcfXqVX366afas2ePKlSooLfffltFihRR5syZ9c8//2jRokX68ssvtWrVKn366aeqV6+e02twFMEd7OLt7a0pU6Zo4cKFCgsL04cffmjTcadOnbJuP//886lVHgAAAAAAAAAA/ykbN27UkCFDZDabZbFY0rsch/z6669q3769LBaLzGZzqp5r79696tevnzw8PDRnzhzVqlUrzuOlS5dWiRIlVKtWLQUHB6tfv37y8vJSjRo1UrUuWxHcwW516tRRnTp1bN4/KChI+/fvlyRlz55dlStXtut8hw4d0rZt23T8+HH9888/Cg0NlY+Pj8qVK6fmzZvrlVdesWs8AAAAAAAAAACeFDVr1tTGjRutt4OCgrRq1ao49xld6dKl49QbGhqq7777TosWLXLqefbt26cPPvhA3t7eWrp0qYoWLZrgfu7u7tZts9msWbNmEdzh6bF+/XoFBwdLkpo0aRLnDyIpUVFRGjFihNatWydJ8vLyUo4cOWQ2m+Xv7y9/f39t3rxZzZs316hRo+Tq6ppqzwHA/7V39/E1l48fx9+7t1uzuc19bnIvIpQSkagUUpKbRW4qpaL6UlQiKeUm3XxJiUqUm1TUN79Qym3kJrkJw2Y2dxu7se3snN8fa8fmfM52zna2c8br+Xh4+JzPuT7XdX222bmc97muCwAAAAAAAIA7hIWFKSwsLM+5pk2b6qefflJKSoqbeuWcoKAg1a9fP8+5Zs2aad26dTp06JBL2jh27JieffZZmUwmzZgxw25oJ+Xd3iunf56C4A7FKjk5Wf/9738lSRUrVtSIESMcvnb8+PH67rvvNHz4cN1333269tprrc9t27ZNEydO1P79+7VkyRKlpaVp2rRpLu9/STKZTPLy8nJ3N0qcyWRy6BwAAABQHBiPAgAAwN0KOyYtW7asNbgzmUzKzMx0ed+KW7ly5azHWVlZRRqLv/TSS7pw4YI6duyoVq1a5Vu2QYMGGjJkiH799VdFRERozJgxhW7X1QjuUKymT5+uU6dOyc/PT2+//bbNpwLs+f777xUfH68FCxbo+uuvt3m+VatWWrRokfr06aNDhw7p22+/1S233KJ7773XxXdQcv7++293d8Fj7N27191dAAAAwFWM8SgAAADczZExaUZGhvX48OHDKlOmTHF2qVjknjF4/PjxQr9PvnbtWm3evFmS1LNnT4euef755/X8888Xqr3i5O3uDuDK9fPPP+uzzz6Tr6+v3nzzTaf2ojty5Iheeuklw9AuR3BwsF555RXr4xkzZigrK6sIPQYAAAAAAAAAAKVNzl553t7euvnmm93cm6IhuEOxOHjwoJ5//nn5+/tr5syZ6t69u8PXPvLIIxoxYoR69+5dYNkbb7xRDRo0kCSdOHFCGzZsKHSfAQAAAAAAAABA6XL06FFt3bpVklSnTh2FhIS4uUdFw1KZcLkTJ05o2LBhysrK0pw5c9SuXTunrh8wYIBT5W+77Tbt27dPkrR582Z16NDBqesBAAAAAAAAAEDptGbNGutx3bp13dgT1yC4g0udPHlSAwcOVEpKij799FM1a9as2Nts1KiR9bg07xPXsGFD+fn5ubsbJc5kMtms19yoUSP5+vLrCQAAAMWP8SgAAADcrbBjUn9/f+vxtddeWyLvx7tacHCw9bh69epq2LCh0+/z//7773nqKO34nwhcJjY2VoMGDVJKSooWLFhgXcKyuFWrVs16fO7cuRJpszj4+vpelcGdEb4WAAAAcCfGowAAAHA3R8akXl5eTpX3RN7el3Z08/HxKdQH6Hbv3m09rlChQp7n9uzZo2XLlmnbtm2Kj49XQECAypcvr8aNG+uOO+5Q+/bt83wdPQF73MEljh8/rv79++vixYv67LPPSiy0k/Im8qmpqSXWLgAAAACkpqaqa9eu2rx5s7u7UmhZWVnq37+/li1b5u6uAAAAAE45efKkkpKSrI/Lli0rSbpw4YJGjx6t3r176/PPP9f+/fuVmJio+Ph4/fXXX1qyZIkeffRRDRo0SDExMe7qviFm3KHIYmJiNGjQIJlMJi1cuFC1a9cu0fbNZrP1OCgoqETbBgAAAHD1On/+vJ577jlFR0e7uyuFlp6erokTJ2rr1q3q1auXS+pMTEzUd999pw0bNmjfvn3WlVHCw8PVsGFDtW/fXj179szzIUwAAACgMI4dO5bncXBwsM6ePauBAwfq4MGDatq0qfr37682bdooMjJSp0+f1g8//KDZs2crJSVFmzdv1sCBA/XVV18pMjLSTXeRF8EdiiQ+Pl5RUVHKyMjQZ599plq1ahWpvg8//FALFixQpUqVNGfOHJtprUZyz7ILCwsrUvsAAAAAYI/FYtG5c+cUFxentWvX6uuvv1ZcXJy7u+W0pKQkxcfHa8OGDfrqq690+PBhl9RrMpk0Z84czZ07V40aNdIdd9yhqKgohYSE6MyZM9q6dau+/vprrV27Vu+++65efPFF9ejRwyVtAwAA4OqUkJCQ57G/v7+eeeYZHTp0SGPHjtWgQYPyLIV5zTXXaPDgwerYsaMefvhhnTlzRrGxsXr++ec1b968ku6+IYI7FFpSUpKGDBmilJQULVy40KHQLj4+Xm+99ZamTZtm89wff/yh6dOnS5LOnDmjpUuXasSIEQ7VmaNu3bqO3wAAAAAAOGDFihUaN26czGazLBaLu7tTKFu2bFFUVJQsFkueVUtcJS0tTSNGjNCmTZs0ffp0de/e3aZMhw4dNHToUI0cOVJbtmzRc889p2PHjmnkyJEu7w8AAACuDomJiXkef/fdd9q0aZNeeeUVPfTQQ3avq127tqZPn66BAwdKkjZs2KANGzaoffv2xdldhxDcoVAyMjL0+OOP68SJE1q4cKHDgdn27dt14MABw+d27NiR53F6erpDdR46dMh63KxZM4euAQAAAABHderUSStWrLA+TklJ0ZdffpnnnKdr0qRJnv5evHhRP/zwg8s+VTx58mRt2rRJDRo0MAztcpQtW1YffPCBunfvrvj4eL377ruqWbOm7rnnHpf0AwAAAFeX3CvySdK3336rrl275hva5WjTpo26dOmin376SZK0YMECgjuUXi+//LJ27typOXPmqHHjxg5f98MPP6hGjRqGz+Ve5tLPz0/33nuvQ3X+/vvvkrKnwN52220O9wUAAAAAHBEWFmazLH/Tpk31008/KSUlxU29ck5QUJDq16+f51yzZs20bt26PB+GLIz4+HgtW7ZMkhQQEFBg+ZCQED355JN66aWXJEmTJk1Sx44dFRISUqR+AAAA4OqTmZmZ57Gfn5/GjRvn8PW9e/e2BncbNmzQ2bNnFRER4dI+Osvbra2j2Jw4cULDhg1TixYtdM8991jDLVdYtGiRli1bppdfflk33XSTw9ft2rVLP/30k93g7qabbpK3d/aP5F133eXQ0ptxcXHaunWrJKl79+4KDw93uD8AAAAAUFi+vr5XxP8/IiMji1zHnj17lJWVJUk6cOCAzT4jRrp37y5f3+zPEicmJlrfLAEAAACckTOmzNG7d29VrlzZ4etbt25t3QMvKyvLZmVAdyC482Dnz5+3Hl++TmtBXnjhBa1fv16pqak6cOCAHn/8cZdsmn7gwAFNmTJFvXr1Up8+fRy6xmKxaP369Ro+fLiysrLsBnfVqlVT3759JWV/GtQRM2fOlMlkUmhoqEaPHu3YTeCKkZqaqq5du2rz5s3u7kqhZWVlqX///tZPKAMAAAClTe59/9LS0rRkyZICrwkODs7zYc29e/cWR9cAAABwhbs8S7j99tuduj4kJETXXHON9fG+fftc0q+iYKlMDxUfH69//vnH+vjnn39WkyZNHL5+z549eR6npaVp9+7dqlKlSpH6NXXqVKWnp2vTpk268847Hbrm3LlzeYJHe8GdJP3nP/9RXFycvvnmG913331q3ry53bLz58/X8uXL5e/vr7feeksVK1Z0+D5Q+p0/f17PPfecoqOj3d2VQktPT9fEiRO1detW9erVy2X17tu3T9988422bt2q48ePKzk5WSEhIQoPD1ejRo3Upk0b3XPPPQoODnZZmwAAALh6NW/eXMHBwdZlQ3O/8ZGf0NBQ6/HlSxwBAAAAjrj8Pc709HSn6wgPD1dsbKyk7DzD3QjuPERKSoqysrKUlJSkffv2adasWXl+wD788EOlp6frrrvuUuXKleXr66syZcrI39/fsL4mTZpoy5Yt1sd+fn5q0KBBkft5+vRpSdlLcRZWfsFdQECA3nvvPc2bN09RUVFq06aNbr/9djVq1Ejly5eXyWTSwYMH9eWXX2rt2rWqUaOGJk6cqHbt2hW6PygdLBaLzp07p7i4OK1du1Zff/21S2aRlrSkpCTFx8drw4YN+uqrr3T48GGX1X3kyBFNnjxZmzdvVvfu3TV48GBVq1ZNUvaHATZv3qylS5dq1apVevvtt/Xcc8/pgQcecFn7AAAAuDpVqFBBixYt0sqVK1WpUiX16NHDoeuSk5Otx0X9kCkAAACuTpcvX5+WluZ0HWXKlLEeFyb4czWCOw8xYsSIPEHb5bKysvTRRx/po48+sp7LWbLSyNSpU/XKK69o69atqlSpkkaPHp1vYFZS/Pz8CvwPmY+Pj4YNG6b7779fy5cv16pVqzRjxgwlJSWpTJkyioiIUOPGjTV16lR1797dbniJK8OKFSs0btw4mc3mPEvwlCZbtmxRVFSULBaLzGZzsbTx448/6rnnnlP16tX1zTff6Nprr7Up06VLF40YMUKPPfaYdu3apfHjx+vYsWMaM2ZMsfQJAAAAV4/rrrtOzz33nMPl09LSdPToUevjG2+8sTi6BQAAgCtcnTp18jzOmXzkjIyMDOtxSEhIkftUVAR3HmLhwoUure+aa67RnDlzXFqnJH3zzTcur9OeiIgIDRkyREOGDCmxNuF5OnXqpBUrVlgfp6Sk6Msvv8xzztM1adIkT38vXryoH374QfPmzXNJ/b/88ouefvpphYWFaf78+apQoYLdsuXLl9fcuXN1991369SpU5o7d66aNm2qrl27uqQvAAAAgCPWrFljfYOkcePGatGihZt7BAAAgNKoevXqKlOmjC5evChJhVrhLPcsu7CwMJf1rbAI7gB4tLCwMJtflk2bNtVPP/1k3UPD0wUFBal+/fp5zjVr1kzr1q3ToUOHilR3enq6xo8fL7PZrJ49e+Yb2uUIDw/XsGHDNHnyZEnStGnTdPvtt8vXl5cEAAAAFL+kpCTNnDlTUvayRBMnTnRzjwAAAFBaeXt7q2HDhtqxY4ck6eDBg07XkZSUZD2uWrWqy/pWWN7u7gAAOMvX19dm7eLSKDIyssh1rF+/XidPnpQk1axZ0+Hr7rrrLuvxsWPHrC9sAAAAQHE6ceKEhg4dquPHjys8PFwffPCBmjRp4u5uAQAAoBTr3Lmz9XjXrl26cOGCw9dmZGQoISHB+tgTVoIguAOAUuz333+3HjvzaZLIyEhVrlzZ+njbtm0u7RcAAAAgZb8REh8fr7Vr12rChAm66667tH//fj300EP69ttvddNNN7m7iwAAACjlcm8DZDKZ9Ouvvzp87bFjx2SxWCRJVapUUfXq1V3eP2cR3AFAKRYfH289XrJkiQ4cOODwtbln/OX+VAkAAADgCmvWrFHTpk116623asSIEVq8eLHKlCmjWbNm6ZVXXlHFihXd3UUAAICr3qpVq9StWze1atVKo0aN0tmzZ93dJadVr15dXbp0sT6eP3++w9du2rTJetyvXz9XdqvQCO4AoBTL+TSIJGVmZuqTTz5x+Fp/f3/rcVZWlkv7BQAAALRt21Zffvml5s6dq5dfflk9e/aU2WzWsGHD1Lt3b23fvt3dXQQAACjVcr83mPvYUdu3b9fo0aN1+PBhXbhwQT/88IOeeuqpQtVVWEW9hxxjxoyRn5+fJGnnzp36+eefHbruxx9/lCSVK1dODz74YKHbdyWCOwAoxZo2bZrn8cWLFx2+9syZM9bjSpUquaxPAAAAgCSFhISoRYsWuvXWW9WvXz+98cYbWrdunUaPHq2///5bDz30kKZOnSqz2ezurgIAAJQ6l+/Ndvz4cafrWLNmjc1YbOvWrYqOji5q9xwWExNjPS7MPeSoVauWxowZY3380ksvFbjK2IYNG7RlyxZ5e3tr2rRpKlu2bKHbdyWCOwAoxaKiotSrVy9VrlxZjRo10tChQx26LikpKc8L4eUBIAAAAFAcAgMDNWzYME2fPl2S9PHHH+uFF15wc68AAABKnxUrVshkMlkfL168WJmZmS6pu6Q+WPXbb78pLi7O+njlypU6f/58oeuLioqyvj965swZDRo0KE8wmNuuXbv07LPPys/PT5MnT1b79u0L3a6r+bq7AwCAwgsODtaUKVOcvu7//u//rFPPQ0ND1aZNG1d3DQAAALCra9eu6tmzp5YvX66VK1eqRYsWHrOnCAAAgKc5f/68Tp48KbPZrHPnzmnDhg1asGBBnjK7d+/WAw88oP79+6t27doKCQmRn5+fateubbfezp0765NPPskT1NWvX1+1atVy+T2kpqYqJiZGFotF58+f17Zt2zRv3rw8ZWJjY9W3b1917txZ1apVU0hIiKTsPewcNWbMGDVv3lyvvvqqDh8+rB49eqhv375q166dwsPDdfLkSf3888/65ptvVKtWLb366qtq3bq1S++1qAjuAOAqtGTJEutxr169FBAQ4MbeAAAA4Go0dOhQLV++XJI0a9Ys9ejRw/rmDAAAAC5Zs2aNxo4dW2C5vXv3aty4cdbHVatWzXevt5YtW+rtt9/WrFmzFB8fr9atW2vChAny8fFxSb9z2717twYOHFhguePHj+uTTz7Jc+6LL75wqq0uXbqoffv2Wrt2rX788UetX79eX3/9tdLS0lS+fHk1btxYU6dOVbdu3eTr63kxmef1CABQrDZu3KgdO3ZIyp5tN2LECDf3CAAAAFejOnXq6Nprr9Xhw4d17tw5fffdd+rbt6+7uwUAAOBxevXqpV69ehVL3d27d1f37t2Lpe7c2rRpo/379xdYLiMjQ7t37y5ye4GBgSV2b67GHncAcBUxmUyaPHmy9fGECRMUERHhxh4BAADgapZ7r+U1a9a4sScAAACAZyC4A4CryPvvv6+DBw9KkoYMGaIePXq4uUcAAAC4mkVGRlqP//77bzf2BAAAAPAMBHcAcJXYuHGjPvjgA0nSgAED9Nxzz7m5RwAAALhSxMbGatWqVUpISHDqOn9/f+txUlKSq7sFAAAAlDrscQcAV4HDhw9r1KhRMpvNGjp0qMaMGePuLgEAAOAKsWvXLkVFRSklJUUVKlTQypUrHV6OPTk52XocFhZWXF0EAAAASg1m3AHAFe7kyZMaOnSokpKSNGrUKEI7AAAAuNTrr7+ulJQUSdKpU6e0cuVKh689ffq09bhGjRou7xsAAABQ2jDjDgCuYKdOndKgQYMUExOjsWPHKioqyt1dAgAAwBXm8r3pckI8R+zfv996fOutt7qsTwAAAEBpxYw7ALhCnTp1SgMHDtTRo0c1YcIEQjsAAAAPtGrVKnXr1k2tWrXSqFGjdPbsWXd3yWmRkZF5Hnfo0MGh62JjYxUdHS1JCggIUM+ePV3dNQAAAKDUIbgDgCvQmTNnNGjQIB05ckSvvPKKHn74YXd3CQAA4IpjsVgMjx21fft2jR49WocPH9aFCxf0ww8/6KmnnipUXYVV1HuQpK5du1qPa9eurSZNmjh03ZIlS6xtDho0SFWqVClU+wAAAMCVhOAOAK4wiYmJeuSRR3T48GG98sor6tu3r7u7BAAAcMXJyMhQQkKC9fHx48edrmPNmjUym815zm3dutU6C60kxMTEWI8Lcw+SNHz4cFWuXFmS4+HfgQMH9PHHH0uSWrVqpaeeeqpQbQMAAABXGoI7ALiCpKamaujQodq/f7/Gjx9PaAcAAFBMVqxYIZPJZH28ePFiZWZmuqTuy8O84vLbb78pLi7O+njlypU6f/680/WEh4fro48+UuXKlRUdHa0ZM2bkew/btm1TVFSUMjIy1Lp1a82ePVt+fn6FugcAAADgSuPr7g4AAFwjMzNTTz75pHbt2qUxY8Y4vDxmcnKyduzYoVtuuaWYewgAAFA6nT9/XidPnpTZbNa5c+e0YcMGLViwIE+Z3bt364EHHlD//v1Vu3ZthYSEyM/PT7Vr17Zbb+fOnfXJJ5/kCbnq16+vWrVqufweUlNTFRMTI4vFovPnz2vbtm2aN29enjKxsbHq3bu3oqKiVL9+fZUtW9bap4LUq1dPy5Yt06RJk/TBBx9o1apV6tWrlxo1aqTy5cvrwoULOnTokP7v//5PGzZsUFBQkEaMGKGRI0cS2gEAAAC5ENwBwBViwoQJ2rBhg4YPH66hQ4c6fN1vv/2m1157TRs2bCjG3gEAAJRea9as0dixYwsst3fvXo0bN876uGrVqvr555/tlm/ZsqXefvttzZo1S/Hx8WrdurUmTJggHx8fl/Q7t927d2vgwIEFljt27JgmTpyY59z+/fsdaiMyMlLTp0/XE088oWXLlunnn3/WJ598ouTkZAUFBalcuXK67rrrNGHCBHXv3l3lypUr1L0AAAAAVzKCOwC4AsyZM0fLli1Tz5499eyzzzp17caNG1WzZs1i6hkAAEDp16tXL/Xq1atY6u7evbu6d+9eLHXn1qZNG4cDuKKqW7eunn/++RJpCwAAALjSsMcdgKvWqlWr1K1bN7Vq1UqjRo3S2bNn3d2lQvntt980ffp0tW3bVpMmTXLq2tTUVK1evZrgDgAAAAAAAAA8ADPuAJRKFovF8NhR27dv1+jRo637ifzwww86c+aMFi5cKC8vL5f1Mz9FvQdJSkhI0JgxY1S1alXNmjVLvr7O/VqfNm2aEhMTi2UfFQAAAAAAAACAcwjuAJQ6GRkZSkhIsD4+fvy42rZt61Qda9assYZ2ObZu3aro6GjVrl3bJf0sSExMjPX4+PHjharjpZdeUlJSkubOnauyZcs6fF1cXJxmz56tr7/+WpJUo0aNQrUPAAAAAAAAoGi8vLxUvnx5BQQEyMvLSxaLRd7eLJh4tSK4A1DqrFixQiaTyfp48eLFuu++++Tn51fkui8P84rLb7/9pri4OOvjlStXavDgwQoLC3O4jq1bt2r9+vXy8fHRkCFDHL7OZDIpOTk5zzlm3AEAAAAAAADu4evry1Y2sCK4A+DRzp8/r5MnT8psNuvcuXPasGGDFixYkKfM7t279cADD6h///6qXbu2QkJC5Ofnl+/Muc6dO+uTTz7JE9TVr1+/WAKs1NRUxcTEyGKx6Pz589q2bZvmzZuXp0xsbKx69+6tqKgo1a9f3zp7rn79+nbrTUpKkiRlZWUpMTGxSH1kxh0AAAAAAAAAuB/BHQCPtmbNGo0dO7bAcnv37tW4ceOsj6tWraqff/7ZbvmWLVvq7bff1qxZsxQfH6/WrVtrwoQJ8vHxcUm/c9u9e7cGDhxYYLljx45p4sSJec7t37/f5f25XIUKFRQUFFTs7QAAAAAAAACwlZGVqaOJMTqedELppgwF+PqretlrVDO8mvx9ir7KGEoXL4vFYnF3J4CrSUZGhnbv3m1zvmnTpvL393dDj9wrMzNTu3btynOuWbNmLln2EgAAACgI41EAAAC4yz9norX64FptOr5dmWaTzfN+3r5qW72lutXrqLqRtUq+g27A++fMuAMAAAAAAAAAACgxaZkXtXDnUq05tCHfcplmk349ukW/Ht2iznXaa0Dz3gr0K1NCvYS7ENwBAAAAAAAAAACUgLOpiXpt3UzFXjjp1HVrDm3Q3wn/aPxtoxQRFF48nYNH8HZ3BwAAAAAAAAAAAK50aZkXCxXa5Yi9cFKvrZ+ptMyLLu4ZPAnBHQAAAAAAAAAAQDFbuHNpoUO7HLHnT+qznctc1CN4IoI7AAAAAAAAAACAYvTPmegC97Rz1E+HftU/Z6JdUhc8D8EdAAAAAAAAAABAMVp9cK1H1wfP4evuDgAAAAAAAAAAABSFxWJRlsUss8Usfx8/wzIx5+OUbspQljlLJnOWsixZyjJnqVrZKiofFGFY/s+4vTKZTcr6t7zJnKVA3zLq2ehOwzbmbP1cZ9MSVTE4UoNv6CtJysjK1Kbj2113s5I2Hd+u4a37271XlF4EdwAAAAAAAAAAXKUsFovMFrOy8gm8Tpw/qYumDGvQlRN6VQ2rbBh4xZ4/qT/j/rIGXSZz9nUBvv7q1aibYRsfbVuk02nnsgOyXCHZfQ27qnXV5jblfz/2h+Zs+zxXqGaWJEUEhuvDHlMM25j6y/uKTzltc354q4d1e532NucPnz2mBX9+bXM+IjDcbnC3O2G/4pNPqUudW6znjibGKNNsMixfWJlmk44lxqpuZC2X1gv3I7gDAAAAAAAAAKAQzGazsixZ8rMXeF2IN5zhdU1YJcPA68SF+OzAy2zODqT+Da/8ffzsBl7z/vhSp1PP5gq7zMoyZ6lHgy66sdr1NuU3Hd+u/279TCaL2Rp6SVK5MmX133vfMGzjjV/f18nkUzbnh97QT13q3mJz/si5Y/rUIPAKLxNm9z52J+xT3IUEm/Pn0pIMy5stZqVmptmcz7kfIz7ePobnsyzG1/jaKW/KJ4Tz9cq+pkJwpPXc8aQTdssXxbEkgrsrEcEdAAAAAOCq5eXlpfLlyysgIEBeXl6yWCzy9mY7eAAAipvZYpbZbJavj/Fb1CcvJOiiKT1P2GXKJ/A6eSFBOwxmePn5+NoNiuZvX6KEnMAr1wyvu6+7XW2qtbApvyXmT32wdeGlEM6cJYssKhsQqrn3vWnYxpu/fqATF+Jtzj96Q1/dUbeDzfnoc8c1f8dXNufDAkLs3see+P2KvXDS5vzZtETD8maLRSkGgZfJTnglSb7ext8ne4GX3YAsn1AtJ/By9Bq7oVo+92GvXyY7bRTmPnKuyd2/dFOG3fJFkZ5VPPXCvQjuAAAAAABXLV9fX9WsWdPd3QAAwGE5yxraCxTik0/poindGi7lBF9VQiqqfLBB4JV8Sn/G/WUNonJmefl62w+8Pt3xtRJSTucJu7LMWepev5PaVm9pU35b7E59sGVhdn/+DeHMFrNCA0I07763DNuYuuEDxZ63DaMGt3xQd9a7zeZ8dGKMPtmxxOZ8qH+w/Rle8ft0/Hyczfl2BvcgZYeNKRmpNucLE3gVR1Dk6DX2Aq/CtGHvPpy97/zacHY2XL7hoN1rzMZ9shMmmizG5SXJ598PgeW+1wBff7vliyLAp3jqhXsR3AEAAAAAAAC44lkslnxnVicknzac4VU5pIJh4JWQfDrXDC+TNbzy8faxGxQt/HOp4pNPW8OrnODrznq3qV31G2zKbz+xW+9tWWAtmx2qmRXsH6RPer5t2MabGz40XJYvqkUfda/fyeb80cQYfbx9sc35YL/AfAOvY0mxNueNQjspe4bXhYwUm/P5ByyuCbwKM/vKbohTqMDL+OetOIIimzZcGXg5ORvO/n24dzacvfuwt/RloZbK/Pdn91TKGeu56mWvsVu+KGqUrVos9cK9CO4AAAAAAFetjKxMHU2M0fGkE0o3ZSjA11/Vy16jmuHV5G9nrxoAuBqZLWZ5e9kJvFLO6GLmRWVZzHn28aoUXN448Eo5oz/j9vwbdJmtwZe3l7fdoOiLXSsUdyEh1wwvk0xms7rW7aCbatgGXn/G/aXZm+dn98faL5MC/cro017TDdt4a8OHOmoQRg28/n7dfd3tNuePJsVq3vYvbc4H+pXJN/CKToyxOd+6anPD8maLWRfSk23Ou3tGkbNhRkksm2jvPkpiv7NC3Ucx7Klme00JhJwunQ3nZFjrgnDQS152702Sgv2DVDO8mny9fOTjnf3H19vbbl8l6eYarXRd5LV59rirGV5Nft6+yszn++gsP29f1QgnuLsSEdwBAAAAAK46/5yJ1uqDa7Xp+HbDN1D8vH3VtnpLdavXUXUja5V8BwFcMSwWi7y8vAyfO5VyJs+ShjmzvCraCbxOpZzJnuGVa3lCkzlL3l5edoOiRbu+UdyFBJsZXl3q3KKbarSyKb/r5N96d9MnecqbzFkK8PXXgt4zDNt4e8N/dSTxuM35/s17qUeDLjbnjyXG6qM/bAOvAN8Au/ex6+TfOnzumM35G65palg+y2LWeScDL2fDJbuhgQuXG3TnjCJXLpto/2tlP8RwVVCU3/fD6cDLzbPI7P0+sbdPYGFCTnttGPXLx9tHFovFsK4gv0DVLFs1V9jlI59/wy97bbSr3lJ1ImrK19tXvt7e1vKNKtQzbKNWeDWNuXl4dt3/1p9zbK+N/9z6hKTskNDXy6fAvY3rRdbWW11fzLfM5Yxmtvr7+Klt9Zb69egWp+rKT9vqLfmg2RWK4A4AAAAAcNVIy7yohTuXas2hDfmWyzSb9OvRLfr16BZ1rtNeA5r3VqBfmRLqJQAp/8DrdOpZa+CVO/SqEBRpGHidTjmba0nDS+GVJLtB0Ze7V+rEhfg8YZfJnKXbr22v9jVb25TfHb9P72765N8ZXpf65eftq4X3zzRs453f5urQuaM25x9u1lP3NrzD5vzxpDh99Mcim/N+Pn72A6/4v3XorG0bzSs3MiyfZclSUvoF2/Meu7+WnRlehZh9ZW8GTUnMviqJoMjefeT3tbUbFLnqe24xOxUUZffLufswF6INZ+8jZ99Bo1mpRm14e3nLYmdGY5BfoGqUrSofb+/LZnnZD6PaVGuh2uHV/y3nay3fsEJdwzZqlL1Go28elifoyjm254X2j1m/Bj7ePvL28rb7O1qS6kbW0lt3vmT3eSNGgVd+wsqE6sZq1zt1TZBfoFPlXalbvY4uDe661evosrrgWQjuAAAAAABXhbOpiXpt3UzFXjjp1HVrDm3Q3wn/aPxtoxQRFF48nQNKyNnURKWZLtrM8CofFGEYeJ1JPWczwyvLnCWLLHaDoiV7vlXs+fg8AVaWOUudrr1J7WveaFP+r4QDmrXx47wzvCxZ8vby1uf3zzJs453f5uqfs9E25x9qeq96NrrT5nzM+TjN/eMLm/O+3r75Lml48MwRm/NNKzUwLJ9lNivx4nmb8yUxo8jdQZH9UMaFM4qcDljs7fl1dQZFkvPfcyn7XoyetxuMOvmzm32N2fDn1Oh76OXlZXeGV6BvGVUPq3Ip6MoVetm7jzbVWqhmeDVr0JUzK8xe4FWt7DV69qahhjO87Blz83BZZJGvV3ao5u3tbXfZWUmqE1FT00og8GpTrYVT1wT5uy/wulLUjaylznXaF/gBMkd0qXMLq0JcwQjuALiVl5eXypcvr4CAAOvgq6Ap6gAAAICz0jIvFiq0yxF74aReWz9Tr3d+gZl3V6mzaYm6aEqXKcuUZx+v8kHlDAOvs6mJ2hG3J1fYlb2Pl9lithsUff3XKsWcj7tshpdJHWq106212tiU35twUDM3zcsVdpmtb/5/0eddwzbe+X2uDpw5bHO+b9Mehv2KPX9Sc7Z9bnM+v73Idp/cp/0GbTSuWN+wfJY5S+cuJtmcN3vZ31/LVTOKCrdPmOuCImeX9rvSgyKLLC4Miuy/7elMUCQ5v9xgzjVGyxc6H9bmcx/mLHn72PbZ6HvoJfuBV5BfGVX7N/C6fB8ve9e0rtpc1cpWuay8rxqUr2NY/pqwynr2pqE2YZePl4+87czaevamYbJYLJeWWfx3lpc910bU0NvdJth93ki3+s7NWAoLCFHb6i2duibYP8ip8riyDWjeW38n/FPoMakkVQ2rrP7Ne7mwV/A0BHcA3MrX11c1a9Z0dzcAAABwhVu4c2mR3iCRsgOMz3Yu09BW/VzUq6tDYlqS0i7bw8tkNiky0E7glZaoP+P+yrOcocmcf+C1bO9qxSTFZe/3lWvW1q212hgGXvtOHdLMjfNyLWdoUta/bSx64D3DNqb//pH2nz5kc/6BJnfr/sZ32Zw/ceGk/msQeHnJ/l5ku+P/1t+n/rE536C88cwPsyVL59JsAy/J/jKTbp1R5ORMnPyCIqcDr/yCIrPZ8AOkzgZF+c24sRcUuWpPtZxrPCkoyilv3Eb+92FvLy0jJrNxwJvv98OcZdgHe19fs50lDQP9AlQ1rLLNcoY+Xj4yyzjwanVNM10TWslmhlcDOzO8qoRW1NPtHrUGV765gy87/R3VbsilwCvXLC97apWrrncIvIASEehXRuNvG6XX1s9U7Hnnx6ZVwyprfIdRfJDsCkdwBwAAAAC4ov1zJtolSxJJ0k+HflXH2jeVyNJEiRfPW/fwygmWTOYsRQSGGwZeiWlJefbwyh182QuKVvz9o44lncjTRpYlS+1r3KgOtdvalD9w+rCmb/woz3KG2deY9cX97xqGONM3ztPfpw7anL+/cXc90OQem/NxFxL04dbPDPvbs+Gdhm3sjt+nvxIO2JyvX762YT1mS5bOpJ0zfs5OiOOqmVHuDoqcDVgKExTZC36c/VrltFHcQZHJkiV/OTOLzDjEKSjwMuqDs0tM5nsfZpOd74drfnal7Pvw8/Gzvcbuz67x16qMb8Cl8Cr37CtvHztxl3TDNU1VKaS8NSTL2cfL3gyvyiEV9HS7IYYzvPzsfK+eajtYZovZWnd2efv7eNUMr6bp3V6202NjzgZeoQEhuqnGDU5dE+If7FR5ACUrIihcr3d+waF9l3PrUucW9W/ei9DuKkBwB8CtMrIydTQxRseTTijdlKEAX39VL3uNaoZXk7/BfwYAAABwZciZSZN7Ro3RG86ZWZlKvHjeWs6sS9dVDatsOBPnWGKsqpWtYn1u9cG1Lu376oNr9WTkI9b+zd40X+nmTGWZs3RzjVa6rXY7m2v+OROtd36fa7Pnl8mSpc97zzIMcWZunGcYRvVq1E19m/awOX/iQoI+2LrQsM/3Nehq2Mauk39rT8J+m/N1IoxXxciyZOlMqnHg5ezSc4XZa8nujCJn9/AqTIhjL5goxH04HxQV8mvlRFBkbx+2ggIvX4O3llx5HyZng6LCBHdmk+H/P+3fh/HXqqDvhzPXZNkJB8v4BqhKaMW8M7y88t9fq0WVJqoQFJlnRpivt4/qRxoHXpWCy2tUu8E2YZevt4/h90KSRraJUpYly2apRXvLGtYIr6oZ3V+x22cjd9a7zany2YFXK6euCQkg8AJQMgL9ymhYq4fVqfbNWn1wrTYd365Mg9cXP29fta3eUt3qdWRPu6sIwR0At/jnTDQvSgAAwCNlmbOUlnkxT0iUExRFBpUzfBPy5IUEJWekWvfmySkfERiuyqEVbconp6dod8K+XMFVznUW3VqrjeEbzJuOb9fJ5FPW+nOuaVC+jq6v0timfELKGa34+8c84VjO8WM3DjB88/XL3St18MwRa/2Wf/++uUYrwxkCRxNjNO23OdZyucO1d++aqDK+ATbXTP31fW0/sUeWy+ZU9GjQxXCvjqOJsRq3ZqrNeUla0HuGYRv/d/g3PdLyAUnZHxTbdHy74fWFten4dg1v3V/+Pn7y8/FTfMppHT53TJJUu1x1w2uyLFk6nXrW8Dl7Ic6VMqPIpQFLCQRFWeYsyeDfh6uXAjRqw9n7KLANA04HkAUEXpLtv0Hn91TL/+fKmX6Z7MxUC/ANUOWQCtaZVLnDJXuur9xIEYHhNssgXlf+WsPyFUMi9VTbwTZhl4+3j/x9/Q2veezGAdbQO3cQZ29Zw2plq2hm91ft9tmIs4FXSECwbq7R2ulrAADOqxtZS09GPqLhrfvrWGKsjiXFKj0rQwE+/qpRtqpqhFdlcsNViOAOQIlKy7zo0DTwTLNJvx7dol+PblHnOu01oHlvpoEDAK5YFosle28l5Z2BZLFYFOwfZLg809nURKWZLuYJY8wWs8LKhKp8kO0SeqkZadp/5lCuAOfS3zdWu97wzd8dcXsUn3w6V4iTfU2diBpqUqmBTfnTqWe16sBaw6DokZYPGAZFy/f+oENnj14q++/XoE21Fupc5xab8jFJcZq16eM8oVJOUPRW1xcNQ5zpv3+kP+P+sgnh7qrfSQOu721TPjoxRmN/esPmvCQt6DVdZQzGJPN3fKXtcXtszt9d/3YNbHG/zfmTyac0/fePDNu4qXpLw+/HuiMb7bZhFNxdSE/WmkO/GrYxtFU/w+9H9Lnj2h2/z+Z8/Ujj5QazzFmKTz5l+JzFYrzYmUWyCe2k7OUJjXjbWZ4svzaqhFayHh9NjDH8oFhRZJpNOpYYa/2A2bURNazBnSuDoitlRpG9UKYwQZGz1xQ6VHOiDXtBUcGBl0G/nP6e239bx9l+2Q+8/FUppEL2LK3LAiwvGf/7vL5yQ4UHhNrs+WUv8KoQHKGRbaLk6+17Wejlbfh7XZJGtO6voTc8lCfsym8fr6phlTXrromGz9njdODlH6z2NZ0LvEIDQpwqDwC4Mvn7+KluZC0mMEASwR2AEnQ2NVGvrZup2AvObby65tAG/Z3wj8bfNkoRQeHF0zkAuMrlDop8vH0Mg6Lk9BSlZ2XkCWTMsijYL1Bly4TZlL+YeVHRiTG5AqJ/wx+Z1axSQ8M3DvfE79fp1LPWa3LaqhleVQ0q1LUpfy4tSWsO/ZprltOlv/s27WH4JvWqAz/r8Nljee7BbDHrhipN1fHam2zKn7gQrw+3LDRcpm/i7WMM31B8f/MC7Yzfa3Mfd9S9Vf2a3WdT/si5Y/qPnaDo017TDT+8MuePL7T9xG6b83fVv12DDIOiBE355T3DNub3eke+3oE25//3zy/6w04bRsHd+YsX9N3+NYZt9L++l2FQtP/MYcP7qBZ2jWE9GVmZik6MMXzOXvCTkZWhNNNFm/P29t2x90a0JJntBEX2lgIz29mpx175/Nqwt79O4dqwF5LZuQ97XysPbSM81++k40kn7F5fFMeSLgV3FYIirec9NSiy2y8Xz4Zzpl92y+fzPffEwMteGwE+/qoUXP6yYCn72N7vmWaVGyg0IEQ+3t55QrL6kcaBV2RQuX8DL9sZXkG+xh98HNqqnx5p+YDDSy1eE1pJ7zoZeN1Rt4NT5YP9g3RrrTZOXUPgBQAArlQEdwBKRFrmxUKFdjliL5zUa+tn6vXOLzDzDriKZJgyZDJn2QQsAT7+CvYPMix/4kK8YVBUP/JawzekDp45orNpiZfNWrLomtBKhp90S7p4Xr9Eb5FFZpt27mvY1TAoWnPo1zwBVk6I07xyQ7WveaNN+ZPJp/TJ9sW292Exa9ytIw1n+8z740vtiv87z2wqi8WijtfepAea3G1TPvrccY1b8+al5e1yvfE/v+c7CvK3DXHe2/KpYYjTvX4nRbXoY3P+xIUETfj5bZvz+bXx/YH/s9uGUXCXePG8vvrre8M2ejfqZvj92BO/X9tO7LI5Xz6wnGE96aYM7Tt9yPA5e0FRckaKzqUl2ZzPMGUYli+J8KMwIY69frmyDefvI59QTe78WtkJ1Tz0a2Vvppr9NuyVzy/ktNMvO4GF/QDS+TZyh0vpdv7dFVV61qV6/XLtuVao5QZdFBSVxEw117Zh/P0L8PVXheDIPEFXTrhk7/dSk0rXKcivzL+zu3yts7zq2ZktGhEYriduHJRnv6+c4CvYz/b1SZIebdlXUdf3kY+3t0NLLVYOrah3737N8Dl7SiLwCiPwAgDA45hMJsXGxsrf31/e3t4ym82qWLGifHzsj71w5SK4A1AiFu5cWujQLkfs+ZP6bOcyDW3Vz0W9AmxZcpaCu2y5Oh8vb8N9KTKzMnUmLTHvDKR/r6te9hrDN3Kiz8UoKf28zf5BFYPLq1a5ajblL6Qna3PMDoMQx6Ku9ToYBhO/RG/WsaQTNkvoNa5YX22rt7Qpn5ByRp/vXG57H7LomXaPGgZFC/9cqr8SDtjcxy21blSvRt1syh9LjNUra6dfWtou19d47r1TDYO4GZs+1rbYnTbnu9XraN27KLcTF+L1/P9etzkvSR/3nKYQf9u9N5bv/cEwxOluZ4/Nc2lJWrhzqWEb3et3NPx+bI/7y/A+gvwCDYO7i5kXtSPuL8M27L25ezYtUXEXEmzOp2SkGpaXvOzOWnA2xHE2AMivDbcGEy4MDdwZfhTu++Fcv+y1YS+8yr9frgy8nOuXs32SnJ/dVhJt2P03m+/MQRfNhsunDefDQdeFnLnPB9jZV6qoAnwu1ZuZden3qb3f04XZw8vZJSb9ffxVISgib3j1b7hk799B44r1VcY3wCaIqmdnmaZygWX1+I0DL5vhlb28odFruSQNbvGABjTvZdOGvVlylUIq6L27Jxk+Z88ddW91qnyQf6A61G7r1DVhZUKdKg8AAOAoi8Wi06dP5zlXvnx5grurFMEdgGL3z5noAve0c9RPh35Vx9o3XfHrPVv+nf1i9EZVljlLFzJSDIOiisHlDfd0iLuQoAvpyXlCH7PFrMigcqoaVtmmfHJGSvZeQJftg2SxWNShdlvDYGLT8e2KPX8yzwwns8Wi+pG11apqc5vyp1PP6qs939vch1kWPd56gGFQtGTPt9qbcDB7STzzpdlX7arfoB4NutiUjzkfpynrZ+fa0+jSfbx710TDN5em/fZfbXUiKIo9H6/n/zfZ5rwkfXzfNMNN2r/66zvDNu6sd5sGl3vQ5vyZ1ETN2faFYRsda7cz/H5siflTW2L/tDnv5eVlGNylZqRp4/E/DNuwt1dPfPJp634+uSWmnTcsb5FFyRkphs+VRDDhqtklpS2YKNysJVfdh2cGEyUxM8r+kobum32V/8+uvX+DJTDjzk4bbg2E7eyPlN817p1xZ+dr5cr7sPdv1qVfK9f93r2Qnmw9rl7WeNnVoqpRtqr1uEJwpLrX7yRfbx/VjahlWD68TJgeaz0g1wwvX2vwFWrwwRJJGnR9b/Vreu+lPcJy7eNlpGJwpN67x3hcYo/TgZdfoG6r3c6pawi8AAAAAMcR3AEodqsPrnV5fU9GPiIpO1D48eA6mcxZ1v2Nri1XQ9dXaWxz3dm0RK38+3+GIc4jLfoYBkUr/v5R+04f+neG0KVrWldtru71O9mUj7uQoGkbPrSZrWWxWDS16zjD2T6zNn6sLbF/5umPRRbdWfc2Db7BNsSJOR+n5340fkNm3n1vGe718PnO5YYhjr02zqSe06xNnxi20bZ6C8OgaMOxrdoSY9tG17odDIO71Iw0rT3yu2Ebj97wkIwWRD2WdEJ7Tx20OV8vwngJJLPZrFOpZw2fs7uvkQcGE4WZiePS+7hCggl3LjfozmDCvbPhPDOYcPZr5dqfq9IVCHtmGyWw/KMLZ5HZK+/rnR3WeHt5y8vLS95e3tZjeyqHVFDdiFr/lvWS179/XxNaybB8kF+g2lW/IU9Zby9vecvLcL9BSWpdtbkqhZS39ifnmtrlqhuWL1emrIa1evhS3V7e8pKXvL29FGRnucHejbqpc532l+5D2X+HG+yVKUmVgyvo3bsm2nytvL28FWJnhlfu/SprhleTn7evMu3MMi4MP29f1Qi/FNy1r9la7Wu2zveaQL8yhvto5sdo/1AAAAAAVzaCOwDFKiMrU5uOb3dpnZuOb9fw1v3l7+MnX28f/Xp0S55ZP3fUvdUwuEtOT9EqOyHiw83uMwzuDp09qu0Gey0ZzVKTJJPZpOPn4wyfs7ekkcmcpYysTJvzpW1JKlcGE3ZnfrjwPkqijRIJJly1ZJsLww9PDSacDWWc/dpm98sTg4nStfeV80saunJ2YiHacNnsRBfeh50++Xh5y8/b1zAosti5JuLfmdnWoETZ15UPjjAsH+hbRi2qNDEOiuzMELq+SmOFlQm9VL93dvBjb1+qsDKhGnh970sBUa77sLcP7t31b9fNNVpddo2XIoLCDctXCI7Um3e8mCuM8rK2YW9vqMdaD9CIVg/n6U9+QVzl0Iqa13Oa4XP2PNTsXj2kex0uHxEYrmduetSpNrLDp/wDqNyC/YPUuU57p9rIHXg5wtfHV5VCKjh1Te5/U/4+fmpbvaV+PbrFqTry07Z6S8MPMgEAAABAURHcAShWRxNjXPrpZknKNJt0LDHWulzmtRE18gR3pS2YKIklqey+geyhwYSzb54XbvZVKQomCrVHkZPBRH5tlKJgonDf8+IPB53/2S2J2YmFCejt/ew61ievXCGOva9VWECIIoPK2QRF9mbiBPj4q2GFujaBjJeXt3wN9piUpEYV6snf2y9PGOPt5a3rytcx7pN/iB5ocrdNSOTt5a1AX+Og6I66t/4bYOWdtVQxONKwfPnAcprYaYxxUGRnibkhLftq4PX329yHvSX0KodW1Od93jV8zp6B1/fWwOt7O1w+IihcY299wqk2bqvdzqll90L8g3X3dZ2dasPZJbb9fPwM9xzNT3HtowbX6Favo0uDu271OrqsLgAAAADIjeAOQLE6nnSiWOo9lnQpuKsQlPdN0NIWTHjm3lfuDSacDbBcO3OwaMFEUfrl2llk7ps56LFLM9pZwjPQt4yC/QJtAplgO0u8+fv4qXZ49ctmLf07u8hOsF43spZM5qx/y10KWerbCYpC/IN0z3WdDZaF87IbFN1Wq60alK+TN/SRl6qEVjQsHxEYrnG3jrS9D3nbnVE04Pre6tPkbpugqIxPgGH5SiEV9EWf2f/W65VvsJpjcMsHNbil7RK+9kQGldOrnUY7XF7KDtWc2dMpJCBY9ze+y6k2Glaop4ZOTBDy9/VXgwrGPw/59QuAY+pG1lLnOu1dsu9ylzq3XPH7LQMAAABwH4I7AMUq3ZRRPPVmXarXzyfvr7IrJZgoVBtO7i1WMvuEuW6mmt02nAxeC9WGC2dZ+nr5yCfX/jw54Ye9Jbd8fXxVOaSCbYjz7+wfI7XCq+pCeqO8oZKXl64tV8OwfJB/kLrUuSXPjCjvf4OoMr7GoczNNVqpZnjVS/fx7zX2lpINLxOmZ28aeim4yjV7yV5Q9GCTe3RX/dvzhFHeXl4KsrOnUcWgSH3cc1ree8j1dTMyrPXDGtb6YcPnjEQGldPUruMcLi9J3et3MtwX057QgBANcGKWkyQ1q9xQzdTQ4fIBvv6Gywrnp1xgWafKe3l5ydfLeNYbAJS0Ac176++EfxR74WSh66gaVln9m/dyYa8AAAAAIC+COwDFqriWjQrwuVRvZlbepThLZh+kwsz2cVEb+S6b6Pi95xc4+Xr7KLxMmGFQZO+6KqEVdV2e2T7ZM3eqla1iWD7Qt4za17wxu6zyLgtn7+emdbXmqhgSmSf08fLyUk07e+WEBYTqsdYDDGcthdoJino2ulOdrr3ZJiiyV758UITev3tyrjYu9SvIzoytx9sM1ONtBho+Z6+NWXdNdLi8JPVocId6NLjD4fJhASEa2qqfU220vKapWl7T1OHyZXwD1LZ6S6faqBhSXsbzxYx5e3srxJ9ZSAAAW4F+ZTT+tlF6bf1MxZ53PryrGlZZ4zuMsruXIgAAAAC4gpfF3jvcAIpFRkaGdu/ebXO+adOm8ve/8vZGOXjmiF5c86bL63298wvWJYqW/bVaW2N3WoOZFlUaq3fj7jbXnL94QR9u+9w6Cyd3yDLw+t4qa7B/0oajW3Xo7FGbZeFql6uuNtVa2JRPy7yodUc25ll2LicsalOtheEbPdHnjutsWqLNzKByZcJ0jcHMJVOWSSeTT+WZRZVzXbkyZeVjsKdTZlamLFKupfAcW7IOAADgSpOWeVELdy51atnMLnVuUf/mvQjtAAAAUCwyMzO1a9euPOeaNWsmPz/j1ZmuZFfb++dGCO6AEna1/eLJyMrUI8ueVabZVHBhB/l5++qTXu/YXVYQAAAAKMg/Z6K1+uBabTq+3XCs6uftq7bVW6pbvY7saQcAAIBiRXB3ydX2/rkRlsoEUKz8ffzUtnpL/Xp0i8vqbFu9JaEdAAAAiqRuZC09GfmIhrfur2OJsTqWFKv0rAwF+PirRtmqqhFelTEnAAAAgBJHcAeg2HWr19GlwV23eh1dVhcAAACubv4+fqobWYtZdQAAAAA8gre7OwDgylc3spY612nvkrq61LmFN1UAAAAAAAAAAFckZtwBKBEDmvfW3wn/KPbCyULXUTWssvo37+XCXgEAAOBqZzKZFBsbK39/f3l7e8tsNqtixYry8fFxd9cAAAAAXIWYcQegRAT6ldH420apaljlQl1fNayyxncYpUC/Mi7uGQAAAK5mFotFp0+f1okTJxQTE6MTJ07IbDa7u1sAAAAArlIEdwBKTERQuF7v/ILTy2Z2qXOLXu/8giKCwounYwAAAAAAAAAAeACWygRQogL9ymhYq4fVqfbNWn1wrTYd365Ms8mmnJ+3r9pWb6lu9Tqypx0AAAAAAAAA4KpAcAfALepG1tKTkY9oeOv+OpYYq2NJsUrPylCAj79qlK2qGuFV5e/j5+5uAgAAAAAAAABQYgjuALiVv4+f6kbWYlYdAAAAAAAAAOCqxx53AAAAAAAAAAAAgAdgxh0AtzKZTIqNjZW/v7+8vb1lNptVsWJF+fj4uLtrAAAAAAAAAACUKII7AG5lsVh0+vTpPOfKly9PcAcAAAAAAAAAuOqwVCYAAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAAAAAAAAAMADENwBAAAAAAAAAAAAHoDgDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAH8HV3B4CrjcViMTyfmZlZwj3xDCaTyeZcZmam3a8TAAAA4EqMRwEAAOBujEkvsfc++dX0tfCyXE13C3iAlJQU7du3z93dAAAAAAAAAACgVGjQoIGCg4Pd3Y0SwVKZAAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAP4GWxWCzu7gRwNTGbzUpLS7M57+vrKy8vLzf0CAAAAAAAAAAA97NYLDKZTDbnAwMD5e19dcxFI7gDAAAAAAAAAAAAPMDVEU8CAAAAAAAAAAAAHo7gDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAAAAAAAAAMADENwBAAAAAAAAAAAAHoDgDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEd4CLJSYmFun6v/76SydPnnRNZxxw6tQp7d+/P98ysbGxMplMBdaVlpbmqm65TFxcnLu74LClS5fqt99+c3c3AAAAShxjUs/BmBQAAFytGJN6jqt9TEpwB7jYc889p0mTJik5OblQ13/yySe69957tX79ehf3zNj333+vPn366PPPP7dbZtWqVerWrZuWLVuW7wvT999/r6ioKP3xxx/F0dVCefrppzV8+HAdOXLE3V0pkK+vrwYPHqxevXrp119/dXd3AAAASgxjUs/BmBQAAFytGJN6jqt9TEpwB7jYG2+8oTVr1qh79+7avHmzU9empaXp559/VmJiooYPH6633nrLoU9wFMXq1auVnp6uiRMnasSIETp79qxNmaCgIB07dkxjx45Vt27ddPToUcO6goODtXHjRvXr10+DBw9WdHR0sfbdEePHj9f69evVo0cPffDBBzKbze7ukl333nuvHnnkEf3111969NFHNX78eFksFnd3CwAAoNgxJvUcjEkBAMDVijGp57jax6QEd4CLRUZG6s0339SpU6cUFRWl2bNnO/xLZdmyZUpJSZGU/akCHx8fXbx4sdj6Ghsbqz///NP6OCAgQAkJCTblAgMDrccDBgxQzZo1DesLCgqyHtevX1/VqlVzXWcLqUmTJrrrrruUkZGhGTNmaNSoUe7uUr6effZZ1a1bV5K0ZMkSffbZZ4WqZ+PGjYbfSwAAAE/DmNTzMCYFAABXG8aknudqHpMS3AHF4MYbb9RDDz0ks9msd999V+PHjy/wGrPZrE8//VSSVLZsWc2fP1/PPvusQkJCiq2fq1atsh7fdNNNmjlzpho0aGBTzs/Pz3rcr18/u/X5+vpaj4cNG5bnsTs9/vjj1uP//e9/2rVrlxt7kz9/f3898cQT1scHDx50uo7Vq1dr6NChGjhwYKl7UQIAAKVHYZeGvxxjUs/DmBQAAJQGCxYsYEzqJMakpYNn/LQAV6BRo0Zp5cqVunDhgr766ivdfPPN6tatm93yP/74o44eParQ0FB9+umnatiwYbH3cfny5dbjp59+2m45Hx8fh+rzlBegy9WpU0etWrXStm3bJDn3JtO8efPk5eWlwYMH51suOTlZGRkZRepnjmbNmkmSwsPD1adPH8Np+fasWbNGL7/8ssxms44cOaKBAwdq4cKFqlChgkv6BgAASrfdu3dr1apVGj16dJHGbt98841mzJih9957T40aNSpSnxiTFowxKQAAQF6vv/66Pv30U61atUofffRRkSc/MCYtGGPSkuOZPz3AFaBs2bJ66KGHNGfOHEnSzp077QZ3ZrNZs2fPlr+/v95///0SCe127typQ4cOSZI6duyo5s2b2y2b+5MkJW3Pnj36559/dN999xWpng4dOmjbtm2qWrWqWrdu7dA18+bN05tvvilJ8vLy0iOPPGK37PHjxxUVFaXExMQi9TO3xMRE3X///UWqI+dFacGCBaXiRQkAAOQvIyOj0J8qzszM1JgxYxQdHa0///xTM2bMUExMjNN7KqempurVV19VSkqK+vXrp9dff13du3cvVJ8YkxaMMSkAAEBeOaGdJO3YsUOPPvpokcI7xqQFY0xasgjugGLUt29fffTRRzKbzfl+Evm7777ToUOH9M477+jGG28skb4tXbpUUvYv2vw+RZJTxl0uXryoF154QT/88IPGjh2r0NDQQtXTvn17rVmzRmPGjNGFCxcKLL906VJNmzbN+viNN96Ql5eXoqKiDMs3bNhQ8+fP15YtW9S4cWNVr15dISEhCg4OzlNuxYoVSkxMVP/+/Qv9yZv58+erTZs2JRLwAgAAz5Kenq4RI0Zo586dRapn+/btevLJJxUVFaXnnntO/v7+yszMVJ06dQq8Nisry7ov88WLF/XPP/8Uuh+MSfPHmBQAAHiyPXv26JFHHtH58+fd2o8dO3Zo6NCh+uijj2zGPY5gTJo/xqQlj+AOKILDhw/rxIkTat++veHzVatW1cMPP6yYmBjdddddhmXS0tL0zjvvaOTIkXY/qbx582alpaXptttuc0m/k5OT9f3330uSunbtarhes6fw9/eXJK1du1Zr164tcn0DBgwo9LVTpkyRpHxflAp6kejYsaN69uyp5cuXa8qUKU4vLZWcnKx3331X06ZN04gRIzR8+HC3ftIHAACUrNDQUM2bN09ffvml6tevrzp16igsLEwhISHy9s5/C/OYmBjdfvvtkqQ2bdpo9uzZCgsLU+3atVWzZk3dfvvtWr58eYH1/PXXX+rVq5ckacyYMXr00UcLdS+MSQuHMSkAAPAUTZo00bx58/Tjjz+qWbNmqlGjhsLCwhQYGOiW/hRmPMKYtHAYkxYvgjugCBITEzVkyBDdeuutevbZZ1WpUiWbMjkbfiYlJRnW8emnn6pOnTrq16+f4Rq9MTExeuKJJ5ScnKxHH31UTz/9dJHXSF6+fLmSk5Pl4+Ojp556qkh1OSMlJcXpT73k/mU7btw4DRo0yNXdKlFly5bVW2+9pYcfflgPPPCAnn/+eQ0cONDh6xcvXmxdHmvhwoVq0KCBOnfuXFzdBQAAHig0NFRDhw51+rqtW7daj4cPH66wsDBJsv6HOiwsTCdOnFC1atXyrSf3pvA33HCD0/3IwZjUfRiTAgAAV2nWrJl1H7LSiDGp+zAmtY/gDiiCnADtl19+0S+//FKkutq1a1dgmblz5yooKMgaBhaGxWLRZ599Jknq0aOHQ8shucL8+fO1cOFCLViwQFWrVnX4utwvSO6ciu5KN9xwgx544AEtXrxYkydPVlpamoYPH17gdenp6frkk08kSc2bN9fMmTNVpUqV4u4uAAC4QmzZskWSFBQUZLiXRcWKFRUdHe1UcFevXr1C9YUxqfsxJgUAAFc7xqTux5jUGMEdUAS5f1mOHTvW7tTg3Dp16qTY2Fj17NlTb7zxRoHlcy9pNHz4cD322GOF7q8krV+/XtHR0fLz89MTTzxhPW+xWOyuaZyammo9vnDhgnx8fAosl5KSYg02ly5dar3XgQMHauHChbrmmmsc6u+V+IIkSU888YSWLl0qk8mkjz/+2KEXpMWLF+vUqVO67bbbNGPGDLctOwAAAEqnzZs3S5Latm1rXWYntwoVKig6OtruMvA59u3bJ0mqUqWKQkJCCtUXxqSegTEpAAC4mjEm9QyMSW0R3AFFUNQlK53VpUuXIv9Sfv/99yVJd999t6pXr2497+Xlpffee0/z58/P9/q2bds61I69ackxMTEaMGCAwy9Kub/GpekFyWKx5NvfSpUqqV27dvr1119Vvnz5Auu7ePGi5syZo65du+qdd96x+7NnMpmUkpKismXLFrrvAACgdMjIyDAM4IwcOHBAsbGxkqRbb73VsEzOjLuC5AR3Rdn/gzFpyWBMCgAAYB9j0pLBmNR5BHdAEdj7RIWn2rBhg3bu3ClJ+vbbb+Xj46ORI0dapxGPHTtWNWvWVFBQkBo2bKiIiAiFhobql19+0ZNPPilJ2r17t7y9vQ3r37p1q3XW4W+//abw8HC7fXH0a5f7l7qzL0gnTpxQ+fLlHX5DK7ddu3bpuuuuU0BAgNPXStLo0aN1zTXX6KGHHrI75b1z587asGFDnk/02PPFF1+oRYsWBb4YPfvss9q0aZMef/xx9evXr1D3DgAAPJ/FYtHjjz+u559/XvXr1y+w/Lp16yRlj6c6depkWKZy5cr6v//7v3zrSUhI0OnTpyVJTZo0ca7T/2JM6jjGpAAAAMWDManjGJOWPII7oAhyT08uDd59913rsclk0rFjx2zuoV+/fjbX5X4B8vb2tvsL0dFyzrD3wpWRkSEfH598X9gWLlwok8mkF1980el2p0+frpiYGL300kvq0KGD09enpqZq7ty5mjt3boFln3nmGT3zzDMO1du4cWOHyk2ZMkVHjx7Vyy+/7FB5AABQunh5eWnChAkaOnSoZs+eXeBec2vXrpUkNWvWTJUqVTIsU69ePc2cOVMmk8nuOG7Xrl3W40aNGhWq74xJHceYFAAAoHgwJnUcY9KSR3AHFEFJL5VpsVgKfe0PP/ygP//8U76+vjKZTJKkSZMmOTT92J1yf3ok9wve6tWrdfToUT311FN2r+3fv7/uuOMOtW/f3qkXFYvFoj179uj8+fMaNmyY7rjjDr344ouqXLmyw3XkfIKjefPm+vDDDx2+rqgefvhhHT58WB07dizUCzEAACg9atSoof/85z+KiorS/Pnz7YZ38fHx2rFjhyTpjjvusFvfddddp9TUVP39999q2rSpYZncwV3z5s2d7jNjUsakAAAA7saYlDGppyO4A4ogd3CXlpams2fPFniN2WyWlP1JCEfKnz9/vvAd/FdmZqamT58uLy8vjRo1Sm+//XaR6ywpuV+Ecn9q5M4771SnTp100003qVWrVobXVq1aVbfffrvGjRunb7/9VhEREQ61GR0dnefrvm3bNqWnpzvV75xP6Pj4+BTY7tNPP63HH3/coWWuCpLzNWrcuHGJB8sAAKDkdezYUX369NHAgQO1YMECw/Bu9erV1g+A5RfclS9fXpGRkdq+fbvd4O7PP/+UJNWsWVORkZFO9ZUxKWNSAAAAd2NMypi0NDBegBWAQ3L/g58xY4batWtX4J+4uDhJ0vfff+9Q+Z49e1rbKOyMuwULFig6OlrDhg3TLbfcUrSbLmGXTyvPERAQoPvvv1/PP/+8kpOT7V4/cOBAnT59WhMmTHC4zdyfJJek8ePHq2bNmk702vHZmD/++KNWr16tAQMG2LSbY9asWXr66af11Vdf6eTJk071AwAAXPmefPJJ1alTR1FRUTp69KjN86tWrZIkNW3aVDVq1Mi3ruuuu07bt283fC4zM9O6D0jLli2d7idjUsakAAAA7saYlDFpaUBwBxRB7unJY8eO1f79+wv8k7MBZ8+ePR0q/3//93/WNnJm6zkjPj5e7733nm688UaNGjWq6DddwjIzM63Hl6/T3K9fPyUkJGjixIl2r2/VqpVq1aqln376SStWrHCozZw3pCTp+uuvV/fu3Z3rtBx7QUpOTtbUqVMlSYmJiRo6dKji4+Ntyj355JO6/vrrNWnSJHXo0EE9e/bU+++/r+PHjzvdLwAAcOXx8fHR22+/raysLA0ePFgJCQnW544cOWId2+T+QJg9DRo00ObNm5WVlWXz3O7du3Xx4kVJUps2bZzqI2NSxqQAAADuxpiUMWlpQXAHFEHOGsglxegNlIJMnjxZYWFhmjlzZr4blHqqtLQ063HuT5JIUqVKldSpUyd98803+t///me3jt69e0vK3ojUkeVJN23aZD1+/PHHne2yYV+NvPzyy4qNjZUk3XjjjVqyZIkqVapkU87Ly0tRUVFavHixatSoob1792rmzJnq0qWLRo4cqTNnzhSqjwAA4MpRqVIlvf7664qJidGjjz5qXc5m6dKlkrKXp3HkP9ktW7bUuXPntGXLFpvnfv/9d+vxTTfd5FT/GJMyJgUAACiqVatW6bPPPiv09YxJGZOWFgR3QBGUdHDn7Iy7H374QevXr9e7777r8LrFnibnU92S7SdJJKlPnz6SpFdeecXui819990nb29vJSYmasqUKfm2l5CQoEOHDkmS6tev79RmrbkV9IL09ddf67vvvpOXl5eeeOIJffrppwVOM2/QoIGWLl1qXavaYrHop59+0pdfflmoPgIAgCtLp06d1KdPH+3fv1+PPfaYkpOTrZ+k7dSpk8qVK1dgHW3atJGPj4/hf/Z/++03SVKdOnUM/xNtD2PSbIxJAQAACu/nn3/W888/r0mTJmnJkiVOX8+YNBtj0tKB4A4ogtzTk0uCMzPuTp8+rddee01Tp05V06ZNi7FXxSv3J0lyNjLN7eabb1bVqlV15swZvfbaa4Z1VKxYUS1atJAkrVy50u6+LZK0ceNG6/HAgQML2+18X5A2btyoV155RUFBQZo1a5aeeuophz55IklhYWGaN2+ebrzxRuu5K20qOAAAKLyxY8eqatWq2rZtm3r37q1Tp05JkgYMGODQ9WFhYWrcuLF++umnPPsrJyYmWveZ6Nixo8P9YUx6CWNSAABwJUtKStLZs2eL5c+6des0atQoZWZmymKx6OWXX3Z4qUeJMWlujElLB4I7oAhKesado+1ZLBY9//zzGjx4sO68885i7lXxyv1JkuDgYJvnvb29dd9990nKni6/fv16w3puv/126/GMGTPstpcz/Ts0NFR33313IXp8qV9G9u/fryeffFKVK1fWokWLdMcddzhdd5kyZTRz5kxVqVJFkuTv71/ofgIAgCtLcHCwXnnlFUlSdHS0pOxPo7Zu3drhOm666SadOnVK27Zts55bt26ddSzaqVMnh+phTGqLMSkAALhSrV27VjfffLPatWvn8j/Dhw9XRkaGtS2z2axx48Zp1apVBfaLMaktxqSej+AOKILcM+DS0tIc+oRIznKXGRkZDpXP2Z9EcnyG39GjR9WiRQsNGTLEtTfsAnv27HFq5mBqaqr1OCgoyLBM7hfd119/3TDgvO2226zHmzdv1r59+wzrytm7pVevXgoMDHS4n5fz8vKyOXfw4EENHjxYbdu21bJly2SxWJwKf5OSkvTGG28oMzNTERERmj59usLDw0v9oAMAALjWrbfemmcPOmeWtZQu7V+Xe/+QH374QZJUuXJl6yd0C8KYlDEpAAC4etx3332aPXu23njjDa1cuVIbN27Unj17tH///mL5s3fvXof2cGZMypi0NPJ1dweA0iz3L5MZM2bk+wmFy33//ff6/vvvnWovPT3doXK1atXSk08+6VTdJeG3337TiBEj1LVrV7355psOTXtOSEiwHtvbl6V+/fqqU6eODh06pOjoaH333XfWT5fkqFOnjsLDw5WYmChJ+t///qcGDRrkKbN3716dPHlS3t7eDi8n5ah9+/bp8ccf18iRI/XQQw9Jkt5++21t3rxZY8aMUefOnQusY+LEifruu++0f/9+vfvuu2rRooU2btzo8PRxAABwdYiLi9OOHTusj9evX6/333/f4c3kb7jhBkVEROinn35SbGysgoODtWHDBklS9+7dHR57MCZlTAoAAK4uuWdyeQrGpIxJSyOCO6AIcs+AGzt2rKKiogq8plOnToqNjVXPnj31xhtvFFg+JibG+qJn9OmEokpNTc0zzdpIcnKy9TgxMdHuL8ALFy5Yj5OSkvI899dff2nkyJHKyMjQt99+K19fX73++usF/jI9efKk9fiaa66xW65jx47WzVJXr15t84IkSc2aNdMvv/wiKftTHZf76aefJGV/6qR69er59stZS5Ys0bx581S7dm3rucDAQB05ckRPPPGEU3X9/vvveuGFF/Tee+9dMS9GAADAdaZOnaq0tDRFREQoMDBQsbGxmjVrlpo0aaJbb721wOt9fX111113aeHChVq4cKEqV65sHff27NmzWPrMmPQSxqQAAADuwZj0Esak7kVwBxRB7hl3xfWLISAgQIMHD9b999+vOnXquLz+hIQEDRgwIM8nNvJz8803O1SuoGnJy5cvl4+PjyZNmpRvIBkXFydJioiIUEBAgN1ybdu21UcffSQpe1PTzMxMm01a69WrZ31BMvp+/e9//5NUtM1Wc1x+TxMmTLApU6ZMGUlShQoVtHLlygLrnDRpkr7//nvVqFFDr776apH7CAAArjybN2/W6tWrJUmTJ0+Wj4+Phg0bJovFoueee04rV650aOnMHj16aOHChfrqq68UGRkpKXsmXv369Yul34xJL2FMCgAA4B6MSS9hTOpeBHdAEfj4+KhHjx7q0aNHnn1EXKlChQp64YUXbM7v3r1bQUFBRQ7zatWqpQULFmjdunVq3LixatSooZCQEIWEhBSpXlfJeUGqW7duvuVuuOEGeXt7y2w2Kz09XSdPnrT5NEjuOho2bJjnuQMHDuiff/5R/fr11a5duyL322KxFFgm5wXW29tbERERBZbP2Vz12muvVfny5YvWQQAAcMVJT0/XxIkTJUkPPvigOnXqJEnq1q2bVq9ercTERI0bN07z5s0rsK5mzZqpVq1aio6Otn6q2NVL5OTGmDQbY1IAAAD3YUyajTGp+xHcAUXQrFkzvfXWWyXe7i+//KJRo0YpICBAc+fOVdOmTYtUX+3atfNMTfYkOVPAL19n+XJBQUGqWbOmjhw5Ikkym802ZW6++Wb5+fkpMDDQZop4zn6DrvgUiaN8fHxKrC0AAHDlmzJliv755x/VrFlT//nPf6znX3jhBa1bt05paWnasGGDvvvuO919990F1nfPPffo3XfflZQ9XuzatWux9T2nDcakjEkBAADciTEpY1JPcOUs+glcJVasWKHHHntMqampOnfunAYNGqRNmzYVe7uTJ0/Wxo0bi72d3Mxms/UFqXHjxgWWb9GihaTsF6eqVavaPF+pUiW99957WrZsmSpXrpznue+//14RERHq0aOHC3rumCtp3WUAAOBea9as0aJFi1SmTBm9/fbbCgoKsj5XpUoVPfroo9bHM2fOVFZWVr71mUwmrVu3zvq4cuXKHjF2YUzqep7wfQUAAChNGJO6HmPSvJhxBzjgq6++0vjx4x2a1uuo5cuXa/ny5UWuJyUlRUOHDtX06dPVuXNnF/TMVlxcnBYtWqQvvvhCL7/8sh544AGbMps3b9bx48fVu3fvfNdidsbhw4eVkZEhSbrxxhsLLN+lSxctW7ZMDz/8sHx9jX+9dejQwebcH3/8oePHj+uxxx7Ld31oZzjys8InSQAAgCvExcXpxRdflLe3t9566y3D1RgeeeQRffbZZzp37pyOHTumDRs2GI6Lcrz33nvavXu39fHGjRu1dOlS9e7du1juwRGMSZ3HmBQAAMC1GJM6jzGp8wjuAAf06dNHlStXVlZWlq699toirWvcs2dPnTx5UnfddZdeeukll/WxOH+5TZ8+XZmZmZKk8ePHKzY2Vs8880yeMtdff70+/vhjLV68WC+//LKaNGlS5Hb37NkjKXt96WuuuabA8h07dtScOXPyfRPKyDfffCM/Pz89/PDDheqnEaMp6Jdz1Qs3AAC4eqWlpenJJ59UYmKixo4dqzvuuMOwXHBwsIYMGaJp06ZJUr7B3f/93//pgw8+kJQ9Dt64caNiYmI0adIkXX/99UXeY7mwGJM6jzEpAACAazEmdR5jUucR3AEOuuWWW1xST84vIX9/f4c22nS3rVu3auXKlZKyw8FRo0apT58+NuUCAgI0e/ZsvfDCC+rTp48efPBBjR49WqGhoYVuO+cFydEXGC8vL6dfjDIyMrR69WrdfffdqlChgtN9tMeRFySTyeSy9gAAwNUnKytLzzzzjHbv3q0BAwYoKioq3/J9+/bV+++/r9TUVJ06dcqwzK5duzRmzBhZLBb16NFDr732mn777TcNGTJEqampGjlypBYvXqywsLBiuCP7GJMWDmNSAAAA12FMWjiMSZ1HcAeUsJypwa5cdrO4pKen51ki9MUXX8z30xZ+fn6aNm2aAgICtGjRIq1Zs0YvvviiunXrVqj2f/31V0kq1vWU16xZo/Pnzxf4RpezHPn+5rxomc1mnT17tsDyOdPhAQAApOy9NdauXasBAwboxRdfLLB8aGio7r33Xi1atEhVqlSxef7AgQMaOnSoUlNT1aVLF02ZMkVeXl5q37697r33Xn3zzTc6fPiwHn/8cX300UcqU6ZMcdyWDcakhceYFAAAwDUYkxYeY1LnEdwBJSwrK0uSY580cLc333xTR44ckZS9L4ojU6S9vb01adIkpaSk6Mcff9TTTz+tVatW6dVXX3VqhuGRI0cUHR2tunXrumQ6uT1Lly5V27Zt1aBBA7tl0tLSFBgY6FS9jnx/c34WTp06pXbt2jlVPwAAuLrNnTtXn3/+uZ588kmNHDnS4esefPBBLVq0SHfeeWee83v37tXgwYOVmJioO+64Q2+//XaevTAmTJigHTt26NixY9q6dauGDh2qDz74oEhLyDuKMWk2xqQAAADG1q9frx07dujpp58utjYYk2ZjTFoyvN3dAeBq4+7gztF2169fr88++0ySdM899+iFF15wuA0fHx9NmzZNN910kyTpf//7n3r06KHNmzc7XMfPP/8sSRo4cKDD1zjr5MmT+v333zV48GC7ZXbt2qUuXbpo06ZNTtXtyNc5PT1dklSpUiXt37+/wD89e/Z0qg8AAODKNG/ePL3zzjuaMGGCU6GdJDVs2FAfffSRmjdvbj23ceNGDRw4UOfOndOIESM0a9Ys+fv757kuJCREM2bMsJ7fsmWL+vbtq+jo6ELdA2PSSxiTAgAAFN7PP/+sJ554Qh988IHefPNNp65lTHoJY1LPQnAHlDB3B3c57Uv2pynHxsbq+eeflyTdfvvt1mWSnOHv76/Zs2erUaNGkrI/LTFkyBCtXbvWoetXrFihSpUqFesv4aVLl6p27dq69dZbDZ/fs2ePhgwZolOnTmnEiBHaunWrw3U7si5zWlqaw/XlCA0NzXe/xdKwBCsAACi8Dz/8UPPmzdN///vfQm8Yn3ss8fXXX2vo0KHKzMzUO++8o2eeecbuuK9x48Z65ZVXrI8PHjyonj17av78+crMzHSqD4xJL2FMCgAASousrCydPXvWY/6sXr1aTz31lHUsOm/ePL3xxhtO3U8OxqSMST0JS2UCJSznhcRdG27mbteoD+np6XryySeVmJiojh07asaMGfLz8ytUW8HBwfrwww/Vu3dvnTp1SpmZmRo9erRWrVqlypUr271u+/btOnDggMaPH2/9VHdiYqLTbwgVZNmyZXrggQd0+vRpm+eOHz+uxx57TOfPn5eU/eIxbNgwzZs3Ty1btiyw7twv/PakpaWpXr16hpvYGunTp49eeumlfJekSk1NdaguAABQ+syePVvbtm3TN998U+TN4jMyMjR58mR9+eWXatCggd544w01bNiwwOt69+6tmJgYvf/++5Kyxx5TpkzRZ599pv79+6tv374O7X3HmPQSxqQAAKC08PLy0ptvvqnly5e7uyt2ffLJJ8rKynJoD2jGpJcwJvUsBHdACct5EXD1L1dH5W738k08LRaLnnvuOf3111+68847NW3atEK/GOWoVKmSZs2apYEDByozM1MpKSlaunSpnnjiCbvXLF68WPXr11ffvn2t5/bs2aPHH3/cOm3aVd555x298847DpVNTU3V0KFD9fHHH+dZXsqIIy9IzzzzjMqVK+dQ25J0ww03WI+jo6NlsVgUFBSkMmXKyMfHR7/++qtOnDghqXR/ogQAANhKTk5WYGCgPv74Y3l7F23hlKNHj+rZZ5/VgQMH9PTTT2vo0KF59rMryKhRo5SQkKCvv/46T/82b96sbt26ORTcMSbNizEpAAAoDby9vfX666+rcePGqlixoq677jqVK1dOoaGhRR6jugNj0rwYk3oOgjughOW8IFy8eNGt7Uu2L0hTp07Vjz/+qAEDBmjcuHEue8Ft2bKlnnnmGes60+fOnbNb9uTJk1q9erU+/vjjPG8gtW/fXnPnztXRo0fVqFEjVapUSaGhoQ69MeQOjrwgOfNidLl169Zp2bJl2r9/v+HzVapUKXTdAADA84SEhGjIkCFFrufrr7/W5MmT1bRpU33zzTe69tprC1XPpEmTJEkrV67UuHHjdP/99zv1RgZj0pLBmBQAALiat7e3BgwY4O5uuARj0pLBmNR5BHdACcrMzHR7wp/7BSl3eDhjxgx99tlnmjBhQqH3S8nPI488ojVr1mj79u35vkH03//+V71791arVq1snmvTpo3atGnj8r4Vh8tf7F0tKipKUVFROnTokGbOnKkff/zR+lzZsmXVpUuXYm0fAACULnFxcRo/frzS09P1wQcfqG3btkWqz8vLS5MmTVKvXr3yfNrVUYxJSwZjUgAAAPsYk5YMxqTOK33zV4FSLCMjQ40bN9abb76puXPnuqUPuadQ5xy/8847WrlypRYuXFgsL0ZS9qdxJk2apBYtWqhHjx6GZU6ePKmdO3fqP//5T7H0oSTlLIkaFBRUrO3UqVNHs2bN0oMPPihJCg8P13vvvafw8PBibRcAAJQun3/+uYYNG6aFCxcWObTL4eXlVajQTmJMWlIYkwIAANjHmLRkMCZ1npfF3dN/AJSolStX6osvvtDQoUPVqVMnzZgxQ+fOndPzzz+f72aeJeHQoUMym82qV6+eW/vhCvPnz1ft2rXVvn17+fj4FHt7cXFxWrJkiQYMGKCIiIhibw8AAKAoGJOWDMakAAAA9jEmLRmMSZ1HcAdcZS5evJhnveO0tDQFBga6sUcAAAC42jAmBQAAgLsxJoWnIrgDAAAAAAAAAAAAPAB73AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAACAR0tLS3N3FwAAAACgRBDcAQAAAAA8WqdOnfTGG2/o2LFj7u6K21gsFs2dO1eJiYnu7goAAACAYuRlsVgs7u4EAAAAAAD2tGjRQqmpqfLy8tItt9yi/v37q0OHDu7uVomxWCx69dVXtWjRIjVq1EiffPKJwsPD3d0tAAAAAMWAGXcAAAAAAI/m7+8vKTvA2rhxo2JiYtzco5KTO7STpL179+qRRx5h5h0AAABwhWLGHQAAAADAo7Vv316nTp2SJM2ZM6fEZ9vNnz9fU6ZMKdE2C9KwYUPNnz+fmXcAAADAFcbX3R0AAAAAACA/AQEB1uPrrruuxNuPioqSv7+/du/erSZNmqhGjRoKDQ1VSEiIvLy8HKrjo48+0rJlyyRJzz77rDp37lycXQYAAABQShHcAQAAAAA8Ws5SmZIcDspcrV+/fkW6PvfMuAoVKqhOnTpF7BEAAACAKxF73AEAAAAAPFru4C4lJcWNPSlZaWlp+uCDD2Q2m93dFQAAAAAlhOAOAAAAAODRfHx8rMfnz593Y0+k/fv3a+rUqcrIyCj2tn788UfNmDFDgwcP1pkzZ4q9PQAAAADuR3AHAAAAACg1YmNjnb4mOTlZTz31lJKTk4vcft26dfXHH3/owQcf1NGjR4tcX35y9sTbuHGj7rvvPm3btq1Y2wMAAADgfgR3AAAAAIBS49ChQ05fM2nSJP3444967LHHdPHixSK17+Pjo6lTp+rw4cPq1auX1qxZU6T67Dly5Ii2bNlifZyYmKj169eXyEw/AAAAAO5DcAcAAAAAKDWcnXX25Zdfavny5ZKkLVu26KmnnlJmZmaR+lC7dm2NGDFCycnJGjlypGbPnl2k+oz897//lcVikSSVL19eX331lUaPHp1nvz8AAAAAVx6COwAAAABAqbFjxw6Hl7z8/fff9dprr+U5FxcXp99//73I/RgyZIhq1aoli8Wid999V2PHjlVWVlaR65Wk48eP69tvv5UkhYWFacGCBWrQoIFL6gYAAADg2QjuAAAAAAAeYfv27QWWiYiI0E8//VRguV27dumJJ56QyWSSJLVo0UKff/65vv32W3Xo0KHIffX399ezzz5rfbxs2TJNmjSpyPVK0ocffiiTySQfHx/NmDFDderUcUm9AAAAADwfwR0AAAAAwO3++OMPDRgwQM8991y+S1neeuutWrZsWb517dmzR48++qhSU1MVFBSkCRMmaNGiRWrVqpVL+3zHHXeofv361seLFi3SX3/9VaQ69+7da72/CRMm6Oabby5SfQAAAABKF193dwAAAAAAcGVJTEzUmTNnHC6fkZGhZ599ViaTSStXrtTp06f17rvvKiQkxKZshw4dtGTJEh05ckS1a9e2ef7PP//UsGHDlJSUpBYtWmjq1KmqWbNmke7HHi8vL/Xv318TJkyQJFksFi1evFgTJ04sdJ0TJ06U2WzW0KFD1bdvX1d1FQAAAEApQXAHAAAAAHC55557rtCzz37//Xf95z//0ezZs22ea9CggSpWrKjPP/9cL730Up7nfvvtN40cOVKZmZl69tln9eijj8rHx6dQfXBU9+7dNXnyZKWnp0uSoqOjC13XN998ox07dqh79+4aPXq0i3oIAAAAoDQhuAMAAAAAuFR4eLg++eQTzZ8/X3Xr1lWDBg0UHh6u0NBQ+fv725Q/ePCg7r77buvjiRMnqnfv3nbr79Chg5YvX66nn37aOitvxYoVeumll1SrVi299dZbatiwoetvzEBoaKjatWundevWSZLq1q1bqHpOnz6tKVOmqE2bNpo6daq8vLxc2EsAAAAApQV73AEAAAAAXK5s2bIaNWqU7rrrLtWpU0eRkZGGoZ0kbdiwwXrcqFEjPfjgg/L1tf850zvvvFPJycn68ssvJUmzZ8/W2LFj1a9fPy1durTEQrscOSFjUFCQBg0aVKg6XnrpJdWrV0///e9/7X6dcjOZTIVqBwAAAIBnY8YdAAAAAMCtcgd3nTt3LrB8u3btVKFCBX366afau3evtm3bpnnz5ummm24qzm7adccdd+ixxx5Tp06dCrWf3tdff63z58/ro48+UmBgYIHlDx06pBEjRmjKlClq1apVYboMAAAAwEMx4w4AAAAA4Dbp6enatm2b9bEjwZ2Pj4/uuusuJSQk6PTp01q5cqXbQrscTz/9tJo1a1aoa00mk+bMmaOgoKACy0ZHRysqKkrHjh3T0KFD83ztAAAAAJR+zLgDAAAAALjNL7/8oosXL0qSatSooeuuu86h63r06KH58+fr9OnTCg0NdVl/MjIydPz4cZfVlyMxMdF6fOrUKR06dMj6uHXr1oqPj1d8fHy+dVy4cEGjRo1SQkKCJCk1NVVDhw7VvHnz1LJlS5f3GQAAAEDJI7gDAAAAALjNqlWrrMf33nuvw9c1btxYDRo00L59+7R48WL169fPJf3x9/fXokWLtHDhQpfUZ+Sdd97RO++845K6UlNT9eijj2revHlq0aKFS+oEAAAA4D4EdwAAAAAAt0hLS9O6deskZS9/ef/99zt1/aBBgzR27FjNnj1bPXr0UEhIiEv69dJLL6l69eoKCAhQo0aNVKlSJYWGhjq0lKU9U6dO1ccffyxJmjJlinr16uWSvgIAAAC4srDHHQAAAADALX766SelpqZKktq3b6/KlSs7df3dd9+tChUq6MyZM3rvvfdc2rdBgwapb9++atasmSpVqlSk0A4AAAAAHEVwBwAAAABwiy+++MJ6/MADDzh9vb+/vx566CFJ0qeffqo9e/a4rG8AAAAA4A4EdwAAAACAErdv3z7t2LFDknTttdeqU6dOharnoYceUnBwsLKysvTSSy/JZDK5spsAAAAAUKII7gAAAAAAJe7zzz+3Hg8fPlze3oX772lERIQGDx4sSfr777/14YcfuqR/AAAAAOAOBHcAAAAAgBIVHx+vFStWSJKqVq2qu+++u0j1DR48WBUqVJAkvf/++9q6dWtRuwgAAAAAbkFwBwAAAAAoUXPmzFFGRoYkaeTIkfL19S1SfUFBQXriiSckSVlZWRo9erTOnj1b5H4CAAAAQEkjuAMAAAAAlJiEhAR99dVXkqRmzZqpZ8+eLqm3T58+aty4saTsGX2jRo2yhoMAAAAAUFoQ3AEAAAAASsz06dOVnp4uLy8vjR8/Xl5eXi6p19fXV6+//rr8/PwkSVu2bNF//vMfWSwWl9QPAAAAACWB4A4AAAAAUCJ27dql5cuXS5Luv/9+NWvWzKX1N2jQQEOHDrU+/v777zV58mSXtgEAAAAAxYngDgAAAABQ7CwWiyZNmiSLxaIaNWpo7NixxdLOY489pkaNGlkfL1y4UOPHj5fZbC6W9gAAAADAlQjuAAAAAADFbuHChdq5c6d8fX319ttvKzg4uFja8ff31+zZs1WuXDnruSVLluiZZ55RampqsbQJAAAAAK5CcAcAAAAAKFaHDx/W22+/LUl65plnXL5E5uWqVq2q6dOny9fX13ruhx9+0P3336+DBw8Wa9v25J7xx757AAAAAOwhuAMAAAAAFBuTyaQXXnhBFy9e1AMPPKBHH320RNpt166dxo0bl+fcoUOHdP/99+vDDz9URkZGifQjR+6wLjMzs0TbBgAAAFB6ENwBAAAAAIrNG2+8oV27dumWW27Ryy+/XKJtP/zwwxo9enSecxcvXtT06dN15513atmyZUpPTy+RvuSecUdwBwAAAMAegjsAAAAAQLFYsWKFFi5cqDZt2mjmzJl5lq4sKcOGDdOoUaNszsfGxmrs2LG65ZZb9NVXXxV7P0wmk/WY4A4AAACAPSX/vyYAAAAAwBVv586dmjBhgjp16qSZM2fK39+/0HXlnq1WGI8//rgCAwP15ptvWusKDAzU7bffrpYtW6pp06ZFqt8RzLgDAAAA4AiCOwAAAACASx08eFDDhg3TPffco1dffbVIM+1MJpPi4uKsj729C7dwzCOPPKJrr71Wo0ePVpUqVfThhx+qatWqhe6Xs3KHdQR3AAAAAOwhuAMAAAAAuExMTIyeeOIJPf/88+rdu7dD16xatUrR0dGKiIhQ2bJlVbZsWQUHB8vLy0srV65UYmKitWyZMmUK3bcOHTpo8eLFyszMLNHQTpIyMjKsxwR3AAAAAOwhuAMAAAAAuExKSopmz56t+vXrO3xNnTp1tH//fn366ac6fPiw3XLlypVTREREkfpXp06dIl1fWLnDutwhHgAAAADkRnAHAAAAAHCZ6667rlDXXHfddXrmmWe0bds2zZo1S5s3b7Ypd/fdd7uii26RO6wr6p59AAAAAK5cXhaLxeLuTgAAAAAAkNv777+vmTNnWh/XrFlTS5YsUXh4uPs6VQSDBw9WWlqa+vXrp65du8rf39/dXQIAAADggQjuAAAAAAAeqV+/fvrjjz/UqVMnTZw4URUqVHB3lwrt1KlTpbr/AAAAAEoGwR0AAAAAwCNt3bpV5cqVU926dd3dFQAAAAAoEQR3AAAAAAAAAAAAgAfwdncHAAAAAAAAAAAAABDcAQAAAAAAAAAAAB6B4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAAAAAAAAAMADENwBAAAAAAAAAAAAHoDgDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAf4f7AjRPWgzGgTAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_name = '采购策略P1'\n",
+ "y_choose = [0, 1, 2]\n",
+ "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n",
+ " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n",
+ " 'palette': sns.color_palette(\"deep\")[0:4]})\n",
+ "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n",
+ ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n",
+ "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n",
+ "sns.set_theme(style=\"whitegrid\", rc=config)\n",
+ "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n",
+ " markers=['o'],\n",
+ " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n",
+ " palette=y_prop.loc[y_choose]['palette'].to_list(),\n",
+ " legend='brief')\n",
+ "ax.set_title(x_name)\n",
+ "for item in df_x.groupby('响应变量'):\n",
+ " for x, y, m in item[1][['水平', '均值', '均值']].values:\n",
+ " ax.text(x, y+0.05, f'{m:.2f}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\1224603408.py:10: UserWarning: \n",
+ "The markers list has fewer values (1) than needed (4) and will cycle, which may produce an uninterpretable plot.\n",
+ " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAViCAYAAADtEQplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3iTVR/G8TvdhQKlhUKh7GHZgmxFtlpUhryKyp6CgAgoiAoKgoiobAUZAoqiIg4EGSKCbFFk701ZpczSmSbvH7WxpUmblrQJ9Pu5Li6fJ3nOOb904EPunHMMZrPZLAAAAAAAAAAAAABO5ebsAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAAAugeAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAAAAAAAAAXADBHQAAAAAAAAAAAOACCO4AAAAAAAAAAAAAF0BwBwAAAAAAAAAAALgAgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AII7gAAAAAAAAAAAAAXQHAHAAAAAAAAAAAAuACCOwAAAAAAAAAAAMAFENwBAAAAAAAAAAAALoDgDgAAAAAAAAAAAHABBHcAAAAAAAAAAACACyC4AwAAAAAAAAAAAFwAwR0AAAAAAAAAAADgAgjuAAAAAAAAAAAAABdAcAcAAAAAAAAAAAC4AII7AAAAAAAAAAAAwAUQ3AEAAAAAAAAAAAAugOAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAcM9LSEhwdgn3JKPR6OwScJe5evXqHf/cXLlyRSaTyUEVAQAAAK6F4A4AAACAU8XGxmrbtm3ZOsZHH32kPn366PLly9k6jj1Wr16tUaNG6cSJE84u5Y5NmzZNb7zxhk6dOuXsUrLdt99+q2vXrjm7DLvNnz9fV69edXYZaWzZskUtWrTQvHnzFBUVlaU+5s6dq/bt22f73xsAAACAMxDcAQAAAHAqs9msLl26qFevXjpw4IDD+9+3b58WLFig9evXq3Xr1lq3bp3Dx8gMNzc3ff3112rVqpX69++vv//+26n13AkPDw8tWbJEYWFhGjp0qA4fPuzskrLNkiVL1KJFC3366aeKjY2VJCUmJurYsWNOriytqKgovffee2revLk++ugjlwrwvL29df78eU2YMEFNmjTRvHnz0lyT0QzZXbt2af/+/erSpYtefPFFnTx5MpuqBQAAAHKeh7MLAAAAAJC7eXt7S5L++OMP/fHHH9k6VmRkpGbPnq0HH3xQXl5e2TqWLcnjmkwm/frrrzp69Ki+/vpr+fv7O6WelOLi4izfD3v4+PhISgqwfv75Z5UuXVoVK1a0ef2FCxc0efJkjR49OlPjpCchIUFmsznbv5/u7u66efOmPvzwQy1atEjDhg1TnTp11LVrV1WoUEG9e/dWw4YNs9T30aNHZTQaFRoa6pBaDx06JLPZrFu3bmnWrFn64osvNHz4cHXo0MEh/afnhx9+0MMPP6yAgACrz6f8vgcFBemRRx5Jc03v3r3VuHFjde3aVW5uqT9vnJiYqH379lnO165dq+LFi2vEiBFprgUAAADuRgR3AAAAAJzKzc1NXl5eio+PV0hIiD799FOH9h8ZGanOnTtLku6//3599tlnTgvtJMnT09NyHBQUpIULF7pEaCclzSpbv369hg8frnLlymV4va+vr+W4bdu2GjhwYLrXf/bZZ/r+++914sQJzZgxQ4UKFbrjmlevXq158+Zp6tSpKl68+B33Z4uHx3//fPb19VXFihUVFBSkOXPmqGPHjurevbvq1q2r119/XZUqVcpU3wkJCerUqZMeeeQRvfLKKwoMDLyjWv/8889U57Vr11arVq3uqE97nThxQhMmTNCYMWPUsmXLNM+n/Pnv1auXQkJCUj1/7tw5bdu2TVu2bNGqVas0fvx4lSlTxvL84cOHFR0dbTkfMmSIXnjhhWx4JQAAAIBz8HE0AAAAAE6XPAvH09NT5cqVc+ifkiVLWsYpU6aMw2Z6ZVXK4KJ06dIqUqSIE6tJ7fnnn5eXl5fatGmjDz/8UHFxcelenzzjTlKGs82uXLmib775RpL0zz//6Omnn9bBgwfvuObHHntM0dHReuqpp7Rp06Y77s+WlMHdJ598ogoVKkiSQkNDNXHiRBkMBm3fvl3/+9//NH/+/Ez1XalSJX300Uf68ccfFRYWph9++OGOak2591vhwoX1wQcfKF++fHfUp7369++vvHnzasCAARo9erSMRmOq51N+Ha35/PPPZTKZJElXr17V0aNHUz2fMpQsW7asevXq5aDKAQAAANdAcAcAAADA6dzd3Z1dQo7JKLhwJoPBoHHjxsnf31+ffvqp2rVrp0OHDtm8PjNLE3788cepZkrdd999ioqKuqN6paSfnUGDBunatWt64YUXtGLFijvu09Y4yW7/HjZr1kydOnWSJBmNRo0fP14bNmzIVP+NGzfWCy+8oOvXr2v48OEaMWJEhnu9WRMbG5tq38RBgwYpf/78me4nq7y8vDRkyBBJ0pdffqkBAwYoMTHR8nzK4Pp2165ds4S7devW1dKlS9PM2tuxY4fluHPnzrnq7w4AAADkDgR3AAAAAJwuN+1N5eqvtUCBAho9erQk6dixY3r22WdThSVZER4ersWLF0tKml35wQcfaObMmapdu/Yd1ytJjzzyiMqUKaOEhAQNHTpUS5cudUi/KaWcXWg2m9M8P3ToUAUFBVnOd+7cmekx+vfvr2rVqkmSli5dqoEDB6YKveyxceNGxcbGSpICAwPVpk2bTNdxp8LCwizLW65bt05ffPGF5bn0graZM2cqKipKFStW1IwZM5Q3b9401yTPuMuTJ49at27t4MoBAAAA53Pdj3oCAAAAyDWSw6yEhAQdO3bMoX1HRkZajpOX4HMmVw/uJKl58+aqV6+etm3bpujoaL300ktatWpVlpdbfP/995WQkCAfHx/NmjVL9evXd2i9bm5u6tq1q95++22ZTCaNHDlSZcqUUc2aNR02Rp48eSzH1mbC+fr6ql+/fpbQs2rVqpkew8PDQyNGjNDzzz8vKSn0+uijj/Tqq6+muu7MmTPy8PBQcHBwmj5+/fVXy3Hy0qc5zWAwqGPHjho7dqwk6dtvv1XXrl0l2Q7uzp49q0WLFqlEiRKaM2eO1VmCR44c0ZUrVyRJTz75pPz8/BxSb/LPt73y5MmjfPnyqVixYqpRo4aaNGmiBg0aZGnsixcv6scff9S2bdt0+PBhXbt2TR4eHipYsKCqVq2qJk2a6IknnnDqvpwAAADIWQR3AAAAAJwuOcw6e/asWrVqlW3jWJspldMMBoOzS7DLgAEDLHulRUZGau3atWrbtm2m+9m2bZtWrlwpT09PTZs2zeGhXbInn3xSEyZMUExMjIxGoyZNmqSFCxc6rP+Us79sLWH51FNPaebMmSpQoICaNGmSpXEeeOABNW7cWOvXr5ckzZ8/X127dk01m2/GjBlq1KiRHn/88VRtExIStG7dOklJS1Y+99xzWarBEcLCwjR+/HglJiaqYMGClsdtBdfvvvuuAgMDNX/+fJv7Pm7cuNFy/L///c9htY4YMUL9+vXT7t27NXr0aMssx9KlS+v1119PFZDGxsbqxo0bOnr0qLZv364vvvhC8+fPV7ly5TRq1Ci7f76jo6M1efJkffXVV6pfv74eeeQR9evXT15eXrp06ZK2bt2q7777TqtWrdLkyZP13nvvZbiPJAAAAO4NBHcAAAAAnC45UCtTpoxWrlzp0L4vXLigxo0bS3KNGXd3y55cdevWVbly5SwzII1GY6b7MBqNGjt2rNzc3DRx4kQ9/PDDji7Tws/PTw8++KBlxtnhw4cd2n/KGXfx8fFWr/Hx8dHMmTOVN29effbZZ+revXuWvt//+9//LMGd0WjU2bNnLcHdlStXtHHjRo0ZMyZNuw0bNujatWuSpCeeeEKBgYGZHjuZyWTStWvXFBAQkKX2hQoVUoMGDbRx40b17NnT8ri14Pr333/X3r179fnnnyskJERSUgh5+354ycHdfffdp+rVq2eqnnPnzqlYsWJWnwsODlZwcLAqVaqkJUuWaPfu3ZKkLl26WP7uuN1DDz2kbt26KTw8XK+99pq2b9+u7t27a8iQIerdu3e6tURGRqpHjx46fvy4PvvsM6tLxrZo0UK9evVSz549dfToUfXs2VPjxo3TU089lanXDQAAgLuP66/RAgAAAOCel1OBWmb3C7tbJIc1mXXu3Dl16tTJ5vNPPvmkJCl//vxq1KhRpvtfsGCBDh8+rLffflthYWEZXr9jxw598sknmR4n2YMPPmg5zspSlelJOeMueQ85aypVqqTp06dr4sSJGjVqVJbGatKkiSUozJMnjypWrGh57uuvv9YjjzxidenEn376yXKcvDRlVphMJo0YMULPPfdcqqVmM+vVV1/VmDFjUs0+tBbc7dmzRwsXLlSpUqUkSVu2bFFYWFiqZXNjY2Mtey22b98+U3VMmzZNjz/+uF17Nabcy9DX1zfD64sXL665c+eqZs2aMplM+uCDD/Tdd9+l2+aVV17RwYMH1ahRo3T3eSxatKg+/fRT5cmTx7IEbPIefwAAALh3EdwBAAAAcLqcCtRcIbhz9FKZ8+fPV1hYmA4dOpTpttu3b7c5e0ySOnbsqKZNm2r27Nk2ly+0JTw8XNOmTdPgwYPVoUOHDK+/fPmyBg8erKlTp2rTpk2ZGitZnTp1JCUtx5hylpcjpAzuoqKibF43btw4S4C2ZMkSTZo0KdNjeXl5WYLSfv36WfZyMxqN+uqrr6wuExkVFWVZJrNSpUry9PTUsWPHsvRnxIgR+uGHH3Ty5El1795d169fz/RrkKTQ0NA033trP/8DBw5U6dKlJUmbN29W3759debMGXXt2tUS3m3atEmxsbHy9PRU69at7a5h2rRpmj59uqKjo9W7d2+7wrvM8vLy0ttvv205Hz9+vM3Ac/fu3dq8ebMkydvbO8O+ixcvri5dukhK+v6PHDnSJZb8BQAAQPZhqUwAAAAATpdTb0Tb2pvsbjV//nyNHz9eUtIMq/nz5ys0NNTu9n/88Yfi4uJSzWy63auvvipJVq+JiIhIdZzymvfee08NGjRQy5Yt0+0/2ZgxY3Tp0iVJSTOSvv/+exUtWtTu1yJJFSpUUNeuXVW/fn01aNDA8rjRaNTgwYO1evXqTPVnS79+/ey+dubMmQoKClLHjh0zPUaBAgXUq1cvy2OrV69WQECAKleunOb677//XnFxcZKkAwcOOGyvyEOHDqlXr1767LPPLAHi7Xbs2KHevXsrOjo6U32PGDFCI0aMsPl8RESEunTpooULF1qWQE1ISMjyPonJ4d2nn35qCXkdJTQ0VDVq1NCuXbt08+ZNff3113rxxRfTXPfPP/9Yjv/++29FR0enWobVmjZt2mjmzJmSpBMnTujPP/9U3bp1HVo/AAAAXAfBHQAAAACnSw7UTpw4ofvuuy/bxklvdll6zp0757DQ78KFC5bj2NhYnTp1Kkv9rFmzRhMnTrScX716Vd26dbM7vIuKitLatWsVExPjkJBn4sSJqepJ9ttvv2W6rytXrujll1/W559/nmafs4y8/vrraR7z8PDQRx99pNGjR8vLy0u1atVScHCw/P397e73+PHjGjBggKSkPeh69Ohhd9us7HNXqVIlvfPOO6keW7hwodXZdmazWV9++aUkKSQkRCtWrLBrNpc1N27cUJMmTXTr1i1JSTPk3Nzc9M8//+ihhx6y2qZ27dqaO3euFixYoCpVqqh8+fLKnz+/8ufPb3nt169fV+/evVPNVhwyZIhatGiRYU158uTR77//Lkl64IEH0nxdbvfqq69q3759kqQ5c+ak2dsu5XKYjlSzZk3t2rVLUtK+fdaCu5TLAl+4cEGrVq1Su3bt0u23bNmyypMnjyUY3b9/P8EdAADAPYzgDgAAAIDTJe8ZFhISok8//dShfUdGRqpz586SlOkZQcmOHDmiAQMGZDn4s2X37t165JFHHNbf1atX1bVrVy1YsCDD8G7hwoWKiYlRnTp19MUXXzishqw4c+aMWrVqZfn6li1bVg8++KAuXbqk4sWLO2QMT09PjR079o7aJ/Pw8FC5cuUcUZbd9uzZo3379mnWrFlpntuyZYuOHz8uSXrjjTdShXYxMTG6dOmSZf+4jCxevNgS2pUrV05jx45VrVq1MmxXq1atdK976aWX0iwxWqhQIbu+jps2bdKVK1dUuHBh3bhxI8M2MTExluOaNWvanCnoaMHBwZbj06dPW72mfv36cnd3tyzbe3uoaIufn5/l7697beYwAAAAUiO4AwAAAOBU8fHxllko3t7eDg9EkvcmK1iwYJqZLevXr1dQUJAqVaqUbh+NGzfWF198oWvXrqlUqVIqVqyY3NyytmX47t279dxzz0lK2pNt/vz5WeonPRnVtn//fs2ePVuSlC9fPoePn1kTJkxQfHy8/P39NWLECLVp08bhewHeqZRfp/T2uMsuCxcuVIsWLVSgQIE0zy1YsECS1KRJEzVr1izVc5GRkWrVqpXatWun/v37pwqXbhcfH6+FCxdKkurVq6eZM2dmuIyjPZYuXapVq1ZJkqpUqWKZDffWW2/p22+/Vd26dfXwww+rVq1aVn92ly1bJknq2bOnpk2bluF4V69elST5+vrmWGgn2bcPYmhoqBYuXKi1a9eqfPnyqlevnl19p+wvve8hAAAA7n4EdwAAAACcKi4uTuXKlVP79u3Vtm1bh/fv6emp/v37q0ePHqnexN+7d69efvll5c2bV1999ZVKlCiRbj81atRwSD1XrlyxHCckJMjDI2f/WbZ161YNGjTIMnunbNmyOTr+7bZs2aI1a9aoWrVqmj59eqb3tcsp+fPnl5ubm0wmU44HdxEREfrll1+szrbbvXu3fv/9d3l5eemNN95I83xcXJyMRqO+/fZb/fjjj3r22Wf14osvqmDBgmmu/emnnxQREaFq1arpk08+cUhot2/fPsvSlg0bNtTw4cPVpk0bSUn7+G3evFmzZs3SrFmzVKxYMfXo0UOdOnWyBLcxMTFavXq1ChQooA4dOmjixIm6fv261QBTkhITE3X9+nVJSTP6ctLNmzctxwEBATavq127tmrXrm13v6dPn7b8vrq5uWWqLQAAAO4+WfuIKAAAAAA4SL58+bRixQr17NlTgYGBDu8/MDBQL730UqrQ7uzZs+rbt6+io6MVERGhnj17KjIy0uFjW5NynH379llChpxw7Ngx9enTR9euXbM8dvsMrewUERGR6jwxMVHvvvuumjZtqi+++MIhod2VK1dS7SPmKO7u7pawK6eDuy+//FKFCxdWgwYN0jw3ZcoUSVKvXr1UsmTJNM+nXDYyPj5eERERVgM5s9msefPmqUSJEvr0009TzR7LqjNnzqhPnz6Kjo5WzZo1NWPGjFRLjgYHB2vBggXq0KGDpKS9JMeOHaupU6darlm+fLlu3bqlrl27Kk+ePPLz89O5c+dsjhkREWH5/uf0zLRLly5ZjjP6IEBmrFixwnLcokULlw23AQAA4BjMuAMAAACQbaKionTx4kVnl5GK0WjU4MGDU4VIp06dUu/evbVw4cJsX1ov5dcjISFBv/32W5olPLPLyZMnFRcXZzlv06aNHnjggRwZe9euXerTp48ef/xxjRw5UgaDQefPn1eDBg00bNgwh808fOONNxQVFaWJEyc6POAoVKiQIiMjdfnyZYf2m564uDgtXrxYzz//fJplJHfs2KGNGzeqRIkSeuGFF6y2TxnSenl5qWXLlqn2wEv2+++/KyIiQosXL053tpi9rl69qt69e+vy5ct64IEHbC676eHhoTFjxihfvnyaM2eOJOmLL77QoEGDJMlST7du3SQl7fUWHh5uc3nblL9fISEhd/w6MmP79u2W40aNGjmkz7Nnz2revHmSkpb7HTFihEP6BQAAgOsiuAMAAACQbdzd3fXOO+9oy5Ytzi4lQ/v27dOAAQP06aefysvLK9vGOXHihOU4ODhYq1atyrHgrnnz5ho9erS2bt2qOnXq6Nlnn82RcdevX69BgwYpJiZGixYt0vXr1/Xee+8pJCREr7/+eqb6OnHihM0ZdcePH9dvv/0mKSmUHDdunFq0aJHluk0mk86fP6/ixYtLkooUKaJDhw7pwoULWe4zs3766SddvXpVTz31VKrHjUajxowZIzc3N40fP14+Pj5W26dcmrVy5co6fPiwHn/88TTXffnll5o0aZJD9phMnsV64sQJPfbYY5o4cWKGv1OvvvqqIiIi9OOPPyoqKkomk0l79+7Vnj17NGrUKMsMwPz58+vQoUM2v6/h4eGW4+TvW07Yv3+/9u/fLylpbz1HLPt7+PBhDRw4UNevX1fx4sU1Y8YMFStW7I77BQAAgGsjuAMAAACQbXx9fTVr1ixt3rxZJUqUUMmSJS1v4L/22mv6/vvvJSUFOxnNjurcubO2b9+uKlWqaOnSpdlee3ZJGdz17NlT77//vq5cueKQWU72ePbZZ60GdhcvXlSXLl108uTJbK/h559/1s2bNzV16lSbgZMtu3bt0htvvCGj0ZjuddeuXdNnn32mhg0bZmmvNqPRqOHDh+vPP//UN998o6JFi1qCoNjY2Bz5npnNZs2fP1/169dPE0J9/vnnOnTokAYMGKA6derY7CNlcFejRg0dOnTI6nWTJk1yyGzTs2fPqnv37jp9+rR69OihYcOGWfary8iYMWN04MABGY1Gubm56dNPP9X999+v5557znJN0aJFtW/fPpt9nDp1ynJcunTpLL+OzIiJidHo0aNlNpslSf3798/SbM/Y2FhdvnxZ+/bt0+rVq7Vq1Sr5+PjohRdeUO/evZUvXz5Hlw4AAAAXRHAHAAAAIFt5e3uradOmzi4jlejoaO3bty/dwCM7JCYmWoIxb29vPfPMM5oyZYq++uor9e/fP0druV2RIkW0cOFCvf/++6pQoYJCQ0OVP39+5c+f3+7gJbMyCt+sadu2rYKCgnT58mVVqlRJQUFBlhp37Nihjh07SpJatWqlDz74QO7u7pKSliU9ffq03eN8+OGHWrt2rSSpT58++vLLL1OFZ+fOncv24G7Dhg06evSo+vXrl+rxCxcuaOrUqWratKkGDBiQbh8pZ6Ddf//9+vXXX61e54jQ7tChQ+rVq5fi4+M1Y8aMTM929PHx0Zw5c3T48GEdO3ZMGzZs0JIlS1ItEVqmTJlUe77dLuX3uHz58pl/EZl06tQpDR8+XP/8848kqUuXLurdu3em+1mwYIHefffdVI+VLFlSH3zwgWrUqOGIUgEAAHCXILgDAAAAkKuYTCYNGTJEGzZs0LBhwyx7Z+WEI0eOKCYmRpJ03333ydvbW40bN9ZXX32lPn36yNPTM8dqsaZIkSL68MMPnVqDPRo2bJjhNWXLlrWEdpLk6empJUuWWPYLy4xDhw5p0KBBeuaZZyyPnT17VlWrVs10X5kxd+5cFShQQC1btrQ8ZjKZ9Oqrr6ps2bL66KOPMgxVz549azmuXr26rl69qhs3bih//vwOrXXZsmUaNWqUatasqffee09BQUHpXv/QQw9Z3QeuSJEiKlKkiPr376+hQ4eqYsWKqZ4vVaqULly4YHPG4+HDhyUlLdNbtmzZO3hF1plMJl29elV79+7VypUr9fPPPys+Pl7+/v5644031Lp16yz1++STT6pq1aqKiorSiRMntHv3bq1bt07PPPOMHnzwQY0YMUIVKlRw8KsBAACAKyK4AwAAAOB0p0+f1q1bt9K9JjnwkqTIyEi98847qR6z19WrV7Vr1y5J0vjx43Xo0CGNHj06W/e1S5Y8riTVqlVLktS6dWv9/PPPWrFihdq0aZPtNeRmw4cPV/HixeXj46Pq1aurSJEiKlCggKSk/d8SExNVt25dff7551bbp1zm9ODBg3rssceyrdbdu3dr27Zt6tSpk7y9vS2Pf/LJJ7p06ZIWLVpk1xKgyTM88+TJo+LFi6tEiRLatm1bqjDwTiQkJGjChAlas2aN3nrrLbVp08ZmmLhjxw7NmTNHAwYM0MCBA232eezYMbm5ualr165pnitVqpQkac+ePWrcuHGq50wmk44ePSopaWbenf5Ov/HGG3rzzTfTjJG8JKaPj4/uv/9+PfbYY2rXrl2WlmRNFhAQYAkik1/X9evX9cknn+izzz5T27Zt9corr6h79+5ZHgMAAAB3B4I7AAAAAE7XuXPnTF0fGBiojh07aurUqSpdurTMZrN27NihTp06Zdj24MGDlgAtT548CgkJsbwRn93+/vtvy3FycPfwww+rRIkS+vjjj/X444/LwyP3/TPt4sWLKlKkSI6MZc/PiC0lS5aUj4+PYmNjdeDAAQdWldann34qSXr66actjx07dkw//vijFixYoEKFCmXYR1xcnGXPt4oVK8pgMCg0NFR//PGHw4K7pUuXyt/fXytXrpSvr2+6165Zs0br1q3Tpk2bFB4erm7duik0NDTNdeXKldOkSZOs9lGmTBlJ0ubNm9MEd8ePH1dsbKwkqVq1all5Oam89NJLat68eZrH3d3dlT9/fhUsWDBbf18LFCig1157TUWKFNF7772n9957T9euXdPgwYOzbUwAAAA4X+77FyEAAAAAl7N+/XoVLVo03Ws6d+6s7du3W87r1KljmRl17do1NWvWTP/73//k4+OTbj+vvvqq5fi9997To48+egeV289sNmvTpk2Skt74r1+/viTJYDDo2Wef1cSJE/Xtt9/queeey5F6XMXmzZvVr18/vfLKK5kOcHOau7u7QkND9c8//2j//v3ZNs7hw4f166+/qmrVqqmCrbJly2rx4sV27613+PBhJSYmSpJq1qwpSapUqZK++OILh9XaoUMHu69dt26dJCk+Pl5btmxR3759bV5rKxArWrSoAgIC9Pvvv2vEiBGpnksZjDsiuCtSpEiapTqdoXv37vrtt9+0fft2zZw5U7Vq1UoTWgIAAODe4ZbxJQAAAADg2vz9/VWiRAlt2LAh3euuX7+uVatWSUpacs9Rs47sceDAAUVEREhKmm2XvESjJLVv316+vr6aMWOGoqOjc6wmZ9uyZYv69eun2NhYjR07VgsXLnR2SRlK3tfu0qVLunTpUraMMWXKFJnN5lR76klJIa+9oZ0k/fXXX5bj2rVrS5JCQ0N19uxZyxKaOWXv3r2W2X+enp6aMWOGSpcunea6999/P8PZjA888IBOnjxp6S9ZyuDugQceuPOiXUifPn0sxxMmTJDJZHJiNQAAAMhOBHcAAAAA7gl169bVsmXL0r3m22+/VVxcnCSpa9eucnPLuX8S/fbbb5bjFi1apHquYMGC6tixoyIiIjR79uwcq8mZkmdcJS9tKEnjxo1z+fAuZSCUPIPSUcxms5YuXapff/1VefLk0eOPP35H/f3555+SkmYKJtddpUoVubu76+eff77jepNduXIlwz/ff/+95frnnntOxYoVS3PNokWLNHfuXHXs2DHdED45hPz9999TPZ78/QgICNB9993nsNfnCho2bGjZQ+/YsWMO/9kDAACA62CpTAAAAAD3hMaNG6tPnz46f/68goOD0zwfHx9vCYUKFSqkp556KsdqSw5kpKQlAJ944ok01/Tu3VuLFy/W7NmzFRYWli1L9JnNZo0ePVpfffWVw/t2lHHjxslsNqtr167OLsWqunXrWo7/+OMPtWvXLst9TZ8+XYcOHVKBAgV069YtHTx4UMePH5ckPfHEE/Lz88ty3/Hx8dq6daukpLCxYMGCkqT8+fOrRo0a+u677/Tiiy86JLz+8ssvNW3aNLuvX7hwYboB7a1bt9SvXz/NmzdP9erVS/N8cnC3evVqy8/JwYMHLTMgGzRoIIPBkJmX4PLc3d1VuXJl7dixQ5L066+/qlGjRk6uCgAAANmB4A4AAACA050+fVq3bt1K95qYmJh0n69Xr578/Py0aNEivfLKK2meX7ZsmS5evCgpKSTz9fXNesGZtHnzZoWHh0uSGjVqpEKFCqW5xt/fX926ddP06dP1+uuv6+uvv5a7u7tD6zAYDHrrrbdUoEAB3bhxQ1WqVFFwcLDy5cunvHnzZtg+ISFBPXr0UNGiRfX222/b1SardZrNZpcMXwoVKqTQ0FAdPHhQmzZtkslkynL49dxzz2nlypX6+uuvdejQoVTP3ekeZlu3blVUVJQkqXnz5mn6njRpkv744w+H7JU2YMAAFShQQJGRkapataqKFSuW6mdq7dq1evPNNyVJo0aNUlhYWJo+EhMT1bZtW12+fFmBgYEaN26c1dBOStqnL2/evNqxY4eOHj2q8uXLa+XKlZbnb5/Req8IDAy0HGe0nCgAAADuXgR3AAAAAJyuc+fOd9yHp6enmjZtqsWLF6tnz56WGUZSUuD0ySefSJKCgoL03HPP3fF4mTF//nzLcffu3W1e16NHDy1ZskR79uzR/Pnz1bNnT4fXYjAYNHjw4Cy1/eyzzxQZGanIyEi9+uqrmjJlikJDQx1coetr0qSJDh48qGvXrmnbtm1q0KBBlvoJDAxUx44d9fzzz+vbb7/VmDFjlJCQIEkqWrToHdW4YsUKSUm/F08++WSq5x5++GFNmjRJixcvdkhwJ9n+HTaZTJaf/xo1auj555+3GsiuWLFCly9flpQUrDdt2tTmWO7u7nrooYe0atUqffXVVxo5cqTl9Xp5eenhhx++w1eTvY4dO6bDhw+rYcOGqfa6zIinp6fl+Pr169lRGgAAAFwAe9wBAAAAcLr169fr0KFD6f5JuUShLe3bt9fNmzc1Y8aMVI8vWbJEZ86ckZQ0O8jb2ztbXoc1W7dutezXdf/999ucRSRJefPm1ciRIyVJU6ZM0cGDB3OkRnucOXNGU6dOtZyfPHlSzz77rHbv3u3EqjIvJiZG33333R318dhjj1mOlyxZcqclyWAw6JlnnlGXLl0sj93JjNCbN29aZqC1aNEi1UwtSapcubJKlSqldevWZfv378cff9TRo0fl5uamUaNGWQ3tzGazZW/H/Pnz65lnnsmw3+T9/3744QetXbtWp06dkiS1bNnyjpYYzW5r165VmzZt9PLLL6tjx46WoNYeKWcl58+fPzvKAwAAgAsguAMAAABwz6hbt65CQ0O1ePFiy15hUVFR+vjjjyUlBRZPP/10jtVjNps1ceJEy/mrr76aYZsWLVqoZcuWiouL08CBA3Xjxo3sLNEuiYmJeu211xQdHW15rFmzZlq6dKmqV6/uxMoyx2g06uWXX9axY8fuqJ9KlSqpfPnykpL2Wbt27ZrNa3fv3i2TyWRXvylnLyYmJma5vm+//daytKytGZ7PPvuszGazJkyYkOVxMhIXF2cJe59++mlVrVrV6nVr1qzR/v37JSXNOrVnCdYmTZoob968ioqK0ogRIyyP2xP6OdPbb79tCeuOHDmi9evX2902eUaiJJUsWdLhtQEAAMA1ENwBAAAAuCckhyNdu3ZVQkKCXnnlFcXHx2v69Om6dOmSJOmNN97I8n5kWTFnzhzt3btXktSqVSvVrl3brnYjR45UgQIFdPr0afXr10+xsbHZWWaGPvzwQ+3YsUOSVKBAAU2ePFmffPKJypYta7PNli1b9N1339kdWuWEt956SydPntRLL710x30lB8Dx8fH69ttvbV43ePBgu3/mUn6tMtrT0ZbY2FjNmzdPUlK4VaNGDavXPfXUU/L29taOHTu0Zs2aLI2Vkfnz5+vcuXPy9/e3uTxrbGysJTwsXLiwunbtalff3t7elr37kpeNDA0NVf369R1QefaIjIy0/F2ULHkfwoyYTCYdPXrUcu7qy4ECAAAg6wjuAAAAANx1oqOjtWPHDn322WcaPHiwHn30UUtY0bp1a5UpU0b79u3TK6+8os8//1yS9L///c/u4MwRdu/erSlTpkhKCiSSl8C0R5EiRTR+/HgZDAbt2LFDAwYMcFp498svv2ju3LmSpCpVquiHH35QWFhYhu0qVaqkhQsX6qmnntL27duzu8wMTZkyRd99953GjRsnHx+fTLVNTEzUjh079OGHH+rIkSOSpHbt2ln6mTNnjm7evJmmXWRkpOLi4uweJzIy0nKc3iy+9MyZM0cRERHy9PTU0KFDbV7n7+9vWW5y7NixunLlSpbGsyU6OlpLly6VlPRann32WY0YMULffPONjhw5IrPZLEl6//33dfbsWUnS66+/rjx58tg9RnJwl+zFF190UPXZo0CBAqn2qfP09NSDDz5oV9u//vrLEuYGBgaqRYsW2VIjAAAAnI/gDgAAAIBLi4+P18GDBy1BxqFDh/TAAw+oT58+2rlzpxo3bqzFixerV69ekiQPDw8NGzZMkrRq1SoZjUYFBwenWk4vu0VGRmrIkCFKSEiQh4eHJk6cqICAgEz10bx5c8syh3/88Ye6deuW5TAnq3bu3Knhw4dLStpT7Msvv1SxYsXsauvv76/PPvtMRqNRnTt31uDBg3Xx4sXsLNemr7/+Wh9//LE6depkd3gbGRmp77//Xi+//LLq16+vUaNGqWjRoipevLikpBDmqaeekpQUTM2ZMydNH/v27ZO/v7/ddSYHWJLSzMyyx8mTJ/Xpp59Kkl544QVVrFgx3etffPFFeXp66sKFC3r11VcdOjsyT548WrVqlTZs2KAZM2bokUce0d69ezVy5Eg98cQTqlu3rjp16qRFixZJkp544gm1atXK7v5v3LiRZi/LjRs3Oqz+7ODh4aFmzZpZzuvVq6fChQvb1Xbx4sWW45deesmu5UQBAABwdyK4AwAAAOASTCaTTp48qTVr1mj69OkaNGiQWrVqpZo1a6pNmzY6fPiwJKlQoUKaPXu2tm7dqqlTp6pt27YqWLBgqr6aNWuWar+wdu3ayc/PL0dex82bN9WzZ0+dOXNGkjRmzBg1aNAgS30NHTpUDzzwgKSkEK19+/bavXu3w2pNz7Fjx/Tiiy8qLi5OPXr00IcffpjpmWoBAQFasGCBSpcurRUrVujxxx/XN998k00VW7d27VqNHj1aISEhGjJkSIbXnzhxQu3bt9eDDz6oN954QwkJCZo6dapWrFihjh07ppoR1qNHD3l4eEhKWhYyeV/FZPv371e+fPnsrjXlUoiZDTnj4+M1ePBgxcXFqXbt2urbt2+GbUqUKKHnn39eUlLolbwXpCMVKVJELVq00NChQ7Vs2TKtXbtWb7zxhry8vPTnn39arlu1apW6dOmiRYsWWZ29mFJcXJz69etn+TsheSnSb775RpMmTXL4a3CkV155xRK6Jc86zMimTZu0fPlySUkB+rPPPptt9QEAAMD5CO4AAAAA5Lj4+HhFR0dbznv16qWaNWvq0Ucf1YABAzRt2jStXLlSFy9e1IMPPqhXX33VMnsoMDBQDz30kLy8vGz2/+233+rgwYOW85kzZ1qWzMxOt27dUt++fXXgwAF5eHho7Nixat++fZb78/Dw0IwZM1S+fHlJSTOynn/+eU2fPl3x8fGOKjuNEydOqGvXrrp27ZreeOMNDR8+XAaDIUt9BQYGatasWfL399fNmzc1cuRI9evXTzdu3HBw1Wnt3LlTQ4YMkclk0tixY9MswxgVFaXVq1dr+PDhSkxMlCRFRETo3Llz6t27t3799VfNmDHDZvBaokQJy/c3NjZWQ4cOTfV92b9/f6ZmRqUM7pKDX3u99dZb2r9/v0JCQjRt2rRUSzKmp1+/fsqfP78kadq0aZo/f36mxs2sokWL6vTp07p8+bIkKSQkRD4+PkpISNC2bds0ZswYNWnSxOa+gYmJiRo8eLBlz8Unn3xSX375pSVUnjlzpsaPH5/l2YMpl6S9detWlvpIT8mSJTVr1izly5dPmzdvTjWTzpo1a9ZowIABMpvNevTRR/Xuu+86vCYAAAC4FoPZ3o94AQAAAEAWbNu2TSdOnNDJkyd14sQJHT9+XOHh4ZagJCUfHx/VqlVLDRo0UL169VS1alW5u7tLkjp37qzt27erSpUqlr2zrFm3bp369+8vk8mkvn376ocfftD58+clSR06dNCbb76ZbuiXVZcuXdILL7yg/fv3K0+ePJo8ebIaN27skL4vXryo5557TuHh4ZbHSpcurSFDhuiRRx7Jcqhmzd9//62BAwcqKipKH3zwgVq2bOmQfrdu3aqePXvKaDRKkipUqKAFCxYoMDDQIf1L0j///KMOHTpISpqZtGnTJl27dk0dOnTQmDFjlJCQoD179mjr1q3atGmTdu3apYSEBEv7kiVLqnv37mrfvr28vb3tGvPy5ct69NFHFRUVJSnp5/TNN9+UlLTcaeXKlTVt2rQM+7lx44bq1KljOa9du7ZlGcmMfPDBB5o9e7ZKly6tBQsWqGjRona1S/bDDz9YlkSVpEGDBmXLfnFXrlzRoEGDtH37dhkMBnXp0kVDhw7VzZs3NXfuXC1evDhVoP/555+rbt26lvOoqCgNHjxYGzZskJS01OegQYMkScuWLdMrr7xiubZp06Z677337Fqq9MSJE4qLi9OePXv01ltvWf5uKlGihN58800VK1ZMgYGBDv1ZPX36tN566y1t3rxZlSpVUtu2bVWxYkX5+/vr+vXrOnjwoFatWqWdO3eqYMGC6tu3r7p27erQ33UAAAC4JoI7AAAAANnqlVde0bJly6w+ZzAYVKlSJTVq1EgNGjTQAw88YDNUsye4W79+vQYOHKjExESNHz9erVu31unTp9WpUyfL0oOVK1fW+++/rwoVKjjmBUo6ePCg+vbtq/Pnz6tIkSKaMWOGqlWr5rD+JaV5Hcnuu+8+de/eXWFhYZleyjKl+Ph4zZ8/X1OnTpW/v78+/vhjVa9e/U7LlpS0DGpsbKwWLlyYainDunXrasGCBZalDu/Ub7/9pn79+qV6rEiRIlqxYoX8/PzUo0cPbdq0KU27qlWrqmfPnnr00UctQXFmLFq0SGPGjLGcDxw4UF26dFGdOnUUFhamyZMnZ9jH6dOnU4WkpUuX1qpVq9JtYzab9f7772vevHmqWLGi5s2bZ/eeabd76aWXUo33v//9T6+//rrD9lL7/vvv9f777+vKlSsqUqSIJkyYkGYm44ULFzR69Gj99ttvkqTu3bvrtddekySdP39eL7zwgg4dOiQvLy+98847atu2bar2M2fOTPXzFRQUpFGjRmUYPjdr1ixVKG7NgAEDNHDgQHtfrt127dqln376SX///bfCw8N169Yt+fn5qWDBgqpSpYoaNmyosLCwNLNFAQAAcO8iuAMAAACQra5cuaKwsDBdu3ZNUtLyj40aNVKLFi3UpEkTFSpUyK5+MgruVq9erSFDhihv3ryaNGmSGjZsaHnu1KlT6t69u+XNeU9PTz377LPq2LGjypQpc0evb9GiRXr//fcVGxurNm3a6M0337QsPehoFy5cUJ8+fXTo0KE0z+XPn19hYWFq3ry5GjRokKlZhfPnz9e8efN08eJF+fj4aNCgQSpYsKDi4uIUGxuruLg4y3F8fLxiY2NTHad8Pvk45bmPj49lxtKFCxdShSRjx47V008/7ZCvz9ChQ/Xzzz+nemzq1Kl69NFHJUnHjx9X27ZtFRcXJ0l66KGH1KtXryzvQZjMbDarV69e2rhxo+WxZs2a6bffftPDDz+s2bNnZ9hHbGysateubZkBGBISorVr19q8Pi4uTm+++aZ++ukn1apVSx9//HGavR4z4+rVq2rXrp1ldmpyDe+9916qmYCZdezYMb399tvavn27fHx81LFjR/Xt2zfd35EVK1bojTfeUNeuXfXyyy9r165d6t+/vyIiIlSlShVNmDDBZvA+efJkffLJJ6keq1u3rvr27auGDRsyYw0AAAAuj+AOAAAAQLZbunSpRo4cqS5duqhbt24qUqRIpvtIL7j7+uuvNWbMGFWsWFHTpk1TSEhImvYRERHq27ev9u7dm+rxatWqqXnz5ipXrpxKlSql0qVL27VM4uXLl/XGG2/o999/V+HChTVmzBg1a9Ys068rs6KiojRo0KBUIVFKfn5+euutt9S6dWu7+9y2bZu6dOmS6Vp8fX0VHBys4OBgFSlSREFBQZY/hQsXVqFChVS4cOFUX89NmzapR48elvO6des6bP/BV199VT/99JPl3FpoNnfuXE2cOFHvv/9+pr5GGUlekvPkyZOpHq9WrZqWLFliVx+vv/66vvvuO0lS48aN9emnn1q97vTp03rppZd06NAh9enTRwMHDpSHh8cd1S9Jhw8fVseOHVPtP2gwGPTII4+oV69emZqBeeTIEc2aNUsrVqyQm5ub/ve//+nFF19UUFCQXe1v3Lghk8mkzz77THPmzJHBYFDfvn3Vt2/fDF/rjBkzNHXq1DSPlyhRQo899pgee+wxVa1a1e7XAgAAAOQkgjsAAAAAOWLPnj13tHykteAuMTFREyZM0MKFC9W5c2e98sor6YZuMTExGjlypM2lO/39/TV69Gg99thjNvtISEjQ559/rhkzZshsNqtLly7q0aNHts2ys8ZoNGratGmaPXu2ZT+uKlWq6NVXX83y7LEBAwZozZo1aR738vJS2bJlVaFCBUu4GRISopCQEAUEBGRprGeffVY7d+6UJLVo0UIzZszIUj+3MxqNGjhwoH777Te5u7tr2bJlKleuXKprTCaTVq1apbCwMIeMmdK5c+fUvXv3VOFd4cKFbYastzOZTPrjjz906NAhPfbYYypZsmSq581ms7788kt98MEH8vPz0/vvv3/HswVvt337dvXs2VPx8fFpnnvwwQc1b968dNvv3LlTc+bM0dq1axUcHKzWrVvr6aefthqmp2fv3r0aMWKEDh8+rAcffFDDhg1TaGio3e2///57jRw5MtUehpJUsWJFy2xbAAAAwBUR3AEAAAC4K9we3EVGRmrYsGE6fvy43n333UwFGL/88ovefvtty/KdVapU0Wuvvaa6devabGM2m7V27Vp98MEHunjxojp16qSePXvK39//Dl9Z1v3zzz8aPny4goKCNGfOHLtmCtpy+vRptWrVSiaTSQ888ICaNm2qBx54QJUrV5anp6cDq5Y2btyonj17SkpaptOR4VNcXJx69+6tEiVKaNy4cQ7r117Xrl3TsGHDtH79estjv/76q0qUKHFH/e7Zs0fvvvuuDh48qB49eqhHjx4O23/udlu2bNHAgQN18+ZNFSxYUH379lWjRo1UsGBBq2HthQsX9NNPP+n7779XZGSkmjRponbt2ql+/fqZXpoyMjJSM2fO1JdffqkaNWpo8ODBWV6qc8eOHRoyZIguXryohx56SK+//nqaIBcAAABwNQR3AAAAAO4KycFd8pv5I0aM0COPPKKXXnpJfn5+me7v+vXr+vTTT7V582Z99dVX8vHxsXpdYmKifv75Z82ePVsGg0Ht2rVT27ZtszzbzNFiYmIUExPjkHpWrlypatWqqXjx4g6oLH09e/ZUlSpVNGTIEIf3fevWLcXExNi9f6Kjmc1mffbZZ5o0aZLi4+P1/vvvq02bNlnq6+TJk5oxY4Z+/fVXPfXUU3rxxRcVGBjo4IrTOnz4sEaOHKnJkycrODjY5nVLly7Vhg0b9MADD6hOnTq67777srSP3PXr1zVv3jwtWrRItWvXVseOHdWoUaM7eQmSkvbYnDhxosaMGePwABoAAADIDgR3AAAAAO4KnTt3VsGCBTV06FBNnjxZL7zwQqaWzrPFbDanGzSsXLlSW7ZsUfv27TO1xxdw9OhRjR8/XlWrVtXgwYMz3f7111/XmTNn1Lp1a4WFhWUpoL4b7N69W++8845atmyptm3b2r0PHgAAAHAvIrgDAAAAcFc4fvy4ypYt6+wygBxz/fp1FShQwNllZLuMwnMAAAAgNyG4AwAAAAAAAAAAAFyAm7MLAAAAAAAAAAAAAEBwBwAAAAAAAAAAALgEgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AI8nF0AANjrr7/+0vLly/XXX3/p/Pnzio6Olp+fnwIDA1W1alU1bNhQYWFh8vLycnapGTp48KBWrFih7du369SpU7p586Y8PT0VEhKihx56SJ07d1axYsUy3e+lS5e0YsUK/fHHHzp58qSuXLkig8GgoKAglS1bVmFhYWrevLny5MmTDa8KAAAAAAAAAHAnDGaz2ezsIgAgPbt379bYsWN19OhRtW7dWg899JCKFi2qhIQEnT9/Xhs3btRPP/2khIQEFS5cWKNHj1bz5s2dXbZVZ86c0bhx47Ru3TrVqVNHrVq1UtmyZeXn56cLFy5o7ty5+vvvv5UnTx6NGzdOrVq1sqvfxMREffLJJ5o7d66io6PVpEkThYWFqUSJEnJzc1N4eLhWr16ttWvXKiAgQO+8846aNGmSvS8WAAAAAAAAAJApBHcAXNrChQs1fvx41apVSx999JGKFCli9bqTJ0+qT58+OnXqlAwGg0aNGqXnn38+h6tN3/r16zV06FB5eXnpnXfesRounj171vK4m5ubPv74YzVt2jTdfuPj4zVkyBCtWbNG3t7e+uijj9SiRQur1/75558aOHCgrl69qqFDh6pPnz53/sIAAAAAAAAAAA7BHncAXNbXX3+tcePGqWTJkpozZ47N0E6SSpcurdmzZ8vX11dms1njxo3Trl27crDa9G3YsEH9+/eXj4+PPv/8c5szAj09PS3HJpNJ06ZNy7DvsWPHas2aNZKkkSNH2gztJKlOnTqaOHGiDAaDPvzwQy1dujSTrwQAAAAAAAAAkF0I7gC4pIiICE2YMEGS1KlTJ/n6+mbYplSpUurQoYMkyWg06oMPPsjWGu11+vRpDRkyREajUZMnT1a5cuVsXnv16tVU5xntRbdx40Z9/fXXkqTKlSvr6aefzrCeRo0aWWbxvfPOO4qIiMiwDQAAAAAAAAAg+xHcAXBJP//8s27duiUpKZCz1+OPP2453r59u86dO+fw2jLrzTff1M2bN9WkSRPVrl073WtDQ0PVs2dPVaxYUfXr19fw4cPTvf6TTz6xHGdmadAuXbpIkqKjozVp0iS72wEAAAAAAAAAso+HswsAchuTyaSYmJg0j3t4eMhgMDihIte0ceNGy/HBgwdVv359u9qVK1dO7u7uSkxMlCRt3bpVTzzxRLbUaI/169dr27ZtkqQnn3xS8fHxGbZ5+eWX9fLLL1vObbU5fvy4duzYIUkyGAx66KGH7OpfkqpXry4/Pz9FRUXpxx9/1ODBg1WgQAG72gIAAAAAAABAdjCbzTIajWke9/X1lZtb7piLRnAH5LCYmBgdPHjQ2WW4vNOnT1uOP/nkE5UvX97uYMnX11dRUVGSpN27d2dqxp6jTZ8+XVJSsJY/f37t2bPHYX0n72snSYGBgTp37lymZhiWKVNGe/bskdFo1MKFC9WkSROH1QYAAAAAAAAAjhIaGqq8efM6u4wckTviSQB3HbPZbDmOjo7Wr7/+andbD4//PpOQsp+cduHCBUtIW7x48Qz3q8uskydPWo6Dg4Mz3b5YsWKW47/++ssRJQEAAAAAAAAA7gDBHQCXVK5cuVTn9i4BaTKZLLPtJKlgwYIOrSszkpexlKSQkBCH93/jxg3LcVZCwYCAAMvxqVOnHFITAAAAAAAAACDrWCoTgEvq0KGDoqOjdeTIERUuXFgtWrSwq93p06dTrYFctmzZ7CoxQymXxQwKCnJ4/3FxcZZjT0/PTLf38fGxHF++fFnR0dEOnxUIAAAAAAAAALAfwR0Al1SgQAG9/PLLmW6XcpZbcHCwihcv7sCqMuf48eOWY39//zTPrV+/XocOHdKVK1fk5eWl/Pnzq0yZMqpbt66qV68ug8GQbv8pg7eUIZ69bt/M9cKFC04NOgEAAAAAAAAgtyO4A3JYyv3XUgoNDc3SrKm7ndFo1IEDB1I9VqlSJZtfp4z62rp1q+W8S5cuqlat2h3XmBUXLlzQrVu3LOehoaGqVq2abt68qXfeeUe//PJLmjZXrlzRyZMntW7dOtWtW1djxoxJN3gMCQmxBJUmkynTr/X2fQOLFi3qtK8XAACAszjyfhQAAADICu5J/5OQkKCDBw+meTw3fS1yzysFXIStWVSenp7y8vLK4Wqcz9rXw9PTM0sh5o8//qhz585JSgq1OnXq5LSv6YULF1KdFyhQQFFRUeratauOHDmiatWqqVOnTqpXr54CAwN1+fJlrVy5UtOnT9etW7e0fft29ezZU99++60CAwOtjlGhQgXL8bFjxzL9WtevX5/qPC4uLlf+DAIAgNzNkfejAAAAQFZwT5qxjFYnu5e4ZXwJALi+GzduaPLkyZIkd3d3vffee04NoS5dupTq3MvLS4MHD9axY8c0YsQIffvtt2rbtq2Cg4Pl5eWlYsWKqUePHvruu+8sQV14eLiGDRtmc4z777/fcnzt2jUdPnzY7vp+/fVXHTt2LNVj0dHRdrcHAAAAAAAAADgeM+5czKFDh7R06VJt375dZ8+eVUxMjPLmzaugoCDVqFFDLVu21MMPP+zUdDkuLk7333+/TCZTlvv44YcfVKlSJavPNWvWTOHh4Vnqd+HChapXr16W68Lda9y4cbp8+bIk6Y033lCdOnWcWs+1a9dSnf/888/aunWr3n77bT333HM225UpU0aTJk1Sly5dJEkbN27Uxo0b9dBDD6W5tmbNmipevLjl9+XHH3/Uq6++mmFtUVFRevfdd1O1lcRsOwAAAAAAAABwMmbcuYhz586pf//+eu655+Tp6amRI0dqxYoVWrt2rWbOnKmWLVtq9erV6tOnj9q3b69Tp045rdZjx47dUWjn6+urwoULO7Ci/9gKA3FvW7p0qX744QdJ0vDhw9WxY0fnFqS0s9eWLVumRx99NN3QLlm9evXUsmVLy/nChQutXufu7q4ePXpYzr/44gudPXs23b4TExM1YsQIlS1bVo0bN071XN68eTOsDQAAAAAAAACQfZhx5wJ27dqlF154QYGBgVq+fLmCg4NTPV+kSBHVrFlTzzzzjLp37659+/apQ4cOWrJkiUJCQnK83iNHjqQ69/LyUpEiRTLcHDIqKkoRERF68cUXVahQoXSv9ff3V8GCBTNVV+HChZU/f/5MtcHdb8eOHRo1apQMBoNGjhzpEqGdlLSJakqenp56/fXX7W7fvn17rVmzRlLSrLsrV64oICAgzXUdO3bUxo0btW7dOsXGxqpfv35asGCB1WtjYmL05ptv6siRI1qwYIGmT5+e6nk/Pz+76wMAAAAAAAAAOB7BnZNduXJFffv21bVr17Ro0aI0oV1KRYsW1aRJk9SuXTtdvXpVw4YN05dffpmD1SZJDu78/Pz0+uuv64knnpC3t3eG7V588UWdOnVK3bt3z/DaTp06aeDAgXdcK+5thw4dUv/+/WUymTR+/Hi1a9fO2SVZ3B5kt2/fXkWLFrW7fZ06dWQwGGQ2m5WYmKidO3eqefPmaa4zGAyaOnWq3n77bX333Xc6fPiwWrdurQEDBqhZs2YKDAxURESE1q9fr3nz5qlAgQL68ssvFRAQkGZWYIECBbL2YgEAAAAAAAAADsFSmU42c+ZMXblyRffdd5/KlSuX4fWhoaGWva7++usvbd++PbtLTOPo0aNyd3fXrFmz1L59e7tCu61bt2rt2rV688035enpmQNV4l537Ngxde/eXVFRUfrwww9dKrSTpDx58qQ6txa6pcfPz0/FihWznB88eNDmtV5eXnr33Xf1zTff6IknnpDRaNRbb72lRo0aqXLlymrRooW+//579erVS1999ZVlNl5UVJSlD09PT5UsWTJTNQIAAAAAAAAAHIsZd062cuVKSWmX1UtPw4YNtWHDBknSunXrVLdu3WypzZYjR46oTZs2ql27tl3XJ8+Gaty4sRo0aJDN1SE3OH78uLp27aobN25oypQpatGihbNLSuP2/eLi4uIy3Ye/v7/Cw8MlSVevXs3w+ho1aujDDz+U2WzW1atXdf36dXl6eiooKEheXl5prr98+bLluGzZshkudwsAAICkD1AuX75cf/31l86fP6/o6Gj5+fkpMDBQVatWVcOGDRUWFmb1/svVHDx4UCtWrND27dt16tQp3bx5U56engoJCdFDDz2kzp07p/owWXq2bdumLl263FE9n3zyiZo1a3ZHfQAAANzrcsP9aGBgoKpXr65HH300w223kt1L96O8S+tE0dHRunjxoqSk2UMbNmzQww8/nGG7EiVKWI5Pnz6dbfVZEx0drfDwcD333HN2t1m6dKmOHDmiDz/8MBsrQ25x4sQJdenSRdevX9e0adPUtGlTZ5dklb+/f6rzmJiYTPfh4+NjOc5M8GcwGBQQEGB1n7uUkv/+kaSKFStmuj4AAIDcZPfu3Ro7dqyOHj2q1q1ba+DAgSpatKgSEhJ0/vx5bdy4UT/99JN++OEHTZw4UaNHj870qgs55cyZMxo3bpzWrVunOnXqqHXr1ipbtqz8/Px04cIFzZ07V/PmzdPixYs1btw4tWrVKkfqqlq1ao6MAwAAcDfKLfejZ86c0ccff6zly5dr7dq16tOnj+rXr58jdbnK/SjBnRPd/kb+hAkT7ArufH19Lcfx8fEOrys9sbGx6tSpk6pVq2bX9TExMZoyZYpat26t8uXLZ3N1uNedPXtW3bp107Vr11w6tJOUZunblLPb7JXy99vPz++Oa0opOjpaERERlvOc+p8fAADA3WjhwoUaP368atWqpV9++UVFihRJ9XzNmjXVqlUr9enTR3369NGpU6fUv39/jRo1Ss8//7yTqrZu/fr1Gjp0qLy8vPTxxx+neTOnatWqCg0NVfPmzRUdHa2hQ4fK19fX7nvvPHnyZOnT3YUKFVJQUFCm2wEAAOQGuel+tGLFijIYDBo0aJBiY2M1bdo0eXl52Z1J3Av3owR3ThQQEKDChQtb3jxPOfslPSmXzAsODs6W2mwJCAjQm2++aff1n332mSIjI9W3b99srAq5QUREhLp3767IyEhNnjzZpUM7KWlmrI+Pj2JjYyUlLe+ZWSln2eXPn99htUlJS94m8/DwcMnlRgEAAFzB119/rXHjxql06dKaM2dOqg9S3q506dKaPXu22rRpo5iYGI0bN05VqlRRjRo1crBi2zZs2KD+/fvL399fCxYssLnPesp9yU0mU6Y+NDdy5Eg99dRTDqkXAAAAufN+1N3d3XJsNpv13XffqWvXrnaNcS/cj7o5u4DczGAwaPLkyapTp44qVKigYcOG2dVu7969luP77rsvu8q7Y1euXNHcuXPVqlUrlS5d2tnl4C4WFRWlXr166ezZs5owYYLdIdPly5f1559/ZnN11rm5ualSpUqW85RBmb2uX79uOS5evLhD6kq2e/duy3HdunXTLO0JAACApA+PTZgwQZLUqVOndN8kSVaqVCl16NBBkmQ0GvXBBx9ka432On36tIYMGSKj0ajJkyfbfJNESru/cp48ebK7PAAAAFiRW+9Hb968merc29s7u8tzKcy4c7LatWvriy++sPt6s9ms1atXS0qaJRMWFpZdpd2xWbNmWQKXO7F161atWLFCO3fu1IULFxQbG6vChQurVq1aeuaZZ1S3bl0HVQxXZDQa9dJLL+ngwYMaPXq0Hn/8cbvb/vTTT1q9erUWL16cjRXa1qJFC+3cuVNSUlB28+ZN5cuXz6628fHxunTpkuW8Zs2aDq1t06ZNluPM7FkJAACQm/z888+6deuWpKQ3QOz1+OOPa/78+ZKk7du369y5cypWrFh2lGi3N998Uzdv3lTTpk1Vu3btdK8NDQ1Vz5499ccffyggIECvvPJKDlUJAACAlHLr/WipUqX0xBNPaNeuXcqfP3+ue/+S4O4us27dOoWHh0tKCgUCAgKcXJF1Fy9e1FdffaU6deooNDQ0S30kJiZq1KhRWrJkiaSkvf0CAgJkMpkUHh6u8PBwLVu2TM8884zefvvtVNNn70ZGo1EGg8HZZeQ4o9GY7mNjxozRpk2b1K9fP7Vv314JCQl2971582aFhIRkqo0jNW/eXBMnTpSU9JrWrVtnd9h+/Phxmc1mSVLRokUtG81ak5CQYPmfeKtWrTL8e+H69euW4K5SpUpq0qSJ075GAAAAzpbe/WjKDzsdPHhQDRo0sKvP8uXLy93dXYmJiZKkbdu26YknnnBAtVnz+++/a9u2bZKk1q1b23XvN3jwYA0ePNhynlGb5K9ZYmIi95YAAACZZOueNDfejyZ/LZ5//nmX258vpxDc3UUSExM1ZcoUSUlLlbjypx5nzZqluLg4de7cOct9jBw5Uj///LNeeOEFtW3bVmXLlrU8t2PHDo0ZM0aHDh3SN998o5iYGJeZ8ptVBw4ccHYJLmP//v2Skv5C/+abb9SoUSM1atQo1fKOGYmMjNTmzZvVrl07m+22bNmi7777TteuXVO1atXUvXt3h+8lV6dOHctynbNmzbJ7yctVq1ZZjps0aZLua//000/1+++/S0r6FM7rr7+ebt8//PCD4uPjJUlPPPGE9uzZY1dNAAAAuUXy/eipU6csj33yyScqX768ChQoYFcfvr6+ioqKkiTt2rVLJUuWdHyhdpo+fbqkpO0a8uXLl6n7ansl7+l85syZbOkfAAAgt9m/fz/3o7kUe9zdRRYsWKCDBw9KSpqFVKJECSdXZN3Fixf17bffyt/fX82aNctSH8uXL9cvv/yihQsXasiQIalCOylpidGvvvrKsg7usmXL9OOPP95x7XAdZ86c0fz581W+fHn17t07U21NJpM+++wzJSYmqmjRolavOXz4sKZPn65z584pOjpa27Zt0+TJky2z3Bzl2WeftcwGPXr0qP766y+72m3fvl2SlC9fvgx/j5I/rSJJ+/bts4Ry1ly6dEnLli2TJNWvX9/hS3ACAADcS1LeG0ZHR+vXX3+1u62Hx3+fk3X0PWZmXLhwwfLvyOLFi7NfHQAAwF2E+9HcieDuLrF371599NFHkqThw4frySefdHJFts2dO1fx8fFq1aqVPD09s9THiRMn9Oabb+r++++3eU3evHn19ttvW84nT55smfqLu1tiYqI+/vhjubu7a9CgQan+J5ORc+fO6aOPPtLff/8tSTaDux07dqT5H9bBgwd14cKFrBduRXBwcKop3bNnz9bVq1fTbbN7924dOHBABoNB/fv3l5+fX7rXp9yc1Ww26/r161avS0hI0Mcff6yYmBiVKFHijvefBAAAuNclf1AwWXofkErJZDJZPt0sSQULFnRoXZmxY8cOy3FISIjT6gAAAEDmcT+aO7FU5l3g0qVLGjBggIxGo0aNGqWOHTs6uySbrl+/rm+//VaSsrxmbvfu3XX58mW1b98+w2vr1q2r0NBQHTx4UOfOndPGjRvVuHHjLI0L17Fp0yadOnVK7u7uGjFihN3tjEajYmNjUz1mK7izxWQyZep6e4SFhenatWtatmyZbty4oXHjxmn48OEqXLhwmmuPHj2qadOmyd3dXb169VL16tUz7L9FixaWvSClpFmvt/d948YNTZo0SYcPH1apUqU0fPhwPt0CAACQgQ4dOig6OlpHjhxR4cKF1aJFC7vanT59OtU+JbevIJKTUi6LHhQU5LQ6AAAAkHncj+ZOBHcu7saNG+rTp48iIiL0/vvvq3Xr1s4uKV3ffPONoqOjVaBAgSwvwZfZffGaNGlimWq7bdu2uza4q1SpUpZnKN7NjEajZQ+RZMkzzBITE1N9MiSzAgICVL9+favPJSYmasWKFamCugoVKuiRRx6xLG3pSNWrV1fz5s01btw4nTt3Tq+//rqeeeYZ1a9fXwUKFNCFCxf0+++/a9myZSpVqpRGjRql2rVr29V3lSpV5O3trS+//FJms9nSR8GCBXXx4kXt2LFDS5YsUVxcnDp16qRBgwbJ19fX4a8RAADgbmTtfrRy5cqWVR8aNWqU6T7/+OMPy3Hp0qUVFhZ2Z0XegZT7olSuXDnVB8P27dunH374QX/99ZcuXbokb29vBQYGqnLlymrZsqUaNmwog8Fg1zjJH6ArUaKEZYxLly5p+fLl2rFjh06dOqVr167J19dXxYsXV7NmzdSmTRu792gBAAC4l6V3T5rb7kcDAgJUtGhR1a1bV9WrV7f7ftSaixcv6ueff9aff/6pEydO6Nq1a8qTJ49CQkLUvHlztWvXziXvRwnuXNjNmzfVo0cPHT9+XNOmTcvyfnE5xWw26+uvv5aUtHeWm1vOrMRauXJly/GBAwdyZMzs4OHhkSuDO2scFZyVKlXK5te0bt26+vDDDzV16lRdvHhRderU0ahRo+Tj4+OQsa0JCwtTkyZNtG7dOq1atUp//PGHli5dqpiYGBUqVEhVqlTRhAkTFBYWlqnlQT09PTVq1Cg988wz+uabb7R9+3a9/PLLSkhIUL58+VS+fHn16NFD7dq1U/HixbPt9QEAANwr7uTe3Gg06qeffrKcP//88067z79w4YJu3LhhOQ8ICJCnp6du3rypt99+Wz///HOaNhcvXtT+/fu1ZMkS1atXT++++65dSxol37+6u7vL09NTX3/9tcaNG6e4uLhU1127dk3nz5/Xjh07NG/ePI0dO1ZNmza9w1cKAABw78nqPem9cD964MABrVu3TpUrV9YLL7xgdeWyjKR3P3ru3Dlt375ds2fPdsn7UYI7F3X9+nX16NFDx44d06xZs9SgQQNnl5Sh7du368yZM5KkBx54IMfGTfmPyIz2DsPdoXPnzurRo0e2j9OqVSu1atUq28dJydfXN9vGDQ0N1ahRoxzeLwAAAOz3/fffKzw8XFLSv1Wee+45p9Vy+vTpVOd58+bVlStX1KVLFx05ckTVqlVTp06dVK9ePQUGBury5ctauXKlpk+frlu3bmnbtm3q0qWLvv32WwUGBto97oIFC/Tuu++qXr16euqpp1SjRg0VKVJE8fHxOnDggObNm6cNGzbo8uXLGjBggD788EM99thjjn75AAAAudLdfj+6fPlyzZgxQzExMdq/f7/Gjh2rMWPGZGrcu/1+lODOBV29elXdu3fX6dOnNWfOHLuXy3O21atXW47vu+++HBs3b968luPo6OgcGxcAAAAAUrpx44YmT54sKWnm2XvvvScvLy+n1XPp0qVU515eXho8eLCOHTumESNGqGvXrqmWHipWrJh69Oihpk2bqmPHjoqMjFR4eLiGDRumuXPn2jXm5s2b9csvv2jMmDHq0KFDqufy5MmjBg0aqH79+ho/frwWLFggo9Go1157TZUrV1bJkiXv/EUDAADkYvfC/WjXrl0VHBys0aNH68aNG4qIiNDHH3+shx56yK4x74X70ZxZyxB2S55pd7eFdpK0fv16y3G5cuVybNyUe5TlyZMnx8YFAAAAgJTGjRuny5cvS5LeeOMN1alTx6n1XLt2LdX5zz//rK1bt2rUqFHq1q2bzf1CypQpo0mTJlnON27cqI0bN9o15rJly9S3b980b5KkZDAYNGzYMMu2BzExMXrnnXfs6h8AAAC23Sv3o8HBwXrppZcs53v27NHmzZvtGvNeuB8luHMhUVFR6tmzp06ePKm5c+eqVq1azi7JbidPnrQskylJ/v7+Wepn5syZatiwodq1a6eIiAi72qScZZc/f/4sjQsAAAAAd2Lp0qX64YcfJEnDhw9Xx44dnVuQ0q5IsmzZMj366KN2LZdUr149tWzZ0nK+cOHCdK9PftOlfPny6tevX4b9e3h4qG/fvpbzP/74QydPnsywHQAAAKy71+5HK1eunCp4/OKLL9K9/l66HyW4cxHx8fF68cUXdeTIEc2aNUs1a9bMsE1CQoIGDBigmJiYHKgwfX///bfl2NvbO0ubXf7111+aNGmSIiMjtX//fn333Xd2tbt48aLluHz58pkeFwAAAADuxI4dOzRq1CgZDAaNGjUqR/ZrtkdCQkKqc09PT73++ut2t2/fvr3leOPGjbpy5YrNa+vWrau//vpLX3zxhTw87NuVo2nTppZVU8xms1asWGF3bQAAAPjPvXo/2rhxY8vx5s2bc839KMGdCzCbzXrttdf0119/aerUqapbt65d7Q4cOKAtW7bI19c3myvM2D///GM5jo+Pl9FozHQfO3fuTHUeFxdnV7tjx45ZjqtXr57pcQEAAAAgqw4dOqT+/fvLZDJp/PjxLvHJ5mS3v2HRvn17FS1a1O72derUsXxyOTExMc2/2W7n5+enggUL2t2/l5dXqk9R79692+62AAAASHIv349WqlQpV96PEty5gBkzZmj58uUaO3ZsqgQ5IytXrnSZzRJThmdms9myjm5mpFzm0tPTU23atLGrXfLatl5eXmrSpEmmxwUAAACArDh27Ji6d++uqKgoffjhh2rXrp2zS0rl9j3Amzdvnqn2fn5+KlasmOX84MGDDqkrpZT7ox85csTh/QMAANzL7vX7UV9fXwUGBlrOc8v9KMGdk61fv17Tp09Xv379MvVLFR4ersWLF9sM7s6dO6c+ffqoZs2aevLJJ+3euDGrUu5vJylLM+4aNmwoN7ekH8nHH39cpUuXzrDN+fPn9eeff0qSWrVqleW99QAAAAAgM44fP66uXbvqxo0bmjJlisLCwpxdUhp58+ZNdW7vqiYppfw31tWrV++0pDSKFCliOb5+/brD+wcAALhX5Zb7UT8/P8txbrkfJbhzooiICA0fPlz169fXSy+9ZHe7nTt3qnv37rp165bN4G748OFav369oqOjdfjwYb344os6f/68o0pPwxE/0CEhIXr22WclpU3ibZkyZYqMRqPy5cunoUOH3nENAAAAAJCREydOqEuXLrp+/bqmTZumFi1aOLskq27/YGNW9kf38fGxHGfljZaMpPy3nyvs3w4AAHA3yE33o97e3pbj3HI/at8OfcgW06ZN09WrV3X06FG1atXKrjY3btxQZGSk5dxWcLd3795U5zExMdqzZ4+Cg4OzXnA6zGZzqnN3d/cs9fPaa6/p/Pnz+vHHH9W2bVvVqFHD5rXz58/X999/Ly8vL02cOFFBQUFZGhMAAAAA7HX27Fl169ZN165d07Rp09S0aVNnl2RTymV/JGVpS4P4+HjLccpPOztKYmKi5djeD3ACAADkZrntfjQhIcFynFvuRwnunCj5hzQiIkIRERFZ6sNWcFe1alVt377dcu7p6anQ0NAsjWGPsmXL6sCBA5IkNze3TG0AmZK3t7dmzJihuXPnqlu3bqpXr56aN2+uypUrq1ChQjIajTpy5IgWL16sdevWqWTJkhozZowaNGjgyJcDAAAAAGlERESoe/fuioyM1OTJk136TRJJKlGihHx8fBQbGyspaTmlzEr5qeaU+5KnFB0drQkTJujPP/9UjRo1NHr0aHl5ednVf3R0tOU4X758ma4PAAAgN8mN96Mpg7vccj/KUpl3OVvB3YQJE9S4cWPlyZNHZcqU0aRJk2xe6whvvPGGSpYsqbx586p3796pllPJLHd3d/Xp00dr165VnTp1tGLFCvXp00fNmzdXmzZt9O6778rX11cTJkzQ8uXLCe0AAAAAZLuoqCj16tVLZ8+e1YQJE+xejujy5cuWfblzmpubmypVqmQ5P3LkSKb7SLktQvHixa1e895772nx4sU6duyYli5dqhUrVtjd/5UrVyzHpUqVynR9AAAAuUVuvR+9deuW5Ti33I8y486JPv7442zru1ixYvr000+zrf/b1alTR2vWrHFonwEBAerZs6d69uzp0H7hWgwGgwoVKiRvb28ZDAaZzWa5ufGZAgAAALgOo9Gol156SQcPHtTo0aP1+OOP2932p59+0urVq7V48eJsrNC2Fi1aaOfOnZKk3bt36+bNm3Z/kjg+Pl6XLl2ynNesWdPqdatWrUp1fubMGbvrS/mp66pVq9rdDgAAIDfJrfejRqNRV69etZznlvtR3h0H4FQeHh4qVaqUihYtqiJFiqho0aJZ3iMRAAAAyA7vvPOONm3apAEDBujZZ5/NVNstW7Zk6+onGXn00Uctx0ajUX/88YfdbU+fPm3Zzzw4OFglSpSwep3RaEx1/sADD9jVv9ls1p49eyznDRs2tLs2AACA3CS33o9euHDBcj9atGjRXHM/SnAHAAAAAIANS5Ys0eLFi9W2bVsNHDgwU23Pnz+vLVu2pLvkzooVKxQWFqbatWtr0KBBqZbqcYQSJUqoZcuWlvP58+fb3Xbr1q2W4+eff97mdRUqVLAcN2rUyO43PPbs2WPZ7z0kJET169e3uzYAAIDcIjffj+7bt89y3KFDB5vX3Wv3owR3AJzKZIxXbPhh3fhnra7/uVw3/lmr2PDDMhnjnV0aAAAAcrnDhw/rnXfe0f3336933nknU21NJpNGjx6thIQElS5d2uo1f//9t4YOHarjx4/r5s2bWrlypV566SXLp4od5ZVXXpGnp6ckadeuXfrtt9/sape85FDBggXTfaOkffv2luMmTZrYXVfKN2169+4tg8Fgd1sAAIDcILffj27fvl2SlC9fPj399NM2r7vX7kcJ7gA4Rey5I7r04xSd+qCLzs0focvLP1bk6nm6vPxjnZs/Qqc+6KJLP05R7LnMb1gKAAAA3Cmj0ahXX31VHh4emjx5sry8vOxue/z4cb344otat26dJNlcmujXX3+VyWRK9diff/6pkydPZrlua0qXLq1XXnnFcv7mm2+m2rvOmo0bN2r79u1yc3PTBx98oAIFCti8tn379pZPJ9tb+7Zt2/TLL79IStqrJL1gEAAAIDfK7feju3fv1oEDB2QwGNS/f/9cdT/q4ewCAOQuprgYRa5doJs716R7nTkxQVF7Nyhq7wblq9lSgc27ys3bN4eqBAAAQG73888/6+DBg/L09FTbtm3tbhcfH6/o6OhUj9n6hLMtt7954gjdunXT5cuXNXv2bEVGRqpr166aPXu2QkJC0ly7e/duDRkyRJ6enhozZoweeuihdPt2c3PTjBkzNGDAAC1evFgVK1bU008/bfMTy3///bcGDRokk8mkihUrasaMGS7z6WYAAABXsXz58lx7P3r06FFNmzZN7u7u6tWrl6pXr55u3/fa/ajB7Og5jwDSFR8fn2rDy2TVqlXL1Kcm7kbGm5E6v2i0EiLDM93WM7C4gju+JY98gdlQGQAAAHKrhIQE7d69O9Vj1atX16JFizR+/Pg77j8gIEBbtmyx+tzff/+tjh07pnpjpGLFivrhhx/k7u5+x2Nbs2bNGo0ePVoRERHKmzevnn32WTVo0ED+/v66cOGCfvvtN/34448qXbq0Ro8erTp16tjdd2JiohYsWKDp06fL399fzZo1U61atRQUFCQvLy+dP39ea9as0S+//CKTyaS2bdtq2LBhKliwYLa8VgAAgLuFtXvSXbt2acKECXfc9912P7pmzRotW7ZMwcHB6tGjhypVqiTJvvfP75X7UYI7IIfl1uDOFBej8M+GZym0S+ZZKETFu73HzDsAAAA4THYHdzVr1tTixYttPr9ixQpNnTpVFy9eVJ06dTRq1Cirnzp2pJiYGK1bt06rVq3S0aNHFRERoZiYGBUqVEhVqlTRo48+qrCwMHl4ZG2RnqioKC1btkx//PGH9u/frytXrshgMCggIEDFihVTw4YN9cgjj6hChQoOfmUAAAB3p+wM7u62+9FKlSopNDRU9evXTxUeZub987v9fpTgDshhuTW4i1gxM8PlMe2Rr9YjKhz2ggMqAgAAAGwHd56enk6qCAAAALkN96T/ya3vn6fk5uwCANz7Ys8dcUhoJ0k3/16t2HNHHNIXAAAAAAAAAACuhOAOQLa78ecKB/f3i0P7AwAAAAAAAADAFWRtwXoAsJPJGK9bB6xvfppVtw5slunxvnLzSJoafeOftTLFRsng7imDh6c8CxaVb+lqadqZTYlKuHJeBg9PGdy9kv7r4SmDu4cMbtmz2SoAAAAAAAAAAPYiuAOQreIvnpQ5McGhfZoTExR/6ZR8iiVtHhp321KceSs1sBrcmWKidHbWIOudurn/G+R5JQV5Hv8Ge+6eqf/77/M+IaEqUKdV2jES4hS1e53k7im32/uwHHvJ4PHvGCmek5uHDAaDY75IAAAAAAAAAIC7DsEdgGwVH3Eme/q9dNoS3HkUCEr1nMHD+ial6QaIpkSZ4xNljo+1a3yDwU2yFtzFROnyytl29WGl11QBX97Q+ir0WO80VyXG3NTlFbPSCQWth43Wwkg333zy8PPPYr0AAAAAAAAAAEciuAOQrcwJ9gVhme83znJs8PBM9ZzB3fP2y5PaGOMdNv7tY1rGuKPZhWaZjfGWOk02vnamuBjdOuiY5Uf9qj6soDZpZyEab0Tq7JyhVmYdWplFaFl6NO0sQoO7l7wKh8i3VNW0rzYxQfGXw/+bgeh+W+jI7EMAAAAAAAAAuQzBHYBsZfD0yaZ+vS3HZmPqsMxmqGZ03JKdtsNBR46RhZmDmR3D1uxEY5xMMTcdMoZf9WZWgzvjzSsKnzPUdsN/Zwm6eXj+u/TobQFiilmEvqWrK/8Dj6bpwhR7Szd3r7M96zDNfoe3LWXK3ocAAAAAAAAAchDBHYBs5VW4RPb0G1TScmy8finVc7aCO5MjQ7WcCAc9rP8V7dhw0NYYRseNkdXXkWiUOdGoxH8nVyamc6mbbz6rjxtvXVfkms/sqNIGg5sl1MtXvakCW3RLO8bNK7r8y6fWw780oWDK5UvTLnPqnqeAPPIVzHq9AAAAAAAAAO5qBHcAspVXkdIyuHs6dpaYu6e8gkpZzs2mRHkVLStzYoLMxgS55ylgvWFOzFRLdORynLZmw+XEjLu77HVk1/KoZpPMCXFJf2zUa4qNUvSRP+9snH/lq/mICrd6Ic3j8ZHhCp833MrehUnHybMSk469LDMU9e9zKZcy9SpSRr6lqqR9HQlxSog4Y2OfRE/JzYPlSwEAAAAAAIBsRnAHIFu5eXgpb6UGitq7wWF95q3UMCmc+FfQE/3tauddrLxKvjRH5sR4mY1JIV9S2Hf7+b+PJRr/ey4x9fPeweWtD+LmIc/A4lb7kMyZep02wyiHhoO2xnDgjDtbs/ocGqTmwOvIkVmWNsZIiJc5Pkbm+Jg7HiN/7TCrwZ3x6gWFfzY8veqszx60svdhngp1lL9mizQ9JN66/t/SpWlCSHuWMvVg+VIAAAAAAADc0wjuAGS7/HVaOTS4y18nLEvtDO6e2b4MoU+x8irRd2qax81ms2RKTBvoWYLC20LExAR5FrK+zKh7Xn/lq/WIzEajlRAy+dj64zKlDrKcO+POgWNk14w7e8bIkQAy+8fIeClZ878/nxl/TT0LFrX6uPFGpK789nmG7dPl5i6Dh6cK1G6lgKYd0zydcPWCLq+ck2JZUmv7GKZ8PG1gmDxr0cOvoDzyB95ZvQAAAAAAAEAmENwByHY+xSooX82WurlzzR33la/WI/IpVsEBVeUsg8EguXskzT7z9r2jvrwCi6twWNrlFO1hNptSBXpuNkI1z8IlFfTU0P+uTTdsTEj9+G3Pe+S1vnRpjsxUu9vGsBlAOnIM69/zu2YpWVOizPGJMptNVp9OjL6pmOM773wcSQXqtVZgi65pHo87f0znFr753yxBq7MF05tF+N8sRe/iFeRb0srSpXExio84baPdv/0y+xAAHMJgMKhQoULy9vaWwWCQ2WyWm5ubs8sCAABALsI9KVIiuAOQIwKbd1Xs6f1KiAzPch+ehUIU2KyLA6vKfQwGNxk8vSVP73Sv8/Dzl1+lhtlai2/paio1+LPbZhveNovQykzENI8nGuUdXM7qGAYPT3kFlUzq10romBn3zOxEmzPucmAJVocGkLaWYM2Z12GZfRgXfUdjFGjQ1mpwF3/5jM4teD2DAt2szx68Lezzq/yg8tVolqa58Uakbu753Xo4aCuM9PCQwd3Lsoeiwd2TvQ8B3PU8PDxUqlSpjC8EAAAAsgn3pEiJ4A5AjnDz9lVwx7d0/ssxSrh8NtPtPQuFKPj5UXK7w9lqcB0Gdw+558mfrWP4lqyskN6TrD5nNpulf2cRmowJUmJCqv/eHvR5Fba+dKlH/sLKX6dVOqGjjRmJicnLlyZa+nLmzEEZHbmvYU68DlshZ068DhcJa80mmRPiZE6IS/cyW3tyJly7qKu/f5nxOBlx91DBhu1V8OFn0jwVf+mUItd8Jt22DKlbmqVMrYWOqZcy9chf2OrSpWZz0v6hBIgAAAAAAOBeQHAHIMd45AtU8W7vKXLtgkwtm5mv1iMKbNaF0A4OZTAYkmYMeXjqThYe8AoqqUKP9Mxye7Mp0bIMqa0Qx7t4BRX533DrQWCagNCYdoZiiufd8/pbHcOUEzPVHLkcZ46Eatn/OtzuhWVeE42SjcwsMfqGYk7uccgw/o2eUcDDHdI8Hnt6n84vGp16dmCmliz1sOyD6FuqqnxKhKZ9HTFRir90ysY+icnHHixfCtylTMZ4xV88qfiIMzInxMrg6SOvwiXkVaS0zWXFAQAAAEfinhQpEdwByFFu3r4q3Kqv8t3fXDf+/EW3Dmy2+ia4wd1TeSs1VP46YXflnnaAvQxu7klv9qezfKmHX0F53Fc3W+vIW7GuSr/yedqlS22FhP9eY222olfRslbHMHj5yKtoudQzE1P0LZP9s+VyJBzMkVDN1oy7nBjDRWYO2jtGejM57Zx9mKHGz1kN7uIuHNOFL8dk3N7Nw+aSpclBYv4azeVXtVGapglXL+jmnvVJYe6/sxKT/usleXjILVVIaH3PRIO7Z9J+qsw+BOwSe+6Ibvy5QrcObEnnfrSB8tdpxf0oAAAAsgX3pLCG4A6AU/gUqyCfNhVkeryv4i+dUvyl0zInxMng6S2voJLyCirFp0mAHGRwc5fBO4+U/vaHdyRPmRrK07OGzefNZpPdswhtLV3qWTBYBeq3trJHYvJSpkabfVqWLzWbJOXQkp829+rLiTEcuKyozZAzJ8ZwoaVkTUaZ440yx8favCRPGeu/AwlXzuvaH9/YN04GApp2kn/Ddmkejw0/rCtrF6a/j2HKx9M8919g6Fkw2MbSpSbJbGb2IVyaKS7GrhUgzIkJitq7QVF7NyhfzZYKbN6VFSAAAADgENyTIj0EdwCcys3DKynE4xMjQK5nMLjJ4Omd7uzDjHgXLSPvomXuqA6zKTFp6VI367dJPqWqqmiHN/4N+6zPHvwvMPzvcZMx3rKvYnJw6O5X0HoN98psOAcuwWpzWdEcWII1R5aSdeD3Q+7WQ7PEW9cVe+aAQ4YIaNZZ/g3apnk85uhOXfjmXcnN3crSpdaWKLUSIP773zzlasonxMrSpbeuK+7iSSthY1Kfbh6eSUshu3sy+xBpGG9G6vyi0UqIDM9Uu5s71yj29H4Fd3xLHvnShtYAAACAvbgnRUYI7gAAAFIwuLnL4GX702se+QrKI5/1wM1R/Ko1Vt7KD1rf09DWjEQrexqaE43yKlLa6hjuPn7yLl7RSuj438zE5NmHGcmJ2XDKiRmQOTGrL0dmcubEUrI2AuHkMUyJSSF4gu3Zhxlx981nNbiLPXtQF5e8b1+d7kkhnpuNADF/nVbyq9QwTbv4iNOK2vuH7RmJKfuy7HdofZlUubkTILoIU1xMlt4gSZYQGa7zX45R8W7v8SlnAAAAZAn3pLAHwR0ApzIajQoPD5eXl5fc3NxkMpkUFBQkdxuzBQAgNzAY3JKCEQ8vSXmzZYw8FR5QngoPpHtN0uxD27MILeFg4ZJW23sFlZJ/w6dShItWlijNYOnS5JlotpZPvvv2Ncz+GXc5MoatJVhzJIC0fwlWc2LS/puJNrY/zFv5QauPx18+q2ubl9o9TnoCH+mhAnUeT/N4zMk9urJuUcZLltqasZgiJPQqVML60qWJRplNiUltDW4OeT13s8i1C7L8BkmyhMtnFfnbQhUOe8FBVQEAACA34Z4U9iC4A+BUZrNZly9fTvVYoUKFCO4AwAUkzT50l7x8stTeO7icvIPL3VENZrNZMhklG6FDnvIPqOjzoySjUaaUS5emCQetLGV6W2DontfGTMqcCAcduuegreVRs3/GnemuCyCdNwMy8dY1xZ074pAxCj3WW/kfeCzN47cObdOl7z9KOnH3sLJ8adoZgtZnEXoo73315FO8YpoxjDciFX/pZIpQ0XbYKDcPp80+jD13JMP9Q+x18+/VylejGUu9AwAAIFO4J4W9CO4AAADgsgwGg81lMiXJI1+APPIFZGsN+R94TPlqPWIlFLQ9SzBtUJj0x9bsRPc8BeRTsrLVJUtTtpfMGdabI2GUjVAtR0LOu215VFdZSjbRmBRWx8dkaQjPgkWtBncxp/cp4scpdvZiSCck9JR/w6eU9766aVrFnT+mqH0bU89ETBUK3tbfv2GjV5HSlpmGN/5ckaXXbcuNP3+RTxveJAEAAID9uCeFvQjuAAAAgAwYDG4yeHpLnt7Z0n/e0HrKG1ov3WuSZx/+F+hZX3rU00Y46F2sggo26vBvKJg6VDQZ45OCHWO8TMak5SVT/jfleEo02gwHTQ6dqZYTy6PmwBg5EKQ6dynZzMyANP/7M2u9jSk2yurj8ZdO6fq2nzIxjuQVXE4hPZL2QjQZ43XrwJZMtc/IrQObZXq8r+Vrf2nZdMuSRwHNOsu3ZOU0baL2/aHrDnqzhjEYgzEYgzEYgzEYgzFcfwzPwOIKenKApJy5J8W9g+AOAAAAuAskzz40uHtKWdiE3Kd4BfkUv/NPY5rNJpvP+VV+UN7BZa3MTLRzn8MUswvd/QpYH99kSlo6NZ067OXUGXcODNXk4cQ9B42uucxrymV64y+edOzXW0nfv/hLpyxLExncPRQXfliSZIq9ZbWNMeqq5Zo7xRiMwRiMwRiMwRiMwRiuP4ZXkdKW45y4J8W9g+AOAAAAgN0MNvYblHJm6VL/ek/Kv96TMpsSUyxfGm9jydL0g0KvwOLWX0f+QPmWqX7b0qX/9W8yJkj/HmckJ/YcdLM1O9Ghew7amtWXA3sOZuENDs8CQZbj+IgzWa4pPfGXTlveJPFIMR4AAAAg5fw9Ke4dBHcAAAAA7joGN3cZvNwlLx+H9+1X+UH5VX4ww+vMZrPVJUZThYOFS1ht61Oysgo26WhjT8Tbw8YUj1sJI23OuEt05Gy4u2w/QPf/vibmhNislpQuc0Kc5djmvo8AAADIvXL4nhT3DoI7AAAAAMgCg8EgeXjK4OEp2/MQrfMJuU8+Ifc5pA6z2Wz18Xw1mv07czDtvoZpAkNbMxT//a97HutLl0oGGTy8/g3XrNdhL4cGdylCS4On48PdpH7/2/PSkQEmAAAA7hE5fE+KewfBHQAAAADcxQwGg9XHc2Lp0oIPPqWCDz6VFB6ajCn2M7x9tqCVsPDfWYTJsxU9Cxa1/joKFpFvuZopgkVjmuVLkx+XKenNkYTrlyztbc16vFNeQSUtx8YU4wEAAABSzt+T4t5BcAcAAAAAuCMGg0Fy90zap87b16F956vWWPmqNbbrWrPZ9G+Yl2h5zKtIaRncPbO0V54tBndPeQWVspx7F69o2efOq5D1vRN9QiqpYJOODhmfMRiDMRiDMRiDMRiDMVx/DHc////6z4F7Utw7DGZb66oAyBbx8fHas2dPmserVasmLy8vJ1TkXAkJCdq9e3eqx6pXry5PT/YJAQAAgGNc+nGKovZucFh/flUbK6jNSw7rDwAAAPc+7kntw/vnyvRWDAAAAAAA3FXy12nl4P7CHNofAAAA7n3ck8JeBHcAAAAAgHuaT7EKylezpUP6ylfrEfkUq+CQvgAAAJB7cE8KexHcAQAAAADueYHNu8oz0PreJfbyLBSiwGZdHFQRAAAAchvuSWEPgjsAAAAAwD3PzdtXwR3fkmehkCy19ywUouDnR8nN29fBlQEAACC34J4U9iC4AwAAAADkCh75AlW823uZXqIoX61HVLzbe/LIF5hNlQEAACC34J4UGfFwdgEAAAAAAOQUN29fFW7VV/nub64bf/6iWwc2y5yYkOY6g7un8lZqqPx1wtg/BAAAAA7FPSnSQ3AHAAAAAMh1fIpVkE+bCjI93lfxl04p/tJpmRPiZPD0lldQSXkFlZKbh5ezywQAAMA9jHtSWENwBwAAAADItdw8vJLeMOETzAAAAHAS7kmREnvcAQAAAAAAAAAAAC6AGXcAAAAAgFzLaDQqPDxcXl5ecnNzk8lkUlBQkNzd3Z1dGgAAAHIJ7kmREsEdAAAAACDXMpvNunz5cqrHChUqxJskAAAAyDHckyIllsoEAAAAAAAAAAAAXADBHQAAAAAAAAAAAOACCO4AAAAAAAAAAAAAF0BwBwAAAAAAAAAAALgAgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AII7gAAAAAAAAAAAAAXQHAHAAAAAAAAAAAAuACCOwAAAAAAAAAAAMAFENwBAAAAAAAAAAAALoDgDgAAAAAAAAAAAHABBHcAAAAAAAAAAACACyC4AwAAAAAAAAAAAFwAwR0AAAAAAAAAAADgAgjuAAAAAAAAAAAAABdAcAcAAAAAAAAAAAC4AII7AAAAAAAAAAAAwAUQ3AEAAAAAAAAAAAAugOAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAAAAAAAAAXADBHQAAAAAAAAAAAOACCO4AAAAAAAAAAAAAF0BwBwAAAAAAAAAAALgAgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AII7gAAAAAAAAAAAAAXQHAHAAAAAAAAAAAAuACCOwAAAAAAAAAAAMAFENwBAAAAAAAAAAAALoDgDgAAAAAAAAAAAHABBHcAAAAAAAAAAACACyC4AwAAAAAAAAAAAFwAwR0AAAAAAAAAAADgAgjuAAAAAAAAAAAAABdAcAcAAAAAAAAAAAC4AII7AAAAAAAAAAAAwAUQ3AEAAAAAAAAAAAAugOAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAAAAAAAAAXICHswtAaocOHdLSpUu1fft2nT17VjExMcqbN6+CgoJUo0YNtWzZUg8//LAMBoNT62zWrJnCw8Oz1HbhwoWqV6+eXdfevHlTX331ldasWaOjR4/KbDYrJCREdevWVceOHVWuXLks1QAAAAAAAAAAAOBqmHHnIs6dO6f+/fvrueeek6enp0aOHKkVK1Zo7dq1mjlzplq2bKnVq1erT58+at++vU6dOuXskrOsUqVKdl23efNmPfbYY/rwww9Vvnx5LVy4UMuXL9eAAQO0ZcsWPfHEE5o1a1Y2VwsAAAAAAAAAAJAzmHHnAnbt2qUXXnhBgYGBWr58uYKDg1M9X6RIEdWsWVPPPPOMunfvrn379qlDhw5asmSJQkJCnFS15O/vr4IFC2aqTeHChZU/f/4Mr1u3bp0GDhyohIQEDR06VH369LE8V7x4cTVu3FgdO3bURx99pPPnz+vtt9/ObPkAAAAAAAAAAAAuheDOya5cuaK+ffvq2rVrWrRoUZrQLqWiRYtq0qRJateuna5evaphw4bpyy+/zMFqU+vUqZMGDhzo8H5PnTqlIUOGKCEhQQ8//HCq0C6Zr6+vJk+erLCwMH311VeqVKmSOnTo4PBaAAAAAAAAAAAAcgpLZTrZzJkzdeXKFd1333127dcWGhqqhx56SJL0119/afv27dldYo4bM2aMoqOj5ebmpmHDhtm8rmTJknryySclSePHj1dEREROlQgAAAAAAAAAAOBwBHdOtnLlSklSQkKC3W0aNmxoOV63bp3Da3KmHTt2aOPGjZKSXmeFChXSvb5du3aSpJiYGH3yySfZXh8AAAAAAAAAAEB2IbhzoujoaF28eFGSdOzYMW3YsMGudiVKlLAcnz59Oltqc5bZs2dbjtu0aZPh9bVr15a/v78k6dtvv1VUVFR2lQYAAAAAAAAAAJCtCO6cKCYmJtX5hAkT7Grn6+trOY6Pj3doTc508+ZNbdq0yXLeqFGjDNu4u7vr/vvvl5T0tfj999+zqToAAAAAAAAAAIDsRXDnRAEBASpcuLDlPHn2XUauXr1qOQ4ODnZ4Xc6ybt06y5KhpUuXVsGCBe1qV7lyZcvxr7/+mi21AQAAAAAAAAAAZDeCOycyGAyaPHmy6tSpowoVKmjYsGF2tdu7d6/l+L777suu8nLczp07LcdVq1a1u13KffD27dvn0JoAAAAAAAAAAAByioezC8jtateurS+++MLu681ms1avXi1J8vDwUFhYWHaVlilbt27VihUrtHPnTl24cEGxsbEqXLiwatWqpWeeeUZ169bNsI8jR45YjosXL2732EFBQZbjs2fPKjY2Vj4+Ppl7AQAAAAAAAAAAAE5GcHeXWbduncLDwyVJLVq0UEBAgFPrSUxM1KhRo7RkyRJJSfvvBQQEyGQyKTw8XOHh4Vq2bJmeeeYZvf3223J3d7fZ19GjRy3HxYoVs7uGlMGdyWTSyZMnFRoamoVX41xGo1EGg8HZZeQ4o9Fo12MAAABAduB+FAAAAM7GPel/cuvrTong7i6SmJioKVOmSJLy5MmjV155xckVSSNHjtTPP/+sF154QW3btlXZsmUtz+3YsUNjxozRoUOH9M033ygmJkYffPCB1X5MJlOqvfsKFChgdw1+fn6pzq9du5a5F+EiDhw44OwSXMb+/fudXQIAAAByMe5HAQAA4Gzck+ZeBHd3kQULFujgwYOSpDFjxqhEiRJOrWf58uW6ePGiFi5cqPvvvz/N87Vr19ZXX32lp59+WseOHdOyZcvUqFEjtWnTJs210dHRqc4zs9Slt7d3un0BAAAAAAAAAADcDdycXQDss3fvXn300UeSpOHDh+vJJ590ckXSiRMn9Oabb1oN7ZLlzZtXb7/9tuV88uTJSkxMTHPdrVu3Up1nJri7/drb+wIAAAAAAAAAALgbENzdBS5duqQBAwbIaDRq1KhR6tGjh7NLUvfu3dW3b1+1b98+w2vr1q1r2XPu3Llz2rhxY5prbt/bzWw2212LyWRKde7mxo81AAAAAAAAAAC4+7BUpou7ceOG+vTpo4iICL3//vtq3bq1s0uSJHXu3DlT1zdp0sSyzOe2bdvUuHHjVM/nzZs31XlsbKzdfcfFxaXb192iUqVK8vT0dHYZOc5oNKZZr7ly5cry8OCvJwAAAGQ/7kcBAADgbNyT/ichIUEHDhxwdhlOlfu+63eRmzdvqkePHjp+/LimTZumZs2aObukLKtcubLl2NovXZ48eWQwGCwz7W4P49ITHx+fpq+7kYeHR64M7qzhawEAAABn4n4UAAAAzpZb70kzsxrfvYo1BV3U9evX1a1bNx09elSzZs26q0M7SQoJCbEcX716Nc3zBoNB/v7+lvPr16/b3ffNmzdTnQcEBGS+QAAAAAAAAAAAACcjuHNBV69eVdeuXXXixAnNmTNHDRo0cHZJdyzl8pXR0dFWrylXrpzl+Pz583b3ffHiRcuxp6enSpUqlYUKAQAAAAAAAAAAnIvgzsVcv35dPXr00OnTpzVnzhzVrl3b2SU5hMlkshzbWsqyfPnyluNz587Z3XfK4K5kyZK5cvowAAAAAAAAAAC4+xHcuZCoqCj17NlTJ0+e1Ny5c1WrVi1nl2TVzJkz1bBhQ7Vr104RERF2tUk5yy5//vxWr6levbrl+ODBg3bXc+TIEctxjRo17G4HAAAAAAAAAADgSgjuXER8fLxefPFFHTlyRLNmzVLNmjUzbJOQkKABAwYoJiYmBypM8tdff2nSpEmKjIzU/v379d1339nVLuWsuJQz61Jq2rSp3N3dJUlHjx5VVFSUXX3v27fPcty8eXO72gAAAAAAAAAAALgagjsXYDab9dprr+mvv/7S1KlTVbduXbvaHThwQFu2bJGvr282V/ifnTt3pjqPi4uzq92xY8csxyln1qUUEBBgee0mk0lbt27NsN/4+Hjt2rVLUtISnA899JBd9QAAAAAAAAAAALgagjsXMGPGDC1fvlxjx45V48aN7W63cuVKlSxZMhsrSyvlMpeenp5q06aNXe02b94sSfLy8lKTJk1sXtejRw/L8Q8//GBXvzdv3pQkdezYUT4+PnbVAwAAAAAAAAAA4GoI7pxs/fr1mj59uvr166d27drZ3S48PFyLFy+2GdydO3dOffr0Uc2aNfXkk09agrM71bBhQ7m5Jf3YPP744ypdunSGbc6fP68///xTktSqVSv5+/vbvPbhhx9WvXr1JEm///67zpw5k27fyUt1+vn5qVevXna8AgAAAAAAAAAAANdEcOdEERERGj58uOrXr6+XXnrJ7nY7d+5U9+7ddevWLZvB3fDhw7V+/XpFR0fr8OHDevHFF3X+/Pk7rjkkJETPPvuspKSlKe0xZcoUGY1G5cuXT0OHDs3w+jFjxqhAgQJKSEjQxIkTbV63d+9erVmzRpL01ltvpRsIAgAAAAAAAAAAuDoPZxeQm02bNk1Xr17V0aNH1apVK7va3LhxQ5GRkZZzW8Hd3r17U53HxMRoz549Cg4OznrB/3rttdd0/vx5/fjjj2rbtq1q1Khh89r58+fr+++/l5eXlyZOnKigoKAM+y9durSmTJmiPn36aNWqVfr888/VuXPnVNdcu3ZNQ4cOldlsVrdu3dS6des7fl0AAAAAAAAAAADORHDnRJcvX5aUNPMuIiIiS33YCu6qVq2q7du3W849PT0VGhqapTFu5+3trRkzZmju3Lnq1q2b6tWrp+bNm6ty5coqVKiQjEajjhw5osWLF2vdunUqWbKkxowZowYNGtg9RoMGDbRo0SINGjRI48aN05EjR9ShQwcVLFhQ//zzjz766COdO3dOr776KktkAgAAAAAAAACAewLB3V3OVnA3YcIEvf322/rzzz9VpEgRDR061Oa1WeHu7q4+ffrof//7n77//nutWLFCkydP1vXr1+Xj46OAgABVqVJFEyZMUKtWreTl5ZXpMapXr67ly5frxx9/1LJly9SnTx/dunVLxYsX18MPP6zOnTurTJkyDntNAAAAAAAAAAAAzmQwm81mZxcB5Cbx8fHas2dPmserVauWpYDzbpeQkKDdu3eneqx69ery9PR0UkUAAADITbgfBQAAgLNxT/of3j+X3JxdAAAAAAAAAAAAAACCOwAAAAAAAAAAAMAlENwBAAAAAAAAAAAALoDgDgAA4P/s3Xd4lFX6xvF7WhrpFZCuIipgL9jWhmtFwIaNKtgA94e66KqoFBWlKRYEXRUbugiKoujCYgFRUFlBV4qElgSSkJ5Mkqm/P5IMCZkkk2SSmcD3c11evDPve877TECYzJ3nHAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAAAAAAAQBAjuAAAAAAAAAAAAgCBAcAcAAAAAAAAAAAAEAYI7AAAAAAAAAAAAIAgQ3AEAAAAAAAAAAABBgOAOAAAAAAAAAAAACAIEdwAAAAAAAAAAAEAQILgDAAAAAAAAAAAAggDBHQAAAAAAAAAAABAECO4AAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgQHAHAAAAAAAAAAAABAGCOwAAAAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAAAAAAAQBAjuAAAAAAAAAAAAgCBgDnQBAOCrn3/+WcuXL9fPP/+sffv2yWq1KjIyUgkJCerdu7fOOeccXXHFFQoJCQl0qXXasmWLPvnkE23YsEF79+5VcXGxIiMjFRsbqxNOOEFnnXWWrrnmGrVr165J82dlZenzzz/Xd999p127dik3N1cGg0HJycnq0aOHrrjiCl1yySWKiIjw8ysDAAAAAAAAADQXwR2AoLdp0yZNnTpVf/75pwYMGKBx48apffv2stvt2rdvn9asWaNly5bp448/1nPPPacnn3xSl1xySaDLrmHnzp2aNm2afvzxR1155ZUaOXKkOnXqJEnKzMzUjz/+qI8++kiff/65Zs6cqQcffFA33nijz/M7nU698sorev3112W1WnXhhRdq3Lhx6ty5s4xGo9LT0/XVV1/poYceUnx8vKZMmaILL7ywhV4tAAAAAAAAAKApDG632x3oIoAjic1m0+bNm2s936dPn6DuFGspdrtdmzZtqvFc3759ZbFYJEkLFy7U008/rVNPPVWzZs1SSkqK13l27dqlMWPGaPfu3TIYDJo0aZJuueWWFq/fF19++aUefPBBde7cWXPnzlWPHj28XnfgwAHdfffdnq/H6NGj9cADDzQ4v81m04QJE/Tvf/9boaGhmjVrli699FKv127YsEHjxo1TXl6e7r//fo0ZM6bpLwwAAOAw0ND7UQAAAKCl8Z70ID4/Z487AEHsgw8+0LRp09SlSxe99tprdYZ2ktStWzctWLBA4eHhcrvdmjZtmn799ddWrNa7b7/9Vn/7298UHh6uN998s87QTpISExO1YMECJSUlSZIWLFigL7/8ssF7TJ06Vf/+978lSY899lidoZ0knXHGGXruuedkMBg0c+ZMLVmypJGvCAAAAAAAAADQUgjuAASl7OxsTZ8+XZJ02223KTw8vMExXbt21U033SRJcjgcmjFjRovW2JDy8nI99thjcrlcGjRokCeQq09sbGyNLrgZM2bI4XDUef2aNWv0wQcfSJJOOOEE3XDDDQ3e4/zzz9dFF10kSZoyZYqys7MbHAMAAAAAAAAAaHkEdwCC0meffaaSkhJJFYGcr6666irP8fr165WRkeH32nz1zTffaP/+/ZKa/hr27NmjjRs31nntK6+84jluzNKgQ4cOlSRZrVbNnj3b53EAAAAAAAAAgJZDcAcgKH3//fee4+3bt/s8rlevXjKZTJ7HP/30k1/raoymvoaEhAS1b9/e87iu17Bjxw7POYPBoIsvvtjne5x++umKjIyUJC1btkwFBQU+jwUAAAAAAAAAtAyCOwBBKTMz03M8b948HThwwKdxISEhioqK8jzOysrye22+qv4aPvzwQ23bts3nsQkJCZ7jul7DDz/84Dnu2LFjjTENsVgsOvnkkyVVbH5btUceAAAAAAAAACBwCO4ABCW32+05Liws1KJFi3wea7FYPMcul8uvdTVG9ddgt9v1xhtv+Dw2JCTEc+x0Or1e88cff3iOu3Xr1uj6unfv7jletWpVo8cDAAAAAAAAAPyL4A5AUOrTp0+Nx2VlZT6Nczqdys/P9zxOTk72Z1mN0tTXIEk5OTme45SUFK/X5Obmeo6rdxn6qvpynFu2bGn0eAAAAAAAAACAf5kDXQAAeDNhwgQVFxdr48aN6tSpk26++Wafxm3btk12u93z+NDwrDUNHz5caWlp+v777xUfH6/Ro0f7NK6goEB79+71PK7rNZSWlnqOQ0NDG11feHi45zgjI0PFxcWefe8AAAAAAAAAAK2P4A5AUEpMTNQLL7zQ6HErV670HHfr1k1HH320P8tqlHbt2unpp59u9LhVq1Z5ltmMiorSWWed5fW6iIgIz7HVam30fUwmU43Hu3btUu/evRs9DwAAAAAAAADAP1gqE8Bhw+FwaOnSpZ7Ht9xySwCraboPP/zQczx48OA6u+mio6M9x9WXB/VVWlpajcdFRUWNngMAAAAAAAAA4D8EdwAOG0uXLlV6erokNWp5zWCybt06bdy4UVJFt91dd91V57XVuwm3b9/e6Hv95z//qfG4pKSk0XMAAAAAAAAAAPyH4A7AYaGwsFBz5syRVLEE5DPPPKOQkJDAFtVIDodD06ZN8zyeNGmS4uPj67z+5JNP9hzn5+dr27ZtPt9r5cqV2rFjR43nmrLcJgAAAAAAAADAfwjuABwWpk2bpgMHDkiSHnnkEZ1xxhkBrqjxXn75ZU/n3KhRozRgwIB6rz/llFN01FFHeR5/8sknPt2nuLhYTz31VI2xktpc0AkAAAAAAAAAhxuCOwBt3pIlS/Txxx9LkiZOnKhbb701sAU1wbp16/TKK69Ikm6//XY9+OCDDY4xmUwaOXKk5/E777xTa9+6QzmdTj388MPq0aOH/vKXv9Q4165duyZUDgAAAAAAAADwF4I7AG3aTz/9pEmTJslgMGjSpEk1gqy2IjU1Vffdd59cLpdGjx6tRx99VAaDwaext956qy666CJJUllZme6++27l5uZ6vba0tFR///vftX37dk2bNk0Oh6PG+cjIyOa9EAAAAAAAAABAsxDcAWiztm7dqnvvvVcul0tPP/10m+y0279/v0aPHq2CggLdd999euCBBxo13mAw6IUXXtB1110nSdq2bZsGDBigRYsWKSsrS06nU/v379cHH3yggQMHau/evXrvvfeUkpJSa0+7mJgYv70uAAAAAAAAAEDjmQNdAAA0xY4dOzRixAgVFxdr5syZuuKKKwJdUqNlZ2dr2LBhSktL08MPP6zhw4c3aZ6QkBA99dRTuummm7Rw4UKtXbtWjz/+uB5//HFJksViUe/evXXHHXdo8ODBMplMkir2uqtisVjUpUuXZr8mAAAAAAAAAEDTEdwBaHNSU1M1bNgwFRYW6vnnn9ell14a6JIaLTs7W0OHDtXu3bs1adIkv3QLnnTSSZo5c6bcbrfy8vJUUFAgi8Wi5ORkhYSE1Lr+wIEDnuMePXrIbOafBAAAAAAAAAAIJD6lBdCm7Ny5U0OHDlVBQYHmzp3r2d+tLcnJydGwYcO0c+dOPfHEExoyZIhf5zcYDIqPj1d8fHy912VmZnqOe/bs6dcaAAAAAAAAAACNR3AHoM1IS0vT8OHDlZ+f32ZDu/z8fI0YMUKpqaktEtr5ymq1Kjs72/P47LPPDkgdAAAAAAAAAICDjIEuAAB8kZ2drREjRignJ0dz5sxpk6Gd1WrV6NGjtXXrVj322GMBC+0kafv27Z5js9ncJpcbBQAAAAAAAIDDDcEdgKBXXFysO+64Q2lpaZo+fbrPIdOBAwe0YcOGFq7ON3a7XePGjdOmTZv0wAMP+LynXXFxsb777ju/17Np0ybP8ZlnnqnY2Fi/3wMAAAAAAAAA0DgEdwCCmsPh0Pjx47VlyxY9/vjjuuqqq3weu2zZMs2cObMFq/PdpEmTtGbNGt15550aPXq0z+PWrl2rhx9+2O/1rF271nN88803+31+AAAAAAAAAEDjsccdgKA2ZcoUrV27VmPHjm300pLr1q1Tly5dWqgy382fP19LlizRoEGDNGHChEaNXbdunbp27VrvNXa7XcuWLVNJSYmuvvpqxcfH13t9fn6+J7g74YQT1L9//0bVBAAAAAAAAABoGXTcAQhaixcv1qJFizRw4ECNGzeuUWP37dvXYOj1+eef64orrtDpp5+u++67T7m5uc0tuZa1a9dq9uzZOvvsszV16tRGjbVarfriiy8aDO6eeOIJ/eMf/9C0adN0//33NzjvokWLZLPZJEn33XefDAZDo+oCAAAAAAAAALQMOu4ABKVt27ZpypQpOvnkkzVlypRGjXW5XHryySdlt9vVrVs3r9f88ssvuv/+++VyuSRJK1asUE5Ojt5++22/BVlZWVl64IEHdNRRR+mFF16Q2dy4v3JnzJih/Pz8Ol9DlS+++MJz/MMPP6isrExhYWFer927d68WLFggSbriiit04YUXNqomAAAAAAAAAEDLoeMOQNBxOBx68MEHZTabNWfOHIWEhPg8NjU1Vffcc49Wr14tSXUulbly5UpPaFdlw4YN2rVrV5PrPtSjjz6qgoICzZkzRzExMT6P27dvnx555BG9++67kup+DVUiIiI8xy6XSzk5OV6vs9lsevDBB1VcXKyePXs2OhAFAAAAAAAAALQsOu4ABJ3ly5dry5YtslgsGjhwoM/jbDabrFZrjeca6lY71KFhXlNt2LBB33zzjUwmk0aNGuXzOIfDoeLi4hrPNfQahgwZorlz53oe79mzR0cddVSNa3JzczV27Fht3LhRvXr10muvvaaoqCif6wIAAAAAAAAAtDyCOwBBp7CwUJJkt9uVn5/f5Hni4+PrDKcuvfRSvfHGGzWCup49ezY66KtLQUGBJMnpdDbrNUgNd9zdfffdys/P1zvvvCO3261Zs2bpvvvuU1xcnPbv368NGzboww8/lM1m09ChQzVhwgSFh4c3qyYAAAAAAAAAgP8R3AE4bHXt2rXOc6eeeqpmzpypF154QZmZmTrjjDM0adIkmUymVqywYUlJSTWWwvTGZDLp0Ucf1fXXX68PP/xQ69ev19ixY2W32xUVFaVjjjlGI0eO1KBBg2p14gEAAAAAAAAAgofB7Xa7A10EcCSx2WzavHlzref79OnTqL3cDhd2u12bNm2q8Vzfvn1lsVgCVBEAAACOJLwfBQAAQKDxnvQgPj+XjIEuAAAAAAAAAAAAAADBHQAAAAAAAAAAABAUCO4AAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgYA50AQCObAaDQYmJiQoNDZXBYJDb7ZbRyM8UAAAAAAAAAACOPAR3AALKbDara9eugS4DAAAAAAAAAICAo60FAAAAAAAAAAAACAJ03AEIKJvdqZ0Zhdq9v1DlNqdCQ0zq2j5a3TtGK8RiCnR5AAAAAAAAAAC0GoI7AAGxbU+ePv0uVWs3ZcjucNU6bzEbdW7fjrrm/B7q2SUuABUCAAAAAAAAANC6CO4AtCprmUNvfPqbVvywu97r7A6Xvv4lTV//kqbLz+6qEdf0VkQYf2UBAAAAAAAAAA5ffAoOoNXkFJTq0XnfKy2ruFHjVvywW7+l5mjqXecoISa8haoDAAAAAAAAACCwjIEuAMCRwVrmaFJoVyUtq1iPvbpO1jKHnysDAAAAAAAAACA4ENwBaBVvfPpbk0O7Knszi/TGZ7/7qSIAAAAAAAAAAIILwR2AFrdtT16De9r5asW6Xdq2J88vcwEAAAAAAAAAEEwI7gC0uE+/S/XrfJ+t8e98AAAAAAAAAAAEA4I7AC3KZndq7aYMv8655tcM2exOv84JAAAAAAAAAECgEdwBaFE7Mwpld7j8Oqfd4dKufYWexy6X26/zAwAAAAAAAAAQCOZAFwDg8LZ7f2HDFzXBrn2F6tklTpK05Os/tWLdLqXERyg5LkLJceFKjo+o+C8uQokxYTKZ+DkFAAAAAAAAAEBwI7gD0KLKbS2zpGV5taUyzSaDMnOtysy1er3WaDQoISZMyXERSomPUFJcuFLiKkO++AglxobLYibYAwAAAAAAAAAEFsEdgBYVGmJqmXktB+dtaClOl8ut7LxSZeeV6vfUnFrnDQYpPvqQYK+yW6/qscXcMq8DAAAAAAAAAIAqBHcAWlTX9tEtMm+3Dgfnzaqj085XbreUU1CmnIIy/bEr1+s18dGhlctwVi3BGe5ZijM5PqJGkAgAAAAAAAAAQFMQ3AFoUd07RstiNjbYFdcYFrOxRnD3Z1qB3+auS25huXILy7Vld57X87FRoRVhnqdL72C3XnJchMJD+esWAAAAAAAAAFA/PkkG0KJCLCad27ejvv4lzW9znndSR4VUdriVlTu0a1+h3+ZuqvyicuUXlWvbnnyv56PbhdTs0jtkWc6IMEvrFgwAAAAAAAAACDoEd0Fm69atWrJkidavX6+0tDSVlpaqXbt2Sk5O1kknnaT+/fvrggsukMFgCHSpHj///LOWLVumn3/+WRkZGbLZbIqKilKHDh108skn66qrrtJpp53m83wXX3yx0tPTm1TLwoULddZZZzVpLFrONef38Gtwd/V5PTzHdodLE4eerqw8q7JyS5WVZ1VmrlXZeVYVWe1+u2dzFZbYVFhiq7M7MDLcUrnsZkW4lxJ3sGsvOT5CkeEEewAAAAAAAABwuCO4CxIZGRmaNm2a1q1bp1tuuUWPPfaYOnfuLJfLpYyMDH333Xd655139K9//UsnnniiZs+era5duwa05m3btmny5MlKTU3VbbfdpqefflodO3aUzWbT3r17tWrVKi1atEjvvvuuzj33XD333HNKSEho0ZqOP/74Fp0fTdOzS5wuP7urVvywu9lzXd6vm3p2ifM8jmoXorN7d/B6rbXMruy8UmXmWZWVWxXoVTzOzrOqoNjW7Hr8pbjUruLSAqVmeA/2IsLM1fbYCz+4HGflHntREZagCvQBAAAAAAAAAI1HcBcEfv31V915551KSEjQ8uXL1aFDzRAiJSVFp5xyim688UaNGDFCv//+u2666SYtXrxYnTp1CkjN//nPfzRhwgT17t1bX3zxhWJiYmqc79Chg84880xdd911GjlypNauXatbbrlFH374Ya1rvYmNjVVcXFyD11WXlJSk6Ojohi9EQIy4prd+S81RWlZxk+fonBKlEVef6PP1EWEWde1gUdcO3v9clJU7Kjr18korO/Yqj3OtysyzKr+ovMm1+pu1rGJJ0LqWBQ0PNSmp2hKchy7LGRMZQrAHAAAAAAAAAEHO4Ha73YEu4kiWm5urq666Snl5eVq+fLmOPvroeq/fsmWLBg0aJJfLpdNOO03vvfdeK1V60I4dOzRo0CCZzWatXLlS8fHx9V6/evVq3XXXXZKkAQMG6Lnnnqv3+osvvliDBg3SuHHj/FZzMLHZbNq8eXOt5/v06aOQkJAAVNR6cgpK9dir67Q3s6jRYzunRGnKnf2UEBPeApV5V253KrtyCc6qLr3M3IMBX25hWavV0lwhFtMhYV54ZcBX0bEXGxkqo5FgDwAAHHnsdrs2bdpU47m+ffvKYmGpcgAAALQO3pMedCR/fl6FjrsAmzdvnnJzc9WrV68GQztJ6tWrl8477zx9++23+vnnn7V+/XqdeeaZrVDpQbNmzVJ5ebnOO++8BkM7Sbrooot0zDHH6M8//9Rnn32m8ePHq3Pnzq1QKYJNQky4Zoy/QG98+lujls28vF83jbj6REWEte5fWaEWkzolR6lTcpTX83aHU9n5pbU69bLzSpWZa1VuQalcQfKjETa7U2lZxXV2PFrMRiXHhR/cVy/uYNdeSnyE4qLCCPYAAAAAAAAAoIUR3AXYihUrJFUk6r4655xz9O2330qq6GZrzeDOarV67t2Ymvv166c///xTLpdL3377rW699daWKhFBLiLMrHtvOFn9z+qqz9akas2vGbI7XLWus5iNOu+kjrr6vB419rQLJhazSR0TI9UxMdLrebvDpZyCimU4M3OqLclZuSzngYIyuYIk2bM7XErPLlF6donX82aTQUmxFfvrVXXpJccdPE6IDpPJZGzlqgEAAAAAAADg8EJwF0BWq1WZmZmSKpaf/Pbbb3XBBRc0OK56t9qePXtarD5v0tPTZbPZJEnr1q3Tli1b1KtXrwbHVd+Lb/du3zutcPjq2SVOE245TWNvONmzd1u53alQi0ndOkSrW4dohVhMgS6zWSxmo9ontFP7hHbSMbXPO50u5RSUecK8zNyq7r2KJTkP5JfKGSTBnsPp1r6cEu3L8R7sGY0GJcaGKyUuQknVluFMia94nBgbLjPBHgAAAAAAAADUi+AugEpLS2s8nj59uk/BXXj4wT2+qkK01lK9ZrvdrlmzZmn+/PkNjouIiPAct3bNCG4hFpN6dokL2q66lmQyGSs61+IjvJ53utzKrRbsZVXut1fVsZeVVyqHs3a3YiC4XO6KmnKtXs8bDVJCbPjBJTgrO/VSKn9NjA2XxUywBwAAAAAAAODIRnAXQPHx8UpKSlJ2drYkebrvGpKXl+c57tChQ4vUVpcuXbooLCxMZWVlkppWc8eOHVukNuBwYzIalBQXrqS4cJ2ohFrnXS638ovLK/bWy60K9w527WXlWmXzsgxpILjcUnZeqbLzSvW7l/MGgxQfHVYZ7FUsyVnRrVfZtRcb3uY7MAEAAAAAAACgIQR3AWQwGDRnzhzNmTNH+fn5Gjp0qE/jfvvtN8/xcccd11LleRUbG6sZM2ZowYIFKi8v1/jx430aF8iaEdwcDofS09MVEhIio9Eol8ul5ORkmUyENA0xGg2Kjw5TfHSYenWLr3Xe7T4Y7FUFepl5VmXnlXqCvnKbMwCV1+Z2SzkFZcopKNMfu3K9XhMXFVq5t15l194hy3GGhfBPGgAAAAAAAIC2jU85A+z000/XO++84/P1brdbX331lSTJbDbriiuuaKnS6tS/f3/179/f5+tLSkq0Zs0aSVJcXJzOOeecRt3vhx9+0Oeff66NGzdq//79KisrU1JSkk499VTdeOONOvPMMxs1H4KL2+3WgQMHajyXmJhIcOcHBoNBcVFhiosK03Fda593u90qLLHVWoJzf65V2ZVLc5aWB0ewJ0l5ReXKKyrX1t15Xs/HRIZ4luBMjotQSrVwLzk+QuGh/JMHAAAAAAAABBun06lhw4Zp8ODBuvrqqwNdTsDxKWYbs3r1aqWnp0uSLr30UsXH1+6yCTZLliyR1Vqx79XgwYNlsVh8Gud0OjVp0iQtXrxYUsXefvHx8XK5XEpPT1d6ero+/fRT3XjjjXriiSfafNDjcDhkMBgCXUarczgcPj2HlhERalS39pHq1j6y1jm3263iUruy80qVVbnMZVZ+qWfJy6w8q0rKguf3qqDYpoJim7bvzfd6PirCoqS4cCXHViw/mhwXUflrxeN2Yb793QQAAA4vvB8FAABAoDXmPekvv/yiL774Qr/88ov27dsnq9WqqKgoxcfH68QTT1S/fv10+eWX+/w5fKCVl5dr2rRp2rBhg6699tpWeS++bds2DR48WHa7XatWrVKnTp1a/J6NYXC73e5AFwHfOJ1ODR48WFu2bFFERISWLVumzp07B7qsehUXF+vyyy9Xdna2kpOTtXz5ckVHR9c75uKLL9agQYO0b98+ffbZZxo+fLgGDhyoHj16eK756aefNHnyZG3dulWSdM0112jGjBkt+lr8xWazafPmzYEuA/CLMptL+SUO5Zc4VVDi9BznF1f8WmoLjj32fBFmMSg20qzYdibFtKv4Nbbq10izwiyGIzJcBwAAAAAAQODt2LFDb731ltLT03XuueeqT58+SkhIkMPhUE5OjjZv3qw1a9bI4XAoNjZWo0aN0mmnnRbosr0qLi5WXl6eNm3apNWrVysjI0OSdOedd+ovf/mL1zF9+vRRSEhIs+/tcrk0ZMgQ/frrr5IUlMEdHXdtyFtvvaUtW7ZIkiZPnhz0oZ0kzZ49W9nZ2bJYLJo5c2aDoV2V5cuXKzMzUwsXLtTJJ59c6/zpp5+u999/XzfccIN27NihTz/9VOeff76uvfZaP78CAPUJCzGqfUiI2sd5P19ud1WGepWB3iHBnrU8eIK9Mrtb+/Ps2p9n93o+xFwZ7EWYFBtZEerFVAv3IkKNBHsAAAAAAADwuxUrVujtt9/WcccdpxkzZigurvaHcf369dM111yjZ599VpmZmZo1a5aGDx/eqG2vWtIff/yhadOmye12K5D9ZAsXLvSEdsGKjrs24rffftOQIUNkt9s1ceJEjRw5MtAlNeg///mP7r77bpnNZj333HO68sorfRp38cUXKz09XU899ZSuu+66eq9dv369br/9dklSx44dtXLlyqBfMpOOO+Agm8PltVOvKuwrLgueYK8hFrOhRpfeoV177cII9gAAAAAAANA4q1at0uuvv6727dvr6aefVmhoaL3X79+/Xw8//LDKy8tlMpn0+OOP65hjjmmlautWVlam7Oxsz2ObzaYff/xRn332mee5lu64S0tL0zXXXOPZ2kui4w5NlJWVpbFjx8rhcGjSpEm69dZbA11Sg7Zv366///3vCgkJ0ezZs3XppZf6PHbEiBE6cOBAg6GdJJ155pnq1auXtmzZooyMDK1Zs6bO/7EBBJ8Qs1FJMUYlxXhfc9vudFd06xU7lW91VIR8xQ7lW53KL3aqqNTZyhXXze5wK7vAoewC7+twm02Gyg69aktwVluKs12YUUaCPQAAAAAAAFTKz8/Xe++9J0n661//2mBoJ0nt27fXxRdfrC+++EJOp1Pvv/++HnvssZYutUFhYWG1VhE8+uijtXHjRqWnp7dKDY8//riMRmOr3Ks5CO6CXGFhocaMGaPs7Gw9++yzGjBgQKBLalBGRobGjBkjp9Op+fPnq1+/fo0aX9VB56sLL7zQs4Tojz/+2GaDu+OPP77NbBjqTw6HQ//73/9qPHfCCSfIbOavJzTM7nDpQH6psvNLlZVX8V92Xqmy86zKzCtVXmGZXEHSV+5wupVT6FBOoUNSea3zFrNRibFhSo6LUFJsuJLjwpUUd/DXuKgwmYwEewAA+BvvRwEAABBodb0nfffdd1VaWiqpYinMvn37+jTf0KFD9cUXX0iqWKIyKSlJHTp08G/RftKhQwdPcNe5c2cdf/zx+uOPP/x+n6VLl2rNmjWaNWuWJkyY4Pf5/YnvRIJYUVGRRo4cqdTUVM2dO1cXX3xxoEtq0P79+zV06FCVlJTorbfe8vkvkuY44YQTPMct8T90azGbzUdkcOcNXwv4ymKRuoSHqkuHWK/nHc6KYC8rz6qs3IpfM3Otys4rVWaeVQfyS+UKkmTP7nBp3wGr9h2wej1vMhoqg7yIiv/iI5QSH66kuAilxEUoISZMJlPw/8QQAABtAe9HAQAAEGhms1k//vij53Fqaqouuugin8b27t1bJpNJTmfFalX//e9/1aVLlxaps7mqd8CZTKYW+QG6nJwcPfPMM7rooot01VVXEdyhaQoKCjRy5Ejt2LFDr776aqO71gIhPT1dw4YNU0lJiRYuXKhevXq1yn2rrz+bl5fXKvcE0DaYTUa1T2in9gntvJ53Ol3KKSxTVm5FoJdV1a1XGe5l51vlcAZHsOd0ubU/x6r9Od6DPaPRoMTKTr3kuAilxEdUHMdXBH2JseEyE+wBAAAAAAC0GZmZmZ7jefPm6dprr1ViYmKD40JCQhQVFaX8/HxJFdtxHcmmTp0qp9OpJ598MtCl+ITgLgjl5eVpxIgR2rNnj1577TWdfvrpgS6pQXv37tXQoUNlt9v1zjvv6Oijj261e7drd/AD+eqbSgJAQ0wmo6eDrbeXv7acLrfyCssqO/aslctxVgV7FY/tDlfrF+6Fy+WuqDHXKimn1nmjQYqPCfeEeSmVXXtVj5Niw2Uxm1q/cAAAEHBOp1PDhg3T4MGDNXjw4ECXAwAAgEpu98EfKC8sLNSiRYs0duxYn8ZWX0HC5QqOz68C4T//+Y8+//xzTZkyRSkpKYEuxycEd0GmqtOuKrQ79dRTA11Sg9LS0jRs2DA5HA69/fbb6t69e6vev/pfOhEREa16bwCHN1NlF1tibLhO6J5Q67zL5VZ+cbkn2Kvq2qsI+SqeswVLsOeWDuSX6kB+qf63M7fWeYNBiosKq+zUi1ByfPVlOSuW5Ay1EOwBAPDzzz9r+fLl+vnnn7Vv3z5ZrVZFRkYqISFBvXv31jnnnKMrrrhCISEhgS7VJ+Xl5Zo8ebI2bNjg19Buy5Yt+uSTT7Rhwwbt3btXxcXFioyMVGxsrE444QSdddZZuuaaa2r8ICYAAABq6tOnj7Zt2+Z5XFZW5tM4p9Pp6baTpOTkZH+X1iYUFxfriSee0FlnnaUbb7wx0OX4jOAuiBQXF2vUqFHatWuX/vnPf+qUU04JdEkNyszM1PDhw2Wz2fTOO++oW7duzZpv3rx5WrhwoVJSUjR//nwlJSU1OKZ6l110dHSz7g8AjWE0GhQfHab46DD16hpf67zb7VZBsa0ixMuzKjOnMtDLK/UEe2U2ZwAqr83tlnILy5RbWKY/dtUO9iQpNipUKXERSooLrwj4qkK+yuU5w0J5WwEAOHxt2rRJU6dO1Z9//qkBAwZo3Lhxat++vex2u/bt26c1a9Zo2bJl+vjjj/Xcc8/pySef1CWXXBLosr0qKChQZmam1qxZo3/9619KTU3129w7d+7UtGnT9OOPP+rKK6/UyJEjPdsbZGZm6scff9RHH32kzz//XDNnztSDDz7Ypj5EAQAAaE0TJkxQcXGxNm7cqE6dOunmm2/2ady2bdtkt9s9j/v06dNSJQa15557ToWFhZo6dWqgS2kUPmELEjabTffcc4+2b9+uBQsW+BTa2e12/d///Z+ee+45hYeHt0KVNRUUFGjUqFEqKSnR22+/7VNol5mZqeeee04zZsyode7nn3/W7NmzJVVsFvnRRx/prrvu8mnOKsccc4zvLwAAWpjBYFBsVKhio0LVs0tcrfNut1uFJbaDYZ6nU+/gkpyl5Y4AVO5dflG58ovKtXWP9/1EYyJDqnXpRdRYljMpLlwRYRav4wAACHYLFy7U008/rVNPPVVffPFFrSV2TjnlFF155ZUaM2aMxowZo927d+vee+/VpEmTdMsttwSo6prWr1+v4cOHy+12t9hSSV9++aUefPBBde7cWZ988ol69OhR65r+/fvrrrvu0t13361Nmzbpscce0549e/TAAw+0SE0AAABtWWJiol544YVGj1u5cqXnuFu3bq26tVWw+Omnn/TBBx/o73//u7p06RLochqF4C4IuN1uPfTQQ/r555/18ssv68wzz/Rp3B9//KF169YFJLSrChozMjL09ttv+xyY/fLLLzVae6vbuHFjjcfl5eU+zbljxw7Pcd++fX0aAwDBwGAwKCYyVDGRoTq2s/dgr6TUrqy80splOA8uwVkV7hWX2r3MHBgFxTYVFNu0fW++1/NREZZqXXoVS3Ae3GsvQu3CCfYAAMHngw8+0LRp09StWze99tpr9X7/1a1bNy1YsEDXXnutSktLNW3aNJ144ok66aSTWrFi73r37q2PP/7Y87isrEwrVqzQ66+/7pf5v/32W/3tb39TdHS03nzzzXpXT0lMTNSCBQt09dVXKzs7WwsWLFCfPn3017/+1S+1AAAAHMkcDoeWLl3qeRwsP0jWmmw2mx599FH17t1bw4YNC3Q5jUZwFwReeuklLV++XM8884z+8pe/+DxuxYoVAUuKH3/8cf3666+aP3++TjzxRJ/H1Vdz9WUuLRaLrr32Wp/m/P777yVJISEhuvDCC32uBQCCncFgUGREiCIjQtTjqBiv11QEe1ZlV4Z7VQFfdp5VmbmlKrLaWrnquhVZ7SqyFmhHWoHX8+3CLZ5lN6vCvJTK/fVS4iMUGW6RwWBo5aoBAEey7OxsTZ8+XZJ02223+fRDk127dtVNN92kN998Uw6HQzNmzNDbb7/d0qU2KCIiQj179qzxXN++ffX111/X+GHIpigvL9djjz0ml8ulQYMG+bTlQWxsrMaMGaNp06ZJkmbMmKFLLrlEZjMfUwAAADTH0qVLlZ6eLkmNWl7zcPLSSy8pLS1NH330kUwmU6DLaTTeEQfYN998oxdffFF33323Bg0a5PO49PR0LVq0SOeff77X8xkZGXriiSe0YcMGderUSQ8//LDOOeccv9T8/vvva8mSJZo6dWqj5ty0aZP+/e9/a/jw4V7Pn3POOTIajXK5XLrqqqt8Wnpz37592rBhgyTpyiuvVGxsrM/1AMDhoF24Rd3DY9S9o/dgr7TccbBLr3I5zszKx9l5pcov9q27uTWUlNq1s9SunRmFXs+Hh5pqhHrJlYFecnxF2BfdLoRgDwDgV5999plKSkokVQRyvrrqqqv05ptvSqpYojIjI0MdO3ZsiRKbLSEhodnB3TfffKP9+/dLavzXqSq427NnjzZu3KgzzjijWbUAAAAcyQoLCzVnzhxJkslk0jPPPKOQkJDAFtXKtmzZotdee0133XWXjjvuuECX0yQEdwGUnZ2tiRMn6uyzz9b48eN9Hrdx40ZNnDhRJSUldXavTZw4UevXr5dUsRHlPffcoy+++EIdOnRoVs3btm3T008/rcGDB+uGG27waYzb7da3336rhx56SE6ns86aO3XqpCFDhui9995TRESET3M///zzcjgcioqK0v333+/z6wCAI0V4qFld20era/tor+fLyh3Kzi/1hHuZlYFeZmXXXm5h8AR7peVO7d5fpN37i7yeDw2pDPYq99ZLjouoXIqz4nFsZCjBHgCgUapW95Ck7du364ILLvBpXK9evWQymeR0OiVV7K8xYMCAFqkxGBz6dfJVQkKC2rdv7wn9fvrpJ4I7AACAZpg2bZoOHDggSXrkkUeOuPdWTqdTjzzyiLp3764777wz0OU0GcFdAM2dO1d5eXn6888/deWVV/o0prCwUDk5OZ7HdYVgv/32W43HpaWl2rx5c7ODu+nTp6u8vFw//PCDLr/8cp/G5OXlKT8/3/O4vuU9H3roIe3bt0+ffPKJBg4cWO9eEG+++aaWLl2qkJAQPffcc0pOTvb5dQAAKoSFmtU5JUqdU6K8nrfZnRXBnmePvVJl5hxcjjOnsExudysXXYdym1N7M4u0N9N7sBdiNnqW3awI9sJr7LcXFxUmo5FgDwBwUGZmpud43rx5uvbaa5WYmNjguJCQEEVFRXm+D8rKymqpEoNC9a/Thx9+qCFDhtRalrMuCQkJnuDucP86AQAAtKQlS5Z49jSeOHGibr311sAWFABvvvmm/ve//2nRokVtutOQ4C6AqpLv7OxsZWdnN2mOukKw3r17ezrupIo943r16tWke1RXVXNGRkaT56gvuAsNDdVLL72k119/XcOHD9dZZ52lSy65RCeccIISExPlcDi0fft2LVq0SKtXr1aXLl00efJk9evXr8n1AADqFmIx6aikSB2VFOn1vN3h0oH8aktwVl+WM8+qnPxSuYIk2LM5XErPLlZ6drHX82aTUUlx4ZVdejU795LjIhQfEyYTwR4AHFHc1X46pbCwUIsWLdLYsWN9GmuxWDzHLpfL77UFk+pfJ7vdrjfeeENPP/20T2Orf6BS1aEIAACAxvnpp580adIkGQwGPfbYY0dkaLdnzx698MILGjp0aL0NQW0BwV0bV1cINn36dM8edykpKbr//vvrDcxai8ViabDrz2QyacyYMbr++uu1dOlSff7555ozZ44KCgoUFham+Ph4nXjiiZo+fbquvPLKNp2cA0BbZzEb1SGxnToktvN63uGsCPay80orl+Gs2mOvYjnOA/mlcgVJsudwurTvQIn2HSjxet5kNCgxNryiY++QcC8lLkIJMWEymYytXDUAoCX16dNH27Zt8zwuKyvzaZzT6ayx6sjhvjpInz59tHr1as9jX79OkmqsKJOSkuLXugAAAI4EW7du1b333iuXy6Wnn35agwYNCnRJATFp0iQlJSXpb3/7W6BLaTaCuwB6+eWXW2zujh07av78+X6f95NPPvH7nHWJj4/XqFGjNGrUqFa7JwDAv8wmo9ontFP7hHbq4+W80+lSTmFZjS696styZudZ5XAGR7DndLmVWbkPoDdGo0GJMWEHl+Ostt9eSnyEEmPDZSbYA4A2ZcKECSouLtbGjRvVqVMn3XzzzT6N27Ztm+x2u+dxnz7e/hU8fAwfPlxpaWn6/vvvFR8fr9GjR/s0rqCgQHv37vU8Pty/TgAAAP62Y8cOjRgxQsXFxZo5c6auuOKKQJcUEIsXL9a6dev05ptvKjw8PNDlNBvBHQAACBiTyehZitIbl8utvKIyT4eeJ9SrFu7ZHcGx/JjL5a4MH0v1e2pOrfNGgxQfHVbRqVdtCc6U+Iq99pLiwmUxmwJQOQCgLomJiXrhhRcaPW7lypWe427duunoo4/2Z1lBp127dj4vjVndqlWrPMtsRkVF6ayzzvJ3aQAAAIet1NRUDRs2TIWFhXr++ed16aWXBrqkgMjOztazzz6rG2644bDZUovgDgAABC2j0aCEmHAlxITr+O7xtc67XG4VFJcrs1qQV7XfXnaeVZm5pbLZg2O/HJdbOlBQpgMFZfrfzlyv18RHh1ZbhrPacpyVx6EWgj0ACHYOh0NLly71PL7lllsCWE1w+/DDDz3HgwcPVmhoaACrAQAAaDt27typoUOHqqCgQHPnztVFF10U6JICZsqUKQoNDdXEiRMDXYrfENwBAIA2y2g0KC46THHRYerVrXaw53a7VVhiOxjsVS7JWf1xmS04gj1Jyi0sV25hubbszvN6PjYq1BPkpdTo3Kt4LiyUt3YAEGhLly5Venq6JDVqec0jzbp167Rx40ZJFd12d911V4ArAgAAaBvS0tI0fPhw5efnH/Gh3f79+/Xll1/KYDA0efWGyy67rNZzTz31lAYOHNjM6pqOT3cAAMBhy2AwKCYyVDGRoerZJa7WebfbrSKrvdrSmxV72GVXC/esZY4AVO5dflG58ovKtW1Pvtfz0e1CanTppRzSuRcRZmndggHgCFNYWKg5c+ZIkkwmk5555hmFhIQEtqgg5HA4NG3aNM/jSZMmKT6+9g/gAAAAoKbs7GyNGDFCOTk5mjNnzhEd2klSQkKCPv3000aPu+aaazzH8+fPV3Jyco3z7du3b3ZtzUFwBwAAjlgGg0HR7UIU3S5Ex3SO9XpNcWlFsFcR6FUtw1kZ7OVaVVxqb92i61FYYlNhiU1/7s33ej4qwqKk6oFeXHiNZTkjwwn2AKA5pk2bpgMHDkiSHnnkEZ1xxhkBrig4vfzyy9q+fbskadSoURowYECAKwIAAAh+xcXFuuOOO5SWlqYZM2b4vKfdgQMHtHPnzsPyvanFYlHPnj2bNUe3bt3UqVMnP1XkHwR3AAAA9YgMtyjyqBj1OCrG63lrmd2zt15Vx171ZTkLS2ytXHHdiqx2FVkLlJpe4PV8uzCzJ9hLiguvFvBVBHtRERYZDIZWrhoA2oYlS5bo448/liRNnDhRt956a2ALClLr1q3TK6+8Ikm6/fbb9eCDDwa4IgAAgODncDg0fvx4bdmyRU8++aSuuuoqn8cuW7ZMX331lRYtWtSCFcKfCO4AAACaISLMom4dLOrWIdrr+dJyh7IO6dKrWpYzK7dU+cXlrVxx3UrKHCrZV6hd+wq9ng8PNSk5LqJm1178wWU5o9uFEOwBOCL99NNPmjRpkgwGgx577DFCuzqkpqbqvvvuk8vl0ujRo/XAAw8EuiQAAIA2YcqUKVq7dq3Gjh2rIUOGNGrsunXr1KVLlxaqDC2B4A4AAKAFhYea1bV9tLq29x7sldkcys4rrQz2Siq69/IOBny5hcET7JWWO7V7f5F27y/yej40xKTkuPCKYK+ySy+lWrgXGxVKsAfgsLN161bde++9crlcevrppzVo0KBAlxSU9u/fr9GjR6ugoED33Xef7rnnnkCXBAAA0CYsXrxYixYt0sCBAzVu3LhGjd23b5/WrVunu+++u85rPv/8c82dO1fZ2dk699xz9fjjj7P/cIAR3AEAAARQWIhZnVOi1Dklyut5m92pA/mllctw1gz1MnOtyi0sk9vdykXXodzm1N7MYu3NLPZ6PsRsVJKXvfWqwr24qDAZjQR7ANqOHTt2aMSIESouLtbMmTN1xRVXBLqkoJSdna1hw4YpLS1NDz/8sIYPHx7okgAAANqEbdu2acqUKTr55JM1ZcqURo11uVx68sknZbfb1a1bN6/X/PLLL7r//vvlcrkkSStWrFBOTo7efvvtVvvBW3e1DzXcwfIBR4AR3AEAAASxEItJHZMi1TEp0ut5u8PlCfaq9tWr6tzLzrPqQH6pXEHyvtfmcCk9u1jp2d6DPbPJqKTYcE+HXlW4V7XnXkJMuEwEewCCRGpqqoYNG6bCwkI9//zzuvTSSwNdUlDKzs7W0KFDtXv3bk2aNIllRAEAAHzkcDj04IMPymw2a86cOQoJCfF5bGpqqp599lmtXr1akupcKnPlypWe0K7Khg0btGvXLnXv3r3pxTdCWlqa53jv3r0tfj+bzVbv42BAcAcAANCGWcxGdUhspw6J7byedzhdyikoU1ZuRYdedp5VmdX23DuQXypnkCR7DqdL+3JKtC+nxOt5k9GgxNhwT5CXUi3cS46PUGJMmEwmYytXDeBItHPnTg0dOlQFBQWaO3euLrrookCXFJRycnI0bNgw7dy5U0888USj92MBAAA4ki1fvlxbtmyRxWLRwIEDfR5ns9lktVprPFdXx11dDg3zWsratWu1b98+z+Nly5bptttua9F7bt68ucbjjRs3qkePHi16z8YiuAMAADiMmU1GpcRXdK318XLe6XIrt6CsomOvWtdeVu7BgM/hbJ037A1xutzKrAwgvTEapITY8Bpdep699uIjlBATLouZYA9A86SlpWn48OHKz88ntKtHfn6+RowYodTUVEI7AACAJigsLJQk2e125efnN3me+Ph4RUV5357j0ksv1RtvvFEjqOvZs2ejgz5fWK1WpaWlye12q7CwUD/99JNef/31Gtekp6dryJAhuvTSS9WpUydFRlasPtS5c+cm3dNut2vnzp2SpNLSUm3fvl2vvPJKjWuefvpp5ebm6tRTT1VUVJTCw8ObfD9/IbgDAAA4gpmMBiXFhSspLlwnKqHWeZfLrbyiMmXlllYGeRXBmSfgy7PK7giOYM/llrLzSpWdV6rfU3NqnTcYpIToMCVVBnsV3XoHl+VMig1XiMUUgMoBtBXZ2dkaMWKEcnJyNGfOHEK7OlitVo0ePVpbt27VpEmTCO0AAAACqGvXrnWeO/XUUzVz5ky98MILyszM1BlnnKFJkybJZPL/98abN2/W0KFDG7xu7969euONN2o899577zXpnpmZmbrmmmvqvaaoqEgzZszwPD7zzDP19ttvN+l+/kJwBwAAgDoZjQYlxFTsL3d89/ha510utwqKyyu79SrCvYOdexXhXrnNGYDKa3O7pQMFZTpQUKY/duV6vSY+OrQi2IurFuxVW44zlGAPOGIVFxfrjjvuUFpammbMmOHznnYHDhzQzp07dcYZZ7RwhcHBbrdr3Lhx2rRpkx544AGf97QrLi7Wxo0bdf7557dwhQAAAG3D7bffrpEjR7b4fa688kpdeeWVLX6fs846S1u3bm3wOpvNVms5y6bq1KmTT/cMNgR3AAAAaDKj0aC46DDFRYfpOC8/xOd2u1VYYqvo0qsM97IOCfdKy4Mj2JOk3MJy5RaWa+vuPK/nYyNDlRxf2aXnJdwLD+XtNXA4cjgcGj9+vLZs2aInn3xSV111lc9jly1bpq+++kqLFi1qwQqDx6RJk7RmzRrdeeedGj16tM/j1q5dqylTpmjNmjUtWB0AAAAQ/PhkAQAAAC3GYDAoJjJUMZGh6tklrtZ5t9utIqtdWZ5lOEs9oV5mbsVzJWWOAFTuXX5xufKLy7VtT77X81ERIUqJr9ald8iynBFhltYtGIBfTJkyRWvXrtXYsWMbvezjunXr1KVLlxaqLLjMnz9fS5Ys0aBBgzRhwoRGjV23bl29yzgBAAAARwqCOwAAAASMwWBQdLsQRbcL0TGdYr1eU1xqr7G3XsVee6WeYK/Iam/doutRZLWpyGrTn2kFXs9HhltqL8FZFe7FhatduEUGg6GVqwZQn8WLF2vRokUaOHCgxo0b16ix+/bt07p163T33XfXec3nn3+uuXPnKjs7W+eee64ef/xxxcfXXpo42K1du1azZ8/W2WefralTpzZqrNVq1RdffKFLLrmkhaoDAAAA2g6COwAAAAS1yHCLIsNj1L1jjNfz1jK7J8ir2levKuDLyrWqsMTWyhXXrbjUruL0AqWmew/2IsLM1ZbhDFdKfESNPfeiIgj2gNa0bds2TZkyRSeffLKmTJnSqLEul0tPPvmk7Ha7unXr5vWaX375Rffff79cLpckacWKFcrJydHbb7/dav+vu91ur8eNkZWVpQceeEBHHXWUXnjhBZnNjfuoYcaMGcrPz6/z6wQAAAAcSQjuAAAA0KZFhFnUtYNFXTtEez1fWu5QdlWgV2MZzlJl5lmVX1TeyhXXzVrm0K59hdq1r9Dr+bAQU7VOvWrBXuVzMZEhBHuAnzgcDj344IMym82aM2eOQkJCfB6bmpqqZ599VqtXr5akOpfKXLlypSe0q7Jhwwbt2rVL3bt3b3rxjZCWluY53rt3b5PmePTRR1VQUKAFCxYoJsb7D1l4s2/fPr344otavHixpLq/TgAAAMCRhOAOAAAAh7XwULO6tI9Wl/beg71yu7Mi2KvaXy+vWrCXa1VuYVkrV1y3MptTe/YXac/+Iq/nQywmzzKcVV161ZfljI0MldFIsAf44rPPPtOWLVtksVg0cOBAn8fZbDZZrdYazzW2k+zQMK+lrF27Vvv27fM8XrZsmUaOHKnoaO9/X3qzYcMGffPNNzKZTBo1apTP4xwOh4qLi2s8R8cdAAAAQHAHAACAI1yoxaROyVHqlBzl9bzd4VR2fqmnU696515WXqlyC0rlatrqcn5nszuVllWstKxir+ctZqOS48JrdOlVD/biosNkItgDJEn5+fmSJLvd7jluivj4eEVFef/75dJLL9Ubb7xRI6jr2bNniwRYVqtVaWlpcrvdKiws1E8//aTXX3+9xjXp6em67rrrNHz4cPXs2dPTPdezZ8865y0oqFj61+l0NuvrJNFxBwAAAEgEdwAAAEC9LGaTOiZGqmNipNfzdodLOQXVl+Gs2bmXU1AmV5Ake3aHS+nZJUrPLvF63mwyKCk2QkmVy3AmHxLuJcSEE+wBjdS1a9c6z5166qmaOXOmXnjhBWVmZuqMM87QpEmTZDKZ/F7H5s2bNXTo0Aav27NnjyZPnlzjua1bt/q9nkMlJSUpIiKixe8DAAAABDuDu6m7TwNoEpvNps2bN9d6vk+fPo3aN+NwYbfbtWnTphrP9e3bVxaLJUAVAQDgX06nSzkFZcrMsyo7rzLYy7V6wr3svFI5gyTYa4jJaFBCbLhS4qqFe5Xde0lx4UqMDZfZZAx0mUCj8H4UAAAAgcZ70oP4/JyOOwAAAKBFmUzGis61eO+dJE6XW3mFZZX76nlfjtPhbJ39rhridLkrasq1ej1vNEgJseG1luCs2m8vMTZcFjPBHgAAAAAAdSG4AwAAAALIZDQoMbaiW01KqHXe5XIrr6hMWdWW4MzKO7jnXnaeVTZHcAR7LreUnVeq7LxS/e7lvMEgxUeHVQZ7EUqOrwz54iuDvrgIhVj8v0QgAAAAAABtBcEdAAAAEMSMRoMSYsKVEBOu47vH1zrvdruVX1zu6c7LyrUqs1q3XlaeVeU2ZwAqr83tlnIKypRTUKY/duV6vSYuKrTG3nrV99pLigtXWAjfwgAAAAA4vBgMBiUmJio0NFQGg0Fut1tGI6uVHKn4rhcAAABowwwGg+KiwhQXFabjutY+73a7VVhiq1x6syLIy8w9uL9eZq5VpeWO1i+8DnlF5corKtfW3Xlez8dEhlTr0otQStWSnJWPw0P5FgcAAABA22I2m9W1q5dv6HBE4rtaAAAA4DBmMBgUExmqmMhQHds5rtZ5t9utklK7J8yruQxnqTLzrCoptQegcu8Kim0qKLZp+958r+ejIkKUEh+upLiIim69Q/bbaxd+5G3uDgAAAABoOwjuAAAAgCOYwWBQZESIIiNCdHSnWK/XFJfalV25/GZmtU69qi6+IqutdYuuR5HVpiKrTX+mFXg93y7copTKZTdT4iMqA76K/fVS4iuCPYPB0MpVAwAAADiS2exO7cwo1O79hSq3ORUaYlLX9tHq3jGafcCPQAR3AAAAAOoVGW5RZHiMuneM8XreWmb3dOdl51q1v7Jbr6KDz6qC4uAJ9kpK7UotLVBqhvdgLzzUfLBTrzLQq+jWqziObhdCsAcAAADAL7btydOn36Vq7aYM2R2uWuctZqPO7dtR15zfQz271F5BBYcngjsAAAAAzRIRZlHXDhZ17RDt9XxZuUPZ+dW79CqX5Kw8zisqb+WK61Za7tCufYXata/Q6/mwEFO1ZTgPBntVYV9MJMEeAAAAgPpZyxx649PftOKH3fVeZ3e49PUvafr6lzRdfnZXjbimtyLCiHUOd/wOAwAAAGhRYaFmdU6JUueUKK/nbXZnjf31qpbgzMqr2Gsvr6hMbncrF12HMptTezOLtDezyOv5EIupxp56VeFeSnxFwBcbGSqjkWAPAAAAOFLlFJTq0XnfKy2ruFHjVvywW7+l5mjqXecoISa8hapDMCC4AwAAABBQIRaTOiVHqVOy92DP7nAqO7/0YKfeIXvt5RaUyhUkwZ7N7lRaVnGd34SbTcYanXqe5Tgrw7246DCZCPYAAACAw5K1zNGk0K5KWlaxHnt1nWaMv4DOu8MYv7MAAAAAgprFbFLHxEh1TIz0et7hdOlAfmmNZTg9y3LmlepAfqlcQZLsOZwuZRwoUcaBEq/nzSaDEmMPdulVLMt5MNxLiAmTyWRs5aoBAAAA+MMbn/7W5NCuyt7MIr3x2e+69/qT/FQVgg3BHQAAAIA2zWwyqn1CO7VPaOf1vNPpUk5BWWWXXu0lObPzrXI4gyXYc2t/jlX7c6xezxuNBiXGhHmW4vTstVf5ODE2XGaCvUYxGAxKTExUaGioDAaD3G63jEa+hgAAAPCvbXvyGtzTzlcr1u1S/zO7qGeXOL/Mh+BCcAcAAADgsGYyGSuXpYzwet7pciu/qKyiS6/6Mpw5FeFedn6p7A5XK1ftncvlrgge80ol5dQ6bzRI8THhld164UqpWpKzMtxLig2XxWxq/cKDmNlsVteuXQNdBgAAAA5zn36X6tf5PluTqgm3nObXOREcCO4AAAAAHNFMRoMSYsKVEBOuE7on1DrvcrmVX1zu6dLLzK0M9qqW5sy1yhYswZ5bOpBfsTyoNwaDFBcVdjDYq+zUq9hzL1xJcREKtRDsAQAAoOW5XG653G65XG45XW7PY6ezruddcrkrx7nccrpccrlU7dqDjyuudcvlUuXzh8xVdVzP84fW4rn2kNrqqj0lIUL3XFexnKXN7tTaTRl+/fqt+TVDY284WSG8fz/sENwBAAAAQD2MRoPio8MUHx2mXt3ia513u6sHe9WW4cw7uO9emc0ZgMprc7ul3MIy5RaW6Y9d3q+JiwqtDPJqLsOZHFex115Y6OH1baTN7tTOjELt3l+ocptToSEmdW0fre4do/kQBAAA+MxbCFVXoFMrlDo0dKoMmqqHTnWFTd6CpPqebyic8laztxCsvvCr3sfVanMHx2r1Lebyft08xzszCv2+iofd4dKufYUsl3kYOry+4wIAAACAVmYwGBQXFaa4qDAd52XFRbfbrcISm6dLL7uyay8rt9TTwVda7mj9wuuQV1SuvKJybd2T5/V8TGRItS69CKVUC/eS4sIVEWZp5YqbZtuePH36XarWbsrw+iGKxWzUuX076prze/BhCADgiFN/UOQtYHJ7OqGqh07Vr/ElVKp6vq4gqaGQqO6urdqdWHXV42uYdejzh3sIhcZLqbZU/+79hS1yD4K7wxPBHQAAAAC0IIPBoJjIUMVEhuqYzrG1zrvdbpWU2pWVV1oR6FUtwZlXEe5l5llVUmpv/cLrUFBsU0GxTdv35ns9HxVhqdalV7EEZ3JcROXynBGKDA9ssGctc+iNT3/Tih9213ud3eHS17+k6etf0nT52V014preigjjW2gAaIsa7D46pBOq+nJ8tTqffA6K6u428nWZvvqDspqdT7Uf+7r0oPf7Amg+s8ngOS5voRU4yu3BsbIH/IvvOgAAAAAggAwGgyIjQhQZEaIeR8V4vaYi2LMeXI7Ts9eeVZm5pSqy2lq56roVWe0qshZoR1qB1/PtwswHg73KX1Mq99dLia8I9gwGg9exzZVTUKpH532vtKziRo1b8cNu/Zaao6l3naOEmPAWqQ0AfOF2H+xq8qX7qHoIdXCpu4YDnTo7nOq4Z61x9XZUueoMweq8TwP3bageAAgEh/Pg3z+hIS2zBDv7Ux+eCO4AAAAAIMi1C7eoe3iMunf0HuxZy+zKrranXlblspxVnXsFxcET7JWUObQzo1A7M7wvFxQeavbsrZcSF+EJ9Ko696LbhTQp2LOWOZoU2lVJyyrWY6+u04zxF9B5B/hRgwFMraXu3DVCqMZ1LR0SRh3aaVVH2OQtBKurE+vQ+bzuJVVXbT7uUQUAaBsyc62e467to1vkHt06tMy8CCy+2wAAAACANi4izKKuHSzqWsc37mU2R61gz7McZ55VuYXlrVxx3UrLHdq9v0i79xd5PR8aYqq29Ga4UjydexVhX2xkqNdg741Pf2tyaFdlb2aR3vjsd917/UnNmgeHr8Yvddf0rqWmLIVXu56aIZj3Tquay+/5Y4+q6s8DAOAvRoNkNBpkNBplMkpGQ9WxQUajZDQaZTQaZDIYKq8zVJ4z1Pu80eDlOlPDzyfFHVypoXvHaFnMRq97KzeVxWwkuDtMEdwBAAAAwGEuLMSszilR6pwS5fW8ze5Udn7lHnvV9tc7GOyVyR0kn6+X25zam1mkvZneg70Qs1FJcREaPbC3TuuVIknatievwT3tfLVi3S71P7OLenaJ88t8wcxfS93VtwSeT/su1XneS+fTISFUQ3tCNWaPqvr2rqp6DgAAf6k/hDokYDJ4CaHqeN7nEKqu643GihDMUHVcEYp5jg2Gino9x0avYVjj71vteZPR8/UxVX6NjAa12HLr/hBiMencvh319S9pfpvzvJM6KoSlMg9LBHcAAAAAcIQLsZh0VFKkjkqK9Hre7nApO9+q7MowLzPPquy8yqAvz6qc/FIFS2Zhc7iUmWvVid0TPM99+l2qX+/x2ZpUTbjlNEkVIdBPf2TK6Wxc+OPpvjokdPL2uKlBWXPDKAAA/KVWCGU0NhDMHAydvIZQPnY8HTq3yVg98DkkdGog/GqwU8tUu/a6XlO9IVTlNcEcQqFprjm/h1+Du6vP6+G3uRBcCO4AAAAAAPWymI3qmBipjonegz2H06WcgrJq3XrWyj32KoK+7PzSVg2CunWIVlhoxbe7NrtTazdl+HX+Nb9maOwNJyvEYpLJaNSir7bpz7R8v94DABC8jMbqAUy1EMpLMFNnGOUlnKoeNtXVIVWr88mgyuCn9v28z1NtuUCfOpvqP9/wPMHfCQW0lp5d4nT52V39shLE5f26HRErQBypCO4AAAAAAM1iNhmVEl+x75w3TqdLOYVlNbr0qi/JmZ1vlcPpv2DvmM6xnuOdGYV+3UtEquhA3LWv0PNhyTGdYgjuALRZDYVKdXUJNRQSeVumr67rDy6xVzOEOrQTqvZyfN46quq6h/dwqd5OKEIoAH424pre+i01p1l7L3dOidKIq0/0Y1UINgR3AAAAAIAWZTIZlRwXoeS4CJ3YI6HWeafLrfyiMu3PsSo7z6qsvNKa4V5eaaPCt+oB4u79hX55DYeqHtwl1xFYAmh99XUJ+dLxZGooyPHaUXUwdKr38SF7QvmyF5XJy/m6nq/dWVW5D5Wndi9LBBJCAUCriggza+pd5+ixV9fVuWdzfTqnRGnKnf0UEUa0czjjdxcAAAAAEFAmo0EJMeFKiAmXVDvYc7ncKigur9hbL7e0chnOqr32rMrMLZXN7vRcbzYd/BC63OasNZ8/lFe7n8VsbJF7AA11CTU2bKpzKbxqAU9dnU++dlo1uJ9THfXWF0753J1FCAUAaAMSYsI1Y/wFeuPT3xq1bObl/bppxNUnEtodAfgdBgAAAAAENaPRoLjoMMVFh6lX19rn3W63CktsnmU4k2LDPedCQ0wtUlOo5eC8/l6K83DlS3dRY5bpqxniVAudDIcsp+clADq066jhjiofltTzsldV3cv01Q7KvL02AABweIoIM+veG05W/7O66rM1qVrza4bX95QWs1HnndRRV5/Xgz3tjiAEdwAAAACANs1gMCgmMlQxkaG1PtDo2j66Re7ZrcPBefOLyhUZbvFtv6S6Op881zYcQnlb6s5bZ1Rjw6Za4VY93V41QrN6grLqrw0AAAA19ewSpwm3nKaxN5ysXfsKtWtfocrtToVaTOrWIVrdOkQrxNIyP4iG4EVwBwAAAAA4bHXvGC2L2ejXrjiL2VgjuBs9sI9GD+zjt/kBAABwZAmxmNSzSxxddZAksRA/AAAAAOCwFWIx6dy+Hf0653kndeQnnwEAAAC0CII7AAAAAMBh7Zrze/h1vqvP8+98AAAAOLI5HA7t3r1b+/btU2Zmpvbt2yen0xnoshAgLJUJAAAAADis9ewSp8vP7qoVP+xu9lyX9+vGEkYAAADwK7fbrQMHDtR4LjExUSYTqzwciei4AwAAAAAc9kZc01udkiObNUfnlCiNuPpEP1UEAAAAALUR3AEAAAAADnsRYWZNvescdU6JatL4zilRmnJnP0WEsXANAAAAgJZDcAcAAAAAOCIkxIRrxvgLdPnZXRs17vJ+3TRj/AVKiAlvocoAAAAAoAI/KggAAAAAOGJEhJl17w0nq/9ZXfXZmlSt+TVDdoer1nUWs1HnndRRV5/Xgz3tAAAAALQagjsAAAAAwBGnZ5c4TbjlNI294WTt2leoXfsKVW53KtRiUrcO0erWIVohFlOgywQAAABwhCG4AwAAAAAcsUIsJvXsEkdXHQAAAICgwB53AAAAAAAAAAAAQBCg4w4AAAAAcMRyOBxKT09XSEiIjEajXC6XkpOTZTKxTCYAAACA1kdwBwAAAAA4Yrndbh04cKDGc4mJiQR3AAAAAAKCpTIBAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgQHAHAAAAAAAAAAAABAGCOwAAAAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAAAAAAAQBAjuAAAAAAAAAAAAgCBAcAcAAAAAAAAAAAAEAYI7AAAAAAAAAAAAIAgQ3AEAAAAAAAAAAABBwBzoAgAAAAAAaElut1sul0tut7vWOYfD4fU5g8HQGqUBAAAAQfue1GAwyGg0BryOIw3BHQAAAADgsOJ2u2W1WlVYWKji4mKvH4RUv/ZQO3fu5MMJAAAAtJpgf09qNpsVGRmp6OhoRUREBE1dhyuCOwAAAADAYcHtdisrK0sFBQVyOp2BLgcAAAA4LDgcDuXn5ys/P18mk0kxMTFKTk4mwGshBHcAAAAAgDbP7XYrIyNDhYWFjR4bFhbWAhUBAAAAvmsr70mdTqdyc3PlcDjUsWNHwrsWYAx0AQAAAAAANEdzQjsAAAAAjVdYWKiMjAyvy3yieei4AwAAAAC0aVlZWV5Du7CwMEVFRaldu3Yym81efxrY5XKprKys1jijkZ9zBQAAQOsI1vekbrdbDodDJSUlKioqqlVjYWGhzGazUlJSAlTh4YngDgAAAADQZrndbhUUFNR4zmAwqFOnToqMjGxwvMvlkslkqvGc2WwO+IckAAAAOHIE83tSi8Wi8PBwJSYmqri4WGlpaTW67AoKCtjvzs8C/7sOAAAAAEATWa1WOZ3OGs/5GtoBAAAA8F1kZKQ6depU4zmn0ymr1Rqgig5PBHcAAAAAgDbr0CUyw8LCCO0AAACAFhIZGamwsLAaz7HXtH8R3AEAAAAA2qzi4uIaj6OiogJUCQAAAHBkOPQ996HvydE8BHcAAAAAgDbJ7XbL4XDUeK5du3YBqgYAAAA4Mhz6ntvhcNTY9w7NQ3AHAAAAAGiTXC5XrefMZnMAKgEAAACOHCaTqdZz3t6bo2kI7gAAAAAAbZK3n+o1GAwBqAQAAAA4chiNtaMlOu78h+AOAAAAAAAAAAAACAKsIRJktm7dqiVLlmj9+vVKS0tTaWmp2rVrp+TkZJ100knq37+/LrjggqD6KdLy8nItXrxYX3zxhbZu3ary8nJ17NhRJ598sm655Rb17ds3KOcGAAAAAAAAAAAIJnTcBYmMjAzde++9uvnmm2WxWPTYY4/p888/16pVqzRv3jz1799fX331lcaMGaPrrrtOu3fvDnTJkqT//e9/uuaaazR58mRFRkZq3rx5+uqrr/Twww9r586duuGGGzRlyhTZ7fagmhsAAAAAAAAAACDY0HEXBH799VfdeeedSkhI0PLly9WhQ4ca51NSUnTKKafoxhtv1IgRI/T777/rpptu0uLFi9WpU6cAVS1t3rxZw4YNU0lJiYYMGaInn3zSc659+/Y6//zzddddd+mdd95RWlqaXnnlFa9r37b23AAAAAAAAAAAAMGIpCPAcnNzdddddyk/P18vvPBCrdCuuvbt22v27NkyGo3Ky8vT3//+91astKb8/Hzdc889KikpUc+ePfXYY4/VusZoNGrGjBmKjo7W119/rTlz5gR8bgAAAAAAAAAAgGBFcBdg8+bNU25uro477jgdffTRDV7fq1cvnXfeeZKkn3/+WevXr2/pEr2aNWuWsrKyJEkPPvigzGbvzZvR0dEaOnSoJGn+/PnasmVLQOcGAAAAAAAAAAAIVgR3AbZixQpJatQ+beecc47nePXq1X6vqSF79+7VkiVLJEndunXTBRdcUO/1gwYNkiS53W7Nnj07YHMDAAAAAAAAAAAEM4K7ALJarcrMzJQk7dixQ99++61P4zp37uw53rNnT4vUVp833njDEzQOHDiwwes7deqk4447TpL09ddfKzU1NSBzAwAAAAAABFJ6errcbnegyzgilJSUBLoEAACahOAugEpLS2s8nj59uk/jwsPDPcc2m82vNTXE5XLpq6++8jw+//zzfRp3+umne47//e9/t/rcAAAAAAAAgfb8889ryJAh+t///hfoUnzyxhtv6N1335XD4Qh0KY2Snp6uSy65RLNmzVJ+fn6gy/Fq165dLTq/zWbTzJkzVVRU1KL3AQD4H8FdAMXHxyspKcnzuKr7riF5eXme4w4dOvi9rvps3LhR2dnZkqSIiAj16tXLp3EnnHCC53jlypWtPjcAAAAAAECg/fHHH/rvf/+r66+/XlOmTAn6UOWUU07RlClTNGDAAG3YsCHQ5fjsqKOO0rhx4/Tqq6/qkksu0WuvvRZ04ePYsWM1atQorVu3rkXmnz17tubPn68BAwZo/fr1LXIPAEDLMAe6gCOZwWDQnDlzNGfOHOXn52vo0KE+jfvtt988x1XLRLaWjRs31ri32ezbH6Fjjz3Wc7xlyxY5nU6ZTKZWmxsAAAAAACCQCgoK9Oeff0qSnE6nsrOzZTQG98/Un3zyybr22mv18ccf6/bbb9dtt92miRMnymKxBLq0Bt1666368ccf9eWXX+q5557TV199pZdeeqnGD9EHUnh4uNasWaM1a9a06H0yMjJ05513atmyZTW23wEABC+CuwA7/fTT9c477/h8vdvt9iwnaTabdcUVV7RUaV5t377dc3zUUUf5PC45OdlzbLPZtGfPHnXv3r3V5gYAAAAAAAik9evXy+VySZKuuOIKzZo1K+iDO0kaP368li9fLrvdrrffflt2u11PPvlkoMvyyWOPPabvv/9eRUVF+vXXX3Xbbbfpo48+UmRkZJPmc7vdKigoUGxsbLNrCwsLk1Txudabb77Z7PkO9e677+rdd9+VJM2fP5/QDgDaEIK7Nmb16tVKT0+XJF166aWKj49v1ftX/WSYJHXs2NHncUlJSTIYDJ4NmHfs2FErXGvJudsCh8Mhg8EQ6DJanbelKoJt+QoAAAAEJ4fD4fk+oIrL5fJ8MN4c/pgDAKr7+uuvJVWsMvT0009Laht/13To0EGXX365Pv30U0nSRx99pIceekihoaE+z+FwOHxeWcmfEhISNGTIEC1YsEBSxb5yGzZs0F/+8pdGz+V2u/X4449rw4YNeuutt2r8IHlTVK0WZTabW+RzrOrhYq9evdrEnzUAtQXr/7sul6vW+3C73V7ruabgs2GCuzbF6XTq+eefl1SxB9wDDzzQ6jXk5uZ6jmNiYnweZzabFR4eLqvVKqlieYjWnLst+OOPPwJdQtBoK5t0AwAAIHhUdS6UlZU1e+n80tJSf5QEAB5Op1MrV66UxWLR5MmT5XK52tTfNVdffbUnuDOZTLLZbD5/mFxUVKSxY8fq6quv1g033NCSZXp17bXXeoK75ORk9enTp9Ffe7fbralTp2rp0qWSpNtvv10LFixo1rKbVT+87Xa7W+TPgt1u9xyXlZW1ie5OADUF878TTqfTE9KVlZVJ4jNdfyK4a0PeeustbdmyRZI0efLkgLS4l5SUeI6rvjH2VUhIiCdcq/q1teYGAAAAAAAIlJ9//ln5+fkaPXq0jj322EaNtdvtTdpT7ptvvlFRUZGuvvrqRo891CmnnKJ27dqppKREAwYM8Ll7rqioSPfee69+++03/fbbb3K73brxxhvrHbN7926/d5gkJiYqPz9f48eP1/79+xs9/p133vGEdpK0Z88ejR49WvPnz29y511VcOdwOLRz584mzVGf/Px8z7E/OmAAAK2H4K6N+O233zRr1ixJ0sSJE3XNNdcEpI7qoVhjlkSQaoZx1UO61pgbAAAAAACgPh9//LFiYmJ00UUX1XlN1XKJ/fv31/nnn+95/ssvv1S/fv0UHR3tddynn36qrl27atSoUY2u65lnnpHRaNTf//73RgV4ZWVlmjRpkv7973/r0UcfbVZ3mNls1i233KL9+/frb3/7m09jqod2UsXXbvr06ZJUb3i3fv16PfPMMy0SNj366KN+m6sqvFuwYEGTwruq4C47O1vXXXed3+ryJliX2gMAeEdw1wZkZWVp7NixcjgcmjRpkm699dZAl9Qk1d8k+Ls9vyXnBgAAAAAAh7/8/HxNnjxZl1xyiW6//XavXWWrV6/WZ599puXLl+uOO+7QnXfeKaPRqO+//16zZ8/WE088obPPPrvGmJKSEq1atUqzZs1SSEhIo2r6+eef9fHHH8vtdis1NVUzZsxQXFycT2Or6v/uu+/017/+tVH3rU/VkplN4Xa7PaHcTTfd5PWaG264QZGRkcrLy9Pxxx+v9u3bKyoqSu3atfOEXXX56aefNGbMGEnSPffcozvuuMPrda+99ppefvllSdL8+fN1+umnN/k1NVeHDh20fPlyv887b948zZ8/XxIddwDQ1hDcBbnCwkKNGTNG2dnZevbZZzVgwICA1tOuXTtPq33V2rW+stlsNeZpzbnbguOPP75JS1+0dQ6Ho9b6xyeccEJANq0GAABA2+JtebGwsLBGv5c8dP+Q8PDwZtcGoO2JjIyUJK1atUrffvut15DI6XRKqghClixZoptuuklHHXWUwsPDlZWVpXvuuafO+es754uNGzfqhRde0DPPPOPT9dU/H7n22ms9gVYwMBgM9f5dO3jw4CbNW30FJ7PZXOc9qv87ERoaGpC/96v+fDX0tWiq6p8xWSwW/m0D2oC29J7U4XB4/h6rqrN79+5++UzXbrfrjz/+aPY8bRmfjAexoqIijRw5UqmpqZo7d64uvvjiQJdUI1wrLy9v1Njq10dERLTq3G2B2Ww+IoM7b/haAAAAwBcGg6HWB+tGo7FRq3DUtXwYK3kAR57q3XBvvvmm1y6s2bNna968eZKkf/7zn+rcubOkg4FRYmKiFi5c6Lea0tLSPIFb//79NXXqVJ//fqoeYsXFxemYY47xW13Bqvq/CQaDoc6vla/XtaSqLriWun/11+h0Ovl3DQhybe09qdForPU+3GKx+CW4o0uY4C5oFRQUaOTIkdqxY4deffVV9evXL9AlSap4o5eeni6pokZf2Wy2Gl108fHxrTo3AAAAAABAfRr7YWP37t09xyaTyfPr0Ucf7de6qlx88cWNWmqz+g/ENrTEZFuzdetWLVy4UE8++WSbXbHHbrd7ft2xY4ff58/Ly6t1LwBA29A2/2U7zOXl5WnEiBHas2ePXnvttYCus32oo48+2rOpcEZGhs/jsrOzayTl3t7EtuTcAAAAAAAA9WnOyi/BGB4dzsHdjBkz9O233yorK0vPP/+8X1Zf+vbbb/Xdd99p9OjRSk5O9kOV9atadjUrK0tXXnlli96rsVvSAAACK/jeVRzhqjrtqkK7U089NdAl1VB9WYV9+/b5PC4zM9NzHBERoaOOOqpV5wYAAAAAAKhPc8K3qo67YBKsy6s118qVK/Xtt99Kqgjbbr/9ds2fP18JCQnNmvfss8/W6tWr1b9/fw0ZMkRjxoxp9pz1qdr25aijjtJ//vMfv88/d+5cvfjii7JYLCw7BwBtzOH5L3gbVVxcrFGjRmnXrl16/fXXgy60k6S+fft6jrdu3Vrn2ruH2r59u+e4d+/eXn/SqyXnBgAAAAAAqE9zgq5gD+6a8lnJunXr9PHHHzf5/sXFxbr33ns926L4Q0lJiZ566inP44iICJ144okqLCxs9twhISF6/PHHNW3aNH344Ye69NJLNXPmzEZt59IYVcFdS235kpiYqLFjx+o///mPjj32WK/XLF68WFartUXuDwBoOoK7IGGz2XTPPfdo+/btevXVV3XKKac0OMZut2vs2LEqLS1thQornH766YqNjZVU8Qbszz//9Gnc77//7jm+9NJLW31uAAAAAACA+jQnuPNHd5uvP8Dsq+o1HVqfL2FNXFycnnjiiSbvv7Z582atXLlSV111lebNmyebzdakeaqbPn26JwiMjY3V+++/r8mTJ9fYb7C5rr76an3wwQeKj4/X/Pnz1b9/fy1YsMATtPnLKaecoldeeUUffvihX+etcvPNN2vcuHFel/10u92aOnWqHnnkEd13331yOBwtUgMAoGlYKjMIuN1uPfTQQ/r555/18ssv68wzz/Rp3B9//KF169YpPDy8hSs8yGw269JLL9XixYslSd9//7169uzZ4LiffvpJUsVPeNUVrrXk3AAAAAAAAPVpTvhWV0fbunXrZLPZ9Je//KXe8T/88IPmzp2ruXPn+q0Dq67gzm6368Ybb9Tbb7+tuLi4Osf36tVLJ510kv7v//5PixcvVkhISKPuv3nzZklSaWmpZs+erU8++URz5szRcccd18hXUuGbb77RBx98IEmKiorS66+/rl69ejVprob07NlTixcv1rhx47RhwwbNmDFD77//vh544AGf9qNLTU1tcHnKYcOGSZJ27tzpl5ob4+WXX9Znn30mqWK50X/84x+aPn06q1gBQJAguAsCL730kpYvX65nnnmmwTdy1a1YsUJdunRpwcq8Gz58uJYuXSqn06lPPvlEw4cPr/f67du3e34664orrqh3D7qWnBsAAAAAAKAuLbFUZnFxscaOHavrr79eDzzwgCIiImpdU1ZWpkcffVR79+7V9ddfr3nz5vn0g8wNqSu4s1gsOvfcc/WPf/xDr7zySr1zDBs2THfffbdmzZqlhx56qFH3/+2332o8TkhIUI8ePRo1R5UDBw7o4YcfllSxPOaCBQvUu3fvJs3lq7i4OP3zn//Uww8/rM8++0zp6emeEHPy5Mnq1KlTnWPXr1+vJ554os3sLffJJ58oISFBEydODHQpAAAR3AXcN998oxdffFF33323Bg0a5PO49PR0LVq0SOeff77X8xkZGXriiSe0YcMGderUSQ8//LDOOeccv9R87LHH6tprr9WSJUv0v//9Tz///LNOO+20Oq//6KOPJFW8iR03blzA5gYAAAAAAGgJdXUqhYWFSarYS6xqhaH6pKen68knn9Q777zT7O6n6uMPDRZvu+02XXbZZVq0aJGGDBlS5xwXXXSRunTporfeeksXX3yxz6tESQc77qSK/eOefvppWSyWRryCCg6HQxMmTFBOTo6io6M1f/58n7aY8YeQkBDNmDFD0dHReu+99yRJa9eu1aBBgzRv3rw6P7MaMmSIkpKSVFhYqBNOOEEpKSmKiYmhow0A4BP2uAug7OxsTZw4UWeffbbGjx/v87iNGzdqxIgRKikpqbPjbuLEifrmm29ktVq1bds23XPPPdq3b5+/SteDDz7o+cmiZ555ps6fIMrMzNT7778vSRo3bpxPP1nVknMDAAAAAAB405xQpa5uverLSz788MNatWpVrf+++OILzzWnnnqqXn31Vb8EPHa7vc76OnfurEsuuUTPPPOMUlNT65zDYDBo8ODBcrlceuihh1RSUuLTvbOzs5WRkeF5fMstt6hz586NfAUVpk2bph9//FHx8fF66623Wi20q2IwGPT444/rtttu8zxXWFioCRMm1LtX4CWXXKJBgwbpuOOOU2xsbI3f07179/plz7+GlJWV1fv7CwAITgR3ATR37lzl5eXpzz//1JVXXqnLL7+8wf/OOeccDRkyRLt375akOoO7Q5cjKC0trfGTTs0VHx+vV155RdHR0dq0aZOeeeaZWtfYbDb97W9/U1lZmS677DLdddddAZ8bAAAAAADAm+YslVmX0NBQz3FcXJw6depU67/q236ceeaZioyM9Mu9y8rKPMfelvK87bbbVFpaqokTJ8rhcNQ5z6BBg2Q0GpWenq7Zs2f7dO8ffvjBcxwSEqI77rijEZUf9P777+u9995TSkqK3nnnHZ1wwglNmscfHn30UV1++eWex/v379dXX33VpLlWrFihyy+/XIsXL673a99cDz/8sAYOHKg333yzzSzbCQBgqcyAOnDggKSKn0LKzs5u0hx1BXe9e/fW+vXrPY8tFovfN+zt2bOn/vWvf2ncuHF68803lZGRoVGjRql9+/b6448/9Pzzz+uPP/7QsGHDNHHixEb9tFhLzg0AAAAAAHCo5gQbdX0u0RJhoK9KS0s9x96Cu7POOktdu3bVpk2b9Oqrr+ree+/1Ok/79u117rnn6rvvvtO7776ra665RieddFK99163bp3neODAgUpKSmp0/T/++KOmTZumnj17asGCBWrfvn2j52iqzMxMpaSk1HjOYDB4OhS3bdsmqaLzrilCQkKUnp6uRx55RI888kiz623I008/rc2bN2vmzJktfi8AQPMR3LVxdQV306dP9+xxl5KSovvvv7/Oa5ujW7du+uijj7RixQotXbpU48ePV0FBgdq3b69TTjlF06ZN04knnhh0cwMAAAAAAFTXEsGdt8CstVTvuDOba38EaDAYdP3112vmzJl65ZVXdMkll9T5Q99XXHGFvvvuO7lcLk2ePFn/+te/6g0lq3fcDR06tNG1b9q0SWPHjtXpp5+uuXPnKioqqtFzNNWGDRt0xx136KGHHtLNN99c41x4eLheeukl3XLLLcrJydH555/fpHtUX0J1+vTp6tOnT4NjvvzySz3//POSpNdff10dOnRocMwdd9yhjIwMHXvssXrooYeaVCsAoPUR3AXQyy+/3GJzd+zYUfPnz2+x+asLCQnRgAEDNGDAgDY1NwAAAAAAQJWWWEqwscGdP2uo3nEXHh7u9ZrBgwfr+eefl91u16OPPqoPP/zQayB30UUXyWQyyel06rffftPy5ct1zTXXeJ1z7969Sk9Pl1Sx9Oexxx7bqLo3bdqkkSNH6rLLLtOTTz4pi8UiSdq3b1+9e8pVXVMlLy9PO3bs8HpdXl5ejTFV12VnZ2vcuHEqKyvTE088oZKSklrLfHbp0kWLFy/W1q1b1b1790a9tirVg7sOHTro6KOPbnBM9a7Fzp07q2vXrg2OqQpse/fu3aSuRwBAYBDcAQAAAAAAAEHAn8Fd9Y67iIgIr9ckJiaqX79++u6777R582a99957uu2222pdFx8fr1NPPVUbNmyQJL366qt1BnfVu+0O7VhryKZNmzRmzBj93//9n2699dYa57KzszVy5EgVFRX5NNfChQu1cOHCBq+bOHFineeee+45GQwGjRo1qsbz7du3b9bSndWDOwAADkVwBwAAAAAAgCOey+Vq1PW+hGx1LaHprxrqU1BQ4DmOjIys87qqZTAl6YUXXtCAAQMUHR1d67ozzzzTE9xt375dmzdv9rrE47fffiupokOsf//+jar5lVde0YsvvqjTTz+91rm+ffvq/fffV05Ojnr16qXY2FjPuX//+9964IEH9PHHHze5C66srEy33HKLfv/9d0lScnKy7rzzTl133XVNmq8+VV2EraUlukkBAC2H4A4AAAAAAABHvMaGZtWvryugC2Rwt3//fs9xcnJyndf1799fjz/+uOx2uwoKCvTBBx9o9OjRta476aSTajz+8ccfawV3NptNa9askSQNGTKk0QHVK6+8Uu/5Y4891uvSm/3791fv3r31j3/8Q++++269++9543a7NXHiRE9oFx0drTfffNOnJSybonrHXVP2ALzssssadb0//1wBAFoewR0AAAAAAACOeI0NNxwOh+e4ro6m5szZXNWDuw4dOtR5XXR0tE455RStX79eUkX3mrfgrm/fvjUeZ2Vl1bpm7dq1slqtslgsGjJkSFNLb5KJEyfqxhtv1JtvvqmRI0c2auxLL72kFStWSKrohnvhhRdaLLSTau59OH36dK+di4f68ssv9fzzz0uSXn/99Xp/T6vccccdysjIILgDgDaG4A4AAAAAAABHvMYuJ+jPkK2KPwOWffv2SZLCwsKUkJBQ77Vnn322J7jbtGmT8vPzayxFKUlxcXGKjY1Vfn6+JNU6L1WES5J05ZVXKjExsXkvoJH69u2rwYMHa9asWTrttNNqdQjW5eOPP9bcuXMlVXRITpkyRf369WvJUmWz2TzHHTp08CkkTEpK8hx37txZXbt2bXCM2Vzx0S/BHQC0LQR3AAAAAAAAOOJVD+LWrl2r9PT0Wtds377dc1w9fKmL0+n0HGdnZ2vHjh21rrHb7V6Pm6uq4+6YY45p8NqzzjrLc+x2u7Vnzx6vwVyvXr30ww8/SFKtfehsNptWrVolqWnLP/rDxIkT9e2332r8+PFaunSp4uPj673++++/16OPPup5/I9//EODBg1q6TJ9+rPjTy0RMgMAWg7BHQAAAAAAAI541cON5cuXKzw8vNY1Bw4c8ByXl5d7juvq1qse3D333HN67rnn6q3BX8GdzWZTbm6uJOmEE05o8PpevXrJYDB4XkdZWZnX6y677DL98MMP6tevn84444wa57777jsVFhbq1FNPVe/evZv5CpomJiZGkyZN0rhx4zR+/Hj985//rLGfXHW///67xo4d6/majxs3rtUCR38GtMF4PwBA8xDcAQAAAAAA4IhXPbh76qmnanWUSdLs2bM1b948Sb4Fd9XnfPbZZ3XttdfWuqa8vNyzf5y/OrH279/vqen4449v8PrIyEh1795dqampkqQuXbp4ve6mm25SSkqK/vKXv8hgMNQ4t3z5ckmB67arctlll2nw4MFasmSJHnjgAc2ZM0dGo7HGNdu3b9fIkSNVUlIiSbrnnns0duzYVqux+u/zvn37vHZiHio7O9tzvHfvXp+66Kquqf5nFQAQ/AjuAAAAAAAAcMRrzHKCZrO5VnDlTWMDE38FLFu3bvUcn3nmmT6NOf/885WamqqTTz5Z7du393qN2WzWpZdeWuv54uJirVq1Sh06dFD//v2bVrQfTZo0SZs3b9aXX36pJ554Qk8++aTn92vnzp0aMWKEZ6++++67T/fcc0+r1lc9uJs4cWKjx48aNapR15eWljb6HgCAwCG4AwAAAAAAwBHPl+UELRaLBg8erLvvvrtGV5rL5fJ6fVVgkpycXGcXmyR17NhRN998s2644YZGVu3db7/95rmvL3vcSdLtt9+uHTt26Iknnmj0/f7973+rrKxMt912m8zmwH/cGB4erueff1433nijPvjgA9ntdk2dOlV//vmnRo4c6Vny9MEHH9Qdd9zR6vVV/7O2cOHCGnsM1uVf//qXZz++r776Sl27dm1wTP/+/eV0OnXVVVc1vVgAQKsL/L+kAAAAAAAAQIBVdUFZLBZFRkZ6veauu+7yGkzVtVRmXFycZs2apcsuu0wWi8XrNaGhoVq5cqVMJlMTK6/t999/lySdd955Po/p3LmzXn/99Sbdb+nSpYqIiNCNN97YpPEt4eijj9bcuXM1ZswYLVmyRFlZWfrtt9+Un58vs9msKVOmaPDgwQGpLTQ0VNdee60uu+wynXLKKS12nxkzZqhPnz4yGo0qLi6u8881ACC4GBu+BAAAAAAAADi8GY1G3XLLLVq5cqV69erl9Zq6usnq6rg75ZRTdNVVV9UZ2lXxZ2jncDj066+/SpKuvPJKv81bl4yMDK1fv16DBg1SdHR0i9+vMc455xxNmzZNkrRmzRrl5+crPDxcL730UsBCO0m65ZZb9Oyzz+rSSy9VSEhIi93npJNOkiS98MIL6t+/v7Zv395i9wIA+A8ddwAAAAAAADjijRo1yqd967ypq+MuEDZs2KDCwkIlJSXpnHPOafH7LV26VFLFUpvBJjc3V1999VWN5+Lj4wPSeZaTk1NnwOuL4uJiz3FeXp4iIiIaHFNeXq4nn3xS3377rSRpxIgReu+99+pdthUAEHgEdwAAAAAAADjiNTW0k+ruuAuE1atXS5IGDBjg104+b9xut5YuXaoLL7xQ3bt3r/M6m82mzz//XAMHDmzReqr76quvNHnyZGVnZ0uq2EcwMzNT6enpuu222zRkyBCNHz9e8fHxrVbPk08+6ZeQ96abbmrSuOzsbA0fPlzvvvuuOnTo0Ow6AAAtg+AOAAAAAAAAaAan09ki85aWljbqerfbrVWrVikkJETDhg1rkZqqW79+vfbu3aupU6fWeY3dbtf48eO1evVqZWZm6s4772zRmnbv3q2pU6d6uszCwsJ01113adSoUdq4caPuv/9+ZWdn6/3339eyZcs0cuRI3XbbbYqNjW3Rum6++WaFh4dr165d6t27tzp16qSoqChFRkb6FBp/8sknnq/z0qVL1alTpybXEhoa2uSxAICWR3AHAAAAAAAANENLBXfff/99o67/4YcflJaWpptuukkpKSktUlN1ixcv1vHHH6+zzz7b63mXy6W///3vni7AWbNmKTQ0VMOHD/d7LVlZWXr55Ze1ePFi2e12mUwmXXvttRo3bpw6duwoSTrrrLP06aef6umnn9Ynn3yikpISzZ07V6+99pquvfZa3XjjjTrxxBP9XluV5nQchoWFeY7btWsXdPsJAgD8h+AOAAAAAAAAaIbmBHeTJk1Su3btFBERobCwMIWEhMhoNGrnzp364IMPPNf50pW1aNEihYaG1uhq27dvn6xWa5Prq4vNZtNXX32l0aNHa8eOHV6vee211/T555/XeO7pp59WSEiIbrnlFr/UsXfvXr3xxhv66KOPVFZWJovFokGDBunOO+/0unxnXFycnn32WQ0aNEjPPPOMtmzZotLSUi1atEiLFi1Sjx49dNVVV+kvf/mLevfu3awlVIPZv/71L+Xl5WnMmDGBLgUAcAiCOwAAAAAAAKAZHA5Hk8defvnl2rhxo7777jv997//rXMPtM6dO9c7z4EDB7Rq1SrdeeedOuqoozzPZ2dna9SoUSosLGxyjfWZO3eu5s6d26gxkydPVmhoqK677rom3dPtdmvt2rX64IMPtGrVKjmdTiUlJWnYsGG69dZbfeo27Nevn5YuXaply5Zp3rx52rlzpyQpNTXV85ri4+N1xhlnqG/fvjrppJPUs2dPxcTENKnmYLJw4UI99dRTkqTu3burf//+Aa4IAFAdwR0AAAAAAADQDHa7vcljzznnHJ1zzjm69957tXfvXi1YsEAffvhhjQCvffv2Ovnkk+udZ+HChUpOTq7VQdW3b1+9+eabWrNmjY4//nh1795d0dHRioyMlMlkanLdgZCamqrPP/9cS5cuVVpamkJCQnTRRRdp0KBBuvDCC2U2N+6jTqPRqIEDB2rAgAFauXKlFi5cqA0bNnjO5+bm6ssvv9SXX37peS4+Pl49evRQhw4dlJSUpKOPPlrXX399jXnLy8uVlpbWvBd7iOzsbM/x3r17mxwWf/nll3r++ec9jx988EG9++67LbpEKACgcQjuAAAAAAAAgGZoTsdddZ07d9bkyZN19tlna8KECXK73TKbzZo8eXK9oVReXp7effddvfDCCwoNDa11/sQTT2yzwcz//vc/rV69Wl999ZW2bNmi6Oho9evXT3/729900UUXKTIystn3MBqNuuyyy3TZZZfpzz//1EcffaTPP/9c+/fvr3Vtbm6ucnNzZTKZdMEFF6hr1661rrFYLHrttde0ZMmSZtfmzahRo/w2V2lpqe666y4tXry4VfZFBAA0jOAOAAAAAAAAaAabzaakpCSNGDHCL/NdeeWV+vjjj5WRkaHHH39cZ5xxRr3Xv/HGG7rxxht17rnn+uX+gbRv3z79+OOPWr9+vb777juVlJSob9++6t+/vx5//HGddNJJLdopeMwxx2jixIn6+9//rp9//lmrVq3SN998U2Mfvx49eujFF1/U0Ucf7XUOo9Gop556Sscdd5yioqJ0/PHHKzExUVFRUQoPD2+x2gEAhweCOwAAAAAAAKAZbr/9dk2dOlUhISF+m/Opp55SYmKiT9fm5OTo8ccf99u9A2X16tVasGCBevXqpVNOOUW33367evbsGZAlPQ0Gg04//XSdfvrpmjhxoidQ/Omnn3THHXeoW7duDY4fPnx4q9QKADi8ENwBAAAAAAAAzdCnTx+/z+lraCdJ06ZN8/v9A+Giiy7SRRddFOgyvOrQoYMGDhyogQMHBroUAMBhzhjoAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAABBgeAOAAAAAAAAAAAACAIEdwAAAAAAAAAAAEAQILgDAAAAAAAAAAAAggDBHQAAAAAAAAAAABAECO4AAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgQHAHAAAAAAAAAAAABAGCOwAAAAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAEAQcTqd+v777/WPf/xDkyZN8uvce/fuVXFxcZPGbt68WUVFRX6tpz6ffPKJtm/f3qSx6enpKikp8XNFzKPlswABAABJREFUzeNyuQJdAhrpu+++U3p6eqDLAAAcYQjuAAAAAAAAAiwjI0Mff/yxJkyYoHPOOUcjRozQRx99pA8++EBvvvmm3+7z6quvasCAAdqwYUOjx/7666+65JJLNH/+fNlsNr/VVJeffvpJAwYM0P/93//pzz//bNTYZcuW6fzzz9fkyZMbPbYlFBcXa8CAAfrhhx8CXYpXn376qTIzM1v1nsuWLdP06dNlt9tb9b6NsX79ev31r3/VlClTlJ2dHehyAABHCII7AAAAAACAVlRUVKT169frzTff1P33368LL7xQF110kSZOnKjly5crPz+/xvXPPfdck4K2Q9lsNn355ZdKT0/X0KFDNX36dDmdTp/H33bbbTr77LM1c+ZMXXvttdq8eXOza6pPaGioXC6XPv/8c919990qKCjweWxOTo5KSkr07rvv6qqrrtK8efNasNKGvf/++9q+fbuGDx+u6dOnt0rw2Ri//vqrrr76ai1durRV7peXl6ennnpK//znP3XrrbcGbVdbaGio7Ha73nnnHfXv39+vIToAAHUxB7oAAAAAAACAw015ebnS09OVlpamvXv3aufOnUpNTdXOnTuVkZFR63qDwaDExEQlJycrJSVFCQkJio2NVXh4uCwWi3bu3KkzzjijWTV9+eWXKiws9Dzu3r27TCZTo+aYNGmS1q5dq9TUVN1222365z//qdNOO61ZddUlJCREkhQTE6NFixYpJibG57G5ubme46FDh2rMmDF+r89XRUVFeu211yRJbrdbS5Ys0THHHKPrrrvOb/f4+uuvdfrppysyMrJJ40NDQ1VYWKiHHnpIDz30kN/q8sWvv/6qL7/8UiNHjmzV+/rCbD740el5552nAQMGBLAaAMCRguAOAAAAAADAR263W/n5+crJyVF2drYOHDigzMxM7d+/X1lZWdq/f78yMjJ04MABud1uzziz2axOnTqpW7du6tevnzp27KiOHTuqQ4cOnl+rgqqW8s4773iOH3/8cd14442NniMxMVFDhw7Vyy+/rLKyMr344ot64403/FmmR2hoqCQpMjJSCQkJjRqblZXlOR41apSMxsAtOvXyyy97uijPOOMMvf76657X5g/Lli3TQw89pD59+uj1119vUnhXPaBauXKl2rVr59O49957T3PnzlWHDh20ZMkSn++3f/9+DRo0SJJ0++23B2VoJ9X8ujz00EOKj48PYDUAgCMFwR0AAAAAAIAPZs2apW+++UYGg0FhYWEKCwtTeHi42rVrp3bt2qlz58464YQTFBUVpaioKEVHRys6Olq//vqrpk+frl69eunee+9Vz549W732TZs26b///a8k6YYbbtCQIUOaPNeQIUM0b948uVwuORyOeq/95Zdf1LlzZyUlJTX6Po3tBqwuNTVVkpSUlKT27ds3enxZWZmsVmuzg5pt27Zp4cKFkqS4uDg98cQTKikpUUlJSbPmrfLNN9/okUcekdPp1H//+1+NGjWqSeGdxWLxHMfExCg6OtqnceHh4ZIko9HYqK+V1Wr1HJ9wwgk+j9u6dauOPfbYBoNYm82m2bNn66677mpUp+ahqn9dAABoLQR3AAAAAAAAPpgwYYImTJjQqDH79+/XPffcI7fbrRUrVujLL7/U9ddfr8cee8yvXVcNefHFFyVJ3bp10yOPPNKsuVJSUnTSSSfpv//9b72dUj/99JNGjx6to48+Wu+8847CwsIadZ+mBncFBQXKycmRJPXu3bvR48vLy3XPPfcoKytLCxcubHJ453Q69eijj3rCzby8PF111VVNmstX//3vf3XHHXfotddea1R415yQtDW9+uqr2rp1q+655x5dccUVdQZ406ZN06JFi7Ry5Uq99NJLTQ7LA9mp6Q9Op1M333yz7r//fp111lmBLgcA4COCOwAAAAAA2ii3263ScofsDpcsZqPCQ80yGAyBLguVioqKNHr0aOXl5Umq2FPunnvu0ZVXXlljCb6WtmnTJk+n4LRp0zxdUofKz8+Xy+Xyac4bbrhBF1xwgU466aQa+8lVqQpXrFarNm/erL///e96/vnnG/Xns6lh0s6dOz3HjQ3uqkK7tWvXSpKGDRumt956q0nh3euvv65ff/1VknTddddp2rRpQfv/Z1sJ7kJDQ/Xnn3/6HKLv2bNHt912m1asWNGk38P/Z++uw6JK3z+OvwfpEgPs7lzb1XVtXbu7sVDs7g5ssXtRxHaxde2OtXXtWEXBDrqZ+f3Bb+YLUjMw1O79ui6uHWbOec4zzDCy53Pu+0lKcOfu7s6ECRO02tbMzAwrKysKFixI+fLladmyJQUKFEj0sQGUSiXz5s3TvAeFEEKkHxLcCSGEEEIIIYQQ6cjr975cuOPJszffeenpg39QmOYxSzMjCuXOSNG8mahVPjf5cmjX7k7oX0BAAAMHDuTZs2cYGRnRv39/BgwYkOzr2MVm3rx5ANjb21OpUqU4tzt69CgzZ86MtjZfQpYtW6bVdsePH2fJkiWMGjVK67HjCk22b9+u9TxXrFjBihUrtD7mj549e5ao8O7mzZuan02rVq2YPXt2mg3tgDQ9t6iiBt5Xr16Nc7vZs2dz5MgRTExMcHZ2TnTVZFICzWbNmlGvXj2eP39O//79Ne1RO3fuzMCBAzUBur+/Px8/fuTWrVvs3r2ba9eusWbNGtq0acPEiROxsrLS+pgqlYrv379z7do13NzcuHXrVqLnL4QQIvVIcCeEEEIIIYQQQqQDNx594I+zL3j4z9c4t/EPCuPe8y/ce/6FPaefU6pgFtrVLUKlEtlScKbC19eX/v37c+fOHXLkyIGzszPlypXTat8XL15w48YNOnfurJe5HD16lFu3blGiRAlGjBgR6zZLly6le/fudOnShSxZshAUFETJkiXJkiULVlZW0cLGQ4cOMWHCBMaNG0f37t31Mse4qMOkDx8+MHfuXAYPHoy1tTVdunQhd+7cKBQKChUqFKMF58KFC3F3dwfg4MGDiVpf70cWFhZab/vx40eGDx9OeHg4zZs3p3Xr1noNxnx9fXFycmLkyJF6eW6QfiruogZ38YVx6vds1qxZqV69eqKPF9/rFhERgY+PT5zzMDY2xtjYmEqVKlGqVCmuX78OQK9evciW7X+fydbW1uTMmZPy5cvTq1cvnJyccHNzw93dnZcvX7J582bMzc3jnef06dM5fPgwQUFBCa47KYQQIu2T4E4IIYQQQgghhEjDfANCWbfvPhfueOm878N/vvLwn6/UKp+b/q3LYG2R8tVe/zWvX79m4MCB/PPPP9SoUYOFCxdqXe3z/v17+vfvj5eXFy9fvmTChAlJClS8vb2ZO3cu5ubmLFmyJNZqv9u3b7N27Vrc3d1ZunQpv/32W7xj/v7774SFhTF79mzu3bvHrFmz4my9mRhfvnwha9as0e6zs7Pj2bNnNGrUiMmTJ9OkSRNq1qwZ5xhPnz4FIFeuXBQrVkxzv1Kp5OvXr3oLu2Lj7e1N3759+fz5Mz179mTChAk0adIEIyMjBg0aROXKlZM0fkREBCNGjODGjRtcuXKFVatWJWodv/QqpQPGuIK78PBwRo8ezePHj3F1dY0WxMUm6rzja5NraGjIlClT8PLy4uzZs9y7d4+1a9cm2BZ06NCh9O3bF4h8n9+/f59JkyYRHBwc735CCCHSJgnuhBBCCCGEEEKINOrVOx+mb7jGN9+knXw9f8eTv19+YUb/auSX9pnJ5sSJE0yaNImAgACGDh3KwIEDtV4jy8PDg969e+PlFRnQbt26ldevX+Ps7IylpWWi5jN79mw+f/7M/PnzKViwYKzbODs7A/Dp0yd69uzJhg0b4qxQOnr0KI8ePQLA3NycPHnyEBQUpLfgLiIigs6dO3Py5Mlo9xsYGLBgwQKaNWvGiBEjuHjxIjNnzsTIyCjGGMHBwZrgrmLFijEer1u3Li1btqR3795x/kwSy9/fHwcHB54/f86ECRPo1asXAEZGRjx9+pShQ4fq9XgfPnyga9eu7N27lyJFiiRprPTSKjMtBHfh4eGMGjWKP//8E4AePXpoFd7pYtSoUZw9exaIbA07dOjQeAO/zJkzR7tAIG/evJw+fZqjR4/qbU5CCCFSjgR3QgghhBBCCCFEGvTqnQ8TV1+OtoZdUnzzDWbCqks4Daoh4Z2eff36lQULFrB//37y5s3L+vXrKV++vNb7X716leHDh+Pt7Q1EhmJNmzaldu3ahIaGJmpO27Zt49ChQ7Rp04ZWrVrFus3p06f566+/gMhwadq0aXGGdoGBgSxatAiAUqVKsWzZMvLkyZOoucXl9evXfPz4MdbH7OzsGDduHBMnTsTd3R2VSqVZuy+qBw8eaFoF/rien4GBAUqlkj179rB3717q16/PvHnzEh2MRvX161f69u2Ll5cXq1atol69eprHogaM6lAxKVq2bMmTJ08wNzdn9erVSQ7tIP0Ed4mZ59OnT+nZsyffv39P0rGjvqZRvX79Wu/hXZEiRcibNy9v3rzBz8+Phw8f8tNPP+k0RkLtNYUQQqRdEtwJIYQQQgghhBBpjG9AKNM3XNNbaKfmHxTGtPVXWTG6jrTN1IP379+ze/dutmzZQmhoKP369WPQoEFaVaCFhoYSHByMi4sLa9euRalUYm5ujr29Pfb29lhZWSV6XkePHmXu3LkUL16cadOmxbqNv78/c+bMASKDpRUrVlCnTp04x1y6dCleXl5Uq1aNVatWRVvzTaVS6SX4uXv3LiEhIXE+3qZNG7Zv386DBw/Yt28f7dq1ixHOXb16VXP7l19+iTGGsbEx4eHhGBoa0rBhQ72Edm/evKFfv35YWVnh7u5O7ty5oz0eW2WgPmTKlIlq1aoly9hplbYVrFEVK1aMzZs3c+TIEUqVKkW+fPmwtLTUat3CgwcP4uTkBMC+ffvInj17nNvqs2UsQOHChXnz5g1AnIG2EEKIfycJ7oQQQgghhBBCiDRm3b77SW6PGZdvvsGs3/c3o7vFbCMotBMcHEzHjh159uwZSqWSDBkyUK9ePXx9fZk6dSrBwcGar6CgoFj/GxEREW3Mpk2bMm7cuCRV7AQGBrJ48WK2bdtGhgwZ6N27N9euXcPb2xtvb298fHzw9fXF19eXly9f4uXlhUKhYMGCBfGGdleuXMHNzY0qVaqwdu1aTE1Noz1+69YtnJ2dGThwYKxhmbYuXboEQFhYWKxhl0KhYOjQofTv3x8AT0/PGMHd5cuXAShatGiMAA3+F6IVKFCAFi1aJHquUY83duxY2rdvj6OjY6zrCCZXcJdcErMOn5eXV7T1BJNLYgPi4sWLU7x4cZ33ixruWVtba71epT5EPXZYmH4v4hBCCJG2SXAnhBBCCCGEEEKkITcefeDCHa9kPcb5O57UqpCLyiXjrh4RcTM1NaVixYo8efIEiFyb7cSJE9G2sbCwIH/+/OTNm5dcuXKRM2dOcuTIQaZMmdi3bx/u7u6EhYVRqlQpJk6cGCOASgwzMzPu37+PSqUiPDycsWPHah7Lli0bP/30E6VKlcLU1JSDBw8CMGLECJo0aRLnmJ8/f2bMmDGUKFGCNWvWxAjtILIlZatWrejbty9lypRh9OjRVKlSRae5+/j4cPbsWRQKRbzrmNWsWZPcuXPz7ds3ateuHe0xPz8//v77byByLbvYqMc2MTHRaX6xef/+PZs2bcLV1ZVChQrFuV3UMO/bt29JPq5SqUzyGD9SqVSa22fOnNG6emz79u2sWLGCHDly4O7urvXxPnz4QOvWrXWeZ2Iq7tIrf39/ze1MmTKl4kyEEEKkNAnuhBBCCCGEEEKINOSPsy9S7DgS3CWeg4MDe/bsITQ0FIVCQYkSJfj555+pWLEipUqVIkeOHDH2OXv2LKNHj8bT0xNbW1uGDRtG27Zt9RZGKBQKpkyZQocOHVCpVFSoUIFmzZpRr149TYu/jx8/agKTdu3a4eDgEOd4ISEhDBo0CFNTU9avXx9vW8l27dphZGTE+PHj6d69O3Xq1GHMmDHxBlpRrV27lqCgICwtLeP9eSgUChwdHTEwMMDGxibaY5cvX9asbxfXemR+fn4AGBom/ZRYjhw5+P333xPcLmrFXVptbRm1AtTW1jbWysHYqAM+AwMDnarRAgMDdZvg/0sva/Hpw6tXr4DI55yYakEhhBDplwR3QgghhBBCCCFEGvH6vS8P//maIsd6+M9XPN77ki+HdYoc798mW7ZsODg4YGBgQKtWrciZM2ec27558wYnJyfOnDmDiYkJ/fv3x8HBQS/rq/2obNmyDBkyhNKlS1OrVq1oj4WHhzNixAi+fv1KzZo1mTFjRpzjhIWFMWrUKDw8PNi5cydZs2ZN8NgtW7YkODiYqVOncvbsWS5dukT//v1xdHSMNyi7cOECLi4uAOTLly/B47Rt2zbW+//8808AChYsSNmyZQFYtGgRo0ePBiIrmLRpOXj27FkqVqyItbX+fzeePn2a5DFatmypqfbUl6hVfNqGdqkhqcGdv78/4eHhMULftObNmze8fv0agPLly6doi04hhBCpT4I7IYQQQgghhBDi/336HoRpkCrV2rEdu/IqRY939Mpr2tQpnKLHjCpbZvNUO7Y+DB48ON7HAwICWLduHS4uLoSGhtK4cWNGjx4d69prt2/fxsfHh5o1a8bbKlIbgwYNivV+Jycnbt26RenSpXF2do4zTPP392f06NFcunQJFxcXChQooPWxO3bsyPfv31m6dClhYWGsWrWKv//+m3Xr1sX6e6VUKpk2bZqmVaOuLTbVQkJCOH/+PICmotDb25tdu3Zpgjtvb2/N9urKvB/5+fkxfvx4TTWdPgKT5FqfTJ8tM0NDQ4H0tR5fQEBAnI/F9fr+9ddfzJw5k3nz5qXZ6keAZcuWaW7H9fsshBDi30uCOyGEEEIIIYQQ4v8NXXo5taeQoo5eecXRFA4Lozq0uGWqHTs5RUREsHfvXlasWMHnz58pV64c48ePp3z58nHukytXLhYuXMjUqVNp164dnTp1Ilu2bHqbk4uLC25ubuTLl48NGzZgYWER63aHDh3C2dkZT09P2rdvj7+/P0eOHCEgIIDAwED8/f0JDAwkMDBQc5/6tp+fHyEhIQQEBGBkZKQJrC5cuMD9+/cpV65cjOOFh4drArUiRYrQp0+fRD2/8+fPExgYSIYMGWjZMvJ99ddff0ULzXx8fDS3g4KCYh1nxYoVeHt74+3tTZcuXdi8ebOmzWhiqUMxfYsrnEoM9RzTcrXdjypUqKDzPvXq1eP48ePY29szYMAAhg4dmqbWzVMqlSxfvpzDhw8D4OjoSI0aNVJ5VkIIIVKaBHdCCCGEEEIIIYQQeqBSqTh58iTOzs68fPmS3Llzs2TJEpo2bZrgvtmyZWPLli1MnDiR1atXs379epo0aUL//v0pUqRIkuZ14sQJFixYgK2tLZs2bYq3iuzu3bt4enoCsGfPHvbs2RNjG0NDQ7Jly0auXLnIlSsXp06dAiJbWPbo0YPs2bNjbm5Ohw4dePz4MQBfvnyJ9XjGxsYcOnSIkJAQChYsmOhWiO7u7kBkMKMOPI8dOxatguzt27ea29++fYsxxq1bt9i6davmOVatWjXeqi5t6TNgi0qflXzqNedMTEz0NmZyu3//fpyPTZ48mYMHD8b62JQpU7h8+TJr1qzh/v37LFu2DCsrq+Sapla+ffvGtWvXcHFx4f79+5iZmTFmzBi6du2aqvMSQgiROiS4E0IIIYQQQgghhEgCpVLJyZMnWb16NU+ePMHGxoYJEybQpUsXnSqYjI2NWbhwIZkyZcLV1ZWDBw9y+PBhWrVqxdixY8mUKZPOc7tx4wZjxozBwsKCjRs3kidPnni379OnD7t27dKEQtbW1lSsWJGzZ88C8PPPP/P7779Ha+e5b98+AGrWrEnx4sU19y9ZsoTWrVsTHBwcb7vN2FqH6uLjx49cuHBBM3+AT58+cebMmWhrmanXhTMyMuLbt2/4+/tr1hn09fVl/PjxKJVKChcuzIIFCyhVqlSS5qUWNWCLLTDUlbpFpjps04f0GNzFN9f42s1aWVkxZswYxo0bx+XLl+natStubm7JsqZhbFq0aBGtyi8kJERT8VioUCF69+5N9+7d4103UwghxL+bBHdCCCGEEEIIIYQQifD9+3cOHDiAm5sbb9++xcLCAkdHR/r06aMJhHSlUCgYM2YMISEh7Nq1C6VSibu7OxcvXmTTpk0UK1ZM67Fu3bpF//79UalUrFmzJlqoFpecOXPSvHlz3r17R8+ePfn1118BKF26tOZxbdfgK1iwICNHjuTMmTMUKlRI63nrat++fURERFCxYkVNO86VK1cSEhKCnZ2dZjt1cFegQAH8/f15+fIlP/30EyqVirFjx/LmzRtat27NtGnTMDMz09v8ogZ3+lxXLTQ0lJCQEL2EbX5+fgB6fd5pWcuWLVm/fj0vX77k6dOnzJw5k0WLFqXIsdevXx+t/eqGDRvYuXMnAPPmzaNs2bIpMg8hhBBplwR3QgghhBBCCCGEEFry8PDg6tWrnDt3jkuXLhEWFoaZmRmdOnWiY8eOmJiY8M8//xAQEEBAQAD+/v6a2+o14aJ+H9uXQqEgY8aMZM+enQ8fPgDw+fNnhgwZwrFjx7QKzo4ePcr48eOJiIhg5cqVVK5cOcY2X758wcvLi7dv3+Lp6YlKpWLgwIFMnz49WhgUHBysuW1qaqrTz6tHjx507NhRp310ERYWxo4dOwBwcHAAIp/7rl27AChatKhm22fPngGQL18+VCoV9+/f56effmLJkiVcvHiRqVOnJktrwvDwcAwMDKhbty4jRozA0dGRvn370qpVq0StKTdy5Ejy5s1Lo0aN9FYhp17/z9zcXC/jpXUKhYI+ffowceJEAA4fPszo0aOTvJ6hNrJnzx6tyrRHjx6a4G779u0S3AkhhJDgTgghhBBCCCGEEEJb7969Y9q0adHuCwoKYufOnZqT77ExNzcnLCyMsLAwsmfPTufOncmYMSM2NjYxvtRVT4GBgbRr146XL18CkaHh27dvyZ8/f5zHefPmDcuWLePw4cMAdOzYkYCAANavX8+7d+/w8vLCy8uLd+/eERQURJ48eahQoQIVKlSgUqVKQMwWhFErxnStyFIoFDqHfbo4cuQIHz58oEqVKtSqVQtPT08mTZqkebx27drA/0JKiAzuLCwsuHjxIgqFgl27drFx40a9VsNF1b59e+rXr0/u3LkZO3YsHh4eTJkyha1bt7Jx40bNmnzaGjx4MJkzZ47WBjSpvn79CkS+vrq08wwKCgIi23fqsp+vr69uE/x/KpUqUfvFplGjRsyaNYugoCBUKpVeW4/qolChQlSsWJFbt25x9OhRxo0bl6i2uEIIIf49JLgTQgghhBBCCCH+3/IRv2Bqahpt/aGUtHjbLR6/TvoaWNoqUSAzo7pUTLHj/RtUq1aNatWqcfXq1Wj3GxkZUaRIEYoWLUq+fPnIly8f2bJlI1u2bNja2mJqakr37t25fv06OXPmZMCAAQkey9zcnGXLltGmTRvNGlhWVlbx7qNQKDhx4oTm+127dmmqzwAyZcpEtWrV6N27N7/++qtWoVHUkCWh46e033//HYAxY8YAkZVT6gCmaNGi1KtXD0CzRh/ATz/9hJWVFatXr+b169fs2LEjWVt59urVC4BHjx5x6NAhACpVqoSzszPm5uYEBARoPdb9+/cZOnQo2bNnZ9OmTdFagSbF58+fgcg1ERMTYL5//z7Zgs+o9BncWVhYUKNGDU6ePEm5cuUoWLCg3sbWVYcOHbh16xYhISHs3buXfv36pdpchBBCpD4J7oQQQgghhBBCiP9nl8kMMzOzVAvuShfKkqLBXemCWciW+b/RGk+fRo4cSceOHSlfvjy1atWiSpUqlCpVKlFtDxNSpEgR+vfvz8qVKylTpgxZsmSJd/s8efLQs2dPNmzYoLnPxsaG5s2b06hRIypUqKDz+1u9/hlA5syZdXsCyejUqVM8ffqUpk2batoLduzYESMjI6ysrGjQoIGmreiZM2eAyIC1evXqGBkZoVAo6N69e7KGdmoqlYrZs2ejVCoBuHnzJjVq1Ej0eL6+vnTp0gUXFxfy5MmTpLkFBgZqWmW2adMGJycnrffdtGkTCxYsIFeuXJqfsTY8PT01oWpqatq0KZcuXWLGjBmpOo9GjRoxd+5cfHx82LFjB3369Em1f4eEEEKkPgnuhBBCCCGEEEKINKJm+dzsOf08xY5Xq3zuhDcSMZQtW5bLly/HCLFUKhXBwcE6t5NMiIODA69evaJz585abT9gwADc3d1RKBQ4OjrStm3bJLWr/PLli+a2ra1tosfRJ6VSibOzMxkzZtSsUwaRFYV9+vSJtm1wcLCmQrJSpUpYWloCUK5cOQ4ePEj37t2Tfb6urq7cunULc3NzSpcuTbFixTRVgto6cOAAU6dO1VSd5cmTB09PzyQHd+oWohB9TUBt6LMCThvq4FNf2zdq1IgyZcpEW3MuNZiamtKiRQu2bt2Kl5cX58+fp06dOqk6JyGEEKlHLt0QQgghhBBCCCHSiPw5rClVMP6KKn0pVTAL+XJYp8ix/o1iqzzbuXMnffr00an14c2bNzVr2MXF2NiYJUuWULlyZa3GtLS0xNnZmSNHjtC1a9ckrzH3/v17ze2khkT6cvDgQZ4/f864cePImjVrvNteuHBBsxZb06ZNNffXrl2b+/fv8/jx42Sd6+PHj1m8eDEZMmRg6dKlLF++nOPHj3Ps2DFMTEy0+jp+/DjTpk1DpVKhUCiYPn06Li4uemlP+c8//2huFy9eXKd9dQ3SkkrXoDCh+SkUilQP7dQ6dOigub1t27ZUnIkQQojUJsGdEEIIIYQQQgiRhrStUzhFjtOubpEUOc5/xdu3b1m4cCG3bt2iX79+Wod3lpaWDBkyhD59+nDhwgW9VTBVqVIFGxsbvYzl4eEBgKGhIXnz5tXLmEkRGBjI0qVLqVGjBm3btk1wezc3NwDs7Oxo2bKl5v6GDRsCsH79+uSZKODt7c3QoUMJCQlhypQp1K5dm0yZMjFv3jymTJnChQsXEhxjz549jBs3DqVSSYYMGXByctK6+lIbz59HVvkaGhry008/6bRvWq+4S+n5JUXRokUpV64cAJcuXeLNmzepOyEhhBCpRoI7IYQQQgghhBAiDalcMjs1y+dK1mPUKp+bSiWyJesx/kuCgoIYPHiwJqzTJbwrXrw4e/fuxdbWln79+tG0aVP27NlDaGhock87VuHh4THuU1ekFSpUCBMTk5SeUgyrVq0iIiKCBQsWJLjtgwcP+OuvvwDo1atXtHUI8+TJQ6lSpfjzzz95+vSp3ucZGhqKo6Mjnp6eTJs2LVrY9ssvv9CpUyeGDBnCtWvX4hxjw4YNTJ48GaVSiampKcuXL6d169Z6neeDBw8AKF26NObmuq15qQ7SUiog0/U4ERERyTST5KGuulOpVOzYsSOVZyOEECK1SHAnhBBCCCGEEEKkMQ6ty5LZOmntDeOS2dqU/q3LJMvY/0URERGMHTuWJ0+eAJGt9xo3bsz48eO1XuvO3NycefPmMXv2bN6+fcvkyZOpW7cuGzduJDAwMNnmHh4ezt9//83mzZsZOnQojRs35vr169G2CQsL4969e0Dk+nCJpa+Wii9fvmTr1q0sWbKELFkSbiurDvfy5s0ba5Vau3btUCqVzJ49Wy/zUwsLC2P48OHcu3ePBQsW0KVLlxjbjBkzhuLFi9OvXz+OHz8eY//JkyezaNEiIHLtvi1btlC/fn29zlOpVHLr1i0A6tWrp/P+6mAspYK7qEHct2/f4vxSB9/pLbhr0qSJZg1Gd3d3goODU3lGQgghUoMEd0IIIYQQQgghRBpjbWHMjP7VsDQz0uu4lmZGzOhfDWsL44Q3FglSqVRMnjyZEydOAJA/f35cXV1xdnambNmyGBjodtqlffv2bNu2DTs7Oz5//szChQupW7cuv//+u14q8Ly9vTl//jzOzs706NGDSpUq0aNHD/7++29atWrFwYMHqV69erR9bt68iZ+fHwA1atRI1HHv3bvHgAEDkjz/iIgIJkyYwLBhw6hSpUqC2x89epS//voLhULB3LlzY60ma9GiBRYWFly/fp2dO3cmeY4QGbqNHDmSO3fusHHjRpo3bx7rdsbGxqxevRo7OzuGDx/O2rVrUalUfPz4kV69erFnzx7gf1WZ6jaK+vTgwQN8fX0B+O2333TeXx3YpVRwFzUArlatWpxfR44cAUi1ytXEMjMz07xfvL29OXz4cCrPSAghRGowTO0JCCGEEEIIIYQQIqb8OaxxGlSDaeuv8s036VUXma1NmdG/GvlzWOthdiI8PJwJEyZw8OBBILLF3cSJE7WusotL2bJl2bNnD/379+fp06d8//6d+fPns2PHDubPn0+FChW0Gsff358nT57w8OFDHjx4wP3793n9+jUQuZZZjRo1mDNnDvXq1cPUNO7qzu3btwNgY2OT6OAuICCAsLAwnff7sVpq3bp1lCpVij59+iS478ePH5kxYwYAPXr0oHLlyrFuZ2lpSfv27dm8eTPz5s2jfPnyFCtWTOe5qgUGBjJkyBACAgLYv38/2bLF35I2S5YsrF+/nk6dOrF06VKuXLnC06dP8fb2BqBZs2bMnj07ye+ruFy6dAmAypUrky9fPp33V7dW1VdFZUKivifia286fvx49u3bl+6CO4COHTtq2mRu376ddu3aJWocdeAOaN5PQggh0gepuBNCCCGEEEIIIdKo/DmsWTG6DrXK507SOLXK52bF6DoS2umJv78/AwcO5ODBg1hZWbFs2TJmzZqlt3Ale/bsbN++nYoVK2rue/PmDT169ODcuXPx7jt8+HBq165NxYoV6dq1K3PnzuXgwYO8fv2aUqVKMXXqVC5evMi6deto2rRpvKHd48ePOXXqFACdOnWKtj6cLnx8fKKFCNqKWs3l7++Ph4cHkydPTnC/0NBQhg0bhre3N3Xq1GHs2LHxbt+vXz/MzMwICgqiX79+vHv3Tue5QmRY2Lt3b3766Se2bt2aYGinVqhQIZycnAD466+/8Pb2xsTEhDlz5rB48eJkC+0ATWVabK08taEO7FIjuNNGeHh4okJjfYs674SeQ4kSJShTJrKd8cOHD7l9+7bOxwsICIi235kzZ3QeQwghROqR4E4IIYQQQgghhEjDrC2MGd2tIlP7VKVUwYTX9IqqVMEsTOv7M6O7VZT2mHry/Plz2rZty4ULFyhdujT79u2jUaNGWu2rSztBS0tLNm7cGK3CLiwsjDFjxmhaG8amSJEivH//XvN9hgwZaNWqFe7u7ri7u9O1a1cyZ86c4PFDQ0OZNGkSSqWSLFmyYG9vr/Xcf+Tr68unT5903k8dcERERGBpacn8+fPJkCFDvPuoVComTJjAnTt3qFChAs7Ozhgaxt9wKmvWrPTs2ROIDN+6devG8+fPdZrr27dvmTVrFrNmzWLo0KEYGWnf5vb06dMx1tgLDQ3l0qVL/PPPPzrNQxcPHz7kxYsX5M+fP1FtMuF/FXe6BmqJrYRTH08bNjY2jBkzJsH3THIJDQ3Fx8eH27dv8/DhQ839rq6ufPz4EX9//zj37dChg+b21KlTefLkCb6+vnEGpEFBQfj6+vLu3TsuXbpE//79+fz5s+bx/fv3M3nyZO7du8eXL1/w9fUlJCRED89SCCFEcpBWmUIIIYQQQgghRDpQuWR2KpfMjsd7X87f8eT5G29eeHrjH/S/ahJLMyMK57ahSF4bapXPTT6psNOro0ePMmnSJMLCwhg0aBADBgzQqQrt27dvOh3P3NycdevW0b59e02bS19fXy5fvkzjxo1j3ad79+5s2rSJgIAAatWqxaRJk3RugahSqZg4cSIPHz4kQ4YMODk5YWNjo9V+sfn27RufPn3Cx8eHjBkzaj0PdUihbSikVCqZNGkShw8f5ueff2bFihXxVhRG5ejoyJ9//snr16/x8vKiY8eOTJo0ibZt22q1f7Zs2Vi+fLlO6xreu3ePxYsX89dffwGQKVMmHBwc+PLlC1u2bOHYsWMcP36c2rVr061bN6pVq6bzuonxcXd3B2Dw4MGJDrd0fY3UXr16pbmty3NSV89ZWFjEu12LFi2YOHEi1tZJ+wwMDAxM9L6HDx9mwoQJMe53c3PDzc2NXLlyxVkJ17RpU+bNm0dAQADPnz+nZcuWABw6dIiiRYvG2H7GjBns27cv3vns2bNHs24iRL7uQ4YM0eUpCSGESCES3AkhhBBCCCGEEOlIvhzW9MhREogMSoJCwgkLV2JkaICZiSEKhSKVZ/jvExwczOLFi3F1daVixYrMnDmTwoULx7pt3759iYiIIFu2bNja2pI5c2asra15/fo1L1++BEiwAiwqa2trli1bRrt27TShRXxhgrW1Nd26dcPOzo5u3brp8CwjhYaGMn78eI4cOYK5uTnz58+nVq1a8e6jUChQqVR8/Pgx1sc9PDxQqVQcPHiQ7t27az0XdRikTZVVSEgIEyZM4MiRI3Tp0oVJkybp9HNWt6bs2bMn4eHhBAQEMHHiRPbt28egQYOoVq1avPtrG+CqVCouXrzIpk2buHbtGhBZGda9e3d69eqFpaUlAG3atGHGjBn89ddfnDlzhjNnzmBnZ0ejRo349ddfqVy5cpJaaHp7e+Pu7k758uVp1qxZosdRvzaxvUYPHz5k27Zt2NjYYGVlhaWlJSYmJoSEhLB161bNdtqGq2rdu3fH0dEx3m2qV6+u9XgPHjzAzMyMPHnyRHsdVSoVFy5c0Hyvy/sJIl/DNm3a6LSPmoWFhU4tMufNm8e8efMSdSwhhBBpjwR3QgghhBBCCCFEOqVQKDA31b4ln9DdjRs3mDRpEgYGBqxcuZIGDRrEu/369eu5f/8+hw8fxs3NLdaQrUiRIjrNoXjx4nTt2pXNmzcDkDdv3ni3HzFiRKIC3Ddv3jBq1Cju379PgQIFcHZ2pnjx4gnuly1bNj58+MDatWuxtramaNGiGBsbExERwf379zXrqM2fPx8rKytatWql1XzU7RQTaun38eNHBg8ezD///MOcOXNo166dVuP/qFKlSowfPz5a28obN27Qq1cvpk6dSteuXRM1rnqO+/fvZ8+ePbx9+xaAggUL0rVrV9q2bRsjhCtUqBCurq4cPXqUDRs28OjRIz59+oSrqyuurq4YGRlRrFgxSpcuTZEiRciTJw+5cuUic+bMZMyYMcEKuu3btxMaGsr06dOTFParw9XYXqMcOXJQrlw5/vrrL3bt2hVna0hdfh/mzJmjc9CXkEuXLrFz504+fPhA5syZsbW1xcLCgi9fvuDh4QFEBrN2dnZ6Pa4QQggRFwnuhBBCCCGEEEIIIX4QEBDA4sWLuXHjBgMGDKBFixZaVdwYGBhQrlw5ypUrh4ODAxMmTODixYuaxzNkyBBt/SptDR06lKtXr2JpaUmlSpXi3VbXIEapVLJ9+3aWLFmCSqVi5MiR2Nvba11FVrduXbZv3873799jbQ2oZmxszE8//aT1vLQJ7k6dOsXkyZOpWLEiK1euJFu2bFqPH5vu3bvz/v17Nm3aRN68eRk6dCi1a9fGyspK57HevXvH2bNnOXr0KLdu3UKlUmFtbU2bNm1o27Ztgq8jQJMmTWjSpAnXr19n8+bNnD17FqVSSVhYGA8ePODBgwcx9lEoFBgbG5MpUyacnZ0pX758tMf9/f3ZunUrw4YN0yqYjY+60i5z5syEh4dH+x3JnDkzHTp0oEOHDgQEBLBlyxZWr16tqRwFKF26NIUKFdL6ePoO7QAGDBjAgAEDePDgAbt378bd3T3aHAG9tykVQggh4iPBnRBCCCGEEEIIIcQPgoKCqFGjBlOmTEl0RZKtrS1r1qyhQ4cOPHr0CENDQ6ZPn56osMTCwoK9e/cSERGh13ao169fZ968ebx//57evXvTpUsXMmfOrNMYo0aNwsDAgFOnTvHt27cY651ZWlpSpkwZRowYQYECBbQeVx3cqVQqQkNDowWJX79+ZcGCBTx+/Jg5c+ZQr149neYcn7Fjx5IrVy6aNWum05p8/v7+3Lp1i2vXrnHp0iWePXsGQP78+encuTO1a9emevXqGBnpXiVbpUoVqlSpwrt37zh9+jRnz57l+vXrMQImiAyHx40bR8eOHWMNm9etW0fJkiXp27evzvP4Ue7cuZk5cyatW7eON9i2sLDA0dGRokWLMmjQIM19UasbU1vp0qUpXbo0PXv2xNHRUbOupIWFBaNHj07dyQkhhPhPUajiWjlYCJEsQkND+fvvv2PcX6ZMGZ0WNf+3CAsL4/79+9HuK1u2bKL+R0YIIYQQQvy3hIeH8/z582j3FSlSRKd1iJRKJUFBQdHuMzMzk8oKoVe7d+/m8uXLDBw4MMkVTvry5csXpk+fjlKppGnTptSvXx8TE5PUnlY0EyZM4NOnT4wePZoSJUpo7v/rr79Ys2YNXbt2pX79+qm2rmNgYCAnTpzg/v373L17lydPnmBlZUWhQoUoXbo0ZcuWpUKFCuTMmTNZju/v78/Vq1d58OABz54949mzZ3h5eTF+/Hh69eoV6z7v37/H0dGRLVu2YG1tnSzzSkj37t1RKBRMnTo1zrUiU9s///xDs2bNyJUrF87OzpQqVSq1pySE+JdLb3+T6uPv8LjI+XMJ7oRIcfLBE50Ed0IIIYQQIrEkuBMi8UJCQggLC8PS0jK1pxKnT58+xbqu2I/Vd6nly5cvHDlyhGzZspEtWzby5cunc7WivgUEBGBiYhLn52BgYCB+fn5JbimaFAEBAVhYWKTa8bV17tw5atSooZeT0EIIkZD09jepBHfJS/7lScDKlSsZPHhwak9DCCGEEEIIIYQQQm9MTEzSXIXdj2IL7YA0c9Iua9as9OzZM7WnEU1CgZi5uTnm5uYpNJvYpYfQDqB27dqpPQUhhBD/UWkzrk0jVq5cyapVq1J7GkIIIYQQQgghhBBCCCGEEOI/IE0Gdx8/fkztKbB69WpWrlyZ2tMQQgghhBBCCCGEEEIIIYQQ/xFpLrj7+PEjPXr0SNU57Nmzh+XLl6fqHIQQQgghhBBCCCGEEEIIIcR/S5oK7tSh3Zs3b1J1Hg0aNKBYsWKpOgchhBBCCCGEEEIIIYQQQgjx35Jmgjt1aOfh4ZHaU8HGxoYtW7ZIeCeEEEIIIYQQQgghhBBCCCFSTJoJ7i5dupRgaBcaGsqOHTtSZD42NjbMnz8/RY4lhBBCCCGEEEIIIYQQQgghhGFqT0Ctbdu2+Pn5MW/evFgfV6lUjBo1itOnT1O4cGEqV66c7HMyNjZO9mMIIYQQQgghhBBCCCGEEEIIAWkouAPo1asXYWFhLFmyJMZjc+bM4eTJkwD06NEjpacmhBBCCCGEEEIIIYQQQgghRLJKM60y1erVqxfjvtDQUF68eAGAQqFApVKl2JcQQgghhBBCCCGEEEIIIYQQKSFNVdzFxdjYmI0bNzJ58mQOHDhAv379Ymzj4+PDnj176Nu3r94fE0IIIYQQQgghhBBCCCGEECK5pYvgDsDQ0JB+/fpx4MABRo0aFePxly9fsmfPnmR5LDUFBATQvHlzXF1dyZ07d6rORQghhBBCCCGEEEIIIYQQQiSfdBPcQWSbzLTyWEoICQlhwoQJeHl5peo8fhQSEkK5cuVQKpWJHmP//v2UKFEi1sfq1q2b6Ofs6upK1apVEz0vIYQQQgghhBBCCCGEEEKI1JKugrv/goiICL58+cKFCxdwdXXl2bNnqT2lGF6+fJmk0M7MzAxbW1s9zuh/4goDhRBCCCGEEEIIIYQQQggh0joJ7tIIBwcHbt26RWBgIBEREak9nXg9f/482vfGxsZky5YNQ8P4307+/v58/vwZR0dHsmbNGu+2NjY2ZMqUSad52draYm1trdM+QgghhBBCCCGEEEIIIYQQaUWqBncRERFkyJAhNaeQZsyePZuQkBAAwsPDuXz5MrNmzUKlUqXyzGJSB3eWlpZMnDiRZs2aYWJikuB+jo6OeHh4YG9vn+C23bp1Y8iQIUmeqxBCCCGEEEIIIYQQQgghRHqRasFdSEgIffv2ZcOGDZiamqbWNNKMH1tH5s+fnwMHDnDv3r1UmlHcXrx4QYYMGVi3bh2VKlXSap9r165x+vRpNm/ejJGRUTLPUAghhBBCCCGEEEIIIYQQIv1JteBu9+7d3Lhxg969e1OyZEnMzMwwMzMjMDAQgB07dmBiYoKpqanmv1++fEmt6aYKc3Pz1J5CrJ4/f07Lli21Du2USiVOTk7UqlWLatWqJfPshBBCCCGEEEIIIYQQQggh0qdUCe7CwsLYtGkTCoWCO3fucOfOnWiPq1QqZs6cmRpTEwkIDAzEy8uLzp07a72Pu7s7z58/Z/Hixck4MyGEEEIIIYQQQgghhBBCiPQtVYK7/fv38+HDh3i3iWttN4VCkRxTEloKDg6mW7dulClTRqvtg4KCWLZsGS1atKBw4cLJPDshhBBCCCGEEEIIIYQQQoj0K1WCu1KlSuHm5oaRkREGBgaoVCqUSiUhISF4eHgwbdo0VqxYQUhICMHBwQQHBxMSEsK7d+/Ytm1bakxZ/L/MmTMzefJkrbd3cXHh69evDBgwIBlnJYQQQgghhBBCCCGEEEIIkf6lSnBXsmTJOB+ztbUFoH79+jEe++effyS4S0e+ffvGpk2baNKkCfnz50/t6QghhBBCCCGEEEIIIYQQQqRpqRLcif+GdevW4e/vT9++fZM0zrVr1zh69Ch37tzhw4cPBAcHY2trS4UKFejQoQNVqlTR04xTV3h4+H+yFWx4eLhW9wkhhBBCCPGj8PDwGMssKJVKlEplksfWxxhCCCGEEEIkRVr9m1SpVMb4OzwsLCzOJdB0IeeGJbgTyeTjx4/s2LGDypUrU7x48USNERERwdSpU9m7dy8AZmZmZM6cGaVSiZeXF15eXhw6dIgOHTowffp0MmTIoM+nkOIeP36c2lNIMx49epTaUxBCCCGEEOmMqakpELkud1L/3yAoKEgfUxKC06dPY2dnp/U68SJtu3btGl++fKFZs2apPZX/pI0bN1K5cmV++umn1J6KSCb+/v68fv2a0qVL67xvWFgYjx49kvdHCvjnn3/w9vamQoUKqT0VIHI+BQsWTNS+79+/J3PmzJiYmOh5VvqRlv8mjYiI0IR0wcHBgJzT1SeD1J6A+Hdat24dISEhdO/ePdFjTJkyhUOHDuHg4MCxY8e4e/cuZ86c4datW2zbto1ixYoBsHv3bsaNG6evqQshhBBCCCGEEHrTq1cvxo0bx4cPH1J7KnE6e/YsXl5eCW535MgRPn/+nAIzSps2btzI1KlTcXR01OrnlRr27NlDaGhovNv4+Phw+PDhFKloeP/+fYLz0dbly5ext7enc+fO7Nu3L0VOaH/58iXF3vP37t0jIiIiSWN8+vRJT7OJdOPGjRQ9ER8SEkKPHj3o378/ly9f1nl/e3t7HBwcuHnzZjLMLmVs27aNOXPm8Pz589SeSpyuXLlC3759GTBgAHfu3Ent6TB8+HD69u3LhQsXdK722rlzJ61bt+b48ePJNDshEiddVdwFBwejUqnYv39/jMfU/zAlx2NCNx8/fmTPnj3Y2NhQt27dRI1x5MgRPn78iKurK+XKlYvxeKVKldixYwft27fn5cuXHDp0iF9//ZWWLVsmcfZCCCGEEEIIIYR+1KtXj+7du+Pq6sqlS5cYOXIkbdu2Te1pxXDt2jXGjRtHs2bN6NOnD7ly5Yp1u+PHjzNr1ixatmxJz549yZkzZwrPNPU8evSI27dvA5E/r/bt2zNt2jR+++23VJ5ZdEuXLmXTpk306tWLNm3aYGxsHGMbpVLJ1KlTWbt2Lb169aJFixaxbqcPt27dYt26dQwfPpx69eolaSwjIyMAnj59yo4dO6hevTpmZmb6mGacPn/+TL9+/ejduzft27dPtm5Pd+/eZfjw4VStWpX58+djbm6eqHE2b96Mh4cH/fv310vl2dOnT1myZAmVKlWiZ8+e/PLLL0keMz7qqqebN29y8+ZNfv75Z5YvX46hYcKnsI2MjFAoFNy4cYMbN25Qrlw5Fi5cSJYsWYDI88rq6vzUEhAQwJYtW/jll1/ifH0iIiL4448/+OOPPyhfvjx9+/alWrVqST62n58fJ06coGXLllr9POPz9OlTAK5fv87169dp3rw5M2bMSPIcE8vY2Jjbt29z+/ZtGjRowPz586M9Hl9F3t9//82HDx+YMGEC27dvZ/To0VIlL9KENBvcRURExPjHcN26dQBMmDAhzv2S4zGhm02bNhEaGkq7du00f1Tp6tWrV8ydOzfW0E7NwsKC6dOna6r6nJ2dadasWbpvmSmEEEIIIYQQ4t9j0KBBnD9/Hg8PD+bMmcO7d+8YMmRIak8rGjMzM8LDw9m/fz+HDx/Gyckp1pDFzMyM0NBQ9uzZw759+5g3b16iL9hNb1xdXaN936hRI2rWrJlKs4mbmZkZnz59YsGCBWzfvh03Nzesra2jbaMOL969e8fcuXPZtm0bLi4u2NjY6H0+zZo14/nz54wZM4ZatWoxdepUMmXKlKixop7vWbduXaLH0YWZmRmBgYGsXLmSlStXJvvxLl++zIABA3BxcUnU+a2xY8cyf/587O3tqVWrFqNGjSJ37tyJno860FUHaUOGDMHe3j7R4yUk6nnEYsWKMWPGDJ1CJkNDQ8LCwjAxMaFt27aa0C4iIoJevXrxyy+/0KtXL6ysrPQ+9/g8e/aMgwcPcvjwYXx9fdm7dy8uLi7ky5cvxrZRQ3SVSkXhwoX1Mgdzc3POnz/Ptm3bGDduHFWrVk30WLdu3dLcLl68OMOHD9fDDOPm4uJCpkyZaNWqVayPq39mxYoVY/LkydEee/PmDZ06dcLe3p6+fftGe4+FhYVFW7ooQ4YM2NnZ6f8JCJEIaTa48/X1jfYP8LVr1zQlq/pY4FBbCoUixY71b+Dj48OePXsAEt3z3d7eni9fvmh1FWKVKlUoXrw4T5484d27d1y6dIlatWol6riprUSJEokOOtOz8PDwGG0XSpYsmeSrf4QQQgghxL9feHg4r169inafqampzn9L/thuLbkrOMR/i5mZGZMnT6Zfv35A5AnIunXrUqlSpVSe2f9EDXZ69uxJ06ZNYz0fov7dMDQ0ZP78+TRp0iTF5piaHj9+zKlTpzTfW1tb8/PPP5M5c+ZUnFXszM3N+f79OxkzZmTevHlky5YtxjZR13IqVqwYK1asIEeOHMk2pzFjxnDr1i3Onz9Pt27d2LRpEwUKFNB5HPU5E0NDwxSr9oz6u7Fx40atfm9PnTrF6NGjgchKOm24urqyZMkSjI2NGTFiBJaWlomaL8DUqVP59u0bJ0+e5Nq1a4wfP55OnTolaqyo/x42bdqUAQMGYGCQfCsvRX1vVqlShbx58+q0v5GREWFhYRQrVox27dpFe2zJkiV07doVd3d3Bg0aRJcuXZLt4v9Pnz5x+/Ztbt68yfnz5/H09Iz2uLe3N0OGDGHHjh1kzZo12mMWFhaa21OnTtX5ZxAfZ2dnunTpwsCBA2nXrh2TJk3SuQrRw8ND0/rZyMiI+fPnJ/vvY+PGjWndujVnz55l3rx5MT571cFdiRIlYgRvx44dIzw8nA0bNnDt2jU2bNhAxowZgcjKwZCQEACyZs3KunXrYlzokNLS09+k4eHhmr8V1PMsUKCAXs7p/hiq/hel2TPjPj4+0YI7ExMTVqxYgYmJCSYmJhgbG2NsbIyhoSGGhobJErC9ffuWAQMG6H3cf7Pdu3cTGBhIxowZKV++fKLG0HVdvNq1a/PkyRMA/vrrr3Qb3BkaGv4ng7vYyM9CCCGEEEJoQ6FQxPh/QQMDA51OKiqVyljvT84Tk+K/p2bNmhQuXJgXL14AkW0Xq1SpotMYhw4d4tGjR8myxnvU//8aMGBAnCez1Sd4zczMEn2xbnq0cOFCzWdFkSJFWLFiBd27d6dixYp6PamuD+rXslKlSlSuXDnWbQwMDDQBR9WqVWOt+tEnExMTZsyYQYcOHXj//j0ODg7s379f53BKfSG/hYVFin1GR61+MjY21uoketTfJ21PuqtPdNva2lKjRg0dZxmdgYEB8+bN49GjR3h5eTFjxgz8/PxwcHDQeayoz6VGjRrJfpG1gYEBhoaGmkBA19dZ/dllaGgYY98iRYqwcOFCHBwcmDt3LgcOHGDhwoUUKlQo0fP19/fH09OTZ8+e8eTJE54+fcrTp09jrItoZmZG9uzZsbW1xc7ODhsbG6ysrHjw4EGMquWo7zld/6ZJiJWVFUuWLKFt27bs3buXR48esXHjRk1lojYuXbqkud24cWOKFy+ut/nFpVChQvTo0YMNGzbQrl07NmzYQJEiRTSPq39mP75ngoKC2LVrFwDlypVj6dKl0fKGqGsh2tvbJ0vVsS7S29+kBgYGMf4ONzIy0svnREoWbqVVaTK4U6lUPH36lPz582vuS2wIpA+hoaHJ1uv730SlUmk+DH/++ecU+1ApWbKk5vZ/PYkXQgghhBBC/LeoVCpUoUGoIsJRZDBEYWwmnWPSqBYtWrBkyRLMzc1p2LChTvsePnyYcePGERERgVKp1PtyH9pWnfwXL7A8f/48V69eBSJPDi9atIgCBQrQo0cPhg8fzrZt29JURYQur2VYWFgyz+Z/ypYtS506dThz5gxv377F1dUVR0dHncZQn9SOWpGU3NLrciyWlpZMnz5dU+m7bNkyWrZsSfbs2XUaJzWef1LOJ6r3jSs4qFWrFr1792bTpk08fPiQDh064OLiQtmyZbUa/+3bt8yePZv379/z9etXwsPDsbCwwMrKCmtra2xsbKhduzZXr17F09OT+vXrM2vWLJ2qc5P7c7ZIkSIMGjSIJUuW8OjRI/r06cP27du1Xlfx5MmTmts9e/ZMrmnG0L9/f7Zv38779+/p06cPR48e1YT/cb1Pt2zZgre3N0WLFmXTpk0xLha4fv06EHlxwY8VmkKktjQZ3EHk1WdpZYFfPz8/na48+K+6fv06b9++BaBixYopdtyovbq/f/+eYscVQgghhBBCiNQQ+skD/4eXCHn3nJAPr1AG+2seMzC1xCR7AUxyFsGy1K8Y26WtaqD0JigoKEbbqsTKnTs3CoWCiRMnYmpqyrdv37Ta7+LFi0yYMIGIiAgANm/ejEKhYPz48XqZF2h/ojitXvWfXIKDg5k7d67m+5EjR2qqS+zt7Tl06BCjRo1i5cqVaeZno22lQ2oE/J06deLMmTNAZIs6XakrMFIyKE3PF0LUrFmTihUrcuvWLSIiIvD09EwXwV1Sjqn+PYzvM23o0KEcP34cT09P/P39mTp1Kvv379dq/Bw5crBw4ULMzc3j/V1zcHDA09MTKysrnVvqpsTPvGfPnri5ufHp0yceP37MsmXLol0Q8ubNG3bu3MnYsWOj7eft7a1Z365SpUqULl062eeqZm1tTZs2bdi6dSsfP35k+/bt9O/fH4j9Z+bt7c3GjRvJlSsXGzdujBHahYWFcfv2bQB+++23JFfbeXp6xro2bGyMjY2xsrIiV65clClThsaNGyeqfbavry/79+/nwoULPHnyBG9vb4yNjbGxsaFYsWL8/PPPtGnTJsXXdBT6karBnZubG7a2tjECujx58tClS5dUmlV0KpWKr1+/SnCnhRMnTmhuFytWLMWOG/VKq8DAwBQ7rhBCCCGEEEKkpMDnt/C+uo/gt3F3GlEG+xP0+m+CXv+N9xV3TPOUwKZ6a8wLp9zFlf8mX79+pUePHnh5eeltzMmTJzN58uQkjeHi4oJCoUiWtpnxSc8hRmIsXbqU169fA/Drr7/Sq1cvzWNGRkYsWLCA9u3bM3v2bKZOnZo6k/yBtq9RagSN1apVI2PGjPj4+Ghd4RSVukIwtYI7Pz8/rQL3gIAAzW1tA3p9XSDwo169enHr1i0yZsxI0aJFdd4/NX7nk3LMhCruILLl75AhQzSfnx8/ftR6fENDw2RfAy2525FC5M+gY8eOrFixAoA///wzWnC3bdu2aB3O1P7880/Cw8MBon0eppQWLVqwdetWIPo54Ng+z5ydnTE1NcXFxSXWtT5v376t+V1t3759kueWM2dObty4wZcvXxg9ejQPHz4EIrsIzp07V7OWYVBQEN+/f+fvv//mwIEDbNu2jW3btlG+fHnmzJmjVbgeHh7O5s2bWbVqFVWqVKFDhw6UKFECCwsLvn//zr1799i2bRtz585l2bJlTJ06lVatWiX5OYqUlWrB3cePH1m6dCnW1tZUq1ZN86FnY2ODm5tbrL9QqeXx48eJ+sftv+b8+fOa20npD62rqP1/tS3rFkIIIYQQQoj0IiLQjy8nNhLw8FLCG/8g+O1jPux6jGWpX8nSsA8ZzOWqa13kzp0bV1dXTp06RYkSJciXLx+WlpZYWFjEOLkcERGRpEoJuWg4bbl16xaurq5A5AXmixcvjvGalyhRgmHDhrFo0SIMDQ2ZOHFiakw13TA2NmbSpEl4eHgk6qS/OjDQNrjbu3cvefPm1Xk9ydiOCTBo0CCd969WrVqij60PDRs2ZMKECZQvXz5RgVNqBLyxBXfh4eGMGjWKqlWrxlvsoZ5vQp/FzZo1Y9GiRXz+/DlJ74/kkFJhafPmzTXBXa5cuTT3BwYGcvLkSUaMGBFjn4MHDwKRn4naVpf96NGjRyxfvpylS5fqHMKXLVuWfPny8e7du2hB1I/v0wcPHnDq1Ck2b94c5xqeFy9eBCBfvnxxrgcaG39//1jX5zQwMMDa2hpra2vq1KmjCe7atGlDwYIFNdtZW1uTLVs2ihcvTvv27Tlw4ACTJk3izp07dO3alQ0bNkTb/keBgYEMHTqUq1evsmDBApo2bRrt8cyZM1OoUCFat27NnDlz2Lp1K+PGjSMgIICuXbtq/TxF6ku14G7u3LkEBAQQGBhI7dq1admyJV27dqVw4cKpNaU4ffnyJbWnkOa9fv1a0yYTSHR58dq1a3F1dSVbtmysX78eW1vbBPeJeoVFcl/1IoQQQgghhBApKeTjaz7snEOEv3ZVG3Hxf3iRII+H5Og8GWO72E9iidjlzp1bq5BhypQpFChQgD59+uh8stvX15e6devSrl07Bg4cqLkyP7378uVLunwufn5+TJgwAaVSiZmZGStXriRjxoyxbtunTx9u3LjBli1bUCqVTJo06V9XmRgQEIBCodDLxdItW7ZM9L7qEM3ExCTBbffu3cvkyZMxMzNj3bp1iQ5nogZ3rq6uVK1aNcF9/vzzT4YNGwZo3xJ006ZNLFiwQNMOVJ+SUhmVHO/l79+/x/s81ccMCQnRVCxOnz6d48ePc/z4cYAEO7Ul1P7X0NCQPn36sHHjRkaPHq3L9JNdSn1+5MuXj4IFC/LPP/9o1kIE2L9/PzVq1MDU1DTa9l5eXprWkt26dUtUqPvkyRPs7e3x9vZm8ODBrFmzBmNjY53GmDRpEiEhIeTPn19z348/s6tXr7Jp0yZNzuDs7Iyfnx9TpkzRbHPhwgUgMljT9me+ZcsWfv/9d1xdXeMMBCF6cJxQBWXLli358uULCxYs4Pv378yaNQsXF5c4t585cyYXL17EwcEhRmgXlbo1971797h//z5z587l559/TtFiG5E0qRLcnT9/XvNBq1KpCAwMZOfOnezcuZMqVarQtWtX6tevH+sHwIcPH3Tux5wUjRo1wt7ePsWOl16pP7gh8g+oxCykeuvWLZYuXQpEXmn4xx9/MGDAgAT3i1rSnhaDXyGEEEIIIYRIjJCPr3nvNi3aGnZJEeH/jXdbp5Kz+0wJ75JB//79admyJRcuXGDJkiVaXYiqdunSJYKDg3Fzc8Pd3Z0ePXrg6OioVUARmxUrVjB48OBUDZBCQ0Np2rQpDg4O2Nvbp5swS6VSMWbMGDw8PFAoFMydO1ezrl1sDAwMWLRoEe3bt2fr1q18+/aNefPm6XwyOjYvXrzg2bNnNGnSJMljJcXZs2dZsWIFixYtokyZMnod+9mzZ/To0YPv379rvc+lS5e0XqIlMDAQBwcHdu/eTZEiRXSeX9TgLiWEhISk6PESkhwVdwcOHMDJySnB7Xbt2sWuXbui3adSqZg5cyYQe3in/pzRpt2kvb09Xbt2xdjYmKCgoBRtwZpWODo68ujRI+rUqaO5T91i8Ud//PGHJnB1cnLS6jWMz6VLlxg1ahTOzs6xVkiGh4fj6+sb4371Z1DUNrTq39PQ0FC+fftG27ZtNdts2bKFtWvXaradMmUKb9++5enTpygUCmrVqqVVS9tDhw5pfi49evRIMLzTRffu3dm8eTOfPn3i3r17PHz4kFKlSsXY7smTJ+zbtw+Axo0bJziugYEB9vb2jBgxgvDwcDZu3Jjk102knFQJ7qpXr86WLVu4ePEiFy9e5OnTp5pf/OvXr3P9+nXs7Oxo3749HTp0wM7ODois6urUqRM7d+6Mlqonl1y5crFkyZJkP86/wd27dzW3Q0NDCQ8P17kn8507d6J9r+0fKy9fvtTcTkyPdCGEEEIIIYRIayIC/fiwc47eQjs1ZbA/73fMJne/JdI2U8/y589Pv379WLFiBW3btmXDhg1ahwsHDhzQ3C5VqhT16tVLdGgHkRV8GzdujFZFkdJu3bqFt7c38+fP58KFC8yfPz9NLYsSl5UrV3L27FkAxo8fr1VoZm1tzerVq+nUqRNHjhzh/fv3rFq1isyZMydpLnny5MHR0ZHSpUuTN2/eJI2VFBcuXOD169d07tyZIUOG0K9fP70FOkWLFsXFxYV9+/ZRpkwZChQoQMaMGbGwsIixbdu2bXn37h2//fYb06dPj3fcZcuWsXPnTgDq16+f6CoT9bp6KSU0NDRFj5eQ5Ajce/XqRYUKFbC0tCRPnjwxLv6vVKkSfn5+9OjRg0mTJiXqGNqekzQ2NubFixf079+f1q1bM2TIkEQdL7Hev39Pjhw5UvSYUTVv3pzmzZtrvr98+TIKhYKffvop2nZhYWHs3r0bgFatWiV6fdVp06Zx4sQJzffv37/nwYMHMY4HkSHtj9sn5MiRIxw5ciTOx93c3IDI9ejUx0jM2m8fPnzQa3hnbGxMzZo12bt3LwA3btyINbg7duyY5ra2n01R2/Wq/20T6UOqBHdGRkZUrVqVqlWrMnr0aN6+fcuJEyc4ceIE9+7dAyKrqFatWsXatWupXbu25solb29v2rdvnywtEVUqFSqVCqVSSXh4OGFhYYSEhBAaGsrChQtp1qyZ3o/5bxE1PFOpVHz58kXnysior6mRkZHW7ROuXLkCRH7I1a5dW6djCiGEEEIIIURa9OXExiS3x4xLhP83vp7YhF2r4cky/n9Znz592LlzJx8/fsTe3p4//vgjwZOynz594tKlyPULCxUqxNq1a2NdP0cX9vb2NGnShGrVqlG6dOkkjZVYp0+f1ty+evUqLVq0YMuWLfFWr6W2Y8eOsWrVKgD69esXa4vBW7duUaFChRiBRqFChVi3bh29e/fm9u3btGvXjgULFlCpUqVEz8fExIS2bdsyatQoduzYofMF0voQHh7O+fPngcgTxUuWLOHGjRusWbMmUd2WQkNDY1QjlihRghIlSsS7n1Kp5PPnzwAULFgwwVDU3/9/Fz2MGjUq0UFj1Io7Pz8/rSpzAgICNLe12R4gKCgISHsVd8kluS68V/9earve6LVr1xgyZAi+vr6sXLmSr1+/MnXq1BRZ28/JyYl9+/bh4uISa0iTGrZu3UqbNm1i3H/y5Ek+f/6MlZUVY8eOjfb7d+/ePcqUKZPgz+zDhw+a4Chv3rzMnj073tazRkZGLF26lO3bt5MzZ06KFi1KxowZsbS01Ly+y5YtY/Xq1Zp9Wrduzbx58xJ8np06dQIiLxw4dOhQnNvt2rWLqVOnArBx40Z+/fXXBMdOrKgVwZ8+fYp1m1evXmluu7i4aDrXxSdTpkxYWVnh5+fH9+/f8fPzw8pKLtxKD1Jtjbuo8uTJQ58+fejTpw9v377lwIEDHDp0CA8PD8LDwzl9+rTmDz6FQoGfnx9+fn4pOsdjx46lq+Du3bt3TJ8+nRs3bpA7d24mTJhA9erVk+14Ude3g8S1EqhevToGBgYolUqaNm2qVVXl+/fvuXHjBgBNmjRJ9Np6QgghhBBCCJFWBD6/RcDDS8l6DP+HF7Es9SvmRSom63H+a8zMzOjcuTPLly/n69evODk5sXz58nj32bZtG+Hh4WTMmJE1a9YkObSDyGqCBg0aMHr0aPbv3x9jraLkplQqNUukAJQvX56JEyem6dDu4sWLjBkzBpVKRZcuXeJc92ru3LlEREQwfPjwGBcPV6hQgRUrVjBw4EC8vLzo0aMHAwYMwNHRMdGhW+fOnVm7di2rVq3SrJuWkq5cuYK3t7fm+/79+9O7d+9EhXaLFi3i4cOHrFu3TudWop8/f9ZUmOTOnTvB7b98+QJEBji6tK39UUREhOb2oEGDdN4/arWLNvRd4RcSEpKk6t3EVNy9f/+e7NmzJ0u13qlTpxg+fHiCPyd3d3fc3d11Hn/Hjh18//6dhQsX6qXdbVzmz5/P5s2bgcgLLdJCePfmzRsuX77MnDlzYjymnuuwYcPIkiVLtMecnJwICAhg2LBh1K9fP87xt2zZQlhYGCVKlMDFxYVMmTIlOCdDQ0N69OgR62NXr16N1gITwMPDg3v37lGyZMk4P6M8PDy4c+cOhQoVihayxyZq8J6UzxFtRK0yjuv9rQ74AY4ePYq9vb1WIbiZmZkmS0lrVb0ibmkiuIsqT548DB48mMGDB3P79m127tzJiRMnCA4OBiL/wVAoFFhZWVGjRg29HVelUhEREUF4eLim2i40NFTz9e7dO8LCwhL1h0liRe3j6+3trdUfJmrjxo3j+vXrQGS/cEdHR44dO5Zs5dc+Pj5JHiN37tx06tSJ7du3a73g8bJlywgPD8fKyopRo0YleQ5CCCGEEEIIkdq8r+5LmeNc2y/BXTJo164dK1asQKVScfr06XjXTgoJCWHXrl1kyJCBJUuW6G29HIDevXvTqlUr5s+fz7Rp0/Q2rjZu3rypqRgwMjJiwYIFqdrqMSE3b95kyJAhhIWF0a9fvzhDO4h8Pg8ePMDBwYFy5coxadKkaCdOf/31V1avXs2QIUMIDg5m1apVnDhxghEjRlCvXj2d52ZtbU27du1Yt24dtWrVoly5col5iokWtTVb1apV4z338v37d81SOD/as2cPGzZsACJP/q9YsUKnMDPqBePavJe+fv0KgJ2dndbVV7GJemG6q6trvBVCEFkp07dvX2rVqqXTeapNmzaxYMECVCpVrFWJieHi4sLhw4fZunWr1ufZkurVq1d069aNBg0aJNjONDHq16+Pi4sL4eHhFC1aNEY42LhxY7y9vaO1c3R2dmbXrl1YWlpy8uRJrY7z47gRERGMHDmSP//8U6f57tu3T7MmWVx8fHzSRHjn6upKzZo1YwRz586d4969exQrVizWdQVDQkJ49uwZgwYNokyZMqxatSpGW2Q/Pz927dpF3rx52bhxo1ahXXw+fvzImDFjUCqV1K5dm7CwMC5fvsz379/p3bs3SqWSn3/+mWbNmtGwYcNo5/MPHjwIQM+ePVm/fj3e3t5xFoJEXXtTvZRXcolapBTXfIoVK8aFCxc038dVmReVUqnUnLc3MTFJcgtnkXLSXHAXVYUKFahQoQKTJ09m//79bNu2DQ8PDyDyzezj48OsWbM0fWn/TT5+/MiLFy803585c0an9hYPHjyI9n1QUBB///13sgV3P/5hltg/isaPH8/79+85cOAArVq1irXHsdrmzZvZt28fxsbGLFy4MNk/QIUQQgghhBAiuYV+8iD47eMUOVbwm0eEfnqDsV3aDVTSo2zZslG2bFnu3buHsbFxvCfg9+7dy/fv3xk3blyCFyf7+vpy7tw5WrRoodU8SpQowc8//8z27dupU6cONWvW1Ol5JIV6nR6Ajh07punQ7vr16wwcOJDg4GDGjBlD3759490+6gngXLlyxdotqGbNmmzatAkHBwf8/f15/vw5jo6OVKhQgV69elGnTh2dgpmePXuybds2xowZw4EDB1IshPH399cEFQqFgjFjxsS7vbu7OwsWLEhw3HPnznHmzBkaNmyo9VzU57kMDAwoWbJkgtur22rquozLj9SVLzly5IgRaPzo1q1bjBo1ivfv3/P06VMArcM7c3NzmjdvTsuWLbUuGnj06FG0isCorly5wpIlSwAYOnQoa9euTfZWq15eXtjb2/Plyxd27NiBqakp48eP1/txKleuHOdj6hapmTNn1gQU6opDhUKR6NAiQ4YMLF68WNOmtUSJEmTKlAlra+tYz4GOGTOGS5cu0bRpUyZPnqzVMZKzwi8h/v7+uLu7s3jx4hiPqavGp06dGutzDQwM1Nz+5ZdfYl3LdOfOnRgZGbF+/XqyZs2apLn6+PjQt29fPn/+TI0aNVixYoVmbcJy5cppCoLOnDnDmTNnKFGiBG5ublhaWhIREYG7uzvZsmWjVatW7Nixg3fv3sUZlH38+BGIfG2SGjYm5PXr15rbcVWn9+/fny9fvnD//n2KFi2qVevO58+fa1rwxhZ2i7QrTQd3atbW1vTo0YPu3btz5swZNm/ezI0bN7hy5QrNmzdnzJgxmt606VVAQAARERH4+Pjw5MkTli9fHq2v9dq1awkJCaFp06Zkz54dQ0NDTE1N4/xQL126tKbiDiL/sEzOlhQFCxbk8ePI/7k0MDBI9IeZiYkJq1atYtOmTfTq1YuqVatSr149SpYsSdasWQkPD+f58+fs3LmTs2fPkjdvXmbOnKlz6wEhhBBCCCGEiE2Ez2fCQkyTvL6NwtAIQ8vY/78ozDvuK6R9bh2P87Hk4HP7ODY/x72+eGKfh7aMbNLXBZinT5+mbt26CZ74qlu3Lvfu3aNPnz5xXtgaFhbGxo0badGiBb179453vG/fvtGnTx8ePXqkqejRRvfu3bl27RqTJ0/myJEjKbKujZ+fn6ZNpoWFBY6Ojsl+zMT6888/GTNmDKampqxduzZG68vYqEOVnDlzaoKR2FSqVIndu3fj6OioOSF7+/Ztbt++jbW1NQ0aNKBixYoUK1aMIkWKxNvOMHfu3NSpU4dTp06xaNEizZpLye3IkSOak/JNmjShTJky8W7fp08fbG1tUSqVlChRgqxZs2JlZYWxsTErVqxg5cqVWFlZsWrVqgQr1350//59ILLiJKF2sqGhoZr2nkm9gD1nzpy4urpSpUqVOH/vQ0JCWLNmDRs2bNBU6OXIkYMXL17w4sULChcunOBxOnfuTOfOnXWa27Nnz5g4cWKc4Z3axYsXcXNzo1evXnz69AlHR8doFYzq7mZKpTLGvlFb9s2aNYv58+fHeZzg4GBNxzSIrPgzMTFhxIgRujyteIWGhnLq1Clq1qwZ433g7++v+fnro+XwjwwNDbVuV6sOSY2NjdNFhdPevXsxNzePcYHHsWPHePjwIe3bt49zvU51VVrmzJljrS4PDQ1lx44dLFu2jAIFCiRpnkFBQTg4OPDs2TNq1arF8uXLY5wbz507Nzt27GDQoEFcvnyZx48fs3nzZgYPHszZs2d59+4dTk5OmJiYYGVlhZeXV5wXA6iDu1y5ciVr4BUREaFZ69bMzIwqVarEup21tbVWa/hFdeLECc3t9LQMmEgnwZ2aQqGgXr161KtXj/v377N69WrOnTvHjBkzOH/+PHPnzk329Du5DBgwIFrQ9qOIiAg2btzIxo0bNfc5OTnFumAoRPZKVq9xly1bNkaNGpWsV7hNmjSJiRMn8vXrV7p165ak/vkZMmSgf//+tGvXjn379nH06FGcnZ3x8fHB1NSUzJkzU6pUKebPn0+TJk1S9YoUIYQQQgghxL/LFxf9tOA3zVuKnN1nxvrY21UD9XIMffC79Sd+t+Ju/ZXcz6PgpD+SPEZKGjt2LLly5WLQoEHxVsg1a9aMz58/07NnzzjX0Dl48CCWlpZMmDAh3nV2fHx86N+/P8+fPwdg4cKFhIWFMXBgwj//unXrkjt3bjw9PZk7dy5OTk4J7pNU7u7umpP3AwYMSLBKKbVs3bqVuXPnUqRIEZYvXx5r5Vxs1MGdNidxCxUqxJ49exgzZgznzp3T3O/r68sff/zBH3/8QebMmRk5ciTt27ePd6zu3btz6tQptm/fTsOGDfn555+1mm9S7NixA4i8yFrbyrGEKkKzZ8+uc2gHcPfuXYA4w4Oo1G0yIenBXY4cOeIcQ6VScezYMZYsWcLbt2/JkiULzZo1o0WLFnF2zTp27BhPnz5l+PDhSZoXQKtWrciZMyc3btzg+fPnPH36FFtbW3Lnzs337985c+YMRkZGrFu3jl9++QWIbPe3Zs0aDhw4QJEiRfj+/TsPHjzg1atXQGRbPZVKhUqlQqlU8v37d81nz5QpU+I8D5nc3r9/z86dO9m3bx8NGzaM9fNXva4hkC7CsrQiIiICV1dXWrduHe1Ck4CAAJycnMibN2+clZMRERGapZ7Kli2rqTSN6uvXrwwbNizJn1k+Pj44Ojpy584dunfvzoQJE+K8MMbMzIw1a9bQo0cP7t69q7l4YuvWrZQqVYpWrVoBkQHvs2fPaNCgQazjeHl5AZFLeyWnP/74Q3Oszp076+0im9DQUHbv3g38r6pXpB/pKriLqmzZsqxdu5bHjx+zbNkyzp49S8uWLVm2bBnly5dP7enpbOvWrXodL2fOnKxfv16vY8ancuXKWveJ1lbmzJnp06cPffr00eu4QgghhBBCCCFEYpiZmfH06VOGDh2q1fZubm4JbpOYDjLOzs6Eh4dr2oPFxcDAgI4dO7J48WLc3d1p1qyZ5gR+clAqlbi6ugKRVQ+9evVKtmMlVmBgIFOnTuXIkSPY29szfPhwnS4I1rXdoLW1NevWrWPnzp3Mnz9fU8GWJ08epk6dqnUL059//plChQrx8uVLpk6dysGDB5N00XRCrl27pumsZG9vT65cuZLtWAl58eKF5qS2Nu9fdZUMkCzL64SGhnL06FE2bdrEs2fPKF++PEOGDKFx48bxvpe2bNnCvHnzUCqVFC1alCZNmiR5LlWqVKFy5coEBARgZGSkqdx0d3fXBHc//sxsbW2jVe2qQ4zYnDp1ikGDBiV5nomhUqm4cuUK27dv58yZM1SvXh0XFxcKFSoU6/ZRX3dbW9uUmma6d+LECby8vGjbtm20+1esWIGvry87d+6Ms4Lx48ePmuWTSpYsyZkzZ2JskyNHDlq2jLuyXxvv3r2jX79+eHh4MG3atFjX2vuRiYkJK1asoE2bNhQqVIh79+5x69Yt9u7dq+mqkCNHjhjLTakFBgZq1pDT5/qzPzpz5gyzZs0CIj/nHRwc9Da2m5ub5jk4Ojqm2QtpROzSbXCnVqJECdauXcv169dZsGABPXr0YMKECVr9AgshhBBCCCGEEEJoS31SPmfOnJq1v9K6tm3bsnz5csLCwpgyZQpHjx5NtsDnxIkTeHp6ApFr2Ke1DjnPnz9n6NChKBQKtm7dGq16KywsTKu1xbRdf+xHnTp1olatWixdupQLFy6wY8cOncOFDh064OTkhIeHBytXrmT06NGJmos2XFxcgMgKrf79+yfbcbShbvWWKVOmBNeCBDQnqiHpFXdqERERPHjwgKNHj3Lo0CHCwsJo0aIFixcvpmjRovHu6+/vz7Rp0zh8+LDmvokTJ1KkSBGKFCmS5LkpFIpkaQ2Z2nbs2MHWrVspUKAAq1evTrCV7fv37zW3Y1tnTcTu999/p1KlStGqju/du4ebmxtLly6Nd+kldaAOkD9/fvz8/AgJCYm39a+u7t+/z6BBg8iUKRN79+6Ndz4/tjm3s7Njx44dWFlZMXbsWBwdHaPtnz9//mitJKPy8PDQ3NbH72lUQUFB3L17l127dnHs2DEA2rdvz+TJkxNsfastLy8vVqxYAcCvv/4qhTHpULoP7tSqVKnC3r17OXjwIAsWLOD169dMnDgxtaclhBBCCCGEEEKIfxmFQqHXE5PJKUuWLNStW5fjx4/j5eXFunXrtF6nSRcqlYq1a9cCULNmzThbj/2oefPm0U64J9XNmzdj3KdeT9DNzY1+/frRrVu3GJVzLi4uPH78GAcHh3hPDOtacRdVjhw5WLBgAf7+/okKWlq1asWiRYsICwtj8+bNtGnThoIFCyZ6PnF59OiRprXnhAkTsLCw0PsxdKHu8NS0aVOtgtPPnz9rbie14s7X11ezppa/vz+ZM2emRYsWNGjQACMjI/z9/blx4wYRERGxfgUFBbFq1SrevHkDQPny5Wnbti01a9aUcCkKlUrFhQsXcHNzw8/PD4iscB40aBDdunXT6nVXt0MEtG59+193/fp17t+/H23dNH9/f0aNGsX48eMT/BxXv68hMtyys7Pj3r17ca7RpqvNmzezbNkyevTowaBBg2K9GOTr168oFAratm0ba0vPPHnycPXqVZRKJQMGDIj2WP78+fn8+TMfP36M8fsYte2nNutUxmXGjBnMnTtX831ERISm8trOzo5WrVrRpUsXfvrpJ5RKJUFBQYk+llpYWBgjR44kMDCQ8uXLs2zZsiSv3SxS3r8muFNr0aIFderUwdnZmY0bN2q9YLMQQgghhBBCCCGENtStwdKLli1bcvz4cQA2bdpEx44dyZ49u16Pcfr0aR4/foyJiQlTpkzRer8NGzYQHh6u17lEdfPmTebNm0flypU5dOhQnGtfGRsbc/ToUY4dO0bt2rUZOHAgP/30U5KO/e7du1iDo8RWR9nY2FC7dm1OnjxJWFgY8+fPZ926dUmaY2xWrVoFQPXq1fXSzjEp7t+/z6NHjwC0Xl/tw4cPmttJDe6sra3JmTMnt2/fBuDbt29s3ryZzZs3x9jWxsYGW1tbsmbNipmZGVevXiUoKAgDAwMaNWqEg4MDJUuWTNJ8/m2+fv2Ku7s7u3bt4u3bt9Eea926Nfb29lqPpV6nL0uWLHpbI+zfbv369VhaWtKoUSPNfbNmzaJdu3Z069Ytwf3V4VaGDBkoVKgQxYoV49KlS0kO7kJCQhg9ejTGxsYcPHgw3jXmevTogUqlindtuODgYBYtWhQjvCpQoAAQuYbmb7/9Fu2xJ0+eAJHPrUSJEol+LkOHDo029o0bNzQBY48ePejXr1+ix47LjBkzuHv3LtWqVWP16tWYm5vr/Rgi+f3rgjsAKysrnf5IFEIIIYQQQgghhEiIOrBLb1eu16xZE2tra3x9fQkJCWHVqlWaNXX0QalUsnz5cgAGDRpE3rx5td5X3wHij758+cK6desSXNtHXUGpUqm4dOkStWvXTlJwt3//fiZPnszChQtp3Lhxosf5UbNmzTQVaOfOneP27dtUqFBBb+Pfv3+f06dPY2pqyowZM/Q2bmKpA7I6depQqlQprfZRB3dWVlZkzJgxyXNwdHTUtJitUKECRYoUIWfOnGTPnh07Ozvs7OzImjUrxsbGfP/+HVdXV9zc3AgNDaVFixYMHDgwRmXk/fv3KV68eJprJ5sS/P39uXDhAocPH+bChQuEhYUBkcHnoEGDcHZ2JiAgQOdx1UFLfBWz+jR//nz69esX58UAcbl48SLnzp1j8uTJKBSKZJpdwh48eMDFixfp2LEjZmZmmvsHDBigCbQSog7uihcvjomJCcWLF2fPnj2MHDkySXMzMTFh+PDhca5nqPb69WtevHgBQP/+/enfvz+jRo2KsV2dOnVi3T9XrlyYmZlx7ty5GMHd3bt3AShUqFCSgq9MmTKRO3duzfc5cuRgyZIlfPr0iZ07d9KnTx+9/k2xYsUK9uzZQ4MGDViyZMl/8jPm3+JfGdwJIYQQQgghhBCJkdV+MSampkk+iaIwjLutV55Ba+J87NMBZ0I8n8b5uL6Z5C6OXcu42yYm9nn8W6nbW6W3q9eNjIyoW7cu+/fvByJDpVGjRmFjY6OX8Q8cOMDTp08pXrx4mltHJ2olSXyinrh2dnamfv36iT7m/v37mTBhAkqlktGjR2NgYBDjpHBi1apVC1NTU4KDg4HIYEufwd2iRYtQqVQMHTpUpwA2OXh5eWkqRYcMGaL1furWq0mttlMrVKgQa9eupUqVKtHeJ1F5enqyefNm/vjjD8LDw2nZsiV9+/aNs2Xj7du3GTx4MA4ODnTo0CHRayemN6GhobRv355//vlHc59CoaBDhw6MHDkSGxsbzUUAuvD399esSaZtwJtU165d4+DBg8ycOZPy5ctHe0xdRRwaGsq3b98093t6ejJ8+HD8/f0JCAhgzpw5ZMiQIUXm+6Nly5YB0K5du2j3axvahYeHc//+fQAqVqwIQIkSJXj06BFfv35N8GKJhCQU2gEcOXJEc7tBgwaxBob79++nRYsWsf5dZ2BgwE8//cS5c+dQKpWabUJCQnjw4AFAjNc2qTJkyEDbtm1Zs2YNnp6eXLhwIcH1G7W1bt06Vq5cSatWrZg7d26qvbeEfkhwJ4QQQgghhBBC/L8MGW0xMjNL1ooqIxu7OB8zy1sqRYM7s7wl451PfBK7X3qmDkvSW3AHkYGPOrgLDQ3l2rVrWoda8QkODmb58uUYGRkxb968JK0Bl5qinuDMlStXgtt7eXlRrFixBLcLDw9n5MiRODs7a73uX3zMzMyoXLkyFy9eBND8Vx/Onz/PX3/9Rbly5ejVq5fexk2shQsXEh4eTrNmzXQKY969ewcQrcolqWrVqhXr/bdv32br1q0cP34cKysrunfvTvfu3bG1tY13vF69euHv78/MmTNxdXVl7Nix1KtXT2/zTauMjY2ZP38+nTt3Jjw8nNy5czN//nwqVaqUpHFv3bqlqYhO6ljaMjEx4cuXLzg6Osa5zZEjR6KFS1Ht27cPW1vbWCvEklN4eDhubm5cuHCB4sWLU7Zs2USN8/DhQ83FLD///DMQWXlnZGTE4cOH6dmzZ5LmGRoaqqnGjMuBAweAyPaokydP1sxHbevWrSxdupSTJ0+yaNGiWIP3ypUrc+3aNe7evau5COL69euaY1evXj1JzyM27du3Z926dSiVSrZt26aX4G7VqlUsX76cTp06MX369FSt5hT6kT7/mhJCCCGEEEIIIf6FLEvVwPuKewoe79cUO1Z6p1QqNcGdtbV1Ks9Gd1WrVo32vaenp17GXb9+Pe/evWPUqFFJWgcotelamZAjRw7c3bX/XdVnoFm1alVNYBcYGMi3b990btf3o9DQUObOnYu5uTkLFy5M9UqNmzdvcuzYMWxtbZk8ebLW+4WFhWlaZeozuIvK39+fI0eOsGvXLh4+fEiRIkWYNm0aLVu2xNTUVOtxBg8ejL+/Py4uLjg6OtKoUSNmzpypl/aeaVnZsmVxcHDgr7/+Ys2aNXr5PL127RoQWV2cUsGdukqyePHimgApIZ6enpqAtk6dOgwYMCDZ5qf26tUrBg8ejKWlJSqVCg8PD7y9vQHo2LFjosc9d+4cEHkxwS+//AKAqakpVapUYc+ePUkO7l69ekWvXr2iVSzG5evXr3GG6wCnTp1i0KBBbNq0KUagpV6P7+TJk5rg7sKFC0DkvwvqUFKfcuXKRfXq1bl06RIXL17kzZs3SapwdnZ2Zs2aNfTs2ZOJEyfqcaYiNaXp4O7QoUM0a9ZMEmIhhBBCCCGEEP8Jxnb5MM1TguC3j5P9WKZ5S2Jsl7qt8NIT9YlOgGzZsqXeRBIpS5YsZMuWjY8fPwL6Wafv7du3bNy4kapVq9K3b98kj5eadA2qDAwMkhyWJdaP1Wf6OG/m4uLC69evcXJySvUWmSEhIZr19WbNmkWmTJm03tfT05OIiAgAvT6Pz58/c+7cOU6dOsWVK1eIiIigTp06jB49WquKHJVKRUBAAL6+vvj5+eHn54evry/FixcnV65ceHl58eeff/L8+XO2b9+utza2aZWjoyPdu3fX20UQ6qClSpUqWFhY6GXMhCS1vWm9evVSZK4FChTAzc2NI0eOsGHDhmj/llWuXDnR4546dQqAX3/9NVpg/euvv+Lk5JTk9TeLFSvG5s2bOXv2LKVKlSJv3rxYWVlpfmbjx4/n6NGjFC9enJ07d8b4N83Hx4f69esTEhJCw4YNmTlzZqyflT/99BPGxsa4u7szfPhwjIyMNC16K1WqlGy/ix07duTSpUuoVCp27NjBuHHjEjXO8uXLWbNmDb179070GCJtSrPB3fr161m6dCl37txh5MiRGBoaar6EEEIIIYQQQoh/K5tqrfmQAsGdTbVWyX6Mf5P0HtwBFCxYUBPclStXLsnjzZo1C2traxYvXpys7WVTQmpXmOmiYMGCmtv58+fXKdiKjaenJ2vXrqVNmza0adMmqdNLsjlz5vDs2TMGDBhAnTp1dNo36tpp+fLlS9I8Pnz4wJw5c3j48CFeXl5AZOVk9erVadKkCebm5nh5eeHi4hIjkPP39492n7+/P0qlEoVCQcaMGcmaNavmq2HDhly+fJlnz57x8uVLZs+ezaJFi5I097TO0NAwye9btZcvX/LixQsAGjdurJcxtZGePvMyZcpEt27daNWqFf369eP27dsAiV6H7tGjRzx79gyIuUZe7dq1cXJyYuvWrUlef7NYsWKxtiR+9uwZf/75JwBTpkyJtQXmgQMHCAkJwcjIiMmTJ8f5fjMxMaF69eqcO3eOQ4cOkStXLs2/k/poJx2XunXrYmtry+fPn3F3d2fYsGEYGxvrNMb69etZtWqVhHb/UmkyBdu1axdLly7VJM47duyI9niGDBkwMjLSfBkbG2NkZISJiQnGxsaYmppiamqKiYkJZmZmmJmZYW5ujoWFBZaWllhbW5MxY0ZsbGzImjUrOXLkiHNxWSGEEEIIIYQQIiWZF6mIRakaBDy8lGzHsCz1K+aFKybb+P9GUYO7PHnypN5EkqBSpUpcvXqVli1bJvmE6qFDh7hy5QpbtmxJcD0voV/Zs2cnd+7cfPjwgSlTpiR5vGnTplGoUCGmTZumh9kljboFZevWrRkxYoTO+z9+/L+LHrRZgzA+2bNn5927d5rQDiLXB7tw4YKmwisqKysrcufOTe7cufn69SsvX76kaNGiTJo0CVtbW2xtbcmaNWuslVqPHj2iXbt2RERE8Oeff7JgwYJkD4bWrFlD69atyZ49e7IeJ7nt27cPiFx7NCWDu/RYXGJpaYmDgwMODg5A4i9Y2LVrFxDZ8vHXX6O33M6fPz/lypXj2LFj9O7dmzJlyiRt0rFYsmQJSqWSli1bxtoaNTg4mC1btgDQokWLBC+2ad68OefOnWPbtm3kzJkTiGz72bRpU73PXc3Q0JDWrVuzfv16vL29OXLkCK1bt9Z6/127drF48WK6du2qdWjn4uJC/vz5db4gQqSONPkJ8/nzZ1QqFQqFQrOwaFTh4eGEh4cTFBSkuS+pbQHs7OyoVKkSdevWpUGDBjon3EIIIYQQQgghhL5kbdiXYI9HRPgnvLaLrjJYZiZLwz56H/ffLuqacIULF07FmSRely5dMDY2pnfv3kkaJzQ0FCcnJ2bPnk3FihIAp4bp06ejUqmoUaNGksY5deoUKpWKXbt26bQ+W3K4evUq48ePp0GDBsyePTvRYwDY2tpiZ2eX5DkNHz48RhvYwoULU6pUKYoWLUqePHk0YV3UtekmTZrEy5cvsbOz06xpFp+SJUvSvXt3Nm/ejIWFRbKGduHh4UybNo2goKB0H9qFhoZq1pps2bIllpaWiR7r5cuXnDt3jj590te/j8eOHdMpsLSystLcDgsL0/l4nz9/1oSlAwYMiPW92rlzZ+7evcuCBQvYunWrzseIz40bNzh79iyWlpaMGTMm1m3c3Nz4/PkzRkZGODo6JjhmvXr1MDc359GjRzx69AiAJk2aJPt6kx06dGDDhg2oVCq2bdumdXB39uxZZsyYQYsWLXS6eGPv3r0MHz48kbMVKS1NBneDBw8mS5YszJgxgxo1amBsbExYWJjmKyQkhNDQUM1XSEgIwcHBhISEEB4enqhjfvr0iaNHj3L06FFsbGwYMGAAPXr0kPX1hBBCCCGEEEKkuAzmVuToPJl3W6eiDPbX27gGppbk6DyZDOZWCW8sonn58iUQ2R6tUKFCqTybxMmcOTP9+/dP8jghISGMGDGCVq1aJX1SIlF+rHJJrODgYLZt25bq7V///vtvBg0aRMeOHZk4cWKcwZW/v3+c4Yynp6emBaA2685p49dff6Vy5cr4+PjQsWNHfvvtN2xtbfH19eXu3bvUrFlTp/E8PT3JmTNnrM9v2LBhHD16lPr16+tl7rEJCAhg2LBheHl5sXfv3mQ7TkrZvXs3X79+xcjIiH79+iVprA8fPvD06VOtt08r54ydnZ11Cu78/f/3N4WPjw9Zs2bV6Xhr164lJCSE/Pnzx9lat3Hjxjg5OXH9+nWOHDmit8o1pVKJk5MTAKVLl8bT05OMGTNGK8D58OEDq1atAqBbt27kzp07wXHNzMyoV68ehw4dAiIrEfXxb2VC8uTJQ7Vq1bhy5QoPHz7k3r17FC1aNN59nj17xqhRo6hWrRpz587V+n344sULXrx4kW47BvwXpcngDiKT+RkzZjBp0iQKFCig9X4REREEBQURFBREYGAg/v7+BAQEROsz/e3bN759+8anT5948+YNb968iRb4ff/+nXnz5nH16lVWrFiR5MVGhRBCCCGEEEIIXRnb5SNn95m83zFbL5V3GSwzk6PzZIztkrbu03+Veg2lEiVK/OeX27CyssLe3j61pyH0oFmzZtHWzEsODx484MSJEwB4eXnx5MkTihcvrnn86tWrjBo1ipEjR9KtW7c4xwkLC6NHjx6EhoZSpkwZSpcuTZEiRTRr2U2bNg2lUgnod22qFStWYGNjozlBHhoayvDhw7lx4wYuLi6xtuqLy4kTJ9i2bRsNGzakdevW0U7Sm5ubs27dumQ7sf7p0yccHBx49eoVe/bswcLCIlmOk1L8/f1Zu3YtAF27diVXrlxJGs/b2xtfX1+tt08LwZ1SqcTT0xOlUql1lWbU1q/fvn3T6UKUR48esWPHDhQKBTNnzoyzXaiJiQn29vYsXbqUqVOnUrp06SSvOQkQGBhIu3btKFasGA8ePKBr165kyJCB0qVLU758eSpUqMCmTZsIDAwkb968DBkyROuxo76eefLkSfL7SVvt27fnypUrAGzfvp3p06fHua2/vz9DhgwhR44cLFu2TKfMQr1uZt68eZM0X5Fy0mxwl1gZMmTA0tJSp9LokJAQ7t69y5EjRzhw4AChoaGoVCrOnz/P4sWLGT9+fDLOWAghhBBCCCGEiJ2xXT5y91vC1xOb8H94MdHjWJb6lSwN+0ilXRI8fPgQgNq1a6fuRIRIJ3x8fFiyZAm7d++mUaNGLFiwABcXF3r27MmqVauoVKkS+/fvZ/v27bi4uCS4Jp2RkRHu7u7cvn2bhQsXalok/qhw4cJ6/T3NlCmT5nZYWBijRo3i8uXLADg6OrJjxw6tw4/evXtTu3ZtJk2axO+//07ZsmXp0KEDzZo1w8zMjJIlS+pt3lE9f/6c/v378+7dO5ycnChSpEiyHCclLVq0iM+fP5M9e3adApq4fP/+PdpapgmJbXmnlObt7U14eDje3t5kzpxZq33U1eMQWZ2mreDgYMaNG0dERAQ9e/akatWq8W7fs2dPtm/fzsePHxk2bBi7du3CxMRE6+PFxtLSki5dumi+//79O+fPn+fMmTPs3LmTTZs2aR7LmTMnly5dolatWgm2AV6+fDkHDx7UfP/69WtGjx7N0qVLE70OoLbq169P5syZ+fbtG3/++SfDhg2L9pkT1YwZM/jw4QP79u3TOvv49u0bCxYs4OzZs9ja2mJubq7P6YtklLyrnKYTJiYmVK1alZkzZ3LgwAFy5MihWV/P1dWVmzdvpvYUhRBCCCGEEEL8R2Uwt8Ku1XCyd5iIaV7dTuqa5i1J9o4TsWs1XEK7JHjw4AHv37/HwMCAli1bpvZ0hEjTVCoVf/zxB40aNWLnzp0MGDCApUuXUqJECRYsWMBvv/1Gr169cHNzw8rKiu3btycY2kVVoUIFtm/fzujRo2M8ZmFhwfz585NljbigoCAcHR011YMQGWb8/vvvOo1TsGBBtm3bxrhx43jy5AmTJ0+mVq1aLF68mK9fv+plrhEREZrbf/31F126dOHdu3e0bNkyzvaG6cmtW7fYuXMnBgYGzJ8/P0lr26npWnGXFoK7z58/A5HVlNp6/vy55nbUtVsTMnXqVJ49e0b16tUZO3ZsgtubmZkxdOhQAB4/fszQoUMJCQnR+njayJQpE61atWL69OmUKlUq2mPXrl1j6NCh/PLLLyxdupTQ0NBYx9ixY4emtWbt2rU1bYiPHz/OpEmTov0uaSvqPgntb2xsrFnbLuqajT+6c+cOBw8eRKFQ4OjoSKNGjRL8qlevHjVq1NCsSShtMtOXf3Vwt2HDBp1Dt/z58zNs2DBUKhUKhQKlUsnixYuTaYZCCCGEEEIIIYR2zItUJGf3WeTutxSb6m0wK1AWA9PoJysNTC0xK1AWm+ptyN1vKTm7z8K8cMVUmvG/x8mTJwGoW7euXtp9/Zfcu3eP2bNnp4mT3CJpli1bxsWL8Vf+PnnyhC5dujBx4kS+fftGv379GDZsWLRtpk2bRu3atZk1axY7d+7UhA+6UCgU9OvXj+HDh2vuK1asGNu3b6d06dI6j5eQjx8/0qVLFy5cuABEnj+cPn06ly9fZs6cOTqPZ2BgQO/evdm9ezf58uXDx8eH9evXU79+fdavX5+osCCqb98i2ysHBwfTp08ffH19yZ8/P9OmTdNpHF0CiJTi6+vLxIkTUalUDB8+nJ9//lkv43p7e+v0XlR/pimVSs2yTAl9RQ0G9fHzVAe9Hz9+1HqfV69eaW5rG9wtWrSIAwcO8PPPP7Nq1ao4W2T+qG3btlSpUgWAc+fO4eDgQFBQkNZz1cajR49o164d169fJ0+ePOzYsYPNmzdTuXJl4H8tVWfMmBFj323btjFz5kwgctmu1atXs2TJEvLnzw/Avn376NWrF1++fElwHkqlEl9fX16/fs3Zs2c19+/fv59//vkHX19fTSvfH3Xo0EFze/PmzVy6dAlfX1/CwsI096tf66CgIF69eqXVl6enZ7T3mfz9kr7861plRlW2bFnGjh3LwYMHdbry4sc38d27d7lx44bmF14IIYQQQgghhEgtxnZ5yWzXFYg8cagKDUYVEYYigxEKY9M0se7Ov4lSqeTYsWNkyJAhWkggEnbv3j369OmDn58fQUFBzJ49+z///jx69Cj+/v7RTtSmB4sXL2b9+vWYmJiwevVqatSoEWObY8eOMWrUKM2J4latWsVaFZchQwaWLFnCyJEjOXnyJA0bNqRjx460b99ep8o7gH79+vH582eqV69OvXr1kuX9dfXqVUaPHs2XL1/IkSMHQ4cOpVWrVvFW9WlbuVWiRAn++OMPhg8fzqVLlwgMDGTx4sVcu3aN1atXJ9jiLy53794FIj+/lEolRkZGLF68WOd17VIjuAsODo7zsYiICEaMGMHr16/p2LEjDg4OCY6nfk8kVO314cMHTfCiDm7iEx4eDsCzZ8+oVq1agtv/KK4KsKjhjvoYcfHw8ADg77//platWlod18fHR3Nbm0BqwYIFbNq0iVq1arFixQqd2l0qFArmz59PixYt8PPz4+rVq3Tt2pWFCxfqtLZebMLCwvj9999ZvXo1wcHBtGnThkmTJmkygGrVqnHu3DlmzJjBu3fvOHDgANOmTcPY2BilUsn8+fPZvHkzBgYGjBkzhr59+wJgbW3NmjVr6NatG1+/fuX69eu0atWKmTNnUrdu3Tjn8+7dO+rVqxfj/ps3b9K4cWMATp8+Te7cuWNskz9/fqpUqcL169cJCAjQVCqOHTtWr+vJSsVd+vKvDu6qVq1KsWLFmDNnDk5OTlrv92Pv2mbNmsX6SyWEEEIIIYQQQqQmhUKBwsQMMEvtqfxrHT16FA8PD3r27Jmm14VSqVSJPrEetRouIiIizpPFUbdL6ITygwcP6Nu3L35+fgDs3bsXhULBrFmz/rPh3alTpxgzZgwREREYGRlp2qP9KCIiIskViiqVKsHXSNvtli1bxvr164HI8MPR0ZE1a9bwyy+/RNuuQYMGNGvWjAMHDlCiRAlmzZoV55jGxsasWLGCDRs2sHLlSrZu3crWrVvJkycPFStWpESJEuTPn5/MmTOTJUsWLCwsMDU1xcTEJNr7x9DQkKlTp8Z6jIiICEJCQggMDMTHxwc/Pz98fHywsbHhp59+SvBnExoayooVK9i4cSNGRkYMGjSI/v37a8K0devWkTVrVmxtbcmSJQsZM2bEwsICT09Prl69CqBVy04rKyvWrVvHuHHjOHz4MACXL19mzZo1jBgxIsH9Y3vejx8/jnbf4MGDE1WJGPW9oc/g7tKlS1hbW5M/f36sra0191+5ckVTZWRkZBRjPycnJy5dukTbtm2ZPn26VscyNjYGIl/PuEK5iIgI7t+/D0S+rtqcR1YHbMWLF+fAgQNazcXT01MT7sQVJEYNa1++fEmZMmXiHO/atWsA7N69m+7du5MxY8YE55A/f36ePn0KxN/uMzg4mClTpnDw4EHatGnDzJkzY31NEpIzZ05mzpzJyJEjUalUPHz4kDZt2jBq1Ci6deuWqLa2N27cYPr06bx48YKiRYsyevToWIPL2rVrU7lyZZycnHB3dyciIoKAgADGjh3LqVOnyJMnD05OTjGKdQoWLIiLiws9evTQVGIOHDiQihUrMmLEiFiLe3Lnzq35uSbG1q1bUSqVcVYk1q9fP0nji/TnXx3cQWQy3bx5cxo2bEidOnW02kf9RyWAvb0948aNS67pCSGEEEIIIYQQIo1SKpWsWbOG/PnzJ+oEekp6//493bp1w8vLK0njaNN2zs/PL8Z6QtrYs2cPCoWCmTNnplh4FxwcTGBgYILb+fv7a277+vpqWg3+SF0lo26Pp627d+8yfPhwTRAyceJEjIyMaNasWYxtDxw4wKRJk+Jsq6aNM2fOaPUaqQMzXYSEhDBw4MAY4Z2hoSHz588na9astG3bVhOYxEWhUNC/f38aN27MihUrOHr0KG/fvuXt27fs378/zv2MjY0xMTHRjB/1vaRSqQgJCSEkJCRamzn1dtWqVaNHjx4JPsc7d+4wZcoUXr9+Tfv27XF0dCR79uzRtilcuDBXrlzh5MmTcbYqtLLSbm1RQ0NDFixYgJ+fH+fPnwci13FLjAwZMrBmzRq6du1KQEAAZcuWpV+/fokaK2pVmD7XJ/Px8WHx4sU8evQIGxsbsmbNipGRES9evNBs82P15fz589m6dSv9+/dn5MiRWn+GFC5cWHN7zJgxjBgxgmzZsmnuU6lU7NmzR/Mauru7Y2dnl+Bn/o/vL13FVVlYvHhxFAoFKpWKefPm4efnR4kSJWJUS968eVOz3uLHjx/p1q0bu3fvxsws/gt5BgwYwMSJEwkKCoozwH716hXDhw/n7du3LFy4kBYtWiTiGf5PkyZNePv2LUuWLAEin/ucOXPYvn07ffr0oWXLlgl+XkDkc167di0XL14kb968LFy4kGbNmsUb/llYWDB79myGDx/OvXv3mDhxIl5eXnTs2JFx48bFWYVarFgxtmzZQr9+/TRrCN66dYtu3bqRK1cuGjZsSM+ePcmRI0cifiJCJOxfE9wFBgZy48YN8ufPH63VZYECBejQoQNTpkzh6NGj0a7iiIu6TLhUqVJaLbYphBBCCCGEEEKIf5/9+/fj6enJrl27EjwZmtpy5szJ1q1b2bVrF8WLF6dgwYJYWVlhaWmZ5ircVCpVis3Jx8eHHj168Pr1a6330SbYef/+faLa46kplUrGjRuHkZERv/32W7TH2rRpg6mpKe/evaNUqVLY2dlhZWWV6LaJyeXHjlUQGY7pei4tT548LFiwgFGjRnH06FFOnDjB33//HWcwEhoaGmebwbjky5cPZ2dnSpYsGe92X758YcmSJfz555+0adOGdevWkStXrli3rVevHvXq1WPixImcPHmSRYsW8fbt22jb6PIeyZAhA4sWLaJVq1Z4eXnp3NYyqhIlSrB8+XIcHR2ZPXt2rK+VNqJW3GkTgGuradOmNG3alEuXLjF//nyePXsW7fFMmTJpKqiUSiXTpk3j8OHDLFiwgJYtW+p0rAYNGrBs2TLevXvH/fv3E2w9mDFjxlhbHv5I1/fgj+IKQu3s7GjWrBmHDh3i+/fvzJ49W6vxGjdurNW/U02aNKF27dp4eHhQtGjRaI9FRESwZcsWli1bRunSpdm3b5/e1kVzcHDg8+fP0S4U8PDwYOvWrXh4eMTaVhci34Pnz5/HxcWFO3fu8Ouvv7Js2TLq16+v9Vp7gYGBrFq1ih07dvDTTz8xb948zdp78SlevDi7d++mX79+PH/+XHN/SEgI379/1+vvhBA/+lcEd/v27WP+/PmaHr3Nmzdn6tSpmp62gwcPZv/+/cydO5d58+YlOJ6npycKhYLRo0enuT9uhRBCCCGEEEIIkfzev3+Pk5MTTk5OFC9ePLWno5VcuXIxcuTI1J5GmpItWzZcXV05evQoxYsXp0CBAlhaWmJhYZGmz/k0adIktaeQ4rJly4a9vT329vaEhITw4MEDXr58yevXr/n48SPfv3/H29ubwMBAgoKCCA4OJjQ0lLCwsASrn+bNmxdvaBcaGsr69es5deoUzZs35+zZs1q1HYTIwK1Ro0b88ssvdO3aVdPOrnr16nG2Q42LtbU1a9eupW/fvrRt21anfX9Uo0YN9u3bl6S1xKKGS3G18EuKGjVqUKVKFaZOncq+ffuAyFaRc+bMwcbGhq9fvzJu3Dh8fX35448/KFiwoM7HsLCwwM3NjdWrV/P48eNYA7cMGTJgZWVFxYoV6dq1K3Z2dgmOq66YU59/1lb+/Pnp27dvvAHk3LlzyZYtG3/++Sdfv36Ns02pubk5pUuXpnv37tSuXVvrOZibm1OiRIlo912+fJl58+ahUqlYsmSJVuGlriZPnkymTJlYvnw59evXZ/r06dja2sa67ZMnT9i3bx8nT54kT5481KtXD2dnZ7Jmzar18SIiIti3bx8rV67E2tqaVatW6fy8cuTIwa5du5g6dSqHDx9m2LBh9O3bV6sKQSGSQqFKatPsZFS8eHGOHTtGgQIF4txm8eLFbNy4MVpPXoVCQalSpdi7d6/mvpUrV7Jq1So2bNgQ6wK6UU2YMIGnT5/i7u6e9CchxA9CQ0P5+++/Y9xfpkyZ/+SHflhYmKaPuFrZsmUT1TdbCCGEEEL8t4SHh0e7AhqgSJEiWl+BDcS6noiZmVmi1lwR/x4qlYpevXpRs2ZN+vTpk9rTEUJoISIiQvOlVCo15wpVKlWClacqlYqbN29SqVKlJAW6x48fZ+PGjbRq1YqOHTvq9O9RVEqlMk38O7R+/Xr27t1Lx44dadOmDZkyZUqW44SHh9OgQQPy5s3LuHHjKFmyJJcvX2b27Nl06dKFrl27pomfR1RTp07ll19+oV69elq/zuHh4RgYGKSp53Lt2jXWrl2LSqWiXbt2NGnSJNEVmtq6ePEi1apVi/Pn5u/vz7Zt26hcuTJlypTR+RyhSqXi2LFjrF69mvz589O+fXtq1qyZ5Is1Tp8+nSyBplp6+5tUH3+Hx0XOn6dycHfgwIF4ry5IKLjbtm1btEWN1U+lSJEi9OvXL1r/3YCAAOrXr4+5uTmHDx+Ot3S4Xbt2tGjRQqvWCELoSj54opPgTgghhBBCJJYEdyK5BAcHc/jwYdq1a5faUxFCiFTz7ds3MmXKlCLVqd++fSNz5sya73ft2sVvv/2GjY1Nsh/7vyogIAA3NzeaNWsWZ0vY9Oj58+dcuHCBVq1akSVLltSejtbS29+kEtwlr1Rrlenh4cGkSZNQKBSJWuDyyZMnODk5aRbrNDMzo2PHjrRu3TrG4qUQWRbdt29fFi5cyLJlyxg/fnys46pUKl6+fBmjv7gQQgghhBBCCCH+G0xNTSW0E0L850UN0lL6WB07dkyxY/9XWVhY4ODgkNrT0LsiRYpQpEiR1J6GEEmSanHtkiVLCA8PZ+bMmSxdupSPHz9qvW9ERATjx4/XlBd3796d06dPM378+FhDO7Vu3bqRNWtWtm7dyt27d2PdJiwsjIULF5ItWzZdn5IQQgghhBBCCCGEEEIIIYQQiZYqwd39+/c5fvw4CoWCgIAA1q9fT7169Rg1alSMlnmxcXNz48mTJ5QsWZI9e/YwadIkra4AMTExoXfv3prgL+oCq2rGxsbUr18/Uc9LCCGEEEIIIYQQQgghhBBCiMRKleBu7dq1QGRbSvVXeHg4R48epWPHjnTq1ImjR4/G2j85NDSUNWvW4ODgwO7duylZsqROx+7cuTOZMmXCw8ODBQsW6OX5CCGEEEIIIYQQQgghhBBCCJFUqRLcrV69msuXL+Pi4sKQIUP45ZdfMDY21oR49+7dY9SoUQDs3LmTwMBAzb7GxsYcPnyYESNGJGqhQzMzM7p27YpKpWL79u0cP35cb89LCCGEEEIIIYQQQgghhBBCiMRKtTXusmTJQrVq1Rg0aBCbNm3i+vXrrF27lnbt2mFtba0J8VxdXWnYsCHu7u6afbNmzZqkY3fr1g0zMzNUKhWTJk3i1atXSX06QgghhBBCCCGEEEIIIYQQQiRJqgV3PzI1NaV27drMnj2by5cvs27dOho0aECGDBn48uULkyZNolOnTrx8+TLJx7KxsaF58+YA+Pv7069fP75+/ZrkcYUQQgghhBBCCCGEEEIIIYRIrDQT3EVlaGhIrVq1WLFiBWfPnmXo0KFkyZKFu3fv0rp1a1avXk1ERESSjtG1a1cAFAoFnp6e2Nvb8+nTJ31MXwghhBBCCCGEEEIIIYQQQgidpcngLipbW1scHR05c+YMkydPJmvWrCxfvpxu3brx4cOHRI9brFgxypUrh0qlQqFQ8OzZM37//Xc9zlwIIYQQQgghhBBCCCGEEEII7aX54E7N2NiYbt26cfz4ccaNG8c///xDy5YtOX/+vFb7N2/enOfPn0e7r3Xr1gAYGBgwZswYxo8fr/d5CyGEEEIIIYQQQgghhBBCCKGNdBPcqXl6etKiRQtOnDhBs2bNGDx4MG5ubgnuV7p0adauXRvtvt9++42sWbPy+++/06dPn+SashBCCCGEEEIIIYQQQgghhBAJSlfB3d9//03Xrl3x9fUlY8aMTJkyhW3btrF7924OHToU776tWrXi+PHjvH37VnOfjY0Nx44do2rVqsk9dSGEEEIIIYQQQgghhBBCCCHilW6Cu2vXrvF/7N15XIzr+wfwz6R9k8haRDpkX084hMhOyc7RIm22IiGSJVsLskQJkTVLIpV9zZ7s+05xEpW0ztTM749+83xLMzVr5Zzr/Xp5nWnmee7nnrXO85nrum1tbZGRkVHq+nbt2iEqKgrm5ubl7m9qaoq6desiLCys1PVaWloynyshhBBCCCGEEEIIIYQQQggh4votgru8vDzMnTsXubm5Am9XVFSEhoZGheNYWlri2LFj+Oeff2Q9RUIIIYQQQgghhBBCCCGEEEKk8lsEd2pqaggLC4OOjo5U41hbW4PD4WD79u2ymRghhBBCCCGEEEIIIYQQQgghMvJbBHcAYGJigj179kg1hoGBATp16oQjR47g27dvMpoZIYQQQgghhBBCCCGEEEIIIdKr0uBuyZIl+PTpk8jbGxsbg8fjSXXMkSNHIj8/v8xad4QQQgghhBBCCCGEEEIIIYRUJcWqOvCzZ88QGRmJmzdvYtGiRVBQED1DTEpKQkpKikTH1dTUBIvFQmRkJBwdHVGnTh2JxiGEEEIIIYQQQgghhBBCCCFElqosuNu8eTMA4OPHj3B2dhZrX29vb6mPX1BQgLCwMHh5eUk9FiGEEEIIIYQQQgghhBBCCCHSqpJWmc+ePcP58+cBADweT6x/kuwj7N/BgweRmppaFQ8BIYQQQgghhBBCCCGEEEIIIaVUScXd8+fPMX78eKioqEBRUZH5p6CggBo1aoDFYjGtM1ksFlgsFrNvQEAApk6dCl1dXYmPX1BQgA0bNoDNZiMkJARLliyR+j4RQgghhBBCCCGEEEIIIYQQIo0qCe5GjhyJkSNHSrRvQEAARo0ahaZNm0o1h4sXL+Lhw4c4fPgwbG1tYWhoKNV4hBBCCCGEEEIIIYQQQgghhEijSlplVgdDhgwBABQVFSEgIKCKZ0MIIYQQQgghhBBCCCGEEFn5/v07MjMzq3oahIjtPxvc9e/fn7l84cIFXLhwoQpnQwghhBBCCCGEkH+b06dP48GDB1U9DSIj165dQ3R0dFVP4z9ry5YtSEpKqpJjv3z5Ui7jPn/+HM7Ozvj69atcxhfFjx8/sG3bNmRlZVXZHIQpLCyUaD8OhyPjmZDf1cuXL9G/f3+sXLkSaWlpVT0dQkT2nw3u9PX1YWxsDADg8XhYunQp0tPTq3hWhBBCCCGEEEII+bdgsVgYN24c3N3d8eXLl6qejlDnzp3Dp0+fKtzu+PHjVRowVLWtW7di/vz5cHBwEOnxqgr79+8Hm80ud5vMzExER0dLHIqI4/PnzxXOR1RXrlzBhAkTYGVlhcOHDyMvL08m44piyZIlsLW1xaNHj2Q2ZlFRERYtWoRLly5hxIgROHfunMzGFoeCggLWrl2LPn36YM2aNdXqs2r69OnYtm2b2K9Ve3t7+Pn5Vdrn1fv375GQkCCXsXNzc+Hl5UWhk4S6d+8OFxcXREREwMLCAqGhoSgqKqrqaRFSod8yuJNVwNa7d2/weDywWCykpaVh2rRpyMnJkcnYhBBCCCGEEEII+W8bMGAApkyZgvj4eAwZMgSRkZFVPSWBrl27hsGDB2PRokXlBlJxcXHo168fli5diuTk5EqcYdV79OgR7ty5AwBISEjA8OHDERsbW8WzKsvf3x/9+/fH3r17hQZmXC4X8+fPx4ABA3DgwAGZBWuC3L59G4MHD8bp06elHktZWRkA8OzZM0RERODHjx9SjykqVVVV3Lx5E6NHj0aLFi1k8q9Vq1Z4/PgxACAjIwO7d++W63MhDP9xzcnJQXh4OKZPn14l8/jVz58/ce3aNaxduxbW1tZ4+PChyPu+efMGO3fuZD6v5F2skZ2dDQcHBzg6OuLZs2dIT0+Xyb+vX7/C2dkZUVFRsLGxkTq8e/XqFXx9ffH9+3cZ3fPfg4ODA/766y/k5eVh3bp18Pb2ruopEVIhxaqegCQePnyIzp07Sz2OmZkZtm/fDqD4W3B//fUX1NXVpR6XEEIIIYQQQgghBADc3d1x/vx5vH//Hj4+PkhJScGcOXOqelqlqKmpgcPh4MiRIzh+/DjWrVuHAQMGlNlOVVUVbDYbBw4cwOHDhxEUFAQLC4sqmHHl27lzZ6mfhw4dir59+1bRbIRTU1NDamoqfH19sXv3bhw5cgQ1a9Yssw0ApKSkYOnSpdi1axcOHjyIWrVqyXw+VlZWePHiBWbNmgVzc3OsXLkSurq6Eo1Vo0YN5vLu3bslHkcSKioqAIAGDRogKipKZuO6uLjgwYMHaN68OXbs2MGEaJVJSUmJudygQQNs3769Subxq6tXrzItL1+8eIEZM2bg8OHDqFevXrn7sdlsZGRkAChumVmzZk3o6OjIda7818eVK1dw5coVuRzj7du3cHd3x969e8FisSQaw8jICO/fv4eFhQVcXV1hZ2dX6vkXpG/fvjh48GCFj7uofvz4gbS0NDRv3lwm44mCxWJhyZIlGDJkCAoLC5kg1MTEROQx+NXDhoaG8psoISX8dsGdoaEhhg8fLpOxOnbsCDU1NWhoaCAgIADdu3eXybiEEEIIIYQQQgghQHE1i7e3N6ZOnQoACA0NhZmZGbp06VLFM/ufkl9itrW1FRrG8U9OKyoqIiAg4D8T2j179gynTp1iftbW1kbXrl2r5Ze/+aFczZo1sXr16jKhHfC/5xEAWrRogeDgYLmEdnxz5szBrVu3cOHCBYwaNQo7d+5E06ZNxR5HQaG4cZiiomKlhnbA/x4zBQUFmR6bH0bq6upWWVimoKAAFosFHo8HAwODSn9shbl48SJzWUdHB/v27RMpPEpNTQWPxwMA9O/fH7Nnz5bbHPlKhl9eXl6ws7OT2djm5uZISUlB+/btsWXLFolDO+B/bVEtLS0RGBiIEydOIDAwEC1atBC4/efPn/H582ekpaXJJLhLTU2Fg4MD0tLSEBYWhnbt2om8771795CVlYXevXtLdOwmTZqgf//+OHXqFFRUVKCnpyfyvl++fIGNjQ0KCgqwZ88eCu9IpfjtWmVGRESgTp06MhlLSUkJrq6uiI6OptCOEEIIIYQQQgghctGrV69S1QX89njiiImJgZ+fnyynxVBU/N/3up2dnYWeGOaHF2pqahgyZIhc5lId+fn5gcvlAgCMjY1x6NAhBAYG4uPHj1U8s7L4AUKXLl2EhsMKCgrMdqampjAwMJD7nJYuXQoWi4XPnz/D0dER2dnZYo/DD2M0NDRkPcUK8UPDf6uSnwHVQX5+Ps6fP8/87OXlJfLr9J9//mEud+jQQdZTE6hkNai8NG7cWGAQLy4dHR34+/uDxWLh5cuXGD9+PJ49eyZw28TERADAqFGjZNIe1szMDK9evUJmZibs7e2Z8UWRn58PJycnuLq6SrzG6MCBA8FisbB8+XKR84V//vkHNjY2+PTpE75+/QobGxt8+PBBouMTIo7q9aksgrp168p0PCcnJ5mORwghhBBCCCGEVBYej4e8wnwUcougqFADaoqqUn0bn8jPiBEjsG7dOqirqwtsQ1mekydPYv78+SgqKgKXy4WXl5dM5ybqSeeKWqr9G12+fBk3btwAUFw9GRgYiKZNm8LGxgbu7u7Yt28fU+VWHYjzXPLbEFaGdu3aoW/fvrhw4QI+ffqEiIgITJs2Tawx+OHpvzG444eSVaW6BZMXLlxATk4OAKBZs2YYMWKEyPu+ffuWudy+fXuZz02Qygg+ZfkaMTU1hbW1NY4ePYrc3Fxs2rQJW7ZsKbMdv+3nxo0b0bVrV6mPGxISgt27dwMo/nJBVlaWyPtqa2sDKH5tXLhwQap5zJ8/H/Pnz5do39TUVEyePBl79uxBkyZNpJoHIeX57YI7QgghhBBCCCHkv+xjZgoSPt7Bm/T3eJvxCTnsXOY2DWV1NKtlACNdQ/Rs3BWNdRpV4Ux/f3l5ecjLy5PJWPr6+mCxWFi4cCFUVVWRnp4u0n5Xr16Fl5cXioqKAAC7du0Ci8XCggULZDIvQPRArrqd3Je3/Px8rFq1ivl5zpw5aNmyJQDA3t4eMTEx8PDwwObNm6vNYyNqgFAVAf/48eOZE+4vXrwQe39+cFEVQSk/EE1JSRHaVlAaVR3cVbcvfMTExDCXXV1dxXp/vXr1CkDxc9a6dWuZz02Qynj/84NrWXFzc0NMTAzYbLbA6uHMzEycPXsWQPF7TtoWqvn5+Thx4gRUVVWxcuVKDBs2TKz9VVVVmcsODg5M+2lBioqKmBaw8lJyPgCQnJyMfv36ibSvsrIytLS00KhRI7Rt2xaDBw8Wu302j8dDQkIC4uLicP/+faSmpoLNZkNHRwctWrRA7969MXr06GrZ0pmIhoI7QgghhBBCCCHkN5D0+RGOPz+DZ2mvhW6Tw87Fo9QXeJT6AtHPTsNErzksWw5Ep4ZtKnGm/x7fv3+HjY0NUlJSZDamt7c3vL29pRojPDwcLBZL4ooBSVW3k/vytn79erx//x5AcbvTkutWKSkpwd/fH2PGjMGKFSvg4+NTNZP8hajPUVUEjd27d0fNmjXx48cPsda24uNXCFZFcMd/XBs0aICoqCiZjevi4oIHDx7IPJQRV3UJngEgPT0dV69eBVC8LtnQoUPF2p8fChsZGVVaaFEZrTILCwtlOl69evUwcOBAxMTEwMbGBkBxGPTgwQN06NABfn5+yM/PB4BSbSUzMzOhrq4u9pqM0dHRKCgowI4dOyRa47Xk+15ZWbncIDE1NRX29vZwc3MTeS3WpUuXwtjYGKNGjSoTyomiYcOGuHPnDr59+4a5c+fiyZMnAICOHTti1apVzGOYl5eHjIwMPHr0CMePH8e+ffuwb98+dOzYEStXrkT9+vUrPNbz58/h7e2NgoICjBo1Cra2ttDT08PPnz/x8OFD7N+/HytXrsTWrVvh5+cHMzMzse8PqXoU3BFCCCGEEEIIIdXYz4Js7EyKxLWPoq8Fw/cs7TWepb1Gz8ZdYd9pLLRUNOUww38vfX19RERE4Ny5czAxMUGTJk2gqakJDQ2NMgFJUVGRVCdvv3//jtq1a0s7ZSIjd+/eRUREBADAwMAAa9euLfOcm5iYwM3NDYGBgVBUVMTChQurYqq/DWVlZSxatAgfPnwoFYKKih9ciBrcHTlyBI0bN8aff/4p9rF+xa94VVBQkLryqCT+ZwZV3P1PZGQkE9I6OzuL/bn68uVLAECbNhV/YSUxMRFr1qxBSEiIyGueCVIZj588Wtt6eHigR48esLa2BlD8uRcXFwcVFRUmoG7fvj1MTEyYfYKCgvDs2TNs3LgR9erVKzPmqVOnkJeXhyFDhjDrovJ4POzbtw+bN2+WKLQDSoejFQXd6urqePXqFWbMmIG2bdvC09MTpqam5e7z7ds3HDhwAJs2bcLEiRNhZ2fHtOcUhYKCArS1taGtrY2+ffsywZ21tTWaNWvGbKetrY169eqhZcuWGDNmDI4fP45Fixbh3r17mDRpEsLCwkpt/6vExEQ4Ojqiffv2iIyMLPW41K5dG4aGhhg+fDh8fX2xb98+ODs7Y926dRg8eLDI94VUDxTcEUIIIYQQQggh1dSHzGSsurIZGXk/pBon4eMdPEl7iUVmM6l9ppj09fVFChkWL16Mpk2bwsHBQezqlaysLJibm2P06NFwdXWV6gRydfLt27ff8r78/PkTXl5e4HK5UFNTw+bNm1GzZk2B2zo4OODOnTvYvXs3uFwuFi1aVK1CEFnIyckBi8WSSfWSpaWlxPvygzt+GFCeI0eOwNvbG2pqaggNDZU6vJN3sCbraipxyeo1u3XrVrRu3VriCp/CwkIcPHgQANCoUaNSr5ecnBwUFBSUu39GRgYyMzMBAE2bNi23JfGLFy8wbdo05ObmwsbGBhERERJ/XpV8/FavXo3Vq1dLNE55fr3vpqamuHXrllRjNmjQgAntgOLQrXfv3mjcuDHWrFkDFouFgQMHMvfvn3/+wZEjR8DhcDBy5EisX7++TCBmamqKuXPnYs2aNRg7diz+/vtv6OnpwdfXFx06dJB4ruIEdyUr5pSVldGwYcMKx+evnfnz508oKChI9XlXcq4VtS+2tLTEt2/f4O/vj4yMDPj6+iI8PFzgtmw2G3PmzEFubi4GDRokNNRmsVhMGPj06VPMmzcPLVq0KDcQJNUPBXeEEEIIIYQQQkg19CEzGUsvri+1hp00MvJ+YMnFdVjWdw6Fd3Lg5OQES0tLXLlyBevWrYOenp7I+yYkJCA/Px979+5FVFQUbGxsMG3aNJECCkE2bdqEGTNmVGmAxGazMXToUDg7O8Pe3v63CbN4PB48PT3x4cMHsFgsrFq1ilnXThAFBQUEBgZizJgx2LNnD9LT07FmzRqx28gJ8vr1a7x8+RJDhgyReixpXLx4EZs2bUJgYCDatm0r07FfvnwJGxsbZGRkiLxPQkKCyOvM5ebmwtnZGYcOHYKxsbGk02Qq7uRF3uNXhs2bN2PTpk1QVlZGcHCwROHduXPn8M8//wAApk6dWir0SElJga2trcjrg65duxZr164Vads3b97A1tYWERERElU+l/x8c3d3x7hx48QeQxhra2t8+fIFOTk5zHVFRUXIzs6W2TGA4jDs4sWLmDt3LlRVVTFy5Mgy26xatapU5d+rV6/KBHe1atVCWFgY1q1bh23btiE8PBwjR47EtGnTpJqfOF+IUVJSgoKCArhcLkaOHAkDA4MK9+F/Zrdr1w4zZswoc/vz58/L/V0gjcmTJ2PXrl34+vUrHjx4gCdPnghcn/HKlStITU0FUPzZVp4aNWrAyckJ7u7uYLPZCAoKwsaNG+UyfyIfFNwRQgghhBBCCCHVzM+CbKy6sllmoR1fDjsXK69sQuBAb2qbKWOGhoZwdHTEpk2bMGrUKISFhYkcLhw/fpy53Lp1a/Tr10/i0A4oruDbvn07HB0dJR5DWnfv3kVmZib8/Pxw5coV+Pn5CWyrVt1s3rwZFy9eBAAsWLBApNBMW1sbW7Zswfjx4xEbG4svX74gODhY6paKBgYGmDZtGtq0aYPGjRtLNZY0rly5gvfv32PChAmYOXMmHB0dZbYm2h9//IHw8HAcO3YMbdu2RdOmTVGzZk2m+qWkUaNG4fPnzxg4cCCWLl1a7rgbNmxgKrf69+8PIyMjqebJr4jjcrkiB0ei4Ad28miDKA5pg/UtW7Zg06ZNAIpD++nTp0sU3m3btg1AcVXlr639/vjjD+zZswe3b99Gq1at0KBBA2hpaZWqjAoLC0NgYCAUFBRw584daGpWzu+5ko+fmpqaTNup1qxZE/3798ekSZOY67Kzs1FYWIi8vLxyW8dmZWVBSUlJpPayiYmJMDQ0FLq+2+nTp3H69GkAwJAhQ7B06VKhlcgKCgqYO3cuGjZsCF9fXxw6dAgnTpyAm5sbpkyZUuFcKiLK50+NGjXEWjuyvJaskZGRWLJkCZYsWYIJEyaIPKaolJWVYWZmhiNHjgAA7ty5IzC4+/jxI3P54MGDmDx5MpSUlISO26tXLybAvHjxIgoLCyusACTVBz1ThBBCCCGEEEJINbMzKVLq9pjCZOT9QHjSIczqLv3JM1Kag4MDDh48iNTUVNjb2+Po0aNo0KBBuft8/foVCQkJAAAjIyOEhIRIfbLZ3t4eQ4YMQffu3UVa50kezp8/z1y+ceMGRowYgd27d8utYkEW4uPjERwcDABwdHQU2CL17t276NSpU5mgw8jICKGhoZgyZQqSkpIwevRo+Pv7S7yeE1AcXowaNQoeHh44cOBAlZxwLSwsxOXLlwEUh0vr1q3DnTt3sHXr1nJPGAvDZrPLVCOamJiUWkNLEC6Xi7S0NABAs2bNKgxGSlYjeXh4SB005ufnAwC+fPmC7t27SzWWIBW1gBQmICAA27dvl9k8bt++LfIXDsojSXh38eJFZl2wgoICDB8+HG5ubrC2tmZClebNm6N58+ZCx3j06BGA4vdjZYV2gHzXuDt8+HCZ9wy/QvXbt2/lVpN9/vwZM2fOhI2NDcaPH1/uezYuLk7oc5WWlobly5eDxWLBw8ND5C+FTJw4EZqampg3bx7y8/Ph5+cHFosFe3t7kfYvqWQIJ2pwJ04gLuzz9cSJE1i6dCl4PB6WLVsGZWVljBo1SuRxRVWyIvjr168CtynZyvXDhw/Izs5GrVq1hI6pqamJWrVq4fv372Cz2UhPT0fdunVlN2kiVxTcEUIIIYQQQggh1UjS50e49jFRrsdI+HgHPZt0RaeGsm1791+npqaGCRMmYOPGjfj+/TtWr15dYWuqffv2obCwEDVr1sTWrVtlcrK5YcOGsLCwwNy5cxEdHS20gkJeuFwuU5kBAB07dsTChQurdWh39epVeHp6gsfjYeLEiZg7d67A7VatWoWioiK4u7ujT58+pW7r1KkTNm3aBFdXV6SkpMDGxgYuLi6YNm2axKHbhAkTEBISguDgYLi5uUk0hjSuX7/OrBkGFLeEnTJlikShXWBgIJ48eYLQ0FCxW4mmpaUxJ+H19fUr3P7bt28Aik/ei9O2Vhh+sNaoUSNcuHBB6vH4JkyYgKSkpDIVhmlpaSLN29PTE23atIGGhgYMDQ0l/vwwMzMDh8NBx44dsWXLFonGEESc1wk/NOdLS0vDqVOnYGFhAR0dHZHGePz4MQCgffv2Ih+3uhP0XuG/vt+/f19ucNeyZUssWLAA06dPx/79+7F8+XJ07dq1zHZFRUU4ffo09u/fX+a2wsJCuLu7IzMzE2vWrIGVlVWp2wsKCuDj4wNnZ2eBa6iNGDEC6enpzLp/mzZtwqRJk8T+DCi5zqSCggLmz5+P6OjoCvfz9vaGt7e3yMdJSkoSGl7zeDx4e3tDWVkZw4cPF3lMUZT8DBAWOA4aNAinTp3C9evXMXDgwHJDO76SgaegSmZSfVFwRwghhBBCCCGEVCPHn5+ppOOcpeBODkaPHo1NmzaBx+Ph/Pnz5bYyKygoQGRkJGrUqIF169ahSZMmMpvHlClTYGVlBT8/PyxZskRm44oiMTGRqRhQUlKCv79/lbZ6rEhiYiJmzpwJDocDR0dHoaEdUHx/Hj9+DGdnZ3To0AGLFi1Cu3btmNt79eqFLVu2YObMmcjPz0dwcDDOnDmD2bNno1+/fmLPTVtbG6NHj0ZoaCh69+6NDh06SHIXJRYfH89cNjU1hYeHh9BtMzIySp1cL+nw4cMICwsDALi5uWHTpk1ihZmfPn1iLovyWvr+/TsAoG7duuW2wBOVkZEROnfuLNG6beUZOHAg3N3d8eeffzLXxcXFYdGiRbC0tMTixYsrnP+vLSXF9ePHDyYoKCoqkmmbR1GdO3cOjx49gpKSEng8HgoLC9G6dWts375d5Gq29PR0pKSkAKja4K4y2p7y3w9JSUno1atXudv269cPjo6O2LZtG2xsbDBjxgxMnz691DY3b96Euro6mjZtWmb/gIAAPHz4EBs2bED//v3L3K6iooKYmBicOHECAwcOhIuLS5kvadjZ2eHmzZu4ePEicnJykJ2dLfbrjF/1CgCqqqpYvXo1evfujfr166Nx48ZlqvDMzc2Rl5cHLy8vjBgxosLxg4KCEBkZifbt2yMkJKTcbWXxmfKrnz9/MpeFBdXKyspiBes5OTn48aO4e0Pjxo0puPvNyKYhNSGEEEIIIYQQQqT2MTMFz9JeV8qxnqW9wsfMlEo51n9JvXr1mCBHWVm53KqCI0eOICMjA3PnzkXPnj3LHTcrKwsnTpwQeR4mJibo1q0b9u/fjytXroi8nyzw1+kBgHHjxlXr0O727dtwdnZGfn4+PD09yw3tgNIVRI0aNYKhoWGZbczMzLBjxw6m+unVq1eYNm0aJkyYgNOnT4PNZos1R1tbWwDF1VW5ubJd97I82dnZOHXqFIDiVoCenp7lbh8VFYXu3bsL/Ldu3Tpmu0uXLoldtcavpFJQUECrVq0q3J7fVrN+/fpiHUeYpUuXwt3dHZ06dZLJeHx2dnYwNTUFi8VCUVERAgICMHv2bOTm5uLAgQNwcnIq1fZTHvjVWwDw5MkTma7hJwoOh4OAgAAAwMyZM5kvOmhoaIjVgpL/GgEg0mtE0DwkVTLIef78ucTjiOrevXsAigPxrKysCrd3c3ODiYkJuFwuNm7ciD179pS6PTY2VmAofeDAARw6dAihoaECQzs+FRUVcLlcxMfH48CBAwK38fHxgaqqKvT19SUKh/Py8pjLysrKUFBQwJAhQ9CpUyfUqVMHurq6pf7xv0SgoaFR5jZB//jrytaoUaPCbYWt7SeN9+/fM5dlVZ1+7do1puJu2LBhMhmTVB6quCOEEEIIIYQQQv7ft9x0qHBVy3xzW0dVG8o1yrb8ymHnIoeTV+Z6ZQVF6KgJPrHzNee7wOt1VLWR8PGOBLOW3LWPiWis00jm90PUx6quRm0JZl11zp8/D3Nz8wpPJpubm+PBgwdwcHAQ+s18DoeD7du3Y8SIEZgypfz1BtPT0+Hg4ICnT5/i69evmDp1qkjznTx5Mm7evAlvb2/ExsZCS0tLpP2k8fPnT6ZNpoaGBqZNmyb3Y0rq1KlT8PT0hKqqKkJCQsq0vhSEH9w1bNiwVBj1qy5duuDQoUOYNm0ac0I2KSkJSUlJ0NbWhoWFBTp37owWLVrA2NiYOWksiL6+Pvr27Ytz584hMDAQPj4+Yt1PScXGxjJB4ZAhQ9C2bfkVug4ODtDT0wOXy4WJiQnq1KkDLS0tKCsrY9OmTdi8eTO0tLQQHBwMU1NTseby8OFDAECLFi0qbAfJZrOZ9p4VrTEJFL+/bGxs8OrVK7HmVBkSEhIwfvx4hISEiNQiVBJfvnxhLhcVFeH8+fMYM2aMXI4lyL59+/D+/Xt07NgRU6dOZSozxcUP7pSUlPDHH3+ItW9cXBw2bNiAnTt3olGjRmIfW1NTEzo6OsjMzERcXBw6deqEoUOHitziU1RFRUVISEhgvsSRlpYGW1tbHDlypNwqMEVFRSxduhTjxo0DUPzenjx5MoDi98vZs2fh5+dXap+zZ89ix44dOHDgQIVBkrKyMnJzc9G3b18sW7ZM4DYNGzbEqlWrJG4bXPJLC8Kq2Esq2SJSHMKqhuWJ/7wCxfetZAWupDgcDrZu3Qqg+AtFFf2dQaofCu4IIYQQQgghhJD/53lhlcDrl/SdjdZ1y54IjH15AUeexJa5vpWeMZaazxE41oyTgtdaWdJ3Nt6kvxd9sjLw+v+PJ+v7IepjdWjcVjFnXLXmzZuHRo0aYfr06eVWyA0bNow5oZqTkyNwmxMnTkBTUxNeXl5CtwGK29g5OTkxoUJAQAA4HA5cXV0rnK+5uTn09fWRnJyMVatWMWsMyVNUVBTT0szFxQW1a1fPcHbPnj1YtWoVjI2NsXHjRoGVc4LwgztRKoGMjIxw+PBheHp64tKlS8z1WVlZOHr0KI4ePQpdXV3MmTOnwqBk8uTJOHfuHPbv348BAwagW7duIs1XGvzKGRUVlXJbZJZUUUu6+vXrix3aAcD9+/cBFAeiFeG3yQREC+50dXWxe/duXL58Gc2aNYOBgQFYLBaSk5OZ52Xx4sUYMmSI0DFevHgBOzs7AMCxY8dkVunHJ891Kt+9e8dc7tixI06fPl1pwV16ejq2bNkCdXV1BAQECAyf2Gy2SNVw/HC3adOm4HA4IlfQnT17FgsXLkRRUREmT56M3bt3l7tunDBWVlbYtWsXuFwuli9fjuXLl8u8pSKXyy0VLNWoUQOTJk0S6TgdOnRAjx49cP369VIVY1evXkVeXl6pz5RPnz7h4MGDOHTokEjVcfwwrqKgcujQoRWOJUzJijt1dfUKty8qKpLoOJXR6vRXR48eZdq8TpgwQeov2eTl5WHhwoV4+vQp9PT0sG3btkr54g6RLQruCCGEEEIIIYSQaoDH4+FtxqeKN5Shtxkfq+Tb5b8rNTU1vHjxArNmzRJp+71791a4Tffu3cWeR1BQEAoLCzFz5sxyt1NQUMC4ceOwdu1aREVFYdiwYfjrr7/EPp6ouFwuIiIiABRXifGDjOokNzcXPj4+iI2Nhb29Pdzd3cttZ/orcatFtLW1ERoaioMHD8LPz4+pGjEwMICPj4/Ia6Z169YNRkZGePPmDXx8fHDixAm5hjk3b97Es2fPAAD29vYSVSHJyuvXr5mT2qK8flNTU5nLDRs2FOkYtWvXhrW1danrSq45pa6uXm6AUbIKUFtbW+J14vLy8vD9+3e5VdcJUrJFn6urK1xdXZGSklIpz7mfnx9+/PiBdevWCQ3L3r9/D1tbW5FbeL58+VLilqYpKSmYPHkyIiIixG7x6+HhAS0tLcTExODz589gs9kSh0flUVVVRe3atdG5c2dMmjRJrHUvx40bh5s3b5Z6rcfGxqJz586lwjB9fX2EhISUag1cHnE/F2/cuIEWLVqI9T4p+QUXbW3tcrfl8Xi/TXB34cIF+Pr6Aij+nHd2dpZoHA6Hgzdv3uD69evYt28fUlNTMW7cOLi7u1fJupVEehTcEUIIIYQQQggh1QC7iI0cduWtXwUUt6/MLyyo1GP+zvgBT8OGDZm1v6q7UaNGYePGjeBwOFi8eDHi4uLkFvicOXMGycnJAIAFCxaIFYhVhlevXmHWrFlgsVjYs2dPqeotDocj0klqUU9k/2r8+PHo3bs31q9fjytXruDAgQPQ09MTa4yxY8di9erV+PDhAzZv3lzhenzSCA8PBwDUrVsXTk5OcjuOKM6cOQMAqFWrVoVrQQLA169fmcuiVNxVJ0uWLMH169cRFhYGExOTSjnm06dPARSHk2ZmZmjSpAn27t2L+fPny/W4d+7cQXR0NCZNmlRuJdYff/yBiIgIXL16FSYmJtDX14empmapoCkjIwO9e/cGUPzZM3HiRKnmJkmlnLKyMmbMmIEZM2ZIdexr166hYcOGaNq0qVTjCDJo0CC0aNGCGTsnJwcXLlwoM2cWiyXWZ504axEmJSXB1dUVrVu3Rnh4uMi/J0pW3FUU3JUM37y9veHtLbhDgCD8inF5ysvLw/379xEZGYn4+HgAwJgxY+Dt7S1R4DhgwAB8+PCB+VlLSwsBAQEYPHiwzOZMKh8Fd4QQQgghhBBCSDVQJOF6LNLicAur5Li/MxaLVe6aZNVJ7dq1YW5ujtOnTyMlJQWhoaFwc3OT+XF4PB5CQkIAAGZmZrCwsBBpv+HDh5daY0taiYmJZa7jrye4d+9eODo64u+//y5TIRIeHo5nz57B2dm53PWcJF2fCSgOkfz9/ZGdnV3hOm2CWFlZITAwEBwOB7t27YK1tTWaNWsm8XyEefr0KdPa08vLCxoaGjI/hjjOnj0LoLjNnihhQlpaGnNZ1Io7WeJyudi6davIFWJ86enpOHnyJADg77//xubNmyWqyBVHYWEhE9y1a9cOLBYLAwcOxL59+zBz5kyRWhJKIjc3F4sWLUL79u2xYMGCCrc3NjaGsbGx0Nv569sBgKmp6W/z+SzI/fv3MXXqVFhYWMDJyQlt2rSR6fglA8GzZ88iLy+vTCCenZ0NNpst8pj8yn02m13u6z4lJQUuLi7Iy8tDYmIifHx8sGbNGpGOUTK4q6gFc0HB/76Q5OXlVWELX6C4kj0yMhK1atUSaT6iWrZsGVat+l8b9qKiIqbyum7durCyssLEiRPRvn17cLncUvdTVDt27EBGRga+fv2Kx48f4+zZs3B3d0dISAgWLlwoUXtiUvUouCOEEEIIIYQQQqqBGgoKVXJcJQU6NSCu3629qKWlJU6fPg2g+ATfuHHjZL4G1/nz5/Hs2TOoqKhg8eLFIu8XFhaGwkL5hceJiYlYs2YNunbtipiYGKEtw5SVlREXF4f4+Hj06dMHrq6uaN++vVTH/vz5s8DgSJLQDiheP6pPnz44e/YsOBwO/Pz8EBoaKtUcBQkODgYA9OjRo9x13SrDw4cPmWDp11aWwvzzzz/MZVkFd15eXvDy8hJpWwUFBfTt2xcLFixAvXr1UFRUhPT0dPTo0aPc/bglvryhrKyMT58+yT24e/78OVNhxG8vOWbMGISGhuLAgQNwcHCQy3EDAgJQVFSErVu3yqQy99atWwCKK43KC95/B+rq6uByuTh9+jTOnj2Lbdu2oVevXnI5VkxMDPT09NCiRYtS13/69Al2dnbIzMwUa7zY2FjExpZdL1eYY8eOoVmzZiJV9ZYM5OvUqVPutrm5uWjWrBkmT56MkSNHQk1NrcLxO3fujH79+oncvlhUs2bNwsCBA5mf79y5w4TVNjY2cHR0lPoYBgYGTKvZ/v37w83NDSdPnsTixYthY2MDFxcXuLu7i1UZSaoe/XVOCCGEEEIIIYRUA8o1lKGhrF6p7TI1lNWhqvj7ViZUNn5gp1BFIaukzMzMoK2tjaysLBQUFCA4OJhZU0cWuFwuNm7cCACYPn26WGtDyTpA/NW3b98QGhpaYYUGv0KHx+MhISEBffr0kSq4i46Ohre3t8zblQ0bNoypQLt06RKSkpIkXs9LkIcPH+L8+fNQVVXFsmXLZDaupHbt2gUA6Nu3L1q3bi3SPvzgTktLCzVr1pTJPBYvXlxuiPnixYtSazq2bNkS0dHRAIAPHz5g2rRpFbY25T/eNWrUQGRkpNhrrEni+vXrzGV+VU6jRo3Qu3dvbNu2DWPGjKmwLaG4Ll68iLi4OOzfv7/C96WoEhISABSHj7/b5/OvSgaZAQEBAkO7oqIiLF68GCNHjkTXrl0lOs7Xr19x48YNDBs2rEygY2Jigl27duH27dto3bo1DAwMoKmpWar6duvWrQgKCiq138iRI/HixQv4+/uXWyEpCf7alTo6OhVWgtapUwdxcXFiBVWWlpbM5cjISAwdOlTiL1mUVKtWrVJrVjZo0ADr1q3D169fcfDgQTg4OMj8NctisTB8+HBoamrCxcUFISEhYLFYcHd3l+lxiHxRcEcIIYQQQgghhPy/APOFUFFVLXMSRUdV8InLoX+Yo0/TshURyuVUsW0etkLg9Tqq2mhWywCPUl+IMWPpNKvVGCwWS+b3QxBhx/id8Ntbyat9nLwoKSnB3NycCRKio6Ph4eEBHR0dmYx//PhxvHjxAi1btpRbhY6kBg0aJNJ2JSsygoKC0L9/f4mPGR0dDS8vL3C5XMydOxcKCgqlKi6k0bt3b6iqqjJVUrt27ZJpcBcYGAgej4dZs2ZVSnBUnpSUFKZSdObMmSLvx2+9Kss2merq6kKrNYHyqyibNGmC3NxcPH/+XGg1WHZ2NvP+HDx4cKU99levXgVQHHJ27tyZuX7SpEm4ePEiQkND4enpKbPjJScnY+XKldi+fTuMjIxkMubHjx/x9u1bACi1bmVFEhIScP/+fanXpJO1ku14O3ToUOb2oqIizJs3DydPnkR8fDzCwsLEut98J06cQFFREf766y+Bt5uYmAhdZ/H79+8ICwsDADRr1gw/f/5kKuJGjRqFNWvWYMeOHWLPqTz8QF6U94YkaxTyhYSEYP369Th+/Di2b98u89/3NWrUwKhRo7B161YkJyfjypUr6NOnj0yPwde3b1/069cP58+fR0hICPr164e2bdvK5VhE9ii4I4QQQgghhBBC/l8ddV2oqamJ/O1nDWV1aCiLd1KnrobwCgMjXcNKDe6a6xoCkP39EESSY1Q3/LDkdwvugOLAhx8MsNls3Lx5U+RQqzz5+fnYuHEjlJSUsGbNGqnWgKtKJU/0NmrUqMLtU1JSyrSXE6SwsBBz5sxBUFCQyOv+lUdNTQ1du3ZlAhf+f2Xh8uXLuHXrFjp06FCqeqyqBAQEoLCwEMOGDRO52g4oblEKoFSVS1Xr0aMHIiMjsWTJEoG379u3D7m5uWCxWHB2dq6UOf348QP37t0DUFyVW3L9wF69eqFdu3bYs2cPJk6cKNJ7QhTp6elYv369zMKDvLw8rFu3jvlZ1AArMTERM2bMQF5eHr59+wYfHx+Rfu/n5ORIPFdRcTgc5nJ+fn6pY/J4PCxZsoRZCzE3NxeOjo4ShXdHjx4Fi8USGtyVZ8OGDcy8fHx8sHDhQua2ESNGICAgAOfOnZPqCxC/4gd3zZs3L3Pb5cuXMWPGDLHW5avI3bt34erqitDQUKiqqspsXOB/7Wi5XC727dsnt+AOAMaNG4fz58+Dx+Nhy5Yt2Lp1q9yORWTr9/xrihBCCCGEEEII+Rfq2bgrop+drrTj/dVY/G/p/1dxuVwmuJN167jKwG+Dx5ecnCyTcbdt24bPnz/Dw8NDaHXG70DcCo0GDRogKipK5O1lGWiampoygV1ubi7S09PLrQYTBZvNxqpVq6Curo6AgACpKlZkITExEfHx8dDT04O3t7fI+3E4HOYEf3UK7gYMGAA3NzfMmjULtWrVKnVbXl4e0xJ00KBB+OOPPyplTidOnGBCopJtAvnc3Nzg4OAAHx8fmVVPtWvXTibj8IWEhCA+Pp75ecKECWKPceDAAfz48QN+fn4Vrre3fft2bNmyRexjSGro0KEVbiNJeHfnzh28ffsWf/zxR4Xrxf3q3r17OHToEIDi1r2/rsOora2NQYMGYdmyZTA1NYWWlpZY4wvDf183a9aszG29e/fG7t27wWazYWxsDBaLhcWLF8PCwkKsNev27NnDPL+ampro3LmzXNZgbdSoEXr06IGEhARcvXoVHz9+lFuVbefOncFiscDj8XD58mX8+PFDZi2EiXxRcEcIIYQQQgghhFQTjXUawUSvOZ6lvZb7sUz0jNFYRzZVFP8FmZmZzOV69epV3UQkVLt2bdSrV49ZJ0gWa+p8+vQJ27dvh6mpKaZOnSr1eFVJ3KBKQUFB6rBMUr9Wn4mzjpMw4eHheP/+PVavXl3lLTILCgqY9d58fX3LBF3lSU5ORlFREQDRWuqJysvLC15eXhLv36NHD6ioqCAiIgJubm6lbtu7dy/S09OhqKhYqWtQHTlyBEDx51nPnj3L3N6zZ0907doVCQkJiIqKgrW1daXNTVRubm5IT0/HoUOH0KtXL/j7+1e4T1ZWFsaNG8d8pjdp0gStW7fGt2/fKmyv6ubmhoYNG4LFYsHExAS6urrQ0tIqVa346tUrNGjQQOL10aKiorB06VIAQHx8vMjVjuJ8pvOD2F9Dt4pwOBz4+PiAx+OhXr16WLx4scDtJk+ejOjoaKxcuRJr1qwR6xiC5OXl4cePHwDKfv7x/doyeOHChZg0aRK6du0q0mP44sULbN++HUBxVf2BAwfkGqKPGzcOCQkJ4PF4OHDgAObPny+X42hqakJbWxs/fvxAUVERHj9+LFGVJal8FNwRQgghhBBCCCHViGXLAZUS3Fm2HCD3Y/yb/O7BHVBcqcAP7gStnSQuX19faGtrY+3atTIJAqtSVVeYiaNkxYmhoaFYwZYgycnJCAkJgbW1dbUIZ1auXImXL1/CxcUFffv2FWtf/lpnQHEgIyuLFy/GkCFDhN7+4sWLctuLKikpYejQoQgPD8eYMWOYgCgzMxPbtm0DAIwdOxaGhoYym3N5EhIS8Pz5cwCAra2t0Ne/l5cXxowZgzVr1qBnz56oW7dupcxPVAoKCvD19YWxsTFGjRoFDQ2NCvfx9fVlPs+dnJwwc+bMCivtShozZky5t1++fBlRUVFYv369RBWGJatzlZWVoaKiIvYY5Tl27BguXrwIAPjzzz/F2nfdunV4+fIlWCwW/Pz8mHVSeTxeqe3atGmDgQMH4tixY+jWrRusrKykmjO/2k5BQUHkx7RRo0aYNGkSZsyYgb1795b72sjOzoabmxvYbDZYLBYCAgLkXvlqbm4OPT09pKWlISoqCm5ubiK9Dt+9e4fk5GSYmpqK/LpVVVVlgs/09HSp5k0qz+/9VxUhhBBCCCGEEPIv06lhW7m3sOzZuCs6NWwj12P825QM7gwMDKpuIlLgt1GztLQsU50grpiYGFy/fh0bNmyAnp6eLKZHRFS/fn3o6+tDUVFRaMWLOJYsWQIjIyOh669VptjYWERGRmLkyJGYPXu22Ps/e/aMuSzKGoSiUldXh66urtB/olRX2draoqCgoFQF0qZNm5CVlYVatWqVqcSTFx6Ph8DAQACAjo4Oxo0bJ3Tb1q1bY/Lkyfjx4wc8PT2ZasbqxsbGRqTQ7uTJk4iLi0ONGjWwevVqeHh4iBXaiWLq1Kng8XiYOHEiDh8+LNOxxXX//n2MGjUKTk5OmDdvHtzd3bFo0SLmdnF+D1y7dg3h4eEAgBkzZlRYrTd79mwoKipi6dKlTEgsqVevXgEoXt9OnErGKVOmQEVFBe7u7kJbXnK5XMydOxfv3r0DAMyaNUuma/MJo6ioiJEjRwIo/vsiNja2wn0uXLiA4cOHY+rUqWJVAGdnZzOXf8dW3/9VFNwRQgghhBBCCCHVzJRO41BLTT5rkNRSqwn7TmPlMva/Wck14Zo3b16FM5HcxIkT4eHhgVWrVkk1DpvNxurVq7FixQp07txZRrMj4li6dCm2bt0qsMWhOM6dO4c3b94gODgYqqqqMpqdZG7cuIEFCxbAwsICK1askHgMANDT06s21WHZ2dnIyspCkyZN0K9fP5w+fRqRkZF4+PAh9u/fDwDw9PRkqpfk7ejRo0zAOWvWrAqDkFmzZqFBgwa4efMm1q5dWxlTlIvU1FQsX74cCgoKWL16tdyqS1VUVDBt2jRwOBx4e3tj06ZNcjmOKDp06IDt27ejf//+ePbsGeLj45nwVUdHR+R2v8nJyfDw8ACPx8OAAQMwffr0Urf/WnEHAE2bNsWoUaOQl5eHqVOnSrWu6pMnTwBA7M+7GjVqICAgAHfv3sWCBQsEBs+rVq1iKhCtra0xbdo0iecprrFjxzKtjvft21fh9v7+/sy6lLGxsUwVXXmys7ORm5vL/Py7/v3yX0TBHSGEEEIIIYQQUs1oqWhikdlMaCiry3RcDWV1LDKbCS0Vydbe+S978+YNgOJWXUZGRlU8G8no6urCycmpVCs2SRQUFMDR0VHq9mdEcr169YKZmZnU4+Tn52Pnzp1V3v710aNHmD59OsaNG4eNGzcKfY2WrBz5VXJyMpKSkgAUrylXVZ48eYK9e/di/vz5GDp0KGxtbZnggV+FtGLFCnh6eoLL5aJnz56V1qL048ePTHDfpk0bjB8/vsJ9NDQ0sHr1aigoKGDHjh3YtWuXnGcpezweDwsWLEBWVhaWLVsGS0tLuR7PysqKaYe6efNmREREyPV45alVqxbGjh2L6OjoUu1eRV0DMicnB9OmTUNGRgY6duwIPz+/MutqCgrugOLQV0dHB2lpabCzs8OnT58kug/8oFmSzzwDAwP4+fnh5MmTmDt3bqnKu61bt2LPnj0AikPB5cuXSzQ/SRkYGDCVi0+ePMGDBw/K3Z7fMhQobr8rShvVx48fM89Pq1atRF4zkVQ9Cu4IIYQQQgghhJBqqLFOIyzrO0dmlXe11GpiWd85aKxDJ20k8fp18bqDJiYmUFNTq+LZVC0tLS3Y29tX9TSIDAwbNqzUmnny8PjxY5w5cwYAkJKSUqZt3o0bN+Ds7Iw5c+bA29tb6HqJHA4HNjY2GDZsGLy8vLBv3z7cvn0bqampSE1NxZIlS8DlcgEAgwYNkut9AoDc3Fw8fPgQR44cwd69e5nrPT09cfnyZXTo0AE7d+7E0aNHmZPzRkZGmDRpEthsNt6/fw8dHR2sWrWqTBAiD2w2Gx4eHsjJyYG6ujrWrl0r8tqO3bt3ZyqRVq9ezazLV9U+fPhQbpjLt3fvXly/fh1eXl4YO1b+FeeKioqljuPv74+vX7/K/bjlqVGjRqn2s/r6+hXuw2azMWPGDLx48QKtW7dGWFgY1NXLfqGI/777VZ06deDr6wsA+PTpEyZOnMiE2KIqKirCgwcPoKury7R7FpeFhQWcnZ0RFxcHe3t7ZGRkYNu2bQgKCgIAdO7cGZs3b4aSkpJE40uj5JqJ/ApcYVq2bMlcHjZsmEhV0vHx8czlyqwmJNKT7itWhBBCCCGEEEIIkZvGOo0QONAb4UmHkPDxjsTj9GzcFfadxlKlnRT4Jxv79OlTtRMh5Dfx48cPrFu3DocOHcKgQYPg7++P8PBw2NraIjg4GF26dEF0dDT279+P8PDwCtekU1JSQlRUFJKSkhAQEICoqCiB2zVv3lzm79Pk5GScPHkSr169wosXL/Dq1SukpKQwlSwlw4zjx4+jadOmQsfq0KEDdu/ezeyXn58v07kKwuVyMW/ePDx8+BA1atTA2rVrYWhoKNYY06dPx927d3Hjxg2sXbsWKSkpWLRokczXiBPH06dP4efnB2NjYwwYMAD9+/dHrVq1Sm3z5s0bBAYGwtXVFba2tpU2t6FDhzLBEIfDwcuXL6u8fWvJ41fUIpXD4cDd3R3Xr19H586dsXXrVmhpaYl9zAEDBsDa2hpRUVH4+vUrxo8fj3nz5uHvv/8WKbC+d+8eMjMzMXnyZKmCNXd3d3z9+hVRUVEYPHgwMjIyAAAdO3bEtm3bquwLOf3794euri7S09Nx6tQpuLm5lXkN802dOpVpU9qmTcXrFL979w7R0dEAgCFDhsDCwkJm8ybyRxV3hBBCCCGEEEJINaaloolZ3adgQa9pMNEzFmtfEz1jLOg1HbO6T6HQTgqPHz/Gly9foKCgIPcWa4T87ng8Ho4ePYpBgwbh4MGDcHFxwfr162FiYgJ/f38MHDgQdnZ22Lt3L7S0tLB///4KQ7uSOnXqhP3792Pu3LllbtPQ0ICfn5/Qqr2KpKWl4datWzhw4ABCQkKY64ODg+Hh4YGQkBBcvHgR2dnZsLCwwOLFixETE8MEcQDKDRcePnyIhQsXgsVioWbNmvj8+TPGjx+PxMREieYrqqVLlyI+Ph6KiopYuXIlzM3NxR5DQUEB69atY0LJgwcPYty4cXj16pVM58qv3hK0HtmvBg8ejPj4eJiamiIwMBA9e/bElClTcOTIEWRlZaGwsBDz5s2DpaUl3N3dZTrPijRu3BjGxv/7nd2gQYNKPb4gnz9/Zi6XF1Tl5eXB1dUV58+fx6BBg7Br1y7UrCm8+r+i52rRokUwMDAAUFzFt2LFCowePRq3bt2qcM6XL18GULoyTRIsFgvz5s1DnTp1mNCucePG2LFjR4UhprhKPh4VPTbKysoYOXIkgOLHRtgXEoDikI9fNXf8+PFSa9f9Kjk5Ga6ursjPz0f37t2xevVqce4CqQao4o4QQgghhBBCCPkNdGrYFp0atsXHzBRc+5iI1+nv8TbjI3LY/ztxo6Gsjma1GqO5riH+atyF2mLKyNmzZwEA5ubmaNKkSRXP5vfy4MEDxMTEYNGiRZXSDpDIz4YNG9CpUyf06tVL6DbPnz/HsmXLmLXmHB0d4ebmVmqbJUuWID09Hb6+vjAzM0OrVq3EDjVYLBYcHR1RWFjIVDW1aNEC/v7+pdrJicrNzQ1Xr15FTk6OwNvV1NTQuXNn9OjRA927d4eJiUmp1/OjR48qPMarV6/g5OQEDocDf39/tG7dGpMnT8b3799hZ2eHuXPnwtbWVqbvEw6Hg8WLF+PYsWNQV1fHhg0bpFobUVdXF+Hh4Zg4cSI+f/6Mp0+fYuTIkbCzs4OTkxO0tbWlnjM/6Ci5Fll51NTUMHXqVIwbNw7btm3Drl27cO3aNSxbtgzNmzcHi8WCj4+P1POShJWVFQICAjBs2LBqsTYq/30JCA/u0tLSMGPGDDx58gReXl4ivSb5laccDkfg7Zqamti2bRsmTpzIhGaPHz+GjY0N/vjjDxw+fFho28fz58+jb9++YoX7ghw/fhz+/v749u0bc93Hjx/x999/w83NTeoqXS6Xi+zsbKSnp+PixYvM9dHR0ejcuTPq1KkDTU1NgV8qGDt2LHbs2AEA2LVrF1q0aIF27dpBTU2tzPPk5uYGQ0NDrFq1CsOGDcO4cePQs2dP1KtXD/n5+fj06RMuXLiAw4cPg8vlwsnJCW5ublKvbUsqHz1jhBBCCCGEEELIb6SxTiMmkOPxeMgvLACHWwglBUWoKqpQOCJjXC4X8fHxqFGjRqVXbPzuHjx4AAcHB/z8+RN5eXlYsWLFf/71GRcXh+zs7EpZZ0uW1q5di23btkFFRQVbtmxBz549y2wTHx8PDw8PJnixsrISWBVXo0YNrFu3DnPmzMHZs2cxYMAAjBs3DmPGjBH75LyjoyPS0tLQo0cP9OvXT+LX1+jRo3Hq1KlS1zVp0gTm5uYwMzNDly5dpGoJ+fTpU0yZMgUcDgdbtmxB7969ARSfpLe1tUV6ejpWr16N8+fPY+HChTAxMZH4WHw/f/7EzJkzcePGDejp6SEkJESk9noVadCgAXbu3Im///4b3759A4fDQVhYGA4ePIjJkydj/PjxqFevnsTjixvc8WlpacHDwwNjx47FqlWrcOHCBTx9+hRA8XpgkydPxpgxYyq1taednR1atmyJv/76S+R9vn//Lrf53L59u9zb79+/j5kzZ6JOnTqIjIxE69atRRqXXyVZUFAgdJtmzZph27ZtsLW1RW5uLvr27YsJEyagcePGQp+TpKQkvHnzBmvWrBFpHoK8evUKy5cvZ+67oaEhXF1d8e7dO4SFheHp06dwdnZGu3btYGVlhYEDB6JOnTpiH+fz58/o169fmesTExMxePBgAMUhpKC1BQ0NDfHnn3/i9u3byMnJwaxZswAA8+bNE7ierKWlJfr164cTJ07g4sWL2LNnDzIzM6GkpAQdHR0YGRlhxowZsLKykui+kOqBgjtCCCGEEEIIIeQ3xWKxoKakiqpZmeW/IS4uDh8+fICtrW2ptmfVDY/HE6m1nLB9+YqKioSeMC+5XUUn1R8/foypU6fi58+fAIAjR46AxWLB19f3PxvenTt3Dp6enigqKoKSkhLTHu1XRUVFpR5rSfB4PJGCD1G227BhA7Zt2wag+MT8tGnTsHXr1jJhhIWFBYYNG4bjx4/DxMQEvr6+QsdUVlbGpk2bEBYWhs2bN2PPnj3Ys2cPDAwM0LlzZ5iYmMDQ0BC6urqoXbs2NDQ0oKqqChWV0l9OUFRUFFpNVVRUhIKCAuTm5uLHjx/4+fMnfvz4AR0dHbRv377Utr169cKwYcMQFxeHIUOGwNbWFu3atSv3cRFVYmIiXF1doaenh82bN6NZs2bMbX/88QcOHjwIJycnvH//Hrdv34aVlRXatWuHESNG4M8//0STJk2EViMJk5SUBE9PTyQnJ2PIkCHw8fERum6WJJo2bcrM++3btwCKg8ItW7Zg27Zt6NWrFwYOHIi+fftCR0dH5HF5PB5TtSWseqsiBgYG2Lp1K86cOQNfX198/foV7969w/LlyxESEoIFCxZg6NChEo0tLkVFxTIht6OjI3JyclCvXj3UrVsXenp6qFOnDmrVqoXv37+Xarsq65BRWGvKwsJChISE4ODBg3B1dcX48eNRo0YNkcfl/+4pL7gDgHbt2mHjxo1MQFiRQ4cO4a+//pLovfj06VNs27YNp0+fBpfLRZMmTTBt2jQMHz6cuW/9+vXDggUL8ObNGzx8+BAPHz7EihUr0LVrV/Tp0wetW7dGq1atRFrbT19fHy9evBB7nnx79uwBl8tFXl6eSNtrampi4sSJmDhxosTHJNUbBXeEEEIIIYQQQgghAnC5XGzduhWGhoaYPXt2VU+nXF++fMHff/+NlJQUqcbp1q1bhdv8/PlT5EqMkg4fPgwWi4Xly5dXWniXn59f7jpAfNnZ2czlrKwspKenC9yOzWYDKH5tCNtGkPv378Pd3Z0JyRYuXAglJSUMGzaszLbHjx/HokWLmCoWSVy4cEGk54gfmImjoKAArq6uZcI7RUVF+Pn5oU6dOhg1alSFoQOLxYKTkxMGDx6MTZs2IS4uDp8+fcKnT58QHR0tdD9lZWWoqKgw45d8LfF4PBQUFKCgoKBM8MNisdC9e3fY2NgIHHfRokWwtLSUqpXkr44dO4bFixdj6NCh8PHxgYaGRpltmjRpgsjISMyePRvXr18HACZE4M+7T58+pdbcE4bNZiM0NBRbt25FzZo1sXHjRgwcOFBm96ckAwMDHDx4ENOnT8edO3eY6wsLC3Hx4kU8fPgQX758YdbkEkXJ54z/XpPUgAEDYGpqiuXLl+PkyZMAgK9fv2LOnDl4+fJllX2mr1ixApcvX0ZsbCzi4+OFhvR16tSBnp6ezI6bn5+Pf/75R+BtZ86cgYaGBs6ePVvu2nfC8D/XRHnOevXqVW67Xb4fP37g9OnTTAtJUd26dQvbtm1DQkICAKBr164YO3Yshg4dWiaMbNeuHY4fP47o6GiEhobi06dP4HK5uHXrFhNyslgsGBgYwMjICHXq1EHt2rWhq6sLQ0NDpnKWEHmg4I4QQgghhBBCCCFEgOjoaCQnJyMyMlKik5mVqWHDhtizZw8iIyPRsmVLNGvWDFpaWtDU1Kx2FW48Hq/S5vTjxw/Y2Njg/fv3Iu8jLNgp6cuXL+jevbvE8+JyuZg/fz6UlJTKBCvW1tZQVVXF58+f0bp1a9StWxdaWlpiV13Jm6CKHBaLhXnz5ok1joGBAfz9/eHh4YG4uDicOXMGjx49ElpxxWazxQ51mjRpgqCgILRq1UroNrq6ujIL7TgcDtauXYvjx49j/fr1sLCwKHd7HR0d7Ny5E7t378a6deuYyiVLS0s4ODjgjz/+qPCYly5dwurVq5GWlgYnJydMmTJFJmvOladmzZrYuXMnNm7ciB07doDL5UJXVxfLli1D//79Ba7nVZ6Sz7mkFXe/zm/t2rXo1asXli1bxoT4oaGhMDMzQ+fOnaU+hrjq1auHsWPHYuzYsXj37h22bNmCEydOlNnO1dVVpp+Tqqqq0NPTQ1paGgCUem6GDBki1diiVtyJIzw8HCNGjECnTp0q3PbNmzeIiYlBbGwsPn78iLp168LZ2RmjRo2qcF1aJSUljBkzBiNHjsTJkydx6NAhJCUlMYEqj8fDx48f8fHjR2afTp06Ca2YJkRWKLgjhBBCCCGEEEII+cWXL1+wevVqrF69Gi1btqzq6YikUaNGmDNnTlVPo1qpV68eIiIiEBcXh5YtW6Jp06bQ1NSEhoZGtQs0S5L2RPrvqF69erC3t4e9vT0KCgrw+PFjvHnzBu/fv0dqaioyMjKQmZmJ3Nxc5OXlIT8/H2w2GxwOp8KQZ82aNeWGdrLCYrHw5csXzJkzB82aNUNsbCx0dXVF3tfOzg79+/fHhg0boKOjg0WLFlW437179xAcHIy7d+/i77//hoODg1jtKaWlrKyMuXPnom/fvli2bBnWr18PIyMjicYqGfxIW3FXkpWVFVq1aoVp06bh06dP4PF4uHLlSpUEdyU1bdoUAQEBGDhwIGbPns3c56lTp+Lvv/+W+fF2796NnTt34uPHjzKrFivZ3lRRUTZRQ0ZGBs6ePYvIyEiBt+fn5+PBgwe4c+cOzp07hxcvXqBVq1YYMmQIevXqhY4dO4rV6hMonruVlRWsrKzw5csXnDx5EmfOnMGTJ0+YYFJNTQ3r169H3759pb6PhFSExZO2aTYhRCxsNhuPHj0qc33btm0rdYHc6oLD4TDtH/jatWsHJSWlKpoRIYQQQgj5XRQWFuLVq1elrjM2NhbrxJGg9UTU1NTErhIg/y48Hg92dnYwMzODg4NDVU+HECKCoqIi5h+Xyy1VMSPvytNHjx5h4cKFWLJkCR49eoS2bduiS5cucjseUNxOMzAwEIWFhbC2tsbgwYMFtuL8naSmpmLYsGGwsLCApaUlTE1NZTr+t2/fMGXKFLx48QJ+fn6wsrKS6fjSCAsLQ0xMDObNm1dmXbzqLC8vD5MmTYKNjQ2GDBkik3Ob69evR8eOHdGnT59S10dERCA+Ph5fv36FoaEh/vjjD7Rt2xbdu3eX6RqOJeXk5OD+/ftITExEw4YNMWbMGLkcB/j9/iaVxd/hwtD5cwruCKl09MFTGgV3hBBCCCFEUhTcEXnJz8/HyZMnMXr06KqeCiHkN5CbmwslJaVKPZfx9OlTqKurw9DQsNKOKW8cDgc8Hk+u58cyMjJw/PhxTJw4sVqdh+NwOHQu7P9lZGQIDOLev38PXV1dubeArSq/29+kFNzJF7XKJIQQQgghhBBCCClBVVWVQjtCiMjU1dUr/ZiV0fqzslVGcFWrVi3Y2dnJ/TjiotDuf4RVz/2bQmpCKlI941pCCCGEEEIIIYQQQgghhBBC/mMouCOEEEIIIYQQQgghhBBCCCGkGqDgjhBCCCGEEEIIIYQQQgghhJBqgII7QgghhBBCCCGEEEIIIYQQQqoBCu4IIYQQQgghhBBCCCGEEEIIqQYouCOEEEIIIYQQQgghhBBCCCGkGqDgjhBCCCGEEEIIIYQQQgghhJBqgIK7ai4nJwfm5uZITk6u6qkQQgghhBBCCCGEEEIIIYQQOVKs6gkQ4QoKCuDl5YWUlJSqnkoZ5ubmEs8rIiICpqamIm378+dPHDhwAGfPnsXr16/B4/Ggr6+PP//8E5MmTYKRkZFEcyCEEEIIIYQQQgghhBBCCKluqOKumikqKkJqaioOHz6M0aNH4/Tp01U9JZkzMTERabvr169j0KBBWLt2LZo3b46IiAjExsZixowZuHHjBoYNG4bQ0FA5z5YQQgghhBBCCCGEEEIIIaRyUMVdNeHs7Iy7d+8iNzcXRUVFVT0dkejo6KBWrVpi7aOnpwdtbe0Kt7t48SJmzpwJDocDDw8PODk5Mbc1atQIvXv3xqRJk7Bu3Tp8+fIFS5cuFXf6hBBCCCGEEEIIIYQQQggh1QoFd9XEihUrUFBQAAAoLCzEtWvX4OvrCx6PV8UzE+7vv//GzJkzZT7uhw8fMGfOHHA4HJiZmZUK7fjU1NQQFBSEwYMH48CBAzAxMcG4ceNkPhdCCCGEEEIIIYQQQgghhJDKQq0yqwk9PT3o6+tDX18fhoaGmDRpEtq1a1fV06oSy5cvR25uLhQUFDBv3jyh2zVu3BjDhw8HAKxevRppaWmVNUVCCCGEEEIIIYQQQgghhBCZo+CuGlNXV6/qKVS6xMREJCQkAAB69OgBY2PjcrcfOXIkACAvLw9bt26V+/wIIYQQQgghhBBCCCGEEELkhYI7Uq2EhYUxly0tLSvcvkuXLtDR0QEAHD58GNnZ2fKaGiGEEEIIIYQQQgghhBBCiFxRcEeqjZ8/f+LatWvMz7169apwnxo1aqBDhw4AADabjUuXLslpdoQQQgghhBBCCCGEEEIIIfJFwR2pNi5evAgOhwMAMDQ0RK1atUTar1WrVszlc+fOyWVuhBBCCCGEEEIIIYQQQggh8kbBHak27t27x1xu06aNyPuVXAfvyZMnMp0TIYQQQgghhBBCCCGEEEJIZVGs6gmQf4ebN28iLi4O9+7dwz///IP8/Hzo6emhU6dOGDt2LP78888Kx3j16hVzuVGjRiIfu27duszl5ORk5OfnQ1VVVbw7UA0UFhaCxWJV9TQqXWFhoUjXEUIIIYQQ8qvCwkLweLxS13G5XHC5XKnHlsUYhBBCCCGESKO6/k3K5XLL/B3O4XDKXCcJOjdMwR2RUlFREXx8fHDkyBEAgJqaGnR1dcHlcpGSkoKUlBTExMRg7NixWLp0KWrUqCF0rNevXzOXGzZsKPIcSgZ3XC4X79+/R8uWLSW4N1Xr2bNnVT2FauPp06dVPQVCCCGEEPKb4X95Lz8/v9z/7xBFXl6eLKZECCGEEEKIxKrz36RFRUVMSJefnw+AzunKEgV3RCqLFy/GyZMn4ezsDCsrKzRr1oy5LTExEcuXL8eLFy9w6NAh5OXlITAwUOA4XC4XGRkZzM81a9YUeQ6ampqlfs7MzBTvThBCCCGEEEIIIYQQQgghhFQDtMYdkVhsbCzi4+MRERGBOXPmlArtAKBLly44cOAAjIyMAAAxMTE4fvy4wLFyc3NL/SxOq0sVFZVyxyKEEEIIIYQQQqrC+fPn8ejRo6qeBpGRmzdv4uTJk1U9jf+s7du348GDB1U9jX+1oqIiidry+fj44MWLF3KYESRuu/f+/Xv4+vpWScXS+/fvJW5vmJOTg7S0NBnPiBDyu6Hgjkjs3bt38Pb2RocOHYRuo6GhgaVLlzI/BwUFoaioqMx2OTk5pX4WJ7j7ddtfxyKEEEIIIYQQQqqKnZ0d5s+fj3/++aeqpyLUxYsXkZKSUuF2sbGx/+kTytu3b4ePjw+mTZsm0uNVFQ4fPgw2m13uNj9+/MDJkycrZQ2hL1++VDgfUV27dg329vaYMGECjh07VqUt5Hbv3o0LFy7IZC0nQQoKCuQybnlycnLg7u4Of39/sfe9cOECJkyYAFdXV9y6dUtmc8rNzcWYMWNw5coVsfc9f/48jh07hkmTJsktVBRm9+7dGDlyJA4fPsy0EBRVUlISrKysEBYWJva+hJB/D2qVSSRib2+Pb9++YdSoURVu++eff6Jly5Z4/vw5Pn/+jISEBPTu3bvUNiwWq9TP4vzh8+s3WBQUfs882sTEBEpKSlU9jUpXWFhYpv9xq1atoKhIH0+EEEIIIaR8hYWFePfuXanrVFVVxf5b8teTv2pqalLPjRAAGDZsGJ49e4adO3fi2rVrmD9/PsaOHVvV0yojMTERCxYswIgRI+Di4gJ9fX2B2507dw6+vr6wtrbG1KlT0ahRo0qeadV5/PgxkpKSABRX3o0dOxa+vr4YOnRoFc+stKCgIOzcuROOjo4YM2YMlJWVy2yTn58PHx8fhIaGYurUqbC2tha4nSw8evQImzdvhqenJwYMGCDVWPwvbr948QKRkZEwNzeHrq6uLKbJOHnyJCwsLMp0d/pVSkoKNmzYABMTE0ybNg39+vUrc25LUleuXMGSJUswc+ZMWFtby2TMinz58gWurq5MwKWvrw9HR0eR91dXV0dubi4ePHiAwsJCmf0eVVNTw/Dhw+Hu7o4JEyZgwYIFIr9WL168CKC4+s3W1habNm2CmZmZTOZVEXV1dXz69AmrV6/Gvn37cPTo0VJL/bx9+7ZM5zK+p0+fIi8vD1u3bkV0dDRmz56N4cOHV8q8SdX7nf4mLSwsZD73+PNs2rSpTM7pcjgcPHv2TOpxfmd0ZpxIZPLkyWJt36dPHzx//hwAcOvWrTLBnYaGRqmfxflGya/fQvp1rN+FoqLifzK4E4QeC0IIIYQQIgoWi1XmRKmCgoJYX+YT1srqd/1CIKl+Zs+ejQsXLuD9+/dYsmQJPn/+jDlz5lT1tEpRV1cHh8PB0aNHceLECaxbt05gyKKmpgY2m42DBw/iyJEjCAoKgoWFRRXMuPKFh4eX+nno0KHo169ftfusUFNTQ2pqKlasWIGIiAgcOXIENWvWLLWNuro6gOLwadmyZdi9ezcOHjyIWrVqyXw+I0eOxMuXL+Hm5gZzc3OsXLlS4rCtRo0azOXdu3fLPLQDioPPgIAAODo6Yty4cUIDPH549OzZM4SHh6Nbt27Q1taW+LiFhYW4fPkydu/ezVSs+fj4QFNTE4MGDSp33zdv3sDW1lam1bDr169H/fr1YWlpiZs3b0JHRwctW7YUuj3/cZo8ebLUAe2vpk6disOHD+PAgQN4+fIlQkJCKnysnz9/znxJvH379ti4cSPq168vszldu3YNV69ehbu7u8CuYfzr1NXVsWXLllLz5fF4mDJlCtq3b4+lS5eidu3apfYt2Q62sLAQBgYG1e5zhsjH7/Y3qYKCQpm/w5WUlGQS3Mmrmvl3QsEdqRStWrViLgtKy9XV1cFisZg3pTgtAX5tucD/A5QQQgghhBBCCKlqysrK8Pb2xtSpUwEAoaGhMDMzQ5cuXap4Zv9T8v+jbW1thYZx/JPzioqKCAgI+M+Eds+ePcOpU6eYn7W1tdG1a9dqef6BX/VQs2ZNrF69ukxoB6BUGNWiRQsEBwfLJbTjmzNnDm7duoULFy5g1KhR2LlzJ5o2bSr2OPyT14qKinIJ7YDik84pKSlYuXIlrl+/jpCQEIHb8YO72rVrY9euXRVW6G3YsAHOzs6lQp709HTcvHkTV69excWLF5GRkVFqHy6XiyVLlqBBgwZo37690LGNjIywe/dunDhxAi1btoShoSE0NTWZL7a/fPkStra2AIC2bdti27ZtFT8QAHPy/cmTJ/D390evXr0wdepUdOvWTei2JcNVWVFWVsa0adPg7e2Nu3fvwsHBAXv37i33MT98+DCA4s+2wMBAmYZ2ANC1a1esWLECFy9exPr160ud9wT+93jUqlULxsbGpW67fv06UlNTcebMGSQmJmLHjh3M/oWFhXj48CGA4i8nbdy4EZ06dZLp3AkhvwcK7kilKNlm49c/RIDiX0Y6OjrMbT9+/BB57J8/f5b6WV5/vBFCCCGEEEIIIZLo1asXmjdvjtevXwMobrsobnAXExODp0+fYv78+TKfX8lvxzs7Owtt+cc/Ua6mpoYhQ4bIfB7VlZ+fH1MJYWxsjE2bNmHy5Mno1KkTGjduXMWzK43fvaZLly5CX2MKCgpQUlICh8OBqakpDAwM5D6npUuXYuzYsfj8+TMcHR0RHR1dqnWgKPhf9pZnpyX+e6Ft27ZYt26d0O34IaKqqmqpAInH44HNZpcJlbZv346YmBiMHTsWb9++xYMHD/D27VuoqqrCwMAAnTp1QpMmTdCsWTM0a9YMzZs3h5aWlsiVNkZGRpg9e7bA23bt2gWg+P3r5+cn9nkzfth49epVXL9+HYGBgWXe//II7EqytLREUFAQvn37hocPH2LHjh2YNm2awG1zcnJw4sQJAMDixYvl8h5VVlaGl5cXU5np5+dX6jEpr4vUzp07AQB6enoICgoqFfo9fvwYubm5AAAzMzMK7Qj5D6uedZbkX6fkH1X8X0C/MjIyYi5/+fJF5LFTU1OZy0pKSmjSpIkEMySEEEIIIYSQ3w+Px0Nhbi44WVkozM2l1kLV2IgRIwAUV4CI20ru5MmTmD9/Pnbu3InVq1fLfG6innT/Ly5pcPnyZdy4cQNA8cn6wMBANG3aFDY2NnB3dy+zHlFVq67PZbt27dC3b18AwKdPnxARESH2GPzwtDKCu+bNm0NdXR3//PNPudv96u3btxgzZgzevHlT6nolJSV8+vQJ169fh6mpKXx9fXHlyhXcv38fJ0+exJYtWzB//nyMGTMGnTt3Rs2aNWXSHu/ChQvMWm9z5swpde7tVydPnizT1QoovcZWRESEwNBe3sGdsrIyRo4cyfzMf08KcvjwYWRlZWHQoEFyXSOQXznNZrPh6elZqsWlsMcjKSkJCQkJ0NDQwPbt28uE67dv32YuT5o0ST4TJ4T8FqjijlSKkj16hbWSaN68ORITEwEAnz9/FnnsksFd48aN/5P/I0EIIYQQQgj578h5/wHfribg58tXyHn7DoXZ2cxtipqa0GjWFFp/GKOOWS9oNKle1UC/m7y8PJkFM/r6+mCxWFi4cCFUVVWRnp4u0n5Xr16Fl5cXioqKABRXz7BYLCxYsEAm8wJED3Gq6zo78pKfn49Vq1YxP8+ZM4dZ58ve3h4xMTHw8PDA5s2bq81jI+raQsKqKuVp/PjxuHDhAgDgxYsXYu/P/2JCySBJ1n4NXA4cOICvX79i6dKlparoygtmXrx4gVGjRmHhwoUYO3YsgP+9xzp37lwqgJKnzMxMLFu2DABgamrKtMsUZM+ePVixYgX+/PNPBAcHl1qTreR9rcoWv3369EFYWBgACP3SfmFhISIiItCgQQMsX75c7nOys7NDYmIiCgsLsXHjRuzYsQOA8NdHYGAglJWVERwcLHDNQP76hg0bNkSvXr2knp+5uTlSUlIq3K5GjRrQ0tKCnp4eTExM0LdvX/Tv359pCSsL6enpGDp0KNLT03H+/PlS3dkIIWVRcEfEFhISgoiICNSrVw/btm2Dnp5ehfuUrLITtoBsu3btcPDgQQDFi8iK6tWrV8zl8np+E0IIIYQQQsjvLD3xLlKOHkPW07LrhvMVZmfjx8NH+PHwEZKPREG7lQkajRoJ3S6dK3Gm/x7fv3+HjY2NSCc+ReXt7Q1vb2+pxggPDweLxZJL28zyVEXYU5XWr1+P9+/fAyhud2pnZ8fcpqSkBH9/f4wZMwYrVqyAj49P1UzyF6I+R1URNHbv3h01a9bEjx8/0K5dO7H353A4AOQb3P0aYjs6OqJ///548+YNQkNDmbUAhQWk/Oq2vLw8vHv3Dmw2G8rKyiIHqrLC4/GwYMECpmLw1q1bAoOiX92+fRsTJkxAWFgYGjZsCED+1XSiateuHVRVVVFUVIQJEyYI3CYmJgb//PMPIiIiBK7vKGu9e/dmXtMlv+Qh6DGLi4vDgwcPsGHDBnTv3r3M7fn5+bhz5w4AYNSoUTJ5j544cQI5OTkICgpCVFQUgOJ19zZv3gxjY2OwWCwUFhYiMzMTL1++xPnz5xEXF4cTJ06gQYMGWLZsGXr37i31PABg1apVIn9hhRBCwR0R0927d7F+/XoAxf8Dc/ToUbi4uFS4X8mquObNmwvcpm/fvqhRowaKiorw+vVrZGdni9Tv/MmTJ8zlfv36Vbg9IYQQQgghhPxOOFk/8TZsO75dSRB736ynz5D19BnqmPVCM0cHKGlryWGG/176+vqIiIjAuXPnYGJigiZNmkBTUxMaGhplApKioiKpTnB///4dtWvXlnbKREbu3r3LtHM0MDDA2rVryzznJiYmcHNzQ2BgIBQVFbFw4cKqmOpvQ1lZGYsWLcKHDx9KhaCiKiwsBCB6cHfkyBE0btwYf/75p8jH+DUs0dTUhK2tLYKCgmBra4v9+/dDU1NTYECan5+P69evAwDc3d3h6urK3FbZwd3atWtx8eJFKCkpYf369ejcWfiXN96+fQsbGxsUFRVBXV0dffr0KdV2ueRjwuPx5B7gf/z4EXXr1mXW1uNTVlbGjBkz8Mcff6B169Zl9uNwOAgODoaLi4vQysDY2FhoaGigT58+MpmrsrIyLCwscOTIEYwZM4a5/tfHKCcnBwEBAQgICED//v0FjnX79m0UFBRAQUFBrBaf5Z0/1dTUhKamJqysrJjg7q+//irz+Ojq6qJZs2YYNGgQ7Ozs4OLigi9fvsDFxQVr166Vek3Ty5cvIyYmRqoxCPmvqR51/OS3ce/evVI/FxQUiLRfyd7ewr5Vpaury/wxxeVycfPmzQrHZbPZTA9pdXV19OzZU6T5EEIIIYQQQsjvIOf9e9x3myNRaFfStytXcd9tDnLef5DRzP479PX1YWdnB1NTU9SvX1/oSfvFixcjLCys1FIRosrKyoK5uTl8fX3x7ds3WUy7Wvhd78vPnz/h5eUFLpcLNTU1bN68WWj1joODA3r37o3du3djxYoV/8p1JnNyckp1UpKGpaUlZs2aJVHIzQ/uSrasFObIkSPw9vaGs7NzqXXDKiIoYJs4cSJUVFTw4sUL+Pv7AxBcsXj27Fnk5eWhV69epUI7oHKr1nbt2oWwsDAoKSkhKCgIFhYW0NXVFfpv06ZNTCveFStWwNPTE40aNWLGK/l5J8nnm7iuXbsGCwsLREZGMs85n6Ojo9AKsKioKNSpUwfTp08XeHtycjIWL14MFxcXBAYGlhlbUi4uLpg9e3apFqi//o5ISkqCu7s7E4BdunQJkydPRnaJVtdXrlwBUFyZyq92rMjdu3fRr18/nD9/vtztSr7+KmqN3Lp1a6b9L5fLhY+Pj1SVctnZ2ViyZInE+xPyX0UVd0QsJdtcKikpwdLSUqT9+N84UlZWLvdbLVOmTGEWmI2Ojhb6LZSS4/78+RNA8aKtv34bhxBCCCGEEEJ+Vznv3+PxoiWl1rCTBjs9HY8X+aDNyuXQMBS8PhCRnJOTEywtLXHlyhWsW7dOpGUl+BISEpCfn4+9e/ciKioKNjY2mDZtmkgBhSCbNm3CjBkzqrS1JZvNxtChQ+Hs7Ax7e/vfps0mj8eDp6cnPnz4ABaLhVWrVpXbYlBBQQGBgYEYM2YM9uzZg/T0dKxZs0Yma0O9fv0aL1++lLraRVoXL17Epk2bEBgYiLZt28p07JcvX8LGxgYZGRki75OQkIAWLVqItG1ubi6cnZ1x6NAhGBsbV7i9oICtZs2asLCwwMmTJxEVFQVvb2+BwV10dDRq1aqF1atXl7mtslqThoeHY82aNahduzYcHBwqrDaMiYlhvjg/bNgwDB06tMw2JcM6aSuLRaGiooKvX7/Cx8dHoha0rVq1qnCbsLAwGBkZib3eYEZGRplwXkNDA2PHji0VbuXn5wMofuzS09OZCsH09HQkJSVh9uzZYLPZmDp1KrZv3w5NTU0mfOvfv79IQdnLly8xbdo05OTkwM3NDRs2bJBZJ7L27dvDwsICp0+fxs+fPxEVFYWpU6dKNNbatWvBZrPRvHlzvH79WibzI+S/gIK7f6nPnz9j6dKluHPnDvT19eHl5YUePXpIPW6PHj2Yb1wMHToUhoaGFe7z5csXpkfzkCFDoKOjI3RbMzMzmJqa4tatW7h06RI+ffoEAwMDodsfPXoUQHHpt6S/QAghhBBCCCGkuuFk/cTTZStlFtrxFWZn4+myFeiwYR21zZQxQ0NDODo6YtOmTRg1ahTCwsJEDheOHz/OXG7dujX69esncWgHFFfwbd++HY6OjhKPIa27d+8iMzMTfn5+uHLlCvz8/FCvXr0qm4+oNm/ezKxTtmDBApFCM21tbWzZsgXjx49HbGwsvnz5guDgYOjq6ko1FwMDA0ybNg1t2rRB48aNpRpLGleuXMH79+8xYcIEzJw5E46OjjILov744w+Eh4fj2LFjaNu2LZo2bYqaNWtCQ0OjzLajRo3C58+fMXDgQCxdurTccTds2ICDBw8CKA5CjIyMRJqPsPvVr18/nDx5Etra2lBWVi4TRH/+/Bk3btzAhg0bBIb28g67uFwu/P39ER4ejo4dOyIoKAgnTpxAv379MGvWLPz9999l5vzx40csW7YMANCkSROhVVH8ajyguB2lLELp8pT87AsODkanTp1kMm5SUhJTjTdz5kyxQzsAOHbsGPz8/ETe/suXLwLXs+O7d+8epk6dCnd3d3z+/BkAsGzZMuZ5ERWHw5F5eNevXz+cPn0aAHDz5k2JzrsmJibiwIEDWLduHQ4dOkTBHSFioOCuGsvKymIuZ2ZmQl9fX+R958+fz7QC4H8DIz4+Hg0aNJBqTvr6+hg/fjz2798PdXV1kfbZsGEDCgsLoaWlBQ8Pjwq3X758OcaOHYsfP34gICAAGzduFLjd48ePcfbsWQDAkiVLyg0ECSGEEEIIIeR38jZsO9hStKYqDzs9HW/DdqCFh7tcxv8vc3BwwMGDB5Gamgp7e3scPXq0wv8P//r1KxISiluhGhkZISQkRKT13stjb2+PIUOGoHv37mjTpo1UY0mqZOu2GzduYMSIEdi9e3e51WtVLT4+HsHBwQCKW/IJWoft7t276NSpU5kQxMjICKGhoZgyZQqSkpIwevRo+Pv7C11rSxQqKioYNWoUPDw8cODAgUpfJw0obk95+fJlAMXhwLp163Dnzh1s3bq1wpZ7grDZ7DLBj4mJCUxMTMrdj8vlIi0tDQDQrFmzCkPRki0IPTw8RA4ahW3Xo0cPKCkpwcXFBUDZVogHDx6ElZUVLCwsxBpXFjIzM+Hh4YH79+/D29sbkyZNgoKCAhwcHBAdHY0VK1bgyZMnWLNmDbNPfn4+Zs6ciZ8/f0JDQwNbtmwp1WWrpJIVdxwOR273g69kcKelpSV1AF5yLD5Jw8ApU6agfv36KCwshImJCWrXrg1NTU3mNX39+nU4ODgwj1mjRo1w4cKFCsddt24dc/nmzZuoVauWwO3evXuHQYMGASiu8hblPKukSlaopqamir0/m82Gt7c3+vXrhyFDhuDQoUOynB4h/3q0xl01lZqaWupbCKJ8yJf0+PHjUj/n5eXh0aNHMpnbggUL0LdvXxw/fpxZX06YXbt24dixY1BWVkZAQADq1q1b4fiGhobYsGEDlJWVcfr0aezZs6fMNvw/Sng8Huzs7DBixAiJ7w8hhBBCCCGEVCfpiXelXtOuIt+uXEV64l25HuO/SE1NDRMmTAAAfP/+XWDLvF/t27cPhYWFqFmzJrZu3Sp1aAcADRs2hIWFBebOncu0bKtMXC6XqdQAgI4dOyIsLKxah3ZXr16Fp6cneDweJk6ciLlz5wrcbtWqVRg5ciQuXbpU5rZOnTph06ZNUFJSQkpKCmxsbLBx40ap1tKaMGECXr9+zQSKle369evIzMxkfnZyckJAQIBEoV1gYCCcnZ3BZrPF3jctLY0JjUT5Yjt/fcUaNWqI1bZWWMCmo6ODPXv2YPLkyQJvv3fvHhYuXMj8nP1LtbQkrWLZbHaFj9X169cxevRoNGzYEHFxcZg8eTJzH2rUqAEnJycAxZVi/DXUOBwOPDw88Pz5cygqKmLdunVo3ry50GOU/AypjM+TymorKqkhQ4ZgxIgRMDY2hq6uLhPaffv2DZ6enqWCzpycHCQkJJR5PZTE4/EQExMDRUVFtG3blqm8E6RkC01xXteSKFn1KklgGxwcjO/fv9P6doRIqHp/Ev6H5OTkICsrC58+fcLZs2cxdepUFBQUMLeHhIQgICAAT58+RXp6OrKyssr95f3rN+qUlJRk9geyiooKgoOD4eLiAjs7O7i4uODw4cN48uQJUlNTkZKSgkuXLsHFxQWrV69G48aNsW3bNvTt21fkY3Tv3h379u1Dw4YNsXLlSvj4+ODJkyf4/Pkz4uLiMHr0aHz69Amenp7w8vKSyf0ihBBCCCGEkOog5eixyjlOVHSlHOe/ZvTo0cxJ+vPnzyMvL0/otgUFBYiMjESNGjWwbt06NGkiu7UHp0yZgnfv3onV1k1WEhMT8fXrVwDF5yP8/f3Rrl27Sp+HqBITEzFz5kxwOBw4OjqWe6JZSUkJz549g7OzM8aNG4eHDx+Wur1Xr17YsmULVFVVUVRUhODgYFhZWZWqQBSHtrY2Ro8ejdDQUNy/f1+iMaQRHx/PXDY1NYWHh4fQaqCMjAykp6cL/BcaGoqwsDBcv34dbm5uYoeZnz59Yi6L0jb0+/fvAIC6deuK1aayvICtY8eOzO2/bhceHs6E7lu2bIGVlRW+fPki8nF/xWaz4ebmhunTpws9/1dQUIArV64gIiICvr6+AlvRDhgwgAlZs7KyUFhYiDlz5uDcuXOoUaMGAgMD0adPn3Lnwg/r9PT05N7yE5B/W1F5KCwshKenJ759+wYDAwPY2NgAKP4Sg6+vL/78809MnDgRu3btKhWEA8Dt27fx+fNnDBo0CMbGxkhJSRF6nJJrQco7uPv58ydzWdh7Xpjnz59j+/btmDdvnkhFHISQsqhVZjXh4uLCtLYUpKioCNu3b8f27duZ61avXg1ra2uB2/v5+TFr3NWrVw8eHh4y7YfO/9bO6NGjcezYMcTFxSEoKAg/fvyAqqoqdHV10bp1a/j5+WHIkCES9b9u164dYmNjcfz4ccTExMDJyQk5OTlo1KgRzMzMMHnyZDRt2lRm94kQQgghhBBCqlrO+w/IevqsUo6V9eQpcj58hEaTqls769+oXr16aNeuHR48eABlZeVy/3/4yJEjyMjIwPz589GzZ89yx83KysKlS5dE7jhjYmKCbt26Yf/+/ejbty/MzMzEuh/SOHLkCHN53LhxVbo+W0Vu374NV1dX5Ofnw9PTs8J1nEpWmjVq1AiGhoZltjEzM8OOHTvg7OyM7OxsvHr1CtOmTUOnTp1gZ2eHvn37inWexNbWFvv27YOnpyeOHz8u8tIl0srOzsapU6cAFAdVnp6e5W4fFRUFf3//Cse9dOkSLly4gAEDBog8F35nKQUFBbRq1arC7fltNevXry/yMX518uRJpnLvV3fvFlcsZ2dnY9euXcz179+/x4EDBwAANjY22LNnD+rXr88EfXl5eaWqpgTh8Xjw9vZmum9Nnz4dwcHBZV4zKioqWLBgQbljqauro02bNlBQUEC3bt3g7OyMhIQEKCkpwc/PD4MHD8aHDx/QsGFDoVWUSkpKmD17NmxtbaGmpiZwG1m20KyMijsejyfTsby8vHD9+nU0atQIu3fvZt43WlpaOHbsGHx8fBATE4O7d+MoKOUAAN2xSURBVO9i69at2LVrF9Me9tChQ1BQUICjoyOioqLKrbgr2bJSmte2KN6/f89cFuU9x1dUVISFCxfizz//xJgxY+QwM0L+Gyi4qyYEtYOURsOGDbFt2zaZjimIrq4uHBwc4ODgIJfx1dXVMWHCBKbVCCGEEEIIIYTIU0FaGliqqlBgSXfiUEFZCcpifkOdnZGBf06drnhDGfon/jQajbQUeruk94PLLnsSV1FDA4qaGgL2+H2cP38e5ubmFba9Mzc3x4MHD+Dg4CC0eoTD4WD79u0YMWIEpkyZUu546enpcHBwwNOnT/H169cKwyW+yZMn4+bNm/D29kZsbGypNZ7k5efPn0ybTA0NDUybNk3ux5TUqVOn4OnpCVVVVYSEhFRYeQT8L7hr2LBhqXWpftWlSxccOnQI06ZNY06AJyUlISkpCdra2rCwsEDnzp3RokULGBsbl1rX61f6+vro27cvzp07h8DAQPj4+Ih1PyUVGxuL3NxcAMXtAdu2bVvu9g4ODtDT0wOXy4WJiQnq1KkDLS0tKCsrY9OmTdi8eTO0tLQQHBwMU1NTsebCr2xs0aJFhe1k2Ww2U9VU0RqT5WnZsiWcnJzQoEGDUuM8evSIeU45HE6Z5WqGDx/OXD5y5AimT5/OfGbs2LEDO3bsEGseV65cwYwZM7B582aJvhi/YsUKpKWlYezYsUhJSUGtWrWwefNmZv3F48ePIyoqCg4ODhg3blyZY0yaNAlA8eP648cPaGholFpv8eHDh0hOTgYAoevkieN3C+5WrlyJEydOoHHjxti5cycaNWpU6nZ1dXUEBgaiUaNGCAkJQWZmJlatWoU9e/YgPT0dp0+fhqWlJVq2bAktLS3msRSkZHAnSstYafDXtgSAfv36ibzfzp078e7dO5w4cUIe0yLkP4OCO0IIIYQQQggh5P89c/OQyTjabVqj7crlYu3zInA9sh4/kcnxRfVP/Cn8E39K6O2yvB8G48ei8YRxYs+xOpk3bx4aNWqE6dOnl1shN2zYMKSlpcHW1hY5OTkCtzlx4gQ0NTXh5eUldBsA+PHjB5ycnPDq1SsAQEBAADgcDlxdXSucr7m5OfT19ZGcnIxVq1aJtOaetKKiopjWei4uLqhdu7bcjymJPXv2YNWqVTA2NsbGjRsFVs4Jwg/uRFmzzMjICIcPH4anp2epNfGysrJw9OhRHD16FLq6upgzZ06FlSmTJ0/GuXPnsH//fgwYMADdunUTab7S4FeOqaiowMNDtM/GiipC69evL3ZoB4BpE8oPm8rDb5MJSBfcNW/enKl6K2n06NHM5Vq1aiEwMLDCsYqKigAA06ZNg5ubm8Bthg0bhlevXmHGjBmYOXOmhLMuLS8vD1FRUdi9ezcKCwvx559/ws/PDw0bNmS2mTFjBp49e4YVK1YgPDwcK1asQI8ePcqM9eHDB8yfPx9Pnz6FkpISVFRUwGKxkJWVxWxjbGws9Zz5j5U8lVyHTpox+AFc165dsWnTpnJbSs6ePRu5ubmIiIjAhw8fABS/x5SUlODu7g6guEIvMTFR6Bj8NppqampybZX5+vVrxMXFAShuESvo9SDIhw8fsHnzZsyePRsGBgZymx8h/wUU3BFCCCGEEEIIIdWALCsAiHyoqanhxYsXmDVrlkjb7927t8JtunfvLvY8goKCUFhYWOHJfQUFBYwbNw5r165FVFQUhg0bhr/++kvs44mKy+UiIiICQHE1iJ2dndyOJanc3Fz4+PggNjYW9vb2cHd3F6uKqWSlkSi0tbURGhqKgwcPws/Pj6lgMzAwgI+Pj8gtTLt16wYjIyO8efMGPj4+OHHiBFRVVcWaizhu3ryJZ8+K2/ba29uXqSKqTK9fv2YCC1FevyWrkkoGVLKQnp6OJ0/+98WE3NxcpKenQ1dXt9z9+EFReaGUrH8HnDp1CgEBAUhOTkbDhg3h5uYGS0vLMqGzgoICVq9eDUtLS6SkpGDq1KnYuXNnmXDY2NgYUVFRSE1NxeHDh7Fz585SXzpo3rx5hS1/RSHLtpvCSBvcsdlszJ07F6dPn8bo0aOxZMkSkT5HFixYgFevXoHFYjEhnqenJ9P2sn79+njy5Al4PJ7ALwfwKz3l2X747du3cHFxQWFhIerVq4f169eLtB+/xWvLli2ZNf4IIZKj4I4QQgghhBBCCKkOZFABQOSLf2K2YcOGzBpG1d2oUaOwceNGcDgcLF68GHFxcXILfM6cOcO0eVuwYIFEbf3k6dWrV5g1axZYLBb27NlTqnqLw+EIXeOrJFG2EWT8+PHo3bs31q9fjytXruDAgQNiV8yMHTsWq1evZqpa5s6dK9FcRBEeHg4AqFu3LpycnOR2HFGcOXMGQHF1myjB0NevX5nL0lTcCXLt2rVSoQ+Hw8H48ePh5ORUqhLvV6IEd7Jy+/ZtrFu3Dvfu3UOzZs3g6+sLKyurct+POjo6WLBgAdzd3VFUVIQ9e/YIreqsV68eZsyYAUtLS0yaNAmpqamoVasW1q5dK5M2l4WFhVKPIc9jfPv2DbNmzcLbt2+xYcMGDBo0SOi2vz4eNWrUQHBwMFJTU7F//360atWq1PJAhoaG+PnzJ96/f4+mTZuWGY9fqSeLysaSioqK8OLFC5w8eRL79+9HXl4eOnbsiKCgIJHX0jt06BDu3buH48ePV0q7U0L+7Si4I4QQQgghhBBCqgGquPt9sFisctckq05q164Nc3NznD59GikpKQgNDRXaqk8aPB4PISEhAAAzMzNYWFiItN/w4cPx5csXmc1DUJs5/nqCe/fuhaOjI/7+++8ylXPh4eF49uwZnJ2d0bJlS6Hji1txV1KDBg3g7++P7OzsCtdpE8TKygqBgYHgcDjYtWsXrK2t0axZM4nnI8zTp0+Z1p5eXl7Q0KjatSnPnj0LABg6dKhIwWlaWhpzWdYVdyVbngJAzZo14e/vD3t7e8TGxmLlypUCj8mvIisv0JDmdwCPx8Ply5cREhKCFy9ewNzcHG5ubujWrZtIbV0BYPDgwdiyZQtevnyJvLy8Crc3MDDAjBkzEBMTg+XLl6Np06YoKirCnTt3pGrlWhnBnaQVdzdu3ICnpyc6duyIjRs3ok6dOmW2yczMRFFRETp27IiVK1eWuV1DQwO1atXC8ePHsXv37lLPj6GhIVgsFh4/flwmuPv8+TN+/vwJoLi6UVInT57EuXPnmJ95PB5ycnLA4/GgoaGBrl27wtraGoMGDRL5tZOamoqAgAC4urrCyMhI4rkRQv6HgjtCCCGEEEIIIaQaEPUEGal6v1vIamlpidOnTwMAduzYgXHjxolcRSGq8+fP49mzZ1BRUcHixYtF3i8sLEyuJ+oTExOxZs0adO3aFTExMUJbGiorKyMuLg7x8fHo06cPXF1d0b59e6mO/fnzZ4EhjiShHVBcFdWnTx+cPXsWHA4Hfn5+CA0NlWqOggQHBwMAevTogSFDhsh8fHE8fPgQT58+BQBYW1uLtM8///zDXJZlcJeVlcUEHj179kRCQgIAoEOHDggKCoKLiwtGjBiBFStWlKnCYrPZAIorrmQpIyMDR44cQVxcHJo0aQIbGxv06dMH6urqEo1nbW2NNWvWYODAgSJtb2lpibFjxwIobhvq7u6Oq1evYsOGDRgwYIBEcyjZKvPnz59IT0+XaJxf8UOvX48hqpCQEFy+fBlBQUHlrrW4YcMGnDhxAvPmzRP6+ktPT8fKlSvLfB6pqqqiQYMGuH//PoYPH17qtufPnzOXW7duLfb8+czNzTFv3jzm55ycHIwaNQocDgedO3dGWFiY2GMuW7YMDRs2rPLqXEL+TSi4I4QQQgghhBBCqgNqLVXt8QO7360NmJmZGbS1tZGVlYWCggIEBwfD19dXZuNzuVxs3LgRADB9+nSx1l+SdYD4q2/fviE0NBS1a9cudzt+BSWPx0NCQgL69OkjVXAXHR0Nb29vBAQEYPDgwRKP86thw4YxFWiXLl1CUlISOnXqJLPxHz58iPPnz0NVVRXLli2T2biS2rVrFwCgb9++IocV/OBOS0sLNWvWlNlcYmJikJ+fjzZt2qB79+5McAcAvXv3hpubG9avXw83Nzd4eHiUCjH4wV157Sol+UJARkYG2rdvDzs7O4nbuJZkbW2N3NxcJoyrCP99k5aWBmdnZ2b9v7lz52Lnzp3lBlzClAzyp0+fLvb+oigoKBB7HwsLC7i4uJS7DY/Hw/nz55GdnQ0fHx+cPHkSO3bsKPO8l1eV1qxZM1y6dKnMFyDu37/PXG7Xrp3Y8+dTV1eHvr5+qev69++P+Ph4JCQk4NOnTzAwMBB5vLi4OFy6dAmHDh2SyWuQEFKMgjtCCCGEEEIIIeT/mWxYC1VVVSiwpAtmFJTFP3nV0nMOnq8JwM/nL6Q6tji0TFrij9nC2yZKcj9azJ0NLrtsNYNiFbfbk4Xc3FwAkLiapaooKSnB3Nwc0dHRAIpDJQ8PD+jo6Mhk/OPHj+PFixdo2bIlHBwcZDKmrJS3/lRJampqzOWgoCD0799f4mNGR0fDy8sLXC4Xc+fOhYKCgsgVTBXp3bs3VFVVkZ+fD6A42JJlcBcYGAgej4dZs2aJFcDKQ0pKClMpOnPmTJH347delXWbzCNHjgAoDpPevHkDoHTY5uTkhEuXLuHevXtYu3YtmjZtyrSM5X92SFptKcitW7fg7OwsUltLcfGDeEkVFBTA1dUV+/fvF3s9tpLBXUREBExNTcts8+XLF7HXL7x16xZsbGzKHENUorSAvHv3LlJTUwEUtxLdtGlTmdDu3Llz6Nq1q9BQuVOnTkhISMDLly/xxx9/lBobAJo2bSqzz26+cePGIT4+HlwuF/v378f8+fNF2i8zMxMrVqyAnZ0d2rRpI9M5EfJfR8EdIYQQQgghhBDy/1T09KCqplYlFVXKtWqhZpvWlRrc1WzdCqr16sp0TOVatWQ6XnXCD0t+t+AOKA58+MEdm83GzZs3RQ61ypOfn4+NGzdCSUkJa9askWoNuKpUsoVho0aNKtw+JSUFLVq0qHC7wsJCzJkzB0FBQSKv+1ceNTU1dO3aFVevXgUA5r+ycPnyZdy6dQsdOnSAnZ2dzMaVVEBAAAoLCzFs2DCxWgN+/vwZAMpUFUnj1q1bePr0Kfr06QNzc3O8fv0aQOm10hQUFLB06VJYWVmBx+Nh586dsLCwQG5uLoqKigAA2traQo8hbsWdqakpQkNDcfPmTbRu3Rr6+vrQ0tIqFUILwuFwMHXqVLx8+RIAYG9vDycnJ0RGRiI1NRWzZs0SeQ4VBWiqqqoij8VXWFgIbW1t9O3bF4aGhmVuz83Nhb29Pbp06YIZM2aIXLWroqICS0tLjBkzBl27dpVoXhVV6h09ehRAcevr5cuXQ0lJCTk5OcztDx8+hLu7OwwMDLBt2zaBlW1//vknAODChQtMcJednY0HDx4AKG5hK2vdunVD48aN8fHjR0RFRcHNzU2k52716tXQ0tIS6zVDCBHN7/nXFCGEEEIIIYQQ8i9Up1dPJB+JqrzjmfWqtGP97rhcLhPclXfyvbr6tWolOTlZJuNu27YNnz9/hoeHB0xMTGQyZlUQd+2xBg0aICpK9PeqLANNU1NTJrDLzc1Fenq60LX7RMVms7Fq1Sqoq6sjICBA5muxiSsxMRHx8fHQ09ODt7e3yPtxOBymVaYsg7uNGzdCVVWVmQs/ZPs1bGvZsiUGDhyIU6dOMeuolVxbrU6dOkKPIUmrTFNTU4EVaeVZtGgRE9pZWVlh/vz5YLFYGD9+PPr37w87OzuBgdmv/Pz8EBMTgwMHDojVWrEiQ4YMwdixY4W2FVVXV0doaCgmTJiAmJgYTJkyBc7OzhUGTR06dECHDh0knldeXh4cHByYAK08PB4P9vb2Qm9/+/YtJkyYgBMnTpR577Zv3x4qKio4c+YM05rz5s2bzOtJHsEdi8XCmDFjsHbtWmRmZiI2NhajRo0qd5+rV6/i+PHj2LNnj0QBLSGkfBTcEUIIIYQQQggh1YSGYRNotzJB1tNncj+WdutW0GhSta3wfieZmZnM5Xr16lXdRCRUu3Zt1KtXj2njJouq0k+fPmH79u0wNTXF1KlTpR6vKokbVCkoKEgdlknq1+ozFosl9Zjh4eF4//49Vq9eXeUtMgsKCpj19Xx9fVFLjCre5ORkprpNVvfj2rVrSExMxNKlS5mAin+MkhV3fBMmTMCpU6fQp08fAMXrLPKV99khSXAnrg0bNjAtP/v27YuVK1cyr59atWqhf//+WLlyJcLCwsodZ/Pmzdi5cycAwM7ODvv375fZ52LJ99W+ffugqqoKKyurUu/RJk2aYOPGjbCzs8OWLVsQExODwMBAqYK5imhpaWHHjh3YvXs3jI2N0bx5c2hra0NTUxMKCgo4cuQIli9fDjU1NZw4cULg4zFx4kQ8fvwYzZs3x4YNGwR+higrK6N9+/a4ffs2Hj58iHbt2iE+Ph5AcWjZs2dPudw/a2trbNy4ERwOB/v27aswuOM//66uriKNX7Kl64gRI8r8DkpMTBRzxoT8u1FwRwghhBBCCCGEVCONRo2slOCukbWV3I/xb/K7B3cA0KxZMya4k8UJbl9fX2hra2Pt2rVV0l5Wlqq6wkwczZo1Yy4bGhqKFWwJkpycjJCQEFhbW8Pa2lra6Ult5cqVePnyJVxcXNC3b1+x9n379i1zuUmTJlLPhcvlYv369Rg0aBAmTJhQ6nrgfwFeSd26dYOnpyezfVpaGoDisLe8MFFQCChL27Ztw5YtWwAUt2PcsGFDmUpQe3t7jBw5EmfOnMGAAQPKjMHhcODr64vIyEjmuoKCAixduhRBQUFQUVGReH7Hjh3DyJEjS12XmZmJjRs3Yvv27Zg1axYGDRrEBI1dunSBp6cnVq1ahU+fPmHy5MnMFwmECQ8Px8OHD2Fvb4927dqJPUctLS3MmDGjzPVsNpsJO52dnQU+zw8fPsTjx48BALNmzULz5s2FHqdPnz64ffs29u7dCx8fH5w/fx7A/9a4lIc6derA3Nwcp0+fxpMnT/DgwQO0b99e6Pb+/v4Vtg4tydPTE0lJSQCKX4uitjgl5L/q9/6rihBCCCGEEEII+ZfR7dIZdczk8416vjpmvaDbpbNcj/FvUzK4k2VbuMrUpUsXAIClpSU6deok1VgxMTG4fv06NmzYAD09PVlMj4iofv360NfXh6KiIhYvXiz1eEuWLIGRkRGWLFkig9lJJzY2FpGRkRg5ciRmz54t9v7Pnv3vSw+irEFYkT179iAnJwcrV64sdT0/ZBMWtk2dOhUaGhoAgHfv3gEorgAsL9iSZ8VdQEAA1q5dCwAwNjbG1q1bBc6lZcuWsLS0xOLFi8u00/3y5QsmT56MyMhIsFgs9OzZE2FhYbh69arQ8UT15s0bbN68ucz1/DHfvn2LlStXlnp+AcDGxoZZE47NZpd5nn41efJkpi2kra0t7t69K/GcS9q7dy++fPmCJk2awMHBQeA2ISEhAIrD9orWuxw2bBgUFBQQHx+PsLAwplqtoio4aY0ZM4a5vH///nK31dPTg76+vsj/Sr4++J9hJf8RQkqj4I4QQgghhBBCCKlmmjlOhbKc2vAp6+qimaPgE4tEuJInscurlKjOJk6cCA8PD6xatUqqcdhsNlavXo0VK1agc2cKgKvC0qVLsXXrVqnb5p07dw5v3rxBcHBwla9TdePGDSxYsAAWFhZYsWKFxGMAxaFC3bp1pZpPcnIy9u7di7CwMGhqapa6rbCwEACYdcfKw19PrqIKL3kEd3l5eXB3d8f27duZ69q0aVPm/pQ0e/ZsFBQUYNasWWCz2QCA6OhoWFlZ4enTpxg3bhxiY2OxY8cOmJmZyaRV64EDBwS2jVRSUmIu79y5E61atSp1O4vFgo+PD1Pxm5GRIXD827dv48KFC1BUVERgYCCGDRuGmzdvYuLEiZg+fbpUa35mZWUhNDQUQPH6gYLW5nv48CFTNTd9+vQKK5Tr1auHLl26gM1mM4Ff48aN5dYmk69nz55o1KgRACAuLg7p6elyPR4hRDgK7gghhBBCCCGEkGpGSVsLrZZ4Q7Gck6uSUNTURKsl3lDS1pLpuP8Fb968AVDc7s7IyKiKZyMZXV1dODk5lWmPJ66CggI4OjrCyspKNhMjYuvVqxfMzMykHic/Px87d+6s8vavjx49wvTp0zFu3Dhs3LhR6Gs0Oztb6BjJyclMK74ePXpIPac9e/Zg/fr1AquB+IGdKMHdrVu3AKDcFo6A7Ftlvn//HuPHj0d8fDw0NDREfo7r1auHuXPn4smTJ/Dy8oKDgwNWrlyJ8ePH4+LFi1i+fLlMPwP/+ecfREZGCgxaS7awVVdXF7i/sbExBg8eDAD466+/BG7z4cMHpo2qgoIC1qxZw2x77tw5jBgxAufOnZNo/ps3b0ZmZibq1q0LBQUF/Pz5s9TtRUVFWLp0KQCgbdu2GDZsmEjjjhgxotTPTk5OMglJy8OvRgSKv6DBXw+REFL5aI07QgghhBBCCCGkGtIwbII2K5fj6bIVYMvgW+/KurpotcQbGobSr/v0X/T69WsAgImJCdTU1Kp4NlVLS0sL9vb2VT0NIgPDhg0rtWaePDx+/BhnzpwBAKSkpOD58+do2bIlc/uNGzfg4eGBOXPm4O+//xY6DofDgY2NDdhsNtq2bYs2bdrA2NiYWctuyZIlTPg1aNAgqeft5eUl9DZRK+5ev36NlJQUKCoqwtzcvNxtBa2XJ6kjR45g5cqVyM3Nhbm5OZYsWYIlS5Ywa1xW5O+//8bNmzdx8uRJNG3aFOfOnUPNmjVlNr+SVq5cCTabLTAgFXXtzNmzZ+PZs2eYPn26wNszMzORlZXF/KykpISNGzfC2toaHz58QE5ODtzd3XHo0KEyVX0V6dChA3g8Hh49eoQZM2aAzWajefPm6NixIzp16oRHjx7hyZMnUFZWhq+vr0TrgSooKKBbt25i7ycJa2trbN68GYWFhTh48CCmTp36269hSsjviII7QgghhBBCCCGkmtIwbIIOG9bhbdgOfLtyVeJx6pj1QjNHB6q0k8KTJ08AAH369KnaiRDym/jx4wfWrVuHQ4cOYdCgQfD390d4eDhsbW0RHByMLl26IDo6Gvv370d4eHiFa9IpKSkhKioKSUlJCAgIQFRUlMDtmjdvLvf3aUFBAYDi9pZsNltge0QAOHbsGACgf//+AltBliSLVpnJyclYunQprl69CkNDQ3h6eqJ///4SjbVq1Sq8efMGb9++hYuLC4KCgmRemRkREcGEuoKq+EQNjAwMDBAfHy/09u/fv5ephNPU1MT69esxZswYFBUVgcPh4MiRI/Dx8RHjHgBDhgzBkCFDABS/Lm7cuIELFy7g4sWLiIyMZLarX78+Hj58CD09PdSpU6fcMRMSErBs2TLmZy6XC0dHR+zbtw+1a9cWa37iqlevHnr37o3z588jJSUFly5dqjB0FkXJ17c813Mk5N+C4nJCCCGEEEIIIaQaU9LWQgsPd5gsXgjt1uJVAmi3bgWTxQvRwsOdQjspPH78GF++fIGCggIsLS2rejqEVGs8Hg9Hjx7FoEGDcPDgQbi4uGD9+vUwMTGBv78/Bg4cCDs7O+zduxdaWlrYv39/haFdSZ06dcL+/fsxd+7cMrdpaGjAz89P7hVCKioqmDhxIo4fPw5lZWWcPHkSrq6uzJpwAJCTk4MjR45AUVFRaCVYSfyKO0kq7/Lz8xESEoJhw4bh+fPnWLJkCWJjYyUO7QBAW1sbu3fvRtOmTZGUlIThw4fjwIEDMmvpeeDAgVLrbQpaA1BWz2NycjK+fv1a5vrWrVtj3LhxzM8lq/IkoaKigj59+sDHxwcDBw4sddvHjx/h4+MDMzMzzJkzR+B8gOK2sTNnzgSHw0GTJk0wefJkAMC7d+8wZcoUidadK/ma4leLlqfkY7J3716xjydISkoKc/nDhw8yGZOQfzOquCOEEEIIIYQQQn4Dul06Q7dLZ+R8+IhvV67i56vXyHnzFoUl1nxS1NSEhlEzaBk3Rx2zXtBo0rgKZ/zvcfbsWQCAubk505aPiObBgweIiYnBokWL5L4+E5GvDRs2oFOnTujVq5fQbZ4/f45ly5Yxa805OjrCzc2t1DZLlixBeno6fH19YWZmhlatWqFBgwZizYXFYsHR0RGFhYUICgoCALRo0QL+/v6l2nCK4/Lly7h9+zaA4vW9ygtIXF1d/4+9+w6PqkrcOP5OSS+EktB7kSYIojQLIDYERVDXiri6yLJYfmJFBQVUFF1Ad8VVURRduwIqiKCoi4rSpIpAEEgghNDSk8mU3x8hkwwzE2aSSWaSfD/P4+OdO6fdEJLhvvec4zxetGiRJk+eLJvNpokTJ+pf//qXwsPD9c477+jEiRMaO3asOnXqdNr+SwIxX4KVsnU+//xzzZkzR+Hh4Xr44Yd19dVXKyIiwuc2SthsNv36669atmyZfvvtN3388cdKSkrSW2+9pTvuuEM7d+7UE088oY8++kh///vfddFFF1U4WFu0aJFz3zdJatu2bYX/3Hyxa9cur4HjhAkT9Mknn6iwsDAg+0YeP35c9957r9asWaPo6GhNnjxZffr00bx58/TFF1/IZrPpyy+/1K5du/Txxx+7/FmtX79eEyZMUF5ennr16qWXX35ZDRo0UEZGhr766ivt2LFDo0eP1ty5cz0GnafKyclRbm6ulixZ4jz3008/af369erQoYOioqI8zhY9//zz1bRpU6WlpenHH3/U66+/rlGjRikqKsqnpaItFosKCgpkt9t19OhRffDBB0pJSXG+P336dE2ePFmdO3dWVFSUIiIiKvQ9C9RmBHcAAAAAANQgMa1bKeaWmyQVz2yx5RfIYS2SwRwmU1Qk4UiA2e12LVu2TCaTSffee2+wh1OjbNq0Sbfffruys7OVn5+vGTNm1Pnvz6VLlyonJ0fXXXddsIfilxdeeEGvvvqqIiIi9PLLL+u8885zK7Ns2TJNmjTJObtn5MiRHmfFmUwm/fOf/9R9992nFStW6JJLLtFf/vIXXXvttX7NvJOKg8GMjAwNGDBAF110UYW/v6xWq+bOnau8vDxJ0pdffqkvv/zS73a+//57/eMf/9DkyZP1yiuvqGXLlrrrrrt8qlsSLJ1u3zyp+Gf/0qVLNW/ePDVu3FiTJ0+uUJBWNqxbsWKFTCaTxo4dqwcffNAZ6DRu3FgffvihnnjiCS1atEjbtm3TxIkT1aZNG11++eW66KKL1LVrV5lMJp/7LQlbpeLvh0cffdRjubJ/nhkZGR73wTud/fv3a+/evZKK91Ps37+/y/uJiYmaMmWKNm3apOHDh/vdfllff/21ZsyYofT0dJ111ll67rnnnA97PPfcc7rzzjv1+OOPa/369dq5c6d+++039e3bV1Lx99zDDz8si8Wiyy+/XM8++6wzzJo5c6bS09O1ceNGHTx4UDfeeKP+7//+T7fccovXZVol6corr3SZ6SYVLxt64403SpKeeeYZjRo1yq2e0WjUNddco5deekmSNGvWLM2aNUuXXnqpXnzxxdN+Hb744oty94jcu3evxo0b53w9ceJEn/+eAHUFwR0AAAAAADWUwWCQOTpK0umfgEfFLF26VPv27dOtt96qjh07Bns4XjkcjgotsVdSt4TNZvM646dsudPNCtq6davuuOMO575SH3/8sQwGg6ZPn15nw7uVK1fqgQcekM1mU1hYmK6++mqP5Ww2W6X3gHI4HD7N3PKl3Ny5c/Xqq69KKt7Da8KECZo3b54GDhzoUu7iiy/W8OHDtXjxYnXp0kXTp0/32mZ4eLheeuklvfbaa/rXv/6lhQsXauHChWrZsqXOPvtsdenSRW3atFGDBg3UsGFDxcTEKDIyUhERES7fP2az2eueZDabTYWFhcrLy1NmZqays7OVmZmphIQE9ezZ06Ws2WzWggULNG7cOG3cuFEzZ870+udzOna7Xbfffrsk6d///rdiY2N9qlfy51B2uc3ypKSk6NVXX1WzZs18Kp+ZmSmp+Ovy888/O8O6Y8eOqXHjxpo4caKuvfZaj0FQVFSUnn32WfXv31/PPfecjh49qr1792revHmaN2+eoqOj1bVrV7Vv314tW7ZUgwYNFBsbK4fDocsuu8ytvWeeeUYff/yxoqOjdfXVV6t3794ex1z2z3ru3LmaOXOmmjRp4tP1SsUB0cMPP+x8feedd2rq1KkaPXq0S7lrrrlG11xzjc/tnio1NVXTp0/Xd999pwYNGmjy5Mm6+eab3cLM9u3b691339W7776rmTNnqqioSA6HQ/PmzdOLL76oqKgoTZ48WTfccINLvaioKL322msaO3astm7dqqKiIj333HN69913dffdd+uKK65QWFiY27i+/fbbCl/TxIkTNXHixArVHTVqlMdAEIDvDA52gwSqlcVi0ZYtW9zOn3nmmeU+JVNbFRUVafPmzS7nevTo4fEDBwAAAFCW1WrVrl27XM517NhRZrPvz6ja7Xbl5+e7nIuKiqry/ZFQM9jtdo0YMUJWq1WLFi3yaYmwYDl48KBuvvlmt9kVoea6667TtGnTqi28KygocM6iKs8PP/yghx56SJL09ttvew1pn3jiCS1fvlxNmzbVp59+6vM4fvvtN919993O2VRGo1GzZs3yOMPn008/1aOPPhqwvcSqQkREhMfwzuFwaNasWRo9erTat2/vU1spKSl66aWXtHTpUp9mm4WHhysiIsJ5D6Xs95LD4VBhYaEKCwvd2jIYDOrfv7/GjBmjwYMHe2w7Pz9fq1at0rBhw3wauycvvvii5s2bpzlz5rjtc1aeHj16qLCwUKNHj3bZ+y0QDh8+rEsvvdTt70JcXJzGjx+vW265xeelCrOzs/Wvf/1L7777brl/Xr169dLAgQMrNZMqOTlZw4cPD9jfhXr16unTTz+t0Mw9T1JSUvTaa6/ps88+U0REhG677TaNHTtWMTExp6177Ngx5eTk6NFHH9Wvv/6qc889V08//bRatmzptU5mZqYmTJigdevWuZyPj4/XkCFDdP3116tXr16Vvi4ER037TBqIz+HecP+cGXcAAAAAAAAeLVq0SKmpqfrggw9COrSTpGbNmmnhwoX64IMP1LlzZ7Vr105xcXGKjY0NuRluDoej2saUmZmpMWPGOJfK88WYMWNOWyYtLc1tyT1/2O12PfTQQwoLC3MLd0aNGqXIyEgdPHhQ3bp1U1JSkuLi4hQZGVnh/qqCp6URDQaDHnzwQb/aadmypZ577jlNmjRJS5cu1ddff60tW7Z4DYUsFovPs9JKtG7dWnPmzFHXrl3LLRcVFVWp0G7RokV69dVX9fzzz/sV2klyzpgtLCyscP/efP/9926h3ejRo3X//ferQYMGfrUVFxenRx55RLfffrvee+89ffjhhzpy5Ijz/YSEBL300ks699xzKz3u9u3b66mnntILL7zg0kdF9O3bV1OmTAlIaLd582a98847+vLLL9W5c2c9/PDDGjFihOLj432q73A4tGzZMj3//POqV6+eZsyYoWuuuea0Pxfr1aunN998Uw8++KCWLVvmPG+xWJSdna0TJ05U5rIAhBBm3AHVjCcGXDHjDgAAABXFjDtUpbS0NF155ZV68sknK3UjH8GXnp6upUuXqnPnzmrbtq1iY2MVExMTcoEmShUWFmrr1q1KTk7W3r17lZ6eruPHj+vEiRPKy8tTfn6+CgoKZLFYVFRUdNqZeu+9957X5RgDZdWqVbrvvvv07LPP6pJLLvG7fufOnSVJ48ePD/h+mg6HQ2PGjNGvv/6qxMREPfvss26zJSvKYrFo9erV+vbbb/Xdd9/piSee0NChQwPSdgmHw6H09HTl5eX5vYysyWRSYmKiT7PgypOenq7Fixfr888/V1hYmAYMGKCrrrrK7yWU16xZo9mzZyslJUV33nmnbrjhBr/vBzocDr3++uuaM2eOLrzwQj399NNKSEjwqw2Enpr2mZQZd1WL4A6oZvzgcUVwBwAAgIoiuENVcTgcGjt2rC644ALnXlUAQpvNZnP+Z7fbnQGPw+Go8pmnX3/9tZ5//nm98MILOvPMM/2ub7fb9eijj+qOO+7weYlRf6Wmpuquu+7Syy+/rKZNm1ZJHyVf89oYii9cuFCtWrXS2Wef7fO+hWVt3rxZs2fPVl5enq655hpdccUVio6OrtSYNmzY4NwLEjVfTftMSnBXtVgqEwAAAAAAoIzCwkKNGDFC11xzTbCHAsBHJpPJ4/Kd1WH79u364IMPVL9+/QrVNxqNeuaZZwI8KlctWrTQRx99FJCb6t7UxsCuxC233FLhuhaLRd98840effRRdejQIWBjqupZpACCh+AOAAAAAACgjMjISEI7AD4L9NKWVaUqQzt4Fx4erv/7v/8L9jAA1CChOc8SAAAAAAAAAAAAqGMI7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAA1ksFgcDvncDiCMBIAAACg7rDb7W7nPH02R8UQ3AEAAAAAaiSj0f2ftFarNQgjAQAAAOoOm83mds7TZ3NUDF9JAAAAAECNZDAYZDabXc7l5uYGaTQAAABA3XDqZ26z2cyMuwAiuAMAAAAA1FixsbEur7Ozs4M0EgAAAKBuOPUz96mfyVE5BHcAAAAAgBorPj7e5XVBQYFycnKCNBoAAACgdsvJyVFBQYHLuVM/k6NyCO4AAAAAADVWdHS0TCaTy7nU1FTCOwAAACDAcnJylJqa6nLOZDIpOjo6SCOqncynLwIAAAAAQGgyGAyqV6+ejh075jzncDiUkpKiyMhIxcXFKSYmRiaTSUaj+7OrdrtdNpvN5ZzVavVYFgAAAKgKofqZtGRcubm5ys7OdptpJ0n16tVjf7sAI7gDAAAAANRoSUlJslqtysrKcjlfUFCggoICZWRkeK3rcDjkcDhczhkMBm4+AAAAoNrU1M+k8fHxSkpKCvYwah0eIQQAAAAA1GgGg0HNmjVjbw0AAACgmsTHx6tZs2YhHy7WRMy4AwAAAADUeCXhndlsVmZmpttSQ+U5dcmfqKioQA8PAAAAKFdN+UxqMplUr149JSUlEdpVEYI7AAAAAECtYDAY1LhxYyUlJSkvL09ZWVnKycmR1WoN9tAAAACAGstsNis2Nlbx8fGKjo4msKtiBHcAAAAAgFrFYDAoJiZGMTExkor3DLHb7W77hkhSUVGRtm/f7nKubdu2CgsLq5axAgAAAKH6mdRgMMhoNBLUVTOCOwAAAABArWYwGGQymTy+5ynMM5vNMpv55zIAAACqB59JUZYx2AMAAAAAAAAAAAAAQHAHAAAAAAAAAAAAhASCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAII7AAAAAAAAAAAAIAQQ3AEAAAAAAAAAAAAhgOAOAAAAAAAAAAAACAEEdwAAAAAAAAAAAEAIILgDAAAAAAAAAAAAQgDBHQAAAAAAAAAAABACCO4AAAAAAAAAAACAEEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAII7AAAAAAAAAAAAIAQQ3AEAAAAAAAAAAAAhgOAOAAAAAAAAAAAACAEEdwAAAAAAAAAAAEAIILgDAAAAAAAAAAAAQgDBHQAAAAAAAAAAABACCO4AAAAAAAAAAACAEEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAX4nJzczVkyBClpqYGeygAAAAAAAAAAACoQuZgDwDeFRYW6pFHHtGBAweCPZRyrV+/XkuWLNH69et18OBBWSwWxcXFqWnTpjrrrLN0xRVX6Oyzz/a5vSFDhlT4mt9++2317du3QnUBAAAAAAAAAACCieAuxNhsNh05ckQ//PCD3n77be3cuTPYQ/Jq586dmjZtmvbs2aObb75ZzzzzjJo1ayaLxaKUlBR98803ev/99/Xuu+9q4MCBmjVrlho2bFilY+rSpUuVtg8AAAAAAAAAAFBVCO5CxJ133qn169crLy9PNpst2MM5rW+//Vb33XefunfvrmXLlqlevXou7zdt2lTnnnuuRo8erb/+9a/68ccfdeONN+rDDz90K+tJQkKC6tev79eYEhMTFR8f71cdAAAAAAAAAACAUEFwFyJmzJihwsJCSZLVatWPP/6o6dOny+FwBHlk7pKTk3XvvffKbDbrxRdfLDeI69Spk6ZPn67x48dr7969mjFjhmbNmnXaPm6++WbdddddgRw2aqG8vDxdffXVmjZtWo1dItVms+nWW2/VqFGjNGrUqGAPBwAAAAAAAAAQRAR3ISIxMdHldZs2bbR48WJt2rQpSCPy7p///KcKCwt13nnnqUGDBqctP3jwYHXo0EG7d+/WF198obvvvlstW7ashpGiNsvKytIDDzygvXv3BnsoFVZYWKhp06Zp7dq1lQrtfvnlF40ZM6ZSY5k3b56GDBlSqTYAAAAAAAAAAJVDcBfCoqOjgz0EN3l5efrhhx8kSUVFRT7X69+/v3bv3i273a4ffvhBN910U1UNEbWUw+HQ8ePHlZaWplWrVunjjz9WWlpasIflt8zMTKWnp2v16tX66KOPtGfPnmAPSZLUvXv3YA8BAAAAAAAAAOo8gjv45cCBA7JYLJKkn3/+WTt27FDnzp1PW69FixbO43379lXZ+FD7LFq0SJMnT5bdbg/JpWN98euvv2rs2LFyOByy2+1V1k90dLTCw8P9rteoUSMlJSVVwYgAAAAAAAAAAP4guINf8vPzncdFRUX65z//qVdfffW09crOHiwJ/gBfDBkyRIsWLXK+zs3N1fvvv+9yLtR1797dZbwFBQX66quvNH/+/ID28/jjj7NPHgAAAAAAAADUYAR38EurVq0UGRmpgoICSVJ6erpP9Y4fP+48btasWZWMDbVTfHy84uPjXc6deeaZWrFihXJzc4M0Kv9ER0erU6dOLud69Oih7777TsnJyUEaFQAAAAAAAAAg1BiDPQDULAkJCXr++efVs2dPde7cWXfffbdP9bZu3eo8PuOMM6pqeKgjzGazEhISgj2MSmvYsGGwhwAAAAAAAAAACCHMuIPfLr74Yl188cU+l8/NzdXq1aslSfXr19eAAQP86m/NmjVaunSpNm7cqEOHDqmgoECJiYnq3bu3rrvuOp177rl+tReqrFarDAZDsIdR7axWq0/nTlV2vzur1aqioqKAjqs6lN3vzmazVfgaSr5elWkDAACgrqro51EAAAAgUPhMWqquXndZBHeocp9++qny8vIkSaNGjVJYWJhP9Ww2m6ZMmaKPP/5YkhQVFaUGDRrIbrfrwIEDOnDggD7//HNdd911euKJJ2QymarsGqrD77//HuwhhIzt27eftkzZvRL37NmjyMjIqhxSlSi71GdKSoo2b95coXb27NlT6TYAAABQypfPowAAAEBV4jNp3UVwhyqVk5Oj//znP5KkpKQkjR8/3ue6jz/+uL744gvdeeedGjlypNq1a+d8b926dZo2bZr++OMPffjhh8rPz9fzzz8f8PEDAAAAAAAAAABUF4I7VKnZs2crIyNDYWFheuGFFxQfH+9TvS+//FLp6el6++23ddZZZ7m936dPH7333nu69tprlZycrM8//1znn3++rrrqqgBfAQAAAAAAAAAAQPUwBnsAqL2+/fZbvfPOOzKbzXruuef82ovuzz//1GOPPeYxtCsRExOjJ554wvl6zpw5stlslRgxAAAAAAAAAABA8DDjDlVi165devDBBxUeHq7Zs2dr6NChPte97bbbdOTIEY0ePfq0Zc8991x17txZO3bs0MGDB7V69WpdeOGFlRl60HTp0sXn/f9qE6vV6rZec9euXWU2l//jKTw83Hncrl079ejRo0rGV5ViYmKcxy1btqzwNRQUFLi1cfjwYX355Zdat26d9u3bpxMnTigqKkrNmzfXkCFDdNVVV6levXqVvwgAAIAarqKfRwEAAIBAqcxn0ry8PF133XWaMmWKX5NnQonNZtPtt9+ukSNH6oorrtDvv/8e7CEFFf8SQcAdPHhQ48aNk81m06uvvqr+/fv7Vf+WW27xq/ygQYO0Y8cOSdIvv/xSY4M7s9lcJ4M7T3z5WhgMBr/KhyKjsXTSs8lkqvA1lPwCL2njgw8+0FNPPaXCwkKXcidOnFBaWprWrVunN954QzNmzNDgwYMrfgEAAAC1VE39fAkAAIDaw5fPpFlZWXrwwQe1d+/eGvsZtrCwUNOnT9e6des0evTogDxAd+LECX3xxRdavXq1duzYoePHj0uSEhIS1KVLF5133nm6+uqrXSZWhBKCOwTUoUOHNGbMGOXm5uqtt96qlllQXbt2dR7X9SQeeOutt/T000+rb9++GjVqlHr27KnGjRvLYrHo999/1xtvvKEffvhBR44c0cSJE/XCCy/osssuC/awAQAAaqy8vDxdffXVmjZtmvr27Rvs4VSIzWbTrbfeqlGjRmnUqFHBHg4AAAC8cDgcOn78uNLS0rRq1Sp9/PHHSktLC/aw/JaZman09HStXr1aH330kfbs2ROQdq1Wq1599VW99tpr6tq1qy655BKNHTtWsbGxOnr0qNauXauPP/5Yq1at0ksvvaRHH31UV155ZUD6DiSCOwTMgQMHdOuttyo3N1dvv/22OnfuXC39tmjRwnlckpwDddFPP/2kZcuWadq0afrLX/7i8l50dLT69++vfv366ZlnntFbb70lq9Wqhx9+WF27dlWrVq2CNGoAAICaKysrSw888ID27t0b7KFUWGFhoaZNm6a1a9cGLLSr6U84AwAAhJpFixZp8uTJstvtcjgcwR5Ohfz6668aO3asHA6H7HZ7wNvPz8/X+PHjtWbNGs2ePVvDhg1zK3PhhRfqb3/7myZOnKhff/1VDzzwgPbv36+JEycGfDyVQXCHgEhJSdGYMWNUVFSkd955R+3bt6+2vsv+Yy8vL6/a+gVCzeeff66JEye6hXZlGQwGPfjgg1q7dq22b9+u/Px8TZ8+Xa+99lo1jhQAAKBm4gnn8tWWJ5wBAABCzZAhQ7Ro0SLn69zcXL3//vsu50Jd9+7dXcZbUFCgr776SvPnzw9I+0899ZTWrFmjzp07ewztStSrV0/z5s3TsGHDlJ6erpdeekmtW7fWiBEjAjKOQCC4Q6Wlpqbq1ltvldVq1cKFC9W2bdtq7b9sOh8dHV2tfQOhoGS/vw4dOujvf//7acubzWaNHz9ed999tyTpf//7n/bu3as2bdpU5TABAABqLJ5wPr3a9IQzAABAqImPj1d8fLzLuTPPPFMrVqxQbm5ukEbln+joaHXq1MnlXI8ePfTdd98pOTm5Um2np6fr008/lSRFRESctnxsbKzuuusuPfbYY5KkGTNmaPDgwYqNja3UOALFGOwBoGZLT0/X2LFjZbFYAhLavfLKKxowYICuvvpqZWRk+FSn7Cy7U394AXXBueeeq/Xr1+udd97xefPWwYMHO4Nuh8OhpUuXVuUQAQAAarSSJ5yXLFmizz//XO+//75GjhwZ7GH5peQJ58WLF+vzzz/XRx99pNtvvz1g7fv7hHPjxo0lSS+99JI+//zzgI0DAACgrjCbzUpISAj2MCqtYcOGlW5j69atstlskqSdO3fq8OHDp60zbNgw573UEydOaMWKFZUeR6AQ3KHCMjMzdfvttys3N1cLFizwabZOenq67r//fo/vrV+/XrNnz9bRo0e1fft2ffLJJz6NIz093XncoUMHn+oAtU1sbKzq16/vc/nw8HCdc845ztebN2+uimEBAADUCvHx8erUqZPzv169eumpp56qUXu0lTzhXPJfjx499OCDDwZkm4OKPuFcYsaMGcrJyan0OAAAAFA3lV0VIz8/Xx9++OFp68TExLhkGtu3b6+KoVUIwR0qxGKxaMKECTp48KBef/11nwOzDRs2aOfOnR7f27hxo8vrwsJCn9osO422R48ePtUBIJebNLt27QriSAAAAGoennAuVduecAYAAEDN0rNnT5eH6po1a+ZTvbi4OOdxUVFRwMdVUQR3qJCpU6dq06ZN+te//qVu3br5XO+rr75Sq1atPL5XdpnLsLAwXXXVVT61+dNPP0kqnkE0aNAgn8cC1HUlyxNJxTNoAQAAgIqobU84AwAAoGZJTEzUe++9pzvuuEOPPvqorrzySp/qlV31oWnTplU1PL8R3NVSBw8e1Lhx49SrVy+NGDHCGW4FwnvvvadPP/1UU6dO1YABA3yut3nzZq1YscJrcDdgwAAZjcXfkldccYVPS2+mpaVp7dq1koqf2KwNT7wC1aVkjzup+AYLAAAAUBG17QlnAAAA1DxnnHGGHnjgAY0ZM8a5skN58vPztW/fPufrc889tyqH5xeCuxCWlZXlPD5x4oRfdR966CF9//33ysvL086dOzVhwgSlpaVVekw7d+7UM888o1GjRunaa6/1qY7D4dD333+vO++8UzabzWtw16JFC11//fWSXAOF8sydO1dWq1VxcXGaNGmSbxcBQJKcyxlJvv+dAwAAAE5V255wBgAAQO23cuVKWSwWSVK3bt3Uq1evII+o1OljRwRFenq6du/e7Xz97bffqnv37j7X37p1q8vr/Px8bdmypdL/GHr22WdVWFioNWvW6LLLLvOpzvHjx12CR2/BnSQ9/PDDSktL0+LFizVy5Ej17NnTa9kFCxbos88+U3h4uGbNmqWkpCSfrwOoLfLy8vTss89q7dq16tmzp5588kmFh4f7XLdE2aedAQAAAH+VPOHsq1B+whkAAAC1W2ZmpubOnStJioyM1LRp04I8IlcEdyEiNzdXNptNmZmZ2rFjh1588UUVFhY633/llVdUWFioK664Qk2aNJHZbFZkZKTXG/Tdu3fXr7/+6nwdFhamzp07V3qcR44ckVS8FGdFlRfcRURE6N///rfmz5+vsWPHqm/fvrrooovUtWtXNWrUSFarVbt27dL777+vVatWqVWrVpo2bZr69+9f4fEANdnMmTP1wQcfSJKSk5PVt29fjRw50qe6x44dcx63bt26KoYHAAAAeBTKTzgDAACg9jp48KDuvfdepaSkKCEhQbNnz/Zr0lR1ILgLEePHj3cJ2k5ls9n0+uuv6/XXX3eeK1my0pNnn31WTzzxhNauXavGjRtr0qRJ5QZm1SUsLOy0s/5MJpPGjRuna665Rp999pmWLl2qOXPmKDMzU5GRkWrQoIG6deumZ599VsOGDfN5dhFQGy1fvtzldUpKis919+zZ4zwOtV9OAAAAqL1C/QlnAAAA1B4Wi0XHjx/X9u3btWrVKn3++eey2+264YYbNGHChJBcyY/gLkQsXLgwoO01a9ZMr776akDblKTFixcHvE1vGjRooNtvv1233357tfUJ1DRWq9Xl9dlnn+1TPYfDoS1btjhfDxgwIKDjAgAAADypCU84AwAAoHZYuXKl/vGPf7ica9CggWbOnKkLL7wwSKM6PYI7AHXW0qVL9dJLLykjI0MDBw7U1KlT1aBBg2APyy8dO3bUxo0bJUnnn3++zwHcli1blJGRIUlq0aKF+vXrV2VjBAAAQN1VE59wBgAAQO3Qr18/vf/++8rOzlZqaqo2b96sVatWady4cerevbseffRR9e7dO9jDdENwB6BGcjgcHo99tWHDBk2aNEl2u12S9NVXX+no0aNauHChDAZDwMZZnspegySNHj3aGdwNGjTI53oLFixwHv/tb3+rtmsGAABA3VFTn3AGAABA7RAbG+uyl/KNN96o/Px8LVy4UHPmzNENN9ygv/71r3rggQdkNBqDOFJXoTMSAPCRxWLR4cOHna/92detxMqVK52hXYm1a9dq7969lR2ez1JTU53HFbkGqTi4K5kt5+vYf/nlFy1btkyS1KtXL/3lL3+pUN8AAABAeUqecH7ttdc0depUXX311bLb7Ro3bpxGjx6tDRs2BHuIAAAAqGOioqI0btw4zZ49W5L0xhtv6KGHHgryqFwR3AGocRYtWuSyt9sHH3ygoqKigLR9aphXVX788UelpaU5Xy9ZskRZWVl+t2M0GvXvf/9b/fv31/vvv68PP/yw3Nl7GzZs0D333CO73a5OnTrp3//+N7PtAAAAUCVKnnC+4IILdOONN2rmzJn67rvvNGnSJP3++++64YYb9Oyzz1bbZ3AAAACgxKWXXqqrr75aUvG92f/+979BHlEplsoEENKysrJ06NAh2e12HT9+XKtXr9bbb7/tUmbLli267rrrdPPNN6tt27aKjY1VWFiY2rZt67XdoUOH6s0333S5SdCpUye1adMm4NeQl5en1NRUORwOZWVlad26dZo/f75LmQMHDmj06NEaO3asOnXqpHr16jnHdDqxsbGaP3++3nrrLc2cOVOvvPKKhgwZot69eyspKUnh4eFKS0vTihUrtGzZMtntdo0aNUoPPvig6tevH/DrBQAAALwpecK5devWuvvuu/XGG2/oyJEjmjVrVrCHBgAAgDrmb3/7mz777DNJ0osvvqgrr7xSsbGxQR4VwR2AELdy5Uo98sgjpy23fft2TZ482fm6efPm+vbbb72W7927t1544QW9+OKLSk9P1znnnKMpU6bIZDIFZNxlbdmyRWPGjDltuf3792vatGku5/744w+f+jCZTPrrX/+q6667Tp9//rn+97//aeXKlTp27JgMBoMaNGigZs2aacKECbrkkkvUsWPHCl0LAAAAEAglTzh/9tlnWrJkiXr16qUbb7wx2MMCAABAHdK+fXu1a9dOe/bs0fHjx/XFF1/o+uuvD/awCO4AhLZRo0Zp1KhRVdL2sGHDNGzYsCppu6y+ffv6HMBVVmxsrG644QbdcMMN1dIfAAAAUFGh+oQzAAAA6o4zzzxTe/bskVQ8iSQUgjv2uAMAAAAAANWu5AlnSc4nnAEAAIDq1LBhQ+fx77//HsSRlCK4AwAAAAAAQXHmmWc6j1euXBnEkQAAAKAmO3DggJYuXarDhw/7VS88PNx5nJmZGehhVQhLZQIAAAAAgKAIxSecAQAAULNs3rxZY8eOVW5urhITE7VkyRI1aNDAp7o5OTnO4/j4+Koaol+YcQcAAAAAACqlNj3hDAAAgJrl6aefVm5uriQpIyNDS5Ys8bnukSNHnMetWrUK+Ngqghl3AAAAAACgwmrbE84AAACoWU5duaEkxPPFH3/84Ty+4IILAjamymDGHQAAAAAAqLDa9oQzAABAXbJ06VJdfvnl6tOnj+655x4dO3Ys2EPyW9nl1yXpwgsv9KnegQMHtHfvXklSRESErr766kAPrUII7gAAAAAAQIXVtiecAQAAagqHw+Hx2FcbNmzQpEmTtGfPHmVnZ+urr77S3XffXaG2Kqqy1yBJl156qfO4bdu26t69u0/1PvzwQ2eft956q5o2bVqh/gON4A4AAAAAgCDhCee9kkLrCWcAAICawGKxuOwvnJKS4ncbK1eulN1udzm3du1a52e06pCamuo8rsg1SNKdd96pJk2aSPI9/Nu5c6feeOMNSVKfPn109913V6jvqkBwBwAAAABABfCEc7Ha9oQzAABATbBo0SJZrVbn6w8++EBFRUUBafvUMK+q/Pjjj0pLS3O+XrJkibKysvxuJyEhQa+//rqaNGmivXv3as6cOeVew7p16zR27FhZLBadc845+te//qWwsLAKXUNVMAd7AAAAAAAA1DSennDu16+fX22U94Rz27ZtAzLO0wnUE85Lly7VoUOHasUTzgAAAKEmKytLhw4dkt1u1/Hjx7V69Wq9/fbbLmW2bNmi6667TjfffLPatm2r2NhYhYWFlfu5cujQoXrzzTddPpN26tRJbdq0Cfg15OXlKTU1VQ6HQ1lZWVq3bp3mz5/vUubAgQO6/vrrNXToULVo0UKxsbGSpJYtW562/Y4dO+rTTz/VjBkzNG/ePC1dulSjRo1S165d1ahRI2VnZys5OVnffPONVq9erejoaI0fP14TJ04MqdBOIrgDAAAAAMBvnp5wHjlyZED+0R/MJ5z/+te/Kj4+3q92Sp5wvuOOO5xPON99990yGj0v8rNu3TrdfffdziecX3rppZC7WQIAABBKVq5cqUceeeS05bZv367Jkyc7Xzdv3lzffvut1/K9e/fWCy+8oBdffFHp6ek655xzNGXKFJlMpoCMu6wtW7ZozJgxpy2XkpKiN9980+Xcf//7X5/6aNiwoWbPnq1//OMf+vTTT/Xtt9/qzTffVE5OjqKjo1W/fn2dccYZmjJlioYNG6b69etX6FqqmsFRnWtwAJDFYtGWLVvczp955pkKDw8PwoiCy2q16sCBA4qIiJDBYJDD4VBiYmKV/HIAAAAATlVUVKTNmze7nOvRo4dLkOTtCWeLxeJSr2vXrn494bxhwwbddNNNbk84L1q0KOCfh7094Zydne1SrlWrVho7dqw6deqkevXqOcfki6NHj2rGjBlaunSpWrdufdonnMeMGROSTzgDAABUN18+k9YV3D8nuAOqHT94AAAAgNDhy02STz/91KcnnE91uiecJWnp0qVuTzi3aNHC775O55dffvHpCWdP/vjjD7/K7969W59++qnWrVunffv2uT3h3K9fv5B+whkAAKC6EdyV4v45wR1Q7fjBAwAAAIQObpIAAAAg2PhMWor75+xxByDILLYi7TuRqpTMgyq0WhRhDlfLes3UOqGFwk117xcTAAAAAAAAAKDuIrgDEBS7j+7Vsl2rtCZlg4rsVrf3w4xm9WvZW5d3HKwODdtU/wABAAAAAAAAAKhmBHcAqlV+UYEWbvpEK5NXl1uuyG7V//b9qv/t+1VD25+nW3qOVlRYZDWNEgAAAAAAAACA6kdwB6DaHMs7oenfzdWB7EN+1VuZvFq/H96txwfdowbRCVUzOAAAAAAAAAAAgswY7AEAqBvyiwoqFNqVOJB9SNO/n6v8ooIAjwwAAAAAAAAAgNBAcAegWizc9EmFQ7sSB7IO6Z1NnwZoRAAAAAAAAAAAhBaCOwBVbvfRvafd085XK5L/p91H9wakLQAAAAAAAAAAQgnBHYAqt2zXqpBuDwAAAAAAAACAUGAO9gAA1G4WW5HWpGwIaJtrUjboznNuVrgpTJI0bdUcpWalyWw0y2Q06ZxmPTSm1zVu9XIsufr3L285y5kNpuL/G026ttsVSoiq51Zn86HfdSDrkLNccV2jkmIaqWPDtm7lrXabDpQZS9k+YsKiZTTyvAQAAAAAAAAAwDOCOwBVat+JVBXZrQFts8hu1f4TB9ShYRtJUpO4RG09/Ifz/czCbI/1CqyFWn9wi8f3Rpwx1OP5H/ev06o/f3I7f16rc9Sxv3twl1WQrQeWP+WxrbnDnlTTuCS38ws2fqQf962VyVga8pkNJp3dvIdu7DHSrXx2YY5eW/+ezEazMxg0GY0yG80a1eUyxUfGudXZdnin0rIPnwwfT9YxmJQY01Bt67d0K2+123Q490iZPownx2ZWuClMRgMBJAAAAAAAABAIBoNBjRo1UkREhAwGgxwOBxMA6jCCOwBVKiXzYJW0uz+zNLhLjG7o8p7JaPJYx2a3eW3P3zpmo+cfn9ZyQkpvfeRa8jyGjW0btPJYPt9a6HUW47COgxUv9+Du+z/X6Lu9P7udv6B1X03sN9bt/In8TN279AmPfbx4xTQ1iU10O//2xo+1JnWjS/hoMpp0drMzdW334W7lswtz9NbGj0uDxJN1zCazrjzjYsVGxLjV2ZGxW4dzjzqDSpOhuK+G0fXVsl4zt/I2u03H8zNd+zgZRvLhBwAAAAAAAKHAbDardevWwR4GQgTBHYAqVWi1VE27ttJ2w0yuP8q8h2r+B3dWh+c6/pYvHpeXOl7CPrMhcAGkt3H5O6byxpVZmK0jecfczrdKaO6xfF5Rvn7Y94vH9y5uf77H4G5l8mqPdS5s00//6Hur2/mjecc18cvHPfbxr+EzlBTT0O38wt8+0boDm50BZEmg2LvZmbq662Vu5bMKc/TfzYtcwsqSpVKv6DREMeHRbnV2HtmjI3nH3WZANohOULO4xm7lbXabsi25Ln2YjCZmPgIAEAA83QwAAAAglBDcAahSEebwqmnXVNpukc01ZKpI4OXvDDqTl5s55fbhdVz2gIypeFz+XXtFAkivdbzNTgzkn0cgg1Qv4zqen6m0nMNu55vXa+qxfK4lT9/u+dHje0PaDfAY3H21+3ut3ver2/nBbQfo7+fe4nY+I++Y7v5yitt5o8Gofw2frkbRDdzee3fTZ9qYts05O9F8Mhzs3ay7hntYGjarIFsfb1vqPjvRaNIlHS5QdFiUW53kY/t0PP9EaVh5cgZkQlQ9j6Go3W5XgbXQ2YfRYJTBYHArBwBAdeLpZgAAAASbxVakfSdSlZJ5UIVWiyLM4WpZr5laJ7RQuCks2MNDNSO4A1ClPC1fGAit6pXO4srIO+rynr/BkuR/uBTMWX3lB17+zaALZB9+h4MBXbrUSx+28kJOz+Gr19mJ1RII+9eH3WH3Oq6M3KPan3nA7bynZU4lKduSq692f+fxvQva9PUY3H3+x0r9tH+d2/mL2p2nO8+5ye38odwMtyVYS2YnvjjsSdWPqudW573Ni7U5/XfnMqqmkzMOezXtpss6DnIrn1WQrSV/rHCWc85qNJh0UbuBigyLdKuz93iKMguzTwaPZmewWC8iTg2iE9zK2x122e12mYwmgkcAAAAAAFBhu4/u1bJdq7QmZYOKPNwvCjOa1a9lb13ecbBz2yDUfgR3AKpU64QWCjOaPf7iqagwo9ll+cW+LXqrS6OOsjlsstptauUlLIyPiNWwjoNlddhks9tls9tktVtlddhkNnn+cdgouoFaxjeV1W47Wa/4v2gPN/+liu6j51+IE9AAslqW4/Q/5AzYdTg8z2asyLiqJxD2f+nSagmE/bwOf2akWu1WWe1Wmbws+5mWfVjJx/a5nW8UXd9j+azCHC3ZscLjewNbn+MxuPvs9+X6OWW92/mL25+vv/W50e38wex03bdsmqTiWY9l93V84fIpSoiMd6vz/pYl+j1jl3NWYsmsxl5Nuumi9ue5X0dBtpbt+q50ydYy9S5s08/jbOaUzIPKLsx1XYLVaFJceIzqeRiTw+GQJMJHAHUeTzcDAACguuUXFWjhpk+0Mnl1ueWK7Fb9b9+v+t++XzW0/Xm6pedoRXm5L4nag+AOQJUKN4WpX8ve+p+HZQErql/L3i43UXo26eJTvUYxDTS293V+9XX72df7Vb5t/ZZ6feQsZ8BXEgza7DavN35GdrlUF7TpK6vN5gwfbXab2tRv4bF8fESsLm5/fnH7Zcrb7DavYVRCVD01iU10li0ZU4Q5wmP5QIZRXoOiAO4HWJEwKmCz+gK4dGkgg9RAzoD09n0VmoGw//sz+v29W6a83WGX3WZXka2ouI6XADI1M02/Z+x2O18/0n2WoSSdKMjSJ9uXenyvX8veHoO7D7d+oV9SN7qdv6T9Bbqjzw1u51MyD+qB5U+VLo1qMDpnQM669FHFRcS61fl425fakZHsuqSqwaSeTbrqwrb93MpnFWRr5Z7VzvCx7BKsA1r18fhz8WDWIeUVFbj1ER0epdhw970vAaCieLoZAAAAwXAs74SmfzdXB7IP+VVvZfJq/X54tx4fdI/HFYJQexDcAahyl3ccHNDg7vKOgwPWVqCZjCbFe7jZXZ4uiR39Kp8U28jjLKDyjD/nZr/Kt6vfSq+MeMYZ8Fnt1pP/9z478crOF2tgqz6lQeLJULFDA897xsSFx2hQm/5ufdgcNq+BSVxErBpG1XcJRK12m8K8jKlaQpwK7AforU4gQzWvew4G8Dq8fX29fY8EcnnUin2t/LyOaggggzmT0+awyyGHc9ZjYZn3vM3C+/N4ijan/+52Pi4i1mNwdyw/U+9vWeKxrT7NengM7t7dvEhrD2xyO39Zh0H669l/cTu//8QBTV75rDPgKwkfTUaTZl78sMd9Jj/dvky7jv7prFMSKPZo0lkDW53jVj6rIFvf7/3l5J6RpXs6mowm9W1xlsI8XMehnAwVFBXKbCrtw2Q0KcocydORQJDxdDMAAACCJb+ooEKhXYkD2Yc0/fu5enroQ3w2rcUI7gBUuQ4N22ho+/NOe3PEFxe3P58nnquB2WT2+8mdMxt39qt8k7gkTeg7xq86d/W7za/y7Rq01otXTHOdAXmacPCKM4aob4texUHiyfDRarepc6N2HsvHhsdoQKs+Ln0U1/O+/1ykOVJxEbGlYaXdJpvDXrHZiUFcjtNrAOllTBULIL2EaqEapAZov8zquI6K7c9YDcF2Bb53LbYi6eSsx7K8BZC7jv6p9Qe3uJ2PCov0GNwdyTuuhZs+8djWgqv/6TG4e3vjx1p3cLPb+WEdB3uc/b3/xAFN/faF0lmGRrMz8Jsx9AGP+0wu+n259hzb7zY78cwmndW3RS+38lkF2fopZX2Z5VfNzuVYezc70+PX+EjuMVlsFpdA1Gw0KdwUzhKCqJF4uhkAAADBtHDTJxUO7UocyDqkdzZ96veD/ag5CO4AVItbeo7W74d3V+oXU/P4Jrq556gAjgq1XbgpTE1iE/2q06tpd7/KN49vonv73+5XnUkDx7mdczgczj3HTtWufmu9cNnjzhmGJeGjzW6T0ct+cpd1HKQ+zXuUhpUn63VN7OSxfExYtM5p3tNltmRJPW/LP4YZwxRhjnCGjw4Vj79CIY6XPrzOuKtAOOhvEFeR/Rn9D6P8u+7iOoFZSjZU92esLTNS/b0Oi61IuUX5Ht8zynMA+XvGbm1M2+p2Ptwc7jG4y8g7pjc2fOCxrbdGzfZ4/a9veF8bPIScV3S6SLf2usbt/N7jqXr6h5c8zIA06skhkxTpYYnmJTtWaN+J1NIg8eSejt0an6Gzm53pVj6rIFvrDm4us/xq6b6OPRp38fg1Pp6fKavd6taH2Wj2+nMUtQ9PNwMAACCYdh/dG5CJDZK0Ivl/Gtx2ABMcaimCOwDVIiosUo8PukfTv5+rA1n+3yxpHt9Ej194DzdJUGsZDAavs4MizOFqWa+ZX+2d2+Isv8q3SmiuB84b71edhy/4h8tru90uq93q9Tra1W+lmRc/7AweS5dVtXutc3GH83VW026uS7DarDqjUXuP5WPConRWk67OWY8lsxrtDruMXsJBo8Ego8Eou8Puct7fQMYgg9c+vIZqFQggvfdh93i+IvsB+nvtXgOvCoSDgZzV5/eSuIFcHjWogXBFZll6q+NfIGyxWXSiIMvje94CyK3pO/Tboe3u5Y0mj8Fdeu4RvbL2HY9tvT16jsexvbJ2oTambXM7P+KMobrlrNFu5/ceT9GsH/9TZinV0hmNjw+6R+Ee9pn84o9vlJqVVhwIllmCtWtSR/Vs0tWtfFZhjjalbXcLH00Gk7omdvQYKGYX5sh+coZ22SVYvf1cgCuebgYAAEAwLdu1KuDt3dXQv9WpUDMQ3AGoNg2iE/T00Id82lOkrIvbn6+be44itANCnNFoVLjR/WZ2iaiwSLXzsuehN56WLSxPm/otNfnCu/yq8/igeyVJdoe9OHx0FC95Gmb0vAxgu/qtNG3I/SfDwdL9H+3lBJBD2g1U98adT5nRaPX6ZFx0WKS6JXUqDSzttuJ98hwOr33YAzSLzGQweu3DagtMAGkwGLzOcvJ7Npy3PuS9D38DyHJDTn9ni1bDPpPVMyM1cH14//OowIxUr9fuXwBZYLUoI/eox/e8hWS/pW3zuAekQw6Pwd2h7MN66Zc3Pbb1zjUvKlzu/by45g1tOuTex8gul+rGHiPdzu89nqK5P7/hnPVoNpqdS6VOvmCixz1Jl+1cpbScwy7BoNloVudG7dW98Rlu5bMLc7Tt8M7ScPPkHpBmo0kdGrbx+PXKOzm7tKQPYzk/dwKFp5sBoFTZlT48/fy1O+yyOxySw+FcVaOkhrelsgutFtlP7qFctkKYyexxWXGrzao8a4FbHwZJ9SLjPfaRWZDl/KzhkMPZR3R4lMdlxQushcUPFDlcr8Gg4q0bPEnPyShehl2uX6eEyHjFR8a5lc+z5Cs998jJsmWvw6B2DVp57GPfiVQVWi2l132ym6SYhh6XY84uzNH+zINufRgNRnVL8ryiys4je5y/bx1yOPtoHt9YjT2sSnMiP1O7ju11WwXGaDCoT/OeHvvYfOh35Vhy3fpoU7+FWsQ3dSt/NO+4th3eWbzajEr7MRqMuqBNX499/Jr6m7IKc0qv+2S1jg3bqk39Fm7lD+ce1YaDW9z6MBlMurTjhR77+GHvL2UePCu9jm5JnTz+rk/LPqyfU9Y7v1YlvZiNJo3scqnHPr7e/YOO5Z9w6+Ospl3VJbGjW/nUrDR99+eak2VL+zEbTR4/80nFq1gczTvu9nfwnBY9PW5tsv/EAX21+/uTfwedI1OY0azbz77eYx8fbf1Ch09+Ri77d3BAqz7q3cx99aI9x/ZryR8r3P4OhhnNmthvrMc+Fv72iQ7lZJSWP1l3UNv+Hh9Q3n10rz7a9qVO/VqFmcL0oJeHk19b91+lZR92+R6Riu8/DmjVx638joxkvbv5M7evVbgpTFMH/5/HPv61ZoFSs9LUPL6Jc9sXi61Ia1I2eCxfUWtSNujOc25mG4NaiOAOQLWKCovUuD43aUjbgVq2a5XWpGxQkYebaWFGs/q17K3LOw7mpgiAamE0GGU0GWWWWZL7cn4lYsKj1TnR84w/bwa17e9X+XYNWnv9B4A304c+4Awey+65GOFhaUJJal+/taYMuqd0ZuLJenYvS7ZK0oVt+6lLUkfXQNFuVdv6LT2WjwqLVKeG7Ur3mDzZh8HLzCvJ//0A/Z2hV5E63mYzmowm7yFngAJIo8HoNSgK1NKlBoP32aJ+z+orJ4D0Plu0OpbE9TYjteqXR61IIOzvjFRvX9t8a4HXGWbe6qw9sElbD//hdv7qLpd5DO4OZB3SP396zWNb/732XzJ6+Cvywo+vakv6DpdzZqNZI7tcquu6D3crv/d4il7+9e3SZU5NZudSqQ+cN97j13jF7v9pcNv+znCyKp9uttlt2nBwq/PmT8t6zdTUww3hY/kntCMjWaU3XU8uMW0wqV/L3h772XBwq3IsuWVuRBX/v139VmqV0Nyt/JHcY9p0aLvLbXaHQzIZjRrSbqDHPn5OWa/MguyTZUtvdHZu1MHjTef0nAz9mrpJZW9dlVzHFWdc5LGPVXt+0vGCzDJ9FOvRuLM6edhH+GDWIa3ev1YOh1z6MRvNuqbbFR77WLZzlY7mnyhz3cX/P7vZmerq4cZ2SuZBfZO8WsW3wUtvcpqNJo3xsBSwVLy3aMkNy7I37/q17OUxoN97PEVLd64qE0oU/z/MGKY7z7nJYx/vb1msQzlH3Po4v/W56tO8h1v55GP79NnvX0llvlYOSeFGs+4dcIfHPhZs+FBpORk69Ws1pN1Aj9+LO4/s0Qdbl5zy51H8bzZvD0y9svad0pVWylzHZR0v1Hmtz3Ur/3vGLr298RO3r1W4KVzTL7rfYx9zfp6vlMyDbn2MOGOoBrcb4FZ+a/ofem39f92+VhGmcD1/2WMe+5j5v5e1/8QBtxvho7peros7nO9WfvOh3/XSLwvcwqhIU7j+PeIpj308uWq2/jyeUnrdJ/v4y5kjNKzTELfyGw5u1Qs/vep2IzzCHK43r37BYx+PfD1Tycf3uZ2/uecoXdn5YrfzG9O26dn/vex2PsIcoYWj53jsY+q3L2jP8f0+97Ep/Xe/+3jmh3/71ce2wzv97mP2T6/71cfvR3b73ce8Xxf61cfOo3/63ccbGz7wq4/k4/s1a/UrfvXx382LvPbhKbjbeyJV//plgcc+vAV3n25f5rUPT8FdSuZBj0vDR5gjvAZ3S3d+67UPT/ejDman6/0tSzz24S24+3bPjx77iAmP9hjcpecc0ZIdX3vsw1tw99P+dR77aBRT32Nwl5F3TCuT/+fehynca3C3/uAWj320SmjmMbg7XpCpn/av89jHRI312Me2wzs99uHt3+CZhdketw+IMHl/qDj52D6PffRq2s1j+dyiPP1xJNmvPlKz0rTn+H61L/Pw8r4TqR7vgVZGkd2q/ScOcO+0FiK4AxAUHRq20V0Nb9Od59ys/ScOaH/mARXaLIowhatVveZqldCcp0UAwE9Go7F4lo4PPz9jI2LU3cM/4MoztL37DarydGzYVjOGPuBXnWkX3e+cyejc19FhU7SXWdft6rfSw+f/w20GZHkGtuqjjg3buvXRqp77TXBJijSHq21CS+dszOJ69nL3RgtUqFZuAOnnPnpegyUvIVHxuAKzrKjZaPY75PR7/8ByZm35GwiXF6T6fR3MSPVpXOW1k1uUr70nUj2+Z/Ty5/HniRRdbCr+mVXVTzebjCZ9sn2p8waQt5uifx5P0ZyfX3c7H2GO8Brcfbj1c683Ez0Fd/syD+g/69712Ie34G7x71977cNTcJeadUgLN33isQ9vwd3y3d977CPcFOYxuEvLydDH25Z67MNbcPf93jUe+6gXGe8xuDuce1RLPQS6EaZwr8HdmpQNHvtoGpfoMbg7mn9C3+392WMf3oK739K2e+yjfYNWktyDuxMFWfo19TePfXiz40iyxz48hfOSlG3J1ZZ090C/vD72Hk/x2Me5LTzP3MkrKvAYLJXXx6Hsw6XBnct4czyWL7RZlJZ92K8+TuRn6kjeMbfz+VbP+9IW2a3K9LBktKWcPvKLCpwzo8ry9nPRIYeKTs4IK8tk8/655NRZJWXf8Us5D3iVU4k+6IM+qqGP8h6O9Fzef/Thfx+JMQ2d5zz9zgqE/ZkEd7URwR2AoAo3halDwzb8ggEASJJzry9fxUfGeXy6szyenl4vT+fEDnr20sl+1Zk6+F4VlQSJZfZ0jIuI9Vi+Xf1WmjRwXGmQeLJ8efq16K129Vu59dE8vonH8uGmcDWPb+Lso6RemJfwSvJ/yc+KzICsjlmW/u5r6G9AVlzHv/C1IkFqjZqRWqEgNXAzUpvENHIeV8fTze0atCoTUtSsG3304bvadjORPuijrvbhPcj03oe3Hz/0QR+h0oc3/v7qpI/A9lH2822h1eLvkHxSaKuadhFcBHcAAABAgEWGRcqfnVkTouqpb4tefvVxVZdL/CrfLamTZl8+1a86jw+6RxZbkXOZ05IZhwlR9TyWb1u/pe7ud5tL+FjespOS1Kd5T7Wq19ytjyYe9l+RipdmS4ppKNvJZV5L6pU3Uz9QoVptCSArdh3+LhHq/Z+agZqdWN51lN2HqDqebk6MLn2auqbd6KMP3/vwpqbeTKQP+qj9fVQgHvS7Cn3QB31URx/efzZ4+f0fIn2U/RwbYfY++7oyyps5jpqL4A5AUFmtVh04cEDh4eEyGo2y2+1KSkqSyeT7bAsAAFA1YiNi/CrfMLq+x72LynNNt2F+le/RpIv+NXyGX3UmX3iXCm0Wl70ZrXabGsU08Fi+TUILjT/nltIg8eSMRm+zuyTprKbd1OzkjMay9RK99GEymFQ/sp5L+Giz2yq4PGpglr2UArc8akWuw9/lOMubnVj2z6o6nm4OM/nyT+uadYOMPmp2H6Fyw5I+6CO4fXgr7z/6oA/6CG4f3nhZ4KH8Ov7O3q1EHxkle+OqeB/kquBtywfUbAR3AILK4XDoyJEjLucaNWpEcAcAAAKmvpcZgt4kxjTUkHYD/KpzY4+RfpXv3ay7/nPVTLfzjnKmJjx8/gQVWi3FsxnL7LnY2MvsxDYJLXTH2de7zYD0FsJJUo/GndUkNtFtBmTD6PoeyxsMBsWGx5TuMemwyeFwVGzmoN+z+rz3UWQrDfuq4+nmsv3Vlhtk9FGz+yhPdd6wpA/6oI/A91FS31hOO2ajuXiP4TKNGOT9QRyz0aSok3tKl7RvkGQuZ0WD2PAYxUfEll7PyT4izREey4ebwtQwqn7JRTjrlffwS6PoBsq15LmMSwYpNjzaY/mosAi1jG9aZjwn+yhnJYDm8U1kd9jLXLdBMkgJkfEey8eGR+uMhu2cfZwcUrmrDbSv31qR5ojSPgzFtbw94FUvMk5nndw7tXjp8eJ65X326ZbUSQ2iEkqv4eTAmsU19li+QVQ9DWh5tvM6Sr5XyruO3k27q3l8E7evlbfgqFF0fQ1td56zj5NDKvdz4oCWxfuRl/0+lMGg9g1aeyyfFNNII84YerKLsl8r7w/cDW47QD2adCm9hpPDO8PDvruS1DQ2SX/pPqJMHzrZh/fruKzjIJ0oyFS9yNJ/h7ROaKEwozmgS7iHGc0e9z1GzWdwlPcvQwABZ7FYtGXLFrfzZ555psLD697U5qKiIm3evNnlXI8ePRQW5v3DIQAAAEKX3W6XzWFTmJebfQez01VQVOgSPlrtdjWPb6zEmIYey284uNVZtmQGZJjRrGu7D/fYx+p9a3Ve63MkSbuO/qlHVz4XuAs86emhDzmXynxz44f6/s81Mki6ptsVuuKMi9zKb0nfobk/z5dU9oaaQWFGs14e8ZTHPmb+72XtO556sqycda/qfIku7XihW/nth3dq3tp3nMVLb4qG6fnLHvPYx5yfXtf+zIOn3Nw1aFinwRrSbqBb+R0ZyXpz4wcu12GQQWajSdOHPuCxj1d+XajUrENuN5CHtj9fF7Tp61Z+19E/9d/Ni5yvy97cfeSCiR77WLDhQx3MTj/ZvMFZc1DbfupfcmOyjD3H9uvj7UtPlirtw2w06d4Bd3js473Ni3UoJ8PtOga26qM+zXu6ld93IlWf/7HS5RoMMshkNOnOc27y2Men25cpI/eYWx/nND9LZzXt6lY+NTNNX+/+oeRynf2YjCaNOWu0xz6W7vxWR/OOn2y+9GvVq2k3dUvq5Fb+YHa6fti7xlmubB/eZk1/u+dHHcvPdF5HST/dk85QJw83RtNzMvRL6kZnHyU9GQ0Gj3+fJOmn/et0oiCrzE3X4v93athO7Rq0cit/JPeYNqZtO1m2tB+TwajBXh7W2HBwi7IKc5zjKemnTUILjzdKj+Wf0O8Zu8qUPxmwGAzq17K3xz62Hd7pDCZK2jdIah7fVE3jktzKZxVkK/n4Ppcx6eTXquRG9Kl2H92rAmuBczwlfSTFNPI4+zzHkqvUzEMny7pee8eGbT32kZqVJotzhnNp+fpR9TwGIPlFBc6ZKIYyAYvBYPC6X++R3GMqslvd/n7EhscoxkOQY7FalGU55c/v5P8bRCd47COnMFc2h80tjIowhSvcw4MgVrut9LrLfq1UvHS6J1ab1RnGl+3HKIOMHsIGh8Phdd9YADXLS2ve1P/2/Rqw9s5vfa7u6ndbwNoLFdw/J7gDqh0/eFwR3AEAAKAqWWxFuu3T+wL+dPObo/5Z7t6KAAAAQFm7j+7V5JXPBqy9sg+S1SbcP5e8zxkFAAAAAKCGCzeFeZ3pUlH9WvYmtAMAAIBfOjRso6HtzwtIWxe3P79WhnYoRnAHAAAAAKjVLu84OKTbAwAAQN1wS8/Rah7neUlgXzWPb6Kbe44K0IgQigjuAAAAAAC1Gk83AwAAIBREhUXq8UH3eN3P83SaxzfR4xfeoygv+2iidiC4AwAAAADUejzdDAAAgFDQIDpBTw99yO8Hyy5uf76eHvqQGkQnVM3AEDLMwR4AAAAAAABVreTp5unfz9WBrEN+1+fpZgAAAARKVFikxvW5SUPaDtSyXau0JmWDiuxWt3JhRrP6teytyzsOZtWHOoTgDgAAAABQJ5Q83bxw0ydambza53oXtz9fN/ccRWgHAACAgOrQsI3uanib7jznZu0/cUD7Mw+o0GZRhClcreo1V6uE5go3hQV7mKhmBHcAAAAAgDqDp5sBAAAQasJNYerQsA2fOyGJ4A4AAAAAUAfxdDMAAACAUERwBwAAAACos3i6GQAAAMFmtVp14MABhYeHy2g0ym63KykpSSaTKdhDQxAQ3AEAAAAAAAAAAASJw+HQkSNHXM41atSI4K6OIrgDAAAAANRZPN0MAAAAIJQQ3AEAAAAA6iyebgYAAAAQSozBHgAAAAAAAAAAAAAAgjsAAAAAAAAAAAAgJBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAII7AAAAAAAAAAAAIAQQ3AEAAAAAAAAAAAAhgOAOAAAAAAAAAAAACAEEdwAAAAAAAAAAAEAIILgDAAAAAAAAAAAAQgDBHQAAAAAAAAAAABACCO4AAAAAAAAAAACAEEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgLsTl5uZqyJAhSk1NDfZQAAAAAAAAAAAAUIXMwR4AvCssLNQjjzyiAwcOBHso5SosLNTHH3+sZcuW6Y8//lBhYaGaNWums846SzfeeKN69OgRkm0DAAAAAAAAAACEEmbchRibzab09HR99NFHuuaaa7R8+fJgD6lc27dv14gRIzRt2jTFxsbqlVde0ddff61HHnlEf/75p6699lpNnz5dRUVFIdU2AAAAAAAAAABAqGHGXYi48847tX79euXl5clmswV7OD7ZsmWLbr31VuXm5ur666/Xk08+6XyvSZMmOv/88zV+/Hi98847Sk1N1bx582Q0+pYVV2XbAAAAAAAAAAAAoYikI0TMmDFDixYt0tdff63ly5drypQpMhgMwR6WVydOnNCECROUm5urTp066fHHH3crYzQa9fzzzys+Pl7fffed5syZE/S2AQAAAAAAAAAAQhXBXYhITExUixYt1KJFC7Vp00Y33XRTSO/f9s9//lOHDx+WJD3wwAMymz1P3oyPj9eYMWMkSa+++qp27NgR1LYBAAAAAAAAAABCFcFdCIuOjg72EDxKSUnRp59+Kklq06aNLrjggnLLX3311ZIkh8Oh2bNnB61tAAAAAAAAAACAUEZwB7+9+eabKioqkiSNHDnytOVbtGihM844Q5L03Xffac+ePUFpGwAAAAAAAAAAIJQR3MEvdrtdX3/9tfP1+eef71O9Pn36OI9XrFhR7W0DAAAAAAAAAACEOoI7+GXjxo3KyMiQVLyUZ+fOnX2q17VrV+fxypUrq71tAAAAAAAAAACAUEdwB79s3LjReXzGGWfIbDb7VK9jx47O4x07dshms1Vr2wAAAAAAAAAAAKHOt2QEOGnXrl3O4+bNm/tcLykpyXlssVi0f/9+tW3bttrargmsVqsMBkOwh1HtrFarT+cAAACAqsDnUQAAAAQbn0lL1dXrLovgDn7ZvXu387hZs2Y+10tMTJTBYJDD4ZAkJScnu4VrVdl2TfD7778HewghY/v27cEeAgAAAOowPo8CAAAg2PhMWnexVCb8cuzYMedxvXr1fK5nNpsVFRXlfJ2ZmVmtbQMAAAAAAAAAAIQ6gjv4JTc313kcGRnpV93w8HDncV5eXrW2DQAAAAAAAAAAEOoI7uCXsqFYRESEX3XLhnFlQ7rqaBsAAAAAAAAAACDUsccdqo3dbnceG42BzYyrsu3q0qVLF4WFhQV7GNXOarW6rdfctWtXmc38eAIAAEDV4/MoAAAAgo3PpKWKior0+++/B3sYQVX3/tRRKTExMTpx4oQkqaCgwK+6FovFpZ3qbLsmMJvNdTK484SvBQAAAIKJz6MAAAAItrr6mdThcAR7CEFXM6cmIWjKhmKFhYV+1S1bPjo6ulrbBgAAAAAAAAAACHUEd/BL/fr1nceZmZk+17NYLC6z6Bo0aFCtbQMAAAAAAAAAAIQ6gjv4pX379s7jgwcP+lwvIyPDZYpr2Xaqo20AAAAAAAAAAIBQR3AHv3To0MF5nJaW5nO99PR053F0dLSaN29erW0DAAAAAAAAAACEOoI7+KVHjx7O4z/++EN2u92nert27XIed+/eXQaDoVrbBgAAAAAAAAAACHUEd/BLnz59lJCQIEnKycnR7t27faq3bds25/HQoUOrvW0AAAAAAAAAAIBQR3AHv5jNZpdw7KeffvKp3rp16yRJBoPBa7hWlW0DAAAAAAAAAACEOoI7+G3s2LEymUySpMWLF5+2/K5du5ScnCxJuvzyy8vdg64q2wYAAAAAAAAAAAhlBHe11MGDBzVu3Dj16tVLI0aM8Hn2mi86duyoq666SpK0fft2rV+/vtzyn3zyiSTJZDLprrvuClrbAAAAAAAAAAAAoYzgLoRlZWU5j0+cOOFX3Yceekjff/+98vLytHPnTk2YMEFpaWkBG9sDDzygFi1aSJJmzpwph8PhsVx6erree+89SdJdd92ldu3aBbVtAAAAAAAAAACAUEVwF6LS09O1e/du5+tvv/3Wr/pbt251eZ2fn68tW7YEZGyS1KBBA82bN0/x8fHavHmzZs6c6VbGYrHo3nvvVUFBgS655BKNHz8+6G0DAAAAAAAAAACEKoK7EJGbm6usrCylpKRoxYoVuuOOO1RYWOh8/5VXXtGsWbO0fft2HTt2TFlZWbJYLF7b6969u8vrsLAwde7cOaBj7tSpkz766CN16tRJCxYs0F133aXffvtNhw4d0qpVq3Tddddpw4YNuvXWWzVnzhwZDIaQaBsAAAAAAAAAACAUGRze1iFEtbrlllv066+/+lXnmWee0ahRozy+d/DgQT3xxBNau3atGjdurEmTJuniiy8OxFDdWCwWffXVV/rss8+UnJyszMxMNWnSRL169dItt9yibt26hWTbwWKxWDzOfjzzzDMVHh4ehBEFV1FRkTZv3uxyrkePHgoLCwvSiAAAAFCX8HkUAAAAwcZn0lLcPye4A6odP3hc8UsJAAAAwcTnUQAAAAQbn0lLcf+cpTIBAAAAAAAAAACAkEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACDAHewAA4KuioiItXrxYy5Yt0/bt25WVlaW4uDh17dpVw4YN01VXXaWwsLBgD9Or/Px8ffnll1qzZo22bdumY8eOKTc3V9HR0WrUqJF69uypwYMHa+jQoTIaK/ZcRXp6uhYvXqxffvlFO3fu1IkTJ2Q2m1W/fn11795dgwYN0vDhwxUeHh7gqwMAAAAAAAAAVBbBHYAaYdu2bbrvvvu0d+9edezYUY888ojat2+vQ4cO6cMPP9Sjjz6q+fPna/bs2ercuXOwh+vm3Xff1dy5c5WXl6dLL71Ut99+u1q2bKm4uDjl5OQoOTlZX3/9te666y61atVKM2bMUN++fX1uPy8vT3PmzNF7772nfv366ZJLLtHf//53hYeH6/Dhw1qzZo0++eQTLV++XHPmzNHMmTM1YMCAKrxiAAAAAAAAAIC/DA6HwxHsQQB1icVi0ZYtW9zOn3nmmXVyFlRRUZE2b97scq5Hjx4uM+fWrl2rcePGKS8vTwMHDtS8efMUERHhUufll1/W3LlzFRMTo/nz56tXr17VMv7Tsdlsuv/++7V06VJ16NBB8+bNU6tWrbyWX7lype677z4VFRXpscce00033XTaPo4ePaq//vWv2rNnj95880316dPHY7lDhw7p9ttv1+7du2U0GvXUU09p1KhRFb42AACA2sCXz6MAAABAVeIzaSnun7PHHYAQl5KSon/84x/Ky8tTUlKSZs+e7RbaSdKECRM0aNAg5ebmavz48UpLSwvCaN0988wzWrp0qRo0aKAFCxaUG9pJ0tChQ/XUU0/Jbrdr+vTpWrFixWn7uP/++7Vjxw6df/75XkM7SWrSpIleffVVRUdHy2636/HHH9fatWv9viYAAAAAAAAAQNUguAMQ0iZPnqzMzExJ0n333ad69ep5LXv//fdLkk6cOKHHHnusWsZXns2bN+udd96RJN17771KTEz0qd6IESPUp08fORwOPfnkk8rNzS23j59++kmSPAaap2revLnGjBkjSbJarXr88cfFxGsAAAAAAAAACA0EdwBC1vfff69ff/1VktS4cWNdeeWV5Zbv2LGjzj77bEnS6tWrtWbNmiofY3nee+89ORwORURE6KqrrvKr7rXXXitJysjI0MqVK72W++2335zHGzZsUF5e3mnbLjuWP//8k1l3AAAAAAAAABAiCO4AhKyXXnrJeTx8+HCZTKbT1rnoooucx3PmzKmKYfnsl19+kSR16NBBkZGRftUtu+RleQGk3W53Hh86dEjLly8/bdvt2rVTdHS08/X27dv9GhsAAAAAAAAAoGoQ3AEISVu2bHHZhHT48OE+1Rs0aJDzeOPGjdq3b1+gh+azjIyMCtdNSkryqZ1+/fq5BJrNmjXzqf3Y2FjncVFRUQVGCAAAAAAAAAAINII7ACGp7PKQsbGx6ty5s0/12rVrp5iYGOfrr7/+OuBj81V4eLgkadeuXTpx4oRfda1Wq/O4vNl6nTt31ttvv62//vWvevrpp9W3b1+f2s/JyXEeN23a1K+xAQAAAAAAAACqBsEdgJD0zTffOI979uwpo9G3H1cGg0FnnHGG8/WqVasCPjZfdezYUZJksVj0n//8x6+6ZWcKdu3atdyyffr00UMPPaTRo0f71Pb+/fude+EZjUaXZTkBAAAAAAAAAMFDcAcg5OTl5Wn37t3O12WDOF+0b9/eebxjx46Ajctfl1xyifN4wYIFWrp0qc91v/32W0nFwdqIESMCOq6y4xg6dKiaNGkS0PYBAAAAAAAAABVDcAcg5CQnJ8vhcDhf+7pvW4nExETncW5urtLS0gI2Nn9cd911zr3q7Ha7HnjgAb3zzjunrZeVleUsd+ONN6ply5YBG1NqaqreeOMNSVL9+vX1yCOPBKxtAAAAAAAAAEDlENwBCDllZ9tJ/u/BVja4k4qDwGCIjY3Vs88+K7PZLKl437rp06fr73//uw4ePOixjtVq1YMPPqhjx47prLPO0gMPPBCw8ezcuVO33367MjMz1bx5c7355pt+h6IAAAAAAAAAgKpDcAcg5Bw+fNjldcOGDf2qn5CQ4PL62LFjlR1ShQ0YMEBz5sxRRESE89y3336ryy+/XDNnztSRI0ec548fP66///3vWrVqlc4//3zNnz9fkZGRFe67oKBAqampWr58uSZNmqRRo0bp6NGjuvPOO7V48WJ16dKlUtcGAAAAAAAAAAgsc7AHAACnysvLc3ntb3gVHh5ebnvV7eKLL9ZHH32kRx55RNu2bZNUHKq9+eabeuedd3TppZeqS5cueuONN2SxWPTYY4/p5ptvlsFgqHCfb731lp5++mmXc61atdLzzz+vnj17Vup6AAAAAAAAAABVg+AOQMg5NWgrO1vNF6eWz83NrfSYKuuMM87Q+++/rzvuuEO//PKL83xRUZG++OILffHFF4qNjdV7772nTp06Vbq/ESNGqHv37srJydGff/6pzZs3a9WqVbruuus0cOBAPfLII+rYsWOl+wEAAAAAAAAABA7BHYCQU1hY6PI6LCzMr/ole8p5ay8Ydu7cqUmTJmnPnj265557ZLFY9P777+v48ePOMjk5Obrxxhv12GOPaeTIkZXqr0GDBmrQoIEk6cILL5QkZWZmat68eXrzzTc1cuRI3X///brtttsq1Q8AAAAAAAAAIHDY4w5AyDl1aUyLxeJX/VPLR0dHV3pMlbF8+XJde+212r9/v15++WVNmDBB9957r77//ns98sgjql+/vrNsdna2HnroIU2dOlV2uz2g46hXr54efvhhPfzww7JarZo5c6Zmz54d0D4AAAAAAAAAABVHcAcg5ERFRbm89nfGXCgFd8uXL9f//d//qbCwUM8//7xz9ptUvKTn2LFjtXLlSt14440ue9q9//77euihh6pkTLfddpvOPfdcSdIrr7yi77//vkr6AQAAAAAAAAD4h+AOQMiJiYlxeV3Z4O7U9qpLcnKyHnroIdlsNl1//fW6+OKLPZaLjY3V1KlT9cYbbyghIcF5fsmSJXr99derZGzjxo1zHj/77LMBn90HAAAAAAAAAPAfwR2AkNOoUSOX10ePHvWrftl94yQpMTGx0mOqiOnTpys/P1/R0dG65557Tlt+wIABev/9913G+9JLL+ngwYMBH9uAAQOcMxGTk5P1448/BrwPAAAAAAAAAIB/CO4AhJz27du7vD506JBf9Q8fPlxue9Vh165d+vnnnyVJV1xxhcs+duVp27atXnvtNYWHh0uSCgoKtHDhwoCPz2QyqWvXrs7XK1euDHgfAAAAAAAAAAD/ENwBCDmnBm1paWl+1c/IyHAeJyQkqGHDhgEZlz9WrVrlPB48eLBfdbt06aI777zT+bqqQrWyX5fff/+9SvoAAAAAAAAAAPiO4A5AyImNjVWrVq2cr3fu3OlX/eTkZOdx9+7dAzYuf/zxxx/O4y5duvhd/8Ybb1RYWJgkaf/+/crLy/NaNjk5WcuWLVNmZqZffZS0L8nvugAAAAAAAACAwCO4AxCShgwZ4jzevHmzz/VsNptLaFa2nep04sQJ5/Gpe/b5okGDBmrTpo3zdXZ2tsdy33zzja666irde++9uummm1RUVORzH7m5uc7j+Ph4v8cIAAAAAAAAAAgsgjsAIeniiy92Hp84ccJlFl15du3apYKCAkmSwWDQ0KFDq2R8pxMVFeU8tlqtFWojJibGeextj7wnnnjCGdbt2rVL33//vc/tHzlyxHlcdoYjAAAAAAAAACA4CO4AhKTevXu7zDhbunSpT/XK7gc3cOBANW7cONBD80m7du2cxwcPHqxQGyV79bVq1Urh4eFu7x89elSHDx92OZeTk+NT23a7Xbt373a+vuCCCyo0RgAAAAAAAABA4BDcAQhJRqNR9957r/P14sWL5XA4Tltv+fLlzuN77rmn3LJLly7V5Zdfrj59+uiee+7RsWPHKjzeUw0fPtx5/MMPP/hdPz09XQcOHJAkXXLJJR7L1KtXz2WfurCwMA0cONCn9tevX6/8/HxJUsOGDYM2MxEAAAAAAAAAUIrgDkDIuuyyy9SzZ09JUkpKipYsWVJu+dWrV2vnzp2SisOuHj16eC27YcMGTZo0SXv27FF2dra++uor3X333T6Fg77o1KmTrr76aknSggULnCGZrz766CNJUlxcnG677TaPZcxms8sefn379lViYqJP7b///vvO47vvvttlWU4AAAAAAAAAQHAQ3AEIWQaDQbNmzVJcXJwkac6cOcrOzvZYtqioSLNnz5YkJSYmaurUqeW2vXLlStntdpdza9eu1d69eys/8JMeffRRde3aVenp6Xr44Yfd+vPmzz//1Pz582UwGDR16lQ1atTIa9n777/fGbr5Gjr++OOP+vLLLyVJV1xxha6//nqf6gEAAAAAAAAAqhbBHYCQ1rp1a82bN0/R0dE6ePCg7rrrLhUWFrqUsdvtevLJJ7V161bFx8frlVdeKTfsKo+v4Zov4uLi9Oabb6pPnz766quv9Le//c1tT7pTbdmyRWPHjlVRUZGmTp2qESNGlFu+VatW+s9//qO4uDj99NNPLjPpPFmxYoUmTpwoh8OhSy+9VE8//bTf1wUAAAAAAAAAqBoGR6DWhQPgE4vFoi1btridP/PMMxUeHh6EEQVXUVGRNm/e7HKuR48eLnu3SdKOHTs0adIk7d69W23atNG4cePUoUMHpaSkaOHChfrtt9/UsWNHzZ49Wx07djxtvxs2bNBNN93kEtR16tRJixYtkslkCszFnWSz2TR//ny99tprKiws1LBhwzRw4EA1b95ckZGRyszMVHJysn744Qf98MMP6tKli5544gnnMqG+2L9/v6ZOnaqffvpJXbp00ciRI9WpUyclJCQoMzNTO3bs0PLly7Vx40bVr19f48eP16233iqDwRDQawUAAKhpfP08CgAAAFQVPpOW4v45wR1Q7fjB48qfX0pWq1VLlizRl19+qW3btikrK0txcXHq2rWrhg8frquuukpms9nnvpcuXaoXX3xR6enpOuecczRlyhS1aNGi0tfkTW5urr744gv9+OOP2r59u44ePaqioiLVq1dPTZo0Ue/evTVkyBD179+/wn1s2rRJS5Ys0YYNG3TgwAHl5uYqNjZW9evXV7du3TRgwABdfvnlio6ODuCVAQAA1FzcJAEAAECw8Zm0FPfPCe6AascPHlf8UgIAAEAw8XkUAAAAwcZn0lLcP2ePOwAAAAAAAAAAACAkENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAHOwBwAAAAAAQE1RVFSkxYsXa9myZdq+fbuysrIUFxenrl27atiwYbrqqqsUFhYW7GG6mDt3rl5++eVKt7No0SJ16dKl0u3s3LlTo0aNUlFRkb755hu1aNGi0m0CAAAAtQUz7gAAAAAA8MG2bds0fPhwPfroo0pPT9cjjzyiDz/8UE899ZTCwsL06KOP6sorr9SOHTuCPVQXu3fvrnQbERERatSoUaXbsdvteuyxx1RUVFTptgAAAIDaiBl3AAAAAACcxtq1azVu3Djl5eVp4MCBmjdvniIiIiRJ3bp100UXXaSXX35Zc+fO1Y033qj58+erV69eQR51sV27drmdi42Nldl8+lsC+fn5Kiws1Lhx45SYmFjpsbz99tvatGlTpdsBAACoq1gBovavAEFwByCoDAaDGjVqpIiICBkMBjkcDhmNTAYGAABA6EhJSdE//vEP5eXlKSkpSbNnz3aGdmVNmDBBmzZt0nfffafx48dr0aJFatq0aRBGXMpisWj//v2SpAYNGui+++7TpZdeqvj4+NPWLSoq0vDhw+VwODRu3LhKjyU1NVVz586tdDsAAAB11bZt23Tfffdp79696tixox555BG1b99ehw4d0ocffqhHH31U8+fP1+zZs9W5c+dgD9eJFSD8Q3AHIKjMZrNat24d7GEAAAAAXk2ePFmZmZmSpPvuu0/16tXzWvb+++/Xd999pxMnTuixxx7T/Pnzq2uYHu3Zs0c2m00JCQn64IMP1KpVK5/r/ve//9XevXv16quvKjw8vNJjmTp1Kg/pAQAAVFBdWgHCarU6jwsLC1VUVKTbb7+9zqwAQXAHAAAAAIAX33//vX799VdJUuPGjXXllVeWW75jx446++yztX79eq1evVpr1qxRv379qmOoHpU83fzQQw/5FdplZmbq5ZdfVv/+/XXhhRdWehyfffaZVq9erX/+85+67777Kt0eAABAXVKXVoCwWCzasmWLpOIA78EHH5TD4dDtt99e6bHUlBUgeNQNQFDZLRZl79yp9BXf6OAXXyp9xTfK3rlTdosl2EMDAAAA9NJLLzmPhw8fLpPJdNo6F110kfN4zpw5VTEsn+3atUuJiYm66qqr/Ko3b948ZWZm6sEHH6z0GI4ePaqZM2dq8ODBuuKKKyrdHgAAQF3j7woQkpwrQATbqStAXHvttT4t2y5JK1as0KFDhzRmzJg6tQIEM+4ABEX2zl1K+2Kpjvz0sxwe1hM2hIWp0YD+ajp8mOI6dQzCCAEAAFDXbdmyxfm0r1Qc3Pli0KBBeu655yRJGzdu1L59+4K2PPyuXbt00UUX+RQ4lkhNTdW7776r4cOHq2vXrpUew4wZM2Sz2fTkk09Wui0AAIC6pq6uAJGTk6PPPvtM3bp1C8iSnzVpBYjQjxYB1Cq2/HztfvkVbX7gYWV8/4PH0E6SHEVFyvj+B21+4GHtfvkV2fLzq3mkAAAAqOtWrlzpPI6NjVXnzp19qteuXTvFxMQ4X3/99dcBH5uvnnzySU2cONGvOnPmzJHNZvO7nifffvutli5dqgcffFCNGzeudHsAAAB1TV1dAWLRokXKzc3VTTfdVOkx1LQVIAjuAFSbwqNHten+h5S+fIVf9dKXr9Cm+x9S4dGjVTQyAAAAwN0333zjPO7Zs6fPy+oYDAadccYZzterVq0K+Nh8lZiYqMTERJ/L79ixQ1988YUuv/xytWnTplJ95+Tk6IknnlDfvn113XXXVaotAACAuqgyK0CUKFkBIlgqsgJERkaGVqxYoQEDBlT6M6lU81aAILgDUC1s+fnaNuVJ5aceqFD9/NQD2jZ1GjPvAAAAUC1yc3Ody/pIcgnifNG+fXvn8Y4dOwI2rqo2e/ZsSdL48eMr3dasWbOUlZWlGTNmVLotAACAuqiurgDx4YcfymazadSoUZXuvyauAEFwB6Ba/PnmWxUO7Urkp6Rq74K3AzQiAAAAwLvk5GQ5HA7n62bNmvlVv+wst9zcXKWlpQVsbFVlw4YN+u6773TBBReoY8fK7TO9bt06ffDBB7r77rv92ssEAAAAperiChB//PGHfvrpJ/Xr109NmzatVN81dQUIgjsAVS575y6/l8f05tBXXyt7566AtAUAAAB4s2uX62dOf28anHpzIjk5udJjqmpz586VJN18882Vasdiseixxx5T9+7ddeuttwZiaAAAAHVOXl5enVwB4sUXX5QkjRw5stJt1dQVIAjuAFS5tC+WBra9L5cFtD0AAADgVIcPH3Z53bBhQ7/qJyQkuLw+duxYZYdUpdauXas1a9aoTZs2Ov/88yvV1r///W+lpqbqqaee8msvEwAAAJSqqytA/PDDD+rZs6datGhRqbZq8goQ5mAPAEDtZrdYdOSnnwPa5pEff1KHf4yXMTxckrT/vQ9lzc2VOTZG5phoRTVrpvpn9w5onwAAAKhbcnNzXV5HRkb6VT/85GfVEnl5eZUeU1V6+eWXJUnXXHONDAZDhdvZsWOHXn/9dY0fP97vp8IBAABQquxsOykwK0BUdunJqlayAsSll15aqXZq+goQBHcAqlTu3r1yFBUFtE1HUZFy9+5TXKfifTcsx4+5LMVZ/+xefgd3B79YKlturkwxxeGfOSZGppgYRTVrqvD69QM6fgAAAIS+U4O2iIgIv+qfWv7UIDCUbN68WT/99JMMBoOGDx9e4XZsNpseffRRtW3bVnfeeWcARwgAAFD31NUVIFq3bq0ePXpUqq2SFSA++eSTGrkCBMEdgCqVty+litrd7wzuIpOSXN4zxcT43d6hr5YrPyXV7XzbO25TsxG+37ywFxXpyI8/yRwTU/xfbMzJMDBGxoiISj29DAAAgOpTWFjo8josLMyv+maz6z+3T20vlLz22muSpHPOOadST2EvWLBA27dv1/vvv+824xAAAAD+OfVBsrqyAsSoUaPq/AoQBHcAqpStsKCK2i298WE45SaKOSbW//ZyPf/iMvsZAhZlZWnX7Bc9vmcwmdxm9JUEfKaT58yxsc7XkU0aK7qSazkDAACgYk69MWKxWPyqf2r56OjoSo+pKqSkpGjlypWSpKFDh1a4nf379+vFF1/UmDFj1LNnz0ANDwAAoM6qqytADBs2TBkZGRVqp7asAEFwB6BKmSL8exLE93ZLf/GcuhSnOcb/myJWL7+4/J29ZyvnF6DDZpM1K0vWrCyf2kq6aIg63v0Pv/o//N0PMhgNbsGgOS5WRj+fEgcAAKjLTg3a/J0xV1OCu/fee092u12SdN5551W4nSlTpigxMVH33ntvgEYGAABQt9XVFSCaNGlS4eCutqwAQXAHoEpFt25ZRe22ch4XnLLes79hm72oSHYvv7j8nXFn9TJzryIqEkD+Of9Nj8Fgp0n/p8QLfL8RYyssVN7efcXhX+zJpT4J/gAAQB0Sc8rnwMoGd6e2FwqKior02WefSZKaNGmi9u3bV6idjz/+WD///LMWLFigqKioQA4RAACgzmIFCP/UphUgCO4AVKmYNm1kCAtzmxVXGYawMMW0ae18HVavnur3OVvW3FxZc3IU4edGrbZy1nf2P7gL3JRzfwNIh8PhdcafOda/tvJTD2jzg4+4nDOGh5cu6XnK/n2lM/zclwENS6jn99cRAAAg2Bo1auTy+ujRo37VP378uMvrxMTESo8p0H788UcdO3ZMktSjR48KtZGRkaHnnntO1157rfr37x/I4QEAANRppz4QxQoQ5atNK0AQ3AGoUsbwcDUa0F8Z3/8QsDYbDRwgY5mpzq1vuqFS7TkcDtU/u5esOXnF4V9urmy5ubJbLDL5OevNmhO44M7fsMteWCiHzRaQtjwFkHaLRXaLRUXHT/jVVvPRV6vNmJv9qnNi02aZoqNdgkCjmV9ZAACg+nTo0MHl9aFDh/yqf/iUVSEqOputKq1YscJ53KlTpwq1MX36dEVEROihhx4K1LAAAACgursChL8zC6XatwIEd0EBVLmmw4cFNLhresXlAWtLksITEtR1ymNu5+1FRTKYTH63F5aQIGtOjhxWa6XG5XfYVk5o6G8AWd5eff7y9zocNpu2TXnS7bwxMlLdnnhc8V06+9yW3WKRraBA5piYCv1ZAgCAuuvU4C4tLc2v+mX35UhISFBDP1eFqA7/+9//nMft2rXzu/6hQ4e0fPlyGQwG9e3bt0JjuOSSS9zOPf300xo5cmSF2gMAAKgtWAHCN7VxBQiCOwBVLq5TRzW+9GKlL19x+sKn0eSySxTXqWMARnV6FdnTLWnQBUoadIGk4tCodAbfydl8OaUz+kres+aUvM5zec/fpTLLW6YzmEt++t23l6VL7QUFMkb4t6ls5pat2j7tKUnFwZ+5zJ59ZZf9LF3aM/rkvn6xrq+jown+AACoY2JjY9WqVSvt379fkrRz506/6icnJzuPu3fvHtCxBcLOnTuVnp7ufJ2QkOB3Gw0bNtTnn3/ud70RI0Y4j1999VUlJSW5vN+kSRO/2wQAAKhtTl2xgRUgPKuNK0AQ3AGoFm1vu1VZ27YrP/VAhduIatlCbcaOCeCoqpYxPFzh4eEKr1/f77oOh8P/OjabIps2kTU3T7bcXJdlMwM5e89f/gaQ5c32q8x12AsKZCkokMXPp5NKtBt3u5peMczn8g6bTYVHjsgcEytTdJQMRmOF+gUAAMEzZMgQLViwQJK0efNmn+vZbDb98ccfLu2Emg0bNri8jouL87uNsLCwCt9gKdGmTRu1aNGiUm0AAADURqcGbawA4a62rgBBcAegWpiiotRt2lRtmzpN+SmpftePatlC3Z6cIlMtWKPYFwaDwe86se3a6uxX/i2pOPizFxY6Z/CV3RPQF4GdcefnPoG5nmfcFbcVvJmDxshIv8oXZWZp/bgJxS8MBpmio5wz/Do/8pAiGyeV3wAAAAi6iy++2BncnThxQsnJyT49qbxr1y4VFBRIKv5cN3To0KocZoVs2rTJ5bXNy17JAAAACA5WgDi92roCBMEdgGoT0bChes6aqT/ffMuvZTObXHaJ2owdU2dCu0AwGAwyRUbKFBkpVeBpmlY3Xq8Wo0Y6l++05uSUWd4zz2WpT0/LfFpz8yS7XVIAwzaDQaZof0PAIC75WbZvh0O23DzZcvNUqAwZzP79+j387Xfa8/obZZb2LF3m0xxbdqnPk8exrsuAmqKiKhQGAwBQ1/Xu3Vtt2rTR3r17JUlLly7VXXfdddp6K1eudB4PHDhQjRs3rqohVljZGYGS+1JKAAAACD5WgChfbV0BguAOQLUyRUWpw4Txajz0IqV9uUxHfvxJjqIit3KGsDA1GjhATa+4vNr2tEMpg8EgU1SUTFFRimjkf/DnsNtlKyiQLTdXYfXq+VXXll8gGQzSKcuFVmS5yfKW3fSX/8t05nhvK9b/tmwng9FCv2qeZDTKHB0tU0y02t/5N9U/u7fPVUuWbSX4AwDURUajUffee6/uvfdeSdLixYs1ceLE0/5eXL58ufP4nnvuKbfs0qVL9dJLLykjI0MDBw7U1KlT1aBBg0qP/XRKwsgSuQH83AQAAIDAYAWIuongDkBQxHXqqLhOHdXhH+OVu3ef8vbtl62wUKaICEW3bqWYNq39Xt4RocNwMigy+zlDTpIa9j1HAz79ULb8/JOz+Ipn89ktFr/bCuSMO3/36vPWt8Fsrv6lS+12WXNyZM3J8Xv/xNw/92rTpAddZ/SdnPHX8f/ulikionJjAwAgxF122WXq2bOnNm3apJSUFC1ZskRXXXWV1/KrV692LmN0ySWXqEePHl7LbtiwQZMmTZL95EoFX331lY4ePaqFCxdW6UMzubm5BHUAAAA1ACtA1E0EdwCCyhge7gzxgBIGo9EZFFVGq5tuUJPLLztlac8812U+c9yX/bTlue+z5+9YbF726jPHxPh9Iy6YS37acnOLg7/sbFmzs13eO+OB+/xq69DXK5T+9Uq35T5dl/osuwxorEwx0TKGhzPjDwAQNAaDQbNmzdLo0aOVnZ2tOXPmaMiQIR6X8ikqKtLs2bMlSYmJiZo6dWq5ba9cudIZ2pVYu3at9u7dq7Zt2wbuIk6RU87KAFXNcsrDWKe+BgAAQClWgKibCO4AALVWeEKCwiuwsa3DZnPO+LOeDPfCG9T3qw1vYZu/M/ekAC/5GRvrV3mv1xEVJYPJ5FdbBYfSlbNrt191pOJZiq4BX7Ta3HarYtq09rstAAAqonXr1po3b57GjRungwcP6q677tJ//vMfRZSZeW632/Xkk09q69atio+P1yuvvKJGjRpVqL9Tw7xAM3n4HR4WFlalfZbYsmWLy+uNGzeqXbt21dI3AABATcQKEHUPwR2AoLJarTpw4IDCw8NlNBplt9uVlJTk8WYCUF0MJpPMsbF+h1xlJQ0ZpIReZ50y2y9XhgrcFAvmjDtrTvADSIfVqqLMTBVlZrqc80fmlq1KfuVVt+U+zfHxan3TDRUaFwCgbjnnnHP03nvvadKkSfr555915ZVXaty4cerQoYNSUlK0cOFC/fbbb+rYsaNmz56tjh1Pv6LE0KFD9eabb7oEdZ06dVKbNm2q8EqkRo0aKSkpyWU5oqZNmwa8n6KiIv3555+SpPz8fO3atUvz5s1zKfPMM8/o2LFj6t27t+Li4hQVFaWWLVsGfCwAAAA1FStABFZNWAGC4A5AUDkcDh05csTlXKNGjQjuUOOZIiMV1bRJQNpqce01SrzwwpOz/3KcS3qWLu/pugyovbDQ+7hi/Nt30FtoaPaznfLaqghzrH/BoeX4CeWnHnBvJy7O7+Du0NcrlLllq+tSn7ExHvcBNEVHy1hNMxgAAFWvc+fOWrx4sZYsWaIvv/xSs2bNUlZWluLi4tS1a1c9/fTTuuqqq2Q2+/ZP7d69e+uFF17Qiy++qPT0dJ1zzjmaMmVKtXwWnjVrlp544gmlp6dr8ODBOvvsswPeR3p6ukaMGFFumezsbD3//PPO1+eee64WLlwY8LEAAADUZKwAETg1YQUIgjsAAEJcXMcOiuvYwefy9qIi2fLynMt8lg34jOHhfvXtbZZcRfYftHrZ968i/J3x5z2A9P86snfs1JEfVvtc3hgR4XX/vpZ/uU7hCfX8HgMAIHjMZrNGjRqlUaNGBaS9YcOGadiwYQFpyx/9+vXTV199VaV9tGjRQn/88UeV9gEAAFBXsAKE/2rqChAEdwAA1DLGsDAZ69VTWL3KB0JJFw1RXOczZM3Nc5ndF1GBJ7YCuldftH8z/rwGkH7O3JP8nzloLyyUpbBQOnbM7b0W1/h30/f4ho1K+3LZyfCvdN+/8AYNlHjBeX61BQAAAAAAahZWgPBPTV0BguAOAAB4Fdk4SZGNkwLSVtPhV6jBuec4wz9rTm6ZZT9LlwA93f51pqgoGfz8AOktbKvOvfo88XfGX/6BAzq+br3b+aiWLfwO7g5/+53y09I8LPNZvNSnKSZG5uhov7/WAAAAAACg6rAChO9q6goQBHcAAKBa+BIsORwO2S2WMqGe6/591txcyeHwu29vy3RWbMnPwAR3BpNJxjJr0fvWd+Cu48jqH3V8/YbTljNFR5cGeZ728YuJUdNhl7GXHwAAAAAAQAAQ3AEAgJBhMBhkioiQKSJCatggYO0mDbpAMa1buc32i+vcye+2AhXcmWJiZDAY/Os7J5B7Dvp2Hba8PNny8qSMI17LNL3icr/6Pr5+g45v3HRytl9pABjRsKFiO7T3qy0AAAAAAIDahOAOAADUevFduyi+a5eAtJU06EIVHj1aZpnPsrMD86QyGzqXxxzj3z59kvdlOiuy5GegAkhjZKSMPq6dXyJr++9K+/wLt/P1zuyu7jOe9Kutoz//Ilt+fvEswNhomWNinUGgKSrS73AUAAAAAAAgmAjuAAAA/NDqxuu9vudwOGTLL3BZ5tN92c/igM8cF+t3397CtgrNuPMye89fFQkgvS35WZEAMuWjT5SbnOz5TaPRZUafy/59MTEyx8aWvo6NVYM+gd8IGwAAAAAAwB8EdwAAAAFiMBhkjo6SOTpKEYmNAt5+w37nKiIpyS0IjGyc5Hdb3mbv+SuQy3SaY/1vq9zrsNtlzc6RNTvntO2Y42LV9523/Or7xKbNyk89cDL4Kw0GwxISFBYf71dbAAAAAAAAEsEdAABAjZE0ZLCShlS+HYfNpoSzerrNArTleZ4JV56KzJKz5XoO0qpyr77TqUjfGT+s1uGV37idb3T+QJ1x/31+tZW5bbsMJtPJ8C9GpphoGcPDWeoTAAAAAIA6huAuxNhsNn3xxRdasmSJtm7dqtzcXDVp0kRdu3bVDTfcoP79+wd7iCosLNRZZ50lu497+HiyaNEideniea+hIUOG6MCBAxVq9+2331bfvn0rPC4AAOoCg8mkLo8+7HbeYbPJmpfnZf++kmU/81wCv+g2rf3u35rjOSD0NzxzOBwBC+6CHUDufGGOLEePupwzmM2ly3w6Z/SVLPt5yhKgJe/HxymqaVO/+wcAAAAAAKGB4C6EpKam6p577tHWrVvVq1cvzZ49W+3atdO+ffs0f/58jR07VpdeeqmeeeYZxVTghlCgJCcnVyq0i4qKUmJiYgBHVMpbGAgAAE7PYDIpLC5OYXFxVdpPfLcuMsfFnhIM5vkdntnyC6RKfCYpq2Kz/QK3V5+nANJhtaooM1NFmZk+txPVooV6/3uuX31n/7FT1tzcMiFh8d5/xrAwv9oBAAAAAACVR3AXIlJTU3X99dcrIyNDgwYN0ssvvyyTySRJatKkifr27aspU6bogw8+UGpqqt59911FRUUFZay7du1yeR0eHq7GjRvLbC7/2yknJ0cZGRmaMGGCGjUqf9+fhIQE1a9f369xJSYmKp79ZAAACHltbr3F43mHw+FXO3aLRVEtWjgDQLvFUuExmWOi/a7jfa++WL/acdhsshcU+N2/x74rEBqmfPSxjq9d73a+2cgr1fa2W/1qKz/tkMzRUTJFE/wBAAAAAFARBHchwGKxaMKECcrIyFCjRo30wgsvOEO7sqZMmaJffvlF27Zt02OPPaYXXnghCKMtDe5iY2M1efJkDR8+XBEREaetN2HCBO3bt0+33XbbacvefPPNuuuuuyo9VgAAUHP4u59beEI9l9ll9qKi4r36yizvaSuzzOepM/zKlgurV8/v8dq8BXd+hoCBWu5TksyxFQggczz3b/LzITGHw6GNE++Rw2qVJBkjIpz79bku81m81GfpEqCxp7yOKQ7+TvNQGBAoBoNBjRo1UkREhAwGgxwOh4xGY7CHBQAAAKCO4l/DIWDBggX6448/JEkTJ05UrJentM1ms+6880498sgj+uKLL3TFFVdoyJAh1TlUSdLu3btlMpn0n//8R3369PGpzpo1a/TNN99owYIFCuPpawAAUAWMYWEKT6gnJfgfwlVEZJMmktHkDABLAit/Z70FMrir2F59gQkg7RaL82sgSfbCQlkKC6Vjx/weU3z3bjrzqWl+1ck/eFAyGIvDv+hoGTw8CAd4Yjab1bq1//t1AgAAAEBVILgLspycHM2fP1+SFBcXp1GjRpVb/vLLL9eTTz6pgoICzZ49W4MGDar2p0F37dqlq666yufQzm6365lnntGFF16o/v37V/HoAAAAqke3J6c4jx0Oh+wWi2y5eTJF+zdTzZZfIIPJJIfNVukxVWyvPm/BnZ8BpJeZexVRkevY+cIc5exOdr42RUXJFBOjln+5Vk0uGepzOw6HQ7LbCf4AAAD+v707j4+qut84/kwmmaxIEgj7ToQAEkURfiwKUkUEFJWliAtgWRStCtQiiqi0VqkLpWILVgS1FllEEYXiQkUtFEQRRA0giOxLiEGyZ2bu7w/IMIEsc2cmmZvk8369lDsz957zPUkIM/e551wAlYZVIOCN4C7EFi9erMzMTElSv379yl1yMjo6Wt27d9fatWu1c+dOrV+/Xj179qyESk/LycnRwYMHdcstt/h8zPLly7Vr166QLe0JAABQ0Ww2m+yRkbL7sHz4ueJatVS3txbLXVAgZ1a2XNlZcmbneJb4LL70Z06py4DK7fYzuMsp8Xmzs/dKm7nnj2AEkK7cXLlyc00Hoq7sbG28daTsMTFnl/As+i8uttjjkpcBjZU9Jlo2PmRXGe6CAmXv3aucn/bLlZ8ne2SUYpo3VWyLFgpzOEJdHgAAAGoAVoGAN4K7EFu9erVn+4orrvDpmM6dO2vt2rWSpA8++KBSg7u8vDzddttt6tixo0/75+bmavbs2brhhhuUnJxcwdUBAABUTcWCvzqJpo83DEPuvDzzx7lcCouIkLugQHK7i71W1Zb8LC2A9HccrpwcuXJypOPppmuRzSZ7TLSSel2p1uPHmjrUlZenMIeD4K8SnNq5S4ffW6X09RtkFBae97otIkJ1u3dTw4H9VavNhSGoEAAAAEBNRHAXQkeOHNH27ds9jzt16uTTce3bt/dsf/zxx5oxw9z9PwKRmJioadOm+bz/ggULdOLECd11110VWBUAAEDNZrPZZI82t0SnJNnsdnX950IZhiFXbl6x2X2xLcxd7RnM4C48zlzYZhhG6ffqM9lWUMZhGHJl58hwucvf9xxf3XO/CjIyFB4TU2xGX5OhgxV/cWrgtUGu3Fz9uOBVHV3zYZn7GYWFOr7uUx1f96nqX3uNWo4e6dffMwAAAKA8rAIBbwR3IbRly5bT99CQlJSUpHr16vl03IUXnr3aMz09XUeOHFGDBg0qpMZAZGRkaP78+erfv79atGgR6nIAAABQCpvNpvCYaIXHRCsyqa5fbcRfnKrOL8/1BH/OrJxzlvk8u6znect+5uRIZ94XS1J4bIypvt35+aUuiRnae/WZG4d0ZslRt1vOrCw5s7KUf+b5hgOuM9VO7qFD+u6JJ88s4RlzdjnPuKIlPUtfBjTszH01qqP8Eyf07fQnlHvgoKnjjq75UL98+506zHhMkXXqVFB1AAAAqGlYBQIlIbgLoV27dnm2mzRp4vNxderUUXh4uJxOpyTphx9+sGRwN2/ePGVlZWnMmDEBtfO///1Pq1at0pYtW3TkyBHl5eUpKSlJl156qYYNG6YuXboEqWIAAAD4KywiQpFJSYpMSjJ9rOF2y5Wb6wn0IhLiTR1f1iw5u8nwzFXKkpv+MBsaGi6XXLm5Jb5mdvlQ56ks5R05YuqYIja7vVjgV6/PVaaDQyty5eb6FdoVyT1wUN8+NkMXP/M0M+8AAAAQEFaBQFkI7kLohx9+8Gw3atTI5+NsNpvq1q2rI2c+iO/evbtS73Pni6NHj2rRokW6/PLLlZKS4lcbLpdL06dP17JlyyRJ0dHRSkxMlNvt1sGDB3Xw4EGtXLlSw4YN0+OPPy673R7MIVQ6p9NZba9sLktRAF3ecwAAoJpzOGR3OGRPSJAkFZZwtWlpbHFxunThy55ZfK6cHE8IGHbBBabayv/lF9Oll1pXVJSpvp2nskp/MTLSVFt5J0/6vO+5DJdLzl9+kfPM1+KCTpeY6tswDH09/h6FRTpOz/SLOTPjLy5WDQb2V3Tjxn7XZlZERIRn+8cFr/od2hXJ3X9Aexe+ptZ3j/c8Z+ZrAwAAgJopPDzcc+43mKtAGIZR7c6lVrfx+IPgLoQyMjI827Vr1zZ1bK1atTzB3ckAPpRXlHnz5ik/P1+333673208+uijeu+99zR+/HjdeOONatWqlee1zZs3a8aMGdqxY4eWLFmi3NxcPfvss8EoPWS+//77UJdgGd99912oSwAAAFVddJQUHaXDXqtc+MKIciji9hFSXp6MvDwpL//Mn3ky8vLPPp+f73ldBQUltnXwRLqObNvmc9/un38u9bVd+/crLOuUz225gvje8tjJk8owMQ6jsFCFZz7r5J/z2snGjRR24oTPbbkPH5Fz7SdSVKRsUVFSZJRsUZFSdFTxx1Fef4af/pjbvHlz1a17eunXUzt3lXs1s6+O/PsD1ftVH89SRZmZmdq3b19Q2gYAAED106pVKyWcuUAx2KtA2Gw2ZWVlac+ePcEsGSFGcBdC2V5L+kRFRZk61uF1Q8qcnOAt5xMMR48e1dKlSxUfH68+ffr41cb777+vo0eP6rXXXtMll1xy3uudO3fWokWLNHToUO3evVsrV67UFVdcoUGDBgVYPQAAAGoyW1yc7HFxpo4xXK5iQV5R0BdmdmZZ3rkxl1ddUZHmasrLM9d3WUz2XdY4ZPJzj/HLL3LvNnkSIjxctrhYJbz0d89Th99bZa6Nchx+f7UnuEtMTNT+/fs99y8HAAAAikRHR3tCO6liVoFISEhQdHS0cktZdh9VD8FdCHkHbpGR5j4Mewd92WXc0yMU5s+fr4KCAg0ZMqTY0jRm/Pjjj/rTn/5UYmhXJDY2Vo8//rhnVt9f/vIXDRw4sMovmQkAAICqxWa3SzExssWYu5/eee3USZTjN6NOz+zLP2fGn8nPC2WGZ2brMhu2lREamm1L/gSQTqdi69aV/czXzF1QoPT1G8y3U4b0/65X8j13KczhkN1uV3R0dJkXVDrX/0/OTz49+0TREvneS+WX+Zznf4oYfKPsLVv4XKv78BEVLlte1ODZtmySY/wYzwxFXzi/3irXps0l16hzarWd+5yKHRdxza8U1tj3W0a409Pl/ODj4u2c+TNi6M2n/x76yLVjp1zfflduzbYSx2E7Ox5J9i6XK6ye7/f2dGdmnv4anu3E82d4n96yhYX53ta+/XL/uNfEz1Hpz4WltFFYfLzPfRtZWXLtLJrRXHwc9tSO5sZxPF3GsWO+11zG9y2scUNTv4uN/HwZR46W2KetSWNTt7MwsrNlZHmdnyn170L5z9niYmUzcT7FcLnO/r4892sXFWVuHG635H0hQgnfi5p4mw8A8Fe9evU82xW5CkRSUhKrQFQjBHcWYfbqTLfb7dm20humkydPaunSpZKkgQMH+tXG6NGjlZ6ersGDB5e7b5cuXZSSkqK0tDQdOnRIn3/+uXr16uVXvwAAAEAo2RwO2UwEGWUJS26t8Oio0pf69Hosl6vsxkyHhmWEbZU0czAuubVnO3vvXhlBvg+dUVio7L0/eU6UxMTElL0SisslBeteHS53+ft4czpl/JwZnL5PZZ0NOQJk5Jr83ubmyf3D7lIaM/d52jh2XO7twVmePywlRTIR3OlUllz/21TiS+G9r5TMBF4/7ZNz3We+912GiLp1JTPB3c+Zcr63usTX7Bd1MDeOtB1y/medz/uXJWLEcNmTW5W/4xnGseMqePWfJb4W+fDvJRPBtmvL1tNL+waB6XEcOqyCBa+V+Jrpcaz/n7lxlBG4RgwfKntr38fhPnhIBf9a7NXemf/ZpMgHfmsqoHd+8aVcGzZ6Be22c0LSkmsucRz9+ymsaRPfx3H0mArf/7fXGM625bh9hLkLDb79Tq6t3/hYr1eHJQTC4T27K6xBfd/HkZEh1+cbSmhPCu/fz1RA79rzo9y7dpfz/fDte2RPvUhhiYk+9238ckqu7d+W2J69S2dzFxocPiL3ocPljsPmw9jCmjeXrZbvqzwYubly7zvgac67zbDkVuYC+pMnZWSePPuEnxd9SJItMUE2E+8VjcJCGb+cWf79nHHY4mubG0dBgeT9Hi+AcchuN/Wz4CubzVZsth2rQMBXBHchFBsb69nOzzd3RWyB1300vNsJtSVLlignJ0e1a9dWp06d/GrD7H3xevfurbS0NEnSxo0bq2xw165dO79nKFZlTqfzvHvatW/fXuEmPlgAAADgHKm+7+ouKJAzO0eunGy5snPkzD79pys7W86cHNXt2VOOOr6fIMt0urSzhOdtdrtSL7vM1AmZA9/v0CGf9z4r0uvK5pyf9vvRQvlyftrnOVHSpEkTNWpUeuh6aNduHQhSv61atVTtVN+/wacckSrtjocdO6YqLML3992M43yM43zVZxwdFWbiM3owx9GyVUvFV5VxeJ8gPudkccuWfoyjlGXeOl7U0fzPVWamz/uXpWXjxuZ+rtJ26PsDJX8V/RpHaRctmNTy5hvNj+PrrSW+1unB35kfx8aSL1owK/nKK8yP46O1Jb52yehR5sfxfskXLZjVdtpU8+NYPKvE1zov+qe5cbz1tg4sWlz+jj7waxxPPVPia1VqHDt26vtHHzvzyHb6/e2ZAPKy1xd4fu/abDbP6nCVsQpEampqtQjuCgsL9X0Q79ldFXFmPIQCCe6897dKcGcYhhYvPv3L8v/+7/8UVgFXKZSkffv2nu2q/Bc6PDy8RgZ3JeFrAQAAUIkiIhQZGyvJxKyhMlyQnKw2kx/wBIDOrCw5s7NluNzF7tXtC39n3Hkv/+jKD+L9/ry4vD6T2e32MpfsD+Zno/CICFPvlcPLqCvCEaEwExfMhXQcZdTJOAJnN/kZrMxxRISbCoqsO46IkI3D7GfiajOO6vL7inGch9+756su46ix/37Y7ZK7KCAz5B2VlfZ7tzJWgaguEyGqQ/gYqOrxnayivKfJnjx5sow9z3fq1KkS2wmlTZs2af/+01ezXnbZZZXWb5MmZ5cr+PnnnyutXwAAAADni6yTqKQrrwhKW/GpHWWz2z0zAU+Hgdlntk/PCjRKWOrT8FqW0h5p8r56PrKbXULUgqx024VyVZcTOBYdh+mfhbLGEcKfK8ZRYmOBFRMAs+Mo60RtUL8mFSyo47CoKjUOi/7eNc2i46ipv6/8GUdlrAKB6oPgLoRatz5734VDh3xfAMblcik9Pd3zODk5Oah1+euDDz7wbLdt27bS+vWecVjmfSUAAAAAVCmJXS5XYpfLS33dMAy58/PPBnpZp0O98NoXePaJad60QmqLad7M950tegLZj8aC15bprjmhX0JjAVbjP8ZRYmMBVuO/6jIOywplSGXRnys/GgteW6a7rh5/PxhHiY0FWI3//BlHZawCgeqD4C6ELrzwbBJ++PBhn49LT0+Xy+uqUqsEd+vWnb2ZtHcoWdHc7rM3Z4+Jiam0fgEAAACEls1mkz0qSvaoKKlOnRL3iW3RQraIiKAuTWSLiFBsi+Y+71/3yp6Kbd3q7BOGIRmG1/km48xzZ7Z15oSQ4fXamcNiTPQrSdGNGir53rvPNOHdj0yfjI6/5GKFFc00NIyzJ63O+dMwjOIn07z3PfM4qkF9U31H1klUoxtvONuP99fP5DhiW7VU/WuuPlurznxNPA2eabvoNZ3ZxbPv2eci4uNN9R1RK04Jl1/m1Z/h93nHyKS6uqB9u7Pj8PFn6LyfAxmyR0eb6jvM4VBUwwae9o1i7ZkTFhmp8AvOhO1e3w/D6/tR9PU69+fI+4tnGIZUSbfsqHBVaTZTWUyPI3gn4UO7zJpFx1Fdvh+MI2CMowSV8HuXVSBgBsFdCHXs2NGzfeTIEWVkZCgxsfybvu/atcuz3bhxY9Up5QNqZdq7d69nmUxJijf54aXI3Llz9dprr6l+/fp66aWXlJRU/n02vGfZXXDBBWXsCQAAAKCmCXM4VLd7Nx1f92nQ2qzbo7vCTNyvL7phQ0U3bBi0/s1wJCR4QqpA1WrbRrXatglKW2ZFNWiglqNHBqWtxMs7K/HyzkFpy6yYZs3UftrDQWmrXp+rVK/PVUFpy6xaFybrsrkvBqWtxjfeoMZFoWwlu6B9O3VfvkRSCYGzyRCw0Y03qMF1/c488g6XvYJt7wC46CVPgOsdCNc21Xdc61bq9MKs4oFz0VBMjqNen6tUO7Wjp2bj3PZMhPaxLVua6jumSRO1nfK7YoGz4ec4Ert0VmSdRK/yigfWZkL76Ebmfn9H1aunZrfeUtRR8XDB5DguSGl79qKFosH4eeGHo0755xy9RdSuraTeV5Z84YLJkCO6UaPTFy0UlXnuhQuGd63n/3x5fw3D4+JM9W2PilZccuugXMASUSvu9EULReM478IFr+/PORcfnPt338y93CTJFmZXWNSZ4Ofc31ehDPuD2XeVGof50NASq0CgyiC4C6GmTZsqJSVFaWlpkqStW7fqqqvKf9P97bfferavvjo4H8AC9dVXX3m2IyMjTd3Ms8iXX36pWbNmSZJOnDiht956S3fddVe5xx09etSzbZXZhwAAAACso+HA/kEN7hoOuC5obQEIHZvNJtntp7cDbMseGRmyWQ/2qCjFNAvOidvIpLqKTKoblLbMiqhdW3W7dwtKW3GtWimuVavyd6wAkUlJajpsSFDair/kYsVfcnFQ2jIrpkkTtZl4f1DaSrqyp5Ku7BmUtsyKa91KFz/356C01XBAfzUc0D8obZl1QbsUdVv8RlDaavrroWo6dLDncZkz5YsFqFKxANeQwqLM/d6r1aaNOr/yUskXLpgMzxped63qdv+/s2Wec6FBSQF9sXF5jTm6SWNTfcc2b64OMx4r+cKFUgJ6K6wCgaqD4C7Err32Wk9wt379ep+Cu82bN3u2+/btW2G1mfH11197tgsKCuR0OhUebu7Ha8uWLcUe5/u4Pu/u3bs926mpqab6BAAAAFD91Wpzoepfe42Orvkw4LYa9OurWm0uLH9HAAAAC/K+aEEK/MIFM8IiIhQZpNXjImrXVkRtczOUgyU8Lk7xF5s7D22FVSBQdVSTxb+rruHDhys2NlaS9P7778vpdJa5/y+//KINGzZIki6++GJ17hya5T3O5R2eGYah9PR00214L3MZERGhQYMG+XTc+vXrJUkOh0O9e/c23S8AAACA6q/l6JGmr6Y+V3TTJmox6o4gVQQAAICapOHA4M7YZBWI6ovgLsQSExN15513Sjq9POSqVavK3H/FihUqPDOdduLEiaXud+jQIY0bN06dOnXS9ddf7wm3Kor3/e0klRtAlqR79+4KOzOVeMCAAWrRokW5xxw+fFhffPGFJKl///5+31sPAAAAQPVmj45WhxmPKbppE7+Oj27aRB2emC57dHSQKwMAAEBNULQKRDCwCkT1RnBnAWPHjlXHjqdv/Dtr1izl5eWVuF9ubq7mzZsnSRo6dKi6dSt93e8pU6Zo3bp1ysnJ0c6dOzVhwgQdPnw4+MWfcfLkyYDbaNKkiYYPHy5JiomJ8emY2bNny+l0qlatWpo8eXLANQAAAACoviLr1NHFzzxt+oRJg359dfEzTwdtaScAAADUTKwCAV8Q3FlAZGSkXnzxRTVs2FCHDh3S73//e7nd7mL7GIahKVOm6Pjx47rkkks0ffr0Mtvcvn17sce5ubn65ptvgl67d33e7F7rJJvx0EMP6aqrrtKKFSu0devWMvdduHCh3n77bTkcDj3zzDOqV6+eX30CAAAAqDns0dFKnnCXUp95Wkm9e8kWEVHifraICCX17qXUZ55W67vHM9MOAAAAAWMVCPgiPNQF4LT69etr2bJlmjhxotasWaORI0fqnnvuUcuWLbVnzx79/e9/18aNGzVgwAA9+eSTcpRz08mLLrpImzZt8jyOiIhQSkpKhdXfqlUrff/995KksLAwJSQk+NVOUYg5f/58jRo1Sl27dtWvfvUrtW/fXnXr1pXT6dSuXbv05ptv6j//+Y+aNWumGTNmlDn7EAAAAADOVavNharV5kIl33OXsvf+pJyf9smVny97ZKRimjdTbIvmCivncxcAAABgVtEqED8ueFVH13zo83EN+vVVi1F3ENrVADbj3KlSCCm3261PPvlES5Ys0c6dO5Wenq6kpCR16NBBt956q7p27epTO4cOHdLjjz+uL774QvXr19fkyZN1zTXBWT+3JF988YUefvhhnThxQrfddpsmTZoUcJsZGRl6++239fnnn2vnzp06efKkoqKilJiYqA4dOqhXr17q379/uSGm1RQUFJQ4+7Fjx45VbizBUFhYqG3bthV7LjU1VRGlXPkMAAAAAAAAANXBqZ27dPj91Ur/73oZhYXnvW6LiFDdHt3VcMB1Neaedpw/J7gDKh2/eIojuAMAAAAAAABQk7kLClgF4gzOn7NUJgAAAACgBnM6nTp48KAcDofCwsLkdrtVr149v+/bDQAAAJgV5nB4lnIHCO4AAAAAADWWYRhKT08v9lzdunUJ7gAAAACEBMEdAAAAAAAAAABAiLAKBLwR3AEAAAAAAAAAAIQIq0DAW1ioCwAAAAAAAAAAAABAcAcAAAAAAAAAAABYAsEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAWEh7oAoKYxDKPE5wsLCyu5EmtwOp3nPVdYWFjq1wkAAAAIJt6PAgAAINR4T3pWaefJa9LXwmbUpNECFpCdna20tLRQlwEAAAAAAAAAQJWQkpKi2NjYUJdRKVgqEwAAAAAAAAAAALAAgjsAAAAAAAAAAADAAgjuAAAAAAAAAAAAAAsguAMAAAAAAAAAAAAswGYYhhHqIoCaxO12Kzc397znw8PDZbPZQlARAAAAAAAAAAChZxiGnE7nec9HR0crLKxmzEUjuAMAAAAAAAAAAAAsoGbEkwAAAAAAAAAAAIDFEdwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAKtTJkyf11ltvhboMAAAAAAAAAAAsj+AOQIX6/PPP9fDDD+u3v/2tfv7551CXAwAAAJzntddeU3Z2dqjLAAAAQA2TlZWlVatWqaCgINSlwEII7gBUqDVr1kiSPvjgA11//fX65ptvgta2y+XSvHnzNGvWrKC1CQAAgJpn1qxZ6t27t55//nkdP3481OUAAACghoiKitI777yjq666SnPnzlVOTk6oS4IF2AzDMEJdBIDq6dSpU+rRo4fy8/MlScOGDdNjjz2m8PDwgNv+7LPP9OyzzyotLU2S9OSTT2rIkCEBtwsAAICap1u3bsrIyJAkNWjQQCtXrtQFF1wQ4qoAAABQE+Tk5GjYsGHatWuXGjVqpPnz56tVq1ahLgshxIw7ABVm9erVntCue/fueuKJJwIK7QoKCvTee+9p8ODBGjNmjCe0k6THH39cmzZtCrhmAAAA1DwRERGSpOjoaM2bN4/QDgAAAJUmJiZGzz77rMLDw3Xo0CHdd999oS4JIRb4tBcAKMXSpUslSZGRkZoxY4bCwsxfK+B0OvXVV19p1apVWr16tTIzM4u9npiYqJSUFLVq1UppaWnq0qVLMEoHAABADeJwOCSdfW8JAAAAVKaUlBTdeOONWrZsmXbt2qWsrCzFxcX53V6gxyO0CO4AVIgdO3Zo27ZtkqRbb71VTZs2Pe/1tm3blnjsiRMn9Omnn2rdunX6/PPPderUKUmnr4S++OKLlZqaqk6dOik1NfW8dgEAAACz7HZ7qEsAAABADTdq1Ci99dZbSklJCSh0y8jI0MiRI9WnTx9NnDgxiBWishDcAagQixcvlnR6qvfYsWPPe3348OG6/vrrdffdd+vYsWP65ptvPP/t2bNHkZGRat26tZo0aaLvv/9ekrR27VrVq1evUscBAACA6s+flSEAAAAAScrMzJTb7Q64nTp16uihhx5S165dPfdfNisnJ0cTJkzQzp07tXPnTtWqVUtjxowJuDZULoI7AEGXk5OjFStWSDod0CUmJp63T3h4uBYvXqzFixerUaNGatu2rdq1a6errrpKKSkpatasmcLCwrR06VJNmzZNEldCAwAAoGIEch9mAAAA1Gwff/yxpk2bFpTwLtieeeYZxcXFafjw4aEuBSbw6QRA0L399tvKysqSw+HQ6NGjS9wnMjJSkjR+/HhNmjSp1Laio6M921b8xw8AAADIzs5WTEyMbDZbqEsBAABAJRs8eLAaNGigrKwsJScnKzExUbGxsZ77KANmsR4IgKByu9169dVXJUmDBg0qdWnLon+4yju5ERUV5dl2Op1BqhIAAADVzYoVK1RYWOjXsYEGbo888ojGjRunzMzMgNoBAABA1dSjRw9de+21at26tRISEs4L7fxd+rIk33//PRMcqjlm3AEIqo8//lg//fSTJGnYsGGl7hcREeFTe94z7vw9EQMAAIDq76WXXtLcuXP1yCOPqH379qaOLTrx4Xa7TZ9U+fzzz7V69WpJ0k033aTZs2crNTXVVBsAAACo3iZMmKA6depo5MiR6tKli9/tLF++XI8++qiuueYa/fnPf2ZWXzVFcAcgqP7xj394tidMmKDHHntM11xzzXn7+Xq/Ou8ZdwR3AAAAKE1kZKS+/fZb/eY3v/G7jcOHD6tbt24BHb9t2zaCOwAAABQTERGhjz76SB999FFQ2lu9erVcLpdeeOGFoLQHayG4AxA0a9eu1datWz2PDcNQy5YtS9zX1+AuNjbWs52XlxdYgQAAAKi2ilZ0SElJ0YoVK0wdO2jQIKWlpalx48Zau3atqWM3btyoO+64Q5L08MMP67bbbjN1PAAAAKq/yMhISVLDhg21fPlyv9t57rnntGzZMjVq1Ei///3vg1UeLIbgDkBQGIah2bNnS5JiYmKUk5OjVq1aKTk5ucT9fb2PCMEdAAAAfGGFZYJKe+8LAACAmq3odkBhYWFKTEz0u52iALBx48Zq2rRpUGqD9YSFugAA1cP777+vtLQ0tW3bVgMHDix3f3+Cu/z8fL/rAwAAQPUWFsbHWwAAAFhTUeAWLEX3aEb1xCcbAAHLzc3Vs88+q4iICM2cOdOzTFEwxMXFebZzcnJ8qgUAAAA1T3g4C8oAAADAmgzDCGp7LpcrqO3BWgjuAARs7ty5Onz4sKZMmaJ27doFtW2Hw+FZ9igrK6vcOoYMGaITJ04EtQYAAABYn68rOgAAAACVLdgriRUWFga1PVgLlyQCCMi+ffv0yiuvqF+/frr99ttNH+90OpWdnV3mPrGxsSooKFBmZmap+/7zn//UrFmzJEl33HGHXnvtNdWpU8d0PQAAAKiaCO4AAABgVXl5eZKkgwcPqm3btgG3x6pj1RvBHQC/GYahRx99VMnJyXr66af9auPll1/Wyy+/7NO+Tz31lJ566qly9/vhhx8I7wAAAGoYgjsAAABYVdGMu4YNG2r58uV+t/Pcc89p2bJl5a5MhqqN4A6A3xYvXqw9e/Zo6dKlio6O9quNcePG6d577y1znylTpmj16tXq3bu3/vrXv/rcNvc5AQAAqDkI7gAAAGBVeXl5uuiiizRixAglJib63U7Dhg11yy23aODAgUGsDlbDWW0Afjl8+LDmzZun+fPnq0GDBn63ExYWpsjIyDL3ad68uaTTy3KWty8AAABqJsMwQl0CAAAAargtW7bokksuOe+isr/+9a9q2LBhwO2XNwHivffeU0pKipKTkwPuC6ETFuoCAFRNUVFRmj17ttq0aVPhfTVr1kyStH//frlcrgrvDwAAAFUPwR0AAABCbfbs2br11lu1Y8eOYs8HI7Qrz6JFi/S73/1Ot99+u9LS0iq8P1QcZtwB8EtCQoISEhIqpa+iGXeFhYX68ccfuWIEAAAA53G73aEuAQAAADVceHi4NmzYoBtuuCFkNWRkZOiOO+7QO++8o0aNGoWsDviP4A6A5XXo0EHh4eFyOp3atGkTwR0AAADOU7Qyg9vtVkZGhqlji0I/f449deqUZ9vpdJo6FgAAANVLePjpyOXiiy/W3LlzK7XvCRMmaMuWLYqKitKUKVMI7aowgjsAlhcdHa2UlBRt375dGzdu1IgRI0JdEgAAACymKLjbuXOnunXr5lcbhw8f9vtYScrNzfX7WAAAAFR9drvd82diYmKl9h0RESFJat++vQYPHlypfSO4CO4AVAmXXnqptm/frv/9738qKCiQw+EIdUkAAACwkMLCQklSSkqKVqxYYerYQYMGKS0tTY0bN9batWtNHbtx40bdcccdkgjuAAAAarqiGXel2bdvn2w2m5o2bWqq3Q0bNmj16tWaMWNGIOWhiggLdQEA4IvevXtLkjIzM/XJJ5+EtBYAAABYT1Fw5w/DMIJSA8EdAABAzVZecHfgwAENGDBAc+bMUXp6ujIyMsr977vvvtN9992nxYsX64UXXqikkSCUmHEHoEro2rWrEhIS9PPPP2v58uXq27dvqEsCAACAheTl5ally5a67777Kr3vOnXq6Oabb1afPn0qvW8AAABYR3nBncPhUH5+vl544QW/Qrg5c+aoc+fOAS3vDusjuANQJYSHh6tv375avHix1q1bp507d6pNmzahLgsAAAAWMXHiRF111VWe+4pUlo4dO2rdunWee4oAAACg5irvvaj37X+WLVumjh07lttmRkaGJ6i78847Ce1qAJbKBFBl3HLLLZIkt9ut559/vsx9V61apSVLllRGWQAAALCAq6++2u/QLpClMmNiYgjtAAAAIMm3GXeB6NWrV0DHo2oguANgSW63WytWrNDYsWPlcrkkSe3atVOPHj0kSf/5z3/02WeflXr8mjVr9PPPP1dKrQAAAKgegnWvOwAAANRM5QV3gV7w5Xa7AzoeVQPBHQDL+eijjzRo0CB9+OGHeuaZZ4pdOT1+/HjP9iOPPKKTJ0+ed7zL5dKGDRvUrFmzSqkXAAAA1QPBHQAAAAIRFlZ25BLojLuiCQ6o3gjuAFjG+vXrNXToUE2cOFHDhw/XnDlzFB8fX2yfrl27qm/fvpKko0eP6qGHHjrvSpOtW7fq5MmTaty4cWWVDgAAgCqs6P0kwR0AAAACUV6w5nQ6K7R9VA9lz9sEAD/4MmXbe5+vv/5azz//vDZu3KjGjRtr0aJFuuiii0o9durUqfrss8+Um5urtWvXaubMmZo6darn9aIlNOvXrx/AKAAAAFBTFAV2BHcAAAAIRHnBWkFBgWc7KytLGRkZ5bbpveKY9/GovgjuAARd0T9QZZ34yMzMlCQtWbJEc+fOlSR16dJFAwcO1Pvvv6+kpKRSg7dGjRrpkUce0bRp0yRJCxculM1m05QpU2Sz2TzBXUJCQrCGBAAAgGqs6P0r9wwBAABAIAoLC8t83Tt4GzVqlOn2c3NzTR+DqofgDkDQFU35Lm3q96FDh3Ts2DFJ8lxVctNNN+kPf/iD3G63Ro8erWuuuUYjRozQPffco1q1ap3XxtChQ7Vlyxa99dZbkqQFCxZoz549uv/++/Xtt99KCnzNaAAAANQMRRecEdwBAAAgEGZm3C1btkwdO3Yst82MjAx169ZNkpSXlxdYgagSuMcdgKArCuxKu8LEZrMVu3fd6NGj9fTTTysiIkKRkZH629/+pqSkJC1YsEDXXXedNm/eXGI7TzzxhK677jrP43Xr1mnIkCGeEy7e08gBAACA0hS9f+SeIQAAAAhEefewKwruEhISip0f9UXr1q114YUX+lsaqhCCOwBBVxTY5efnl/h6w4YN9fzzzyssLEx33HGHHnrooWKvx8fH68UXX5TD4dDx48c1duxY/fTTT+e1ExERoeeee05jxoyR3W6XVPwq6UOHDgVrSAAAAKjGWCoTAAAAwVBecBcZGalJkybp448/VtOmTX1qMzo6Wq+88opWrVqlSy+9tNT9uF9z9UFwByDoiv6BKmvqdo8ePTR37lxNnTq1xNdTUlL029/+VpKUk5OjlStXlrif3W7Xgw8+qKVLl6pnz57FXtuyZYs/5QMAAKCGKQruyjvRAgAAAJSlvBUcLr30Uo0fP16xsbE+txkdHa0ePXpIkrZt26Z58+bp3Xff1ebNm3XgwAEVFBQoOztbe/fulXR6sgOqNu5xByDoimbc5eTklLlfr169ynx99OjRevPNN3Xw4EHVr1+/zH07dOig+fPnKy0tTf/617+0Zs0a7dmzx1zhAAAAqJHKW+odAAAA8EVFXwjWrFkz7d69Wx9++KE++eQTFRQUyGazyW63e/pOSEio0BpQ8ZhxByDoCgoK1LNnT82aNSugdiIiInT33XcrPj5e/fr18+mYlJQUzZgxQxs3btQjjzwSUP8AAACoGYoCu8LCQmbdAQAAwG8V/V4yPj5eN910k1544QWtW7dO48aNU3h4eLF+O3XqVKE1oOLZDBY+BRBkR48eLXeGnK8Mw9C+ffvUvHnzoLQHAAAAnOuSSy5Rs2bNNGnSJPXu3TvU5QAAAKCKGjVqlFwulx544AFddtllldLn5s2bNXbsWOXk5KhJkyZatmwZs+6qOII7AAAAAECNtnLlSg0YMEBhYSxKAwAAAP/t27dPzZo1q/R+//nPf2rfvn2aMGGC4uPjK71/BBfBHQAAAAAAAAAAAGABXE4IAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAsLTc3NxQlwAAAAAAlYLgDgAAAABgaX369NHTTz+tffv2hbqUkDEMQ//4xz+UmZkZ6lIAAAAAVCCbYRhGqIsAAAAAAKA0nTp1Uk5Ojmw2m6644grddttt6tWrV6jLqjSGYeiJJ57QokWL1L59ey1YsEDx8fGhLgsAAABABWDGHQAAAADA0hwOh6TTAdaGDRt04MCBEFdUebxDO0n67rvvNHr0aGbeAQAAANUUM+4AAAAAAJbWs2dPHT9+XJL00ksvVfpsu4ULF+qpp56q1D7L065dOy1cuJCZdwAAAEA1Ex7qAgAAAAAAKEtkZKRnu23btpXe/6hRo+RwOPTNN9/ooosuUrNmzVSrVi3FxcXJZrP51MbLL7+s5cuXS5ImTZqkq6++uiJLBgAAAFBFEdwBAAAAACytaKlMST4HZcE2YsSIgI73nhmXlJSk1q1bB1gRAAAAgOqIe9wBAAAAACzNO7jLzs4OYSWVKzc3V3//+9/ldrtDXQoAAACASkJwBwAAAACwNLvd7tn+5ZdfQliJtGPHDs2cOVMFBQUV3teaNWv0l7/8RXfeeadOnDhR4f0BAAAACD2COwAAAABAlXHw4EHTx2RlZem+++5TVlZWwP0nJyfryy+/1K9//Wv99NNPAbdXlqJ74m3YsEE33nijNm/eXKH9AQAAAAg9gjsAAAAAQJWxe/du08f88Y9/1Jo1a3T33XcrLy8voP7tdrtmzpypPXv26Oabb9ZHH30UUHul+fHHH7Vp0ybP48zMTK1bt65SZvoBAAAACB2COwAAAABAlWF21tmbb76pt99+W5K0adMm3XfffSosLAyohpYtW+quu+5SVlaW7r33Xs2ZMyeg9koyb948GYYhSapbt66WLl2qyZMnF7vfHwAAAIDqh+AOAAAAAFBlbNmyxeclL9evX68//OEPxZ47fPiw1q9fH3Adv/nNb9SiRQsZhqEXXnhBU6dOlcvlCrhdSdq/f79WrlwpSbrgggv02muvKSUlJShtAwAAALA2gjsAAAAAgCV89dVX5e6TmJioDz/8sNz9tm3bpnvuuUdOp1OS1KlTJ73xxhtauXKlevXqFXCtDodDkyZN8jxevny5/vjHPwbcriTNnTtXTqdTdrtdf/nLX9S6deugtAsAAADA+gjuAAAAAAAh9+WXX+r222/Xgw8+WOZSlldeeaWWL19eZlvbt2/XmDFjlJOTo5iYGE2fPl2LFi1S586dg1pz37591aZNG8/jRYsW6dtvvw2oze+++84zvunTp6tHjx4BtQcAAACgagkPdQEAAAAAgOolMzNTJ06c8Hn/goICTZo0SU6nU++++67S09P1wgsvKC4u7rx9e/XqpSVLlujHH39Uy5Ytz3v966+/1rhx43Ty5El16tRJM2fOVPPmzQMaT2lsNptuu+02TZ8+XZJkGIYWL16sGTNm+N3mjBkz5Ha7NXbsWA0fPjxYpQIAAACoIgjuAAAAAABB9+CDD/o9+2z9+vV66KGHNGfOnPNeS0lJUb169fTGG29o2rRpxV7773//q3vvvVeFhYWaNGmSxowZI7vd7lcNvurfv7+efPJJ5efnS5L27t3rd1srVqzQli1b1L9/f02ePDlIFQIAAACoSgjuAAAAAABBFR8frwULFmjhwoVKTk5WSkqK4uPjVatWLTkcjvP237VrlwYOHOh5PGPGDA0ePLjU9nv16qW3335bDzzwgGdW3jvvvKNp06apRYsWeuaZZ9SuXbvgD6wEtWrVUrdu3fTJJ59IkpKTk/1qJz09XU899ZS6du2qmTNnymazBbFKAAAAAFUF97gDAAAAAARd7dq1df/992vAgAFq3bq16tSpU2JoJ0mff/65Z7t9+/b69a9/rfDw0q8z7devn7KysvTmm29KkubMmaOpU6dqxIgReuuttyottCtSFDLGxMRo5MiRfrUxbdo0XXjhhZo3b16pXydvTqfTr34AAAAAWBsz7gAAAAAAIeUd3F199dXl7t+tWzclJSXp1Vdf1XfffafNmzdr/vz56t69e0WWWaq+ffvq7rvvVp8+ffy6n96yZcv0yy+/6OWXX1Z0dHS5++/evVt33XWXnnrqKXXu3NmfkgEAAABYFDPuAAAAAAAhk5+fr82bN3se+xLc2e12DRgwQMeOHVN6errefffdkIV2RR544AGlpqb6dazT6dRLL72kmJiYcvfdu3evRo0apX379mns2LHFvnYAAAAAqj5m3AEAAAAAQubTTz9VXl6eJKlZs2Zq27atT8fdcMMNWrhwodLT01WrVq2g1VNQUKD9+/cHrb0imZmZnu3jx49r9+7dnseXX365jh49qqNHj5bZxqlTp3T//ffr2LFjkqScnByNHTtW8+fP16WXXhr0mgEAAABUPoI7AAAAAEDIrFq1yrM9aNAgn4/r0KGDUlJSlJaWpsWLF2vEiBFBqcfhcGjRokV6/fXXg9JeSZ5//nk9//zzQWkrJydHY8aM0fz589WpU6egtAkAAAAgdAjuAAAAAAAhkZubq08++UTS6eUvhwwZYur4kSNHaurUqZozZ45uuOEGxcXFBaWuadOmqWnTpoqMjFT79u1Vv3591apVy6elLEszc+ZMvfLKK5Kkp556SjfffHNQagUAAABQvXCPOwAAAABASHz44YfKycmRJPXs2VMNGjQwdfzAgQOVlJSkEydO6MUXXwxqbSNHjtTw4cOVmpqq+vXrBxTaAQAAAICvCO4AAAAAACHxr3/9y7M9bNgw08c7HA7dcsstkqRXX31V27dvD1ptAAAAABAKBHcAAAAAgEqXlpamLVu2SJJatWqlPn36+NXOLbfcotjYWLlcLk2bNk1OpzOYZQIAAABApSK4AwAAAABUujfeeMOzPX78eIWF+ffxNDExUXfeeack6fvvv9fcuXODUh8AAAAAhALBHQAAAACgUh09elTvvPOOJKlx48YaOHBgQO3deeedSkpKkiT97W9/0xdffBFoiQAAAAAQEgR3AAAAAIBK9dJLL6mgoECSdO+99yo8PDyg9mJiYnTPPfdIklwulyZPnqyMjIyA6wQAAACAykZwBwAAAACoNMeOHdPSpUslSampqbrpppuC0u7QoUPVoUMHSadn9N1///2ecBAAAAAAqgqCOwAAAABApZk1a5by8/Nls9n06KOPymazBaXd8PBw/elPf1JERIQkadOmTXrooYdkGEZQ2gcAAACAykBwBwAAAACoFNu2bdPbb78tSRoyZIhSU1OD2n5KSorGjh3refz+++/rySefDGofAAAAAFCRCO4AAAAAABXOMAz98Y9/lGEYatasmaZOnVoh/dx9991q37695/Hrr7+uRx99VG63u0L6AwAAAIBgIrgDAAAAAFS4119/XVu3blV4eLiee+45xcbGVkg/DodDc+bMUUJCgue5JUuWaOLEicrJyamQPgEAAAAgWAjuAAAAAAAVas+ePXruueckSRMnTgz6Epnnaty4sWbNmqXw8HDPc//+9781ZMgQ7dq1q0L7Lo33jD/uuwcAAACgNAR3AAAAAIAK43Q6NWXKFOXl5WnYsGEaM2ZMpfTbrVs3Pfzww8We2717t4YMGaK5c+eqoKCgUuoo4h3WFRYWVmrfAAAAAKoOgjsAAAAAQIV5+umntW3bNl1xxRV67LHHKrXvW2+9VZMnTy72XF5enmbNmqV+/fpp+fLlys/Pr5RavGfcEdwBAAAAKA3BHQAAAACgQrzzzjt6/fXX1bVrV82ePbvY0pWVZdy4cbr//vvPe/7gwYOaOnWqrrjiCi1durTC63A6nZ5tgjsAAAAApan8T00AAAAAgGpv69atmj59uvr06aPZs2fL4XD43Zb3bDV/TJgwQdHR0frzn//saSs6Olq/+tWvdOmll6pjx44Bte8LZtwBAAAA8AXBHQAAAAAgqHbt2qVx48bp+uuv1xNPPBHQTDun06nDhw97HoeF+bdwzOjRo9WqVStNnjxZDRs21Ny5c9W4cWO/6zLLO6wjuAMAAABQGoI7AAAAAEDQHDhwQPfcc49+//vfa/DgwT4ds2rVKu3du1eJiYmqXbu2ateurdjYWNlsNr377rvKzMz07BsVFeV3bb169dLixYtVWFhYqaGdJBUUFHi2Ce4AAAAAlIbgDgAAAAAQNNnZ2ZozZ47atGnj8zGtW7fWjh079Oqrr2rPnj2l7peQkKDExMSA6mvdunVAx/vLO6zzDvEAAAAAwBvBHQAAAAAgaNq2bevXMW3bttXEiRO1efNm/fWvf9XGjRvP22/gwIHBKDEkvMO6QO/ZBwAAAKD6shmGYYS6CAAAAAAAvP3tb3/T7NmzPY+bN2+uJUuWKD4+PnRFBeDOO+9Ubm6uRowYoWuvvVYOhyPUJQEAAACwIII7AAAAAIAljRgxQl9++aX69OmjGTNmKCkpKdQl+e348eNVun4AAAAAlYPgDgAAAABgSV988YUSEhKUnJwc6lIAAAAAoFIQ3AEAAAAAAAAAAAAWEBbqAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAACWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGAB/w+ev0qTq25k9gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_name = '最大尝试次数P3'\n",
+ "y_choose = [0, 1, 2, 3]\n",
+ "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n",
+ " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n",
+ " 'palette': sns.color_palette(\"deep\")[0:4]})\n",
+ "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n",
+ ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n",
+ "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n",
+ "sns.set_theme(style=\"whitegrid\", rc=config)\n",
+ "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n",
+ " markers=['o'],\n",
+ " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n",
+ " palette=y_prop.loc[y_choose]['palette'].to_list(),\n",
+ " legend='brief')\n",
+ "ax.set_title(x_name)\n",
+ "for item in df_x.groupby('响应变量'):\n",
+ " for x, y, m in item[1][['水平', '均值', '均值']].values:\n",
+ " ax.text(x, y+0.05, f'{m:.2f}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\2665207915.py:10: UserWarning: \n",
+ "The markers list has fewer values (1) than needed (4) and will cycle, which may produce an uninterpretable plot.\n",
+ " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAViCAYAAADtEQplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3zO9f/H8ee189iY2RyHhYTIIRT5Rk5lOZVCDuWQ87GcIjkmKXKKCIUO+KaSU6ISSTmUcpbz2YzZbDa2a9f1+2M/13eza9t1zXXtuvC4327fW5/Pdb0Pr89m6ns9936/DWaz2SwAAAAAAAAAAAAALuXh6gIAAAAAAAAAAAAAENwBAAAAAAAAAAAAboHgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAADYJS4uztUlAAAAAMA9ieAOAAAAgEtFRUVp6tSpSkxMdFkNSUlJDhvr8OHDdzzGsWPHdOPGDQdU43gmk0kvvPCCXnvtNZ05c8bV5WTpwIED2rNnj6vLcCmz2ezqEuzyxx9/3HU1AwAAAI5EcAcAAADApUJCQvT333+rVatWOnDgQK7Pf+7cObVr104ffPCBQ8br1q2bOnXqdEeB0bp161S/fn1Nnz5dUVFRDqnLUTw8PDRx4kRt3LhRERERmjFjhkODT0eaO3euOnbsqNWrV9vd9/z589q/f78TqnIMW8OtmTNnasKECTp27JiTK7pzSUlJ6tmzpzp16nRX1AsAAAA4A8EdAAAAAJcyGAwaO3asJUDLSciSU7/99puef/557d+/X/PmzdPHH398R+NduXJFUVFR2rFjh9q0aaNBgwbp1KlTdo+TJ08eXb16VR999JGeeuopDR8+XLGxsXdUmyPVqFFDr732mpKSkjRnzhy98MILbrf67vDhw9q4caNu3rypIUOGaNq0aXat5Lp8+bKef/55dejQQRs2bFBKSooTq7WPyWTSSy+9pO3bt2fb9sEHH9Tnn3+uiIgIvffee7lQXc7t2bNHN27c0M6dO9WyZUu3DoUBAAAAZ/FydQEAAAAAUKZMGb300ktasmSJhg4dKk9PT0VERFht+/HHH2vq1KlOqWPq1KkKCAhQ+/btc9T/4MGDlmuz2azffvtNdevWValSpewax8/PL939o48+qvz58+eoJmfp3LmzVq9erYMHD+rw4cPq0KGDvvnmG4WEhLi6NEnS5MmTZTKZJEleXl6KiYlRdHS0ChYsaFN/X19fSdKuXbu0a9cuValSRZ9//rl8fHycVrOtfv31V+3evVtdunRR37591bt3b3l4WP+93KpVq0qSmjRposGDB+dilfb78ccfLdfJycmaN2+evLy81LdvXxdWBQAAAOQugjsAAAAAbuHVV1/V559/LpPJpAkTJqh+/frKkydPhnY9evSQJO3fv19Vq1ZV6dKllS9fPgUGBspgMFjaffPNN1qwYIGk1BVi48ePt6mOzAIQW+zcuTPd/bx581S9enW7x/Hy+t//VRs2bJjatGmT45qcxdPTU2+++aY6duwoSYqMjNTMmTNt/jrfzmg0pnvuO7FmzRr99ttvkqTSpUtr2rRpKl++vF1jpK2lVKlSmjJlSpahXWJiovz9/XNWsJ2WLl0qSUpJSdHMmTO1a9cuzZ492+rPS7FixVS4cGGdPn1anp6euVJfTm3cuNFyXahQIX3++ed2h94AAADA3Y7gDgAAAECuOX36tAwGg0qUKJHhvcKFC6tKlSravXu3oqOjtW3bNjVq1ChDO5PJZAnvsnJrtZUk9e7dW2XKlLmz4m2QduvCChUq5Ci0k5QuYAkICLjjupylZs2aeuihh3T48GFJUkxMTI7GOXXqlHr06KGxY8eqdu3ad1TT5cuXNWHCBElSnTp1NHPmTAUGBto9Ttrgrm3btipZsmSmbXfv3q3XXntNixYtUnh4uN1z2eP8+fPasmWL5b5cuXLq2bOn1dDulvr162v58uU6ceKEHnjgAafWl1O7du3S2bNnLff9+/cntAMAAMB9iTPuAAAAAOSamTNnauvWrZm+/8gjj0iS8ubNq8qVK2d4/+zZs2rRooUlKMrK+fPnJaWuuKpbt24OK7ZdQkKC9u3bZ7lv165djsdy95VRaTVv3txy3bZtW7v7nzp1Si+//LJOnjypXr166ffff89xLSaTSUOHDlVMTIyefPJJzZs3L0Nod+TIkXQruzJj6/fg+PHj6t27ty5cuKDu3bsrOjo6R7Xb6tNPP7Wct+ft7a3Zs2fr8ccfz7JPkyZNJEnff/+9U2u7E19//bXl+oEHHlDr1q0dNrY9ZxsCAAAArsaKOwAAAAC54vr169q0aZPCw8N17Ngxq23y5MkjT09PDR06VPHx8YqPj7e8ZzabNWTIEB05ckSdOnXS/PnzVaVKlUznu3DhgiTppZdecuyDZOK3335TcnKypNTgMW2gZa+0W366u4cffliSNGDAAD3xxBN29b0V2l28eFGSdOPGDfXq1Utz587N0cq7Dz/8UNu2bdNjjz2m2bNnW93aMigoSG+//ba++eYbjRs3ToUKFbI6li1bpu7evVu9evWyrDQ8ffq0evXqpSVLlmQ4p9ARoqOj9dVXX1nuO3bsmOVKwFsee+wx5c+fX99++6169uzpdsHwtWvXtH79esv9oEGDHFbjL7/8otmzZ2vevHkKDg622mbAgAH64YcfbB4zT548CgwMVLFixVSlShXVr1/frj+v33zzjUaMGGFze2tWrVqlhx566I7GAAAAgHsiuAMAAACQK77++mvFx8dr1qxZmjVrVpZtx44dm+X7sbGx6t27txYtWqRy5cpZbXPmzBn5+PioRYsWOS3ZLhs2bLBcN2vWTHnz5s3xWM4K7m4FY3eyqi0zM2fO1MyZM+94nJyGdxs2bNCcOXNUsWJFzZkzJ9Pz6EJDQzVlyhS9/PLLat68uSZNmqQGDRpkaJddcLRq1SqNGjVKN2/elJS6svPVV19VuXLlnLbCa8mSJUpMTJSUGkD27t3bpn7e3t5q2rSpli1bpjVr1qhly5ZOqS+nli9froSEBElS5cqV9cwzzzhk3F9++UX9+/dXUlKSOnfurEWLFlkN70aMGKHevXtrz549GjdunGVFY3h4uEaOHKmiRYta2t64cUPXrl3T0aNHtWPHDn3++edatGiRypQpo9GjR2e7+tER/P39VbZsWafPAwAAANcguAMAAADgdFFRUZo9e7Ykadq0aYqIiLB7jMOHD6tly5YKCQnR6NGj9dRTT8nb29tq2+vXrys6OlpNmzZVUFBQluMajcZ055nlRHJysn755RfL/Ysvvphtn/j4+Fw/v87Pz0/z5s3TxIkTFRAQoIoVKyokJESBgYFOWSF2J3x9fW1uu3PnTg0dOlTh4eFasGBBtl/XmjVrqkOHDvrss8/Up08f9e/fX3379rVprmvXrmncuHFas2aNJKls2bLq2bOnmjVrZtMqvZy6evWqvvjiC8v9kCFDlD9/fpv7d+rUScuWLdPcuXPVvHlzh9Z67tw53bhxI8f9v/zyS8v1888/n+mKXHscPnxYw4cPV1JSkuX+lVde0eLFizOEd0WLFlXRokVVoUIFrVixQnv27JEkvfzyy6pXr57V8evWravOnTvr3LlzeuONN7Rjxw516dJFr7/+urp3725TjQEBATn6u6dy5cput2oSAAAAjkNwBwAAAMCprl69qu7du1u2E0y7UmTNmjU6ffq0unXrlm1QM3v2bIWFhWnx4sUqXry4JGndunWqXLmySpQoka7tmTNnJCnb1XYpKSl67bXXVKJECQ0bNszeR7PYvn27rl27JkkqX7681fP50tq4caMmTJiguXPnqmLFijmeNyd8fX01fvx4m9quW7dOV69eVfv27XO8CnDDhg1asWKFBg0a5JRn/fXXXzVgwACFhobq008/VcGCBW3qN3DgQK1bt05XrlzRzJkzlZSUpNdee83y/u3Bltls1po1a/T+++8rMjJS1atX16uvvqoGDRrkytams2fPtvwZe/TRR/XCCy/Y1b9s2bKqW7eutm7dqu+++07PPfecw2o7c+aMevXqZVkNeCfGjRvngIqs+/fff/Xyyy9r8eLFmf45SRtg+/v7Zztm8eLFtXDhQr388svavXu3pkyZouDgYJvO6JszZ44ee+wx2x8AAAAA9wWCOwAAAABONXHiRB08eFCS9MADD+jBBx+0vPfjjz/q+++/14oVKzR06FA1bdrU6hj//vuv/v77b3355ZeW0E6S/vjjDw0fPlwdO3ZUp06dLCvwDhw4oICAAFWoUEFRUVGZ1vb+++9btrj08fHRoEGDcvSMq1atslw3btw4yzmvXr2qN998U7GxserQoYPef/99NWrUKEfzOtujjz6qZs2a6aefftL7779vcyiW1rZt27R582Zt2bJFTZo00cCBA1WmTJk7ri0qKkqffvqpFi1apOLFi2vx4sXptjTMTmBgoPr162cJiubOnas6depYgpS0YdyhQ4fUrl07HTx4UBEREerYsaMqVaqU6di7du3SQw89pMDAwBw+XXqnTp3SsmXLJKVuezlu3LgchYVdu3bV1q1b9c4776hOnToqXLiwQ+p7/PHHtXTpUiUnJ6tChQqZroS1pnfv3vr5558lpYZ27dq1c0hNucnHx0djx461bEE6adIk1a9fP0c/LwAAAADBHQAAAACneuihh/T9998rPDxcU6dOtQQOCQkJ2rx5s6TUrfZ2796tp556yuqWjfv27dPHH3+ssLCwdK/7+PgoKSlJn3zyiT755JMM/erXr29znQsWLNDTTz+tChUq2PF0qc+xceNGy70tZ/il7du/f3+7ttfLTYULF9awYcM0atQotWzZUh9++KGqVq1qc3+j0WgJRs1ms37++Wf5+/vrrbfeuqNtQk0mk7p06aIjR45ISj1fbsaMGUpKSlJSUpKSk5OtXqe9N5lMyp8/vwICAhQfHy9JWrlypdXg7sCBA+rYsaPmz5+vfPnyZVvfl19+qfbt26tGjRo5fsa03n33XSUnJ0uSBgwYkC78tscTTzxhWXU3cuRILVy40CH1SbL750aS9u7dawntypUrZ3WLWbPZnCsrGu9U+fLlVaVKFf3zzz+Ki4vT8uXL1adPH1eXBQAAgLsQwR0AAAAAp+revbu6dOmS4SynNWvWKCEhQZLUvHlzjRw50mr/8+fPq3HjxlZXL6Vd2bN27VoVKlTIrtpGjx6t77//Xv7+/vriiy9yFD5s2LDB8hyNGzfWO++8k2X7HTt2pDtPLU+ePCpfvrzbBhStW7fWl19+qQMHDuiVV17R3LlzVbt2bZv6/vrrr7py5Yqk1JD1s88+syv4y4yHh4cGDRpk+TqmPV9Qkjw9PVWkSBGFhYWpWLFiKly4sAoVKqTChQurSJEiKlKkiEJDQ+Xp6amPP/5YU6dOlaRMV4o9//zzeumll2yuz2g06uLFizl7uNt8//33lnCrRo0aevXVV+9ovBEjRqhly5baunWrPvzwQ/Xr188RZebIe++9Z7kePny41XPbVqxYoS1btqhTp06qVatWbpZnt2rVqumff/6RlPpnkuAOAAAAOUFwBwAAAMDpbg/tpNRVSZKUP39+jRgxwmq/Q4cO6dVXX1VoaKgWLlyo4ODgdO/7+PhYrgMCAmxaDWWtrrx58+rhhx+2q+8t3377reW6W7du2dawd+/edPcTJkzQf/7znxzNnRs8PDw0YMAA9erVSzdu3FD//v21Zs0aFSlSJNu+y5cvt1yPHz/eIaHdLY0aNbKscAoJCVHDhg1VvXp1Va5cWSVLlrR5u8bnnntOM2bMkNFoVMOGDS2v30mImpSUpBMnTuS4/y0xMTF6++23JaX+nEyePDnD2Xv2Klu2rDp27KhFixZp1qxZyps3r7p06XLHtdrrxx9/1I4dOyRJ9erVU926da228/X11YYNG7RhwwaVL19enTt3duj5fI6UdqvW06dPu7ASAAAA3M0I7gAAAADkut9++81y7l1sbKzq1KmTZfuoqCi1b99en376aboPx+05S8sZjh8/ru3bt0tKXW1TrVq1bPts27bNcl2jRg1FREQ4rT5HqV+/vsLDw3Xy5EnFxcXpww8/tARKmTl58qRlJZyzwpbhw4fr7Nmzat68eY4DrdDQUDVr1kzlypVTvXr1HFJXfHy8/v333zseZ/z48bp8+bIMBoPee++9DFvF5tTgwYO1fft2HTx4UO+++64MBoM6d+7skLFtcfPmTU2aNElSajCX2WpbKXVF6i0nT568oy1WnS1v3ryW61vbrwIAAAD2IrgDAAAAkOvmzp0rKXX1z4wZM6yubrpy5Yq6du2q5ORk5cmTRy+++KKCgoLStckuuPvyyy9VqVIlPfLIIw6r/fbxzWazJNm0heG1a9e0f/9+y33v3r2dUpejGQwGRUREaM6cOZKknTt3Ztvns88+k9ls1hNPPKFhw4Y5pa5HH31Ujz76aI76xsXFydfXVz4+Ppo8eXKWbW+dL2erqKgo/fvvv0pMTJS/v3+O6lu6dKnWrl0rKfXPiT3nNWbHx8dH06dP1/PPP6/r169r0qRJOnz4sMaMGWP1jElHmz9/vs6ePStJ6tWrl8LDwzNt6+vra7nu3LmzGjdu7OzyciwuLs5yffvqYAAAAMBWd7bHBgAAAADY6bffftOOHTvk7e2tqVOnqmzZsipTpkyG/61cudISmEycOFHdunXLEIJkt53hgQMH1KZNGw0dOtRhZ47dcv36dcs2mZUqVVKjRo2y7bNjxw6lpKRIkh544AE98cQT2fa5FQy6WtrnK1euXJZtr1y5ohUrVqhkyZKaNm2a1bPLbjdt2jTt2bPH7rq++uorrVu3zq6vk8lk0qBBg9S1a1fFxsZabZM2FN6+fbvN4588eVKnTp1SbGys3nrrLSUlJdlc1y0HDhywnJUYERGhAQMG2D1GdsLDwzV58mTL9+abb75Ru3btdPjwYYfPldbp06f18ccfS5LKlCmTbeCd9s+OtS13M+OKn5tLly5ZrkuUKJHr8wMAAODewIo7AAAAALkmJSXFsrppwIABKl++vNV2e/futYRi7du3z3Q7yey2R/T09JTZbNaqVau0ceNGDR06VB06dLiDJ/iflStXWrbDe+2112zq8/PPP1uuW7dubdM5auPHj9cvv/yiZs2aqX79+ulWIN2pPXv2KDk52aZVaxUrVlSRIkV05coV9e3bN8u2n3zyiTw8PDRnzhzlz58/y7Zms1njxo3T0qVL9fnnn2v+/PmqXr26zc8QFRWlUaNGacGCBerQoYNNK8b++OMPbd26VZLUtm1bzZ8/P0PQEhgYqAIFCujq1avatm2bXn75ZTVq1EgFCxbM9Pt24cIFy0pDSVq9erX8/Pyy3Vb09ufp27evkpKSVKdOHU2ePPmOztvLjMlkUuPGjfXOO+9oxIgRMplMOnjwoJ5//nm1b99eAwYMUGBgoMPnHT9+vG7evClJGjduXLpzKq3JyRaov/zyi2bOnKlp06apVKlSOaozJ26d2SfJ7nMrT548qXXr1mnXrl06e/asYmNjFRgYqFKlSqlJkyZq2bJlrqyGBAAAgOsR3AEAAADINZ999pkOHz6sKlWqaMOGDdq5c6caNmyoJk2aWLaWS0pK0siRI2UymfTwww9rxIgRmY6X3Yf6aVfoVKhQwWHb7CUnJ2vBggWSpKCgoHRnW2XV56effpKUWneLFi1smmvAgAE6ePCgJUiJiIjQCy+84JDtP8+dO6dBgwbpiSeeUL9+/bIMzAwGg9544w1JyjRwlaSYmBgtW7ZM7733nh588MEs5zeZTBo1apS+/vprSanngnXr1k0ff/yxatasadMz3Aoy9+/frxkzZihfvnzZ9klISLBcnzhxQuvXr1f37t0ztOvataumTp0qKTWUSRvM2KJWrVp6/fXXbW6fkJCgnj176vz586pZs6ZmzZqVbbCVEykpKRo+fLiCg4M1cuRIJScn66233pLZbJbRaNSSJUu0atUqtW7dWu3bt3fY2Xrr1q3Tr7/+ark/ePBgtltKpl3FdvXqVR07dizL9tHR0RoyZIji4uL03HPP6e23386VcyQPHDigAwcOSJL8/f3VqlUrm/vOmjVLc+bMkclkSvd6TEyMzpw5o61bt2rBggV67733bDpHEwAAAHc3gjsAAAAAueLkyZOaMWOGKlSooE8++UR58+bVli1btGDBAo0fP161a9dW8+bNdfjwYf3777/Kly+fZsyYkWVwkV1wl/aD8GnTpqlQoUIOeZaVK1fq/Pnz8vT01LPPPqt27dopPDxcbdu21Ysvvmh1pdK2bdsUExMjSapevboKFy5s01wFChTQlClT1LRpU40ZM0bLly/X8uXLVaFCBXXq1EnNmzfPcbhza+vR3377Tb/99pvN/QYNGpRtm379+uWopoSEBHXv3l0fffSRateunW37tFtaDho0SM8//3y2fbZt26YuXbpIkl5//XWroZ0k9ejRQ0WLFtXatWt1+fLlDMHK7Xx8fBQUFKSSJUuqXr16qlOnjs2r5ZKTk/Xaa69p//79atiwod59911FRkYqMjLSpv72+Oijj7R69WpJqSse33zzTYWEhGjIkCGWVaQxMTFauHChPv30Uz366KN6/PHHVbduXVWtWjVHc0ZHR2vChAnpXps4caJdY3zxxRf64osvbG5//fp1jRw5Ug888IAqVKhg11z2SExM1Lhx4ywrLfv27asiRYrY1Pedd97RkiVL9NRTT6lly5Z6+OGHFRoaqoSEBO3evVsff/yx/v77b50+fVpdu3bV/PnzVaNGDac9CwAAAFyP4A4AAACA0yUnJ2vIkCEqUqSIFixYoICAAElSvXr1VK9ePe3evVtz587V8OHDLX26dOmS7TlR2YUiaYMWe87HyorRaNS8efMkpQY7gwYNUtmyZTV+/HhNnjxZs2fP1quvvqpu3bqlC9TWr19vuc7JCqCGDRuqWrVqeuONN7R582YdPHhQI0eO1IwZM9SnTx+9+OKLNp0ll1barfcqV65s2cbUHdi6Jai9z3y7ypUrZ/l+8+bN1bx58zuaIzvJyckaMGCAfvnlF7Vr106jR4+Wh4eHpkyZouXLlzt17iVLlujBBx9UmzZt9NVXX6lPnz46ceKE5X2TyaSdO3dKSt0+NKfB3ciRIxUdHa0SJUro4sWLSk5OVpUqVfTf//43y367du2ybG/br18/9e/fP9u5KlasqJSUFBUvXlyLFi1SyZIlc1SzLU6dOqXhw4fr77//liS9/PLLmQbBt/vmm2/0/fff66OPPtJTTz2V7j0/Pz81bNhQTz75pAYPHqwffvhBCQkJGjRokNauXZvtFrQAAAC4exHcAQAAAHC6SZMm6caNG1q8eLFCQkIyvF+tWjUNHDhQO3bssGxjOGPGDG3evFmvvPKKnn76aasBTXahza0VMLa0tdXy5ct15swZVapUyXLWW/v27ZWYmKj33ntP8fHxmj59un755RfLysKkpCTLNpm+vr5q1qxZjuYODg7WvHnz9NFHH2nmzJkym82KjIzUmDFjtGrVKk2fPj3Hqwr9/PxUpkyZHPV1JUd9X2+XkpLitLHTSkpK0qBBg/T7779r8uTJ6bZYHDdunBo0aKCyZctmul1ltWrVLD8zGzZssOlMt6FDh2rVqlWSpF69eumFF16QJJUuXVpff/21Zs6cqc8++0wpKSkKCwvTtGnT7mhr1oULF2rTpk3Knz+/5s2bp9atWys5OTnH49mqePHiDg/tTCaTrl69qn379mn9+vVas2aNkpKSFBQUpDfffNPmLXCl1JW7kyZNyhDapeXt7a133nlHf//9tyIjIxUVFaVp06Zp7NixDngaAAAAuCP7T3kGAAAAADts3rxZR48e1RdffJFpqHT27Fn16NFDCQkJqlmzpjp16iQPDw/9/fffeu2119SkSRN9/fXXGbYqTBvMWXPz5k3LddrVZTkVExOjmTNnKl++fJo+fXq6bRq7deumTp06We7//vtvrVu3TlLq2V6xsbGSpMaNG9/RahmDwaA+ffpo+vTp6Vb0/fnnn+rZs6eSkpJyNG52X0t35axwrXPnznr//fd15swZp4wvSbGxserWrZtOnz6t5cuXZzgXzWAwqH79+pmGdlFRUZbQLk+ePDaHVHFxcZbr9u3bp9tyNm/evBoxYoRWrFih2rVra9GiRXcU2v3++++aOnWqvL299eGHH95V4fCbb76pihUrZvhfnTp11KNHD61bt05Vq1bV6NGjtWnTJptDu1tf7yeeeMKmrV0DAgLUuXNny/13331n2dIUAAAA9x5W3AEAAABwqlq1aqlu3bqZBixXr17Vq6++qqioKJUvX15z5sxRvnz5FBERoZEjR+rEiRM6e/asRo4cqS+++EIzZsywbKGZXdiUmJgoKTUAsXXrxazMnDlTMTExmj17ttVtPN944w3t379ff/31lyRZzidLey7XrdVNd+qZZ55RYGCgevfubQkoDxw4oC1btqhRo0YOmeNukHa71BEjRmjEiBEOGffGjRtasGCBPvnkE9WrV08DBgxQxYoVM23/1Vdf6caNG+nC26ycO3dOffr0UaNGjdSzZ88cnVN4+vRpy3W5cuVsPk/v+vXrluvMAu2KFStq0aJFdteU1rFjxzRw4ECZTCZNmjRJtWrVuqPxctuAAQPUsGHDDK97enoqX758KlCgQI624G3VqpXq1atnV99nn33WspVtQkKCfvrpJ7Vs2dLuuQEAAOD+CO4AAAAAOJW/v3+m7127dk09e/bUiRMnVKFCBX366afKly+fJKl69er69ttv9d577+nLL7+UJO3fv1/du3fX2rVr5enpmW1wd+PGDUmpq4jSrirKiT179mjZsmUaMGBApsGYl5eXJk6cqBYtWig5OVkPPPCA9u7dqz179kiSSpUqpccff/yO6kjriSee0JQpUzRgwADL1+Ly5cs290+7Os8RKxJdIW0g/Prrr9sUWv79998aOXJklm1uraY0mUzy9fVVeHh4pm3/+ecfjR8/XiaTSWXKlFGdOnWyrcFkMmnKlCl68MEHs22bmePHj1uuH3roIZv7pQ3uHBFoW3P58mX17NlT165d04QJE9KFTHfL6s7ChQurXLlyThm7QIECdtdStmxZHT16VFLq30cEdwAAAPcmtsoEAAAA4BJXrlxRp06d9M8//6hGjRpasmRJhg+z/f39NWbMGM2YMUN58+aVJJ04ccLy4XV2AcC1a9ckKdutKbM7byshIUFDhw5V8+bNLefaZaZ06dLq1KmTSpYsqQYNGqRbbdejRw+bV0XZqkmTJurRo4flPquA6Xa3ViRKsnx972ahoaEqU6ZMtv8rWrRotmPdCu6KFCmiGTNmKE+ePFbbnTx5Un379lVSUpKMRqMGDRqkkydPZjt+iRIl7ii0k2RZ2SmlnnVnq1s/F5Jzgru4uDh169ZNZ8+e1YQJE/Tiiy+me/9uCe7cTdptRo8cOeLCSgAAAOBMBHcAAAAAct358+fVvn17HTp0SE8//bQ++eQTy0o7a5555hl9+eWXCg0NlfS/VXwpKSlZznMroChYsGCW7bI7F+7999/Xgw8+qIkTJ2bZ7pZhw4Zp1apVunz5stasWSNJCgsLy3CGmaMMHDhQ//nPf1SgQAFVr17d5n5pg7vMgil35+gg9JZb2xhmdYbev//+q44dOyoqKsryWuHChTV37txs/2w6Qtrg7oknnrC5360z7vz9/R3+9bt+/bp69OihI0eO6O23384Q2kkEdzmV9ozQW2dmAgAA4N7DVpkAAAAActXu3bs1cOBARUZGqlevXho0aFCW4cHff/+t/fv3q0OHDlq+fHm68+WyC0dufbhdpEiRLNtlF9y1aNFClSpVsvlMKoPBIH9/f82ePduymq9Xr145Og/LFp6enpozZ47Onz9v11lpabdMDA4OdkZpd62sAjspNTTr3bu3YmJiJKWuhho+fLjq1auXC9WlbkV5a2XfQw89lC7Uyc6t4M7RYW1CQoJ69uypQ4cOac6cOapfv77VdgR3OZN2VWza0B0AAAD3FoI7AAAAALlm8eLFev/992UymSRJHh4eOnfuXKbtL126pN69eys2NlY+Pj568cUX9c4771jevzWONTdu3NCVK1ckpa52y0pKSopSUlIyDWvs2YbwluPHj2vVqlWSUrfPdNZqu1t8fHzs2iZTkiV0klJXiuF/sjoTcdGiRZoyZYqSk5MVHBysfv36qW3btk4LZq3ZsGGD5bpu3bo294uLi7ME3o4M7uLj49WzZ0+dPXtWS5cuVfny5TNtS3CXM2l/UeFuXSELAACA7BHcAQAAAHC66OhojRs3Tj/99JNefvllBQUFaerUqZozZ47mzJlj0xijR4/Www8/rIoVK1pey2ql3OnTpy0BQdmyZbMdPykpybIFpyPMmjVLKSkpMhgMGj9+vOXMNHdyLwR3ztoq01pwFx0drdGjR2vjxo3y9/dXt27d1L17dwUEBDilhqysX7/ect2iRQub+6X9nme1Pa09YmNj1b17d0nSf//732z/LN3PwV10dLQmTpyogwcPqn79+ho2bJjNfRMSEizXgYGBzigPAAAAboDgDgAAAIDTmM1mrVixQh988IHq1Kmj77//XiVKlNBnn30mSQoKCtKWLVsy7b9z505169ZNkjR58uR0oZ0kyzaU1hw/ftxyXaFChWxrdWRwt337dq1bt06S9MILL6hmzZoOGdfR0oY4JUuWdF0hdyBtCDRixAiNGDHCIeOmDQRv/TmeMmWKrl+/rrZt26pv374uCzujoqK0a9cuSVLlypWzXN12u7RnozkiuIuMjFT37t31n//8R4MGDbIpoM5qpey9bujQodq6dask6dixY3rqqads/vshOjracl2qVCmn1AcAAADXI7gDAAAA4BRms1ndu3dXwYIF9fnnn6tMmTJW2/n6+mY6RtoQoHbt2hneTxvc3b7y6vfff5eUei5UuXLlsqz1iSeeyLIOe9y8eVNjx46VJIWGhmro0KEOGdcZbm1T6uHhodKlS7u4mjv3+uuvq1GjRtm2+/vvvzVy5Mgs29z683T9+nW1b99ef//9t5o1a6b+/fu7PORcvny5ZdvEF1980a6+acMfRwR3I0eO1PDhw/XEE0/Y3Od+XXF3/fp1S2h3y5kzZ2wO7tL+MkKlSpUcWhsAAADcB8EdAAAAAKcwGAyaNWuW1VVsjvrg/saNGwoKCtLw4cMzrH7atm2bpNRQLrOzx8LDw/XRRx+pQYMGDqlHSl0ZePz4cXl7e2v69OnKnz+/w8Z2tGPHjkmSSpQoIT8/PxdXc+dCQ0MzDYjTioyMzLbNra0yr127puLFi2vixIk2h5spKSk6cuSIXSvhbJWUlKSlS5dKkgoWLKjmzZvb1T9tcBccHHzH9Xz88ceZng1pzf282s5oNKa79/T0VJUqVWzqGx8fny64s/aLDAAAALg3ZH7aNgAAAADcocy2nsxJcGftA//atWtr3bp1ev7559O9vnv3bp0+fVqS1KpVK/39999auXJlhjH69evn0NBuw4YN+uKLLySlbttYo0YNh43taJcvX7ZslWlreHA/Klq0qKZMmWLXisSrV6/qrbfecko9a9eu1eXLlyVJvXv3Vp48eezqHxUVZbkOCQm543rsCe2kjOHV/SR//vwKDQ213L/44os2Bc2StGXLFssK41q1arFVJgAAwD2M4A4AAABArstJcGetz9NPP62CBQtmeP3WGXqFChVS/fr1VbZsWf30009q3ry5fvrpJ/sLtsGhQ4c0fPhwSVLr1q3VoUMHp8zjKP/++6/l2p5tDt2Ns7ZdvH3rVXvEx8fr6tWrDqwmVVJSkj788ENJUvHixdW2bVu7x0gb3KUNkXKLvSvu7P3+ms1mt96K84UXXrBc169f3+Z+S5YssVx3797dkSUBAADAzRDcAQAAAMh1Odkuz9Y+hw8f1g8//CBJ6tu3rzw9PRUQEKBZs2YpIiJCffr0UceOHXXgwAG7a8jM2bNn1bNnTyUkJCgiIkITJkxw2NjO8vPPP0tKXRVpy7lw7spZWy/eSXCXkJCgyMhIhwdICxYs0NmzZyWlruj08fGxe4zz589brosXL+6w2mxl74q7zL6/p06d0u7duy2rRm/Zu3evW2/H2atXL5UtW1aSdPLkSZv6rFy5Urt375YkPfvss3ryySedVR4AAADcAGfcAQAAAMh1Oflg/dY2cdmNO3r0aBmNRpUrV04vvvhiuvf79u2r4sWL680331Tr1q3Vtm1bDR48WIGBgXbXc0tkZKS6dOmiixcvqmnTppoyZYrd2wdmxVmrh26tPHzuuecUEBDglDlygzuurkpKSlJSUpIuXryookWLOmTMvXv3as6cOZJSV3Q2btw4R+OcOXPGcl2iRAmH1GaPlJQUu9qn/bsi7fc6NjZW48eP14EDBxQQEKDChQvLz8/Pcm6jJKurcbNz48YNy/X169ft7p8dPz8/ffrpp+revbtmzZqlEiVKZBmc//jjjxo9erQk6bHHHtPEiRMdXhMAAADcC8EdAAAAgFznrOBu9uzZ+vvvv5UnTx5NmzbNaoDWqlUr+fr6asiQIVq6dKk2bdqkd999V7Vr17a7pjNnzqhLly46c+aMnn/+eU2YMMEhoV3agMIZwdS+fft0/vx5+fj4qFu3bg4fPze54+qqW6vK9u/f75DgLjIyUn379lVycrJq1KihsWPH5micpKQkHT9+XFJqgOSK4M6Wn+O00n5/04Z+jzzyiL799lvLz2/awO6Whg0b2jTHiRMndPPmTe3du1f79++3vL548WKVKFFCxYoVU8GCBXMUBFpTqFAhLV++XLNnz9Zrr72msLAwNWzYUI888ohCQ0Pl4eGh06dPa926dfr555/l7e2trl27auDAgfLz83NIDQAAAHBfBHcAAAAAcp29q26k1NAhK8uWLdOHH34oT09PTZo0ybIdnTVNmzZVXFyc3nrrLV28eFHdunXT2LFj1aZNG5vrOXjwoHr06KErV65oxIgR6ty5s819s5M2rHNGMPXFF19Ikjp16qSwsDCHj5+bcvL1uXnzps1to6Oj7R7/0qVLkqQNGzbc8Tak0dHRevXVVxUZGalq1app3rx5OdoiU5K2bNli+TmqUKGCPDxy//QMe7fKTPt3hbXv9VNPPaXatWtr+PDhWr9+veX1unXrqlmzZjbN0a1bN507dy7D62fOnFHPnj0lSf369VP//v3tqj0rfn5+Gjx4sLp06aKVK1dq27Zt+u677xQTEyMvLy8FBwerZMmSGjZsmJ5++um7/ucUAAAAtiO4AwAAAJDrbn0YHxMTo4ceesimPgkJCZm+N3/+fE2dOlXe3t56//339cwzz2Q7Xps2bXTw4EF9+eWXSklJ0dixY1WyZEk9/vjj2fbduHGjhg0bJj8/Py1cuDBHq/WykjbcsHeFUnbOnDmjVatWqUSJEurXr59Dx3aFnITA+/bts1xntqLR29tbkpSYmKidO3eqZs2aNo+/YcMGSdLq1av15JNP2hwg3e7ChQt69dVXdfToUTVo0EBTp05Vnjx5Mm1/5swZFSxY0Gqb69eva9q0aZZ7W/6cO0NSUpK8vb3VqFEjderUKdv2aX8WMvte+/n5acqUKfr33391+vRpvfTSSxo2bJjN5xTeOu/RFYKDg9W1a1d17drVZTUAAADAvRDcAQAAAMh1t8KofPnyadmyZZm227t3r4YPH67AwECr57AlJCRozJgxWrVqlYoUKaKpU6eqRo0aNtcxfPhwbd++XceOHVNKSorGjBmj9evXZ/qBv9Fo1AcffKBPPvlEzz77rN58800FBwfbPJ+t0q4scnRwN3fuXEnSu+++m2UIdLfIKrgbOXKktm7dqpCQEAUHBytfvnwyGo3pghp/f3+rfdMGyq+//rr69u2rUqVKWQI9axITE7V+/Xp9//33klK/j4MHD1bx4sVVrVo1u57rn3/+Ud++fRUdHa3+/furb9++2QZRX3/9tb788kv5+voqLCxMxYoVU4ECBSRJv/zyi+V8O29vbz3//PN21eMoISEh2rx5s83bTqb9/mb1s+Dt7a0JEyaoRIkSKly48B3XCQAAALgKwR0AAACAXHdruz4PDw+VKVMm03ZXrlxRs2bN9MYbbyg0NDTde//884+GDRumkydPqlmzZho1apQlpLDVrZU6L7zwglJSUnTy5EkdPnxY5cuXz9D21KlTGjZsmKKiojRv3jzVq1fPrrnskXZbUHu2dczOwYMH9d133+m1116zK+B0Z1ltvfjOO+/o6NGjWrZsmf773/9m+Frmz59flSpVstq3WbNmmj9/vmJiYnTp0iWNGTPG7toMBoN69OhhV2hnNpu1cOFCTZ8+XcWLF9esWbNs7j9o0CD16tVL3333nWbNmqW//vrLartu3bqpZMmSNtfkSHny5LErME77/b1x40aWbe+VP9MAAAC4v+X+hvYAAAAA7ns3b95UwYIFNXLkyCzb1ahRQ1OnTk0X2sXHx+udd95Ru3bt5O/vr88++0xTp061O7S7pWLFimrXrp3l/vbzw8xmsxYvXqwePXqoRYsWWr9+vVNDOyl9cJfVFqH2uHnzpoYOHapnn31Wr776qkPGdAfZrUgsW7asRo0apdWrV6tcuXLp3hsyZEim58UVKVJEn376qerWrWvXmXIeHh4qWrSonn/+eX3++ed6/fXXbe577NgxdezYUbNmzVLv3r21evVqu1fq+fn5qW3btlqzZo1q1aqV4f2GDRs69Kw2Z0v7/U1MTHRhJQAAAEDuYMUdAAAAgFxXr149DRw4UPnz58+ynYfH/37XMCUlRStWrNDMmTNVtGhRffjhh2rQoIHN51hlpX///lq7dq0CAgJUunTpdO8ZDAYVLVpUq1evtivAuRO3VhYFBgbqgQcecMiYH3zwgQoXLqwJEyY4ZDx3cevMtDZt2qh+/fqZtitVqpQWLFigZ555RkajUUOHDlWbNm2yHLtixYpauHChzGazoqOjsw0JPTw8FBwcLC8v+/6v9rVr1zRv3jx9+eWXat68uaZOnaoiRYrYNcbtgoKC9NFHH6lZs2a6cOGCDAaDOnXqpKFDh9pdnyul/Zpnt+IOAAAAuBfcPf+1DgAAAOCekZMVa1OnTtXVq1c1e/ZsVa1a1aH1FChQQLNnz9a1a9esvt+kSROHzped4OBgvfnmm2rdurXy5s3rkDEDAgL04Ycf5lr4mFuqVq2q77//XiVKlMi2beHChTVq1CjVrFnTrq0iDQaDzWey2evcuXNq3769GjRooFWrVtn0HLYKCAjQK6+8ol27dql79+4O/7nJDcnJycqbN69at26tl19+2dXlAAAAAE5nMJvNZlcXAQAAAADA/SomJkZBQUGuLsMtnTlzRgUKFFBAQICrSwEAAAByBcEdAAAAAAAAAAAA4AY8sm8CAAAAAAAAAAAAwNkI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBrxcXQAA2OrPP//U2rVr9eeff+rChQtKSEhQQECAChYsqEqVKqlOnTpq2rSpfHx8XF1qtg4dOqR169Zpx44dOnXqlOLi4uTt7a2wsDDVrVtXnTp1UrFixeweNzExUWvXrtUff/yh/fv3Kzo6WtevX1eePHkUEhKiKlWq6KmnnlKjRo3k4cHvbgAAAAAAAACAOzGYzWazq4sAgKzs2bNHb7/9to4ePaoWLVqobt26KlKkiJKTk3XhwgVt3bpVq1atUnJyskJDQzVu3Dg1bNjQ1WVbdebMGU2cOFGbNm1SzZo1FRERodKlSysgIEAXL17UwoUL9ddffylPnjyaOHGiIiIibB77iy++0IwZM5SQkKCnn35atWvXVokSJRQYGKj4+HgdO3ZMGzZs0LZt21SyZEm9/fbbeuyxx5z4tAAAAAAAAAAAexDcAXBrS5Ys0aRJk1S9enV98MEHKly4sNV2J0+eVI8ePXTq1CkZDAaNHj1a7du3z+Vqs7Z582YNHjxYPj4+mjBhgtVw8ezZs5bXPTw8NGfOHD311FNZjpuSkqIhQ4Zo3bp1Klu2rD766COVLFky0/Y//vijXn/9dSUnJ2vUqFHq0KHDnT0YAAAAAAAAAMAhCO4AuK3ly5dr9OjRCg8P18qVK+Xv759l+1OnTqlly5ZKTEyUl5eXvvzyS1WpUiWXqs3ali1b1KdPHwUFBWnx4sUqU6aM1XaRkZF68sknLfcPP/ywvvnmmyzHfvvtt/XZZ58pODhYq1atUmhoaLb1rF69WkOGDJHBYNCsWbPUuHFj+x4IAAAAAAAAAOBwHHAEwC1FRUVp8uTJkqSOHTtmG9pJUqlSpdS2bVtJktFo1JQpU5xao61Onz6t119/XUajUdOnT880tJOkq1evprvPkydPlmPv2bNHn3/+uSRp0KBBNoV2ktS8eXPVqFFDZrNZ48aN0/Xr123qBwAAAAAAAABwHi9XFwDcb0wmkxITEzO87uXlJYPB4IKK3NPKlSstYVLx4sWVlJRkU78mTZpo0aJFkqQdO3bo1KlTKlq0qLPKtMmbb76puLg41atXT4888kiWz1K6dGl16dJFW7duVXBwsF577bUs23/xxRcym83y9fVV06ZNbf46SdLzzz+vXbt2KSoqSuvXr1fz5s3tei4AAAAAAAAAcCSz2Syj0ZjhdX9/f3l43B9r0QjugFyWmJioQ4cOuboMt7dx40bL9a+//qr8+fPb1M9oNMrDw0Mmk0lSagBYt25dp9Roi7/++ks7duyQJFWrVk179+7Ntk/jxo0tW1eaTKYs+/z222+SpKJFi+rIkSN21ZY3b17L9Q8//KDw8HC7+gMAAAAAAABAbihfvny6zzPvZfdHPAngrpN2y8iVK1cqNjbWpn5eXl7ptpe8fevJ3LZmzRpJksFgUKVKlRw+fkxMTI77BgUFOWQcAAAAAAAAAIBjENwBcEtms9lynZCQoB9//NHmvl5e/1tMnHac3Hbx4kXL6srixYtne15dTtx61nPnzik+Pt6uvikpKZZrHx8fh9YFAAAAAAAAALAfW2W6mcOHD+ubb77Rjh07dPbsWSUmJipv3rwqVKiQqlSposaNG+vJJ5906VloN2/eVNWqVS1bEebEypUrVaFCBavvNWjQQOfOncvRuEuWLNFjjz2W47rgPsqUKaMzZ85Y7m09u81kMqULsAoUKODw2my1a9cuy3VYWJhT5ggLC9ORI0eUnJys7777Th06dLC578WLFy3XbJMJAAAAAAAAAK5HcOcmzp8/r4kTJ+r3339X+/bt9dZbb6lEiRIymUw6f/68fv31V33++ef66quv9PDDD2vatGkqVaqUS2o9duzYHYV2/v7+Cg0NdWBF/5NZGIi7T9u2bZWQkKAjR44oNDRUjRo1sqnf6dOn0x1eWrp0aWeVmK20Z9MVKlTIKXPUqlXLcrbdunXrVLp0adWuXdumvn/99Zek1G0869Sp45T6AAAAAAAAAAC2I7hzA//884969uypggULau3atSpatGi69wsXLqxq1aqpTZs26tKli/bv36+2bdtqxYoVTlvFk5VbIcEtPj4+Kly4cLrtCa2Jj49XVFSU+vTpo5CQkCzbBgUF2b1SKjQ0VPny5bOrjytk9nUqX768vL29c7ka1zMajTp48GC61ypUqCAvLy/VrVvX7vF+/fVXy3V4eLieeeaZO64xp06dOmW5rlixoipXrmy5379/v1auXKm//vpLly5dko+PjwoWLKiKFSuqcePGqlOnjk0rax944AFt3LhRly5dktls1kcffaSAgAC1b98+y37Xrl3Tzz//LElq166dzcEoAAAAAAAAAMfK6jPS+01ycrLl+KG07qevxf3zpG4qOjpavXr1UkxMjL744osMoV1aRYoU0bRp0/Tcc8/p6tWrGjZsmL788stcrDbVreAuICBAI0eOVLNmzeTr65ttvz59+ujUqVPq0qVLtm07duyo/v3733Gt7iizMMbb2/u+PGfM2tfD29s7RyGm0WjUqlWrLPft27d32df04sWLunbtmuU+ODhYPj4+iouL09ixY7VmzZoMfS5duqSDBw/q66+/1mOPPaZ33nkn23A+ODhYkydPVvfu3WU0GmU0GjVp0iRt375db731looVK5ahj9Fo1KhRoxQdHa2qVavqjTfeuC//7AEAAAAAAADuwJGfkd6rXHl8WG7zcHUB97u5c+cqOjpaDz30kMqUKZNt+/Lly1tWIf3555/asWOHs0vM4OjRo/L09NS8efPUunVrm0K7P/74Qz/99JNGjRrFXzZwmm+//dZyPmJYWJheeukll9Vy+vTpdPd58+ZVdHS0XnrpJa1Zs0aVK1fW5MmT9csvv2jv3r3atGmThg8frrx580qStm/frpdffllXrlzJdq46depo+vTp6X4Wf/75ZzVt2lTvvvuuLl++bHn96tWr6t27tzZt2qT//Oc/Wrhwofz8/Bz01AAAAAAAAACAO0Fw52Lr16+XlLr801Zpz6LatGmTw2vKzpEjR9SyZUvVqFHDpvYmk0mTJk1SvXr1bD57C7DXtWvXNH36dEmSp6en3n33XZeuIrt06VK6ex8fH7322ms6duyYRowYoa+++kqtWrVS0aJF5ePjo2LFiqlr1676+uuvVbBgQUnSuXPnNGzYMJvma9y4seUMzFtu3LihTz/9VPXr19fgwYO1YMECPfvss9q9e7dGjRql+fPnKyAgwHEPDQAAAAAAAAC4I2yV6UIJCQmKjIyUJB07dkxbtmzRk08+mW2/EiVKWK5vX9XjbAkJCTp37pxdK5m++eYbHTlyRFOnTnViZbjfTZw40bKy7M0331TNmjVdWk9MTEy6+zVr1uiPP/7Q2LFjs/z5eeCBBzRt2jS9/PLLkqStW7dq69atNp3399BDD2nZsmV69dVXtX37dsvrycnJWrNmjdasWaOAgAAtXbpU5cqVy9mDAQAAAAAAAHCZP//8U2vXrtWff/6pCxcuKCEhQQEBASpYsKAqVaqkOnXqqGnTpnfF0TiHDh3SunXrtGPHDp06dUpxcXHy9vZWwYIF9cgjj+jpp59WSEiITWPd2sHsTnz00Udq0KDBHY3hCKy4c6HExMR095MnT7apn7+/v+U6KSnJoTVl58aNG+rYsaMqV65sU/vExETNmDFDLVq0UNmyZZ1cHe5X33zzjVauXClJGj58uDp06ODagpQacqe1evVqPf300zaF3o899pgaN25suV+yZIlNc/77779q3bq1/vzzTw0cOFC9e/dWgQIF0rWJj49X+/btLV8vAAAAAAAAAO5vz549atOmjbp37y6TyaT+/fvrk08+0WeffabRo0erSpUqWrt2rYYNG6YGDRrop59+cnXJmTpz5ox69eqlli1b6q+//lKLFi00bdo0LVu2TO+88478/f0tz/LHH3/kWl2VKlXKtbmywoo7FwoODlZoaKiioqIkybL6LjtXr161XBctWtQptWUmODhYo0aNsrn9p59+qitXrqhXr15OrAr3s127dmn06NEyGAx666233CK0kzJuf+vt7a2RI0fa3L9169bauHGjpNRVd9HR0QoODs60/Q8//GDZVnPOnDmqV6+eJKl3795aunSp5s6da/m7Iy4uTsOHD9fu3bs1ZswYeXjwOxwAAAAAAACAu1qyZIkmTZqk6tWr6/vvv1fhwoXTvV+tWjVFRESoR48e6tGjh06dOqW+fftq9OjRat++vYuqtm7z5s0aPHiwfHx8NGfOHDVs2DDd++XKlZPBYNDAgQN148YNzZo1Sz4+PjYvJsqTJ0+OVhuGhISoUKFCdvdzBoI7FzIYDJo+fbqmT5+umJgYm5dx7tu3z3L90EMPOau8OxYdHa2FCxcqIiJC4eHhri4H96DDhw+rb9++lnMUn3vuOVeXZOHllf6v19atW6tIkSI2969Zs6YMBoPMZrNSUlK0e/fuDP8Su+WHH37Qa6+9JpPJpFmzZllCO0ny9fVV586d9cILL2jq1KlaunSpzGazJGnZsmVKSEjQ+++/n4MnBAAAAAAAAOBsy5cv18SJExUeHq4FCxak25HvduHh4Zo/f75atmypxMRETZw4UQ8//LCqVKmSixVnbsuWLerbt6+CgoK0ePFilSlTxmo7T09Py7XZbNbXX3+tV155xaY53nrrLT3//PMOqddVWGbhYjVq1NDnn3+uNWvWqE2bNtm2N5vN2rBhg6TUYKBp06bOLjHH5s2bp/j4eL366qt3NM4ff/yh0aNHq3nz5qpZs6YqV66sBg0aaMiQIdqxY4eDqsXd5tixY+rSpYvi4+M1depUtwrtpNTf7Egrs9AtMwEBASpWrJjl/tChQ1bbHTt2TMOHD1dKSoratWuXbovN28cbM2aMPvnkEwUFBVleX7VqlRYsWGBXbQAAAAAAAACcLyoqynLEVseOHbMM7W4pVaqU2rZtK0kyGo2aMmWKU2u01enTp/X666/LaDRq+vTpmYZ2UuqOYWn5+vo6uzy3woq7u8ymTZt07tw5SVKjRo2y3DrPlSIjI7V06VLVrFlT5cuXz9EYKSkpGj16tFasWCEp9Wy/4OBgmUwmnTt3TufOndPq1avVpk0bjR07Nl0KfzcyGo0yGAyuLiPXGY1Gm15L68SJE+rSpYtiY2M1depUNWzYMMPWlK7m5+eX7j4hIcHuGvPnz2/5eb9y5YrV/uPHj1diYqL8/f3Vt2/fbOeoWbOmPv/8c3Xp0sWyTe+sWbPUpEmTXN96FwAAAAAAAEDmn5F+9913un79uiQpLCzM5s8Xn376aS1atEiStGPHDp0+fdrln/29+eabiouLU7169VSlSpVMn8VoNKpUqVJq1qyZ/vnnH+XLl08vvfRSLlfrWgR3d5GUlBTNmDFDUupqniFDhri4oszNmzdPN2/eVKdOnXI8xltvvaU1a9aoZ8+eatWqlUqXLm15b9euXRo/frwOHz6s//73v0pMTHSb3xzIqYMHD7q6BLdx4MCBTN+7cOGCJkyYoOvXr2vQoEEKDQ3Vnj17crE626Q9i1JK3dazYMGCdo2RkpJiuT5//nyG5zx79qzlcNbHH39cp0+f1unTp20a+7XXXtOYMWOUnJysGzduaPr06W5zPiAAAAAAAABwvztw4IBl9z0pdZvJfPny2dTXaDTKw8NDJpNJkvTtt9+qbt26TqnTFn/99Zdl97xq1arZ9Hlu+/bt3e58vtzCVpl3kcWLF1u2yxs/frxKlCjh4oqsi4yM1FdffaWgoCA1aNAgR2OsXbtW33//vZYsWaLXX389XWgnpW4xunTpUsty2tWrV+u7776749rh3qKiojRx4kTFx8dr4MCBql69uqtLylTx4sXT3cfExNg9RtrfOrl9600p9V94t9j7tQgPD1eLFi0s97t27bK7PgAAAAAAAADOk3ZxwMqVKxUbG2tTPy8vr3SfJ96+yCC3rVmzRpJkMBhUqVIll9ZyNyC4u0vs27dPH3zwgSRp+PDhat68uYsrytzChQuVlJSkiIgIeXt752iMEydOaNSoUapatWqmbfLmzauxY8da7qdPn55uhRLuLTExMXrnnXcUGxurAQMGuHVoJ0mFChWSj4+P5f78+fN2j5E2uMubN2+G99OuritVqpTd4zdu3NiyxWxkZKRu3Lhh9xgAAAAAAAAAnMNsNluuExIS9OOPP9rc18vrfxsuph0nt128eNGyIKl48eJWFyggPYK7u8ClS5fUr18/GY1GjR49Wl27dnV1SZmKjY3VV199JUlq1qxZjsbo0qWLevXqpdatW2fbtlatWpYz9M6fP6+tW7fmaE64t4SEBE2ePFmXLl1S7969VaNGDZv6xcbGumwLUg8PD4WHh1vuz549a/cYt/avlqSQkJAM76c9pDV//vx2j58vX750e1snJibaPQYAAAAAAAAA57i149wtSUlJNvUzmUyKj4+33BcoUMChddkj7U5fYWFhLqvjbsIZd27u2rVr6tGjh6KiovTee++l29rOHf33v/9VQkKC8ufPr2rVquVoDHvPxatfv74lsd++fbvq1auXo3ldrUKFCjleoXg3MxqNGc60q1ixouU3QoxGo3r37q1Tp05p9OjRatOmjc1jL1q0SBs3blTbtm0dWrOtmjVrZlkpe/z4cT3wwAMKDAy0qW9ycnK6JezNmzfPsD1uoUKFLNcVKlTI0W+rFCxY0BIq1q5dO90qQQAAAAAAAADOl9lnpGPHjtXEiRP1zz//qHjx4urfv7+KFSuW7XiHDh2S0Wi03Ddt2jTDcVS55cMPP7RcP/zww3rkkUeybJ+cnOyyxRjuguDOjcXFxalr1646fvy4Zs2alePz4nKL2WzW8uXLJUmPP/64PDxyZ0FnxYoVLdd38w+0l5fXfRncWZP2a/H222/r999/V79+/dShQwe7xtmxY4fCw8Nd9nWNiIiwBHdGo1F//PGHIiIibOp76tQpyxL2okWLWv0Xa9myZfXTTz9JSj3/r2zZsnbXePnyZUlSyZIlrW7HCQAAAAAAACD3eXl5qWjRoumCL1v98ssvluvw8HA99NBDDqzMPvv377dcFylSJN1ntfv27dM333yjXbt2KTIyUr6+vgoODlaRIkVUq1YtPfLIIzIYDDmeOzIyUmvWrNHOnTt14sQJxcTEKE+ePAoLC1PDhg313HPP5WgnM2djq0w3FRsbq86dO+vo0aOaN2+e24d2UmpIcubMGUnSo48+mmvzpl1e6+pDNuFYK1as0LJly9SqVSv179/frr4XLlzQ77//nuXZb+vWrVPTpk1Vo0YNDRw4UNHR0XdacjolSpRQ48aNLfeLFi2yue8ff/xhuW7fvr3VNmm3o92yZYvd9UVGRurcuXOSpCZNmtjdHwAAAAAAAIB7MRqN+vbbby33mX22mBsuXryo2NhYy/2tkCwuLk6DBw9W69at9cUXX+jw4cOKiYlRZGSkDh48qE2bNmny5MmaOHGioqKicjT38uXL1bhxY7333nvatGmTTp48qZiYGJ0/f147duzQpEmTFBERoU2bNjnkWR2J4M4NXb16Va+88opOnDihBQsWqHbt2q4uySYbNmywXOdmgp92lVBCQkKuzQvn+vfffzVhwgRVrVpVEyZMsKuvyWTSuHHjlJycnO6cubT++usvDR48WMePH1dcXJzWr1+vAQMGOPyg1iFDhlh+i+Sff/7Rzz//bFO/H374QVLq/tOZbfVZrlw5Pffcc5JSQ0F7z6i7dR5lYGCgunTpYldfAAAAAAAAAO7n22+/tfyyflhYmF566SWX1XL69Ol093nz5lV0dLReeuklrVmzRpUrV9bkyZP1yy+/aO/evdq0aZOGDBkif39/SdKBAwf09ttvpwv/bLF48WKNHj1aVatW1eTJk7V+/Xrt3r1b27dv16JFi/Tkk09KSt2NrF+/flq/fr1jHthBCO7cTGxsrLp27arTp09rwYIFqlGjhqtLstnmzZst17cfmulMJpPJcp2TM77gfoxGo4YOHSovLy9Nnz7drnPXjh8/rj59+lh+U6JkyZJW2/3444/p/uxI0s6dO3Xy5Mkc121NeHi4hgwZYrkfNWqULl26lGWfrVu3aseOHfLw8NCUKVOyXK795ptvqmLFioqMjNQbb7yR4Zkyc+LECS1cuFAGg0FjxoxRSEiIbQ8EAAAAAAAAwC1du3ZN06dPlyR5enrq3XffteuzVUe7/XNQHx8fvfbaazp27JhGjBihr776Sq1atVLRokXl4+OjYsWK6ZVXXtHbb7+tfPnySUo9ImjOnDk2z7lt2za99957Gj9+vJYsWaJWrVrpgQceUJ48eRQUFKTatWvr448/1iuvvCIp9bPoN954I0PI6EqccedG4uPj1a1bN508eVKffPKJqlWr5uqSbHby5EnLNpmSFBQUlKNx5s6dqyVLlqhw4cL6+OOPFRoamm2ftKvsbv0w4+62du1aHTp0SN7e3mrVqpXN/ZKSkjKsusxsxV1mbA2+7NG5c2ddvnxZ8+fP15UrV/TKK69o/vz56bZ5vWXPnj16/fXX5e3trfHjx6tu3bpZjh0YGKhPP/1Uffv21fr16xUfH69JkyapUKFCmfbZu3ev+vXrp+TkZI0ZM0bNmze/42cEAAAAAAAA4FoTJ07U5cuXJaX+wn/NmjVdWk9MTEy6+zVr1uiPP/7Q2LFjs1wJWLRoUQ0YMEBvv/22pNTPM7dt26b69etnO+fq1avVr1+/THcxkySDwaBhw4Zp586dOnDggBITEzVhwgTNnz/fpudyNlbcuYmkpCT16dNHR44c0bx582wK7ZKTk9WvXz+7t8dzhr/++sty7evrm+6ASVv9+eefmjZtmq5cuaIDBw7o66+/tqlfZGSk5bps2bJ2zwv3c+3aNUmpf8ZjYmJs/t/toV1wcLACAwOtztGoUSN5eKT/K7BcuXJ2B322GjJkiD788EOFhobq+PHjatGihd577z39+uuv2rt3rzZu3KgRI0aoXbt2CgkJ0aeffqrnn3/eprGDgoK0ZMkSDR48WHv27FGjRo30xhtvaPXq1frrr7904MAB/f777/r888/Vo0cPvfjiiwoODtYXX3zh0qXyAAAAAAAAABzjm2++0cqVKyVJw4cPV4cOHVxbkDIebbV69Wo9/fTTNn0mWbFixXTB4+eff55le4PBICk1I+jdu3e243t5ealXr16W+19//dXhu7HlFCvu3IDZbNYbb7yhP//8U3PmzFGtWrVs6nfw4EH9/vvvlv1eXenvv/+2XCclJcloNMrLy74/Xrt37053f/PmTZv6HTt2zHL9yCOP2DUn7m2lSpXK9L3q1atr6tSpmjlzpiIjI1WzZk2NHj1anp6eTquncePGqlu3rjZt2qQffvhBmzdv1ooVK5SYmKiQkBA9/PDDmjx5spo2bWr3z4+np6d69OihDh06aM2aNfrtt980Y8YMXblyRcnJycqfP7+KFCmi6tWr69NPP71rzs4EAAAAAAAAkLVdu3Zp9OjRMhgMeuutt9witJNSF2ak5e3trZEjR9rcv169etq5c6ek1C0wo6OjFRwcbLVtrVq19Oeffyo5Odnmz1afeuop5cmTRwkJCTKbzVq3bp369Oljc33OQnDnBmbPnq21a9fq3XffVb169Wzut379+kzP78ptacMzs9msy5cvq0iRInaNkXabS29vb7Vs2dKmftu2bZOUuj+uLUtl4f46deqkrl27On2eiIgIRUREOH2etPz9/Z06b968edW2bdssl4IDAAAAAAAAuDccPnxYffv2lclk0qRJk/Tcc8+5uiSL2wO01q1b25UbVKhQQQaDQWazWSkpKdq9e7caNmyYafuAgAC76vPx8VHNmjW1efNmSanHGLkDtsp0sc2bN+vDDz9U79697fqBOnfunJYtW5ZpcHf+/Hn16NFD1apVU/PmzS3hlrOkPd9OSj3Q0V516tSxbF347LPP2rRl4YULFyyJe0RERI7P1gMAAAAAAAAA4G5y7NgxdenSRfHx8Zo6dapbhXaSlCdPnnT3WYVu1vj7+6tgwYKW+0OHDjmkrrTKlCljuT5y5IjDx88JgjsXioqK0vDhw/X4449rwIABNvfbvXu3unTpouvXr2ca3A0fPlybN29WQkKC/v33X/Xp00cXLlxwVOkZxMbG3vEYYWFhateunaSMP9CZmTFjhoxGowIDAzV48OA7rgEAAAAAAAAAAHd3/PhxvfLKK7p27ZpmzJihpk2burqkDPLmzZvu3tbjsdJKu4ru6tWrd1zT7QoXLmy5dkTO4QhslelCs2bN0tWrV3X06FGbt827du2arly5YrnPLLjbt29fuvvExETt3btXRYsWzXnBWTCbzenuc3pO2BtvvKELFy7ou+++U6tWrVSlSpVM2y5atEjffvutfHx89P7776tQoUI5mhMAAAAAAAAAgLvFiRMn9PLLLys2NlazZs3SU0895eqSrLp9h7zExES7x/D19bVc5yT4y07aRUQ5qc8ZCO5c6PLly5JSV95FRUXlaIzMgrtKlSppx44dlntvb2+VL18+R3PYonTp0jp48KAkycPDQwUKFMjROL6+vpo9e7YWLlyozp0767HHHlPDhg1VsWJFhYSEyGg06siRI1q2bJk2bdqkkiVLavz48apdu7YjHwcAAAAAAAAAALdz9uxZde7cWTExMW4d2knpt6GU/peJ2CM5Odlybe8ZdrZISUmxXNu6E6CzsVXmXS6z4G7y5MmqV6+e8uTJowceeEDTpk3LtK0jvPnmmypZsqTy5s2r7t27y8/PL8djeXp6qkePHvrpp59Us2ZNrVu3Tj169FDDhg3VsmVLvfPOO/L399fkyZO1du1aQjsAAAAAAAAAwD0vKipKXbp00ZUrVzR9+nS3Du0kqUSJEumyguPHj9s9RtrgLl++fFbbJCQkaMyYMYqIiNCIESOUlJRk8/gJCQmW68DAQLvrcwZW3LnQnDlznDZ2sWLF9PHHHztt/NvVrFlTGzdudOiYwcHB6tatm7p16+bQcQEAAAAAAAAAuJvEx8fr1Vdf1dmzZzVlyhQ1atTIpn6XL1/WiRMnVLNmTSdXmJGHh4cqVKig3bt3S5KOHDli9xjXr1+3XBcvXtxqm3fffVfLly+XJB07dkyPPfaYWrVqZdP40dHRlutSpUrZXZ8zsOIOAAAAAAAAAADATRmNRg0YMECHDh3SmDFj9Oyzz9rcd9WqVZo6daoTq8ta2oBxz549iouLs7mv0WjU1atXLffVqlWz2u6HH35Id3/mzBmb50i7CrBSpUo293MmgjsAAAAAAAAAAAA3NWHCBP3222/q16+f2rVrZ1ff33//3anHaGXn6aeftlwbjUb9+uuvNve9ePGizGazJKlIkSIqUaKE1XZGozHd/aOPPmrT+GazWXv37rXc16lTx+banIngDgAAAAAAAAAAwA2tWLFCy5YtU6tWrdS/f3+7+l64cEG///57lltArlu3Tk2bNlWNGjU0cODAdFtHOkKJEiXUuHFjy/2iRYts7rt//37Lddu2bTNt9+CDD1qu//Of/9gcwO3du1dRUVGSpLCwMD3++OM21+ZMBHcAAAAAAAAAAABu5t9//9WECRNUtWpVTZgwwa6+JpNJ48aNU3JyssLDw622+euvvzR48GAdP35ccXFxWr9+vQYMGGBZ5eYoQ4YMkbe3tyTpn3/+0c8//2xTvx07dkiSAgMD9eKLL2barnXr1pbr+vXr21xX2hCxe/fuMhgMNvd1JoI7AC5lMBgUEhKi4sWLKywsTMWLF5eHB381AQAAAAAAALh/GY1GDR06VF5eXpo+fbp8fHxs7nv8+HH16dNHmzZtkqRMt8r88ccfZTKZ0r22c+dOnTx5Msd1WxMeHq4hQ4ZY7keNGqVLly5l2WfPnj06ePCgDAaD+vbtq/z582fatnXr1pbVcrbWvn37dn3//feSUs/Oy2pFX27zcnUBAO5vXl5eWS7VBgAAAAAAAID7zdq1a3Xo0CF5e3urVatWNvdLSkpSQkJCutcyW3GXmdvDPEfo3LmzLl++rPnz5+vKlSt65ZVXNH/+fIWFhWVoe/ToUc2aNUuenp569dVX9cgjj2Q5toeHh2bPnq1+/fpp2bJlKleunF588cVMV9D99ddfGjhwoEwmk8qVK6fZs2e7zWo7ieAOAAAAAAAAAADArVy7dk2SlJycrJiYmByPExwcrMDAQKvvNWrUSJ9++mm6oK5cuXJ2B322GjJkiKpUqaJx48bp+PHjatGihdq1a6fatWsrKChIFy9e1MaNG7V69WoVLVpUXbt2VYUKFWwaOyAgQAsXLtTixYv17rvvau7cuWrQoIGqV6+uQoUKycfHRxcuXNDGjRv1/fffy2Qy6fnnn9ewYcNUoEABpzxvThnMjt6sFECWkpKStHfv3gyvV65c2a7lzvcKkzFJSZEnlRR1RubkGzJ4+8kntIR8CofLw+v++3oAAAAAAAAAuL8kJydrz5496V77559/NHny5Dseu1q1alq2bFmm769bt04zZ85UZGSkatasqdGjR1tdBedIiYmJ2rRpk3744QcdPXpUUVFRSkxMVEhIiCpUqKDy5cvr8ccfl6enp6WPPZ+fx8fHa/Xq1fr111914MABRUdHy2AwKDg4WMWKFVOdOnXUpEkTPfjgg856xDtCcAfkMoK7VDfOH9G1net0/eDvMqckZ3jf4OmtvBVqK1/NCPkVc8+/QAEAAAAAAADgTlkL7h555BF5e3u7qCLX4fNztsoEkMtMNxN15afFitu9Mct25pRkxe/bovh9WxRYrbEKNnxFHr7+uVQlAAAAAAAAAAC5z8PVBQC4fxjjrujcp8OzDe1uF7d7o859OlzGuCtOqgwAAAAAAAAAANcjuAOQK0w3E3Xhi3FKvnIuR/2Tr5zThS/Hy3Qz0cGVAQAAAAAAAADgHgjuAOSKKz8tznFod0vy5bO68vMSB1UEAAAAAAAAAIB7IbgD4HQ3zh+xe3vMzMT9tUE3zh9xyFgAAAAAAAAAALgTgjsATndt5zoHj/e9Q8cDAAAAAAAAAMAdeLm6AAD3NpMxSdcP/u7QMa8f3CbTs73k4eUjSYrZvkopcVclDw8ZDB7yKVJaARVqZ6zlZqLi/vlJMnjI4OEhGTwsfVL/6Sn9/+uG295L28fg4SHPvPnlHVwswxzmFKOMsVH/65thjozjpc5ncOjXCAAAAAAAAABw9yG4A+BUSZEnZU5JduiY5pRkJV06Jb9iD0qSkq+cT7cVZ0Dl+laDu5TEOF3Z+KlDagioXF+FWvTP8LoxLlpnPupn/4AGjwyBYsDDdRXatGfGOa5d0YUvxqQPBTMNIz0yhJFp2/qXfFj5Hn06wxwpiXG6unVF+nFsCCGtveZdoIj8wh7KMIcp+aZunDmULhC9/euQ6TPd/pqXjzy8fe3/ugMAAAAAAACAGyG4A+BUSVFnnDPupdOW4M4rf6H0bxoy2QXYbHJcAY6ew2ySzKZ03c1G64GnOSVZydEXcjbPbQxe3laDO9ON67q2Y41D5gh4pL7V4C7leowuLh3vsDkKNc8YpCbHXtKZOf1tDwCtBJ23/pmn7KMqUPeFDHMY42N0+fu5twWOnjkKIX0KhytvuZoZ5jDdTFT8ga1Zj2fjSlLPPIHyyh+aYQ6zKUUp12NtqxkAAAAAAACAUxDcAXAqc/INJ41703Jt8PJO957Bw3qwYDY5LrjLlTlyIYA0GDxzYY5MniM3vlYmk2Qypg9EcziHT0iY1dfNyTeU8O/OHI6aXsAjDawGdykJsbq8bq7D5ijUvG+G142xUTozJ+PrVmUTeAY8XFcFG3fJOMe1K7q4/J0st6G1NfD0K1FBgVUaZJgjJTFOsX+syhha5mAOr6BC8i1SOsMcJmOSki4ct3lr3Szn8/BMDXoBAAAAAAAAEdwBcDKDt5+Txv3ftogZVqbdjSvurMmFcDBX5sjka2XOhe+H2ZSSC3PcZYGwI+Ywm6QUkyUEvT0MNd1MtN7NeFNJl07aPk82rAV3psQ4xWz7xmHjhzbLGGamXLui80vedOocyTGROrdgiB3hoGem4WCestUV9FiLDHMY42N05cdPc7AKNWMg6lOolPKUrpJhDtPNRF0/stMh2+56+AXIKyAowxxmU4pMNxNZIQoAAAAAAO4JBHcAnMontIRzxi1U0nJtjL2U7r3MggmHrvDKbI7cWKl2l82RWTjoyO9HrsxxrwTC90ronAtBqjJZCZcroXNKikw3ExwyhXdQYauvm24m6Pr+rQ6ZI7BqI6vBnTH+qqK+m+GwOUKf7Z3h9eSrkTo7N+NWuRZ2bIkbULGugp/qkPE5rl1W5Dcf2LFFbeZz+IWVV8DDdTPMkZIYp2t//pD1HDZuu+uVP0Q+oSUzzGEyJin58tksVpx62vhMBvu+eQAAAACALBkMBoWEhMjX11cGg0Fms1kemX3ehXsewR0Ap/IpHC6Dp7fMKdbPa8sJg6e3fAqV+t+9t5/ylH009QN7s0neBYtb7+jpJZ9CJS3tbv1TJlPqB/G3/mnttVttLZO6MDS4y1bc3SsBpEsDYULnjFz5HLkROt9tYa07z5HNCtG0UhLjrL5uSrqhm+cOZ1uiLczGZOvB3fVYXd281CFzZBZyGmOjdG7hUAfMYFBgtcYKjeiZ4Z3kqxd1fsmoHJ7JmT7w9C9TXflrPJPxOeKv6uovS+9s293/f807tIT8Sz6cYQ7TzUQlntjjkK19DT7+8vQPyDCH2WySUlIIRAEAAADIy8tLpUqVyr4h7gsEdwCcysPLR3kr1Fb8vi0OGzNvhTry8PKx3Ic07mxTP5+CxRTWfdodzW0J8TL5cM0nJEwl+8+zIxxMyRAO3urjlckqGa/Aggpp2vN/Y6fpk36+lGzDSL+wh6zO4eHrrzwP1rBhjuwDTw+/jB9Wpn4tzakfcDrig/17fcvPXNlW9N4IhHPjOe62cJDQ2Y457pHQ2fmrkM1SJhmTOcWolPirDpnFM7Cg1ddNN64r7p+fHDJHYLUmVoM7Y9wVRX79nsPmsBpyXjmvs/MGpnnFkOOgMKDCEyrwnxczPkdslKLWzM6wAjT9OJ42hZB+xcsp70OPZZgjJTFOcXs2ZRPKemaowVotXoHB8g4ummEOszFZybGX7N52l0AUAAAAwN2I4A6A0+WrGeHQ4C5fzaYOG8teBoOH5Jn5MnWDp5e88oU4tQbPPIHKV72JU+fwDiqsIm1GOHUO38LhKj3yK0myuroxQ1CYRXjo6R9o/TkKFFaRdqPS981qjjQh5O2v+RYtY3UOT/9A5asZkbH+HDyTdwHrYa3Bw1NeBYrYNUemIUBmH2C6w8ooe2SyIlXmrNZT2cmVIee9EggTOmeQG6GzS1c63yuBsEtCZ7NkSpFZKVKK5RWbpJSwHpaakhKVeHKvjaNkzVz9aevBXfxVRf+42CFzBFZvotCm1ldynv14UM4GvS1QDKzWSCGNu2ScI/qCLiydcEdb4t5q61+6qvJVbZRhDmP8VcX89k2WW93aevand8Hi8iteLsMcpqRE3ThzKIvg1GDztrsGb195+DjnvGoAAACkZzImKSnypJKizsicfEMGbz/5hJaQT+HwdAsYcH8guAPgdH7FHlRgtcaK273xjscKrN5EfsUedEBVcCe3AlFH/068h28e5SlTzcGjpueVr6BCmnRz6hw+oSVUss9su/qYzeYM4aBMJsnT+r/6vUPCFNZrVo5XiKZ9zTu4mNU5vAILKrhR5yy3o7U18MwsSPXw8ZV/eOWsx7n1tcmmBg9v30y+uLkRfqQ4bI5755zJeyV0zmwOB4bOubEKmdD5zue4y0Lnu3Z7bcu/C///PsVovZkxWcaYyJzPk4ZnnvxWXzclxOnarnUOmSPfo89YDe6MsVG6uOxth80R8kz3DK8nRZ3W2fmDbQ4Aszr7M2+F2gqq3crqc1z+YYED5vCUb7GyylO2eoY5UhLjdP3AtsxXuGYb3v4vEPXKm19e+UMzzGFOMSrleozNW+sCAID7z43zR3Rt5zpdP/i71aOGDJ7eyluhtvLVjOAz0fsIwR2AXFGw4Su6cfqAkq+cy/EY3iFhKtjgZQdWBdy7Un+j3lOSZ+o/suHh5SOfgtYDN0fxzJtfQY81d+oc3sHFVLTDWKfO4VOktB54Y1nm28baEUJ6BgRZncMrqLAKtx6Wo+D09jky3RI3T4ACqza6bQVoSqarUDN9TpNJXvmsb2koDw95BhTIdrtdW9YV3TOrr3JjNVymK1LvrhV3hM72zJELoXOmc9xloTOBsGPmuD0Qle0rRNPyLW79w6eUG9eVcGRXDkbMKF+NplaDO+O1K7q8/mPHzJFJyJl85ZzOzn/d9oGyCCPzVW2o4Kc6Zpwj+rwurng/6xWbNp7L6f9AFQVWejLDHMb4q4rdscb6Kk475/AuUFS+RR7IMIcp6YZuXjxm89a6Wc1n8PSSIZNfVgMAwF2Ybibqyk+Ls13oYE5JVvy+LYrft0WB1RqrYMNX5OHrn0tVwlX4LxkAucLD119FO4zRhS/HK/nyWbv7e4eEqWj70fyLCYDLGQwGydPbpkA0pzz9A5S3fMYt6RzJO38hhT7b26lz+BYOV6mBC7Jtl+0qSJNJHt7WtwbxDi2h4t2m2Ly1blYrSX1CS1qdwzMwWAXqvXQHc/zvnz6FrB82bvD2lW/YQ3aFspnVkNmHlXfbirvMtxV13IrUTOdwaJB6j4TO9/o5k3dbIJwb52USOtvOUaGz2SSlmCwhaNoKTUk3rXYxJd1UctRp++bJhIdPHqvBXcr1WMX+vtIhc+SrESHfIhl3q0i+elEXPhvtsDlCns44R9Kl0zq3eESmK0Cth4OeVsPBvOUfV/6aERmfI/aSon/+PJs5DJmuEE1bg2/RMvIPr5xhjpTEOCUc+dMh2+56+OeTl5VfJDObUmS6kZDFqlbODwWAO2GMu6ILX4yze4FD3O6NunH6gIp2GCOvTM4Ex72B4A5ArvEKLKjind+16bdJ0gqs3kQFG7xMaAcA9yjLClEPT7u3zPXw9rX6m/uO5BUYrAJ1X3DqHD4hYSr+yjtOncO3aGmVGrzESjiYYvfZn175rZ/n6h1UWKEtB9oUNmb3vl/Jilbn8PQPUMDD/8lmS9ysAs+U/616zWt9S0ODUrdbtjaH3VjhZbvc2I7TlaHzXbbqldDZjjlcutUyoXMGmYRKZpNR5qQbOVodejufwuFWXzclxuv6gd8cMIOUr+azVoM7Y+xlRa2e5aA5Iqxu+5906bTOLRySRU+DzashA6s0UIH/tMk4x5Xzilo1084taq0Hon7hlRVQoXaGOYzxV1M/e8jhNrhp5/AqUFg+IWEZ5jAl31Ry1Jlstt31tPGZCESB+4HpZmKOQrtbkq+c04Uvx6t453f5rPQeRnAHIFd5+PorNKKXAqs21LWd3+v6wW1Z7N9cR/lqNmX/ZgAAHMDg4SlPv7xOncMzT6DV1RqO5B1cVIVaDXLqHL7Fyip8yGdW37P1LM5b1x6+eayO4xNSQsVemZj5ik07tt31LVLa6hxegcEKqvN89lve2jCHdybbKXt4+8in8APpAlF7VqGmC0RduvrqLgsmciGAJHS2Q26EzrnwHITOd8kcbhE6myVTisxKkVIsr1iVcuO69RGSEnXz/BGb6syWl7fV4C4l7qqublnukCny1XxWIU26Zng9+co5nft0uGPmqNVMIY27ZHg96dIpXfhyXPbb0doQDuZ96DHlq9Y4wxzG2ChFb1l+59vuGjzkW6S0/EqUzzBHSmK8Ek/udcjWvh6+eeXpH5BhDrMpReYUI4Eo3NqVnxbf0VFCkpR8+ayu/LxEoU17OqgquBuCOwAu4VfsQfm1fFCmZ3sp6dIpJV06LXPyTRm8feVTqKR8CpWSh5f1bdEAAABcxWDwkDw97F4dejsPX3/5hWX8UMuRvPKFKPipDk6dw6dQKYW9OuWOx0kN9qx/7OtbtLRKDpif421w04aR3gWKWJ3DK38hhUT0tnFL3JQsw0i/YuWszuHhm0d5ytVyyLa7WYbwnl45XyGaRq6EBmz5abvMvlYOWT+WzRyEzu41B6Gz7XPcbVtfZ7Za1JislOuxDpnD2qpBSUpJuKb4PZscMkf+x5pbDe6MMZG69M2d/zeDJOWv1UwFrYWckSd17pNht71q+wrRtP8MrNJAQbVbZZzjynld/n6u1RWg6cfxzDaE9Cv1sPI+WCPj1yo+RvH7Nme51W2G1zIJRL3yhcg7uGiGOUzJN2WMuZSjbXcJRHPuxvkjdu1ClpW4vzYosEoDFjzcowjuALiUh5dPaojHv2QAAADuW6kfFGXynqe3vAKDnTq/V0CQ8lVr5NQ5fELCVORFx6zKyIxf8XIq/cb/VpfYu0I0bXjokSfQ6hzeISVUpP1o+7aozWTbXd/i1kNOz4ACylerWTY1p/z/tTnLZ/IOKmx1DoOnt7yDi9m9CtVaiJUbW2Xmyko1V85xlwXChM52uFdCZwJh95rDrtDZ9hWiaaUkWA9LTTeu68ap/bbVaQOrwd21y4r+aYlDxs//WHMVbNQ5w+vJUWfubLVomlAyf61mVn9Z7GbkSUV+NTnLrW5tDVPzPFhTgY/UzzCHMTZKMb+vtB442hBCpn3Nt1Ap+RYrm2GOlBvXdfPsIZu31r19Dq/8oZag89rOdTn/mltxbef38mvJZ6r3IoI7AAAAAADuQY5aIZqWp19e5XmgigNHzMg7qLDV7eIcybdoaZXobf85YWazOUM4KA9Pq219ipRWid4f5ig4vX3VpXfB4lbn8AoqpIJNumbe144tcX0y2XbXwzeP/EtXyXxsm84XTb02+PhZ/7rebaGBC1eRucdWmQ6Y424LnTP5Ob/bAmFCZwfMQej8/wPc+rs9dYtSq02MSTLGXrqzef6fVya/iGOMj9G1P9c7ZI78j7e0GtwlXzmvi8tzdh65T9EyCuv6niTJZEzS9YO/31GNt7t+cJtMz/Zi17J7EMEdAJcyGo06d+6cfHx85OHhIZPJpEKFCsnTM5P/KAYAAAAAFzEYDJLBU5Jn6j+y4OHtKw8r25M5kldgsPLXfNapc/gUKqmiL4126hx+JSrogRH/zTrAtDGE9AosYP05Qkqo8Itv2Ly1blZhpH/Jilbn8AoIUmC1JpmuELW2CjWz5/TKV9D6F8vDU56BBW0KfrMNGHJhq8zMQwPrH/TfdXPcZYFw5nM47mtF6Oxmc9wjgfDdGjr7Fi1juU6KPClzSnKOx7LGnJKspEun2MnsHkRwB8ClzGazLl++nO61kJAQgjsAAAAAuE/YE4jmlGeeQOUtV9M5g/8/7+BiCo3o6dQ5/IqXU6kBH9vU1rJCNJNw0OBtfYWGb9EyCuv+QY5XiKYNRH0KhVudwzt/IQU/1eEO5zD9/xwlrc7h4eMvvxIVrMyRYvccBs9MPkK9V1aR5cL2qHfb+YyZn8lJ6OxOc7h7IOydv5DlOinqTI7HyUrSpdMEd/cggjsAAAAAAADgHmMJRD087doy18PHTz6FSjmtLknyyh+qoDrPO3UO3yKlVezlt506h1+JCgof8nkmKzZT7Dr70yt/qNU5vAuGqVCr13K47W5Kurn8SpS3Oodn3iAFVK53h1vipgainnmDrM5h8PCQh39ApnPYw5BZwp8bIWcuhIMOneNeCYTd7uxEG6UJ/c3JN3I+ThbMyTedMi5ci+AOAAAAAAAAAOxk8PCUwdffqXN4BQQp4OG6Tp3DJyRMhVoMcOocfiUqKPz1xZm+b8tZnLeuPXzzWB3Dt2gZFes8ySHb7lo760z6/9C57gs2bXmb3Rw+wcWszmHw8ZdPkTI5XiGabmVtLoSDLp3DoSvunBAIpxj/N7639XNe75TB29cp48K1CO4AAAAAAAAAAC5jMHhInh52rQ69nYdvHvkVL+ewmqzxLlBEwfVecuocfsXKKqzbew4Zy2y2ftalX8kKKjlwYY63wU0bDnpncp6rd0iYQp7tk+kq0ywDyNve9y1qPUj18A9U3vKPO2TbXQ//gEy/jgYvn3Rj2yo59pLl2ie0hM397JHZdsG4uxHcAQAAAAAAAABwjzEYrEehBk9veQUEOXVur8Bg5ava0Klz+BYOV+HWQ506h394ZT0wfKnl3nJ+qA0rO9Nuv+lTOFwGT2+ZU5IdVpvB09vpWxvDNQjuAAAAAAAAAAAAsmE5P1Seymx3TWs8vHyUt0Jtxe/b4rBa8laoIw8vH4eNB/eRyeawAAAAAAAAAAAAcIR8NSMcPF5Th44H90FwBwAAAAAAAAAA4ER+xR5UYLXGDhkrsHoT+RV70CFjwf0Q3AEAAAAAAAAAADhZwYavyLtg8TsawzskTAUbvOygiuCOCO4AAAAAAAAAAACczMPXX0U7jJF3SFiO+nuHhKlo+9Hy8PV3cGVwJwR3AAAAAAAAAAAAucArsKCKd37X7m0zA6s3UfHO78orsKCTKoO78HJ1AQAAAAAAAAAAAPcLD19/hUb0UmDVhrq283tdP7hN5pTkDO0Mnt7KW6GO8tVsypl29xGCOwAAAAAAAAAAgFzmV+xB+bV8UKZneynp0iklXTotc/JNGbx95VOopHwKlZKHl4+ry0QuI7gDAAAAAAAAAABwEQ8vn9QQj1V1EGfcAQAAAAAAAAAAAG6BFXcAAAAAAAAAAAAuYjQade7cOfn4+MjDw0Mmk0mFChWSp6enq0uDCxDcAQAAAAAAAAAAuIjZbNbly5fTvRYSEkJwd59iq0wAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN+Dl6gKQ3uHDh/XNN99ox44dOnv2rBITE5U3b14VKlRIVapUUePGjfXkk0/KYDC4tM4GDRro3LlzOeq7ZMkSPfbYYza1jYuL09KlS7Vx40YdPXpUZrNZYWFhqlWrljp06KAyZcrkqAYAAAAAAAAAAAB3w4o7N3H+/Hn17dtXL730kry9vfXWW29p3bp1+umnnzR37lw1btxYGzZsUI8ePdS6dWudOnXK1SXnWIUKFWxqt23bNj3zzDOaOnWqypYtqyVLlmjt2rXq16+ffv/9dzVr1kzz5s1zcrUAAAAAAAAAAAC5gxV3buCff/5Rz549VbBgQa1du1ZFixZN937hwoVVrVo1tWnTRl26dNH+/fvVtm1brVixQmFhYS6qWgoKClKBAgXs6hMaGqp8+fJl227Tpk3q37+/kpOTNXjwYPXo0cPyXvHixVWvXj116NBBH3zwgS5cuKCxY8faWz4AAAAAAAAAAIBbIbhzsejoaPXq1UsxMTH64osvMoR2aRUpUkTTpk3Tc889p6tXr2rYsGH68ssvc7Ha9Dp27Kj+/fs7fNxTp07p9ddfV3Jysp588sl0od0t/v7+mj59upo2baqlS5eqQoUKatu2rcNrAQAAAAAAAAAAyC1slelic+fOVXR0tB566CGbzmsrX7686tatK0n6888/tWPHDmeXmOvGjx+vhIQEeXh4aNiwYZm2K1mypJo3by5JmjRpkqKionKrRAAAAAAAAAAAAIcjuHOx9evXS5KSk5Nt7lOnTh3L9aZNmxxekyvt2rVLW7dulZT6nA8++GCW7Z977jlJUmJioj766COn1wcAAAAAAAAAAOAsBHculJCQoMjISEnSsWPHtGXLFpv6lShRwnJ9+vRpp9TmKvPnz7dct2zZMtv2NWrUUFBQkCTpq6++Unx8vLNKAwAAAAAAAAAAcCqCOxdKTExMdz958mSb+vn7+1uuk5KSHFqTK8XFxem3336z3P/nP//Jto+np6eqVq0qKfVr8csvvzipOgAAAAAAAAAAAOciuHOh4OBghYaGWu5vrb7LztWrVy3XRYsWdXhdrrJp0ybLlqHh4eEqUKCATf0qVqxouf7xxx+dUhsAAAAAAAAAAICzEdy5kMFg0PTp01WzZk09+OCDGjZsmE399u3bZ7l+6KGHnFVertu9e7flulKlSjb3S3sO3v79+x1aEwAAAAAAAAAAQG7xcnUB97saNWro888/t7m92WzWhg0bJEleXl5q2rSps0qzyx9//KF169Zp9+7dunjxom7cuKHQ0FBVr15dbdq0Ua1atbId48iRI5br4sWL2zx3oUKFLNdnz57VjRs35OfnZ98DuAGj0SiDweDqMnKd0Wi06TUAAAAAAAAAuBfxGen/3K/PnRbB3V1m06ZNOnfunCSpUaNGCg4Odmk9KSkpGj16tFasWCEp9fy94OBgmUwmnTt3TufOndPq1avVpk0bjR07Vp6enpmOdfToUct1sWLFbK4hbXBnMpl08uRJlS9fPgdP41oHDx50dQlu48CBA64uAQAAAAAAAABchs9I718Ed3eRlJQUzZgxQ5KUJ08eDRkyxMUVSW+99ZbWrFmjnj17qlWrVipdurTlvV27dmn8+PE6fPiw/vvf/yoxMVFTpkyxOo7JZEp3dl/+/PltriEgICDdfUxMjH0PAQAAAAAAAAAA4AYI7u4iixcv1qFDhyRJ48ePV4kSJVxaz9q1axUZGaklS5aoatWqGd6vUaOGli5dqhdffFHHjh3T6tWr9Z///EctW7bM0DYhISHdvT1bXfr6+mY5FgAAAAAAAAAAwN3Aw9UFwDb79u3TBx98IEkaPny4mjdv7uKKpBMnTmjUqFFWQ7tb8ubNq7Fjx1rup0+frpSUlAztrl+/nu7enuDu9ra3jwUAAAAAAAAAAHA3YMXdXeDSpUvq16+fjEajRo8erQ4dOri6JHXp0kWXL19W69ats21bq1YtlS9fXocOHdL58+e1detW1atXL10bg8GQ7t5sNttci8lkSnfv4XF35tEVKlSQt7e3q8vIdUajMcN+zRUrVpSXF389AQAAAAAAALj38Rnp/yQnJ+vgwYOuLsOl7r/v+l3m2rVr6tGjh6KiovTee++pRYsWri5JktSpUye72tevX9+yzef27dszBHd58+ZNd3/jxg2bx75582aWY90tvLy87svgzhq+FgAAAAAAAADuZ/frZ6T2LOq5VxHcubG4uDh17dpVx48f16xZs9SgQQNXl5RjFStWtFxbS8vz5Mkjg8Fg+aG8PYzLSlJSUoaxAAAAAAAAAAAA7jZ3556C94HY2Fh17txZR48e1bx58+7q0E6SwsLCLNdXr17N8L7BYFBQUJDlPjY21uax4+Li0t0HBwfbXyAAAAAAAAAAAICLEdy5oatXr+qVV17RiRMntGDBAtWuXdvVJd2xtNtXJiQkWG1TpkwZy/WFCxdsHjsyMtJy7e3trVKlSuWgQgAAAAAAAAAAANciuHMzsbGx6tq1q06fPq0FCxaoRo0ari7JIUwmk+U6s60sy5Yta7k+f/68zWOnDe5Klix5X+77CwAAAAAAAAAA7n4Ed24kPj5e3bp108mTJ7Vw4UJVr17d1SVZNXfuXNWpU0fPPfecoqKibOqTdpVdvnz5rLZ55JFHLNeHDh2yuZ4jR45YrqtUqWJzPwAAAAAAAAAAAHdCcOcmkpKS1KdPHx05ckTz5s1TtWrVsu2TnJysfv36KTExMRcqTPXnn39q2rRpunLlig4cOKCvv/7apn5pV8WlXVmX1lNPPSVPT09J0tGjRxUfH2/T2Pv377dcN2zY0KY+AAAAAAAAAAAA7obgzg2YzWa98cYb+vPPPzVz5kzVqlXLpn4HDx7U77//Ln9/fydX+D+7d+9Od3/z5k2b+h07dsxynXZlXVrBwcGWZzeZTPrjjz+yHTcpKUn//POPpNQtOOvWrWtTPQAAAAAAAAAAAO6G4M4NzJ49W2vXrtXbb7+tevXq2dxv/fr1KlmypBMryyjtNpfe3t5q2bKlTf22bdsmSfLx8VH9+vUzbde1a1fL9cqVK20aNy4uTpLUoUMH+fn52VQPAAAAAAAAAACAuyG4c7HNmzfrww8/VO/evfXcc8/Z3O/cuXNatmxZpsHd+fPn1aNHD1WrVk3Nmze3BGd3qk6dOvLwSP1j8+yzzyo8PDzbPhcuXNDOnTslSREREQoKCsq07ZNPPqnHHntMkvTLL7/ozJkzWY59a6vOgIAAvfrqqzY8AQAAAAAAAAAAgHsiuHOhqKgoDR8+XI8//rgGDBhgc7/du3erS5cuun79eqbB3fDhw7V582YlJCTo33//VZ8+fXThwoU7rjksLEzt2rWTlLo1pS1mzJgho9GowMBADR48ONv248ePV/78+ZWcnKz3338/03b79u3Txo0bJUljxozJMhAEAAAAAAAAAABwd16uLuB+NmvWLF29elVHjx5VRESETX2uXbumK1euWO4zC+727duX7j4xMVF79+5V0aJFc17w/3vjjTd04cIFfffdd2rVqpWqVKmSadtFixbp22+/lY+Pj95//30VKlQo2/HDw8M1Y8YM9ejRQz/88IM+++wzderUKV2bmJgYDR48WGazWZ07d1aLFi3u+LkAAAAAAAAAAABcieDOhS5fviwpdeVdVFRUjsbILLirVKmSduzYYbn39vZW+fLlczTH7Xx9fTV79mwtXLhQnTt31mOPPaaGDRuqYsWKCgkJkdFo1JEjR7Rs2TJt2rRJJUuW1Pjx41W7dm2b56hdu7a++OILDRw4UBMnTtSRI0fUtm1bFShQQH///bc++OADnT9/XkOHDmWLTAAAAAAAAAAAcE8guLvLZRbcTZ48WWPHjtXOnTtVuHBhDR48ONO2OeHp6akePXrohRde0Lfffqt169Zp+vTpio2NlZ+fn4KDg/Xwww9r8uTJioiIkI+Pj91zPPLII1q7dq2+++47rV69Wj169ND169dVvHhxPfnkk+rUqZMeeOABhz0TAAAAAAAAAACAKxnMZrPZ1UUA95OkpCTt3bs3w+uVK1fOUcB5t0tOTtaePXvSvfbII4/I29vbRRUBAAAAAAAAQO7hM9L/4fNzycPVBQAAAAAAAAAAAAAguAMAAAAAAAAAAADcAsEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAb8HJ1AQBgqz///FNr167Vn3/+qQsXLighIUEBAQEqWLCgKlWqpDp16qhp06by8fFxdalWxcTEaM2aNdq6dasOHTqkq1evSpKCgoJUoUIF1a1bV88995zy5s17R/McOnRI3333nXbu3KkzZ84oPj5eAQEBCgoKUsWKFfXYY4+pefPmdzwPAAAAAAAAAMCxDGaz2ezqIoD7SVJSkvbu3Zvh9cqVK7tt4ORMycnJ2rNnT7rXHnnkEXl7e1vu9+zZo7fffltHjx5VixYtVLduXRUpUkTJycm6cOGCtm7dqlWrVik5OVmhoaEaN26cGjZsmNuPkimj0aiPP/5Y8+fPV8WKFdWkSRM99NBDCggI0JUrV7Rz506tWLFCV69eVVBQkN588021aNHC7nlOnDihiRMnavv27YqIiFC9evUUFhYmSYqMjNT27dv19ddfKyEhQfny5dPQoUPVpk0bRz8uAAAAAAAAADvY8hnp/YLPzwnugFzHXzzpZfcvpSVLlmjSpEmqXr26PvjgAxUuXNjqOCdPnlSPHj106tQpGQwGjR49Wu3bt3d6/dlJTExUr1699Mcff2jatGmKiIiw2i42Nlb9+vXTjh07JEn9+/dXv379bJ7nhx9+0NChQ1WiRAnNmjVLpUuXttru8uXL6t27t+Vr3r17dw0ZMsTOpwIAAAAAAADgKAR3/8Pn55xxB8CNLV++XBMnTlTJkiW1YMGCTEM7SQoPD9f8+fPl7+8vs9msiRMn6p9//snFaq2bOHGi/vjjD5UvXz7T0E6S8ufPr48++sjyjLNmzdLq1attmmPLli0aNGiQ/P39tWjRokxDO0kKCQnR/PnzFRoaKkmaP3++fvjhBzueCAAAAAAAAADgLAR3ANxSVFSUJk+eLEnq2LGj/P39s+1TqlQptW3bVlLq9pRTpkxxao3ZiYyM1DfffCNJ8vX1zbZ9QECA+vfvb7l/++23FR8fn2Wfmzdv6q233pLJZNJzzz1nCeSyEhQUpB49eljup0yZIqPRmG0/AAAAAAAAAIBzEdwBcEtr1qzR9evXJaUGcrZ69tlnLdc7duzQ+fPnHV6brfbt26eUlBRJ0r///qtLly5l2yciIkJeXl6SpJiYGG3cuDHL9ps3b/4/9u47POoqbeP4PX3SJo0uVRRREcQua1fcVVcUXRu6KGBFYN+1oeuKiqKyFlAs2BUbugj2irJWFCwLuBaQopBQUiaZSZk+7x9JJjMpk0mdBL6f6+LiN78558wzASXMzXOOtm3bJqnlX6fff/9d33//fcJzAQAAAAAAAADtg+AOQKf05ZdfRq7XrVuX8LyhQ4fKZDJFHn/zzTdtWldzRB8hWllZqVdeeaXJOWlpaRo4cGDk8Y8//hh3fEu/Trm5uerVq1fkcTK/TgAAAAAAAACAKgR3ADql7du3R67nz5+vwsLChOZZrVZlZGREHifS5dZeRowYobS0tMjjPn36JDQvun6/3x93bPTX6ZVXXtHatWsTri83NzdyncyvEwAAAAAAAACgCsEdgE4pulvN5XJp4cKFCc+1WCyR61Ao1KZ1NUf37t310ksv6eKLL9aNN96oMWPGJDQv+ly73r17xx0b/XXy+/16+umnE67ParVGrmu29AQAAAAAAAAAJA/BHYBOab/99ot57PF4EpoXDAZVUlISedyjR4+2LKvZ9tprL1177bUaP3585Oy6eCorK/Xbb79FHh9yyCFxx7f06yRJRUVFkeuePXsmPA8AAAAAAAAA0D6a/hQZAJLgqquuUllZmb7//nv17dtX5513XkLz1q5dG7O9ZN1gq7NbunSpfD6fJGnffffVyJEj446/6KKLtGXLFn355ZfKycnRJZdcktDrlJaWavPmzZHHXe3rBAAAAAAAAAA7I4I7AJ1St27d9MADDzR73tKlSyPXAwcO1ODBg9uyrHZVWlqq+++/X5Jkt9s1c+bMJuekpaXpzjvvbPZrffTRR5FtNjMyMnTooYc2ew0AAAAAAAAAQNtiq0wAO41AIKAlS5ZEHo8bNy6J1TRPfn6+LrnkEm3evFlZWVl65JFHNGzYsHZ7vVdeeSVyfcYZZ8hms7XbawEAAAAAAAAAEkPHHYCdxpIlS5SXlydJzdpeMxl8Pp+cTqd+/PFHLVu2TG+++aZCoZDOO+88TZ48uV3P5lu+fLm+//57SVXddpdffnm7vRYAAAAAAAAAIHEEdwB2Ci6XS3PnzpUkmUwm3XXXXbJarcktqhFLly7VlVdeGXMvJydHd911l44++uh2fe1AIKBZs2ZFHs+YMUM5OTnt+poAAAAAAAAAgMQQ3AHYKcyaNUuFhYWSpBtvvFEHH3xwkitq3GGHHaaFCxfK7XZry5YtWr16tZYtW6ZLL71Uw4YN04033qgDDjigXV774Ycf1rp16yRJkyZN0pgxY9rldQAAAAAAAAAAzUdwB6DLW7x4sV577TVJ0vTp03X++ecnt6AmpKena+TIkZHH48aNU2VlpZ577jnNnTtX5513niZOnKhrr71WRmPbHUW6fPlyPfLII5Kkv/71r7r22mvbbG0AAAAAAAAAQOu13SfCAJAE33zzjWbMmCGDwaAZM2Zo4sSJyS6pRVJSUnTppZdqzpw5kqSnnnpK06dPb7P1N2zYoL/97W8KhUK65JJL9M9//lMGg6HN1gcAAAAAAAAAtB7BHYAu65dfftGVV16pUCikO++8s9N32iXij3/8o8aOHStJeuONN/Tiiy+2es1t27bpkksuUWlpqf72t7/pmmuuafWaAAAAAAAAAIC2R3AHoEtav369JkyYoLKyMt17772RsGtncMkll0SuH3jgAZWVlbV4rYKCAl144YXasmWLbrjhBk2ePLktSgQAAAAAAAAAtAOCOwBdzoYNG3ThhRfK5XLp/vvv10knnZTsktrU4MGDtfvuu0uSnE6n3nrrrRatU1BQoPHjx+u3337TjBkzdNFFF7VhlQAAAAAAAACAtkZwB6BL2bhxo8aPH6/S0lLNmzdPJ5xwQrJLahf77bdf5Hrp0qXNnl9UVKQLL7xQGzdu1C233LJTbCMKAAAAAAAAADs7c7ILAIBEbdmyRRdddJFKSko0b948HXvssckuqd3k5uZGrn/66admzS0pKdGECRO0YcMG3XLLLTr33HPbujwAAAAAAAAAQDug4w5Al1BQUKAJEyaoqKhIc+fO7TKhXV5ent555x3t2LGjWfOsVmvkurS0NOF5FRUVuuSSS/TLL7/opptuIrQDAAAAAAAAgC6E4A5Ap1dWVqaLL75YW7Zs0ezZsxPeHrOwsFArV65s5+oat3r1ap166qn6+9//rjPOOEPFxcUJzy0rK4tcOxyOhOb4/X5NnTpVq1ev1jXXXJPw9phlZWX67LPPEq4NAAAAAAAAANA+CO4AdGqBQEDTpk3Tzz//rJtvvlmnnHJKwnPfeOMN3Xvvve1YXXx33HGHysvLJVV1DL7xxhsJzy0sLIxc9+/fP6E5M2bM0Oeff67LLrtMl1xyScKv9cUXX+iGG25IeDwAAAAAAAAAoH0Q3AHo1G677TZ98cUXmjJlSrO3fVy+fHnCoVd7qHs2XU2Il4hffvklcn3UUUc1Of6xxx7T4sWLNXbsWF111VWJF6mqr9OAAQOaNQcAAAAAAAAA0PYI7gB0WosWLdLChQt1+umna+rUqc2au3Xr1iYDqXfeeUcnnXSSDjroIP3tb39r1laWicjNzY15fPTRRyc0Ly8vT5s2bZIk2Ww2jR07Nu74L774QnPmzNFhhx2m22+/vVk1VlRU6N133yW4AwAAAAAAAIBOgOAOQKe0du1a3Xbbbdp///112223NWtuKBTSrbfeKr/fr4EDBzY45rvvvtPVV1+tDRs2yO1267333tO0adMUDofboPoqf/zjHyPXgwYN0rBhwxKa98orr0TquPDCC9W7d+9Gx+7YsUPXXHONdtttNz3wwAMym83NqvGee+5RSUlJo18nAAAAAAAAAEDHIbgD0OkEAgFde+21MpvNmjt3rqxWa8JzN2zYoMmTJ2vZsmWSGj8fbunSpQqFQjH3Vq5cGel0awuXXXaZevXqJUkJB4Jr167VU089JUk66KCDNG3atLjj//nPf6q0tFRz585VZmZmwrVt3bpVN954o1544QVJiZ+jBwAAAAAAAABoP81rzQCADvD222/r559/lsVi0emnn57wPJ/Pp4qKiph7ze0kqxvmtUZWVpaeeOIJXXzxxdq0aZPmzp2radOmyWhs+N9MfPPNN5o2bZp8Pp8OPvhgzZs3TxaLpdH1V65cqU8++UQmk0mTJk1KuK5AIKCysrKYe3TcAQAAAAAAAEDyEdwB6HRcLpckye/3q6SkpMXr5OTkKCMjo8HnTjjhBD399NMxQd2QIUPaPMDac889tXjxYt1+++165JFH9M477+iMM87QPvvso27dusntdmv9+vX66KOP9Pnnnys1NVWXX365pkyZEje0k6TS0lJJUjAYbNXXSaLjDgAAAAAAAAA6A4I7ADutAQMGNPrcAQccoHvvvVcPPPCAtm/froMPPlgzZsyQyWRq8zpyc3M1Z84cXXnllVq8eLE+/vhjPf300yorK1Nqaqqys7O11157acaMGTr55JOVnZ3d5jXE0717d6WmpnboawIAAAAAAAAA6jOEEz14CUCb8Pl8WrNmTb37++23X7POcttZ+P1+rV69Oube8OHDm+w2AwAAAAAAAICdAZ+R1uLzc6nhg5YAAAAAAAAAAAAAdCiCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgFzsgsAsGszGAzq1q2bbDabDAaDwuGwjEb+TQEAAAAAAAAAYNdDcAcgqcxmswYMGJDsMgAAAAAAAAAASDraWgAAAAAAAAAAAIBOgI47AEnl8we1Md+l37a55PUFZbOaNKCXQ4P6OGS1mJJdHgAAAAAAAAAAHYbgDkBSrP3dqTc/26AvVufLHwjVe95iNuoPw/vo1CN315D+2UmoEAAAAAAAAACAjkVwB6BDVXgCevrNH/TeV7/FHecPhPSf77boP99t0Z8OG6AJpw5Tqp3/ZQEAAAAAAAAAdl58Cg6gwxSVVuqf87/Ulh1lzZr33le/6YcNRbr98lHKzUxpp+oAAAAAAAAAAEguY7ILALBrqPAEWhTa1diyo0w3PbpcFZ5AG1cGAAAAAAAAAEDnQHAHoEM8/eYPLQ7tamze7tbTb/2vjSoCAAAAAAAAAKBzIbgD0O7W/u5s8ky7RL23fJPW/u5sk7UAAAAAAAAAAOhMCO4AtLs3P9vQpuu99XnbrgcAAAAAAAAAQGdAcAegXfn8QX2xOr9N1/x8Vb58/mCbrgkAAAAAAAAAQLKZk10AgJ3bxnyX/IFQm67pD4S0aatLQ/pnS5IW/+dX/bq5RNkOm3IddmU77MrJsCsns+o6zW6WwWBo0xoAAAAAAAAAAGhrBHcA2tVv21ztsm50cBcMhvTZf/MaHWu1mJTjsCm7OszLcdT8iL2XnmIh4AMAAAAAAAAAJA3BHYB25fW1z5aW3qitMi3m+Lv++vxBbSuq0LaiirjjLGajsh326q49W23XXlS4l51hkyPNSsAHAAAAAAAAAGhzBHcA2pXNamqfdS2167bVVpz+QEg7iiu0ozh+wGc2GauCPUdtmJeTWbs9Z9U9uxxpVhmNBHwAAAAAAAAAgMQQ3AFoVwN6Odpl3YG9a9dtKmhra4FgSAXOShU4K+OOMxkNkVAvO6N6e87q69zM6sDPYZcj3SYTAR8AAAAAAAAA7PII7gC0q0F9HLKYjW3WFSdVbWkZHdz9uqW0zdZuS8FQWIWlHhWWeuKOMxoNykq3VZ2556g9gy9m206HXVnpNplM8bcFBQAAAAAAAAB0XQR3ANqV1WLSH4b30X++29Jmax4xoo+s1VtlBoIhHTC0h/r3ylCxyyOny6Nil0fuCn+bvV57C4XCKq6uW2o8hDQYpMz0BrbodMT+yMqwyUzABwAAAAAAAABdDsEdgHZ36pG7t2lw9+cjdo9cm01G/fWkveuN8QeCcrq8kUDM6fKoyOWJvef2qLTM12Z1tbdwWCpxe1Xi9mpDXvyAz5FmrdO1Z1dOzbadjtpz+CxmAj4AAAAAAAAA6CwI7gC0uyH9s/Wnwwbova9+a/Vafzp8oIb0z25ynMVsUo+cVPXISY07zh8Iyemu6dTzyun2qLjUExX4eVXs9qi0zKtwuNXld4hwWCot86m0zKeN+a64YzNSrbXn7WXWBno5mXblZNScyWeLdDgCAAAAAAAAANoPwR2ADjHh1GH6YUORtuwoa/Ea/XpmaMKf923DqqrOy+uRnaoe2fEDvkAwpNIyr4pKa7fjrAn6iko9kfCvxO1VqIsEfJLkrvDJXeHTpq3xx6WnWOqFeTmOmmt7VfjnsMtGwAcAAAAAAAAALUZwB6BDpNrNuv3yUbrp0eXavN3d7Pn9embotssOV6o9Of/bMpuMys1MUW5mStxxwWBIpeW+qq69mk6+0qhtOqvvOd1ehbpQwldW6VdZpV+/b4v/a5dmN0fCvJqgr3a7Tlvknt3GHz8AAAAAAAAAUBefnALoMLmZKbpn2lF6+s0fmrVt5p8OH6gJf943aaFdc5hMxqpONIc97rhgKCxXuVfFpVUhXrGrdnvO4uoOvmKXV06XR8EuFPCVewIq95Rp8/b4nZUpNnPk65RTE+pFPa7p6ku1WzqocgAAAAAAAABIvs7/KTiAnUqq3awrz9pfow8doLc+36DPV+XLHwjVG2cxG3XEiD768xG7J3SmXVdjMhqUnVHVmRZPKBSWu8IXE+pVde3Fhn1Ol0eBYNcJ+Cq9AeUVlCmvIH7AZ7eaqoO9mq69mnDPFnVtV6rdLIPB0EHVAwAAAAAAAED7ILgDkBRD+mfrqnEHaspZ+2vTVpc2bXXJ6w/KZjFpYG+HBvZ2yMp5aTIaDcpMtykz3aZBfTIbHRcOh+Uq99V270W69mqCvdqgr6GgtLPy+ILKLyxXfmF53HE2q6l6W05bnU6+qpCv5nFaioWADwAAAAAAAECnRXAHIKmsFpOG9M/eKbvqOpLBUBvwDeztaHRcOBxWeaU/qluvajvOYrendtvO6jP5fP5gB76D1vH6gtpaVK6tRfEDPqvZGNOpFx30RXf1ZaQS8AEAAAAAAADoeAR3ALALMRgMSk+1Kj3Vqv694gd8ld6Aimo690qrQr6abTlrgz6PKr1dJ+DzBULaXlyh7cUVcceZTcZ623E2tEVnRqpVRiMBHwAAAAAAAIC2QXAHIKkCgYDy8vJktVplNBoVCoXUo0cPmUxsk5lMBoNBqXaLUu0W9euZEXdshcdfb4vOotLY7Tmdbo8qPIEOqr71AsGQdjgrtcNZGXec2WRQVkbtdpz1z+Kr6urLTLMR8AEAAAAAAABoEsEdgKQKh8MqLCyMudetWzeCuy6kJuDbrXt63HEeb0DF7upAr9RTfV21LaczauvO8kp/B1XeeoFgWIUllSosiR/wmYwGZWXY6py9Fxv45Tjsyky3yUTABwAAAAAAAOyyCO4AAB3CbjOrjy1dfbrFD/i8/mBUkOeJ6uSL6uBzeeSu6DoBXzAUVlFpVSdiPEaDlJVRtR1ndoZduZlVP9cN+LIybDKbjB1UPQAAAAAAAICOQnAHAOhUbBaTeuWmqVduWtxxPn+wKsyL6t6rDfZqQz5Xua+DKm+9UFjVZwl6JZU2Os5gkDLTbJGtOBvq5KsJ/yxmAj4AAAAAAACgqyC4AwB0SVaLST1zUtUzJzXuOH8gJKc7djvOYlf9oK+kzNtBlbdeOCyVlFXXnB9/rCPNGnPeXk7U+Xu1YZ9NFjPb0wIAAAAAAADJRnAHANipWcxG9chOVY/s+AFfIBhSSZ3tOIvqdO85XR6VlHkVDndQ8W3AVe6Tq9ynTVtdccdlpFrqdO1VBX25jpSYwM9qIeADAAAAAAAA2gvBXSfzyy+/aPHixVqxYoW2bNmiyspKpaWlqUePHhoxYoRGjx6to446SgaDIdmlRnz77bd644039O233yo/P18+n08ZGRnq3bu39t9/f51yyik68MADE17vuOOOU15eXotqWbBggQ499NAWzQWwazObjOqWlaJuWSlxxwWDIZWUeettyRkd7hW7PCpxexXqQgGfu8Ivd4Vfv21zxx2XlmKJbMdZf4vO2sDPbuVbDAAAAAAAAKC5+FStk8jPz9esWbO0fPlyjRs3TjfddJP69eunUCik/Px8ffbZZ3r++ef173//W/vuu6/mzJmjAQMGJLXmtWvXaubMmdqwYYMuuOAC3XnnnerTp498Pp82b96sjz76SAsXLtQLL7ygP/zhD7r77ruVm5vbrjXtvffe7bo+AJhMRuVmpig3s4mALxSWq8xb3bVXu0VndLjndHlU7PYq1IUSvvJKv8or/dq8PX7Al2o3N7glZ811bvXPKTa+FQEAAAAAAABq8GlZJ7Bq1Spddtllys3N1dtvv63evXvHPN+zZ0+NHDlSZ599tiZMmKD//e9/Ouecc7Ro0SL17ds3KTV//PHHuuqqqzRs2DC9++67yszMjHm+d+/eOuSQQ3TmmWdq4sSJ+uKLLzRu3Di98sor9cY2JCsrS9nZ2c2qqXv37nI4HM2aAwDtxWQ0KLs6nIonFArLVe6rF+pFn79XXH1GXyDYdQK+Ck9AFZ4ybdlRFndcis1Uf4vODLtyMmO7+lJs5k7VbQ4AAAAAAAC0B0M43JVO6tn5FBcX65RTTpHT6dTbb7+twYMHxx3/888/a+zYsQqFQjrwwAP14osvdlCltdavX6+xY8fKbDZr6dKlysnJiTt+2bJluvzyyyVJY8aM0d133x13/HHHHaexY8dq6tSpbVZzZ+Lz+bRmzZp69/fbbz9ZrdYkVJRcfr9fq1evjrk3fPhwWSyWJFUEdE6hUFjuCl/UFp2VKnZ5o87iqwn7vAoEQ8kut83ZrKZ623Hm1AR81T9nO+xKsxPwAQAAAACAroXPSGvx+Tkdd0k3f/58FRcXa+jQoU2GdpI0dOhQHXHEEfr000/17bffasWKFTrkkEM6oNJa9913n7xer4444ogmQztJOvbYY7XHHnvo119/1VtvvaVp06apX79+HVApAOw8jEaDMtNtyky3aVCfxseFw2G5K/y123G6G96ms9jllc8f7Lg30EpeX1BbC8u1tbA87jirxaQchy2qa88eOZMv+l56ioWADwAAAAAAAJ0OwV2Svffee5KqEvVEjRo1Sp9++qmkqm62jgzuKioqIq/dnJoPP/xw/frrrwqFQvr00091/vnnt1eJALBLMxgMcqRZ5UizakDvxrcPDofDqvAEGgz0Yrfq9Mjj6zoBn88f1LaiCm0rqog7zmI2Vm3PmWGL7drLqA76Mu3KzrDJkWYl4AMAAAAAAECHIbhLooqKCm3fvl1S1faTn376qY466qgm50V3q/3+++/tVl9D8vLy5PP5JEnLly/Xzz//rKFDhzY5L/osvt9++63d6gMAJMZgMCgtxaK0FIv69cyIO7bC449s0VlU5xy+6G07K72BDqq+9fyBkHYUV2hHcfyAz2wyxmzLmR0V9GU77MqtDvscaVYZjQR8AAAAAAAAaB2CuySqrKyMeTx79uyEgruUlJTIdU2I1lGia/b7/brvvvv02GOPNTkvNTU1ct3RNQMAWifVblGq3aK+PeIHfJXeQEyoV3MGX90OvnJP1wn4AsGQCpyVKnBWxh1nMhqUnWGr6uJzRHftVW3TWXPPkW6TiYAPAAAAAAAAjSC4S6KcnBx1795dBQUFkhTpvmuK0+mMXPfu3btdamtM//79Zbfb5fF4JLWs5j594hzOBADoslJsZqV0T1ef7ulxx3l8gepOvbrbdNZ29RW7PCqvTHxL5mQLhsIqLPWosNQTd5zRaFBWuq06zEup6uaLCvtqHmel22QyGTuoegAAAAAAAHQWBHdJZDAYNHfuXM2dO1clJSUaP358QvN++OGHyPVee+3VXuU1KCsrS/fcc48ef/xxeb1eTZs2LaF5yawZANC52K1m9e5mVu9uaXHHef1BOSPbcdbv3Kvp6nNXdJ1O7lAoHHkPUmmj4wwGKTO9NtSLbNHpqOriq9miM9thk5mADwAAAAAAYKdBcJdkBx10kJ5//vmEx4fDYX3wwQeSJLPZrJNOOqm9SmvU6NGjNXr06ITHl5eX6/PPP5ckZWdna9SoUc16va+++krvvPOOvv/+e23btk0ej0fdu3fXAQccoLPPPluHHHJIs9brrAKBgAyGXW/7tECg/pZ5Dd0DsOsxSsp1WJXrsEpqfJtOfyAop9tXFfK5vXK6a7bp9Mrprgr9nG6vXOVdJ+ALh6USt1clbq825MUP+DJSrcpx2KqCvIyqbr7smseR+1ZZzKYOfAcAAAAAACBRfEZaa1d939EI7rqYZcuWKS8vT5J0wgknKCcnJ8kVNW3x4sWqqKiQJJ1xxhmyWCwJzQsGg5oxY4YWLVokqepsv5ycHIVCIeXl5SkvL09vvvmmzj77bN1yyy0ymbr2B5I//fRTskvoNH788cdklwCgi0qVlJom7ZYmqbck2ap/SIFgWOWeoNyVIbkrg3JXBlVWGZTbE1RZ1L1yTyh5b6CZwmHJVe6Tq9ynTVvdccem2IzKSDEpw25Ueoqp6jrFpIyU2sfpKSZZTLvePyIBAAAAAKCz4TPSXRfBXRcSDAZ1//33S5JSU1N1zTXXJLmippWVlenRRx+VJPXo0UOXX355wnNvuukmvfXWW7rssst0+umna/fdd488980332jmzJn65Zdf9Morr6iyslL33HNPm9cPANh5mE0GZaaZlRl/h04FQ2GVe+qEe5W1gV9N2FfuCSkc7pja20KlN6RKb0g7mhhntxoioV663aSM1KqwLyO1+nGKSekpRlnNbNEJAAAAAADQ1gjuupBnn31WP//8syRp5syZ6tevX5IratqcOXNUUFAgi8Wie++9Vw6HI6F5b7/9trZv364FCxZo//33r/f8QQcdpJdeeklnnXWW1q9frzfffFNHHnmkTjvttDZ+BwCAXY3JaJAj1SRHavxO7lAorHJv3YAvVCfsC6qsiwV8Hl9YHl9ABaXxt6awWaICvurOvZjH1WEfAR8AAAAAAEDiCO66iB9++EH33XefJGn69Ok69dRTk1xR0z7++GM9//zzMpvN+te//tWss+g2btyoO+64o8HQrkZaWppuueUW/fWvf5UkzZ07V3/+85+7/JaZAICuwWisDa7iCYXCqogO+DwhuSuquvaiA7+yyqBCXSjg8/rD8voDKnTFD/isZkN1117stpw1nXs11zYLAR8AAAAAAADBXRewY8cOTZkyRYFAQDNmzND555+f7JKatG7dOl133XWyWq2aM2eOTjjhhITnTpgwQYWFhTrzzDObHHvIIYdo6NCh+vnnn5Wfn6/PP/9cRx99dGtKT5q999474fP/diaBQKDefs377LOPzGb+9wRg1xIKheWu8Mnp9qrY5ZXT7ZHT5a1+7JHT7a1+7FEg2HUSPl8grCJXQEVNBHx2q0nZDpuyM+zKcdiUnVF1ne2wKSfDpmxH1XWqzSyDgXP4AAAAAAA7Dz4jreX3+/XTTz8lu4yk2vV+1bsYl8ulSy+9VAUFBfrXv/6lMWPGJLukJuXn5+vSSy9VMBjUY489psMPP7xZ82s66BJ1zDHHRLYQ/frrr7tscGc2m3fJ4K4hfC0A7KpsNqu6ZafHHRMOh+Wu8KvY5an6UeqR0+2JPHa6vJFrfyDUQZW3nscX1NbCCm0trIg7zmoxKbc6xMtx2JXjsCu7+uecqHtpKRYCPgAAAABAl7WrfkYa7krnjbQTgrtOzO12a+LEidqwYYPmzZun4447LtklNWnbtm0aP368ysvL9eyzz2r48OHt/pr77LNP5HpXT+IBADs/g8EgR5pVjjSrBvZu/OzYcDis8sqogM/lldMVFfC5vSou9ajY7ZHXF+zAd9A6Pn9QW4vKtbWoPO44q9kYFejVD/pyq3/OSCXgAwAAAAAAnQfBXSdVWlqqiRMnav369Xr00Ueb3bWWDHl5ebrwwgtVXl6uBQsWaOjQoR3yun379o1cO53ODnlNAAA6O4PBoPRUq9JTrerfK37AV+kNqKi0pmPPE9mqsybYq+nqq/R2oYAvENL24gptL47fwWc2Gau25owK+Wq696LvZaRaZTQS8AEAAAAAgPZFcNcJOZ1OTZgwQb///rueeOIJHXTQQckuqUmbN2/W+PHj5ff79fzzz2vw4MEd9tppaWmR64qK+B/OAQCAWAaDQal2i1LtFvXrmRF3bIXHHzlzr3aLTm/kuqj65wpP/PPsOpNAMKQdzkrtcFbGHWc2GZSVUbsdZ/2gr6qrLzPNRsAHAAAAAABajOCuk6nptKsJ7Q444IBkl9SkLVu26MILL1QgENBzzz2nQYMGdejrh0K15/ekpqZ26GsDALArqQn4duse/xw+jzegYnf1eXvVXXtOl0dFkY6+qsCvvNLfQZW3XiAYVmFJpQpL4gd8JqNBWRm2mO04G+rgy0y3yUTABwAAAAAA6iC460TKyso0adIkbdq0SU899ZRGjhyZ7JKatH37dl100UXy+Xx6/vnnNXDgwFatN3/+fC1YsEA9e/bUY489pu7duzc5J7rLzuFofCswAADQMew2s/rY0tWnW/yAz+sPxpy7V7VVp7fOY4/cFV0n4AuGwioqreo+/DXOOKNBkYAv0rHXQEdfVoZNZpOxw+oHAAAAAADJRXDXSfh8Pk2ePFnr1q3T448/nlBo5/f79fe//1133323UlJSOqDKWKWlpZo0aZLKy8v13HPPJRTabd++XXfffbfuueeees99++23mjNnjiSpqKhIr776qi6//PKE1qyxxx57JP4GAABAUtksJvXKTVOv3LS443z+oJxubwNde7FBn6vc10GVt14orKptRl1erVdpo+MMBikzzabs6kCvdlvO2JAvO8Mui5mADwAAAACAro7grhMIh8O6/vrr9e233+rhhx/WIYccktC8n376ScuXL09KaFcTNObn5+u5555LODD77rvvtHbt2gaf+/7772Mee73ehNZcv3595Hr48OEJzQEAAF2H1WJSz5xU9cyJvyW2PxCS0x27HWdDHX0lZYl9j9EZhMNSSVlVzRvzXXHHOtKsMeftRYd8uVFhn8Vs6qDqAQAAAABAcxHcdQIPPfSQ3n77bd111106+uijE5733nvvqX///u1YWeNuvvlmrVq1So899pj23XffhOfFqzl6m0uLxaLTTjstoTW//PJLSZLVatUxxxyTcC0AAGDnYjEb1SM7VT2y4wd8gWBIJe7YLTnrdu85XR6VlHkVDndQ8W3AVe6Tq9ynTVvjB3wZqZaY7Thrgr5cR0ok8Mt22GWzEPABAAAAANDRCO6S7JNPPtGDDz6oK664QmPHjk14Xl5enhYuXKgjjzyywefz8/N1yy23aOXKlerbt69uuOEGjRo1qk1qfumll7R48WLdfvvtzVpz9erV+vDDD3XRRRc1+PyoUaNkNBoVCoV0yimnJLT15tatW7Vy5UpJ0sknn6ysrKyE6wEAALsms8moblkp6pYVf9eCYDCkkjJvvXP3akO+ShW7vCpxexTqQgGfu8Ivd4Vfv21zxx2XlmKpDvZsdbr2orr6Muyy2/grBQAAAAAAbYW/ZSdRQUGBpk+frsMOO0zTpk1LeN7333+v6dOnq7y8vNHutenTp2vFihWSpLVr12ry5Ml699131bt371bVvHbtWt15550644wzdNZZZyU0JxwO69NPP9X111+vYDDYaM19+/bVueeeqxdffFGpqfH/pXyN+++/X4FAQBkZGbr66qsTfh8AAABNMZmMys1MUW5mEwFfKCxXmTfq/D1vpGsvJuxzexXqQglfeaVf5ZV+bd4eP+BLtZtrw7wMu3IyY8/fq3kuhYAPAAAAAIAm8bfnJJo3b56cTqd+/fVXnXzyyQnNcblcKioqijxuLAT74YcfYh5XVlZqzZo1rQ7uZs+eLa/Xq6+++kp/+tOfEprjdDpVUlISeRxve8/rr79eW7du1euvv67TTz9dI0aMaHTsM888oyVLlshqteruu+9Wjx49En4fAAAAbcVkNCi7OqSKJxQKy1Xui9mOMzrUKy71qLj6jL5AsOsEfBWegCo8ZdqyoyzuuBSbqTbMqw74ooO+7Ay7cjOrAj6DwdBB1QMAAAAA0LkQ3CVRYWGhpKrOu4KCghat0VgINmzYsEjHnVR1ZtzQoUNb9BrRamrOz89v8RrxgjubzaaHHnpITz75pC666CIdeuihOv7447XPPvuoW7duCgQCWrdunRYuXKhly5apf//+mjlzpg4//PAW1wMAANARjEaDsjJsysqwaffdMhsdFwqF5a7wNXjuXqSrrzroCwRDHfgOWqfSG1ReQbnyCsrjjrNZTZEuvegtOXMyowI/h11pdgI+AAAAAMDOh+Cui2ssBJs9e3bkjLuePXvq6quvjhuYdRSLxdJk15/JZNKll16qv/zlL1qyZIneeecdzZ07V6WlpbLb7crJydG+++6r2bNn6+STT5bVau2g6gEAANqf0WhQZrpNmek2DerT+LhwOKyySn9Vp15D3Xsuj5xuj4pLPfIFuk7A5/UFtbWwXFsL4wd8VrOxtmvPUdPBZ1NuTCefXekpFgI+AAAAAECXYQiHw11nHx5gJ+Dz+bRmzZp69/fbb79dMoT0+/1avXp1zL3hw4fLYrEkqSIAAHYu4XBY5Z5AVade1HacRVEdfTXbdnp8wWSX2+YsZmP19py2SNde9Nl7NYGfI81KwAcAAAAgKfiMtBafn9NxBwAAAOzUDAaD0lMsSk+xqF/PjLhjKzz+elt01m7VWXuv0hvooOpbzx8IaUdxhXYUV8QdZzYZ6py/Z4vartMe6eRzpFllNBLwAQAAAADaB8EdAAAAAElSqt2iVLtFfXvED/gqvYFIl57T5a09e88Vu0VnuafrBHyBYFgFzkoVOCvjjjMZDcrOsMV07dVe14Z9jnSbTAR8AAAAAIBmIrgDAAAA0CwpNrNSuqerT/f0uOM8vkDtdpzVYV5xA4FfWaW/gypvvWAorMJSjwpLPXHHGY0GZaXbqsO8FGVHhXq1gZ9NWek2mUzGDqoeAAAAANDZEdwBAAAAaBd2q1m9u5nVu1ta3HE+f7DelpxOt0dFpdGdfF65K3wdVHnrhULhyHuSShsdZzRImel1O/iqQr7sjNotOrMdNpkJ+AAAAABgp0dwBwAAACCprBaTeuWmqVdu/IDPHwhWBXvV3XtOl6e6ay/qntuj0rIuFPCFJafbK6fbqw15jQd8kpSZblV29Rl8OZGfq0O/6nvZDpssZlMHVQ8AAAAAaGsEdwAAAAC6BIvZpB45qeqRkxp3nD8QUonbW9u1567u2iuN6upze1Ra5lU43EHFt4HSMp9Ky3zatNUVd1xGqjVy3l62o7Zrr25Hn9VCwAcAAAAAnQ3BHQAAAICdisVsVPfsFHXPTok7LhgMqaTMWxvqub1RW3PWhHwelbi9CnWhgM9d4ZO7wqfftrnjjktPsVQFe1FhXk3YFx3y2a38tREAAAAAOgp/AwMAAACwSzKZjMrNTFFuZorUr/FxwVBYpTUBn6vm3D1v5Lqo+men26tQF0r4yir9Kqv0a/P2+AFfmt2snHpde/UDP7uNv14CAAAAQGvxNysAAAAAiMNkNETCqXiCobBc5d7qs/a89Tr3iqsDP6fLo2AXCvjKPQGVe8q0eXtZ3HEpNnP1Fp0pMYFe3S06U+2WDqocAAAAALoegjsAAAAAaAMmo0HZGVWdafGEQmG5K3y1wV6pR8Xu6rP36nT1BYKhDqq+9Sq9AeUVBJRXUB53nN1qqrclZ/SZfDX3Uu1mGQyGDqoeAAAAADoHgjsAAAAA6EBGo0GZ6TZlpts0qE9mo+PC4bDcFf6Y7Thju/hqgz5/oOsEfB5fUPmF5covjB/wWS2myHactVtzxgZ9OQ670lIsBHwAAAAAdhoEdwAAAADQCRkMBjnSrHKkWTWgt6PRceFwWOWV/qhQz1tne87a+z5/sAPfQev4/EFtLSrX1qImAj6zMRLo1d2iM7qDLyOVgA8AAABA50dwBwAAAABdmMFgUHqqVempVvXvFT/gq/AEqkI9d/UWndEhn7s27Kv0dqGALxDS9uIKbS+uiDvObDIqp7p7L/rcvdx6AZ9VRiMBHwAAAIDkILgDAAAAgF2AwWBQWopFaSkW9euZEXdshccvp7tu555XxaXVoV/1vQpPoIOqb71AMKQdzkrtcFbGHWcyGqqDvPrn7kUHfplpNgI+AAAAAG2O4A4AAAAAECPVblGq3aLduqfHHefxBqo79apCvZquvdoz+arCv/JKfwdV3nrBUFiFJZUqLIkf8BmNBmVn1Dl/L8OmnMzYsC8z3SYTAR8AAACABBHcAQAAAABaxG4zq48tXX26xQ/4vP5gpHPP6fKqyFVZFfZF7lX97K7oOgFfKBRWUalHRaUe/RpnnNEgZWXU2aIzw66czNqgL8dhV1a6TSaTscPqBwAAANA5EdwBAAAAANqVzWJSr9w09cpNizvO5w/K6fZGbc/piQr3aoM+V7mvgypvvVBY1Z2HXq1XaaPjDAYpM92mnIyqrThrt+WM3bYzO8Mui5mADwAAANhZEdwBAAAAADoFq8Wknjmp6pmTGnecPxCS0x17/l7dsM/p8qq03KtwuIOKb6VwWCpxe1Xi9kr58cc60qwx5+1Fh3y5UWGfxWzqmOIBAAAAtBmCOwAAAABAl2IxG9UjO1U9suMHfIFgSCXuultyeusEfB6VlnkV6iIBnyS5yn1ylfu0aasr7riMVEvMFp11g76asM9mIeADAAAAOguCOwAAAADATslsMqpbVoq6ZaXEHRcMhlRS5q137l5RZIvOShW7vCop8yrUhRI+d4Vf7gq/ft/mjjsuLcUSsx1npGuv+iy+bEfVFp52Gx8hAAAAAO2N77oBAAAAALs0k8mo3MwU5WY2EfCFwnKVRXfseaM6+WoDP6fbq2AXCvjKK/0qr/Rr8/ayuONS7WZlZ9iVm1l11l5OZtWWnLXXVT9SCPgAAACAFuO7aQAAAAAAEmAyGpRd3Y02OM64UCgsV7kvdotOt0fFpVWhXnFp1WOny6NAsOsEfBWegCo8ZcoriB/wpdhMtWFeTddeRlXIV3Odm1kV8BkMhg6qHgAAAOgaCO4AAAAAAGhDRqNBWRk2ZWXYtPtumY2OC4XCclf4asO86i05o4O+4urnAsFQB76D1qn0BlXpLVd+YXnccTarKSrYs8UEfTkZ1Vt0ZqYozU7ABwAAgF0HwR0AAAAAAElgNBqUmW5TZrpNA3s7Gh0XDodVVumv6uAr9cjp9qgounvPVXWvuNQjX6DrBHxeX1Bbi8q1tSh+wGc1G6O69mqDvtw699JTLAR8AAAA6PII7gAAAAAA6MQMBoMyUq3KSLVqQK/4AV+5J1DVsVca3bXnkbP6PL6ax15fsAPfQev4AiFtK6rQtqKKuOMsZqOyHXblZNiU7bArt3pb05qz97IdNuU47HKkWQn4AABAl/Xtt9/q7bff1rfffqutW7eqoqJC6enpys3N1bBhwzRq1CiddNJJslqtyS61UeFwWO+//77eeOMNrV69Wk6nU6mpqRoyZIiOP/547bXXXrLb7c1a8+uvv9b48eNbVdcjjzyi4447rlVrtAWCOwAAAAAAdgIGg0HpKRalp1jUr2dGo+PC4bAqvYHq8/e8Kqo5h88VFfBV/6j0BjrwHbSOPxDSjuIK7SiOH/CZTYbqgK82zKsN92qvHWlWGY0EfAAAoHNYvXq1br/9dv36668aM2aMpk6dql69esnv92vr1q36/PPP9cYbb+i1117T3XffrVtvvVXHH398ssuuZ/Pmzbr66qu1atUq9enTR1OnTtWwYcNUXFysN998U7Nnz1Z2drYmT56sfffdt0NrGzZsWIe+XmMI7gAAAAAA2IUYDAal2i1KtVvUt0fjAZ8kVXoDkW0464Z80Vt0lnu6TsAXCIZV4KxUgbMy7jiT0aDs6u69+sFebeDnSLfJRMAHAADa0YIFC3TnnXfqgAMO0LvvvquePXvGPD9y5EidfPLJuvTSS3XppZfqt99+05VXXqkZM2Zo3LhxSaq6vvXr12v8+PEqLCzU0KFD9eyzzyorKyvy/JFHHqlDDz1UN954o+666y5NmzZNBx98cLNeIzU1tUXdht26dVOPHj2aPa89ENwBAAAAAIAGpdjMSrGlq0+39LjjPL5ATLdeTLjn8ka27Syr9HdQ5a0XDIVVWOpRYakn7jij0aCsdFt1mJdSr4uvZpvOrHSbTCZjB1UPAAB2Fi+//LJmzZqlgQMH6oknnlBKSkqjYwcOHKjHH39cp512miorKzVr1iztu+++GjFiRAdW3LDS0lJdcsklKiwsVGpqqh588MGY0K7GqaeeqmXLlunDDz/Ugw8+qFtuuUWDBg1K+HVuuukmnXHGGW1YeccjuAMAAAAAAK1it5rVu5tZvbulxR3n8wfrhXnRYZ/T7VVRqUfuCl8HVd56oVA48h6k0kbHGQ1SZnrdDj5bvbP4sjJsMhPwAQAASQUFBZo9e7Yk6YILLogb2tUYMGCAzjnnHD3zzDMKBAK655579Nxzz7V3qU264447lJeXJ0maNGmS+vXr1+jYM888U5988ol8Pp8efvjhyNdgV0FwBwAAAAAAOoTVYlKv3DT1yo0f8PkDwUi453RVB3xub/XP1Vt3uj0qLetCAV9Ycrq9crq92pDXeMBnMEiZaTZlO2yRs/hyMu3Kqdm2M7P2fD6L2dSB7wAAAHS0t956S+Xl5ZKqArlEnXLKKXrmmWckSStWrFB+fr769OnTHiUmZN26dXrjjTckSTabTePHj4873uFw6JBDDtHnn3+uvLw8ffrpp52ia7CjENwBAAAAAIBOxWI2qUdOqnrkpMYd5w+EVOL2Vp21F7U9Z1WwV7t1Z2mZV+FwBxXfSuGwVFLmVUmZVxvzXXHHZqRaI+ftZdfZnrOmoy/HYZfVQsAHAEBX9OWXX0au161bp6OOOiqheUOHDpXJZFIwGJQkffPNNxozZky71JiIefPmKRQKSZKOPfZYORyOJucceOCB+vzzzyVJixcv1hVXXNGis+u6IoI7AAAAAADQJVnMRnXPTlH37PjbRgWDIZWUeSPbdBbVO4ev6ucSt1ehLhLwSZK7wid3hU+/bXPHHZeeYlG2w169LactKtiLDfnsVj4mAgCgM9m+fXvkev78+TrttNPUrVu3JudZrVZlZGSopKREkrRjx472KrFJRUVF+vDDDyOP//znPyc0b8SIEZHwsbCwUCtXrtTRRx/dXmV2KnxHBgAAAAAAdmomk1G5mSnKzWwi4AuFVVrmrRPoeSPXRVFn8YW6UMJXVulXWaVfm7fHD/jS7OZ6nXtVj2PDvhQbHycBANARwlFbBrhcLi1cuFBTpkxJaK7FYolc13S7JcNHH30U8/oHHnhgQvPsdrt69+6tLVu2RNYhuAMAAAAAANiFmIyGSEAVTzAUlqvcW3UOnyt2m87aTj6vnC6Pgl0o4Cv3BFTuKdOWHWVxx6XYzNVhXkq9Dr7orr5UuyXuOgAAIL799ttPa9eujTz2eDwJzQsGg5FuO0nq0aNHW5eWsI8++ihyPXDgQOXk5CQ8d8CAAZHg7j//+U9bl9ZpEdwBAAAAAAA0g8loUHaGXdkZdu2+W2aj40KhsNwVvgY7+OreCwST9y/hm6vSG1BeQUB5BeVxx9mtpgbO3rPVu5dqN8tgMHRQ9QAAdB1XXXWVysrK9P3336tv374677zzEpq3du1a+f3+yOP99tuvvUps0qpVqyLXe+21V7Pm7rbbbpHr7du3q6SkRFlZWW1VWqdFcAcAAAAAANAOjEaDMtNtyky3aVCfxgO+cDgsd4U/ZjvO2mAvNujzB7pOwOfxBbW1sFxbC+MHfFaLKbIdZ23Xnr3evbQUCwEfAGCX0q1bNz3wwAPNnrd06dLI9cCBAzV48OC2LCthRUVFcjqdkcd9+vRp1vy6Id2vv/6qgw46KOH527dv11tvvaWVK1dq48aNKikpUWpqqvr27avjjz9eY8eOVWZm49+jJQvBHQAAAAAAQBIZDAY50qxypFk1oLej0XHhcFjllf6oIM9bZ3vOqqCvyOWRzx/swHfQOj5/UNuKKrStqCLuOIvZGLUtp62Bs/iqfmSkEvABAHZdgUBAS5YsiTweN25c0mpZt25dzOPevXs3a37d4G79+vUJB3cvv/yyZs2aJa/XG3O/pKRE+fn5WrFihR5//HHdfvvtOvbYY5tVV3sjuAMAAAAAAOgCDAaD0lOtSk+1qn+v+AFfhSdQbztOp9uj4lKPiqt/dro9qvR2nYDPHwhpe3GFthfHD/jMJmO9LTmzHbaoTr6agM8qo5GADwCwc1myZIny8vIkqVnba7aHHTt2xDzOzc1t1vz09PSYx8XFxQnNe/bZZ3XHHXfo0EMP1RlnnKERI0aoZ8+e8vl8+umnn/TUU0/p008/VWFhoaZMmaJ7771Xf/rTn5pVW3siuAMAAAAAANiJGAwGpaVYlJZiUb+eGXHHVnoDDWzR6Y3p4it2eVThCXRQ9a0XCIa0w1mpHc7KuONMRkNkS87sDLtyMmPP3svOsCkn067MNBsBHwCgS3C5XJo7d64kyWQy6a677pLVak1aPeXlsdtl2+32Zs23WCwxjysq4v/jHUn68ssv9e6772rmzJk655xzYp5LTU3V4YcfrsMOO0x33nmnnn32WQUCAV1//fXaZ5991L9//2bV114I7gAAAAAAAHZRKTazUrqnq0/39LjjPN6AnO7Y8/ZiA7+q58or/R1UeesFQ2EVllSqsCR+wGc0GpSdUd3BVxPwVYd60fcy020yEfABAJJo1qxZKiwslCTdeOONOvjgg5NaT92gzWazNWt+3eCubhDYkDfffFNTpkypF9pFMxgMuu6667Ry5Ur9+OOPqqys1G233abHH3+8WfW1F4I7AAAAAAAAxGW3mdXbZlbvbmlxx3n9wUi3XtV5e5Vyurx1tu30yF3RdQK+UCisolKPiko9cccZDVJWdcCXnWFXbqa9tpOv+n5upl1Z6TaZTMYOqh4AsKtYvHixXnvtNUnS9OnTdf755ye3IKne+XJ1g7immEymuOtFqznfdo899tAVV1zR5Npms1mXX365pk2bJkn67LPPtGnTJg0cOLBZNbYHgjsAAAAAAAC0CZvFpF65aeqVGz/g8/mDcrrrb8kZHfIVuzxylfs6qPLWC4VV3XnolVTa6DiDQcpMt0U69bIzbNXn8NVs01kb/lnMBHwAgKZ98803mjFjhgwGg2666aZOEdpJ9bfG9Pma9+d6IBC7VXdKSkqjYw855BB9++238vv9MpsTi76OPfZYpaamqqKiQuFwWO+8844mT57crBrbA8EdAAAAAAAAOpTVYlLPnFT1zEmNO84fCMnpjt2O09lA0Fda7lU43EHFt1I4LJW4vSpxe7Uhv/GAT5IcadaY8/Yi5+857MqNhH02WcymuOsAAHZev/zyi6688kqFQiHdeeedGjt2bLJLikhNjf1zPl7HXEP8/tgO/bS0+P8wKD09/tbfdVmtVh188MH65JNPJEmrV69u1vz2QnAHAAAAAACATsliNqpHdqp6ZMcP+ALBkErcdYO9qC063R4Vl3pUWuZVqIsEfJLkKvfJVe7Tpq3xx2WkWqI69uoHfTVhn81CwAcAO5P169drwoQJKisr07333quTTjop2SXFqBu0tXdw1xKDBw+OBHfr1q1r8/VbguAOAAAAAAAAXZrZZFS3rBR1y2p8Cy1JCgZDKinzVnXqVYd5TpdHRTXde9X3Ssq8CnWhhM9d4Ze7wq/ft7njjktLsSjHEbU1Z+QMvuptOx1VW3jabXxkCACd3YYNG3ThhRfK5XLp/vvv1wknnJDskurp1q1bzOOioqJmzXe7Y/9c6969e6trqqtnz56R69LS+J3wHYU/hQEAAAAAALBLMJmMys1MUW5mEwFfKCxXWXUHn9urotLarr3abTqrngt2oYCvvNKv8kq/Nm8vizsu1W5WdoZduZlVZ+1lO2yR65pOvuwMm1Ltlg6qHAAQbePGjRo/frxKS0s1b948HXvssckuqUF77LFHzONt27Y1a77T6Yx5PHjw4FbXVFf0dp6VlZVtvn5LENwBAAAAAAAAUUxGg7Kru9LiCYXCcpX75HR7qsK96PP33N6qoK/6jL5AsOsEfBWegCo8ZcoriB/wpdhMtWFeTddeRtW5ezXXuZl2pdjMMhgMHVQ9AOzctmzZoosuukglJSWdOrSTqjrksrKyVFJSIknaurWJvZ/rqJlXY/fdd2+jymoFg8HIdd0z+ZKF4A4AAAAAAABoAaPRoKwMm7IybBrUJ7PRcaFQWO4KX22YF3XuXlHNuXxur5wuj/yBUAe+g9ap9AZV6S1XfmF53HE2qykq2LNFgr5sh125juotOjNTlGYn4AOAeAoKCjRhwgQVFRVp7ty5nTq0q7H33ntr+fLlkqS1a9c2a25eXl7keuDAgUpPT29wXEVFhWbPnq2VK1dqxIgRuvXWW2W1WhN6jYqKish1RkZGs+prLwR3AAAAAAAAQDsyGg3KTLcpM92mgb0djY4Lh8Mqq/RXde3VbM/p8ka6+Iqjtuz0daGAz+sLamtRubYWxQ/4rGZj1dl7NT9qgr4699JTLAR8AHY5ZWVluvjii7Vlyxbdc889CZ9pV1hYqI0bN+rggw9u5wobdtxxx0WCuw0bNsjtdicckG3atClyHS+kvOuuu/Tyyy9LktavX69DDz1Up59+ekKvUVxcHLkeMGBAQnPaG8EdAAAAAAAA0AkYDAZlpFqVkWrVgF7xA75yT6CqUy9qO86q7r2ooM/lkdcXbHSdzsYXCGl7cYW2F1fEHWcxGyOBXm3XXvUWnY6Uqg4+h12ONCsBH4CdQiAQ0LRp0/Tzzz/r1ltv1SmnnJLw3DfeeEMffPCBFi5c2I4VNm706NG64447FA6HFQ6H9d133+noo49ucl5ZWZm2b98eeXzcccc1Ovb999+Pebx58+aE69uwYUPketiwYQnPa08EdwAAAAAAAEAXYjAYlJ5iUXqKRf16Nt61EA6HVekNVJ2/V929F3MOX1TIV+kNdOA7aB1/IKQdzkrtcFbGHWc2GZSVEbUdZ3XXXkxXX3XAZzQS8AHovG677TZ98cUXmjJlis4999xmzV2+fLn69+/fTpU1rXfv3jr88MP15ZdfSpLefffdhIK77777TuFw1fmwu+22m4YPH97o2EAg9s+wAw88MKHawuGw1qxZE3k8atSohOa1N4I7AAAAAAAAYCdkMBiUarco1R4/4JMkjzeg4uptOJ0ub+Q6cq/653JP1wn4AsGwCksqVVgSP+AzGQ3KzrDFBHq117ZIV58j3SYTAR+ADrZo0SItXLhQp59+uqZOndqsuVu3btXy5ct1xRVXNDrmnXfe0bx581RQUKA//OEPuvnmm5WTk9PasmP8/e9/jwR377//vmbMmKHU1NS4c1asWBG5PvPMM2U0Ghsdu+eee+r777+XJB155JEJB3Br1qxRQUGBJKlv37467LDDEprX3gjuAAAAAAAAgF2c3WZWH1u6+nRLjzvO4wuoxO2t7eIrrdPBV32vrNLfQZW3XjAUVmGpR4WlnrjjjEaDstJtkTAvp86Pmq6+rHSbTKbGP2AGgEStXbtWt912m/bff3/ddtttzZobCoV06623yu/3a+DAgQ2O+e6773T11VcrFKo6N/W9995TUVGRnnvuuTbdanj48OE66aST9O6776qiokLPPPOMJk+e3Oj4vLy8SBA3aNAgHXrooXHXP/PMMyPjjznmmITreuaZZyLXl1xySafZXpngDgAAAAAAAEBC7FazeuWa1Ss3Le44nz8op9tbv2vPFR32eeWu8HVQ5a0XCoUjIaVU2ug4o0HKTK/bwWeLOouv6kdWhk1mAj4AjQgEArr22mtlNps1d+5cWa3WhOdu2LBB//rXv7Rs2TJJanSrzKVLl0ZCuxorV67Upk2bNGjQoJYX34Cbb75Zq1atUn5+vp544gmdfvrp6tOnT4NjX375ZYXDYdlsNk2ePLnJQO3MM8/UW2+9pa+++kqbNm1KqJ6vv/5a7777riRp5MiROuecc5r1ftoTwR0AAAAAAACANmW1mNQzJ1U9c+JvheYPVAd8Lk/V+XulHhW7q87iK6q55/KotKwLBXxhyen2yun2akNe4wGfwSBlptmUHbUdZ7bDrpwMm3Iya66rQj+L2dSB7wBAZ/D222/r559/lsVi0emnn57wPJ/Pp4qKiph7jXXcNaZumNcWsrOz9cQTT2j8+PEqLCzUZZddpueff16ZmZkx4+bPn69vvvlGFotF06ZN02677dbk2kajUQ899JCmTJmihQsXasiQITrrrLMaDfy+++47/e1vf1MoFNKQIUP00EMPdZpuO4ngDgAAAAAAAECSWMwm9chOVY/s+AFfIBiS0+Wt7dqL3p4z6nFpmVfhcAcV30rhsFRS5lVJmVcb811xx2akWhvdojN6m06rhYAP2Fm4XFX/X/D7/SopKWnxOjk5OcrIaPic0xNOOEFPP/10TFA3ZMiQZgd9iRo8eLBefvllXXPNNfr+++91yimn6IorrtA+++yjgoIC/fvf/9ann36q3NxcXXnllRo6dGjCa6enp+vJJ5/Us88+q7vuukvz58/XcccdpwMOOEA9evSQ1WrV1q1b9eGHH+rdd99VKBTSGWecoeuuu07Z2dnt8n5byhAOd5U/yoCdg8/n05o1a+rd32+//ZrV7ryz8Pv9Wr16dcy94cOHy2KxJKkiAAAAAADQVQWDIZWUeWu35Kzu3qsN+qp+LnF7FdoJPxVNT7FUh3u2OsFebMhnt9LPAXQmDX1GumrVKs2ePbvVa48cOVILFy5s9Pl33nlHDzzwgLZv366DDz5YM2bMUN++fVv9uvGEw2F9+OGHeu2117R69Wo5nU6lpKRoyJAhOuGEEzR06FDZbLaYOc35/LysrExvvvmmPvvsM/34448qLi6WwWBQTk6O+vTpo1GjRunEE0/Unnvu2R5vr9UI7oAORnAXi+AOAAAAAAB0tGAorNIyb0yYV+yq+9gjp9ur0E6Y8KXZzXXCvJprW8y9FBsBH9AR+Iy0Fp+fs1UmAAAAAAAAgF2MyWiIBFTxhEJhlZZ7Y7bkrHv+XrHLqxK3R4Fg1wn4yj0BlXvKtGVHWdxxKTZzdZiXEtmOsybUy43aojPFZu5U50MBQFdGcAcAAAAAAAAADTAaDcrOsCs7w67dd8tsdFwoFJa7whd17l5lpIMvdptOrwLBUKPrdDaV3oDyCgLKKyiPO85uNdXbjjO3zhadOQ67Uu0EfADQFII7AAAAAAAAAGgFo9GgzHSbMtNtGtSn8XHhcFjuCn8DXXueqNCv6r4v0HUCPo8vqK2F5dpaGD/gs1pMke04a7v27PXupaVYCPgA7LII7gAAAAAAAACgAxgMBjnSrHKkWTWgt6PRceFwWOWV/qhQz9tgyFfk8sjnD3bgO2gdnz+obUUV2lZUEXecxWystx1njqOq8zEns7aDLyOVgA/AzofgDgAAAAAAAAA6EYPBoPRUq9JTrerfK37AV+EJ1NmOszboi+7q8/i6TsDnD4S0o7hCO4rjB3xmkzEm2KvZpjOnXsBnldFIwAegayC4AwAAAAAAAIAuyGAwKC3ForQUi/r1zIg7tsLjl9Ndfe5eqUdOd/1OPqfLo3JPoIOqb71AMKQCZ6UKnJVxx5lNBmWl25STGdu1l51hV26mXdkZVc9lptkI+AAkHcEdAAAAAAAAAOzkUu0Wpdot2q17etxxHl8gctZecQPn8BVXP1de6e+gylsvEAyrsNSjwlJP3HFGY23AF+nay7BVncMXdS8z3SYTAR+AdkJwBwAAAAAAAACQJNmtZvXuZlbvbmlxx3n9wUioV3XeXmWDgZ+7ousEfKFQOFJ/PEaDlFUd6NV27dmVU71tZ7aj6l5Wuk0mk7GDqgewsyC4AwAAAAAAAAA0i81iUq/cNPXKjR/w+QPBmECvOCrsi37sKvd1UOWtFwqruvPQK6m00XEGg5SZZqs9e6/mLL6YoC9F2Q6bzAR8AKoR3AEAAAAAAAAA2oXFbFKPnFT1yEmNO84fCKnE7VWxqzKyHaezgaCvtNyrcLiDim+lcFgqKfOqpMwr5ccfm5lurQ7z7DFBX7bDrtzqn3McNlnMpo4pHkDSENwBAAAAAAAAAJLKYjaqe3aKumenxB0XCIZUWuZVUWl0sOeV0+2puuf2qLjUo9Iyr0JdJOCTpNIyn0rLfNq01RV3XEaqpSrEy6jp3Ks+ky96206HXTYLAR/QVRHcAQAAAAAAAAC6BLPJqNzMFOVmxg/4gsGQSst9Ki71xJ675/ZW3asO+ErKvAp1oYTPXeGXu8Kv37e5445LS7Eox2Gr6uLLrA36cjKqu/mqr+02IoLOwGAwqFu3brLZbDIYDAqHwzIa2T51V8V/lQAAAAAAAACAnYrJZIxsOxlPMBSWq6x6a053VSdf9DadNR18TrdXwS4U8JVX+lVe6dfm7WVxx6XazfW26MytOYMv0slnU6rd0kGV75rMZrMGDBiQ7DLQSRDcAQAAAAAAAAB2SSajQdnVZ8jFEwqF5Sr3VQV5Lk9M154zqovP6fIoEOw6AV+FJ6AKT5nyCuIHfCk2U0z3XrajJuyzRV3blWo3y2AwdFD1wM6J4A4AAAAAAAAAgDiMRoOyMmzKyrBpUJ/MRseFwzUBnzcS8NV07VUFe14VVXf0+QOhDnwHrVPpDarSW678wvK442xWU+z5e5FOPrtyqzv6chx2paVYCPii+PxBbcx36bdtLnl9QdmsJg3o5dCgPg5ZOa9wl0NwBwAAAAAAAABAGzAYDMpMtykz3aaBvR2NjguHwyqr9Mdsy1ns8saex1d9z+cPduA7aB2vL6itReXaWhQ/4LOajTGdejWBXsyPTLvSd/KAb+3vTr352QZ9sTq/wSDXYjbqD8P76NQjd9eQ/tlJqBDJQHAHAAAAAAAAAEAHMhgMyki1KiPVqgG94gd85Z5AVZAXtR1nVddebdBX7PLI6+s6AZ8vENL24gptL66IO85iNkY697Jjgj2bchwpkcDPkWbtUgFfhSegp9/8Qe999Vvccf5ASP/5bov+890W/emwAZpw6jCl2ol1dnb8CgMAAAAAAAAA0AkZDAalp1iUnmJRv54ZjY4Lh8Oq9Aaqu/WqtuOMbNMZ08XnVaU30IHvoHX8gZB2OCu1w1kZd5zZZFBWRu12nLVbc8Z28TnSrDIakxvwFZVW6p/zv9SWHfHPFazrva9+0w8binT75aOUm5nSTtWhMyC4AwAAAAAAAACgCzMYDEq1W5Rqt6hvj8YDPkmq9AaituKsCvOiH1eFfV6VV/o7qPrWCwTDKiypVGFJ/IDPVH1WYU7MNp01HXy1Z/E50m0ytUPAV+EJtCi0q7FlR5luenS57pl2FJ13OzF+ZQEAAAAAAAAA2EWk2MxK6Z6uPt3T447z+oNV23JGd+6VeuR0eyPbdhaXelTWhQK+YCisotKq9xSP0aBIwJddJ+TLjTqTLyvdJpPJmPDrP/3mDy0O7Wps3u7W02/9T1f+ZUSr1kHnRXAHAAAAAAAAAABi2Cwm9cpNU6/ctLjjfP5gTJgX081XE/S5PHKV+zqo8tYLhaVil1fFLq+k0kbHGQxSZnrdDr7ax3sPzFFmuk2StPZ3Z5Nn2iXqveWbNPqQ/hrSP7tN1kPnQnAHAAAAAAAAAABaxGoxqWdOqnrmpMYd5w+EqkI9d+15ezVn7xW5agO/0rKuE/CFw1KJ26sSt1cb8mIDPrPJqJduOyny+M3PNrTpa7/1+QZdNe7ANl0TnQPBHQAAAAAAAAAAaFcWs1E9clLVo4mALxAMqaS6Sy/6h9MVe6+0zKtwuIOKb4GBvR2y26oiGJ8/qC9W57fp+p+vyteUs/aX1WJq03WRfAR3AAAAAAAAAACgUzCbjOqWlaJuWSlxxwWDIZWUeSOhXnTXXnHUdYnbq1ASAr49+mVFrjfmu+QPhNp0fX8gpE1bXWyXuRMiuAMAAAAAAAAAAF2KyWRUbmaKcjObCPhCYbnK6gZ73tiz+FxVZ/GF2jDhi9469LdtrjZbNxrB3c6J4A4AAAAAAAAAAOyUTEaDsh12ZTvscceFQmGVlntjtuR01tmqs8jlUYnbo0Cw6YDPbDJErr2+YKvfR0O8/vZZF8lFcAcAAAAAAAAAAHZpRqNB2Rl2ZWfYtftumY2OC4XCclf4os7dq4x08EV39UV379ms7XMOnY3z7XZKBHcAAAAAAAAAAAAJMBoNyky3KTPdpkF9Gh8XDtcGdwN6OdqlloG922ddJJcx2QUAAAAAAAAAAADsTAyG2q0yB/VxyGJu2zjGYjYS3O2kCO4AAAAAAAAAAADaidVi0h+Gx2nPa4EjRvSRla0yd0oEdwAAAAAAAAAAAO3o1CN3b9P1/nxE266HzoPgDgAAAAAAAAAAoB0N6Z+tPx02oE3W+tPhAzWkf3abrIXOh+AOAAAAAAAAAACgnU04dZj69khv1Rr9emZowp/3baOK0BkR3AEAAAAAAAAAALSzVLtZt18+Sv16ZrRofr+eGbrtssOVaje3cWXoTPjVBQAAAADs1MLhsEKhkMLhcLJLAQAAwC4uM82i2VeO0gvv/aSPVm5OeN7xh/TX+X8cqhSbWYFAoB0rrGUwGGQ0GmUwGDrk9VCF4A4AAAAAsFMJh8OqqKiQy+VSWVlZh32wAQAAACTq6H3sOnSPQSot86mswqeG/o2ZwSClp1qVmW6V3WrWlt83dnyhksxms9LT0+VwOJSamkqQ184I7gAAAAAAO4VwOKwdO3aotLRUwWAw2eUAAAAAcdmtZtlzzOqRnSKvPyifP6RQOCyjwSCrxSibxdQpQrJAIKCSkhKVlJTIZDIpMzNTPXr06BS17YwI7gAAAAAAXV44HFZ+fr5cLleySwEAAACaxWAwVIV41mRX0rRgMKji4mIFAgH16dOH8K4dENx1Mr/88osWL16sFStWaMuWLaqsrFRaWpp69OihESNGaPTo0TrqqKM61X8MXq9XixYt0rvvvqtffvlFXq9Xffr00f77769x48Zp+PDhnXJtAAAAADsHQjsAAACgY9V870141/YI7jqJ/Px8zZo1S8uXL9e4ceN00003qV+/fgqFQsrPz9dnn32m559/Xv/+97+17777as6cORowYECyy9aPP/6o//u//9Nvv/2mY489VvPnz9duu+2mX375RQ8//LDOOussXXDBBbr++utlsVg6zdoAAAAAdh47duxoMLSz2+3KyMhQWlqazGYzHygAAACgUwqHw/L7/THfr3aG71/D4bACgYDKy8vldrvl8Xhinne5XDKbzerZs2eSKtw5GcLhho48REdatWqVLrvsMuXm5uqJJ55Q7969Gxy3bds2TZgwQRs2bFB2drYWLVqkvn37dnC1tdasWaMLL7xQ5eXlOvfcc3XrrbfGPB8KhXT55Zfrk08+0THHHKNHHnlERqMx6Wsnm8/n05o1a+rd32+//WS1doFe6Dbm9/u1evXqmHvDhw8njAUAAEBCwuGw1q1bF3OmncFgUN++fZWenp7EygAAAIDEhEIhVVZWxtxLSUnpdJ95l5WVacuWLYqOlUwmk/bcc882Cxn5/FzqXL/qu6Di4mJdfvnlKikp0QMPPNBoaCdJvXr10pw5c2Q0GuV0OnXdddd1YKWxSkpKNHnyZJWXl2vIkCG66aab6o0xGo2655575HA49J///Edz585N+toAAAAAdi4VFRUxoZ0kQjsAAACgHaSnp9drJgoGg6qoqEhSRTsngrskmz9/voqLi7XXXntp8ODBTY4fOnSojjjiCEnSt99+qxUrVrR3iQ267777tGPHDknStddeK7O54V1XHQ6Hxo8fL0l67LHH9PPPPyd1bQAAAAA7l7pbZNrtdkI7AAAAoJ2kp6fLbrfH3OOs6bZFcJdk7733nqSq7QITNWrUqMj1smXL2rympmzevFmLFy+WJA0cOFBHHXVU3PFjx46VVLWFzZw5c5K2NgAAAICdT1lZWczjjIyMJFUCAAAA7Brqfs9d93tytA7BXRJVVFRo+/btkqT169fr008/TWhev379Ite///57u9QWz9NPPx0JGk8//fQmx/ft21d77bWXJOk///mPNmzYkJS1AQAAAOxcwuGwAoFAzL20tLQkVQMAAADsGup+zx0IBGLOvUPrENwlUd3DJmfPnp3QvJSUlMi1z+dr05qaEgqF9MEHH0QeH3nkkQnNO+iggyLXH374YYevDQAAAGDnEwqF6t1rbKt9AAAAAG3DZDLVu9fQ9+ZoGYK7JMrJyVH37t0jj2u675ridDoj1717927zuuL5/vvvVVBQIElKTU3V0KFDE5q3zz77RK6XLl3a4WsDAAAA2Pk09K96DQZDEioBAAAAdh1GY/1oiY67tkNwl0QGg0Fz587VwQcfrD333FPXXXddQvN++OGHyHXNNpEd5fvvv4957UT/Neuee+4Zuf75558VDAY7dG0AAAAAAAAAAIDOjj1Ekuyggw7S888/n/D4cDgc2U7SbDbrpJNOaq/SGrRu3brI9W677ZbwvB49ekSufT6ffv/9dw0aNKjD1gYAAAAAAAAAAOjsCO66mGXLlikvL0+SdMIJJygnJ6dDX//XX3+NXPfp0yfhed27d5fBYIi0y65fv75euNaea3cFgUBgl9zWJxAIJHQPAAAAqCsQCNTbkicUCnG+BgAAAHYKnfX72lAoVO/7cL/f3ybbZfLZMMFdlxIMBnX//fdLqjoD7pprrunwGoqLiyPXmZmZCc8zm81KSUlRRUWFJKm0tLRD1+4Kfvrpp2SX0Gn8+OOPyS4BAAAAXYzdbpckeTwemUymJFcDAAAAtE5lZWWyS2hUMBiMhHQej0cSn+m2Jc6460KeffZZ/fzzz5KkmTNnql+/fh1eQ3l5eeS65i/GibJarZHrmpCto9YGAAAAAAAAAADo7AjuuogffvhB9913nyRp+vTpOvXUU5NSR3QoZrPZmjU3OoyLDuk6Ym0AAAAAAAAAAIDOjq0yu4AdO3ZoypQpCgQCmjFjhs4///xkl9Qi0fvxGo1tmxm359oAAAAAAAAAAAAdgeCuk3O5XLr00ktVUFCgf/3rXxozZkxS60lLS1NJSYmk2r1rE+Xz+WLW6ci1u4K9995bFosl2WV0uEAgUG//43322UdmM/97AgAAQHyBQEAbN26MuWe32/leEkCnlZeXpz59+shgMCS7lJ1eeXl5l/2MCMCuqe6ZdikpKUmqpGmBQCDyZ1lNnYMGDWqT78P9fr9++umnVq/TlfG3mU7M7XZr4sSJ2rBhg+bNm6fjjjsu2SXFhGter7dZc6PHp6amdujaXYHZbN4lg7uG8LUAAABAIgwGQ70Pv41GI7twAOi05s2bp99++00333yz9tlnn2SX06Snn35aVqtV55xzTpf6RxF5eXk688wzdfbZZ2vixInKyspKdkn1bNq0SQMHDmy39X0+n+bNm6dLL71UGRkZ7fY6ANpG9I5y0Trr97VGo7He9+EWi6VN/qwIh8OtXqOr65y/6lBpaakuuugi/frrr3r00Uc7RWgnSdnZ2ZHr0tLShOf5fL6YLrqcnJwOXRsAAAAAACDZfvrpJ/33v//VX/7yF912221yu93JLimukSNH6rbbbtOYMWO0cuXKZJeTsN12201Tp07Vo48+quOPP15PPPGEAoFAssuKMWXKFE2aNEnLly9vl/XnzJmjxx57TGPGjNGKFSva5TUAAO2j6/xTmV2I0+nUhAkT9Pvvv+uJJ57QQQcdlOySIgYPHqwffvhBkpSfn5/wvIKCgpikfPDgwR26NgAAAAAAQDKVlpbq119/lSQFg0EVFBR02k6KGvvvv79OO+00vfbaa/rrX/+qCy64QNOnT+8Su+Scf/75+vrrr/X+++/r7rvv1gcffKCHHnpI3bt3T3Zpkqq2lvv888/1+eeft+vr5Ofn67LLLtMbb7yhfv36tetrAQDaBsFdJ1NaWqqJEydGQrsDDjgg2SXF2GOPPSLXW7duTXje9u3bI9epqanabbfdOnRtAAAAAACAZFqxYkVkK7STTjpJ9913X6cP7iRp2rRpevvtt+X3+/Xcc8/J7/fr1ltvTXZZCbnpppv05Zdfyu12a9WqVbrgggv06quvKj09vUXrhcNhlZaWtsnWm3a7XZLUo0cPPfPMM61er64XXnhBL7zwgiTpscceI7QDgC6E4K4TKSsr06RJk7Rp0yY99dRTGjlyZLJLqmf48OGR619++UWhUCihbzLXrVsXuR42bFiDhzC359oAAAAAAADJ9Mknn0iS9tprL82ePbtLhHZS1baTJ510kt544w1J0quvvqp//OMfstlsCa8RCASSckZe9+7ddd555+mxxx6TVHWu3Lfffqujjz662WuFw2HNmDFDK1as0IIFC9SzZ89W1Vbz9bBYLO2ye1T0kTRd4TxFAECtrvEdwi7A5/Np8uTJWrdunR599NGEQju/368pU6aosrKyAyqsctBBB0X+VVFZWVlki4em/O9//4tcn3DCCR2+NgAAAAAAQLIEg0EtXbpUFotFd999d7NCr87gzDPPjFybTCaZTKaE57rdbp1//vl68cUX26O0Jp177rmR6549e+rggw9u9ho1od0rr7yiTZs2afz48TE7QLVEc76GAIBdCx13nUA4HNb111+vb7/9Vg8//LAOOeSQhOb99NNPWr58uVJSUtq5wlpms1knnHCCFi1aJEn68ssvNWTIkCbnffPNN5Ikg8HQaLjWnmsDAAAAAAAky4oVK+R0OnXllVdqr732atZcv9/fojPlPv74Y7lcLp1++unNnlvXQQcdpLS0NJWXl+vMM89MuHvO7XZr0qRJWrVqlVatWqVwOKzzzz8/7pyNGzdGthRtK927d1dJSYmuueaaZh3PUuOZZ57RK6+8EnlcE961pvOuZscov9+v9evXt2iNeJxOZ+Q6HA63+foAgPZDcNcJPPTQQ3r77bd11113NatV/7333lP//v3bsbKGXXTRRVqyZImCwaBef/11XXTRRXHHr1u3LvINyEknnRT3DLr2XBsAAAAAAKAxixYtUlZWVtx/FFzzj69POukkHXPMMZH7b7/9to444ghlZmY2OG/JkiUaOHCgLr/88mbXdeutt8poNOqmm25qVoBXWVmp6dOn67333tOtt97aqq0dzWazLrroIm3dulXXXXddQnOiQzup6mt32223SVLc8G758uWaOXNmu4RN1157bZuttWnTJv31r3/Vc88916Kvbc1WqTt27NDJJ5/cZnU1hOAOALoWgrsk++STT/Tggw/qiiuu0NixYxOel5eXp4ULF+rII49s8Pn8/HzdcsstWrlypfr27asbbrhBo0aNapOa99xzT5122mlavHixfvzxR3377bc68MADGx3/6quvSqraAmDq1KlJWxsAAAAAAKAxTqdTN954o/74xz9q4sSJDW5luHTpUr322mt6/fXXNXnyZE2ZMkVGo1Gff/65Zs+erTvvvFN/+MMfYuaUlZXpgw8+0EMPPSSr1dqsmlasWKFFixYpHA5r/fr1mjdvnnJychKaWxPyLVu2TMuWLWvW68azePHiFs8Nh8OaOXOmpMbDu3HjxikjI0PFxcXad9991adPHzkcDqWlpUW61Brz9ddfa/z48ZKkv/3tb5o8eXKD4x5++GHdf//9kqQFCxbo0EMPbelbarGaMG233XbTxx9/3Obrz5s3Tw8++KAktXkHIwCgfRHcJVFBQYGmT5+uww47TNOmTUt43vfff6/p06ervLy80Y676dOna8WKFZKktWvXavLkyXr33XfVu3fvNqn92muv1YoVK7RlyxbdddddeuWVVxr85mn79u166aWXJElTp07V7rvvntS1AQAAAAAAGlJz7tz777+vjz/+uMHPIoLBoKSq0GXhwoU644wz1LdvX1ksFm3fvl0TJ05sdP14zyXim2++0ezZszV79uyExkd3551++um69NJLW/X6bampAO7UU0/toEqSpyO74Gp+3wIAugaCuySaN2+enE6nfv3114Rb4l0ul4qKiiKPGwvufvjhh5jHlZWVWrNmTZsFdzk5OXrkkUd0/vnna/Xq1brrrrt0ww03xIzx+Xz6v//7P3k8Hp144okJbwfRnmsDAAAAAAA0JDroeuaZZ3TQQQfVGzNnzhzNnz9fkvTUU0+pb9++khTppOvWrZsWLFjQZjVt2bIlEriNHj06stVkIqLfT1ZWlgYPHtxmdaH1OrILzu/3d9hrAQBaj+AuiQoLCyVVdd4VFBS0aI3Ggrthw4ZFOu6kqm/Whg4d2qLXaMyQIUP073//W1OnTtUzzzyj/Px8TZo0Sb169dJPP/2k+++/Xz/99JMuvPBCTZ8+vcl/TdVRawMAAAAAANRlNjfvY7JBgwZFrmu21TSZTO0WkB133HHN2mozOrjb2T43+eWXX7RgwQLdeuutzf516yxqwjS/36/169e3+fpOp7PeawEAuoau+ScbIhoL7mbPnh05465nz566+uqrGx3bGgMHDtSrr76q9957T0uWLNG0adNUWlqqXr16aeTIkZo1a5b23XffTrc2AAAAAABAtOigq7k6Y3i0Mwd399xzjz799FPt2LFD999/v1JTU1u95qeffqrPPvtMl1xyiXr06NEGVcZXs33ljh07Et6Jq6U8Hk+7rg8AaFud77uKXcjDDz/cbmv36dNHjz32WLutH81qtWrMmDEaM2ZMl1obAAAAAACgRmvCt5qOu87EaDQmu4R2sXTpUn366aeSqsK2v/71r3rssceUm5vbqnUPO+wwLVu2TKNHj9a5556rSy+9tNVrxuP1eiVJu+22mz7++OM2X3/evHl68MEHZbFYOvQ8PQBA6+2cf4IDAAAAAAAAzdCaoKuzB3ct6bhbvny5XnvttRa/fllZma688krl5eW1eI26ysvLdccdd0Qep6amat9995XL5Wr12larVTfffLNmzZqlV155RSeccILuvfdelZaWtnrthtQEdzk5Oe2yfrdu3TRlyhR9/PHH2nPPPRscs2jRIlVUVLTL6wMAWo7gDgAAAAAAALu81gR3bdHdFgqFWr1GtOia6taXSFiTnZ2tW265pcXnr61Zs0ZLly7VKaecovnz58vn87VonWizZ8+OBIFZWVl66aWXNHPmzJjzBlvrz3/+s15++WXl5OToscce0+jRo/X4449Hgra2MnLkSD3yyCN65ZVX2nTdGuedd56mTp3a4Laf4XBYt99+u2688Ub97W9/UyAQaJcaAAAtw1aZAAAAAAAA2OW1JnxrrKNt+fLl8vl8Ovroo+PO/+qrrzRv3jzNmzevzTqwGgvu/H6/zj77bD333HPKzs5udP7QoUM1YsQI/f3vf9eiRYtktVqb9fpr1qyRJFVWVmrOnDl6/fXXNXfuXO21117NfCdVPvnkE7388suSpIyMDD355JMaOnRoi9ZqypAhQ7Ro0SJNnTpVK1eu1D333KOXXnpJ11xzTULn0W3YsKHJ7SkvvPBCSdLGjRvbpObmePjhh/XWW29Jqtpu9B//+Idmz569052FCABdFcEdAAAAAAAAdnntsVVmWVmZpkyZor/85S+65pprlJqaWm+Mx+PRP//5T23evFl/+ctfNH/+fA0ZMqTFtdRoLLizWCz6wx/+oH/84x965JFH4q5x4YUX6oorrtB9992n66+/vlmv/8MPP8Q8zs3N1e67796sNWoUFhbqhhtukFS1Pebjjz+uYcOGtWitRGVnZ+upp57SDTfcoLfeekt5eXmREHPmzJnq27dvo3NXrFihW265pcucLff6668rNzdX06dPT3YpAAAR3AEAAAAAAACt0linkt1ul1R1ltiiRYuaXCcvL0+33nqrnn/++VZ3P0XPrxssXnDBBTrxxBO1cOFCnXvuuY2uceyxx6p///569tlnddxxx+mQQw5J+PVrOu6kqvPj7rzzTlkslma8gyqBQEBXXXWVioqK5HA49Nhjj2nkyJHNXqclrFar7rnnHjkcDr344ouSpC+++EJjx47V/PnzdeCBBzY479xzz1X37t3lcrm0zz77qGfPnsrMzKSjDQCQEII7AAAAAAAA7PJaE6o01q0Xvb3kDTfcoBNOOKHeGJ/Pp5NOOkmSdMABB+jRRx9tk4DH7/c3Wl+/fv10/PHH66677tIhhxzSaCecwWDQGWecoblz5+r666/Xm2++qbS0tCZfu6CgQPn5+ZHH48aNU79+/Vr0PmbNmqWvv/5aOTk5evLJJ7XPPvu0aJ2WMhgMuvnmm2U0GvX8889Lklwul6666iq9++67DXZRStLxxx/f6JqbN29Wz549m739aHN5PB7l5+e3uNMRAJAcrT85FwAAAAAAAOjiWrNVZmNsNlvkOjs7W3379q33Y7fddouMOeSQQ5Sent4mr+3xeCLXDW3lecEFF6iyslLTp09XIBBodJ2xY8fKaDQqLy9Pc+bMSei1v/rqq8i11WrVxRdf3IzKa7300kt68cUX1bNnTz3//PMdHtpF++c//6k//elPkcfbtm3TBx980KK13nvvPf3pT3/SokWL4n7tW+uGG27Q6aefrmeeeabLbNsJAKDjDgAAAAAAAGhVsNFYh1x7hIGJqqysjFw3FNwdeuihGjBggFavXq1HH31UV155ZYPr9OrVS3/4wx/02Wef6YUXXtCpp56qESNGxH3t5cuXR65PP/10de/evdn1f/3115o1a5aGDBmixx9/XL169Wr2Gi21fft29ezZM+aewWDQXXfdpQ0bNmjt2rWSqjrvWsJqtSovL0833nijbrzxxlbX25Q777xTa9as0b333tvurwUAaD2COwAAAAAAAOzy2iO4aygw6yjRHXdmc/2PAA0Gg/7yl7/o3nvv1SOPPKLjjz9eQ4cObXCtk046SZ999plCoZBmzpypf//733FDyeiOu/Hjxze79tWrV2vKlCk66KCDNG/ePGVkZDR7jZZauXKlLr74Yl1//fU677zzYp5LSUnRQw89pHHjxqmoqEhHHnlki14jeovM2bNna7/99mtyzvvvv6/7779fkvTkk0+qd+/eTc65+OKLlZ+frz333FPXX399i2oFAHQ8gjsAAAAAAADs8tpjK8HmBndtWUN0x11KSkqDY8444wzdf//98vv9+uc//6lXXnmlwUDu2GOPlclkUjAY1A8//KC3335bp556aoNrbt68WXl5eZKqtv7cc889m1X36tWrNXHiRJ144om69dZbZbFYJElbt25VRUVF3Llbt26NXDudTq1fv77BcU6nM2ZOzbiCggJNnTpVHo9Ht9xyi8rLy+tt89m/f38tWrRIv/zyiwYNGtSs91YjOrjr3bu3Bg8e3OSc6K7Ffv36acCAAU3OqQlshw0b1qKuRwBAchDcAQAAAAAAAJ1AWwZ30R13qampDY7p1q2bDj/8cH322Wdas2aNXnzxRV1wwQX1xuXk5OiAAw7QypUrJUmPPvpoo8FddLdd3Y61pqxevVqXXnqp/v73v+v888+Pea6goEATJ06U2+1OaK0FCxZowYIFTY6bPn16o8/dfffdMhgMmjRpUsz9Xr16tWrrzujgDgCAugjuAAAAAAAAsMsLhULNGp9IyNbYFpptVUM8paWlkev09PRGx9VsgylJDzzwgMaMGSOHw1Fv3CGHHBIJ7tatW6c1a9Y0uMXjp59+KqmqQ2z06NHNqvmRRx7Rgw8+qIMOOqjec8OHD9dLL72koqIiDR06VFlZWZHnPvzwQ11zzTV67bXXWtwF5/F4NG7cOP3vf/+TJPXo0UOXXXaZzjzzzBatF09NF2FHaY9uUgBA+yG4AwAAAAAAwC6vuaFZ9PjGArpkBnfbtm2LXPfo0aPRcaNHj9bNN98sv9+v0tJSvfzyy7rkkkvqjRsxYkTM46+//rpecOfz+fT5559Lks4999xmB1SPPPJI3Of33HPPBrfeHD16tIYNG6Z//OMfeuGFF+Kev9eQcDis6dOnR0I7h8OhZ555JqEtLFsiuuOuJWcAnnjiic0a35a/rwAA7Y/gDgAAAAAAALu85oYbgUAgct1YR1Nr1myt6OCud+/ejY5zOBwaOXKkVqxYIamqe62h4G748OExj3fs2FFvzBdffKGKigpZLBade+65LS29RaZPn66zzz5bzzzzjCZOnNisuQ899JDee+89SVXdcA888EC7hXZS7NmHs2fPbrBzsa73339f999/vyTpySefjPtrWuPiiy9Wfn4+wR0AdDEEdwAAAAAAANjlNXc7wbYM2Wq0ZcCydetWSZLdbldubm7csYcddlgkuFu9erVKSkpitqKUpOzsbGVlZamkpESS6j0vVYVLknTyySerW7durXsDzTR8+HCdccYZuu+++3TggQfW6xBszGuvvaZ58+ZJquqQvO2223T44Ye3Z6ny+XyR6969eycUEnbv3j1y3a9fPw0YMKDJOWZz1Ue/BHcA0LUQ3AEAAAAAAGCXFx3EffHFF8rLy6s3Zt26dZHr6PClMcFgMHJdUFCg9evX1xvj9/sbvG6tmo67PfbYo8mxhx56aOQ6HA7r999/bzCYGzp0qL766itJqncOnc/n00cffSSpZds/toXp06fr008/1bRp07RkyRLl5OTEHf/ll1/qn//8Z+TxP/7xD40dO7a9y0zo905bao+QGQDQfgjuAAAAAAAAsMuLDjfefvttpaSk1BtTWFgYufZ6vZHrxrr1ooO7u+++W3fffXfcGtoquPP5fCouLpYk7bPPPk2OHzp0qAwGQ+R9eDyeBsedeOKJ+uqrr3T44Yfr4IMPjnnus88+k8vl0gEHHKBhw4a18h20TGZmpmbMmKGpU6dq2rRpeuqpp2LOk4v2v//9T1OmTIl8zadOndphgWNbBrSd8fUAAK1DcAcAAAAAAIBdXnRwd8cdd9TrKJOkOXPmaP78+ZISC+6i1/zXv/6l0047rd4Yr9cbOT+urTqxtm3bFqlp7733bnJ8enq6Bg0apA0bNkiS+vfv3+C4c845Rz179tTRRx8tg8EQ89zbb78tKXnddjVOPPFEnXHGGVq8eLGuueYazZ07V0ajMWbMunXrNHHiRJWXl0uSJk+erClTpnRYjdG/zlu3bm2wE7OugoKCyPXmzZsT6qKrGRP9exUA0PkR3AEAAAAAAGCX15ztBM1mc73gqiHNDUzaKmD55ZdfIteHHHJIQnOOPPJIbdiwQfvvv7969erV4Biz2awTTjih3v2ysjJ99NFH6t27t0aPHt2yotvQjBkztGbNGr3//vu65ZZbdOutt0Z+vTZu3KgJEyZEzur729/+psmTJ3dofdHB3fTp05s9f9KkSc0aX1lZ2ezXAAAkD8EdAAAAAAAAdnmJbCdosVh0xhln6IorrojpSguFQg2OrwlMevTo0WgXmyT16dNH5513ns4666xmVt2wH374IfK6iZxxJ0l//etftX79et1yyy3Nfr0PP/xQHo9HF1xwgczm5H/cmJKSovvvv19nn322Xn75Zfn9ft1+++369ddfNXHixMiWp9dee60uvvjiDq8v+vfaggULYs4YbMy///3vyHl8H3zwgQYMGNDknNGjRysYDOqUU05pebEAgA6X/D9JAQAAAAAAgCSr6YKyWCxKT09vcMzll1/eYDDV2FaZ2dnZuu+++3TiiSfKYrE0OMZms2np0qUymUwtrLy+//3vf5KkI444IuE5/fr105NPPtmi11uyZIlSU1N19tlnt2h+exg8eLDmzZunSy+9VIsXL9aOHTv0ww8/qKSkRGazWbfddpvOOOOMpNRms9l02mmn6cQTT9TIkSPb7XXuuece7bfffjIajSorK2v09zUAoHMxNj0EAAAAAAAA2LkZjUaNGzdOS5cu1dChQxsc01g3WWMddyNHjtQpp5zSaGhXoy1Du0AgoFWrVkmSTj755DZbtzH5+flasWKFxo4dK4fD0e6v1xyjRo3SrFmzJEmff/65SkpKlJKSooceeihpoZ0kjRs3Tv/61790wgknyGq1ttvrjBgxQpL0wAMPaPTo0Vq3bl27vRYAoO3QcQcAAAAAAIBd3qRJkxI6t64hjXXcJcPKlSvlcrnUvXt3jRo1qt1fb8mSJZKqttrsbIqLi/XBBx/E3MvJyUlK51lRUVGjAW8iysrKItdOp1OpqalNzvF6vbr11lv16aefSpImTJigF198Me62rQCA5CO4AwAAAAAAwC6vpaGd1HjHXTIsW7ZMkjRmzJg27eRrSDgc1pIlS3TMMcdo0KBBjY7z+Xx65513dPrpp7drPdE++OADzZw5UwUFBZKqzhHcvn278vLydMEFF+jcc8/VtGnTlJOT02H13HrrrW0S8p5zzjktmldQUKCLLrpIL7zwgnr37t3qOgAA7YPgDgAAAAAAAGiFYDDYLutWVlY2a3w4HNZHH30kq9WqCy+8sF1qirZixQpt3rxZt99+e6Nj/H6/pk2bpmXLlmn79u267LLL2rWm3377Tbfffnuky8xut+vyyy/XpEmT9P333+vqq69WQUGBXnrpJb3xxhuaOHGiLrjgAmVlZbVrXeedd55SUlK0adMmDRs2TH379lVGRobS09MTCo1ff/31yNd5yZIl6tu3b4trsdlsLZ4LAGh/BHcAAAAAAABAK7RXcPfll182a/xXX32lLVu26JxzzlHPnj3bpaZoixYt0t57763DDjuswedDoZCuu+66SBfgfffdJ5vNposuuqjNa9mxY4cefvhhLVq0SH6/XyaTSaeddpqmTp2qPn36SJIOPfRQvfnmm7rzzjv1+uuvq7y8XPPmzdMTTzyh0047TWeffbb23XffNq+tRms6Du12e+Q6LS2t050nCABoOwR3AAAAAAAAQCu0JribMWOG0tLSlJqaKrvdLqvVKqPRqI0bN+rll1+OjEukK2vhwoWy2WwxXW1bt25VRUVFi+trjM/n0wcffKBLLrlE69evb3DME088oXfeeSfm3p133imr1apx48a1SR2bN2/W008/rVdffVUej0cWi0Vjx47VZZdd1uD2ndnZ2frXv/6lsWPH6q677tLPP/+syspKLVy4UAsXLtTuu++uU045RUcffbSGDRvWqi1UO7N///vfcjqduvTSS5NdCgCgDoI7AAAAAAAAoBUCgUCL5/7pT3/S999/r88++0z//e9/Gz0DrV+/fnHXKSws1EcffaTLLrtMu+22W+R+QUGBJk2aJJfL1eIa45k3b57mzZvXrDkzZ86UzWbTmWee2aLXDIfD+uKLL/Tyyy/ro48+UjAYVPfu3XXhhRfq/PPPT6jb8PDDD9eSJUv0xhtvaP78+dq4caMkacOGDZH3lJOTo4MPPljDhw/XiBEjNGTIEGVmZrao5s5kwYIFuuOOOyRJgwYN0ujRo5NcEQAgGsEdAAAAAAAA0Ap+v7/Fc0eNGqVRo0bpyiuv1ObNm/X444/rlVdeiQnwevXqpf333z/uOgsWLFCPHj3qdVANHz5czzzzjD7//HPtvffeGjRokBwOh9LT02UymVpcdzJs2LBB77zzjpYsWaItW7bIarXq2GOP1dixY3XMMcfIbG7eR51Go1Gnn366xowZo6VLl2rBggVauXJl5Pni4mK9//77ev/99yP3cnJytPvuu6t3797q3r27Bg8erL/85S8x63q9Xm3ZsqV1b7aOgoKCyPXmzZtbHBa///77uv/++yOPr732Wr3wwgvtukUoAKB5CO4AAAAAAACAVmhNx120fv36aebMmTrssMN01VVXKRwOy2w2a+bMmXFDKafTqRdeeEEPPPCAbDZbvef33XffLhvM/Pjjj1q2bJk++OAD/fzzz3I4HDr88MP1f//3fzr22GOVnp7e6tcwGo068cQTdeKJJ+rXX3/Vq6++qnfeeUfbtm2rN7a4uFjFxcUymUw66qijNGDAgHpjLBaLnnjiCS1evLjVtTVk0qRJbbZWZWWlLr/8ci1atKhDzkUEADSN4A4AAAAAAABoBZ/Pp+7du2vChAltst7JJ5+s1157Tfn5+br55pt18MEHxx3/9NNP6+yzz9Yf/vCHNnn9ZNq6dau+/vprrVixQp999pnKy8s1fPhwjR49WjfffLNGjBjRrp2Ce+yxh6ZPn67rrrtO3377rT766CN98sknMef47b777nrwwQc1ePDgBtcwGo264447tNdeeykjI0N77723unXrpoyMDKWkpLRb7QCAnYMh3NjG2QDahc/n05o1a+rd32+//WS1WpNQUXL5/X6tXr065t7w4cNlsViSVBEAAAC6ikAgoHXr1sXc23PPPZu9VRoAtNaaNWu01157tenf6wsLC9WtW7eExt544426+eabu/znCsuWLdPjjz+uoUOHau+999awYcM0ZMiQTrGlZ02g+M033+jiiy/WwIEDk10SgJ1IKBRSZWVlzL2UlBQZjcYkVRRfe34fzufnBHdAh+N/PLEI7gAAANBSBHcAAADYGRDc1eLzc6lz/qoDAAAAAAAAAAAAuxiCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAgE4kGAzqyy+/1D/+8Q/NmDGjTdfevHmzysrKWjR3zZo1crvdbVpPPK+//rrWrVvXorl5eXkqLy9v44paJxQKJbsENNNnn32mvLy8ZJcBANjFENwBAAAAAAAkWX5+vl577TVdddVVGjVqlCZMmKBXX31VL7/8sp555pk2e51HH31UY8aM0cqVK5s9d9WqVTr++OP12GOPyefztVlNjfnmm280ZswY/f3vf9evv/7arLlvvPGGjjzySM2cObPZc9tDWVmZxowZo6+++irZpTTozTff1Pbt2zv0Nd944w3Nnj1bfr+/Q1+3OVasWKE//vGPuu2221RQUJDscgAAuwiCOwAAAAAAgA7kdru1YsUKPfPMM7r66qt1zDHH6Nhjj9X06dP1HJZukwABAABJREFU9ttvq6SkJGb83Xff3aKgrS6fz6f3339feXl5Gj9+vGbPnq1gMJjw/AsuuECHHXaY7r33Xp122mlas2ZNq2uKx2azKRQK6Z133tEVV1yh0tLShOcWFRWpvLxcL7zwgk455RTNnz+/HStt2ksvvaR169bpoosu0uzZszsk+GyOVatW6c9//rOWLFnSIa/ndDp1xx136KmnntL555/fabvabDab/H6/nn/+eY0ePbpNQ3QAABpjTnYBAAAAAAAAOxuv16u8vDxt2bJFmzdv1saNG7VhwwZt3LhR+fn59cYbDAZ169ZNPXr0UM+ePZWbm6usrCylpKTIYrFo48aNOvjgg1tV0/vvvy+XyxV5PGjQIJlMpmatMWPGDH3xxRfasGGDLrjgAj311FM68MADW1VXY6xWqyQpMzNTCxcuVGZmZsJzi4uLI9fjx4/XpZde2ub1JcrtduuJJ56QJIXDYS1evFh77LGHzjzzzDZ7jf/85z866KCDlJ6e3qL5NptNLpdL119/va6//vo2qysRq1at0vvvv6+JEyd26Osmwmyu/ej0iCOO0JgxY5JYDQBgV0FwBwAAAAAAkKBwOKySkhIVFRWpoKBAhYWF2r59u7Zt26YdO3Zo27Ztys/PV2FhocLhcGSe2WxW3759NXDgQB1++OHq06eP+vTpo969e0d+rgmq2svzzz8fub755pt19tlnN3uNbt26afz48Xr44Yfl8Xj04IMP6umnn27LMiNsNpskKT09Xbm5uc2au2PHjsj1pEmTZDQmb9Ophx9+ONJFefDBB+vJJ5+MvLe28MYbb+j666/XfvvtpyeffLJF4V10QLV06VKlpaUlNO/FF1/UvHnz1Lt3by1evDjh19u2bZvGjh0rSfrrX//aKUM7Kfbrcv311ysnJyeJ1QAAdhUEdwAAAAAAAAm477779Mknn8hgMMhut8tutyslJUVpaWlKS0tTv379tM8++ygjI0MZGRlyOBxyOBxatWqVZs+eraFDh+rKK6/UkCFDOrz21atX67///a8k6ayzztK5557b4rXOPfdczZ8/X6FQSIFAIO7Y7777Tv369VP37t2b/TrN7QaMtmHDBklS9+7d1atXr2bP93g8qqioaHVQs3btWi1YsECSlJ2drVtuuUXl5eUqLy9v1bo1PvnkE914440KBoP673//q0mTJrUovLNYLJHrzMxMORyOhOalpKRIkoxGY7O+VhUVFZHrffbZJ+F5v/zyi/bcc88mg1ifz6c5c+bo8ssvb1anZl3RXxcAADoKwR0AAAAAAEACrrrqKl111VXNmrNt2zZNnjxZ4XBY7733nt5//3395S9/0U033dSmXVdNefDBByVJAwcO1I033tiqtXr27KkRI0bov//9b9xOqW+++UaXXHKJBg8erOeff152u71Zr9PS4K60tFRFRUWSpGHDhjV7vtfr1eTJk7Vjxw4tWLCgxeFdMBjUP//5z0i46XQ6dcopp7RorUT997//1cUXX6wnnniiWeFda0LSjvToo4/ql19+0eTJk3XSSSc1GuDNmjVLCxcu1NKlS/XQQw+1OCxPZqdmWwgGgzrvvPN09dVX69BDD012OQCABBHcAQAAAADQRYXDYVV6A/IHQrKYjUqxmWUwGJJdFqq53W5dcsklcjqdkqrOlJs8ebJOPvnkmC342tvq1asjnYKzZs2KdEnVVVJSolAolNCaZ511lo466iiNGDEi5jy5GjXhSkVFhdasWaPrrrtO999/f7N+f7Y0TNq4cWPkurnBXU1o98UXX0iSLrzwQj377LMtCu+efPJJrVq1SpJ05plnatasWZ32v8+uEtzZbDb9+uuvCYfov//+uy644AK99957Lfo1bE1wt3jxYt1www0JjU1JSVFGRoZ23313jRw5UqeddpoGDRrU4teWpFAopLvuuivyexAA0HUQ3AEAAAAA0IVs2ur6f/buOizKtO3j+HfoFgO7uztW17V118buREGxuzuwRbFjMbBdbOzWtV117VgLsJVuZt4/eJkHpGZgCHfPz3F4PMPMfV/XNTDM8ty/Oc+LC3958vTNN154+hIQHK5+zMLUkCJ5M1E8f2bqVspLgVyatbsTuhcYGMjAgQN5+vQphoaG2NvbM2DAgFTfxy4+8+bNA6BPnz5UrVo1weM8PDyYOXNmrL35krJs2TKNjjt+/DhLlixh1KhRGo+dUGiyfft2jdfp4uKCi4uLxnN+7+nTp8kK727evKn+3tja2jJ79uwMG9oBGXptMcUMvK9cuZLgcbNnz+bIkSMYGxvj7Oyc7KrJlASaLVq0oGHDhjx79gx7e3t1e9QuXbowcOBAdYAeEBDAhw8fuHXrFrt37+bq1ausXr2atm3bMnHiRCwtLTWeU6VS8e3bN65evYqbmxu3bt1K9vqFEEKkHwnuhBBCCCGEEEKIH8CNh+/54+xzHvzzJcFjAoLDufvsM3effWbP6WeUKZyV9g2KUbVUjjRcqfDz88Pe3p6//vqLXLly4ezsTMWKFTU69/nz59y4cYMuXbroZC0eHh7cunWLUqVKMWLEiHiPWbp0KT169KBr165kzZqV4OBgSpcuTdasWbG0tIwVNh46dIgJEyYwbtw4evTooZM1JiQ6THr//j1z585l8ODBWFlZ0bVrV/LmzYtCoaBIkSJxWnAuXLgQd3d3AA4ePJis/fW+Z25urvGxHz58YPjw4URERNCyZUvatGmj02DMz88PJycnRo4cqZPnBj9OxV3M4C6xMC76NZstWzZq1aqV7PkS+7lFRkbi6+ub4DqMjIwwMjKiatWqlClThuvXrwPQu3dvcuT433uylZUVuXPnplKlSvTu3RsnJyfc3Nxwd3fnxYsXbNq0CTMzs0TXOX36dA4fPkxwcHCS+04KIYTI+CS4E0IIIYQQQgghMjC/wDDW7rvHhb+8tD73wT9fePDPF+pWyot9m3JYmad9tdd/zatXrxg4cCD//PMPtWvXZuHChRpX+7x79w57e3u8vLx48eIFEyZMSFGg4uPjw9y5czEzM2PJkiXxVvvdvn2bNWvW4O7uztKlS/n1118THfP3338nPDyc2bNnc/fuXWbNmpVg683k+Pz5M9myZYt1X/bs2Xn69Cm//fYbkydPplmzZtSpUyfBMZ48eQJAnjx5KFGihPp+pVLJly9fdBZ2xcfHx4d+/frx6dMnevXqxYQJE2jWrBmGhoYMGjSIatWqpWj8yMhIRowYwY0bN/jzzz9ZuXJlsvbx+1GldcCYUHAXERHB6NGjefToEVu2bIkVxMUn5roTa5NrYGDAlClT8PLy4uzZs9y9e5c1a9Yk2RZ06NCh9OvXD4h6nd+7d49JkyYREhKS6HlCCCEyJgnuhBBCCCGEEEKIDOqlty/T11/lq1/KLr6e/8uTv198ZoZ9TQpK+8xUc+LECSZNmkRgYCBDhw5l4MCBGu+R9fr1a/r27YuXV1RAu3XrVl69eoWzszMWFhbJWs/s2bP59OkT8+fPp3DhwvEe4+zsDMDHjx/p1asX69evT7BCycPDg4cPHwJgZmZGvnz5CA4O1llwFxkZSZcuXTh58mSs+/X09FiwYAEtWrRgxIgRXLx4kZkzZ2JoaBhnjJCQEHVwV6VKlTiPN2jQgNatW9O3b98EvyfJFRAQgIODA8+ePWPChAn07t0bAENDQ548ecLQoUN1Ot/79+/p1q0be/fupVixYika60dplZkRgruIiAhGjRrFsWPHAOjZs6dG4Z02Ro0axdmzZ4Go1rBDhw5NNPDLkiVLrA8I5M+fn9OnT+Ph4aGzNQkhhEg7EtwJIYQQQgghhBAZ0EtvXyauuhxrD7uU+OoXwoSVl3AaVFvCOx378uULCxYsYP/+/eTPn59169ZRqVIljc+/cuUKw4cPx8fHB4gKxZo3b069evUICwtL1pq2bdvGoUOHaNu2Lba2tvEec/r0aa5duwZEhUvTpk1LMLQLCgpi0aJFAJQpU4Zly5aRL1++ZK0tIa9eveLDhw/xPpY9e3bGjRvHxIkTcXd3R6VSqffui+n+/fvqVoHf7+enp6eHUqlkz5497N27l0aNGjFv3rxkB6MxffnyhX79+uHl5cXKlStp2LCh+rGYAWN0qJgSrVu35vHjx5iZmbFq1aoUh3bw4wR3yVnnkydP6NWrF9++fUvR3DF/pjG9evVK5+FdsWLFyJ8/P2/evMHf358HDx5QoUIFrcZIqr2mEEKIjEuCOyGEEEIIIYQQIoPxCwxj+vqrOgvtogUEhzNt3RVcRteXtpk68O7dO3bv3s3mzZsJCwujf//+DBo0SKMKtLCwMEJCQnB1dWXNmjUolUrMzMzo06cPffr0wdLSMtnr8vDwYO7cuZQsWZJp06bFe0xAQABz5swBooIlFxcX6tevn+CYS5cuxcvLi5o1a7Jy5cpYe76pVCqdBD937twhNDQ0wcfbtm3L9u3buX//Pvv27aN9+/ZxwrkrV66ob//8889xxjAyMiIiIgIDAwOaNGmik9DuzZs39O/fH0tLS9zd3cmbN2+sx+OrDNSFzJkzU7NmzVQZO6PStII1phIlSrBp0yaOHDlCmTJlKFCgABYWFhrtW3jw4EGcnJwA2LdvHzlz5kzwWF22jAUoWrQob968AUgw0BZCCPHvJMGdEEIIIYQQQgiRwazddy/F7TET8tUvhHX7/mZ097htBIVmQkJC6NSpE0+fPkWpVKKvr0/Dhg3x8/Nj6tSphISEqP8FBwfH+7+RkZGxxmzevDnjxo1LUcVOUFAQixcvZtu2bejr69O3b1+uXr2Kj48PPj4++Pr64ufnh5+fHy9evMDLywuFQsGCBQsSDe3+/PNP3NzcqF69OmvWrMHExCTW47du3cLZ2ZmBAwfGG5Zp6tKlSwCEh4fHG3YpFAqGDh2Kvb09AJ6ennGCu8uXLwNQvHjxOAEa/C9EK1SoEK1atUr2WmPON3bsWDp06ICjo2O8+wimVnCXWpKzD5+Xl1es/QRTS3ID4pIlS1KyZEmtz4sZ7llZWWm8X6UuxJw7PFy3H+IQQgiRsUlwJ4QQQgghhBBCZCA3Hr7nwl9eqTrH+b88qVs5D9VKJ1w9IhJmYmJClSpVePz4MRC1N9uJEydiHWNubk7BggXJnz8/efLkIXfu3OTKlYvMmTOzb98+3N3dCQ8Pp0yZMkycODFOAJUcpqam3Lt3D5VKRUREBGPHjlU/liNHDipUqECZMmUwMTHh4MGDAIwYMYJmzZolOOanT58YM2YMpUqVYvXq1XFCO4hqSWlra0u/fv0oV64co0ePpnr16lqt3dfXl7Nnz6JQKBLdx6xOnTrkzZuXr1+/Uq9evViP+fv78/fffwNRe9nFJ3psY2NjrdYXn3fv3rFx40a2bNlCkSJFEjwuZpj39evXFM+rVCpTPMb3VCqV+vaZM2c0rh7bvn07Li4u5MqVC3d3d43ne//+PW3atNF6ncmpuPtRBQQEqG9nzpw5HVcihBAirUlwJ4QQQgghhBBCZCB/nH2eZvNIcJd8Dg4O7Nmzh7CwMBQKBaVKleKnn36iSpUqlClThly5csU55+zZs4wePRpPT09sbGwYNmwY7dq101kYoVAomDJlCh07dkSlUlG5cmVatGhBw4YN1S3+Pnz4oA5M2rdvj4ODQ4LjhYaGMmjQIExMTFi3bl2ibSXbt2+PoaEh48ePp0ePHtSvX58xY8YkGmjFtGbNGoKDg7GwsEj0+6FQKHB0dERPTw9ra+tYj12+fFm9v11C+5H5+/sDYGCQ8ktiuXLl4vfff0/yuJgVdxm1tWXMClAbG5t4KwfjEx3w6enpaVWNFhQUpN0C/9+PshefLrx8+RKIes7JqRYUQgjx45LgTgghhBBCCCGEyCBevfPjwT9f0mSuB/984fU7PwrkskqT+f5tcuTIgYODA3p6etja2pI7d+4Ej33z5g1OTk6cOXMGY2Nj7O3tcXBw0Mn+at8rX748Q4YMoWzZstStWzfWYxEREYwYMYIvX75Qp04dZsyYkeA44eHhjBo1itevX7Nz506yZcuW5NytW7cmJCSEqVOncvbsWS5duoS9vT2Ojo6JBmUXLlzA1dUVgAIFCiQ5T7t27eK9/9ixYwAULlyY8uXLA7Bo0SJGjx4NRFUwadJy8OzZs1SpUgUrK93/bjx58iTFY7Ru3Vpd7akrMav4NA3t0kNKg7uAgAAiIiLihL4ZzZs3b3j16hUAlSpVStMWnUIIIdKfBHdCCCGEEEIIIcT/+/A1eVUgunL0z5dpOp/Hn69oW79oms4ZU44sZuk2ty4MHjw40ccDAwNZu3Ytrq6uhIWF0bRpU0aPHh3v3mu3b9/G19eXOnXqJNoqUhODBg2K934nJydu3bpF2bJlcXZ2TjBMCwgIYPTo0Vy6dAlXV1cKFSqk8dydOnXi27dvLF26lPDwcFauXMnff//N2rVr462kUyqVTJs2Td2qUdsWm9FCQ0M5f/48gLqi0MfHh127dqmDOx8fH/Xx0ZV53/P392f8+PHqajpdBCaptT+ZLltmhoWFAT/WfnyBgYEJPpbQz/fatWvMnDmTefPmZdjqR4Bly5apbyf0+yyEEOLfS4I7IYQQQgghhBDi//WbczK9l5CmPP58iUcah4UxHVrcOt3mTk2RkZHs3bsXFxcXPn36RMWKFRk/fjyVKlVK8Jw8efKwcOFCpk6dSvv27encuTM5cuTQ2ZpcXV1xc3OjQIECrF+/HnNz83iPO3ToEM7Oznh6etKhQwcCAgI4cuQIgYGBBAUFERAQQFBQEEFBQer7om/7+/sTGhpKYGAghoaG6sDqwoUL3Lt3j4oVK8aZLyIiQh2oFStWDDs7u2Q9v/PnzxMUFIS+vj6tW0e9rq5duxYrNPP19VXfDg4OjnccFxcXfHx88PHxoWvXrmzatEndZjS5okMxXUsonEqO6DVm5Gq771WuXFnrcxo2bMjx48fp06cPAwYMYOjQoRlq3zylUsny5cs5fPgwAI6OjtSuXTudVyWEECKtSXAnhBBCCCGEEEIIoQMqlYqTJ0/i7OzMixcvyJs3L0uWLKF58+ZJnpsjRw42b97MxIkTWbVqFevWraNZs2bY29tTrFixFK3rxIkTLFiwABsbGzZu3JhoFdmdO3fw9PQEYM+ePezZsyfOMQYGBuTIkYM8efKQJ08eTp06BUS1sOzZsyc5c+bEzMyMjh078ujRIwA+f/4c73xGRkYcOnSI0NBQChcunOxWiO7u7kBUMBMdeB49ejRWBdnbt2/Vt79+/RpnjFu3brF161b1c6xRo0aiVV2a0mXAFpMuK/mi95wzNjbW2Zip7d69ewk+NnnyZA4ePBjvY1OmTOHy5cusXr2ae/fusWzZMiwtLVNrmRr5+vUrV69exdXVlXv37mFqasqYMWPo1q1buq5LCCFE+pDgTgghhBBCCCGEECIFlEolJ0+eZNWqVTx+/Bhra2smTJhA165dtapgMjIyYuHChWTOnJktW7Zw8OBBDh8+jK2tLWPHjiVz5sxar+3GjRuMGTMGc3NzNmzYQL58+RI93s7Ojl27dqlDISsrK6pUqcLZs2cB+Omnn/j9999jtfPct28fAHXq1KFkyZLq+5csWUKbNm0ICQlJtN1mfK1DtfHhwwcuXLigXj/Ax48fOXPmTKy9zKL3hTM0NOTr168EBASo9xn08/Nj/PjxKJVKihYtyoIFCyhTpkyK1hUtZsAWX2CoregWmdFhmy78iMFdYmtNrN2spaUlY8aMYdy4cVy+fJlu3brh5uaWKnsaxqdVq1axqvxCQ0PVFY9FihShb9++9OjRI9F9M4UQQvy7SXAnhBBCCCGEEEIIkQzfvn3jwIEDuLm58fbtW8zNzXF0dMTOzk4dCGlLoVAwZswYQkND2bVrF0qlEnd3dy5evMjGjRspUaKExmPdunULe3t7VCoVq1evjhWqJSR37ty0bNkSb29vevXqxS+//AJA2bJl1Y9rugdf4cKFGTlyJGfOnKFIkSIar1tb+/btIzIykipVqqjbca5YsYLQ0FCyZ8+uPi46uCtUqBABAQG8ePGCChUqoFKpGDt2LG/evKFNmzZMmzYNU1NTna0vZnCny33VwsLCCA0N1UnY5u/vD6DT552RtW7dmnXr1vHixQuePHnCzJkzWbRoUZrMvW7duljtV9evX8/OnTsBmDdvHuXLl0+TdQghhMi4JLgTQgghhBBCCCGE0NDr16+5cuUK586d49KlS4SHh2Nqakrnzp3p1KkTxsbG/PPPPwQGBhIYGEhAQID6dvSecDG/ju+fQqEgU6ZM5MyZk/fv3wPw6dMnhgwZwtGjRzUKzjw8PBg/fjyRkZGsWLGCatWqxTnm8+fPeHl58fbtWzw9PVGpVAwcOJDp06fHCoNCQkLUt01MTLT6fvXs2ZNOnTppdY42wsPD2bFjBwAODg5A1HPftWsXAMWLF1cf+/TpUwAKFCiASqXi3r17VKhQgSVLlnDx4kWmTp2aKq0JIyIi0NPTo0GDBowYMQJHR0f69euHra1tsvaUGzlyJPnz5+e3337TWYVc9P5/ZmZmOhkvo1MoFNjZ2TFx4kQADh8+zOjRo1O8n6EmcubMGavKtGfPnurgbvv27RLcCSGEkOBOCCGEEEIIIYQQQlPe3t5MmzYt1n3BwcHs3LlTffE9PmZmZoSHhxMeHk7OnDnp0qULmTJlwtraOs6/6KqnoKAg2rdvz4sXL4Co0PDt27cULFgwwXnevHnDsmXLOHz4MACdOnUiMDCQdevW4e3tjZeXF15eXnh7exMcHEy+fPmoXLkylStXpmrVqkDcFoQxK8a0rchSKBRah33aOHLkCO/fv6d69erUrVsXT09PJk2apH68Xr16wP9CSogK7szNzbl48SIKhYJdu3axYcMGnVbDxdShQwcaNWpE3rx5GTt2LK9fv2bKlCls3bqVDRs2qPfk09TgwYPJkiVLrDagKfXlyxcg6uerTTvP4OBgIKp9pzbn+fn5abfA/6dSqZJ1Xnx+++03Zs2aRXBwMCqVSqetR7VRpEgRqlSpwq1bt/Dw8GDcuHHJaosrhBDi30OCOyGEEEIIIYQQ4v9tmNQ4XedfvO0Wj16lfA8sTZUqlIVRXauk2Xz/BjVr1qRmzZpcuXIl1v2GhoYUK1aM4sWLU6BAAQoUKECOHDnIkSMHNjY2mJiY0KNHD65fv07u3LkZMGBAknOZmZmxbNky2rZtq94Dy9LSMtFzFAoFJ06cUH+9a9cudfUZQObMmalZsyZ9+/bll19+0Sg0ihmyJDV/Wvv9998BGDNmDBBVORUdwBQvXpyGDRsCqPfoA6hQoQKWlpasWrWKV69esWPHjlRt5dm7d28AHj58yKFDhwCoWrUqzs7OmJmZERgYqPFY9+7dY+jQoeTMmZONGzfGagWaEp8+fQKi9kRMToD57t27VAs+Y9JlcGdubk7t2rU5efIkFStWpHDhwjobW1sdO3bk1q1bhIaGsnfvXvr3759uaxFCCJH+JLgTQgghhBBCCCH+X44s6dsmrmyRrGka3JUtnDXdn/OPaOTIkXTq1IlKlSpRt25dqlevTpkyZZLV9jApxYoVw97enhUrVlCuXDmyZs2a6PH58uWjV69erF+/Xn2ftbU1LVu25LfffqNy5cro6elptYbo/c8AsmTJot0TSEWnTp3iyZMnNG/eXN1esFOnThgaGmJpaUnjxo3VbUXPnDkDRAWstWrVwtDQEIVCQY8ePVI1tIumUqmYPXs2SqUSgJs3b1K7du1kj+fn50fXrl1xdXUlX758KVpbUFCQulVm27ZtcXJy0vjcjRs3smDBAvLkyaP+HmvC09NTHaqmp+bNm3Pp0iVmzJiRruv47bffmDt3Lr6+vuzYsQM7Ozutf0+FEEL8e0hwJ4QQQgghhBBCZBB1KuVlz+lnaTZf3Up5kz5IxFG+fHkuX74cJ8RSqVSEhIRo3U4yKQ4ODrx8+ZIuXbpodPyAAQNwd3dHoVDg6OhIu3btUtSu8vPnz+rbNjY2yR5Hl5RKJc7OzmTKlEm9TxlEVRTa2dnFOjYkJERdIVm1alUsLCwAqFixIgcPHqRHjx6pvt4tW7Zw69YtzMzMKFu2LCVKlFBXCWrqwIEDTJ06VV11li9fPjw9PVMc3EW3EIXYewJqQpcVcJqIDj51dfxvv/1GuXLlYu05lx5MTExo1aoVW7duxcvLi/Pnz1O/fv10XZMQQoj0Ix/dEEIIIYQQQgghMoiCuawoUzjxiipdKVM4KwVyWaXJXP9G8VWe7dy5Ezs7O61aH968eVO9h11CjIyMWLJkCdWqVdNoTAsLC5ydnTly5AjdunVL8R5z7969U99OaUikKwcPHuTZs2eMGzeObNmyJXrshQsX1HuxNW/eXH1/vXr1uHfvHo8ePUrVtT569IjFixejr6/P0qVLWb58OcePH+fo0aMYGxtr9O/48eNMmzYNlUqFQqFg+vTpuLq66qQ95T///KO+XbJkSa3O1TZISyltg8Kk1qdQKNI9tIvWsWNH9e1t27al40qEEEKkNwnuhBBCCCGEEEKIDKRd/aJpMk/7BsXSZJ7/irdv37Jw4UJu3bpF//79NQ7vLCwsGDJkCHZ2dly4cEFnFUzVq1fH2tpaJ2O9fv0aAAMDA/Lnz6+TMVMiKCiIpUuXUrt2bdq1a5fk8W5ubgBkz56d1q1bq+9v0qQJAOvWrUudhQI+Pj4MHTqU0NBQpkyZQr169cicOTPz5s1jypQpXLhwIckx9uzZw7hx41Aqlejr6+Pk5KRx9aUmnj2LqvI1MDCgQoUKWp2b0Svu0np9KVG8eHEqVqwIwKVLl3jz5k36LkgIIUS6keBOCCGEEEIIIYTIQKqVzkmdSnlSdY66lfJStVSOVJ3jvyQ4OJjBgwerwzptwruSJUuyd+9ebGxs6N+/P82bN2fPnj2EhYWl9rLjFREREee+6Iq0IkWKYGxsnNZLimPlypVERkayYMGCJI+9f/8+165dA6B3796x9iHMly8fZcqU4dixYzx58kTn6wwLC8PR0RFPT0+mTZsWK2z7+eef6dy5M0OGDOHq1asJjrF+/XomT56MUqnExMSE5cuX06ZNG52u8/79+wCULVsWMzPt9ryMDtLSKiDTdp7IyMhUWknqiK66U6lU7NixI51XI4QQIr1IcCeEEEIIIYQQQmQwDm3Kk8UqZe0NE5LFygT7NuVSZez/osjISMaOHcvjx4+BqNZ7TZs2Zfz48RrvdWdmZsa8efOYPXs2b9++ZfLkyTRo0IANGzYQFBSUamuPiIjg77//ZtOmTQwdOpSmTZty/fr1WMeEh4dz9+5dIGp/uOTSVUvFFy9esHXrVpYsWULWrEm3lY0O9/Lnzx9vlVr79u1RKpXMnj1bJ+uLFh4ezvDhw7l79y4LFiyga9eucY4ZM2YMJUuWpH///hw/fjzO+ZMnT2bRokVA1N59mzdvplGjRjpdp1Kp5NatWwA0bNhQ6/Ojg7G0Cu5iBnFfv35N8F908P2jBXfNmjVT78Ho7u5OSEhIOq9ICCFEepDgTgghhBBCCCGEyGCszI2YYV8TC1NDnY5rYWrIDPuaWJkbJX2wSJJKpWLy5MmcOHECgIIFC7JlyxacnZ0pX748enraXXbp0KED27ZtI3v27Hz69ImFCxfSoEEDfv/9d51U4Pn4+HD+/HmcnZ3p2bMnVatWpWfPnvz999/Y2tpy8OBBatWqFeucmzdv4u/vD0Dt2rWTNe/du3cZMGBAitcfGRnJhAkTGDZsGNWrV0/yeA8PD65du4ZCoWDu3LnxVpO1atUKc3Nzrl+/zs6dO1O8RogK3UaOHMlff/3Fhg0baNmyZbzHGRkZsWrVKrJnz87w4cNZs2YNKpWKDx8+0Lt3b/bs2QP8ryozuo2iLt2/fx8/Pz8Afv31V63Pjw7s0iq4ixkA16xZM8F/R44cAUi3ytXkMjU1Vb9efHx8OHz4cDqvSAghRHowSO8FCCGEEEIIIYQQIq6CuaxwGlSbaeuu8NUv5VUXWaxMmGFfk4K5rHSwOhEREcGECRM4ePAgENXibuLEiRpX2SWkfPny7NmzB3t7e548ecK3b9+YP38+O3bsYP78+VSuXFmjcQICAnj8+DEPHjzg/v373Lt3j1evXgFRe5nVrl2bOXPm0LBhQ0xMEq7u3L59OwDW1tbJDu4CAwMJDw/X+rzvq6XWrl1LmTJlsLOzS/LcDx8+MGPGDAB69uxJtWrV4j3OwsKCDh06sGnTJubNm0elSpUoUaKE1muNFhQUxJAhQwgMDGT//v3kyJF4S9qsWbOybt06OnfuzNKlS/nzzz958uQJPj4+ALRo0YLZs2en+HWVkEuXLgFQrVo1ChQooPX50a1VdVVRmZSYr4nE2puOHz+effv2/XDBHUCnTp3UbTK3b99O+/btkzVOdOAOqF9PQgghfgxScSeEEEIIIYQQQmRQBXNZ4TK6PnUr5U3ROHUr5cVldH0J7XQkICCAgQMHcvDgQSwtLVm2bBmzZs3SWbiSM2dOtm/fTpUqVdT3vXnzhp49e3Lu3LlEzx0+fDj16tWjSpUqdOvWjblz53Lw4EFevXpFmTJlmDp1KhcvXmTt2rU0b9480dDu0aNHnDp1CoDOnTvH2h9OG76+vrFCBE3FrOYKCAjg9evXTJ48OcnzwsLCGDZsGD4+PtSvX5+xY8cmenz//v0xNTUlODiY/v374+3trfVaISos7Nu3LxUqVGDr1q1JhnbRihQpgpOTEwDXrl3Dx8cHY2Nj5syZw+LFi1MttAPUlWnxtfLURHRglx7BnSYiIiKSFRrrWsx1J/UcSpUqRblyUe2MHzx4wO3bt7WeLzAwMNZ5Z86c0XoMIYQQ6UeCOyGEEEIIIYQQIgOzMjdidPcqTLWrQZnCSe/pFVOZwlmZ1u8nRnevIu0xdeTZs2e0a9eOCxcuULZsWfbt28dvv/2m0bnatBO0sLBgw4YNsSrswsPDGTNmjLq1YXyKFSvGu3fv1F/r6+tja2uLu7s77u7udOvWjSxZsiQ5f1hYGJMmTUKpVJI1a1b69Omj8dq/5+fnx8ePH7U+LzrgiIyMxMLCgvnz56Ovr5/oOSqVigkTJvDXX39RuXJlnJ2dMTBIvOFUtmzZ6NWrFxAVvnXv3p1nz55ptda3b98ya9YsZs2axdChQzE01LzN7enTp+PssRcWFsalS5f4559/tFqHNh48eMDz588pWLBgstpkwv8q7rQN1JJbCRc9nyasra0ZM2ZMkq+Z1BIWFoavry+3b9/mwYMH6vu3bNnChw8fCAgISPDcjh07qm9PnTqVx48f4+fnl2BAGhwcjJ+fH97e3ly6dAl7e3s+ffqkfnz//v1MnjyZu3fv8vnzZ/z8/AgNDdXBsxRCCJEapFWmEEIIIYQQQgjxA6hWOifVSufk9Ts/zv/lybM3Pjz39CEg+H/VJBamhhTNa02x/NbUrZSXAlJhp1MeHh5MmjSJ8PBwBg0axIABA7SqQvv69atW85mZmbF27Vo6dOigbnPp5+fH5cuXadq0abzn9OjRg40bNxIYGEjdunWZNGmS1i0QVSoVEydO5MGDB+jr6+Pk5IS1tbVG58Xn69evfPz4EV9fXzJlyqTxOqJDCk1DIaVSyaRJkzh8+DA//fQTLi4uiVYUxuTo6MixY8d49eoVXl5edOrUiUmTJtGuXTuNzs+RIwfLly/Xal/Du3fvsnjxYq5duwZA5syZcXBw4PPnz2zevJmjR49y/Phx6tWrR/fu3alZs6bW+yYmxt3dHYDBgwcnO9zS9mcU7eXLl+rb2jyn6Oo5c3PzRI9r1aoVEydOxMoqZe+BQUFByT738OHDTJgwIc79bm5uuLm5kSdPngQr4Zo3b868efMIDAzk2bNntG7dGoBDhw5RvHjxOMfPmDGDffv2JbqePXv2qPdNhKif+5AhQ7R5SkIIIdKIBHdCCCGEEEIIIcQPpEAuK3rmKg1EBSXBoRGERygxNNDD1NgAhUKRziv89wkJCWHx4sVs2bKFKlWqMHPmTIoWLRrvsf369SMyMpIcOXJgY2NDlixZsLKy4tWrV7x48QIgyQqwmKysrFi2bBnt27dXhxaJhQlWVlZ0796d7Nmz0717dy2eZZSwsDDGjx/PkSNHMDMzY/78+dStWzfRcxQKBSqVig8fPsT7+OvXr1GpVBw8eJAePXpovJboMEiTKqvQ0FAmTJjAkSNH6Nq1K5MmTdLq+xzdmrJXr15EREQQGBjIxIkT2bdvH4MGDaJmzZqJnq9pgKtSqbh48SIbN27k6tWrQFRlWI8ePejduzcWFhYAtG3blhkzZnDt2jXOnDnDmTNnyJ49O7/99hu//PIL1apVS1ELTR8fH9zd3alUqRItWrRI9jjRP5v4fkYPHjxg27ZtWFtbY2lpiYWFBcbGxoSGhrJ161b1cZqGq9F69OiBo6NjosfUqlVL4/Hu37+Pqakp+fLli/VzVKlUXLhwQf21Nq8niPoZtm3bVqtzopmbm2vVInPevHnMmzcvWXMJIYTIeCS4E0IIIYQQQgghflAKhQIzE81b8gnt3bhxg0mTJqGnp8eKFSto3LhxosevW7eOe/fucfjwYdzc3OIN2YoVK6bVGkqWLEm3bt3YtGkTAPnz50/0+BEjRiQrwH3z5g2jRo3i3r17FCpUCGdnZ0qWLJnkeTly5OD9+/esWbMGKysrihcvjpGREZGRkdy7d0+9j9r8+fOxtLTE1tZWo/VEt1NMqqXfhw8fGDx4MP/88w9z5syhffv2Go3/vapVqzJ+/PhYbStv3LhB7969mTp1Kt26dUvWuNFr3L9/P3v27OHt27cAFC5cmG7dutGuXbs4IVyRIkXYsmULHh4erF+/nocPH/Lx40e2bNnCli1bMDQ0pESJEpQtW5ZixYqRL18+8uTJQ5YsWciUKVOSFXTbt28nLCyM6dOnpyjsjw5X4/sZ5cqVi4oVK3Lt2jV27dqVYGtIbX4f5syZo3XQl5RLly6xc+dO3r9/T5YsWbCxscHc3JzPnz/z+vVrICqYzZ49u07nFUIIIRIiwZ0QQgghhBBCCCHEdwIDA1m8eDE3btxgwIABtGrVSqOKGz09PSpWrEjFihVxcHBgwoQJXLx4Uf24vr5+rP2rNDV06FCuXLmChYUFVatWTfRYbYMYpVLJ9u3bWbJkCSqVipEjR9KnTx+Nq8gaNGjA9u3b+fbtW7ytAaMZGRlRoUIFjdelSXB36tQpJk+eTJUqVVixYgU5cuTQePz49OjRg3fv3rFx40by58/P0KFDqVevHpaWllqP5e3tzdmzZ/Hw8ODWrVuoVCqsrKxo27Yt7dq1S/LnCNCsWTOaNWvG9evX2bRpE2fPnkWpVBIeHs79+/e5f/9+nHMUCgVGRkZkzpwZZ2dnKlWqFOvxgIAAtm7dyrBhwzQKZhMTXWmXJUsWIiIiYv2OZMmShY4dO9KxY0cCAwPZvHkzq1atUleOApQtW5YiRYpoPJ+uQzuAAQMGMGDAAO7fv8/u3btxd3ePtUZA521KhRBCiMRIcCeEEEIIIYQQQgjxneDgYGrXrs2UKVOSXZFkY2PD6tWr6dixIw8fPsTAwIDp06cnKywxNzdn7969REZG6rQd6vXr15k3bx7v3r2jb9++dO3alSxZsmg1xqhRo9DT0+PUqVN8/fo1zn5nFhYWlCtXjhEjRlCoUCGNx40O7lQqFWFhYbGCxC9fvrBgwQIePXrEnDlzaNiwoVZrTszYsWPJkycPLVq00GpPvoCAAG7dusXVq1e5dOkST58+BaBgwYJ06dKFevXqUatWLQwNta+SrV69OtWrV8fb25vTp09z9uxZrl+/HidggqhweNy4cXTq1CnesHnt2rWULl2afv36ab2O7+XNm5eZM2fSpk2bRINtc3NzHB0dKV68OIMGDVLfF7O6Mb2VLVuWsmXL0qtXLxwdHdX7SpqbmzN69Oj0XZwQQoj/FIUqoZ2DRYYQGBhIy5Yt2bJlC3nz5k3v5QgdCAsL4++//45zf7ly5bTa1PzfIjw8nHv37sW6r3z58sn6PzJCCCGEEOK/JSIigmfPnsW6r1ixYlrvQyREatu9ezeXL19m4MCBKa5w0pXPnz8zffp0lEolzZs3p1GjRhgbG6f3smKZMGECHz9+ZPTo0ZQqVUp9/7Vr11i9ejXdunWjUaNG6bavY1BQECdOnODevXvcuXOHx48fY2lpSZEiRShbtizly5encuXK5M6dO1XmDwgI4MqVK9y/f5+nT5/y9OlTvLy8GD9+PL179473nHfv3uHo6MjmzZuxsrJKlXUlpUePHigUCqZOnZrgXpHp7Z9//qFFixbkyZMHZ2dnypQpk95LEkL8yymVSoKDg2PdZ2pqmmGrfVPz73C5fi7BXYYWGhrKmDFjOH78OKdPn84wwV1oaCgVK1ZEqVQme4z9+/fH+qM7pgYNGuDl5ZWscbds2UKNGjWSva60IG88sUlwJ4QQQgghkkuCOyGSLzQ0lPDwcCwsLNJ7KQn6+PFjvPuKfV99l14+f/7MkSNHyJEjBzly5KBAgQJaVyvqWmBgIMbGxgm+DwYFBeHv75/ilqIpERgYiLm5ebrNr6lz585Ru3Zt+W+KECJNSHD3P3L9XFplJmnFihUMHjw4zeaLjIzk8+fPXLhwgS1btqjbKmQkL168SFFoZ2pqio2NjQ5X9D8JhYFCCCGEEEIIIYT4H2Nj4wxXYfe9+EI7IMNctMuWLRu9evVK72XEklQgZmZmhpmZWRqtJn4/QmgHUK9evfReghBCiP8oCe4SsWLFClauXJkmwZ2DgwO3bt0iKCgoTi/4jOb7JN3IyIgcOXIkmaYHBATw6dMnHB0dyZYtW6LHWltbkzlzZq3WZWNjk25tHoQQQgghhBBCCCGEEEIIIVIqQwZ3Hz58SNeSfYBVq1axYsWKNOuTPnv2bEJDQ4GoMtPLly8za9YsMmIn0+jgzsLCgokTJ9KiRQuNPqXn6OjI69ev6dOnT5LHdu/enSFDhqR4rUIIIYQQQgghhBBCCCGEED+KDBfcffjwgZ49e3L8+PF0W8OePXtYvnx5ms75fevIggULcuDAAe7evZum69DE8+fP0dfXZ+3atVStWlWjc65evcrp06fZtGmT7F0mhBBCCCGEEEIIIYQQQggRjwy1s2F0aPfmzZt0XUfjxo0pUaJEuq4BSPee4wl59uwZrVu31ji0UyqVODk5UbduXWrWrJnKqxNCCCGEEEIIIYQQQgghhPgxZZjgLjq0e/36dXovBWtrazZv3pwhwruMJigoCC8vL7p06aLxOe7u7jx79oyxY8em4sqEEEIIIYQQQgghhBBCCCF+bBkmuLt06VKSoV1YWBg7duxIk/VYW1szf/78NJnrRxISEkL37t0pV66cRscHBwezbNkyWrVqRdGiRVN5dUIIIYQQQgghhBBCCCGEED+uDLPHXbt27fD392fevHnxPq5SqRg1ahSnT5+maNGiVKtWLdXXZGRklOpz/GiyZMnC5MmTNT7e1dWVL1++MGDAgFRclRBCCCGEEEIIIYQQQgghxI8vwwR3AL179yY8PJwlS5bEeWzOnDmcPHkSgJ49e6b10kQyfP36lY0bN9KsWTMKFiyY3ssRQgghhBBCCCGEEEIIIYTI0DJUcAfQsGHDOMFdWFgYz58/B0ChUKBSqdJsPQqFIs3m+rdZu3YtAQEB9OvXL0XjXL16FQ8PD/766y/ev39PSEgINjY2VK5cmY4dO1K9enUdrVgIIYQQQgghhBBCCCGEECL9ZLjgLj5GRkZs2LCByZMnc+DAAfr37x/nGF9fX/bs2RNvSJTSx4T2Pnz4wI4dO6hWrRolS5ZM1hiRkZFMnTqVvXv3AmBqakqWLFlQKpV4eXnh5eXFoUOH6NixI9OnT0dfX1+XTyHNRURE/CeD4oiICI3uE0IIIYQQ4nsRERFxPtipVCpRKpXptCIhhBBCCCF0J6P+XatUKuP8HR4eHq6Toiu5NvyDBHcABgYG9O/fnwMHDjBq1Kg4j7948YI9e/akymNCe2vXriU0NJQePXoke4wpU6Zw+PBhHBwcsLW1pXDhwurHbt68ycyZM3ny5Am7d+8mODiYRYsW6WLp6ebRo0fpvYQM4+HDh+m9BCGEEEII8YMxMTEBICQk5If/UJ8QQgghhBDBwcHpvYQERUZGqkO6kJAQQK7p6tIPE9xB4m0r0/oxkbAPHz6wZ88erK2tadCgQbLGOHLkCB8+fGDLli1UrFgxzuNVq1Zlx44ddOjQgRcvXnDo0CF++eUXWrduncLVCyGEEEIIIYQQQgghhBBCpA+99F6A+PfZuHEjYWFhNGvWDENDw2SN8fLlSyZPnhxvaBfN3Nyc6dOnq792dnYmMjIyWfMJIYQQQgghhBBCCCGEEEKkNwnuhE7F3BewRYsWyRqjT58+DBgwgHbt2iV5bPXq1dV76Hl7e3Pp0qVkzSmEEEIIIYQQQgghhBBCCJHe0rVVZmRkpOw98C+ze/dugoKCyJQpE5UqVUrWGNrui1evXj0eP34MwLVr16hbt26y5k1vpUqVSnaF4o8sIiIiTv/j0qVLY2DwQ3XyFUIIIYQQ6SAiIoKXL1/Gus/ExET+lhRCCCGEED+c7/e0MzU1TaeVJC0iIkK91Vj0OgsVKqSTv8PDw8N59OhRisf5kaXb/5sJDQ2lX79+rF+/Xr2JuPixqVQqdu3aBcBPP/2Enl7aFHSWLl1afftH/oU2MDD4TwZ38ZHvhRBCCCGE0IRCoYizN7menl6a/X8RIYQQQgghdEGpVMZ7f0b9u1ZPTy/O3+GGhoY6Ce5UKlWKx/jRpVtwt3v3bm7cuEHfvn0pXbo0pqammJqaEhQUBMCOHTswNjbGxMRE/b+fP39Or+UKDVy/fp23b98CUKVKlTSbN2/evOrb3759S7N5hRBCCCGEEEIIIYQQQgghdCldgrvw8HA2btyIQqHgr7/+4q+//or1uEqlYubMmemxNJECJ06cUN8uUaJEms1rbm6uvh0d/AohhBBCCCGEEEIIIYQQQvxo0iW4279/P+/fv0/0mITKIb8vvxQZx/nz59W3ixQpkmbzxiwjNjMzS7N5hRBCCCGEEEIIIYQQQgghdCldgrsyZcrg5uaGoaEhenp6qFQqlEoloaGhvH79mmnTpuHi4kJoaCghISGEhIQQGhqKt7c327ZtS48liyS8evVK3SYTwNraOlnjrFmzhi1btpAjRw7WrVuHjY1NkufErLKzsrJK1rxCCCGEEEIIIYQQQgghhBDpLV2Cu9KlSyf4WHRQ06hRoziP/fPPPxLcZVC3b99W3zY2NsbQ0FDrMW7dusXSpUsB+PLlC3/88QcDBgxI8rwPHz6obxctWlTreYUQQgghhBBCCCGEEEIIITICvfRegPh3uHPnjvp2WFgYERERWo/x/V6HoaGhGp334sUL9e3y5ctrPa8QQgghhBBCCJEajh8/zt27d9N7GUJHLl++zP79+9N7Gf9Zq1ativXBcfHvExAQwL1795J1blhYWJxriyJ1vHjxgps3b6b3MtSeP3+e7HO9vb01vgYtRFqS4E7oRMzwTKVS8fnzZ63HiNnm0tDQkNatW2t03p9//gmAkZER9erV03peIYQQQgghhBAiNSgUCjp16sTw4cN59+5dei8nQadOnYq1/UVCDhw4wMePH9NgRRnT6tWrGTduHHZ2dhp9v9LD9u3bCQsLS/QYHx8f9u/fn6wPXWvL29s7yfVo6sKFC3Tp0gVbW1v27NlDcHCwTsZNzKdPn9LsNf/XX38RGRmZojFidqXShatXr/L333/rdMzEhISE0KFDB3r06MH58+e1Pr9z58706tWLa9eupcLq0samTZuYOnUqT548Se+lJOjixYt069aN3r17Z4gAb+DAgXTv3p2zZ8+iUqm0Onfr1q389ttvHDlyJJVWJ0TySHD3L+Xt7Y29vT2VKlWiZcuW6nArtXz/B2ty/virVasWenpRL8nmzZtTsGDBJM959+4dN27cAKBZs2bJ3ltPCCGEEEIIIYTQtSZNmtC3b1+OHj1Ks2bN2LVrV3ovKV6XL1+madOmTJo0KdFAysPDg4YNGzJ9+nQ8PT3TcIXp7++//1Zff7h06RItW7bMkBd6FyxYQKNGjXBzc0swMFMqlYwbN44mTZqwY8cOnQVr8bl+/TpNmzbl+PHjKR7LyMgIgEePHrFlyxZ8fX1TPGZSPn78yK+//sratWvx8/MjMDAwVf5dvHiRHj16MGDAAAIDA5O93vXr12NnZ6ezysTHjx/Tvn17evbsmawgTVsmJiZA1OvG3t6evn37anyN0cjICIVCwdWrV+nZsyddunSJVVgQEhKSKmvWRkBAAM7OzolWBkZGRrJr1y5atWpFt27duHTpkk7m9vf3Z9euXToJ7B8+fAjAlStX6NatGxMmTEjxmClhZGTEjRs3GDBgACNGjIjzeMyCk+/duXMHb29vRo4cSadOnaRKXmQY6bLHXXKFhISgUqnibUsQ/emX1Hgsvfj5+alv+/j4kDdvXo3PHTduHNevXwfg6dOnODo6cvToUXLlyqXzdQI6+WMpb968dO7cme3bt2NmZqbROcuWLSMiIgJLS0tGjRqV4jUIIYQQQgghhBC6NHz4cE6fPs2rV6+YOnUqXl5ejBw5Mr2XFYupqSnh4eHs3buXAwcOsGTJEpo0aRLnOBMTE8LCwtixYwd79uzB2dmZxo0bp8OK097vv/8e6+vmzZtTv379dFpNwkxNTfnw4QOzZs1i8+bN7N27l0yZMsU5BsDLy4vp06ezadMmdu7cSebMmXW+HltbW548ecLQoUNp0KABc+bMIUuWLMkaS19fX3178+bNyR5HG6ampgQFBbFkyRKWLFmS6vNduHCB3r17s3PnzljPV1OTJ09m1qxZdOnShQYNGjBx4kTy5cuX7PUYGhoCcO3aNa5du8aoUaOwt7dP9niazgdQqlQp5s2bh4GB5pevDQwMCA8Px9jYmM6dO5MtWzYgKgzr1KkTdevWpV+/frG6fqWFx48f4+7uzv79+/H19WXHjh3s3LmTQoUKxTnW2NhYfVupVFKsWDGdrMHMzIzTp0/j6urKtGnTqFmzZrLHiv4QA0CZMmUYM2aMLpaYoHXr1pE5c2Y6dOgQ7+PR37NSpUoxa9asWI+9evWKVq1aYW9vj6OjY6zXWHh4OA8ePFB/raenR44cOVLhGQihvQwb3EVGRsb5D9TatWsBEk3xU+Ox9PDhw4dY/XnPnDlD2bJlNT7//v37sb4ODg7m77//TrXg7vsy5OT8cQEwfvx43r17x4EDB7C1taVChQoJHrtp0yb27duHkZERCxcuJHv27MmaUwghhBBCCCGESC1GRkZMnjyZfv36AVHXNurUqUPVqlXTeWX/E/PDs7169UowjIu+OGpgYMDChQv/M6Hdo0ePOHbsmPprKysrqlWrpvGHjtNSdCiXKVMmnJyc4oR2EDsYKFGiBCtXrkyV0C7ayJEjuXbtGmfOnKFdu3b8/vvv8QYWSYnu0mRgYJAmoR3E/l5t3LiRatWqJXnOyZMn1R8u13S/ts2bN7N48WKMjIwYMWJEsq+rAUyaNImPHz9y4sQJLl++zIQJE+jSpUuyxooZmrVo0UL9PpZaYoYq1apV0/pan6GhIeHh4ZQsWTLWFjz6+vosWbKELl26sGvXLgYNGkS3bt1S9H1OzMePH7l16xY3b97k3LlzcSqUfXx86NevH7t27VKHizGfQ7SpU6fqLEjS19dn6dKldO7cmd69e9OhQwcmT56srnLU1OvXr/H29lav1cnJKdV/Hxs3bkzr1q05ceIE8+fPjzNf9Ou0ZMmSWFpaxnps3759REREsGrVKi5evMjGjRvV74sPHjxQ72+XLVs21q5dm+ahrhAJybDBnZ+fX6w/Gq5evaouq9e2V21KKBSKNJknMDCQyMhIfH19efz4McuXL4+1MeaaNWsIDQ2lefPm5MyZEwMDA0xMTNRtAr5XtmxZdcUdRL2RlixZMtXWX7hwYR49egRE/SGV3D/4jI2NWblyJRs3bqR3797UqFGDhg0bUrp0abJly0ZERATPnj1j586dnD17lvz58zNz5swUfUpECCGEEEIIIYRITb/88gtFixZVf0D3/v37Wgd3hw4d4uHDh4wbN07n64t5cd7BwSHBayHRIYapqSnNmjXT+Toyqvnz56NUKgEoVqwYLi4u9OjRg8qVK5M/f/50Xl1s0Rf9q1atmuBrTE9PTx1w1KhRI0UVWZquafr06XTs2BFvb2/69+/P/v37sbCw0Gqc6OuB5ubmqbHMeMX83TA0NIwV5GlyjibHw/8+AG9jY0OtWrW0XGVsenp6ODk58eDBA3VVpZ+fHw4ODlqPFfO5/Pzzz+rwNLXo6elhYGCQ7HaO0d/H+AK5IkWKsHDhQhwcHJgzZw779+9n4cKFFClSJNnrDQgIwNPTk6dPn/L48WOePHnCkydP+PTpU6zjTE1NyZkzJzY2NmTPnh1ra2ssLS25d+8eDRo0iHVszOBO18zNzVmyZAnt2rVjz549PHjwgA0bNpA1a1aNx7hw4YL6dtOmTSlRokRqLDWWQoUK0bNnT9avX0/btm1Zv359rErEhL5nwcHB7Ny5E4CKFSuydOnSWB9miHntvE+fPhLaiQwlwwZ3vr6+scIfY2NjXFxcMDY2xtjYGCMjI4yMjDAwMMDAwCBVAra3b98yYMAAnY8bnwEDBsR6s/heZGQkGzZsYMOGDer7nJycaNu2bbzHz58/n+nTp3Pjxg1y5MjBqFGjUvWPyUmTJjFx4kS+fPlC9+7dtf60Rkz6+vrY29vTvn179u3bh4eHB87Ozvj6+mJiYkKWLFkoU6YM8+fPp1mzZgmGl0IIIYQQQgghREbRqlUrlixZgpmZWbxtKBNz+PBhxo0bR2RkJEqlUuddgzStOknNC8oZ1fnz57ly5QoQVT25aNEi9UXk4cOHs23bNnWVW0agzc8yPDw8lVfzP+XLl6d+/fqcOXOGt2/fsmXLFhwdHbUaIzo8TcvgLrUqslKbhYUF06dPp3///kDUVjOtW7cmZ86cWo2THs8/JeFgzKrM+NStW5e+ffuyceNGHjx4QMeOHXF1daV8+fIajf/27Vtmz57Nu3fv+PLlCxEREZibm2NpaYmVlRXW1tbUq1ePK1eu4OnpSaNGjZg1a5ZWFWmp/T5brFgxBg0axJIlS3j48CF2dnZabVt08uRJ9e1evXql1jLjsLe3Z/v27bx79w47Ozs8PDzU4X9Cr9PNmzfj4+ND8eLF2bhxY5wPC0Rfizc2NqZ9+/ap+wSE0FKGDO5UKhVPnjyhYMGC6vsqVaqUbusJCwtL9XBo69atOh0vd+7crFu3TqdjJqZatWqx3rh1IUuWLNjZ2WFnZ6fTcYUQQgghhBDi30KlUqEKC0YVGYFC3wCFkWmadY75LwgODiY4OFgnY+XNmxeFQsHEiRMxMTHh69evGp138eJFJkyYQGRkJBC1bYRCoWD8+PE6WRdofqE4tattMpqQkBDmzp2r/nrkyJHqbkZ9+vTh0KFDjBo1ihUrVmSY742m+4Glx/tE586dOXPmDABPnjzR+vzoiru0DEp/5PfTOnXqUKVKFW7dukVkZCSenp4/RHCXkjmjfw8Te08bOnQox48fx9PTk4CAAKZOncr+/fs1Gj9XrlwsXLgQMzOzRH/XHBwc8PT0xNLSUus2kmnxPe/Vqxdubm58/PiRR48esWzZslgfCHnz5g07d+5k7Nixsc7z8fHh1q1bQFRVrzbbOqWUlZUVbdu2ZevWrXz48IHt27er91uM73vm4+PDhg0byJMnDxs2bIgT2oWHh3P79m0Afv31V6ytrVO0Pk9PTxo2bKjRsUZGRlhaWpInTx7KlStH06ZNk9U+28/Pj/3793PhwgUeP36Mj48PRkZGWFtbU6JECX766Sfatm0bp32o+DFkyOAO4OHDh/z666/pvQwA/P39tSoZFkIIIYQQQgghUkvYx9cEPLhEqPczQt+/RBkSoH5Mz8QC45yFMM5dDIsyv2CUPWO18fvRfPnyhZ49e+Ll5aWzMSdPnszkyZNTNIarqysKhSJV2mYm5kcOMZJj6dKlvHr1Cohqd9q7d2/1Y4aGhixYsIAOHTowe/Zspk6dmj6L/I6mP6P0CBpr1qxJpkyZ8PX11bjCKaboCsH0Cu78/f01CtwDAwPVtzUN6HX1AYHv9e7dm1u3bpEpUyaKFy+u9fnp8TufkjmTqrgDMDExYciQIer3zw8fPmg8voGBQaq3U9Q0fE8JExMTOnXqhIuLCwDHjh2LFdxt27aN0qVLxznv2LFj6jamMd8P00qrVq3UxS9BQUHq++N7P3N2dsbExARXV9d49wm8ffu2+ne1Q4cOKV5b7ty5uXHjBp8/f2b06NE8ePAAiCpGmjt3rnovw+DgYL59+8bff//NgQMH2LZtG9u2baNSpUrMmTNHo3A9IiKCTZs2sXLlSqpXr07Hjh0pVaoU5ubmfPv2jbt377Jt2zbmzp3LsmXLmDp1Kra2til+jiJtpWtw5+bmho2NTZyALl++fHTt2jWdVhWbSqXiy5cvEtwJIYQQQgghhEhXQc9u4XNlHyFvHyV4jDIkgOBXfxP86m98/nTHJF8prGu1waxolTRc6b9H3rx52bJlC6dOnaJUqVIUKFAACwsLzM3N41xcjoyMTFGlhFx7yFhu3brFli1bgKjrVIsXL47zMy9VqhTDhg1j0aJFGBgYMHHixPRY6g/DyMiISZMm8fr162Rd9I8ODDQN7vbu3Uv+/PmpXr261nN9PyfAoEGDtD6/Zs2ayZ5bF5o0acKECROoVKlSsgKn9Ah44wvuIiIiGDVqFDVq1Ej0mnH0epN6L27RogWLFi3i06dPKXp9pIa0CktbtmypDu7y5Mmjvj8oKIiTJ08yYsSIOOccPHgQiHpP1LS67HsPHz5k+fLlLF26VOsQvnz58hQoUABvb+9YQdT3r9P79+9z6tQpNm3aRIECBeId6+LFiwAUKFCAatWqabyGgICAePfn1NPTw8rKCisrK+rXr68O7tq2bUvhwoXVx1lZWZEjRw5KlixJhw4dOHDgAJMmTeKvv/6iW7durF+/Ptbx3wsKCmLo0KFcuXKFBQsW0Lx581iPZ8mShSJFitCmTRvmzJnD1q1bGTduHIGBgXTr1k3j5ynSX7oFdx8+fGDp0qVYWVlRs2ZN9X88rK2tcXNzizcJTy+PHj1K1qdShBBCCCGEEEKIlIoM8ufziQ0EPrik9bkhbx/xftcjLMr8QtYmduibSbskbeXNm1ejkGHKlCkUKlQIOzs7rS92+/n50aBBA9q3b8/AgQPVn8z/0X3+/PmHfC7+/v5MmDABpVKJqakpK1asIFOmTPEea2dnx40bN9i8eTNKpZJJkyb96yoTAwMDUSgUGu+BlZjWrVsn+9zoEM3Y2DjJY/fu3cvkyZMxNTVl7dq1yQ5nYgZ3W7ZsoUaNGkmec+zYMYYNGwZo3hJ048aNLFiwQN0OVJdSUhmVGq/lb9++Jfo8o+cMDQ1VVyxOnz6d48ePc/z4cYAkCz6Sav9rYGCAnZ0dGzZsYPTo0dosP9Wl1ftHgQIFKFy4MP/88496L0SA/fv3U7t2bUxMTGId7+XlpW4t2b1792SFuo8fP6ZPnz74+PgwePBgVq9erfX2VJMmTSI0NDTWFlvff8+uXLnCxo0bKVq0KBBVfefv78+UKVPUx1y4cAGICtY0/Z5v3ryZ33//nS1btiQYCELs4DipCsrWrVvz+fNnFixYwLdv35g1axaurq4JHj9z5kwuXryIg4NDnNAupujW3Hfv3uXevXvMnTuXn376iSJFiiS6HpFxpFtwN3fuXAIDAwkKCqJevXq0bt2abt26qX+hMpLPnz+n9xKEEEIIIYQQQvwHhX54xfudc4gM0KzdWkICHlwk+PUDcnWZjFH2hC82ieSzt7endevWXLhwgSVLlmBjY6PxuZcuXSIkJAQ3Nzfc3d3p2bMnjo6OGgUU8XFxcWHw4MHpGiCFhYXRvHlzHBwc6NOnzw8TZqlUKsaMGcPr169RKBTMnTtXva9dfPT09Fi0aBEdOnRg69atfP36lXnz5ml9MTo+z58/5+nTpzRr1izFY6XE2bNncXFxYdGiRZQrV06nYz99+pSePXvy7ds3jc+5dOkSJUqU0OjYoKAgHBwc2L17N8WKFdN6fTGDu7QQGhqapvMlJTUq7g4cOICTk1OSx+3atYtdu3bFuk+lUjFz5kwg/vAu+n1Gk3aTffr0oVu3bhgZGREcHJymLVgzCkdHRx4+fEj9+vXV90W3WPzeH3/8oQ5cnZycNPoZJubSpUuMGjUKZ2fneCskIyIi8PPzi3N/9HtQzDa00b+nYWFhfP36lXbt2qmP2bx5M2vWrFEfO2XKFN6+fcuTJ09QKBTUrVtXo5a2hw4dUn9fevbsmWR4p40ePXqwadMmPn78yN27d3nw4AFlypSJc9zjx4/Zt28fAE2bNk1yXD09Pfr06cOIESOIiIhgw4YNKf65ibSTLsHd+fPn1Z+QUKlUBAUFsXPnTnbu3En16tXp1q0bjRo1ivc/Du/fv9d6I9WU+O233+jTp0+azSeEEEIIIYQQQkBUaPfObVqsPexSIjLgK95bp5K7x0wJ71JBwYIF6d+/Py4uLrRr147169drHC4cOHBAfbtMmTI0bNgw2aEdRFXwbdiwIVYVRVq7desWPj4+zJ8/nwsXLjB//vwM1V0pIStWrODs2bMAjB8/XqPQzMrKilWrVtG5c2eOHDnCu3fvWLlyJVmyZEnRWvLly4ejoyNly5Ylf/7026/ywoULvHr1ii5dujBkyBD69++vs0CnePHiuLq6sm/fPsqVK0ehQoXIlCkT5ubmcY5t164d3t7e/Prrr0yfPj3RcZctW8bOnTsBaNSoUbKrTKL31UsrYWFhaTpfUlIjcO/duzeVK1fGwsKCfPnyxamOq1q1Kv7+/vTs2ZNJkyYlaw5N94kzMjLi+fPn2Nvb06ZNG4YMGZKs+ZLr3bt35MqVK03njKlly5a0bNlS/fXly5dRKBRUqFAh1nHh4eHs3r0bAFtb22Tvrzpt2jROnDih/vrdu3fcv38/znwQlRl8f3xSjhw5wpEjRxJ83M3NDYjajy56juTs/fb+/XudhndGRkbUqVOHvXv3AnDjxo14g7ujR4+qb2v63hSzXW/0f9vEjyFdgrtatWqxefNmLl68yMWLF3ny5Ik6sb9+/TrXr18ne/bsdOjQgY4dO5I9e3YAXr16RefOndm5c2esctjUkidPHpYsWZLq8wghhBBCCCGEEDFFBvnzfuccnYV20ZQhAbzbMZu8/ZdI28xUYGdnx86dO/nw4QN9+vThjz/+SPKi7MePH7l0KaoNapEiRVizZk28++doo0+fPjRr1oyaNWtStmzZFI2VXKdPn1bfvnLlCq1atWLz5s2JVq+lt6NHj7Jy5UoA+vfvH2+LwVu3blG5cuU4gUaRIkVYu3Ytffv25fbt27Rv354FCxZQtWrVZK/H2NiYdu3aMWrUKHbs2KFxGKFLERERnD9/Hoi6ULxkyRJu3LjB6tWrk2xHGJ+wsLA41YilSpWiVKlSiZ6nVCr59OkTAIULF04yFA0I+N9756hRo5IdNMasuPP399eoMicwMFB9W5PjAYKDg4GMV3GXWsqXL58q40b/Xmq63+jVq1cZMmQIfn5+rFixgi9fvjB16tQ02dvPycmJffv24erqGm9Ikx62bt1K27Zt49x/8uRJPn36hKWlJWPHjo31+3f37l3KlSuX5Pfs/fv36uAof/78zJ49O9HWs4aGhixdupTt27eTO3duihcvTqZMmbCwsFD/fJctW8aqVavU57Rp04Z58+Yl+Tw7d+4MRH1w4NChQwket2vXLqZOnQrAhg0b+OWXX5IcO7liVgR//Pgx3mNevnypvu3q6srSpUuTHDdz5sxYWlri7+/Pt2/f8Pf3x9JS/v77EaRLcGdoaEiNGjWoUaMGo0eP5u3bt5w4cYITJ05w9+5dIGoPvJUrV7JmzRrq1aunbjng4+NDhw4dkrWhalJUKhUqlQqlUklERATh4eGEhoYSFhbGwoULadGihc7nFEIIIYQQQgghvvf5xIYUt8dMSGTAV76c2Eh22+GpMv5/mampKV26dGH58uV8+fIFJycnli9fnug527ZtIyIigkyZMrF69eoUh3YQVU3QuHFjRo8ezf79++PsVZTalEqlutMSQKVKlZg4cWKGDu0uXrzImDFjUKlUdO3aNcF9r+bOnUtkZCTDhw+nXr16sR6rXLkyLi4uDBw4EC8vL3r27MmAAQNwdHRMdujWpUsX1qxZw8qVK9X7pqWlP//8Ex8fH/XX9vb29O3bN1mh3aJFi3jw4AFr167VupXop0+f1BUmefPmTfL46G1v9PX1tWpb+73IyEj17UGDBml9fsxqF03ousIvNDQ0RdW7yam4e/fuHTlz5kyVar1Tp04xfPjwJL9P7u7uuLu7az3+jh07+PbtGwsXLtRJu9uEzJ8/n02bNgFRH7TICOHdmzdvuHz5MnPmzInzWPRahw0bRtasWWM95uTkRGBgIMOGDaNRo0YJjr9582bCw8MpVaoUrq6uZM6cOck1GRgY0LNnz3gfu3LlSqwWmACvX7/m7t27lC5dOsH3qNevX/PXX39RpEiRWCF7fGIG7yl5H9FEzCrjhF7f0QE/gIeHB3369NEoBDc1NcXf3x/IeFW9ImHptsddTPny5cPOzg47Ozvevn3LgQMHOHToEK9fvyYiIoLTp0+rP6mlUCjw9/dXv9jSytGjRyW4E0IIIYQQQgiR6oKe3SLwwaVUnSPgwUUsyvyCWbEqqTrPf1H79u1xcXFBpVJx+vTpRPdOCg0NZdeuXejr67NkyRKd7ZcD0LdvX2xtbZk/fz7Tpk3T2biauHnzprpiwNDQkAULFqRrq8ek3Lx5kyFDhhAeHk7//v0TDO0g6vncv38fBwcHKlasyKRJk2JdOP3ll19YtWoVQ4YMISQkhJUrV3LixAlGjBhBw4YNtV6blZUV7du3Z+3atdStW5eKFSsm5ykmW8zWbDVq1GDUqFEJHvvt2zd1R63v7dmzh/Xr1wNRF/9dXFy0CjPfvn2rvq3Ja+nLly8AZM+eXePqq/jErLjbsmVLohVCEFUp069fP+rWrZvo9+p7GzduZMGCBahUqnirEpPD1dWVw4cPs3XrVszMzFI8niZevnxJ9+7dady4cZLtTJOjUaNGuLq6EhERQfHixeOEg02bNsXHxydWO0dnZ2d27dqFhYUFJ0+e1Gie78eNjIxk5MiRHDt2TKv17tu3T70nWUJ8fX0zRHi3ZcsW6tSpEyeYO3fuHHfv3qVEiRLx7isYGhrK06dPGTRoEOXKlWPlypVx2iL7+/uza9cu8ufPz4YNGzQK7RLz4cMHxowZg1KppF69eoSHh3P58mW+fftG3759USqV/PTTT7Ro0YImTZrECvEOHjwIQK9evVi3bh0+Pj5YW1vHO0/MvTejOwKmlphZR0LrKVGiBBcuXFB/nVBlXkxKpRJfX18gqoo7pS2cRdrJEMFdTPny5WPw4MEMHjyY27dvs3PnTk6cOEFISAgQ9capUCiwtLSkdu3aOptXpVIRGRlJRESEutouLCxM/c/b25vw8PBkfaJICCGEEEIIIYTQlM+VxC/y6Wyeq/sluEsFOXLkoHz58ty9excjI6NEL8Dv3buXb9++MW7cuCSvcfj5+XHu3DlatWql0TpKlSrFTz/9xPbt26lfvz516tTR6nmkRPQ+PQCdOnXK0KHd9evXGThwICEhIYwZM4Z+/folenzM60J58uSJdyuXOnXqsHHjRhwcHAgICODZs2c4OjpSuXJlevfuTf369bUKZnr16sW2bdsYM2YMBw4cSLMQJiAgQB1UKBQKxowZk+jx7u7uLFiwIMlxz507x5kzZ2jSpInGa7l//z4Aenp6lC5dOsnjo9tq5syZU+M54hNd+ZIrV644gcb3bt26xahRo3j37h1PnjwB0Di8MzMzo2XLlrRu3Vrja48PHz6MVREY059//qne/mfo0KGsWbMm1Vutenl50adPHz5//syOHTswMTFh/PjxOp+nWrVqCT4W3SI1S5Ys6oAiuuJQoVAkO7TQ19dn8eLF6jatpUqVInPmzFhZWcUbDI8ZM4ZLly7RvHlzJk+erNEcqVnhl5SAgADc3d1ZvHhxnMeiq8anTp0a73MNCgpS3/7555/j3ct0586dGBoasm7dOrJly5aitfr6+tKvXz8+ffpE7dq1cXFxUe9NWLFiRXWucObMGc6cOUOpUqVwc3PDwsKCyMhI3N3dyZEjB7a2tuzYsQNvb+8Eg7IPHz4AUT+blIaNSXn16pX6dkLV6fb29nz+/Jl79+5RvHhxjVp3Pnv2TN2CN76wW2RcGS64i6ly5cpUrlyZyZMns3//frZt28br16+BqBTa19eXWbNmqTeUFEIIIYQQQgghfmRhH18T8vZRmswV8uYhYR/fYJQ944YqGc3p06dp0KBBkhe+GjRowN27d7Gzs0uw2ic8PJwNGzbQqlUr+vbtm+h4X79+xc7OjocPH6orejTRo0cPrl69yuTJkzly5Eia7Gvj7++vbpNpbm6Oo6Njqs+ZXMeOHWPMmDGYmJiot2pJSnSokjt3bnUwEp+qVauye/duHB0d1Rdkb9++ze3bt7GysqJx48ZUqVKFEiVKUKxYsUTbGebNm5f69etz6tQpFi1apN5zKbUdOXJEfVG+WbNmlCtXLtHj7ezssLGxQalUUqpUKbJly4alpSVGRka4uLiwYsUKLC0tWblyZZKVa9+7d+8eEFVxklQ72bCwMHV7z6T2mExK7ty52bJlC9WrV0/w9z40NJTVq1ezfv16dYVerly5eP78Oc+fP6do0aJJztOlSxe6dOmi1dqePn3KxIkTEwzvol28eBE3Nzd69+7Nx48fcXR0jFXBGF0koVQq45wbs2XfrFmzmD9/foLzhISEqAsvIKriz9jYmBEjRmjztBIVFhbGqVOnqFOnTpzXQUBAgPr7r4uWw98zMDDQuF1tdEhqZGT0Q1Q47d27FzMzszgf8Dh69CgPHjygQ4cOCe7XGV2VliVLlniry8PCwtixYwfLli2jUKFCKVpncHAwDg4OPH36lLp167J8+fI4gWfevHnZsWMHgwYN4vLlyzx69IhNmzYxePBgzp49i7e3N05OThgbG2NpaYmXl1eCHwaIDu7y5MmTqoFXZGSkeq9bU1NTqlevHu9xVlZWGu3hF9OJEyfUt6Wb4I8lQwd30aysrOjZsyc9evTgzJkzbNq0iRs3bvDnn3/SsmVLxowZo95UUgghhBBCCCGESK5wn6TbDmlCYWCIgUX8n85ObA7fW8cTfCw1+N4+jvVPrRN8PLnPQ1OG1qnbekrXxo4dS548eRg0aFCiFXItWrTg06dP9OrVK8E9dA4ePIiFhQUTJkxIdJ8dX19f7O3tefbsGQALFy4kPDycgQMHJrneBg0akDdvXjw9PZk7dy5OTk5JnpNS7u7u6ov3AwYMSLJKKb1s3bqVuXPnUqxYMZYvXx5v5Vx8ooM7TS7iFilShD179jBmzBjOnTunvt/Pz48//viDP/74gyxZsjBy5Eg6dOiQ6Fg9evTg1KlTbN++nSZNmvDTTz9ptN6U2LFjBxBVsaRp5VhSFaE5c+bUOrQDuHPnDkCC4UFM0W0yIeXBXa5cuRIcQ6VScfToUZYsWcLbt2/JmjUrLVq0oFWrVpQtWzbec44ePcqTJ08YPnx4itYFYGtrS+7cublx4wbPnj3jyZMn2NjYkDdvXr59+8aZM2cwNDRk7dq1/Pzzz0BUu7/Vq1dz4MABihUrxrdv37h//z4vX74EotrqqVQqVCoVSqWSb9++qd97pkyZQtu2bVO87uR49+4dO3fuZN++fTRp0iTe99/ofQ2BHyIsyygiIyPZsmULbdq0ifVBk8DAQJycnMifP3+ClZORkZH4+fkBUL58eXWlaUxfvnxh2LBhKX7P8vX1xdHRkb/++osePXowYcKEBD8YY2pqyurVq+nZsyd37txRf3hi69atlClTBltbWyAq4H369CmNGzeOdxwvLy8gqkNgavrjjz/Uc3Xp0kVnH7IJCwtj9+7dwP+qesWP44cI7qIpFAoaNmxIw4YNuXfvHqtWreLcuXPMmDGD8+fPM3fu3FQvWxVCCCGEEEII8e/1dmXSYYgmTPKXIXePmak6hy743zqG/62E9+xJ7edReNIfKR4jLZmamvLkyROGDh2q0fFubm5JHlOzZk2t1+Hs7ExERIS6PVhC9PT06NSpE4sXL8bd3Z0WLVqoL+CnBqVSyZYtW4CoqofevXun2lzJFRQUxNSpUzly5Ah9+vRh+PDhWrWo07bdoJWVFWvXrmXnzp3Mnz9fXcGWL18+pk6dqnEL059++okiRYrw4sULpk6dysGDBzExMdFqLdq4evUqjx5FVf/26dOHPHnypNpcSXn+/Ln6orYmr9/oKhkgVbp0hYWF4eHhwcaNG3n69CmVKlViyJAhNG3aNNHX0ubNm5k3bx5KpZLixYvTrFmzFK+levXqVKtWjcDAQAwNDdWVm+7u7urg7vvvmY2NTayq3egQIz6nTp1i0KBBKV5ncqhUKv7880+2b9/OmTNnqFWrFq6urhQpUiTe42P+3G1sbNJqmT+8EydO4OXlRbt27WLd7+Ligp+fHzt37kywgvHDhw/qfS1Lly7NmTNn4hyTK1cuWrdO+ANCmvD29qZ///68fv2aadOmxbvX3veMjY1xcXGhbdu2FClShLt373Lr1i327t2Lnp6eem3RbXi/FxQUpN5DTpf7z37vzJkzzJo1C4h6n3dwcNDZ2G5uburn4OjomGE/SCPi90MFdzGVL1+eNWvW8OjRI5YtW8bZs2dp3bo1y5Yto1KlSum9PCGEEEIIIYQQQvzLRF+Uz507t3rvr4yuXbt2LF++nPDwcKZMmYKHh0eqBT4nTpzA09MTgPHjx6frnk3xefbsGUOHDkWhULB169ZY1Vvh4eEa7S2m6f5j3+vcuTN169Zl6dKlXLhwgR07dmgdLnTs2BEnJydev37NihUrGD16dLLWoglXV1cgqkLL3t4+1ebRRHSrt8yZMye5FySgvlANKa+4ixYZGcn9+/fx8PDg0KFDhIeH06pVKxYvXkzx4sUTPTcgIIBp06Zx+PBh9X0TJ06kWLFiFCtWLMVrUygUqdIaMr3t2LGDrVu3UqhQIVatWpVkK9t3796pb8e3z5qI3++//07VqlVjVR3fvXsXNzc3li5dmuB+a/C/ijSAggUL4u/vT2hoaKKtf7V17949Bg0aRObMmdm7d2+i64kO5KJlz56dHTt2YGlpydixY3F0dIx1fsGCBWO1kowpersuQCe/pzEFBwdz584ddu3axdGjRwHo0KEDkydPTrL1raa8vLxwcXEB4JdffsHOzk4n44q088MGd9FKlSrFmjVruH79OgsWLKBnz55MmDBBo+RdCCGEEEIIIYQQQlsKhUKnFyZTU9asWWnQoAHHjx/Hy8uLtWvXarxPkzZUKhVr1qwBoE6dOgm2Hvtey5YtY11wT6mbN2/GuS96P0E3Nzf69+9P9+7d41TOubq68ujRIxwcHBK9MKxtxV1MuXLlYsGCBQQEBCQraLG1tWXRokWEh4ezadMm2rZtS+HChZO9noQ8fPhQ3dpzwoQJmJub63wObZw8eRKA5s2baxScfvr0SX07pRV3fn5+6j21AgICyJIlC61ataJx48YYGhoSEBDAjRs3iIyMjPdfcHAwK1eu5M2bNwBUqlSJdu3aUadOHQmXYlCpVFy4cAE3Nzf8/f2BqArnQYMG0b17d41+7tHtEAGNW9/+112/fp179+7F2jctICCAUaNGMX78+CTfx6Nf1xAVbmXPnp27d+8muEebtjZt2sSyZcvo2bMngwYNivfDIF++fEGhUNCuXbt4W3rmy5ePK1euoFQqGTBgQKzHChYsyKdPn/jw4UOc38eYbT812acyITNmzGDu3LnqryMjI9WV19mzZ8fW1pauXbtSoUIFlEolwcHByZ4rWnh4OCNHjiQoKIhKlSqxbNmyOKGmyPh++OAuWvXq1dm7dy8HDx5kwYIFvHr1iokTJ6b3soQQQgghhBBCCPEvE90a7EfRunVrjh+P2j9x48aNdOrUiZw5c+p0jtOnT/Po0SOMjY2ZMmWKxuetX7+eiIgIna4lpps3bzJv3jyqVavGoUOHEtz7ysjICA8PD44ePUq9evUYOHAgFSpUSNHc3t7e8QZHya2Osra2pl69epw8eZLw8HDmz5/P2rVrU7TG+KxcuRKAWrVq6aSdY0rcu3ePhw8fAmi8v9r79+/Vt1Ma3FlZWZE7d25u374NwNevX9m0aRObNm2Kc6y1tTU2NjZky5YNU1NTrly5QnBwMHp6evz22284ODhQunTpFK3n3+bLly+4u7uza9cu3r59G+uxNm3a0KdPH43Hit6nL2vWrDrbI+zfbt26dVhYWPDbb7+p75s1axbt27ene/fuSZ4fHW7p6+tTpEgRSpQowaVLl1Ic3IWGhjJ69GiMjIw4ePBgonvM9ezZE5VKlejecCEhISxatChOeFWoUCEgag/NX3/9NdZjjx8/BqKeW6lSpZL9XIYOHRpr7Bs3bqgDxp49e9K/f/9kj52QGTNmcOfOHWrWrMmqVaswMzPT+Rwi9f1rgrtorVq1on79+jg7O7Nhw4ZYPZuFEEIIIYQQQgghkis6sPvRPrlep04drKys8PPzIzQ0lJUrV6r31NEFpVLJ8uXLARg0aBD58+fX+FxdB4jf+/z5M2vXrk1yb5/oCkqVSsWlS5eoV69eioK7/fv3M3nyZBYuXEjTpk2TPc73WrRooa5AO3fuHLdv36Zy5co6G//evXucPn0aExMTZsyYobNxkys6IKtfvz5lypTR6Jzo4M7S0pJMmTKleA2Ojo7qFrOVK1emWLFi5M6dm5w5c5I9e3ayZ89OtmzZMDIy4tu3b2zZsgU3NzfCwsJo1aoVAwcOjFMZee/ePUqWLJnh2smmhYCAAC5cuMDhw4e5cOEC4eHhQFTwOWjQIJydnQkMDNR63OigJbGKWV2aP38+/fv3T/DDAAm5ePEi586dY/LkySgUilRaXdLu37/PxYsX6dSpE6ampur7BwwYoA60khId3JUsWRJjY2NKlizJnj17GDlyZIrWZmxszPDhwxPczzDaq1eveP78OQD29vbY29szatSoOMfVr18/3vPz5MmDqakp586dixPc3blzB4AiRYqkKPjKnDkzefPmVX+dK1culixZwsePH9m5cyd2dnY6/ZvCxcWFPXv20LhxY5YsWfKffI/5t/jXBXcQ9R9mbT7dJYQQQgghhBBCCJGU6PZWP9qn1w0NDWnQoAH79+8HokKlUaNGYW1trZPxDxw4wJMnTyhZsmSG20cnZiVJYmJeuHZ2dqZRo0bJnnP//v1MmDABpVLJ6NGj0dPTi3NROLnq1q2LiYkJISEhQFSwpcvgbtGiRahUKoYOHapVAJsavLy81JWiQ4YM0fi86NarKa22i1akSBHWrFlD9erVY71OYvL09GTTpk388ccfRERE0Lp1a/r165dgy8bbt28zePBgHBwc6NixY7L3TvzRhIWF0aFDB/755x/1fQqFgo4dOzJy5Eisra3VHwLQRkBAgHpPMk0D3pS6evUqBw8eZObMmVSqVCnWY9FVxGFhYXz9+lV9v6enJ8OHDycgIIDAwEDmzJmDvr5+mqz3e8uWLQOgffv2se7XNLSLiIjg3r17AFSpUgWI2tLq4cOHfPnyJckPSyQlqdAO4MiRI+rbjRs3jjcw3L9/P61atYo3HNPT06NChQqcO3cOpVKpPiY0NJT79+8DxPnZppS+vj7t2rVj9erVeHp6cuHChST3b9TU2rVrWbFiBba2tsydOzfdXltCN/6VwZ0QQgghhBBCCJEc+Qat1sk4CoOEL8ImNsfHA86Eej5J8HFdM85bkuytE97vLLnP498qOiz50YI7iAp8ooO7sLAwrl69qnGolZiQkBCWL1+OoaEh8+bNS9EecOkp5gXOPHnyJHm8l5cXJUqUSPK4iIgIRo4cibOzs8b7/iXG1NSUatWqcfHiRQD1/+rC+fPnuXbtGhUrVqR37946Gze5Fi5cSEREBC1atNAqjPH29gaIVeWSUnXr1o33/tu3b7N161aOHz+OpaUlPXr0oEePHtjY2CQ6Xu/evQkICGDmzJls2bKFsWPH0rBhQ52tN6MyMjJi/vz5dOnShYiICPLmzcv8+fOpWrVqisa9deuWuiI6pWNpytjYmM+fP+Po6JjgMUeOHIkVLsW0b98+bGxs4q0QS00RERG4ublx4cIFSpYsSfny5ZM1zoMHD9QfZvnpp5+AqMo7Q0NDDh8+TK9evVK0zrCwMHU1ZkIOHDgARLVHnTx5sno90bZu3crSpUs5efIkixYtijd4r1atGlevXuXOnTvqD0Fcv35dPXetWrVS9Dzi06FDB9auXYtSqWTbtm06Ce5WrlzJ8uXL6dy5M9OnT0/Xak6hGz/mX1NCCCGEEEIIIUQqMLTOnq5zmOYvk6bBnWn+0sl+zmnxvcpIlEqlOrizsrJK59Vor0aNGrG+9vT01Mm469atw9vbm1GjRqVoH6D0pm1lQq5cuXB3d9f4eF0GmjVq1FAHdkFBQXz9+lXrdn3fCwsLY+7cuZiZmbFw4cJ0r9S4efMmR48excbGhsmTJ2t8Xnh4uLpVpi6Du5gCAgI4cuQIu3bt4sGDBxQrVoxp06bRunVrTExMNB5n8ODBBAQE4OrqiqOjI7/99hszZ87USXvPjKx8+fI4ODhw7do1Vq9erZP306tXrwJR1cVpFdxFV0mWLFlSHSAlxdPTUx3Q1q9fnwEDBqTa+qK9fPmSwYMHY2FhgUql4vXr1/j4+ADQqVOnZI977tw5IOrDBD///DMAJiYmVK9enT179qQ4uHv58iW9e/eOVbGYkC9fviQYrgOcOnWKQYMGsXHjxjiBVvR+fCdPnlQHdxcuXACi/rsQHUrqUp48eahVqxaXLl3i4sWLvHnzJkUVzs7OzqxevZpevXoxceJEHa5UpCcJ7oQQQgghhBBCiAzCokxtfP7UPAxI+Xy/pNlcP7roC50AOXLkSL+FJFPWrFnJkSMHHz58AHSzT9/bt2/ZsGEDNWrUoF+/fikeLz1pG1Tp6emlOCxLru+rz3RRWeHq6sqrV69wcnJK9xaZoaGh6v31Zs2aRebMmTU+19PTk8jISACdPo9Pnz5x7tw5Tp06xZ9//klkZCT169dn9OjRGlXkqFQqAgMD8fPzw9/fH39/f/z8/ChZsiR58uTBy8uLY8eO8ezZM7Zv366zNrYZlaOjIz169NDZhyCig5bq1atjbm6ukzGTktL2pg0bNkyTtRYqVAg3NzeOHDnC+vXrY/23rFq1aske99SpUwD88ssvsQLrX375BScnpxTvv1miRAk2bdrE2bNnKVOmDPnz58fS0lL9PRs/fjweHh6ULFmSnTt3xvlvmq+vL40aNSI0NJQmTZowc+bMeN8rK1SogJGREe7u7gwfPhxDQ0N1i96qVaum2u9ip06duHTpEiqVih07djBu3LhkjbN8+XJWr15N3759kz2GyJgydHB36NAhWrRoIaWdQgghhBBCCCH+E4yyF8AkXylC3j5K9blM8pfGKHv6XqD/kfzowR1A4cKF1cFdxYoVUzzerFmzsLKyYvHixToJAtNTeleYaaNw4cLq2wULFtQq2IqPp6cna9asoW3btrRt2zaly0uxOXPm8PTpUwYMGED9+vW1Ojfm3mkFChRI0Trev3/PnDlzePDgAV5eXkBU5WStWrVo1qwZZmZmeHl54erqGieQCwgIiHVfQEAASqUShUJBpkyZyJYtm/pfkyZNuHz5Mk+fPuXFixfMnj2bRYsWpWjtGZ2BgUGKX7fRXrx4wfPnzwFo2rSpTsbUxI/0npc5c2a6d++Ora0t/fv35/bt2wDJ3ofu4cOHPH36FIi7R169evVwcnJi69atKd5/s0SJEvG2JH769CnHjh0DYMqUKfG2wDxw4AChoaEYGhoyefLkBF9vxsbG1KpVi3PnznHo0CHy5Mmj/u+kLtpJJ6RBgwbY2Njw6dMn3N3dGTZsGEZGRlqNsW7dOlauXCmh3b9Uhg3u1q1bx9KlS/nrr78YOXIkBgYG6n9CCCGEEEIIIcS/lXXNNrxPg+DOuqZtqs/xbxIzuMuXL1/6LSQFqlatypUrV2jdunWKL6geOnSIP//8k82bNye5n5fQrZw5c5I3b17ev3/PlClTUjzetGnTKFKkCNOmTdPB6lImugVlmzZtGDFihNbnP3r0v/dOTfYgTEzOnDnx9vZWh3YQtT/YhQsX1BVeMVlaWpI3b17y5s3Lly9fePHiBcWLF2fSpEnY2NhgY2NDtmzZ4q3UevjwIe3btycyMpJjx46xYMGCVA+GVq9eTZs2bciZM2eqzpPa9u3bB0TtPZqWwd2PeI3awsICBwcHHBwcgOR/YGHXrl1AVMvHX36JXblfsGBBKlasyNGjR+nbty/lypVL2aLjsWTJEpRKJa1bt463NWpISAibN28GoFWrVkl+2KZly5acO3eObdu2kTt3biCq7Wfz5s11vvZoBgYGtGnThnXr1uHj48ORI0do06aNxufv2rWLxYsX061bN41DO1dXVwoWLKj1ByJE+siQ7zC7du1i6dKl6lLRHTt2xHpcX18fQ0ND9T8jIyMMDQ0xNjbGyMgIExMTTExMMDY2xtTUFFNTU8zMzDA3N8fCwgIrKysyZcqEtbU12bJlI1euXPEm80IIIYQQQgghRFozK1YF8zK1CXxwKdXmsCjzC2ZFq6Ta+P9GMfeEK1q0aDquJPm6du2KkZERffv2TdE4YWFhODk5MXv2bKpUkddRepg+fToqlYratWunaJxTp06hUqnYtWuXVvuzpYYrV64wfvx4GjduzOzZs5M9BoCNjQ3Zs6d8H87hw4fHaQNbtGhRypQpQ/HixcmXL586rIu5N92kSZN48eIF2bNnV+9plpjSpUvTo0cPNm3ahLm5eaqGdhEREUybNo3g4OAfPrQLCwtT7zXZunVrLCwskj3WixcvOHfuHHZ2drpaXpo4evSoVoGlpaWl+nZ4eLjW83369Ekdlg4YMCDe12qXLl24c+cOCxYsYOvWrVrPkZgbN25w9uxZLCwsGDNmTLzHuLm58enTJwwNDXF0dExyzIYNG2JmZsbDhw95+PAhAM2aNUv1/SY7duzI+vXrUalUbNu2TePg7uzZs8yYMYNWrVpp9eGNvXv3Mnz48GSuVqS1DBncffr0CZVKhUKhQKVSxXk8IiKCiIgIgoOD1feltJ1m9uzZqVq1Kg0aNKBx48Zal6YKIYQQQgghhBC6kq1JP0JePyQy4KvOx9a3yELWJj/WhcmM4MWLF0BUe7QiRYqk82qSJ0uWLNjb26d4nNDQUEaMGIGtrW3KFyWS5fsql+QKCQlh27Zt6d7+9e+//2bQoEF06tSJiRMnJhhcBQQEJBjOeHp6qlsAarLvnCZ++eUXqlWrhq+vL506deLXX3/FxsYGPz8/7ty5Q506dbQaz9PTk9y5c8f7/IYNG4aHhweNGjXSydrjExgYyLBhw/Dy8mLv3r2pNk9a2b17N1++fMHQ0JD+/funaKz379/z5MkTjY/PKFs7OTs7axXcBQQEqG/7+vqSLVs2reZbs2YNoaGhFCxYMMHWuk2bNsXJyYnr169z5MgRnVWuKZVKnJycAChbtiyenp5kypQp1nX89+/fs3LlSgC6d+9O3rx5kxzX1NSUhg0bcujQISCqaEgX/61MSr58+ahZsyZ//vknDx484O7duxQvXjzRc54+fcqoUaOoWbMmc+fO1fh1+Pz5c54/f/7Ddgz4L8qQwd3gwYPJmjUrM2bMoHbt2hgZGREeHq7+FxoaSlhYmPpfaGgoISEhhIaGEhERkaw5P378iIeHBx4eHlhbWzNgwAB69uyZYd6EhRBCCCGEEEL8d+ibWZKry2S8t05FGRKQ9Aka0jOxIFeXyeibWSZ9sIgleg+lUqVK/ee79lhaWtKnT5/0XobQgRYtWsTaMy813L9/nxMnTgDg5eXF48ePKVmypPrxK1euMGrUKEaOHEn37t0THCc8PJyePXsSFhZGuXLlKFu2LMWKFVPvZTdt2jSUSiWg272pXFxcsLa2Vl8jDAsLY/jw4dy4cQNXV9d4W/Ul5MSJE2zbto0mTZrQpk2bWBfpzczMWLt2bapdWP/48SMODg68fPmSPXv2YG5unirzpJWAgADWrFkDQLdu3ciTJ0+KxvPx8cHPz0/j4zPCNWOlUomnpydKpVLjKs2YrV+/fv2q1QdRHj58yI4dO1AoFMycOTPBdqHGxsb06dOHpUuXMnXqVMqWLZviPScBgoKCaN++PSVKlOD+/ft069YNfX19ypYtS6VKlahcuTIbN24kKCiI/PnzM2TIEI3HjvnzzJcvX4pfT5rq0KEDf/75JwDbt29n+vTpCR4bEBDAkCFDyJUrF8uWLYu37W5CovfNzJ9f9jb+UWTI4A6iSmpnzJjBpEmTKFSokMbnRUZGEhwcTHBwMEFBQQQEBBAYGBhrg9ivX7/y9etXPn78yJs3b3jz5k2swO/bt2/MmzePK1eu4OLiotUvgRBCCCGEEEIIoQtG2QuQu8dM3u2YrZPKO32LLOTqMhmj7Cm/ePZf9ODBAwDq1auXvgsR4gfh6+vLkiVL2L17N7/99hsLFizA1dWVXr16sXLlSqpWrcr+/fvZvn07rq6uSe5JZ2hoiLu7O7dv32bhwoXqFonfK1q0qE5/TzNnzqy+HR4ezqhRo7h8+TIAjo6O7NixQ+Pwo2/fvtSrV49Jkybx+++/U758eTp27EiLFi0wNTWldOnSOlt3TM+ePcPe3h5vb2+cnJwoVqxYqsyTlhYtWsSnT5/ImTOnVgFNQr59+xZrL9OkxNclLq35+PgQERGBj48PWbJk0eic6OpxiKpO01RISAjjxo0jMjKSXr16UaNGjUSP79WrF9u3b+fDhw8MGzaMXbt2YWxsrPF88bGwsKBr167qr799+8b58+c5c+YMO3fuZOPGjerHcufOzaVLl6hbt26SbYCXL1/OwYMH1V+/evWK0aNHs3Tp0mTvA6ipRo0akSVLFr5+/cqxY8cYNmxYrPecmGbMmMH79+/Zt2+fxm1hv379yoIFCzh79iw2NjaYmZnpcvkiFWXY4C659PX1sbCw0KqncWhoKHfu3OHIkSMcOHCAsLAwVCoV58+fZ/HixYwfPz4VVyyEEEIIIYQQQsTPKHsB8vZfwpcTGwl4cDHZ41iU+YWsTeyk0i6Z7t+/z7t379DT06N169bpvRwhMjSVSoW7uzuLFi3i69evODo6MmzYMAAWLFjA1KlT6d27N+PHjydXrlxs3749wcqd+FSuXJnt27ezYcMGdRVJNHNzc+bPn58qe8QFBwczdOhQLly4oL4vJCSE33//nTlz5mg8TuHChdm2bRubNm1i6dKlTJ48mYULF9KpUyd69+5N1qxZU7zWyMhI9e1r164xePBg/Pz8aN26dYLtDX8kt27dYufOnejp6TF//vwU7W0XTduKu4wQ3H369AmIqqbUNLh79uyZ+nbMvVuTMnXqVJ4+fUqtWrUYO3ZsksebmpoydOhQJk2axKNHjxg6dCjLly9PcXgXU+bMmbG1taVOnToMGzaM69evqx+7evUqV69excLCgu7duzNo0KB4t8basWOHurVmvXr1iIyM5OLFixw/fpxJkyYxZ84crcO7mL9/MW/Hx8jIiDZt2rBx40b1no3x7bP4119/cfDgQUxNTTXatw+iPmjw7t079RqkTeaPJfV2Ov2BGBsbU6NGDWbOnMmBAwfIlSuXen+9LVu2cPPmzfReohBCCCGEEEKI/yh9M0uy2w4nZ8eJmOTXrhrDJH9pcnaaSHbb4RLapcDJkycBaNCggU7aff2X3L17l9mzZ2eIi9wiZZYtW8bFi4l/gODx48d07dqViRMn8vXrV/r3768O7aJNmzaNevXqMWvWLHbu3KkOH7ShUCjo378/w4cPV99XokQJtm/fTtmyZbUeLykfPnyga9eu6tCuYMGCTJ8+ncuXL2sV2kXT09Ojb9++7N69mwIFCuDr68u6deto1KgR69atS/Jif1K+fo2q0g4JCcHOzg4/Pz8KFizItGnTtBpHmwAirfj5+TFx4kRUKhXDhw/np59+0sm4Pj4+Wr0Wo9/TlEqlurtbUv9iBoO6+H5++fIFiHp9aurly5fq25oGd4sWLeLAgQP89NNPrFy5UuOgvV27dlSvXh2Ac+fO4eDgQHBwsMZr1cTDhw9p3749169fJ1++fOzYsYNNmzZRrVo14H8tVWfMmBHn3G3btjFz5kwgqvvfqlWrWLJkCQULFgRg37599O7dm8+fPye5DqVSiZ+fH69eveLs2bPq+/fv388///yDn5+fupXv9zp27Ki+vWnTJi5duoSfnx/h4eHq+6N/1sHBwbx8+VKjf56enrFeZ/L3y4/lX1dxF9P69eupVKmSVr2mCxYsyLBhwxg3bhwKhQKlUsnixYvZsWNHKq5UCCGEEEIIIYRInFmxKpgVq0LYxzcEPLhI6LvnhL77J9YeeHomFhjnKoxxrqJYlPkFo+yyl0lKKZVKjh49ir6+fqyQQCTt7t272NnZ4e/vT3BwMLNnz84Q+0KlJw8PDwICAmJdqP0RLF68mHXr1mFsbMyqVauoXbt2nGOOHj3KqFGj1BeKbW1tGT16dJzj9PX1WbJkCSNHjuTkyZM0adKETp060aFDhyTbZX6vf//+fPr0iVq1atGwYcNUeX1duXKF0aNH8/nzZ3LlysXQoUOxtbVNtKpP08qtUqVK8ccffzB8+HAuXbpEUFAQixcv5urVq6xatSrJFn8JuXPnDhD1/qVUKjE0NGTx4sVa72uXHsFdSEhIgo9FRkYyYsQIXr16RadOnXBwcEhyvOjXRGhoaKLHvX//Xh28RAc3iYnedunp06fUrFkzyeO/FxYWFu/9McOdmFs7xef169cA/P3339StW1ejeX19fdW3NQmkFixYwMaNG6lbty4uLi5aVcwpFArmz59Pq1at8Pf358qVK3Tr1o2FCxdqtbdefMLDw/n9999ZtWoVISEhtG3blkmTJqmrL2vWrMm5c+eYMWMG3t7eHDhwgGnTpmFkZIRSqWT+/Pls2rQJPT09xowZQ79+/QCwsrJi9erVdO/enS9fvnD9+nVsbW2ZOXMmDRo0SHA93t7eNGzYMM79N2/epGnTpgCcPn2avHnzxjmmYMGCVK9enevXrxMYGMjQoUMBGDt2rE73k5WKux/Lvzq4K1++PGPHjuXgwYNalUx/nz7fuXOHGzduqJN6IYQQQgghhBAivRhlz0+W7N2AqE/8q8JCUEWGo9A3RGFk8p8PRnTNw8OD169f06tXrwy9L5RKpUr2hfWY1XCRkZEJXiyOeVxSF5Tv379Pv3798Pf3B2Dv3r0oFApmzZr1n32Nnjp1ijFjxhAZGYmhoSFt2rSJ97jIyMgUVyiqVKokf0aaHrds2TLWrVsHRIUfjo6OrF69mp9//jnWcY0bN6ZFixYcOHCAUqVKMWvWrATHNDIywsXFhfXr17NixQq2bt3K1q1byZcvH1WqVKFUqVIULFiQLFmykDVrVszNzTExMcHY2DjW68fAwICpU6fGO0dkZCShoaEEBQXh6+uLv78/vr6+WFtbU6FChSS/N2FhYbi4uLBhwwYMDQ0ZNGgQ9vb26jBt7dq1ZMuWDRsbG7JmzUqmTJkwNzfH09OTK1euAGjUstPS0pK1a9cybtw4Dh8+DMDly5dZvXo1I0aMSPL8+J73o0ePYt03ePDgZFUixnxt6DK4u3TpElZWVhQsWBArKyv1/X/++ae6ysjQ0DDOeU5OTly6dIl27doxffp0jeaKbo8YFhaWYCgXGRnJvXv3gKifq5OTU5LjRgdsJUuW5MCBAxqtxdPTUx3uJBQkxgxrX7x4Qbly5RIc7+rVqwDs3r2bHj16kClTpiTXULBgQZ48eQIk3u4zJCSEKVOmcPDgQdq2bcvMmTPj/ZkkJXfu3MycOZORI0eiUql48OABbdu2ZdSoUXTv3j1ZbW1v3LjB9OnTef78OcWLF2f06NHxBpf16tWjWrVqODk54e7uTmRkJIGBgYwdO5ZTp06RL18+nJyc4lzzL1y4MK6urvTs2VNdiTlw4ECqVKnCiBEj4s0I8ubNq/6+JsfWrVtRKpUJViQ2atQoReOLH8+/OrirUaMGJUqUYM6cORq94Ub7vm9tixYt4k3DhRBCCCGEEEKI9KRQKFAYmwKm6b2UfyWlUsnq1aspWLBgsi6gp6V3797RvXt3vLy8UjSOJm3n/P39KVOmjNZj79mzB4VCwcyZM9MsvAsJCSEoKCjJ4wIC/le56ufnp241+L3oKpno9niaunPnDsOHD1cHIRMnTsTQ0JAWLVrEOfbAgQNMmjQpwbZqmjhz5oxGP6PowEwboaGhDBw4ME54Z2BgwPz588mWLRvt2rWLdz+pmBQKBfb29jRt2hQXFxc8PDx4+/Ytb9++Zf/+/QmeZ2RkhLGxsXr8mK8llUpFaGgooaGhsdrMRR9Xs2ZNevbsmeRz/Ouvv5gyZQqvXr2iQ4cOODo6kjNnzljHFC1alD///JOTJ08m2KrQ0lKzFsUGBgYsWLAAf39/zp8/D0Tt45Yc+vr6rF69mm7duhEYGEj58uXp379/ssaKWRWWVMWaNnx9fVm8eDEPHz7E2tqabNmyYWhoyPPnz9XHfF99OX/+fLZu3Yq9vT0jR47U+D2kaNGi6ttjxoxhxIgR5MiRQ32fSqViz5496p+hu7s72bNnT/I9//vXl7YSqiwsWbKkegunefPm4e/vT6lSpeJUS968eZMTJ04AUa0yu3fvzu7duzE1TfzvgQEDBjBx4kSCg4MTDLBfvnzJ8OHDefv2LQsXLqRVq1bJeIb/06xZM96+fcuSJUuAqOc+Z84ctm/fjp2dHa1bt07y/QKinvOaNWu4ePEi+fPnZ+HChbRo0SLR8M/c3JzZs2czfPhw7t69y8SJE/Hy8qJTp06MGzcuwSrUEiVKsHnzZvr378/Hjx+BqN/J7t27kydPHpo0aUKvXr3IlStXMr4jQiTtXx3cQVRJacuWLWnSpAn169fX6JzoT4MB9OnTh3HjxqXW8oQQQgghhBBCCJFB7d+/H09PT3bt2pXkxdD0ljt3brZu3cquXbsoWbIkhQsXxtLSEgsLiwxX4aZSqdJsTb6+vvTs2ZNXr15pfI4mwc67d++S1R4vmlKpZNy4cRgaGvLrr7/Geqxt27aYmJjg7e1NmTJlyJ49O5aWlslum5havv/gO0SFY2PHjtVqnHz58rFgwQJGjRqFh4cHJ06c4O+//04wGAkLC0uwzWBCChQogLOzM6VLJ75P6OfPn1myZAnHjh2jbdu2rF27ljx58sR7bMOGDWnYsCETJ07k5MmTLFq0iLdv38Y6RpvXiL6+PosWLcLW1hYvLy+t21rGVKpUKZYvX46joyOzZ8+O92eliZgVd5oE4Jpq3rw5zZs359KlS8yfP5+nT5/Gejxz5szqCiqlUsm0adM4fPgwCxYsoHXr1lrN1bhxY5YtW4a3tzf37t1LsvVgpkyZ4m15+D1tX4PfSygIzZ49Oy1atODQoUN8+/aN2bNnazRe06ZNNfrvVLNmzahXrx6vX7+mePHisR6LjIxk8+bNLFu2jLJly7Jv3z6d7Yvm4ODAp0+fYn1Q4PXr12zdupXXr1/H21YXol6D58+fx9XVlb/++otffvmFZcuW0ahRI4332gsKCmLlypXs2LGDChUqMG/ePPXee4kpWbIku3fvpn///jx79kx9f2hoKN++fdPp74QQ3/vXBHdBQUHcuHGDggULxnpDKVSoEB07dmTKlCl4eHjEKr9OSHR/3zJlymj9x4YQQgghhBBCCCF+fO/evcPJyQknJydKliyZ3svRSJ48eRg5cmR6LyNDyZEjB1u2bMHDw4OSJUtSqFAhLCwsMDc3z3CBZkzNmjVL7yWkuRw5ctCnTx/69OlDaGgo9+/f58WLF7x69YoPHz7w7ds3fHx8CAoKIjg4mJCQEMLCwggPD0+y+mnevHmJhnZhYWGsW7eOU6dO0bJlS86ePatR20GICtx+++03fv75Z7p166ZuZ1erVq0E26EmxMrKijVr1tCvXz/atWun1bnfq127Nvv27UvRXmIxw6WEWvilRO3atalevTpTp05l3759QFSryDlz5mBtbc2XL18YN24cfn5+/PHHHxQuXFjrOczNzXFzc2PVqlU8evQo3sBNX18fS0tLqlSpQrdu3ciePXuS40ZXzGmzPRNEtars169fogHk3LlzyZEjB8eOHePLly8Jtik1MzOjbNmy9OjRg3r16mm8BjMzM0qVKhXrvsuXLzNv3jxUKhVLlizRKLzU1uTJk8mcOTPLly+nUaNGTJ8+HRsbm3iPffz4Mfv27ePkyZPky5ePhg0b4uzsTLZs2TSeLzIykn379rFixQqsrKxYuXKl1s8rV65c7Nq1i6lTp3L48GGGDRtGv379NKoQFCIlFKqUNs1ORSVLluTo0aMUKlQo0eP27dvH/Pnz1ZtrtmzZkqlTp6rfOL9+/UqjRo1o0qQJ8+bNS3LeVatW4eLigqurq0YtIoTQRlhYGH///Xec+8uVK/effNMPDw9X9xGPVr58+WT1zRZCCCGEEP8tERERsT4BDVCsWDGNP4EtREJUKhW9e/emTp062NnZpfdyhBAaiIyMVP9TKpXq/btUKlWSlacqlYqbN29StWrVFAW6x48fZ8OGDdja2tKpU6dk//dIqVQma+8vXVu3bh179+6lU6dOtG3blsyZM6fKPBERETRu3Jj8+fMzbtw4SpcuzeXLl5k9ezZdu3alW7duGeL7EdPUqVP5+eefadiwocY/54iICPT09DLUc7l69Spr1qxBpVLRvn17mjVrluwKTU1dvHiRmjVrJvh9CwgIYNu2bVSrVo1y5cppfY1QpVJx9OhRVq1aRcGCBenQoQN16tRJ8Yc1Tp8+nSqBZrT49rgzNTXNUK+XmFLz73C5fv4vCO4WL17Mhg0bYm2mqVAoKFOmDHv37lXft2LFClauXMn69eupXbt2ovNOmDCBJ0+e4O7unvInIcR35I0nNgnuhBBCCCFEcklwJ1JLSEgIhw8fpn379um9FCGESDdfv34lc+bMaVKd+vXrV7JkyaL+eteuXfz6669YW1un+tz/VYGBgbi5udGiRYsEW8L+iJ49e8aFCxewtbUla9as6b0cjUlw9z9y/RzS9ad+4MCBFJ2/bds21q9fD8TeiLZo0aJx+pH36dMHa2trpk2blmRp97Nnz7C1tU3R2oQQQgghhBBCCPFjMjExkdBOCPGflyVLljRrKRsztAPo1KmThHapzNzcHAcHh39VaAdR4ZGdnd0PFdoJ8b10C+5ev37NpEmTOHjwYLLOf/z4MU5OTigUClQqFSYmJvTu3ZsDBw5w6NAhWrVqFet4c3Nz+vXrh5eXF8uWLUtwXJVKxYsXL+JsDCyEEEIIIYQQQgghhBBCCCFEakq34G7JkiVEREQwc+ZMli5dyocPHzQ+NzIykvHjx6v7Avfo0YPTp08zfvx4SpQokeB53bt3J1u2bGzdupU7d+7Ee0x4eDgLFy4kR44c2j4lIYQQQgghhBBCCCGEEEIIIZItXYK7e/fucfz4cRQKBYGBgaxbt46GDRsyatSoOHtdxcfNzY3Hjx9TunRp9uzZw6RJk+KUU8fH2NiYvn37qoO/0NDQOMcYGRnRqFGjZD0vIYQQQgghhBBCCCGEEEIIIZIrXYK7NWvWAFFtKaP/RURE4OHhQadOnejcuTMeHh7x9lAOCwtj9erVODg4sHv3bkqXLq3V3F26dCFz5sy8fv2aBQsW6OT5CCGEEEIIIYQQQgghhBBCCJFS6RLcrVq1isuXL+Pq6sqQIUP4+eefMTIyUod4d+/eZdSoUQDs3LmToKAg9blGRkYcPnyYESNGYGBgoPXcpqamdOvWDZVKxfbt2zl+/LjOnpcQQgghhBBCCCGEEEIIIYQQyZVue9xlzZqVmjVrMmjQIDZu3Mj169dZs2YN7du3x8rKSh3ibdmyhSZNmuDu7q4+N1u2bCmau3v37piamqJSqZg0aRIvX75M6dMRQgghhBBCCCGEEEIIIYQQIkXSLbj7nomJCfXq1WP27NlcvnyZtWvX0rhxY/T19fn8+TOTJk2ic+fOvHjxIsVzWVtb07JlSwACAgLo378/X758SfG4QgghhBBCCCGEEEIIIYQQQiRXhgnuYjIwMKBu3bq4uLhw9uxZhg4dStasWblz5w5t2rRh1apVREZGpmiObt26AaBQKPD09KRPnz58/PhRF8sXQgghhBBCCCGEEEIIIYQQQmsZMriLycbGBkdHR86cOcPkyZPJli0by5cvp3v37rx//z7Z45YoUYKKFSuiUqlQKBQ8ffqU33//XYcrF0IIIYQQQgghhBBCCCGEEEJzGT64i2ZkZET37t05fvw448aN459//qF169acP39eo/NbtmzJs2fPYt3Xpk0bAPT09BgzZgzjx4/X+bqFEEIIIYQQQgghhBBCCCGE0MQPE9xF8/T0pFWrVpw4cYIWLVowePBg3NzckjyvbNmyrFmzJtZ9v/76K9myZeP333/Hzs4utZYshBBCCCGEEEIIIYQQQgghRJJ+qODu77//plu3bvj5+ZEpUyamTJnCtm3b2L17N4cOHUr0XFtbW44fP87bt2/V91lbW3P06FFq1KiR2ksXQgghhBBCCCGEEEIIIYQQIlE/THB39epVevXqxbdv32LdX758edzd3WnQoEGi59eoUYPs2bOz/v/Yu/O4mNf2D+Cfad8RcSwRCdn3DocQ2SmFLEdK2mxFQqQQ0WKXStayL4ko+5o9+75vFYkkrTM18/uj33yf0kzNWjmu9+vl9Uwz9/f+3jPNzOmZz1zXHRFR4nptbW2Zr5UQQgghhBBCCCGEEEIIIYQQcf0WwV1ubi5mz56NnJwcgbcrKSlBU1Oz3HksLCxw+PBhfP78WdZLJIQQQgghhBBCCCGEEEIIIUQqv0Vwp66ujoiICFSvXl2qeaysrMDhcLB582bZLIwQQgghhBBCCCGEEEIIIYQQGfktgjsAMDY2RlRUlFRz6Ovro2PHjjh48CC+fv0qo5URQgghhBBCCCGEEEIIIYQQIr1KDe58fX3x8eNHkccbGRmBx+NJdc4RI0YgLy+v1F53hBBCCCGEEEIIIYQQQgghhFQmpco68dOnT7Fv3z5cv34dCxYsgIKC6BninTt3kJycLNF5tbS0wGKxsG/fPjg6OqJWrVoSzUMIIYQQQgghhBBCCCGEEEKILFVacLdhwwYAwIcPH+Ds7CzWsd7e3lKfPz8/HxEREfDy8pJ6LkIIIYQQQgghhBBCCCGEEEKkVSmtMp8+fYqzZ88CAHg8nlj/JDlG2L+9e/ciNTW1Mh4CQgghhBBCCCGEEEIIIYQQQkqolIq7Z8+eYcyYMVBVVYWSkhLzT0FBAYqKimCxWEzrTBaLBRaLxRwbFBSEyZMnQ1dXV+Lz5+fnY+3atWCz2QgLC4Ovr6/U94kQQgghhBBCCCGEEEIIIYQQaVRKcDdixAiMGDFComODgoJgbW2Nxo0bS7WG8+fP48GDBzhw4AAmTpwIAwMDqeYjhBBCCCGEEEIIIYQQQgghRBqV0iqzKhg8eDAAoLCwEEFBQZW8GkIIIYQQQgghhBBCCCGEyMq3b9+QkZFR2csgRGx/bHDXr18/5vK5c+dw7ty5SlwNIYQQQgghhBBC/mtOnjyJ+/fvV/YyiIxcuXIFMTExlb2MP9bGjRtx586dSjn3ixcv5DLvs2fP4OzsjC9fvshlflH8+PEDmzZtQmZmZqWtQZiCggKJjuNwODJeCfldvXjxAv369cOyZcuQlpZW2cshRGR/bHDXoEEDGBkZAQB4PB4WLVqE9PT0Sl4VIYQQQgghhBBC/itYLBZsbGzg7u6OT58+VfZyhDpz5gw+fvxY7rgjR45UasBQ2UJDQzF37lw4ODiI9HhVht27d4PNZpc5JiMjAzExMRKHIuJISUkpdz2iunTpEsaOHQtLS0scOHAAubm5MplXFL6+vpg4cSIePnwoszkLCwuxYMECXLhwAcOHD8eZM2dkNrc4FBQUsHLlSvTu3RsrVqyoUu9VU6dOxaZNm8R+rtrb2yMgIKDC3q/evXuHhIQEucydk5MDLy8vCp0k1K1bN7i4uCAyMhLm5uYIDw9HYWFhZS+LkHL9lsGdrAK2Xr16gcfjgcViIS0tDVOmTEF2drZM5iaEEEIIIYQQQsifrX///pg0aRLi4+MxePBg7Nu3r7KXJNCVK1cwaNAgLFiwoMxAKi4uDn379sWiRYuQlJRUgSusfA8fPsStW7cAAAkJCRg2bBiOHz9eyasqLTAwEP369cPOnTuFBmZcLhdz585F//79sWfPHpkFa4LcvHkTgwYNwsmTJ6WeS0VFBQDw9OlTREZG4sePH1LPKSo1NTVcv34dI0eORPPmzWXyr2XLlnj06BEA4Pv379ixY4dcfxfC8B/X7OxsbNu2DVOnTq2Udfzq58+fuHLlClauXAkrKys8ePBA5GNfv36NrVu3Mu9X8i7WyMrKgoODAxwdHfH06VOkp6fL5N+XL1/g7OyM6Oho2NraSh3evXz5En5+fvj27ZuM7vnvwcHBAf/88w9yc3OxatUqeHt7V/aSCCmXUmUvQBIPHjxAp06dpJ7H1NQUmzdvBlD0Lbh//vkHGhoaUs9LCCGEEEIIIYQQAgDu7u44e/Ys3r17Bx8fHyQnJ2PWrFmVvawS1NXVweFwcPDgQRw5cgSrVq1C//79S41TU1MDm83Gnj17cODAAaxZswbm5uaVsOKKt3Xr1hI/DxkyBH369Kmk1Qinrq6O1NRU+Pn5YceOHTh48CCqVatWagwAJCcnY9GiRdi+fTv27t2LGjVqyHw9lpaWeP78OWbMmAEzMzMsW7YMurq6Es2lqKjIXN6xY4fE80hCVVUVAFC3bl1ER0fLbF4XFxfcv38fTZs2xZYtW5gQrSIpKyszl+vWrYvNmzdXyjp+dfnyZabl5fPnzzFt2jQcOHAAderUKfM4NpuN79+/AyhqmVmtWjVUr15drmvlPz8uXbqES5cuyeUcb968gbu7O3bu3AkWiyXRHIaGhnj37h3Mzc3h6uoKOzu7Er9/Qfr06YO9e/eW+7iL6sePH0hLS0PTpk1lMp8oWCwWfH19MXjwYBQUFDBBqLGxschz8KuHDQwM5LdQQor57YI7AwMDDBs2TCZzdejQAerq6tDU1ERQUBC6desmk3kJIYQQQgghhBBCgKJqFm9vb0yePBkAEB4eDlNTU3Tu3LmSV/Y/xb/EPHHiRKFhHP/DaSUlJQQFBf0xod3Tp09x4sQJ5mcdHR106dKlSn75mx/KVatWDcuXLy8V2gH/+z0CQPPmzRESEiKX0I5v1qxZuHHjBs6dOwdra2ts3boVjRs3FnseBYWixmFKSkoVGtoB/3vMFBQUZHpufhipq6tbaWGZgoICWCwWeDwe9PX1K/yxFeb8+fPM5erVq2PXrl0ihUepqang8XgAgH79+mHmzJlyWyNf8fDLy8sLdnZ2MpvbzMwMycnJaNeuHTZu3ChxaAf8ry2qhYUFgoODcfToUQQHB6N58+YCx6ekpCAlJQVpaWkyCe5SU1Ph4OCAtLQ0REREoG3btiIfe/fuXWRmZqJXr14SnbtRo0bo168fTpw4AVVVVejp6Yl87KdPn2Bra4v8/HxERUVReEcqxG/XKjMyMhK1atWSyVzKyspwdXVFTEwMhXaEEEIIIYQQQgiRi549e5aoLuC3xxNHbGwsAgICZLkshpLS/77X7ezsLPSDYX54oa6ujsGDB8tlLVVRQEAAuFwuAMDIyAj79+9HcHAwPnz4UMkrK40fIHTu3FloOKygoMCMMzExgb6+vtzXtGjRIrBYLKSkpMDR0RFZWVliz8MPYzQ1NWW9xHLxQ8P/quLvAVVBXl4ezp49y/zs5eUl8vP08+fPzOX27dvLemkCFa8GlZeGDRsKDOLFVb16dQQGBoLFYuHFixcYM2YMnj59KnBsYmIiAMDa2lom7WFNTU3x8uVLZGRkwN7enplfFHl5eXBycoKrq6vEe4wOGDAALBYLS5YsETlf+Pz5M2xtbfHx40d8+fIFtra2eP/+vUTnJ0QcVetdWQS1a9eW6XxOTk4ynY8QQgghhBBCCKkoPB4PuQV5KOAWQklBEepKalJ9G5/Iz/Dhw7Fq1SpoaGgIbENZlmPHjmHu3LkoLCwEl8uFl5eXTNcm6ofO5bVU+y+6ePEirl27BqCoejI4OBiNGzeGra0t3N3dsWvXLqbKrSoQ53fJb0NYEdq2bYs+ffrg3Llz+PjxIyIjIzFlyhSx5uCHp//F4I4fSlaWqhZMnjt3DtnZ2QCAJk2aYPjw4SIf++bNG+Zyu3btZL42QSoi+JTlc8TExARWVlY4dOgQcnJysH79emzcuLHUOH7bz3Xr1qFLly5SnzcsLAw7duwAUPTlgszMTJGP1dHRAVD03Dh37pxU65g7dy7mzp0r0bGpqamYMGECoqKi0KhRI6nWQUhZfrvgjhBCCCGEEEII+ZN9yEhGwodbeJ3+Dm++f0Q2O4e5TVNFA01q6MNQ1wA9GnZBw+r1K3Glv7/c3Fzk5ubKZK4GDRqAxWJh/vz5UFNTQ3p6ukjHXb58GV5eXigsLAQAbN++HSwWC/PmzZPJugDRA7mq9uG+vOXl5cHf35/5edasWWjRogUAwN7eHrGxsfDw8MCGDRuqzGMjaoBQGQH/mDFjmA/cnz9/Lvbx/OCiMoJSfiCanJwstK2gNCo7uKtqX/iIjY1lLru6uor1+nr58iWAot9Zq1atZL42QSri9c8PrmXFzc0NsbGxYLPZAquHMzIycPr0aQBFrzlpW6jm5eXh6NGjUFNTw7JlyzB06FCxjldTU2MuOzg4MO2nBSksLGRawMpL8fUAQFJSEvr27SvSsSoqKtDW1kb9+vXRpk0bDBo0SOz22TweDwkJCYiLi8O9e/eQmpoKNpuN6tWro3nz5ujVqxdGjhxZJVs6E9FQcEcIIYQQQgghhPwG7qQ8xJFnp/A07ZXQMdnsHDxMfY6Hqc8R8/QkjPWawqLFAHSs17oCV/rf8e3bN9ja2iI5OVlmc3p7e8Pb21uqObZt2wYWiyVxxYCkqtqH+/K2evVqvHv3DkBRu9Pi+1YpKysjMDAQo0aNwtKlS+Hj41M5i/yFqL+jyggau3XrhmrVquHHjx9i7W3Fx68QrIzgjv+41q1bF9HR0TKb18XFBffv35d5KCOuqhI8A0B6ejouX74MoGhfsiFDhoh1PD8UNjQ0rLDQoiJaZRYUFMh0vjp16mDAgAGIjY2Fra0tgKIw6P79+2jfvj0CAgKQl5cHACXaSmZkZEBDQ0PsPRljYmKQn5+PLVu2SLTHa/HXvYqKSplBYmpqKuzt7eHm5ibyXqyLFi2CkZERrK2tS4VyoqhXrx5u3bqFr1+/Yvbs2Xj8+DEAoEOHDvD392cew9zcXHz//h0PHz7EkSNHsGvXLuzatQsdOnTAsmXL8Ndff5V7rmfPnsHb2xv5+fmwtrbGxIkToaenh58/f+LBgwfYvXs3li1bhtDQUAQEBMDU1FTs+0MqHwV3hBBCCCGEEEJIFfYzPwtb7+zDlQ+i7wXD9zTtFZ6mvUKPhl1g33E0tFW15LDC/64GDRogMjISZ86cgbGxMRo1agQtLS1oamqWCkgKCwul+vD227dvqFmzprRLJjJy+/ZtREZGAgD09fWxcuXKUr9zY2NjuLm5ITg4GEpKSpg/f35lLPW3oaKiggULFuD9+/clQlBR8YMLUYO7gwcPomHDhujatavY5/oVv+JVQUFB6sqj4vjvGVRx9z/79u1jQlpnZ2ex31dfvHgBAGjduvwvrCQmJmLFihUICwsTec8zQSri8ZNHa1sPDw90794dVlZWAIre9+Li4qCqqsoE1O3atYOxsTFzzJo1a/D06VOsW7cOderUKTXniRMnkJubi8GDBzP7ovJ4POzatQsbNmyQKLQDSoaj5QXdGhoaePnyJaZNm4Y2bdrA09MTJiYmZR7z9etX7NmzB+vXr8e4ceNgZ2fHtOcUhYKCAnR0dKCjo4M+ffowwZ2VlRWaNGnCjNPR0UGdOnXQokULjBo1CkeOHMGCBQtw9+5djB8/HhERESXG/yoxMRGOjo5o164d9u3bV+JxqVmzJgwMDDBs2DD4+flh165dcHZ2xqpVqzBo0CCR7wupGii4I4QQQgghhBBCqqj3GUnwv7QB33N/SDVPwodbeJz2AgtMp1P7TDE1aNBApJBh4cKFaNy4MRwcHMSuXsnMzISZmRlGjhwJV1dXqT5Arkq+fv36W96Xnz9/wsvLC1wuF+rq6tiwYQOqVasmcKyDgwNu3bqFHTt2gMvlYsGCBVUqBJGF7OxssFgsmVQvWVhYSHwsP7jjhwFlOXjwILy9vaGuro7w8HCpwzt5B2uyrqYSl6yes6GhoWjVqpXEFT4FBQXYu3cvAKB+/folni/Z2dnIz88v8/jv378jIyMDANC4ceMyWxI/f/4cU6ZMQU5ODmxtbREZGSnx+1Xxx2/58uVYvny5RPOU5df7bmJighs3bkg1Z926dZnQDigK3Xr16oWGDRtixYoVYLFYGDBgAHP/Pn/+jIMHD4LD4WDEiBFYvXp1qUDMxMQEs2fPxooVKzB69Gj8+++/0NPTg5+fH9q3by/xWsUJ7opXzKmoqKBevXrlzs/fO/Pnz59QUFCQ6v2u+FrLa19sYWGBr1+/IjAwEN+/f4efnx+2bdsmcCybzcasWbOQk5ODgQMHCg21WSwWEwY+efIEc+bMQfPmzcsMBEnVQ8EdIYQQQgghhBBSBb3PSMKi86tL7GEnje+5P+B7fhUW95lF4Z0cODk5wcLCApcuXcKqVaugp6cn8rEJCQnIy8vDzp07ER0dDVtbW0yZMkWkgEKQ9evXY9q0aZUaILHZbAwZMgTOzs6wt7f/bcIsHo8HT09PvH//HiwWC/7+/sy+doIoKCggODgYo0aNQlRUFNLT07FixQqx28gJ8urVK7x48QKDBw+Wei5pnD9/HuvXr0dwcDDatGkj07lfvHgBW1tbfP/+XeRjEhISRN5nLicnB87Ozti/fz+MjIwkXSZTcScv8p6/ImzYsAHr16+HiooKQkJCJArvzpw5g8+fPwMAJk+eXCL0SE5OxsSJE0XeH3TlypVYuXKlSGNfv36NiRMnIjIyUqLK5+Lvb+7u7rCxsRF7DmGsrKzw6dMnZGdnM9cVFhYiKytLZucAisKw8+fPY/bs2VBTU8OIESNKjfH39y9R+ffy5ctSwV2NGjUQERGBVatWYdOmTdi2bRtGjBiBKVOmSLU+cb4Qo6ysDAUFBXC5XIwYMQL6+vrlHsN/z27bti2mTZtW6vZnz56V+d8CaUyYMAHbt2/Hly9fcP/+fTx+/Fjg/oyXLl1CamoqgKL3trIoKirCyckJ7u7uYLPZWLNmDdatWyeX9RP5oOCOEEIIIYQQQgipYn7mZ8H/0gaZhXZ82ewcLLu0HsEDvKltpowZGBjA0dER69evh7W1NSIiIkQOF44cOcJcbtWqFfr27StxaAcUVfBt3rwZjo6OEs8hrdu3byMjIwMBAQG4dOkSAgICBLZVq2o2bNiA8+fPAwDmzZsnUmimo6ODjRs3YsyYMTh+/Dg+ffqEkJAQqVsq6uvrY8qUKWjdujUaNmwo1VzSuHTpEt69e4exY8di+vTpcHR0lNmeaM2aNcO2bdtw+PBhtGnTBo0bN0a1atWY6pfirK2tkZKSggEDBmDRokVlzrt27Vqmcqtfv34wNDSUap38ijgulytycCQKfmAnjzaI4pA2WN+4cSPWr18PoCi0nzp1qkTh3aZNmwAUVVX+2tqvWbNmiIqKws2bN9GyZUvUrVsX2traJSqjIiIiEBwcDAUFBdy6dQtaWhXz37nij5+6urpM26lWq1YN/fr1w/jx45nrsrKyUFBQgNzc3DJbx2ZmZkJZWVmk9rKJiYkwMDAQur/byZMncfLkSQDA4MGDsWjRIqGVyAoKCpg9ezbq1asHPz8/7N+/H0ePHoWbmxsmTZpU7lrKI8r7j6Kiolh7R5bVknXfvn3w9fWFr68vxo4dK/KcolJRUYGpqSkOHjwIALh165bA4O7Dhw/M5b1792LChAlQVlYWOm/Pnj2ZAPP8+fMoKCgotwKQVB30myKEEEIIIYQQQqqYrXf2Sd0eU5jvuT+w7c5+zOgm/YdnpCQHBwfs3bsXqampsLe3x6FDh1C3bt0yj/ny5QsSEhIAAIaGhggLC5P6w2Z7e3sMHjwY3bp1E2mfJ3k4e/Ysc/natWsYPnw4duzYIbeKBVmIj49HSEgIAMDR0VFgi9Tbt2+jY8eOpYIOQ0NDhIeHY9KkSbhz5w5GjhyJwMBAifdzAorCC2tra3h4eGDPnj2V8oFrQUEBLl68CKAoXFq1ahVu3bqF0NDQMj8wFobNZpeqRjQ2Ni6xh5YgXC4XaWlpAIAmTZqUG4wUr0by8PCQOmjMy8sDAHz69AndunWTai5BymsBKUxQUBA2b94ss3XcvHlT5C8clEWS8O78+fPMvmD5+fkYNmwY3NzcYGVlxYQqTZs2RdOmTYXO8fDhQwBFr8eKCu0A+e5xd+DAgVKvGX6F6tevX8usJktJScH06dNha2uLMWPGlPmajYuLE/q7SktLw5IlS8BiseDh4SHyl0LGjRsHLS0tzJkzB3l5eQgICACLxYK9vb1IxxdXPIQTNbgTJxAX9v569OhRLFq0CDweD4sXL4aKigqsra1FnldUxSuCv3z5InBM8Vau79+/R1ZWFmrUqCF0Ti0tLdSoUQPfvn0Dm81Geno6ateuLbtFE7mi4I4QQgghhBBCCKlC7qQ8xJUPiXI9R8KHW+jRqAs61pNt27s/nbq6OsaOHYt169bh27dvWL58ebmtqXbt2oWCggJUq1YNoaGhMvmwuV69ejA3N8fs2bMRExMjtIJCXrhcLlOZAQAdOnTA/Pnzq3Rod/nyZXh6eoLH42HcuHGYPXu2wHH+/v4oLCyEu7s7evfuXeK2jh07Yv369XB1dUVycjJsbW3h4uKCKVOmSBy6jR07FmFhYQgJCYGbm5tEc0jj6tWrzJ5hQFFL2EmTJkkU2gUHB+Px48cIDw8Xu5VoWloa8yF8gwYNyh3/9etXAEUf3ovTtlYYfrBWv359nDt3Tur5+MaOHYs7d+6UqjBMS0sTad2enp5o3bo1NDU1YWBgIPH7h6mpKTgcDjp06ICNGzdKNIcg4jxP+KE5X1paGk6cOAFzc3NUr15dpDkePXoEAGjXrp3I563qBL1W+M/vd+/elRnctWjRAvPmzcPUqVOxe/duLFmyBF26dCk1rrCwECdPnsTu3btL3VZQUAB3d3dkZGRgxYoVsLS0LHF7fn4+fHx84OzsLHAPteHDhyM9PZ3Z92/9+vUYP3682O8BxfeZVFBQwNy5cxETE1Pucd7e3vD29hb5PHfu3BEaXvN4PHh7e0NFRQXDhg0TeU5RFH8PEBY4Dhw4ECdOnMDVq1cxYMCAMkM7vuKBp6BKZlJ1UXBHCCGEEEIIIYRUIUeenaqg85ym4E4ORo4cifXr14PH4+Hs2bNltjLLz8/Hvn37oKioiFWrVqFRo0YyW8ekSZNgaWmJgIAA+Pr6ymxeUSQmJjIVA8rKyggMDKzUVo/lSUxMxPTp08HhcODo6Cg0tAOK7s+jR4/g7OyM9u3bY8GCBWjbti1ze8+ePbFx40ZMnz4deXl5CAkJwalTpzBz5kz07dtX7LXp6Ohg5MiRCA8PR69evdC+fXtJ7qLE4uPjmcsmJibw8PAQOvb79+8lPlwv7sCBA4iIiAAAuLm5Yf369WKFmR8/fmQui/Jc+vbtGwCgdu3aZbbAE5WhoSE6deok0b5tZRkwYADc3d3RtWtX5rq4uDgsWLAAFhYWWLhwYbnr/7WlpLh+/PjBBAWFhYUybfMoqjNnzuDhw4dQVlYGj8dDQUEBWrVqhc2bN4tczZaeno7k5GQAlRvcVUTbU/7r4c6dO+jZs2eZY/v27QtHR0ds2rQJtra2mDZtGqZOnVpizPXr16GhoYHGjRuXOj4oKAgPHjzA2rVr0a9fv1K3q6qqIjY2FkePHsWAAQPg4uJS6ksadnZ2uH79Os6fP4/s7GxkZWWJ/TzjV70CgJqaGpYvX45evXrhr7/+QsOGDUtV4ZmZmSE3NxdeXl4YPnx4ufOvWbMG+/btQ7t27RAWFlbmWFm8p/zq58+fzGVhQbWKiopYwXp2djZ+/Cjq3tCwYUMK7n4zsmlITQghhBBCCCGEEKl9yEjG07RXFXKup2kv8SEjuULO9SepU6cOE+SoqKiUWVVw8OBBfP/+HbNnz0aPHj3KnDczMxNHjx4VeR3Gxsb4+++/sXv3bly6dEnk42SBv08PANjY2FTp0O7mzZtwdnZGXl4ePD09ywztgJIVRPXr14eBgUGpMaamptiyZQtT/fTy5UtMmTIFY8eOxcmTJ8Fms8Va48SJEwEUVVfl5Mh238uyZGVl4cSJEwCKWgF6enqWOT46OhrdunUT+G/VqlXMuAsXLohdtcavpFJQUEDLli3LHc9vq/nXX3+JdR5hFi1aBHd3d3Ts2FEm8/HZ2dnBxMQELBYLhYWFCAoKwsyZM5GTk4M9e/bAycmpRNtPeeBXbwHA48ePZbqHnyg4HA6CgoIAANOnT2e+6KCpqSlWC0r+cwSASM8RQeuQVPEg59mzZxLPI6q7d+8CKArEMzMzyx3v5uYGY2NjcLlcrFu3DlFRUSVuP378uMBQes+ePdi/fz/Cw8MFhnZ8qqqq4HK5iI+Px549ewSO8fHxgZqaGho0aCBROJybm8tcVlFRgYKCAgYPHoyOHTuiVq1a0NXVLfGP/yUCTU3NUrcJ+sffV1ZRUbHcscL29pPGu3fvmMuyqk6/cuUKU3E3dOhQmcxJKg5V3BFCCCGEEEIIIf/vS/Y3gddXV9OBimLpll/Z7Bxkc3JLXa+ioITq6oI/2CnrHAkfbomxWuld+ZCIhtXry/x+iPpY1dasKcGqK8/Zs2dhZmZW7ofJZmZmuH//PhwcHIR+M5/D4WDz5s0YPnw4Jk0qe7/B9PR0ODg44MmTJ/jy5QsmT54s0nonTJiA69evw9vbG8ePH4e2trZIx0nj58+fTJtMTU1NTJkyRe7nlNSJEyfg6ekJNTU1hIWFlWp9KQg/uKtXr16JMOpXnTt3xv79+zFlyhTmA9k7d+7gzp070NHRgbm5OTp16oTmzZvDyMiI+dBYkAYNGqBPnz44c+YMgoOD4ePjI9b9lNTx48eZoHDw4MFo06bsCl0HBwfo6emBy+XC2NgYtWrVgra2NlRUVLB+/Xps2LAB2traCAkJgYmJiVhrefDgAQCgefPm5baDZLPZTHvP8vaYBIpeX7a2tnj58qVYa6oICQkJGDNmDMLCwkRqESqJT58+MZcLCwtx9uxZjBo1Si7nEmTXrl149+4dOnTogMmTJzOVmeLiB3fKyspo1qyZWMfGxcVh7dq12Lp1K+rXry/2ubW0tFC9enVkZGQgLi4OHTt2xJAhQ0Ru8SmqwsJCJCQkMF/iSEtLw8SJE3Hw4MEyq8CUlJSwaNEi2NjYACh6bU+YMAFA0evl9OnTCAgIKHHM6dOnsWXLFuzZs6fcIElFRQU5OTno06cPFi9eLHBMvXr14O/vL3Hb4OJfWhBWxV5c8RaR4hBWNSxP/N8rUHTfilfgSorD4SA0NBRA0ReKyvs7g1Q9FNwRQgghhBBCCCH/b9oxwfug+PaZiVa1S38QePzFORx8fLzU9S31jLDIbJbY53id/k70xcrAq/8/n6zvh6iP1X6bUDFXXLnmzJmD+vXrY+rUqWVWyA0dOpT5QDU7O1vgmKNHj0JLSwteXl5CxwBFbeycnJyYUCEoKAgcDgeurq7lrtfMzAwNGjRAUlIS/P39mT2G5Ck6Opppaebi4oKaNatmOBsVFQV/f38YGRlh3bp1AivnBOEHd6JUAhkaGuLAgQPw9PTEhQsXmOszMzNx6NAhHDp0CLq6upg1a1a5QcmECRNw5swZ7N69G/3798fff/8t0nqlwa+cUVVVLbNFZnHltaT766+/xA7tAODevXsAigLR8vDbZAKiBXe6urrYsWMHLl68iCZNmkBfXx8sFgtJSUnM72XhwoUYPHiw0DmeP38OOzs7AMDhw4dlVunHJ899Kt++fctc7tChA06ePFlhwV16ejo2btwIDQ0NBAUFCQyf2Gy2SNVw/HC3cePG4HA4IlfQnT59GvPnz0dhYSEmTJiAHTt2lLlvnDCWlpbYvn07uFwulixZgiVLlsi8pSKXyy0RLCkqKmL8+PEinad9+/bo3r07rl69WqJi7PLly8jNzS3xnvLx40fs3bsX+/fvF6k6jh/GlRdUDhkypNy5hClecaehoVHu+MLCQonOUxGtTn916NAhps3r2LFjpf6STW5uLubPn48nT55AT08PmzZtqpAv7hDZouCOEEIIIYQQQgipAng8Ht58/1j+QBl68/1DpXy7/Helrq6O58+fY8aMGSKN37lzZ7ljunXrJvY61qxZg4KCAkyfPr3McQoKCrCxscHKlSsRHR2NoUOH4p9//hH7fKLicrmIjIwEUFQlxg8yqpKcnBz4+Pjg+PHjsLe3h7u7e5ntTH8lbrWIjo4OwsPDsXfvXgQEBDBVI/r6+vDx8RF5z7S///4bhoaGeP36NXx8fHD06FG5hjnXr1/H06dPAQD29vYSVSHJyqtXr5gPtUV5/qampjKX69WrJ9I5atasCSsrqxLXFd9zSkNDo8wAo3gVoI6OjsT7xOXm5uLbt29yq64TpHiLPldXV7i6uiI5OblCfucBAQH48eMHVq1aJTQse/fuHSZOnChyC88XL15I3NI0OTkZEyZMQGRkpNgtfj08PKCtrY3Y2FikpKSAzWZLHB6VRU1NDTVr1kSnTp0wfvx4sfa9tLGxwfXr10s8148fP45OnTqVCMMaNGiAsLCwEq2ByyLu++K1a9fQvHlzsV4nxb/goqOjU+ZYHo/32wR3586dg5+fH4Ci93lnZ2eJ5uFwOHj9+jWuXr2KXbt2ITU1FTY2NnB3d6+UfSuJ9Ci4I4QQQgghhBBCqgB2IRvZ7Irbvwooal+ZV5Bfoef8nfEDnnr16jF7f1V11tbWWLduHTgcDhYuXIi4uDi5BT6nTp1CUlISAGDevHliBWIV4eXLl5gxYwZYLBaioqJKVG9xOByRPqQW9YPsX40ZMwa9evXC6tWrcenSJezZswd6enpizTF69GgsX74c79+/x4YNG8rdj08a27ZtAwDUrl0bTk5OcjuPKE6dOgUAqFGjRrl7QQLAly9fmMuiVNxVJb6+vrh69SoiIiJgbGxcIed88uQJgKJw0tTUFI0aNcLOnTsxd+5cuZ731q1biImJwfjx48usxGrWrBkiIyNx+fJlGBsbo0GDBtDS0ioRNH3//h29evUCUPTeM27cOKnWJkmlnIqKCqZNm4Zp06ZJde4rV66gXr16aNy4sVTzCDJw4EA0b96cmTs7Oxvnzp0rtWYWiyXWe504exHeuXMHrq6uaNWqFbZt2ybyfyeKV9yVF9wVD9+8vb3h7S24Q4Ag/IpxecrNzcW9e/ewb98+xMfHAwBGjRoFb29viQLH/v374/3798zP2traCAoKwqBBg2S2ZlLxKLgjhBBCCCGEEEKqgEIJ92ORFodbUCnn/Z2xWKwy9ySrSmrWrAkzMzOcPHkSycnJCA8Ph5ubm8zPw+PxEBYWBgAwNTWFubm5SMcNGzasxB5b0kpMTCx1HX8/wZ07d8LR0RH//vtvqQqRbdu24enTp3B2di5zPydJ92cCikKkwMBAZGVllbtPmyCWlpYIDg4Gh8PB9u3bYWVlhSZNmki8HmGePHnCtPb08vKCpqamzM8hjtOnTwMoarMnSpiQlpbGXBa14k6WuFwuQkNDRa4Q40tPT8exY8cAAP/++y82bNggUUWuOAoKCpjgrm3btmCxWBgwYAB27dqF6dOni9SSUBI5OTlYsGAB2rVrh3nz5pU73sjICEZGRkJv5+9vBwAmJia/zfuzIPfu3cPkyZNhbm4OJycntG7dWqbzFw8ET58+jdzc3FKBeFZWFthstshz8iv32Wx2mc/75ORkuLi4IDc3F4mJifDx8cGKFStEOkfx4K68Fsz5+f/7QpKXl1e5LXyBokr2ffv2oUaNGiKtR1SLFy+Gv78/83NhYSFTeV27dm1YWlpi3LhxaNeuHbhcbon7KaotW7bg+/fv+PLlCx49eoTTp0/D3d0dYWFhmD9/vkTtiUnlo+COEEIIIYQQQgipAhQVFCrlvMoK9NGAuH639qIWFhY4efIkgKIP+GxsbGS+B9fZs2fx9OlTqKqqYuHChSIfFxERgYIC+YXHiYmJWLFiBbp06YLY2FihLcNUVFQQFxeH+Ph49O7dG66urmjXrp1U505JSREYHEkS2gFF+0f17t0bp0+fBofDQUBAAMLDw6VaoyAhISEAgO7du5e5r1tFePDgARMs/drKUpjPnz8zl2UV3Hl5ecHLy0uksQoKCujTpw/mzZuHOnXqoLCwEOnp6ejevXuZx3GLfXlDRUUFHz9+lHtw9+zZM6bCiN9ectSoUQgPD8eePXvg4OAgl/MGBQWhsLAQoaGhMqnMvXHjBoCiSqOygvffgYaGBrhcLk6ePInTp09j06ZN6Nmzp1zOFRsbCz09PTRv3rzE9R8/foSdnR0yMjLEmu/48eM4frz0frnCHD58GE2aNBGpqrd4IF+rVq0yx+bk5KBJkyaYMGECRowYAXV19XLn79SpE/r27Sty+2JRzZgxAwMGDGB+vnXrFhNW29rawtHRUepz6OvrM61m+/XrBzc3Nxw7dgwLFy6Era0tXFxc4O7uLlZlJKl89Nc5IYQQQgghhBBSBagoqkBTRaNC22VqqmhATen3rUyoaPzATqGSQlZJmZqaQkdHB5mZmcjPz0dISAizp44scLlcrFu3DgAwdepUsfaGknWA+KuvX78iPDy83AoNfoUOj8dDQkICevfuLVVwFxMTA29vb5m3Kxs6dChTgXbhwgXcuXNH4v28BHnw4AHOnj0LNTU1LF68WGbzSmr79u0AgD59+qBVq1YiHcMP7rS1tVGtWjWZrGPhwoVlhpjPnz8vsadjixYtEBMTAwB4//49pkyZUm5rU/7jraioiH379om9x5okrl69ylzmV+XUr18fvXr1wqZNmzBq1Khy2xKK6/z584iLi8Pu3bvLfV2KKiEhAUBR+Pi7vT//qniQGRQUJDC0KywsxMKFCzFixAh06dJFovN8+fIF165dw9ChQ0sFOsbGxti+fTtu3ryJVq1aQV9fH1paWiWqb0NDQ7FmzZoSx40YMQLPnz9HYGBgmRWSkuDvXVm9evVyK0Fr1aqFuLg4sYIqCwsL5vK+ffswZMgQib9kUVyNGjVK7FlZt25drFq1Cl++fMHevXvh4OAg8+csi8XCsGHDoKWlBRcXF4SFhYHFYsHd3V2m5yHyRcEdIYQQQgghhBDy/zYMXSrw+upqgj+4HNLMDL0bl66IUCmjiq2sczSpoY+Hqc9FWKlsNKnRECwWS+b3QxBh5/id8Ntbyat9nLwoKyvDzMyMCRJiYmLg4eGB6tWry2T+I0eO4Pnz52jRooXcKnQkNXDgQJHGFa/IWLNmDfr16yfxOWNiYuDl5QUul4vZs2dDQUGhRMWFNHr16gU1NTWmSmr79u0yDe6Cg4PB4/EwY8aMCgmOypKcnMxUik6fPl3k4/itV2XZJlNDQ0NotSZQdhVlo0aNkJOTg2fPngmtBsvKymJen4MGDaqwx/7y5csAikLOTp06MdePHz8e58+fR3h4ODw9PWV2vqSkJCxbtgybN2+GoaGhTOb88OED3rx5AwAl9q0sT0JCAu7duyf1nnSyVrwdb/v27UvdXlhYiDlz5uDYsWOIj49HRESEWPeb7+jRoygsLMQ///wj8HZjY2Oh+yx++/YNERERAIAmTZrg58+fTEWctbU1VqxYgS1btoi9prLwA3lRXhuS7FHIFxYWhtWrV+PIkSPYvHmzzP97r6ioCGtra4SGhiIpKQmXLl1C7969ZXoOvj59+qBv3744e/YswsLC0LdvX7Rp00Yu5yKyR8EdIYQQQgghhBDy/2privftf00VDWiqiPehTlnnMNQ1qNDgrqmuAQDZ3w9BJDlHVcMPS3634A4oCnz4wQCbzcb169dFDrXKkpeXh3Xr1kFZWRkrVqyQag+4ylT8g9769euXOz45OblUezlBCgoKMGvWLKxZs0bkff/Koq6uji5dujCBC/9/ZeHixYu4ceMG2rdvX6J6rLIEBQWhoKAAQ4cOFbnaDihqUQqgRJVLZevevTv27dsHX19fgbfv2rULOTk5YLFYcHZ2rpA1/fjxA3fv3gVQVJVbfP/Anj17om3btoiKisK4ceNEek2IIj09HatXr5ZZeJCbm4tVq1YxP4saYCUmJmLatGnIzc3F169f4ePjI1LVU3Z2tsRrFRWHw2Eu5+XllTgnj8eDr68vsxdiTk4OHB0dJQrvDh06BBaLJTS4K8vatWuZdfn4+GD+/PnMbcOHD0dQUBDOnDkj1RcgfsUP7po2bVrqtosXL2LatGli7ctXntu3b8PV1RXh4eFQU1OT2bzA/9rRcrlc7Nq1S27BHQDY2Njg7Nmz4PF42LhxI0JDQ+V2LiJbv+dfU4QQQgghhBBCyH9Qj4ZdEPP0ZIWd75+G4n9L/0/F5XKZ4E7WreMqAr8NHl9SUpJM5t20aRNSUlLg4eEhtDrjdyBuhUbdunURHR0t8nhZBpomJiZMYJeTk4P09PQyq8FEwWaz4e/vDw0NDQQFBUlVsSILiYmJiI+Ph56eHry9vUU+jsPhMB/wV6Xgrn///nBzc8OMGTNQo0aNErfl5uYyLUEHDhyIZs2aVciajh49yoRExdsE8rm5ucHBwQE+Pj4yq55q27atTObhCwsLQ3x8PPPz2LFjxZ5jz549+PHjBwICAsrdb2/z5s3YuHGj2OeQ1JAhQ8odI0l4d+vWLbx58wbNmjUrd7+4X929exf79+8HUNS699d9GHV0dDBw4EAsXrwYJiYm0NbWFmt+Yfiv6yZNmpS6rVevXtixYwfYbDaMjIzAYrGwcOFCmJubi7VnXVRUFPP71dLSQqdOneSyB2v9+vXRvXt3JCQk4PLly/jw4YPcqmw7deoEFosFHo+Hixcv4sePHzJrIUzki4I7QgghhBBCCCGkimhYvT6M9ZriadoruZ/LWM8IDavLporiT5CRkcFcrlOnTuUtREI1a9ZEnTp1mH2CZLGnzsePH7F582aYmJhg8uTJUs9XmcQNqhQUFKQOyyT1a/WZOPs4CbNt2za8e/cOy5cvr/QWmfn5+cx+b35+fqWCrrIkJSWhsLAQgGgt9UTl5eUFLy8viY/v3r07VFVVERkZCTc3txK37dy5E+np6VBSUqrQPagOHjwIoOj9rEePHqVu79GjB7p06YKEhARER0fDysqqwtYmKjc3N6Snp2P//v3o2bMnAgMDyz0mMzMTNjY2zHt6o0aN0KpVK3z9+rXc9qpubm6oV68eWCwWjI2NoaurC21t7RLVii9fvkTdunUl3h8tOjoaixYtAgDEx8eLXO0ozns6P4j9NXQrD4fDgY+PD3g8HurUqYOFCxcKHDdhwgTExMRg2bJlWLFihVjnECQ3Nxc/fvwAUPr9j+/XlsHz58/H+PHj0aVLF5Eew+fPn2Pz5s0Aiqrq9+zZI9cQ3cbGBgkJCeDxeNizZw/mzp0rl/NoaWlBR0cHP378QGFhIR49eiRRlSWpeBTcEUIIIYQQQgghVYhFi/4VEtxZtOgv93P8l/zuwR1QVKnAD+4E7Z0kLj8/P+jo6GDlypUyCQIrU2VXmImjeMWJgYGBWMGWIElJSQgLC4OVlVWVCGeWLVuGFy9ewMXFBX369BHrWP5eZ0BRICMrCxcuxODBg4Xe/vz58zLbiyorK2PIkCHYtm0bRo0axQREGRkZ2LRpEwBg9OjRMDAwkNmay5KQkIBnz54BACZOnCj0+e/l5YVRo0ZhxYoV6NGjB2rXrl0h6xOVgoIC/Pz8YGRkBGtra2hqapZ7jJ+fH/N+7uTkhOnTp5dbaVfcqFGjyrz94sWLiI6OxurVqyWqMCxenauiogJVVVWx5yjL4cOHcf78eQBA165dxTp21apVePHiBVgsFgICAph9Unk8XolxrVu3xoABA3D48GH8/fffsLS0lGrN/Go7BQUFkR/T+vXrY/z48Zg2bRp27txZ5nMjKysLbm5uYLPZYLFYCAoKknvlq5mZGfT09JCWlobo6Gi4ubmJ9Dx8+/YtkpKSYGJiIvLzVk1NjQk+09PTpVo3qTi/919VhBBCCCGEEELIf0zHem3k3sKyR8Mu6FivtVzP8V9TPLjT19evvIVIgd9GzcLColR1grhiY2Nx9epVrF27Fnp6erJYHhHRX3/9hQYNGkBJSUloxYs4fH19YWhoKHT/tYp0/Phx7Nu3DyNGjMDMmTPFPv7p06fMZVH2IBSVhoYGdHV1hf4Tpbpq4sSJyM/PL1GBtH79emRmZqJGjRqlKvHkhcfjITg4GABQvXp12NjYCB3bqlUrTJgwAT9+/ICnpydTzVjV2NraihTaHTt2DHFxcVBUVMTy5cvh4eEhVmgnismTJ4PH42HcuHE4cOCATOcW171792BtbQ0nJyfMmTMH7u7uWLBgAXO7OP8duHLlCrZt2wYAmDZtWrnVejNnzoSSkhIWLVrEhMSSevnyJYCi/e3EqWScNGkSVFVV4e7uLrTlJZfLxezZs/H27VsAwIwZM2S6N58wSkpKGDFiBICivy+OHz9e7jHnzp3DsGHDMHnyZLEqgLOyspjLv2Or7z8VBXeEEEIIIYQQQkgVM6mjDWqoy2cPkhrq1WDfcbRc5v4vK74nXNOmTStxJZIbN24cPDw84O/vL9U8bDYby5cvx9KlS9GpUycZrY6IY9GiRQgNDRXY4lAcZ86cwevXrxESEgI1NTUZrU4y165dw7x582Bubo6lS5dKPAcA6OnpVZnqsKysLGRmZqJRo0bo27cvTp48iX379uHBgwfYvXs3AMDT05OpXpK3Q4cOMQHnjBkzyg1CZsyYgbp16+L69etYuXJlRSxRLlJTU7FkyRIoKChg+fLlcqsuVVVVxZQpU8DhcODt7Y3169fL5TyiaN++PTZv3ox+/frh6dOniI+PZ8LX6tWri9zuNykpCR4eHuDxeOjfvz+mTp1a4vZfK+4AoHHjxrC2tkZubi4mT54s1b6qjx8/BgCx3+8UFRURFBSE27dvY968eQKDZ39/f6YC0crKClOmTJF4neIaPXo00+p4165d5Y4PDAxk9qU8fvw4U0VXlqysLOTk5DA//65/v/yJKLgjhBBCCCGEEEKqGG1VLSwwnQ5NFQ2ZzqupooEFptOhrSrZ3jt/stevXwMoatVlaGhYyauRjK6uLpycnEq0YpNEfn4+HB0dpW5/RiTXs2dPmJqaSj1PXl4etm7dWuntXx8+fIipU6fCxsYG69atE/ocLV458qukpCTcuXMHQNGecpXl8ePH2LlzJ+bOnYshQ4Zg4sSJTPDAr0JaunQpPD09weVy0aNHjwprUfrhwwcmuG/dujXGjBlT7jGamppYvnw5FBQUsGXLFmzfvl3Oq5Q9Ho+HefPmITMzE4sXL4aFhYVcz2dpacm0Q92wYQMiIyPler6y1KhRA6NHj0ZMTEyJdq+i7gGZnZ2NKVOm4Pv37+jQoQMCAgJK7aspKLgDikLf6tWrIy0tDXZ2dvj48aNE94EfNEvynqevr4+AgAAcO3YMs2fPLlF5FxoaiqioKABFoeCSJUskWp+k9PX1mcrFx48f4/79+2WO57cMBYra74rSRvXRo0fM76dly5Yi75lIKh8Fd4QQQgghhBBCSBXUsHp9LO4zS2aVdzXUq2Fxn1loWJ0+tJHEq1dF+w4aGxtDXV29kldTubS1tWFvb1/ZyyAyMHTo0BJ75snDo0ePcOrUKQBAcnJyqbZ5165dg7OzM2bNmgVvb2+h+yVyOBzY2tpi6NCh8PLywq5du3Dz5k2kpqYiNTUVvr6+4HK5AICBAwfK9T4BQE5ODh48eICDBw9i586dzPWenp64ePEi2rdvj61bt+LQoUPMh/OGhoYYP3482Gw23r17h+rVq8Pf379UECIPbDYbHh4eyM7OhoaGBlauXCny3o7dunVjKpGWL1/O7MtX2d6/f19mmMu3c+dOXL16FV5eXhg9Wv4V50pKSiXOExgYiC9fvsj9vGVRVFQs0X62QYMG5R7DZrMxbdo0PH/+HK1atUJERAQ0NEp/oYj/uvtVrVq14OfnBwD4+PEjxo0bx4TYoiosLMT9+/ehq6vLtHsWl7m5OZydnREXFwd7e3t8//4dmzZtwpo1awAAnTp1woYNG6CsrCzR/NIovmcivwJXmBYtWjCXhw4dKlKVdHx8PHO5IqsJifSk+4oVIYQQQgghhBBC5KZh9foIHuCNbXf2I+HDLYnn6dGwC+w7jqZKOynwP2zs3bt35S6EkN/Ejx8/sGrVKuzfvx8DBw5EYGAgtm3bhokTJyIkJASdO3dGTEwMdu/ejW3btpW7J52ysjKio6Nx584dBAUFITo6WuC4pk2byvx1mpSUhGPHjuHly5d4/vw5Xr58ieTkZKaSpXiYceTIETRu3FjoXO3bt8eOHTuY4/Ly8mS6VkG4XC7mzJmDBw8eQFFREStXroSBgYFYc0ydOhW3b9/GtWvXsHLlSiQnJ2PBggUy3yNOHE+ePEFAQACMjIzQv39/9OvXDzVq1Cgx5vXr1wgODoarqysmTpxYYWsbMmQIEwxxOBy8ePGi0tu3Fj9/eS1SORwO3N3dcfXqVXTq1AmhoaHQ1tYW+5z9+/eHlZUVoqOj8eXLF4wZMwZz5szBv//+K1JgfffuXWRkZGDChAlSBWvu7u748uULoqOjMWjQIHz//h0A0KFDB2zatKnSvpDTr18/6OrqIj09HSdOnICbm1up5zDf5MmTmTalrVuXv0/x27dvERMTAwAYPHgwzM3NZbZuIn9UcUcIIYQQQgghhFRh2qpamNFtEub1nAJjPSOxjjXWM8K8nlMxo9skCu2k8OjRI3z69AkKCgpyb7FGyO+Ox+Ph0KFDGDhwIPbu3QsXFxesXr0axsbGCAwMxIABA2BnZ4edO3dCW1sbu3fvLje0K65jx47YvXs3Zs+eXeo2TU1NBAQECK3aK09aWhpu3LiBPXv2ICwsjLk+JCQEHh4eCAsLw/nz55GVlQVzc3MsXLgQsbGxTBAHoMxw4cGDB5g/fz5YLBaqVauGlJQUjBkzBomJiRKtV1SLFi1CfHw8lJSUsGzZMpiZmYk9h4KCAlatWsWEknv37oWNjQ1evnwp07Xyq7cE7Uf2q0GDBiE+Ph4mJiYIDg5Gjx49MGnSJBw8eBCZmZkoKCjAnDlzYGFhAXd3d5muszwNGzaEkdH//ptdt27dCj2/ICkpKczlsoKq3NxcuLq64uzZsxg4cCC2b9+OatWEV/+X97tasGAB9PX1ARRV8S1duhQjR47EjRs3yl3zxYsXAZSsTJMEi8XCnDlzUKtWLSa0a9iwIbZs2VJuiCmu4o9HeY+NiooKRowYAaDosRH2hQSgKOTjV80dOXKkxN51v0pKSoKrqyvy8vLQrVs3LF++XJy7QKoAqrgjhBBCCCGEEEJ+Ax3rtUHHem3wISMZVz4k4lX6O7z5/gHZ7P99cKOpooEmNRqiqa4B/mnYmdpiysjp06cBAGZmZmjUqFElr+b3cv/+fcTGxmLBggUV0g6QyM/atWvRsWNH9OzZU+iYZ8+eYfHixcxec46OjnBzcysxxtfXF+np6fDz84OpqSlatmwpdqjBYrHg6OiIgoICpqqpefPmCAwMLNFOTlRubm64fPkysrOzBd6urq6OTp06oXv37ujWrRuMjY1LPJ8fPnxY7jlevnwJJycncDgcBAYGolWrVpgwYQK+ffsGOzs7zJ49GxMnTpTp64TD4WDhwoU4fPgwNDQ0sHbtWqn2RtTV1cW2bdswbtw4pKSk4MmTJxgxYgTs7Ozg5OQEHR0dqdfMDzqK70VWFnV1dUyePBk2NjbYtGkTtm/fjitXrmDx4sVo2rQpWCwWfHx8pF6XJCwtLREUFIShQ4dWib1R+a9LQHhwl5aWhmnTpuHx48fw8vIS6TnJrzzlcDgCb9fS0sKmTZswbtw4JjR79OgRbG1t0axZMxw4cEBo28ezZ8+iT58+YoX7ghw5cgSBgYH4+vUrc92HDx/w77//ws3NTeoqXS6Xi6ysLKSnp+P8+fPM9TExMejUqRNq1aoFLS0tgV8qGD16NLZs2QIA2L59O5o3b462bdtCXV291O/Jzc0NBgYG8Pf3x9ChQ2FjY4MePXqgTp06yMvLw8ePH3Hu3DkcOHAAXC4XTk5OcHNzk3pvW1Lx6DdWxWVnZ2PYsGGIjIwUqfcwIYQQQgghhJD/tobV6zOBHI/HQ15BPjjcAigrKEFNSZXCERnjcrmIj4+HoqJihVds/O7u378PBwcH/Pz5E7m5uVi6dOkf//yMi4tDVlZWheyzJUsrV67Epk2boKqqio0bN6JHjx6lxsTHx8PDw4MJXiwtLQVWxSkqKmLVqlWYNWsWTp8+jf79+8PGxgajRo0S+8N5R0dHpKWloXv37ujbt6/Ez6+RI0fixIkTJa5r1KgRzMzMYGpqis6dO0vVEvLJkyeYNGkSOBwONm7ciF69egEo+pB+4sSJSE9Px/Lly3H27FnMnz8fxsbGEp+L7+fPn5g+fTquXbsGPT09hIWFidRerzx169bF1q1b8e+//+Lr16/gcDiIiIjA3r17MWHCBIwZMwZ16tSReH5xgzs+bW1teHh4YPTo0fD398e5c+fw5MkTAEX7gU2YMAGjRo2q0NaednZ2aNGiBf755x+Rj/n27Zvc1nPz5s0yb7937x6mT5+OWrVqYd++fWjVqpVI8/KrJPPz84WOadKkCTZt2oSJEyciJycHffr0wdixY9GwYUOhv5M7d+7g9evXWLFihUjrEOTly5dYsmQJc98NDAzg6uqKt2/fIiIiAk+ePIGzszPatm0LS0tLDBgwALVq1RL7PCkpKejbt2+p6xMTEzFo0CAARSGkoM/3DQwM0LVrV9y8eRPZ2dmYMWMGAGDOnDkC95O1sLBA3759cfToUZw/fx5RUVHIyMiAsrIyqlevDkNDQ0ybNg2WlpYS3RdSNVBwV4Xl5+fDy8sLycnJlb2UUszMzCReV2RkJExMTEQa+/PnT+zZswenT5/Gq1evwOPx0KBBA3Tt2hXjx4+vEt9WIYQQQgghhJDKwmKxoK6shsrZmeXPEBcXh/fv32PixIkl2p5VNTweT6TWcsKO5SssLBT6gXnxceV9qP7o0SNMnjwZP3/+BAAcPHgQLBYLfn5+f2x4d+bMGXh6eqKwsBDKyspMe7RfFRYWlnisJcHj8UQKPkQZt3btWmzatAlA0WdVU6ZMQWhoaKkwwtzcHEOHDsWRI0dgbGwMPz8/oXOqqKhg/fr1iIiIwIYNGxAVFYWoqCjo6+ujU6dOMDY2hoGBAXR1dVGzZk1oampCTU0Nqqolv5ygpKQktJqqsLAQ+fn5yMnJwY8fP/Dz50/8+PED1atXR7t27UqM7dmzJ4YOHYq4uDgMHjwYEydORNu2bct8XESVmJgIV1dX6OnpYcOGDWjSpAlzW7NmzbB37144OTnh3bt3uHnzJiwtLdG2bVsMHz4cXbt2RaNGjYRWIwlz584deHp6IikpCYMHD4aPj4/QfbMk0bhxY2bdb968AVD0Gd7GjRuxadMm9OzZEwMGDECfPn1QvXp1kefl8XhM1Zaw6q3y6OvrIzQ0FKdOnYKfnx++fPmCt2/fYsmSJQgLC8O8efMwZMgQieYWl5KSUqmQ29HREdnZ2ahTpw5q164NPT091KpVCzVq1MC3b99KtF2VdcgorDVlQUEBwsLCsHfvXri6umLMmDFQVFQUeV7+f3vKCu4AoG3btli3bh0TEJZn//79+OeffyR6LT558gSbNm3CyZMnweVy0ahRI0yZMgXDhg1j7lvfvn0xb948vH79Gg8ePMCDBw+wdOlSdOnSBb1790arVq3QsmVLkfb2a9CgAZ4/fy72OvmioqLA5XKRm5sr0ngtLS2MGzcO48aNk/icpGqj4K6KKSwsxNevX3Hp0iVERkbixYsXlb0kmRP1W0NXr16Fp6cnvn79CisrK/j4+EBXVxcPHz7E2rVrsWfPHri7u8PZ2VnOKyaEEEIIIYQQ8ificrkIDQ2FgYEBZs6cWdnLKdOnT5/w77//Sv3l37///rvcMT9//hS5EqO4AwcOgMViYcmSJRUW3uXl5ZW5DxBfVlYWczkzMxPp6ekCx7HZbABFzw1hYwS5d+8e3N3dmZBs/vz5UFZWxtChQ0uNPXLkCBYsWMBUsUji3LlzIv2O+IGZOPLz8+Hq6loqvFNSUkJAQABq1aoFa2vrckMHFosFJycnDBo0COvXr0dcXBw+fvyIjx8/IiYmRuhxKioqUFVVZeYv/lzi8XjIz89Hfn5+qeCHxWKhW7dusLW1FTjvggULYGFhIVUryV8dPnwYCxcuxJAhQ+Dj4wNNTc1SYxo1aoR9+/Zh5syZuHr1KgAwIQJ/3b179y6x554wbDYb4eHhCA0NRbVq1bBu3ToMGDBAZvenOH19fezduxdTp07FrVu3mOsLCgpw/vx5PHjwAJ8+fWL25BJF8d8Z/7Umqf79+8PExARLlizBsWPHAABfvnzBrFmz8OLFi0p7T1+6dCkuXryI48ePIz4+XmhIX6tWLejp6cnsvHl5efj8+bPA206dOgVNTU2cPn26zL3vhOG/r4nyO+vZs2eZ7Xb5fvz4gZMnTzItJEV148YNbNq0CQkJCQCALl26YPTo0RgyZEipMLJt27Y4cuQIYmJiEB4ejo8fP4LL5eLGjRtMyMlisaCvrw9DQ0PUqlULNWvWhK6uLgwMDJjKWULkgYK7KsLZ2Rm3b99GTk6OxN+Qq2jVq1cX+9s6enp6IvW7Pn/+PKZPnw4OhwMPDw84OTkxt9WvXx+9evXC+PHjsWrVKnz69AmLFi0Sd/mEEEIIIYQQQkiZYmJikJSUhH379kn0YWZFqlevHqKiorBv3z60aNECTZo0gba2NrS0tKpchRuPx6uwNf348QO2trZ49+6dyMcIC3aK+/TpE7p16ybxurhcLubOnQtlZeVSwYqVlRXU1NSQkpKCVq1aoXbt2tDW1ha76kreBFXksFgszJkzR6x59PX1ERgYCA8PD8TFxeHUqVN4+PCh0IorNpstdqjTqFEjrFmzBi1bthQ6RldXV2ahHYfDwcqVK3HkyBGsXr0a5ubmZY6vXr06tm7dih07dmDVqlVM5ZKFhQUcHBzQrFmzcs954cIFLF++HGlpaXBycsKkSZNksudcWapVq4atW7di3bp12LJlC7hcLnR1dbF48WL069dP4H5eZSn+O5e04u7X9a1cuRI9e/bE4sWLmRA/PDwcpqam6NSpk9TnEFedOnUwevRojB49Gm/fvsXGjRtx9OjRUuNcXV1l+j6ppqYGPT09pKWlAUCJ383gwYOlmlvUijtxbNu2DcOHD0fHjh3LHfv69WvExsbi+PHj+PDhA2rXrg1nZ2dYW1uXuy+tsrIyRo0ahREjRuDYsWPYv38/7ty5wwSqPB4PHz58wIcPH5hjOnbsKLRimhBZYfGkrb0nMpGWlsa8uRUUFODKlSvw8/Nj3iSE9cCtLGZmZhgxYoRIZc3iev/+PSwtLZGTkwNTU1NEREQIHPfhwwcMGjQIBQUFWLJkCWxsbGS+Fnlgs9kCNy1u06ZNhfbZrio4HA7zLTK+tm3bQllZuZJWRAghhBBCfhcFBQV4+fJlieuMjIygpETfUSXS+/TpE4YPH47FixdL/aEmqVypqamIi4tDixYt0LhxY2hpaUFTU7PKBZrkf/Lz8/Ho0SO8fv0a7969Q2pqKr5//46MjAzk5OQgNzcXeXl5YLPZ4HA45YY8e/bsESkAkNTDhw8xcuRIsFgsREVFISgoCE2aNMGcOXOgq6sr1lxJSUlYu3YtqlevjgULFpQ7/u7duwgJCcHt27fx77//wsHBQaz2lLJy+/ZtLF68GKtXr5Z4a5v09HQmENfT02OqpmThxYsXmDJlCj5+/AgAcHFxqTKV1GfOnMHMmTOZQHry5Mnw9PSU+Xlev36NrVu34sOHD/Dw8ED79u2lnpPH46FFixYAiqrbdu7cKfWc379/x7///ot9+/ZBS0ur1O15eXm4f/8+bt26hTNnzuD58+do2bIlevTogZ49e6JDhw5itfr81adPn3Ds2DGcOnUKjx8/ZoJJdXV1rF69Gn369JF47rIIapWprq4udgBeUeT5dzh9fk7BXZU2evRo3L9/H8CfFdw5ODggISEBCgoKOHr0aJl7CMybNw+HDx+Guro6Tp8+LdMScnmhN56SKLgjhBBCCCGSouCOyAuPx4OdnR1MTU3h4OBQ2cshhIigsLCQ+cflcktUzMi78vThw4eYP38+fH198fDhQ7Rp0wadO3eW2/mAonaawcHBKCgogJWVFQYNGiSwFefvJDU1FUOHDoW5uTksLCxgYmIi0/m/fv2KSZMm4fnz5wgICIClpaVM55dGREQEYmNjMWfOnFL74lVlubm5GD9+PGxtbTF48GCZfLa5evVqdOjQAb179y5xfWRkJOLj4/HlyxcYGBigWbNmaNOmDbp16ybTPRyLy87Oxr1795CYmIh69eph1KhRcjkPQMFdcfT5ObXKrNI0NDQqewkVLjExkfk2Tffu3cvd+HvEiBE4fPgwcnNzERoaKnRDYkIIIYQQQgghRFT5+fkYNmwYRo4cWdlLIYSISFFRUaoqG2kYGhoiOjoaysrKcg/s+JSUlLBkyRIYGBhUyPkqgq6uLq5cuSK3D+Zr1aqFHTt24MiRI1WuktrOzg6Ojo6VvQyxqaurIzo6WqZz2tnZCQziTE1NYWlpKfcWsMVpamrin3/+KbGfJyEVoWrGteSPVbwtpoWFRbnjO3fuzJT/HzhwoMRm0oQQQgghhBBCiCTU1NQotCOEiExDQ6PCOwe1bNnyPxXaAUX7jcm7mqZGjRqws7OrclU71Hnqf4RVzxkYGFRoaEdIZaLgjlQZP3/+xJUrV5ife/bsWe4xioqKTD9mNpuNCxcuyGl1hBBCCCGEEEIIIYQQQggh8kXBHakyzp8/z2wmbGBgIHJv4pYtWzKXz5w5I5e1EUIIIYQQQgghhBBCCCGEyBsFd6TKuHv3LnO5devWIh9XfB+8x48fy3RNhBBCCCGEEEIIIYQQQgghFUWpshdA/huuX7+OuLg43L17F58/f0ZeXh709PTQsWNHjB49Gl27di13jpcvXzKX69evL/K5a9euzVxOSkpCXl4e1NTUxLsDhBBCCCGEEEIIIYQQQgghlYyCOyKVwsJC+Pj44ODBgwAAdXV16OrqgsvlIjk5GcnJyYiNjcXo0aOxaNEiKCoqCp3r1atXzOV69eqJvIbiwR2Xy8W7d+/QokULCe5N5SooKACLxarsZVS4goICka4jhBBCCCHkVwUFBeDxeCWu43K54HK5lbQiQgghhBBCZKeq/l3L5XJL/R3O4XBKXScJ+myYgjsipYULF+LYsWNwdnaGpaUlmjRpwtyWmJiIJUuW4Pnz59i/fz9yc3MRHBwscB4ul4vv378zP1erVk3kNWhpaZX4OSMjQ7w7UUU8ffq0spdQZTx58qSyl0AIIYQQQn4z/K4beXl5ZX5hkBBCCCGEkN9Bbm5uZS9BqMLCQiaky8vLA0Cf6coSBXdEYsePH0dqaioiIyPRvn37Urd37twZe/bswahRo/D69WvExsaiZ8+esLCwKDU2JyenxM/itLpUVVUtcy5CCCGEEEIIIYQQQgghhJDfgUJlL4D8vt6+fQtvb2+BoR2fpqYmFi1axPy8Zs0aFBYWlhqXnZ1d4mdxgrtfx/46FyGEEEIIIYQQQgghhBBCyO+AgjsiEXt7e7i4uMDa2rrcsV27dmX2nEtJSUFCQkKpMb/u7SZOL9xf+/wqKNDTmhBCCCGEEEIIIYQQQgghvx9qlUkkMmHCBLHG9+7dG8+ePQMA3LhxA7169Spxu6amZomf+X1xRZGfn1/mXL8LY2NjKCsrV/YyKlxBQUGp/sctW7aEkhK9PRFCCCGEkLIVFBTg7du3Ja5TU1OjvyUJIYQQQshv59c97dTV1StpJeUrKChginH462zcuLFM/g7ncDh4+vSp1PP8zuj/zZAK0bJlS+ayoBedhoYGWCwWU2n3axhXFjabXWqu35GSktIfGdwJQo8FIYQQQggRBYvFKtW9Q0FBgbpwEEIIIYSQ38qvXeX4qurftQoKCqX+DldWVpZJcCdON77/qqr5Wyf/OQ0aNGAuf//+vdTtLBYL1atXZ37+8eOHyHP//PmzxM+6urriL5AQQgghhBBCCCGEEEIIIaSSUXBHKkTx9pU5OTkCxxgaGjKXP336JPLcqampzGVlZWU0atRIghUSQgghhBBCCCGEEEIIIYRULgruSIUoXuorrJVl06ZNmcspKSkiz108uGvYsCG1WCSEEEIIIYQQQgghhBBCyG+JgjsitrCwMHTv3h0jRoxAWlqaSMcUr7LT0dEROKZt27bM5WfPnom8npcvXzKX27VrJ/JxhBBCCCGEEEIIIYQQQgghVQkFd0Qst2/fxurVq/Ht2zc8efIEhw4dEum44lVxxSvriuvTpw8UFRUBAK9evUJWVpZIcz9+/Ji53LdvX5GOIYQQQgghhBBCCCGEEEIIqWoouCNiuXv3bomf8/PzRTru9evXzOXilXXF6erqomvXrgCKWmtev3693HnZbDbu378PoKgFZ48ePURaDyGEEEIIIYQQQgghhBBCSFVDwR0RS/E2l8rKyrCwsBDpuKtXrwIAVFRU0Lt3b6HjJk2axFyOiYkRad6fP38CAMaPHw81NTWR1kMIIYQQQgghhBBCCCGEEFLVUHD3H5WSkgInJyd06NABw4YNY4IzaXXv3h0KCkVPmyFDhsDAwKDcYz59+oRbt24BAAYPHozq1asLHWtqagoTExMAwIULF/Dx48cy5+a36tTS0sLkyZNFuAeEEEIIIYQQQgghhBBCCCFVEwV3VVhmZiZzOSMjQ6xj586di4sXLyInJwcvXrzAlClT8OnTJ6nX1KBBA4wZMwZAUWtKUaxduxYFBQXQ1taGh4dHueOXLFmCatWqgcPhICgoSOi4R48e4fTp0wAAX1/fMgNBQgghhBBCCCGEEEIIIYSQqo6CuyoqNTUVr169Yn4+d+6cWMc/evSoxM+5ubl4+PChTNY2b9489OnTB0eOHGH2lxNm+/btOHz4MFRUVBAUFITatWuXO7+BgQHWrl0LFRUVnDx5ElFRUaXGZGRkwMPDAzweD3Z2dhg+fLjE94cQQgghhBBCCCGEEEIIIaQqoOCuisjOzkZmZiY+fvyI06dPY/LkycjPz2duDwsLQ1BQEJ48eYL09HRkZmaCzWYLna9169YlflZWVkaLFi1kslZVVVWEhITAxcUFdnZ2cHFxwYEDB/D48WOkpqYiOTkZFy5cgIuLC5YvX46GDRti06ZN6NOnj8jn6NatG3bt2oV69eph2bJl8PHxwePHj5GSkoK4uDiMHDkSHz9+hKenJ7y8vGRyvwghhBBCCCGEEFk6efJkuV94Jb+PK1euICYmprKX8cfauHEj7ty5U9nL+E8rLCwEl8sV+7i5c+fi6dOnclgRwOPxJDruzZs38Pb2Rm5uroxXJNq5JXkcASArKwtfvnyR8YoIIb8bCu6qCBcXF3Tp0gX9+vXDtGnT8OLFixK3FxYWYvPmzRgxYgS6deuGLl264NixY0LnCwgIQK9evaChoYHGjRtj9erVaNiwoczWq6ioCCcnJ5w9exZdunRBXFwcnJyc0LdvX1hYWMDf3x/q6uoICAjA8ePH0a1bN7HP0bZtWxw/fhy+vr549eoVnJycMHjwYISEhMDU1BTHjx+nfe0IIYQQQgghhFRZLBYLNjY2cHd3l8n2FfJy5syZcveYB4AjR4780R8oh4aGYu7cuXBwcBDp8aoMu3fvLvOL3kBRF6OYmBgUFBTIfT0pKSnlrkdUly5dwtixY2FpaYkDBw5USiDDt3nzZpw+fVriUKk8xb/MX1GysrLg4uKCpUuXin3sqVOnYGlpCXt7e1y9elVma8rOzsbQoUNx/vx5idZ04MABWFlZyS1UFGbz5s0YOHAgdu/ejby8PLGOTUxMxIABAxASEiL2sYSQ/w4WT17/hSGECMRmswW2LW3Tpg1UVFQqYUWVi8Ph4MGDByWua9u2LZSVlStpRYQQQggh5HdRUFCAly9flrjOyMgISkpKlbQiQkoLDAzEli1boKGhgXnz5sHGxqayl1TK4sWLceDAAVhYWMDFxQX6+voCxzk7O+Pq1auwtrbG5MmT0aBBgwpeaeV5+PAhRo4cyfysrq6OZcuWYciQIZW4qtLat28PHR0dODk5YfTo0QI/Z0hPT0e3bt1Qv359ODo6wtraWm6fR8TExGD9+vWYM2cOBgwYINVctra2uHHjBgCgWbNmiIiIwF9//SWLZTJiY2PRv39/qKqqljnO29sbBw4cgLGxMaZNm4a+ffuCxWLJZA0XL16Ej48PZsyYAWtra5nMWZ5Pnz7B2dkZz58/BwB4eHjAyclJ5OP/+ecffP36FWpqali5ciX69esns7WFhoZizZo1GDduHLy8vER+rlpZWeHx48cAABUVFWzYsAG9evWS2brKsnjxYuzevRsA0KhRI0RHR0NLS4u5/fXr1zA0NBR47OrVqxEWFgYAqFu3LmbNmkVbBP0huFxuqS8kqKurQ0GhatZeyfPvcPr8nCruCCGEEEIIIYQQQuTG3d0dBgYGyMnJgY+PD1atWlXZSypFXV0dHA4HBw8exKBBg3Dq1CmB49TU1MBms7Fnzx4MGDAAp0+fruCVVp6tW7eW+HnIkCFibQlSUdTV1ZGamgo/Pz8MGTIEP378EDgGAJKTk7Fo0SIMGzYM379/l8t6LC0t0b9/f8yYMQOurq5IT0+XeC5FRUXm8o4dO2Qe2gFFoUm/fv0QGRlZZtUb/8vGT58+xZYtW/Dz50+pzltQUICzZ8/C1tYWTk5O+Pz5MxYuXIgTJ06Ue+zr16/Ro0cPNG/eXOJ/vXv3ZkI7AFi1ahWOHDkCALh+/TqePXtW5hr4QeeECRNkGtoBgIODA+rVq4fdu3fDzs4OmZmZ5R7z7NkzJrRr164dTp8+LdPQ7sqVK1ixYoXQijj+46GhoYGQkJASoR2Px4O9vT2mT5+Ob9++lTr23r17zOWCgoI/6gsShJD/oa8hEkIIIYQQQgghhMiJiooKvL29ma0ewsPDYWpqis6dO1fyyv5HQ0ODuTxx4kSYm5sLHMf/MFpJSQlBQUFCx/3XPH36tESAoqOjgy5dupR43KoKfihXrVo1LF++HNWqVSs1png1WfPmzRESEoIaNWrIbU2zZs3CjRs3cO7cOVhbW2Pr1q1o3Lix2PPwq06UlJSgq6sr62UCKArkkpOTsWzZMly9epWpfPoVv+KjZs2a2L59e7kVemvXroWzszPU1NSY69LT03H9+nVcvnwZ58+fLxWecrlc+Pr6om7dumjXrp3QuQ0NDbFjxw4cPXoULVq0gIGBAbS0tKCpqQkAePHiBSZOnAigqFpl06ZN5T8QAFM18/jxYwQGBqJnz56YPHky/v77b6Fji4ersqKiooIpU6bA29sbt2/fhoODA3bu3FnmY37gwAEARe9twcHBMg95u3TpgqVLl+L8+fNYvXo1WrZsWeJ2/uNRo0YNGBkZlbjt6tWrSE1NxalTp5CYmIgtW7YwxxcUFDBdqVgsFtatW4eOHTvKdO2EkN8DBXeEEEIIIYQQQgghctSzZ080bdoUr169AgA8evRI7OAuNjYWT548wdy5c2W+vuJtrZydnYW2/ON/UK6uro7BgwfLfB1VVUBAALhcLoCiNmDr16/HhAkT0LFjRzRs2LCSV1cSvxKsc+fOQp9jCgoKUFZWBofDgYmJidDWqLJc06JFizB69GikpKTA0dERMTExJaqQRMHf7YcfSMkD/7XQpk2bMqtj+SGimppaiQCJx+OBzWaXCpU2b96M2NhYjB49Gm/evMH9+/fx5s0bqKmpQV9fHx07dkSjRo3QpEkTNGnSBE2bNoW2trbILfIMDQ0xc+ZMgbdt374dQNHrNyAgQOzQkx82Xr58GVevXkVwcHCp1788ArviLCwssGbNGnz9+hUPHjzAli1bMGXKFIFjs7OzcfToUQDAwoUL5fIaVVFRgZeXFxwdHWFjY4OAgIASj0lZ27/wq3f19PSwZs2aEqHfo0ePkJOTAwAwNTWl0I6QPxi1yiSEEEIIIYQQQgiRM/4eRRoaGujfv79Yxx47dgxz587F1q1bsXz5cpmvTdQP3f/EvcgvXryIa9euASj6sD44OBiNGzeGra0t3N3dS+1HVNmq6u+ybdu2TGvRjx8/IjIyUuw5+OFpRQR3TZs2hYaGBj5//lzmuF+9efMGo0aNwuvXr0tcr6ysjI8fP+Lq1aswMTGBn58fLl26hHv37uHYsWPYuHEj5s6di1GjRqFTp06oVq2aTPa1OnfuHM6fPw+gqPJR2L5qQNH7DJvNLnU9v4oTACIjIwWG9vIO7lRUVDBixAjmZ/5rUpADBw4gMzMTAwcOhJWVldzWxK+cZrPZ8PT0xP3795nbhD0ed+7cQUJCAjQ1NbF58+ZS4frNmzeZy+PHj5fPwgkhvwWquCOEEEIIIYQQQn5TPB4Phbm54BUUgKWkBEV1daHVUkR8ubm5MgtmGjRoABaLhfnz50NNTU3kvb4uX74MLy8vFBYWAiiqnmGxWJg3b55M1gWIHuLIIkj4neTl5cHf35/5edasWWjRogUAwN7eHrGxsfDw8MCGDRuqzGMjLFD6VWW8T4wZMwbnzp0DgBL7qYmKX3FXPEiStV8Dlz179uDLly9YtGhRiSq6soKZ58+fw9raGvPnz8fo0aMB/O811qlTpxIBlDxlZGRg8eLFAAATExOmXaYgUVFRWLp0Kbp27YqQkBDo6OgwtxW/r5XZ4rd3796IiIgAADRq1EjgmIKCAkRGRqJu3bpYsmSJ3NdkZ2eHxMREFBQUYN26ddiyZQsA4c+P4OBgqKioICQkhHkvKe7GjRsAgHr16qFnz55Sr8/MzAzJycnljlNUVIS2tjb09PRgbGyMPn36oF+/fkxLWFlIT0/HkCFDkJ6ejrNnz9LefYSUg4I7QgghhBBCCCHkN5L97j2+Xk7Azxcvkf3mLQqyspjblLS0oNmkMbSbGaGWaU9oNqpabfx+N9++fYOtra1IH3yKytvbG97e3lLNsW3bNrBYLLm0zSzLnxYKr169Gu/evQNQ1O7Uzs6OuU1ZWRmBgYEYNWoUli5dCh8fn8pZ5C9E/R1VRtDYrVs3VKtWDT9+/EDbtm3FPp7D4QCQb3D3a4jt6OiIfv364fXr1wgPD2f2AhQWkPKr23Jzc/H27Vuw2WyoqKiIHKjKCo/Hw7x585iKwRs3bggMin518+ZNjB07FhEREahXrx4A+VfTiapt27ZQU1NDYWEhxo4dK3BMbGwsPn/+jMjISIH7O8par169mOd08S95CHrM4uLicP/+faxduxbdunUrdXteXh5u3boFALC2tpbJa/To0aPIzs7GmjVrEB0dDaBo370NGzbAyMgILBYLBQUFyMjIwIsXL3D27FnExcXh6NGjqFu3LhYvXoxevXpJvQ4A8Pf3F/kLK4QQCu4IIYQQQgghhJDfQnribSQfOozMJ0+FjinIysKPBw/x48FDJB2Mhk5LY9S3HgHdzp0qcKX/HQ0aNEBkZCTOnDkDY2NjNGrUCFpaWtDU1CwVkBQWFkr1Afe3b99Qs2ZNaZdMZOT27dtMO0d9fX2sXLmy1O/c2NgYbm5uCA4OhpKSEubPn18ZS/1tqKioYMGCBXj//n2JEFRUBQUFAEQP7g4ePIiGDRuia9euIp/j17BES0sLEydOxJo1azBx4kTs3r0bWlpaAgPSvLw8XL16FQDg7u4OV1dX5raKDu5WrlyJ8+fPQ1lZGatXr0anTsL/G/DmzRvY2tqisLAQGhoa6N27N1PdCJR8THg8ntwD/A8fPqB27drM3np8KioqmDZtGpo1a4ZWrVqVOo7D4SAkJAQuLi5CKwOPHz8OTU1N9O7dWyZrVVFRgbm5OQ4ePIhRo0Yx1//6GGVnZyMoKAhBQUHo16+fwLlu3ryJ/Px8KCgoiNXiMysrS+h+kVpaWtDS0oKlpSUT3P3zzz+lHh9dXV00adIEAwcOhJ2dHVxcXPDp0ye4uLhg5cqVUu9pevHiRcTGxko1ByF/mqpRx08IIYQQQgghhBCBOJk/8Xzlajz18y8ztBMk88lTPPXzx/OVa8DJ/CmnFf63NWjQAHZ2djAxMcFff/0l9EP7hQsXIiIigtmHSxyZmZkwMzODn58fvn79KotlVwm/6335+fMnvLy8wOVyoa6ujg0bNgit3nFwcECvXr2wY8cOLF26tETg8V+RnZ2NnJwcmcxlYWGBGTNmSBRy84O74i0rhTl48CC8vb3h7OxcYt+w8ggK2MaNGwdVVVU8f/4cgYGBAARXLJ4+fRq5ubno2bNnidAOqNiqte3btyMiIgLKyspYs2YNzM3NoaurK/Tf+vXrmVa8S5cuhaenJ+rXr8/MV/z9TpL3N3FduXIF5ubm2LdvH/M753N0dBRaARYdHY1atWph6tSpAm9PSkrCwoUL4eLiguDg4FJzS8rFxQUzZ84s0QL11/9G3LlzB+7u7kwAduHCBUyYMAFZxSrmL126BKCoMpVf7Vie27dvo2/fvjh79myZ44o//8prjdyqVSum/S+Xy4WPj49UlXJZWVnw9fWV+HhC/lRUcUcIIYQQQgghhFRR2e/e4cniZWBL2V7q66XLyHz0GC19vaFpIHhvICIdJycnWFhY4NKlS1i1ahX09PREPjYhIQF5eXnYuXMnoqOjYWtriylTpogUUAiyfv16TJs2rVJbW7LZbAwZMgTOzs6wt7f/bdps8ng8eHp64v3792CxWPD39y+zxaCCggKCg4MxatQoREVFIT09HStWrJDJ3lCvXr3CixcvpK52kdb58+exfv16BAcHo02bNjKd+8WLF7C1tcX3799FPiYhIQHNmzcXaWxOTg6cnZ2xf/9+GBkZlTteUMBWrVo1mJub49ixY4iOjoa3t7fA4C4mJgY1atTA8uXLS91WUa1Jt23bhhUrVqBmzZpwcHAot9owNjYW169fBwAMHToUQ4YMKTWmeFgnbWWxKFRVVfHlyxf4+PhI1IK2ZcuW5Y6JiIiAoaGh2PsNfv/+vVQ4r6mpidGjR5cIt/Ly8gAUPXbp6elMhWB6ejru3LmDmTNngs1mY/Lkydi8eTO0tLSY8K1fv34iBWUvXrzAlClTkJ2dDTc3N6xduxZ9+/YV6/4I065dO5ibm+PkyZP4+fMnoqOjMXnyZInmWrlyJdhsNpo2bYpXr17JZH2E/AkouCOEEEIIIYQQQqqg7Hfv8GiBb4k97KTBTk/HowU+aL1sCYV3cmBgYABHR0esX78e1tbWiIiIEDlcOHLkCHO5VatW6Nu3r8ShHVBUwbd582Y4OjpKPIe0bt++jYyMDAQEBODSpUsICAhAnTp1Km09otqwYQOzT9m8efNECs10dHSwceNGjBkzBsePH8enT58QEhICXV1dqdair6+PKVOmoHXr1mjYsPL2q7x06RLevXuHsWPHYvr06XB0dJRZENWsWTNs27YNhw8fRps2bdC4cWNUq1YNmpqapcZaW1sjJSUFAwYMwKJFi8qcd+3atdi7dy+AoiDE0NBQpPUIu199+/bFsWPHoKOjAxUVlVJBdEpKCq5du4a1a9cKDO3lHXZxuVwEBgZi27Zt6NChA9asWYOjR4+ib9++mDFjBv79999Sa/7w4QMWL14MAGjUqJHQqih+NR5Q1I5SFqF0WYq/94WEhKBjx44ymffOnTtMNd706dPFDu0A4PDhwwgICBB5/KdPnwTuZ8d39+5dTJ48Ge7u7khJSQEALF68mPm9iIrD4cg8vOvbty9OnjwJALh+/bpEwV1iYiL27NmDVatWYf/+/RTcESIGCu4IIYQQQgghhJAqhpP5E08WL5NZaMdXkJWFJ4uXov3aVVDW0Zbp3KSobeLevXuRmpoKe3t7HDp0CHXr1i3zmC9fviAhIQEAYGhoiLCwMKH7FYnK3t4egwcPRrdu3dC6dWup5pJU8dZt165dw/Dhw7Fjx44yq9cqW3x8PEJCQgAUteQTtA/b7du30bFjx1IhiKGhIcLDwzFp0iTcuXMHI0eORGBgoNC9tkShqqoKa2treHh4YM+ePRW+TxpQ1J7y4sWLAIrCgVWrVuHWrVsIDQ0tt+WeIGw2u1TwY2xsDGNj4zKP43K5SEtLAwA0adKk3FC0eAtCDw8PkYNGYeO6d+8OZWVluLi4ACjdCnHv3r2wtLSEubm5WPPKQkZGBjw8PHDv3j14e3tj/PjxUFBQgIODA2JiYrB06VI8fvwYK1asYI7Jy8vD9OnT8fPnT2hqamLjxo3Q0dEROH/xijsOhyO3+8FXPLjT1taWOgAvPhefpGHgpEmT8Ndff6GgoADGxsaoWbMmtLS0mOf01atX4eDgwDxm9evXx7lz58qdd9WqVczl69evo0aNGgLHvX37FgMHDgRQVOXt4eEh0f0QRfEK1dTUVLGPZ7PZ8Pb2Rt++fTF48GDs379flssj5D+P9rgjhBBCCCGEEEKqmDcRm6VujykMOz0dbyK2yGXuP526ujrGjh0LAPj27ZvAlnm/2rVrFwoKClCtWjWEhoZKHdoBQL169WBubo7Zs2czLdsqEpfLZSo1AKBDhw6IiIio0qHd5cuX4enpCR6Ph3HjxmH27NkCx/n7+2PEiBG4cOFCqds6duyI9evXQ1lZGcnJybC1tcW6deuk2ktr7NixePXqFRMoVrSrV68iIyOD+dnJyQlBQUEShXbBwcFwdnYGm80W+9i0tDQmNGrQoEG54/n7KyoqKorVtlZYwFa9enVERUVhwoQJAm+/e/cu5s+fz/yc9cuXLiRpFctms8t9rK5evYqRI0eiXr16iIuLw4QJE5j7oKioCCcnJwBFlWL8PdQ4HA48PDzw7NkzKCkpYdWqVWjatKnQcxR/D6mI95OKaisqqcGDB2P48OEwMjKCrq4uE9p9/foVnp6eJYLO7OxsJCQklHo+FMfj8RAbGwslJSW0adOGqbwTpHgLTXGe15IoXvUqSWAbEhKCb9++0f52hEioar8TEkIIIYQQQgghf5j0xNv4eilBruf4euky0hNvy/Ucf6qRI0cyH9KfPXsWubm5Qsfm5+dj3759UFRUxKpVq9CokexamE6aNAlv374Vq62brCQmJuLLly8AAGVlZQQGBqJt27YVvg5RJSYmYvr06eBwOHB0dCzzg2ZlZWU8ffoUzs7OsLGxwYMHD0rc3rNnT2zcuBFqamooLCxESEgILC0tS1QgikNHRwcjR45EeHg47t27J9Ec0oiPj2cum5iYwMPDQ2g10Pfv35Geni7wX3h4OCIiInD16lW4ubmJHWZ+/PiRuSxK29Bv374BAGrXri1Wm8qyArYOHTowt/86btu2bUzovnHjRlhaWuLTp08in/dXbDYbbm5umDp1qtDwLj8/H5cuXUJkZCT8/PwEtqLt378/E7JmZmaioKAAs2bNwpkzZ6CoqIjg4GD07t27zLXwwzo9PT25t/wE5N9WVB4KCgrg6emJr1+/Ql9fH7a2tgCKvsTg5+eHrl27Yty4cdi+fXuJIBwAbt68iZSUFAwcOBBGRkZITk4Wep7ie0HKO7j7+fMnc1nYa16YZ8+eYfPmzZgzZw5q164t66UR8kegVpmEEEIIIYQQQkgVknzocMWcJzoGup07Vci5/iR16tRB27Ztcf/+faioqJS5H9TBgwfx/ft3zJ07Fz169Chz3szMTFy4cAHDhw8XaR3Gxsb4+++/sXv3bvTp0wempqZi3Q9pHDx4kLlsY2NTqfuzlefmzZtwdXVFXl4ePD09y93HqXilWf369WFgYFBqjKmpKbZs2QJnZ2dkZWXh5cuXmDJlCjp27Ag7Ozv06dNHrH3CJk6ciF27dsHT0xNHjhyBhoaGyMdKIysrCydOnABQFFR5enqWOT46OhqBgYHlznvhwgWcO3cO/fv3F3ktjx49AlBUjdWyZctyx/Pbav71118in+NXx44dYyr3fnX7dtEXH7KysrB9+3bm+nfv3mHPnj0AAFtbW0RFReGvv/5igr7c3NwSVVOC8Hg8eHt7My0Wp06dipCQkFLPGVVVVcybN6/MuTQ0NNC6dWsoKCjg77//hrOzMxISEqCsrIyAgAAMGjQI79+/R7169YRWUSorK2PmzJmYOHEi1NXVBY6RZQvNiqi44/F4Mp3Ly8sLV69eRf369bFjxw7mdaOtrY3Dhw/Dx8cHsbGxuH37NkJDQ7F9+3amPez+/fuhoKAAR0dHREdHl1lxV7xlpTTPbVG8e/eOuSzKa46vsLAQ8+fPR9euXTFq1Cg5rIyQPwMFd4QQQgghhBBCSBWR/e49Mp88rZBzZT5+guz3H6DZqOqGKlXN2bNnYWZmVm7bOzMzM9y/fx8ODg5Cq0c4HA42b96M4cOHY9KkSWXOl56eDgcHBzx58gRfvnwpN1zimzBhAq5fvw5vb28cP368xB5P8vLz50+mTaampiamTJki93NK6sSJE/D09ISamhrCwsLKrTwC/hfc1atXr8S+VL/q3Lkz9u/fjylTpjAfgN+5cwd37tyBjo4OzM3N0alTJzRv3hxGRkYl9vX6VYMGDdCnTx+cOXMGwcHB8PHxEet+Sur48ePIyckBUNQesE2bNmWOd4WHyd0AAPD1SURBVHBwgJ6eHrhcLoyNjVGrVi1oa2tDRUUF69evx4YNG6CtrY2QkBCYmJiItRZ+ZWPz5s3LbSfLZrOZqqby9pgsS4sWLeDk5IS6deuWmOfhw4fM75TD4TChIt+wYcOYywcPHsTUqVOZ94wtW7ZgyxbxWhVfunQJ06ZNw4YNG8QKfPmWLl2KtLQ0jB49GsnJyahRowY2bNjA7L945MgRREdHw8HBATY2NqXOMX78eABFj+uPHz+gqalZYr/FBw8eICkpCQCE7pMnjt8tuFu2bBmOHj2Khg0bYuvWrahfv36J2zU0NBAcHIz69esjLCwMGRkZ8Pf3R1RUFNLT03Hy5ElYWFigRYsW0NbWZh5LQYoHd6K0jJUGf29LAOjbt6/Ix23duhVv377F0aNH5bEsQv4YFNwRQgghhBBCCCH/Ly/1i0zmUVBRhoqYraXY37/j84mT5Q+Uoc/xJ1F/hIXQ2yW9H1x26eoLJU1NKGlpCjji9zFnzhzUr18fU6dOLbNCbujQoUhLS8PEiRORnZ0tcMzRo0ehpaUFLy8voWMA4MePH3BycsLLly8BAEFBQeBwOHB1dS13vWZmZmjQoAGSkpLg7+8v0p570oqOjmZa67m4uKBmzZpyP6ckoqKi4O/vDyMjI6xbt05g5Zwg/OBOlD3LDA0NceDAAXh6epbYEy8zMxOHDh3CoUOHoKuri1mzZpVbmTJhwgScOXMGu3fvRv/+/fH333+LtF5p8CvHVFVV4eHhIdIx5VWE/vXXX2KHdgCYNqH8sKks/DaZgHTBXdOmTZmqt+JGjhzJXK5RowaCg4PLnauwsBAAMGXKFLi5uQkcM3ToULx8+RLTpk3D9OnTJVx1Sbm5uYiOjsaOHTtQUFCArl27IiAgAPXq1WPGTJs2DU+fPsXSpUuxbds2LF26FN27dy811/v37zF37lw8efIEysrKUFVVBYvFQmZmJjPGyMhI6jXzHyt5Kr4PnTRz8AO4Ll26YP369WW2lJw5cyZycnIQGRmJ9+/fAyh6jSkrK8Pd3R1AUYVeYmKi0Dn4bTTV1dXl2irz1atXiIuLA1DUIlbQ80GQ9+/fY8OGDZg5cyb09fXltj5C/gQU3BFCCCGEEEIIIf/vtlP5YYgodFq3QptlS8Q65nnwamQ+eiyT84vqc/wJfI4/IfR2Wd4P/TGj0XCsjdhrrErU1dXx/PlzzJgxQ6TxO3fuLHdMt27dxF7HmjVrUFBQUO6H+woKCrCxscHKlSsRHR2NoUOH4p9//hH7fKLicrmIjIwEUFQNYmdnJ7dzSSonJwc+Pj44fvw47O3t4e7uLlYVU/FKI1Ho6OggPDwce/fuRUBAAFPBpq+vDx8fH5FbmP79998wNDTE69ev4ePjg6NHj0JNTU2stYjj+vXrePq0qPrX3t6+VBVRRXr16hUTWIjy/C1elVQ8oJKF9PR0PH78v/e3nJwcpKenQ1dXt8zj+EFRWaGULKvAgKKK0qCgICQlJaFevXpwc3ODhYVFqdBZQUEBy5cvh4WFBZKTkzF58mRs3bq1VDhsZGSE6OhopKam4sCBA9i6dWuJLx00bdq03Ja/opBl201hpA3u2Gw2Zs+ejZMnT2LkyJHw9fUV6X1k3rx5ePnyJVgsFhPieXp6Mm0v//rrLzx+/Bg8Hk/glwP4lZ7ybD/85s0buLi4oKCgAHXq1MHq1atFOo7f4rVFixbMHn+EEMlRcEcIIYQQQgghhFQBsv7Qlsge/4PZevXqMXsYVXXW1tZYt24dOBwOFi5ciLi4OLkFPqdOnWLavM2bN0+itn7y9PLlS8yYMQMsFgtRUVElqrc4HI7QPb6KE2WMIGPGjEGvXr2wevVqXLp0CXv27BG7Ymb06NFYvnw5U9Uye/ZsidYiim3btgEAateuDScnJ7mdRxSnTp0CUFTdJkow9OXL/yqnpam4E+TKlSslQh8Oh4MxY8bAycmpRCXer0QJ7mTl5s2bWLVqFe7evYsmTZrAz88PlpaWZb4eq1evjnnz5sHd3R2FhYWIiooSWtVZp04dTJs2DRYWFhg/fjxSU1NRo0YNrFy5UiZtLgsKCqSeQ57n+Pr1K2bMmIE3b95g7dq1GDhwoNCxvz4eioqKCAkJQWpqKnbv3o2WLVti7NixzO0GBgb4+fMn3r17h8aNG5eaj1+pJ4vKxuIKCwvx/PlzHDt2DLt370Zubi46dOiANWvWiLyX3v79+3H37l0cOXKkQtqdEvJfR8EdIYQQQgghhBBSFcigdRepGCwWq8w9yaqSmjVrwszMDCdPnkRycjLCw8OFtuqTBo/HQ1hYGADA1NQU5ubmIh03bNgwfPr0SWbrENRmjr+f4M6dO+Ho6Ih///23VOXctm3b8PTpUzg7O6NFixZC5xe34q64unXrIjAwEFlZWeXu0yaIpaUlgoODweFwsH37dlhZWaFJkyYSr0eYJ0+eMK09vby8oKlZuS1uT58+DQAYMmSISMFpWloac1nWFXfFW54CQLVq1RAYGAh7e3scP34cy5YtE3hOfhVZWYGGNF/e4PF4uHjxIsLCwvD8+XOYmZnBzc0Nf//9t0htXQFg0KBB2LhxI168eIHc3Nxyx+vr62PatGmIjY3FkiVL0LhxYxQWFuLWrVtStXKtiOBO0oq7a9euwdPTEx06dMC6detQq1atUmMyMjJQWFiIDh06YNmyZaVu19TURI0aNXDkyBHs2LGjxO/HwMAALBYLjx49KhXcpaSk4OfPnwCKqhsldezYMZw5c4b5mcfjITs7GzweD5qamujSpQusrKwwcOBAkZ87qampCAoKgqurKwwNDSVeGyHkfyi4I4QQQgghhBBCqgCquPt9/G6/KwsLC5w8WbR/4pYtW2BjYyNyFYWozp49i6dPn0JVVRULFy4U+biIiAi5flCfmJiIFStWoEuXLoiNjRXa0lBFRQVxcXGIj49H79694erqinbt2kl17pSUFIEhjiShHVBUFdW7d2+cPn0aHA4HAQEBCA8Pl2qNgoSEhAAAunfvjsGDB8t8fnE8ePAAT548AQBYWVmJdMznz5+Zy7IM7jIzM5nAo0ePHkhISAAAtG/fHmvWrIGLiwuGDx+OpUuXlqrCYrPZAIoqrmTp+/fvOHjwIOLi4tCoUSPY2tqid+/e0NDQkGg+KysrrFixAgMGDBBpvIWFBUaPHg2gqG2ou7s7Ll++jLVr16J///4SraF4q8yfP38iPT1donl+xQ+9fj2HqMLCwnDx4kWsWbOmzL0W165di6NHj2LOnDlCn3/p6elYtmxZqfcjNTU11K1bF/fu3cOwYcNK3Pbs2TPmcqtWrcReP5+ZmRnmzJnD/JydnQ1ra2twOBx06tQJERERYs+5ePFi1KtXr9Krcwn5L6HgjhBCCCGEEEIIqQJE/WY7qTz8wO53awNmamoKHR0dZGZmIj8/HyEhIfDz85PZ/FwuF+vWrQMATJ06Vaz9l2QdIP7q69evCA8PR82aNcscx6+g5PF4SEhIQO/evaUK7mJiYuDt7Y2goCAMGjRI4nl+NXToUKYC7cKFC7hz5w46duwos/kfPHiAs2fPQk1NDYsXL5bZvJLavn07AKBPnz4ihxX84E5bWxvVqlWT2VpiY2ORl5eH1q1bo1u3bkxwBwC9evWCm5sbVq9eDTc3N3h4eJQIMfjBXVntKiX5QsD379/Rrl072NnZSdzGtTgrKyvk5OQwYVx5+K+btLQ0ODs7M/v/zZ49G1u3bi0z4BKmeJA/depUsY8XRX5+vtjHmJubw8XFpcwxPB4PZ8+eRVZWFnx8fHDs2DFs2bKl1O+9rKq0Jk2a4MKFC6W+AHHv3j3mctu2bcVeP5+GhgYaNGhQ4rp+/fohPj4eCQkJ+PjxI/T19UWeLy4uDhcuXMD+/ftl8hwkhBSh4I4QQgghhBBCCKkKfrMw6E+Uk5MDABJXs1QWZWVlmJmZISYmBkBRqOTh4YHq1avLZP4jR47g+fPnaNGiBRwcHGQyp6yUtf9Ucerq6szlNWvWoF+/fhKfMyYmBl5eXuByuZg9ezYUFBRErmAqT69evaCmpoa8vDwARcGWLIO74OBg8Hg8zJgxQ6wAVh6Sk5OZStHp06eLfBy/9aqs22QePHgQQFGY9Pr1awAlwzYnJydcuHABd+/excqVK9G4cWOmZSz/vUPSaktBbty4AWdnZ5HaWoqLH8RLKj8/H66urti9e7fY+7EVD+4iIyNhYmJSasynT5/E3r/wxo0bsLW1LXUOUYnSAvL27dtITU0FUNRKdP369aVCuzNnzqBLly5CQ+WOHTsiISEBL168QLNmzUrMDQCNGzeW2Xs3n42NDeLj48HlcrF7927MnTtXpOMyMjKwdOlS2NnZoXXr1jJdEyF/OgruCCGEEEIIIYSQ/9dpU6hM5lFQEf9b5y08Z+HZiiD8fPZcJmsQhbZxCzSbKXy/M0nuR/PZM8Fll25DplTJ+2TJAj8s+d2CO6Ao8OEHd2w2G9evXxc51CpLXl4e1q1bB2VlZaxYsUKqPeAqU/EWhvXr1y93fHJyMpo3b17uuIKCAsyaNQtr1qwRed+/sqirq6NLly64fPkyADD/KwsXL17EjRs30L59e9jZ2clsXkkFBQWhoKAAQ4cOFas1YEpKCgCUqiqSxo0bN/DkyRP07t0bZmZmePXqFYCSe6UpKChg0aJFsLS0BI/Hw9atW2Fubo6cnBwUFhYCAHR0dISeQ9yKOxMTE4SHh+P69eto1aoVGjRoAG1t7RIhtCAcDgeTJ0/GixcvAAD29vZwcnLCvn37kJqaihkzZoi8hvICNDU1NZHn4isoKICOjg769OkDAwODUrfn5OTA3t4enTt3xrRp00Su2lVVVYWFhQVGjRqFLl26SLSu8ir1Dh06BKCogn7JkiVQVlZGdnY2c/uDBw/g7u4OfX19bNq0SWBlW9euXQEA586dY4K7rKws3L9/H0BRC1tZ+/vvv9GwYUN8+PAB0dHRcHNzE+l3t3z5cmhra4v1nCGEiOb3/GuKEEIIIYQQQgiRA7U6tSvt3Co1aqBa61YVGtxVa9VS5vdZpUYNmc5XVXC5XCa4K+vD96rq16qVpKQkmcy7adMmpKSkwMPDA8bGxjKZszKIu/dY3bp1ER0dLfJ4WQaaJiYmTGCXk5OD9PR0oXv3iYrNZsPf3x8aGhoICgqS+V5s4kpMTER8fDz09PTg7e0t8nEcDodplSnL4G7dunVQU1Nj1sIP2X4N21q0aIEBAwbgxIkTzD5qxfdWq1WrltBzSNIq08TERGBFWlkWLFjAhHaWlpaYO3cuWCwWxowZg379+sHOzk5gYPargIAAxMbGYs+ePWK1VizP4MGDMXr0aKFtRTU0NBAeHo6xY8ciNjYWkyZNgrOzc7lBU/v27dG+fXuJ15WbmwsHBwcmQCsLj8eDvb290NvfvHmDsWPH4ujRo6Veu+3atYOqqipOnTrFtOa8fv0683ySR3DHYrEwatQorFy5EhkZGTh+/Disra3LPOby5cs4cuQIoqKiJApoCSFlo+COEEIIIYQQQgipImr17IGkg6KHAVKfz7RnhZ3rd5eRkcFcrlOnTuUtREI1a9ZEnTp1mDZustin7+PHj9i8eTNMTEwwefJkqeerTOIGVQoKClKHZZL6tfpMFvtjbtu2De/evcPy5csrvUVmfn4+s7+en58faojxZYCkpCSmuk1W9+PKlStITEzEokWLmICKf47iFXd8Y8eOxYkTJ9C7d28ARfss8pX13iFJcCeutWvXMi0/+/Tpg2XLljHPnxo1aqBfv35YtmwZIiIiypxnw4YN2Lp1KwDAzs4Ou3fvltn7YvHX1a5du6CmpgZLS8sSr9FGjRph3bp1sLOzw8aNGxEbG4vg4GCpgrnyaGtrY8uWLdixYweMjIzQtGlT6OjoQEtLCwoKCjh48CCWLFkCdXV1HD16VODjMW7cODx69AhNmzbF2rVrBb6HqKiooF27drh58yYePHiAtm3bIj4+HkBRaNmjRw+53D8rKyusW7cOHA4Hu3btKje44//+XV1dRZq/eEvX4cOHl/pvUGJiopgrJuS/jYI7QgghhBBCCCGkitA0aASdlsbIfPJU7ufSadUSmo0q9wP638nvHtwBQJMmTZjgThYfcPv5+UFHRwcrV66USRBYmSq7wkwcTZo0YS4bGBiIFWwJkpSUhLCwMFhZWcHKykra5Ult2bJlePHiBVxcXNCnTx+xjn3z5g1zuVGjRlKvhcvlYvXq1Rg4cCDGjh1b4nrgfwFecX///Tc8PT2Z8WlpaQCKwt6ywkRBIaAsbdq0CRs3bgRQ1I5x7dq1pSpB7e3tMWLECJw6dQr9+/cvNQeHw4Gfnx/27dvHXJefn49FixZhzZo1UFVVlXh9hw8fxogRI0pcl5GRgXXr1mHz5s2YMWMGBg4cyASNnTt3hqenJ/z9/fHx40dMmDCB+SKBMNu2bcODBw9gb2+Ptm3bir1GbW1tTJs2rdT1bDabCTudnZ0F/p4fPHiAR48eAQBmzJiBpk2bCj1P7969cfPmTezcuRM+Pj44e/YsgP/tcSkPtWrVgpmZGU6ePInHjx/j/v37aNeundDxgYGB5bYOLc7T0xN37twBUPRcFLXFKSF/qt/7rypCCCGEEEIIIeQ/pr71iPIHyeI8VpYVcp7/iuLBnSzbwlWkzp07AwAsLCzQsWNHqeaKjY3F1atXsXbtWujp6clieUREf/31Fxo0aAAlJSUsXLhQ6vl8fX1haGgIX19fGaxOOsePH8e+ffswYsQIzJw5U+zjnz7935ceRNmDsDxRUVHIzs7GsmXLSlzPD9mEhW2TJ0+G5v/v6/n27VsARRWAZQVb8qy4CwoKwsqVKwEARkZGCA0NFbiWFi1awMLCAgsXLizVTvfTp0+YMGEC9u3bBxaLhR49eiAiIgKXL18WOp+oXr9+jQ0bNpS6nj/nmzdvsGzZshK/XwCwtbVl9oRjs9mlfk+/mjBhAtMWcuLEibh9+7bEay5u586d+PTpExo1agQHBweBY8LCwgAUhe3l7Xc5dOhQKCgoID4+HhEREUy1WnlVcNIaNWoUc3n37t1ljtXT00ODBg1E/lf8+cF/Dyv+jxBSEgV3hBBCCCGEEEJIFaLbuRNqmcqnFRZfLdOe0O3cSa7n+K8p/iF2WZUSVdm4cePg4eEBf39/qeZhs9lYvnw5li5dik6d6HlUGRYtWoTQ0FCp2+adOXMGr1+/RkhISKXvU3Xt2jXMmzcP5ubmWLp0qcRzAEWhQu3a0u3fmZSUhJ07dyIiIgJaWlolbisoKAAAZt+xsvD3kyuvwksewV1ubi7c3d2xefNm5rrWrVuXuj/FzZw5E/n5+ZgxYwbYbDYAICYmBpaWlnjy5AlsbGxw/PhxbNmyBaampjJp1bpnzx6BbSOVlZWZy1u3bkXLli1L3M5iseDj48NU/H7//l3g/Ddv3sS5c+egpKSE4OBgDB06FNevX8e4ceMwdepUqfb8zMzMRHh4OICi/QMF7c334MEDpmpu6tSp5VYo16lTB507dwabzWYCv4YNG8qtTSZfjx49UL9+fQBAXFwc0tPT5Xo+QohwFNwRQgghhBBCCCFVTBPHyVCR0/5ZKrq6aOIouCKACPf69WsARe3uDA0NK3k1ktHV1YWTk1Op9njiys/Ph6OjIywtLWWzMCK2nj17wtTUVOp58vLysHXr1kpv//rw4UNMnToVNjY2WLdundDnaFZWltA5kpKSmFZ83bt3l3pNUVFRWL16tcBqIH5gJ0pwd+PGDQAos4UjIPtWme/evcOYMWMQHx8PTU1NkX/HderUwezZs/H48WN4eXnBwcEBy5Ytw5gxY3D+/HksWbJEpu+Bnz9/xr59+wQGrcVb2GpoaAg83sjICIMGDQIA/PPPPwLHvH//nmmjqqCggBUrVjBjz5w5g+HDh+PMmTMSrX/Dhg3IyMhA7dq1oaCggJ8/f5a4vbCwEIsWLQIAtGnTBkOHDhVp3uHDh5f42cnJSSYhaVn41YhA0Rc0+PshEkIqHu1xRwghhBBCCCGEVDHKOtpo6euNRwt8UFDGB9XiUtLSQktfbyjraMtszj/Fq1evAADGxsZQV1ev5NVULm1tbdjb21f2MogMDB06tMSeefLw6NEjnDp1CgCQnJyMZ8+eoUWLFszt165dg4eHB2bNmoV///1X6DwcDge2trZgs9lo06YNWrduDSMjI2YvO19fXyb8GjhwoNTr9vLyEnqbqBV3r169QnJyMpSUlGBmZlbmWEH75Unq4MGDWLZsGXJycmBmZgZfX1/4+voye1yW599//8X169dx7NgxNG7cGGfOnEG1atVktr7ili1bBjabLTAgFXXvzJkzZ+Lp06eYOnWqwNszMjKQmZnJ/KysrIx169bBysoK79+/R3Z2Ntzd3bF///5SVX3lad++PXg8Hh4+fIhp06aBzWajadOm6NChAzp27IiHDx/i8ePHUFFRgZ+fn0T7gSooKODvv/8W+zhJWFlZYcOGDSgoKMDevXsxefLk334PU0J+R/SqI4QQQgghhBBCqiBNg0ZovWyJzCrvVHR10XrZEmgaNJLJfH+ax48fAwB69+5duQsh5Dfx48cP+Pr6YtSoUWjatCliYmJgbm6OiRMnIjExEUBRC8bVq1dj27ZtZYZ2QFHYEh0djSVLluDdu3dYsmQJJkyYAFNTU5iamiIhIQFAUStbeb9O8/PzARS1t+S3kxTk8OHDAIB+/foJbAVZnCxaZSYlJWHy5MlYsGABateujZCQEISGhuKvv/4Sey5/f380adIEb9++hYuLi8ihnzgiIyOZUFdQFZ+ogZG+vj7i4+OF7j/67du3Um0ftbS0sHr1aqaqj8PhSFRhNnjwYCxYsAB79+7FzZs3ERoaig4dOuD8+fOYO3cudu7cCaBoX7cHDx7g69ev5c6ZkJCAxYsXMz9zuVw4Ojri27dvYq9PXHXq1EGvXr0AFAXtFy5ckMm8xZ/f8tzPkZD/CgruCCGEEEIIIYSQKkrToBHar12FWqY9pZqnlmlPtF+7ikI7CT169AifPn2CgoICLCwsKns5hFRpPB4Phw4dwsCBA7F37164uLhg9erVMDY2RmBgIAYMGAA7Ozvs3LkT2tra2L17N5o3by7y/B07dsTu3bsxe/bsUrdpamoiICBA7hVCqqqqGDduHI4cOQIVFRUcO3YMrq6uJUK87OxsHDx4EEpKSkIrwYrjV9xJUnmXl5eHsLAwDB06FM+ePYOvry+OHz+Ofv36iT0Xn46ODnbs2IHGjRvjzp07GDZsGPbs2SOzlp579uwpsd+moD0AZfV7TEpKwpcvX0pd36pVK9jY2DA/F6/Kk4Sqqip69+4NHx8fDBgwoMRtHz58gI+PD0xNTTFr1iyB6wGK2sZOnz4dHA4HjRo1woQJEwAAb9++xaRJkyTad674c4pfLVqW4o8JP3iUVnJyMnP5/fv3MpmTkP8yCu4IIYQQQgghhJAqTFlHG8093GG8cD50WonXwkunVUsYL5yP5h7u1B5TCqdPnwYAmJmZMW35iGju37+PpUuXUoXFf8DatWtx+fLlMsc8e/YM48aNw/z585Geng5HR0e4ubmVGOPr64vevXvDz88Pe/fuRVpamthrYbFYcHR0hLu7O3Nd8+bNsXv3brRu3Vrs+QDg4sWLuHnzJoCi/b3S09OF/nN1dcX06dNRu3ZtxMTEYM6cOTh37hzTKhEoCjwyMjLw77//olmzZuWenx+IiRKsFD/myJEjGDRoEA4fPox58+bh7NmzGDdunNh7WRYWFuLatWv/x959h0dZpW8cv6ekkkYJNUBooUpRECmuShGxoVhWEZH9sZZlde2iqIi9i6hrZ2VF17ouooIUQRQVQUBAkapAIBBKSCGTMu33R5Ihw8yEeYdJZoDv57r22pk355z3zAQpc+d5jiZNmqQLL7xQ5eXlaty4sf79738rKytLBQUFmjx5si699FLNnz//qAK8mTNnavLkyZ7fF9q0aePVPjXcNm3apK1bt/r92vjx4xUXFydJYTk38sCBAxo3bpxmzJihxMREPfLII/ryyy81YsQIWSwWOZ1OffHFFxo3bpyncrPKihUr9Ne//lU2m029evXS+++/r/vuu8/T+nX9+vW65JJLtGbNmqD2cvDgQeXm5mrWrFmea99//71WrFihgoKCgNWip59+upo1ayZJ+u677/Tmm28qLy9PJSUlQd23vLxchYWFys/P15YtW/TYY48pOzvb8/WHH35YixcvVm5urgoLC33eBwCccQcAAAAAwDGhQe9T1KD3KSretl37vvlWRZs2q3jL715n4FmTklSvXVsld2ivRn86XfVat4rgjo8PLpdLc+bMkcVi8QoJcGSrV6/WuHHjVFRUpJKSEj3yyCMymUyR3lZEzZ49WwcPHtTll18e6a0Y8uyzz+r1119XXFycXn75ZQ0cONBnzJw5c3T77bd7qnsuuugiv1VxFotFzz33nG677TbNnz9fZ599tv785z/rsssuM1R5J0nXXnut9u7dq/79+2vw4MEh//pyOByaOnWqbDabJOmLL77QF198YXidxYsX6+9//7smTpyoV199VS1bttRNN90U1NyqIOxI5+ZJFVWNs2fP1iuvvKImTZpo4sSJGjx4sOEKNafTqWXLlmnOnDmaP3++LBaLxo4dq7vuukuxsbGSKlonfvjhh5o8ebJmzpypX3/9VTfeeKMyMzM1fPhwDR48WF26dPG0nAzG888/73lssVh07733+h1X/fu5d+9ev+fgHcn27ds9od0PP/ygfv36eX09PT1dkyZN0urVq3X++ecbXr+6efPm6ZFHHlFubq569uypp556yvPDHk899ZSuv/563X///VqxYoU2btyon3/+WX379pVU8Wvu7rvvVnl5uYYPH64nn3zSEyg+8cQTys3N1apVq5STk6NRo0bp1ltv1dVXX+35Pvlz4YUXelW6SRVtQ0eNGiVJevzxxzVy5EifeWazWZdeeqlefPFFSdLTTz+tp59+WsOGDdMLL7xwxPfh888/r/GMyK1bt+q6667zPL/xxhuD/u8EOFEQ3AEAAAAAcAyp17qV6l19laSKD2+dJaVyO+wyWWNkSYg/4YORcJs9e7a2bduma665Rh06dIj0dgJyu90htdirmlvF6XQGrPipPu5IVUG//PKL/vrXv6qoqEiS9PHHH8tkMunhhx8+YX+NLliwQHfeeaecTqdiYmJ08cUX+x3ndDqPukLR7XYHVbkVzLipU6fq9ddfl1Rxttv48eP1yiuvaMCAAV7jhg4dqvPPP1+ffvqpOnfurIcffjjgmrGxsXrxxRf1xhtv6KWXXtKMGTM0Y8YMtWzZUqeccoo6d+6szMxMNWjQQA0bNlS9evUUHx+vuLg4r18/VqtVkyZN8nsPp9OpsrIy2Ww2FRQUqKioSAUFBUpLS1OPHj28xlqtVk2fPl3XXXedVq1apSeeeCLg9+dIXC6Xxo0bJ0n65z//qaSkpKDmVX0fajozr7rs7Gy9/vrrat68eVDjCwoKJB2qrKsK6/Ly8tSkSRPdeOONuuyyy/wGQQkJCXryySfVr18/PfXUU9q/f7+2bt2qV155Ra+88ooSExPVpUsXtWvXTi1btlSDBg2UlJQkt9vtqRar7vHHH9fHH3+sxMREXXzxxTr55JP97rn693rq1Kl64oknDJ3Xt3XrVt19992e59dff70eeOABXXLJJV7jLr30Ul166aVBr3u4HTt26OGHH9bXX3+tBg0aaOLEiRo9erRPmNmuXTu9++67evfdd/XEE0/IbrfL7XbrlVde0QsvvKCEhARNnDhRV155pde8hIQEvfHGGxo7dqx++eUX2e12PfXUU3r33Xf1j3/8Q+edd55iYmJ89rVw4cKQX9ONN96oG2+8MaS5I0eO9BsIAgieyU2vAqBOlZeXa+3atT7XTzrppBp/SuZ4ZbfbfUr8u3fv7vcvHAAAAEB1DodDmzZt8rrWoUMHw+3BgEBcLpcuuOACORwOzZw5UwkJCZHeUkA5OTkaPXq0T3VFtLn88sv10EMP1Vl4V1pa6qmiqsk333yjCRMmSJLefvvtgCHt5MmTNXfuXDVr1kyffPJJ0Pv4+eef9Y9//MNTTWU2m/X000/7rfD55JNPdO+994btLLHaEBcX5ze8c7vdevrpp3XJJZeoXbt2Qa2VnZ2tF198UbNnzw6q2iw2NlZxcXGez1Cq/1pyu90qKytTWVmZz1omk0n9+vXTmDFjdNZZZ/ldu6SkRIsWLdK5554b1N79eeGFF/TKK6/o+eef9znnrCbdu3dXWVmZLrnkEq+z38Jhz549GjZsmM9/C8nJybrhhht09dVXe6q7jqSoqEgvvfSS3n333Rq/X7169dKAAQOOqpJqy5YtOv/888P230Jqaqo++eSTkCr3/MnOztYbb7yh//3vf4qLi9Nf/vIXjR07VvXq1Tvi3Ly8PB08eFD33nuvli1bplNPPVWPPfaYWrZsGXBOQUGBxo8fr59++snrekpKigYNGqQrrrhCvXr1OurXhchwuVw+7UgTEhJq/czOUNXm38P5/JyKOwAAAAAAAL9mzpypHTt26IMPPojq0E6SmjdvrhkzZuiDDz5Qp06d1LZtWyUnJyspKSnqKtzcbned7amgoEBjxowJeL6VP2PGjDnimF27dvm03DPC5XJpwoQJiomJ8Ql3Ro4cqfj4eOXk5Khr165q3LixkpOTFR8fH/L9aoO/1ogmk0l33XWXoXVatmypp556Srfffrtmz56tefPmae3atQFDofLy8qCr0qq0bt1azz//vLp0qfmc0ISEhKMK7WbOnKnXX39dzzzzjKHQTpKnYrY2zvtavHixT2h3ySWX6I477lCDBg0MrZWcnKx77rlH48aN03vvvacPP/xQ+/bt83w9LS1NL774ok499dSj3ne7du306KOP6tlnn/W6Ryj69u2rSZMmhSW0W7Nmjd555x198cUX6tSpk+6++25dcMEFSklJCWq+2+3WnDlz9Mwzzyg1NVWPPPKILr300iP+vpiamqq33npLd911l+bMmeO5Xl5erqKiIuXn5x/NywIQRai4A+oYPzHgjYo7AAAAhIqKO9SmXbt26cILL9SDDz54VB/kI/Jyc3M1e/ZsderUSW3atFFSUpLq1asXdYEmDikrK9Mvv/yiLVu2aOvWrcrNzdWBAweUn58vm82mkpISlZaWqry8XHa7/YiVeu+9917AdozhsmjRIt1222168skndfbZZxue36lTJ0nSDTfcEPbzNN1ut8aMGaNly5YpPT1dTz75pE+1ZKjKy8u1ZMkSLVy4UF9//bUmT56sIUOGhGXtKm63W7m5ubLZbIbbyFosFqWnpwdVBVeT3Nxcffrpp/rss88UExOj/v37a8SIEYZbKC9dulRTpkxRdna2rr/+el155ZWGPw90u91688039fzzz+uMM87QY489prS0NENrIPpQcXcIn58T3AF1jt94vBHcAQAAIFQEd6gtbrdbY8eO1Z/+9CfPWVUAopvT6fT8z+VyeQIet9td65Wn8+bN0zPPPKNnn31WJ510kuH5LpdL9957r/76178G3WLUqB07duimm27Syy+/rGbNmtXKPare8+MxFJ8xY4ZatWqlU045JehzC6tbs2aNpkyZIpvNpksvvVTnnXeeEhMTj2pPK1eu9JwFiWMfwd0hfH5Oq0wAAAAAAAAvZWVluuCCC3TppZdGeisAgmSxWPy276wL69at0wcffKD69euHNN9sNuvxxx8P8668ZWRk6KOPPqrVH245HgO7KldffXXIc8vLy/XVV1/p3nvvVfv27cO2p9quIgUQOQR3AAAAAAAA1cTHxxPaAQhauFtb1hYq0iMjNjZWt956a6S3AeAYEp11lgAAAAAAAAAAAMAJhuAOAAAAAAAAAAAAiAIEdwAAAAAAAAAAAEAUILgDAAAAAAAAAAAAogDBHQAAAAAAAAAAABAFCO4AAAAAAAAAAACAKEBwBwAAAAAAAAAAAEQBgjsAAAAAAAAAAAAgChDcAQAAAAAAAAAAAFGA4A4AAAAAcEwymUw+19xudwR2AgAAAJw4XC6XzzV/fzdHaAjuAAAAAADHJLPZ95+0DocjAjsBAAAAThxOp9Pnmr+/myM0vJMAAAAAgGOSyWSS1Wr1ulZcXByh3QAAAAAnhsP/zm21Wqm4CyOCOwAAAADAMSspKcnreVFRUYR2AgAAAJwYDv879+F/J8fRIbgDAAAAAByzUlJSvJ6Xlpbq4MGDEdoNAAAAcHw7ePCgSktLva4d/ndyHB2COwAAAADAMSsxMVEWi8Xr2o4dOwjvAAAAgDA7ePCgduzY4XXNYrEoMTExQjs6PlmPPAQAAAAAgOhkMpmUmpqqvLw8zzW3263s7GzFx8crOTlZ9erVk8VikdnMz64CAAAg+rhcLjmdTq9rDocj4n9/rdpXcXGxioqKfCrtJCk1NZXz7cKM4A4AAAAAcExr3LixHA6HCgsLva6XlpaqtLRUe/fujdDOAAAAgCNzu91yu91e10wmU9QHYikpKWrcuHGkt3Hc4ccNAQAAAADHNJPJpObNm3O2BgAAAFBHUlJS1Lx586gPF49FVNwBAAAAAI55VeGd1WpVQUGBT6shAAAAIJod3oYyISEhQjupmcViUWpqqho3bkxoV0sI7gAAAAAAxwWTyaQmTZqocePGstlsKiws1MGDB+VwOCK9NQAAAOCYZbValZSUpJSUFCUmJhLY1TKCOwAAAADAccVkMqlevXqqV6+epIozQ1wul8+5IQAAAEA0sNvtWrdunde1Nm3aKCYmJkI7qmAymWQ2mwnq6hjBHQAAAADguGYymWSxWCK9DQAAAMAvfz9gZrVaZbUS4ZyIzJHeAAAAAAAAAAAAAACCOwAAAAAAAAAAACAqENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAYI7AAAAAAAAAAAAIAoQ3AEAAAAAAAAAAABRgOAOAAAAAAAAAAAAiAIEdwAAAAAAAAAAAEAUILgDAAAAAAAAAAAAogDBHQAAAAAAAAAAABAFCO4AAAAAAAAAAACAKEBwBwAAAAAAAAAAAEQBgjsAAAAAAAAAAAAgChDcAQAAAAAAAAAAAFGA4A4AAAAAAAAAAACIAgR3AAAAAAAAAAAAQBQguAMAAAAAAAAAAACiAMEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcBfliouLNWjQIO3YsSPSWwEAAAAAAAAAAEAtskZ6AwisrKxM99xzj3bu3BnprdRoxYoVmjVrllasWKGcnByVl5crOTlZzZo1U8+ePXXeeefplFNOCXq9QYMGhfya3377bfXt2zekuQAAAAAAAAAAAJFExV2UcTqdys3N1UcffaRLL71Uc+fOjfSWAtq4caNGjx6tm266SU2aNNHjjz+u+fPna/78+Zo6dar69Omj//73vxo1apT+7//+T/v376/1PXXu3LnW74HoYbPZNGzYMP3444+R3krInE6nRo8erU8++STSWwEAAAAAAAAARBgVd1Hi+uuv14oVK2Sz2eR0OiO9nSNauHChbrvtNnXr1k1z5sxRamqq19ebNWumU089VZdccon+7//+T999951GjRqlDz/80GesP2lpaapfv76hPaWnpyslJcXQHBy7CgsLdeedd2rr1q2R3krIysrK9NBDD2n58uUaOXJk2Ndfv369Zs+erWXLlmnbtm0qKipSTEyMMjIyNHDgQF199dVq3rx52O8LAAAAAAAAAAgNwV2UeOSRR1RWViZJcjgc+u677/Twww/L7XZHeGe+tmzZoltuuUVWq1UvvPBCjUFcVlaWHn74Yd1www3aunWrHnnkET399NNHvEdVJR9Qxe1268CBA9q1a5cWLVqkjz/+WLt27Yr0tgwrKChQbm6ulixZoo8++ki///572O+RnZ2tRx99VIsWLVKfPn104YUXqm3btkpKStLu3bs1bdo0/etf/9L777+vRx99VOeee27Y9wAAAAAAAAAAMI7gLkqkp6d7Pc/MzNSnn36q1atXR2hHgT333HMqKyvTwIED1aBBgyOOP+uss9S+fXtt3rxZn3/+uf7xj3+oZcuWdbBTHA9mzpypiRMnyuVyRWWQHYxly5Zp7NixcrvdcrlctXqvxYsX6/bbb1dsbKxefvllDR482Ovr3bp1U6dOnTR48GDZbDbdfvvtSkhI0FlnnVWr+wIAAAAAAAAAHBnBXRRLTEyM9BZ82Gw2ffPNN5Iku90e9Lx+/fpp8+bNcrlc+uabb3TVVVfV1hZxnBk0aJBmzpzpeV5cXKz333/f61q069atm9d+S0tL9eWXX2ratGlhvc8333yjv//970pLS9O///1vtWvXzu+4mJgYz2OXy6UXX3yR4A4AAAAAAAAAogDBHQzZuXOnysvLJUk//PCD1q9fr06dOh1xXkZGhufxtm3bam1/OP6kpKT4nF140kknaf78+SouLo7QroxJTExUVlaW17Xu3bvr66+/1pYtW8Jyj+3bt+u2226Tw+HQ888/HzC0k6QDBw747A8AAAAAAAAAEHnmSG8Ax5aSkhLPY7vdrueeey6oedWDgargDwiV1WpVWlpapLdx1Bo2bBi2te677z4VFRXpzDPPVO/evWsc26lTJ40bN05ZWVk67bTTNGHChLDtAwAAAAAAAAAQOiruYEirVq0UHx+v0tJSSVJubm5Q86pX+DRv3rxW9gacqBYtWqQff/xRknTxxRcHNeeuu+7SXXfdVZvbAgAAAAAAAAAYRMUdDElLS9MzzzyjHj16qFOnTvrHP/4R1LxffvnF87hjx461tT3ghFR1Vp7ZbNaAAQMivBsAAAAAAAAAQKiouINhQ4cO1dChQ4MeX1xcrCVLlkiS6tevr/79+xu639KlSzV79mytWrVKu3fvVmlpqdLT03XyySfr8ssv16mnnmpoPeB4sm3bNi1fvlyS1K5dOyUlJUV4RwAAAAAAAACAUBHcodZ98sknstlskqSRI0cqJiYmqHlOp1OTJk3Sxx9/LElKSEhQgwYN5HK5tHPnTu3cuVOfffaZLr/8ck2ePFkWi6XWXkNdcDgcMplMkd5GnXM4HEFdO5zb7fYab7fbw7qvuuByuTyPnU5nSK9h7ty5nsdt27Y9Jt8HAAAAAAAA4EQW6mekx6MT9XVXR3CHWnXw4EG99tprkqTGjRvrhhtuCHru/fffr88//1zXX3+9LrroIrVt29bztZ9++kkPPfSQNmzYoA8//FAlJSV65plnwr7/uvTbb79FegtRY926dUccU15e7nn8+++/Kz4+vja3VCuKi4s9j7Ozs7VmzRrDa8ybN8/zOC4uLqQ1AAAAAAAAAESXYD4jxfGJ4A61asqUKdq7d69iYmL07LPPKiUlJah5X3zxhXJzc/X222+rZ8+ePl/v3bu33nvvPV122WXasmWLPvvsM51++ukaMWJEmF8BEN1+//13z+O0tDSfry1evFgbNmxQXl6eYmNjlZKSojZt2ujUU09V9+7dT8gqTwAAAAAAAACIVgR3qDULFy7UO++8I6vVqqeeesrQWXR//PGHHnvsMb+hXZV69epp8uTJuvrqqyVJzz//vM4///xjvmUmEKz9+/d7Ve1VnW9ns9n0r3/9S99//73PnLy8PG3dulWLFi1Sly5ddP311ys9Pb3O9gwAAAAAAAAACIzgDrVi06ZNuuuuuxQbG6spU6ZoyJAhQc/9y1/+on379umSSy454thTTz1VnTp10vr165WTk6MlS5bojDPOOJqtA8eMPXv2eD2Pj49XYWGhHnnkEe3YsUNt27bVsGHD1KVLF6Wmpio/P18//vijPvnkE5WUlGjdunV65JFH9NBDDyk1NTVCrwIAAAAAAAAAUIXgDmGXk5Oj6667Tk6nU6+//rr69etnaH5VBV2wzjzzTK1fv16S9OOPPx6zwV3nzp0VExMT6W3UOYfD4dOvuUuXLrJaa/7tKTY21vO4bdu26t69e63srzbVq1fP87hly5aGX8OOHTu8nmdlZemtt95STk6OJkyYoNGjR/u0whw0aJCuvPJKjRkzRnl5edq7d69mzJih119/PfQXAgAAAAAAACBkoX5Gejyy2+367bffIr2NiDrxvuuoVbt379aYMWNUXFysf//733USpnTp0sXz+Fj+D9pqtZ6QwZ0/wbwX1QOpY/W9M5vNnscWi8XwaygqKvJ6PmfOHP3444+aPHmyrrzyyoDzOnTooOeff15jxoyRJH3//ff68ccfNXDgQEP3BwAAAAAAAFA7jtXPPI+W2+2O9BYiznzkIUBwdu7cqdGjR6u4uFhvv/12nVVAZWRkeB4fOHCgTu4JRAObzeb1/LPPPtOwYcNqDO2q9O3bV0OHDvU8f/vtt8O+PwAAAAAAAACAMQR3CIvs7GyNHj1apaWleuedd9SpU6c6u3f1doOHBxnA8cxut3s9j4mJ0cSJE4OeX/0cySVLligvLy9sewMAAAAAAAAAGEdwh6O2Y8cOXXPNNXI4HJoxY4batWtXp/d3uVyex4mJiXV6byCSDu9xfckll6hp06ZBz+/Tp4+n5ajT6dSqVavCuj8AAAAAAAAAgDEEdzgqubm5Gjt2rMrLyzVjxgy1adPmqNZ79dVX1b9/f1188cXau3dvUHOqV9mlpKQc1f2BY8nhQfXgwYMNzU9KSlLz5s09z9evXx+WfQEAAAAAAAAAQkNwh5AVFBRo3LhxKi4u1vTp05WZmXnEObm5ubrjjjv8fm3FihWaMmWK9u/fr3Xr1um///1vUPvIzc31PG7fvn1Qc4DjQfU2sZJUVlZmeI20tDTPY86IBAAAAAAAAIDIIrhDSMrLyzV+/Hjl5OTozTffDDowW7lypTZu3Oj3a4e36Qs2hNiyZYvncffu3YOaAxwPqoduklRSUmJ4jfj4eM/jUII/AAAAAAAAAJFjs9k0bNgw/fjjj5HeSsicTqdGjx6tTz755Ji+R7gQ3CEkDzzwgFavXq2XXnpJXbt2DXrel19+qVatWvn9WvU2lzExMRoxYkRQa37//feSpNjYWJ155plB7wU41h1+nuS+ffsMr1FeXu55nJSUdNR7AgAAAAAAAFA3CgsLdeutt2rr1q2R3krIysrKNGnSJC1fvvyYvkc4WSO9AdSOnJwcTZ48WcuXL1dGRobuuece9e/fPyxrv/fee/rkk0/0yCOPGFpzzZo1mj9/vsaOHev36/3795fZbJbL5dJ5550XVOvNXbt2ef5jO/fcc30qkIDjWcuWLRUfH6/S0lJJ0u+//254jepVdpwRCQAAAAAAAEQvt9utAwcOaNeuXVq0aJE+/vhj7dq1K9LbMqygoEC5ublasmSJPvroo5A+14yGe9QWgrsoVlhY6Hmcn5+vjIyMoOdOmDBBy5YtkyRt3LhR48eP15w5c9SsWbOj2tPGjRv1+OOPa+TIkbrsssuCmuN2u/XNN9/o7rvvltPpDFhxl5GRoSuuuEL/+c9/lJiYGNTaU6dOlcPhUHJysm6//fagXwdwPDCbzercubOnzeymTZsMr1FQUOB53KJFi7DtDQAAAAAAAEB4zJw5UxMnTpTL5ZLb7Y70dkKybNkyjR07Vm63Wy6X65i9R10guItSubm52rx5s+f5woUL1a1bt6Dn//LLL17PS0pKtHbt2qMO7p588kmVlZVp6dKlOuecc4Kac+DAAeXn53ueBwruJOnuu+/Wrl279Omnn+qiiy5Sjx49Ao6dPn26/ve//yk2NlZPP/20GjduHPTrAI4XQ4YM8QR3a9asUVFRkZKTk4OaW15erj179nie9+rVq1b2CAAAAAAAACB0gwYN0syZMz3Pi4uL9f7773tdi3bdunXz2m9paam+/PJLTZs27Zi6R10guIsSxcXFcjqdKigo0Pr16/XCCy94tbB79dVXVVZWpvPOO09NmzaV1WpVfHy8YmNj/a7XrVs3T8WdVHFmXKdOnY56n1VnaOXk5IS8Rk3BXVxcnP75z39q2rRpGjt2rPr27avBgwerS5cuatSokRwOhzZt2qT3339fixYtUqtWrfTQQw+pX79+Ie8HOJYNGzZMTz/9tCTJ4XDo22+/1bnnnhvU3O3bt3t+QqdZs2Zq2bJlre0TAAAAAAAAQGhSUlJ8jrk56aSTNH/+fBUXF0doV8YkJiYqKyvL61r37t319ddfa8uWLcfMPeqCOdIbQIUbbrhBffr00ZAhQ3TjjTdq48aNXl93Op168803dfHFF6tfv37q06ePPv/884DrPfnkkzrjjDOUmJioNm3aaMqUKTUGZnUlJibmiFV/FotF1113nb766iv16dNHs2fP1nXXXafBgwdrxIgReuyxx5SQkKAnn3xSX3zxBaEdQjZ79mwNHz5cvXv31s0336y8vLxIb8mwli1baujQoZ7n06dPD3ru0qVLPY9HjRoVzm0BAAAAAAAAqEVWq1VpaWmR3sZRa9iw4XFxj3Ci4i5KzJgxI6zrNW/eXK+//npY15SkTz/9NOxrBtKgQQONGzdO48aNq7N74thRvZdzKH2dV65cqdtvv93T6/jLL7/U/v37NWPGDJlMprDtsyZH+xqq3HHHHfr6669lt9u1evVqLVy4UIMGDTrivLlz50qS6tevrz//+c8h3x8AAAAAAAAAEB5U3AE45hx+Nlt2drbhNRYsWOBzQOny5cu1devWo91e0Hbs2OF5HMprqJKZmak77rjD8/y+++7zen/8WbJkiZYtWyaz2axnnnlGqampId8fAAAAAAAAABAeBHcAjjkzZ86Uw+HwPP/ggw9kt9vDsvbhYV5t+e6777Rr1y7P81mzZqmwsDDk9caOHatrr71WkrR//35dc801XsFgdWvWrNFtt92mmJgYPfrooxo4cGDI9wUAAAAAAAAAhA+tMgFEtcLCQu3evVsul0sHDhzQkiVL9Pbbb3uNWbt2rS6//HKNHj1abdq0UVJSkmJiYtSmTZuA6w4ZMkRvvfWWV1CXlZWlzMzMsL8Gm82mHTt2yO12q7CwUD/99JOmTZvmNWbnzp265JJLNHbsWGVlZXkq4A4/TLUmd9xxh3r06KEHH3xQv//+uy688EJdccUV6tevn9LS0rR7924tXLhQn376qTIzM/Xggw+qT58+YX2tAAAAAAAAAIDQEdwBiGoLFizQPffcc8Rx69at08SJEz3PW7RooYULFwYcf/LJJ+vZZ5/VCy+8oNzcXPXp00eTJk2SxWIJy76rW7t2rcaMGXPEcdu3b9dDDz3kdW3Dhg2G7jV06FANHDhQixYt0ty5c7V48WJ9/PHHKikpUaNGjdS1a1c9+eSTGj58uKxW/ggAAAAAAAAAgGjCp7YAotrIkSM1cuTIWln73HPP1bnnnlsra1fXt29fwwHc0UhISKiz1wYAAAAAAAAACB/OuAMAAAAAAAAAAACiAMEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChgjfQGAJzYTCaTGjVqpLi4OJlMJrndbpnN/EwBAAAAAAAAAODEQ3AHIKKsVqtat24d6W0AAAAAAAAAABBxlLUAAAAAAAAAAAAAUYCKOwARVe60a1v+DmUX5KjMUa44a6xapjZX67QMxVpiIr09AAAAAAAAAADqDMEdgIjYvH+r5mxapKXZK2V3OXy+HmO26rSWJ2t4h7PUvmFm3W8QAAAAAAAAAI5zs2fP1osvvqi9e/dqwIABeuCBB9SgQYNIb+uERnAHoE6V2Es1Y/V/tWDLkhrH2V0Ofbttmb7dtkxD2g3U1T0uUUJMfB3tEgAAAAAAAACim9vt9vs4WCtXrtTtt98ul8slSfryyy+1f/9+zZgxQyaTKWz7rMnRvoZouUc4ccYdgDqTZ8vXxPlPHjG0O9yCLUs0cf6TyrPl187GAAAAAAAAAOAYUl5erj179nieZ2dnG15jwYIFntCuyvLly7V169aj3V7QduzY4XkcymuIlnuEE8EdgDpRYi/Vw19P1c6i3SHN31m0Ww8vnqoSe2mYdwYAAAAAAAAAx5aZM2fK4Th0BNEHH3wgu90elrUPD/Nqy3fffaddu3Z5ns+aNUuFhYXH3D3CjVaZAOrEjNX/DTm0q7KzcLfeWf2Jru09Kky7AgAAAAAAAIDoVlhYqN27d8vlcunAgQNasmSJ3n77ba8xa9eu1eWXX67Ro0erTZs2SkpKUkxMjNq0aRNw3SFDhuitt97yCuqysrKUmZkZ9tdgs9m0Y8cOud1uFRYW6qefftK0adO8xuzcuVNXXHGFhgwZooyMDCUlJUmSWrZsGdZ7XHLJJRo7dqyysrKUmpoqqeJ1RwuT+1ho6AkcR8rLy7V27Vqf6yeddJJiY2MjsKPat3n/Vk1c8GTY1ntsyAS1b5gZtvUAAAAAAAAAIFLsdrvWrFnjda179+6KiYmRJH3yySe65557DK/bokULLVy4sMYxs2fP1gsvvKDc3Fz16dNHkyZNUkZGhuF7HcmPP/6oMWPGhDT3P//5T1Cfnx/NPTZs2BDSvNpAcAfUsRMxuHtx6Vv6dtuysK13eutTddNpf5EkOV1OrchZK7PJJLPJIovZrPrxqWqV1sJnntPl1J7i/bKYzDKbzbKYLLKYLbKYzEqwxstspnswAAAAAAAAgLp1pODuRHIifn5+OFplAqhV5U67lmavDOuaS7NX6vo+oxVriZHFbNEn6+bo9wPbPV+vHuxVl19aqJtnP+B3zRfOfVBNkxv7XP/Xig/07bYfZa4M+CyV4eCpGb00puclPuMLS4v0/A/TZDGbK4JEk9kTDo7tdZnSElJ95vyQvUK/5233mdMqtblObn6Sz/gyR7lW5KyVxWyuCCFNFlnNFplNZmU1bKNYq+8fYAWlhSpz2itfg1lms0VWk0VWi1WxlhPvLwAAAAAAAAAAEI0I7gDUqm35O2R3OY480AC7y6Ht+Ts97TLbNmjlFdxZTBa/85zuwIeqms3+55Q4SlVsL/G5XlR20O/4Ume5ftnjv6x6VPeL/F5flfOrvt76g8/1P7Xu6ze4Kywr0vM/vOl3rZfOe1iNkxr5XH93zUx9/Yf/e9x42lif6/tsebrzy0d8AkuLyaL7z7pZjRIb+MyZtX6e1uau9wksuzTuoLPbn+Ezvrjcpk/Xz5O5MkysGF9xn0FtBigxNsFnzpa8bdpvO1Axp3I/ZpNZ9RNS1SKlqc94p8up/SX5PoGl2WxWrCVGZhNVlgAAAAAAAACiB8EdgFqVXZBTK+tuLzgU3KUnNvT6WqCWl06XM+B6lgABTqCwL9B4Vw33CLgvt/85lgBhYs0BZKB9+Z9T03vlL7CUJAVosLw9P0erd//mcz3WEquz2/uOLy63aeZvc/2u1Tejl9/gbs6mRfpm648+18/IPE1/73uNz/X9Jfm68fP7/N7jpfMfUeN6DX2uv7niPS3NXlkRCprNnqCvb0Yvv+FrfkmB/rnsbU8wWD20vKbnpUqJT/aZszR7pbbm7/AJLFumNlePpl18xpc6yrRm929egWXVPdo2aO23arKo7KDsTkdlW9jq96mo0AQAAAAAAAAQfQjuANSqMkd57azrPLRujMX7t7LAIZzx4C5QEBeoQq+mUM1qsBIwlHAwULWhI1A4GFJ1orH3N/D4wPcItK9AAWSgkLPm98r/vmz2UhX6qagsLC3yO77UUabVu9f5/dqV3Uf4vb5852q/5z6e1aa/3+Auv7RQz3z3mt+1Xj7/UTWq51sB+e9VH+ubbb4h55lt+mn8qb6H9O4p3q+J85/wCSwtJovuP/Nm1ffT5nXW+vlat2ejT2DZtXGWBrUd4DP+YFmxvti4sLItrLmyxWvFnDPb9FNCTLzPnN/ztutAaUFlW9hD90hLSFXTpHSf8U6XUwWlRb6BZeVjk8nk930EAAAAAAAAogHBHYBaFefnvLWwrGs5tK7d6d2K02joIxkP4gKGgzVW3BnbV6DAyxFCGBUw8DI4vqY5ht+rGoJUo2FfoHsECixrmhPOsNZoMBpSWBtwX8bCWofL4TewlCR3gDLLPw5s18pdv/hcj7HE+A3uCssP6r/rZvtdq29GL7/B3ecbFmjJ9uU+1we16a8bTr3a5/re4v36R4CzLF+94HE1SEzzuf7mive0fOdqr4DPYjKrb8uTdXm3833G55Xk6/Wf/uPTRtZsNmtMj0uUFFfPZ87S7JXaUbirsjXsoYrJlqnN1a1JR5/xpY4y/bpnoyew9IScZrPapLWU1eL7V7jicpscLsdh4WvFfQgsAQAAAAAAjg0EdwBqVcvU5rWybqvUFp7HhWVFSrDGy+l2yul2hdRiMmzVcDWGOMbCpYABZJ1Uwxmv6jNeDRdCOBggwIrWsNZoMBpadWKYgtQ6aSUbyq9dY7+uQqkWPVhWrAMlBT7XO5YW+h1fYi/Vypy1fr925Un+qyyXZq/U99krfK4PaTvQb3CXZzugJ7992e9ar174uBokpPlcf3PFe/pu+08+1we3Hajr+1zlc333wb16YOGzPoGl2WzR/Wf8w2+b11nr52vDvi0+lZld07N0RpvTfMYXlh3UvM3fVK5/KLQ0m8z6U2ZfxVvjfOZsPZCt/NKiyvFmT2CZGp/it72t0+XUwfJiAksAAAAAAHBcILgDUKtap2UoxmyV3eU48uAgxZitapV2KLi7ptdluqbXZUec1zK1uV694HE53E65XBUhn9PllMvt8vvhsSRd3HmYzsjsK6fLJZfbKafLJafbpYyUpn7Hp8Qna2SX4XJVru10u+RyueR0OxXj5xwySWqTliG7s9yzdtXe0v20P6xgUnJc0qHXUG2O8QqvAONrCtXCVuFlPBwMbzvOMIVRNd0jTO9VTd8Po2c6Bh4fxtalBr9/Uk3hudH3yngAGTg8r/2QM5Rfu4Z/0CBQ9a7T4TewlAJXWW7O26rlO1f7XI8xW/0Hd6VF+vCXz/yudWpGT7+/9/7vt7n6wV/I2e50Xdd7lM/1XQf36LY5D/m9x+sXPqE0P21e31zxnlbl/CKz2VKtLaxZ/Vqeoou7nOMzfr/tgN5a+aHfFqyje45UYozvmZw/7lilnMJcn8CyVWpzdUr3Pfiz1F6q9ft+9wSWVfcwm8xqldbC79mUNnuJXJW/93uCVwJLAAAAAACOaQR3AGpVrCVGp7U82e95XqE6reXJig0QgtXEarb4bZNXkw4N2xga3yAhTVecdKGhOZf5acVXk8z6GZp20dM+191u/x+0S9L4Pler1FnuE1gmxyX5Hd84qaFuH3CdT2DpqiGAPC3jZGWkNPMKEp1ul7Ia+X8P42Pi1KNpZ5/A0ul2Bgy84qxxqheT4CewDGc1XIAQJ6RWmbXfVjRcYa0rpNalBt+rEALI8FYnGg0gjYe1RvcVMIQL43sVzvA8nGGt0V/vIbX2DfBrsaC0SHtteT7XOzZq53d8cblNy3b+7PdrVwQ4y3LJtuX6cccqn+tnt/+T3+Bury1Pj33zot+13hjxpFLjU3yuv7rsHS3dsdLn+rD2Z2jcKVf4XM8pytWjX7/gcy6lxWTRvWfc5LfN62frF2hT3h8+gWXXJlka0KqPz/jC0iIt/OP7yraw1eaYzRrYqo9i/bTQ3pa/Q0VlBz3VlVWBZWp8shom1vcZ73Q5VeIoJbAEAAAAAByXCO4A1LrhHc4Ka3A3vMNZYVvreFLTB5Yp8cny/cg3sKTYeuqb0cvQ/f1V29SkeXIT3XvGPwzNuaXfOJ9rbrc7YHVQ67QWeum8hz2BoKsyJHS6nH4/PJakizoP058qqyydbmdl9aRLratVeVaXGp+sEZ3O9gksXS6nrGb/f8y2Tm2hMkeZZ+2qvTXw8wF1lcTKwLLqHlXhkfEAMnwVXoECrED3qLmVrNGKu1DOmTRaDRe+trtGz06sKUgNGMQZDbzCGNbWSSVnOM+ZDNh2N3xtkMNa6Wy0CjnAnuxOu9/AsiYb9m/Rsh0/+1y3Wqx+g7sDpQX6z5qZftfq06KH3997P/r1C7/3CBRA7izcrTvmPuJz3Wwy6/URTyrFzw+lvPnTe1qT+5t32Gc2q3/L3rqg0xCf8fuK8zRj9SeecVWBpdls1ujuFyvez5mcy3b8rN0H9/oElhkpzZTVqK3P+FJ7qTbnbZXZZKk8x/JQmNoipanfX/OljjLJ7fZUi5pMJgJLAAAAADjOENwBqHXtG2ZqSLuBWrBlyVGvNbTd6WrfMPPoN4Xjhslkkkn+P7SMscSocVIjQ+v5q4SpSaPEBrqqx8WG5lwZoEInkHYNWmv6yOe8rrndbrncroAf0P/t1DEqdZT5BJZpfqp2JKlpUrpu6TfOJ7B0ugMHkKe26KkWyU19gtF2DVr7HR9vjVPXxlk+gWVNVZNWs1Vx1jjfwDJg4GU8YAkUYPlrTSgdKRwMz9mJNVfDGQtrQwkgjZ6xGd5WsuE7n7EuwlrD4XkIQWr43qvwtd0NZwBptOo10Ot2uV0Bw/O80gLtPrjX53rHhr6BmiQdLC/227JVCnyW5ddbl+onP61kh3c4y29wt/vgPj309VS/a/3r4meUFOtbAfni0rd82tVaTGad0+EsXdPrUp/xOwt368lvX/YJLC0miyaecaPfNq+frV+gPw5s9zkzsmvjLJ3W8mSf8QWlhfpm67JqbWErz6Y0mdW/1Sl+K/W35+9Usd3mqa6s2ltKXJLf9rYul0vlznICSwAAAAAnBII7AHXi6h6X6Lc9m7WzaHfIa7RIaarRPUaGcVfAsctkMgX8EFyS6vv54LMmyXFJ6t+qt6E5g9sNNDQ+I7WZHjjrVkNz7hx4g9fzqsAykMy0DD1/7mTP2ZIV7V5rbsE6otMwnd66r/fZlG6X2tRv6Xd8WkKqzs8a7FvJ6XYGDBpapjZXmaPM69xLp9sVMEiVpDhLrGfd6q1wwxUO1hywGJtj9DzHmu9hrAVrOMPa0MJBo2cO1n44GHhPIbRHDWNlrdEgNXDbXeNhbXiD7ToIaw20Qa5pr2WOcr+BZU3W7d2oFTlrfa5bzVa/wd1+W75mrP6v37X6tOjhN7h7f+0s/ZSzxuf6uVmDNNbPucXbCnZqwrzHvK5VhJAWvX7hE6oXm+gz582f3tOvezd6wkSLJ0zsreFZvt0b9hTv1/trZ1W2jzUfailrMmtU94v8Vosu37lae4v3+wSWLVObqa2fH2IptZfqj/xsnzavFrNFzZIa+/31a3faK15vZVUmAAAAjk8mk0mNGjVSXFycTCaT3G53wH/f4PhHcAegTiTExOv+M2/Ww4unameh8fCuRUpT3X/GzUrw05oKwInjSIFlrDVWzZObGFqzW5OOhsY3rtdQY/xUttRkTM9LDI3PatRWMy49VInjcrvkcrvlcgUOB/926tUqtZf5BJb1E9L8jm+WnK4b+471CSydLmfAfxz0adFDzVOaeIWVLlfgkDPOEqdOjdr5BJYuV+BqUYvZLKvZ6htYhvMMyIABZPhaZQYMB0NoKxqNYW0o34/AbXdrP6wNb9tdY9+POgkHQ3qvojCsNfD9cLpdcjoDV2zvs+X5/TtnBz/Vj5JUVHZQSwK0dg90fvFXW5Zo5a5ffK6fnzXYb3CXU5SrBxY+53Ndkv49cooSzL5/z332+ze0sjJINclUWTFp1rlZgzSq+0U+47MLcvTc92/4BJZms0X3/OnvirfG+cz5fMMCbcvf6XXupdlsVrfGWerdoofP+ILSQn23/SevALIqWDyt5cl+K9Z3FOySzV7iE1gmx9ZTSnyyz/iqP4+q9gIAAHC8s1qtat3afwcjnHgI7gDUmQaJaXpsyATNWP1fQ20zh7Y7XaN7jCS0A3DCMpvMMpskBfhwXqpo22pEanyK/pTZ19CcYR3OMDQ+s36GHhp8h6E59/zpRs/j6oFloLZ4beu31rPn3F8ZVlaeM1kZEgaaM6Lz2Tq99amVYaWzcrxL7Rtk+h2fFp+iczqc6RNYOtzOgAFWi+RmlUHqoXMvnW6XUuJ8P6CWJLdcspgtfgMKc4DXYTxgCd+5hoFbyYbSjtNYOFhzK9noC2utEQxrQ2m7G86w1niwHUIAWSdtd6MjrHXLXfGDFnIGfE/KHOUBf0guUGvxtbnrtWrXrz7XrWaL3+Bub3Gepq/6yO9avVt09/v7w4zVn2iVn5Dzgo5DdLWfH275PW+7Ji540rPvqsDSYrLotQsf93vO5Js/vacN+7ZUawtb8f8DWvXR0Pan+4zPPbhX//11jtfaVY+vOOlCv9WiP+1co/22Az6BZUZKM2XWz/AZX2ov1faCnMpzLKvC1Iq9Na7X0O9/V87KP/OosAQAADhxEdwBqFMJMfG6rvdVGtRmgOZsWqSl2Stldzl8xsVUtmMa3uEszrQDgBNUMIFlnDVWLVObG1q3R9MuhsY3TW6s/zv5z4bm/N8pxsZ3Tu+g9y57SVJlYFntbMpAH97e0Ge0SuylnnGuypCwUWJ9v+ObJTfR3/pc7RNYumoIIHs3767myU18qiZbpbbwOz7eGqv2DTJ92si63G7DH0KH0mIyUFgbMGAx0JLy0ByjgZexSsOKOQFeR8CKu9oPa8N5rmHAIDXg9yOUsNZg1Ws4A8iQzpk0GkCGs0VxdIe11QNLyR7wvcot3qdtBTt9rvs7Y1KSCkqL9PXWH/x+7c8BqiznbV6sn3ev87k+otPZfoO77QU5uu+rp/2u9c4lU/22YH3y25f18+51ni4DVWdTnpc1SJd3u8Bn/Lb8HXpp6XSfwNJiNuvu0//uN4D8fMNX2lG4q/Icy0PnU3ZtnKVezbr5jM8vLdSyHas8VZbmyvUtJotObdHT7+8nOYW7Veoo8wksk2IT/Z7h6Xa75ZbxPysAADhelDvt2pa/Q9kFOSpzlHv+rds6LUOxfv48x/GN4A5ARLRvmKmbGv5F1/cZre35O7W9YKfKnOWKs8SqVWoLtUprwR9KAIATktlkltliPuJf1JskpRtat35Cqs5q29/QnPM6DjY0vm2D1nps6ARDcyaddYukwwJLtzNga812DTL11NkTfQJLZw2VmRd2GqrTW/fxVGO6KiszOwb4QL9+fIqGtjvdJ7B0u90B79EsuYlKHKVer8HpcirJz/lrUuBApqZKm3AFkCYFvke4KjmrqqSM7CtwK9k6CGtrCtUMn/sZyrmG4fl+hFT1GsGwti7a7hr9tS6F0HY3pFayNf9363a75XA75JAkZ+AK2hJ7md/AUpJMAV7Hz7t+1Zrc33z3ZDL7De72HNynN1e873et/1z6oszyvc+/Vn7o9x4XdR7mt83rpv1/6L6vnvYJLC0mi1698HG//zZ886f3tDlvq08F5IBWfTTIz593uw/u1ae/zfNau+J8SrP+3O0Cv0Hyypy1yispqKyaPBRYtkhp6vcHh0rtpcopyq3ck8WrorNhYn2/v2fV9GcLAOD4t3n/Voob4IPgDkBExVpi1L5hJn/wAABwggs2sEyIiVdmgHMVAzml+UmGxjdPaapre48yNOf6PlcZGn9Sk0764PKX5Xa7vc5/dNQQWPytz2jZ7KWeMyyrzrNsnNTI/+tIbqLreo/yCSxrChNObnaSmiU19mrz6nA7lZHSzO/4WEus2qS19GojW1PoIgU+q89oYGkxmQN+2B3wPECDIY65hnsYr4YL4R4B3ytjFXc1hbXhrOQ0+l6F0nY38HsVvlay4aqsrbl612Ab5HBW7xoMa2t8rwwGwkcKaw8PLCv25X9OTlGufj+w3ed6hwD/tswvKdBXv/s/suHPfqoZJemLjQu1Nne9z/WRXc7RFSeN8Lm+NX+HJi181u9a/7nsJb/B8yOLX9AvezZUVkBWnTVp1vkdh+jiLuf43uNAtl5d/o5PYGkxmTXh9PF+A8gvNnylXQf3eJ17aTFVVFl2b9rZZ3x+SYFW5Kz1BJBVAafFbNEpzU/y+33cXbRHZc5yn8AyMTZBiTEJft8TADiRldhLgzpOyO5y6Ntty/TttmUa0m6gru5xCccJnQAI7gAAAAAgAkwmU0WFncwKps9A85SmhtZvmFhfQ9r5nu1VkxGdzzY0PqtRWz05bKKhOQ8NvsNvYBmo20KHBm302JAJPoFlTQHkBZ2GakBJviesrKqA7NK4g9/xafEpGtSmv8+5lIHOhZOkJkmNKtvVHgosnS5XwA+ojQZLFXPC044zULgi1RwoGhlvMVsMB6mGKz9DCDmNnp0YWlhrLBStsbLW4OsIqXo3TGFtSNW7obSSNRzqh7MNstHwPLSw1u12y+52SNUqLewuu9/xNnuJ38BSChxs/5SzRr/u2ehnT2a/wV1O0R699tO7ftd6//J/+r3++k//0S97NvhcH9lluK7w0372t72bNHnRFJ/A0my26LULHvf7+9abK97T1gM7DgWJlaHigFZ9/J7dvLtojz7f+JVPYGkxm3Vp1/P8ft9X7fpFBaVFPoFli+Qmfv8cLrWXKrd436GQs1pFZ1p8CtWUAPzKs+Xr4a+nameR/7OJA1mwZYl+27NZ9595sxokptXO5hAVCO4ARJTD4dDOnTsVGxsrs9ksl8ulxo0by2IJfJ4RAAAAjl1GA8vE2ATD3RlOzehpaHyrtBa64dSrDc25se9YQ+N7NO2s9y57ySsYdFb+fyDX9xmtEkdpZVhZNcel5smN/Y5vkdJE/3fyn30Cy5r0atZNzZIb+7R5bZ7cxO/4OEvFeSvV28i6XK6QwkGjFV6B2kvWdA+j7ThrClIDVnIaDAcDtfus2Fd4Aq9A721N9zDcprem73nAVrLG3quQKmsDVnIGDpCjMaw13Aa5hnuEtQ1ymP6bcrr8B5ZS4AAyu2CXNu7/3ed6uwaZfsfvL8nXvM3f+P3aZV3P93v909/mad3eTT7XL+16ni7v5jvn9wPbNXnRFL9rvX/5P/3+AMjDX0/V+n1bvMJKi8msCzoO1QWdhvjeI2+7pq18/1DL1mqh4p0Db/D7PZm9caH2HNznFVaaTRZ1a5ylLo2zfMbnlxRo9e7fPOM8Z1OaLOrVrKvf78meg/tU7rL7BJYJMfGKt8b5fU8AVFTahRLaVdlZtFsPL56qx4ZMoPLuOEZwByCi3G639u3b53WtUaNGBHcAAAA4rnjO7pJFCvIs51ZpLQzdI71eQ53T4UxDcy7teq6h8Z3S2+vZc+43NOfhwXd4B5aVoWWgD3azGrWpmOMVWDrlruEe53ccrAMlBRX38YSiTnVq1M7v+PrxqfpTZl+fwLKmwKtRvYayVVZZVq8WDfQ6AgdeNYRqYaqGqzmANFipFkq1qNGzEwO11qzhvQrUWjgaw9pQgtSwhrWGz5k8tsLawG13az+sDfSDBjUFqXanveJ/h10vc5b7HV9st2nT/j9871FDkPrjjlX6be9mn+tmk8lvcLejcJf+uezffu/xwZ9f9nuPfy57W7/5CTkv63qeLvMTcv66Z6Me++Yln8DSYrLo5Qse9fs9eXPFe8ou2OUVPlpMZg1s3Uf9W/X2Gb+raI/mbvraJ7C0mMy6JMCfdz/vWqeD5Qd9AsvmKU3U1M+Z0qWOMu23HTjsNVQ8TolL8nsPoLoZq/8bcmhXZWfhbr2z+hPD7f1x7CC4AwAAAAAAtcZiNhZYJsXWU8cAgVsg/j7ArUlm/ZaGqyZv7f9XQ+N7Neuqdy6Z6nUGpKPyvMlAbugzWjZ7iae6siq4DHTOZIuUprqm56U+gWWgD/MlqUezLmqanO4VPrpcTjUJcF5mrCVGzZOb+ISvsebAHykFDAcDnYlnsC1sjfcwGECGt5LTWHglGX+vQglrA7+/tR/WGg1Sw/n9MNqyVQpf2906CWtr/CGAughrjVe9+gssawprtx3YoQ1+qyxb+x2/t3i/Zm9a5HPdXENw9991s7Vh3xaf63/udoHfOZv2/6GHv57qc91kMumDy/2HnA9//bw279/mdf6j2WzWhR2HanjWWT7jt+Rt09s//9cnfLSarbptwLV+7zFn4yLts+V5nXtpMVvUJT1LndJ9/0zNLynQL3s2VoaVlXMqH/troStJ+4rz5HA7vV6DxWRWnDUuYMtzeNu8f+sRz7QL1vwt3+qsNv0Nd6bAsYHgDgAAAAAAIMzMJrNirbGG5mTWb2lofJOkdJ3XcbChOf7OG6tJtyYd9fy5kw3NeXjInZ4Q8VA4GPgMyI6N2mnyWbd6BZYOl7PG88HO6zhY+aUFlW1hD4WWHQJ8gFk/IVUDWvX2BJZVVZbWGj5sbpBYX8X2Ep/2tvEBvq+hBJCBAy+jrWRDqIA0HA4aDyADV8PVfiVnaG13jQaQxl9HnYS1Rqtew/prt/bD2lAqOQMJV9vdmv77KLWXqcRR6nvdUeZ3fFFZsd9qxprC2iXbl/utzLzipAv9BnfbCnbqhaX/8nuP9y57ye89pv4wzW+QesVJF2pkl+E+13/JXa+nl7zmE1jGmmM09bwH/d5j2or3lVO02xNWVlU1DmzdR30zevmMzyncrYV/fO/TRtZqturCTkP93mPN7t9UbLf5BJZNkxurcb2GPuNLHWXKLy30CSwtJosSY/3/uRbIHD/B8tGYs2mRbmr4l7CuiehAcAcAAAAAAICwibXEBF1hKUnJcUl+2/fV5E+ZfQ2Nb9egtW7uN87QnLsG3mBo/CnNT9L0kc95nQHpdDnldgdu9Hpd76tks5dUVExWjne5XQFb5bZMba7RPS72BJZVIWeggEySujftrKZJjb325HI71Sixgd/xMZYYNanXyKta1Ol2KaGGc8vqphrOaOAVxlDN6BmFoQSpBs81DK0azmgAGUK1aETb7hqvrDXedjeU11H7YW3dhOfGvuflToffwDKmhj8ftuRt0+a8rT7XA1VZ5hbv06z1833vUUNw98HaWdrk5x6jul+kizoP87m+fu8WPfbNi37v8e5lvtelirMs/ziQrbb1W+m+M/8hSSp32rU0e6Xf8aFamr1S1/cZTcXjcYjgDgAAAAAAADhKFrNFiWZj1RdGW5w1S26sCzudbWjO6B4jDY3v0bSLXjz/YUNzKs6ldHqFg063S0mxiX7Hd2zUVved8Q+vwNLpdsqkwFWW52adpfzSwsq2sIeqJtvWb+V3fFp8ik7LONknsIy1BK6ETUtIVbG9xKdaNNCcQOGgNZRWmWGs8DLc5jWkADJMQWoYW8mGt+1u7b9XgSprQ2m7a7R6N5TK2ro4h9VwJWcorWQN/6CB8WrR4nKbDpYXe7Wh3pa/Q3aXI+CcUNhdDm3P30m7zOMQwR0AAAAAAACAkCXExBsanxqfou5NUwzNGdR2gKHxWY3a6rZGbQ3NufeMmwyN7928u6Zd9LTPmZGBayyl63qPqjjL0lV5NqXbKafLpbYN/AeQGanNdMVJF/oEljVVLXVr3FFNktJ92rw2TKzvd3yMJUYNE+t7VYu6XC4lWAN/X41XwxkPcYxXw4USFIWrHWdNAaT/fQWuhgtfWBvotYfWdjdM536GsXIwpOrdML1XwdwjvVrrzeyCnIDjj8b2AoK74xHBHQAAAAAAAAAYZLVYlWxJMjSnYyPf88ZqkpHSTBldmhma85eTLzc0/pTmJ+mU5icZmvPw4DvkcDm9zox0ul1KjUv2O75To/a6509/9wSWjsoKyEAVYZI0vMOZKigt8gofXS6nMtMy/I6vH5+q3i16+ASWNQXLKXFJqh+f6vUanG5X4FAt4JmR4azwqouzE+ugdWkdVMOFdHaiwXMNj+bsxOq/jsoc5QHHH40yZ+2si8giuAMAAAAAAAAABC0ptp6h8fUTUlU/IdXQnLPbn2FofKf09uqU3t7QnMmDbjM0vk+Lnnr9wic8AV9Vm9eaXNt7lErsJZXjK86mdLpc6hCgSiojpZku63pe5TmWlSGny6m4Gs6Z7Ny4gxonNfKce1lVoZkW7/89t5qtSotP8YShVa+npkpO4+FgKJWDYQoHw9mOM5RwsDLsq16tF2cN3Kb3aMTV0P4Xxy6COwAAAAAAAAAAjiDWEqNYgwFk18ZZhsa3SmuhVmktDM25rvcoQ+NPzeipUzN6Gprz0ODb5fCqZqyouAwUyHZO76C7Bt7gCSyr5sRYAkcSw9qfocKyomrjKyo6W6b6rzpNi09Rr2bdfALLQOdrSlJSTKKS45LkcjnlqBZcBj7XMPR2nHuL93uutUxtHnD80WiVauzXCo4NBHcAAAAAAAAAACCg1Hhj51I2TKwf8FzFQM7NGmRofLcmHdWtSUdDcx4dOsHQ+L4ZvdSlcYdq51hWhIkmmQLO+espV6jEXurVprV1WoZizFbZXQ5D969JjNlqOOTFsYHgDgAAAAAAAAAA4DBx1ljFWRsYmtOjaRefa7GWGJ3W8mR9u21ZuLam01qerNga2pvi2BW4nhMAAAAAAAAAAABHbXiHs6J6PUQPgjsAAAAAAAAAAIBa1L5hpoa0GxiWtYa2O13tG2aGZS1EH4I7AAAAAAAAAACAWnZ1j0vUIrnpUa3RIqWpRvcYGaYdIRoR3AEAAAAAAAAAANSyhJh43X/mzWqRElp41yKlqe4/42YlxMSHeWeIJgR3AAAAAAAAAAAAdaBBYpoeGzLBcNvMoe1O12NDJqhBYlrtbAxRwxrpDQAAAAAAAAAAAJwoEmLidV3vqzSozQDN2bRIS7NXyu5y+IyLMVt1WsuTNbzDWZxpdwIhuAMAAAAAAAAAAKhj7Rtm6qaGf9H1fUZre/5ObS/YqTJnueIssWqV2kKt0loo1hIT6W2ijhHcAQAAAAAAAAAAREisJUbtG2ZSVQdJnHEHAAAAAAAAAAAARAUq7gAAAAAAAAAAACLE4XBo586dio2NldlslsvlUuPGjWWxWCK9NUQAwR0AAAAAAAAAAECEuN1u7du3z+tao0aNCO5OULTKBAAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAYI7AAAAAAAAAAAAIAoQ3AEAAAAAAAAAAABRgOAOAAAAAAAAAAAAiAIEdwAAAAAAAAAAAEAUILgDAAAAAAAAAAAAogDBHQAAAAAAAAAAABAFCO4AAAAAAAAAAACAKEBwBwAAAAAAAAAAAEQBgjsAAAAAAAAAAAAgChDcAQAAAAAAAAAAAFGA4A4AAAAAAAAAAACIAgR3AAAAAAAAAAAAQBQguAMAAAAAAAAAAACiAMEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAYK7KFdcXKxBgwZpx44dkd4KAAAAAAAAAAAAapE10htAYGVlZbrnnnu0c+fOSG+lRmVlZfr44481Z84cbdiwQWVlZWrevLl69uypUaNGqXv37lG5NgAAAAAAAAAAQDSh4i7KOJ1O5ebm6qOPPtKll16quXPnRnpLNVq3bp0uuOACPfTQQ0pKStKrr76qefPm6Z577tEff/yhyy67TA8//LDsdntUrQ0AAAAAAAAAABBtqLiLEtdff71WrFghm80mp9MZ6e0EZe3atbrmmmtUXFysK664Qg8++KDna02bNtXpp5+uG264Qe+884527NihV155RWZzcFlxba4NAAAAAAAAAAAQjUg6osQjjzyimTNnat68eZo7d64mTZokk8kU6W0FlJ+fr/Hjx6u4uFhZWVm6//77fcaYzWY988wzSklJ0ddff63nn38+4msDAAAAAAAAAABEK4K7KJGenq6MjAxlZGQoMzNTV111VVSf3/bcc89pz549kqQ777xTVqv/4s2UlBSNGTNGkvT6669r/fr1EV0bAAAAAAAAAAAgWhHcRbHExMRIb8Gv7OxsffLJJ5KkzMxM/elPf6px/MUXXyxJcrvdmjJlSsTWBgAAAAAAAAAAiGYEdzDsrbfekt1ulyRddNFFRxyfkZGhjh07SpK+/vpr/f777xFZGwAAAAAAAAAAIJoR3MEQl8ulefPmeZ6ffvrpQc3r3bu35/H8+fPrfG0AAAAAAAAAAIBoR3AHQ1atWqW9e/dKqmjl2alTp6DmdenSxfN4wYIFdb42AAAAAAAAAABAtCO4gyGrVq3yPO7YsaOsVmtQ8zp06OB5vH79ejmdzjpdGwAAAAAAAAAAINoR3MGQTZs2eR63aNEi6HmNGzf2PC4vL9f27dvrdG0AAAAAAAAAAIBoF1xJE1Bp8+bNnsfNmzcPel56erpMJpPcbrckacuWLWrTpk2drX0scDgcMplMkd5GnXM4HEFdAwAAAAAAAIDjEZ+RHnKivu7qCO5gSF5enudxampq0POsVqsSEhJks9kkSQUFBXW69rHgt99+i/QWosa6desivQUAAAAAAAAAiBg+Iz1x0SoThhQXF3sex8fHG5obGxvreVwVstXV2gAAAAAAAAAAANGO4A6GVA/F4uLiDM2tHsZVD+nqYm0AAAAAAAAAAIBoR3CHOuNyuTyPzebw/tKrzbUBAAAAAAAAAADqAmfcwZB69eopPz9fklRaWmpobnl5udc6dbn2saBz586KiYmJ9DbqnMPh8OnX3KVLF1mt/PYEAAAAAAAA4PjHZ6SH2O12/fbbb5HeRkSdeN91HJXq4VpZWZmhudXHJyYm1unaxwKr1XpCBnf+8F4AAAAAAAAAOJGdqJ+Rut3uSG8h4ugpCEPq16/veVxQUBD0vPLycq8qugYNGtTp2gAAAAAAAAAAANGO4A6GtGvXzvM4Jycn6Hl79+71Ssqrr1MXawMAAAAAAAAAAEQ7gjsY0r59e8/jXbt2BT0vNzfX8zgxMVEtWrSo07UBAAAAAAAAAACiHcEdDOnevbvn8YYNG+RyuYKat2nTJs/jbt26yWQy1enaAAAAAAAAAAAA0Y7gDob07t1baWlpkqSDBw9q8+bNQc379ddfPY+HDBlS52sDAAAAAAAAAABEO4I7GGK1Wr3Cse+//z6oeT/99JMkyWQyBQzXanNtAAAAAAAAAACAaEdwB8PGjh0ri8UiSfr000+POH7Tpk3asmWLJGn48OE1nkFXm2sDAAAAAAAAAABEM4K741ROTo6uu+469erVSxdccEHQ1WvB6NChg0aMGCFJWrdunVasWFHj+P/+97+SJIvFoptuuiliawMAAAAAAAAAAEQzgrsoVlhY6Hmcn59vaO6ECRO0ePFi2Ww2bdy4UePHj9euXbvCtrc777xTGRkZkqQnnnhCbrfb77jc3Fy99957kqSbbrpJbdu2jejaAAAAAAAAAAAA0YrgLkrl5uZq8+bNnucLFy40NP+XX37xel5SUqK1a9eGZW+S1KBBA73yyitKSUnRmjVr9MQTT/iMKS8v1y233KLS0lKdffbZuuGGGyK+NgAAAAAAAAAAQLQiuIsSxcXFKiwsVHZ2tubPn6+//vWvKisr83z91Vdf1dNPP61169YpLy9PhYWFKi8vD7het27dvJ7HxMSoU6dOYd1zVlaWPvroI2VlZWn69Om66aab9PPPP2v37t1atGiRLr/8cq1cuVLXXHONnn/+eZlMpqhYGwAAAAAAAAAAIBqZ3IH6EKJOXX311Vq2bJmhOY8//rhGjhzp92s5OTmaPHmyli9friZNmuj222/X0KFDw7FVH+Xl5fryyy/1v//9T1u2bFFBQYGaNm2qXr166eqrr1bXrl2jcu1IKS8v91v9eNJJJyk2NjYCO4osu92uNWvWeF3r3r27YmJiIrQjAAAAAAAAAKg7fEZ6CJ+fE9wBdY7feLzxhxIAAAAAAACAExmfkR7C5+e0ygQAAAAAAAAAAACiAsEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKWCO9AQAIlt1u16effqo5c+Zo3bp1KiwsVHJysrp06aJzzz1XI0aMUExMTKS3GVBJSYm++OILLV26VL/++qvy8vJUXFysxMRENWrUSD169NBZZ52lIUOGyGyunZ+rWLJkicaNGydJ2rBhQ63cAwAAAAAAAAAQGoI7AMeEX3/9Vbfddpu2bt2qDh066J577lG7du20e/duffjhh7r33ns1bdo0TZkyRZ06dYr0dn28++67mjp1qmw2m4YNG6Zx48apZcuWSk5O1sGDB7VlyxbNmzdPN910k1q1aqVHHnlEffv2DesebDabJk2aFNY1AQAAAAAAAADhQ3AHIOotX75c1113nWw2mwYMGKBXXnlFcXFxkqSuXbtq8ODBevnllzV16lSNGjVK06ZNU69evSK86wpOp1N33HGHZs+erfbt2+uVV15Rq1atfMadeuqpuvLKK7VgwQLddtttGjt2rO677z5dddVVYdvLlClTtHPnzrCtBwAAAAAAAAAIL864AxDVsrOz9fe//102m02NGzfWlClTPKFddePHj9eZZ56p4uJi3XDDDdq1a1cEduvr8ccf1+zZs9WgQQNNnz7db2hX3ZAhQ/Too4/K5XLp4Ycf1vz588Oyj59//lnvvPNOWNYCAAAAAAAAANQOgjsAUW3ixIkqKCiQJN12221KTU0NOPaOO+6QJOXn5+u+++6rk/3VZM2aNZ6w7JZbblF6enpQ8y644AL17t1bbrdbDz74oIqLi49qH+Xl5brvvvuUmJh4VOsAAAAAAAAAAGoXwR2AqLV48WItW7ZMktSkSRNdeOGFNY7v0KGDTjnlFEnSkiVLtHTp0lrfY03ee+89ud1uxcXFacSIEYbmXnbZZZKkvXv3asGCBUe1j9dff11btmzR5MmTj2odAAAAAAAAAEDtIrgDELVefPFFz+Pzzz9fFovliHMGDx7sefz888/XxraC9uOPP0qS2rdvr/j4eENze/fu7Xl8NAHk5s2b9eqrr+qqq66KmnP/AAAAAAAAAAD+EdwBiEpr167V2rVrPc/PP//8oOadeeaZnserVq3Stm3bwr21oO3duzfkuY0bNz7qdVwul+677z41btxYt956a8h7AQAAAAAAAADUDYI7AFGpenvIpKQkderUKah5bdu2Vb169TzP582bF/a9BSs2NlaStGnTJuXn5xua63A4PI+NVutVeffdd7Vq1So99NBDXu8JAAAAAAAAACA6EdwBiEpfffWV53GPHj1kNgf325XJZFLHjh09zxctWhT2vQWrQ4cOkqTy8nK99tprhuZWrxTs0qWL4Xvn5OToueee08iRIzVw4EDD8wEAAAAAAAAAdY/gDkDUsdls2rx5s+d59SAuGO3atfM8Xr9+fdj2ZdTZZ5/teTx9+nTNnj076LkLFy6UJJnNZl1wwQWG7z1p0iTVq1dPd999t+G5AAAAAAAAAIDIILgDEHW2bNkit9vted68eXND89PT0z2Pi4uLtWvXrrDtzYjLL7/cc1ady+XSnXfeqXfeeeeI8woLCz3jRo0apZYtWxq676effqpvv/1W999/v1JTU41vHAAAAAAAAAAQEQR3AKJO9Wo7SWrWrJmh+dWDO6kiCIyEpKQkPfnkk7JarZIqzq17+OGH9be//U05OTl+5zgcDt11113Ky8tTz549deeddxq6Z15enh5//HGdffbZGjZs2FG/BgAAAAAAAABA3SG4AxB19uzZ4/W8YcOGhuanpaV5Pc/LyzvaLYWsf//+ev755xUXF+e5tnDhQg0fPlxPPPGE9u3b57l+4MAB/e1vf9OiRYt0+umna9q0aYqPjzd0v0cffVQul0uTJk0K22sAAAAAAAAAANQNgjsAUcdms3k9NxpexcbG1rheXRs6dKg++ugjde3a1XOttLRUb731ls4880zdfvvtevPNN3Xeeedp1apVuu+++/TGG28oKSnJ0H0WL16szz//XHfffbdP1SEAAAAAAAAAIPoR3AGIOocHbdWr1YJx+Pji4uKj3tPR6tixo95//3317dvX67rdbtfnn3+up59+WmVlZfrPf/6jq6++WiaTydD6Bw8e1AMPPKCBAwdq5MiR4dw6AAAAAAAAAKCOENwBiDplZWVez2NiYgzNrzpTLtB6kbBx40ZdcsklWrFihW6++Wb97W9/U/369b3GHDx4UKNGjdLMmTMNr//cc8+poKBADz30UJh2DAAAAAAAAACoawR3AKLO4a0xy8vLDc0/fHxiYuJR7+lozJ07V5dddpm2b9+ul19+WePHj9ctt9yixYsX65577vEK8IqKijRhwgQ98MADcrlcQa2/YsUK/ec//9Gtt96qFi1a1NbLAAAAAAAAAADUMoI7AFEnISHB67nRirloCu7mzp2rW2+9VWVlZXrmmWd0xhlneL4WFxensWPHasGCBRo1apRXe8z3339fEyZMOOL65eXluv/++9WzZ0+NHj26Vl4DAAAAAAAAAKBuENwBiDr16tXzen60wd3h69WVLVu2aMKECXI6nbriiis0dOhQv+OSkpL0wAMP6F//+pfS0tI812fNmqU333yzxnu88sorys7O1qOPPiqzmd/SAQAAAAAAAOBYxqe8AKJOo0aNvJ7v37/f0PwDBw54PU9PTz/qPYXi4YcfVklJiRITE3XzzTcfcXz//v31/vvve+33xRdfVE5Ojt/xGzZs0BtvvKHx48erXbt2Yds3AAAAAAAAACAyCO4ARJ3DQ6jdu3cbmr9nz54a16sLmzZt0g8//CBJOu+887zOsatJmzZt9MYbbyg2NlaSVFpaqhkzZviMc7lcuu+++9SuXTtde+214ds4AAAAAAAAACBirJHeAAAc7vCgbdeuXYbm79271/M4LS1NDRs2DMu+jFi0aJHn8VlnnWVobufOnXX99dfrxRdflCQtWLDA57y7lStXas2aNTKZTOrevXtIe+zSpYvPtenTp+vUU08NaT0AAAAAAAAAwNEhuAMQdZKSktSqVStt375dkrRx40ZD87ds2eJ53K1bt7DuLVgbNmzwPO7cubPh+aNGjdKrr74qu92u7du3y2azKTEx0fP1Ll266LPPPjO05p49ezRu3DjP85kzZ/qMycjIMLxXAAAAAAAAAEB4ENwBiEqDBg3S9OnTJUlr1qwJep7T6fQKzQYNGhTurQUlPz/f8/jwM/uC0aBBA2VmZmrTpk2SpKKiIq/gLjExUVlZWYbWrD5fkuH5AAAAAAAAAIDaxRl3AKLS0KFDPY/z8/O9quhqsmnTJpWWlkqSTCaThgwZUiv7O5KEhATPY4fDEdIa9erV8zwO9ow8AAAAAAAAAMCxi+AOQFQ6+eSTlZmZ6Xk+e/bsoOYtWLDA83jAgAFq0qRJuLcWlLZt23oe5+TkhLRG1Vl9rVq1UmxsbFj2BQAAAAAAAACIXgR3AKKS2WzWLbfc4nn+6aefyu12H3He3LlzPY9vvvnmGsfOnj1bw4cPV+/evXXzzTcrLy8v5P0e7vzzz/c8/uabbwzPz83N1c6dOyVJZ599dtj2BQAAAAAAAACIXgR3AKLWOeecox49ekiSsrOzNWvWrBrHL1myRBs3bpRUEXZ179494NiVK1fq9ttv1++//66ioiJ9+eWX+sc//hFUOBiMrKwsXXzxxZKk6dOnq6SkxND8jz76SJKUnJysv/zlL2HZEwAAAAAAAAAguhHcAYhaJpNJTz/9tJKTkyVJzz//vIqKivyOtdvtmjJliiQpPT1dDzzwQI1rL1iwQC6Xy+va8uXLtXXr1qPfeKV7771XXbp0UW5uru6++26f+wXyxx9/aNq0aTKZTHrggQfUqFGjsOynvLy8xucAAAAAAAAAgMgiuAMQ1Vq3bq1XXnlFiYmJysnJ0U033aSysjKvMS6XSw8++KB++eUXpaSk6NVXXw057Ao2XAtGcnKy3nrrLfXu3Vtffvmlrr32Wu3Zs6fGOWvXrtXYsWNlt9v1wAMP6IILLgjbfn755Rev5ytXrgzb2gAAAAAAAACAo2eN9AYA4Ej69Omj9957T7fffrt++OEHXXjhhbruuuvUvn17ZWdna8aMGfr555/VoUMHTZkyRR06dDjimkOGDNFbb73lFdRlZWUpMzMzrHtPS0vT22+/rWnTpumNN97QkCFDdO6552rAgAFq0aKF4uPjVVBQoC1btuibb77RN998o86dO+uFF17wtAkNhc1m044dOyRJRUVFWrdunV5++WWvMXfeeaf+9re/qWvXrkpISFBqaqqaNGlyVK8XAAAAAAAAABA6kztcBzoBCEp5ebnWrl3rc/2kk05SbGxsBHYUWXa7XWvWrPG61r17d8XExPiMdTgcmjVrlr744gv9+uuvKiwsVHJysrp06aLzzz9fI0aMkNUa/M8jzJ49Wy+88IJyc3PVp08fTZo0SRkZGUf9mgIpLi7W559/ru+++07r1q3T/v37ZbfblZqaqqZNm+rkk0/WoEGD1K9fv6O+148//qgxY8YYmnPxxRfriSeeOOp7AwAAAAAAAAiekc9Ij3d8fk5wB9Q5fuPxxh9KAAAAAAAAAE5kfEZ6CJ+fc8YdAAAAAAAAAAAAEBUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAWukNwDgxGYymdSoUSPFxcXJZDLJ7XbLbOZnCgAAAAAAAAAAJx6COwARZbVa1bp160hvAwAAAAAAAACAiKOsBQAAAAAAAAAAAIgCVNwBiChXebmKt26VbVu2nGWlssTFK7F1S9XLzJQ5NjbS2wMAAAAAAAAAoM4Q3AGIiKKNm7Tr89na9/0PctvtPl83xcSoUf9+anb+uUrO6hCBHQIAAAAAAAAAULcI7gDUKWdJif5469/KnTu/xnFuu117F3+jvYu/UZNhQ9XmL9fIkpBQR7sEAAAAAAAAAKDuccYdgDpTtn+/Vt8x4Yih3eFy587X6jsmqGz//lraGQAAAAAAAAAAkUdwB6BOOEtK9OukB1WyY2dI80t27NSvDzwkZ0lJmHcGAAAAAAAAAEB0ILgDUCf+eOvfIYd2VUqyd2jr9LfDtCMAAAAAAAAAAKILwR2AWle0cZPh9piB7P5ynoo2bgrLWgAAAAAAAAAARBOCOwC1btfns8O73hdzwroeAAAAAAAAAADRgOAOQK1ylZdr3/c/hHXNfd99L1d5ued54W/rVfjbehVv3abS3D1yFBeH9X4AAAAAAAAAANQFa6Q3AOD4Vrx1q9x2e1jXdNvtKt66TclZHSRJexZ97dWKM+3kXur6wH2G1sz7aYVc5eWyJibKkpBQ8b/ERFmTk2SJiwvr/gEAAAAAAAAA8IfgDkCtsm3LrqV1t3uCu/jGjb2+ZklIMLzetrffkW3bdp/rbcb9Rc0vPD/odVx2u/Z9970sCYmyJMRXBIGJh4JAc2ysTCaT4f0BAAAAAAAAAI5/BHcAapWzrLSW1i3zPDbFxHh9zZqYaHy9khK/1y2JxkJAe2GRNk15IfAAs1mWhARZEyuCPEt8QkWwVxXuJSRWfC0hQYmZrVW/V09D9wcAAAAAAAAAHLsI7gDUKktcfC2te6h95eGtOC0Jxu/ptAUI7hKMhYCBAkAPl0vO4mI5gziHr/GgMw0Hd5tfekXOstJD7T4TEmRNTFTayT2VmJFhaC0AAAAAAAAAQN0iuANQqxJbt6yldVt5Hpfu2eP1NYvBiju32y2Hzeb3a0ZDwCMGdwaE0vIzb9ly2QsKfK5npd1iKLgr25+n3197vbLlZ0VFYMX5f/EV16q1/zwUECbIHB9PK1AAAAAAAAAACBHBHYBaVS8zU6aYGJ+quKNhiolRvczWnufFW7d5fd1oe0tXebnkcvn9mtEQ0BkgAAxFKMFdwJafBteyFxQo78flhu8vs1mW+HhP2GdJSFD6n05X8wvOM7SMy26XyWolBAQAAAAAAABwQiG4A1CrzLGxatS/n/Yu/iZsazYa0F/m2FjP8x5PPS6X3S6nzSZnSYksifUMrecqK1dso0ZyltgqWma63Z6vWQ2GgGGtuDMYGrocjooQ0u9aRl9HiAGky1XxfbDZpP0Vl1K7dTW8zLKr/yKX3X6o5WdlxV/ra65WSqeOQa/jdjolSSaLxfAeAAAAAAAAAKCuEdwBqHXNzj83rMFds/OG+1wzx8TInJqqmNRUw+vFpCSrz7TXJFW0zXSVlclpK5HDZlN8k8bG16tfX86SErlKSw3Prc542BY4NDR8Vl+AM/9CYbTaz+1yeV6Lo6hIjqIiz9cCBZOBFG3arLUTJsocG1vR1jMxobL9Z3xF68/EhGrhYKKn5WfVGEu1MdakJK+zFQEAAAAAAAAg3AjuANS65KwOajJsqHLnzj/qtZqec7aSszqEYVf+mUymilaP8fGKbVDf8PyGp/VVw9P6Sqqo9nKWlsppK5GzpOJ/Dput2vNDjx027+dOW4liGzQwdO+awraIVg4aDO6cNQSehteqbF3qKi+Xq7xc9vx8Q/Ora3nF5Wp15Z+DHu92u7V38beVQWBVMFgRBsYkJ1MFCAAAAAAAAMAHwR2AOtHmL9eo8Nd1KtmxM+Q1ElpmKHPsmDDuqnaZLBZZ69WTtZ6x1p2hMsfFqdkF51cEgJXhX1VgaLR9aFgr7oyGhjXc23BwF8EA0lVerk1Tpvr92klPPmao5WfZ/v0qXLfeT6VgxWOzlT/OAQAAAAAAgOMBn/QBqBOWhAR1fegB/frAQyrJ3mF4fkLLDHV9cJLh8OREEpuWqrZ//UtY1kpomaFm5w0/VA1os8lZUupdFRhkKBbOsM1q8Ny/qoq7cAhv61Jjax3ctFkbn3ku4NdNMTHVWnxWnAloqfbcmnio4i/1pG6ql5lp6P4AAAAAAAAA6gbBHYA6E9ewoXo8/YT+eOvfhtpmNj3nbGWOHUNoV4dSu3ZRatcuNY5xu1wVrUCrqvtsNu+WoCWlctpsqte6taF71xS2WRLija1VcnTnDHrfO3yhYbhbl7rtdtkL7LIXFB5xrbbXX2souHMUF2vT1JdkSUw81PazsvVn+p8GypqUFPRaAAAAAAAAAGpGcAegTlkSEtR+/A1qMmSwdn0xR/u++15uu91nnCkmRo0G9Fez84bX6pl2CJ3JbJY1MbGiCq5h+NZNaNlSJz3xqCcIrH7+nzneWHDnCGfFndHQsMaWn0ZDwMi1LnUcLFbej8v8fi2tV09DwV3B2l+0a86Xnjafh87/O9T2s6JCsHo70ASZY2IM7RkAAAAAAAA4VhHcAYiI5KwOSs7qoPZ/v0HFW7fJtm27nGVlssTFKbF1K9XLbC1zbGykt4kIsCYmKKVzp7Cs1WTIYKV26+qpCnRUqwp02qraflZUBzps3m1AnSUlkttdbV8Gw7YaW2UarRwM51l9Rl9H+CoHS3bmaP93PxiaI1UE+Z6WnwkVLT9b/vkypfXsEfQabpdLcrtlslgM3x8AAAAAAACoKwR3ACLKHBvrCfGAcItr1FBxjUIrB6xoBVpWGeLZFJeebnh+TFqanCUlcpWVea6b4+IMh0fhrBw03qYzcLtRi8EwM9TX4bbb5bDb5Sg81ArUaJhZsjNHq268Wea4OJ/z/zpOuEMxycnB78fplMxmmUwmQ3sAAAAAAAAAjoTgDgAAPypagSZUBl0NDM9P69Fdp/57mqSKoMdTyVdadoSZfvZiscianCxnSYncDofh+dUZDdsCndVnsloNt7AMb+WgwQCy8nW4ysrkKiuT/UC+52tmq7G/Du36Yo7+eOvfssTHV2v1WdniM6Fa+89qzyu+Fl9xrVpwGJOcRBUgAAAAAAAAPAjuAESUw+HQzp07FRsbK7PZLJfLpcaNG8vCB9k4jpgsFlmTkgydB1dd66uuVOurrpQkuex23/P/Skqrtf48vCVoZVvQklI5S2yyJtUzdG9HgPP1jAaAUoSDu0D3NplCOzvR5ap8z23SfkPTvXSZdK/qn3Jy0OPthYUqWLPWKxS0JFYGg/XqUQUIAAAAAMBxzm6369NPP9WcOXO0bt06FRYWKjk5WV26dNG5556rESNGKMbgD1vXtqlTp+rll18+6nVmzpypzp07BzXW7XZr7ty5mjVrltasWaMDBw4oMTFRWVlZOvvss3XZZZcpMYTPt+oCwR2AiHK73dq3b5/XtUaNGhHcAQGYY2JkTk1VTGpqndwvvmkTNT33nEPhYGUgGFJwFyAEDIXhysEAwZ0lMcFw2BXJANK2bbs2PP2c36/1/+RDycDvncVbt6l01+7DKgErqwHj42Qymw3tDQAAAAAA1K5ff/1Vt912m7Zu3aoOHTronnvuUbt27bR79259+OGHuvfeezVt2jRNmTJFnTp1ivR2PTZv3nzUa8TFxalRo0ZBjc3Oztbtt9+u1atXq3nz5rrpppvUrVs35eXl6bPPPtNjjz2mN998U0899ZT69et31HsLN4I7AAAQUHKH9kru0D4sa6V27yaT1eo5N7CiGrDE89xhK5Hbbg9qLaOBV6Dz9SzxxtaRwhzcGT5z0P+9Qzk7ce8332rnf//n/4smU0Ur0GptPS2VrWM94V7ioYq/hv1OU2xamqH7AwAAAACA4C1fvlzXXXedbDabBgwYoFdeeUVxcXGSpK5du2rw4MF6+eWXNXXqVI0aNUrTpk1Tr169IrzrCps2bfK5lpSUJGuA40sc1Y6KKSsrk91u17hx45Senn7Ee23ZskVjxozRvn371KlTJ/373/9WWrXPLE4//XT1799fd999t6699lpNmTJFQ4cONf6iahHBHQAAqBONzzxDjc88o8YxLrvd09bTq/XnYW1BrcnG2o4GqvYzGpxJka24C9y6NMyvw+32VFdKeUdcK7lDB0PBXdGmzdr5v08rz/87dB6gNSlJTYYMCnodAAAAAABOBNnZ2fr73/8um82mxo0ba8qUKZ7Qrrrx48dr9erV+vrrr3XDDTdo5syZatasWQR2fEh5ebm2b98uSWrQoIFuu+02DRs2TCkpKQHHr127VlJFgHfXXXfJ7XZr3LhxR7xXQUGBrr32Wu3bt0+JiYl66aWXvEK7KhdddJFWr16t//znP7r99tv13nvvqWvXrqG/yDAjuAMAAFHDHBMjc0yMYlKSw7puowH9VS+zdeW5gIcq/kIKvMLZ8jPBaMvPAJWDBgNAKdytS43dv3R3rvZ/973PdWtysuHgbve8BSpY+8thIWC8V1Wg9bAzAS3x8YYrFAEAAAAAiJSJEyeqoKBAknTbbbcptYYjVO644w59/fXXys/P13333adp06bV1Tb9+v333+V0OpWWlqYPPvhArVq1Cnru/PnztXv3bt15552KjY094vjHHntMO3fulCSNGzdOLVu2DDj2pptu0ieffKLS0lLdddddmjVrVtQc30RwBwAAjnuxDeortkH9sKyVec3Van7BeYdVA1b+z1ZRFeiodh6gs9oYV3m511qWhHhD9w5YOWgwAJQCh4ChMBocBgwgQwhSizZs0L5vvjU8zxwffyjsS6gI/Dr840bFpQfXL1+S3E6nZDYbPicRAAAAAIBgLV68WMuWLZMkNWnSRBdeeGGN4zt06KBTTjlFK1as0JIlS7R06VKddtppdbFVv6rOt5swYYKh0O7gwYP63//+p65duwbV8nPTpk2aNWuWpIrz8MaMGVPj+AYNGujss8/WrFmztHnzZv3vf//TpZdeGvT+ahPBHQAAgAGJrVoqsVXgn9iqicvhqBbolcgcE2NovslsljU5SU5bSUVoVMka6crBRKOVg4ECyLp7Ha7SUrlKS2U/cODQRYMB3J6vF2vzS694B4AJiYpv1kRZt95saC2300kVIAAAAADAx4svvuh5fP755wdVFTZ48GCtWLFCkvT888/r/fffr7X9HcmmTZuUnp6uESNGGJo3c+ZMFRcX66qrrgpq/IsvviiXyyVJOuusswK24qxu8ODBnrDvn//8py666KKA5+7VpcjvAAAA4ARhtlplTk5WTHJorUBbXDxCLS4eIbfbLbfd7mn9GUrBlzk2VpbExIoQze0OaT8VC5llDqJdRXWBwjarwQCwYq0wVg4aDECdthLJ5ZKzuFjO4mLPdYetuIZZ/m2cMlX7f/jR087Tp71ntefWxENtQKuqBasHh5Z6iVQBAgAAAMBxYO3atZ7z3qSK4C4YZ555pp566ilJ0qpVq7Rt2za1bt26VvZ4JJs2bdLgwYMNtaHcu3ev5s+fr/79+yszM/OI4/fv36/58+d7ngf7Pp1++umyWq1yOBzKycnRsmXL1L9//6D3WVsI7gAAAI4xJpNJptjYiv7uaYH72teky6R7JUlul0uusrLKELCi1afTqwWoreJrlW1Aq84HdFQ+r9qPEYHCtpAq7ir3EA6WeIOtSwNUDoYWQJbI7XDIUVQkR1GRygyvcMipM6YbOieyZGeObNnZnhDQExDWSzT8ngAAAAAAwmfBggWex0lJSerUqVNQ89q2bat69eqpuPKHTOfNm6drr722VvZ4JA8++KDhOR9++KGcTqdGjhwZ1PivvvrKU20nSaecckpQ8+rVq6c2bdpo06ZNkireJ4I7AAAARJTJbPYENVKDOrlncqeOalJWdigMrDwTML5ZU8NrheusPnN8vExms8F7h7HlZ4C1QmH07MT9Py7Ttn/P8Ller1079XzuKUNrFfz6q5y2kkOVggmJnlaippgYKgEBAAAAwICvvvrK87hHjx4yB/nvVpPJpI4dO2rlypWSpEWLFkUsuEtPTzc0fsOGDfr+++/Vr18/NWvWLKg51d+nzMxMNWgQ/OcbnTp18gR3ixYt0uTJkw3ttzYQ3AEAAKBONRrQX40GhOcn2BoO6K+kDnsrzw20ec4QrF5BqGo/dRdISFVyURjcmWNjDZ+dGLgC0ni1Xfb7H6lgzVq/XzNZrbIkxFeEeYkJ1c4GTDysJWjFmCZDBhkOUwEAAADgeGGz2bR582bP844dOxqa365dO09wt379+rDurTa98MILkqSLLroo6DmrV6/2PA7lfaqye/du5efnKy0tzdAa4UZwBwAAgGNWqysur/HrbrdbrrIyT+tPR7Vwr3pLUFOM8b8WBzqrzxLGENCoUMK2ujpzsKIV6EE5ig4eeSGzWU2GDjZ0773fLNGBn1b4nP+X0LyZ6p/cy9BaAAAAABBpW7ZskbvamfTNmzc3NL96pVtxcbF27doVdAVbpKxcuVLffPONevbsqYyMjKDm7N+/XwcOHPA8P5r3SZI2b96s3r17G1oj3AjuAAAAcNwymUyyxMdXntVWP6xrZ1x+idLPOqMyBDxU4ZcYwoHfjgDhmVGWhFBCwwAVd4nGKwfD9TqsiYmG22oe3LxZexd/43O9/iknGw7utr79juwHDngFgIcCwcTKSsHqVYIJMsfG0goUAAAAQNhUr7aTZDh0OzyQ2rJlS9QHd1OnTpUkDRs2LOg5VW0uq4TjfSK4AwAAAI5BiRkZSgzyJwCPpPPECXIUF1ec+VdyqBLQabN5tf30tAOtPB/QYbN5tQINZ9gWWggYfZWDobwnB5b/JNv2bGOTzGZZvQK+BMXWT1Onu+8ytIzb7SYABAAAAKA9e/Z4PW/YsKGh+Ye3e8zLyzvaLdWq5cuXa+nSpWrdurW6d+8e9LyjfZ/q1/f+Id9oeJ8I7gAAAIAIS+ncKaR5brdbrvJyT5jndrmPPOkwZqtVloQEn9AtlMArbMFdCG06HQHP6qujykGXS46DB+U4eKgVaKyBA9Gr/P7q69qz8Guf8wDrn9xLGZeONLQWISAAAABw7LId9m+c+HhjP+AYGxtb43rR5uWXX5YkjRw50tC/Y4qLi72eHw/vE8EdAAAAcIwymUyyxMXJEhcnhXh4dsc7b5MkuV0uOUvLPBV/RsMzt8tV0ZLU5ZKrvDykvVSxxBsP21yl4TxzMDz/UAst/CyVq7xcrvJy2QsKPdfjmzQxvNbKG/6u8vwCWRISKtp7Vrb19LT/TIivqBJM8G39WTEn8dB1g//4BQAAAHB0Dg+Q4uLiDM0/fPzhAVc0WbNmjb7//nuZTCade+652rt3b9Bzj/Z9Ojy4i4b3ieAOAAAAgExms6yJFQGPjHUW8cw/9d/TJEkuh6Pa2X8l1dp7lvi2/vSMqWoLWqKEFsbPXQjc8tNYeOZ2u+UsKTV8/3DcW6qhcjDENqiu0lK5Sktlr3ZYu1HxTZvqlNf+aWhO0YaNshcVVQsBq50HGBMT8l4AAACAE0VZWZnX8xiDf4+2Wr3jn8PXiyZvvPGGJKlPnz5q2rSpoeDuaN+nw8dHw/tEcAcAAAAgrMxWq8zJyYpJTq6zezbo01sJzZp5gkJHZVBotF2lq6zM69zAoxFKcBeo3WhIlYNhavESyuvY+b+Z2v/Djz7Xmw4/R+1uuNbQWvt/XC5zjNVTKWhNTKhoI5oQL5PFYnhvAAAAwLHg8JaP5QY7mxw+PjGEf1PUhezsbC1YsECSNGTIEMPzw/0+JYTw759wI7iLMk6nU59//rlmzZqlX375RcXFxWratKm6dOmiK6+8Uv369Yv0FlVWVqaePXvKdRQfaMycOVOdO3f2+7VBgwZp586dIa379ttvq2/fviHvCwAAAMemjEsuDs9CbreaDj+nsiqwomrQUa0q0GkrqQj3ghBam87wVA667Ha5HQ7D9/d77xCr/fyulWC85ebG556Xq9R/FaQ5Ls5zDqAloTLUq/bckljV8jNecenpanBqH8P3BwAAACLh8ADJaCXYsRLcvffee56sYeDAgYbnH/66jL5Ph4+vV6+e4T2EG8FdFNmxY4duvvlm/fLLL+rVq5emTJmitm3batu2bZo2bZrGjh2rYcOG6fHHH4/oL54tW7YcVWiXkJCg9PT0MO7okEBhIAAAABAMS0LCESvC3E5nRavPkmrtP222Q9cqg774ZsZbfgaqkjMa3AUKAEMR0ll9gYI7o2cnOp0BQzupokLSVVYm+4H8I66V3Kmj4eAu+6P/qnTXblkS4r3O/0vO6qCkdm0NrQUAAAAYcXgGcLTBXTQEUoez2+363//+J0lq2rSp2rVrZ7hi7nh8nwjuosSOHTt0xRVXaO/evTrzzDP18ssvy1LZ9qVp06bq27evJk2apA8++EA7duzQu+++G7GSzU2bNnk9j42NVZMmTXx65h7u4MGD2rt3r8aPH69GjRrVODYtLU3169c3tK/09HSlpKQYmgMAAAAYZbJYZE2qJ2tS+P9Bl3XrzbIXFXnOBKyo+LMpuUN7Q+uEq02mJFkSwlc5aDUYAobrvEEptJafB1asVNFv632ut7zyz4aCO7fbrY3PTvEEf9VDwOrn/1V8LcHz2HyEf2MBAADg+HX4Z+j79+83NP/AYedc11YxzdH47rvvlJeXJ0nq3r17SGscj+8T/wqIAuXl5Ro/frz27t2rRo0a6dlnn/WEdtVNmjRJP/74o3799Vfdd999evbZZyOw20PBXVJSkiZOnKjzzz9fcXFxR5w3fvx4bdu2TX/5y1+OOHb06NG66aabjnqvAAAAwLEkuWNWWNaJqV9fXR+eXBn+HaoC9Jz/V+15VUhY1RL08Aq30M7qC1Q5aCwEjHzlYHgqIF1lZdr37XeG72+OjT0U5lWGeyldOqv1VVcaWsftdstkMhm+PwAAACKnXbt2Xs93795taP6ePXtqXC8azJ8/3/M4Kyu0fwu1b+/9Q47Hw/tEcBcFpk+frg0bNkiSbrzxRiUlJfkdZ7Vadf311+uee+7R559/rvPOO0+DBg2qy61KkjZv3iyLxaLXXntNvXv3DmrO0qVL9dVXX2n69OmKiYmp5R0CAAAAJzZLXJzSup8U0ly30ylnaakn3AvlXDpzTKxMMTFy2+3e+zLc8jPSlYP+K/6MVw6GFkC6ysvlKi+XvaDg0L1DaN2z5o4JKtmZ41PR1+y84Wp4WvBnhLvdbkkiBAQAAKgDhwdIu3btMjR/7969nsdpaWlq2LBhWPYVTt9++63ncdu2obWiT09PV1pamvLz8yUd3ft0NPsIJ4K7CDt48KCmTZsmSUpOTtbIkSNrHD98+HA9+OCDKi0t1ZQpU3TmmWfKbDbXxVY9Nm3apBEjRgQd2rlcLj3++OM644wz1K9fv1reHQAAAICjYbJYZK1XL6SAqMopr/1TkuSy2yvP/iuRs8SmuEbG2s647A5Zk5LksNmkozhnWwp35aDB4C7AmX+hMHpOoKSKKsvKCkvlHbresL+xf585ioq07JpxsiYmep/7V/U8IbGi9WfVtcQEWRIqvmb1el4RINIKFAAAILCkpCS1atVK27dvlyRt3LjR0PwtW7Z4Hnfr1i2sewuHjRs3Kjc31/M8LS0t5LU6d+6sH374wbOuEdXfp8zMzICFVXWJvyVH2AcffOBJgs8555wjtpxMSEhQ//79tXDhQm3cuFHff/+9Bg4cWAc7rWCz2bRz505deWXwrVk++eQTbdq0KWKtPQEAAABEhjkmRuaYGMWkJIc0P6ldW/V9999yu91ylZdXa+95eItPW0VA6GkDWu1rlZWDcY2M/YSx2+0OGLgZDc8cYTxz0Gi1nxQ4OLQafB3OkhLJ5ZLj4EE5Dh40vI/qGv1poDrefquhOQdW/SyTyXToPMBqFYSmOv6BVgAAgLowaNAgTZ8+XZK0Zs2aoOc5nU5Pl7+qdaLNypUrvZ4nJ4f2bwap4vVVBXe///67ioqKgl5v3bp1nseDBw8OeQ/hRHAXYXPmzPE8Pv3004Oa07t3by1cuFCSNG/evDoN7kpLSzV69GiddFJwbXdKSko0depUXXjhhT69ZgEAAAAgGCaTSZa4OFni4qSj+ElcQ1wuNTl7iJy2Eq+KNafNJqvBDxXCelZfKJWDgc7qM9ryM5yVgyG0Lt384j9Vvj/P53qHm29U40FnBb2Os6RE+WvWesK/Q9WACTLHxdEKFAAARI2hQ4d6grv8/Hxt2bIlqDPYNm3apNLKs6tNJpOGDBlSm9sMyerVq72eO53OkNcaOnSoHnvsMbndbrndbq1cuVJnnHHGEecVFBRo27ZtnufR8j4R3EXQ7t279csvv3ie9+rVK6h5Xbp08Tz+6quv9NBDD4V9b4E0aNBA9913X9Dj33rrLe3fv1833HBDLe4KAAAAAMLLZLGo3Q3XhWWtmNRUNRk6xNMy1GGrVjlYUlEl6A7ygwqjwZ3L4ZCrvDwsa0Vr5aDRELBs716tf+xJ/180m6sFeodafVqqhXuesC8hQfXaZCq5Y5bRlwIAABCUk08+WZmZmdq6daskafbs2brpppuOOG/BggWexwMGDFCTJk1qa4shq14RKEl79uwJea1mzZqpX79++v777yVVFEwFE9wtWrTIc45zu3bt1LNnz5D3EE4EdxG0atUqzy+K9PR0NW7cOKh5HTp08Dzet2+fdu/eraZNm9bKHo9GXl6epk2bpnPPPVeZmZmR3g4AAAAARES91q3U/sa/Bfy62+2W224/FOiV2DwtPg+v+Evu3MnQvWuq9jNccRfOykGDbTrdLpeclT817rNWQryhtRw1VQ66XHIWF8tZXCz/cae3Zhecbzi42/TiyzJZzF4tP62JCUrr2VNx6Y0MrQUAAI5vZrNZt9xyi2655RZJ0qeffqobb7zxiB0C5s6d63l888031zh29uzZevHFF7V3714NGDBADzzwgBo0aHDUez+SqjCySnFx8VGtd+utt3qCu7lz52rSpElKPMLfOb/88kvP45tuuknmKGm/TnAXQZs2bfI8zsjICHpew4YNZbVa5XA4JEmbN2+OyuDutdde08GDB/XXv/71qNZZunSpZs+erVWrVmn37t0qLS1Venq6Tj75ZF1++eU69dRTw7RjAAAAAKh7JpNJpthYxcbGSmmpYV3bEh+vrg89cCgIrDwP0GGzKbaBsXP/ArXcDGlfBqv9nKVlUuUPvvqsFcpZfWFitHLQ7XZr76Kv/VZYdnngPkPBXUlOjrI/+MirKvBQlWDl+X+JlV9LqPiaOT6eVqAAABxjzjnnHPXo0UOrV69Wdna2Zs2apREjRgQcv2TJEm3cuFGSdPbZZ6t79+4Bx65cuVK33367XC6XpIoga//+/ZoxY0at/p2huLj4qIO6w3Xv3l3Dhw/XnDlzZLPZNH36dI0fPz7g+C1btmjx4sWSpK5du+qcc84J636OBsFdBG3evNnzuHnz5kHPM5lMatSokXbv3i2p4hdYXZ5zF4zc3Fy999576tOnjzp1MvYToVWcTqcmTZqkjz/+WJKUkJCgBg0ayOVyaefOndq5c6c+++wzXX755Zo8ebIsFks4X0KdczgcJ+Q/oKoC6CNdAwAAABCael06B/ya3W4Pep3ETp2Udd89cnnafPr5n62k4uslpZUhYcU19+F/x4+NNXTv8sLCgF9zx8YYW6uoKOixRxQXZ+jervLygG1R3THGXodtd672fv1N0OMlSSZTZZBXEfCZKx83OusMNTrd2OcKbrf7hPw3LAAAteFIn5E+/vjj+vOf/6yioiJNmTJFp59+upL9nLtst9v13HPPSaro8jdx4sQa/34xb948T2hXZfny5dq8eXOtdtHLz8/3ueZ0OmW324/qs+EHHnhAq1evVk5Ojt58801ddNFFAbOX5557Ti6XS4mJiXr66aej6u81BHcRlJd36FDt1FRjP1WZnJzsCe4KCgrCuq9weO2111RWVqarr7465DXuv/9+ff7557r++ut10UUXqW3btp6v/fTTT3rooYe0YcMGffjhhyopKdEzzzwTjq1HzG+//RbpLUSNdevWRXoLAAAAAPwxm6R6iRX/OwKTKj50sEoVwV15udxlZVJZuXIS47VrzZqgb+vKy5Pi46Uy38q7jX9slWn//qDXcmzcdORBQdq1f7/2Gngd7hp+snzLjmyZy8uCXsu5YWPQYw9twF0RutpKJB36TMLWqKFyUlOCX8blUtljT0lxcTLFxUqxsZWP42QdOkjm9HTjewMAAF4O/4z0lltu0dNPP61du3bpr3/9q+68886Kjg2VXC6Xpk2bpl9//VWJiYm6+eablZOTo5ycnID32Lt3r9/rv/32mwpr+MGp/2/v7uNrrv8/jj/Pdna9GWNGLsvVXKRIrspvha+EJKlEuU5CJEoiRS5LTd/IReQq11fDtyIVSoRQQqVclNBsGGaXZzu/P2bHZjtzztnZzhmP++3m1ud8zuf9/rzPqnPm/Tyv9zu/css0zpw5owN2/F6VmxIlSmjOnDnq1q2bYmNj9fzzz+vTTz/Nkb9Mnz5dX331lby9vTV16lRVqVIlX/d1NoI7F8paCurra9+a/Fn/h0xw4nIlzhAdHa2VK1eqePHiat68uUN9fPbZZ4qOjtbChQtz3RCyQYMGWrp0qZ544gkdPXpUGzZsULNmzfIsEQYAAAAAuIbBaJSMRhnsXNYyk0dIiHxffTljn3iTSUpOtoSAtoSI2ZjTJS8vyY7qNmsMPt43vijrrZOt75xn8Pax7+bJtod8N+TjwL3T06XERJmzLD1qlqQHI+zqKu2PP5W6co3k4y2Dj0/GWLwzj71lyBIKXgsIr/4z63NXA0R3+rY8AADOVLNmTb355puaNm2aDh06pBEjRuiRRx5R+fLldfbsWW3cuFF//vmnypcvr0GDBtm0PVeDBg302WefZfyOdVWFChVUtmzZgnwpCg4OVokSJXThwgXLuZIl7VvG3ZoqVapo+fLlGjZsmPbv36+2bdvqhRdeUK1atRQTE6OVK1fq22+/VdmyZTVlyhQ1aNDAKfd1JoI7F8oauPnY+Uty1qDP2WvB5tfcuXOVkpKiTp06ycvLy6E+jh8/rgkTJuQa2mUKCAjQW2+9Zanqmzp1qtq1a1fkl8wEAAAAAOTOYDBkhG5eXjIEBjrUh7F+PRnr15M5PV1KSZGSU2ROyQgBzcnJWSoDM8+lSCnJGf/MDAyvtpO9QWReYZsTQ0B72RtAKq97291XckYYazLJfOXaPEnuOxrmzfhQSxkbNbT5enNamtL/PJolKLwWCspoJAQEALidSpUqadKkSdq+fbt27typpUuX6sqVK/L391flypXVt29fNWvWzOY58urVq2vgwIFatWqVLly4oPDwcPXs2VMeHh4F/Eqk/v3765NPPtGFCxdUr1491ahRw2l9ly9fXkuXLtXmzZsVFRWlGTNm6MKFC/Lz81P16tX1+uuv68knn5SfnfsuFxaCOzdhtrLJtjVZ1511p18kL168qJUrV0qS2rVr51AfPXv2VGxsrB5//PEbXtuwYUOFh4frt99+0+nTp7V9+3ZFRNj37T4AAAAAwK3H4OGRsfymr68K7W/VPj7yrHdXlhAwSyjoSNWbE8dlD3Me9zbY3ZfzAki7f4YJCUpdvirXp7z795WhVCmbuzJfvKT0s2dzrwzkC8YAACfy9PRURESE0+bBmzRpoiZNmjilL3vUrl1b7733XoH1bzAY1KpVK7Vq1arA7lFQCO5cKCAgwHKcbOcv3Ckp136xzdqPq61YsUIJCQkKDg5WvXr1HOrD3n3xHnjgAf3222+SpF27dhXZ4K5mzZoOVygWZSaTKcd6zbVq1ZLRyNsTAAAAgJvQA875O+uFlFRdSE9XWmKS0hITlZaQoLSkpIw97BITlZ6UlGM/QGuq1KypYnVq23zvy7/9Lmu7tN95zz3y8La96u7Mib910uar81a5WjWF1K1r8/WJp07pFyvP1br7bnmHhNjcV8w3W3V86YpcnzN4ecnTz0+e/n7y9L36T7+MPx5+WR/7ytPPX0G1a8o3LMzmewMAij7mSK9JTU3Vr79a+03j1nDr/Vt3I/kJ7rJe7y7Bndls1vLlyyVJjRs3LpRyWinjDSxTUf4f2mg03pLBXW74WQAAAABA3ko3aazSTRpbfd6cnq60pGSlJSZcDfauhnuJSUpLTJDpasCXlpCggHK32fV3MIOV/QENRqO8/f3tWxnIiZWD3kFBdr2OpBTr+xz6BBWT0Z6/l6ZYfx3m1FSZUlNlunTJpq6qDx2iIBv2JcqUfO68/lr4qTz9/WT097eEgp7+firZtIk87a1EBAC4hVt1jtTe1QlvRgR3LlSiRAnL8cWLF+1qe/ny5Vz7caXdu3fr5MmM78ndc889hXbfrJtsZt3MEgAAAACAW5XBw0NGfz8Z/Z2/d0tg1Sqq9eaoq0FgoiUENJtMdm/nYUpIdNq4jHbuOZiWaOXeBoM8fe0Lu9Kc+Do87fx3lhoXp5it23J9LuTeBnYtIXph337Ffr/DEv5ZgkB/P3n6+1uqAo2ZVYL+/vK4BSeVAQAoSAR3LlSlShXL8enTp21ul5aWptjYWMvjqlWrOnVcjvryyy8tx87cSPJGslYcJiQk5HElAAAAAADIL69ixVSivmPbY1yvTOtWKn7XnZaqQNPVMDB7lWDi1YAwIeNcUsZz1y8F6unna9e9rYVtnn5+GXsg2tOXtRDQAZ5+9gV3ed3b3r6uHDuus199Y1cbg9FoCfeyVvxVePopBVVzjzkrAACKEoI7F6pWrZrl+MyZMza3i42NVVpamuWxuwR327Zd+3ZX1lCyoKWnp1uO/e38dh0AAAAAAHAd//Ll5F++nN3tzGaz0pOSri35mZgoHzv3hUs3meTh46P065brtDcAlFxcOWjlS8we3t4yeHra15cDAaTZZJLp8mWZLl9W1p/kbR3a29XPpV9/06E3x16r8PPLqPAz+vsr/LVX7H4tAAAUVQR3LnTnnXdajv/991+dP39eITZsfPzHH39YjsuVK6eSJUsWyPjsceLECcsymZJUvHhxh/qZOXOmFi5cqLCwMM2ePVuhoaE3bJO1yq5YsWIO3RcAAAAAABQdBoPBUtnlqNBm9ym02X0yp6VZ9v5LS0xUuslkf2fmdBmMRpkdaXsde5fKTEtMyr0fB342JieuZORI5WB6crLSk5OVGhdnOW/w9JTsrID8e9kKnV63wbK0p6d/5tKfmYFg3st/Zl7v6eeXEYDauQQsAAD5QXDnQhUqVFB4eLh+++03SdLPP/+sBx988IbtDh06ZDlu2bJlgY3PHvv27bMc+/j4OLRp5t69exUZGSlJOnfunFavXq1+/frdsF10dLTl2F2qDwEAAAAAQNFg8PSUMTBAxsCAG19sRdUBL6jqgBeUnpp6dZnPBKUlJl1b+jMhMSMYTEjMsi9glucsS4AmyNPPvoo7a2GbvQGgZD0EdISzKgc9/f3s3zsx/krGv4OEBEnn7Wp7vbrvTFRQjeo2X58SF6crR49dDQX9slQQ+snDyFQsAODG+LRwsYceesgS3O3YscOm4O7HH3+0HLdq1arAxmaPn376yXKckpIik8kko52/jOzfvz/b4+Trlqqw5ujRo5bjunXr2nVPAAAAAAAAZ/Hw8pKHl5e8CnFFIL+yZRT64APZ9gNMS0iQT+nSdvdlLTxzhP2Vg9b2HLR/W5S0RNdVDl7+9Xf9NumdnP34+6vx0kV29XXlr7+VeuFCzkpAX1+792EEABQdBHcu1rlzZ82ZM0dXrlzRZ599puHDh+cZeF26dEk7d+6UJN11111q0KBBYQ01T1nDM7PZrNjYWJUpU8auPrIuc+nl5aVHH33UpnY7duyQJHl7e+uBBx6w654AAAAAAABFWfG771Lxu+9ySl/Bd9aWh49PtgAwLcs+gukpKTb3ZW/gZW2fQMcqB52356D9S35aqRx0YOnSM599oehNX1rt7/r9AD39syz5mRn2Xb0mpOG9dldBAgBcg+DOxUJCQtSrVy99+OGHOnfunD7//HO1b299895169YpNTVVkjRkyBCr150+fVpvvfWW9uzZo/Lly2vEiBFq2rSp08efKev+dpJkcmBN96ZNm8rDw0Pp6elq27atKleufMM2Z86c0Z49eyRJbdq0cXhvPQAAAAAAgFvdbY+0y/P5dJMp76U/E64Ffh4+Pnbd23rFnQPBnZUQ0BH2BodWA0hHXkcelYOZYaqtK4HeM2u6XcHdpcO/KvrrLdf2Bry6H6BX8eIq2aihzf0AAOxHcOcGnnvuOW3dulW//PKLIiMj1apVK/n6+ua4LjExUbNmzZIkPfHEE2rSpInVPocPH67du3dLko4cOaL+/fvriy++UNmyZQvkNVy8eDHffZQvX16dO3fWkiVL5G/jLxIffPCBTCaTgoKCNHTo0HyPAQAAAAAAALnzMBrlERQkr6Agp/cdGtFMAbfffjWQuhYCepcMsbsvp1bc5TJH58i9XV45aGe13ZW//tbZr77Ocd63bBm7g7szX2zSleMn5OnnK2PWJT/9rh0bLZWDfvL085XB09OuewBFncFgUKlSpeTj4yODwSCz2SwPlsS9ZRHcuQEfHx9Nnz5dTz31lE6fPq1XX31VU6dOzfY/ptls1vDhwxUTE6O7775bo0ePzrPPgwcPZnucmJioX375pcCCO7PZnO2xp4Mfrq+99prOnDmjdevWqUOHDrrrLutLPcyfP19r166Vt7e33n33XZV2YO12AAAAAAAAuJ5f2bLyc9K81e29eijl/Plr1YDZ9v/LrBK87lxCQo6lQD187Q+QrO0T6PLKQbuX/LQWQNq/3GbcTz/r/A+77Grj4eubsfynX5blP/39VG3wizIGBNg9BsDdGY1GVapUydXDgJsguHMTYWFhWrVqlYYMGaJNmzape/fuGjBggG6//XYdO3ZMM2bM0K5du9S2bVuNHz9e3t7eefZXp04dS8WdlLFnXHh4eIGN/4477tCvv/4qSfLw8FCJEiUc6iczxJw7d6569OihRo0aqUWLFqpVq5ZKlSolk8mkP/74Q8uWLdOWLVtUsWJFjR07Ns/qQwAAAAAAANw6gmpUd6idOS0tS6iXZNeefpY+0tNl8PSUOS0t23mjIxV3TgruDEajPLy87Ly3MwNI60t+WpOelKT0pCSlXojLdt7eIPX0hv/p76XLsweAfn7yr1xJt/fsbve4AKAwENy5kVKlSmnBggXaunWrVqxYoddff12xsbEKDQ1V7dq1tXDhQjVq1MimviZPnmzZ4y4sLExDhw5VxYoVC2zsI0eO1Ouvv65z587pmWeeyXWpT1t5enqqb9++6tSpk9auXavPP/9cU6dO1cWLF+Xr66uQkBDVrl1bkydPVps2bW4YYgIAAAAAAAA3YvD0lDEwUMbAQIf7uL1nd1Xu0U3m1NRs+/95eNu3518Gs2QwSNetdGUvR6rknLrnoLOW/PTwsHvvRNOVBKVd/ZM1hk1LTrb79ofHTdTl349cW/LT71oloGeWx8ar+wF6Zrsme3DIUqC4XnpKiq6cOKGEv04qLTlJnj6+8q9UQQGVK8uD+e9bDsGdm/Hw8FDz5s3VvHnzfPVz2223afbs2U4a1Y3de++92rx5s1P7DAkJUe/evdW7d2+n9gsAAAAAAAAUFIPBIIO3tzy8veUVHOxwP3dPfU9ms1npyclKS7h+ec9r+wBaqgQtjxOyLAmaKGOg/UtLWqv2MzoSAjpQcZcbTz8/GQwGp9zbkQpI06XLMl26JNOlS7I/9suu6ZoVdoV3Cf+cUsq5c9eCwsz9AH19ZGAftCLt8pE/dOZ/nyt2x06ZU1NzPG/w8lKppk1Utl0bBVWv5oIRwhUI7gAAAAAAAADADRkMBnn6+srT11feIY5tTeOIoBrVlZ6aorTEpGx7BHqXDLG7L5OTlvx0aLlRK9V+Hr4O9JXknNfhyN6JZ7/+RqfWROU4H3xXXdUZ+6ZdfV369TeZ09KuCwF95eHtbXcwCselJSbq+LwFit6UdzGMOTVVMdu+Vcy2bxX20H90e8/uDlW+omghuAMAAAAAAAAAWJRp3UplWrdySl8lmzRSatzFq5WCVysCLcuIJkrp6Tb149j+eu5ZOWj3vROTcj3vSJh5bNYcXTl+PMd5g6fn1SDv2vKeuS7/efUaY2CgSjVtYvf9ISWfO6dDo8co8Z9TdrWL3rRZlw4dVu2xb8qnZMkCGh3cAcEdAAAAAAAAAKBAVHn+OavPmc1mpaekZFv6M/uSoImWij9jUJDd97a+V5+v3X05q3LQseAu99DQ0895+xea09Jkuhwv0+V4m/oxFitmd3B3dstWXf7t9+v2//OTX7lyKhZew66+iqq0xESHQrtMif+c0qE3x+qudydReXcTI7gDAAAAAAAAABQ6g8EgTx8fefr4SCWcvxRohaefUumWzbNU+2X8KVarpl39mM1mq4GXvRxa8tNKaOjMENBejryOi78c0tmvv8lxPjTi/+wO7k4s/FTpSck5KgE9/fxl9L8WCmaGhO6yFOjxeQscDu0yJZ78RyfmL1SVF5530qjgbgjuAAAAAAAAAAA3naBqVRVUrWr+OzKbVWvUCMvynmmJ1yoE0xKurxJMyHb++qVAPR1ZptNa5aAD4ZnzKgedt9yoI68jZss2pZw/b3sDD4/sS35erfjzLVNGVfpZrwp1pstH/rjhnna2+nfjlyrdormCqldzSn9wLwR3AAAAAAAAAABYYfDwUIl76tvdzrIUaJalPw1G+6fkzWlpuZ63NwRMT02VOTXV7vvnem8Hlhu1vnSpIwGknZWD6ekyxcfLFJ99KVD/ihXsvveRqR8qbt8+S4VfZrVfSKN7VabVf6y2O/O/z+2+V17OfPYFwd1NiuAOAAAAAAAAAAAny7YUaPHiDvdz58RxMqenKy0pOVu1n3dIiF39pCcny8PbW+kpKQ6PJZMjlYPWwjZ7gztzWprSk5Lsvr8z7i1JpksXlXrxklIvXsp23q/cbVbbpKekKHbHTrvvlZfY73eo6oB+8vD2dmq/cD2COwAAAAAAAAAA3JjBw0NGf7+MveVKOtaHMTBQTVYulTktTWmJmUt8Jl1b3vPqUp+mLPsBpiUkZNsfMHNZUO+S9oWGUl5LftoXAqY5KbSTHN0nMPf759XXlRMnnFbtmMmcmqorJ/6i6u4mRHAHAAAAAAAAAMAtwuDpKWNgoIyBgYV63xL31Jd/+fLXQsHERJkSEuVVLMiufqwFZ45wauVgHnv1Jfx10u772CLhr78J7m5CBHcAAAAAAAAAAKBA3d6zu1P6MXh6KPSBiIxlQ69WDGatErRnGU2HKu4SrO3VZz0ETEt2XtiYvd/kAukXrkVwBwAAAAAAAAAAigTvEiVUfcggq89nLAWadDXIuxrqZS4LmmWPQFNCggKrVrX7/laX/MwjBPT08bX7Prbw9PEpkH7hWgR3AAAAAAAAAADgppCxFGiAjIEBBdJ/9ZcHyxR/JUfFn3+Fclbb+FeqUCBj8a9UsUD6hWsR3AEAAAAAAAAAANigRP16drcJqFxZBi8vmVNTnTYOg5eXAipXclp/cB8erh4AAAAAAAAAAADAzcrD21ulmjZxap+l7msqD29vp/YJ90BwBwAAAAAAAAAAUIDKtmvj3P7aPuzU/uA+CO4AAAAAAAAAAAAKUFD1agp76D9O6atM61YKql7NKX3B/RDcAQAAAAAAAAAAFLDbe3aXX/ly+erDr0J5Ve7RzUkjgjsiuAMAAAAAAAAAAChgnn5+qj32TflVKO9Qe78K5VV7zGh5+vk5eWRwJwR3AAAAAAAAAAAAhcCnZEnd9e4ku5fNLNO6le56d5J8SpYsoJHBXRhdPQAAAAAAAAAAAIBbhaefn6r276ewli105rMvFPv9DplTU3NcZ/DyUqn7mqps24fZ0+4WQnAHAAAAAAAAAABQyIKqV1NQ9WqqOqCfrpz4Swl//a205GR5+vjIv1JFBVSuJA9vb1cPE4WM4A4AAAAAAAAAAMBFPLy9LSEewB53AAAAAAAAAAAAgBug4g4AAAAAAAAAAMBFTCaTTp06JW9vb3l4eCg9PV2lS5eWp6enq4cGFyC4AwAAAAAAAAAAcBGz2azY2Nhs50qVKkVwd4tiqUwAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGjqwcA3GrMZnOu51NTUwt5JO7BZDLlOJeammr15wQAAAAAAAAANxPmSK+xNk9+K/0sDOZb6dUCbuDKlSv67bffXD0MAAAAAAAAAACKhPDwcAUEBLh6GIWCpTIBAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG7AYDabza4eBHArSU9PV2JiYo7zRqNRBoPBBSMCAAAAAAAAAMD1zGazTCZTjvN+fn7y8Lg1atEI7gAAAAAAAAAAAAA3cGvEkwAAAAAAAAAAAICbI7gDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguANcLDU1VcnJya4ehlJSUrRr1y5XD6PAxcfH6/Lly64ehlUmk0mff/65q4cBAAAAAAAAIIuNGzcqJibG1cNwCuZI3RvBHeAE8+fP14QJExx64/7zzz/10EMPafXq1UpPTy+A0dnm+++/V7du3TRs2DDFxsa6bBz58ddffyktLS3Pa8xmsyIiIjR69GgdOXKkkEZmu0OHDmnIkCHq06ePTp486erhAAAAAAAAAJC0bNkyNW/eXG+88YaOHz/u6uFYxRxp0UdwBziBwWDQggUL1LJlS02cONGu4Ov48eM6c+aMXn/9dbVv317ffPNNAY7Uuk2bNkmSNmzYoNatW+vTTz91aZDoiFGjRqlHjx46e/as1WuCgoJUpkwZrV69WuvXr7/hh1hh27lzpyTpu+++0yOPPKI5c+bIZDK5eFQAAAAAAACA+zlw4IBWrlxZKPdKSkpSSkqKVqxYoTZt2mjBggWFcl97MUda9BHcAU7g7e0tKePNe/Hixfrhhx9sbnvgwAHL8YkTJ7R3716lpKQ4fYx5SUxM1FdffZXtXKlSpWQwGAp1HPlx9OhR7d69W7t371aHDh20Y8cOq9feddddKlWqlIYOHSpPT89CHOWNffnll5Zjo9GohIQEJSUluXBEAAAAAAAAgPs5cOCAevXqpTfeeEMrVqwo8PtdunTJcvzBBx+oe/fuBX5PezFHenMwunoAwM3Ay8vLcjx58mS1bdvW5rb79++3HE+dOlUtW7Z06ths8fnnn1vWNDYajfr4449Vr169Qh9HfixfvtxyfO7cOa1atUoNGjSwhKpZNW7cWGvWrNG+fft0zz33FOYw83Ty5EkdOnTI8njq1Km6//77XTgiAAAAAAAAwLqLFy+6pFrr2LFj6tevn2VOc/To0TIYDHriiScK7J5xcXGSMuaCW7RoUWD3yQ/mSG8OBHeAExiN1/5XuuOOO2xud/HiRf3yyy+SpMqVK7vsDT9rOXmvXr2KXGgXHx+vtWvXWh6PGjVKzz77rNXrH3zwQXl5eemLL75wqw+l1atXW44bNWp0y30gAQAAAAAAoGjZuXOnhg4d6vJlDM1ms9544w0ZDAZ16tTJ6f2bTCZduHBBUsY8rrtVqEnMkd5MCO4AJ3D0jXr79u2Wb6R069bNJUtT/vTTT5aqv9tuu039+/cvsHuZzeYCeY1LliyxlKpXrVpVXbp0yfP6YsWKqVGjRtq4caNeffXVXL9xUtjS0tIUFRVleTxs2LB895mcnKxly5bp2WeflYcHKyMDAAAAAADAuVq3bq2AgABFR0erVq1aKl26tIKCguTj42NTe5PJpNq1a0uSBg4cqBdffLEgh+uw2NhYpaenS7KvcCM3a9asUbNmzRQaGuqMoVkwR5q7ojhHWjRGCbg5R4O7zH3lihUrpscee8yZQ7LZxx9/bDkePny4/Pz8CuQ+K1euVK9evRQTE+PUflNSUrRw4ULL41dffdWmfx9t27ZVTEyM1qxZ49TxOGrz5s06c+aMJOmhhx5S3bp189VfcnKy+vfvrwkTJmjkyJGWXywAAAAAAAAAZ2rWrJk6deqkWrVqqVSpUjaHdkXJP//8YzmuUqWKw/3Mnz9fI0aMUPfu3RUbG+uMoUlijtSaojpHSnAHuEhCQoK2bNkiSerUqZP8/f3t7iM6OlojR45UYmKiQ2M4cuSIvv76a0lSnTp11LBhQ50/f97pf3bu3KkxY8Zox44dat++vbZt2+bQeHOzbNkySxj44IMPKiIiwqZ2bdu2VYkSJTR79myXl/JL0oIFCyRlhMAvvfRSvvrK/EDavn27pIxv8RSlDyYAAAAAAADAnZw6dcpyXLVqVYf6mD9/viZOnChJOnr0qLp16+a08I450pyK8hwpS2UCTuBIxd0333yjxMREGQwGtWvXTufPn7erfXJysvr27asjR47o2LFjmjVrlooVK2ZXH++//77MZrMk6eDBg2rSpIld7R1x/vx5jRkzRlFRUXaP93qXL1/WRx99JEny9/fX6NGjbW7r4+Ojp556SjNnztTy5cvVtWvXfI1FyvjmTbdu3bJ9kNsrLS1NDz/8cL7Hcr3Mb82MHz++yJSEAwAAAAAAAPmVlJSk/v376/vvv3dKfy+//LJefvnlfPdz9OhRde/eXQsXLlTJkiUd7oc5UtsVlTlSgjvACRzZt2358uWSMvZ969ixY77uv2/fPn344YcaOXKkzW327t1rqfirX7++Fi1aJKOxYN4SUlJSdOedd0qSKlWqpE8//TTfoZ0kzZo1y7Ip7IsvvqjbbrvNrvZdu3bV/PnzNWXKFP3f//2fKlSokK/xlC9fXosXL9avv/6qWrVq2bwu9HvvvadVq1ZJkqZPn6769evnaxx5yQxqAQAAAAAAgFuBr6+vZsyYoVmzZqls2bKqVq2agoODFRQUZHN4079/f+3fv18hISHasGGDevXqpVGjRjlcfZeVIyuxZcUcqf3cfY6U4A5wAnuDu2PHjmn37t2SpHnz5qlp06Z23zM2Nlb33XefJKldu3Z67bXXbG6bnp6uCRMmSJKKFy+uyMjIAgvtpIxvSGSqU6eOSpcune8+T5w4YVm3+Z577lGPHj3s7qN06dLq3bu3pk+frtdee02LFi3K9zctypYtq7Jly9p8/b///qsNGzZIyihjb9myZY5rrly5ooCAgHyNCwAAAAAAALhV+fj4aNCgQQ61/ffff/Xzzz9LylhaslSpUuratavee+89LV261KWVW8yR3pzctxYQuAkcOHBAUVFROc4vWbJEkvSf//zHodBOyqhiy3TvvffatVzn0qVLdfDgQRkMBr3zzjsqU6aMQ2OwVdbgzpFlRa9nNps1atQoJScnKyAgQJMnT3b4w+S5555TmTJl9OOPP2rMmDH5Hpu9IiMjlZycLC8vL40YMSLXa/7zn/9o7Nix+vPPPwt5dAAAAAAAAMCt7X//+59lX7TMldMeffRR/fvvv1q0aJHLxsUc6c2L4A5wgtwq7r766is9++yzeu211yzLYkoZlXIrV66Ur6+vXVVy10tNTbUc21Mtd/bsWU2dOlVSxhuyrRuV5kfW4M4ZlX3Lly/Xnj17JElvvfVWvsq3/fz89MYbb0jK2MQ1c4PYwnDgwAGtW7dOktStWzdVqlQp1+vS09O1ePFitW3bVoMGDcr28wQAAAAAAABQMFJTUy1zuw0aNFCtWrUkZSy/OWTIEEVGRurw4cMuGRtzpDfvHCnBHWCjffv2qV69eqpRo0aOPwMGDLBc16FDB8u5pKQkmc1mvfnmm1q8eLGkjKUxk5KSNHjwYJUvX97h8Tga3I0aNUqXLl1SixYtNGTIkGzPmc1mDRo0SKtWrVJiYqLDY7ueyWSyHHt5eeWrr6NHj2ry5MmSpC5duqh9+/b56k+SWrZsqWeeeUaSNH/+fI0ePTpbRWNBMJvNevvtt2U2m1WuXDkNHDjQ6rWZ61yXK1dOr7zyilOqFgEAAAAAAICCEBUVddNURa1evVp///23JKlnz57Znnv00UcVHh6ufv36KTo6ulDHxRzpzT1HSnAH2Kh+/fpatGiRZs+ere3bt2vnzp2WP5lvkpK0cOHCbM/t3LlTO3bsUJs2bRQdHa3Fixfr7rvvtqw3/Ndff2n+/PnZgjhbZH3TtDUMW7lypbZt26aaNWtqypQpOUqnDQaDunTpovHjxysiIkKTJ0/WmTNn7BpXbpwV3CUmJmrw4MFKSEhQ/fr1rZZNO2L48OGqXbu2pIxvqzzzzDP6999/ndb/9VatWqUDBw5IksaOHZvnJrSZP7Pw8PB8bw4LAAAAAAAAFKQffvhB7dq1U//+/S17wxVFSUlJ+uijjyRJtWvXVosWLbI9bzAYNGnSJF26dEn9+vVTfHx8oYyLOdKbf46U4A6wQ506dRQREaHQ0FCFhIRY/gQGBlquKVasWLbnMv+UKFFCkZGR8vDw0KRJkyyhWbFixTR37lx16NBB+/bts3ksWYM7Wyru/vzzT02YMEG33XabZs6cafVNsHHjxpozZ45MJpM++eQTtWzZUq+++qqOHTtm89iu56ylMkePHq0//vhDVatW1cyZM+Xt7e1wX9fz9vbW7Nmzdfvtt0uSfv75Z7Vr104LFixwetn1+fPnNWXKFEkZFZr3339/ntfb++2RuXPnFvq3fAAAAAAAAABJCggIkNls1tdff60nn3xSUVFRrh6SQyZMmGCZYxs+fHiu2yVVrlxZw4cP1+HDh/Xss8/q7NmzBT4u5khtU5TnSAnugELyyy+/aN26dRo3bpzljU+SSpQoocmTJ+vo0aPq2rWrIiMjLZud5sWeiruEhAQNGjRIgYGBWrBggcqUKZPn9ffcc4+mT58uLy8vmUwmrVu3To888ojGjRunpKSkG47telkr7hwN7qZNm6b169erfPnymjt3roKDgx3qx5rFixfr9OnTWrBggWUJ08uXL2vChAnq0KGD1q1b57TS8HfffVdxcXGSpGrVqt3wens+lObNm6d33nlHjz76qLZt2+boEAEAAAAAAACH+Pr6Wo4//vhjdejQwen32LNnjy5fvuz0fjNt3LjRsrddx44d1ahRI6vXPv300+rYsaMOHz6szp07F+gyocyR2qaoz5EazGaz2dWDAIq6r776yrLPXVRUlGrWrJnteZPJpE6dOqlx48Z67bXXcu1j5MiRWrVqlSTpwQcf1H//+988vy2xfft29e7dW5I0Z84cNWvWzOq1Q4YM0e7du7Vo0SLdcccdNr+uL774QkOGDFHWt4mHH35YU6dOtbkPKWPN5TZt2kiS+vXrl2NvvRuJiorS8OHDVb16dc2ZM0dhYWF2tb+R+fPna+LEiQoKCtInn3yisLAw9e/fXwcPHsx2XalSpdSmTRs1btxYDRs2VFBQkN33+u6779SnTx9nDT1PBoNB8+bNU5MmTQrlfgAAAAAAAEBkZKRmzpwpSfr999/zvNZkMlmWZhw4cKBefPHFG/a/ZcsWDRo0SOHh4frkk08cmqPLy4EDB9SzZ0/Fx8fL19dXmzZtumEhREpKirp166b9+/fLz89PAwYMUM+ePfO1+tj1mCN1TFGcI3XefzUArPrkk09UqVIlDR8+3Oo1r7zyir766ivFxcVpy5YtGjt2rMaNG2f1+qyVb3lV3P33v//VoUOHtHjxYlWuXNmucT/88MM6fPiwZs+ebTm3adMmxcTEKDQ01OZ+8rPH3WeffabXX39d9957r6ZPny6DwaCOHTvq0KFDdvVji8uXL6t3795av369lixZojfeeEPr1q2zPB8bG6uFCxfqhx9+UOfOndW1a1e7+j9//rxGjhwpSapQoYJOnjypwMBAbd68Oc923bt315EjR/R///d/2fZTzM3s2bM1b948SdKsWbOK1AcSAAAAAAAAbl2JiYk6f/58ntfs3r1bw4YNU2pqqg4cOKAePXpo3rx5KlasmFPGcODAAfXq1Uvx8fEqUaKEGjZsqIcfflgdOnRQjx49VKlSpVzbeXt76+OPP1bv3r31888/a8qUKdqwYYNGjBjhlPk55khvrTlSgjugELRu3Vo9evTIdR3kTMWLF1efPn0s6/quXLlSjz/+uOrVq5fr9cnJyZZja5V5hw4d0s6dO7Vs2TKFhIQ4NPaXXnpJu3fv1k8//SRJSk9P18mTJx0O7uz5lslnn32mV199Vd27d9fQoUMtbefNm6fvv/9ed955pwICAnK069q1q44dOyYPDw9t2bLlhus8T5o0SevWrZOnp6dGjhypsmXLSpLeeecdNW3aVJMnT9b58+dVsmRJTZ48Oc/qRmvS09M1fPhwRUdHq1+/frpy5YoWLVokg8Fww383mfshenl53fBaHx8fy3FERITd4wQAAAAAAABcYe7cuZo7d65dbQ4ePGgJ7/K7bOSWLVv0yiuv6PLlywoPD9e0adNUoUIFLVmyROPHj9fy5cvVrl07DR48WOXKlcvRPrNS7bnnntO+ffv0+++/q0ePHqpbt6769u2rFi1aWOb57MEcaYZbaY6U4A4oBBUrVrTpuq5du2rWrFmW9Zm3bt1qNbjLWnFn7U23du3aWrhwod1Vbll5enpq9OjR6tSpk2Xvvdw+mPLiSMXdggULNHv2bE2dOlX/+c9/sj0XHBxsWXozN//++6+kjJ/7jcrYJSk1NdXS7/Vrbnfo0EEPPPCApkyZoieffFJ169a1afzXmzp1qr799lu1bdtWL730ksaPH+9QPwAAAAAAAMDNyNalMp3NZDIpMjJSc+fOlcFgUPfu3TVs2DDLnGuXLl0UFhamIUOGaN26ddq4caMGDRqk3r175yjUCAwM1IIFC/Tuu+9q4cKFkjKq+AYOHKiwsDA98sgjat++vWrUqGHT2JgjvTUR3AFuxN/fX61atdLq1aslKcdeeVllDe6yfoPgevkJ7TLVrl1b7dq10/r163X//ffbvX5y1g1Lb/TNDkl6//33derUKW3YsMHuSsGYmBglJCRIks0fgPHx8ZKyb5ybVfHixfNctvRG1qxZo1mzZqlhw4aaNGlSnpWXAAAAAAAAAArHnj17NH78eP3666+qXbu23nrrrVxDqRYtWmjq1KkaOHCgkpOT9e677+rcuXO5bo3k7e2tkSNH6r777tOoUaMUExMjSYqOjtacOXM0Z84chYaGqnHjxqpTp44qVaqku+66K8c8KHOkty776zIBFKj27dtLkurVq6eHHnrI6nWJiYmWY2tvps40YsQIRURE6PXXX7e7rb3BXdeuXfXee+85tLznn3/+aTkODw+3qU3mh5ItY7PXd999p9GjR6thw4aaPXt2gdwDAAAAAAAAgO2OHj2qIUOG6JlnnlFqaqoiIyO1evXqPCvJmjdvni2omz9/vmXltNw88MAD2rRpk1544QX5+flley4mJkYbNmzQlClTNHfuXB07dixHe+ZIb11U3AFupnHjxho4cKA6d+6c41sHKSkpljc1WyvunCUkJESzZ8/O85ojR47IaDTqjjvuyHbelv34srK3oi+rvXv3Wo4bNmxoU5tLly5JUo4P0Pzau3evXnzxRdWrV0+zZ8/O1r/ZbHbqvQAAAAAAAADkbefOnZo3b562b9+uJk2aaNasWYqIiLC5+qt79+76/vvvtW3bNqWnp9+wXUBAgF566SU9/fTT+vjjj7V27VpLQNa+fXu9+uqrCg0NzbUtc6S3LoI7wA1dv5bz8ePHNXnyZN17773q3bu3JOnKlSuW5wuj4s6auLg4ffbZZ1q9erW8vLz06quv5rgma8WdM5buzMu+ffskZawnfffdd9vUJvObMc78UPrpp5/Ut29fNWrUSFOnTnX6Bx4AAAAAAACAGztw4IA2btyoTZs2KTg4WK1bt9aYMWNUtmxZm9qnpaXJ09PT8njcuHF64oknVLFiRQUGBtrUR1hYmEaNGqUhQ4YoKipKe/bs0bvvvuvQ67EFc6RFG8Ed4MYuXLig6dOna/369XrllVf0xBNPWJ7LGtwV9hueyWTSt99+q6ioKG3ZskVNmjTRiBEjdO+99+Z6fdbqwIIsg05MTLR8KDVu3FhGo21vcZkfSv7+/k4Zx08//aQ+ffroscce04gRI7J9sGdKT093yr0AAAAAAAAA5O6ff/7R/Pnz1aRJE3366ac3DOtWr16thg0bqkKFCpZz27dv15QpU9SzZ0898sgjKl26tNatWycPD/t3IgsICFDXrl3VtWtXu9vaijnSoo/gDigkp06d0v/+9z/16NHjhktbJiUlacGCBZo9e7Zq1qyp1atXZ/uwkK4Fd0ajscCr2DIdOnRIUVFR+t///qdLly6pTZs2WrVq1Q03OLV3qUxHbd261bL3X8uWLW1qk5KSYtmo1dZvyORl165dGjhwoAYNGqRu3bpZvY4ycAAAAAAAAKBglS9fXu+//77N1+/YsUNvvvmmOnfurP79+yskJEQRERE6ePCgRowYoQ8//FAvvviiOnTo4FBwVxiYIy36CO6AApSQkKBNmzZp7dq12r9/v9q1a6fExESrwV1qaqpWrlypGTNm6PLlyxoyZIieffbZXD8ELl68KMl534Cw5syZM9qwYYPWr1+vP/74Q76+vurUqZN69eqlcuXK2dRH5geFVLD78W3cuFFSxodL69atbWqT+XOUpODg4Hzd/+uvv9Y777yjGTNmqEGDBnley7dJAAAAAAAAANdJSEiQr69vtrlXHx8fpaamatGiRYqKitKaNWtUsWJFDRgwQDExMVq6dKlGjBihZcuWacqUKapYsWKe94iMjFSzZs1uOFfoTMyRFn0Ed4CTmc1m7dq1S2vXrtWmTZuUlpamJ554QpMmTdJtt92Wa5vU1FRFRUVpxowZOnXqlBo3bqxx48blqLLLKrN0OSgoyOmv4eLFi/ryyy+1fv167dmzR2azWcWKFVO/fv3UvXt3hYSE2NVfYezHd/78eW3ZskWS1LZtW5uXDz1//rzluFixYg7ff8uWLVq3bp2WL1+u4sWL3/B6PpQAAAAAAAAA13n77bd1//33q23btpZzWVc2Gz9+fLZgbtSoUTp27Jh27dqln3/+WU899ZRWr15tdc5XkiIiItSjRw89+OCDev311xUWFlYwL+Yq5khvDgR3gJP17NlTcXFx8vf3V+fOndWrVy+Fhobmem1CQoJWr16tTz75RKdPn1ZwcLDGjx+vTp063fA+Fy5ckOSc0mVJio+P1zfffKMvvvhC3333nVJTUyVJoaGh6t69u55++mmH71UYwd2yZcuUnJwsg8GgLl262Nwu64dSiRIlHL5/o0aN9OCDD9p8PR9KAAAAAAAAgGvExcXp888/10MPPZTtfNbg7vrnjEaj3n33XT3yyCO6ePGizp8/rxUrVuill16yep/69etr/PjxGjZsmL799lsNGzasQPe3Y4705kBwBzgoOTlZO3bs0KZNm/Tll19azqekpOi5555Tr169rFamnTp1SkuXLtXKlSsVFxcnSXrggQf09ttvq3Tp0jbdP/PNND+ly8eOHdP27du1detW7d692xLWSdJtt92mPn36qFOnTvle3jI+Pt5yXBDBXUpKipYsWSJJatOmjcLDw21uGxsbazkuWbKkw2Owd8lSez6UWOsZAAAAAAAAcJ4FCxYoKSlJAQEB2c57enrm2S4sLEz9+vXT5MmTJeU+J3jo0CH5+vqqSpUqkqRHHnlEe/bs0fLlyzV27Fh99913mjJlitMKMjIxR3rzILgD7PDPP//o+++/17Zt27Rz507Lhp1SxptS165drQZ2V65c0bZt27R27Vpt377d8qbk7++vkSNH2lRllykxMdGyVKY934CIjo7Wtm3btHfvXu3atUtnzpzJcU2FChX0/PPPq0OHDtm+YZIfmeGkVDB78i1ZskQxMTEyGo0aPHiwXW1jYmIsx7aGps6QlpZm87X2fCjxLRUAAAAAAADAutjYWM2fP1+SVLZs2WzPZd3vzprOnTvro48+UkpKih5++OEcz2/evFnBwcGW4E6SRo4cqV27dunEiRPasmWLevTooYULFzp1rpQ50muK+hwpwR1go/79++vrr7/Ocd7Ly0udO3dWv379VKpUKavtP/jgAy1YsCDbuSpVqui///2vqlatatdYTp48aTm25xsQnp6eioyMzFb6nCksLEwvvviiHnvsMRmNzn1ryFzWU3L+nnzR0dH66KOPJEk9evRQpUqV7Gp/+vRpy3Fe61E7m8lksvna3D6Ufv75Z/3++++qXLmyypcvr1KlSunKlSvauXOnM4cJAAAAAAAA3FRGjRqlhIQEBQUFqXz58tmesyW48/f315QpU+Th4aEKFSrkeN5kMmWbD5UkHx8fvfnmm+rZs6ck6ZdfftGMGTM0dOjQfLySa5gjvbnmSAnuABu9/PLL2rFjhxITEy3nWrZsqeHDh2fbpNSaYcOG6cCBA9q/f78kqWnTpvrwww8dKon+9ddfLcfXfyskL6VKldLbb7+tAQMGWM55eXnp+eefV58+fWzerNRe0dHRlns581skaWlpGj58uC5evKg6derY/U0SSfrrr78kZaxRXa5cOaeN7Ubs+TZJ5rVZvykSFham9evXa9y4cUpOTs7Rxt4PZwAAAAAAAOBmN3XqVG3ZskWSVLNmzRzP2xLcSRnbHlmTmJioK1eu5DjftGlTNW7cWD/88IMkafv27U4J7pgjvfnmSG37rxCAqlatqjfffFOSVLx4cU2fPl3Tp0+3KbSTJG9vb33wwQcKDQ3Vgw8+qNmzZzu8jnHmm7skVatWza62LVu2VMeOHS1to6Ki9OKLLxZYaJeammr5xoaz3/QnTJignTt3qly5cpo5c6a8vb3tam82m3X48GFJUuXKlZ22NKgtsu4neCOZH0ZZP5TKlCmjN954Q5s3b1bz5s1ztLFn6VUAAAAAAACgKNq/f78GDRqUa2hzvQkTJmjGjBmWxxERETmuMRgM+R5TXFycTp06letzvXr1shw7a66UOdKbb46U4A6ww2OPPabnn39eq1atUsuWLe1uHxYWpjlz5mjq1KkOvwFevnxZX375paSMCrZ7773X7j5Gjhypdu3aafny5XYv05nVzJkztXnzZp08edLqGsPbt2+3vAFnXdc5v9577z19+umnqlSpkj799FOFhoba3cfWrVstG6/eddddThubLTJ/JraUnmeWjOf2DZSwsDDNmDFDTz31lOXcww8/rN69eztppAAAAAAAAID7+emnn9SnTx9t2rRJ/fv3zzO8mzt3brZtjIoVK2YpbsjKGcFddHS0/vzzz1znS5s1a2YpBHniiSfyfS/mSDPcbHOkLJUJ2Onll1/OV/vw8HCrz61Zs0ZGo1E1atRQpUqV5Ovrm+351NRUvfXWW4qPj5eU8UbvSNVeYGCg3nvvPbvbXc/Dw0PvvPOO/v77b/n7++uOO+7Q7bffrvLly6t48eKKjY3V8uXLLdc3bNgw3/c0mUwaO3asli9frkaNGumDDz5QiRIlrF7//vvvKyQkRBUrVlS5cuUUGhqqgIAAHT58WG+99Zbluty+kVGQGjVqpB49eui+++674bV5fShlGj58uI4ePaouXbqobdu2ThsnAAAAAAAAkCklJUUXL17M85qsWw3FxMTkeW3W6qmEhIQbXp/p2LFj6t+/v2WedPv27RowYIA++uijXCvOypYtq+rVq+v8+fOqVauWBg4cqJCQkBzXZQ3u0tLS5OnpadN4MiUnJ+vXX39VfHy8tm/frmbNmmV73sPDQ5GRkfr7779zrfizFXOkubtZ5kgNZmtlMgAK3ZdffqnVq1fr+++/l8lkUqlSpVS6dGkFBwcrLS1NJ06csOwXJ0kLFy5Uo0aNXDjijFLqLVu2aPr06Tp48KDV67y8vPTNN9+odOnSDt8rOjpaw4YN0759+9SvXz+98MILMhrz/v7BwYMHFRUVpbVr11o+yK9Xu3ZtrVy50u4P4sJy3333KTY2VvXq1dOyZctcPRwAAAAAAADcolJTUzVkyBBt3rzZ1UPJVUREhKZNm2b3cpGZ5s+fr4kTJ0qSBgwYoB49esjf3/+G7cxms06fPq3IyEh98cUXkqTg4GANHjxYXbp0cUolXybmSG/+OVKCO8ANnT9/XitWrNC8efMUFxeX6zWPPfaYJk2aVLgDy4PZbNbq1as1fvx4JSQk5Hi+T58+euWVVxzu/4svvtBbb72lChUq6K233lKdOnXsan/27FmNGTNGX331VbbzQUFBWrx4sWrUqOHw2Apao0aNFBcXp5o1ayoqKsrVwwEAAAAAAMAtLDU1VUuWLFH58uVVrVo1BQcHKzAw0G0DH3ucOnVKbdu2zVY1mB9Dhw5V3759ndKXxBzprTJHSnAHuLGLFy9q5MiROb7B0rFjR40ZM8bhb44UpP3796tbt25KSUmRlFH+/eyzz+q1116Th4f922r+9ddfGj9+vI4cOaKBAweqY8eODvUjZZRRDxgwQFu2bJEklS5dWh9++KHuvvtuh/orLPXq1VNCQoIqV66sTZs2uXo4AAAAAAAAwE3r4MGD+vDDD/XTTz/p8uXLdgWSRqNRAQEBuuuuu/TMM8+oSZMmThkTc6S31hwpwR3g5tLT0/XCCy9o69atKl++vEaMGKGWLVu6elh5GjFihL799lu1aNFCXbp0yXNfv7xERkZq48aNevbZZ/Xkk086Jag8ceKEHnvsMT3++ON68cUXFRwcnO8+C1qdOnUUHh6u3r176+GHH3b1cAAAAAAAAAAUEuZIM9xKc6QEd0ARcPz4cf3yyy9q27ZtkSg5j4+PV2BgYL77OXLkiKpUqeL015yQkGDT2tTuYu/evbrnnntcPQwAAAAAAAAAhYw50gy30hwpwR0AAAAAAAAAAADgBhxbBBUAAAAAAAAAAACAUxHcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAIBbS0xMdPUQAAAAAKBQENwBAAAAANxa8+bNNWnSJP3999+uHorLmM1mffzxx4qLi3P1UAAAAAAUIIPZbDa7ehAAAAAAAFhTr149JSQkyGAwqFmzZnrmmWcUERHh6mEVGrPZrDFjxmjp0qWqVauW5s2bp+LFi7t6WAAAAAAKABV3AAAAAAC35u3tLSkjwNq5c6f++ecfF4+o8GQN7STp8OHD6tmzJ5V3AAAAwE2KijsAAAAAgFu7//77FRMTI0maPXt2oVfbzZ8/XxMnTizUe95IzZo1NX/+fCrvAAAAgJuM0dUDAAAAAAAgLz4+PpbjGjVqFPr9e/ToIW9vb/3yyy+qU6eOKlasqKCgIAUGBspgMNjUx5w5c7RmzRpJ0ssvv6yWLVsW5JABAAAAFFEEdwAAAAAAt5a5VKYkm4MyZ+vSpUu+2metjAsNDVWVKlXyOSIAAAAANyP2uAMAAAAAuLWswd2VK1dcOJLClZiYqBkzZig9Pd3VQwEAAABQSAjuAAAAAABuzdPT03J86dIlF45E+v333zV58mSlpKQU+L02bdqkqVOnqlevXjp37lyB3w8AAACA6xHcAQAAAACKjFOnTtndJj4+XoMGDVJ8fHy+71+1alXt3btXTz31lP76669895eXzD3xdu7cqQ4dOujHH38s0PsBAAAAcD2COwAAAABAkXH06FG724wbN06bNm3SCy+8oKSkpHzd39PTU5MnT9axY8fUsWNHffXVV/nqz5rjx49r9+7dlsdxcXHatm1boVT6AQAAAHAdgjsAAAAAQJFhb9XZsmXLtHbtWknS7t27NWjQIKWmpuZrDLfffrv69eun+Ph4DRw4UNOmTctXf7mZNWuWzGazJKlUqVJauXKlhg4dmm2/PwAAAAA3H4I7AAAAAECRsX//fpuXvNyxY4fefvvtbOfOnDmjHTt25HscvXv3VuXKlWU2m/Xhhx9qxIgRSktLy3e/knTy5Elt2LBBklSsWDEtXLhQ4eHhTukbAAAAgHsjuAMAAAAAuIV9+/bd8JqQkBBt3rz5htcdOHBAAwYMkMlkkiTVq1dPixcv1oYNGxQREZHvsXp7e+vll1+2PF6zZo3GjRuX734laebMmTKZTPL09NTUqVNVpUoVp/QLAAAAwP0R3AEAAAAAXG7v3r169tln9corr+S5lOX//d//ac2aNXn2dfDgQfXp00cJCQny9/fX6NGjtXTpUjVo0MCpY27VqpWqV69uebx06VIdOnQoX30ePnzY8vpGjx6t++67L1/9AQAAAChajK4eAAAAAADg5hIXF6dz587ZfH1KSopefvllmUwmrV+/XrGxsfrwww8VGBiY49qIiAitWLFCx48f1+23357j+Z9++kl9+/bVxYsXVa9ePU2ePFmVKlXK1+uxxmAw6JlnntHo0aMlSWazWcuXL9fYsWMd7nPs2LFKT0/Xc889p86dOztrqAAAAACKCII7AAAAAIDTvfLKKw5Xn+3YsUOvvfaapk2bluO58PBwlS5dWosXL9aoUaOyPff9999r4MCBSk1N1csvv6w+ffrI09PToTHYqk2bNho/frySk5MlSSdOnHC4r3Xr1mn//v1q06aNhg4d6qQRAgAAAChKCO4AAAAAAE5VvHhxzZs3T/Pnz1fVqlUVHh6u4sWLKygoSN7e3jmu/+OPP9SuXTvL47Fjx+rxxx+32n9ERITWrl2rl156yVKVFxUVpVGjRqly5cp69913VbNmTee/sFwEBQWpSZMm2rp1qySpatWqDvUTGxuriRMnqlGjRpo8ebIMBoMTRwkAAACgqGCPOwAAAACA0wUHB2vw4MFq27atqlSpopIlS+Ya2knS9u3bLce1atXSU089JaPR+vdMW7durfj4eC1btkySNG3aNI0YMUJdunTR6tWrCy20y5QZMvr7+6t79+4O9TFq1ChVq1ZNs2bNsvpzyspkMjl0HwAAAADujYo7AAAAAIBLZQ3uWrZsecPrmzRpotDQUC1YsECHDx/Wjz/+qLlz56pp06YFOUyrWrVqpRdeeEHNmzd3aD+9VatW6dKlS5ozZ478/PxueP3Ro0fVr18/TZw4UQ0aNHBkyAAAAADcFBV3AAAAAACXSU5O1o8//mh5bEtw5+npqbZt2+rs2bOKjY3V+vXrXRbaZXrppZdUt25dh9qaTCbNnj1b/v7+N7z2xIkT6tGjh/7++28999xz2X52AAAAAIo+Ku4AAAAAAC7z7bffKikpSZJUsWJF1ahRw6Z27du31/z58xUbG6ugoCCnjSclJUUnT550Wn+Z4uLiLMcxMTE6evSo5fG9996r6OhoRUdH59nH5cuXNXjwYJ09e1aSlJCQoOeee05z585V/fr1nT5mAAAAAIWP4A4AAAAA4DKff/655fjRRx+1uV3t2rUVHh6u3377TcuXL1eXLl2cMh5vb28tXbpUixYtckp/uXn//ff1/vvvO6WvhIQE9enTR3PnzlW9evWc0icAAAAA1yG4AwAAAAC4RGJiorZu3SopY/nLTp062dW+e/fuGjFihKZNm6b27dsrMDDQKeMaNWqUKlSoIB8fH9WqVUthYWEKCgqyaSlLayZPnqxPPvlEkjRx4kR17NjRKWMFAAAAcHNhjzsAAAAAgEts3rxZCQkJkqT7779fZcqUsat9u3btFBoaqnPnzmn69OlOHVv37t3VuXNn1a1bV2FhYfkK7QAAAADAVgR3AAAAAACXWLJkieX4ySeftLu9t7e3nn76aUnSggULdPDgQaeNDQAAAABcgeAOAAAAAFDofvvtN+3fv1+SdMcdd6h58+YO9fP0008rICBAaWlpGjVqlEwmkzOHCQAAAACFiuAOAAAAAFDoFi9ebDl+/vnn5eHh2F9PQ0JC1KtXL0nSr7/+qpkzZzplfAAAAADgCgR3AAAAAIBCFR0draioKElSuXLl1K5du3z116tXL4WGhkqSPvroI+3Zsye/QwQAAAAAlyC4AwAAAAAUqtmzZyslJUWSNHDgQBmNxnz15+/vrwEDBkiS0tLSNHToUJ0/fz7f4wQAAACAwkZwBwAAAAAoNGfPntXKlSslSXXr1tVjjz3mlH6feOIJ1a5dW1JGRd/gwYMt4SAAAAAAFBUEdwAAAACAQhMZGank5GQZDAa98cYbMhgMTunXaDRqwoQJ8vLykiTt3r1br732msxms1P6BwAAAIDCQHAHAAAAACgUBw4c0Nq1ayVJnTp1Ut26dZ3af3h4uJ577jnL488++0zjx4936j0AAAAAoCAR3AEAAAAACpzZbNa4ceNkNptVsWJFjRgxokDu88ILL6hWrVqWx4sWLdIbb7yh9PT0ArkfAAAAADgTwR0AAAAAoMAtWrRIP//8s4xGo9577z0FBAQUyH28vb01bdo0lShRwnJuxYoVGjJkiBISEgrkngAAAADgLAR3AAAAAIACdezYMb333nuSpCFDhjh9iczrlStXTpGRkTIajZZzGzduVKdOnfTHH38U6L2tyVrxx757AAAAAKwhuAMAAAAAFBiTyaThw4crKSlJTz75pPr06VMo923SpIlef/31bOeOHj2qTp06aebMmUpJSSmUcWTKGtalpqYW6r0BAAAAFB0EdwAAAACAAjNp0iQdOHBAzZo105tvvlmo9+7atauGDh2a7VxSUpIiIyPVunVrrVmzRsnJyYUylqwVdwR3AAAAAKwhuAMAAAAAFIioqCgtWrRIjRo10gcffJBt6crC0rdvXw0ePDjH+VOnTmnEiBFq1qyZVq5cWeDjMJlMlmOCOwAAAADWFP7fmgAAAAAAN72ff/5Zo0ePVvPmzfXBBx/I29vb4b6yVqs5on///vLz89M777xj6cvPz08tWrRQ/fr1deedd+arf1tQcQcAAADAFgR3AAAAAACn+uOPP9S3b1898sgjGjNmTL4q7Uwmk86cOWN57OHh2MIxPXv21B133KGhQ4eqbNmymjlzpsqVK+fwuOyVNawjuAMAAABgDcEdAAAAAMBp/vnnHw0YMECvvvqqHn/8cZvafP755zpx4oRCQkIUHBys4OBgBQQEyGAwaP369YqLi7Nc6+vr6/DYIiIitHz5cqWmphZqaCdJKSkplmOCOwAAAADWENwBAAAAAJzmypUrmjZtmqpXr25zmypVquj333/XggULdOzYMavXlShRQiEhIfkaX5UqVfLV3lFZw7qsIR4AAAAAZEVwBwAAAABwmho1ajjUpkaNGhoyZIh+/PFH/fe//9WuXbtyXNeuXTtnDNElsoZ1+d2zDwAAAMDNy2A2m82uHgQAAAAAAFl99NFH+uCDDyyPK1WqpBUrVqh48eKuG1Q+9OrVS4mJierSpYseeugheXt7u3pIAAAAANwQwR0AAAAAwC116dJFe/fuVfPmzTV27FiFhoa6ekgOi4mJKdLjBwAAAFA4CO4AAAAAAG5pz549KlGihKpWrerqoQAAAABAoSC4AwAAAAAAAAAAANyAh6sHAAAAAAAAAAAAAIDgDgAAAAAAAAAAAHALBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANzA/wP83abrJBXxvwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_name = '额外产能分布P5'\n",
+ "y_choose = [0, 1, 2, 3]\n",
+ "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n",
+ " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n",
+ " 'palette': sns.color_palette(\"deep\")[0:4]})\n",
+ "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n",
+ ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n",
+ "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n",
+ "sns.set_theme(style=\"whitegrid\", rc=config)\n",
+ "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n",
+ " markers=['o'],\n",
+ " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n",
+ " palette=y_prop.loc[y_choose]['palette'].to_list(),\n",
+ " legend='brief')\n",
+ "ax.set_title(x_name)\n",
+ "for item in df_x.groupby('响应变量'):\n",
+ " for x, y, m in item[1][['水平', '均值', '均值']].values:\n",
+ " ax.text(x, y+0.05, f'{m:.2f}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\759130329.py:10: UserWarning: \n",
+ "The markers list has fewer values (1) than needed (4) and will cycle, which may produce an uninterpretable plot.\n",
+ " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtcAAAViCAYAAAB596OXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzddXxT5x4G8CdpmnopFdoCheI+3NlwKzrYhhfX4tZhxcewizPcYTAYMIYNGDZkyHB32iKlQl2i94/SQ0KSJmnTFnm+n8/93JzkvO95U7vc8+T3e0VqtVoNIiIiIiIiIiIiIiIiIjJKnNMLICIiIiIiIiIiIiIiIvpUMFwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIg1xcXE5vQSij1pSUlJOL8Ekb9++hUKhyNQcUVFRUKlUFloREREREX0uGK4REREREWWh8PBwzJ8/P0dvRstkMovNdf/+/UzP8fjxYyQnJ1tgNZanUqnw3XffYcSIEQgJCcnp5aTrzp07uHHjRk4vI0ep1eqcXoJZ/v33309uzR9SKBQYNGgQ5s+fn9NLMer8+fNo1KgR1q1bh/j4+AzNsXbtWrRv3x4XLlyw8OqIiIiI6FPGcI2IiIiIKAu5u7vj2rVraNu2Le7cuZPt13/x4gU6duyI//3vfxaZr3fv3ujWrVumQp2DBw+iXr16WLhwIcLDwy2yLksRi8WYOXMmjh49Cj8/PyxatMii4aQlrVixAl27dsWff/5p9tiXL1/i9u3bWbAqyzA1gFq8eDGmT5+Ox48fZ/GKMk8mk6F///7o1q3bJ7FefRQKBUaPHo1z585h1apVWL16dU4vKV02NjZ49eoVZs+ejXr16mHdunU658jl8nTnuH79Ou7cuQN/f38MGjQIz549y6LVEhEREdGnhOEaEREREVEWEolEmDJlihByZSQIyaizZ8+iXbt2uH37NlauXIlVq1Zlar7IyEiEh4fj4sWL+OGHHzB8+HA8f/7c7Hns7e3x9u1b/PLLL6hfvz4CAwMRExOTqbVZUpUqVTBixAjIZDIsX74c33333UdXxXb//n0cPXoUKSkpGD16NBYsWGBWRVRERATatWuHLl264MiRI1AqlVm4WvOoVCp06tTJpEqhYsWKYcuWLfDz88OcOXOyYXUZd+PGDSQnJ+PSpUto06bNRx3c6pOcnIxhw4bh0KFDwnPz5s3D77//nmNr2rt3L6Kiogy+bmNjIzzOkycPmjRponNO3759sX79er2tH5VKpVYI/ffff2Pr1q1sE0lEREREkOT0AoiIiIiIPndFihRBp06dsGnTJowZMwZWVlbw8/PTe+6qVauyrN3a/Pnz4ejoiM6dO2do/N27d4XHarUaZ8+eRZ06dVCwYEGz5rG1tdU6rly5MnLlypWhNWWVHj164M8//8Tdu3dx//59dOnSBbt374a7u3tOLw0AMHv2bOEGv0QiQXR0NKKiouDm5mbS+LTQ4fLly7h8+TLKly+PLVu2QCqVZtmaTfXPP//g6tWr6NmzJwICAjBw4ECIxfo/F1qhQgUAQJMmTTBq1KhsXKX5jh07JjyWy+VYuXIlJBIJAgICcnBVpomKisLAgQNx7do1AIC1tTU6deqEBg0aoHLlyjm2rqdPn2L27NmYNm0aGjdurPO6tbW18LhPnz7Inz+/1usvX77EhQsXcP78efz111+YNWsWChUqJLz+4MEDJCYmCscjR45E//79s+CdEBEREdGnhuEaEREREVE26NOnD7Zs2QKVSoXp06ejXr16sLe31zmvX79+AIDbt2+jQoUKKFy4MJydneHk5ASRSCSct3v3bqxZswZAaqXVtGnTTFqHoZDCFJcuXdI6XrlyJSpVqmT2PBLJ+/8bMnbsWPzwww8ZXlNWsbKywoQJE9C1a1cAQFhYGBYvXmzy1/lDCoVC631nxv79+3H27FkAQOHChbFgwQKULFnSrDk011KwYEHMmzcv3WAtKSkJdnZ2GVuwmX799VcAqVVDixcvxuXLl7Fs2TK9vy958+aFp6cngoODYWVllS3ry6ijR48Kj/PkyYMtW7aYHUznhFu3bmHIkCF4+fIlAKBGjRqYPHkyChcubHDMmjVrkDdvXjRs2FCreszSAgICcODAAQwePBidO3fGhAkTtH62jf3Obd68WQip3759i0ePHmmFa5p/8woXLow+ffpY+B0QERER0aeK4RoRERERkYUEBwdDJBLBx8dH5zVPT0+UL18eV69eRVRUFM6dO4dGjRrpnKdSqYSALT2abckGDhyIIkWKZG7xJtBs01eqVKkMBWsAtEIQR0fHTK8rq1StWhUlSpTA/fv3AQDR0dEZmuf58+fo168fpkyZgpo1a2ZqTREREZg+fToAoFatWli8eDGcnJzMnkczdOjQoQMKFChg8NyrV69ixIgR2LBhA3x9fc2+ljlevnyJ06dPC8fFixdH//799QZraerVq4cdO3bg6dOnWsHIx+Ty5csIDQ0VjocMGfJJBGs7d+7E9OnTkZKSAg8PDwQGBqJVq1ZGx3l6emLy5MkICgqCn58fOnfubHYAbAqpVIqRI0dixIgR2LZtG169eoVly5YJf2M0K9c+FB0djd9++w0AUK1aNaxYsQIODg5a51y+fFl43K1bt48+wCUiIiKi7MM914iIiIiILGTx4sU4c+aMwde/+uorAICDgwPKlSun83poaChat24thDnpSasiKVy4MOrUqZPBFZsuMTERt27dEo47duyY4bk+pRvUmkFChw4dzB7//Plz+Pv749mzZxgwYADOnz+f4bWoVCqMGTMG0dHR+Oabb7By5UqdYO3hw4daFVKGmPo9ePLkCQYOHIhXr16hb9++6e5vZQnr168X9n+ztrbGsmXLUKNGjXTHpO2jpbkX2MdGc1+yQoUKoX379hab25y99kwVFRWFgIAATJw4EUqlEt27d8fhw4dNCtaA1N+bffv2oWzZstixYwfatGmDjh074tixYxZfb/PmzYVQ9cSJE9iyZYvwWno/5ytWrEB8fDyKFy+OZcuW6QRrwPvKNXt7e7Ru3dqi6yYiIiKiTxsr14iIiIiILCAhIQEnTpyAr68vHj9+rPcce3t7WFlZYcyYMYiPj0d8fLzwmlqtxujRo/Hw4UN069YNq1evRvny5Q1e79WrVwCATp06WfaNGHD27FnI5XIAqeGgqTfZ9dFsb/mxK1OmDABg6NChqF27tllj04K1169fAwCSk5MxYMAArFixIkMVbEuXLsW5c+dQvXp1LFu2TG8bRxcXF8yYMQO7d+/G1KlTkSdPHr1zmdIe9OrVqxgwYIBQsRccHIwBAwZg06ZNOvvmWUJUVBR27twpHHft2jXdiro01atXR65cubBnzx7079//owtvY2NjcfjwYeF4+PDhFlvjyZMnsWzZMqxcuRKurq6Znk+hUGD79u1YunQp3r59i5o1a2LChAkoVqyY2XN5e3tj/fr1WLVqFRYsWICrV68iICAAJUqUwPjx442GpqYSiUTo0qULZsyYASC12q579+4ADIdroaGh2Lp1K3x8fLBmzRo4OzvrnPPw4UMhTG7VqpXFqmyHDh2Kv/76y+Tz7e3t4eTkhLx586J8+fKoV69epitgAeDKlSs4dOgQrly5gpCQECQkJMDW1ha+vr6oV68eunTpYpGfKSIiIqLPFcM1IiIiIiIL+P333xEfH48lS5ZgyZIl6Z47ZcqUdF+PiYnBwIEDsWHDBhQvXlzvOSEhIZBKpdlWTXHkyBHhccuWLfVWeZgqq8K1tPAqM9VhhixevBiLFy/O9DwZDdiOHDmC5cuXo3Tp0li+fLnB/dE8PDwwb948+Pv7o1WrVpg1axYaNGigc56xcGffvn2YOHEiUlJSALzfb6p48eJZUikFAJs2bUJSUhKA1JBw4MCBJo2ztrZG8+bNsX37duzfvx9t2rTJkvVl1I4dO5CYmAgAKFeuHJo1a2aReU+ePIkhQ4ZAJpOhR48e2LBhQ4bDkNDQUBw8eBC//fYbQkJC4OvrixkzZuhtXWsOkUiE/v37w9vbG+PHj4dcLsf9+/fRvXt3dOnSBePGjUu3daOpmjdvjlmzZkGpVCJ37tzC84ZC5J9++glubm7YsGEDPD099Z6jWYX83XffZXqNacaNG4eBAwfixo0bmDp1qlCp6evri/Hjx8Pb21s4Nzk5GbGxsXj06BEuXryILVu2YMOGDShSpAiCgoIyFFDevXsX06ZNw7Vr1/D111+jc+fOKFiwIKRSKUJCQrB8+XIsXboU27Ztw8KFC1G9enWLvXciIiKizwnDNSIiIiKiTAoPD8eyZcsAAAsWLICfn5/Zc9y/fx9t2rSBu7s7goKCUL9+fYM3nRMSEhAVFYXmzZvDxcUl3XkVCoXW/loZIZfLcfLkSeH4+++/NzomPj4+2/dTs7W1xcqVKzFz5kw4OjqidOnScHd3h5OTU5ZUWmWGjY2NyedeunQJY8aMga+vL9asWWP061q1alV06dIFmzdvxqBBgzBkyBAEBASYdK3Y2FhMnToV+/fvBwAULVoU/fv3R8uWLU2qdsuot2/fYuvWrcLx6NGjkStXLpPHd+vWDdu3b8eKFSvQqlUri671xYsXSE5OzvD4bdu2CY/btWtnsLLVHPfv30dgYCBkMplw3L17d2zcuNHsgE2zFa2XlxeCgoLw3XffQSQSISUlBSqVCiqVCmq1Wnj84bGhx2nHJUuWxKhRozBnzhxhv8itW7ciNjYW8+bNy/TXw93dHTVr1sSZM2fQu3dv4Xl9Qf7Jkydx69YtbN68Gfnz5weQ+jfuw7+3aeFaiRIlhJa+pnr58iXy5s2r9zVvb294e3ujVKlS2LVrF27cuAEA8Pf3R926dfWOqVOnDnr06IEXL17gxx9/xMWLF9GzZ0+MHDkSffv2NXldu3fvxuTJk+Hl5YUtW7agcuXKWq9/9dVXcHd3h7+/P6KiotC3b19s27YNZcuWNfkaRERERF8KhmtERERERJnw9u1b9O3bV2idV7RoUeG1/fv3Izg4GL179zYapixbtgz58+fHxo0bkS9fPgDAwYMHUa5cOfj4+GidGxISAgBGq9aUSiVGjBgBHx8fjB071ty3Jrhw4QJiY2MBACVLltS7X5ymo0ePYvr06VixYgVKly6d4etmhI2NDaZNm2bSuQcPHsTbt2/RuXPnDFfTHTlyBLt27cLw4cOz5L3+888/GDp0KDw8PLB+/Xq4ubmZNG7YsGE4ePAgIiMjsXjxYshkMowYMUJ4/cPwSa1WY//+/Zg7dy7CwsJQqVIl9OnTBw0aNMiWNp7Lli0TfsYqV65sdqVQ0aJFUadOHZw5cwZ//PEHvv32W4utLSQkBAMGDBCq6jJj6tSpFliRfg8ePIC/vz82btxo8s8JAHz99ddCuPb69WtMmzbN5N8hQyQSCRwdHZErVy7hv52cnODn54cDBw4I1Y9//vknunTpgooVK2bqegAwZswYNGnSBPXq1ROe0/eze/PmTWzatAkFCxYEAJw/fx6TJk3CypUrUaRIEQCpFWOXL18GALP3x1uyZAnWrVuH1atXo0qVKumeqxn629nZGZ07X758WLt2Lfz9/XH16lXMmzcPrq6uJq1x165dmDhxIgoVKoRNmzbBw8ND73maH8ZISUnBqlWrLFK1S0RERPS5YbhGRERERJQJM2fOxN27dwEAhQoV0tqb6NixYzh06BB27dqFMWPGoHnz5nrnePDgAa5du4Zt27YJwRoA/PvvvwgMDETXrl3RrVs3obLizp07cHR0RKlSpRAeHm5wbXPnzhXaOUqlUgwfPjxD73Hfvn3C48aNG6d7zbdv32LChAmIiYlBly5dMHfu3Ey3lssqlStXRsuWLfH3339j7ty5ZgUSac6dO4dTp07h9OnTaNKkCYYNGybcoM+M8PBwrF+/Hhs2bEC+fPmwceNGrXZxxjg5OWHw4MFCmLNixQrUqlVLaPGmGTrcu3cPHTt2xN27d+Hn54euXbumW6ly+fJllChRAk5OThl8d9qeP3+O7du3A0ht8Th16tQMBXq9evXCmTNn8NNPP6FWrVoG2/2Zq0aNGvj1118hl8tRqlQps9oYDhw4EMePHweQGqx17NjRImuypFatWmHNmjU6z9vY2MDd3R3u7u5wcXGBk5MTZDKZVovYIUOGoHTp0nB2doazs7MQpqXXNrZmzZqYNGmSUMEWGhpqkXCtZMmSKFmypNZz+n6OhgwZIjw+d+4cBg4ciOTkZKHyr0iRIjh79iySk5NhbW1tVuvdJUuWYOnSpQCAvn37mhSwmUsqlWLKlClC+9NZs2ahXr166f79unr1KqZMmQIbGxusWLHCYLAGpP4N12RK6EdERET0JWK4RkRERESUCSVKlMChQ4fg6+uL+fPnCzdzExMTcerUKQCpbeWuXr2K+vXr621PeOvWLaxatUpoUZZGKpVCJpNh3bp1WLdunc44zQoNY9asWYOmTZuiVKlSZry71Pdx9OhR4diUPeU0xw4ZMsTs1mXZxdPTE2PHjsXEiRPRpk0bLF26FBUqVDB5vEKhEIIGtVqN48ePw87ODpMmTcpUS0yVSoWePXvi4cOHAFL3O1u0aBFkMhlkMhnkcrnex5rHKpVKCDri4+MBAHv37tUbrt25cwddu3bF6tWr4ezsbHR927ZtQ+fOnS0WGvz888+Qy+UAgKFDh2oF1OaoXbu2UL02fvx4rF271iLrA2D27w2QWiGVFqwVL15cbztVtVqdLZWB6SlZsiSqVasGLy8vVKhQASVKlICvry/c3d11zg0KChIe+/n5YfDgwWZf77vvvkN8fDxmzZoFkUiEatWqmTX+8uXL6Nu3r7CPnanGjRuHcePGGXw9PDwc/v7+2LRpE44dOwYgtV1kRvY1A1L//vXt2xerVq1C1apVMzSHISVLlkT58uVx/fp1xMXFYceOHRg0aJDec2UymbDfXYcOHYSKPUO++eYbtG/fHjdu3EC+fPlMbilLRERE9KVhuEZERERElAl9+/ZFz549dfY1279/v3Dzt1WrVhg/frze8S9fvkTjxo31VgFpVsgcOHAAefLkMWttQUFBOHToEOzs7LB169YMBQRHjhwR3kfjxo3x008/pXv+xYsXtW7G2tvbo2TJkh9FiKBP+/btsW3bNty5cwfdu3fHihUrULNmTZPG/vPPP4iMjASQGoRu3rzZrHDOELFYjOHDhwtfR8397gDAysoKXl5eyJ8/P/LmzQtPT0/kyZMHnp6e8PLygpeXFzw8PGBlZYVVq1Zh/vz5AGCw4qpdu3bo1KmTyetTKBR4/fp1xt7cBw4dOiQEUFWqVEGfPn0yNd+4cePQpk0bnDlzBkuXLs1Q+GMpc+bMER4HBgbCyspK55xdu3bh9OnT6Natm9khkyVt3rzZ6DlPnjzB77//DgDC3pAZ1aNHD0RGRiIpKUmoMIyLi4NUKjXaQrdKlSpYu3YtNm7ciDJlyqBo0aJC5Vza1zgmJgZ9+/YVgmUAGDlypElVtPb29sLvXOXKlTF9+vR0zx8zZgxu374NIPVDDB/utZZV+z1WrFgR169fB5D6N8JQuPbbb7/hyZMnAGBSu1SpVGr07zwRERERMVwjIiIiIsq0D4M1ILW6BwBy5cplsFri3r176NOnDzw8PLB27Vq4urpqvS6VSoXHjo6OJlUV6VuXg4MDypQpY9bYNHv27BEe9+7d2+gabt68qXU8ffp0fP311xm6dnYQi8UYOnQoBgwYgOTkZAwZMgT79++Hl5eX0bE7duwQHk+bNs0iwVqaRo0aCZUp7u7uaNiwISpVqoRy5cqhQIECJrcm/Pbbb7Fo0SIoFAo0bNhQeD4zQadMJsPTp08zPD5NdHQ0ZsyYASD192T27Nk6e8GZq2jRoujatSs2bNiAJUuWwMHBAT179sz0Ws117NgxXLx4EQBQt25d1KlTR+95NjY2OHLkCI4cOYKSJUuiR48eFt0vzpLmzJkDhUIBIPXnPXfu3Jmab9SoUcLjsLAw9OnTB3ny5MGyZcuMBlKVKlVCpUqVDL4+dOhQrWANSA0ETWnZevbsWURFRcHDwwOxsbFGx2juxVexYsVMVa2aQ7NNbHBwsN5z1Gq1UPXs6uqabrtXIiIiIjIPwzUiIiIiIgs7e/assA9bTEwMatWqle754eHh6Ny5M9avX691w9ScvZ2ywpMnT3DhwgUAqTeNTdkX6dy5c8LjKlWqwM/PL8vWZyn16tWDr68vnj17hri4OCxdulQIfQx59uyZUN2SVYFIYGAgQkND0apVqwyHTh4eHmjZsiWKFy+OunXrWmRd8fHxePDgQabnmTZtGiIiIiASiTBnzhydtqgZNWrUKFy4cAF3797Fzz//DJFIhB49elhkblOkpKRg1qxZAFLDM0NVq0BqlVSaZ8+eZVswY65jx47hxIkTAIA2bdpoBbWZ9fjxY/Tp0wcvX77EgwcP0L9/f6xYsSLDe33t3r0bf/31FwCgTJkyQlXZ5MmTsXPnTlSrVg3ffPMNKlWqpPf36s8//wSQ+mECU1rgpu1RZmdnl63fP8197T4MEtOcP38eL168AAB89dVX2bIuIiIioi8FwzUiIiIiIgtbsWIFgNQqmkWLFumtEoqMjESvXr0gl8thb2+P77//Hi4uLlrnGAvXtm3bhrJly2bZTdNt27ZBrVYDgEnt+mJjY4Ub2QAwcODALFmXpYlEIvj5+WH58uUAgEuXLhkds3nzZqjVatSuXRtjx47NknVVrlwZlStXztDYuLg42NjYQCqVYvbs2emem7bfmanCw8Px4MEDJCUlZTgA+fXXX3HgwAEAqT8n5uwfaIxUKsXChQvRrl07JCQkYNasWbh//z4mT56cZS36NK1evRqhoaEAgAEDBsDX19fguZotEHv06IHGjRtn2bpmzZqFDRs2ZHqeP/74A3/88UfmF2TAv//+i379+mHlypVa4aMpbt++LbRxrFWrFgIDA9GmTRsAqT9n586dw8qVK7Fy5UrkzZsXvXr1QteuXYW/0UlJSThy5Ahy5cqFDh06YO7cuYiJiUGuXLn0Xk+pVCImJgYA9O5Rl5Xi4uKExx9WPadJ2zsOSP3fIyIiIiKyHIZrREREREQWdPbsWVy8eBHW1taYP3++wRuaa9euFUKNmTNn6q3wMta6786dO5g2bRpatWqFUaNGmdTK0FQJCQlCS8iyZcuatFfRxYsXoVQqAQCFChVC7dq1jY5JC+9yWqNGjYRwrXjx4umeGxkZiV27dqFAgQJYsGCB3r20PrRgwQI0bNjQ7CB0586dcHBwQPPmzU1u5ahSqTB8+HCkpKRg2bJleoMBzeD2woUL6N+/v0nzP3v2DM+fP4darcakSZPw008/abUvNcWdO3eEPZ38/PwwdOhQs8abwtfXF7Nnz8awYcOgVCqxe/du3L17F7Nnz0aJEiUsfr00wcHBWLVqFQCgSJEiRkNpzZ8dfe1lDcnIHobjxo1DkSJFkCtXLrOClvXr12Pnzp0AUtuM9u3b1+C5hw8fxtmzZzF16tRMt/hM+1tiqpCQEPTr1w+JiYmoWLEili1bhlevXgmve3t7Y+PGjZg2bRp27NiBly9fYsaMGYiKisKwYcMApO5tmZCQgKFDh8Le3h6Ojo54+fKlwXAtPDwcKpVKmD87vXnzRnjs4+Oj95yzZ88aPYeIiIiIMobhGhERERGRhSiVSqFKaOjQoShZsqTe827evCkEV507dzbYOtHYzWkrKyuo1Wrs27cPR48exZgxY9ClS5dMvIP39u7dK7QaGzFihEljjh8/Ljxu3769STf/p02bhpMnT6Jly5aoV6+eViVPZt24cQNyudyk6q/SpUvDy8sLkZGRCAgISPfcdevWQSwWY/ny5QZvuqdRq9WYOnUqfv31V2zZsgWrV69Od6+oD4WHh2PixIlYs2YNunTpYlLl1b///oszZ84AADp06IDVq1fr3Fh3cnJC7ty58fbtW5w7dw7+/v5o1KgR3NzcDH7fXr16JVTsAant82xtbY220Pzw/QQEBEAmk6FWrVqYPXt2pvZ/M0SlUqFx48b46aefMG7cOKhUKty9exft2rVD586dMXToUDg5OVn8utOmTUNKSgoAYOrUqUaDx4wEUCdPnsTixYuxYMECFCxY0KyxP/zwg1nnX7hwAbt37waQ2hp22rRp6b6ngQMH4p9//sGSJUswf/78bGtt+/btW/Tt2xcRERGoXLkyVqxYobfqTSKRYNq0aXBycsKaNWsAAFu2bBHCte3bt8PV1VVoI+ro6IgXL16gVKlSeq8bFhYmPLZUW1NTpe3pB0DvvpaxsbF4/vy5cOzh4aH1+oULF7B3715cv34dkZGRsLe3h5ubGypVqoRmzZqZ9XeKiIiI6EvEcI2IiIiIyEI2b96M+/fvo3z58jhy5AguXbqEhg0bokmTJkLbLplMhvHjx0OlUqFMmTIYN26cwfmM3XjXrHQpVaqUxVrKyeVy4cazi4uL1t4+6Y35+++/AaSuu3Xr1iZda+jQobh7964Qdvj5+eG7776zSKvLFy9eYPjw4ahduzYGDx6c7s1ikUiEH3/8EQAMhqIAEB0dje3bt2POnDkoVqxYutdXqVSYOHEifv/9dwCp+yL17t0bq1atQtWqVU16D2lh4+3bt7Fo0SI4OzsbHZOYmCg8fvr0KQ4fPqy32qhXr16YP38+gNQb9Zo3601RrVo1jBw50uTzExMT0b9/f7x8+RJVq1bFkiVLzK56M4VSqURgYCBcXV0xfvx4yOVyTJo0CWq1GgqFAps2bcK+ffvQvn17dO7c2WKhyMGDB/HPP/8Ix3fv3jXYri+NZvXR27dv8fjx43TPj4qKwujRoxEXF4dvv/0WM2bMyLJ9DZ8/f46hQ4dCqVTCx8cHS5cu1fv9unbtGipUqAAg9Xd/9uzZ+P777zFgwAAsWLDApJ/ZzAgPD0fv3r3x9OlTNGvWDHPnzjX6czVmzBiEh4fjjz/+QHx8PFQqFW7duoWbN28iKChI+Jvn7OyM+/fvG6zcTdvPDADy5ctnuTdlxJ07d3Dnzh0AqXu9tW3bVuecBw8eaFUGp30QICwsDOPGjdOqagNS/7a9fPkSN2/exMaNG9GsWTNMnjzZ6M8wERER0ZeK4RoRERERkQU8e/YMixYtQqlSpbBu3To4ODjg9OnTWLNmDaZNm4aaNWuiVatWuH//Ph48eABnZ2csWrQo3ZvAxsK1tHZkQGrbwTx58ljkvezduxcvX76ElZUVWrRogY4dO8LX1xcdOnTA999/r7fi59y5c4iOjgYAVKpUCZ6eniZdK3fu3Jg3bx6aN2+OyZMnY8eOHdixYwdKlSqFbt26oVWrVhkOYNL2Azt79qzOjeT0DB8+3Og5gwcPztCaEhMT0bdvX/zyyy+oWbOm0fM1K3+GDx+Odu3aGR1z7tw59OzZEwAwcuRIg238+vXrB29vbxw4cAARERFaP0/6SKVSuLi4oECBAqhbty5q1aplctWZXC7HiBEjcPv2bTRs2BA///wzwsLCtCp/LOWXX37Bn3/+CSC1cnDChAlwd3fH6NGjhWrM6OhorF27FuvXr0flypVRo0YN1KlTRwiJzBUVFSXs9ZVm5syZZs2xdetWbN261eTzExISMH78eBQqVMhgZVVGvXnzBr1790Z0dDQ8PDywbt06vXuK/f7775gwYQKmTZsmVMUVLFgQCxcuRN++fdG+fXssXbo0y1pxhoaGomfPnggODkavXr0wduxYk38mp02bhrt370KhUEAsFmPVqlWoUKECOnXqJJzj5eWltY/khzQrw9LbW8+SkpKSMHXqVCE4CwgI0NsSOCQkROvY0dERz58/R9euXfHmzRvUrl0bHTp0QKVKlZArVy68fPkSe/fuxZo1ayCXy3H48GGEhoZiy5YtGd5bkYiIiOhzxnCNiIiIiCiT5HI5Ro8eDS8vL6xZswaOjo4AgLp166Ju3bq4evUqVqxYgcDAQGFMz549je6BY+wmsWYYYs5+TelRKBRYuXIlgNTwZfjw4ShatCimTZuG2bNnY9myZejTpw969+6tFXodPnxYeJyRSpqGDRuiYsWK+PHHH3Hq1CncvXsX48ePx6JFizBo0CB8//33Ju1tpkmzhWK5cuWElp0fA1PbX5r7nj9Urly5dF9v1aoVWrVqlalrGCOXyzF06FCcPHkSHTt2RFBQEMRiMebNm4cdO3Zk6bU3bdqEYsWK4YcffsDOnTsxaNAgPH36VHhdpVLh0qVLAFJbZWY0XBs/fjyioqLg4+OD169fQy6Xo3z58vjtt9/SHXf58mWhlevgwYMxZMgQo9cqXbo0lEol8uXLhw0bNqBAgQIZWrMhb9++Re/evRESEgJ3d3esW7dO7zUuXLgghDxBQUEA3redrFWrFmbOnIlx48ahQ4cOGD58OLp165bpn2dN9+/fR58+fSCTybBs2TKT9oXUZGtrizVr1uDBgwd4/PgxTp8+jV27dml9qKFQoUI4ePCgwTmCg4OFx+bsY5dRz58/R2BgIK5duwYA8Pf3Nxiea1ZFphk4cCBiY2OxYMECnb/Tvr6+GD58OL755hv06tULSUlJuHXrFmbNmoVp06ZZ/L0QERERfeoYrhERERERZdKsWbOQnJyMjRs36q3uqFixIoYNG4aLFy8KLfsWLVqEU6dOoXv37mjatKnem87GbkRrtvyy1E3rHTt2ICQkBGXLlhX2HuvcuTOSkpIwZ84cxMfHY+HChTh58qRQoSeTyYSWkDY2NmjZsmWGru3q6oqVK1fil19+weLFi6FWqxEWFobJkydj3759WLhwYYar82xtbVGkSJEMjc1JlgwjNCmVyiybW5NMJsPw4cNx/vx5zJ49W6t93dSpU9GgQQMULVrUYGvGihUrCr8zR44cMWmPsTFjxmDfvn0AgAEDBuC7774DABQuXBi///47Fi9ejM2bN0OpVCJ//vxYsGBBptqQrl27FidOnECuXLmwcuVKtG/fHnK5PMPzmSpfvnxZEqz16NEDDx48QJ48ebBx40YULlxY57wbN25g4MCBwv5yarUaK1asQKVKlYSQqW3btrCyssKPP/6IWbNmYd++fZg0aRIqVqyY6XX++eefCAoKQsWKFfHzzz8b/btQp04dvfuSeXp6wtPTEwEBARg1ahSKFy+u9XrBggXx+vVrREVF6W2P+ODBAwCpv6f6vk6ZpVKp8PbtW9y6dQuHDx/G/v37IZPJ4OLiggkTJqTbfjetkjjNunXr8PTpU6xYsQJ169Y1OK5SpUqYPHmy0CZ3165d6N69+yf595OIiIgoK5m/ezIREREREQlOnTqFR48eYevWrQZv8IaGhqJfv35ITExE1apV0a1bN4jFYly7dg0jRoxAkyZN8Pvvv+u05dMMz/RJu7ENaFdpZVR0dDQWL14MZ2dnLFy4UKslYe/evdGtWzfh+Nq1a0JFx8GDBxETEwMAaNy4sbC3T0aIRCIMGjQICxcu1KqM+++//9C/f3/IZLIMzWvsa/mxyqoArEePHpg7d65O6zhLiomJQe/evREcHIwdO3bo7AslEolQr149g8FaeHi4EKzZ29ubHCTFxcUJjzt37qxVieTg4IBx48Zh165dqFmzJjZs2JCpYO38+fOYP38+rK2tsXTp0k86gAgNDUXnzp1x7949FC9eHNu3b9cbGJ07dw7du3dHQkICgNR9GRctWoTjx4/rVG+1atUKa9euRe7cuXH79m107NgR/v7+OHv2bIZ+J+VyOWbMmIF58+Zh8uTJWLt2rcG/u5cvX8bcuXMxePBgrF27Fh4eHnrPe/z4McRiMbp3767zWlqYe/PmTZ3XVCoVHj16BCC1wi2z+wdOmDABpUuX1vlPrVq10K9fPxw8eBAVKlRAUFAQTpw4YXRfy7TvT5o///wTPXr0SDdYS9O2bVuUKVMGQGoQv2XLloy/MSIiIqLPFCvXiIiIiIgyoVq1aqhTp47BEOTt27fo06cPwsPDUbJkSSxfvhzOzs7w8/PD+PHj8fTpU4SGhmL8+PHYunUrFi1aJLSLNHbzOSkpCUBqSGFqm8H0LF68GNHR0Vi2bJnelpU//vgjbt++jStXrgCAsF+W5j5RaVVCmdWsWTM4OTlpVcfcuXMHp0+fNrv926dMszXouHHjMG7cOIvMm5ycjDVr1mDdunWoW7cuhg4ditKlSxs8f+fOnUhOTtYKWNPz4sULDBo0CI0aNUL//v0zFDxottwrXry4yXtpaYYKhkLn0qVLY8OGDWavSdPjx48xbNgwqFQqzJo1C9WqVcvUfDnpxo0bGDRoEMLDw1G3bl3873//E9rbatqzZw8mTZokVOZ9/fXX+Omnn9KtHKtRowZ2796NkSNH4urVq7hw4QIuXLiAfPnyoW3btmjRooXJoeTu3bvh4uKCw4cPG90H7OjRozhx4gTOnj2LFy9eoEePHihZsqTOeUWKFMGCBQv0zlGoUCEAqYHih6HUkydPkJycDMB4+1VTDB06FA0bNtR53srKCs7OzsidO7dZ7X8VCoXWsZubm8l7RYpEIrRr107Yb+7gwYOYOHFitlS7EhEREX0qGK4REREREWVCejd4Y2Nj0b9/fzx9+hSlSpXC+vXr4ezsDCC19daePXswZ84cbNu2DQBw+/Zt9O3bFwcOHICVlZXRcC3txq6Dg4NWdU5G3LhxA9u3b8fQoUMNhlcSiQQzZ85E69atIZfLUahQIdy8eRM3btwAkFrlUaNGjUytQ1Pt2rUxb948DB06VPhaREREmDxes8rNEpV9OUHzZvbIkSNNChavXbuG8ePHp3tOWlWiSqWCjY0NfH19DZ57/fp1TJs2DSqVCkWKFEGtWrWMrkGlUmHevHkoVqyY0XMNefLkifC4RIkSJo/TDNcsETrrExERgf79+yM2NhbTp09HmzZthNc+tSrJzZs3C/sRBgYGomfPnjpBpkKhwM8//4zNmzcDAHLlyoUff/wR7dq10zvnqVOnUKRIEaEqMW/evNi2bRvWrVuHxYsXIyUlBS9evMCyZcuwbNkyFCpUCPXr10f16tVRpUoVvcEeAHTo0MHk93XixAkAqX8Hzp8/jwEDBhg811Bo5eXlBVdXV5w8eVIn2E77kAFgmXDN09NTpy1lZnz4nnr06AEHBweTx2uGxdHR0Xj48KHecJKIiIjoS8W2kEREREREWSAyMhLdunXD9evXUaVKFWzatAm5c+fWOsfOzg6TJ0/GokWLhJueT58+FVqNGbtJHxsbCwBG2zAa2/8pMTERY8aMQatWrYR91gwpXLgwunXrhgIFCqBBgwZaVWv9+vUzubrIVE2aNEG/fv2E4/RCoA+lVfYBMOum8sfKw8MDRYoUMfofb29vo3OlhWteXl5YtGgR7O3t9Z737NkzBAQEQCaTQaFQYPjw4Xj27JnR+X18fDIVrAHa4YU5+3Sl/V4AWROuxcXFoXfv3ggNDcX06dPx/fffa73+qYRrUVFRGDJkCGbMmIFSpUph165d6NWrl87v8NOnT9GxY0chWGvRogUOHDhgMFg7cuQIAgIC4O/vj9DQUOF5sViMPn364MCBA6hfv77ONdatW4f+/fujSpUqaNy4MdasWZPh93br1i08f/4cQOrP+rJly/T+7ZgzZw7u3r2b7lyVK1fGs2fPhPnSaP58Vq5cOcNrzSof/k7rq4pLT+HChbUCunv37llkXURERESfC4ZrREREREQW9vLlS2HvoqZNm2LdunVCxZo+zZo1w7Zt24Q9gdKq4ZRKZbrXSQsR3Nzc0j3P2D5lc+fORbFixTBz5sx0z0szduxY7Nu3DxEREdi/fz8AIH/+/Dp7alnKsGHD8PXXXyN37tyoVKmSyeM0wzVD4dHHztJhZZq0m+bptXl78OABunbtivDwcOE5T09PrFixwujPpiVohhe1a9c2eVzanmt2dnYW//olJCSgX79+ePjwIWbMmKETrAGfRrj2119/oUWLFrhw4QKCgoKwY8cOnaoklUqFLVu24Ntvv8XNmzdRvHhxbNq0Cf/73/8M7l/2+++/Y8SIEZDL5Xjx4oVOwAakBq8rVqzA+vXrUaFCBZ05ateujalTp+rdAw1IDQWN/WfPnj3C+Z06dULevHl1ztm6dSvWrl2LLl264PTp0wa/VlWqVAEAnDx5Uuv5s2fPAgBcXV3NqqzMLh9+oEBzj05TSCQSrQrC6OhoSyyLiIiI6LPBtpBERERERBZ09epVDBs2DGFhYRgwYACGDx+e7g3+a9eu4fbt2+jSpQt27Nihtd+ZsQAjJiYGQGr1UXqMhWutW7dG2bJlTd7PRyQSwc7ODsuWLROq4gYMGGDWfkDmsLKywvLly/Hy5Uuz9u7SbA/o6uqaFUv7ZBnbO+nKlSsYOHCgcEO9SJEiCAwM1Nl3KqtEREQIFXIlSpRId0+vD6WFa5YOVBMTE9G/f3/cu3cPy5cvR7169fSe9zGHa2FhYZg5cyZOnDiBrl27YsCAAXorX69cuYLp06fjzp07yJMnDyZMmIB27doZ/LlRq9VYtGgRfvnlF+E5Gxsb5M2bF0ePHkXPnj11xtSqVQu1atXC6dOnsWHDBpw7d05oS5mebdu2YcmSJSa/502bNmHTpk0GX09ISMDAgQOxbt06VK9eXef1tHDtyJEjQuB37949vHnzBgBQs2bNLAvBM8PFxUXrWPPDBqbSbKeb1oaYiIiIiFIxXCMiIiIispCNGzdi7ty5UKlUAFLboL148cLg+W/evMHAgQMRExMDqVSK77//Hj/99JPweto8+iQnJyMyMhIAhH2NDFEqlVAqlQZvjJvTci/NkydPsG/fPgCp7cOyqmotjVQqNaslJKBdaeHp6WnZBX3i0tujb8OGDZg3bx7kcjlcXV0xePBgdOjQIcvCU32OHDkiPK5Tp47J4+Li4oRQ2pLhWnx8PPr374/Q0FD8+uuv6e499TGGawqFAps2bcLKlSvRpEkT/PXXX8ibN6/OeQ8fPsSSJUtw5MgRuLu748cff0THjh2N7i0ZGBiI48ePC899/fXXmDJlitG/TQDwzTff4JtvvsHr16+NflAAAAYPHoxcuXIhMjISZcuWRd68eeHk5CRUav3999+YOHEiACAoKAjNmzfXmUOpVKJt27aIiIiAm5sbZs6cqTdYA4BSpUrBwcEBly9fxqNHj1C0aFEcPnxYeN2UfRBzQpEiRbSOzdmvMo3mBzMM7YNHRERE9KViuEZERERElElRUVGYOnUq/v77b/j7+8PFxQXz58/H8uXLsXz5cpPmCAoKQpkyZVC6dGnhufQqzoKDg4Wb+EWLFjU6v0wmS/cGubmWLFkCpVIJkUiEadOmCXt4fUw+h3Atqypi9IVrUVFRCAoKwtGjR2FnZ4fevXujb9++OXJTXTO8aN26tcnjNL/n6bViNUdMTAz69u0LAPjtt9+M/ix9jOHaihUrEB0djT/++ENvgHX37l2sWbMGBw8eRNGiRTFt2jS0adPG6J51N27cwMiRIxESEgIgdV/AcePGoUWLFgbHyGQyvRWopgRrabp166b3eZVKhQ0bNgAAypcvj86dO+v9HTp48KAQNvXt21dnDzhNVlZWqFOnDv766y/8+uuvmDRpEg4ePAggNfT/5ptvTF53dvrwfxeePHli9hya1WqW+n0iIiIi+lwwXCMiIiIiyiC1Wo1du3bhf//7H2rVqoVDhw7Bx8cHmzdvBpDaliu9vXwuXbqE3r17AwBmz56tFawBEFou6qN5o7RUqVJG12rJcO3ChQvCzeXvvvsOVatWtci8lqYZtBQoUCDnFpIJmkHNuHHjMG7cOIvMqxk4pP0cz5s3DwkJCejQoQMCAgJyLJAMDw/H5cuXAQDlypVLt0rsQ2mtUgHLhAFhYWHo27cvvv76awwfPtykEDm9itOcMnjwYL3Pnz59GqtWrcLdu3fRtGlTbNq0yaTfZ7lcjuXLl2PVqlVQKBSQSqXw9/fHwIED0w1jT506hSlTpmDt2rUoXLhwht+PIX/88QcePXoEsViMoKAgvcGaWq3G6tWrAaT+jPzwww9G523RogX++usv7N27F7Vq1cLz588BAI0bN/5oK7ry5MmDPHnyCO0rHz58aNZ4mUymFa7ly5fPousjIiIi+tQxXCMiIiIiygC1Wo2+ffvCzc0NW7Zs0WnBlSa9yg/NG/U1a9bUeV0zXPvwJvH58+cBAA4ODihevHi6a61du7bRChRTpaSkYMqUKQBSq1TGjBljkXmzQlpLTrFYnCU38rPbyJEjTWpBd+3aNYwfPz7dc9J+nhISEtC5c2dcu3YNLVu2xJAhQ3I8iNyxY4fQ2vH77783a2xUVJTw2BLh2vjx4xEYGIjatWubPOZjrFwzJDY2FgMGDEC1atVM3s/wypUrmDp1Ku7duwcAaNKkCcaMGWP052bnzp2YMmUKFAoF+vTpgx07dsDDwyPT7yFNSkoKFi9eDCD156Zs2bJ6zzt69Cju3LkDAOjVq5fQTjI99erVg4ODA+Lj47UCblOCuZzUqFEjbNu2DUDq/2ao1WqTq2FfvnwpBMXW1tYGv55EREREXyqGa0REREREGSASibBkyRK91WCWurmenJwMFxcXBAYG6lQRnTt3DkBqcGZoLyxfX1/88ssvaNCggUXWA6RW2D158gTW1tZYuHAhcuXKZbG5Le3x48cAAB8fH9ja2ubwajLPw8PDYIirKSwszOg5aW0hY2NjkS9fPsycOdPkAFKpVOLhw4dmVZSZSiaT4ddffwUAuLm5oVWrVmaN1wzXXF1dM72eVatWGdyrUJ+PsWotPS1btjT53KdPn2LRokU4fPgw1Go16tSpg+HDh6NcuXLpjktKSsKsWbOwY8cO4bkXL16gf//+2Lx5s0nhlik2bNiAly9fwsXFBSNGjNB7TnJyMmbPng0g9fepe/fuJs1tY2ODhg0bYt++fUJ1ZMmSJVGjRg2LrD2rNGvWTAjXIiIicOPGDZQvX96ksWnVeUBqi01LfUCDiIiI6HPBcI2IiIiIKIMMtVnMSLim76Z8zZo1MWTIELi5uWk9f/XqVQQHBwMA2rZti2vXruHZs2do3bq11l5ahlrBZdSRI0ewdetWAKktCqtUqWLR+S0pIiJCaAtp6s3kL5G3tzfmzZtn1pi3b99i0qRJ2Llzp8XXc+DAAWEvrIEDB8Le3t6s8eHh4cJjd3f3TK/HnGANABQKRaav+bG5efMm1q9fj0OHDkGtVqN+/fro27cvKlWqZNLY0aNH49mzZ8Jz1tbWQjtZmUxmkXAtMTERu3fvBpDaDrZjx46oVKkSKlasiIoVK6Jo0aIQiUSYM2cOQkNDAaRWJZrz85UWrqUZNGhQpted1apVq4YyZcrg9u3bAFIDyAULFpg09t9//xUed+7cOUvWR0RERPQpY7hGRERERGRhGQnX9I1p2rSp3nPT9nTLkycP6tWrh6SkJKxduxarV6/GyJEj0bBhQ7Ovb8y9e/cQGBgIAGjfvj26dOli8WtY0oMHD4TH5rT0+9hkVYtBU1vD6RMfH4+3b99acDWpZDIZli5dCiB1f6cOHTqYPYdmuGbJloOmMrdyzdzvr1qtzpa2kykpKTh06BC2b9+Oq1evwt7eHt9//z26d+9uUvVkfHw8li9fjk2bNmm1t23UqBECAwMt3nrU3t4ef/31F8LCwnDz5k1cv34dJ0+eFAI3Z2dnlChRApcuXQKQWrHn5+dn8vyxsbFYtmyZ1nNnzpwx+Df6YyESiRAYGAh/f38AwOHDh9G/f3+jVadKpRLHjh0DABQqVOijf59EREREOYHhGhERERGRhWWkNZypY+7fv4+//voLABAQEAArKys4OjpiyZIlWLZsGQYNGoSqVati/PjxKF26tNnr0Cc0NBT9+/dHYmIi/Pz8MH36dIvMm5WOHz8OILW60JR9yj5WWdVmMDPhWmJiIsLCwszav8kUa9asEaqKxo0bZ/IeYJpevnwpPM6XL5/F1mYqcyvXDH1/nz9/jqioKBQqVAguLi7C8zdv3syynwmVSoWLFy9i//79OHz4MOLi4lC+fHlMnToVLVu2hKOjo9E51Go1du/ejQULFmgFneXKlcOYMWNQvXr1LFl7Gk9PT3h6eqJRo0YYNWoUQkNDcfz4caxcuVII1gDgr7/+Qnh4OJo2bYrWrVvDycnJ4JwpKSkYOHCgENiLxWKoVCr89ttvcHV1NdiC8mNRvXp1+Pv7Y9OmTVCpVBg5ciR27dqVbtXerl27EBwcDFtbWyxcuNBg62EiIiKiLxn/hUREREREZGEZufmtWd2R3rxBQUFQKBQoXrw4vv/+e63XAwICkC9fPkyYMAHt27dHhw4dMGrUqHRvHBsTFhaGnj174vXr12jevDnmzZtndqu89GRVFc7ff/8NAPj2229NCgU+VtlRpWQumUwGmUyG169fw9vb2yJz3rx5E8uXLweQWhnZuHHjDM0TEhIiPPbx8bHI2syhVCrNOl/zb4Xm9zomJgbTpk3DnTt34OjoCE9PT9ja2gr7CALQaRebETKZDBcvXsSxY8dw9OhRxMTEoGLFihg0aBCaNWuGvHnzmjSPWq3G33//jeXLlwstCIHUfR+HDRuG5s2bWzSINZWXlxeCg4OFVqP58+dHREQEkpOTceHCBVy4cAH/+9//8OOPP+r8PQVSv58jRozA5cuXAQCtWrVCly5d0KNHDyQnJ2PFihVITk5GYGCgVkteUyUnJwuPExISMvgujRs/fjyioqKwf/9+PH78GL1798by5cuRO3dunXNPnjyJGTNmwMHBAQsXLsySvRWJiIiIPgcM14iIiIiILCyrwrVly5bh2rVrsLe3x4IFC/SGXG3btoWNjQ1Gjx6NX3/9FSdOnMDPP/+MmjVrmr2mkJAQ9OzZEyEhIWjXrh2mT59ukWBNM0TIivDo1q1bePnyJaRSKXr37m3x+bNTVlUpZUZaddbt27ctEq6FhYUhICAAcrkcVapUwZQpUzI0j0wmw5MnTwAAtra2ORKumfJ7rEnz+6sZzH311VfYs2eP8PurGaqlsUT7199//x3nz59HyZIlMWfOHFSqVMngXpL6qFQqHD58GL/88otWK9YCBQpg0KBBaN26tUXDeHNERUVh2LBhuHjxIkQiEfz9/TFq1CjExcVh7dq12L59OxITExEfH4+JEyeiYMGCqFatmjA+Pj4eI0aMwOnTpwGk7rE2bNgwAMCMGTMwevRoAKn7mD1//hw///yzVpWhIU+fPkVKSgpu3rypFURu3LgRPj4+yJs3L9zc3CwSnqYRiUSYN28eqlWrhrlz5+LKlSto3rw5unXrhkqVKsHBwQGhoaE4dOgQjhw5ggoVKmD69OkoXry4xdZARERE9LlhuEZEREREZGHmVq8AqcFAerZv346lS5fCysoKs2bNQtGiRQ2e27x5c8TFxWHSpEl4/fo1evfujSlTpuCHH34weT13795Fv379EBkZiXHjxqFHjx4mjzVGM1DLivBo69atAIBu3bohf/78Fp8/O2Xk65OSkmLyuVFRUWbP/+bNGwDAkSNHMt1yMyoqCn369EFYWBgqVqyIlStXZqgdJACcPn1a+D0qVapUhiqJMsvctpCafyv0fa/r16+PmjVrIjAwEIcPHxaer1OnDlq2bJnxhb7TqVMndOrUyexxkZGR2LNnD3bu3Ilnz54JzxcvXhz9+vWDn59fjoVqALBnzx7MmTMHUVFR8PT0xOzZs4UPGNjY2CAwMBDdu3fH1KlThRayx48fF8K1V69eoX///rh//z6kUimmT5+Otm3bCvO3atUKL168wIIFCwAAJ06cQKtWrRAUFGS06rJ379548eKFzvMhISHo378/AGDw4MEYMmRIpr8OmkQiETp06IDmzZvj6NGjOHr0KP7880+sW7cOCoUCHh4eqFChAn755Rc0aNDAotcmIiIi+hwxXCMiIiIisrC0G+bR0dEoUaKESWMSExMNvrZ69WrMnz8f1tbWmDt3Lpo1a2Z0vh9++AF3797Ftm3boFQqMWXKFBQoUAA1atQwOvbo0aMYO3YsbG1tsXbt2gxVvaVHM4Awt9LHmJCQEOzbtw8+Pj4YPHiwRefOCRkJam/duiU8NlQZaG1tDQBISkrCpUuXULVqVZPnP3LkCADgzz//xDfffJPhkOfVq1fo06cPHj16hAYNGmD+/Pnp7gMVEhICNzc3veckJCQIQQcAk37Os4JMJoO1tTUaNWqEbt26GT1f83fB0Pfa1tYW8+bNw4MHDxAcHIxOnTph7Nix2d5mUalU4vz58/jtt99w/Phx4XdXLBajbt266NatG2rXrp2ta/rQ48ePMWXKFFy8eBG2trbo3bs3BgwYAGdnZ51zvby88Msvv+DgwYOYMGECbG1tAQDXr19HQEAAwsPDUaZMGcyePRvFihXTGT9gwAAkJyfjl19+AZAaOg8ePBjVqlXDgAEDUKtWLb3fo7QwL6c4Ozujffv2aN++fY6ug4iIiOhTx3CNiIiIiMjC0m46Ozs7Y/v27QbPu3nzJgIDA+Hk5KR3X7DExERMnjwZ+/btg5eXF+bPn48qVaqYvI7AwEBcuHABjx8/hlKpxOTJk3H48GGDN+UVCgX+97//Yd26dWjRogUmTJgAV1dXk69nKs0KHUuHaytWrAAA/Pzzz+kGNZ+K9MK18ePH48yZM3B3d4erqyucnZ2hUCi0bt4bavGnGfqOHDkSAQEBKFiwoBC66ZOUlITDhw/j0KFDAFK/j6NGjUK+fPlQsWJFs95XWoARFRWFIUOGICAgwGhY9Pvvv2Pbtm2wsbFB/vz5kTdvXmHPqJMnTwr7rVlbW6Ndu3ZmrcdS3N3dcerUKZNb+ml+f9P7XbC2tsb06dPh4+MDT0/PTK/TVHFxcfjnn39w/Phx/PPPP4iOjhZeK1CgAFq3bo327dubvDdbVnn48CFWrlyJgwcPQiwWo1OnThg0aBDy5MljdKyfnx/q1KkDlUqFBQsWYM2aNRCJRBgyZAgGDBgAicTwbZPhw4fD2toaixcvFp67ePEiLl68CB8fHzRr1gzNmjVD2bJlLfI+iYiIiOjjwXCNiIiIiMjC0lrTicViFClSxOB5kZGRaNmyJX788Ud4eHhovXb9+nWMHTsWz549Q8uWLTFx4kQhSDBVWsXLd999B6VSiWfPnuH+/fsoWbKkzrnPnz/H2LFjER4ejpUrV6Ju3bpmXcscmi0wzWlhaMzdu3fxxx9/YMSIEWaFkB+z9NoM/vTTT3j06BG2b9+O3377TedrmStXLoM39Vu2bInVq1cjOjoab968weTJk81em0gkQr9+/cwK1tRqNdauXYuFCxciX758WLJkicnjhw8fjgEDBuCPP/7AkiVLcOXKFb3n9e7dGwUKFDB5TZZkb29vVqir+f1NTk5O99zs+JmOiIjA9evXcePGDVy5cgVXrlwR1iiVSlGpUiXUrl0b9evXR5kyZbJ8PcZcvXoVa9aswd9//w1vb2/07dsX33//vdntYIODgzFu3Dg8ePAAtWvXxtixY/X+ndQnICAAefPmxaRJk7QC0pCQEJw6dQre3t4M14iIiIg+QwzXiIiIiIgsLCUlBW5ubggMDEz3vCpVqgh7/KSJj4/H4sWLsXnzZpQoUQKbN2/WOcccpUuXRseOHYV9yD7cz0qtVmPTpk3Ytm0b/P398f3332d4zytTaYZr6bXDNEdKSgrGjBmDFi1aoE+fPhaZ82NgrLKvaNGimDhxIrp164bBgwfjwYMHwmujR482+L308vLC+vXrMX/+fFy8eNHonn9pxGIxPD09UbNmTbRv396swOfx48cICgrCrVu3MHDgQPTt29fsnzVbW1t06NABTZs2xZAhQ3Dx4kWt1xs2bGjxvaqykub3NykpKduuGxERgefPnyM4OBjPnz/HkydPcOvWLWEvMCcnJxQuXBitW7dG2bJlUa5cOZQsWTLL/zaY4vXr19i3bx/27NmDyMhI1KtXD+vXr0eNGjXMbpUZGRmJFStWYNu2bShfvjy2bNliVovUNN9++y18fHwwcuRIhIWFoU6dOhg/fny6H64gIiIiok8bwzUiIiIiIgurW7cuhg0bhly5cqV7nlgsFh4rlUrs2rULixcvhre3N5YuXYoGDRpYZF+lIUOG4MCBA3B0dEThwoW1XhOJRPD29saff/6ZbTfO0yp0nJycUKhQIYvM+b///Q+enp6YPn26Reb7WKTt4fXDDz+gXr16Bs8rWLAg1qxZg2bNmkGhUGDMmDH44Ycf0p27dOnSWLt2LdRqNaKioowGeWKxGK6urum2ydMnNjYWK1euxLZt29CqVSvMnz8fXl5eZs3xIRcXF/zyyy9o2bIlXr16BZFIhG7dumHMmDFmry8naX7NjVWuWUq3bt2QmJiIXLlywdnZGe7u7ihXrhyaNGkCLy8vFChQwKR2ijlh9+7dOH36NCpXrowFCxagRIkSGfobGRMTg3Xr1mHr1q2oUqUKVqxYga+//jpTa6tSpQr27t2LuXPnYtq0aem2WCUiIiKiT59IbWiHayIiIiIiyjZz5szB27dv0aFDB1SoUMHi81++fBmxsbFo0KCBxec216+//gq5XI727dvDwcHBInMuWbIEffr0MbjH2Kfqn3/+ga+vL3x8fEw6//fff0fVqlVzrC3ih168eIHOnTujQYMG6NWrl8nvw1Tr16/H5cuX0bdv3yz5vclq27dvx5w5c9C+fXv4+/tb/OtDum7cuIHp06ejcePGaNu27UcbJBIRERHRx43hGhEREREREWWZ6OhouLi45PQyPkohISHInTs3HB0dc3opXwy1Wm2RimAiIiIi+rIxXCMiIiIiIiIiIiIiIiIykdj4KUREREREREREREREREQEMFwjIiIiIiIiIiIiIiIiMhnDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIvoIKJVKdO3aFbt3787ppRARERERERERERFROiQ5vQAi+rz8999/OHDgAP777z+8evUKiYmJcHR0hJubG8qWLYtatWqhefPmkEqlOb1UwaJFi7B8+fJMz7N3716UKlXK7HEpKSmYNm0aLl26hHbt2mV6HURERERERERERESUdRiuEZFF3LhxAzNmzMCjR4/QunVrDBkyBF5eXpDL5Xj16hXOnDmDffv2Ye/evZg7dy6mTp2Khg0b5vSyAQCPHj3K9Bw2NjZwd3c3+fyYmBiEhYXhzJkz2LlzJ548eZLpNRARERERERERERFR1mO4RkSZtmnTJsyaNQuVKlXCoUOH4OnpqfV6xYoV4efnh379+qFfv354/vw5AgICEBQUhM6dO+fQqt97+PChznOOjo6QSIz/iUxKSkJKSgr69esHDw+PdM+9ePEievToAbVaDZVKleH1EhEREREREREREVHOEanVanVOL4KIPl07duxAUFAQfH19sXfvXtjZ2aV7/vPnz9GmTRskJSVBIpFg27ZtKF++fDatVpdMJkOFChWgVCrh6uqKkSNHomnTpnB2djY6Vi6Xo2XLllCr1di/f7/RVpeJiYkIDQ0VjpOTk3H48GGsXbtWeG7WrFlsDUlERERERERERET0EWPlGpEeKpUKSUlJOs9LJBKIRKIcWNHHKSIiArNnzwYAdOzYEVZWVpDJZOmO8fb2xnfffYfNmzdDoVBgzpw5WL9+fXYsV6/79+9DqVTCxcUFW7ZsgY+PDwAYfR8AsGXLFjx79gzLli0zaYxEIoGvr6/WcyVLlsSJEyeEtpAKhcKkaxMRERERERERERHlBLVaDYVCofO8nZ0dxGJxDqwo+zFcI9IjKSkJ9+7dy+llfPQOHDiAhIQEAKl/UG/evGnSuGLFigmPL1++jBMnTpi1X5klnTt3DgDQoUMHREdHIzo62qRx8fHxWLZsGcqUKYPcuXOb/N71sbGxER6HhoZmai4iIiIiIiIiIiKinFCyZEk4ODjk9DKyxZcRIRJRlrh165bwOCQkxORxvr6+Wp9gyMkgMyQkBC4uLvj666/NGrd3714kJCSgS5cuWbQyIiIiIiIiIiIiIvoYMVwjogx7+/at8Hjv3r2IiYkxaZxEIoG9vb3eebJbaGgoKleubFa5cnh4OI4ePYpatWrptHkkIiIiIiIiIiIios8bwzUiyjC1Wi08TkxMxLFjx0weK5G870qrOU926927N9q3b2/WmN9++w1KpRLt2rXLolURERERERERERER0ceK4RoRZViRIkW0jmUymUnjVCoV4uPjhePcuXNbdF3mcHFxgYuLi8nnP3/+HOfOnUONGjXg7e2ddQsjIiIiIiIiIiIioo+SxPgpRF8ezaoqTSVLloS1tXU2rybnKRQK3L17V+u5UqVKYfLkybC2tsb169eRL18+DB48GHnz5jU6371796BQKITjZs2aoXDhwhZfd1ZYsWIFAGDMmDEoWrSoRebU3OQzf/78KFeunEXmJSIiIvpcGPr3qKF/txMRERERWRr/TfqeXC7HvXv3dJ7/kr4WX847JTKDSCTS+7y1tTWkUmk2rybn6ft6WFtbI2/evFi6dKnZ8506dUp47Ovri5IlS2ZqfdnlypUrOH36NOrWrYvSpUtbbF7N/d4kEskX+TNGRERElB5D/x79Ej/4RkREREQ5g/8mNc7QffXPEdtCElG2UigU2LNnj3DcuXPnHFyNeRYtWgQA6Nq1aw6vhIiIiIiIiIiIiIhyCsM1IspWe/bswYsXLwCktkDs1KlTDq/INJcuXcK///4LX19ffP311zm9HCIiIiIiIiIiIiLKIQzXiCjbxMbGYuHChQAAKysr/Pzzz59MC8Tly5cDAL777rsvqryZiIiIiIiIiIiIiLQxXCOibDNz5kxEREQAACZMmICqVavm8IpMc+PGDZw7dw4ikQgtW7bM6eUQERERERERERERUQ5iuEZE2WL37t3Yu3cvACAwMBBdunTJ2QWZYfXq1QCAqlWrwtvbO4dXQ0REREREREREREQ5SZLTCyCiz9/ly5cRFBQEkUiESZMmfVLBWkhICI4dOwYAaNSoUQ6vhoiIiIiIiIiIiIhyGsM1IspS9+/fR0BAAFQqFWbNmoVvv/02p5dkll9//RUqlQoAUKdOnRxeDRERERERERERERHlNIZrRJRlHj9+jJ49eyI+Ph7z589H8+bNc3pJZpHL5dizZw8AwMvLC0WKFMnhFRERERGRKf777z8cOHAA//33H169eoXExEQ4OjrCzc0NZcuWRa1atdC8eXNIpdKcXqpR9+7dw8GDB3Hx4kU8f/4ccXFxsLa2Rv78+VGnTh1069YNefPmNWmuRYsWYfny5Zle0969e1GqVKlMz0NERERE9KliuEZEWeLJkyfo3r07YmNjsWjRok+ypeLZs2cRFRUFAPjqq69yeDVEREREZMyNGzcwY8YMPHr0CK1bt8aQIUPg5eUFuVyOV69e4cyZM9i3bx/27t2LuXPnYurUqWjYsGFOL1uvkJAQzJw5EydOnEDVqlXRunVrFC5cGI6Ojnj9+jXWrl2LdevWYfv27Zg5cyb8/PyMzvno0aNMr8vGxgbu7u6ZnoeIiIiI6FPGcI2ILO7p06fw9/dHTEwMlixZgvr16+f0kjLk6NGjwuPixYvn4EqIiIiIyJhNmzZh1qxZqFSpEg4dOgRPT0+t1ytWrAg/Pz/069cP/fr1w/PnzxEQEICgoCB07tw5h1at36lTpzBq1ChIpVIsX75cJwAsW7YsSpYsiYYNGyIxMRGjRo2CnZ2d0X93P3z4UOc5R0dHSCTGbw0kJSUhJSUF/fr1g4eHh3lviIiIiIjoM8NwjYgsKjQ0FD169EB0dPQnHawBwD///CM8Lly4cA6uhIiIiIjSs2PHDsycORO+vr5Ys2YN7OzsDJ7r6+uL1atXo02bNkhKSsLMmTNRpkwZlC9fPhtXbNjp06cREBAAFxcXbNy40WBrcmtra+GxSqUy+m9vmUyG4OBgAICrqytGjhyJpk2bwtnZ2eia5HI5WrZsCbVajX79+pn5joiIiIiIPj/inF4AEX0+wsPD0bNnT0RGRmLhwoWfdLD24MEDhIWFCccuLi45txgiIiIiMig8PByzZ88GAHTt2jXdYC1NwYIF0aFDBwCAQqHAvHnzsnSNpgoODsbIkSOhUCiwcOHCdPf8ffv2rdaxvb19unM/efIESqUSLi4u2LFjB77//nuTgjUA2LZtG549e4YJEyZ8EvvUERERERFlNYZrRGQR8fHx6NOnD0JDQzF79myT91iLiIjApUuXsnh15rty5YrWsZOTUw6thIiIiIjSs3//fiQkJABIDc1M1aJFC+HxxYsX8fLlS4uvzVwTJ05EXFwc6tWrhypVqqR7bsmSJdG7d28UL14cNWrUQGBgYLrnp+23FhgYiAIFCpi8ppiYGCxfvhw1a9ZE3bp1TR5HRERERPQ5Y7hGRJmmUCgwdOhQ3Lt3D5MnT9a6UWHMvn37MH/+/CxcXcZcv35d61ipVObQSoiIiIgoPefOnRMe69tTzJCSJUvCyspKOL58+bJF12WuEydO4MKFCwCAb7/91qQxY8eOxZ9//omNGzeiXLly6Z778OFDeHh4oE2bNmat65dffkFMTAzGjh1r1jgiIiIios8ZwzUiyrTp06fj7NmzGDx4MDp27GjW2PPnz5v1ydnscv/+fa3jN2/e5NBKiIiIiCg9mq28V6xYgYiICJPGSaVSre4EOf3vvbVr1wIAxGIxateubfH5Hz58iIYNG2oFisaEhoZi69ataNmyJUqXLm3xNRERERERfaoYrhFRpuzatQvbt29H27ZtMWTIELPGvnr1CufPn0+3fc/BgwfRvHlzVKlSBcOGDUNUVFRml2ySZ8+eaR2ntRoiIiIioo+LWq0WHsfGxmL79u0mj7W2thYeq1Qqi67LHM+fPxdapRcpUgSOjo4Wv8bUqVMxePBgs8YsXLgQSqXS7HFERERERJ87SU4vgIg+XQ8ePMD06dNRoUIFTJ8+3ayxKpUKU6dOhVwuh6+vr95zrly5glGjRgk3Og4fPozIyEhs3rwZIpEos8s3KCEhIVvDNM0bQpqPiYiIiMi4cuXK4cGDB8JxcnKySeOUSiWio6OF4zx58lh6aSY7duyY8Lho0aJZcg0PDw+zzr937x7279+PFi1aGPz3OhERERHRl4rhGhFliEKhwJgxYyCRSLBw4UJIpVKTxz558gRz5szBiRMnAMBgW8hjx47pfIL40qVLePbsGQoVKpTxxRsRHx+fZXPrExoaKjwOCQnJ1msTERERfepGjhyJ+Ph4XL16Ffnz50enTp1MGvfgwQPI5XLh2NieZVlJc984Hx+fHFuHpgULFgAABgwYkMMrISIiIiL6+DBcI6IMOXDgAO7duwdra2u0bdvW5HEymQyJiYlaz5n7Sdisbtmjbx8KzZZBlnT27Fm8evVKON63bx969eoFZ2fnLLkeERER0efG3d0dixcvNnucZrWYr68vihQpYsllmeXmzZvC4w8rzG7duoXdu3fj8uXLCAsLg42NDdzd3VGmTBk0adIEderUsXhXhytXruDkyZOoW7cuihUrZtG5iYiIiIg+BwzXiChDYmNjAQByuVyrnY65XF1dtTaS19SoUSOsX79eK0wrXrx4lrelcXd3R548ebQ2tff29s70vImJiQgNDYVarUZsbCwuX74sbFyf5sWLF2jfvj169OiB4sWLI1euXABS3zcRERERWYZCocCePXuE486dO+fYWl6/fo2YmBjhOO3ff3FxcZgyZQr279+vMyYsLAy3b9/Gb7/9hurVq+Onn35C/vz5LbamRYsWAQC6du1qsTmJiIiIiD4nDNeIKEcVLFjQ4GuVKlXC/PnzsXjxYoSFhaFq1aoICgrSW1lmaXPnzsWUKVMQFhaG+vXro3Llypme8+bNm/D39zd6XnBwMKZNm6b13P379zN9fSIiIiJKtWfPHrx48QIAzGolmRWCg4O1jh0cHBAVFQV/f388fPgQ5cqVQ9euXVG9enW4ubkhIiIChw8fxtKlS5GQkIALFy7A398fO3fuhJubW6bXc+nSJfz777/w9fXF119/nen5iIiIiIg+RwzXiChDunXrhl69emX5dfz8/ODn55fl1/lQjRo1cPjwYYvOWb16dYZkRERERDksNjYWCxcuBJDaDvznn382a/9gS9PslgAAUqkUI0aMwOPHjzFu3Dh0795dq+1j3rx50atXL9SvXx9dunRBZGQkXrx4gbFjx+p0RciI5cuXAwC+++47i7ebJCIiIiL6XIhzegFERERERERE2WXmzJmIiIgAAEyYMAFVq1bN0fV82GJ9//79+PfffxEUFIQePXoYDLgKFSqEBQsWCMdnzpzBmTNnMrWWGzdu4Ny5cxCJRGjZsmWm5iIiIiIi+pwxXCMiIiIiIqIvwu7du7F3714AQGBgILp06ZKzC0Lqvrya/vzzTzRt2tSkVpXVq1dH48aNheNNmzZlai2rV68GAFStWtUiew4TEREREX2uGK4RERERERHRZ+/y5csICgqCSCRCUFBQtrQ4N4VcLtc6tra2xvjx400e3759e+HxmTNnEBUVlaF1hISE4NixYwCARo0aZWgOIiIiIqIvBcM1IiIiIiIi+qzdv38fAQEBUKlUmDVr1kdRsZZGItHeCr19+/bw8vIyeXzVqlWF1pFKpRJXr17N0Dp+/fVXqFQqAECdOnUyNAcRERER0ZeC4RoRERERERF9th4/foyePXsiPj4e8+fPx7fffpvTS9Jib2+vddywYUOzxjs6OiJv3rzC8b1798xeg1wux549ewAAXl5eKFKkiNlzEBERERF9SSTGTyEiIiIiIiL69Dx58gTdu3dHbGwsFi1a9FG2O3RwcNA6TklJMXsOFxcXvHjxAgDw9u1bs8efPXtWaCf51VdfmT2eiIiIiLT9999/OHDgAP777z+8evUKiYmJcHR0hJubG8qWLYtatWqhefPmkEqlOb1Uo+7du4eDBw/i4sWLeP78OeLi4mBtbQ03Nzd89dVXaNq0Kdzd3TM89x9//IFLly4hJCQE8fHxcHR0hIuLC0qXLo3q1aujVatWOv9m/hgwXCMiIiIiIqLPztOnT+Hv74+YmBgsWbIE9evXz+kl6eXi4qJ1nJSUZPYctra2wuOMhHNHjx4VHhcvXtzs8URERESU6saNG5gxYwYePXqE1q1bY8iQIfDy8oJcLserV69w5swZ7Nu3D3v37sXcuXMxdepUszsXZJeQkBDMnDkTJ06cQNWqVdG6dWsULlwYjo6OCAkJwfLly3HgwAH8/fff6NevH2rUqGHy3E+fPsXMmTNx4cIF+Pn5oVevXsifPz8AICwsDBcuXMDvv/+OgwcPYv78+RgzZgx++OGHrHqrGcJwjYiIiIiIiD4roaGh6NGjB6Kjoz/qYA2ATgvGiIgIs+eQyWTCY0dHR7PH//PPP8LjwoULmz2eiIiIiIBNmzZh1qxZqFSpEg4dOgRPT0+t1ytWrAg/Pz/069cP/fr1w/PnzxEQEICgoCB07tw5h1at36lTpzBq1ChIpVIsX75cJwAsXrw4RCIRhg0bhuTkZCxZsgRSqRTlypUzOvdff/2FMWPGwMfHB3/88Yfef382btwYAwYMwMCBA3Hjxg1MmjQJwcHBGD16tMXeY2ZxzzUiIiIiIiL6bISHh6Nnz56IjIzEwoULP+pgDQB8fHy0Ks+ePHli9hya1WrOzs5mjX3w4AHCwsKE4w8r6YiIiIjIuB07dmDmzJkoUKAA1qxZoxOsafL19cXq1athZ2cHtVqNmTNn4vr169m42vSdPn0aAQEBsLW1xebNmw1W1llZWQmP1Wo1fv/9d5PmHj58OOzs7LBhw4Z0P9jl7u6O1atXw8PDAwCwevVq/PXXX2a+m6zDcI2IjBKJRHB3d0e+fPmQP39+5MuXD2Ix/3wQERER0cclPj4effr0QWhoKGbPnm3yHmsRERG4dOlSFq9OP7FYjFKlSgnHDx8+NHuOmJgY4XG+fPnMGnvlyhWtYycnJ7OvT0RERPQlCw8Px+zZswEAXbt2hZ2dndExBQsWRIcOHQAACoUC8+bNy9I1mio4OBgjR46EQqHAwoULdbosaIqLi9M6trGxSXfulJQUTJo0CSqVCt9++60QmqXHxcUF/fr1E47nzZsHhUJhdFx24N1xIjJKIpGgYMGC8PLygqenJ7y8vLQ+mUBERERElNMUCgWGDh2Ke/fuYfLkyWjRooXJY/ft24f58+dn4erSpxkC3rhxQ+dGRXpkMhnevHkjHFesWNGsa3/4KWmlUmnWeCIiIqIv3f79+5GQkAAgNTQzlea/Vy9evIiXL19afG3mmjhxIuLi4lCvXj1UqVIl3XMLFiyIli1bwsfHB2XKlEHXrl3TPf/UqVN4/fq1MNZUml+n4OBgXL161eSxWYnhGhEREREREX3ypk+fjrNnz2Lw4MHo2LGjWWPPnz+PAgUKZNHKjGvatKnwWKFQaO2BZkxwcDDUajUAwNvbGz4+PmZd+/79+1rHmkEdERERERl37tw54bE5XQhKliypVcBw+fJli67LXCdOnMCFCxcAAN9++61JYzp37ozZs2djwoQJRvfuzejXyc3NDV5eXsJxTn+d0jBcIyKjVAoZkl88QOy1vxFz6QBir/2N5BcPoFLIjA8mIiIiIspiu3btwvbt29G2bVsMGTLErLGvXr3C+fPn0/307MGDB9G8eXNUqVIFw4YNQ1RUVGaXrMXHxweNGzcWjjds2GDy2H///Vd43LlzZ7Ov/ezZM63jtE9dExEREZFpNPevXbFiBSIiIkwaJ5VKtVpy5/SHnNauXQsgtW157dq1LT6/5tfpt99+w4MHD0we6+bmJjzO6a9TGklOL4CIPl7JLx8i9tJBJNw9D7VSrvO6yMoaDqVqwrmqH2zzFsuBFRIRERHRl+7BgweYPn06KlSogOnTp5s1VqVSYerUqZDL5fD19dV7zpUrVzBq1CioVCoAwOHDhxEZGYnNmzdDJBJldvmC0aNH4+TJk5DL5bh+/TqOHz+OBg0aGB2Xtql77ty5hX07TJWQkMAwjYiIiCiT0roIAEBsbCy2b9+OwYMHmzTW2tpaeJz2782c8Pz5c2EP4iJFisDR0dHi19D8Osnlcqxfvx6zZs0yaaxUKhUefyxtzFm5RkQ6VClJCD+4Ai/X/4j4W6f1BmsAoFbKEX/rNF6u/xHhB1dAlZKUzSslIiIioi+ZQqHAmDFjIJFIsHDhQq3/023MkydPMGjQIJw4cQIADLaFPHbsmM6NjkuXLulUfGWWr68vRo8eLRxPnDjR6Kdyz5w5g4sXL0IsFmPevHnIlSuXWdeMj4/P0FqJiIiI6L1y5cppHScnJ5s0TqlUIjo6WjjOkyePJZdllmPHjgmPixYtmiXXyOjXCQAiIyOFx56enhZbU2awco2ItCjiIvFq61TII1+YNS7u6lEkB9+Bd5fJkDi5GR9ARERERJRJ+/fvx71792BtbY22bduaPE4mkyExMVHrOUOVa4ZkxSeLe/TogYiICKxevRqRkZHo3r07Vq9ejfz58+uce+PGDYwcORLW1taYNm0a6tSpY/b1NPf4SKP56WkiIiIiMm7kyJGIj4/H1atXkT9/fnTq1MmkcQ8ePIBc/r6o4cPwKTtp7odm7h6+purRowdCQ0Nx7tw5uLq6om/fviaNi4mJQUhIiHCck18nTQzXiEigSknKULCWRh75Aq+2TUO+Hj9DbGNn4dUREREREWlL+6SvXC7X+tSvuVxdXbX2u9DUqFEjrF+/XitMK168uNlhnKlGjx6N8uXLY+rUqXjy5Alat26Njh07ombNmnBxccHr169x/Phx/PHHH/D19cXUqVNRtWrVDF3L3d0defLk0aqQ8/b2ttRbISIiIvoiuLu7Y/HixWaP06wW8/X1RZEiRSy5LLPcvHlTeOzh4aH12q1bt7B7925cvnwZYWFhsLGxgaurK7y8vFCtWjV89dVXJrVLd3BwMLkNpKa///5baCnp5OSE6tWrmz1HVmC4RkSCyL83ZjhYSyOPCEXk8U3waN7fQqsiIiIiIspaBQsWNPhapUqVMH/+fCxevBhhYWGoWrUqgoKC9FZ9WUrjxo1Rp04dnDhxAn/99RdOnTqFXbt2ISkpCe7u7ihTpgxmz56N5s2bQyLJ3P+tnzt3LqZMmYKwsDDUr18flStXttC7ICIiIiJDFAoF9uzZIxx37tw5x9by+vVrxMTECMdprcbj4uIwZcoU7N+/X2dMWFgY7t69ixMnTqB06dLo37+/TihnKb/99pvwuF27drCxscmS65iL4RoRAQCSXz5E3NWjFpkr7soROJVvANu8xSwyHxERERGRPj169ECPHj2y/Dp+fn7w8/PL8utosrOzy5br1qhRA4cPH87SaxARERGRtj179uDFi9QiB3NaSWaF4OBgrWMHBwdERUXB398fDx8+RLly5dC1a1dUr14dbm5uiIiIwIEDB7Bs2TIkJSXhzp07mDFjBqZNm2bxtZ0/fx5Xr14FkFq1NmDAAItfI6PEOb0AIvo4xF46aOH5Dll0PiIiIiIiIiIiIqJPXWxsLBYuXAggdQ/cn3/+GVKpNMfWo9kiHACkUilGjBiBx48fY9y4cdi5cyfatm0Lb29vSKVS5M2bF927d8eMGTPg7OwMAAgPD8fy5cstui6FQoGZM2cKx0FBQXB1dbXoNTKD4RoRQaWQIeHueYvOmXD3HFQKmXAc899feHtmF6LP70XMpYNIfHJN7zi1SomUl48ge/McssiXUMSEQxEfDWVyAlTyFKjVlt84noiIiIiIiIiIiCg7zJw5ExEREQCACRMmZHj/XEv5cO/i/fv3499//0VQUBB69OhhcD81b29vDB06VDi+efMmzp07Z7F1LV++HA8fPgQA9O7dG61bt7bY3JbAtpBEBFnYM6iVcovOqVbKIXvzXGgNKQt7qtV20qFULdgXrqAzTpkYhxfrA9OfXGwFkZU1RBLrd/8tSf3vtOfePW/nWxYutdrpDFfJkhB9/g+tc7XmkUghspJozP/Bf1tJUs+RSACxxKQNO4mIiIiIiIiIiOjLtnv3buzduxcAEBgYiC5duuTsggAkJiZqHf/5559o2rSpSa0qS5cujapVq+LSpUsAgC1btqBevXqZXtP58+fxyy+/AAC6deuGMWPGZHpOS2O4RkSQhYdkzbxvgoVwTZIrj9ZrIom1/kGmhHwqJdQqJdTy5HRPs3LIpX94ciKiz+w0fh0TOJSpA8+2I3SeVybE4NWv04UQTivAk0g1Qjp9AZ4EsLKGWCIFJBJY5/KEjXdhnWuoVUooE2K0x4qtLPK+iIiIiIiIiIiIyHIuX76MoKAgiEQiTJo06aMI1gBALte+H2ttbY3x48ebPL5u3bpCuHbu3DlERUVlqn3jkydPMGzYMKhUKvTt2xejR4/O8FxZieEaERkNqTI+b4rw+MMwTWSlP1yzZAWdyEr/nzjLXkP/+1DJUyALe2qRaziWq4s8rYfqPK+Mi0Lw0g828RSJDYR2qQEfNAI8zQo9W5/ScK7QUPd9yJIQf+sfAxV+1u9CwLR5P6ggtJIw7CMiIiIiIiIioi/e/fv3ERAQAJVKhVmzZuHbb7/N6SUJJBLte6jt27eHl5eXyeNLlSoFkUgEtVoNpVKJq1evomFD3fuMpnj9+jX69u2LmJgYDBs2DIMGDcrQPNmB4RoRQWRtm0Xz2giP1QrtQMtg8KXI+uBLrbEX3Kd8DZW+r5VaBbVCZvb1RSIxoCdcUybEIOLQSrPm0iK08JTAsWxduDfppXOKIv4tIg78IgR4+CDA023Jqb/aTySxhpWjK6xd8uhcQ61Wv3ufbOFJRERERERERETZ5/Hjx+jZsyfi4+Mxf/58NG/ePKeXpMXe3l7r2NxgzM7ODm5ubsI+cvfu3ctQuBYeHo7u3bsjNDQU48aNQ48ePcyeIzsxXCMiSD18smbePAWEx4qYN1qvGWoLaclwDQavobDYJUQSQ9VxFryGgSDSpBaaJl8ji74fQgtPw4GjKjkBiY/+y9x13nGq0AgeLQbqPK94+wohvwwBrCQfBHLvqvf0BXkG9vKzyVccDsV1N5pVyZKQ9OyW4fDvg3kgtmLYR0RERERERET0GXvy5Am6d++O2NhYLFq0CI0aNcrpJelwcHDQOk5JSTFwpmGOjo5CuPb27Vuzx4eHh8Pf3x/Pnz9HUFDQR9MyMz0M14gIUk9fiKysLd4uUZqnoNZzNvlKQK2UQ62QwcpRf9/d7AilsqMtpEUr8HIyiMyOr1V2fM/TAlWlAmqlAmpZUoav4VSpid5wTRETgbCdP5sxk0hvi05YWcOxTB3krt1e9xpxb/H2nx3phn9a1X1W1oBEkrp/3weviW0dYGXroGddRERERERERESUWU+fPoW/vz9iYmKwZMkS1K9fP6eXpJeLi4vWcVKS+ffNbGzedzAzN5yLjIxE9+7d8fTpU0yZMgUdO3Y0+/o5geEaEUEskcKhVE3E3zptsTkdStVKvaH/joffgHTOfs8mXzH4jt7yLoSTa/+3UvGu5eG7x2mvCa/LoVYohADPrmBZvdcQWdvAtkBpw2PfzQuV0uh6s2fvuBwMpSx5jWwICQ1eI1u+H+ZeQ/2+hWdKotYryvhovSOUiTGIu3rUzOvo51y5Gdyb9dV5XhYRildbp6Qb4OGDAO/9a9pVgDZehWDrU0rnGip5CuQRoTr7AYol1kDaPCKxRd4nEREREREREVF2Cw0NRY8ePRAdHf1RB2sAUKRIEa3jtAo0c8jl7++LOTo6mjwuOjoaPXv2xJMnTz6pYA1guEZE7zhX9bNouOZcNWO9g0ViK4hs7ADYWWwtH7Lx9EXebtONnqdWq94HeQo5oBG8pT1v5aS/As/aJQ9cG/obDfDez6v44Lz31xDb6P9afHIVeDkaRGZHgPeJtRs19D7kKVDGm1++r49z1RZ6wzV55Eu8WDc2/cFiiUnVeQ4la8C5UhOd4Yq4t4i9ekQjwJMa3stPTzCo2R4UYglbeBIR5TCRSAR3d3fY2NgIm6WLxfwgBhERERF9fMLDw9GzZ09ERkZi4cKFH3WwBgA+Pj6wtbVFcnIygNRWlubSDNecnZ1NGpOYmIi+ffvi/v37CAoK+qSCNYDhGhG9Y5u3GJwqNrZIVYxTpSawzVvMAqvKWSKRGCJrG8DaxvjJH5A4u8OlRpssWNV7NvmKI/+AxToBHvQEeOoPAzyt/1bAxquQ3muIxFaQ5PZKDXU0zje0f1p6crSqLDtCwmy4Rrbss5ctQaQJ11ApoJYpoEZyuqdJPQvqfV4RF4nof34zfh0T5KreCm6Neug8L4sIxZs/FpkW4GlW+33w35BIIHXLB6lHAZ1rqJVyKBPjtecVW1nkfRERfUokEgkKFtT/N5+IiIiI6GMRHx+PPn36IDQ0FPPmzTN5j7WIiAg8ffoUVavqbkWS1cRiMUqVKoWrV68CAB4+fGj2HAkJCcLjfPnyGT1fLpdjyJAhuHHjBkaPHm3yHmvx8fG4evUqvv76a7PXaGkM14hI4NawO5KD70Ae+SLDc1i754dbA38LrooMEVvbQOpm/H+sMsPWpyQKDFqm87xarU4NPxQKPWGdRpCnkAktPKXuPnqvIXFyQ65qLfVX72m1+jR0DTmgSq3oMljxlS174JkfOBq8hoHgS5UN17BsSJhz+x5mRxCpSk6A7LX5n+bSJ1fNtnBr0E3n+ZTXT/Fyw7gPFiQ2IbSTpO6zp7Gvn32xynAsWVPnGor4aCQ+uGgw/NPcD1D87r/fz2vNFp5EREREREREABQKBYYOHYp79+5h6tSpaNGihclj9+3bhyNHjmD79u1ZuELDGjVqJIRrN27cQFxcHJycnEwaq1Ao8Pbt+y5IFStWNDomKCgIZ86cQf/+/dG3r+62JYacPXsW06dPx5kzZ0wek1UYrhGRQGxjB+8uk/Fq2zTII0LNHm/tnh/enYMMtjGkz4dIJEq9wW5ljcy28JS654db456ZmkOtVkGtVBhs3WeTtxi8u0wxoYrP8Gt4FxJa5/YytAiIrG1Sz1WrMvV+DAV4UGRD68nPpMove4JIS17DjO+HWgW1PAVquXkbBEucXAF94drb14g4tNKsubSIrYQgLlf11shdu53OKbLwEEQd36ynau+Dlpxae/npbwsqcXaHxNlN5xpqtRoA2MKT6DOlUsggC3sGWXgI1PJkiKxtIfXwgdTTV2ufXyIiIiKinDJ9+nScPXsWgwcPNrvF4fnz51GggG5Hm+zStGlTzJ07F0BqWPbPP//Az8/PpLGvX78W/j+5l5cXfHz0f8A+zapVq7B79258++23GDlypFnrPH/+/EfT0YLhGhFpkTi5IV+PnxH590azWkQ6VWoCtwb+DNYoR4hEYojSubFmZe8EO99yWboG+6KVUGjsNgCAWqVMtw0ndFp2arTcVMphm7+k/vfh6AKH0rX1Vu+plXLt1p2a+/pBrWeyHGwLmQ2VhNkSRFpyD7yc3JMwsyGhSgm1TAk1kg2uV5kQjcRH/2XuOu+41PkOrnU76TyfHHIHrzYHmR7a6a3Qk0JkJYFdoa/0/s1QJsYiOfR+6nkG9wR8fw2IrRj2EWVS8suHiL10EAl3z+v9GyOysoZDqZpwrur3WbQlJyIiIqJP065du7B9+3a0bdsWQ4YMMWvsq1evcP78eQwcONDgOQcPHsSSJUsQHh6O2rVrY/LkyXB1dc3ssgU+Pj5o3Lgxjh5NvR+8YcMGk8O127dvC487dOiQ7rlnz57FggULUKNGDcyYMcOsNSYmJuLQoUNo2LChWeOyCsM1ItIhtrGDh98AOFVoiNhLh5Bw91w6NzNqwblqc97MINIgElul7ouVgf360mPjXQSe35r3iZ7UFp5K7RabSjnENg4Gr+HRZti7ar33e+ypDe7llzavxjnvXrOyz6V/TRYNpbK+9aTBIDJb2o1+JHvgmXoNgyFhNgSR7wJVIWjOzDUk1nrDNVnYM4Tt/NmMicTarTvTAjyJBM6Vm8O5UhPda0SEIubi/g/COgMtQD8IC7Vbd0pgZevED73QJ0uVkmTSh73USjnib51G/K3TcKrYGG4Nu/PnnoiIiIiy1YMHDzB9+nRUqFAB06dPN2usSqXC1KlTIZfL4evrq/ecK1euYNSoUVCpUjslHT58GJGRkdi8ebNFP9A5evRonDx5EnK5HNevX8fx48fRoEEDo+MuXrwIAHBycsL3339v8Lw3b95g9OjRyJcvHxYvXgyJgQ8zGzJv3jxER0cb/DplN4ZrRGSQbd5isG1TDKoWAyB78xyyN8FQy1MgsraBNE8BSPMUZBseoo9cagtPSWoIZcKvq8TZHU5lv8nSNTmUqAbf0ZvfV9kpZDrhn94AT2MPv7TXbLyL6r2G2NYBtj6l9FcQalwLKqXR9eZoVVl2BJEWrfL73ENCM6+hVr0Lp3WrA5VJ8XqHKGLCzaocT0/uup2Qu853Os8nPb+NN3sXmBTgwUi1n23+krDxLqxzDVVyAuRvw3THWkneVRZas6qPDFLEReLV1qlm7wMcd/UokoPvwLvLZEicdNvHEhERERFZmkKhwJgxYyCRSLBw4UJIpabfK33y5AnmzJmDEydOAIDBtpDHjh0TgrU0ly5dwrNnz1CoUKGML/4Dvr6+GD16NGbNmgUAmDhxIvbu3Ys8efIYHHPjxg3cvXsXIpEIAQEByJVL/wet0+aLiYnB6tWr0z3vQ69evcLSpUuxa9cuAIa/TtmN4RoRGSWWSFODNlanEZEFiMRWENnYA5Yt7NNi51vOpFagOi083wVv0AjjJC6eesdK8xSEa4NuGuP1VPh9EO7hg3Av7TWx1Fb/+j7GwOhLuIbBkDAbgkhLBqoGrqGSJUEZ/1bva+ZybdBNb7iWHHofr3fMTH+wZutOKwMBnkQCpwqN4Fiqls5wedRLxN86k9q6VbOSTyLVqBT8sNJPswUoW3h+jFQpSRkK1tLII1/g1bZpyNfjZ1awEREREVGWO3DgAO7duwdra2u0bdvW5HEymQyJiYlaz5lbkfVh4GYJPXr0QEREBFavXo3IyEh0794dq1evRv78+XXOffToEZYsWQIrKyv06dMHX331lcF5L126hFOnTsHKygq9e/c2eT0KhQLx8dofTmXlGhEREVEOy0wLT6l7fkjddf9xaUkOxarCpv8igwEePgjpPtzfT/M5a/d8eq8hklhDkttLo4pQAaTt42cmw/vTfWL77H0uIWG2XCMT33OlIvXnTpaU7ml2hSvofV4W8QJv/9lh/DomcG3oD5cabXSeTwq+g8ijG9LZY89YgPe+GlDq6Qvr3F4611DJU6BKTtSu8hNbWeR9fYoi/96Y4WAtjTwiFJHHN8GjeX8LrYqIiIiISL/Y2FgAgFwuR3R0dIbncXV1hZOTk97XGjVqhPXr12uFacWLF8+ykGn06NEoX748pk6diidPnqB169bo2LEjatasCRcXF7x+/RpHjx7Fn3/+CW9vb/Tq1QulSpVKd86YmBgAgFKpzNTXCWDlGhF9QhQKBV68eAGpVAqxWAyVSoU8efLAyurLvfFDRJQdxDZ2kNpkcYBXojocSlTXeT51vz6FRotOjbBOq9LvfXtPG+8ieq9h7ZYfuaq11Binp12n1jU+rAJUAKrU8MxQYKTS03oxowxXrlnyGobadFrwGgaCr+wJIj+PsFOVGAvZ68cWuYZb457IVa2lzvNJT64hbNecDxYkNjnAg0aA51j2a9gXKq9zDXl0GJKe3tBfKahnDz9h/760c0Vii3wNjEl++dBibVHjrhyBU/kG7LxARERERJ+EggULGnytUqVKmD9/PhYvXoywsDBUrVoVQUFBWXpvtnHjxqhTpw5OnDiBv/76C6dOncKuXbuQlJQEd3d3lCpVCgMHDkSNGjWy9R6xh4cH7O3ts+166WG4RkRGqdVqREREaD3n7u7OcI2I6DOWul/fu323MtnC0zZvUdjm1b8/nqnUahXUCrnBih77IpXg3WWK4fDP0F5+H+zzB6UcVuns1SSytkk9T5259hsGA6NsaD35yQWRBr9WWR9EWnS/QHOuoVZBLU+BWp5i1jVsvIsAesK1lFdPEHFwhVlzaRFLhODNtUFXOFdopHNKcshdRJ/fazDAwwcBXurzUjiWri38XsdeOpjxNeoRe+kQbNswXCMiIiKirNOtWzf06tUry6/j5+cHPz+/LL+OJjs7O4PXlclkuHnzpslzNWrUCPfv37fk8nIcwzUiIiIi+uiJRGKI0mnfKXHKDYlT7ixdg1P5BnAq3wDAu/36FIZDOmOtOw1W+bnkgUPp2nqr94SqPqXmvoCKd+GMWmcuQ6EUsqP1pCVDKYNVftmxB57l3gdyshVoZoNIlQJqmQJqJAMG9nVQxEQg8eFls6aVeheBU9lv3l1ChoS75zO3zg8k3D0HVYsBEEtSN5WPvrgfqsQ4iCTWsC9SSe9+gYr4aMijXkBkJX1f2SfsASh9/5h79BERERERfdEYrhERERERmUkktoJIagXA1qLz2hX6CnaFDG8CrU9qC0+lToBnZZ/L4DU8Wg/VCu2gJ8DTrfLTCPzevSa2c9S/ps+kLaRlQ8IcDCI/ln32PqAZMsvCnlk2zETqmmRvngutIeURoULbSSuHXHrDtaRnNxD+xyLjk79ryymWWH/QYvN9KJerWivYF62kMzQl7BkSH1wyHNxJDBxrXkdinW3tOomIiIiISBfDNSIiIiKiT1hqC0/Ju9DDzuj51q55Ye2aN0vX5FypCZzK1dVuyalvjz2Dz8uE/fmk7vr3HbRydIGtTyn982gGhyql0fVmR+Wa4WtYsgJPqv8aFq3yM3QN879W1rnyCI9l4SEZXlN6ZG+ChXBNonG9TAeqSgXUSgWU6XTudCzztf41hT3F29PbTbtOesQSeLQYAKev6uu8lPjkGmLO7xX25ROnhXUSqbBfn0nHVtawdvWGlb2zzjXUajUr+IiIiIjoi8VwjYiIiIiILEokhH1Zx7FkTTiWrGn0PLVKqacS732QB6Uc1m759I619SkF1wbddEO7tOo+rUBPodUWVKt1p1IOsUR/W9NsqcD7WK+h8TOilidndEnp0ty3TjPgzJ5Kwiy+hkoBGKheU8RGIOmZ6XtgpMej1RA4fVVP5/n4GycQfnCFeRV3VqnVfpBYv6v6Sz3fvlhlSD0K6L6P+LdQRIdpt+nUrPSTWBvci5OIiIiIKCsxXCMiIiIios+WSGyVevM9nT37DLHxLmJwfzxLcSrfEPZFKxsN8KAnwFN/EOBJcnnovYZYagtJbq8PgkAZkIGqOcOtJzNQHacxRmRt2Rar7+d9/33XDLUMVuApM7k/nea1rQxV+VnwGhasJDR8jXRCQpUSapkydT++TJDkctcbriU+vIyIgyuMLFD8LmyTpBvCudRsC7uCZXWGp7x6gsQn1yB6F/jBylqj0k9PmKfnGGIrVvERERERfWEYrhEREREREeUQKztHWBnYu85SnCs2hnPFxjrPq9Xqd+0NtUM6tUJjf70PXpN66u5TBgA2XoXhXK0lYKjVp1bFYOp/lMkJwniph0+WvHdpnveBjSLmjfDY4N5xFm2hmR2tQLOhAu9j3/dQrYJangy1kVOdyjfQ+3zyiwd4e3Kr8eukRySGSGINj9ZD9FbUJjy4hNj/DhvYP+/DVpzvgsJ3x2IrKSB519rTyhoSV29Y2Tpkbr1ERERElGkM14iIiIiIiL5AIpEIeHeDH+YX9mmxK/QV7Ap9leHxUk9fiKysLR7YSPMU1Dq29S0HtUKmdw8xIJv22bNo5RqvYfI1DIaEFriGWgW1PAUiQ206o8OQ9ORa5q8DIE/70XoDvJjLhxD196YPqus0q/mMVPdptPJ0KF4V1q7euu8j7i0UsRHCee8r/ayF/f1YwUdERERfCoZrRERERERElKPEEikcStVE/K3TFpvToVQtiDXaJro37W10jOs3HZC7zndC60ytCjwzjyUuefRew8rJFTb5SwJKOVR655Gn7qdmgkxVfJnIUPClsug1DLXp/Eyq/LLlGjLhP5llndtLb7gWf+cMoo5tMLo+g/vvaRy71P4OtvmK6YxPfvEQySF39FT3WesPBfWFhAz4iIiIKBswXCMiIiIiIqIc51zVz6LhmnPV5hkal5l9+kzhXKERnCs0SvcctVr1vo2mELzphnn69ikDANuCpeGibmc4JNRq05n6uurd3n5pgV/anniG93XLhqqybKmOy6b96b6Qa6S1fUVKYrrnOVdqovf55ODbiDq+2fgi0/OuzaZnu1GwL1xB5+X4u+cRf+NExoK7D4JC69xeENvYZW69RERE9EliuEZEREREREQ5zjZvMThVbIy4q0czPZdTpSawzatbFfOpEInEEFnbZDjgsy9UHvaFymdqDWq1CmqlIjVo1MO5QiPY+ZbTDf/SC/L0HisgNrCHmGUrvgxVx2VHBZ7lriE2GHZmw/uwaNiZhddQKt5VPeqvYJNHvkDio/8yfx0AXh0nwr5IRZ3no8/vxdszuz4I5az1tOV8/7xYov88hxLVIcnloXMNRVwUlAnRhqsFDfzuEhERkWUwXCMiIiIiIqKPglvD7kgOvgN55IsMz2Htnh9uDfwtuKovk0gkNhiAAIC1q7fe1oGW5NrQH671OgshnFohe99K08zWnRInV73XkDi5wSZvsXRDQUBt0nqzY+84ZOXece8YfB/Zsifh53ENlTwFalkS1LKkTF9D6lFAb7gWd+1vvD293fBAsZWeqjz91Xq5v+kAG09fnSmSQ+8j5eVDPQGhRH9F3wfzQmzFNp1E9FkRiURwd3eHjY0NRCIR1Go1xGL9e67S54/hGhEREREREX0UxDZ28O4yGa+2TYM8ItTs8dbu+eHdOYht2j4TIpEIeHejPqvkquqHXFX9DL6uVqsBlUJ/i853xyqFDFAoYJ3bS+8ctr7lACvJu3EKoRWn7rGBKkC5DGkBn/hz3zvuE6sk/Kir/FRKqFVKqOXJRq+Rq3pLvc8nPr6K6DM7jY43SCQWgjavH8bB1qekzinxt/5B/N1z6VT3vQvzNJ+XWENsJQUkEoiFUE8KSW5PiLOopS8REQBIJBIULFgwp5dBHwmGa0RERERERPTRkDi5IV+PnxH590azWkQ6VWoCtwb+DNbIokQiEWD1rgong/fsHYpVgUOxKhleQ2rAp4RaIYfIWn/Q4ly5GeyLVNQJ6VRG9u3TPk59ztDv0CdXVWal/5ZXtlzj3Z6FFrlGdlQSZlXbVLUKankK1PIUwEAFmyw8GIkPLmbuOu/k9Z8BW59SOs+//WcnYi7u11NpZ6ACT6dt5/vnHUrUgMQpt841FHFRUCXF6d27D2IJK/iIiD5DDNeIiIiIiIjooyK2sYOH3wA4VWiI2EuHkHD3nN6bvCIraziUqgXnqs0/6T3WiNKTGvBJDAY5ACB1zw+pe/4sXYd7sz5wa9Rd//55mtV3Hx5/cJ5KIYeVfS6917BycoPUq4jBaj6olCav96OuKjPnGtlRSZgNLU2z5RoGvlYqWSJUyfEWuYaNdxG94VrMpQOIOb/X8NqMhHaaz7vW6wxr17w6cySH3EXK66dawV161X06VYAM+IgyTaWQQRb2DLLwEKjlyRBZ20Lq4QOpp6/BfVHp88VwjYiIiIiIiD5KtnmLwbZNMahaDIDszXPI3gRDLU+ByNoG0jwFIM1TkDcyiLKJSGwFkdQKkNpm2TVy126H3LXbGXxdrVKavN+eoX327AqXh9jGzuA4lUIOKOX69/dTyAHV+6q0z33vuE+u3ajBsDPn30fqz5BpQaJLzW/1Pp9w/wJiLvxp0hx6vavUE0us4dVxEmy8CumcEnf9OBIfXTFe3WdC1Z/EJQ//N5o+G8kvHyL20kEk3D2fzge+asK5qh8/8PUFYbhGREREREREHzWxRJoatPFmBdEXTSS2gkhsBWRiXy3HUrXgWKpWhser1SohaDPUQjNXtZZwKFFdI5T7MKSTGQ4JP6j0E1nrDzMtu3dczgV4KoteIxtagWZHm86s+n4oFVArFVCmwGCbzpTXT5Fw73zmrvNOvt5zYeNVWOf5qBNbEHvt7w/Cund76b07htW7/fSMhHkOJWvCyt5J5xqK2EioZEn6x4mtLPL+6MugSkkyqVW5WilH/K3TiL91Gk4VG8OtYXe2Kv8CMFwjIiIiIiIiIiIygUgkhsjaJt2Az8bTFzaevlm6Do8Wg+DWtI+JbTn1tel8H+RZ2TjovYbEyRXSPAV19uVLCwbNYaiqDBYNpbJo7zhTrvGpVeDlYNtUZXICVImxFrmGbf6SesO16HO7EfvfYf2DxFZG9tmTarXpdGvQDRJnd51pkp7fgjzihf42nPracqa175RIGfB9IhRxkXi1dSrkkS/MGhd39SiSg+/Au8tkSJzcsmh19DFguEZEREREREQfNYVCgRcvXkAqlUIsFkOlUiFPnjywsuLNKSL6Mokk1rAyUOFkKa71u8C1fhe9r6nV6tRKKI2wTaelpkaYJ7Zz1DuPXeEKENs5pdviM73qPkAtzGW4ZePnsXecZUNCA1V+SoXe5zN2DUNfq+y4RjpfK5USapkSaiSbdI3cX/+g9/n422eMVjMZJBJr7ZWXt9tUvfvsxV45gqTnt9IJ61Kr/WBlrVHpp38/P0kud4M/W6RLlZKUoWAtjTzyBV5tm4Z8PX5mBdtnjOEaERERERERfdTUajUiIiK0nnN3d2e4RkSUQ0QiEfDuRn5mOH1VD05f1cvQWLVaDagU79t06qlgAoBcNdrCoXRtPdV9Co2w7t2xUqN1p9ZxasBnaA8xy4ZS2VBVZpUd1zAUEmZD2Pmxt+lUq6CWJ0OdNoVIrPe05BcPkXDnbMavo8Fn4BK9AV7E0fVIuHPWYCinr5pPt1VnalDoWKoWxDb2OtdQxEVBLU/WmQdiSerfko9Q5N8bMxyspZFHhCLy+CZ4NO9voVXRx4bhGhEREREREREREX1SRCIRYJUaAiCdbfhs8xYF8hbN0rXkaTMManlKOq04dY8NVfqJpPrfjJWTG6zd839QyZc6FmqVWesV5+A+exa9hsFqxWy4Rja0G82OtqmqxFgo499a5Bp2vl/pDdeiTm5D/I0T+lalv3VmOi023Rp2h5VDLp2Zkp7dhPxtWLrVeyKJVKPS7/3+fh8GfMkvH2a8KvEDcVeOwKl8A+4b/JliuEZERERERERERESUQWIj+/BZgnuTXgZfU6uUH+yLZ2APPiHAs9U7j33RSpA4uWoEf6lj34eA+vb0e9eiU6Vdvfe57x2XHVV+qk+u3ai5bVPV74Jl09+naz39rWrjrh9H/K3TJs+jSSS1Q8Hha1N/jwHEXjqYoXkMib10CLZtGK59jhiuEREREREREREREX2iRGIriKRWgIHQzFTOlZpkeKxardIK8QyFUrlrt4fTV/VM2F/vg6o/PYFhzu4d94lV+X0ulYRZEHZau+UVgjWVQoaEu+czPJc+CXfPQdVigMG2svTpYrhGRERERERERERERBkmEokhMqGCz9anZJavxbP9GKjkyRqVfAr9YZ5OkKf7vMhK/+1ziZMrrF3z6p3HXAb3LvzY944z9RoWfR8GAtVMvA8b7yLCY1nYM4uuF0h9/7I3z9ka8jPEcI2IiIiIiIiIiIiIPgtiGzuIbeyy9BoeLQP0Pq9Wq4F3YZ7OvnqaIZ/GsUhspXcu+2JVIHHx1KjgU+hp82mgTSfUGjOJALGhKr9PLcAzULmWifdhnSuP8FgWHpLhedIjexPMcO0zxHCNiIiIiIiIiIiIiCiTRCIRILGGSGINcSbnylWtZYbGqdVqQKXQ3mdPJNJ7bu6vf4Ai/q1G6JdeO07Dz0Olgkik/x1bLFwTiQ0GkZm6hkZ1olqenPF50qGWp2TJvJSzGK4REREREREREREREX0GRCIRYGWdugda+l06YedbLsvX49VhHNTyFI2KO/2tOlUKmUaln26YB7Xa4DWsHF0gccmjU90Htcr4AjX26BNZZ27fQkNERtql0qeJ4RoREREREREREREREVmclZ0TYOeUpdfwbDda7/NqlfJ9S02d/fFSQzgr+1zC+VIPnyxZnzRPgSyZl3IWwzUiIiIiIiIiIiIiIvqsiMRWEEntAP1btemQevri/+zdeXycZbn/8e9sSSbJTCb7nnRJQ2kLBSw7iAIuIAioIKKyyiKCx5+CeI5SWY8gKCAirgfcURGQRVYFtFAolNoFumRp9n2ZLdusvz8meZLpQpN2kknaz/v18sXM1Xme+wrSdjLf3NdtstgSexadxaaUgsqE3Q+zx76OfgUAAAAAAAAAAJjTzNYUZRx8bELvmXHwcTJbJ5nuYU4hXAMAAAAAAAAAAAc855GnJ/h+pyX0fpg9CNcAAAAAAAAAAMABL61kkRyHfyQh93Ic8VGllSxKyL0w+xCuAQAAAAAAAAAASMo95SLZckv36R62vDLlnnxhgjrCbES4BgAAAAAAAAAAIMmcalfx578rW17ZXl1vyytT8QUrZU61J7gzzCaEawAAAAAAAAAAAKOsjlyVXnzHlEdEOo74qEovvkNWR+40dYbZwprsBgAAAAAAAAAAAGYTc6pd+adfJcdhp8j71rMa2Py6ouHgTq8zWWzKOPg4OY88jTPWDiCEawAAAAAAAAAAALuQVrJIaWctUuQTVynQ1ahAV5OiwRGZbKlKKahQSkGlzNaUZLeJGUa4BgAAAAAAAAAA8D7M1pRY0MbuNIgz1wAAAAAAAAAAAIBJY+caAAAAAAAAAADA+wiFQmptbVVKSorMZrMikYgKCgpksViS3RqSgHANAAAAAAAAAADgfUSjUfX09MTV8vLyCNcOUIyFBAAAAAAAAAAAACaJcA0AAAAAAAAAAACYJMI1AAAAAAAAAAAAYJII1wAAAAAAAAAAAIBJIlwDAAAAAAAAAAAAJolwDQAAAAAAAAAAAJgkwjUAAAAAAAAAAABgkgjXAAAAAAAAAAAAgEkiXAMAAAAAAAAAAAAmiXANAAAAAAAAAAAAmCTCNQAAAAAAAAAAAGCSCNcAAAAAAAAAAACASSJcAwAAAAAAAAAAACaJcA0AAAAAAAAAAACYJMI1AAAAAAAAAAAAYJII1wAAAAAAAAAAAIBJIlwDAAAAAAAAAAAAJsma7AYA7F/Wrl2rZ555RmvXrlV7e7sGBweVmZmp3NxcLVu2TMcdd5xOO+00paSkJLvVvbJt2zZ96lOfUjAY1D/+8Q+VlZXNyTUAAAAAAAAAAHuHcA1AQmzYsEG33Xabamtr9clPflLXXnutioqKFAwG1d7erlWrVunJJ5/UE088obvuuks333yzTjnllGS3PSWRSETf+c53FAwG5/QaAAAAAAAAAIC9R7gGYJ/95je/0fe+9z0dccQRevbZZ1VYWBj364cffrhOP/10XXHFFbriiivU2Nior3zlK1q5cqUuuOCCJHU9db/5zW+0fv36Ob8GAAAAAAAAAGDvceYagH3ypz/9SbfffrsqKir0y1/+cqdgbaJ58+bpF7/4hex2u6LRqG6//fY5EyS1tLTovvvum/NrAAAAAAAAAAD2DeEagL3W3d2tO++8U5L0hS98QXa7fY/XVFZW6rOf/awkKRQK6e67757WHhPlu9/9rszm6f0jcybWAAAAAAAAAADsGz7FBbDXnn76aQ0MDEiKhWaT9YlPfMJ4vGbNGrW1tSW8t0R6/PHHtWrVKt1yyy1zeg0AAAAAAAAAwL4jXAOw115//XXjcU1NzaSvW7x4sSwWi/H87bffTmhfidTb26s77rhDH/7wh+NCwbm2BgAAAAAAAAAgMQjXAOy1zs5O4/FPf/pT9fT0TOq6lJQUORwO43lXV1fCe0uU2267TeFwWDfffPOcXgMAAAAAAAAAkBiEawD2WjQaNR57vV498sgjk77WZrMZjyORSEL7SpR//vOf+vvf/65vfvObKiwsnLNrAAAAAAAAAAASh3ANwF475JBD4p4PDw9P6rpwOCy32208LygoSGRbCeH3+3XTTTfp6KOP1nnnnTdn1wAAAAAAAAAAJJY12Q0AmLu+/vWvy+/3a926dSorK9PnPve5SV23bds2BYNB4/mOId1scNddd8nr9eq2226b02sAAAAAAAAAABKLcA3AXsvLy9OPfvSjKV/30ksvGY/nzZunhQsXJrKtffb222/rT3/6k775zW+qoqJizq4BAAAAAAAAAEg8xkICmFGhUEiPP/648fyCCy5IYjc7CwQC+s53vqNly5bpoosumrNrAAAAAAAAAACmBzvXZpmtW7fqscce05o1a9TS0qKhoSFlZGSooKBAy5cv10c+8hF98IMflMlkSmqfJ598slpbW/fq2t/85jc6+uijE9wR5orHH3/c+G9nKqMkZ8oDDzyglpYW/fWvf5XFYpmzawAAAAAAAAAApgfh2izR1tam22+/XatXr9YFF1ygG2+8UeXl5YpEImpra9O///1v/e53v9Nf/vIXLV26VPfcc48qKyuT3fZeOfjgg5PdApLE6/Xq3nvvlSRZLBbdcccdSklJSW5TE2zZskW//OUvddVVV+mggw6as2sAAAAAAAAAAKYP4dossH79el155ZXKzc3VM888o+Li4rhfLyws1OGHH67zzjtPl1xyid5991199rOf1aOPPqqysrIkdS25XC5lZ2dP6Zr8/Hw5nc5p6giz3e23366enh5J0re//W0deeSRSe5oXDgc1re//W3Nnz9fV1555ZxdAwAAAAAAAAAwvQjXkqyvr09XXXWV3G63fv/73+8UrE1UVFSke+65R+ecc476+/v1zW9+U3/4wx9msNt4X/jCF3TttdcmbX3MLY899pieeOIJSdINN9ygz3/+88ltaAcPP/yw3nvvPT3yyCPTtptuJtYAAAAAAAAAAEwvc7IbOND99Kc/VV9fnw466CAtXLhwj69fvHixTjjhBEnS2rVrtWbNmuluEdhnb7/9tlauXCmTyaSVK1fq0ksvTXZLcZqamvSjH/1IF154oZYvXz5n1wAAAAAAAAAATD/CtSR77rnnJEnBYHDS1xx33HHG45dffjnhPQGJtHXrVn3lK19RJBLR9773vVm3Y02SVq5cqfz8fH3ta1+b02sAAAAAAAAAAKYfYyGTaHBwUJ2dnZKkuro6/etf/9IHP/jBPV5XXl5uPG5qapq2/oB9VVdXp0suuUR+v18/+MEPdNpppyW7pZ08+uijWr16tR5++GHZ7fY5uwYAAAAAAAAAYGawcy2JhoaG4p7feeedk7pu4ofzgUAgoT0BiVJfX6+LLrpIXq9X991336wM1rq7u/X9739f5557ro499tg5uwYAAAAAAAAAYOYQriVRTk6O8vPzjedju9j2pL+/33hcXFyc8L6AfbV9+3ZdeOGF8ng8uv/++3Xqqacmu6VduvXWW5WamqobbrhhTq8BAAAAAAAAAJg5jIVMIpPJpHvvvVf33nuv3G63Lrzwwkldt2nTJuPxQQcdNF3tAXulpaVFF198sdxut+6//359+MMfTnZLu9TR0aHnn39eJpNJRx999F7d46Mf/ehOtf/93//V2WefPWNrAAAAAAAAAABmFuFakq1YsUK/+93vJv36aDSqF154QZJktVpnzai9N954Q3//+9+1bt06dXR0aHh4WPn5+TriiCN03nnn6aijjkp2i5gB3d3duuSSS9Tb26t777131gZrkpSbm6unnnpqytedeeaZxuOf//znKigoiPv1oqKiGV0DAAAAAAAAADCzCNfmmJdfflmtra2SpFNPPVU5OTlJ7SccDmvlypV69NFHJcXOg8vJyVEkElFra6taW1v11FNP6bzzztNNN90ki8WS1H73VSgUkslkSnYbMy4UCu2x5vf7ddlll6mlpUV33HGHTjrpJAWDwT3eu6enRw0NDVqxYkXC+p2s+fPn79P1ZWVlKi0t3ak+8eueiTUAAAD2d5N5PwoAAABMJ96TjjtQv+6JCNfmkHA4rPvuu0+SlJ6eruuuuy7JHUk33nijnn76aV155ZU6++yztWDBAuPX3n77bd1yyy3aunWr/vznP2toaEh33313Ervdd5s3b052C7PGe++9ZzwOh8P6/ve/r61bt+qyyy5TWVmZNmzYMKn7PPPMM1qzZo1uvvnm6Wp12mzZskW9vb1zfg0AAIC5aOL7UQAAACAZeE964CJcm0N+/etfa8uWLZKkW265ReXl5Unt55lnnlFnZ6d+85vf6LDDDtvp11esWKE//vGPOvfcc1VXV6ennnpKJ554os4666yZbxbT6uGHH9bGjRv1qU99SqeccsqUrt20aZMKCwunqTMAAAAAAAAAABLLnOwGMDmbNm3SD3/4Q0nSDTfcEHcmU7Js375d3/nOd3YZrI3JyMjQTTfdZDy/9957FQ6Hp785zJhXXnlF//jHP3TiiSfqM5/5zJSu7e3t1aZNm973DLHVq1fruuuu05e+9CXdd9998nq9+9oyAAAAAAAAAAB7jXBtDujq6tI111yjUCiklStX6tJLL012S7rkkkt01VVX6dOf/vQeX3vUUUdp8eLFkqS2tjatWrVqutvDDGlubtbDDz+sqqoqXX755VO6NhKJ6KGHHlI4HN5tuLZt2zb9+Mc/VltbmwYHB/Xmm2/q3nvvVTQaTUT7AAAAAAAAAABMGWMhZzmv16srrrhC3d3d+v73v69PfvKTyW5JkvTFL35xSq//0Ic+ZIy0fPPNN3XSSSdNR1vT7uCDD5bNZkt2GzMuFArtND+4urpaN998s1JSUvTggw+quLh40vfbvn27fvCDH+idd96RJJ1wwglatmzZTq978cUXdwrStmzZoqysLM2bN2/qX8g+CgQCcc8XLFig+fPnz7k1AAAA5ppdvR9dsmSJrFa+pQUAAMDM4D3puGAwqM2bNye7jaQ68P5fn0N8Pp8uvfRS1dfX6/7779fJJ5+c7Jb22pIlS4zHc/k3ndVqPSDDtV15/vnntXXrVtlsNp177rmTvi4QCGhwcDCuVlVVtct/r2bzrjfXms3mpPz/sGHDhrjnGzduVHV19ZxbAwAAYH/Ae3MAAAAk24H6npTJYoRrs5bH49Gll16quro6/exnP9Oxxx6b7Jb2SVlZmfG4v78/iZ0gUcbOPgsGg3K73Xt9n5ycHDkcjl3+2qmnnqqHHnpIkUjEqFVXV8/IrrVgMKjt27dLkoaGhlRTU6MHH3ww7jXf+9731NfXpyOOOEIOh0N2u13l5eWzag0AAAAAAAAAQGIRrs1C/f39uuSSS9TU1KRf/vKXWrFiRbJb2mcZGRnG4x13LeHAVllZudtfO+KII/SDH/xAP/rRj9TZ2akjjzxSK1eulMVimfa+Ojs7deaZZ77va3w+n+6++27j+VFHHaXf/va3s2oNAAAAAAAAAEBiEa7NMmM71saCtSOOOCLZLSXExJ1H6enpSewEifLFL35Rl1566bSvc/rpp+v000+f9nV2VFZWpq1bt875NQAAAAAAAAAAibXrA42QFH6/X5dddpkaGhr0q1/9atYGaz/96U913HHH6ZxzzlF3d/ekrpm4W83pdE5XawAAAAAAAAAAANOKcG2WCAQCuvrqq1VTU6Of/exnOvzww/d4TTAY1DXXXKOhoaEZ6DBm7dq1uueee9Tb26v33ntPf/3rXyd1XWdnp/G4qqpqutoDAAAAAAAAAACYVoyFnAWi0ai+9a1vae3atfrJT36io446alLXbd68WatXr5bdbp/mDsetW7cu7vnIyMikrqurqzMeH3rooQntCQAAAAAAAAAAYKYQrs0CDzzwgJ555hndcccdOumkkyZ93XPPPaeKiopp7GxnE0c62mw2nXXWWZO67vXXX5ckpaSk6EMf+tB0tAYAAAAAAAAAADDtGAuZZK+++qp+/OMf68tf/rLOOeecSV/X2tqqRx55ZLfhWltbm6644godfvjhOvPMM41wa18dd9xxMptj/9l84hOf0Lx58/Z4TXt7u9566y1J0umnny6Xy5WQXgAAAAAAAAAAAGYa4VoSdXd364YbbtAxxxyjr371q5O+bt26dbrkkks0MDCw23Dthhtu0KuvvqrBwUFt27ZNV199tdrb2/e557KyMp1//vmSpPT09Eldc9999ykUCsnhcOgb3/jGPvcAAAAAAAAAAACQLIyFTKL7779f/f39qq2t1emnnz6pa7xer3p7e43nuwvXNm3aFPd8aGhIGzduVHFx8d43POpb3/qW2tvb9be//U1nn322li9fvtvXPvzww3r88ceVkpKiu+66SwUFBfu8PgAAAAAAAAAAQLIQriVRT0+PpNgOtu7u7r26x+7CtWXLlmnNmjXGc5vNpsWLF+/VGjtKTU3VAw88oF/96le6+OKLdfTRR+uUU07RkiVLlJeXp1AopJqaGj3yyCN6+eWXVVFRoVtuuUXHHntsQtYHAAAAAAAAAABIFsK1OW534dqdd96pm266SW+99ZYKCwv1jW98Y7ev3RsWi0VXXHGFPvOZz+jxxx/X3//+d917773yeDxKS0tTTk6Oli5dqjvvvFOnn366UlJSErY2AAAAAAAAAABAshCuJdFPfvKTabt3SUmJfv7zn0/b/cfk5OTosssu02WXXTbtawEAAAAAAAAAACQb4RqAPTKZTMrLy1NqaqpMJpOi0ajMZnOy2wIAAAAAAAAAYMYRrgHYI6vVqsrKymS3AQAAAAAAAABA0rH1BAAAAAAAAAAAAJgkdq4B2KNAMKztbV41dng1EggrNcWiyiKn5pc4lWKzJLs9AAAAAAAAAABmDOEagN3a1tSvp/5dr9c2tCkYiuz06zarWccfWqIzT1yg6orsJHQIAAAAAAAAAMDMIlwDsJPB4ZAeemqTnnuj8X1fFwxF9Mo7LXrlnRZ9/JhKXXLmMqWn8ccKAAAAAAAAAGD/xafgAOL0eob0nZ++rpYu/5Sue+6NRm2q79VtVx2n3Cz7NHUHAAAAAAAAAEBymZPdAIDZY3A4tFfB2piWLr9u/NlqDQ6HEtwZAAAAAAAAAACzA+EaAMNDT23a62BtTHOnTw89/W6COgIAAAAAAAAAYHYhXAMgSdrW1L/HM9Ym67nVDdrW1J+QewEAAAAAAAAAMJsQrgGQJD317/qE3u/pVYm9HwAAAAAAAAAAswHhGgAFgmG9tqEtofdctb5NgWA4ofcEAAAAAAAAACDZCNcAaHubV8FQJKH3DIYiamj3JvSeAAAAAAAAAAAkmzXZDQBIvsaO6QnBGtq9qq7IliQ9/0aD1m3rVmWhQxVFTlUUOVSSlyGLhYwfAAAAAAAAADB3EK4B0EhgesY3jkwYCzk0EtJr69v02oRft1rMKivIVHmhQxVFDlWM/rM4l9ANAAAAAAAAADA7Ea4BUGqKZXruaxu/767GTobCsdGRO46PtFnNKs3PjAVuRQ5VFDpVWeRQYW6GLGbTtPQKAAAAAAAAAMBkEK4BUGWRc1ruO694/L5dfYOTvm7svLYdQ7cUq1llBY4JoVtsxGRhTrrMhG4AAAAAAAAAgBlAuAZA80ucslnNu9xdtrdsVnNcuFbb4tnnewZCEdW3eVTfFn+vFJtF5YWZRtg2FrwVZBO6AQAAAAAAAAASi3ANgFJsFh1/aIleeaclYfc8YXmJUkbHQg6PhHbahZZIgWBYdS0e1e0Q4KWlWFRWGAvaKotGg7dCh/Kz7TKZCN0AAAAAAAAAAFNHuAZAknTmiQsSGq6dccIC43G/b0SfPrlKTR0+NXX41N47oEgkmrC1dmc4EFZts1u1ze64uj3VovJChyqNXW6xf+ZmpRG6AQAAAAAAAADeF+EaAElSdUW2Pn5MpZ57o3Gf7/XxY+epuiLbeF6cl6EvfPxg43kwFFZLlz8WtnX61NThVWOHTx29A4pOf+amoZGwtjW5ta3JHVfPSLOqfIfRkhVFDuU4Cd0AAAAAAAAAADGEawAMl5y5TJvqe9XS5d/re5QXOnTJGUvf9zU2q0XzS7I0vyQrrj4SDKulcyxwG/1fp1edfYMzEroNDIe0pbFfWxr74+qZdtto6Bb7X+XoTjeXI5XQDQAAAAAAAAAOMIRrAAzpaVbddtVxuvFnq9Xc6Zvy9eWFDt165bFKT9u7P1pSbRYtLHNpYZkrrj4cCKml06+mTq+aOnxqHN3x1tU3uFfrTJV/KKjNDX3a3NAXV3ek24xz3MaCt4pCp1yO1BnpCwAAAAAAAAAw8wjXAMTJzbLr7q9+UA89tWlKIyI/fuw8XXLG0r0O1t5PWopVVeUuVZW74upDIyE1j+1yGx0v2dTpU3f/UMJ72BXfYFDv1vfq3freuLozI2XCWMnxEZNZmYRuAAAAAAAAADDXEa4B2El6mlVfOfcwfeToSj29ql6r1rcpGIrs9Dqb1awTlpfojBMWxJ2xNlPsqVZVV2TvtPbgcHCH0C0WvPV4hmekL+9AQJvqerWpLj50c2Wmxp3lNha8OdJTZqQvAAAAAAAAAMC+I1wDsFvVFdn6+gUf0DXnHqaGdq8a2r0aCYaVarNoXrFT84qdSrFZkt3mTtLTbDqoMkcHVebE1QeGYqFb4+hZbmPnuvV5ZyZ0c/tH5K4d0Ybanrh6tiN1PGwrdKhyNHTLsNtmpC8AAAAAAAAAwOQRrgHYoxSbZZc7xOaaDLtNi+flaPG8+NDNPxgY3+E2Nl6yw6d+38iM9NXvG1G/b0Tra+JDt9ystPjRkqO73tLTCN0AAAAAAAAAIFkI1wAc8DLTU7Rkfq6WzM+Nq3sHAsY5bmO73Jo6vfL4AzPSV69nWL2eYa3b1h1Xz3PZjaCtcnTHW3mhQ/ZU/kgHAAAAAAAAgOnGJ7EA9igUCqm1tVUpKSkym82KRCIqKCiQxTL7RkImkjMjRcsW5mnZwry4usc/Ypzj1jghePMNzkzo1uMeUo97SO9s6YqrF2TbjdGSYzvdygscSiN0AwAAAAAAAICE4RNXAHsUjUbV0xM/sjAvL2+/D9d2JyszVYdUpeqQqvHQLRqNym2EbvHjJf1DwRnpq6t/SF39Q3p7c6dRM5mkgux0Y6fb2IjJ8kKHUmfheXkAAAAAAAAAMNsRrgFAAphMJmU70pTtSNPyRflGPRqNqt83YgRt4yMmvRoYDk17X9Go1Nk3qM6+Qb31XnzoVpSTEXeWW0WRU2UFmUohdAMAAAAAAACA3SJcA4BpZDKZlONMU44zTYdVFxj1aDSqPu/wToFbU6dPgzMUurX3Dqi9d0Bvvtth1M0mqSh3LHQbHzFZVpApm5XQDQAAAAAAAAAI1wAgCUwmk3Kz7MrNsuvwg+JDtx73sJo6vRNGTHrV3OnT0Eh42vuKRKW2ngG19QzojU0TQjezSSV5o6FbodPY8VaSlymb1TztfQEAAAAAAADAbEG4BgCziMlkUn62XfnZdn1gcaFRj0Si6nEPqanTp8Z2r3GmW3OXXyOBGQjdIlG1dPnV0uXX62o36hazSSX5maoocqhywpluxXkZsloI3QAAAAAAAADsfwjXAGAOMJtNKshJV0FOulYcHB+6dfUPThgvGQvemjv9CgSnP3QLR6Jq7vSpudOn1ybUrRaTSvMzjbBtbLxkcW6GLIRuAAAAAAAAAOYwwjUAmMPMZpOKcjNUlJuho5YWGfVwJKquvkEjbBsbMdnc5VMwFJn2vkLhqBo7fGrs8MXVrRazygoyjbGSFYVOVRY5VJibIYvZNO19AQAAAAAAAMC+IlwDgP2QxWxScV6GivMydPSyYqMejkTV2TugxtGz3MZCt5Yuv0LhmQjdImpo96qh3RtXT7GaVVbgmBC6xUZMFuaky0zoBgAAAAAAAGAWIVwDgAPI2BlpJfmZOvaQCaFbOKL23oEJ4yVjIyZbu/0KhaPT3lcgFFF9m0f1bZ64eorNovLCTFUUOlQ5NmKyyKl8l53QDQAAAAAAAEBSEK4BAGSxxHaOlRU4dNyEeigcUVu3P260ZFOnV63dA4pEZiB0C4ZV1+JRXUt86JaWYlF54fhoybEdb/kuu0wmQjcAAAAAAAAA04dwDQCwW1aLWRVFTlUUOaXl4/VgaDR06/CpccJ4yfbemQndhgNh1TS7VdPsjqvbU62jIyXjg7fcrDRCNwAAAAAAAAAJQbgGAJgym9WsymKnKoudOlGlRj0YCqulyz9hvGQseOvoHdAMZG4aGglpa1O/tjb1x9XT06zGOW4VRQ6VFzpUWeRQjpPQDQAAAAAAAMDUEK4BABLGZrVofkmW5pdkxdVHgmG1dvljYduEEZMdfQOKzkDoNjgc0pbGfm1pjA/dMuy28Z1uxo43p7IdqYRuAAAAAAAAAHaJcA0AMO1SbRYtKM3SgtL40G04EBrf6TYheOvsG5yRvgaGgtrc0KfNDX1xdUe6bfRMN6cRulUWOeVypM5IXwAAAAAAAABmL8I1AEDSpKVYVVXmUlWZK64+PBJSc9f4DrexEZNd/UMz0pdvMKj3tvfpve3xoZszI2XCLjenEbo5M1JmpC8AAAAAAAAAyUe4BgCYddJSrVpUnq1F5dlx9cHhoFq6/Gpsnzhe0qsez/CM9OUdCGhTXa821fXG1V2O1FjgNmG0ZEWRQ450QjcAAAAAAABgf0O4BgCYM9LTbKquyFZ1RXzoNjAUVHOnT40dPjV1eo0db33emQnd3L4RuX0j2lDbE1fPcaaqotCp8h3OdMu022akLwAAAAAAAACJR7gGAJjzMuw2LZ6Xo8XzcuLq/sHA+A630dGSTR0+9ftGZqSvPu+I+rzd+k9Nd1w9x5k2GrQ5VFHoVOXo4/Q0QjcAAAAAAABgtiNcAwDstzLTU7Rkfq6WzM+Nq/sGA8ZIyfHgzSe3f6ZCt2H1eYf1n23xoVteVpoxUnJsp1t5IaEbAAAAAAAAMJsQrgEADjiO9BQtXZCrpQviQzePfyTuLLexx96BwIz01eMZVo9nWO9s7Yqr52fbR8M25/h4yUKH0lL5axwAAAAAAACYaXwqBwDAqKzMVB2SmapDFubF1d2+kbiz3MZGTPoGgzPSV3f/kLr7h7R2S3zoVpCTropCx+hYSaex0y3VZpmRvgAAAAAAAIADEeEaAAB74HKkyuXI16FV+UYtGo3GQrcOnxonBm8dXg0Mh2akr66+QXX1DertzZ1GzWSSinIyJpzpFgveygoylULoBgAAAAAAAOwzwjUAAPaCyWRStjNN2c40La+OD936vMNq7Nh5vOTQyPSHbtGo1N47oPbeAb35bodRN5ukotyx0G18vGRZQaZsVkI3AAAAAAAAYLII1wAASCCTyaTcLLtys+w64qACox6NRtXjHt5hvKRXzZ0+DY2Ep72vSFRq6xlQW8+A3tg0IXQzm1ScO77TrbIwNl6yJD9TNqt52vsCAAAAAAAA5hrCNQAAZoDJZFJ+tl352XZ9YHGhUY9Go+ruHzLOcWscPdOtudOnkcAMhG6RqFq7/Wrt9mv1xnajbjGbVJKfoYrRsG1sxGRJfqasFkI3AAAAAAAAHLgI1wAASCKTyaSCnHQV5KRrxcHjoVskElVX/6AxUnJsvGRzp1+B4PSHbuFIVM2dfjV3+vXahvG61WJSSX6mcZabEbrlZchC6AYAAAAAAIADAOEaAACzkNlsUlFuhopyM3TUkiKjHo5E1dU3GHeWW1OHTy1dPgVCkWnvKxSOGmtqfZtRt1rMKivINM5yqyhyqLLIqcLcDFnMpmnvCwAAAAAAAJgphGsAAMwhFrNJxXkZKs7L0NHLio16OBJVZ+/A6FhJ74TQza9QeCZCt4ga2r1qaPfG1VOsZpUVOOJGS1YUOVWYky4zoRsAAAAAAADmIMI1AAD2A7Ez0jJVkp+pYw+ZELqFI2rrGdhpvGRbt1+hcHTa+wqEIqpv86i+zRNXT7FZVF6483jJgmxCNwAAAAAAAMxuhGsAAOzHLBazygsdKi906PhDx+uhcERt3f640ZJNnV61dQ8oHJmB0C0YVl2LR3Ut8aFbWopFZYWxoK2yaDR4K3QoP9suk4nQDQAAAAAAAMlHuAYAwAHIajGP7hhzSsvH68HQaOjW4VPjhPGS7b0DisxA6DYcCKu22a3aZndc3Z5qUXmhQxWFzgkjJp3Kc6URugEAAAAAAGBGEa4BAACDzWpWZbFTlcVOnahSox4MhdXS5R/d4TY6XrLDp47eAc1A5qahkbC2Nbm1rckdV09Ps46GbuPjJSuLHMpxEroBAAAAAABgehCuAQCAPbJZLZpfkqX5JVlx9UBwLHTzxo2Y7OgbUHQGQrfB4ZC2NvZra2N/XD0jzRp3llvF6IjJbEcqoRsAAAAAAAD2CeEaAADYayk2ixaUZmlBaXzoNhwIje906/CqcXTHW1ff4Iz0NTAc0uaGPm1u6IurZ9ptqix2TgjcYuMlXY7UGekLAAAAAAAAcx/hGgAASLi0FKuqylyqKnPF1YdGQmru9Kl5bJdbp0+NHV519w/NSF/+oaDere/Vu/W9cXVnRsqEXW7jO96yMgndAAAAAAAAEI9wDQAAzBh7qlXVFdmqrsiOqw8OB+MCt7Edbz2e4RnpyzsQ0Ka6Xm2qiw/dXJmpO42WrChyyJGeMiN9AQAAAAAAYPYhXAMAAEmXnmbTQZU5OqgyJ64+MBQL3Ro7fKP/9Kqpw6c+78yEbm7/iNy1I9pQ2xNXz3akjodtE4K3TLttRvoCAAAAAABA8hCuAQCAWSvDbtPieTlaPC8+dPMPBdXU4R3f7dbhU1OnV33ekRnpq983on7fiNbXxIduOc60uLPcKoscKi90KIPQDQAAAAAAYL9BuAYAAOacTLtNS+bnasn83Li6bzAwYbSk13js9s1M6NbnHVafd1j/2dYdV8/LSos7y62y2KnyQofsqbwVAwAAAAAAmGv4RAcAAOw3HOkpWrogV0sXxIduHv9I3FluY4+9A4EZ6avHM6wez7De2doVVy/Itu8wWtKh8gKH0gjdAAAAAAAAZi0+uQEAAPu9rMxUHZKZqkMW5sXV3b4RNXV6J4yWjIVvvsHgjPTV1T+krv4hvb2506iZTFJBdrqxy21sx1tZQabSUnjrBgAAAAAAkGx8QgMAAA5YLkeqXI58HVqVb9Si0WgsdOvwqXGH4G1gaPpDt2hU6uwbVGffoN56Lz50K8rJmHCmWyx4KyvIVIrNMu19AcBcsnbtWj3zzDNau3at2tvbNTg4qMzMTOXm5mrZsmU67rjjdNpppyklJSXZre7Wli1b9Le//U1vvfWWmpub5ff7lZmZKZfLpSVLlujoo4/WmWeeqYyMjL1eIxqN6vnnn9eTTz6pDRs2qL+/X+np6aqurtZHP/pRnXvuuUpPT0/gVwUAAADsH0zRaDSa7CaA2SYQCGjjxo071Q855JBZ/Q34dAkGg9qwYUNc7dBDD5XNZktSRwAw86LRqPq8wxN2uI2PmBwcDiWtL7NJKsodC93GR0yWFWTKZiV0A7B/mOz70Q0bNui2225TbW2tPvnJT+qEE05QUVGRgsGg2tvbtWrVKj355JMKBoPKz8/XzTffrFNOOWUmv5Q92r59u26//Xa9+eabOv3003XSSSeprKxMktTZ2ak333xTf/3rXzU4OCin06nrr79e55133pTXaW5u1je+8Q2tX79eJSUluuqqq7Rs2TL19fXpqaee0t/+9jcVFBTo+9//vo499thEf5kAAABzDp+RjuPzc8I1YJf4wyEef3EAwO5Fo1H1esZCt4k73bwaGgknrS+z2aTi3PGdbpWFTpUXOVSanymb1Zy0vgBgb0zm/ehvfvMbfe9739MRRxyhH/7whyosLNzlvRoaGnTFFVeosbFRJpNJK1eu1AUXXDCt/U/W888/r+uvv17l5eW6//77tWDBgl2+rqenR1/+8peNfyeXX365rrvuukmvU1dXpwsvvFA9PT1avHixfv3rX8vlcsW95oknntC3vvUtWa1W3XPPPfrIRz6y118XAADA/oDPSMfx+TnhGrBL/OEQj784AGDqotGout1DcWFbU4dPzZ0+DQeSF7pZzCaV5GeootAZN2KyJD9TVguhG4DZaU/vR//0pz9p5cqVmjdvnp544gnZ7fb3vV9jY6POOussDQ0NyWq16g9/+IOWL18+bf1Pxr/+9S9deeWVcjqdevrpp5Wfn/++r3e73TrjjDPU3d0tSfrRj36kj33sY3tcx+Px6JxzzlFra6vS09P15JNPqry8fJevvfnmm/WHP/xBqamp+uMf/6ilS5dO/QsDAADYT/AZ6Tg+P+fMNQAAgGlhMplUkJ2ugux0rTh4fPdEJBIL3Ro7vHGjJZs7/QoEpz90C0eiau70q7nTr9cmfE9gtZhUmp+p8tGz3IzQLS9DFkI3ALNYd3e37rzzTknSF77whT0Ga5JUWVmpz372s3r44YcVCoV0991367e//e10t7pbIyMjuvHGGxWJRHTOOefsMViTJJfLpSuuuEK33367JOnuu+/WKaecIqv1/b/N/9///V+1trZKki677LLdBmuSdO211+qxxx7T8PCwvvnNb+rJJ5+UxcLIYQAAAIBwDQAAYAaZzSYV5qSrMCddRy0pMurhSFRdfYNG2Da24625y6dgKDLtfYXCUTV2+NTY4ZPWtxl1q8WssoJM4yy3iiKHKoucKszNkMVsmva+AGBPnn76aQ0MDEiKhWaT9YlPfEIPP/ywJGnNmjVqa2tTSUnJdLS4R6+++qo6OjokTf1rGAvXmpqatG7dOh155JG7fX1NTY2efPJJSVJqaqouvPDC971/Tk6OPvrRj+rJJ59UbW2tHn/8cX3mM5+ZdH8AAADA/opwDQAAYBawmE0qzstQcV6Gjl5WbNTDkag6ewfUuMOZbi1dfoXCMxG6RdTQ7lVDuzeubrOOhW4TxksWOVSYQ+gGYGa9/vrrxuOamhp98IMfnNR1ixcvlsViUTgc2zX89ttv65Of/OS09LgnO34Nk5Wbm6uioiIjmHv77bffN1y7//77FYnE/u748Ic/LKfTucc1TjnlFCOQe+CBB3T22WfvcXccAAAAsL/jHTEAAMAsFjsjLVMl+Zk69pAJoVs4ovbegdHz3HzGiMnWbr9C4ek/UjcYimh7m1fb2+JDtxSbJRa6jY6VrBwdMVmQnS4zoRuAadDZ2Wk8/ulPf6qzzjpLeXl5e7wuJSVFDodDbrdbktTV1TVdLe7RxK/hz3/+s84//3xVV1dP6trc3FwjXHu/r6G3t1cvvvii8fyMM86Y1P1PPPFEWa1WhUIhtbW1ac2aNTruuOMmdS0AAACwvyJcAwAAmIMsFrPKChwqK3Bo4kecoXBE7T0DRtjWOBq8tXX7FY5Mf+gWCIZV3+pRfasnrp6aYlF5QWbsPDdjxKRT+S47oRuAfRKNjv/Z5vV69cgjj+iaa66Z1LUTD58f29GVDBO/hmAwqIceekjf+973JnXtxAPjx3bh7co//vGPuK/xAx/4wKTun5GRofnz5xs76l544QXCNQAAABzwCNcAAAD2I1aLWeWFDpUXOnT88vGzg4KhiNp6/MZYybERk209A4rMQOg2EgirtsWj2pb40M2ealFZwfgOt9iON6fyXGkymQjdAOzZIYccom3bthnPh4eHJ3VdOBw2dq1JUkFBQaJbm7RDDjlEL7/8svF8sl+DFNuRNqawsHC3r/vHP/5hPJ43b55ycnImvcbixYuNcO3ll1/WTTfdNOlrAQAAgP0R4RoAAMABwGY1q7LIqcqi+PN1gqGwWrsH1NThNUZMNrZ71dE7oBnI3DQ0ElZNs1s1ze64enqaVeWFjtFdbrHgrbLIoRwnoRuAeF//+tfl9/u1bt06lZWV6XOf+9ykrtu2bZuCwaDx/JBDDpmuFvfo4osvVktLi15//XXl5OTo8ssvn9R1Ho9Hzc3NxvP3+xrWr19vPD7ooIOm1N/ChQuNxx0dHXK73XK5XFO6BwAAALA/IVwDAAA4gNmsFs0rdmpecXzoFgiG1dLlj4VuxpluPnX0DSg6A6Hb4HBIWxv7tbWxP66eYbeNj5WcMF4y25FK6AYcoPLy8vSjH/1oyte99NJLxuN58+bFBUgzLSMjY9JjICf6xz/+YYyUdDgcOvroo3f5ut7eXvX3j/95WlJSssvX7U5+fn7c89raWq1YsWKK3QIAAAD7D8I1AAAA7CTFZtGC0iwtKM2Kqw8HQqOhmy8ueOvsG5yRvgaGgtrc0KfNDX1x9Uy7zQjaxkM3h1yZhG4AdhYKhfT4448bzy+44IIkdrP3/vznPxuPP/WpTyk1NXWXrxsb6TimuLh4SuvsGK7V1dURrgEAAOCARrgGAACASUtLsaqqzKWqMldcfXgkpOYu34Qz3WLhW1f/0Iz05R8K6r3tfXpve3zo5khPMYK2ygkjJrMyd/0BNIADw+OPP67W1lZJmtIoydlk9erVWrdunaTYrrWrrrpqt6/t6uqKe56bmzultbKzs+Oe9/X17eaVAAAAwIGBcA0AAAD7LC3VqkXl2VpUHv8B7OBw0Bgv2WiEbj71uGcmdPMNBvRufa/ere+Nq2dlpqii0GkEb2NnuzkzUmakLwDJ4/V6de+990qSLBaL7rjjDqWkzK3f+6FQSLfffrvxfOXKlcrJydnt6wcGBuKep6WlTWm9Hf/9DA7OzG5lAAAAYLYiXAMAAMC0SU+zqboiW9UVO4duE89yGxsx2esZnpG+PP6ANvp7tLGuJ67ucqTGneVWOfrPTLttRvoCMP1uv/129fTEfu9/+9vf1pFHHpnkjqbuJz/5iTHq8bLLLtMnP/nJ9339jmHY7sZH7s6O4dqOYR0AAABwoCFcAwAAwIxLT7NpcWWOFlfG77TwDwXV3OFTU6d3wohJr/q8IzPSl9s3IrdvRBtq40O3HGfahF1usdCtvNChDEI3YE557LHH9MQTT0iSbrjhBn3+859PbkN7YfXq1XrwwQclSV/84hd1/fXX7/GakZH4P0Nttqn92bXj63e8HwAAAHCgIVwDAADArJFpt+ng+Tk6eH586OYbDIzvcJswXtLtn5kPePu8w+rzDus/27rj6nlZacY5bmM73soLHUpPI3QDZpu3335bK1eulMlk0o033jgng7X6+nr913/9lyKRiC6//HJdd911k7puxzGQgUBgSuvu+Hq73T6l6wEAAID9DeEaAAAAZj1HeoqWLsjV0gW5cXWPf2TCeEmv8dg7MLUPjvdWj2dYPZ5hvbO1K66en203znGbGLrZU3n7DSTD1q1b9ZWvfEWRSETf+973dM455yS7pSnr6OjQ5ZdfLo/Ho//6r//S1VdfPelr09PT455PdefZjq/PyMiY0vUAAADA/obv7gEAADBnZWWm6pDMVB2yMC+u7vaN7DBaMha++QaDM9JXd/+QuvuHtHZLfOhWkJOuikLH6FlusRGTZYWZSkvhbTkwXerq6nTJJZfI7/frBz/4gU477bRktzRl3d3duuiii9TS0qL//u//1sUXXzyl63cMw6Yaru24c41wDQAAAAc6vosHAADAfsflSJXLka9Dq/KNWjQajYVuHT417hC8DQzNTOjW1Teorr5Bvb2506iZTFJhTroqCp0TznVzqKzQoVSbZUb6AvZX9fX1uuiii+T1enXffffp1FNPTXZLU9bd3a0LL7xQjY2NWrly5V6Ns8zLi/8BhN7e3ild39/fH/c8Pz9/N68EAAAADgyEawAAADggmEwmZTvTlO1M0/Lq+NCtzzscd5bb2IjJweHQtPcVjUodvYPq6B3Umvc6jLrZJBXmZozuchsfL1lWkCmbldAN2JPt27frwgsvlMfj0f33368Pf/jDyW5pynp7e3XRRRdp+/btuummm3T++efv1X2qqqrinnd0dOzmlbvW1RW/C3fhwoV71QcAAACwvyBcAwAAwAHNZDIpN8uu3Cy7Dj+owKhHo1H1esZCN68a22P/bO70aWgkPO19RaJSe8+A2nsG9MamCaGb2aTi3Axjl1vl6I63kvxM2azmae8LmAtaWlp08cUXy+12z9lgze1265JLLlF9ff0+BWtSbKeZy+WS2+2WJLW3t0/p+u7u7rjnCxYs2OteAAAAgP0B4RoAAACwCyaTSXkuu/Jcdh2xOD506+4fMs5xaxzd8dbc6dNIYAZCt0hUrd1+tXb7tXrj+AfkFrNJJfkZO42XLMnPlNVC6IYDR3d3ty655BL19vbq3nvvnZPB2uDgoC6//HJt3bpVK1eu3KdgbczBBx+s1atXS5K2bds2pWvr6uqMx/PmzVNmZuY+9wMAAADMZYRrAAAAwBSYTCYV5KSrICddKw4uNOqRSFRd/YOxoM0YMelVU6dfgeD0h27hSFTNnX41d/r12obxutViUkl+5uhYSed46JaXIQuhG/Yzfr9fX/rSl9TS0qK777570mes9fT0aPv27TryyCOnucM9CwaDuvbaa7VhwwZdd911kz5jze/3a926dTrxxBN3+esnn3yyEa7V19fL5/PJ4XBM6t7vvfee8fiUU06Z1DUAAADA/oxwDQAAAEgAs9mkotwMFeVm6KglRUY9Eomqs29QzZ0+NY6e5dbU4VNLp0+BUGTa+wqFo6PnyPmk9W1G3Woxq6wg0zjLrWL0bLei3AxZzKZp7wtItFAopK9+9avasmWLbr75Zn3iE5+Y9LVPPvmkXnjhBT3yyCPT2OHkrFy5UqtWrdKVV16pyy+/fNLXvfbaa7r11lu1atWqXf76Rz7yEf3v//6votGootGo3nnnHZ100kl7vK/H41FjY6PxfLKBJQAAALA/I1wDAAAAppHZbFJxXoaK8zJ01NLx0C0ciaqzb8AIvsbOdmvp8is4I6FbRA3tXjW0e+PqNutY6DZhvGSRQ4U5hG6Y3W699Va99tpruuaaa6Y8RnH16tWqqKiYps4m7+c//7kee+wxnXPOOfr6178+pWtXr16tysrK3f56cXGxjj32WL3++uuSpGeffXZS4drLL7+saDQqSVq4cKEOO+ywKfUFAAAA7I8I1wAAAIAksJhNKsnLVElepo5ZVmzUw+GIOvoGYyMlR0O3xg6vWrv9CoWj095XMBTR9javtrfFh24pVrPKCsfPcqssdqqi0KGC7HSZCd2QZI8++qgeeeQRnX322br22mundG17e7tWr16tL3/5y7t9zd///nfdf//96u7u1vHHH6/vfve7ysnJ2de247z22mu65557dMwxx+i2226b0rWDg4N69tln9ziy8f/9v/9nhGvPP/+8Vq5cqfT09Pe95rnnnjMeX3vttTKbGScLAAAAEK4BAAAAs4jFYlZpfqZK8zN17CHj9VA4ovaesZ1uXjWOjpds6/YrHJn+0C0Qiqi+1aP6Vk9cPS3FEgvdCh2qHB0tWVHoUH62XSYToRum37Zt23TrrbfqsMMO06233jqlayORiG6++WYFg0HNmzdvl69555139I1vfEORSGxH6XPPPafe3l799re/Tdh/411dXbruuutUWlqqH/3oR7Jap/at+t133y23273br2HMoYceqtNOO03PPvusBgcH9fDDD+vqq6/e7evr6ur06quvSpKWLl2qj3/841PqCwAAANhfEa4BAAAAc4DVYlZ5oUPlhQ4dv7zEqAdDEbX1+ONGSzZ1+NTWM6DIDIRuw4Gwapvdqm12x9XtqRaVFzrix0sWOpXnSiN0Q8KEQiFdf/31slqtuvfee5WSkjLpa+vr6/X9739fL7/8siTtdizkSy+9ZARrY9566y01NDRo/vz5e9/8BN/5znfk8Xj0i1/8QllZWZO+rr29XT/+8Y/16KOPStr91zDRd7/7Xa1fv15tbW365S9/qbPPPlslJSW7fO0Pf/hDRSIRpaen66677uL3LgAAADCKcA0AAACYw2xWsyqLnKoscsbVg6GwWrsHxsdLdsZ2vLX3DGgGMjcNjYS1rcmtbU3uuHp6mnU0dBvd5VYU2/GW4yR0w9Q9/fTT2rJli2w2m84+++xJXxcIBDQ4OBhX29Ourx3tGLjtrbfeekuvvvqqLBaLLrvssklfFwqF5Pf742qT+Rqys7P1y1/+UhdeeKF6enp05ZVX6ne/+91Ood4DDzygl156SSkpKbr33nu1cOHCSfcGAAAA7O8I1wAAAID9kM1q0bxip+YVx4dugWBYrd1+NY6OlxwL3jp6BxSdgdBtcDikrY392trYH1fPSLMaYVvF2NluRU5lO1IJ3bBbbrdbkhQMBo3HeyMnJ0cOh2OXv3bqqafqoYceigvTqqurpxzG7Y7HExu1Gg6H9+lrkCa3c02SFi5cqD/96U+67rrrtG7dOn3iE5/Ql7/8ZS1ZskTd3d36y1/+on/9618qLi7W3XffrRUrVuxTXwAAAMD+hnANAAAAOICk2CyaX5Kl+SXxu1RGgmG1dI7tcBsfMdnZNzgjodvAcEibG/q0uaEvrp5ptxlB23jo5pArk9ANiVNZWbnbXzviiCP0gx/8QD/60Y/U2dmpI488UitXrpTFYpnBDvcsPz9f6enpk359WVmZ/vjHP+rFF1/UE088oQcffFD9/f2y2+2qrq7W//zP/+i8886T3W6fxq4BAACAuckUjc7Et8rA3BIIBLRx48ad6occcsiUznHYXwSDQW3YsCGuduihh8pmsyWpIwAAMFOGR0Jq6fIbZ7k1ju506+ob3PPF08iRnmIEbZUTRkxmZaYmtS9MD96PAgAAINl4TzqOz8/ZuQYAAADgfaSlWlVV7lJVuSuuPjQSUvPoLrfGDq+x463HPTQjffkGA3q3vlfv1vfG1V2ZqSovjJ3jZux4K3LIkX5gfIMHAAAAAJh+hGsAAAAApsyealV1RbaqK7Lj6oPDwfjRkqPBW69neEb6cvtH5PaPaGNdT1w92xEL3SaOmKwsciiT0A0AAAAAMEWEawAAAAASJj3NpsWVOVpcmRNX9w8F1Tx6jtvEM936vCMz0le/b0T9vhFtqI0P3XKcqaoodBojJsceZ9gPvNEuAAAAAIDJIVwDAAAAMO0y7TYdPD9HB8+PD918g4HRoG10l9voY7dvZkK3Pu+I+rzd+k9Nd1w9NytNFRPOcosFbw6lpxG6AQAAAMCBjnANAAAAQNI40lO0dEGuli7Ijat7/COxM90mjpjs9MrjD8xIX72eYfV6hrVuW3zolueyG0Fb5eiIyfJCh+ypfGsFAAAAAAcKvgMEAAAAMOtkZaYqKzNVyxbmxdXdvtHQrcOrxgnBm29wZkK3HveQetxDemdLV1y9INuuiiLnaOAWGy9ZVpiptBS+5QIAAACA/Q3f6QEAAACYM1yOVLkcqTqkajx0i0ajcvtHJuxw86mx3aumTp8GhoIz0ldX/5C6+of09uZOo2YySYU56Tuc6eZQWaFDqTbLjPQFAAAAAEg8wjUAAAAAc5rJZFK2I03ZjjQtX5Rv1KPRqPq8wxPOdBs9163Tp8Hh0LT3FY1KHb2D6ugd1Jr3Ooy62SQV5maMnunmMHa8leZnKoXQDQAAAABmPcI1AAAAAPslk8mk3Cy7crPsOvygAqMejUbV6xk2znGbuONtaGT6Q7dIVGrvGVB7z4DefDc+dCvOy1BFkTMueCvNz5TNap72vgAAAAAAk0O4BgAAAOCAYjKZlOeyK89l1xGL40O3bvfQhLAtFrw1d/o0HAhPe1+RqNTaPaDW7gGt3thu1M1mk0ryMoyz3MZGTJbmZ8pqIXQDAAAAgJlGuAYAAAAAioVuBdnpKshO14qDC416JDIWunknjJj0qrnLr5GZCN0iUbV0+dXS5dfrGg/dLGaTSvIzVVHkUGVhbJdbRZFDxXkZ+13oZjKZlJeXp9TUVJlMJkWjUZnN+9fXCAAAAGDuIFwDAAAAgPdhNptUmJOuwpx0HbmkyKhHIlF19Q+qqcOnxtGz3Jo6fGrp9CkQikx7X+FIVM2dsZ11r02oWy0mleZnGmFbRaFDlcVOFeVmyGI2TXtf08FqtaqysjLZbQAAAACAJMI1AAAAANgrZrNJRbkZKsrN0FFLx0O3cCSqzr6B8fGSoyMmW7r8Cs5A6BYKR9XY4VNjhy+ubrOaVVaQGTdasqLIocKcuRu6AQAAAEAyEK4BAAAAQAJZzCaV5GWqJC9TxywrNurhcETtvQMTRkvGxku2dvsVCkenva9gKKLtbV5tb/PG1VOsZpUVOsZ3uY3ueCvITpd5loRugWBY29u8auzwaiQQVmqKRZVFTs0vcSrFZkl2ewAAAAAOMIRrAAAAADADLBazygocKitw6LgJ9VA4ovaeASNsaxwN3tq6/QpHpj90C4Qiqm/1qL7VE1dPTbGovGB0vORY+FbkVL7LPmOh27amfj3173q9tqFtl7v+bFazjj+0RGeeuEDVFdkz0hMAAAAAEK4BAAAAQBJZLWaVFzpUXujQ8ctLjHowFFFbjz9utGRTh09tPQOKzEDoNhIIq7bFo9qW+NAtLcWicmOn2/iIyXyXXSZTYkK3weGQHnpqk557o/F9XxcMRfTKOy165Z0WffyYSl1y5jKlp/FtLgAAAIDpxXcdAAAAADAL2axmVRY5VVnkjKsHQ2G1dg+oqcM7YcSkV+09A5qBzE3DgbBqmt2qaXbH1e2p1gk73MaDt9ystCmFbr2eIX3np6+rpcs/pb6ee6NRm+p7ddtVxyk3yz6lawEAAABgKgjXAAAAAGAOsVktmlfs1Lzi+NAtEAyrtduvxtHxkmPBW0fvgKIzELoNjYS0talfW5v64+oZadbYaMnRM93GxktmO1J3Ct0Gh0N7FayNaeny68afrdbdX/0gO9gAAAAATBu+2wAAAACA/UCKzaL5JVmaX5IVVx8JhtXSGQvaGtu9ozvdfOrsG5yRvgaGQ9rc0KfNDX1x9Uy7TcccUqT/+uwRRu2hpzbtdbA2prnTp4eefldf+czyfboPAAAAAOwO4RoAAAAA7MdSbRYtLHNpYZkrrj48ElJzl2/CmW6xHW9d/UMz0pd/KKiD5+Uaz7c19e/xjLXJem51gz5yVIWqK7ITcj8AAAAAmIhwDQAAAAAOQGmpVi0qz9ai8vgAamgkpObRoK3RCN186nEnNnSzWsz64GGlxvOn/l2f0Ps/vapeX7/gAwm9JwAAAABIhGsAAAAAgAnsqVZVV2TvtOtrcDhoBG1NY+e6dfrU6xneq3XmFTuVlhr7ljQQDOu1DW373PtEq9a36ZpzD1OKzZLQ+wIAAAAA4RoAAAAAYI/S02xaXJmjxZU5cXX/UFDNHT41dXrjwrc+7/uHblXlLuPx9javgqFIQvsNhiJqaPcyGhIAAABAwhGuAQAAAAD2WqbdpoPn5+jg+TuEboOB8bBtdMxkU4dP/b4RSVJhTrrx2sYO77T0NjFce219m5q7fFpU7tKi8mw5M1KmZU0AAAAA+z/CNQAAAABAwmWmp2jJ/FwtmZ8bV/cOBNTU4VWG3WbURgLhaelhJDh+3273oH7/3BbjeWFOuhG0LSp3aWFZltLTbLu6DQAAAADEIVwDAAAAAMwYZ0aKli3Mi6ulpkzPuWipE85b23HsZGffoDr7BrVqfeysN5NJKivINMK2ReUuzS/J4sw2AAAAADshXAMAAAAAJFVlkXNa7juvePy+XX2D7/vaaFRq7vSrudOvf77dLEmyWkyaV+wcD9wqslVe6JDFbJqWfgEAAADMDYRrAAAAAICkml/ilM1q3ml32b6wWc1x4Vpti2fK9wiFo6pt8ai2xaNnV8dqqSkWLSzNmhC4uVScmyGTicANAAAAOFAQrgEAAAAAkirFZtHxh5bolXdaEnbPE5aXGCMdh0dCamj3JuS+I4Gw3tvep/e29xm1DLtNi8piQdvYOW65WWkEbgAAAMB+inANAAAAAJB0Z564IKHh2hknLDAet3b79YHFBapp7lefdyRha4wZGArqPzXd+k9Nt1HLdqTGdrdNCNycGSkJXxsAAADAzCNcAwAAAAAkXXVFtj5+TKWee6Nxn+/18WPnqboi23i+sMyl71x6tCSp1zOkbU1u1TT3q6bZrdpmt/xDwX1ec0f9vhGtea9Da97rMGqFOelG0LaowqWFpVlKT7MlfG0AAAAA04twDQAAAAAwK1xy5jJtqu9VS5d/r+9RXujQJWcs3e2v52bZdewhdh17SLEkKRqNqr13QLXNbtWM/q+2xa2RQHive9idzr5BdfYNatX6NkmSySSVFTi0qNyl6nKXqspdml+SZYyzBAAAADA7Ea4BAAAAAGaF9DSrbrvqON34s9Vq7vRN+fryQoduvfJYpadN/ltdk8mkkrxMleRl6oOHl0mSwpGoWjp9qmnu17bRwK2hzaNQODrlnt5PNCo1d/rU3OnTP99uliRZLSZVFjtju9vKYyMlKwodsljMCV0bAAAAwN4jXAMAAAAAzBq5WXbd/dUP6qGnNk1pROTHj52nS85YOqVgbXcs5ljAVVns1KlHVUqSgqGwtrd5R3e3xUZKtnT6FEls3qZQOKq6Fo/qWjx6bnWslppi0YKSrNHz27JVXe5ScV6GTCZTYhcHAAAAMCmEawAAAACAWSU9zaqvnHuYPnJ0pZ5eVa9V69sUDEV2ep3NatYJy0t0xgkL4s5Ymw42q0XVFdmj68yXJA2NhFTX4jbObtvW3K+O3sGErz0SCGtzQ582N/QZtQy7TYvKXKOBm0tVZdnKc6URuAEAAAAzgHANAAAAADArVVdk6+sXfEDXnHuYGtq9amj3aiQYVqrNonnFTs0rdib1fDJ7qlXLFuZp2cI8o+YdCIye3xbb3batqV/9vpGErz0wFNR/arr1n5puo5btSFVVuStupGRWZmrC1wYAAAAOdIRrAAAAAIBZLcU2cdfY7ObMSNERiwt0xOICo9brGdK2pvHArbbZLf9QMOFr9/tG9NZ7nXrrvU6jVpCTrkXlLlWPhm4Ly7KUnmZL+NoAAADAgYRwDQAAAACAaZSbZdexh9h17CHFkqRoNKr23gHVNLmNM9zqWj0aCYQTvnZX36C6+gb12vo2SZLJJJUVZMbtbptfkpXUHYAAAADAXEO4BgAAAACY1UKhkFpbW5WSkiKz2axIJKKCggJZLHMzEDKZTCrJy1RJXqZOOqJMkhSORNXS6VNNc7+2NcdCt4Y2j0LhaELXjkal5k6/mjv9+ufbzZIki9mkymLnaNiWreoKlyoKHbJYzAldGwAAANhfEK4BAAAAAGa1aDSqnp6euFpeXt6cDdd2ZSzgqix26tSjKiVJwVBY29u8xu62mma3mjt9iiY2b1M4ElV9q0f1rR49/0ajpNgozoWlWcbutkUV2SrOzZDZbErs4gAAAMAcRLgGAAAAAMAsZLNOPGtuviRpaCSkupaxcZKx0K2jdzDhaweCYW1u6NPmhj6jlpFmVdXo7raxXW55rjSZTARuAAAAOLAQrgEAAAAAMEfYU61atjBPyxbmGTXvQEC1LaO720bPcevzDid87YHhkNbX9Gh9zfguQpcj1Qjaxna5ZWWmJnxtAAAAYDYhXAMAAAAAYA5zZqToiIMKdMRBBUat1zM0vrutKTZS0j8UTPjabt+I3nqvU2+912nUCnLStajcperR0G1hWZbS02wJXxsAAABIFsI1AAAAAAD2M7lZduVm2XXMsmJJsXPrOnoHjbPbaprdqmtxazgQTvjaXX2D6uob1Gvr2yRJJpNUVpAZt7ttfkmWUmz7z5l5AAAAOLAQrgEAAAAAsJ8zmUwqzstQcV6GPnh4mSQpHImqpdNnnN1W0+zW9javQuFIQteORqXmTr+aO/3659vNkiSL2aR5Jc64wK2i0CGLxZzQtQEAAIDpQLgGAAAAAMAByGI2qbLYqcpip049qkKSFAyF1dDuHR0nGQvdmjt9ikQTu3Y4ElVdi0d1LR49tzpWS7FZtLA0ywjbFlVkqzg3Q2azKbGLAwAAAPuIcA0AAAAAAEiSbFbL6G6ybOm4WG1oJKT6Vk9sd1tTbKRke+9AwtcOBMPa3NCnzQ19Ri3DblNVWdaEHW7ZynOlyWQicAMAAEDyEK4BAAAAAIDdsqdatXRBrpYuyDVqvsHA+DjJJrdqW9zq9QwnfO2BoaDW1/RofU2PUXM5Uo2gbWyXW1ZmasLXBgAAAHaHcA0AAAAAAEyJIz1FRxxUoCMOKjBqvZ4h1Ta7R0O3WPDmGwwmfG23b0Rvvdept97rNGoFOelaVDY2TtKlqjKX0tNsCV8bAAAAkAjXAAAAAABAAuRm2ZWbZdfRy4olSdFoVJ19g6ppcmtbc79qmt2qa3FrOBBO+NpdfYPq6hvUaxvaJEkmk1Sanzm+w63CpQUlWUqxWRK+NgAAAA48hGsAAAAAACDhTCaTinIzVJSboRMPL5UkhSNRtXT5Rs9uiwVu29u8CoUjCV07GpVauvxq6fLr5bUtkiSL2aTKYqcRuFVXuFRR6JDFYk7o2gAAANj/Ea4BAAAAAIAZYTGbVFnkVGWRU6ceVSFJCobCamj3xkZJjoZuzZ0+RaKJXTsciaq+1aP6Vo+ef6NRkpRis2hhaZaqRs9uW1TuUklepsxmU2IXBwAAwH6FcA0AAAAAACSNzWqJjW4sz5aOi9WGRkKqb/XEdrc1xc5wa+8dSPjagWBYmxv6tLmhz6hlpFm10Di/LVuLyl3Kd9llMhG4AQAAIIZwDQAAAAAAzCr2VKuWLsjV0gW5Rs03GIjtbpsQuPV5hxO+9sBwSBtqe7ShtseouTJTVVXuUvWEwC0rMzXhawMAAGBuIFwDAAAAAACzniM9RUccVKAjDiowar2eIdU0u1Xb7DaCN99gMOFru/0jentzp97e3GnUCrLtWlSebYyUrCpzKcNuS/jaAAAAmH0I1wAAAAAAwJyUm2VXbpZdxywrliRFo1F19g2qpsmtbc39qml2q67FreFAOOFrd/UPqat/SK9taDNqpfmZWlQRC9uqy7M1vzRLqTZLwtcGAABAchGuAQAAAACA/YLJZFJRboaKcjN04uGlkqRwJKqWLt/oKMlY4La9zatQOJLw9Vu7/Wrt9uuVtS2SJIvZpMoipxG4LSrPVmWRQxaLOeFrAwAAYOYQrgEAAAAAgP3WWMBVWeTUqUdVSJKCoYga2j1xIyWbOryKRBO7djgSVX2bR/VtHj3/RqMkKcVq1sKysbAtdoZbcW6GzGZTYhcHAADAtCFcAwAAAAAABxSb1axF5dlaVJ5t1IZHQqpr9Rhnt9U0u9XeM5DwtQOhiDY39GlzQ59Ry0izjgduFdlaVO5Svssuk4nADQAAYDYiXAMAAAAAAAe8tFSrli7I1dIFuUbNPxgYDdvGA7dez3DC1x4YDmlDbY821PYYNVdmqqrKXaqeELhlZaYmfG0AAABMHeEaAAAAAADALmSmp+jwgwp0+EEFRq3PO6yapljQVtPiVk2TW77BQMLXdvtH9PbmTr29udOoFWTbR3fcubSowqWqMpfS02wJXxsAAADvj3ANAAAAAABgknKcaTp6WbGOXlYsSYpGo+rsG4zb4VbX4tbQSDjha3f1D6mrf0ivbWiTJJlMUml+pqpGz2+rLs/W/NIspdosCV8bAAAA4wjXAAAAAAAA9pLJZFJRboaKcjN04mGlkqRwJKrWLl9c4Fbf6lUoHEno2tGo1NLlV0uXX6+sbZEkWcwmVRY5tahi9Ay38mxVFDlktZgTujYAAMCBjHANAAAAAAAggSxmkyqKnKoocuqUIyskScFQRI3tXuPstppmt5o6vIpEE7t2OBJVfZtH9W0ePf9GoyQpxWrWgtIs4+y2ReUuleRlymw2JXZxAACAAwThGgAAAAAAwDSzWc2qKnepqtyl00ZrwyMh1bd5YmFbU2yHW1vPQMLXDoQi2tLYry2N/UYtPc2qqrLR3W0V2VpU5lJ+tl0mE4EbAADAnhCuAQAAAAAAJEFaqlVL5udqyfxco+YfDKi2xa1to2FbTbNbvZ7hhK89OBzShtoebajtMWquzFTj/LaxkZIuR2rC1wYAAJjrCNcAAAAAAABmicz0FB1WXaDDqguMWp93WDVN/XFnuPkGgwlf2+0f0dubO/X25k6jlp9tN4K2ReUuVZW5lGG3JXxtAACAuYRwDQAAAAAAYBbLcabp6GXFOnpZsSQpGo2qs28wLmyra3FraCSc8LW7+4fU3T+k1ze0G7XS/Ewtqhjd3VaWrQVlWUq1WRK+NgAAwGxFuAYAAAAAADCHmEwmFeVmqCg3QyceVipJCkeiau3yxQVu9a1ehcKRhK/f2u1Xa7dfr6xtkSSZzSZVFjmM3W2Lyl2qLHbKajEnfG0AAIDZgHANAAAAAABgjrOYTaoocqqiyKlTjqyQJAVDETW2e42z22qa3Wrq8CoSTezakUhU29u82t7m1QtvNkqSUqxmzS/NihspWZqfKbPZlNjFAQAAkoBwDQAAAAAAYD9ks5pVVe5SVblLp43WhkdCqmv1GLvbaprdau8ZSPjagVBEWxv7tbWxX9J2SVJ6mlVVZa64wC0/2y6TicANAADMLYRrAAAAAAAAB4i0VKuWLsjV0gW5Rs0/GFBti3t8pGRTv3o8wwlfe3A4pA21PdpQ22PUsjJTRgO3bFVXxP7pcqQmfG0AAIBEIlwDAAAAAAA4gGWmp+iw6gIdVl1g1Pq9w6ppdmvb2EjJJrd8g4GEr+3xB7R2S5fWbukyavnZ9rjdbVVlLmXYbQlfGwAAYG8RrgEAAAAAACBOtjNNRy0t0lFLiyRJ0WhUnX2D47vbmvtV1+LW0Eg44Wt39w+pu39Ir29oN2ql+ZlaVBEbKVldnq35pVlKtVkSvjYAAMBkEK4BAAAAAADgfZlMJhXlZqgoN0MnHlYqSQpHomrt8sVGSjbFQrf6No+CoUjC12/t9qu1269X1rZIkixmkyqLnEbgVlXmUmWxU1aLOeFrAwAA7IhwDQAAAAAAAFNmMZtUUeRURZFTJ6+okCQFQxE1dniNs9tqmt1q6vQpEokmdO1wJKr6No/q2zx6/o1GSVKK1az5pVlxIyVL8zNlNpsSujYAAADhGgAAAAAAABLCZjWrqiy2k+y0Y+dJkoYDIdW3eoyz22qa+9XWM5DwtQOhiLY29mtrY7+k7ZKk9DSrqspccYFbfrZdJhOBGwAA2HuEawAAAAAAAJg2aSlWLZmfqyXzc42afyio2ub+CWe4udXjHkr42oPDIW2o7dGG2h6jlpWZokXl2bHQbXSsZLYjLeFrAwCA/RfhGgAAAAAAAGZUpt2mw6oLdFh1gVHr9w6rpmV8d1tNs1vegUDC1/b4A3p7c6fe3txp1PJc9tHdbS5Vl2erqtylDLst4WsDAID9A+EaAAAAAAAAki7bmaajlhTpqCVFkqRoNKqu/qFY0NYU291W2+LW0Ego4Wv3uIfU4x7S6o3tRq00P8MYJbmoPFsLyrKUarMkfG0AADD3EK4BAAAAAABg1jGZTCrMSVdhTrpOWF4qSYpEomrt9scFbvVtHgVDkYSv39o9oNbuAb3yToskyWw2qbLIMSFwc6my2CmrxZzwtQEAwOxGuAYAAAAAAIA5wWw2qbzQofJCh05eUSFJCoYiauzwxs5ua4qNk2zq9CkSiSZ07Ugkqu1tXm1v8+qFNxslSTarWQtKsmJhW0Vsh1tpfqbMZlNC1wYAALML4RoAAAAAAADmLJvVrKoyl6rKXDrt2HmSpOFASPWtntHALXaGW1vPQMLXDoYi2trUr61N/dJrsZo91aqqMldc4FaQbZfJROAGAMD+gnANAAAAAAAA+5W0FKuWzM/Vkvm5Rs0/FFRtc2xn29j/etxDCV97aCSkjXU92ljXY9ScGSnG2W2xwM2lbEdawtcGAAAzg3ANAAAAAAAA+71Mu02HVRfosOoCo9bvHVZNy/jutppmt7wDgYSv7R0IaO2WLq3d0mXU8lx24+y2ReUuVZVnK9NuS/jaAAAg8QjXAAAAAAAAcEDKdqbpqCVFOmpJkSQpGo2qq38oFrQ1xXa31ba4NTQSSvjaPe4h9biHtHpju1ErycuI2922oDRLaSl8fAcAwGzD384AAAAAAACAJJPJpMKcdBXmpOuE5aWSpEgkqtZuf1zgVt/mUTAUSfj6bT0DausZ0KvrWiRJZrNJFYWO0fPbsrWo3KV5xU5ZLeaErw0AACaPcA0AAAAAAADYDbPZpPJCh8oLHTp5RYUkKRiKqLHDq1rj/LZ+NXb4FIlEE7p2JBJVQ7tXDe1evbimSZJks5q1oCRrNHCLneNWmp8ps9mU0LUBAMDuEa4BAAAAAAAAU2CzmlVV5lJVmUsfPzZWGw6EtL3Va5zdVtPcr9bugYSvHQxFtLWpX1ub+qXXYjV7qlVVZa64wK0g2y6TicANAIDpQLgGAAAAAAAA7KO0FKsOnp+jg+fnGDX/UFB1zW5tMwI3t3rcQwlfe2gkpI11PdpY12PUsjJTRgO38TPcsh1pCV8bAIADEeEaAAAAAAAAMA0y7TYtr87X8up8o9bvG1ZNsztupKTHH0j42h5/QGu3dGntli6jlueyx3a3lbtUXZ6theUuZdptCV8bAID9HeEaAAAAAAAAMEOyHWk6akmRjlpSJEmKRqPq7h8ygraxHW5DI6GEr93jHlKPe0irN7YbtdL8DFWVje9uW1CapbQUPjIEAOD98DclAAAAAAAAkCQmk0kFOekqyEnX8ctLJEmRSFSt3f64wK2+1aNgKJLw9Vu7B9TaPaBX17VIksxmkyoKHaPnt2VrUblL84qdslrMCV8bAIC5inANAAAAAAAAmEXMZpPKCx0qL3To5BXlkqRQOKLGdq+xs62muV+NHT5FItGErh2JRNXQ7lVDu1cvrmmSJNmsZi0oyRoN3GLnuJXmZ8psNiV0bQAA5grCNQAAAAAAAGCWs1rMWljm0sIylz5+bKw2Egxre6tH28bGSTa51drtT/jawVBEW5v6tbWpX3otVrOnWlVV5lLV6Blui8pdKsxJl8lE4AYA2P8RrgEAAAAAAABzUKrNosXzcrR4Xo5RGxgKqrbFHTdSsrt/KOFrD42EtLGuRxvreoyaMyPFCNuqy2MjJbOdaQlfGwCAZCNcAwAAAAAAAPYTGXabli/K1/JF+Uat3zes2ma3tjWNB27egUDC1/YOBPTOli69s6XLqOVlpRlnty0qd6mqPFuZdlvC1wYAYCYRrgEAAAAAAAD7sWxHmo5cUqQjlxRJkqLRqLr7h+J2t9U0uzU0Ekr42j2eYfVsbNfqje1GrSQvQ4vKs0fPb3NpQWmW0lL4mBIAMHfwtxYAAAAAAABwADGZTCrISVdBTrqOX14iSYpEomrt9scFbvWtHgVDkYSv39YzoLaeAb26rkWSZDabVFHoMHa3LSrPVmWxUzarOeFrAwCQCIRrAAAAAAAAwAHObDapvNCh8kKHTl5RLkkKhSNqbPcaO9tqmvvV2OFTJBJN6NqRSFQN7V41tHv14pomSZLNatb8Emdsh9to6FZa4JDFbEro2gAA7A3CNQAAAAAAAAA7sVrMWljm0sIylz5+bKw2HAhpe6s3bpxka7c/4WsHQxFta4qdEzfGnmrRwjKXqspcqh4dK1mYky6TicANADCzCNcAAAAAAAAATEpailUHz8/RwfNzjNrAUFC1Le64kZLd/UMJX3toJKxNdb3aVNdr1BzpKRPGSbpUXZGtbGdawtcGAGAiwjUAAAAAAAAAey3DbtPyRflavijfqPX7hlVrjJOMhW4efyDha/sGA3pna5fe2dpl1PKy0rSoYnycZFV5tjLttoSvDQA4cBGuAQAAAAAAAEiobEeajlxSpCOXFEmSotGouvuH4na31ba4NTgcSvjaPZ5h9Wxs1+qN7UatJC8jdn5bRSxwW1CapbQUPhoFAOwd/gYBAAAAAAAAMK1MJpMKctJVkJOu45eXSJIikajaevzju9ua+lXf6lEgFEn4+m09A2rrGdCr61okSWazSRWFjgkjJbNVWeyUzWpO+NoAgP0P4RoAAAAAAACAGWc2m1RW4FBZgUMf/kC5JCkUjqipw2fsbqtpcquhw6tIJJrQtSORqBravWpo9+rFNU2SJJvVrPklztgOt9HQrbTAIYvZlNC1ARx4BgcHdc455+iWW27R0Ucfnex2Zq1wOKyLLrpIn/rUp/SpT30q2e28L8I1AAAAAAAAALOC1WLWgtIsLSjN0seOidVGgmFtb/Vo29g4yWa3Wrr8CV87GIpoW5Nb25rcRs2eatHCMldc4FaYky6TicANwOR4vV5df/31amhoSHYrk9bV1aW///3v+ve//62Ghgb19fXFdiAXFGjBggX6yEc+ooKCAqWlpSVszZGREd1yyy166623Zn2wJhGuAQAAAAAAAJjFUm0WLZ6Xo8Xzcoza4HBQtS2xnW1j57h19Q8lfO2hkbA21fVqU12vUXOkp0wYJ+nSoops5TgT9wEzgLktGo2qv79f7e3tevnll/Xoo4+qvb19zxfOAuFwWA8++KB+9atfaXBwUB/60Id07bXXqry8XGazWa2trXrhhRf0ne98Rw6HQ1/60pd0+OGH7/V6Ho9HnZ2dWrVqlf7yl7+ovr4+gV/N9CJcm2W2bt2qxx57TGvWrFFLS4uGhoaUkZGhgoICLV++XB/5yEf0wQ9+cFb9dMzIyIgeffRRPfvss9q6datGRkZUUlKiww47TBdccIEOPfTQZLc4J0WjUUUiEUWjiR17sDdCoZ0PFw6FQrPqv0MAAADsv6byftRkMslsNvNeFQD2c+lpNh1ala9Dq/KNmts3Mhq49Wvb6A43t38k4Wv7BgN6Z2uX3tnaZdRys9KMs9vGQrfM9JSErw1g9nriiSf0P//zP7PmM92pCgQC+vrXv64XX3xRqampeuCBB3TqqafGvebwww/XGWecoddff11f/epXddddd+n888/XJz/5yUmvs2bNGl188cXG599zFeHaLNHW1qbbb79dq1ev1gUXXKAbb7xR5eXlikQiamtr07///W/97ne/01/+8hctXbpU99xzjyorK5Pdtt577z197WtfU2Njoz784Q/rpz/9qUpLS7V161b95Cc/0bnnnqsvfOEL+ta3viWbzZbsdme1aDSqwcFBeb1e+f3+XX6AkCy7+stg+/btfGABAACAGbE370ctFovsdrscDocyMzNltfLtLwDs71yOVK04uFArDi6UFPv7o9s9NHp22+hIyRa3BocT/5lLr2dYvZ4OvbGpw6gV52XEBW4LS7OUlsrfR8D+6uSTT9YTTzxhPB8YGNAjjzwSV5vNbrvtNr344ouSpBtvvHGnYG2iFStW6Oqrr9b3v/99PfLII8rKytJJJ500qXWWLVsW9+9keHhYzz33nH71q1/tU/8zjT/NZ4H169fryiuvVG5urp555hkVFxfH/XphYaEOP/xwnXfeebrkkkv07rvv6rOf/aweffRRlZWVJalraePGjbrooos0MDCg888/XzfffLPxa0VFRTrxxBN11VVX6Xe/+51aWlr04IMPymw2J63f2Soajaqrq0sej0fhcDjZ7QAAAAD7hXA4LL/fL78/diZPWlqa8vPzlZmZmeTOAAAzxWQyqSA7XQXZ6Tr+0BJJUiQSVVuPX7XNbm0bDd3qWz0KhBK/e6K9Z0DtPQP617pWSZLZJFUUOY2dbVXlLs0rzpLNyudlwP7A6XTK6XTG1Q455BC9+OKLGhgYSFJXk7Nq1Sr96U9/kiQtWbJE55577h6vWb58uY444gitXbtWv/71r7V8+fJJrZWenq7q6uq42qGHHqpXXnlFdXV1U28+SQjXkqyvr09XXXWV3G63fv/73+8UrE1UVFSke+65R+ecc476+/v1zW9+U3/4wx9msNtxbrdbV199tQYGBlRdXa0bb7xxp9eYzWbdfffdOuWUU/TKK6/o3nvv1de//vUkdDt7RaNRtbW1yev1JruVPUrk4ZQAAADAVO3r+9Hh4WE1NzeruLhYLpcrMU0BAOYcs9mksgKHygoc+tAHyiVJoXBETR0+1TT3j+5yc6uhw6tIJLFj3SJRqaHdq4Z2r15c0yRJslrMml/iHN/hVuFSWYFDFjPTgoD9gdVqlcvlmvXh2oMPPmg8vuCCCyZ93cc+9jGtXbtWw8PD+vOf/6wTTzxxr3vIzc0lXMPk/fSnP1VfX58WL16shQsX7vH1ixcv1gknnKB//etfWrt2rdasWaOjjjpqBjqN98Mf/lBdXbG50tdff/1uR6w4nU5deOGF+vGPf6yf//znOv3007V48eKZbHXWmkvBGgAAALC/aG9vVygUUm5uLmPOAQCSYgHXgtIsLSjN0seOidVGgmFtb/Vo24TArbXbn/C1Q+FI7P7NbkkNkiR7qkULSmO726pHA7fCnHT+3gIwLerq6vT2229Liu34Pfnkkyd97eLFi2W32zU0NKR///vf8ng8ys/P3/OF+wHCtSR77rnnJEnBYHDS1xx33HH617/+JUl6+eWXZzxca25u1mOPPSZJmjdvnj74wQ++7+vPOecc/fjHP1Y0GtU999yjn/3sZzPR5qzX1dW1y2AtLS1NDodDGRkZslqts+KNUyQS0fDwcFwtLS2NMZ8AAACYEVN5PxqNRhUOhzUyMiKfz6eBgYGdDkrv7u6WxWJRdnb2tPYNAJi7Um0WLZ6Xo8XzcozawFBQda2xoC0WiPWrq38o4WsPjYT1bn2v3q3vNWqO9BRjnOSicpcWVWQrx8mUIQD77o033jAel5SUKDc3d9LXWq1WVVVVaePGjQqHw/rnP/+pz372s9PR5qxDuJZEg4OD6uzslBRLh//1r3/tMaiSpPLycuNxU1PTtPW3Ow899JARBp599tl7fH1ZWZkOOuggbd26Va+88orq6+u1YMGCae5ydotGo/J4PHE1k8mksrKyWXkGRCQSkcViiatZrVbCNQAAAMyIqb4ftdlsSktLU1ZWlqLRqLq7u9Xb2xv3mv7+fsI1AMCUZNhtOrQqX4dWje/KcPtGVNsSO7ttW7Nbtc1uuf0jCV/bNxjQO1u79M7WLqOWm5WmqjKXFlWMjpQsd8mRnpLwtQHs3zZv3mw8njdv3pSvLykp0caNGyWJcA0zY2go/idb7rzzzkmFa3a73XgcCAQS3tf7iUQieuGFF4znk52humLFCm3dulWS9OKLL+rKK6+clv7misHBQYXD4bjabA3WAAAAgLnMZDKpoKBAFovFGG0vSSMjIxoeHuZsYQDAPnE5UrXi4EKtOLhQUuwHqrvdQ6OjJGMjJWtb3BocDiV87V7PsHo9HXrz3Q6jVpybMbqzLRa4LSzNUloqHwED2L2+vj7jscPhmPL1OTnjO3zHMoADAX+yJlFOTo7y8/PV3d0tScYutj3p7+83HhcXF09Lb7uzbt06o9/09PRJn5+2ZMkS4/FLL710wIdrO46DTEtLI1gDAAAAplFOTo76+voUCo1/uOnxeAjXAAAJZTKZVJCdroLsdB1/aIkkKRKJqq3Hb5ytVtPUr/pWjwKhyB7uNnXtvQNq7x3Qv/7TKkkym6TyQkdsZ1tFbKTkvOIs2axMIwIQM3ETUGpq6pSvn/h+ur29XX6//4D4rJtwLYlMJpPuvfde3XvvvXK73brwwgsndd2mTZuMxwcddNB0tbdL69ati1vbap3cf0KLFi0yHm/ZskXhcHinsS4HEr8//gDcvfmJAAAAAACTZzKZlJWVFTce0ufzqbCwMIldAQAOBGazSWUFDpUVOPThD8SOewmFI2rq8Blnt9U0u9XY7lU4Ek3o2pGo1NjhU2OHTy+9FTtexmoxa36Jc/T8tljoVlbgkMVsSujaAOaG9PR04/Hg4OCUr99xVHtDQ4OWLVu2z33NdoRrSbZixQr97ne/m/Tro9GoMZbRarXqtNNOm67WdqmmpsZ4XFpaOunrCgoKjMeBQEBNTU2aP39+QnubK6LRaNxPy0pSRkZGkroBAAAADhwOhyMuXAuFQopGozKZ+DARADCzrBazFpRmaUFplj52TKUkaSQY1vY2j2qaxgO31m6/oonN2xQKR4xddFKDJMmeatGC0tjOturRwK0wJ52/I4EDgNPpNB673e4pXz9x9LoU+wG2AwHh2hzz8ssvq7U1tq371FNPjZtnOhNqa2uNxyUlJZO+Lj8/XyaTSdHRdwN1dXVzMlwLhUL7/KYiHA4b/x7GmM1mRSKJHwUw3eZizwAAANh/TPX9qNlsjnsvHo1GFQgEdvppWwAAksEsaWGJQwtLHPr4MbEdboPDQdW1elXb4lZti0e1zR51u4fe/0Z7YWgkrHfre/Vu/fgPoTjSbVpYlqWqMpeqyrJUVZalHCfjlHHg2nHDxO5qO5r4/jMUCikYDCa0r301b94843FNTc2k+pv4db/zzjtxvzYwMJCw3mYzwrU5JBwO67777pMU26p53XXXzXgPEw83zMrKmvR1VqtVdrvd2Fbq8XgS3ttM2Lx5c0LvNzaPdmRkZFJ/EM8mE2fxAgAAADNtb96PTvxBt+HhYUnxY/cBAJitFmZLC7Ot+tghuRoYDqutL6DW3qDaegNq7QtoYDjxPwDtGwzqP9t69J9tPUbNYbeoNNemktwUleTE/peeyg+p4MD13nvv7fE1gUDAeFxfXz/rzvydeD6a2+3WM888o/Ly8kld+9ZbbxmbgcbszWjJuYhwbQ759a9/rS1btkiSbrnllkn/B55IE1Pnqf4hkJKSYvzGOlB+gwEAAAAAAACJlJFm0aISuxaV2CXFdsV4B8Nq7RsN23oDausLaCSY4HmSknxDYW1pCWtLy7BRy860qHQ0bCvNTVFxjk0pVgI3YK6orq5WXl6eenpiQfqqVav0uc99bo/XDQ4O6ne/+13ctVIsBzgQEK7NEZs2bdIPf/hDSdINN9ygM888Myl9TAzFUlNTp3TtxDDuQNkaCgAAAAAAAEwnk8mkrAyrsjKsWlIeC9wi0aj6fCG19QbV2hdQW29A7f1BhcKJD9z6/WH1+4e0qXFotB8p32lVSW6KEboVumyyWji/DZiNzGazPvGJT+jXv/61JOn555/Xqaeeqvz8/N1eE4lE9LOf/UwlJSUqKCjQiy++aPxaRkbGtPc8GxCuzQFdXV265pprFAqFtHLlSn3+859Pdkt7ZeJ5CJxpAAAAAAAAAEwPs8mkPKdNeU6bDp2fLkkKR6Lq9gRj4yT7YjvcutxBRRKct0WjUpcnpC5PSP+pj/2gvsUsFbpssbAtN0WlOSnKc1plNhO4AbPBRz/6UW3YsEHr1q1TIBDQ3XffrW9/+9tyOp07vXZkZES/+MUv1NLSom9/+9v661//GvfrE8dM7s8I12Y5r9erK664Qt3d3fr+97+vT37yk0ntJyMjQ263W9L4GQWTNXG27FxNrw8++GDZbLZ9ukcoFNL27dvjamlpabJaZ/dvxx3PtLDb7UnqBAAAAAeiRLwfDYVCMplMcdfPnz9/1r8XBwBgugSCYTW0+1Tb4lZti0e1LR61dvsVTXDgFo5IbX1BtfUFpZrYRKu0FIsWlDi1sMylReVZqirLUmFOuvF3NTDbhEKhnc5YW7JkyR7fS04ck7hgwQIdeuih09LfvvrVr36lW2+9VY8//riam5t144036stf/rI+/OEPKycnR93d3fr3v/+thx9+WE6nU9/97nfldDo1MjISd5+srKwkfQUzi+8gZjGfz6dLL71U9fX1uv/++3XyyScnu6W4cG3H3zR7MvH16enpiWxrxlit1n0O10wm005vEsxm86zezTdx1+FEs7lnAAAA7D8S9X7UbDbv9F7cZrMRrgEADlg2m01LF6Zp6cLx8W+Dw0HVtXhU09yvbc1u1TS71dU3+D532TvDgbDea+jXew39Rs2RblNVmUuLKrK1qNylReUu5WbxA96YvSbzefHE95+J+Hx5uthsNt1xxx363Oc+p9/85jd67bXXdMstt+iWW24xfn3ZsmW6/PLLdcYZZxhB48QfgrPZbKqoqEhK/zON7yBmKY/Ho0svvVR1dXX62c9+pmOPPTbZLUmSsrOz1draKinW42QFAoG4nW45OTkJ7w0AAAAAAADAvklPs+mQqjwdUpVn1Dz+EdWMBm01zf2qaXbL7ZvaD95Phm8wqHXburVuW7dRy3GmxYK2CpcWlcdCN0d6yvvcBcC+WL58uX7wgx8oGo2qv79fHo9HNptNBQUFxi68iVPqJuYEB9JUiAPjq5xj+vv7dckll6ipqUm//OUvtWLFimS3ZFi4cKE2bdokSWpra5v0dd3d3YpO2E++cOHChPcGAAAAAAAAIPGyMlO14uBCrTi4UJIUjUbV4x42graa5n7VNrs1MBxK+Np93mG9+W6H3ny3w6gV52aoanRn26JylxaWuWRP5aNuIJFMJpNycnL2uFGmr6/PeLxo0aLpbmvW4E+cWWZsx9pYsHbEEUcku6U4VVVVxuP29vZJX9fZ2Wk8Tk9PV2lpaUL7AgBMn9bWVpWUlDD3fgYMDAzM2XNJAQAAABw4TCaT8rPtys+267hDSyRJkUhU7b0DqmnqN3a51bV6FAiGE75+e++A2nsH9O//xCZsmU1SWaFjNGyL7W6bX+KUzWpJ+NoAxg0PDxvHSEnS0UcfnbxmZhjh2izi9/t12WWXqaGhQf/3f/+nww8/PNkt7WTiYYtbt25VJBKZ1DkHNTU1xuNly5bxAS0AzCH33XefGhsb9d3vfldLlixJdjt79NBDDyklJUWf/exn59QogtbWVn3605/Weeedp0svvVQulyvZLe2koaFB8+bNm7b7BwIB3X///briiivkcDimbR0AAAAAiWc2m1San6nS/Ex96APlkqRwOKKmTp+2NY2Pk2xs9yocie7hblMTiUpNHT41dfj0j7eaJUlWi1nzSpxaVO5S9WjoVlbokMXM55JAorS0tBiPLRaLTj755CR2M7PmzidO+7lAIKCrr75aNTU1+sUvfjGpYC0YDOr//b//p7vuukt2+8wc7LlixQq5XC653W75/X7V1taqurp6j9e9++67xuNTTz11OlsEACTY5s2btW3bNn3mM5/R5z73OX3ta1+b1cHH4YcfrvPPP1+///3vdfPNN+vII49MdkuTUlpaqmuvvVa33HKLfv/73+vLX/6yLr744lkVEF5zzTUqLCzUl770pWk5D/aee+7R//3f/+npp5/WnXfeqaOOOirhawAAAACYORaLWfNLsjS/JEsfO6ZSkhQIhrW9zRN3hltLl1/RxOZtCoUjqm12q7bZrWdHa6kpFi0szTJ2ty2qcKk4N4ONAMBeqqurMx4ffPDBysrKSmI3M2v2fFpzAItGo/rWt76ltWvX6ic/+cmkP0javHmzVq9ePWPBmiRZrVadeuqpevTRRyVJr7/++qTCtbfffltSbMs44RoAzB0ej0e1tbWSpHA4rO7u7kntWE6mww47TGeddZaeeOIJffGLX9QXvvAF3XDDDbLZbMlubY8+//nP680339Tzzz+vu+66Sy+88IIeeOAB5efnJ7s1SZLdbteqVau0atWqaV2nra1NV155pZ588kmVl5dP61oAAAAAZlaKzaKDKnN0UOX4OU6Dw0HVtXhU09yvbaOhW1ffYMLXHgmE9d72Pr23ffyMqEy7bcL5bdmqrnApN2vmPm8F5rINGzYYjw+0z/0J12aBBx54QM8884zuuOMOnXTSSZO+7rnnnlNFRcU0drZrF198sR5//HGFw2H97W9/08UXX/y+r6+pqTES7NNOO43z1gBgDlmzZo0ikYik2J/hP/zhD2d9uCZJX/3qV/XMM88oGAzqt7/9rYLBoG6++eZktzUpN954o15//XX5fD6tX79eX/jCF/TXv/5VmZmZe3W/aDQqj8eTkDGTaWlpkqSCggI9/PDD+3y/Hf3+97/X73//e0nSz3/+c4I1AAAA4ACRnmbTIVV5OqQqz6h5/CNxu9tqmt1y+0YSvrZ/KKj/bOvWf7Z1G7UcZ+r47rbybC2qcMmRnpLwtYHZJBgM6sknn9TAwIDOOOMM5eTkvO/r/X6/Nm3aJEmaN2/enJkclCiEa0n26quv6sc//rG+/OUv65xzzpn0da2trXrkkUd04okn7vLX29radNNNN+mtt95SWVmZ/vu/TILB/AABAABJREFU/1vHHXdcQnpetGiRzjrrLD322GN67733tHbtWn3gAx/Y7ev/+te/SorNXL322msT0gMAYGa8+uqrkqSDDjpId95555wI1qTYiMXTTjtNTz75pKTY30X/8z//o9TU1EnfIxQKJWUkY35+vj73uc/p5z//uaTYOWdr166d0g/gjIlGo1q5cqXWrFmj3/zmNyosLNyn3sb+fdhsNi1cuHCf7rUr2dnZxuO5cL4fAAAAgOmTlZmqFQcXasXBse9jotGoetzDqmnuV22LWzVNbtW0uDUwFEz42n3eEb35bofefLfDqBXnZhijJBeVZ2thaZbSUvl4HTPj73//u+6//351d3fr+OOP13e/+909hl9TddNNNxkT615++WU99NBD7/v6l156ScFg7Pffueeee8CNV+V3fxJ1d3frhhtu0DHHHKOvfvWrk75u3bp1uuGGGzQwMLDbnWs33HCD1qxZI0natm2brr76aj377LMqLi5OSO/XX3+91qxZo5aWFt1xxx3685//vMvfPJ2dnfrjH/8oSbr22mu1YMGChKwPAJh+4XBYL730kmw2m+66664pBVOzwac//WkjXLNYLLJYLJO+1ufz6Utf+pLOOussXXDBBdPV4m6df/75RrhWWFi4Vz/9NRas/fnPf5YkXXjhhfscsE3l3yEAAAAAJJLJZFJ+tl352XYdd2iJJCkSiaqjd2B0lGS/aprcqmv1KBAMJ3z99t4BtfcO6F//aZUkmU1SeaFjdKRkbJfb/BKnbFa+b0K86IQDBaN7cbjgO++8o2984xvGZKHnnntOvb29+u1vf5vQQOvZZ581Hr/xxhsaHh42JtjsqKWlRU899ZQk6ZhjjtHhhx++z+vv67+nmUa4lkT333+/+vv7VVtbq9NPP31S13i9XvX29hrPdxeujW3HHDM0NKSNGzcmLFzLycnRgw8+qM9//vPasGGD7rjjDv33f/933GsCgYC+9rWvaXh4WB/96Ed11VVXJWRtAMDMWLNmjfr7+/WVr3xFBx100JSuDQaDe3XG2T//+U95vV6dffbZU752RytWrFBGRoYGBgb06U9/etK70Hw+ny677DKtX79e69evVzQa1ec///n3vWb79u3Gm9xEyc/Pl9vt1nXXXaf29vYpX//www8bwZoU2wG3rwHb2Jv2YDAYd2hxovT39xuP58IbaQAAAADJZTabVJKfqZL8TH3oiDJJUjgcUVOnL26kZEObV+FIYr/HiESlxg6fGjt8+sdbzZIkq8WseSVOLSp3qXo0dCsrdMhiPrB29GBcIBBQV1eX8by5uVnHHHPMlO7x0ksv7fSZw1tvvaWGhgbNnz8/IX1KUnp6ugYGBiRJkUhEvb29uzziKRAI6L//+781NDSk8vJyfelLX0rI+i0tLcbj5ubmhNxzOhGuJVFPT4+k2A627u7uPbx613YXri1btszYuSbFxjctXrx4r9bYnerqav3lL3/Rtddeq4cfflhtbW267LLLVFRUpM2bN+u+++7T5s2bddFFF+mGG2444LaFAsBMePTRR+Vyud730NhoNKpvfetbOu200/ShD33IqD/zzDM64YQTlJWVtcvrHn/8cc2bN2+vfjji5ptvltls1o033jilkG1oaEg33HCDnnvuOd188837tMvKarXq4osvVnt7u775zW9O6pqJwZoU+3d36623StL7BmyrV6/WLbfcMi2B0PXXX5+wezU0NOiLX/yifvvb3+7Vv9uxsaBdXV2T/sGgvUW4BgAAAGBvWCxmzS/J0vySLH306EpJUiAY1vY2j2qb3aO73Nxq6fIp0d92hMIR1Ta7Vdvs1tgeoLQUixaWuUbPb3Opqtyl4twMPis9QDzxxBMKhULG8z/96U86++yz9+oHkneU6B/yPf/883X//fcbz5uamnYK1/r6+nTNNdfoP//5jyorK3XDDTcoPT19n9d+7bXX4n6w+Mknn9Sll14qp9O5z/eeLoRrc9zuwrU777zTOHOtsLBQ3/jGN3b72n0xb948/fWvf9Vzzz2nxx9/XF/96lfl8XhUVFSkww8/XLfffruWLl2a8HUBADH9/f369re/rY997GO69NJLdzm276WXXtITTzyhv/3tb7r66qt1zTXXyGw2a9WqVbrzzjv1ve99T8cff3zcNX6/Xy+88IIeeOABpaRM7dDmNWvW6NFHH1U0GlVdXZ3uv//+Sc8BH3tz+fLLL+vll1+e0rrv57HHHtvra6PRqG655RZJuw/YLrjgAjkcjv/P3l2HRZm1YQC/h24BBUTFQhC7c11bv7W7FQNFxVi7xW5FFDtWRVRcXezORV27sDsoAemegZnvD3ZmQQaYGYZQ7991ee3wvuc950zAwtzznIOIiAhUqVIFJUqUgImJCQwNc/6D6fbt23B0dAQA/P7773BxcZHbbtOmTVi3bh0AwNPTEw0aNFD1LqlMGniVLFkSly9fVnv/Hh4e2LBhAwD1/5FAREREREQ/Lx1tTVQsY46KZczR4d9jCUkivAuMTtu7zT8Sb/yjEBKRoPaxk4SpePY+HM/e/7camZG+9r/LSaZVt9mXNkXRIvpqH5vyV0xMDL58+QKxWIzIyEhcv34dnp6eGdo8efIEvXv3xsCBA1GuXDkYGRlBW1s72wq01q1bY9euXRn+Tra3t0fZsmXVOv/Ro0cjKioKXl5ekEgkcHNzw++//w4zMzN8+fIFd+/exZ9//gmhUIiBAweiVatWKm0hkpCQgICAAEgkEsTExODevXvYuXNnhjaBgYHo0aMHhgwZAnt7e9kHw+3t7dVyX9WB4VoB2rRpU571XaJECdleLXlNR0cHnTt3RufOnfNlPCIi+o/0l5hz587h8uXLcoOc1NS0teYlEgm8vb3RvXt3lCpVCtra2ggJCcGwYcOy7D+7c4q4d+8eVqxYgRUrVijUPv0nt7p27QpnZ+dcja9OOYVknTp1yqeZFJz8rCaTvm6JiIiIiIjygoGeNqrZFkM122KyY9FxyXgb8O9ykv+GbpGxyWofOy5RhEevw/Do9X+rmZmb6Mr2brOzMUMFG1OYGCr3YVcqWBcvXsy0dZI8z58/x6xZs2Rf5/QB1tq1a2PNmjVYv349QkJCUK9ePbi6uqp9X3RNTU3MmTMHPXv2xJ9//ok7d+5g7NixEIlEMDY2RoUKFTBs2DB069YNFhYWePLkiUrjPHnyRPYh4+x8/vxZ9mFnqVevXqk0Zl5guEZERPQdSx9G7d69G3Xr1s3UZu3atdiyZQsA4I8//kCpUmnr0Esr0ooVK5bpk1S5ERAQIAvF2rRpI1tWURHp74+pqSlsbW3VNi/KvfysJhOJRPk2FhEREREREQAUMdJFHQcr1HFIW0ZfIpEgPDpJVtn25nMU3gREIT5R/X+vRMQk4/azL7j97IvsWPGiBukCN1PYljKFvi7f0i+sunfvju7du+dJ3+3bt8/z7RmkHBwc4Orqmm0boVCocv8NGjQoVCGZqvidSERE9B3T0lLuf+XplxmQfsJJU1Mzz0Ksli1bKrWsZPpw7Udbf/7Vq1fw9PTEggULlH7eCgtp4CUSifDu3Tu19x8ZGZlpLCIiIiIiooIiEAhQzFQfxUz10ahaCQBpgVvw1/i0sM0/rbrtXWA0koXqX33jS3gCvoQn4NqjQACAhgAoZWUsq26zszFFuRIm0NZSbwUTEeXs+3xnh4iIiAAgVxvgFsaA50cO11avXg1fX1+EhoZi3bp1atnw19fXF9euXcOIESNgaWmphllmT7pUY2hoaJ5/Yi4pKSlP+yciIiIiIlKFQCBACQsjlLAwQrPaaSvDpKaK4R8ahzefI/H638DtY1AMUsXqXVpfLAE+f4nF5y+xuHTXHwCgpSlAWWuT/yrcSpvBxsoYmho/1t/URIVN4XtXjYiIiBSWm4BM3Wtzq4OGhkZBTyFPXLx4Eb6+vgDSArFBgwZh27ZtKFq0aK76bdiwIa5cuYI2bdqgb9++cHZ2znWf2UlOTttrIKf14FXl4eGBDRs2QFtbO1/3dyMiIiIiIsoNTU0NlLU2QVlrE7RpUAYAIBSl4kNQdIYKt4DQOKj7T52UVAneBkTjbUA0ztxMO6arownbkkXSBW6msC5q+MN9iJWoIDFcIyIi+o7lJowq7OGaKr/037x5EyEhIejatatK48fFxWH69OmYNWsWSpYsqVIf34qPj8fSpUtlXxsYGKBKlSqIiYnJdRCmo6ODefPmoU6dOpg7dy7+/PNPDBw4EMOHD0eRIkVyO/VMpOGaubm52vsG0vb/Gzt2LPr06ZNlJd7hw4fRvn17tVT+ERERERER5RUdbU1ULGOOimX++/spIUmEd4HRaXu3/buPW0hEgtrHTham4vmHCDz/ECE7ZqSvjQr/7t1mZ2MK+9JmKFpEX+1jE/0sGK4RERF9x3ITrqmjSkwsFqu12ix9X9/2m5CQkGOgYmZmhtGjR6NatWoq7SP35MkTXLx4ETdu3MCoUaMwbNgwpfaMk2fFihUIDExbH9/U1BR79uyBg4NDrvr8VseOHWFvb4/Ro0dj27ZtOHjwIEaMGAFHR0fo6uqqbZxatWph4sSJaN68udr6TK9fv35ZnpNIJFiyZAn27t2Lc+fOYfPmzYVyaVMiIiIiIqKsGOhpo5ptMVSzLSY7Fh2XjLcB/1a3/Ru6RcYmq33suEQRHr0Ow6PXYbJj5ia6qFDKDHalTWX7uJkY5u5vYKKfBd+RICIi+o7lJtjKqjLs5s2bEAqFaNasWbbX37p1Cx4eHvDw8FBbJVNW4ZpIJELv3r2xd+9emJmZZXm9g4MDatSogYkTJ+Lw4cNKB2NPnjwBACQmJmLt2rU4duwY3N3dUbFiRSXvSZq///4bBw8eBAAYGxtj586dag/WpOzt7XH48GGMGzcOd+/exerVq3HgwAFMmTJFof3R3r9/n+NSjIMHDwYAfPjwQS1zVsamTZtw8uRJAGlLa86aNQsrVqzgsiZERERERPRdK2KkizoOVqjjYAUg7YOF4dFJssq2N5+j8CYgCvGJIrWPHRGTjDvPv+DO8y+yY1bmBrKgza60KWxLFoGBnur7vRP9qBiuERERfcfyYlnIuLg4jB07Fj179sSUKVPkVoslJSVhzpw58Pf3R8+ePbFlyxbY29urPBeprMI1bW1t/PLLL5g1axY2b96cbR+DBw/G6NGj4ebmhhkzZig1/tOnTzN8XbRoUZQvX16pPqS+fv2KmTNnAkhbCnL79u2oWrWqSn0pyszMDH/88QdmzpyJkydPIjAwUBY0Lly4EKVKlcry2jt37mD+/PnfzV5nx44dQ9GiRTF9+vSCngoREREREZHaCAQCFDPVRzFTfTSqVgJAWuAW/DUer//du+3N5yi8C4yGUJSq9vFDIhIQEpGA64+D/p0PUMrSOG0pSRtTVLAxRbkSRaCjXfi2miDKTwzXiIiIflJZVfzo6ekBSNvb6vDhwzn2ExgYiAULFsDLyyvXVUTpr/82/Bs4cCDatm0Lb29v9O3bN8s+WrRogdKlS2PPnj1o2bIl6tevr/D40so1IG0/s2XLlkFbW/lP6KWkpGDSpEkIDw+HiYkJtm3bhlq1aindjyp0dHSwevVqmJiYYP/+/QCAGzduoFu3btiyZQvq1Kkj97q+ffvCwsICMTExqFy5MqysrFCkSBFWhhERERERERUwgUCAEhZGKGFhhOa10z40mZoqhn9oHN58/rfCzT8SH4NjkJKq3g9MSiSAf0gs/ENicfmePwBAS1OAMtYmadVt/+7fZmNpBE1N9W0bQVTYMVwjIiL6juUm+Miq6i39UoozZ85E69atM7URCoVo164dAKB27drYunWrWkIYkei/ZS6+nZ+NjQ1atWqF5cuXo379+llWlAkEAnTv3h3u7u6YMWMGTpw4AUNDwxzHDgsLQ1BQkOzr/v37w8bGRqX7sWTJEty+fRvm5ubYuXMnKleurFI/qhIIBJg3bx40NDTg5eUFAIiJicGkSZNw5syZLPeua9WqVZZ9+vv7w8rKKtd70OUkKSkJQUFBKlcMEhERERER/Qw0NTVQ1toEZa1N0KZBGQCAUJSKj8ExePM58t8qtygEhMZC3QuUpKRK8C4gGu8ConH2ZtoxXR1N2JYsIgvc7EqbwrqoIT+wST8shmtERETfsdwsC5kVXV1d2W0zMzO5SwkmJ/+3uXL9+vVhZGSklrGTkpJkt+UtWzlw4EBcuHAB06dPx4EDB6ClJf9XmW7dumH9+vUIDAzE2rVrMWfOnBzHvnXrluy2jo4Ohg8frsI9AA4cOID9+/fDysoKu3btgq2trUr9qMOcOXPw9etXnD17FgDw5csXnD9/Hl27dlW6r7Nnz+LAgQNwcXFB165ds3zsc2vmzJm4dOkSJk2ahMGDB/MPMSIiIiIiIgXpaGvCvrQZ7EubocO/xxKSRHgXGJ22d5t/JN4GROFLeILax04WpuL5hwg8/xAhO2akr40KNqayPdzsS5uiaBF9tY+dXwQCAYoVKwZdXV0IBAJIJJI8eV+Gvg8M14iIiL5judkfK6vQoiB/MUxMTJTdlheuNWjQAGXKlIGfnx+2bt2KMWPGyO2nePHi+OWXX3Dt2jXs27cPnTp1Qo0aNbId++bNm7LbXbt2hYWFhdLzv337NpYsWQJ7e3ts374dxYsXV7oPVYWEhMDKyirDMYFAgOXLl+P9+/d4/fo1gLQKNlXo6OggMDAQs2fPxuzZs3M935wsW7YMT548wZo1a/J8LCIiIiIioh+VgZ42qtkWQzXbYrJjMfFCvJXu3/bvfyNikrPpRTVxiSI8eh2GR6/DZMfMTXT/q26zMUMFG1OYGObtCinqoqWlhTJlyhT0NKiQYLhGRET0HcuLcE1eqJVf0leuyauMEggE6NmzJ9asWYPNmzejVatWcHBwkNtXu3btcO3aNYjFYixcuBCHDh3KNjhMX7nm6Oio9Nz9/PwwduxY1K1bFx4eHjA2Nla6D1XdvXsXw4cPx4wZM9CvX78M5/T19bFx40b0798f4eHh+PXXX1UaI/1ykCtWrEC1atVyvObcuXNYt24dAGDnzp2wtrbO8Zrhw4cjKCgIdnZ2mDFjhkpzJSIiIiIioqyZGOqgtoMlajtYyo6FRyfi9ef/Are3/lGISxRl04tqImKScfvZF9x+9kV2zMrcQBa22ZU2hW3JIjDQU37/c6L8xHCNiIjoO5abcC0ryoZr6pxD+so1fX35S0V0794d69atg0gkwpw5c/Dnn3/KDc1atGgBTU1NpKam4unTpzh16hQ6deokt09/f38EBgYCSFvm0s7OTql5+/n5YdiwYWjbti0WLFgAbe20PwKCg4ORkJD9chvBwcGy25GRkXj37p3cdpGRkRmukbYLCwvDuHHjkJSUhPnz5yM+Pj7TkpalS5fG4cOH8erVK5QrV06p+yaVPlyztrZWaLnL9NV/NjY2Cn3CTxqqVq1aVaXqQSIiIiIiIlJe0SL6aFRNH42qpX0oUiKRIDg8/t/lJNNCt3eB0UgWpqp97JCIBIREJOD647R90AUCoJSlMexsTGFvYwq70mYoV8IE2loF92FgIG1Puw9BMfj0JQbJwlTo6miiTHETlCthAh3tgp0b5T+Ga0RERJQr6gzX0leuGRgYyG1TrFgxNGrUCNeuXcOTJ0+wf/9+DBw4MFM7c3Nz1K5dG3fv3gUAbN26NctwLX3V2reVXznx8/ODs7MzJk6ciAEDBmQ4FxYWhmHDhiE2Nlahvjw9PeHp6Zlju+nTp2d5btWqVRAIBHBycspwvHjx4rlapjJ9uEZEREREREQ/NoFAgBLFjFCimBGa1U7biz01VQz/0Di89Y/Ea/+00O1jUDRSUtX7wV+JBPAPiYV/SCwu3/MHAGhpClDW2gQVZEtKmqK0lTE0NfN+a4vXnyNx4tp73PALgihFnOm8tpYGfqleAp1+LQ/70mZ5Ph8qHBiuERERfcfE4sy/1GVHkSAsq+Ui1TWH7ERHR8tuGxkZZdlOuuQjAKxfvx6dO3eGiYlJpnb169eXhWtv3rzBkydP5C5n6OvrCyCt0qpNmzZKzXnz5s3YsGED6tatm+lc9erVceDAAYSHh8PBwQGmpqaycxcuXMCUKVNw9OhRlavJkpKS0L9/fzx79gwAYGlpiZEjR6JHjx4q9ZcdaTVefsmLqkwiIiIiIiJSnaamBspam6CstQla109bmUSUklbN9SbdHm7+IbFQ9590KakSvA2IxtuAaJz9d8t0XR1NlC9RBHal05aUtLcxhXUxQ6Xf18hKQlIKdp14irO3PmXbTpQixtUHAbj6IAC/NSyDoZ2qwkCP0cuPjs8wERHRd0zZYCt9+6x+2SzIcO3Ll//WXLe0tMyyXZs2bTBv3jyIRCJER0fj4MGDGDFiRKZ2NWrUyPD17du3M4VrQqEQ169fBwD07dtX6RBp8+bN2Z63s7OTu8xkmzZtULVqVcyaNQv79u3Ldj84eSQSCaZPny4L1kxMTLB7926FlmtURfrKNVX2pGvbtq1S7dX5uiIiIiIiIqK8oa2lCfvSZv9WbKV9cDQxOQXvAqTLSaaFbl/Cs98yQRXJwlS8+BiBFx8jZMcM9bVhV8r038AtLXQrWkRP6fc6wqMTMWfLPwgIjVPqurO3PuHp+3AsHtUYRYvI3+6CfgwM14iIiL5jygYQKSkpsttZVQblps/cSh+uWVtbZ9nOxMQEtWrVwp07dwCkVYHJC9eqV6+e4evQ0NBMbW7cuIGEhARoa2ujb9++qk5dJdOnT0fv3r2xe/duDBs2TKlrN27ciLNnzwJIqypbv359ngVrQMa9+FasWCG3AvBb586dw7p16wAAO3fuzPY5lRo+fDiCgoIYrhEREREREX2n9HW1UNW2GKraFpMdi4kX4m266rY3/pGIiElW+9jxiSI8ehOGR2/CZMfMjHVhZ2MmC9wqlDJFESPdLPtISEpRKViTCgiNw9ytN7F6fFNWsP3A+MwSERF9x5RdOk+dQZiUOkOQ4OBgAICenh6KFi2abduGDRvKwjU/Pz9ERUVlWHYRAMzMzGBqaoqoqCgAyHQeSAuAAKB9+/YoVqxYpvN5qXr16ujevTvc3NxQp06dTJV2WTl69Cg8PDwApFUaLlq0CI0aNcrLqUIoFMpuW1tbKxTkWVhYyG7b2NigTJkyOV6jpZX26ynDNSIiIiIioh+HiaEOajtYorbDf6vUhEcn4vXn/wK3t/5RiEsUqX3syNhk3Hn+BXee//eBXitzA1SwMYW9jSmqVSgGO5v/9krbdeKpysGalH9ILHadfIYxPRX7O5++PwzXiIiIvmPpw7IbN24gMDAwU5s3b97IbqcPSLKSmpoqux0WFoZ3795laiMSieTezi1p5VqFChVybNugQQPZbYlEgs+fP8sNzxwcHHDr1i0AyLQvmlAoxKVLlwCottShOkyfPh2+vr4YP348jhw5AnNz82zb//PPP5gzZ47s61mzZqFbt255PU2FXjvqlBdBMBERERERERUeRYvoo1E1fTSqlrbKiUQiQXB4PN58/m85yXeB0UgWpubQk/JCIhIQEpGAG4+DMK53TVm49vpzZI57rCnq7M2PaFO/9L9LZtKPhuEaERHRdyx9AHHq1Cno62dez/vr16+y28nJ/y25kFXVW/pwbdWqVVi1alW2c1BXuCYUChERkbZOeuXKlXNs7+DgAIFAILsfSUlJctu1bdsWt27dQqNGjVCvXr0M565du4aYmBjUrl0bVatWzeU9UE2RIkXg6uqKcePGYfz48fjjjz8y7G+W3rNnzzB27FjZYz5u3Lh8CwXVGaIWxvGIiIiIiIioYAkEApQoZoQSxYzQrHYpAEBqqhj+oXF48zkSb/7dx+1jUDRSUpVbyScrWpoaaFqzpOzrE9feq6VfqZPX32NS/zpq7ZMKB4ZrRERE37H04drSpUszVWYBwNq1a7FlyxYAioVr6ftcuXIlunTpkqlNcnKybD8zdVU0ffnyRTanSpUq5djeyMgI5cqVw/v3ab/4li5dWm67Pn36wMrKCs2aNcu0gfGpU6cAFFzVmlTbtm3RvXt3+Pj4YMqUKXB3d4eGhkaGNm/evMGwYcMQHx8PAHBxccHYsWPzbY7pn+fg4GC5FY3fCgv7b417f39/harRpG3Sv1aJiIiIiIjo56SpqYGy1iYoa22CNg3SthoQpaTiQ1CMrLrtjX8U/ENioeTOGQCAstYm0NNNi0mEolTc8AtS5/Rx/XEQxvaqCR1tzZwb03eF4RoREdF3TJml87S0tDKFS/IoG2qoKwR59eqV7Hb9+vUVuubXX3/F+/fvUbNmTRQvXlxuGy0tLbRu3TrT8bi4OFy6dAnW1tZo06aNapNWI1dXVzx58gTnzp3D/PnzsWDBAtnz9eHDBwwdOlS2d9zvv/8OFxeXfJ1f+nBt+vTpSl/v5OSkVPvExESlxyAiIiIiIqIfn7aWJuxLm/273GI5AEBCkgjvA6P/DdzSQrcv4Qk59lXBxlR2+0NQDEQp6t3/W5QixsfgGC4N+QNiuEZERPQdU2TpPG1tbXTv3h2jR4/OUN0lFsv/hVEaalhaWmZZDQYAJUqUQL9+/dCrVy8lZy3f06dPZeMqsucaAAwaNAjv3r3D/PnzlR7vwoULSEpKwsCBA6GlVfC/Eunr62PdunXo3bs3Dh48CJFIhMWLF+Pt27cYNmyYbHnPqVOnYvjw4fk+v/SvNU9Pzwx73mXl0KFDsv3hzp8/jzJlyuR4TZs2bZCamooOHTqoPlkiIiIiIiL6qRjoaaOqbTFUtS0mOxYTL8TbdNVtb/wjERGT8QPCVuYGstufvsTkydwYrv2YCv6dJCIiIlKZtJpIW1sbRkZGctuMGjVKbniU1bKQZmZmcHNzQ9u2baGtrS23ja6uLi5evAhNTfUta/Ds2TMAQJMmTRS+xsbGBjt37lRpvCNHjsDAwAC9e/dW6fq8YGtrCw8PDzg7O8PHxwehoaF4+vQpoqKioKWlhUWLFqF79+4FMjddXV106dIFbdu2Ra1atfJsnNWrV6NatWrQ0NBAXFxclq9rIiIiIiIiouyYGOqgtoMlajtYyo6FRyf+V932ORL6uv+9X5IsTJXXTa4li/KmXypYDNeIiIi+YxoaGujfvz9GjhyZ7bKI8mRVuVarVi2FwhN1BmspKSl4/PgxAKB9+/Zq6zcrQUFBuHPnDvr37w8TE5M8H08ZjRs3xpIlSzBt2jRcv34dQFpVm7u7O5o3b15g8+rfvz/69++f5+PUqFEDYrEY69evx4EDB+Dp6Qk7O7s8H5eIiIiIiIh+fEWL6KNoEX00rGoNIOMHj3V18mZfNF3ut/ZDYrhGRET0HXNyclJoHzV5sqpcKwh3795FTEwMLCws0Lhx4zwf78iRIwDSlpUsbCIiInD+/PkMx8zNzQukgis8PDzLEFYRcXFxstuRkZEwMDDIpnWa5ORkLFiwAL6+vgCAoUOHYv/+/dkuUUpERERERESkivTvqZQpnjcfvi1rXbg+1EvqwXCNiIjoO6ZqsAZkXblWEK5cuQIA6Ny5s1or4uSRSCQ4cuQImjdvjnLlymXZTigU4vTp0+jatWuezie98+fPY+HChQgLCwOQtq9dSEgIAgMDMXDgQPTt2xfjx4+Hubl5vs1nwYIFagli+/Tpo9J1YWFhGDJkCPbt2wdra+tcz4OIiIiIiIhInnIlTKCtpQFRivreL9HW0mC49oNiuEZERPSTSk3NmzW/ExMTlWovkUhw6dIl6OjoYPDgwXkyp/Tu3LkDf39/LF68OMs2IpEI48ePx5UrVxASEoKRI0fm6Zw+ffqExYsXy6q19PT0MGrUKDg5OeHhw4eYPHkywsLCcODAARw/fhzDhg3DwIEDYWpqmqfz6tevH/T19fHx40dUrVoVpUqVgrGxMYyMjBQKdo8dOyZ7nI8cOYJSpUqpPBddXV2VryUiIiIiIiLKiY62Jn6pXgJXHwSorc8mNUpAh8tC/pAYrhEREf2k8ipc++eff5Rqf+vWLQQEBKBPnz6wsrLKkzmld/jwYVSqVAkNGzaUe14sFmPatGmyajo3Nzfo6upiyJAhap9LaGgoNm3ahMOHD0MkEkFTUxNdunTBuHHjUKJECQBAgwYNcOLECSxbtgzHjh1DfHw8PDw8sGPHDnTp0gW9e/dGlSpV1D43qdxU7unp6cluGxoaFrr97YiIiIiIiIjS6/RrebWGax2blFdbX1S4MFwjIiL6SeUmXHN1dYWhoSEMDAygp6cHHR0daGho4MOHDzh48KCsnSLVTd7e3tDV1c1QHRYcHIyEhASV55cVoVCI8+fPY8SIEXj37p3cNjt27MDp06czHFu2bBl0dHTQv39/tczD398fu3btwl9//YWkpCRoa2ujW7duGDlypNylKs3MzLBy5Up069YNy5cvx8uXL5GYmAhvb294e3ujfPny6NChA5o1a4aqVavmarnQwuzQoUOIjIyEs7NzQU+FiIiIiIiIfkD2pc3wW8MyOHvrU677+q1RWdiXNlPDrKgwYrhGRET0k0pJSVH52t9++w0PHz7EtWvX8OjRoyz35LKxscm2n69fv+LSpUsYOXIkSpYsKTseFhYGJycnxMTEqDzH7Hh4eMDDw0OpaxYuXAhdXV306NFDpTElEglu3LiBgwcP4tKlS0hNTYWFhQUGDx6MAQMGKFS116hRIxw5cgTHjx/Hli1b8OHDBwDA+/fvZffJ3Nwc9erVQ/Xq1VGjRg3Y29ujSJEiKs25MPH09MTSpUsBAOXKlUObNm0KeEZERERERET0IxraqSqevg9HQGicyn3YWBljaMe8W2WGCh7DNSIiop+USCRS+drGjRujcePGGDNmDPz9/bF9+3b8+eefGUK24sWLo2bNmtn24+npCUtLy0yVSNWrV8fu3btx/fp1VKpUCeXKlYOJiQmMjIygqfl9rVX+/v17nD59GkeOHEFAQAB0dHTQokULdOvWDc2bN4eWlnK/jmloaKBr167o3LkzLl68CE9PT9y9e1d2PiIiAufOncO5c+dkx8zNzVG+fHlYW1vDwsICtra26NmzZ4Z+k5OTERCgvqUvgLSQVMrf31/lQPfcuXNYt26d7OupU6di3759ebocJhEREREREf2cDPS0sHhUY8zdehP+IbFKX29jZYxFIxvBQI/xy4+Mzy4REdFPKjeVa+nZ2Nhg4cKFaNiwISZNmgSJRAItLS0sXLgw2+AoMjIS+/btw/r166Grq5vpfJUqVb7b8OT58+e4cuUKzp8/j5cvX8LExASNGjXChAkT0KJFCxgZGeV6DA0NDbRt2xZt27bF27dv8ddff+H06dP48uVLprYRERGIiIiApqYmmjZtijJlymRqo62tjR07dsDHxyfXc5PHyclJbX0lJiZi1KhROHz4cL7s00dEREREREQ/l6JF9LF6fFPsOvFUqSUif2tUFkM7VmGw9hPgM0xERPSTEgqFsLCwwNChQ9XSX/v27XH06FEEBQVh3rx5qFevXrbtd+3ahd69e+OXX35Ry/gFKTg4GLdv38adO3dw7do1xMfHo3r16mjTpg3mzZuHGjVq5GnFXYUKFTB9+nRMmzYN9+/fx6VLl/D3339n2FeufPny2LBhA2xtbeX2oaGhgaVLl6JixYowNjZGpUqVUKxYMRgbG0NfXz/P5k5ERERERERUGBnoaWFMr5po06AMTl5/j+uPgyBKEWdqp62lgSY1SqBjk/LcY+0nIpBktUkK0U9MKBTiyZMnmY5Xq1YNOjo6ueo7JSUFb968yXDMzs5O6WXB8pNYLEZiYmKGY/r6+tDQ0CigGRGROjx58gQVK1bM9c+19L5+/YpixYop1Hb27NmYN2+eWscvCFeuXMH27dvh4OCASpUqoWrVqrC3ty8Uy1dKQ7979+5h+PDhKFu2bEFPiYhIJer6ffR7/F2ciIiIiAoHoSgVH4Nj8DE4BsmiVOhqa6KstQnKWptAR7vg3wPIT3n5/vn3guEakRwM1zJiuEZEREREBYnhGhERERFR4cFwDeA740REREREREREREREREQK4sfziIiIiIiIiIiIiIiIspGSkoLAwEDo6OhAQ0MDYrEYlpaWhWJbCMp/DNeIiIiIiIiIiIiIiIiyIZFI8PXr1wzHihUrxnDtJ8VlIYmIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iISC1SU1Pxzz//YNasWXB1dVVr3/7+/oiLi1Pp2idPniA2Nlat88nOsWPH8ObNG5WuDQwMRHx8vJpnlDtisbigp0BKunbtGgIDAwt6GkREREREREREPyyGa0REpLKgoCAcPXoUkyZNQuPGjTF06FD89ddfOHjwIHbv3q22cbZu3YrOnTvj7t27Sl/7+PFjtGrVCtu2bYNQKFTbnLJy7949dO7cGRMnTsTbt2+Vuvb48eP49ddfsXDhQqWvzQtxcXHo3Lkzbt26VdBTkevEiRMICQnJ1zGPHz+OFStWQCQS5eu4yrhz5w7+97//YdGiRQgLCyvo6RARERERERER/XAYrhERkUJiY2Nx584d7N69G5MnT0bz5s3RokULTJ8+HadOnUJUVFSG9qtWrVIpDPuWUCjEuXPnEBgYCEdHR6xYsQKpqakKXz9w4EA0bNgQa9asQZcuXfDkyZNczyk7urq6EIvFOH36NEaPHo3o6GiFrw0PD0d8fDz27duHDh06YMuWLXk405wdOHAAb968wZAhQ7BixYp8CSeV8fjxY3Ts2BFHjhzJl/EiIyOxdOlS/PHHHxgwYEChrQ7T1dWFSCSCl5cX2rRpo9agm4iIiIiIiIiIAK2CngARERUeycnJCAwMREBAAPz9/fHhwwe8f/8eHz58QFBQUKb2AoEAxYoVg6WlJaysrFC0aFGYmppCX18f2tra+PDhA+rVq5erOZ07dw4xMTGyr8uVKwdNTU2l+nB1dcWNGzfw/v17DBw4EH/88Qfq1KmTq3llRUdHBwBQpEgReHt7o0iRIgpfGxERIbvt6OgIZ2dntc9PUbGxsdixYwcAQCKRwMfHBxUqVECPHj3UNsbVq1dRt25dGBkZqXS9rq4uYmJiMGPGDMyYMUNt81LE48ePce7cOQwbNixfx1WEltZ/v941adIEnTt3LsDZEBERERERERH9eBiuERH9BCQSCaKiohAeHo6wsDB8/foVISEh+PLlC0JDQ/HlyxcEBQXh69evkEgksuu0tLRQqlQplC1bFo0aNUKJEiVQokQJWFtby/4rDZPyipeXl+z2vHnz0Lt3b6X7KFasGBwdHbFp0yYkJSVhw4YN2LVrlzqnKaOrqwsAMDIyQtGiRZW6NjQ0VHbbyckJGhoFV2C+adMmWTVivXr1sHPnTtl9U4fjx49jxowZqFatGnbu3KlSwJY+RLp48SIMDQ0Vum7//v3w8PCAtbU1fHx8FB7vy5cv6NatGwBg0KBBhTJYAzI+LjNmzIC5uXkBzoaIiIiIiIiI6MfDcI2I6Afn5uaGv//+GwKBAHp6etDT04O+vj4MDQ1haGgIGxsbVK5cGcbGxjA2NoaJiQlMTEzw+PFjrFixAg4ODhgzZgzs7e3zfe5+fn549OgRAKBXr17o27evyn317dsXW7ZsgVgsRkpKSrZtHzx4ABsbG1hYWCg9jrJVdem9f/8eAGBhYYHixYsrfX1SUhISEhJyHaa8fv0anp6eAAAzMzPMnz8f8fHxiI+Pz1W/Un///Tdmz56N1NRUPHr0CE5OTioFbNra2rLbRYoUgYmJiULX6evrAwA0NDSUeqwSEhJktytXrqzwda9evYKdnV2OYalQKMTatWsxatQopSoev5X+cSEiIiIiIiIiIvVjuEZE9IObNGkSJk2apNQ1X758gYuLCyQSCc6ePYtz586hZ8+emDt3rlqrl3KyYcMGAEDZsmUxe/bsXPVlZWWFGjVq4NGjR9lWHN27dw8jRoyAra0tvLy8oKenp9Q4qoZr0dHRCA8PBwBUrVpV6euTk5Ph4uKC0NBQeHp6qhywpaamYs6cObIAMjIyEh06dFCpL0U9evQIw4cPx44dO5QK2HITZOanrVu34tWrV3BxcUG7du2yDNmWLFkCb29vXLx4ERs3blQ50C7Iikd1SE1NRb9+/TB58mQ0aNCgoKdDRERERERERJQJwzUiyncSiQSJySkQpYihraUBfV0tCASCgp4W/Ss2NhYjRoxAZGQkgLQ9zlxcXNC+ffsMy83lNT8/P1nF3ZIlS2TVRt+KioqCWCxWqM9evXqhadOmqFGjRob9zaSkAUhCQgKePHmCadOmYd26dUq9PlUNfD58+CC7rWy4Jg3Wbty4AQAYPHgw9uzZo1LAtnPnTjx+/BgA0KNHDyxZsqTQfn9+L+Garq4u3r59q3DQ/fnzZwwcOBBnz55V6TnMTbjm4+ODmTNnKtRWX18fxsbGKF++PGrVqoUuXbqgXLlyKo8NAGKxGMuXL5e9BomIiIiIiIiICiOGa0SULz4Gx8D3YQBef47Eu4BoxCWKZOeM9LVhW6oI7EuboVmtUihjrdjSbqR+8fHxGD16NF6/fg1tbW04Oztj1KhReb6vmjzLly8HAAwdOhR169bNst3p06excOHCDHvF5WTdunUKtTt37hzc3NwwefJkhfvOKtjYv3+/wvP08PCAh4eHwmN+6/Xr1yoFbPfu3ZM9Nl27dsXixYsLbbAGoFDPLb30ofTNmzezbLd48WKcOnUKurq6cHd3V7n6MDehY8eOHdGqVSu8efMGzs7OsqVA+/Xrh9GjR8tC7ri4OISEhOD+/fv4888/cevWLWzevBndu3fHrFmzYGxsrPCYEokEkZGRuHXrFry8vHD//n2V509ERERERERElB8YrhFRnrr7/Av+uvIWz96HZ9kmLlGEx2++4vGbrzh06Q2qlC+Kni3tULeSVT7OlGJiYuDs7IyHDx/C2toa7u7uqFmzpkLXvn37Fnfv3kW/fv3UMpfTp0/j/v37qFSpEiZOnCi3zdq1azFo0CD0798fRYsWRWJiIipXroyiRYvC2Ng4QyB44sQJzJw5E9OnT8egQYPUMsesSAOfL1++YOnSpRg7dixMTEzQv39/lCpVCgKBALa2tpmWm1y1ahV8fHwAAMePH1dpv7dvGRoaKtw2JCQEEyZMQEpKCjp16oRu3bqpNbyKiYnBsmXLMGnSJLXcN+D7qVxLH65lF5hJX7PFihVD48aNVR4vu+ctNTUV0dHRWc5DR0cHOjo6qFu3LqpUqYI7d+4AAIYMGQIrq/9+JpuYmKBEiRKoVasWhgwZgmXLlsHLyws+Pj549+4ddu/eDQMDg2znOX/+fJw8eRKJiYk57oNIRERERERERFSYMFwjojwREy/E1iN+8H0YqPS1z96H49n7cDSrVQrO3arBxDD/q6Z+Nh8/fsTo0aPx/v17NGnSBKtWrVK4aiY4OBjOzs4IDAzEu3fvMHPmzFyFHlFRUVi6dCkMDAzg5uYmt2ruwYMH2LJlC3x8fLB27Vr873//y7bPP/74AyKRCIsXL8bjx4+xaNGiLJeZVMXXr19RrFixDMcsLS3x+vVr/Pbbb5gzZw7at2+Ppk2bZtnHq1evAAAlS5ZExYoVZcfFYjHCw8PVFkjJExUVheHDhyMsLAyDBw/GzJkz0b59e2hra2PMmDGoV69ervpPTU3FxIkTcffuXfzzzz/YuHGjSvvKfa/yOwTMKlxLSUnBlClT8OLFC3h6emYIy+RJP+/sloTV0tLC3LlzERgYiCtXruDx48fYsmVLjktgjh8/HsOHDweQ9jr38/PD7NmzkZSUlO11REREREREREQFjeEaEandh6BozN9+CxExuXuD9O+HAXjy7isWODdCWS4VmWfOnz+P2bNnIz4+HuPHj8fo0aMV3rPp06dPGDZsGAID00LUvXv34uPHj3B3d4eRkZFK81m8eDHCwsKwYsUKlC9fXm4bd3d3AEBoaCgGDx6M7du3Z1npc/r0aTx//hwAYGBgABsbGyQmJqotXEtNTUW/fv1w4cKFDMc1NDSwcuVKdOzYERMnTsS1a9ewcOFCaGtrZ+ojKSlJFq7VqVMn0/mWLVuiS5cuGDZsWJaPiari4uIwcuRIvHnzBjNnzsSQIUMAANra2nj16hXGjx+v1vG+fPmCAQMG4PDhw7Czs8tVX9/LspCFIVxLSUnB5MmTcfbsWQCAo6OjQgGbMiZPnowrV64ASFsGdfz48dmGcubm5hlC/NKlS+PSpUs4ffq02uZERERERERERJQXGK4RkVp9CIrGrE03MuyplhsRMUmYufE6lo1pwoBNzcLDw7Fy5UocPXoUpUuXxrZt21CrVi2Fr7958yYmTJiAqKgoAGnBVYcOHdC8eXMIhUKV5rRv3z6cOHEC3bt3R9euXeW2uXTpEm7fvg0gLQCaN29elsFaQkICVq9eDQCoUqUK1q1bBxsbG5XmlpWPHz8iJCRE7jlLS0tMnz4ds2bNgo+PDyQSiWwvufSePn0qWxbv2/3lNDQ0IBaLcejQIRw+fBitW7fG8uXLVQ4v0wsPD8fw4cMRGBiIjRs3olWrVrJz6UNAafCXG126dMHLly9hYGCATZs25TpYA76fcE2Veb569QqDBw9GZGRkrsZO/5ym9/HjR7UHbHZ2dihdujQ+f/6M2NhYPHv2DDVq1FCqj5yWkiQiIiIiIiIiKgwYrhGR2sTECzF/+y21BWtScYkizNt2Ex5TWnCJSDUIDg7Gn3/+iT179kAoFGLEiBEYM2aMQpVcQqEQSUlJ2LVrF7Zs2QKxWAwDAwMMHToUQ4cOhbGxscrzOn36NJYuXQoHBwfMmzdPbpu4uDgsWbIEQFr44+HhgRYtWmTZ59q1axEYGIhGjRph48aNGfYgk0gkaglnHj16hOTk5CzPd+/eHfv378fTp09x5MgR9OzZM1OAdvPmTdntX375JVMfOjo6SElJgZaWFtq2bauWYO3z588YMWIEjI2N4ePjg1KlSmU4L6/CTh3MzMzQqFGjPOm7sFK0EjS9ihUrYvfu3Th16hSqVKmCMmXKwMjISKF99I4fP45ly5YBAI4cOYLixYtn2Vady6MCQIUKFfD582cAyDJ0JiIiIiIiIiL63jFcIyK12XrEL9dLQWYlIiYJ2448wZSBmZfMI8UkJSWhT58+eP36NcRiMTQ1NdGqVSvExMTA1dUVSUlJsn+JiYly/5uampqhzw4dOmD69Om5qnxJSEjAmjVrsG/fPmhqamLYsGG4desWoqKiEBUVhejoaMTExCAmJgbv3r1DYGAgBAIBVq5cmW2w9s8//8DLywv169fHli1boKenl+H8/fv34e7ujtGjR8sNtBR1/fp1AIBIJJIbSAkEAowfPx7Ozs4AgICAgEzh2o0bNwAA9vb2mUIu4L+gq1y5cujcubPKc00/3rRp09CrVy+4uLjI3dcur8K1vKLKvnCBgYEZ9rfLK6qGuA4ODnBwcFD6uvQBnImJicL7J6pD+rFFIvV+0IKIiIiIiIiIqLBguEZEanH3+Rf4PgzM0zH+fhiAZrVLol7lrKswKGt6enqoU6cOXr58CSBtr7Dz589naGNoaIiyZcuidOnSKFmyJEqUKAFra2uYmZnhyJEj8PHxgUgkQpUqVTBr1qxMIZEq9PX14efnB4lEgpSUFEybNk12zsrKCjVq1ECVKlWgp6eH48ePAwAmTpyI9u3bZ9lnWFgYpk6dikqVKmHz5s2ZgjUgbfnFrl27Yvjw4ahWrRqmTJmC+vXrKzX36OhoXLlyBQKBINt9tZo2bYpSpUohIiICzZs3z3AuNjYWT548AZC2t5o80r51dXWVmp88wcHB2LlzJzw9PWFra5tlu/SBW0RERK7HFYvFue7jWxKJRHb78uXLCldh7d+/Hx4eHrC2toaPj4/C43358gXdunVTep6qVK59r+Li4mS3zczMCnAmRERERERERER5h+EaEanFX1fe5ts4DNdUN3LkSBw6dAhCoRACgQCVKlVCw4YNUadOHVSpUgXW1taZrrly5QqmTJmCgIAAWFhY4Pfff0ePHj3UFhgIBALMnTsXvXv3hkQiQe3atdGxY0e0atVKtpxdSEiILNTo2bMnRo4cmWV/ycnJGDNmDPT09LBt27Zsl1Ds2bMntLW1MWPGDAwaNAgtWrTA1KlTsw2d0tuyZQsSExNhZGSU7eMhEAjg4uICDQ0NmJqaZjh348YN2X5rWe2PFRsbCwDQ0sr9/7atra3xxx9/5NgufeVaYV3GMX0lpYWFhdwKPHmkIZyGhoZSVV0JCQnKTfBf38vecOrw4cMHAGn3WZWqOyIiIiIiIiKi7wHDNSLKtY/BMXj2Pjxfxnr2PhyfgmNQxtokX8b70VhZWWHkyJHQ0NBA165dUaJEiSzbfv78GcuWLcPly5ehq6sLZ2dnjBw5Ui37fX2revXqGDduHKpWrYpmzZplOJeSkoKJEyciPDwcTZs2xYIFC7LsRyQSYfLkyfj06RO8vb1RrFixHMfu0qULkpKS4OrqiitXruD69etwdnaGi4tLtmGWr68vdu3aBQAoU6ZMjuP06NFD7vGzZ88CAMqXL4/q1asDAFavXo0pU6YASKsEUmR5vStXrqBOnTowMVH/98arV69y3UeXLl1kVZPqkr4aTtFgrSDkNlyLi4tDSkpKpmC2sPn8+TM+fvwIAKhVq1a+LkdJRERERERERJSfGK4R/QBCIlSrplCUWCxGUlLGvdT0EiWySp0z/3zI0/G/dfqfj+jeokK+jpmelblBgY2tDmPHjs32fHx8PLZu3Ypdu3ZBKBSiXbt2mDJlity9wB48eIDo6Gg0bdo022URFTFmzBi5x5ctW4b79++jatWqcHd3zzLwiouLw5QpU3D9+nXs2rUL5cqVU3jsPn36IDIyEmvXroVIJMLGjRvx5MkTbN26VW5Fmlgsxrx582TLEiq7nKRUcnIy/v77bwCQVeZFRUXh4MGDsnAtKipK1l5a4fat2NhYzJgxQ1aVpo5QI6/2y1Ln8pBCoRDA97U/XHx8fJbnsnp+b9++jYULF2L58uWFtooQANatWye7ndX3MxERERERERHRj4DhGtEPYPiSCwU9hXx1+p8POJ3PgV56J9Z0KbCx81JqaioOHz4MDw8PhIWFoWbNmpgxYwZq1aqV5TUlS5bEqlWr4Orqip49e6Jv376wsrJS25x27doFLy8vlClTBtu3b4ehoaHcdidOnIC7uzsCAgLQq1cvxMXF4dSpU4iPj0dCQgLi4uKQkJCAhIQE2THp7djYWCQnJyM+Ph7a2tqyUMnX1xd+fn6oWbNmpvFSUlJkoZednR2cnJxUun9///03EhISoKmpiS5d0l5Xt2/fzhBsRUdHy24nJibK7cfDwwNRUVGIiopC//79sXv3btmSmqqSBlfqllWApArpHAtz1dq3ateurfQ1rVq1wrlz5zB06FCMGjUK48ePL1T7uInFYqxfvx4nT54EALi4uKBJkyYFPCsiIiIiIiIiorzDcI2I6CcnkUhw4cIFuLu74927dyhVqhTc3NzQoUOHHK+1srLCnj17MGvWLGzatAnbtm1D+/bt4ezsDDs7u1zN6/z581i5ciUsLCywc+fObKuxHj16hICAAADAoUOHcOjQoUxttLS0YGVlhZIlS6JkyZK4ePEigLTlGh0dHVG8eHEYGBigd+/eePHiBQDg69evcsfT0dHBiRMnkJycjPLly6u87J+Pjw+AtPBEGkqeOXMmQyWWv7+/7HZERESmPu7fv4+9e/fK7mODBg2yrY5SlDpDsPTUWREn3QNNV1dXbX3mNT8/vyzPzZkzB8ePH5d7bu7cubhx4wY2b94MPz8/rFu3DsbGxnk1TYVERETg1q1b2LVrF/z8/KCvr4+pU6diwIABBTovIiIiIiIiIqK8xnCNiOgnJRaLceHCBWzatAkvX76EqakpZs6cif79+ytVCaSjo4NVq1bBzMwMnp6eOH78OE6ePImuXbti2rRpMDMzU3pud+/exdSpU2FoaIgdO3bAxsYm2/ZOTk44ePCgLLgxMTFBnTp1cOXKFQBAw4YN8ccff2RYuvLIkSMAgKZNm8LBwUF23M3NDd26dUNSUlK2S0vKWyZTGSEhIfD19ZXNHwBCQ0Nx+fLlDHtrSfcp09bWRkREBOLi4mT73sXExGDGjBkQi8WoUKECVq5ciSpVquRqXlLpQzB5oZ6ypMtBSgMxdfgew7Xs5prd0qrGxsaYOnUqpk+fjhs3bmDAgAHw8vLKkz325OncuXOGarnk5GRZ5aCtrS2GDRuGQYMGZbuPIxERERERERHRj4LhGhHRTyYyMhLHjh2Dl5cX/P39YWhoCBcXFzg5OclCG2UJBAJMnToVycnJOHjwIMRiMXx8fHDt2jXs3LkTFStWVLiv+/fvw9nZGRKJBJs3b84QfGWlRIkS6NSpE4KCgjB48GD8+uuvAICqVavKziu6J1z58uUxadIkXL58Gba2tgrPW1lHjhxBamoq6tSpI1t6csOGDUhOToalpaWsnTRcK1euHOLi4vDu3TvUqFEDEokE06ZNw+fPn9GtWzfMmzcP+vr6aptf+nBNnft8CYVCJCcnqyUQi42NBQC13u/CrEuXLti2bRvevXuHV69eYeHChVi9enW+jL1t27YMS41u374d3t7eAIDly5ejevXq+TIPIiIiIiIiIqLCgOEaEdFP4NOnT7h58yauXr2K69evQyQSQV9fH3379kWfPn2gq6uL9+/fIz4+HvHx8YiLi5Pdlu5Rlv5ref8EAgGKFCmC4sWL48uXLwCAsLAwjBs3DmfOnFEo3Dp9+jRmzJiB1NRUbNiwAfXq1cvU5uvXrwgMDIS/vz8CAgIgkUgwevRozJ8/P0Ngk5SUJLutp6en1OPl6OiIPn36KHWNMkQiEQ4cOAAAGDlyJIC0+37w4EEAgL29vazt69evAQBlypSBRCKBn58fatSoATc3N1y7dg2urq55sgxfSkoKNDQ00LJlS0ycOBEuLi4YPnw4unbtqtIeZ5MmTULp0qXx22+/qa3STLofnYGBgVr6K+wEAgGcnJwwa9YsAMDJkycxZcqUXO+vp4jixYtnqNZ0dHSUhWv79+9nuEZEREREREREPxWGa0REP4GgoCDMmzcvw7HExER4e3vL3iCXx8DAACKRCCKRCMWLF0e/fv1QpEgRmJqaZvonrR5KSEhAz5498e7dOwBpwZ6/vz/Kli2b5TifP3/GunXrcPLkSQBAnz59EB8fj23btiEoKAiBgYEIDAxEUFAQEhMTYWNjg9q1a6N27dqoW7cugMzL7aWvvFK2skkgECgdyCnj1KlT+PLlC+rXr49mzZohICAAs2fPlp1v3rw5gP+CRCAtXDM0NMS1a9cgEAhw8OBB7NixQ61VZen16tULrVu3RqlSpTBt2jR8+vQJc+fOxd69e7Fjxw7ZHnGKGjt2LMzNzTMseZlb4eHhANKeX2WWrkxMTASQtlSlMtfFxMQoN8F/SSQSla6T57fffsOiRYuQmJgIiUSi1mU2lWFra4s6derg/v37OH36NKZPn67SErBERERERERERN8jhmtEP4Ads9vkaf9isThDFRCQVgkk3X9nzb77ePEx93syKapSOXNM7l8n38b7ETRq1AiNGjXCzZs3MxzX1taGnZ0d7O3tUaZMGZQpUwZWVlawsrKChYUF9PT0MGjQINy5cwclSpTAqFGjchzLwMAA69atQ/fu3WV7MhkbG2d7jUAgwPnz52VfHzx4UFbFBQBmZmZo1KgRhg0bhl9//VWhYCd9EJLT+Pntjz/+AABMnToVQFoFkjQksbe3R6tWrQBAtmccANSoUQPGxsbYtGkTPn78iAMHDuTpspVDhgwBADx//hwnTpwAANStWxfu7u4wMDBAfHy8wn35+flh/PjxKF68OHbu3Jlh2cvcCAsLA5C2R58qIWNwcHCehZPpqTNcMzQ0RJMmTXDhwgXUrFkT5cuXV1vfyurduzfu37+P5ORkHD58GCNGjCiwuRARERERERER5SeGa0Q/ACvzvF0STSwWIzFRkOGYvr6+LFyrals0X8O1quWL5vl9/hFNmjQJffr0Qa1atdCsWTPUr18fVapUUWmJv5zY2dnB2dkZGzZsQLVq1VC0aNFs29vY2GDw4MHYvn277JipqSk6deqE3377DbVr15a93hQl3Y8LAMzNzZW7A3no4sWLePXqFTp06CBbSq9Pnz7Q1taGsbEx2rRpI1tC8/LlywDSQtDGjRtDW1sbAoEAgwYNytNgTUoikWDx4sUQi8UAgHv37qFJkyYq9xcTE4P+/ftj165dsLGxydXcEhISZMtCdu/eHcuWLVP42p07d2LlypUoWbKk7DFWREBAgCz4LEgdOnTA9evXsWDBggKdx2+//YalS5ciOjoaBw4cgJOTk9Lfp0RERERERERE3yOGa0SUa01rlcKhS2/ybbxmtUrl3IgyqV69Om7cuJEpaJJIJEhKSlJ66cScjBw5Eh8+fEC/fv0Uaj9q1Cj4+PhAIBDAxcUFPXr0yNXSjF+/fpXdtrCwULkfdRKLxXB3d0eRIkVk+2YBaZV5Tk5OGdomJSXJKg3r1q0LIyMjAEDNmjVx/PhxDBo0KM/n6+npifv378PAwABVq1ZFxYoVZdV2ijp27BhcXV1l1Vs2NjYICAjIdbgmXS4TyLhHnSLUWUmmCGk4qa72v/32G6pVq5ZhD7SCoKenh86dO2Pv3r0IDAzE33//jRYtWhTonIiIiIiIiIiI8gM/XkxEuVbW2gRVymdfmaQuVcoXRRlrk3wZ60ckr4LL29sbTk5OSi3zd+/ePdmealnR0dGBm5sb6tWrp1CfRkZGcHd3x6lTpzBgwIBc73kWHBwsu53bIEddjh8/jjdv3mD69OkoVqxYtm19fX1le4N16NBBdrx58+bw8/PDixcv8nSuL168wJo1a6CpqYm1a9di/fr1OHfuHM6cOQNdXV2F/p07dw7z5s2DRCKBQCDA/PnzsWvXLrUsxfj+/XvZbQcHB6WuVTbsyi1lw7yc5icQCAo8WJPq3bu37Pa+ffsKcCZERERERERERPmH4RoRqUWPFhXyZZyeLe3yZZyfhb+/P1atWoX79+9jxIgRCgdsRkZGGDduHJycnODr66u2SqD69evD1NRULX19+vQJAKClpYXSpUurpc/cSEhIwNq1a9GkSRP06NEjx/ZeXl4AAEtLS3Tp0kV2vG3btgCAbdu25c1EAURFRWH8+PFITk7G3Llz0bx5c5iZmWH58uWYO3cufH19c+zj0KFDmD59OsRiMTQ1NbFs2TKFqxgV8eZNWrWslpYWatSoodS1hb1yLb/nlxv29vaoWbMmAOD69ev4/PlzwU6IiIiIiIiIiCgfMFwjIrWoV7k4mtYqmadjNKtVCnUrWeXpGD+TxMREjB07VhaoKROwOTg44PDhw7CwsMCIESPQoUMHHDp0CEKhMK+nLVdKSkqmY9LKLltbW+jq6ub3lDLZuHEjUlNTsXLlyhzbPn36FLdv3wYADBkyJMO+eDY2NqhSpQrOnj2LV69eqX2eQqEQLi4uCAgIwLx58zIEYr/88gv69u2LcePG4datW1n2sX37dsyZMwdisRh6enpYv349unXrptZ5Pn36FABQtWpVGBgotwejNOzKrxBL2XFSU1PzaCZ5Q1q9JpFIcODAgQKeDRERERERERFR3mO4RkRqM7JbdZib5G4pv6yYm+jBuVu1POn7Z5Samopp06bh5cuXANKWmWvXrh1mzJih8N5rBgYGWL58ORYvXgx/f3/MmTMHLVu2xI4dO5CQkJBnc09JScGTJ0+we/dujB8/Hu3atcOdO3cytBGJRHj8+DGAtP3KVKWu5QPfvXuHvXv3ws3NDUWL5ryEqjSAK126tNxqr549e0IsFmPx4sVqmZ+USCTChAkT8PjxY6xcuRL9+/fP1Gbq1KlwcHDAiBEjcO7cuUzXz5kzB6tXrwaQtpfcnj170Lp1a7XOUywW4/79+wCAVq1aKX29NLzKr3AtfVgWERGR5T9pOP29hWvt27eX7Qno4+ODpKSkAp4REREREREREVHeYrhGRGpjYqiDBc6NYKSvrdZ+jfS1scC5EUwMdXJuTDmSSCSYM2cOzp8/DwAoW7YsPD094e7ujurVq0NDQ7n/NfTq1Qv79u2DpaUlwsLCsGrVKrRs2RJ//PGHWirZoqKi8Pfff8Pd3R2Ojo6oW7cuHB0d8eTJE3Tt2hXHjx9H48aNM1xz7949xMbGAgCaNGmi0riPHz/GqFGjcj3/1NRUzJw5E7///jvq16+fY/vTp0/j9u3bEAgEWLp0qdyqrM6dO8PQ0BB37tyBt7d3rucIpAVjkyZNwsOHD7Fjxw506tRJbjsdHR1s2rQJlpaWmDBhArZs2QKJRIKQkBAMGTIEhw4dAvBfdaN0yUB1evr0KWJiYgAA//vf/5S+Xhqq5Ve4lj6kbdSoUZb/Tp06BQAFVgGqKn19fdnrJSoqCidPnizgGRERERERERER5S2tgp4AEf1YylqbYNmYJpi37SYiYnJfvWBuoocFzo1Q1tpEDbOjlJQUzJw5E8ePHweQtpzbrFmzFK5Wy0r16tVx6NAhODs749WrV4iMjMSKFStw4MABrFixArVr11aon7i4OLx8+RLPnj3D06dP4efnh48fPwJI21urSZMmWLJkCVq1agU9vayrJPfv3w8AMDU1VTlci4+Ph0gkUvq6b6uOtm7diipVqsDJySnHa0NCQrBgwQIAgKOjI+rVqye3nZGREXr16oXdu3dj+fLlqFWrFipWrKj0XKUSEhIwbtw4xMfH4+jRo7Cyyn751aJFi2Lbtm3o27cv1q5di3/++QevXr1CVFQUAKBjx45YvHhxrl9XWbl+/ToAoF69eihTpozS10uXEVVXZWJO0r8mslvKc8aMGThy5Mh3F64BQJ8+fWRLQu7fvx89e/ZUqR9pKA5A9noiIiIiIiIiIipsWLlGRGpX1toEHlNaoFmtUrnqp1mtUvCY0oLBmprExcVh9OjROH78OIyNjbFu3TosWrRIbQFI8eLFsX//ftSpU0d27PPnz3B0dMTVq1ezvXbChAlo3rw56tSpgwEDBmDp0qU4fvw4Pn78iCpVqsDV1RXXrl3D1q1b0aFDh2yDtRcvXuDixYsAgL59+2bYr0wZ0dHRGd7oV1T6qqi4uDh8+vQJc+bMyfE6oVCI33//HVFRUWjRogWmTZuWbfsRI0ZAX18fiYmJGDFiBIKCgpSeK5AW6A0bNgw1atTA3r17cwzWpGxtbbFs2TIAwO3btxEVFQVdXV0sWbIEa9asybNgDYCswkvespWKkIZqBRGuKSIlJUWlYFfd0s87p/tQqVIlVKuWtnTvs2fP8ODBA6XHi4+Pz3Dd5cuXle6DiIiIiIiIiCg/MFwjojxhYqiDKQPrwNWpAaqUz3mPqfSqlC+KecMbYsrAOlwKUk3evHmDHj16wNfXF1WrVsWRI0fw22+/KXStMkvnGRkZYceOHRkq1UQiEaZOnSpbxk8eOzs7BAcHy77W1NRE165d4ePjAx8fHwwYMADm5uY5ji8UCjF79myIxWIULVoUQ4cOVXju34qJiUFoaKjS10lDiNTUVBgZGWHFihXQ1NTM9hqJRIKZM2fi4cOHqF27Ntzd3aGllX1xebFixTB48GAAaQHZwIED8ebNG6Xm6u/vj0WLFmHRokUYP348tLUVX9L10qVLmfZ8EwqFuH79Ot6/f6/UPJTx7NkzvH37FmXLllVpSUjgv8o1ZUMvVSvKpOMpwtTUFFOnTs3xNZNXhEIhoqOj8eDBAzx79kx23NPTEyEhIYiLi8vy2t69e8tuu7q64uXLl4iJickyxExMTERMTAyCgoJw/fp1ODs7IywsTHb+6NGjmDNnDh4/foyvX78iJiYGycnJariXRERERERERES5w2UhiShP1atcHPUqF8en4Bj8/TAAbz5H4W1AFOIS/6vKMNLXRoVSprArbYpmtUqhDCvV1Or06dOYPXs2RCIRxowZg1GjRilVzRUREaHUeAYGBti6dSt69eolW9IxJiYGN27cQLt27eReM2jQIOzcuRPx8fFo1qwZZs+erfRyfxKJBLNmzcKzZ8+gqamJZcuWwdTUVKHr5ImIiEBoaCiio6NRpEgRhechDRIUDW7EYjFmz56NkydPomHDhvDw8Mi2Mi89FxcXnD17Fh8/fkRgYCD69OmD2bNno0ePHgpdb2VlhfXr1yu1z97jx4+xZs0a3L59GwBgZmaGkSNH4uvXr9izZw/OnDmDc+fOoXnz5hg4cCAaNWqk9D5+2fHx8QEAjB07VuUAStnnSOrDhw+y28rcJ2kVmqGhYbbtOnfujFmzZsHEJHc/AxMSElS+9uTJk5g5c2am415eXvDy8kLJkiWzrCjr0KEDli9fjvj4eLx58wZdunQBAJw4cQL29vaZ2i9YsABHjhzJdj6HDh2S7eMHpD3v48aNU+YuERERERERERGpHcM1IsoXZaxN4GhdGUBamJGYnAJRihjaWhrQ19WCQCAo4Bn+eJKSkrBmzRp4enqiTp06WLhwISpUqCC37fDhw5GamgorKytYWFjA3NwcJiYm+PjxI969ewcAOVZSpWdiYoJ169ahZ8+esmAhuzf8TUxMMHDgQFhaWmLgwIFK3Ms0QqEQM2bMwKlTp2BgYIAVK1agWbNm2V4jEAggkUgQEhIi9/ynT58gkUhw/PhxDBo0SOG5SAMbRaqVkpOTMXPmTJw6dQr9+/fH7NmzlXqcpcswDh48GCkpKYiPj8esWbNw5MgRjBkzBo0aNcr2ekVDVolEgmvXrmHnzp24desWgLQKq0GDBmHIkCEwMjICAHTv3h0LFizA7du3cfnyZVy+fBmWlpb47bff8Ouvv6JevXq5Wi4yKioKPj4+qFWrFjp27KhyP9LnRt5z9OzZM+zbtw+mpqYwNjaGkZERdHV1kZycjL1798raKRqASg0aNAguLi7ZtmncuLHC/T19+hT6+vqwsbHJ8DxKJBL4+vrKvlbm9QSkPYfdu3dX6hopQ0NDpZaDXL58OZYvX67SWEREREREREREBYnhGhHlO4FAAAM9xZefI+XdvXsXs2fPhoaGBjZs2IA2bdpk237btm3w8/PDyZMn4eXlJTcIs7OzU2oODg4OGDBgAHbv3g0AKF26dLbtJ06cqFLI+vnzZ0yePBl+fn4oV64c3N3d4eDgkON1VlZW+PLlC7Zs2QITExPY29tDR0cHqamp8PPzk+3rtWLFChgbG6Nr164KzUe6dGBOy9eFhIRg7NixeP/+PZYsWYKePXsq1P+36tatixkzZmRYovHu3bsYMmQIXF1dMWDAAJX6lc7x6NGjOHToEPz9/QEA5cuXx4ABA9CjR49MQZmtrS08PT1x+vRpbN++Hc+fP0doaCg8PT3h6ekJbW1tVKxYEVWrVoWdnR1sbGxQsmRJmJubo0iRIjlWou3fvx9CoRDz58/PVSAvDUDlPUfW1taoWbMmbt++jYMHD2a5DKIy3w9LlixROozLyfXr1+Ht7Y0vX77A3NwcFhYWMDQ0xNevX/Hp0ycAaeGppaWlWsclIiIiIiIiIiKGa0REP5T4+HisWbMGd+/exahRo9C5c2eFKlc0NDRQs2ZN1KxZEyNHjsTMmTNx7do12XlNTc0M+ykpavz48bh58yaMjIxQt27dbNsqG5aIxWLs378fbm5ukEgkmDRpEoYOHapwNVbLli2xf/9+REZGyl0GT0pHRwc1atRQeF6KhGsXL17EnDlzUKdOHWzYsAFWVlYK9y/PoEGDEBwcjJ07d6J06dIYP348mjdvDmNjY6X7CgoKwpUrV3D69Gncv38fEokEJiYm6N69O3r06JHj8wgA7du3R/v27XHnzh3s3r0bV65cgVgshkgkwtOnT/H06dNM1wgEAujo6MDMzAzu7u6oVatWhvNxcXHYu3cvfv/9d4XC0+xIK9bMzc2RkpKS4XvE3NwcvXv3Ru/evREfH489e/Zg06ZNsgpMAKhatSpsbW0VHk/dwRoAjBo1CqNGjcLTp0/x559/wsfHJ8McAah9SU4iIiIiIiIiIkrDcI2I6AeSmJiIJk2aYO7cuSpX9lhYWGDz5s3o3bs3nj9/Di0tLcyfP1+lQMPQ0BCHDx9GamqqWpf+vHPnDpYvX47g4GAMGzYM/fv3h7m5uVJ9TJ48GRoaGrh48SIiIiIy7b9lZGSEatWqYeLEiShXrpzC/UrDNYlEAqFQmCHsCw8Px8qVK/HixQssWbIErVq1UmrO2Zk2bRpKliyJjh07KrVHXFxcHO7fv49bt27h+vXreP36NQCgbNmy6NevH5o3b47GjRtDW1v5atP69eujfv36CAoKwqVLl3DlyhXcuXMnUwgEpAW406dPR58+feQGwlu3bkXlypUxfPhwpefxrVKlSmHhwoXo1q1btuGzoaEhXFxcYG9vjzFjxsiOpa8SLGhVq1ZF1apVMXjwYLi4uMj2OTQ0NMSUKVMKdnJERERERERERD8ogUQikRT0JIgKG6FQiCdPnmQ6Xq1aNYWrYrKSkpKCN2/eZDhmZ2en9L44+UksFiMxMTHDMX19fVZE/OD+/PNP3LhxA6NHj851pZC6fP36FfPnz4dYLEaHDh3QunVr6OrqFvS0Mpg5cyZCQ0MxZcoUVKpUSXb89u3b2Lx5MwYMGIDWrVsX2D6DCQkJOH/+PPz8/PDo0SO8fPkSxsbGsLW1RdWqVVG9enXUrl0bJUqUyJPx4+LicPPmTTx9+hSvX7/G69evERgYiBkzZmDIkCFyrwkODoaLiwv27NkDExOTPJlXTgYNGgSBQABXV9cs9y4saO/fv0fHjh1RsmRJuLu7o0qVKgU9JSIitVHX76Pf4+/iRERERFQ4iEQi+Pn5ZThWvXp1lT6Q/L3Ly/fPvxcM14jkYLiWEcM1KiySk5MhEolgZGRU0FPJUmhoqNx9rr6tYisoX79+xalTp2BlZQUrKyuUKVNG6ao/dYuPj4eurm6WPwcTEhIQGxub6+UzcyM+Ph6GhoYFNr6irl69iiZNmhTq/6cQEamC4RoRERERFTSGa/9huMZlIXO0YcMGjB07tqCnQUREAHR1dQtdpdq35AVrAArNLxbFihXD4MGDC3oaGeQUWhkYGMDAwCCfZiPf9xCsAUDz5s0LegpERERERERERD88lp1kY8OGDdi4cWNBT4OIiIiIiIiIiIiIiIgKiUIZroWEhBT0FLBp0yZs2LChoKdBREREREREREREREREhUihC9dCQkLg6OhYoHM4dOgQ1q9fX6BzICIiIiIiIiIiIiIiosKnUIVr0mDt8+fPBTqPNm3aoGLFigU6ByIiIiIiIiIiIiIiIip8Ck24Jg3WPn36VNBTgampKfbs2cOAjYiIiIiIiIiIiIiIiDIoNOHa9evXcwzWhEIhDhw4kC/zMTU1xYoVK/JlLCIiIiIiIiIiIiIiIvo+aBX0BKR69OiB2NhYLF++XO55iUSCyZMn49KlS6hQoQLq1auX53PS0dHJ8zGIiIiIiIiIiIiIiIjo+1FowjUAGDJkCEQiEdzc3DKdW7JkCS5cuAAAcHR0zO+pERERERERERERERERERWeZSGlWrVqlemYUCjE27dvAQACgQASiSTf/hERERERERERERERERFJFarKtazo6Ohgx44dmDNnDo4dO4YRI0ZkahMdHY1Dhw5h+PDhaj9HREREREREREREREREBHwn4RoAaGlpYcSIETh27BgmT56c6fy7d+9w6NChPDlHREREREREREREREREBBTCZSGzIxAICs05IiIiIiIiIiIiIiIi+vl8V+EaERERERERERERERERUUFiuEZERERERERERERERESkoAIN11JTUwtyeCIiIiIiIiIiIiIiIiKlFFi4lpycjCFDhiApKamgpkBERERERERERERERESkFK2CGvjPP//E3bt3MWzYMFSuXBn6+vrQ19dHQkICAODAgQPQ1dWFnp6e7L9fv34tqOkSERERERERERERERERFUy4JhKJsHPnTggEAjx8+BAPHz7McF4ikWDhwoUFMTUiIiIiIiIiIiIiIiKiLBVIuHb06FF8+fIl2zYSiUTucYFAkBdTIiIiIiIiIiIiIiIiIspRgYRrVapUgZeXF7S1taGhoQGJRAKxWIzk5GR8+vQJ8+bNg4eHB5KTk5GUlISkpCQkJycjKCgI+/btK4gpExERERERERERERERERVMuFa5cuUsz1lYWAAAWrdunenc+/fvGa4RERERERERERERERFRgdEo6AkQERERERERERERERERfS8YrhERUSbnzp3D48ePC3oapCY3btzA0aNHC3oaP61NmzbhwYMHBT0NykNxcXHw8/NT6VqhUIiHDx+qeUYkz7t373Dv3r2CnobM27dvVb42KCgIycnJapwNERERERERKYPhGhERZSIQCNCnTx9MmDABwcHBBT2dLF28eBH+/v45tjt27BhCQ0PzYUaF0+bNmzF9+nQ4OTkp9HgVhP3790MoFGbbJioqCkePHkVKSkqezycoKCjH+SjK19cX/fr1Q9euXXHo0CEkJiaqpd/shIWF5dtr/uHDh0hNTc1VHyEhIWqaTZpbt27hyZMnau0zO0lJSejVqxcGDRqEv//+W+nr+/bti8GDB+P27dt5MLv8sXv3bri6uuLVq1cFPZUsXbt2DQMGDMCQIUMKRcg2evRoDBw4EFeuXIFEIlHq2r179+K3337DqVOn8mh2RERERERElJ3vKlxLSkqCRCLB0aNHM/27ePEiAOTJOSKin03btm0xbNgwnDlzBu3bt8fBgwcLekpy3bhxA+3atcPs2bOzDY1Onz6NVq1aYf78+QgICMjHGRa8J0+e4O7duwCA69evo1OnToXyzdiVK1eidevW8PLyyjLUEovFmD59Otq2bYsDBw6oLfyS586dO2jXrh3OnTuX6750dHQAAC9evICnpyeio6Nz3WdOQkND8b///Q9bt25FTEwM4uPj8+TftWvXMGjQIIwaNQrx8fEqz3f79u1wcnJSW4Xfy5cv0bNnTzg6OqoUdilLT08PQNrrxtnZGcOGDVM4BNbR0YFAIMCtW7fg6OiIfv364evXr7LzSUlJeTJnZcTFxcHd3T3bCrvU1FQcPHgQnTt3xoABA3D9+nW1jB0bG4uDBw+qJVR//vw5AODmzZsYMGAAZs6cmes+c0NHRwd3797FqFGjMHHixEzn3717l+W1jx49QlBQECZNmoQ+ffqw2pyIiIiIiCifaRX0BLKSmpoKTU3NDMe2bt0KANn+IZwX54iIfkYTJkzApUuX8PHjR7i6uiIwMBCTJk0q6GlloK+vD5FIhMOHD+PYsWNwc3ND27ZtM7XT09ODUCjEgQMHcOjQIbi7u6NNmzYFMOP898cff2T4ukOHDmjRokUBzSZr+vr6CAkJwaJFi7Bnzx4cPnwYRYoUydQGAAIDAzF//nzs3r0b3t7eMDMzU/t8unbtilevXmH8+PFo2bIllixZAnNzc5X6Sv/7zJ49e1TuRxn6+vpISEiAm5sb3Nzc8nw8X19fDBkyBN7e3pl+f1PEnDlzsGjRIvTr1w8tW7bErFmzYGNjo/J8tLW1AQC3b9/G7du3MXnyZDg7O6vcn6LjAUClSpWwfPlyaGkp/mu2lpYWRCIRdHV10bdvXxQrVgxA2u/Dffr0QbNmzTB8+HCYmJiofe7ZefnyJXx8fHD06FFER0fjwIED8Pb2Rrly5TK11dXVld0Wi8Wws7NTyxwMDAxw6dIl7Nq1C/PmzUOjRo1U7kv6QQMAqFKlCqZOnaqOKWZp27ZtMDMzQ69eveSelz5mlSpVwqJFizKc+/jxIzp37gxnZ2e4uLhkeI2JRCI8e/ZM9rWGhgasrKzy4B4QERERERFRVgptuBYTE5PhzbJbt27JPj2u7LIpuSEQCPJtLCKiwkRHRwdz5szB8OHDAaR9wKFp06aoW7duAc/sPwYGBrLbgwcPzjIwk76BqaWlhVWrVv00wdqLFy9w9uxZ2dcmJiaoV69ehsetsJAGZ0WKFMGyZcsyBWtAxjfvK1asiI0bN+ZJsCY1adIk3L59G5cvX0aPHj3wxx9/yA0VcqKhkbZQgJaWVr4Ea0DGx2rnzp2oV69ejtdcuHABkydPBgCF9w/bs2cP1qxZAx0dHUycOFGlYE1q9uzZCA0Nxfnz53Hjxg3MnDkT/fr1U6mv9MFWx44dZT/H8kr64KNevXqwtLRU+nqRSAQHBwd06dJFdlxTUxNubm7o168fDh48iDFjxmDAgAG5epyzExoaivv37+PevXu4evVqpkrfqKgoDB8+HAcPHpQFgOnvg5Srq6vawh5NTU2sXbsWffv2xZAhQ9CrVy/MmTNHVi2oqE+fPiEoKEg212XLluX592ObNm3QpUsXnD9/HitWrMg0nvR16uDgAGNj4wznjhw5gpSUFGzatAnXrl3Dzp07ZT8Xnz17JttvrVixYti6dWu+B69EREREREQ/u0IbrkVHR2d4w0xXVxceHh7Q1dWFrq4udHR0oKOjAy0tLWhpaeVJCObv749Ro0apvV8iou/Fr7/+igoVKuDt27cAgKdPnyodrp04cQLPnz/H9OnT1T6/9G+gjxw5Msv/F0iDBn19fbRv317t8yisVqxYAbFYDACws7ODh4cHBg0ahNq1a6N06dIFPLuMpG/M161bN8vXmIaGhiyEaNCgQa4qmxSd0/z589G7d28EBQVhxIgROHr0KIyMjJTqR/qhIENDw7yYplzpvze0tbUzhG2KXKNIe+C/qjwLCws0btxYyVlmpKGhgWXLluHZs2ey6sSYmBiMHDlS6b7S35dffvlFFnDmFQ0NDWhpaam8dKH0cZQXmtna2mLVqlUYOXIklixZgqNHj2LVqlWwtbVVeb5xcXEICAjA69ev8fLlS7x69QqvXr1CWFhYhnb6+vooXrw4LCwsYGlpCVNTUxgbG8PPzw8tW7bM0DZ9uKZuhoaGcHNzQ48ePXDo0CE8e/YMO3bsQNGiRRXuw9fXV3a7Xbt2qFixYl5MNYNy5crB0dER27dvR/fu3bF9+/YMFX1ZPWaJiYnw9vYGANSsWRNr167N8IGDO3fuyG4PHTqUwRoREREREVEBKJThmkQiwatXr1C2bFnZsVq1ahXYfIRCoWy/FCLKPYlEAokwEZLUFAg0tSDQ0WeVaCHWuXNnuLm5wcDAQO6Si9k5efIkpk+fjtTUVIjFYrUvwato9UZevulbWP3999+4efMmgLQqxNWrV8ve6J0wYQL27dsnqxYrDJR5LkUiUR7P5j/Vq1dHixYtcPnyZfj7+8PT0xMuLi5K9SENOPMzXMuryqa8ZmRkhPnz52PEiBEAgHXr1qFLly4oXry4Uv0UxP3PTYCXvrpRnmbNmmHYsGHYuXMnnj17ht69e2PXrl2oXr26Qv37+/tj8eLFCA4ORnh4OFJSUmBoaAhjY2OYmJjA1NQUzZs3x82bNxEQEIDWrVtj0aJFSlV25fXPWTs7O4wZMwZubm54/vw5nJycsH//foUrcS9cuCC7PXjw4LyaZibOzs7Yv38/goOD4eTkhNOnT8sC+qxep3v27EFUVBTs7e2xc+fOTIG+NFzT1dVFz5498/YOEBERERERkVyFMlwD0jYc/9///lfQ0wCQtpG6Mp+MJaLMhKGfEPfsOpKD3iD5yweIk+Jk5zT0jKBbvBx0S9jBqMqv0LEsXBU136PExEQkJiaqpa9SpUpBIBBg1qxZ0NPTQ0REhELXXbt2DTNnzkRqaioAYPfu3RAIBJgxY4Za5gUo/mZuXletFDZJSUlYunSp7OtJkybBwcEBQFqVw4kTJzB58mRs2LCh0Dw2iu5PVRBBfN++fXH58mUAwKtXr5S+Xlq5lp9h5vf8gYWmTZuiTp06uH//PlJTUxEQEPBdhGu5GVP6fZjdz7Tx48fj3LlzCAgIQFxcHFxdXXH06FGF+re2tsaqVatgYGCQ7ffayJEjERAQAGNjY6WXTMyPx3zw4MHw8vJCaGgoXrx4gXXr1mX40Mbnz5/h7e2NadOmZbguKioK9+/fB5BWHVu1atU8n6uUiYkJunfvjr179yIkJAT79++X7f8n7zGLiorCjh07ULJkSezYsSNTsCYSifDgwQMAwP/+9z+Ymprman4BAQFo1aqVQm11dHRgbGyMkiVLolq1amjXrh3q1q2r9M+bmJgYHD16FL6+vnj58iWioqKgo6MDU1NTVKxYEQ0bNkT37t0zLZVJRERERERUmBRouObl5QULC4tMIZqNjQ369+9fQLPKSCKRIDw8nOEakYoS3txH1M0jSPJ/kWUbcVIcEj8+QeLHJ4j6xwd6NpVg2rgbDCrUyceZ/ljCw8Ph6OiIwMBAtfU5Z84czJkzJ1d97Nq1CwKBIE+WiMzO9xw0qGLt2rX4+PEjgLSlPYcMGSI7p62tjZUrV6JXr15YvHgxXF1dC2aS31D0OSqIMLBRo0YoUqQIoqOjFa4USk9aaVdQ4VpsbKxCoXh8fLzstqIhurpC/G8NGTIE9+/fR5EiRWBvb6/09QXxPZ+bMXOqXAMAPT09jBs3TvbzMyQkROH+tbS08nzpQEUD8tzQ09NDnz594OHhAQA4e/ZshnBt3759qFy5cqbrzp49K1uyM/3Pw/zSuXNn7N27FwCQkJAgOy7v55m7uzv09PSwa9cuufvWPXjwQPa92qtXr1zPrUSJErh79y6+fv2KKVOm4NmzZwDSVg1ZunSpbG+9xMREREZG4smTJzh27Bj27duHffv2ydqVL18+x7FSUlKwe/dubNy4EfXr10fv3r1RqVIlGBoaIjIyEo8fP8a+ffuwdOlSrFu3Dq6urujatWuu7yMREREREVFeKLBwLSQkBGvXroWJiQkaNWok+4Pf1NQUXl5eatsEXR1evHih0hs7RD+z1IRYfD2/A/HPrit9bZL/C3w5+AJGVX5F0bZO0DTgJ5eVVapUKXh6euLixYuoVKkSypQpAyMjIxgaGmZ6Azg1NTVXFQf8AELhcv/+fXh6egJI+7DKmjVrMj3nlSpVwu+//47Vq1dDS0sLs2bNKoipfjd0dHQwe/ZsfPr0SaU35qVv6isarh0+fBilS5dG/fr1lR7r2zEBYMyYMUpf36hRI5XHVoe2bdti5syZqFWrlkqhUEGEsPLCtZSUFEyePBkNGjTI9oNj0vnm9LO4Y8eOWL16NcLCwnL1+sgL+RVodurUSRaulSxZUnY8ISEBFy5cwMSJEzNdc/z4cQBpPxMVrdL61vPnz7F+/XqsXbtW6aC8evXqKFOmDIKCgjKERd++Tp8+fYqLFy9i9+7dKFOmjNy+rl27BgAoU6YM6tWrp/Ac4uLi5O4XqaGhARMTE5iYmKBFixaycK179+4ZAjMTExNYWVnBwcEBvXr1wrFjxzB79mw8fPgQ/fv3x759+7LdBzAhIQHjx4/HzZs3sXLlSnTo0CHDeXNzc9ja2qJbt25YsmQJ9u7di+nTpyM+Ph4DBgxQ+H4SERERERHllwIL15YuXYr4+HgkJCSgefPm6NKlCwYMGIAKFSoU1JSy9PXr14KeAtF3JTnkI754L0FqnGKVD1mJe3YNiZ+ewbrfHOhYyn+TibJWqlQphYKAuXPnoly5cnByclL6DemYmBi0bNkSPXv2xOjRo2WfcP/eff369bu8L7GxsZg5cybEYjH09fWxYcMGFClSRG5bJycn3L17F3v27IFYLMbs2bN/uAq/+Ph4CAQChfdkyk6XLl1UvlYadOnq6ubY9vDhw5gzZw709fWxdetWlQOU9OGap6cnGjRokOM1Z8+exe+//w5A8eUvd+7ciZUrV8qWvlSn3FQY5cVrOTIyMtv7KR0zOTlZVvk3f/58nDt3DufOnQOAHFdmyGmpWy0tLTg5OWHHjh2YMmWKMtPPc/n186NMmTIoX7483r9/L9ubDwCOHj2KJk2aQE9PL0P7wMBA2TKKAwcOVCl4ffnyJYYOHYqoqCiMHTsWmzdvVno/5tmzZyM5OTnDntLfPmY3b97Ezp07ZX8Pubu7IzY2FnPnzpW18fX1BZAWfin6mO/Zswd//PEHPD09swztgIzhbk6ViF26dMHXr1+xcuVKREZGYvbs2fD29s6y/cKFC3Ht2jWMHDkyU7CWnnQZ6sePH8PPzw9Lly5Fw4YNsw3uiIiIiIiICkKBhGt///237E0GiUSChIQEeHt7w9vbG/Xr18eAAQPQunVruX/8fvnyRel9N3Ljt99+w9ChQ/NtPKLvXXLIRwR7zcuwp1pupMZFIGivK0oMWsiALY84OzujS5cu8PX1hZubGywsLBS+9vr160hKSoKXlxd8fHzg6OgIFxcXhUIEeTw8PDB27NgCDXmEQiE6dOiAkSNHYujQod9N4CSRSDB16lR8+vQJAoEAS5cule2zJo+GhgZWr16NXr16Ye/evYiIiMDy5cuVfsNYnrdv3+L169do3759rvvKjStXrsDDwwOrV69GtWrV1Nr369ev4ejoiMjISIWvuX79OipWrKhQ24SEBIwcORJ//vkn7OzslJ5f+nAtPyQnJ+freDnJi8q1Y8eOYdmyZTm2O3jwIA4ePJjhmEQiwcKFCwHID9ikP2cUWVpx6NChGDBgAHR0dJCYmJivy40WFi4uLnj+/DlatGghOyZdTvBbf/31lywUXbZsmULPYXauX7+OyZMnw93dXW6lYUpKCmJiYjIdl/4MSr/kqvT7VCgUIiIiAj169JC12bNnD7Zs2SJrO3fuXPj7++PVq1cQCARo1qyZQsu3njhxQva4ODo65hiwKWPQoEHYvXs3QkND8fDhQ/j5+cldOvfly5c4cuQIAKBdu3Y59quhoYGhQ4di4sSJSElJwY4dO3L9vBEREREREalbgYRrjRs3xp49e3Dt2jVcu3YNr169kv3Re+fOHdy5cweWlpbo1asXevfuDUtLSwDAx48f0bdvX3h7e2f41GdeKVmyJNzc3PJ8HKIfRWpCLL54L1FbsCYlTopD8IHFKDXCjUtE5oGyZctixIgR8PDwQI8ePbB9+3aFA4Bjx47JblepUgWtWrVSOVgD0irhduzYkaEaIb/dv38fUVFRWLFiBXx9fbFixYpCtVRxVjZs2IArV64AAGbMmKFQsGViYoJNmzahb9++OHXqFIKDg7Fx40aYm5vnai42NjZwcXFB1apVUbp06Vz1lRu+vr74+PEj+vXrh3HjxmHEiBFqC13s7e2xa9cuHDlyBNWqVUO5cuVQpEgRGBoaZmrbo0cPBAUF4X//+x/mz5+fbb/r1q2TVX+0bt1a5WoN6T5v+UUoFObreDnJi1B8yJAhqF27NoyMjGBjY5Opyqxu3bqIjY2Fo6MjZs+erdIYiu5bpqOjg7dv38LZ2RndunXDuHHjVBpPVcHBwbC2ts7XMdPr1KkTOnXqJPv6xo0bEAgEqFGjRoZ2IpEIf/75JwCga9euKu/3OW/ePJw/f172dXBwMJ4+fZppPCAtSP22fU5OnTqFU6dOZXney8sLQNr+aNIxVNmL7MuXL2oN2HR0dNC0aVMcPnwYAHDr1i254dqZM2dktxX92ZR+aVrp/9uIiIiIiIgKkwIJ17S1tdGgQQM0aNAAU6ZMgb+/P86fP4/z58/j8ePHANL2ZNu4cSO2bNmC5s2byz5ZHxUVhV69euXJpuwSiQQSiQRisRgpKSkQiURITk6GUCjEqlWr0LFjR7WPSfQj+Xp+R66XgsxKalwEws/vhGXXCXnS/8/OyckJ3t7eCAkJwdChQ/HXX3/l+MZpaGgorl9P21PP1tYWW7ZskbufizKGDh2K9u3bo1GjRqhatWqu+lLVpUuXZLdv3ryJzp07Y8+ePdlWgRW0M2fOYOPGjQCAESNGyF1O7/79+6hdu3am0MHW1hZbt27FsGHD8ODBA/Ts2RMrV65E3bp1VZ6Prq4uevTogcmTJ+PAgQMKBwbqlJKSgr///htA2pu5bm5uuHv3LjZv3pzj0nvyCIXCTFV9lSpVQqVKlbK9TiwWIywsDABQvnz5HIPLuLj/PpwwefJklcPA9JVrsbGxClW4xMfHy24r0h4AEhMTARS+yrW8Ii84UAfp96Wi+1/eunUL48aNQ0xMDDZs2IDw8HC4urrmy15zy5Ytw5EjR7Br1y5UqVIlz8dTxN69e9G9e/dMxy9cuICwsDAYGxtj2rRpGb7/Hj9+jGrVquX4mH358kUW7pQuXRqLFy/OdplVbW1trF27Fvv370eJEiVgb2+PIkWKwMjISPb8rlu3Dps2bZJd061bNyxfvjzH+9m3b18AaeH+iRMnsmx38OBBuLq6AgB27NiBX3/9Nce+VZW+sjY0NFRumw8fPshu79q1C2vXrs2xXzMzMxgbGyM2NhaRkZGIjY2V++EFIiIiIiKiglJge66lZ2NjAycnJzg5OcHf3x/Hjh3DiRMn8OnTJ6SkpODSpUuyNzsFAgFiY2MRGxubr3M8c+YMwzWibCS8uY/4Z9fzdIy4Z9dgVOVXGNjVydNxfkb6+vro168f1q9fj/DwcCxbtgzr16/P9pp9+/YhJSUFRYoUwebNm3MdrAFpn8pv06YNpkyZgqNHj2baOyevicVi2bLFAFCrVi3MmjWrUAdr165dw9SpUyGRSNC/f/8s92FaunQpUlNTMWHCBDRv3jzDudq1a8PDwwOjR49GYGAgHB0dMWrUKLi4uKgcjPXr1w9btmzBxo0bZft45ad//vkHUVFRsq+dnZ0xbNgwlYK11atX49mzZ9i6davSy2aGhYXJKjVKlSqVY3vpPq+amppKLdH6rdTUVNntMWPGKH19+qoRRai7Ui45OTlXVbCqVK4FBwejePHieVL1dvHiRUyYMCHHx8nHxwc+Pj5K93/gwAFERkZi1apValnaNSsrVqzA7t27AaR9GKIwBGyfP3/GjRs3sGTJkkznpHP9/fffUbRo0Qznli1bhvj4ePz+++9o3bp1lv3v2bMHIpEIlSpVwq5du2BmZpbjnLS0tODo6Cj33M2bNzMs9wgAnz59wuPHj1G5cuUsf0Z9+vQJDx8+hK2tbYYgXJ704Xhufo4oIn3glVUFqzSEB4DTp09j6NChCgXV+vr6sr/5hEIhwzUiIiIiIipUCkW4lp6NjQ3Gjh2LsWPH4sGDB/D29sb58+eRlJQEIO3NEoFAAGNjYzRp0kRt40okEqSmpiIlJUVWtSYUCmX/goKCIBKJVHpTjuhnEHXzSP6Mc+sow7U80rNnT3h4eEAikeDSpUvZ7uWTnJyMgwcPQlNTE25ubmrbvwUAhg0bhq5du2LFihWYN2+e2vpVxL1792SfvNfW1sbKlSsLdFnDnNy7dw/jxo2DSCTCiBEjsgzWgLT78/TpU4wcORI1a9bE7NmzM7y5+euvv2LTpk0YN24ckpKSsHHjRpw/fx4TJ05Eq1atlJ6biYkJevbsia1bt6JZs2aoWbOmKndRZemXIWvQoAEmT56cZdvIyEjZ8tTfOnToELZv3w4g7Q16Dw8PpQJHf39/2W1FXkvh4eEAAEtLS4WrmORJX7nm6emZbaUNkFZxMnz4cDRr1izbx+pbO3fuxMqVKyGRSORW96li165dOHnyJPbu3QsDA4Nc96eIDx8+YODAgWjTpk2OS3eqonXr1ti1axdSUlJgb2+fKcBr164doqKiMixd6O7ujoMHD8LIyAgXLlxQaJxv+01NTcWkSZNw9uxZpeZ75MgR2R5ZWYmOji4UAZunpyeaNm2aKTy7evUqHj9+jIoVK8rd5y45ORmvX7/GmDFjUK1aNWzcuDHTEsCxsbE4ePAgSpcujR07digUrGUnJCQEU6dOhVgsRvPmzSESiXDjxg1ERkZi2LBhEIvFaNiwITp27Ii2bdtm+Lvj+PHjAIDBgwdj27ZtiIqKgqmpqdxx0u8FKV1eP6+k/8BjVo9PxYoV4evrK/s6qwq39MRiMaKjowGkVUObm5tn+XOaiIiIiIioIBS6cC292rVro3bt2pgzZw6OHj2Kffv24dOnTwDS/pCLjo7GokWLZPsPEFHBEIZ+QpL/i3wZK+nzcwhDP0PHsvAGHt8rKysrVK9eHY8fP4aOjk62b5IfPnwYkZGRmD59eo4fdIiJicHVq1fRuXNnheZRqVIlNGzYEPv370eLFi3QtGlTpe5Hbkj3jQGAPn36FOpg7c6dOxg9ejSSkpIwdepUDB8+PNv26d+kLVmypNy9S5s2bYqdO3di5MiRiIuLw5s3b+Di4oLatWtjyJAhaNGihVLhyeDBg7Fv3z5MnToVx44dy7egJC4uThYmCAQCTJ06Ndv2Pj4+WLlyZY79Xr16FZcvX0bbtm0VnsvTp08BABoaGqhcuXKO7aVLSBYvXlzhMeSRVkhZW1tnCh2+df/+fUyePBnBwcF49eoVACgcsBkYGKBTp07o0qWLwh9Aev78eYbKuvT++ecf2X6348ePx5YtW/J8WdHAwEAMHToUX79+xYEDB6Cnp4cZM2aofZx69epleU66HKi5ubls6UJp5Z5AIFB5H0RNTU2sWbNGtiRppUqVYGZmBhMTE7nh7dSpU3H9+nV06NABc+bMUWiMvKyUy0lcXBx8fHywZs2aTOek1deurq5y72tCQoLs9i+//CJ3b01vb29oa2tj27ZtKFasWK7mGh0djeHDhyMsLAxNmjSBh4eHbK+8mjVryj5cePnyZVy+fBmVKlWCl5cXjIyMkJqaCh8fH1hZWaFr1644cOAAgoKCsgzXQkJCAKQ9N7kNBHPy8eNH2e2sfsY5Ozvj69ev8PPzg729vULLVL5580a23Kw0kGa4RkREREREhUmhDtekTExM4OjoiEGDBuHy5cvYvXs37t69i3/++QedOnXC1KlTZXsQEP2MRFE5fwJYEQItbWgZyX8TJjU6LOOYyXqyfUqi75+Td0meiX5wDqYNu2R5Prv7oY7HSts0bz8FnhcuXbqEli1b5rjcWcuWLfH48WM4OTllWTUjEomwY8cOdO7cGcOGDcu2v4iICDg5OeH58+eyyhhFDBo0CLdu3cKcOXNw6tQpGBsbK3RdbsTGxsqWhDQ0NISLi0uej6mqs2fPYurUqdDT05PtTZoTafBRokQJWXghT926dfHnn3/CxcVF9qbpgwcP8ODBA5iYmKBNmzaoU6cOKlasCDs7u2yX7itVqhRatGiBixcvYvXq1bI9gPLaqVOnZG+ct2/fHtWqVcu2vZOTEywsLCAWi1GpUiUUK1YMxsbG0NHRgYeHBzZs2ABjY2Ns3Lgxxwqwb/n5+QFIq9zIaelUoVAoW8oypz0Pc1KiRAl4enqifv36WX7fJycnY/Pmzdi+fbus0s3a2hpv377F27dvUaFChRzH6devH/r166fU3F6/fo1Zs2ZlGbBJXbt2DV5eXhgyZAhCQ0Ph4uKSoRJQupqBWCzOdG365RcXLVqEFStWZDlOUlKSbIUEIK1yTldXFxMnTlTmbmVLKBTi4sWLaNq0aabXQVxcnOzxV8fyut/S0tJSeGlWaZCpo6OjcqCXnw4fPgwDA4NMH8I4c+YMnj17hl69emW5f6S0usvc3FxulbZQKMSBAwewbt06lCtXLlfzTExMxMiRI/H69Ws0a9YM69evzxRKlipVCgcOHMCYMWNw48YNvHjxArt378bYsWNx5coVBAUFYdmyZdDV1YWxsTECAwOzDLOk4VrJkiXzZJlTqdTUVNneqwYGBlkuJ2tiYqLQnnLpnT9/XnabS/MTEREREVFh9F2Ea1ICgQCtWrVCq1at4Ofnh02bNuHq1atYsGAB/v77byxdujTPP51JVBj5bxytln70SldBiUEL5Z77ukvxZcLyWuz9s4i9n/USV9ndD3U8VuVn/5XrPvLbtGnTULJkSYwZMybbSrOOHTsiLCwMgwcPznJPl+PHj8PIyAgzZ87Mdt+X6OhoODs7482bNwCAVatWQSQSYfTonJ+Dli1bolSpUggICMDSpUuxbNmyHK/JLR8fH9kb7KNGjcqx2qeg7N27F0uXLoWdnR3Wr18vtwJNHmm4psgbrba2tjh06BCmTp2Kq1evyo7HxMTgr7/+wl9//QVzc3NMmjQJvXr1yravQYMG4eLFi9i/fz/atm2Lhg0bKjTf3Dhw4ACAtMofRSuwcqqsLF68uNLBGgA8evQIALJ8gz896ZKQQO7DNWtr6yz7kEgkOHPmDNzc3ODv74+iRYuiY8eO6Ny5M6pWrSr3mjNnzuDVq1eYMGFCruYFAF27dkWJEiVw9+5dvHnzBq9evYKFhQVKlSqFyMhIXL58Gdra2ti6dSt++eUXAGlL223evBnHjh2DnZ0dIiMj8fTpU3z48AFA2hJyEokEEokEYrEYkZGRsp89c+fORffu3XM9b1UEBwfD29sbR44cQdu2beX+/JXuswfguwi0CovU1FR4enqiW7duGT4MEh8fj2XLlqF06dJZViCmpqYiJiYGAFC9enVZxWZ64eHh+P3333P9Mys6OhouLi54+PAhBg0ahJkzZ2b54RV9fX1s3rwZjo6OePTokewDDnv37kWVKlXQtWtXAGkh7OvXr9GmTRu5/QQGBgJIW24/L/3111+ysRwdHWFiYqKWfoVCIf78808A/1XHEhERERERFTbfVbiWXvXq1bFlyxa8ePEC69atw5UrV9ClSxesW7cOtWrVKujpEREVKvr6+nj16hXGjx+vUHsvL68c22T1CfXsuLu7IyUlRbYUVlY0NDTQp08frFmzBj4+PujYsaPsTfa8IBaL4enpCSCtemDIkCF5NpaqEhIS4OrqilOnTmHo0KGYMGGCUsuxKbu0nomJCbZu3Qpvb2+sWLFCVglmY2MDV1dXhZfrbNiwIWxtbfHu3Tu4urri+PHj0NPTU2ouyrh16xZevEhbpnbo0KEoWbJkno2Vk7dv38reeFbk9SutNgGQJ0teC4VCnD59Gjt37sTr169Rq1YtjBs3Du3atcv2tbRnzx4sX74cYrEY9vb2aN++fa7nUr9+fdSrVw/x8fHQ1taWVUD6+PjIwrVvHzMLC4sM1a/SoEGeixcvYsyYMbmepyokEgn++ecf7N+/H5cvX0bjxo2xa9cu2Nraym2f/nm3sLDIr2l+986fP4/AwED06NEjw3EPDw/ExMTA29s7y0rAkJAQ2RKDlStXxuXLlzO1sba2RpcuWVfJKyIoKAgjRozAp0+fMG/ePLl7v31LV1cXHh4e6N69O2xtbfH48WPcv38fhw8flq0YYG1tLVty9lsJCQmyPc3UuR/qty5fvoxFixYBSPs5P3bsWLX17eXlJbsPLi4uhfbDLkRERERE9HP7bsM1qUqVKmHLli24c+cOVq5cCUdHR8ycOVOhP16JiH4W0jfOS5QoIduLqrDr0aMH1q9fD5FIhLlz5+L06dN5FsqcP38eAQEBAIAZM2YU6B5C8rx58wbjx4+HQCDA3r17M1RBiUQihfa6UnQ/rG/17dsXzZo1w9q1a+Hr64sDBw4oHQD07t0by5Ytw6dPn7BhwwZMmTJFpbkoYteuXQDSKp2cnZ3zbBxFSJc1MzMzy3FvQgCyN5OB3FeuSaWmpuLp06c4ffo0Tpw4AZFIhM6dO2PNmjWwt7fP9tq4uDjMmzcPJ0+elB2bNWsW7OzsYGdnl+u5CQSCPFkGsaAdOHAAe/fuRbly5bBp06Ycl20NDg6W3Za37xfJ98cff6Bu3boZqncfP34MLy8vrF27Fg4ODlleKw29AaBs2bKIjY1FcnJytsvcKsvPzw9jxoyBmZkZDh8+nO18pKGZlKWlJQ4cOABjY2NMmzYNLi4uGa4vW7ZshmUT05PuTw1ALd+n6SUmJuLRo0c4ePAgzpw5AwDo1asXXF1dVf5/zLcCAwPh4eEBAPj111/h5OSkln6JiIiIiIjU7bsP16Tq16+Pw4cP4/jx41i5ciU+fvyIWbNmFfS0iIgKFYFAoNY3D/NS0aJF0bJlS5w7dw6BgYHYunWrwvsGKUMikWDLli0AgKZNm2a5zNa3OnXqlOFN8dy6d+9epmPS/e28vLwwYsQIDBw4MFMF2q5du/DixQuMHDky2zdvla1cS8/a2horV65EXFycSmFI165dsXr1aohEIuzevRvdu3dH+fLlVZ5PVp4/fy5bxnLmzJkwNDRU+xjKuHDhAgCgQ4cOCr3xHBb2396Wua1ci4mJke3xFBcXB3Nzc3Tu3Blt2rSBtrY24uLicPfuXaSmpsr9l5iYiI0bN+Lz588AgFq1aqFHjx5o2rQpA6B0JBIJfH194eXlhdjYWABplcJjxozBwIEDFXrepUv/AVB4mdef3Z07d+Dn55dhH6+4uDhMnjwZM2bMyPHnuPR1DaQFUJaWlnj8+DHq16+vlvnt3r0b69atg6OjI8aMGSP3Axvh4eEQCATo0aOH3OUrbWxscPPmTYjFYowaNSrDubJlyyIsLAwhISGZvh/TL3GpyL6JWVmwYAGWLl0q+zo1NVVWwWxpaYmuXbuif//+qFGjhspjfEskEmHSpElISEhArVq1sG7dukzBIxERERERUWHxw4RrUp07d0aLFi3g7u6OHTt2ZFg+iIjoZyddBut70aVLF5w7dw4AsHPnTvTp0wfFixdX6xiXLl3CixcvoKuri7lz5yp83fbt25GSkqLWuaR37949LF++HPXq1cOJEyey3ItJR0cHp0+fxpkzZ9C8eXOMHj061292BgUFyQ13VK0yMjU1RfPmzXHhwgWIRCKsWLECW7duzdUc5dm4cSMAoHHjxmpZujA3/Pz88Pz5cwBQeL+vL1++yG7nNlwzMTFBiRIl8ODBAwBAREQEdu/ejd27d2dqa2pqCgsLCxQrVgz6+vq4efMmEhMToaGhgd9++w0jR45E5cqVczWfH014eDh8fHxw8OBB+Pv7ZzjXrVs3DB06VOG+pPvGFS1aFMbGxmqd549q27ZtMDIywm+//SY7tmjRIvTs2RMDBw7M8XppAKWpqQlbW1tUrFgR169fz3W4lpycjClTpkBHRwfHjx/Pds8zR0dHSCQS9OvXL8vnPSkpCatXr84UMJUrVw5A2p6O//vf/zKce/nyJYC0+1apUiWV78v48eMz9H337l1ZCOjo6IgRI0ao3HdWFixYgEePHqFRo0bYtGkTDAwM1D4GERERERGRuvxw4RoAGBsbK/UGKRHRj04aqn1vnwBv2rQpTExMEBMTg+TkZGzcuFG2x4s6iMVirF+/HgAwZswYlC5dWuFr1R3yfevr16/YunVrjnvNSCsRJRIJrl+/jubNm+cqXDt69CjmzJmDVatWoV27dir3862OHTvKKrmuXr2KBw8eoHbt2mrr38/PD5cuXYKenh4WLFigtn5VJQ2xWrRogSpVqih0jTRcMzY2RpEiRXI9BxcXF9lyqrVr14adnR1KlCiB4sWLw9LSEpaWlihWrBh0dHQQGRkJT09PeHl5QSgUonPnzhg9enSmCkM/Pz84ODgUuqVT80NcXBx8fX1x8uRJ+Pr6QiQSAUgLJ8eMGQN3d3fEx8cr3a80DMmu8lSdVqxYgREjRmQZ2Gfl2rVruHr1KubMmQOBQJBHs8vZ06dPce3aNfTp0wf6+vqy46NGjZKFTjmRhmsODg7Q1dWFg4MDDh06hEmTJuVqbrq6upgwYUKW++tJffz4EW/fvgUAODs7w9nZGZMnT87UrkWLFnKvL1myJPT19XH16tVM4dqjR48AALa2trkKp8zMzFCqVCnZ19bW1nBzc0NoaCi8vb3h5OSk1t8pPDw8cOjQIbRp0wZubm4/5c8YIiIiIiL6vvyQ4RrRz8ZmzGa19CPQynr5qmJD12T4WldPT/amSugxdyQHvJJ3WZ7QLeUAyy5ZLw+Y3f1Q12P1vZEu5fS9fQpcW1sbLVu2xNGjRwGkBT+TJ0+GqampWvo/duwYXr16BQcHh0K3r0v6iozspH9z2d3dHa1bt1Z5zKNHj2LmzJkQi8WYMmUKNDQ0Mr1xq6pmzZpBT08PSUlJANLCJ3WGa6tXr4ZEIsH48eOVCknzQmBgoKzicty4cQpfJ11mNLdVa1K2trbYsmUL6tevn+F1kl5AQAB2796Nv/76CykpKejSpQuGDx+e5fKEDx48wNixYzFy5Ej07t1bbfssFXZCoRC9evXC+/fvZccEAgF69+6NSZMmwdTUVBbUKyMuLk62R5aiIWxu3bp1C8ePH8fChQtRq1atDOek1bhCoRARERGy4wEBAZgwYQLi4uIQHx+PJUuWQFNTM1/m+61169YBAHr27JnhuKLBWkpKCvz8/AAAderUAZC2h/Pz588RHh6e4wcacpJTsAYAp06dkt1u06aN3FDv6NGj6Ny5s9wAS0NDAzVq1MDVq1chFotlbZKTk/H06VMAyPTc5pampiZ69OiBzZs3IyAgAL6+vjnuJ6iorVu3YsOGDejatSuWLl1aYK8tIiIiIiIiZTBcI/oBaJta5vkYmkUsMo6pry97M0e/dJV8Ddf0S1dW+T7nx2NVGEkDje8tXAPSQhlpuCYUCnHr1i2Fg6fsJCUlYf369dDW1sby5ctztSdZQUr/JmTJkiVzbB8YGIiKFSvm2C4lJQWTJk2Cu/v/2bvvuBr7/w/gr9M47VTKLLJlb7c9yg4NZEaSyCjrzkgy05CRiBCRhDtZ2SsZt71HboSKREvz1Dnn90e/c31Lpzqzwvv5ePRw6lzX5/qcWa7Xeb8/m0Reh64sampq6Ny5M65fvw4AzL+ycO3aNfz7779o164dpkyZIrNxJeXj44OCggKYm5uLFZgkJiYCQLFqEWn16dNH6M8fPHiA/fv349y5c9DS0sKkSZMwadIkGBgYCN1eYMqUKcjMzMSqVasQEhKCv//+G6ampjKbb1XFZrPh5eWFcePGoaCgAIaGhvDy8kKnTp2kGvf+/ftMZbG0Y4lKRUUF3759g5OTU6nbnD59ulgAVNSxY8dgYGAgtNJKngoKCnDgwAFER0ejefPmaNOmjUTjPH/+nPnAyV9//QWgsIJNWVkZp06dwuTJk6WaJ4fDYaoaS3P8+HEAha1A3dzcmPkI7N+/Hxs3bsSFCxfg6+srNBzv3Lkzbt++jUePHjEfVLhz5w5z7O7du0t1O4QZPXo0duzYAR6Ph9DQUJmEawEBAdiyZQvGjh0LDw+PSq2KJIQQQgghhBBx/JpnEgkhVYpmy55IuxlRgcfrVWHH+h3weDwmXNPW1q7k2Yiva9euxb6Pj4+Xybg7d+5EYmIiFixYINW6NJVN3E/4165dGxERor9eZRk6du3alQnVsrOzkZKSInZrup9xOBysW7cO6urq8PHxqfSKh3v37uHMmTMwMDCAm5ubyPvl5+czbSFlGa4VlZmZidOnTyM8PBzPnz9HkyZNsGLFCowcORKqqqoijzN79mxkZmYiODgYTk5OGDx4MFatWiWTVpZVWZs2beDo6Ih///0X27dvl8n76e3btwEUVulWVLgmqDZs3rw5E/KUJz4+nglR+/XrhxkzZshtfgLv37/H7NmzoampCT6fjw8fPiAtLQ0AYGNjI/G4V69eBVAY+Pfo0QMAoKqqii5duuDIkSNSh2vv37/HlClTilX+leb79++lBuAAcPHiRcyaNQu7d+8uEToJ1oe7cOECE65FR0cDKPy9IAgOZalu3bro3r07YmJicP36dXz8+FGqSuFNmzZh+/btmDx5MpYuXSrDmRJCCCGEEEKI/FXpcO3kyZMwNzenTzASUsWxa9SHqpEJcj+9lPuxVOu1ALtG5bZ8+9UITkYCQM2aNStvIhKqXr06atasiaSkJACyWTfu06dP2LVrF7p27Ypp06ZJPV5lEjdMUlBQkDrQktTPVVyy+P0eHByMuLg4eHp6Vno7yLy8PGa9t9WrV0NXV1fkfePj48HlcgFAprcjOTkZV69excWLF3Hz5k1wuVz069cPCxcuFKmyhc/nIysrCxkZGfjx4wd+/PiBjIwMNG/eHHXr1kVCQgLOnj2LN2/e4ODBgzJr2VpVOTk5YdKkSTL7oIIgDOnSpQs0NDRkMmZ5pG3laWpqWiFzbdCgAQ4cOIDTp08jKCio2O+yzp07SzzuxYsXAQC9evUqFir36tULnp6eUq8H2axZM+zduxdXrlxBy5YtUa9ePWhpaTH32eLFixEVFYXmzZvj0KFDJX6npaenw8zMDHl5eRg4cCBWrVol9L2ybdu2YLPZiIiIgIuLC5SVlZl2tJ06dZLba9HGxgYxMTHg8/kICwuDq6urRONs2bIF27dvx9SpUyUegxBCCCGEEEIqU5UN13bu3ImNGzfi4cOHmD9/PpSUlJgvQkjVo9PNEl8qIFzT6WYh92P8bn71cA0AGjZsyIRr7dq1k3q81atXQ1tbGxs2bJBJWFeZKrtSSxwNGzZkLhsbG4sVPgkTHx+PwMBAWFlZwcrKStrpSW3t2rWIjY3FjBkz0K9fP7H2LbqWV/369aWax5cvX7B27Vo8f/4cCQkJAAorELt3746hQ4dCXV0dCQkJCA4OLhGaZWZmFvtZZmYmeDweWCwWqlWrBn19feZr4MCBuHHjBmJjY/H27VusWbMGvr6+Us29qlNSUpL6eSvw9u1b/PfffwCAIUOGyGRMUfxK73m6urqYOHEiLCws4ODggAcPHgCAxOuivXjxArGxsQBKrtnWt29feHp6Yv/+/VKvB9msWTOh7XdjY2Nx9uxZAMDy5cuFtns8fvw48vLyoKysDDc3t1KfbyoqKujevTuuXr2KkydPom7duszvSVm0Ti5N//79YWBggOTkZERERMDZ2Vmsyleg8P95AQEBFKwRQgghhBBCfmlVMqkKDw/Hxo0bmU9EhoWFFbteUVERysrKzBebzYaysjJUVFTAZrOhqqoKVVVVqKioQE1NDWpqalBXV4eGhgY0NTWhra2NatWqQUdHB/r6+qhdu7bQ/9wSQkSn3qQjNFr2RNbzGLkdQ7NlL6g37ii38X9XRcM1IyOjypuIFDp16oRbt25h5MiRUp/0PHnyJG7evIl9+/aVu74Uka1atWrB0NAQX758wfLly6Ueb8WKFWjUqBFWrFghg9lJR9Bu0dLSEvPmzRN7/5cv//fhBFHWxCtLrVq1kJiYyARrQOF6VdHR0UylVFFaWlowNDSEoaEhvn//jrdv36Jp06ZYtmwZDAwMYGBgAH19faEVTy9evMCoUaPA5XJx9uxZeHt7yz282b59OywtLVGrVi25Hkfejh07BqBwLcyKDNd+xQ+qaWpqwtHREY6OjgAk/1BBeHg4gML2hr16FW8xbWxsjHbt2uHMmTOYOnUqWrduLd2khfDz8wOPx8PIkSOFtgHNzc3Fvn37AAAjRowo9wMxw4cPx9WrVxEaGoo6deoAKGxxOWzYMJnPXUBJSQmWlpbYuXMn0tLScPr0aVhbW4u8f3h4ODZs2IAJEyaIHKwFBwfD2Ni4zBaahBBCCCGEEFLRquT/rpOTk8Hn88FisZhF3osqKChAQUEBcnJymJ9J21qqRo0a6NSpE/r3748BAwaAzWZLNR4hfyL9gdOQ++EFuJnlrzMiLkVNPVQfaC/zcf8ERdcoa9y4cSXORHLjx48Hm83G1KlTpRqHw+HA09MTa9asQceOFNRWBg8PD/D5fPTs2VOqcS5evAg+n4/w8HCxqyZk7datW1i8eDEGDBiANWvWSDwGABgYGKBGjRpSz8nFxaVEy9PGjRujZcuWaNq0KYyMjJhArehaacuWLcPbt29Ro0YNZo2tsrRo0QKTJk3C3r17oaGhIddgraCgACtWrEBOTs4vH6xxOBxm7cORI0dCU1NT4rHevn2Lq1evwt7+1/odeebMGbFCRS0tLeZyfn6+2MdLTk5mAs0ZM2YIfa6OGzcOjx49gre3N/bv3y/2Mcpy9+5dXLlyBZqamli0aJHQbQ4cOIDk5GQoKyvDycmp3DFNTU2hrq6OFy9e4MWLFwCAoUOHyn39wzFjxiAoKAh8Ph+hoaEih2tXrlzBypUrMWLECLE+YHH06FG4uLhIOFtCCCGEEEIIkY8qGa7Nnj0b1atXx8qVK9GzZ0+w2Wzk5+czX3l5eeBwOMxXXl4ecnNzkZeXh4KCAomO+fXrV0RFRSEqKgo6OjqYMWMGbG1tab03QsSgqK6F2uPckLjfHbzcTJmNq6Cqidrj3KCorlX+xqSEt2/fAihsBdaoUaNKno1k9PT0MH36dKnHycvLw7x582BhYSH9pIhEfq4WkVRubi5CQ0MrvdXp06dPMWvWLNjY2GDp0qWlhkuZmZmlBijx8fFMuztR1kETRa9evdC5c2ekp6fDxsYGgwYNgoGBATIyMvDo0SP07t1brPHi4+NRp04dobfP2dkZUVFRMDMzk8nchcnKyoKzszMSEhJw9OhRuR2nohw+fBjfv3+HsrIyHBwcpBrry5cveP36tcjbV5W/bTdt2iRWuJaZ+b+/K9LT06Gvry/W8QIDA5GXlwdjY+NS28gOGTIEnp6euHPnDk6fPi2zCjAejwdPT08AQKtWrRAfH49q1aoV+zDfly9fEBAQAACYOHEiDA0Nyx1XTU0NpqamOHnyJIDCij5Z/K4sj5GREbp164abN2/i+fPnePz4Mdq2bVvmPrGxsViwYAG6deuGdevWifw8/O+///Dff//9spX3hBBCCCGEkN9XlQzXgMJPjq5cuRLLli1DgwYNRN6Py+UiJycHOTk5yM7ORmZmJrKysoqtJ5KSkoKUlBR8/foVHz9+xMePH4uFcqmpqVi/fj1u3boFf39/qRd+J+RPwq5RH3UmrcLnsDUyqWBT1NRD7XFuYNeQbg2iP5lgTR8TE5M/vgWulpYW7OzsKnsaRAbMzc2LreEmD8+ePcP58+cBAAkJCXj16hWaN2/OXH/r1i0sWLAA8+fPx8SJE0sdJz8/H7a2tuBwOGjdujVatWqFJk2aMGurrVixAjweD4Bs10ry9/eHjo4OcxKbw+HAxcUFd+/eRXBwsNC2dKU5f/48QkNDMXDgQFhaWqJp06bMderq6tixY4fcTn5//foVjo6OeP/+PY4cOQINDQ25HKeiZGZmIjAwEAAwYcIE1K1bV6rx0tLSkJGRIfL2VSFc4/F4iI+PB4/HE7nasWib05SUFLE+LPLixQuEhYWBxWJh1apVpbbGVFFRgZ2dHTZu3Ah3d3e0atVK6jUQASA7OxujRo1Cs2bN8OzZM0yYMAGKiopo1aoV2rdvjw4dOmD37t3Izs5GvXr1MGfOHJHHLvp4GhkZSf18EtXo0aNx8+ZNAEBoaGiZ4VpmZibmzJmD2rVrY/PmzWL930qwjmO9evWkmzAhhBBCCCGEyFiVDdckpaioCE1NTbHa6+Tl5eHRo0c4ffo0jh8/Dg6HAz6fj2vXrmHDhg1YvHixHGdMyO+HXaM+DB388P38bmQ+vy7xOJote6H6QHuqWJPS8+fPAQB9+/at3IkQ8otIT0+Hn58fDh8+jMGDB8Pb2xvBwcGYPHkyAgIC0KlTJ0RGRuLgwYMIDg4ud400ZWVlRERE4MGDB/Dx8WHaAf6scePGMn2d6urqMpfz8/OxYMEC3LhxAwDg5OSEsLAwkQOKqVOnom/fvli2bBn27NmDNm3aYMyYMTA3N4eamhpatGghs3kX9ebNG0yfPh2JiYnw9PREkyZN5HKciuTr64vk5GTUqlVLrBClNKmpqcXW1iyPsJbrFS0tLQ0FBQVIS0uDnp6eSPsIqrCBwiovUeXm5sLV1RVcLheTJ09G165dy9x+8uTJOHjwIJKSkuDs7Izw8HCoqKiIfDxhNDU1MX78eOb71NRUXLt2DZcvX8ahQ4ewe/du5ro6deogJiYGffr0Kbfl7ZYtW3DixAnm+7i4OCxcuBAbN26UeF06UZmZmUFPTw8pKSk4c+YMFi9eXOpjuXLlSnz58gXHjh0T+f9oKSkp8Pb2xpUrV2BgYAB1dXXmQwiEEEIIIYQQUhXId8X5X4SKigq6du2KVatW4fjx46hduzaz3ltISAju3btX2VMk5JejqK6FGhYuqDVmKVTriXfSVbVeC9SyWYoaFi4UrEnp2bNn+Pz5MxQUFDBy5MjKng4hVRqfz8c///yDwYMH49ChQ5gxYwY2btwIExMTeHt7Y9CgQZgyZQoOHDgALS0tHDx4sNxgragOHTrg4MGDWLhwYYnrNDQ04OXlJZc1y3JycuDk5MRU4QGFgcOePXvEGqdhw4YIDQ2Fq6srXr16BTc3N/Tp0wcbNmzA9+/fZTJXLpfLXP73338xfvx4JCYmYuTIkaW28vuV3L9/H4cOHYKCggK8vLykWmtNQNzKtaoQriUnJwMorEoU1Zs3b5jLRdcSLY+7uztiY2PRvXt3/P333+Vur6amhrlz5wIAXr58iblz5yIvL0/k44lCV1cXFhYW8PDwQMuWLYtdd/v2bcydOxc9evTAxo0bweFwhI4RFhbGtJHs27cv03L33LlzWLZsWbHXkqiK7lPe/mw2G5aWlgAKq2IPHz4sdLuHDx/ixIkTYLFYcHJywuDBg8v9MjU1Rc+ePZk18qglJCGEEEIIIaQq+q3DtaCgILGDMWNjYzg7O4PP54PFYoHH42HDhg1ymiEhvz/1Jh1RZ9JqGDpshE53K6g1aAMF1eInExVUNaHWoA10ulvB0GEj6kxaDfXGHStpxr+XCxcuAAD69+8vk9ZWf5LHjx9jzZo1VeJENJHO5s2bcf162VW0r169wvjx47F06VKkpKTAwcEBzs7OxbZZsWIF+vbti9WrV+PQoUNMQCAOFosFBwcHuLi4MD9r1qwZDh48iFatWok9XnmSkpIwfvx4REdHAyj8O8fDwwM3btzA2rVrxR5PQUEBU6dOxeHDh1G/fn2kp6dj586dMDMzw86dOyU6oV9USkphO+Hc3FzY29sjIyMDxsbGWLFihVjjiBMSVJSMjAwsXboUfD4fLi4u+Ouvv2QyblpamljPRcF7Go/HY1qll/dVNLyTxf0pCGOTkpJE3uf9+/fMZVHDNV9fXxw/fhx//fUXAgICSm0H+TNra2t06dIFAHD16lU4OjoiJydH5LmK4sWLFxg1ahTu3LkDIyMjhIWFYe/evejcuTOA/7UPXblyZYl9Q0NDsWrVKgCFrfS3bdsGPz8/GBsbAwCOHTuGKVOm4Nu3b+XOg8fjISMjA3Fxcbhy5Qrz88jISLx79w4ZGRmlVoyNGTOGubxz505cu3YN6enpxQJBwWOdk5OD9+/fi/QVHx9f7HlGf78QQgghhBBCqqLfri1kUW3atMHff/+NEydOiPXJ4J//A/fo0SPcvXuX+c8uIUR87Br1oFdjAoDCE3t8Ti743HywFJXBYqtWiTVgfjc8Hg9nzpyBoqJisRP5pHyPHz+Gvb09fvz4gZycHKxZs+aPf45GRUUhMzOz2MnUX8GGDRuwc+dOqKioYNu2bejZs2eJbc6cOYMFCxYwJ3MtLCyEVpcpKirCz88P8+fPx4ULFzBw4EDY2Nhg9OjRYlWwAYCDgwOSk5PRvXt3mJqayuX5devWLSxcuBDfvn1D7dq1MXfuXFhYWJRZHSdqBZSJiQn++ecfuLi4ICYmBtnZ2diwYQNu376Nbdu2ldvOrjSPHj0CUPj+xePxoKysjA0bNoi9zlplhGu5ubmlXsflcjFv3jzExcXBxsYGjo6O5Y4neE6UVzX15csXJhwRhCtlEawzHBsbi27dupW7/c9Kq6QqGsAUXctYmA8fPgAAnj59ij59+oh03PT0dOayKKGRt7c3du/ejT59+sDf31+s1o4sFgteXl4YMWIEfvz4gVu3bmHChAnw8fERa603YfLz87Fnzx5s27YNubm5sLKywrJly5j/q3Tr1g1Xr17FypUrkZiYiOPHj2PFihVgs9ng8Xjw8vLC3r17oaCggEWLFmHatGkAAG1tbWzfvh0TJ07E9+/fcefOHVhYWGDVqlXo379/qfNJTEyEqalpiZ/fu3cPQ4YMAQBcunQJhoaGJbYxNjZGly5dcOfOHWRlZWH69OkAgOXLl5e5DqW4qHKNEEIIIYQQUhX91uFa165d0axZM6xduxaenp4i7/fzGgXm5uZC/0NJCJEMi8UCS0UNgFplT+W3FhUVhQ8fPmDy5MlVep0iPp8v8cnvolVlXC631BO6Rbcr76Tvs2fPMG3aNPz48QMAcPToUbBYLKxevfqPDdguXryIRYsWgcvlQllZmWkF9jMulyt1pR+fzy/3MRJ1u82bN2Pnzp0ACgMKJycnbN++HT169Ci23YABA2Bubo7jx4/DxMQEq1evLnVMNpsNf39/BAUFYevWrdi/fz/2798PIyMjdOzYESYmJjA2Noaenh6qV68ODQ0NqKqqQkVFpdjzR0lJCe7u7kKPweVykZeXh+zsbKSnp+PHjx9IT0+Hjo4O2rZtW+59w+Fw4O/vj127dkFZWRmzZs3C9OnTmcBrx44d0NfXh4GBAapXr45q1apBQ0MD8fHxuHXrFgCI1J5SS0sLO3bsgKurK06dOgUAuHHjBrZv34558+aVu7+w2/3y5ctiP5s9e7ZEFX1FnxuyDNdiYmKgra0NY2NjaGtrMz+/efMm8vPzARSusfczT09PxMTEwNraGh4eHiIdi81mAyh8PEsLzrhcLp48eQKg8HEV5e9dQQjWvHlzHD9+XKS5xMfHMwFMaWFf0UD17du3aN26danj3b59GwBw+PBhTJo0CdWqVSt3DsbGxnj9+jWAsltb5ubmYvny5Thx4gSsrKywatUqoY9JeerUqYNVq1Zh/vz54PP5eP78OaysrLBgwQJMnDhRohaud+/ehYeHB/777z80bdoUCxcuFBou9u3bF507d4anpyciIiLA5XKRlZWFv//+GxcvXoSRkRE8PT1LfPCvYcOGCA4Ohq2tLVPROHPmTHTs2BHz5s0T+kFBQ0ND5n6VxP79+8u83szMTKrxCSGEEEIIIaSq+q3DNQD4+++/MXz4cAwcOBD9+vUTaR/BCVUAsLOzg6urq7ymRwghcsHj8bB9+3YYGxtLdJK7In3+/BkTJ05EQkKCVOOI0mLtx48fJda3EcWRI0fAYrGwatWqCgvYcnNzkZ2dXe52mZmZzOWMjAymrd7PBNUmglZwonr06BFcXFyYsGLp0qVQVlaGubl5iW2PHz+OZcuWldpCTBSXL18W6TEShFriyMvLw8yZM0sEbEpKSvDy8oK+vj6sra2ZUKM0LBYL06dPx5AhQ+Dv74+oqCh8+vQJnz59QmRkZKn7sdlsqKioMOMXfS7x+Xzk5eUhLy+PCWmKHq9bt26wtbUt9zY+fPgQy5cvR1xcHEaPHg0nJyfUqlWr2DaNGzfGzZs3ceHChVLb8mlpibbepZKSEry9vfHjxw9cu3YNQOG6YpJQVFTE9u3bMWHCBGRlZaFNmzZwcHCQaKyi1VWyXC8rPT0dGzZswIsXL6CjowN9fX0oKyvjv//+Y7b5uYrRy8sL+/fvx/Tp0zF//nyR30MaN27MXF60aBHmzZuHmjVrMj/j8/k4cuQI8xhGRESgRo0a5b7n//z8EldpFXrNmzdn1ixev349fvz4ARMTkxJVh/fu3WPW/0tKSsLEiRNx+PBhqKmV/YGbGTNmYOnSpcjJySk1ZH7//j1cXFzw6dMn+Pj4YMSIERLcwv8ZOnQoPn36BD8/PwCFt33t2rU4ePAg7O3tMXLkyHLfL4DC2xwYGIjr16+jXr168PHxgbm5eZkBnYaGBtasWQMXFxc8fvwYS5cuRUJCAmxsbODq6lpqNWezZs2wb98+ODg4MGva3b9/HxMnTkTdunUxcOBATJ48GbVr15bgHiGEEEIIIYQQIvDbhGvZ2dm4e/cujI2Ni7V1bNCgAcaMGYPly5cjKiqq2KeMSyNoNdOyZUuRFj4nhJCqJjIyEvHx8QgPDy/3hGVlq1OnDvbv34/w8HA0b94cDRs2hJaWFjQ1NatcpZhgPc6KkJ6eDltbW8TFxYm8jyjhy+fPnyVqBSfA4/Hg6uoKZWVlDBo0qNh1VlZWUFVVRWJiIlq2bIkaNWpAS0tL4haB8vJzhTpQGGCJ+zvfyMgI3t7eWLBgAaKionD+/Hk8ffq01PCCw+GU2lKvNPXr18emTZvQokWLMrf79u0b/Pz8cPbsWVhZWWHHjh2oW7eu0G1NTU1hamqKpUuX4sKFC/D19cWnT5+KbSPOc0RRURG+vr6wsLBAQkKC2C0cizIxMcGWLVvg5OSENWvWCH2sRFG0ck2UkFpUw4YNw7BhwxATEwMvLy/ExsYWu15XV5epROLxeFixYgVOnToFb29vjBw5UqxjDRgwAJs3b0ZiYiKePHkCOzu7MrevVq2a0PZ+PxP3Ofiz0sLKGjVqwNzcHCdPnkRqairWrFkj0nhDhgwR6ffU0KFD0bdvX3z48AFNmzYtdh2Xy8W+ffuwefNmtGrVCseOHZPZOl2Ojo5ITk4uFuZ/+PAB+/fvx4cPH4S2kAUKn4PXrl1DcHAwHj58iF69emHz5s0wMzMTee237OxsBAQEICwsDG3btsX69euZteDK0rx5cxw+fBgODg548+YN8/O8vDykpqbK9DVBCCGEEEIIIX+q3yJcO3bsGLy8vJi1GIYPHw53d3dm7YLZs2cjMjIS69atw/r168sdLz4+HiwWCwsXLqxyJ3YJIaQ8nz9/hqenJzw9PdG8efPKno5I6tati/nz51f2NKqUmjVrIiQkBFFRUWjevDkaNGgATU1NaGhoVOnfTUOHDq3sKVS4mjVrws7ODnZ2dsjLy8OzZ8/w9u1bxMXFISkpCampqUhLS0N2djZycnKQm5sLDoeD/Pz8cquI1q9fX2awxuFwsHPnTly8eBHDhw/HlStXRGqxBxSGYoMHD0aPHj0wYcIEpnVb9+7dS239WRptbW0EBgZi2rRpsLa2Fmvfn/Xs2RPHjh2Tam2rogFQTk6OVPMRpmfPnujSpQvc3d1x7NgxAIVtEdeuXQsdHR18//4drq6uyMjIwD///IOGDRuKfQwNDQ0cOHAA27Ztw8uXL4WGYoqKitDS0kLHjh0xYcIE1KhRo9xxBZVn4qxHDBS2ZZw2bVqZIeG6detQs2ZNnD17Ft+/fy+1Jae6ujpatWqFSZMmoW/fviLPQV1dHSYmJsV+duPGDaxfvx58Ph9+fn4iBYzicnNzg66uLrZs2QIzMzN4eHjAwMBA6LavXr3CsWPHcOHCBRgZGcHU1BSbNm2Cvr6+yMfjcrk4duwYtm7dCm1tbQQEBIh9u2rXro3w8HC4u7vj1KlTcHZ2xrRp00SqtCOEEEIIIYQQUj4WX9rFUeSoefPmOHPmDBo0aFDqNhs2bMCuXbuKrb3AYrHQsmVLHD16lPnZ1q1bERAQgKCgIPTs2bPM4y5ZsgSvX79GRESE9DeC/JI4HA6ePn1a4uetW7eW+qREQUFBsU8RA0CTJk1E/hRzZeDxeCVOTqqpqUm03giRLz6fjylTpqB3796wt7ev7OkQQkTA5XKZLx6Px/xNw+fzy63g5PP5uHfvHjp16iRV6Hru3Dns2rULFhYWsLGxkfh3Eo/HqxK/G3bu3ImjR4/CxsYGVlZW0NXVlctxCgoKMGDAANSrVw+urq5o0aIFbty4gTVr1mD8+PGYMGFClbg/inJ3d0ePHj1gamoq8uNcUFAABQWFKnVbbt++jcDAQPD5fIwaNQpDhw6VuNJRVNevX0e3bt1Kvd8yMzMRGhqKzp07o3Xr1mKv9cbn83HmzBls27YNxsbGGD16NHr37i31ByouXbokl9Cxosnq79Ff8W9xQgghhBBSNeTn5zPrXgu0adNGonWef3XyPH/+q6jUcO348eNlfvq1vHAtNDQUq1evZv7DKbgpTZo0gYODQ7F1FrKysmBmZgZ1dXWcOnWqzPYzo0aNwogRI0Rqr0V+TxSuFUfh2q8jNzcXp06dwqhRoyp7KoQQUmlSUlKgq6tbIVWeKSkp0NPTY74PDw/HoEGDoKOjI/dj/6mysrJw4MABmJubl9r+9Ff05s0bREdHw8LCAtWrV6/s6VQ5FK4RQgghhJDKRuHa/1C4VoltIT98+IBly5aBxWJJtNj4q1ev4OnpySycrqamBhsbG1haWpZYSB4obK0zbdo0+Pj4YPPmzVi8eLHQcfl8Pt6+fVtiHRlCCPkVqKqqUrBGCPnjFQ27KvpYNjY2FXbsP5WGhgYcHR0rexoy16RJEzRp0qSyp0EIIYQQQgghRASVVnbi5+eHgoICrFq1Chs3bkRSUpLI+3K5XCxevJhpUTNp0iRcunQJixcvFhqsCUycOBH6+vrYv38/Hj16JHSb/Px8+Pj4oGbNmuLeJEIIIYQQQgghhBBCCCGEEPKbq5Rw7cmTJzh37hxYLBaysrKwc+dOmJqaYsGCBSXKKoU5cOAAXr16hRYtWuDIkSNYtmyZSJ9QVlFRwdSpU5lwruhi9wJsNhtmZmYS3S5CCCGEEEIIIYQQQgghhBDye6uUcC0wMBBAYQtGwVdBQQGioqJgY2ODsWPHIioqSug6GRwOB9u3b4ejoyMOHz6MFi1aiHXscePGQVdXFx8+fIC3t7dMbg8hhBBCCCGEEEIIIYQQQgj5M1RKuLZt2zbcuHEDwcHBmDNnDnr06AE2m80EbY8fP8aCBQsAAIcOHUJ2djazL5vNxqlTpzBv3jyJFp1WU1PDhAkTwOfzcfDgQZw7d05mt4sQQgghhBBCCCGEEEIIIYT83iptzbXq1aujW7dumDVrFnbv3o07d+4gMDAQo0aNgra2NhO0hYSEYODAgYiIiGD21dfXl+rYEydOhJqaGvh8PpYtW4b3799Le3MIIYQQQgghhBBCCCGEEELIH6DSwrWfqaqqom/fvlizZg1u3LiBHTt2YMCAAVBUVMS3b9+wbNkyjB07Fm/fvpX6WDo6Ohg+fDgAIDMzEw4ODvj+/bvU4xJCCCGEEEIIIYQQQgghhJDfW5UJ14pSUlJCnz594O/vjytXrmDu3LmoXr06Hj16BEtLS2zbtg1cLleqY0yYMAEAwGKxEB8fDzs7O3z9+lUW0yeEEEIIIYQQQgghhBBCCCG/qSoZrhVlYGAAJycnXL58GW5ubtDX18eWLVswceJEfPnyReJxmzVrhnbt2oHP54PFYiE2NhZ79uyR4cwJIYQQQgghhBBCCCGEEELI76bKh2sCbDYbEydOxLlz5+Dq6op3795h5MiRuHbtmkj7Dx8+HG/evCn2M0tLSwCAgoICFi1ahMWLF8t83oQQQgghhBBCCCGEEEIIIeT38cuEawLx8fEYMWIEzp8/D3Nzc8yePRsHDhwod79WrVohMDCw2M8GDRoEfX197NmzB/b29vKaMiGEEEIIIYQQQgghhBBCCPlN/FLh2tOnTzFhwgRkZGSgWrVqWL58OUJDQ3H48GGcPHmyzH0tLCxw7tw5fPr0ifmZjo4Ozpw5g65du8p76oQQQgghhBBCCCGEEEIIIeQ38MuEa7dv38bkyZORmppa7Odt2rRBREQE+vfvX+b+Xbt2RY0aNRAUFFTs51paWjKfKyGEEEIIIYQQQgghhBBCCPk9/RLhWk5ODhYuXIjs7Gyh1yspKUFDQ6PccUaOHIljx47hy5cvsp4iIYQQQgghhBBCCCGEEEII+QP8EuGampoagoKCoKOjI9U4VlZWyM/Px65du2QzMUIIIYQQQgghhBBCCCGEEPJH+SXCNQAwMTHB/v37pRrDyMgIHTp0wNGjR/Ht2zcZzYwQQgghhBBCCCGEEEIIIYT8KSo1XFuxYgU+ffok8vZNmjQBn8+X6piWlpbIzc0tsfYaIYQQQgghhBBCCCGEEEIIIeVRqqwDv3z5EuHh4bh9+zaWLVsGBQXRc74HDx4gISFBouNqamqCxWIhPDwcDg4O0NfXl2gcQgghhBBCCCGEEEIIIYQQ8ueptHBt69atAICPHz/C0dFRrH3d3NykPn5eXh6CgoKwZMkSqccihBBCCCGEEEIIIYQQQgghf4ZKaQv58uVLXLp0CQDA5/PF+pJkn9K+Dh06hKSkpMq4CwghhBBCCCGEEEIIIYQQQsgvqFIq1169eoWxY8dCRUUFSkpKzJeCggIUFRXBYrGYNpEsFgssFovZ18fHB9OmTYOenp7Ex8/Ly8PmzZvB4XAQGBiIFStWSH2bCCGEEEIIIYQQQgghhBBCyO+vUsI1S0tLWFpaSrSvj48PrK2t0aBBA6nmcOXKFTx58gRHjhzB5MmTYWxsLNV4hBBCCCGEEEIIIYQQQggh5PdXKW0hq4KhQ4cCALhcLnx8fCp5NoQQQgghhBBS6Pv370hLS6vsaRBCCCGEEEIIKcUfG66ZmZkxly9fvozLly9X4mwIIaRqOXfuHB4/flzZ0yAycuPGDURGRlb2NP5Y27Ztw4MHDyrl2LGxsXIZ99WrV3B0dMTXr1/lMr4o0tPTsXPnTmRkZFTaHEpTUFAg0X75+fkyngn5VcXGxsLMzAxr165FcnJyZU+HEEIIIYQQQshP/thwzdDQEE2aNAEA8Pl8eHh4ICUlpZJnRQghVQOLxYKNjQ1cXFzw+fPnyp5OqS5evIhPnz6Vu93x48crNQSobNu3b4erqyvs7e1Fur8qw8GDB8HhcMrcJi0tDZGRkRIHF+JITEwsdz6iio6Oxrhx42BhYYEjR44gJydHJuOKYsWKFZg8eTKePn0qszG5XC6WLVuGq1evYsSIEbh48aLMxhaHgoICNmzYgL59+2L9+vVV6r1q1qxZ2Llzp9jPVTs7O3h5eVXY+1VcXBxiYmLkMnZ2djaWLFlCwZCEunXrhhkzZiAkJAQDBgzAjh07wOVyK3tahBBCCCGEEEL+3y8ZrskqBOvTpw/4fD5YLBaSk5Ph5OSErKwsmYxNCCG/soEDB2Lq1Kk4c+YMhg4divDw8MqeklA3btzAkCFDsGzZsjJDo6ioKJiamsLDwwPx8fEVOMPK9/TpU9y9excAEBMTg+HDh+P06dOVPKuSvL29YWZmhgMHDpQaavF4PLi6umLgwIEICwuTWfglzJ07dzBkyBCcO3dO6rHYbDYA4OXLlwgJCUF6errUY4pKVVUVt2/fxqhRo9CsWTOZfLVo0QLPnj0DAKSmpmLfvn1yfSxKI7hfs7KyEBwcjFmzZlXKPH7248cP3LhxAxs2bICVlRWePHki8r5v377Fnj17mPcreX/wKzMzE/b29nBwcMDLly+RkpIik6+vX7/C0dERERERsLW1lTpge/PmDVavXo3v37/L6Jb/Guzt7dGjRw/k5OTAz88Pbm5ulT0lQgghhBBCCCH/T6myJyCJJ0+eoGPHjlKP07t3b+zatQtAYZVGjx49oK6uLvW4hBDyO3BxccGlS5cQFxcHd3d3JCQkYP78+ZU9rWLU1NSQn5+Po0eP4vjx4/Dz88PAgQNLbKeqqgoOh4OwsDAcOXIEmzZtwoABAyphxhVvz549xb4fNmwY+vXrV0mzKZ2amhqSkpKwevVq7Nu3D0ePHkW1atVKbAMACQkJ8PDwwN69e3Ho0CHo6urKfD4WFhZ4/fo15s6di/79+2Pt2rXQ09OTaCxFRUXm8r59+yQeRxIqKioAgNq1ayMiIkJm486YMQOPHz9G48aNsXv3biboqkjKysrM5dq1a2PXrl2VMo+fXb9+nWnv+Pr1a8yePRtHjhxBzZo1y9yPw+EgNTUVQGF7yGrVqkFHR0eucxU8P6KjoxEdHS2XY7x79w4uLi44cOAAWCyWRGM0atQIcXFxGDBgAGbOnIkpU6YUe/yF6devHw4dOlTu/S6q9PR0JCcno3HjxjIZTxQsFgsrVqzA0KFDUVBQwISVJiYmIo8hqMI1NjaW30QJIYQQQggh5A/0y4VrxsbGGD58uEzGat++PdTU1KChoQEfHx9069ZNJuMSQsjvgM1mw83NDdOmTQMA7NixA71790anTp0qeWb/U/QDEZMnTy41MBOcQFZSUoKPj88fE6y9fPkSZ8+eZb7X1tZG586dq+QHSQTBWbVq1eDp6VkiWAP+9zgCQLNmzRAQECCXYE1g/vz5+Pfff3H58mVYW1tjz549aNCggdjjKCgUNgpQUlKq0GAN+N99pqCgINNjCwJDPT29Sgu0FBQUwGKxwOfzYWRkVOH3bWmuXLnCXNbR0UFoaKhIAU9SUhL4fD6AwrWB582bJ7c5ChQNqJYsWYIpU6bIbOz+/fsjISEBbdu2xbZt2yQO1oD/tQAdOXIkfH19ceLECfj6+qJZs2ZCt09MTERiYiKSk5NlEq4lJSXB3t4eycnJCAoKQps2bUTe9+HDh8jIyECfPn0kOnb9+vVhZmaGs2fPQkVFBQYGBiLv+/nzZ9ja2iIvLw/79++ngI0QQgghhBBCZOiXawsZEhICfX19mYylrKyMmTNnIjIykoI1QggRolevXsU+pS9oBSeOkydPwsvLS5bTYigp/e8zIo6OjqWevBUEDGpqahg6dKhc5lIVeXl5gcfjAQCaNGmCw4cPw9fXFx8/fqzkmZUkOMnfqVOnUgNcBQUFZruuXbvCyMhI7nPy8PAAi8VCYmIiHBwckJmZKfY4gsBEQ0ND1lMslyDY+10VfQ+oCnJzc3Hp0iXm+yVLloj8PP3y5QtzuV27drKemlBFqyrlpV69ekLDcnHp6OjA29sbLBYLsbGxGDt2LF6+fCl023v37gEArK2tZdIKtXfv3njz5g3S0tJgZ2fHjC+K3NxcTJ8+HTNnzpR4zctBgwaBxWJh1apVIv8/6MuXL7C1tcWnT5/w9etX2Nra4sOHDxIdnxBCCCGEEEJISVXrjIQIatSoIdPxpk+fLtPxCCHl4/P5yCnIRQGPCyUFRagpqUr1iXYiXyNGjICfnx/U1dWFtlwsy6lTp+Dq6goulwsej4clS5bIdG6inhgur33Y7+jatWu4desWgMIqRF9fXzRo0AC2trZwcXFBaGgoUy1WFYjzWApa7lWENm3aoF+/frh8+TI+ffqEkJAQODk5iTWGIOD8HcM1QXBYWapaeHj58mVm/d6GDRtixIgRIu/77t075nLbtm1lPjdhKiKclOVzpGvXrrCyssI///yD7Oxs+Pv7Y9u2bSW2E7S43LJlCzp37iz1cQMDA7Fv3z4AhR8AyMjIEHlfbW1tAIXPjcuXL0s1D1dXV7i6ukq0b1JSEiZNmoT9+/ejfv36Us2DEEIIIYQQQsgvGK4RQn5NH9MSEPPxLt6mxOFd6idkcbKZ6zTY6mioa4RGesboWa8z6unUrcSZ/h5ycnKQk5Mjk7EMDQ3BYrGwdOlSqKqqIiUlRaT9rl+/jiVLloDL5QIA9u7dCxaLhcWLF8tkXoDooVlVOwEvb7m5uVi3bh3z/fz589G8eXMAgJ2dHU6ePIkFCxZg69atVea+EfUkf2UE8WPHjmVOir9+/Vrs/QXhQmWEmYLQMiEhodQWetKo7HCtqn0w4+TJk8zlmTNnivX6evPmDYDCx6xly5Yyn5swFfH6F4TLsuLs7IyTJ0+Cw+EIrcJNS0vDhQsXABS+5qRtF5qbm4sTJ05AVVUVa9euhbm5uVj7q6qqMpft7e2ZVsvCcLlcpt2pvBSdDwDEx8fD1NRUpH3ZbDa0tLRQt25dtG7dGkOGDEGnTp3Emi+fz0dMTAyioqLw6NEjJCUlgcPhQEdHB82aNUOfPn0watSoKtm+mBBCCCGEEEKKonCNECJXDxKf4vir83iZ/F+p22RxsvE06TWeJr1G5MtzMDFojJHNB6FDnVYVONPfy/fv32Fra4uEhASZjenm5gY3NzepxggODgaLxZL4k/eSqmon4OVt48aNiIuLA1DY2rPoOkrKysrw9vbG6NGjsWbNGri7u1fOJH8i6mNUGWFgt27dUK1aNaSnp4u11pKAoNKuMsI1wf1au3ZtREREyGzcGTNm4PHjxzIPTsRVVcJhAEhJScH169cBFK6TNWzYMLH2FwS3jRo1qrBgoSLaQhYUFMh0vJo1a2LQoEE4efIkbG1tARQGNo8fP0a7du3g5eWF3NxcACjWQjEtLQ3q6upirxEYGRmJvLw87N69W6I1R4u+7tlsdplhX1JSEuzs7ODs7Czy2qAeHh5o0qQJrK2tSwRnoqhTpw7u3r2Lb9++YeHChXj+/DmAwrWp161bx9yHOTk5SE1NxdOnT3H8+HGEhoYiNDSU2a5hw4blHuvVq1dwc3NDXl4erK2tMXnyZBgYGODHjx948uQJDh48iLVr12L79u3w8vJC7969xb49hBBCCCGEEFJRKFwjhMjFj7xM7HkQjhsfRV+XROBl8n94mfwfetbrDLsOY6CloimHGf7eDA0NERISgosXL8LExAT169eHpqYmNDQ0SoQYXC5XqhOs379/R/Xq1aWdMpGR+/fvIyQkBABgZGSEDRs2lHjMTUxM4OzsDF9fXygpKWHp0qWVMdVfBpvNxrJly/Dhw4diQaWoBOGCqOHa0aNHUa9ePXTp0kXsY/1MUDmqoKAgdQVPUYL3DKpc+5/w8HAmSHV0dBT7fTU2NhYA0KpV+R8suXfvHtavX4/AwECp1iKuiPtPHm1cFyxYgO7du8PKygpA4fteVFQUVFRUmBC5bdu2MDExYfbZtGkTXr58iS1btqBmzZolxjx79ixycnIwdOhQZp1OPp+P0NBQbN26VaJgDSgeYJYXRqurq+PNmzeYPXs2WrdujUWLFqFr165l7vPt2zeEhYXB398f48ePx5QpU5hWlKJQUFCAtrY2tLW10a9fPyZcs7KyKhaYaWtro2bNmmjevDlGjx6N48ePY9myZXj48CHGjx+P0NBQNGrUqNTj3Lt3Dw4ODmjbti3Cw8OL3S/Vq1eHsbExhg8fjtWrVyM0NBSOjo7w8/PDkCFDRL4thBBCCCGEEFKRKFwjhMjch7R4rIveitScdKnGifl4F8+TY7Gs9xxqFSkBQ0NDkYKA5cuXo0GDBrC3txe7CiQjIwP9+/fHqFGjMHPmTKlO8lYl3759+yVvy48fP7BkyRLweDyoqalh69atqFatmtBt7e3tcffuXezbtw88Hg/Lli2rUkGFLGRlZYHFYsmkCmjkyJES7ysI1wQn7Mty9OhRuLm5QU1NDTt27JA6YJN3+CXrqiRxyeo5u337drRs2VLiSpmCggIcOnQIAFC3bt1iz5esrCzk5eWVuX9qairS0tIAAA0aNCiz/e7r16/h5OSE7Oxs2NraIiQkROL3q6L3n6enJzw9PSUapyw/3/auXbvi33//lWrM2rVrM8EaUBiM9enTB/Xq1cP69evBYrEwaNAg5vZ9+fIFR48eRX5+PiwtLbFx48YSoVXXrl2xcOFCrF+/HmPGjMHEiRNhYGCA1atXo127dhLPVZxwrWjlGZvNRp06dcodX7CW448fP6CgoCDV+13RuZbXqnfkyJH49u0bvL29kZqaimXLljGvgZ9xOBzMnz8f2dnZGDx4cKnBM4vFYgK7Fy9e4O+//0azZs1EqoojhBBCCCGEkIpG4RohRKY+pMXD48rGYmuqSSM1Jx0rrvhhZb/5FLDJyfTp0zFy5EhER0fDz88PBgYGIu8bExOD3NxcHDhwABEREbC1tYWTk5NIIYIw/v7+mD17dqWGPBwOB8OGDYOjoyPs7Ox+mcCJz+dj0aJF+PDhA1gsFtatW8essyaMgoICfH19MXr0aOzfvx8pKSlYv3692C3ThPnvv/8QGxuLoUOHSj2WNK5cuQJ/f3/4+vqidevWMh07NjYWtra2SE1NFXmfmJgYkdc9y87OhqOjIw4fPowmTZpIOk2mck1e5D1+Rdi6dSv8/f3BZrMREBAgUcB28eJFfPnyBQAwbdq0YsFEQkICJk+eLPJ6lRs2bMCGDRtE2vbt27eYPHkyQkJCJKogLvr+5uLiAhsbG7HHKI2VlRU+f/6MrKws5mdcLheZmZkyOwZQGFhduXIFCxcuhKqqKiwtLUtss27dumIVdG/evCkRrunq6iIoKAh+fn7YuXMngoODYWlpCScnJ6nmJ86HVpSVlaGgoAAejwdLS0sYGRmVu4/gPbtNmzaYPXt2ietfvXpV5u8CaUyaNAl79+7F169f8fDhQzx58kRo69zo6GgkJSUBKHxvK4uioiKmT58OFxcXcDgcbNq0CVu2bJHL/AkhhBBCCCFEGhSuEUJk5kdeJtZFb5VZsCaQxcnG2mh/+A5yoxaRcmBsbAwHBwf4+/vD2toaQUFBIgcAx48fZy63bNkSpqamEgdrQGEl3K5du+Dg4CDxGNK6f/8+0tLS4OXlhejoaHh5eQltIVbVbN26FVeuXAEALF68WKRgS1tbG9u2bcPYsWNx+vRpfP78GQEBAVK3DzQyMoKTkxNatWqFevXqSTWWNKKjoxEXF4dx48Zhzpw5cHBwkNkaXU2bNkVwcDCOHTuG1q1bo0GDBqhWrRpTRVKUtbU1EhMTMWjQIHh4eJQ57ubNm5nqDzMzszLbrIlCUFnG4/FEDndEIQjV5NHyTxzSht/btm2Dv78/gMJgfdasWRIFbDt37gRQWJ34cxu7pk2bYv/+/bhz5w5atGiB2rVrQ0tLq1iFUVBQEHx9faGgoIC7d+9CU7NiftcVvf/U1NRk2jq0WrVqMDMzw4QJE5ifZWZmoqCgADk5OWW2Sc3IyICysrJIrVTv3bsHY2PjUtcbO3fuHM6dOwcAGDp0KDw8PEqt6FVQUMDChQtRp04drF69GocPH8aJEyfg7OyMqVOnljuX8ojy/qOoqCjWWoZltR8NDw/HihUrsGLFCowbN07kMUXFZrPRu3dvHD16FABw+/ZtoeHax48fmcuHDh3CpEmToKysXOq4vXr1YkLGK1euoKCgoNxKOkIIIYQQQgipaPS/FEKIzOx5EC51K8jSpOakI/jBYcztJv3JLVKSvb09Dh06hKSkJNjZ2eGff/5B7dq1y9zn69eviImJAQA0atQIgYGBUp8QtrOzw9ChQ9GtWzeR1h2Sh0uXLjGXb926hREjRmDfvn1y++S/LJw5cwYBAQEAAAcHB6HtQO/fv48OHTqUCCMaNWqEHTt2YOrUqXjw4AFGjRoFb29vidcXAgoDBmtrayxYsABhYWGVclK0oKAA165dA1AYAPn5+eHu3bvYvn17mSd1S8PhcEpU9ZmYmBRb00kYHo+H5ORkAEDDhg3LDS+KVvUsWLBA6jAwNzcXAPD582d069ZNqrGEKa/dYWl8fHywa9cumc3jzp07In8ooCySBGxXrlxh1qnKy8vD8OHD4ezsDCsrKyb4aNy4MRo3blzqGE+fPgVQ+HqsqGANkO+aa0eOHCnxmhFUen779q3MqqzExETMmTMHtra2GDt2bJmv2aioqFIfq+TkZKxatQosFgsLFiwQ+YMb48ePh6amJv7++2/k5ubCy8sLLBYLdnZ2Iu1fVNGgTNRwTZzQurT31xMnTsDDwwN8Ph8rV64Em82GtbW1yOOKqmhl7devX4VuU7Rt6YcPH5CZmQldXd1Sx9TU1ISuri6+f/8ODoeDlJQU1KhRQ3aTJoQQQgghhBAZoHCNECITDxKf4sbHe3I9RszHu+hZvzM61JFtezdSWLEwbtw4bNmyBd+/f4enp2e5bZhCQ0NRUFCAatWqYfv27TI5IVynTh0MGDAACxcuRGRkZKmVCPLC4/GYCgcAaN++PZYuXVqlg7Xr169j0aJF4PP5GD9+PBYuXCh0u3Xr1oHL5cLFxQV9+/Ytdl2HDh3g7++PmTNnIiEhAba2tpgxYwacnJwkDsbGjRuHwMBABAQEwNnZWaIxpHHz5k1mDSugsP3p1KlTJQrWfH198fz5c+zYsUPstpnJycnMiXJDQ8Nyt//27RuAwhPs4rRoLY0g/Kpbty4uX74s9XgC48aNw4MHD0pU6iUnJ4s070WLFqFVq1bQ0NCAsbGxxO8fvXv3Rn5+Ptq3b49t27ZJNIYw4jxPBMG2QHJyMs6ePYsBAwZAR0dHpDGePXsGAGjbtq3Ix63qhL1WBM/vuLi4MsO15s2bY/HixZg1axYOHjyIVatWoXPnziW243K5OHfuHA4ePFjiuoKCAri4uCAtLQ3r16+HhYVFsevz8vLg7u4OR0dHoWt6jRgxAikpKcw6dP7+/pgwYYLY7wFF1z1UUFCAq6srIiMjy93Pzc0Nbm5uIh/nwYMHpQbMfD4fbm5uYLPZGD58uMhjiqLoewCHwxG6zeDBg3H27FncvHkTgwYNKjNYEygaSgqrCCaEEEIIIYSQykbhGiFEJo6/Ol9Bx7lA4ZqcjBo1Cv7+/uDz+bh06VKZbbvy8vIQHh4ORUVF+Pn5oX79+jKbx9SpU2FhYQEvLy+sWLFCZuOK4t69e8wn75WVleHt7V2pbQ3Lc+/ePcyZMwf5+flwcHAoNVgDCm/Ps2fP4OjoiHbt2mHZsmXF2nf16tUL27Ztw5w5c5Cbm4uAgACcP38e8+bNg6mpqdhz09bWxqhRo7Bjxw706dMH7dq1k+QmSuzMmTPM5a5du2LBggWlbpuamlrsBHhRR44cQVBQEADA2dkZ/v7+YgWOnz59Yi6L8lz6/v07AKBGjRpltnsTVaNGjdCxY0eJ1hEry6BBg+Di4oIuXbowP4uKisKyZcswcuRILF++vNz5/9w+UVzp6elMcMnlcmXa0lBUFy9exNOnT6GsrAw+n4+CggK0bNkSu3btErkqLCUlBQkJCQAqN1yriBafgtfDgwcP0KtXrzK3NTU1hYODA3bu3AlbW1vMnj0bs2bNKrbN7du3oa6ujgYNGpTY38fHB0+ePMHmzZthZmZW4noVFRWcPHkSJ06cwKBBgzBjxowSH6SYMmUKbt++jStXriArKwuZmZliP88E1aMAoKqqCk9PT/Tp0we1atVCvXr1SlSz9e/fHzk5OViyZAlGjBhR7vibNm1CeHg42rZti8DAwDK3lcV7ys9+/PjBXC4tNGOz2WKF31lZWUhPL+yEUK9ePQrXCCGEEEIIIVWSbBYeIYT80T6mJeBl8n8VcqyXyW/wMS2hQo71p6lZsyYTtrDZ7DI/nX/06FGkpqZi4cKF6NmzZ5njZmRk4MSJEyLPw8TEBH/99RcOHjyI6OhokfeTBcG6MQBgY2NTpYO1O3fuwNHREbm5uVi0aFGZwRpQvBKnbt26MDY2LrFN7969sXv3bqaK6M2bN3BycsK4ceNw7ty5UqsSSjN58mQAhVVK2dmyXYuxLJmZmTh79iyAwrZ3ixYtKnP7iIgIdOvWTeiXn58fs93Vq1fFrv4SVCQpKCigRYsW5W4vaCFZq1YtsY5TGg8PD7i4uKBDhw4yGU9gypQp6Nq1K1gsFrhcLnx8fDBv3jxkZ2cjLCwM06dPL9biUh4EVVAA8Pz5c5muKSeK/Px8+Pj4AADmzJnDfBhBQ0NDrHaLgucIAJGeI8LmIamiYcurV68kHkdUDx8+BFAYWmdkZJS7vbOzM0xMTMDj8bBlyxbs37+/2PWnT58WGhyHhYXh8OHD2LFjh9BgTUBFRQU8Hg9nzpxBWFiY0G3c3d2hqqoKQ0NDiQLcnJwc5jKbzYaCggKGDh2KDh06QF9fH3p6esW+BEG/hoZGieuEfQnWOVVUVCx329LWmpNGXFwcc1mS568wN27cYCrXzM3NZTImIYQQQgghhMgaVa4R8hv4mvVd6M91VLXBVizZ2iqLk42s/JwSP2crKEFHTfiJl2/ZxU9aqvBUoaCgAB1VbcR8vCvBrCV34+M91NOpK9HtkMV9VUOjugSzrlyXLl1C//79yz3h279/fzx+/Bj29valfsI9Pz8fu3btwogRIzB1atlr4KWkpMDe3h4vXrzA169fMW3aNJHmO2nSJNy+fRtubm44ffo0tLS0RNpPGj9+/GBaQmpoaMDJyUnux5TU2bNnsWjRIqiqqiIwMLBEm0dhBOFanTp1igVGP+vUqRMOHz4MJycn5qTpgwcP8ODBA2hra2PAgAHo2LEjmjVrhiZNmjAndoUxNDREv379cPHiRfj6+sLd3V2s2ymp06dPM2He0KFD0bp12dWu9vb2MDAwAI/Hg4mJCfT19aGlpQU2mw1/f39s3boVWlpaCAgIQNeuXcWay5MnTwAAzZo1K7f1IYfDYVpZlrfmIVD4+rK1tcWbN2/EmlNFiImJwdixYxEYGChSO0xJfP78mbnM5XJx6dIljB49Wi7HEiY0NBRxcXFo3749pk2bxlQ4iksQrikrK6Np06Zi7RsVFYXNmzdjz549qFu3rtjH1tTUhI6ODtLS0hAVFYUOHTpg2LBhIrezFBWXy0VMTAzzQYvk5GRMnjwZR48eLbOaSklJCR4eHrCxsQFQ+NqeNGkSgMLXy4ULF+Dl5VVsnwsXLmD37t0ICwsrt6Uvm81GdnY2+vXrh5UrVwrdpk6dOli3bp3ELXKLfrCgtGrwooq2QxRHadW38iR4XAFAXV1dJus65ufnY/v27QAKP/RT3t8ZhBBCCCGEEFJZKFwj5Dcw+5TwNTlW9JuHljVKnqg7HXsZR5+fLvHzFgZN4NF/vtCxFl1eV+ox3qbEiT5ZGfjv/48nye2QxX112Ga7mDOufH///Tfq1q2LWbNmlVlpZm5uzpz0zMrKErrNiRMnoKmpiSVLlpS6DVDYsm369OnMiX8fHx/k5+dj5syZ5c63f//+MDQ0RHx8PNatW8eseSNPERERTPuuGTNmoHr1qhmi7t+/H+vWrUOTJk2wZcsWoRVowgjCNVEqaho1aoQjR45g0aJFuHr1KvPzjIwM/PPPP/jnn3+gp6eH+fPnlxtmTJo0CRcvXsTBgwcxcOBA/PXXXyLNVxqCChQVFZUy20EWVV77tVq1aokdrAHAo0ePABSGluURtIQERAvX9PT0sG/fPly7dg0NGzaEkZERWCwW4uPjmcdl+fLlGDp0aKljvH79GlOmTAEAHDt2TGYVcwLyXDfx/fv3zOX27dvj3LlzFRaupaSkYNu2bVBXV4ePj4/QgIjD4YhUVSYIYBs0aID8/HyRK9EuXLiApUuXgsvlYtKkSdi3b1+Z65iVxsLCAnv37gWPx8OqVauwatUqmbcP5PF4xcIfRUVFTJgwQaTjtGvXDt27d8fNmzeLVV5dv34dOTk5xd5TPn36hEOHDuHw4cMiVZkJArPywsRhw4aVO1Zpilauqaurl7s9l8uV6DgV0dbzZ//88w/T0tTW1hba2tpSjZeTk4OlS5fixYsXMDAwwM6dOyvkwzWEEEIIIYQQIgkK1wghUuHz+XiX+qn8DWXoXerHSvmE9q9MTU0Nr1+/xty5c0Xa/sCBA+VuI8kn1Ddt2oSCggLMmTOnzO0UFBRgY2ODDRs2ICIiAubm5ujRo4fYxxMVj8dDSEgIgMJqK0HYUJVkZ2fD3d0dp0+fhp2dHVxcXMps3fkzcasutLW1sWPHDhw6dAheXl5M9YWRkRHc3d1FXsPrr7/+QqNGjfD27Vu4u7vjxIkTcg1cbt++jZcvXwIA7OzsJKrmkZX//vuPOfEsyvM3KSmJuVynTh2RjlG9enVYWVkV+1nRNZDU1dXLDBmKVtNpa2tLvG5ZTk4Ovn//LrcqNWGKtqObOXMmZs6ciYSEhAp5zL28vJCeng4/P79SA624uDhMnjxZ5HaVsbGxErfvTEhIwKRJkxASEiJ2O9sFCxZAS0sLJ0+eRGJiIjgcjsQBT1lUVVVRvXp1dOzYERMmTBBrHUYbGxvcvn272HP99OnT6NixY7HAytDQEIGBgcXa4JZF3PfFW7duoVmzZmK9Top+CKW88InP5/8y4drly5exevVqAIXv87Nnz5ZonPz8fLx9+xY3b95EaGgokpKSYGNjAxcXl0pZR5EQQgghhBBCREXhGiFEKhwuB1mciltLCShs1ZhbkFehx/zVCUKYOnXqMGtRVXXW1tbYsmUL8vPzsXz5ckRFRcktlDl//jzi4+MBAIsXLxYrtKoIb968wdy5c8FisbB///5iVVD5+fkinUgW9WTzz8aOHYs+ffpg48aNiI6ORlhYGAwMDMQaY8yYMfD09MSHDx+wdevWcteHk0ZwcDAAoEaNGpg+fbrcjiOK8+fPAwB0dXXLXZsQAL5+/cpcFqVyrSpZsWIFbt68iaCgIJiYmFTIMV+8eAGgMEDs3bs36tevjwMHDsDV1VWux7179y4iIyMxYcKEMiuamjZtipCQEFy/fh0mJiYwNDSEpqZmsTAoNTUVffr0AVD43jN+/Hip5iZJxRmbzcbs2bMlDkcEbty4gTp16qBBgwZSjSPM4MGD0axZM2bsrKwsXL58ucScWSyWWO914qyN9+DBA8ycORMtW7ZEcHCwyL8nilaulReuFQ3I3Nzc4OYmvNpeGEHltTzl5OTg0aNHCA8Px5kzZwAAo0ePhru7u0S/YwYOHIgPHz4w32tpacHHxwdDhgyR2ZwJIYQQQgghRF4oXKvisrKyMHz4cISEhFTop8EJERVXwrVBpJXPK6iU4/7qWCxWmWtkVSXVq1dH//79ce7cOSQkJGDHjh1wdnaW+XH4fD4CAwMBAL1798aAAQNE2m/48OHF1nyS1r1790r8TLC+3YEDB+Dg4ICJEyeWqLQIDg7Gy5cv4ejoWOb6QpKuFwQUBj3e3t7IzMwsd90wYSwsLODr64v8/Hzs3bsXVlZWaNiwocTzKc2LFy+YNpZLliyBhoaGzI8hjgsXLgAobCknyonn5ORk5rKolWuyxOPxsH37dpErrQRSUlJw6tQpAMDEiROxdetWmay9VJaCggImXGvTpg1YLBYGDRqE0NBQzJkzR6T2e5LIzs7GsmXL0LZtWyxevLjc7Zs0aYImTZqUer1gvTUA6Nq16y/z/izMo0ePMG3aNAwYMADTp09Hq1atZDp+0dDuwoULyMnJKRFaZ2ZmgsPhiDymoAqew+GU+bxPSEjAjBkzkJOTg3v37sHd3R3r168X6RhFw7Xy2g3n5f3vg0NLliwpt10tUFgRHh4eDl1dXZHmI6qVK1di3br/tQTncrlMBXONGjVgYWGB8ePHo23bthIfY/fu3UhNTcXXr1/x7NkzXLhwAS4uLggMDMTSpUslasVLCCGEEEIIIRWFwrUqLC8vD0uWLGFaSlUl/fv3l3heISEh9J/l34iigkKlHFdZgd6+JPGrtdMcOXIkzp07B6DwJJyNjY3M14S6dOkSXr58CRUVFSxfvlzk/YKCglBQIL+Q9969e1i/fj06d+6MkydPltoei81mIyoqCmfOnEHfvn0xc+ZMqU52AkBiYqLQcEeSYA0oXM+ob9++uHDhAvLz8+Hl5YUdO3ZINUdhAgICAADdu3cvc52xivDkyRMm/Pm5bWNpvnz5wlyWVbi2ZMkSLFmyRKRtFRQU0K9fPyxevBg1a9YEl8tFSkoKunfvXuZ+vCIfsmCz2fj06ZPcw7VXr14xlTqCVoqjR4/Gjh07EBYWBnt7e7kc18fHB1wuF9u3b5dJheu///4LoLBip6xw/Fegrq4OHo+Hc+fO4cKFC9i5cyd69eoll2OdPHkSBgYGaNasWbGff/r0CVOmTEFaWppY450+fRqnT5dcw7U0x44dQ8OGDUWqji0amuvr65e5bXZ2Nho2bIhJkybB0tISampq5Y7fsWNHmJqaityqV1Rz587FoEGDmO/v3r3LBMq2trZwcHCQ+hhGRkZMW1UzMzM4Ozvj1KlTWL58OWxtbTFjxgy4uLiIVWFICCGEEEIIIRWFzk5XMVwuF9++fUN0dDRCQkIQGxtb2VOSuYpqF0UqBluRDQ22eoW2htRgq0NV6df9dH9lEIRqCpUUhkqqd+/e0NbWRkZGBvLy8hAQEMCs8SILPB4PW7ZsAQDMmjVLrLWKZB3y/ezbt2/YsWNHuZUOgkoXPp+PmJgY9O3bV6pwLTIyEm5ubjJvzWVubs5Ucl29ehUPHjyQeH0pYZ48eYJLly5BVVUVK1eulNm4ktq7dy8AoF+/fmjZsqVI+wjCNS0tLVSrVk0m81i+fHmZQePr16+LrTHYvHlzREZGAgA+fPgAJyenctt4Cu5vRUVFhIeHi73mlyRu3rzJXBZ8YKdu3bro06cPdu7cidGjR5fbgk9cV65cQVRUFA4ePFju61JUMTExAAoDwl/t/flnRcNGHx8focEal8vF8uXLYWlpic6dO0t0nK9fv+LWrVswNzcvEbqYmJhg7969uHPnDlq2bAkjIyNoamoWq2Ldvn07Nm3aVGw/S0tLvH79Gt7e3mVWGkpCsJaijo5OuRWV+vr6iIqKEitMGjlyJHM5PDwcw4YNk/iDEEXp6uoW65pRu3Zt+Pn54evXrzh06BDs7e1l/pxlsVgYPnw4NDU1MWPGDAQGBoLFYsHFxUWmxyGEEEIIIYQQWaBwrYpwdHTE/fv3kZ2dLZdF5OVBR0dH7BY0BgYGMj/ZRYCt5muE/lxHVfh9Paxpf/RtULKqgF1GNZhP/6XFvldRVYWCggJ0VLXRUNcIT5NeizFj6TTUrQcWiyXR7ZDVffWrEbRyklerNHlRVlZG//79mZP9kZGRWLBgAXR0dGQy/vHjx/H69Ws0b95cbpUukho8eLBI2xWtbNi0aRPMzMwkPmZkZCSWLFkCHo+HhQsXQkFBoVjlgjT69OkDVVVVptpo7969Mg3XfH19wefzMXfu3AoJd8qSkJDAVFzOmTNH5P0EbUZl2RJSXV291KpHoOxqxPr16yM7OxuvXr0qtaoqMzOTeX0OGTKkwu7769evAygMIjt27Mj8fMKECbhy5Qp27NiBRYsWyex48fHxWLt2LXbt2oVGjRrJZMyPHz/i3bt3AFBsHcXyxMTE4NGjR1KvkSZrRVvPtmvXrsT1XC4Xf//9N06dOoUzZ84gKChIrNstcOLECXC5XPTo0UPo9SYmJqV+kOv79+8ICgoCADRs2BA/fvxgKsusra2xfv167N69W+w5lUUQmovy2pBkzTyBwMBAbNy4EcePH8euXbtk/vteUVER1tbW2L59O+Lj4xEdHY2+ffvK9BgC/fr1g6mpKS5duoTAwECYmpqidevWcjkWIYQQQgghhEiKwrUqYs2aNcw6CwUFBbhx4wZWr15dpVu4TZw4UayThkR+amiI9wl6DbY6NNjinXTRVy9+clZNTY35xHIjPeMKDdca6xkDkOx2VMR9VRUJAo1fLVwDCkMZwcl7DoeD27dvixw8lSU3NxdbtmyBsrIy1q9fL9WaZJWp6MnYunXrlrt9QkJCiVZqwhQUFGD+/PnYtGmTyOvQlUVNTQ2dO3dmQhHBv7Jw7do1/Pvvv2jXrl2xKqzK4uPjg4KCApibm4tctQYUtuMEUKXWWO3evTvCw8OxYsUKodeHhoYiOzsbLBYLjo6OFTKn9PR0PHz4EEBhdWvR9ex69eqFNm3aYP/+/Rg/frxIrwlRpKSkYOPGjTI7wZ+TkwM/Pz/me1FDpnv37mH27NnIycnBt2/f4O7uLlL1UFZWlsRzFVV+fj5zOTc3t9gx+Xw+VqxYwazNl52dDQcHB4kCtn/++QcsFqvUcK0smzdvZubl7u6OpUv/98GhESNGwMfHBxcvXpTqQwo/E4RrjRs3LnHdtWvXMHv2bLHWiSvP/fv3MXPmTOzYsQOqqqoyGxf4X+tVHo+H0NBQuYVrAGBjY4NLly6Bz+dj27Zt2L59u9yORQghhBBCCCGS+DXPJP6GDAwMin1vbGyM48eP4/Hjx5U0I0JE17NeZ0S+PFdhx+tRT/xPuv/JeDweE679ipWjP6/RGB8fL5Nxd+7cicTERCxYsOCXblcrbqVD7dq1ERERIfL2sgwdu3btyoRq2dnZSElJKbOqShQcDgfr1q2Duro6fHx8pKr8kIV79+7hzJkzMDAwgJubm8j75efnMyfhq1K4NnDgQDg7O2Pu3LklqtVzcnKY9peDBw9G06ZNK2ROJ06cYIKcoi3xBJydnWFvbw93d3eZVSG1adNGJuMIBAYG4syZM8z348aNE3uMsLAwpKenw8vLq9z133bt2oVt27aJfQxJDRs2rNxtJAnY7t69i3fv3qFp06blrl/2s4cPH+Lw4cMACtvU/rwuoLa2NgYPHoyVK1eia9eu0NLSEmv80ghe1w0bNixxXZ8+fbBv3z5wOBw0adIELBYLy5cvx4ABA8RaQ23//v3M46upqYmOHTvKZU3QunXronv37oiJicH169fx8eNHuVWrduzYESwWC3w+H9euXUN6errMHhNCCCGEEEIIkQUK16qwX7HChPyZ6unUhYlBY7xM/k/uxzIxaIJ6OrKpRPhTpKWlMZdr1qxZeRORUPXq1VGzZk1m3RpZrPHy6dMn7Nq1C127dsW0adOkHq8yiRsmKSgoSB1oSernKi5x1hUqTXBwMOLi4uDp6Vnp7SDz8vKY9cdWr14tVuvk+Ph4pi20LG/HkiVLsGTJEon37969O1RUVBASEgJnZ+di1x04cAApKSlQUlKq0DWRjh49CqDw/axnz54lru/Zsyc6d+6MmJgYREREwMrKqsLmJipnZ2ekpKTg8OHD6NWrF7y9vcvdJyMjAzY2Nsx7ev369dGyZUt8+/at3Faizs7OqFOnDlgsFkxMTKCnpwctLa1iVX9v3rxB7dq1JV6vKyIiAh4eHgCAM2fOiFw1KM57uiAs/TkYK09+fj7c3d3B5/NRs2ZNLF++XOh2kyZNQmRkJNauXYv169eLdQxhcnJykJ6eDqDk+5/Az+1xly5digkTJqBz584i3YevX7/Grl27ABT+3yEsLEyuQbeNjQ1iYmLA5/MRFhYGV1dXuRxHU1MT2traSE9PB5fLxbNnz8R+3AkhhBBCCCFEnihcI4TIxMjmAyskXBvZfKDcj/G7+dXDNaDwE/+CcE3YWj7iWr16NbS1tbFhwwaZhHWVqbIrtcRRtHLD2NhY7HU7fxYfH4/AwEBYWVlViQBl7dq1iI2NxYwZM9CvXz+x9hWsvQUUhiaysnz5cgwdOrTU61+/fl1mK01lZWUMGzYMwcHBGD16NBPipKWlYefOnQCAMWPGwNjYWGZzLktMTAxevXoFAJg8eXKpz/8lS5Zg9OjRWL9+PXr27IkaNWpUyPxEpaCggNWrV6NJkyawtraGhoZGufusXr2aeT+fPn065syZU27FWlGjR48u8/pr164hIiICGzdulKhSr2iVK5vNhoqKithjlOXYsWO4cuUKAKBLly5i7evn54fY2FiwWCx4eXkx63b+3H69VatWGDRoEI4dO4a//voLFhYWUs1ZULWmoKAg8n1at25dTJgwAbNnz8aBAwfKfG5kZmbC2dkZHA4HLBYLPj4+cq8g7d+/PwwMDJCcnIyIiAg4OzuL1H7y/fv3iI+PR9euXUV+3qqqqjLhZEpKilTzJoQQQgghhBBZ+7XPKBJCqowOdVrLvV1jz3qd0aFOK7ke43dUNFwzMjKqvIlIQdAybOTIkSU+5S+ukydP4ubNm9i8eXOJlrxEvmrVqgVDQ0MoKSmVWjkijhUrVqBRo0alrgdWkU6fPo3w8HBYWlpi3rx5Yu//8uVL5rIoa+KJSl1dHXp6eqV+iVKlNHnyZOTl5RWr5PH390dGRgZ0dXVLVLTJC5/Ph6+vLwBAR0cHNjY2pW7bsmVLTJo0Cenp6Vi0aBFTFVjV2NraihSsnTp1ClFRUVBUVISnpycWLFggVrAmimnTpoHP52P8+PE4cuSITMcW16NHj2BtbY3p06fj77//houLC5YtW8ZcL87vgRs3biA4OBgAMHv27HKrn+bNmwclJSV4eHgwQa6k3rx5A6BwvTVxKgKnTp0KFRUVuLi4lNrekcfjYeHChXj//j0AYO7cuTJdK640SkpKsLS0BFD498Xp06fL3efy5csYPnw4pk2bJlYlbWZmJnP5V2xrTQghhBBCCPm9UbhGCJGZqR1soKtWTS5j66pVg12HMXIZ+3dXdI2yxo0bV+JMJDd+/HgsWLAA69atk2ocDocDT09PrFmzBh07dpTR7Ig4PDw8sH37dqHt/MRx8eJFvH37FgEBASJVTcjTrVu3sHjxYgwYMABr1qyReAygcA3WqlJllZmZiYyMDNSvXx+mpqY4d+4cwsPD8eTJExw8eBAAsGjRIqYKSN7++ecfJoScO3duuWHF3LlzUbt2bdy+fRsbNmyoiCnKRVJSElatWgUFBQV4enrKrUpTRUUFTk5OyM/Ph5ubG/z9/eVyHFG0a9cOu3btgpmZGV6+fIkzZ84wAamOjo7IrW3j4+OxYMEC8Pl8DBw4ELNmzSp2/c+VawDQoEEDWFtbIycnB9OmTZNqnc/nz58DgNjvd4qKivDx8cH9+/exePFioeHwunXrmEo+KysrODk5STxPcY0ZM4Zp6xsaGlru9t7e3sw6iadPn2aq0cqSmZmJ7Oxs5vtf9e8XQgghhBBCyO+LwjVCiMxoqWhiWe850GDLdr1ADbY6lvWeAy0VydaB+dO9ffsWQGFbqkaNGlXybCSjp6eH6dOnF2s7Jom8vDw4ODhI3eqLSK5Xr17o3bu31OPk5uZiz549ld7q9OnTp5g1axZsbGywZcuWUp+jRSswfhYfH48HDx4AKFzjrLI8f/4cBw4cgKurK4YNG4bJkycz4YCgmmfNmjVYtGgReDweevbsWWHtOD9+/MiE661atcLYsWPL3UdDQwOenp5QUFDA7t27sXfvXjnPUvb4fD4WL16MjIwMrFy5EiNHjpTr8SwsLJjWn1u3bkVISIhcj1cWXV1djBkzBpGRkcVam4q6JmFWVhacnJyQmpqK9u3bw8vLq8Q6j8LCNaAwmNXR0UFycjKmTJmCT58+SXQbBGGwJO95RkZG8PLywqlTp7Bw4cJiFWzbt2/H/v37ARQGd6tWrZJofpIyMjJiKgCfP3+Ox48fl7m9oD0mUNhqVpSWoc+ePWMenxYtWoi8hh8hhBBCCCGEVBQK14hM3L59G+7u7hg+fDg6d+6M1q1bo3///li4cCHu3LlT2dMjFaieTl2s7DdfZhVsumrVsLLffNTToZMqkvrvv8K18ExMTKCmplbJs6lcWlpasLOzq+xpEBkwNzcvtoabPDx79gznz58HACQkJJRoEXfr1i04Ojpi/vz5cHNzK3X9vvz8fNja2sLc3BxLlixBaGgo7ty5g6SkJCQlJWHFihXg8XgAgMGDB8v1NgFAdnY2njx5gqNHj+LAgQPMzxctWoRr166hXbt22LNnD/755x/mBHqjRo0wYcIEcDgcxMXFQUdHB+vWrSsRVsgDh8PBggULkJWVBXV1dWzYsEHktQa7devGVPR4enoy68RVtg8fPpQZuAocOHAAN2/exJIlSzBmjPyrt5WUlIodx9vbG1+/fpX7ccuiqKhYrNWqoaFhuftwOBzMnj0br1+/RsuWLREUFAR19ZIf/BG87n6mr6+P1atXAwA+ffqE8ePHM0GzqLhcLh4/fgw9PT2mtbG4BgwYAEdHR0RFRcHOzg6pqanYuXMnNm3aBADo2LEjtm7dCmVlZYnGl0bRNfzKq15r3rw5c9nc3FykauMzZ84wlyuyKo8QQgghhBBCRCVdCQD543G5XLi7u+Po0aMAADU1Nejp6YHH4yEhIQEJCQk4efIkxowZAw8PD5FPhlVVBQUFUp9ILCgoKPFJaR6PV+oJnqqstDkbateG94Cl2PvoCG58vCfx+D3qdcKUdqOhpaL5S94/VYXghGCfPn1+u/ux6GuprNfRz9v9ToreHlHeS/h8fpW/D0SZnzxvR3p6OjZu3IgjR45g0KBBWL9+Pfbu3QtbW1sEBASgY8eOiIyMRFhYGPbs2YOmTZuWORdFRUUcPXoUDx8+hK+vLyIiIoRu16hRI/Tu3Vvq21V0/0+fPuHkyZN48+YNYmNj8ebNGyQkJDCviaKBw7Fjx9CgQQOh4wBAmzZtmMtqamrIzs6W+3OJx+Nh0aJFePLkCRQVFeHr64t69eqJddyZM2fi3r17THvI+Ph4LF26VOZrlgmI8tx8/vw5vL290bhxYwwcOBCmpqbQ1dUtts27d+/g6+uLGTNmYNKkSRX2uh0yZAgT3uTn5+P169fQ19cvd7+i85P167Po8TU0NMocOz8/H/PmzcPNmzfRsWNHBAQElLqP4HUgbL5mZmawtLTEsWPH8PXrV4wdOxaLFi3ChAkTRPpb8MGDB0hLS8OkSZOgqKgo8f0xd+5cJCUl4dixYxgyZAhSU1MBAO3bt0dgYCBUVFRkdl8X/V1Z3mPYv39/6OnpISUlBWfOnIGrq2uJ57CAvb09Zs+eDaBwPcTy5vv+/XtERkYCKHw+mpqalrmPuLefx+OV+Fs8Pz+/1EpGQgghhBBCBIStiVzaOsm/uz/1dhdF4RqRyvLly3Hq1Ck4OjrCwsKiWBXBvXv3sGrVKrx+/RqHDx9GTk4OfH19K3G20hO095EVwSd3c3Nzf7ngMScnp8zrlaCIaW3GonPNNjjz9ipep7wTeexmeg0xpFE/tK1pAvDKPxYp3YsXL/D582coKChg4MCBv919KVjDBSh8HZX26X3BL3w+n//b3QccDoe5nJeXV+rtq+r3geDkKJfLLXN+gpOfBQUFMr8dfD4fJ06cwJYtW5CamgoHBwfMnDkTQOFacWvXroWdnR3mzZuH2rVrY9euXVBSUhJ5Hs2bN0dQUBD27duHLVu2FLtOQ0MDK1euRF5enkRz//btG+Li4hAXF4dnz54xP9+2bVux7XR0dNCvXz906tQJnTp1Ql5eHiZNmgSg8DEo7bY8e/YMy5YtA4vFgpaWFj5//oxx48bB19cX7du3l2jOoli7di3Onj0LJSUlLF++HH/99ZdEj/vatWthb2+PuLg4hIeH4/Hjx1i9erVMW+UKnsP5+fnlzrFPnz7o0qULDh8+DF9fX6xcuRKdOnVigjY1NTUsWrQIw4YNw/Tp0yv0NWtgYIBGjRoxLYV1dHREOv7P78eynHNcXBxzWVlZudSxc3JysGjRIty8eRMDBgzA6tWrwWazS91esJZZae878+fPx927dxEfHw8Oh4O1a9fi2LFjcHFxKbca7dKlSwAKK7WkvS/mzJmD6OhofP/+HUBh9Z6/vz8UFRVlej/n5uYyl3Nycsod29zcHCEhIeBwOAgNDYW9vb3Q7bp37w4HBwcEBQXh2LFjGDx4cKmV9ImJiZg9ezZyc3PRpUsXLF++vMx5SHL7uVwu87tEcJtfvHgh9jiEEEIIIYQA9Lfkn4zCNSKx06dPIykpCSEhIWjXrl2J6zt16oSwsDCMHj0ab9++xcmTJ9GrVy+5rxdCqpa2NVugbc0WiM/4jH8TH+Fd2kd8SI9HVv7/ToZoKKuhfjVDNNSph6512sFQu3Ylzvj3cvnyZQCFJ3JFXaeGFHr69CnOnj2LhQsXVkjrOyI/27dvR9u2bctczyw2Nhbr16/Ho0ePAABTpkxhgjWBxYsXIyUlBd7e3ujRoweaNWuGWrVqiTUXFouFKVOmoKCggAm+mjRpgtWrV6Np06bi3TAArq6uuHnzJrKysoRer6qqivbt26Nr167o0qULmjVrVuz5LMp/At6+fYu5c+eioKAAq1evRvPmzTF9+nSkpKTA0dERc+fOFbmaR1T5+flYs2YNTp48CXV1dXh5eaFHjx4Sj6erq4tt27Zh6tSp+PLlC169eoVx48Zh4sSJsLOzg5aWltRzFgQ1on56T01NDZMnT4aVlRX27t2L0NBQ3L59G+vXr0fDhg3BYrHg6uoq9bwkYW5ujs2bN2Pw4MFyb78qCsHrEkCpLQW/ffuGBQsW4NWrV5g/f75Iz0lBwFI0GCxKQ0MDW7ZswdSpU5GWlgag8DUzffp0NG7cGCEhIaXO5+rVq+jduzeaNGlSzq0r2+nTp7Fp0yYmWAMK12mcNm0aZs6ciV69ekk1Po/HQ1ZWFlJTU3H9+nXm56dOnUL79u1RvXp1aGhoCG17a2VlxazLt3fvXjRr1gxt2rSBmppaiQ+7zJw5E/Xq1cOGDRswatQoWFtbo1u3bqhRowby8vLw6dMnREdH49ixY+Dz+bCzs8PMmTOlXmuVEEIIIYQQQuSF/rdCJPb+/XusW7dOaLAmoKGhAQ8PD+ZT8Zs2bYK5ufkvV6VFpGeoXZsJzfh8PnK5eSjgcaGkoAhVRRUKL+SAx+PhwoULUFRUpPVKxPT06VPMmjULmZmZyMnJwfLly//45+i5c+eQlZUFKyuryp6KWPz9/REcHAwVFRX4+fkxa4gVdeHCBSxdupQJR8zNzTF37twS2ykqKmL9+vVYvHgxrly5AgsLC1hZWcHS0lLsE+hTpkzBt2/f8Ndff6FPnz4SP79GjhyJCxcuFPuZkZER+vTpgx49eqB9+/ZStT989eoVnJycUFBQgI0bNzIBV2BgIBwdHZGamgo/Pz9cu3YNCxcuRLNmzSQ+lsCPHz+waNEi3LlzB/r6+ti0aRNatGgh9bi1atXC9u3bMW3aNHz//h0FBQXYu3cvjh49inHjxmHUqFEwMDCQeHxBqCZuawwtLS3MmTMHlpaW2LBhA65du8as7zdmzBiMHTsWFhYWcmtjKcyECRPQtGlT/PXXXyLvk5KSIrf53L9/n7ks7LXy5MkTLFq0CNWrV8fevXthYmIi0riCasOyKkaNjY2xZcsWODo6IicnB7169cLo0aNhZGRU6mPy+PFjvH//HitXrhRpHsK8ffsW69evZ257/fr1merLffv24dWrV3B2dkarVq1gbm4OU1NTVK9eXezjfPnyBebm5iV+/vDhQ+b9/tSpU6hTp06JberVq4dOnTrh3r17yMrKYt43//77b4wdO7bE9sOGDUPfvn0RFRWF6OhoHDp0COnp6VBSUkK1atXQsGFDODo6wtzcXKLbQgghhBBCCCEVicI1IhE7Ozt8+/YN1tbW5W7bpUsXNG/eHK9evUJiYiJiYmLQp0+fCpglqapYLBbUlMpfzJ5I5/z58/j06RPGjx8v09Znssbn85lQQ5J9Bbhcrkgntcvb5sWLF5g9ezYyMzMBAJGRkWCxWHBzc/tjA7arV69i+fLl4HK5UFZWxvDhw4VuV7TVlqT4fL7I4UR5223fvh3BwcEACk+ez58/Hxs3biwRGPTr1w+DBw/G6dOn0axZM7i5uZU6prKyMnx9fbFv3z7s2LEDhw4dwqFDh2BoaIh27dqhadOmqF+/PvT09KCrqwsNDQ2oqKhARaX4hwiUlJSwePFiocfgcrngcDjIzs5GRkYGfvz4gR8/fkBbWxutW7cutm337t0xZMgQnDt3DoMGDcL48ePRsmXLMu8XUT148ADz5s2Dvr4+NmzYAGNjY+a6xo0bIzg4GM7Ozvjw4QPu37+PcePGoVWrVhg6dCg6duwIIyOjUqt6SvP48WO4ubkhISEBAwcOxOLFi6GjoyOT2wMUBhR79+7FnDlzmFaDmZmZCAoKQnBwMLp37w5TU1P07t0b1apVE3ncos9bSfvOGxoaYuPGjbh06RK8vb2RnJyMuLg4rF+/Hrt378b8+fMxaNAgicYWl5KSUokges6cOcjKykKNGjVgYGAAfX19VK9eHTo6OkhJScHBgweZbUtr0Supe/eEr99aUFCAPXv24OjRo7C3t8eoUaPE+gCXIFwr2l5XmFatWsHHxwdPnjzBjBkzyh03IiICf/31F1q1aiXyXARevXqF4OBgXLp0CTweD0ZGRnBwcMCQIUOY29a3b1+sWLEC79+/x7Nnz/Ds2TN4e3ujQ4cO6NWrF0xMTNCsWTORKjLr1KmDBw8eiD1PgZ07d4q1vYaGBkaPHo3Ro0dLfExCCCGEEEIIqQooXCMSEVSiiapv377Mp7D//fffXzZcMzExkfqEUUFBAd6/f1/sZ6qqqlW+7c3Pa1qUtlYGqRp4PB52794NY2NjLFy4sEo/XomJibC1tUVCQoJU4/Tv37/cbTIzM9GlSxexxz527BiUlJSwcuXKCgvYRF2zqGg7Mw6HU2zNnKIEJ5EFY4vq0aNHcHV1ZQKDlStXQkNDA8OGDSux7bFjx+Dm5lbsWOK6du2aSI9RWFgYwsLCxBo7Ly8P8+bNQ0BAQIkWgz4+PqhZsyasrKxEClVmzpwJc3NzbN26FWfOnEF8fDzi4+PL3IfNZkNFRYWpdin6XOLz+cjLy0NeXl6JFnUsFgt//fUXJk2aJPS17ObmBktLS4naw6moqDCXVVVVmfEjIyPh7u6OoUOHYvny5dDQ0Cixb7NmzXDo0CHMnz8ft27dAgDmRL9g3n379i2x7pswHA4HO3fuRGBgIKpVq4bNmzdj4MCBYt8eUTRu3BiHDh3C7Nmzi4U2BQUFiI6OxvPnz/H9+/cSbUHLUjScKSgokOo919zcHL169cLq1atx+vRpAEBycjKWLFmCuLg4uLi4SDy2NNatW4erV6/izJkzuHDhQqlBur6+PoyMjGT2Xpmbm4ukpCTmeyUlJeb+PXPmDKpVq4bz589LdJ8L3te4XG65+5uamsLU1LTcMdPT03Hp0iXs2rVLrDnduXMHQUFBiImJAVDYXn3MmDEYOnRoicCwc+fOOH78OCIjIxEUFIRPnz6Bx+Ph3r17zHOaxWLByMgIjRo1QvXq1VG9enXo6enB2NgYvXv3FnleVY0s/h4tKChgnp+C/Rs0aFDl/xYnhBBCCCGVr6CgoMTyCi1atPgj/5bMz8/Hy5cvK3salerPe9RJpSjazulXftEpKSlJHa6xWKwSJ5wUFBSErmVRVZR2orwqz/lPFxkZiYSEBISHhws9KV6VGBoaYv/+/QgPD0fz5s3RsGFDaGlpQVNTs8pVirFYrAp73v/48QO2trZMdY0oJk+eXO42nz9/LnPtsfLweDwsXrwYbDa7RBWNtbU11NTUkJiYiJYtW6JGjRrQ0tISu3pJ3hQVFYU+juKub1W/fn34+Phg4cKFiIqKwvnz5/H06dNS12/icDjlVsgIO0Z5bRH19fUl/tBK0dcYi8UCl8vFhg0bcPz4cWzcuBEDBgwoc389PT0EBwdj37598PPzY9rrjRw5Evb29mjatGm5r+OrV6/C09MTycnJmD59OqZOnQptbW2Jbo+odHV1ERwcjC1btmD37t3g8XjQ09PDypUrYWZmJvbrvGj1bX5+vtTvE7q6uvDz80Pv3r2xcuVKZGdnAyisEurTpw86duwo1fiSqFWrFsaOHYuxY8fi/fv32LZtG06cOFFiu5kzZ8q0/be6ujoMDAyQnJwMoPjrV1jILw7B45aXlyez9/Z9+/ZhxIgRIj1GgnQzq48AAQAASURBVDWJT58+jY8fP6JGjRpwdHSEtbU16tevX+a+KioqsLGxgbW1NU6dOoXDhw/jwYMHTOjJ5/Px8eNHfPz4kdmnQ4cOsLS0/GX/fpPV36MKCgol3peUlZX/yBMihBBCCCFEerI4X/wrkrZz0e+A/gdBKoShoSFzOTU1tRJnQsjv7/Pnz/D09ISnpyeaN29e2dMRSd26dTF//vzKnkaVUrNmTYSEhCAqKgrNmzdHgwYNoKmpCQ0NjSoXOhY1dOjQyp5ChatZsybs7OxgZ2eHvLw8PHv2DG/fvkVcXBySkpKQmpqKtLQ0ZGdnIycnB7m5ueBwOMjPzy81iBNYv369TNYbKw+LxcLnz58xf/58NGzYEKdPn4aenp7I+06ZMgVmZmbYvHkzdHR0sGzZsnL3e/jwIQICAnD//n1MnDgR9vb2Mm0BWR42m42FCxeiX79+WLlyJTZu3ChxC92ia3aJG6CWxcLCAi1atICTkxM+ffoEPp+P6OjoSgnXimrQoAF8fHwwaNAgzJs3j7nN06ZNw8SJE2V+vH379mHPnj34+PGjzLof8Pl85vUnq1AlNTUVFy5cQHh4uNDrc3Nz8fjxY9y9excXL17E69ev0aJFCwwdOhS9evVC+/btxQ4mlZSUYGFhAQsLC3z+/BmnTp3C+fPn8fz5cyY8VFNTw8aNG9GvXz+pbyMhhBBCCCGEkEIUrpEKUbRyRvDpa0KI7PH5fCxevBgzZsz4I0OO340gtCG/DhUVFXTs2FGs8IPL5TJfPB6vWOWJpqamvKbKaNq0KVasWIGnT5/i77//RqdOnSQax9DQED4+PuVu9+TJE/j6+qKgoABWVlbYvHlzpVbYduzYUWgFljjy8/Ohra2NAQMGYOTIkTKaWaGmTZvi0KFDmDp1Kl6/fo0GDRrIdHxpmJmZYe7cuTh58iT+/vtv9OzZUy7HadSoEdauXSvTMXNzc9GyZUvY2trK7Pfl3r17sWjRohKv25CQEJw5cwZfv36FsbExmjZtiunTp6Nbt27Q1dWVybEBoHbt2nBwcICDgwOysrLw6NEj3Lt3D3Xq1KFgjRBCCCGEEEJkjMI1UiGKtnFRV1evxJkQ8nvLy8vD8OHDMWrUqMqeCiFERIqKijJtoyeORo0aISIiAsrKyhKHauJSUlLCqlWrYGxsXCHHqwh6enq4ceMGs56erOnr62Pfvn04fvx4lfvgxJQpU+Dg4FDZ0xCbmpoaIiIiZDrmlClThIZlvXv3hoWFhdzbnRaloaGBHj16lFhfkhBCCCGEEEKIbPyaDfdJpQoMDET37t1haWnJrH9RnqLVahV5YoGQP42qqioFa4QQkamrq1d4b/gWLVr8VsEaULhek7yCNQFdXV1MmTJF7scR15+4tkBpSqtCMzY2pr9/CSGEEEIIIeQ3Q+EaEcv9+/exceNGfP/+HS9evMA///wj0n5JSUnM5caNG8treoQQQgghhBBCCCGEEEIIIXJF4RoRy8OHD4t9n5eXJ9J+b9++ZS63adNGpnMihBBCCCGEEEIIIYQQQgipKBSuEbEUbWmjrKyMkSNHirTfzZs3AQBsNht9+/aVx9QIIYQQQgghhBBCCCGEEELkjsK131RiYiKmT5+O9u3bY/jw4Uy4Ja3u3btDQaHwaTNs2DCR1kz5/Pkz7t69CwAYOnQodHR0ZDIXQgghhBBCCCGEEEIIIYSQikbhWhWWkZHBXE5LSxNrX1dXV1y7dg3Z2dmIjY2Fk5MTPn/+LPWcDA0NMXbsWACAurq6SPts3rwZBQUF0NLSwoIFC6SeAyGEEEIIIYQQQgghhBBCSGWhcK2KSkpKwn///cd8f/nyZbH2f/bsWbHvc3Jy8PTpU5nMbfHixejXrx+OHz+Ox48fl7nt3r17cezYMbDZbPj4+KBGjRoymQMhhBBCCCGEEEIIIYQQQkhlUKrsCZBCWVlZ4HK5SE9Px6tXr7Blyxbk5eUx1wcGBiIvLw/Dhg1DrVq1oKSkBFVVVbDZbKHjtWrVCnfu3GG+V1ZWRvPmzWUyVxUVFQQEBGD37t2YMmUKunbtClNTU7Ro0QL6+vooKCjAmzdvcOjQIVy5cgX16tXDqlWr0K1bN5kcnxBCCCGEEEIIIYQQQgghpLKw+Hw+v7InQYBJkyYVC8NE4enpCSsrK6HXJSYmwsPDA3fv3kXNmjWxYMECDBgwQBZTLSYlJQXHjh1DTEwMYmNjkZ6eDlVVVejp6aFly5bo06cPhg4dWmoIWFVxOByhlX6tW7eW+rYIwseimjRpAiWlqpt183g85OTkFPuZmpoas/4eIYQQQggh8iSrv0d/xb/FCSGEEEJI1ZCfn48nT54U+1mbNm2grKxcSTOqPPI8f/6roP9BVBH79++X6Xh16tTBzp07ZTqmMHp6erC3t4e9vb3cj0UIIYQQQgghhBBCCCGEEFLZqOyEEEIIIYQQQgghhBBCCCGEEBFRuEYIIYQQQgghhBBCCCGEEEKIiChcI4QQQgghhBBCCCGEEEIIIUREFK4RQgghhBBCCCGEEEIIIYQQIiIK1wghhBBCCCGEEEIIIYQQQggREYVrhBBCCCGEEEIIIYQQQgghhIiIwjVCCCGEEEIIIYQQQgghhBBCREThGiGEEEIIIYQQQgghhBBCCCEionCNEEIIIYQQQgghhBBCCCGEEBFRuEYIIYQQQgghhBBCCCGEEEKIiChcI4QQQgghhBBCCCGEEEIIIUREFK4RQgghhBBCCCGEEEIIIYQQIiIK1wghhJRw7tw5PH78uLKnQWTkxo0biIyMrOxp/LG2bduGBw8eVPY0fmtcLhc8Hk/s/VxdXfHy5Us5zAjg8/kS7ffu3Tu4ubkhJydHxjMS7diS3I8AkJmZia9fv8p4RoQQQgghhBBCSNVE4RohhJASWCwWbGxs4OLigs+fP1f2dEp18eJFfPr0qdztjh8//kef9N2+fTtcXV1hb28v0v1VGQ4ePAgOh1PmNmlpaYiMjERBQYHc55OYmFjufEQVHR2NcePGwcLCAkeOHKmU0ERg165duHDhgsTBT3ny8vLkMm5ZMjMzMWPGDKxZs0bsfc+fPw8LCwvY2dnh5s2bMptTVlYWzM3NceXKFYnmdOTIEVhZWckt+CvNrl27MHjwYBw8eBC5ubli7Xvv3j0MGjQIAQEBYu9LCCGEEEIIIYT8aihcI4QQUsLAgQMxdepUnDlzBkOHDkV4eHhlT0moGzduYMiQIVi2bFmZoVFUVBRMTU3h4eGB+Pj4Cpxh5Xv69Cnu3r0LAIiJicHw4cNx+vTpSp5VSd7e3jAzM8OBAwdKDbV4PB5cXV0xcOBAhIWFySz8EubOnTsYMmQIzp07J/VYbDYbAPDy5UuEhIQgPT1d6jF/dvLkSZGCrbi4OMyePRuWlpa4ePGiTEO2a9euYeDAgfjnn39kNmZ5Pn/+jPHjxyM6OhqhoaHYuXOnWPurq6sDAB48eIDs7GyZzUtDQwPm5uaYMWMGVq5cKdZz9fz58wAKq8jGjBmDa9euyWxe5VFRUcGHDx+wcuVKjBgxApmZmcWuf/v2ban7Pnz4ENnZ2diyZQsGDx6MEydOyHu6hBBCCCGEEEJIpaFwjRBCiFAuLi4wNjZGdnY23N3d4efnV9lTKkFNTQ35+fk4evQohgwZwpyU/pmqqio4HA7CwsIwaNAgXLhwoYJnWnn27NlT7Pthw4ahX79+lTSb0qmpqSEpKQmrV6/GsGHDhAZQampqAICEhAR4eHhg+PDhSE1Nlct8LCwsMHDgQMydOxczZ85ESkqKxGMpKioyl/ft24datWrJYorFbNy4EWZmZggJCSkzZFNWVgZQGPTt3r0bP378kOq4BQUFuHTpEmxtbTF9+nR8+fIFy5cvx9mzZ8vd9+3bt+jZsyeaNWsm8Vffvn3x+vVrZkw/Pz8cP34cAHD79m28evWqzDmoqKgAACZNmgQzMzMp7omS7O3tUadOHRw8eBBTpkxBRkZGufu8evUKz58/BwC0bdsWFy5cQJ8+fWQ2pxs3bmD9+vWlVpYJ7g91dXUEBARAU1OTuY7P58POzg5z5szB9+/fS+z76NEj5nJBQQEMDQ1lNm9CCCGEEEIIIaSqUarsCRBCCKma2Gw23NzcMG3aNADAjh070Lt3b3Tq1KmSZ/Y/gqoTAJg8eTIGDBggdDvBCWMlJSX4+PiUut3v5uXLl8VCDm1tbXTu3LnY/VZVCIKzatWqwdPTE9WqVSuxjeBxBIBmzZohICAAurq6cpvT/Pnz8e+//+Ly5cuwtrbGnj170KBBA7HHUVAo/CyTkpIS9PT0ZD1NAIWhWUJCAtauXYubN28iMDBQ6HaCKrrq1atj7969xe5TYTZv3gxHR0eoqqoyP0tJScHt27dx/fp1XLlypUTAyePxsGLFCtSuXRtt27YtdexGjRph3759OHHiBJo3bw5jY2NoampCQ0MDABAbG4vJkycDAFq3bi1yVZqSUuGft8+fP4e3tzd69eqFadOm4a+//ip126IBqKyw2Ww4OTnBzc0N9+/fh729PQ4cOFDmfX7kyBEAhe9tvr6+Mg9iO3fujDVr1uDKlSvYuHEjWrRoUex6wf2hq6uLJk2aFLvu5s2bSEpKwvnz53Hv3j3s3r2b2b+goABPnjwBUNhWeMuWLejQoYNM504IIYQQQgghhFQlFK4RQggpVa9evdC4cWP8999/AIBnz56JHa6dPHkSL168gKurq8znJzgRDACOjo5gsVhCtxOczFZTU8PQoUNlPo+qysvLCzweDwDQpEkT+Pv7Y9KkSejQoQPq1atXybMrTlBR1alTp1KfYwoKClBWVkZ+fj66du0KIyMjuc/Jw8MDY8aMQWJiIhwcHBAZGVmsmkcUgtaLgtBIHgSvhdatW5dZZSoI+lRVVYuFPHw+HxwOp0Tws2vXLpw8eRJjxozBu3fv8PjxY7x79w6qqqowMjJChw4dUL9+fTRs2BANGzZE48aNoaWlxRynPI0aNcK8efOEXrd3714Aha9fLy8vsYNJQSB4/fp13Lx5E76+viVe//II1YoaOXIkNm3ahG/fvuHJkyfYvXs3nJychG6blZXFtFJcvny5XF6jbDYbS5YsgYODA2xsbODl5VXsPhG8DoURVMEaGBhg06ZNxYK5Z8+eMW01e/fuTcEaIYQQQgghhJDfHrWFJIRUOD6fj4LsbORnZKAgO1uma/4Q2RsxYgSAwkqKgQMHirXvqVOn4Orqij179sDT01PmcxP1xHhZJ4x/V9euXcOtW7cAFJ5Q9/X1RYMGDWBrawsXFxfk5ORU8gyLq6qPZZs2bZg2mp8+fUJISIjYYwgCzooI1xo3bgx1dXV8+fKlzO1+9u7dO4wePbrEmlrKysr49OkTbt68ia5du2L16tWIjo7Go0ePcOrUKWzbtg2urq4YPXo0OnbsiGrVqokcrJXl8uXLuHLlCoDCCsJGjRqVuu2pU6eErmkmqIYEgJCQEKHBurzDNTabDUtLS+Z7wWtSmCNHjiAjIwODBw+GlZWV3OYkqEDmcDhYtGgRHj9+zFxX2v3x4MEDxMTEQENDA7t27SoRgN+5c4e5PGHCBPlMnBBCCCGEEEIIqUKoco0QUiGy4j7g2/UY/Ih9g6x371GQmclcp6SpCY2GDaDVtAn0e/eCRv2qVVHzK8rJyZFZeGJoaAgWi4WlS5dCVVVV5LWnrl+/jiVLloDL5QIorEJhsVhYvHixTOYFiB60yOJk/68kNzcX69atY76fP38+mjdvDgCws7PDyZMnsWDBAmzdurXK3DelhT4/K606UZ7Gjh2Ly5cvA0Cx9b1EJfgAQdGwR9Z+DkXCwsLw9etXeHh4FKtGKys8ef36NaytrbF06VKMGTMGwP9eYx07diwWEslTWloaVq5cCQDo2rUr0xpSmP3792PNmjXo0qULAgICoK2tzVxX9LZWZjvbvn37IigoCABQv359odsUFBQgJCQEtWvXxqpVq+Q+pylTpuDevXsoKCjAli1bsHv3bgClPz98fX3BZrMREBDAvJcU9e+//wIA6tSpg169ekk9v/79+yMhIaHc7RQVFaGlpQUDAwOYmJigX79+MDMzY9qfykJKSgqGDRuGlJQUXLp0idaSI4QQQgghhBACgMI1Qoicpdy7j4R/jiHjxctStynIzET6k6dIf/IU8UcjoN3CBHWtLaHXqWMFzvT38v37d9ja2op0clJUbm5ucHNzk2qM4OBgsFgsubSILEtlBDKVaePGjYiLiwNQ2NpzypQpzHXKysrw9vbG6NGjsWbNGri7u1fOJH8i6mNUGWFgt27dUK1aNaSnp6NNmzZi75+fnw9AvuHaz0Gzg4MDzMzM8PbtW+zYsYNZm660EFNQJZaTk4P379+Dw+GAzWaLHHrKCp/Px+LFi5nKu3///VdomPOzO3fuYNy4cQgKCkKdOnUAyL8qTVRt2rSBqqoquFwuxo0bJ3SbkydP4suXLwgJCRG63qCs9enTh3lOF/0ghrD7LCoqCo8fP8bmzZvRrVu3Etfn5ubi7t27AABra2uZvEZPnDiBrKwsbNq0CREREQAK14HbunUrmjRpAhaLhYKCAqSlpSE2NhaXLl1CVFQUTpw4gdq1a2PlypXo06eP1PMAgHXr1on8oRJCCCGEEEIIIX8OCtcIIXKRn/ED74J24Vt0jNj7Zrx4iYwXL6HfuxcaOthDWVtLDjP8vRkaGiIkJAQXL16EiYkJ6tevD01NTWhoaJQIMbhcrlQnob9//47q1atLO2UiI/fv32daFxoZGWHDhg0lHnMTExM4OzvD19cXSkpKWLp0aWVM9ZfBZrOxbNkyfPjwoVhQKaqCggIAoodrR48eRb169dClSxeRj/FzoKGpqYnJkydj06ZNmDx5Mg4ePAhNTU2hIWZubi5u3rwJAHBxccHMmTOZ6yo6XNuwYQOuXLkCZWVlbNy4ER07lv4hi3fv3sHW1hZcLhfq6uro27dvsTbDRe8TPp8v95D948ePqFGjBrPWmwCbzcbs2bPRtGlTtGzZssR++fn5CAgIwIwZM0qtsDt9+jQ0NDTQt29fmcyVzWZjwIABOHr0KEaPHs38/Of7KCsrCz4+PvDx8YGZmZnQse7cuYO8vDwoKCiI1c4yMzOz1PULNTU1oampCQsLCyZc69GjR4n7R09PDw0bNsTgwYMxZcoUzJgxA58/f8aMGTOwYcMGqdfYvHbtGk6ePCnVGIQQQgghhBBCfk9VoxcUIeS3khUXh0fO8yUK1or6Fn0dj5znIyvug4xm9mcxNDTElClT0LVrV9SqVavUE+vLly9HUFAQsy6UODIyMtC/f3+sXr0a3759k8W0q4Rf9bb8+PEDS5YsAY/Hg5qaGrZu3VpqFYy9vT369OmDffv2Yc2aNb/l2odZWVnIzs6WyVgjR47E3LlzJQqiBeFa0faMpTl69Cjc3Nzg6OhYbB2r8ggLwcaPHw8VFRW8fv0a3t7eAIRX/l24cAE5OTno1atXsWANqNjqr7179yIoKAjKysrYtGkTBgwYAD09vVK//P39mbaza9aswaJFi1C3bl1mvKLvd5K8v4nrxo0bGDBgAMLDw5nHXMDBwaHUSqqIiAjo6+tj1qxZQq+Pj4/H8uXLMWPGDPj6+pYYW1IzZszAvHnzirX7/Pl3xIMHD+Di4sKEVFevXsWkSZOQWaS1c3R0NIDCCk9B1WB57t+/D1NTU1y6dKnM7Yo+/8prA9yyZUum1S2Px4O7u7tUFWeZmZlYsWKFxPsTQgghhBBCCPm9UeUaIUSmsuLi8GzZimJrqkmDk5KCZ8vc0WrtKmgYC1+rhkhn+vTpGDlyJKKjo+Hn5wcDAwOR942JiUFubi4OHDiAiIgI2NrawsnJSaQQQRh/f3/Mnj27Uts4cjgcDBs2DI6OjrCzs/tlWkry+XwsWrQIHz58AIvFwrp168psp6egoABfX1+MHj0a+/fvR0pKCtavXy+TtYr+++8/xMbGSl01Iq0rV67A398fvr6+aN26tUzHjo2Nha2tLVJTU0XeJyYmBs2aNRNp2+zsbDg6OuLw4cNo0qRJudsLC8GqVauGAQMG4NSpU4iIiICbm5vQcC0yMhK6urrw9PQscV1FteEMDg7G+vXrUb16ddjb25dbtXfy5Encvn0bAGBubo5hw4aV2KZooCZtha4oVFRU8PXrV7i7u0vUbrVFixblbhMUFIRGjRqJvf5dampqiQBdQ0MDY8aMKRZA5ebmAii871JSUphKu5SUFDx48ADz5s0Dh8PBtGnTsGvXLmhqajIBmZmZmUhhVmxsLJycnJCVlQVnZ2ds3rwZpqamYt2e0rRt2xYDBgzAuXPn8OPHD0RERGDatGkSjbVhwwZwOBw0btwY//33n0zmRwghhBBCCCHk90HhGiFEZvIzfuDFyrUyC9YECjIz8WLlGrTb7EctIuXA2NgYDg4O8Pf3h7W1NYKCgkQOAI4fP85cbtmyJUxNTSUO1oDCSrhdu3bBwcFB4jGkdf/+faSlpcHLywvR0dHw8vJCzZo1K20+otq6dSuzbtbixYtFCra0tbWxbds2jB07FqdPn8bnz58REBAAPT09qeZiZGQEJycntGrVCvXq1ZNqLGlER0cjLi4O48aNw5w5c+Dg4CCzsKhp06YIDg7GsWPH0Lp1azRo0ADVqlWDhoZGiW2tra2RmJiIQYMGwcPDo8xxN2/ejEOHDgEoDCsaNWok0nxKu12mpqY4deoUtLW1wWazS4TFiYmJuHXrFjZv3iw0WJd3IMXj8eDt7Y3g4GC0b98emzZtwokTJ2Bqaoq5c+di4sSJJeb88eNHrFy5EgBQv379UquLBFVtQGHrRVkEx2Up+t4XEBCADh06yGTcBw8eMFVtc+bMETtYA4Bjx47By8tL5O0/f/4sdH01gYcPH2LatGlwcXFBYmIiAGDlypXM4yKq/Px8mQdspqamOHfuHADg9u3bEoVr9+7dQ1hYGPz8/HD48GEK1wghhBBCCCGElEDhGiFEZt4F7QJHihZMZeGkpOBd0G40W+Ail/H/dPb29jh06BCSkpJgZ2eHf/75B7Vr1y5zn69fvyImprD1Z6NGjRAYGFjq+jmisrOzw9ChQ9GtWze0atVKqrEkVbRN2a1btzBixAjs27evzCqwynbmzBkEBAQAKGw/J2xdsPv376NDhw4lgopGjRphx44dmDp1Kh48eIBRo0bB29u71LWfRKGiogJra2ssWLAAYWFhFb5uF1DYivHatWsACk/g+/n54e7du9i+fXu57eWE4XA4JcIZExMTmJiYlLkfj8dDcnIyAKBhw4blBpdF2+0tWLBA5DCwtO26d+8OZWVlzPg/9u47vMnybeP4mdXdUlr2LHuIIAiCAwQEFERF3P4Q8VUBFURFHKigIjhQGQ5cuHChiIgKKKioqAiIMkS2QFugjEILLW3SJO8fpaEhSUnStCnw/RwHh0+e3M/93GlLLTl7XffQoZI82/598skn6tevn3r27BnQvKFw8OBBjRw5Un///bceffRR/e9//5PRaNStt96qOXPm6KmnntI///yjZ555xnVNXl6ehg8frkOHDik2NlavvvqqEhISvM5fvHLNZrOV2esoUjxci4+PL3VIXXyuIsEGdv/3f/+nGjVqqKCgQC1atFBycrLi4uJcX9O//fabbr31VtfHrHbt2vrhhx9OOO+LL77oOl66dKkqV67sddx///2nSy65RFJhtfTIkSODeh3+KF7pmZGREfD1VqtVjz76qC666CL16dNHn376aSiXBwAAAAA4RbDnGoCQyFzxZ6n3WDuRfT//oswVf5bpPU5X0dHRuuGGGyRJ+/fv99oe7ngffvihCgoKVKlSJU2bNq3UwZok1apVSz179tT999/vak9WnhwOh6viQZLatm2rN998s0IHa7/88otGjRolp9OpG2+8Uffff7/XcRMmTNCVV16pxYsXezzXrl07vfTSS7JYLEpPT9fAgQM1derUUu3tdMMNN2jz5s2u0K+8/fbbbzp48KDr8eDBgzVx4sSggrXnn39eQ4YMkdVqDfjavXv3uoKdOnXqnHB80X5/JpMpoBatvkKwxMREzZgxQzfddJPX5//66y+NHj3a9fjwcZXHwbRFtVqtJ/xY/fbbb7r66qtVq1YtzZs3TzfddJPrNZhMJg0ePFhSYcVV0Z5eNptNI0eO1Pr162U2m/Xiiy+qcePGPu9R/HtIeXw/Ka8WmsHq06ePLr/8cjVp0kRJSUmuYG3fvn0aNWqUWxiZk5OjJUuWeHw9FOd0OvXVV1/JbDbrzDPPdFWweVO8XWQgX9fBKF49Gkyo+sorr2j//v3stwYAAAAAKFHFfhcAwEkj/fMvyuc+s+eUy31OR1dffbXrjfTvv/9eR44c8Tk2Pz9fM2fOlMlk0osvvqj69UO3H97//d//6b///guohVmorFixQnv27JEkWSwWPffcc2rdunW5r8NfK1as0PDhw2Wz2XT77beX+GawxWLRv//+qyFDhui6667T6tWr3Z7v3LmzXn31VUVFRclut+uVV15Rv3793Cr5ApGQkKCrr75ar7/+uv7++++g5iiN+fPnu447duyokSNH+qyqOXDggDIzM73+ef311/Xmm2/qt99+04gRIwIOHFNTU13H/rTI3L9/vySpWrVqAbVkLCkEa9u2rev548e98847rmD81VdfVb9+/bRr1y6/73s8q9WqESNG6K677vIZsOXn5+vnn3/W+++/r3Hjxnltu9qrVy9XEJqdna2CggLdd999WrRokUwmk55//nl17dq1xLUUBWpVq1Yt8/aWUtm30CwLBQUFGjVqlPbt26e6detq4MCBkgp/0WDcuHE655xzdOONN+rdd991C6sladmyZdq5c6cuueQSNWnSROnp6T7vU3xvwrIO1w4dOuQ69vV33pf169frrbfe0gMPPKBq1aqFemkAAAAAgFMIbSEBlFrOtu3KXvdvudwr+591ytm+Q7H1w7eP06mqevXqat26tVatWqWIiIgS9yeaNWuWDhw4oAcffFAXXHBBifNmZ2dr8eLFuvzyy/1aR4sWLdSpUyd99NFH6tatm7p06RLQ6yiNWbNmuY6vu+66sO4XdiLLli3THXfcoby8PI0aNeqE+woVr9iqXbu2UlJSPMZ06dJF06dP15AhQ3T48GFt2rRJd955p9q1a6dBgwapW7duAe1bdfPNN+vDDz/UqFGj9OWXXyomJsbva0vj8OHDWrBggaTCMGnUqFEljp89e7aee+65E867ePFi/fDDD+rVq5ffa1m7dq2kwqqmli1bnnB8UQvJGjVq+H2P43399deuCrjj/flnYfXv4cOH9e6777rOb9u2TR9//LEkaeDAgZoxY4Zq1KjhCuOOHDniVn3kjdPp1KOPPupqJ3jXXXfplVde8fiaiYyM1EMPPVTiXDExMWrVqpWMRqM6deqkIUOGaMmSJbJYLHr22WfVu3dvbd++XbVq1fJZjWixWHTvvffq5ptvVnR0tNcxoWwXWR6Va06nM6RzPfzww/rtt99Uu3Ztvffee66/N/Hx8friiy80ZswYffXVV/rzzz81bdo0vfvuu65WqJ9++qmMRqNuv/12zZ49u8TKteLtGUvzte2Pbdu2uY79+TtXxG63a/To0TrnnHN0zTXXlMHKAAAAAACnEsI14BSQl7EnJPMYIyyKCPC3vK0HDmj3gm9PPDCEds//VrWvvMLn88G+DofV801Wc2yszHGxXq44uXz//ffq3r37CVu8de/eXatWrdKtt97qswrDZrPprbfe0uWXX67/+7//K3G+zMxM3XrrrVq3bp327NlzwgCoyE033aSlS5fq0Ucf1TfffOO251BZOXTokKslZGxsrO68884yv2ewFixYoFGjRikqKkqvvfbaCSt4pGPhWq1atdz2STpe+/bt9emnn+rOO+90vUm9cuVKrVy5UgkJCerZs6fOPvtsNWvWTE2aNHHbZ+p4derUUbdu3bRo0SI9//zzGjNmTECvM1jffPONcnNzJRW2wjvzzDNLHH/rrbeqatWqcjgcatGihapUqaL4+HhFRETopZde0ssvv6z4+Hi98sor6tixY0BrKaoQbNas2Qlbp1qtVld10In2PCxJ8+bNNXjwYNWsWdNtnjVr1rg+pzabzRX8Fbnssstcx7NmzdJdd93l+p4xffp0TZ8+PaB1/Pzzzxo2bJhefvnlgELZIk899ZT27t2ra6+9Vunp6apcubJefvll136AX375pWbPnq1bb71V1113ncc9/ve//0kq/LhmZWUpNjbWbf+/1atXKy0tTZJ87tsWiJMtXBs/frzmzp2revXq6e2331bt2rXdno+JidHzzz+v2rVr67XXXtPBgwc1YcIEzZgxQ5mZmfr22291xRVXqHnz5oqPj3d9LL0pHq750x61NIr2WpSkiy66yO/r3n77bf3333+aO3duWSwLAAAAAHCKIVwDTgF/Dr4jJPMktDpDZ45/MqBrNjw/Sdlr/wnJ/f21e/4C7Z6/wOfzoXwdda+/VvVuuC7gNVY0DzzwgGrXrq277rqrxEqzvn37au/evbr55puVk5PjdczcuXMVFxenhx9+2OcYScrKytLgwYO1adMmSdLEiRNls9l0xx0n/nrt3r276tSpo7S0NE2YMMGvPeBKa/bs2a42ckOHDlVycnKZ3zMYM2bM0IQJE9SkSRNNnTrVawWaN0Xhmj97aDVq1EifffaZRo0a5bZHW3Z2tj7//HN9/vnnSkpK0n333XfCCo+bbrpJixYt0kcffaRevXqpU6dOfq23NIoqsCIjIzVy5Ei/rjlRZWWNGjUCDtYkuVpiFgVCJSlqCSmVLlxr3Lixq3qsuKuvvtp1XLlyZT3//PMnnMtut0uS7rzzTo0YMcLrmL59+2rTpk0aNmyYhg8fHuSq3R05ckSzZ8/We++9p4KCAp1zzjl69tlnVatWLdeYYcOG6d9//9VTTz2ld955R0899ZTOO+88j7m2b9+uBx98UOvWrZPFYlFkZKQMBoOys7NdY5o0aVLqNRd9rMpS8X3RSjNHUUjWoUMHvfTSSyW2T7z33nuVm5ur999/X9u3b5dU+HfMYrHonnvukVRY6bZixQqfcxS1jIyOji7TtpCbN2/WvHnzJBW2Q/X29eDN9u3b9fLLL+vee+9V3bp1y2x9AAAAAIBTB+EagFIJ5W/Ro+xER0drw4YNuvvuu/0a/8EHH5xwzLnnnhvwOiZPnqyCgoITvgFvNBp13XXX6YUXXtDs2bPVt29fnX/++QHfz18Oh0Pvv/++pMKqikGDBpXZvYKVm5urMWPG6JtvvtEtt9yie+65J6BqoOIVO/5ISEjQ66+/rk8++UTPPvusqxKsbt26GjNmjN/tOjt16qRGjRppy5YtGjNmjObOnauoqKiA1hKIpUuX6t9/C9vU3nLLLR7VOOVp8+bNrlDBn6/f4tU9xUOkUMjMzNQ//xz7BYLc3FxlZmYqKSmpxOuKwpySgqNQ/39gwYIFmjhxotLS0lSrVi2NGDFCV1xxhUcwbDQa9fTTT+uKK65Qenq6brvtNr399tseAW6TJk00e/ZsZWRk6LPPPtPbb7/t9osBjRs3PmF7W3+EssWkL6UN16xWq+6//359++23uvrqqzV27Fi/vo889NBD2rRpkwwGgytoGzVqlKvFY40aNfTPP//I6XR6DfCLKibLstXu1q1bNXToUBUUFKh69eqaNGmSX9cVtTNt3ry5a885AAAAAABOhHANQOmE4LfoUfaK3jytVauWa0+diu6qq67S1KlTZbPZ9Nhjj2nevHllFsp89913rpZmDz30UFAt7MrSpk2bdPfdd8tgMGjGjBluVVA2m83nnlPF+TPGm+uvv14XXnihJk2apJ9//lkff/xxwJUn1157rZ5++mlXdcj9998f1Fr88c4770iSqlWrpsGDB5fZffzx3XffSSqsEvMnvNmz51iL39JUrnnz66+/ugUzNptN119/vQYPHuxW0XY8f8K1UFm2bJlefPFF/fXXX2rYsKHGjRunfv36lfj3MTExUQ899JDuuece2e12zZgxw2d1ZPXq1TVs2DBdccUV+t///qeMjAxVrlxZL7zwQkhaOhYUFJR6jrK8x759+3T33Xdr69atmjJlii655BKfY4//eJhMJr3yyivKyMjQRx99pJYtW+qGG25wPZ+SkqJDhw5p27ZtatCggcd8RRVvoagQLM5ut2vDhg36+uuv9dFHH+nIkSNq27atJk+e7Pfebp9++qn++usvffnll+XS2hMAAAAAcGogXANQKlSunVwMBkOJe2RVJMnJyerevbu+/fZbpaen6/XXX/fZlq40nE6nXnvtNUlSly5d1LNnT7+uu+yyy7Rr166QrcNbS7Wi/e0++OAD3X777RowYIBHBdo777yjf//9V0OGDFHz5s19zh9o5VpxNWvW1HPPPafDhw+fcN8wb/r166fnn39eNptN7777rvr376+GDRsGvR5f1q1b52pj+fDDDys2Nrz7JS5cuFCSdOmll/oVbu7du9d1HOrKteLtPSWpUqVKeu6553TLLbfom2++0fjx473es6gaq6TQoTT/H3A6nfrpp5/02muvacOGDerevbtGjBihTp06+dXCVJJ69+6tV199VRs3btSRI0dOOL5u3boaNmyYvvrqKz355JNq0KCB7Ha7li9fXqq2peURrgVbufb7779r1KhRatu2raZOnaoqVap4jDl48KDsdrvatm2r8ePHezwfGxurypUr68svv9R7773n9vlJSUmRwWDQ2rVrPcK1nTt36tChQ5IKqwSD9fXXX2vRokWux06nUzk5OXI6nYqNjVWHDh3Uv39/XXLJJX5/7WRkZGjixIm644471KhRo6DXBgAAAAA4/RCuASgVf9/AQsVwsoWhV1xxhb799ltJ0vTp03Xdddf5XY3gr++//17//vuvIiMj9dhjj/l93Ztvvlmmb6avWLFCzzzzjDp06KCvvvrKZ/u+iIgIzZs3T/Pnz1fXrl11xx13qE2bNqW6986dO70GLcEEa1JhdVHXrl21cOFC2Ww2Pfvss3r99ddLtUZvXnnlFUnSeeedpz59+oR8/kCsXr1a69atkyT179/fr2t2797tOg5luJadne0KJS644AItWbJEknTWWWdp8uTJGjp0qC6//HI99dRTHtVMVqtVUmHlUigdOHBAs2bN0rx581S/fn0NHDhQXbt2VUxMTFDz9e/fX88884wuvvhiv8ZfccUVuvbaayUVtsi855579Msvv2jKlCnq1atXUGso3hby0KFDyszMDGqe4xUFU8ffw1+vvfaafvrpJ02ePLnEvf+mTJmiuXPn6oEHHvD59ZeZmanx48d7fD+KiopSzZo19ffff+uyyy5ze279+vWu4zPOOCPg9Rfp3r27HnjgAdfjnJwcXXXVVbLZbDr77LP15ptvBjznE088oVq1aoW9yhUAAAAAcPIhXANQOrRQOikUhWonW8urLl26KCEhQdnZ2crPz9crr7yicePGhWx+h8OhqVOnSpLuuuuugPYDCnXId7x9+/bp9ddfV3JyconjiioRnU6nlixZoq5du5YqXJszZ44effRRTZw4Ub179w56nuP17dvXVcm1ePFirVy5Uu3atQvZ/KtXr9b333+vqKgoPfHEEyGbN1jvvvuuJKlbt25+BwpF4Vp8fLwqVaoUsrV89dVXysvLU6tWrXTuuee6wjVJuvDCCzVixAhNmjRJI0aM0MiRI92ChqJwraTWjMGE9gcOHFCbNm00aNCgoFuWFte/f3/l5ua6ArMTKfp7s3fvXg0ZMsS1H93999+vt99+u8QQypfiYftdd90V8PX+yM/PD/ianj17aujQoSWOcTqd+v7773X48GGNGTNGX3/9taZPn+7xeS+puqthw4ZavHixxy8p/P33367j1q1bB7z+IjExMapTp47buR49emj+/PlasmSJUlNTVbduXb/nmzdvnhYvXqxPP/00JF+DAAAAAIDTC+EacAo4+41pIZnHGBH4m0vNR92n9c9M1KH1G0KyBn/Et2iupvf6bg8YzOtodv+9clg9KwLMYW4rFyq5ubmSFHRVSLhYLBZ1795dc+bMkVQY/IwcOVKJiYkhmf/LL7/Uhg0b1Lx5c916660hmTNUStoPqbjo6GjX8eTJk9WjR4+g7zlnzhw9/PDDcjgcuv/++2U0Gv2uBDqRCy+8UFFRUcrLy5NUGD6FMlx7/vnn5XQ6dffddwcUkpaF9PR0V8Xl8OHD/b6uqM1oqFtCzpo1S1Jh4LNlyxZJ7oHY4MGDtXjxYv3111964YUX1KBBA1d71KLvHcFWLXrzxx9/aMiQIX61cAxUUVgerPz8fN1xxx366KOPAt4frHi49v7776tjx44eY3bt2hXwfnp//PGHBg4c6HEPf/nT7vDPP/9URkaGpMK2mS+99JJHsLZo0SJ16NDBZ/Dbrl07LVmyRBs3blTTpk3d5pakBg0ahOx7d5HrrrtO8+fPl8Ph0EcffaQHH3zQr+sOHjyop556SoMGDVKrVq1CuiYAAAAAwOmBcA04BURVrxa2e0dUrqxKrc4o13Ct0hktQ/6aIypXDul8FU1RoHGyhWtSYShTFK5ZrVYtXbrU7+CpJHl5eZo6daosFoueeeaZUu1JFk7F2/XVrl37hOPT09PVrFmzE44rKCjQfffdp8mTJ/u9D11JoqOj1aFDB/3yyy+S5PpvKPz000/6448/dNZZZ2nQoEEhmzdYEydOVEFBgfr27RtQG7ydO3dKkkd1Tmn88ccfWrdunbp27aru3btr8+bNktz37jIajXr88cfVr18/OZ1Ovf322+rZs6dyc3Nlt9slSQkJCT7vEWjlWseOHfX6669r6dKlOuOMM1SnTh3Fx8e7BcXe2Gw23Xbbbdq4caMk6ZZbbtHgwYM1c+ZMZWRk6O677/Z7DScKuaKiovyeq0hBQYESEhLUrVs3paSkeDyfm5urW265Re3bt9ewYcP8rn6NjIzUFVdcoWuuuUYdOnQIal0nqnj7/PPPJRW2en7yySdlsViUk5Pjen716tW65557VLduXb3xxhteK8TOOeccSdIPP/zgCtcOHz6sVatWSSps1xpqnTp1Ur169bRjxw7Nnj1bI0aM8Otz9/TTTys+Pj6grxkAAAAAAIo7Od9JBFChVOl8gdJmzS6/+3XpXG73OhU4HA5XuFbSG+QV1fHVH2lpaSGZ94033tDOnTs1cuRItWjRIiRzhkOge2HVrFlTs2f7//c1lKFjx44dXaFabm6uMjMzfe4l5y+r1aoJEyYoJiZGEydODPneYIFasWKF5s+fr6pVq+rRRx/1+zqbzeZqCxnKcG3q1KmKiopyraUoCDs+EGvevLkuvvhiLViwwLWvV/G9vqpUqeLzHsG0hezYsaPXyq6SPPLII65grV+/fnrwwQdlMBh0/fXXq0ePHho0aJDXUOt4zz77rL766it9/PHHAbURPJE+ffro2muv9dlCMyYmRq+//rpuuOEGffXVV/q///s/DRky5IRh0FlnnaWzzjor6HUdOXJEt956qyvkKonT6dQtt9zi8/mtW7fqhhtu0Ny5cz3+7rZp00aRkZH67rvvXG0oly5d6vp6KotwzWAw6JprrtELL7yggwcP6ptvvtFVV11V4jW//PKLvvzyS82YMSOoEBUAAAAAAIlwDUAIxKbUV0LLFspe92+Z3yvhjJaKrR/elm8nm4MHD7qOq1evHr6FBCk5OVnVq1d3tSwLxb5xqampeuutt9SxY0fddtttpZ4vnAINk4xGY6kDrWAdX8VlMBhKPec777yjbdu26emnnw57O8j8/HzXfm/jxo1T5QAqYtPS0lxVYqF6Hb/++qtWrFihxx9/3BUiFd2jeOVakRtuuEELFixQ165dJRXu+1ekpO8dwYRrgZoyZYqrvWW3bt00fvx419dP5cqV1aNHD40fP15vvvlmifO8/PLLevvttyVJgwYN0kcffRSy74vF/159+OGHioqKUr9+/dz+jtavX19Tp07VoEGD9Oqrr+qrr77S888/X6rw7ETi4+M1ffp0vffee2rSpIkaN26shIQExcXFyWg0atasWXryyScVHR2tuXPnev143HjjjVq7dq0aN26sKVOmeP0eEhERoTZt2mjZsmVavXq1Wrdurfnz50sqDBYvuOCCMnl9/fv319SpU2Wz2fThhx+eMFwr+vzfcccdfs1fvH3p5Zdf7vH/oBUrVgS4YgAAAADAqYBwDUBI1L7qynIJ12r371fm9zjVnOzhmiQ1bNjQFa6F4k3ocePGKSEhQS+88EJIwrpwCnelViAaNmzoOk5JSQkofPImLS1Nr732mvr376/+/fuXdnmlNn78eG3cuFFDhw5Vt27dArp269atruP69euXei0Oh0OTJk3SJZdcohtuuMHtvHQsZCuuU6dOGjVqlGv83r17JRUGsiUFft6CulB644039Oqrr0oqbD04ZcoUj4rKW265RVdeeaW+++479erVy2MOm82mcePGaebMma5z+fn5evzxxzV58mRFRkYGvb4vvvhCV155pdu5gwcPaurUqXrrrbd0991365JLLnGFge3bt9eoUaM0YcIEpaam6qabbnKF/b688847Wr16tW655Ra1bt064DXGx8dr2LBhHuetVqsrkBwyZIjXz/Pq1au1du1aSdLdd9+txo0b+7xP165dtWzZMn3wwQcaM2aMvv/+e0nH9lwsC1WqVFH37t317bff6p9//tGqVavUpk0bn+Ofe+65E7bJLG7UqFFauXKlpMKvRX/beQIAAAAATm0n9zuKACqMpPZnq0qXsvmt9CJVunRWUvuzy/Qep6Li4VooW6CVp/bt20uSrrjiCrVr165Uc3311Vf67bffNGXKFFWtWjUUy4OfatSooTp16shsNuuxxx4r9Xxjx45Vo0aNNHbs2BCsrnS++eYbzZw5U1deeaXuvffegK//999jv5zgz554JzJjxgzl5ORo/PjxbueLgjBfgdhtt92m2NhYSdJ///0nqbCSrqTwqSwr1yZOnKgXXnhBktSkSRNNmzbN61qaN2+uK664Qo899phH69hdu3bppptu0syZM2UwGHTBBRfozTff1C+//OJzPn9t2bJFL7/8ssf5ojm3bt2q8ePHu31+JWngwIGuPcqsVqvH5+l4N910k6sF4s0336w///wz6DUX98EHH2jXrl2qX7++br31Vq9jXnvtNUmFgfiJ9l/s27evjEaj5s+frzfffNNV9XWiarLSuuaaa1zHH330UYljq1atqjp16vj9p/jXR9H3sOJ/AAAAAACnJ8I1ACHT8PbbFFFG7eYikpLU8Hbvb/yhZMXfaC6p4qAiu/HGGzVy5EhNmDChVPNYrVY9/fTTeuqpp3T22QS14fD4449r2rRppW4Rt2jRIm3ZskWvvPJK2PdN+v333/XQQw+pZ8+eeuqpp4KeQyp8479atWqlWk9aWpo++OADvfnmm4qLi3N7rqCgQJJc+2CVpGh/sxNVSpVFuHbkyBHdc889euutt1znWrVq5fF6irv33nuVn5+vu+++W1arVZI0Z84c9evXT+vWrdN1112nb775RtOnT1eXLl1C0pb0448/9toi0WKxuI7ffvtttWzZ0u15g8GgMWPGuCpnDxw44HX+ZcuW6YcffpDZbNbzzz+vvn37aunSpbrxxht11113lWoPyuzsbL3++uuSCvez87ZX3OrVq13VZ3fdddcJK32rV6+u9u3by2q1ukK5evXqlVlLyCIXXHCBateuLUmaN2+eMjMzy/R+AAAAAAAQrgEIGUtCvFqOfVTmEt78DIY5Lk4txz4qS0J8SOc9XWzZskVSYWu3Ro0ahXk1wUlKStLgwYM9WsEFKj8/X7fffrv69esXmoUhYJ07d1aXLl1KPU9eXp7efvvtsLc6XbNmje666y5dd911mjp1qs+v0cOHD/ucIy0tzdV27rzzziv1mmbMmKFJkyZ5raopCtX8Cdf++OMPSSqxXaEU+raQ27Zt0/XXX6/58+crNjbW789x9erVdf/99+uff/7Rww8/rFtvvVXjx4/X9ddfrx9//FFPPvlkSL8H7t69WzNnzvQahhZv1xoTE+P1+iZNmqh3796SpPPPP9/rmO3bt7tahhqNRj3zzDOusYsWLdLll1+uRYsWBbX+l19+WQcPHlS1atVkNBp16NAht+ftdrsef/xxSdKZZ56pvn37+jXv5Zdf7vZ48ODBIQkyS1JU1ScV/hJF0f58AAAAAACUFfZcAxBSsSn11Wr8k1r3xFOyhuA3xyOSktRy7KOKTSn9HkSnq82bN0uSWrRooejo6DCvJrzi4+N1yy23hHsZCIG+ffu67eFWFtauXavvvvtOkpSenq7169erefPmrud///13jRw5Uvfdd58GDBjgcx6bzaaBAwfKarXqzDPPVKtWrdSkSRPX3mpjx451BVSXXHJJqdf98MMP+3zO38q1zZs3Kz09XWazWd27dy9xrLf924I1a9YsjR8/Xrm5uerevbvGjh2rsWPHuvZcPJEBAwZo6dKl+vrrr9WgQQMtWrRIlSpVCtn6ihs/frysVqvXENPfvRzvvfde/fvvv7rrrru8Pn/w4EFlZ2e7HlssFk2dOlX9+/fX9u3blZOTo3vuuUeffvqpR3XciZx11llyOp1as2aNhg0bJqvVqsaNG6tt27Zq166d1qxZo3/++UcREREaN25cUPtTGo1GderUKeDrgtG/f3+9/PLLKigo0CeffKLbbrvtpN9TEwAAAABQcRGuAQi52JT6OmvKi9r65nTt+/mXoOep0qWzGt5+KxVrpfTPP/9Ikrp27RrehQAniaysLL344ov69NNPdckll+i5557TO++8o5tvvlmvvPKK2rdvrzlz5uijjz7SO++8c8I90iwWi2bPnq2VK1dq4sSJmj17ttdxjRs3LvO/p/n5+ZIKWzlarVavrQAl6YsvvpAk9ejRw2vbw+JC0RYyLS1Njz/+uH755RelpKRo1KhR6tGjR1BzTZgwQVu2bNHWrVs1dOhQTZ48OeQVju+//74rePVWDedvqFO3bl3Nnz/f5/P79+/3qCiLi4vTpEmTdM0118hut8tms2nWrFkaM2ZMAK9A6tOnj/r06SOp8Ovi999/1w8//KAff/xRM2fOdI2rUaOGVq9erapVq6pKlSolzrlkyRI98cQTrscOh0O33367PvzwQyUnJwe0vkBVr15dF154ob7//nulp6dr8eLFJwyG/VH867ss9xcEAAAAAJxc+HVOAGXCkhCvZiPvUYvHRivhjMB+mz7hjJZq8dhoNRt5D8FaKa1du1a7du2S0WjUFVdcEe7lABWa0+nU559/rksuuUSffPKJhg4dqkmTJqlFixZ67rnndPHFF2vQoEH64IMPFB8fr48++uiEwVpx7dq100cffaT777/f47nY2Fg9++yzZV5pExkZqRtvvFFffvmlIiIi9PXXX+uOO+5w7VEmSTk5OZo1a5bMZrPPiqriiirXgqlgy8vL02uvvaa+fftq/fr1Gjt2rL755puggzVJSkhI0HvvvacGDRpo5cqVuuyyy/Txxx+HrH3lxx9/7Lb/o7c96UL1eUxLS9OePXs8zp9xxhm67rrrXI+LV7cFIzIyUl27dtWYMWN08cUXuz23Y8cOjRkzRl26dNF9993ndT1SYYvU4cOHy2azqX79+rrpppskSf/995/+7//+L6h90Ip/TRVVXZak+Mfkgw8+CPh+3qSnp7uOt2/fHpI5AQAAAAAnPyrXAJSppPZnK6n92crZvkP7fv5FhzZtVs6WrSootv+QOS5OsY0aKr5JY1Xp0lmx9euFccWnloULF0qSunfv7mpBB/+sWrVKX331lR555JEy3y8IZWvKlClq166dOnfu7HPM+vXr9cQTT7j2Prv99ts1YsQItzFjx45VZmamxo0bpy5duqhly5aqWbNmQGsxGAy6/fbbVVBQoMmTJ0uSmjVrpueee86t5WQgfvrpJy1btkxS4X5TJYUYd9xxh+t4zpw5Gj16tOx2u4YNG6aXX35ZERER+uCDD3Tw4EENGjRITZs2PeH9i0Irf8KP4td89dVXmjx5siIiIvTQQw/pyiuvVGRkpN9zFLHb7Vq2bJnmz5+vv//+W7NmzVK1atX03nvv6bbbbtPGjRv1+OOP67PPPtMdd9yhiy66KOjwa86cOa59yCSpQYMGQX/e/LFp0yafoeCdd96pzz//XPn5+SHZx/DAgQO65557tHTpUsXExGj06NFq3769pk2bpq+//lp2u13ffPONNm3apFmzZrl9rv7880/deeedys3NVdu2bfXqq68qKSlJe/fu1YIFC7R+/XpdddVVmjJlitcw8niHDx9WTk6O5s6d6zr322+/6c8//1Tjxo0VHR3tteqyc+fOqlmzpnbt2qVff/1Vb731lvr376/o6Gi/2iJbrVbl5eXJ4XBo//79mjlzplJTU13Pjxs3TqNHj1bz5s0VHR2tyMjIoL5mAQAAAAAnP8I1AOUitn49xd70P0mF1SH2I3lyFthkMFtkio4ivCgDDodD8+fPl8lk0j333BPu5ZxUVq1apVtvvVWHDh3SkSNH9NRTT532X6Pz5s3T4cOHde2114Z7KQF54YUX9MYbbygyMlKvvvqqLrjgAo8x8+fP18iRI11VMv369fNaXWYymfTiiy/qvvvu08KFC9WrVy9dd911uuaaawKqYJMKw7u9e/fqvPPO00UXXRT011dBQYGmTJmi3NxcSdI333yjb775JuB5fvrpJ911110aPXq0XnvtNdWtW1fDhw/369qi8OdE+7hJhd//582bp2nTpql69eoaPXp0UGFX8UBt4cKFMplMGjRokB544AFX6FK9enV9+umnevzxxzVnzhz9888/GjZsmFJSUtS7d29ddNFFatmypUwmk9/3LQpEpcKvh0ceecTruOKfz71793rdl+1EduzYoW3btkkq3N/v3HPPdXu+atWqGjNmjFatWqW+ffsGPH9x3333nZ566illZGTorLPO0nPPPef6hYznnntOQ4YM0WOPPaY///xTGzdu1N9//62OHTtKKvyae+ihh2S1WtW7d289++yzrsDpmWeeUUZGhv766y/t3LlTN954o+69917ddNNNPluSStLll1/uVjEmFbbIvPHGGyVJTz/9tPr37+9xndFo1NVXX62XXnpJkjRx4kRNnDhRF198saZOnXrCj8PXX39d4p6F27Zt0+DBg12Phw0b5vffEwAAAADAqYVwDUC5MxgMMsdESzrxb5EjePPmzdP27dt18803q0mTJuFejk9OpzOodnJF1xax2+0+K2eKjztRdc3atWt12223ufY5mjVrlgwGg8aNG3faBmyLFi3SqFGjZLfbZbFYdOWVV3odZ7fbS70nkdPp9KsCyp9xU6ZM0RtvvCGpcE+pO++8U9OmTdP555/vNq5nz57q27evvvzyS7Vo0ULjxo3zOWdERIReeuklvfnmm3r55Zc1Y8YMzZgxQ3Xr1tXZZ5+tFi1aKCUlRUlJSUpOTlZsbKyioqIUGRnp9vVjNpt97pFlt9uVn5+v3NxcZWVl6dChQ8rKylJiYqLatGnjNtZsNuvdd9/V4MGD9ddff+mZZ57x+fk5EYfDoVtvvVWS9MorryguLs6v64o+D8VbS5YkNTVVb7zxhmrVquXX+KysLEmFH5fff//dFahlZmaqevXqGjZsmK655hqvYU10dLSeffZZnXvuuXruuee0f/9+bdu2TdOmTdO0adMUExOjli1bqlGjRqpbt66SkpIUFxcnp9OpSy65xGO+p59+WrNmzVJMTIyuvPJKtWvXzuuai3+up0yZomeeeUY1atTw6/VKhSHOQw895Ho8ZMgQjR07VldddZXbuKuvvlpXX3213/MeLy0tTePGjdPixYuVlJSk0aNHa8CAAR6BY6NGjfThhx/qww8/1DPPPCObzSan06lp06Zp6tSpio6O1ujRo3XDDTe4XRcdHa0333xTgwYN0tq1a2Wz2fTcc8/pww8/1N13361LL71UFovFY10//PBD0K9p2LBhGjZsWFDX9u/f32toBwAAAADA8QxOduYGPFitVq1Zs8bj/Jlnnlnib1r7o6CgQJs2bXI716RJE5nNFTfrdjgcOnLkiNu56OjoMt8bCMFzOBy67LLLVFBQoDlz5vjVDitcdu7cqQEDBnhUKVQ01157rZ588slyC9jy8vJc1Ugl+fnnn/Xggw9Kkt5//32fQerjjz+ub7/9VjVr1tTs2bP9Xsfff/+tu+++21WVZDQaNXHiRK+VMrNnz9YjjzwSsr2tykJkZKTXgM3pdGrixIm66qqr1KhRI7/mSk1N1UsvvaR58+b5VbUVERGhyMhI1/9Hin8tOZ1O5efnKz8/32Mug8Ggc889VwMHDlS3bt28zn3kyBH9+OOP6tOnj19r92bq1KmaNm2aJk+e7LHvVklat26t/Px8XXXVVW57kYXCnj17dPHFF3v8XYiPj9fQoUN10003+d2W79ChQ3r55Zf14Ycflvj5atu2rc4///xSVSRt2bJFffv2DdnfhUqVKmn27NlBVcB5k5qaqjfffFNffPGFIiMjdcstt2jQoEGKjY094bWZmZk6fPiwHnnkES1btkznnHOOJkyYoLp16/q8JisrS3feeadWrFjhdj4hIUHdu3fX9ddfr7Zt25b6deHUFqqfR0/Gn8UBAABQMdhsNq1evdrtXOvWrb3+0uCprizfPz9Z8C8IADgFzZkzR2lpaZo5c2aFDtYkqVatWpoxY4Zmzpyp5s2bq2HDhoqPj1dcXFyFqxRzOp3ltqasrCwNHDjQ1RbOHwMHDjzhmF27dnm0lwuEw+HQgw8+KIvF4hHA9O/fX1FRUdq5c6fOOOMMVatWTfHx8YqKigr6fmXBWxtAg8GgBx54IKB56tatq+eee04jR47UvHnz9N1332nNmjU+gxur1ep3dVeR+vXra/LkyWrZsmWJ46Kjo0sVrM2ZM0dvvPGGnn/++YCCNUmuytP8/Pyg7+/LTz/95BGsXXXVVbr//vuVlJQU0Fzx8fF6+OGHdeutt+rjjz/Wp59+qn379rmeT0xM1EsvvaRzzjmn1Otu1KiRxo8frxdeeMHtHsHo2LGjxowZE5JgbfXq1frggw/0zTffqHnz5nrooYd02WWXKSEhwa/rnU6n5s+fr+eff16VKlXSU089pauvvvqE3xcrVaqkd955Rw888IDmz5/vOm+1WnXo0CEdPHiwNC8LAAAAAIByR+Ua4AWVa+6oXDu57Nq1S5dffrmeeOKJUr3ZjvDLyMjQvHnz1Lx5czVo0EBxcXGKjY2tcKEjjsnPz9fatWu1ZcsWbdu2TRkZGTpw4IAOHjyo3NxcHTlyRHl5ebJarbLZbCesePv44499th4MlR9//FH33Xefnn32WfXq1Svg65s3by5JGjp0aMj3d3Q6nRo4cKCWLVumqlWr6tlnn/WoOgyW1WrVkiVL9MMPP2jx4sV6/PHH1aNHj5DMXcTpdCojI0O5ubkBt0w1mUyqWrWqX9VkJcnIyNCXX36pr776ShaLReedd56uuOKKgNsFL126VJMmTVJqaqqGDBmiG264IeCfiZxOp9566y1NnjxZF154oSZMmKDExMSA5sDpi8o1AAAAhBuVa8dQuUa4BnhFuOaOcO3k4XQ6NWjQIHXp0sW1dxKAis1ut7v+OBwOVwjjdDrLvILzu+++0/PPP68XXnhBZ555ZsDXOxwOPfLII7rtttv8bqcZqLS0NA0fPlyvvvqqatasWSb3KPqYn4rB9YwZM1SvXj2dffbZfu+jV9zq1as1adIk5ebm6uqrr9all16qmJiYUq1p5cqVrr0JAX8RrgEAACDcCNeOIVyjLSQAnFLy8/N12WWX6eqrrw73UgD4yWQyeW1VWR7WrVunmTNnqnLlykFdbzQa9fTTT4d4Ve7q1Kmjzz77rEzf+D4VQ7UiN910U9DXWq1Wff/993rkkUfUuHHjkK2prKsxAQAAAAAoa4RrAHAKiYqKIlgD4LdQt3EsK1SUhEdERITuvffecC8DAAAAAIAKh55uAAAAAAAAAAAAgJ8I1wAAAAAAAAAAAAA/Ea4BAAAAAAAAAAAAfiJcAwAAAAAAAAAAAPxEuAYAAAAAAAAAAAD4iXANAAAAAAAAAAAA8BPhGgAAAAAAAAAAAOAnwjUAAAAAAAAAAADAT4RrAAAAAAAAAAAAgJ8I14ByZjAYPM45nc4wrAQAAAA4vTgcDo9zRiP/LAYAAAAQGP4VAZQzb/94LygoCMNKAAAAgNOL3W53e2wwGLz+8hsAAAAAlIRwDShnBoNBZrPZ7VxOTk6YVgMAAACcPg4dOuT22Gw2E64BAAAACBjhGhAGcXFxbo+P/0c+AAAAgNByOp3KyspyOxcfHx+m1QAAAAA4mRGuAWGQkJDg9jgvL0+HDx8O02oAAACAU19mZqZHO/ZKlSqFaTUAAAAATmaEa0AYxMTEyGQyuZ1LS0sjYAMAAABCzOl0as+ePdqzZ4/b+cjISEVFRYVpVQAAAABOZuYTDwEQagaDQZUqVVJmZqbrnNPpVGpqqqKiohQfH6/Y2FiZTCYZjeHPwB0Oh8fm7wUFBRVibQAAADj1BfLzqNPplN1uV35+vg4dOqScnBw5HA6PcZUrVy6z9QIAAAA4tRGuAWFSrVo1FRQUKDs72+18Xl6e8vLytHfv3jCtzJPT6ZTT6XQ7ZzAY2PwdAAAA5SLUP49Wq1ZNiYmJIVgZAAAAgNMR4RoQJgaDQbVq1ZIkj4ANAAAAQNmoWbMmwRoAAACAUiFcA8KoKGAzm83KysryaHVTkeTl5bk9jo6ODtNKAAAAcDoq7c+jUVFRqlq1quLi4kK5LAAAAACnIcI1IMwMBoOqV6+uatWqKTc3V9nZ2Tp8+LAKCgrCvTQAAADgpGUymRQdHa34+HjFxcXJbOafvwAAAABCg39dABWEwWBQbGysYmNjJRXuK+FwODz2lggHm82mdevWuZ1r0KCBLBZLmFYEAACA00kgP48aDAYZjUb2BwYAAABQZgjXgArKYDDIZDKFexmS5DXgM5vN/PYvAAAAygU/jwIAAACoSIzhXgAAAAAAAAAAAABwsiBcAwAAAAAAAAAAAPxEuAYAAAAAAAAAAAD4iXANAAAAAAAAAAAA8BPhGgAAAAAAAAAAAOAnwjUAAAAAAAAAAADAT4RrAMpUbm6uLr74Yv3xxx/hXkrQ7Ha7BgwYoNmzZ4d7KQAAAAAAAACAMDOHewEATl3Z2dkaNWqUtm3bFu6lBC0/P19PPvmkli9frv79+wc9z5QpU/Tqq6+Wej1z5sxRixYtSj0PAAAAAAAAACA4hGsAQsbpdOrAgQPatWuXfvzxR82aNUu7du0K97IClpWVpYyMDC1ZskSfffaZtm7dWuo5N2/eXOo5IiMjVaVKlVLPAwAAAAAAAAAIHuEagFKbM2eORo8eLYfDIafTGe7lBGXZsmUaNGiQnE6nHA5HyOfftGmTx7m4uDiZzSf+NnzkyBHl5+dr8ODBqlq1asjXBgAAAAAAAADwH+EagFLr3r275syZ43qck5OjTz75xO1cRdeqVSu39ebl5WnBggWaPn16qee2Wq3asWOHJCkpKUn33XefLr74YiUkJJzwWpvNpr59+8rpdGrw4MGlXgsAAAAAAAAAoHQI1wCUWkJCgkdQdOaZZ2rhwoXKyckJ06oCExMTo6ZNm7qda926tRYvXqwtW7aUau6tW7fKbrcrMTFRM2fOVL169fy+9qOPPtK2bdv0xhtvKCIiolTrAAAAAAAAAACUnjHcCwBwajKbzUpMTAz3MkotOTm51HMU7bf24IMPBhSsZWVl6dVXX9W5556rCy+8sNTrAAAAAAAAAACUHuEaAJSxTZs2qWrVqrriiisCum7atGnKysrSAw88UEYrAwAAAAAAAAAEinANAMrYpk2bdNFFF8lkMvl9TVpamj788EP17dtXLVu2LMPVAQAAAAAAAAACwZ5rAFDGnnjiiYCvmTx5sux2u4YNG1YGKwIAAAAAAAAABItwDQDKWNWqVQMav379en399de69NJLlZKSUjaLAgAAAAAAAAAEhbaQAFDBTJo0SZI0dOjQMK8EAAAAAAAAAHA8wjUAqEBWrlypxYsXq0uXLmrSpEm4lwMAAAAAAAAAOA7hGgBUIFOmTJEkDRgwIMwrAQAAAAAAAAB4Q7gGABXE8uXLtXTpUqWkpKhz587hXg4AAMApIzc3VxdffLH++OOPcC8laHa7XQMGDNDs2bPDvRQAAADgtEe4BgAVxKuvvipJuvrqq2UwGMK8GgAAgFNDdna27r33Xm3bti3cSwlafn6+xowZo+XLl5fbPTdu3KhWrVqpWbNmSktLK7f7AgAAACcDc7gXAACQVq9erd9++00Gg0F9+/YN93IAAABOWk6nUwcOHNCuXbv0448/atasWdq1a1e4lxWwrKwsZWRkaMmSJfrss8+0devWcru3w+HQo48+KpvNVm73BAAAAE4mhGsAUAG8+eabkqQOHTqoZs2aYV4NAADAyWfOnDkaPXq0HA6HnE5nuJcTlGXLlmnQoEFyOp1yOBxhW8f777+vVatWhe3+AAAAQEVHuAYAYZaamqpFixZJknr06BHm1QAAAJycunfvrjlz5rge5+Tk6JNPPnE7V9G1atXKbb15eXlasGCBpk+fXm5rSEtL05QpU8rtfgAAAMDJiHANAMLs448/dv1m8gUXXBDm1QAAAJycEhISlJCQ4HbuzDPP1MKFC5WTkxOmVQUmJiZGTZs2dTvXunVrLV68WFu2bCmXNYwdO1ZGI9uzAwAAACXhJ2YACCObzaYvvvhCklSjRg01atQozCsCAAA4dZjNZiUmJoZ7GaWWnJxcLvf54osvtGTJEj355JPlcj8AAADgZEW4BgBh9OuvvyozM1NS4W8lAwAAAOGwf/9+PfPMM+rWrZsuvfTScC8HAAAAqNAI1wAgjBYuXOg6Pr4FEAAAAFBennrqKdntdj3xxBPhXgoAAABQ4RGuAUAY/fLLL67jhg0bhnElAAAAOF398MMPmjdvnh544AFVr1493MsBAAAAKjzCNQAIk40bNyojI8P1+FTYDwQAAAAnl8OHD+vxxx9Xx44dde2114Z7OQAAAMBJgXANAMJk5cqVbo/j4+PDtBIAAACcriZOnKjs7Gw99dRT4V4KAAAAcNIgXAOAMFm1apXbY7vdHqaVAAAA4HS0YsUKzZw5U3fffbfq1asX7uUAAAAAJw3CNQAIkw0bNrg93rNnT5hWAgAAgNON1WrVo48+qlatWunmm28O93IAAACAkwrhGoAKbd68eerdu7fat2+vESNGKDMzM9xLCplt27a5Pc7JyQnPQgAAAHDaeeWVV5SWlqbx48fLZDKFezkAAADAScUc7gUAOHU5nU6vx/5auXKlRo4cKYfDIUlasGCB9u/frxkzZshgMIRsnSUp7WvwJScnhzANAAAAYbF+/Xq99dZbGjp0qJo1axbu5QAAAAAnHSrXAJQJq9Xq1uYwNTU14DkWLVrkCtaKLF++3KPiqyylpaW5joN5Db4cPnw4ZHMBAAAA/rLb7XrkkUfUoEEDDRkyJNzLAQAAAE5KhGsAysScOXNUUFDgejxz5kzZbLaQzH184FZWfv31V+3atcv1eO7cucrOzg7J3N5a71gslpDMDQAAAPjy7rvvat26dRo/frwiIiLCvRwAAADgpERbSACllp2drd27d8vhcOjAgQNasmSJ3n//fbcxa9as0bXXXqsBAwaoQYMGiouLk8ViUYMGDXzO26NHD73zzjtuYVrTpk2VkpIS8teQm5urtLQ0OZ1OZWdna8WKFZo+fbrbmPT0dF111VUaNGiQmjZtqkqVKrnWFKgqVaqoWrVqbtV9NWvWLN2LAAAAAEqwY8cOTZ06VQMHDlSbNm3CvRwAAADgpEW4BqDUFi1apIcffviE49atW6fRo0e7HteuXVs//PCDz/Ht2rXTCy+8oKlTpyojI0MdOnTQmDFjymTD9TVr1mjgwIEnHLdjxw49+eSTbuc2bNgQ1D0nTpyoxx9/XBkZGerWrZvOPvvsoOYBAAAA/DFmzBhVrVpV99xzT7iXAgAAAJzUCNcAlFr//v3Vv3//Mpm7T58+6tOnT5nMXVzHjh2DDsmC1alTJy1YsKBc7wkAAIDT06xZs/T777/r3XffVXR0dLiXAwAAAJzU2HMNAAAAAIBT2N69e/Xcc8/pmmuu0bnnnhvu5QAAAJx2cnNzdfHFF+uPP/4I91KCZrfbNWDAAM2ePTvcS6kQqFwDAAAAAOAUNm7cOEVGRurBBx8M91IAAABOO9nZ2Ro1apS2bdsW7qUELT8/X08++aSWL18e0g5mTqdT3377rebOnavVq1frwIEDiomJUdOmTdWrVy9dc801iomJCdn9QolwDQAAAACAU9Tu3bv17bffymAwqGPHjkHN0atXL49zEyZMUL9+/Uq5OgAAgFOP0+nUgQMHtGvXLv3444+aNWuWdu3aFe5lBSwrK0sZGRlasmSJPvvsM23dujWk86empmrkyJFatWqVatWqpeHDh6tVq1bKzMzUV199pQkTJuitt97Sc889VyG7LxCuAQAAAABwikpOTtZXX30V8HWXXXaZ6/iNN95QtWrV3J6vUaNGqdcGAABwKpkzZ45Gjx4th8Mhp9MZ7uUEZdmyZRo0aJCcTqccDkeZ3WfLli0aOHCg9u3bp+bNm+u9995TYmKi6/nOnTvrvPPO00MPPaTbb79dkyZNUs+ePctsPcEgXAMAAAAA4BRlsVjUtGnTUs2RkpKiOnXqhGhFAAAAp6bu3btrzpw5rsc5OTn65JNP3M5VdK1atXJbb15enhYsWKDp06eH7B5ZWVm6/fbbtW/fPsXExOjll192C9aK9OvXT6tWrdJHH32kkSNH6uOPP9YZZ5wRsnWUFuEaAAAAAAAAAABAKSQkJCghIcHt3JlnnqmFCxcqJycnTKsKTNF+Z8W1bt1aixcv1pYtW0JyjwkTJig9PV2SdOutt6pu3bo+xw4fPlyzZ89WXl6eHnjgAc2dO1cmkykk6ygtY7gXAAAAAAAAAAAAcKoxm81eq7JONsnJySGZZ9OmTZo7d64kKTIyUgMHDixxfFJSkmv/382bN+uLL74IyTpCgXANAAAAAIASzJs3T71791b79u01YsQIZWZmhntJAAAAwEnnpZdecu3l1q1bN49KP28uuugi1/Err7yigoKCMltfIAjXAAAAAACnrOKbyQezsfzKlSs1cuRIbd26VYcOHdKCBQt09913l+sm9aV9DQAAAEC47d+/XwsXLnQ97tu3r1/Xde7cWWZz4Q5nO3fu1LJly8pkfYEiXANwQgaDQVWqVFHt2rVVp04d1a5dW0Yj3z4AAABQsVmtVu3Zs8f1ODU1NeA5Fi1a5Prt2iLLly/Xtm3bSrs8v6WlpbmOg3kNgbJarSU+BgAAAAL1/fffu/1cffbZZ/t1XWxsrBo0aOB6/N1334V8bcHg3XEAJ2Q2m1W/fn3VqFFD1atXV40aNSrMxpEAAACAL3PmzHFrGzNz5kzZbLaQzH184FZWfv31V+3atcv1eO7cucrOzi7Te65Zs8bt8V9//VWm9wMAAMCp7/vvv3cdp6SkKCkpye9rmzdv7jr+8ccfQ7quYJnDvQAAAAAAAEorOztbu3fvlsPh0IEDB7RkyRK9//77bmPWrFmja6+9VgMGDFCDBg0UFxcni8Xi9puwx+vRo4feeecdtzCtadOmSklJCflryM3NVVpampxOp7Kzs7VixQpNnz7dbUx6erquuuoqDRo0SE2bNlWlSpVcawqGzWbTf//9J0k6cuSINm3apGnTprmNefrpp5WZmal27dopPj5e0dHRqlu3blD3AwAAwOlp1apVruNmzZoFdG2jRo1cx7t379bBgweVmJgYqqUFhXANwAlZ7TZtP5im1Kydyi+wKtIcobqVaql+Yh1FmCzhXh4AAACgRYsW6eGHHz7huHXr1mn06NGux7Vr19YPP/zgc3y7du30wgsvaOrUqcrIyFCHDh00ZsyYMunksGbNGg0cOPCE43bs2KEnn3zS7dyGDRuCumdGRoYuu+yyEsccOnRIzz//vOvxOeecoxkzZgR1PwAAAJx+9u/frwMHDrge16pVK6Drq1at6vZ48+bNat++fUjWFizCNQA+bd6/TfM3/ailqStlcxR4PG8xmtWpbjv1btJNjZNTyn+BAAAAwFH9+/dX//79y2TuPn36qE+fPmUyd3EdO3YMOiQLVp06dcr9ngAAADi9bNq0ye1xzZo1A7r++HBty5YthGsAKp4jtjzNWPW5Fm1ZUuI4m6NAv2xfpl+2L1OPRhfopjZXKdoSVU6rBAAAAAAAAABUdHv27HF7nJycHND1lStXdnucmZlZ6jWVFuEaADeZuQc1bvEUpR/aHdB1i7Ys0b97NuuxriOUFJNYNosDAAAAAAAAAJxUcnJy3B5HRQVWoBEREeH2ODc3t9RrKi1juBcAoOI4YssLKlgrkn5ot8b9NEVHbHkhXhkAAAAAAAAA4GR0fBgWGRkZ0PXHh2vHh3XhQLgGwGXGqs+DDtaKpGfv1gerZodoRQAAAAAAAACAk1l+fr7bY4vFEtD1x48/fr5wIFwDIEnavH/bCfdY89fCLb9o8/5tIZkLAAAAAAAAAHDyOr4NpNVqDej648dHR0eXek2lRbgGQJI0f9OPFXo+AAAAAAAAAMDJJyYmxu1xoJVnx4+PjY0t9ZpKyxzuBQAIP6vdpqWpK0M659LUlRrSYYAiTIUluz9tW6rD+TkyGU0yG82qGV9NZ1Rr6nFdgb1AmzO3y2w0yWw0yXT0j9loVlJ0osxGU0jXCQAAAAAAAAAoO8eHYYGGa8dXrhGuAagQth9Mk81RENI5bY4C7TiYrsbJKZKkDfu2uLWdPL9ee6/hWnb+YY354Xmvc07uPVa1Emp4nH9zxUf6adtSmY3mwiDOUBjMdahzlga1vcZj/OH8HL30xzsyGc0yG0wyGY2uAO/6My9XYlSCxzWrdq9TWtauo+MKx5oMJlWPq6KmVRp6jC+wFyg1e5crIDQfvZfZaFJcRKyMRgqHAQAAAAAAAJz6qlSp4vZ4//79AV1/4MABt8dVq1Yt9ZpKi3ANgFKzdpbJvDuyjoVrVWOS3Z4z+ahAK3Dafc5nNnr/lmW121x/ijucn+N1fF5Bvv7a9Y/X565scbHX87/uWKHF//3ucb5z/XO8hmsH87L14HcTvM41tc8TqhFfzeP82ytn6tcdK1whXFHVXofabXRj634e4w/lH9abKz52r/A7em3/lr2VEBXvcc3ajA3afXiPKxw0m0wyGUyqGpusBpXreowvcNi1J2efKxwsHkRGmCwyGggJAQAAAAAAAPjWuHFjt8e7d+8O6Po9e/a4PW7UqFGp11RahGsAlF8Q2AaSfs9rPzavxeT+7cZXUGZ3+A7XfAVyvq7x1UKyoIQqvUDvEUxI6OuaXOsRHco/7HG+SVIDr+OP2PK0NM17O88+zS6SZ/2dtHjb7/p52x8e57ukdNSwjoM8zh84clD3zHvc6z1evnScqsVV8Tj//l+z9EfaX64Qrij0O7t2a119Rh+P8dn5h/X+37OKBXgmV4Xg5c16Ki7Ss8x7/d4t2puzv1glYeE1yTGVVSehpsd4u8OurLxDbuFg0b0MBoPX1wcAACoOg8GgKlWqKDIyUgaDQU6nk04AAAAAwEmiatWqSkxM1MGDByVJu3btCuj6vXv3uj1u2NCz2KG8Ea4BUKQ5omzmNR2b12Z3D7TMhtAFX76CrKCq43ysy3eAF3hI6Ouaivg6CoIIOw/mH9Le3EyP8/USa3sdn2vN9Rr4SVKvRl28hmsLt/ysX7Yv8zjftcG5uvOcgR7n9+Vmavg3Y7ze45W+T6lqbLLH+Q9WzdafO9ccrQY0u0K/s2u10uXNe3mMz847pE/Xfu2xV6DZaNIljbsqJiLa45rN+7cp88hBt/ahJoNJlaMTVD3Os7zd4XAot+AI4SAA4LRjNptVv379cC8DAAAAQJBatGih338v7Ay2cePGgK7dsmWL6zglJUVxcXEhXVswCNcAqG6lWmUyb71Kx8KUvbnufXR9VZWVGEr5DOQCDKXsQQRfvkKpAEOsktYVcAWe3XcQ6fvj6/A+PoSvw1dA6vN1lNgKNMCPVQhfx77cA0rP9ixRrxVf3ev4w9YcfbflZ6/PdU0512u4Nm/jD1qyY7nH+e4Nz9fQDgM8zmfk7NOIeWPd128orMab2udJJcUkelzz8eovtXr3v64qv6L/tq3ZSpc06eoxPjv/sL7891u3cNB0tN3oRQ3PV5QlyuOabQdSlZV/6Og4s+s+lSLjva7J4XTI4XTKZDASDgIAAAAAAJwGunfv7grXtm7dqkOHDik+3nNbG2/WrVvnOr7ooovKZH2BIlwDoPqJdWQxmmUroWosUBaj2a1SKb/AqvqVaqvAaZfdYfe6H5hUcqVUyIKWIFo2BlxVVsLHMtCqPZ9hnNN7UBbMuoJ6HSFqoRlUgOfj8xFMBV6g1YcmHy2ogvnaDUVoa3c6ZLc7fLbG2nV4j7Yc2O5xPjkmyev47PxD+mrDIq/PnV+vvddwbc6/3+q31D89zvdoeIEGd/if55oO7dG985+QdCwcLKoOfOHiR5UYXcnjmk/Xfq1/9myU2Wh0VfiZjCadVaOlLmp0gZfXcVgLNi12hYPFW4h2rt/Ra8VuWtYuHbbmHGtnejQkjIuIVUJk+H8jCgBOZ1a7TdsPpik1a6fyC6yKNEeobqVaqp9YRxEmS7iXBwAAAOAEevbsqQkTJsjpdMrpdGrlypW68MILT3hdVlaWtm8/9t5Wjx49ynKZfiNcA6AIk0Wd6rbz2mYvWJ3qtnN7o2N4p1v8uq5RUn19dPVLKnDaVeAokN1hl93hUIGjQBE+2lde16qvLm7cRQUOuwocheGd3Wn3uveWJFWKjFffZj2Ozl14n6LQz+IjaKkWm6z6iXVcayq6T6yXaiQpxCFhMFV+vgKjgEPCELaeDLDyMJh1hfJ1+K7A8/WxDSLsDOXnoxy+rkL1OorfoygctNptkiSjj2tSs3bq372bPM5X8hHUZ+Vla9Y/33h9rkPtNl7DtU/Xfu11H8OejTrr9vY3epxPy96lUQueOtYGtFgL0Wd6Pew1kJu9br427Nsik6u1Z2G42Lp6C3VJ6egxPjv/sH7c+ptbOFgULnas29brG8q7D+/VEVvesUrFo+FitCVKMRbv37MAoKLavH+b5m/6UUtTV3r9RTCL0axOddupd5NuapycUv4LBAAAAOCXmjVr6txzz9Vvv/0mSZo/f75f4dqPP/4op9MpSWrUqJHOOuusslym3wjXAEiSejfpFtJwrXeTbkFdZzAYZDaZZZZZUqRf1zRMCmz/jSqxSRp41lUBXfN/7a4LaHyjpPp6+8rn3cLBogDPbPL+rbd/y97q2uC8Y6GiszDES0ms63V8QmScejXq4hZEFoV+voKTylGVVCOuqmtc0ZqifASXwQRfvgI8X687qJAw0Oq4ULaeDGEoZQ+0hWYQFZGhbKEZcNvUYCoJy+F1hKwi0m53hYM6Gg4WMcp7u8utmTv0165/PM7HWKK9hmsHjhzUh6u/8DrXWTVbeg3XPvh7tpal/+1x/uLGF+rWs6/3OJ+WtUuPfj/RLYgrCubGXXS/4iI89z388t/vtCVzuyscLNoHsFX1ZupUt53H+Oz8w/ptx4pibUaPVQe2rXmGLF5ex77cTFntNo81RZoivI4HcGo5YsvTjFWfa9GWJSWOszkK9Mv2Zfpl+zL1aHSBbmpzlaK9VFkDAAAAJ7N58+bppZde0t69e3X++edr7NixSkry3pWoIrv33ntd4dq3336rMWPGKCYmpsRrFixY4DoePny4z+5N5Y1wDYAkqXFyino0uuCEb2D4o2ejzqf9bw4XtZILRPOqjQMaXy2uim5rf0NA1ww956aAxjdOqq9pl01wBXEF9oLCMMFh9xk4XNasp86r294VDhYFeU18fE3ERcaqS0pHtyCy6FpfwUlsRIwqR1VyhYNF4aLZZ8tG36FUwCFhSFuBhi4kLI8qv0BbewbTbjTgvfx8hLahbQUautDW5+soh5DQ13ir3aZc2xGvzxnl/e/Uhn1btGLnao/zZqPJa7i2P/eA3l450+tcb1/5vNew7J2Vn2p5+iqP872bdNMt7a71OJ+atVNPLZ56rJKwWFg4pts9Xqv2vt7wvbYdTHWFg0XXtqzaRO1rt/YYfyj/sFakr3bbk7Ao9DujWjOvn/esvOzC72fHVRKajCYZDRXjHwRARZOZe1DjFk9R+iHPvU9LsmjLEv27Z7Me6zrC656fAAAAQDgUVV0df+yvlStXauTIkXI4CrsmLViwQPv379eMGTPKbS/70r6GIq1bt1bv3r01f/585ebm6t1339Wdd97pc/yWLVv0008/SZLOOOMMXXLJJUHfO9QI1wC43NTmKv27Z3PAb2QUVzuhhga06R/CVSGczCazkmMqB3RN6xotAhpfK766hnUcFNA195x7q9fzvv7n3qhyfU3u83ixVqBHQz+n3eeb272bdFeH2me5tRotcBSoRdUmXsfHRcSqU512RwO/Ardg0VeoEWGyKNoS5VpXUWvJkFbHhXJ/ukCrykIYEvpsaRpEu9HAW4GGLiQMtLIzlCFhoO1ipSA+HyFsYxtoMGy123QgL8vrcwYflYRrM9Zr5a61nk84nV7Dtb05+zVt+Qyvc73b/0WZjZ4B3mvLP9CfO9d4nO/TtLsGtb3G43xq1k5NXPKaR6tRk9Gkhzvf6XXfwwWbFista5dbhZ/ZaFKzKo3UpkZLj/GH83O0OmO929jCikKTmiQ38PoxzrUekUMOtyCyvP4Rh9PLEVteUMFakfRDuzXupyma0ONBKtgAAAAQdlarVXv27HE9Tk1NVadOnQKaY9GiRa5grcjy5cu1bds2NWjQICTrPJG0tDTXcWpqaqnmGjt2rFatWqWdO3fqrbfeUr9+/VSrVi2vY1988UU5HA7FxMRo4sSJFerfoYRrAFyiLVF6rOsIjftpitKzA39Do3ZCDT124QjeyEDY+PofbIQ5QrXiqwc0l7c31ktSp1JN3Xf+7QFd82Bn99/McTqdhSGEj9fRsHI9PdtrdLGAsLDKz+7wHRL2bNRFZ9U4wxUOFgV+zao08jo+xhKttjXPONY6tFi46Kvs3mAwyGgwynHcvnNBhYQ+XkeBw/uedqGs8iuX/el8BUYhDAl9v47AKzsDrsALY2gbzOsI6z6UPu6RV5Cv3Yf3en3O4OPvx1+71nptN3pZsx5ew7Xdh/dq8u9veZ3r/asme339U5a+rb+OCyJNBqMua95TN7bu5zF+x8F0vbT0nWKVhGaZjUaZDCbdf/4Qr/uoLtqyRDsPZRyrCDwaLjZJbqCW1Tx/sSHHmqv1+7a4gkHXnoRGk+pXqu31e5bVbpNRBsLBCmzGqs9L9YtekpSevVsfrJrtdb9MAAAAoDzNmTNHBQXH/r06c+ZM9evXTxZL6bc7OD5wKyu//vqrdu3a5Xo8d+5cDRgwIOj5KleurLfeeksDBw7Uvn37NGTIEH3wwQeqVKmS27hXXnlFixYtUkREhCZPnqxGjby/lxUuhGsA3CTFJGpCjwf92uOiuJ6NOmtAm/4Ea0ApFO056EuUJUoNKnvfg8+X8+qdHdD4lMp19HCXYQFd81jXEZIkh9Mhh8Ph2gfQYvT+g2LDyvX1ZPf7XcFgUejncDp8vtndrcG5OqNak2Nh39Hgr7GPPRejzZFqWbXJsSDy6Jrk9B3C+mwLGWDwVRQ2BnSPAMMfg8HgM+z0FTL5eh0lhYS+XkegYWdIW4GWR9gZTLgW8J6EZf86yjrstDt9/0PuSEGetmele3/Sx9/BP9JWatXufz3OX9G8l9dwLT17t5795VWvc31w1RRFGD0DvIlLXtOq3eskFX59F1XuXdr0Il3bqq/H+NSsnXp9+YdHxxkLw7ujlXsjOv2f1+/Zi//7XXty9nnsL9iwcj01rdLQY3yu9Yi2HthRrJLQLJPBKLPRpBrx1bz+PXQ6nadkOLh5/7aQtCiXpIVbflG3Bued9q3KAQAAUH6ys7O1e/duORwOHThwQEuWLNH777/vNmbNmjW69tprNWDAADVo0EBxcXGyWCwlVqD16NFD77zzjluY1rRpU6WkpIT8NeTm5iotLU1Op1PZ2dlasWKFpk+f7jYmPT1d119/vXr06KE6deooLi5OklS3rv/vWTVq1EgzZ87U/fffr7/++kuXXnqp7rjjDrVs2VJ79+7VZ599pp9//lk1a9bU888/r/bt24f0dYYC4RoAD9GWKA1u/z91b3C+5m/6UUtTV8rm5U1Oi9GsTnXbqXeTbrxxAUBGg1FGk1FmmSVF+hwXExGt5lUD+22jrg3ODWh8w6T6erz7fQFd8+RF97v2Fywe4EWZvb+WBpXr6pELh7u3Gj0aEvpyQf0OapLcwCP0S0ms7XV8pClCjSrXd40rWldJb6oH2haypKAs0CAy0Aoxo8FY5mGn0WAsISQMzeswyHfYGXhL0xKCyABfR2j3bwxd2BnOfSiLr8vhdMhhd8hmt8nhY64ca6427t/q/SY+vnZ/2b5MazLWe5zv1+Jir+HajqydenLxZK9zfXT1SzKaPD/vE35+SWszNhyrDDwa5PVu2k39WlzsMT41a6fe/etTt3CwKMwb2uEmr5/HJduXa3/uAY/WoSmV63r9RY8jtjylZ+92b0969F5J0Yl+hYHzN/14wjGBmL/pRw1PviWkcwIAAAC+LFq0SA8//PAJx61bt06jR492Pa5du7Z++OEHn+PbtWunF154QVOnTlVGRoY6dOigMWPGyGTy/u+e0lizZo0GDhx4wnGpqal655133M599NFHAd2rTp06+vjjj7Vw4ULNmTNH06ZN04EDBxQdHa2mTZtq9OjRuvbaaxUd7bkFQ0VAuAbAp8bJKRqefIuGdBigHQfTtSMrXfl2qyJNEapXqbbqJdZWhKn0JcwAUBEUVQ6a/fzxKD4yzmvLvZL0anxhQOObVmmop3s9FNA1Y7rdK5vDdjSIcxRWBjrtiouI9To+pXId3X/+EI/9BUvan7hjnbZKSazjCiILgz+H6iTU9Do+wmRRnYSaroCwMCz03c5UCl3Q4mu8FMT+dAGuSQqmqqzsw07f1Y1lH3aWVHUZeDBcQtjpq3o0hPs3Bhp2hnLfw4Kj+3Ta7Q7JbnOdzy+weh1/KD9HazI2eH3uzg7e/+H8/dYl+mfPRo/z/Vv29hqu/XcgVY//+KLXuT6+5mWvH+N3Vn6qW9pdK6mwZefS1JVerw/W0tSVGtJhgOvn1W0H0+RwOBRhsighKl4JkXEhvR8AAABOb/3791f//v3LZO4+ffqoT58+ZTJ3cR07dtSGDd7/7VCc1WrVmjWe+4sHymAwqFevXurVq1ep5ypvhGsATijCZFHj5BSq0wDgJBBpjlCkPNvh+ZIYlaBz6pwV0D0ua94joPEtqjbRi73HBHTNIxcOl9VuOy7AsysxKsHr+PqV6mh4x1s89hcsydm1zlTthBpulYR2R4FqxFX1Ot5kNKlqTJIrHCyqJPQVYkklBFkBhoS+qr1KvEeArUBLDAlDtD9dya8jNC00SwoiC+yBfT5KCnlDVtlZQtWlz9cRokA1uLAziMpOH0FklZjKruPtB9O8dkooDZujQDsOprt+hv1u80+utpP9Wlzsdb/ALZnb9czPr8hisshiMivCFKEIo1kWk0WPXni311agP279TXtzMxVhsijCZJHFWHhtSmJdpVSu4zHearcpKy9blqPjI4wW9gEEAAAATjKEawAAAKhw4iK9V9r5khSTqM4p5wR0zVVnBPZbf2dWb65XLhsf0DUPXnCn8uz5bq1GCxx2VY1N8jq+XqVaGtz+f8eq/I5WExrk+0331jVaqFpsFY8g0tc9DAaD4iPj3MbanY7QVvn5Cgl9jC/pHoFWlZUYdvpcV+jCzsBfR2CBXzDXBBfaBvY6ggk7E6LiXcepWTt9rqU0dmQdC9eqxiS7zvvqvpBXkK+s/ENen/MVRP68/Q+vVX5XtezjNVzbvH+bR5WfQQZZTGa913+S18/jjL8/V1r2rsJAzmhxhX/tap6pdrVaeYzPysvWur2bFGGKkMVoLgz9TBZZjGbVrVSLIA8AAAAoJcI1ACdUUFCg9PR0RUREyGg0yuFwqFq1amXS1xcAgFNJUkxiQOOrxiarR6MLArrGW/VNSdrWbKXp/Sa6nXM6nSVW+t133u3KK8g/tr/g0QrBmvHVvY6vW6mWbj7r6qPjjlX6mXyEE5LUvGpjJUZXcgv9Chx2VY6u5OMKpyJNEYVji+11WHJI6L3tpu/Wk0EEXwEGeMGEhKGqjgsq7Ay03WgJr8NYLDT21dKytPLtx+a1FKs6sxi9h2u2Ym02i7MYzT4r8Ky+rvFS5SZJNofneKecKnDYfX68Nu7/Txv2bfE4nxhVyWu4lpq1U5N+e8vjvEEGfXLtK17v8fTPL2vz/m2FgZzJ7Aryejbuou4Nz/MYv+vQHi3a8otr/LGqPYu6NTjXa4C3N2e/nE7nscpAo0Vmk++PLQAAAFBREa4BOCGn06l9+/a5natSpQrhGgAAp4iiPQd9qRFfLaD5asRV1aXNLgromqK9t/zVvnYbzbh6iqSj4aDT4aoQ9OXuTrco15Yne7EqvwKHXfUq1fI6vk5CTV1/5uWucLAo9CvpY9Wocj3FWqLd9he0O+xKiIz3Ot7h9BH4BdVCM7D96colJCwhNCneBjLS7H8720BEmo7NayvWFtRX8OU7KPO9z7CvQM5XdZzPAC+oe/h6Hd7DTovJ7LNq7XB+jg5ZcyTluJ3v6KOSL+PwPn21YZHHeZPR5DWMk6Qpv7+tjfu3epy//szL1b9lb4/zm/dv04erv5DlaGvOosAvwmzRbWff4PUef+/6R7m2PEUcDQgtxsL2m1ViKivRZ1gPAAAABIZwDQAAAMBJzWAwyGwwlVjtJUn1EmsHNG/thBpe3/AvydBzbgpofKe67TTz2lddYVxRQGj3EbpJ0p3nDFSu7cix/QWddhXY7WqUVM/r+Frx1XVli0uOVQQ67bI7HD7DH6mw+jDCaDkaEBa41hVrifE6PphWoPtyD7jdryzUq3Tsc743d7/r2NdrDyZc83mNj+o4X8FXSZ8P3xV1PgI8L9VxUrCvw/8KPEmK8LEmyffr8PV1kpV/yGvLzUhThM9wbeaar7TlwHaP8/9rfaWuaNHL4/zfu9bphV9fd6ums5gsirZEaXyPB7zeY+76hTqYl10Y4B0dH2GyqHmVRkqpXNdjfK7tiPbnHijW1vNYZaCvdqMAAACo2AjXAAAAACCMiioHzX7+86xoDzF/1UusHXCweM+5twY0/tw6Z6v9VW2OC/DscjqdPq9pV/NYO8P6iXVkMZrdqtlKy2I0u73urZk7ij0XWFVZRAkhYaCVaL7vUULw5ePjEtp7hOZ1+KoKLOkeoazy8/06fFX5WZV/9E9xMZZon/dYsn2Zth1M8zg/8KyrvYZr6/Zs1HNLXvM4H2mO1IyrJnu9x8t/vKu9OfuPhnfHwrgL6p+js2q29Bi/N2e/1mZscAV9ha06IxRpivD5PcPpdLL/HgAAQJAI1wAAAAAApWI0GhVpjFCk/G/vWPwN/wiTRZ3qttMv25eFbE2d6rZzhTZOp1PjLrpfNnuBrHaroixRXq85o1pTjTj3/46Os8lmt8lqt5XYtrJJcgNViU2Wrdh4q8Om2Ajv4YzvqrLAAzzfFXi+20L6vkdgFXXl0UIz0P3sQnuPkl6Hr49VYG06S6pW/C9zh1Kzd3mcb5RU32u4tiVzu6Ytn+FxPjYiRu9c+YLXezzw3QTtzN59rOXm0QDvypaXqEtKR4/xWzN36PutS44FeMbCAC/GEq2ejTt7vceOg+lyynmspWexe5XUmhYAAKCiI1wDAAAAAIRd7ybdQhqu9W7SzXVsMBhcAUKMfFckVYurompxVQK6zz3n3RbQ+AvqddCZ1Zu7Ajyr3SabwyZTCfvTXdz4Qh225rjCQaujQDa7TdVik72ONxoMio+IldVROL6ogjCY4MtXkOUzYCqxLaSP0C/gSsLyuEfgFXihfB2BVysG/vmw2q2yOQoKK0ZtR1zn8wryvY7ffXiPFm75xeN8pch4n+HapN/fUnr2bo/z/9fuOl3SpKvH+VW71+mj1XNc7TmLwriEyDjd3v5Gr/dYsn2Z8gusxwLCo9fUTqihpOhEj/EOR2HbXVpyAgCA0iBcAwAAAACEXePkFPVodIEWbVlS6rl6NuoccPvM8hJlifJZOefLlS0vCWh81wbnqmuDc12PCxx22ew2n3vjSdKdHQfqiC2/sALPcTT0sxcoJdGzzaEkJcUk6qwaLWVzHKvys9kLVCU2yec9Am/ZGMq2kKHbny7gVqBBVCtaj2tTWcRnC82gKiIrXrViVt4h/Xcg1eN8UnSibvdxj0/Xfq3dh/d6nB/c/kb1aOQZ+v2W+qemLn1bJoNREaYIV9vN5OjKeqrHKK/3+GDVF8qx5rrabRbtt9e2ZiulVK7jMT4775B2H97rCvoKK/eOVvr5qGoFAAAnF8I1AAAAAECFcFObq/Tvns1KP+RZ6eKv2gk1NKBN/xCu6uRnNppkPkELvrbF9sDzx9m1ztTZtc4M6JpJl4xxVd3ZXFV7BaqTUMPr+EZJ9XX1GX1ktRe7xmFT5ahKPu+REBEngwqDI6vDJrujMFAMZcvGcLaeDGUQGapqxWACPF9VfiH9WJ2gktDudOhIQZ6OHL3cKN/7z/2+Y4X25mZ6nE+MSvAarv216x+9suw9j/PJ0ZU17fIJXu8x/qepyso75NZ202KyqHeTrmpVvbnH+LSsXVqd8e/RsUWVfmbFWKLVslpTr/fIK8iX2WiWyWBkvz0AAEqJcA0AAAAAUCFEW6L0WNcRGvfTFK+t5E6kdkINPXbhCEUHWBmG8pEY7TsU86ZplYZqWqVhQNdM6jPW7bHD4ZDNUeBzf69zardRrfhqrkq9oqq9WEuMz3ucVfMM5dry3AI/m71AsRHerwmuhWagrSeDaAvpo9otwuR9j0Ff1XHB3MN3gBfCNp0hrFYMuE1nEJWEO7J26sCRLI/zHeu09Tp+4/6tevevzzzOV4tN1st9n/J6zX3zn9S+3EwZDAZX602Lyaxb2l6rTnXbeYxfm7FBP/z3myKOBn1FAV6lyAT1btrNyx2kDfu2yOksDLSPVe1ZFBcZW2JoDQAnA4PBoCpVqigyMlIGg0FOp5M2w6cxwjUAAAAAQIWRFJOoCT0e1IxVnwfUIrJno84a0KY/wRrcGI1GRRq9h0VScPvsjTj31oDG927aTV0bdHJV0xW10CypmvCaVpcqv8Dq0Xazqo+2m5HmCFWNSXKrDLQ5CkoOjAIM8MqjLWQo23SeKtWKZdGm0+l0Kt9uVf7R9qMOp8Pr+J2HMrTEy16YNeOr+QzXXvz1TR3I8wwJh3e8RZ1TzvE4/+uO5fp07dfFwr7CAK9qbBUN9rHP3oJNi2V32Ivty1fYprNxUoqSYhI9xlsLrCpw2GUxmWU2mqnaAxA0s9ms+vXrh3sZqCAI1wAAAAAAFUq0JUqD2/9P3Rucr/mbftTS1JWyeakcsRjN6lS3nXo36VZh91gDIo4GAIG4vHmvgMb3atxFvRp3cTvncDrkcHgPTSTpkS7DZTtadecK8Bw21ankvU1nrfjq6lS3nSvoK6ryq5NQ0+t4p9NZQitJX4FRYOOlwPfA87WfXXm00AyqWtFXEBnCakXf9yj7asXsvMPadWiPx/m6Pr6uJOmzf77RofzDHufvOfc2nVfvbI/zi7f9rrf+/KTYWgr3wKuXWFtPdB/p9R6vLntfNrvNVXlXVOV3Qb0OqpdY22P83pz92nVojyvoK9pvL9ocGXDVLgDg5EC4BgAAAACokBonp2h48i0a0mGAdhxM146sdOXbrYo0Rahepdqql1ibNmOAD0aDUUaT71ZVrao3C2i+c+qcpXPqnBXQNe9dNckVxhVV7VntNtWMr+Z1fOvqzRVhsriCPqu9QFa7VdVivVcXOpwO1Yiv5nEPm70g8BaaPr6XOJ1Or+G+VEKbTl8tNM2+7+EzlPLREjOo9paBthsNsB2mVFGrFd3HF1V3HrHl+bzHsrS/lWs74nG+cVKK13Btefoqr20661aqpRcueczrPUYuGCer3XZc202Lrjmjr5pXbeQxftP+/7QmY/3RPfbMruA+ITJerWu08HqPg0eyZHbNb5bRQPs6oDSsdpu2H0xTatZO5RdYFWmOUN1KtVQ/sQ4/k56GCNcAAAAAABVahMmixskpVKcBJxGDwaAoc6SizJF+XxPoPntGg1GTeo/1OO90On1ec1HD83Vm9WayHq2+Kwr8EiLjvY53OB26MKXT0f31irXdtNsUFxHr9ZpAQyy70+FzzYG3hfT+Vp/D4ZDdYfdxD/9CqWP3KCGIDLi9ZXlUK4YuwAtlteKew/tcrTmL69O0u9fx/+7drE/WzPU43yCxrs9wbcS8x3Wk4FiIWBi0mXXPubeqbc1WHuOXpf2txduWugd+RrOqxVXxua6VO9fKaDAe22fPWNjaMymmckB//4GKbPP+bXRTgAfCNQAAAAAAAJwyStpTq0pskqr42LvOG5PRpLs63hzQ/a8/83Jd3bLP0Uq6gqPBnE1mH1VoknRru+tdrTaLt91MiqnsdXxCZJzqVqrlUbXnK8zwVYUmBdEW0kfAVOAokFPeQ8JQ3cPusMvuY4+4U75aMYiQ8Ph7FDgKVOAokEHeK9h2HsrQivRVHuebJKX4DNde/O0NrwHmQ53vUrtangHegk2L9cW6BYUtNIu13ayXWNvnPnufrv36WIBnPFbl16p6MyVFJ3qMz7HmKq8g3xUOWkwWmUrY5xLw5Ygtz699gG2OAv2yfZl+2b5MPRpdoJvaXMU+wKcBwjUAAAAAQIVWUFCg9PR0RUREyGg0yuFwqFq1ajKZeKMMQMVjNBgVYY5QhCL8Gm82mnRxkwsDukefpt19hh3eWIxmPd3zIVelnvVo602bvUA14qp6vaZRUn11a3Ce65qiwK9+Yh2v432FWIX3DyxcC7RVpRRE60mfLTcDv0d5VCv6bqFZUasVvd/jsDVXB/KyPM6XFIrPXjdfDi+h6iMXDvcarn27+SePKj+jwagWVRtrbLd7vd7j6Z9flsFgPBr2HQv+LmlyoWoleO5FmZa1S+mHdrv22CvaZy/WEq1qcd5b2eLkkpl7UOMWT1H6od0BXbdoyxL9u2ezHus6QkkxiWWzOFQIhGsAAAAAgArN6XRq3759bueqVKlCuAYAfjIajWqUVD+gazrVbadOddv5PT4mIlozr31Vdoe9MMBzHGuhWSU22ec9asZXl9Vulc1RcLRyz6aa8dW9jnc4HWqSlFJs/mOVgYG30Aws8CvpmkDbdFq9tIM88T18hVjeQ9xQViv6Gl9e1YregjUpsGpFX3NIhT9n/LXrH6/Pdazb1mu49nvqn/rsn288zreo2lhPdB/p9R7/N+d+mQ0mVxBXVFl369nXq6GXv5+rdq/T2owNrvERR9tuVomt7LWtp1RYfXh8QGgymkoML+HpiC0vqGCtSPqh3Rr30xRN6PEgFWynMMI1AAAAAAAAAKVmMBhkNpllNpkVo+gTjg90n70YS7TG93wwoDX1a3GxujU4rzDAs9tc++1VikzwOt5oMOqSJl1dQV/xtpuxETFer3E6nTIajB4BTlABXsBtIQMbX3iP0IRrwVQrBlrlV9LrKI9qxUCvKalaMcea6/U5X8Hpv3s36cv133mcP6NaU6/hmsPh0D3zHvc4b5BBY7vdq5bVmng898PWX7Vk+/KjYZ/5WJvOSrV0abOLPMY7nU79sn3ZsYDQaHYd146vrqhTJEiaserzoIO1IunZu/XBqtm63Ue7U5z8CNcAAAAAAAAAnJKSohO9tg70JdoSpf9rd11A97il3bW6pd21sjvsRyvpCivqfO3zFWWO0rCOg44FeI6joZ/dpsQo76Ff1dhkNU1u6KrUKwr+4iPivI73taeb5HsvOKuPwCjCR8BU4j1CVB3na00l3cNXgOezyi+IAC+U1Yq+23SGplrRKafPde08tEdr92zwON+mRkuv4VqBo0Av//Gu17nGXXS/mlVp5HF+5pqv9M3G74vtsVdYVdeiamPddvYNHuPtDrve+3uWq1LPYjK7jjvWOUuJ0ZU8rjl4JEs5tiNu++wVhX+BVu1t3r/thHus+Wvhll/UrcF5apycEpL5ULEQrgEAAAAAAABAKZmMJpmMJp2odifSHKEuKR0Dmvvy5j11efOefo9PiIzX5N5jXZV6xav2fIWNrao1k8VoLhbgFQZ+3loWSoVBS7Q5SlaHzWN/N58hk8+940LXptNXRV1QVX4hCglDe4/AX0eows5gqhXzCvJdf4qr6qNdrM1u04JNi70+1yipvtdw7euN32vu+oUe58+q0VKjLxzucd5qt+mJHycpwmRRlClC954/2PUxmr/pR6/3Dtb8TT9qePItIZ0TFQPhGgAAAAAAAACcQsxGk9e9wkpyXr2zdV69s/0eXyUmSe9dNUlSYUtCm+PYHniVIuO9XtOrURedWa350Wq9owGew6Y6CTW9jjcajDqzejNXZV9hSFh4j0gfFVy+qsSCqY4LNGSKCGAfuBPfw0cFnq+WmyVUEgZ+j7KvVvT9Osq+WtFqt2rT/v8kSQ0r13PNa7XbtDR1pc/7B2Np6koN6TDA59px8iJcAwAAAAAAAAAEzWg0KtIYoUiz9zCjSOPklIBa5FWOrqTHut4T0FpubnuNrj7jUlcQVxTk+Wq5GWWOVL8WF7sq9ayu4M+mGLP3OkSzyaxYS7SrBWgRn+FPSaFUgCGTz5CwpMq1AAO54CrwAq1WDF0lYaBtOouHnY2KVWZuP5hW4h58wbA5CrTjYDqtIU9BhGsAAAAAAAAAgFNCQmScEiK970Xna/yNrfsFdI/B7W/U4PY3SpKcTqeras/X/l6Voyrp/vOHHG3RWSCr3eqqxouJiPZ6Tb1KtdSmRgtZj44vCv8qR3sPCYMJvny30Aw8XAt0T7tQBniluUfx9pSpWTt93rs0dmQRrp2KCNcAAAAAAAAAAAiCwWBQhMlSYtu/aEuUzqlzVkDz9mtxsfq1uNjv8bXiq+u1y58+2j6zWIDnsCk2ItbrNZ3qtlXN+GrHqvzsNlkdBWqSlOJ1vENOVY6udKzKz26TU05JgQd4PqvpgqjAC/gexarpzEaT6zi/wHtL0dLK99GqFCc3wjUAAAAAAAAAAE5iJqNJSdGJAV1zbt2zdW5d//fZq5NQU69f/ozrsdPplN3pkM1uU5Q50us1/Vteoq4NOh3bN+9o2816lWp7HR9pjlCH2m2Oji1whX42e0HAbTf92TOvwGF3u3dZ8LU/IE5uhGsAAAAAAAAAACAgBoNBZoPJrfrreA2T6quh6vt8/njV46pq1AVDA1rHiE7/p/yCfNceeEVVdZWi4r2OT4xK0A1nXiGbw6aa8dVc5+tWqhXQff3lK0jEyY1wDQAAAAAAAAAAnJSiLVGKtkT5Pb5ydCVd2fISj/P1E+vIYjTL5vDeZjIYFqNZ9RIJ105FxnAvAAAAAAAAAAAAIJwiTBZ1qtsupHN2qtuuxP34cPIiXAMAAAAAAAAAAKe93k26Vej5UHEQrgEAAAAAAAAAgNNe4+QU9Wh0QUjm6tmosxonp4RkLlQ8hGsAAAAAAAAAAACSbmpzlWrH1yjVHLUTamhAm/4hWhEqIsI1AAAAAAAAAAAASdGWKD3WdYRqJwQXsNVOqKHHLhyhaEtUiFeGioRwDQAAAAAAAAAA4KikmERN6PFgwC0iezbqrAk9HlRSTGLZLAwVhjncCwAAAAAAAAAAAKhIoi1RGtz+f+re4HzN3/SjlqaulM1R4DHOYjSrU9126t2kG3usnUYI1wAAAAAAAAAAALxonJyi4cm3aEiHAdpxMF07stKVb7cq0hShepVqq15ibUWYLOFeJsoZ4RoAAAAAAAAAAEAJIkwWNU5OoToNkthzDQAAAAAAAAAAAPAblWsAAAAAAAAAAAAlKCgoUHp6uiIiImQ0GuVwOFStWjWZTKZwLw1hQLgGAAAAAAAAAABQAqfTqX379rmdq1KlCuHaaYq2kAAAAAAAAAAAAICfCNcAAAAAAAAAAAAAPxGuAQAAAAAAAAAAAH4iXAMAAAAAAAAAAAD8RLgGAAAAAAAAAAAA+IlwDQAAAAAAAAAAAPAT4RoAAAAAAAAAAADgJ8I1AAAAAAAAAAAAwE+EawAAAAAAAAAAAICfCNcAAAAAAAAAAAAAPxGuAQAAAAAAAAAAAH4iXAMAAAAAAAAAAAD8RLgGAAAAAAAAAAAA+IlwDQAAAAAAAAAAAPAT4RoAAAAAAAAAAADgJ8I1AAAAAAAAAAAAwE+EawBQAdjtdg0YMECzZ88O91IAAAAAAAAAACUwh3sBKFlOTo4uu+wyvf/++6pTp064lwOckM1m05dffqn58+dr3bp1ys7OVnx8vFq2bKk+ffroiiuukMViCfcyfdqzZ4/mzZunX375Rdu2bVNmZqYMBoOqVaumhg0bqnfv3rrooosUExMTsnvm5+frySef1PLly9W/f/+QzQsAAAAAAAAACD3CtQosPz9fDz/8sNLT08O9lBLl5+dr1qxZmj9/vjZs2KD8/HzVqlVLZ511lm688Ua1bt063EtEOfnnn3903333adu2bWrSpIkefvhhNWrUSLt379ann36qRx55RNOnT9ekSZPUvHnzcC/Xjd1u17Rp0zR9+nTl5uaqa9euGj58uOrWrSuj0aj09HR99913euihh5SUlKRx48apa9euQd8vKytLGRkZWrJkiT777DNt3bo1dC8GAAAAAAAAAFBmCNcqGLvdrn379unnn3/W+++/r40bN4Z7SSVat26d7rnnHm3fvl3dunXTa6+9ptq1a2vDhg169dVXdc0112jAgAF66KGHKnS1Ekpv+fLlGjx4sHJzc3X++edr2rRpioyMlCSdccYZuuiii/Tqq69qypQpuvHGGzV9+nS1bds2zKsuZLVadd9992nhwoWKjIzUK6+8oh49eriNadu2rfr27avly5dr+PDhGjJkiEaOHKnBgwf7fZ9ly5Zp0KBBcjqdcjgcoX4ZAAAAAAAAAIByQLhWQQwZMkR//vmncnNzZbfbw70cv6xZs0Y333yzcnJydP311+uJJ55wPVejRg117txZQ4cO1QcffKC0tDRNmzZNRiPb/J2KUlNTdddddyk3N1fVqlXTpEmTXMFacXfeeadWrVqlxYsXa+jQoZozZ45q1qwZhhW7e+qpp7Rw4UJJ0mOPPeYRrBXXoUMHTZw4UbfffrteeOEFValSxe9Wjq1atdKcOXNcj/Py8rRgwQJNnz69VOsHAAAAAAAAAJQfko4K4qmnntKcOXP03Xff6dtvv9WYMWNkMBjCvSyfDh48qDvvvFM5OTlq2rSpHnvsMY8xRqNRzz//vBISErR48WJNnjy5/BeKcjF69GhlZWVJku677z5VqlTJ59j7779fUuHX0KOPPlou6yvJkiVLNHPmTElSy5Ytdc0115zwms6dO6tbt26SpHHjxmnv3r1+3SsmJkZNmzZ1/WndurUeeOABNWrUKPgXAAAAAAAAAAAoV4RrFUTVqlVVp04d1alTRykpKfrf//5Xofcqe/HFF7Vnzx5J0qhRo2Q2ey+CTEhI0MCBAyVJb7zxhtavX19ua0T5+Omnn7Rs2TJJUvXq1XX55ZeXOL5JkyY6++yzJRUGW0uXLi3zNZZk2rRpruMbb7zR7+uKvq5zc3M1adKkUq0hOTm5VNcDAAAAAAAAAMoP4VoFFhMTE+4leJWamqrZs2dLklJSUtSlS5cSx1955ZWSJKfTWeoQAhXPSy+95Dru27evTCbTCa+56KKLXMfhrGjcsmWLVqxYIUkyGAzq3r2739e2b99ecXFxkqS5c+e6KvcAAAAAAAAAAKc2wjUE7J133pHNZpMk9evX74Tj69Spo2bNmkmSFi9erK1bt5bl8lCO1qxZozVr1rge9+3b16/runbt6jr+66+/tH379lAvzS/Fq+Zq1aoVUAWZxWLRWWedJUmy2WyuPdsAAAAAAAAAAKc2wjUExOFw6LvvvnM97ty5s1/XtW/f3nVMCHHqWLRokes4Li5OzZs39+u6hg0bKjY21vW4+NdUefr3339dxykpKQFf36BBA9fx999/H4olAQAAAAAAAAAqOMI1BOSvv/7S3r17JRW2rfQ3TGnZsqXruHggg5Nb8UCpTZs2Mhr9+5ZiMBhc1YyS9OOPP4Z8bf7IzMx0HcfHxwd8fY0aNVzH7CcIAAAAAAAAAKcHwjUE5K+//nIdN2vWTGaz2a/rmjRp4jpev3697HZ7yNeG8pWbm6vNmze7HhcPy/zRqFEj13G4gqkjR464jiMjIwO+Pjo62nW8c+dOHT58OCTrAgAAAAAAAABUXP4lI8BRmzZtch3Xrl3b7+uqVavmOrZardqxY4dbS72TRUFBgQwGQ7iXUe4KCgo8zm3YsEFOp9P1uHr16q69+PxRfH+znJwc7dixQzVr1izdQgMUFRXlOj58+HBA6/dm8+bNOuOMMwK+zuFwuI7tdnup1wEAAHCq8fbzqLdzAAAAQFnhZ9JjTtfXXRzhGgJSvFKpVq1afl9XtWpVGQwGVxizZcuWkzJcK75H1+nul19+cXucn5+v1atX+319fn6+2+Pvv/9erVu3Dsna/FW8gjI9PT2g9UvulZyStHr16qCqMnNyclzHqampAa8DAADgdLRu3bpwLwEAAACnOX4mPX3RFhIBKb5HVaVKlfy+zmw2u7XQy8rKCum6UP4OHjzo9jghISGg64/f4yw7O7u0SwpY8YA4LS0t4OtXrlzp9rh4m0kAAAAAAAAAwKmJcA0BKV5hU7ylnj8iIiJcx7m5uSFbE8Lj+CCp+OfXH8fv13d8JVt5KL4X4OHDh5Wamur3tcuXL1d6errbuby8vJCtDQAAAAAAAABQMRGuISDFQ7HIyMiAri0exhUP6XByOj5ICjRcs1gsbo/DUfXVtGlTValSxfV4yZIlfl2Xm5urDz74wO1ayfM1AQAAAAAAAABOPey5hnLjcDhcx0bjyZnrtmjR4rQMUAoKCjz6B8fFxbk9btWqlerUqeP3nMeHacnJyeW+55okDR48WBMmTJAkLVy4UMOGDVPt2rV9jrfb7Ro5cqSaNWumOnXq6JNPPnE917Jly6BeQ2xsrOu4bt26Yfk4AAAAVGTefh5t2bKlRzcEAAAAoKzwM+kxNptN//77b7iXEVan32cdpRIbG+vaayvQFnhWq9VtnpOR2Ww+LcM1b4rvoScVhqeBfGzsdrvb47i4uLB8bAcOHKjff/9dP/74o/Ly8jR8+HC99957SkpK8hh75MgRPfroo9qyZYvee+89vfzyy27PV6pUKajXUDxsNplMfI0BAAD4gZ/NAQAAEG6n68+kTqcz3EsIu5OzfAhhUzwUC3SPrOLjY2JiQrYmhMfx4VqgXw/Fw1YpfF8TBoNBU6dO1VVXXSVJ2rhxoy6//HJ98skn2rNnj+x2u3bv3q2ZM2eqX79+Sk1N1UcffaTq1at77B1YqVKlcLwEAAAAAAAAAEA5IlxDQCpXruw6zsrK8vs6q9XqVunmrSoIJ5fjqw9LG66Fs5oxIiJCEyZM0Keffqq+ffuqoKBAY8eOVefOndWyZUv16NFDX3zxhW677TZ9/PHHrq/fw4cPu+awWCyqV69euF4CAAAAAAAAAKCc0BYSAWnUqJHWrl0rSdq5c6ff1+3du9etVLRRo0YhXxvKV5UqVdwe79+/P6DrDxw44Pa4atWqpV5TabVp00YvvPCCnE6nDhw4oKysLFksFlWrVk0REREe4/ft2+c6btiw4WnZXxkAAAAAAAAATje8E4yANG7c2HW8a9cuv6/LyMhwHcfExKh27dohXRfK3/EB6e7duwO6fs+ePSXOF04Gg0FJSUknrLAs/nXdtGnTsl4WAAAAAAAAAKACoC0kAtK6dWvX8YYNG+RwOPy6btOmTa7jVq1ayWAwhHxtKF/Hh2GBhK1SYTVjkcTERCUnJ4dkXeUlNzfX7TV06tQpjKsBAAAAAAAAAJQXwjUEpH379kpMTJRUuN/U5s2b/brun3/+cR336NGjLJaGchYXF+e2x9jGjRsDun7Lli2u41atWoVsXeWleGBsNpv5ugYAAAAAAACA0wThGgJyfIjw22+/+XXdihUrJBW22yOEOHV0797ddbx69Wq/r7Pb7dqwYYPXeU4WxV/vOeec4wqdAQAAAAAAAACnNsI1BGzQoEEymUySpC+//PKE4zdt2uSqUurduzf7rZ1Cevbs6To+ePCgWzVaSTZt2qS8vDxJJ2/g+uuvv7qOb7jhhjCuBAAAAAAAAABQngjXTlE7d+7U4MGD1bZtW1122WV+V5j5o0mTJrriiiskSevWrdOff/5Z4vjPP/9ckmQymTR8+PCQrQPh165dO6WkpLgez5s3z6/rFi1a5Do+//zzVb169VAvLSA2m02ff/653n//fWVmZp5w/MGDB13hWsuWLd1CRgAAAAAAAADAqY1wrQLLzs52HR88eDCgax988EH99NNPys3N1caNG3XnnXdq165dIVvbqFGjVKdOHUnSM888I6fT6XVcRkaGPv74Y0nS8OHD1bBhw5CtAeFnNBp1zz33uB5/+eWXPr8Wivv2229dxyNGjChx7Lx589S7d2+1b99eI0aM8Cv8CtTjjz+u0aNHa/z48Ro5cuQJx3/yySeyWq2SCtdvMBhCviYAAAAAAAAAQMVEuFZBZWRkaPPmza7HP/zwQ0DXr1271u3xkSNHtGbNmpCsTZKSkpI0bdo0JSQkaPXq1XrmmWc8xlitVt1zzz3Ky8tTr169NHTo0JDdHxXHJZdcojZt2kiSUlNTNXfu3BLHL1myRBs3bpQk9erVS61bt/Y5duXKlRo5cqS2bt2qQ4cOacGCBbr77rv9CvACMX/+fNfx0qVLXS0rvUlNTdWbb74pqbDNadeuXUt9/+KvJ9SvDQAAAAAAAAAQWoRrFUROTo6ys7OVmpqqhQsX6rbbblN+fr7r+ddee00TJ07UunXrlJmZqezsbFfljDetWrVye2yxWNS8efOQrrlp06b67LPP1LRpU7377rsaPny4/v77b+3evVs//vijrr32Wq1cuVI333yzJk+eTHXPKcpgMGjixImKj4+XJE2ePFmHDh3yOtZms2nSpEmSpKpVq2rs2LElzr1o0SI5HA63c8uXL9e2bdtKv/BiYmJiXMcOh0P79+/3Os5qtWrUqFE6fPiwmjZtqnHjxoXk/mlpaa7j1NTUkMwJAAAAAAAAACgbhGsVxNChQ9WhQwf16NFDw4YNc1X2FLHb7Xrrrbd05ZVX6txzz1WHDh309ddf+5zv2Wef1YUXXqiYmBg1aNBAkyZNUr169UK+7pSUFH3++eeaOHGiDh8+rLvvvlsXX3yxnnnmGTVv3lyzZ8/W6NGjZTKZQn5vVBz169fXtGnTFBMTo507d2r48OFu4bBUGFo98cQTWrt2rRISEvTaa6+pSpUqQd3v+MCttK6//nq3xzt27PAYk5mZqUGDBumvv/5S8+bN9fbbb7sCxdL49ddf3Vq2zp07160lLAAAAAAAAACgYjE46UEGeLBarV7baJ555pmKiIgIw4rCy2azafXq1W7nWrduLYvF4nZu/fr1GjlypDZv3qyUlBQNHjxYjRs3VmpqqmbMmKG///5bTZo00aRJk9SkSZMT3nflypX63//+5xamNW3aVHPmzAlpYGu32/X000/rgw8+kNPpVOvWrTVixAhVrlxZu3fv1vLly/Xpp5/KarXqhhtu0H333afo6OiA75Obm6u0tDQ5nU5lZ2drxYoVmj59ukelX7169TRo0CA1bdpUlSpVklT4ugEAAE5X/v48CgAAAJQVfiY9hvfPCdcAr/jm4C6Q/3EUFBRo7ty5+uabb/TPP/8oOztb8fHxatmypfr27asrrrhCZrPZ73vPmzdPU6dOVUZGhjp06KAxY8aoTp06pX5N3qxfv16ffvqpli1bprS0NNlsNsXHx6tx48bq1KmTrrzyStWuXTvo+f/44w8NHDgwqGs3bNgQ9H0BAABOdryRAQAAgHDjZ9JjeP+ccA3wim8O7vgfBwAAAMKJn0cBAAAQbvxMegzvn7PnGgAAAAAAAAAAAOA3wjUAAAAAAAAAAADAT4RrAAAAAAAAAAAAgJ8I1wAAAAAAAAAAAAA/Ea4BAAAAAAAAAAAAfiJcAwAAAAAAAAAAAPxEuAYAAAAAAAAAAAD4iXANAAAAAAAAAAAA8BPhGgAAAAAAAAAAAOAnc7gXAKDiMxgMqlKliiIjI2UwGOR0OmU0ks0DAAAAAAAAAE4/hGsATshsNqt+/frhXgYAAAAAAAAAAGFH6QkAAAAAAAAAAADgJyrXAJyQw2pVzrZtyt2eKnt+nkyRUYqpX1exKSkyRkSEe3kAAAAAAAAAAJQbwjUAPh3auEm7vp6nfb/9LqfN5vG8wWJRlfPOVc2+fRTftEkYVggAAAAAAAAAQPkiXAPgwX7kiP575z1lfLuwxHFOm017f/pZe3/6WdUv7qkGt9wsU3R0Oa0SAAAAAAAAAIDyx55rANzk79+vVfc/eMJg7XgZ3y7UqvsfVP7+/WW0MgAAAAAAAAAAwo9wDYCL/cgR/TPmCR1JSw/q+iNp6fpn7JOyHzkS4pUBAAAAAAAAAFAxEK4BcPnvnfeCDtaKHElN07Z33w/RigAAAAAAAAAAqFgI1wBIkg5t3BRwK0hfdi/4Toc2bgrJXAAAAAAAAAAAVCSEawAkSbu+nhfa+b6ZH9L5AAAAAAAAAACoCAjXAMhhtWrfb7+HdM59v/4mh9Ua0jkBAAAAAAAAAAg3c7gXACD8crZtk9NmC+mcTptNOdu2K75pE0lS5p8rVZCVpYikJEUkJysiOVnmmOiQ3hMAAAAAAAAAgLJGuAZAudtTy2jeHa5wLfe/bdo+40PXc/HNmqn1cxPK5L4AAAAAAAAAAJQVwjUAsufnldG8+a5jg8Xi9lxEclLA822f8aEKcnIVkZykyOQkVxVcZLWqMkVGlnq9AAAAAAAAAACcCOEaAJkio8po3mOB1/FtJ4MJ1/b+vET5e/Z4nG84+DbVvLR34AsEAAAAAAAAACBAhGsAFFO/bhnNW891nHdcKBaRFFi45nQ6Zc3M9PpcoEFd/v5MbX39DUUkJXtUwUUkJ8kcExPQfAAAAAAAAACA0wfhGgDFpqTIYLF4VJeVhsFiUWxKfdfjnC1b3Z4PNFwryM6Ws6DA63MRyckBzZW/Z48y/1ju83ljVFRh4JacfDR0KwrgCsO3iOQkRSQmymAyBXRfAAAAAAAAAMDJj3ANgIwREapy3rna+9PPIZuzyvnnyRgRIUlyWK2SJHNCggqysyVJkUFUm/kSaFDnqwKuiCMvT0fSd+pI+k7fg4xGRSQmqs7V/WlJCQAAAAAAAACnEcI1AJKkmn37hDRcKx44GSMi1OaF5yRJDptN1sxMWRITA5rPZyBmNCoisVJgc5UQ1PnN4ThhSOf1soICZXz7HVVwAAAAAAAAAHCSIlwDIEmKb9pE1S/uqYxvF5Z6rhqX9FJ80yZenzNaLIqqXj3gOSMqV1b1Xj1k3Z8pa2am8vdnqiA7WxGVAw+m8vfvD/j+PtcVYAWeNTNTW9+Y7n7yaBXcmU+PU1SNGiFbGwAAAAAAAAAg9AjXALg0uOVmZf+zTkfS0oOeI7puHaUMGhjCVRWKa9RQje+6w+2cw2aTLftQwHMFU3HmS6D7vXmtmjtaBWeOiw9orsNbturQ+vVUwQEAAAAAAABAOSJcA+Biio7WGU+O1T9jn9SR1LSAr4+uW0dnPDFGpujoMlidJ6PFEvDebZJUue1ZMkVGyZrpXgUXjFDt92aMjJQpNiaguQ6s/Es7PvjouIkKq+AikpMUkVQYuEUmJ7uOi/5rjgnsXgAAAAAAAACAQoRrANxEJierzcRn9N877wXUIrLGJb2UMmhguQVrpVGtezdV697N7VzRXnDW/YVhmzVzf2ELSlcbyv2yZh6Q02Y7dlEI93uLSE6SwWAo/VxHq+BOVJ1njIpSZHKSIo4Gb3Wvu1rRtWoFdH8AAAAAAAAAOB0RrgHwYIqOVuM7h6p6j4u065v52vfrb+6h0lEGi0VVzj9PNS/t7XOPtZNF0V5wJe0H53Q6VXDokCuEsx06HLL93gKtgJMka2bwe8c58vJ0JH2njqTvlCTV7t8voOtthw7JdjCLKjgAAAAAAAAApx3CNQA+xTf9//buPD6q6u7j+Hf27JlMCBAQCHsAhYKiIrYo4lJEqUutUivqI7igqKhVlGqlWrVWEbGICy611rUoqKgVF9SiAoqgIoIgO7Jksm+zPn8kGRKSSeZOJvvn/Xr56r137vmdE5/XIyHf/M7pr+QB/dVv2hUq3rpNJdu2y19eLovDoYRePZWY1Utmu72ll9lsTCaTbCkpsqWkKDErK6oalvh4Obp0rtUF5zB4dpsUvgsuGka318xdtVqb5j4iqWYXXEKPHuoz9f9iti4AAAAAAAAAaG0I1wA0yGy3h4I2NE7P889Tz/PPO9gFl1Ox5aQtJcVwrfIYhWtmu12WxMSo567eBecrLDQ8f8mOnZJJsrvSZU1o/duKAgAAAAAAAOjYCNcAoAXU6ILrnWV4fDAYVHz3bjLbbfLkuBX0+aJeS8zOe1N021v+9ORTyvt6raSKzj57ukt2V0UnnCN0ffB8OLsz1fB2nAAAAAAAAAAQK4RrABrk8/m0a9cu2e12mc1mBQIBde7cWRYCjhZjMpl0xN2zJalWF1zVmXDV/7c8xy1fQUGdtezRbEkZ5rw3u8HtJaWa59D5S0tVunOXSnfuCj/AbJY9zSm7K70yiEuTI73iOuOEMYaDQgAA0P54vV4tXrxYb7/9ttavX6+CggIlJydr8ODBGj9+vCZOnCibzdbSy6xh7ty5mj9/fqPrvP766xo0aFCLzQEAAAB0BIRrABoUDAZ14MCBGs86depEuNZKRNoFF/B6Q4FbeY5bHneOPDluxXXpbHjOsJ1rUQV1Bre3DAQqQsMct7Tp4GNrSoo6n3iC4fkBAED78t1332nGjBnaunWr+vfvr5kzZ6pv3776+eef9fLLL+u2227TwoULNWfOHGVnZ7f0ckN+/PHHRtdwOBzq1KlTi84BAAAAdASEawDQQZhtNsV16aK4Ll0aXcvjzq3zudFtIf1lZfIXlzR6PZLkiKJr7sd/PKrcL7+q2G6ycvtJR3q6krMHKvXwITFZFwAAaD6rVq3S1KlTVVJSotGjR+vRRx+Vw+GQJA0ZMkQnnXSS5s+fr7lz52rSpElauHChhg8f3sKrrrBp06Zaz5KSkmS1NvzX9tLSUpWXl2vq1KnKyMho0TkAAACAjoBwDQBg2JGP/SO03aTHnRvqgkvq18dQnXAdcNGI5ry38n37D3bBVZN5xumGw7VgICCT2Wx4DQAAIDZ27NihadOmqaSkRJ07d9acOXNCwVp1V111ldauXauPPvpIV1xxhV5//XVlZma2wIoP8ng82r59uyTJ5XJpxowZOvXUU5WSktLgWK/XqwkTJigYDGrq1KktOgcAAADQURCuAQAMM9vtiuvaVXFduzaqjicvLzYLUpThWk6Ys+MM1goGg/r8d7+XNSmp8hy4g11wVdcVz9NlTYg3vE4AANCwW2+9Vfn5+ZKkGTNmKDU1Ney7N954oz766CPl5eVp1qxZWrhwYXMts05btmyR3++X0+nUSy+9pJ49e0Y89t///re2bt2qxx9/XHa7vUXnAAAAADoKwjUAQItJHTJYo155QZ7c3FpnwXly3JXdcRX3QZ+v3lr2KLaFDHfem8Pg2XG+ggIFPJ6KM+0aOEPOEh9fLYBLl6NaGGdPT5cjI0N2Z/gfBgIAgNqWL1+ulStXSpK6dOmiM888s973+/fvryOPPFJffvmlPv30U33++ec69thjm2Opdao6C+3mm282FHrl5+dr/vz5GjVqlMaMGdPicwAAAAAdBeEaAKBFme32Bs+CCwaD8hUWVgZwORUhViiAy1F5jltxBrdzqu+8N6NBXbmB7S39paUq3blLpTt31fl5+nGjlH3zjYbmBwCgo5s3b17oesKECbJYLA2OOemkk/Tll19Kkh566CG9+OKLTba+hmzatEkZGRmaOHGioXGPPvqo8vPz9cc//rFVzAEAAAB0FIRrAIBWz2QyyZaSIltKihJ7Z8WkZn3nvRkN1xrqVjMimg68jQ/OlczmWl1w8d27sw0lAKDd++abb/TNN9+E7idMmBDRuBNOOEF/+9vfJElr1qzRtm3b1KtXryZZY0M2bdqkk046KaJQsMrOnTv1/PPPa8KECRo8eHCrmAMAAADoKAjXAAAdki0tTYP+dGudXXBGz1zzhDm7LRrRnPd24H8r6tw2M/vWm5V+zNGxWhoAAK3SsmXLQtdJSUnKzs6OaFyfPn2UmJio4uJiSdJ///tfTZkypUnW2JA777zT8JiHHnpIfr9fV199dauZAwAAAOgoCNcAAB2SNSFerqOOjEmt+rrgjIrmvLdw59EZDeqKtvykrU8/W+dZcHaXS3ZnqkwGftsdAIDm8P7774euhw0bJrPZHNE4k8mkgQMH6quvvpIkffjhhy0WrmVkZBh6f8OGDXrzzTd1+umnKysrq9XMAQAAAHQUhGsAADRSl5NPUtKA/nV2wXly3PIVFkZcK5bnvRkN18r27FH+um/Cv2A2y57mlN2VLnu662AAFwrhXLK70tmKEgDQbIqLi/Xjjz+G7gcOHGhofN++fUPh2oYNG2K6tqY0Z84cSdIVV1zRpucAAAAA2irCNQAAGsmRkSFHPb8NHvB45HG7Q2FbRQhXGb65Dz4L+nyxO+/NbJbdmWqsVkMdeIFAKDzUpvCvWeLj1eeKqep8wq8MzQ8AgFGbN29WMBgM3Xfr1s3Q+OrdXMXFxdqzZ48yMzNjtr6m8NVXX+mjjz7SmDFj1L9//zY7BwAAANCWEa4BANDEzHa74rp2VVzXrmHfCQaD8hUUyJqUZKh2uHDNnuY0vIVjeYzOjvOXlsoS5zA0xltQoL3/XVZjG0pHukuWeLrgAADhbdpU87c9jAZjh26VuHnz5lYfrs2dO1eSdOGFF7bpOQAAAIC2jHANAIBWwGQyyZZqrNNMkhJ69FC3MyfU6oKzu4yd3SbV0wUXBbvBs+NKd+3Wtueer/XckpCgoxY+zlaTAIA67du3r8Z9usE/f5xOZ417dwz/LGwKq1at0ueff66srCz98pe/bLNzAAAAAG0d4RoAAG1YyqBspQzKrvEsGAzKX1pmuFaD20IaYPS8t3DBXtDvlyU+zlCt3DVfq3jzFrrgAKADKC4urnEfF2fszwy73V7jvqSkpNFrakrz58+XJJ177rkymUxtdg4AAACgrSNcAwCgnTGZTFF1enUee6KS+vap8yw4Q2J43ps93WX4B3vuL1bp57ffqfXckpAgu8tVEbpVBm6h+8oQzu5MNbydJgCg5RwahjkcxrYlPvT9Q8O61mTdunVasWKFTCaTJkyY0GbnAAAAANoDwjUAACBJ6jJubK1nVWfBHQzccipDt1x53DkVz3Pc8hUWhsbE8rw3ox1wkuRx113LX1Ki0pISle7cGX6w2Sx7mlN2V7rs6S71vWKK7GlphtcAAGge5eXlNe5tNpuh8VZrzb8SH1qvNXniiSckSSNHjmyyc+GaYw4AAACgPSBcAwAAYVWdBWdLTZX69A77XsDjkcftVnmOWwGPx/A84baFdBg8O0dq5PaWgUBFeJjjljZJ/a+ZZmh4+f4D8uTl0QUHAM3k0G0gPQb/DDr0/YSEhEavqSns2LFDy5YtkySNGzeuzc4BAAAAtBeEawAAoNHMdrviunZVXNeuUY13dOqkhKxetbvgXMa7xspjdHac2eGQJdHYD1n3fbRc2//178oCB7vgUoYMUu9LJsdkXQCAgw4Nw4x2nrWVcO2FF15QIBCQJB1//PFtdg4AAACgvSBcAwAALS5r8h+UNfkPkmp2wdmdTkN1gn6/vPn5MVmT3ZVm+Ly3Gl1z1brgbCnJhucv+H6DTFarHOnpsqWm0AUHAHVITEyscd/YcO3Qeq2B1+vVa6+9Jknq2rWr+vbt2ybnAAAAANoTwjUAANCqNKYLzl9WJucvhlWcDed2y1dYFPU67NFsSRnmvDd7uvGz4378x6Mq3VF5PpzZLHtaWsV2k+kuOdJdoWt7errsropnlvh4w/MAQFvWqVOnGvc5Yc7wDCc3N7fGfUZGRqPXFGv/+9//5K7cPnno0KFtdg4AAACgPSFcAwAA7YY1MVFD7pgVuveXl8vjzpXHnRPqIivPcR+8d7vlcecq6PPVqmV3GQ/Ewp33Fl1Qd2gXXI48OTnSpvBjLAkJtQK4+O7d1HnsiYbnB4C2oF+/fjXuf/75Z0Pj9+3bV+O+NXZsvffee6HrAQMGtNk5AAAAgPaEcA0AALRbFodD8ZldFZ8ZvgsuGAjIV1hYGbq5K0MstxJ69TI8X7jz3owGdf6yMvmLSwzP7y8pUWlJiUp37gw9S8jqZThcC/h8Mlv5NhFA63douLZnzx5D4/fv3x+6djqdSo/ilyGa2ieffBK67tOnT5udAwAAAGhP+KkJAADo0Exms2ypqbKlpkp9ekddJ+j3y19cXOdnDoPbQobrgIuG0bkl6fu//FWFGzfV6oJLO3KEUgYPitnaAKCxkpKS1LNnT23fvl2StHHjRkPjN2/eHLo+/PDDY7q2WNi4caP27t0buncaPIu0tcwBAAAAtDeEawAAADFgslh07EvP190F17OHoVrlBs8Mqk80W1KW5+TU2QVnSUw0FK4Fg0EFyso4Cw5Akxo7dqyeeeYZSdK6desiHuf3+/XDDz/UqNPafPXVVzXuk5OT2+QcAAAAQHtDuAYAABAjseqC8xeXyGS11nkWnFGNPu+tGofBWr6CAq286NI6z4Kzp6fLXnntSE+XLTVFJovF8FoB4OSTTw6Fa3l5edq8eXNEZ6dt2rRJZWVlkiSTyaRx48Y15TKjsnbt2hr3fr+/Tc4BAAAAtDeEawAAAK1M+qhjNOrVF+UrKKjVBVfj3u2Wr7Co3lqxPO/NbnCLyaoz6OrqgqvFbJY9La1aAFcZvlUGcPHduxkO9wB0DCNGjFBWVpa2bt0qSVq6dKmuueaaBsctW7YsdD169Gh16dKlqZYYteqddZK0b9++NjkHAAAA0N4QrgEAALRCJpMpoi44f3m5PO5cedwV4dvBAK7iPr5bpqF5w3WtScbDtfpq1RIIVAaIOaorLsw843T1uexSQ/MD6BjMZrOuu+46XXfddZKkxYsX6+qrr5bJZKp33Lvvvhu6vvbaa+t9d+nSpZo3b57279+v0aNH64477pDL4C8vRKMqMKxSHOZsz9Y+BwAAANDeEK4BAAC0YRaHQ/GZXRWf2TUm9Tw59YRrBn+Q7Inl2XEG5w4Gg/r21j/JlppS0QXnSqvshEtXUr9+siZwDhzQnpx22mkaNmyY1q5dqx07dmjJkiWaOHFi2Pc//fRTbdy4UZJ0yimnaOjQoWHf/eqrr3TDDTcoEAhIkt555x3l5OToueeeazDAa4zi4uImD7qaYw4AAACgPSJcAwAAQEhi3z46/K+zQ11wHndFJ5y/pEQWh8NQrfqCOqOiOe+tYP33dX429O/3Kbl/v1gsC0ArYTKZdP/99+ucc85RYWGhHnroIY0dO1bJycm13vV6vZozZ44kKSMjQ3fccUe9tZctWxYK1qqsWrVKW7duVe/e0Z+v2ZCiovq3/W0rcwAAAADtEeEaAAAAQqwJCUodMiQmtcpjGK5Fe95bnbUMdsG5V3+pHS+9UudZcI70intLXJyhmgBir1evXnr00Uc1depU7d69W9dcc40ee+wxOar9YkAgENCdd96pb7/9VikpKVqwYIE6deoU1XyHBm6xZrFYaj2z2Wxtbg4AAACgPSJcAwAAQJPoOel36nziGHnctc+C87jd8rhzFfT5IqoVs/PezGbZnamGapXt3qOijZvqPAuuiiUx4WDY5nJVbkOZXiOEs6WmyFTHD7IBxM7IkSP1wgsv6IYbbtBnn32mM888U1OnTlW/fv20Y8cOPffcc/r666/Vv39/zZkzR/3792+w5rhx4/T000/XCNMGDBigrKysJvxKpE6dOqlz587at29f6FlmprFzNFvDHAAAAEB7RLgGAACAJuFIT693O8dgICBvQeHBwC3HrfKcnFDw5qm89hUWxey8N3ua03DAVR7B2XH+4hKVFpeodMfO8C+ZzRo8a6bSjhxhaH4AxmRnZ2vx4sVasmSJ3nrrLd1///0qKChQcnKyBg8erL/+9a+aOHGirNbI/jo8YsQIPfDAA3r44Ye1d+9ejRw5UrfffnudXV+xdv/99+vPf/6z9u7dqxNPPFFHHnlkm5wDAAAAaG8I1wAAANAiTJVdZHZnqtSnT9j3/OXlMTvvze4ydnabVE8XnFGBgKwpKYaGlO7erX3vf0gXHGCQ1WrV2WefrbPPPjsm9caPH6/x48fHpJYRxx57rN555502PwcAAADQ3hCuAQAAoFUzGqxJUurQIxQMBkNbUlb9r9HtJaXwQV00jHbgFf+0VTtfXVTruSUxQcc8/0+ZTKZYLQ0AAAAAAESIcA0AAADtTurhQ5R6+JBaz4N+v+FaMQvXojjvLdzcttRUw8Havo+Wq3TnrsoOuHQ5Kjvh6IIDAAAAAMAYwjUAAAB0GNGESIf99hyV7d1bqwvOV1RkqE4sz3sz2gEnSTkrPpP7i1W1npssFtmcTtnTXZWBW+UWlNW2obSnu2SJizM8JwAAAAAA7RHhGgAAAFCPLuPG1vncX15eEbRVhW45bpXnuOVx5xwM4dy5Cvp8kmJ73psjPYpaYbrggn6/PDk58uTkqL640JKYIHtaReg26LZbotquEwAAAACA9oBwDQAAAIiCxeFQfGam4jMzw74TDATkLSiUx52joD9geI5wgVg0Z8eVN3J7S39xiUqLS1S+b5/MdruhscXbtsubn08XHAAAAACgXSBcAwAAAJqIqfKcNaNnrVVJ7NO7orOsVhecsXAt6PfLm58f1RoOZU93GT7v7ee339XPb78TurckJsjucil91LHq9fsLYrIuAAAAAACaC+EaAAAA0Er1uezS0HX1Lji7M81QHU9unhQw3jlXF3s0W1K6a54dV9UF5x2UZ7iWe+UqmePi6IIDAAAAALQYwjUAAACgDWhUF1wwoPTRo+o8C84oo11zUn3bWxoP6jY+9LD8xSWh+6ouOEd6uuyuijPh7Oku2V3pclRe21JTZTKbDc8FAAAAAEBdCNcAAACAds6RkaHsP94Yuq/eBefJccuT41Z5Tk5F8FYVwOW45Ssqql2rUzSda7l1Pjca1PnLymoEa9LBLrjSHTvDjjNZLLKlpVWEbZUBXFLfPuo89kRD8wMAAAAAIBGuAQAAAB1OjS64Pn3CvucvLz8YuFUGcMkD+xuaK+j3y5OXV+dnjnRj4Vq4DriI1nDggDwHDoSepR05wnC45isqliUhni64FmAymdSpUyc5HA6ZTCYFg0GZ+b8DAAAAgBZCuAYAAACgThaHQ/GZmYrPzIy6hrewSNaEhDq74OwGw7XynJyGX4qQ0bklad0tt6ps956aXXAulzJO+JWSBxgLHWGM1WpVr169WnoZAAAAACCJcA0AAABAE7I7U3XM88/W2QXn6NzZUC2PO7rOtTrXFcV5bx63u84uuOSBAwyFawGfT77CQs6CAwAAAIA2inANAAAAQJOLRRdc0OuVNSmpzi44o2Jx3luolsEuuJLt27X2+pvqPAvOnp5e2RGXJkd6uuzpLlni4gzVb48CHo+Kt25VybYd8peXyeKIU0KvHkrMypLZbm/p5QEAAADoYAjXAAAAALQJXU4epy4nj6uzC676vcedI487V0G/P2wtuyvN0Nz1nfdmNFzzuHMl1X0WXF0siQmyu1wVYVsohHPJ7kpXUp8sOTIyDM3flhRu3KQ9by7VgRWfKej11vrcZLOp03GjlDlhPFtzAgAAAGg2hGsAAAAA2pRIuuCCgYC8BQWVgVuOynPcFQFcZQgX17WroTnrO+/NaBecx+DZcf7iEpUWl6h0x85an/Wa/AcddvZvDNVrC/ylpfrp6We199336n0v6PVq//KPtX/5x+py6snqfclkWeLjm2mVAAAAADoqwjUAAAAA7Y7JbJbd6ZTd6ZT69ml0vXDnvVmTkmRxOIzVqqcLziiHwbPjvAUF+va22ys74NIrO+BccqS7lDr0iFaxBWV5To6+u/1Ole7cZWjc3nffU8F36zVk9h2G/70AAAAAgBGEawAAAADQANfRR2vYg/fX7ILLcctktRiuVR7DcM3olpTlB3JUsn2HSrbvqPXZUU890eLhmr+0NKpgrUrpzl367o7ZGnb/vXSwAQAAAGgyhGsAAAAA0ABrQryS+vZp0i64aBg/7y3M3Gaz7M5UQ7V+fve/2vPm0jq74KrubSkpMpnNEdf86elnow7WqpTu2Kmtz/xTfa+8vFF1AAAAACAcwjUAAAAAaEYDrp+u8v0HanXBeXJy5HG7VZ7jlr+4OKJasTrvzZ7mlMlirAuvdPeesF1wVUwWi2xpaRWBm8tVEcClp4dCuMQ+vWVNTJQkFW7c1OAZa5H6+Z3/qvNJY5U8oH9M6gEAAABAdYRrAAAAANCMbCkpsqWk1NsF5y8vrwzbcuXJcau8MnirCOHc8rhzFPD6Ynbem91l/IyySDrwgn6/PAcOyHPgQK3PTFarjnn+2dD9njeXGl5Dffa89TbhGgAAAIAmQbgGAAAAAK2MxeFQfLduiu/WLew7wWDQcN1w570Z3V5SCh/URSoxq1fojLeAx6MDKz5rVL1DHfjfCvWbdoXMdntM6wIAAAAA4RoAAAAAtEEmk8nwmM4n/Erx3bvV6oKL65xhuFZjw7Wkfn1D18Vbtyro9Taq3qGCXq+Kt26jew0AAABAzBGuAQAAAEAHkXrE4Uo94vBG1wkGgxFtC1kfR+fOoeuSbeHPbWuMkm3bGwzXNi94QqW7d8uelia7K032tDTZ0tJkdzkrnqWlyRIf3yTrAwAAANA2Ea4BAAAAAIwJBNR32pWVHXAHz4bzuCuug35/gyVM1oN/HfWXlzXJMv3l5Q2+U7jhBxX/9FO975jj4iqCN6ezMnhLCwVvdldlGJeWJltKcqyWDgAAAKAVI1wDAAAAABhisljU+YRf1flZMBCQt6CgctvJHJXnuKttQ5kjj9ut8hy3gj5faIzFEdck67Q4HA2+48nNbfCdQFmZynbvUdnuPeHnSkzQsf9+ztD6AAAAALRNhGsAAAAAgJgxmc2yO52yO51S3z5h3wtUO2MtoVePJllLQq+e9X4e9Pvlzc+PyVz2tDTDY3a8/KoKN2wIdb7Z0yo64xJ69lDCYYfFZF0AAAAAYo9wDQAAAADQ7Mw2W+g6MStLJptNwWqBW2OZbDYlZvWq9x1PXr4UDMZkvmjCtcIfNir3yzW1nncdf5r6Xj4lFssCAAAA0AQI1wAAAAAALcpst6vTcaO0f/nHMavZafRxMtvt9b7jjWBLyEjZogjXwm1JaTSoCwaDWnnRpbImxFfrgqs6D84ZuranpcmanCyT2Wx4rQAAAAAOIlwDAAAAALS4zAnjYxquZZ7+6wbfsaU5lXXxRfLk5lb8486VNzdXntw8+UtKDM1ndxkP17y5eXXXSnMaquMvKZGvoEC+ggKV/by33ndNFotsTmcobLOFgreKEC4uM1MJPdiSEgAAAKgP4RoAAAAAoMUlD+ivLqeerL3vvtfoWl1PO0XJA/o3+J4jPV3dz5pY52f+8vJqYVtF8ObJzZU3Ny8Uxnlzc+XNL5AURbeZ3y9PXl6dnxntggvXARd23pwceXJy6vzcdcxIDbr1FkPzAwAAAB0N4RoAAAAAoFXofclkFXy3XqU7d0VdI77HYcq6+KJGr8XicCg+s6viM7vW+17A55M3L19mR/1bUB7KW1goBQJ1fma0C87jjt32ltGcHff1jD8qUF5W2QnnDG1LmTbyKCUc1j1mawMAAABaC8I1AAAAAECrYImP15DZd+i7O2ardMdOw+PjexymIXfeLkt8fBOsrm5mq1WOTulRjet54aSKzrjKrriqzjijAVe47SWjEc3ZcaW7dilQVlYrFHV0zjAUrgW8XvmKi2VLSeFcOAAAALRqhGsAAAAAgFbDkZ6uYfffq5+eftbQFpFdTztFWRdf1KzBWmNYk5LU47fn1HoeDAYN1zKyLWRDjHbN+UpKFSgrq7uWwaCu+KetWnfTLZLZLLvTWXke3MFOOFvawbPh7K402ZxOmW02Q3MAAAA0B6/Xq8WLF+vtt9/W+vXrVVBQoOTkZA0ePFjjx4/XxIkTZWsj38ds2LBBS5cu1cqVK7Vt2zYVFhbKZrMpPT1dQ4cO1amnnqpOnToZrpuXl6c333xTn376qTZs2KDcyu9pnU6nBg0apOOPP15nnXWWEhMTY/0lxQThGgAAAACgVbHEx6vfVVeoy7iTtOett3XgfysU9HprvWey2dRp9HHKPP3XEZ2x1haYTCbDY9JHHSNH54xqXXB5oTPhPO5ceQsKpAhDO+Ndc+GDvajPjgsE5HG75XG7Vby5/jHW5GTZXYeEb640pR5xuBKzsgzNDwAAEAvfffedZsyYoa1bt6p///6aOXOm+vbtq59//lkvv/yybrvtNi1cuFBz5sxRdnZ2Sy83rB07dujuu+/Whx9+qJEjR+rMM89Unz59lJSUpB07dmj+/Pl666239P7772vq1Kk69thjI6rr8/n0+OOP64knntDgwYN1yimn6OKLL1ZSUpJycnK0atUqvfrqq/rwww81b9483XbbbTrzzDOb+Ks1jnANAAAAANAqJQ/or+QB/dVv2hUq3rpNJdu2y19eLovDoYRePZWY1Utmu7GzztqjuC5dFNelS9jPg36/PHl5FUFbbm7N69xcedyVYVye8S0p6+uaa46z43yFhfIVFqpk2/Yaz3tfdomhcC0YCMhXXCxrUlJUAScAAIAkrVq1SlOnTlVJSYlGjx6tRx99VA6HQ5I0ZMgQnXTSSZo/f77mzp2rSZMmaeHChRo+fHgLr7q25cuX64YbbpDdbtf8+fN10kkn1fh8wIABMplMuvbaa1VWVqZ58+bJbrfriCOOqLduaWmprrjiCn3++eeaM2eOxo8fX+udMWPGaMqUKbr66qu1cuVK3XTTTdq+fbuuvvrqmH6NjUW4BgAAAABo1cx2eyhog3Emi0WO9HQ50us/Gy4YCBiuHS4QsyQkyFL5g6RI1dcFZ1Q0IeHqS6fKZLOFtp60VW5H2fOC82RLTY3Z2gAAQPu0Y8cOTZs2TSUlJercubPmzJkTCtaqu+qqq7R27Vp99NFHuuKKK/T6668rMzOzBVZct48//ljTpk2T0+nUs88+q759+9b5nsViCV0Hg0H95z//0eTJk+utfffdd+vzzz9XdnZ2ncFaldTUVD366KMaP3689u7dq3nz5qlXr14644wzovuimgAnBAMAAAAAAJnMZpnMxn5MkDIoWwNuuF5Zl16s7mdNVMYJY5Q6bKhShgwyPH8sz44zvCVlZUgY9HpVvm+/Cn/YKPfnX+jnt98xPHf5/gMq/GGjyvbtU6CO7UwBAED7dOuttyo/P1+SNGPGDKXW88s5N954o6SKc8dmzZrVLOuLxPbt2zVjxgz5fD499NBDYYM1SSosLKxxX1eQWN3evXu1aNGiiN6VpKSkJF1zzTWh+7vuuktFRUUNjmsudK4BAAAAAFo1n8+nXbt2yW63y2w2KxAIqHPnzjV+WxYtw5HRSRkZx8ekVizDNXua09D74brmTBaLrMnJhmrt/+RTbXv2udC9NTmp5plw1briqp8XZ02INzQPAABoPZYvX66VK1dKkrp06dLgGWH9+/fXkUceqS+//FKffvqpPv/884jPLGtKs2bNUmFhoU488UQdddRR9b7bq1cvTZgwQWvXrlVKSoouuOCCet//9ttv5ff7JUkbN27Uvn371Llz53rHjB8/Xn/+85/l8/mUl5en9957T2eddZaxL6qJEK4BAAAAAFq1YDCoAwcO1HjWqVMnwrV2pv8101Sek1PtPLiKs+E8udXPh8tV0OdrsFaszo6zOZ2Gu/kO3SrTV1gkX2GRtH1HvePMcXE1wzdXmrqdcXq95+kBAIDWYd68eaHrCRMmRPR96kknnaQvv/xSkvTQQw/pxRdfbLL1ReLDDz/UF198IUkRB1iTJk3SpEmTIno3GAyGrktLS/Xyyy83eI5aYmKisrKy9OOPP0qS1q9fT7gGAAAAAABQxZaaWnG2WZ/w7wSDQfmKiirCtsrgrSqEqwrg/CWlssQb6wLz5ObV+dzuMhbSSdGfHRcoK1PZnp9Vtufn0LMuJ401NndBgcr27qvoiHM6ZSKABgCgyX3zzTf65ptvQvcTJkyIaNwJJ5ygv/3tb5KkNWvWaNu2berVq1eTrDESCxculCSZzWaNHj065vWHDRumxMREFRcXS5K6desW0bjkarsIeFvRltuEawAAAAAAoE0wmUyyJSfLlpyshJ49Y1b30G6zKkY74KRYnx3nNPR+7ldfa9OcuRU3JpNsKSmyu9IUf1h3DbxxRszWBQAADlq2bFnoOikpSdnZ2RGN69OnT42w6b///a+mTJnSJGtsyLZt27Rq1SpJUt++fZWUlBTzOTIyMvTCCy9oyZIlEW2dWaX6OWuZmZkxX1e0CNcAAAAAAECH1nPS+epy0ony5NXsgkvs3dtwrZiFa2azbCkphobU6JoLBuXNz5c3P1/ByvNNjMj9ao18hUWypTlDZ8NZEhJkMpkM1wIAoD17//33Q9fDhg2TOcItpU0mkwYOHKivvvpKUsW2jC0VrlUPCPv169dk8wwcOFA33XRTxO+XlpZq27Ztofujjz66KZYVFcI1AAAAAADQodmdqbI7U2NSy1/52+eNZY/mvLdwZ8dF0YG3+423lPfVmhrPzHa77K7KM+Gq/nGlVQRwldf2tDRZk5MNrx0AgLaopKQkdB6YVBEeGdG3b99QuLZhw4aYrs2IFStWhK579OjRYus41LJly+TxeCRJQ4YM0fDhw1t4RQcRrgEAAAAAAMTIyGefkr+4pPI8uNwanXCe3Fx5c/NC1/7ikrB1ognEwoVr0WxvWdfZcQGPR2U/71XZz3vrHWuyWGRzpsqeVhHEDZr5R85/AwC0S5s3b1YwGAzdR3qOWJWMjIzQdXFxsfbs2dMiWx9WPzOu+pok6dtvv9WiRYu0evVq7d27Vw6HQy6XS127dtXRRx+toUOHNklne35+vubOrdjuOi4uTrNnz475HI1BuAYAAAAAABAjJpNJ1qREWZMSldDjsHrf9ZeXVwZvFdtRVoRvFYGco3NGvWPrEvbsOFcUQV2YWpEI+v3y5LjlyXHLkphgOFgr/GGjyg8cCIVzdleaLA5H1OsBAKCpVO9ak4yfCXZokLV58+ZmD9d+/vln5efnh+5TUyu6+QsLC/XnP/9Zb775Zq0xe/fu1ffff68PP/xQgwcP1uWXX17ra2mM3bt367rrrtOOHTvkdDo1Z84cHX744TGrHwuEawAAAAAAAC3A4nDI0rWr4rp2jUk9X0FBnc+Ndq4F/X55w9QyKpquub3vva+97y2r8cySkKDOJ45Rn6mXxWRdAADEwr59+2rcp6enGxrvdDpr3Lvd7sYuybDt27fXuE9MTJTb7dZFF12kTZs26YgjjtCFF16oY445Runp6Tpw4IDeeust/eMf/1BpaanWr1+vu+66q1GdZR6PR7m5uVq/fr0+/PBDvfHGGwoEArrgggt01VVXqXPnzo39MmOOcA0AAAAAAKAd+MXcB+UrLAxtR1m1DWXKkMGG6njy8qVqW1w1RjThWl3bW/pLSmpsuxWp7f9+USarNXQeXMV5cU7ZUlLYqhIA0GglJTW3eI6LizM03m6311uvORwaENrtdl1//fXavHmzZs6cqcmTJ9fY9rFbt26aPHmyMjMzdeedd6qgoED79+/X/Pnzdfzxxxuef9myZZo2bVqNZy6XS/fee6/GjBkT3RfVDAjXAAAAAAAA2gGT2SxbaqpsqalKzMqKuk6gvEzxhx1WeS5ccaPW1JJnxwWDQe16bbECHk/tDyv/XVWFbhXBm7PGvd2VJpvTKbPNZvhrAAB0DIeGYQ6D2xgf+n5xI//cjUZeXl6N+zfffFOff/65/vznP+uCCy4IOy4zM1PTp0/XXXfdJani3LYVK1bohBNOMDT/scceqxdffFGFhYXauXOn1q1bpw8//FBTp07V4Ycfrttuu00jRoww+mU1OcI1AAAAAAAAhMR366YR/5grqfJcuLxDzoTLzat2PlzldX7d3W6xPO/NaC1/SUndwZokBQLyVn4NDf0Y05qcJOfw4Rp4w3WG5gcAtH/l5eU17m0GfyHDaq0Z0RxarzkcGhC+8cYbOvXUU+sN1qoMHjxYI0eO1KpVqyRJ//rXvwyHa0lJSRo+fHjoftKkSSotLdVzzz2nhx56SBdccIEuvfRS3XTTTTKbzYZqNyXCNQAAAAAAANTJ4nDI0qWL4rp0qfe9oN8vT15+ZfiWG9qaMiV7oKH5gn5/RVBXB6Oda+E64IzyFRYpEMUPO3e/8ZYCHk+oC87uqtiW0pqUVGN7LQBA23XoNpCecL/UEcah7yckJDR6TUZ5vd4a9zabTbfeemvE48eMGRMK11asWCG32y2Xy9WoNcXHx2vq1Knq1auXpk+frqeeekoHDhzQ/fff36i6sUS4BgAAAAAAgEYxWSxypLvkSG/cD9P8paWK69pFHneuAmVlNT4zusVkuA64aETTgbfnzaUq+/nnWs/7TP0/ZZ4+PhbLAgC0sPj4+Br3RjvPWkO4dmj33DnnnKOuXbtGPH7QoEEymUwKBoPy+/1as2aNTjrppJis7dRTT9VZZ52l1157TUuWLNHw4cM1adKkmNRuLMI1AAAAAAAAtArWpCQd+egjkiqCtoNdcHmKz4z8B32S5M3Ni9m6ojnvLVznnM1pvAPvx3nzZUtLkz3NefA8uKqz4dKcMtvthmoCAGIjMTGxxn1jw7VD6zWHQwM9o8FYfHy80tPTdeDAAUnShg0bYhauSdKUKVP02muvSZIefvhhnXnmmUpKSopZ/WgRrgEAAAAAAKDVscTHKz4+XvHdukU13pqSrLQjR4QCOm9+gRQIRFXLaNecv7Q07FaSRrvgyvcfUO6XX9X7jjUpSbZqwZs9rWb4Zqt8bomPZ0tKAIihTp061bjPyckxND73kF/EyMjIaPSajGpsQChVnJtWFa4d+jU1Vt++fdWnTx9t2bJFubm5evPNN3X++efHdI5oEK4BAAAAAACg3Ukb/gulDf9F6L7iPLcCefIqzoOrOB8uTx53ZfhW7ay4oM9Xo5bRQKy+LSntaU5jtSL4IaWvqEi+oiKV7thZ73uH/fYc9bqwdWynBQDtQd++fWvc/1zHdsD12bdvX731moPT6axxX1paariGw+EIXUcTzjXkiCOO0JYtWyRJy5YtI1wDAAAAAAAAmoPJYqno6nKlSX3CvxcMBuUrKqoI29y58uTlKalvPQPq4K0nEGvJs+NsqSmG3g/4fPrhb3+XzVnVEecMdcUl9OwhS7UfpgJAR3RoGLZnzx5D4/fv3x+6djqdSk9Pj8m6jDj0a6jqQDPC6/WGrptiy8bq/16+//77mNePBuEaAAAAAAAAUMlkMsmWnCxbcrISevaMqobZbpfzF8Mqt6TMk6+gQJJkSUgwHEjVF9QZZfTsOG9evtxfrKrzs1/MfVCJWb1isSwAaLOSkpLUs2dPbd++XZK0ceNGQ+M3b94cuj788MNjurZI9ejRQ3FxcSorK5OkUIeYEdXDtZSU8L/IsWvXLq1du1ZHHXWUOnfuHHF9e7WzRfPz8w2vrykQrgEAAAAAAAAxlDxwgIbceXvoPuD1ypuXL19xkeFakWwLGSnDXXP1zG10q8wDn/5P2//9Yuj8N3tatbPhqt1bEhM4Fw5AmzJ27Fg988wzkqR169ZFPM7v9+uHH36oUaclmM1mDRo0SGvWrJEkbdq0yXCN4uLi0HX37t3rfGfdunW6+OKLVVxcrIyMDC1ZskQulyui+kVFB//8rC+8a06EawAAAAAAAEATMttscmR0kiOjk+Gxzl8Mk9lmO3g2XF7FOXEBj8dwrVidHWeyWmVNTjZUq2zvPpXu2q3SXbvrfc9st8tWuf2kvTJ4s1W7tqelKa5bJltSAmg1Tj755FC4lpeXp82bN0d0dtqmTZtC3WImk0njxo1rymXWa9y4caFwbd26dSosLFRyhP+d9/l8yq32yxjDhw+v872//vWvoRBu//79WrJkiS6++OKI5qi+VWXPKLvKY41wDQAAAAAAAGilOo0+Tp1GH1fjWTAYlL+kpGLbSXeuvLl5lVtQVt3nhu79xSWhcca3haw7XLM5nYa7yyLtwAt4PCrfu0/le/eFfWfwHbOUNqLuH94CQHMbMWKEsrKytHXrVknS0qVLdc011zQ4btmyZaHr0aNHq0uXLk21xAadeuqpuv/++yVVhGWffPKJxo8fH9HYn3/+WcFgUJLUtWtX9ejRo873Dj0rrXq3W0Oqd/j96le/inhcUyJcAwAAAAAAANoQk8kka2KirImJSjjssHrf9ZeXV3S75ebJEhdnaB5Pbl6dz42GdFL4LrhoGJ2/YP332rzg8To64VzqNHpUzNYFoGMym8267rrrdN1110mSFi9erKuvvrrBX0J49913Q9fXXnttve8uXbpU8+bN0/79+zV69GjdcccdEW+pGIkePXro5JNP1nvvvSdJeuaZZyIO17777rvQ9e9+97uw76Wnp2vXrl2h+zFjxkRUf9euXaHg0uFw6KyzzopoXFMzt/QCAAAAAAAAADQNi8OhuC5dlJI90PDYpH591eXUU+Q6eqSS+veTPT1dJotFdpfTcC1vC54dV7Zvn0q2bVfe12u174OPtOs/r+mnJ5/S5kcfMzx3wOsNdWgAQJXTTjtNw4YNkyTt2LFDS5Ysqff9Tz/9VBs3bpQknXLKKRo6dGjYd7/66ivdcMMN2rJliwoLC/XOO+9o+vTpMf9v0Y033iibzSZJWrt2rT744IOIxq1cuVKSlJycrN/+9rdh3zv11FND171799bhhx8eUf2XX3459LVOnjxZmZmZEY1ranSuAQAAAAAAAKjFddSRch11ZI1nwUAgqvPeIt0WsiEmi0W2FGPnvXnDduA5Dc+/+dHHtf/jT2SvPBeu5nlwzor7yrPhbCkpMlkshucA0PaYTCbdf//9Ouecc1RYWKiHHnpIY8eOrfPcMq/Xqzlz5kiSMjIydMcdd9Rbe9myZQoEAjWerVq1Slu3blXv3r1j9jVkZWXpxhtv1D333CNJmjVrll5//XV17tw57Jh169bp+++/l8lk0rRp05Samhr23csvv1xLly6tsY1kQzZu3KinnnpKknTUUUdp+vTpBr6ipkW4BgAAAAAAACAiJrPZ8PaSktTrogtVvn9/xZlweXnyuCvOhPPm5slXVBRxHZszVSazsc24wgV7RjvgqmoFvV6V79uv8n3763/ZbJYtNbVmEFcZvNnT0pR21AiZK7tEALR9vXr10qOPPqqpU6dq9+7duuaaa/TYY4/J4XCE3gkEArrzzjv17bffKiUlRQsWLFCnTp2imu/QwC0WLr74Yh04cEBPPPGEcnJyNHnyZD3xxBM6rI4tiH/88UfNmzdPFotFl112Wb3dd5LkdDr15JNP6rLLLtPWrVv10EMPafr06TKH+W/66tWrNX36dHk8Ho0cOVLz5s0Ldda1BoRrAAAAAAAAAJpUp+PCn20W8Hjkyc2rDNtyQ8Fb6L7qs/yC6M57CxOuRVPL0PaWgYC8lV9DsX6q9fGoV14wNHfQ76cTDmjlRo4cqRdeeEE33HCDPvvsM5155pmaOnWq+vXrpx07dui5557T119/rf79+2vOnDnq379/gzXHjRunp59+ukaYNmDAAGVlZTXJ13DjjTdq2LBhuvPOO7VlyxadeeaZOv/88zVq1Cg5nU79/PPPeu+99/TGG28oMzNTl156qQYNGhRR7f79+2vRokW666679Oijj2rp0qU6++yzNXjwYHXq1EmFhYXavHmz3n//fX366adKSEjQFVdcoauvvrpVBWuSZAqySTBQi8fj0TfffFPr+RFHHCG73d4CK2pZXq9X69atq/Fs6NChre4/aAAAAGif+H4UACBVhEv+0jJZkxINjfvmtttV8O13tZ53P/s3ypr8B0O1Vl50qbz5+YbG1MWSmKhj//1PQ2O2Pf+Cdi95s0b3my0tTUn9+qrzCb9q9JoA1M/I96Q+n09LlizRW2+9pe+++04FBQVKTk7W4MGDNWHCBE2cOFFWa+S9T0uXLtXDDz+svXv3auTIkbr99tvr7CaLpdLSUn344Yd699139eOPP2r//v0qLS1Vp06dNGjQIGVnZ+vYY4+VpVrob+Tn5z/++KMWLVqk1atXa9u2bSoqKlJCQoLS0tI0cOBAHXvssRo/frzSovhFiOZA5xoAAAAAAACAVs9ksRgO1iSp+8QzlHbkiIotKXMPdsU56jlHqC5Bv1/eggLD89clqg48d64CZWUq271HZbv3hJ6njzrGcLhWsnOXLPHxsjtT6YYDmoDVatXZZ5+ts88+Oyb1xo8fr/Hjx8ekVqTi4+PDzhuuOcWIfv366Y9//GOjarQkwjUAAAAAAAAA7Zbr6JFyHT2y0XU8eXlSjDYBs7tityVlNGfHrZ99l8r37qs4Fy4lpaITzuWsOBeu6h9XWrV7p8wdcDcnAAiHcA0AAAAAAAAAGmBLSdHQv90T6nyr6ITLq3mfny9VOxcpbC2n0/D8sTo7LhgMypubV3ETCMiblydvXp6Kax8LV4MlMTEUulVsSelUQo/D1GXcSYbmB4D2gHANAAAAAAAAABpgttmUPHBAve9UbR15MHzLlacygPPm5srjrriO65xheP6w4ZrBLjh/cYkCHo/h+f3FxSotLlbpzp2hZ8kDBxgO18r375fZbpc1OVkms9nwOgCgNSBcAwAAAAAAAIAYMFksoW0V1Sd2dYN+v7z5dZ/3ZrRzLVxIF41otqTc+OBcFaz/XiaLRTans2L7SadTXcaNVfqxx8RsbQDQlAjXAAAAAAAAAKCVO+Lu2aGOuIOdcLlydOlsqE4swzV7mtPwGI+7Yv6g3y9PTo48OTmSJOcvhhmqE/D55P5iZeUWlRXbVVocDsPrAYBoEK4BAAAAAAAAQCtmsliUMnhQTGpVhVuxEM15b7E6O86bm6sf/vZAjWeWhATZ05yhsK2qi/DQe0tigkwmk6H5AKA6wjUAAAAAAAAA6CAyfnW80oYPO6QLLi90Xb0rrqGz2YxuC+kvLVWgvLzOz4yeHVdXSOgvKVFpSYlKd+2ud6zZbpctzRkK21zHHq3OJ4wxND+Ajo1wDQAAAAAAAAA6CJPZLFtqqmypqUrMygr7XjAYlL+kJBTCeXPzQuFbxX2u4rtnGpq7vq45o1tMNmZ7y4DHo/K9+1S+d58kKS6zq+Ea7tVfypaSUtEZ50yV2WaLej0A2h7CNQAAAAAAAABADSaTSdbERFkTE5Vw2GExqemtJxAz2gUX07PjDHbNBXw+ff+Xv9Z4Zk1Olt2Vpv7XXqOkvn1itjYArRPhGgAAAAAAAACgyaUMHqSjnno81PlW0QmXJ19RkSwOh6Fa3ty8mK3L8Hlvefm1nvkKC+UrLJTJauxH7iU7d8q9crXsVdtUuirOiLMmJXEuXCtjMpnUqVMnORwOmUwmBYNBmc3mll4WWgjhGgAAAAAAAACgyZksFjnS0+VIT290raDfL3NcnAJlZY2uFcuuOaNBXdHGTdr27HO1nptstlDgZnM6ZXdVnA9nqwzgqs6Ls6WmyGSxGJoT0bFarerVq1dLLwOtBOEaAAAAAAAAAKBN6fWH36vXH34vX0npwS44d8X/1rrPy5OvsChsLaPbQoY7O85ktcqanBSTWkGvV+X79qt83/76C5jNsqVWnP2WNfkPcv5imKH5AUSHcA0AAAAAAAAA0CZZE+JlTYhXfPdu9b4X8Horg7e8UOhWFcDZXS5Dc4Y7O86e5jS8laMnL8/Q+7UEAvLm5smbm6dgIGBs7txc7f/409B2lFWdcdaE+MatqZ0KeDwq3rpVJdt2yF9eJosjTgm9eigxK0tmu72ll4dmRrgGAAAAAAAAAGjXzDab4jp3Vlznzo2u5S8vl8lqVdDnq/Hc6PaSUvjOtWgY3ZKyZPsObX3qmVrPzXFxOub5Z2U2eH5ce1W4cZP2vLlUB1Z8pqDXW+tzk82mTseNUuaE8Uoe0L8FVoiWwP93AAAAAAAAAAAQoe4Tz1C3MyfIV1RUuQVlnjy5ubI44gzXCtcFF41YnR1nttkMB2v7PvpYhd9/X/tMuLQ02Z2pbfJcOH9pqX56+lntffe9et8Ler3av/xj7V/+sbqcerJ6XzJZlni6/9o7wjUAAAAAAAAAAAwwmUyyJSfLlpyshJ49o64Tl5kpX3GxPO5c+QoLo1+PxSJbSrKhMeG65oyeQSdJ+eu+0b73P6j7Q5NJtpQU2V2VYVtamuxpzpr3lYFca9lesTwnR9/dfqdKd+4yNG7vu++p4Lv1GjL7DjnS05todWgNCNcAAAAAAAAAAGgB/adPC10HvF5582qfCefNy6u8zqvolMvLkw45X83mTJXJbDY0d/iz46LY3rK+DrxgUN78fHnz86WfttZbx5KYqOEPz5GjU8sFU/7S0qiCtSqlO3fpuztma9j999LB1o4RrgEAAAAAAAAA0MLMNpscGRlyZGTU+17Q75e3sLAieKsM4RQMGp4vXCAWzdlxsdre0l9cbLgDL/erNcpd/WWtLjh7uku2lBTDa/jp6WejDtaqlO7Yqa3P/FN9r7y8UXXQehGuAQAAAAAAAADQRpgsFtmdTtmdTkm9o65jc6Ypvns3efLy5C8uCT23pzkN1wq3xaRRlsREw1tDFqz/XnveervW8+TsgRp6318N1SrcuKnBM9Yi9fM7/1Xnk8YqeUD/mNRD60K4BgAAAAAAAABAB9PnskskXSJJ8peXV3bB5cmWaqzbK+j3y1tQEJM1xXJLymhq7XlzqeEx9dZ7623CtXbK2CasAAAAAAAAAACgXbE4HIrr2lUpg7IV362bobEBj0ddTjlZrqNHKql/P9nT02WyWKJah90Vuy0pjdYKeDw6sOIzw/PX58D/Vijg8cS0JloHOtcAAAAAAAAAAEBULPHx6ndVzbPFgoGAfIWF8uTmyuOuOBfOm5sXuq64r/isevgUTbjmyc2r87nN6TRUp3jrVgW9XsPz1yfo9ap46za619ohwjUAAAAAAAAAABAzJrNZttRU2VJTlZiVFfa9YDAof0lJKISzJiUanivstpAGg7qSbTsMzx1Z3e2Ea+0Q4RoAAAAAAAAAAGh2JpNJ1sREWRMTlXDYYYbHB4NBuY46Sh53jjzuvIqOuPx8KRg0fOaav7zM8PyR1S1vkrpoWYRrAAAAAAAAAACgzTGZTOp39ZU1ngX9fnny8g13wVkccbFcWrW6jiapi5ZFuAYAAAAAAAAAANoFk8UiR7rL8LiEXj2aYDVSQq+eTVIXLcvc0gsAAAAAAAAAAABoSYlZWTLZbDGtabLZlJjVK6Y10ToQrgEAAAAAAAAAgA7NbLer03GjYlqz0+jjZLbbY1oTrQPhGgAAAAAAAAAA6PAyJ4yPbb3Tfx3Temg9CNcAAAAAAAAAAECHlzygv7qcenJManU97RQlD+gfk1pofQjXAAAAAAAAAAAAJPW+ZLLiD+veqBrxPQ5T1sUXxWhFaI0I1wAAAAAAAAAAACRZ4uM1ZPYdiu9xWFTj43scpiF33i5LfHyMV4bWhHANAAAAAAAAAACgkiM9XcPuv9fwFpFdTztFw+6/V4709CZaGVoLa0svAAAAAAAAAAAAoDWxxMer31VXqMu4k7Tnrbd14H8rFPR6a71nstnUafRxyjz915yx1oEQrgEAAAAAAAAAANQheUB/JQ/or37TrlDx1m0q2bZd/vJyWRwOJfTqqcSsXjLb7S29TDQzwjUAAAAAAAAAAIB6mO32UNAGcOYaAAAAAAAAAAAAECE61wAAAAAAAAAAAOrh8/m0a9cu2e12mc1mBQIBde7cWRaLpaWXhhZAuAYAAAAAAAAAAFCPYDCoAwcO1HjWqVMnwrUOim0hAQAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhAjXAAAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhAjXAAAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhAjXAAAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhKwtvQCgNQoGg3U+93q9zbyS1sHn89V65vV6w/57AgAAAGKJ70cBAADQ0vie9KBwPyfvSP8uTMGO9NUCESouLtaGDRtaehkAAAAAAAAAALQJ2dnZSkxMbOllNAu2hQQAAAAAAAAAAAAiRLgGAAAAAAAAAAAARIhwDQAAAAAAAAAAAIgQ4RoAAAAAAAAAAAAQIVMwGAy29CKA1iYQCKi0tLTWc6vVKpPJ1AIrAgAAAAAAAACg5QWDQfl8vlrP4+PjZTZ3jJ4uwjUAAAAAAAAAAAAgQh0jQgQAAAAAAAAAAABigHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAZA+fn5+s9//tPSywAAAAAAAAAAoNUjXAOgTz/9VLfeequuueYa5ebmtvRyAAAAgFr++c9/qri4uKWXAQAAgA6mqKhIS5culcfjaemloBUhXAOgd999V5L03//+V2eccYa++eabmNX2+/167LHHNGfOnJjVBAAAQMczZ84cnXDCCXrwwQe1f//+ll4OAAAAOoi4uDi9/vrrOvHEE7VgwQKVlJS09JLQCpiCwWCwpRcBoOUUFhZq9OjRKi8vlySdd955uuOOO2S1Whtd+5NPPtHf//53bdiwQZJ0991369xzz210XQAAAHQ8o0aNktvtliR17dpVb7zxhlJSUlp4VQAAAOgISkpKdN5552nTpk3q1q2bFi5cqD59+rT0stCC6FwDOri33347FKwdd9xxuvPOOxsVrHk8Hr355ps655xzdNlll4WCNUn685//rJUrVzZ6zQAAAOh4bDabJCk+Pl6PPfYYwRoAAACaTUJCgv7+97/LarVq9+7dmj59eksvCS2s8a0pANq0V155RZLkcDg0e/Zsmc3GM3efz6evvvpKS5cu1dtvv628vLwan7tcLmVnZ6tPnz7asGGDjj766FgsHQAAAB2I3W6XdPB7SwAAAKA5ZWdn6ze/+Y1effVVbdq0SUVFRUpKSoq6XmPHo2URrgEd2A8//KB169ZJkn7/+9+rR48etT4fOHBgnWNzcnL08ccfa/ny5fr0009VWFgoqeI3iocNG6ahQ4dq+PDhGjp0aK26AAAAgFEWi6WllwAAAIAO7uKLL9Z//vMfZWdnNyoYc7vdmjx5ssaOHavrr78+hitEcyFcAzqwl156SVJFW/OUKVNqfX7++efrjDPO0JVXXql9+/bpm2++Cf2zZcsWORwO9e3bV4cddpi+//57SdIHH3ygzp07N+vXAQAAgPYvmh0WAAAAAEnKy8tTIBBodJ309HTdcsstOuaYY0LnARtVUlKiq666Shs3btTGjRuVnJysyy67rNFrQ/MiXAM6qJKSEi1evFhSRYjmcrlqvWO1WvXSSy/ppZdeUrdu3TRw4EANGjRIJ554orKzs9WzZ0+ZzWa98sormjVrliR+oxgAAABNozHnAgMAAKBje//99zVr1qyYBGyxdv/99yspKUnnn39+Sy8FBvC3E6CDeu2111RUVCS73a5LLrmkznccDock6fLLL9eMGTPC1oqPjw9dt8Y/oAAAAIDi4mIlJCTIZDK19FIAAADQzM455xx17dpVRUVF6tevn1wulxITE0Pn+gJGsa8G0AEFAgE9++yzkqSJEyeG3cax6g+Xhn4AERcXF7r2+XwxWiUAAADam8WLF8vr9UY1trGh2G233aapU6cqLy+vUXUAAADQNo0ePVqnnnqq+vbtq7S0tFrBWrTbPNbl+++/pwmhnaNzDeiA3n//fW3btk2SdN5554V9z2azRVSveudatD8sAQAAQPv3+OOPa8GCBbrttts0ePBgQ2OrfjgRCAQM/+Dj008/1dtvvy1JOuusszR37lwNHTrUUA0AAAC0b1dddZXS09M1efJkHX300VHXWbRokf70pz/p5JNP1t/+9je649opwjWgA3riiSdC11dddZXuuOMOnXzyybXei/T8tOqda4RrAAAACMfhcOi7777T//3f/0VdY8+ePRo1alSjxq9bt45wDQAAADXYbDYtW7ZMy5Yti0m9t99+W36/X/PmzYtJPbQuhGtAB/PBBx9o7dq1oftgMKjevXvX+W6k4VpiYmLouqysrHELBAAAQLtVtTNCdna2Fi9ebGjsxIkTtWHDBnXv3l0ffPCBobFffPGFLrroIknSrbfeqgsvvNDQeAAAALR/DodDkpSZmalFixZFXeeBBx7Qq6++qm7duumPf/xjrJaHVoZwDehAgsGg5s6dK0lKSEhQSUmJ+vTpo379+tX5fqTnWhCuAQAAIBKtYUuccN/7AgAAoGOrOvrGbDbL5XJFXacqpOvevbt69OgRk7Wh9TG39AIANJ+33npLGzZs0MCBAzVhwoQG348mXCsvL496fQAAAGjfzGb+CgoAAIDWqSoUi5WqM4PRPvE3G6CDKC0t1d///nfZbDbdd999oS15YiEpKSl0XVJSEtFaAAAA0PFYrWyeAgAAgNYpGAzGtJ7f749pPbQuhGtAB7FgwQLt2bNHN998swYNGhTT2na7PbTFT1FRUYPrOPfcc5WTkxPTNQAAAKD1i3RnBAAAAKC5xXpHLq/XG9N6aF34tUGgA9i+fbueeuopnXbaafrDH/5geLzP51NxcXG97yQmJsrj8SgvLy/su//61780Z84cSdJFF12kf/7zn0pPTze8HgAAALRNhGsAAABorcrKyiRJu3bt0sCBAxtdj9272jfCNaCdCwaD+tOf/qR+/frp3nvvjarGk08+qSeffDKid++55x7dc889Db73448/ErABAAB0MIRrAAAAaK2qOtcyMzO1aNGiqOs88MADevXVVxvc4QttG+Ea0M699NJL2rJli1555RXFx8dHVWPq1Km6+uqr633n5ptv1ttvv60TTjhBDz/8cMS1OXcDAACg4yBcAwAAQGtVVlamww8/XJMmTZLL5Yq6TmZmpi644AJNmDAhhqtDa8NPtYF2bM+ePXrssce0cOFCde3aNeo6ZrNZDoej3nd69eolqWILyobeBQAAQMcU60PiAQAAAKPWrFmjX/ziF7V+8evhhx9WZmZmo+s31KTw5ptvKjs7W/369Wv0XGg55pZeAICmExcXp7lz52rAgAFNPlfPnj0lSTt27JDf72/y+QAAAND2EK4BAACgpc2dO1e///3v9cMPP9R4HotgrSEvvPCCbrzxRv3hD3/Qhg0bmnw+NB0614B2LC0tTWlpac0yV1Xnmtfr1U8//cRvXgAAAKCWQCDQ0ksAAABAB2e1WvXZZ5/pzDPPbLE1uN1uXXTRRXr99dfVrVu3FlsHoke4BiAmhgwZIqvVKp/Pp5UrVxKuAQAAoJaqHQ4CgYDcbrehsVXBXDRjCwsLQ9c+n8/QWAAAALQvVmtFLDJs2DAtWLCgWee+6qqrtGbNGsXFxenmm28mWGvDCNcAxER8fLyys7P17bff6osvvtCkSZNaekkAAABoZarCtY0bN2rUqFFR1dizZ0/UYyWptLQ06rEAAABo+ywWS+h/XS5Xs85ts9kkSYMHD9Y555zTrHMjtgjXAMTMiBEj9O233+rzzz+Xx+OR3W5v6SUBAACgFfF6vZKk7OxsLV682NDYiRMnasOGDerevbs++OADQ2O/+OILXXTRRZII1wAAADq6qs61cLZv3y6TyaQePXoYqvvZZ5/p7bff1uzZsxuzPLQR5pZeAID244QTTpAk5eXl6aOPPmrRtQAAAKD1qQrXohEMBmOyBsI1AACAjq2hcG3nzp06/fTT9cgjj+jAgQNyu90N/rN+/XpNnz5dL730kubNm9dMXwlaEp1rAGLmmGOOUVpamnJzc7Vo0SKdcsopLb0kAAAAtCJlZWXq3bu3pk+f3uxzp6en6+yzz9bYsWObfW4AAAC0Hg2Fa3a7XeXl5Zo3b15UQdkjjzyio446qlFbmaP1I1wDEDNWq1WnnHKKXnrpJS1fvlwbN27UgAEDWnpZAAAAaCWuv/56nXjiiaFzLprLEUccoeXLl4fOuAAAAEDH1dD3otWPunn11Vd1xBFHNFjT7XaHwrRLL72UYK0DYFtIADF1wQUXSJICgYAefPDBet9dunSpXn755eZYFgAAAFqBcePGRR2sNWZbyISEBII1AAAASIqsc60xxowZ06jxaBsI1wBELRAIaPHixZoyZYr8fr8kadCgQRo9erQk6cMPP9Qnn3wSdvy7776r3NzcZlkrAAAA2odYnb0GAACAjqmhcK2xv5QVCAQaNR5tA+EagKgsW7ZMEydO1Hvvvaf777+/xm8gX3755aHr2267Tfn5+bXG+/1+ffbZZ+rZs2ezrBcAAADtA+EaAAAAGsNsrj8WaWznWlUTAto3wjUAhqxYsUK//e1vdf311+v888/XI488IqfTWeOdY445Rqeccookae/evbrllltq/cbG2rVrlZ+fr+7duzfX0gEAANCGVX0/SbgGAACAxmgo/PL5fE1aH+1D/f2PANqtSNqTq7/z9ddf68EHH9QXX3yh7t2764UXXtDhhx8eduzMmTP1ySefqLS0VB988IHuu+8+zZw5M/R51XaRXbp0acRXAQAAgI6iKlQjXAMAAEBjNBR+eTye0HVRUZHcbneDNavv3FV9PNovwjWgg6r6Q6S+H07k5eVJkl5++WUtWLBAknT00UdrwoQJeuutt5SRkRE2HOvWrZtuu+02zZo1S5L0zDPPyGQy6eabb5bJZAqFa2lpabH6kgAAANCOVX3/yhkWAAAAaAyv11vv59XDsYsvvthw/dLSUsNj0PYQrgEdVFV7c7g25927d2vfvn2SFPrtjLPOOkt/+ctfFAgEdMkll+jkk0/WpEmTNG3aNCUnJ9eq8dvf/lZr1qzRf/7zH0nS008/rS1btujaa6/Vd999J6nxexgDAACgY6j6pTDCNQAAADSGkc61V199VUcccUSDNd1ut0aNGiVJKisra9wC0SZw5hrQQVWFauF+U8NkMtU4S+2SSy7RvffeK5vNJofDofnz5ysjI0NPP/20fv3rX2v16tV11rnzzjv161//OnS/fPlynXvuuaEfilRvmQYAAADCqfr+kTMsAAAA0BgNnalWFa6lpaXV+PloJPr27av+/ftHuzS0IYRrQAdVFaqVl5fX+XlmZqYefPBBmc1mXXTRRbrllltqfO50OvWPf/xDdrtd+/fv15QpU7Rt27ZadWw2mx544AFddtllslgskmr+tvHu3btj9SUBAACgHWNbSAAAAMRCQ+Gaw+HQjBkz9P7776tHjx4R1YyPj9dTTz2lpUuXasSIEWHf4/zg9oNwDeigqv4Qqa9NefTo0VqwYIFmzpxZ5+fZ2dm65pprJEklJSV644036nzPYrHopptu0iuvvKLjjz++xmdr1qyJZvkAAADoYKrCtYZ+GAIAAADUp6GdEEaMGKHLL79ciYmJEdeMj4/X6NGjJUnr1q3TY489piVLlmj16tXauXOnPB6PiouLtXXrVkkVDQlo2zhzDeigqjrXSkpK6n1vzJgx9X5+ySWX6MUXX9SuXbvUpUuXet8dMmSIFi5cqA0bNujf//633n33XW3ZssXYwgEAANAhNbStOQAAABCJpv5lrZ49e2rz5s1677339NFHH8nj8chkMslisYTmTktLa9I1oOnRuQZ0UB6PR8cff7zmzJnTqDo2m01XXnmlnE6nTjvttIjGZGdna/bs2friiy902223NWp+AAAAdAxVoZrX66V7DQAAAFFr6u8lnU6nzjrrLM2bN0/Lly/X1KlTZbVaa8w7fPjwJl0Dmp4pyCafQIe0d+/eBjvNIhUMBrV9+3b16tUrJvUAAACAQ/3iF79Qz549NWPGDJ1wwgktvRwAAAC0URdffLH8fr+uu+46HXnkkc0y5+rVqzVlyhSVlJTosMMO06uvvkr3WhtHuAYAAAAAaPXeeOMNnX766TKb2YAFAAAA0du+fbt69uzZ7PP+61//0vbt23XVVVfJ6XQ2+/yILcI1AAAAAAAAAAAAIEL8yh8AAAAAAAAAAAAQIcI1AAAAAAAAAAAAIEKEawAAAAAAAAAAAECECNcAAAAAAAAAAACACBGuAQAAAAAAAAAAABEiXAMAAAAAAAAAAAAiRLgGAAAAAAAAAAAARIhwDQAAAAAAAAAAAIgQ4RoAAAAAAAAAAAAQIcI1AAAAAAAAAAAAIEKEawAAAAAAAAAAAECECNcAAAAAAAAAAACACBGuAQAAAAAAAAAAABEiXAMAAAAAAAAAAAAiRLgGAAAAAAAAAAAARIhwDQAAAAAAAAAAAIgQ4RoAAAAAoNFKS0tbegkAAAAA0CwI1wAAAAAAjTZ27Fjde++92r59e0svpcUEg0E98cQTysvLa+mlAAAAAGhCpmAwGGzpRQAAAAAA2rbhw4erpKREJpNJv/zlL3XhhRdqzJgxLb2sZhMMBnXnnXfqhRde0ODBg/X000/L6XS29LIAAAAANAE61wAAAAAAjWa32yVVhEyfffaZdu7c2cIraj7VgzVJWr9+vS655BI62AAAAIB2is41AAAAAECjHX/88dq/f78k6fHHH2/2rrVnnnlG99xzT7PO2ZBBgwbpmWeeoYMNAAAAaGesLb0AAAAAAEDb53A4QtcDBw5s9vkvvvhi2e12ffPNNzr88MPVs2dPJScnKykpSSaTKaIaTz75pBYtWiRJmjFjhsaNG9eUSwYAAADQRhGuAQAAAAAarWpbSEkRh1mxNmnSpEaNr95hlpGRob59+zZyRQAAAADaI85cAwAAAAA0WvVwrbi4uAVX0rxKS0v16KOPKhAItPRSAAAAADQTwjUAAAAAQKNZLJbQdUFBQQuuRPrhhx903333yePxNPlc7777rh566CFdeumlysnJafL5AAAAALQ8wjUAAAAAQEzt2rXL8JiioiJNnz5dRUVFjZ6/X79++vLLL/W73/1O27Zta3S9+lSd0fbZZ5/pN7/5jVavXt2k8wEAAABoeYRrAAAAAICY2rx5s+Exd911l959911deeWVKisra9T8FotF9913n7Zs2aKzzz5by5Yta1S9cH766SetXLkydJ+Xl6fly5c3S8ccAAAAgJZDuAYAAAAAiCmj3VsvvviiXnvtNUnSypUrNX36dHm93katoXfv3rriiitUVFSkq6++Wo888kij6tXlscceUzAYlCR16tRJr7zyim644YYa588BAAAAaH8I1wAAAAAAMbVmzZqIt3dcsWKF/vKXv9R4tmfPHq1YsaLR6/i///s/ZWVlKRgMat68eZo5c6b8fn+j60rSjh079MYbb0iSUlJS9M9//lPZ2dkxqQ0AAACgdSNcAwAAAABE7KuvvmrwHZfLpffee6/B99atW6dp06bJ5/NJkoYPH67nn39eb7zxhsaMGdPotdrtds2YMSN0v2jRIt11112NritJCxYskM/nk8Vi0UMPPaS+ffvGpC4AAACA1o9wDQAAAAAQkS+//FJ/+MMfdNNNN9W7beOvfvUrLVq0qN5a3377rS677DKVlJQoISFBt99+u1544QUdddRRMV3zKaecogEDBoTuX3jhBX333XeNqrl+/frQ13f77bdr9OjRjaoHAAAAoG2xtvQCAAAAAADNLy8vTzk5ORG/7/F4NGPGDPl8Pi1ZskQHDhzQvHnzlJSUVOvdMWPG6OWXX9ZPP/2k3r171/r866+/1tSpU5Wfn6/hw4frvvvuU69evRr19YRjMpl04YUX6vbbb5ckBYNBvfTSS5o9e3bUNWfPnq1AIKApU6bo/PPPj9VSAQAAALQRhGsAAAAA0EHddNNNUXdxrVixQrfccoseeeSRWp9lZ2erc+fOev755zVr1qwan/3vf//T1VdfLa/XqxkzZuiyyy7nak0HAAAKEUlEQVSTxWKJag2RGj9+vO6++26Vl5dLkrZu3Rp1rcWLF2vNmjUaP368brjhhhitEAAAAEBbQrgGAAAAAB2Q0+nU008/rWeeeUb9+vVTdna2nE6nkpOTZbfba72/adMmTZgwIXQ/e/ZsnXPOOWHrjxkzRq+99pquu+66UHfb66+/rlmzZikrK0v333+/Bg0aFPsvrA7JyckaNWqUPvroI0lSv379oqpz4MAB3XPPPTrmmGN03333yWQyxXCVAAAAANoKzlwDAAAAgA4qNTVV1157rU4//XT17dtX6enpdQZrkvTpp5+GrgcPHqzf/e53slrD/77maaedpqKiIr344ouSpEceeUQzZ87UpEmT9J///KfZgrUqVUFgQkKCJk+eHFWNWbNmqX///nrsscfC/nuqzufzRTUPAAAAgNaNzjUAAAAAQIOqh2vjxo1r8P1Ro0YpIyNDzz77rNavX6/Vq1dr4cKFOu6445pymWGdcsopuvLKKzV27Nioznd79dVXVVBQoCeffFLx8fENvr9582ZdccUVuueee3TUUUdFs2QAAAAArRSdawAAAACAepWXl2v16tWh+0jCNYvFotNPP1379u3TgQMHtGTJkhYL1qpcd911Gjp0aFRjfT6fHn/8cSUkJDT47tatW3XxxRdr+/btmjJlSo1/dwAAAADaPjrXAAAAAAD1+vjjj1VWViZJ6tmzpwYOHBjRuDPPPFPPPPOMDhw4oOTk5Jitx+PxaMeOHTGrVyUvLy90vX//fm3evDl0P3LkSO3du1d79+6tt0ZhYaGuvfZa7du3T5JUUlKiKVOmaOHChRoxYkTM1wwAAACg+RGuAQAAAADqtXTp0tD1xIkTIx43ZMgQZWdna8OGDXrppZc0adKkmKzHbrfrhRde0HPPPReTenV58MEH9eCDD8akVklJiS677DItXLhQw4cPj0lNAAAAAC2HcA0AAAAAEFZpaak++ugjSRVbPZ577rmGxk+ePFkzZ87UI488ojPPPFNJSUkxWdesWbPUo0cPORwODR48WF26dFFycnJE2zaGc9999+mpp56SJN1zzz06++yzY7JWAAAAAO0LZ64BAAAAAMJ67733VFJSIkk6/vjj1bVrV0PjJ0yYoIyMDOXk5Ogf//hHTNc2efJknX/++Ro6dKi6dOnSqGANAAAAACJFuAYAAAAACOvf//536Pq8884zPN5ut+uCCy6QJD377LP69ttvY7Y2AAAAAGgJhGsAAAAAgDpt2LBBa9askST16dNHY8eOjarOBRdcoMTERPn9fs2aNUs+ny+WywQAAACAZkW4BgAAAACo0/PPPx+6vvzyy2U2R/dXSJfLpUsvvVSS9P3332vBggUxWR8AAAAAtATCNQAAAABALXv37tXrr78uSerevbsmTJjQqHqXXnqpMjIyJEnz58/XqlWrGrtEAAAAAGgRhGsAAAAAgFoef/xxeTweSdLVV18tq9XaqHoJCQmaNm2aJMnv9+uGG26Q2+1u9DoBAAAAoLkRrgEAAAAAati3b59eeeUVSdLQoUN11llnxaTub3/7Ww0ZMkRSRWfctddeGwrwAAAAAKCtIFwDAAAAANQwZ84clZeXy2Qy6U9/+pNMJlNM6lqtVv31r3+VzWaTJK1cuVK33HKLgsFgTOoDAAAAQHMgXAMAAAAAhKxbt06vvfaaJOncc8/V0KFDY1o/OztbU6ZMCd2/9dZbuvvuu2M6BwAAAAA0JcI1AAAAAIAkKRgM6q677lIwGFTPnj01c+bMJpnnyiuv1ODBg0P3zz33nP70pz8pEAg0yXwAAAAAEEuEawAAAAAASRUh19q1a2W1WvXAAw8oMTGxSeax2+165JFHlJaWFnr28ssv6/rrr1dJSUmTzAkAAAAAsUK4BgAAAADQli1b9MADD0iSrr/++phvB3mo7t27a86cObJaraFn77zzjs4991xt2rSpSecOp3rnHOfAAQAAAAiHcA0AAAAAOjifz6ebb75ZZWVlOu+883TZZZc1y7yjRo3SrbfeWuPZ5s2bde6552rBggXyeDzNso4q1QM1r9fbrHMDAAAAaDsI1wAAAACgg7v33nu1bt06/fKXv9Qdd9zRrHP//ve/1w033FDjWVlZmebMmaPTTjtNixYtUnl5ebOspXrnGuEaAAAAgHAI1wAAAACgA3v99df13HPP6ZhjjtHcuXNrbNPYXKZOnaprr7221vNdu3Zp5syZ+uUvf6lXXnmlydfh8/lC14RrAAAAAMJp/r81AQAAAABahbVr1+r222/X2LFjNXfuXNnt9qhrVe/6isZVV12l+Ph4/e1vfwvVio+P10knnaQRI0boiCOOaFT9SNC5BgAAACAShGsAAAAA0AFt2rRJU6dO1RlnnKE777yzUR1rPp9Pe/bsCd2bzdFtknLJJZeoT58+uuGGG5SZmakFCxaoe/fuUa/LqOqBGuEaAAAAgHAI1wAAAACgg9m5c6emTZumP/7xjzrnnHMiGrN06VJt3bpVLpdLqampSk1NVWJiokwmk5YsWaK8vLzQu3FxcVGvbcyYMXrppZfk9XqbNViTJI/HE7omXAMAAAAQDuEaAAAAAHQwxcXFeuSRRzRgwICIx/Tt21c//PCDnn32WW3ZsiXse2lpaXK5XI1aX9++fRs1PlrVA7XqQRsAAAAAVEe4BgAAAAAdzMCBA6MaM3DgQF1//fVavXq1Hn74YX3xxRe13pswYUIsltgiqgdqjT1DDgAAAED7ZQoGg8GWXgQAAAAAoO2ZP3++5s6dG7rv1auXXn75ZTmdzpZbVCNceumlKi0t1aRJk3TqqafKbre39JIAAAAAtEKEawAAAACAqE2aNElffvmlxo4dq9mzZysjI6OllxS1/fv3t+n1AwAAAGgehGsAAAAAgKitWrVKaWlp6tevX0svBQAAAACaBeEaAAAAAAAAAAAAECFzSy8AAAAAAAAAAAAAaCsI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACL0/1z9wjsC2ZRkAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_name = '额外产能分布参数P6'\n",
+ "y_choose = [0, 1, 2, 3]\n",
+ "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n",
+ " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n",
+ " 'palette': sns.color_palette(\"deep\")[0:4]})\n",
+ "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n",
+ ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n",
+ "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n",
+ "sns.set_theme(style=\"whitegrid\", rc=config)\n",
+ "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n",
+ " markers=['o'],\n",
+ " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n",
+ " palette=y_prop.loc[y_choose]['palette'].to_list(),\n",
+ " legend='brief')\n",
+ "ax.set_title(x_name)\n",
+ "for item in df_x.groupby('响应变量'):\n",
+ " for x, y, m in item[1][['水平', '均值', '均值']].values:\n",
+ " ax.text(x, y+0.05, f'{m:.2f}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAVjCAYAAAAowfCGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzddXhTZxsG8Dtt2lL30gKFUqzA0CHDPhyG+2BIoWjR4TIYUpzhZTAcynDXMdzd3d2q1C1p8v3R9SwhSRurUO7fde3i5Mh73oS2o7nzPK9ILpfLQURERERERERERERERES5lkl2T4CIiIiIiIiIiIiIiIiIMhdDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIi0kFiYiKuXbuW3dMgIiIiIiLSCUNBIiIiIiLKNvv374dUKk33nHfv3uHz589ajRcTEwO5XG6MqWWKtWvXYuPGjRk+5+xirNfu/v37RhknJ4mNjcWRI0cwatQoVKtWDV26dMG+ffuMeo9jx45h+/btBn19vH79GlOnTkV4eLgRZ5Z1rl+/jtevX2f3NLBnzx5Mnz79q30d9SGTydCjRw+sWLECUVFR2T0dIiIiIsoEDAWJiIiIiL4iMpkM3bt3x/Hjx7N7KgYLDQ3F6NGj0blzZ7x9+1bjeQ8fPkT9+vUxf/58REREpDvmpUuX0LJlSxw+fDhHhoMVKlTA1KlT0bJlS1y9ejW7p6Pk9evXaNu2La5cuWLQOLGxsejYsSPGjRuH6OhoI80u68XHx+PixYtYsmQJunXrhqpVq2Lw4MHYt28f4uPjAQATJ07Eo0ePjHbPyMhITJgwAc2aNcPBgwf1+hq+cOEC/vrrLzRo0ABLlixBXFyc0eaXFa5fv45GjRqhW7du2LNnDxISEpSOz5s3D7NmzUJsbGymzyUoKAgNGjTAwoULERMTk+n3y24mJiYYNmwYlixZgnr16mHJkiVITk7O7mkRERERkRExFCQiIiIi+oqYmJigefPmGDBgAIYMGZJhSGYsycnJmD17tlEDkL///hsymQy3b99G69atsXfvXrXnWVpaIi4uDsuXL0f9+vWxYsUKjWPa2NjgyZMn+OWXX9CyZUscO3bMaPM1hvLly6NVq1Z4/vw5unXrhmnTpkEikWT3tAAAhQoVQps2bdCtWzeMGjVK76+tM2fOQCKRYNeuXWjWrBlOnTpl3IlmgujoaFy7dg1//fUXfv31V7Rp0waVK1dGjx49EBgYiCtXrqit3ktISMCgQYOMVlWVJ08eAMCrV68wfPhwDBo0SOcxLl68CCA11AwMDESjRo1w/fp1o8wvK7i5uQEArly5gjFjxqBmzZq4d++ecLxVq1bYunUrfvzxRxw6dCjT5mFmZgYg9XXcvn07Hj9+nGn3ykhKSkqW3atcuXIYPHgwYmNjERgYiI4dOyIyMjLL7k9EREREmUuc3RMgIiIiIiLdtG/fHps3b8Y///yDe/fuYf369fD09MyUe8lkMhw5cgQLFizAq1evsHfvXvz111/w9vY2eGzFN/Tj4+Nx9OhR1KxZE87OzkrnWVpaCtvOzs5o0KCBxjGtra2F7ejoaDg6Oho8T2MbMmQIDh48CIlEgg0bNkAikWDKlCnZPS0AgK+vL96+fYugoCCcP38eM2bMQJ06dXQa48iRI8J2SEgI+vXrh1GjRqF3795Gnq1uIiIi8OHDB7x79w5v377F27dv8fLlS7x8+RKhoaFqrzE3N4e7uzvy5cuHvHnzIm/evHB2doaDgwNsbGxgbm4OuVyOqKgo2NvbGzxHsfi/X9FLlSqFgIAAna6Xy+VKlZ4uLi4YP348vv/+e4PnllW+/P7v0KEDvvvuO+Fx0aJFERAQgJEjR2LYsGE4dOgQpk6davTv9bRQEADWrFmDEiVKqJzz7NkzODo6qsxZ0ebNm1G3bl24u7vrNY/169fjxIkT+PPPP5V+FmYmPz8/7Nq1Cy9evMCDBw8wbdo0zJ07N0vuTURERESZi6EgEREREdFXRiQSYdCgQejfvz/ev3+PkSNHYuvWrTqNERMTA1tbW43Hg4ODsX//fmzduhVv3rwR9oeHh8PPzw8bN25EgQIF9H4OHz58wK1bt4THEyZMQJcuXdSea2FhIWwPGDAg3UDS3Nxc2P7ll19yZBiSP39+NGnSRFiPbufOnfj111+VnmdGpFKpUoBkTKNHj8bt27dx+/Zt+Pv7Y+DAgRg8eLBW18bHxytVBlasWBG//PILfvjhh0yZKwDExcUhIiICoaGhCAsLQ2hoKEJCQhAcHIzg4GB8/PgRwcHBQstPRSYmJihZsiTKly8PDw8P5MuXT+lPFxcXiESiTJv7lxSDqHr16qUbNqnz6NEjpfU3hw8fjqZNmxptflnB1dVV6fFPP/2kck6LFi1w4sQJHDp0CEePHsWDBw+wYsUKFC1a1GjzUPz+UvywgaLbt29j2rRp6NWrF5o0aaJy/J9//sGiRYuwZs0abNiwAe7u7ggJCdG6Fenp06cxe/ZsAEC/fv2wfPnyLAkGxWIxunbtKoTSFy5c0HusO3fuoFixYlkWaBIRERFR+hgKEhERERF9herUqQM3NzeEhITg1q1bePXqFby8vJTOSUxMxJMnT1C2bFmV60ePHo3vvvsOffv2FYKIp0+f4syZMzh+/Dhu3rwJmUwmnG9qagoXFxe4ubnB0tIS69atw6+//goTE/1WJNi9e7ewXlr+/PnVvvGfRpfwK7OCMmNr166dEAqamprC1NRU62tjYmLQu3dvtGrVCp07dzb63MzMzDBr1iy0bNkSEokES5YsQWxsLMaNG5fhtUeOHBHWgHNycsIff/wBJycno88xTZs2bZCYmAgzMzNYWFggT548sLKygrW1NaytrVGiRAl8//33sLW1ha2tLezs7IT/bt68icmTJ8PMzAw//fQT/ve//2XaPLVl6NdvWutQIDVca9GihaFTynIuLi5KjzWtaTdx4kScO3cO0dHReP/+PXr16oWDBw/CxsbGKPPQ5u/CzMxMaNMaGBio8bw3b96ga9eu2LlzJ2JjY9GjRw+EhIToNJ/Lly+jb9++WL58OaysrHS6Vh/NmzfH1KlTIZfL0bx5c73GOHbsGIYPH45KlSrhzz//VPrQBhERERFlj6/jN2YiIiIiIlJiYmKC+vXrY/PmzXBzc0P+/PmVjicmJmLAgAG4fv06li5diho1aigdl8vlWLx4MQ4fPoyiRYvi6tWrCA0NhbOzM4oUKYIOHTrA29sb3t7eKFy4MDw8PIwWuMnlcuzatUt4PHDgQKUKqS/pEphlZlXXiRMnEB0djdatWxs8VqVKlWBtbY24uDi0a9dO69c2JiYGvXr1Eir55HK5xgpLQ3h7e8PPz09Yv3HdunX4/vvv0ahRo3Sv2717t7A9ceLETA0Ev7yfLj5+/IiFCxcCAG7duoU+ffqgfPny+O2335RaVWY1Xb7W1fnnn3+EbV9f368yhHF0dISJiYnwoQRNoaCjoyP69euH33//HQDw6dMnXLhwIcOvUW2l9zMpjeLre/z4cZXq6bFjx2L37t0oVqwYJk2aBHt7e9jb22Pz5s349OkTSpcuLVTQRUVFoUqVKgBSP7TRq1cvnecsl8vx8uVL4QMXhvLw8IC1tTXatGmD58+f63Tt1atXERAQgJSUFJw/fx7Dhg3DokWLvpoPbhARERHlVvzXGBERERFRDvPixQut3tRNC1x69Oih1OITAKZPn47z588DSG25+WUwmPaG95MnT+Dn5wdfX18UKVIEdnZ2xnoaGl26dAnv3r0DABQuXDjDkE3fakRjS0hIwJgxY3D48GFMmTIFefPm1XsssViMHj164OPHjxg9erRW1ygGgkBqADB16lQAyJRgsHfv3ti4cSPi4uIAABs2bEg3cHnx4gUuXboEAGjWrJnadoo5QUxMDPr27YvIyEgAqX8XLVq0QI8ePeDj45OtczMkFHzz5o3QktfGxgadOnUy0qyylqmpKRwdHREeHg4Aatu+punQoQMWL16MpKQkAKkhlrFo83NHm+AQSK3srly5svC4QIECKgFiWoUtAL2rHUUiEc6cOYOZM2fqdb0mxvggxLFjxzB27FjMmTNH7Ws7ZMgQpVA7I1ZWVrC1tUW+fPlQrlw51KlTB9WqVdP6+tGjR2Pv3r1an6/J1atXs+T/m0RERETGwlCQiIiIiCiHuXDhghD2aGPOnDmYM2eOxuNpVYOKwaDim9lt27bVf7J62Llzp7A9ePBgg6ujskraa3by5EmcPHnSaOMqVk3qSi6XC+t+GTsYtLe3R8eOHbFmzRoAyHAdtE2bNgEA8ubNi0mTJhl1LsaS9r3w5MkTAEC5cuUwbdo0FC9ePJtnlsqQADytHS2Q+rWgT1CRnJyMqVOnwt/fX6X6OCs5OzsLoaDiGolfsre3R506dfDPP/+gcePGKFOmDIDUNqpSqRS1atXSew7a/FwyZtWbMUJBIPVDIq6uroiOjkapUqXg7u4utNPVtpJ64sSJ2L59O4YNG4a+ffvqPRddjBs3Dv3798edO3cwZcoUpKSkAAC8vLzw66+/KgW+iYmJiI6OxrNnz3DlyhX89ddfWLduHYoUKYKJEydqtYbps2fPDJ6zs7Mz8uTJY/A4RERERFmJoSARERERUQ7TtWtXODg4ICoqCqVKlYKlpSUKFCig1Zu6kydPRmJiIsaOHQsHBweN52VXEBcWFobDhw8DAEqUKIGmTZtmyzz0oRiktm7dOsveLNdGZrVN7dSpE9auXQu5XJ5uFU58fDz27NkDExMTzJ49G/b29pkyH0PExsaiX79+uHbtGkxMTDBo0CD0799f6yAuKSkJ7969Q5EiRTJtjunNJS4uDi9fvtTY3nT//v0AAEtLS/To0UPne8vlcowbNw4HDhzAmTNnsGbNGp2e64cPH3Dy5El06NDB4LalLi4uQnCbXigIpAZYzZs3R4MGDQCkBoL9+/dHSkoK/vjjD73XitTme0rf5ymRSLBixQr06tVLCJWMFQoCqZW6+rpz5w527NgBmUyGefPm4dGjR5g+fbrQ5jSzeHh4wMPDAyVLlsSOHTtw584dAKltcGvXrq32mpo1a6JHjx54//49xo4diytXrsDPzw/Dhw9Hnz59NN5LJpOptEMViUSwtbXV6udBXFwcJBIJRo8e/VW26CUiIqJvG0NBIiIiIqIcqHnz5gBSg4hGjRqhY8eO6NevX4Zh3tWrV/Hs2TOcPXsWEyZM0NjCMbvWddqyZQskEgkA4JdffsnUNQDVCQ4ORkJCAry8vHS+VjEUdHBwyNRwKKcoVKgQfvzxR5w+fTrdoGnTpk2IiYmBv7+/Vi38EhISMGXKFAwaNEiljWJm+PTpEwYMGID79+/DyckJ8+bNQ/Xq1bW+Xi6XY+zYsTh16hTmz5+PunXrZso8NX0/xMXFoU+fPnj48CFWrlyJSpUqKR2/e/cuXr16BSA1cNKndatcLkdUVBSA1NerS5cuWL16NUqXLq319QEBAVixYgX69u1rUDjo7OwsbGcUCrq4uAhtbdMCwbSAbeDAgViyZInGUCk96v4u1qxZgw8fPmDChAkA9K/sfPHiBRYvXoydO3dizJgxaNy4sVKbVENDQX0lJiZi3LhxQpVely5d0LRpU72e57p16/Dzzz/DwsJC52sVq++0CSPz58+P1atXw9fXFzdv3sTcuXPh5OSEdu3aqT3/3bt3SExMBAB4enpixIgRqFOnjlb3ioyMRKNGjVCsWDGjtFUlIiIiymoMBYmIiIiIcjALCwsMGTIEv/76K86fP49FixbBxcVF7bkfP34UWqKFh4fjxo0bqFevnto3ZbMjFExOTsaWLVsApLZtrF+/fpbePzg4GL6+voiPj0dQUBAKFy6s0/WKoWBWh5nZKSAgAI8ePdK4hmJcXBxWrVqFKlWqYMiQIRmOl5CQAH9/f1y6dAlXrlxBUFBQpgaDN27cwJAhQxAaGopKlSph/vz5Oq0HKZPJMH78eBw6dAhA6hqdY8aM0asaLzY2FsHBwRqPf/jwQdj+/Pkznj9/DplMhkmTJuH69esAgD59+qgEg1u3bgWQ2k5z/vz5Wq9196Xu3bsL65k6OztrtbZpmrRA5dOnTwgICBDa2hpq8eLFWLx4sV7XJicnY9CgQRqDQalUqjF0jI6OFrYjIiKwf/9+LFy4EEBq8Dp58mStK66/fB3TqiDfv38vBHBpa3cCgK2trVbjapKUlISRI0eifv36+PHHH7VucTl9+nQ8e/YMpqammDhxotp1Ke/fv49169ZhxowZGr/Ozp49i5kzZ+LEiRNYtmwZrK2tDXo+2jA3N8fkyZPRqlUrAMDMmTNRp04dpYA5zdOnTwEABQsWxNatW4X1ebWxdOlSxMbGYuLEicaZOBEREVEWYyhIRERERJTDtW3bFkFBQbh27Rp++uknbNiwQe16X4rr3E2ePFntG7ppsiMU3LdvH0JDQwEAw4YNUzr2+fNnREREqL3u3bt3wnZoaKhK2zdtzk1ISMCIESOEaqpu3bohKCgI3t7eWs//aw8FQ0JCMlwXUBNnZ2eNr/uePXuQlJSEwYMHC6+vJnK5HFOnTsWlS5cApIYivr6+mRIMSqVSLFu2DH/++Sfkcjn8/f0xePBgnb724+PjMWrUKBw7dkzYJ5PJ8Mcff8DR0VEIILRlamqKgIAA4fmnZ+PGjdi4caPaOfXp0wcrVqxA5cqVERwcjD179gAAhg8fjpo1a+o0pzRSqVQIr6ysrLB7926dKv2+DJ7Wrl2rU/iq6PTp05g9ezYAoGXLlvD399drnDSanodIJMLcuXOF10+TDh06KD1Oq3jWdj3WL0PBR48eAQDKli0rtFA2ZihoYWGBMmXKYMyYMZgxYwY6duyInj17wtHRUeM1u3btwrZt22BlZYWFCxeqDVFlMhmmT5+O69evIywsDIGBgSpVjQkJCZg2bRoA4PLly+jVqxdWrlxp8HPSho+PD8qVK4fbt28jJiYGW7duxYABA1TOS/vwzLRp03QKBF+/fo1NmzahTZs2KFGihNHmTURERJSVGAoSEREREeVwIpEIQ4cOhb+/P96/f4/Bgwdjx44dKi3djh49CiA18EovEAT0b3unL6lUij///BNAapXgly0m5XI5hg4dKlTQaDJ//nzMnz9fq3umd25oaKgQRmkbDGb1a2ZssbGx6NGjB0JCQjJl/G7duul1XVowuH79enh6ehplLpcuXcKsWbPw8OFDeHl5YebMmahYsaJOY7x8+RK//PILHj9+DCD1+7Bhw4b4+eefUbVqVb3W5bS0tMTy5ctx8eJFlC1bVqWKac+ePRgzZgwAYNCgQRg8eHCGY65btw4SiQTlypXDTz/9pPOc0iQnJwvbFhYWOrf+/LJqzNvbG+7u7nrNRfFrNDk5OdNa9ZqammLWrFmoV68eChcurPRhi+XLl2P58uUAgIMHD8LDw0Pl+rSvjYxoCgUVW9gaMxQEgL59+yIiIgJr167FihUrsG3bNsyaNUtt69srV65g4sSJcHd3x/Lly+Hj46N2zDVr1ggVqxcuXECPHj2wceNGpWr0GTNmCB8OcHV1RZkyZRASEpIloSAAVKhQAbdv3wYAnDp1Sm0o+OTJE5QpUwZVq1bVaey5c+dCLBZrVRFNRERElFMxFCQiIiIi+grUqVMHXl5eePXqFe7fv49bt24phRyhoaG4dOkSihcvjtGjR2c4XlYHXPv27cPbt28BALdv30bPnj0xaNAg4Tk4OTlh/fr12LBhA4oVK4YSJUrAwcEBtra2ePv2rVBNM3PmzHSrc54/f671ubpSfM30qRS8ePEigoOD9V6HKjY2FmPGjMGvv/6qtlI0I97e3tiwYQP++ecf+Pj4wNvbG7a2trC1tdUp4OratSuuXr0KAJg3b56w/mV2Cw4OxqVLl7Bjxw5cuXIFNjY2+OWXX9C7d2+lgCslJQUJCQlITExEQkICkpKSlB4nJibi7du3WLJkibDOW40aNTB69GiNYYku8uTJo3FNQm0qCBVFRUVh69atMDMzQ0BAgEHf12lrfQKaK+vS82UoaEg1squrq7CdVl2cWUQiERo3bqyyX/EDCnny5FHbAlPx9U6vHfKXoeCDBw8ApFYKpkmr4jU1NTVau83Ro0fj9evXOHHiBCIjIzF48GDs2rULxYsXF865du0aBg4ciJIlS+KPP/6Am5ub2rEuXryo9CGLH374AdOmTVMKBA8dOoRt27YBABo0aICZM2fCzs7OKM9FW4rh7Zs3b9Se8+zZMzRr1kyncW/evIkjR47A399f7wpYIiIiopyAoSARERER0VdAJBKhdevWwppWX75pfPDgQZiYmGD27NlavaGflaGgRCLBsmXLlPbdvXtXZS0vJycn/PLLL1k2L10pvmZfvn7x8fGwsrJK93pHR0f0798fZcqU0avy6e7duzh27BjOnz8Pf39/9OzZU+fwxsvLC/369dP53orS1kADoNI6MLtERUWhadOmiI2NFfa5uLjg77//xu7du5GYmCiEforhlyIbGxuIxWJERkYK+woUKICxY8eiYcOGmf0UAKQGL7rYuHEj4uLiMGLECIMDS8VKQX3XJFRkyBiKwdSnT58Mnos+0oI7ba1bt04lUJs/fz6OHTsGmUwm7Hv//r3QKrlcuXLC/rQ1DG1tbY3Wnjjt/wmtW7fG+/fvIZFIcOHCBRQvXhzPnz/HgQMHsGrVKjRv3hyTJk2CmZkZkpOTIZFIkJSUhKSkJCQmJuLdu3cYOnQoUlJSIBKJMGjQIAwcOFBpnrdv38bYsWNhZmaGkSNH6rXmpjEo/r9R8eeBoqVLl+r8s2vOnDmwsbFBz549DZofERERUXZjKEhERERE9JVo2LAhFi5ciIoVK6qsZ7Rjxw707dsXpUqVUtovlUoxc+ZMWFpaYsSIEcKbuPqGguvXr8f169cxa9asDEOwNJs2bVKp2Bg3bly6lTU5kaZQUCKRCGs9prdmV9p6V8OGDcOOHTt0DvTu3r0LIHXNrgULFmDv3r1YuHBhlq9tpVj1ZKyKJkPZ29uja9euQotaACrrG1pZWaF48eLw8vKCp6cnChQoAA8PD3h4eMDNzQ07duxAYGCgcK6/vz/8/Pz0qprTx8uXL3UKwCIiIrBu3TpUqFABvXr1Ujq2Y8cONGjQAA4ODlqPpxgK6vucTU1NhdDYkEpBOzs72NraIiYmBsHBwUhJScmwmvXs2bO4fv06hgwZYvCHHkJCQhAcHKzTNWlfU4rSWmYqhoJprS0LFCgAFxcXYX9aGG3syjo7OztMmzYNfn5+AIDChQsDSF23cenSpQBS29bu2rVL7fWKf6cWFhaYM2cOfvzxR6Vz3rx5gwEDBsDd3R1z585VqoDMaorrpmpaL1DXSusTJ07gxo0b6NevH+zt7Q2aHxEREVF2YyhIRERERJRDJCYmKr0x/yU3Nze0adMGXbt2FapKAOD+/ftISkpS2R8XF4cxY8bg8uXLAFJDh99//13rME9RXFwcxo8fj7///htA6pvAy5YtU7vOlqLo6GjhjedOnTphy5YtAKDXemzZTVMoaGZmhho1auDXX39VqYj8Uvfu3dG/f3/Mnz8fY8eO1en+9+7dU3rs7Oys9XqIxqT4NZpTQkEA8PPzw19//SVUB+XPnx81a9ZElSpVULZsWXh6eqqtwLp+/bqwnqWJiQnatm2L4cOHK7WwzAq6VgnOnTsXJiYmWLBggcr30++//4558+Zh9OjRaNOmjVbjGSMUVAy/DK029PT0xIMHDyCVSvHhw4cM15s8cOAA9uzZgwcPHmDu3LkGhWvXrl1Tenzx4kW0bdtW759biq9L2pp8FSpUUDonrXowM0Kn6tWro27durh3756wjuFPP/2EP/74A7GxscL8ChUqhHLlyqFUqVLw9vaGt7c3tm/fjuXLl8PW1hbLli1D5cqVlcZ+9+4dfH19Ubt2bYwfPz7bfyYorkdpjDVKZTIZFixYACsrq2yrfiQiIiIyJoaCREREREQ5xIcPH9CzZ098/PhRab+pqanSm9EHDx4EkNrGMa2Cw9zcHHXq1FE7btob/GfOnIGfnx+WLFmiFGrpU2n28OFDdOjQAUuXLk23KiQwMBCRkZFo2rQpunTpIoSCXyPFQOnLcKBr165o1KgRtmzZgk6dOmkco27duihYsCDWr1+PevXqoUqVKlrfP61SEEj9O505c6ZR2jzqSrH9ZnYHAIocHBzQp08ffPr0Ce3bt8d3332X7vkhISGYN28e9u7dC7lcjipVqmDcuHEq1bZZ5cv1BLds2QJ3d3e1YdTt27exd+9erFixQiWYf/TokVB1NnbsWOzatQtz587NcB00Q9cUBJSrSI0VCgLA27dv0w14kpKScOzYMQCpFXDt2rXDkiVL9K6i/TIUnDFjBpYtWwZ/f3+0bdtW5ypIxZa7Z86cAaAaCqa1U1YXCmpTKZmR8ePH4927d8Lfi42NDX766SccP34cnTt3RqNGjZAvXz6la7Zt24bly5fD1dUVq1atUtuidurUqfj111/RqFEjg+ZnLFeuXBG2a9WqZfB4Bw8exJMnT9C5c2eNlYdEREREXxOGgkREREREOYS3tzc2b96MvXv3omTJkihWrBjs7e01Bi9z587FypUrASgHRtpQDLgOHTqk9pwZM2bg3LlzyJcvH1atWqX2nDx58mi8x6NHj7Bx40YULlwYU6dOxYcPH3SaY06jGJp82Z7Q09MT9evXx6xZs1ClShWNFXwikQht27bFwoULMXbsWOzfv1+rYC00NFTp9evcubNRqmD0oVhRltYeMafw9/fP8Jzk5GSsW7cOy5YtQ3x8PAoVKoRRo0ZpXDfw+vXrcHd317nloC6SkpJw7tw5pX3e3t6YMmUKgoKCMHnyZHz//fcAUiuXpkyZgrFjx6JGjRoqYx0/flzY9vHxwaBBgzIMBAHDKwUVgy9TU1Ot18VLTk5We7+0NpcA8Pz5c6HCTZ1Tp04prR8XHByMkydP6h0KKgZLQGrl5ZgxY/Dbb78hKCgIM2bM0KlFZlol3uXLl4VWyl+GgmkVbl+2ID537hxmzJiBVatWqYR2uvD09FT5mTFgwAAMHz5cbYD7999/Y9KkScifPz/Wrl2LQoUKqR132bJlWbpGbXoePHggBMmWlpZo3bq1QeOlpKRgyZIlAFI/+EFERESUG+SMf7kREREREREAwMPDA/7+/qhduzby5cuXaZVYim/ge3l5oUiRIir/pbUZFYvFao8XKVJEY1Ail8sxefJkWFpa4o8//oCNjU2mPI+slJiYKGyrq9rp2rUrEhISMGbMGEilUo3jtGnTBiYmJnj//j0WLFig1b0Vq8jMzc3Ru3dvHWZuXHFxccK2sdc/y2yHDh1Cs2bNMG/ePJiZmWHcuHE4ePCgxkAQAMLCwtCqVSv4+fnh8OHD6f7d6uvMmTNKrysAVKlSBbNnz8aTJ0/QpUsXTJo0CYmJibh79y5q1KiBbt26qR3r6NGjwvaUKVNQtWpVreZgaCio+LpoW0kXHx+Pn3/+GZs2bVI5VqxYMWH7+fPn6Y5z4MABYdvExAS7du3SKiBW58OHD3j69KnSPh8fH8yePRsA8PTpU3Tp0kWndq9SqRQRERGYOnUqgNQ1KxUDS7lcLlSIK1ajnT9/HgMGDMDz58/h6+urUkVuiNDQUNja2qoNBE+ePIlRo0ahcOHC2LRpk8ZAMI1iy87skpCQgClTpgjVqgMHDoS7u7tBY+7fvx+vXr1C9erVUaRIEWNMk4iIiCjbMRQkIiIiIvoGKYaCiutdGcuGDRtw69Yt/P7777nmzdSEhARhW10oWLVqVRQqVAh37tzB8uXLNY7j7u4uVHht3LgRt2/fzvDeigFE69ats3y9O0Vp4ZW1tbXObRS/lJSUhN9//11pLczMcOXKFXTo0AHDhg3Dx48f0b17dxw9ehQ9evTIsM1l48aNsXnzZrx+/Rq//PIL6tati+XLlyMmJsZo8zt8+DCA1HUiFTVr1gxdu3aFXC7Hli1b0LFjRxQoUAAjRoxQO86TJ0/w8OFDAED9+vVRvnx5redgaPtQxVDQ1NQU7969y/C/4cOH4969e5gyZQpWr16tNJ5iKPjo0SON942IiMDJkyeFx/Xr10fRokV1nn+a06dPq93foEEDdOzYEUBqgDp27FitA2KJRIKoqCiEh4cDSP1ZUr58eZQpUwZlypRB2bJlkZSUBAD466+/hP29evUS9r99+xa+vr749OmT3s8NSA0Dx40bhylTpqg9furUKQwZMgSlS5fGxo0bhWAtMjISy5cvF+aTJjY2FkOGDEGLFi0we/ZsXLlyRen/L1nh9evX8PPzw61btwAAvr6+6NOnj0FjymQy/PnnnwCADh06GDpFIiIiohyD7UOJiIiIiL5BmREEpnnz5g3mz5+PUaNGoV69epl2n6ymWCmoLgwTiURo37495s2bh2XLlqF+/fpq1+ACgCZNmuDs2bOQyWQICAjA9u3b023Bp1gp6Ovra8CzMExycjLi4+MBqF/7TBdxcXHo378/Ll++jPPnz2PNmjVGX7Pr6tWrCAwMxOXLlyESidCsWTMMGzZM59arxYoVw9atW9GrVy88fvwY8+fPx4oVK9CzZ0/07NkTlpaWes8xKSkJJ06cAAC0a9cOK1asUDo+atQonDx5Eu/fv8ejR48wYsQIrFu3Tu1Ye/fuBZAaymkKDjUxtFJQMVSMj49H/fr1dbp+zpw5cHNzQ4sWLQAARYoUQZ48eZCYmIhHjx5pXFdvz549Svfu3r27znNXlNZ+NX/+/Hj//r3SsZEjR+Lw4cOIiorCp0+f8PbtW63GlEgkKFy4MFauXAlfX1/UqFEDvXr1Eo5funRJqBqeMmWKUiD6JX0rVRMTE7F27VqsXr0afn5+GDBggMo5//zzD0aOHInq1atj4cKFSl/XDg4OePLkCZo2bYrJkycL6/XZ2dlh8+bN2LNnD+bMmYM1a9bA0dERjRs3RocOHTJc21MfMpkMnz9/xr1793D48GEcOHAAycnJcHBwwPjx49GyZUuD73H48GG8fPkS1tbWuer/Y0REREQMBYmIiIiIcrHnz5/D09NT5U3+tKo3ExOTDCuldCGRSDBy5Ei0atVK6U3v3ECxUlBTCNS2bVssWrQIEokEEyZMwLZt29SGfXXr1oWpqSlSUlJw7949HDx4UAhDvvT27VshnKhSpUq6gUFm+/z5s7BtSOvQqKgo9O3bV6jsefjwIbp164a1a9fCzc3NoDmmpKTg+PHjWLduHa5fvw4AqFGjBoYPH25QQOHq6oq//voLvXv3xu3btxEbG4vFixdj9+7dmD9/vk5rzCk6c+YM4uPjkT9/ftSqVUslFMyTJw9GjRqFoUOHAkitGr179y7KlCmjdF5ycjJ2794NIDVc1LVC19BQUPF6FxcXIehMT5MmTfD+/XuIRCL07t0bTZs2FY6JxWKULl0a169fR0JCAp4+fao2ZN+xY4ewXapUKVSuXFnnuaeJiIgQqnI7deqEefPmKR23s7ODr68vAgMDYWZmprRWY3ohaFp13XfffYcdO3agcOHCatd1NTMzQ4sWLdJdq1VXMpkMe/fuxaJFi5CQkIDFixerrM8ol8uxZs0azJ07Fx07dsRvv/2mNoANCAhA69at0bt3b3Ts2BHjx4+HhYUFRCIR2rRpg5o1a2Ls2LE4d+4ctmzZgi1btqBu3bqYM2eO3j8vxo8fjwkTJqg8p7Q2oXny5EH58uXx448/ok2bNkLba0OlraPbqFEjo/59EBEREWU3hoJERERERLnUkydP0K1bN5QvXx6BgYFKb/SnVXul9+Z/2puuupg7dy7y5s2LiRMn6j7hHE6xUlDTG88uLi6oVq0azp49i7t372LTpk3o2rWrynlOTk6oWLEirl69CgBYvny5xlBQsUrw559/1mnOSUlJGDBgAM6dO6fTddp49OiR0rpohnr27Bm6du2K9evXw8PDQ+frnz9/jgMHDmD37t3C2mvff/89hg4diipVqqR7rUwmQ3x8POLi4hAbG4u4uDi1/8XHx6NYsWK4c+eO8P3x9u1bdO/eHZs2bULJkiV1nnfaenidOnXSWC3auHFjeHt748WLFwBS1zn80pEjRxAeHg4bGxshQNSFYltIQ0NBe3t7WFhYZHhN2veUp6cnRo4cqXK8fPnyQrB79epVlVDw2rVrSusNGvpBhH/++QdSqRQlSpRApUqV1J7TpUsXrF69Gj/88IPSz4F169apBNrz58/HixcvlKoXvb29Vca8fPkyAKBAgQJ6vfbqyOVyHD16FIsXL8bTp09RpEgRBAUFoWDBgkrn3b9/H7Nnz8a1a9cwZswY9OjRQ+OY1tbWmDFjBrp164atW7fi6dOnWL16tfA6uLq6YtWqVfj999+FdrAnT57EmDFjsGzZMr2ex5AhQ9QGrqamprCzs4Ojo6PBbYy/dPXqVdy/fx9AattYIiIiotyEoSARERERUQ6TnJysVSCnuG7Tl+s8vXnzBn5+foiMjMSpU6fwyy+/YPHixUJVYFrVm42Njcbx9QkFvb29MWLECLVVJjmFXC7HypUr0blz53Sf/5eioqKE7fSuS2sNCgCLFy9Gy5Yt1VbJVKlSRQgFnz59qrb6C0itJANS33Bv2LCh1vMFAAsLCyxbtgwzZsyApaUlSpUqBRcXF9jZ2elV/bJ582Zs2LABQGoA065dO0yaNAnFixdHly5ddB5PHV1DkdWrV2PTpk149+6dsE8kEqFWrVooW7YsTpw4gf3792sM+uLi4pSqQIHUClo7OzvY29vDwcFB+NPBwQEeHh749ddf8ccffyAyMhJAasi+ePFinYOPkJAQHD9+HNbW1ujYsSOePn2q9jwTExP069cPY8aMgVgsVluVuHHjRgDAwIEDldYmTE5ORt++fTFr1ixhfTh1jFkpqG1VWEY/h6pWrSqES5cvX0a3bt2Ujqd9LQJA4cKFlSoN9bF9+3YAQLdu3TT+/HN0dMS0adPg6emp1IbZ09MTBQoUUDq3X79+KFmyZLrV2J8/f8bjx48BAC9fvkTr1q0xbtw4VKtWTa/nIJFI8Pfff2PlypV48uQJAKBWrVpYsGABbG1thfO2bt2KjRs3Cvf29vbG3bt3MXDgQCQmJgr/JSUlISEhAUlJSUhMTIRYLIa9vT0iIyNx48YNTJ06FTNnzhTGFYlEGD16NGxsbLBo0SIAwIkTJxAeHq6yZqY28ubNi+LFi+v1Wujrr7/+ApBarfrDDz9k6b2JiIiIMhtDQSIiIiKiHObQoUMYN26cTuv+ZdS68MSJExg+fDgWLFgAsVgstIFMbw03fULBjh076nxNVpLL5Zg4cSK2bduGEydOYNWqVVoHg58+fRK202tx2bBhQ0yaNAkSiQRRUVHYunUr+vTpo3JeuXLllB5fvnxZbUvItCq/Tp066dXq1dzcHJMnT9b5OnVu3LghbLdv3x7e3t5o0qQJVq9ejQkTJqS7LmJmqVChAubMmaO0Ty6X48yZM0KgmkYkEsHR0RF58+aFp6cnnJyccP/+faHabMOGDShWrBjs7e0zfC4FChTAgAEDhO8Txa8PbW3btg0SiQS9evWCvb19ut9zLVu2xJYtW+Dl5aUSrty+fRs3btxAsWLFVNacNDc3h5eXFzp37oygoCCV4CqN4rp82lT5fUnxgwnarDcpk8kyDAUrV64MMzMzSCQSnD9/HsnJyUJg+e7dOxw7dkw419/f36Cvv5s3b+L+/fvw9PRE69atcfv2bY3nNmvWDACE9reKPn36BLlcDg8PD61ayp45c0b4exeLxXj8+DF69OiBwYMHY9CgQTo9h8OHDyMgIADh4eHCvlatWmHGjBkq1XQVKlRQ+rnw4sULoRIVSG1lWqNGDZQvXx6FChVCwYIFUaBAATg4OOD69evo3LkzgNQKVcVQMM2AAQPw9OlToTVqXFycXqFgVouIiBDWlSxXrpxOHxwhIiIi+howFCQiIiIiymFat24NR0dHxMfHo2TJkhpbo61cuRJbtmwBAOFNzIykpKRALBYjIiICQGrViyb6hIK6SEpKUqru0kTxnNDQUKV2gbqeu379emzbtg1AagjQu3dvrYNBxdAnvfaWdnZ2qFChAq5cuQIAOHr0qNpQ8MvAICQkROWc8+fPIz4+HmZmZujUqVOGc8xMr169ElrqFStWTGiD2KBBA0ydOhUnT55Md121zFKxYkXUrVsXJ0+eVNpfqFAhlClTBiVKlECxYsVQsGBBtetrjh8/Xvg6yZcvX7rfE4rq1auHzp07CxV6iuvLaUMqlWLr1q2wsrISWjYqfs99+f1nYmKCtWvXqq3CXbJkCUxMTDB16lS1Py/69++PXbt2oVu3bti4cSPy5cunco6h7UMVr9dmXciEhAThOSpWsCmysrLC999/j0uXLiE+Ph7nz59H3bp1AaT+/JNKpQBS/66bN2+u85wVpf09Dho0yKB1VkUiEbp37w5/f3+0adMmw/P3798PAPDy8oJMJsObN29QunRppZaj2qpZsyZsbGyEULBVq1aYPXu20vqFaYoXL46WLVtiz549AFJD7vr166NGjRooXbo0Vq9ejd27d6NZs2YqFZjff/89SpQogcePH6NOnToa5/Pbb7/h7NmzkEgk6Vap5iR///23EJDru04oERERUU7GUJCIiIiIKAeqXbt2hucovpGuqfpHk7Q1yfLnz6/xnMwOBc3MzLBq1Srs2rVL62vmz5+P+fPnG+3cmzdvok+fPli1ahWsra3TPTdtnbo8efJkWPHyww8/CKHgnTt3EBkZCQcHB6VzHB0d4eDgILSg/PI4kLrGGQA0bdoULi4u6d4zs61du1bY/vHHH4XtvHnzonz58li4cCHq1KmTLa1jhw4dips3b6Ju3bqoXbs2qlatmm4VrLEMHz4cx44dQ3BwMFq3bq3TtUePHkVISAj8/f3VBpHqvv8sLS1V9l28eBFnzpyBn58fKlSooPZeefPmRfPmzbFz5074+flh8+bNKq+P4pqZhlYKavPzKDY2VthOr7KwUaNGwrqau3fvRt26dfH27Vvs3LlTOGfEiBEGrSsXHh6Ow4cPo2jRomjZsiUA/X/+5c2bF1OmTIGfnx/Onj2LgIAAjR86CA8Px8WLFwEALVq0wN69ewGkBu2agtL0pLXs7NixI8qVK4cZM2aoDQTTDBkyBA8ePMDQoUNRt25dlUrLz58/Y9SoUThw4ABmzZql9DXTokULfPjwASNGjNA4vpOTE6ZPn44HDx4Yba3EzHb06FFhO6vblhIRERFlBYaCREREREQ53KtXryAWi3UO/jQJDw9HfHw8gNQKm+xiYmKC6dOno2jRorCzsxPWu7O1tYWVlVW2zUuTtErBokWLZnhu1apVhW25XI43b96oDf18fHyEwKNSpUpKx5KTk4UK0C9bQma14OBgIby1trZWWT+wXbt2mDBhAnbs2JEtLWR9fHxw4cIFtYFkREREpgWENjY2mD9/Pg4fPqzzeo9//fUX8ubNi379+gn70qsUVCcuLg4TJ06Ej48Phg8fnu65HTt2xM6dO/Hq1SsMHjwY69evVwrSFEM9fUJBxVDR09Mzw/NjYmKE7fRCwYYNG2L69OlISUnBiRMn8OnTJ8ydO1eo5qpYsSIaN26s83wVpbVx/e2334RgzJAPRfzwww/w9/fH0qVL8fTpUyxfvlxtdebBgweFasfmzZsLoaAhSpYsiYCAAPzwww8ZBqX58+fHvn370g0OgdQ2rl8G1+3atUPVqlXVPi9FjRs3NvjvJ6vExcXh2rVrwuO0amgiIiKi3CTrF3wgIiIiIiKdrF+/Hs2bN8fq1auRkpKi8bzQ0FD0798fr1+/Tne8N2/eCNvFihXTeF5mVwoCqcFgr1690KFDB5QuXRp58+bNkYFgcnKy0HK1VKlSGZ7v4+Oj9Ea7YmCiqFGjRgCAatWqoXLlykrHzp49i+joaFSsWBHfffedvlM3ij/++APJyckAgG7duqkEBC1btoSzszPmz5+vtg1qVlAXCEZHR6N169ZCy1htyWQy7NmzB3FxcRmeW6lSJUyYMEGnCsmLFy/i2rVrGDVqlNLXuy7fc4mJifjll18QFRWFwMDADCuxypUrBx8fHwDAtWvXsHr1aqXjhrYPTat4BYCCBQtmeL5iKJheaOvm5ob//e9/AFLXPRw6dCgOHz4MILVV59ixY3Weq6K4uDgEBQWhbdu2+OGHH4T9hv78GzBgAIoXL44nT56ga9euKt8XKSkpCAoKAgDUqFEDXl5eBt1PUevWrbVu15lRIGhqaoo+ffqonOfk5KRTe02ZTKb0NZITXblyRWltTXUf5CAiIiL62jEUJCIiIiLKwSQSCQ4dOoSEhATMmTMH7dq10xj6ubq6ws3NDc2bN8fSpUuV3txUlLYuHJAaFGgik8kMm7wRnT59GqdPn862+3/69EkICUqWLJnh+TY2NihcuLDwWFNI0rFjR/zxxx9YuXKlypvuBw8eBJD9VYK3bt3C9u3bAaQ+r549e6qcY2FhgZ9//hmRkZEYO3ZslgTK2pg2bRqCg4MxceJEnYJBuVyOly9fom7dupgxYwbevn1r1HktWrQIlSpVQosWLVTuq277S5GRkWjRogXOnj0Lb29vrFy5EqNGjcKQIUPQt29f+Pr6omPHjmjVqhUaN26MOnXqoGbNmsJacwCwbt06pXsoBtd58uTR+Tl9/vwZQGpbYG3aLioGRBlVcipWn968eVPY7tSpU7o/w9Td60tpwdzo0aOV9hv6NWxmZiasKfj+/XuMGzdO6fjBgweFryvFatHcKCkpCUOGDEGnTp0QHByc3dPR6MaNG0qP7ezssmkmRERERJmHoSARERERUQ52+vRppTXnBgwYkG4Vzvjx41G8eHEsWrQInTp1Uhtm3LlzBwDg5eWV7jp1OSXYAYAVK1agf//+WL9+vcZz3rx5Y/TwJs3jx4+F7SpVqmh1Ta1atQAA5cuX11i1IxaL0aBBA5iZmSntj42NxfHjx+Hh4aFzW0pjkkqlmDRpkhAQT5gwQWOrxy5dusDOzg7nz5/HqlWrsnKaam3evFloxyiXy3UKBk1NTTFs2DAEBgbi0KFDaNSoEQYPHqwSGujjzJkzePz4MWbOnKn3GA4ODihTpgyA1JBs27Zt2LdvH/755x+cPn0az549g52dHerUqYMRI0Zg9erVOHnyJH7//XdhjIiICCHIAwwPBdMqkH18fLSqNFQMKF1dXdM9t06dOipVzXnz5sXIkSO1mlv79u3VVn3GxMRg7dq1mDZtmkr1qyE//+Lj4zFt2jRs2rQJRYoUAQCcO3cOT58+FcZeuXIlAKBChQpK7YZzm6ioKPj5+eHo0aN4+fIlunbtKqzPmtPcunVL6XFaa1ciIiKi3IRrChIRERER5WCKIcaECROEdpOamJubY86cOWjbti3u3buHDh06ICgoSKjckclkOH/+PIDUN9rTk1NCwdOnTwvrPM2YMQPPnz/HxIkTVdbLio+PR79+/dC6dWv4+/vD0tLSaHO4d+8egNRWhtqsKQikttl8/vw5Jk+erPP9jh49isTERHTt2jXDdcEy07x58/Do0SMAQNOmTYXKJ3WcnJwwdOhQBAQEYP78+ShUqFCGX6+Z5erVq5g+fbrSvqpVq8LGxgZyuTzDlomK1+zZswfDhw/HkSNHcOTIEVSoUAF9+/ZFvXr19Jrb4sWLMXr0aLXhvmJ1bkaVuqNGjcKJEyeQkJAAExMTVKtWDT/++COqVq2qca3QsmXLQiwWQyqVwt3dXak9YkJCgrCtTyj48uVLAOlXHytSbKeZUatLkUiEli1bYt68ecK+mjVrwsbGJsP7vHr1CrGxsbC2tlY5tnr1arRp0wb169fXas7auHjxIiZMmAArKyts3LgRp06dwsSJEwGkBmQAsGfPHjx58gQikQijRo0y+J53795Fz549ER0dbfBYX0pJSUGJEiWMNt6bN2/QpUsXBAUFGW2dXGN58uSJ0uOQkBC4ubll02yIiIiIMgdDQSIiIiKiHOrp06c4c+YMAKB+/foqrQY1KVKkCPr164dFixbh8+fPGDp0KA4cOAATExPcvn0bYWFhAIAmTZqkO05OaB8qkUiUqptMTU0REhKCV69eqYRzPj4+WLNmDXr27Il9+/bh119/NVqVXVrL1Zo1a2p9jaenp8q6bdravXs3rKys8NNPP+l1vTEcO3YMa9asAQDkz58fAQEBGV7z888/Y8eOHXjw4AFGjhyJdevWoWLFipk9VSX37t2Dv7+/0D63YMGCCAgIQLVq1fQaz8XFBWvXrsXvv/+OtWvX4ubNm+jfvz9KliyJQYMGoUGDBlqPFR0djerVq+Pnn39We1zxey6jUN7DwwO9e/fGvXv3MGbMGKV2tZpYW1ujevXquHXrFhYtWgQTk/+aBymGgroG6nK5XAjOa9SoodU1aVVzADIMh968eaPyvbRz506UKlUKXbt2Tffac+fOIV++fGqPvXjxQiloVKTNzz/FdRjj4uIwadIkbN26FaVLl8aaNWtgb2+P5s2bY/bs2TA1NUWpUqUQGRmJ2bNnAwA6dOiA77//PsP7AKkfEGnSpAlsbW1VjpUpUwZr1qzBqlWrULJkSRQrVgz29vawtbXV+0MFq1atwq5du2Bqaor9+/frNUZ69AmeM1NkZKRKm1lt1hQlIiIi+towFCQiIiIiyqFWr14NuVwOBwcHTJkyRadre/XqhS1btiA4OBjPnz/H+/fv4enpKawNV7p0aZQvXz7dMXJCKLh8+XIhPDAzM8OaNWvSbd9ZpEgRbNq0CX5+fhg0aBDq1KmD3377zaCKFKlUitu3bwNIrZbLbB8+fMCVK1fQuXPnbFvT6vnz58IaaC4uLli1apXaMOJLJiYmmDFjBjp16oTExET07dsXK1euRIUKFTJ7ygBSw9vevXsjNjYWQGq15siRIw0OIExNTTF27Fj4+PhgwoQJkEgkePjwIQYOHIiKFSti0qRJ8PHxyXAcOzs7DB8+XONxxSAwJSUlw/H8/f11Dn2mT5+OlJQUeHh4KO1XDEB0DQWfPn2K6OhoWFpaonr16sL+v/76CzExMfD29oa3tzcKFSoEc3NzvHz5EqdOnQKQGm6qq+JLExsbi/79+yu1UU7bnjZtGmxtbdGqVSuN16cXCi5cuFApGFWkzeuv2ALV19cXkZGRKF26NNauXSt871pbW6NVq1YoVKgQrKysMGPGDHz+/BkuLi5atz8FUkO6qlWravw+LFOmDBYtWqT1eBlR/NmT1gI1N1OsXCUiIiLKzbimIBERERFRDvTx40ccOHAAIpEIM2fOzHDNrS9ZWFjA19cXAGBvbw93d3dERkbi0KFDAICBAwdmOEZ2h4KPHz/G8uXLhcdTp07Vaj2//PnzY8OGDShQoABOnTqFFi1aYO3atXo/n6tXryI6Ohqurq5KgUdm2b17N4DUQCs7fPjwAb169UJ0dDQcHR2xbt06eHt7a319yZIlMWPGDACpa7b5+fkJX3eZ6eLFi+jWrRs+f/4MR0dHLF++HBMmTDBqRVLr1q2xatUqpbaVN27cQPv27bFz506Dx9elUhCAXlVgbm5uKoEgAKXWk7qGgqdPnwaQWiWo+HpXqVIFb968wYgRI9C8eXOUK1cOtWrVQosWLRAfHw8AwtqI6iQnJ2Po0KF49uwZRCIRJkyYgE2bNgmvv1wux5gxY7Bu3TqN11++fBl58+ZVe1xTIAho93dx9+5dYTsyMhJFixZVCgTTTJgwAT169MCJEyewY8cOiMVizJs3T+P6nJrmk5WVazmlfXRWSfsgAREREVFux1CQiIiIiCgHmjt3LiQSCfz8/PReu6xNmzYwNzeHr68vzMzMsHz5ciQkJKBWrVparaFl7FBQl/GSkpIwcuRIJCcnAwCGDBmS7np2X8qbNy/Wrl0LV1dXxMfHY9asWejcuTPevn2r87xPnjwJAGjZsiVMTU11vl4Xcrkcu3fvRp06ddJtB5mcnIw9e/YY/f4vX75Ely5d8PHjR7i6umLt2rUoVqyYzuM0a9YM/fv3B5DalnLYsGEICAhQalFpTJs3b0afPn0QFxeHKlWqYO/evRmumamvH374AevWrVMKdCQSCcaPH49jx44ZNLYuawoam2KllDZr9Sk6fvw4AKB9+/ZK+4sXL46ZM2fi4MGDqFKlCmQyGUJCQoTWrkDq14o6ycnJGDhwIM6ePQtTU1NMnz4d3bp1Q5EiRbB48WKYmZkBSP2emTlzJqZNm6Y0LgBcv34d8fHxOn+oAlCuFNRUNZgWbAKpYevKlSvVBn2mpqZ49eoVRo8eDblcjlGjRuGHH37QeT6hoaE6XWOItK+/7AgHExMThe2sCkLV/WxP+xojIiIiyk0YChIRERER5TA3btzAgQMHULFixXRbDWbE2dkZy5cvR79+/fDu3Tts3LgRTk5OmDlzplbXp70Rrk0bPWObNWsWnjx5AgDo2rWrVpWNXypYsKCwrhcA3Lx5E61bt9YpuJHL5Th+/DjMzc3RvXt3neegqytXruDt27fo0aOHxnMkEgmGDBmCMWPGKFVSGurChQvo1KkTPnz4gAoVKmDnzp0oWbKk3uMNHToUvXv3Fh5v3LgRzZs3Nzg4U5SYmIixY8di8uTJkMlkGDhwINatW6exMkwdfUKPMmXKYOXKlbCyslIaZ9asWTqPpSi7QsGIiAilUFCXCrZXr17h5s2b8PT0RO3atdWeU6hQIaxfvx5t27ZV2t+8eXP8+OOPKucnJSVhwIABOHPmDCwsLDB//ny0a9dOOF6jRg3MmjVLqdJvw4YN+Omnn/D8+XNh39mzZwEATk5OWj+fNIqv/5dhY5qxY8eiePHiMDc3x9KlSzW2KY2Li8PgwYMRExODn376Kd3vb00SExPx4sULna/TV9rzz6qvw5cvX+LRo0fYvn27sIYrAKxfvx6nTp3CkydPlNq1GluRIkVgYWGhtE/T3ycRERHR14yhIBERERFRDpKSkoLp06fDy8sLS5cuTbdSQSqVZjhe9erVIRaLMX78eCQnJ2PWrFlaV82kvRmszX20ofjGenpBzL59+7Bp0yYAQNu2bTFhwgS971m8eHGl1zE2NhaDBw/G0aNHtbr+0qVLePfuHdq0aaNT0KSvHTt2oGTJkhqriGQyGUaPHi1UL86fP19j60RtpaSkYMmSJejduzciIyPx888/Y8OGDUZ5vqNGjVIKdN+9e4eBAwfi559/xrlz5wwa++3bt/j555+xe/dulC5dGtu3b8eQIUNUKn5iY2PTbQ347Nkzve5frlw5zJkzByKRSGlOYWFheo0HZF8oqBjU2tra6hSibdu2DQDQvXv3dNtxmpiYICAgAEWLFoWJiQl69uyJOXPmqJwXERGBnj174uzZsyhQoAC2bNmiNjhs3rw5ZsyYofT3/eDBA7Ru3RozZ85ERESE8DWma+UjoPxhCE2hoKWlJQIDAzF16lSNbVATEhLg7++PJ0+e4KeffkJAQIDOcwFSQ8FLly7pda0+FJ9/VlQL9urVC61atcKECROU7v327Vv069cPLVq0EP6/kBlsbGwwa9YseHh4wMbGBj179oS7u3um3Y+IiIgou+i+AAEREREREWWaZcuW4cOHD9iyZQscHR0BAEeOHEFoaCi8vb1RoEABuLq6IiEhARcvXtRqzDVr1uDSpUsYOnSoxkoedYxdKahN5c2jR48wceJEAKntT6dPn64UuuijUqVKmDZtGsaMGSPMY9y4cShfvnyGAemWLVtgYWGBfv36Cfs+fvyo1DbQWJKTk3HkyBH06dNHqdpJ0apVq1TW55s5cybMzc3RuXNnne/57NkzjB8/Hrdu3YKnpyd+++03nb5GtDFkyBB4eHhgypQpwt/7jRs30KtXLxQvXhw///wzmjZtCgcHB63H3Lt3L6ZPnw65XI6xY8fC19dXY2vX69evIyAgAJGRkXBzc4OLiwucnJxgb2+PT58+4fbt28K5uq6l17BhQ7Rv3x7bt28X9hkSoCh+rxkjjE9JScGwYcNQqlQplClTBj4+PnB2dlY65+bNm1i0aJHwuFy5clqPHxMTg61bt8LLywudOnXK8HwzMzNMmDABLi4uatvSPn78GP3798f79+9Rq1YtzJ07N92vizZt2sDGxgYjR44UWk4mJydj3bp12LZtm/B9qk8LSm1+XgGAl5cXvLy81B5LSEhA3759ceXKFXTp0gW//fabVj/PkpKSlB6HhYUhPj4e586dw4sXL3Ra41Nfis9fKpVmeivNEydOZOr42mjatCmaNm2a3dMgIiIiylQMBYmIiIiIcogbN25g+/btWL9+PQoVKiTsL1iwIM6dO4e5c+eqDaPSa3F2/vx5zJs3D507dxbWeNNWWkChuL6TIRTfWE9bK1BRcHAw/P39kZCQgM6dO2PixIkGB4JpWrdujfv37yMoKAhAapixb98+9OrVS+M1YWFhOH78OPr164f8+fML+0NDQ9GrVy9ER0cbZW5fCgwMRGBgoE7XBAQEwMLCQqnFYnri4uKwYsUKrF69GiKRCAMGDIC/v79K+zxj6dChAwoXLowhQ4YotQB88uQJpkyZghkzZqBmzZqoX78+6tSpozGs/fTpEyZNmoQLFy6gS5cu8Pf3zzBMrF27No4fP46nT59i586d2Lp1q8bvoy8DM20MHz4chw8fRkxMDDw8PPQaI41iEGOMMF4ul6N27do4cuQIAgMDIZVK4eTkhIIFC8LW1hbv37/Hy5cvlYLMFi1aaD3+hg0bEBsbi99//13r0KhatWpq9x89elRYc2/MmDHo0aNHupWHaRo2bIjNmzdj2LBhePXqlbBf8e/43bt3Ws1NkWIom14oqElERAQGDx6MO3fuICAgAB07dszwGltbWwCpazR26tQJTk5OwuubNqdffvkF+/btM9rPRk0Uf0ZLJBKur0dERESUSzAUJCIiIiLKIW7duoX169erVJ34+PggICAAw4YNQ2BgIDZt2qT0Jn6DBg3Ujnf37l0MGTIErVq1wm+//abzfDIzFPyyEiY2Nhb+/v74+PEjhgwZotcaghkZPXo0bt68ibt37wJAhm0eg4KC4Obmhr59+yrtL1u2LNatW4dz586hZMmSKFy4MOzs7GBjY6OxWi2nkEql2LVrFxYvXoyoqCi0adMGffv2haenZ6bfu1KlSti7dy/Gjx+P06dPKx2TSCQ4d+6c8LXWoUMHleu3bduGwMBA/Pjjj5g8eTI8PDx0un+xYsUwduxY+Pn5YeTIkbhy5YrScX3XjExbp3PYsGEYOHCgVkGWJorfI8YIBcViMdq1a4d27dohNDQUf/31F4KCgnDr1i2155coUQLNmzfXauzw8HCsWrUK7du3R7169fSeY0JCAmbOnImtW7eiVq1amDx5MgoUKKDTGKVKlcKePXvw559/IigoSCX0PXv2LIYNG6bTmIoBrboPMaTn/v37GDRoEEQiETZu3IiyZctqdV3ZsmVx//59PH36FHXq1FF7Tt26dTM9EASUvxb1CUWJiIiIKGdiKEhERERElEP07Nkz3eOOjo6YOHEiihcvjkmTJgEAypQpgyFDhqic+/DhQ/Tu3Rtdu3bV+c3wNGmhhFQqNUqliOIb6wkJCcJ2fHw8+vbti5cvX2LevHlahxK6MjMzw5w5c9C6dWskJSWlGzx8/vwZGzduxOLFi9VWz5UuXRqlS5fOlHlmBolEgn379mHZsmUIDw9Hp06d0KNHjyxZJ1GRq6srVqxYgS1btmDevHlCtWX9+vUxZcqUdNu5isViHDhwAPb29gbNIW/evFi5ciVat26Nly9fAgBatWoFX19fvcds2LAhzp8/b/DcDAmiMuLq6ophw4ahc+fOGDZsGK5fv6503M3NDYsWLYJYrN3bBHPnzoWnp6fQ7lcfd+7cwahRo2BiYoIFCxYY1LrR0tISw4YNQ+/evXH48GEcPHgQV69ehVQqxf3793Hnzh2twzlAOZT98kMM6dm+fTtmzZqFjh07YvDgwTq1pB04cCAeP36MGzduqBxzdXVF165dlVoZZybFIDAxMdHgr20iIiIiyhkYChIRERERfWU6deqEPXv2oEqVKhgwYADy5MmjdPzy5csYM2YMxo0bh9atW+t9n7T2eeXLlzdonbQ06kLB2NhY9O/fH+Hh4diyZQt8fHwMvk96vL290b9/f6xZswZNmjTReN7atWvx008/oUaNGpk6n8wWHx+PzZs3Y8OGDfD09ES/fv3w448/Cm0Ks0unTp3QqFEjLF68GK9fv8Yff/yRYfVT27ZtjXb/PHnyoH379ti7dy/69etnlCDaGKGJYstKOzs7g8dTJ2/evFi1ahVatWqFN2/eAEhtsTplyhStqy8vXrwoVDbr23L2w4cPmDBhAgYPHoymTZsaVGGpyNbWFh06dECHDh0QExODq1ev4unTpzp/qCEtoHV3d4e7u3uG5798+RKTJk2CmZkZNm3ahBIlSug8d1dXV2zevBlxcXGIiYkR9ltbW2f592xa1a6Dg4PR1pUlIiIiouwnkhvjt3siIiIiIspSKSkpaltVyuVy/Prrrxg0aJDSOnj6mDhxIpo1a4aqVasaNE6agwcPYvjw4ahVqxaGDRsGV1dX9OvXD2XKlMHYsWNhZWVllPtoIyQkBG5ubhqPjx8/HpMmTYK5uXmWzSkzhISEYM+ePWjRooXO7Tazilwuz5J2iF9KTk7OcX+/f//9N+7cuYO2bduiWLFimXqvoKAgPHv2DO3bt9epgg4ATp48iTJlysDFxUXv+8vlcsjlcqOFgcZ27NgxBAcHo0OHDhl+nVy+fBmbN29Gz549dX4tc6qNGzeiYMGCqFatmtbVo0RERESU8zEUJCIiIiKiLPHo0SMAEKoBnz9/js+fP6NSpUrZOS0iIoNkV7BNRERERKQrhoJEREREREREREREREREuVzO7NNBREREREREREREREREREbDUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcuLsngApe/z4MXbt2oUrV67g3bt3SEhIgLW1Ndzc3FCuXDk0bNgQ//vf/yASibJ7qkpSUlJw8uRJHD16FHfu3MGnT58gkUjg4OCA8uXLo3PnzqhevXqG47x8+RI//vijQXO5evUq7Ozs1B4rUaKE3uMeP34cBQoU0Pt6IiIiIiKi9Fy/fh0HDx7E9evX8fHjR8THx8PGxgbOzs747rvvUL16dTRp0gTm5ubZPdUMPXr0CIcOHcKVK1fw+vVrxMTEwMzMDAUKFEDNmjXRrVs35MuXT6uxFi1ahKVLlxo8pz179qBkyZIGj0NERERE9LUSyeVyeXZPgoAPHz5g+vTpuHjxIjp37ox69erB09MTMpkMHz58wNmzZ/HXX38hKioKpUuXxoIFC1CoUKHsnjYA4MqVK5g0aRKioqLQsWNH1K1bF+7u7pBIJLhw4QICAgKQnJyMrl27Yvz48TAx0VygevToUQwaNEjvubi6uuLEiRMaf0nWNxS0s7PD1atX9Z5XVpHJZEhISFDZLxaLc1yQTEREREREqe7du4eZM2fi+fPnaN68OapVqyb8TvXp0ydcuHABBw4cgEQigaurK3777TfUrVs3u6et1rt37zBr1iycPn0a33//PZo0aYLChQvD2toanz59wvr163Hz5k1YWVlhypQpWn0odNiwYTh27JhB87KwsMDhw4fh4uJi0DhERERE9PWSy+WQSqUq+y0tLdPNLXIThoI5wO3bt9GvXz84Oztj1apV8PDwUHvep0+f4OfnhxcvXsDR0RE7duzI9sq1jRs3Yvr06ahduzZmzJgBR0dHlXP8/Pxw4cIFAMDgwYPTDf2WLl2KRYsWCY+trKzg6uqa4TdkZGQkPn/+jAULFqBp06YazytRogRcXV1hY2OT0VNTUrp0acybN0+na7JDXFwcHj16lN3TICIiIiIiLR0+fBgbNmxAiRIlMHjwYLW/UwHAx48fMWfOHAQHB0MkEqFHjx5o2LBhFs82fbdu3cKSJUsgFovRp08ffP/99yrnhIaG4pdffgEAiEQijBgxAhUrVkx33BEjRuDjx49K+ywtLWFqaprhnJKSkiCRSNC+fXu0bdtWh2dDRERERN8KHx8fWFtbZ/c0sgTbh2aziIgI+Pv7IzIyEhs3btQYCAKAu7s7FixYgDZt2uDz588YPXo0Nm3alIWzVbZz504EBASgfv36WLx4McRi9V9O0dHRwvbff/+dbij49OlTAKkVf5MnT0adOnU0jptGJpOhffv2KFWqVLqBYJrhw4fzl0EiIiIiIsp2x48fR1BQENzd3TFmzBhYWFhoPNfDwwNjxozBuHHjkJSUhKCgIBQuXBhFixbNwhlrdvv2bcyfPx82NjYYP3488ufPr/Y8xSBPLpdj586d6YaCEokEwcHBAFI7uHTs2BFVqlTR6k0bqVSK0aNHQy6Xo0WLFjo+IyIiIiKi3OfbqIfMwf78809ERESgRIkSKFKkSIbn+/j4oGbNmgBS15u4cuVKZk9RrVevXmHy5MlwcHDArFmz0g3u8ubNK2yXLVs23XGfPXsGa2trbNiwAQ0aNMgwEASAXbt24fHjx5gwYYL2T4CIiIiIiCgbRUZGCh/ybNy4cbqBYBp3d3fUq1cPQOq67ps3b87UOWorODgYgYGBSElJwZAhQzQGggAQExOj9Dij5/3x40fIZDLY2NhgypQpqFu3rtaf4j569Cg+ffoEX19fmJmZaXUNEREREVFuxlAwmx0+fBhA6qcftVW9enVh++TJk0afkzZmzZqF5ORktG/fHnZ2dumeO3/+fCxbtgyrV6/G1KlTNZ4nlUrx8uVL9OzZE4ULF9ZqHnFxcVi4cCF++ukneHt76/QciIiIiIiIssv58+eF9cDd3d21vq5atWrC9sOHDxEWFmb0uelq5cqViI+PR/ny5eHj45PuuYUKFULz5s3h6emJ0qVLo2vXrume/+7dOwBAly5dlD5wmpHY2Fjs3r0bpUuXRoUKFbS+joiIiIgoN2P70GwUHx8vtEF5/vw5zpw5g//9738ZXufp6Slsv3nzJtPmp8nVq1eFMLJx48YZnp8nTx7h06zpefXqFVJSUtCpUyet57Jq1SokJCRg8ODBWl9DRERERESU3e7duydsv337FuXKldPqOi8vL5iYmEAmkwEAHj16JHSTyQ43btzAgwcPAAC1a9fW6prOnTujc+fOWp379u1bODg4oFatWjrNa8+ePYiLi0OXLl10uo6IiIiIKDdjKJiN0j4Vmmb27NlahYKWlpbCdnJystHnlZFdu3YJ8yhVqpTRxjU1NUX//v3h4uKi1fnBwcFYu3YtevXqBScnJ6PN42umqd2qj4/PN9kuRyqV4uHDh0r7SpYsqVVbWiIiIiIiQ6X371HF3wf379+PPn36aP27kJ2dHSIjIwGkfgizTJkyRpuzrubNmwcAMDExQceOHWFjY2PU8VeuXIlGjRppHZoCwPv373Hs2DE0bdqUawkSERHRN43vjyqTSCR49OiRyv5v6fX4dp5pDuTk5ARXV1eEhoYCgFA1mJHPnz8L2x4eHpkyN02Sk5Nx7NgxAECRIkWM+s1SuHBhDBkyROvzFy9eDFNTU3Tv3t1oc/jaiUQitfvNzMxgbm6exbPJfupeDzMzs28yICUiIiKirKftv0djYmKwa9cuDBo0SKtxFa8XiUTZ9m/9169f4/r16wBSfz/MjA9rpi1Boctz/OOPP4T1Db/F34OIiIiI0vD9Ue1oel89N+KagtlIJBJh4cKFqFy5MooVK4bRo0drdZ1im5kSJUpk1vTUun79OqKjowGkrgWRXZ4/f47du3eja9euGa5pSERERERElNN8Wd2XmJio1XUpKSlClSAAuLm5GXNaOkn7wCgAFC1aNFPu4erqCldXV63Pf/ToEQ4cOIAmTZrAy8srU+ZERERERPS1YqVgNqtUqRL++usvrc+Xy+U4cuQIgNSS1iZNmmTW1NRSLK398pfPy5cv49ChQ3j8+DHi4+Ph5OSEggULon79+qhRo4ZRqwoXLFgAU1NT+Pr66j2GXC7H8ePHcezYMdy6dQuhoaGQSCTImzcvqlWrhp9//hklS5Y02pyJiIiIiIjSDB8+HLGxsbh58yYKFCiAn3/+Wavrnjx5AolEIjzOztahFy5cELY9PT2zbR6KFixYAADw9/fP5pkQEREREeU8DAW/MidPnsT79+8BAA0aNMjytfQeP34sbDs4OAAAPn78iLFjx+LSpUsq51+8eBFbt25F6dKlMWvWLBQvXtzgOdy7dw9Hjx5F69at4ezsrNcYCQkJGDp0KE6dOgUAsLKygqOjIyIiIvDmzRu8efMGO3bsgL+/v04tTXMqqVT6TZVAp5FKpVrtIyIiIiLKDOn9e9Te3l5Yjy+NYtinyT///CNse3l5oWDBglpdlxnu3LkjbDs5OSnN4/79+9izZw+uX7+OkJAQWFhYwNnZGaVKlULDhg1RvXp1o/+OcvPmTZw6dQq1atWCl5dXtr0uRERERDkF3x9V9i0/9zQMBb8iKSkpWLRoEYDUEGvkyJFZPodnz54J2zY2Nnjz5g26dOmCsLAwtGnTBm3atEHp0qVhamqK+/fvY+nSpTh//jzu37+PHj16YOvWrQZ/gjQwMBAA0K1bN72uT0lJwcCBA3H37l2MGDECzZs3R758+QAAMpkMZ86cQUBAAN6/fy+sRTFs2DCD5pzdvlxM9lv24MGD7J4CEREREX3DDPn3aEpKCrZv3y48rlWrllIwl5XCw8OFpSUAIDo6Gnfu3EF8fDzWrFmjVEWYJjg4GA8ePMCOHTtQqlQp9OvXT6fWoBmZNWsWAKB69erZ9roQERER5XR8f/TbxlDwK7J+/XqhfWdAQEC2tGeJiooStkUiEYYMGQKpVIqNGzeiYsWKSudWqlQJq1evxqRJk7B161aEh4dj9OjR2Lx5s973v3fvHk6dOoUSJUrgu+++02uM1atXIzY2Ftu3b1dZY8LExAR16tRBqVKl0Lp1a4SHh2P58uWoWbMmKleurPe8iYiIiIiIDHXmzBmEhYUBSF1rr0GDBtk2l5CQEKXHefLkQXR0NKZNm4Z3797B29sbjRs3RqlSpWBvb4/IyEhcvnwZu3btQkJCAh48eIBp06YhICAA9vb2Bs/n4cOHuH//Ptzd3VG2bFmDxyMiIiIiyo1MsnsCpJ179+5h/vz5AIAxY8agRYsW2TKPuLg4YXvXrl148eIFli9frhIIphGJRJg4caLQNvTGjRs4efKk3vdftmwZAKBly5Z6j/Hy5Uv8/vvv6S467+bmhlGjRgFIXXvwy7Y+REREREREWSkuLg7btm0DkPphRn9/f5iZmWXbfD5//qz02MzMDIGBgXj//j26deuGqVOnolatWnB2doZYLIaLiwuaNWuGadOmwc7ODgAQGhqKpUuXGmU+u3fvBgDUrVv3m1w6gYiIiIhIGwwFvwIhISEYNGgQpFIpJk6ciJ49e2bbXBRDwXv37mHAgAEZfgpTLBZj4MCBwuOtW7fqde+XL1/i+PHjAIDmzZvrNcbgwYMxevRoVKtWLcNzW7RoAUdHRwCpa1Motk4lIiIiIiLKSkFBQULnlu7du6NkyZLZOp+YmBilx2nLRvj5+aFJkyYagzkPDw+lddvv3r1rcKvPZ8+e4d69exCJRKhevbpBYxERERER5WZsH5rDRUdHo2/fvggNDcWcOXMMqpAzBsWF2j08PLQOKOvVqwcLCwskJSXh3LlzSE5Ohrm5uU73Xr9+PeRyOUqUKAF3d3edrk0zaNAgrc8Vi8WoWbMm9u/fDwC4fPkyihYtqtd9s1vJkiWz9VPE2UUqlar0yC5VqhTEYv7oIyIiIqLMZ6x/j+7Zswdnz54FAIwcORI9evQw1hT1duXKFaXHFy5cQMOGDTF8+PAMry1btiwuXrwofOjz/Pnz6Nq1q95zWbNmDQDg+++/R926dfUeh4iIiCi34fujyiQSCR4+fJjd08hW3+bf/FciJiYGPXv2xIsXLxAYGIh69epl95RgaWmJ2NhYAEDXrl21DvbMzc1RrFgx3Lt3DxKJBI8fP0aZMmW0vm9cXBz27dsHAKhRo4buE9dTqVKlhFDwa/5hIRaLv8lQUB2+FkRERESUnXT99+i1a9cwZcoUiEQi/Pbbb+jSpUsmzk57MplM6bGZmRkmTJig9XPr0KGDEApeuHABMTExcHJy0nkeb9++xYkTJwAAjRo14r/1iYiIiDLwLb8/KpfLs3sK2Y7tQ3OoqKgo9OjRA8+ePcPy5ctzRCAIANbW1sK2paWlTtfmzZtX2A4ODtbp2n/++UdoXfr999/rdK0hChQoIGx/uWYGERERERFRZnr8+DEGDhwImUyGmTNn5phAEIDKp8vbtWunU0eXypUrCy1GU1JScPPmTb3msXnzZiGgrFmzpl5jEBERERF9KxgK5kCfP39G9+7d8fLlS6xatUqr9e+yir29vbAdHx+v07WKgaKu1x45ckTYLlGihE7XGsKQORMREREREenr+fPn8PPzQ2xsLObNm4c2bdpk95SUWFlZKT2uX7++Ttfb2NggX758wuNHjx7pPAeJRILdu3cDANzd3VGkSBGdxyAiIiIi+pYwFMxhoqKi0LNnT7x58warVq1CpUqVsntKSry9vYXtiIgIna5VXI9QMWzLSFJSEi5dugQAsLCwUKrey2yKLXG+/KWXiIiIiIgoM7x48QLdu3dHdHQ0Fi1ahCZNmmT3lFR8+TtdUlKSzmM4ODgI2/p0Zjl//rzwe2nZsmV1vp6IiIiI6FvDUDAHiY2NRa9evfDq1SusXr0aFStWzO4pqShWrJiw/eLFC52uTUxMFLYVKw4zcu3aNSQkJAjXpbWY0YVMJsO0adNQtWpVdO/eXRgvI4rVgXZ2djrfl4iIiIiISBcvX76Er68voqKiEBgYiAYNGmT3lNRSDPQAaP07lqI8efII2/qEikePHhW2ixcvrvP1RERERETfGoaCOURycjIGDBiAp0+fYvny5ahQoUKG10gkEgwaNEivX770pRhUPn78WKdrIyMjhe3ChQtrfd2NGzeEbRsbG53umebAgQPYsGEDIiMjcenSJRw7dkyr6xTXPixatKhe9yYiIiIiItLGu3fv0KNHD0RGRmLx4sWoW7dudk9Joy9bdYaFhek8RnJysrCtz+96Z8+eFbYVu9oQEREREZF6DAVzALlcjrFjx+L69etYvHgxqlSpotV1Dx8+xMWLF2FpaZnJM/xPlSpVhE+Efvz4Uadg8N27dwAAT09PODs7a33drVu3hG19A9AvF63X9lOoz549E7bZjoaIiIiIiDJLaGgo/Pz8EB4ejoULF+boQBBI/b1OsdJP104ygPLvZbp2Znny5InShzi/rFwkIiIiIiJVDAVzgD/++AMHDx7EtGnTULt2ba2vO3z4MAoWLJiJM1MlFovRrFkz4fHBgwe1ui4sLAyhoaEAoHP7m+fPnwvbISEhOl2bRvEXTAcHB63ncPHiRQCAq6trjmznSkREREREX7/Y2Fj07t0b7969w+zZs7X+fSUsLAxXr17N5NmpZ2JigpIlSwqPnz59qvMYUVFRwnb+/Pl1ulaxowwA2Nra6nx/IiIiIqJvDUPBbHb69GksWbIE/fv3R5s2bbS+7v3799iyZYvGUPDDhw/o27cvKlSogBYtWuDChQvGmjL8/f1hZWUFANi4caPSL3KanDt3DgBgamqKbt26aX2v5ORkfPr0SXickpKi42xT1axZU9ju0qWLVp8ivXXrFt68eQMA+Omnn2BqaqrXvYmIiIiIiDSRSqUYMmQIHj16hEmTJil9CDMj+/btw7x58zJxdulTDC/v3LmDmJgYra9NTk5W+tCnNktoKLp9+7bSY31/VyQiIiIi+pYwFMxGoaGhGDNmDH744QcMGTJE6+tu3rwJPz8/xMXFaQwFx4wZg9OnTyM+Ph5PnjzBgAED8PHjR6PM283NTZhvbGwsAgIC0j1fLpdj3bp1AIAhQ4bo9AnQmJgYyOVyveeapnLlykIVZlqgmR65XI758+cDSP3Eap8+fQyeAxERERER0ZemTp2K8+fPY9CgQejUqZNO1168eDHLu8coaty4sbAtlUqV1vjLyJs3b4Tf9Tw8PODp6anTvb9cykLfrjJERERERN8ScXZP4FsWGBiIz58/49mzZ2jatKlW10RHRyM8PFx4rOkXwHv37ik9TkhIwN27d+Hh4aH/hBX4+fnh7du32LhxIw4cOID8+fNj2LBhEIlESufJ5XLMmjULDx8+ROvWrdGvXz+d7vNlIGhion+OPWfOHPTt2xdBQUFo0KABvLy81J4nk8kwe/ZsXL58GXZ2dli4cGGWrttIRERERETfhh07dmDLli1o3bo1Bg8erNO1Hz9+xMWLF9G/f3+N5xw6dAiBgYEIDQ1FjRo1MGnSJDg5ORk6bYGnpycaNmyIo0ePAgDWrVun9e+2ly5dErY7d+6s871fvXql9DguLk7nMYiIiIiIvjUMBbNRWFgYgNSKwbT19nSlKRT87rvvcOXKFeGxmZkZfHx89LqHJr/99huKFCmCuXPnYvny5bh16xZ69uwJHx8fSKVSPHz4EEFBQbhz5w5GjBiBvn376nwPZ2dnODg4IDIyUnisLwcHBwQFBWHRokVo06YN6tSpg7p166J48eJwdnZGYmIi7t27h6CgINy4cQOlSpXCjBkzlNbJICIiIiIiMoYnT55g6tSpKF++PKZOnarTtTKZDFOmTIFEItH4YccbN25gxIgRkMlkAFLXpA8PD8eGDRtUPsxpiJEjR+LUqVOQSCS4ffs2Tpw4gXr16mV43T///AMAcHR0RMeOHXW6Z1xcHENAIiIiIiI9MBT8ymkKBWfPno3Jkyfj6tWryJs3L0aMGGH0tjIikQhdunRB48aNcejQIRw/fhwBAQEICwuDhYUFChQogNq1a+P333+Hu7u73veYMmUKpk+fjqSkpHQ/BauNPHnyYMyYMfD19cXOnTuxZcsWvHjxAjExMbC2toaTkxMqVKiAnj17on79+gZVJhIREREREakjlUoxatQoiMViLFy4EObm5lpf++LFC8yZMwcnT54EoPl3wmPHjgmBYJqrV6/i1atXKFy4sP6T/4KXlxdGjhyJmTNnAgAmTJiAPXv2wM3NTeM1586dw5UrV2BiYoK5c+fC3t5ep3vGxsYaNGciIiIiom8VQ8FstHTp0kwbO1++fFixYkWmja/IxcUFvr6+8PX1zZTxf/zxR/z4449GHdPDwwODBg3CoEGDjDouERERERFRRg4cOIBHjx7BzMwMrVu31vq65ORkxMfHK+3TVCmoyZdBoTH06NEDYWFhWLlyJcLDw9G9e3esXLkSBQoUUDn3zp07GD58OMzMzBAQEICaNWvqfD9TU1OVfWZmZnrNnYiIiIjoW8JQkIiIiIiIiCgLpS2PIJFIhG19ODk5wdbWVu2xBg0aYO3atUohYPHixXUOEbU1cuRIlCtXDlOmTMGLFy/QsmVLdOrUCdWqVYODgwM+ffqEEydOYO/evfDy8sKUKVNQuXJlve7l4uICNzc3hISECPs8PDyM9VSIiIiIiHIthoJEREREREREX6FChQppPFaxYkXMmzcPixcvRnBwMCpXroyJEyeqrbIzloYNG6JmzZo4efIk/vnnH5w+fRo7duxAQkICXFxcULp0acyePRtNmjSBWGzY2xG///47Jk+ejODgYNStWxfff/+9kZ4FEREREVHuJZLL5fLsngQRGUdycjLu3r2rsr9MmTI6rVOSW0gkEty5c0dpX9myZdlaiIiIiIiyBP89SkRERETZif8eVcb3zwGT7J4AEREREREREREREREREWUuhoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLibN7AkRERERERES5kUgkgouLCywsLCASiSCXy2Fiws/mEhERERFR9mAoSERERERERJQJxGIxChUqlN3TICIiIiIiAsD2oURERERERERERERERES5HisFiYiIiIiIiDKBTJqM5OBXSA59C7kkESKzPDB39YR5Xi+YiM2ze3pERERERPSNYShIREREREREZESJH54i+uohxD28CHmKROW4yNQM1iWrwa5yU+TJVywbZkhERERERN8ihoJERERERERERiBLSkD48fWIuXk03fPkKRLE3juD2HtnYFuhIZzrd4eJhWUWzZKIiIiIiL5VXFOQiIiIiIiIyEDSmHC8Xzsmw0DwSzE3j+L92jGQxoRn0syIiIiIiIhSMRQkIiIiIiIiMoAsKQEfN06BJPy9XtdLwt/j46YAyJISjDwzIiIiIiKi/zAUJCIiIiIiIjJA+PH1egeCaSRh7xB+IshIMyIiIiIiIlLFUJCIiIiIiIhIT4kfnurcMlSTmBtHkPjhqVHGIiIiIiIi+hJDQSIiIiIiIiI9RV89ZOTx/jbqeERERERERGkYChIRERERERHpQSZNRtzDi0YdM+7hBcikyUYdk4iIiIiICGAoSERERERERJQuuVyOlLgoJH14hqRPL4T9ycGvIE+RGPdeKRIkh7w26phEREREREQAIM7uCRARERERERFlJ3mKBNKYCEijQiGNCkv9Mzrtz9R98n+r95zqdoWFuzcAIDn0babMJznkDfLkK5YpYxMRERER0beLoSARERERERHlerLkBCS+fgCJEPT9GwBGhyIl5jMAuXYDmf73a7Rckpgpc5VLkjJlXCIiIiIi+rYxFCQiIiIiIqKvllwuQ0pspFDZZ2JpA6vC5VTOS4mPxqdtMwy/YYpU2BSZ5TF8PDVEZhaZMi4REREREX3bGAoSERERERFRjiWTJgsVfYrVff+1+QwHZP8FdVbFKqkNBcW2TgBE0LoiUANJVIiwbe7qadBYmpi7FcyUcYmIiIiI6NvGUJCIiIiIiIiylVwuQ/yTq8pr+aW19oyL0mksaVSo2v0iUzOY2joiJSbCoLkmfXwubJvn9YLI1AzyFIlBYyoSmZrB3K2Q0cYjIiIiIiJKw1CQiIiIiIiIMoVcloKUmIh/1/ELA+Qy2Japo+ZMEUL2LYY82fA1+jSFggAgtnM1OBRMDn8PmSQJJmYWMBGbw7pkNcTeO2PQmIqsS1aHidjcaOMRERERERGlYShIREREREREepElJyi08fziz6hQSGMiALlMOF9s56I2FBSJRBDbuUAS9s7wOSXFQ5YYB5M81irHxPYuSHr/ON3rTfLYQGznArG9K8T2//6Z9tjOFaY29hCJTITz7So3NWooaFe5idHGIiIiIiIiUsRQkIiIiIiIiNIV/+w6ksPe/xv6/dfaU5YQq9M40pgIyGUpEJmYqhwT27saJRQEAGl0GMzVhIJmDnlhaucCsZ0LzNJCPzvF8M8VJhaWOt0rT75isK3QEDE3jxo8b9uKjZAnXzGDxyEiIiIiIlKHoSAREREREdE3SC6VKFf3xUTAsWZ7ted+Pr8TSe/Sr7DT7qYypMREQGzvqnJIbKe6T1cisTnE9q6QSZLUHneq2wVOdbsYfJ8vOdfvjsQ3DyAJf6/3GGYuBeBcz9eIsyIiIiIiIlLGUJCIiIiIiCiXkcvlkCXGfdHW89+Wnv+2+0yJi1S5zr5SEw1tN12NEwoitYpPbSioZt+XTK3tFVp5/lfdl9bq08TSFiKRyCjz1IWJhSU8ukzCx00BelU7mrkUgEfniTpXKRIREREREemCoSAREREREdFXLOH1PSS+e/Jf6PdvCChPTtR5LE1tN8V2LsaYKgBAEhWKPJ4lVfabOeaF2CGv2nX8Uv90homZhdHmYWxiW2fk7zEL4cfX69RK1LZiIzjX82UgSEREREREmY6hIBERERERUQ4jS078r8Lv36DPvnIzmFrbq5wb++A8Ym4cMcp9JVGhMHcrpLLfTIsqvoyYWFhBbO+qdj1BALApVQM2pWoYfJ/sZGJhCdem/rAtXx/RV/9G3MMLkKdIVM4TmZrBumR12FVuwjUEiYiIiIgoyzAUJCIiIiIiykJyuRyy+GhI1LT0TAsCZQkxKtdZepeHpZpQ0BiBXRppVKja/Rmv9yeCqa3jv1V9/1X4mf3b1lNs56K2LWlulSdfMeRpVQyyZv5IDnmN5JA3kEuSIDKzgLlbQZi7FYKJ2Dy7p0lERERERN8YhoJERERERESZJOnjC8Q/u5Ya+kX/G/5Fh0EuTdZ5LP0DOx3uER2m/h4ObjBzyqfc1jMt/LN3hdjWCSJTM6PNI7cwEZunBoSsBiQiIiIiohyAoSAREREREZEOZIlxkEaHpVb6/Rv22ZSsDguPIirnJn14is9nthrlvhoDO2O09rSyg9jOBaZWqpWIAGDu6gnP/oEG34eIiIiIiIiyD0NBIiIiIiKif8nlMqTEfP5vPT+ldf1SQ0BZUrzKdWI7F7WhoNjexWhz01gpmNE9TEwhtnVWaOup+qeJeR6jzZP+I5VK8f79e5ibm8PExAQymQxubm4wNVW/rmIauVyG6GuHAZEI9pWaZNFsiYiIiIgot2MoSERERERE3yTJ50+IuXNSobVnKKTREYBMqvNYmgM7Y673p75S0NTGEeZuhWBq6/zfGn7/rukntneFqY0DRCbph1CUOeRyOcLClP/eXFxc0g0FJZHBCD3wBxJf34dIbA5LrzIwdymQ2VMlIiIiIqJvAENBIiIiIiLKFeRyOWQJMf9W9v0X9Fl4+sDGp5rK+SlxkYg8t8Mo99a83p/hlYKmNo4Q27nA3NVT7XGRiSkK9Jlv8H0oe8nlMsTcOILw4xsglySm7pMmI3T/EuTrPp3BLhERERERGYyhIBERERERfRXkKVJIYyKUWnkqbUeHQS5JUrnONjlRbSgotjNiFZ+G9f5MLKxgkscassQ4tcdFpmaplX12itV9/27bu0Js6wyR2Mxo86ScK3jnXMQ/vqyyP+nDU0Rd3g+Haq2zflJERERERJSrMBQkIiIiIqIcJyUxDpEXdims6ReGlNjPgFym81iaAjtTGwfAxBSQpRg4W82VggBg6V0ecmmy0M5TcT0/U2s7iEQmBt+fvn5W3uXVhoIA8Pn0FlgV/V5jtSgREREREZE2GAoSEREREVGmk8tlSImN+m/tvqhQSKPDILZzUVsBJTIxQdTFPUa5t6bATmRiCrGtM6RRIfoNLDKB2NYpNeRzcINcLodIJFI5LW+b4fqNT98U2woNEffoEhJe3lY5Jk+RpLYR7TGDbUSJiIiIiEhvDAWJiIiIiMhgMmkyUqLDII0Kg0Qh9BP+jA4DUqQq11nkK6Y2FDQxt4SJpQ1kCbEGz00aHaYxsBPbu2oMBUVmef5t7ZlW4eciVPmZ2bvC1NaJAQ0ZjUgkgmuz/ni7YhjkyQkqx5M+PkPkxb1wrNE2G2ZHRERERES5AUNBIiIiIiLSWcTJjZBEfBSCv5S4SL3G0dTaE0hd8y/ZCKGgXJIEWUIMTK3sVI5ZFvoOplZ2SoFf2tp+JpY2aoNEoswitneFc8MeCDu4TO3xz2e2wrpYJZi7FczimRERERERUW7AUJCIiIiI6Bsnl6UgJSYC0ui0Kr/UoA9yGVyb9Vd7TeyDc5BG6tl2U0FK7GfIpRKIxGYqx8T2LkgOfqnfwKbi1IDv35BPnqJ+3UDH//2k3/hEmcS2XH3EPbyEhBc3VQ/KpAjZvwT5e8yAyJS/zhMRERERkW74WwQRERERUS4nS05Ubuf55XZMBCCXqVwnEpvDpam/5rabRggFgdRqQTMnD9V72LlqvMYkj/W/bT2/qPD7t8rP1MYeIpGJUeZHlJXS2oi+WzEUsqR4lePJn54j8uIeONZsnw2zIyIiIiKirxlDQSIiIiKiXCby0j4kvn2QWvEXHar3unxyaTJk8dEwtbZXOZZeYKcrTaFgngIlkJIQDbMv2nqK7V1gYmFltPsT5TRiO2c4N/RD6IE/1B7/fHY7rIpVgkVer6ydGBERERERfdUYChIRERER5WDyFAmk0eH/VfX9G/RJo0KRt+OvMBGbq1yT+PYh4p9cNcr9pdFh6kNBexe9xxSJzf+t6nP5d+0+W7Xn2ZSuCZvSNfW+D9HXzKZsXcQ9uoT4Z9dVD8qkCN2/BPn9ZrGNKBERERERaY2/PRARERERZaOUxDiFwE+hree/f6bERgKQq782Ohwm6tpuGhDYfUkaFQoLjyKq90ivtaeVnVJrT7Mv2nuaWNqqbUlKRP8RiURwaeqf2kY0MU7leHLwS0Se38V1MYmIiIiISGsMBYmIAFy/fh0HDx7E9evX8fHjR8THx8PGxgbOzs747rvvUL16dTRp0gTm5qrVGDnNo0ePcOjQIVy5cgWvX79GTEwMzMzMUKBAAdSsWRPdunVDvnz5tBpr0aJFWLp0qcFz2rNnD0qWLGnwOEREuUHM3VOIe3ABkn+DP7maNcO0JY0K1XktPl1JokLV7rfI6wWbMnUUwr7/1vYzMbMw2v2JvmViWyc4N+qJ0H2Bao9/Pr8DVsUrwcLdO4tnRkREREREXyOGgkT0Tbtz5w6mTZuGZ8+eoWXLlhg8eDDc3d0hkUjw8eNHnDt3Dvv27cOePXvw+++/Y8qUKahfv352T1utt2/fYvr06Th58iQqV66Mli1bwtvbGzY2Nvj06RNWr16NNWvWYMuWLZg+fTqaNm2a4ZjPnj0zeF4WFhZwcTFexQoRUU4ikyQpV/cJrT3D4NK4F8zdCqlcI4n4pL4doB6k0WFq94vt9Q8FRRZWMPu3rafY3hUWap4DAFjkKwq3loP1vg8Racfmu9qIe3gJ8U/VtASWpaS2Ee05GyJTs6yfHBERERERfVUYChLRNysoKAgzZ85ExYoV8ffffyNv3rxKxytUqICmTZuib9++6Nu3L16/fo2BAwdi4sSJ6Ny5czbNWr3Tp09jxIgRMDc3x9KlS1WCy++++w4+Pj6oX78+4uPjMWLECFhaWqJu3brpjvv06VOVfTY2NhCLM/7fR0JCApKSktC3b1+4uhqvYoWIKKvI5XLI4qOF0E+iJvyTxUdrvF4S8VFtKGjM1p6aqvjEdpruIYKpjaNKZV/an2b2rjDJY220+RGR4VLbiPbDuxUPIUuIVTmeHPIaMbdOwO77xtkwOyIiIiIi+powFCSib9LWrVsxffp0eHl5YdWqVbC0tNR4rpeXF1auXIlWrVohISEB06dPR+nSpVGuXLksnLFmZ86cwcCBA+Hg4ID169ejSBHVdZ8AwMzsv0+Py2QyBAYGphsKJicn482bNwAAJycnDB8+HI0bN4adnV2Gc5JIJGjevDnkcjn69u2r4zMiIso+8S9uI+rSXqHaTy5N1nssjYGdAVV8X5JquIeZoztsy9VXE/w5s5qI6CsktnGES+PeCNmzUGm/yNQMjnU7w7ZCg+yZGBERERERfVUYChLRNyc0NBSzZ88GAHTt2jXdQDBNoUKF0LFjR6xbtw5SqRRz587Fhg0bMnuqGXrz5g2GDx8OqVSKhQsXagwEAeDz589Kj62srNId+8WLF0hJSYGDgwO2bt2KggULaj2vTZs24dWrV1ixYsVXsQ4jEeVOsqR4oaovtcovVKj6s6/cDDalaqhekxyPhJe3jXJ/TYGdIev9mVjaKoV8eTzVr9dqamUL1+YD9L4PEeU81qVqwurhRcQ/vgwAsMhXDK4tBsHcpUA2z4yIiIiIiL4WDAWJ6Jtz4MABxMXFAUgN+7TVrFkzrFu3DgBw5coVfPjwAfny5cuMKWptwoQJiImJQd26dVGpUqV0z/Xx8UGvXr1w9uxZODk5YeTIkemen7ae4JgxY3QKBKOiorB06VJUq1YNtWvX1vo6IiJdyOUypMRGfrGeX6jSY1lSvMbrk73Kqt1vZkBg9yWN6/3ZOau/QGQCsZ2zSkvP1Fafqdsm5nmMNj8i+rqIRCK4/NgX7z88hX3lZrCv2gIiE9PsnhYREREREX1FGAoS0TfnwoULwvbTp0/xv//9T6vrfHx8YGpqipSUFADAtWvX0LJly0yZozZOnjyJy5dTPynepk0bra4ZPXo0Ro8erdW5T58+haurK1q1aqXTvJYtW4aoqCit70NEpK3k0LcI+2fVv8FfOCCT6j2WxsAuC1p7mphZwL5qS5ha2UJs5yqs72dq48g3+IkoXWIbB3j2XwITM4vsngoREREREX2FGAoS0TcnODhY2P7zzz/RqlUruLi4ZHidubk5bG1tERkZCQAICQnJrClqZfXq1QAAExMT1Kih2gLPUE+fPkX9+vVhaqr9G9Tv3r3Dxo0b0bx5c5QqVcrocyKi3EEul0OWEKtQ2adc4WdZpCKcandSuU5kaorE1/eMMgeNgZ2VHURic73WEjS1dhACPrGdK8zSaenn3KC7zuMTEQHIMBCUy+WAXMYPGRARERERkQqGgkT0zZHL5cJ2dHQ0tmzZgkGDBml1rZmZmbAtk8mMPjdtvX79GlevXgUAFClSBDY2Nka/x5QpU3S+ZuHChUhJSdH69SSi3EkuS4E0JhzSqDCVlp6pf4ZBLknUeL2prfr2mqZ2GX+AQ1uaQkGRSASxnQskER++uLlYoaVnavBnptDe09TOGSZirqFKRNlLGh2O0EN/wtytIJzrdcvu6RARERERUQ7DUJCIvjllypTBkydPhMeJiZrfmFaUkpIiVAkCgJubm7GnprVjx44J20WLFs2Ue7i66tZC79GjRzhw4ACaNWsGLy+vTJkTEeVcsuREfNoyDZKoUKTERABy/T84obGKT2wOU2sHpMRF6j22cI/ocMjlMohEJirH7Co1gTxForSmn6m1vdpziYhyArlcjti7pxF+ZDVkSfFIeHEL1sWrIE+BEtk9NSIiIiIiykEYChLRN2f48OGIjY3FzZs3UaBAAfz8889aXffkyRNIJBLhcZkyZTJrihlSXBfR09Mz2+ahaMGCBQAAf3//bJ4JERlCLpchJS5Kubov6r8qP7G9K9w7jFG5TmRmgaSPz/Vqu/klTev9Aalr/ukcCopMYGrrpFTZJ7ZzAWQpgKlq0GdfuamOMyYiyj7SmM8I+/tPxD+99t9OuQyh+5cgf++5XH+QiIiIiIgEDAWJ6Jvj4uKCxYsX63ydYnWel5cXihQpYsxp6eTu3bvC9pcVfffu3cOuXbtw7do1BAcHw8LCAi4uLihdujQaNWqEmjVrQiQSGXU+N27cwKlTp1C7dm0UK1bMqGMTkXHJpMlIiQ4XQj5JWuinsK4fUqSar0+KV7tfJBJBbO8CSfgHtcd1mmNCDGTJiTAxz6NyTGzngqQPT5XvbWahVNUn/Jm2vp+tM9fWIqJcSS6X4eOmyZCEvVM5Jon4gM+nN8O5QY+snxgREREREeVIDAWJiLQglUqxe/du4XHnzp2zbS6fPn1CVFSU8Nje3h4AEBMTg8mTJ+PAgQMq1wQHB+P+/fvYtm0bqlatihkzZqBAgQJGm9OiRYsAAF27djXamERkXJ+2zkDSx+cGt95Mr+2m2N7VKKFg6n3CYO6i+nPKpkxt5PH0UVjbzxUmljZG/7ADEdHXQCQygVOdLgjeMVvt8ajLB2Bd4gfk8fTJ4pkREREREVFOxFCQiEgLu3fvxvv37wFAp5ajmeHNmzdKj62trREREQFfX188ffoUZcqUQdeuXVG1alU4OzsjLCwMhw8fxpIlSxAXF4fLly/D19cX27dvh7Ozs8HzuXr1Ki5dugQvLy/UqlXL4PGISDO5LAUpsZ+Flp6SqFClCj95chIKDlqm9tqU+GijrMUHmRQpsZEQ2zqpHBLb6bYWKQDARAyxnfN/VX12qX+aWtmpPd26eGXd70FElItZl6gCm+/+h9h7Z9QclSNkfyAK9JnPNqJERERERMRQkIgoI9HR0Vi4cCEAwNTUFLNmzYK5uXm2zSckJETpsbm5OYYNG4bnz59j3Lhx6N69u1LFTL58+dCzZ0/UrVsXXbp0QXh4ON6/f4/Ro0dj9erVBs9n6dKlAID27duzUofIQLLkRIV1/BTW9BP+DAfksgzGSICJuaXKfrG9attNfUmjQtWHgvaqoaBJHmsNbT1TH5vaOKitOiQiIu05N+qJhFd3kRL7WeWY9PMnRJzcCJdGPbNhZkRERERElJMwFCQiysD06dMRFhYGABg/fjwqV87eKpXIyEilxwcOHMClS5cwefLkdCsYCxcujAULFsDX1xcAcO7cOZw7dw41a9bUey537tzBhQsXIBKJ0Lx5c73HIfoWyOVyAFAbnocdXonYB+chS4gx+D7SqDCYu3qq7FcX2Ol/j1CgQAmV/VZFKsIkjw3MFNbzM7GwMtp9iYhIPVNLW7g09Ufwtplqj0dfPQjrElVhWah0Fs+MiIiIiIhyEoaCRETp2LVrF/bs2QMAGDNmDLp06ZK9EwIQHx+v9Hj//v1o3LixVi1Nq1atioYNG+Lo0aMAgKCgIINCwZUrVwIAKleuDA8PD73HIcoN5CkSSKPDlSv7lLbD4DngD4jtVNv2ylOkRgkEgdTATm0oqEdrT5HYXKGl53+VfhYFiqs938LDGxYe3jrfh4iIDGddrBJsytZB7J1Tao+HHvgjtY2oeZ6snRgREREREeUYDAWJiDS4du0aJk6cCJFIhN9++y1HBIIAIJFIlB6bmZnh119/1fr6du3aCaHguXPnEBERAScn1TaAGXn79i2OHTsGAGjQoIHO1xN9bWSJcf+u4RemGvxFhf3bsk2e7hjS6FC1oaBRq/iiw9TuV9va08pOWMMvLfQzUwj/TKzs2BaYiOgr4tywJxJe3EFKbITKMWlkMCJO/gWXxr2zYWZERERERJQTMBQkIlLj8ePHGDhwIGQyGWbOnIk2bdpk95QEYrHyj+527drB3d1d6+srV64MkUgEuVyOlJQU3Lx5E/Xr19d5Hps3b4ZMlrq2mSHVhkQ5gVyWAgAQmZiqHIu8tA+fz22HPCle5ZiupFFhQAHV/WJ7F4PH/u8eoWr3W3gUgUtTf6WKPxMzC6Pdl4iIsp9pHmu4NuuPT1unqz0efe3v1DaiXmWyeGZERERERJQTMBQkIvrC8+fP4efnh9jYWMybNw9NmjTJ7ikpsbJSXp9L10DPxsYG+fLlw/v37wEAjx490nkMiUSC3bt3AwDc3d1RpEgRna4nymoySZJSG0+lSr/oUEijw+HeYSysilZUuVZkKjZKIAhoDuz0qRQUmVtCbO+qVNkntneBubv69p1iWyfYVWio832IiOjrYlW0ImzL1UPM7RNqj4ceWJraRtTCMotnRkRERERE2Y2hIBGRghcvXqB79+6Ijo7GokWLcmRbTGtra6XHSUlJOo/h4OAghIKfP3/W+frz588jIiK1LVXZsmV1vp7ImORyOWTx0UptPSUKbT2l0aGQxUdnOI4xAzud76FmvT9TG0elqr7/gr/U/0zzWKsZiYiICHBu0APxL24jJSZc5Zg0KgThJ4Lg2qRfNsyMiIiIiIiyE0NBIqJ/vXz5Er6+voiKikJgYCDq1q2b3VNSy8HBQelxQkKCzmPkyZNH2NYnVExbkxAAihcvrvP1RLqQp0ghl6WobXUZ9/gKQvYsgFyabPB9dFmLz+j3sHOGa/OB/4V+ts4Qic2Mdl8iIvq2mOSxhmvzAfi0eara4zE3jsDa5wdYFS6XxTMjIiIiIqLsxFCQiAjAu3fv0KNHD0RGRuboQBCASqvOsDD1IUN6kpP/C1BsbGx0vv7s2bPCtre3+laFRNqSJSX818ZTqdIvtfIvJfYznOp0hkN11bU9TSxtjBIIAsatFDSxtFVq6Zla6ecKc+f8as8XmZjCtlw9ne9DRESkiZV3edhWaPh/9u47TKr6bv/4faZt74XeRKQpKgKKoCjFgmA0RY1YABUbml+ij+VJbBgMPtYIFlBjJUosURGkqIgFFBQEQUAQ6WV7L9PO7w9kZN0Z2IXdOTOz79d1eTkzn1NuiEnGvfl+j8pXLgw6L3j/KbWf8JhscYlB5wAAAABiD6UggBYvPz9f48aNU2FhoR5//PGILgQlqUOHDoqPj1dNTY2kfVueNtaBqwNTU1Mbde4PP/ygvXv3Bt7/euUicCDT9MtXUfpL4Xfgs/z2b+1ZU3nI64Qu7LKbLKsnxD3s8Uky4hJ/ea6gYZMjJfOXVX2/2tbTkZolm4vnNAEArJc17ApV/7gy6Ep1b0WxaratU2K3kyxIBgAAAMAKlIIAWrSKigpdffXV2rFjhx5++OEGP0OwoKBAP/30k/r379/MCeuz2Wzq2bOnVq5cKUnauHFjo69RWloaeN2uXfCVS6GsWLGizvuUlJRG3x+xw+91y/TUyp5Q/58Dd8EO7XjuFsnnPeL7hCrsHClZkmGTTP8R3yPU1p6SlPubP8kenyRHarbsKZkybPYjvh8AAM3NFpeo7FE3aM+/J9X53JXbWTnn36S4Vp2tCQYAAADAEpSCAFosr9erm2++WevXr9d9992n8847r8Hnvvfee1qwYIFef/31ZkwY2vDhwwOl4OrVq1VeXt7gcs7tdisvLy/w/sQTT2zUvVetWlXnvc/na9T5iB6macpfXVFnW0/vAdt6esvy5assVVLvwWp1wZ/rne9IzmiSQlAKXdgZNrvsKZnyHaTQ+zV7UvqvVvhly5Gac9BtQpO69Wt0ZgAAIkFil+OV2vdsla2YL9nsSh/0O2UM+q0MO8+uBQAAAFoaSkEALdb999+vL774QhMnTtQll1zSqHOXLl2qjh07NlOyQzv77LP10EMPSdpXbn722WcaOXJkg87dtm2bTNOUJLVp00YdOnRo1L03bNhQ5/2BBSOii+n3yVdetO/5fUEKP29pgUxPzSGv4y0NXsjZfr3t5hHwlubLNE0ZhlFv5kzL+aUUtDt+KfsO+Lvz5/LPnpotm8N1xHkAAIgmmcMul7e8UBmnXay4NjwPGgAAAGipKAUBtEhvvvmmXn/9dV1wwQW66aabGnXu7t27tXTpUl1//fUhj5k7d66mTp2q/Px8DRo0SPfcc48yMzOPNHZAhw4dNGLECC1cuFCS9OKLLza4FPzyyy8Dry+99NJG33vLli113ldWHvp5cLCG310tf02lHKn1n7tn+n3a8n9jZPo8R3yfUM/7kyRnWrbceduO+B7mz78We0JyvVnmsCskSY7UHNmT02QYtiO+HwAAscTmSlDri+60OgYAAAAAi1EKAmhxfvjhB91///064YQTdP/99zfqXL/fr/vuu08ej0edO3cOesyKFSt0yy23yO/f94yzefPmqbCwUK+88krQVU6H69Zbb9Unn3wij8ejVatW6eOPP9bQoUMPed78+fMlSRkZGbr44osbdc/KykpKwAhhmn75Kkv3rewrq7/Cz1uWL391hZw5HdRhwuP1zjdsdtmT0g76HL2G8lUUy/R5Zdjrf61wpOY0vBQ0bLInZ8iRlhNY2bdvW899K/5scQlBT4tvd8yRxAcAAJJ8laWS3SF7fJLVUQAAAAA0E0pBAC2K1+vV//zP/8jhcOjxxx+Xy9XwbQQ3b96s//u//9OiRYskKeT2oR9++GGgENxv+fLl2rJli7p06XL44X+lc+fOuvXWW/WPf/xDkvS3v/1N77zzjnJzc0Oe8/nnn2vZsmWy2Wx6+OGHlZaW1qh7VlRUHFFmNJzp9ezb0vOAbT09pfnyleX//PfCBq3yO9i2m460nCYpBWX65S0vkjO9/j97Bz6nz3C46j3Db3/h50jNkSMlM2ixCAAAmlfF+qUq+GCGErv2Ve75jdtFAwAAAED04CdvAFqUOXPmaP369XI6nbrgggsafJ7b7VZVVd3nooVaKRjKr4vCpjB27FgVFBTo2WefVWFhoa688ko9++yzat++fb1jV69erb/85S9yOp2aNGmSBg8e3Oj72e32ep85nc7Dyt6SmaYpf22VfOWFcuUEL5d3vnC73Hlbj/xe7pqQ22460nKk7euO+B7SvvIxWCmYNuA8pRw/dN9Kv4SUJl0tCwAAjoyvqkwF859T5fdfSJIqvvtEST1OUdIx/a0NBgAAAKBZUAoCaFHKysokSR6PRyUlJYd9nczMTKWkpASdDR8+XC+88EKdEvCYY45pdInYULfeequOP/543Xfffdq8ebPOP/98XXLJJRo4cKDS09O1Z88effzxx3r33XfVuXNn3Xffferf//B+0JOdna3c3Fzl5eUFPmvTpk1T/VJihun3yVdRcsB2nr+s9Nu/8s90V0sy1OWO10Nsu5ndJKWgtK+wC1oKBnnWYEg2uxypWb+s6vvVar9ghaAkOTPbHm5sAADQjCo3fKWCD6bv2zb0AAVzn1F8hx6yJwT/rgsAAAAgelEKAsBh6NSpU8hZ37599cgjj+iJJ57Q3r171b9/f919991BV9k1lREjRmjw4MFatGiR5s+fr8WLF+vNN99UdXW1srOz1bt3bz344IM699xz5XAc2f/0P/TQQ7r33nu1d+9enXnmmTrppJOa6FcRPfye2p+Lvl9KvgO3+fSWF0p+XwOuZMpbXihneqt6kwO33TxS3rICxbWuv3XtgfewxSX+qujLkSM1O/B3e3K6DFvz/TMMAADCx/R5VPTxK/UKQUnyVZaocMG/lPubP1mQDAAAAEBzohQE0KJcfvnlGj9+fLPfZ+TIkRo5cmSz3+dACQkJYbnvKaeconnz5jXrPaxkmqb8VWXylObLldtRNkf9504WzH1GFWs+bZL7eUsLmr8ULM0P+nlS95MV3767HKnZssUnNdn9AABAZDPsTuWMmqhdL/9NkllvXrHmUyV1P0VJPU4OfzgAAAAAzYZSEADQopg+j7zlRb+s9CstqLfiz/S6JUntrno4+Aq7xmy7eQihCrvGlIKGw1VnVd/+LT0D71Ozgp5nT0qTPSntsHIDAIDoFt+hh9JOHq3Sr94LOi+YN13xHXvKnpga5mQAAAAAmgulIAAgpvjdNfKW7N33/L7SgjrP9POW5ctXXqxgfyI+GG9p/iG33TxSDSkFbYmpQUs/589bfdoSU2UYRpNlAgAALUPGkEtUtelreQp31Zv5KktVMP85tbrwLxYkAwAAANAcKAUBAFHDNP3ylRfLW1YgR3orOZLT6x1T9s08FX38SpPcz1t25Kv4Dn2PgqCfu3I7qf21/9y3tacrvsnuBwAAsJ/NGaec0Tdp10t/lUx/vXnl91+oosdAJfccaEE6AAAAAE2NUhAAEDH8ntqft/Hcv5Xnr1b7lRVJfq8kKWf0RKX0ObPeNZp2FV/wwq5RW3u64n9e4ffz6r60nAPe58gepNiU9v2QzpXd/nBiAwAANFh8u2OUdsr5Kl36TtB5wbwZSujYiy3HAQAAgBhAKQgACBu/u0aewp11ij5Pab58ZQXylObLX1XW4Gs1RWF36HuEWCl4wDMF7Unpv3qG38+l389bfdrik9jaEwAARLSM0y9W1cav5SnYUW/mrypTwbxn1ep3t1qQDAAAAEBTohQEADQJ0+eVt6JI3tJ82RPTgq5yq9m+Tnte/3uT3C90YdeEpWBFUdDPba54dbjhSTlSsmQ4nE12PwAAACvYHK5924i+eGfwbUTXL1XF918oudcgC9IBAAAAaCqUggBilmEYys7OVlxcnAzDkGmastlsVseKWv7a6l+28Qys9Nu3ws9bViBfeVHgh0hpJ49W1vCx9a7RtM/iC14K2pPTJLtD8nkPeQ1bQnJgW89fVvhlBz472DZZzozWh50dAAAg0sS3PVrpAy9QyZK3g84L5j2r+I69gz7TGQAAAEB0oBQEELMcDoc6depkdYyoYfo8qt3z08/P7iv4pfz7+b2/pqLB1wrP1p7B72EYNjlSs+UtyZMjJbPOVp6//rstLqHJ8gAAAES7jNMuUuXGr+XJ31Zv5q8uV8G8GWr1u/9ha3QAAAAgSlEKAkAL4Pe65SsrkLe0QIbDqfgOPesd46uu2LdlVBMItbWnzRknW2Jqo54dGIqvulymaQb9oVS7Kx+QLSFZhs1+xPcBAABoKQyHU7mjJ2rnC3cE3Ua0asNXqvz+cyX3Ps2CdAAAAACOFKUggJjl97rl3rtF7vztMj01MpzxcuV0kKtVZ9kcLqvjNRnTNOWvqThgVV/dFX7e0nz5KksCxyd06aM2l95T7zr2pIZvu3koobb2lPY988/dgFLQnpRWd0vPOqv8cvaVfiH+lPrBtv0EAABAaHFtuip90G9V8vmbQecF855TfMdj5UjJCHMyAAAAAEeKUhBAzKnZtVFly+eqct1SmT5Pvblhdyqp50Cl9h+p+LbdLEh4eGq2r5e3NH/fM/wC5d++4s901zT4OqFW8QW23Szec8RZfZWl8ntqZXPG1Zs50rLlztsqR2pWvWf47S/8HKlZQc8FAABA88sY/HtV/bBc7ryt9Wb2pFT5q8slSkEAAAAg6lAKAogZ/tpqFX70kspXLjzocabPo4o1n6pizadKOXGEsoZdaemz5fzuml+e2+epUXKPgUGP2/Pmg02y7aa3tCDktpuOtJwmKQVtcYnyVZXKlpZbb5Z7/k0ynHEyDNsR3wcAAABNz7A7lTP6Ju184XbJ79v/qdJOGa2M0y/hD28BAAAAUYpSEEBM8JYXavfM++Qp3Nmo88pXLlTNtu/VZsw9cqRkNXku0zTlqyyts5VnYIVfaYG8ZfnyV1cEjrcnpYUsBRu67eYhM/k88lWWypGcHvQeh2bInpJRbztPZ2DVX7Zs8Ukhz7a5rCtgAQAA0DBxrbsoY9DvVfzZLDkz2yhn9ETFt+9hdSwAAAAAR4BSEEDU89dWH1YhuJ+ncKd2/3uS2o2dctgrBmt2/iBPwY4Dir+CQPEXbAvTUA657eaeHw8r3695S/ODloLOtBwZDlfdrTwPLP/SsuVIyZJh5/8+AAAAYl36oN/KcLqU2u9cVgcCAAAAMYCf6gKIeoUfvXTYheB+noIdKvz4ZeWce22dz301lT+Xe/uKvtSTzg667WXxJ/9W9ZbvjijDft6yArmy2tX73JnWkFV8h2ZLTJW/tiroLH3QhUo/7Q9BtxYFAABAy2LYHUofeIHVMQAAAAA0EUpBAFGtZtfGQz5DsKHKVyxQyvFDFd+22773qxcpf/a0Osck9ThFjuSMeuc6mqiwk/Y98y9YKdige9jscqRmBV/h9/P7g/0pb8PuPJLoAAAAaGGqNq2QK7eTHKlNvxU/AAAAgKZFKQggqpUtn9vE1/tA8b/ZVwom9Rio/LnPSD5vYO4tLQheCjboWXwN4y3ND/q5IzVHRlyinGnZwUu/1BzZk9Nl2OxNlgUAAAAIxl9TqYKFL6pi9cdKOOpEtb7kr+w2AQAAAEQ4SkEAUcvvdaty3dImvWbluiXyn3edbA6XbK54uXI7yb37l+f4ecvypXbd6p3nSMtukvvbkzMk0x90lti9v7r0eKVJ7gMAAAAcrqofVyp/ztPylRdKkqo3r1T5qo+UesJwi5MBAAAAOBhKQQBRy713i0yfp0mvafo8cudtDWwhGtf6qLqlYGlB0PMasrWnYXfW2caz7kq/HDlSsmQ4Qm/fGexZhgAAAEC4+D21KlzwL5V/+2G9WeHCF5XY5fgm3VYfAAAAQNOiFAQQtdz525vnunnbAqWgIy23zizk1p5pObIlpAR5ht8v23zak9LYUgkAAABRy7A75M7bGnRmuquVP+dptf7jXXznBQAAACIUpSCAqGV6aprpurWB14GVe4ZNjpRM2VxxQc9xZrRW57+82Cx5AAAAgEhg2OzKGT1RO5+7NeiOHdU/rVL5yoVK7XuWBekAAAAAHAqlIICoZTjjm+m6vxR/yT0HKrnHKbKnZMqw2ZvlfgAAAEC0cGW3V8YZf1TRRy8HnRd+9JISjjpBzvTcoHMAAAAA1uEBVQCiliunQ/NcN7dj4PX+7UApBAEAAIB90gaMUly77kFnprtG+XOekmn6w5wKAAAAwKFQCgKIWq5WnWXYnU16TcPulCu3U5NeEwAAAIgl+7YRvVGGwxV0XrPlO5V9syDMqQAAAAAcCqUggKhlc7iU1HNgk14zqeepsoX44QYAAACAfVxZ7ZRxxqUh50UfvyxP8Z4wJgIAAABwKJSCAKJaav+RTXy9c5v0egAAAECsSus/UnHtewSdmZ5a5b/PNqIAAABAJKEUBBDV4tt2U8qJI5rkWil9z1J8225Nci0AAAAg1hk2u3IPto3otrUq+3pemFMBAAAACIVSEEDUyxp2pZxZ7Y7oGs7s9soaekUTJQIAAABaBmdmW2UOvSzkvOjjV+Qp2h3GRAAAAABCoRQEEPVscQlqM+YeObPbH9b5zuz2anPp3bLFJTRxMgAAACD2pfY7V/EdewWdmV638mZPk+n3hTkVAAAAgF+jFAQQExwpWWo3dkqjtxJN6XuW2o2dIkdKVjMlAwAAAGKbYdiUM+pGGc64oPPaHetVunxumFMBAAAA+DVKQQAxwxaXoJyR16ntuClKPnaIDLsz6HGG3ankY4eo7bgpyjn3WlYIAgAAAEfImdFamUMvDzkv/uTfchfuDGMiAAAAAL/msDoAADS1+LbdFP+bbvKfd53ceVvlztsm01MrwxknV25HuXI7yeZwWR0TAAAAiCmpJ52tyvVfqmbrmnqzlOOHypGSaUEqAAAAAPtRCgKIWTaHa19B2Lab1VEAAACAmLd/G9Edz/5ZprtGkuRIzVbOqBuV0KWPxekAAAAAsH0oAAAAAABoEs70XGUNvUKSlHLiCLWf8BiFIAAAABAhWCkIIGZ5vV7t3LlTLpdLNptNfr9fubm5stvtVkcDAAAAYlZK37Pkat1F8e2OsToKAAAAgANQCgKIWaZpqqCgoM5n2dnZlIIAAABAMzIMg0IQAAAAiEBsHwoAAAAAAMLG765RwYLn5c7fZnUUAAAAoEVhpSAAAAAAAAiL6m3fK3/2NHlL9qp2xwa1HfsPGTZ28gAAAADCgZWCAAAAAACgWfk9tSpY+IJ2v3K3vCV7JUm1u39UydJ3rA0GAAAAtCCUggAAAAAAoNn4Kku187lbVLbsfUlmnVnxp/+RO2+rNcEAAACAFoZSEAAAAAAANBtbYqocGW2CD/1e5b03VabPG95QAAAAQAtEKQgAAAAAAJqNYRjKGXmdbPFJQefuvT+pZMnbYU4FAAAAtDyUggAAAAAAoFk5UrOUddb4kPPiz99U7Z6fwpgIAAAAaHkoBQEAAAAAQLNLPnaIErv1Cz70+5Q/e5pMnye8oQAAAIAWhFIQAAAAAAA0O8MwlH3udbLFJwedu/O2qPjzt8KcCgAAAGg5KAUBAAAAAEBYOFIylH321SHnJV+8pdrdm8OYCAAAAGg5KAUBAAAAAEDYJPUerMTuJwcfmn7lzZ4q08s2ogAAAEBToxQEAAAAAABhYxiGss+ZIFtCStC5J3+bij9/I8ypAAAAgNhHKQgAAAAAAMLKkZyu7HOuCTkvWfJf1ezaFMZEAAAAQOyjFAQAAAAAAGGX1PNUJfUYGHxo+pU/e6r8Xnd4QwEAAAAxjFIQAAAAAACE3b5tRK+RLTE16NxTsEPFn84KcyoAAAAgdlEKAgAAAAAAS9iT0pR97oSQ89Iv35OneE8YEwEAAACxi1IQAAAAAABYJrnHQCX1GlTvc3tSulr9/jY5M1pbkAoAAACIPQ6rAwAAAAAAgJYt++yrVbN1jXyVpZKk5GNPV9ZZ42VPSLE4GQAAABA7WCkIAAAAAAAsZU9MVfY51wZWB+b+5k8UggAAAEATY6UgAAAAAACwXFKPk5VwVB/ZXAlWRwEAAABiEisFAQAAAABARDhUIWia/jAlAQAAAGIPpSAAAAAAAIh4Nbs2acezt6h62/dWRwEAAACiEqUgAAAAAACIWKbXo6JFM7XrxTvlyd+m/PeflN9dY3UsAAAAIOpQCgIAAAAAgIhUu3uzdvzrNpUseVv6eetQb/EeFX0y0+JkAAAAQPShFAQAAAAAABHHU7xHO1+8Q578bfVmZcvnqnrrWgtSAQAAANGLUhAAAAAAAEQcZ0ZrpRw3JOQ8//1p8rurw5gIAAAAiG6UggAAAAAAICJlDR8re0pW0Jm3JE9FH78a5kQAAABA9KIUBAAAAAAAEckWn6Sc864POS/7Zp6qf1odxkQAAABA9KIUBAAAAAAAESux64lKOWF4yHn+nKfkr2UbUQAAAOBQKAUBAAAAAEBEyxp+pRyp2UFn3tJ8FX70cpgTAQAAANGHUhAAAAAAAEQ0W1yiskfdEHJevnKBqjZ/G75AAAAAQBSiFAQAAAAAABEvscvxSul7Vsh5/pyn5a+pDGMiAAAAILpQCgIAAAAAgKiQNfQKOdJyg858ZQUq/PClMCcCAAAAogelIAAAAAAAiAq2uATlHGwb0VUfqWrTijAmAgAAAKIHpSAAAAAAAIgaCZ2PU+pJ54Sc5895Wj62EQUAAADqoRQEAAAAAABRJXPoZXKktwo681UUqXDhC2FOBAAAAEQ+SkEAAAAAABBVbK4E5Yy+MeS8auPX8laUhC8QAAAAEAUoBQEAAAAAQNRJ6Nhbqf1H1vs8sfvJaj/hcTmS08MfCgAAAIhgDqsDAAAAAAAAHI7MM8aoatMKeYv3yBafrOyzr1ZS78EyDMPqaAAAAEDEoRQEAAAAAABRyeaKV+7oiSr58l1ln3OtHCkZVkcCAAAAIhalIAAAAAAAiFrxHXqqdYeeVscAAAAAIh7PFAQAAAAAADHNW5pvdQQAAADAcpSCAAAAAAAgJpl+n4q/eEvbnpqoyvVfWh0HAAAAsBTbhwIAAAAAgJjjzt+u/NlTVbv7R0lS/gfTFd+hp+xJaRYnAwAAAKzBSkEAAAAAABAzTL9PJUvf0Y7nbw0UgpLkrypTwfznLEwGAAAAWItSEAAAAAAAxAx3/nYVLZop+bz1ZpXrlqhi3RILUgEAAADWoxQEAAAAAAAxI65VZ6UPvCDkvGDes/JVloYvEAAAABAhKAUBAAAAAEBMyTjtIjlzOgSd+avKVDBvhkzTDHMqAAAAwFqUggAAAAAAIKYYDqdyR02UjOA/9qhc/6Uqv/8izKkAAAAAa1EKAgAAAACAmBPX9miln/rbkPOC+c/KW1EcxkQAAACAtRxWB0BdGzZs0Ntvv61ly5Zpx44dqq6uVlJSknJzc3X88cdrxIgROv3002UYhtVR6/D5fFq0aJEWLlyo1atXa8+ePfJ4PEpPT9cJJ5ygSy+9VKeeeuohr/PTTz/pnHPOOaIsy5cvV2pq6iGPKy8v12uvvaaFCxdq06ZNMk1T7du314ABAzRmzBh17dr1iHIAAAAAAKyVcdrvVbVxudx5W+vN/NUVKvhgulr9/vaI+3dsAAAAoDmwUjBC7Nq1SzfeeKP++Mc/yul06q677tLcuXP10Ucf6ZlnntGIESO0YMECTZgwQb/73e+0dWv9f6GxyrJlyzRq1Cjdfffdatu2rR588EHNnz9f8+fP15/+9CctXrxY48aN0/333y+/33/Qa23atOmIsuTk5Cg+Pv6Qxy1ZskTnnHOOHnnkER199NF6+eWXNWfOHE2cOFFLly7VqFGjNH369CPKAgAAAACwlmF3Kmf0RMlmDzqv+mG5KtZ+FuZUAAAAgDVYKRgBVq1apWuvvVZZWVmaM2eO2rRpU2feqlUrnXjiibrooos0btw4rV27VhdffLHefPNNtW/f3qLU+8ycOVOTJ0/WkCFD9MADDygjI6PO/A9/+IPmzp2rJUuW6NVXX1VGRoYmTpwY8nobN26s8z4xMVE5OTmy2Q7eX5eUlKi4uFj/+7//K5fLddBjFy1apJtuukkej0e33HKLJkyYEJi1a9dOQ4YM0ZgxY/Too49q9+7duvfeew96PQAAAABA5IprfZTSB/1OJZ/9J+i8cP7zSuh0rBwpmWFOBgAAAIQXpaDFioqKdN1116mkpEQzZ86sVwgeqHXr1nrsscd04YUXqri4WLfddpv+/e9/hzFtXW+99ZYmTZqkYcOG6YknnpDDEfwfp7KyssDrDz74oEGlYE5Oju69916dccYZIa+7n9/v1+9//3v16tVLI0eOPOixW7du1V/+8hd5PB6dfvrpdQrB/RISEvT444/r3HPP1WuvvaaePXvq4osvPuh1AQAAAACRK2PQb1X1w3K59/5Ub+avqVDB3GfU6qI72UYUAAAAMY3tQy32zDPPqKioSN27d2/QM+x69OihwYMHS5K++eYbLVu2rLkjBrVlyxbde++9Sk9P15QpUw5a3LVq1Srwuk+fPge97qZNm5SUlKRXXnlFw4cPP2QhKElvv/22NmzYoL/97W+HPHbSpEmqqqqSzWbTbbfdFvK4jh07avTo0ZKkf/zjH8rPzz/ktQEAAAAAkemXbUSD/ztm1aZvVPHdJ2HNBAAAAIQbpaDF5s2bJ0nyeDwNPufUU08NvF60aFGTZ2qIKVOmyO126/e//71SU1MPeuyjjz6qp59+Ws8//7zuv//+kMd5vV799NNPGj9+vLp06dKgHJWVlXr88cd10UUX6aijjjrosV9//bU+//xzSft+D7t163bQ4y+88EJJUnV1tZ5++ukG5QEAAAAARKa4Vp2VcdofQs4LF/xL3rLCMCYCAAAAwotS0EJVVVXau3evJOnHH3/Up59+2qDzOnToEHi9bdu2Zsl2MMuXLw+UkWefffYhj4+Pj9fQoUM1ePDgg67827Jli3w+ny655JIGZ3nuuedUXV2tm2666ZDHPvvss4HXv/nNbw55fL9+/ZSeni5JeuONN1RRUdHgXAAAAACAyJM+8AK5Wgf/A6X+2irlz31apmmGORUAAAAQHpSCFqqurq7z/sEHH2zQeQkJCYHXbre7STM1xNtvvx3I0atXrya7rt1u1/XXX6/s7OwGHb9371698MILGjt2rDIzD/5A+PLycn3xxReB96eddlqD8pxwwgmS9v0+f/LJJw3KBQAAAACITIbdodzRN4XcRlSmX6a7JryhAAAAgDChFLRQZmamcnJyAu/3rxo8lOLi4sDrNm3aNHmug3G73frwww8lSV27dm3QM/8aqkuXLrr55psbfPwTTzwhu92uK6+88pDHLlq0KLBFa+fOnZWRkdGgexxYeu7/dQMAAAAAopcrt6MyTr+4zmeGK0HZI69T60vuki0uIcSZAAAAQHSjFLSQYRh6/PHH1b9/f3Xr1k233XZbg85bs2ZN4HX37t2bK15Q33zzjcrKyiRJnTp1Cuu9D/Tjjz/qv//9ry677LJDPtNQklauXBl4feyxxzb4Pgc+d3Dt2rWNCwkAAAAAiEjpA3+juDZHS5ISOh+n9hMeVeqJI2QYhsXJAAAAgObTdMu8cFj69eunV199tcHHm6apBQsWSJIcDofOPffc5ooW1Pr16wOvc3Nz68y++uorzZ07Vxs2bFBVVZUyMzPVsWNHDRs2TIMGDWrSVYWPPfaY7Ha7rrjiigYdv3HjxsDrdu3aNfg+B/4ad+zYoZqaGsXHxzc8KAAAAAAg4hg2u3JGT1TNtu+V0vcsykAAAAC0CJSCUWbRokXauXOnJGn48OGHfJZeU9uwYUPgdXp6uiRp9+7duuOOO/Tll1/WO37p0qWaNWuWevfurSlTpuiYY4454gxr1qzRwoULdcEFFygrK6tB52zatCnwum3btg2+14GloN/v15YtW9SjR4+Gh40QXq+3Rf5LrtfrbdBnAAAAQHPg+2hkM9JbKyG9Nf+ZAACAmMX30bpa8q99P0rBKOLz+fTPf/5TkpSYmKhbb7017BkOLNeSk5O1bds2jRkzRgUFBbrwwgt14YUXqnfv3rLb7Vq7dq2eeuopffHFF1q7dq3Gjh2rWbNmqUOHDkeUYerUqZKkyy+/vEHH+/3+Os9hTEtLa/C9kpOT67wvKSlp8LmRZN26dVZHiBjff/+91REAAADQgvF9NIqYppx718vTqofUAv+QJQAAiE18H23ZeKZgFHnppZcC23dOmjTpiMu1w1FaWhp4bRiGbr75Znm9Xs2cOVNTpkzRySefrOTkZCUkJKhfv356/vnndfHF+x7gXlhY2ODnJoayZs0affLJJ+revXuDnw1YVVVV531jtv+Mi4s76LUAAAAAALHHVlmk5GWvKvnb/8q1feWhTwAAAACiAKVglFizZo0effRRSdLtt9+u0aNHW5KjsrIy8Prtt9/W5s2bNX36dPXt2zfo8YZh6O677w5sG7pixQotWrTosO//9NNPS5LOP//8w8osNa4U/PWxv74WAAAAACCGmKbitn6t1CXPy1m8XZKUuOEj2apKrM0FAAAANAFKwSiQl5eniRMnyuv16u6779b48eMty3JgKbZmzRrdcMMN6tOnz0HPcTgcuvHGGwPvZ82adVj3/umnn/TRRx9JkkaNGtXg8379LD3TNBt8rt/vr/PeZuO/MgAAAAAQi2zVpUpePlOJ6xbI8HkCnxs+jxLXvC814t8lAQAAgEjEMwUjXFlZmSZMmKD8/Hz93//9X6NWyDUHj+eXfzFq06ZNgwvKoUOHKi4uTrW1tfr888/ldrvlcrkade+XXnpJpmmqe/fuat26dYPPS0pKqvO+pqamwefW1tYe9FrRomfPnnI6nVbHCDuv11tvj+xevXrJ4eB/+gAAAND8+D4aXTxFu7X3iz0KVv05i7api2+3UvqeE/ZcAAAAh4vvo3V5PB6tW7fO6hiWapn/yUeJ8vJyjR8/Xps3b9bUqVM1dOhQqyMpISFBFRUVkqTLLruswcWey+VSt27dtGbNGnk8Hm3YsEHHHXdcg+9bWVmp9957T5I0aNCgRmVOTEyUYRiBFYK/LvoOxu1217tWNHI4HC2yFAyG3wsAAABYie+jkcvZqqMyzxyjwoUvBJ2XLn5NKcf0lzOj4X9IFQAAINK05O+jjdlFMFaxF2KEKi0t1dixY7Vp0yZNnz49IgpBqe5KuYSEhEad26pVq8DrvXv3Nurc+fPnB7YuPemkkxp1rmEYSk9PD7wvLS1t8Lnl5eV13mdmZjbq3gAAAACA6JHaf6TiO/QMOjM9tcqfPU2m6Q86BwAAACIdpWAEKi4u1pVXXqmffvpJzz33nAYOHGh1pIC0tLTA66qqqkade2Ch2NhzFyxYEHjdvXv3Rp0rSV27dg283r17d4PPO7C8dDqd6tSpU6PvDQAAAACIDoZhU87oiTKccUHnNdvXqWz53DCnAgAAAJoGpWCEKS0t1fjx47Vt2zY999xz6tevn9WR6jjqqKMCr4uKihp17oHPI2zMs/lqa2v15ZdfSpLi4uLUvn37Rt1Xko4++ujA6127djX4vANLwY4dO7bYZdUAAAAA0FI4M1or88zLQs6LFs2Uu7Dh/14JAAAARApKwQhSUVGhq666Slu2bNHzzz+vvn37Wh2pnm7dugVeb968uVHn1tTUBF4fuOLwUL7++mtVV1cHzjMMo1H3laQ+ffoEXq9fv77B523cuDHw+vjjj2/0fQEAAAAA0Se13zmK79Q76Mz0upX//jSZfl+YUwEAAABHhlIwQrjdbt1www3auHGjpk+frhNPPPGQ53g8Hk2cODFQmIXDgUXlhg0bGnVuSUlJ4HWXLl0afN6KFSsCr5OTkxt1z/3OPPNM2e12SdKmTZtUUVHRoPPWrl0beD1s2LDDujcAAAAAILoYhk05o26U4YwPOq/dsUGly+aEORUAAABwZCgFI4Bpmrrjjjv0zTff6IknntCAAQMadN66deu0dOlSJSQkNHPCXwwYMEDp6emS9j2brzHF4I4dOyRJHTp0UFZWVoPP+/bbbwOvD7cAzczMDPy++v3+wHakB+N2u7Vq1SpJUmJiogYPHnxY9wYAAAAARB9neitlDbs85Lz4k3/LXbAjjIkAAACAI0MpGAGefPJJzZkzR3//+981ZMiQBp83b948dezYsRmT1edwOHTeeecF3s+Z07A/GVlQUKD8/HxJ0vDhwxt1zx9//DHwOi8vr1HnHmj8+PGB1++8884hj1+yZInKy8slSWPGjFF8fPA/IQoAAAAAiE0pfc9SQufjgs5Mn0f5s9lGFAAAANGDUtBiixcv1rRp03T99dfrwgsvbPB5O3fu1Ouvvx6yFNy1a5cmTJigE088UaNHj9aSJUuaKrKuu+46JSYmSpJmzpyp0tLSQ57z+eefS5Lsdrsuvzz0n7T8NbfbrT179gTe+3yH/y9bp59+uk4++WRJ0ieffKLt27cf9Pi33npL0r4tS6+++urDvi8AAAAAIDoZhk3Zo26Q4QqxjeiujSr9anaYUwEAAACHh1LQQvn5+br99tt1yimn6Oabb27weStXrtS4ceNUWVkZshS8/fbbtXjxYlVVVemHH37QDTfcoN27dzdJ7tzc3EDeiooKTZo06aDHm6apF198UZJ08803q127dg2+V3l5uUzTPOysvzZp0iSlpaXJ4/HooYceCnncmjVrtHDhQknSPffcE9gyFQAAAADQsjjTcpU1fGzIedHi1+TOP/gfOgUAAAAigcPqAC3Z1KlTVVxcrE2bNmnkyJENOqesrEyFhYWB96FKwTVr1tR5X11dre+++05t2rQ5/MAHGDdunLZv366ZM2fq/fffV7t27fTnP/9ZhmHUOc40TU2ZMkXr1q3TBRdcoGuvvbZR9/l1IWizHVmP3blzZ/3zn//UhAkTNH/+fL3yyiv1Vi6WlJTolltukWmaGjt2rM4///wjuicAAAAAILqlnDBcleuXqnrzqvpDn1f5s6eq7dh/yLDZwx8OAAAAaCBKQQsVFBRI2rdicP/z9horVCl47LHHatmyZYH3TqdTPXr0OKx7hHLXXXepa9euevjhhzV9+nR9++23Gj9+vHr06CGv16t169bp5Zdf1urVq3XLLbdowoQJjb5HVlaW0tPTVVJSEnh/pAYOHKiZM2fqT3/6kyZPnqyNGzfq4osvVkZGhr799ls9+uij2rVrl/7nf/6HbUMBAAAAADIMQznn3aDtM/4ss7aq7szhUvKxp0u/+kOyAAAAQKShFIxyoUrBBx98UPfee6+WL1+uVq1a6ZZbbgl57OEyDENjxozR2Wefrblz5+qjjz7SpEmTVFBQoLi4OLVv315DhgzRQw89pNatWx/2Pe677z5NnjxZtbW1uv7665ske58+fTRnzhy9++67mj17tiZMmKDKykq1a9dOp59+ui6//HJ16dKlSe4FAAAAAIh+jtRsZQ0fq4I5TwU+i2vfXTmjJsqV1dbCZAAAAEDDGGZTPrANgKXcbre+++67ep8fd9xxcrlcFiSylsfj0erVq+t81qdPHzmdTosSAQAAoCXh+2jsMU1Te2ZNVs2WNco481Kl9T+PLUMBAEDE4vtoXfz8nJWCAAAAAAAADWIYhnJGXi+/u1qu7PZWxwEAAAAahVIQAAAAAACggRypR/6sewAAAMAKNqsDAAAAAAAAxApvWYEK5j8v0+exOgoAAABQBysFAQAAAAAAjpBpmipf9bEKP3xRZm2VbAnJyjz9YqtjAQAAAAGUggAAAAAAAEfAW1ao/LlPq/rHlYHPSr54S0nH9Fdc66MsTAYAAAD8gu1DAQAAAAAADlP1lu+0Y8b/q1MISpL8PuXPnso2ogAAAIgYlIIAAAAAAACHyZndQbLZg87cedtU/NmbYU4EAAAABEcpCAAAAAAAcJgcyenKPueakPOSJW+rdtemMCYCAAAAgqMUBAAAAAAAOAJJPU9VUo9Tgg9Nv/JmT5XpZRtRAAAAWItSEAAAAAAA4AgYhqHscybIlpgadO4p2KHiz2aFORUAAABQF6UgAAAAAADAEbInpR18G9Gl76pm58YwJgIAAADqohQEAAAAAABoAsk9T1VSr0HBh6Zf+bOnyu91hzcUAAAA8DNKQQAAAAAAgCaSffbVsielBZ15CneqePHrYU4EAAAA7EMpCAAAAAAA0ETsianKPufakPPSL99TzY71YUwEAAAA7EMpCAAAAAAA0ISSepys5N6nhZiayp/9pPye2rBmAgAAACgFAQAAAAAAmljWWVfJnpQedOYp2qXixa+FNxAAAABaPEpBAAAAAACAJmZPTFH2yOtCzku/el8129eFMREAAABaOkpBAAAAAACAZpB0TH8lHzckxNRU/txnZJr+sGYCAABAy0UpCAAAAAAA0EyyRoyXPTmj3ueu1kep1YV/kWHwoxkAAACEB988AQAAAAAAmok9IVk5I6//5QObXRmnX6J2Y/8hV24n64IBAACgxXFYHQAAAAAAACCWJXY7Scl9zpR77xbljJ6ouFadrY4EAACAFohSEAAAAAAAoJlln32VDLtDht1pdRQAAAC0UJSCAAAAAAAAzczmSjjkMaZpyjCMMKQBAABAS8QzBQEAAAAAACxkmqYqvv9CO/91u/y11VbHAQAAQIxipSAAAAAAAIBFfJWlKpg3Q5Xrv5QkFX78snLOvdbiVAAAAIhFlIIAAAAAAAAWqFi3VAXzZshfVRb4rHzFAiV1P0WJRx1vYTIAAADEIrYPBQAAAAAACLOybz9U3tsP1ykE98uf85T8tVUWpAIAAEAsoxQEAAAAAAAIs+Seg+RIywk685UVqPDDl8KcCAAAALGOUhAAAAAAACDMbHEJyhl1Y8h5+bcfqurHlWFMBAAAgFhHKQgAAAAAAGCBhM7HKfWkc0LO8+c8JV9NZRgTAQAAIJZRCgIAAAAAAFgkc+hlcqTnBp35yotUuPDF8AYCAABAzKIUBAAAAAAAsIjNlaCcURNDzitWf6yqjd+EMREAAABiFaUgAAAAAACAhRI69VZq/5Eh5/lzn5avuiKMiQAAABCLKAUBAAAAAAAslnnGGDkyWged+SqKVbjwX2FOBAAAgFhDKQgAAAAAAGAxmyteOaNulGQEnVd8t1iVPywPbygAAADEFEpBAAAAAACACJDQsZfSBpwXcl4w9xn5qsrDmAgAAACxhFIQAAAAAAAgQmSccamcmW2CznyVJSpc8HyYEwEAACBWUAoCAAAAAABECJszTjmjJyrkNqJrP1Pl+i/DGwoAAAAxgVIQAAAAAAAggsS376G0U0aHnJd+/YFM0wxjIgAAAMQCSkEAAAAAAIAIk3H6JXJmtav7oWFT2sAL1PqSv8owgq8kBAAAAEKhFAQAAAAAAIgwgW1EjX0/unFmtVXbKycra+jlsjlcFqcDAABANHJYHQAAAAAAAAD1xbc7RukDL5Dp9yrj9Etkc8ZZHQkAAABRjFIQAAAAAAAgQmWccSlbhQIAAKBJsH0oAAAAAABAhGpIIeitKGn+IAAAAIh6lIIAAAAAAABRyFddobz3pmrHjP9HMQgAAIBDohQEAAAAAACIMlWbvtGOGX9WxXefyF9droJ5M2SaptWxAAAAEMF4piAAAAAAAECU8NdUqmDhi6pY/XGdz6s2fKXKtZ8r+djTLEoGAACASMdKQQAAAAAAgChRtnJhvUJwv4L5z8lbXhzmRAAAAIgWlIIAAAAAAABRIm3AeXLldg4689dUqOCDZ9hGFAAAAEFRCgIAAAAAAEQJw+5Uzvk3STZ70HnVxq9VsWZxmFMBAAAgGlAKAgAAAAAARJG4Vp2VMfgPIeeFC/4lb1lhGBMBAAAgGlAKAgAAAAAARJn0Uy+Uq/VRQWf+mkrlz2UbUQAAANRFKQgAAAAAABBlDLtDuaMnSjZH0Hn1jytUsXpRmFMBAAAgklEKAgAAAAAARCFXbidlnH5RyHnBwhfkLSsIYyIAAABEMkpBAAAAAACAKJU+8ALFtekadGbWVil/ztNsIwoAAABJlIIAAAAAAABRy7DZlTP6JskeYhvRzd+q/NuPwpwKAAAAkYhSEAAAAAAAIIq5cjoo8/RLQs4LP3xRntK8MCYCAABAJKIUBAAAAAAAiHJpp5yvuLbdgs5Md7UK3n+KbUQBAABaOEpBAAAAAACAKLdvG9GJMuzOoPPqLd+pfMWCMKcCAABAJKEUBAAAAAAAiAGu7PbKOOPSkHO2EAUAAGjZgj+FGgAAAAAAAFEnbcB5qtzwpWp3bAh85kjLVc6oG5TQ+TgLkwEAAMBqrBQEAAAAAACIEYbNrpxRE2U4XJKk1L5nq/2ERykEAQAAwEpBAAAAAACAWOLKaqvsc66RIzVbCV36WB0HAAAAEYJSEAAAAAAAIMakHD/U6ggAAACIMGwfCgAAAAAA0ML43dWq3vKd1TEAAAAQRpSCAAAAAAAALUj1lu+0Y8ZftGfWA/IU7bI6DgAAAMKEUhAAAAAAAKAF8LtrVDD/Oe2eea+8pXkyvW7lzX5Spt9ndTQAAACEAaUgAAAAAABAjKve9r12PPsXlX39QZ3Pa3esV+nyORalAgAAQDhRCgIAAAAAAMQ4T/42eUv2Bp0Vf/Ka3IU7w5wIAAAA4UYpCAAAAAAAEONS+p6l+M7HBZ2ZXrfyZ09jG1EAAIAYRykIAAAAAAAQ4wzDppzzbpDhig86r935g0q/mh3mVAAAAAgnSkEAAAAAAIAWwJmeq6xhV4acFy9+Xe787WFMBAAAgHCiFAQAAAAAAGghUk4coYQuxwedmT4P24gCAADEMEpBAAAAAACAFsIwDOWcd70MV0LQee3uTSpZ+m6YUwEAACAcKAUBAAAAAABaEEdajrJGjA05L/5sltx528IXCAAAAGFBKQgAAAAAANDCpBw/TAlHnRh86PMqb/Y0mT5veEMBAACgWVEKAgAAAAAAtDD7txG1xSUGnbv3/KiSpe+ENxQAAACaFaUgAAAAAABAC+RIzVLWiHEh58WfvaHavVvCFwgAAADNilIQAAAAAACghUruc6YSjz4p+NDvVT7biAIAAMQMSkEAAAAAAIAWyjAMZY+8Trb4pKBz996fVPLF22FOBQAAgOZAKQgAAAAAANCCOVIylXXW+KAze3Km4toeHeZEAAAAaA4OqwMAAAAAAADAWsnHDlHlui9VtXH5L5/1OUNZw8fJnpBsYTIAAAA0FUpBAAAAAACAFm7fNqLXaseMdTJsDmWPvE5Jx/S3OhYAAACaEKUgAAAAAAAA5EjOUOs/3ClndjvZE1KsjgMAAIAmRikIAAAAAAAASVJ8hx5WRwAAAEAzsVkdAAAAAAAAANGhZucPKl0+1+oYAAAAOAysFAQAAAAAAMBB+b1uFX86S6VfvidJimt3jOLbHm1xKgAAADQGKwUBAAAAAAAQUs2uTdr5/P+odOk7kumXTL/yZ0+V3+u2OhoAAAAagVIQAAAAAAAAQZUsfUe7XrxTnoIddT73FOxQ8aezLEoFAACAw0EpCAAAAAAAgKAcGa32rQ4MovTL91Sz84cwJwIAAMDhohQEAAAAAABAUMk9Biqp9+Dgw/3biHpqwxsKAAAAh4VSEAAAAAAAACFln3W17EnpQWeewl0qXvx6eAMBAADgsFAKAgAAAAAAICR7Yoqyz7025Lz0q9mq2b4+jIkAAABwOCgFAQAAAAAAcFBJ3Qco+djTQ0xN5bGNKAAAQMSjFAQAAAAAAMAhZZ01XvbkjKAzb/EeFX3y7zAnAgAAQGNQCgIAAAAAAOCQ7Akpyh55Xch52bI5qt62NoyJAAAA0BiUggAAAAAAAGiQpG79lNznjBBTU/mzn5TfXRPOSAAAAGggSkEAAAAAAAA0WNaI8bInZwadeUv2qmjRq2FOBAAAgIagFAQAAAAAAECD2eOTlHPe9SHnZV9/oOot34UxEQAAABqCUhAAAAAAAACNknh0X6UcPyzkPP/9p+R3V4cxEQAAAA6FUhAAAAAAAACNljX8StlTsoLOvKV5Kv70P2FOBAAAgIOhFAQAAAAAAECj2eKTlDPqhqCzpB6nKH3gBeENBAAAgINyWB0AAAAAAAAA0SnxqBOUcuIIla9cKEmyJaQo+5xrlNTzVBmGYXE6AAAAHIhSEAAAAAAAAIcta9iVqt78rVytj1L2ORPkSE63OhIAAACCoBQEAAAAAADAYbPFJajt2CmyJ6WxOhAAACCC8UxBAAAAAAAAHBFHcvohC0HTNMOUBgAAAMFQCgIAAAAAAKDZmD6vij/7jwo+mGF1FAAAgBaN7UMBAAAAAADQLNx5W5X33lS59/4kSUo6pp8Sjz7J4lQAAAAtEysFAQAAAAAA0KRMv0/FX7ylHc/fFigEJSl/zjPyVVdYmAwAAKDlohQEAAAAAABAk8p7958q/uTfkt9b53NfRZEKP3zBolQAAAAtG6UgAAAAAAAAmlTqSedIMoLOKlZ/osofloc3EAAAACgFAQAAAAAA0LQSOvZS6oDzQs4L5j4jX3V5GBMBAACAUhAAAAAAAABNLvOMS+XMbBN05qssUeGCf4U5EQAAQMtGKQgAAAAAAIAmZ3PGKWfURIXcRnTNp6rc8FV4QwEAALRglIIAAAAAAABoFvEdeijt5NEh5wUfTJevqiyMiQAAAFouSkEAAAAAAAA0m4whl8iZ1TbozFdZqoL5z4U5EQAAQMtEKQgAAAAAAIBmY3PGKWf0TZIR/MdQld9/oYp1S8OcCgAAoOWhFAQAAAAAAECzim93jNJOOT/kvGDeDPkqS8OYCAAAoOWhFAQAAAAAAECzyzj9Yjmz2wed+avKVDD/2TAnAgAAaFkoBQEAAAAAANDsbA7XwbcRXbdUFd9/EeZUAAAALQelIAAAAAAAAMIivu3RSh94Qch5wbxn5a0oCVseAACAloRSEAAAAAAAAGGTcdpFcuZ0DDrzV5erfNVHYU4EAADQMlAKAgAAAAAAIGwMh1O5oyfW20bUiEtU9nk3KP3U31qUDAAAILZRCgIAAAAAACCs4tp0VfqgX8q/hKOOV4cJjyn1hGEyDMPCZAAAALHLYXUAAAAAAAAAtDwZg3+vmq1rlXzcEKWcMJwyEAAAoJlRCgIAAAAAACDsDLtTbS6/nzIQAAAgTNg+FAAAAAAAAJY4VCFo+n3y11SGKQ0AAEBsoxQEAAAAAABAxHEX7tKuV+5S3rv/lGmaVscBAACIemwfCgAAAAAAgIhhmn6VLZ+rokUzZXrdkqSK1YuUcvxQi5MBAABEN0pBAAAAAAAARARP0W7lv/+karavq/N54cIXlNDleDlSsyxKBgAAEP3YPhQAAAAAAAARIX/O0/UKQUny11Ypf87TbCMKAABwBCgFAQAAAAAAEBGyz7lasgff2Kp680qVr/oozIkAAABiB6UgAAAAAAAAIoIrp6MyT7845Lxw4YvyluaHMREAAEDsoBQEAAAAAABAxEg75TeKa9st6Mx0V7ONKAAAwGGiFAQAAAAAAEDEMGx25YyeKMPuDDqv/mmVylcuDHMqAACA6EcpCAAAAAAAgIjiym6vjDP+GHJe+NFL8pTkhTERAABA9KMUBAAAAAAAQMRJGzBKce26B52Z7hrlz3lKpukPcyoAAIDoRSkIAAAAAACAiLNvG9EbZThcQec1W75T2TcLwpwKAAAgelEKAgAAAAAAICK5stop44xLQ86LPn5ZnuI9YUwEAAAQvSgFAQAAAAAAELHS+o9UfIeeQWemp1b577ONKAAAQENQCgIAAAAAACBiGTa7ckYdZBvRbWtV9vW8MKcCAACIPpSCAAAAAAAAiGjOzDbKHHpZyHnRx6/IU7Q7jIkAAACiD6UgAAAAAAAAIl5qv3MV37FX8KFhyJ23NbyBAAAAogylIAAAAAAAACKeYdj2bSPqjK/zeXyHnmp/9SNK6nGKRckAAACiA6UgAAAAAAAAooIzo3VgG1HD4VLWiHFqc/kkOTPbWJwMAAAg8jmsDgAAAAAAAAA0VOpJZ8tbslcpJ54lV1Zbq+MAAABEDUpBAAAAAAAARA3DsClr+FirYwAAAEQdtg8FAAAAAABATPGU5slTtNvqGAAAABGFUhAAAAAAAAAxwTRNla1cqB0z/qy8d/8p0++zOhIAAEDEYPtQAAAAAAAARD1vWYHy5zyl6s2rJEm1uzaq9Mv3lH7qhRYnAwAAiAyUggAAAAAAAIhapmmqYvUiFSx8QWZtVZ1Z0aevK7HbSXLldLQoHQAAQORg+1AAAAAAAABEtYrvv6hXCEqSfF7lvTdNps8b/lAAAAARhlIQAAAAAAAAUcswDOWcd4NscYlB5+49P6pk6TvhDQUAABCBKAUBAAAAAAAQ1RypWcoaMS7kvPizN+TO2xrGRAAAAJGHUhAAAAAAAABRL7nPmUro2jf40O9V3ntT2UYUAAC0aJSCAAAAAAAAiHqGYShn5HWyxScFnbv3/qSSJW+HORUAAEDkoBQEAAAAAABATHCkZinrrPEh58Wfv6naPT+FMREAAEDkoBQEAAAAAABAzEg+dogSu/ULPvT7lD97qkyfJ7yhAAAAIgClIAAAAAAAAGKGYRjKPvc62eKTg87deVtV/PlbYU4FAABgPUpBAAAAAAAAxBRHSoayz7465Lzki7dUu3tzGBMBAABYj1IQAAAAAAAAMSep92Aldj85+ND0K2/2VJlethEFAAAtB6UgAAAAAAAAYo5hGMo+Z4JsCSlB5578bSr+7D9hTgUAAGAdSkEAAAAAAADEJEdyurLPuSbkvGTpO6rZtSmMiQAAAKxDKQgAAAAAAICYldTzVCX1GBh0Fte6i2yu+DAnAgAAsIbD6gAAAAAAAABAc9m3jeg1qt62Vv6qsn0f2hzKOP0ipQ+8QIbNbm1AAACAMGGlIAAAAAAAAGKaPSktsI2oq1UXtb/q/5Qx6HcUggAAoEVhpSAAAAAAAABiXnLPU6XfSknHDJBh50diAACg5eEbEAAAAAAAAFqE5J6nWh0BAADAMmwfCgAAAAAAgBbPNE2Vr/lUNTs2WB0FAACgWbBSEAAAAAAAAC2at6JEBR9MV9UPy+TMbKN2Vz8imzPO6lgAAABNipWCAAAAAAAAaJFM01TF919ox4z/p6oflkmSPEW7VfzJvy1OBgAA0PRYKRhhNmzYoLffflvLli3Tjh07VF1draSkJOXm5ur444/XiBEjdPrpp8swDKuj1uHz+bRo0SItXLhQq1ev1p49e+TxeJSenq4TTjhBl156qU499fD27Xe73Zo3b54++ugjff/998rLy5PP51NOTo5OOukkXXnllTruuOMOeZ0dO3Zo2LBhh5XB6XRqxYoVcrlch3U+AAAAAACILKbPq7x3Hlfl+qX1ZqXL5iix+8lK6NjLgmQAAADNg1IwQuzatUuTJ0/W0qVLdemll+quu+5Shw4d5Pf7tWvXLn322Wd69dVX9cYbb6h379567LHH1KlTJ6tjS5KWLVume+65R6Wlpbr44os1ZswYtW7dWh6PR0uWLNGkSZO0cOFCXXbZZfrrX/8qm63hC1QXLFigyZMny+Fw6JJLLtG1116r3NxcVVVVad68eXr00Uc1Z84c/fnPf9aECROa7dfYtWtXCkEAAAAAAGKIYXfIcIXaItRU/vtPqv3Vj8jmig9rLgAAgOZCKRgBVq1apWuvvVZZWVmaM2eO2rRpU2feqlUrnXjiibrooos0btw4rV27VhdffLHefPNNtW/f3qLU+8ycOVOTJ0/WkCFD9MADDygjI6PO/A9/+IPmzp2rJUuW6NVXX1VGRoYmTpzYoGs/8sgjmjFjhi666CL97//+rxISEurMJ0yYoDfffFNbt27VI488otzcXF1wwQWHvG6bNm0UH9+4L/SDBg1q1PEAAAAAACDyZY0Yr+rNq+WrKKo38xbvUdGimco++yoLkgEAADQ9SkGLFRUV6brrrlNJSYlmzpxZrxA8UOvWrfXYY4/pwgsvVHFxsW677Tb9+9/W7XH/1ltvadKkSRo2bJieeOIJORzB/3EqKysLvP7ggw8aVApOnTpVM2bM0JgxY3T33XeHPO7Aa8+dO7dBpeCDDz6ok08++ZDHAQAAAACA2GaPT1LOeddpz6wHgs7Lvp6rpB6nKKFT7zAnAwAAaHoN38cRzeKZZ55RUVGRunfvrq5dux7y+B49emjw4MGSpG+++UbLli1r7ohBbdmyRffee6/S09M1ZcqUkIWgtG+l4359+vQ55LWXLVumJ598Ul26dNGdd9550GMbe20AAAAAAIADJR59klKOHxpynv/+NPnd1WFMBAAA0DxYKWixefPmSZI8Hk+Dzzn11FP16aefSpIWLVqkAQMGNEu2g5kyZYrcbreuuOIKpaamHvTYRx99VEuWLJHL5dIpp5xy0GP9fr8eeOABmaapK664Qk6n86DHv/LKK/rqq6+UlpZmye8DAAAAAACIflnDx6pq8yr5ygvrzbwleSr6+FVln3ONBckAAACaDisFLVRVVaW9e/dKkn788cdA0XcoHTp0CLzetm1bs2Q7mOXLl2vRokWSpLPPPvuQx8fHx2vo0KEaPHjwQVcUStJ7772ndevWSZLOOuusQ147NTVVI0aMoBAEAAAAAACHzRafpJzzrg85L/tmnqp/Wh3GRAAAAE2PUtBC1dV1t5548MEHG3ReQkJC4LXb7W7STA3x9ttvB3L06tWrWa7duXNnZWdnN+m1AQAAAAAAQknseqJSThgecp4/5yn5a9lGFAAARC9KQQtlZmYqJycn8H7/qsFDKS4uDrxu06ZNk+c6GLfbrQ8//FCS1LVr10Ou/GuM/Px8LV++XJLUvXv3JrsuAAAAAABAQ2QNv1KO1OB/SNlbmq/Cj14OcyIAAICmQyloIcMw9Pjjj6t///7q1q2bbrvttgadt2bNmsDrcJdn33zzjcrKyiRJnTp1atJrL168WH6/v1muDQAAAAAAcCi2uERlj7oh5Lx85QJVbf42fIEAAACaUNMt88Jh6devn1599dUGH2+aphYsWCBJcjgcOvfcc5srWlDr168PvM7Nza0z++qrrzR37lxt2LBBVVVVyszMVMeOHTVs2DANGjTokKsKQ13bNE0tWrRICxcu1MaNG+XxeJSdna2jjjpKw4cP18knn3xYvxav16v3339fixcv1nfffafCwkKZpqk2bdro9NNP15gxY9SxY8fDujYAAAAAAIhOiV2OV0rfs1S+YkHQef6cp9Xhmkdli08KczIAAIAjQykYZRYtWqSdO3dKkoYPH67MzMyw3n/Dhg2B1+np6ZKk3bt364477tCXX35Z7/ilS5dq1qxZ6t27t6ZMmaJjjjmmUdfeuHGjbrvtNn3//ff1jv/888/18ssva+DAgfrHP/7RqK1UCwsLdf3112vVqlWSpJSUFGVkZKigoECbN2/W5s2b9frrr+vOO+/UJZdc0uDrRiqv1yvDMKyOEXZer7dBnwEAAADNge+jQPRKPe2PqvpxpXyl+fVmvrIC5S94QZnnXmtBMgAAGo7vo3W15F/7fpSCUcTn8+mf//ynJCkxMVG33npr2DNs2rQp8Do5OVnbtm3TmDFjVFBQoAsvvFAXXnihevfuLbvdrrVr1+qpp57SF198obVr12rs2LGaNWuWOnTo0KBrr169WmPHjpXH49Hll1+u0aNHq1u3bvL7/frmm2/0z3/+U2vXrtXSpUsD195fJh5MVVWVxo0bp5KSEt11110aOXJkoFx1u92aN2+eJk+erJKSEt1zzz2y2Wy66KKLjuw3zmLr1q2zOkLECFYwAwAAAOHC91EgejiOGaGU5f8OOqv8bpH2xLeRN6tzeEMBAHCE+D7asvFMwSjy0ksvBbbYnDRpUshyrTmVlpYGXhuGoZtvvller1czZ87UlClTdPLJJys5OVkJCQnq16+fnn/+eV188cWS9q3OO9hzEw+8dnV1tW666SZlZWXpnXfe0d/+9jcdf/zxSkxMVHJysoYMGaJZs2ZpyJAhkqQtW7bo73//e4N+DQ8++KC8Xq/++9//6rLLLquz2tLlcun888/XK6+8ovj4eEnS5MmTtWXLlgb/HgEAAAAAgOjnzeqsmo4n1fvclKHqo06VN6O9BakAAAAOH6VglFizZo0effRRSdLtt9+u0aNHW5KjsrIy8Prtt9/W5s2bNX36dPXt2zfo8YZh6O677w5sG7pixQotWrSo3nE1NTXy+XyB988//7xqamr0r3/9S127dg16bafTqUceeUTZ2dmSpPfff7/OcwlD2blzp6ZOnaqsrKyQxxxzzDG65pprAtmmTp16yOsCAAAAAIDYUn3MmfIlpAfe+5KzVT7wStUcc4ZkYwMuAAAQXSgFo0BeXp4mTpwor9eru+++W+PHj7csy4Gl4Jo1a3TDDTeoT58+Bz3H4XDoxhtvDLyfNWvWQa+7/9p/+9vfDrkaMiUlJfD7YZqm3nzzzZDHpqen6/rrr9c999wTsmg80KWXXiq73S5Jmj9/fp2VjAAAAAAAoAVwuFR13CiZhk01XQaqbOB4+dLaWp0KAADgsBimaZpWh0BoZWVluuKKK7Rx40b94x//0Pnnn29pnl69egVW9LVp00YLFiyQy+U65Hlut1v9+vVTbW2tnE6nVqxYUee8PXv2BLYClaQTTjghaHkYzK5du3TmmWdKktq1a6ePP/64Mb+kg/rjH/+oFStWSJJmzJhRJ2Mkcrvd+u677+p93rNnTzmdTgsSWcvr9dbbI7tXr15yOPjTnAAAAGh+fB8FYoe3rECO1GyrYwAA0Ch8H63L4/Fo3bp19T4/7rjjGtRzxIKW+Z98lCgvL9f48eO1efNmTZ06VUOHDrU6khISElRRUSFJuuyyyxr8XxSXy6Vu3bppzZo18ng82rBhg4477rg61z3Q2LFjG5ypbdu2ysjIUHFxsXbu3KmioqI6zwk8Er169QqUgt9//33El4KhOByOFlkKBsPvBQAAAKzE91EgOjmz2lgdAQCAJtGSv4+yRo7tQyNWaWmpxo4dq02bNmn69OkRUQhKUlJSUuD1r4u8Q2nVqlXg9d69e0NeV5ISExMP+9p5eXmNOvdg2rf/5aHhxcXFTXZdAAAAAAAQG3zV5cp795+q3LDM6igAAAAHxUrBCFRcXKxx48Zp27Zteu6559SvXz+rIwWkpaUFCr2qqqpGnXtg8ffrcx0Oh5KSkgLPFvz1MwYbc+3GntvQ6zb21wsAAAAAAGJb5Q/LVTD3GfkqS1T902rFd+gpe2KK1bEAAACCYqVghCktLdX48eMjshCUpKOOOirwuqioqFHnejyewOtfrwxs7msfLr/fH3jd2NWLAAAAAAAgNvlqKpU3e6r2vjFFvsqSfZ9VlqhgwXPWBgMAADgISsEIUlFRoauuukpbtmzR888/r759+1odqZ5u3boFXm/evLlR59bU1ARep6WlhfXa1dXVuuWWWzRgwAD96U9/avDewQeuDkxNTW1UJgAAAAAAEHv87hrtfPYvqlj9Sb1Z5drPVbn+y/CHAgAAaABKwQjhdrt1ww03aOPGjZo+fbpOPPHEQ57j8Xg0ceJEVVdXhyHhPgcWlRs2bGjUuSUlJYHXXbp0Oei1169f36hr73/eX2JionJzc+vNX3zxRb3//vsqLS3VvHnztHLlygZd98BnHx599NGNygQAAAAAAGKPzRWvpF6DQs7zP5guX2VpGBMBAAA0DKVgBDBNU3fccYe++eYbPfHEExowYECDzlu3bp2WLl2qhISEZk74iwEDBig9PV2StHv37kYVgzt27JAkdejQQVlZWfXmw4YNk91ulyStWrVKpaUN+wJdW1urgoICSVKfPn0C1zjQr0vA2traBl1706ZNgdd9+vRp0DkAAAAAACC2ZQy5RM6sdkFn/qoyFcxnG1EAABB5KAUjwJNPPqk5c+bo73//u4YMGdLg8+bNm6eOHTs2Y7L6HA6HzjvvvMD7OXPmNOi8goIC5efnS5KGDx8e9JjMzEyddtppkiSv16t58+Y16NobNmwIbAca6topKb885Ltz584NelZjbW2tVqxYIUk67rjj1LZt2wblAQAAAAAAsc3mcCln9E2SEfxHa5Xrlqji+y/CnAoAAODgKAUttnjxYk2bNk3XX3+9Lrzwwgaft3PnTr3++ushS8Fdu3ZpwoQJOvHEEzV69GgtWbKkqSLruuuuU2JioiRp5syZDVrR9/nnn0uS7Ha7Lr/88pDH/fnPf5bNtu8fyxkzZsjj8Rzy2p9++qmkfc/8++1vfxv0mP1loyRNmDBBTqfzkNf98MMPA88U/OMf/3jI4wEAAAAAQMsR366b0gdeEHJeMO9ZeStKwpYHAADgUCgFLZSfn6/bb79dp5xyim6++eYGn7dy5UqNGzdOlZWVIUvB22+/XYsXL1ZVVZV++OEH3XDDDdq9e3eT5M7NzQ3kraio0KRJkw56vGmaevHFFyVJN998s9q1C769hiT16NFDY8aMkbRvu9EnnnjioNeurq7W66+/Lkm6++67lZSUFPS4kSNHqmfPnpIUKDQPpra2VtOmTZMknXDCCY0qbAEAAAAAQMuQcdpFcuZ0CDrzV5erYN6MwO5GAAAAVnNYHaAlmzp1qoqLi7Vp0yaNHDmyQeeUlZWpsLAw8D5UKbhmzZo676urq/Xdd9+pTZs2hx/4AOPGjdP27ds1c+ZMvf/++2rXrp3+/Oc/yzCMOseZpqkpU6Zo3bp1uuCCC3Tttdce8tp33nmndu7cqY8//ljPPvus2rZtG3Slntfr1R133KH8/Hxdf/31Gj16dMhrulwuTZs2TVdddZWeeuop9e/fX9nZ2UGPdbvduv3227V582a1adNGDz/8cGD1IgAAAAAAwH6Gw6ncURO188U7JdNfb1614StVfv+FknsPtiAdAABAXZSCFiooKJC0b8Xg/uftNVaoUvDYY4/VsmXLAu+dTqd69OhxWPcI5a677lLXrl318MMPa/r06fr22281fvx49ejRQ16vV+vWrdPLL7+s1atX65ZbbtGECRMadF273a4nnnhCzzzzjKZPn657771XS5Ys0aWXXqquXbuqpqZGK1eu1L/+9S/t3r1bU6ZMadBKvvbt22vWrFl68MEHdfbZZ+uss87SGWecoS5duigrK0tlZWVasWKFXnzxRf3www86+eST9cADD6h9+/ZH+lsFAAAAAABiVFzbo5V+6m9V8sWbQecF859VfKfeciRnhDkZAABAXYbJHgaWueGGG/TRRx8d0TU++eSToKv/du3apXvvvVfLly9Xq1atdMstt2jEiBFHdK9QCgoKNHfuXH300Ufavn27CgoKFBcXp/bt22vIkCG65JJL1Lp168O69o4dOzRnzhx98skn2rVrlwoLC5WUlKQuXbpo6NChuuiii5Sent7o627evFlvvfWWli1bpq1bt6qyslIpKSnKycnRSSedpBEjRmjQoEGHldlKbrdb3333Xb3PjzvuOLlcLgsSWcvj8Wj16tV1PuvTp0+DnikJAAAAHCm+jwIth+nzaOe/bpc7b2vQeeIx/dXq97fX22EJAIDmxPfRuvj5OaUgEFP4H7W6+D89AAAAWInvo0DLUrtns3a+cIfk9wWd55x/s1KOGxLmVACAlozvo3Xx83OJB6UBAAAAAAAARyiu9VFKH/S7kPPCBc/LW14UxkQAAAB1UQoCAAAAAAAATSBj0G/latUl6MxfU6mCuc+ITbsAAIBVKAUBAAAAAACAJmDYncoZPVGyOYLOqzatUO2uTWFOBQAAsA+lIAAAAAAAANBE4lp1Vsbg39f73JHeSm0uv0/x7bpZkAoAAEAK/seWAAAAAAAAAByW9FMvVOUPy+Tes1mSlNrvXGWeeZlsrniLkwEAgJaMlYIAAAAAAABAEzLsDuWOvknOrLZqM+ZeZZ99NYUgAACwHCsFAQAAAAAAgCbmyu2o9hMel2GzWx0FAABAEisFAQAAAAAAgGZxqELQ766WaZphSgMAAFo6SkEAAAAAAAAgzKp/Wq0dM/6s8m8/tDoKAABoIdg+FAAAAAAAAAgTv7taRR+9orIV8yVJhR++qISjjpczLdfiZAAAINaxUhAAAAAAAAAIg+qta7Rjxl8ChaAkme4aFbz/FNuIAgCAZkcpCAAAAAAAADQzX1WZ9rw+Wd7SvHqz6i3fqXzFAgtSAQCAloRSEAAAAAAAAGhm9sRUZZzxx5Dzwo9elqdkbxgTAQCAloZSEAAAAAAAAAiDtP7nKa59j6Az01Oj/PeflGn6w5wKAAC0FJSCAAAAAAAAQBgYNrtyR98ow+EKOq/ZulZlX88LcyoAANBSUAoCAAAAAAAAYeLMbKvMM8eEnBctelWe4j1hTAQAAFoKSkEAAAAAAAAgjFL7j1R8h55BZ6anVvmzp7GNKAAAaHKUggAAAAAAAEAYGYZNOaMnynDGBZ3XbF+nsuVzw5wKAADEOkpBAAAAAAAAIMycGa2VeeZlIedFi2bKXbgrjIkAAECsoxQEAAAAAAAALJDa7xzFd+oddGZ63cp/f5pMvy/MqQAAQKyiFAQAAAAAAAAsYBg25Yy6UYYzPui8dscGlS6bE+ZUAAAgVlEKAgAAAAAAABZxprdS1rArQs6LF78md8GOMCYCAACxilIQAAAAAAAAsFBK37OU0Pm4oDPT61b+bLYRBQAAR45SEAAAAAAAALCQYRjKHnWDDFfwbUS95UXyluaHORUAAIg1lIIAAAAAAACAxZxpucoaPrbe5ynHD1WHCY/JmdE6/KEAAEBMcVgdAAAAAAAAAICUcsJwVa5fqurNq2RPzlTOedcp8eiTrI4FAABiBKUgAAAAAAAAEAEMw1DOeTeo+PO3lHnmGNkTkq2OBAAAYgilIAAAAAAAABAhHKnZyhl5rdUxAABADOKZggAAAAAAAEAUqd21SabPa3UMAAAQZSgFAQAAAAAAgCjg99Sq8MOXtPOFO1Sy5L9WxwEAAFGG7UMBAAAAAACACFez8wflz54qT+EuSVLx528q8Zj+imvV2dpgAAAgarBSEAAAAAAAAIhQfq9bhR+/ol0v/TVQCP48UP7saTJ9HuvCAQCAqEIpCAAAAAAAAEQof3Wlyld+KJn+ejP33p9U/MXbFqQCAADRiFIQAAAAAAAAiFCOlAxlnX1VyHnJF2+pdvfmMCYCAADRilIQAAAAAAAAiGDJvU9T4jEDgg/9PuW/P5VtRAEAwCFRCgIAAAAAAAARzDAMZZ87QbaE5KBzd942FX/2ZphTAQCAaEMpCAAAAAAAAEQ4R3KGss++JuS8ZMnbqt21KYyJAABAtKEUBAAAAAAAAKJAUq9BSupxSvCh6Vfe7KkyvWwjCgAAgqMUBAAAAAAAAKKAYRjKPmeCbImpQeeegh0q/mxWmFMBAIBoQSkIAAAAAAAARAl7UpqyzznINqJL31XNzh/CmAgAAEQLSkEAAAAAAAAgiiT3PFVJPU8NPjT9yp89TX6vO7yhAABAxKMUBAAAAAAAAKJM9jnXyJ6UFnTmKdyp4sWvhzkRAACIdJSCAAAAAAAAQJSxJ6Yq+5xrQ85Lv3xPNTvWhzERAACIdJSCAAAAAAAAQBRK6nGyknoPDjE1920j6qkNayYAABC5KAUBAAAAAACAKJV91tWyJ6UHnblaHyXT5w1vIAAAELEoBQEAAAAAAIAoZU9MUfa5dbcRtSWmKve3t6rVhX+RPT7JomQAACDSOKwOAAAAAAAAAODwJXUfoOTjhqjiu8VK6nGKss+ZIHtSmtWxAABAhKEUBAAAAAAAAKJc1ojxSuzWT0k9BsowDKvjAACACEQpCAAAAAAAAEQ5e0KyknueanUMAAAQwXimIAAAAAAAABDjTJ9HJV++J7+72uooAADAIqwUBAAAAAAAAGJY7d4tyn9vqtx5W+Qt2avsc66xOhIAALAApSAAAAAAAAAQg0yfVyVL/qviz9+Q/D5JUtk385TU4xQldD7O4nQAACDc2D4UAAAAAAAAiDGekr3a+eKdKv709UAhuF/++0/JX8s2ogAAtDSUggAAAAAAAECMsSekyFdVFnTmLc1T4ccvhzkRAACwGqUgAAAAAAAAEGNscYnKGXVDyHn5igWq2rwqjIkAAIDVKAUBAAAAAACAGJTY5XilnHhWyHn+nKfkr60KYyIAAGAlSkEAAAAAAAAgRmUNu0KOtJygM19ZgQo/fCnMiQAAgFUoBQEAAAAAAIAYZYtLUM6oG0POy7/9UFU/rgxjIgAAYBVKQQAAAAAAACCGJXQ+TqknnRNynj/nKflqKsOYCAAAWIFSEAAAAAAAAIhxmUMvkyM9N+jMV16kwoUvhjcQAAAIO0pBAAAAAAAAIMbZXAnKGTUx5Lxi9ceq2vhNGBMBAIBwoxQEAAAAAAAAWoCETr2V2n9kyHn+3Gfkq64IYyIAABBOlIIAAAAAAABAC5F5xhg5MloHnfkqilS48IUwJwIAAOFCKQgAAAAAAAC0EDZXvHJG3SjJCDqv+O4TVf6wPKyZAABAeFAKAgAAAAAAAC1IQsdeShtwXsh5wdxn5K+pDGMiAAAQDpSCAAAAAAAAQAuTccalcma2rfe5LS5RmUMvkxGXaEEqAADQnCgFAQAAAAAAgBbG5oxTzui624gmdD1R7Sc8rpQ+Z8owgm8vCgAAopfD6gAAAAAAAAAAwi++fQ+lnTJaZSs/VNbwsUo5fihlIAAAMYxSEAAAAAAAAGihMk6/RGn9z5MjNdvqKAAAoJlRCgIAAAAAAAAtlM0ZJ5szzuoYAAAgDHimIAAAAAAAAICg3AU7tGfWA/JVllodBQAAHCFKQQAAAAAAAAB1mH6fSr58Tzufu1VVm75RwbwZMk3T6lgAAOAIsH0oAAAAAAAAgABP0S7lzZ6m2h0bAp9Vrv9SleuWKLnXIAuTAQCAI8FKQQAAAAAAAACSpJod67Xj2VvqFIL7FcybIW9FsQWpAABAU6AUBAAAAAAAACBJimvdVc7M1kFn/uoKFXzANqIAAEQrSkEAAAAAAAAAkiTD4VTOqJskI/iPDat+WKbKtZ+HORUAAGgKlIIAAAAAAAAAAuLaHKX0Qb8LOS+Y/5y85WwjCgBAtKEUBAAAAAAAAFBHxuDfyZXbOejMX1Ohgg+eYRtRAACiDKUgAAAAAAAAgDoMu1M5598k2exB51Ubv1bFd4vDnAoAABwJSkEAAAAAAAAA9cS16qyMwb8POS9c8Ly8ZYVhTAQAAI4EpeAhTJs2zeoIAAAAAAAAgCXST/2tXK26BJ35a6uUP5dtRAEAiBaUggcxbdo0Pfnkk1bHAAAAAAAAACxh2B3KPf8myeYIOq/+cYUqVi8KcyoAAHA4IrIU3Lt3r9UR9NRTT7FKEAAAAAAAAC2eK7eTMk6/KOS8YOEL8pYVhDERAAA4HBFXCu7du1dXXHGFpRneeOMNPfHEE5ZmAAAAAAAAACJF+sALFNema9CZWVul/DlPsY0oAAARLqJKwf2F4LZt2yzNMWLECHXv3t3SDAAAAAAAAECkMGx25YyeKNlDbCO6eZXKv/0wzKkAAEBjREwpuL8Q3Lp1q9VRlJ6erpdeeoliEAAAAAAAAPiZK6ejMk+/JOS8+NNZ8nvdYUwEAAAaI2JKwc8///yQhaDb7dZrr70Wljzp6el68MEHw3IvAAAAAAAAIBqknXK+4tp2q/d5fKfeanvlZNkcLgtSAQCAhoiYUvB3v/ud7rjjjpBz0zR1yy236P7779fy5cvDksnl4ksMAAAAAAAAsN/+bUQNu3Pfe2ecss66Sm3G3CtneiuL0wEAgIMJvgm4RcaOHSuPx6NHH3203mzy5MlauHChJOmKK64IdzQAAAAAAAAAklzZ7ZVxxh9V9cNy5Yy6Uc7MNlZHAgAADRAxKwX3GzZsWL3P3G63Nm3aJEkyDEOmaYbtLwAAAAAAAAB1pQ0YpTaXT6IQBAAgikTUSsFQXC6XnnvuOf3tb3/Tu+++q2uuuabeMaWlpXrjjTd09dVXN/kMAAAAAAAAwC8Mm/2Qx/i9bp4xCABABImKUlCSHA6HrrnmGr377ru65ZZb6s1//PFHvfHGG80yAwAAAAAAANAwpmmqfMUCFX/2H7W9crKcGa2tjgQAABSB24cejGEYETMDAAAAAAAAUJenNE97Xpukgnkz5KssUf77T8o0/VbHAgAAirJSEAAAAAAAAEDkMU1TZSsXaseMv6j6p9WBz2u2fa+yrz+wMBkAANiPUhAAAAAAAADAEanasEwFc5+R6a6uNyv6+FV5inZZkAoAABzI0lLQ5/NZeXsAAAAAAAAATSCxe3/Fd+oddGZ63cqb/aRMPz8LBADASpaVgrW1tRo7dqxqamqsigAAAAAAAACgCRiGTTnn3SDDGR90XrtjvUqXzw1zKgAAcCCHVTf+z3/+o+XLl2v8+PHq1auXEhISlJCQoKqqKknSa6+9pri4OMXHxwf+XlBQYFVcAAAAAAAAAAfhzGitrGGXq2Des0HnxZ/8W4lH95Urq12YkwEAAMmiUtDj8ej555+XYRhauXKlVq5cWWdumqYmTZpkRTQAAAAAAAAAhyml71mqXP+lqrd8V29met3Knz1Nba/4uwyb3YJ0AAC0bJZsH/rOO+9oz549Mk0z6F+SDjoDAAAAAAAAEHkMw6bsUTfIcIXYRnTnDyr9anaYUwEAAMmilYK9e/fWq6++KqfTKZvNJtM05ff7VVtbq61bt+qee+7R1KlTVVtbq5qaGtXU1Ki2tla7du3SzJkzrYgMAAAAAAAAoAGcabnKGnalCj6YHnRevPh1JXbrJ1d2+zAnAwCgZbOkFOzVq1fIWU5OjiRp+PDh9WabN2+mFAQAAAAAAAAiXMqJI/ZtI/rTqnoz0+fZt43olZPZRhQAgDCyZPtQAAAAAAAAALHLMAzlnHe9DFdC0Hntro0q/fLdMKcCAKBloxQEAAAAAAAA0OQcaTnKGjE25Lzo01ly520LXyAAAFo4SkEAAAAAAAAAzSLl+GFKOOrE4EOfV3mzp8n0ecMbCgCAFsqSZwoerpqaGpmmqXfeeafeLC8vT5KaZQYAAAAAAACg8fZvI7pjxv+Tv7aq3ty950eVLH1HGYN/b0E6AABalogtBX0+n+z2ug8anj59uiTpzjvvDHlec8wAAAAAAAAAHB5HapayRoxT/vtPBp1Xb/5W6adeKMNmDzoHAABNI2JLwbKyMmVkZATef/nll5o/f74kyTTNsOUwDCNs9wIAAAAAAABiUXKfM1W5/ktVbfrmlw/tDmWefonSTjmfQhAAgDCI2FKwtLS0TikYFxenqVOnKi4uTnFxcXK5XHK5XHI4HHI4HM1S3m3fvl3XXXddk18XAAAAAAAAaEkMw1D2yOv2bSNaU6m4Nl2VM3qiXDkdrY4GAECLEZGloGma2rBhgzp37hz47MQTQzyQOAzcbrdcLpdl9wcAAAAAAACinSMlU9lnXyNPaZ7SB17A6kAAAMLMZnWAUL7//nurIwSUl5dbHQEAAAAAAACIesnHnqaMQb+jEAQAwAKWloKvvvpq4DmBB+rQoYMuvfRSCxLVZ5qmCgsLrY4BAAAAAAAAxDzTNFW7d4vVMQAAiEmWlYJ79+7VY489pilTpqisrCzweXp6ul599VW1atXKqmj1rFu3zuoIAAAAAAAAQEzzlhdr7xtTtPP5/1Ht7h+tjgMAQMyxrBR84IEHVFlZqT179uiMM87Qfffdp02bNikzMzOiCkFJKigosDoCAAAAAAAAEJNM01TFms+0Y8b/U9XGryXTr7zZU2V6PVZHAwAgplhSCi5evDiwbahpmqqqqtLrr7+u0aNH68orr9SCBQvk9/uDnrtnz55wRtU555yjcePGhfWeAAAAAAAAQEvgrSjR3rceUt67j8tfUxH43JO/XcWf/cfCZAAAxB5LSsFTTz1VL730kq6++mp1795d0r5y0DRNLVu2TH/605905plnatq0acrLywuct2XLFl1wwQXasmVLWHK2a9dOjz76aFjuBQAAAAAAALQ0NdvXqWrDV0FnJUvfUc2uTWFOBABA7DJM0zStDrF9+3YtWLBACxYs0KpVqwKfG4Yhu92uM844Q3/4wx/0yiuv6PPPP1dKSopSU1ObPMf+YtLv98vr9crj8ai2tlZut1sPPfSQRo0a1eT3BJqS2+3Wd999V+/z4447Ti6Xy4JE1vJ4PFq9enWdz/r06SOn02lRIgAAALQkfB8FgIbZ+/bDqly3NOjMmd1e7a56SDZHy/u5BgAcKb6P1sXPzyWH1QEkqUOHDrrqqqt01VVXafv27Xr33Xc1e/Zsbd26VV6vVx999JE++ugjSfuKwvLycpWXl4c14wcffEApCAAAAAAAADSx7LOvUfXWtfJXldWbeQp2qPjTWcoaerkFyQAAiC0RUQoeqEOHDpo4caImTpyoFStW6PXXX9eCBQtUU1MjaV8paBiGUlJSNHjw4Ca7r2ma8vl88nq9gVWCbrc78NeuXbvk8XhabIMOAAAAAAAANAd7Upqyz52gvLceDjov/fI9JR0zQPHtu4c5GQAAsSXiSsED9e3bV3379tXf/vY3vfPOO5o5c6a2bt0qSSovL1dpaanuv/9+tW3b1uKkAAAAAAAAAA5Xco+Bquw1SJXff1F/aPqVP3ua2l39sGzOuPCHAwAgRtisDtAQqampuuKKKzRv3jw9+eST6t+/v0zT1JIlSzR69Gi9/vrrVkcEAAAAAAAAcASyz75G9qT0oDNP0S4VL+ZngAAAHImoKAX3MwxDw4YN0yuvvKL//Oc/GjJkiCorK3Xffffp+uuvV3FxsdURAQAAAAAAABwGe2KKss+9NuS89KvZqtm+PoyJAACILVFVCh6oT58+euaZZ/Tf//5XQ4YM0aJFi/Sb3/xGK1eutDoaAAAAAAAAgMOQ1H2Ako89PcTUVN7sqfJ7asOaCQCAWBG1peB+PXv21DPPPKOXX35Zubm5uuKKK/Tvf//b6lgAAAAAAAAADkPWWeNDbiPqLd6jokUzwxsIAIAYEfWl4H4DBgzQm2++qcmTJ+upp57SAw88YHUkAAAAAAAAAI1kT0hR9sjrQs7Lls9R9ba1YUwEAEBsiJlScL/zzz9fH3zwgXw+n5577jmr4wAAAAAAAABopKRj+iu5zxkh5/mzn5TfXRO+QAAAxACH1QGaQ0pKiu666y6rYwAAAAAAAAA4TFkjxqt682r5Korqzbwle1W06FVln321BckAAIhOMbdSEAAAAAAAAED0s8cnKee864MPDZts8ckyTTO8oQAAiGIxuVIQAAAAAAAAQPRLPLqvUo4fqvJVHwc+c+Z0VO7oiYpr09XCZAAARB9KQQAAAAAAAAARK2v4WFVtXiVfRbHSB16gjNMukuFwWh0LAICoE9Gl4OzZszVq1CgZhmF1FAAAAAAAAAAWsMUnKfeCP8lwxCm+7dFWxwEAIGpFbCk4Y8YMPfbYY1q5cqX+8pe/yOFwBP4CAAAAAAAA0HIkdOxtdQQAAKJeRDZss2bN0mOPPSbTNPXaa6/ptddeqzO32+1yOp2Bv1wul5xOp+Li4uRyuRQfH6/4+HjFxcUpISFBCQkJSkxMVFJSkpKTk5Wamqq0tDSlp6crOztbbdq0UUJCgkW/WgAAAAAAAABHwldVrsoflin1hGFWRwEAIGJFZCmYn58v0zRlGIZM06w393q98nq9qq6uDnx2pFuM5ubmql+/fho6dKhGjBghl8t1RNcDAAAAAAAA0PwqNyxTwQfT5asskSM1S4lHnWB1JAAAIlJEloITJ05UVlaW7rvvPg0ePFgul0sejyfwV21trdxud+Cv2tpa1dTUqLa2Vl6v97DumZeXp7lz52ru3LlKT0/XddddpyuuuILnGQIAAAAAAAARyFddrsIF/1LFmk8Dn+W//5Q6THhMtvgkC5MBABCZIrIUlKQ//vGPuu+++/TXv/5VXbp0afB5Pp9P1dXVqq6uVlVVlSoqKlRZWany8nKVl5errKxMRUVFKioqUl5enrZt26Zt27bVKROLi4s1ZcoULV26VFOnTpXT6WyOXyIAAAAAAACAw1C1eZXy33tCvsqSOp/7ygtV+OGLyhl1ozXBAACIYBFbCh4uu92u5ORkJScnN/ic2tpaffvtt5ozZ47effddud1umaapxYsX65FHHtEdd9zRjIkBAAAAAAAANIZht9crBPcrX/WxknoMVOLRfcMbCgCACGezOkAkiIuL08knn6xJkybp3XffVZs2bQLPM3z55Zf19ddfWx0RAAAAAAAAwM8SOh2r1H4jQ87z5zwtX3VFGBMBABD5YroUfPbZZxtd6HXu3Fl/+tOfZJqmDMOQ3+/XI4880kwJAQAAAAAAAByOzDPHyJHROujMV1Gkwg9fCHMiAAAiW0yXgn369NFtt92miorG/amgTp061Xn/7bffavny5U0ZDQAAAAAAAMARsLnif352oBF0XrH6E1X+wM/0AADYL6ZLwZNPPlndu3fX5MmTG3We3W6v837UqFFq3759U0YDAAAAAAAAcIQSOvZS6oDzQs4L5j4jX3V5GBMBABC5YroUlKTbbrtNs2fP1qJFixp8Tnn5L18Uxo0bp4ceekht2rRpjngAAAAAAAAAjkDmGZfKmRn8Z3e+yv/P3n2HR1Ulbhx/ZzLphXQ6iog0QUEEFRWlqQgKqEizAIpKcdfVBawoVlZFkSJNl0VQUMRCkY4gUldFiog0KaGl9zLJzO8PfswSM0P6vSnfz/P4PHfuuffMm8iuQ96cc5MUv+pjgxMBAFAxVZlSMCMjQxs2bNDRo0fznW/YsKH69u2rF198USkpKUWaKy4uTpLUokULjR49usyzAgAAAAAAACgbVm9fRfUcKY/biO7ZqPT924wNBQBABVQlSsGvvvpKnTp10uOPP67bb7+9wHMER44cqYyMDL3xxhtFmu/EiROyWCx65plnZLG4/zABAAAAAAAAoGLwq9dUNdr39Dge990M5WUUbcEAAABVVaUvBd99910999xzSkpKktPplNPp1JIlS/Twww+7rgkPD9eQIUP0zTffaNOmTYXOefz4cTVr1kzXXXddOSYHAAAAAAAAUFbCOvaTd0Qdt2N56cmKWznb4EQAAFQsppaC33zzTanunz9/vmbNmiVJ+Vb0XX755XrwwQfzXTt48GCFhoZq3LhxyszMvOi8Bw4cUK9evUqVDQAAAAAAAIBxzm0jOkqyuP+RZ/pvPyrt9y0GpwIAoOIwrRQ8evSonn/+eX377bcluv/333/Xm2++KYvFIqfTKT8/Pz388MP65ptvtGTJEt111135rg8MDNQjjzyimJgYTZo0yeO8TqdThw4d0m233VaiXAAAAAAAAADM4Vf3CtW47i6P43HfzVReerKBiQAAqDhMKwUnTpyo3NxcjR8/Xu+9957OnDlT5Hvz8vI0duxY5ebmymq16oEHHtDatWs1duxYNWnSxON9gwYNUmRkpD755BPt3LnT7TV2u11vv/22atasWdwvCQAAAAAAAIDJwm6+X96R9dyOOTJS2EYUAFBtmVIK7tq1SytXrpTFYlF6erpmzpypzp076+mnn9auXbsKvX/evHn6/fff1bx5c33xxRd6/vnnFR4eXuh9vr6+GjJkiKtUzM7OLnCNj4+PunTpUqKvCwAAAAAAAIC5rDYfj9uI2sJqqca13U1IBQCA+UwpBadPny7p3Fad5//Jzc3V8uXLdf/996tfv35avnx5vucEnpeTk6MPP/xQjz32mD7//HM1b968WO/dv39/hYWF6ejRo/rXv/5VJl8PAAAAAAAAgIrDr87lCr2+1wVnLAq59k7Ve3Si/Oo3MysWAACmMqUUnDZtmn788Uf9+9//1qhRo9ShQwf5+Pi4CsJff/1VTz/9tCRpwYIFysjIcN3r4+OjpUuX6qmnnpLNZiv2e/v7+2vgwIFyOp369NNPtXLlyjL7ugAAAAAAAABUDGE39ZV3VAPZQmuq9gOvKLLbEFm9fc2OBQCAaSxOp9NpdghJysrK0tatW7VmzRqtXr1aycnnHvhrsVgUERGhf/zjH+rTp0+ZvFdSUpJuvfVWZWZmKigoSF988YUaNmxYJnMDZsrJydHu3bsLnG/ZsqV8fHxMSGQuu91eYEviVq1aydvb26REAAAAqE74PAoA5rMnnpZXYKisPn5mRwEAw/F5ND9+fm7SSkF3/Pz8dMstt+i1117Tjz/+qBkzZqhr167y8vJSXFycnn/+efXr10+HDh0q9XuFhoaqZ8+ekqS0tDQ9+uijio+PL/W8AAAAAAAAACoO77BaFIIAAPy/ClMKXshms6ljx46aPHmy1q9fryeffFIRERHauXOnevfurWnTpikvL69U7zFw4EBJ51YinjhxQoMHD9bZs2fLIj4AAAAAAACASiDj8E7FfjdDFWQzNQAAylWFLAUvFBUVpeHDh2vdunV64YUXFBkZqQ8++ECDBg3S6dOnSzxvkyZNdPXVV8vpdMpiseiPP/7Qxx9/XIbJAQAAAAAAAFREjuxMxS6frtOfvarUn1cpbc8GsyMBAFDuKnwpeJ6Pj48GDRqklStXasyYMTp8+LDuvvtubdhQtP9g9+zZUwcOHMh3rnfv3pIkq9Wqf/7znxo7dmyZ5wYAAAAAAABQcWQe2aUTs55S6i+rXefiV32s3NQEE1MBAFD+Kk0peN6JEyd01113adWqVerRo4dGjhypefPmFXrflVdeqenTp+c7d9tttykyMlIff/yxhg4dWl6RAQAAAAAAAFQASVu/1alPX1Fucmy+846sdMUtn842ogCAKq1SlYK7d+/WwIEDlZKSoho1aujFF1/U/Pnz9fnnn2vJkiUXvbdXr15auXKljh8/7joXGhqq7777Tu3bty/v6AAAAAAAAABM5t+wlWS1uR3LOPiT0natNzgRAADGqTSl4NatW/XQQw8pMTEx3/lWrVpp8eLF6tSp00Xvb9++vaKjozVr1qx854ODg8s8KwAAAAAAAICKx7fmpQq76T6P43Gr/63clHgDEwEAYJxKUQpmZmbqmWeeUUZGhttxm82mwMDAQue5++679dVXX+n06dNlHREAAAAAAABAJRB6Q2/51GrkdsyZnaHY2RFQOgABAABJREFUZdPYRhQAUCVVilLQ399fs2bNUmhoaKnm6dOnj+x2u2bPnl02wQAAAAAAAABUKharl6LvGil5ud9GNPPwTqX+utbgVAAAlL9KUQpKUrNmzfTJJ5+Uao769eurTZs2WrRokeLi4sooGQAAAAAAAIDKxCeqgcJvvt/jePzqOcpNjjUwEQAA5c/UUnDcuHE6fvx4ka9v3LhxqZfu9+7dW1lZWQWeLQgAAAAAAACg+qhx3d3yrdPY7ZgzJ5NtRAEAVY77NfIG2LdvnxYuXKitW7fq+eefl9Va9H7y559/VkxMTIneNygoSBaLRQsXLtSjjz6qyMjIEs0DAAAAAAAAoPKyWL0U1XOkYmY/I2eevcB45pFdSv1ltULadDMhHQAAZc+0UnDKlCmSpGPHjumxxx4r1r0vvPBCqd8/Oztbs2bN0rPPPlvquQAAAAAAAABUPj6R9RR2S38lrJ3rdjx+7X/kf9nV8g6NNjgZAABlz5TtQ/ft26e1a889rNfpdBbrn5Lc4+mfBQsW6MyZM2Z8CwAAAAAAAABUADXa9ZBv3SZux5w5Wf+/jajD4FQAAJQ9U1YK/v777+rXr598fX1ls9lc/1itVnl5eclisbi2E7VYLLJYLK573377bT3yyCMKDw8v8ftnZ2dr0qRJysnJ0fTp0zVu3LhSf00AAAAAAAAAKp9z24iOOLeNaG5OgfGsP3cr5adVqtH2dhPSAQBQdkwpBXv37q3evXuX6N63335b99xzjxo2bFiqDOvXr9euXbv0xRdf6KGHHtKll15aqvkAAAAAAAAAVE4+EXUVdssAJayZ43Y8Yd1cBTS6Wt5htYwNBgBAGTJl+9CKoHv37pKkvLw8vf322yanAQAAAAAAAGCmGtd2l1/9Zm7HnPZsJWz4zOBEAACUrWpbCnbp0sV1vG7dOq1bt87ENAAAAAAAAADMZLF6KarHCFlsPgXGgq/uoqg7HjMhFQAAZceU7UMrgnr16qlx48Y6ePCgnE6nXn75ZV199dWlelZhWdi/f78WL16s7du368SJE8rMzFRgYKCio6N11VVXqWvXrrr55pvzPWexIsjLy9P69eu1evVq7dq1S6dPn5bdbldoaKiuvvpqDRgwQDfccEOJ5s7JydGKFSu0du1a/fbbbzp79qzy8vIUFRWla665Rg899JBatmxZ7HljY2M1b948rV+/XseOHZOXl5fq1aunm2++WQMGDFDt2rVLlBcAAAAAAACVk3d4bYV3GqT4VR9LkryCIxR15xMKaNTa5GQAAJRepVwpmJCQUCbzdOzYUU6nUxaLRbGxsRo+fLjS09PLZO7iOnnypEaMGKH+/fvL29tbL774opYvX661a9dq+vTp6tq1q1atWqVhw4bpnnvu0dGjR03J6c727dvVo0cPvfTSS6pTp44mTJiglStXauXKlfrb3/6mDRs2aPDgwXr11VflcDiKNfeqVavUtWtXTZo0SVdeeaUmTZqktWvXavny5erfv7+WLl2qvn37aubMmcWad8mSJbrttts0e/ZsdejQQQsWLNDXX3+thx56SN9++61uu+02LV68uFhzAgAAAAAAoPILaXuH/Bq0UPBVnVR/2HsUggCAKqNSrhTctWuXrrnmmlLPc/PNN2v27NmSJIvFog4dOiggIKDU8xbXr7/+qscee0wRERFatmxZgRVqNWvWVOvWrdW3b18NHjxYe/fu1f33369FixapXr16hue90Pz58/X666+rY8eOeuONNxQWFpZv/L777tPy5cu1efNmzZs3T2FhYRo5cmSR5n733Xc1c+ZM9e3bV88995z8/f3zjQ8bNkyLFi3S0aNH9e677yo6Olq9evUqdN4FCxZo3Lhxslgseuedd9SjRw/XWP369dWxY0fde++9evbZZxUfH69HH320SHkBAAAAAABQ+VksVtXq/4KsbrYRBQCgMqt0KwUvvfRS9ezZs0zmat26tfz9/RUREaGPPvpIo0aNMnxbzoSEBD3++ONKSkrSBx98cNEtK2vVqqX33ntPVqtViYmJGj16tIFJC/ryyy81fvx43XLLLZo8eXKBQvC8lJQU1/F3331XpLknT56smTNnauDAgXr11VcLFILu5l6+fHmh8/70008aP368JKlfv375CsHzIiIiNGHCBEnSxIkTtWHDhiJlBgAAAAAAQNVQlELQmZdrQBIAAMpOpSsF586dq8jIyDKZy9vbW0888YS+/vprXX/99WUyZ3FNnz5dCQkJatKkiRo1alTo9U2bNtWNN94o6VzBtX379vKO6Naff/6pl19+WaGhoXrrrbdks3ledFqzZk3XcatWrQqde/v27Zo6daoaNmyoZ5999qLXFmduh8OhF198UXl5eQoMDNSTTz7p8dp27dqpXbt2rnuys7MLzQ0AAAAAAICqz2HPVvzqf+vU/JfldOSZHQcAgCKrdNuHRkdHl+l8w4YNK9P5imvFihWSJLvdXuR7brjhBm3cuFGStH79erVr165csl3MW2+9pZycHD344IMKCQm56LUTJ07U5s2b5ePjo+uuu+6i1zocDr3xxhtyOp168MEH5e3tfdHrP/nkE23btk01atQo9PuwZMkSHTp0SJLUo0cPhYeHX/T63r17a/v27Tpz5ozmzZunoUOHXvR6AAAAAAAAVG1ZJ35X7JIpsieckiQlb1+m0OvuMjkVAABFU+lWClYlGRkZOnPmjCTp0KFDrqKvMPXr13cdHzt2rFyyXcyOHTu0fv16SdJtt91W6PV+fn7q1KmTbrzxxouuKJSkb7/9Vvv27ZMkdevWrdC5Q0JC1LVr1yIVo7NmzXId33333YVef8stt8jLy0uSNGfOHDmdzkLvAQAAAAAAQNXjsGcrfu1/dPI/L7gKQUlK/P5T5cSdMDEZAABFRylooszMzHyvzz/HrjAXPl8vJyenTDMVxeLFi105mjdvXi5zX3rppWW2TawkHTx4UAcOHJAkBQcHq3Xr1oXeEx4erssuu0ySdPbsWe3cubPM8gAAAAAAAKDyiF/9byVv/VZS/l8ad+bZFbtkCtuIAgAqBUpBE4WHhysqKsr1+vyqwcIkJia6jmvXrl3muS4mJydHa9askSQ1atSo0JV/xREbG6sdO3ZIkpo0aVJm80rS6tWrXcdXXXWVrNai/dG/sPQ8/3UDAAAAAACgegnrcI8sPv5ux7JPHvj/whAAgIqNUtBEFotF77//vq699lo1btxYo0ePLtJ9e/bscR2XdXlWmJ9++kkpKSmSpEsuuaRM596wYYMcDke5zP3LL7+4jlu0aFHk+y6//HLX8d69e8s0EwAAAAAAACoHW40oRXR52ON4wsYFyok1/jE/AAAUR9kt80KJtG3bVvPmzSvy9U6nU6tWrZIk2Ww23XHHHeUVza3ff//ddRwdHZ1vbNu2bVq+fLn279+vjIwMhYeHq0GDBurcubM6dOhQ6KpCT3M7nU6tX79eq1ev1oEDB2S32xUZGanLLrtMXbp0Ufv27QvNfX7rUEmqW7duode7y3Hw4MEi3wcAAAAAAICqJfjqzkr/fYsyD+8sOJiXq7PfTlHdh9+QxYsfuQIAKib+C1XJrF+/XjExMZKkLl26KDw83ND3379/v+s4NDRUknTq1CmNHTtWW7duLXD9li1btHDhQrVo0UJvvfWWrrjiimLNfeDAAY0ePVq//fZbges3bdqkuXPn6vrrr9ebb77pcSvV9PR0nTx50vW6Tp06F/0aL1SzZk3XcWxsrFJTUxUcHFzk+wEAAAAAAFA1WCwWRd05XCdm/l2O7IwC4zmnDylpy9cKu/FeE9IBAFA4SsFKJC8vT5MmTZIkBQQE6JlnnjE8w4Wr5YKCgnTs2DENHDhQcXFx6t27t3r37q0WLVrIy8tLe/fu1bRp0/Tjjz9q7969evjhh7Vw4ULVr1+/SHPv2rVLDz/8sOx2ux544AH17NlTjRs3lsPh0E8//aRJkyZp79692rJli2vu82XihRISEvK9rlGjRpG/3qCgoHyvk5KSKmUpmJubK4vFYnYMw+Xm5hbpHAAAAFAe+DwKAFWQf4hCOz2ohO+mux1O/OFz+VzWWj5RDQwOBgAF8Xk0v+r8tZ9HKViJ/Oc//3FtsTl+/HiP5Vp5Sk5Odh1bLBY9+eSTys3N1fz589WmTZt817Zt21YfffSRxo0bp4ULFyo+Pl6jR4/WZ599VujcmZmZGjVqlCIiIjR9+nQ1atQo37UdO3bUDTfcoBEjRmjDhg36888/9dprr+mdd94pMG96enq+135+fkX+en19ffO9zsgo+FtglcG+ffvMjlBhuFt1CgAAABiFz6MAUAU4wxQYdbl8Yt08asaRp5gv31XqdQ9LVi/DowFAYfg8Wr1ZzQ6AotmzZ48mTpwoSRozZox69uxpSo4LC7bFixfr8OHDmjFjRoFC8DyLxaKXXnrJtW3ozz//rPXr1xe4LisrS3l5ea7XH330kbKysvTxxx8XKATP8/b21rvvvqvIyEhJ0tKlS/M9l/C8vxZ5xSkF/3rtXwtGAAAAAAAAVDMWizJa3CGHzf3PmGwpZ+R3eLPBoQAAKBylYCVw9uxZjRw5Urm5uXrppZc0ZMgQ07JcWIrt2bNHw4cPV6tWrS56j81m04gRI1yvFy5ceNF5z8/9wgsvFLoaMjg42PX9cDqdWrRoUYFr/rptptPpvOicF3I4HPleW638TwYAAAAAAKC6c/oFK7NZV4/jfod+lFfKGQMTAQBQOBqOCi4lJUXDhg1TbGys/vWvf2ngwIGm5rHb7a7j2rVrF7mg7NSpk2srzk2bNiknJ8fjvJJ09dVXF3k15B133OE6XrduXYHxwMDAfK+zsrKKNK8kZWdnX3QuAAAAAAAAVE85da5UTlRjt2MWp0MBu5dIjjy34wAAmIFnClZgqampGjJkiA4fPqzJkyerU6dOZkeSv7+/0tLSJEmDBg2Sj49Pke7z8fFR48aNtWfPHtntdu3fv18tW7bMN++FHn744SJnqlOnjsLCwpSYmKiYmBglJCQoPDzcNR4QEJDv+r8WfRfz12v/Oldl0axZM3l7e5sdw3C5ubkF9shu3ry5bDb+rw8AAADlj8+jAFD15TVqoNMfPyNHVsFHzthSz+qS1AOqcVNfE5IBAJ9H/8put2vfvn1mxzBV9fw3XwkkJydryJAhOnTokGbMmKHrr7/e7EiSzq2UO18K/rXIK0zNmjW1Z88eSdKZM2fylYJ/XYFX3PKtZs2aSkxMlHRuu9ULS8GwsLB81yYnJxd53vNfq3RuG9K/zlVZ2Gy2alkKusP3AgAAAGbi8ygAVC3eYdGKvO1Rnf3mfbfjKVu/VnCz6+Vb+zJjgwGAB9X582hxHi1WVbF9aAWUmJiohx56SEeOHNHs2bMrTCEoSTVq1HAdZ2RkFOveC4u/v95rs9nyjf/1GYPFmfuv9wYGBqp27dqu16dOnSryvGfO/G/v9zp16lTalYIAAAAAAAAoH4EtblRAk/buB50Opf+xzdhAAAB4QClYwZxfIXjs2DHNnj1bbdu2NTtSPpdd9r/fakpISCjWvRc+N9Dds/nKc+7LL7/cdXzy5Mkiz3thKdioUaNiZQIAAAAAAEDVZ7FYFHn7MFn9g/Od9wqsoZr3jFZ4x/4mJQMAID9KwQokLS1NQ4cO1Z9//qmPPvpIbdq0MTtSAY0b/+/hyYcPHy7WvVlZWa7jC1ccGjF3q1atXMe///57kec9cOCA6/iqq64qViYAAAAAAABUD7agUEXe/qjrdWDzDqo37H0FNvWwghAAABNQClYQOTk5Gj58uA4cOKAZM2aodevWhd5jt9s1cuRIZWZmGpDwnAuLyv379xfr3qSkJNdxw4YNLzp3cYo7Sa7nCQYEBCg6OrrAeNeuXV3HO3fuLPK855+BKEldunQpViYAAAAAAABUH4HNblBwm26K7vO0avb+h7wCQsyOBABAPpSCFYDT6dTYsWP1008/6YMPPlC7du2KdN++ffu0ZcsW+fv7l3PC/2nXrp1CQ0MlnXs2X3GKwRMnTkiS6tevr4iIiALjnTt3lpeXlyTp119/VXJycpHmzc7OVlxcnKRzKwLPz3GhZs2aqUGDBpLOFYj79u0rdN7Y2FgdPXrUlblp06ZFygMAAAAAAIDqx2KxKOqOxxTU7AazowAA4BalYAUwdepULVu2TK+99po6duxY5PtWrFjhKrqMYrPZdOedd7peL1u2rEj3xcXFKTY2VpLnFXfh4eG66aabJEm5ublasWJFkebev3+/nE7nReeWpCFDhriOv/7660LnXbVqlWveoUOHFikLAAAAAAAA4Ikz1y570hmzYwAAqilKQZNt2LBBU6ZM0RNPPKHevXsX+b6YmBgtWLDAYyl48uRJDRs2TK1bt1bPnj21efPmsoqsxx9/XAEBAZKk+fPnF2lF36ZNmyRJXl5eeuCBBzxe99RTT8lqPffHcubMmbLb7YXOvXHjRklSSEiI+vTp4/G6++67T5deeqmkc6VgamrqRef98ssvJUn16tXTvffeW2gOAAAAAAAAwJPsU4cV8+/ROr3gdTns2WbHAQBUQ5SCJoqNjdWYMWN03XXX6cknnyzyfb/88osGDx6s9PR0j6XgmDFjtGHDBmVkZOiPP/7Q8OHDderUqTLJHR0d7cqblpam8ePHX/R6p9OpOXPmSJKefPJJ1a1b1+O1TZs21cCBAyWd2270gw8+uOjcmZmZWrBggSTppZdeUmBgoMdrbTab3nzzTfn4+CgpKUnTpk3zeO2qVau0d+9e1z3e3t4XzQEAAAAAAAC448yzK2HjQsXMGaucs8dkj49R4sYFZscCAFRDNrMDVGeTJ09WYmKiDh48qO7duxfpnpSUFMXHx7teeyoF9+zZk+91Zmamdu/erdq1a5c88AUGDx6s48ePa/78+Vq6dKnq1q2rp556ShaLJd91TqdTb731lvbt26devXrpscceK3TuZ599VjExMVq3bp1mzZqlOnXqqH///gWuy83N1dixYxUbG6snnnhCPXv2LHTuNm3a6NVXX9XYsWM1Z84cXXPNNQW2HD1+/LjGjRsnSRo9enSRn/EIAAAAAAAAXCj7zJ+KXTJFOWeO5DufvHWJApu0l1+9piYlAwBUR5SCJoqLi5N0bsXg+eftFZenUvDKK6/U9u3bXa+9vb3VtGnZfsh48cUX1ahRI73zzjuaMWOGdu7cqSFDhqhp06bKzc3Vvn37NHfuXO3atUtPP/20hg0bVqR5vby89MEHH2j69OmaMWOGXn75ZW3evFkDBgxQo0aNlJWVpV9++UUff/yxTp06pbfeeqtYW6/26tVLYWFhGj16tP7+979ryJAh6tGjh/z9/bVlyxa9//77ysjI0Ntvv6277rqrpN8eAAAAAAAAVHPJ25YUKATPcSp2yRTVfeRdWb19Dc8FAKieLE6n02l2iOpq+PDhWrt2banm+P77792u/jt58qRefvll7dixQzVr1tTTTz+trl27luq9PImLi9Py5cu1du1aHT9+XHFxcfL19VW9evXUsWNH9evXT7Vq1SrR3CdOnNCyZcv0/fff6+TJk4qPj1dgYKAaNmyoTp06qW/fvgoNDS3R3ElJSfriiy+0atUqHTt2THa7XfXr19fNN9+sQYMGqWbNmiWa10w5OTnavXt3gfMtW7aUj4+PCYnMZbfbtWvXrnznWrVqxXawAAAAMASfRwEAeZmpOjHj78pLT3I7XqNdD0V0HWxsKADVBp9H8+Pn55SCQJXC/6nlx3/0AAAAYCY+jwIAJCn9jx0688VbHkYtqv3AePk3aG5oJgDVA59H8+Pn55LV7AAAAAAAAAAAUFUFXnGtglre4mHUqdilU+XIyTIyEgCgmqIUBAAAAAAAAIByFNF1sLyCwt2O5SaeVsL6+QYnAgBUR5SCAAAAAAAAAFCOvPyDFHXn4x7HU/67XJlH9xiYCABQHVEKAgAAAAAAAEA5C7j8GgVf1cnj+LltRDMNTAQAqG4oBQEAAAAAAADAABFdHpZXcITbsdyks0pYN8/gRACA6oRSEAAAAAAAAAAMYPULVNSdT3gcT/lphTKP7DIwEQCgOqEUBAAAAAAAAACDBDRqreCru3gcj106VY7sDAMTAQCqC0pBAAAAAAAAADBQRJeHZAuJdDuWmxKn+LVzDU4EAKgOKAUBAAAAAAAAwEBW3wBF9hjucTz1l9XKOLzTuEAAgGqBUhAAAAAAAAAADBbQ8CoFt+nmdszqFyRnTrbBiQAAVZ3N7AAAAAAAAAAAUB1FdHpQmYd2Kjf5rOtcwOXXKLL747IFh5uYDABQFbFSEAAAAAAAAABMYPX1V9T/byNq9Q1QVM9Rqtn3WQpBAEC5YKUgAAAAAAAAAJjE/9KWiuz+uAIatZEtJMLsOACAKoxSEAAAAAAAAABMFNK6q9kRAADVANuHAgAAAAAAAEAFlhN7XJnH9podAwBQybFSEAAAAAAAAAAqIKcjT8nblihxwwJZ/YNUb9j78vIPMjsWAKCSYqUgAAAAAAAAAFQwOfExOjn3BSWs+0TOPLvy0hIVv/pjs2MBACoxVgoCAAAAAAAAQAWSvH2pEtbPlzM3J9/5tN0bFNjkOgU2aWdSMgBAZcZKQQAAAAAAAACoQHJT4goUgufFfTdDeRmpBicCAFQFlIIAAAAAAAAAUIGEdewv7/A6bsfy0pMUt2q2wYkAAFUBpSAAAAAAAAAAVCBWb19F3TVKsrj/8W363k1K/32rwakAAJUdpSAAAAAAAAAAVDB+da9Qjevu8jge+90M5aUnG5gIAFDZUQoCAAAAAAAAQAUUdvP98o6s53bMkZGiuJVsIwoAKDpKQQAAAAAAAACogKw2H0X1GOl5G9F9m5X2248GpwIAVFaUggAAAAAAAABQQfnVbazQ63t5HI9bMUu5aUmG5QEAVF6UggAAAAAAAABQgYXd1FfeUfXdjjkyUxW3YqacTqfBqQAAlQ2lIAAAAAAAAABUYBabt6J7jvK4jWjG/m1K/22TwakAAJUNpSAAAAAAAAAAVHC+tRsp9IY+HsfjVs5WblqigYkAAJUNpSAAAAAAAAAAVAJhN90rn+hL3I45MtMU990MthEFAHhEKQgAAAAAAAAAlYDFy1tRPUdKVi+34xl/7FDano0GpwIAVBaUggAAAAAAAABQSfjWukyhHe5xO+Z3aUv5NWhmcCIAQGVhMzsAAAAAAAAAAKDowjr0UcYfO5Rz5ogkyeLtp4jODyi4TTdZLKwDAQC4x38hAAAAAAAAAKAS+d82ojb5XdJC9YZNVMg1t1MIAgAuipWCAAAAAAAAAFDJ+Na8VHUeel2+tS+jDAQAFAmlIAAAAAAAAABUQn51Ljc7AgCgEuFXSAAAAAAAAACginE6HUr+73dK3f292VEAABUEKwUBAAAAAAAAoAqxJ51V7NKpyjq6RxbfAPk3aCFbjSizYwEATMZKQQAAAAAAAACoApxOp1J+XqUTs55S1tE9585lZyh22YdyOp0mpwMAmI1SEAAAAAAAAAAqOafTqTNfvKW472bImZOVbyzzyK9K3bnGpGQAgIqCUhAAAAAAAAAAKjmLxSK/+s08jsevmSN78lkDEwEAKhpKQQAAAAAAAACoAmq07ynfule4HXPmZCl26TQ5nQ6DUwEAKgpKQQAAAAAAAACoAixWL0X1HCmLzcfteNafu5X68yqDUwEAKgpKQQAAAAAAAACoInwi6irslv4ex+PXfiJ70hkDEwEAKgpKQQAAAAAAAACoQmpce6d86zV1O+a0Zyl26VS2EQWAaohSEAAAAAAAAACqEIvVS1E9RnjeRvToXqX8d4XBqQAAZqMUBAAAAAAAAIAqxieijsJvHehxPGH9PNkTThmYCABgNkpBAAAAAAAAAKiCQq7tLr/6zdyOOe3ZbCMKANUMpSAAAAAAAAAAVEEWi1VRPUfK4u3rdjzr+D6l7FhucCoAgFkoBQEAAAAAAACgivIOq6XwWwd5HE9YP1858ScNTAQAMAulIAAAAAAAAABUYSFtb5ffJS3cjjlzcxS7dIqcjjyDUwEAjEYpCAAAAAAAAABVmMViVVSPEbJ4+7kdzz6xX2l7fjA4FQDAaJSCAAAAAAAAAFDFeYfWVETnBwuct3h5K7zzgwq68iYTUgEAjGQzOwAAAAAAAAAAoPwFt+mm9N+3KPPP3ZIk3zqNFdVzpHwi65mcDABgBFYKAgAAAAAAAEA1YLFYFNljuKwBIQrv9IDqPPQ6hSAAVCOsFAQAAAAAAACAasK7RrQajJgmq4+/2VEAAAZjpSAAAAAAAAAAVCOFFYJOp1NOp8OgNAAAo1AKAgAAAAAAAAAkSbmpCTq98A0lbf7a7CgAgDLG9qEAAAAAAAAAUM05nU6l7dmg+FUfy5GVrswjuxTY+Br5RF9idjQAQBlhpSAAAAAAAAAAVGO5aYk688UExX47WY6s9HMnHbk6u2SKnHm55oYDAJQZSkEAAAAAAAAAqKacjjydnPuCMg7sKDCWc/qwkrZ8bXwoAEC5oBQEAAAAAAAAgGrKYvVS2I33eRxP/OELZZ/507hAAIByQykIAAAAAAAAANVYUMuOCmjc1v2gI1exS6bImWc3NhQAoMxRCgIAAAAAAABANWaxWBR5x+Oy+gW5Hc85c0SJPy42OBUAoKxRCgIAAAAAAABANWcLDlPEbUM9jif9+KWyTx02MBEAoKxRCgIAAAAAAAAAFNTiJgVc0c79oCNPsUsny5nLNqIAUFlRCgIAAAAAAAAA/n8b0cdk9Q92O55z9pgSN31hcCoAQFmhFAQAAAAAAAAASJJsQaGKvO0Rj+NJm79S9smDBiYCAJQVSkEAAAAAAAAAgEtg8w4KbHqd+0GnQ2eXsI0oAFRGlIIAAAAAAAAAABeLxaLI24fJGhDidtwed0KJPyw0OBUAoLQoBQEAAAAAAAAA+XgF1lDk7Y96HE/a8o2yYv4wMBEAoLQoBQEAAAAAAAAABQQ1u0GBzW5wP+h0KHbJFDns2caGAgCUGKUgAAAAAAAAAMCtyNsflVdgDbdj9sTTyjr+u8GJAAAlRSkIAAAAAAAAAHDLKyBEkbc/VuC8T/Qlqjt4ggIuu8qEVACAkrCZHQAAAAAAAAAAUHEFNm2vwBY3Kn3vJsliVWiHexR24z2yeHmbHQ0AUAyUggAAAAAAAACAi4rs9ogcGSkKv3WQfGs3MjsOAKAEKAUBAAAAAAAAABflFRCs2gPGmR0DAFAKPFMQAAAAAAAAAFBqeenJcuRkmR0DAOABpSAAAAAAAAAAoFTSft+i4zP/roTv55sdBQDgAduHAgAAAAAAAABKJC8jVXGrZit97yZJUsqO5Qpscp38L2lhcjIAwF+xUhAAAAAAAAAAUGzp+7frxMy/uwrB82KXTpUjJ9OkVAAATygFAQAAAAAAAADF4rBnK27lLOWlJxUYy006o4R184wPBQC4KEpBAAAAAAAAAECxWL19FXXncI/jKT+tUOafuw1MBAAoDKUgAAAAAAAAAKDYAhq1VvDVXTyOxy6dKkc224gCQEVBKQgAAAAAAAAAKJGILg/JKyTS7Vhucqzi1801OBEAwBNKQQAAAAAAAABAiVh9Ay66jWjqz6uUcfhXAxMBADyhFAQAAAAAAAAAlFjAZVcpuHU3j+Oxy6bJkZ1hYCIAgDuUggAAAAAAAACAUono/KBsNaLcjuWlxCl+zX8MTgQA+CtKQQAAAAAAAABAqVh9/RXVY4TH8dSda5Rx6BcDEwEA/opSEAAAAAAAAABQav6XtlTINbd7HI9dNk15WekGJgIAXIhSEAAAAAAAAABQJsI7DZItNNrtWF5qguJXzzE2EADAhVIQAAAAAAAAAFAmrD7+iuox0uN42q51yjjwk4GJAADnUQoCAAAAAAAAAMqM/yUtFHJtd4/jscs/VF5mmoGJAAASpSAAAAAAAAAAoIyF3zJQtrBabsesPv7KS08yNhAAgFIQAAAAAAAAAFC2rD5+iuoxQpLlgrMW1Wh/l+o+8o58IuuZFQ0Aqi2b2QEAAAAAAAAAAFWPf4PmqtHuTiVvXypbWC1F9xwlv/pNzY4FANUWpSAAAAAAAAAAoFyE3TJAVv9g1WjfU1ZvX7PjAEC1RikIAAAAAAAAACgXVm9fhd14r9kxAADimYIAAAAAAAAAABNlHPpFeRkpZscAgCqPUhAAAAAAAAAAYDhHVrpil07T6QWvKW7lbLPjAECVx/ahAAAAAAAAAABDZRzeqdil05SXGi9JSv/tR6U1vU5BzW4wORkAVF2UggAAAAAAAAAAQzhyshS/Zo5Sf1ldYCxuxSz5N2ghr8AaJiQDgKqP7UMBAAAAAAAAAIawWL2UdeJ3t2OOjBTFrZgpp9NpcCoAqB4oBQEAAAAAAAAAhrDYvBXdY6Rkcf+j6fTftyp932aDUwFA9UApCAAAAAAAAAAwjG+dyxV6Q2+P43ErZio3LdHARABQPVAKAgAAAAAAAAAMFXbjffKJbuB2zJGZprjvZrCNKACUMUpBAAAAAAAAAIChLDZvRfUYJVm93I5n/LFDaXt/MDgVAFRtlIIAAAAAAAAAAMP51r5MoTf08Tgev/Ij5aayjSgAlBVKQQAAAAAAAACAKcJuvEc+0Ze6HXNkpSnuu+lsIwoAZYRSEAAAAAAAAABgCouXt6Luusg2ogf+q7TdGwxOBQBVE6UgAAAAAAAAAMA0vjUvVdiN93kcj1/1kXJT4g1MBABVE6UgAAAAAAAAAMBUoTf0lk+ty9yOObIzFLv8Q7YRBYBSohQEAAAAAAAAAJjK4mVTdM+RktXmdjzz0C9K/XWdwakAoGqhFAQAAAAAAAAAmM4n+hKF3dzX43j8mjnKTYkzMBEAVC2UggAAAAAAAACACiH0+l7yrd3I7VhQixtl9Q00OBEAVB2UggAAAAAAAACACsFi9VJUz1GS1/+2EbWFRKrWgJcUdcdjsvr6m5gOACo3SkEAAAAAAAAAQIXhE1Vf4Tf3kyQFX91F9Ya9p4CGV5mcCgAqP/dPbQUAAAAAAAAAwCQ1rrtLvvWayL9Bc7OjAECVwUpBAAAAAAAAAECFYrF6UQgCQBmjFAQAAAAAAAAAVCqOnCzFr5kje9IZs6MAQKXB9qEAAAAAAAAAgEoj89hvil06VbmJp5V9+ohqDxwni4X1LwBQGEpBAAAAAAAAAECF57BnK+H7T5WyfZkkpyQp6+gepfy0UjXa3mFuOACoBCgFAQAAAAAAAAAVWm5KvE7NHyd7wqkCYwnrPlFAo9byDqtlQjIAqDxYUw0AAAAAAAAAqNC8gsPkFRjqdsxpz1bs0qlyOh3GhgKASoZSEAAAAAAAAABQoVksVkX1GCGLt6/b8axjvynlv98ZnAoAKhdKQQAAAAAAAABAhecdXlvhtw7yOJ6wbp7sCScNTAQAlQulIAAAAAAAAACgUghpe7v8LmnhdsyZm6OzS6bK6cgzOBUAVA6UggAAAAAAAACASsFisSrqzuGyePu5Hc8+8buSdywzOBUAVA6UggAAAAAAAACASsM7rJYiOj/gcTzx+8+UEx9jYCIAqBwoBQEAAAAAAAAAlUpwm27yv7Sl2zFnbo5il0xhG1EA+AtKQQAAAAAAAABApWKxWBXZY7gsPh62EY35Q8nblhicCgAqNkpBAAAAAAAAAECl410jWhGdH/I4nrhhgXJijxuYCAAqNkpBAAAAAAAAAEClFNy6q/wbXuV2zJlnZxtRALgApSAAAAAAAAAAoFKyWCyK6jFcFt8At+PZpw4qacs3BqcCgIqJUhAAAAAAAAAAUGnZQiIV0eUi24j+sFC5KfEGJgKAiolSEAAAAAAAAABQqQVf1Vn+l7UucN4rMFQ1+zwjW0iECakAoGKhFAQAAAAAAAAAVGoWi0VRdz4h6wXbiAa1uEn1hr2vwCuuNTEZAFQcNrMDAAAAAAAAAABQWraQCEV0G6KEdZ8o8vbHFNi0vdmRAKBCoRQEAAAAAAAAAFQJQS1vUcAV7eTlF2h2FACocNg+FAAAAAAAAABQJVgslkILQafTaVAaAKhYKAUBAAAAAAAAANVC9smDipn9jLJPHzY7CgAYjlIQAAAAAAAAAFClOXPtSvj+U8XMeVY5Z/9U7JIpcubZzY4FAIaiFAQAAAAAAAAAVFnZpw4r5t+jlfTjl5LTIUnKOXtUiZsWmZwMAIxFKQgAAAAAAAAAqJJyYo8pZs5Y5Zw9VmAs6cfFyj51yIRUAGAOSkEAAAAAAAAAQJXkHVlfAY3buh90OnR2yWQ5c9lGFED1QCkIAAAAAAAAAKiSLBaLou54TNaAELfj9tjjSvzhc4NTAYA5KAUBAAAAAAAAAFWWV2ANRd7+qMfxpC1fKyvmgIGJAMAclIIAAAAAAAAAgCotqNkNCmx2vftBp0OxSybLkZtjbCgAMBilIAAAAAAAAACgyou87VHP24jGxyhx40KDEwGAsSgFAQAAAAAAAABVnldgDUXeMczjePLWb5V1Yr+BiQDAWJSCAAAAAAAAAIBqIajp9QpscaP7QadDsUumyGHPNjYUABiEUhAAAAAAAAAAUG1EdntEXoGhbsfsCSeVuOEzYwMBgEEoBQEAAAAAAAAA1YZXQLAi73jM43jytqXKOr7PwEQAYAxKQQAAAAAAAABAtRLYpJ2CrrzZw6hTZ9lGFEAVRCkIAAAAAAAAAKh2IroNkVdQmNux3MTTSlg/3+BEAFC+KAUBAAAAAAAAANWOl3+wIrs/7nE8be8PystMMzARAJQvSkEAAAAAAAAAQLUU2LitglrdUuB8wBXXqt6jE+XlH2R8KAAoJzazAwAAAAAAAAAAYJaIrkOUeXiX8tISZPULUsRtQxXU4iZZLBazowFAmaIUBAAAAAAAAABUW15+gYq68wml/LRCkd0fly043OxIAFAuKAUBAAAAAAAAANVawOVtFHB5G7NjAEC54pmCAAAAAAAAAAAUIjct0ewIAFAqlIIAAAAAAAAAAHjgdOQp8cfFOj7lCWUc+dXsOABQYpSCAAAAAAAAAAC4kRN7XCfnPKfE7+fLmWdX3NJpcmRnmB0LAEqEUhAAAAAAAAAAgAs4HXlK2vK1Yj76p7JPHXSdz02JU/zauSYmA4CSoxQEAAAAAAAAAOAC2ScPKmHdJ3Lm2QuMpf6yWhmHdxofCgBKiVIQAAAAAAAAAIAL+NVropBrbvc4Hrt0mhxZ6QYmAoDSoxQEAAAAAAAAAOAvwjsNki002u1YXmq84tfMMTYQAJQSpSAAAAAAAAAAAH9h9fFXVI8RHsdTf12njIM/GZgIAEqHUhAAAAAAAAAAADf8L7lSIW27exyPXTZdeZlpBiYCgJKjFAQAAAAAAAAAwIPwWwfKFlbL7VheWoLi1/zb4EQAUDKUggAAAAAAAAAAeGD18fv/bUQtbsfTdn2v9D92GBsKAEqAUhAAAAAAAAAAgIvwb9BcIe3u9Dget3y68jJTDUwEAMVnMzsA8tu/f78WL16s7du368SJE8rMzFRgYKCio6N11VVXqWvXrrr55ptlsbj/rRSz5OXlaf369Vq9erV27dql06dPy263KzQ0VFdffbUGDBigG264oUhzNWnSpMQ51q5dq3r16rkdO3HihDp37lyieb29vfXzzz/Lx8enxNkAAAAAAAAAVF7htwxQ5sGfZE84VWAsLz1J8as+VvTdfzMhGQAUDSsFK4iTJ09qxIgR6t+/v7y9vfXiiy9q+fLlWrt2raZPn66uXbtq1apVGjZsmO655x4dPXrU7Mgu27dvV48ePfTSSy+pTp06mjBhglauXKmVK1fqb3/7mzZs2KDBgwfr1VdflcPhKLccISEhHgvB0mrUqBGFIAAAAAAAAFCNWb19FdVzpDxuI7pno9L3bzM2FAAUAysFK4Bff/1Vjz32mCIiIrRs2TLVrl0733jNmjXVunVr9e3bV4MHD9bevXt1//33a9GiReVWghXV/Pnz9frrr6tjx4564403FBYWlm/8vvvu0/Lly7V582bNmzdPYWFhGjlyZKHzRkVFKSgoqFhZWrRoUaTrateuLT8/v2LN3aFDh2JdDwAAAAAAAKDq8avXVDXa91Tytm/djsd9N0N+9ZvJKyDE4GQAUDhKQZMlJCTo8ccfV1JSkubPn1+gELxQrVq19N5776l3795KTEzU6NGj9emnnxqYNr8vv/xS48ePV+fOnfXBBx/IZnP/xyklJcV1/N133xWpFPzHP/6hPn36lFnWC02YMEHt27cvl7kBAAAAAAAAVG1hHfsp4+B/ZY8/WWAsLz1ZcStnq2bvf5iQDAAuju1DTTZ9+nQlJCSoSZMmatSoUaHXN23aVDfeeKMk6aefftL27dvLO6Jbf/75p15++WWFhobqrbfe8lgISudWOp7XqlUrI+IBAAAAAAAAQLk4t43oKMni/sfrjsxUOezZBqcCgMKxUtBkK1askCTZ7fYi33PDDTdo48aNkqT169erXbt25ZLtYt566y3l5OTowQcfVEjIxZfCT5w4UZs3b5aPj4+uu+46gxICAAAAAAAAQPnwq3uFalx3l5K3fO06Z/HxU0TnhxTcuqssFvfPHQQAM1EKmigjI0NnzpyRJB06dEgbN27UzTffXOh99evXdx0fO3as3PJ5smPHDq1fv16SdNtttxV6vZ+fnzp16lTesQAAAAAAAADAMGE336+MA/+VPe6E/C5tqag7h8s7NNrsWADgEaWgiTIzM/O9njBhQpFKQX9/f9dxTk5OmecqzOLFi105mjdvbvj7AwAAAAAAAIDZrDYfRfUcpZxTBxXcppssHrYTBYCKglLQROHh4YqKilJsbKwkuVYNFiYxMdF1XLt27XLJ5klOTo7WrFkjSWrUqNFFnyUIAAAAAAAAAFWZX53L5VfncrNjAECR8KsLJrJYLHr//fd17bXXqnHjxho9enSR7tuzZ4/ruEmTJuUVz62ffvpJKSkpkqRLLrnE0PcGAAAAAAAAgMrE6XQo/Y8dcjqdZkcBAFYKmq1t27aaN29eka93Op1atWqVJMlms+mOO+4or2hu/f77767j6Oj8+2Nv27ZNy5cv1/79+5WRkaHw8HA1aNBAnTt3VocOHUq0qtDpdGrt2rVas2aNdu7cqdjYWNntdtWsWVPXX3+9+vfvr2bNmpXoa8nNzdXSpUu1YcMG7d69W/Hx8XI6napdu7ZuvvlmDRw4UA0aNCjR3AAAAAAAAACqN3viacUunaqsY78putffFdTiJrMjAajmKAUrmfXr1ysmJkaS1KVLF4WHhxv6/vv373cdh4aGSpJOnTqlsWPHauvWrQWu37JlixYuXKgWLVrorbfe0hVXXFHk98rMzNTf//53ff/995KkgIAAhYWFKSEhQceOHdOxY8e0aNEiPf7443ryySeL9XXEx8friSee0K+//ipJCg4OVlhYmOLi4nT48GEdPnxYCxYs0LPPPqt+/foVa+6KKDc3VxaLxewYhsvNzS3SOQAAAKA88HkUAIDqyel0KO2X1Ure8Kmc9mxJUtyKWbLVaSKvoDCT06E64fNoftX5az+PUrASycvL06RJkySdK8ieeeYZwzMcPHjQdRwUFKRjx45p4MCBiouLU+/evdW7d2+1aNFCXl5e2rt3r6ZNm6Yff/xRe/fu1cMPP6yFCxeqfv36hb5PXl6eRowYod27d+vpp59Wjx49VKdOHUmSw+HQxo0bNX78eMXExGjq1KnKy8vTU089VaSvISMjQ4MHD1ZSUpJefPFFde/e3VWu5uTkaMWKFXr99deVlJSkcePGyWq1qm/fviX4blUc+/btMztChfHbb7+ZHQEAAADVGJ9HAQCo2qwZSQrYs0zeCUfznXdkpevPLyYqvc29UjX85X1UHHwerd4sTjYzrjQ+/vhjTZgwQZL0zjvvqGfPnoZn6Nq1q44dOyZJeumll/TFF1/ozJkzmjp1qtq0aVPgeqfTqXHjxmnhwoWSpDZt2uizzz676Hs0adJEDRs2VFpamubNm6dLL73U7XVnz55Vr169FB8fL4vFok8++UTXXnutx3lPnDihzp07q2HDhrJarfrkk08UERHh9to//vhD9913n7KysuTn56dvvvnGY46KJCcnR7t37zY7BgAAAAAAAFAteaWcUfCWf8vidLgdT2/ZUzl1WxqcCsDFtGzZUj4+PmbHMITV7AAomj179mjixImSpDFjxphSCEpSenq663jx4sU6fPiwZsyY4bYQlCSLxaKXXnrJtW3ozz//rPXr1xf6PkeOHNHbb7990SIuOjpa//znPyWdKx/ffffdIn0NMTExmjx5ssdCUJKuuOIKPfroo5KkrKwsTZ48uUhzAwAAAAAAAKi+8kJqKqtRB4/j/vtWy5KVamAiAPgfSsFK4OzZsxo5cqRyc3P10ksvaciQIaZlubAU3LNnj4YPH65WrVpd9B6bzaYRI0a4Xp9fNejJqFGjNHr0aF1//fWF5unZs6fCws7tw/3LL7/k2970r0JDQ/XEE09o3LhxatSoUaFzDxgwQF5eXpKklStXKjk5udB7AAAAAAAAAFRvWZfdoNyQmm7HrLlZCtj7ncQGfgBMwDMFK7iUlBQNGzZMsbGx+te//qW77rrL1Dx2u911XLt27SIXlJ06dZKvr6+ys7O1adMm5eTkeFyOO3LkyCLnsdlsuvHGG7VkyRJJ0rZt23T55Ze7vTYoKEh///vfizx3eHi4rrrqKv3888+y2+3auXOnOnbsWOT7K5JmzZrJ29vb7BiGy83NLbBHdvPmzWWz8X99AAAAKH98HgUAoPrKqROuM3Ofkxx5BcZ8Yg+qljVRgS1vMT4YqhU+j+Znt9u1b98+s2OYqnr+m68kUlNTNWTIEB0+fFiTJ09Wp06dzI4kf39/paWlSZIGDRpU5H12fXx81LhxY+3Zs0d2u1379+9Xy5Zls3d28+bNXaVgWf8Punnz5vr5558lnXsAa2UtBW02W7UsBd3hewEAAAAz8XkUAIDqwbvu5Qq7qa8SN3zmdjxx3VwFXd5GthDPjzgCykN1/jzqZIUu24dWVMnJyXr44Yd18OBBzZgxo0IUgpIUGBjoOvb39y/WvTVr/m/J/JkzZ8osU7169VzHiYmJZTZvec8NAAAAAAAAoOoKvaG3fGq5f4yRMztDscumUVIAMBSlYAWUmJiohx56SEeOHNHs2bOL9Gw9o9SoUcN1nJGRUax7LywUi3uvGfOW99wAAAAAAAAAqi6L1UvRd42UvNxv2Jd5eKdSd641OBWA6oxSsIJJTk7WkCFDdOzYMc2ePVtt27Y1O1I+l112mes4ISGhWPde+DzCC8u20nI4HK7jgICAMpu3vOcGAAAAAAAAULX5RDVQ+M33exyPXzNHucmxBiYCUJ1RClYgaWlpGjp0qP7880999NFHatOmjdmRCmjcuLHr+PDhw8W6Nysry3V84YrD8xwOh1577TW1b99eDz30kDIzM4s074Ur+EJCQtxek5mZqaefflrt2rXT3/72tyIvyy/K3AAAAAAAAADgSY3r7pZvncZux5w5mWwjCsAwlIIVRE5OjoYPH64DBw5oxowZat26daH32O12jRw5ssjlWVm4sKjcv39/se5NSkpyHTds2LDA+NKlS/XJJ58oKSlJW7du1Zo1a4o074XPJ7z88svdXjNnzhwtXbpUycnJWrFihX755ZcymxsAAAAAAAAAPLFYvRTVc6QsXt5uxzOP7FLqL6sNTgWgOqIUrACcTqfGjh2rn376SR988IHatWtXpPv27dunLVu2yN/fv5wT/k+7du0UGhoqSTp16lSxisETJ05IkurXr6+IiIgC438t6rKzs4s078GDB13HrVq1cntNec4NAAAAAAAAABfjE1lPYR37eRyPX/Mf2ZPOeBwHgLJAKVgBTJ06VcuWLdNrr72mjh07Fvm+FStWqEGDBuWYrCCbzaY777zT9XrZsmVFui8uLk6xsef2xu7SpYvbay7cnjM0NNTjdX+1ZcsWSVJUVJTHLVeDg4Ndx5deemmRntWYnZ2tn3/+WZLUsmVL1alTp0h5AAAAAAAAAOCvarTvKd+6V7gdc9qzFLt0mpxOh8GpAFQnlIIm27Bhg6ZMmaInnnhCvXv3LvJ9MTExWrBggcdS8OTJkxo2bJhat26tnj17avPmzWUVWY8//rgCAgIkSfPnz1dycnKh92zatEmS5OXlpQceeMDtNTfeeKPreODAga4ViRezc+dOHTt2TJLUt29feXl5ub3upptuch0PGzZM3t7ul+pfaM2aNa5nCvbv37/Q6wEAAAAAAADAE9c2ojafgmM2HwU0LnwhAwCUBqWgiWJjYzVmzBhdd911evLJJ4t83y+//KLBgwcrPT3dYyk4ZswYbdiwQRkZGfrjjz80fPhwnTp1qkxyR0dHu/KmpaVp/PjxF73e6XRqzpw5kqQnn3xSdevWdXvdtdde61opeb50LGzeiRMnSpLq1q2rRx991OO13bt3V7NmzYo8d3Z2tqZMmSJJuvrqq4tV2AIAAAAAAACAOz4RdRV2y4B853zrNlHdR95VaPueslj4kT2A8mMzO0B1NnnyZCUmJurgwYPq3r17ke5JSUlRfHy867WnUnDPnj35XmdmZmr37t2qXbt2yQNfYPDgwTp+/Ljmz5+vpUuXqm7dunrqqadksVjyXed0OvXWW29p37596tWrlx577LGLzvuvf/1Lw4YN09y5c9WlSxddeumlbq9zOByaMGGCtm3bppCQEL3//vsXfbaij4+PpkyZoqFDh2ratGm69tprFRkZ6fbanJwcjRkzRocPH1bt2rX1zjvvyGrlP8YAAAAAAAAASq/Gtd2V/vtW5Zw6pLBb+qtGux6yWN3vgAYAZYlS0ERxcXGSzq0YPP+8veLyVApeeeWV2r59u+u1t7e3mjZtWqL38OTFF19Uo0aN9M4772jGjBnauXOnhgwZoqZNmyo3N1f79u3T3LlztWvXLj399NMaNmxYoXOGhoZq7ty5mjRpknr37q1bbrlFt956q6644gpFREQoKytLe/bs0dy5c/Xzzz+refPmeuONN1yrAC+mXr16WrhwoSZMmKDbbrtN3bp10y233KKGDRsqIiJCKSkp+vnnnzVnzhz98ccfat++vd544w3Vq1evLL5dAAAAAAAAACCL1UvRd42SMy9XPpH87BGAcSxOp9Npdojqavjw4Vq7dm2p5vj+++/drv47efKkXn75Ze3YsUM1a9bU008/ra5du5bqvTyJi4vT8uXLtXbtWh0/flxxcXHy9fVVvXr11LFjR/Xr10+1atUq9rynTp3Sl19+qc2bN+vw4cNKTU1VYGCgwsPD1bp1a3Xq1EmdO3cu0Sq+w4cP68svv9T27dt19OhRpaenKzg4WFFRUbrmmmvUtWtXdejQodjzmi0nJ0e7d+8ucL5ly5by8Sm4V3lVZ7fbtWvXrnznWrVqVaRnSgIAAAClxedRAAAAmInPo/nx83NKQaBK4f/U8uM/egAAADATn0cBAEBJ5abEK/m/yxV+60CeM4gS4/Nofvz8nO1DAQAAAAAAAACoEJxOp9J2rVfc6n/LmZ0hW1CYarTrYXYsAFUEpSAAAAAAAAAAACbLTYlX7PLpyjz0s+tcwvr58m/URj4RdUxMBqCqYN0xAAAAAAAAAAAmyji8UydmPZWvEJQkZ26OYpdMkdORZ1IyAFUJpSAAAAAAAAAAACbyDq/jsfjLjtmv5O1LDU4EoCqiFAQAAAAAAAAAwETeodGK6PyQx/HE7z9TTtwJAxMBqIooBQEAAAAAAAAAMFlw667yb9jK7Zgzz842ogBKjVIQAAAAAAAAAACTWSwWRd05XBYff7fj2ScPKHnrtwanAlCVUAoCAAAAAAAAAFAB2GpEKaLLwx7HEzYuUE7sMeMCAahSKAUBAAAAAAAAAKgggq/uLP/LrnY/mJers99OkTMv19BMAKoGSkEAAAAAAAAAACqI89uIWn0D3I7nnD6kpC1fGxsKQJVAKQgAAAAAAAAAQAViC4lQRNfBHscTf/hCOWePGpgIQFVAKQgAAAAAAAAAQAUT1OpWBVx+jftBR67OfjuZbUQBFAulIAAAAAAAAAAAFYzFYlHkHY/J6hfodjznzBElbV5scCoAlRmlIAAAAAAAAAAAFZAtJEIR3YZ4HE/ctEjZp48YmAhAZUYpCAAAAAAAAABABRV0ZUcFNL7W/aAjT3HLP5TT6TQ2FIBKiVIQAAAAAAAAAIAK6n/biAYVGPOp2VCRdw6XxWIxIRmAyoZSEAAAAAAAAACACswWHKbI2x753wmrl8Juvl91B78l35qXmpYLQOViMzsAAAAAAAAAAAC4uMAWNyrg9y3KTTytqJ6j5FurodmRAFQylIIAAAAAAAAAAFRwFotFUT1GyOrtI4uXt9lxAFRClIIAAAAAAAAAAFQCXn6BhV7jdDp5xiAAt3imIAAAAAAAAAAAVUDabz/q1LyX5MjNMTsKgAqIlYIAAAAAAAAAAFRieenJils5S+n7tkiSEjcuVESnB0xOBaCioRQEAAAAAAAAAKCSSvt9i+K+mylHRorrXPLWbxXYpL386l5hYjIAFQ3bhwIAAAAAAAAAUAkl//c7nf3ynXyFoCTJ6VDsksly2LPNCQagQqIUBAAAAAAAAACgEgpq3kFegTXcjtnjTypx4wKDEwGoyCgFAQAAAAAAAACohLwCQhR5+2Mex5O3LlHWid8NTASgIqMUBAAAAAAAAACgkgps2l5BV97sYdSp2CVT2EYUgCRKQQAAAAAAAAAAKrWIbkPkFRjqdsyecEoJ339qbCAAFRKlIAAAAAAAAAAAlZiXf7Aiuz/ucTxl+zJlHvvNwEQAKiJKQQAAAAAAAAAAKrnAK65VUMtbPIw6Fbt0qhw5WUZGAlDBUAoCAAAAAAAAAFAFRHQdLK+gcLdjuYmnlbB+vsGJAFQklIIAAAAAAAAAAFQBXv5BirrzItuI/ne5Mo/uMTARgIqEUhAAAAAAAAAAgCoi4PJrFNSqk8fx2CVT5cjJNDARgIqCUhAAAAAAAAAAgCokouvD8gqOcDuWm3xWCWs/MTgRgIqAUhAAAAAAAAAAgCrEyy9QUXc+4XE85eeVyjyyy8BEACoCSkEAAAAAAAAAAKqYgEatFXx1F4/jSVu/NTANgIqAUhAAAAAAAAAAgCooostDsoVE5j9psarG9b1U877R5oQCYBpKQQAAAAAAAAAAqiCrb4Aiewx3vfYOr6M6D76miE4PyGrzMTEZADPYzA4AAAAAAAAAAADKR0DDqxRyze2y2HwU1rGfrN6+ZkcCYBJKQQAAAAAAAAAAqrCI2x6RxWIxOwYAk7F9KAAAAAAAAAAAVVhRCsG8zFQDkgAwE6UgAAAAAAAAAADVVF5Wus4umawTs/6hvKx0s+MAKEeUggAAAAAAAAAAVEMZB3/WiZl/V9qu75WXmqD41f82OxKAcsQzBQEAAAAAAAAAqEYcWemKX/Mfpf66Nt/5tF3rFdj0OgU2bmtSMgDliZWCAAAAAAAAAABUI0nbvi1QCJ4Xt3y68jLTDE4EwAiUggAAAAAAAAAAVCOhN/SRLayW27G8tETFr/7Y4EQAjEApCAAAAAAAAABANWL19lV0z1GSLG7H03ZvUPr+7caGAlDuKAUBAAAAAAAAAKhm/Oo3VY32PT2Ox303Q3kZqQYmAlDeKAUBAAAAAAAAAKiGwjr2k3dEHbdjeelJils12+BEAMoTpSAAAAAAAAAAANWQ1dtXUT1HSRb3VUH63k1K/32rwakAlBdKQQAAAAAAAAAAqim/uleoxnV3eRyP/W6G8tKTDUwEoLxQCgIAAAAAAAAAUI2F3Xy/vCPruR1zZKQobiXbiAJVAaUgAAAAAAAAAADVmNXmo6geIz1vI7pvs9J++9HgVADKGqUgAAAAAAAAAADVnF/dxgq9vpfH8bgVs5SblmRYHgBlj1IQAAAAAAAAAAAo7Ka+8o6q73bMkZmquBUz5XQ6DU4FoKxQCgIAAAAAAAAAAFls3oruOcrjNqIZ+7cpnW1EgUqLUhAAAAAAAAAAAEiSfGs3UugNfTyO58QeMzANgLJkMzsAAAAAAAAAAACoOMJuulcZB3Yo5+xR1zlbjWhF9Rgu/0tbmpgMQGmwUhAAAAAAAAAAALhYvLwV1XOkZPWSJAW36aZ6j06kEAQqOVYKAgAAAAAAAACAfHxrXaaILg/LO6KuAi67yuw4AMoApSAAAAAAAAAAACigxrXdzY4AoAyxfSgAAAAAAAAAACg2R06msk7sNzsGgCJipSAAAAAAAAAAACiWzKN7FLt0qhyZaao37H3ZQiLMjgSgEKwUBAAAAAAAAAAAReLIyVLcyo90at445SadlSM7Q7HLPpTT6TQ7GoBCsFIQAAAAAAAAAAAUKuv4Pp1dMkW5iafznc88/ItSf12nkKs7m5QMQFGwUhAAAAAAAAAAABQq89i+AoXgefFr5ig3OdbgRACKg1IQAAAAAAAAAAAUKvT6u+Vb+3K3Y062EQUqPEpBAAAAAAAAAABQKIvVS1E9R8ri5e12PPPIr0r9ZbXBqQAUFaUgAAAAAAAAAAAoEp+o+grr2M/jePza/8iedNbARACKilIQAAAAAAAAAAAUWY32PeVb9wq3Y86cLMUumyan02FwKgCFoRQEAAAAAAAAAABF5tpG1Objdjzrz91K/XmVwakAFIZSEAAAAAAAAAAAFItPRF2F3dLf43j82k9kTzxtYCIAhaEUBAAAAAAAAAAAxVbj2jvlW6+p2zGnPUuxS9lGFKhIKAUBAAAAAAAAAECxWaxeiuoxwvM2osf2KuW/KwxOBcATSkEAAAAAAAAAAFAiPhF1FH7rQI/jCevnyZ5wysBEADyhFAQAAAAAAAAAACUWcm13+dVv5nbMac9W7NKpbCMKVACUggAAAAAAAAAAoMQsFquieo6UxdvX7XjW8X1K2bHc4FQA/opSEAAAAAAAAAAAlIp3WC2F3zrI7ZhXUJi8w2sbnAjAX9nMDgAAAAAAAAAAACq/kLa3K33/VmUd3es6F9TyFkV0HSwv/yATkwGQWCkIAAAAAAAAAADKgMViVVSPEbJ4+8krMFQ17xur6LtGUQgCFQQrBQEAAAAAAAAAQJnwDq2pmveNlm/Ny+QVEGx2HAAXoBQEAAAAAAAAAABlJqDhVWZHAOAG24cCAAAAAAAAAADDZMUcUOqv68yOAVQ7rBQEAAAAAAAAAADlzplrV+IPC5W05RvJapVvncbyiapvdiyg2mClIAAAAAAAAAAAKFfZJw/qxMf/VNLmrySnQ8rLVeySKXI68syOBlQblIIAAAAAAAAAAKDcJG1erJg5z8oeezzf+exTB8+tGgRgCEpBAAAAAAAAAABQbrwCQ8+tDnQjceNC5Zw9amwgoJqiFAQAAAAAAAAAAOUmqNWt8m/Uxv2gI1dnl0yRMy/X2FBANUQpCAAAAAAAAAAAyo3FYlFU98dl9Q1wO55z+vC5Zw0CKFeUggAAAAAAAAAAoFzZQiIU0W2ox/HETYuUfeZP4wIB1RClIAAAAAAAAAAAKHdBLTsqoHFb94OOXMUumSJnnt3YUEA1QikIAAAAAAAAAADKncViUeQdj8vqF+R2POfMESX+uNjgVED1QSkIAAAAAAAAAAAMYQsOU8RtnrcRTfrxS2WfOmxgIqD6oBQEAAAAAAAAAACGCWpxkwKuaOd+0JGn2KWT2UYUKAeUggAAAAAAAAAAwDDnthF9TFb/YLfjOWePKfGHRQanAqo+SkEAAAAAAAAAAGAoW1CoIm97xON40ubFyj550MBEQNVHKQgAAAAAAAAAAAwX2LyDApte537Q6dDZJZPlzGUbUaCsUAoCAAAAAAAAAADDWSwWRd4+TNaAELfj9rgTSty82OBUQNVFKQgAAAAAAAAAAEzhFVhDkbc/6nYsoEl7hbS5zeBEQNVlMzsAAAAAAAAAAACovoKa3aD0ZluUvm+zJMnqH6TI2x5VYPMOslgsJqcDqg5KQQAAAAAAAAAAYKrI2x9V1rG98q17hSLveEy2oDCzIwFVDqUggDLldDrlcDjkdDrNjqLc3Fy35/jtIgAAABihOJ9HLRaLrFYrn1UBAEC15RUQorpD3pZXcDifiYByQikIoNSysrKUnJys1NRU5ebmVohCUJLbHEeOHOFDBQAAAAxR3M+jFotFNptNwcHBqlGjhvz8/Mo7IgAAQIViC4kwOwJQpVEKAigRp9OppKQkJSYmKjs72+w4AAAAQKXndDplt9uVkJCghIQE+fr6KiwsTKGhofxiGwAAqPaceblK2vyVHPYsRXR6wOw4QKVEKQigROLj4xUbG2t2jELx29UAAAAwU2k+j2ZnZ+v06dPKy8tTZGRkGaYCAACoXHLOHtPZJZOVc/qwJIsCG7eVX/1mZscCKh2r2QEAVD5JSUmVohAEAAAAqoLY2FglJSWZHQMAAMBwTkeeEn9crBMf//P/C0FJcurskily5GSZmg2ojFgpCKBY0tLSdOrUqQLnbTabatSooeDgYHl5eclqNf93DhwOh7Ky8n848PPzqxDZAAAAUPUV5/Oow+FQXl6eUlNTlZycrNzc3Hzjp06dks1mU1BQULlmBgAAqEjOfPmOMv7YXuB8buJpJXw/X5HdhpqQCqi8KAUBFIu7FYLR0dEKDw+vcM85cTgc8vLyynfOZrNRCgIAAMAQJfk86u/vr6ioKCUkJOjs2bP5xmJjYykFAQBAtRJydRe3paAkpexYrsAm18n/khYGpwIqL34yDqDIcnNzC/ymc0REhCIiIipcIQgAAABUVhaLxfU5+0JZWVkFVhACAABUZQGNr1FQq04ex2OXTpUjJ9PAREDlRikIoMjS0tLyvbZarYqKijIpDQAAAFC1RUVFFVhV+NfP5AAAAFVdRNeH5RUc7nYsN+mMEtbNMzgRUHlRCgIostTU1Hyvg4KCWCEIAAAAlBOLxaLAwMB85/76mRwAAKCq8/ILVNSdwz2Op/y0Qpl/7jYwEVB5UQoCKLLMzPxL8XmeCQAAAFC+goOD873+62dyAACA6iCgUWsFX93F43js0qlyZPM5CSgMpSCAInE6ncrLy8t3ztfX16Q0AAAAQPXw18/ceXl5cjqdJqUBAAAwT0SXh+QVEul2LDc5VvFr5xqcCKh8KAUBFInD4ShwzsvLy4QkAAAAQPXh7jO3u8/mAAAAVZ3VN+Ci24im/rJKGYd/NTARUPlQCgIoEne/jczzBAEAAIDy5e4zNysFAQBAdRVw2VUKbt3N43jssmlyZGcYmAioXCgFAQAAAAAAAABApRDR+UHZakS5HctLiVP8mv8YnAioPCgFAQAAAAAAAABApWD19VdUjxEex1N3rlHGoV8MTARUHpSCAAAAAAAAAACg0vC/tKVCrrnd43jssmnKy0o3MBFQOVAKAgAAAAAAAACASiW80yDZQqPdjuWlJij113UGJwIqPkpBAAAAAAAAAABQqVh9/BXVY2SB8xYff0Xe+YRqtOthQiqgYqMUBAAAAAAAAAAAlY7/JS0U0rb7/143vEr1h72nkKu7yGKxmJgMqJhsZgcAAAAoDzExMapTpw5/CTBAenq6AgMDzY4BAAAAAKiGwm8dqKzj+xTSppuCW3fl5wDARbBSEAAAVEmTJk1Sv3799Ntvv5kdpUj+/e9/a/78+crNzTU7SrHExMSoc+fOmjhxopKSksyO49aff/5ZrvPn5OTo3XffVWpqarm+DwAAAACgIKuPn+oO/ZdC2nSjEAQKQSkIAACqpH379mnnzp2699579eqrr1b4wqZ169Z69dVXddddd2nHjh1mxymyunXratSoUZoxY4Y6d+6s2bNnV7hic+TIkRo6dKi2bNlSLvO/9957mjlzpu666y5t3769XN4DAAAAAOCZxXLxqsPpyJMjJ8ugNEDFxfahAACgyklOTtbBgwclSXl5eYqNjZXVWrF/F+rqq6/W3Xffra+//loPPPCABg0apDFjxsjb29vsaIUaOHCgtm3bppUrV+rtt9/WqlWrNHXqVEVFRZkdTZLk7++vTZs2adOmTeX6PidPntRjjz2mb7/9VvXr1y/X9wIAAAAAFI094aTOLpkq79BoRd/9N7PjAKaiFAQAAFXO9u3b5XA4JEl33HGHJk6cWOFLQUl68skntWzZMtntdn3yySey2+165ZVXzI5VJC+++KI2b96s1NRU/frrrxo0aJC+/PJLBQUFlWg+p9Op5ORkhYaGljqbn5+fJCk6Olpz5swp9Xx/NX/+fM2fP1+SNHPmTApBAAAAAKgAnE6HUnYsV8L6+XLm5ij7xO8KbHKdApu2NzsaYBpKQQAAUOVs2LBBktSkSRNNmDChUhSC0rmtOO+44w59++23kqQvv/xSzz33nHx9fYs8R25urmw24z/iRUVFqX///po5c6akc8/x++mnn9SxY8diz+V0OvXSSy9p+/btmjt3rmrWrFmqbOe/H97e3mrUqFGp5nInLCzMddy8efMynx8AAAAAUDz2xNOKXTpVWcd+y3c+bsUM+TVoJq+AEJOSAeaqHD8hAwAAKKK8vDytWbNG3t7eevvtt4tVqFUE99xzj+vYy8tLXl5eRb43NTVVAwcO1Keffloe0QrVr18/13HNmjV17bXXFnuO84Xg559/rj///FMPPvigzpw5U6pcxfkeAgAAAAAqN6fTqbNfTSxQCEpSXnqy4lbONiEVUDGwUhAAAFQp27dvV2JiokaMGKEmTZoU61673V6iZ/itW7dOKSkp6tWrV7Hv/au2bdsqMDBQ6enpuueee4q86i81NVVDhw7Vr7/+ql9//VVOp1MDBw686D1HjhxxbbNaVqKiopSUlKRnnnlGp06dKvb9c+bM0eeff+56fb4YLM2KQYvFIuncv99Dhw6VaI6LSUxMdB07nc4ynx8AAAAAUHQWi0URtz2qk/95TnIW/Dtv+m8/Kq3p9Qpqdr0J6QBzUQoCAADDLVq0SKGhoerSpYvHa5xOp8aOHas77rhDt9xyi+v8smXLdOONN6pGjRpu7/vqq6906aWX6vHHHy92rldeeUVWq1UvvvhiscrBzMxMjRkzRitWrNArr7xSqu0ubTabHn74YZ06dUqjR48u0j0XFoLSue/dq6++KkkXLQa3bNmi8ePHl0uR9c9//rPM5vrzzz/1wAMP6JNPPinR9/b89rFnz55V9+7dyyyXO5SCAAAAAGA+v7qNFXr93Ura/JXb8bgVM+XfoLm8At3/bAGoqigFAQCA4RITE/X888/rtttu05AhQ9xu77hmzRp9/fXX+uabbzR8+HCNHDlSVqtVmzZt0oQJE/Tmm2+qQ4cO+e5JS0vTqlWrNHXqVPn4+BQr0/bt27Vo0SI5nU4dOnRIkydPVnh4eJHuPV8grl+/XuvXry/W+17M4sWLS3yv0+nU+PHjJXkuBgcMGKDg4GAlJCSoRYsWqlOnjkJCQhQYGOhaXefJtm3b9OCDD0qS/va3v2n48OFur5s2bZomTZokSZo7d67atzf+ge7ni7q6detq3bp1ZT7/5MmTNWXKFEkq85WXAAAAAICSCbvpfqUf+K/ssccLjDkyUhS3Yqai+zxT6N9/gaqEUhAAABju/HP+Vq5cqXXr1rn9AJ6XlyfpXKGzYMEC9enTR/Xq1ZO3t7fOnDmjIUOGeJz/YmNF8d///lcTJkzQhAkTinT9hasKe/XqpWHDhpXq/ctSYX+56dmzp0FJzGPk6r3zf24BAAAAAOay2LwV3WOkYuY8634b0d+3Kn3fZgU17+DmbqBqohQEAACGu7BEmzNnjtq2bVvgmvfee0/Tp0+XJH388ceqV6+eJLlWAEZGRmru3LlllunEiROuMq9r166u7TeL4sKvJzQ0VI0aNSqzXCg9I1fv2e12w94LAAAAAHBxvnUuV+gNvZX045dux+NWzJRfg+ayBYUZnAwwB6UgAAAwnM1WvI8gDRs2dB2f32rUy8ur3Mq3Tp06FWv70QtLwaq27cj+/fs1d+5cvfLKK8X+91ZRnC/q7Ha7Dh06VObzJyYmFngvAAAAAEDFEHbjfco4sEM5Z48VGHNkpinuu5mqee/oKvf3ecCdyvmTHQAAUKldWKIVV0UspqpyKfjOO+9o48aNOnv2rCZNmqSAgIBSz7lx40b98MMPevTRRxUdHV0GKS/u/JaeZ8+eVffu3cv1vbKyssp1fgAAAABA8Vhs3orqMUoxc8ZKjoKPfMj4Y7vS925S0JU3mZAOMFbF+6kaAACo8kpT7J1fKViRWK1WsyOUizVr1mjjxo2SzhV5DzzwgGbOnKmIiIhSzXvddddp/fr16tq1q/r166dhw4aVes6Lyc7OliTVrVtX69atK/P5J0+erClTpsjb29vQ5xcCAAAAAIrGt/ZlCu1wj5J++NzteNzK2fK75ErZgtlGFFVb1fwJFgAAqNBKU6JV9FKwJCsFt2zZoq+//rrE75+WlqYRI0YoJiamxHP8VXp6ut544w3X64CAALVo0UIpKSmlntvHx0fjxo3T66+/rs8//1xdunTRu+++q+Tk5FLP7c75UjA8PLxc5o+MjNTIkSO1bt06NW7c2O01ixYtUkZGRrm8PwAAAACgcGEd+sgn+lK3Y46sNMV9N51f9ESVRykIAAAMV5pSsCxW5TkcjlLPcaELM/01X1GKoLCwML388sslft7d7t27tWbNGt15552aPn26cnJySjTPhSZMmOAqGUNDQ/XZZ59p/Pjx+Z7vWFo9evTQwoULFR4erpkzZ6pr166aNWuWq8QrK61bt9aHH36ozz93/xuhpdW/f3+NGjXK7VaoTqdTr732mp5//nn97W9/U25ubrlkAAAAAABcnMXLW1F3jZKs7n/ZOOPAf5W2e4PBqQBjsX0oAAAwXGmKPU8r8bZs2aKcnBx17Njxovdv3bpVkydP1uTJk8ts5ZinUtBut6tv37765JNPFBbmeQuSpk2b6qqrrtJTTz2lRYsWycfHp1jvv3v3bklSZmam3nvvPX3zzTd6//331aRJk2J+Jeds2LBBCxculCQFBwfro48+UtOmTUs0V2GuuOIKLVq0SKNGjdKOHTv0zjvv6LPPPtMzzzxTpOf/HT58uNDf5HzooYckSUeOHCmTzMUxbdo0LV26VNK5LVife+45TZgwoco9exIAAAAAKgPfmpcq7Mb7lLhxgdvx+FUfyf/SlrKFlN8jLgAzUQoCAADDlcf2oWlpaRo5cqTuvfdePfPMMwoICChwTVZWll544QUdP35c9957r6ZPn64rrriixFnO81QKent7q0OHDnruuef04YcfXnSOhx56SE888YQmTpyosWPHFuv99+zZk+91RESELrvssmLNcV5cXJyeffZZSee2DJ01a5auvPLKEs1VVGFhYfr444/17LPPaunSpYqJiXEVpOPHj1e9evU83rt9+3a9/PLLlWaLl2+++UYREREaM2aM2VEAAAAAoFoKvaG30v/YrpzThwuMOfNylX36MKUgqixKQQAAUKl4WmHl5+cn6dyz2xYtWlToPDExMXrllVc0b968Uq/auvD+v5aWgwYNUrdu3bRgwQL169fP4xy33nqrGjRooP/85z/q1KmT2rVrV+T3P79SUDr3vL4333xT3t7exfgKzsnNzdU//vEPxcfHKyQkRDNnzlTr1q2LPU9J+Pj46J133lFISIg+/fRTSdKPP/6o3r17a/r06brmmmvc3tevXz9FRUUpJSVFzZs3V82aNVWjRg1W4gEAAAAA3LJ42RTdc6ROfDRacvzvEQ++9ZoquudIeYfXNjEdUL4oBQEAgOFKU9h4WmV44Zabzz77rLp06VLgmpycHN1xxx2SpDZt2mjGjBllUh7Z7XaP+erXr6/OnTvrrbfeUrt27Tyu4LNYLOrTp4/ef/99jR07VkuWLFFgYGCh7x0bG6uTJ0+6Xg8YMED169cv0dfx+uuva9u2bQoPD9dHH32k5s2bl2iekrJYLBo3bpysVqvmzZsnSUpJSdE//vEPfffdd25Xf0pS586dPc55/Phx1axZs9hbshZXVlaWTp48WeIVmgAAAAAA4/hEX6Kwm/sq8ftPZbH5KOyWAapxbXdZPDxvEKgqSr53FwAAQAmVZvtQT3x9fV3HYWFhqlevXoF/6tat67qmXbt2CgoKKpP3zsrKch2729500KBByszM1JgxY5Sbm1tg/LzevXvLarUqJiZG7733XpHee+vWra5jHx8fPfLII8VI/j+fffaZPv30U9WsWVPz5s0zvBC80AsvvKDbb7/d9fr06dNatWpVieZasWKFbr/9di1atOii3/vSevbZZ9WrVy/NmTOn0mxlCgAAAADVWej1vRTcupvqPvKOQtv3pBBEtcBKQQAAYLjSlCaeVvaVR9FYVJmZma5jd6Vg+/btdckll2jXrl2aMWOGRowY4XaeWrVqqUOHDvrhhx80f/589ezZU1ddddVF33vLli2u4169eikqKqrY+bdt26bXX39dV1xxhWbNmqVatWoVe46SOnPmjGrWrJnvnMVi0VtvvaXDhw/rjz/+kHRuxWBJ+Pj4KCYmRs8//7yef/75UuctzJtvvqndu3fr3XffLff3AgAAAACUnMXqpajuj5kdAzAUpSAAADBceZSC7so4o1y4UtBmK/jxymKx6N5779W7776rDz/8UJ07d1bTpk3dznXHHXfohx9+kMPh0Pjx4/XFF19ctPC8cKXggw8+WOzsu3bt0siRI9W2bVtNnjxZwcHBxZ6jpHbs2KFHHnlEY8eOVf/+/fON+fv7a+rUqRowYIDi4+N10003leg9Ltw2dMKECWrZsmWh96xcuVKTJk2SJH300UeqXbvw50k88sgjOnnypBo3bqyxY8eWKCsAAAAAoGLJTY6VLBbZQiLNjgKUCUpBAABguPLYXrG4pWBZZrhwpaC/v7/ba/r06aNJkybJbrfrhRde0Oeff+627Lv11lvl5eWlvLw87dmzR8uWLVPPnj3dznn8+HHFxMRIOrcdauPGjYuVe9euXRoyZIi6deumV155Rd7e3pKkU6dOKSMj46L3njp1ynWcmJioQ4cOub0uMTEx3z3nr4uNjdWoUaOUlZWll19+Wenp6QW2Pm3QoIEWLVqk/fv3q2HDhsX62s67sBSsXbu2GjVqVOg9F662rF+/vi655JJC7zlfBl955ZUlWq0JAAAAAKg4nE6nUneuVfyaOfKrc7lqDRjn8ZeUgcqEUhAAAFRLZVkKXrhSMCAgwO01kZGRuv766/XDDz9o9+7d+vTTTzVo0KAC14WHh6tNmzbasWOHJGnGjBkeS8ELVwn+daVdYXbt2qVhw4bpqaee0sCBA/ONxcbGasiQIUpNTS3SXHPnztXcuXMLvW7MmDEex95++21ZLBYNHTo03/latWqVajvTC0tBAAAAAAAKk5sSr9hl05R5eKckKfPP3Ur9eZVCrrnN3GBAGaAUBAAAhnM4HMW6vigFXnF/Y6+4GS4mOTnZdRwUFOTxuvNbg0rSBx98oLvuukshISEFrmvXrp2rFDxw4IB2797tdtvLjRs3Sjq3sq1r167Fyvzhhx9qypQpatu2bYGxVq1a6bPPPlN8fLyaNm2q0NBQ19jq1av1zDPP6Ouvvy7x6r2srCwNGDBAe/fulSRFR0frscce0z333FOi+S7m/OpHo5THKlgAAAAAQPlzOp1K27Ve8av/LUd2/t1z4tfOlX+jq+UdWtOkdEDZoBQEAACGK24hd+H1nso/M0vB06dPu46jo6M9Xte1a1eNGzdOdrtdycnJWrhwoR599NEC11111VX5Xm/btq1AKZiTk6NNmzZJkvr161fs8uvDDz+86Hjjxo3dbkfatWtXXXnllXruuec0f/78iz7v0B2n06kxY8a4CsGQkBDNmTOnSNt6lsSFKwVL8szFbt26Fev6svxzBQAAAAAwkNOhlJ1rChSCkuS0Zyl26TTVHjhOFkvx/h4MVCSUggAAwHDFLU5yc3Ndx55WYpVmztK6sBSsXbu2x+tCQkLUunVrbd++XdK5VXfuSsFWrVrle3327NkC1/z444/KyMiQt7e3+vXrV9LoJTJmzBj17dtXc+bM0ZAhQ4p179SpU7VixQpJ51bxffDBB+VWCEr5nzU5YcIEtysu/2rlypWaNGmSJOmjjz666L/T8x555BGdPHmSUhAAAAAAKimL1UtRPUYqZvbTcubmFBjPOrpHKT+tVI22d5iQDigblIIAAMBwxd1isSwLvPPKsrw5deqUJMnPz08REREXvfa6665zlYK7du1SUlJSvu05JSksLEyhoaFKSkqSpALj0rniSpK6d++uyMjI0n0BxdSqVSv16dNHEydO1DXXXFNgZaMnX3/9tSZPnizp3MrOV199Vddff315RlVOzv/+Ile7du0iFZBRUVGu4/r16+uSSy4p9B6b7dzHakpBAAAAAKi8fCLqKPzWgYpf/W+34wnrPlFAo9byDqtlcDKgbFAKAgAAw11Y8v3444+KiYkpcM2BAwdcxxcWO57k5eW5jmNjY3Xo0KEC19jtdrfHpXV+peDll19e6LXt27d3HTudTh07dsxt6de0aVNt3bpVkgo89y8nJ0dr166VVLItMcvCmDFjtHHjRj355JP66quvFB4eftHrN2/erBdeeMH1+rnnnlPv3r3LO2aR/uyUpfIosAEAAAAAxgm5trvSf9+qrOP7Cow57dmKXTJFtR8YzzaiqJQoBQEAgOEuLE6WLVsmf3//AtfExcW5jrOzs13HnlYZXlgKvv3223r77bcvmqGsSsGcnBwlJCRIkpo3b17o9U2bNpXFYnF9HVlZWW6v69atm7Zu3arrr79e1157bb6xH374QSkpKWrTpo2uvPLKUn4FJVOjRg299NJLGjVqlJ588kl9/PHH+Z7fd6G9e/dq5MiRru/5qFGjDCszy7L8rYjvBwAAAAAoWxaLVVE9RujErH+430b0+D6l7FiuGu16mJAOKB1KQQAAYLgLS8E33nijwEo4SXrvvfc0ffp0SUUrBS+c81//+pfuvvvuAtdkZ2e7ntdXVivITp8+7crUrFmzQq8PCgpSw4YNdfjwYUlSgwYN3F53//33q2bNmurYsaMsFku+sWXLlkkyb5Xged26dVOfPn20ePFiPfPMM3r//fdlteb/TckDBw5oyJAhSk9PlyQNHz5cI0eONCzjhf+eT5065XYF6V/Fxsa6jo8fP16k1X/nr7nwzyoAAAAAoHLyDq+t8E4PKH7VR27HE9bPV8DlbeQdXsfgZEDpUAoCAADDFWeLRZvNVqAUc6e4ZUxZlTf79+93Hbdr165I99x00006fPiwrr76atWq5f45BDabTV26dClwPi0tTWvXrlXt2rXVtWvXkoUuQy+99JJ2796tlStX6uWXX9Yrr7zi+vd15MgRDR482PVsxL/97W8aPny4ofkuLAXHjBlT7PuHDh1arOszMzOL/R4AAAAAgIonpO3t57YRPba3wJgzN0dnl0xVnQfGy2L1MiEdUDKUggAAwHBF2WLR29tbffr00RNPPJFvNZ3D4XB7/fkyJjo62uPqO0mqU6eO+vfvr/vuu6+Yqd3bs2eP632L8kxBSXrggQd06NAhvfzyy8V+v9WrVysrK0uDBg2SzWb+Rzl/f39NmjRJffv21cKFC2W32/Xaa6/p4MGDGjJkiGsb2H/+85965JFHDM934Z+1uXPn5numoydffPGF6/mHq1at0iWXXFLoPV27dlVeXp7uvPPOkocFAAAAAFQY57YRHa4Ts56W017w0R/ZJ35X8o5lCm1/lwnpgJIx/ydJAACg2jm/esvb21tBQUFur3n88cfdll6etg8NCwvTxIkT1a1bN3l7e7u9xtfXV2vWrJGXV9n9Ft/eved+Y/DGG28s8j3169fXRx+534KkMF999ZUCAgLUt2/fEt1fHho1aqTJkydr2LBhWrx4sc6ePas9e/YoKSlJNptNr776qvr06WNKNl9fX919993q1q2bWrduXW7v884776hly5ayWq1KS0vz+OcaAAAAAFB5eIfVOreN6MpZbscTv/9MAY3ayCeynsHJgJKxFn4JAABA2bJarRowYIDWrFmjpk2bur3G0yo4TysFW7durTvvvNNjIXheWRaCubm5+vXXXyVJ3bt3L7N5PTl58qS2b9+u3r17KyQkpNzfrzhuuOEGvf7665KkTZs2KSkpSf7+/po6dapphaAkDRgwQP/617/UpUsX+fj4lNv7XHXVVZKkDz74QF27dtWBAwfK7b0AAAAAAMYJuaab/C5t6XbMmZuj2KVT5XTkGZwKKBlWCgIAAMMNHTq0SM8JdMfTSkEz7NixQykpKYqKitINN9xQ7u/31VdfSTq3/WhFk5CQoFWrVuU7Fx4ebsqKufj4eI/lcVGkpaW5jhMTExUQEFDoPdnZ2XrllVe0ceNGSdLgwYP16aefXnQrWwAAAABAxWexWBV153CdmPWUnDluthGN+UPJ25Yo9PpexocDiolSEAAAGK6khaDkeaWgGdavXy9Juuuuu8p0BaI7TqdTX331lW655RY1bNjQ43U5OTlavny5evXqVa55LrRq1SqNHz9esbGxks49t/HMmTOKiYnRoEGD1K9fPz355JMKDw83LM8rr7xSJgXy/fffX6L7YmNj9fDDD2v+/PmqXbt2qXMAAAAAAMzjHRqtiM4PKe67GW7HEzcsUMDl18gnqr7ByYDioRQEAACVSl5e+WzJkZmZWazrnU6n1q5dKx8fHz300EPlkulC27dv1/Hjx/Xaa695vMZut+vJJ5/U+vXrdebMGT322GPlmuno0aN67bXXXKvj/Pz89Pjjj2vo0KH65Zdf9PTTTys2NlafffaZvv32Ww0ZMkSDBg1SaGhouebq37+//P399eeff+rKK69UvXr1FBwcrKCgoCIV0t98843r+/zVV1+pXr2SPxvC19e3xPcCAAAAACqO4NZdlf77VmUe+bXAmHdUA6kUvwANGIVSEAAAVCrlVQpu3ry5WNdv3bpVJ06c0P3336+aNWuWS6YLLVq0SM2aNdN1113ndtzhcGj06NGu1YsTJ06Ur6+vHn744TLPcvbsWU2bNk2LFi2S3W6Xl5eX7r77bo0aNUp16tSRJLVv315LlizRm2++qW+++Ubp6emaPHmyZs+erbvvvlt9+/ZVixYtyjzbeaVZKenn5+c6DgwMrHDPbwQAAAAAGM9isSjqzid0fOZTcub8/y8WW20Ku+k+hV7fSxYv6hZUfPwpBQAAlUppSsGXXnpJgYGBCggIkJ+fn3x8fGS1WnXkyBEtXLjQdV1RVpMtWLBAvr6++VbjnTp1ShkZGSXO50lOTo5WrVqlRx99VIcOHXJ7zezZs7V8+fJ859588//Yu+uwqNL3DeD30C2goCgoNpira6zdujbWuhaKioGxtrv2YmAXFsbagYHd3d3dhRh01zDz+4PfnC8jDMwwA0Pcn+vaayfOec8zxDic+7zP6wUDAwP07NlTI3V8/vwZGzduxL59+xAXFwd9fX106tQJgwcPTrOlqZWVFebPn49OnTph7ty5ePHiBWJjY7Fr1y7s2rULpUqVQtu2bdGoUSNUqlRJrbayOdmePXsQGhqKQYMGabsUIiIiIiIiUoNeARsUbNEPQUdXw6BwSdi0Hw7Dwo7aLotIaQwFiYiIKFcRi8WZ3vf333/H/fv3cfnyZTx48EDhmnMODumvARAUFISzZ89i8ODBKFasmPB4YGAgBgwYgIiIiEzXmB5vb294e3urtI+npycMDQ3RpUuXTB1TKpXi6tWr8PX1xdmzZ5GUlAQbGxv07dsXvXr1UmqWZJ06dbB//34cOnQIa9aswfv37wEA7969E16TtbU1atasiSpVqqBq1aooV64cChQokKmac5ItW7Zgzpw5AICSJUuiRYsWWq6IiIiIiIiI1GFetRlEOnowq1ifswMp1+FPLBEREeUqiYmJmd63bt26qFu3LoYNG4bPnz9j3bp12L17t1w4WKRIEfzyyy/pjrNlyxbY2tqmmvlVpUoVbNq0CVeuXIGzszNKliwJCwsLmJmZQVdXN9N1a8O7d+9w7Ngx7N+/H/7+/jAwMECTJk3QqVMnNG7cGHp6qn2M1NHRgYuLCzp06IAzZ85gy5YtuH37tvB8SEgITp48iZMnTwqPWVtbo1SpUrCzs4ONjQ1Kly6Nrl27yo0bHx8Pf39/9V7sTwIDA4Xbnz9/znQQffLkSSxbtky4P378eGzfvj1L26YSERERERFR1hKJRDCv0ljbZRBlCkNBIiIiylXUmSmYkoODAzw9PfHbb79hzJgxkEql0NPTg6enZ7qBV2hoKLZv347ly5fD0NAw1fMVK1bMtaHPs2fPcP78eZw6dQovXryAhYUF6tSpg1GjRqFJkyYwMzNT+xg6Ojpo2bIlWrZsiTdv3mDfvn04duwYvn37lmrbkJAQhISEQFdXFw0bNkSJEiVSbaOvr4/169fDz89P7drSMmDAAI2NFRsbiyFDhmDv3r3Zsg4lERERERERZT+pVIroZ1egX8iBrUUpx2EoSERERLlKQkICbGxs4ObmppHx2rRpgwMHDiAgIADTp09HzZo1091+48aN+OOPP1CvXj2NHF+bvn79ips3b+LWrVu4fPkyoqOjUaVKFbRo0QLTp09H1apVs3SGY5kyZTBx4kRMmDABd+/exdmzZ3Hx4kW5dRNLlSqFFStWoHTp0mmOoaOjgzlz5qB8+fIwNzeHs7MzChUqBHNzcxgbG2dZ7UREREREREQ/S4oOR+BxH8S8vAmDwiVRzG0uW4xSjiKSKlpMh4hynYSEBDx+/DjV45UrV4aBgYFaY4vFYrx+/VrusbJly6rcPi47SSQSxMbGyj1mbGwMHR0dLVVERJrw+PFjlC9fXu33tZSCgoJQqFAhpbadPHkypk+frtHja8P58+exbt06ODk5wdnZGZUqVUK5cuVyRJtTWVh5584dDBw4EI6OjtouiYgoUzTxeTQ3fg4nIiIiyo+inl1F0Mn1kMRECI9ZNegOq4Z/aK2mxMREPHr0SO6xKlWqQF9fX0sVaVdWnj/PLfhXBBEREeUqlStX1viYygaCADB79myNH18bmjRpgiZNmmi7jDTZ2dnBxcUFLi4u2i6FiIiIiIiIKF0ScQICDy1H9PPrqZ4LvboXJuVqwrBISS1URpQap8sQERERERERERERERFlgkhXH9IkcdpPSpIQeNgb0qTE7C2KSAGGgkRERERERERERERERJkgEolQqPVg6Bibpfl8wo+PCL2yN5urIkob24fmMC9fvoSfnx9u3boFf39/xMbGwtTUFLa2tqhatSpatGiBhg0bQiQSabtUOUlJSTh//jxOnz6NR48e4du3b0hMTISlpSV++eUX9OzZE3Xr1lVqrPLly2e6jrNnz8Le3l6pbQMDA7Ft2zacP38enz59gq6uLuzt7dGwYUP07NkTdnZ2ma6DiIiIiIiIiIiIiPIHPTMrFGrljh8HlqT5fNhVP5iWqwVDu9LZXJlq7t69i6NHj+Lu3bv4+vUrYmJiYGZmhoIFC6JSpUqoW7cuWrdunSvW33vx4gWOHTuGW7du4ePHj4iMjIS+vj4KFiyIKlWqoFWrVkovJ3Pz5k24urqqVc/q1avRtGlTtcbQBIaCOURAQABmz56N69evo2fPnpg6dSocHBwgkUgQEBCAy5cvY9u2bdizZw8qVqyIJUuWoESJEtouGwBw69YtTJ8+HeHh4ejevTt69eqFIkWKIDExEdeuXYOnpydOnz6N3r17Y/LkydDRyZoJqhYWFkoHgocPH8b06dMRHx8PV1dXzJ8/H6amprh9+zaWLVuGzZs3Y8aMGejcuXOW1EpEREREREREREREeYdphXoweX4NMS9vpn5SKsGPw96w778AIj397C8uA48ePcKsWbPw5s0bdOjQASNGjBDO8X/9+hVXrlzBoUOHcODAASxYsAD//vsvmjVrpu2y0/T582fMnj0b58+fR82aNdGhQweUKlUKZmZm+Pz5M1atWoWjR4/i7NmzGDRoEH777bdsqatSpUrZcpyMMBTMAR4+fIjBgwejYMGCOHr0aKoZaoULF0a1atXwxx9/wM3NDU+fPkX37t2xd+9epUOwrLJ9+3bMnj0bjRo1wpw5c2BlZSX3fLdu3XDs2DFcu3YN27Ztg5WVFYYPH57huDY2NjAzS3u6tSIVK1ZUartdu3Zh+vTpEIlEWLhwIdq1ayc85+DggEaNGqFr1674559/EBwcDHd3d5XqICIiIiIiIiIiIqL8RSQSwab1YHz+/BySmIhUzycGfkbo5d2wbtJLC9UptmXLFnh5eaF69eo4fvw4ChcuLPd8tWrV0KZNGwwaNAiDBg3Cx48fMWzYMEybNg09e/bUUtVpu3jxIsaOHQsDAwOsWrUqVXBZrlw5iEQi/PXXX4iLi4O3tzcMDAxQuXJlpcY3MTHJ1CzJQoUKwdbWVuX9sgJDQS0LCQnBkCFDEBYWhu3bt6fbsrJIkSJYsmQJOnXqhNDQUEyYMAE7duzIxmrl7du3D56enmjWrBmWL18OPb20f5wiIv73Bnj8+HGlQsExY8ZkySy9u3fvwtPTEwDw559/ygWCMgULFsS8efPQp08fLF68GOXKlUOjRo00XgsRERERERERERER5R26pgVQ6Hd3/PBblObzYdcPwKR8bRgVLZPNlaXN19cXs2fPhqOjI9avXw9jY2OF2zo6OmLdunXo2LEjYmNjMXv2bFSsWBFVq1bNxooVu3TpEoYNGwZLS0ts3rwZpUun3apVV1dXuC2VSrFv3z707dtXqWNMnTo113cXzJo+jqS0NWvWICQkBOXLl1f4Q5qSk5MT6tevDyA54Lp161ZWl5imDx8+YMaMGbC0tMTcuXMVBoIA5K4sqFKlSnaUlyaJRIKpU6ciKSkJpqamGDlypMJta9WqhVq1agn7xMfHZ2OlRERERERERERERJQbmTnXhalz3bSflEoQeNgbEnFC9haVhsDAQMybNw8A0Lt373QDQZkSJUqge/fuAACxWIyFCxdmaY3K+vTpE8aMGQOxWIylS5emm7VERkbK3Tc0NMzq8nIUhoJaduLECQBAYmKi0vvUrfu/N5Tz589rvCZlzJ07FwkJCejatSssLCzS3Xbx4sVYvXo1NmzYgJkzZ2ZThakdPnwYb9++BQC0a9cO1tbW6W7fqVMnAMD379+xbdu2LK+PiIiIiIiIiIiIiHK/Qq0GQsck7fPmiUH+CL3km80VpXbkyBFER0cDSA77lNW2bVvh9q1btxAQEKDx2lQ1ZcoUREZGonHjxqhRo0a625YoUQLt2rWDg4MDKlasiN69e2dTlTkDQ0EtiomJwffv3wEAb9++xaVLl5Taz8HBQbj96dOnLKktPbdv3xbCyFatWmW4vZGREZo2bYr69eunO6Mwq61bt0643bFjxwy3b9y4sTCVeNOmTZBKpVlWGxERERERERERERHlDbqmBVCo9SCFz4ffOIQ4/5fZWFFq165dE26/fv1a6f2cnJzkWnDeuXNHo3Wp6vz587h58yaA/030yUjPnj0xb948TJ48GaVKlcrK8nIchoJaFBsbK3dfNlU3Iymn8SYkZP80Yz8/P6GOChUqZPvxM+PNmzfCG5u5uTmqVauW4T7W1tbCG8KPHz/w4MGDrCyRiIiIiIiIiIiIiPIIM6c6MK1YP+0npRIEHl4BSaL2lq2STVgCkpc5CwoKUmo/AwMDmJubC/d//Pih8dpUsWHDBgCAjo4O6tWrp9VacgOGglpkbW0NGxsb4X7KX8L0hIaGCrft7Ow0Xld6EhIScObMGQBA6dKltTrzTxWnT58WbletWhU6Osr96KcMPWWvm4iIiIiIiIiIiIgoI4VaDoSuqWWazyWGBCD04q7sLSiFlJ3xIiIisGuX8rXo6+sLtyUSiUbrUsXHjx9x+/ZtAMl5hZmZmdZqyS0YCmqRSCTC0qVLUbNmTZQtWxYTJkxQar8nT54It8uXL59V5aXp7t27iIiIAKBan2Ftu3//vnC7YsWKSu9XpkwZ4fbTp081WhMRERERERERERER5V26JuYo1HqwwufDbx5G3JdX2VjR/1SuXFnuflxcnFL7JSUlISwsTLhva2urybJUknIiT8pz+aRY7pjmlYfVqFED27ZtU3p7qVSKU6dOAQD09PTQunXrrCotTS9evBBu//zLfvPmTRw7dgwvX75ETEwMrK2tUbx4cTRr1gz16tXL1KxCqVSKs2fP4syZM3jw4AECAwORmJiIwoULo06dOujRowecnZ0zHCdlT+RixYopffyUr/HNmzeqFU9ERERERERERERE+Zpp+Vowq9QQUU8uyT8h0oFlHRcYFi6plbrGjBmDqKgo3L9/H/b29ujRo4dS+7169QqJiYnC/Z/DxeyUcl1EBwcHrdWRmzAUzGXOnz+PL1++AACaN28Oa2vrbD3+y5f/W/zU0tISAPD161f8/fffuHHjRqrtr1+/Dl9fX1SsWBFz585FuXLllD5WbGwsRo0ahQsXLgAATExMYGVlhZCQEHz69AmfPn3C3r17MWTIEIwcOVLhONHR0QgICBDuFy1aVOkaChcuLNwODAxEZGSkXL/k3EIsFkMkEqk9Rsop5UDy1HBtTg/PrNxYMxERERHlHap8HpVIJKk+hycmJqZ6jIiIiIhyLosmroh5/xiS6OSlwfSsi8K6rQcM7cpALAWQImTTJLFYrPCxAgUKYNGiRXLPJSpRx8mTJ4Xbjo6OKF68uFL7ZYVHjx4Jt62treXqePr0KQ4cOIC7d+/ix48fMDQ0hLW1NYoUKYJatWqhSpUqap0z//79O44cOYLbt2/j/fv3CAsLg4mJCezt7dGsWTN06tQJBQoUUOv1ZQWGgrlIUlISli1bBiA5IBs3bly215BytpyZmRk+ffqEXr16ISgoCJ06dUKnTp1QsWJF6Orq4unTp1i1ahWuXr2Kp0+fol+/fvD19VUqsU9KSsKwYcPw+PFjjB07Fu3atRPCPIlEgkuXLsHT0xNfvnzBypUrkZSUhNGjR6c5VkhIiNx9VX4Rf+5BHBYWlitDwefPn2t0PCMjIwDJU8p1dXU1OnZWi42N1XYJRERERJSPqfp5NCkpSQgAZS2dnj17pvG6iIiIiChr6ZdvDtN7exFfsjZiyzREYGAMEPgo4x01TJ3PkklJSdizZ49wv0GDBnLBXHYKDg4WljoDktdFfPToEWJiYvDff//JzSKU+f79O54/f47z58+jQoUKGDx4MGxsbFQ+tq+vL2bPno34+Hi5x8PCwhAQEIBbt25h3bp1mDVrFpo0aaL6i8tCDAVzkc2bNwvtOz09PbUyHTY8PFy4LRKJMHLkSIjFYmzfvh3Vq1eX27ZGjRrYsGEDpk+fDl9fXwQHB2PChAnYuXNnhsfZsGEDoqKisGfPHjg6Oso9p6Ojg8aNG6NChQpwcXFBcHAwfHx8UL9+fdSsWTPVWNHR0XL3ZYGWMgwNDeXux8TEKL0vEREREREREREREREAJNqWRUSDwZCYZm/3P026dOkSgoKCAAA2NjZo3ry51mr58eOH3H0jIyNERERg1qxZ8Pf3R6lSpdCqVStUqFABBQoUQFhYGG7evAk/Pz/Exsbi2bNnmDVrFjw9PVU67ubNmzFnzhzUrl0bnTt3RtWqVVG4cGEkJCTg+fPn+O+//4Sv0/Dhw7Fo0SL8/vvvmnzpatHRdgGknCdPnmDx4sUAgIkTJ6J9+/ZaqSNlwObn54d3797Bx8cnVSAoIxKJMG3aNKFt6L1793D+/PkMj/P+/XssWLAgVSCYkq2tLcaPHw8gee3Bn6c6y/wc5KkSCv687c8BIxERERERERERERGRMnJzIBgdHY3du3cDSJ64M2TIEOjr62utntDQULn7+vr68Pb2xpcvX9CnTx/MnDkTDRo0QMGCBaGnp4dChQqhbdu2mDVrFiwsLAAkLxm2atUqpY957do1zJ8/H56entiyZQtcXFxQsmRJmJiYwNLSEnXq1MHatWvRt29fAMmtWv/++298+vRJcy9cTQwFc4EfP35g+PDhEIvFmDZtGvr376+1WlKGYk+ePIGHhweqVKmS7j56enoYNmyYcN/X1zfd7UeMGIEJEyagTp06GdbTvn17WFlZAQDu378v195U5ue+wKqsvfHzWh86OvyVISIiIiIiIiIiIiLNEiXEwuTRIegFf9B2KWnasmWL0Emwb9++cHZ21mo9kZGRcvdly5i5ubmhdevWCtcLtLOzw8iRI4X7jx8/TrPVaFoOHz6MIUOGoHv37gq3EYlEmDBhAipUqAAgefmAmTNnKjV+dmD70BwuIiICgwYNQmBgIObPn48OHTpotZ6UC3Xa2dkpHVA2bdoUhoaGiI+Px5UrV5CQkAADA4M0tx0+fLjS9ejp6aF+/fo4fPgwAODmzZsoU6aM3DampqZy92XrcCjj557AP4+VWzg7O6t91YZYLMb79+/lHjMyMoKeXs5+G/l5zRZjY2MtVUJERERE+ZG6n0fFYrFwQkO2b8mSJXP853AiIiIiUl7sm7sIubwJkuhQmER/RxG3BdAxUL7jnSJisTjVGoIVKlRQ+bPkgQMHcPnyZQDAuHHj0K9fP7VrU9etW7fk7l+7dg0tWrTAmDFjFO6TmJiI58+fo0KFCqhZsyZu374NANi2bRsaN26scD/Z5/EyZcpg6NChGdamp6eHIUOGCOHj5cuX8eHDh3Q7I2YX/hWRg0VGRqJ///549+4dvL290bRpU22XBGNjY0RFRQEAevfurTDY+5mBgQHKli2LJ0+eIDExES9fvkTlypU1UlOFChWEUPD58+epnjcxMZG7/3PQl56ft/15rNxCT09P7VBQJBKlurpCR0cnR8+e/Hmmp0xOrpmIiIiI8g5NfB7V0dFJ9TlcX1+foSARERFRHpAUF43g0xsR9eh/S24lhQci8tJOFGo9KEuOqeq54jt37uDff/+FSCTC1KlT0atXryypS1U/f9bW19fHlClT0n1tKbsINmrUSAgFr127hpCQEFhbp93etVatWrh79y4SExOV/hzepEkTmJiYICYmBlKpFMeOHYOHh4dS+2YlnhnPocLDw9GvXz+8efMGPj4+OSIQBORnyql6hWvhwoWF29+/f9dYTfb29sLtn/sIAxDai8rIpjgrQxaAAsmh2M9jERERERERERERERGpKikuGv5rR8sFgjIR904i5v1DLVQl7+XLlxg2bBgkEgm8vLxyTCAIIFU416VLFxQpUkTp/Z2dnYWL75KSknD//v10tzczM1MpHzAwMEDNmjWF+48ePVJ636zEUDAHCg0NRd++ffH+/XusX79eqbX1skuBAgWE2zExMSrtmzJQVHVfdcY1NTWFnZ2dcP/r169Kj50yvCxatGiunSlIlB+cPHkSDx9q/8MSacbVq1dx4MABbZeRb61atQr37t3TdhmUhaKiojL9B0lCQkKGfyyRZrx9+xZ37tzRdhmCtNbvVlZAQIBKHTuIiIiIiPI6XSNTmJSprvD5oCOrIInX3Hl0Vb19+xZubm6IiorCokWL0KlTJ63Vkpafz9U3a9ZMpf2NjY1RsGBB4f6LFy80UldKpUuXFm6/fv1a4+NnBkPBHCY8PBz9+/fHp0+fsH79etSoUUPbJckpVaqUcDskJESlfVOuR6jJtflSThNWFNqlXGcwICBA6bFThoIpf4GJKOcRiUTo3r07Ro0apVL4n93OnDmDz58/Z7jdwYMH8ePHj2yoKGdavXo1Jk6ciAEDBij19dKGHTt2ICEhId1twsLCcODAAYjF4iyvJyAgIMN6lHXp0iX06NEDLi4u2LNnT6r1sLJCYGBgtv3M379/H0lJSWqNocmuBwBw48YNPH78WKNjpicuLg7dunVDnz59cPHiRZX3//PPP9G3b1/cvHkzC6rLHps2bcK0adPw8uVLbZei0OXLl9GrVy/069cvR4SDQ4cORe/evXH+/Hm5tjvK2Lp1K37//XccPXo0i6ojIiIiIsp9CjbrC70CNmk+J44IQvCZzdlcUbJ3796hb9++iIiIwLJly9C6dWut1JGenzOGzFyEaGZmJtxOqwuhulJ2T1Slg2FWYiiYg0RFRWHAgAH48OEDNmzYgOrVFV8loC1ly5YVbr97906lfePi4oTbKWccykgkEsyaNQu1a9dG3759lT4BmXJ2oIWFRZrbVKlSRbitSuKfMr2vWrWq0vsRUfZr2bIl+vfvj+PHj6NNmzbw9fXVdklpunr1Klq3bo3JkyenG3YdO3YMzZo1w4wZM+Dv75+NFWrf48ePhZ7uV65cQfv27XPkSeT58+ejefPm2LZtm8IwTiKRYOLEiWjZsiV27typsdAuLbdu3ULr1q1x8uRJtceSrRn8/PlzbNmyJVs+uP748QOtWrWCj48PIiIiEB0dnSX/Xb58GX369MGQIUMQHR2d6XrXrVuHAQMGaGxG5YsXL9C1a1e4urpmKqRTlZFR8oL1t27dwqBBg9C/f3+lw2sDAwOIRCLcuHEDrq6u6NGjB4KCgoTnU37m05aoqCgsXbo03RmNSUlJ8PX1RYcOHdCrVy9cuXJFI8eOjIyEr6+vRi4GePbsGQDg+vXr6NWrF/755x+1x1SHgYEBbt++jSFDhmD06NGpnn/79q3CfR88eICAgACMGTMG3bt35+x+IiIiIiIAOobGsGmreJ25yAdnEPM2ezu1vH//Hq6urggPD4e3tzeaN2+ercdXlqWlpdz9zFzQbGhoKNzOis4mKScxZccF18pgKJhDJCQkwMPDA69fv4aPjw+qVauW4T6JiYkYPnx4tv4wpQwqVb2qOiwsTLhdsmTJVM8fOXIEW7duRVhYGG7cuIEzZ84oNW7KK/VTzghMqUWLFsLtBw8eKFcwgCdPngi3c+qbHxH9z6hRo+Do6IiYmBhMmzYNixcv1nZJqRgbGyMxMRF79+5F69atcerUqTS3MzIyQkJCAnbu3IlWrVrh9OnT2Vyp9vz3339y99u2bYsmTZpoqRrFjI2N8f37d8ycORNt27ZNMziTrb/75csXzJgxA+3bt8+SK88AwMXFBS1btsTIkSMxdOhQlWf0p6Srqyvc3rx5s0o9+TPL2NgYMTExWLx4MWrWrInq1atnyX8DBw5EYmIiLl26hH79+mV6xuCUKVPg6OiIHj16YOjQoWrPaJUthH7z5k0MGjQIa9euVWs8ZY8HJK+jMHfuXKUXSwf+t3aDoaEh/vzzTxQqVAhActDWvXt3LF68GBEREZotWgkvXrzAnDlz0LRpU6xevRpDhgzB+/fv09w25R9/EolE7uI3dZiYmODs2bNo164drl+/rtZYsgskAKBixYoYP368uuWla+3atdizZ4/C52VfM2dnZ8ycOVPuuQ8fPqBDhw5YtmyZXIcQIPnvlqdPnwr3dXR05K6YJSIiIiLKz4xLVoFF9VYKnw88uhqSuMxf1KoKf39/9OvXD2FhYVi+fHmOPB8j83Nnv5QXqyor5d8uKWcNakrKcw45ZWkyhoI5gFQqxd9//427d+9i+fLlqFWrllL7PX/+HNevXxdOOGaHWrVqCQn8169fVQoGZTNdHBwc5Hr1yvx8JbeyyXzKtU1SzghMydnZGcWLFweQPA34+fPnGY4bGBiIjx8/CjU7OTkpVQ8RaY+BgQGmTJki3Pfx8ckR7dZSSvkBoG/fvnIXLaQkO/Gqp6eHBQsWKNwur3n+/DlOnDgh3LewsEDNmjVzzAenlGT//hYoUABeXl5pzoJPGTqUL18e69evV2lRalWNGTMGFStWxLlz59ClSxeFYUhGdHSSPyLq6enB2tpakyUqlPJrtWHDBjx69CjD/xYtWiTso8z2jx49wtixYwEkv1+MHj1aLgBV1eTJk9GyZUucO3cObdu2xc6dOzM9VspArl27dhg4cGCmx1JGylCwZs2asLW1zdT+Tk5O6Nixo/C4rq4uFi9ejF27dqFFixbYsmWL2q1a0/Pjxw8cP34cM2fORLNmzdCxY0ds3rxZCOnDwsIwcODANP84TPk1mDZtmsZCKl1dXSxZsgT6+vro168fpkyZkqnZkx8/fhTa3uvr68PLyyvLfx9btGiBmTNnwt3dPc0LC2Q/p05OTjA3N5d7bv/+/RCLxVi1ahV69Oghd6HE06dPhc/2hQoVgo+PT7ZcbEBERERElFtYN+sDvQJp/12WFBmM4DObsryGwMBAuLm5ITg4GEuXLs3RgSCQfM5e1gUHUL2zISAfCirqQhgTE4Pp06ejTZs2+Oeff1TqApWyy+HPf0NpC0PBHGDlypU4evQoZs2ahUaNGim934kTJ4SgK7vo6emhbdu2wn1l27kFBQUhMDAQgOIZdyl/6SwtLZWemSe7AtvGxibdlqv9+/cXbh84cCDDcU+dOiWslTJgwAClaiEi7WvQoIHcrOGUM36VdfjwYcybN0+TZQlSnvgfPHgwRCJRmtvJAhJjY2O0adMmS2rJiebNmyesFVu2bFns3r0bCxcuxKdPn7RcWWqyQKFGjRoK1wDW0dERtqtduzYcHByyvKYZM2ZAJBIhICAA7u7uiIqKUnkc2b9/mlwDOCMpfzf09fVhaGiY4X8p91Fme0NDQyEEtLGxQd26ddWqWUdHB15eXihWrBji4+MxY8YM+Pj4qP3669WrJwSzWUVHR0elmYE/k30d0wpVS5cujQULFiA8PByzZ89Gt27d0m0rqYyoqCi8ePEChw4dwvz58zFgwADUr18fDRo0wKhRo7Bt2zb4+/vD2NgYJUuWRK1atdCuXTv07t0b7du3x6NHj1KNmTIU1DRTU1MsXrwYhoaG2LNnD3r06IHg4GCVxrh06ZJwu3Xr1ihfvrymy0ylZMmScHV1xaVLl9C5c2e5VvqA4q9ZbGwsdu3aBQD45ZdfsHz5crkLJW7duiXcdnNzU/jHNhERERFRfqVjYAyb9sMUPh/58Bxi3tzNsuNHRUVh4MCB8Pf3x7x585Q+Nx8UFCTX4SQ76ejowNnZWbj/898vyki5rEixYsXS3Gbu3LnYtWsX3r59Cz8/Pxw7dkzp8VNebFmiRAmV68sKDAW17OLFi1ixYgWGDh2KTp06Kb3fly9fsGvXLoWhYEBAAAYNGoRq1aqhffv2uHbtmqZKxpAhQ4QZG9u3b1dqnSHZGi26urro06dPmtvUr19fuN2rV69UPYHT8uDBA+FE8R9//JHu1f7dunWDo6MjgORQMDIyMt2x9+3bBwCwt7dH165dM6yFiHKODh06AEieldeyZUuV9j1y5AgmTpyI//77D15eXhqvTdlZSVl5sjqnunjxonChh4GBARYuXCicoB41alSO6b0uk1O/l1WqVBGu5vv8+TO2bNmi8hiyYDY7Q0F1Zuxpk5mZGWbMmCHcX7ZsGb59+6byONp4/eoEjylnk6alUaNGwgVZT58+xR9//JFmMKfI58+fMXjwYHTo0AH16tVDs2bN4OHhgQ0bNuDx48cwMTFB48aNYW9vDyD5orPr16/jwYMHOHHiBLZu3YpFixZh6tSpGDVqFJo2bZrqGFn9u1m2bFkMG5b8R/2zZ88wYMAAuatEM5KybXTfvn01Xp8igwYNgqmpKb5+/YoBAwbIXVig6Od08+bNCAsLQ7ly5bBhwwYULVpU7nlZKGhoaMjP1UREREREChiXqASLGq0VPh94dA2SYlW/8DcjYrEYI0eOxIsXLzB9+nS5SUEZOXTokFwXn+yWMrx89OhRhuf8UxKLxXJLvCha0u3kyZNy91VZPiTl7MVKlSopvV9WYiioRYGBgZg4cSJ+++03jBw5Uun97t+/Dzc3N0RHRysMBSdOnIiLFy8iJiYGr169goeHB75+/aqRum1tbYV6o6Ki4Onpme72UqkUmzZtAgCMHDlSYeJes2ZNYaakMm3ipFKpsF5YsWLF4O7unu72enp68PLygoGBAcLCwrBq1SqF2546dQpPnz4V9smPJ+cpNalUCkl8DJJiIiCJjxFm0pBmxMbGIiQkRCP/2dvbQyQSYdKkSTAyMlJ6v4MHD2LChAlCq7tNmzZh7ty5Gn2dyr6fZPUsoZwmLi4Oc+bMEe6PGTNGaNvs5uaGxMREjB07VgircgJlZ1kpmg2alf7880/htqprAAP/mymYnS3KtfF10pSGDRvi119/BZC8XoCsZboqtBEKqnNM2XtUeu9pI0eOFEK7qKgoTJs2Tenx7ezssGDBAvj5+eHq1au4efMmzp07h4MHD2Lr1q3w9vbGrFmzhJnh5ubmKrfWzI6ved++fYXWrM+fP8eyZcvknv/06RPmz5+far+wsDDcvZt8FXCNGjWy9Y9HCwsLdO7cGUDy2t07duwQnkvraxYWFob169ejWLFiWL9+fap1OBITE3Hv3j0AQKtWrZS68C89/v7+KF++vFL/Va5cGXXr1kW3bt3g6emJ27dvZ+rzW0REBLZs2YKBAweifv36qFSpEqpXr46mTZti6NCh2Lx5s0onH4iIiIiIFLFu0ht6lmkvbZAUFYLg0xs1fsyZM2fi6tWrGD58uNz5BGVcv34927sZptSq1f/WYhSLxbh8+bLS+3779k34+6BIkSIKuzuJxWK5+7K//zMilUrx+PFj4b663Yo0JfM9g0ht3t7eCA0NxZs3b5RuDRcRESHXekjRL9zP7fJiY2Px+PFj2NnZZb7gFNzc3PD582ds374dR44cQbFixTB69OhUJ/SkUinmzp2L58+fw8XFBYMHD0533Pnz52PQoEHYsmULmjdvLszs+5lEIsG8efNw8+ZNWFhYYOnSpUqduKxevTpmzpyJv//+G5s2bcKvv/6aair058+fMX36dADAhAkTlF7jkfKmhB8fEfX0CuIDXiP+23tI4v53NY6OkRkMi5SEYdGyMKvYAAa22vsHMC8IDg6Gq6srvnz5orExp0yZIrfGYGZs3LgRIpEIEydO1FBVysnNAUlmLFmyBB8+fACQ3AK2X79+wnP6+vqYP38+unXrhlmzZqkULGQlZb9H2gh469SpgwIFCiA8PFzhervpkfXU11YoGBkZmeZ6Zj9L2eZDme0BZNmM0379+uHu3bsoUKAAypUrp/L+2vidV+eYGc0UBAAjIyOMGDFCeP/8/v270uPr6elleYtJddqnKsvIyAjdu3eHt7c3gOT2///884/w/Pbt21GhQoVU+504cUL4wzPl+2F26dChA7Zu3QpAfg2MtN7Pli5dCiMjI2zcuDHNdRnv3bsn/K5269ZN7dqKFi2K27dvIygoCOPGjcPTp08BJF/VO2fOHBQqVAhA8u96aGgoHj9+jIMHD2L79u3Yvn27sF2pUqUyPJZYLMamTZuwcuVK1KpVC3/88QecnZ1hamqK0NBQPHz4ENu3b8ecOXOwbNkyTJs2DS4uLmq/RiIiIiLKv3QMjGDTfji+bp0GIPUFbVGPL8DU6TeYlqupkePt3bsXu3btgouLC0aMGKHSvl+/fsX169cxdOhQhdscO3YM3t7eCAwMRL169TB9+nSNrpXu4OCAFi1aCJ1WNm3apHTWIvtbAgC6d++ucLuyZcvi/v37AJLPWSkb7j1+/FhYUs3e3h6//fabUvtlNYaCWhQUFAQgecag7IdDVYpCwUqVKsmt3aGvry/MuNCUqVOnonTp0li4cCF8fHzw4MED9O/fH05OThCLxXj+/Dm2bNmCR48eYezYsRg0aFCGY1paWmLLli1YtmwZOnXqhMaNG6NJkyYoV64cChYsiLi4ODx58gRbtmzBvXv3UKFCBcyZM0eud3BGXFxcYGVlhQkTJmDUqFHo378/2rVrB2NjY1y/fh1Lly5FTEwMFixYILQgpPwn5vVdhF3fj7jPzxVuI4mLQuyHx4j98Bhh1/xg5OAMy7qdYFJGuatFSJ69vT22bNmCM2fOwNnZGSVKlICZmRlMTU1TnbhOSkpSa4ZHcHAwChYsqG7JpCF3794VWlw6ODhg0aJFqb7nzs7O+Ouvv7Bw4ULo6elh0qRJ2ig11zAwMMDkyZPx8ePHTAUKsjBC2VBw7969KF68uFoX0qS88k7WclEVderUyfSxNaFly5b4559/UK1atUyFWdoIj9MKBcViMcaOHYvatWujZ8+eCveV1ZvRe3G7du2wcOFCBAYG5rgLrbIriG3fvr0QCqbsmBETE4PTp09j9OjRqfY5dOgQgOT3xGbNmmXquM+ePcPy5cuxZMkSlQP+KlWqoESJEggICJALuX7+OX3y5AnOnDmDTZs2KVwfQ3albokSJVCzpvInLqKiolLNOpTVYGFhAQsLCzRp0kT4Q75z585yQZ+FhQUKFy4MJycndOvWDQcPHsTkyZNx//599OzZE9u3b0fp0qUVHj8mJgYjR47E9evXMX/+/FQtlKytrVG6dGl06tQJs2fPxtatWzFx4kRER0ejV69eSr9OIiIiIqKfGRevAItabRFx60iazwcdWwMjByfoGpurdZxXr15h5syZ+OWXXzBz5kyV9pVIJPj333+RmJiocGLPvXv35Lo+nThxAsHBwdi6datG/x4bN24cLly4gMTERDx8+BDnzp1LcwmJn8nyE3Nz83QvYOzSpYsQCjZu3FjpumTdEwHA3d09x0wAYCiYyykKBefNm4cZM2bg9u3bKFy4MMaOHavxabwikQi9evVCq1atcOzYMZw9exaenp4ICgqCoaEh7O3t0ahRIyxYsABFihRRelwjIyNMnDgRrq6u2LdvH3bt2oV3794hMjISpqamsLa2RrVq1dC/f380a9YsUyfRGjVqhJMnT2LPnj04deoUfH19kZiYCAcHB3Tp0gW9e/dO80pnyvuSYiIRdGo9op9eUXnfuM/P8c33OcwqNkDBlgOga6LeP8z5kb29vVIBxtSpU1GyZEkMGDBA5feAiIgING3aFF27dsXQoUOFGQW5XVBQUK58LZGRkfjnn38gkUhgbGyMFStWoECBAmluO2DAANy+fRubN2+GRCLB5MmTc8wHKk2Jjo6GSCRSqo12Rjp27JjpfWUBnaGhYYbb7t27F1OmTIGxsTF8fHwyHfykDAW3bNmC2rVrZ7jPiRMn8NdffwFQvk3qhg0bMH/+/CxpAa3OjK6s+FkODQ1N93XKjhkfHy/MtJwxYwZOnjwprJmQXjAIZNwSWU9PDwMGDMD69esxbtw4VcrPctn1/lGiRAmUKlUK7969k2t3f+DAAdSvXx9GRkZy23/58kVot9m7d+9MfdZ98eIF3NzcEBYWhuHDh2P16tUwMDBQaYzJkycjPj5e7g/8n79m169fx4YNG4Q2rkuXLkVkZCSmTp0qbHPp0iUAyaGdsl/zzZs347///sOWLVsUho2AfCid0czPjh07IigoCPPnz0doaCgmT56MXbt2Kdze09MTly9fxuDBg9NdU0XWrvzhw4d49OgR5syZg99++y3dwJGIiIiIKCPWjXsi9s1dJIakXhIsKToMwaf+g23HvzI9vlgsxvjx46Gnp4elS5eq9PfCu3fvMH/+fJw/fx6A4ozizJkzqZaBuX37Nj58+ICSJUtmuvafOTo6Yty4cfDy8gKQ3DnswIEDwlIOaXn06BGeP38OkUiEYcOGKTwXBSSHgkeOHMGNGzeELlcZuXnzJo4fPw4guatJejMRsxtDQS1Kb007dRUtWhRr167NsvFTKlSoEFxdXeHq6qrRce3s7DB8+HAMHz5co+PKWFpawt3dPcO1CCn/iP/+Ad92zUZSlHIt6BSJenoZsR+fwq7HFBjYKj6RRZk3aNAgdOzYEZcuXcLixYthY2Oj9L5XrlxBXFwctm3bBj8/P7i6usLDw0Op8CMt3t7eGD58uFbDqYSEBLRt2xaDBw+Gm5tbrgnKpFIpxo8fj48fP0IkEmHOnDnpzmrX0dHBwoUL0a1bN2zduhUhISGYO3euyie60/LmzRu8evVK6RYTWeX8+fPw9vbGwoULUblyZY2O/erVK7i6usotop2RK1euoHz58kptGxMTg8GDB2P37t0oW7asyvX93KM/q8XHx2fr8TKSFTMFDx48KPxRlB5fX1/4+vrKPSaVSoV1o9MKBmXvM8q04HRzc0OvXr1gYGCA2NjYbG1Lm1N4eHjg2bNnaNKkifCYrO3kz/bt2yeEuV5eXkp9D9Nz5coVjB07FkuXLk1zZqdYLEZERESqx2XvQSlb88p+TxMSEhASEoIuXboI22zevBlr1qwRtp06dSo+f/6Mly9fQiQSoVGjRkq1+T18+LDwdXF1dc0wGFRFnz59sGnTJvz48QP379/Ho0eP0myx/OLFC+zfvx8A0Lp16wzH1dHRgZubG0aPHg2xWIz169er/X0jIiIiovxNR98QNu2GI2DLFKTZRvTJZVjWccn0uccjR47gxYsX0NfXV6kFfkJCgtwSAwAUzhRU5OegUBP69euHoKAgrFu3DsHBwejbty/WrVsnrHOf0ps3b+Dt7Q1dXV0MHDgww2VXdHR0sHLlSgwfPhy7du1CuXLl0K1bN4Xn3+7du4e//voLEokE5cqVw8qVK3PUuTqGgkRESA4Ev26bLrdmoDqSokIQsHUaivbxZDCYBRwdHeHu7g5vb2906dIF69atUzq4OHjwoHC7YsWKaNasWaYDQSB55uH69eu1eoHB3bt3ERYWhnnz5uHSpUuYN29erpjtvGLFCuGqsr///lupQM7CwgKrVq3Cn3/+iaNHj+Lr169YuXKl2v3oHRwc4OHhgUqVKml1gexLly7hw4cP6NGjB0aMGAF3d3eNhUXlypXDxo0bsX//flSuXBklS5ZEgQIFYGpqmmrbLl26ICAgAK1atcKMGTPSHXfZsmXCbJvmzZtnenaMbB3D7JKQkJCtx8tIVvyB0K9fP1SvXh1mZmZwcHBINauvRo0aiIyMhKurKyZPnpypYyi7Lp+BgQHevHmDQYMGoVOnTiqvVaGur1+/amxt7cxo37492rdvL9y/evUqRCIRqlatKrddYmIidu/eDSC55X1m17OdPn06Tp06Jdz/+vUrnjx5kup4QHIA/PP2GTl69CiOHj2q8Plt27YBSL5QUXaMzKy19+3bN40GgwYGBmjYsCH27t0LALhx40aaJwBkV/QCyr83pWxhLPu3jYiIiIhIHUYOTihQuz3Cbx6Se1zPsjBs2g1T65xjWFgYgOTPu7LbmWFtbQ1z87S7pTVv3hwbN26UCwHLlSuncoiorHHjxqFq1ar4999/8e7dO3To0AF//vkn6tSpA0tLS3z79g2nT5/G4cOHYWdnh/79+yu9LJmZmRk2bNiAzZs3Y+7cuVizZg2aNm2K6tWrw9bWFgYGBvj69StOnz6N48ePQyKRoHPnzpgwYQKsrKyy5PVmFkNBIsr3kmIi8W3XbI0FgjKSuCh83TkL9u6L2Uo0CwwYMAC7du3C9+/f4ebmhn379mV4wvfHjx+4ciW5NWzp0qWxZs2aNNcrUoWbmxvatGmDOnXqoFKlSmqNlVlnz54Vbl+/fh0dOnTA5s2bNb6WrCYdP34cK1euBJDcVz2ttot3795F9erVU4UlpUuXho+PD/r374979+6ha9eumD9/PmrUqJHpegwNDdGlSxeMHTsWO3fuVDro0CSxWIyLFy8CSP5QvnjxYty+fRurV6/OsEVjWhISElLNonR2ds7wA69EIhHWOi5VqlSGgWtU1P/eO8eOHZvpEDPlTMHIyEilZhRFR0cLt5XZHgBiY2MB5LyZglkloyseM0v2e6ns+q43btzAiBEjEBERgRUrViA4OBjTpk3LlrUUvby8sH//fmzcuBEVK1bM8uMpY+vWrejcuXOqx0+fPo3AwECYm5tjwoQJcr9/Dx8+ROXKlTP8mn379k2ujc+sWbPSbcerr6+PJUuWYMeOHShatCjKlSuHAgUKwMzMTPj+Llu2TK7LSadOnTB37twMX+eff/4JIPkP/8OHDyvcztfXF9OmTQMArF+/Hg0aNMhw7MxKOZP5x48faW7z/v174fbGjRuxZMmSDMe1srKCubk5IiMjERoaisjISIUnR4iIiIiIlGXV6E/EvLmDxOAAAIDFr7/Dumlv6BjkjA4s6V28V716dSxatAjLly/H9+/fUbNmTUybNk3pvyMzo0WLFqhfvz7Onz+PkydP4uLFi9i7dy9iY2NRqFAhODs7Y+jQofjtt99UrkNXVxf9+/fHH3/8gcOHD+Py5cs4c+YMQkJCIBKJYG1tjaJFi8LDwwMtW7bMVBel7MBQkIjyvaBT69VuGapIUlQIgk9tgK3LqCwZPz8zNjZGjx49sHz5cgQHB8PLywvLly9Pd5/t27dDLBajQIECWL16tdqBIJA8C6JFixYYN24cDhw4kGptqKwmkUiEtb+A5D7lkyZNytGB4OXLlzF+/HhIpVL07NlT4Tpjc+bMQVJSEkaNGpVqIefq1avD29sbQ4cOxZcvX+Dq6oohQ4bAw8Mj04Fejx49sGbNGqxcuVJYpy47Xbt2Te7qvEGDBqF///6ZCgQXLlyIp0+fwsfHR+X2qoGBgcLMmLTabPwsKCgIQPKHY1Va+f4sKSlJuD1s2DCV9085S0cZmp6ZGB8fr9as48zMFPz69SuKFCmSJbMMz5w5g1GjRmX4dfLz84Ofn5/K4+/cuROhoaFYsGCBRloAKzJv3jxhcXc3N7ccEQx++vQJV69exezZs1M9J6v1r7/+QsGCBeWe8/LyQnR0NP766y80b95c4fibN29GYmIinJ2dsXHjRqWuStXT01O4FMD169fl2oICwMePH/Hw4UNUqFBB4XvUx48fcf/+fZQuXVouwE9LylBfnfcRZaScHa1oxrDs4gEAOHbsGNzc3JQK2I2NjREZGZnu2EREREREqtDRN4RN+xH4cWApbNoOhbGjZpYa6devX5oXaGtamzZtsn2pFmNjY4XHTUhIwOPHj9Ua38zMDD169ECPHj3UGkdbGAoSUb4W8/ouop9eydJjRD29DLOKDWBS9tcsPU5+1LVrV3h7e0MqleLs2bPprlUVHx8PX19f6OrqYvHixRpbnwgA+vfvDxcXF8ybNw/Tp0/X2LjKuHPnjjDTQV9fH/Pnz9dq+8uM3LlzByNGjEBiYiLc3d0VBoJA8ut58uQJBg8ejF9++QWTJ0+WOynboEEDrFq1CiNGjEBcXBxWrlyJU6dOYfTo0WjWrJnKtVlYWKBr167w8fFBo0aN8Msvv2TmJWZaynZ1tWvXxtixYxVuGxoaKqw59rM9e/Zg3bp1AJKDBW9vb5WC0s+fPwu3lflZCg4OBgDY2tqqdbVfypmCW7ZsSXdmE5A8w2fgwIFo1KhRul+rn23YsAHz58+HVCpNczZlZmzcuBFHjhzB1q1bYWJiovZ4ynj//j169+6NFi1aZNjiNTNkbV7EYjHKlSuXKnhs3bo1wsLC5FpcLl26FL6+vjAzM8Pp06eVOs7P4yYlJWHMmDE4ceKESvXu379fWANOkfDw8BwRDG7ZsgUNGzZMFfpduHABDx8+RPny5dNcxzE+Ph6vXr3CsGHDULlyZaxcuTJVq+jIyEj4+vqiePHiWL9+vdptar5//47x48dDIpGgcePGSExMxNWrVxEaGor+/ftDIpHgt99+Q7t27dCyZUu5gPDQoeQWR3379sXatWsRFhYGS0vLNI+Tcq1TW1tbtWrOiCy0A6Dw61O+fHlcunRJuK9oRmFKEokE4eHhAJJnn6vb1pqIiIiISMaoWDk4DPWGSCfrZthR/sFQkIjytbDr6Z9A1NhxbhxgKJgFChcujCpVquDhw4cwMDBI9+T+3r17ERoaiokTJ6J+/frpjhsREYELFy6gQ4cOStXh7OyM3377DTt27ECTJk3QsGFDlV6HOmTrIgFA9+7dc3QgeOvWLQwdOhRxcXEYP348Bg4cmO72KU8uFytWLM2e8w0bNsSGDRswePBgREVF4fXr1/Dw8ED16tXRr18/NGnSRKXQp2/fvti+fTvGjx+PgwcPZlvAExUVJYQgIpEI48ePT3d7Pz8/zJ8/P8NxL1y4gHPnzqFly5ZK1/LkyRMAyQtpV6hQIcPtZa1GixQpovQx0iKbkWZnZ5cqLPnZ3bt3MXbsWHz9+hUvX74EAKWDQRMTE7Rv3x4dO3ZUehbms2fP5GYypnTt2jUsXrwYADBy5EisWbMmy9vPfvnyBW5ubggKCsLOnTthZGSEv//+W+PHqVmzpsLnZG1jra2thfBDNlNS1jYlM3R1dbFo0SKhda2zszOsrKxgYWGRZug8fvx4XLlyBW3btsWUKVOUOkZWzkzMSFRUFPz8/LBo0aJUz8lmuytqpxMTEyPcrlevXpprx+7atQv6+vpYu3YtChUqpFat4eHhGDhwIAIDA1G/fn14e3sLa0H+8ssvGD58OIYPH45z587h3LlzcHZ2xrZt22BmZoakpCT4+fmhcOHCcHFxwc6dOxEQEKAwFPz+/TuA5O9NVq+38eHDB+G2ove4QYMGISgoCI8ePUK5cuWUamf6+vVroS1xWkE6EREREZE6MgoEJYnx0NHPfPcayj8YChJRvpXw4yPiPj/PlmPFfXqGhB+fYGCbcwObnObs2bNo2rRphifVmjZtiocPH2LAgAEKZyklJiZi/fr16NChA/r375/ueCEhIRgwYACePXsmzERSRp8+fXDjxg1MmTIFR48ezZZ1hCIjI4XWoaampvDw8MjyY2bWiRMnMH78eBgZGWHNmjWp2oGmRRbYFC1aVAhd0lKjRg3s3r0bHh4ewsnee/fu4d69e7CwsECLFi3w66+/onz58ihbtmy6LR7t7e3RpEkTnDlzBgsXLhTWuMpqR48eFU74t2nTBpUrp98OZMCAAbCxsYFEIoGzszMKFSoEc3NzGBgYwNvbGytWrIC5uTlWrlyZ4Yy7nz169AhA8kyZjFrsJiQkCC1PM1rTMyNFixbFli1bUKtWLYW/9/Hx8Vi9ejXWrVsnzCy0s7PDmzdv8ObNG5QpUybD42SmxcerV68wadIkhcGgzOXLl7Ft2zb069cPP378gIeHh9zMS5FIBJFIJLfIukzKNp0zZ87EvHnzFB4nLi4OcXFxwv2NGzfC0NAQo0ePVuVlpSshIQFnzpxBw4YNU/0cREVFCV9/TbRh/pmenp7SLXxlAayBgUGumJm1d+9emJiYpLp45Pjx43j69Cm6deumcH1U2Ww6a2vrNGfFJyQkYOfOnVi2bBlKliypVp2xsbEYPHgwXr16hUaNGmH58uWpwlR7e3vs3LkTw4YNw9WrV/H8+XNs2rQJw4cPx/nz5xEQEAAvLy8YGhrC3NwcX758URjCyULBYsWKZWmYlpSUJKwtbGJiorDtsIWFhVJrJqZ06tQp4Xa7du0yXyQRERERkYpiPzxG4JGVsG7aB2YV6mm7HMrhGAoSkdYkhmXcikkZIj196JmlfVV5Unig/DHjjaCjowMACL97Mq1dskz4vZOw/K2jwufTex2a+FrpW2ZtOy5NmzBhAooVK4Zhw4alO7OvXbt2CAwMRN++fRWuWXTo0CGYmZnhn3/+SXddo/DwcAwaNAivX78GACxYsACJiYkYOnRohvU2bdoU9vb28Pf3x5w5c+Dl5ZXhPury8/MTgoEhQ4ZkOLtKW7Zu3Yo5c+agbNmyWL58eZoz/tIiCwWVOUFcunRp7NmzB+PHj8eFCxeExyMiIrBv3z7s27cP1tbWGDNmDLp165buWH369MGZM2ewY8cOtGzZEr/99ptS9apj586dAJJnWik74y2jmaxFihRRORAEgAcPHgCAwmAiJVnrUED9UNDOzk7hGFKpFMePH8fixYvx+fNnFCxYEO3atUOHDh1QqVKlNPc5fvw4Xr58iVGjRqlVFwC4uLigaNGiuH37Nl6/fo2XL1/CxsYG9vb2CA0Nxblz56Cvrw8fHx/Uq5f8B5itrS1Wr16NgwcPomzZsggNDcWTJ0/w/v17AMmtBqVSKaRSKSQSCUJDQ4X3nqlTp6Jz585q150ZX79+xa5du7B//360bNkyzfdf2TqSAHJFEJdTJCUlYcuWLejUqZPcRSzR0dHw8vJC8eLFFc74TEpKQkREBACgSpUqwgzZlIKDg/HXX3+p/Z4VHh4ODw8P3L9/H3369ME///yj8KIbY2NjrF69Gq6urnjw4IFwYcbWrVtRsWJFuLi4AEgOj1+9eoUWLVqkOc6XL18AAA4ODmrVnpF9+/YJx3J1dYWFhYVGxk1ISMDu3bsB/G82MhERERFRVpMkxCLk3DZE3E3uPBR0Yh2MileEnpmldgujHI2hIBFpzeeVGQctyjAqXhFF+3im+VzQRuXXmcpqkXdPIPKu4jWS0nsdmvhalZq8T+0xspOxsTFevnyJkSNHKrX9tm3bMtxG0YyA9CxduhRisVhomaaIjo4OunfvjkWLFsHPzw/t2rUTwoGsIJFIsGXLFgDJszWyY3FoVcXExGDatGk4evQo3NzcMGrUKJXa9qnagtHCwgI+Pj7YtWsX5s2bJ8y8c3BwwLRp05Ru6/rbb7+hdOnSePv2LaZNm4ZDhw7ByMhIpVpUcePGDTx/njxr2c3NDcWKFcuyY2XkzZs3wglzZX5+ZbN7gOSZfpqWkJCAY8eOYcOGDXj16hWqVauGESNGoHXr1un+LG3evBlz586FRCJBuXLlNLKoea1atVCzZk1ER0dDX19fmHHq5+cnhII/f81sbGzkZhvLApK0nDlzBsOGDVO7zsyQSqW4du0aduzYgXPnzqFu3brYuHEjSpcuneb2Kb/vNjY22VVmrnfq1Cl8+fIFXbp0kXvc29sbERER2LVrl8KZl9+/fxfWEa1QoQLOnTuXahs7Ozt07Kj44iNlBAQEwN3dHR8/fsT06dPTXNvwZ4aGhvD29kbnzp1RunRpPHz4EHfv3sXevXuFC7Hs7OyE1sQ/i4mJEdbs0+R6vz87d+4cZs6cCSD5fX748OEaG3vbtm3Ca/Dw8MixF+kQERERUd4R+/EpAo+sgDjFRAJJbCSCTqxF4S7j2c6eFGIoSEREOZLshH/RokWFtdZyui5dumD58uVITEzE1KlTcezYsSwLk06dOgV/f38AwN9//63VNbLS8vr1a4wcORIikQhbt26Vm3WWmJio1Fpuyq739rM///wTjRo1wpIlS3Dp0iXs3LlT5eDijz/+gJeXFz5+/IgVK1Zg3LhxmapFGRs3bgSQPLNs0KBBWXYcZcja31lZWWW49iYA4SQ4oP5MQZmkpCQ8efIEx44dw+HDh5GYmIgOHTpg0aJFKFeuXLr7RkVFYfr06Thy5Ijw2KRJk1C2bFmULVtW7dpEIlGWtMvUtp07d2Lr1q0oWbIkVq1alWF7369fvwq301rXjtL233//oUaNGnKzpR8+fIht27ZhyZIlcHJyUrivLKwHAEdHR0RGRiI+Pj7ddsiqevToEYYNGwYrKyvs3bs33XpkYZ+Mra0tdu7cCXNzc0yYMAEeHh5y+zs6Osq110zp48ePwm1N/J6mFBsbiwcPHsDX1xfHjx8HAHTr1g3Tpk3L9L8xP/vy5Qu8vb0BAA0aNMCAAQM0Mi4RERERkSLiyBB83eEJSMSpnot5eRPRz67ArGLG62JT/sRQkIiIcjSRSKTRk55ZqWDBgmjatClOnjyJL1++wMfHR+l1sVQhlUqxZs0aAEDDhg0VtmP7Wfv27eVO5qvrzp07qR6Trd+4bds2uLu7o3fv3qlm/G3cuBHPnz/H4MGD0z3prOpMwZTs7Owwf/58REVFZSrEcXFxwcKFC5GYmIhNmzahc+fOKFWqVKbrUeTZs2dCu9N//vkHpqamGj+GKk6fPg0AaNu2rVInzAMD/9eiWd2ZghEREcIaZlFRUbC2tkaHDh3QokUL6OvrIyoqCrdv30ZSUlKa/8XGxmLlypX49OkTAKBatWro0qULGjZsyOAqBalUikuXLmHbtm2IjIwEkDwze9iwYejdu7dS33dZi0gASrcDzu9u3bqFR48eya1TFxUVhbFjx+Lvv//O8H1c9nMNJAdntra2ePjwIWrVqqWR+jZt2oRly5bB1dUVw4YNS/NCk+DgYIhEInTp0iXNNqcODg64fv06JBIJhgwZIveco6MjAgMD8f3791S/jylboSqzLqgi//77L+bMmSPcT0pKEmaM29rawsXFBT179kTVqlUzfYyfJSYmYsyYMYiJiUG1atWwbNmyVIEpEREREZGm6Zlbw7JuJ4Rd2ZPm80En1sOoeCXomVtBJBKhUKFCMDQ0hEgkglQq5WfWfI6hIBER5Wiydmm5RceOHXHyZPJ6lRs2bED37t1RpEgRjR7j7NmzeP78OQwNDTF16lSl91u3bh3E4tRXkWnKnTt3MHfuXNSsWROHDx9WuNaYgYEBjh07huPHj6Nx48YYOnSo2idpAwIC0gylMjury9LSEo0bN8bp06eRmJiIefPmwcfHR60a07Jy5UoAQN26dTXS4lIdjx49wrNnzwBA6fXsvn37JtxWNxS0sLBA0aJFce/ePQBASEgINm3ahE2bNqXa1tLSEjY2NihUqBCMjY1x/fp1xMbGQkdHB7///jsGDx6MChUqqFVPXhMcHAw/Pz/4+vri8+fPcs916tQJbm5uSo8lWxexYMGCMDc312idedXatWthZmaG33//XXhs5syZ6Nq1K3r37p3h/rLgTFdXF6VLl0b58uVx5coVtUPB+Ph4jBs3DgYGBjh06FC6a/q5urpCKpWiR48eCr/vcXFxWLhwYaqTDCVLlgSQvGZpq1at5J578eIFgOTX5uzsnOnXMnLkSLmxb9++LYSXrq6ucHd3z/TYivz777948OAB6tSpg1WrVsHExETjxyAiIiIiSotV/S6IeXUbCT8+pHpOz9IGCYEfoWtmCT09vSxt00+5D0NBIiLKkWRhYG67eqlhw4awsLBAREQE4uPjsXLlSmENI02QSCRYvnw5AGDYsGEoXry40vtqOpz8WVBQEHx8fDJcS0k281MqleLKlSto3LixWqHggQMHMGXKFCxYsACtW7fO9Dg/a9eunTBz7sKFC7h37x6qV6+usfEfPXqEs2fPwsjICP/++6/Gxs0sWfjWpEkTVKxYUal9ZKGgubk5ChQooHYNHh4eQtvd6tWro2zZsihatCiKFCkCW1tb2NraolChQjAwMEBoaCi2bNmCbdu2ISEhAR06dMDQoUNTzeh89OgRnJycclyL3ewQFRWFS5cu4ciRI7h06RISExMBJIeqw4YNw9KlSxEdHa3yuLIQJ72Zvpo0b948uLu7K7zQQJHLly/jwoULmDJlilbX03jy5AkuX76M7t27w9jYWHh8yJAhQliWEVko6OTkBENDQzg5OWHPnj0YM2aMWrUZGhpi1KhRCtePlPnw4QPevHkDABg0aBAGDRqEsWNTr9vcpEmTNPcvVqwYjI2NceHChVSh4IMHDwAApUuXVitUs7Kygr29vXDfzs4Oixcvxo8fP7Br1y4MGDBAo58pvL29sWfPHrRo0QKLFy/Ol+8xRERERKQ9Il192LQfji8bJwKSJACArqklCrUeBNPytbVcHeVkDAWJiChHkrX8ym1X3evr66Np06Y4cOAAgOTAauzYsbC0tNTI+AcPHsTLly/h5OSU49YtSjkDJj0pT4ovXboUzZs3z/QxDxw4gH/++QcSiQTjxo2Djo5OqhPOmdWoUSMYGRkhLi4OQHJopslQcOHChZBKpRg5cqRK4W5W+PLlizDDdcSIEUrvJ2tHq+4sQZnSpUtjzZo1qFWrltzPSUr+/v7YtGkT9u3bB7FYjI4dO2LgwIEK21jeu3cPw4cPx+DBg/HHH39obB2xnC4hIQHdunXDu3fvhMdEIhH++OMPjBkzBpaWlsIFBqqIiooS1oBTNjxW140bN3Do0CF4enqiWrVqcs/JZj8nJCQgJCREeNzf3x+jRo1CVFQUoqOjMXv2bOjq6mZLvT9btmwZAKBr165yjysbCIrFYjx69AgA8OuvvwIAnJ2d8ezZMwQHB2d4IUZGMgoEAeDo0aPC7RYtWqQZRh44cAAdOnRIM3jT0dFB1apVceHCBUgkEmGb+Ph4PHnyBABSfW/Vpauriy5dumD16tXw9/fHpUuXMlwvU1k+Pj5YsWIFXFxcMGfOHK39bBERERFR/mZYpCSs6ndF6CVfmJSvBZu2HtA1lu/qIREnIOH7ByQEfoY0MQ4ifSMY2DjAoLAjdPR4YVt+xFCQiLTGYdhqjYwj0lN8greQ2yK5+4ZGRsKJqB8HlyLe/2Vau2UJQ3sn2HZUvL5ceq9DU1+r3EQWxOS2UBBIDpNkoWBCQgJu3LihdGCWnri4OCxfvhz6+vqYO3euWmvuaVPKk6fFihXLcPsvX76gfPnyGW4nFosxZswYLF26VOl1FtNjbGyMmjVr4vLlywAg/F8TLl68iJs3b+KXX35Bv379NDZuZi1YsABisRjt2rVTKegJCAgAALnZOepq1KhRmo/fu3cPW7duxcmTJ2Fubo4+ffqgT58+sLGxSXe8fv36ISoqCp6entiyZQsmTJiAZs2aaazenMrAwADz5s1Djx49IBaLYW9vj3nz5qFGjRpqjXv37l1hJre6YynL0NAQQUFB8PDwULjN0aNH5YKrlPbv3w8bG5s0Z7ZlJbFYjG3btuHSpUtwcnJClSpVMjXO06dPhQtlfvvtNwDJMwb19fVx5MgR9O3bV606ExIShFmkihw8eBBAcsvYKVOmCPXIbN26FUuWLMHp06excOHCNEP9mjVr4saNG3jw4IFwgcWtW7eEY9etW1et15GWbt26wcfHBxKJBNu3b9dIKLhy5UosX74cf/75J2bMmKHVWahERERERJZ1O0MqBawadIVI9L8L9OICXiPi9jFEP78OaVLqz/siXX2YOteBRc02MCpaNjtLJi3LnWcTiShP0Le0zfJj6BaQP1msb2wshILGxStmayhoXLxCpl9zdnytchKJRCKEghYWFlquRnW1a8u3afD399fIuGvXrkVAQADGjh2r1rpL2qbqjAo7Ozv4+fkpvb0mw9LatWsLYWBMTAxCQkJUbmH4s4SEBMyZMwcmJiZYsGCB1meY3LlzB8ePH4eNjQ2mTJmi9H6JiYlC+1BNhoIpRUVF4ejRo/D19cXTp09RtmxZTJ8+HR07doSRkZHS4wwfPhxRUVHYuHEjPDw88Pvvv8PT01MjLU9zsipVqmDw4MG4efMmVq9erZH30xs3bgBInhWdXaGgbHank5OTEE5lxN/fXwh/mzRpgiFDhmRZfTLv37/H8OHDYWZmBqlUio8fPyIsLAwA0L1790yPe+HCBQDJFyrUq1cPAGBkZIRatWphz549aoeC79+/R79+/eRmWioSHBysMLgHgDNnzmDYsGHYsGFDqrBMtv7h6dOnhVDw0qVLAJL/XZAFnppUrFgx1K1bF1euXMHly5fx6dMntWZmL126FKtXr0bfvn0xadIkDVZKRERERJQ5Il09WDXoJnz+lsTHIvjsZkTeP53uftKkREQ9uYSoJ5dgXq0FCjbrCx3DtDv2UN7CUJCI8i2zivURdk35oEH94zXItmPldrKTqABQuHBh7RWSSQULFkThwoXx/ft3AJpZF/Hz589Yv349ateujYEDB6o9njapGoLp6OioHcRl1s+z5jQxI2Tjxo348OEDvLy8tN42ND4+XljPcObMmbCyslJ6X39/fyQlJa9boMnXERgYiAsXLuDMmTO4du0akpKS0KRJE4wbN06pmURSqRTR0dGIiIhAZGQkIiMjERERAScnJxQrVgxfvnzBiRMn8Pr1a+zYsUNjrX1zKg8PD/Tp00djF1jIQpxatWrB1NRUI2NmRN2Wr82aNcuWWkuWLIlt27bh6NGjWLdundy/ZTVr1sz0uGfOnAEANGjQQC4Mb9CgAby8vNRe77R8+fLYtGkTzp8/j4oVK6J48eIwNzcXvmZ///03jh07BicnJ+zatSvVv2nh4eFo3rw54uPj0bJlS3h6eqb5Xlm1alUYGBjAz88Po0aNgr6+vtC2uEaNGln2u9i9e3dcuXIFUqkUO3fuxMSJEzM1zvLly7F69Wr0798/02MQEREREWUF2edvcWQwvm7/F4nBX1TaP/L+acR9ega7XtOhZ67e8gSU8zEUJKJ8y8C2BIwcnBH3+XmWH8uoeAUY2Gr35H9ukttDQQAoVaqUEAr+8ssvao83c+ZMWFhYYNGiRRoJGbVJ2zPjVFGqVCnhtqOjo0qhWVr8/f2xZs0adO7cGZ07d1a3PLXNnj0br169wpAhQ9CkSROV9k25Vl2JEiXUquPbt2+YPXs2nj59ii9fkv940dPTQ926ddGmTRuYmJjgy5cv2LhxY6qwLyoqSu6xqKgoSCQSiEQiFChQAIUKFRL+a9myJa5evYpXr17h7du3mDVrFhYuXKhW7Tmdnp6e2j+3Mm/fvsWbN28AAK1bt9bImMrITe95VlZW6N27N1xcXODu7o579+4BQKbX/Xv27BlevXoFIPWahI0bN4aXlxe2bt2q9nqn5cuXT7NN86tXr3DixAkAwNSpU9NsC3rw4EHEx8dDX18fU6ZMUfjzZmhoiLp16+LChQs4fPgwihUrJvw7qYkW24o0bdoUNjY2CAwMhJ+fH/766y+VZhoDyTP1V65cyUCQiIiIiHIsSXxspgJBmcTgL/i6wxPF+s3ljME8jqEgEeVrlnU64Vs2hIKWdVyy/Bh5ScpQ0MHBQXuFqKFGjRq4fv06OnbsqPbJ2sOHD+PatWvYvHlzhuunkWYVKVIE9vb2+PbtG6ZOnar2eNOnT0fp0qUxffp0DVSnHllbzk6dOmH06NEq7//8+f/eO5VZ8zE9RYoUQUBAgBAIAsnrsV26dEmYmZaSubk57O3tYW9vj+DgYLx9+xblypXD5MmTYWNjAxsbGxQqVCjNGWbPnj1D165dkZSUhBMnTmD+/PlZHjqtXr0anTp1QpEiRbL0OFlt//79AJLXes3OUDA3rp9qZmaGwYMHY/DgwQAyfzGEr68vgOQ2mA0ayHcccHR0xC+//ILjx4+jf//+qFy5snpFp2Hx4sWQSCTo2LFjmu1i4+LisHnzZgBAhw4dMryQp3379rhw4QK2b9+OokWLAkhuhdq2bVuN1y6jp6eHTp06Ye3atQgLC8PRo0fRpUsXpff39fXFokWL0KtXL6UDwY0bN8LR0VHliy2IiIiIiDIr+OzmTAeCMolB/gg+twU2rQdrqCrKiXLPZbdERFnApOyvMK1YP0uPYVaxAUzK/Jqlx8hrUq7BV6ZMGS1Wknk9e/bE2LFjMWfOHLXGSUhIgJeXF2bNmoVff+XPkTbMmDEDq1evRv366r1XnDlzBm/fvsXKlStVnqWiadevX8fff/+NFi1aYNasWZkeAwBsbGxga6v+uqejRo1K9ViZMmXQsWNHjB8/HsuXL4efnx9u3bqFO3fu4MCBA1ixYgWqVasGALC1tUWzZs1QpUoV2NnZKWw5WaFCBfTp0wcAYGpqmqWBoFgsxuTJk/H69etcHwgmJCQIa3t27NgRZmZmmR7r7du32LBhg6ZKyzbHjx9XaXtzc3PhdmJiosrHCwwMFILYIUOGpPmz2qNHD0ilUsyfP1/l8TNy+/ZtnD9/HmZmZhg/fnya22zbtg2BgYHQ19eHh4dHhmM2a9YMJiYmePbsmdAWtU2bNlm+vucff/whtFTavn270vudP38e//77Lzp06KDShSF79+6FWCxWuU4iIiIiosyIC3id4RqCyoq8dwpxAa81MhblTAwFiSjfK9RyIHTNsma9Ml0zaxRsOSBLxs7L3r59CyC5ZVzp0qW1XE3mWFtbY9CgQWrPcImPj4e7uztcXFw0UxiprEGDBmjYsKHa48TFxeG///7Tekvcx48fY9iwYejevTuWL1+u8Gc0KipK4Rj+/v5CW0Rl1vlTRoMGDVCzZk2UK1cOU6dOxZUrV3D06FFMmTIF5cqVQ6tWrVCxYkWlwwN/f39IJJI0n/vrr79ga2uLNm3aaKT2tERHR2PIkCG4d+8eZs6cmWXHyS67d+9GcHAw9PX14e7urtZY3759w8uXL5XeXhNreWrC0qVLVdo+5e9QeHi4ysdbs2YN4uPj4ejoqLDdcOvWrWFpaYlbt27h6NGjKh9DEYlEAi8vLwBApUqV4O/vj4SEBLltvn37hpUrVwIAevfuDXt7+wzHNTY2RrNmzYT7urq6GDRokMbqVsTBwQF16tQBADx9+hQPHz7McJ9Xr15h7NixqFOnDubMmaP0z+GbN2/w5s2bXNvpgIiIiIhyn4jbxzQ8nmoXRFLukvt68RARaZiuiTnsekxBwNZpkMQpPgmuKh0jM9j1mAJdE/OMNyY5sjWrnJ2d01y/KD8xNzeHm5ubtssgDWjXrp3cGoVZ4cmTJzh16hQA4MuXL3jx4gWcnJyE569fv46xY8dizJgx6N27t8JxEhMT4erqioSEBFSuXBmVKlVC2bJlhbUDp0+fLgRumlwLzNvbG5aWlsLJ94SEBIwaNQq3b9/Gxo0b02xfqMipU6ewfft2tGzZEp06dUK5cuWE50xMTODj45NlJ+1//PiBwYMH4/3799izZw9MTU2z5DjZJSoqCmvWrAEA9OrVC8WKFVNrvLCwMERERCi9fU4IBSUSiRA0Kzu7NGU73JCQEJUucnn27Bl27twJkUgET09PheG9oaEh3NzcsGTJEkybNg2VKlVSe41PAIiJiUHXrl1Rvnx5PHnyBL169YKuri4qVaqEatWqoXr16tiwYQNiYmJQvHhxjBgxQumxU34/HRwc1P55Ula3bt1w7do1AMmzBatWrapw26ioKIwYMQJ2dnZYtmyZwpnHaZGtU1q8ONeSJiIiIqKsJxEnIPr5dY2OGf38GiRth0BHz0Cj41LOwJmCREQADGxLoGgfT43NGNQ1s0bRPp4wsFX/xFx+9PTpUwBA48aNtVsIUS4RHh6O6dOno1u3bihTpgwOHDiAFi1aoG/fvrhz5w4A4MCBA1iyZAk2btyYbiAIAPr6+vDz84Onpyc+fPgAT09P9OnTBw0bNkTDhg1x5coVAMntPTX5e2plZSUEBomJiRg7diyuXr2KhIQEeHh4CLOIldG/f3+sW7cODx48QPv27dGtWzfs2bMHsbGxAJLbiKZs76gpr1+/Rvfu3fHs2TNMmzYNZcuW1fgxstvChQsRGBiIIkWKqBT+KBIaGiq3dmxGpFKp2sdUV1hYGMRisUp1p/x5/fbtm9L7xcXFYeLEiUhKSoKrqytq166d7vZ9+/ZF4cKFERUVhb/++gvx8fFKH0sRMzMz9OzZE15eXjh8+DCuXr2KmTNnwsbGBrt27cKwYcOE2cJFixbFlStXEBcXl+G4y5cvx6FDh4T7Hz58wLhx45CUlKR2zRlp3rw5rK2TP+cdP34cISEhCrf9999/8e3bN3h7eyvdKjckJAR///03zp8/DxsbG5iYmGikbiIiIiKi9CR8/wBpkurLFaRHmpSIhB8fNTom5RwMBYmI/p+BbQnYuy+GWcUGao1jVrEB7N0XMxDMpCdPnuDr16/Q0dFBx44dtV0OUY4mlUqxb98+/P7779i1axeGDBmCJUuWwNnZGfPnz0erVq3Qr18/bNu2Debm5tixYwfKly+v9PjVq1fHjh07MG7cuFTPmZqaYt68eVmyJl9sbCw8PDyEWY/A/9qvqqJUqVLYvn07Jk6ciBcvXmDKlClo1KgRFi1ahODgYI3UmjLMuHnzJnr27ImAgAB07NhRYcvH3OTu3bvYtWsXdHR0MG/ePLXWEpRRdaZgTggFAwMDASTPAlXW69f/W4cj5Vq5GZk2bRpevXqFunXrYsKECRlub2xsjJEjRwIAnj9/jpEjR2okGEzJysoKLi4umDFjBipWrCj33I0bNzBy5EjUq1cPS5YsSdVmVGbnzp1Cu9HGjRujQYPkz1snT57E5MmTMxUMptwno/0NDAzQqVMnAMmzkHfv3p3mdvfv38ehQ4cgEong4eGB33//PcP/mjVrhvr16wtrQLJ1KBERERFll4TAz1kz7o9PWTIuaR9DQSKiFHRNzGHrMgpF/pgEo+IVVNrXqHgFFOk+CbYuo9gyVA2nTycvjNy0aVONtEDLTx4+fIhZs2bliBPopJ5ly5bh8uXL6W7z4sUL9OzZE5MmTUJISAjc3d3x119/yW0zffp0NG7cGDNnzsSuXbuEYEMVIpEI7u7uGDVqlPBY+fLlsWPHDlSqVEnl8TLy/ft39OzZE5cuXQIAODo6YsaMGbh69Spmz56t8ng6Ojro378/du/ejRIlSiA8PBxr165F8+bNsXbtWrVnKMlmG8XFxWHAgAGIiIiAo6Mjpk+frtI4qoQb2SUiIgKTJk2CVCrFqFGj8Ntvv2lk3LCwMJV+FmXvaRKJBCEhIUr9lzJ01MTXUxYif//+Xel93r9/L9xWNhRcuHAhDh48iN9++w0rV65Uel3aLl26oFatWgCACxcuYPDgwcKsWE159uwZunbtilu3bsHBwQE7d+7Epk2bULNmTQD/azP777//ptp3+/bt8PT0BAD06NEDq1atwuLFi+Ho6AgA2L9/P/r164egoKAM65BIJIiIiMCHDx9w/vx54fEDBw7g3bt3iIiIULie6B9//CHcXrt2LS5evIjw8HC5IFP2vY6NjcX79++V+s/f31/u54yfX4iIiIgou0gTM+7YkblxNXuhIeUcXFOQiCgNJmV/hUnZX5Hw4xOinl5G/Nc3iP/6Tm7NQR0jMxjalYKhXRmYVWwAA1uuHaMuiUSC48ePQ1dXVy6AoIw9fPgQAwYMQGRkJGJjYzFr1qwcsQ6XNh07dgxRUVFyJ4Fzg0WLFmHt2rUwNDTEqlWrUL9+/VTbHD9+HGPHjhVOQru4uKQ5m09XVxeLFy/GmDFjcPr0abRs2RLdu3dHt27dVJoxCADu7u4IDAxE3bp10axZsyz5+bp+/TrGjRuHoKAg2NnZYeTIkXBxcUl3NqKyM86cnZ2xb98+jBo1CleuXEFMTAwWLVqEGzduYNWqVTAyMspUzQ8ePACQ/P4lkUigr6+PRYsWqbyOoDZCwfTaPSYlJWH06NH48OEDunfvjsGDB2c4nuxnIqNZat++fRNCHVkolB6xWAwAePXqFerUqZPh9j9TNHMtZXAkO4YiHz8mt855/PgxGjVqpNRxw8PDhdvKhF3z58/Hhg0b0KhRI3h7e8PQ0FCp4wDJX/t58+ahQ4cOiIyMxPXr19GrVy8sWLBApbUM05KYmIj//vsPq1atQlxcHDp37ozJkycLs0br1KmDCxcu4N9//0VAQAAOHjyI6dOnw8DAABKJBPPmzcOmTZugo6OD8ePHY+DAgQAACwsLrF69Gr1790ZwcDBu3boFFxcXeHp6omnTpgrrCQgIQLNmzVI9fufOHbRu3RoAcPbsWdjb26faxtHREbVq1cKtW7cQHR2NQYMGAQCmTp2aYVtlVXCmIBERERFlF5F+5v6WzXhc5f8eodyFoSARUToMbIvD2rYXgOSZCtKEOEiTEiHS1YfIwCjfhy6aduzYMXz8+BF9+/bN0etwSaXSTJ+0TzmLLykpSeGJ6JTbZXSy+smTJxg4cCAiIyMBAHv37oVIJMLMmTPz7c/omTNnMH78eCQlJUFfX19oGfezpKQktWdWSqXSDL9Hym63bNkyrF27FkBysOLh4YHVq1ejXr16ctu1aNEC7dq1w8GDB+Hs7IyZM2cqHNPAwADe3t5Yt24dVqxYga1bt2Lr1q1wcHDAr7/+CmdnZzg6OsLa2hoFCxaEqakpjIyMYGhoKPfzo6enh2nTpqV5jKSkJMTHxyMmJgbh4eGIjIxEeHg4LC0tUbVq1Qy/NgkJCfD29sb69euhr6+PYcOGYdCgQUJQ5+Pjg0KFCsHGxgYFCxZEgQIFYGpqCn9/f1y/nrygujJtTM3NzeHj44OJEyfiyJEjAICrV69i9erVGD16dIb7p/W6nz9/LvfY8OHDMzWDMuXPhiZDwStXrsDCwgKOjo6wsLAQHr927RoSE5PXndDX10+1n5eXF65cuYIuXbpgxowZSh3LwCB5EfqEhASFgV9SUhIePXoEIPn76uXlleG4svDOyckJBw8eVKoWf39/IThSFFKmDILfvn2LypUrKxzvxo0bAIDdu3ejT58+KFCgQIY1ODo64uXLlwDSb4EaFxeHqVOn4tChQ+jcuTM8PT3T/J5kpGjRovD09MSYMWMglUrx9OlTdO7cGWPHjkXv3r0z1er39u3bmDFjBt68eYNy5cph3LhxaYaijRs3Rs2aNeHl5QU/Pz8kJSUhOjoaEyZMwJkzZ+Dg4AAvLy9hVqFMqVKlsHHjRri6ugozSIcOHYpff/0Vo0ePTrU9ANjb2wtf18zYunVrus83b95crfGJiIiIiLKTgU3WXJDGyQ95F0NBIiIliUQiiAyNARhru5Q8SSKRYPXq1XB0dMzUyfns9PXrV/Tu3RtfvnxRaxxlWvFFRkamWr9JGXv27IFIJIKnp2e2BYNxcXGIiYnJcLuoqP/NuI2IiBDaL/5MNrtH1jJQWQ8ePMCoUaOEkGXSpEnQ19dHu3btUm178OBBTJ48WWGrOWWcO3dOqe+RLIxTRXx8PIYOHZoqGNTT08O8efNQqFAhdOnSRQhjFBGJRBg0aBBat24Nb29vHDt2DJ8/f8bnz59x4MABhfsZGBjA0NBQGD/lz5JUKkV8fDzi4+OFcCnl8erUqQNXV9cMX+P9+/cxdepUfPjwAd26dYOHhweKFCkit02ZMmVw7do1nD59WmH7RnNz5do26+npYf78+YiMjMTFixcBJK+blxm6urpYvXo1evXqhejoaFSpUgXu7u6ZGivlbDZNrgcXHh6ORYsW4dmzZ7C0tEShQoWgr6+PN2/eCNv8PGt03rx52Lp1KwYNGoQxY8Yo/R5SpkwZ4fb48eMxevRoFC5cWHhMKpViz549wvfQz88Ptra2Gb7n//zzpSpFMyKdnJwgEokglUoxd+5cREZGwtnZOdUszzt37gjrW37//h29e/fG7t27YWyc/ueBIUOGYNKkSYiNjVUYjr9//x6jRo3C58+fsWDBAnTo0CETr/B/2rRpg8+fP2Px4sUAkl/77NmzsWPHDgwYMAAdO3bM8P0CSH7Na9asweXLl1G8eHEsWLAA7dq1SzdYNDU1xaxZszBq1Cg8fPgQkyZNwpcvX9C9e3dMnDhR4ezZ8uXLY/PmzXB3dxfWbLx79y569+6NYsWKoWXLlujbty/s7Owy8RUhIiIiIsrbDAo7QqSrD2mSen83pSTS1YeBLVvi51UMBYmIKEc4cOAA/P394evrm+GJVm0rWrQotm7dCl9fXzg5OaFUqVIwNzeHmZlZjpuZJ5VKs62m8PBwuLq64sOHD0rvo0xo9PXr10y1DJSRSCSYOHEi9PX10apVK7nnOnfuDCMjIwQEBKBixYqwtbWFubl5pltJZhVdXd1Uj4lEIkyYMEGlcRwcHDB//nyMHTsWx44dw6lTp/D48WOFoUtCQoLC1ouKlChRAkuXLkWFCumvyxoUFITFixfjxIkT6Ny5M3x8fFCsWLE0t23WrBmaNWuGSZMm4fTp01i4cCE+f5ZfTF2VnxFdXV0sXLgQLi4u+PLli8qtPlNydnbG8uXL4eHhgVmzZqX5vVJGypmCyoTrymrbti3atm2LK1euYN68eXj16pXc81ZWVsLML4lEgunTp+PIkSOYP38+OnbsqNKxWrRogWXLliEgIACPHj2Cm5tbutsXKFAgzTaQP1P1Z/BnikJWW1tbtGvXDocPH0ZoaChmzZql1HitW7dW6t+pNm3aoHHjxvj48SPKlSsn91xSUhI2b96MZcuWoVKlSti/f7/G1qEbPHgwAgMD5S5C+PjxI7Zu3YqPHz+m2WoYSP4ZvHjxIjZu3Ij79++jQYMGWLZsGZo3b6702oYxMTFYuXIldu7ciapVq2Lu3LnCWofpcXJywu7du+Hu7o7Xr18Lj8fHxyM0NFSjvxNERERERHmJjp4BTJ3rIOrJJY2NaepcFzp6GV9MSLkTQ0EiItK6r1+/wsvLC15eXnByctJ2OUopVqwYxowZo+0ycpTChQtjy5YtOHbsGJycnFCyZEmYmZnB1NQ0x4WlKbVp00bbJWS7woULw83NDW5uboiPj8eTJ0/w9u1bfPjwAd+/f0doaCjCwsIQExOD2NhYxMXFISEhAYmJiRnO2po7d266gWBCQgLWrl2LM2fOoH379jh//rxSrRiB5DDv999/R7169dCrVy+hxV/dunUVtohVxMLCAmvWrMHAgQPRpUsXlfb9Wf369bF//3611m5LGVzFxsaqVU9a6tevj1q1amHatGnYv38/gOT2mbNnz4alpSWCg4MxceJEREREYN++fShVqpTKxzA1NcW2bduwatUqPH/+PM0wT1dXF+bm5vj111/Rq1cv2NraZjiubKafbA07ZTk6OmLgwIHphptz5sxB4cKFceLECQQHByts3WpiYoJKlSqhT58+aNy4sdI1mJiYwNnZWe6xq1evYu7cuZBKpVi8eLFSwaiqpkyZAisrKyxfvhzNmzfHjBkzYGNjk+a2L168wP79+3H69Gk4ODigWbNmWLp0KQoVKqT08ZKSkrB//36sWLECFhYWWLlypcqvy87ODr6+vpg2bRqOHDmCv/76CwMHDlRqZiMRERERUX5mUbONRkNBi5qtNTYW5TwiqboL6RBRjpGQkIDHjx+nerxy5cpqn1ARi8VyV24DQNmyZZW+clwbJBJJqhOrxsbGmVpTh7KOVCpFv3790LBhQwwYMEDb5RCREpKSkoT/JBKJsF6aVCrNcMasVCrFnTt3UKNGDbXC4pMnT2L9+vVwcXFB9+7dM/3vkUQiyRH/LqxduxZ79+5F9+7d0blzZ1hZWWXJccRiMVq0aIHixYtj4sSJqFChAq5evYpZs2ahZ8+e6NWrV474eqQ0bdo01KtXD82aNVP6+ywWi6Gjo5OjXsuNGzewZs0aSKVSdO3aFW3atMn0zFJlXb58GXXq1FH4dYuKisL27dtRs2ZNVK5cWeW1DKVSKY4fP45Vq1bB0dER3bp1Q8OGDdW+EOTs2bNZEpZqgyY+j+bGz+FERERElL0Cj61B5P3Tao9jXr0lbFoP1kBFOVNWnj/PLRgKEuUhDAXlMRTMHeLi4nDkyBF07dpV26UQEWlNSEgIrKyssmVWbUhICKytrYX7vr6+aNWqFSwtLbP82PlVdHQ0tm3bhnbt2ilsk5sbvX79GpcuXYKLiwsKFiyo7XJyJIaCRERERJQdJPGx+LJxIhKDv2R6DP1C9ijWby50DHP2sj7qYCjIUJAoT2EoKI+hIBERERFpE0NBIiIiIsou4shgfN3hicQgf5X31S9kD7ue06Bnnrcv9mMoCPDMOBERERERERERERERUS6mZ14QxfrNhXm1FirtZ169JYr1m5vnA0FKxksLiYiIiIiIiIiIiIiIcjkdQ2PYtBkC81+aIeL2cUQ/vwZpUmKq7US6+jB1rguLmq1hVLSsFiolbWEoSERERERERERERERElEcYFS0Lo45lIWk7BAk/PiLhxydIE+Mh0jeEgW1xGNiWgI5e/miXSfIYChIREREREREREREREeUxOnoGyQEhZwPS/+OagkRERERERERERERERER5HGcKEhERERERERERERER5TFisRhfvnyBgYEBdHR0IJFIYGtrC11dXW2XRlrCUJCIiIiIiIiIiIiIiCiPkUqlCAoKknusUKFCDAXzMbYPJSIiIiIiIiIiIiIiIsrjGAoSERERERERERERERER5XEMBYmIiIiIiIiIiIiIiIjyOIaCRKQUkUiU6jGpVKqFSoiIiIiI8g+JRJLqsbQ+mxMREREREWWEoSARKUVHJ/XbhVgs1kIlRERERET5R1JSUqrH0vpsTkRERERElBH+JUFEShGJRNDT05N7LDo6WkvVEBERERHlDz9/5tbT0+NMQSIiIiIiyhSGgkSkNDMzM7n7kZGRWqqEiIiIiCh/+Pkz98+fyYmIiIiIiJTFUJCIlGZhYSF3Py4uDlFRUVqqhoiIiIgob4uKikJcXJzcYz9/JiciIiIiIlIWQ0EiUpqJiQl0dXXlHvP392cwSERERESkYVFRUfD395d7TFdXFyYmJlqqiIiIiIiIcju9jDchIkomEolQoEABhISECI9JpVJ8/vwZRkZGMDc3h6mpKXR1daGjo/1rDiQSCZKSkuQeE4vFOaI2IiIiIsr7VPk8Kts2OjoakZGRqWYIAkCBAgW4niAREREREWUaQ0EiUomtrS3EYjEiIiLkHo+Li0NcXBwCAwO1VFlqUqkUUqlU7jGRSMQTKURERESULTT5edTCwgK2traaKo2IiIiIiPIhTpchIpWIRCIULVqUa5kQEREREWUTCwsLFC1alBe3ERERERGRWjhTkIhUJgsG9fT0EB4enqolUk7yc9slY2NjLVVCRERERPmROp9HdXV1UaBAAdja2jIQJCIiIiIitTEUJKJMEYlEKFy4MGxtbRETE4OIiAhERUVBLBZruzQiIiIiolxLT08PZmZmsLCwgImJCcNAIiIiIiLSGIaCRKQWkUgEU1NTmJqaAkheN0UikaRaO0UbEhMT8ezZM7nHSpYsCX19fS1VRERERET5iSqfR0UiEXR0dBgCEhERERFRlmEoSEQaJRKJoKurq+0yACDNYFJPTw96enzrIyIiIqKsx8+jRERERESUk+houwAiIiIiIiIiIiIiIiIiyloMBYmIiIiIiIiIiIiIiIjyOIaCRERERERERERERERERHkcQ0EiIiIiIiIiIiIiIiKiPI6hIBEREREREREREREREVEex1CQiIiIiIiIiIiIiIiIKI9jKEhERERERERERERERESUxzEUJCIiIiIiIiIiIiIiIsrjGAoSERERERERERERERER5XEMBYmIiIiIiIiIiIiIiIjyOIaCRERERERERERERERERHkcQ0EiIiIiIiIiIiIiIiKiPI6hIBEREREREREREREREVEex1CQiIiIiIiIiIiIiIiIKI9jKEhERERERERERERERESUxzEUJCIiIiIiIiIiIiIiIsrj9LRdABFpjlQqTfPxxMTEbK4kZxCLxakeS0xMVPh1IiIiIiLSJH4eJSIiIiJt4udReYrOk+enr4dImp9eLVEeFx0djRcvXmi7DCIiIiIiIiIiIiKiXMHJyQmmpqbaLiNbsH0oERERERERERERERERUR7HUJCIiIiIiIiIiIiIiIgoj2MoSERERERERERERERERJTHMRQkIiIiIiIiIiIiIiIiyuNEUqlUqu0iiEgzJBIJYmNjUz2up6cHkUikhYqIiIiIiIiIiIiIiLRPKpVCLBanetzY2Bg6OvljDh1DQSIiIiIiIiIiIiIiIqI8Ln9En0RERERERERERERERET5GENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkSUK4WHh2Pfvn3aLoOIiIiIKF1btmxBdHS0tssgIiIiIiJiKEhEudOVK1cwadIkjBgxAqGhodouh4iIiIgoTUuWLEHjxo2xePFiBAYGarscIiIiIsonoqKicOzYMSQkJGi7FMpBGAoSUa508uRJAMCpU6fQvn17PH78WGNjJyUlwcfHB0uWLNHYmERERESUPxkZGSEiIgI+Pj7o2rUrIiIitF0SEREREeUDRkZGOHDgAJo0aYI1a9YgJiZG2yVRDsBQkIhyncjISFy4cEG436RJEzg7O2tk7MuXL6Nz585YvHgx1qxZg71792pkXCIiIiLKn/T19QEAxsbG8PHxgYWFhZYrIiIiIqL8QE9PD0uXLoWVlRWWLFmCtm3b4t27d9oui7SMoSAR5TrHjx9HfHw8AKBu3br4999/oaenl+nxEhIScOTIEXTp0gUDBw7EixcvhOdmzJiBW7duqV0zEREREeVPBgYGAABra2s4OTlpuRoiIiIiyk9MTEywcOFC6OnpISAgACNHjtR2SaRlmT+LTkSkJXv27AEAGBoawtPTEzo6ql/fIBaLce/ePRw7dgzHjx9HWFiY3POykzalSpXCixcvUKtWLU2UTkRERET5jK6urrZLICIiIqJ8zMnJCS4uLti7dy9ev36NqKgomJmZZXo8dfcn7WIoSES5ysuXL/Ho0SMAQK9eveDg4JDq+fLly6e5b3BwMC5duoSLFy/iypUriIyMBJDc0qlq1aqoUqUKqlWrhipVqqQal4iIiIgoMzJzARsRERERkSb169cP+/btg5OTk1qBXkhICPr27YumTZti9OjRGqyQsgtDQSLKVXx9fQEkT313d3dP9fyff/6J9u3bY+jQofjx4wceP34s/Pfu3TsYGhqidOnSsLe3x/PnzwEA586dg62tbba+DiIiIiLKH9Rpc09ERERE+VtYWBgkEona4xQsWBB///03ateujZCQkEyNERMTAw8PD7x69QqvXr2Cubk5Bg4cqHZtlL341wkR5RoxMTE4ePAggOTwz9raOtU2enp68PX1ha+vL4oWLYry5cvD2dkZTZo0gZOTE4oXLw4dHR3s2bMHU6ZMAcCWTkRERESUc0VHR8PExAQikUjbpRARERFRNjt79iymTJmikWBQ0xYsWAAzMzP8+eef2i6FVMBQkIhyjf379yMqKgoGBgZwc3NLcxtDQ0MAwODBgzFmzBiFYxkbGwu3c+I/qkRERESUcxw8eBBt2rSBvr6+yvuqG+ZNnjwZ0dHRWLBgASwtLdUai4iIiIhyly5duqBIkSKIiopCmTJlYG1tDVNTUxgYGGi7NMqlGAoSUa4gkUiwefNmAEDHjh0VtvuU/YOY0ckXIyMj4bZYLNZQlURERESUF61duxZr1qzB5MmTUaFCBZX2lV2AJpFIVG7VdOXKFRw/fhwA0KlTJyxbtgxVqlRRaQwiIiIiyt3q1auX7vMhISFpdlTLjOfPn6N8+fJcFzsPYyhIRLnC2bNn8fHjRwDAH3/8oXA7Za/eTjlTMDExUb3iiIiIiChPMzQ0xNOnTzFgwIBMj/H161fUqVNHrf0fPXrEUJCIiIiI5Hh4eKBgwYLo27cvatWqlelx/Pz8MHXqVLRo0QLz58/nbMQ8iqEgEeUK69atE257eHhg+vTpaNGiRartlF0fMOVMQYaCRERERJQe2YVnTk5OwhrXyurYsSNevHiBYsWK4dy5cyrte/PmTbi6ugIAJk2ahN69e6u0PxERERHlffr6+jhz5gzOnDmjkfGOHz+OpKQkeHt7a2Q8ylkYChJRjnfu3Dk8fPhQuC+VSlGyZMk0t1U2FDQ1NRVux8XFqVcgEREREeVpOeEq6TJlymi7BCIiIiLKgQwNDQEAdnZ28PPzy/Q4ixYtwt69e1G0aFFMmDBBU+VRDsNQkIhyNKlUimXLlgEATExMEBMTg1KlSik8KZLRWoIyDAWJiIiISFlcU4WIiIiIcirZMkk6OjpqrS0oCxeLFSsGBwcHjdRGOQ//siGiHO3o0aN48eIFypcvj3bt2mW4fWZCwfj4+EzXR0RERER5n54er6clIiIiopxJFuZpikQi0eh4lLMwFCSiHCs2NhYLFy6Evr4+5s2bJ6zloglmZmbC7ZiYGKVqISIiIqL8SdkLz4iIiIiIsptUKtXoeElJSRodj3IWhoJElGOtWbMGX79+xcSJE+Hs7KzRsQ0MDIS1YaKiojKso2vXrggODtZoDURERESUOzAUJCIiIqKcStNd0BITEzU6HuUs7IFCRDnSp0+f8N9//+H3339Hnz59VN5fLBYjOjo63W1MTU2RkJCAsLAwhdtu27YNS5YsAQC4urpiy5YtKFiwoMr1EBEREVHuxVCQiIiIiHKquLg4AMCXL19Qvnx5tcdjx7S8jaEgEeU4UqkUU6dORZkyZTB37txMjbF+/XqsX79eqW29vLzg5eWV4XZv3rxhMEhERESUDzEUJCIiIqKcSjZT0M7ODn5+fpkeZ9GiRdi7d2+GXdUod2MoSEQ5jq+vL969e4c9e/bA2Ng4U2MMGjQIw4cPT3ebiRMn4vjx42jcuDGWL1+u9Nh6enzrJCIiIspPNL1OCxERERGRpsTFxaFSpUro2bMnrK2tMz2OnZ0devTogXbt2mmwOsppeGabiHKUr1+/wsfHBxs2bECRIkUyPY6Ojg4MDQ3T3aZEiRIAkluVZrQtEREREeVfDAWJiIiISNvu37+PX375JVUXi+XLl8POzk7t8TOaYHHkyBE4OTmhTJkyah+LtEdH2wUQEaVkZGSEZcuWoVy5cll+rOLFiwMAPn/+jKSkpCw/HhERERHlThKJRNslEBEREVE+t2zZMvTq1QsvX76Ue1wTgWBGdu7ciXHjxqFPnz548eJFlh+Psg5nChJRjmJlZQUrK6tsOZZspmBiYiLev3/Pq1yIiIiIKE2yC8gkEglCQkJU2lcWKGZm38jISOG2WCxWaV8iIiIiylv09PRw/fp1dOjQQWs1hISEwNXVFQcOHEDRokW1VgdlHkNBIsq3KlasCD09PYjFYty6dYuhIBERERGlSRYKvnr1CnXq1MnUGF+/fs30vgAQGxub6X2JiIiIKPfT00uOc6pWrYo1a9Zk67E9PDxw//59GBkZYeLEiQwEczGGgkSUbxkbG8PJyQlPnjzBzZs30bNnT22XREREREQ5UGJiIgDAyckJBw8eVGnfjh074sWLFyhWrBjOnTun0r43b96Eq6srAIaCRERERPmdrq6u8H9ra+tsPba+vj4AoEKFCujSpUu2Hps0i2sKElG+Vr16dQDAjRs3kJCQoOVqiIiIiCgnkoWCmSGVSjVSA0NBIiIiovxNNlNQkU+fPuHz588qj3v9+nVMmzYts2VRLsNQkIjytcaNGwMAwsLCcOHCBa3WQkREREQ5U1xcHEqWLImRI0dm+7ELFiwId3d3NG3aNNuPTUREREQ5R0ahoL+/P9q2bYsVK1YgKCgIISEhGf737NkzjBw5Er6+vvD29s6mV0LaxPahRJSv1a5dG1ZWVggNDYWfnx9atmyp7ZKIiIiIKIcZPXo0mjRpIrRsyi6VK1fGxYsXhXZNRERERJR/ZRQKGhgYID4+Ht7e3pkK+FasWIEaNWqotQ425XwMBYkoX9PT00PLli3h6+uLixcv4tWrVyhXrpy2yyIiIiKiHKR58+aZ3led9qEmJiaZ3peIiIiI8paMLlAzMDAQbu/duxeVK1fOcMyQkBAhBOzfvz8DwXyA7UOJKN/r0aMHAEAikWDx4sXpbnvs2DHs3r07O8oiIiIiojxEU2sLEhEREVH+pMxMQXU0atRIrf0pd2AoSET5ikQiwcGDB+Hu7o6kpCQAgLOzM+rVqwcAOH/+PC5fvqxw/5MnTyI0NDRbaiUiIiKivIOhIBERERGpI6NQUN2W8xKJRK39KXdgKEhE+caZM2fQsWNHnD59GgsWLJCbcj948GDh9uTJkxEeHp5q/6SkJFy/fh3FixfPlnqJiIiIKPeTnVxhKEhERERE6tDRST/OUXemoGwCBeVtDAWJKM+7du0aunXrhtGjR+PPP//EihUrYGlpKbdN7dq10bJlSwDA9+/f8ffff6e6Oubhw4cIDw9HsWLFsqt0IiIiIsrlZGEgQ0EiIiIiUkdGoZ1YLM7S8SlvSH++KRFRDqLMFPaU2zx48ACLFy/GzZs3UaxYMezcuROVKlVSuO8///yDy5cvIzY2FufOncO8efPwzz//CM/L2ooWLlxYjVdBRERERPmJ7OQK2zERERERkToyCu0SEhKE21FRUQgJCclwzJTd0lLuT3kXQ0EiyjVk//Cld5V1WFgYAGD37t1Ys2YNAKBWrVpo164djh49ChsbG4WhXtGiRTF58mRMmTIFALBp0yaIRCJMnDgRIpFICAWtrKw09ZKIiIiIKI+TfXZlKEhERERE6khMTEz3+ZShXr9+/VQePzY2VuV9KPdhKEhEuYZsCryiqfABAQH48eMHAAhXwnTq1AkzZ86ERCKBm5sbWrRogZ49e2LYsGEwNzdPNUa3bt1w//597Nu3DwCwceNGvHv3Dn/99ReePn0KQP3+3ERERESUf8jCQLZjIiIiIiJ1qDJTcO/evahcuXKGY4aEhKBOnToAgLi4OPUKpFyBawoSUa4hCwMVXRUjEonk1gp0c3PD3Llzoa+vD0NDQ6xatQo2NjbYuHEjWrdujTt37qQ5zr///ovWrVsL9y9evIiuXbsKJ3RSTqsnIiIiIkoP24cSERERkSZktGagLBS0srKSO0eqjNKlS6Ns2bKZLY1yEYaCRJRryMLA+Pj4NJ+3s7PD4sWLoaOjA1dXV/z9999yz1taWmLlypUwMDBAYGAg3N3d8fHjx1Tj6OvrY9GiRRg4cCB0dXUByJ/ECQgI0NRLIiIiIqI8ThYKZnQSh4iIiIgoPRl9njQ0NMSYMWNw9uxZODg4KDWmsbEx/vvvPxw7dgzVq1dXuF16yzlR7sJQkIhyDdk/fOlNZa9Xrx7WrFmDf/75J83nnZycMGLECABATEwMDh8+nOZ2urq6GD9+PPbs2YP69evLPXf//v3MlE9ERERE+VBG3S6IiIiIiJSRUfvQ6tWrY/DgwTA1NVV6TGNjY9SrVw8A8OjRI/j4+ODQoUO4c+cO/P39kZCQgOjoaHz48AFA8mQKyt24piAR5RqyEykxMTHpbteoUaN0n3dzc8OuXbvw5csXFC5cON1tK1asiA0bNuDFixfYsWMHTp48iXfv3qlWOBERERHlW7LPsImJiRCLxdDT45/hRERERKS6rO48Ubx4cbx9+xanT5/GhQsXkJCQAJFIBF1dXeHYVlZWWVoDZT3OFCSiXCMhIQH169fHkiVL1BpHX18fQ4cOhaWlJX7//Xel9nFycoKnpydu3ryJyZMnq3V8IiIiIso/EhMTUb58efj4+DAQJCIiIqJMy+pQ0NLSEp06dYK3tzcuXryIQYMGQU9PT+641apVy9IaKOuJpGwGS0S5xPfv3zOc2acsqVSKT58+oUSJEhoZj4iIiIgoLYcPH0bbtm2ho8NrcomIiIgo8/r164ekpCSMGjUKv/76a7Yc886dO3B3d0dMTAzs7e2xd+9ezhbM5RgKEhERERERERERERER5WCfPn1C8eLFs/2427Ztw6dPn+Dh4QFLS8tsPz5pFkNBIiIiIiIiIiIiIiIiojyO/UuIiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVx/9fevQZpWddvAL/W3dY4bBxqs4YJD5AgFjM4Ng4lMUOOOUpWSh42G5SAJBgRdixpkEbCkBpFcjMkSYghBAoIJyfHXlhTOCFEkpEOA5KHcTg1ZLjAsvD8XzTu4F/JdffZfdyHz+fVfT9739/f9ey7nWt/960UBAAAAAAAgDKnFAQAAAAAAIAypxQEAAAAAACAMqcUBAAAAAAAgDKnFAQAAAAAAIAypxQEAAAAAACAMqcUBAAAAAAAgDKnFAQAAAAAAIAypxQEAADglHXo0KFSRwAAAOgUSkEAAABOWaNGjcrdd9+dF198sdRRSqZQKOSnP/1pDhw4UOooAABAB6ooFAqFUocAAACAUhg2bFgaGxtTUVGRESNG5IYbbsjIkSNLHavTFAqF3HnnnVmxYkWGDBmShx9+OL179y51LAAAoAPYKQgAAMApq7q6Osl/y7GnnnoqL7/8cokTdZ4TC8Ek2bZtW2666SY7BgEAoEzZKQgAAMAp6+KLL87evXuTJIsWLer0XYJLlizJ3LlzO3XNd3LeeedlyZIldgwCAECZqSp1AAAAACiV008/veV40KBBnb7+jTfemOrq6vztb3/LJz7xifTv3z81NTXp2bNnKioqWjXjoYceypo1a5Ik06dPzyWXXNKRkQEAgC5KKQgAAMAp643HhyZpdQlXbHV1de26/8QdfbW1tRkwYEA7EwEAAOXIOwUBAAA4ZZ1YCr7++uslTNK5Dh06lJ/85Cc5fvx4qaMAAACdRCkIAADAKauysrLl+LXXXithkuT555/PvHnz0tTU1OFrPf7447nvvvsybty47N+/v8PXAwAASk8pCAAAAEleeeWVd33PwYMHc8stt+TgwYPtXn/gwIHZvHlzrr322vzzn/9s97z/5Y13ED711FP50pe+lE2bNnXoegAAQOkpBQEAACDJjh073vU9c+bMyeOPP55Jkybl8OHD7Vq/srIy8+bNy86dO3PVVVfld7/7XbvmncwLL7yQjRs3tpwfOHAgv//97ztlhyIAAFA6SkEAAABI3vVuuUceeSRr165NkmzcuDG33HJLjh492q4MZ599dm6++eYcPHgwU6ZMSUNDQ7vmvZ0HH3wwhUIhSfKhD30oq1evTn19/ZverwgAAJQfpSAAAAAk2bJlS6sfA7phw4Z873vfe9Nnr776ajZs2NDuHF//+tdz1llnpVAo5P7778+MGTNy7Nixds9NkpdeeimPPvpokuQDH/hAfv7zn2fw4MFFmQ0AALy3KQUBAAAoe3/5y1/e8Zq+ffvmiSeeeMfrtm7dmsmTJ6e5uTlJMmzYsCxfvjyPPvpoRo4c2e6s1dXVmT59esv5mjVrMmfOnHbPTZKFCxemubk5lZWVue+++zJgwICizAUAAN77lIIAAACUtc2bN+drX/tabrvttv/5eM/PfvazWbNmzf+c9eyzz2b8+PFpbGxM9+7dM2vWrKxYsSIXXnhhUTNfeumlOffcc1vOV6xYkb///e/tmrlt27aW7zdr1qx85jOfadc8AACga6kqdQAAAABorQMHDmT//v2tvr6pqSnTp09Pc3Nz1q9fn3379uX+++9Pz54933LtyJEjs2rVqrzwwgs5++yz3/Lzv/71r5k4cWL+/e9/Z9iwYZk3b17OPPPMdn2fk6moqMgNN9yQWbNmJUkKhUJWrlyZ2bNnt3nm7Nmzc/z48UyYMCHXXXddsaICAABdhFIQAACALuW2225r8665DRs25Pbbb09DQ8NbfjZ48OB8+MMfzvLlyzNz5sw3/exPf/pTpkyZkqNHj2b69OkZP358Kisr25ShtS6//PLcddddOXLkSJJk165dbZ7161//Olu2bMnll1+e+vr6IiUEAAC6EqUgAAAAXUbv3r3z8MMPZ8mSJRk4cGAGDx6c3r17p6amJtXV1W+5fvv27Rk9enTL+ezZs3P11VefdP7IkSOzdu3a3HrrrS27CdetW5eZM2fmrLPOyg9/+MOcd955xf9ib6OmpibDhw/Pk08+mSQZOHBgm+bs27cvc+fOzUUXXZR58+aloqKiiCkBAICuwjsFAQAA6FJ69eqVqVOn5oorrsiAAQPywQ9+8G0LwST54x//2HI8ZMiQXHvttamqOvn/x1522WU5ePBgHnnkkSRJQ0NDZsyYkbq6uvzqV7/qtELwDW8UmN27d8/YsWPbNGPmzJn5+Mc/ngcffPCkv6cTNTc3t2kdAADgvc1OQQAAAMrWiaXgJZdc8o7XDx8+PLW1tVm6dGm2bduWTZs2ZfHixfn0pz/dkTFP6tJLL82kSZMyatSoNr2/8Je//GVee+21PPTQQ+nWrds7Xr9jx47cfPPNmTt3bi688MK2RAYAAN6j7BQEAACgLB05ciSbNm1qOW9NKVhZWZkrrrgie/bsyb59+7J+/fqSFYJvuPXWWzN06NA23dvc3JxFixale/fu73jtrl27cuONN+bFF1/MhAkT3vS7AwAAuj47BQEAAChLf/jDH3L48OEkSf/+/TNo0KBW3XfllVdmyZIl2bdvX2pqaoqWp6mpKS+99FLR5r3hwIEDLcd79+7Njh07Ws4/9alPZffu3dm9e/f/nPGf//wnU6dOzZ49e5IkjY2NmTBhQhYvXpwLLrig6JkBAIDOpxQEAACgLD322GMtx1/84hdbfd/555+fwYMH57nnnsvKlStTV1dXlDzV1dVZsWJFli1bVpR5b+fee+/NvffeW5RZjY2NGT9+fBYvXpxhw4YVZSYAAFA6SkEAAADKzqFDh/Lkk08m+e8jQceMGfOu7h87dmxmzJiRhoaGXHnllenZs2dRcs2cOTMf+9jHcvrpp2fIkCE544wzUlNT06rHe57MvHnz8rOf/SxJMnfu3Fx11VVFyQoAAJQX7xQEAACg7DzxxBNpbGxMklx88cX5yEc+8q7uHz16dGpra7N///78+Mc/Lmq2sWPH5rrrrsvQoUNzxhlntKsQBAAAaC2lIAAAAGXnF7/4RcvxNddc867vr66uzvXXX58kWbp0aZ599tmiZQMAACgFpSAAAABl5bnnnsuWLVuSJOecc05GjRrVpjnXX399evTokWPHjmXmzJlpbm4uZkwAAIBOpRQEAACgrCxfvrzl+Bvf+EZOO61tf/r27ds348aNS5L84x//yMKFC4uSDwAAoBSUggAAAJSN3bt3Z926dUmSfv36ZfTo0e2aN27cuNTW1iZJHnjggTz99NPtjQgAAFASSkEAAADKxqJFi9LU1JQkmTJlSqqqqto1r3v37pk8eXKS5NixY6mvr8+//vWvducEAADobEpBAAAAysKePXuyevXqJMnQoUPz5S9/uShzv/KVr+T8889P8t+diFOnTm0pHgEAALoKpSAAAABlYf78+Tly5EgqKipyxx13pKKioihzq6qq8v3vfz/ve9/7kiQbN27M7bffnkKhUJT5AAAAnUEpCAAAQJe3devWrF27NkkyZsyYDB06tKjzBw8enAkTJrSc/+Y3v8ldd91V1DUAAAA6klIQAACALq1QKLpucpYAAASMSURBVGTOnDkpFArp379/ZsyY0SHrTJo0KUOGDGk5X7ZsWe64444cP368Q9YDAAAoJqUgAAAAXdqyZcvyzDPPpKqqKvfcc0969OjRIetUV1enoaEhffr0afls1apVmTZtWhobGztkTQAAgGJRCgIAANBl7dy5M/fcc0+SZNq0aUV/bOj/169fv8yfPz9VVVUtn/32t7/NmDFjsn379g5d+2RO3KnoPYcAAMDJKAUBAADokpqbm/Ptb387hw8fzjXXXJPx48d3yrrDhw/Pd77znTd9tmPHjowZMyYLFy5MU1NTp+R4w4lF4NGjRzt1bQAAoOtQCgIAANAl3X333dm6dWtGjBiR7373u5269le/+tXU19e/6bPDhw9n/vz5ueyyy7JmzZocOXKkU7KcuFNQKQgAAJyMUhAAAIAuZ926dVm2bFkuuuiiLFiw4E2P8+wsEydOzNSpU9/y+SuvvJIZM2ZkxIgRWb16dYfnaG5ubjlWCgIAACfT+X81AQAAQDs888wzmTVrVkaNGpUFCxakurq6zbNO3GXXFt/85jfTrVu3/OAHP2iZ1a1bt3zuc5/LBRdckE9+8pPtmt8adgoCAACtoRQEAACgy9i+fXsmTpyYL3zhC7nzzjvbtUOwubk5r776asv5aae17WE6N910U84555zU19fnox/9aBYuXJh+/fq1Ode7dWIRqBQEAABORikIAABAl/Dyyy9n8uTJ+da3vpWrr766Vfc89thj2bVrV/r27ZtevXqlV69e6dGjRyoqKrJ+/focOHCg5dr3v//9bc42cuTIrFy5MkePHu3UQjBJmpqaWo6VggAAwMkoBQEAAOgSXn/99TQ0NOTcc89t9T0DBgzI888/n6VLl2bnzp0nva5Pnz7p27dvu/INGDCgXfe31YlF4IkFIQAAwImUggAAAHQJgwYNatM9gwYNyrRp07Jp06b86Ec/yp///Oe3XDd69OhiRCyJE4vA9r4jEQAAKF8VhUKhUOoQAAAA0FkeeOCBLFiwoOX8zDPPzKpVq9K7d+/ShWqHcePG5dChQ6mrq8vnP//5VFdXlzoSAADwHqQUBAAA4JRTV1eXzZs3Z9SoUZk9e3Zqa2tLHanN9u7d26XzAwAAnUMpCAAAwCnn6aefTp8+fTJw4MBSRwEAAOgUSkEAAAAAAAAoc6eVOgAAAAAAAADQsZSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5v4Pgwe3rFhhKK8AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_name = '新供应关系构成概率P7'\n",
+ "y_choose =[1]\n",
+ "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n",
+ " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n",
+ " 'palette': sns.color_palette(\"deep\")[0:4]})\n",
+ "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n",
+ ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n",
+ "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n",
+ "sns.set_theme(style=\"whitegrid\", rc=config)\n",
+ "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n",
+ " markers=['o'],\n",
+ " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n",
+ " palette=y_prop.loc[y_choose]['palette'].to_list(),\n",
+ " legend='brief')\n",
+ "ax.set_title(x_name)\n",
+ "for item in df_x.groupby('响应变量'):\n",
+ " for x, y, m in item[1][['水平', '均值', '均值']].values:\n",
+ " ax.text(x, y+0.0005, f'{m:.2f}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\1838672856.py:10: UserWarning: \n",
+ "The markers list has fewer values (1) than needed (3) and will cycle, which may produce an uninterpretable plot.\n",
+ " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtcAAAVjCAYAAACyq3AyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd1hTZxsG8DshCRtZIigIah249657VKyr1j1wj7rqrrs46q6rtVZrxdGq1drWXWfdWz9xoVZEcSFDlozM7w9KTCCBJASCeP+uy6vnnJx3HESLufM+r0ClUqlARERERERERERERERERDkSWnoCRERERERERERERERERO8LhmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkREREREOZLJZJaeQqEkl8stPQWiAu3BgweWngIRERERURYM14iIiIiI3nOpqam4dOlSno7x7bffYtiwYYiOjs7TcQxx5MgRzJ49G48fP7b0VHJtzZo1mDFjBp48eWLpqeS5Xbt2IS4uztLTMKunT5/maf+XLl3C4cOH83SMgm7OnDno0qUL9u/fD4VCYenpEBEREREBYLhGRERERPTeU6lU6N+/P4YMGYJ79+6Zvf87d+5g8+bNOHXqFDp27IiTJ0+afQxjCIVC7Ny5EwEBARg1ahSuX79u0fnkhkgkwu7du9GuXTtMnDixUK/S2b17N1q1aoX169cjNTUVAKBQKPDo0SMLz8x07du3x+zZs/Hq1as86d/GxgYTJkzAhAkTEB8fnydjFHQSiQR3797FxIkT0bp1a/z111+WnhIREREREUSWngAREREREeWOtbU1AODMmTM4c+ZMno4VExODDRs2oFGjRpBIJHk6lj4Z4yqVShw7dgz//vsvdu7cCWdnZ4vMR1NaWpr698MQNjY2ANJDpv3798PPzw/lypXTe/+rV6+wcuVKBAUFGTVOdmQyGVQqVZ7/flpZWSExMRHLly/HL7/8gilTpqBOnToIDAxE2bJlMXToUDRs2DBP52BuIpEIO3fuxJ9//olevXph+PDhcHV1NVv/1apVw7Bhw/DDDz/gxo0bWLZsGWrVqmW2/t8HYrFYfezi4oLatWtbcDZEREREROkYrhERERERveeEQiEkEgmkUim8vb2xfv16s/YfExODfv36AQCqV6+OTZs2WSxYA7TfbPfw8MCWLVsKRLAGpK/OOnXqFKZOnYoyZcrkeL+tra36uHPnzhgzZky292/atAl//PEHHj9+jO+//x7u7u65nvORI0fw888/Y/Xq1ShRokSu+9NHJHr3z09bW1uUK1cOHh4e+Omnn9CnTx8MHDgQdevWxfTp0+Hv759n8zAniUSC5ORkpKWlYefOnShXrhy6du1q1jG++OILHDp0COHh4QgMDMT8+fPRuXNns46hT0REBBYsWICFCxfCxcUlX8bMTPP7ZuXKlXn6PUpEREREZCiWhSQiIiIiKgQyVjGJxWKUKVPGrL9KliypHqdUqVJmWzFlKs1wzc/PD8WKFbPgbLT17t0bEokEnTp1wvLly5GWlpbt/Rkr1wDkuGorNjYWv/32GwDgf//7H7p164bQ0NBcz/mTTz5BcnIyPvvsM5w7dy7X/emjGZL88MMPKFu2LACgQoUKWLp0KQQCAS5fvozPP/8cwcHBeTYPc8r4XrS1tcWePXvMHqwB6QHe9OnTAaSvMpw2bRouXLhg9nEyi4iIQP/+/XHy5EkEBgYiNjY2133evXsXMTExRrXR/L4RCAS5ngMRERERkTkwXCMiIiIiKgSsrKwsPYV8o/lme0EjEAiwYMECODs7Y/369ejSpQvu37+v936h0PB/kq1duxbJycnq8/LlyyMpKSlX8wXSv3fGjRuHuLg4DB8+HAcPHsx1n/rGyZD597BFixbo27cvAEAul2PhwoU4ffp0nsxDoVCYra+McM3a2hqlS5c2W7+ZNW3aFDVq1ACQXg7122+/Vb+WkpKCwMBAlC9f3qy/WrVqhRcvXgAA7t+/j4EDB0IqlebqOS5cuIDmzZtj9uzZePz4sUFtjPkzkllkZKRZf7+JiIiIiDIU3H+VEhERERGRwXLzBvT7pqA/a5EiRRAUFIQvvvgCjx49Qs+ePbFhw4Zc7RX1/Plz7NixA0B6kLNgwQJ06NDBXFNGmzZtUKpUKTx+/BgTJ05EamoqPvvsM7P1D2iv0lOpVFlenzhxIv7++2+8fv0aAHDjxg00adIkx37/+usvVKtWDX5+fjneGxERgSFDhmDu3LmoV6+e4ZPXw9xB75s3b3DlyhW0bt06yyqtwYMHY/To0QCABw8eqK/b2trixx9/xPz58+Hg4ICKFSuiaNGicHR01Co7aqzXr19jwIABANL3Ops8eXKuy8Ha2NioS2ju2rUL7dq1w+LFi7VWo2Zm6gcHMlbeVa9eHcuWLfugPoBARERERHmP4RoRERERUSGQETjJZDI8evTIrH1rlnFTKpVm7dsUBT1cA4CWLVuiXr16uHTpEpKTkzF27Fj8/fffcHR0NKm/JUuWQCaTwcbGBj/++CPq169v1vkKhUIEBgbi66+/hlKpxKxZs1CqVCn1ailzsLOzUx/LZLIsr9va2mLkyJEICgoCAFSuXNmgfi9evIhp06bh008/Rd++fWFvb6/zPqVSiQkTJiA8PByDBg3CtGnT1KvlTGXu70WFQoExY8agQoUKGDVqlFbI1rx5c7i5uSEmJibLnnQ2NjaYP3++WeeiWf61ZcuWaNy4ca771AznvLy8MHjw4GyDNcC0r3FGsPbixQu8ePECKpUKy5YtyzEMzfhzaig7Ozs4OjqiePHiqFatGpo1a4YGDRoYPV8AiI+Px969e3HlyhWEhobizZs3SE5OhqOjIzw8PFCjRg20adMGjRo1Mql/IiIiIjIvhmtERERERIVAxhvQz549Q0BAQJ6No2vFUX57X/ZdGj16NC5dugQgPaA8fvw4OnfubHQ/ly5dwuHDhyEWi7FmzRqzB2sZOnTogMWLFyMlJQVyuRwrVqzAli1bzNa/ZuilK1wDgM8++wzr1q1DkSJF0KxZM4P6FYvFUCgU+Ouvv/DXX38Z1EYul2PBggUoX7486tSpY1AbXcwdrmUEWqGhoeqQbenSpShXrhxEIhFat26NHTt2qFewvW80g7T+/fujUqVKObbR/Bq3bNnSpHEPHToEADkGbNOmTcPIkSMREhKCoKAgdUlJPz8/TJ8+HV5eXup7U1NTkZCQgH///ReXL1/Gtm3bEBwcjDJlymD27NkG/zmVy+VYu3Ytfv75ZwDAp59+itGjR8PLywv29vaIj4/H/fv3cfDgQezYsQMVK1bEwoULUaFCBZO+FkRERERkHgzXiIiIiIgKgYzQq1SpUjh8+LBZ+3716hWaNm0KoGCsXHtfyrvVrVsXZcqUUa8klMvlRvchl8sxf/58CIVCLF261KAyiaZycHBAo0aNcOzYMQDapQfNQXPlmr69u2xsbLBu3TrY29tj06ZNGDhwYI6/35qBzZYtW7It99ivXz9cvnwZAoEA69aty1WwBpj/e1Ez+LGxsUH37t1RtmxZ9bWhQ4eiTJkyZllFZgmmlNHUDNODg4Ph4eFh8vgymSzbOXh5ecHLywv+/v7YvXs3QkJCAKQHgRl/B2bWuHFjDBgwAM+fP8dXX32Fy5cvY+DAgZgwYQKGDh2a7XxSUlIwdOhQXLlyBbVr18bq1avh5uaW5b4GDRpgwIAB2L59O+bOnYtu3bphxYoVaNWqlRFPT0RERETmVPDrqRARERERUY7yK/TKWMlR2MTFxZnU7sWLF9mWFszYF83JyQkff/yx0f1v3rwZDx48wNdff4127drleP/Vq1fxww8/GD1OBs2Sc4aWZTSU5sq11NRUvff5+/vju+++w9KlSzF79uwc+zUlsBEKhXrDEmPktIry/v37RvWn+SxlypRBnz59tMbw9vZG//79jZtkAWLKSj/N5/fx8UGZMmVM/mXMHnSaewQa0q5EiRLYuHEjatSoAaVSiWXLluH333/Pts348eNx5coVlCpVCj/99JPOYE1Tr169MG7cOEilUowfPx43b9407GGIiIiIyOwYrhERERERFQL5FXoVhHDN3GUhg4OD0a5dO6ODEAC4fPmy3lVYANCnTx80b94cGzZsQLFixYzq+/nz51izZg3Gjx+PHj165Hh/dHQ0xo8fj9WrV+PcuXNGjZUhYyWXUCjE4MGDTepDH81wLSkpSe99CxYswN69ewEAu3fvxooVK7LttyDuwadQKDBr1ix06dIFe/bsMbidKUHh+8SUlX4F8fdXH4lEgq+//lp9vnDhQq09KzUdPnwYJ0+eBADMnDnT4OBvyJAh8Pb2hlQqxezZswtEqV4iIiKiD1Hh/smdiIiIiOgDkV9vsOrbK+t9FRwcjIULFwIAAgMDERwcbNReRmfOnEFaWpq69KMukydPBgCd90RFRWkda96zaNEiNGjQAK1bt862/wxz587F69evAQCTJk3CH3/8AU9PT4OfBQDKli2LwMBA1K9fHw0aNFBfl8vlGD9+PI4cOWJUf/qMHDnS4HvXrVsHDw8P9OnTR+frpgZSKSkpiI+PN6lthoywWaVS4dWrVwDSV5HOnz8fx48fBwBMnz4diYmJCAwMzLE/gUAAoVBo0ErUR48e4dGjR2jTpo1Rc75+/Tq2bt2KxYsXQyKRGNU2t96X/RJzo0KFCqhWrRpu3ryJxMRE7Ny5E1988UWW+3799VcA6SvejCnzKRKJ8Nlnn2H16tUIDQ3FtWvXULt2bbPNn4iIiIgMw3CNiIiIiKgQyAi9Hj9+jPLly+fZONmt0srOixcvzBbMZYQYQHp5wSdPnpjUz9GjR7F06VL1+Zs3bzBgwACDA7akpCQcP34cKSkpCAgIMGkOmpYuXao1nwwnTpwwuq/Y2Fh8+eWX2Lp1q9aeZIaYPn16lmsikQjffvstgoKCIJFIULNmTXh5ecHZ2dngfsPCwjB69GgAwOeff45BgwYZ3Da7FU+mrmxSKBSYMGECrl27ZlJ7TfHx8XrLTKpUKnzzzTeIj4/H2LFjc+zL0AAqKSkJY8aMQePGjTFr1iz4+fnl2ObatWsYOnQo3r59i4SEBKxduxbW1tYGjWcO79MqtNyoUaOGumTjP//8kyVcUygUuHr1KgCgUqVKRvevGaZdvHiR4RoRERGRBTBcIyIiIiIqBDL2sPL29sb69evN2ndMTAz69esHAEhOTjapj4cPH2L06NEmh3P6hISEGL1yJztv3rxBYGAgNm/enGPAtmXLFqSkpKBOnTrYtm2b2eZgioiICAQEBKi/vqVLl0ajRo3w+vVrlChRwixjiMVizJ8/P1ftM4hEIpQpU8Yc0zI5sHFwcMBPP/2E9evXo0SJEihfvjxcXFxgb29vcODUs2dPPHjwAM7OziaFoLoIhUKDyq9mBI5nz55F27ZtjR7n7NmzWLp0KWbOnGl02/xkztVuaWlp+RImenl5qY+fPn2a5fXY2NhcldgtWrSo+lhz9SsRERER5R+Ga0RERERE7zmpVKouI2dtbW220CJDxl5ZLi4u6NKli9Zrp06dgoeHB/z9/bPto2nTpti2bRvi4uLg6+uL4sWLmxyKhISEoFevXgDS9wgLDg42qZ/s5DS3u3fvYsOGDQAAR0dHs49vrMWLF0MqlcLZ2RnTpk1Dp06dClwJPs2vU3Z7rhkrN89pZ2eHL7/80uT2mt8nmnvK5Yahz6NZDrNPnz56y2Zqun79ujpMa9KkSa6e3RSWXLl28OBBLF++HMHBwfDx8cnTsXLaX1CzHOeNGzcgl8uNKm+qGczZ2NiYOEsiIiIiyg2Ga0RERERE77m0tDSUKVMGXbt2RefOnc3ev1gsxqhRozBo0CA4ODior9++fRtffvkl7O3tsX379hzfsK5WrZpZ5hMbG6s+lslkJu+5ZaqLFy9i3Lhx6lV8pUuXztfxM7tw4QKOHj2KKlWq4LvvvjN6n7X84uTkpN5PzJzhWmErNWhKuObi4mJQqP78+XP18ZAhQ7T+PBdmx44dw+TJkyGXyxEYGIht27ahePHieTZeYmKi+tjV1TXL60WKFIGHhwdev36NqKgo7NixA3379jW4f81SuBUrVszdZImIiIjIJAzXiIiIiIjec46Ojjh48GCe9e/m5pZlr6hnz55hxIgRSE5ORnJyMgYPHozt27fDzc0tz+aRISYmRn18584dxMfHo0iRInk+LgA8evQIw4YNQ1pamvpaixYt8mVsIL0EnGZJOIVCgW+++QbNmzfHypUrzbKKJTY2Fs7OzmYPraysrODi4oKYmBizhmuFjaFf9+z2obOEhISEHEsURkZGqo9jY2Px6NGjHPvV/F6JiIjQ+rNniPv372PKlCmQy+UA0gPGjICtWLFiRvVlqNevX6uP9X3ooE2bNupyskuXLkX58uVRp04dg/rPKEHq4OCAli1b5nK2RERERGQKhmtERERERAVYUlKS1hvSBYFcLsf48eO13kh/8uQJhg4dii1btuT5ahjNr4dMJsOJEyeylKvMK+Hh4Vpv7nfq1Am1atXKl7Fv3ryJYcOGoX379pg1axYEAgFevnyJBg0aYMqUKWZbwTdjxgwkJSVh6dKlZl8F5+7ujpiYGERHR5u1X3N4+vQpSpYsaelpmLRyrSAQCoWYMWMGbty4YdD9P/74I3788UejxhgwYIAJM8vq6dOn6N+/P7Zt26YVVpvL5cuX1ccff/yxznsGDRqEPXv2IDk5GampqRg2bBgWLlyITz75JNu+IyIisG/fPgDAqFGjPpjVh0REREQFTcH6aZyIiIiIiLRYWVlh3rx5uHDhgqWnkqM7d+5g9OjRWL9+vdaeQub2+PFj9bGXlxf+/vvvfAvXWrZsiaCgIFy8eBF16tRBz54982XcU6dOYdy4cUhJScEvv/yC+Ph4LFq0CN7e3pg+fbpRfT1+/Fi9R19mYWFh6lUxnTp1woIFC9CqVSuT561UKvHy5UuUKFECAFCsWDHcv38fr169MrnPzMyxt5xCocDAgQPRqFEjTJ8+/b3Yx6qghWsODg7YuHEjNm7ciFKlSqFChQpwcXGBk5NTrv4+OHr0KBo0aPDehEh3797F3bt3AQC2trZ6S/WWKFECs2fPxldffQUASE5Oxrhx49C1a1dMnjwZLi4uWdq8ffsWX375JaRSKdq0aWO2sJGIiIiIjFewfhonIiIiIiIttra2+PHHH3H+/Hn4+PigZMmS6jeqv/rqK/zxxx8A0sOXnFYZ9evXD5cvX0alSpWwZ8+ePJ97XtEM1wYPHowlS5YgNjZW595GeaFnz546Q7XIyEj0798f4eHheT6H/fv3IzExEatXrzY6CLp58yZmzJihLpOnT1xcHDZt2oSGDRvCzs7O6DnK5XJMnToVV65cwW+//QZPT091yJaamponv2f9+/c3qZ2VlRUWLFiAAQMG4MaNG1i9ejVKlSpl1rkZytCwMLdlIVUqVa7a62Jvb5+lhGxu7dixAzNmzEC/fv3Qr18/ODs7m7V/c0pJSUFQUJD6aztq1Khs/17u0qULkpOTMX/+fHXg/fvvv+PYsWMIDAxE//794ejoCCC9nOW4ceNw+/ZtfPbZZ5g7d26h22+QiIiI6H3CcI2IiIiIqICztrZG8+bNLT0NLcnJybhz547BewSZi0KhUIdX1tbW6N69O1atWoXt27dj1KhR+TqXzIoVK4YtW7ZgyZIlKFu2LCpUqAAnJyc4OTmZZXWVLjkFZLp07twZHh4eiI6Ohr+/Pzw8PNRzvHr1Kvr06QMACAgIwLJly9Qhjkwmw9OnTw0eZ/ny5Th+/DgAYNiwYfj111/V4RoAvHjxwuzh2uLFi1GlShW9r0+dOhW3bt3S+Vr9+vXRs2dPbN++HZ9//jmWL1+OZs2amXV+hsivspB5Ea7lBRsbG8THx+O7777Dzz//jGXLlhXIfcaePHmCqVOn4n//+x+A9KB36NChObbr06cPypUrh+nTp6v/fMXHx2P16tX46aef0KFDB3h4eODnn3+GnZ0dvv32W7Rv3z4vH4WIiIiIDMBwjYiIiIiIjKJUKjFhwgScPn0aU6ZMydfSZA8fPkRKSgoAoHz58rC2tkbTpk2xfft2DBs2DGKxON/mokuxYsWwfPlyi87BEA0bNszxntKlS2utjhKLxdi9ezd+/vlno8e7f/8+xo0bh+7du6uvPXv2DJUrVza6r8w0wygvLy+UKVNG7722trbZ9vXll1/i0KFDiIuLwxdffIGgoCB069Yt13PMC5rh2ps3b/Do0aMc2xS0/RsNYW1trT7u3LmzRQJPXZRKJd68eYPbt2/j8OHD2L9/P6RSKZydnTFjxgx07NjR4L7q1KmD33//Hb1798bDhw/V15OTk7Fz504AgKenJ3777TcUK1bM7M9CRERERMZjuEZEREREVAg8ffoUb9++zfaejFAKAGJiYjBv3jyta4Z68+YNbt68CQBYuHAh7t+/j6CgoDzdZy1DxrgAULNmTQBAx44dsX//fhw8eBCdOnXK8zl8yKZOnYoSJUrAxsYGVatWRbFixVCkSBEAQMWKFaFQKFC3bl1s3bpVZ3vNkp6hoaH45JNPcj0nc67AcnZ2xogRI7Bo0SIoFArMmjULHh4eaNq0qdnGMBfN4POXX37BL7/8YlR7S69cW7hwIXr16gU/P79s79N8zsGDBxtdDjM0NBQJCQmoW7euKdMEAMyYMQMzZ87UuqZUKtVfQxsbG1SvXh2ffPIJunTpYnQZ1StXrmDq1KmIjY3FzJkz8eTJE/z+++9ITk5W3/Pq1St07doV33zzDZo0aWLysxARERGReTBcIyIiIiIqBPr162fU/W5ubujTpw9Wr14NPz8/qFQqXL16FX379s2xbWhoqDrksrOzg7e3d769UX/9+nX1cUa41qRJE/j4+GDt2rVo3759rsvlvY8iIyPzbUWLId8j+pQsWRI2NjZITU3FvXv3zDgr8+nevTt++OEHxMfHQ6VS4ZtvvkHjxo1zvceZuWnOZ/To0RgzZkyObU6fPq0uVWjJcO3evXsIDg7Grl27MG/evGzLHObm656UlIRx48bh9evX+PHHH00O2MaOHauzFKWVlRWcnJzg4uJi8t87W7duxcKFC+Hk5IRt27apV3OOGzcOP//8M4KDg9UhW1RUFIYNG4Zx48Zh5MiRJo1HRERERObx4f2rk4iIiIioEDp16hQ8PT2zvadfv364fPmy+rxOnTrqFUZxcXFo0aIFPv/8c9jY2GTbz+TJk9XHixYtQtu2bXMxc8OpVCqcO3cOQPqb2vXr1weQXhawZ8+eWLp0KXbt2oVevXrly3wKivPnz2PkyJGYNGmS0SFrfrOyskKFChXwv//9D3fv3rX0dHSyt7dH165d1eUvw8PDcefOHVStWjVfxjd0zzVT9tvTpFAoctU+N1atWgUAePv2LSZMmIBLly5hxowZWiUgM+Rmv8LZs2er92gcPny4yQFbsWLFUK5cOZPnoU9wcDAWLlwIiUSCH3/8UatMqqOjI8aNG4c+ffpg3rx5OHz4MID0vwdXrlyJ1NRUjB8/3uxzIiIiIiLDCC09ASIiIiIisjxnZ2f4+Pjg9OnT2d4XHx+Pv//+GwDg6+uL1q1b58f0AKSvdomKigKQvmotoxwhAHTt2hW2trb4/vvvtUqpFXYXLlzAyJEjkZqaivnz52PLli2WnlKOMgKE169f4/Xr17nuLy9WYLVr107r3Ngyf7lh6PPkNhxTKpW5am+qq1ev4uTJk+rzjz/+WB2U66IZrhnze71582YcOHBAfZ6cnIyRI0catDddfrhw4QIWL14MIH1lXLVq1XTe5+7ujlWrVmHZsmVa4eO6detw6NChfJkrEREREWXFcI2IiIiIiAAAdevWxb59+7K9Z9euXUhLSwMABAYGQijMv39SnDhxQn3cqlUrrddcXFzQp08fREVFYcOGDfk2J0u6cOECRowYgdTUVPW1BQsWFPiArVatWurjjJWIBU3VqlXh4eEBAKhevTo++ugjC88oq/dx5ZpSqcSCBQvU5wEBAfjpp58QEBCgc9UaYFq4dvjwYSxatEirj8mTJ+P06dMoU6aMibM3H4VCga+//hpKpRJeXl4YMGBAjm06dOiAzZs3awW98+fPR1JSUh7OlIiIiIj0YVlIIiIiIiICADRt2hTDhg3Dy5cv4eXlleV1qVSqDm7c3d3x2Wef5dvcVCoV9uzZAwAQiUT49NNPs9wzdOhQ7NixAxs2bEC7du3ypIybSqVCUFAQtm/fbva+zWXBggVQqVQIDAy09FR00izLd+bMGXTp0sWCs9GvTZs22LlzJ2bOnGnpqeiU23DNEivXduzYoS4HWqpUKcyfPz/HNpqBmiFzvnr1KiZPnqy+VyQSYcGCBejcubNpk84DZ86cUZer7NGjB8RisUHtatSogZUrV2L48OFQqVSIjo7GX3/9hT59+uThbImIiIhIF4ZrRERERESFwNOnT/H27dts70lJScn29Xr16sHBwQG//PILJk2alOX1ffv2ITIyEkB6kGVra2v6hI10/vx5PH/+HEB6GTl3d/cs9zg7O2PAgAH47rvvMH36dOzcuRNWVlZmnYdAIMCcOXNQpEgRJCQkoFKlSvDy8oKjoyPs7e1zbC+TyTBo0CB4enri66+/NqiNqfNUqVS52q8qr7i7u6NChQoIDQ3FuXPnoFQqc7UC0pSQyJA2o0aNQtu2bVGlShVTppXncrvyLL9XrkVHR2PFihUAAAcHB3z//fcGff9rhms5zTkkJAQjR46EVCoFAFhbW2PFihVo2bJlLmZufpplMZs3b25U26ZNm6JLly7qDxscPXqU4RoRERGRBTBcIyIiIiIqBPr165frPsRiMZo3b44dO3Zg8ODBcHFxUb8mk8nwww8/AAA8PDzQq1evXI9njODgYPXxwIED9d43aNAg7N69G7du3UJwcDAGDx5s9rkIBAKMHz/epLabNm1CTEwMYmJiMHnyZKxatQoVKlQw8wwLvmbNmiE0NBRxcXG4dOkSGjRoYHJfpuy5ZkgbV1dXrVV2+SW/9lzL7co3YwUFBSEhIQFCoRDLly83qTxjdnO+evUqhg0bpv6QgYuLC9auXYuaNWuaPOe8cv/+fQDpf+eaUnI0MDBQHa6FhoaadW5EREREZBjuuUZEREREVAicOnUK9+/fz/aXIUFB165dkZiYiO+//17r+u7duxEREQEAGD16tN79kfLCxYsXcfr0aQDp+1/Vq1dP77329vaYNWsWAGDVqlUF6o3niIgIrF69Wn0eHh6Onj17IiQkxIKzMl5KSgp+//33XPXxySefqI93796dq75MLW9oibKIhjA0XJPJZLkaJz/DtV27duHIkSMAgK+++grNmjUzuK3mc+qb87lz5zBkyBB1sObn54edO3cWyGANAN68eQMgfbWtSGT8Z54rVKig3nuNe64RERERWQbDNSIiIiIiUqtbty4qVKiAHTt2ICwsDED6m7dr164FAFSsWBHdunXLt/moVCosXbpUfT558uQc27Rq1QqtW7dGWloaxowZg4SEhLycokEUCgW++uorJCcnq6+1aNECe/bsQdWqVS04M+PI5XJ8+eWXePToUa768ff3V6/YOXLkCOLi4vTeGxISkm0QZmpIlt8rt8xNc+Xad999h/Lly+f4a+jQoeo2uQ3nDBUeHo5vvvkGQPqKK2P3AtT8/c0o96hp165dGD58uLrsbd26dbFjxw74+vrmYtZ5KyMYy833YEZJTWdnZ3NMiYiIiIiMxHCNiIiIiIgAvHsTOzAwEDKZDJMmTYJUKsV3332H169fAwBmzJiRq/2xjPXTTz/h9u3bAICAgADUrl3boHazZs1CkSJF8PTpU4wcORKpqal5Oc0cLV++HFevXgUAFClSBCtXrsQPP/yA0qVL621z4cIF/P777wVqhdWcOXMQHh6OsWPH5rqvjJBWKpVi165deu8bP358tt9zml8fpVIJuVyu95cx+3dZiillIfv06YODBw/m+Gv+/PnqNrqCKnOTyWSYOHEikpOT0blzZ0ybNs3oPtLS0tTHmn+O5XI55s+fj5kzZ6qDwr59+2LTpk1aJW0Loow/9/Hx8TnulamLXC5XB9KmlJUkIiIiotzjnmtERERERB+g5ORk3L17F7du3UJISAju3r2Lbt26YciQIejYsSPWr1+PO3fuYNKkSTh+/DgA4PPPPzc43DKHkJAQrFq1CgBQtGhRdblHQxQrVgwLFy7EqFGjcPXqVYwePRrfffcdbGxs8mq6eh06dAgbN24EAFSqVAnfffcdihcvnmM7f39/LFq0CFu3bsX06dMtsv+XplWrVuH333/Htm3bjP46KhQK3LhxA6dOnULHjh1RtmxZdOnSBStWrEBqaip++ukn9OzZE46OjlrtYmJitMIVfX1nGDBggMFzKqgr1wwN1zTn7+LiYtAeZs+fP1cf29raGj85I61YsQK3b99Gu3btsGDBAggEAqP70Pz9zwhSo6OjMWnSJFy4cAEAYGNjg9mzZ6Nr167mmXge+/TTT7F//34olUqcPXsWbdu2Nar9rVu31IFimzZt8mKKRERERJQDrlwjIiIiIirkpFIpQkND1Ssd7t+/j1q1amHYsGG4ceMGmjZtih07dmDIkCEAAJFIhClTpgAA/v77b8jlcnh5eZm06sRUMTExmDBhAmQyGUQiEZYuXQpXV1ej+mjZsiUGDhwIADhz5gwGDBiQbfnBvHDjxg1MnToVANC+fXv8+uuvBgVrQHq5t02bNkEul6Nfv34YP348IiMj83K6eu3cuRNr165F3759DQ5YY2Ji8Mcff+DLL79E/fr1MXv2bHh6eqJEiRIA0lfwffbZZwCAuLg4/PTTT1n6uHPnTo5l7zTDtaVLl+LIkSN6f2mW4MwptLMUY1euVaxYER9//LHB/ZcrVw7BwcHqr31e2blzJzZu3IgOHTpg+fLlJu0tBqR/n4wYMQJHjhxBo0aNcPz4cXTo0EEdrH300UfYtWvXexOsAUCzZs3UYfmPP/5o8O95ht9++w0AUKJEiffquYmIiIgKE65cIyIiIiIqJJRKJZ4+fYqHDx/i/v37ePjwIR4+fIgnT55orXJxd3fHggULULduXUgkEp19tWjRAhUqVEBoaCgAoEuXLnBwcMiX50hMTMTgwYMREREBAJg7dy4aNGhgUl8TJ07EzZs3ce3aNdy4cQNdu3bFihUr8mWfs0ePHuGLL75AWloaBg0ahClTphi9csfV1RWbN29G7969cfDgQZw5cwZTpkxB9+7d82jWWR0/fhxBQUHw9vbGhAkTcrz/8ePH6Nq1K+7cuQOhUIjmzZtj9erVOn8PBw0ahN9++w1yuRzBwcHo1KmTVqnMu3fvZlnNlplmuFasWLFs99rSXHFn6VKh+hhaBtTZ2Rnff/89WrVqZXDfNWvWxJ9//gkrKytTp2eQjO+Zfv36YcaMGSatWMuwfPlyAMDbt28xa9YsdbAEAD169MC0adPyZRWeOQkEAixZsgR9+vTBnTt3sHjxYnz11VcGtb1y5Qr+/PNPSCQSLFq0CNbW1nk8WyIiIiLSheEaEREREdF7SCqVIjk5WX0+ZMgQREREZAkMHBwc0KhRI9StWxd//fUXHjx4ADc3NzRu3Djb/nft2qUO1gBg3bp1cHV1Rb9+/cz7IJm8ffsWI0aMwL179yASifD111/namWGSCTC999/j759++Lff//Fs2fP0Lt3b4wYMQLDhg3TGy7m1uPHjxEYGIi4uDjMmDED/fv3N7kvNzc3/Pjjj+jRowfi4uIwa9YsnDx5EosXL4aTk5MZZ53VjRs3MGHCBCiVSsyfPx92dnZaryclJeH8+fM4fvy4OuSKioqCQqHA0KFD0atXr2xX6vn4+KBr167YuXMnUlNTMXHiROzcuVP9+3L37l3Y29tnO0dTyjuWKVPGIiVCDWHoKiZfX99sg0Rd8iMgv3HjBiZPnozp06ejb9++Zulz3759WLp0qXrlppeXF+bPn5/j32O5ofl3qSn7ouXEy8sLW7ZswYgRI7Bp0ybExsZi5syZ2f6ZPn36NCZOnAgbGxssXbrU4qViiYiIiD5kDNeIiIiIiAq4S5cu4fHjxwgPD8fjx48RFhaG58+fa63YefjwIYD0lTk1a9ZEgwYNUK9ePVSuXFm9SuXUqVMGjXfy5EnMmTMHAoEAI0aMwJ9//omXL19i/vz5ePjwIWbOnJknodTr168xfPhw3L17F3Z2dli5ciWaNm2a635dXFzw888/o1evXnj+/DlkMhnWrFmDffv2YcKECWjTpk2uVtZkdv36dYwZMwZJSUlYvXo1Wrdunes+/fz8sGrVKgwePBhyuRwnTpxA7969sXnzZri5uZlh1uk0S/c9fvwY27ZtQ2pqKnr06IEGDRpAJpPh1q1buHjxIs6dO4ebN2+q934CgJIlS2LgwIHo2rWrwStqxo4diwMHDiApKQl3797FkiVLMHPmTADpZSErVqyYbXvN8XPi5eWFBQsWoEuXLmZZvWXoKjNT+jTmuQoKuVyOb775BuvXrzfL/ox3797F/Pnzce3aNQDp3599+vTB2LFj8yQofPz4MdLS0nDr1i3cuXNHfX3z5s3w8fFB8eLF4ebmZrY/c97e3vj999+xcuVK/Prrrzh+/Dg6duyIevXqwcvLCyKRCPHx8QgNDcXx48dx9epV1K1bF3PnzkWpUqXMMgciIiIiMg3DNSIiIiKiAm7Xrl3Yt2+fztcEAgH8/f3x8ccfo0GDBqhVq1augq9Tp05h3Lhx6rJlHTt2xGeffYa+ffsiMjISO3fuxK1bt7BkyRKULVvW5HEyCw0NxYgRI/Dy5UsUK1YM33//PapUqWK2/osVK4bg4GD1cwBAeHg4xo4di/Lly2PgwIFo165drlYzSaVSBAcHY/Xq1XB2dsbWrVvNVn5SqVSiatWqGDNmDFasWAEgPVD98ssvsXnzZgiF5tlOOzY2Vn184MABAOlfu4w9+IYPH45z585laVe5cmUMHjwYbdu2NTq0cnd3x4QJEzB37lwAwNatW+Hs7Iz+/fvj2bNnOX4fyOVyCIVCfPrppyhXrly29y5ZssSoueU07qtXr8zWH5C+ai0jXMuPPeFevHgBT09Pnd8/MTEx6mOxWGxQfyKRCNu3bzd5f7UMISEhWLduHU6cOKFeydekSRNMmTLFrH/vZDZ48GA8f/48y/WIiAgMHz4cADB69GiMGTPGbGNaW1tj6tSpGDp0KPbu3YuLFy9i8eLFePPmDRQKBYoUKQJvb2/UqlULX331lVn/XiQiIiIi0wlUxu6cS0RERERE+So2Nhbt2rVDXFwcgPQ3sD/++GO0atUKzZo1g7u7u0H99OvXD5cvX0alSpWwZ8+eLK8fOXIEEyZMgL29PVasWIGGDRuqX3vy5AkGDhyofuNZLBajZ8+e6NOnT65XUPzyyy9YsmQJUlNT0alTpxxLo+XGq1evMGzYMNy/fz/La05OTmjXrh1atmyJBg0aGBVSBgcH4+eff0ZkZCRsbGwwbtw4uLi4IC0tDampqUhLS1MfS6VSpKamah1rvp5xrHluY2OjXjHz6tUrrQBg/vz56Natm1m+PhMnTsT+/fu1rq1evRpt27YFAISFhaFz587q4Kdx48YYMmSIyXviZVCpVBgyZAjOnj2rvtaiRQucOHECTZo0wYYNG/S23b59O2rWrIny5cvnag66zJgxA1ZWVihZsiS8vLzg4eEBJycnqFQq7N69G1u3bgUAeHh44MyZM7keTy6Xo1KlSgAAT09Pg1ebmmrEiBG4ePEiihcvDh8fH3h5ecHd3R22trY4cOCAevXWqFGjMHbs2Dydi0KhwLlz5xAcHKwOcAUCAZo0aYIvvvgC1atXz9PxiYiIiIiMwXCNiIiIiOg9sGfPHsyaNQv9+/fHgAEDUKxYMaP7yC5c27lzJ+bOnYty5cphzZo18Pb2ztI+KioKI0aMwO3bt7WuV6lSBS1btkSZMmXg6+sLPz8/g0oCRkdHY8aMGfjnn39QtGhRzJ07Fy1atDD6uYyVlJSEcePGaQU5mhwcHDBnzhx07NjR4D4vXbpk0r5qtra28PLygpeXF4oVKwYPDw/1r6JFi8Ld3R1FixbV+nqeO3cOgwYNUp/XrVtXHfLk1uTJk7F37171ua5ga+PGjVi6dKl6ZaO5xMXFoUePHggPD9e6XqVKFezevdts4xjjwoULOH36NE6cOJFlXprq1KmDbdu25Xq8tLQ09WpHV1dXXLhwIdd95iQqKgpbt27Fpk2bIJVKdd6zbt06NG/ePE/Gf/z4Mf744w/8+eef6lWl3t7eCAgIQPfu3eHj45Mn4xIRERER5QbDNSIiIiKi98StW7dyVRJMV7imUCiwePFibNmyBf369cOkSZOyDcZSUlIwa9YsvWUqnZ2dERQUhE8++URvHzKZDFu3bsX3338PlUqF/v37Y9CgQXm2Wk0XuVyONWvWYMOGDeq96ypVqoTJkyebvApr9OjROHr0aJbrEokEpUuXRtmyZdUBpLe3N7y9veHq6mrSWD179sSNGzcAAK1atcL3339vUj+ZyeVyjBkzBidOnICVlRX27duHMmXKaN2jVCrx999/o127dmYZU9OLFy8wcOBArSCraNGieoPQ/HT16lV89913OgMvc60eTEpKQq1atQAA9vb2uH79eq77NNSTJ08wfPhwPH78WOt66dKlsXfvXoNLQxri7t27OHbsGI4dO6ZeRern54e2bduibdu26tV7REREREQFFcM1IiIiIqIPROZwLSYmBlOmTEFYWBi++eYbo0KlQ4cO4euvv1aXqqxUqRK++uor1K1bV28blUqF48ePY9myZYiMjETfvn0xePBgODs75/LJTPe///0PU6dOhYeHB3766SeDVtzp8/TpUwQEBECpVKJWrVpo3rw5atWqhYoVK5o1mACAs2fPYvDgwQDSS1LmtiyjprS0NAwdOhQ+Pj5YsGCB2fo1VFxcHKZMmaJVEvHYsWMFZgXTjz/+iG+//VZ93rRpU6xbt84s+97Fxsaqfy+9vb1x/PjxXPdpjJiYGPTu3VsdblaqVAlr1qxBiRIlctVvfHw8Lly4gLNnz+LcuXN48eIFXFxcUK9ePTRo0AANGzZEyZIlzfAERERERET5g+EaEREREdEHIiNcq1atGsaPH49p06ahTZs2GDt2LBwcHIzuLz4+HuvXr8f58+exfft22NjY6LxPoVBg//792LBhAwQCAbp06YLOnTubvGrL3FJSUpCSkmKW+Rw+fBhVqlTJdRhhiMGDB6NSpUqYMGGC2ft++/YtUlJSDN7Pz9xUKhU2bdqEFStWQCqVYsmSJejUqZNF5qLL8OHDcfbsWfTr1w8TJkwwan++7ERGRmLx4sXo0qULGjVqZJbAzliXL1/G1KlTMWTIEPTo0QMikcjoPl6+fIn//e9/uHbtGq5du4aHDx+iVKlSqFy5MqpWrYoaNWqgfPnyEAgEefAERERERER5j+EaEREREdEHol+/fnBxccHEiROxcuVKDB8+HBUqVMh1vyqVKts3yQ8fPowLFy6ga9eu6v2kiAzx77//YuHChahcuTLGjx9v6emo3blzB05OTgVmNZ25KZVKo4O9xMREjBkzBjExMXB1dUWZMmVQpkwZlCtXDpUqVYKdnV0ezZaIiIiIKP8xXCMiIiIi+kCEhYWhdOnSlp4GERVCCoUCb9++zde9E4mIiIiILIXhGhEREREREREREREREZGB8r+AOxEREREREREREREREdF7iuEaERERERERERERERERkYFElp4AERERERERkTldu3YNBw4cwLVr1/Dy5UskJyfDwcEBbm5uqFy5Mho2bIh27dpBIpFYeqo5Cg0NxcGDB3H58mU8efIEiYmJEIvF8Pb2RuPGjdGvXz8UL17c6H5TUlJw4MABXLx4EXfu3EFsbCzevn0LOzs7uLu7o1q1amjevDlatWoFoZCfyyUiIiIi0sQ914iIiIiIiKhQCAkJwfz58/Hvv/+iY8eOaNy4MTw9PSGTyfDy5UucPXsWe/fuhUwmQ9GiRREUFISWLVtaeto6RUREYMGCBTh58iTq1KmDgIAAlC5dGg4ODnj16hU2btyI69evw87ODgsWLEBAQIDBff/yyy9YtWoVkpOT0bZtWzRo0AA+Pj5wdHREUlISHj16hCNHjuD8+fMoWbIk5s+fj3r16uXh0xIRERERvV8YrhEREREREdF7b8uWLVi4cCFq1qyJb7/9FsWKFdN5X3h4OIYNG4YnT55AIBBg9uzZ6N27dz7PNnunTp3CxIkTIZFIMG/ePJ0B4LNnz9TXhUIh1q5di+bNm2fbr0KhwKRJk3Dw4EF89NFH+OGHH1CyZEm99x87dgwTJkyATCbDzJkz0adPn9w9GBERERFRIcFwjYiIiIiIiN5rO3fuxOzZs+Hn54c///wTtra22d7/5MkTdOrUCSkpKRCJRPj1119RrVq1fJpt9k6fPo0vvvgCzs7O2Lx5M8qUKaPzvsjISDRp0kR9XqlSJezZsyfbvufPn4+tW7fC1dUVe/fuRdGiRXOcz759+zBp0iQIBAKsWbMGrVu3Nu6BiIiIiIgKIRZOJyIiIiIiovdWVFQUFi9eDADo27dvjsEaAPj6+qJHjx4AALlcjmXLluXpHA319OlTTJgwAXK5HCtXrtQbrAHAmzdvtM7t7Oyy7TskJATbtm0DAHz55ZcGBWsA0KFDB9SuXRsqlQpBQUF4+/atQe2IiIiIiAozhmtERERERET03tq/f7868PH19TW4Xfv27dXHly9fxosXL8w+N2PNnDkTiYmJaNasGWrXrp3tvRUqVMDgwYNRrlw51K9fH1OnTs32/u3bt0OlUsHa2hqdOnUyal7dunUDkB5kHjt2zKi2RERERESFEcM1IiIiIiIiem+dP39effzw4UOD21WoUAFWVlbq86tXr5p1XsY6efIkLl26BADo0qWLQW2mTJmCffv2YfPmzahSpUq292b0/dFHH8HGxsaouWkGfRcvXjSqLRERERFRYcRwjYiIiIiIiN5bkZGR6uN169YhOjraoHYSiQSOjo7q89evX5t9bsbYuHEjAEAoFKJRo0Zm7z8qKsrkth4eHmbph4iIiIiosGC4RkRERERERO8tlUqlPk5ISMCOHTsMbisWi9XHSqXSrPMyxpMnT3DlyhUAQJkyZeDg4GD2MSQSCYD01X1xcXFGtZXL5epjY1e9EREREREVRgzXiIiIiIiI6L2VuRxiamqqQe0UCoVWyKS5Oiu/ae5j9tFHH+XJGGXLlgUASKVS/Pjjj0a1ffLkifq4YsWKZp0XEREREdH7SGTpCRARERERERGZasKECUhKSsKNGzfg7e2NXr16GdTuwYMHkMlk6vOc9izLS5r7xvn4+OTJGG3atMGNGzcAAMHBwahSpQoCAgIManvixAkA6SUrO3TokCfzIyIiIipMrl27hgMHDuDatWt4+fIlkpOT4eDgADc3N1SuXBkNGzZEu3bt1NUFCrLQ0FAcPHgQly9fxpMnT5CYmAixWAxvb280btwY/fr1Q/HixQ3qa9WqVVi7dm2u5/Tnn3/C398/1/3kBsM1IiIiIiIiem+5u7tj9erVRrfTXC3m5+eHMmXKmHNaRrl165b6uGjRolqv3b59G3v27MHVq1cRGRkJa2truLu7o1KlSmjTpg0aN24MgUCQ4xjdu3fHpk2b8Pr1ayiVSkyePBmxsbHo27dvtu0SEhKwbds2AEDv3r3zLPwjIiIiKgxCQkIwf/58/Pvvv+jYsSPGjBkDT09PyGQyvHz5EmfPnsXevXvx559/YunSpQgKCkLLli0tPW2dIiIisGDBApw8eRJ16tRBx44dUbp0aTg4OODVq1fYuHEjfv75Z+zYsQMLFiww6INb//77b67nlfHzsKUJVJoF6omIiIiIiIgKOblcjjZt2uD58+cAgOnTpyMwMNAic3n16hWaNm2qPl+yZAk6deqExMREfP3119i/f3+27evVq4dvvvkG3t7eOY51/vx5DB06VGsPtRYtWmDWrFk6P20sl8sxevRonDx5EtWrV8fmzZu55xoRERGRHlu2bMHChQtRs2ZNfPvttyhWrJjO+8LDwzFs2DA8efIEAoEAs2fPRu/evfN5ttk7deoUJk6cCIlEgnnz5ukMAJ89e6a+LhQKsXbtWjRv3jzbfj/55BM8fvxY65qDgwNEopzXgaWkpCAtLQ1jxozB6NGjjXiavMFwjUgHpVKJlJSULNdFIpFBnwolIiIiIqKCa8+ePZgzZw4AoESJEti7d6/FSvJcuXIFgwYNUp+vWrUK1atXx+DBg/Hvv/+icuXK6N27N+rUqQM3NzdER0fjyJEj+OGHH/D27Vv1M/zyyy9wc3PLcbzjx49j6tSpSEtLU1+zsbFB9+7dMXDgQPWngOPi4jBt2jScPXsWjRo1wvLly2Fvb2/mpyciIiIqHHbt2oW5c+fC19cXu3btgq2tbbb3P336FJ9//jlSUlIgEomwefNmVK1aNZ9mm72zZ89i7NixKFKkCDZu3IjSpUtnuUelUuHFixf45JNP1Nf8/f2xZ88eCIVCnf1KpVJUr14dCoUCrq6umDBhAtq2bQsnJ6cc5ySTyfDpp59CpVJh//79BaKcJstCEumQkpKC0NBQS0+DiIiIiIjM7O3bt/j2228BpH/CdtCgQbh//77F5nP9+nWt8xcvXmD9+vV49OgR+vXrh08++QQCgQBRUVGIiooCANSsWRNz585FUFAQEhIS8Pz5c4wZMwbTpk3LcTwPDw8EBQVh3bp1CA8PBwCkpqZiy5Yt+PXXX1G3bl34+vriwIEDkMvlCAwMRJs2bRAWFmb2ZyciIiIqDOLi4rB06VIAQLNmzQwufdisWTMcOnQIcrkc8+fPx6xZs/JymgaJjIzEjBkzIJfL8cUXX+Dt27daJcw1PXnyROtcpVIhJSVF7weywsLCoFAo4OzsjJ07d6JkyZIGz+vXX39FeHg41q9fXyCCNQDQHSESERERERERFUJbtmxBfHw8ACAwMNDiG6EnJiZqnZ87dw537tzBwIED0a5dO72VM7y8vDB27Fj1+a1btxASEmLQmCVLlsTcuXNRsWJFretyuRznz5/H9u3bIZPJMGfOHLRt25bVO4iIiIiyce7cOXUVNE9PT4PbNWjQQH187949REdHm31uxtqwYQOSk5NRvXp1VKhQIdt7fX198emnn8LHxweVKlXKcS/fjNBx6tSpRgVr8fHxWLt2LRo0aKBVTt3SGK4RERERERHRB+HUqVM4c+YMAKBPnz5o3bq1hWcErfKMQPqbM3Xr1kWrVq1ybFuxYkXUqVNHfX748GGDxoyIiMCMGTNw//59dOvWDZ07d4ajo6PWPSkpKQgKCsLp06cN6pOIiIjoQ3X79m31cUREhMHt/Pz8tEooWrqS2vXr13H37l0AMDjE6t27NxYvXowZM2boLB+p6eHDhyhatCg6depk1Lx++OEHxMfHY8qUKUa1y2sM14iIiIiIiKjQCw0NxcaNGyEQCDBw4EC0b9/e0lMCkL5aTJNIJEK/fv0Mbq/5xkdISAgSEhKyvf/y5cuYNWsWIiMjMXHiRHTp0gXdu3fHmjVr0K9fP62QLTk5GevWrcPGjRuhVCoNnhMRERHRh+TNmzfq4z///FNdJSEnIpEIdnZ2OvuxhP379wMABAIBKleubPb+Hz58iJYtW8LKysrgNs+ePcMvv/yCTz/9NEvVBUtjuEZERERERESF2tOnT/Htt99CqVRi+PDhBWLFWobMby40a9YMbm5uBrf39/dXl21UKpV4+PCh3nsvX76M1atXQyaTYdSoUahevbr6NYlEgnbt2mHFihVo3bq1VinI48ePY926dQbPiYiIiOhDolKp1MfJyck4duyYwW1FIpHOfvLbq1ev1CvnSpQooRX6mUtQUBBGjx5tVJuVK1dCoVAY3S4/iHK+hejDo/mXmqYKFSpALBbn82wsTy6X4969e1rX/P399X6diIiIiIjMKTc/j4aFhWHJkiVITU3FkiVL0LZt27yapkky75P2+eefo0qVKkb14eXlhRcvXgAAUlNTdbYPCwvDjz/+CKVSiR49emDQoEF6+6tXrx4uXLiAyZMnqz95ffbsWdStWxcDBw40am5EREREhYW+n0lr166tVQ6ySJEiBv08p1Ao8PbtW/V51apVjf450FyuXbumPq5UqVKO85DJZDrLWGb383nRokWNmlNoaCj279+P9u3bw8/Pz6i2+YHvjBPpoG/DbrFYDIlEks+zsTxdXw+xWPxBBo1ERERElP9M/Xk0LCwMQ4YMQWJiIlatWmXQPmb5rUiRIlrnCoXC6H9zuLi4qMO1hIQEne0XLVqElJQU2NnZYfz48TmO0bRpU+zcuRP9+vVDVFQUAGDt2rXo0KEDihcvbtT8iIiIiAoDfT+TTpo0CcnJybhx4wa8vb3Rt29fg36eu3fvHmQymfq8evXqFnvv+dKlS+pjX19fk+eh7311U6xYsQIAMGLECLP1aU4M14iIiIiIiKjQefz4Mfr374/4+HisWbMGzZs3t/SUdHJ2dtY6T0lJMboPGxsb9XFaWlqW1x8+fIgLFy4AANq3bw8XFxeD+i1VqhQ2bNiA7t27QyqVIjU1FVu3bsXUqVONniMRERFRYeXu7o7Vq1cb3U6zfKSfnx/KlCljzmkZ5datW+rjzCvMbt++jT179uDq1auIjIyEtbU1XF1d4enpibp166Jq1apmDdUA4Pr16/jnn3/QtGlTlC1b1qx9mwvDNSIiIiIiIipUnj17hgEDBiAuLq5AB2sAsryJEh0dbXQfUqlUfezg4JDl9ZMnT6qPjf1a+Pv7Y/jw4VizZg2A9DeBGK4RERER5Y5cLscff/yhPu/du7fF5vLq1St1KXDgXWWFxMREfP3119i/f3+WNpGRkbh37x5OnjyJihUrYvjw4UaXfczOqlWrAAB9+/Y1W5/mxnCNiMzq2rVrOHDgAK5du4aXL18iOTkZDg4OcHNzQ+XKldGwYUO0a9fuvSivGRoaioMHD+Ly5ct48uQJEhMTIRaL4e3tjcaNG6Nfv34Gl8S5dOkS+vfvn6v5/PDDD2jRokWu+iAiIiIq7KKiojBw4EDExMRg5cqVBTpYAwAfHx/Y2NggNTUVQHopS2NprlZzcnLK8vr9+/fVx/7+/kb337t3b6xbtw4ymQxPnz5FcnJynmxyT0RERPSh+OOPP/D8+XMAgLe3N3r16mWxuTx9+lTr3N7eHrGxsejfvz8ePnyIKlWqoG/fvqhXrx7c3NwQHR2NAwcO4Pvvv0dKSgru3r2L+fPnY+7cuWaZz5UrV3Dx4kX4+fnh448/NkufeUFo6QkQUeEQEhKC7t27Y+jQoVAqlRgzZgx+/vlnbN26FbNnz0a1atVw4MABTJkyBS1atMDx48ctPWW9IiIiMGLECHTq1AnXr19Hx44dsWLFCuzYsQNLly6Fg4MDfv75Z7Rv3x4HDx7Mt3lVrlw538YiIiIieh8lJSVhyJAhePbsGRYvXmzwHmvR0dG4cuVKHs9ON6FQqBV4PXz40Og+ND9pXKJEiSyvx8XFqY/d3d2N7t/V1VVrE/nExESj+yAiIiKidAkJCVi5ciUAwMrKCosWLbLoQoTXr19rnUskEowfPx6PHj3CtGnTsGvXLnTu3BleXl6QSCQoXrw4AgMDMX/+fPUHu6KiorB27VqzzCejn88//9zs5SbNiSvXiCjXtmzZgoULF6JmzZo4dOgQihUrpvV6jRo1EBAQgGHDhmHYsGF48uQJRo0ahdmzZ1t0ybMup06dwsSJEyGRSLB27Vq0bNlS6/XKlSujQoUKaNmyJZKTkzFx4kTY2toa/IloOzs7k/5n6e7uDg8PD6PbEREREX0o5HI5xo4di9DQUAQFBaF9+/YGt927dy+OHDmCHTt25OEM9WvVqhVu3LgBIP1Da4mJiXB0dDSorVQq1XpDpEaNGlnusbW1VR/L5XKTfh61t7dXHxu6ZxsRERERZbVgwQJ1KfAZM2agTp06Fp2P5gexAGD//v24ePEivv7662xX1Hl5eWHs2LGYP38+gPR9286fP49mzZqZPJeQkBCcP38eAoEAn376qcn95AeGa0SUKzt37sSCBQvg5+eHn376Sesf7pn5+flhw4YN6NSpE1JSUrBgwQJUqlQJ1apVy8cZ63f69GmMGjUKzs7O2Lx5s95NRMVisfpYqVQatY/HrFmz8Nlnn5llvkRERET0zrx583Du3DmMHj0aPXv2NKrthQsXULJkyTyaWc7atm2LpUuXAkgPv86cOYOAgACD2j59+hQqlQpA+hscPj4+We4pXbq0+vjFixf46KOPjJ5jVFQUAKBkyZLvRYl3IiIiooJoz549+PPPPwEAU6dORZ8+fSw7IQDJycla5/v27UPbtm0NKlVZsWJF1KlTR10FYtu2bbkK1zZs2AAAqFOnDry8vEzuJz+wLCQRmSwqKgqLFy8GkL65ZHbBWgZfX1/06NEDQPobB8uWLcvTORrq6dOnmDBhAuRyOVauXKk3WAOAN2/eaJ1zvwkiIiIiy9q9ezd27NiBzp07Y8yYMUa1ffnyJS5cuABfX1+99xw8eBDt2rVD7dq1MW7cOMTGxuZ2ylp8fHzQunVr9XlwcLDBbS9evKg+1lcVQvNTv6dPnzZ6fpGRkeo9Qdq0aWN0eyIiIqIPzbVr1zB37lx06tQJdevWReXKlVG7dm1MmzYNANC5c2f07dvXwrNMJ5PJtM7FYjGmT5+uPg8NDcW3336Lnj17okGDBqhcuTLq1auHqVOn4pdfftGqnHD+/HmTf1aOiIjAsWPHAKRXdnjw4AEqV66M8uXL49mzZyb1mZcYrhGRyfbv34+3b98CQLZvRmSmWaLn8uXLePHihdnnZqyZM2ciMTERzZo1Q+3atbO9t0KFChg8eDDKlSuH+vXrY+rUqfk0SyIiIiLK7MGDB5g3bx6qV6+OefPmGdVWqVQiKCgIMplMa08xTdevX8fEiRMRFhaGxMREHD58GGPHjlWvFjOXSZMmqSsk3Lx5EydOnDCo3d9//w0gvVRjxofYMitXrhy6dOkCID24S0lJMWpuu3btAgA4Ojpi4MCBRrUlIiIi+pCEhISge/fuGDp0KJRKJcaMGYOff/4ZCxYsgEKhgEAggJWVFf7880+0aNECx48ft/SUIRJpFzjs2rUrPD09ERERgREjRqBTp064fv06OnbsiBUrVmDHjh345ptvYGtriwMHDmDz5s3qtgqFQl3u3Fjbt2+HUqkEADRs2BAzZ87MEvwVJAzXiMhk58+fVx8bs/F6hQoVYGVlpT6/evWqWedlrJMnT+LSpUsAoH7TISdTpkzBvn37sHnzZlSpUiUvp0dEREREesjlckyePBkikQgrV640qlxhWFgYvvjiC5w8eRIA9JaFPHbsmPof+RmuXLmC8PBwk+eti5+fHyZNmqQ+nzlzZpbN5TM7e/YsLl++DKFQiGXLlqFIkSJ6750xYwYqVqyIyMhIfPXVV1meSZ/Hjx9j48aNEAgEmDNnDtzd3Q17ICIiIqIPzJYtW9CjRw+IxWIcOnQIX3/9NVq1agVbW1ssXrwYUqkUK1aswMGDB+Hr64uoqCiMGjUKv/76q0XnnbkqV8uWLXHq1Cl06dIFISEhWLt2LbZt24bevXujfv36qFy5Mlq2bIlRo0YBANLS0rTah4aGGj0HmUyGP/74AwDg6emJc+fO4ebNmyY+Uf7gnmtEZLLIyEj18bp169CpUyeD/rEtkUjg6Oio3iwzpzcN8trGjRsBAEKhEI0aNbLoXIiIiIjIcPv370doaCjEYjE6d+5scDupVJplbwl9K9f0MTScMsaAAQMQHR2NDRs2ICYmBoGBgdiwYQO8vb2z3BsSEoIJEyZALBZj7ty5aNy4cbZ9Ozo6YtOmTRg1ahQOHz6MpKQkLFy4EB4eHnrb3Lp1C6NHj4ZMJsOcOXPQoUOHXD8jERERUWG0c+dOLFiwAH5+fvjpp5/U2+eEhYUhMDAQCQkJWLVqFVq1agUgfW+xTp06ISUlBQsWLEClSpVQrVo1i8zd3t5e6/z69etYv349nJ2dsXnzZr3b52guntCUeUsdQ5w7d05dTrJs2bJYtWqV0X3kN4ZrRGQyzVI4CQkJ2LFjB0aPHm1Q24ySN0DevDFhqCdPnqg33CxTpgwcHBwsNhciIiIiMk7Gh7VkMpn62BSurq5wdHTU+VqrVq2wadMmrZ9Zy5UrZ3QYZ6hJkyahWrVqCAoKQlhYGDp27Kje38LZ2RmvXr3CiRMn8Ndff8HPzw9BQUGoU6eOQX07Oztjy5Yt2LhxIzZs2IBWrVohICAAjRo1QokSJWBjY4P4+Hg8evQIp0+fxunTp+Hv74/Vq1db7M0eIiIiooIuKioKixcvBgD07dtXHaw9fvwY/fv3R3x8PNasWYPmzZur2/j6+qJHjx4IDg6GXC7HsmXLsHXrVovM39nZWet848aNkMvlWLlypd5gDQASExN1Xs+8ks0QR48eVR+Hh4dDKCz4RRcZrhGRyapUqYIHDx6oz1NTUw1qp1AotN78yO7TsnktY5NMAPjoo48sNg8iIiIispzs9g+uWbMmli9fjtWrVyMyMhJ16tTB7Nmz9X5S1xxat26Nxo0b4+TJk/j7779x6tQp7N69GykpKXB3d0elSpWwePFitGvXLsseGTmxsrLCsGHD0KdPH+zfvx/nzp3DqlWrEBMTA5lMhiJFisDT0xM1a9bEpk2b0KBBgzx6SiIiIqLCYf/+/Xj79i2Adz9XPnv2DAMGDEBcXFyWYC1D+/btERwcDAC4fPkyXrx4geLFi+fbvDNkDtBSU1PRvHlz1K5dO9t2vr6++PTTT3Hz5k1ERUWp3xs2ZfHCmTNn1McRERH49ttvMWHCBKP7yU8M14jIZBMmTEBSUhJu3LgBb29v9OrVy6B2Dx480NqM0pJ7lmnuG+fj42OxeRARERGR8QYMGIABAwbk+TgBAQEICAjI83E02dra5um49vb26NGjB3r06JEn/RMRERF9KDTfX3z48CH8/f0xcOBAxMTEYOXKlTqDNQCoUKECrKysoFAoAABXr15Fx44d82XOmnx8fGBjY6O1cKJLly4Gte3duzd69+6NqVOnIiIiAgDg5ORk1PgPHjzQ2n6oevXqaN++PcM1Iiq83N3dsXr1aqPbaa4W8/Pzy3Z5cV67deuW+rho0aJar92+fRt79uzB1atXERkZCWtra/Unhdu0aYPGjRtDIBCYPHZkZCT279+PK1eu4PHjx4iLi4OdnR28vb3RsmVLdOnSJdtN6YmIiIiIiIiIiMiyNIOhH374AXv27MGzZ8+wbNky9R5rukgkEjg6OqorfF27ds0i4ZpQKIS/vz9u3LihvtaoUSOj+shYuQcAJUqUMKrt9evXtc5HjBhhVHtLYbhGRPlKLpfjjz/+UJ/37t3bYnN59eoV4uPj1ecZQVZiYiK+/vpr7N+/P0ubyMhI3LlzB7/99hvq1auHb775RucG8znJ2OQ0cw3iuLg4vHjxApcvX8aGDRswf/58vZ9uISIiIiIiIiIiIstSqVTq48TERCQmJiIoKAjt27fPsa1YLFYfnzp1Kk/mZ4hatWpphWuaz5QTuVyON2/eqM9r1Khh1Ng3b97UOs+8B1xBVfB3hSOiQuWPP/7A8+fPAcCoUpJ54enTp1rn9vb2iI2NRa9evbB//35UqVIFixcvxj///INbt27h5MmTmDp1Kuzt7QEAly5dQv/+/RETE2PUuJs3b8bs2bNRvXp1LF68GIcPH8aNGzdw6dIlBAcHo0mTJgCA6OhojB49GocPHzbPAxMREREREREREZFZZd7ypmbNmujZs2eO7RQKhXrVGgB4eXmZe2oGEwq1oyLNPdBy8urVK3UY5+npafTWO3fv3tU6f/36tVHtLYXhGhHlm4SEBKxcuRJA+kbqixYtgkQisdh8Mv9FLZFIMH78eDx69AjTpk3Drl270LlzZ3h5eUEikaB48eIYNGgQfv/9d7i5uQEAnj9/jilTphg85vnz57FkyRLMnTsXW7ZsQefOnVGqVCnY2dnB2dkZDRo0wPr16xEYGAgg/ZMfX331VZYgkIiIiIiIiIiIiCxvwoQJqFSpEgDA1dUVy5YtM6jdgwcPIJPJ1OcVK1bUe+/BgwfRrl071K5dG+PGjUNsbGzuJp1J5oArODjY4LZ37txRH5uyn++///6rda5ZYrIgY7hGRPlmwYIFiI6OBgDMmDEDderUseh8ND8ZAgD79+/HxYsXMXv2bAwYMEDvfmqlSpXCihUr1Odnz57F2bNnDRpz3759GDFiRLb/oxEIBJgyZYr6f6gpKSmYN2+eQf0TERERERERERFR/omNjcWjR49QvXp1nDp1yuA9x44dO6Z1XrNmTZ33Xb9+HRMnTkRYWBgSExNx+PBhjB071qjSjTm5deuW1vnNmzdx4sQJAMDt27cxd+5cdOzYEfXq1UOTJk3QvXt3bNiwATdv3sSlS5cAAI6OjujWrZtR4545cwZyudw8D5HPuOcaEeWLPXv24M8//wQATJ06FX369LHshAAkJydrne/btw9t27Y1qFRlvXr10Lp1axw9ehQAsGXLFjRu3Fjv/RlB3UcffYSRI0fm2L9IJMKIESMwduxYAOn/owkPD4efn1+ObYmIiIiIiIiIiCjvyeVyTJ48GSKRCCtXrjS4SpdcLsdvv/2mda1kyZI67z127BiUSqXWtStXriA8PBylSpUybeIaXr16hfj4+CzXp0+fjlq1amUJAQEgMjIS9+7dw8mTJ9XXRo0ahSJFihg8rlQqxdy5c02bdAHAcI2I8tzVq1cxe/ZsCAQCzJo1q0AEawC0ll0D6RuITp8+3eD2Xbt2VYdrZ8+eRWxsLFxdXXXeW7duXVy7dg0ymQwikWF/9TZv3hx2dnZITk6GSqXCwYMH8cUXXxg8PyIiIiIiIiIiIso7Bw4cQGhoKMRiMTp37mxwu+TkZEilUq1rxn6oPnPgZqrM29FkLCh48+YNjh07hvLly2PQoEGoV68e3NzcEB0djQMHDmDNmjVIS0sDkL5qzdfX16hxv//+e7x48SLLdbFYbPrD5COWhSSiPHX//n2MGjUKSqUSCxcuLDDBGoAsIVfXrl3h6elpcPs6deqoV6QpFArcuHEj2/sdHBzg4uJicP8SiUSrdGZISIjBbYmIiIiIiIiIiChvJSQkAEj/EH9cXJzBvzIHa66urnB0dNQ5RqtWrSAUakc55cqVM1uFq9evX2udd+/eHeXKlVOfR0RE4MGDB/j3339x//593LlzBw8fPoRUKlXPKzExEWvXrjV4zNDQUPz0008YMWIEPDw8tF7z8vLKxdPkH4ZrRJRnHj16hIEDByIpKQnLly9Hly5dLD0lLXZ2dlrnLVu2NKq9g4MDihcvrj4PDQ01y7w0lSlTRn388OFDs/dPRERERERERERElpXdqq+aNWti+fLlKFWqFOzs7NC0aVP88MMPsLKyMsvYcXFxWuf79+/HgwcPMGPGDKxYsQJNmjTBqVOnMHHiRPTu3RvffPMNkpKS8MUXX+Crr75St7t16xbOnz+f43gKhQIzZsxAqVKlMHz4cCxdulT9bO3bt0etWrXM8lx5jWUhiShPhIWFITAwEAkJCVi1ahVatWpl6SllYW9vr3WesYzZGM7Oznj+/DkA4M2bN2aZl6ZixYqpj3XVPiYiIiIiIiIiIiLL6NevHwYNGmTw/Xv27MG0adMAAFOnTjW4bUBAAAICAkyaY06Sk5O1zvft24e2bduif//+6rEzk0qluHXrFoD06l5XrlwBAGzbtg3NmjXLdrzg4GDcvXsXO3bsgEQiQf369XH48GEzPEn+4so1IjK7x48fo3///oiPj8eaNWsKZLAGpAdjmlJSUozuw8bGRn1sSjiXE83VdabMj4iIiIiIiIiIiCzv6tWrmD17NgQCAWbPnm1UKJeXZDKZ1rlYLMb06dMNbt+0aVP18fnz5xEbG6v33qdPn2L16tXo378/qlWrZvxkCxCGa0RkVs+ePcOAAQMQFxeH1atXo3nz5paekl6aJRcBIDo62ug+NOsjOzg45HpOmSkUCvVx5jKWREREREREREREVPDdv38fo0aNglKpxMKFC9GnTx9LT0lNJNIucNi1a1d4enoa3N7f3x8CgQBA+nuZN27c0Hvv7NmzUbRoUXz55ZcmzbUgYbhGRGYTFRWFgQMHIiYmBitXrizQwRoA+Pj4aK08CwsLM7oPzdVqTk5OOu9JTk7GnDlzEBAQgGnTpmXZsDQ7msuy9W1qSkRERERERERERAXTo0ePMHDgQCQlJWH58uXo0qWLpaekJfMH+lu2bGlUe1tbW7i5uanPQ0NDdd63e/duXLhwAfPmzYOtra3xEy1gGK4RkVkkJSVhyJAhePbsGRYvXmxwKcjo6Gh1Td78JhQK4e/vrz5/+PCh0X1o7oNWokQJnfcsWrQIO3bswKNHj7Bnzx4cPHjQ4P41l1Fnt7EpERERERERERERFSxhYWEIDAxEQkICVq1ahXbt2ll6SlnY29trnZuy9Y1mRa83b95keT0qKgpLlixBt27d0KBBA+MnWQAxXCOiXJPL5Rg7dixCQ0MxZ84ctG/f3uC2e/fuxfLly/NwdtnTDAFDQkKQmJhocFupVIrXr1+rz2vUqKHzvr///lvrPCIiwuAxNFfTVa5c2eB2REREREREREREZDmPHz9G//79ER8fjzVr1hi8GCG/OTs7a52npKQY3Ye1tbX6WFc4N2/ePFhbW2Pq1KlG911QiXK+hYgoe/PmzcO5c+cwevRo9OzZ06i2Fy5cQMmSJfNoZjlr27Ytli5dCiA9JDxz5gwCAgIMavv06VOoVCoAgJeXF3x8fHTeJ5fLtc5r1aplUP8qlQq3bt1Snzds2NCgdkRERERERERERGQ5z549w4ABAxAXF4c1a9YU6O1zypQpo3UeHR1tdB8ymUx9rLmKDQBevXqFv//+GwKBAPXq1TNpjm3atMly7ZtvvkHnzp1N6s8cGK4RUa7s3r0bO3bsQOfOnTFmzBij2r58+RIXLlzAyJEj9d5z8OBBrFmzBlFRUWjUqBHmzJkDV1fX3E5bzcfHB61bt8bRo0cBAMHBwQaHaxcvXlQf9+7dW+99ZcuWVW/k+fHHHxsckt26dQtRUVEAAG9vb9SvX9+gdkRERERERERERGQZUVFRGDhwIGJiYrBy5coCHawB6e+P2tjYIDU1FYB2JS1DaYZrTk5OWq+5ublh3759RvfZoUMH9fH69evh4eGh9bqnp6fRfZoTwzUiMtmDBw8wb948VK9eHfPmzTOqrVKpRFBQEGQyGfz8/HTec/36dUycOBFKpRIAcPjwYcTExGDr1q0QCAS5nb7apEmT8M8//0Amk+HmzZs4ceIEWrRokWO7jHKPLi4u6NGjh977unbtqg7XmjVrZvC8goOD1cdDhw416zMTERERERERERGReSUlJWHIkCF49uwZli1bZnApyOjoaDx+/Bh16tTJ4xlmJRQK4e/vr37/8uHDh0b38fbtW/VxiRIltF4Ti8UoV65crubo5+cHb2/vXPVhbtxzjYhMIpfLMXnyZIhEIqxcuRISicTgtmFhYfjiiy9w8uRJANBbFvLYsWPqYC3DlStXEB4ebvK8dfHz88OkSZPU5zNnztTaS02Xs2fP4vLlyxAKhVi2bBmKFCmi996uXbuqV50ZOvdLly7h0KFDANL3cssuvCMiIiIq7AQCAdzd3VGiRAl4e3ujRIkSEAr5z1kiIiIiKjjkcjnGjh2L0NBQzJkzB+3btze47d69e7F8+fI8nF32NEPAkJAQJCYmGtxWLpfjzZs36vMaNWqYdW4FFVeuEZFJDhw4gNDQUIjFYqNq20qlUiQnJ2td07dyTZ/MgZs5DBgwANHR0diwYQNiYmIQGBiIDRs26PxEREhICCZMmACxWIy5c+eicePG2fYtFArx/fffY/To0dixYwfKlSuHbt266V2Jdv36dYwbNw5KpRLlypXD999/z1VrRERE9EETiUTw9fW19DSIiIiIiPSaN28ezp07h9GjR6Nnz55Gtb1w4YLeBQj5oW3btli6dCmA9LDszJkzBm+d8+rVK6hUKgDppRp9fHzybJ4FCcM1IjJJQkICgPR6unFxcSb34+rqCkdHR52vtWrVCps2bdIK08qVK2d0GGeoSZMmoVq1aggKCkJYWBg6duyInj17okGDBnB2dsarV69w4sQJ/PXXX/Dz80NQUJDBS7UdHBywceNGbN68GYsWLcK6devQokUL1KxZEx4eHpBIJHj58iWOHj2KQ4cOQalU4rPPPsOUKVPg4uKSJ89LREREREREREREubd7927s2LEDnTt3xpgxY4xq+/LlS1y4cAEjR47Ue8/BgwexZs0aREVFoVGjRpgzZw5cXV1zO201Hx8ftG7dGkePHgWQvl2NoeHanTt31McfUvUthmtEZFHZfQK5Zs2aWL58OVavXo3IyEjUqVMHs2fPhpWVVZ7Np3Xr1mjcuDFOnjyJv//+G6dOncLu3buRkpICd3d3VKpUCYsXL0a7du0gEhn3V6iVlRUGDRqE7t27Y9++fThz5gyOHTuG2NhYCAQCuLq6onjx4vjiiy/Qpk0blC1bNo+ekoiIiOj9opRLIY0MhzQqAipZKgRiG0iK+kBSzA9CkeHlyYmIiIiIzO3BgweYN28eqlevjnnz5hnVVqlUIigoCDKZTO+CguvXr2PixInqBQiHDx9GTEwMtm7datZqV5MmTcI///wDmUyGmzdv4sSJE2jRokWO7S5fvgwAcHR0RLdu3cw2n4KO4RoRmaRfv34YNGhQno8TEBBg8KckzMXW1jZPx3VwcECvXr3Qq1evPOmfiIiIqLBIffEQCVcO4u29C1ApZFleF1iJYe/fAE51AmBTnB9MIiIiIqL8JZfLMXnyZIhEIqxcuRISieEf/AoLC8OSJUtw8uRJANBbFvLYsWNZtsm5cuUKwsPDUapUKdMnn4mfnx8mTZqEhQsXAgBmzpyJP//8Ex4eHnrbhISE4N69exAIBBg1ahSKFClilrlIpdJszwsChmtERERERERUoCjTUhBzfDMSbxzN9j6VQoak26eRdPs0HGu0hlvLQAitbfNplkRERET0oTtw4ABCQ0MhFovRuXNng9tJpVIkJydrXTN2K5zMgZs5DBgwANHR0diwYQNiYmIQGBiIDRs2wNvbO8u9//77L9asWQMrKysMGTIEVatWNds8bt26pXV+48YNlC5d2mz9mwPDNSIiIiIiIiow5IkxePlLEGQxz41ql3jjKFKf3oVXnzkQObrl0eyIiIiIiN5JSEgAAMhkMsTFxZncj6urKxwdHXW+1qpVK2zatEkrTCtXrpzRYZyhJk2ahGrVqiEoKAhhYWHo2LEjevbsiQYNGsDZ2RmvXr3C0aNHsW/fPnh5eWHQoEHw9/c3eTyZTIbHjx8DAFJSUvDw4UP88MMPWvcsXLgQsbGxqFmzJhwdHWFrawsfH59cPWduMVwjIiIiIiKiAkGZlmJSsJZBFvMcL3+dixIDFnEFGxERERG9N3x9ffW+VrNmTSxfvhyrV69GZGQk6tSpg9mzZ8PKyirP5tO6dWs0btwYJ0+exN9//41Tp05h9+7dSElJgbu7O/z9/TFy5EjUr18/1/OIjIxEhw4dsr0nMTERy5YtU5/XrVsXW7duzdW4uSVQqVQqi86AqACSSqVZlp4CQJUqVYyqm1tYyGQyhISEaF2rWrUqxGKxhWZERERERIVR1MF1OZaCNIRjzTYo2m64GWZERERERJSO75G+w/fPAaGlJ0BERERERESU+uKhWYI1AEi8fgSpLx6apS8iIiIiIqLMWBaSiIiIiIiILC7hykEz93cINp3KmrVPIiIiIvpwCQQCuLu7w9raGgKBACqVCkIh1y99qBiuERERERERUa6oVCqo5NL0XzIpVAoZVDIplHIpVPK09GtymfoepUwKobUtHKs0BQAo5VK8vXfBrHN6e+88lO1HQChKL0sT/fdGyOMiAaEVXJv1hqRo1g3Q3z68ipSwmxAIhYBQCIHQChBYqY8FQiEgEAJCK53n6jZCIWxLVoKVnVOWMeQJ0ZAnvtG4/7/2mv0INK7ruo+IiIiI8p1IJMp2bzT6sDBcIyIiIiIiKsTkSXFQJsdDKZNCpfgv/NIIuTRDL5Us7b9j2X/BmPb9Hl0mQOTommWMqP3fIynkpFHzcqzZRh2uSSPDoVLIzPK8GVQKGaSvn8CmeFn1efK/1wAAzg066WyT9uw+Eq6aZwVd8f7zdYZrCdePIO7c77nr/L/QzavPHNh4V8jyctzFvUi4/ve7YE5g9V8bzdBQqB0IZj7/r51zwy4Qu3plGSPlcQhSI0K1gz9dwaBGvxl9ap0LrWBdrBSENvZZxlAkJ0CZlqzxDNnNlaEjEREREeUfhmtERERERER5RKVSQiWXQWAlSg8BMpG+fgpZ7EuoFBlBV9ZASzvkkmUKxt6FYcX7z4fYxTPLGG9ObUfi/46Z5XmUacmAjnBNIDJ+E3dxEQ/1sTQqIlfz0kf6+qk6XBNpjAc9QYxKpTTf4Dp+vwFApVTkvm+lIr0fPc+hSI6H/M2r3I8DwLF6S93hWngI4s7/YZYxigcu0BkSxl/ah7jzewzsRZBtgOj5+VRYF/8o6xhXDyPp9qkswaDOAO+/lYz6xnCq1Vbr+zpD6rNQpL16rCN8zLxqUajRn1WmuaRfF7l4Qii2zjKGUpYGlUKetQ+BwMCvHxEREeVEKZdCGhkOaVQEVLJUCMQ2kBT1gaSYn7paAn04GK4REREREdEHQaVSaoRWMqjkaVDKpBC7eul8szol/BbSXj5SB1rKTKGXdsiVNRhTyqWAQg4A8B62UmcZwoTrfyPh2mGzPJ9SmqrzusCM/9BXyaQ6r5v0ZoLVu3+OqmS6555bKlma+lgzANQVdAIAzBF8ZYyhbyWV0owBnr4x3peQMIPAHGOoAKVc/eiqzK/q+ZrIE6KQ9vyBEePoZ1++ns5w7e2DK4i/8KdZxig+YCFsSpTLcv3Nmd90jyEQZhPoaYZw786LdhwL62J+WbpKvHkCb0Mvpq86FGSUSrXKEgBCqCcs1AgRHSo30bkKNu1VGGQxL3TPUWeomfm+dyGolZ0jBFZ824uIiHIv9cVDJFw5iLf3LuistiCwEsPevwGc6gSoP9hFhR9/yiAiIiIionynUio0Qi79AZWNXxVY6SgXlxR6ASlhIf/dn6YRaMmy9JE56MqsxJDlOt9IfvvgMhKumKdEoEquO5Qya/ClbwxxPoxhynNo/H4IxDamTilbAo3QVCXXeCMkPwIjPZvbm3N1nEDfGGYM8PSFhGYdQ89zmDMktGygas4g0sivlUoJqJR6Q0edTfT8XSmNjlCXVs0tm5KVdIZrSXfOIP7iXrOMoS+IjDmxFfEX9+oPArVWLWaEkZnLkqZfd/9kKCTu3jqe4yySH93Qsxox5/0cNcewL1sbVvZFsowhjXkOeXy0dnAq0LNPo86yrZr/FXGVIxGRDsq0FMQc34zEG0ezvU+lkCHp9mkk3T4Nxxqt4dYyEEJr23yaJVkKwzUiIiIiog+cOuiSaZYhlGntwaW+phFYOVRuCpGjS5b+Em4cw9u7ZzOt9NJe/QWl7jdvMysxcDGsdJRyS3v2AIk3juT62YH8Cr507yeWL+GaGcdQytN0XhfoWPmXE1n8a/WxrlV95iDxKKk+lmuMlx+ryvIlzMmHMfSFhGZdgZcvYaclx3jPAlULjpFvfwZVSqgUSuC/335DQkddNFfHakp7+S+Sbv1jYq/arAcu1hmuJd44ivhL+8wyRvGBi2Gj4/+1sad3IvH631nLoWqEkFmCwYxgT6Ad4Lk276uzdPHb+5eRGnE36ypEnftCZr+fo41vJZ0fyJEnREPxNiHrCsds93PUCCeJ6IMkT4zBy1+CIIt5blS7xBtHkfr0Lrz6zIHI0S2PZkcFAcM1IiIiIqICxOCgK1NopZJJoczYf0smhXPDLjrfxIq7+BcSrh7SWi1m6hvxNj4VdIZr8rhIpITfMqnPzJT5EXzpeXNUKDI+MNJHbyhlwl5l+pi1ZKO+MfSGhDk8h9AKApEEApEYQpEEArEEyrQU9cuSYn4QWIl1ltkxlcBKDImHr/pc7O6DInU/hUqlhNDOUWcbiYcv7MrV/W+ljwJQKtNXmmXscaZUpgcMSkXW65rnKqVW2UtN5i2nmB8BRd6vxsqXoKXQfK0sGdrmR6DK0DbrGJYLO5VpyVC8jTfLGM4NP9N5PeXpHSRc3m+WMUoMWgIrrzJZrsdf2od4k8cQaIVxxfvNh7VnqSx3xZ3fg8Rbp3QEi9nt56g7LHRp+BlERYpmGSM57CbSXv6rEQzmsCpRoCMo/O9+STFfCCVZV9UoUhKhkqZmDVAzz5UrHamQU6almBSsZZDFPMfLX+eixIBFXMFWiDFcIyIiIiIygCIlCYrk+PRQSyEzPOjSuJZxv3vrgVpv+meI/Wc74s7tNst8HSo30RmuKdNSII+PMssYJgctRo2RH6UO9TyHOcfQE3zlS8nGzGP8F3QJxZL/Ai+NX2JJevj137HASpz+X5EEQpG1zu8pAHCo2Bg23hWy9pHRj7436zOmJJLA3r8Bkm6fNunZdbH3b6gVLDrXbZ9jG6eabeBUs43Z5qCLe5vBcGsZqB3gKZWASvEuuMtYWaM+z/x6eqk/URF3nWM4VG4CSTE/dR/qwC+jrfpapj61QsP0MYTWWVeBAIDIxRM2Pv7/3a8ZRiqyjqPuV6nxbOn3Q6XUGxKaN2jJjzEsFxjly15++RKoMrTNMkZhWQWbH/tQ5smfQdW7v5cBQE+oJE96A1n0s1yM845TjTa6w7V/ryHhygGzjFFi8FJYe5bOcv3NmV2GjWHAfo6ePaZDUrRklqbxVw7g7b0LOlcMvgv0Ms6zrprUHMOpVjudH/RKjQiFNOqp4fs0ZrOKUeTsofODSkq5FFAqtefO0LHQiDm+2eRgLYMs+hliTmxB0XbDzTQrKmgYrhERERHReyHjTQ1dbwDJ3ryCLPr5f6u8tPftUmY6f/e6LFMwlgaVXAaPzuNh410+yxjxl/cj7uwuszyLvk+BC/SsdDGFvqBFmB+BkVlXlVlwr7J8CAmFElsIrO00wiix/oDqv2OhWAKBlfY1gVgCax2f1gcAx2ot4FCx8bv7cwi6TCFycoPIKXdlb5zqBJg1XHOq085sfZmTwEpk1j/rutj4VICNT4U8HcO5fkc41++Y635UKv0F+Vyb94FLo8+0Az99gV3mYDBT0Kdrfy8AsC9fNz2k1NWvrlWLKoXOkFClVOpcBQIAIgcXiN29swamWeb8LtTUu4ea3iDyfVuNlQ9jMLQ1XKEJCfMhtC00X6tcjmHAfo76vkdlsa+QGnHPsHFyYO/fUGe4lnT3HBKummffXH1788Ye35p1DK1ypZn2c9QV7AnSr3t0/hISt+JZxki4cQzJ/17LPgjUuYox6+pIh0of6ywxm/YqDLI3kTpWOGrvESnQ90waIajQ1iFPfs7Mb6kvHua4x5qhEq8fgWO1FrApXtYs/VHBwnCNiIiIiIymUsjflRVUpAdUIkc3nSUv0l6GITXi7rswK0vI9a484buVXmnawZhMCqiU8Ow1G3alq2UZI+nOWbw5td0sz6ZMS9Z53ZyhlN5Sh/mxisms+29ZLvgyZ6lDfc9h5eAKiWfp/1ZtiTVCLut3JQ4zr/5Sr/LSPhe7eukcw6lGazjVaG22Z9FFKLEF9LzpX5DYFC8LxxqtzfJmhmPNNnwT4z2R3af8rWwdAFuHPB3frkwN2JWpkadjuDTpDpcm3Y1qkzXgSz8X2tjpHuPjbnCq1VZHG/2lS7OUOv3vuq43XwHAtnQ1CK1tswSB6lAy2xWX7+6DSgmhnn0ahda2sLIvoncMY7wXAYVhg+i+ri+ANUVhD1TN+rUqJKFtPnytCsufQb2Bqq6vlan7OSp070UsjXyM5AeXDe0lW7Z+VXXv3/i/40i4dtgsY+gLIqOP/IzE60d0hnYZIWBGMJhtqVOhEO7thkPsXCzrc9w+jdTw21nH0Lufo0ZQaCWCY7WWEFilfz8lXDFPMJsh4coh2HTiz6WFEcM1IiIioveYSqUClPL04EqWaYWW4t3KLWuvMhA5ZP1UZ0r4Lby9f1kj5ErTDrm09v3SDroy8+wxHXYf1dIxRghiT2w1z/PmRyhl0ZVS79sYevYRM8fvh5Uo2wBN7FYc9v4N/ytdqL+coTAjCBNrrApTl0S0Tg/I9OyD4ODfAA7+DXL/LGQwt5aBSH16N1dleMTu3nBr0d+MsyLKfwKBELASwtACYyInd4icdJcJNRcH/4Zw8G+Yp2O4tRoAt1YD9L6ucxWjKnNZ0vSAT1/Z1CL1O8K+UqP0lUY6VyEqMoWGyqyv/zeWUE/4a+NTQWMuelY7GrKfo0oJgSibt+4EQrOEbPpWfOXHvm7mDAkLTZiTD1+rfCkxa8k9CfMlUH2/9lbMj6+Vvj8fKoUsfV9dhczwwFEPff9WS4sIReLN4yb1KfEqoy4LrpRL08uWmtHbe+ehbD/CrB8OpIKB4RoRERGRmaiDLq1ShJoBVVrWvbnkUth9VEvnqpa39y8h4cbRLCu9lJn28DLkH9rFPp8KUfm6Wa6nRYabrWSKJVcxCazet1Aq78sQKs0YEmruu/WudKG13r2YrIuVhnPDzwwqZygUv+tPKwTT9ynh/9j6VYGtXxWjn4UKNqG1Lbz6zMHLX+eatHeN2N0bXr1nc+N4okJKHTrmouqYxN0bEndv801KB8dqLeBYrUWejlG0/UgUbT8y/edPPXsavls9mDkYzLRaUU/ZVKdabWFXupreEqk5BYMZ16FUQmite9WlxMMXdh/V0lPmNYf9HDOHlVb5se9hfoQ5eR9K6Q9U36+Q0LKB6vsWPltu30PzjmH+P4OapdWlkeHpQaAZqRQySF8/YVWFQojhGhHlSCAQwN3dHdbW1hAIBFCpVBDq+58yEVEBoVKpAIX83Z5aikwBVaayhO8Csf9KEv53zbF6S52bfSfeOoW4s7uylDM05R9AVk5uOsM1eUIMUh7dMOn5M8uP0noque5/hORLiUCzlmzMw9VY/9H3iUuhSHeZLK15ZARdWoGXtUZI9V8ZwiJFdba38S4P9/ZfaJcz/C/0ynJNZFjQlZm1V2lYe2X9c0NkCJGjG0oMWISY45uNKhHpWLMN3Fr0Z7BGRB8UgUDwX2k1Kwhgvg/pAIBN8Y+A4h+Ztc/MitT9FEXqfpqnY7gHDId7m0FZS5kasp9jplWMVvbOOsdwrNI0/Q16XcFgtv1mDSuFYhudY4idi8G6RLlsy65mO4ZSo/RgvqyOKyQlNPWGOe9Z2VSLhrYFO1AVF/FQH0ujIkzuJzvS108ZrhVCDNeIKEcikQi+vr6WngYRFRJKaSoUyfGZVmJl2oNLlqkMocbrmvc6N+wCW9/KWcZIuH4E0YfWw4gq93rZ+FTQGa6pZGmQxb7Mdf/pfVlwpVS+lFM03xs9+fO10hcSZg2+sqzo0htSibX24ZIUK6VzDBu/KvDqO1djRZeOfowMujITu3rp3f+LqKAQWtuiaMAIOFZviYQrh/D23nmdnyIWWIlh798QTnXa8Q0LIiLSSSiSAHlcji0/VtS7fNwNLh93y1UfGeGbvqDFrWUgXD7unmUvRvUqRJ0lUnXv52hl66RzDPvy9SB2KaajvZ79HHWWg/0viNTzwTQr+yIQu3rpCDCN388xf1auFbC940ylN7Qt4CU0rd5FJCpZqun9ZEMl0/0BTnq/MVwjIiL6wKhUKgAqnT9cyxPfQBr1VM+KLj1Bl0bZw/RfaVDKpHBr2R/25etlGSPp9mlEH/rRLM/iUOlj3S8IrWCOYA3ILmgxY2CUD8GXOUsE6pMvz6F3DGvtIEok1rEH17vVWMJM5Qo1SxRalyincwy7MjVQcsz6XK3oyonIwRkiB2ez9kn0PrMpXhY2ncpC2X4EpK+fQPr6KVSyNAjE1pB4lITEw5f7VxARERkoo7SqPlb2RWBlXyRP52Bfvi7sdZSrNye3lv3h1tLw/VezW8VoZac7JHRp2hNOtQOyDe30rWLMCCwzAkl9pdZtS1eD0MYh5z4N2M9R37/7BCJrCG0d1M+uGZQaS6CvZq85g0i9Y+QiwFO8W9Up0LNyNLcE4pwrlND7h+EaEeVIKZdCGhkOaVQEVLJUCMQ2kBT1gaSYH9/MIMollUqVvrmv7F05QitbRwhtsv5wLY15gdTwEJ2BllJH2cOMUojKzNfkMhTtMAqOVZtnGSMl7Aai9n9vlmdTpCTqvG7WlVL5USLQgqGUWUs2Kiz3HFa2ThAXLakRaIk1Aq2s5Qy1QrFMJQrFLp46x7AvVwelpm4327PoIpTYQCjJm39sEVH2hCJJetDG1WlERERkZqbs5yh2Lgaxc7G8mxQAxyrN4FilWZ6OUTRgOIoGDM9yXWs/R737Lmbav1FPMFukQWc4VG6SZSVkzv1mWmGoUuot/23tXSF93jnuPZl1bM1tASRFfczwVc1K4lEyT/oly2K4RkR6pb54iIQrB/H23oVsyvA0gFOdAL7RQYWCSqVS75ulb9WWxK0ERDr2MUp7FYak26ehksv+C7PStPbh0upHKwiTIfMKK/eAkXCq0SrrGC8eIvrwBvM8a34ERnrHMN8ntvSulMqP1Vj58rUyzxgCkUTvQj6RoxvsytXNtpzhu9Vf1u9WbOlY/aUrFAYAW99K8Bm2wizPQkRERERERHlLez/H3LEu5gcU8zPDrPQrUvsToPYnue5HUswPAiuxzvdBTSWwEkPiwe12CiOGa0SUhTItxaAN5FUKGZJun0bS7dNwrNEabi0DuYE8mc27oEtzNZbsv4AqTetaxsotG58K6T+0ZZIaEYq4i38aUM5Qd8Chyf2ToXCqlfUHNlnsS8Rf2meOR7dsab33bTWWJcM1k34/BJlKEYohFEsgtHXQebfIxRNF6nfMsZyhMFOfApG1evUXrETp/zDSw9qrNDy7TTXhWYiI8o9cLsfz588hkUggFAqhVCrh4eEBKysjPmJORERERJQNoUgCe/8GSLp92mx92vs3ZOWvQorhGhFpkSfG4OUvQZDFPDeqXeKNo0h9ehdefeZA5OiWR7MjS1GplDqDKGWmc+1r/63+kqWv4LIrVxe2vpWy9J38+CZijm7SUc7Q+E8JubUZpDNcU7yNQ/KDK6Y8ehYWDaWsCmpgpG8MPXuVFZSSjQKh9iosHftvCcQSiF29dDaXuPvAvd1wHeUMrd9d0wzEDAi6sozhVhxuLQMNvp+IqLBSqVSIjo7Wuubu7s5wjYiIiIjMyqlOgFnDNac67czWFxUsDNeISE2ZlmJSsJZBFvMcL3+dixIDFnEFWz5QyWVQJCdAJU/7L9DSLmWYvjorTSPk0lyxpX2fY9UWsK9QL8sYbx9exevfl5llObyVo5vOcE0ll0EWFZHr/gFLlzp8z4IvSz6HSKzjYjZBl2bZwUzXbHwq6BxD4uELz96z/wu6NPsQq1d+QWhc0JWZyNEVTjXbmNyeiIiIiIiIiAoWm+Jl4VijdY4VvQzhWLMNt9IpxBiuEZFazPHNJgdrGWTRzxBzYguKtsu6GeqHRJGSBOnr8EzlDNMyrfz6r8Sh+tq7IExzRViRuh107r+V/PgmIn9baJb52niX13ldILQyW51po4IWE+ldVZYfq7HM+Bz5UupQkU3JxoygS73qSmxQ0JVRjjAjGJN4ltY5hsSzNHxGrdUqcZjboCszK1sH2JWqZrb+iIiIiIiIiOjD4NYyEKlP7+bqfVKxuzfcWvQ346yooGG4RkQAgNQXD83yiQwASLx+BI7VWuT7JzNUKqVWmCUQW8NKxz5G8sRYJD+6ri49qLWiSyaFSiHVCsHerQpLy7L/l/PH3eHS6LMsY6S9eIhXO+ab5bkUSW90XjdnvWal3sDInCul0nReF4qszTdGIdlHTF+pQ6G1HcSuxTUCrXehl1BsrbXyS2eZQ40ShSJnD51jSLzKoNS038wadGV5DpEEQudiedY/EREREREREZGphNa28OozBy9/nQtZ9DOj24vdveHVezYrexVyDNeICACQcOWgmfs7BJtO6eGaSqWCLPal1r5cIid3iF08s7STvXmFxP8dg1Jrf680dRCmzLwvl/xdMAaFXKsvl497wKVJ96xjxDxH9IEfzPKcKrnuwMi8K6XyYzVW3q8qs2TwZbYxBEJApdT5ktDOCbZlamYbaGnvw2X97lqmEohW1vY6x5AU9YHPyDXmeRY98jJUIyIiIiIiIiJ6H4gc3VBiwCLEHN9s1IIEx5pt4NaiP4O1DwDDNSKCUi7F23sXzNrn23vnoWw/Ij08EAjw+q+VkL58pH7duVFXuDbrnaWdIukN4s7/YZY56Ct7lz9hjvlWY+ktdfie7SNm9pKNQqt3q7Os0gMqK1snnbda2TvDqU6AdjnDTCFY1mvpfWrt2SW00jsdsbMHvHrOMO1ZiIiIiIiIiIioQFCpVBAIBBBa26JowAg4Vm+JhCuH8PbeeZ3bpwisxLD3bwinOu20Knll9EOFE8M1IoI0Mtxs+2plUClkkL5+ov4firVnaa1wLT9WMekrrZcfoZQ5SwRatNShocGXUPRfECXWu2pLUrSkzqZWDi5wazNYa1WXUJR19Zcwc7/ZBF2ZiRyc4d5msMH3ExERERERERHRh+nQ+XA0rl4CTvbp74vZFC8Lm05loWw/AtLXTyB9/RQqWRoEYmtIPEpC4uGb5b3AhLdSnL35HAENS1niESgfMFwjIkijIvKm39dP1eGaqIj2/k4qvXt85UMZwkJTslHPGOqgSyOIshJnvaYRVtl4l9fZlZWjGzx7TP+vjfW7VV4afQpExgVdWcawsUeROgEmtyciIiIiIiIiIjKHB0/f4Ic9Idh+9D6+6FoNDap4qV8TiiTpQZvG6jRdLtx6ibW/30RcYho+8nZGuZIueT1tsgCGa0QElSw1j/p9tx9Z5tAsX1aV6VuNZdYx9ISEVuKMwQwMujKCK3GWPbskRX10jiFydIX3iDWZ7hfnKujKTCi2ht1HtczWHxERERERERERUUG170wYACAuMQ3fBF9GmRJF0K6hH5rW8IaNtf44JTVNjlM3nuHQ+XA8eh6vvr7/bBgm9OZ7a4URwzUigkBsk0f9vtt3LHMIpZKnZb49vY0Z9yrTu4+Y2AaiIh5aq7eEGiUJswu6MpcoFDm56xzDytEVpab9ZtagK8tzWIkgcSueZ/0TERERERERERF9KKQyBc6FvNC69uh5PL7bdRPr9tyCn5cTPvIuAg9XO4hFQsjkSryOTca/z+IR/jIBcoUyS59nb77A6G7VIRHn3XuEZBkM14hI78qoXPfr8W6PLXn8a+0XlQqdbYQSG9iWqpptoKW9N9e7IEwrLBNLILS21zmGlZ0jSo7+wWzPqYtAIAAE/J8mERERERERERHR++DxiwTI5FkDMgCQK5T491kc/n0WZ1SfMrkS4S8TWBqyEGK4RkSQFPODwEoMlUJ3iUNTCKzEkHj4qs9dmvSEa7M+/wVgYggEQp3thNa28Oo9x2zzICIiIiIiIiIiIsrJk1cJedIvw7XCSfe720T0QRGKJLD3b2DWPu39G2rtbSZycIaVnSOEYmu9wRoRERERERERERGRJaRJdVfaynW/srzplyyL73ATEQDAqU6AmftrZ9b+iIiIiIiIiIiIiPKKtSRvtnix5n5rhRLDNSICANgULwvHGq3N0pdjzTawKV7WLH0RERERERERERERmZtMrkDok1j1ua+nU56M4+eVN/2SZTFcIyI1t5aBELuVyFUfYndvuLXob6YZEREREREREREREZnPm4RU/HI4FIPmHcWPe26pr5cq7gSxyLyRiVgkZLhWSIksPQEiKjiE1rbw6jMHL3+dC1n0M6Pbi9294dV7NoTWtnkwOyIiIiIiIiIiIiLT/BsRh71nHuHM/55DrlABAJJSZEhNk8PGWgSJ2AqNqhbHP9eNf19Un8bVikPCspCFEsM1ItIicnRDiQGLEHN8MxJvHDW4nWPNNnBr0Z/BGhERERERERERERUICoUSF26/xN7TYbgXHpvldblCidP/e4429XwBAB0+Lm3WcO3TxqXN1hcVLAzXiCgLobUtigaMgGP1lki4cghv752HSiHLcp/ASgx7/4ZwqtOOe6wRERERERERERFRgZCYLMXfF5/gwLnHiI5Lyfbeg+ceq8O1ciVd8El9Xxy++CTXc/ikgR/KlXTJdT9UMDFcIyK9bIqXhU2nslC2HwHp6yeQvn4KlSwNArE1JB4lIfHwhVAksfQ0iYiIiIiIiIiIiPD0VQL2ngnDyWvPIJUpDGrz6Hk8Ltx6iQZVvAAAAztUxu2wGDx7nWTyPHyKOWLgp5VMbk8FH8M1IsqRUCRJD9q4Oo2IiIiIiIiIiIgKEKVShWuhkdh7Jgz/exBldHsbiRXuP4lFvUqeEAoFsLMRYf6Ihpj14wVERCYa3Z9PMUfMG94AdjaMXwoz/u4SEREREREREREREdF7JTlVhuNXIrD/bBheRL81ur2Hqx0+bVQKrev5wsFWrPWaWxFbLBvbBJv23TaqROQnDfww8NNKDNY+APwdJqIcyeVyPH/+HBKJBEKhEEqlEh4eHrCysrL01IiIiIiIiIiIiOgD8irmLfaffYyjl58gOVVudPvKZdzQ8ePSqFvJC1ZCgd777GxEGNWtOlrX88X+s2E4e/MFZHJllvvEIiEaVyuOTxuX5h5rHxCGa0SUI5VKhejoaK1r7u7uDNeIiIiIiIiIiIgoz6lUKtx6FI29p8Nw+e4rqFTGtReLhGhawxsdPi6N0iWKGNW2XEkXTOhdC6O7VUf4ywSEv0xAmkwBa7EV/Lyc4OflBImY75N+aBiuFTD379/Hnj17cPnyZTx79gwpKSmwt7eHh4cHqlWrhtatW6NJkyYQCPQn6pagUChw8uRJHD16FCEhIXj16hVkMhmcnZ1RvXp19O7dGw0bNrT0NImIiIiIiIiIiIjoPZEmU+DU9WfYdyYM4S8TjG7v4miN9o1KoW19Pzg7WudqLhKxFcqVdOHqNALAcK3AePHiBRYsWIALFy6gd+/emDVrFnx8fKBUKvHixQucOXMG27Ztw65du1CpUiWsWLECvr6+lp42AODy5cuYM2cO4uPj0aNHD/Tp0weenp6QyWQ4f/485s6di6NHj6Jv376YMWMGhEKhpadMRERERERERERERAVUTHwKDpx7jMMXniAxWWp0+7I+zuj4cWk0qlYCYhHfjybzY7hWANy8eRPDhw+Hm5sbDhw4AC8vL63XixUrhho1aqB79+4YOHAg7ty5gx49emD37t3w9va20KzT/fLLL1iwYAGaNm2Kb775Bi4u2ql9t27dcPDgQZw/fx7btm2Di4sLRo8ebaHZEhEREREREREREVFBFfokFvtOh+FcyAsolMbVfhQKBWhUtTg6flwa5X1dzF79TS6X4/nz55BIJBAKhVAqlfDw8ODWOR8ohmsWFhsbixEjRiAuLg6//PJLlmBNk6enJ1asWIEuXbrgzZs3mDJlCn799dd8nK2233//HXPnzkXLli2xevVqiES6v50SEt4t1z106BDDNSIiIiIiIiIiIiICAMgVSpy7+QL7zoTh/tM3Rrd3tBPjkwZ+CGhYCu7Otnkww3QqlQrR0dFa19zd3RmufaAYrlnYunXrEBsbiwoVKqBMmTI53l+hQgU0btwYp0+fxrVr13D58mXUrVs3H2aqLTw8HF9//TWcnZ2xaNEivcEakL7y7vbt2wCAqlWr5tcUiYiIiIiIiIiIiKiAik9Kw+GL4Th4LhyxCalGty/p6YiOH5dG05resJEw6qD8xe84Czt8+DAAQCaTGdymYcOGOH36NADg5MmTFgnXFi1aBKlUiv79+8PJySnbe7/99lucP38eEokE9evXz6cZEhEREREREREREVFB8/hFPPadCcM/159BJlca1VYgAOr4e6Ljx6VRtay72Us/EhmK4ZoFJScnIzIyEgDw6NEjnD59Gk2aNMmxnY+Pj/r46dOneTY/fa5cuYKTJ08CANq2bZvj/TY2NmjRokVeT4uIiIiIiIiIiIiICiCFUoUrd19h7+kw3HoUnXODTGytRWhdtyTaNy6F4u4OeTBDIuMwXLOglJQUrfPFixcbFK7Z2r6rGyuVSs0+r5zs2bNHPY+KFSvm+/hEREREREREREREVPC9TZHh6OWn2H82DJGxyUa393Kzx6cfl0KrOiVhZyPOgxkSmYbhmgW5urqiaNGiiIqKAgD1KracvHnzblNHLy+vPJmbPlKpFMeOHQMAlClTJtu91oiIiIiIiIiIiIjow/M8Kgn7z4Th+NWnSElTGN2+etmi6NCkNGpXKAahkKUfqeBhMmJBAoEAK1euxMqVKxEXF4f+/fsb1O727dvq4/Lly+fV9HS6du0aEhISAAC+vr75OjYRERERERERERERFUwqlQo3HkRh35kwXL1n2EISTRKREM1r+6BD49Lw9XLKgxkSmQ/DNQurXbs2tm3bZvD9KpUKR44cAQCIRCK0a9cur6amU2hoqPrYw8ND67VLly7h4MGDuH//PpKTk+Hq6oqSJUuiZcuWaNSoEVe5ERERERERERERERUyqWlynLwWgX1nwxARmWR0e/ciNghoVApt6/vByV6SBzMkMj+mHe+ZkydP4vnz5wCAVq1awdXVNV/Hv3//vvrY2dkZAPDy/+zdeXhU9d3+8XtmspOFJEAIZJ3IoiAIspMERVBBEqvdrFoXbLVa9fm19SnaVq1aq7gratWqda+21koCihuUTEIgbMoismSSQBYghOzrbL8/fEhBthzIZLK8X9fV6zqTOZ8zd9DKZO58v6eiQnfeeadWr1591Pn5+fl67733NGrUKD388MMaPnx4V0X1CqfTKZOp7y1DdjqdHfoaAAAA4A28HwUAAOh+Kmua9fGqEn2+do8amh2G50ck9Ne81GRNHhUjP4tZkuRwGL9OV+E96X/11e/7cJRrPYjL5dLTTz8tSQoJCdEdd9zR5Rl27drVfhwaGqrdu3frqquu0oEDB3TZZZfpsssu06hRo2SxWLR161Y9//zzysvL09atW3XdddfpvffeU3x8fJfn7izbtm3zdYRu4+uvv/Z1BAAAAPRhvB8FAADoeh6PR7sr27Rme4O2lTbL4zE2bzZLoxJCNGVEqIZGB0iq1NdbK72StSvwnrTvolzrQV5//fX2bRnvv/9+n5RUtbW17ccmk0m33367nE6n3n77bY0fP/6IcydMmKBXXnlF9957r9577z1VVVXpt7/9rf7+9793dWwAAAAAAAAAwClyujzaUtKkNdsbVFFtfHVZSKBZE4b108RhoQoLtnghIdC1KNd6iC1btuiJJ56QJC1YsEAZGRk+ydHY2Nh+/MEHH8hut+utt97SmDFjjnm+yWTSPffco40bN2rHjh3asGGDVqxYofPPP7+rIgMAAAAAAAAATkF9s0vrdjZo3a5GNba4Dc8PjvTX5BGhGp0YIn9L37vdDnovyrUeYP/+/br11lvldDp1zz336KqrrvJZlsPLtS1btuhXv/rVcYu1Q/z8/PTLX/5S//M//yNJeu+99yjXAAAAAAAAAKCbKj/47daPW0qa5DLYqZlM0si4YE0eEarEgQEymSjV0PtQrnVzdXV1uvHGG1VZWalHHnlEmZmZPs1z+A0lY2NjNX/+/A7NzZw5U4GBgWptbVVubq7a2toUEBDgrZhec+aZZ8rf39/XMbqc0+k8av/gs846S35+/CcEAAAA3sf7UQAAAO9zudxa8/U+Lc0r1rbiasPz/YL8dMHEeM2dmqhBUSFeSOhbvCf9L4fDoW3btvk6hk/1vX/qPUh9fb3mz58vu92uRYsWaebMmb6OpODgYDU0NEiSrr766g4XZAEBARo2bJi2bNkih8Oh7du36+yzz/ZmVK/w8/Prk+XasfBnAQAAAF/i/SgAAEDnqG9q06erS7R0VZEqq5sNz8cNClVGmlXnnxuv4MC+VTn01fekHo/H1xF8rm/9m96D1NbWav78+SosLNSLL76oqVOn+jqSJKlfv37t5VpwcLCh2ZiYGG3ZskWStG/fvh5ZrgEAAAAAAABAb7B7b52yc4u0fN0etTlchufHjxykzDSrxg0fJLOZrR/Rt1CudUPV1dW6/vrrtXv3br388suaMGGCryO1i4iI0L59+yRJTU1Nhmb79evXfmx0FgAAAAAAAABwetxuj9Z/s09ZNru+3FFpeD4wwKILJsRrXqpV8TFhXkgI9AyUa93MoRVrh4q18ePH+zrSEaxWq3bs2CFJOnjwoKHZw+/XdnjRBgAAAAAAAADwnqYWh5av26Nsm13lBxoNzw+KDNa8VKtmT05UaHDf2wYR+C7KtW6koaFBN9xwg4qLi/Xqq69q3Lhxvo50lGHDhmnZsmWSJLvdbmi2paWl/TgiIqJTcwEAAAAAAAAAjrS3qlFLcov0WUGJmlqchudHWaOVmWbV5FGDZbGYvZAQ6Jko17qJtrY23XLLLdq5c6f++te/dqhYczgc+tWvfqVHH33U8P3PTtXhK+m2b99uaLampqb9ODk5ubMiAQAAAAAAAAD+j8fj0ebCA8rKsavg673yeIzN+1nMmjF+qDLTUmQdyiIJ4Fgo17oBj8ejO++8U+vXr9fzzz+vSZMmdWhu27Ztys/P77JiTZImTZqk/v37q6amRhUVFdq+fbtGjBjRodnS0lJJUnx8vKKjo70ZEwAAAAAAAAD6lFaHSys3lCrbZldxRZ3h+ciwQM2dnqyLpySpf1igFxICvQflWjfw3HPPaenSpXr44Yc1Y8aMDs8tW7ZMCQkJXkx2ND8/P11yySV6++23JUlLly7tULl24MABVVZ+e4PMWbNmeTUjAAAAAAAAAPQVVbXN+mhVsZblF6uusc3w/LD4/spMs2r62KHy92PrR6Aj+H+Kj61cuVLPPvusbr75Zl122WUdnisrK9O777573HKtvLxcN954o8aNG6eMjAytWrWqsyLrF7/4hUJCQiRJb7/9tmpra086k5ubK0myWCz66U9/2mlZAAAAAAAAAKAv2l5yUI++tU43/Okz/ePzHYaKNbPZpNSxQ/TobWl6/H/Sdd658RRrgAGsXPOhyspKLViwQFOmTNHtt9/e4bmNGzdqwYIFamxsPG65tmDBAhUUFEiSduzYoVtuuUUff/yxYmNjTzv3oEGDdPvtt+vhhx9WQ0OD7r//fj3++OPHPd/j8ei1116TJN1+++0aOnToaWcAAAAAAAAAgL7G6XIr76tyZdvs2r672vB8WIi/LpqSpLnTkjUwsutuNwT0NpRrPrRo0SJVV1dr165dmjt3bodm6urqVFVV1f74eOXali1bjnjc3NyszZs3d0q5JknXX3+99uzZo7fffltLlizR0KFD9atf/Uomk+mI8zwejx5++GFt27ZN3/ve93TTTTd1yusDAAAAAAAAQF9R29CqZauL9VFesQ7WtRieTxgcpsw0q2aMj1NQALUAcLr4f5EPHThwQNK3K9gO3Y/MqOOVa6NHj25fuSZJ/v7+Gjly5Cm9xvHcfffdSklJ0WOPPaYXX3xRX375pebPn6+RI0fK6XRq27ZteuONN7Rp0yb95je/0Y033tiprw8AAAAAAAAAvVlxRZ2ycgq1ckOp2pxuQ7MmkzTxzMHKTLNqzLABRy2MAHDqKNd6uOOVawsXLtQf//hHrV27VjExMfrNb35z3HNPlclk0lVXXaWLLrpIH330kb744gvdf//9OnDggAIDAxUXF6cZM2bo0Ucf1eDBgzv1tQEAAAAAAACgN3K5PVr79V5l2+zatOuA4fngQD/NnpSgS1KTNWRAqBcSAqBc86Hnn3/ea9ceMmSIXnrpJa9d/3ADBgzQNddco2uuuaZLXg8AAAAAAAAAepvGZoc+K9itpXl27a1qMjwfG91P81KTNWtSgkKC/L2QEMAhlGsAAAAAAAAAAPhIeWWDsm12fbFut5pbXYbnxw4boMy0FJ17ZowsZrZ+BLoC5RoAAAAAAAAAAF3I4/Fo445KZdvsWrdtn+H5AD+zzp8Qr4xUqxJjw72QEMCJUK4BAAAAAAAAANAFWtqcWrG+VNk2u/bsqzc8Hx0RpEumJ+vCyYmKCA30QkIAHUG5BgAAAAAAAACAF+2vbtJHeUX6ZHWJGpodhudHJkYqMy1FU8fEys9i9kJCAEZQrgEAAAAAAAAA0Mk8Ho+2FR9UVo5d+Vsq5HZ7DM37WUxKHTtUGWlWDU+I9FJKAKeCcg0AAAAAAAAAgE7icLpk+7Jc2bZC7SqtNTwfERqgi6cmae60ZEWFB3khIYDTRbkGAAAAAAAAAMBpqq5v0bJVxfoov1g19a2G561DIpSRZlX6uKEK8Ld4ISGAzkK5BgAAAAAAAADAKdpVWqNsm105G8vkdLkNzZpN0uTRscpMs2qUNVomk8lLKQF0Jso1AAAAAAAAAAAMcLncWr1lr7Jshfq66KDh+X5Bfpo9OVHzUq2KiQrxQkIA3kS5BgAAAAAAAABAB9Q3temzNSVaklekyupmw/NDB4YqI82qmRPiFRzIx/NAT8X/ewEAAAAAAAAAOIE9++qVbbNr+fo9am1zGZ4fP2KQMtKsGj9ikMxmtn4EejrKNQAAAAAAAAAAvsPt9mjD9v3KyinUxh2VhucDAyyaOSFeGalWxceEeSEhAF+hXAMAAAAAAAAA4P80tzr1xdrdWpJrV1llo+H5QZHBumS6VRdOTlBoSIAXEgLwNco1AAAAAAAAAECft7eqUUtyi/RZQYmaWpyG50dZo5WZZtXkUYNlsZi9kBBAd0G5BgAAAAAAAADokzwej7YUVinLVqiCrXvl9hib97OYNWP8UGWkWpUS198rGQF0P5RrAAAAAAAAAIA+pc3h0soNpcqy2VVcUWd4PjIsUHOmJeviqYmKDAvyQkIA3RnlGgAAAAAAAACgT6iqbdZHq4q1LL9YdY1thufPiO+vzDSrUscOlb8fWz8CfRXlGgAAAAAAAACgV9teclBZNrvyviqXy+Dej2azSdPOjlVmWopGJkXKZDJ5KSWAnoJyDQAAAAAAAADQ6zhdbuV9Va5sm13bd1cbng8L8ddFU5I0d1qyBkYGeyEhgJ6Kcg0AAAAAAAAA0GvUNrTqk9Ul+mhVkapqWwzPJwwOU2aaVTPGxykogI/QARyN/zIAAAAAAAAAAHq84oo6ZeUUauWGUrU53YZmTSZpwpkxykyzauywgWz9COCEKNcAAAAAAAAAAD2Sy+3R2q/3Kttm16ZdBwzPBwf6adakBM1LTdaQAaFeSAigN6JcAwAAAAAAAAD0KI3NDn2+dreW5Nq1t6rJ8Pzg6BBlpFo1a1KCQoL8vZAQQG9GuQYAAAAAAAAA6BHKKxuUnWvXF2t3q7nVZXh+7LABykxL0blnxshiZutHAKeGcg0AAAAAAAAA0G15PB59uaNSWTa71n+zTx6PsfkAP7POOzdeGWlWJcWGeyckgD6Fcg0AAAAAAAAA0O20tDm1Yn2psm127dlXb3g+OiJIl0xP1oWTExURGuiFhAD6Kso1AAAAAAAAAEC3UVndrKV5dn26pkT1TQ7D8yMTI5WZlqKpY2LlZzF7ISGAvo5yDQAAAAAAAADgUx6PR9uKDyrLZlf+5gq53cb2frSYTUodO1SZ6VYNT4j0UkoA+BblGgAAAAAAAADAJxxOl2xflivbVqhdpbWG58P7BWjO1CTNmZak6IhgLyQEgKNRrgEAAAAAAAAAulR1fYuWrSrWR/nFqqlvNTyfPCRcmWlWpY+LU4C/xQsJAeD4KNcAAAAAAAAAAF1iV2mNsm125Wwsk9PlNjRrNkmTR8cqI82q0dZomUwmL6UEgBOjXAMAAAAAAAAAeI3L5dbqrXuVbbNrq73K8Hy/ID/NnpyoS6Yna3B0Py8kBABjKNcAAAAAAAAAAJ2uoalNn64p0dK8Iu2vbjY8P3RgP2WkWjVzYoKCA/koG0D3wX+RAAAAAAAAAACdZs++emXb7Fq+fo9a21yG58ePGKSMNKvGjxgks5mtHwF0P5RrAAAAAAAAAIDT4nZ7tGH7fmXb7Nqwfb/h+cAAi2ZOiFdGqlXxMWFeSAgAnYdyDQAAAAAAAABwSppbnVq+dreyc+0qq2w0PD8oMliXTLfqwskJCg0J8EJCAOh8lGsAAAAAAAAAAEP2VjVqaV6RPltTosYWp+H5UdZoZaZZNXnUYFksZi8kBADvoVwDAAAAAAAAAJyUx+PRlsIqZdkKVbB1r9weY/N+FrPSxw1VZppVKXH9vZIRALoC5RoAAAAAAAAA4LjaHC6t3FCq7Fy7isrrDM9HhgVqzrRkXTw1UZFhQV5ICABdi3INAAAAAAAAAHCUqtpmfbyqWB/nF6uusc3w/Bnx/ZWZZlXq2KHy92PrRwC9B+UaAAAAAAAAAKDdjt3VysqxK/erMrkM7v1oNps09exYZaZZdWZSlEwmk5dSAoDvUK4BAAAAAAAAQB/ndLm1alO5smx2bS+pNjwfGuyvi6Yk6pLpVg2MDPZCQgDoPijXAAAAAAAAAKCPqm1o1adrSrQ0r0hVtS2G5+NjwpSZZtV558YpKICPmwH0DfzXDgAAAAAAAAD6mOKKOmXb7PrP+j1qc7oNzZpM0oQzY5SZZtXYYQPZ+hFAn0O5BgAAAAAAAAB9gMvt0bqv9yrLZtemXQcMzwcHWjRrUqLmpSZryIBQLyQEgJ6Bcg0AAAAAAAAAerGmFoc+K9itJbl27a1qMjw/ODpE81KtmjUxQf2C/b2QEAB6Fso1AAAAAAAAAOiFyisblJ1r1xdrd6u51WV4fswZA5SZZtWEswbLYmbrRwA4hHINAAAAAAAAAHoJj8ejr3ZWKstm17pt++TxGJsP8DNrxvg4ZaanKCk23DshAaCHo1wDAAAAAAAAgB6upc2p/6wvVXauXbv31huej44I0iXTk3Xh5ERFhAZ6ISEA9B6UawAAAAAAAADQQ1VWN2tpnl2frilRfZPD8PyIxEhlplk1bcwQ+VnMXkgIAL0P5RoAAAAAAAAA9CAej0fbig8qy2ZX/uYKud3G9n60mE1KHTtUmelWDU+I9FJKAOi9KNcAAAAAAAAAoAdwON2yfVmmbFuhdpXWGp4P7xegOVOTNGdakqIjgr2QEAD6Bso1AAAAAAAAAOjGqutbtCy/RB+vKlJ1favh+aTYcF2ablX6uDgF+Fu8kBAA+hbKNQAAAAAAAADohgpLa5RlsytnY5mcLrehWZNJmjxqsDLTUjQ6JVomk8lLKQGg76FcAwAAAAAAAIBuwuVya/XWvcq22bXVXmV4vl+Qn2ZPTtQl05M1OLqfFxICACjXAAAAAAAAAMDHGpra9Oma3VqaZ9f+6mbD80MG9FNGmlUzJ8QrJMjfCwkBAIdQrgEAAAAAAACAj+zZV6/sXLuWr9uj1jaX4flxwwcqMz1F40cMktnM1o8A0BUo1wAAAAAAAACgC7ndHm3Yvl/ZNrs2bN9veD4wwKKZ58YrI82q+JgwLyQEAJwI5RoAAAAAAAAAdIHmVqeWr92t7NwilVU2GJ4fGBmsedOTdeHkRIWGBHghIQCgIyjXAAAAAAAAAMCL9h1s0pJcuz5bU6LGFqfh+VHWaGWkWTVl1GBZLGYvJAQAGEG5BgAAAAAAAACdzOPxaIu9Stk2u9ZsqZDbY2zez2JW+rihykiz6oy4/l7JCAA4NZRrAAAAAAAAANBJ2hwu5WwsVZbNrqLyOsPz/cMCNXdqki6elqTIsCAvJAQAnC7KNQAAAAAAAAA4TVW1zfp4VbGWrS5WbUOb4fkz4iKUkZaitHOGyN/P4oWEAIDOQrkGAAAAAAAAAKdox+5qZeXYlftVmVwG9340m02aenasMtOsOjMpSiaTyUspAQCdiXINAAAAAAAAAAxwutzK31ShLFuhvimpNjwfGuyvi6Ykau70ZA2KDPFCQgCAN1GuAQAAAAAAAEAH1DW26ZPVxVqaV6Sq2hbD8/ExYcpIs+r88XEKCuSjWQDoqfgvOAAAAAAAAACcQElFnbJsdv1n/R61Od2G5yecGaPMNKvOGT6QrR8BoBegXAMAAAAAAACA73C5PVr39V5l2ezatOuA4fngQIsumJigjFSrhgwM9UJCAICvUK4BAAAAAAAAwP9panHo84Ldys61a29Vk+H5wdEhmpdq1ayJCeoX7O+FhAAAX6NcAwAAAAAAANDnlR9o0JLcIn1esFvNrU7D82POGKDMNKsmnDVYFjNbPwJAb0a5BgAAAAAAAKBP8ng8+mpnpbJsdq3btk8ej7H5AD+zZoyPU0aaVclDIrwTEgDQ7VCuAQAAAAAAAOhTWtqcWrmhVFk2u3bvrTc8HxUepEumJ+uiKYmKCA30QkIAQHdGuQYAAAAAAACgT6isbtZHq4r0yepi1Tc5DM+PSIxUZppV08YMkZ/F7IWEAICegHINAAAAAAAAQK/l8Xj0TXG1smyFWrW5Qm63sb0fLWaTUscOVWa6VcMTIr2UEgDQk1CuAQAAAAAAAOh1HE63cr8qU5bNrl17agzPh/cL0MVTkzR3WpKiI4I7PyAAoMeiXAMAAAAAAADQa9TUt+rj/GJ9vKpI1fWthueTYsOVmWZV+vg4BfpbvJAQANDTUa4BAAAAAAAA6PHsZbXKshVq5YYyOV1uQ7MmkzR51GBlpqVodEq0TCaTl1ICAHoDyjUAAAAAAAAAPZLL7dGaLRXKstm11V5leD4kyE+zJyVqXmqyBkf380JCAEBvRLkGAAAAAAAAoEdpaGrTp2t2a2meXfurmw3PDxnQTxlpVs2cEK+QIH8vJAQA9GaUawAAAAAAAAB6hD376rUk164v1u1Ra5vL8Py44QOVmZ6i8SMGyWxm60cAwKmhXAMAAAAAAADQbbndHm3Yvl/ZNrs2bN9veD4wwKKZ58ZrXmqyEgaHeyEhAKCvoVwDAAAAAAAA0O00tzq1fN0eZdvsKqtsMDw/oH+w5k1P1oVTEhUWEuCFhACAvopyDQAAAAAAAEC3se9gk5bk2vXZmhI1tjgNz5+VHKXMtBRNGT1YFovZCwkBAH0d5RoAAAAAAAAAn/J4PNpir1K2za41Wyrk9hib97OYlT5uqDJSrTojvr9XMgIAcAjlGgAAAAAAAACfaHO4lLOxTNk2u+zltYbn+4cGas60JM2ZmqTI8CAvJAQA4GiUawAAAAAAAAC61MG6Fn20qkjL8otV29BmeD4lLkKZaValnTNU/n4WLyQEAOD4KNcAAAAAAAAAdImde6qVlWNX7ldlcrqM7f1oNklTzx6ijDSrzkqOkslk8lJKAABOjHINAAAAAAAAgNc4XW7lb65QVk6hvimpNjwfGuyvi6Ykau70ZA2KDPFCQgAAjKFcAwAAAAAAANDp6hrb9MnqYn2UV6QDtS2G5+NjQpWRlqLzx8cpKJCPMQEA3Qd/KwEAAAAAAADoNCUVdcrOtWvF+lK1OVyG5yecGaPMNKvOGT6QrR8BAN0S5RoAAAAAAACA0+J2e7Ru2z5l2Qr11c4DhueDAy26YEKC5qVZNXRgqBcSAgDQeSjXAAAAAAAAAJySphaHPi/YrSW5RaqoajQ8HxMVonmpVs2elKB+wf5eSAgAQOejXAMAAAAAAABgSPmBBi3JLdLnBbvV3Oo0PH92ygBlpls18azBspjZ+hEA0LNQrgEAAAAAAAA4KY/Ho007DyjLZtfabXvl8Rib9/cz67zxccpIsyp5SIR3QgIA0AUo1wAAAAAAAAAcV0ubUys3lCrbZlfJ3nrD81HhQZo7PUkXT0lSRGigFxICANC1KNcAAAAAAAAAHOVATbOW5hXpk9XFqm9yGJ4fkRCpjDSrpo0ZIn8/sxcSAgDgG5RrAAAAAAAAACR9u/Xj9pJqZdnsyttULrfb2N6PFrNJ08cOUWaaVSMSo7yUEgAA36JcAwAAAAAAAPo4h9OtvK/KlGWza+eeGsPzYSEBunhqoi6ZnqzoiODODwgAQDdCudbNbN++XR988IEKCgpUWlqq5uZm9evXT4MGDdLYsWM1e/Zspaeny2Qy+Tpqh1x77bVavXq1HnroIV1++eW+jgMAAAAAAIDD1NS3atnqYn28qkgH61oNzyfFhiszzar08XEK9Ld4ISEAAN0P5Vo3UV5ergcffFD5+fm68sordffddys+Pl5ut1vl5eWy2Wx666239M9//lOjRo3Sk08+qcTERF/HPqF//vOfWr16ta9jAAAAAAAA4DvsZbXKshUqZ2OZHE63oVmTSZp01mBlplt1dsqAHvNL4AAAdBbKtW7gq6++0k033aTo6GgtXbpUsbGxRzwfExOjcePG6Uc/+pGuv/56bd26VT/+8Y/1/vvvKy4uzkepT2z//v165JFHfB0DAAAAAAAA/8fl9mjNlgpl2ezaaq8yPB8S5KfZkxI1LzVZg6P7eSEhAAA9A+Wajx08eFC/+MUvVFNTo7fffvuoYu1wgwcP1pNPPqnLLrtM1dXV+u1vf6t33nmnC9N23H333ae6ujpfxwAAAAAAAOjzGpod+mxNiZbkFWn/wSbD80MG9FNGmlUzJ8QrJMjfCwkBAOhZKNd87IUXXtDBgwc1cuRIpaSknPT8kSNHKjU1VTk5OVq/fr0KCgo0adKkLkjacR9//LG++OILTZo0SQUFBb6OAwAAAAAA0CeV7q9Xts2u5ev2qKXNZXj+nOEDlZlm1bkjY2Q2s/UjAACHUK752LJlyyRJDoejwzPTpk1TTk6OJGnFihXdqlyrra3Vn/70J11xxRUaNGgQ5RoAAAAAAEAXcrs92rhjv7Jsdm34Zr/h+QB/i2ZOiFdGarISBod7ISEAAD0f5ZoPNTU1ad++fZKkwsJC5eTkKD09/aRz8fHx7ce7d+/2Wr5T8dBDD8nf31933HGH3njjDV/HAQAAAAAA6BOaW51avm6PluTaVbq/wfD8gP7Bmjc9WRdOSVRYSIAXEgIA0HtQrvlQc3PzEY8XLlzYoXItODi4/bitra3Tc52qvLw8/fvf/9ZLL72k0NBQX8cBAAAAAADo9fYfbNKSvCJ9uqZEjc0d3xnpkLOSo5SZlqIpowfLYjF7ISEAAL0P5ZoPRUVFaeDAgaqsrJSk9lVsJ1NdXd1+HBsb65VsRjU1Nenuu+9WZmamZsyY4es4AAAAAAAAvZbH49FWe5WybHat2VIht8fYvJ/FrPRxQ5WRatUZ8f29khEAgN6Mcs2HTCaTnnrqKT311FOqqanRNddc06G5LVu2tB+PGDHCW/EMefLJJ9XS0qLf/e53vo4CAAAAAADQK7U5XMrZWKZsm1328lrD8/1DAzVnWpLmTE1SZHiQFxICANA3UK752IQJE/TWW291+HyPx6NPP/1UkuTn56c5c+Z4K1qHffnll3rrrbf0+OOPKzIy0tdxAAAAAAAAepWDdS36aFWRluUXq7bB+C1CUuIilJlmVdo5Q+XvZ/FCQgAA+hbKtR5mxYoVKisrkyTNmjVLUVFRPs3T1tam3//+9zr//PM1d+5cn2YBAAAAAADoTXbuqVaWza7cL8vkdBnb+9FskqaePUQZaVadlRwlk8nkpZQAAPQ9lGs9iMvl0tNPPy1JCgkJ0R133OHjRNKLL76o/fv3629/+5uvo3QJp9PZJ9+MOp3ODn0NAAAA8AbejwLoS5wut9Zs3acluUXavrvG8Hy/ID/NnpSgi6cmalBk8LfX5L+ZAHDaeE/6X331+z4c5VoP8vrrr+ubb76RJN1///2Kj4/3aZ6dO3fqxRdf1L333qtBgwb5NEtX2bZtm68jdBtff/21ryMAAACgD+P9KIDepqnVpfW7GrV2Z6PqmlyG5weE+2nyiFCNTQ5RgF+b9u7Zqb17vBAUANCO96R9F+VaD7FlyxY98cQTkqQFCxYoIyPDp3ncbrd+//vfa8KECfrhD3/o0ywAAAAAAAA91f4ah1Zvb9Cm4ibDWz9K0rAhQZo8IlQpgwP75G47AAD4AuVaD7B//37deuutcjqduueee3TVVVf5OpLeeOMN7dy5U1lZWb6OAgAAAAAA0KO4PR7tLG/R6m8aVLSv1fC8v59J46whmjQ8VAPC/b2QEAAAnAjlWjdXV1enG2+8UZWVlXrkkUeUmZnp60jas2ePnn76af3P//yPz7emBAAAAAAA6ClaHW5ttDeqYHujDjYYv19N/34WTRoeqnEp/RQcYPZCQgAA0BGUa91YfX295s+fL7vdrkWLFmnmzJm+jiRJuueeezR8+HBdc801vo7S5c4880z5+/e93whzOp1H7R981llnyc+P/4QAAADA+3g/CqCn21vVqKWrSrR8XamaW42XaqOtUbpkepImnBkji5mtHwHAF3hP+l8Oh0Pbtm3zdQyf6nv/1HuI2tpazZ8/X4WFhXrxxRc1depUX0eSJP3rX//S2rVr9eGHH8ps7nu/IeXn59cny7Vj4c8CAAAAvsT7UQDdncfj0aZdB5SVY9fabXvlMXg7NX8/s84bH6eMNKuSh0R4JyQA4LT01fekHqN/qfVClGvdUHV1ta6//nrt3r1bL7/8siZMmODrSJKkyspKLVy4UDfffLPOOOMMX8cBAAAAAADodlodLv1nfamybYUq2VtveD4qPEhzpyfp4ilJiggN9EJCAABwuijXuplDK9YOFWvjx4/3daR277//vmpra/XKK6/ob3/720nPb2traz++77779Oc///mI51944YVuUxwCAAAAAACcjgM1zfpoVZGW5Zeovqnt5APfMSIhUhlpVk0bM0T+fn1vtyAAAHoSyrVupKGhQTfccIOKi4v16quvaty4cb6OdISrrrpKGRkZHT7/7bff1quvvipJuv3223XRRRcd8fzAgQM7NR8AAAAAAEBX8ng82l5SrSybXXmbyuV2G9smy2I2afqYIcpIt2pkYpSXUgIAgM5GudZNtLW16ZZbbtHOnTv117/+tUPFmsPh0K9+9Ss9+uijCg4O9nrG8PBwhYeHd/j8sLCw9uPIyEjFxcV5IxYAAAAAAECXcjjdyvuqTFk2u3buqTE8HxYSoIunJuqS6cmKjvD+ZzoAAKBzUa51Ax6PR3feeafWr1+v559/XpMmTerQ3LZt25Sfn98lxRoAAAAAAEBfV1Pfqk9WF+ujVUU6WNdqeD4pNlwZaVbNGB+nQH+LFxICAICuQLnWDTz33HNaunSpHn74Yc2YMaPDc8uWLVNCQoIXkwEAAAAAAKCovFZZOXat3Fgqh9NtaNZkkiadNVgZaVaNOWOATCaTl1ICAICuQrnmYytXrtSzzz6rm2++WZdddlmH58rKyvTuu+8qLS3tmM+Xl5frj3/8o9auXau4uDjdddddmjZtWmfFBgAAAAAA6NVcbo8KtlYoy2bXlsIqw/MhQX6aNSlB86ZbFTugnxcSAgAAX6Fc86HKykotWLBAU6ZM0e23397huY0bN2rBggVqbGw87sq1BQsWqKCgQJK0Y8cO3XLLLfr4448VGxvbKdk7wuPxHPMYAAAAAACgu2poduizNSVaklek/QebDM/HDuinjFSrLpgYr5Agfy8kBAAAvka55kOLFi1SdXW1du3apblz53Zopq6uTlVV//1tqeOVa1u2bDnicXNzszZv3tyl5VppaWn7cUlJSZe9LgAAAAAAgFGl++u1JLdIX6zdrZY2l+H5c4YPVGaaVeeOjJHZzNaPAAD0ZpRrPnTgwAFJ365gq6ysPKVrHK9cGz16dPvKNUny9/fXyJEjT+k1OsLtdquhoUGSVFtbq9WrVys7O7v9+TfeeEPx8fGaMmWKIiIiZLFY1K8fWyIAAAAAAADf8Xg82ri9Ulm2Qq3/Zr/h+QB/i2ZOiFdGarISBod7ISEAAOiOKNd6uOOVawsXLmy/51pMTIx+85vfHPfczlBeXq4LLrjguM83NzfrD3/4Q/vjSZMm6c033/RaHgAAAAAAgONpaXVq+fo9yrbZVbq/wfD8gP7BumR6si6akqiwkAAvJAQAAN0Z5ZoPPf/881679pAhQ/TSSy957frfFRcXp+3bt3fZ6wEAAAAAABi1/2CTluQV6dM1JWpsdhiePzMpSpnpVk0dHSuLxeyFhAAAoCegXAMAAAAAAECv5fF4tNVepSybXWu2VMjtMTbvZzEp7ZyhykxL0Rnx/b2SEQAA9CyUawAAAAAAAOh12hwu5WwsU3auXfayWsPz/UMDNWdakuZMTVJkeJAXEgIAgJ6Kcg0AAAAAAAC9RnVdiz5aVaxl+cWqaWg1PG8dGqHMNKvSxw2Vv5/FCwkBAEBPR7kGAAAAAACAHm/nnmpl2ezK/bJMTpexvR/NJmnK2bHKTEvRWclRMplMXkoJAAB6A8o1AAAAAAAA9Egul1urNlco22bXtuKDhuf7BfvrosmJumR6sgZFhXghIQAA6I0o1wAAAAAAANCj1De16ZPVJVqaV6QDNc2G5+MGhSozzarzz41XUCAfjwEAAGN49wAAAAAAAIAeoWRvnbJtdq1YX6o2h8vw/IQzY5SRZtW44QPZ+hEAAJwyyjUAAAAAAAB0W263R+u+2afsHLu+3FlpeD4owKJZExM0L82qoQNDvZAQAAD0NZRrAAAAAAAA6HaaWhz6fO1uLcktUsWBRsPzg6JClJGarFmTEhUa7O+FhAAAoK+iXAMAAAAAAEC3UXGgUUty7fqsYLeaW52G589OGaCMNKsmjRosi5mtHwEAQOejXAMAAAAAAIBPeTwebdp1QNk2uwq+3iuPx9i8v59ZM8bFKTPdquQhEd4JCQAA8H8o1wAAAAAAAOATrQ6X/rO+VNm2QpXsrTc8HxUeqLnTknXx1CRFhAZ6ISEAAMDRKNcAAAAAAADQpQ7UNOujVUVall+i+qY2w/PDE/orIy1F08cMkb+f2QsJAQAAjo9yDQAAAAAAAF3im5KDysqxa9WmcrncxvZ+NJtNSh0zRBnpVo1MjPJSQgAAgJOjXAMAAAAAAIDXOJxu5W0qV7atUDt21xieDwsJ0MVTEzV3WrIG9A/u/IAAAAAGUa4BAAAAAACg09U2tGpZfrE+WlWkg3WthucTB4cpIy1F550bp0B/ixcSAgAAnBrKNQAAAAAAAHSaovJaZeXYtXJjqRxOt6FZk0madNZgZaRZNeaMATKZTF5KCQAAcOoo1wAAAAAAAHBaXG6PCrbuVbbNrs2FBwzPBwf6afbkBM2bblXsgH5eSAgAANB5KNcAAAAAAABwShqaHfq8oERLcou072CT4fnYAf2UkWrVBRPjFRLk74WEAAAAnY9yDQAAAAAAAIaUVTYo22bXF2t3q6XNZXj+nGEDlZlu1bkjY2Q2s/UjAADoWSjXAAAAAAAAcFIej0cbt1cqy1ao9d/sNzwf4G/R+efGKSPNqsTB4V5ICAAA0DUo1wAAAAAAAHBcLa1OrVi/R1k2u0r3NxieHxARpEtSrbpwcqLC+wV4ISEAAEDXolwDAAAAAADAUfYfbNLSvCJ9sqZEjc0Ow/NnJkUpM92qqaNjZbGYvZAQAADANyjXAAAAAAAAIOnbrR+/LjqoLFuhVm+ukNtjbN7PYlLqOUOVmWbVsPhI74QEAADwMco1AAAAAACAPs7hdClnY5mybHbZy2oNz/cPDdTFU5M0Z1qSosKDvJAQAACg+6BcAwAAAAAA6KOq61r0cX6xPs4vVk19q+F569AIZaZZlT5uqPz9LF5ICAAA0P1QrgEAAAAAAPQxu/bUKMtWKNuXZXK6jO39aDZJU86OVWZais5KjpLJZPJSSgAAgO6Jcg0AAAAAAKAPcLncyt9Soawcu7YVHzQ83y/YXxdOTtQl05MVExXihYQAAAA9A+UaAAAAAABAL1bf1KZPVpdoaV6RDtQ0G56PGxSqjDSrZp4br6BAPkoCAADgHREAAAAAAEAvVLK3Ttk2u1asL1Wbw2V4/tyRg5SZlqJzhg+U2czWjwAAAIdQrgEAAAAAAPQSbrdH67/ZpyybXV/uqDQ8HxRg0cwJ8cpIsypuUJgXEgIAAPR8lGsAAAAAAAA9XFOLQ1+s3aMluXaVH2g0PD8oKkTzpidr9uREhQb7eyEhAABA70G5BgAAAAAA0EPtrWpUdq5dnxfsVlOL0/D86JRoZaZZNWlUrCxs/QgAANAhlGsAAAAAAAA9iMfj0aZdB5Rts6vg673yeIzN+/uZNWNcnDLSrLIOjfBOSAAAgF6Mcg0AAAAAAKAHaHW4tHJDqbJtdhVX1BmejwoP1Nxpybp4apIiQgO9kBAAAKBvoFwDAAAAAADoxqpqm7U0r0jL8ktU39RmeH5YfH9lpqdo+pgh8vczeyEhAABA30K5BgAAAAAA0A19U3JQ2Tl25W0ql8ttbO9Hs9mk6WOGKDPNqhGJkTKZuJ8aAABAZ6FcAwAAAAAA6CYcTrfyNpUr21aoHbtrDM+HhQTo4qmJmjstWQP6B3d+QAAAAFCuAQAAAAAA+FptQ6uW5Rfro1VFOljXang+YXCYMtOsmjE+TkEBfNwDAADgTbzbAgAAAAAA8JGi8lpl2+z6z4ZSOZxuQ7MmkzTxzMHKTLNqzLABbP0IAADQRSjXAAAAAAAAupDL7VHB1r3Kttm1ufCA4fngQD/NnpSgS1KTNWRAqBcSAgAA4EQo1wAAAAAAALpAY7NDnxWUaElukfYdbDI8HxvdT/PSkjVrYoJCgvy9kBAAAAAdQbkGAAAAAADgRWWVDVpis+uLdbvV3OoyPH/OsIHKSLdqwsgYmc1s/QgAAOBrlGsAAAAAAACdzOPxaOOOSmXb7Fq3bZ/h+QA/s86fEK+MVKsSY8O9kBAAAACninINAAAAAACgk7S0OrVi/R5l59q1Z1+D4fkBEUGaOz1ZF01JUni/AC8kBAAAwOmiXAMAAAAAADhN+6ubtDS3SJ+uKVFDs8Pw/JlJUcpIs2rq2bHys5i9kBAAAACdhXINAAAAAADgFHg8Hn1ddFDZNrvyN5fL7TE272cxKfWcocpMs2pYfKR3QgIAAKDTUa4BAAAAAAAY4HC6ZPuyTFk2uwpLaw3PR4QGaM7UZM2ZlqSo8CAvJAQAAIA3Ua4BAAAAAAB0QHVdiz7OL9bH+cWqqW81PG8dEqGMNKvSxw1VgL/FCwkBAADQFSjXAAAAAAAATmBXaY2ycgpl+7JMTpexvR/NJmny6Fhlplk1yhotk8nkpZQAAADoKpRrAAAAAAAA3+FyubV6y15l2Qr1ddFBw/P9gv114eREXTI9WTFRIV5ICAAAAF+hXAMAAAAAAPg/9U1t+nR1iZauKlJldbPh+bhBocpIs+r8c+MVHMjHLgAAAL0R7/IAAAAAAECft3tvnbJzi7R83R61OVyG58ePHKTMNKvGDR8ks5mtHwEAAHozyjUAAAAAANAnud0erf9mn7Jsdn25o9LwfFCARTMnxGteqlXxMWFeSAgAAIDuiHINAAAAAAD0KU0tDi1ft0fZNrvKDzQanh8UGax5qVbNnpyo0GB/LyQEAABAd0a5BgAAAABAN+dyuXTttdfq8ssv1+WXX+7rOD3W3qpGLckt0mcFJWpqcRqeH2WNVmaaVZNHDZbFYvZCQgAAAPQElGsAAAAAgF5l/fr1Wrp0qdavX6+Kigo1NTUpNDRU0dHRGj16tKZNm6Y5c+YoICDA11E7pLW1Vffff7/Wrl3bacXa/v379dFHH8lms6m4uFgHDx6UyWTSoEGDZLVaNWfOHF1wwQUKCQnplNfzJY/Ho82FB5SVY1fB13vl8Rib97OYNWP8UGWmpcg6NMI7IQEAANCjUK4BAAAAAHqFTZs26U9/+pN27dqlzMxM3XbbbRo8eLAcDocqKiqUm5urrKwsffjhh3r00Ud133336YILLvB17GOqra3Vvn37lJubq3/+85+y2+2dcl2Xy6W//OUveuWVV9TU1KTzzjtPt912m+Lj42U2m1VWVqZPP/1Ud955p6KiovTAAw/ovPPO65TX7mqtDpdWbihVts2u4oo6w/ORYYGaOz1ZF09JUv+wQC8kBAAAQE9FuQYAAAAA6PHeeOMNPfTQQxo/frw+/vhjxcTEHPH8uHHjNHfuXN1444268cYbVVJSol/+8pe65557dOWVV/oo9ZEKCgp03XXXyePxyO12d/r129ra9Otf/1qfffaZAgMD9dxzz2nWrFlHnDNu3DjNmzdPa9eu1W233aabbrpJv/nNb3TjjTd2eh5vqapt1tK8Ii3LL1F9U5vh+WHx/ZWZZtX0sUPl78fWjwAAADga5RoAAAAAoEd777339OCDDyopKUkvv/yygoODj3tuUlKS/vrXv+rSSy9Vc3OzHnzwQY0aNUpjx47twsTHNnr0aH344Yftj1taWrRs2TK98sornXL9P/3pT/rss88kSXffffdRxdrhJk6cqEcffVQ///nP9fjjj2vAgAHd/l5v20sOKstmV95X5XK5je39aDabNH3MEGWmWTUiMVImk8lLKQEAANAbUK4BAAAAAHqsyspKLVy4UJJ09dVXn7BYOyQxMVE//vGP9dprr8npdOqxxx7Tm2++6e2oJxUSEqLhw4cf8bUxY8boP//5jwoLC0/r2rm5uXrvvfckSWeddZZ++MMfnnQmLS1N559/vpYvX64HHnhAaWlpGjhw4Gnl6GxOl1t5X5Ur22bX9t3VhufDQvx10ZQkzZ2WrIGRJ/93BwAAAJAk9jcAAAAAAPRYS5YsUWNjo6RvS7OOuuSSS9qPCwoKVF5e3unZOkt0dPRpX+Mvf/lL+7GRbTCvueYaSVJTU5OefPLJ087RWWobWvXe59t1w58+02NvrzdcrCUMDtOtPxyrV+++UNdechbFGgAAAAxh5RoAAAAAoMdatWpV+/HOnTuVnp7eobmRI0fKYrHI5XJJktatW6fMzEyvZPS1wsJCrVu3TpJkMpk0c+bMDs9OmDBBoaGhamhoUFZWlhYsWKCIiAhvRT2povJaZdvs+s+GUjmcxu5LZzJJE88crMw0q8YMG8DWjwAAADhllGsAAAAAgB5r37597ccvvPCCLr30Ug0YMOCkcwEBAQoLC1NNTY0kaf/+/d6K6HOrV69uPx4yZIihlXD+/v4655xzlJubK4fDoc8++0w/+MEPvBHzuFxuj9Z+vVdZOXZtLjxgeD440E+zJyXoktRkDRkQ6oWEAAAA6Gso1wAAAAAAPZbH42k/rqur07vvvqtbb721Q7P+/v7tx263sVVQPcm2bdvaj5OSkgzPJycnKzc3V5L0xRdfdFm51tjs0GcFu7Uk1659B5sMz8dG99O81GTNmpSgkCD/kw8AAAAAHUS5BgAAAADosc4++2zt2LGj/XFLS0uH5lwuV/uqNUkaNGhQZ0frNg4ePNh+HBYWZnh+8ODB7cfffPNNp2Q6kbLKBi2x2fXFut1qbnUZnh87bIAy01J07pkxspjZ+hEAAACdj3INAAAAANBj/frXv1ZDQ4M2btyouLg4/eQnP+nQ3I4dO+RwONofn3322d6K6HPNzc3tx4GBgYbng4OD24/Ly8vV0NCg0NDO3V7R4/Fo445KZdvsWrdt38kHviPAz6zzJ8QrI9WqxNjwTs0GAAAAfBflGgAAAACgxxowYICeeeYZw3Off/55+3FSUpJSUlI6M1a3EhIS0n7c1GR8e0WLxXLE4+LiYo0ePfq0c0lSS5tTK9aXKttm15599YbnoyOCdMn0ZF00JUnh/QI6JRMAAABwMpRrAAAAAIA+xel06t///nf74yuvvNKHabwvPPy/K7kO3wqzo0pLS494XF9vvAT7rv3VTfoor0ifrC5RQ7Pj5APfMTIxUplpKZo6JlZ+FvNp5wEAAACMoFwDAAAAAPQp//73v1VWViZJhraS7KkOX5W3c+dOw/PLly8/4nFjY+Mp5fB4PPq66KCybXblb6mQ2+0xNO9nMSl17FBlpFk1PCHylDIAAAAAnYFyDQAAAADQZ9TV1empp56S9O12hw8//LACAnr3doLnnHNO+3FNTY127Nih4cOHd2j2888/V2Fh4RFfM7q1pMPpku3LcmXZClVYWmtoVpIiQgN08dQkzZ2WrKjwIMPzAAAAQGejXAMAAAAA9BkPPvigDhw4IEn6/e9/r4kTJ/o4kfeNGzdOQ4cObV+tt3jxYv3v//7vSecaGhr05z//+YhZSR0uI6vrW7RsVbE+yi9WTX2r4dzWIRHKSLMqfdxQBfhbTj4AAAAAdBHKNQAAAABAn/DBBx/oww8/lCQtWLBAV111lW8DdRGLxaL58+frgQcekCS99dZb+slPfqK4uLjjzrhcLt11112yWq2Kj4/XO++80/5cv379Tvh6u0prlG2zK2djmZwut6GsZpM0eXSsMtOsGmWNlslkMjQPAAAAdAXKNQAAAABAr7du3Trdc889MplMuvvuu/tMsXbIVVddpdzcXK1YsUItLS26+eab9frrrysqKuqoc5ubm/WHP/xBO3fu1Ouvv65nn332iOdDQ0OPmnG53Fq9Za+ybIX6uuig4Xz9gvw0e3Ki5qVaFRMVYngeAAAA6EqUawAAAACAXm379u365S9/KbfbrYceekiXXXaZryN1OZPJpGeeeUZ//OMf9a9//Us7duxQZmambr31Vs2cOVPR0dGqrKzUypUr9eqrryoiIkLvvPOOoqKijrrHWkRERPtxQ1ObPlldoqWrilRZ3Ww419CBocpIs2rmhHgFB/IRBQAAAHoG3rkCAAAAAHqtwsJCXX/99WpoaNDjjz+uOXPm+DqSzwQEBOjPf/6zfvzjH+uNN95QXl6e7r33Xt17772SJH9/f40ePVo/+9nPdPnll8ti+fY+Zw0NDe3X8Pf3V0JCgnbvrVN2bpFWrN+j1jaX4SzjRwxSZrpV44YPktnM1o8AAADoWSjXAAAAAAC9kt1u17XXXqu6ujo9/fTTmjVrlq8jdQtjx47V448/Lo/Ho+rqatXW1srf31+DBg1SQEDAUecfOHCg/Th2aILuf6VAG3dUGn7dwACLZk6IV0aqVfExYaf1PQAAAAC+RLkGAAAAAOh1ioqKdM0116i2tlaLFi3S+eef7+tI3Y7JZFJUVNQx77t2uL379rUfVzvCDRdrgyKDdcl0qy6cnKDQkKPLOwAAAKCnoVwDAAAAAPQqpaWluu6661RTU0Oxdhr2VjXqg+XbdKDyv2VaSPQZHZ4fZY1WZppVk0cNlsVi9kZEAAAAwCco1wAAAAAAvUZlZaWuv/56VVVV6amnnqJYM8jj8WhLYZWybIVas3Wvmg7u/u+TJrNCB4864byfxawZ44cqI9WqlLj+3g0LAAAA+AjlGgAAAACgV2hoaNDPfvYzlZaW6rHHHuvwPdYOHDigoqIiTZw40csJu682h0srN5Qqy2ZXcUVd+9dbava0H4dEp8gSEHLM+ciwQM2Zlqw5U5PUPyzQ63kBAAAAX6JcAwAAAAD0eE6nU7fffru++eYb3Xfffbrkkks6PJuVlaVPP/1U7777rhcTdk9Vtc36aFWxluUXq66x7ajnmyp3tB9HJE456vkz4vsrM82q1LFD5e/H1o8AAADoGyjXAAAAAAA93gMPPKC8vDzdeuutuuKKKwzN5ufnKyEhwUvJug+Hw6GsrCw1NjZq5NjpWrm5Wnlflcvl9hzzfFdbk5oO7JQkBYYPUejg0ZIks9mkaWfHKjMtRSOTImUymbrsewAAAAC6A8o1AAAAAECP9v777+vdd9/V9773Pd12222GZisqKpSfn6+bb775uOd89NFHWrRokSorKzV9+nTde++9ioqKOt3YXe7ee+/Vv/71L0lSyIBhipvy8xOeX1OyWh63U5IUPeIihfcL0EVTkjR3WrIGRgZ7PS8AAADQXVGuAQAAAAB6rB07duiBBx7QOeecowceeMDQrNvt1n333SeHw6GkpKRjnrNhwwb95je/kdvtliQtW7ZMVVVVevPNN7tsxZbH4znmcUfVNrTqk9Ul+nDxkvavNR3YJbfLIbPF/5gzjqaDqi78jyQpJvlc3XnrFZoxPk5BAXyMAAAAAPCuGAAAAADQIzmdTv3v//6v/Pz89NRTTykgIKDDs3a7XY888ohWrFghScfdFvLzzz9vL9YOWbt2rYqLi5WcnHzq4Q0oLS1tP96zZ0+H54or6pSVU6iVG0rV5nRLlgDJ2fp/z3rkam2QOSTyqDm3y6mKjX+X29mi+ESrPvjHCwoPDz/dbwMAAADoNSjXAAAAAAA90pIlS/TNN9/I399f3/ve9zo819bWpqampiO+dryVa8fz3cLNW/Ly8lRRUdH+OCsrS/Pnzz9u2eVye7T2673Kttm1adeBI57rnzhFVTs+a3/saDog/++Ua/5qUc22d9RSXaKRI0fq5ZdfplgDAAAAvoNyDQAAAADQI9XU1EiSHA5H+/GpiIqKUlhY2DGfmzVrlv72t78dUaYNHz7ccBnXEU1NTSotLZXH41FdXZ3WrVunV1555YhzysrK9P3vf1/XXXedhg8froiICEnS0Phkfb52t5bk2rW3qulYl1fUsAvkamtSTfEqSR4d+GaZokd4ZAkIUZhfq6L99mv9qk/V1tama665Rr/+9a8VHMy91QAAAIDvolwDAAAAAPRpiYmJx31u/Pjxevzxx/XMM89o3759mjhxou655x5ZLJZOz7F582Zdc801Jz1v9+7duv/++4/42tjvP67mVtcJ50wmswaNvlQRCZNUU7JGzQcLtXf9G5LHpfDwcIWccYbmz5+vyy67TEOHDj2t7wUAAADozSjXAAAAAAA90nXXXafrrrvO668zd+5czZ071+uvM3nyZG3fvv2k53k8Hn25o1JZNrvWf7NPHo9OWqwdLixqqDIv/B9lpFqVGMuWjwAAAIBRlGsAAAAAAPQALW1OrVhfqmybXXv21Ruej44I0iXTk3Xh5ERFhAZ6ISEAAADQN1CuAQAAAADQje2vbtJHeUX6ZHWJGpodhudHJkYqMy1FU8fEys9i9kJCAAAAoG+hXAMAAAAAoJvxeDzaVnxQWTa78jdXyO32GJq3mE1KHTtUmelWDU+I9FJKAAAAoG+iXAMAAAAAoJtwOF2yfVmubFuhdpXWGp6PCA3QxVOSNGdakqIjgr2QEAAAAADlGgAAAAAAPlZd36Jlq4r1UX6xaupbDc8nDwlXZppV6ePiFOBv8UJCAAAAAIdQrgEAAAAA4CO7SmuUbbMrZ2OZnC63oVmzSZo8OlYZaVaNtkbLZDJ5KSUAAACAw1GuAQAAAADQhVwut1Zv3atsm11b7VWG5/sF+Wn25ETNS7UqJirECwkBAAAAnAjlGgAAAAAAXaChqU2frinR0rwi7a9uNjw/dGA/ZaRaNXNigoID+XEeAAAA8BXejXcz27dv1wcffKCCggKVlpaqublZ/fr106BBgzR27FjNnj1b6enp3Wq7j/Xr1ysrK0vr169XeXm52traFBYWptjYWJ1zzjm65JJLdO655/o6JgAAAAD4xJ599cq22bV8/R61trkMz48fMUgZaVaNHzFIZnP3+VkQAAAA6Kso17qJ8vJyPfjgg8rPz9eVV16pu+++W/Hx8XK73SovL5fNZtNbb72lf/7znxo1apSefPJJJSYm+jTzjh07dP/998tut+vqq6/WQw89pCFDhqitrU179uzRF198oXfffVdvv/22pk+frkcffVTR0dE+zQwAAAAAXcHt9mjD9v3KyinUxh2VhucDAyyaOSFeGalWxceEeSEhAAAAgFNFudYNfPXVV7rpppsUHR2tpUuXKjY29ojnY2JiNG7cOP3oRz/S9ddfr61bt+rHP/6x3n//fcXFxfkk8/Lly/XrX/9ao0eP1scff6yIiIgjno+NjdWkSZP0/e9/X/Pnz1deXp6uvPJK/eMf/zjqXAAAAADoLZpbnVq+dreyc+0qq2w0PD8oMliXTLfqwskJCg0J8EJCAAAAAKfL7OsAfd3Bgwf1i1/8QjU1NXrmmWeOKtYON3jwYD355JMym82qrq7Wb3/72y5M+l+FhYX6f//v/8lsNuuZZ545YVk2fPhwPfDAA5Kk4uJi/elPf+qqmAAAAADQZfZWNeqVrC26/v5P9MK/Nxsu1kZZo3XXtRP10l2zdPn5Z1CsAQAAAN0YK9d87IUXXtDBgwc1cuRIpaSknPT8kSNHKjU1VTk5OVq/fr0KCgo0adKkLkj6X0888YRaW1uVmpqqqKiok55//vnn64wzztCuXbu0ZMkS3X777YqPj++CpAAAAADgPR6PR1sKq5RlK1TB1r1ye4zN+1nMSh83VJlpVqXE9fdKRgAAAACdj3LNx5YtWyZJcjgcHZ6ZNm2acnJyJEkrVqzo0nKtqamp/bWNZJ46dap27dolt9utnJwcXXXVVd6KCAAAAABe1eZwaeWGUmXn2lVUXmd4PjIsUHOmJeviqYmKDAvyQkIAAAAA3kS55kNNTU3at2+fpG+3WszJyVF6evpJ5w5f9bV7926v5TuWsrIytbW1SZLy8/P1zTffaOTIkSedO/zecCUlJV7LBwAAAADeUlXbrI9XFevj/GLVNbYZnj8jvr8y06xKHTtU/n7cpQEAAADoqSjXfKi5ufmIxwsXLuxQuRYcHNx+fKjo6iqHZ3Y4HHriiSf00ksvnXQuJCSk/birMwMAAADA6dixu1pZOXblflUml8G9H81mk6aeHavMNKvOTIqSyWTyUkoAAAAAXYVyzYeioqI0cOBAVVZWSlL7KraTqa6ubj+OjY31SrbjSUhIUFBQkFpaWiSdWuYhQ4Z4JRsAAAAAdBany61Vm8qVZbNre0n1yQe+IzTYXxdNSdQl060aGBl88gEAAAAAPQblmg+ZTCY99dRTeuqpp1RTU6NrrrmmQ3NbtmxpPx4xYoS34h1T//799dhjj+mvf/2rWltbdfvtt3dozpeZAQAAAKCjahta9cnqEn20qkhVtS2G5+NjwpSZZtV558YpKIAfuQEAAIDeiHf6PjZhwgS99dZbHT7f4/Ho008/lST5+flpzpw53op2XLNnz9bs2bM7fH5jY6Nyc3MlSZGRkZo2bZq3ogEAAADohUwmkwYMGKDAwECZTCZ5PB6ZzZ17z7Liijpl2+z6z/o9anO6DeaTJpwZo8w0q8YOG8jWjwAAAEAvR7nWw6xYsUJlZWWSpFmzZikqKsrHiU7ugw8+UFNTkyTp8ssvl7+/v48TAQAAAOhJ/Pz8lJiY2OnXdbk9Wvf1XmXZ7Nq064Dh+eBAi2ZNStS81GQNGRDa6fkAAAAAdE+Uaz2Iy+XS008/LUkKCQnRHXfc4eNEJ9fQ0KAXX3xRkjRo0CD94he/8HGi0+N0Ovvkb6E6nc4OfQ0AAADoDBaL5ZRWprndbrlcrpOe19Ti0BfrSvXRqhLtO9hk+HViokI0d1qiZk6IU7+gb3950OFwGL4OAAAAeg4+I/2vvvp9H45yrQd5/fXX9c0330iS7r//fsXHx/s40ck9+eSTqqyslL+/vx5//HGFh4f7OtJp2bZtm68jdBtff/21ryMAAACgl+nfv78SExOPKtbaHC4VldepZG+dWttcCgywKHFwuJKHhCvA39J+ntlsltvtVklJiWpqao66flWdQ2t2NOpLe6PanB7D+ZJjAjV5RKiGDwmS2Vyvwh38fAAAANCX8Rlp30W51kNs2bJFTzzxhCRpwYIFysjI8HGik1u+fLneeust+fn56ZFHHtGkSZN8HQkAAABANxUdHa3ExMQjdorYsbta2Ta78jaVy3GM+6D5+5k1fcwQZaRZNTwhUtK3W0harVaVlJSoqqpKHo9H9r2tWr29QTvLWwzn8rNIY5L6afKIUMX0Z4t7AAAAAJLJ4/EY/3U9dKn9+/frRz/6kfbu3au7775bV111la8jndTOnTv1k5/8RK2trXryySc1a9YsX0cypK2tTZs3b/Z1DAAAAKBP6N+/v6xWa3ux1tTi1N+yt2jZ6pIOX+PiKYm6PmO0QoK+/R1Sj8ejT/O26r3lJaqsNb5tTViwRZOG99P4lH7qF2Q5+QAAAADQx5199tkKCAjwdYwuwcq1bq6urk433nijKisr9cgjjygzM9PXkU6qvLxcN954o1wul1566SVNnTrV15EAAAAAdFN+fn5HrFirqm3WH15YpdL9DYaus2x1ibbYq/SnX0xTdESwTCaTpo4brrc+L5XU8XItLjpAk0eE6qyEYFnMfe9+ywAAAABOjpVr3Vh9fb2uv/567dixQ0899ZRmzpzp60gntXfvXl199dWqq6vTyy+/rDFjxvg60ik53sq1M888U/7+fW8rGKfTedT+wWeddZb8/OjnAQAAcHosFkv7PdaaWpz6zdMrDRdrh4uPCdNjt6e3r2DL31yhP79WcOIMZpOmjYnVvOlJGhbf/5RfGwAAAL0Xn5H+l8Ph0LZtR99/mJVr8Lna2lrNnz9fhYWFevHFF3vE6q+ysjJde+21amxs1BtvvKGRI0f6OlKn8/Pz65Pl2rHwZwEAAIDO9rfsLadVrEnSnn31+tuSrfrlD8ZKkqaeHauUoREqLKs96tzwfgGaMzVJc6YlKToi+LReFwAAAH1PX/2MlDVblGvdUnV1ta6//nrt3r1bL7/8siZMmODrSCe1Z88eXXPNNXI4HHrrrbeUkpLi60gAAAAAepAdu6sN3WPtRJblF2v2pAQNT4iUJM2ZlqRn//lV+/PJQ8KVmWZV+rg4BfhzPzUAAAAAxlCudTOHVqwdKtbGjx/v60gnVVpaqmuvvVZOp1NvvvmmkpOTfR0JAAAAQA+TbbN36vWW5Nr16yvPlSTNGBenl/69WeeeGaOMNKtGW6Pb7/EGAAAAAEZRrnUjDQ0NuuGGG1RcXKxXX31V48aN83Wkk9q3b5+uu+46tbW16a233lJSUpKvIwEAAADoYdocLuVtKu/Ua+Z+Va5bf3iOAvwtCgr004t3zdKA/mz9CAAAAOD0mX0dAN9qa2vTLbfcop07d+rFF1/sULHmcDh06623qrm5uQsSHq22tlY33HCDGhsb9dprr3WoWNu3b5/uuOMO74cDAAAA0GMUldfJ4XR36jUdTreKK+raH1OsAQAAAOgslGvdgMfj0Z133qn169frmWee0aRJkzo0t23bNuXn5ys4uOt/SDxUBpaXl+vll1/WGWec0aG5DRs2aMeOHV5OBwAAAKAnKdlbd/KTTsHh5RoAAAAAdBa2hewGnnvuOS1dulQPP/ywZsyY0eG5ZcuWKSEhwYvJju/ee+/VV199pZdeekmjRo3q8JwvMwMAAADonlrbXN65rsM71wUAAADQt7FyzcdWrlypZ599VjfffLMuu+yyDs+VlZXp3XffPW5RVV5erhtvvFHjxo1TRkaGVq1a1VmR9fe//10ffPCB7r33Xk2bNq3Dc5s2bdJnn31GuQYAAADgCIEBFu9c19871wUAAADQt1Gu+VBlZaUWLFigKVOm6Pbbb+/w3MaNG3X99dersbHxuEXVggULtHLlSjU1NWnHjh265ZZbVFFRcdqZd+zYoYceekiXX365fvjDH3ZoxuPxaOXKlbrpppvkcrko1wAAAIA+rrahVeu37Wt/nDg43CuvkxTrnesCAAAA6NvYFtKHFi1apOrqau3atUtz587t0ExdXZ2qqqraHx+vqNqyZcsRj5ubm7V582bFxsaeemBJCxcuVGtrq1avXq2LL764QzPV1dWqqalpf0y5BgAAAPRNu/fWKctm14p1e5QwOFznnhkjSUoeEi5/P7McTnenvZa/n5lyDQAAAIBXUK750IEDByR9u4KtsrLylK5xvKJq9OjRKigoaH/s7++vkSNHntJrHO5Q5vLy8lO+BuUaAAAA0Hd4PB5t2L5fWTl2bdi+v/3rxRV1aml1KijQTwH+Fk0fM0T/2VDaaa+bOnaIAtgWEgAAAIAXsC1kD3e8omrhwoWaMWOGQkJClJycrCeffLJblFr+/v6nvXoOAAAAQPfX0ubUsvxi/fLR5frjX1cfUaxJktPlVs6XZe2PM9Ksnfr681I793oAAAAAcAgr13zo+eef99q1hwwZopdeeqnTr7t48eJOvyYAAACA3qOqtllL84q0LL9E9U1tJzz3o7wiXTg5UZI0PCFSF09J1LLVJaed4eKpSRqeEHna1wEAAACAY6FcAwAAAACctl17arQ4p1C2L8vkcns6NFNYVqv8zRWaeva3u1tcnzFaW+xVKt3fcMo54mPCdP28Uac8DwAAAAAnQ7kGAAAAADglLrdHa7ZUaHFOob4uOmh4Pio8SJXVTfJ4PDKZTAoJ8tOffjFNd7+Yrz376g1fLz4mTA/cNFUhQfyoCwAAAMB7+IkDAAAAAGBIY7NDnxXsVnauXfsPNhmePyO+vy5NT9H0MUPk73fkrcCjI4L12O3p+lv2FkNbRF48NUnXzxtFsQYAAADA6/ipAwAAAADQIRUHGrUk167PCnarudVpaNZskiaPjtWl6Sk6KzlKJpPpuOeGBPnplz88R7MnJ2pJrl25X5XL4XQfdZ6/n1mpY4doXqqVe6wBAAAA6DKUawAAAACA4/J4PNpir1JWTqHWbN0rT8dup9YuJMhPF05O1LxUq2KiQgzNDk+I1K+vPFe3/vAcFVfUqbiiTq0OlwL9LUqKDVdSbLgC/C3GAgEAAADAaaJcAwAAAAAcxeF0y/ZlqRbn2GUvqzU8Pzg6RBlpVs2amKCQIP/TyhLgb9HwhEhWpwEAAADoFijXAAAAAADtahtatSy/WEvzilRd32p4fnRKtDLTUjRp1GBZzMff+hEAAAAAeirKNQAAAACASirqlGWz6z/r96jtGPc3OxE/i0np4+KUkWbVGXH9Oz2b0+lUWVmZAgICZDab5Xa7NWjQIFksbAkJAAAAoOtRrgEAAABAH+V2e7Rh+34tzinUlzsqDc+H9wvQnGlJmjstWVHhQV5I+C2Px6MDBw4c8bUBAwZQrgEAAADwCco1AAAAAOhjWlqdWrF+j7JsdpXubzA8nzA4TJemp2jG+DgF+lNwAQAAAOhbKNcAAAAAoI84UNOspXlFWpZfrIZmh+H5CWfG6NJ0q8YOGyiTifupAQAAAOibKNcAAAAAoJfbsbtai3MKlfdVuVxuj6HZAH+LLpgQr4w0q+JjwryUEAAAAAB6Dso1AAAAAOiFXC63Vm/Zq8U5hdpWfNDwfHREkOalWnXRlESFhQR4ISEAAAAA9EyUawAAAADQizQ2O/RZQYmybXbtr242PD8svr8uTU/R9LFD5GcxeyEhAAAAAPRslGsAAAAA0AtUHGhUdq5dnxeUqLnVZWjWbJKmjhmiS9NSNDIpkvupAQAAAMAJUK4BAAAAQA/l8Xi0xV6lxSsLVfD1XnmM3U5N/YL8dOGUJM2bnqxBUSHeCQkAAAAAvQzlGgAAAAD0MA6nS7Yvy7R4pV328lrD87ED+ikj1aoLJsYrJMjfCwkBAAAAoPeiXAMAAACAHqK2oVUf5xfro7wiVde3Gp4fc8YAXZqeoglnxshsZutHAAAAADgVlGsAAAAA0M0VV9QpK6dQ/9lQKofTbWjWz2LWjPFDdWl6ipKHRHgpIQAAAAD0HZRrAAAAANANud0erf9mn7Jy7PpyZ6Xh+YjQAM2dlqw5U5MUGR7khYQAAAAA0DdRrgEAAABAN9LS6tTy9XuUlWNXWWWD4fmk2HBdmm5V+rg4BfhbvJAQAAAAAPo2yjUAAAAA6AYqq5u1NM+uT1aXqKHZYXh+4lkxujQtRWOGDZDJxP3UAAAAAMBbKNcAAAAAwId27K7W4pWFyt1ULrfbY2g2MMCiWRMTlJFm1dCBoV5KCAAAAAA4HOUaAAAAAHQxl8ut/C0VWryyUN+UVBueH9A/WBmpybpwcqJCQwK8kBAAAAAAcDyUawAAAADQRRqaHfp0dYmW5NlVWd1seH5EYqQuTU/R1LNj5WcxeyEhAAAAAOBkKNcAAAAAwMvKKxuUbbPr87W71dLmMjRrNps0fcwQZaZbNTIxyksJAQAAAAAdRbkGAAAAAF7g8Xi0adcBZeXYtXbbXnmM3U5N/YL9ddHkRF2SmqxBkSHeCQkAAAAAMIxyDQAAAAA6UZvDpZyNpVqcY1dxRZ3h+SED+ikzPUUzJ8QrOJAf2QAAAACgu+EnNQAAAADoBNX1LVq2qlgfrSpWTUOr4fmxwwbo0vQUnTsyRmazyQsJAQAAAACdgXINAAAAAE5DUXmtsnLs+s+GUjldbkOz/n5mnTc+ThlpViUPifBSQgAAAABAZ6JcAwAAAACD3G6P1n2zT4tXFmrTrgOG5/uHBWrutGTNmZqk/mGBXkgIAAAAAPAWyjUAAAAA6KDmVqeWr92tLJtd5QcaDc8nxYbr0vQUzRg/VP5+Fi8kBAAAAAB4G+UaAAAAAJzE/uomLc0t0idrStTY7DA0azJJE88crEtnWHV2ygCZTNxPDQAAAAB6Mso1AAAAADiOb0oOavHKQq3aXCG322NoNjDAolkTE5SZZtWQgaFeSth7eDweud1ueTxH/zk7nc5jfo2iEgAAAF2lu74nNZlMMpvNPs/R11CuAQAAAMBhnC638jdVaHFOobbvrjY8P6B/sDJSk3Xh5ESFhgR4IWHv0dLSotraWtXX18vpdB6zWJN0zK8XFRXxAQIAAAC6THd+T2oymeTn56ewsDBFREQoKCjI15F6Pco1AAAAAJDU0NSmT1aXaEmuXQdqWwzPj0yMVGZ6iqadHSuLxeyFhL2Dx+NRTU2Nqqur1dra6us4AAAAQI/n8XjkcDh08OBBHTx4UIGBgYqMjFT//v27RfnXG1GuAQAAAOjTyioblJVTqC/W7VFrm8vQrNls0vQxQ3RpulUjEqO8lLB3qaqqUmVlpeE5fvsWAAAAvtZT3pO2trZq7969crlcGjBggK/j9EqUawAAAAD6HI/Ho007D+jDnEKt27bP8HxosL8umpKoS6ZbNTAy2AsJe6eamppTKtYAAAAAGFdZWSk/Pz/179/f11F6Hco1AAAAAH1Gm8OllRtKlWWzq7iizvD80IH9lJmeopnnxisokB+njGhoaFBFRcVRX/fz81NERITCwsJksVhkNh+9pabb7VZLy5FbdQYFBR3zXAAAAMAbuut7UrfbLZfLpfr6etXW1srpdB7xfEVFhfz8/BQaGuqjhL0TPw0CAAAA6PWq61r00apifZxfpNqGNsPz5wwbqMx0q84dGSOzmXsWnIpjrVgbNGiQoqKiTnofCLfbLYvFcsTX/Pz8fP5BBgAAAPqO7v6eNDg4WAMHDtTBgwe1f//+I56rrKykXOtklGsAAAAAei17Wa0W5xQqZ2OZnC63oVl/P7POGx+nzPQUJcWGeylh3+B0Oo/6Ld/o6GhFR0f7KBEAAADQ+5hMJkVHR8vlcqmqqqr96y0tLXI6nfLzoxLqLPxJAgAAAOhVXG6P1n29V4tz7NpceMDwfP+wQM2dlqw5U5PUPyzQCwn7noaGhiMem81mDRw40EdpAAAAgN5t4MCBqq6ultv9318wbGho4N5rnYhyDQAAAECv0Nzq1OcFu5Vts6uiqtHwvHVIhDLTrUofN1T+fpaTD6DD6uvrj3gcGhp60q0gAQAAAJwak8mkfv36HfE+vL6+nnKtE1GuAQAAAOjR9h9sUnauXZ+tKVFji/PkA4cxmaRJZw3WpekpGp0STeHjJc3NzUc85n4PAAAAgHeFhYUdUa599z05Tg/lGgAAAIAex+Px6Jviai3OKVT+5nK5PcbmgwMtmjUpUfNSkzVkAEWPN3k8HrlcriO+FhjIdpsAAACAN333PbfL5ZLH4+EXCjsJ5RoAAACAHsPpcivvq3ItzinUzj01hucHRQYrI82qWZMSFRrs3/kBcZTD7/NwiMXCtpsAAACANx3rPbfb7ea9eCehXAMAAADQ7dU3tWlZfrGW5hWpqrbF8PyZSVG6ND1FU0YPlsVi9kJCHI/Hc/SyQn5bFgAAAPCuY73nPtZ7c5wayjUAAAAA3daeffXKttn1xbo9anO4Tj5wGIvZpNSxQ5WZbtXwhEgvJQQAAAAA9DWUawAAAAC6FY/Hoy93VGpxTqHWf7Pf8HxYiL8unpqkudOSNaB/sBcSAgAAAAD6Mso1AAAAAN1Cq8Ol/6wvVZatULv31hueHzowVJemW3X+ufEKCuRHHQAAAACAd/ATJwAAAACfOljXoo/yivRxfrHqGtsMz48bPlCZ6SkaP2KQzGbu5QUAAAAA8C7KNQAAAAA+sau0Rlk5hbJ9WSany9iNtQP8zDrv3HhlpluVODjcSwkBAAAAADga5RoAAACALuNye1Swda8W5xRqq73K8HxUeKDmTk/WxVOSFBEa6IWEAAAAAACcGOUaAAAAAK9ranHo84Ldys61a29Vk+H5lLgIXZqeotSxQ+XvZ/ZCQgAAvlVWVqYhQ4bIZGKrYW9rbGxUv379fB0DAADDKNcAAAAAeM2+g03Kttn1WUGJmlqchmZNJmnK6Fhlplk1yhrNh5wAgC7x9NNPq6SkRPfee6/OOussX8c5qb/97W8KCAjQj3/8Y/n59ZyP+srKyvT9739fP/rRjzR//nz179/f15GOUlxcrKSkJK9dv62tTYsWLdKNN96osLAwr70OAKDz8SufAAAAADqVx+PRVnuVHnq9QDf++TMtzik0VKwFB/opM92ql+6apd9dN0mjUwZQrAEAusy2bdv05Zdf6gc/+IEeeOAB1dfX+zrSCY0bN04PPPCAMjMztXbtWl/H6bChQ4fqtttu04svvqgLLrhAL7/8spxOY7+I42233nqrbrjhBuXn53vl+k8++aReeuklZWZmqqCgwCuvAQDwjp7z6ywAAAAAujWH0628TeVanFOoXXtqDM8PigpRRqpVF05OUEiQf+cHBADgJGpra7Vr1y5JksvlUmVlpczm7v276eecc44uvfRSffjhh/rpT3+qq6++WgsWLJC/f/f/u/Sqq67SmjVr9Mknn+jRRx/Vp59+queee04DBw70dTRJUnBwsHJzc5Wbm+vV1ykvL9dNN92krKwsxcfHe/W1AACdg3INAAAAwGmpa2zTJ6uLtSS3SAfrWgzPj7JGKzPNqsmjY2Uxs0INAOA7BQUFcrvdkqQ5c+boiSee6PblmiTdfvvtWrp0qRwOh9588005HA7dd999vo7VIXfffbdWrVql+vp6ffXVV7r66qv1r3/9S6Ghoad0PY/Ho9ra2k7ZZjIoKEiSNGjQIL322munfb3vevvtt/X2229Lkl566SWKNQDoQSjXAAAAAJySPfvqlWWza/m6PWpzuAzNWswmpY0bqkvTUnRGfH/vBAQAwKCVK1dKkkaMGKGFCxf2iGJN+naLxTlz5igrK0uS9K9//Uu/+93vFBgY2OFrOJ1On9yzbeDAgfrJT36il156SdK39zlbv369ZsyYYfhaHo9H99xzjwoKCvTGG28oJibmtLId+vPw9/dXSkrKaV3rWCIjI9uPe8L9/QAA/9Uz3iEAAAAA6BY8Ho82bN+ve/+ar1seWa5l+cWGirWwkAD9aNZwvfKH2frNledSrAEAug2Xy6XPP/9c/v7+evTRRw0VU93B97///fZji8Uii8XS4dn6+npdddVVeuedd7wR7aSuuOKK9uOYmBhNnDjR8DUOFWv/+Mc/VFxcrGuuuUb79u07rVxG/gwBAH0LK9cAAAAAnFSrw6X/rN+jxTl27dlXb3g+PiZMl6ZbNWN8nIIC+DEEAND9FBQUqLq6Wr/85S81YsQIQ7MOh+OU7nG2fPly1dXV6Xvf+57h2e+aMGGC+vXrp8bGRn3/+9/v8Cq0+vp63XDDDfrqq6/01VdfyePx6KqrrjrhTFFRUfv2mZ1l4MCBqqmp0R133KGKigrD86+99pr+8Y9/tD8+VLCdzgo2k+nb7aodDocKCwtP6RonUl1d3X7s8Xg6/foAAO/hp1oAAAAAx1VV26yPVhXr41XFqm9qMzw/fsQgXZqeonEjBrZ/QAUAwKl6//331b9/f82aNeu453g8Ht15552aM2eOzjvvvPavL126VKmpqYqIiDjm3L///W8lJSXpF7/4heFc9913n8xms+6++25DJVtzc7MWLFigZcuW6b777jutbQz9/Px03XXXqaKiQr/97W87NHN4sSZ9+2f3wAMPSNIJC7b8/Hzdf//9XimE/vd//7fTrlVcXKyf/vSnevPNN0/pz/bQtqD79+/X3LlzOy3XsVCuAUDPQrkGAAAA4Ci79tRosa1QuV+Wyeky9mFPgL9FMyfEKyM1WQmDw72UEADQF1VXV+v3v/+9LrroIs2fP/+Y2/Z9/vnn+vDDD7V48WLdcsstuvXWW2U2m5Wbm6uFCxfqoYce0vTp04+YaWho0KeffqrnnntOAQEBhjIVFBTo/fffl8fjUWFhoRYtWqSoqKgOzR4q4lasWKEVK1YYet0T+eCDD0551uPx6P7775d0/ILtyiuvVFhYmA4ePKhRo0ZpyJAhCg8PV79+/U76yzRr1qzRNddcI0n6n//5H91yyy3HPO/555/X008/LUl64403NHny5FP9lk7ZocJr6NChWr58eadff9GiRXr22WclqdNXAgIAvItyDQAAAIAkyeX2qGBrhRbn2LXVXmV4Pio8UJdMt+riqUkK72fsg0kAADri0H3QPvnkEy1fvvyYRY7L9e29QD0ej959911dfvnliouLk7+/v/bt26f58+cf9/oneq4j1q1bp4ULF2rhwoUdOv/wVW7f+973dOONN57W63emk5VkGRkZXZTEd7pyNdmhf28BAD0D5RoAAADQxzW1OPRZwW5l2+zad7DJ8PwZcRG6ND1F08cOlb+f2QsJAQD41uFl1GuvvaYJEyYcdc6TTz6pF154QZL06quvKi4uTpLaV6QNGDBAb7zxRqdlKi0tbS/FZs+e3b6tYkcc/v30799fKSkpnZYLp68rV5M5HI4uey0AwOmjXAMAAAD6qL1VjcrOteuzNbvV3Oo0NGs2SVPOjlVmWorOSo7ifmoAgC7h52fso6zk5OT240NbSFosFq+VWDNnzjS0reTh5Vpv+7t0+/bteuONN3TfffcZ/ufWXRwqvBwOhwoLCzv9+tXV1Ue9FgCgZ+iZf7MBAAAAOCUej0dfFx3U4pxCrdlSIbfB3Y6CA/104eREzUtN1uDoft4JCQDAcRxeRhnVHQue3lyuPfbYY8rJydH+/fv19NNPKyQk5LSvmZOTI5vNpp///OcaNGhQJ6Q8sUNbNe7fv19z58716mu1tLR49foAgM7V/d5VAAAAAOh0DqdbuV+VaXFOoQpLaw3PD44OUUaaVbMmJigk6NQ/2AQA4HScTkF2aOVad2I2987tlD///HPl5ORI+rYQ++lPf6qXXnpJ0dHRp3XdKVOmaMWKFZo9e7auuOIK3Xjjjad9zRNpbW2VJA0dOlTLly/v9OsvWrRIzz77rPz9/bv0/m4AgNPXO/8GBwAAACBJqm1o1Xufb9fPHvxUT7yzwXCxNjolWr+/fpJeuHOWMtNSKNYAAD51OmVUdy/XTmXlWn5+vj788MNTfv2Ghgb98pe/VFlZ2Slf47saGxv15z//uf1xSEiIRo0apbq6utO+dkBAgO699149+OCD+sc//qFZs2bp8ccfV22t8V8c6ohD5VpUVJRXrj9gwADdeuutWr58uYYNG3bMc95//301NRm/Jy4AwLtYuQYAAAD0QiV765Rts2vFuj1qc7oNzfpZTEofF6eMNKvOiOvvnYAAAJyC0ynXOmOVmNvt7tTVZodf67vXbWpqOulWipGRkbr55pt19tlnn9J95DZv3qzPP/9ceXl5+sUvfqH58+cbumfcsSxcuLC9rOvfv79ef/11jRw58rSu+V3z5s3T8OHDdfPNN+ull17Se++9p5///Oe65pprFBgY2GmvM27cOP3qV7/Seeed12nXPNxPfvKT4z7n8Xj04IMP6s0339Qnn3yiv/zlL91ya1MA6Kv4LzIAAADQS7jdHm3csV+LVxZq445Kw/Ph/QI0Z1qS5k5LVlR4kBcSAgBwek6n2DreyrD8/Hy1tbVpxowZJ5xfvXq1Fi1apEWLFnXaSqbjlWsOh0M/+tGP9OabbyoyMvK48yNHjtTYsWP1q1/9Su+//77hYmzz5s2SpObmZj355JNavHixnnrqKY0YMcLgd/KtlStX6r333pMkhYWF6ZVXXun0Yu2Q4cOH6/3339dtt92mtWvX6rHHHtPf//533XHHHR26P5rdbj/pVozXXnutJKmoqKhTMhvx/PPPa8mSJZK+3Vrzd7/7nRYuXNjr7s0HAD0V5RoAAADQw7W0ObVifamycgpVur/B8HzC4DBlpqXovHPjFOjf/bbMAgDgEG9sC9nQ0KBbb71VP/jBD3THHXccc7VYS0uL/vCHP2jPnj36wQ9+oBdeeEHDhw8/5SyHHK9c8/f31/Tp0/W73/1Of/nLX054jWuvvVY333yznnjiCd15552GXn/Lli1HPI6OjpbVajV0jUMOHDigu+66S9K3W0H+9a9/1ejRo0/pWh0VGRmpV199VXfddZeWLFmisrKy9qLx/vvvV1xc3HFnCwoK9Mc//rHH3Ots8eLFio6O1oIFC3wdBQAgyjUAAACgx6qqbdbSvCItyy9WfZPD8PyEM2OUmWbVOcMH8lvQAIBe73h/1wUFfbta+/3339f7779/0uuUlZXpvvvu01tvvXXaf38ePv/d8u/qq6/WhRdeqHfffVdXXHHFca9x/vnnKyEhQa+//rpmzpypSZMmdfj1D61ck769n9lDDz0kf3/j91d1Op369a9/raqqKoWHh+ull17SuHHjDF/nVAQEBOixxx5TeHi43nnnHUlSXl6eLrvsMr3wwgs699xzjzl3xRVXaODAgaqrq9NZZ52lmJgYRURE8J4IANAhlGsAAABAD7NzT7UWr7Qr96syudzGfts6wN+iCybGKyPVqviYMC8lBADAO06n+DjeqrfDt1K86667NGvWrKPOaWtr05w5cyRJ48eP14svvtgpJYzD8d9fjvluvvj4eF1wwQV6+OGHNWnSpOOuKDOZTLr88sv11FNP6c4771R2drb69et30teurKxUeXl5++Mrr7xS8fHxp/R9PPjgg1qzZo2ioqL0yiuv6Kyzzjql65wqk8mke++9V2azWW+99ZYkqa6uTr/+9a/18ccfH/fedRdccMFxr7lnzx7FxMSc9j3oTqalpUXl5eWnvGIQAOAbnXcHVgAAAABe43K5lbepXL9dZNOvn8rRyo2lhoq16IggXTP3TL12z4W65ftjKdYAAD3S6WwLeTyBgYHtx5GRkYqLizvqf0OHDm0/Z9KkSQoNDe2U125paWk/Pta2lVdffbWam5u1YMECOZ3O417nsssuk9lsVllZmZ588skOvfbq1avbjwMCAvSzn/3MQPL/+vvf/6533nlHMTExeuutt7q8WDvcH/7wB1188cXtj/fu3atPP/30lK61bNkyXXzxxXr//fdP+Gd/uu666y5973vf02uvvdZjtqgEALByDQAAAOjWGpsd+qygRNk2u/ZXNxueHxbfX5emp2j62CHys/C7dQCAnu10yofjrTTzRmHXUc3N//27/Vjl2uTJk5WYmKhNmzbpxRdf1C9/+ctjXmfw4MGaPn26bDab3n77bWVkZGjs2LEnfO38/Pz24+9973saOHCg4fxr1qzRgw8+qOHDh+uvf/2rBg8ebPgap2rfvn2KiYk54msmk0kPP/yw7Ha7duzYIenbFWynIiAgQGVlZfr973+v3//+96ed92Qeeughbd68WY8//rjXXwsAcPoo1wAAAIBuqOJAo7Jz7fq8oETNrS5Ds2aTNPXsIbo0PUUjkyK5dwgAoNfwRrl2rFKrqxy+cs3P7+iP6Uwmk37wgx/o8ccf11/+8hddcMEFGjly5DGvNWfOHNlsNrndbt1///365z//ecLi8PCVa9dcc43h7Js2bdKtt96qCRMmaNGiRQoL67pV8WvXrtXPfvYz3XnnnfrJT35yxHPBwcF67rnndOWVV6qqqkppaWmn9BqHbwe5cOFCnX322Sed+eSTT/T0009Lkl555RXFxsaedOZnP/uZysvLNWzYMN15552nlBUA0PUo1wAAAIBuwuPxaIu9SotXFqrg670y+vlhSJCfLpycqIxUqwZFHfveIgAA9GTe2DbPaLnWmRkOX7kWHBx8zHMuv/xyPf3003I4HPrDH/6gf/zjH8cszc4//3xZLBa5XC5t2bJFS5cuVUZGxjGvuWfPHpWVlUn6dpvLYcOGGcq9adMmzZ8/XxdeeKHuu+8++fv7S5IqKirU1NR0wtmKior24+rqahUWFh7zvOrq6iNmDp1XWVmp2267TS0tLfrjH/+oxsbGo7a0TEhI0Pvvv6/t27crOTnZ0Pd2yOHlWmxsrFJSUk46c/jqv/j4eCUmJp505lCpOnr06FNaPQgA8A3KNQAAAMDHHE6XbF+WaXGOXfayWsPzsdH9lJFm1QUT4xUS5O+FhAAA4JDOLNcOX7kWEnLsX4wZMGCApk6dKpvNps2bN+udd97R1VdffdR5UVFRGj9+vNauXStJevHFF49brh2+au27K79OZtOmTbrxxhv1q1/9SlddddURz1VWVmr+/Pmqr6/v0LXeeOMNvfHGGyc9b8GCBcd97tFHH5XJZNINN9xwxNcHDx58WttUHl6uAQDwXZRrAAAAgI/UNrTq4/xifZRXpOr6VsPzZ6cMUGa6VRPPGiyLma0fAQC9n9vtNnR+R4owo9snG81wIrW1//2lmtDQ0OOed2jLR0l65plnlJmZqfDw8KPOmzRpUnu5tnPnTm3evPmY2xnm5ORI+nal1ezZsw1l/stf/qJnn31WEyZMOOq5MWPG6O9//7uqqqo0cuRI9e/fv/25zz77THfccYc+/PDDU15N1tLSoiuvvFJbt26VJA0aNEg33XSTvv/975/S9U7k0Gq8ruKNVZkAAO+hXAMAAAC6WElFnRbnFOo/G0rlcBr7gM7PYlL6uDhlplmVEtffOwEBAOimjBZbh59/vBLNl+Xa3r17248HDRp03PNmz56te++9Vw6HQ7W1tXrvvff085///Kjzxo4de8TjNWvWHFWutbW1KTc3V5J0xRVXGC6R/vKXv5zw+WHDhh1zm8nZs2dr9OjR+t3vfqe33377hPeDOxaPx6MFCxa0F2vh4eF67bXXOrRd46k4fOXaqdyT7sILLzR0fmf+ewUA8D7KNQAAAKALuN0ebdi+X4tXFurLnZWG58P7BWjOtCRdMi1ZkeFBXkgIAED3Z7SAcDqd7cfHWxl0Otc8XYeXa7Gxscc9Lzw8XOPGjVNBQYGkb1eBHatcGzNmzBGP9+/ff9Q5eXl5ampqkr+/v6644opTjX5KFixYoB/96Ed67bXXNH/+fEOzzz33nJYtWybp21VlzzzzjNeKNenIe/EtXLjwmCsAv+uTTz7R008/LUl65ZVXTvjP9JCf/exnKi8vp1wDgB6Gcg0AAADwopZWp5av36OsHLvKKhsMzycODlNmeorOGx+nAH/LyQcAAOjFjG6d15lF2CGdWYJUVFRIkoKCghQdHX3Cc6dMmdJerm3atEk1NTVHbLsoSZGRkerfv79qamok6ajnpW8LIEmaO3euBgwYcHrfgEFjxozR5ZdfrieeeELnnnvuUSvtjufDDz/UokWLJH270vCBBx7Q1KlTvRlVbW1t7cexsbEdKvIGDhzYfhwfH6/ExMSTzvj5ffvxLOUaAPQslGsAAACAFxyoadaSXLs+WV2ihmaH4fkJZ8bo0nSrxg4baHi7KgAAeqvDy7K8vDyVlZUddc7OnTvbjw8vSI7H5XK1H1dWVqqwsPCocxwOxzGPT9ehlWtnnHHGSc+dPHly+7HH49Hu3buPWZ6NHDlSq1evlqSj7ovW1tamL774QtKpbXXYGRYsWKCcnBzdfvvt+ve//62oqKgTnr9q1Sr94Q9/aH/8u9/9Tpdddpm3Y3bo353O5I0iGADgPZRrAAAAQCfasbtai1cWKndTudxuY79dHxhg0cwJ8cpMsypuUJiXEgIA0HMdXkAsXbpUwcHBR51z4MCB9uPW1tb24+Oteju8XHv00Uf16KOPnjBDZ5VrbW1tOnjwoCTprLPOOun5I0eOlMlkav8+WlpajnnehRdeqNWrV2vq1KmaOHHiEc/ZbDbV1dVp/PjxGj169Gl+B6cmIiJC99xzj2677TbdfvvtevXVV4+4v9nhtm7dqltvvbX9z/y2227rslKwM0vU7vh6AIDTQ7kGAAAAnCaXy638LRVavLJQ35RUG54fEBGkS1KtumhKosJCjv3hEgAAOLJc+/Of/3zUyixJevLJJ/XCCy9I6li5dvg1H3nkEV166aVHndPa2tp+P7POWtG0d+/e9kxnnnnmSc8PDQ1VcnKy7Ha7JCkhIeGY5/34xz9WTEyMZsyYcdTq96VLl0ry3aq1Qy688EJdfvnl+uCDD3THHXfoqaeektlsPuKcnTt3av78+WpsbJQk3XLLLbr11lu7LOPh/5wrKiqOuaLxuyor/3tf3T179nRoNdqhcw7/dxUA0P1RrgEAAACnqKHZoU9Xl2hJnl2V1c2G54cn9Nel6SmaNmaI/Czmkw8AANDHGdk6z8/Pr0NbKxstNTqrBNm+fXv78aRJkzo0k5aWJrvdrnPOOUeDBw8+5jn/n727Dosqff84/h667UDFALt71VWs1d01wO5uMXZtXXNdu1271sJaXQPbNVbswG4FRQFFVLph5vcHP+YLUjO0er+ua68dZs5zzj3DgMP5nPt59PT0+OGHHxLcHxQUxJkzZ7C0tKRZs2apKzodTZs2jfv373Py5ElmzJjB77//rv5+vXz5kr59+6rXjvvll19wcHDI1PrihmsTJkzQenz//v212j40VPvPkkIIIbKOhGtCCCGEEEJoyetDEIed3Th94zVhEdEpD4hDR0dBvUqW2NvaULZ4T1bD2wABAABJREFU8muMCCGEECI+TabO09fXp127dgwdOjRed5dSqUx0+9hQI3/+/El2gwEUKlSIrl270rFjRy2rTtyDBw/Ux9VkzTWAnj174urqyowZM7Q+3r///ktYWBg9evRATy/rTwkaGxuzfPlyOnXqxJ49e4iMjGTWrFm8ePGCfv36qaf3HDduHAMGDMj0+uK+17Zt2xZvzbuk7N27V70+3KlTpyhWrFiKY5o1a0Z0dDQtW7ZMfbFCCCEyXdb/SyqEEEIIIcQXQKVScd/1A4fOu3Hj8TuSmFkqSaZGevxYpzgt65cgfy6TjClSCCGE+MrFdhPp6+tjZmaW6DZDhgxJNDxKalrIXLlysWTJEpo3b46+vn6i2xgaGnL69Gl0dXVTWXlCDx8+BKB+/foaj7GysmLTpk2pOt6BAwcwMTGhU6dOqRqfEWxsbFixYgWDBg1i//79vH//ngcPHuDn54eenh5//PEH7dq1y5LaDA0Nsbe3p3nz5lSrVi3DjrNo0SIqVaqEjo4OQUFBSb6vhRBCZC8SrgkhhBBCCJGMyKhozt/yxOmCKy+9ArQeb5nXFLsG1jStVRRjQ/n4LYQQQqSFjo4O3bp1Y/DgwclOi5iYpDrXqlWrplF4kp7BWlRUFHfv3gWgRYsW6bbfpHh5eXH9+nW6deuGhYVFhh9PG/Xq1WP27NmMHz+eixcvAjFdbcuWLaNRo0ZZVle3bt3o1q1bhh+nSpUqKJVK/vzzT3bt2sW2bdsoVapUhh9XCCFE2shf90IIIYQQQiTCLzCc45dfcuzyK/yCtF9bpXLJvNjb2lCzXAF0dFJe70UIIYQQKevfv79G66glJqnOtaxw48YNAgICyJcvH/Xq1cvw4x04cACImVYyu/n06ROnTp2Kd1/u3LmzpIPr48ePSYawmggKClLf9vX1xcQk5dkKwsPD+f3333F2dgagb9++7Ny5M9kpSoUQQmQ9CdeEEEIIIYSI46WXP07Obvx3y4OoaO1Orujp6tCwemHsbW0oUShHBlUohBBCfLtSG6xB0p1rWeHcuXMA2NnZpWtHXGJUKhUHDhygUaNGlChRIsntIiIiOHbsGG3atMnQeuI6deoUM2fOxMfHB4hZ187b2xtPT0969OhBly5dGDlyJLlzZ846tadOneL3339PlyC2c+fOqRrn4+NDnz592LFjB5aWlmmuQwghRMaQcE0IIYQQQnzzlEoVN594c+i8K/defNB6fA4zA1rUK8HP9YqTy9woAyoUQgghRFpFR0dnyH5DQ0O12l6lUnHmzBkMDAzo3bt3htQU1/Xr13nz5g2zZs1KcpvIyEhGjhzJuXPn8Pb2ZvDgwRlak7u7O7NmzVJ3axkZGTFkyBD69+/P7du3GTNmDD4+PuzatQsnJyf69etHjx49yJkzZ4bW1bVrV4yNjXn16hUVK1akSJEimJubY2ZmplGwe+jQIfXrfODAAYoUKZLqWgwNDVM9VgghRMaTcE0IIYQQQnyzQsOjOHvjNU4X3PD6EKz1+OKWFtjbWmNbrQgG+hl71bkQQggh0iajwrXLly9rtf3Vq1fx8PCgc+fOFChQIENqimvfvn2UK1eOOnXqJPq4Uqlk/Pjx6m66JUuWYGhoSJ8+fdK9lvfv37N69Wr27dtHZGQkurq62NvbM2LECAoVKgTAd999x+HDh5k7dy6HDh0iODiYFStWsHHjRuzt7enUqRMVKlRI99pipaVzz8jofxdZmZqaZrv17YQQQqQfCdeEEEIIIcQ3571vCEcvvuTkNXeCQyO1GqtQQK1yBbGztaZyybxpmp5KCCGEEJknLeHatGnTMDU1xcTEBCMjIwwMDNDR0eHly5fs2bNHvZ0mnwt2796NoaFhvO6wt2/fEhISkur6khIREcGpU6cYOHAgrq6uiW6zceNGjh07Fu++uXPnYmBgQLdu3dKljjdv3rB582b++ecfwsLC0NfXp23btgwePDjRqSpz5crFggULaNu2LfPmzePJkyeEhoaye/dudu/ejbW1NS1btqRhw4ZUrFjxq/08tnfvXnx9fRk0aFBWlyKEEOIzEq4JIYQQQohvxhP3Txw678rl+29RKrVbS8PQQJcfahXFroE1hfKZZVCFQgghhMgoUVFRqR77008/cfv2bS5cuMCdO3eSXJPLysoq2f18+PCBM2fOMHjwYAoXLqy+38fHh/79+xMQEJDqGpOzYsUKVqxYodWYmTNnYmhoSPv27VN1TJVKxaVLl9izZw9nzpwhOjqafPny0bt3b7p3765R117dunU5cOAATk5OrF27lpcvXwLg5uamfk65c+emVq1aVK5cmSpVqlC6dGly5Pjy177dtm0bc+bMAaBEiRI0a9YsiysSQggRl4RrQgghhBDiqxYdreTyvbcccnbl6WtfrcfnzWlM6/olaP5dMcxMDDKgQiGEEEJkhshI7brV46pXrx716tVj2LBhvHnzhg0bNvD333/HC9kKFixI1apVk93Ptm3byJ8/f4JOpMqVK7NlyxYuXrxIuXLlKFGiBBYWFpiZmaGr+2VNPe3m5saxY8c4cOAAHh4eGBgY0LhxY9q2bUujRo3Q09PudKSOjg5t2rTBzs6O06dPs23bNm7cuKF+/NOnT5w8eZKTJ0+q78udOzfW1tZYWlqSL18+bGxs6NChQ7z9hoeH4+HhkbYn+xkfHx/17Tdv3qQ60D158iTLly9Xfz1u3Dh27NiRodNhCiGE0I6Ea0IIIYQQ4qsUFBLByavuHLn0kg9+oVqPL1ssF3a2NtSrZImurk4GVCiEEEKIzJSWzrW4rKysmDlzJnXq1GH06NGoVCr09PSYOXNmssGRr68vO3bs4M8//8TQ0DDB4xUqVPhiw5NHjx5x7tw5Tp06xZMnT7CwsKBu3br8+uuvNG7cGDOztHf96+jo0Lx5c5o3b86LFy/4559/OHbsGO/evUuw7adPn/j06RO6urrY2tpSrFixBNvo6+uzceNG9u/fn+baEtO/f/9021doaChDhgxh3759mbJOnxBCiJRJuCaEEEIIIb4qnj5BODm7cubmG8IjtFtbRUdHQf3KhbCztaZMsdwZVKEQQgghskJERAT58uWjb9++6bK/Fi1acPDgQby8vJg+fTq1atVKdvvNmzfTqVMnvv/++3Q5flZ6+/Yt165d4/r161y4cIHg4GAqV65Ms2bNmD59OlWqVMnQjruSJUsyYcIExo8fj4uLC2fOnOH8+fPx1pWztrZm5cqV2NjYJLoPHR0d5syZQ5kyZTA3N6dcuXLkzZsXc3NzjI2NM6x2IYQQXwcJ17KZp0+fsn//fq5fv46HhwehoaGYmpqSP39+qlSpQrNmzbC1tc1WC7WGh4ezb98+jh8/ztOnTwkPD6dQoUJUrVqVbt26Ubly5awuUQghhBBfOZVKxb3nHzjo7MrNx95ajzc11uenOsVo+b01+XLJyRQhhBDia9SzZ09mzZqFgUH6TfM8Z84c8ubNq9G2Hz9+ZPr06el27Kxy7tw5NmzYQNmyZalWrRo9e/akdOnSWTJ9pUKhoGbNmtSsWZMJEyaoQ7+bN28yYMAAihcvnuL4Pn36ZEqtQgghvi4KVVIrsIpM5eXlxezZs7ly5QrdunWjSZMmWFlZoVQq8fLy4sKFCzg6OuLv70+FChVYunRpoi3tme3Ro0f8+uuvuLu707hxYwYOHEjhwoV5+vQpq1ev5s6dO/To0YOJEyeir6+f1eVqLCIigvv37ye4v1KlSun6IfxLERkZyb179+LdV7ly5S/qeyqEEOLrFBEZjfNtDw45u/HqbYDW4wvnM6V1Axua1rTCyFCuOxMiI0RFRfH8+fN495UqVUqrNXeUSiWhofGndzU2NkZHR6ZsFUIIIYQQmeNL+0yaHp/DkyLnz6VzLVu4e/cugwcPJk+ePBw9ehRLS8t4jxcoUIBq1arRqVMn+vbty8OHD+ncuTP79u2jSJEiWVQ13L9/n969exMcHEyXLl34/fff1Y8VLFiQBg0aMGTIEBwdHfHw8GDNmjXZ9heNEEIIIb4svoFhHL/8iuOXX+EXFK71+Cql8mJva0ONsgXQ0ck+MwIIIYQQQgghhBAi+5OkI4t9+vSJIUOG4Ofnx59//pkgWIurYMGCLF26FB0dHXx9fRk/fnwmVhqfn58fDg4OBAcHU7p0aaZOnZpgGx0dHRYtWoSFhQX//fcfy5Yty/xChRBCCPFVeenlz7Ldt+j3x7/sOvVUq2BNX0+HZrWLsmJsY2YN+Z5a5QtKsCaEEEIIIYQQQgitSedaFlu7di2fPn2ibNmySS6wGlfZsmWpX78+zs7OuLi4cP36dWrXrp0Jlca3ZMkS3r9/D8C4ceOSbCW1sLCgV69erFy5kvXr19OiRQvKli2bmaUKIYQQ4gunVKq4+dibQ86u3HvxQevxOc0NaVGvBD/XLU5Oc8MMqFAIIYQQQgghhBDfEulcy2InTpwAYta00lS9evXUt8+dO5fuNaXkzZs37N+/H4DixYtja2ub7PZt27YFQKVSsXTp0gyvTwghhBBfh9DwKI5cdGPI/DP88dc1rYO1EoUs+LVLNf6a0oyuzctIsCaEEEIIIYQQQoh0IZ1rWSgkJARvb28AXF1dcXZ2TjGoArCyslLffv36dYbVl5TNmzerw8A2bdqkuH2RIkUoU6YMT58+5b///sPNzQ1ra+sMrlIIIYQQX6r3viEcufiSU1dfERwWpdVYhQJqly+Iva0NFW3yoFDItI9CCCGEEEIIIYRIXxKuZaHQ0NB4X8+fP1+jcM3Y2Fh9OyIiIt3rSo5SqeTUqVPqrxs0aKDRuJo1a/L06VMA/v33XwYPHpwh9QkhhBDiy6RSqXjq7stBZ1eu3H+LUqnSaryRgS4/1C5K6wbWFMprlkFVCiGEEEIIIYQQQki4lqVy585Nvnz58PHxAVB3saXE19dXfdvS0jJDakvK7du31fWamJhovH5a+fLl1bdPnz4t4ZoQQgghAIiKVnL5nheHnF159tpP6/H5cxnTqr41zb4rhpmxfvoXKIQQQgghhBBCCPEZCdeykEKhYNmyZSxbtgw/Pz969eql0bgHDx6ob5cpUyajykvU7du34x1bT0+zt1CpUqXUt588eUJ0dDS6urrpXp8QQgghvgxBIRGcuOrO0YtufPAP03p8ueK5sbe1oU7FgujqyjLCQgghhBBCCCGEyDwSrmWxmjVr4ujoqPH2KpVKPS2jnp4eP//8c0aVlqjnz5+rbxcuXFjjcfnz51ffjoiI4PXr15QoUSJdaxNCCCFE9ufxPhCnC26cvfmG8Ihorcbq6ij4vkoh7G1tKF00VwZVKIQQQgghhBBCCJE8Cde+MOfOncPT0xOAH374gdy5c2fq8V+8eKG+XahQIY3H5cuXD4VCgUoVs36Kq6vrFxmuRUVFoVAosrqMTBcVFaXRfUIIIURiVCoV91585PDFl9x66qP1eDNjfZp/Z8VPdYuRN0fM2rORkZHpXaYQIoNERUWp/w6IpVQqUSqVad53euxDCCGEEEKItMiun0mVSmWCz+GRkZEJ7ksNOTcs4doXJTo6muXLlwMx652NHTs202v49OmT+naOHDk0Hqenp4exsTEhISEA+Pv7p3ttmeHx48dZXUK28ejRo6wuQQghRDYXGaXivnsIV58E8t5f+w/eeSz0qFPGjColTDDQi8DL/TleGVCnECLzGBkZARAWFpbmaeJDQ0PToyQhhBBCCCFSLTt/Jo2OjlYHaWFhMcsxyDnd9CPh2hdk69atPHnyBICZM2diZWWV6TUEBwerb8f+YawpAwMDdbgW+38hhBBCfH0CQ6O58TyIm8+DCQnX/go+m4KG1Clrho2lETrfYMe4EEIIIYQQQgghsjcJ174QDx48YMmSJQBMmDCB1q1bZ0kdcUMxQ0NDrcbGDePihnRCCCGE+Dq89Y3g6pMg7ruHoO2sGLo6UKWEKXXKmJE/p37GFCiEEEIIIYQQQgiRDiRc+wK8f/+e4cOHExUVxbRp0+jevXtWl5Qqceee1dHRycJKhBBCCJFelEoVz7zCuPIkEPf3EVqPNzPSoVZpM2qWNMXUKG1TxAkhhBBCCCGEEEJkBgnXsrmAgAAGDRqEj48PCxYswM7OLkvrMTU1xc/PD/jfPK2aioj43wk3U1PT9Cwr05QrVw59/W/vavqoqKgE8/GWL18ePT35FSKEEN+q0PAozt704OjlV7z7qP10zyUKWdC6fgm+r2yJvp5cdCPE1ywqKoqXL1/Gu8/IyEjrz5Kfr2dhbGyc5tqEEEIIIYTQxpf0mTQqKgrF/y+1EFtniRIl0uWcbmRkJI8fP07zfr5kcmY8GwsMDKRfv364ubmxYsUKmjRpktUlxQvXwsPDtRobd3sTE5P0LCvT6OnpfZPhWmLktRBCiG+T96cQjlx049Q1d0LCorQaq1BAnYqW2DWwpoJ1HvWHfCHE102hUCT4edfR0dFqNgtlEnPNyowYQgghhBAis3xpn0l1dHQSfA7X19dPl3BNpVKleR9fOgnXsil/f3/69euHq6sr69ato27dulldEgC5cuXC09MTiKlRUxEREfE63XLnzp3utQkhhBAiY6hUKh6/+sQhZ1eu3n+LUsvP0MaGujSrXYzWDawpmOfL7F4XQgghhBBCCCGEiCXhWjbk6+tL3759ef36NRs3bqRmzZpZXZKajY0NDx48AMDLy0vjcT4+PvHSbBsbm3SvTQghhBDpKypaycW7XhxyduXFGz+tx+fPbULr+tY0q10UU2PpdhZCCCGEEEIIIcTXQcK1bCa2Yy02WKtevXpWlxRPyZIl1bffvn2r8Thvb2/1bRMTEwoXLpyudQkhhBAi/QQER3Dy6iuOXHzJpwDt1lgFKF8iN/a2NnxX0RJdHZn6UQghhBBCCCGEEF8XCdeykaCgIPr378+rV6/466+/qFatWlaXlEDlypXVt58+fYpSqdRoTtnnz5+rb1esWFHWWBFCCCGyoTfegThdcOPszTdEREZrNVZXR0GDqoWxs7WmlFWuDKpQCCGEEEIIIYQQIutJuJZNRERE4ODgwPPnz9mwYYNGwVpkZCSjRo1i4cKFGBsbZ0KVULNmTXLmzImfnx9BQUG8ePGC0qVLpzju4cOH6ts//PBDRpYohBBCCC2oVCpuP/PBydkVlyfvtR5vbqLPT3WL0/L7EuTJkTmfR4QQQgghhBBCCCGykoRr2YBKpWLixIm4uLiwevVqateurdG4x48fc+XKlUwL1gD09PT44Ycf2LdvHwCXL1/WKFy7efMmAAqFQsI1IYQQIhsIj4zmP5c3HHJ24413oNbji+Q3w87WhsY1imBkIB8phRBCfHuio6O5du0aR44cQU9Pj5kzZ6bbvt+8eUOuXLkwMzPTeuz9+/cpXrw45ubm6VZPcg4dOkT58uUpVaqU1mM9PT3JmTMnpqamGVBZ6mg6Q4/IPi5cuIC1tbUsQSKEECJTyaeFbGDVqlUcPXqUWbNm0bBhQ43HnThxgqJFi2ZgZYnr06cPurq6QMyH6JQ8f/4cV1dXAH7++Wf5sCOEEEJkoU8BYWw//pi+M0+xcu9drYO1aqXzMWNgHVaNa8LPdYtLsCaEEOKb4uXlxcGDBxk9ejT16tWjb9++/PPPP+zZs4ctW7ak23HWrVuHnZ0dN27c0Hrs3bt3adq0KevXryciIiLdakrKzZs3sbOzY9SoUbx48UKrsU5OTjRo0ICZM2dqPTYjBAUFYWdnx9WrV7O6lEQdPnw43pr2mcHJyYn58+cTGRmZqcfVxvXr1/nxxx/5448/8PHxyepyhBBCfCMkXMti58+fZ+XKlQwdOpS2bdtqPM7T05Pdu3cnGa55eXkxaNAgqlWrRuvWrbl8+XJ6lUypUqWwt7cH4NGjR7i4uCS7/T///AOArq4uI0aMSLc6hBBCCKG5Fx5+LN7pQv9Zp/j79DMCQzQ/2Wagp8OPdYqxclxjZg6uR42yBdDRkfVThRBCfN0CAwO5fv06W7ZsYcyYMTRq1IjGjRszYcIEjh49ip+fX7ztFy5cmKow7HMRERGcPHkST09PevXqxfz584mO1nwt1B49elCnTh0WL16Mvb099+/fT3NNyTE0NESpVHLs2DGGDh2Kv7+/xmM/fvxIcHAwO3bsoGXLlqxduzYDK03Zrl27eP78OX369GH+/PmZEk5q4+7du7Rq1YoDBw5kyvF8fX2ZM2cOf/31F927d8fT0zNTjqstQ0NDIiMjcXR0pFmzZukadAshhBBJkUuNs5CPjw8TJkygTp06jBw5UuNxt2/fZsKECQQHBycZrk2YMIHr168D8OzZMxwcHDh+/DiWlpbpUvu4ceO4fv06Hh4ezJs3j7///huFIuFJNm9vb3bt2gXAiBEjsLa2TpfjCyGEECJl0UoV1x++5ZCzGw/dPmo9PreFIS2+L8FPdYqTw8wwAyoUQgghslZ4eDienp54eHjw5s0bXr58iZubGy9fvsTLyyvB9gqFgrx585I/f34KFChAnjx5yJkzJ8bGxujr6/Py5Utq1aqVpppOnjxJQECA+usSJUqoZ4/R1LRp07h06RJubm706NGDv/76ixo1aqSprqQYGBgAkCNHDnbv3k2OHDk0Hvvp0yf17V69ejFo0KB0r09TgYGBbNy4EYhZvmP//v2ULFmS9u3bp9sx/vvvP2rWrJmq6T4hJkQKCAhg4sSJTJw4Md3q0sTdu3c5efIk/fr1y9TjakJP73+nN+vXr4+dnV0WViOEEOJbIeFaFlqxYgW+vr68ePGCFi1aaDQmICCAjx//d3IsqXDtwYMH8b4ODQ3l/v376Rau5c6dmzVr1tC9e3fu3bvHvHnzmDRpUrxtIiIi+PXXXwkLC6N58+YMGTIkXY4thBBCiOSFhEXy7/XXHL7ghvenEK3H2xTJgb2tDfWrFEZfTyY6EEII8eVRqVT4+fnx8eNHfHx8+PDhA97e3rx7947379/z7t07vLy8+PDhAyqVSj1OT0+PIkWKULx4cerWrUuhQoUoVKgQlpaW6v/HhkkZxdHRUX17+vTpdOrUSet95M2bl169erF69WrCwsJYuXIlmzdvTs8y1QwNYy7AMTMzI0+ePFqNff/+vfp2//79s3Sts9WrV6u7EWvVqsWmTZvUzy09ODk5MXHiRCpVqsSmTZtSFbDFDZFOnz6t8Vp1O3fuZMWKFVhaWrJ//36Nj/fu3Tv1LEs9e/bMlsEaxH9dJk6cSO7cubOwGiGEEN8KCdey0IcPH4CYDrbUzgmdVLhWsWJFdecagL6+PmXLlk3VMZJSunRp9u7dy4gRI9iyZQteXl7079+fggUL8vjxY5YvX87jx4/p3bs3EyZMSLSzTQghhBDp593HYA5fdOPfa68JDY/SaqxCAXUqWmLXwJoK1nnk320hhBBfrCVLlnD+/HkUCgVGRkYYGRlhbGyMqakppqamWFlZUb58eczNzTE3N8fCwgILCwvu3r3L/PnzKVu2LMOGDaN06dKZXvu9e/e4c+cOAB07dqRLly6p3leXLl1Yu3YtSqWSqKjkPxfcunULKysr8uXLp/VxtO2qi8vNzQ2AfPnyUbBgQa3Hh4WFERISkuYw5dmzZ2zbtg2AXLlyMWPGDIKDgwkODk7TfmOdP3+eyZMnEx0dzZ07d+jfv3+qAjZ9fX317Rw5cmBhYaHROGNjYwB0dHS0eq1CQv53kVb58uU1Hvf06VNKlSqVYlgaERHB0qVLGTJkiFYdj5+L+7oIIYQQmUXCtS9cUuHa/PnzmTFjBjdu3KBAgQKMGTMmyW3Tonjx4vzzzz+cOHGCAwcOMHLkSPz9/SlYsCDVqlVj9uzZVKhQId2PK4QQQogYKpWKRy8/ccjZlWsP3qJUpTwmLmNDPZp9V5TW9a0pmEezq5+FEEKI7Gz06NGMHj1aqzHv3r3DwcEBlUrFiRMnOHnyJB06dGDq1Knp2r2UkpUrVwIxf2tPnjw5TfsqUKAAVapU4c6dO8l2HN28eZOBAwdiY2ODo6MjRkZGWh0nteGav7+/emaeihUraj0+PDwcBwcH3r9/z7Zt21IdsEVHRzNlyhR1AOnr60vLli1TtS9N3blzhwEDBrBx40atAra0BJmZad26dTx9+hQHBwd+/vnnJEO22bNns3v3bk6fPs2qVatSHWhnZcdjeoiOjqZr166MGTOG7777LqvLEUIIoSEJ17LQ6tWrM2zfhQoVYv369Rm2/7gMDAyws7OTOa2FEEKITBQZpeTiXU+cnF154eGv9fj8uU2wa2BNs9pFMTGSq32FECIjqVQqQsOjiIxSoq+ng7GhnnQIZyOBgYEMHDgQX19fIGaNMwcHB1q0aBFvurmMdu/ePXXH3ezZs9XdRp/z8/NDqVRqtM+OHTtia2tLlSpV4q1vFis2AAkJCeH+/fuMHz+e5cuXa/X+TG3g8/LlS/VtbcO12GDt0qVLAPTu3ZutW7emKmDbtGkTd+/eBaB9+/bMnj072/58finhmqGhIS9evNA46H79+jU9evTgxIkTqfoepiVc279/f4JlTpJibGyMubk51tbWVKtWDXt7e0qUKJHqYwMolUrmzZunfg8KIYT4cki4JoQQQgjxBfEPCufE1Vccu/SSTwHhWo+vYJ0He1tralewRFcne544EkKIr8GrtwE43/bg2WtfXD38CQqNVD9mZqyPTZEclC6ai4bVilDMUrOp3UT6Cw4OZujQoTx79gx9fX0GDRrEkCFDMnxdtcTMmzcPgL59+1KzZs0ktzt27BgzZ86Mt1ZcSpYvX67RdidPnmTJkiWMGTNG430nFWzs3LlT4zpXrFjBihUrND7m5549e5aqgO3mzZvq16ZNmzbMmjUr2wZrQLauLa64ofSVK1eS3G7WrFkcPXoUQ0NDli1bluruw7SEjq1ataJp06Y8f/6cQYMGqacC7dq1K0OHDlWH3EFBQXh7e+Pi4sLff//N1atXWbNmDe3ateO3337D3Nxc42OqVCp8fX25evUqjo6OuLi4pLp+IYQQWUfCNSGEEEKIL8DrdwE4XXDj3M03RERpdrV6LD1dBfWrFsa+gQ0lrXJmTIFCCCEAuPHoHf+ce8FDt49JbhMUGsnd5x+4+/wDe888p4J1Hjo0KUXNcgUysVIREBDAoEGDuH37NpaWlixbtoyqVatqNPbFixfcuHGDrl27pkstx44dw8XFhXLlyjFq1KhEt1m6dCk9e/akW7du5MmTh9DQUMqXL0+ePHkwNzePFwgePnyYSZMmMWHCBHr27JkuNSYlNvB59+4dc+bMYfjw4VhYWNCtWzeKFCmCQqHAxsYmwXSTCxcuZP/+/QA4OTmlar23z5maaj7Ftbe3N7/++itRUVG0bt2atm3bpmt4FRAQwNy5cxk9enS6PDf4cjrX4oZryQVmse/ZvHnzUq9evVQfL7nvW3R0NP7+/knWYWBggIGBATVr1qRChQpcv34dgD59+lCgwP9+J1tYWFCoUCGqVatGnz59mDt3Lo6Ojuzfvx9XV1e2bNmCiYlJsnXOmDGDI0eOEBoamuI6iEIIIbI/CddSsHLlSoYPH57VZQghhBDiG6RSqbj19D2Hzrty+5mP1uPNTQz4uV5xWtQrTp4ciU8tJYQQIn0EBEew7sA9nG97aj32odtHHrp9pGG1IgxqWwkL08zvmvrWvHr1iqFDh+Lm5kb9+vVZuHChxl0zb9++ZdCgQXh6euLq6sqkSZPSFHr4+fkxZ84cTExMWLJkSaJdc7du3WLt2rXs37+fpUuX8uOPPya7z7/++ovIyEhmzZrF3bt3+eOPP5KcZjI1Pnz4QN68eePdlz9/fp49e8ZPP/3ElClTaNGiBba2tknu4+nTpwAULlyYMmXKqO9XKpV8/Pgx3QKpxPj5+TFgwAB8fHzo3bs3kyZNokWLFujr6zNs2DBq1aqVpv1HR0czatQobty4weXLl1m1alWq1pX7UmV2CJhUuBYVFcXYsWN5/Pgx27ZtixeWJSZu3clNCaunp8fUqVPx9PTk3Llz3L17l7Vr16Y4BebIkSMZMGAAEPM+v3fvHpMnTyYsLCzZcUIIIbInCdeSsXLlSlatWiXhmhBCCCEyVVhEFOdcPDh8wZU33kFaj7cqYI69rTWNalhhqP9lXOEshBBfspde/szYcJVPAWk7QXr+tgf3XT/w+6C6FJepIjPMqVOnmDx5MsHBwYwcOZKhQ4dqvGaTu7s7/fr1w9MzJkTdvn07r169YtmyZZiZmaWqnlmzZuHj48P8+fOxtrZOdJtly5YB8P79e3r37s2GDRuS7PQ5duwYjx49AsDExAQrKytCQ0PTLVyLjo6ma9eu/Pvvv/Hu19HRYcGCBbRq1YpRo0Zx4cIFZs6cib5+wrVdw8LC1OFajRo1EjzepEkT7O3t6devX5KvSWoFBQUxePBgnj9/zqRJk+jTpw8A+vr6PH36lJEjR6br8d69e0f37t3Zt28fpUqVStO+vpRpIbNDuBYVFcWYMWM4ceIEAL169dIoYNPGmDFjOHfuHBAzDerIkSOTDeVy584dL8QvWrQoZ86c4dixY+lWkxBCiMyTLcM1b2/vdP3HLjVWr17NypUrv5gPLkIIIYT48n30D+XopZecuPKKwJDIlAd8pnrZ/Njb2lCtdD75DCOEEJnkpZc/v62+FG9NtbT4FBDGpFUXmTusvgRs6ezjx48sWLCAgwcPUrRoUdavX0+1atU0Hn/lyhV+/fVX/Pz8gJjgqmXLljRq1IiIiIhU1bRjxw4OHz5Mu3btaNOmTaLbnDlzhmvXrgExAdD06dOTDNZCQkJYtGgRABUqVGD58uVYWVmlqrakvHr1Cm9v70Qfy58/PxMmTOC3335j//79qFQq9VpycT148EA9Ld7n68vp6OigVCrZu3cv+/bt44cffmDevHmpDi/j+vjxIwMGDMDT05NVq1bRtGlT9WNxQ8DY4C8t7O3tefLkCSYmJqxevTrNwRp8OeFaaup8+vQpvXv3xtfXN03Hjvs9jevVq1fpHrCVKlWKokWL8vr1awIDA3n48CFVqlTRah8pTSUphBAi+8p24Zq3tze9evXi5MmTWVbD3r17+fPPP7Ps+EIIIYT4tjx/44uTsxsX7ngSrVRpNdZAX5cmNa2wa2CNVQHNF1IXQgiRdgHBEczYcDXdgrVYQaGRTF9/hRVjG8sUkeng7du3/P3332zdupWIiAgGDhzIsGHDNOrkioiIICwsjM2bN7N27VqUSiUmJib07duXvn37Ym6e+n97jx07xpw5cyhbtizTp09PdJugoCBmz54NxIQ/K1asoHHjxknuc+nSpXh6elK3bl1WrVoVbw0ylUqVLuHMnTt3CA8PT/Lxdu3asXPnTh48eMCBAwfo0KFDggDtypUr6tvff/99gn0YGBgQFRWFnp4ezZs3T5dg7fXr1wwcOBBzc3P2799PkSJF4j2eWIddesiVKxd169bNkH1nV5p2gsZVpkwZtmzZwtGjR6lQoQLFihXDzMxMo3X0nJycmDt3LgAHDhygYMGCSW6bntOjApQsWZLXr18DJBk6CyGE+Dplq3AtNliL/UcpqzRr1gxHR8d0uVJJCCGEECIx0UoVVx+8xcnZlUcvP2k9PreFEa3ql+DHOsXlxKsQQmSRdQfupXkqyKR8Cghj/YH7jO2RcMo8oZmwsDA6d+7Ms2fPUCqV6Orq0rRpUwICApg2bRphYWHq/0JDQxP9f3R0dLx9tmzZkgkTJqSp8yUkJITFixezY8cOdHV16devH1evXsXPzw8/Pz/8/f0JCAggICAAV1dXPD09USgULFiwINlg7fLlyzg6OlK7dm3Wrl2LkZFRvMddXFxYtmwZQ4cOTTTQ0tTFixcBiIyMTDSQUigUjBw5kkGDBgHg4eGRIFy7dOkSAKVLl04QcsH/gq4SJUpgZ2eX6lrjHm/8+PF07NgRBweHRNe1y6hwLaOkZl04T0/PeOvbZZTUhrhly5albNmyWo+LG8BZWFhovH5ieoh77MjI9L3QQgghRPaWbcK12GDN3d09y9vcc+bMydatW+nduzfPnj3L0lqEEEII8XUJDo3k3+vuHL74kvefQrQeX9IqJ/YNrPm+SmH09bS/KlgIIUT6uPHoHc63PTP0GOdve9CwemFqlU+6C0MkzcjIiBo1avDkyRMgZq2wU6dOxdvG1NSU4sWLU7RoUQoXLkyhQoWwtLQkV65cHDhwgP379xMZGUmFChX47bffEoREqWFsbMy9e/dQqVRERUUxfvx49WMFChSgSpUqVKhQASMjI5ycnAAYNWoULVq0SHKfPj4+jBs3jnLlyrFmzZoEwRrETL/Ypk0bBgwYQKVKlRg7diy1a9fWqnZ/f3/OnTuHQqFIdl0tW1tbihQpwqdPn2jUqFG8xwIDA7l//z4Qs7ZaYmL3bWhoqFV9iXn79i2bNm1i27Zt2NjYJLld3MDt0yftL3z6nFKpTPM+PqdS/W+Gg7Nnz2rchbVz505WrFiBpaUl+/fv1/h47969o23btlrXmZrOtS9VUND/1kfOlStXFlYihBAis2WbcO3ixYu4u7snu01ERAT//PMPXbt2zfB6cubMyfz581P1IUIIIYQQ4nNvPwRz+KIbp6+7ExoenfKAOHQUULdSIexsrSlXPHeWX4gkhBAC/jn3ItOOI+Fa6g0ePJi9e/cSERGBQqGgXLly1KlThxo1alChQgUsLS0TjDl37hxjx47Fw8ODfPny8csvv9C+fft0CwwUCgVTp06lU6dOqFQqqlevTqtWrWjatKl6Ojtvb2/1+YgOHTowePDgJPcXHh7OsGHDMDIyYv369clOodihQwf09fWZOHEiPXv2pHHjxowbNy7Z0CmutWvXEhoaipmZWbKvh0KhwMHBAR0dHXLmzBnvsUuXLqnXW0tqfazAwEAA9PTSftrK0tKSv/76K8Xt4nauZddpHON2UubLly/RDrzExIZwOjo6WnV1hYRofyEYfDlrw6WHly9fAjHPOTVdd0IIIb5c2SZca9++PYGBgYkudAsxV+eMGTOGM2fOULJkyVS1v2tL0w8pQgghhBCJUalUPHD7iJOzK9cevkOl3XJqmBjp0fy7YrSqb02B3LLYuRBCZBev3gbw0O1jphzrodtH3N8GUMzSIlOO97UpUKAAgwcPRkdHhzZt2lCoUKEkt339+jVz587l7NmzGBoaMmjQIAYPHpwu6319rnLlyowYMYKKFSvSsGHDeI9FRUUxatQoPn78iK2tLb///nuS+4mMjGTMmDG4u7uze/du8ubNm+Kx7e3tCQsLY9q0aZw7d46LFy8yaNAgHBwckg2znJ2d2bx5MwDFihVL8Tjt27dP9P4TJ04AYG1tTeXKlQFYtGgRY8eOBWI6gTSZXu/cuXPUqFEDC4v0/9lIj2VC7O3t1V2T6SVuN1x2PmeV1nAtKCiIqKioBMFsdvP69WtevXoFQLVq1TJ1OkohhBBZL9uEawB9+vQhMjKSJUuWJHhs9uzZ/PvvvwD06tUrs0sTQgghhNBYZFQ0F+54csjZDTdPf63HF8xjQusG1vxQqygmRl/W+h9CCJEZ3vuGYhSqyrKpx45ffpmpxzt2+RXtGpfM1GPG9aVf4DF8+PBkHw8ODmbdunVs3ryZiIgIfv75Z8aOHZvoWmC3bt3C398fW1vbZKdF1MSwYcMSvX/u3Lm4uLhQsWJFli1blmTgFRQUxNixY7l48SKbN2+mRIkSGh+7c+fO+Pr6snTpUiIjI1m1ahX3799n3bp1if5cKZVKpk+frp6WUNvpJGOFh4dz/vx5AHVnnp+fH3v27FGHa35+furtYzvcPhcYGMjEiRPVXWnpEWpk1HpZ6Tk9ZEREBPBlrQ8XHByc5GNJfX+vXbvGzJkzmTdvXrbtIgRYvny5+nZSP89CCCG+XtkqXIOYKQE+D9ciIiJ48SJmyg2FQhFvjumM9i21sgshhBAibfyDwjl+5RXHLr3ENzBc6/EVbfJgb2tDrfIF0dWRzyBCCJGUkUsvZXUJmerY5Zccy+RAL67Di+2z7NgZKTo6mn379rFixQp8fHyoWrUqEydOpFq1akmOKVy4MAsXLmTatGl06NCBLl26UKBAgXSrafPmzTg6OlKsWDE2bNiAqalpotsdPnyYZcuW4eHhQceOHQkKCuLo0aMEBwcTEhJCUFAQISEhhISEqO+LvR0YGEh4eDjBwcHo6+urQyVnZ2fu3btH1apVExwvKipKHXqVKlWK/v37p+r5nT9/npCQEHR1dbG3j3lfXbt2LV6w5e//vwuTQkNDE93PihUr8PPzw8/Pj27durFlyxb1lJqpFRtcpbekAqTUiK0xO3etfa569epaj2natCknT56kb9++DBkyhJEjR2arddyUSiV//vknR44cAcDBwYH69etncVVCCCEyW7YL1xJjYGDAxo0bmTJlCocOHWLgwIEJtvH392fv3r0MGDAg3R8TQgghhEiO+9sADjm78t8tDyKjtLs6WU9XgW21Itg1sMamSM6MKVAIIYQQaiqVin///Zdly5bh6upKkSJFWLJkCS1btkxxbIECBdi6dSu//fYbq1evZv369bRo0YJBgwZRqlSpNNV16tQpFixYQL58+di0aVOy3Vh37tzBw8MDgL179yZ67kJPT48CBQpQuHBhChcuzOnTp4GY6Rp79epFwYIFMTExoVOnTjx+/BiADx8+JHo8AwMDDh8+THh4ONbW1qm+EHn//v1ATHgSG0oeP348XifWmzdv1Lc/ffqUYB8uLi5s375d/Ry/++67ZLujNJWeIVhc6dkRF7sGmqGhYbrtM6Pdu3cvycemTJmCk5NToo9NnTqVS5cusWbNGu7du8fy5csxNzfPqDI18unTJ65evcrmzZu5d+8exsbGjBs3ju7du2dpXUIIIbLGFxGuQcwHpoEDB3Lo0CHGjBmT4HFXV1f27t2bIY8JIYQQQnxOqVRx6+l7Djm7cueZj9bjLUwN+LlecVrWK0EuC6MMqFAIIYQQcSmVSv79919Wr17NkydPyJkzJ5MmTaJbt25adQIZGBiwcOFCcuXKxbZt23BycuLIkSO0adOG8ePHkytXLq1ru3HjBuPGjcPU1JSNGzdiZWWV7Pb9+/dnz5496uDGwsKCGjVqcO7cOQDq1KnDX3/9FW/qygMHDgBga2tL2bJl1fcvWbKEtm3bEhYWluzUkolNk6kNb29vnJ2d1fUDvH//nrNnz8ZbWyt2nTJ9fX0+ffpEUFCQet27gIAAJk6ciFKppGTJkixYsIAKFSqkqa5YcUOwxEI9bcVOBxkbiKWHLzFcS67W5KZWNTc3Z9y4cUyYMIFLly7RvXt3HB0dM2SNvcTY2dnF65YLDw9Xdw7a2NjQr18/evbsmew6jkIIIb5uX0y4BslP0ZjZjwkhhBDi2xQWEcW5m29wuuCGx/sgrccXLWiOva0NDasXwVA/bWu1CCGEECJlvr6+HDp0CEdHR968eYOpqSkODg70799fHdpoS6FQMG7cOMLDw9mzZw9KpZL9+/dz4cIFNm3aRJkyZTTel4uLC4MGDUKlUrFmzZp4wVdSChUqROvWrfHy8qJ37940aNAAgIoVK6of13RNOGtra0aPHs3Zs2exsbHRuG5tHThwgOjoaGrUqKGeenLlypWEh4eTP39+9Xax4VqJEiUICgrC1dWVKlWqoFKpGD9+PK9fv6Zt27ZMnz4dY2PjdKsvbriWnut8RUREEB4eni6BWGBgIEC6Pu/szN7envXr1+Pq6srTp0+ZOXMmixYtypRjr1+/Pt5Uoxs2bGD37t0AzJs3j8qVK2dKHUIIIbKvLypcE0IIIYTIKh/9Qzly8SUnr74iMET76X1qliuAva01VUrlkwt4hBBCiAzm7u7OlStX+O+//7h48SKRkZEYGxvTpUsXOnfujKGhIW5ubgQHBxMcHExQUJD6duwaZXG/Tuw/hUJBjhw5KFiwIO/evQPAx8eHESNGcPz4cY3CrWPHjjFx4kSio6NZuXIltWrVSrDNhw8f8PT05M2bN3h4eKBSqRg6dCgzZsyIF9iEhYWpbxsZadcV36tXLzp37qzVGG1ERkaya9cuAAYPHgzEPPc9e/YAULp0afW2z549A6BYsWKoVCru3btHlSpVWLJkCRcuXGDatGkZMg1fVFQUOjo6NGnShFGjRuHg4MCAAQNo06ZNqtY4Gz16NEWLFuWnn35Kt06z2PXoTExM0mV/2Z1CoaB///789ttvABw5coSxY8emeX09TRQsWDBet2avXr3U4drOnTslXBNCCCHhmhBCCCFEcp699uWQsyuX7noRrVRpNdbQQJemNa1o3cCaIvmzdo0IIYQQ4lvi5eXF9OnT490XGhrK7t271SfIE2NiYkJkZCSRkZEULFiQrl27kiNHDnLmzJngv9juoZCQEDp06ICrqysQE+y9efOG4sWLJ3mc169fs3z5co4cOQJA586dCQ4OZv369Xh5eeHp6YmnpydeXl6EhoZiZWVF9erVqV69OjVr1gQSTrcXt/NK284mhUKhdSCnjaNHj/Lu3Ttq165Nw4YN8fDwYPLkyerHGzVqBPwvSISYcM3U1JQLFy6gUCjYs2cPGzduTNeusrg6duzIDz/8QJEiRRg/fjzu7u5MnTqV7du3s3HjRvUacZoaPnw4uXPnjjflZVp9/PgRiPn+ajN1ZWhoKBAzVaU24wICArQr8P+pVNp9Zk7OTz/9xB9//EFoaCgqlSpdp9nUho2NDTVq1MDFxYVjx44xYcKEVE0BK4QQ4uuRpeFadHS0xtMUCCGEEEJkluhoJVcfvOOQsyuPX2m/5kbeHEa0rG/Nj3WKYW6i/ZXOQgghkvfnqO8xMjKKtx5OZlq8wyVV/z6kVrkSuRnTrUamHe9rULduXerWrcuVK1fi3a+vr0+pUqUoXbo0xYoVo1ixYhQoUIACBQqQL18+jIyM6NmzJ9evX6dQoUIMGTIkxWOZmJiwfPly2rVrp16Tydw8+YtqFAoFp06dUn+9Z88edRcXQK5cuahbty79+vWjQYMGGgU7cYOQlI6f2f766y8Axo0bB8R0IMWGJKVLl6Zp06YA6jXjAKpUqYK5uTmrV6/m1atX7Nq1K0OnrezTpw8Ajx494vDhwwDUrFmTZcuWYWJiQnBwsMb7unfvHiNHjqRgwYJs2rQp3rSXaeHjE7PO740bN1IVMr59+zbDwsm40jNcMzU1pX79+vz7779UrVoVa2vrdNu3tjp16oSLiwvh4eHs27ePgQMHZlktQgghsl6WhWvh4eEMGDCADRs2ZOjVUUIIIYQQmgoOjeTUNXeOXHTjvW+o1uNLF82Jva0N9SoXQk83a074CiHEtyB/LmOMjY2zLFyraJMnU8O1itZ5KJD725gGLj2NHj2azp07U61aNRo2bEjt2rWpUKFCqqb4S0mpUqUYNGgQK1eupFKlSuTJkyfZ7a2srOjduzcbNmxQ35czZ05at27NTz/9RPXq1bV+f8euxwWQO3du7Z5ABjp9+jRPnz6lZcuW6qn0OnfujL6+Pubm5jRr1kx94fXZs2eBmBC0Xr166Ovro1Ao6NmzZ4YGa7FUKhWzZs1CqVQCcPPmTerXr5/q/QUEBNCtWzc2b96MlZVVmmoLCQlRTwvZrl075s6dq/HYTZs2sWDBAgoXLqx+jTXh4eGhDj6zUsuWLbl48SK///57ltbx008/MWfOHPz9/dm1axf9+/fPsn+HhBBCZL0sC9f+/vtvbty4Qb9+/ShfvjzGxjF/HMVeubRr1y4MDQ0xMjJS///Dhw9ZVa4QQgghvmJeH4I4fMGNMzdeExoerdVYHQXUrVyINrY2lC2efU5kCSGEyDi21Yqw98zzTDtew2pFUt5IJFC5cmUuXbqUIGhSqVSEhYVpPXViSgYPHszLly/p2rWrRtsPGTKE/fv3o1AocHBwoH379mm6+DjuOZN8+fKlej/pSalUsmzZMnLkyKFeNwtiOvP69+8fb9uwsDB1p2HNmjUxMzMDoGrVqjg5OdGzZ88Mr3fbtm24uLhgYmJCxYoVKVOmjLrbTlOHDh1i2rRp6u4tKysrPDw80hyuxU6XCfHXqNNEenaSaSI2nEyv7X/66ScqVaoUbw20rGBkZISdnR3bt2/H09OT8+fP07hx4yytSQghRNbJknAtMjKSTZs2oVAouH37Nrdv3473uEqlYubMmVlRmhBCCCG+ESqVigeuHznk7Mr1R+/Q9pyDqZEezesUp9X3Jcgv3QRCCPFNKW5pQQXrPDx0+5jhx6pgnYdilhYZfpyvVWIdXLt37+bw4cNs2LABU1NTjfZz8+ZNcuXKlWz3lIGBAUuWLNG4NjMzM5YtW0bp0qXTZV2ut2/fqm+nNchJL05OTjx//pw5c+aQN2/eZLd1dnZWrw3WsmVL9f2NGjViwYIFPH78mHLlymVYrY8fP2bx4sXo6uqydOlSqlSpgp2dHRUrVqRNmzYa7cPJyYnp06ejUqlQKBRMnz5d47A1JW5uburbZcuW1WqstmFXWmkb5qVUn0KhyPJgLVanTp3Yvn07ADt27JBwTQghvmFZ0rt88OBB3r17h0qlSvQ/INnHhBBCCCFSKzIqmjM3XvPrkvP8tuYS1x5qF6xZ5jVlcNtKbJ72I/1aV5BgTQghvlHtG5fMlON0aFIqU47zrXjz5g0LFy7ExcWFgQMHaryOlpmZGSNGjKB///44Ozun2/mJ2rVrp0uwBuDu7g6Anp4eRYsWTZd9pkVISAhLly6lfv36tG/fPsXtHR0dAcifPz/29vbq+5s3bw7A+vXrM6ZQwM/Pj5EjRxIeHs7UqVNp1KgRuXLlYt68eUydOhVnZ+cU97F3714mTJiAUqlEV1eXuXPnpluwBvD8eUy3rJ6eHlWqVNFqbHbvXPuSzveVLl2aqlWrAnDx4kVev36dtQUJIYTIMlnSuVahQgUcHR3R19dHR0cHlUqFUqkkPDwcd3d3pk+fzooVKwgPDycsLIywsDDCw8Px8vJix44dWVGyEEIIIb5wfoHhHL/yimOXX+IXGK71+Mol82LXwJpa5Quio6PIgAqFEEJ8SWqVL4httcI43/ZMeeNUalitCDXLFciw/X9rQkNDGT58uDpQiw3YNOlgK1u2LPv27WPmzJkMHDgQGxsb+vbti729fYas4ZaSqKgo9PTin9J5/PgxADY2NhgaGmZ6TZ9btWoV0dHRLFiwIMVtHzx4wLVr1wDo06dPvNfUysqKChUqcOLECYYMGUKZMmXStc6IiAgcHBzw8PBI0Gn2/fff06VLF0aMGMG6deuoU6dOovvYsGEDixYtAmKmDly8eDE//PBDutb54MEDACpWrIiJiXYXd8WGXZkVYml7nOho7aZlz2qdOnXizp07qFQqdu3axYQJE7K6JCGEEFkgS8K18uXLJ/lY7LzgiX0IcXNzk3BNCCGEEFp59TYAJ2dX/rvlQWSUdlfR6unq0LB6YextbShRKEcGVSiEEOJLNbhtZR64fuRTQFi67zu3hRGD2lZK9/1+q6Kjoxk/fjxPnjwBYqaZ++mnn+jXr5/Ga6+ZmJgwb948atSowcyZM5kyZQrLly+nT58+dOvWTevAQ1NRUVE8fvwYFxcXbt26xfPnz5k6dSr16tVTbxMZGcndu3eBmPXKUkupVKKjk/ZJjlxdXdm+fTsbN24kT548KW4fG8AVLVo00W6vDh068PvvvzNr1iz1lHzpITIykl9//ZW7d++yYMECWrdunWCbcePGce/ePQYOHMiiRYv48ccf443//fff2bt3LxCzltzatWvVnU3pRalU4uLiAkDTpk21Hh8bXmVWuBY3LPv06VOS20VERCTY/kvQokUL5syZQ1BQEPv37+eXX35J03qJQgghvkxZEq4JIYQQQmQkpVKFyxNvnJzduPPcR+vxOcwMaFGvBD/XK04uc/lDWQghROIsTA34fVBdJq26SFBoZLrt18xYn98H1cXCNPM7or5GKpWKKVOmcOrUKQCKFy/OH3/8Qe3atVO1v44dO1KmTBmGDRvG+/fvWbhwIRs3bmTQoEH06NEjzZ1sfn5+3L17l9u3b3Pr1i3u3buHQqGgSZMmtGnThgYNGqCvrx9vzM2bNwkMDASgfv36qTru3bt3WbVqVZqnX4yOjmbSpEn88ssvGr3Gx44d49q1aygUCubMmZNoSGlnZ8eiRYu4fv06u3fvpkuXLmmqEWKCsdGjR3P79m02btxI3bp1E93OwMCA1atX06lTJ3799Vd++eUXBg8ezPv37xk9ejQ3b94EYrobV61alSFrgz148ICAgACAeOGepuIuwZIZ4k4LmdTrGldsyPalMDY2pnXr1uzatQs/Pz+OHDlChw4dsrosIYQQmUzCNSGEEEJ8NcLCozjr8gYnZzc8fYK0Hl/c0gJ7W2tsqxXBQF83AyoUQgjxtSluacHcYfWZvv5KunSw5bYw4vdBdSluaZEO1YmoqCgmTZqEk5MTEDOd22+//aZxt1pSKleuzN69exk0aBBPnz7F19eX+fPns2vXLubPn0/16tU12k9QUBBPnjzh4cOHPHjwgHv37vHq1SsgZm2t+vXrM3v2bJo2bZpsZ8zOnTsByJkzZ6rDteDgYCIjtQ+JP+86WrduHRUqVKB///4pjvX29ub3338HoFevXtSqVSvR7czMzOjYsSNbtmxh3rx5VKtWLU3TQ4aEhDBixAiCg4M5ePAgBQokP/1qnjx5WL9+PV26dGHp0qVcvnyZp0+f4ufnB0CrVq2YNWtWmt9XSbl48SIAtWrVolixYlqPj4qKArRfCy214r4nnj59muR2EydO5MCBA19cuAbQuXNndu3aBcT8/KU2XIsNxQH1+0kIIcSXQcI1IYQQQnzxfHxDOXrJjZNX3VPVOVCrfAHsbW2oXDIvCoWspyaEEEI7xS0tWDG2MesP3Of8bY9U76dhtSIMaltJOtbSSVBQEKNGjcLZ2Rlzc3NmzZrFTz/9lG77L1iwIDt37mTQoEHqKftev35Nr169WLlyJY0aNUpy7K+//sqdO3d4+/ZtgscqVKhA+/bt+fnnn8mdO3eKdTx+/JjTp08D0KVLl1R3zvn7+8c70a+puF1RQUFBuLu7M2fOnBTHRURE8Msvv+Dn50fjxo0ZP358stsPHDiQPXv2EBoaysCBA9m9ezeFChXSul5vb29++eUX6tWrx9ChQxN0ASbFxsaGuXPnMmzYMPX6cIaGhkybNi3Du5aOHj0KQLdu3VI1PjZUy4pwTRNRUVFERkZq/L3IKHHrTuk5lCtXjkqVKnH//n0ePnzIrVu3NA7VYwUHB3Pr1i3112fPnk1VZ6IQQois8UWFa2FhYahUKg4ePJjgsffv3wNkyGNCCCGEyJ6eun/ikLMbl+55oVRqN82NoYEuP9QqSusG1hTOZ5ZBFQohhPhWWJgaMLZHDRpWL8w/517w0O2jxmMrWOehQ5NS1CyXfPeM0Nzz588ZPnw4r169omLFiixbtgwrKyuNxmozdZ6ZmRkbN26kf//+6pPkkZGRjBs3jjNnzmBhkXgHYqlSpTh+/Lj6a11dXVq3bk2vXr2oUKGCxsePiIhg8uTJKJVK8uTJQ9++fTUe+7mAgIBUnQeJDSGio6MxMzNj/vz5KY5RqVRMmjSJ27dvU716dZYtW4aeXvKnqPLmzUvv3r1Zu3Yt3t7e9OjRg3Xr1lGqVCmNa33z5g3z58/njz/+0GocwJkzZ5g1a1a8+yIiIrh48SLVq1fH2tpaq/1p6uHDh7x48YLixYunOniJ7VzTNvRKbUdZ7PE0kTNnTgYOHIiubtbMGhEREUFoaCiurq48fPhQff+2bdsYNGgQpqammJkl/rdCp06duH//PgDTpk1j0aJFFCpUCDMzs0TXLgwNDSUyMpKgoCDc3NxYs2YNPj7/m8L+4MGD6Ovr07FjRwoXLoyBgQGGhoYYGhqm87MWQgiRHrJtuBYdHZ3gH9Z169YBMGnSpCTHZcRjQgghhMg+oqOVXL7/FidnV564+2o9Pm9OY1rXL0Hz74phZiKdAUIIIdJXrfIFqVW+IO5vAzh/24Pnr/144eEXr7PazFifkkVyUqpoThpWK0IxmQIyXR07dozJkycTGRnJsGHDGDJkiFbdXJ8+fdLqeCYmJqxbt46OHTuqp3QMCAjg0qVL/Pzzz4mO6dmzJ5s2bSI4OJiGDRsyefJkraf7U6lU/Pbbbzx8+BBdXV3mzp1Lzpw5NRqXmE+fPvH+/Xv8/f3JkSOHxnXEdkNpGtwolUomT57MkSNHqFOnDitWrEh2ysu4HBwcOHHiBK9evcLT05POnTszefJk2rdvr9H4AgUK8OeffyYafCTl7t27LF68WN2tlitXLgYPHsyHDx/YunUrx48f5+TJkzRq1IgePXpQt25drfafkv379wMwfPjwVAdQ2n6PYr18+VJ9W5vnFDu9qKmpabLb2dnZ8dtvvyUZQmsqJCQk1WOPHDmS6DlBR0dHHB0dKVy4MGfPnk10bMuWLZk3bx7BwcE8f/4ce3t7AA4fPkzp0qUTbP/7779z4MCBZOvZu3cve/fuVX89fPhwRowYoc1TEkIIkUmybbgWEBBArly51F9fvXqVkydPApm3ACsgU0MJIYQQ2URQaCSnrrpz5JIbPr6hWo8vUywX9rY21Ktkia5u+p3wEEIIIRJTzNKCXpblgZi/YUPDo4iMUqKvp4OxoZ78rZkBwsLCWLx4Mdu2baNGjRrMnDmTkiVLJrrtgAEDiI6OpkCBAuTLl4/cuXNjYWHBq1evcHV1BUixkyouCwsLli9fTocOHdTBQnIn/C0sLOjRowf58+enR48eWjzLGBEREUycOJGjR49iYmLC/PnzadiwYbJjFAoFKpUKb2/vRB93d3dHpVLh5OREz549Na4lNrDRpFspPDycSZMmcfToUbp168bkyZO1ep0NDQ2ZPXs2vXv3JioqiuDgYH777TcOHDjAsGHDqFu3brLjNQ1ZVSoVFy5cYNOmTVy9ehWI6bDq2bMnffr0UXcytWvXjt9//51r165x9uxZzp49S/78+fnpp59o0KABtWrVStM6bH5+fuzfv59q1arRqlWrVO8n9nuT2Pfo4cOH7Nixg5w5c2Jubo6ZmRmGhoaEh4ezfft29XaaBqCxevbsiYODQ7Lb1KtXT+P9PXjwAGNjY6ysrOJ9H1UqFc7OzuqvtXk/Qcz3sF27dlqNiWVqahpvWseUzJs3j3nz5qXqWEIIIbKfbBuu+fv7xwvXDA0NWbFihbod2sDAAAMDA/T09NDTy5g/TN68ecOQIUPSfb9CCCGE0JyXTxBOF9w4c+M1YRHaXW2ro6Pg+8qFsLO1pmyxlNcsEUIIITKCQqHAxChr1xL62t24cYPJkyejo6PDypUradasWbLbr1+/nnv37nHkyBEcHR0TDcK0nTawbNmydO/enS1btgBQtGjRZLcfNWpUqs5lvH79mjFjxnDv3j1KlCjBsmXLKFu2bIrjChQowLt371i7di0WFhaULl0aAwMDoqOjuXfvnnpdr/nz52Nubk6bNm00qid26sDw8PBkt/P29mb48OG4ubkxe/bsVK9TVrNmTSZOnBhvisYbN27Qp08fpk2bRvfu3VO139gaDx48yN69e3nz5g0A1tbWdO/enfbt2ycIymxsbNi2bRvHjh1jw4YNPHr0iPfv37Nt2za2bduGvr4+ZcqUoWLFipQqVQorKysKFy5M7ty5yZEjR4qdaDt37iQiIoIZM2ak6bxXbACa2PfI0tKSqlWrcu3aNfbs2UNQUFCi+9Dm52H27Nlah3EpuXjxIrt37+bdu3fkzp2bfPnyYWpqyocPH3B3dwdiwtP8+fOn63GFEEKIpGTLcE2lUvH06VOKFy+uvq9atWpZVk9ERESqFwQWQgghhPZUKhX3XnzAydmNG4/foW3TuqmxPj/VKUbL763Jlyv1VwsLIYQQInsLDg5m8eLF3LhxgyFDhmBnZ6dR54qOjg5Vq1alatWqDB48mEmTJnHhwgX147q6unTq1EnrekaOHMmVK1cwMzOjZs2ayW6rbViiVCrZuXMnS5YsQaVSMXr0aPr27avx+YomTZqwc+dOfH19k10aw8DAgCpVqmhclybh2unTp5kyZQo1atRg5cqVFCiQtvUFe/bsydu3b9m0aRNFixZl5MiRNGrUCHNzc6335eXlxblz5zh27BguLi6oVCosLCxo164d7du3T/H7CNCiRQtatGjB9evX2bJlC+fOnUOpVBIZGcmDBw948OBBgjEKhQIDAwNy5crFsmXLEpz3CgoKYvv27fzyyy8ahafJie1Yy507N1FRUfF+RnLnzk2nTp3o1KkTwcHBbN26ldWrV6s7MAEqVqyIjY2NxsdL72ANYMiQIQwZMoQHDx7w999/s3///ng1Auk+JacQQgiRnGwZrgE8evQo1Qu1prfAwEDy5MmT1WUIIYQQX72IyGicb3twyNmNV28DtB5fKK8pdg2saVKrKMaG2fZjjhBCCCHSSWhoKPXr12fq1Kmp7uzJly8fa9asoVOnTjx69Ag9PT1mzJiRqkDD1NSUffv2ER0dna4z7Fy/fp158+bx9u1b+vXrR7du3cidW7uu/DFjxqCjo8Pp06f59OlTgvW3zMzMqFSpEqNGjaJEiRIa7zc2XFOpVAkuTv748SMLFizg8ePHzJ49m6ZNm2pVc3LGjx9P4cKFadWqlVZrxAUFBeHi4sLVq1e5ePEiz549A6B48eJ07dqVRo0aUa9ePfT1te82rV27NrVr18bLy4szZ85w7tw5rl+/niAEgpgAd8KECXTu3DnRQHjdunWUL1+eAQMGaF3H54oUKcLMmTNp27ZtsuGzqakpDg4OlC5dmmHDhqnvi9slmNUqVqxIxYoV6d27Nw4ODup1Dk1NTRk7dmzWFieEEOKbolBl5gJmn3F0dCRfvnzxQjQ3NzcGDx6Mo6Njmq9kSis3NzdatGiBk5NToguRiq9XREQE9+/fT3B/pUqVvskuxsjISO7duxfvvsqVK6fqjw0hhEiMb2AYJy6/4tjlV/gFJT+lUGKqlMqLna0NNcsWQEdH1rARQojsJCoqiufPn8e7r1SpUlqti6NUKgkNjb/eprGxsXQoiHT1999/c+nSJYYOHZrmTqH08uHDB2bMmIFSqaRly5b88MMPGBoaZnVZ8UyaNIn3798zduxYypUrp77/2rVrrFmzhu7du/PDDz9k2TqDISEhnDp1inv37nHnzh2ePHmCubk5NjY2VKxYkcqVK1O9enUKFSqUIccPCgriypUrPHjwgGfPnvHs2TM8PT2ZOHEiffr0SXTM27dvcXBwYOvWrVhYWGRIXSnp2bMnCoWCadOmJbl2YVZzc3OjVatWFC5cmGXLllGhQoWsLkkI8ZX70j6Tpsfn8KTI+fMsDNe8vb1p0aIFFhYWHDp0SP1h4dOnT0RGRmZ5sAb/C9fmz5+Pvb19VpcjMpH8cohPwjUhREZ56eWPk7Mb/93yICpaqdVYPV0dGlUvgp2tNSUKaX61shBCiMwl4ZoQqRceHk5kZCRmZmZZXUqS3r9/n+g6V9lliY0PHz5w9OhRChQoQIECBShWrJjWXX/pLTg4GENDwyR/D4aEhBAYGJil58aCg4MxNTXNsuNr6r///qN+/frpcqJYCCFS8qV9JpVwLWNl2b88c+bMITg4mJCQEBo1aoS9vT3du3fPllfDfPjwIatLEEIIIb4aSqWKm4+9OeTsyr0X2v8bm9PMkBb1ivNTveLkMk//9RyEEEIIIbILQ0PDbNep9rnEgjUg25xYy5s3L717987qMuJJKbQyMTHBxMQkk6pJ3JcQrAE0atQoq0sQQgjxjcqScO38+fOcPHkSiJmTOyQkhN27d7N7925q166tnjIgscT33bt3FCxYMNNq/emnn+jbt2+mHU8IIYT4WoWGR3HmxmucLrjx9kOw1uOLW1pgb2uDbbXCGOjrZkCFQgghhBBCCCGEEEKkLEvCtXr16rF161YuXLjAhQsXePr0KbGzU16/fp3r16+TP39+OnbsSKdOndRXQb169YouXbqwe/duihcvnuF1Fi5cmCVLlmT4cYQQQoiv2XvfEI5efMnJa+4EhyZczD05CgXUKlcQO1trKpfMm2VrdQghhBBCCCGEEEIIEStLwjV9fX2+++47vvvuO8aOHcubN284deoUp06d4u7du0DMmmyrVq1i7dq1NGrUiI4dO7J9+3b8/Pzo2LFjhizoqlKpUKlUKJVKoqKiiIyMJDw8nIiICBYuXEirVq3S/ZhCCCHE1+rJq08ccnbl8v23KJXaLfFqZKDLD7WK0rqBNYXyZd81RoQQQgghhBBCCCHEtydbrPZpZWVF//796d+/P2/evOHQoUMcPnwYd3d3oqKiOHPmDGfOnAFAoVAQGBhIYGBgptZ4/PhxCdeEEEKIFERFK7l8zwsnZzeevvbVenzenMa0rm9N8zrFMDPWz4AKhRBCCCGEEEIIIYRIm2wRrsVlZWXF8OHDGT58OLdu3WL37t2cOnWKsLAwICZcUygUmJubU79+/XQ7rkqlIjo6mqioKHXXWkREhPo/Ly8vIiMj0deXE31CCCHE54JCIjhx1Z2jF9344B+m9fiyxXJh39CGuhUt0dVNuOaqEEIIIYQQQgghhBDZRbYL1+KqXr061atXZ8qUKRw8eJAdO3bg7u4OQGBgIP7+/vzxxx8UKlQoiysVQgghvk2ePkE4Obty5uYbwiOitRqro6OgfuVC2NlaU6ZY7gyqUAghhBBCCCGEEEKI9JWtw7VYFhYW9OrVi549e3L27Fm2bNnCjRs3uHz5Mq1bt2bcuHF06dIlq8sUQgghvgkqlYq7z3045OzGzcfeWo83M9bnxzrFaPm9NflyGWdAhUIIIYQQQgghhBBCZJwvIlyLpVAoaNq0KU2bNuXevXusXr2a//77j99//53z588zZ84ccuXKldVlCiGEEF+liMho/rvlgZOzK+7vtF/7tHA+U+xsbWhSwwojwy/qI4gQQgghhBBCCCGEEGpf7JmtypUrs3btWh4/fszy5cs5d+4c9vb2LF++nGrVqmV1eUIIIcRXwzcgjGOXX3H8ykv8gyK0Hl+1VD7sG9pQvUx+dHQUGVChEEIIIYQQQgghhBCZ54sN12KVK1eOtWvXcv36dRYsWECvXr2YNGkS3bp1y+rShBBCiC+am6c/h5xdcb7tSVS0Uqux+no6NKpeBHtbG4pZWmRQhUIIIYQQQgghhBBCZL4vPlyLVbt2bfbt24eTkxMLFizg1atX/Pbbb1ldlhBCCPFFiVaquPHoHU7Obtx3/aD1+JzmhrT8vgQ/1SlOTnPDDKhQCCGEEEIIIYQQQois9dWEa7Hs7Oxo3Lgxy5YtY+PGjQwYMCCrSxJCCCGyvZCwSE7feM2RCy95+zFY6/HWhXJgZ2uNbbXC6OvpZkCFQgghhBBCCCGEEEJkD19duAZgbm7O1KlTs7oMIYQQItvz/hTCkYtunLrmTkhYlFZjFQqoXb4g9g1tqGidB4VC1lMTQgghhBBCCCGEEF+/rzJcE0IIIUTSVCoVj199wsnZjSv3vVCqtBtvbKjLD7WL0bq+NZZ5TTOmSCGEEEIIIYQQQgghsikJ14QQQohvRFS0kot3vXByduX5Gz+tx+fPZUzrBtY0q10MU2P99C9QCCGEEEIIIYQQQogvgIRrQgghxFcuMCSCE1decfTSSz76h2k9vlzx3Ng3tKFOhYLo6upkQIVCCCGEEEIIIYQQQnw5snW4dvjwYVq1aiVruAghhBCp8MY7EKcLbpy9+YaIyGitxurqKKhfpTB2ttaULporgyoUQgghhBBCCCGEEOLLk23DtfXr17N06VJu377N6NGj0dPTU/8nhBBCiMSpVCpuP/PBydkVlyfvtR5vbqLPT3WL0/L7EuTJYZwBFQohhBBCCCGEEEII8WXLlknVnj17WLp0KSqVil27drFr1654j+vq6qKvr6/+z8DAAH19fQwNDTEwMMDIyAgjIyMMDQ0xNjbG2NgYExMTTE1NMTMzw8LCghw5cpAzZ07y5s2LpaUlxsZyAlEIIcSXKzwymv9c3uB0wY3X7wK1Hl8kvxl2tjY0rlEEI4Ns+fFACCGEEEIIIYQQQohsIVuePfPx8UGlUqFQKFCpVAkej4qKIioqitDQUPV9aZ06Mn/+/NSsWZMmTZrQrFkzDAwM0rQ/IYQQIjN8Cgjj2KWXHL/yioDgCK3HVyudDztbG6qXyY+OjkzDLIQQQgghhBBCCCFESrJluDZ8+HDy5MnD77//Tv369TEwMCAyMlL9X3h4OBEREer/wsPDCQsLIzw8nKioqFQd8/379xw7doxjx46RM2dOhgwZQq9evWS9NyGEENmSq4cfh5xduXDHk6johBeiJMdAT4fGNa1o3cCaYgUtMqhCIYQQQgghhBBCCCG+TtkyXAPo2rUrv//+O5MnT6ZEiRIaj4uOjiY0NJTQ0FBCQkIICgoiODiYwMBAAgMDCQgI4NOnT3z69In379/z+vVrXr9+HS+U8/X1Zd68eVy5coUVK1agr6+fEU9RCCGE0Eq0UsX1h+9wuuDKA9ePWo/PbWFIi3ol+KlucXKYGWZAhUIIIYQQX56TJ09SsGBBqlSpktWliHRw6dIlfHx8aNOmTVaX8k1avXo1derUoXr16lldisggQUFBuLm5UblyZa3HRkRE8PDhQ6pVq5YBlYm4XF1d8fX1pWbNmlldCgAvXrygZMmSqRrr5eVFnjx5MDSU8xgie8m24Vpq6erqYmZmhpmZmcZjwsPDuXPnDkePHuXQoUNERESgUqk4f/48ixcvZuLEiRlYsRBCCJG8kLBITt94zZELL3n7MVjr8TZFcmBva0P9KoXR19PJgAqFEEIIIb5cCoWCzp0789NPPzFhwgQsLS2zuqREnT59mjJlymBlZZXsdocOHaJu3brkz58/kyrLXtasWcONGzc4fPgwM2bMSPH1ygo7d+6kQ4cOyS5J4ufnx3///UerVq3Q08vY03deXl7kzZs3XZZIcXZ2Zvny5ZQrV47u3bvTqlUrjI2N06HKpMUuL5MZ7/nbt29TuXJldHV1U70Pb29vChQokG41Xb16FVNTUypVqpRu+0xOWFgYHTt2pHbt2gwYMICGDRtqNb5Lly7UqVMHBwcHvvvuuwyqMmNt2bIFNzc3unfvTpkyZbK6nERduHCBuXPnUrduXYYPH57lIdvQoUMpUKAA/fv3p1GjRlrNFrd9+3ZOnDjB2LFjadmyZQZWKYR25AwbYGhoyHfffcfMmTM5dOgQlpaW6vXetm3bxs2bN7O6RCGEEN8g708hbHJ6QN8/TrHh4AOtgjWFAupWsmTesPos/bUhjWtYSbAmhBBCCJGI5s2b069fP44fP06LFi3Ys2dPVpeUqEuXLvHzzz8zefJk3rx5k+R2x44do2nTpsyYMQMPD49MrDDr3b9/nxs3bgBw8eJFWrduzdGjR7O4qoQWLFjADz/8gKOjIxERia+brFQqmTBhAs2bN2fXrl1Jbpcerl+/zs8//8zJkyfTvK/YgO7x48ds27YNf3//NO8zJe/fv+fHH39k3bp1BAQEEBwcnCH/XbhwgZ49ezJkyBCCg7W/6DHWhg0b6N+/P7du3UqX5//kyRM6dOhAr169OH/+fLrsMzlGRkZAzPtm0KBB9OvXT+NlegwMDFAoFFy9epVevXrRtWtXPnz4oH48LCwsQ2rWRlBQEMuWLeP27dtJbhMdHc2ePXuws7Oje/fuXLx4MV2OHRgYyJ49e1K97FFcjx49AuDKlSt0796dSZMmpXmfaWFgYMCNGzcYMmQIo0aNSvC4q6trkmPv3LmDl5cXo0ePpnPnzty9ezcjSxVCY19d51pcGzZsoFq1alol88WLF+eXX35hwoQJKBQKlEolixcvZteuXRlYqRBCCBFDpVLx6OUnnC64cvX+W5TaLaeGsaEezb4rSuv61hTMY5oxRQohhBBCfGV+/fVXzpw5w6tXr5g2bRqenp6MHj06q8uKx9jYmMjISPbt28ehQ4dYsmQJzZs3T7CdkZERERER7Nq1i71797Js2TKaNWuWBRVnvr/++ive1y1btqRx48ZZVE3SjI2N8fb25o8//mDr1q3s27ePHDlyJNgGwNPTkxkzZrBlyxZ2795Nrly50r2eNm3a8PTpU0aOHEmTJk2YPXs2uXPnTtW+4nZ0bd26NdX70YaxsTEhISEsWbKEJUuWZPjxnJ2d6dOnD7t3705VB9uUKVP4448/6Nq1K02aNOG3335LU4dl7HI2165d49q1a4wZM4ZBgwalen+aHg+gXLlyzJs3T6vuSj09PSIjIzE0NKRLly7kzZsXiAmsOnfuTMOGDRkwYAAWFpm7PviTJ0/Yv38/Bw8exN/fn127drF79+5ElyuKOz2hUqmkVKlS6VKDiYkJZ86cYfPmzUyfPp26deumel+xFxoAVKhQgXHjxqVHiUlav349uXLlomPHjok+HvualStXjj/++CPeY69evcLOzo5Bgwbh4OAQ7z0WGRnJw4cP1V/r6Oika+enEGnxVYdrlStXZvz48Tg5OWk1TWSxYsXifX3nzh1u3LhBrVq10rtEIYQQAoDIKCWX7npy6IIbL974aT2+QG4TWjewplntopgYyVqhQgghhBDaMDAwYMqUKQwYMACAdevWYWtrm+XTaMVlYmKivt27d+8kA7PYE5h6enosXLjwmwnWHj9+zIkTJ9RfW1hYUKtWrXivW3YRG5zlyJGDuXPnJgjWIP7J+zJlyrBq1aoMCdZijR49mmvXrnH27Fnat2/PX3/9lWiokBIdnZjZMvT09DIlWIP4r9WmTZs0On/377//MmbMGADu3bun0XG2bt3K4sWLMTAwYNSoUWmaGnLy5Mm8f/+eU6dOcenSJSZNmkTXrl1Tta+4wVarVq3Uv8cyStzgo1atWlpPx6mvr09kZCRly5bF3t5efb+uri5Lliyha9eu7Nmzh2HDhtG9e/c0vc7Jef/+PS4uLty8eZP//vsvQaevn58fAwYMYM+ePeoAMO5ziDVt2rR0C3t0dXVZunQpXbp0oU+fPnTs2JEpU6aouwU15e7ujpeXl7rWuXPnZvjPY7NmzbC3t+fUqVPMnz8/wfFi36dly5bF3Nw83mMHDhwgKiqK1atXc+HCBTZt2qT+vfjw4UPCw8MByJs3L+vWrcv04FWIpHzV4dp3331HmTJlmD17NnPnztV43Oe/tFu1akWRIkXSuzwhhBCCgOAITlx5xdFLL/kUoP0UGOVL5Mbe1obvKlqiq6P5nOVCCCGEECK+Bg0aULJkSV68eAHAgwcPtA7XDh8+zKNHj5gwYUK61xf3BPrgwYOTXK8mNmgwNjamRYsW6V5HdjV//nyUSiUApUqVYsWKFfTs2ZPq1atTtGjRLK4uvtgT8zVr1kzyPaajo6MOIb777rsMXztOX1+fGTNm0KlTJ7y8vBg4cCAHDx7U6mJ1iJmJA8DUNPNm0Yj7s6Gvrx8vbNNkjCbbw//OF+bLl4969eppWWV8Ojo6zJ07l4cPH6q7EwMCAhg8eLDW+4r7XL7//nt1wJlRdHR00NPTS/XUhbGvY2KhmY2NDQsXLmTw4MHMnj2bgwcPsnDhQmxsbFJdb1BQEB4eHjx79ownT57w9OlTnj59io+PT7ztjI2NKViwIPny5SN//vzkzJkTc3Nz7t27R5MmTeJtGzdcS2+mpqYsWbKE9u3bs3fvXh4+fMjGjRvJkyePxvtwdnZW3/75558zZV24EiVK0KtXLzZs2EC7du3YsGFDvI6+pF6z0NBQdu/eDUDVqlVZunRpvAsOrl+/rr7dt29fCdZEtvJVh2sA48ePp3Xr1jRv3lzjqQACAwPVt/v27ZshH4qFEEJ82954B3LI2ZVzLh5EREZrNVZXR0GDaoWxb2BDSaucGVOgEEIIIcQ3yM7OjiVLlmBiYpLolIvJOXLkCBMmTCA6OhqlUpnu69to2r2RkSd9s6vz589z5coVIKYLcdGiReoTvb/++is7duxQd4tlB9p8LyMjIzO4mv+pXLkyjRs35uzZs7x584Zt27bh4OCg1T5iA87MDNcyqrMpo5mZmTFjxgwGDhwIwPLly7G3t6dgwYJa7Scrnn9aAry43Y2JadiwIf369WPTpk08fPiQTp06sXnzZipXrqzR/t+8ecOsWbN4+/YtHz9+JCoqClNTU8zNzbGwsCBnzpw0atSIK1eu4OHhwQ8//MAff/yhVWdXRv+eLVWqFMOGDWPJkiU8evSI/v37s3PnTo07cf/991/17d69e2dUmQkMGjSInTt38vbtW/r378+xY8fUAX1S79OtW7fi5+dH6dKl2bRpU4JAPzZcMzQ0pEOHDhn7BITQ0lcTroWEhHDjxg2KFy8eb1rHEiVK0KlTJ6ZOncqxY8c0SrdjF9KsUKEC48ePz7CahRBCfFtUKhW3n/lwyNmVW0/eaz3e3MSAn+sVp0W94uTJkX1ODgghhBBCZKXQ0FBCQ0PTZV9FihRBoVDw22+/YWRkxKdPnzQad+HCBSZNmkR0dMxFU1u2bEGhUDBx4sR0qQs0P5mb0V0r2U1YWBhz5sxRfz169GjKli0LxFwwffjwYcaMGcPKlSuzzWuj6fpUSXUnZqQuXbpw9uxZAJ4+far1+NjOtcwMM7PidUovtra21KhRAxcXF6Kjo/Hw8PgiwrW0HDP25zC532kjR47k5MmTeHh4EBQUxLRp0zh48KBG+7e0tGThwoWYmJgk+7M2ePBgPDw8MDc313rKxMx4zXv37o2joyPv37/n8ePHLF++PN5FG69fv2b37t0Jzl37+fnh4uICxHTHVqxYMcNrjWVhYUG7du3Yvn073t7e7Ny5U73+X2KvmZ+fHxs3bqRw4cJs3LgxQbAWGRnJrVu3APjxxx/JmTNnmurz8PCgadOmGm1rYGCAubk5hQsXplKlSvz888+pmio6ICCAgwcP4uzszJMnT/Dz88PAwICcOXNSpkwZ6tSpQ7t27RJMlSm+DF9FuHbgwAHmz5+Pv78/AK1bt2batGnqH8jhw4dz8OBB5syZw7x581Lcn4eHBwqFgrFjx37R/0ALIYTIHsIjozl38w1OF9x44x2Y8oDPWBUwx97WmobVi2Bk8FX80y2EEEJ8U1QqFaqIUFTRUSh09VAYGMvfmuno48eP9OrVC09Pz3Tb55QpU5gyZUqa9rF582YUCkWmz4bzrb23li5dyqtXr4CYqT379OmjfkxfX58FCxbQsWNHZs2axbRp07KmyM9o+j3KijCwbt265MiRA39/f407heKK7bTLqnAtMDBQo1A8ODhYfVvTED29QvzP9enTBxcXF3LkyEHp0qW1Hp8VP/NpOWZKnWsARkZGjBgxQv3709vbW+P96+npZfjUgZoG5GlhZGRE586dWbFiBQAnTpyIF67t2LGD8uXLJxh34sQJ9ZSdcX8fZhY7Ozu2b98OxDTDxErs99myZcswMjJi8+bNia5bd+vWLfXPaseOHdNcW6FChbhx4wYfPnxg7NixPHz4EIBq1aoxZ84c9dp6oaGh+Pr6cv/+fQ4dOsSOHTvYsWMH1apVY/bs2RoF4FFRUWzZsoVVq1ZRu3ZtOnXqRLly5TA1NcXX15e7d++yY8cO5syZw/Lly5k2bRpt2rRJ83MUmeuLP0O3ePFiNm7cqL4yBmLmOHdzc2Pfvn0A5M6dm379+rFq1SpatWpF/fr1k93nmzdvKFeuHHXq1MnQ2oUQQnzdPvqHcuzyK45ffkVgSITW46uXzY+9rQ3VSuf75k6SCCGEEF+6iPfuBD28SLjXc8LfvUQZFqR+TMfIDMOCJTAsVAqzCg0wyJ+91oP60hQpUoRt27Zx+vRpypUrR7FixTAzM8PU1DTBZ6jo6Og0dRx8/PhRq3VvRMZycXFh27ZtAFhZWbF48eIE3/Ny5crxyy+/sGjRIvT09Pjtt9+yotQvhoGBAZMnT8bd3T1VJ+ZjT+prGq7t27ePokWLUrt2ba2P9fkxAYYNG6b1+Lp166b62OmhefPmTJo0iWrVqqUqFMqKEDaxv0+joqIYM2YM3333Hd26dUtybGy9Kf0ubtWqFYsWLcLHxydN74+MkFl/n7du3VodrhUuXFh9f0hICP/++y+jRo1KMMbJyQmI+Z2oaZfW5x49esSff/7J0qVLtQ7KK1euTLFixfDy8ooXFn3+Pn3w4AGnT59my5Yt8Wahi+vChQsAFCtWjFq1amlcQ1BQUKLrRero6GBhYYGFhQWNGzdWh2vt2rXD2tpavZ2FhQUFChSgbNmydOzYkUOHDjF58mRu375N9+7d2bBhQ7ztPxcSEsLIkSO5cuUKCxYsoGXLlvEez507NzY2NrRt25bZs2ezfft2JkyYQHBwMN27d9f4eYqsl6Xh2qFDh7C3t0/1+B07drBhwwYUCgUKhUIdsJUsWZJevXrF27Zv377s2LGD6dOnc+TIkWR/MTx//lySYiGEEKn24o0fh5xduXDHk2ilKuUBcRjo69K4RhHsbW2wKiDTAgghhBBfmpDnLvhdOUDYm8dJbqMMCyL01X1CX93H7/J+jKzKkbNeW0xK1sjESr8uRYoU0SgImDp1KiVKlKB///5an5AOCAigSZMmdOjQgaFDh6qvcP/Sffjw4Yt8LoGBgUyaNAmlUomxsTErV64kR44ciW7bv39/bty4wdatW1EqlUyePPmru3gtODgYhUKh8ZpMyUnLubrYoMvQ0DDFbfft28eUKVMwNjZm3bp1qQ5Q4oZr27Zt47vvvktxzIkTJ/jll18Azae/3LRpEwsWLIh3gX96SUuHUUa8l319fZN9nrHHDA8PV3f+zZgxg5MnT3Ly5EmAZAM2SHmqWz09Pfr378/GjRsZO3asNuVnuMz6/VGsWDGsra1xc3NTr80HcPDgQerXr4+RkVG87T09PdXTKPbo0SNVweuTJ0/o27cvfn5+DB8+nDVr1mBgYKDVPiZPnkx4eDjFixdX3/f5a3blyhU2bdpEyZIlgZgutsDAQKZOnarextnZGYgJvzR9zbdu3cpff/3Ftm3bkgztIH64m1Inor29PR8+fGDBggX4+vryxx9/sHnz5iS3nzlzJhcuXGDw4MEJgrW4Yqehvnv3Lvfu3WPOnDnUqVMHGxubZOsR2UeWhWvu7u7qDzN2dnZaj3/y5Alz585Vh2rGxsZ07tyZtm3bUqZMmQTbm5qaMmDAABYuXMjy5cuTnPdcpVLh6urKjz/+qHVNQgghvl3RShXXHrzF6YIbD90+aj0+t4URreqX4Mc6xbEw1e6DqxBCCCGyXnRIIB9ObST44UWtx4a9ecy7PY8xq9CAPM37o2siF9hklEGDBmFvb4+zszNLliwhX758Go+9ePEiYWFhODo6sn//fnr16oWDg4NGIUJiVqxYwfDhw7M05ImIiKBly5YMHjyYvn37fjGBk0qlYty4cbi7u6NQKJgzZ456nbXE6OjosGjRIjp27Mj27dv59OkT8+bN0/qEcWJevHjBs2fPaNGiRZr3lRbnzp1jxYoVLFq0iEqVKqXrvp89e0avXr3w9fXVeMzFixcTPT+XmJCQEAYPHszff/9NqVKltK4vbriWGcLDwzP1eCnJiM61Q4cOMXfu3BS327NnD3v27Il3n0qlYubMmUDiAVvs7xlNplbs27cv3bt3x8DAgNDQ0EydbjS7cHBw4NGjRzRu3Fh9X+x0gp/7559/1KHo3LlzNfoeJufixYuMGTOGZcuWJdppGBUVRUBAQIL7Y38HxZ1yNfbnNCIigk+fPtG+fXv1Nlu3bmXt2rXqbadOncqbN294+vQpCoWChg0bajR96+HDh9WvS69evVIM2LTRs2dPtmzZwvv377l79y4PHz6kQoUKCbZ78uQJBw4cAODnn39Ocb86Ojr07duXUaNGERUVxcaNG9P8fROZJ8vCtSVLlhAVFcXMmTNxdXWlW7duic6tmpjo6GgmTpxIVFQUurq6dOvWjaFDh6a4+GSPHj3YvHkz27dv56effqJq1aoJtomMjGThwoUa1yKEEOLbFhIWyb/XX3P4ghven0JSHvCZklY5sbe14fvKhdDXyx4LrAshhBBCO+Her3i3ezbRQZqt25OUoIcXCHV/iGXXKRjkT5+TQSK+4sWLM3DgQFasWEH79u3ZsGGDxgHAoUOH1LcrVKhA06ZNUx2sQUwn3MaNG+N1I2Q2FxcX/Pz8mD9/Ps7OzsyfP/+LOB+ycuVKzp07B8DEiRM1CrYsLCxYvXo1Xbp04ejRo7x9+5ZVq1aleC4pJVZWVjg4OFCxYkWKFs26KV6dnZ159eoVXbt2ZcSIEQwcODDdQpfSpUuzefNmDhw4QKVKlShRogQ5cuTA1NQ0wbbt27fHy8uLH3/8kRkzZiS73+XLl7N7924Afvjhh1R3a8Su85ZZIiK0n/I/I2VEKN6nTx+qV6+OmZkZVlZWCbrMatasSWBgIL169WLy5MmpOoam65YZGBjw4sULBg0aRNu2bRkxYkSqjpdab9++xdLSMlOPGVfr1q1p3bq1+utLly6hUCioUqVKvO0iIyP5+++/AWjTpk2q1/ucPn06p06dUn/99u1bHjx4kOB4EBOkfr59So4ePcrRo0eTfNzR0RGIWR8t9hipmWHu3bt36RqwGRgYYGtrq16G6saNG4mGa8ePH1ff1vR3U9ypaWP/bRNfhiwJ1+7du8fJkydRKBQEBwezfv16Nm3axI8//kjv3r1TXDDV0dGRJ0+eUL58eWbNmpXo4o2JMTQ0pF+/fixYsICJEydy6NChBB+EDQwM+OGHH1L93IQQQnwb3n0M5vBFN/699prQcO2ulNRRQJ1Kltg1sKF8idxfzBXCQgghhEgo3PsVbx2nx1tTLS2igz7htX0ahXrOlIAtg/Tv35/du3fj7e1N3759+eeff1I8cfr+/XsuXozpSrSxsWHt2rWJrueijb59+9KiRQvq1q1LxYoV07Sv1Dpz5oz69pUrV7Czs2Pr1q3JdoFltePHj7Nq1SoABg4cmOh0ei4uLlSvXj3B52wbGxvWrVtHv379uHXrFh06dGDBggXUrFkz1fUYGhrSvn17xowZw65duzQODNJTVFQU58+fB2JO5i5ZsoQbN26wZs2aFKfeS0xERESCrr5y5cpRrly5ZMcplUp8fHwAsLa2TjG4DAr63+/NMWPGpDoMjNu5FhgYqFGHS3BwsPq2JtsDhIaGAtmvcy2jpHR+NrVify41Xf/y6tWrjBgxgoCAAFauXMnHjx+ZNm1apqw1N3fuXA4cOMDmzZsTDVKywvbt22nXrl2C+//99198fHwwNzdn/Pjx8X7+7t69S6VKlVJ8zd69e6cOd4oWLcqsWbOSnWZVX1+fpUuXsnPnTgoVKkTp0qXJkSMHZmZm6u/v8uXLWb16tXpM27ZtmTdvXorPs0uXLkBMuH/48OEkt9uzZw/Tpk0DYOPGjTRo0CDFfadW3M7a9+/fJ7rNy5cv1bc3b97M0qVLU9xvrly5MDc3JzAwEF9fXwIDAzE3l1kMvgRZEq7FtnnGnbs3KiqKY8eOcezYMapUqUKvXr0SPdkYERHBmjVrGDx4MCNGjND6Q0vXrl3ZsGED7u7uLFiwIN48rkIIIURyVCoVj15+4pCzK9cevEXL5dQwMdKj+XfFaFXfmgK5074WghBCCCGyVnRIIO92z063YC2WMiyIt7tmUWTgEpkiMgMYGxvTtWtX/vzzTz5+/MjcuXP5888/kx2zY8cOoqKiyJEjB2vWrElzsAYxV+U3a9aMsWPHcvDgwQRr52Q0pVKpXhsJoFq1avz222/ZOli7cOEC48aNQ6VS0a1btyTXYZozZw7R0dH8+uuvNGrUKN5j1atXZ8WKFQwdOhRPT0969erFkCFDcHBwSHUw1rVrV9auXcuqVavU63hlpsuXL+Pn56f+etCgQfTr1y9VwdqiRYt4+PAh69at03raTB8fH3WnRpEiRVLc/sOHD0BMyKLNFK2fi46OVt8eNmyY1uPjdo1oIr075cLDw9PUBZuaizXfvn1LwYIFM+RCz9OnT/Prr7+m+Drt37+f/fv3a73/Xbt24evry8KFC9NlatekzJ8/ny1btgAxF0Nkh4Dt9evXXLp0idmzZyd4LLbWX375hTx58sR7bO7cuQQHB/PLL78k21SydetWIiMjKVeuHJs3byZXrlwp1qSnp0evXr0SfezKlSvxpnuEmKWi7t69S/ny5ZP8HeXu7s7t27exsbGJF4QnJm44npbfI5qI262b1Ps7NoQHOHbsGH379tUoqDY2NiYwMBDIft2xImlZEq6tXr2ajx8/8uzZM27dusWtW7e4ceOG+o1z9+5dxowZA8Du3bv55Zdf1AuyGhgYcOTIkVQvtmtsbEz37t1ZuXIlO3fupHbt2rK+mhBCiGRFRim5eNeTQ86uuHr4az2+YB4TWte35ofaRTEx0v4PXCGEEEJkTx9ObUzzVJBJiQ76xMdTm8jf5tcM2f+3rkOHDqxYsQKVSsWZM2eSXcsnPDycPXv2oKury5IlS9Jt/RaAfv360aZNG+bPn8/06dPTbb+auHnzpvrKe319fRYsWJCl0xqm5ObNm4wYMYLIyEgGDhyYZLAGMc/nwYMHDB48mKpVqzJ58uR4JzcbNGjA6tWrGTFiBGFhYaxatYpTp04xatQomjZtqnVtFhYWdOjQgXXr1tGwYcNElyHJSHGnIfvuu+/U59QS4+vrG+9i97j27t3Lhg0bgJgT9CtWrNAqcHzz5o36tibvpY8fY9aqzp8/v8ZdTImJ27m2bdu2ZDttIKbjZMCAATRs2DDZ1+pzmzZtYsGCBahUqkS7+1Jj8+bNHDlyhO3bt6vPfWa0ly9f0qNHD5o1a5bi1J2p8cMPP7B582aioqIoXbp0ggDv559/xs/PL97UhcuWLWPPnj2YmZnx77//anScz/cbHR3N6NGjOXHihFb1HjhwQL1GVlL8/f2zRcC2bds2bG1tE4Rn//33H3fv3qVMmTKJrnMXHh7Os2fPGDZsGJUqVWLVqlUJpgAODAxkz549FC1alI0bN2oUrCXH29ubcePGoVQqadSoEZGRkVy6dAlfX1/69euHUqmkTp06tGrViubNm8cL2pycnADo3bs369evx8/Pj5w5cyZ6nLhrQebPnz9NNackNvwCkqynTJkyODs7q79OqsMtLqVSib9/zLkmQ0PDNE9XLDJPlq25lidPHurWrau+OiQsLIyrV69y+vRp/v33X/Ubatu2bRw9epTRo0erW15TG6zF6tGjB5s2bSI0NJTJkydTunRpSpQokbYnJIQQ4qvjHxTOiSuvOHrpJb6B2k/9UdEmD/a2NtQqXxBdHZn6UQghhPiahDx3IfjhxQw9RtDDC5hVaIBJqRoZepxvUYECBahcuTJ3797FwMAg2ZPk+/btw9fXlwkTJlC/fv1k9xsQEMB///2HnZ2dRnWUK1eOOnXqsHPnTho3boytra1WzyMtYteNAejcuXO2DtauX7/O0KFDCQsLY9y4cQwYMCDZ7eOepC1cuDDFixdPsI2trS2bNm1i8ODBBAUF8fz5cxwcHKhevTp9+vShcePGWoUnvXv3ZseOHYwbN45Dhw5lWlASFBSkDhMUCgXjxo1Ldvv9+/ezYMGCFPf733//cfbsWZo3b65xLQ8ePABAR0dHoyVcYqeQLFiwoMbHSExsB4mlpWWC0OFzLi4ujBkzhrdv3/L06VMAjQM2ExMTWrdujb29vcZdgY8ePYrXWRfX5cuXWbJkCQAjR45k7dq1GT6tqKenJ3379uXDhw/s2rULIyMjJk6cmO7HqVWrVpKPxU4Hmjt3bnWIENu5p1AoUh0s6OrqsnjxYvWUpOXKlSNXrlxYWFgkGt6OGzeOixcv0rJlS6ZMmaLRMTKyUy4lQUFB7N+/n8WLFyd4LLb7etq0aYk+15CQ/60P//333ye6tubu3bvR19dn/fr1aT737u/vz4ABA/Dx8aF+/fqsWLFCvVZe1apVGT58OMOHD+fs2bOcPXuWcuXK4ejoiJmZGdHR0ezfv58CBQrQpk0bdu3ahZeXV5Jhlre3NxDzvUlrIJiSV69eqW8n1eU9aNAgPnz4wL179yhdurRG01Q+f/5cPd1sYoG0yL6yLFz7nJGREY0aNaJRo0bMmDGDS5cusW/fPs6dO8eHDx+YPHkyf//9N7Nnz071AqexcubMSevWrfn7778JCgpi4MCB7NmzJ8V/gIUQQnwb3N8FcPiCG+duviEiSqnVWD1dBbbVitC6gTUli+TMmAKFEEIIkeX8riR/lXu6HefqQQnXtHTmzBmaNGmS4smpJk2acPfuXfr3759k10xkZCQbN27Ezs6Ofv36Jbu/T58+0b9/fx49eqTujNFEz549uXr1KlOmTOHo0aOZss5KYGCgekpIU1NTHBwcMvyYqXXixAnGjRuHkZERa9euTTDNY2Jig49ChQqpw4vE1KxZk7///hsHBwf1SdPYGZYsLCxo1qwZNWrUoEyZMpQqVSrZqfuKFClC48aNOX36NIsWLVKvAZTRjh49qj5x3qJFCypVqpTs9v379ydfvnwolUrKlStH3rx5MTc3x8DAgBUrVrBy5UrMzc1ZtWpVih1gn7t37x4Q07mR0tSpERER6qksU1rzMCWFChVi27Zt1K5dO8mf+/DwcNasWcOGDRvUnW6Wlpa8ePGCFy9eULJkyRSP07VrV7p27apVbc+ePeO3335LMmCLdeHCBRwdHenTpw/v37/HwcEhXiegQqFAoVCgVCb8+zTu9HR//PEH8+fPT/I4YWFhhIWFqb/evHkzhoaGjBo1SpunlayIiAhOnz6Nra1tgvdBUFCQ+vVPj+l1P6enp6fx1KyxQaaBgcEX0Sm0b98+TExMElyEcfz4cR4+fEjHjh2TXD8ytrsrd+7ciXZpR0REsGvXLpYvX57mBpTQ0FAGDx7Ms2fPaNiwIX/++WeCULJIkSLs2rWLYcOGcenSJR4/fsyWLVsYPnw4586dw8vLi7lz52JoaIi5uTmenp5JBvax4VrhwoUzNJSKjo5Wr71qbGxM7dq1E93OwsJCozXl4jp16pT6dqtWrVJfpMh02SZci0tPT4+GDRvSsGFDfHx82Lt3Lzt37uTOnTu0bduWIUOGMHjw4DS1jHfv3p2///4bhUKBh4cHffv2ZePGjRnePiqEECJ7UipV3H72nkPnXbn9zEfr8RamBvxcrzgt6pUgt0XmrpchhBBCiMwV8d6dsDePM+VYYa8fEfH+NQb5s29XUXYzfvx4ChcuzLBhw5LtNGvVqhU+Pj707t07yTVdnJycMDMzY9KkScmu++Lv78+gQYN4/vw5AAsXLiQyMpKhQ4emWG+TJk0oUqQIHh4ezJkzh7lz56Y4Jq3279+vPsE+ZMiQbHux8fbt25kzZw6lSpXizz//TLQDLTGx4ZomJ1ptbGzYu3cv48aN47///lPfHxAQwD///MM///xD7ty5GT16NB07dkx2Xz179uT06dPs3LmT5s2bU6dOHY3qTYtdu3YBMZ0/mnZgpdRZWbBgQa2DNYA7d+4AJHmCP67YKSEh7eGapaVlkvtQqVQcP36cJUuW8ObNG/LkyUOrVq2ws7OjYsWKiY45fvw4T58+5ddff01TXQBt2rShUKFC3Lhxg+fPn/P06VPy5ctHkSJF8PX15ezZs+jr67Nu3Tq+//57IGZquzVr1nDo0CFKlSqFr68vDx484OXLl0DMFHIqlQqVSoVSqcTX11f9u2fq1Knqmb8y29u3b9m9ezcHDhygefPmif7+jV1nD/giAq3sIjo6mm3bttG2bdt458ODg4OZO3cuRYsWTbIDMTo6moCAAAAqV66s7tiM6+PHj/zyyy9p/p3l7++Pg4MDt2/fpmfPnkyaNCnJ8/fGxsasWbOGXr16cefOHfUFDtu3b6dChQq0adMGiAlhnz17RrNmzRLdj6enJwBWVlZpqj0l//zzj/pYXbt2TbcLYSIiIvj777+B/3XHii9HtgzX4sqXLx8ODg4MGDCAv//+m7/++os///yTCxcusHTp0lS3jpcpU4aqVaty584dFAoFz54946+//sqQVmghhBDZV1hEFOdcPHBydsXjfZDW44sWNMeugQ2NahTBUD/1F30IIYQQQnPR/j5Ehhuho6OTpv0o9PTRM0t8CqFIv6TXyPB3OZmm42rL/9ZJctaxT/Lx1D4PTenn/LIuQjU2Nubp06eMHDlSo+0dHR1T3CZ2SQttLFu2jKioKPVUWEnR0dGhc+fOLF68mP3799OqVSv1SfaMoFQq2bZtGxDTPdCnT58MO1ZqhYSEMG3aNI4ePUrfvn359ddftZqOTdup9SwsLFi3bh27d+9m/vz56k4wKysrpk2bpvF0nXXq1MHGxgZXV1emTZuGk5MTRkYZd+Hd1atXefw4Jujv27cvhQsXzrBjpeTFixfqE8+avH9ju00gpvMsvUVERHDs2DE2bdrEs2fPqFatGiNGjODnn39O9r20detW5s2bh1KppHTp0rRo0SLNtdSuXZtatWoRHByMvr6+ugNy//796nDt89csX7588bpfY4OGxJw+fZphw4aluc7UUKlUXL58mZ07d3L27Fnq1avH5s2bk5x1LO73PV++fJlV5hfv1KlTeHp60r59+3j3r1ixgoCAAHbv3p1kJ6C3t7d6ncXy5ctz9uzZBNtYWlpib5/05wxNeHl5MXDgQNzd3Zk+fXqia799ztDQkBUrVtCuXTtsbGy4e/cuLi4u7Nu3T/0Zz9LSUj3l7OdCQkLUa5ql53qonzt79ix//PEHEPN7fvDgwem2b0dHR/VzcHBwyLYXu4jEZftwLZaBgQE9evSgc+fOODo6snbtWuzt7VmwYAENGzZMcXzr1q1ZsmQJpUqVUt/Xtm1b7ty5g46ODqNHj6Z///4Z+RSEEEJkIx/9Qzl66SUnrrwiMCQy5QGfqV42P/a2NlQrnU/mwxZCCCEy2YfNmnVnpMSoaAUK9ZyZ6GNvVqXccZRZAl1OEOhyIsnHM/p5WE/+J837yEyxJ84LFSqkXosqu2vfvj1//vknkZGRTJ06lWPHjmVYKHPq1Ck8PDwAmDhxYpauIZSY58+fM3LkSBQKBdu3b4/XBRUZGanRWlearof1uS5dutCwYUOWLl2Ks7Mzu3bt0joA6NSpE3PnzsXd3Z2VK1cyduzYVNWiic2bNwMxnU6DBg3KsONoInZas1y5cqW4NiGgPpkMae9cixUdHc2DBw84duwYhw8fJjIyEjs7OxYvXkzp0qWTHRsUFMT06dM5cuSI+r7ffvuNUqVKxTuXmFoKhSJDpkHMart27WL79u2UKFGC1atXpzht69u3b9W3E1v3SyTur7/+ombNmvG6d+/evYujoyNLly5Ncv0v+F9nF0Dx4sUJDAwkPDw82WlutXXv3j2GDRtGrly52LdvX7L1fH5hVP78+dm1axfm5uaMHz8eBweHeOOLFy8eb9rEuNzd3dW30+PnNK7Q0FDu3LnDnj17OH78OAAdO3ZkypQpKU7zqilPT09WrFgBQIMGDSSb+AJ9MeFaLA8PD+zs7GjXrh1//vknw4cPZ8KECfTo0SPZcRUrVmTt2rXxFn388ccfWbFiBYsXL05Vu7sQQogvz7PXvjg5u3HxrifRSpVWYw30dWla04rWDayxKpDxa2EIIYQQQojUUygU6XryMCPlyZOHJk2acPLkSTw9PVm3bp3G6wZpQ6VSsXbtWgBsbW2TnGbrc61bt453Ujytbt68meC+2PXtHB0dGThwID169EjQgbZ582YeP37M4MGDkz15q23nWlyWlpYsWLCAoKCgVIUhbdq0YdGiRURGRrJlyxbatWuHtbV1qutJyqNHj9TTWE6aNAlTU9N0P4Y2/v33XwBatmypUbjp4/O/qfjT2rkWEBCgXuMpKCiI3LlzY2dnR7NmzdDX1ycoKIgbN24QHR2d6H+hoaGsWrWK169fA1CtWjXat2+Pra2tBEBxqFQqnJ2dcXR0JDAwEIjpFB42bBg9evTQ6PseO/UfoPE0r9+669evc+/evXjreAUFBTFmzBgmTpyY4u/x2Pc1xARQ+fPn5+7du0muGaatLVu2sHz5cnr16sWwYcMSvWDj48ePKBQK2rdvn+iscVZWVly5cgWlUsmQ/2PvrsOi2r4+gH+H7pJQEEQwQOwusBsFRcXERBQDFFvsQGxFRUCvHZhgoF4bsb3YqCiKCiiiIA2T7x+8Mz+QmCZ0fZ7nPneYOWfvPcNwZjzrrLUmTy7ymKWlJVJSUpCcnFzs77FwiUtR+iaWZvny5VizZo3gZw6HI8hgNjY2hrOzM0aMGIEmTZqAy+UiNzdX4rn4WCwWZs2ahZycHDRr1gxbt26VuiIDKX9VKrj24sULeHh44PDhw6hduzYWL14MJycn+Pr6QldXt8yapM7OzpgwYQK8vb0FNVj19PRw8eLFcmkWTAghpOJwOFzcf/UN4bfi8Do+Vez9q+mqoV+H2ujV1hI6mpXryl5CCCGEEFIyfhmsqsLJyQmXLxeUHN2zZw9cXV0lboVRmmvXruH169dQVVXF4sWLRd4vJCQEbDZbpmsp7PHjx1i7di1atWqFc+fOldqLSUVFBREREbh48SI6d+6MKVOmoEmTJlLNnZSUVGJwR9IsIz09PXTu3BlXrlwBi8WCv78/goKCpFpjSXbs2AEAaN++vUxKF0rj+fPniImJAQCR+319+/ZNcFva4JqOjg5MTU0RHR0NAEhNTcW+ffuwb9++Ytvq6enByMgIhoaGUFdXx71795CbmwsFBQX07t0bHh4eaNCggVTr+dP8/PkTp0+fRmhoKL58+VLksYEDB2LcuHEij8XvG1etWjU6Hyui4OBgaGlpoXfv3oL7Vq5cicGDBwtNNgH+F4BSVFSEtbU16tevj6ioKKmDa/n5+Zg9ezZUVFRw9uzZMnueubm5gcfjldmrLC8vDxs2bCgWYKpduzaAgp6OvXr1KvLYmzdvABQ8N1tbW4mfy4wZM4qM/ejRI0EQ0M3NDe7u7hKPXZrly5fj6dOnaNeuHXbu3AkNDQ2Zz0Hkr8oE1+7fvw9PT89ikeHGjRvj9OnTyM/PL3P/Nm3awNjYGCEhIVix4n/lMuhATgghf67sXBauPPyEc7c/4Hua+FcW1TXXwwAHa3RsYgolRbqCiBBCCCGkKuAH1araFeAODg7Q0dFBRkYG8vPzsWPHDkGPF1ngcrnYtm0bAGDq1KmwsLAQeV9ZB/l+9+PHDwQFBQntNcPPROTxeIiKikLnzp2lCq6FhYXB19cX69evR58+fSQe53eOjo6CTK6bN28iOjoazZs3l9n4z58/x7Vr16Cmpobly5fLbFxJ8YNYXbp0gZ2dnUj78INr2tra0NXVlXoNnp6egnKqzZs3R926dWFqaorq1avD2NgYxsbGMDQ0hIqKCtLS0nDgwAEcOnQITCYTAwYMwJQpU4plGD5//hw2NjaVrnRqecjKykJkZCTOnz+PyMhIsFgFrRT09PQwdepUbNmyBdnZ2WKPyw+GlJV5Kkv+/v5wd3cvNWBfmtu3b+PmzZvw9fWt0DYQL1++xO3bt+Hq6gp1dXXB/ZMnTxYEnYThB9dsbGygqqoKGxsbnDhxArNmzZJqbaqqqvD29i61vx5ffHw83r9/DwCYNGkSJk2aBB+f4uW9u3TpUuL+ZmZmUFdXx82bN4sF154+fQoAsLa2lio4pa+vj5o1awp+rlGjBjZt2oTv37/j2LFjmDBhgky/UwQEBODEiRPo0aMHNm3a9FceY/4UVSK4lpubi9mzZyMnJ6fEA5qSkpJIKf9OTk7YvXs3PD095f7FkBBCSMX5+iMb56I+4OrDT8jNF68WtgIDaNfIFE4O1rCx1Kd+aoQQQgghVQy/lFNVuwpcWVkZXbt2RVhYGICCwI+Pjw/09PRkMn54eDjevn0LGxubStfXpXBGRlkKn1zesmULunfvLvGcYWFhWLBgAbhcLmbPng0FBYViJ24l1alTJ6ipqSEvLw9AQfBJlsG1DRs2gMfjYcaMGWIFSeUhMTFRkHE5ffp0kffjlxmVNmuNz9raGrt27ULr1q2LvE8KS0hIwL59+3Dq1Cmw2Ww4OTlh4sSJpZYnjI6OxrRp0+Dh4YGhQ4dK3MuvqmEymRgyZAg+fPgguI/BYGDo0KGYNWsW9PT0BIF6cWRlZQl6ZIkahJXW/fv3cfbsWaxYsQLNmjUr8hg/G5fJZCI19X8VbhISEuDt7Y2srCxkZ2dj9erVUFRULJf1/m7r1q0AgMGDBxe5X9TAGpvNxvPnzwEALVq0AADY2toiJiYGP3/+FHpBgzDCAmsAcOHCBcHtHj16lBjUCwsLw4ABA0oMYCkoKKBJkya4efMmuFyuYJv8/Hy8fPkSAIr9bqWlqKgIFxcXBAYGIiEhAZGRkUL7CYoqKCgI27dvh7OzM9asWVNh7y0iG1UiuKauro6QkBCMGzcO6enpEo8zaNAgBAYGYvfu3fD19ZXhCgkhhFQ0Ho+Hl3E/ER4Zh4cx3yBuFSANNSX0bFMLjh2tYGJQtU7EEEIIIYSQ/+EHNKpacA0oCMrwg2tMJhP3798XOfBUlry8PGzbtg3KyspYu3atVD3JKlLhk5BmZmZCt09MTET9+vWFbsdmszFr1ixs2bJF5D50ZVFXV0erVq1w+/ZtABD8XxZu3bqFBw8eoGnTphg7dqzMxpXU+vXrwWaz4ejoKFbAJCkpCQCKZItIq1OnTiXeHx0djYMHD+Ly5cvQ1tbG6NGjMXr0aBgZGZU53tixY5GVlYUVK1bgwIEDmDt3Lrp16yaz9VZWKioq8Pf3x/Dhw8Fms1GzZk34+/ujZcuWUo3733//CTKLpR1LVKqqqvjx4wc8PT1L3ebChQtFAkCFnTlzBkZGRiVmWskTm83GoUOHEBkZCRsbGzRu3FiicV69eiW44KRt27YACjLYlJWVcf78eYwZM0aqdTKZTEFWY2nCw8MBFJQC9fX1FayH7+DBg9i8eTOuXLmCDRs2lBgcb9WqFe7fv4+nT58KLlR4+PChYO727dtL9TxKMmTIEAQFBYHL5eLw4cMyCa7t2LED27Ztw7Bhw7Bs2TK6mPsPUGW+Tdna2uLgwYMYMGCAxGOYm5ujefPmOHnyJCZPngxDQ0MZrpAQQkhFYLE5uP00EeG3PuBDkvgXYNSopon+9lbo1socGmp/x5WIhBBCSFVnOG4jVNXUpC7Rw1Aq/bPffGpgqY99D9+C/IS3Us0tDtWaNjB28ir1cUmfx5+Iy+UKgms6OjoVvBrxtWnTpsjPCQkJMhk3ODgYSUlJ8PHxkaovTUUT9wr/GjVq4PTp0yJvL8ugY5s2bQRBtZycHKSmpopdmu53TCYTa9asgYaGBtavX1/hGQ+PHz/GxYsXYWRkJNZF7CwWS1AWUpbBtcKysrJw4cIFhIaG4tWrV6hbty6WLl0KJycnqKmpiTzOtGnTkJWVhb1798LT0xO9e/fGihUrZFLKsjJr3LgxPDw88ODBAwQGBsrkeHr//n0ABVm65RVc42cb2tjYCII8wiQkJAiCqF26dMHkyZPltj6+jx8/Ytq0adDS0gKPx8OnT5/w69cvAICrq6vE4968eRNAQcC/Q4cOAAA1NTW0bt0aJ06ckDq49vHjR4wdO7ZI5l9pfv78WWoAHACuXr2KqVOnYs+ePcWCTvz+cFeuXBEE1yIjIwEUfC7wA4eyZGZmhvbt2yMqKgq3b9/G58+fpcoU3rJlCwIDAzFmzBgsXLhQhislFalCg2tLly7FxIkTy2x4WFjdunWlbkg8cOBAREdHIyQkBAsWLJBqLEIIIRUnPSsfF+/FI+LOR6Rllt13sySNrA0xwMEKrRpUh6ICXS1ECCGEVCWKukZQVleXa08tZT3jUh9Tt7Ar1+CaukWDMtdTFkn3q6r4JyMBwMTEpOIWIqFq1arBxMQEycnJAGTTN+7Lly/YvXs32rRpg4kTJ0o9XkUSN5ikoKAgdUBLUr9ncckiQ2Hv3r2Ij4+Hn59fhZeDzM/PF/R7W7lyJfT19UXeNyEhARxOQfl+WT6PlJQU3Lx5E1evXsXdu3fB4XDQpUsXzJ49W6TMFh6Ph+zsbGRkZCAzMxOZmZnIyMiAjY0NzMzMkJiYiEuXLuHdu3c4cuSIzEq2Vlaenp4YPXq0zC5U4AdDWrduDU1NTZmMKYy0pTy7detWLmutXbs2Dh06hAsXLiAkJKTIZ1mrVq0kHvfq1asAAHt7+yJBZXt7e/j5+UndD7J+/frYt28fbty4ATs7O1hYWEBbW1vwms2fPx8RERGwsbHBsWPHin2mpaeno3v37sjPz0fPnj2xYsWKEo+VTZo0gYqKCk6fPg1vb28oKysLytG2bNlSbn+Lrq6uiIqKAo/Hw9GjRzFv3jyJxtm2bRsCAwMxfvx4iccglVOFBddev36N0NBQ3L9/H4sWLRLrC2N0dDQSExMlmldLSwsMBgOhoaFwd3en7DVCCKliPn3NQHhkHG5GJ4DF5oq1r5KiAhyamWGAvRWsa+rJZ4GEEEII+eNp2XXEr7uiZ8NIP599uc1V1VX14BoAWFlZCYJrTZs2lXq8lStXQkdHBxs3bpRrQLo8VHSmljisrKwEty0tLcUKPpUkISEBu3btwqBBgzBo0CBplye11atXIzY2FpMnT0aXLl3E2rdwL69atWpJtY5v375h9erVePXqleBcoZKSEtq3b4++fftCQ0MDiYmJ2Lt3b7GgWVZWVpH7srKywOVywWAwoKurC0NDQ8F/PXv2xJ07dxAbG4u4uDisWrUKGzZskGrtlZ2SkpLU71u+uLg4vH//HgDQp08fmYwpiqp0zNPX18eoUaPg7OwMd3d3REdHA4DEfdFiYmIQGxsLoHjPts6dO8PPzw8HDx6Uuh9k/fr1Syy/Gxsbi0uXLgEAFi9eXGK5x/DwcOTn50NZWRm+vr6lvt9UVVXRvn173Lx5E+fOnYOZmZngc1IWpZNL07VrVxgZGSElJQWnT5+Gl5cXVFRUxBojODgYO3bsoMDaH6rCgmvbt28HAHz+/BkeHh5i7SuLfmn5+fmUvUYIIVUEl8tD9NvvCL8Vh6fvUsTeX1dLBX3a1Ubf9pbQ1xG9BAghhBBCSElUjGtBzdwWeV9ey30uNYsGUDGu2AyVqqRwcE3UKjmVTcuWLXHv3j04OTlJfdLz3LlzuHv3Lvbv3y+0vxSRrerVq6NmzZr49u0bFi9eLPV4S5cuhbW1NZYuXSqD1UmHX25x4MCBmDlzptj7v379v2OnKD3xylK9enUkJSUVuQifzWYjMjJSkClVmLa2NmrWrImaNWvi58+fiIuLQ7169bBo0SIYGRnByMgIhoaGJWY8xcTEYPDgweBwOLh06RLWrVsn9+BNYGAgBg4ciOrVq8t1Hnk7c+YMgIJemOUZXKuK/SW1tLTg4eEhOF8u6UUFoaGhAArKG9rbF71Ix9LSEk2bNsXFixcxfvx4NGrUSLpFl2DTpk3gcrlwcnIqsQxoXl4e9u/fDwAYMGCA0Ati+vfvj5s3b+Lw4cMwNTUFUFDisl+/fjJfO5+SkhIGDhyI4OBg/Pr1CxcuXMDAgQNF3j80NBQbN27EyJEjRQ6s7d27F5aWlmJftEAqRoUcYV6/fo1r164BgERlHqUtDcl37NgxjB8/vspezUYIIX+6vHw2rv/3BWcjPyAxJUvs/WtV14aTgzU6Na8JFeWqc5UrIYQQQio/vXYD8a0cgmt67ZzlPsefpHCPsjp16lTgSiQ3YsQIqKioYPz48VKNw2Qy4efnh1WrVqFFixYyWh0Rx7Jly8Dj8dCxY0epxrl69Sp4PB5CQ0PF6hcmD/fu3cP8+fPRo0cPrFq1SuIxAMDIyAjGxtKXrvX29i5W8rROnTqws7NDvXr1YG5uLgioFe6VtmjRIsTFxcHY2FjQY6ssDRo0wOjRo7Fv3z5oamrKNbDGZrOxdOlS5ObmVvnAGpPJFPQ+dHJygpaWlsRjxcXF4ebNm5gwYYKsllcuLl68KFZQUVtbW3CbxWKJPV9KSoogoDl58uQS36vDhw/H06dPsW7dOhw8eFDsOcry6NEj3LhxA1paWpgzZ06J2xw6dAgpKSlQVlaGp6en0DG7desGDQ0NxMTEICYmBgDQt29fufc/HDp0KEJCQsDj8XD48GGRg2s3btzA8uXLMWDAALEusDh58iS8vb0lXC0pbxUSXHvz5g2GDRsGVVVVKCkpCf5TUFCAoqIiGAyG4I+ewWAUqbW6fv16TJw4Uaqa2fn5+di6dSuYTCZ27dpVKa76IYQQ8j8pabm4cOcDLt//hKxc8b9ItrQ1gZODFZrUNZJJbwNCCCGEkN9p1G0BTbuOyH4VJbc5tOzsoVGHgiLiiIuLA1BQCsza2rqCVyMZAwMDTJo0Sepx8vPzMXPmTDg7O0u/KCKR37NFJJWXl4fDhw9X+MXhL168wNSpU+Hq6oqFCxeWGlzKysoqNYCSkJAgKHcnSh80Udjb26NVq1ZIT0+Hq6srevXqBSMjI2RkZODp06dwcHAQa7yEhASYmpqW+Py8vLwQERGB7t27y2TtJcnOzoaXlxcSExNx8uRJuc1TXo4fP46fP39CWVkZ7u7uUo317ds3vH0res/TynI+YMuWLWIF17Ky/ndxcXp6uthtjXbt2oX8/HxYWlqWWka2T58+8PPzw8OHD3HhwgWZZYBxuVz4+fkBABo2bIiEhATo6uoWKaf47ds37NixAwAwatQo1KxZU+i46urq6NatG86dOwegIKNPFp+Vwpibm6Ndu3a4e/cuXr16hWfPnqFevXpl7hMbGwsfHx+0a9cOa9asEfl9+P79e7x//77KZt7/jSokuDZw4ECxUigLW79+PVxcXFC7dm2p1nDjxg08f/4cJ06cwJgxY2BpaSnVeIQQQqT39lMqzkZ+QNTzJHC54mUpq6oooltLc/S3t0JNY23hOxBCCCGESMmw50TkfYoBJytV5mMrahmgWs+qdWV+ZcDv6WNra1tif5e/iba2NsaNG1fRyyAy4OjoWKSHmzy8fPkS//77LwAgMTERb968gY2NjeDxe/fuwcfHB7NmzcKoUaNKHYfFYsHNzQ1MJhONGjVCw4YNUbduXUFvtaVLl4LLLeidLcteSQEBAdDT0xOcxGYymfD29sajR4+wd+/eEsvSlebff//F4cOH0bNnTwwcOLDIiXQNDQ0EBQXJ7eT39+/f4eHhgY8fP+LEiRPQ1NSUyzzlJSsrC7t27QIAjBw5EmZmZlKN9+vXL2RkZIi8fWUIrnG5XCQkJIDL5Yqc7Vi4zGlqaqpYF4vExMTg6NGjYDAYWLFiRamlMVVVVTFu3Dhs3rwZS5YsQcOGDaXugQgAOTk5GDx4MOrXr4+XL19i5MiRUFRURMOGDdGsWTM0b94ce/bsQU5ODiwsLDB9+nSRxy78+zQ3N5f6/SSqIUOG4O7duwCAI0eOYNmyZaVum5WVhenTp6NGjRrYunVriSVmS8Pv42hhQeXAq4qq09VRxvr27QsA4HA4WL9+fQWvhhBC/l4cDhe3nyZizrZIzN52G5FPE8UKrBnqqmFsvwbYu7gnprg0ocAaIYQQQsqNooY2agz3hYKa5CWuSqKgpoUaw32hqEHfa8T16tUrAEDnzp0rdiGEVBHp6elYunQphgwZgjp16iAsLAw9evTAmDFj8PjxYwBAWFgYNm/ejL1795YZWAMAZWVlnD59GitWrEB8fDxWrFiB0aNHw8HBAQ4ODoiKKsj2rVOnjkz/TvX19QUn3lksFnx8fHDnzh0wmUx4enoKslpFMX78eISEhODp06fo378/hgwZghMnTiA3NxdAQXnIwmX7ZOXdu3dwdXVFTEwMlixZgrp168p8jvK2YcMGpKSkoHr16mIFUUqTlpZWpLemMLJqLSSNX79+gc1mi7Xuwu/Xb9++ibxfXl4e5s2bBw6HAzc3N7Rp06bM7ceMGQMTExNkZWXBy8sL+fn5Is9VGi0tLYwYMQJ+fn44d+4c7ty5g5UrV8LIyAjHjh3D1KlTBdmrpqamiIqKQl5entBxt23bhrNnzwp+jo+Px+zZs8HhcKReszDdu3cXVNG7dOkS0tLSSt12+fLl+PbtGwICAkQugZqamor58+fjxo0bMDIygoaGhkzWTeTvrw2uFU7fvn79Oq5fv16BqyGEkL9PVi4Lp2+8h7vfVaw7+BhvPpX+5aQk9S30MXdUS4Qs6gGXrnWhraEifCdCCCGEEBlTMa4F09EroKgleeuCwhS1DGA6egVUjKW/evxv8/LlS3z9+hUKCgpwcnKq6OUQUqnxeDycOnUKvXv3xrFjxzB58mRs3rwZtra2WLduHXr16oWxY8fi0KFD0NbWxpEjR1C/fn2Rx2/evDmOHDmC2bNnF3tMU1MT/v7+culZlpubC09PT0EWHlAQcPjnn3/EGsfKygqHDx/GvHnz8ObNG/j6+qJTp07YuHEjfv78KZO1Fg4KPHjwACNGjEBSUhKcnJxKLeVXlfz33384duwYFBQU4O/vL1WvNT5xM9cqQ3AtJSUFQEFWoqjevXsnuF24l6gwS5YsQWxsLNq3b4+5c+cK3V5dXR0zZswAALx+/RozZsyQSYCtMH19fTg7O2PZsmWws7Mr8tj9+/cxY8YMdOjQAZs3bwaTySxxjKNHjwrKSHbu3FlQcvfy5ctYtGiRRAG2wvsI219FRUVQha9wD8HfPXnyBGfPngWDwYCnpyd69+4t9L9u3bqhY8eOgh55VBKyaqmQspCVQc2aNVG3bl28f/8ePB4Py5YtQ9OmTaXq5UYIIUS4pJQsnLv9AVcffUYeU7wvQAoKDLRrVAPODtawsaTjNSGEEEIqBxXjWqjpvgk//92DrFe3JR5Hy84e1XpOoIw1CV25cgUA0LVrV5mUtvqbPHv2DOfOncOiRYsqRRk1IrmtW7eiefPmZfZ7e/PmDZYvXy7IHnF3d4eXl1eRbZYuXYrU1FSsXLkSDg4OaNCgAWrUqCHWWhgMBtzd3cFms7FlyxYAQP369bFu3boiJSdlJTk5GZMnT0ZMTAwAwNLSEmPHjoWjo6NEmWYKCgoYP3482rVrBy8vL3z69AnBwcE4dOgQpkyZggkTJkBRUVHi9aamFpQUzsvLw4QJE8BisWBpaYmlS5eKNY44QYLykpGRgYULF4LH42HmzJlo27atTMb99euXIFglCn5wjcvlCl5vYQoH72TxevKDscnJySK/7z9+/Ci4LWpwbcOGDQgPD0fbtm2xY8eOUstB/s7FxQXh4eF4+PAhbt68CQ8PDwQGBsq0tHJMTAymTZuGxMREmJubY926dcjPz8eOHTvw6NEjQfnQHz9+YPXq1UX2PXz4MFatWgUAGD58OBYvXozs7GwMGTIE8fHxOHPmDBITE7F582ahvem4XC6ysrKQmpqKGzduCO4PCwtDixYtYGhoCC0trRID/0OHDsWePXsAAPv27UP9+vXRuHFjqKurC14r/u86Nze3yO9QHPT9pWqpksG11NRUqXuuAUCnTp3w7t07MBgMpKSkwNPTE3v27Kny9YwJqUxycnIwcOBArFixQmg6Ovlz8Xg8vIj7gfBbH/Do9TeIe/GYppoSerW1RL+OtWGsT+nxhBBCCKl8FDW0YezsDS07e/y6H4a8zzEi76tm0QB67ZyhUaeFHFf4Z+Nyubh48SIUFRXh7e1d0cupUp49e4YJEyYgMzMTubm5WLVq1V8fYIuIiEBWVhaGDh1a0UsRy8aNGxEcHAxVVVXs3LkTHTt2LLbNxYsX4ePjIwgaODs7l5hdpqioiE2bNmHWrFm4cuUKevbsCVdXVwwZMkSsDDagIHiXkpKC9u3bo1u3bnJ5f927dw+zZ8/Gjx8/UKNGDcyYMQPOzs5lZseJmgFla2uLU6dOwdvbG1FRUcjJycHGjRtx//597Ny5E2pqahKt+enTpwAKjl9cLhfKysrYuHGj2OclKyK4VlYZPw6Hg5kzZyI+Ph6urq7w8PAQOh7/PSEsa+rbt2/IyMhAfHw8LC0thY7LZrMBALGxsWjXrp3Q7X9XWiYVv29g4TlK8+nTJwDAixcv0KlTJ5HmTU9PF9z+8eOH0O3XrVuHPXv2oFOnTggICICqqqpI8wAFr72/vz8GDBiAzMxM3Lt3DyNHjsT69evF6vVWEhaLhX/++Qc7d+5EXl4eBg0ahEWLFgmyGNu1a4ebN29i+fLlSEpKQnh4OJYuXQoVFRVwuVz4+/tj3759UFBQwJw5czBx4kQAgI6ODgIDAzFq1Cj8/PkTDx8+hLOzM1asWIGuXbuWup6kpCR069at2P2PHz9Gnz59AADXrl1DzZo1i21jaWmJ1q1b4+HDh8jOzhZk/M2dO1em/U0pc61qqZLBtefPn6NFC+n/0eHg4IDdu3cDKDiQdOjQgWqaEiJDGRkZmDNnDuLj4yt6KWXaunUrdu7cKfU4YWFhsLW1Fbrdr1+/cP78eURFReHNmzeCWs16enqwtbVFx44dMXDgwD8i0M9kcRD5JBFnb8fhY5LopRv4TA01McDeCl1bWUBdtUp+ZBFCCCHkL6NRtwU06rYA8/tnZL26jfyv75H/9QO4eVmCbRTUtKBawwqqNepAy84eKsbUuF5aERER+PTpE8aMGVOp+xTxeDyJT34XLm/G4XBKPaFbeDthJ31fvnyJiRMnIjMzEwBw8uRJMBgMrFy58q8NsF29ehVz5swBh8OBsrKyoBTY7zgcjtQl53g8ntDfkajbbd26FcHBwQAKAhSenp4IDAxEhw4dimzXo0cPODo6Ijw8HLa2tli5cmWpY6qoqCAgIAAhISHYvn07Dh48iIMHD8Lc3BwtWrSAra0tLC0tYWBggGrVqkFTUxNqampQVVUt8v5RUlLCkiVLSpyDw+EgPz8fOTk5SE9PR2ZmJtLT06Gnp4cmTZoIfW2YTCYCAgKwe/duKCsrY+rUqZg0aZIg4BUUFARDQ0MYGRmhWrVq0NXVhaamJhISEnDv3j0AEKk8pba2NoKCgjBv3jycP38eAHDnzh0EBgZi5syZQvcv6Xm/fv26yH3Tpk1Dw4YNxR6r8HtDlsG1qKgo6OjowNLSEjo6OoL77969CxaLBaCgx97v/Pz8EBUVBRcXFyxbtkykuVRUCto8MJnMUgNnHA4Hz58/B1Dwe/Xz8xM6Lj8IZmNjg/DwcJHWkpCQIAjAlBbsKxxQjYuLQ6NGjUod7/79+wCA48ePY/To0dDV1RW6BktLS7x9+xZA2aUt8/LysHjxYpw9exaDBg3CihUrSvydCGNqaooVK1Zg1qxZ4PF4ePXqFQYNGgQfHx+MGjVKohKujx49wrJly/D+/XvUq1cPs2fPLjG42LlzZ7Rq1Qp+fn44ffo0OBwOsrOzMXfuXFy9ehXm5ubw8/NDq1atiuxnZWWFvXv3ws3NTZDROGXKFLRo0QIzZ84stj1QUMmO/7pK4uDBg+ByuYL+i7/r3r27VOOTqqfKnam0tLRE//79ZTJWs2bNoK6uDk1NTaxfv16iKxgIIf/D4/GQlpaGr1+/4saNGzh58iS+fv1a0csS6v3791KPoaqqKjT9nM1mIzg4GCEhIWjQoAF69uyJsWPHQktLCz9//sSjR49w8uRJ3LhxAwEBAVi0aBEGDBgg9doqQlpmHi7djUfE3Xj8yhK/XnfjOoZwcrBGS1sTKCj8nf+oJ4QQQkjVpmJsAQPjkQAKvifzmHngcVhgKCqDoaL21wYu5IHL5SIwMBCWlpYSneQuT1+/fsWoUaOQmJgo1TiilFjLzMws1t9GFCdOnACDwcCKFSvK7X2al5eHnJwcodtlZf0vSJ2RkVFqmTd+tok4peCAgkwib29vQbBi4cKFUFZWhqOjY7Ftw8PDsWjRoiIZLOK6fv26SL8jflBLHPn5+ZgyZUqxAJuSkhL8/f1haGgIFxcXQVCjNAwGA5MmTUKfPn0QEBCAiIgIfPnyBV++fEFYWFip+6moqEBVVVUwfuH3Eo/HQ35+PvLz8wVBmsLztWvXDm5ubkKf45MnT7B48WLEx8djyJAh8PT0RPXq1YtsU6dOHdy9exdXrlxBcnJyieOIWjJSSUkJ69atQ2ZmJm7dugWgoK+YJBQVFREYGIiRI0ciOzsbjRs3hru7u0RjFc6ukmW/rPT0dGzcuBExMTHQ09ODoaEhlJWVi5xD+T2L0d/fHwcPHsSkSZMwa9YskY8hderUEdyeM2cOZs6cCRMTE8F9PB4PJ06cEPwOT58+DWNjY6HH/N/fX+IqLUPPxsYGDAYDPB4Pa9euRWZmJmxtbYtdJP348WNB/7/k5GSMGjUKx48fF1pycfLkyVi4cCFyc3NLDTJ//PgR3t7e+PLlC9avXy/1+aO+ffviy5cv2LRpE4CC57569WocOXIEEyZMgJOTk9DjBVDwnHft2oXbt2/DwsIC69evh6OjY5kBOk1NTaxatQre3t549uwZFi5ciMTERLi6umLevHmlXnxev3597N+/H+7u7oKedv/99x9GjRoFMzMz9OzZE2PGjBG7pC0hoqpywbUDBw4IPYEtKmVlZUyZMgWDBg2S2ZiE/I3CwsKwcOFCcLncStEsVlyFG8XyaWlpiVSfOjc3F/n5+Zg0aRKMjIzK3G7y5Mm4f/8+Nm/ejL59+xbbplOnTnB3d8e0adPw8OFDzJkzB58/f8a0adPEe0IV6GNSOs5GfsDN6ASwOeL9I1NJUQGdm9fEAAcr1DYVfiUXIYQQQkhVwWAwwFBVByC7/iXkf8LCwpCQkIDQ0FCZ9oiRB1NTUxw8eBChoaGwsbGBlZUVtLW1oaWlVekCrjwer9zWlJ6eDjc3N7GqnogSfPn69atUF1JzuVzMmzcPysrK6NWrV5HHBg0aBDU1NSQlJcHOzg7GxsbQ1taWuESgvJTUE4zBYGDu3LlijcPvk+Tj44OIiAj8+++/ePHiRanBCyaTWWpJvdLUqlULW7ZsQYMGDcrc7sePH9i0aRMuXbqEQYMGISgoCGZmZiVu261bN3Tr1g0LFy7ElStXsGHDBnz58qXINuK8RxQVFbFhwwY4OzsjMTFRqooztra22LZtGzw9PbFq1SqJ+7cVzlwTJUgtqn79+qFfv36IioqCv78/YmNjizyur68vyETicrlYunQpzp8/j3Xr1sHJyUmsuXr06IGtW7ciKSkJz58/F1pmT1dXt8Tyfr8T9z34u9KClcbGxnB0dMS5c+eQlpYm6AkmTJ8+fUT6nOrbty86d+6MT58+oV69ekUe43A42L9/P7Zu3YqGDRvizJkzMuvT5eHhgZSUlCLB/E+fPuHgwYP49OlTiSVkgYL34K1bt7B37148efIE9vb22Lp1K7p37y5y77ecnBzs2LEDR48eRZMmTbB27Vq0bt1a6H42NjY4fvw43N3di5zfy8/PR1pamkz/Jgj5XZULrhkbG8t0vEmTJsl0PFnLzs5G//79ceDAgRLrvRJSGXTt2rXIFWvZ2dk4duxYmVexVRZMJhOfP38GABgYGGDWrFno1atXkZIHpWGxWHB0dASPxxN6LFm9ejXu378PGxubEgNrfLq6uggMDETfvn2RnJyMgIAA1KpVS2YZu/LA5fLw+E0ywm/F4fl74bXAf6enpYo+7S3Rp70l9LUr1z9ECSGEEEJI5fb161f4+fnBz88PNjY2Fb0ckZiZmWHWrFkVvYxKxcTEBAcOHEBERARsbGxQu3ZtaGlpQVNTs9IFHQsr6992fyoTExOMGzcO48aNQ35+Pl6+fIm4uDjEx8cjOTkZaWlp+PXrF3JycpCbm4u8vDwwmUywWCyhWURr164tM7DGZDIRHByMq1evon///rhx44ZIJfaAgqBY79690aFDB4wcOVJQuq19+/allv4sjY6ODnbt2oWJEyfCxcVFrH1/17FjR5w5c0aq3laFA0CllauTRseOHdG6dWssWbIEZ86cAVBQFnH16tXQ09PDz58/MW/ePGRkZODUqVOwsrISew5NTU0cOnQIO3fuxOvXr0sMiikqKkJbWxstWrTAyJEjRTpHzM884/f4EpWlpSUmTpxYZpBwzZo1MDExwaVLl/Dz589SS3JqaGigYcOGGD16NDp37izyGjQ0NIq1Hrlz5w7Wrl0LHo+HTZs2iRRgFJevry/09fWxbds2dO/eHcuWLSv1YvI3b97gzJkzuHLlCszNzdGtWzds2bJFrCQWDoeDM2fOYPv27dDR0cGOHTvEfl41atRAaGgolixZgvPnz8PLywsTJ04UKdOOEGkweFUxzeQvkZ+fjzlz5uDy5culNlOsaHl5eYLeUa9evUJaWhry8vKgra0Nc3NztGrVCoMHD0bt2rUreqliYTKZePHiRbH7GzVq9FcemFkslqCuNV/jxo3LrOPMZrPRunVrZGdnAyjIOm3Tpo1c1ymJN2/ewMnJCXp6ejhx4gQsLETvd7F//36sWbMGwcHBZTalTU5ORpcuXcDhcNCkSRMcP35c6NgnTpyAr68vgIJebNeuXRP7y6C85eazcf3RZ5y9/QFJP7LF3t+yhg6cHKzh0MwMKsqSXaFHCCGEkMqPzWYXqxRQt25dka9kBlBifwt1dXWJeoCQPwePx8PYsWPh4OCACRMmVPRyCCEi4HA4gv8KV7/h8XhCMzh5PB4eP36Mli1bShV0vXz5Mnbv3g1nZ2e4urqK9XlUGJfLrRSfQ8HBwTh58iRcXV0xaNAg6Ovry2UeNpuNHj16wMLCAvPmzUODBg1w584drFq1CiNGjMDIkSMrxetR2JIlS9ChQwd069ZN5N8zm82GgoJCpXou9+/fx65du8Dj8TB48GD07dtX4kxHUd2+fRvt2rUr9XXLysrC4cOH0apVKzRq1EjsXm88Hg8XL17Ezp07YWlpiSFDhsDBwUHqCyquXbsml6AjX1X7TiqL7+GlofPnVTBz7U/H4XDw48cPREZG4sCBA8VSriuTixcvYvny5eDxeBg2bBhGjBgBU1NTaGhoIC0tDU+ePMGRI0ewZ88eDB06FAsWLKj0JTqI7CgpKUFPT08QXKus+LXC582bJ1ZgLT09HTt37kS7du3KDKwBBU3C+VcwxcbG4vv370KvsOrbty+WLVsGNpuNX79+4cqVK2JfTScv39NycCHqIy4/+ITsXPHqlzMYQCvb6nDqZIVG1oaV+ipUQgghhBBSueXn56N///4YPHhwRS+FECIiRUVFiYMCDAYDrVq1knoNvXr1KlbmUxKV5WT64MGD4e7uLvd/XyspKeHUqVMwMDAQ3JeQkICjR49CT09PrnNLasWKFWLvI4uggyxlZ2fj2bNnWL16danlT+XB3t6+zMe1tLTg4eEh8fjv37/H169fsX//flSrVk3icX4nz8AaIb+rXEeLv5iHhwf+++8/5OTklJpGXJkEBQVh06ZNsLOzw+7du4t8sAIF5fWsra0xaNAgrFy5EkeOHMGbN2+wd+9eqepREyJr7969g5GRkdj1wAMDA5Geni5SnfrCCcK5ubk4fvy40D5qmpqasLS0FAT/YmJiKjy49uZTKsJvxeHui6/gcsVLelZTUUT3Vhbob28FU6PKlYFHCCGEEEKqJjU1NQqsEUL+er+fkyvPuVxdXctt7r+VpqamVEGsyqpu3bqoW7duRS+DEKlQcK2SWLVqlaBGMpvNxp07d7By5UpUxqqdt27dwqZNm6ClpYUdO3aU+SGuoKCAxYsX4/Xr13jy5AkWL16MTZs2leNqCSnbu3fv0K1bN7GunEtISMDhw4fh6OgotNEyADRp0gSampqCLD5TU1OR5tHW1hbcFlabXl44HC7uPv+K8Mg4vP2cJvb+RvrqcOxghZ5tLKCl8XekhBNCCCGEEEIIIYQQQv5sFFyrJH5vDGlpaYnw8HA8e/asglZUOn9/fwDA8OHDUaNGDaHbKygoYMaMGRg3bhwuXLiAsWPHonHjxvJeJiEiWb58udj7bNmyBRwOR2j2GZ+RkRGOHj2Ks2fPwsTEBAMGDBBpv6ysLMFtUf7WZCkrh4l/H3zCuaiP+PFL/IbINrX04dTJGu0a1oCiYuUolUEIIYQQQgghhBBCCCGyQMG1SkxDQ6Oil1BMbGws4uLiAACdO3cWeb+2bdtCW1sbmZmZuHjxIgXXSKXxe2BbmDdv3uD8+fPo168fLC0tRd6vfv36mDNnjsjb5+bm4tOnT4KfW7duLc4yJZaYkoVztz/g2qPPyGOKV6JWQYGBjo1NMcDBCvVrlV9ZCkIIIYQQQgghhBBCCClPFFwjYomPjxfcFqems4KCAiwsLPDq1asiYxBS1WzevBkAMHnyZLnOc/XqVTCZTACAnZ0dmjVrJre5eDwenr/7gfDbcXgUkyz2/lrqyujVthb6dbCCkb66HFZICCGEEEIIIYQQQgghlQcF14hY2Gy24HZcXBysrKxE3ldZWRkAwOGIlw1DSGURHR2NmzdvolOnTnJtupqeno6tW7cCKGjSvmLFCrnMw2RxcCs6AWdvf0D81wyx9zcz0kR/e2t0a2kONVX6OCGEEEIIIYQQQgghhPwd6GwoEYuFhYXg9j///IPu3buDwWCItG9iYiIAwNraWi5rI0Te+AGvUaNGyW2OpKQkeHt748uXL9DT08PmzZvRsGFDmc6RlpmHi3fjcfFuPH5l5Yu9f9O6RhjgYIUWNiZQUBDt758QQgghhBBCCCGEEEL+FBRcI2Jp0KABTE1NkZSUhOjoaGzcuBGzZ88Wut+bN2+QkpICAHB0dJT3MgmRuUePHuH+/fuwtLSEvb29zMZlMplIS0tDTEwMbty4gXPnzoHL5WL48OHw9PSEsbGxzOb6mJSO8Mg43IpOBJvDFWtfZSUFdG5eEwMcrGFZQ0dmayKEEEIIIYQQQgghhJCqhoJrRCwKCgrw9PSEr68vACAkJASZmZlYtGgRVFRUSt1v+/btAID+/fvDzs6uXNZKiCzt3LkTADB48GCRszWFuXr1KqZOnVrkPgMDA6xduxadOnWSyRxcLg+PYr7h7O0PeP7+h9j762mrol+H2ujd1hJ62qoyWRMhhBBCCCGEEEIIIYRUZRRcI2IbPHgw7t+/j/PnzwMAjh07hujoaCxduhQtW7Ystv0///yDK1euwM7ODsuWLSvn1coWm82WWWClKinca6+s+37H4/GKbM9isWS6rvLy4sUL3L17FwwGA7169ZLZ82jRogUOHTqErKwsJCQk4MWLF7h58yYmTZoEOzs7zJ8/H82aNZNo7Nx8Nm78l4ALd+Lx9WeO2PvXrqEDx46W6NikBpSVFAGgyv7+CCGEEFKx2Gx2ke+FAMDlcsHlipdJXxJZjEEIIYQQQog0Kut3Ui6XW+x7OIvFKnafJEQ5N/yno+AaERuDwYC/vz80NDRw/PhxAEBsbCxGjhwJBwcHeHh4oGXLlsjLy8PGjRtx4MABdO/eHf7+/tDS0qrg1Uvn9evXFb2ESiMmJkboNkwmU3D7w4cPUFNTk+eS5Gbz5s0AABsbG6SkpAhKnMqCgoICdHR00KBBAzRo0ADOzs64fPkyjh8/jtGjR6Nfv34YPnw4FBQURBrvVzYbD2Oz8N/7bOSzxP+grF9TDW3ra8HSWBUMRipex6SKPQYhhBBCSGn43wfz8vKgqKgo1Vi5ubmyWBIhhBBCCCESq8zfSTkcjiCQlpeXB0C0c7pENBRcIxJRUlLCypUr4eDgAH9/f3z58gUAEBkZicjISNStWxcZGRlQUlLCxo0bqc8aqbK+f/+Ox48fA0CJmZmypqqqigEDBqB69erYsmULLly4gPT0dHh6epa6D4/Hw5cfTNx/m4XXX3Ih7sUnKkoMNLPSROv6WqimTR8LhBBCCCGEEEIIIYQQUhY6i0qkYmZmBkNDQ2RmZoLJZCInp6D83Lt37wAAzZo1Q7169SpyiYRI5erVq4IrPBo3blxu87Zu3RoODg6IjIxEVFQU6tatix49ehTZhsPlIeZzLu6/zULiT2YpI5VOV1MRbeppoZm1JtRVRMuMI4QQQgghhBBCCCGEkL8dnU0lEtuzZw+GDh2K3NxcnD59GpGRkZg7dy6qVasm2ObJkydwcXHB4cOHK3ClhEiGzWYjMjISAGBgYAAzM7Nynb9///6C2ydPnhSkmefkcxEVk4GtZ7/h1N1UsQNr5kYqGNrRADP6V0d7W20KrBFCCCGEEEIIIYQQQogYKHONSGTFihU4fPgwGjVqhAMHDkBDQwMAMGHCBAwbNgy7d+9GSEgIWCwWmEwmVqxYga9fv2L27NkVvHLp2NraQllZuaKXUe7YbHaxerwNGjSAklLZhxAVFRXBbSsrq3LN/JKFW7duISMjAwDQvHnzcl9/48aNsXPnTnz8+BGZmZl49jIWvGrNcPO/r8hnccQaS1GBgfaNa8CxgyXqmuvJZ8GEEEIIISVgs9n4+PFjkfvU1NSEfpf83e/9LNTV1aVeGyGEEEIIIeKoSt9J2Ww2GAwGgP+ts3bt2mJ/Dy8Ji8XC69evpR6nKqPgGhFbcHAwDh8+DG1tbWzevFkQWOPT1NSEl5cXevfuDW9vb3z48AEAEBISgho1amDkyJEVsWyZUFJS+iuDayUR5bXgH7xF3b6yuXHjhuC2jY1Nhay/cePGgpNRuw+FoWabakL2KEpbQxm92lqiX4faMNSrvB/2hBBCCPlzMRiMIt8LAUBBQQEKCqJnz3O53BLvF2cMQgghhBBCpFHVvpMqKCgU+x6urKwsk+Aav43O36xy/tZJpRUfH49t27YBAHx8fGBubl7qtvXr10doaCiaNWsmuG/dunVISEiQ+zoJkYXbt28LbltZWZXr3PksDv598AlPP2T/776MRJH3NzPSgqdLY/yzuCfG9GtAgTVCCCGEEEIIIYQQQgiREcpcI2I5ePAgWCwWdHV14eLiInR7HR0dBAUFYfDgwfj8+TPy8vKwb98++Pr6lsNqCZFcbGwskpOTBT/r6elJNV5iYiKePXuGli1bwtjYuNTt0jLycOHuR1y8G4+MbCYyc/93RQyHmVvqfnxN6xnBycEazesbQ0GBIXR7QgghhBBCCCGEEEIIIeKh4BoRC79Mnr29fZF+WmXR1dXF0qVLMWHCBADAlStXKLhGKr3o6OgiP2tra0s81vPnzzF27FhkZ2fDyMgIZ8+ehYGBQZFtPiSmIzwyDpFPEsDm/C+tmsvOE9xWVC45+0xFSQFdWpqjv70ValXXkXidhBBCCCGEEEIIIYQQQoSj4BoRWXZ2NhITC8rS2djYiLVvx44dYWFhgc+fP+Pbt2/IyMiAjg4FAUjl9ezZsyI/czgcicdas2YNsrMLyjumpKTg7NmzGDt2LDhcHh7FfEN4ZBxexv0scV92fpbgtrJm0X5rBjqq6NuhNnq3tYSulqrE6yOEEEIIIYQQQgghhBAiOgquEZFlZf3vJL8kJfJsbW3x+fNnAEB+fr6slkWIXLx9+7bIz9+/f5d4rNevXxf5+Vd6Js7ejsP52x/x9Wd2KXsVyM/4KritaVwQ1LYy04WTgzXsm5pBWYlaZxJCCCGEEEIIIYQQQkh5ouAaEZm+vj4YDAZ4PJ4gC0ccPF5BqTtFRcViJfEIKU1ERAQCAgKQkpKCDh06YOnSpeXy/omPjy/ysyTveb5q1aoJsj4B4NpbZVz7/FLofqycNLCyfwAAGApK6NytN0Y4toadVTUwGNRPjRBCCCGEEEIIIYQQQioCpTwQkamoqKBRo0YAgDdv3oi9/6dPnwAALVq0gKKiokzXRionfkD199uiio6Oho+PDz58+IDMzExcunQJM2bMkGgscWRnZ0sVTCuMx+OhZdtOgp+VNY0A9Roi7Zv++QGAguc6fMRorPHqi4bWhhRYI4QQQgghhBBCCCGEkApEwbU/VFJSEiZNmoRmzZqhf//+uHv3rkzGHTNmDADg+vXryMzMFHm/hIQExMbGAgCGDBkik7WQyo3JZBYppfjlyxexx7h69Sq4XG6R+x49elQsq0zWCpdAlRSLzcXN/75g1tZIvMysByU13f9/RLTAoCbjFzLibwMAWrZsiYXzfaReEyGEEEIIIYQQQgghlcnPnz/x69evil4GIWKj4FollpGRIbgt7gFm3rx5uHXrFnJychAbGwtPT098/fpV+I5CODo6olevXkhPT4efn5/I+23duhU8Hg/t2rXDgAEDpF4HqfzCwsLAZrMFP4eGhoLFYslk7N8DbrJWUmalsrKySPtmZDNx4losJq6+go1HovH+yy8oqmjArM0EKKnpgpX9Az/eXgaPV/JzaFDbAC6tVfH5bhDYbBZatWqF7du3izw/IYQQQgghRDyXL1/Gs2fPKnoZREbu3LmDsLCwil7GX2vnzp2Ijo6ukLn5F3XL2ps3b+Dh4SFVL3ZppaenIzg4uMi5wsqi8LkfccjqHBGp+mJjY9G9e3esXr0aKSkpFb0cQkRGwbVKKjk5Ge/fvxf8fP36dbH2f/myaD+n3NxcvHjxQiZr27BhA7p3745Tp05h2bJlYDKZZW4fFBSEs2fPws7ODgEBATJZA6lcMjIyEBsbizdv3uDevXtYv349Vq5cWWSbFy9eYOjQoTh16hSio6MRGxuLjx8/ljlu9+7doaBQ9DBVr149WFpayvopFGFoaAhjY+Mi99WoUXYpxy/Jmdhx8hnGrfwXByJeIzUjr8jjqtrVYWHvBW3TJkh9dw3xN9bj57vryP7+FqzMJNTVz0B3qxT8eLIPfku8kJubi8mTJ2Pv3r3Q19eX+XMkhBBCCCGEFGAwGHB1dYW3t7dMLkqVl6tXr4pUESQ8PLxCgwAVLTAwEPPmzcOECRMkqqBSHo4cOSL0XMqvX7+KXbQqL0lJSULXI6rIyEgMHz4czs7OOHHiBHJzc2UyriiWLl2KMWPGyOz8FwBwOBwsWrQIN2/exIABA3D16lWZjS0OBQUFbNy4EZ07d8batWsr1bFq6tSpCA4OFvu9Om7cOPj7+5fb8So+Ph5RUVFyGTsnJwcLFiygwJCE2rVrh8mTJ+PAgQPo0aMHgoKCwOFwKnpZhAjF4Mm7eRERSXZ2NjgcDtLT0/HmzRts27atyBU3ioqKGDduHPr164fq1atDSUkJampqUFFRKXG80aNH4+HDh4KflZWVERERAQsLC5msl8fj4dChQ9i6dSt0dHQwbNgwtG3bFtWrVweDwcDPnz/x7NkznDhxAq9fv8bw4cMxZ84cqKqqymR+eWMymSV+GWvUqFGpr/mfjMVi4fnz50Xua9y4sSCb6vTp01iwYIHY45qZmQkNHEdERGDbtm1ITk5Gq1atsGTJEtSsWVPsucR1//59LFu2DMnJyejSpQs2btxYrNcZj8fDk9gUhEfGIfqN6F8G8zOTkfHlMZi/4sHNTwUzLxeamhrQ19dH/fr10bZtW/Tt25eCaoQQQgj5I7DZbLx7967IfXXr1oWSkpLIY3C53GInaNXV1YtdiEWIpNatW4c9e/ZAQ0MD8+fPh6ura0UvqZjly5fjxIkTcHJywuTJk2Fubl7idh4eHrh79y5cXFwwceLEcvn3U2Xx4sULDB48WPCzuro6Vq9ejX79+lXgqopr2rQpdHR0MGnSJAwdOrTE8wypqalo164dzMzM4O7uDhcXF7mdjwgLC0NAQADmzp2LXr16STWWm5sbHjx4AKDg4tiQkBBUr15dFssUaty4cTJri1Ka1q1bY8+ePeV+big/Px+NGzcW/GxnZ4djx45V+DmqzMxMtGvXDiwWC/Xr18eqVauKrLMs7dq1Q2pqKlRUVODi4oIZM2bAwMBAbmt9+fIlXFxc4ODggFmzZsHExEQm47LZbPj4+ODhw4ewsrLCgQMHYGRkJPF47969w7Fjx+Dp6Ylq1arJZI1VAY/Hw4QJE3Dnzh0AwKBBg8SqmlZeqtp3Ull8Dy8NnT+n4Fql8XswTBR+fn4YNGhQiY8lJSVh2bJlePToEUxMTODj44MePXrIYqlFZGVlITw8HFFRUXj9+jXS0tLA4/Ggq6sLa2trtG7dGoMGDSq3L1KyQgeHooQF1/42+SwObv73BeGRH/AlWfTeg3w1jbUwwMEaXVrUhJqK9B9mhBBCCCGVGQXXSFXAZDLRv39/QX9nDw8PzJo1q2IX9Rt+ABAouIB206ZN6NmzZ7HtvLy8cOnSJQCAkpIStmzZIpfzAZXRzJkzERERIfh58ODBWLRoETQ0NCpwVcXxgwoAYGFhgZMnT0JXV7fINrm5uWjatKngZ0tLSxw7dkxuF2H6+/vjn3/+QdeuXbF69WqJgxyFA1z37t2Ta7Dkd5MnT8aNGzdQo0YNnD59WqbjPnv2DHXq1MGZM2cq5LwQl8uFra0tAAieX3m+tqWJiIjAzJkzBT+bmJjgxIkTQgNXTCYTjRs3Bo/HA4PBgIeHB7y8vOT6uf7u3Ts4OjrKbXy+li1b4tChQ8Uu0BYVl8uFu7s7njx5gilTpmDs2LFCz7916dIFx44dk1nAMD09HSkpKahTp45MxhPVp0+f0LdvX0EWZFhYmOB9Lwp+Fq48K15Vte+kFFyTLzqrW0kcPHhQpuOZmpoiODhYpmOWREtLCyNHjsTIkSPlPhchFe1nei4i7sbj4t14ZOaIXzKjeX1jDHCwQrN6xlBQkOxLFiGEEEIIIUT2VFRU4Ovri4kTJwIoaG/g4OCAli1bVvDK/qdwgGjMmDGlBsz4FWOUlJSwfv36vyaw9vr1a0FQEQB0dHTQqlWrShdYAwpOxAKArq4u/Pz8igXWABSp/FO/fn3s2LFDrtVNZs2ahQcPHuD69etwcXHBP//8g9q1a4s9Dv8Es5KSUrkHf/ivmYKCgkzn5vdlNzAwqLATxgoKCmAwGODxeDA3N68UgTUAuHHjhuC2np4eDh8+LFKAJzk5Gfx8j+7duxcJ0MlL4QDVggULMHbsWJmN3bVrVyQmJqJJkybYuXOnxIE14H8lQJ2cnLBhwwacPXsWGzZsQP369UvcPikpCUlJSUhJSZFJcC05ORkTJkxASkoKQkJCRM5EBIAnT54gIyMDnTp1kmjuWrVqoXv37rh06RJUVVXFygD8+vUr3NzckJ+fj4MHD8q9pQwhAAXXCCFEqPcJvxAeGYeop4lgc8RL9lVRUkCXluYYYG8Fi+o6clohIYQQQgghRFr29vaoU6eOoP/5y5cvxQ6unTt3DjExMZg3b57M11f4KnMPD49ST97yAwzq6uro27evzNdRWfn7+4PL5QIouCo/ICAAo0ePRvPmzWXWIkNW+Cf5W7ZsWep7TEFBAcrKymCxWGjTpk2pZUBluaZly5Zh6NChSEpKgru7O8LCwqClpSXWOPyAiaampjyWWabKmjkiK0pKSmCxWBW9DIG8vDxcu3ZN8POCBQtEfp9++/ZNcLtwhqY88YOk8mRhYVFisFxcenp6WLduHcaMGYPY2FgMGzYMR44cKTGL6/HjxwAAFxcXqef93bhx4xAUFCTyZ2FeXh4mTZqErl27YuHChRIdt3r16oXLly9jxYoVMDQ0FGmfb9++wc3NTdBn083NDQcPHkStWrXEnp8QcVBwjRBCSsDh8vDw1VeER37Aqw8/xd7fQEcVfTvURu+2ltDVqhq9BgkhhBBCCPnbDRgwAJs2bYKGhkaJJRfLcv78ecybNw8cDgdcLleivtRlEfXE8N9Yvv/WrVu4d+8egIIsxA0bNqB27dpwc3ODt7c3Dh8+LMgWqwzE+V2WZzClcePG6NKlC65fv44vX77gwIED8PT0FGsMfoDzTwyuVXRnncoWPLx+/Tqys7MBAFZWVhgwYIDI+3748EFwu0mTJjJfW0lkUQZPGFm+R9q0aYNBgwbh1KlTyMnJQUBAAHbu3Flsu8jISADAtm3b0KpVK6nn3bVrF/bv3w+g4AKAjIwMkffV0Sm4qPz69eu4fv26VOuYN2+exBeqJCcnY/To0RRgI3JHwTVCCCkkJ4+FKw8/49ztD0hOzRF7/zo1deHkYI0OTcygrFS5vvgSQgghhJCKwePxkMvOA5vLgZKCItSV1KQqGUWKys3NLdb/RFI1a9YEg8HAwoULoaamJuiLJczt27exYMECcDgcAMC+ffvAYDAwf/58mawLED1oVtlOwMtbXl4e1qxZI/h51qxZsLGxAVCQdXHu3Dn4+Phg+/btlea1EfUkf0UcJ4YNGyY4Kf727Vux9+cHFyoimMkPWiYmJpZaQk8aFR1cq2yfG+fOnRPcnjJlilh/X/weUIqKirCzs5P52kpSHn///OCyrHh5eeHcuXNgMpn4/Plzscd//fqFK1euACj4m5O2XGheXh7Onj0LNTU1rF69WuwedWpqaoLbEyZMEJRaLgmHwxGUO5WXwusBgISEBHTr1k2kfVVUVKCtrQ0zMzM0atQIffr0ETubncfjISoqChEREXj69CmSk5PBZDKhp6eH+vXro1OnThg8eHClLF9MREPBNUIIAfDtZzbORX3AlQefkZvPFmtfBgNo27AGnBys0aC2QaX7wksIIYQQQsrf51+JiPr8CHGp8fiQ9gXZzP9duKWpogErfXNYG1iio0UrWOiZVeBKq76fP3/Czc0NiYmJMhvT19cXvr6+Uo2xd+9eMBgMuZSILMvf9u+RzZs3Iz4+HkBBac/CfZSUlZWxbt06DBkyBKtWrcKSJUsqZpG/EfV3VBHBwHbt2kFXVxfp6eli9Vri42faVURwjf+61qhRA6dPn5bZuJMnT8azZ89kHjgRV2UJDgNAamoqbt++DaCgT1a/fv3E2p8fuLW2ti63wEJ5lIVks8U7nySMiYkJevXqhXPnzsHNzQ1AQcDm2bNnaNq0Kfz9/ZGXlwcARUoo/vr1CxoaGmL3CAwLC0N+fj727NkjUc/Rwn/3KioqZQb7kpOTMW7cOHh5eYncG3TZsmWoW7cuXFxcigXORGFqaopHjx7hx48fmD17Nl69egUAaNasGdasWSN4DXNzc5GWloYXL14gPDwchw8fxuHDh9GsWTOsXr0a1atXFzrXmzdv4Ovri/z8fLi4uGDMmDEwMjJCZmYmnj9/jiNHjmD16tUIDAyEv78/HBwcxH4+pOJRcI0Q8tfi8Xh49eEnzt7+gAcvv4Ir5kVo6qpK6NmmFhw71kb1auVf8oIQQgghhFQ+0UkvEP7mX7xOeV/qNtnMHLxIfosXyW8R9voybI3qwMmmF5qbNizHlf45atasiQMHDuDq1auwtbVFrVq1oKWlBU1NzWJBDA6HI9UJ1p8/f6JatWrSLpnIyH///YcDBw4AAMzNzbFx48Ziv3NbW1t4eXlhw4YNUFJSwsKFCytiqVWGiooKFi1ahE+fPhUJVIqKH1wQNbh28uRJWFhYoHXr1mLP9Tt+5qiCgoLUGTyF8Y8ZlLn2P6GhoYJAqoeHh9jH1djYWABAw4bCP/ceP36MtWvXYteuXSL34CpJebx+8ijj6uPjg/bt22PQoEEACo57ERERUFVVFQSRmzRpUqQf25YtW/D69Wts27YNJiYmxca8dOkScnNz0bdvX0GfTh6Ph8OHD2P79u0SBdaAogFMYcFoDQ0NvHv3DtOmTUOjRo0wZ84ctGnTpsx9fvz4gaNHjyIgIAAjRozA2LFjBaUoRaGgoAAdHR3o6OigS5cuguDaoEGDYGVlJdhOR0cHJiYmsLGxwZAhQxAeHo5FixbhyZMnGDlyJEJCQops/7vHjx/D3d0dTZo0QWhoaJHXpVq1arC0tET//v2xcuVKHD58GB4eHti0aRP69Okj8nMhlQMF1wghfx0Wm4uoZ4kIj4xDXEK62PubGGigv70VerS2gIba39fPgBBCCCGEFJeZn4V/okNx5/Njsfd9nfIer1Peo6NFK4xrPhTaqlpyWOGfrWbNmiIFAhYvXozatWtjwoQJYmeBZGRkoGvXrhg8eDCmTJki1UneyuTHjx9V8rlkZmZiwYIF4HK5UFdXx/bt26Grq1vithMmTMCjR4+wf/9+cLlcLFq0qFIFKmQhOzsbDAZDJllATk5OEu/LD67xT9iX5eTJk/D19YW6ujqCgoKkDrDJO/gl66wkccnqPRsYGAg7OzuJM2XYbDaOHTsGADAzMyvyfsnOzkZ+fn6Z+6elpeHXr18AgNq1a5dZfvft27fw9PRETk4O3NzccODAAYmPV4VfPz8/P/j5+Uk0Tll+f+5t2rTBgwcPpBqzRo0agsAaUBAY69SpEywsLLB27VowGAz06tVL8Py+ffuGkydPgsViYeDAgdi8eXOxoFWbNm0we/ZsrF27FkOHDsWoUaNgZGSElStXomnTphKvVZzgWuHMMxUVFZiamgodn9/LMTMzEwoKClId7wqvVVipXicnJ/z48QPr1q1DWloaVq5cib1795a4LZPJxKxZs5CTk4PevXuXGnhmMBiCgF1MTAzmzp2L+vXrlxm0I5UPBdcIIX+N9Kx8XLofj4g7H5GaUfaXvZLYWVWDk4MVWtvVgKLCn/UPMUIIIYQQIrlPvxKwJnI70nLFv3CrsKjPj/AqJRaLHKZTqUg5mTRpEpycnBAZGYlNmzbByMhI5H2joqKQl5eHQ4cO4fTp03Bzc4Onp6dIQYSSBAQEYNq0aRUa5GEymejXrx88PDwwbty4KhNw4vF4mDNnDj59+gQGg4E1a9YI+qyVREFBARs2bMCQIUNw8OBBpKamYu3atWKXTCvJ+/fvERsbi759+0o9ljRu3LiBgIAAbNiwAY0aNZLp2LGxsXBzc0NaWprI+0RFRYnc9ywnJwceHh44fvw46tatK+kyBZlr8iLv8cvD9u3bERAQABUVFezYsUOiANvVq1fx7ds3AMDEiROLBCYSExMxZswYkftVbty4ERs3bhRp27i4OIwZMwYHDhyQKIO48PHN29sbrq6uYo9RmkGDBuHr16/Izs4W3MfhcJCVlSWzOYCCgNWNGzcwe/ZsqKmpYeDAgcW2WbNmTZEMunfv3hULrunr6yMkJASbNm1CcHAw9u7di4EDB8LT01Oq9Ylz0YqysjIUFBTA5XIxcOBAmJubC92Hf8xu3Lgxpk2bVuzxN2/elPlZII3Ro0dj3759+P79O549e4ZXr16V2C8wMjISycnJAAqObWVRVFTEpEmT4O3tDSaTiS1btmDbtm1yWT+RDwquEUL+eJ++ZeDc7Q+48fgLmGzxaqQrKTJg39QMAxysUaemnnwWSAghhBBCqqxPvxKw7MbmIj3VpJGWm46lNzZheZdZFGCTA0tLS7i7uyMgIAAuLi4ICQkROQAQHh4uuG1nZ4du3bpJHFgDCjLhdu/eDXd3d4nHkNZ///2HX79+wd/fH5GRkfD39y+xhFhls337dty4cQMAMH/+fJECWzo6Oti5cyeGDRuGCxcu4OvXr9ixY4fU5QPNzc3h6emJhg0bwsLCQqqxpBEZGYn4+HgMHz4c06dPh7u7u8x6dNWrVw979+7FmTNn0KhRI9SuXRu6urqCLJLCXFxckJSUhF69emHZsmVljrt161ZBBlT37t1hbW0t1Tr5mWVcLlfk4I4o+EE1eZT8E4e0we+dO3ciICAAQEFgferUqRIF2IKDgwEUZCf+XsauXr16OHjwIB4+fIgGDRqgRo0a0NbWLpJhFBISgg0bNkBBQQGPHj2Cllb5ZGsXfv3U1dVlWjpUV1cX3bt3x8iRIwX3ZWVlgc1mIzc3t8wyqRkZGVBWVhaplOrjx49haWlZar+xy5cv4/LlywCAvn37YtmyZaVm9CooKGD27NkwNTXFypUrcfz4cZw9exZeXl4YP3680LUII8rxR1FRUaxehmWVHw0NDcXSpUuxdOlSDB8+XOQxRaWiogIHBwecPHkSAPDo0aMSg2ufP38W3D527BhGjx4NZeXSq17Z29sLgow3btwAm80WmklHKg/6TRFC/khcLg9PYr8j/FYcnsSmiL2/toYK+ra3RJ/2lqimW/6NmAkhhBBCSOWXmZ+FNZHbZRZY48tm5mB1ZAA29PKlEpFyMGHCBBw7dgzJyckYN24cTp06hRo1apS5z/fv3xEVFQUAsLa2xq5du6Q+ITxu3Dj07dsX7dq1E6nvkDxcu3ZNcPvevXsYMGAA9u/fL7cr/2Xh4sWL2LFjBwDA3d29xHKg//33H5o3b14sGGFtbY2goCCMHz8e0dHRGDx4MNatWydxfyGgIMDg4uICHx8fHD16tEJOirLZbNy6dQtAQQBo06ZNePToEQIDA8s8qVsaJpNZLKvP1ta2SE+nknC5XKSkFPz728rKSmjwonBWj4+Pj9TBwLy8PADA169f0a5dO6nGKomwcoelWb9+PXbv3i2zdTx8+FDkiwLKIkmA7caNG4I+Vfn5+ejfvz+8vLwwaNAgQeCjTp06qFOnTqljvHjxAkDB32N5BdYA+fZcO3HiRLG/GX6m548fP8rMykpKSsL06dPh5uaGYcOGlfk3GxERUervKiUlBStWrACDwYCPj4/IF26MGDECWlpamDt3LvLy8uDv7w8Gg4Fx48aJtH9hhQNlogbXxAlal3Z8PXv2LJYtWwYej4fly5dDRUUFLi4uIo8rqsKZtd+/fy9xm8JlSz99+oSsrCzo6+uXOqaWlhb09fXx8+dPMJlMpKamwtjYWHaLJnJFwTVCyB8lj8nGjf8ScDYyDgnfxU+/NzfRhpODFTq3MIeqsuSNzgkhhBBCyJ/vn+hQqUtBliYtNx17o49jRjvprx4nRamrq2P48OHYtm0bfv78CT8/P6FlmA4fPgw2mw1dXV0EBgbK5ISwqakpevTogdmzZyMsLKzUTAR54XK5ggwHAGjWrBkWLlxYqQNrt2/fxpw5c8Dj8TBixAjMnj27xO3WrFkDDocDb29vdO7cuchjzZs3R0BAAKZMmYLExES4ublh8uTJ8PT0lDgwNnz4cOzatQs7duyAl5eXRGNI4+7du4IeVkBB+dPx48dLFFjbsGEDXr16haCgILHLZqakpAhOlNesWVPo9j9+/ABQcIJdnBKtpeEHv8zMzHD9+nWpx+MbPnw4oqOji2XqpaSkiLTuOXPmoGHDhtDU1ISlpaXExw8HBwewWCw0a9YMO3fulGiMkojzPuEHtvlSUlJw6dIl9OjRA3p6eiKN8fLlSwBAkyZNRJ63sivpb4X//o6Pjy8zuGZjY4P58+dj6tSpOHLkCFasWIFWrVoV247D4eDy5cs4cuRIscfYbDa8vb3x69cvrF27Fs7OzkUez8/Px5IlS+Dh4VFiT68BAwYgNTVV0IcuICAAI0eOFPsYULjvoYKCAubNm4ewsDCh+/n6+sLX11fkeaKjo0sNMPN4PPj6+kJFRQX9+/cXeUxRFD4GlBYU7N27Ny5duoS7d++iV69eZQbW+AoHJUvKCCaVFwXXCCF/hJ/pubhw5yMu3YtHZo74pRpa2BhjgIM1mtUzqjJ9BgghhBBCSMWJTnqBO58fy3WOqM+P0LFWKzQ3lW3/JAIMHjwYAQEB4PF4uHbtWpllu/Lz8xEaGgpFRUVs2rQJtWrVktk6xo8fD2dnZ/j7+2Pp0qUyG1cUjx8/Flx5r6ysjHXr1lVoWUNhHj9+jOnTp4PFYsHd3b3UwBpQ8HxevnwJDw8PNG3aFIsWLULjxo0Fj9vb22Pnzp2YPn068vLysGPHDvz777+YOXMmunXrJvbadHR0MHjwYAQFBaFTp05o2rSpJE9RYhcvXhTcbtOmDXx8fErdNi0trcgJ8MJOnDiBkJAQAICXlxcCAgLECjh++fJFcFuU99LPnz8BAMbGxmWWexOVtbU1WrRoIVEfsbL06tUL3t7eaN26teC+iIgILFq0CE5OTli8eLHQ9f9ePlFc6enpgpP5HA5HpiUNRXX16lW8ePECysrK4PF4YLPZsLOzw+7du0U+j5KamorExEQAFRtcK48Sn/y/h+joaNjb25e5bbdu3eDu7o7g4GC4ublh2rRpmDp1apFt7t+/Dw0NDdSuXbvY/uvXr8fz58+xdetWdO/evdjjqqqqOHfuHM6ePYtevXph8uTJxS6kGDt2LO7fv48bN24gOzsbWVlZYr/P+NmjAKCmpgY/Pz906tQJ1atXh4WFRbFstq5duyI3NxcLFizAgAEDhI6/ZcsWhIaGokmTJti1a1eZ28rimPK7zMxMwe3SgskqKipiBb+zs7ORnl5woZaFhQUF16oYCq4RQqq02M9pOBv5AVHPEsHhlvwPhNKoKCuia0tzDLC3grmJtpxWSAghhBBC/kThb/4tp3muUHBNDkxMTNC4cWM8e/YMKioqZV6df/LkSaSlpWHevHno2LFjmeNmZGTg5s2bIp0kBApK7bVt2xZHjhxBly5dZB4UKAu/bwwAuLq6VurA2sOHDzFlyhTk5eVhzpw5mDhxYpnbF87EMTMzg6WlZbFtHBwcsGfPHnh4eCArKwvv3r2Dp6cnmjdvjrFjx6JLly5iZW2MGTMGhw8fxpw5cxAeHl6kx5Q8ZWVl4dKlSwAKyt7NmTOnzO1Pnz6NdevWCR335s2buH79Onr27CnyWvgZSQoKCmjQoIHQ7fklJKtXry7yHGUR1uNNUoVLj3I4HGzatElQ5vHo0aP48uULtm7dKtcSh/wsKAB49eoVUlNTyzXAxmKxsH79egDA9OnTERISgszMTGhqaop1gTL/PQJApPdISeuQJCMTKBpsefPmjURjiOPJkycACoLW48aNg46OTpnbe3l54fbt23j9+jW2bdsGHR0djB49WvD4hQsXSvyMOHr0KI4fP46goCC0b9++1PFVVVWRk5ODixcvQldXF8uXLy+2zZIlS3Dv3j0YGhpK9P7Kzc0V3FZRUYGCgkKZPTH5gX5NTU2R5uP3OVVUVKyQAHN8fLzgtqyyvO/cuSPIXHN0dJTJmKT8UHCNEFLlcDhc3H/1DeG34vA6XvwmxdV01dCvQ230amsJHU3xUtwJIYQQQgj5/CsRr1Pel8tcr1Pe4fOvRFjomZXLfH+Ca9euoWvXrkJP+Hbt2hXPnj3DhAkTSr3CncViYffu3RgwYADGjy+7RGdqaiomTJiAmJgYfP/+XWgAiG/06NG4f/8+fH19ceHCBWhry//Cv8zMTEFJSE1NTXh6esp9TkldunQJc+bMgZqaGnbt2lWszGNJ+CffTU1NsWnTplK3a9myJY4fPw5PT0/BSdPo6GhER0dDR0cHPXr0QIsWLVC/fn3UrVtXcGK3JDVr1kSXLl1w9epVbNiwAUuWLBHreUrqwoULyMkp6PvYt29fNGpUdjB+woQJMDIyApfLha2tLQwNDaGtrQ0VFRUEBARg+/bt0NbWxo4dO9CmTRux1vL8+XMAQP369YUGmphMpqCUpbCeh0DB35ebmxvevXsn1prKQ1RUFIYNG4Zdu3aJVA5TEl+/fhXc5nA4uHbtGoYMGSKXuUpy+PBhxMfHo1mzZpg4caIgw1Fc/OCasrIy6tWrJ9a+ERER2Lp1K/755x+YmYn/mailpQU9PT38+vULERERaN68Ofr16ydyOUtRcTgcREVF4ezZswAKgshjxozByZMny8ymUlJSwrJly+Dq6gqg4G+bH1xjMpm4cuUK/P39i+xz5coV7NmzB0ePHhUa7FFRUUFOTg66dOlSYmANKDhmrlmzRuISufxjEYBSs8ELK1wOURylZd/KE//3ChQ8t8KZrJJisVgIDAwEUHDRj7DvGaTyoeAaIaTKyM5l4crDTzh3+wO+p+UK3+E3dcz14ORgjY5NTKGkKF2jZEIIIYQQUnF+5KRClatWrLyQnpoOVBSLX9GezcxBNqv490cVBSXoqeuWOMf37J8l3q+npoOoz48kWLXk7nx+DAs9M5k/D1FfK2PNahKsuuLMnTsXZmZmmDp1apmZZo6OjoKTntnZ2SVuc/bsWWhpaWHBggWlbgMUlGybNGmS4MT/+vXrwWKxMGXKFKHr7dq1K2rWrImEhASsWbNG0PNGnk6fPi0o3zV58mRUq1Y5f8cHDx7EmjVrULduXWzbtq3EDLSS8INromTUWFtb48SJE5gzZw5u3rwpuD8jIwOnTp3CqVOnYGBggFmzZgkNZowePRpXr17FkSNH0LNnT7Rt21ak9Urj6NGjAAoyOsoqB1mYsMzK6tWrix1YA4CnT58CKAhaCsMvCQmIFlwzMDDA/v37cevWLVhZWcHc3BwMBgMJCQmC38vixYvLzJJ5+/atIAvtzJkzMsuY45Nn38SPHz8Kbjdr1gyXL18ut+Baamoqdu7cCQ0NDaxfv77EABGTyRSp1CI/AFu7dm2wWCyRyzNeuXIFCxcuBIfDwejRo7F///4y+5iVxtnZGfv27QOXy8WKFSuwYsUKmZcP5HK5RYI/ioqKGDlypEjzNG3aFO3bt8fdu3ehq/u/z/Xbt28jNze3yDHly5cvOHbsGI4fPy5SFhc/YCYsmNivXz+hY5WmcOaaKNm7HA5HonnKo6zn706dOiUoaTp8+HCpL4TJzc3FwoULERMTAyMjIwQHB5fLxTVEtii4Rgip9L7+yMa5qA+4+vATcvPF++BVYADtGpligIMVbC0NqJ8aIYQQQsgfYM71NSXev7TLTNgZF78S/kLsdZx8daHY/Q2M6mJZ11kljjXtvG+pc8Slxou+WBl4///zyfp5iPpaHXcNFHPFFUtdXR1v377FjBkzRNr+0KFDQrdp166d2OvYsmUL2Gw2pk+fXuZ2CgoKcHV1xcaNG3H69Gk4OjqiQ4cOYs8nKi6XiwMHDgAoyLYqXPKussjJycGSJUtw4cIFjBs3Dt7e3mKVaBQ360JHRwdBQUE4duwY/P39BdkX5ubmWLJkicjlOtu2bQtra2vExcVhyZIlOHv2rFwDLvfv38fr168BAOPGjZMom0dW3r9/LzjxLMr7Nzk5WXDb1NRUpDmqVauGQYMGFbmvcA8kDQ2NMoMMhbPpdHR0JC4rl5ubi58/f8otS60khcvRTZkyBVOmTEFiYmK5/M79/f2Rnp6OTZs2lRrQio+Px5gxY5CaKlp1odjYWDRv3lyi9SQmJmL06NE4cOCA2OVsfXx8oK2tjXPnziEpKQlMJlPiAE9Z1NTUUK1aNbRo0QIjR44Uqw+jq6sr7t+/X+S9fuHCBbRo0aJIwKpmzZrYtWuXyGUyxT0u3rt3D/Xr1xfr76TwRSjCymDyeLwqE1y7fv06Vq5cCaDgOO/h4SHROCwWC3Fxcbh79y4OHz6M5ORkuLq6wtvbu0LKXBLpUXCNEFIp8Xg8vPrwE+GRcXjw6hvEzfjWUFNCzza14NjRCiYG5VPrnhBCCCGE/Pl4PB4+pH0p1zk/pH2ukBJIVRU/CGNqairoRVXZubi4YNu2bWCxWFi8eDEiIiLkFpT5999/kZCQAACYP3++WEGr8vDu3TvMmDEDDAYDBw8eLJIFJWq/JUl7Mg0bNgydOnXC5s2bERkZiaNHj8LIyEisMYYOHQo/Pz98+vQJ27dvx+zZsyVaiyj27t0LADA2NsakSZPkNo8o/v23oA+lvr6+0N6EAPD9+3fBbVEy1yqTpUuX4u7duwgJCYGtrW25zBkTEwOgIIDo4OCAWrVq4dChQ5g3b55c53306BHCwsIwcuTIMjOa6tWrhwMHDuD27duwtbVFzZo1oaWlVSQYlJaWhk6dOgEoOPaMGDFCqrVJknGmoqKCadOmYdq0aVLNfefOHZiamqJ27dpSjVOS3r17o379+oKxs7Ozcf369WJrZjAYYh3rxLnYPDo6GlOmTIGdnR327t0r8udE4cw1YcG1wgEyX19f+PqWfDFQSfiZ1/KUm5uLp0+fIjQ0FBcvXgQADBkyBL6+vhIFBXv27IlPnz4JftbW1sb69evRp08fma2ZlD8KrhFCKhUWm4vbTxMRHhmHD4npYu9fo5omHO1ro3srC2ioSfYPKkIIIYQQQkrD5DCRzcwRvqEMZTNzkMfOL9c5/wQMBqPMHlmVSbVq1dC1a1dcvnwZiYmJCAoKgpeXl8zn4fF42LVrFwDAwcEBPXr0EGm//v37F+n5JK3Hjx8Xu4/f3+7QoUNwd3fHqFGjimVa7N27F69fv4aHh0eZ/YUk7RcEFAR61q1bh6ysLKF9w0ri7OyMDRs2gMViYd++fRg0aBCsrKwkXk9pYmJiBGUsFyxYAE1NTZnPIY4rV64AKCgpJ8oJ/5SUFMFtUTPXZInL5SIwMFDkTCu+1NRUnD9/HgAwatQobN++XaLMVnGw2WxBcK1x48ZgMBjo1asXDh8+jOnTp4tUfk8SOTk5WLRoEZo0aYL58+cL3b5u3bqoW7duqY/z+60BQJs2barM8bkkT58+xcSJE9GjRw9MmjQJDRs2lOn4hYN2V65cQW5ubrGgdVZWFphMpshj8i/SYTKZZb7vExMTMXnyZOTm5uLx48dYsmQJ1q5dK9IchYNrwsoN5+f/73vNggULhJarBQoywkNDQ6Gvry/SekS1fPlyrFnzv6oIHA5HkMFsbGwMZ2dnjBgxAk2aNAGXyy3yPEW1Z88epKWl4fv373j58iWuXLkCb29v7Nq1CwsXLpSoFC+peBRcI4QIxWAwYGhoCFVVVTAYDPB4vGL9LaSVnpWPS/ficeHOR6Rlin/ioJG1IQY4WKFVg+pQVKDSj4QQQgghRD44XG6FzMvisitk3qqsqmX7OTk54fLlywAKTsK5urrKvCfUtWvX8Pr1a6iqqmLx4sUi7xcSEgI2W37vwcePH2Pt2rVo1aoVzp07V2p5LBUVFURERODixYvo3LkzpkyZgiZNmkg1d1JSUonBHUkCa0BBP6POnTvjypUrYLFY8Pf3R1BQkFRrLMmOHTsAAO3bty+zz1h5eP78uSD483vZxtJ8+/ZNcFtWwbUFCxZgwYIFIm2roKCALl26YP78+TAxMQGHw0Fqairat29f5n7cQp8BKioq+PLli9yDa2/evBFk6vBLKQ4ZMgRBQUE4evQoJkyYIJd5169fDw6Hg8DAQJlkuD548ABAQcZOWcHxqkBDQwNcLheXL1/GlStXEBwcDHt7e7nMde7cORgZGaF+/fpF7v/y5QvGjh2LX79+iTXehQsXcOFC8RLTpTlz5gysrKxEyo4tHDQ3NDQsc9ucnBxYWVlh9OjRGDhwINTV1YWO36JFC3Tr1k3kUr2imjFjBnr16iX4+dGjR4KAspubG9zd3aWew9zcXFBWtXv37vDy8sL58+exePFiuLm5YfLkyfD29qZ2NlUMBdcIIUIpKSmhVq1achn707cMnI38gJv/fQGTLd6JCiVFBhya1cQAeytY19STy/oIIYQQQggpTFHGF5mJSlmB/vkuKn5QTdYXBMqbg4MDdHR0kJGRgfz8fOzYsUPQ40UWuFwutm3bBgCYOnWqWL2KZB3k+92PHz8QFBQkNNOBn+nC4/EQFRWFzp07SxVcCwsLg6+vr8xLczk6OgoyuW7evIno6GiJ+0uV5Pnz57h27RrU1NSwfPlymY0rqX379gEAunTpAjs7O5H24QfXtLW1oaurK5N1LF68uMxA49u3b4v0GLSxsUFYWBgA4NOnT/D09BRaxpP/eisqKiI0NFTsnl+SuHv3ruA2P7vFzMwMnTp1QnBwMIYMGSK0BJ+4bty4gYiICBw5ckTo36WooqKiABQECKva8fl3hYON69evLzGwxuFwsHjxYgwcOBCtWrWSaJ7v37/j3r17cHR0LBZ0sbW1xb59+/Dw4UPY2dnB3NwcWlpaRbJYAwMDsWXLliL7DRw4EG/fvsW6devKzDSUBL+Xop6entCMSkNDQ0RERIgVTHJychLcDg0NRb9+/SS+EKIwfX39Ij0Ua9SogU2bNuH79+84duwYJkyYIPP3LIPBQP/+/aGlpYXJkydj165dYDAY8Pb2luk8RL6q9pGMEFIlcbk8PH6djMVBdzFt/Q38++CTWIE1HU0VuPaoh398e2Lm8OYUWCOEEEIIIeVGRVEFmirl29NXU0UDakpVt3xWeeOXcpJXqTR5UVZWRteuXQU/h4WFiZ2RUJbw8HC8ffsWNjY2cst0kVTv3r1FOoFfOLNhy5YtGDZsmMRzhoWFYcGCBWCxWJg9e7Yga1AWOnXqVKRnHj/4JCsbNmwAj8fDjBkzyiW4U5bExETBazd9+nSR9+OXGZVlSUgNDQ0YGBiU+l9ZJ+Fr1aqFnJwcvHnzptRtsrKyBMG4Pn36lNtrf/v2bQAFgcgWLVoI7h85ciR+/fol88zIhIQErF69Grt374a1tbVMxvz8+TM+fPgAAEX6KAoTFRWF7du3y2QNslS49GzTpk2LPc7hcDB37lycOnUKkyZNKrEUrijOnj0LDoeDDh06lPi4ra0txowZg5YtW8LExKRIYO3nz58ICQkBAFhZWRXpH+ni4iJyqUdx8IPmovxtKCoqSpyltWvXLixZsgSTJk0SfObLkqKiIlxcXAAU/D1ERkbKfA6+Ll26oFu3bgAKnteLFy/kNheRPbr0jRAiFJPFwcekDHz6loF8JgeqKoqoVV0HtU11oKIsegPZPCYbNx5/wdnbH5DwPUvsddSqro0BDtbo3LymWPMSQgghhJA/y/quC6GqplbsKmI9tZKv3O9Xrys61y5etkuljGyw7Y6rSrxfT00HVvrmeJH8VowVS8dK3wIMBkPmz6Mkpc1RlfDLp1W14BpQEJThn7xnMpm4f/8+evfuLfW4eXl52LZtG5SVlbF27VqpepJVJEXF//070MzMTOj2iYmJxUqplYTNZmPWrFnYsmWLyH3oyqKuro5WrVoJgiL8/8vCrVu38ODBAzRt2rRIFlZFWb9+PdhsNhwdHUXOWgMKynECKJItUtHat2+P0NBQLF26tMTHDx8+jJycHDAYDHh4eJTLmtLT0/HkyRMABdmthfvZ2dvbo3Hjxjh48CBGjBgh0t+EKFJTU7F582Y0atRIJuPl5uZi06ZNgp9FDa49fvwY06ZNQ25uLn78+IElS5aIlD2UnZ0t8VpFxWKxBLfz8vKKzMnj8bB06VJBb76cnBy4u7sjJCRErMAiAJw6dQoMBqPU4FpZtm7dKljXkiVLsHDhQsFjAwYMwPr163H16lV0795d7LFLww+u1alTp9hjt27dwrRp08TqEyfMf//9hylTpiAoKKjIBQ2ywC+9yuVycfjwYXTu3Fmm4xfm6uqKa9eugcfjYefOnQgMDJTbXES2qua3KUJIuYj9nIZztz/gzvMksErILFNWUkCHxqbob2+FehalNxP9mZ6L81EfcelePLJyWaVuV5qWtiZwcrBCk7pGVHuYEEIIIYTAUMMA6urqIpfo0VTREDvbzFiz9CwaawPLcg2u1TGwBCD751ESSeaoTLhcriC4JusyaeWBX/KNLyEhQSbjBgcHIykpCT4+PrC1tZXJmBWhcHBNFDVq1MDp06dF3l6WQcc2bdoIgmo5OTlITU0ttZecqJhMJtasWQMNDQ2sX79e7NdD1h4/foyLFy/CyMgIvr6+Iu/HYrEEJ+ErU3CtZ8+e8PLywowZM6CvX/QcR25uriADsXfv3qhXr165rOns2bOCQE7hknh8Xl5emDBhApYsWYI9e/bIZM7GjRvLZBy+Xbt24eLFi4Kfhw8fLvYYR48eRXp6Ovz9/YX2f9u9ezd27twp9hyS6tevn9BtJAmwPXr0CB8+fEC9evWE9i/73ZMnT3D8+HEABWVqf+8LqKOjg969e2P58uVo06YNtLW1xRq/NPy/aysrq2KPderUCfv37weTyUTdunXBYDCwePFi9OjRQ6weagcPHhT8frW0tNCiRQu59AQ1MzND+/btERUVhdu3b+Pz589yy1Zt0aIFGAwGeDwebt26hfT0dJmVyyXyRcE1QkgxOXls7D33EpfufypzOxabi5vRCbgZnYDebWthXP+G0FD732ElKSULhy+/wZ1nSeBwxWsmrqqiiG4tzdHf3go1jWXzIU8IIYQQQogsdLRohbDXsishJ0wHC/GudP+bFS6jaGJiUnELkVC1atVgYmIi6Fsjix4vX758we7du9GmTRtMnDhR6vEqkrjBJAUFBakDWpL6PYtLFheK7t27F/Hx8fDz86vwcpD5+fmC/mMrV64sFowqS0JCAjgcDgDRyseJasGCBViwYIHE+7dv3x6qqqo4cOAAvLy8ijx26NAhpKamQklJqVx7Ip08eRJAwfGsY8eOxR7v2LEjWrVqhaioKJw+fRqDBg0qt7WJysvLC6mpqTh+/Djs7e2xbt06oftkZGTA1dVVcEyvVasW7Ozs8OPHD6GlRL28vGBqagoGgwFbW1sYGBhAW1u7SNbfu3fvUKNGDYn7dZ0+fRrLli0DAFy8eFHkrEFxjun8YOnvgTFhWCwWlixZAh6PBxMTEyxevLjE7UaPHo2wsDCsXr1aJiUic3NzkZ6eDqD48Y/v996TCxcuxMiRI9GqVSuRXsO3b99i9+7dAAqy048ePSrXQLerqyuioqLA4/Fw9OhRzJs3Ty7zaGlpQUdHB+np6eBwOHj58qVE2Yqk/FFwjRBSxM/0XPjuuit22cZL9z/h5YefWDW5ParpFtTB19JQwfP3P8QKrBnqqqFfRyv0alsL2hplX41ECCGEEEJIRbDQM4OtUR28Tnkv97lsjerCQk82pb7+BlU9uAYUXPHPD66V1MtHXCtXroSOjg42btwok2BdRaroTC1xFM7csLS0FCv4VJKEhATs2rULgwYNqhQBlNWrVyM2NhaTJ09Gly5dxNqX33sLKAiayMrixYvRt2/fUh9/+/ZtmaU0lZWV0a9fP+zduxdDhgwRBHF+/fqF4OBgAMDQoUNhaWkpszWXJSoqStADbsyYMaW+/xcsWIAhQ4Zg7dq16NixI4yNjctlfaJSUFDAypUrUbduXbi4uBTpC1aalStXCo7nkyZNwvTp04VmrBU2ZMiQMh+/desWTp8+jc2bN0uUqVc4y1VFRQWqqrLti3rmzBncuHEDANC6dWux9t20aRNiY2PBYDDg7+8PPT09AAXlKgtr2LAhevXqhTNnzqBt27ZwdnaWas38rDUFBQWRX1MzMzOMHDkS06ZNw6FDh8p8b2RlZcHLywtMJhMMBgPr16+XewZp165dYWRkhJSUFJw+fRpeXl4ivQ8/fvyIhIQEtGnTRuT3rZqamiA4mZqaKtW6Sfmp2t+qCCEylZPHliiwxpfwPQuLg+4hJ68gHVtHUwWeLk1E2reehR7mjGqBkEU9MLhrXQqsEUIIIYSQSs3JpucfNc+fonBwzdzcvOIWIgV+yTAnJ6diV/mL69y5c7h79y62bt0KIyMjWSyPiKh69eqoWbMmlJSUSs0cEcfSpUthbW1daj+w8nThwgWEhoZi4MCBmDlzptj7v379WnBblJ54otLQ0ICBgUGp/4mSpTRmzBjk5+cXyeQJCAhARkYG9PX1i2W0yQuPx8OGDRsAAHp6enB1dS11Wzs7O4wePRrp6emYM2eOICuwsnFzcxMpsHb+/HlERERAUVERfn5+8PHxESuwJoqJEyeCx+NhxIgROHHihEzHFtfTp0/h4uKCSZMmYe7cufD29saiRYsEj4vzOXDnzh3s3bsXADBt2jShWW8zZ86EkpISli1bJgjkSurdu3cACvqtiZMROH78eKiqqsLb27vU8o5cLhezZ8/Gx48fAQAzZsyQaa+40igpKWHgwIEACr5fXLhwQeg+169fR//+/TFx4kSxMmmzsv53LrYqlrX+W1FwjRAisPfcS4kDa3xfkjOx9/wrwc/tGtWAtVnJdYIVGECHJqZYP90eG706waFZTSgp0mGJEEIIIYRUfs1NG8m9XGNHi1ZobtpQrnP8aQr3KKtTp04FrkRyI0aMgI+PD9asWSPVOEwmE35+fli1ahVatGgho9URcSxbtgyBgYEllvMTx9WrVxEXF4cdO3ZATU1NRquTzL179zB//nz06NEDq1atkngMADAyMqo0WVZZWVnIyMhArVq10K1bN1y+fBmhoaF4/vw5jhw5AgCYM2eOIAtI3k6dOiUIQs6YMUNosGLGjBmoUaMG7t+/j40bN5bHEuUiOTkZK1asgIKCAvz8/OSWpamqqgpPT0+wWCz4+voiICBALvOIomnTpti9eze6d++O169f4+LFi4IAqZ6ensilbRMSEuDj4wMej4eePXti6tSpRR7/PXMNAGrXrg0XFxfk5uZi4sSJUvX5fPWq4FyguMc7RUVFrF+/Hv/99x/mz59fYnB4zZo1gky+QYMGwdPTU+J1imvo0KGCsr6HDx8Wuv26desEfRIvXLggyEYrS1ZWFnJycgQ/V9XvL38jOotNCAEAxH5OE9pjTVSX7sUj9nOa4Oc+7S2LPK6ppoSBnesgZGEPzHdrBRvLiqmBTwghhBBCiDTGN3eFvrp8Gs7rq+tiXPOhchn7TxYXFwegoCyVtbV1Ba9GMgYGBpg0aVKRsmOSyM/Ph7u7u9Slvojk7O3t4eDgIPU4eXl5+Oeffyq81OmLFy8wdepUuLq6Ytu2baW+RwtnYPwuISEB0dHRAAp6nFWUV69e4dChQ5g3bx769euHMWPGCIID/GyeVatWYc6cOeByuejYsWO5leP8/PmzILjesGFDDBs2TOg+mpqa8PPzg4KCAvbs2YN9+/bJeZWyx+PxMH/+fGRkZGD58uVwcnKS63zOzs6C0p/bt2/HgQMH5DpfWfT19TF06FCEhYUVKW0qak/C7OxseHp6Ii0tDc2aNYO/v3+xPo8lBdeAgsCsnp4eUlJSMHbsWHz58kWi58APBktyzDM3N4e/vz/Onz+P2bNnF8lgCwwMxMGDBwEUBO5WrFgh0fokZW5uLsgAfPXqFZ49e1bm9vzymEBBqVlRSoa+fPlS8Ptp0KCByD38SMWj4BohBABw7vYH4RuJ4XzU/8br9P8ZaTUMNeExsBH2LumF8f3tYGygIdM5CSGEEEIIKU/aqlpY5DAdmiqy/V6rqaKBRQ7Toa0qelklUuD9+4I+eLa2tlBXV6/g1VQsbW1tjBs3rqKXQWTA0dGxSA83eXj58iX+/fdfAEBiYmKxEnH37t2Dh4cHZs2aBV9f31L797FYLLi5ucHR0RELFizA4cOH8fDhQyQnJyM5ORlLly4Fl8sFAPTu3VuuzwkAcnJy8Pz5c5w8eRKHDh0S3D9nzhzcunULTZs2xT///INTp04JTqBbW1tj5MiRYDKZiI+Ph56eHtasWVMsWCEPTCYTPj4+yM7OhoaGBjZu3Chyr8F27doJMnr8/PwEfeIq2qdPn8oMuPIdOnQId+/exYIFCzB0qPwvLlFSUioyz7p16/D9+3e5z1sWRUXFIqVWa9asKXQfJpOJadOm4e3bt7Czs0NISAg0NIp/L+H/3f3O0NAQK1euBAB8+fIFI0aMEASaRcXhcPDs2TMYGBgIShuLq0ePHvDw8EBERATGjRuHtLQ0BAcHY8uWLQCAFi1aYPv27VBWVpZofGkU7uHHz2QtjY2NjeC2o6OjSNnGFy9eFNwuz6w8Ij3pLoMihPwRmCwO7jxPkumYUc+SMG1IU6goK0JNVQmrPNrBtnY1KCjI/8soIYQQQggh5cVCzwzLu8zC6sgApOUKL/0jjL66LhY5TIeFHl21LAn+CcHOnaU1Y7gAAIYfSURBVDtX7EIIqSLS09OxadMmHD9+HL1798a6deuwd+9ejBkzBjt27EDLli0RFhaGI0eOYO/evUJ7pCkrK+P06dOIjo7G+vXrcfr06RK3q1Onjsz/ThMSEnD+/Hm8e/cOb9++xbt375CYmCjICCkccAgPD0ft2rVLHatp06bYv3+/YL+8vDyZrrUkXC4Xc+fOxfPnz6GoqIiNGzfC0tJSrDGmTp2K//77D/fu3cPGjRuRmJiIRYsWybxnmThiYmLg7++PunXromfPnujevTv09fWLbBMXF4cNGzZgypQpGDNmTLmtrV+/foLgDYvFQmxsbIWXKi08v7ByoCwWC97e3rh79y5atGiBwMBAaGtriz1nz549MWjQIJw+fRrfv3/HsGHDMHfuXIwaNUqkoPKTJ0/w69cvjB49Wqrgl7e3N75//47Tp0+jT58+SEsrqIrVrFkzBAcHV9hFM927d4eBgQFSU1Nx6dIleHl5FXsP802cOFFQkrNhQ+GlvT9+/IiwsDAAQN++fdGjRw+ZrZvIH2WuEULwMSkDLHbJV7BIisXmIv5rhuBnO2tDCqwRQgghhJA/koWeGTb08kVHi1ZSjdPRohU29PKlwJqEXr58ia9fv0JBQUHu5cQIqep4PB5OnTqF3r1749ixY5g8eTI2b94MW1tbrFu3Dr169cLYsWNx6NAhaGtr48iRI0IDa4U1b94cR44cwezZs4s9pqmpCX9//1Kz34RJSUnBgwcPcPToUezatUtw/44dO+Dj44Ndu3bhxo0byMrKQo8ePbB48WKcO3dOECwDUGYA4Pnz51i4cCEYDAZ0dXWRlJSEYcOG4fHjxxKtV1TLli3DxYsXoaSkhNWrV6Nr165ij6GgoIBNmzYJAofHjh2Dq6sr3r17J9O18rOgSuqP9bs+ffrg4sWLaNOmDTZs2ICOHTti/PjxOHnyJDIyMsBmszF37lw4OTnB29tbpusUxsLCAnXr1hX8XKNGjXKdvyRJSf+7+L2sYFJubi6mTJmCa9euoXfv3ti3bx90dUsvVS3sd7Vo0SKYm5sDKMiGW7VqFQYPHowHDx4IXfOtW7cAFM3wkgSDwcDcuXNhaGgoCKxZWFhgz549QgON4ir8egh7bVRUVDBw4EAABa9NaRcNAAWBOH72WXh4eJFear9LSEjAlClTkJeXh3bt2sHPz0+cp0AqAQquEULw6VuG8I0kUDi4RgghhBBCyJ9MW1ULM9qNx3x7T9ga1RW+QyG2RnUx334qZrQbT6UgpXDlyhUAQNeuXVGrVq0KXk3V8uzZM6xatarUnjyk6ti6dStu375d5jZv3rzBiBEjsHDhQqSmpsLd3R1eXl5Ftlm6dCk6d+6MlStX4tixY0hJSRF7LQwGA+7u7kUCJvXr18eRI0dEyuj4nZeXF5o3b46OHTvCzc0Ny5YtK3KSW11dHR07dsTcuXNx5swZ3L9/HwEBARg1ahTq1asnUgbOu3fvMGnSJLBYLKxbtw5Hjx5FtWrVkJqairFjx2Lfvn0y/zthsViYP38+QkNDoaGhgcDAQMGJfEkYGBhg7969gn5iMTExGDhwIDZs2ICMDNmcp+EHIwr3xiqLuro6Jk6ciKtXr2L8+PF49OgRFi1ahA4dOmDIkCHg8XhYsmSJTNYmLn5fSkdHx0rRq5PfkxAoPbjG7492//59LFiwAFu2bBGanch/37JYrBIf19LSQnBwcJGMrJcvX8LNzQ39+/cvM3vz2rVr6NKli1gB+JKEh4fD0dERP378ENz3+fNnjBo1Cjdv3pRqbKAgKJyRkYH4+HjcuHFDcH9YWBg+fPiAjIyMUstnFi4hum/fPkRFRSEjI6PE19PLywvr1q3Dp0+f4OjoiKCgILx69Qo/fvxAQkIC7t27h9WrV8PR0RFJSUmYNGkSdu/eLVIJSVK5UFlIQgjymcKvNJJoXJZ8xiWEEEIIIaSyam7aCM1NG+Hzr0Tc+fwY71Pj8SHtM7KZ/7tyWVNFA1b6FqhjYIkOFi0pU00GuFwuLl68CEVFxXLPfKjqnj17hgkTJiAzMxO5ublYtWpVufSWqswiIiKQlZVVLn2fZGnjxo0IDg6Gqqoqdu7ciY4dOxbb5uLFi/Dx8REER5ydnUvMLlNUVMSmTZswa9YsXLlyBT179oSrqyuGDBki9gl0d3d3pKSkoH379ujWrZvE76/Bgwfj0qVLRe6rVasWunbtCgcHB7Rs2VKq8ocxMTEYP348WCwWdu7ciU6dOgEoOJE+ZswYpKamws/PD9euXcPChQtha2sr8Vx8mZmZmD59Ou7duwcjIyPs2rVLosDj72rUqIF//vkHo0aNwo8fP8BisRASEoJjx45h9OjRGDZsGExMTCQeX9zgGp+2tjZ8fHwwdOhQrFmzBtevX0dMTAyAguDW6NGjMWTIkHItYzl27FjY2NigQ4cOIu/z8+dPua3n4cOHZT7+9OlTTJ8+HYaGhggNDYWdnZ1I4/KDRvn5+aVuY2VlheDgYIwZMwY5OTno0qULhg8fDgsLi1J/J9HR0YiLi8PatWtFWkdJ3r17hxUrVgieu6WlJaZMmYKPHz8iJCQEMTEx8PDwQOPGjeHs7IxevXrB0NBQ7HmSkpLQrVu3Yvc/fvwYffr0AVAQKCyp152lpSVat26Nhw8fIjs7GzNmzAAAzJ07t8T+pk5OTujWrRvOnj2LGzdu4ODBg/j16xeUlZWhp6cHa2trTJs2Dc7OzhI9F1I5UHCNEAJVFdGa44o9rrJ8xiWEEEIIIaSys9AzEwTNeDwe8tj5YHHZUFZQgpqS6l8fvJC1iIgIfPr0CWPGjClS4quy4fF4IpVRK21fPg6HU+pJ7cLbCTvx/fLlS0ycOBGZmZkAgJMnT4LBYGDlypV/7Xv06tWrmDNnDjgcDpSVlUvNIOJwOFJnMPF4PJGCE6Jst3XrVgQHBwMoOHnu6emJwMDAYgGDHj16wNHREeHh4bC1tcXKlStLHVNFRQUBAQEICQnB9u3bcfDgQRw8eBDm5uZo0aIFbG1tYWlpCQMDA1SrVg2amppQU1ODqmrRY5ySklKpWUkcDgf5+fnIyclBeno6MjMzkZ6eDj09PTRp0qTItvb29nB0dERERAT69u2LMWPGoHHjxmW+LqJ6/PgxpkyZAiMjI2zfvh1WVlaCx+rVq4djx45h0qRJiI+Px8OHD+Hs7IzGjRtjwIABaN26NWrVqiV21kl0dDTmzJmDhIQE9O3bF0uWLCm1j5MkateuLVj3hw8fABQE83bu3Ing4GDY29ujV69e6NKlC/T09EQel8fjCbJ1SsuCEsbc3ByBgYH4999/sXLlSnz//h0fP37EihUrsGvXLsyfPx/9+vWTaGxxKSkpFQtEu7u7Izs7GyYmJjA2NoaRkREMDQ2hr6+Pnz9/FikxKutAYGllGNlsNnbt2oVjx45hypQpGDZsGBQVRT/vxv/sKSu4BgCNGzfGtm3bBEE8YY4fP44OHTpI9LcYExOD4OBgXL58GVwuF7Vq1YKnpyf69+8veG7dunXD/PnzERcXh+fPn+P58+dYtWoVWrVqhc6dO8POzg4NGjQQqddczZo18fbtW7HXyXfw4EFwuVzk5uaKtL2WlhZGjBiBESNGSDwnqdwouEYIQa3qOnIZ17KGfMYlhBBCCCGkKmEwGFBXVkPpnVOINLhcLgIDA2FpaYmZM2dW9HLK9PXrV4waNQqJiYlSjdO2bVuh22RmZoqc0VDYiRMnwGAwsGLFinILsOXl5ZXZl4YvKytLcDsjIwOpqaklbsdkMgEUvDdK26YkT58+hbe3tyCQtXDhQigrK8PR0bHYtuHh4Vi0aFGpJcREcf36dZF+R/ygljjy8/MxZcqUYgE2JSUl+Pv7w9DQEC4uLkIDAwwGA5MmTUKfPn0QEBCAiIgIfPnyBV++fEFYWFip+6moqEBVVVUwfuH3Eo/HQ35+PvLz84sFZxgMBtq1awc3N7cSx120aBGcnJzg4OAg7CUQ2ZkzZ7B48WL069cPS5YsgaamZrFtatWqhdDQUMycORN3794FAMGJfv66O3fuXKQHXGmYTCaCgoIQGBgIXV1dbNu2Db169ZLZ8ynM3Nwcx44dw9SpU/Ho0SPB/Ww2Gzdu3MDz58/x9etXQY8oURT+nfH/1iTVs2dPtGnTBitWrMD58+cBAN+/f8esWbMQGxtbYcf0VatW4datW7hw4QIuXrxYaiDd0NAQRkZGMps3Ly8P3759K/Gxf//9F5qamrhy5UqZvdhKwz+uifI7s7e3h729vdDt0tPTcfnyZezZs0estTx48ADBwcGIiooCALRq1QpDhw5Fv379igUMGzdujPDwcISFhSEoKAhfvnwBl8vFgwcPBIFIBoMBc3NzWFtbw9DQENWqVYOBgQEsLS0FGaiEyAMF1wghqG2qA2UlBbDYkv+j4HfKSgoUXCOEEEIIIYTIXVhYGBISEhAaGirRCcfyZGpqioMHDyI0NBQ2NjawsrKCtrY2tLS0Kl2mGI/HK7c1paenw83NDfHx8SLvU1rwpbCvX7+iXbt2Eq+Ly+Vi3rx5UFZWLhb8GDRoENTU1JCUlAQ7OzsYGxtDW1u70vXMKSmzhcFgYO7cuWKNY25ujnXr1sHHxwcRERH4999/8eLFi1Izl5hMptiBl1q1amHLli1o0KBBqdsYGBjILLDGYrGwceNGhIeHY/PmzejRo0eZ2+vp6eGff/7B/v37sWnTJkEGkJOTEyZMmIB69eoJnfPmzZvw8/NDSkoKJk2ahPHjx0NHR77nTnR1dfHPP/9g27Zt2LNnD7hcLgwMDLB8+XJ0794dCgoKYo1X+Hcuaeba7+vbuHEj7O3tsXz5ckGgPSgoCA4ODmjRooXUc4jLxMQEQ4cOxdChQ/Hx40fs3LkTZ8+eLbbdlClTZHqcVFNTg5GRkaDHYeHfTd++faUaW9TMNXHs3bsXAwYMQPPmzYVuGxcXh3PnzuHChQv4/PkzjI2N4eHhARcXF6F9UpWVlTFkyBAMHDgQ58+fx/HjxxEdHS0IevJ4PHz+/BmfP38W7NO8eXOpehcSIgoKrhFCoKKsiA6NTXEzOkFmY3ZsYgoVKgtJCCGEEEIIkaOvX7/Cz88Pfn5+sLGxqejliMTMzAyzZs2q6GVUKiYmJjhw4AAiIiJgY2OD2rVrQ0tLC5qampUu6FiYtCe7qyITExOMGzcO48aNQ35+Pl6+fIm4uDjEx8cjOTkZaWlp+PXrF3JycpCbm4u8vDwwmUywWCyhgZi1a9eWGViTFQaDga9fv2LWrFmwsrLChQsXYGBgIPK+Y8eORffu3bF161bo6elh0aJFQvd78uQJduzYgf/++w+jRo3ChAkTxCrFKC0VFRXMnj0bXbp0wfLly7F582ZYW1tLNFbh4Iy0mWuFOTs7o0GDBvD09MSXL1/A4/EQGRlZIcG1wmrXro3169ejV69emDlzpuA5T5w4EaNGjZL5fPv378c///yDz58/yyzrqnApTyUl2YQD0tLScOXKFYSGhpb4eF5eHp49e4ZHjx7h6tWrePv2LRo0aIC+ffvC3t4ezZo1E6usJVCwdmdnZzg7O+Pr1684f/48/v33X7x69UoQPFRXV8fmzZvRpUsXqZ8jIcIweNIWiCbkD8RkMvHixYti9zdq1Khcm6qWp9jPafDZGimz8TZ6OaCehexqhRNCCCGEkKqJzWbj3bt3Re6rW7euWCd3Supvoa6uLvbV9uTPwuPxMHbsWDg4OGDChAkVvRxCiAg4HI7gPy6XWyTzRN4ZnC9evMDChQuxdOlSvHjxAo0aNULLli3lNh9QUDpyw4YNYLPZGDRoEPr06VNi2cmqJDk5GY6OjujRowecnJzQpk0bmY7/48cPjB8/Hm/fvoW/vz+cnZ1lOr40QkJCcO7cOcydO7dYn7bKLDc3FyNHjoSbmxv69u0rk3ObmzdvRrNmzdC5c+ci9x84cAAXL17E9+/fYWlpiXr16qFRo0Zo166dTHsKFpadnY2nT5/i8ePHMDU1xZAhQ+QyD1D1vpPK4nt4af7G8+e/o+AaISX4Ww8OO048xaX7n6Qep3c7S0wd3ET4hoQQQggh5I9HwTUiL3l5eTh//jwGDx5c0UshhFQBOTk5UFZWhrKycrnNGRMTAw0NDVhaWpbbnPLGYrHA4/Hken4sLS0N4eHhGDFiRKU6D8discr1/VOZpaWllRgsi4+Ph4GBgdzLnVaUqvadlIJr8kVlIQkhAuP6N8TLDz+R8D1L+MalMDfRxjhH8ZtmE0IIIYQQQog41NTUKLBGCBGZhoZGuc9ZHmUuy1t5BJf09fUxduxYuc8jLgqs/U9pWWh/UiCZEGEqZ0iVEFIhNNSUsGpye5ibaEu0v7mJNlZ6tIOGGsXtCSGEEEIIIYQQQgghhPyZKLhGCCmimq46NsxwQO+2tcTar3c7S2yY4YBquupyWhkhhBBCCCGEEEIIIYQQUvEovYQQUoyGmhKmDmmKHm1q4XzUB0Q9SwKLzS22nbKSAjo2MYVjRyvUs5BPU1JCCCGEEEIIIYQQQgghpDKh4BohpFT1LPQxa0QLTBvSFPFfMxD/NQP5LA5UlRVhWUMHljV0oKKsWNHLJIQQQgghhBBCCCGEEELKDQXXCCFCqSgrop6FPmWnEUIIIYQQQgghhBBCCPnrUc81QgghhBBCCCGEEEIIIYQQQkREmWuEEKHYbDYSExOhoqICBQUFcLlcGBsbQ1GRSkISQgghhBBCCCGEEEII+btQcI0QIhSPx8OPHz+K3GdoaEjBNUIIIYQQQgghhBBCCCF/HSoLSQgh/8fefYfJVZZ9AH52d3bTO+mFhBJCC4JI50OQohSRpkgJRZqooKAiLSKggFIE0Q8QBCkCAgEsIB8d6VUCQggQIJVU0naTbJvvj7DLLjuTnNmd3dlk7/u6vJw585ZnhiR7dn7nfQ8AAAAAACQkXAMAAKDVFBUVNTmWTqcLUAkAAHQctbW1TY5lOjeneYRrAAAAtJri4qa/dlZXVxegEgAA6DhqamqaHMt0bk7z+CQBAABoNUVFRZFKNb7dd3l5eYGqAQCAjuHz59ypVMrKtTwSrgEAANCqunfv3uj5kiVLClQJAAB0DJ8/5/78OTktI1wDAACgVfXs2bPR8+XLl8fSpUsLVA0AAKzdli5dGsuXL2907PPn5LSMcA0AAIBW1bVr1ygpKWl0bPr06QI2AADIs6VLl8b06dMbHSspKYmuXbsWqKK1U2r1TQAAAKD5ioqKolevXrFgwYL6Y+l0OqZNmxadO3eOHj16RLdu3aKkpCTjTdZra2ub3JC9urraDdkBAGgz7fWctK6u8vLyWLJkSZMVaxERvXr1cr+1PBOuAQAA0OoGDBgQ1dXVsXjx4kbHly9fHsuXL4+5c+dm7ZtOpyOdTjc6VlRU5AsCAADazJp6TtqzZ88YMGBAoctY67jMDwAAgFZXVFQUQ4YMca8HAABoIz179owhQ4a0+wBwTWTlGgAAAG2iLmBLpVKxaNGiJtvqrMrnt7fp0qVLvssDAIBVWlPOSUtKSqJXr14xYMAAwVorEa4BAADQZoqKimLgwIExYMCAqKioiMWLF8fSpUujurq60KUBAMAaK5VKRffu3aNnz57RtWtXoVorE64BAADQ5oqKiqJbt27RrVu3iFh5D4va2tom97GIiKiqqoq33nqr0bFRo0ZFaWlpm9QKAADt9Zy0qKgoiouLhWltTLgGAABAwRUVFUVJSUnG1zIFbqlUKlIpv9ICANA2nJPSUHGhCwAAAAAAAIA1hXANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi41s6Vl5fHbrvtFtOnTy90KQAAAAAAAB1eqtAFkN2KFSvizDPPjBkzZhS6lNWqqamJxx9/PB5++OGYOHFifPzxx1FVVRW9e/eOL3zhC3HYYYfFDjvsUOgyAQAAAAAAWkS41s7U1NTEvHnz4qmnnoqbb745Jk+eXOiSVuvFF1+Mn//857Fo0aL41re+FYcffngMGjQoqqqq4tlnn43zzz8/Hn744TjiiCPi7LPPjuJiCyYBAAAAAIA1k3CtnTjxxBPjlVdeiYqKiqipqSl0OYnddttt8ctf/jJ22WWX+NWvfhV9+vRp9PohhxwSDzzwQDz77LNx6623Rp8+feL73/9+gaoFAAAAAABoGeFaO3HhhRfGihUrIiKiuro6nnnmmbjgggsinU4XuLLs7rnnnjj//PPjK1/5Slx11VWRSmX+47R48eL6xw8++KBwDQAAAAAAWGMJ19qJ/v37N3o+cuTIuP/+++P1118vUEWr9uGHH8Z5550XvXv3josvvjhrsBYRMXDgwHjzzTcjImLs2LFtVSIAAAAAAEDeCdfasa5duxa6hKwuvvjiqKysjHHjxkXPnj1X2fbyyy+PZ599NsrKymK77bZrowoBAAAAAADyT7hGzl566aV4/PHHIyJir732Wm37zp07x2677dbaZQEAAAAAALS64kIXwJpnwoQJERHRpUuX2GSTTQpcDQAAAAAAQNsRrpGTysrKeOSRRyIiYv3111/lvdYAAAAAAADWNsI1cvLKK6/E4sWLIyJi3XXXLXA1AAAAAAAAbcuyI3IyadKk+scDBgxo9NoLL7wQDzzwQLzzzjtRUVERffv2jREjRsRXvvKV2HHHHa1yAwAAAAAA1njSDnLyzjvv1D/u3bt3RETMmjUrfvazn8Xzzz/fpP1zzz0Xd955Z2y66aZx8cUXx+jRo9uqVAAAAAAAgLwTrpGT9957r/5x9+7dY+rUqXH44YfHvHnz4oADDogDDjggNt100ygpKYn//ve/8Yc//CGeeeaZ+O9//xtHH3103HnnnTF8+PACvoOWqa6ujqKiokKX0eaqq6sTHQMAgNbgfBQAgEJzTvqZjvq+GxKukZNFixbVPy4qKopTTjklqqur47bbboutttqqUdutt946brjhhvj5z38ed955Z8yfPz9++tOfxu23397WZefN22+/XegS2o233nqr0CUAANCBOR8FAKDQnJN2XMWFLoA1S3l5ef3jCRMmxJQpU+Laa69tEqzVKSoqivHjx9dvB/nqq6/G448/3ia1AgAAAAAA5JtwjZw0DNfefPPNOPnkk2Ps2LGr7JNKpeJ73/te/fM777yz1eoDAAAAAABoTcI1clJVVVX/ePDgwXHssccm6rfbbrtFp06dIiLi6aefjsrKylapDwAAAAAAoDW55xo56dKlSyxdujQiIo444ogoKytL1K+srCw23HDDePPNN6Oqqireeeed2HzzzVuz1Fax8cYbR2lpaaHLaHPV1dVN9g/eZJNNIpXyTwgAAK3P+SgAAIXmnPQzVVVV8fbbbxe6jILqeP/VaZFu3brVh2tdunTJqe/AgQPjzTffjIiI2bNnr5HhWiqV6pDhWiY+CwAACsn5KAAAhdZRz0nT6XShSyg420KSk169etU/rqioyKlvt27dmt0XAAAAAACgPRCukZP11luv/vGCBQty6tvwfm0NgzYAAAAAAIA1hXCNnGy44Yb1j6dMmZJT3+XLl9c/brgCDgAAAAAAYE0hXCMnW221Vf3jd955J6e+CxcurH88atSofJUEAAAAAADQZoRr5GSbbbaJ3r17R0TErFmzcgrYpk+fHhERw4cPj379+rVGeQAAAAAAAK1KuEZOUqlU7LPPPvXP//nPfybqN2/evJg7d25EROy+++6tUhsAAAAAAEBrE66tpWbOnBknnHBCbLnllrHffvvFs88+m7exTzrppOjatWtERNx2222xaNGi1fZ5+umnIyKipKQkjjzyyLzVAgAAAAAA0JaEa+3Y4sWL6x83vF9ZEmeccUY8+eSTUVFREZMnT46TTz45Zs2alZe6BgwYEKecckpERCxdujTOP//8VbZPp9Nx0003RUTEKaecEkOHDs1LHQAAAAAAAG1NuNZOzZ49O957773654899lhO/d98881Gz5ctWxZvvPFGXmqLiDjmmGPi8MMPj4iIf/zjH3H55ZdHOp1u0i6dTsfFF18cb7/9dnzjG9+IE088MW81AAAAAAAAtLVUoQtgpfLy8qipqYlFixbFpEmT4qqrrooVK1bUv37NNdfEihUrYp999olBgwZFKpWKzp07R1lZWcbxNttss3jxxRfrn5eWlsaYMWPyWvO5554b66+/flx66aVx7bXXxn/+85849thjY8yYMVFdXR1vv/123HzzzTFx4sQ4/fTT44QTTsjr/AAAAAAAAG2tKJ1puRFt7sgjj2wUhiVx0UUXxYEHHpjxtZkzZ8Z5550XL730UgwcODBOP/302GOPPfJRahPz5s2LBx54IB599NGYNm1azJs3Lzp16hTDhg2LXXbZJQ499NAYNGhQq8zdWiorKzOu9Nt8882zBpprs6qqqpg4cWKjY2PHjo3S0tICVQQAQEfifBQAgEJzTvoZ359budZu3HLLLXkdb8iQIXHdddfldcxs1llnnRg3blyMGzeuTeYDAAAAAAAoFPdcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcK2dKy8vj9122y2mT59e6FIAAAAAAAA6POFaO7ZixYo488wzY8aMGYUupdmOOuqo2GijjWLChAmFLgUAAAAAAKDFUoUugMZqampi3rx58dRTT8XNN98ckydPLnRJzXbXXXfF888/X+gyAAAAAAAA8ka41k6ceOKJ8corr0RFRUXU1NQUupwWmzNnTvz6178udBkAAAAAAAB5JVxrJy688MJYsWJFRERUV1fHM888ExdccEGk0+kCV9Y8v/jFL2Lx4sWFLgMAAAAAACCvhGvtRP/+/Rs9HzlyZNx///3x+uuvF6ii5nvwwQfj0UcfjW222SZefPHFQpcDAAAAAACQN8WFLoDsunbtWugScrZo0aK48MIL49BDD43tt9++0OUAAAAAAADklXCNvLrooouitLQ0fvzjHxe6FAAAAAAAgLyzLSR588wzz8S9994b1113XXTv3r3Q5QAAAAAAAOSdlWvkRUVFRZx77rnx9a9/PXbZZZdClwMAAAAAANAqhGvkxRVXXBHLly+Ps846q9ClAAAAAAAAtBrbQtJi//nPf+LWW2+Nyy67LPr06VPocgAAAAAAAFqNcI0WqaysjLPPPjt23XXX2HvvvQtdTqurrq6OoqKiQpfR5qqrqxMdAwCA1uB8FACAQnNO+pmO+r4bEq7RItdee23MmTMnbrzxxkKX0ibefvvtQpfQbrz11luFLgEAgA7M+SgAAIXmnLTjcs81mu3dd9+Na6+9Nn7605/GgAEDCl0OAAAAAABAqxOu0Sy1tbVx9tlnx9Zbbx2HHHJIocsBAAAAAABoE7aFpFluvvnmePfdd+Nvf/tboUsBAAAAAABoM8I1cjZt2rS48sor49RTT43hw4cXupw2tfHGG0dpaWmhy2hz1dXVTfYP3mSTTSKV8k8IAACtz/koAACF5pz0M1VVVfH2228XuoyC6nj/1Wmx8ePHx+jRo2PcuHGFLqXNpVKpDhmuZeKzAACgkJyPAgBQaB31nDSdThe6hIITrpGTe+65J1566aW47777orjYLfsAAAAAAICORTpCYnPnzo1LLrkkvvvd78YGG2xQ6HIAAAAAAADanJVrJHb33XfHokWL4oYbbogbb7xxte0rKyvrH//iF7+IX/3qV41ev+aaa2LrrbfOe50AAAAAAACtRbhGYocffnjst99+idvfdttt8ac//SkiIk455ZTYa6+9Gr3ev3//vNYHAAAAAADQ2oRrJNazZ8/o2bNn4vY9evSof9ynT58YNmxYa5QFAAAAAADQZtxzDQAAAAAAABISrgEAAAAAAEBCwrW11MyZM+OEE06ILbfcMvbbb7949tlnC10SAAAAAADAGk+41o4tXry4/vHChQtz6nvGGWfEk08+GRUVFTF58uQ4+eSTY9asWXmucNXS6XTGxwAAAAAAAGsq4Vo7NXv27Hjvvffqnz/22GM59X/zzTcbPV+2bFm88cYbeaktqenTp9c//uijj9p0bgAAAAAAgNaQKnQBrFReXh41NTWxaNGimDRpUlx11VWxYsWK+tevueaaWLFiReyzzz4xaNCgSKVS0blz5ygrK8s43mabbRYvvvhi/fPS0tIYM2ZMq9VfW1sbS5cujYiIRYsWxfPPPx9///vf61+/+eabY/jw4bHddttFr169oqSkJLp169Zq9QAAAAAAALQG4Vo7cdJJJzUKwz6vpqYmrr/++rj++uvrj1100UVx4IEHZmx/ySWXxHnnnRcvvfRSDBw4ME4//fQYMWJE3uuuM3PmzPjKV76S9fVly5bFOeecU/98m222iVtuuaXV6gEAAAAAAGgNwrV2It9B05AhQ+K6667L65irMmzYsHjnnXfabD4AAAAAAIBCcM81AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAADAWq2ioiL22muveOGFFwpdSrPV1NTEEUccERMmTCh0KQAA0OEJ1wAAAFhrLV68OH70ox/Fhx9+WOhSmm3FihUxfvz4eOmll9pszsmTJ8dmm20WG220UUyfPr3N5gUAWBu52Gvtkyp0AQAAAJAv6XQ6Pvnkk5g1a1Y8/vjjcffdd8esWbMKXVbOFi1aFLNnz46nn3467rrrrpgyZUqbzV1bWxvnnHNOVFVVtdmcAABrq8WLF8dPfvKTNf5ir/PPPz9eeumlOPDAA9tkzsmTJ8eBBx4YVVVV8eijj8awYcPaZN6khGsAAACs8e67774466yzora2NtLpdKHLaZYXX3wxjj766Ein01FbW1uwOm6++eZ4/fXXCzY/AMCazMVeLbcmXOwlXAMAAGCNt9tuu8V9991X/7y8vDzuuOOORsfau80226xRvcuXL49//etfccMNN7RZDdOnT48rr7yyzeYDAFhbuNgrf9aEi72EawAAAKzxevbsGT179mx0bPPNN4+HH344ysvLC1RVbrp27RqjR49udGzs2LHxxBNPxPvvv98mNfz85z+P4mK3ZwcAyJWLvfJjTbnYS7gGAADAWimVSkXv3r3XmHAtm379+rVJuHbvvffG008/HZdffnmcdtpprT4fAMDaxMVe+bGmXOzV/isEAAAAWtX8+fPj4osvjl133TX22WefQpcDALBWqLvYa03Xr1+/Npmn7mKv888/v03mawnhGgAAAHRwF154YdTU1MQvfvGLQpcCAEAHtKZd7CVcAwAAgA7sscceiwceeCB++tOfxsCBAwtdDgAAHdCadrGXcA0AAAA6qKVLl8Z5550X2267bXzzm98sdDkAAHRAa+LFXsI1AAAA6KB+85vfxOLFi+PCCy8sdCkAAHRAa+rFXsI1AAAA6IBefvnluPPOO+OUU06JESNGFLocAAA6oDX1Yi/hGgAAAHQwlZWVcc4558Rmm20WRx11VKHLAQCgA1qTL/YSrgGtqqKiIvbaa6944YUXCl1Ks9XU1MQRRxwREyZMKHQpAACQF7///e9j+vTp8ctf/jJKSkoKXQ4AAB3Mmn6xV6rQBQBrr8WLF8dPfvKT+PDDDwtdSrOtWLEizj///HjppZfiwAMPzNu4kyZNivvvvz9eeumlmDZtWixdujS6d+8evXv3jk022SS23Xbb2G+//aJbt255mxMAACJWnotef/31cdJJJ8VGG21U6HIAAOiA6i72uueee9bIi72Ea+1ceXl57LfffnHzzTfHsGHDCl0OrFI6nY5PPvkkZs2aFY8//njcfffdMWvWrEKXlbNFixbF7Nmz4+mnn4677rorpkyZkrexP/jgg/jlL38ZL7zwQuy9995x7LHH1v/dnj17drzwwgtxzz33xAMPPBCXXXZZ/OQnP1mjbuQJAED7VlNTE2effXaMGjUqTjzxxEKXAwBAB7Q2XOwlXGvHVqxYEWeeeWbMmDGj0KWs0iuvvBJ/+9vf4pVXXomZM2dGZWVl9OjRIwYPHhxf+MIXYp999okvfvGLhS6TVnTffffFWWedFbW1tZFOpwtdTrO8+OKLcfTRR0c6nY7a2tpWmeOhhx6Kn/zkJzF8+PC4//77Y7311mvSZo899oiTTjopvvvd78bEiRPj3HPPjalTp8aPf/zjVqkJAICO5aabboq33nor7rjjjigrKyt0OQAAdDBry8VewrV2pqamJubNmxdPPfVU3HzzzTF58uRCl5TV5MmT4/zzz48pU6bEEUccERdddFEMGTIkKisrY9q0afHoo4/GHXfcEbfddlvsuOOO8Zvf/Cb69etX6LJpBbvttlvcd9999c/Ly8vjjjvuaHSsvdtss80a1bt8+fL417/+FTfccENexn/qqafihz/8YfTs2TNuuumm6N+/f9a266yzTvzxj3+MfffdN+bOnRt//OMfY/PNN4+99torL7UAANAxTZ06Na666qoYN25cbLHFFoUuBwCADmhtudhLuNZOnHjiifHKK69ERUVF1NTUFLqc1XrsscfitNNOi8022ywefPDB6NWrV6PXBw8eHNtss00cdNBBceyxx8YzzzwThx12WPz1r39t0pY1X8+ePaNnz56Njm2++ebx8MMPR3l5eYGqyk3Xrl1j9OjRjY6NHTs2nnjiiXj//fdbNPaKFSvi3HPPjdra2jjggANWGazV6d27d5xwwgnxy1/+MiIiLr300vjKV74SqZR/tgEAaJ7x48dH//7944c//GGhSwEAoANamy72Ki50Aax04YUXxn333Rf/93//Fw899FCMHz8+ioqKCl1WRu+//3788Ic/jOLi4rjqqqtWGZaNHj06LrjggoiI+PDDD+PCCy9sqzIpsFQqFb179y50GS2Wj9WWTz75ZHz88ccREbHuuusm7rfPPvvUP546dWq89tprLa4FAICO6e67747nnnsuLrjggujSpUuhywEAoANamy72Eq61E/37949hw4bFsGHDYuTIkXH44YfH2LFjC11WRpdffnmsWLEitttuu+jbt+9q2++6666xwQYbRETEP/7xj5g2bVprlwjtyrPPPlv/+N13303cr1+/fjFo0KD65y+//HJe6wIAoGOYO3du/PrXv45DDjkktt9++0KXAwBAB7S2XewlXGvHunbtWugSmqioqIinnnoqIiKqqqoS96v7Ba62tra+P3QUs2fPrn/817/+Nad7KTZcOTdnzpy81gUAQMdwwQUXRKdOneKMM84odCkAAHRAa+PFXm7eQ05mzJgRlZWVERHx3HPPxaRJk2LMmDGr7Tds2LD6xx999FGr1QftUTqdrn9cVVUVN954Y1x00UWJ+ja8qeeacD9GAADal48//jgeeuihKCoqim233bZZY+y5555Njv3qV7+Kb3zjGy2sDgCAjmBtvNhLuEZOli1bVv+4qqoqLr/88rjuuutW26/hKry6cA46is033zwef/zx+ufLly9P3Hf+/Pn1jwcOHJjXugAAWPv169cv/v73v+fcb7/99qt/fN1118WAAQMavd5w+3IAAMhmbb3YS7hGTkaMGBGdO3euDwcabne3Kp988kn94yFDhrRKbdBeHX300TF9+vR49tlno2/fvnH88ccn6rdo0aJG9yjcfPPNW6tEAADWUqWlpTF69OgWjTFy5MhGu5EAAEBSa+vFXsI1ctK7d++49NJL449//GOsWLEiTjnllET93nzzzfrHG220UWuVB+1St27dEm8D2dCjjz5av6Vkjx49mn1lBwAAAABAIaytF3sJ18jZHnvsEXvssUfi9uXl5fH0009HRESfPn1ihx12aK3SYK3y17/+tf7xgQceGJ06dSpgNQAAAAAARAjXaAMTJkyIioqKiFgZEJSWlha4ouarrq6OoqKiQpfR5qqrqxMd+7y6VVd17auqqvJaV1uora2tf1xTU9Nm7+H555+P1157LSJWrlr7zne+s0Z+fgAA+dDc89GI/JyTPvjgg/GHP/wh5s2bFzvssEOcffbZ0bdv35zHaa5CnZPWWVPP5QEA8sl3pCvV1NQkPhdfmwnXaFVLly6Na6+9NiIiBgwYECeddFKBK2qZt99+u9AltBtvvfXWattUVlbWP54yZUp07ty5NUtqFeXl5fWPp02bFhMnTmz1OWtqauK8886rf37kkUfG9OnTY/r06a0+NwDAmiLJ+WhE43PS999/P+dz0smTJ8cvfvGL+i9FHnroofjoo4/i3HPPbbML75YuXVr/eOrUqW1yTtrQpEmTYv78+W06JwDAmqCtviN97rnn4p577omFCxfG5ptvHsccc0z07Nkz53Ga6/PfkfqePKK40AWwdrviiiti7ty5UVpaGpdddlmb/oWHNdW9995bH6Ttu+++sdNOOxW4IgCANVN1dXV88skn9c/nzJmT8xgvv/xyo6uNI1aGTR9//HGL60tq7ty59Y+b8x5y9fmrqdfEq6sBANqjz59XJjF58uS4+uqrY+bMmVFRUREvvPBC/Pa3v23WWM3VcK62nLc9E67Rah577LG49dZbI5VKxa9//evYZpttCl0StHtvvvlm3HvvvRERsddee8W3v/3tAlcEALDmeuqpp6Kmpqb++aOPPpq3LWwabo3Tmt54441Gq8aeeeaZRlcOt4YpU6Y0ej558uRWnQ8AYG3lYq/mabjaL9Pz9sC2kLSKd999N376059GWVlZXHHFFbH77rsXuiRo92bOnBlXXnllpNPp2G+//QRrAAA5KC8vjwULFkQ6nY4lS5bExIkT41//+lejNlOmTInx48fHnnvuGUOGDIkuXbpEKpWKwYMHZx136623jn/+85+NvtAYPnz4Kvs01/Lly2Pu3LmRTqejvLw83nnnnfjHP/7RqM3cuXPjnHPOib333juGDRsW3bt3r6+pOaqrq2PWrFkREbFixYqYPn16/cVedW699dZYsmRJjB49Orp27RqdOnWKAQMGNGs+AICOJNPFXjvvvHOkUi2PZgp5sdc+++wT3bp1a9U5G3rttddivfXWa7X5mkO4Rt7NnDkzTjjhhKipqYnrrrsutt9++0KXlDcbb7xxlJaWFrqMNlddXd1k/+BNNtlktT8EysrK6h+vt956MXbs2FaprzU1/CExfPjwVnsPH3/8cfz0pz+N8vLy+MEPfhAnnnhiq8wDALAmSnI+et9998U555yz2rE+/PDDuO666+qfDxkyJP7v//4va/uxY8dGt27d4g9/+EPMnj07vvjFL8Y555wTQ4cObcY7WbUXX3wxzjjjjNW2mz17dtx4442Njr355pvNmnPGjBkxbty4VbapqKiI22+/vf751ltvHTfddFOz5gMAWFOt7px08eLFMXv27KitrY2FCxfGM888E7feemuj9lOmTImLLrooDjvssBg5cmR07949SktLY+TIkVnnrampiQceeKBRmLbhhhvGnnvuGSUlJfl7g7HyvG/GjBmRTqdj8eLF8corrzQ575s7d26cf/75sfvuu+flYq+qqqr44IMPIiJi2bJl8e6778b//u//Nmpz0UUXxYIFC2KrrbaKHj16RJcuXZo9X74I18irjz/+OMaNGxfl5eXx5z//eY0MU1YllUp1yHAtkySfRcMbvK+pn11x8We755aUlLTKe5g7d24cd9xxMX369DjzzDPj6KOPzvscAABrm8+fXx5yyCFxyCGHtMpcX//61+PrX/96q4zd0I477hjvvPNOq8/T0MiRI9t8TgCAtUXDc9Inn3wyzjzzzNX2efvtt+Pcc8+tfz506NB47LHHsrbfZptt4rLLLourrroqZs+eHV/60pdi/Pjx0blz55a/gc+ZNGnSai+8ioiYNm1ak4u9/vKXvzRrztmzZ8d+++23yjZLliyJSy+9tP75NttsE7fcckuz5ssX4Rp5M2PGjDjqqKOivLw8br755hgzZkyhS4J2b+7cuTFu3Lj46KOPYvz48XH44YcXuiQAAAAAIEcHHnhgHHjgga0y9t577x177713q4zd0LbbbpvowqvKysomWzc217Bhw9bIi72Ea+TFtGnTYty4cVFVVRW33nprrL/++oUuCdq9+fPnx1FHHRUffPBBnHfeeXHooYcWuiQAAAAAAFZDuEaLTZ8+PY466qiorq6OW265JUaNGlXokqDdW7hwYRxzzDExZcoUwRoAAAAAwBpEuEaLzJ49O44++uiorKyMW2+9dZU3XgRWqqioiOOPPz7eeeedGD9+vGANAAAAAGANUlzoAlhzLVq0KL7zne9EeXl53HTTTYmCtdmzZ8ePf/zj1i8O2qmqqqr4wQ9+EBMnTowf//jHie+xtnTp0vj3v//dytUBAAAAALA6wjWapbKyMk4++eSYOXNmXH/99bHBBhsk6vfqq6/G5MmTW7k6aL/Gjx8fTz/9dJx44olx/PHHJ+73zDPPxJlnntmKlQEAAAAAkIRtIWmWn//85/H666/HddddF5tuumnifv/6179ixIgRrVgZtF/XXXddTJgwIQ444IA47bTTcur73HPPxbrrrttKlQEAAAAAkJSVa2upmTNnxgknnBBbbrll7LfffvHss8/mbezbb789JkyYED//+c9jhx12SNxv4sSJ8fDDDwvXyMkDDzwQX/va12LrrbeOU089NRYsWFDokprlmWeeiSuuuCK22267uPDCC3PqW1FREQ8++KBwDQAAAACgHRCutWOLFy+uf7xw4cKc+p5xxhnx5JNPRkVFRUyePDlOPvnkmDVrVotrmjx5clx00UVx4IEHxiGHHJKoTzqdjieffDJOPPHEqKmpEa51IOl0OuPjpF599dU4/fTTY8qUKbFkyZL417/+Faecckqzxmqulr6HiIg5c+bEj3/84xg6dGhcddVVkUrltmj40ksvjYULFya6ryEAAAAAAK3LtpDt1OzZs+O9996rf/7YY4/FZpttlrj/m2++2ej5smXL4o033ojBgwe3qK5LLrkkVqxYEc8//3x89atfTdTnk08+aRQOCtc6hsrKypgzZ07982nTpsV2222X0xiPPPJI1NbWNjr20ksvxYcffhijRo3KS52rM3369PrH06ZNa9YY55xzTixatCj++Mc/Rq9evRL3mzVrVlx99dVx9913R4S/OwAAAAAA7YFwrZ0oLy+PmpqaWLRoUUyaNCmuuuqqWLFiRf3r11xzTaxYsSL22WefGDRoUKRSqejcuXOUlZVlHG+zzTaLF198sf55aWlpjBkzpsV1zps3LyJWbjvZXAKCjuG+++6L6urq+ud33nlnfOMb34jS0tIWj/35wK21PPPMM41WfP7tb3+LY489Nnr27Jl4jJdeeimefPLJKCkpie985zuJ+1VXV8fSpUsbHbNyDQAAAACg8IRr7cRJJ53UKAz7vJqamrj++uvj+uuvrz9Wtz1jJpdcckmcd9558dJLL8XAgQPj9NNPbxehVmlpaYtXz9H+LF68OD7++OOora2NTz75JJ5++um4+eabG7V544034pvf/GYcccQRMWrUqOjevXuUlpaucgXa7rvvHjfeeGOjMG306NGtEjJVVFTE9OnTI51Ox+LFi+Pll1+OG264oVGbGTNmxEEHHRRHH310jB49un4V2ujRo7OOu2jRoohY+Xc41+1dP689/B0GAAAAAOjohGvtxC233JLX8YYMGRLXXXddXseMiLj//vvzPiZrvkceeSTOPPPM1bZ766234qyzzqp/PnTo0Hjssceytt9qq63isssui6uuuipmz54dX/rSl2L8+PFRUlKSl7obeuONN2LcuHGrbTd16tQ4//zzGx1755138l7P5/Xv3z+6du3a6vMAAAAAALBqRel0Ol3oIqC9qaysjDfeeKPJ8c033zzrVpxrs6qqqpg4cWKjY2PHjs3LFo8AALA6zkcBACg056Sf8f15RHGhCwAAAAAAAIA1hXANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJpQpdAAAAAKxKUVFRrLPOOtGpU6coKiqKdDodxcWuFQUAoO04J6Uh4RoAAADtWiqVinXXXbfQZQAA0IE5J6UhsSoAAAAAAAAkZOUaAAAA7VplTVV8tHB6TFs0M1ZUV0anVFkM7zUk1u09LMpKSgtdHgAAHYBzUhoSrgEAANAuvTf/w3jw3cfj+WmvRlVtdZPXS4tTsd3wreJrG+4aG/Qb2fYFAgCw1nNOSibCNQAAANqVZVXL45bX74lH3n96le2qaqvj3x+9GP/+6MXYff2d4sgtDooupZ3bqEoAANZmzklZFeEaAAAA7caCioVxwRNXxowlH+fU75H3n46357wX53751OjbtXfrFAcAQIfgnJTVKS50AQAAABCx8urg5nyJUWfGko/jgievjGVVy/NcGQAAHYVzUpIQrgEAANAu3PL6Pc3+EqPOjMUfx62vT8hTRQAAdDTOSUlCuAYAAEDBvTf/w9XezyKph9//d7w3/8O8jAUAQMfhnJSk3HMNAACAvEin01GTro3q2uqoqa2J2nRt9OjUPWPbDz+ZFiN6D43iopXXfD747uN5reXBdx+PH/Q7JiIiqmur4++THol0pCMiYtMBo2OjddZv0mf20rnx7NRX6p8XFRVFRERxUXF8fcweGed56sMX4pNlixr0Wfn/G/ffMDbsN6pJ+znl8+PF6a81OV5cVBx7j94t4xzPTn05Fi5f3OT46H7rxQb9RjY5Prd8frwy840McxTFnhvsknGOF6a/FosyzLFB31GxXt8RTY7Pq1gQ/5n13wxzFMdu6+2YcY6XZ7wei1csbXJ8vT7rxsg+w5ocX1CxMCbOfjvjHP8zctuMc7w2681YsqK8yfGRvYfFiN5Dm86xbGG8NWdygyOf/TffYcQXM84x8eO3Y2lleZM+I3oPiWE9Bzdpv3DZopg07/2M72ObYV/IOMd/50yO8sqKJseH9RocQ3oMbHJ80fLF8e78DzK8j6LYasjmGeeYNPf9qKiqaNJnSM+BMah7/ybtFy9fElM+mZpxjrGDNs44x3vzP4yKqmVNjg/qMSAGdOvX5PiSFUvjo4XTM86xyYDRGef44JNpGbfdGtC9X6zTtW+T40sry2P6oqarEYqLimL0OutlnGPqwhmxvHpFk+PrdO2b8X46FZXLYuaS2RnnWK/vuhnnmLn441heXdnkeN8uvaJ3l15N56haFnOWzm9yvKgoYt3eTf8+RUR8vHRuVGaYo3fnntGzc48mx5dXLY95yz5pOkcUxdCegzLOMa98QVTWVjVqGxHRo6xbdO/UrUn7FdWV8cnyBv+GNug3oPs6Gef4ZNmiqKqtbtKnW2nX6FrWpUn7yurKWFy5tEH7ovr/z3Y/pMXLl0R1uqZJny6pTtG5tHOT9lU1VVHe4M96w/eR6bONiCivrIiadG2TPp1KyqIsVdakfXVtTSyvXt6gfVH9425lXTPOsbx6RdQ2mmNln9LiVKRKmn4tXFtb2+izbahThpoiIqprqut/vjZUXFQcJcUlTedI10Y63bR9RGRsHxFZ20d89rMa8qU1z0lZuwjXAAAACiydTkdtujaqa2vqQ6lMX0JGRHz4yfRYVr0samprorq2NmrSK/uM6DUkBvUY0KT9jMUfxwvTX6sfuy74SpWUxhFbHJBxjmtfui0+Xjonaur6pGuiprY2vrHxnrHTuts0af/8tFfjyuduaPQlYcTKL1NvOODSjHPc+9a/4kc7Hh8REZU1VfH8tFdX+Rnl6vlpr8aJXzoiykpKI1Wcihemv1YfDBw29hsZw7VZS+bE7W/c3+R4aXEqa7j20LtPxLsLPmxy/LCx38gYrs1c/HHc/J97Ms6RLVz75zuPZp0jU7g2Y/HH8adX78w4R7Zw7W9v/1/WOTKFa9MXzYrrXv5LxjmyhWv3vvWvrHNkCtemLpoRf3jx5oxzZAvX7n7zn1nnyBSuTV04I656/saMc2QL1+58429Z58gUrn24cHpc/uwfM85x2yG/yzjHX16/N+sc39h4rybHP/hkWvz66WtymuOW/9yd0xxTPpkav3rq6pzmuPHVO3Oa4/0FH+U8x/Uv/yWnOd6b/2HOc1z70q05zTF5/pSc5/j9C3/ObY55uc/xu+f+lNMck+a9n/McVzz7x5zmeHvuuznPcenT1+Q0x1vNmOOSf/8hpzn+O2dyznP86snf5TTHm7Mn5TzHBY//Nqc5Js5+O+c5fv7YZbnN8XHuc5zzyK8zzvHtzfePAzb5apPj/5n1VlyUYY5USSpuO/iqjHOc++il8V6jixRWOnTz/WP/jfdscvz1j9+KX//7fzPO8ecDr8g4xy8evyLjKqZDNts343nGxI/fjsueue6zA5/miKXFqbj+G7/JOMcFT1wZUxZ81KDPyk4Hb7J37LPRV5q0f3P2pLji2eubtC8tTsU1X78o4xwXPXV1TFkwtUmfAzf+anxt9K4Z5ngnftfwZ22D93H1vhdmnOPX//7f+OCTaU367D9mz/jqhl9u0v6tOZPj9y/8OeP7+O3e52Wc49Jnro2PPpkew3sNiZ/u/N2IaP1zUtYuwjUAAGCNVltbG9XplaFRbbo2updlDqWmLpwRFVXLVoZM6Zr6sGl4ryExOEMoNXPJ7Hh+2qsrA6ZP21fX1kSqOJU1lPrjy3+JWUvmNBq/prYm9huzR8Yw4KUZr8flz/4xamprGh3vVtolbjzw8oxzXP3CTTF10Ywmx4/e8pDYu0fTcGbG4o/jjjf+1uR419IuWd/He/M/iI8yzLFw+ZKM7YuLipsEaxHR6Kr/z2u4suKjhdOzXinfXFW11TF14Yz68Gm9viM+t+oGAFiTZV+1ls64mi5WsQKutrYm47lMxnFi5YVRuZ67VFZXxoqapqtHazPMW3d8WXXTlbnVxdm/0l9etbzRKso62Wqtrq2JJZVNV3yXrmKOpSvKY9GKpueEmd7byjmqG61QTTLHouWLY36GlbOZVhFHrAzF5lYsyGmOTyoWxuzyeY1WX7fFOSlrD+EasFpFRUWxzjrrRKdOnaKoqCjS6XQUF7tlIwCs6WrTtZ+uZFoZHiUNper6ZAulZi2ZszKUahAwVdfWRElxcRyxxYEZ57jhlTti5pKPV67EarBaat/RX4ldRm3XpP3LMybWh1INv/ToUto569XCV79wU3zYaLuxlcZ94aDYd6PdmxzPFkp1SXVeRSj1YXywcFqT44uyhFJFUdQkWIuIqM7yJUtEREmW87DqDOOsbJ95i6VM8za3T6oZczTcimvaoplZ27XE1EWffZHRv2vTLeg+L9sXaKvuk2t7c5jDHOYwR0vmAMin/g22KW6Lc1LWHsI1YLVSqVSsu27mfeEBoCOqC6VqPr3CNdt9LqYtmhnllcsaBVI16ZoY1nNwxlDq46Vz4/lpr3624ildE9U11VG8ilDqT6/eGTMWf/y57ftqYu/Ru8WXR23fpP2rM9+My565NqrTNY3uX9Ep1SluOei3Gef4/Yt/brwty6eO2OLAjFvYzFwyO+PWep1KyrK+j3fnf5BxVVGm+0xFrLxvTXWGq0qbExhlDaWKsrXPfjVr1lAqywqu5oRSqSx1ZeuT9X2sYlVZKstVvtneR3MCvNLiz7bGWZHhHkD50PAK6tIM95ZJrC3u52IOc5jDHOZINMfaEhKawxzmaB9zNDwfb4tzUtYewjUAANpMOp2uD4Bqa2sz3nQ+YuW9fMqrKhoFUjW1NTGk56AY0mNgk/azl86N5z63fV/dl/pHfuGgjHPc9NpdMX3RrCbb9311wy/Hruvt0KT9f2a9Fb955pr6+2HVKSspjVuz3LvhDy/eHO83vOfBp7Ldg2Lm4tnxl4n3NTleWlKaNZR6b/6H8V6Ge1BkC6WKijJvC1PoMCfXUKo5YU6u7yNb8NWc99EWq8qyhX6pLCvdampXBqyZtlTKVxBZk67NOkc6Pvt71ClVlrF/S3Uq+Wzcqpr8bvEDwBquAwSR5jCHOVY/R8Pz27Y4J2XtIVwDVquypio+Wjg9pi2aGSuqK6NTqiyG9xoS6/Ye5macAG0knU5HTYPVUtlCqRmLP47yyoom2/cN6TkwYyg1p3x+PDf1lcYB06crmrKFUjf/556YtmhGo0CqOl0Te22wS+y23o5N2k/8+O349dP/W7/Kq06qOBV/yXLT8v996ZZ4N8MNxbPdtHzWkrkZQ6mS4pKs7+Pd+R9knCPT/QAiPg2laqqaHG+TMKcZK6WyhSBZVyQ1Z4vArKuxcg9zsr/3/IU5+Qq+0ul01KZro7io6fvMdSVatveRjnTU1tZm3Io7X0FkxMpVmJlqWNV/w0yyve+6PqkMq8YWrVha/3h4ryFZ+7fEiF5D6x8XFxXHRv3Wi4iIvl16Z2zfrbRrbNhv1MonDVZ2Zqq/zrCegz+7WrrBRdO9O/fM2L5LqkuM6j28yfFVfYaDuvfP+O9Pz049MrbvnOoUw3sOzjBH9vfRv1u/WFbV9L4u2baL7VRSFoO7N12Bu6rPqm+X3jGw2zpNjncrzbz6t6ykLPp37ZvTHD0794h+Xfo0Od4l1Tlj+9LiVPTp3CsiGl/1vqp7tHQv6xq9Pv3sG/bJ9rtRSVFJ9Pj0c2x4Xf2q5uhS2im6lXZJ3Ke4qLj+PTZ6H6v4fa20pLT+y76GfbL9u1QUxfXzN6xpVX92i4uKo+TTfysb9imK7F921r1mu0AA2sLc8vn1j9vinJS1h3ANyOq9+R/Gg+8+Hs9PezXjFe6lxanYbvhW8bUNd7VvMNBu1X0JXhcAdS3NHErNXPxxlFcti+ra6k8DqdqoSdfE4B4DMoZSc8vnx3PTXmm8fV9tbaTTtVnDnFtfnxBTF86oD77q+u6x/s7xlfV3atL+zdmT4uJ//6FJKFVSVBy3f/P3Gee45sVb4p35U5oc/9Zm+8VBm+7d5PjHS+bEbRPvbXK8uKh4laHUO/Peb3J8wbKFGdtHrLxQ4/NWGUq1wzAn+zZ5uYc5uYYghQ5zsr33bKFf88KcXIPI7L/K1KRrMwabOf/3yPJZ1dVVXJLDf48ct4WMWPn5lhU3vcq1YZ+S4pJIFaciVVSc9TPpVto1Rvdb79O2xVFSVBIlxSv/13Br0IZ2HLFNbNhvVH3bVHEqUsUlsX7fzFuFD+81JM7e5QdRUlQSqU/Hrnuc7V69e63/P/WP1+09LEqLU3m9gXxpcSpG9P7si4z9N94z9t94z1X2Gb3OevHL3X+a0zwnbzsup/Zj+q8fl+x1Vk59Ttn+2Jzab9x/w7jsa+Nz6vOjHY7Lqf0mA0bHlfv8Iqc+P97pxJzabzpgdPx+v1/m1OdnO5+cU/vNBo6Ja/e/OKc+Z+3yg5zajx20cdxwwKU59Tn3yz/Mqf0WgzaJPx+U+X6T2fxit9Nyav+FwZvEbVkuisnmwt1/klP7LQdvFnd+6w+tOscWgzaJvxxyddMXsvx7GLHys8r0akmGn8sREWMHbhw3Z9pqeRVzjN/1h41WxtfJFqhuPnDj+FOOf67O3uUHjc4p62RbUbHZgI3iuv0vyWmOn+188mcrvBu83S6lmQPuTfuPjj/U/T1PmKf+eKcTPztfa/CZZtume5P+o+Oqfc5v0n5VTtvh+KisrWrSp0en7hnbb7zOBnF53b+7Cd/HKdsfG5UZtqDr1TnzhRMbrbN+/HrPs6PpJNnD6u9te1SDbe4+65PtIpPR/daLX+1+xiqqbuqkLx0Ry6tXNDm+ToaLIyIiNuw7Ks7f7fQMr2R/H8d98duxvLrpBSADMlywERGxQd+RMf7Lp+Y0xzFbfTPjRSaDuvfP2H79PuvGWf/z/aYzrGKl1LgvHBwVVRVNjmf6fTMiYlSfEfHTnU6KiOQXKBy+xQFRXlnxaZ/PemW66CYiYlTv4XHaDsc3ab+qOQ7d/OuxtLK8SZ91ew3L2H7d3sPilO2OWdm+wRtZ1Wd18Kb7fDZHg06j+jS9QCliZXh18jbjmrRf1RwHbvLVWLxiafQo++zvdVuck7L2EK4BTSyrWh63vH5PPPL+06tsV1VbHf/+6MX490cvxu7r7xRHbnFQ1hNmYM1UW1tbf/+mbH+/Zy6ZHRWVK0OphqulBnXvH0N6DmrSfl7Fgnh26itNtu+rXUUo9ZeJ98WHn0yrD7BWhl/Vsfv6O8Xu6+/cpP1/50yOi5/6fX3tdYqiKOsXNte+fFu8Pfe9Jse/udm+cfCm+zQ5Pnvp3Lj19aahVMTK+1BlOol/d/4HGeeYnzWUKsocSuUxzMn2xX5tujbnMCfXUGqVK3Oy3usq95U5WYOWPG11uMo58rQaq66uXMKc7FsEriLMSddEWSRfKVVd2/QLuohVv4/q2pqM42Vfida8UCrT641CqU/DqJXBUeaxupV1iQ37jVoZFjUIpFJFJVm/N9th+NaxXp9168et67t+35EZ2w/tOSjO+p8frAy9Pg2x6kKpbKtzztjp5CgqKoriouJVfmFQZ0TvoTl/+bxbhq1RV6VbWdfYYtAmOfVp+P7KSkpju+Fbxb8/ejGnMVZlu+Fb2WUBOoBM5yqra1+c405kq1oBmEndz4tcdE51yql9qrgk68rSbLKFT9mUlpRG7xzfe88swVA2ZamyWCeVOYTJJlswlE2nVFnWgCSbdbrlVlPn0s4xrDRzeJFNrjV1Le0SI/tkDi+yGZrh97FV6VbWNeeLp3MNDbp36hZj+m+QU5/1+o7IqX2PTt1js4FjcupTv3I9oZ6de8QXBm+aU58x/dfPqX3vzj1j66Fb5NRn0wGjc5ujS6/YbvhWOfUZO2jjnNr37dI7dlp3m5z6bDVks5za9+vaJ+P9plcl02frnJRcCNeARhZULIwLnrgyZiz5OKd+j7z/dLw9570498unRt+uvVunOFiD1DbYvq9zllDq4yVzYmllRaOAqbq2JgZ1XydjKDW/4pOVodTntu+rrq2JI7OEObdPvD8+XDgtqmsb31Nq1/V2iD03+J8m7d+e+2786qnf17dreBXand/8Q8Y5rnvptnhr7rtNjh+86d7xzc32a3J8ztJ5cevrEzJ+JqsKpf47Z3KT4/MqPsk4TlFkvmFwocOcQq7Madb7yBLm5BpK5TfMaV4otbqgpVH7ZoQ5uc6RPYhc9RyZvtzLOSRczRyRaY4GfYqLihsER5m/0Oxa1iU27DvyszCqQTiVzfbDvxgj+wyvb1sXfK2f5cuUIT0GNgqlGq6YKivO/Mvrj3c8MYo+3aIsSSg1vNeQnFcxZbpf36p0K+saXxjc/FBqbfK1DXfN6xcZX9tw17yNBQBAx+CclKTWzt/KgGZZVrW8WcFanRlLPo4LnrwyfrX7GVaw0WzpdLp++75OJWUZv/z8eOncKK+sqF+9VLdaamC3zKHUgoqF8ey0lxsFWHWh1BFbHJDxatc73vhbfPDJtPo56mraddT2secGuzRpP3nelLjwyavq2zXchuCOQ36fMcy57uW/xJtz3mly/MBNvhqHbr5/k+NzyufFLa/f0/RDi4jDx34j4xfs7y34IN6Y3XSOsRWZrzQriqJYkWFLj4js98zJd5iTcY6cw5zspziFDHPaemXO52vKZHXvI1OYk/McLQxzksyxulAql7qa+2c3Y58Gn29RUVGkij7bXi+TrqWdY4NPQ6nPr5bKdjPu7YZvFSN6D23UPlVcEuv1ybx93+DuA+Ks//l+k0CqpKgk67ZQp+9wfBRFUZQUlyQKpYb1HBy/3CO3LYVyDaW6lnXJOZTKdeUBbWuDfiNj9/V3Wu3uCUnssf7Oti0HACBnzklJSrgG1Lvl9XuaHazVmbH447j19Qlx/NaH5akqkkqn01Hz6WqpspLSjF9+zv40lPr8/Z76d+uXcbuIBcsWxrNTX26ySqqmtiYOH3tAxsDor2/+I6Ys+Ki+bV37XUZuF3tt2DSUenf+B3HhE1fVb9/X8D4Dfzn4dxmDlj++/Jd4Y/akJse/sfFecdjYbzQ5Prdiftz8n8yh1Lc3/3rGlTnvzf8wJs5+u8nxzQZslHGciMi4z3xE22yzVpO3bdZWHUqlMpw65DPMqa6tzinAE+Zk6JPjCrzVrSrLpa6s7VfzZzdjXQ1DqU9DnboQKJMupV1i/T7rfhYUNQinsoVB2w7bMob1HNxoa8CSopKs284M7L5OnPk/38t4T6lOqcyh1A93OC6KYuVnlmTbqiE9B8Wvcgylct3+ZGUoldsWNkIp2sqRWxwUb895r0XnpEN7Doojtjgwj1UBANCROCclCeEaEBErg4R8XJEREfHw+/+OXUftsMZcmZFOp+u38CvNEkrNWTqvfvu+z1ZL1Ub/bn0zhlILly2Kp6e+3CSQqknXxKGb75/xy+y7//vPeG/BR/Xb8dWtltp55Lbx1Q2/3KT9+ws+ivOf+G19+4Y3pr714Ksy7ud8/St3xOsfv9Xk+NfH7BlHbHFAk+PzyhdkDaW+tdl+UVbc9Mvk9+Z/EP/JMMcmAzbMOE5ExLIMNyaOaJswJ+s2a/kOWlp5juramsj01X4hw5zmbhGYS12tFeYkab+qzypbXdnCy+yfbfYwJmlddfeHyjZW59LOsV6fEQ0CpuL61U/FGULhiIhthn4hhvQY2GR11XpZbi49oHu/+NnOJ9fP0TCcyrbS+ZTtj42Ilf9dMgX5nze4x4C4aM+frbZdQzmHUqVdYsvBue39b299yE2X0s5x7pdPjQuevDJmLM79y4yhPQfFubucahcFAACazTkpSQjXgIiIePDdx/M+3g/6HRMRK+89NWXBR5+tYkrXRL+ufWJYz6Y3+124fHE889FLGe4pVRuHbrZfxhUtE956MN6d/0GjIKu6tiZ2HLF17D16tybtpyyYWh9K1a2WqnPzQb/NeCPpG169I16b9d8mx/fbaPc48gsHNTk+r+KTuPk/d2f8bA7eZO+M4cK78z+M12a92eT4Rutkv+HtsqrMoVSbhDnpPIU5zQhB8hrm5LrCKMfwZ5V1tUGYk/OKrzyEOfU15THAy/1eZS3/rEo+va9UcZZVT11SK0OphgFTXWCUrc+Xhm4RA7v3bxRgpYpLYlSfzCul+nfrF2fsfHKT8UuKSqJrlhvS/2Dbo+MH2x5dv1JqdVv4DerePy7e88xVtvm8XUZtl1P7rqVdYqshm+fURygFHVffrr3jV7ufEbe8fk9OF3/tsf7OccQWB/oSAwCAFnNOyuoI14CorKmK56e9mtcxn5/2apz4pSOirKQ0iouK4/pX7ogpn0ytf32f0V+Jo7Y8uEm/BRUL489ZQqkDN/lqxnDt3fkfxCsz32hyfMO+I7PWV1G1LOPx7OFBbqtN1paVOavcIjDH4CSfW+tlq6s5wVfWFUYFDL6qa6tzniPXz6o1/+wW14dSWVZKpTrFqD7DV957qiTV6J5S2f5cbz1kbAzo1q9RIFVSVBKjsqyUWqdrn/jpTt+NVHHT7fu6l3XL2OfkbcbFyduM+7Tt6kOpAd3XyTmU+p+R2+bUvktp5/hirqFUlu0JAdYkXUo7xwlbHx67jdoxHnz38Xh+2qtRleHnY2lxKrYbvlV8bcNd15hdEwAAWDM4J2VVhGtAfLRwesYfDC1RVVsdUxfOqP+Bsl7fEY3CtTa5h1HWbdnyF0o1K8zJV/BV0gYBXj4/q7yGOZlDm4KulGrOCrzmhFK9hze691T9lnxZ+nxx8ObRr0vvJtv3jeydOZTq26V3/HSnkz5tn2q0WqpnWfeMfb77pSPjpC8dUb993+ruK9W/W7+4ZM+zVtnm83INpTqXdo6th47NqU+2e2YBUDgb9BsZP+h3TJz4pSNi6sIZMXXRjFhRUxmdSspiRK+hMaL3UCtdAQBoVc5JyUS4BsS0RTNbZdypiz4L1/p37dfotbYJpWozHs9nmJNtjmbdtyrrHK0X5tQp5Eqp5n1WjfsUFRWtDHayhVIlnWJk72H19576/GqpTLYcvFn07tKrUSCVKi6Jkb2HZWzfu0uv+MlOJ9WHUQ1XS/XslDmUOmHrw+KEL367vo7VhVLrdO0bl+yVWyi188htYufYJnH7laHUFjnNIZQCoLWVlZTGBv1GuhIYAICCcU5KQ8I1IFZUV7bOuDWfjVv6ue0cWzNoaQ9zNCf4yudWh0nrKoqilaFOZN7+rlNJWazbe1ikGm7FV/xZeJTJFwZvEj07da8PjOrCqXWzhVKde8WPdzyxwdifrZbq3blnxj7Hf/GwOG6rQxOHUn279o5f73X2Ktt8Xs6hVKpTfCnHUCrT/f0AAAAAgPZNuAa02qqTTiWfjVtV03hlVHNCqezbPLZ9KFU/TpZbMpWlymLdXkMbBUx1IVO2ercYtEl0L+v2afvi+tVS2UKpXp16xI93PLHRvaTqAqreXXpl7HPsF78Vx2z1zfoVXMVZVsvV6dOlV/wmx1Bqp3W3iZ3WTR5KdUqVxTbDvpDTHFZKAUDHUl1dHTNmzIiysrIoLi6O2traGDBgQJSsYptsAADIJ+ekNCRcA2J4ryGtMu6IXkPrH8+tmF//ONu9oSJWLq8e0WtolBQXN1gtlYqS4pIozRJKjR00JrqUdm6yfd+ILO+rZ1n3OH3HExqskCqun6dv1z4Z+xy91Tdj3JYH19dUXFQcRUVZkrWI6N25Z/zmq+dkfT2Tndb9Uuy07pcSty9rRihlpRQAsCZKp9Mxb968RsfWWWcdX2QAANBmnJPSkHANiHV7D4vS4lRUZbnvVnOUFqdiRO/PwrWjv/DNOHarQ6NkNaFUz8494tIcQ6kdR3wpdhyRWyi17bAtc5pDKAUAAAAAQETEqvcDAzqEspLS2G74Vnkdc7vhW0VZSelnc6RKI1VcsspgDQAAAAAA2jvhGhAREV/bcNd2PR4AAAAAALQHwjUgIiI26Dcydl9/p7yMtcf6O8cG/UbmZSwAAAAAAGhPhGtAvSO3OCiG9hjUojGG9hwUR2xxYJ4qAgAAAACA9kW4BtTrUto5zv3yqTG0Z/MCtqE9B8W5u5waXUo757kyAAAAAABoH4RrQCN9u/aOX+1+Rs5bRO6x/s7xq93PiL5de7dOYQAAAAAA0A6kCl0A0P50Ke0cJ2x9eOw2asd48N3H4/lpr0ZVbXWTdqXFqdhu+FbxtQ13dY81AAAAAAA6BOEakNUG/UbGD/odEyd+6YiYunBGTF00I1bUVEankrIY0WtojOg9NMpKSgtdJgAAAAAAtBnhGrBaZSWlsUG/kVanAQAAAADQ4bnnGgAAAAAAACRk5RqwWtXV1TFjxowoKyuL4uLiqK2tjQEDBkRJSUmhSwMAAAAAgDYlXANWK51Ox7x58xodW2eddYRrAAAAAAB0OLaFBAAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAklCp0AdAepdPpjMerqqrauJL2obq6usmxqqqqrJ8TAADkk/NRAAAKzTnpZ7J9T96RPouidEd6t5BQeXl5TJo0qdBlAAAAAADAGmHMmDHRrVu3QpfRJmwLCQAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIrS6XS60EVAe1NbWxvLli1rcjyVSkVRUVEBKgIAAAAAgMJLp9NRXV3d5HiXLl2iuLhjrOkSrgEAAAAAAEBCHSNCBAAAAAAAgDwQrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANiEWLFsU999xT6DIAACCrm2++OcrLywtdBgAAgHANiHj66afjrLPOih/84AfxySefFLocAABo4oorrogvf/nLcfnll8fcuXMLXQ4AAB3E0qVL44EHHojKyspCl0I7IlwD4qGHHoqIiP/7v/+L/fbbL9544428jV1TUxPXXnttXHHFFXkbEwCAjqdz586xePHiuPbaa+Pggw+OxYsXF7okAAA6gM6dO8d9990Xu+66a1xzzTVRUVFR6JJoB4Rr0MEtWbIknnjiifrnu+66a2y88cZ5Gfvf//53HHjggXH55ZfHNddcE3fffXdexgUAoOMpLS2NiIguXbrEtddeGz179ixwRQAAdASpVCp++9vfRp8+feKKK66IffbZJ6ZMmVLosigw4Rp0cA8++GCsWLEiIiJ22GGH+MUvfhGpVKrZ41VWVsY//vGPOOigg+K4446LSZMm1b923nnnxYsvvtjimgEA6HjKysoiIqJv374xZsyYAlcDAEBH0rVr17j00ksjlUrFzJkz45RTTil0SRRY879BB9YKd911V0REdOrUKc4///woLs49c6+uro5XX301HnjggXjwwQdj4cKFjV6v+wJkvfXWi0mTJsU222yTj9IBAOhASkpKCl0CAAAd2JgxY+Ib3/hG3H333fHuu+/G0qVLo3v37s0er6X9KSzhGnRg77zzTkycODEiIg4//PAYPnx4k9c32mijjH3nz58fTz31VDz55JPx9NNPx5IlSyJi5XY9W2yxRYwdOza23HLLGDt2bJNxAQAgV825CAwAAPLp6KOPjnvuuSfGjBnTomBswYIFcdRRR8Vuu+0WP/rRj/JYIW1FuAYd2J133hkRK5c1H3/88U1eP/TQQ2O//faL7373uzFnzpx444036v83ZcqU6NSpU6y//voxbNiwePvttyMi4rHHHosBAwa06fsAAGDt15KtywEA6NgWLlwYtbW1LR6nX79+8bOf/Sy23XbbWLBgQbPGqKioiJNPPjkmT54ckydPjh49esRxxx3X4tpoW347gQ6qoqIi7r///ohYGaL17du3SZtUKhV33nln3HnnnTFkyJDYaKONYuONN45dd901xowZEyNGjIji4uK466674pxzzokI2/UAANA+lZeXR9euXaOoqKjQpQAA0MYeffTROOecc/ISsOXbb37zm+jevXsceuihhS6FHAjXoIO69957Y+nSpVFWVhbHHHNMxjadOnWKiIgTTzwxTjvttKxjdenSpf5xe/wBBQBA+3D//ffH3nvvHaWlpTn3bWkodvbZZ0d5eXn85je/id69e7doLAAA1iwHHXRQDBo0KJYuXRobbLBB9O3bN7p16xZlZWWFLo01lHANOqDa2tr485//HBER+++/f9ZtHOt+uKzui4zOnTvXP66urs5TlQAArG2uu+66uOaaa+Lss8+OTTbZJKe+dRdx1dbW5rwFz9NPPx0PPvhgREQccMABceWVV8bYsWNzGgMAgDXbjjvuuMrXFyxYkHF3r+Z4++23Y6ONNnLf4LWYcA06oEcffTQ++uijiIj45je/mbVd0iuKG65cq6qqallxAACstTp16hT//e9/4zvf+U6zx5g1a1Zsv/32Leo/ceJE4RoAAI2cfPLJ0a9fvzjqqKNim222afY4EyZMiHPPPTf22GOP+PWvf2113FpKuAYd0B//+Mf6xyeffHL8/Oc/jz322KNJu6T3T2u4ck24BgBANnUXb40ZM6b+/r9J7b///jFp0qQYOnRoPPbYYzn1feGFF2LcuHEREXHWWWfFEUcckVN/AADWfqWlpfHII4/EI488kpfxHnzwwaipqYnf/e53eRmP9kW4Bh3MY489Fq+//nr983Q6HaNGjcrYNmm41q1bt/rHy5cvb1mBAACstdrDVbsbbLBBoUsAAKAd6tSpU0REDB48OCZMmNDscS677LK4++67Y8iQIfHTn/40X+XRzgjXoANJp9Nx5ZVXRkRE165do6KiItZbb72sXzAkvWm8cA0AgCTccwIAgPaq7tY3xcXFLbr3Wl1IN3To0Bg+fHheaqP98ZsNdCD//Oc/Y9KkSbHRRhvFvvvuu9r2zQnXVqxY0ez6AABYu6VSru8EAKB9qgvF8qW2tjav49G+CNegg1i2bFlceumlUVpaGpdcckn9/S7yoXv37vWPKyoqEtUCAEDHk/TiLQAAaGvpdDqv49XU1OR1PNoX4Rp0ENdcc03MmjUrzjjjjNh4443zOnZZWVn9/TOWLl262joOPvjgmD9/fl5rAACg/ROuAQDQXuV7R66qqqq8jkf7Yk8O6ACmTp0af/rTn+KrX/1qHHnkkTn3r66ujvLy8lW26datW1RWVsbChQuztr311lvjiiuuiIiIcePGxc033xz9+vXLuR4AANZMwjUAANqr5cuXR0TEjBkzYqONNmrxeHbvWrsJ12Atl06n49xzz40NNtggLr744maNcf3118f111+fqO1FF10UF1100WrbvffeewI2AIAORrgGAEB7VbdybfDgwTFhwoRmj3PZZZfF3XffvdodvlizCddgLXfnnXfGlClT4q677oouXbo0a4wTTjghvv/976+yzRlnnBEPPvhgfPnLX46rrroq8dhuag8A0HHk+z4WAACQL8uXL4/NNtssDjvssOjbt2+zxxk8eHB8+9vfjn333TeP1dHe+FYb1mKzZs2Ka6+9Nm644YYYNGhQs8cpLi6OTp06rbLNuuuuGxErt6BcXVsAADom4RoAAIX22muvxRe+8IUmuypcddVVMXjw4BaPv7pFCv/4xz9izJgxscEGG7R4LgqnuNAFAK2nc+fOceWVV8bo0aNbfa4RI0ZERMS0adOipqam1ecDAGDNU1tbW+gSAADo4K688so4/PDD45133ml0PB/B2urcfvvt8eMf/ziOPPLImDRpUqvPR+uxcg3WYn369Ik+ffq0yVx1K9eqqqrigw8+cOUFAABN1F2EVVtbGwsWLMipb10w15y+S5YsqX9cXV2dU18AANYuqVQqnnvuufj6179esBoWLFgQ48aNi/vuuy+GDBlSsDpoPuEakBebbrpppFKpqK6ujhdffFG4BgBAE3Xh2uTJk2P77bdv1hizZs1qdt+IiGXLljW7LwAAa75UamUsssUWW8Q111zTpnOffPLJ8dprr0Xnzp3jjDPOEKytwYRrQF506dIlxowZE2+++Wa88MILcdhhhxW6JAAA2pmqqqqIiBgzZkzcf//9OfXdf//9Y9KkSTF06NB47LHHcur7wgsvxLhx4yJCuAYA0NGVlJTU/3/fvn3bdO7S0tKIiNhkk03ioIMOatO5yS/3XAPyZquttoqIiOeffz4qKysLXA0AAO1NXbjWHOl0Oi81CNcAADq2upVr2UydOjWmTZuW87jPPfdcjB8/vrllsYYRrgF58+UvfzkiIhYuXBhPPPFEQWsBAKD9Wb58eYwaNSpOOeWUNp+7X79+cfzxx8duu+3W5nMDANB+rC5cmz59euyzzz5x9dVXx7x582LBggWr/d9bb70Vp5xyStx5553xu9/9ro3eCYVkW0ggb7bddtvo06dPfPLJJzFhwoTYc889C10SAADtyI9+9KPYdddd67fiaSubb755PPnkk/Xb8AAA0HGtLlwrKyuLFStWxO9+97tmBWVXX311bL311i26TzDtn3ANyJtUKhV77rln3HnnnfHkk0/G5MmTY/To0YUuCwCAdmL33Xdvdt+WbAvZtWvXZvcFAGDtsroLvcrKyuof33333bH55puvdswFCxbUh2nHHnusYK0DsC0kkFff/va3IyKitrY2Lr/88lW2feCBB+Kvf/1rW5QFAMBaIl/3XgMAoGNKsnKtJXbZZZcW9WfNIFwDmq22tjbuv//+OP7446OmpiYiIjbeeOPYcccdIyLi8ccfj3//+99Z+z/00EPxySeftEmtAACsHYRrAAC0xOrCtZZuJV5bW9ui/qwZhGtAszzyyCOx//77x8MPPxy/+c1vGi2nPvHEE+sfn3322bFo0aIm/WtqauK5556LESNGtEm9AACs2eq+pBCuAQDQEsXFq45FWrpyrW4RAms34RqQk2effTYOOeSQ+NGPfhSHHnpoXH311dG7d+9GbbbddtvYc889IyJi9uzZ8bOf/azJFRuvv/56LFq0KIYOHdpWpQMAsAarC9WEawAAtMTqwq/q6upWHZ+1w6rXPwJrrSTLkxu2+c9//hOXX355vPDCCzF06NC4/fbbY7PNNsva98wzz4x///vfsWzZsnjsscfikksuiTPPPLP+9brtIgcOHNiCdwEAQEdR9yWFbXYAAGiJ1YVflZWV9Y+XLl0aCxYsWO2YDXfuatiftZdwDTqouh8iq7ryd+HChRER8de//jWuueaaiIjYZpttYt99941//vOf0b9//6zh2JAhQ+Lss8+Oc845JyIibrrppigqKoozzjgjioqK6sO1Pn365OstAQCwFqs7bxWuAQDQElVVVat8vWE4dvTRR+c8/rJly3Luw5pHuAYdVN3y5mzLnGfOnBlz5syJiKi/OuOAAw6ICy64IGpra+OYY46JPfbYIw477LD43ve+Fz169GgyxiGHHBKvvfZa3HPPPRERceONN8aUKVPi1FNPjf/+978R0fI9jAEA6BjqQjXb7AAA0BK5rFy7++67Y/PNN1/tmAsWLIjtt98+IiKWL1/esgJZI7jnGnRQdaFatis1ioqKGt1L7ZhjjomLL744SktLo1OnTvGHP/wh+vfvHzfeeGN87Wtfi5dffjnjOL/4xS/ia1/7Wv3zJ598Mg4++OD6L0caLpkGAIBsbAsJAEA+rO6eanXhWp8+fRp9P5rE+uuvHxtuuGFzS2MNIlyDDqouVFuxYkXG1wcPHhyXX355FBcXx7hx4+JnP/tZo9d79+4dv//976OsrCzmzp0bxx9/fHz00UdNxiktLY3LLrssjjvuuCgpKYmIxl+IzJw5M19vCQCAtVhduNbSG8wDANCxre58slOnTnHaaafFo48+GsOHD080ZpcuXeJPf/pTPPDAA7HVVltlbbeqW/SwZhGuQQdV90NkVcuUd9xxx7jmmmvizDPPzPj6mDFj4gc/+EFERFRUVMTf//73jO1KSkriJz/5Sdx1112x0047NXrttddea075AAB0MKvbeQEAAJJY3baQW221VZx44onRrVu3xGN26dIldtxxx4iImDhxYlx77bXxt7/9LV5++eWYPn16VFZWRnl5eXz44YcRsXJBAms291yDDqruS4mKiopVtttll11W+foxxxwTd9xxR8yYMSMGDhy4yrabbrpp3HDDDTFp0qT4y1/+Eg899FBMmTIlt8IBAOiQ6s5fq6qqorq6OlIpv84CAJC71t4JYcSIEfH+++/Hww8/HE888URUVlZGUVFRlJSU1M/dp0+fVq2B1mflGnRQlZWVsdNOO8UVV1zRonFKS0vju9/9bvTu3Tu++tWvJuozZsyYOP/88+OFF16Is88+u0XzAwDQMVRVVcVGG20U1157rWANAIBma+1wrXfv3nHAAQfE7373u3jyySfjhBNOiFQq1WjeLbfcslVroPUVpW3yCR3S7NmzV7vSLKl0Oh1Tp06NddddNy/jAQDA5/3973+PffbZJ4qLXSMKAEDzHX300VFTUxM//OEP44tf/GKbzPnyyy/H8ccfHxUVFTFs2LC4++67rV5bwwnXAAAAAACADmHq1KkxYsSINp/31ltvjalTp8bJJ58cvXv3bvP5yS/hGgAAAAAAACRkPw0AAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAWmzZsmWFLgEAAKBNCNcAAABosd122y0uvvjimDp1aqFLKZh0Oh1//OMfY+HChYUuBQAAaEVF6XQ6XegiAAAAWLNtueWWUVFREUVFRbHzzjvHEUccEbvsskuhy2oz6XQ6fvGLX8Ttt98em2yySdx4443Ru3fvQpcFAAC0AivXAAAAaLGysrKIWBkyPffcczF9+vQCV9R2GgZrERFvvfVWHHPMMVawAQDAWsrKNQAAAFpsp512irlz50ZExHXXXdfmq9ZuuummuOiii9p0ztXZeOON46abbrKCDQAA1jKpQhcAAADAmq9Tp071jzfaaKM2n//oo4+OsrKyeOONN2KzzTaLESNGRI8ePaJ79+5RVFSUaIzrr78+JkyYEBERp512Wuy+++6tWTIAALCGEq4BAADQYnXbQkZE4jAr3w477LAW9W+4wqx///6x/vrrt7AiAABgbeSeawAAALRYw3CtvLy8gJW0rWXLlsX//u//Rm1tbaFLAQAA2ohwDQAAgBYrKSmpf7x48eICVhLxzjvvxCWXXBKVlZWtPtdDDz0Uv/3tb+PYY4+N+fPnt/p8AABA4QnXAAAAyKsZM2bk3Gfp0qVxyimnxNKlS1s8/wYbbBCvvPJKfOtb34qPPvqoxeOtSt092p577rn4xje+ES+//HKrzgcAABSecA0AAIC8ev/993Puc+GFF8ZDDz0U3/3ud2P58uUtmr+kpCQuueSSmDJlShx44IHxyCOPtGi8bD744IN48cUX658vXLgwnnzyyTZZMQcAABSOcA0AAIC8ynX11h133BH33ntvRES8+OKLccopp0RVVVWLahg1alScdNJJsXTp0vj+978fV199dYvGy+Taa6+NdDodERHrrLNO3HXXXXH66ac3uv8cAACw9hGuAQAAkFevvfZa4u0dn3322bjgggsaHZs1a1Y8++yzLa7jO9/5TowcOTLS6XT87ne/izPPPDNqampaPG5ExLRp0+Lvf/97RET07Nkzbr755hgzZkxexgYAANo34RoAAACJvfrqq6tt07dv33j44YdX227ixInxve99L6qrqyMiYsstt4zbbrst/v73v8cuu+zS4lrLysritNNOq38+YcKEuPDCC1s8bkTENddcE9XV1VFSUhK//e1vY/3118/LuAAAQPsnXAMAACCRV155JY488sj4yU9+ssptG//nf/4nJkyYsMqx3nzzzTjuuOOioqIiunbtGuPHj4/bb789tt5667zWvOeee8bo0aPrn99+++3x3//+t0VjvvXWW/Xvb/z48bHjjju2aDwAAGDNkip0AQAAALS9hQsXxvz58xO3r6ysjNNOOy2qq6vjb3/7W8ybNy9+97vfRffu3Zu03WWXXeKvf/1rfPDBBzFq1Kgmr//nP/+JE044IRYtWhRbbrllXHLJJbHuuuu26P1kU1RUFEcccUSMHz8+IiLS6XTceeedcf755zd7zPPPPz9qa2vj+OOPj0MPPTRfpQIAAGsI4RoAAEAH9ZOf/KTZq7ieffbZ+NnPfhZXX311k9fGjBkTAwYMiNtuuy3OOeecRq8988wz8f3vfz+qqqritNNOi+OOOy5KSkqaVUNSe++9d/zyl7+MFStWRETEhx9+2Oyx7r///njttddi7733jtNPPz1PFQIAAGsS4RoAAEAH1Lt377jxxhvjpptuig022CDGjBkTvXv3jh49ekRZWVmT9u+++27su+++9c/PP//8OOigg7KOv8suu8S9994bP/zhD+tXt913331xzjnnxMiRI+M3v/lNbLzxxvl/Yxn06NEjtt9++3jiiSciImKDDTZo1jjz5s2Liy66KLbddtu45JJLoqioKI9VAgAAawr3XAMAAOigevXqFaeeemrss88+sf7660e/fv0yBmsREU8//XT940022SS+9a1vRSqV/XrNr371q7F06dK44447IiLi6quvjjPPPDMOO+ywuOeee9osWKtTFwR27do1jjrqqGaNcc4558SGG24Y1157bdbPqaHq6upmzQMAALRvVq4BAACwWg3Dtd1333217bfffvvo379//PnPf4633norXn755bjhhhtihx12aM0ys9pzzz3ju9/9buy2227Nur/b3XffHYsXL47rr78+unTpstr277//fpx00klx0UUXxdZbb92ckgEAgHbKyjUAAABWacWKFfHyyy/XP08SrpWUlMQ+++wTc+bMiXnz5sXf/va3ggVrdX74wx/G2LFjm9W3uro6rrvuuujatetq23744Ydx9NFHx9SpU+P4449v9NkBAABrPivXAAAAWKWnnnoqli9fHhERI0aMiI022ihRv69//etx0003xbx586JHjx55q6eysjKmTZuWt/HqLFy4sP7x3Llz4/33369//qUvfSlmz54ds2fPXuUYS5YsiVNPPTXmzJkTEREVFRVx/PHHxw033BBbbbVV3msGAADannANAACAVXrggQfqH++///6J+2266aYxZsyYmDRpUtx5551x2GGH5aWesrKyuP322+OWW27Jy3iZXH755XH55ZfnZayKioo47rjj4oYbbogtt9wyL2MCAACFI1wDAAAgq2XLlsUTTzwRESu3ejz44INz6n/UUUfFmWeeGVdffXV8/etfj+7du+elrnPOOSeGDx8enTp1ik022SQGDhwYPXr0SLRtYzaXXHJJ/OlPf4qIiIsuuigOPPDAvNQKAACsXdxzDQAAgKwefvjhqKioiIiInXbaKQYNGpRT/3333Tf69+8f8+fPj9///vd5re2oo46KQw89NMaOHRsDBw5sUbAGAACQlHANAACArP7yl7/UP/7mN7+Zc/+ysrL49re/HRERf/7zn+PNN9/MW20AAACFIFwDAAAgo0mTJsVrr70WERHrrbde7Lbbbs0a59vf/nZ069Ytampq4pxzzonq6up8lgkAANCmhGsAAABkdNttt9U/PvHEE6O4uHm/Qvbt2zeOPfbYiIh4++2345prrslLfQAAAIUgXAMAAKCJ2bNnx3333RcREUOHDo199923ReMde+yx0b9//4iI+MMf/hAvvfRSS0sEAAAoCOEaAAAATVx33XVRWVkZERHf//73I5VKtWi8rl27xve+972IiKipqYnTTz89FixY0OI6AQAA2ppwDQAAgEbmzJkTd911V0REjB07Ng444IC8jHvIIYfEpptuGhErV8adeuqp9QEeAADAmkK4BgAAQCNXXHFFrFixIoqKiuLcc8+NoqKivIybSqXiV7/6VZSWlkZExIsvvhg/+9nPIp1O52V8AACAtiBcAwAAoN7EiRPj3nvvjYiIgw8+OMaOHZvX8ceMGRPHH398/fN//vOf8ctf/jKvcwAAALQm4RoAAAAREZFOp+PCCy+MdDodI0aMiDPPPLNV5vnud78bm2yySf3zW265Jc4999yora1tlfkAAADySbgGAABARKwMuV5//fVIpVJx2WWXRbdu3VplnrKysrj66qujT58+9cf++te/xo9+9KOoqKholTkBAADyRbgGAABATJkyJS677LKIiPjRj36U9+0gP2/o0KFxxRVXRCqVqj/2r3/9Kw4++OB49913W3XubBqunHMfOAAAIBvhGgAAQAdXXV0dZ5xxRixfvjy++c1vxnHHHdcm826//fZx1llnNTr2/vvvx8EHHxzXXHNNVFZWtkkddRoGalVVVW06NwAAsOYQrgEAAHRwF198cUycODF23nnn+PnPf96mcx9++OFx+umnNzq2fPnyuOKKK+KrX/1qTJgwIVasWNEmtTRcuSZcAwAAshGuAQAAdGD33Xdf3HLLLbHtttvGlVde2WibxrZywgknxKmnntrk+IwZM+LMM8+MnXfeOe66665Wr6O6urr+sXANAADIpu1/awIAAKBdeP3112P8+PGx2267xZVXXhllZWXNHqvhqq/mOPnkk6NLly7x61//un6sLl26xFe+8pXYaqutYvPNN2/R+ElYufb/7d0hS2txHMfh3wwiGOYGBjEITtzLGFgsmmxrGiwmEez6DhQR66JGg+9B1BcgghgEw8qKCCrstjG4CL97dvFc754nnQP/P3z7h+0AAAAZ4hoAAMAYenh4iO3t7VhfX4+Dg4ORfrH2+fkZLy8vg/eJiWJ/krK5uRmLi4uxt7cXc3NzcXZ2FvPz84V3/anhoCauAQAAXxHXAAAAxszz83Ps7OzE/v5+bGxspO5cXV3F09NT1Ov1qFarUa1WY3p6OiqVSlxeXkav1xucnZqaKryt1WrF+fl5fHx8fGtYi4h4f38fPItrAADAV8Q1AACAMfP6+honJyexvLycvtNoNOL+/j46nU48Pj5+ea5Wq0W9Xh9pX6PRGOl+UcNBbTi0AQAADBPXAAAAxkyz2Sx0p9lsxu7ubtze3sbx8XFcX1//dm5tbe1vTCzFcFAb9RtyAADA/6vS7/f7ZY8AAADg5zk9PY2jo6PB+8LCQlxcXMTMzEx5o0awtbUVb29v0W63Y3V1NSYnJ8ueBAAA/IPENQAAAAprt9txd3cXKysrcXh4GLOzs2VPKqzb7f7o/QAAwPcQ1wAAACjs5uYmarVaLC0tlT0FAADgW4hrAAAAAAAAkDRR9gAAAAAAAAD4KcQ1AAAAAAAASBLXAAAAAAAAIElcAwAAAAAAgCRxDQAAAAAAAJLENQAAAAAAAEgS1wAAAAAAACBJXAMAAAAAAIAkcQ0AAAAAAACSxDUAAAAAAABIEtcAAAAAAAAgSVwDAAAAAACAJHENAAAAAAAAksQ1AAAAAAAASBLXAAAAAAAAIElcAwAAAAAAgCRxDQAAAAAAAJLENQAAAAAAAEgS1wAAAAAAACBJXAMAAAAAAIAkcQ0AAAAAAACSxDUAAAAAAABIEtcAAAAAAAAgSVwDAAAAAACAJHENAAAAAAAAksQ1AAAAAAAASBLXAAAAAAAAIElcAwAAAAAAgKRfe7/c5LQUVOEAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_name = '最大尝试时间步P8'\n",
+ "y_choose=[0,1,2]\n",
+ "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n",
+ " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n",
+ " 'palette': sns.color_palette(\"deep\")[0:4]})\n",
+ "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n",
+ ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n",
+ "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n",
+ "sns.set_theme(style=\"whitegrid\", rc=config)\n",
+ "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n",
+ " markers=['o'],\n",
+ " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n",
+ " palette=y_prop.loc[y_choose]['palette'].to_list(),\n",
+ " legend='brief')\n",
+ "ax.set_title(x_name)\n",
+ "for item in df_x.groupby('响应变量'):\n",
+ " for x, y, m in item[1][['水平', '均值', '均值']].values:\n",
+ " ax.text(x, y+0.05, f'{m:.2f}')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "iiabm_py3.8.8",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/anova_visualization.py b/anova_visualization.py
new file mode 100644
index 0000000..80baf13
--- /dev/null
+++ b/anova_visualization.py
@@ -0,0 +1,14 @@
+import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+
+df_anova = pd.read_csv('analysis/anova.csv', index_col=0)
+df_anova = df_anova.stack().reset_index()
+df_anova.rename(columns={'level_0': 'x',
+ 'level_1': 'y type',
+ 0: 'p value'}, inplace=True)
+print(df_anova)
+sns.set_theme(style="whitegrid")
+g = sns.catplot(data=df_anova, kind="bar", x="x", y="p value", hue="y type")
+g.set_xticklabels(rotation=30)
+plt.show()
diff --git a/conf_db_prefix.yaml b/conf_db_prefix.yaml
index 42cedea..1391188 100644
--- a/conf_db_prefix.yaml
+++ b/conf_db_prefix.yaml
@@ -1 +1 @@
-db_name_prefix: test
+db_name_prefix: with_exp
diff --git a/conf_experiment.yaml b/conf_experiment.yaml
index 5566629..83d2795 100644
--- a/conf_experiment.yaml
+++ b/conf_experiment.yaml
@@ -1,7 +1,7 @@
# read by ControllerDB
# run settings
-meta_seed: 0
+meta_seed: 1
test: # only for test scenarios
n_sample: 1
diff --git a/controller_db.py b/controller_db.py
index bb1b520..5e4ab77 100644
--- a/controller_db.py
+++ b/controller_db.py
@@ -54,24 +54,13 @@ class ControllerDB:
# fill dct_lst_init_disrupt_firm_prod
list_dct = []
if self.is_with_exp:
- str_sql = "select e_id, count, max_max_ts, " \
- "dct_lst_init_disrupt_firm_prod from " \
- "iiabmdb.without_exp_experiment as a " \
- "inner join " \
- "(select e_id, count(id) as count, max(max_ts) as max_max_ts "\
- "from iiabmdb.without_exp_sample as a " \
- "inner join (select s_id, max(ts) as max_ts from " \
- "iiabmdb.without_exp_result where ts > 0 group by s_id) as b "\
- "on a.id = b.s_id " \
- "group by e_id) as b " \
- "on a.id = b.e_id " \
- "order by count desc;"
+ with open('SQL_export_high_risk_setting.sql', 'r') as f:
+ str_sql = f.read()
result = pd.read_sql(sql=str_sql, con=engine)
result['dct_lst_init_disrupt_firm_prod'] = \
result['dct_lst_init_disrupt_firm_prod'].apply(
lambda x: pickle.loads(x))
- list_dct = result.loc[result['count'] > 10,
- 'dct_lst_init_disrupt_firm_prod'].to_list()
+ list_dct = result['dct_lst_init_disrupt_firm_prod'].to_list()
else:
for _, row in Firm.iterrows():
code = row['Code']
@@ -82,10 +71,11 @@ class ControllerDB:
# list_dct = [{'140': ['1.4.5.1']}]
# list_dct = [{'133': ['1.4.4.1']}]
# list_dct = [{'2': ['1.1.3']}]
- list_dct = [{'135': ['1.3.2.1']}]
+ # list_dct = [{'135': ['1.3.2.1']}]
# list_dct = [{'79': ['2.1.3.4']}]
# list_dct = [{'99': ['1.3.3']}]
# list_dct = [{'41': ['1.4.5']}]
+ # list_dct = [{'168': ['1.1.2']}]
# fill g_bom
BomNodes = pd.read_csv('BomNodes.csv', index_col=0)
@@ -128,8 +118,7 @@ class ControllerDB:
dct_lst_init_disrupt_firm_prod, g_bom,
n_max_trial, prf_size, prf_conn,
cap_limit_prob_type, cap_limit_level,
- diff_new_conn, crit_supplier,
- proactive_ratio, remove_t, netw_prf_n):
+ diff_new_conn, remove_t, netw_prf_n):
e = Experiment(
idx_scenario=idx_scenario,
idx_init_removal=idx_init_removal,
@@ -143,8 +132,6 @@ class ControllerDB:
cap_limit_prob_type=cap_limit_prob_type,
cap_limit_level=cap_limit_level,
diff_new_conn=diff_new_conn,
- crit_supplier=crit_supplier,
- proactive_ratio=proactive_ratio,
remove_t=remove_t,
netw_prf_n=netw_prf_n
)
diff --git a/doc/anova实验设计20230710.docx b/doc/anova实验设计20230710.docx
new file mode 100644
index 0000000..8a9b82c
Binary files /dev/null and b/doc/anova实验设计20230710.docx differ
diff --git a/doc/anova结果简介20230707.docx b/doc/anova结果简介20230707.docx
new file mode 100644
index 0000000..e666b5b
Binary files /dev/null and b/doc/anova结果简介20230707.docx differ
diff --git a/doc/graph.zip b/doc/graph.zip
new file mode 100644
index 0000000..4e55cee
Binary files /dev/null and b/doc/graph.zip differ
diff --git a/doc/graph/count_dcp_network.png b/doc/graph/count_dcp_network.png
new file mode 100644
index 0000000..f2288de
Binary files /dev/null and b/doc/graph/count_dcp_network.png differ
diff --git a/doc/graph/count_dcp_prod_network.png b/doc/graph/count_dcp_prod_network.png
new file mode 100644
index 0000000..a257004
Binary files /dev/null and b/doc/graph/count_dcp_prod_network.png differ
diff --git a/doc/graph/p1.png b/doc/graph/p1.png
new file mode 100644
index 0000000..a8184ef
Binary files /dev/null and b/doc/graph/p1.png differ
diff --git a/doc/graph/p3.png b/doc/graph/p3.png
new file mode 100644
index 0000000..07636fc
Binary files /dev/null and b/doc/graph/p3.png differ
diff --git a/doc/graph/p5.png b/doc/graph/p5.png
new file mode 100644
index 0000000..30dc8a4
Binary files /dev/null and b/doc/graph/p5.png differ
diff --git a/doc/graph/p6.png b/doc/graph/p6.png
new file mode 100644
index 0000000..2a5c9c4
Binary files /dev/null and b/doc/graph/p6.png differ
diff --git a/doc/graph/p7.png b/doc/graph/p7.png
new file mode 100644
index 0000000..7ee1afd
Binary files /dev/null and b/doc/graph/p7.png differ
diff --git a/doc/graph/p8.png b/doc/graph/p8.png
new file mode 100644
index 0000000..98a27ff
Binary files /dev/null and b/doc/graph/p8.png differ
diff --git a/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0817.docx b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0817.docx
new file mode 100644
index 0000000..38403d5
Binary files /dev/null and b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0817.docx differ
diff --git a/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0819.docx b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0819.docx
new file mode 100644
index 0000000..455c9aa
Binary files /dev/null and b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0819.docx differ
diff --git a/doc/会议20230712.docx b/doc/会议20230712.docx
new file mode 100644
index 0000000..dcddeac
Binary files /dev/null and b/doc/会议20230712.docx differ
diff --git a/doc/修改20230818.docx b/doc/修改20230818.docx
new file mode 100644
index 0000000..1e5be39
Binary files /dev/null and b/doc/修改20230818.docx differ
diff --git a/doc/新疆会议投稿20230711.pptx b/doc/新疆会议投稿20230711.pptx
new file mode 100644
index 0000000..89887e1
Binary files /dev/null and b/doc/新疆会议投稿20230711.pptx differ
diff --git a/doc/新疆会议投稿版本.docx b/doc/新疆会议投稿版本.docx
new file mode 100644
index 0000000..282bcc2
Binary files /dev/null and b/doc/新疆会议投稿版本.docx differ
diff --git a/doc/薄弱点分析20230709.docx b/doc/薄弱点分析20230709.docx
new file mode 100644
index 0000000..6bb073e
Binary files /dev/null and b/doc/薄弱点分析20230709.docx differ
diff --git a/doc/论文0618.docx b/doc/论文0618.docx
new file mode 100644
index 0000000..cfd7c5d
Binary files /dev/null and b/doc/论文0618.docx differ
diff --git a/doc/论文0709.docx b/doc/论文0709.docx
new file mode 100644
index 0000000..7a87de6
Binary files /dev/null and b/doc/论文0709.docx differ
diff --git a/firm.py b/firm.py
index 10c1166..e322b84 100644
--- a/firm.py
+++ b/firm.py
@@ -1,5 +1,4 @@
import agentpy as ap
-import math
class FirmAgent(ap.Agent):
@@ -7,7 +6,7 @@ class FirmAgent(ap.Agent):
self.firm_network = self.model.firm_network
self.product_network = self.model.product_network
- # self para
+ # self parameter
self.code = code
self.name = name
self.type_region = type_region
@@ -15,7 +14,7 @@ class FirmAgent(ap.Agent):
self.dct_prod_up_prod_stat = {}
self.dct_prod_capacity = {}
- # para in trial
+ # parameter in trial
self.dct_n_trial_up_prod_disrupted = {}
self.dct_cand_alt_supp_up_prod_disrupted = {}
self.dct_request_prod_from_firm = {}
@@ -26,24 +25,27 @@ class FirmAgent(ap.Agent):
self.str_cap_limit_prob_type = str(self.p.cap_limit_prob_type)
self.flt_cap_limit_level = float(self.p.cap_limit_level)
self.flt_diff_new_conn = float(self.p.diff_new_conn)
- self.flt_crit_supplier = float(self.p.crit_supplier)
- # init size_stat (self para)
+ # initialize size_stat (self parameter)
# (size, time step)
self.size_stat.append((revenue_log, 0))
- # init dct_prod_up_prod_stat (self para)
+ # init dct_prod_up_prod_stat (self parameter)
for prod in a_lst_product:
self.dct_prod_up_prod_stat[prod] = {
- # (Normal / Disrupted / Removed, time step)
- 'status': [('N', 0)],
- # have or have no supply
- 'supply': dict.fromkeys(prod.a_predecessors(), True)
+ # status: (Normal / Disrupted / Removed, time step)
+ 'p_stat': [('N', 0)],
+ # supply for each component and respective disrupted supplier
+ # set_disrupt_firm is refreshed to empty at each update
+ 's_stat': {up_prod: {'stat': True,
+ 'set_disrupt_firm': set()}
+ for up_prod in prod.a_predecessors()}
+ # Note: do not use fromkeys as it's a shallow copy
}
- # init extra capacity (self para)
+ # initialize extra capacity (self parameter)
for product in a_lst_product:
- # init extra capacity based on discrete uniform distribution
+ # initialize extra capacity based on discrete uniform distribution
assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \
"cap_limit_prob_type other than uniform, normal"
if self.str_cap_limit_prob_type == 'uniform':
@@ -52,59 +54,73 @@ class FirmAgent(ap.Agent):
extra_cap = self.model.nprandom.integers(extra_cap_mean-2,
extra_cap_mean+2)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
- # print(firm_agent.name, extra_cap)
self.dct_prod_capacity[product] = extra_cap
elif self.str_cap_limit_prob_type == 'normal':
extra_cap_mean = \
self.size_stat[0][0] / self.flt_cap_limit_level
extra_cap = self.model.nprandom.normal(extra_cap_mean, 1)
extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap)
- # print(firm_agent.name, extra_cap)
self.dct_prod_capacity[product] = extra_cap
- def remove_edge_to_cus_disrupt_cus_up_prod(self, disrupted_prod):
- # para disrupted_prod is the product that self got disrupted
+ def remove_edge_to_cus(self, disrupted_prod):
+ # parameter disrupted_prod is the product that self got disrupted
lst_out_edge = list(
self.firm_network.graph.out_edges(
self.firm_network.positions[self], keys=True, data='Product'))
for n1, n2, key, product_code in lst_out_edge:
if product_code == disrupted_prod.code:
+ # update customer up product supplier status
+ customer = ap.AgentIter(self.model, n2).to_list()[0]
+ for prod in customer.dct_prod_up_prod_stat.keys():
+ if disrupted_prod in \
+ customer.dct_prod_up_prod_stat[
+ prod]['s_stat'].keys():
+ customer.dct_prod_up_prod_stat[
+ prod]['s_stat'][disrupted_prod][
+ 'set_disrupt_firm'].add(self)
+ # print(f"{self.name} disrupt {customer.name}'s "
+ # f"{prod.code} due to {disrupted_prod.code}")
# remove edge to customer
self.firm_network.graph.remove_edge(n1, n2, key)
- # customer up product affected conditionally
- customer = ap.AgentIter(self.model, n2).to_list()[0]
- lst_in_edge = list(
- self.firm_network.graph.in_edges(n2,
- keys=True,
- data='Product'))
- lst_select_in_edge = [
- edge for edge in lst_in_edge
- if edge[-1] == disrupted_prod.code
- ]
- prob_lost_supp = math.exp(-1 * self.flt_crit_supplier *
- len(lst_select_in_edge))
- if self.model.nprandom.choice([True, False],
- p=[prob_lost_supp,
- 1 - prob_lost_supp]):
- customer.dct_n_trial_up_prod_disrupted[disrupted_prod] = 0
- for prod in customer.dct_prod_up_prod_stat.keys():
- if disrupted_prod in \
- customer.dct_prod_up_prod_stat[
- prod]['supply'].keys():
- customer.dct_prod_up_prod_stat[
- prod]['supply'][disrupted_prod] = False
- status, _ = customer.dct_prod_up_prod_stat[
- prod]['status'][-1]
- if status != 'D':
- customer.dct_prod_up_prod_stat[
- prod]['status'].append(('D', self.model.t))
- print(self.name, disrupted_prod.code, 'disrupt',
- customer.name, prod.code)
+ def disrupt_cus_prod(self, prod, disrupted_up_prod):
+ # parameter prod is the product that has disrupted_up_prod
+ # parameter disrupted_up_prod is the product that
+ # self's component exists disrupted supplier
+ num_lost = \
+ len(self.dct_prod_up_prod_stat[prod]['s_stat']
+ [disrupted_up_prod]['set_disrupt_firm'])
+ num_remain = \
+ len([u for u, _, _, d in
+ self.firm_network.graph.in_edges(self.get_firm_network_node(),
+ keys=True,
+ data='Product')
+ if d == disrupted_up_prod.code])
+ lost_percent = num_lost / (num_lost + num_remain)
+ lst_size = \
+ [firm.size_stat[-1][0] for firm in self.model.a_lst_total_firms]
+ std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \
+ / (max(lst_size) - min(lst_size) + 1)
+
+ # calculate probability of disruption
+ prob_disrupt = 1 - std_size * (1 - lost_percent)
+ if self.model.nprandom.choice([True, False],
+ p=[prob_disrupt,
+ 1 - prob_disrupt]):
+ self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0
+ self.dct_prod_up_prod_stat[
+ prod]['s_stat'][disrupted_up_prod]['stat'] = False
+ status, _ = self.dct_prod_up_prod_stat[
+ prod]['p_stat'][-1]
+ if status != 'D':
+ self.dct_prod_up_prod_stat[
+ prod]['p_stat'].append(('D', self.model.t))
+ # print(f"{self.name}'s {prod.code} turn to D status due to "
+ # f"disrupted supplier of {disrupted_up_prod.code}")
def seek_alt_supply(self, product):
- # para product is the product that self is seeking
- print(f"{self.name} seek alt supply for {product.code}")
+ # parameter product is the product that self is seeking
+ # print(f"{self.name} seek alt supply for {product.code}")
if self.dct_n_trial_up_prod_disrupted[
product] <= self.model.int_n_max_trial:
if self.dct_n_trial_up_prod_disrupted[product] == 0:
@@ -120,18 +136,12 @@ class FirmAgent(ap.Agent):
if self.is_prf_conn:
for firm in \
self.dct_cand_alt_supp_up_prod_disrupted[product]:
- out_edges = self.model.firm_network.graph.out_edges(
- self.model.firm_network.positions[firm], keys=True)
- in_edges = self.model.firm_network.graph.in_edges(
- self.model.firm_network.positions[firm], keys=True)
- lst_adj_firm = []
- lst_adj_firm += \
- [ap.AgentIter(self.model, edge[1]).to_list()[
- 0].code for edge in out_edges]
- lst_adj_firm += \
- [ap.AgentIter(self.model, edge[0]).to_list()[
- 0].code for edge in in_edges]
- if self.code in lst_adj_firm:
+ node_self = self.get_firm_network_node()
+ node_firm = firm.get_firm_network_node()
+ if self.model.firm_network.graph.\
+ has_edge(node_self, node_firm) or \
+ self.model.firm_network.graph.\
+ has_edge(node_firm, node_self):
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
# select based on size or not
@@ -163,10 +173,10 @@ class FirmAgent(ap.Agent):
else:
select_alt_supply = \
self.model.nprandom.choice(lst_firm_connect)
- print(
- f"{self.name} selct alt supply for {product.code} "
- f"from {select_alt_supply.name}"
- )
+ # print(
+ # f"{self.name} selct alt supply for {product.code} "
+ # f"from {select_alt_supply.name}"
+ # )
assert select_alt_supply.is_prod_in_current_normal(product), \
f"{select_alt_supply} \
does not produce requested product {product}"
@@ -179,17 +189,17 @@ class FirmAgent(ap.Agent):
select_alt_supply.dct_request_prod_from_firm[product] = [
self
]
- print(
- select_alt_supply.name, 'dct_request_prod_from_firm', {
- key.code: [v.name for v in value]
- for key, value in
- select_alt_supply.dct_request_prod_from_firm.items()
- })
+ # print(
+ # select_alt_supply.name, 'dct_request_prod_from_firm', {
+ # key.code: [v.name for v in value]
+ # for key, value in
+ # select_alt_supply.dct_request_prod_from_firm.items()
+ # })
self.dct_n_trial_up_prod_disrupted[product] += 1
def handle_request(self):
- print(self.name, 'handle_request')
+ # print(self.name, 'handle_request')
for product, lst_firm in self.dct_request_prod_from_firm.items():
if self.dct_prod_capacity[product] > 0:
if len(lst_firm) == 0:
@@ -201,22 +211,12 @@ class FirmAgent(ap.Agent):
lst_firm_connect = []
if self.is_prf_conn:
for firm in lst_firm:
- out_edges = \
- self.model.firm_network.graph.out_edges(
- self.model.firm_network.positions[firm],
- keys=True)
- in_edges = \
- self.model.firm_network.graph.in_edges(
- self.model.firm_network.positions[firm],
- keys=True)
- lst_adj_firm = []
- lst_adj_firm += \
- [ap.AgentIter(self.model, edge[1]).to_list()[
- 0].code for edge in out_edges]
- lst_adj_firm += \
- [ap.AgentIter(self.model, edge[0]).to_list()[
- 0].code for edge in in_edges]
- if self.code in lst_adj_firm:
+ node_self = self.get_firm_network_node()
+ node_firm = firm.get_firm_network_node()
+ if self.model.firm_network.graph.\
+ has_edge(node_self, node_firm) or \
+ self.model.firm_network.graph.\
+ has_edge(node_firm, node_self):
lst_firm_connect.append(firm)
if len(lst_firm_connect) == 0:
# handling based on size or not
@@ -254,14 +254,21 @@ class FirmAgent(ap.Agent):
down_firm.dct_cand_alt_supp_up_prod_disrupted[
product].remove(self)
- print(
- f"{self.name} denied {product.code} request "
- f"from {down_firm.name} for lack of capacity"
- )
+ # print(
+ # f"{self.name} denied {product.code} request "
+ # f"from {down_firm.name} for lack of capacity"
+ # )
def accept_request(self, down_firm, product):
- # para product is the product that self is selling
- prod_accept = self.flt_diff_new_conn
+ # parameter product is the product that self is selling
+ # connected firm has no probability for accepting request
+ node_self = self.get_firm_network_node()
+ node_d_firm = down_firm.get_firm_network_node()
+ if self.model.firm_network.graph.has_edge(node_self, node_d_firm) or \
+ self.model.firm_network.graph.has_edge(node_d_firm, node_self):
+ prod_accept = 1.0
+ else:
+ prod_accept = self.flt_diff_new_conn
if self.model.nprandom.choice([True, False],
p=[prod_accept, 1 - prod_accept]):
self.firm_network.graph.add_edges_from([
@@ -275,25 +282,25 @@ class FirmAgent(ap.Agent):
for prod in down_firm.dct_prod_up_prod_stat.keys():
if product in down_firm.dct_prod_up_prod_stat[
- prod]['supply'].keys():
+ prod]['s_stat'].keys():
down_firm.dct_prod_up_prod_stat[
- prod]['supply'][product] = True
+ prod]['s_stat'][product]['stat'] = True
down_firm.dct_prod_up_prod_stat[
- prod]['status'].append(('N', self.model.t))
+ prod]['p_stat'].append(('N', self.model.t))
del down_firm.dct_n_trial_up_prod_disrupted[product]
del down_firm.dct_cand_alt_supp_up_prod_disrupted[product]
- print(
- f"{self.name} accept {product.code} request "
- f"from {down_firm.name}"
- )
+ # print(
+ # f"{self.name} accept {product.code} request "
+ # f"from {down_firm.name}"
+ # )
else:
down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self)
- print(
- f"{self.name} denied {product.code} request "
- f"from {down_firm.name}"
- )
+ # print(
+ # f"{self.name} denied {product.code} request "
+ # f"from {down_firm.name}"
+ # )
def clean_before_trial(self):
self.dct_request_prod_from_firm = {}
@@ -305,17 +312,21 @@ class FirmAgent(ap.Agent):
# update the status of firm
for prod in self.dct_prod_up_prod_stat.keys():
- status, ts = self.dct_prod_up_prod_stat[prod]['status'][-1]
+ status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if ts != self.model.t:
- self.dct_prod_up_prod_stat[prod]['status'].append(
+ self.dct_prod_up_prod_stat[prod]['p_stat'].append(
(status, self.model.t))
+ # refresh set_disrupt_firm
+ for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys():
+ self.dct_prod_up_prod_stat[prod][
+ 's_stat'][up_prod]['set_disrupt_firm'] = set()
def get_firm_network_node(self):
return self.firm_network.positions[self]
def is_prod_in_current_normal(self, prod):
if prod in self.dct_prod_up_prod_stat.keys():
- if self.dct_prod_up_prod_stat[prod]['status'][-1][0] == 'N':
+ if self.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] == 'N':
return True
else:
return False
diff --git a/firm_n_prod.csv b/firm_n_prod.csv
new file mode 100644
index 0000000..2775e46
--- /dev/null
+++ b/firm_n_prod.csv
@@ -0,0 +1,172 @@
+code,n_prod
+0,1
+1,1
+2,1
+3,4
+4,1
+5,4
+6,5
+7,1
+8,1
+9,2
+10,1
+11,1
+12,1
+13,17
+14,2
+15,1
+16,4
+17,1
+18,1
+19,1
+20,1
+21,1
+22,24
+23,10
+24,1
+25,1
+26,7
+27,1
+28,1
+29,1
+30,1
+31,7
+32,1
+33,4
+34,1
+35,1
+36,1
+37,6
+38,5
+39,1
+40,4
+41,7
+42,3
+43,2
+44,1
+45,9
+46,1
+47,9
+48,1
+49,8
+50,1
+51,1
+52,1
+53,15
+54,3
+55,6
+56,2
+57,4
+58,7
+59,1
+60,5
+61,1
+62,5
+63,3
+64,1
+65,1
+66,1
+67,1
+68,3
+69,1
+70,2
+71,1
+72,1
+73,1
+74,2
+75,1
+76,1
+77,2
+78,5
+79,16
+80,2
+81,4
+82,4
+83,1
+84,3
+85,2
+86,1
+87,1
+88,1
+89,3
+90,1
+91,1
+92,1
+93,1
+94,1
+95,2
+96,2
+97,3
+98,1
+99,6
+100,1
+101,1
+102,2
+103,1
+104,1
+105,1
+106,6
+107,1
+108,2
+109,1
+110,1
+111,3
+112,1
+113,1
+114,1
+115,2
+116,1
+117,11
+118,1
+119,1
+120,1
+121,1
+122,1
+123,1
+124,2
+125,1
+126,7
+127,2
+128,1
+129,2
+130,5
+131,5
+132,1
+133,2
+134,1
+135,11
+136,1
+137,6
+138,1
+139,1
+140,7
+141,1
+142,3
+143,5
+144,4
+145,1
+146,1
+147,1
+148,3
+149,4
+150,1
+151,1
+152,1
+153,2
+154,6
+155,1
+156,1
+157,1
+158,1
+159,1
+160,1
+161,3
+162,2
+163,6
+164,1
+165,4
+166,1
+167,1
+168,7
+169,1
+170,1
diff --git a/model.py b/model.py
index 034487c..0d41cd6 100644
--- a/model.py
+++ b/model.py
@@ -10,7 +10,7 @@ import json
class Model(ap.Model):
def setup(self):
- # self para
+ # self parameter
self.sample = self.p.sample
self.int_stop_ts = 0
self.int_n_iter = int(self.p.n_iter)
@@ -23,15 +23,15 @@ class Model(ap.Model):
# external variable
self.int_n_max_trial = int(self.p.n_max_trial)
self.is_prf_size = bool(self.p.prf_size)
- self.proactive_ratio = float(self.p.proactive_ratio)
+ # self.proactive_ratio = float(self.p.proactive_ratio) # dropped
self.remove_t = int(self.p.remove_t)
self.int_netw_prf_n = int(self.p.netw_prf_n)
- # init graph bom
+ # initialize graph bom
G_bom = nx.adjacency_graph(json.loads(self.p.g_bom))
self.product_network = ap.Network(self, G_bom)
- # init graph firm
+ # initialize graph firm
Firm = pd.read_csv("Firm_amended.csv")
Firm['Code'] = Firm['Code'].astype('string')
Firm.fillna(0, inplace=True)
@@ -49,7 +49,7 @@ class Model(ap.Model):
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
nx.set_node_attributes(G_Firm, firm_labels_dict)
- # init graph firm prod
+ # initialize graph firm prod
Firm_Prod = pd.read_csv("Firm_amended.csv")
Firm_Prod.fillna(0, inplace=True)
firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()})
@@ -122,11 +122,12 @@ class Model(ap.Model):
# nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm.csv')
# nx.to_pandas_adjacency(G_FirmProd).to_csv('adj_g_firm_prod.csv')
- # unconnected node
+ # connect unconnected nodes
for node in nx.nodes(G_Firm):
if G_Firm.degree(node) == 0:
for product_code in G_Firm.nodes[node]['Product_Code']:
- # unconnect node does not have possible suppliers
+ # unconnected node does not have possible suppliers,
+ # therefore find possible customer instead
# current node in graph firm prod
current_node = \
[n for n, v in G_FirmProd.nodes(data=True)
@@ -135,10 +136,10 @@ class Model(ap.Model):
lst_succ_product_code = list(
G_bom.successors(product_code))
- # different from for different types of product,
+ # different from: for different types of product,
# finding a common supplier (the logic above),
- # for different types of product,
- # finding a custormer for each product
+ # instead: for different types of product,
+ # finding a customer for each product
for succ_product_code in lst_succ_product_code:
# for each product successor (finished product)
# the firm sells to,
@@ -187,14 +188,14 @@ class Model(ap.Model):
# nx.draw(G_FirmProd)
# plt.show()
- # init product
+ # initialize product
for ag_node, attr in self.product_network.graph.nodes(data=True):
product = ProductAgent(self, code=ag_node.label, name=attr['Name'])
self.product_network.add_agents([product], [ag_node])
self.a_lst_total_products = ap.AgentList(self,
self.product_network.agents)
- # init firm
+ # initialize firm
for ag_node, attr in self.firm_network.graph.nodes(data=True):
firm_agent = FirmAgent(
self,
@@ -210,7 +211,7 @@ class Model(ap.Model):
self.firm_network.add_agents([firm_agent], [ag_node])
self.a_lst_total_firms = ap.AgentList(self, self.firm_network.agents)
- # init dct_lst_init_disrupt_firm_prod (from string to agent)
+ # initialize dct_lst_init_disrupt_firm_prod (from string to agent)
t_dct = {}
for firm_code, lst_product in \
self.dct_lst_init_disrupt_firm_prod.items():
@@ -222,123 +223,123 @@ class Model(ap.Model):
self.dct_lst_init_disrupt_firm_prod = t_dct
# set the initial firm product that are disrupted
- print('\n', '=' * 20, 'step', self.t, '=' * 20)
+ # print('\n', '=' * 20, 'step', self.t, '=' * 20)
for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
for product in a_lst_product:
assert product in firm.dct_prod_up_prod_stat.keys(), \
f"product {product.code} not in firm {firm.code}"
firm.dct_prod_up_prod_stat[
- product]['status'].append(('D', self.t))
- print(f"initial disruption {firm.name} {product.code}")
+ product]['p_stat'].append(('D', self.t))
+ # print(f"initial disruption {firm.name} {product.code}")
- # proactive strategy
- # get all the firm prod affected
- for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
- for product in a_lst_product:
- init_node = \
- [n for n, v in
- self.firm_prod_network.nodes(data=True)
- if v['Firm_Code'] == firm.code and
- v['Product_Code'] == product.code][0]
- dct_affected = \
- nx.dfs_successors(self.firm_prod_network,
- init_node)
- lst_affected = set()
- for i, (u, vs) in enumerate(dct_affected.items()):
- # at least 2 hops away
- if i > 0:
- pred_node = self.firm_prod_network.nodes[u]
- for v in vs:
- succ_node = self.firm_prod_network.nodes[v]
- lst_affected.add((succ_node['Firm_Code'],
- succ_node['Product_Code']))
- lst_affected = list(lst_affected)
- lst_firm_proactive = \
- [lst_affected[i] for i in
- self.nprandom.choice(range(len(lst_affected)),
- round(len(lst_affected) *
- self.proactive_ratio),
- replace=False)]
+ # # proactive strategy (dropped)
+ # # get all the firm prod affected
+ # for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items():
+ # for product in a_lst_product:
+ # init_node = \
+ # [n for n, v in
+ # self.firm_prod_network.nodes(data=True)
+ # if v['Firm_Code'] == firm.code and
+ # v['Product_Code'] == product.code][0]
+ # dct_affected = \
+ # nx.dfs_successors(self.firm_prod_network,
+ # init_node)
+ # lst_affected = set()
+ # for i, (u, vs) in enumerate(dct_affected.items()):
+ # # at least 2 hops away
+ # if i > 0:
+ # pred_node = self.firm_prod_network.nodes[u]
+ # for v in vs:
+ # succ_node = self.firm_prod_network.nodes[v]
+ # lst_affected.add((succ_node['Firm_Code'],
+ # succ_node['Product_Code']))
+ # lst_affected = list(lst_affected)
+ # lst_firm_proactive = \
+ # [lst_affected[i] for i in
+ # self.nprandom.choice(range(len(lst_affected)),
+ # round(len(lst_affected) *
+ # self.proactive_ratio),
+ # replace=False)]
- for firm_code, prod_code in lst_firm_proactive:
- pro_firm_prod_code = \
- [n for n, v in
- self.firm_prod_network.nodes(data=True)
- if v['Firm_Code'] == firm_code and
- v['Product_Code'] == prod_code][0]
- pro_firm_prod_node = \
- self.firm_prod_network.nodes[pro_firm_prod_code]
- pro_firm = \
- self.a_lst_total_firms.select(
- [firm.code == pro_firm_prod_node['Firm_Code']
- for firm in self.a_lst_total_firms])[0]
- lst_shortest_path = \
- list(nx.all_shortest_paths(self.firm_prod_network,
- source=init_node,
- target=pro_firm_prod_code))
+ # for firm_code, prod_code in lst_firm_proactive:
+ # pro_firm_prod_code = \
+ # [n for n, v in
+ # self.firm_prod_network.nodes(data=True)
+ # if v['Firm_Code'] == firm_code and
+ # v['Product_Code'] == prod_code][0]
+ # pro_firm_prod_node = \
+ # self.firm_prod_network.nodes[pro_firm_prod_code]
+ # pro_firm = \
+ # self.a_lst_total_firms.select(
+ # [firm.code == pro_firm_prod_node['Firm_Code']
+ # for firm in self.a_lst_total_firms])[0]
+ # lst_shortest_path = \
+ # list(nx.all_shortest_paths(self.firm_prod_network,
+ # source=init_node,
+ # target=pro_firm_prod_code))
- dct_drs = {}
- for di_supp_code in self.firm_prod_network.predecessors(
- pro_firm_prod_code):
- di_supp_node = \
- self.firm_prod_network.nodes[di_supp_code]
- di_supp_prod = \
- self.a_lst_total_products.select(
- [product.code == di_supp_node['Product_Code']
- for product in self.a_lst_total_products])[0]
- di_supp_firm = \
- self.a_lst_total_firms.select(
- [firm.code == di_supp_node['Firm_Code']
- for firm in self.a_lst_total_firms])[0]
- lst_cand = self.a_lst_total_firms.select([
- firm.is_prod_in_current_normal(di_supp_prod)
- for firm in self.a_lst_total_firms
- ])
- n2n_betweenness = \
- sum([True if di_supp_code in path else False
- for path in lst_shortest_path]) \
- / len(lst_shortest_path)
- drs = n2n_betweenness / \
- (len(lst_cand) * di_supp_firm.size_stat[-1][0])
- dct_drs[di_supp_code] = drs
- dct_drs = dict(sorted(
- dct_drs.items(), key=lambda kv: kv[1], reverse=True))
- for di_supp_code in dct_drs.keys():
- di_supp_node = \
- self.firm_prod_network.nodes[di_supp_code]
- di_supp_prod = \
- self.a_lst_total_products.select(
- [product.code == di_supp_node['Product_Code']
- for product in self.a_lst_total_products])[0]
- # find a dfferent firm can produce the same product
- # and is not a current supplier for the same product
- lst_current_supp_code = \
- [self.firm_prod_network.nodes[code]['Firm_Code']
- for code in self.firm_prod_network.predecessors(
- pro_firm_prod_code)
- if self.firm_prod_network.nodes[code][
- 'Product_Code'] == di_supp_prod.code]
- lst_cand = self.model.a_lst_total_firms.select([
- firm.is_prod_in_current_normal(di_supp_prod)
- and firm.code not in lst_current_supp_code
- for firm in self.model.a_lst_total_firms
- ])
- if len(lst_cand) > 0:
- select_cand = self.nprandom.choice(lst_cand)
- self.firm_network.graph.add_edges_from([
- (self.firm_network.positions[select_cand],
- self.firm_network.positions[pro_firm], {
- 'Product': di_supp_prod.code
- })
- ])
- print(f"proactive add {select_cand.name} to "
- f"{pro_firm.name} "
- f"for {di_supp_node['Firm_Code']} "
- f"{di_supp_node['Product_Code']}")
- # change capacity
- select_cand.dct_prod_capacity[di_supp_prod] -= 1
- break
- # nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm_proactive.csv')
+ # dct_drs = {}
+ # for di_supp_code in self.firm_prod_network.predecessors(
+ # pro_firm_prod_code):
+ # di_supp_node = \
+ # self.firm_prod_network.nodes[di_supp_code]
+ # di_supp_prod = \
+ # self.a_lst_total_products.select(
+ # [product.code == di_supp_node['Product_Code']
+ # for product in self.a_lst_total_products])[0]
+ # di_supp_firm = \
+ # self.a_lst_total_firms.select(
+ # [firm.code == di_supp_node['Firm_Code']
+ # for firm in self.a_lst_total_firms])[0]
+ # lst_cand = self.a_lst_total_firms.select([
+ # firm.is_prod_in_current_normal(di_supp_prod)
+ # for firm in self.a_lst_total_firms
+ # ])
+ # n2n_betweenness = \
+ # sum([True if di_supp_code in path else False
+ # for path in lst_shortest_path]) \
+ # / len(lst_shortest_path)
+ # drs = n2n_betweenness / \
+ # (len(lst_cand) * di_supp_firm.size_stat[-1][0])
+ # dct_drs[di_supp_code] = drs
+ # dct_drs = dict(sorted(
+ # dct_drs.items(), key=lambda kv: kv[1], reverse=True))
+ # for di_supp_code in dct_drs.keys():
+ # di_supp_node = \
+ # self.firm_prod_network.nodes[di_supp_code]
+ # di_supp_prod = \
+ # self.a_lst_total_products.select(
+ # [product.code == di_supp_node['Product_Code']
+ # for product in self.a_lst_total_products])[0]
+ # # find a dfferent firm can produce the same product
+ # # and is not a current supplier for the same product
+ # lst_current_supp_code = \
+ # [self.firm_prod_network.nodes[code]['Firm_Code']
+ # for code in self.firm_prod_network.predecessors(
+ # pro_firm_prod_code)
+ # if self.firm_prod_network.nodes[code][
+ # 'Product_Code'] == di_supp_prod.code]
+ # lst_cand = self.model.a_lst_total_firms.select([
+ # firm.is_prod_in_current_normal(di_supp_prod)
+ # and firm.code not in lst_current_supp_code
+ # for firm in self.model.a_lst_total_firms
+ # ])
+ # if len(lst_cand) > 0:
+ # select_cand = self.nprandom.choice(lst_cand)
+ # self.firm_network.graph.add_edges_from([
+ # (self.firm_network.positions[select_cand],
+ # self.firm_network.positions[pro_firm], {
+ # 'Product': di_supp_prod.code
+ # })
+ # ])
+ # # print(f"proactive add {select_cand.name} to "
+ # # f"{pro_firm.name} "
+ # # f"for {di_supp_node['Firm_Code']} "
+ # # f"{di_supp_node['Product_Code']}")
+ # # change capacity
+ # select_cand.dct_prod_capacity[di_supp_prod] -= 1
+ # break
+ # # nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm_proactive.csv')
# draw network
# self.draw_network()
@@ -349,35 +350,35 @@ class Model(ap.Model):
# reduce the size of disrupted firm
for firm in self.a_lst_total_firms:
for prod in firm.dct_prod_up_prod_stat.keys():
- status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
+ status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if status == 'D':
size = firm.size_stat[-1][0] - \
firm.size_stat[0][0] \
/ len(firm.dct_prod_up_prod_stat.keys()) \
/ self.remove_t
firm.size_stat.append((size, self.t))
- print(f'in ts {self.t}, reduce {firm.name} size '
- f'to {firm.size_stat[-1][0]} due to {prod.code}')
+ # print(f'in ts {self.t}, reduce {firm.name} size '
+ # f'to {firm.size_stat[-1][0]} due to {prod.code}')
lst_is_disrupt = \
[stat == 'D' for stat, _ in
- firm.dct_prod_up_prod_stat[prod]['status']
+ firm.dct_prod_up_prod_stat[prod]['p_stat']
[-1 * self.remove_t:]]
if all(lst_is_disrupt):
# turn disrupted firm into removed firm
# when last self.remove_t times status is all disrupted
firm.dct_prod_up_prod_stat[
- prod]['status'].append(('R', self.t))
+ prod]['p_stat'].append(('R', self.t))
- # stop simulation if any firm still in disrupted except inital removal
+ # stop simulation if any firm still in disrupted except initial removal
if self.t > 0:
for firm in self.a_lst_total_firms:
for prod in firm.dct_prod_up_prod_stat.keys():
- status, _ = firm.dct_prod_up_prod_stat[prod]['status'][-1]
+ status, _ = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
is_init = \
firm in self.dct_lst_init_disrupt_firm_prod.keys() \
and prod in self.dct_lst_init_disrupt_firm_prod[firm]
if status == 'D' and not is_init:
- print("not stop because", firm.name, prod.code)
+ # print("not stop because", firm.name, prod.code)
break
else:
continue
@@ -390,19 +391,27 @@ class Model(ap.Model):
self.stop()
def step(self):
- print('\n', '=' * 20, 'step', self.t, '=' * 20)
+ # print('\n', '=' * 20, 'step', self.t, '=' * 20)
# remove edge to customer and disrupt customer up product
for firm in self.a_lst_total_firms:
for prod in firm.dct_prod_up_prod_stat.keys():
# repetition of disrupted firm that last for multiple ts is ok,
# as their edge has already been removed
- status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1]
+ status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1]
if status == 'D' and ts == self.t-1:
- firm.remove_edge_to_cus_disrupt_cus_up_prod(prod)
+ firm.remove_edge_to_cus(prod)
+
+ for firm in self.a_lst_total_firms:
+ for prod in firm.dct_prod_up_prod_stat.keys():
+ for up_prod in firm.dct_prod_up_prod_stat[prod][
+ 's_stat'].keys():
+ if firm.dct_prod_up_prod_stat[prod][
+ 's_stat'][up_prod]['set_disrupt_firm']:
+ firm.disrupt_cus_prod(prod, up_prod)
for n_trial in range(self.int_n_max_trial):
- print('=' * 10, 'trial', n_trial, '=' * 10)
+ # print('=' * 10, 'trial', n_trial, '=' * 10)
# seek_alt_supply
# shuffle self.a_lst_total_firms
self.a_lst_total_firms = self.a_lst_total_firms.shuffle()
@@ -410,12 +419,12 @@ class Model(ap.Model):
for firm in self.a_lst_total_firms:
lst_seek_prod = []
for prod in firm.dct_prod_up_prod_stat.keys():
- status = firm.dct_prod_up_prod_stat[prod]['status'][-1][0]
+ status = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1][0]
if status == 'D':
for supply in firm.dct_prod_up_prod_stat[
- prod]['supply'].keys():
+ prod]['s_stat'].keys():
if not firm.dct_prod_up_prod_stat[
- prod]['supply'][supply]:
+ prod]['s_stat'][supply]['stat']:
lst_seek_prod.append(supply)
# commmon supply only seek once
lst_seek_prod = list(set(lst_seek_prod))
@@ -435,11 +444,9 @@ class Model(ap.Model):
# reset dct_request_prod_from_firm
self.a_lst_total_firms.clean_before_trial()
- # do not use:
- # self.a_lst_total_firms.dct_request_prod_from_firm = {} why?
def end(self):
- print('/' * 20, 'output', '/' * 20)
+ # print('/' * 20, 'output', '/' * 20)
qry_result = db_session.query(Result).filter_by(s_id=self.sample.id)
if qry_result.count() == 0:
@@ -448,11 +455,11 @@ class Model(ap.Model):
for prod, dct_status_supply in \
firm.dct_prod_up_prod_stat.items():
lst_is_normal = [stat == 'N' for stat, _
- in dct_status_supply['status']]
+ in dct_status_supply['p_stat']]
if not all(lst_is_normal):
- print(f"{firm.name} {prod.code}:")
- print(dct_status_supply['status'])
- for status, ts in dct_status_supply['status']:
+ # print(f"{firm.name} {prod.code}:")
+ # print(dct_status_supply['p_stat'])
+ for status, ts in dct_status_supply['p_stat']:
db_r = Result(s_id=self.sample.id,
id_firm=firm.code,
id_product=prod.code,
diff --git a/oa_with_exp.csv b/oa_with_exp.csv
index 5ee736e..9bbc6a7 100644
--- a/oa_with_exp.csv
+++ b/oa_with_exp.csv
@@ -1,37 +1,37 @@
-X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22,X23
+X12,X1,X2,X3,X13,X14,X15,X16,X4,X5,X6,X7,X8,X9,X10,X11,X17,X18,X19,X20,X21,X22,X23
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
-1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1
-2,0,0,0,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2
-0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1,1,2,2,2,2
-1,0,0,0,1,1,1,2,2,2,0,0,1,1,1,1,1,1,2,0,0,0,0
-2,0,0,0,2,2,2,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1
-0,0,0,1,0,1,2,0,1,2,1,1,0,0,0,1,1,1,2,0,1,1,2
-1,0,0,1,1,2,0,1,2,0,1,1,0,0,0,1,1,1,0,1,2,2,0
-2,0,0,1,2,0,1,2,0,1,1,1,0,0,0,1,1,1,1,2,0,0,1
-0,0,1,0,0,2,1,0,2,1,1,1,0,1,1,0,0,1,2,1,0,2,1
-1,0,1,0,1,0,2,1,0,2,1,1,0,1,1,0,0,1,0,2,1,0,2
-2,0,1,0,2,1,0,2,1,0,1,1,0,1,1,0,0,1,1,0,2,1,0
-0,0,1,1,1,2,0,2,1,0,0,1,1,0,1,0,1,0,2,2,1,0,1
-1,0,1,1,2,0,1,0,2,1,0,1,1,0,1,0,1,0,0,0,2,1,2
-2,0,1,1,0,1,2,1,0,2,0,1,1,0,1,0,1,0,1,1,0,2,0
-0,0,1,1,1,2,1,0,0,2,1,0,1,1,0,1,0,0,1,2,2,1,0
-1,0,1,1,2,0,2,1,1,0,1,0,1,1,0,1,0,0,2,0,0,2,1
-2,0,1,1,0,1,0,2,2,1,1,0,1,1,0,1,0,0,0,1,1,0,2
-0,1,0,1,1,0,2,2,2,0,1,0,0,1,1,0,1,0,1,1,0,1,2
-1,1,0,1,2,1,0,0,0,1,1,0,0,1,1,0,1,0,2,2,1,2,0
-2,1,0,1,0,2,1,1,1,2,1,0,0,1,1,0,1,0,0,0,2,0,1
-0,1,0,1,1,1,2,2,0,1,0,1,1,1,0,0,0,1,0,0,2,2,1
-1,1,0,1,2,2,0,0,1,2,0,1,1,1,0,0,0,1,1,1,0,0,2
-2,1,0,1,0,0,1,1,2,0,0,1,1,1,0,0,0,1,2,2,1,1,0
-0,1,0,0,2,1,0,1,2,2,1,1,1,0,1,1,0,0,0,2,0,1,1
-1,1,0,0,0,2,1,2,0,0,1,1,1,0,1,1,0,0,1,0,1,2,2
-2,1,0,0,1,0,2,0,1,1,1,1,1,0,1,1,0,0,2,1,2,0,0
-0,1,1,1,2,1,1,1,0,0,0,0,0,0,1,1,0,1,2,1,2,0,2
-1,1,1,1,0,2,2,2,1,1,0,0,0,0,1,1,0,1,0,2,0,1,0
-2,1,1,1,1,0,0,0,2,2,0,0,0,0,1,1,0,1,1,0,1,2,1
-0,1,1,0,2,2,2,1,2,1,1,0,1,0,0,0,1,1,1,0,1,0,0
-1,1,1,0,0,0,0,2,0,2,1,0,1,0,0,0,1,1,2,1,2,1,1
-2,1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,2,0,2,2
-0,1,1,0,2,0,1,2,1,2,0,1,0,1,0,1,1,0,0,1,1,2,0
-1,1,1,0,0,1,2,0,2,0,0,1,0,1,0,1,1,0,1,2,2,0,1
-2,1,1,0,1,2,0,1,0,1,0,1,0,1,0,1,1,0,2,0,0,1,2
+1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1
+2,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2
+0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2
+1,0,0,0,1,1,1,2,0,0,1,1,1,1,1,1,2,2,2,0,0,0,0
+2,0,0,0,2,2,2,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1,1
+0,0,0,1,0,1,2,0,1,1,0,0,0,1,1,1,1,2,2,0,1,1,2
+1,0,0,1,1,2,0,1,1,1,0,0,0,1,1,1,2,0,0,1,2,2,0
+2,0,0,1,2,0,1,2,1,1,0,0,0,1,1,1,0,1,1,2,0,0,1
+0,0,1,0,0,2,1,0,1,1,0,1,1,0,0,1,2,1,2,1,0,2,1
+1,0,1,0,1,0,2,1,1,1,0,1,1,0,0,1,0,2,0,2,1,0,2
+2,0,1,0,2,1,0,2,1,1,0,1,1,0,0,1,1,0,1,0,2,1,0
+0,0,1,1,1,2,0,2,0,1,1,0,1,0,1,0,1,0,2,2,1,0,1
+1,0,1,1,2,0,1,0,0,1,1,0,1,0,1,0,2,1,0,0,2,1,2
+2,0,1,1,0,1,2,1,0,1,1,0,1,0,1,0,0,2,1,1,0,2,0
+0,0,1,1,1,2,1,0,1,0,1,1,0,1,0,0,0,2,1,2,2,1,0
+1,0,1,1,2,0,2,1,1,0,1,1,0,1,0,0,1,0,2,0,0,2,1
+2,0,1,1,0,1,0,2,1,0,1,1,0,1,0,0,2,1,0,1,1,0,2
+0,1,0,1,1,0,2,2,1,0,0,1,1,0,1,0,2,0,1,1,0,1,2
+1,1,0,1,2,1,0,0,1,0,0,1,1,0,1,0,0,1,2,2,1,2,0
+2,1,0,1,0,2,1,1,1,0,0,1,1,0,1,0,1,2,0,0,2,0,1
+0,1,0,1,1,1,2,2,0,1,1,1,0,0,0,1,0,1,0,0,2,2,1
+1,1,0,1,2,2,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,2
+2,1,0,1,0,0,1,1,0,1,1,1,0,0,0,1,2,0,2,2,1,1,0
+0,1,0,0,2,1,0,1,1,1,1,0,1,1,0,0,2,2,0,2,0,1,1
+1,1,0,0,0,2,1,2,1,1,1,0,1,1,0,0,0,0,1,0,1,2,2
+2,1,0,0,1,0,2,0,1,1,1,0,1,1,0,0,1,1,2,1,2,0,0
+0,1,1,1,2,1,1,1,0,0,0,0,1,1,0,1,0,0,2,1,2,0,2
+1,1,1,1,0,2,2,2,0,0,0,0,1,1,0,1,1,1,0,2,0,1,0
+2,1,1,1,1,0,0,0,0,0,0,0,1,1,0,1,2,2,1,0,1,2,1
+0,1,1,0,2,2,2,1,1,0,1,0,0,0,1,1,2,1,1,0,1,0,0
+1,1,1,0,0,0,0,2,1,0,1,0,0,0,1,1,0,2,2,1,2,1,1
+2,1,1,0,1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,2,0,2,2
+0,1,1,0,2,0,1,2,0,1,0,1,0,1,1,0,1,2,0,1,1,2,0
+1,1,1,0,0,1,2,0,0,1,0,1,0,1,1,0,2,0,1,2,2,0,1
+2,1,1,0,1,2,0,1,0,1,0,1,0,1,1,0,0,1,2,0,0,1,2
diff --git a/oa_with_exp.xlsx b/oa_with_exp.xlsx
index a880df4..4deb8cb 100644
Binary files a/oa_with_exp.xlsx and b/oa_with_exp.xlsx differ
diff --git a/oa_without_exp.csv b/oa_without_exp.csv
index 66c1886..216d380 100644
--- a/oa_without_exp.csv
+++ b/oa_without_exp.csv
@@ -1,2 +1,2 @@
-X1,X2,X3,X4,X5,X6,X7,X8,X9,X10
-0,0,0,0,0,0,0,0,0,0
+X1,X2,X3,X4,X5,X6,X7,X8
+0,0,0,0,0,0,0,0
diff --git a/orm.py b/orm.py
index 649bff0..f497b0e 100644
--- a/orm.py
+++ b/orm.py
@@ -60,8 +60,6 @@ class Experiment(Base):
cap_limit_prob_type = Column(String(16), nullable=False)
cap_limit_level = Column(DECIMAL(8, 4), nullable=False)
diff_new_conn = Column(DECIMAL(8, 4), nullable=False)
- crit_supplier = Column(DECIMAL(8, 4), nullable=False)
- proactive_ratio = Column(DECIMAL(8, 4), nullable=False)
remove_t = Column(Integer, nullable=False)
netw_prf_n = Column(Integer, nullable=False)
diff --git a/product.py b/product.py
index 09238f9..78d33fa 100644
--- a/product.py
+++ b/product.py
@@ -9,6 +9,7 @@ class ProductAgent(ap.Agent):
self.name = name
def a_successors(self):
+ # find successors of a product, return in AgentList (ProductAgent)
nodes = self.product_network.graph.successors(
self.product_network.positions[self])
return ap.AgentList(
@@ -16,6 +17,7 @@ class ProductAgent(ap.Agent):
[ap.AgentIter(self.model, node).to_list()[0] for node in nodes])
def a_predecessors(self):
+ # find predecessors of a product, return in AgentList (ProductAgent)
nodes = self.product_network.graph.predecessors(
self.product_network.positions[self])
return ap.AgentList(
diff --git a/test.ipynb b/test.ipynb
index e52427d..5015e92 100644
--- a/test.ipynb
+++ b/test.ipynb
@@ -357,6 +357,231 @@
"\n",
"lst[-5:]"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " e_id | \n",
+ " n_disrupt_sample | \n",
+ " total_n_disrupt_firm_prod_experiment | \n",
+ " dct_lst_init_disrupt_firm_prod | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 383 | \n",
+ " 50 | \n",
+ " 300.0 | \n",
+ " b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 227 | \n",
+ " 50 | \n",
+ " 250.0 | \n",
+ " b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 83 | \n",
+ " 50 | \n",
+ " 200.0 | \n",
+ " b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 135 | \n",
+ " 50 | \n",
+ " 200.0 | \n",
+ " b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 179 | \n",
+ " 50 | \n",
+ " 200.0 | \n",
+ " b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " 76 | \n",
+ " 24 | \n",
+ " 56.0 | \n",
+ " b'\\x80\\x05\\x95\\x14\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " 89 | \n",
+ " 24 | \n",
+ " 54.0 | \n",
+ " b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " 90 | \n",
+ " 24 | \n",
+ " 54.0 | \n",
+ " b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 93 | \n",
+ " 335 | \n",
+ " 24 | \n",
+ " 54.0 | \n",
+ " b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " 449 | \n",
+ " 24 | \n",
+ " 53.0 | \n",
+ " b'\\x80\\x05\\x95\\x15\\x00\\x00\\x00\\x00\\x00\\x00\\x00... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
95 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " e_id n_disrupt_sample total_n_disrupt_firm_prod_experiment \\\n",
+ "0 383 50 300.0 \n",
+ "1 227 50 250.0 \n",
+ "2 83 50 200.0 \n",
+ "3 135 50 200.0 \n",
+ "4 179 50 200.0 \n",
+ ".. ... ... ... \n",
+ "90 76 24 56.0 \n",
+ "91 89 24 54.0 \n",
+ "92 90 24 54.0 \n",
+ "93 335 24 54.0 \n",
+ "94 449 24 53.0 \n",
+ "\n",
+ " dct_lst_init_disrupt_firm_prod \n",
+ "0 b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "1 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "2 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "3 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "4 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ ".. ... \n",
+ "90 b'\\x80\\x05\\x95\\x14\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "91 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "92 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "93 b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "94 b'\\x80\\x05\\x95\\x15\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n",
+ "\n",
+ "[95 rows x 4 columns]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "with open('SQL_export_high_risk_setting.sql', 'r') as f:\n",
+ " contents = f.read()\n",
+ "\n",
+ "import pandas as pd\n",
+ "from orm import engine\n",
+ "result = pd.read_sql(sql=contents, con=engine)\n",
+ "result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "False"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAVT0lEQVR4nO3dz4vV973H8fc5M0SqZKOi2WQIxZiCFbqRhBYpI8FFuTeQ20VzjX9CN4WUghSNhVouhNvN3d277JTclZdw6aKk4y1Cb4JdtDFZRKUk48aIIxQ7pnrHOXcRJxl1fpwz31+fz+f7eOySSb7n6OrF+zlnZjAajUYBAADbNOz6DQAAkDeDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoJLprt9A15buLccni0txf3klnpoexnN7dsWuHb3/awEAGFsvl9PVz+7E3PsLceHjm7Fw+26M1nxtEBEzu3fG7Av74vUXZ+L5/U939TYBALIwGI1Go63/szJcv303Tp2/HBev3Yqp4SAerGz8R1/9+tEDe+Pcq4fj2d07W3ynAAD56M2gfPvSQpx556NYXhltOiQfNzUcxPRwEGdfORSvHZlp8B0CAOSpF4Py3y5cjbd+e6Xyc944fjB+OPt8De8IAKAcxX/K++1LC7WMyYiIt357Jf7z0kItzwIAKEXRg/L67btx5p2Pan3m6Xc+iuu379b6TACAnBU9KE+dvxzLE3y/5DiWV0Zx6vzlWp8JAJCzYgfl1c/uxMVrtyb6AM44HqyM4uK1W3Ht5p1anwsAkKtiB+Xc+wsxNRw08uyp4SB+9Z7vpQQAiCh4UF74+Gbt18lVD1ZGceHKzUaeDQCQmyIH5d/uLcdCwx+cWVi8G0v3lht9DQCAHBQ5KD9dXIqmf7jmKCI+WVxq+FUAANJX5KC8v7xS1OsAAKSsyEH51HQ7f6y2XgcAIGVFLqLn9uyKZj7f/ZXBw9cBAOi7Igflrh3TMbN7Z6OvMbNnZ+zaMd3oawAA5KDIQRkRMfvCvkZ/DuXswX2NPBsAIDfFDsrXX5xp9OdQnnxpppFnAwDkpthB+fz+p+Pogb21XymnBhFHD+yNA/uervW5AAC5KnZQRkSce/VwTNc4KEejUSz/3/34h2f8Hm8AgFVFD8pnd++Ms68cqu15g8Eg9l//n/jnfzweZ8+ejQcPHtT2bACAXBU9KCMiXjsyE28cP1jLs358/IX437l/jTfffDPOnj0bx48fjxs3btTybACAXA1Go1HTv6UwCW9fWogz73wUyyujiT6sMzUcxPRwED975VD84MhXH8SZn5+PEydORETEr3/96zh27Fjt7xkAIAfFXyhXvXZkJt790Xfj21/fExGx5Yd1Vr/+7a/viXd/9N1HxmRExLFjx+JPf/pTfPOb34yXX35ZAgcAeqs3F8q1rn52J+beX4gLV27GwuLdWPsXMIgvfmj57MF9cfKlmS0/zf3gwYP4+c9/Hm+++WbMzs7G3NxcPPPMM42+fwCAlPRyUK61dG85PllcivvLK/HU9DCe27NrW78BRwIHAPqq94OyTjdu3IiTJ0/G/Px8nDlzJn7605/G1NRU128LAKBRBmXNJHAAoG8MyoZI4ABAX/TmU95t8ylwAKAvXCgbJoEDAKUzKFsigQMApZK8WyKBAwClcqFsmQQOAJTGoOyIBA4AlELy7ogEDgCUwoWyYxI4AJA7gzIREjgAkCvJOxESOACQKxfKxEjgAEBuDMpESeAAQC4k70RJ4ABALlwoEyeBAwCpMygzIYEDAKmSvDMhgQMAqXKhzIwEDgCkxqDMlAQOAKRC8s6UBA4ApMKFMnMSOADQNYOyEBI4ANAVybsQEjgA0BUXysJI4ABA2wzKQkngAEBbJO9CSeAAQFtcKAsngQMATTMoe0ICBwCaInn3hAQOADTFhbJnJHAAoG4GZU9J4ABAXSTvnpLAAYC6uFD2nAQOAFRlUBIREjgAsH2SNxEhgQMA2+dCySMkcABgUgYl65LAAYBxSd6sSwIHAMblQsmmJHAAYCsGJWORwAGAjUjejEUCBwA24kLJRCRwAOBxBiXbIoEDAKskb7ZFAgcAVrlQUokEDgAYlNRCAgeA/pK8qYUEDgD95UJJrSRwAOgfg5JGSOAA0B+SN42QwAGgP1woaZQEDgDlMyhphQQOAOWSvGmFBA4A5XKhpFUSOACUx6CkExI4AJRD8qYTEjgAlMOFkk5J4ACQP4OSJEjgAJAvyZskSOAAkC8XSpIigQNAfgxKkiSBA0A+JG+SJIEDQD5cKEmaBA4A6TMoyYIEDgDpkrzJggQOAOlyoSQrEjgApMegJEsSOACkQ/ImSxI4AKTDhZKsSeAA0D2DkiJI4ADQHcmbIkjgANAdF0qKIoEDQPsMSookgQNAeyRviiSBA0B7XCgpmgQOAM0zKOkFCRwAmiN50wsSOAA0x4WSXpHAAaB+BiW9JIEDQH0kb3pJAgeA+rhQ0msSOABUZ1BCSOAAUIXkDSGBA0AVLpSwhgQOAJMzKGEdEjgAjE/yhnVI4AAwPhdK2IQEDgBbMyhhDBI4AGxM8oYxSOAAsDEXSpiABA4ATzIoYRskcAD4iuQN2yCBA8BXXCihAgkcAAxKqIUEDkCfSd5QAwkcgD5zoYQaSeAA9JFBCQ2QwAHoE8kbGiCBA9AnLpTQIAkcgD4wKKEFEjgAJZO8oQUSOAAlc6GEFkngAJTIoIQOSOAAlETyhg5I4ACUxIUSOiSBA1ACgxISIIEDkDPJGxIggQOQMxdKSIgEDkCODEpIkAQOQE4kb0iQBA5ATlwoIWESOAA5MCghAxI4ACmTvCEDEjgAKXOhhIxI4ACkyKCEDEngAKRE8oYMSeAApMSFEjImgQOQAoMSCiCBA9AlyRsKIIED0CUXSijI2gR+7NixmJubi/3793f9tgAonEEJBVpN4IPBIObm5iRwABoleUOBVhP4oUOHJHAAGudCCQWTwAFog0EJPSCBA9AkyRt6QAIHoEkulNAjEjgATTAooYckcADqJHlDD0ngANTJhRJ6TAIHoA4GJSCBA1CJ5A1I4ABU4kIJfEkCB2A7DErgCRI4AJOQvIEnSOAATMKFEtiQBA7AOAxKYEsXLlyIEydORERI4AA8QfIGtjQ7OyuBA7AhF0pgbBI4AOsxKIGJSeAArCV5AxOTwAFYy4US2DYJHIAIgxKogQQO0G+SN1CZBA7Qby6UQG0kcIB+MiiB2kngAP0ieQO1k8AB+sWFEmiMBA7QDwYl0DgJHKBskjfQOAkcoGwulEBrJHCAMhmUQOskcICySN5A6yRwgLK4UAKdkcABymBQAp2TwAHyJnkDnZPAAfLmQgkkQwIHyJNBCSRHAgfIi+QNJEcCB8iLCyWQLAkcIA8GJZA8CRwgbZI3kDwJHCBtLpRANiRwgDQZlEB2JHCAtEjeQHYkcIC0uFAC2ZLAAdJgUALZk8ABuiV5A9mTwAG65UIJFEMCB+iGQQkURwIHaJfkDRRHAgdolwslUCwJHKAdBiVQPAkcoFmSN1A8CRygWS6UQG9I4ADNMCiB3pHAAeoleQO9I4ED1MuFEugtCRygHgYl0HsSOEA1kjfQexI4QDUulAAPSeAA22NQAjxGAgeYjOQN8BgJHGAyLpQAG5DAAcZjUAJsQQIH2JzkDbAFCRxgcy6UAGOSwAHWZ1ACTEgCB3iU5A0wIQkc4FEulADbJIEDfMGgBKhIAgf6TvIGqEgCB/rOhRKgJhI40FcGJUDNJHCgbyRvgJpJ4EDfuFACNEQCB/rCoARomAQOlE7yBmiYBA6UzoUSoCUSOFAqgxKgZRI4UBrJG6BlEjhQGhdKgI5I4EApDEqAjkngQO4kb4COSeBA7lwoARIhgQO5MigBEiOBA7mRvAESI4EDuXGhBEiUBA7kwqAESJwEDqRO8gZInAQOpM6FEiATEjiQKoMSIDMSOJAayRsgMxI4kBoXSoBMSeBAKgxKgMxJ4EDXJG+AzEngQNdcKAEKIYEDXTEoAQojgQNtk7wBCiOBA21zoQQolAQOtMWgBCicBA40TfIGKJwEDjTNhRKgJyRwoCkGJUDPSOBA3SRvgJ6RwIG6uVAC9JQEDtTFoAToOQkcqEryBug5CRyoyoUSgIiQwIHtMygBeIQEDkxK8gbgERI4MCkXSgDWJYED4zIoAdjU/Px8nDhxIgaDgQQOrEvyBmBTx44dk8CBTblQAjAWCRzYiEEJwEQkcOBxkjcAE5HAgce5UAKwLRI4sMqgBKASCRyQvAGoRAIHXCgBqIUEDv1lUAJQKwkc+kfyBqBWEjj0jwslAI2QwKE/DEoAGiWBQ/kkbwAaJYFD+VwoAWiFBA7lMigBaJUEDuWRvAFolQQO5XGhBKATEjiUw6AEoFMSOORP8gagUxI45M+FEoAkSOCQL4MSgKRI4JAfyRuApEjgkB8XSgCSJIFDPgxKAJImgUP6JG8AkiaBQ/pcKAHIggQO6TIoAciKBA7pkbwByIoEDulxoQQgSxI4pMOgBCBrEjh0T/IGIGsSOHTPhRKAIkjg0B2DEoCiSODQPskbgKJI4NA+F0oAiiSBQ3sMSgCKJoFD8yRvAIomgUPzXCgB6AUJHJpjUALQKxI41E/yBqBXJHConwslAL0kgUN9DEoAek0Ch+okbwB6TQKH6lwoASAkcKjCoASANSRwmJzkDQBrSOAwORdKAFiHBA7jMygBYBMSOGxN8gaATUjgsDUXSgAYgwQOGzMoAWACEjg8SfIGgAlI4PAkF0oA2AYJHL5iUAJABRI4SN4AUIkEDi6UAFALCZw+MygBoEYSOH0keQNAjSRw+siFEgAaIIHTJwYlADRIAqcPJG8AaJAETh+4UAJACyRwSmZQAkCLJHBKJHkDQIskcErkQgkAHZDAKYlBCQAdksApgeQNAB2SwCmBCyUAJEACJ2cGJQAkRAInR5I3ACREAidHLpQAkCAJnJwYlACQMAmcHEjeAJAwCZwcuFACQAYkcFJmUAJARiRwUiR5A0BGJHBS5EIJABmSwEmJQQkAGZPASYHkDQAZk8BJgQslABRAAqdLBiUAFEQCpwuSNwAURAKnCy6UAFAgCZw2GZQAUDAJnDZI3gBQMAmcNrhQAkAPSOA0yaAEgB6RwGmC5A0APSKB0wQXSgDoIQmcOhmUANBjEjh1kLwBoMckcOrgQgkASOBUYlACAF+SwNkOyRsA+JIEzna4UAIAT5DAmYRBCQBsSAJnHJI3ALAhCZxxuFACAFuSwNmMQQkAjE0CZz2SNwAwNgmc9bhQAgATk8BZy6AEALZNAidC8gYAKpDAiXChBABqIIH3m0EJANRGAu8nyRsAqI0E3k8ulABA7STwfjEoAYDGSOD9IHkDAI2RwPvBhRIAaJwEXjaDEgBojQReJskbAGiNBF4mF0oAoHUSeFkMSgCgMxJ4GSRvAKAzEngZXCgBgM5J4HkzKAGAZEjgeZK8AYBkSOB5cqEEAJIjgefFoAQAkiWB50HyBgCSJYHnwYUSAEieBJ42gxIAyIYEnibJGwDIhgSeJhdKACA7EnhaDEoAIFsSeBokbwAgWxJ4GlwoAYDsSeDdMigBgGJI4N2QvAGAYkjg3XChBACKI4G3y6AEAIolgbdD8gYAiiWBt8OFEgAo3lYJfGVlJYZDd7bt8jcHABRvamoqTp8+He+++258+OGH8a1vfSvm5+cjIuL27dvxjW98I37xi190/C7z5UIJAPTKjRs34uTJkzE/Px+nT5+OS5cuxW9+85v42te+FgsLC7F3794tn7F0bzk+WVyK+8sr8dT0MJ7bsyt27Zhu4d2nyaAEAHpnNYGfOXPmy383HA7jJz/5SZw7d27d/+fqZ3di7v2FuPDxzVi4fTfWDqhBRMzs3hmzL+yL11+cief3P93sHyAxBiUA0EvvvfdefOc734mVlZUv/916V8rrt+/GqfOX4+K1WzE1HMSDlY2n0+rXjx7YG+dePRzP7t7Z6J8hFb6HEgDonc8//zy+//3vPzImIyL+/ve/x1tvvfXlP799aSFe/uXv4w9/WYyI2HRMrv36H/6yGC//8vfx9qWFmt95mlwoAYDe+etf/xrf+9734o9//GPcv38/Ir5I3quf9v7000/jv65+Hm/99krl13rj+MH44ezzlZ+TMoMSAOit5eXluHr1anzwwQfx5z//OX73u9/Fhx9+GKf+47/j3z+4W9vr/Ms/HY4fHJmp7XmpMSgBANa4fvtuvPzL38e95ZWt/+Mx7Zgexrs/+m6x31PpeygBANY4df5yLG/xvZKTWl4Zxanzl2t9ZkoMSgCAh65+dicuXru15YdvJvVgZRQXr92Kazfv1PrcVBiUAAAPzb2/EFPDQSPPnhoO4lfvlfmpb4MSAOChCx/frP06uerByiguXLnZyLO7ZlACAETE3+4tx8Lt+j7ZvZ6FxbuxdG+50dfogkEJABARny4uRdM/+mYUEZ8sLjX8Ku0zKAEAIuJ+jT8mKIXXaZNBCQAQEU9NtzOL2nqdNpX3JwIA2Ibn9uyKZj7f/ZXBw9cpjUEJABARu3ZMx0zDv8lmZs/O2LVjutHX6IJBCQDw0OwL+xr9OZSzB/c18uyuGZQAAA+9/uJMoz+H8uRLM408u2sGJQDAQ8/vfzqOHthb+5VyajiIowf2xoF9T9f63FQYlAAAa5x79XBM1zwop4eDOPfq4VqfmRKDEgBgjWd374yzrxyq9Zk/e+VQPNvwB366ZFACADzmtSMz8cbxg7U868fHX4gfHCnzeydXDUajUdO/ZQgAIEtvX1qIM+98FMsro4k+rDM1HMT0cBA/e+VQ8WMywqAEANjU9dt349T5y3Hx2q2YGg42HZarXz96YG+ce/Vw0Zl7LYMSAGAMVz+7E3PvL8SFKzdjYfFurB1Qg/jih5bPHtwXJ1+aKfbT3BsxKAEAJrR0bzk+WVyK+8sr8dT0MJ7bs6vI34AzLoMSAIBKfMobAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBK/h8EZccnAqL14wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import networkx as nx\n",
+ "\n",
+ "G = nx.MultiDiGraph()\n",
+ "G.add_edge(1, 2)\n",
+ "nx.draw(G)\n",
+ "G.has_edge(1, 2, 1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1\n"
+ ]
+ }
+ ],
+ "source": [
+ "s = set()\n",
+ "s.add(1)\n",
+ "s.add(2)\n",
+ "s.add(1)\n",
+ "len(s)\n",
+ "if s:\n",
+ " print(1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
diff --git a/xv_with_exp.csv b/xv_with_exp.csv
index e002363..ce2bf23 100644
--- a/xv_with_exp.csv
+++ b/xv_with_exp.csv
@@ -1,4 +1,4 @@
-n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_disrupt,proactive_ratio,remove_t,netw_prf_n
-15,TRUE,TRUE,uniform,5,0.3,2,0.5,0.3,3,3
-10,FALSE,FALSE,normal,10,0.5,1,1,0.5,5,2
-5,,,,15,0.7,0.5,2,0.7,7,1
+n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n
+7,TRUE,TRUE,uniform,5,0.3,3,3
+5,FALSE,FALSE,normal,10,0.5,5,2
+3,,,,15,0.7,7,1
diff --git a/xv_without_exp.csv b/xv_without_exp.csv
index 027114d..caa6fef 100644
--- a/xv_without_exp.csv
+++ b/xv_without_exp.csv
@@ -1,2 +1,2 @@
-n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,proactive_ratio,remove_t,netw_prf_n
-10,TRUE,TRUE,uniform,10,0.5,0.01,1,5,2
+n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n
+5,TRUE,TRUE,uniform,10,0.5,5,2