diff --git a/.vscode/launch.json b/.vscode/launch.json index e582557..87ed9da 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -12,9 +12,9 @@ "console": "integratedTerminal", "justMyCode": true, "args": [ - "--exp", "test", + "--exp", "with_exp", "--reset_db", "True", - "--job", "1" + "--job", "24" ] } ] diff --git a/SQL_analysis_experiment.sql b/SQL_analysis_experiment.sql new file mode 100644 index 0000000..7894992 --- /dev/null +++ b/SQL_analysis_experiment.sql @@ -0,0 +1,85 @@ +select distinct experiment.idx_scenario, +n_max_trial, prf_size, prf_conn, cap_limit_prob_type, cap_limit_level, diff_new_conn, remove_t, netw_prf_n, +mean_count_firm_prod, mean_count_firm, mean_count_prod, +mean_max_ts_firm_prod, mean_max_ts_firm, mean_max_ts_prod, +mean_n_remove_firm_prod, mean_n_all_prod_remove_firm, mean_end_ts +from iiabmdb.with_exp_experiment as experiment +left join +( +select +idx_scenario, +sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL +sum(count_firm) / count(*) as mean_count_firm, +sum(count_prod) / count(*) as mean_count_prod, +sum(max_ts_firm_prod) / count(*) as mean_max_ts_firm_prod, +sum(max_ts_firm) / count(*) as mean_max_ts_firm, +sum(max_ts_prod) / count(*) as mean_max_ts_prod, +sum(n_remove_firm_prod) / count(*) as mean_n_remove_firm_prod, +sum(n_all_prod_remove_firm) / count(*) as mean_n_all_prod_remove_firm, +sum(end_ts) / count(*) as mean_end_ts +from ( +select sample.id, idx_scenario, +count_firm_prod, count_firm, count_prod, +max_ts_firm_prod, max_ts_firm, max_ts_prod, +n_remove_firm_prod, n_all_prod_remove_firm, end_ts +from iiabmdb.with_exp_sample as sample +# 1 2 3 + 9 +left join iiabmdb.with_exp_experiment as experiment +on sample.e_id = experiment.id +left join (select s_id, +count(distinct id_firm, id_product) as count_firm_prod, +count(distinct id_firm) as count_firm, +count(distinct id_product) as count_prod, +max(ts) as end_ts +from iiabmdb.with_exp_result group by s_id) as s_count +on sample.id = s_count.s_id +# 4 +left join # firm prod +(select s_id, max(ts) as max_ts_firm_prod from +(select s_id, id_firm, id_product, min(ts) as ts +from iiabmdb.with_exp_result +where `status` = "D" +group by s_id, id_firm, id_product) as ts +group by s_id) as s_max_ts_firm_prod +on sample.id = s_max_ts_firm_prod.s_id +# 5 +left join # firm +(select s_id, max(ts) as max_ts_firm from +(select s_id, id_firm, min(ts) as ts +from iiabmdb.with_exp_result +where `status` = "D" +group by s_id, id_firm) as ts +group by s_id) as s_max_ts_firm +on sample.id = s_max_ts_firm.s_id +# 6 +left join # prod +(select s_id, max(ts) as max_ts_prod from +(select s_id, id_product, min(ts) as ts +from iiabmdb.with_exp_result +where `status` = "D" +group by s_id, id_product) as ts +group by s_id) as s_max_ts_prod +on sample.id = s_max_ts_prod.s_id +# 7 +left join +(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod +from iiabmdb.with_exp_result +where `status` = "R" +group by s_id) as s_n_remove_firm_prod +on sample.id = s_n_remove_firm_prod.s_id +# 8 +left join +(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from +(select s_id, id_firm, count(distinct id_product) as n_remove_prod +from iiabmdb.with_exp_result +where `status` = "R" +group by s_id, id_firm) as s_n_remove_prod +left join iiabmdb_basic_info.firm_n_prod as firm_n_prod +on s_n_remove_prod.id_firm = firm_n_prod.code +where n_remove_prod = n_prod +group by s_id) as s_n_all_prod_remove_firm +on sample.id = s_n_all_prod_remove_firm.s_id +) as secnario_count +group by idx_scenario +) as secnario_mean +on experiment.idx_scenario = secnario_mean.idx_scenario; \ No newline at end of file diff --git a/SQL_analysis_experiment_test.sql b/SQL_analysis_experiment_test.sql new file mode 100644 index 0000000..8099a32 --- /dev/null +++ b/SQL_analysis_experiment_test.sql @@ -0,0 +1,94 @@ +select * from iiabmdb.with_exp_result limit 0, 20; +select count(distinct s_id) from iiabmdb.with_exp_result; +select count(*) from iiabmdb.with_exp_sample; + +select distinct s_id, id_firm, id_product from iiabmdb.with_exp_result order by s_id, id_firm, id_product; + +select distinct s_id, count(distinct id_firm, id_product) as count_firm_prod from iiabmdb.with_exp_result group by s_id; + +select distinct s_id, count(distinct id_firm, id_product) as count_firm_prod +from iiabmdb.with_exp_result group by s_id; + +select distinct s_id, +count(distinct id_firm, id_product) as count_firm_prod, +count(distinct id_firm) as count_firm, +count(distinct id_product) as count_prod +from iiabmdb.with_exp_result group by s_id; + +# 控制问题需要处理,否则最后 experiment avg出来的东西不对 +# 1 2 3 +select +idx_scenario, +sum(count_firm_prod) / count(*) as mean_count_firm_prod, # Note to use count(*), to include NULL +sum(count_firm) / count(*) as mean_count_firm, +sum(count_prod) / count(*) as mean_count_prod +from ( +select sample.id, idx_scenario, count_firm_prod, count_firm, count_prod +from iiabmdb.with_exp_sample as sample +left join iiabmdb.with_exp_experiment as experiment +on sample.e_id = experiment.id +left join (select s_id, +count(distinct id_firm, id_product) as count_firm_prod, +count(distinct id_firm) as count_firm, +count(distinct id_product) as count_prod +from iiabmdb.with_exp_result group by s_id) as s_count +on sample.id = s_count.s_id) as secnario_count +group by idx_scenario; + +# 4 5 6 +select sample.id, idx_scenario, max_ts_firm_prod, max_ts_firm, max_ts_prod +from iiabmdb.with_exp_sample as sample +left join iiabmdb.with_exp_experiment as experiment +on sample.e_id = experiment.id +left join # firm prod +(select s_id, max(ts) as max_ts_firm_prod from +(select s_id, id_firm, id_product, min(ts) as ts +from iiabmdb.with_exp_result +where `status` = "D" +group by s_id, id_firm, id_product) as ts +group by s_id) as s_max_ts_firm_prod +on sample.id = s_max_ts_firm_prod.s_id +left join # firm +(select s_id, max(ts) as max_ts_firm from +(select s_id, id_firm, min(ts) as ts +from iiabmdb.with_exp_result +where `status` = "D" +group by s_id, id_firm) as ts +group by s_id) as s_max_ts_firm +on sample.id = s_max_ts_firm.s_id +left join # prod +(select s_id, max(ts) as max_ts_prod from +(select s_id, id_product, min(ts) as ts +from iiabmdb.with_exp_result +where `status` = "D" +group by s_id, id_product) as ts +group by s_id) as s_max_ts_prod +on sample.id = s_max_ts_prod.s_id; + +# 7 8 9 +select sample.id, idx_scenario, n_remove_firm_prod, n_all_prod_remove_firm, end_ts +from iiabmdb.with_exp_sample as sample +left join iiabmdb.with_exp_experiment as experiment +on sample.e_id = experiment.id +left join +(select s_id, count(distinct id_firm, id_product) as n_remove_firm_prod +from iiabmdb.with_exp_result +where `status` = "R" +group by s_id) as s_n_remove_firm_prod +on sample.id = s_n_remove_firm_prod.s_id +left join +(select s_id, count(distinct id_firm) as n_all_prod_remove_firm from +(select s_id, id_firm, count(distinct id_product) as n_remove_prod +from iiabmdb.with_exp_result +where `status` = "R" +group by s_id, id_firm) as s_n_remove_prod +left join iiabmdb_basic_info.firm_n_prod as firm_n_prod +on s_n_remove_prod.id_firm = firm_n_prod.code +where n_remove_prod = n_prod +group by s_id) as s_n_all_prod_remove_firm +on sample.id = s_n_all_prod_remove_firm.s_id +left join +(select s_id, max(ts) as end_ts +from iiabmdb.with_exp_result +group by s_id) as s_end_ts +on sample.id = s_end_ts.s_id; \ No newline at end of file diff --git a/SQL_analysis_risk.sql b/SQL_analysis_risk.sql new file mode 100644 index 0000000..621186e --- /dev/null +++ b/SQL_analysis_risk.sql @@ -0,0 +1,12 @@ +select * from +(select s_id, id_firm, id_product, min(ts) as ts from iiabmdb.without_exp_result +where `status` = 'D' +group by s_id, id_firm, id_product) as s_disrupt +where s_id in +(select s_id from +(select s_id, id_firm, id_product, min(ts) as ts from iiabmdb.without_exp_result +where `status` = 'D' +group by s_id, id_firm, id_product) as t +group by s_id +having count(*) > 1) +order by s_id; \ No newline at end of file diff --git a/SQL_export_high_risk_setting.sql b/SQL_export_high_risk_setting.sql index abf784a..cfa3a17 100644 --- a/SQL_export_high_risk_setting.sql +++ b/SQL_export_high_risk_setting.sql @@ -1,19 +1,15 @@ -select count(*) from iiabmdb.without_exp_sample; - -select distinct s_id from iiabmdb.without_exp_result where ts > 0; -select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id order by max_ts; -select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a -inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b -on a.id = b.s_id +select e_id, n_disrupt_sample, total_n_disrupt_firm_prod_experiment, dct_lst_init_disrupt_firm_prod from iiabmdb.without_exp_experiment as experiment +inner join ( +select e_id, count(id) as n_disrupt_sample, sum(n_disrupt_firm_prod_sample) as total_n_disrupt_firm_prod_experiment from iiabmdb.without_exp_sample as sample +inner join ( +select * from +(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb.without_exp_result group by s_id +) as count_disrupt_firm_prod_sample +where n_disrupt_firm_prod_sample > 1 +) as disrupt_sample +on sample.id = disrupt_sample.s_id group by e_id -order by count desc; - -select e_id, count, max_max_ts, dct_lst_init_remove_firm_prod from iiabmdb.without_exp_experiment as a -inner join -(select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a -inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b -on a.id = b.s_id -group by e_id) as b -on a.id = b.e_id -where count > 10 -order by count desc; +) as disrupt_experiment +on experiment.id = disrupt_experiment.e_id +order by n_disrupt_sample desc, total_n_disrupt_firm_prod_experiment desc +limit 0, 95; \ No newline at end of file diff --git a/SQL_find_high_risk_setting.sql b/SQL_find_high_risk_setting.sql new file mode 100644 index 0000000..21e7d21 --- /dev/null +++ b/SQL_find_high_risk_setting.sql @@ -0,0 +1,44 @@ +select max(ts_done) from iiabmdb.without_exp_sample; +select min(ts_done) from iiabmdb.without_exp_sample; +select count(*) from iiabmdb.without_exp_sample; + +select distinct s_id from iiabmdb.without_exp_result where ts > 0; +select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id order by max_ts; +select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a +inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b +on a.id = b.s_id +group by e_id +order by count desc; + +select e_id, count, max_max_ts, dct_lst_init_remove_firm_prod from iiabmdb.without_exp_experiment as a +inner join +(select e_id, count(id) as count, max(max_ts) as max_max_ts from iiabmdb.without_exp_sample as a +inner join (select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id) as b +on a.id = b.s_id +group by e_id) as b +on a.id = b.e_id +where count > 10 +order by count desc; + +select s_id, max(ts) as max_ts from iiabmdb.without_exp_result where ts > 0 group by s_id; +select * from iiabmdb.without_exp_result order by s_id limit 0,50; +select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod from iiabmdb.without_exp_result group by s_id; +select * from +(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb.without_exp_result group by s_id) as count_disrupt_firm_prod_sample +where n_disrupt_firm_prod_sample > 1; + +select e_id, n_disrupt_sample, total_n_disrupt_firm_prod_experiment, dct_lst_init_disrupt_firm_prod from iiabmdb.without_exp_experiment as experiment +inner join ( +select e_id, count(id) as n_disrupt_sample, sum(n_disrupt_firm_prod_sample) as total_n_disrupt_firm_prod_experiment from iiabmdb.without_exp_sample as sample +inner join ( +select * from +(select s_id, COUNT(DISTINCT id_firm, id_product) as n_disrupt_firm_prod_sample from iiabmdb.without_exp_result group by s_id +) as count_disrupt_firm_prod_sample +where n_disrupt_firm_prod_sample > 1 +) as disrupt_sample +on sample.id = disrupt_sample.s_id +group by e_id +) as disrupt_experiment +on experiment.id = disrupt_experiment.e_id +order by n_disrupt_sample desc, total_n_disrupt_firm_prod_experiment desc +limit 0, 95; # 20% of 475 experiment \ No newline at end of file diff --git a/SQL_migrate_db.sql b/SQL_migrate_db.sql index 57fe3c6..0d1cc6e 100644 --- a/SQL_migrate_db.sql +++ b/SQL_migrate_db.sql @@ -1,7 +1,13 @@ -CREATE DATABASE iiabmdb_dissertation; -RENAME TABLE iiabmdb.not_test_experiment TO iiabmdb_dissertation.not_test_experiment, -iiabmdb.not_test_result TO iiabmdb_dissertation.not_test_result, -iiabmdb.not_test_sample TO iiabmdb_dissertation.not_test_sample, -iiabmdb.test_experiment TO iiabmdb_dissertation.test_experiment, -iiabmdb.test_result TO iiabmdb_dissertation.test_result, -iiabmdb.test_sample TO iiabmdb_dissertation.test_sample; \ No newline at end of file +CREATE DATABASE iiabmdb20230818; +RENAME TABLE iiabmdb.not_test_experiment TO iiabmdb20230818.not_test_experiment, +iiabmdb.not_test_result TO iiabmdb20230818.not_test_result, +iiabmdb.not_test_sample TO iiabmdb20230818.not_test_sample, +iiabmdb.test_experiment TO iiabmdb20230818.test_experiment, +iiabmdb.test_result TO iiabmdb20230818.test_result, +iiabmdb.test_sample TO iiabmdb20230818.test_sample; +RENAME TABLE iiabmdb.with_exp_experiment TO iiabmdb20230818.with_exp_experiment, +iiabmdb.with_exp_result TO iiabmdb20230818.with_exp_result, +iiabmdb.with_exp_sample TO iiabmdb20230818.with_exp_sample, +iiabmdb.without_exp_experiment TO iiabmdb20230818.without_exp_experiment, +iiabmdb.without_exp_result TO iiabmdb20230818.without_exp_result, +iiabmdb.without_exp_sample TO iiabmdb20230818.without_exp_sample; \ No newline at end of file diff --git a/__pycache__/controller_db.cpython-38.pyc b/__pycache__/controller_db.cpython-38.pyc index d75a0e9..fc15b58 100644 Binary files a/__pycache__/controller_db.cpython-38.pyc and b/__pycache__/controller_db.cpython-38.pyc differ diff --git a/__pycache__/firm.cpython-38.pyc b/__pycache__/firm.cpython-38.pyc index f35eab2..5fc7d84 100644 Binary files a/__pycache__/firm.cpython-38.pyc and b/__pycache__/firm.cpython-38.pyc differ diff --git a/__pycache__/model.cpython-38.pyc b/__pycache__/model.cpython-38.pyc index b7c8463..d206e5a 100644 Binary files a/__pycache__/model.cpython-38.pyc and b/__pycache__/model.cpython-38.pyc differ diff --git a/__pycache__/orm.cpython-38.pyc b/__pycache__/orm.cpython-38.pyc index 03a1404..318ee56 100644 Binary files a/__pycache__/orm.cpython-38.pyc and b/__pycache__/orm.cpython-38.pyc differ diff --git a/analysis/20230818anova.mpx b/analysis/20230818anova.mpx new file mode 100644 index 0000000..2122333 Binary files /dev/null and b/analysis/20230818anova.mpx differ diff --git a/analysis/20230818anova_l36.mpx b/analysis/20230818anova_l36.mpx new file mode 100644 index 0000000..11f5f35 Binary files /dev/null and b/analysis/20230818anova_l36.mpx differ diff --git a/analysis/20230818anova_l36.mpx.bak b/analysis/20230818anova_l36.mpx.bak new file mode 100644 index 0000000..11f5f35 Binary files /dev/null and b/analysis/20230818anova_l36.mpx.bak differ diff --git a/analysis/20230818anova_l36_clean.mpx b/analysis/20230818anova_l36_clean.mpx new file mode 100644 index 0000000..960a6d2 Binary files /dev/null and b/analysis/20230818anova_l36_clean.mpx differ diff --git a/analysis/20230818anova_visualization.csv b/analysis/20230818anova_visualization.csv new file mode 100644 index 0000000..ebae0aa --- /dev/null +++ b/analysis/20230818anova_visualization.csv @@ -0,0 +1,22 @@ +自变量,level,系统恢复用时R1,产业-企业边累计扰乱次数R2,产业-企业边最大传导深度R3,产业-企业边断裂总数R4 +采购策略P1,三供应商,2.144,2.826,1.156,0.7541 +采购策略P1,双供应商,2.146,2.65,1.133,0.7615 +采购策略P1,单供应商,2.261,2.519,1.121,0.7919 +是否规模偏好P2,倾向,2.196,2.661,1.137,0.7657 +是否规模偏好P2,不倾向,2.171,2.669,1.137,0.7726 +最大尝试次数P3,高,2.141,2.652,1.13,0.739 +最大尝试次数P3,中,2.124,2.652,1.127,0.7431 +最大尝试次数P3,低,2.286,2.691,1.154,0.8254 +是否已有连接偏好P4,倾向,2.191,2.663,1.133,0.7579 +是否已有连接偏好P4,不倾向,2.177,2.668,1.141,0.7804 +额外产能分布P5,均匀分布,2.316,2.681,1.158,0.8403 +额外产能分布P5,正态分布,2.052,2.65,1.115,0.698 +额外产能分布参数P6,高,1.914,2.624,1.098,0.6299 +额外产能分布参数P6,中,2.202,2.666,1.142,0.7655 +额外产能分布参数P6,低,2.436,2.705,1.171,0.9121 +新供应关系构成概率P7,低,2.24,2.672,1.143,0.764 +新供应关系构成概率P7,中,2.132,2.674,1.143,0.7859 +新供应关系构成概率P7,高,2.179,2.649,1.124,0.7575 +最大尝试时间步P8,低,1.726,2.646,1.123,0.7782 +最大尝试时间步P8,中,2.186,2.682,1.144,0.7599 +最大尝试时间步P8,高,2.64,2.667,1.143,0.7694 diff --git a/analysis/20230818experiment_result.csv b/analysis/20230818experiment_result.csv new file mode 100644 index 0000000..15d7480 --- /dev/null +++ b/analysis/20230818experiment_result.csv @@ -0,0 +1,37 @@ +idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts +0,7,1,1,uniform,5.0000,0.3000,3,3,2.7598,2.7598,2.1107,1.1107,1.1107,1.1107,0.6027,0.2120,1.5501 +1,5,1,1,uniform,10.0000,0.5000,5,2,2.6596,2.6566,2.1535,1.1535,1.1535,1.1535,0.8261,0.2897,2.2541 +2,3,1,1,uniform,15.0000,0.7000,7,1,2.5573,2.5528,2.1501,1.1501,1.1501,1.1501,0.9518,0.3141,3.1143 +3,7,1,1,uniform,5.0000,0.3000,3,2,2.5783,2.5783,2.0834,1.0834,1.0834,1.0834,0.6046,0.2135,1.5524 +4,5,1,1,uniform,10.0000,0.5000,5,1,2.5453,2.5423,2.1400,1.1400,1.1400,1.1400,0.8240,0.2836,2.3499 +5,3,1,1,uniform,15.0000,0.7000,7,3,2.9137,2.9097,2.2402,1.2402,1.2402,1.2402,1.0712,0.3611,3.2996 +6,7,1,1,normal,5.0000,0.5000,7,3,2.7848,2.7848,2.1185,1.1185,1.1185,1.1185,0.6004,0.2107,2.1802 +7,5,1,1,normal,10.0000,0.7000,3,2,2.6091,2.6088,2.1046,1.1046,1.1046,1.1046,0.6552,0.2284,1.5981 +8,3,1,1,normal,15.0000,0.3000,5,1,2.5823,2.5783,2.1762,1.1762,1.1762,1.1762,0.8678,0.3120,2.5343 +9,7,1,0,uniform,5.0000,0.7000,5,3,2.7691,2.7691,2.1124,1.1124,1.1124,1.1124,0.6025,0.2118,1.8684 +10,5,1,0,uniform,10.0000,0.3000,7,2,2.6766,2.6731,2.1655,1.1655,1.1655,1.1655,0.8362,0.2966,2.8036 +11,3,1,0,uniform,15.0000,0.5000,3,1,2.5941,2.5893,2.1825,1.1825,1.1825,1.1825,1.0888,0.3741,2.0465 +12,7,1,0,normal,10.0000,0.7000,3,1,2.4720,2.4718,2.0773,1.0773,1.0773,1.0773,0.6884,0.2366,1.6459 +13,5,1,0,normal,15.0000,0.3000,5,3,2.8442,2.8432,2.1760,1.1760,1.1760,1.1760,0.8109,0.2829,2.2358 +14,3,1,0,normal,5.0000,0.5000,7,2,2.6057,2.6057,2.0962,1.0962,1.0962,1.0962,0.6008,0.2107,2.1912 +15,7,1,0,normal,10.0000,0.7000,5,3,2.7996,2.7996,2.1341,1.1341,1.1341,1.1341,0.6543,0.2293,1.9642 +16,5,1,0,normal,15.0000,0.3000,7,2,2.6585,2.6575,2.1436,1.1436,1.1436,1.1436,0.7589,0.2680,2.6227 +17,3,1,0,normal,5.0000,0.5000,3,1,2.4956,2.4947,2.0983,1.0983,1.0983,1.0983,0.7387,0.2604,1.7211 +18,7,0,1,normal,10.0000,0.3000,7,1,2.5093,2.5072,2.1162,1.1162,1.1162,1.1162,0.6743,0.2309,2.6040 +19,5,0,1,normal,15.0000,0.5000,3,3,2.8149,2.8137,2.1324,1.1324,1.1324,1.1324,0.7996,0.2737,1.7251 +20,3,0,1,normal,5.0000,0.7000,5,2,2.6480,2.6480,2.0899,1.0899,1.0899,1.0899,0.6000,0.2105,1.8632 +21,7,0,1,normal,10.0000,0.5000,7,1,2.4686,2.4684,2.0800,1.0800,1.0800,1.0800,0.6415,0.2192,2.3998 +22,5,0,1,normal,15.0000,0.7000,3,3,2.8133,2.8120,2.1316,1.1316,1.1316,1.1316,0.7968,0.2722,1.7206 +23,3,0,1,normal,5.0000,0.3000,5,2,2.6480,2.6480,2.0899,1.0899,1.0899,1.0899,0.6000,0.2105,1.8632 +24,7,0,1,uniform,15.0000,0.5000,3,2,2.6798,2.6745,2.1838,1.1838,1.1838,1.1838,1.0057,0.3528,1.9152 +25,5,0,1,uniform,5.0000,0.7000,5,1,2.4497,2.4491,2.0638,1.0638,1.0638,1.0638,0.6088,0.2131,1.9509 +26,3,0,1,uniform,10.0000,0.3000,7,3,2.9055,2.9040,2.2318,1.2318,1.2318,1.2318,0.9118,0.3242,2.9552 +27,7,0,0,normal,15.0000,0.5000,5,2,2.7160,2.7156,2.1539,1.1539,1.1539,1.1539,0.7907,0.2747,2.2006 +28,5,0,0,normal,5.0000,0.7000,7,1,2.4379,2.4377,2.0512,1.0512,1.0512,1.0512,0.6013,0.2109,2.2356 +29,3,0,0,normal,10.0000,0.3000,3,3,2.7853,2.7851,2.1053,1.1053,1.1053,1.1053,0.6840,0.2392,1.6286 +30,7,0,0,uniform,15.0000,0.7000,7,2,2.6798,2.6756,2.1821,1.1821,1.1821,1.1821,0.9777,0.3358,3.0720 +31,5,0,0,uniform,5.0000,0.3000,3,1,2.5038,2.5011,2.1131,1.1131,1.1131,1.1131,0.7916,0.2853,1.7922 +32,3,0,0,uniform,10.0000,0.5000,5,3,2.9141,2.9126,2.2385,1.2385,1.2385,1.2385,0.9076,0.3204,2.4032 +33,7,0,0,uniform,15.0000,0.3000,5,1,2.6078,2.6002,2.2034,1.2034,1.2034,1.2034,1.0257,0.3629,2.7425 +34,5,0,0,uniform,5.0000,0.5000,7,3,2.8112,2.8112,2.1438,1.1438,1.1438,1.1438,0.6072,0.2149,2.2006 +35,3,0,0,uniform,10.0000,0.7000,3,2,2.6438,2.6417,2.1543,1.1543,1.1543,1.1543,0.8821,0.3116,1.8120 diff --git a/analysis/anova.csv b/analysis/anova.csv new file mode 100644 index 0000000..9771bc9 --- /dev/null +++ b/analysis/anova.csv @@ -0,0 +1,11 @@ +,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts +prf_size,0.004,0.004,0.004,0.004,0.004,0.004,0.973,0.953,0.018 +prf_conn,0.884,0.884,0.841,0.841,0.841,0.841,0.821,0.888,0.63 +cap_limit_prob_type,0.708,0.723,0.517,0.517,0.517,0.517,0.002,0.001,0.002 +n_max_trial,0.611,0.613,0.724,0.724,0.724,0.724,0.898,0.869,0.796 +cap_limit_level,0.243,0.254,0.118,0.118,0.118,0.118,0,0,0 +diff_new_conn,0.216,0.229,0.058,0.058,0.058,0.058,0.002,0.002,0 +crit_supplier,0,0,0,0,0,0,0,0,0 +proactive_ratio,0.66,0.651,0.572,0.572,0.572,0.572,0.258,0.399,0.367 +remove_t,0.464,0.465,0.546,0.546,0.546,0.546,0.026,0.186,0 +netw_prf_n,0,0,0,0,0,0,0.019,0.069,0.003 diff --git a/analysis/anova.mpx.bak b/analysis/anova.mpx.bak new file mode 100644 index 0000000..2122333 Binary files /dev/null and b/analysis/anova.mpx.bak differ diff --git a/analysis/anova.xlsx b/analysis/anova.xlsx new file mode 100644 index 0000000..55eb306 Binary files /dev/null and b/analysis/anova.xlsx differ diff --git a/analysis/anova_l36.mpx b/analysis/anova_l36.mpx new file mode 100644 index 0000000..e2c076e Binary files /dev/null and b/analysis/anova_l36.mpx differ diff --git a/analysis/anova_l36.mpx.bak b/analysis/anova_l36.mpx.bak new file mode 100644 index 0000000..11f5f35 Binary files /dev/null and b/analysis/anova_l36.mpx.bak differ diff --git a/analysis/anova_l36_clean.mpx.bak b/analysis/anova_l36_clean.mpx.bak new file mode 100644 index 0000000..960a6d2 Binary files /dev/null and b/analysis/anova_l36_clean.mpx.bak differ diff --git a/analysis/anova_p_value.png b/analysis/anova_p_value.png new file mode 100644 index 0000000..7e940e8 Binary files /dev/null and b/analysis/anova_p_value.png differ diff --git a/analysis/count.csv b/analysis/count.csv index 9b72392..7ed69c7 100644 --- a/analysis/count.csv +++ b/analysis/count.csv @@ -1,3539 +1,31922 @@ -s_id,id_firm,id_product,ts,is_disrupted,is_removed -8257,49,1.3.1.4,0,1,1.0 -8257,100,1.3.1,1,1, -1369,13,2.1.3.3,0,1,1.0 -1369,106,2.1.3,1,1,1.0 -21519,149,2.1.2.4,0,1,1.0 -21519,58,2.1.2,1,1, -15317,99,2.1,0,1,1.0 -15317,102,2,1,1, -3165,22,2.1.3.3,0,1,1.0 -3165,148,2.1.3,1,1, -5733,36,1.1.1,0,1,1.0 -5733,94,1.1,1,1, -19407,135,2.1.3.5,0,1,1.0 -19407,148,2.1.3,1,1, -13052,79,2.1.3.7,0,1,1.0 -13052,106,2.1.3,1,1, -5599,33,2.1.2.4,0,1,1.0 -5599,79,2.1.2,1,1,1.0 -11157,62,2.1.2.4,0,1,1.0 -11157,159,2.1.2,1,1, -22232,157,1.4.1,0,1,1.0 -22232,126,1.4,1,1, -9164,53,1.4.3.6,0,1,1.0 -9164,142,1.4.3,1,1,1.0 -9164,126,1.4,2,1,1.0 -9164,170,1,3,1,1.0 -1515,13,2.1.3.6,0,1,1.0 -1515,74,2.1.3,1,1, -8906,53,1.4.2.3,0,1,1.0 -8906,142,1.4.2,1,1,1.0 -8906,126,1.4,2,1, -17853,126,1.4,0,1,1.0 -17853,170,1,1,1, -21799,153,1.3.1.4,0,1,1.0 -21799,39,1.3.1,1,1,1.0 -4105,23,1.4.2.7,0,1,1.0 -4105,142,1.4.2,1,1,1.0 -4105,126,1.4,2,1,1.0 -4105,170,1,3,1,1.0 -265,3,1.3.1.6,0,1,1.0 -265,39,1.3.1,1,1,1.0 -4133,23,1.4.2.7,0,1,1.0 -4133,142,1.4.2,1,1, -9153,53,1.4.3.6,0,1,1.0 -9153,142,1.4.3,1,1, -19557,135,2.2,0,1,1.0 -19557,102,2,1,1, -15307,99,2.1,0,1,1.0 -15307,102,2,1,1, -23269,167,1.1.1,0,1,1.0 -23269,106,1.1,1,1, -10688,60,2.1.1.1,0,1,1.0 -10688,148,2.1.1,1,1,1.0 -7749,47,2.1.1.1,0,1,1.0 -7749,148,2.1.1,1,1,1.0 -20568,142,1.4.3,0,1,1.0 -20568,126,1.4,1,1, -15624,103,1.1.1,0,1,1.0 -15624,86,1.1,1,1, -20531,142,1.4.2,0,1,1.0 -20531,126,1.4,1,1,1.0 -20531,170,1,2,1,1.0 -3208,22,2.1.3.4,0,1,1.0 -3208,148,2.1.3,1,1, -8937,53,1.4.2.3,0,1,1.0 -8937,142,1.4.2,1,1,1.0 -8937,126,1.4,2,1, -17870,126,1.4,0,1,1.0 -17870,170,1,1,1, -13057,79,2.1.3.7,0,1,1.0 -13057,148,2.1.3,1,1, -20567,142,1.4.3,0,1,1.0 -20567,126,1.4,1,1, -13692,82,2.1.2.1,0,1,1.0 -13692,79,2.1.2,1,1,1.0 -19120,135,1.3.2.1,0,1,1.0 -19120,58,1.3.2,1,1,1.0 -3737,22,2.3.1,0,1,1.0 -3737,95,2.3,1,1,1.0 -9977,56,1.1.1,0,1,1.0 -9977,86,1.1,1,1,1.0 -10708,60,2.1.1.2,0,1,1.0 -10708,106,2.1.1,1,1, -18799,131,2.1.1.4,0,1,1.0 -18799,80,2.1.1,1,1,1.0 -11345,63,1.4.4.5,0,1,1.0 -11345,0,1.4.4,1,1,1.0 -22248,157,1.4.1,0,1,1.0 -22248,126,1.4,1,1, -10857,60,2.1.1.5,0,1,1.0 -10857,80,2.1.1,1,1, -12657,79,1.3.1.6,0,1,1.0 -12657,85,1.3.1,1,1, -3299,22,2.1.3.5,0,1,1.0 -3299,108,2.1.3,1,1,1.0 -12831,79,2.1.3.2,0,1,1.0 -12831,97,2.1.3,1,1, -4135,23,1.4.2.7,0,1,1.0 -4135,142,1.4.2,1,1, -15346,99,2.1,0,1,1.0 -15346,102,2,1,1, -15346,98,2,1,1,1.0 -6890,41,1.4.5,0,1,1.0 -6890,126,1.4,1,1, -18573,130,1.3.5,0,1,1.0 -18573,106,1.3,1,1, -12769,79,2.1.3.1,0,1,1.0 -12769,74,2.1.3,1,1,1.0 -18594,130,1.3.5,0,1,1.0 -18594,106,1.3,1,1, -18594,29,1.3,1,1, -9470,53,1.4.5.8,0,1,1.0 -9470,41,1.4.5,1,1, -15483,101,1.1.1,0,1,1.0 -15483,86,1.1,1,1, -1462,13,2.1.3.5,0,1,1.0 -1462,74,2.1.3,1,1, -1272,13,2.1.3.1,0,1,1.0 -1272,74,2.1.3,1,1, -13807,82,2.1.2.4,0,1,1.0 -13807,58,2.1.2,1,1, -22549,161,2.3.3,0,1,1.0 -22549,95,2.3,1,1,1.0 -13307,79,2.3.3,0,1,1.0 -13307,155,2.3,1,1, -20549,142,1.4.2,0,1,1.0 -20549,126,1.4,1,1, -3738,22,2.3.1,0,1,1.0 -3738,155,2.3,1,1,1.0 -17349,118,1.3.3.6,0,1,1.0 -17349,75,1.3.3,1,1,1.0 -21549,149,2.1.2.4,0,1,1.0 -21549,79,2.1.2,1,1,1.0 -10257,58,1.2.2,0,1,1.0 -10257,106,1.2,1,1, -9455,53,1.4.5.8,0,1,1.0 -9455,41,1.4.5,1,1,1.0 -9455,126,1.4,2,1,1.0 -9455,170,1,3,1,1.0 -17876,126,1.4,0,1,1.0 -17876,170,1,1,1,1.0 -19140,135,1.3.2.1,0,1,1.0 -19140,130,1.3.2,1,1,1.0 -19140,58,1.3.2,1,1,1.0 -19140,106,1.3,2,1,1.0 -19140,29,1.3,2,1,1.0 -19140,170,1,3,1,1.0 -4116,23,1.4.2.7,0,1,1.0 -4116,142,1.4.2,1,1,1.0 -4116,126,1.4,2,1, -9484,53,1.4.5.8,0,1,1.0 -9484,41,1.4.5,1,1, -22230,157,1.4.1,0,1,1.0 -22230,126,1.4,1,1, -17602,124,1.2.1,0,1,1.0 -17602,106,1.2,1,1, -6107,38,2.1.1.2,0,1,1.0 -6107,148,2.1.1,1,1, -11707,69,1.1.1,0,1,1.0 -11707,126,1.1,1,1, -8905,53,1.4.2.3,0,1,1.0 -8905,142,1.4.2,1,1,1.0 -8905,126,1.4,2,1,1.0 -8905,170,1,3,1,1.0 -299,3,1.3.1.6,0,1,1.0 -299,99,1.3.1,1,1,1.0 -1486,13,2.1.3.5,0,1,1.0 -1486,126,2.1.3,1,1, -2099,14,1.3.3.4,0,1,1.0 -2099,75,1.3.3,1,1,1.0 -9172,53,1.4.3.6,0,1,1.0 -9172,142,1.4.3,1,1, -20204,140,1.4.5.1,0,1,1.0 -20204,41,1.4.5,1,1,1.0 -20204,126,1.4,2,1, -12507,78,2.1.1.5,0,1,1.0 -12507,106,2.1.1,1,1, -6883,41,1.4.5,0,1,1.0 -6883,126,1.4,1,1, -8499,49,2.1.2.2,0,1,1.0 -8499,84,2.1.2,1,1,1.0 -4799,26,2.1.3.7,0,1,1.0 -4799,74,2.1.3,1,1,1.0 -4757,26,2.1.3.7,0,1,1.0 -4757,73,2.1.3,1,1, -1958,13,2.3.2,0,1,1.0 -1958,99,2.3,1,1,1.0 -23137,165,2.1.2.3,0,1,1.0 -23137,79,2.1.2,1,1,1.0 -107,2,1.1.3,0,1,1.0 -107,106,1.1,1,1, -10349,58,1.3.1.6,0,1,1.0 -10349,100,1.3.1,1,1,1.0 -1352,13,2.1.3.3,0,1,1.0 -1352,148,2.1.3,1,1,1.0 -9459,53,1.4.5.8,0,1,1.0 -9459,41,1.4.5,1,1,1.0 -9459,126,1.4,2,1, -20212,140,1.4.5.1,0,1,1.0 -20212,41,1.4.5,1,1,1.0 -20212,126,1.4,2,1, -8242,49,1.3.1.1,0,1,1.0 -8242,100,1.3.1,1,1,1.0 -6748,41,1.4.3.2,0,1,1.0 -6748,142,1.4.3,1,1, -22236,157,1.4.1,0,1,1.0 -22236,126,1.4,1,1, -8944,53,1.4.2.3,0,1,1.0 -8944,142,1.4.2,1,1, -12981,79,2.1.3.5,0,1,1.0 -12981,106,2.1.3,1,1,1.0 -9468,53,1.4.5.8,0,1,1.0 -9468,41,1.4.5,1,1,1.0 -9468,126,1.4,2,1,1.0 -9468,170,1,3,1,1.0 -6743,41,1.4.3.2,0,1,1.0 -6743,142,1.4.3,1,1, -4599,26,2.1.3.3,0,1,1.0 -4599,126,2.1.3,1,1,1.0 -12919,79,2.1.3.4,0,1,1.0 -12919,73,2.1.3,1,1,1.0 -11192,62,2.1.2.4,0,1,1.0 -11192,58,2.1.2,1,1,1.0 -2391,16,2.3.3,0,1,1.0 -2391,126,2.3,1,1, -19103,135,1.3.2.1,0,1,1.0 -19103,130,1.3.2,1,1,1.0 -19103,58,1.3.2,1,1,1.0 -19103,106,1.3,2,1,1.0 -21037,144,2.1.2.4,0,1,1.0 -21037,79,2.1.2,1,1,1.0 -21507,149,2.1.2.4,0,1,1.0 -21507,159,2.1.2,1,1, -10669,60,2.1.1.1,0,1,1.0 -10669,106,2.1.1,1,1, -2715,22,1.2.2,0,1,1.0 -2715,126,1.2,1,1,1.0 -15107,99,1.1.2,0,1,1.0 -15107,105,1.1,1,1, -21441,149,2.1.2.2,0,1,1.0 -21441,84,2.1.2,1,1, -17880,126,1.4,0,1,1.0 -17880,170,1,1,1, -20599,142,1.4.3,0,1,1.0 -20599,126,1.4,1,1, -17392,119,1.3.1.1,0,1,1.0 -17392,85,1.3.1,1,1,1.0 -21491,149,2.1.2.3,0,1,1.0 -21491,159,2.1.2,1,1,1.0 -17859,126,1.4,0,1,1.0 -17859,170,1,1,1,1.0 -6718,41,1.4.3.2,0,1,1.0 -6718,142,1.4.3,1,1,1.0 -6718,126,1.4,2,1,1.0 -6718,170,1,3,1,1.0 -15340,99,2.1,0,1,1.0 -15340,102,2,1,1,1.0 -15340,98,2,1,1, -6879,41,1.4.5,0,1,1.0 -6879,126,1.4,1,1, -11302,63,1.4.4.5,0,1,1.0 -11302,0,1.4.4,1,1,1.0 -20506,142,1.4.2,0,1,1.0 -20506,126,1.4,1,1, -17852,126,1.4,0,1,1.0 -17852,170,1,1,1,1.0 -11331,63,1.4.4.5,0,1,1.0 -11331,0,1.4.4,1,1, -11331,40,1.4.4,1,1,1.0 -807,6,2.1.2.4,0,1,1.0 -807,79,2.1.2,1,1, -4128,23,1.4.2.7,0,1,1.0 -4128,142,1.4.2,1,1, -15207,99,1.3.1,0,1,1.0 -15207,106,1.3,1,1, -4139,23,1.4.2.7,0,1,1.0 -4139,142,1.4.2,1,1, -23558,168,2.3.2,0,1,1.0 -23558,95,2.3,1,1,1.0 -18567,130,1.3.5,0,1,1.0 -18567,29,1.3,1,1,1.0 -18567,106,1.3,1,1, -22205,157,1.4.1,0,1,1.0 -22205,126,1.4,1,1, -10237,57,2.3.3,0,1,1.0 -10237,155,2.3,1,1,1.0 -1057,10,1.3.3.5,0,1,1.0 -1057,99,1.3.3,1,1, -958,9,1.3.3.6,0,1,1.0 -958,97,1.3.3,1,1, -22499,161,2.3.2,0,1,1.0 -22499,124,2.3,1,1,1.0 -20589,142,1.4.3,0,1,1.0 -20589,126,1.4,1,1, -2599,20,1.3.1.2,0,1,1.0 -2599,100,1.3.1,1,1,1.0 -6747,41,1.4.3.2,0,1,1.0 -6747,142,1.4.3,1,1,1.0 -6747,126,1.4,2,1,1.0 -6747,170,1,3,1, -20202,140,1.4.5.1,0,1,1.0 -20202,41,1.4.5,1,1,1.0 -20202,126,1.4,2,1, -18857,132,1.3.3.2,0,1,1.0 -18857,97,1.3.3,1,1, -17863,126,1.4,0,1,1.0 -17863,170,1,1,1,1.0 -17407,120,1.2.3,0,1,1.0 -17407,67,1.2,1,1, -3007,22,2.1.1.5,0,1,1.0 -3007,80,2.1.1,1,1, -17607,124,1.2.1,0,1,1.0 -17607,126,1.2,1,1, -12972,79,2.1.3.5,0,1,1.0 -12972,74,2.1.3,1,1, -10757,60,2.1.1.3,0,1,1.0 -10757,80,2.1.1,1,1, -21492,149,2.1.2.3,0,1,1.0 -21492,159,2.1.2,1,1,1.0 -14057,85,1.3.1,0,1,1.0 -14057,106,1.3,1,1, -18552,130,1.3.5,0,1,1.0 -18552,106,1.3,1,1, -1482,13,2.1.3.5,0,1,1.0 -1482,148,2.1.3,1,1,1.0 -13015,79,2.1.3.6,0,1,1.0 -13015,97,2.1.3,1,1, -19101,135,1.3.2.1,0,1,1.0 -19101,130,1.3.2,1,1,1.0 -5657,35,1.1.3,0,1,1.0 -5657,105,1.1,1,1, -11858,71,1.3.1.2,0,1,1.0 -11858,39,1.3.1,1,1,1.0 -20569,142,1.4.3,0,1,1.0 -20569,126,1.4,1,1, -20545,142,1.4.2,0,1,1.0 -20545,126,1.4,1,1, -22243,157,1.4.1,0,1,1.0 -22243,126,1.4,1,1, -6099,38,2.1.1.1,0,1,1.0 -6099,106,2.1.1,1,1,1.0 -19144,135,1.3.2.1,0,1,1.0 -19144,130,1.3.2,1,1,1.0 -2807,22,2.1.1.1,0,1,1.0 -2807,106,2.1.1,1,1, -8945,53,1.4.2.3,0,1,1.0 -8945,142,1.4.2,1,1,1.0 -8945,126,1.4,2,1, -1907,13,2.3.1,0,1,1.0 -1907,124,2.3,1,1, -13657,82,2.1.2.1,0,1,1.0 -13657,159,2.1.2,1,1, -17565,123,1.1.2,0,1,1.0 -17565,126,1.1,1,1,1.0 -6866,41,1.4.5,0,1,1.0 -6866,126,1.4,1,1, -18559,130,1.3.5,0,1,1.0 -18559,106,1.3,1,1,1.0 -11399,64,1.1.2,0,1,1.0 -11399,105,1.1,1,1,1.0 -7008,42,1.3.1.4,0,1,1.0 -7008,99,1.3.1,1,1, -20565,142,1.4.3,0,1,1.0 -20565,126,1.4,1,1, -15457,101,1.1.1,0,1,1.0 -15457,106,1.1,1,1, -19131,135,1.3.2.1,0,1,1.0 -19131,58,1.3.2,1,1,1.0 -4557,26,2.1.3.3,0,1,1.0 -4557,126,2.1.3,1,1, -157,3,1.3.1.4,0,1,1.0 -157,99,1.3.1,1,1, -5699,35,1.1.3,0,1,1.0 -5699,105,1.1,1,1,1.0 -8057,47,2.1.2.4,0,1,1.0 -8057,79,2.1.2,1,1, -13792,82,2.1.2.3,0,1,1.0 -13792,159,2.1.2,1,1,1.0 -13338,79,2.3.3,0,1,1.0 -13338,126,2.3,1,1,1.0 -7682,46,1.3.1.2,0,1,1.0 -7682,93,1.3.1,1,1, -11092,62,2.1.2.2,0,1,1.0 -11092,159,2.1.2,1,1,1.0 -1431,13,2.1.3.4,0,1,1.0 -1431,74,2.1.3,1,1,1.0 -15314,99,2.1,0,1,1.0 -15314,98,2,1,1,1.0 -10207,57,2.3.3,0,1,1.0 -10207,99,2.3,1,1, -2292,16,2.3.1,0,1,1.0 -2292,99,2.3,1,1,1.0 -4242,23,2.3.1,0,1,1.0 -4242,95,2.3,1,1,1.0 -6723,41,1.4.3.2,0,1,1.0 -6723,142,1.4.3,1,1, -6704,41,1.4.3.2,0,1,1.0 -6704,142,1.4.3,1,1,1.0 -6704,126,1.4,2,1, -15305,99,2.1,0,1,1.0 -15305,98,2,1,1,1.0 -15305,102,2,1,1,1.0 -15305,170,1,2,1, -6299,38,2.1.1.5,0,1,1.0 -6299,148,2.1.1,1,1,1.0 -9167,53,1.4.3.6,0,1,1.0 -9167,142,1.4.3,1,1, -23082,165,2.1.2.2,0,1,1.0 -23082,159,2.1.2,1,1, -15325,99,2.1,0,1,1.0 -15325,98,2,1,1,1.0 -15325,102,2,1,1, -15344,99,2.1,0,1,1.0 -15344,98,2,1,1, -9157,53,1.4.3.6,0,1,1.0 -9157,142,1.4.3,1,1, -23007,165,2.1.2.1,0,1,1.0 -23007,81,2.1.2,1,1, -8299,49,1.3.1.4,0,1,1.0 -8299,99,1.3.1,1,1,1.0 -8615,50,1.3.1.5,0,1,1.0 -8615,39,1.3.1,1,1,1.0 -12817,79,2.1.3.2,0,1,1.0 -12817,108,2.1.3,1,1,1.0 -3002,22,2.1.1.5,0,1,1.0 -3002,106,2.1.1,1,1, -18587,130,1.3.5,0,1,1.0 -18587,29,1.3,1,1,1.0 -6701,41,1.4.3.2,0,1,1.0 -6701,142,1.4.3,1,1, -19114,135,1.3.2.1,0,1,1.0 -19114,130,1.3.2,1,1,1.0 -20534,142,1.4.2,0,1,1.0 -20534,126,1.4,1,1, -18157,127,1.1.3,0,1,1.0 -18157,126,1.1,1,1, -4407,25,1.3.1.7,0,1,1.0 -4407,85,1.3.1,1,1, -7099,43,1.3.1.5,0,1,1.0 -7099,93,1.3.1,1,1,1.0 -1451,13,2.1.3.5,0,1,1.0 -1451,97,2.1.3,1,1, -11592,68,1.3.1.1,0,1,1.0 -11592,93,1.3.1,1,1,1.0 -5399,32,1.2.3,0,1,1.0 -5399,106,1.2,1,1,1.0 -11344,63,1.4.4.5,0,1,1.0 -11344,0,1.4.4,1,1, -11344,40,1.4.4,1,1,1.0 -15319,99,2.1,0,1,1.0 -15319,98,2,1,1, -15319,102,2,1,1, -9471,53,1.4.5.8,0,1,1.0 -9471,41,1.4.5,1,1, -17894,126,1.4,0,1,1.0 -17894,170,1,1,1,1.0 -2357,16,2.3.3,0,1,1.0 -2357,126,2.3,1,1, -6884,41,1.4.5,0,1,1.0 -6884,126,1.4,1,1, -12851,79,2.1.3.3,0,1,1.0 -12851,126,2.1.3,1,1, -20657,143,2.1.1.2,0,1,1.0 -20657,148,2.1.1,1,1, -6721,41,1.4.3.2,0,1,1.0 -6721,142,1.4.3,1,1, -20587,142,1.4.3,0,1,1.0 -20587,126,1.4,1,1,1.0 -20587,170,1,2,1,1.0 -19137,135,1.3.2.1,0,1,1.0 -19137,130,1.3.2,1,1,1.0 -19137,58,1.3.2,1,1,1.0 -19137,106,1.3,2,1,1.0 -5607,34,1.3.3.3,0,1,1.0 -5607,75,1.3.3,1,1, -16638,115,1.1.3,0,1,1.0 -16638,86,1.1,1,1,1.0 -17878,126,1.4,0,1,1.0 -17878,170,1,1,1,1.0 -11314,63,1.4.4.5,0,1,1.0 -11314,0,1.4.4,1,1, -11314,40,1.4.4,1,1,1.0 -20542,142,1.4.2,0,1,1.0 -20542,126,1.4,1,1, -18589,130,1.3.5,0,1,1.0 -18589,106,1.3,1,1, -15341,99,2.1,0,1,1.0 -15341,102,2,1,1, -20742,143,2.1.1.3,0,1,1.0 -20742,148,2.1.1,1,1,1.0 -17871,126,1.4,0,1,1.0 -17871,170,1,1,1, -10707,60,2.1.1.2,0,1,1.0 -10707,106,2.1.1,1,1, -4136,23,1.4.2.7,0,1,1.0 -4136,142,1.4.2,1,1, -20503,142,1.4.2,0,1,1.0 -20503,126,1.4,1,1, -17856,126,1.4,0,1,1.0 -17856,170,1,1,1,1.0 -15642,103,1.1.1,0,1,1.0 -15642,106,1.1,1,1,1.0 -13707,82,2.1.2.2,0,1,1.0 -13707,81,2.1.2,1,1, -9184,53,1.4.3.6,0,1,1.0 -9184,142,1.4.3,1,1, -9469,53,1.4.5.8,0,1,1.0 -9469,41,1.4.5,1,1, -15674,104,1.1.1,0,1,1.0 -15674,126,1.1,1,1, -20525,142,1.4.2,0,1,1.0 -20525,126,1.4,1,1, -19105,135,1.3.2.1,0,1,1.0 -19105,58,1.3.2,1,1,1.0 -3357,22,2.1.3.7,0,1,1.0 -3357,106,2.1.3,1,1, -20570,142,1.4.3,0,1,1.0 -20570,126,1.4,1,1, -9488,53,1.4.5.8,0,1,1.0 -9488,41,1.4.5,1,1, -11309,63,1.4.4.5,0,1,1.0 -11309,40,1.4.4,1,1,1.0 -11309,0,1.4.4,1,1, -13238,79,2.3.1,0,1,1.0 -13238,124,2.3,1,1,1.0 -3099,22,2.1.3.1,0,1,1.0 -3099,126,2.1.3,1,1,1.0 -4465,26,2.1.3.1,0,1,1.0 -4465,106,2.1.3,1,1, -20516,142,1.4.2,0,1,1.0 -20516,126,1.4,1,1, -15329,99,2.1,0,1,1.0 -15329,102,2,1,1, -6891,41,1.4.5,0,1,1.0 -6891,126,1.4,1,1, -999,9,1.3.3.6,0,1,1.0 -999,97,1.3.3,1,1,1.0 -10907,61,1.3.3.3,0,1,1.0 -10907,97,1.3.3,1,1, -5388,32,1.2.3,0,1,1.0 -5388,106,1.2,1,1,1.0 -1457,13,2.1.3.5,0,1,1.0 -1457,108,2.1.3,1,1, -4649,26,2.1.3.4,0,1,1.0 -4649,97,2.1.3,1,1,1.0 -23299,167,1.1.1,0,1,1.0 -23299,105,1.1,1,1,1.0 -3819,22,2.3.3,0,1,1.0 -3819,126,2.3,1,1, -16407,111,1.3.4.1,0,1,1.0 -16407,81,1.3.4,1,1, -21407,149,2.1.2.2,0,1,1.0 -21407,81,2.1.2,1,1, -7607,45,2.1.4.2.2,0,1,1.0 -7607,79,2.1.4.2,1,1, -8515,49,2.1.2.3,0,1,1.0 -8515,81,2.1.2,1,1,1.0 -12809,79,2.1.3.2,0,1,1.0 -12809,106,2.1.3,1,1, -17858,126,1.4,0,1,1.0 -17858,170,1,1,1,1.0 -17862,126,1.4,0,1,1.0 -17862,170,1,1,1,1.0 -11333,63,1.4.4.5,0,1,1.0 -11333,40,1.4.4,1,1,1.0 -11333,0,1.4.4,1,1,1.0 -11333,126,1.4,2,1, -20563,142,1.4.3,0,1,1.0 -20563,126,1.4,1,1,1.0 -20563,170,1,2,1,1.0 -20234,140,1.4.5.1,0,1,1.0 -20234,41,1.4.5,1,1, -1344,13,2.1.3.2,0,1,1.0 -1344,148,2.1.3,1,1,1.0 -9200,53,1.4.3.6,0,1,1.0 -9200,142,1.4.3,1,1, -18187,127,1.1.3,0,1,1.0 -18187,126,1.1,1,1,1.0 -18593,130,1.3.5,0,1,1.0 -18593,29,1.3,1,1,1.0 -18593,106,1.3,1,1, -20227,140,1.4.5.1,0,1,1.0 -20227,41,1.4.5,1,1, -11807,70,1.3.3.4,0,1,1.0 -11807,97,1.3.3,1,1, -13652,82,2.1.2.1,0,1,1.0 -13652,84,2.1.2,1,1, -17886,126,1.4,0,1,1.0 -17886,170,1,1,1,1.0 -17449,120,1.2.3,0,1,1.0 -17449,126,1.2,1,1,1.0 -12542,78,2.1.1.5,0,1,1.0 -12542,80,2.1.1,1,1,1.0 -199,3,1.3.1.4,0,1,1.0 -199,85,1.3.1,1,1,1.0 -6900,41,1.4.5,0,1,1.0 -6900,126,1.4,1,1, -20561,142,1.4.3,0,1,1.0 -20561,126,1.4,1,1,1.0 -20561,170,1,2,1,1.0 -8369,49,1.3.3.1,0,1,1.0 -8369,99,1.3.3,1,1, -8291,49,1.3.1.4,0,1,1.0 -8291,85,1.3.1,1,1, -16891,117,2.1.1.3,0,1,1.0 -16891,85,2.1.1,1,1, -9177,53,1.4.3.6,0,1,1.0 -9177,142,1.4.3,1,1, -9462,53,1.4.5.8,0,1,1.0 -9462,41,1.4.5,1,1,1.0 -9462,126,1.4,2,1, -11326,63,1.4.4.5,0,1,1.0 -11326,40,1.4.4,1,1,1.0 -8909,53,1.4.2.3,0,1,1.0 -8909,142,1.4.2,1,1,1.0 -8909,126,1.4,2,1, -8917,53,1.4.2.3,0,1,1.0 -8917,142,1.4.2,1,1, -15333,99,2.1,0,1,1.0 -15333,102,2,1,1,1.0 -15333,98,2,1,1,1.0 -15333,170,1,2,1, -6705,41,1.4.3.2,0,1,1.0 -6705,142,1.4.3,1,1,1.0 -6705,126,1.4,2,1,1.0 -6705,170,1,3,1,1.0 -23349,168,1.1.2,0,1,1.0 -23349,86,1.1,1,1,1.0 -20593,142,1.4.3,0,1,1.0 -20593,126,1.4,1,1, -9457,53,1.4.5.8,0,1,1.0 -9457,41,1.4.5,1,1, -6725,41,1.4.3.2,0,1,1.0 -6725,142,1.4.3,1,1, -4106,23,1.4.2.7,0,1,1.0 -4106,142,1.4.2,1,1,1.0 -4106,126,1.4,2,1, -22210,157,1.4.1,0,1,1.0 -22210,126,1.4,1,1, -1554,13,2.1.3.7,0,1,1.0 -1554,126,2.1.3,1,1, -17900,126,1.4,0,1,1.0 -17900,170,1,1,1,1.0 -4102,23,1.4.2.7,0,1,1.0 -4102,142,1.4.2,1,1,1.0 -4102,126,1.4,2,1, -12862,79,2.1.3.3,0,1,1.0 -12862,108,2.1.3,1,1, -5292,31,2.1.4.2.1,0,1,1.0 -5292,79,2.1.4.2,1,1,1.0 -12967,79,2.1.3.5,0,1,1.0 -12967,97,2.1.3,1,1, -12812,79,2.1.3.2,0,1,1.0 -12812,106,2.1.3,1,1, -21015,144,2.1.2.4,0,1,1.0 -21015,58,2.1.2,1,1,1.0 -15335,99,2.1,0,1,1.0 -15335,98,2,1,1,1.0 -15335,102,2,1,1,1.0 -15335,170,1,2,1,1.0 -11619,68,1.3.1.2,0,1,1.0 -11619,85,1.3.1,1,1, -19109,135,1.3.2.1,0,1,1.0 -19109,130,1.3.2,1,1,1.0 -19109,58,1.3.2,1,1,1.0 -19109,106,1.3,2,1,1.0 -13349,79,2.3.3,0,1,1.0 -13349,126,2.3,1,1,1.0 -20523,142,1.4.2,0,1,1.0 -20523,126,1.4,1,1, -5692,35,1.1.3,0,1,1.0 -5692,86,1.1,1,1,1.0 -23641,168,2.3.3,0,1,1.0 -23641,84,2.3,1,1, -742,6,2.1.2.2,0,1,1.0 -742,58,2.1.2,1,1,1.0 -20206,140,1.4.5.1,0,1,1.0 -20206,41,1.4.5,1,1,1.0 -20206,126,1.4,2,1, -12332,78,2.1.1.1,0,1,1.0 -12332,85,2.1.1,1,1, -9163,53,1.4.3.6,0,1,1.0 -9163,142,1.4.3,1,1,1.0 -9163,126,1.4,2,1,1.0 -9163,170,1,3,1,1.0 -19118,135,1.3.2.1,0,1,1.0 -19118,58,1.3.2,1,1,1.0 -11752,70,1.3.3.2,0,1,1.0 -11752,99,1.3.3,1,1, -11857,71,1.3.1.2,0,1,1.0 -11857,100,1.3.1,1,1, -20203,140,1.4.5.1,0,1,1.0 -20203,41,1.4.5,1,1, -4558,26,2.1.3.3,0,1,1.0 -4558,108,2.1.3,1,1,1.0 -19141,135,1.3.2.1,0,1,1.0 -19141,130,1.3.2,1,1,1.0 -21107,146,1.3.1.1,0,1,1.0 -21107,93,1.3.1,1,1, -20215,140,1.4.5.1,0,1,1.0 -20215,41,1.4.5,1,1,1.0 -20215,126,1.4,2,1, -19116,135,1.3.2.1,0,1,1.0 -19116,58,1.3.2,1,1,1.0 -19116,130,1.3.2,1,1,1.0 -19116,106,1.3,2,1,1.0 -19116,29,1.3,2,1, -13308,79,2.3.3,0,1,1.0 -13308,84,2.3,1,1,1.0 -22158,156,1.3.1.7,0,1,1.0 -22158,39,1.3.1,1,1,1.0 -18569,130,1.3.5,0,1,1.0 -18569,106,1.3,1,1, -18569,29,1.3,1,1, -8943,53,1.4.2.3,0,1,1.0 -8943,142,1.4.2,1,1, -4140,23,1.4.2.7,0,1,1.0 -4140,142,1.4.2,1,1,1.0 -4140,126,1.4,2,1, -12658,79,1.3.1.6,0,1,1.0 -12658,93,1.3.1,1,1,1.0 -8938,53,1.4.2.3,0,1,1.0 -8938,142,1.4.2,1,1, -8915,53,1.4.2.3,0,1,1.0 -8915,142,1.4.2,1,1,1.0 -8915,126,1.4,2,1, -14269,88,1.1.3,0,1,1.0 -14269,94,1.1,1,1, -20507,142,1.4.2,0,1,1.0 -20507,126,1.4,1,1, -18138,127,1.1.1,0,1,1.0 -18138,106,1.1,1,1,1.0 -19143,135,1.3.2.1,0,1,1.0 -19143,58,1.3.2,1,1,1.0 -19143,130,1.3.2,1,1,1.0 -19143,29,1.3,2,1, -19143,106,1.3,2,1, -9456,53,1.4.5.8,0,1,1.0 -9456,41,1.4.5,1,1,1.0 -9456,126,1.4,2,1, -9458,53,1.4.5.8,0,1,1.0 -9458,41,1.4.5,1,1,1.0 -9458,126,1.4,2,1, -2457,18,1.3.3.2,0,1,1.0 -2457,99,1.3.3,1,1, -11307,63,1.4.4.5,0,1,1.0 -11307,40,1.4.4,1,1, -11307,0,1.4.4,1,1, -1436,13,2.1.3.4,0,1,1.0 -1436,74,2.1.3,1,1, -20221,140,1.4.5.1,0,1,1.0 -20221,41,1.4.5,1,1, -20501,142,1.4.2,0,1,1.0 -20501,126,1.4,1,1, -18565,130,1.3.5,0,1,1.0 -18565,106,1.3,1,1, -18565,29,1.3,1,1, -20699,143,2.1.1.2,0,1,1.0 -20699,80,2.1.1,1,1,1.0 -9483,53,1.4.5.8,0,1,1.0 -9483,41,1.4.5,1,1, -20597,142,1.4.3,0,1,1.0 -20597,126,1.4,1,1,1.0 -20597,170,1,2,1,1.0 -10191,57,2.3.2,0,1,1.0 -10191,155,2.3,1,1,1.0 -11907,72,1.3.1.2,0,1,1.0 -11907,100,1.3.1,1,1, -3215,22,2.1.3.4,0,1,1.0 -3215,108,2.1.3,1,1,1.0 -20509,142,1.4.2,0,1,1.0 -20509,126,1.4,1,1,1.0 -20509,170,1,2,1, -23642,168,2.3.3,0,1,1.0 -23642,126,2.3,1,1,1.0 -21115,146,1.3.1.1,0,1,1.0 -21115,85,1.3.1,1,1, -18579,130,1.3.5,0,1,1.0 -18579,29,1.3,1,1, -6733,41,1.4.3.2,0,1,1.0 -6733,142,1.4.3,1,1, -22203,157,1.4.1,0,1,1.0 -22203,126,1.4,1,1, -18555,130,1.3.5,0,1,1.0 -18555,29,1.3,1,1, -18555,106,1.3,1,1,1.0 -12399,78,2.1.1.2,0,1,1.0 -12399,148,2.1.1,1,1,1.0 -20899,144,2.1.2.1,0,1,1.0 -20899,79,2.1.2,1,1,1.0 -1992,13,2.3.2,0,1,1.0 -1992,126,2.3,1,1,1.0 -12249,77,1.3.3.6,0,1,1.0 -12249,97,1.3.3,1,1,1.0 -14757,95,2.3,0,1,1.0 -14757,98,2,1,1, -7592,45,2.1.4.2.1,0,1,1.0 -7592,79,2.1.4.2,1,1,1.0 -6709,41,1.4.3.2,0,1,1.0 -6709,142,1.4.3,1,1,1.0 -6709,126,1.4,2,1, -15327,99,2.1,0,1,1.0 -15327,102,2,1,1, -15327,98,2,1,1, -849,6,2.1.2.4,0,1,1.0 -849,58,2.1.2,1,1,1.0 -6867,41,1.4.5,0,1,1.0 -6867,126,1.4,1,1, -3942,23,1.3.3.1,0,1,1.0 -3942,75,1.3.3,1,1,1.0 -1399,13,2.1.3.3,0,1,1.0 -1399,74,2.1.3,1,1, -17884,126,1.4,0,1,1.0 -17884,170,1,1,1, -11315,63,1.4.4.5,0,1,1.0 -11315,0,1.4.4,1,1, -11315,40,1.4.4,1,1, -752,6,2.1.2.3,0,1,1.0 -752,81,2.1.2,1,1, -20572,142,1.4.3,0,1,1.0 -20572,126,1.4,1,1, -19117,135,1.3.2.1,0,1,1.0 -19117,58,1.3.2,1,1,1.0 -21563,150,1.1.1,0,1,1.0 -21563,126,1.1,1,1,1.0 -14708,95,1.2.3,0,1,1.0 -14708,67,1.2,1,1,1.0 -6715,41,1.4.3.2,0,1,1.0 -6715,142,1.4.3,1,1,1.0 -6715,126,1.4,2,1, -7699,46,1.3.1.2,0,1,1.0 -7699,39,1.3.1,1,1,1.0 -19145,135,1.3.2.1,0,1,1.0 -19145,130,1.3.2,1,1,1.0 -19145,58,1.3.2,1,1,1.0 -19145,29,1.3,2,1, -1555,13,2.1.3.7,0,1,1.0 -1555,74,2.1.3,1,1, -8903,53,1.4.2.3,0,1,1.0 -8903,142,1.4.2,1,1, -1799,13,2.1.4.1.4,0,1,1.0 -1799,79,2.1.4.1,1,1,1.0 -5057,31,2.1.4.1.1,0,1,1.0 -5057,81,2.1.4.1,1,1, -4107,23,1.4.2.7,0,1,1.0 -4107,142,1.4.2,1,1, -9174,53,1.4.3.6,0,1,1.0 -9174,142,1.4.3,1,1, -6892,41,1.4.5,0,1,1.0 -6892,126,1.4,1,1, -16315,111,1.3.1.6,0,1,1.0 -16315,99,1.3.1,1,1, -17889,126,1.4,0,1,1.0 -17889,170,1,1,1, -1807,13,2.1.4.2.1,0,1,1.0 -1807,81,2.1.4.2,1,1, -8931,53,1.4.2.3,0,1,1.0 -8931,142,1.4.2,1,1,1.0 -8931,126,1.4,2,1, -6942,42,1.3.1.1,0,1,1.0 -6942,85,1.3.1,1,1,1.0 -18578,130,1.3.5,0,1,1.0 -18578,106,1.3,1,1, -13019,79,2.1.3.6,0,1,1.0 -13019,97,2.1.3,1,1, -23182,165,2.1.2.4,0,1,1.0 -23182,79,2.1.2,1,1, -17885,126,1.4,0,1,1.0 -17885,170,1,1,1,1.0 -8557,49,2.1.2.4,0,1,1.0 -8557,84,2.1.2,1,1, -8913,53,1.4.2.3,0,1,1.0 -8913,142,1.4.2,1,1,1.0 -8913,126,1.4,2,1,1.0 -8913,170,1,3,1,1.0 -12907,79,2.1.3.4,0,1,1.0 -12907,148,2.1.3,1,1, -20548,142,1.4.2,0,1,1.0 -20548,126,1.4,1,1, -1594,13,2.1.3.7,0,1,1.0 -1594,106,2.1.3,1,1,1.0 -19129,135,1.3.2.1,0,1,1.0 -19129,130,1.3.2,1,1,1.0 -19129,58,1.3.2,1,1,1.0 -19129,106,1.3,2,1, -19129,29,1.3,2,1, -18292,129,1.1.2,0,1,1.0 -18292,94,1.1,1,1,1.0 -2057,14,1.3.3.4,0,1,1.0 -2057,75,1.3.3,1,1, -18600,130,1.3.5,0,1,1.0 -18600,29,1.3,1,1,1.0 -18600,106,1.3,1,1, -10299,58,1.2.2,0,1,1.0 -10299,67,1.2,1,1,1.0 -4115,23,1.4.2.7,0,1,1.0 -4115,142,1.4.2,1,1,1.0 -4115,126,1.4,2,1, -20246,140,1.4.5.1,0,1,1.0 -20246,41,1.4.5,1,1, -1208,13,1.2.2,0,1,1.0 -1208,126,1.2,1,1,1.0 -2392,16,2.3.3,0,1,1.0 -2392,126,2.3,1,1,1.0 -3107,22,2.1.3.2,0,1,1.0 -3107,126,2.1.3,1,1, -2608,21,1.3.1.3,0,1,1.0 -2608,85,1.3.1,1,1, -19128,135,1.3.2.1,0,1,1.0 -19128,58,1.3.2,1,1,1.0 -19128,130,1.3.2,1,1,1.0 -19128,29,1.3,2,1, -13086,79,2.1.3.7,0,1,1.0 -13086,97,2.1.3,1,1, -21591,150,1.1.1,0,1,1.0 -21591,105,1.1,1,1, -11642,68,1.3.1.2,0,1,1.0 -11642,85,1.3.1,1,1,1.0 -11336,63,1.4.4.5,0,1,1.0 -11336,0,1.4.4,1,1, -1581,13,2.1.3.7,0,1,1.0 -1581,108,2.1.3,1,1, -5392,32,1.2.3,0,1,1.0 -5392,106,1.2,1,1,1.0 -6887,41,1.4.5,0,1,1.0 -6887,126,1.4,1,1,1.0 -6887,170,1,2,1,1.0 -20225,140,1.4.5.1,0,1,1.0 -20225,41,1.4.5,1,1, -8932,53,1.4.2.3,0,1,1.0 -8932,142,1.4.2,1,1,1.0 -8932,126,1.4,2,1, -9479,53,1.4.5.8,0,1,1.0 -9479,41,1.4.5,1,1,1.0 -9479,126,1.4,2,1, -20595,142,1.4.3,0,1,1.0 -20595,126,1.4,1,1, -23507,168,2.3.1,0,1,1.0 -23507,99,2.3,1,1, -21007,144,2.1.2.4,0,1,1.0 -21007,84,2.1.2,1,1, -23674,169,1.1.1,0,1,1.0 -23674,126,1.1,1,1, -1562,13,2.1.3.7,0,1,1.0 -1562,108,2.1.3,1,1, -15477,101,1.1.1,0,1,1.0 -15477,86,1.1,1,1,1.0 -14458,90,1.3.1.7,0,1,1.0 -14458,99,1.3.1,1,1, -19127,135,1.3.2.1,0,1,1.0 -19127,58,1.3.2,1,1,1.0 -22225,157,1.4.1,0,1,1.0 -22225,126,1.4,1,1, -22408,161,2.3.1,0,1,1.0 -22408,124,2.3,1,1,1.0 -21065,145,1.3.1.4,0,1,1.0 -21065,99,1.3.1,1,1, -20562,142,1.4.3,0,1,1.0 -20562,126,1.4,1,1, -23637,168,2.3.3,0,1,1.0 -23637,124,2.3,1,1,1.0 -20559,142,1.4.3,0,1,1.0 -20559,126,1.4,1,1,1.0 -20559,170,1,2,1, -11038,62,2.1.2.1,0,1,1.0 -11038,159,2.1.2,1,1,1.0 -9452,53,1.4.5.8,0,1,1.0 -9452,41,1.4.5,1,1,1.0 -9452,126,1.4,2,1, -6860,41,1.4.5,0,1,1.0 -6860,126,1.4,1,1, -22214,157,1.4.1,0,1,1.0 -22214,126,1.4,1,1,1.0 -22214,170,1,2,1,1.0 -9463,53,1.4.5.8,0,1,1.0 -9463,41,1.4.5,1,1,1.0 -9463,126,1.4,2,1,1.0 -9463,170,1,3,1,1.0 -20407,141,1.3.3.2,0,1,1.0 -20407,99,1.3.3,1,1, -20584,142,1.4.3,0,1,1.0 -20584,126,1.4,1,1, -18688,131,2.1.1.2,0,1,1.0 -18688,106,2.1.1,1,1,1.0 -18699,131,2.1.1.2,0,1,1.0 -18699,106,2.1.1,1,1,1.0 -4150,23,1.4.2.7,0,1,1.0 -4150,142,1.4.2,1,1, -17399,119,1.3.1.1,0,1,1.0 -17399,93,1.3.1,1,1,1.0 -18597,130,1.3.5,0,1,1.0 -18597,106,1.3,1,1,1.0 -11199,62,2.1.2.4,0,1,1.0 -11199,58,2.1.2,1,1,1.0 -14374,89,1.2.1,0,1,1.0 -14374,67,1.2,1,1, -17869,126,1.4,0,1,1.0 -17869,170,1,1,1, -20588,142,1.4.3,0,1,1.0 -20588,126,1.4,1,1, -23357,168,1.3.3.1,0,1,1.0 -23357,97,1.3.3,1,1, -19449,135,2.1.3.5,0,1,1.0 -19449,97,2.1.3,1,1,1.0 -12588,79,1.3.1.1,0,1,1.0 -12588,100,1.3.1,1,1,1.0 -12922,79,2.1.3.4,0,1,1.0 -12922,148,2.1.3,1,1, -6707,41,1.4.3.2,0,1,1.0 -6707,142,1.4.3,1,1, -6739,41,1.4.3.2,0,1,1.0 -6739,142,1.4.3,1,1, -4715,26,2.1.3.6,0,1,1.0 -4715,73,2.1.3,1,1,1.0 -18202,128,1.1.2,0,1,1.0 -18202,106,1.1,1,1, -12786,79,2.1.3.1,0,1,1.0 -12786,73,2.1.3,1,1, -21765,153,1.3.1.4,0,1,1.0 -21765,100,1.3.1,1,1,1.0 -4132,23,1.4.2.7,0,1,1.0 -4132,142,1.4.2,1,1,1.0 -4132,126,1.4,2,1, -11319,63,1.4.4.5,0,1,1.0 -11319,0,1.4.4,1,1,1.0 -11319,40,1.4.4,1,1, -20992,144,2.1.2.3,0,1,1.0 -20992,79,2.1.2,1,1,1.0 -6938,42,1.3.1.1,0,1,1.0 -6938,85,1.3.1,1,1,1.0 -16349,111,1.3.1.6,0,1,1.0 -16349,85,1.3.1,1,1,1.0 -13569,81,2.1.4.1,0,1,1.0 -13569,102,2.1.4,1,1,1.0 -11069,62,2.1.2.2,0,1,1.0 -11069,58,2.1.2,1,1, -12916,79,2.1.3.4,0,1,1.0 -12916,74,2.1.3,1,1,1.0 -6731,41,1.4.3.2,0,1,1.0 -6731,142,1.4.3,1,1,1.0 -6731,126,1.4,2,1, -8099,47,2.1.2.4,0,1,1.0 -8099,84,2.1.2,1,1,1.0 -22228,157,1.4.1,0,1,1.0 -22228,126,1.4,1,1, -22949,163,2.1.4.2.2,0,1,1.0 -22949,81,2.1.4.2,1,1,1.0 -18564,130,1.3.5,0,1,1.0 -18564,29,1.3,1,1, -18564,106,1.3,1,1,1.0 -18149,127,1.1.1,0,1,1.0 -18149,106,1.1,1,1,1.0 -19102,135,1.3.2.1,0,1,1.0 -19102,130,1.3.2,1,1,1.0 -19102,58,1.3.2,1,1,1.0 -19102,106,1.3,2,1,1.0 -19102,29,1.3,2,1, -8911,53,1.4.2.3,0,1,1.0 -8911,142,1.4.2,1,1,1.0 -8911,126,1.4,2,1, -18133,127,1.1.1,0,1,1.0 -18133,105,1.1,1,1, -12607,79,1.3.1.4,0,1,1.0 -12607,99,1.3.1,1,1, -21508,149,2.1.2.4,0,1,1.0 -21508,84,2.1.2,1,1,1.0 -19158,135,1.3.4.1,0,1,1.0 -19158,81,1.3.4,1,1,1.0 -7949,47,2.1.2.1,0,1,1.0 -7949,84,2.1.2,1,1,1.0 -20577,142,1.4.3,0,1,1.0 -20577,126,1.4,1,1, -19007,134,1.3.3.5,0,1,1.0 -19007,75,1.3.3,1,1, -12557,79,1.3.1.1,0,1,1.0 -12557,99,1.3.1,1,1, -20248,140,1.4.5.1,0,1,1.0 -20248,41,1.4.5,1,1, -11303,63,1.4.4.5,0,1,1.0 -11303,40,1.4.4,1,1, -11303,0,1.4.4,1,1, -18557,130,1.3.5,0,1,1.0 -18557,106,1.3,1,1, -21741,153,1.3.1.1,0,1,1.0 -21741,93,1.3.1,1,1,1.0 -11317,63,1.4.4.5,0,1,1.0 -11317,0,1.4.4,1,1, -6703,41,1.4.3.2,0,1,1.0 -6703,142,1.4.3,1,1, -4383,24,1.1.1,0,1,1.0 -4383,86,1.1,1,1, -23274,167,1.1.1,0,1,1.0 -23274,126,1.1,1,1, -7665,46,1.3.1.2,0,1,1.0 -7665,39,1.3.1,1,1,1.0 -14207,87,1.1.1,0,1,1.0 -14207,105,1.1,1,1, -6349,39,1.3.1,0,1,1.0 -6349,106,1.3,1,1,1.0 -18576,130,1.3.5,0,1,1.0 -18576,106,1.3,1,1,1.0 -18576,29,1.3,1,1, -2282,16,2.3.1,0,1,1.0 -2282,124,2.3,1,1, -7669,46,1.3.1.2,0,1,1.0 -7669,100,1.3.1,1,1, -4146,23,1.4.2.7,0,1,1.0 -4146,142,1.4.2,1,1, -4125,23,1.4.2.7,0,1,1.0 -4125,142,1.4.2,1,1, -19138,135,1.3.2.1,0,1,1.0 -19138,130,1.3.2,1,1,1.0 -19138,58,1.3.2,1,1,1.0 -19138,106,1.3,2,1, -19138,29,1.3,2,1, -16533,113,1.1.1,0,1,1.0 -16533,94,1.1,1,1, -6871,41,1.4.5,0,1,1.0 -6871,126,1.4,1,1, -19515,135,2.1.3.7,0,1,1.0 -19515,74,2.1.3,1,1, -20214,140,1.4.5.1,0,1,1.0 -20214,41,1.4.5,1,1,1.0 -20214,126,1.4,2,1,1.0 -20214,170,1,3,1,1.0 -14224,87,1.1.1,0,1,1.0 -14224,86,1.1,1,1, -14958,97,1.3.3,0,1,1.0 -14958,29,1.3,1,1, -8007,47,2.1.2.3,0,1,1.0 -8007,81,2.1.2,1,1, -2857,22,2.1.1.2,0,1,1.0 -2857,106,2.1.1,1,1, -10115,57,2.3.1,0,1,1.0 -10115,99,2.3,1,1,1.0 -4111,23,1.4.2.7,0,1,1.0 -4111,142,1.4.2,1,1,1.0 -4111,126,1.4,2,1, -6889,41,1.4.5,0,1,1.0 -6889,126,1.4,1,1, -11599,68,1.3.1.1,0,1,1.0 -11599,99,1.3.1,1,1,1.0 -19126,135,1.3.2.1,0,1,1.0 -19126,130,1.3.2,1,1,1.0 -16432,111,1.3.4.1,0,1,1.0 -16432,77,1.3.4,1,1, -15334,99,2.1,0,1,1.0 -15334,98,2,1,1,1.0 -15334,102,2,1,1,1.0 -15334,170,1,2,1,1.0 -11557,68,1.3.1.1,0,1,1.0 -11557,100,1.3.1,1,1, -11058,62,2.1.2.2,0,1,1.0 -11058,58,2.1.2,1,1,1.0 -5008,31,1.3.3.3,0,1,1.0 -5008,99,1.3.3,1,1, -7115,43,1.3.1.6,0,1,1.0 -7115,85,1.3.1,1,1, -9189,53,1.4.3.6,0,1,1.0 -9189,142,1.4.3,1,1, -5749,36,1.1.1,0,1,1.0 -5749,106,1.1,1,1,1.0 -5658,35,1.1.3,0,1,1.0 -5658,126,1.1,1,1,1.0 -20537,142,1.4.2,0,1,1.0 -20537,126,1.4,1,1,1.0 -20537,170,1,2,1,1.0 -20524,142,1.4.2,0,1,1.0 -20524,126,1.4,1,1, -18562,130,1.3.5,0,1,1.0 -18562,29,1.3,1,1, -20758,143,2.1.1.4,0,1,1.0 -20758,85,2.1.1,1,1,1.0 -9152,53,1.4.3.6,0,1,1.0 -9152,142,1.4.3,1,1,1.0 -9152,126,1.4,2,1, -20585,142,1.4.3,0,1,1.0 -20585,126,1.4,1,1, -7407,45,2.1.4.1.2,0,1,1.0 -7407,79,2.1.4.1,1,1, -23519,168,2.3.1,0,1,1.0 -23519,84,2.3,1,1, -8939,53,1.4.2.3,0,1,1.0 -8939,142,1.4.2,1,1, -23157,165,2.1.2.4,0,1,1.0 -23157,81,2.1.2,1,1, -6716,41,1.4.3.2,0,1,1.0 -6716,142,1.4.3,1,1,1.0 -6716,126,1.4,2,1, -5465,33,2.1.2.2,0,1,1.0 -5465,58,2.1.2,1,1,1.0 -8926,53,1.4.2.3,0,1,1.0 -8926,142,1.4.2,1,1,1.0 -8926,126,1.4,2,1, -13002,79,2.1.3.6,0,1,1.0 -13002,148,2.1.3,1,1, -20515,142,1.4.2,0,1,1.0 -20515,126,1.4,1,1, -8108,47,2.1.3.6,0,1,1.0 -8108,97,2.1.3,1,1, -17860,126,1.4,0,1,1.0 -17860,170,1,1,1, -8947,53,1.4.2.3,0,1,1.0 -8947,142,1.4.2,1,1,1.0 -8947,126,1.4,2,1,1.0 -8947,170,1,3,1, -8308,49,1.3.1.6,0,1,1.0 -8308,99,1.3.1,1,1, -2288,16,2.3.1,0,1,1.0 -2288,95,2.3,1,1,1.0 -3837,22,2.3.3,0,1,1.0 -3837,84,2.3,1,1,1.0 -15649,103,1.1.1,0,1,1.0 -15649,105,1.1,1,1,1.0 -9156,53,1.4.3.6,0,1,1.0 -9156,142,1.4.3,1,1,1.0 -9156,126,1.4,2,1, -23407,168,1.3.3.2,0,1,1.0 -23407,75,1.3.3,1,1, -11757,70,1.3.3.2,0,1,1.0 -11757,99,1.3.3,1,1, -9154,53,1.4.3.6,0,1,1.0 -9154,142,1.4.3,1,1,1.0 -9154,126,1.4,2,1, -4357,24,1.1.1,0,1,1.0 -4357,86,1.1,1,1, -10949,61,1.3.3.3,0,1,1.0 -10949,97,1.3.3,1,1,1.0 -20535,142,1.4.2,0,1,1.0 -20535,126,1.4,1,1, -4352,24,1.1.1,0,1,1.0 -4352,106,1.1,1,1, -7938,47,2.1.2.1,0,1,1.0 -7938,58,2.1.2,1,1,1.0 -1157,12,1.2.1,0,1,1.0 -1157,106,1.2,1,1, -11311,63,1.4.4.5,0,1,1.0 -11311,40,1.4.4,1,1, -11311,0,1.4.4,1,1, -20205,140,1.4.5.1,0,1,1.0 -20205,41,1.4.5,1,1,1.0 -20205,126,1.4,2,1,1.0 -20205,170,1,3,1,1.0 -16782,117,2.1.1.1,0,1,1.0 -16782,80,2.1.1,1,1, -20576,142,1.4.3,0,1,1.0 -20576,126,1.4,1,1,1.0 -20576,170,1,2,1, -3307,22,2.1.3.6,0,1,1.0 -3307,106,2.1.3,1,1, -5707,36,1.1.1,0,1,1.0 -5707,86,1.1,1,1, -6712,41,1.4.3.2,0,1,1.0 -6712,142,1.4.3,1,1,1.0 -6712,126,1.4,2,1, -17657,124,2.3,0,1,1.0 -17657,98,2,1,1, -8914,53,1.4.2.3,0,1,1.0 -8914,142,1.4.2,1,1,1.0 -8914,126,1.4,2,1,1.0 -8914,170,1,3,1,1.0 -9175,53,1.4.3.6,0,1,1.0 -9175,142,1.4.3,1,1, -20526,142,1.4.2,0,1,1.0 -20526,126,1.4,1,1,1.0 -20526,170,1,2,1, -9485,53,1.4.5.8,0,1,1.0 -9485,41,1.4.5,1,1, -8910,53,1.4.2.3,0,1,1.0 -8910,142,1.4.2,1,1, -20554,142,1.4.3,0,1,1.0 -20554,126,1.4,1,1, -15607,103,1.1.1,0,1,1.0 -15607,126,1.1,1,1, -11324,63,1.4.4.5,0,1,1.0 -11324,40,1.4.4,1,1, -11340,63,1.4.4.5,0,1,1.0 -11340,0,1.4.4,1,1,1.0 -8215,49,1.3.1.1,0,1,1.0 -8215,99,1.3.1,1,1, -15192,99,1.2.1,0,1,1.0 -15192,67,1.2,1,1,1.0 -19299,135,2.1.3.2,0,1,1.0 -19299,108,2.1.3,1,1,1.0 -23694,169,1.1.1,0,1,1.0 -23694,106,1.1,1,1, -22223,157,1.4.1,0,1,1.0 -22223,126,1.4,1,1, -1908,13,2.3.1,0,1,1.0 -1908,126,2.3,1,1,1.0 -11339,63,1.4.4.5,0,1,1.0 -11339,0,1.4.4,1,1, -11339,40,1.4.4,1,1,1.0 -357,4,1.2.2,0,1,1.0 -357,106,1.2,1,1, -20521,142,1.4.2,0,1,1.0 -20521,126,1.4,1,1, -4207,23,2.3.1,0,1,1.0 -4207,99,2.3,1,1, -6706,41,1.4.3.2,0,1,1.0 -6706,142,1.4.3,1,1,1.0 -6706,126,1.4,2,1, -16307,111,1.3.1.6,0,1,1.0 -16307,99,1.3.1,1,1, -3332,22,2.1.3.6,0,1,1.0 -3332,97,2.1.3,1,1, -11942,72,1.3.1.2,0,1,1.0 -11942,99,1.3.1,1,1,1.0 -15343,99,2.1,0,1,1.0 -15343,102,2,1,1, -18553,130,1.3.5,0,1,1.0 -18553,106,1.3,1,1, -4249,23,2.3.1,0,1,1.0 -4249,95,2.3,1,1,1.0 -21057,145,1.3.1.4,0,1,1.0 -21057,100,1.3.1,1,1, -2557,20,1.3.1.2,0,1,1.0 -2557,39,1.3.1,1,1, -20223,140,1.4.5.1,0,1,1.0 -20223,41,1.4.5,1,1, -5649,34,1.3.3.3,0,1,1.0 -5649,75,1.3.3,1,1,1.0 -22241,157,1.4.1,0,1,1.0 -22241,126,1.4,1,1, -2849,22,2.1.1.1,0,1,1.0 -2849,85,2.1.1,1,1,1.0 -12836,79,2.1.3.2,0,1,1.0 -12836,148,2.1.3,1,1, -11334,63,1.4.4.5,0,1,1.0 -11334,0,1.4.4,1,1, -18591,130,1.3.5,0,1,1.0 -18591,29,1.3,1,1, -3319,22,2.1.3.6,0,1,1.0 -3319,126,2.1.3,1,1, -22208,157,1.4.1,0,1,1.0 -22208,126,1.4,1,1,1.0 -22208,170,1,2,1,1.0 -7249,45,1.3.3.1,0,1,1.0 -7249,97,1.3.3,1,1,1.0 -13059,79,2.1.3.7,0,1,1.0 -13059,97,2.1.3,1,1, -9196,53,1.4.3.6,0,1,1.0 -9196,142,1.4.3,1,1, -11341,63,1.4.4.5,0,1,1.0 -11341,0,1.4.4,1,1, -6873,41,1.4.5,0,1,1.0 -6873,126,1.4,1,1, -12407,78,2.1.1.3,0,1,1.0 -12407,80,2.1.1,1,1, -17891,126,1.4,0,1,1.0 -17891,170,1,1,1, -2215,16,1.1.3,0,1,1.0 -2215,106,1.1,1,1,1.0 -10219,57,2.3.3,0,1,1.0 -10219,99,2.3,1,1, -14557,92,1.3.3.4,0,1,1.0 -14557,97,1.3.3,1,1, -5558,33,2.1.2.4,0,1,1.0 -5558,58,2.1.2,1,1,1.0 -3399,22,2.1.3.7,0,1,1.0 -3399,74,2.1.3,1,1,1.0 -17868,126,1.4,0,1,1.0 -17868,170,1,1,1,1.0 -19791,137,2.1.4.1.3,0,1,1.0 -19791,79,2.1.4.1,1,1,1.0 -15304,99,2.1,0,1,1.0 -15304,98,2,1,1,1.0 -16732,116,1.3.1.7,0,1,1.0 -16732,100,1.3.1,1,1, -6877,41,1.4.5,0,1,1.0 -6877,126,1.4,1,1, -20213,140,1.4.5.1,0,1,1.0 -20213,41,1.4.5,1,1,1.0 -20213,126,1.4,2,1,1.0 -20213,170,1,3,1,1.0 -7757,47,2.1.1.2,0,1,1.0 -7757,80,2.1.1,1,1, -11607,68,1.3.1.2,0,1,1.0 -11607,85,1.3.1,1,1, -19113,135,1.3.2.1,0,1,1.0 -19113,58,1.3.2,1,1,1.0 -18560,130,1.3.5,0,1,1.0 -18560,106,1.3,1,1, -18560,29,1.3,1,1,1.0 -16949,117,2.1.1.4,0,1,1.0 -16949,148,2.1.1,1,1,1.0 -6915,42,1.3.1.1,0,1,1.0 -6915,39,1.3.1,1,1,1.0 -13049,79,2.1.3.6,0,1,1.0 -13049,108,2.1.3,1,1,1.0 -22231,157,1.4.1,0,1,1.0 -22231,126,1.4,1,1,1.0 -22231,170,1,2,1,1.0 -8920,53,1.4.2.3,0,1,1.0 -8920,142,1.4.2,1,1, -665,6,2.1.2.1,0,1,1.0 -665,84,2.1.2,1,1,1.0 -11349,63,1.4.4.5,0,1,1.0 -11349,40,1.4.4,1,1, -9186,53,1.4.3.6,0,1,1.0 -9186,142,1.4.3,1,1,1.0 -9186,126,1.4,2,1, -11392,64,1.1.2,0,1,1.0 -11392,126,1.1,1,1,1.0 -3365,22,2.1.3.7,0,1,1.0 -3365,106,2.1.3,1,1, -20518,142,1.4.2,0,1,1.0 -20518,126,1.4,1,1, -20578,142,1.4.3,0,1,1.0 -20578,126,1.4,1,1, -15328,99,2.1,0,1,1.0 -15328,98,2,1,1, -15328,102,2,1,1, -9487,53,1.4.5.8,0,1,1.0 -9487,41,1.4.5,1,1,1.0 -9487,126,1.4,2,1, -11328,63,1.4.4.5,0,1,1.0 -11328,0,1.4.4,1,1, -11328,40,1.4.4,1,1, -22542,161,2.3.3,0,1,1.0 -22542,155,2.3,1,1,1.0 -11305,63,1.4.4.5,0,1,1.0 -11305,40,1.4.4,1,1,1.0 -11305,0,1.4.4,1,1,1.0 -11305,126,1.4,2,1, -19532,135,2.1.3.7,0,1,1.0 -19532,97,2.1.3,1,1, -4112,23,1.4.2.7,0,1,1.0 -4112,142,1.4.2,1,1,1.0 -4112,126,1.4,2,1, -20530,142,1.4.2,0,1,1.0 -20530,126,1.4,1,1, -20208,140,1.4.5.1,0,1,1.0 -20208,41,1.4.5,1,1,1.0 -20208,126,1.4,2,1, -3157,22,2.1.3.3,0,1,1.0 -3157,106,2.1.3,1,1, -16715,116,1.3.1.7,0,1,1.0 -16715,39,1.3.1,1,1,1.0 -8142,47,2.1.3.6,0,1,1.0 -8142,108,2.1.3,1,1,1.0 -20209,140,1.4.5.1,0,1,1.0 -20209,41,1.4.5,1,1,1.0 -20209,126,1.4,2,1, -13282,79,2.3.2,0,1,1.0 -13282,99,2.3,1,1, -1319,13,2.1.3.2,0,1,1.0 -1319,73,2.1.3,1,1,1.0 -10232,57,2.3.3,0,1,1.0 -10232,155,2.3,1,1, -9166,53,1.4.3.6,0,1,1.0 -9166,142,1.4.3,1,1,1.0 -9166,126,1.4,2,1, -12502,78,2.1.1.5,0,1,1.0 -12502,80,2.1.1,1,1, -20514,142,1.4.2,0,1,1.0 -20514,126,1.4,1,1,1.0 -20514,170,1,2,1,1.0 -658,6,2.1.2.1,0,1,1.0 -658,159,2.1.2,1,1,1.0 -8119,47,2.1.3.6,0,1,1.0 -8119,148,2.1.3,1,1, -2299,16,2.3.1,0,1,1.0 -2299,84,2.3,1,1,1.0 -13337,79,2.3.3,0,1,1.0 -13337,126,2.3,1,1,1.0 -13337,102,2,2,1, -16542,113,1.1.1,0,1,1.0 -16542,126,1.1,1,1,1.0 -12807,79,2.1.3.2,0,1,1.0 -12807,106,2.1.3,1,1, -20201,140,1.4.5.1,0,1,1.0 -20201,41,1.4.5,1,1, -4134,23,1.4.2.7,0,1,1.0 -4134,142,1.4.2,1,1, -6897,41,1.4.5,0,1,1.0 -6897,126,1.4,1,1,1.0 -6897,170,1,2,1,1.0 -1254,13,2.1.3.1,0,1,1.0 -1254,97,2.1.3,1,1, -23192,165,2.1.2.4,0,1,1.0 -23192,159,2.1.2,1,1,1.0 -17893,126,1.4,0,1,1.0 -17893,170,1,1,1, -3932,23,1.3.3.1,0,1,1.0 -3932,99,1.3.3,1,1, -18657,131,2.1.1.2,0,1,1.0 -18657,106,2.1.1,1,1, -20230,140,1.4.5.1,0,1,1.0 -20230,41,1.4.5,1,1, -12859,79,2.1.3.3,0,1,1.0 -12859,74,2.1.3,1,1, -2007,13,2.3.3,0,1,1.0 -2007,155,2.3,1,1, -19123,135,1.3.2.1,0,1,1.0 -19123,58,1.3.2,1,1,1.0 -19123,130,1.3.2,1,1,1.0 -19123,106,1.3,2,1, -1422,13,2.1.3.4,0,1,1.0 -1422,108,2.1.3,1,1, -1552,13,2.1.3.7,0,1,1.0 -1552,106,2.1.3,1,1, -12949,79,2.1.3.4,0,1,1.0 -12949,108,2.1.3,1,1,1.0 -2258,16,2.3.1,0,1,1.0 -2258,99,2.3,1,1,1.0 -9187,53,1.4.3.6,0,1,1.0 -9187,142,1.4.3,1,1,1.0 -9187,126,1.4,2,1, -17851,126,1.4,0,1,1.0 -17851,170,1,1,1, -19142,135,1.3.2.1,0,1,1.0 -19142,130,1.3.2,1,1,1.0 -19142,58,1.3.2,1,1,1.0 -19142,106,1.3,2,1, -19249,135,2.1.3.1,0,1,1.0 -19249,148,2.1.3,1,1,1.0 -1360,13,2.1.3.3,0,1,1.0 -1360,97,2.1.3,1,1, -20541,142,1.4.2,0,1,1.0 -20541,126,1.4,1,1, -20538,142,1.4.2,0,1,1.0 -20538,126,1.4,1,1, -18575,130,1.3.5,0,1,1.0 -18575,29,1.3,1,1,1.0 -18575,106,1.3,1,1, -12936,79,2.1.3.4,0,1,1.0 -12936,73,2.1.3,1,1, -17896,126,1.4,0,1,1.0 -17896,170,1,1,1,1.0 -14233,87,1.1.1,0,1,1.0 -14233,105,1.1,1,1, -6746,41,1.4.3.2,0,1,1.0 -6746,142,1.4.3,1,1, -657,6,2.1.2.1,0,1,1.0 -657,159,2.1.2,1,1, -9486,53,1.4.5.8,0,1,1.0 -9486,41,1.4.5,1,1, -17875,126,1.4,0,1,1.0 -17875,170,1,1,1,1.0 -6738,41,1.4.3.2,0,1,1.0 -6738,142,1.4.3,1,1, -10057,57,1.3.3.3,0,1,1.0 -10057,99,1.3.3,1,1, -22212,157,1.4.1,0,1,1.0 -22212,126,1.4,1,1, -4120,23,1.4.2.7,0,1,1.0 -4120,142,1.4.2,1,1, -13215,79,2.3.1,0,1,1.0 -13215,126,2.3,1,1,1.0 -6736,41,1.4.3.2,0,1,1.0 -6736,142,1.4.3,1,1,1.0 -6736,126,1.4,2,1, -1152,12,1.2.1,0,1,1.0 -1152,97,1.2,1,1, -18758,131,2.1.1.4,0,1,1.0 -18758,106,2.1.1,1,1, -13008,79,2.1.3.6,0,1,1.0 -13008,108,2.1.3,1,1,1.0 -6750,41,1.4.3.2,0,1,1.0 -6750,142,1.4.3,1,1, -1366,13,2.1.3.3,0,1,1.0 -1366,106,2.1.3,1,1,1.0 -20245,140,1.4.5.1,0,1,1.0 -20245,41,1.4.5,1,1,1.0 -20245,126,1.4,2,1, -4142,23,1.4.2.7,0,1,1.0 -4142,142,1.4.2,1,1, -23592,168,2.3.2,0,1,1.0 -23592,99,2.3,1,1,1.0 -23657,169,1.1.1,0,1,1.0 -23657,105,1.1,1,1, -5365,32,1.2.3,0,1,1.0 -5365,97,1.2,1,1,1.0 -12649,79,1.3.1.4,0,1,1.0 -12649,100,1.3.1,1,1,1.0 -607,6,1.3.1.2,0,1,1.0 -607,99,1.3.1,1,1, -15633,103,1.1.1,0,1,1.0 -15633,94,1.1,1,1, -9494,53,1.4.5.8,0,1,1.0 -9494,41,1.4.5,1,1, -11330,63,1.4.4.5,0,1,1.0 -11330,0,1.4.4,1,1, -17864,126,1.4,0,1,1.0 -17864,170,1,1,1,1.0 -23057,165,2.1.2.2,0,1,1.0 -23057,79,2.1.2,1,1, -16908,117,2.1.1.4,0,1,1.0 -16908,80,2.1.1,1,1,1.0 -22215,157,1.4.1,0,1,1.0 -22215,126,1.4,1,1, -17883,126,1.4,0,1,1.0 -17883,170,1,1,1, -1309,13,2.1.3.2,0,1,1.0 -1309,73,2.1.3,1,1,1.0 -9176,53,1.4.3.6,0,1,1.0 -9176,142,1.4.3,1,1,1.0 -9176,126,1.4,2,1, -6880,41,1.4.5,0,1,1.0 -6880,126,1.4,1,1, -9491,53,1.4.5.8,0,1,1.0 -9491,41,1.4.5,1,1, -15336,99,2.1,0,1,1.0 -15336,98,2,1,1, -6876,41,1.4.5,0,1,1.0 -6876,126,1.4,1,1,1.0 -6876,170,1,2,1, -19349,135,2.1.3.3,0,1,1.0 -19349,126,2.1.3,1,1,1.0 -18554,130,1.3.5,0,1,1.0 -18554,29,1.3,1,1, -22249,157,1.4.1,0,1,1.0 -22249,126,1.4,1,1, -10849,60,2.1.1.4,0,1,1.0 -10849,80,2.1.1,1,1,1.0 -792,6,2.1.2.3,0,1,1.0 -792,84,2.1.2,1,1,1.0 -19358,135,2.1.3.4,0,1,1.0 -19358,106,2.1.3,1,1, -6852,41,1.4.5,0,1,1.0 -6852,126,1.4,1,1, -7499,45,2.1.4.1.3,0,1,1.0 -7499,79,2.1.4.1,1,1,1.0 -8930,53,1.4.2.3,0,1,1.0 -8930,142,1.4.2,1,1, -6726,41,1.4.3.2,0,1,1.0 -6726,142,1.4.3,1,1,1.0 -6726,126,1.4,2,1, -17877,126,1.4,0,1,1.0 -17877,170,1,1,1,1.0 -22457,161,2.3.2,0,1,1.0 -22457,95,2.3,1,1, -4191,23,2.1.3.6,0,1,1.0 -4191,97,2.1.3,1,1, -4103,23,1.4.2.7,0,1,1.0 -4103,142,1.4.2,1,1, -22221,157,1.4.1,0,1,1.0 -22221,126,1.4,1,1, -13032,79,2.1.3.6,0,1,1.0 -13032,106,2.1.3,1,1, -5557,33,2.1.2.4,0,1,1.0 -5557,84,2.1.2,1,1, -9489,53,1.4.5.8,0,1,1.0 -9489,41,1.4.5,1,1, -6868,41,1.4.5,0,1,1.0 -6868,126,1.4,1,1, -17257,117,2.1.4.2.2,0,1,1.0 -17257,79,2.1.4.2,1,1, -2157,15,1.3.3.5,0,1,1.0 -2157,75,1.3.3,1,1, -3207,22,2.1.3.4,0,1,1.0 -3207,97,2.1.3,1,1, -1472,13,2.1.3.5,0,1,1.0 -1472,97,2.1.3,1,1, -12799,79,2.1.3.1,0,1,1.0 -12799,74,2.1.3,1,1, -17007,117,2.1.4.1.1,0,1,1.0 -17007,81,2.1.4.1,1,1, -4315,23,2.3.3,0,1,1.0 -4315,99,2.3,1,1,1.0 -16791,117,2.1.1.1,0,1,1.0 -16791,80,2.1.1,1,1, -4137,23,1.4.2.7,0,1,1.0 -4137,142,1.4.2,1,1,1.0 -4137,126,1.4,2,1, -19107,135,1.3.2.1,0,1,1.0 -19107,130,1.3.2,1,1,1.0 -19107,58,1.3.2,1,1,1.0 -19107,29,1.3,2,1, -19107,106,1.3,2,1, -2569,20,1.3.1.2,0,1,1.0 -2569,93,1.3.1,1,1, -23457,168,1.3.3.4,0,1,1.0 -23457,97,1.3.3,1,1, -15616,103,1.1.1,0,1,1.0 -15616,106,1.1,1,1, -20573,142,1.4.3,0,1,1.0 -20573,126,1.4,1,1, -23607,168,2.3.3,0,1,1.0 -23607,99,2.3,1,1, -20247,140,1.4.5.1,0,1,1.0 -20247,41,1.4.5,1,1,1.0 -20247,126,1.4,2,1,1.0 -20247,170,1,3,1, -11338,63,1.4.4.5,0,1,1.0 -11338,0,1.4.4,1,1,1.0 -11338,40,1.4.4,1,1,1.0 -11338,126,1.4,2,1, -158,3,1.3.1.4,0,1,1.0 -158,85,1.3.1,1,1, -9467,53,1.4.5.8,0,1,1.0 -9467,41,1.4.5,1,1, -8901,53,1.4.2.3,0,1,1.0 -8901,142,1.4.2,1,1, -20566,142,1.4.3,0,1,1.0 -20566,126,1.4,1,1, -19125,135,1.3.2.1,0,1,1.0 -19125,130,1.3.2,1,1,1.0 -19125,58,1.3.2,1,1,1.0 -19125,106,1.3,2,1,1.0 -19125,29,1.3,2,1, -20242,140,1.4.5.1,0,1,1.0 -20242,41,1.4.5,1,1, -18308,129,1.2.3,0,1,1.0 -18308,97,1.2,1,1,1.0 -20229,140,1.4.5.1,0,1,1.0 -20229,41,1.4.5,1,1,1.0 -20229,126,1.4,2,1, -8929,53,1.4.2.3,0,1,1.0 -8929,142,1.4.2,1,1,1.0 -8929,126,1.4,2,1, -12772,79,2.1.3.1,0,1,1.0 -12772,97,2.1.3,1,1, -9197,53,1.4.3.6,0,1,1.0 -9197,142,1.4.3,1,1,1.0 -9197,126,1.4,2,1,1.0 -9197,170,1,3,1, -12382,78,2.1.1.2,0,1,1.0 -12382,80,2.1.1,1,1, -17890,126,1.4,0,1,1.0 -17890,170,1,1,1,1.0 -10749,60,2.1.1.2,0,1,1.0 -10749,80,2.1.1,1,1,1.0 -6853,41,1.4.5,0,1,1.0 -6853,126,1.4,1,1, -14299,88,1.1.3,0,1,1.0 -14299,86,1.1,1,1,1.0 -11346,63,1.4.4.5,0,1,1.0 -11346,0,1.4.4,1,1, -9496,53,1.4.5.8,0,1,1.0 -9496,41,1.4.5,1,1, -4144,23,1.4.2.7,0,1,1.0 -4144,142,1.4.2,1,1, -17588,123,1.1.2,0,1,1.0 -17588,94,1.1,1,1,1.0 -1412,13,2.1.3.4,0,1,1.0 -1412,97,2.1.3,1,1, -5469,33,2.1.2.2,0,1,1.0 -5469,81,2.1.2,1,1, -19111,135,1.3.2.1,0,1,1.0 -19111,58,1.3.2,1,1,1.0 -19111,130,1.3.2,1,1,1.0 -19111,106,1.3,2,1, -6307,39,1.3.1,0,1,1.0 -6307,29,1.3,1,1, -8921,53,1.4.2.3,0,1,1.0 -8921,142,1.4.2,1,1, -15310,99,2.1,0,1,1.0 -15310,98,2,1,1, -20552,142,1.4.3,0,1,1.0 -20552,126,1.4,1,1, -22222,157,1.4.1,0,1,1.0 -22222,126,1.4,1,1, -19099,135,1.1.3,0,1,1.0 -19099,94,1.1,1,1,1.0 -20564,142,1.4.3,0,1,1.0 -20564,126,1.4,1,1,1.0 -20564,170,1,2,1,1.0 -20540,142,1.4.2,0,1,1.0 -20540,126,1.4,1,1, -3257,22,2.1.3.5,0,1,1.0 -3257,106,2.1.3,1,1, -15320,99,2.1,0,1,1.0 -15320,102,2,1,1, -15320,98,2,1,1,1.0 -8199,48,1.2.2,0,1,1.0 -8199,126,1.2,1,1,1.0 -6724,41,1.4.3.2,0,1,1.0 -6724,142,1.4.3,1,1, -20218,140,1.4.5.1,0,1,1.0 -20218,41,1.4.5,1,1,1.0 -20218,126,1.4,2,1,1.0 -20218,170,1,3,1,1.0 -8946,53,1.4.2.3,0,1,1.0 -8946,142,1.4.2,1,1, -4057,23,1.3.3.4,0,1,1.0 -4057,99,1.3.3,1,1, -16527,113,1.1.1,0,1,1.0 -16527,105,1.1,1,1,1.0 -8649,50,1.3.1.5,0,1,1.0 -8649,85,1.3.1,1,1,1.0 -18958,133,1.4.4.1,0,1,1.0 -18958,40,1.4.4,1,1,1.0 -6735,41,1.4.3.2,0,1,1.0 -6735,142,1.4.3,1,1, -18563,130,1.3.5,0,1,1.0 -18563,29,1.3,1,1,1.0 -15249,99,1.3.1,0,1,1.0 -15249,106,1.3,1,1,1.0 -7157,44,1.1.1,0,1,1.0 -7157,106,1.1,1,1, -6732,41,1.4.3.2,0,1,1.0 -6732,142,1.4.3,1,1,1.0 -6732,126,1.4,2,1, -15308,99,2.1,0,1,1.0 -15308,98,2,1,1, -15308,102,2,1,1, -14899,96,1.2.3,0,1,1.0 -14899,126,1.2,1,1,1.0 -6728,41,1.4.3.2,0,1,1.0 -6728,142,1.4.3,1,1, -11711,69,1.1.1,0,1,1.0 -11711,94,1.1,1,1,1.0 -15347,99,2.1,0,1,1.0 -15347,102,2,1,1, -15347,98,2,1,1,1.0 -6729,41,1.4.3.2,0,1,1.0 -6729,142,1.4.3,1,1,1.0 -6729,126,1.4,2,1, -99,1,2.1.1.5,0,1,1.0 -99,148,2.1.1,1,1,1.0 -8249,49,1.3.1.1,0,1,1.0 -8249,99,1.3.1,1,1,1.0 -9490,53,1.4.5.8,0,1,1.0 -9490,41,1.4.5,1,1,1.0 -9490,126,1.4,2,1, -22202,157,1.4.1,0,1,1.0 -22202,126,1.4,1,1, -6741,41,1.4.3.2,0,1,1.0 -6741,142,1.4.3,1,1, -4101,23,1.4.2.7,0,1,1.0 -4101,142,1.4.2,1,1, -11308,63,1.4.4.5,0,1,1.0 -11308,40,1.4.4,1,1,1.0 -23683,169,1.1.1,0,1,1.0 -23683,106,1.1,1,1, -22204,157,1.4.1,0,1,1.0 -22204,126,1.4,1,1, -17866,126,1.4,0,1,1.0 -17866,170,1,1,1,1.0 -9188,53,1.4.3.6,0,1,1.0 -9188,142,1.4.3,1,1, -20551,142,1.4.3,0,1,1.0 -20551,126,1.4,1,1, -20536,142,1.4.2,0,1,1.0 -20536,126,1.4,1,1, -16808,117,2.1.1.2,0,1,1.0 -16808,85,2.1.1,1,1,1.0 -1058,10,1.3.3.5,0,1,1.0 -1058,75,1.3.3,1,1, -8916,53,1.4.2.3,0,1,1.0 -8916,142,1.4.2,1,1,1.0 -8916,126,1.4,2,1, -20211,140,1.4.5.1,0,1,1.0 -20211,41,1.4.5,1,1,1.0 -20211,126,1.4,2,1, -11407,65,1.2.1,0,1,1.0 -11407,126,1.2,1,1, -5457,33,2.1.2.2,0,1,1.0 -5457,79,2.1.2,1,1, -20216,140,1.4.5.1,0,1,1.0 -20216,41,1.4.5,1,1,1.0 -20216,126,1.4,2,1, -9482,53,1.4.5.8,0,1,1.0 -9482,41,1.4.5,1,1,1.0 -9482,126,1.4,2,1, -20222,140,1.4.5.1,0,1,1.0 -20222,41,1.4.5,1,1, -4114,23,1.4.2.7,0,1,1.0 -4114,142,1.4.2,1,1,1.0 -4114,126,1.4,2,1,1.0 -4114,170,1,3,1,1.0 -20574,142,1.4.3,0,1,1.0 -20574,126,1.4,1,1, -6745,41,1.4.3.2,0,1,1.0 -6745,142,1.4.3,1,1,1.0 -6745,126,1.4,2,1, -2042,13,2.3.3,0,1,1.0 -2042,124,2.3,1,1,1.0 -12857,79,2.1.3.3,0,1,1.0 -12857,148,2.1.3,1,1, -16157,108,2.2,0,1,1.0 -16157,102,2,1,1, -17874,126,1.4,0,1,1.0 -17874,170,1,1,1, -8928,53,1.4.2.3,0,1,1.0 -8928,142,1.4.2,1,1, -19134,135,1.3.2.1,0,1,1.0 -19134,58,1.3.2,1,1,1.0 -19134,130,1.3.2,1,1,1.0 -19134,106,1.3,2,1, -14441,89,1.3.3.1,0,1,1.0 -14441,75,1.3.3,1,1, -20598,142,1.4.3,0,1,1.0 -20598,126,1.4,1,1, -1508,13,2.1.3.6,0,1,1.0 -1508,74,2.1.3,1,1, -7132,43,1.3.1.6,0,1,1.0 -7132,39,1.3.1,1,1, -18595,130,1.3.5,0,1,1.0 -18595,106,1.3,1,1, -9966,56,1.1.1,0,1,1.0 -9966,126,1.1,1,1, -23215,166,1.2.3,0,1,1.0 -23215,67,1.2,1,1,1.0 -1915,13,2.3.1,0,1,1.0 -1915,95,2.3,1,1,1.0 -1549,13,2.1.3.6,0,1,1.0 -1549,126,2.1.3,1,1,1.0 -6858,41,1.4.5,0,1,1.0 -6858,126,1.4,1,1,1.0 -6858,170,1,2,1,1.0 -19507,135,2.1.3.7,0,1,1.0 -19507,106,2.1.3,1,1, -20517,142,1.4.2,0,1,1.0 -20517,126,1.4,1,1, -17898,126,1.4,0,1,1.0 -17898,170,1,1,1,1.0 -20224,140,1.4.5.1,0,1,1.0 -20224,41,1.4.5,1,1, -13842,82,2.1.2.4,0,1,1.0 -13842,159,2.1.2,1,1,1.0 -12819,79,2.1.3.2,0,1,1.0 -12819,74,2.1.3,1,1,1.0 -15142,99,1.1.2,0,1,1.0 -15142,105,1.1,1,1,1.0 -1446,13,2.1.3.4,0,1,1.0 -1446,108,2.1.3,1,1, -9475,53,1.4.5.8,0,1,1.0 -9475,41,1.4.5,1,1, -8924,53,1.4.2.3,0,1,1.0 -8924,142,1.4.2,1,1, -10099,57,1.3.3.3,0,1,1.0 -10099,97,1.3.3,1,1,1.0 -6949,42,1.3.1.1,0,1,1.0 -6949,85,1.3.1,1,1,1.0 -6869,41,1.4.5,0,1,1.0 -6869,126,1.4,1,1, -14742,95,1.2.3,0,1,1.0 -14742,67,1.2,1,1,1.0 -6865,41,1.4.5,0,1,1.0 -6865,126,1.4,1,1, -6708,41,1.4.3.2,0,1,1.0 -6708,142,1.4.3,1,1,1.0 -6708,126,1.4,2,1, -22507,161,2.3.3,0,1,1.0 -22507,95,2.3,1,1, -4415,25,1.3.1.7,0,1,1.0 -4415,100,1.3.1,1,1,1.0 -21357,149,2.1.2.1,0,1,1.0 -21357,58,2.1.2,1,1, -738,6,2.1.2.2,0,1,1.0 -738,79,2.1.2,1,1,1.0 -15321,99,2.1,0,1,1.0 -15321,102,2,1,1, -15321,98,2,1,1,1.0 -22220,157,1.4.1,0,1,1.0 -22220,126,1.4,1,1, -15306,99,2.1,0,1,1.0 -15306,98,2,1,1,1.0 -15306,102,2,1,1, -18299,129,1.1.2,0,1,1.0 -18299,105,1.1,1,1,1.0 -21719,153,1.3.1.1,0,1,1.0 -21719,39,1.3.1,1,1, -8592,49,2.1.2.4,0,1,1.0 -8592,58,2.1.2,1,1,1.0 -11337,63,1.4.4.5,0,1,1.0 -11337,0,1.4.4,1,1,1.0 -20600,142,1.4.3,0,1,1.0 -20600,126,1.4,1,1, -22219,157,1.4.1,0,1,1.0 -22219,126,1.4,1,1, -1249,13,1.2.2,0,1,1.0 -1249,106,1.2,1,1,1.0 -8927,53,1.4.2.3,0,1,1.0 -8927,142,1.4.2,1,1, -19008,134,1.3.3.5,0,1,1.0 -19008,97,1.3.3,1,1, -20008,139,1.3.3.7,0,1,1.0 -20008,99,1.3.3,1,1, -21437,149,2.1.2.2,0,1,1.0 -21437,81,2.1.2,1,1,1.0 -11888,71,1.3.1.2,0,1,1.0 -11888,99,1.3.1,1,1,1.0 -8115,47,2.1.3.6,0,1,1.0 -8115,126,2.1.3,1,1, -6702,41,1.4.3.2,0,1,1.0 -6702,142,1.4.3,1,1,1.0 -6702,126,1.4,2,1, -23661,169,1.1.1,0,1,1.0 -23661,86,1.1,1,1,1.0 -15345,99,2.1,0,1,1.0 -15345,98,2,1,1, -15345,102,2,1,1, -10007,56,1.3.1.7,0,1,1.0 -10007,93,1.3.1,1,1, -22229,157,1.4.1,0,1,1.0 -22229,126,1.4,1,1, -9961,56,1.1.1,0,1,1.0 -9961,105,1.1,1,1,1.0 -12805,79,2.1.3.2,0,1,1.0 -12805,106,2.1.3,1,1, -7941,47,2.1.2.1,0,1,1.0 -7941,58,2.1.2,1,1,1.0 -17857,126,1.4,0,1,1.0 -17857,170,1,1,1,1.0 -20580,142,1.4.3,0,1,1.0 -20580,126,1.4,1,1, -23542,168,2.3.1,0,1,1.0 -23542,155,2.3,1,1,1.0 -6864,41,1.4.5,0,1,1.0 -6864,126,1.4,1,1,1.0 -6864,170,1,2,1,1.0 -14707,95,1.2.3,0,1,1.0 -14707,126,1.2,1,1, -6862,41,1.4.5,0,1,1.0 -6862,126,1.4,1,1, -23088,165,2.1.2.2,0,1,1.0 -23088,84,2.1.2,1,1,1.0 -18561,130,1.3.5,0,1,1.0 -18561,106,1.3,1,1,1.0 -4113,23,1.4.2.7,0,1,1.0 -4113,142,1.4.2,1,1,1.0 -4113,126,1.4,2,1,1.0 -4113,170,1,3,1,1.0 -3757,22,2.3.2,0,1,1.0 -3757,84,2.3,1,1, -3199,22,2.1.3.3,0,1,1.0 -3199,148,2.1.3,1,1,1.0 -8419,49,2.1.2.1,0,1,1.0 -8419,79,2.1.2,1,1, -20504,142,1.4.2,0,1,1.0 -20504,126,1.4,1,1, -6057,38,2.1.1.1,0,1,1.0 -6057,106,2.1.1,1,1, -21142,146,1.3.1.1,0,1,1.0 -21142,100,1.3.1,1,1,1.0 -13066,79,2.1.3.7,0,1,1.0 -13066,148,2.1.3,1,1,1.0 -17861,126,1.4,0,1,1.0 -17861,170,1,1,1,1.0 -7907,47,2.1.2.1,0,1,1.0 -7907,84,2.1.2,1,1, -18757,131,2.1.1.4,0,1,1.0 -18757,80,2.1.1,1,1, -22157,156,1.3.1.7,0,1,1.0 -22157,85,1.3.1,1,1, -19132,135,1.3.2.1,0,1,1.0 -19132,130,1.3.2,1,1,1.0 -4607,26,2.1.3.4,0,1,1.0 -4607,126,2.1.3,1,1, -19135,135,1.3.2.1,0,1,1.0 -19135,58,1.3.2,1,1,1.0 -20586,142,1.4.3,0,1,1.0 -20586,126,1.4,1,1, -11306,63,1.4.4.5,0,1,1.0 -11306,0,1.4.4,1,1,1.0 -11306,40,1.4.4,1,1, -9151,53,1.4.3.6,0,1,1.0 -9151,142,1.4.3,1,1, -20532,142,1.4.2,0,1,1.0 -20532,126,1.4,1,1, -22234,157,1.4.1,0,1,1.0 -22234,126,1.4,1,1, -757,6,2.1.2.3,0,1,1.0 -757,81,2.1.2,1,1, -8922,53,1.4.2.3,0,1,1.0 -8922,142,1.4.2,1,1, -11321,63,1.4.4.5,0,1,1.0 -11321,40,1.4.4,1,1, -1281,13,2.1.3.1,0,1,1.0 -1281,74,2.1.3,1,1, -19357,135,2.1.3.4,0,1,1.0 -19357,108,2.1.3,1,1, -14341,89,1.1.2,0,1,1.0 -14341,86,1.1,1,1, -4182,23,2.1.3.6,0,1,1.0 -4182,148,2.1.3,1,1, -11320,63,1.4.4.5,0,1,1.0 -11320,40,1.4.4,1,1, -6875,41,1.4.5,0,1,1.0 -6875,126,1.4,1,1, -14732,95,1.2.3,0,1,1.0 -14732,126,1.2,1,1, -13841,82,2.1.2.4,0,1,1.0 -13841,84,2.1.2,1,1, -20228,140,1.4.5.1,0,1,1.0 -20228,41,1.4.5,1,1, -22207,157,1.4.1,0,1,1.0 -22207,126,1.4,1,1, -16919,117,2.1.1.4,0,1,1.0 -16919,85,2.1.1,1,1, -1490,13,2.1.3.5,0,1,1.0 -1490,73,2.1.3,1,1, -3707,22,2.3.1,0,1,1.0 -3707,95,2.3,1,1, -4307,23,2.3.3,0,1,1.0 -4307,126,2.3,1,1, -9480,53,1.4.5.8,0,1,1.0 -9480,41,1.4.5,1,1, -14549,91,1.2.1,0,1,1.0 -14549,67,1.2,1,1,1.0 -4123,23,1.4.2.7,0,1,1.0 -4123,142,1.4.2,1,1, -22218,157,1.4.1,0,1,1.0 -22218,126,1.4,1,1, -8107,47,2.1.3.6,0,1,1.0 -8107,148,2.1.3,1,1, -11615,68,1.3.1.2,0,1,1.0 -11615,99,1.3.1,1,1, -3792,22,2.3.2,0,1,1.0 -3792,155,2.3,1,1,1.0 -12638,79,1.3.1.4,0,1,1.0 -12638,100,1.3.1,1,1,1.0 -4699,26,2.1.3.5,0,1,1.0 -4699,97,2.1.3,1,1,1.0 -22519,161,2.3.3,0,1,1.0 -22519,155,2.3,1,1, -6893,41,1.4.5,0,1,1.0 -6893,126,1.4,1,1, -13208,79,2.3.1,0,1,1.0 -13208,84,2.3,1,1,1.0 -4457,26,2.1.3.1,0,1,1.0 -4457,148,2.1.3,1,1, -19149,135,1.3.2.1,0,1,1.0 -19149,130,1.3.2,1,1,1.0 -2232,16,1.1.3,0,1,1.0 -2232,94,1.1,1,1, -7507,45,2.1.4.1.4,0,1,1.0 -7507,81,2.1.4.1,1,1, -1466,13,2.1.3.5,0,1,1.0 -1466,106,2.1.3,1,1,1.0 -15637,103,1.1.1,0,1,1.0 -15637,86,1.1,1,1,1.0 -4104,23,1.4.2.7,0,1,1.0 -4104,142,1.4.2,1,1,1.0 -4104,126,1.4,2,1, -9182,53,1.4.3.6,0,1,1.0 -9182,142,1.4.3,1,1,1.0 -9182,126,1.4,2,1, -23049,165,2.1.2.1,0,1,1.0 -23049,81,2.1.2,1,1,1.0 -9466,53,1.4.5.8,0,1,1.0 -9466,41,1.4.5,1,1,1.0 -9466,126,1.4,2,1, -1301,13,2.1.3.2,0,1,1.0 -1301,97,2.1.3,1,1, -4349,23,2.3.3,0,1,1.0 -4349,124,2.3,1,1,1.0 -18570,130,1.3.5,0,1,1.0 -18570,106,1.3,1,1, -18570,29,1.3,1,1,1.0 -1957,13,2.3.2,0,1,1.0 -1957,95,2.3,1,1, -1409,13,2.1.3.4,0,1,1.0 -1409,148,2.1.3,1,1, -12810,79,2.1.3.2,0,1,1.0 -12810,148,2.1.3,1,1, -11733,69,1.1.1,0,1,1.0 -11733,126,1.1,1,1, -21557,150,1.1.1,0,1,1.0 -21557,126,1.1,1,1, -3742,22,2.3.1,0,1,1.0 -3742,84,2.3,1,1,1.0 -11719,69,1.1.1,0,1,1.0 -11719,86,1.1,1,1, -18207,128,1.1.2,0,1,1.0 -18207,126,1.1,1,1, -1587,13,2.1.3.7,0,1,1.0 -1587,108,2.1.3,1,1, -1587,74,2.1.3,1,1, -18574,130,1.3.5,0,1,1.0 -18574,106,1.3,1,1, -11343,63,1.4.4.5,0,1,1.0 -11343,40,1.4.4,1,1,1.0 -11343,0,1.4.4,1,1,1.0 -11343,126,1.4,2,1, -21157,147,1.1.2,0,1,1.0 -21157,105,1.1,1,1, -9957,56,1.1.1,0,1,1.0 -9957,106,1.1,1,1, -3315,22,2.1.3.6,0,1,1.0 -3315,148,2.1.3,1,1, -19857,137,2.1.4.2.1,0,1,1.0 -19857,81,2.1.4.2,1,1, -14608,93,1.3.1,0,1,1.0 -14608,106,1.3,1,1, -1541,13,2.1.3.6,0,1,1.0 -1541,73,2.1.3,1,1, -6898,41,1.4.5,0,1,1.0 -6898,126,1.4,1,1, -8908,53,1.4.2.3,0,1,1.0 -8908,142,1.4.2,1,1,1.0 -8908,126,1.4,2,1, -1757,13,2.1.4.1.4,0,1,1.0 -1757,81,2.1.4.1,1,1, -20522,142,1.4.2,0,1,1.0 -20522,126,1.4,1,1, -1402,13,2.1.3.4,0,1,1.0 -1402,148,2.1.3,1,1,1.0 -10199,57,2.3.2,0,1,1.0 -10199,99,2.3,1,1,1.0 -15348,99,2.1,0,1,1.0 -15348,98,2,1,1,1.0 -15348,102,2,1,1, -6882,41,1.4.5,0,1,1.0 -6882,126,1.4,1,1, -11347,63,1.4.4.5,0,1,1.0 -11347,0,1.4.4,1,1,1.0 -11347,40,1.4.4,1,1,1.0 -11347,126,1.4,2,1, -20449,141,1.3.3.2,0,1,1.0 -20449,75,1.3.3,1,1,1.0 -9193,53,1.4.3.6,0,1,1.0 -9193,142,1.4.3,1,1, -11310,63,1.4.4.5,0,1,1.0 -11310,0,1.4.4,1,1, -21082,145,1.3.1.4,0,1,1.0 -21082,85,1.3.1,1,1, -18581,130,1.3.5,0,1,1.0 -18581,29,1.3,1,1, -18581,106,1.3,1,1, -21169,147,1.1.2,0,1,1.0 -21169,105,1.1,1,1, -9451,53,1.4.5.8,0,1,1.0 -9451,41,1.4.5,1,1, -19148,135,1.3.2.1,0,1,1.0 -19148,130,1.3.2,1,1,1.0 -19148,58,1.3.2,1,1,1.0 -19148,106,1.3,2,1, -4141,23,1.4.2.7,0,1,1.0 -4141,142,1.4.2,1,1, -1302,13,2.1.3.2,0,1,1.0 -1302,126,2.1.3,1,1,1.0 -20249,140,1.4.5.1,0,1,1.0 -20249,41,1.4.5,1,1, -19136,135,1.3.2.1,0,1,1.0 -19136,58,1.3.2,1,1,1.0 -19136,130,1.3.2,1,1,1.0 -19136,106,1.3,2,1, -10157,57,2.3.2,0,1,1.0 -10157,155,2.3,1,1, -2108,14,1.3.4.3,0,1,1.0 -2108,80,1.3.4,1,1,1.0 -4148,23,1.4.2.7,0,1,1.0 -4148,142,1.4.2,1,1, -6713,41,1.4.3.2,0,1,1.0 -6713,142,1.4.3,1,1,1.0 -6713,126,1.4,2,1,1.0 -6713,170,1,3,1,1.0 -12049,74,1.3.3.2,0,1,1.0 -12049,97,1.3.3,1,1,1.0 -16841,117,2.1.1.2,0,1,1.0 -16841,106,2.1.1,1,1, -7957,47,2.1.2.2,0,1,1.0 -7957,159,2.1.2,1,1, -12962,79,2.1.3.5,0,1,1.0 -12962,108,2.1.3,1,1, -22238,157,1.4.1,0,1,1.0 -22238,126,1.4,1,1, -7769,47,2.1.1.2,0,1,1.0 -7769,106,2.1.1,1,1, -15302,99,2.1,0,1,1.0 -15302,98,2,1,1,1.0 -15302,102,2,1,1,1.0 -15302,170,1,2,1,1.0 -20237,140,1.4.5.1,0,1,1.0 -20237,41,1.4.5,1,1,1.0 -20237,126,1.4,2,1, -12852,79,2.1.3.3,0,1,1.0 -12852,126,2.1.3,1,1,1.0 -20591,142,1.4.3,0,1,1.0 -20591,126,1.4,1,1, -1657,13,2.1.4.1.2,0,1,1.0 -1657,79,2.1.4.1,1,1, -4130,23,1.4.2.7,0,1,1.0 -4130,142,1.4.2,1,1, -8457,49,2.1.2.2,0,1,1.0 -8457,79,2.1.2,1,1, -9169,53,1.4.3.6,0,1,1.0 -9169,142,1.4.3,1,1, -8907,53,1.4.2.3,0,1,1.0 -8907,142,1.4.2,1,1, -3957,23,1.3.3.2,0,1,1.0 -3957,75,1.3.3,1,1, -692,6,2.1.2.1,0,1,1.0 -692,81,2.1.2,1,1,1.0 -2249,16,1.1.3,0,1,1.0 -2249,86,1.1,1,1,1.0 -20236,140,1.4.5.1,0,1,1.0 -20236,41,1.4.5,1,1, -20207,140,1.4.5.1,0,1,1.0 -20207,41,1.4.5,1,1, -257,3,1.3.1.6,0,1,1.0 -257,85,1.3.1,1,1, -19965,138,1.3.1.5,0,1,1.0 -19965,100,1.3.1,1,1,1.0 -18582,130,1.3.5,0,1,1.0 -18582,106,1.3,1,1, -18582,29,1.3,1,1, -4269,23,2.3.2,0,1,1.0 -4269,99,2.3,1,1, -17879,126,1.4,0,1,1.0 -17879,170,1,1,1,1.0 -10892,60,2.1.1.5,0,1,1.0 -10892,148,2.1.1,1,1,1.0 -4157,23,2.1.3.6,0,1,1.0 -4157,97,2.1.3,1,1, -8933,53,1.4.2.3,0,1,1.0 -8933,142,1.4.2,1,1, -4549,26,2.1.3.2,0,1,1.0 -4549,126,2.1.3,1,1,1.0 -6894,41,1.4.5,0,1,1.0 -6894,126,1.4,1,1, -4149,23,1.4.2.7,0,1,1.0 -4149,142,1.4.2,1,1, -20942,144,2.1.2.2,0,1,1.0 -20942,81,2.1.2,1,1,1.0 -16507,113,1.1.1,0,1,1.0 -16507,94,1.1,1,1, -12996,79,2.1.3.5,0,1,1.0 -12996,148,2.1.3,1,1, -4109,23,1.4.2.7,0,1,1.0 -4109,142,1.4.2,1,1,1.0 -4109,126,1.4,2,1, -17855,126,1.4,0,1,1.0 -17855,170,1,1,1,1.0 -20543,142,1.4.2,0,1,1.0 -20543,126,1.4,1,1, -16607,115,1.1.3,0,1,1.0 -16607,86,1.1,1,1, -15316,99,2.1,0,1,1.0 -15316,98,2,1,1, -6249,38,2.1.1.4,0,1,1.0 -6249,85,2.1.1,1,1,1.0 -1316,13,2.1.3.2,0,1,1.0 -1316,106,2.1.3,1,1,1.0 -7992,47,2.1.2.2,0,1,1.0 -7992,58,2.1.2,1,1,1.0 -18558,130,1.3.5,0,1,1.0 -18558,106,1.3,1,1, -18558,29,1.3,1,1, -17872,126,1.4,0,1,1.0 -17872,170,1,1,1,1.0 -17415,120,1.2.3,0,1,1.0 -17415,126,1.2,1,1,1.0 -9460,53,1.4.5.8,0,1,1.0 -9460,41,1.4.5,1,1, -1416,13,2.1.3.4,0,1,1.0 -1416,97,2.1.3,1,1,1.0 -3719,22,2.3.1,0,1,1.0 -3719,99,2.3,1,1, -6878,41,1.4.5,0,1,1.0 -6878,126,1.4,1,1, -16642,115,1.1.3,0,1,1.0 -16642,105,1.1,1,1,1.0 -9454,53,1.4.5.8,0,1,1.0 -9454,41,1.4.5,1,1,1.0 -9454,126,1.4,2,1, -15318,99,2.1,0,1,1.0 -15318,98,2,1,1, -15318,102,2,1,1,1.0 -23599,168,2.3.2,0,1,1.0 -23599,155,2.3,1,1,1.0 -19057,135,1.1.3,0,1,1.0 -19057,86,1.1,1,1, -21708,153,1.3.1.1,0,1,1.0 -21708,100,1.3.1,1,1,1.0 -9195,53,1.4.3.6,0,1,1.0 -9195,142,1.4.3,1,1,1.0 -9195,126,1.4,2,1, -15323,99,2.1,0,1,1.0 -15323,102,2,1,1, -358,4,1.2.2,0,1,1.0 -358,97,1.2,1,1,1.0 -6717,41,1.4.3.2,0,1,1.0 -6717,142,1.4.3,1,1, -9465,53,1.4.5.8,0,1,1.0 -9465,41,1.4.5,1,1,1.0 -9465,126,1.4,2,1, -9474,53,1.4.5.8,0,1,1.0 -9474,41,1.4.5,1,1, -20583,142,1.4.3,0,1,1.0 -20583,126,1.4,1,1, -18588,130,1.3.5,0,1,1.0 -18588,106,1.3,1,1, -15657,104,1.1.1,0,1,1.0 -15657,94,1.1,1,1, -15342,99,2.1,0,1,1.0 -15342,98,2,1,1, -4143,23,1.4.2.7,0,1,1.0 -4143,142,1.4.2,1,1, -20957,144,2.1.2.3,0,1,1.0 -20957,84,2.1.2,1,1, -6727,41,1.4.3.2,0,1,1.0 -6727,142,1.4.3,1,1, -21099,145,1.3.1.4,0,1,1.0 -21099,99,1.3.1,1,1,1.0 -14457,90,1.3.1.7,0,1,1.0 -14457,99,1.3.1,1,1, -18192,127,1.1.3,0,1,1.0 -18192,86,1.1,1,1,1.0 -13892,83,1.3.3.2,0,1,1.0 -13892,99,1.3.3,1,1,1.0 -21192,147,1.1.2,0,1,1.0 -21192,94,1.1,1,1,1.0 -9497,53,1.4.5.8,0,1,1.0 -9497,41,1.4.5,1,1,1.0 -9497,126,1.4,2,1,1.0 -9497,170,1,3,1, -6749,41,1.4.3.2,0,1,1.0 -6749,142,1.4.3,1,1, -8941,53,1.4.2.3,0,1,1.0 -8941,142,1.4.2,1,1, -9191,53,1.4.3.6,0,1,1.0 -9191,142,1.4.3,1,1, -22224,157,1.4.1,0,1,1.0 -22224,126,1.4,1,1, -18551,130,1.3.5,0,1,1.0 -18551,29,1.3,1,1, -18551,106,1.3,1,1,1.0 -11457,66,1.2.1,0,1,1.0 -11457,126,1.2,1,1, -22233,157,1.4.1,0,1,1.0 -22233,126,1.4,1,1, -22211,157,1.4.1,0,1,1.0 -22211,126,1.4,1,1,1.0 -22211,170,1,2,1,1.0 -16357,111,1.3.3.1,0,1,1.0 -16357,99,1.3.3,1,1, -20241,140,1.4.5.1,0,1,1.0 -20241,41,1.4.5,1,1, -18257,129,1.1.2,0,1,1.0 -18257,86,1.1,1,1, -1942,13,2.3.1,0,1,1.0 -1942,155,2.3,1,1,1.0 -1559,13,2.1.3.7,0,1,1.0 -1559,148,2.1.3,1,1, -3838,22,2.3.3,0,1,1.0 -3838,95,2.3,1,1,1.0 -7015,42,1.3.1.4,0,1,1.0 -7015,39,1.3.1,1,1,1.0 -6157,38,2.1.1.3,0,1,1.0 -6157,148,2.1.1,1,1, -4507,26,2.1.3.2,0,1,1.0 -4507,73,2.1.3,1,1, -14607,93,1.3.1,0,1,1.0 -14607,29,1.3,1,1, -19104,135,1.3.2.1,0,1,1.0 -19104,130,1.3.2,1,1,1.0 -8912,53,1.4.2.3,0,1,1.0 -8912,142,1.4.2,1,1,1.0 -8912,126,1.4,2,1, -9159,53,1.4.3.6,0,1,1.0 -9159,142,1.4.3,1,1,1.0 -9159,126,1.4,2,1, -12952,79,2.1.3.5,0,1,1.0 -12952,97,2.1.3,1,1, -18407,130,1.3.4.1,0,1,1.0 -18407,77,1.3.4,1,1, -9178,53,1.4.3.6,0,1,1.0 -9178,142,1.4.3,1,1, -19150,135,1.3.2.1,0,1,1.0 -19150,130,1.3.2,1,1,1.0 -19150,58,1.3.2,1,1,1.0 -19150,29,1.3,2,1, -12207,77,1.3.3.6,0,1,1.0 -12207,99,1.3.3,1,1, -15339,99,2.1,0,1,1.0 -15339,102,2,1,1, -6710,41,1.4.3.2,0,1,1.0 -6710,142,1.4.3,1,1, -17895,126,1.4,0,1,1.0 -17895,170,1,1,1,1.0 -15311,99,2.1,0,1,1.0 -15311,98,2,1,1, -15311,102,2,1,1, -23692,169,1.1.1,0,1,1.0 -23692,86,1.1,1,1,1.0 -6859,41,1.4.5,0,1,1.0 -6859,126,1.4,1,1,1.0 -6859,170,1,2,1, -17892,126,1.4,0,1,1.0 -17892,170,1,1,1,1.0 -702,6,2.1.2.2,0,1,1.0 -702,58,2.1.2,1,1, -2349,16,2.3.2,0,1,1.0 -2349,99,2.3,1,1,1.0 -6856,41,1.4.5,0,1,1.0 -6856,126,1.4,1,1, -4124,23,1.4.2.7,0,1,1.0 -4124,142,1.4.2,1,1, -4341,23,2.3.3,0,1,1.0 -4341,95,2.3,1,1,1.0 -22206,157,1.4.1,0,1,1.0 -22206,126,1.4,1,1, -22541,161,2.3.3,0,1,1.0 -22541,124,2.3,1,1,1.0 -11322,63,1.4.4.5,0,1,1.0 -11322,40,1.4.4,1,1, -11322,0,1.4.4,1,1, -6881,41,1.4.5,0,1,1.0 -6881,126,1.4,1,1,1.0 -6881,170,1,2,1,1.0 -9495,53,1.4.5.8,0,1,1.0 -9495,41,1.4.5,1,1,1.0 -9495,126,1.4,2,1, -20250,140,1.4.5.1,0,1,1.0 -20250,41,1.4.5,1,1, -20520,142,1.4.2,0,1,1.0 -20520,126,1.4,1,1, -20560,142,1.4.3,0,1,1.0 -20560,126,1.4,1,1, -13291,79,2.3.2,0,1,1.0 -13291,126,2.3,1,1, -18584,130,1.3.5,0,1,1.0 -18584,29,1.3,1,1,1.0 -18584,106,1.3,1,1,1.0 -18584,170,1,2,1,1.0 -6958,42,1.3.1.3,0,1,1.0 -6958,99,1.3.1,1,1, -1359,13,2.1.3.3,0,1,1.0 -1359,148,2.1.3,1,1, -18585,130,1.3.5,0,1,1.0 -18585,106,1.3,1,1, -4138,23,1.4.2.7,0,1,1.0 -4138,142,1.4.2,1,1, -23302,168,1.1.2,0,1,1.0 -23302,105,1.1,1,1, -2957,22,2.1.1.4,0,1,1.0 -2957,85,2.1.1,1,1, -20556,142,1.4.3,0,1,1.0 -20556,126,1.4,1,1, -1557,13,2.1.3.7,0,1,1.0 -1557,106,2.1.3,1,1, -20217,140,1.4.5.1,0,1,1.0 -20217,41,1.4.5,1,1, -18638,131,2.1.1.1,0,1,1.0 -18638,85,2.1.1,1,1,1.0 -22957,164,1.3.3.6,0,1,1.0 -22957,75,1.3.3,1,1, -20233,140,1.4.5.1,0,1,1.0 -20233,41,1.4.5,1,1, -3807,22,2.3.3,0,1,1.0 -3807,99,2.3,1,1, -22213,157,1.4.1,0,1,1.0 -22213,126,1.4,1,1,1.0 -22213,170,1,2,1,1.0 -6885,41,1.4.5,0,1,1.0 -6885,126,1.4,1,1, -6252,38,2.1.1.5,0,1,1.0 -6252,148,2.1.1,1,1, -1481,13,2.1.3.5,0,1,1.0 -1481,126,2.1.3,1,1, -12959,79,2.1.3.5,0,1,1.0 -12959,106,2.1.3,1,1, -22217,157,1.4.1,0,1,1.0 -22217,126,1.4,1,1, -22245,157,1.4.1,0,1,1.0 -22245,126,1.4,1,1, -20707,143,2.1.1.3,0,1,1.0 -20707,85,2.1.1,1,1, -13342,79,2.3.3,0,1,1.0 -13342,95,2.3,1,1,1.0 -17865,126,1.4,0,1,1.0 -17865,170,1,1,1,1.0 -15332,99,2.1,0,1,1.0 -15332,102,2,1,1, -12449,78,2.1.1.3,0,1,1.0 -12449,85,2.1.1,1,1,1.0 -22099,154,2.1.4.2.2,0,1,1.0 -22099,81,2.1.4.2,1,1,1.0 -20547,142,1.4.2,0,1,1.0 -20547,126,1.4,1,1,1.0 -20547,170,1,2,1,1.0 -1182,12,1.2.1,0,1,1.0 -1182,126,1.2,1,1, -9170,53,1.4.3.6,0,1,1.0 -9170,142,1.4.3,1,1, -4131,23,1.4.2.7,0,1,1.0 -4131,142,1.4.2,1,1,1.0 -4131,126,1.4,2,1, -10107,57,2.3.1,0,1,1.0 -10107,99,2.3,1,1, -791,6,2.1.2.3,0,1,1.0 -791,84,2.1.2,1,1, -9983,56,1.1.1,0,1,1.0 -9983,94,1.1,1,1, -20571,142,1.4.3,0,1,1.0 -20571,126,1.4,1,1, -9161,53,1.4.3.6,0,1,1.0 -9161,142,1.4.3,1,1,1.0 -9161,126,1.4,2,1, -957,9,1.3.3.6,0,1,1.0 -957,75,1.3.3,1,1, -15301,99,2.1,0,1,1.0 -15301,102,2,1,1, -22487,161,2.3.2,0,1,1.0 -22487,155,2.3,1,1,1.0 -20511,142,1.4.2,0,1,1.0 -20511,126,1.4,1,1,1.0 -20511,170,1,2,1,1.0 -2208,16,1.1.3,0,1,1.0 -2208,86,1.1,1,1,1.0 -6899,41,1.4.5,0,1,1.0 -6899,126,1.4,1,1, -7108,43,1.3.1.6,0,1,1.0 -7108,85,1.3.1,1,1, -22242,157,1.4.1,0,1,1.0 -22242,126,1.4,1,1, -22237,157,1.4.1,0,1,1.0 -22237,126,1.4,1,1,1.0 -22237,170,1,2,1,1.0 -10691,60,2.1.1.1,0,1,1.0 -10691,85,2.1.1,1,1, -20596,142,1.4.3,0,1,1.0 -20596,126,1.4,1,1, -1507,13,2.1.3.6,0,1,1.0 -1507,106,2.1.3,1,1, -23249,166,1.2.3,0,1,1.0 -23249,106,1.2,1,1,1.0 -18598,130,1.3.5,0,1,1.0 -18598,29,1.3,1,1, -699,6,2.1.2.1,0,1,1.0 -699,81,2.1.2,1,1,1.0 -4118,23,1.4.2.7,0,1,1.0 -4118,142,1.4.2,1,1,1.0 -4118,126,1.4,2,1,1.0 -4118,170,1,3,1,1.0 -115,2,1.1.3,0,1,1.0 -115,86,1.1,1,1,1.0 -9453,53,1.4.5.8,0,1,1.0 -9453,41,1.4.5,1,1, -13241,79,2.3.1,0,1,1.0 -13241,95,2.3,1,1,1.0 -20240,140,1.4.5.1,0,1,1.0 -20240,41,1.4.5,1,1,1.0 -20240,126,1.4,2,1, -15615,103,1.1.1,0,1,1.0 -15615,94,1.1,1,1,1.0 -9493,53,1.4.5.8,0,1,1.0 -9493,41,1.4.5,1,1, -18599,130,1.3.5,0,1,1.0 -18599,106,1.3,1,1, -18599,29,1.3,1,1, -14257,88,1.1.3,0,1,1.0 -14257,94,1.1,1,1, -4110,23,1.4.2.7,0,1,1.0 -4110,142,1.4.2,1,1, -6861,41,1.4.5,0,1,1.0 -6861,126,1.4,1,1,1.0 -6861,170,1,2,1,1.0 -6265,38,2.1.1.5,0,1,1.0 -6265,85,2.1.1,1,1,1.0 -9492,53,1.4.5.8,0,1,1.0 -9492,41,1.4.5,1,1, -18592,130,1.3.5,0,1,1.0 -18592,106,1.3,1,1, -18592,29,1.3,1,1,1.0 -4049,23,1.3.3.3,0,1,1.0 -4049,75,1.3.3,1,1,1.0 -16242,109,1.3.3.1,0,1,1.0 -16242,97,1.3.3,1,1,1.0 -4127,23,1.4.2.7,0,1,1.0 -4127,142,1.4.2,1,1, -4741,26,2.1.3.6,0,1,1.0 -4741,126,2.1.3,1,1, -22250,157,1.4.1,0,1,1.0 -22250,126,1.4,1,1, -20528,142,1.4.2,0,1,1.0 -20528,126,1.4,1,1, -20244,140,1.4.5.1,0,1,1.0 -20244,41,1.4.5,1,1, -6744,41,1.4.3.2,0,1,1.0 -6744,142,1.4.3,1,1, -20592,142,1.4.3,0,1,1.0 -20592,126,1.4,1,1, -9158,53,1.4.3.6,0,1,1.0 -9158,142,1.4.3,1,1,1.0 -9158,126,1.4,2,1, -17899,126,1.4,0,1,1.0 -17899,170,1,1,1, -3057,22,2.1.3.1,0,1,1.0 -3057,97,2.1.3,1,1, -4119,23,1.4.2.7,0,1,1.0 -4119,142,1.4.2,1,1, -8925,53,1.4.2.3,0,1,1.0 -8925,142,1.4.2,1,1, -22458,161,2.3.2,0,1,1.0 -22458,84,2.3,1,1,1.0 -11388,64,1.1.2,0,1,1.0 -11388,105,1.1,1,1,1.0 -16807,117,2.1.1.2,0,1,1.0 -16807,80,2.1.1,1,1, -1502,13,2.1.3.6,0,1,1.0 -1502,148,2.1.3,1,1, -19106,135,1.3.2.1,0,1,1.0 -19106,130,1.3.2,1,1,1.0 -19106,58,1.3.2,1,1,1.0 -19106,106,1.3,2,1, -6886,41,1.4.5,0,1,1.0 -6886,126,1.4,1,1, -8141,47,2.1.3.6,0,1,1.0 -8141,108,2.1.3,1,1, -20508,142,1.4.2,0,1,1.0 -20508,126,1.4,1,1,1.0 -20508,170,1,2,1,1.0 -20533,142,1.4.2,0,1,1.0 -20533,126,1.4,1,1, -7937,47,2.1.2.1,0,1,1.0 -7937,79,2.1.2,1,1,1.0 -11007,62,2.1.2.1,0,1,1.0 -11007,81,2.1.2,1,1, -8207,49,1.3.1.1,0,1,1.0 -8207,39,1.3.1,1,1, -6855,41,1.4.5,0,1,1.0 -6855,126,1.4,1,1, -20210,140,1.4.5.1,0,1,1.0 -20210,41,1.4.5,1,1, -15652,104,1.1.1,0,1,1.0 -15652,106,1.1,1,1, -8357,49,1.3.3.1,0,1,1.0 -8357,97,1.3.3,1,1, -15349,99,2.1,0,1,1.0 -15349,102,2,1,1, -15349,98,2,1,1, -4707,26,2.1.3.6,0,1,1.0 -4707,106,2.1.3,1,1, -12592,79,1.3.1.1,0,1,1.0 -12592,39,1.3.1,1,1,1.0 -1459,13,2.1.3.5,0,1,1.0 -1459,74,2.1.3,1,1, -11335,63,1.4.4.5,0,1,1.0 -11335,40,1.4.4,1,1, -22907,163,2.1.4.2.2,0,1,1.0 -22907,79,2.1.4.2,1,1, -22407,161,2.3.1,0,1,1.0 -22407,84,2.3,1,1, -9198,53,1.4.3.6,0,1,1.0 -9198,142,1.4.3,1,1, -8940,53,1.4.2.3,0,1,1.0 -8940,142,1.4.2,1,1,1.0 -8940,126,1.4,2,1, -4257,23,2.3.2,0,1,1.0 -4257,124,2.3,1,1, -14349,89,1.1.2,0,1,1.0 -14349,126,1.1,1,1,1.0 -6907,42,1.3.1.1,0,1,1.0 -6907,85,1.3.1,1,1, -17887,126,1.4,0,1,1.0 -17887,170,1,1,1,1.0 -6742,41,1.4.3.2,0,1,1.0 -6742,142,1.4.3,1,1,1.0 -6742,126,1.4,2,1,1.0 -6742,170,1,3,1,1.0 -20550,142,1.4.2,0,1,1.0 -20550,126,1.4,1,1, -9461,53,1.4.5.8,0,1,1.0 -9461,41,1.4.5,1,1,1.0 -9461,126,1.4,2,1, -7183,44,1.1.1,0,1,1.0 -7183,106,1.1,1,1, -9173,53,1.4.3.6,0,1,1.0 -9173,142,1.4.3,1,1, -9199,53,1.4.3.6,0,1,1.0 -9199,142,1.4.3,1,1, -8382,49,1.3.3.1,0,1,1.0 -8382,97,1.3.3,1,1, -11716,69,1.1.1,0,1,1.0 -11716,126,1.1,1,1, -19108,135,1.3.2.1,0,1,1.0 -19108,130,1.3.2,1,1,1.0 -13081,79,2.1.3.7,0,1,1.0 -13081,148,2.1.3,1,1,1.0 -15350,99,2.1,0,1,1.0 -15350,102,2,1,1,1.0 -15350,98,2,1,1, -19110,135,1.3.2.1,0,1,1.0 -19110,58,1.3.2,1,1,1.0 -19110,130,1.3.2,1,1,1.0 -19110,106,1.3,2,1,1.0 -19110,29,1.3,2,1, -6720,41,1.4.3.2,0,1,1.0 -6720,142,1.4.3,1,1, -20594,142,1.4.3,0,1,1.0 -20594,126,1.4,1,1, -7799,47,2.1.1.2,0,1,1.0 -7799,148,2.1.1,1,1,1.0 -23415,168,1.3.3.2,0,1,1.0 -23415,75,1.3.3,1,1, -17907,126,2.1.1.5,0,1,1.0 -17907,85,2.1.1,1,1, -8902,53,1.4.2.3,0,1,1.0 -8902,142,1.4.2,1,1,1.0 -8902,126,1.4,2,1, -8407,49,2.1.2.1,0,1,1.0 -8407,84,2.1.2,1,1, -15683,104,1.1.1,0,1,1.0 -15683,106,1.1,1,1, -19307,135,2.1.3.3,0,1,1.0 -19307,126,2.1.3,1,1, -9155,53,1.4.3.6,0,1,1.0 -9155,142,1.4.3,1,1,1.0 -9155,126,1.4,2,1,1.0 -9155,170,1,3,1,1.0 -6287,38,2.1.1.5,0,1,1.0 -6287,80,2.1.1,1,1,1.0 -2882,22,2.1.1.2,0,1,1.0 -2882,106,2.1.1,1,1, -17882,126,1.4,0,1,1.0 -17882,170,1,1,1,1.0 -9179,53,1.4.3.6,0,1,1.0 -9179,142,1.4.3,1,1,1.0 -9179,126,1.4,2,1, -6142,38,2.1.1.2,0,1,1.0 -6142,148,2.1.1,1,1,1.0 -20546,142,1.4.2,0,1,1.0 -20546,126,1.4,1,1, -20502,142,1.4.2,0,1,1.0 -20502,126,1.4,1,1, -12388,78,2.1.1.2,0,1,1.0 -12388,85,2.1.1,1,1,1.0 -23632,168,2.3.3,0,1,1.0 -23632,126,2.3,1,1, -16907,117,2.1.1.4,0,1,1.0 -16907,80,2.1.1,1,1, -13207,79,2.3.1,0,1,1.0 -13207,126,2.3,1,1, -9478,53,1.4.5.8,0,1,1.0 -9478,41,1.4.5,1,1, -11350,63,1.4.4.5,0,1,1.0 -11350,0,1.4.4,1,1,1.0 -11350,40,1.4.4,1,1, -20527,142,1.4.2,0,1,1.0 -20527,126,1.4,1,1, -9165,53,1.4.3.6,0,1,1.0 -9165,142,1.4.3,1,1,1.0 -9165,126,1.4,2,1, -20557,142,1.4.3,0,1,1.0 -20557,126,1.4,1,1, -10138,57,2.3.1,0,1,1.0 -10138,126,2.3,1,1,1.0 -15303,99,2.1,0,1,1.0 -15303,98,2,1,1, -15303,102,2,1,1, -2907,22,2.1.1.3,0,1,1.0 -2907,148,2.1.1,1,1, -19999,138,1.3.1.5,0,1,1.0 -19999,100,1.3.1,1,1,1.0 -20582,142,1.4.3,0,1,1.0 -20582,126,1.4,1,1, -13096,79,2.1.3.7,0,1,1.0 -13096,74,2.1.3,1,1, -4122,23,1.4.2.7,0,1,1.0 -4122,142,1.4.2,1,1, -20239,140,1.4.5.1,0,1,1.0 -20239,41,1.4.5,1,1, -18692,131,2.1.1.2,0,1,1.0 -18692,106,2.1.1,1,1,1.0 -9183,53,1.4.3.6,0,1,1.0 -9183,142,1.4.3,1,1, -15313,99,2.1,0,1,1.0 -15313,98,2,1,1,1.0 -6874,41,1.4.5,0,1,1.0 -6874,126,1.4,1,1, -6711,41,1.4.3.2,0,1,1.0 -6711,142,1.4.3,1,1,1.0 -6711,126,1.4,2,1, -19399,135,2.1.3.4,0,1,1.0 -19399,108,2.1.3,1,1,1.0 -19257,135,2.1.3.2,0,1,1.0 -19257,73,2.1.3,1,1, -21757,153,1.3.1.4,0,1,1.0 -21757,39,1.3.1,1,1, -6857,41,1.4.5,0,1,1.0 -6857,126,1.4,1,1, -20238,140,1.4.5.1,0,1,1.0 -20238,41,1.4.5,1,1, -4108,23,1.4.2.7,0,1,1.0 -4108,142,1.4.2,1,1,1.0 -4108,126,1.4,2,1, -17707,125,1.2.3,0,1,1.0 -17707,126,1.2,1,1, -12357,78,2.1.1.2,0,1,1.0 -12357,148,2.1.1,1,1, -1449,13,2.1.3.4,0,1,1.0 -1449,126,2.1.3,1,1, -20539,142,1.4.2,0,1,1.0 -20539,126,1.4,1,1, -13619,81,2.1.4.2,0,1,1.0 -13619,102,2.1.4,1,1,1.0 -20512,142,1.4.2,0,1,1.0 -20512,126,1.4,1,1, -707,6,2.1.2.2,0,1,1.0 -707,159,2.1.2,1,1, -21857,154,2.1.4.1.2,0,1,1.0 -21857,79,2.1.4.1,1,1, -20519,142,1.4.2,0,1,1.0 -20519,126,1.4,1,1, -8948,53,1.4.2.3,0,1,1.0 -8948,142,1.4.2,1,1, -6734,41,1.4.3.2,0,1,1.0 -6734,142,1.4.3,1,1, -20510,142,1.4.2,0,1,1.0 -20510,126,1.4,1,1, -13742,82,2.1.2.2,0,1,1.0 -13742,79,2.1.2,1,1,1.0 -13607,81,2.1.4.2,0,1,1.0 -13607,115,2.1.4,1,1,1.0 -13607,84,2.1.4,1,1, -8936,53,1.4.2.3,0,1,1.0 -8936,142,1.4.2,1,1, -20220,140,1.4.5.1,0,1,1.0 -20220,41,1.4.5,1,1, -21577,150,1.1.1,0,1,1.0 -21577,105,1.1,1,1,1.0 -12665,79,1.3.1.6,0,1,1.0 -12665,100,1.3.1,1,1,1.0 -6719,41,1.4.3.2,0,1,1.0 -6719,142,1.4.3,1,1, -15338,99,2.1,0,1,1.0 -15338,98,2,1,1, -12752,79,2.1.3.1,0,1,1.0 -12752,126,2.1.3,1,1, -8208,49,1.3.1.1,0,1,1.0 -8208,39,1.3.1,1,1,1.0 -12886,79,2.1.3.3,0,1,1.0 -12886,73,2.1.3,1,1,1.0 -17867,126,1.4,0,1,1.0 -17867,170,1,1,1,1.0 -18590,130,1.3.5,0,1,1.0 -18590,106,1.3,1,1, -8307,49,1.3.1.6,0,1,1.0 -8307,100,1.3.1,1,1, -21742,153,1.3.1.1,0,1,1.0 -21742,93,1.3.1,1,1,1.0 -11316,63,1.4.4.5,0,1,1.0 -11316,40,1.4.4,1,1,1.0 -15324,99,2.1,0,1,1.0 -15324,102,2,1,1, -9160,53,1.4.3.6,0,1,1.0 -9160,142,1.4.3,1,1, -22244,157,1.4.1,0,1,1.0 -22244,126,1.4,1,1, -5532,33,2.1.2.3,0,1,1.0 -5532,84,2.1.2,1,1, -15330,99,2.1,0,1,1.0 -15330,102,2,1,1, -12816,79,2.1.3.2,0,1,1.0 -12816,108,2.1.3,1,1,1.0 -1407,13,2.1.3.4,0,1,1.0 -1407,74,2.1.3,1,1, -4117,23,1.4.2.7,0,1,1.0 -4117,142,1.4.2,1,1, -19065,135,1.1.3,0,1,1.0 -19065,94,1.1,1,1,1.0 -9473,53,1.4.5.8,0,1,1.0 -9473,41,1.4.5,1,1, -7192,44,1.1.1,0,1,1.0 -7192,86,1.1,1,1,1.0 -5199,31,2.1.4.1.3,0,1,1.0 -5199,79,2.1.4.1,1,1,1.0 -19549,135,2.1.3.7,0,1,1.0 -19549,73,2.1.3,1,1,1.0 -5007,31,1.3.3.3,0,1,1.0 -5007,75,1.3.3,1,1, -15312,99,2.1,0,1,1.0 -15312,98,2,1,1, -15312,102,2,1,1, -20513,142,1.4.2,0,1,1.0 -20513,126,1.4,1,1,1.0 -20513,170,1,2,1,1.0 -9477,53,1.4.5.8,0,1,1.0 -9477,41,1.4.5,1,1, -18572,130,1.3.5,0,1,1.0 -18572,106,1.3,1,1, -18572,29,1.3,1,1, -2165,15,1.3.3.5,0,1,1.0 -2165,99,1.3.3,1,1, -16952,117,2.1.1.5,0,1,1.0 -16952,106,2.1.1,1,1, -16757,117,2.1.1.1,0,1,1.0 -16757,80,2.1.1,1,1, -19121,135,1.3.2.1,0,1,1.0 -19121,58,1.3.2,1,1,1.0 -19121,130,1.3.2,1,1,1.0 -19121,29,1.3,2,1,1.0 -19121,106,1.3,2,1, -1257,13,2.1.3.1,0,1,1.0 -1257,126,2.1.3,1,1, -20243,140,1.4.5.1,0,1,1.0 -20243,41,1.4.5,1,1, -12937,79,2.1.3.4,0,1,1.0 -12937,73,2.1.3,1,1, -12937,74,2.1.3,1,1, -1988,13,2.3.2,0,1,1.0 -1988,124,2.3,1,1,1.0 -18556,130,1.3.5,0,1,1.0 -18556,29,1.3,1,1, -11057,62,2.1.2.2,0,1,1.0 -11057,81,2.1.2,1,1, -21487,149,2.1.2.3,0,1,1.0 -21487,58,2.1.2,1,1,1.0 -23283,167,1.1.1,0,1,1.0 -23283,126,1.1,1,1, -12957,79,2.1.3.5,0,1,1.0 -12957,74,2.1.3,1,1, -12349,78,2.1.1.1,0,1,1.0 -12349,85,2.1.1,1,1,1.0 -9185,53,1.4.3.6,0,1,1.0 -9185,142,1.4.3,1,1, -21583,150,1.1.1,0,1,1.0 -21583,86,1.1,1,1, -3249,22,2.1.3.4,0,1,1.0 -3249,148,2.1.3,1,1,1.0 -7657,46,1.3.1.2,0,1,1.0 -7657,85,1.3.1,1,1, -13219,79,2.3.1,0,1,1.0 -13219,124,2.3,1,1, -6872,41,1.4.5,0,1,1.0 -6872,126,1.4,1,1, -20544,142,1.4.2,0,1,1.0 -20544,126,1.4,1,1, -18707,131,2.1.1.3,0,1,1.0 -18707,85,2.1.1,1,1, -2799,22,1.3.3.6,0,1,1.0 -2799,99,1.3.3,1,1,1.0 -2257,16,2.3.1,0,1,1.0 -2257,126,2.3,1,1, -18116,127,1.1.1,0,1,1.0 -18116,105,1.1,1,1, -20231,140,1.4.5.1,0,1,1.0 -20231,41,1.4.5,1,1,1.0 -20231,126,1.4,2,1, -11442,65,1.2.1,0,1,1.0 -11442,67,1.2,1,1,1.0 -22209,157,1.4.1,0,1,1.0 -22209,126,1.4,1,1,1.0 -22209,170,1,2,1, -2399,16,2.3.3,0,1,1.0 -2399,95,2.3,1,1,1.0 -22227,157,1.4.1,0,1,1.0 -22227,126,1.4,1,1, -7692,46,1.3.1.2,0,1,1.0 -7692,100,1.3.1,1,1,1.0 -4145,23,1.4.2.7,0,1,1.0 -4145,142,1.4.2,1,1,1.0 -4145,126,1.4,2,1, -9190,53,1.4.3.6,0,1,1.0 -9190,142,1.4.3,1,1,1.0 -9190,126,1.4,2,1, -13257,79,2.3.2,0,1,1.0 -13257,99,2.3,1,1, -3849,22,2.3.3,0,1,1.0 -3849,99,2.3,1,1,1.0 -15407,100,1.3.1,0,1,1.0 -15407,29,1.3,1,1, -2338,16,2.3.2,0,1,1.0 -2338,84,2.3,1,1,1.0 -16987,117,2.1.1.5,0,1,1.0 -16987,148,2.1.1,1,1,1.0 -11899,71,1.3.1.2,0,1,1.0 -11899,99,1.3.1,1,1,1.0 -16707,116,1.3.1.7,0,1,1.0 -16707,93,1.3.1,1,1, -13757,82,2.1.2.3,0,1,1.0 -13757,58,2.1.2,1,1, -6863,41,1.4.5,0,1,1.0 -6863,126,1.4,1,1,1.0 -6863,170,1,2,1,1.0 -19146,135,1.3.2.1,0,1,1.0 -19146,130,1.3.2,1,1,1.0 -16857,117,2.1.1.3,0,1,1.0 -16857,85,2.1.1,1,1, -14307,89,1.1.2,0,1,1.0 -14307,86,1.1,1,1, -7107,43,1.3.1.6,0,1,1.0 -7107,85,1.3.1,1,1, -9171,53,1.4.3.6,0,1,1.0 -9171,142,1.4.3,1,1, -9476,53,1.4.5.8,0,1,1.0 -9476,41,1.4.5,1,1,1.0 -9476,126,1.4,2,1, -23257,167,1.1.1,0,1,1.0 -23257,105,1.1,1,1, -8918,53,1.4.2.3,0,1,1.0 -8918,142,1.4.2,1,1,1.0 -8918,126,1.4,2,1,1.0 -8918,170,1,3,1,1.0 -4126,23,1.4.2.7,0,1,1.0 -4126,142,1.4.2,1,1,1.0 -4126,126,1.4,2,1, -22247,157,1.4.1,0,1,1.0 -22247,126,1.4,1,1,1.0 -22247,170,1,2,1,1.0 -19130,135,1.3.2.1,0,1,1.0 -19130,130,1.3.2,1,1,1.0 -19130,58,1.3.2,1,1,1.0 -19130,106,1.3,2,1,1.0 -2307,16,2.3.2,0,1,1.0 -2307,124,2.3,1,1, -9481,53,1.4.5.8,0,1,1.0 -9481,41,1.4.5,1,1,1.0 -9481,126,1.4,2,1, -9194,53,1.4.3.6,0,1,1.0 -9194,142,1.4.3,1,1, -1262,13,2.1.3.1,0,1,1.0 -1262,148,2.1.3,1,1, -6722,41,1.4.3.2,0,1,1.0 -6722,142,1.4.3,1,1, -6854,41,1.4.5,0,1,1.0 -6854,126,1.4,1,1, -4007,23,1.3.3.3,0,1,1.0 -4007,99,1.3.3,1,1, -13702,82,2.1.2.2,0,1,1.0 -13702,79,2.1.2,1,1, -13007,79,2.1.3.6,0,1,1.0 -13007,108,2.1.3,1,1, -22235,157,1.4.1,0,1,1.0 -22235,126,1.4,1,1, -4299,23,2.3.2,0,1,1.0 -4299,155,2.3,1,1,1.0 -23499,168,1.3.3.4,0,1,1.0 -23499,97,1.3.3,1,1,1.0 -9500,53,1.4.5.8,0,1,1.0 -9500,41,1.4.5,1,1, -315,3,1.3.4.1,0,1,1.0 -315,80,1.3.4,1,1,1.0 -22226,157,1.4.1,0,1,1.0 -22226,126,1.4,1,1,1.0 -22226,170,1,2,1, -20219,140,1.4.5.1,0,1,1.0 -20219,41,1.4.5,1,1, -1252,13,2.1.3.1,0,1,1.0 -1252,74,2.1.3,1,1, -17881,126,1.4,0,1,1.0 -17881,170,1,1,1,1.0 -23242,166,1.2.3,0,1,1.0 -23242,67,1.2,1,1,1.0 -11325,63,1.4.4.5,0,1,1.0 -11325,0,1.4.4,1,1, -1440,13,2.1.3.4,0,1,1.0 -1440,73,2.1.3,1,1, -19112,135,1.3.2.1,0,1,1.0 -19112,130,1.3.2,1,1,1.0 -11301,63,1.4.4.5,0,1,1.0 -11301,40,1.4.4,1,1, -22246,157,1.4.1,0,1,1.0 -22246,126,1.4,1,1, -1982,13,2.3.2,0,1,1.0 -1982,155,2.3,1,1, -23449,168,1.3.3.2,0,1,1.0 -23449,97,1.3.3,1,1,1.0 -1259,13,2.1.3.1,0,1,1.0 -1259,74,2.1.3,1,1, -18107,127,1.1.1,0,1,1.0 -18107,86,1.1,1,1, -11432,65,1.2.1,0,1,1.0 -11432,106,1.2,1,1, -23557,168,2.3.2,0,1,1.0 -23557,124,2.3,1,1, -17888,126,1.4,0,1,1.0 -17888,170,1,1,1,1.0 -1207,13,1.2.2,0,1,1.0 -1207,106,1.2,1,1, -5537,33,2.1.2.3,0,1,1.0 -5537,159,2.1.2,1,1,1.0 -22657,163,2.1.4.1.1,0,1,1.0 -22657,81,2.1.4.1,1,1, -8923,53,1.4.2.3,0,1,1.0 -8923,142,1.4.2,1,1, -17854,126,1.4,0,1,1.0 -17854,170,1,1,1,1.0 -21457,149,2.1.2.3,0,1,1.0 -21457,79,2.1.2,1,1, -7807,47,2.1.1.3,0,1,1.0 -7807,80,2.1.1,1,1, -6737,41,1.4.3.2,0,1,1.0 -6737,142,1.4.3,1,1,1.0 -6737,126,1.4,2,1, -10982,62,1.3.1.2,0,1,1.0 -10982,99,1.3.1,1,1, -19133,135,1.3.2.1,0,1,1.0 -19133,58,1.3.2,1,1,1.0 -4499,26,2.1.3.1,0,1,1.0 -4499,106,2.1.3,1,1,1.0 -22999,164,1.3.3.6,0,1,1.0 -22999,99,1.3.3,1,1,1.0 -20232,140,1.4.5.1,0,1,1.0 -20232,41,1.4.5,1,1,1.0 -20232,126,1.4,2,1, -18596,130,1.3.5,0,1,1.0 -18596,106,1.3,1,1, -11329,63,1.4.4.5,0,1,1.0 -11329,40,1.4.4,1,1, -11329,0,1.4.4,1,1, -7919,47,2.1.2.1,0,1,1.0 -7919,81,2.1.2,1,1, -13358,80,1.3.4,0,1,1.0 -13358,29,1.3,1,1, -18649,131,2.1.1.1,0,1,1.0 -18649,106,2.1.1,1,1,1.0 -10307,58,1.3.1.6,0,1,1.0 -10307,100,1.3.1,1,1, -22432,161,2.3.1,0,1,1.0 -22432,126,2.3,1,1, -4319,23,2.3.3,0,1,1.0 -4319,84,2.3,1,1, -18577,130,1.3.5,0,1,1.0 -18577,29,1.3,1,1, -18577,106,1.3,1,1, -9498,53,1.4.5.8,0,1,1.0 -9498,41,1.4.5,1,1, -6740,41,1.4.3.2,0,1,1.0 -6740,142,1.4.3,1,1,1.0 -6740,126,1.4,2,1, -20579,142,1.4.3,0,1,1.0 -20579,126,1.4,1,1, -7007,42,1.3.1.4,0,1,1.0 -7007,85,1.3.1,1,1, -12909,79,2.1.3.4,0,1,1.0 -12909,126,2.1.3,1,1, -20555,142,1.4.3,0,1,1.0 -20555,126,1.4,1,1, -17569,123,1.1.2,0,1,1.0 -17569,126,1.1,1,1, -6851,41,1.4.5,0,1,1.0 -6851,126,1.4,1,1, -20235,140,1.4.5.1,0,1,1.0 -20235,41,1.4.5,1,1, -19139,135,1.3.2.1,0,1,1.0 -19139,58,1.3.2,1,1,1.0 -4147,23,1.4.2.7,0,1,1.0 -4147,142,1.4.2,1,1,1.0 -4147,126,1.4,2,1,1.0 -4147,170,1,3,1, -399,4,1.2.2,0,1,1.0 -399,97,1.2,1,1,1.0 -20907,144,2.1.2.2,0,1,1.0 -20907,84,2.1.2,1,1, -8934,53,1.4.2.3,0,1,1.0 -8934,142,1.4.2,1,1, -7049,42,1.3.1.4,0,1,1.0 -7049,39,1.3.1,1,1,1.0 -12767,79,2.1.3.1,0,1,1.0 -12767,126,2.1.3,1,1, -8449,49,2.1.2.1,0,1,1.0 -8449,79,2.1.2,1,1,1.0 -11312,63,1.4.4.5,0,1,1.0 -11312,40,1.4.4,1,1,1.0 -11312,0,1.4.4,1,1, -837,6,2.1.2.4,0,1,1.0 -837,58,2.1.2,1,1,1.0 -8092,47,2.1.2.4,0,1,1.0 -8092,79,2.1.2,1,1,1.0 -12751,79,2.1.3.1,0,1,1.0 -12751,73,2.1.3,1,1, -1266,13,2.1.3.1,0,1,1.0 -1266,73,2.1.3,1,1,1.0 -17873,126,1.4,0,1,1.0 -17873,170,1,1,1, -11142,62,2.1.2.3,0,1,1.0 -11142,84,2.1.2,1,1,1.0 -11313,63,1.4.4.5,0,1,1.0 -11313,40,1.4.4,1,1, -11313,0,1.4.4,1,1,1.0 -9992,56,1.1.1,0,1,1.0 -9992,106,1.1,1,1,1.0 -6895,41,1.4.5,0,1,1.0 -6895,126,1.4,1,1, -6896,41,1.4.5,0,1,1.0 -6896,126,1.4,1,1, -20575,142,1.4.3,0,1,1.0 -20575,126,1.4,1,1, -8949,53,1.4.2.3,0,1,1.0 -8949,142,1.4.2,1,1, -15322,99,2.1,0,1,1.0 -15322,102,2,1,1, -5049,31,1.3.3.3,0,1,1.0 -5049,99,1.3.3,1,1,1.0 -20226,140,1.4.5.1,0,1,1.0 -20226,41,1.4.5,1,1,1.0 -20226,126,1.4,2,1, -1586,13,2.1.3.7,0,1,1.0 -1586,97,2.1.3,1,1, -12541,78,2.1.1.5,0,1,1.0 -12541,80,2.1.1,1,1, -20857,144,2.1.2.1,0,1,1.0 -20857,84,2.1.2,1,1, -1532,13,2.1.3.6,0,1,1.0 -1532,74,2.1.3,1,1, -20529,142,1.4.2,0,1,1.0 -20529,126,1.4,1,1, -18571,130,1.3.5,0,1,1.0 -18571,29,1.3,1,1, -6870,41,1.4.5,0,1,1.0 -6870,126,1.4,1,1, -8492,49,2.1.2.2,0,1,1.0 -8492,79,2.1.2,1,1,1.0 -19122,135,1.3.2.1,0,1,1.0 -19122,58,1.3.2,1,1,1.0 -19122,130,1.3.2,1,1,1.0 -19122,106,1.3,2,1,1.0 -12007,74,1.3.3.2,0,1,1.0 -12007,97,1.3.3,1,1, -18583,130,1.3.5,0,1,1.0 -18583,106,1.3,1,1, -6714,41,1.4.3.2,0,1,1.0 -6714,142,1.4.3,1,1,1.0 -6714,126,1.4,2,1,1.0 -6714,170,1,3,1,1.0 -15309,99,2.1,0,1,1.0 -15309,98,2,1,1,1.0 -15309,102,2,1,1, -10957,62,1.3.1.2,0,1,1.0 -10957,39,1.3.1,1,1, -9181,53,1.4.3.6,0,1,1.0 -9181,142,1.4.3,1,1,1.0 -9181,126,1.4,2,1, -14357,89,1.2.1,0,1,1.0 -14357,97,1.2,1,1, -9464,53,1.4.5.8,0,1,1.0 -9464,41,1.4.5,1,1,1.0 -9464,126,1.4,2,1,1.0 -9464,170,1,3,1,1.0 -17592,123,1.1.2,0,1,1.0 -17592,105,1.1,1,1,1.0 -15331,99,2.1,0,1,1.0 -15331,102,2,1,1,1.0 -8332,49,1.3.1.6,0,1,1.0 -8332,100,1.3.1,1,1, -22201,157,1.4.1,0,1,1.0 -22201,126,1.4,1,1, -11332,63,1.4.4.5,0,1,1.0 -11332,40,1.4.4,1,1,1.0 -21199,147,1.1.2,0,1,1.0 -21199,94,1.1,1,1,1.0 -19119,135,1.3.2.1,0,1,1.0 -19119,130,1.3.2,1,1,1.0 -19207,135,2.1.3.1,0,1,1.0 -19207,148,2.1.3,1,1, -10008,56,1.3.1.7,0,1,1.0 -10008,100,1.3.1,1,1,1.0 -19124,135,1.3.2.1,0,1,1.0 -19124,130,1.3.2,1,1,1.0 -19124,58,1.3.2,1,1,1.0 -19124,29,1.3,2,1, -19124,106,1.3,2,1, -17207,117,2.1.4.2.1,0,1,1.0 -17207,81,2.1.4.2,1,1, -16508,113,1.1.1,0,1,1.0 -16508,105,1.1,1,1,1.0 -20590,142,1.4.3,0,1,1.0 -20590,126,1.4,1,1, -18586,130,1.3.5,0,1,1.0 -18586,106,1.3,1,1,1.0 -18586,29,1.3,1,1, -15315,99,2.1,0,1,1.0 -15315,102,2,1,1, -15315,98,2,1,1, -10192,57,2.3.2,0,1,1.0 -10192,126,2.3,1,1,1.0 -10832,60,2.1.1.4,0,1,1.0 -10832,80,2.1.1,1,1, -15326,99,2.1,0,1,1.0 -15326,102,2,1,1,1.0 -15611,103,1.1.1,0,1,1.0 -15611,94,1.1,1,1,1.0 -6888,41,1.4.5,0,1,1.0 -6888,126,1.4,1,1, -19457,135,2.1.3.6,0,1,1.0 -19457,74,2.1.3,1,1, -8950,53,1.4.2.3,0,1,1.0 -8950,142,1.4.2,1,1, -18007,126,2.2,0,1,1.0 -18007,102,2,1,1, -20581,142,1.4.3,0,1,1.0 -20581,126,1.4,1,1,1.0 -20581,170,1,2,1,1.0 -21392,149,2.1.2.1,0,1,1.0 -21392,79,2.1.2,1,1,1.0 -642,6,1.3.1.2,0,1,1.0 -642,100,1.3.1,1,1,1.0 -4129,23,1.4.2.7,0,1,1.0 -4129,142,1.4.2,1,1,1.0 -4129,126,1.4,2,1, -15337,99,2.1,0,1,1.0 -15337,98,2,1,1,1.0 -15337,102,2,1,1, -22240,157,1.4.1,0,1,1.0 -22240,126,1.4,1,1, -2749,22,1.2.2,0,1,1.0 -2749,106,1.2,1,1,1.0 -12781,79,2.1.3.1,0,1,1.0 -12781,126,2.1.3,1,1, -2342,16,2.3.2,0,1,1.0 -2342,124,2.3,1,1,1.0 -20553,142,1.4.3,0,1,1.0 -20553,126,1.4,1,1, -1386,13,2.1.3.3,0,1,1.0 -1386,73,2.1.3,1,1, -9168,53,1.4.3.6,0,1,1.0 -9168,142,1.4.3,1,1,1.0 -9168,126,1.4,2,1,1.0 -9168,170,1,3,1,1.0 -19147,135,1.3.2.1,0,1,1.0 -19147,130,1.3.2,1,1,1.0 -22807,163,2.1.4.1.4,0,1,1.0 -22807,81,2.1.4.1,1,1, -19315,135,2.1.3.3,0,1,1.0 -19315,108,2.1.3,1,1,1.0 -608,6,1.3.1.2,0,1,1.0 -608,85,1.3.1,1,1, -20807,143,2.1.1.5,0,1,1.0 -20807,85,2.1.1,1,1, -4265,23,2.3.2,0,1,1.0 -4265,155,2.3,1,1,1.0 -11327,63,1.4.4.5,0,1,1.0 -11327,40,1.4.4,1,1, -11327,0,1.4.4,1,1, -20802,143,2.1.1.5,0,1,1.0 -20802,80,2.1.1,1,1, -11323,63,1.4.4.5,0,1,1.0 -11323,0,1.4.4,1,1, -11323,40,1.4.4,1,1,1.0 -8219,49,1.3.1.1,0,1,1.0 -8219,100,1.3.1,1,1, -11342,63,1.4.4.5,0,1,1.0 -11342,0,1.4.4,1,1, -11342,40,1.4.4,1,1,1.0 -19115,135,1.3.2.1,0,1,1.0 -19115,130,1.3.2,1,1,1.0 -23008,165,2.1.2.1,0,1,1.0 -23008,58,2.1.2,1,1,1.0 -8904,53,1.4.2.3,0,1,1.0 -8904,142,1.4.2,1,1,1.0 -8904,126,1.4,2,1, -7899,47,2.1.1.4,0,1,1.0 -7899,85,2.1.1,1,1,1.0 -19499,135,2.1.3.6,0,1,1.0 -19499,108,2.1.3,1,1,1.0 -13832,82,2.1.2.4,0,1,1.0 -13832,84,2.1.2,1,1, -2915,22,2.1.1.3,0,1,1.0 -2915,85,2.1.1,1,1,1.0 -21566,150,1.1.1,0,1,1.0 -21566,106,1.1,1,1, -1357,13,2.1.3.3,0,1,1.0 -1357,126,2.1.3,1,1, -8935,53,1.4.2.3,0,1,1.0 -8935,142,1.4.2,1,1, -23099,165,2.1.2.2,0,1,1.0 -23099,58,2.1.2,1,1,1.0 -6730,41,1.4.3.2,0,1,1.0 -6730,142,1.4.3,1,1, -17357,119,1.3.1.1,0,1,1.0 -17357,99,1.3.1,1,1, -17897,126,1.4,0,1,1.0 -17897,170,1,1,1,1.0 -7265,45,1.3.4.1,0,1,1.0 -7265,81,1.3.4,1,1,1.0 -21707,153,1.3.1.1,0,1,1.0 -21707,85,1.3.1,1,1, -22239,157,1.4.1,0,1,1.0 -22239,126,1.4,1,1, -20558,142,1.4.3,0,1,1.0 -20558,126,1.4,1,1,1.0 -20558,170,1,2,1,1.0 -11318,63,1.4.4.5,0,1,1.0 -11318,40,1.4.4,1,1,1.0 -2757,22,1.3.3.6,0,1,1.0 -2757,99,1.3.3,1,1, -9472,53,1.4.5.8,0,1,1.0 -9472,41,1.4.5,1,1, -13857,83,1.3.3.2,0,1,1.0 -13857,75,1.3.3,1,1, -20791,143,2.1.1.4,0,1,1.0 -20791,80,2.1.1,1,1, -12946,79,2.1.3.4,0,1,1.0 -12946,74,2.1.3,1,1, -2207,16,1.1.3,0,1,1.0 -2207,106,1.1,1,1, -3349,22,2.1.3.6,0,1,1.0 -3349,106,2.1.3,1,1,1.0 -4657,26,2.1.3.5,0,1,1.0 -4657,126,2.1.3,1,1, -18566,130,1.3.5,0,1,1.0 -18566,106,1.3,1,1, -8157,48,1.2.2,0,1,1.0 -8157,126,1.2,1,1, -11304,63,1.4.4.5,0,1,1.0 -11304,40,1.4.4,1,1,1.0 -18568,130,1.3.5,0,1,1.0 -18568,29,1.3,1,1, -9499,53,1.4.5.8,0,1,1.0 -9499,41,1.4.5,1,1, -5407,33,2.1.2.1,0,1,1.0 -5407,81,2.1.2,1,1, -20505,142,1.4.2,0,1,1.0 -20505,126,1.4,1,1, -14499,90,1.3.1.7,0,1,1.0 -14499,85,1.3.1,1,1,1.0 -4121,23,1.4.2.7,0,1,1.0 -4121,142,1.4.2,1,1, -9192,53,1.4.3.6,0,1,1.0 -9192,142,1.4.3,1,1,1.0 -9192,126,1.4,2,1,1.0 -9192,170,1,3,1,1.0 -22216,157,1.4.1,0,1,1.0 -22216,126,1.4,1,1, -9180,53,1.4.3.6,0,1,1.0 -9180,142,1.4.3,1,1, -18291,129,1.1.2,0,1,1.0 -18291,94,1.1,1,1, -12757,79,2.1.3.1,0,1,1.0 -12757,74,2.1.3,1,1, -841,6,2.1.2.4,0,1,1.0 -841,79,2.1.2,1,1,1.0 -11348,63,1.4.4.5,0,1,1.0 -11348,40,1.4.4,1,1,1.0 -11348,0,1.4.4,1,1, -1267,13,2.1.3.1,0,1,1.0 -1267,97,2.1.3,1,1, -4392,24,1.1.1,0,1,1.0 -4392,126,1.1,1,1,1.0 -18580,130,1.3.5,0,1,1.0 -18580,29,1.3,1,1, -2707,22,1.2.2,0,1,1.0 -2707,126,1.2,1,1, -10999,62,1.3.1.2,0,1,1.0 -10999,100,1.3.1,1,1,1.0 -1567,13,2.1.3.7,0,1,1.0 -1567,148,2.1.3,1,1, -5588,33,2.1.2.4,0,1,1.0 -5588,79,2.1.2,1,1,1.0 -2365,16,2.3.3,0,1,1.0 -2365,95,2.3,1,1,1.0 -9162,53,1.4.3.6,0,1,1.0 -9162,142,1.4.3,1,1,1.0 -9162,126,1.4,2,1, -8919,53,1.4.2.3,0,1,1.0 -8919,142,1.4.2,1,1, -8942,53,1.4.2.3,0,1,1.0 -8942,142,1.4.2,1,1, -11908,72,1.3.1.2,0,1,1.0 -11908,99,1.3.1,1,1, +s_id,id_firm,id_product,ts +2,126,1.4,1 +2,0,1.4.4,0 +4,0,1.4.4,0 +4,126,1.4,1 +5,126,1.4,1 +5,0,1.4.4,0 +6,170,1,2 +6,0,1.4.4,0 +6,126,1.4,1 +7,126,1.4,1 +7,0,1.4.4,0 +8,0,1.4.4,0 +8,126,1.4,1 +9,170,1,2 +9,0,1.4.4,0 +9,126,1.4,1 +10,126,1.4,1 +10,0,1.4.4,0 +11,0,1.4.4,0 +11,126,1.4,1 +14,0,1.4.4,0 +14,126,1.4,1 +16,0,1.4.4,0 +16,126,1.4,1 +22,126,1.4,1 +22,170,1,2 +22,0,1.4.4,0 +23,126,1.4,1 +23,0,1.4.4,0 +26,126,1.4,1 +26,170,1,2 +26,0,1.4.4,0 +28,126,1.4,1 +28,0,1.4.4,0 +29,126,1.4,1 +29,170,1,2 +29,0,1.4.4,0 +31,0,1.4.4,0 +31,126,1.4,1 +32,0,1.4.4,0 +32,126,1.4,1 +33,0,1.4.4,0 +33,126,1.4,1 +34,0,1.4.4,0 +34,126,1.4,1 +36,126,1.4,1 +36,0,1.4.4,0 +39,126,1.4,1 +39,0,1.4.4,0 +41,126,1.4,1 +41,0,1.4.4,0 +43,0,1.4.4,0 +43,170,1,2 +43,126,1.4,1 +44,0,1.4.4,0 +44,126,1.4,1 +47,0,1.4.4,0 +47,126,1.4,1 +48,0,1.4.4,0 +48,126,1.4,1 +52,1,2.1.1.5,0 +52,85,2.1.1,1 +54,1,2.1.1.5,0 +54,85,2.1.1,1 +55,1,2.1.1.5,0 +55,106,2.1.1,1 +56,85,2.1.1,1 +56,1,2.1.1.5,0 +57,80,2.1.1,1 +57,1,2.1.1.5,0 +58,85,2.1.1,1 +58,1,2.1.1.5,0 +60,85,2.1.1,1 +60,1,2.1.1.5,0 +61,1,2.1.1.5,0 +61,80,2.1.1,1 +61,148,2.1.1,1 +62,1,2.1.1.5,0 +62,148,2.1.1,1 +64,85,2.1.1,1 +64,148,2.1.1,1 +64,1,2.1.1.5,0 +66,106,2.1.1,1 +66,1,2.1.1.5,0 +70,1,2.1.1.5,0 +70,80,2.1.1,1 +72,106,2.1.1,1 +72,1,2.1.1.5,0 +73,148,2.1.1,1 +73,80,2.1.1,1 +73,1,2.1.1.5,0 +76,80,2.1.1,1 +76,1,2.1.1.5,0 +78,1,2.1.1.5,0 +78,80,2.1.1,1 +79,1,2.1.1.5,0 +79,106,2.1.1,1 +81,85,2.1.1,1 +81,1,2.1.1.5,0 +82,1,2.1.1.5,0 +82,80,2.1.1,1 +83,1,2.1.1.5,0 +83,80,2.1.1,1 +84,106,2.1.1,1 +84,1,2.1.1.5,0 +85,148,2.1.1,1 +85,1,2.1.1.5,0 +86,1,2.1.1.5,0 +86,106,2.1.1,1 +88,148,2.1.1,1 +88,1,2.1.1.5,0 +89,80,2.1.1,1 +89,1,2.1.1.5,0 +91,1,2.1.1.5,0 +91,148,2.1.1,1 +92,148,2.1.1,1 +92,1,2.1.1.5,0 +93,85,2.1.1,1 +93,1,2.1.1.5,0 +94,106,2.1.1,1 +94,1,2.1.1.5,0 +94,80,2.1.1,1 +97,1,2.1.1.5,0 +97,85,2.1.1,1 +98,85,2.1.1,1 +98,1,2.1.1.5,0 +102,2,1.1.3,0 +102,86,1.1,1 +104,2,1.1.3,0 +104,106,1.1,1 +105,2,1.1.3,0 +105,94,1.1,1 +105,105,1.1,1 +106,2,1.1.3,0 +106,105,1.1,1 +107,86,1.1,1 +107,2,1.1.3,0 +108,86,1.1,1 +108,2,1.1.3,0 +108,126,1.1,1 +110,2,1.1.3,0 +110,105,1.1,1 +111,106,1.1,1 +111,94,1.1,1 +111,2,1.1.3,0 +114,94,1.1,1 +114,2,1.1.3,0 +114,105,1.1,1 +116,126,1.1,1 +116,2,1.1.3,0 +122,106,1.1,1 +122,2,1.1.3,0 +123,106,1.1,1 +123,2,1.1.3,0 +124,2,1.1.3,0 +124,126,1.1,1 +126,126,1.1,1 +126,106,1.1,1 +126,2,1.1.3,0 +128,105,1.1,1 +128,2,1.1.3,0 +129,2,1.1.3,0 +129,94,1.1,1 +131,2,1.1.3,0 +131,94,1.1,1 +132,2,1.1.3,0 +132,86,1.1,1 +133,2,1.1.3,0 +133,106,1.1,1 +134,2,1.1.3,0 +134,94,1.1,1 +135,106,1.1,1 +135,2,1.1.3,0 +135,105,1.1,1 +136,2,1.1.3,0 +136,94,1.1,1 +137,2,1.1.3,0 +137,126,1.1,1 +138,105,1.1,1 +138,2,1.1.3,0 +139,86,1.1,1 +139,2,1.1.3,0 +140,126,1.1,1 +140,94,1.1,1 +140,2,1.1.3,0 +141,86,1.1,1 +141,2,1.1.3,0 +143,86,1.1,1 +143,106,1.1,1 +143,2,1.1.3,0 +144,2,1.1.3,0 +144,105,1.1,1 +147,2,1.1.3,0 +147,105,1.1,1 +148,94,1.1,1 +148,2,1.1.3,0 +148,86,1.1,1 +149,106,1.1,1 +149,2,1.1.3,0 +150,2,1.1.3,0 +150,106,1.1,1 +151,100,1.3.1,1 +151,3,1.3.1.4,0 +152,3,1.3.1.4,0 +152,85,1.3.1,1 +152,99,1.3.1,1 +154,100,1.3.1,1 +154,3,1.3.1.4,0 +154,93,1.3.1,1 +155,3,1.3.1.4,0 +155,93,1.3.1,1 +155,99,1.3.1,1 +157,3,1.3.1.4,0 +157,100,1.3.1,1 +158,39,1.3.1,1 +158,3,1.3.1.4,0 +159,3,1.3.1.4,0 +159,39,1.3.1,1 +160,3,1.3.1.4,0 +160,93,1.3.1,1 +161,93,1.3.1,1 +161,3,1.3.1.4,0 +161,85,1.3.1,1 +161,99,1.3.1,1 +164,100,1.3.1,1 +164,3,1.3.1.4,0 +164,99,1.3.1,1 +166,85,1.3.1,1 +166,99,1.3.1,1 +166,3,1.3.1.4,0 +166,39,1.3.1,1 +170,3,1.3.1.4,0 +170,85,1.3.1,1 +172,3,1.3.1.4,0 +172,85,1.3.1,1 +173,100,1.3.1,1 +173,3,1.3.1.4,0 +175,3,1.3.1.4,0 +175,93,1.3.1,1 +176,85,1.3.1,1 +176,3,1.3.1.4,0 +177,3,1.3.1.4,0 +177,93,1.3.1,1 +178,100,1.3.1,1 +178,3,1.3.1.4,0 +179,85,1.3.1,1 +179,99,1.3.1,1 +179,3,1.3.1.4,0 +181,85,1.3.1,1 +181,3,1.3.1.4,0 +183,3,1.3.1.4,0 +183,85,1.3.1,1 +184,3,1.3.1.4,0 +184,39,1.3.1,1 +185,100,1.3.1,1 +185,3,1.3.1.4,0 +186,85,1.3.1,1 +186,106,1.3,2 +186,93,1.3.1,1 +186,3,1.3.1.4,0 +186,39,1.3.1,1 +188,3,1.3.1.4,0 +188,99,1.3.1,1 +189,3,1.3.1.4,0 +189,100,1.3.1,1 +191,93,1.3.1,1 +191,3,1.3.1.4,0 +191,39,1.3.1,1 +192,3,1.3.1.4,0 +192,93,1.3.1,1 +193,100,1.3.1,1 +193,93,1.3.1,1 +193,3,1.3.1.4,0 +194,100,1.3.1,1 +194,85,1.3.1,1 +194,3,1.3.1.4,0 +195,100,1.3.1,1 +195,3,1.3.1.4,0 +197,85,1.3.1,1 +197,3,1.3.1.4,0 +197,100,1.3.1,1 +198,3,1.3.1.4,0 +198,39,1.3.1,1 +202,39,1.3.1,1 +202,3,1.3.1.5,0 +202,85,1.3.1,1 +203,99,1.3.1,1 +203,39,1.3.1,1 +203,100,1.3.1,1 +203,3,1.3.1.5,0 +204,3,1.3.1.5,0 +204,100,1.3.1,1 +205,93,1.3.1,1 +205,3,1.3.1.5,0 +205,85,1.3.1,1 +206,3,1.3.1.5,0 +206,100,1.3.1,1 +207,93,1.3.1,1 +207,3,1.3.1.5,0 +208,85,1.3.1,1 +208,3,1.3.1.5,0 +209,3,1.3.1.5,0 +209,39,1.3.1,1 +210,39,1.3.1,1 +210,3,1.3.1.5,0 +211,100,1.3.1,1 +211,3,1.3.1.5,0 +212,99,1.3.1,1 +212,3,1.3.1.5,0 +212,100,1.3.1,1 +214,3,1.3.1.5,0 +214,99,1.3.1,1 +216,93,1.3.1,1 +216,3,1.3.1.5,0 +216,85,1.3.1,1 +217,100,1.3.1,1 +217,3,1.3.1.5,0 +219,39,1.3.1,1 +219,85,1.3.1,1 +219,100,1.3.1,1 +219,99,1.3.1,1 +219,3,1.3.1.5,0 +220,3,1.3.1.5,0 +220,85,1.3.1,1 +221,93,1.3.1,1 +221,3,1.3.1.5,0 +222,3,1.3.1.5,0 +222,39,1.3.1,1 +223,99,1.3.1,1 +223,93,1.3.1,1 +223,39,1.3.1,1 +223,100,1.3.1,1 +223,3,1.3.1.5,0 +223,106,1.3,2 +224,106,1.3,2 +224,39,1.3.1,1 +224,85,1.3.1,1 +224,3,1.3.1.5,0 +225,100,1.3.1,1 +225,3,1.3.1.5,0 +227,3,1.3.1.5,0 +227,93,1.3.1,1 +228,39,1.3.1,1 +228,3,1.3.1.5,0 +229,3,1.3.1.5,0 +229,85,1.3.1,1 +229,39,1.3.1,1 +231,93,1.3.1,1 +231,39,1.3.1,1 +231,3,1.3.1.5,0 +232,85,1.3.1,1 +232,3,1.3.1.5,0 +232,93,1.3.1,1 +232,29,1.3,2 +234,39,1.3.1,1 +234,3,1.3.1.5,0 +236,93,1.3.1,1 +236,29,1.3,2 +236,3,1.3.1.5,0 +236,100,1.3.1,1 +236,85,1.3.1,1 +238,93,1.3.1,1 +238,3,1.3.1.5,0 +238,85,1.3.1,1 +239,3,1.3.1.5,0 +239,93,1.3.1,1 +239,39,1.3.1,1 +241,3,1.3.1.5,0 +241,39,1.3.1,1 +242,39,1.3.1,1 +242,3,1.3.1.5,0 +242,99,1.3.1,1 +243,3,1.3.1.5,0 +243,85,1.3.1,1 +244,100,1.3.1,1 +244,3,1.3.1.5,0 +244,99,1.3.1,1 +245,85,1.3.1,1 +245,93,1.3.1,1 +245,3,1.3.1.5,0 +246,3,1.3.1.5,0 +246,99,1.3.1,1 +247,100,1.3.1,1 +247,39,1.3.1,1 +247,3,1.3.1.5,0 +248,39,1.3.1,1 +248,93,1.3.1,1 +248,3,1.3.1.5,0 +252,39,1.3.1,1 +252,100,1.3.1,1 +252,3,1.3.1.6,0 +254,85,1.3.1,1 +254,3,1.3.1.6,0 +255,3,1.3.1.6,0 +255,99,1.3.1,1 +256,99,1.3.1,1 +256,3,1.3.1.6,0 +257,3,1.3.1.6,0 +257,39,1.3.1,1 +258,39,1.3.1,1 +258,3,1.3.1.6,0 +260,3,1.3.1.6,0 +260,39,1.3.1,1 +260,100,1.3.1,1 +261,3,1.3.1.6,0 +261,85,1.3.1,1 +261,99,1.3.1,1 +262,3,1.3.1.6,0 +262,99,1.3.1,1 +264,39,1.3.1,1 +264,3,1.3.1.6,0 +264,85,1.3.1,1 +266,93,1.3.1,1 +266,3,1.3.1.6,0 +266,85,1.3.1,1 +269,39,1.3.1,1 +269,85,1.3.1,1 +269,3,1.3.1.6,0 +274,93,1.3.1,1 +274,3,1.3.1.6,0 +274,99,1.3.1,1 +275,39,1.3.1,1 +275,3,1.3.1.6,0 +279,99,1.3.1,1 +279,3,1.3.1.6,0 +279,39,1.3.1,1 +281,100,1.3.1,1 +281,3,1.3.1.6,0 +282,3,1.3.1.6,0 +282,39,1.3.1,1 +283,3,1.3.1.6,0 +283,85,1.3.1,1 +284,3,1.3.1.6,0 +284,39,1.3.1,1 +285,99,1.3.1,1 +285,3,1.3.1.6,0 +286,3,1.3.1.6,0 +286,100,1.3.1,1 +288,3,1.3.1.6,0 +288,99,1.3.1,1 +289,99,1.3.1,1 +289,3,1.3.1.6,0 +290,93,1.3.1,1 +290,3,1.3.1.6,0 +291,3,1.3.1.6,0 +291,99,1.3.1,1 +292,39,1.3.1,1 +292,106,1.3,2 +292,3,1.3.1.6,0 +292,85,1.3.1,1 +292,100,1.3.1,1 +293,39,1.3.1,1 +293,3,1.3.1.6,0 +293,93,1.3.1,1 +294,39,1.3.1,1 +294,100,1.3.1,1 +294,3,1.3.1.6,0 +295,85,1.3.1,1 +295,93,1.3.1,1 +295,3,1.3.1.6,0 +298,106,1.3,2 +298,39,1.3.1,1 +298,3,1.3.1.6,0 +298,100,1.3.1,1 +300,3,1.3.1.6,0 +300,100,1.3.1,1 +300,93,1.3.1,1 +304,3,1.3.4.1,0 +304,77,1.3.4,1 +304,81,1.3.4,1 +305,80,1.3.4,1 +305,77,1.3.4,1 +305,3,1.3.4.1,0 +307,3,1.3.4.1,0 +307,77,1.3.4,1 +309,3,1.3.4.1,0 +309,80,1.3.4,1 +310,3,1.3.4.1,0 +310,80,1.3.4,1 +311,80,1.3.4,1 +311,3,1.3.4.1,0 +320,80,1.3.4,1 +320,3,1.3.4.1,0 +322,3,1.3.4.1,0 +322,81,1.3.4,1 +327,3,1.3.4.1,0 +327,81,1.3.4,1 +328,3,1.3.4.1,0 +328,80,1.3.4,1 +329,77,1.3.4,1 +329,80,1.3.4,1 +329,3,1.3.4.1,0 +331,80,1.3.4,1 +331,3,1.3.4.1,0 +332,3,1.3.4.1,0 +332,81,1.3.4,1 +333,3,1.3.4.1,0 +333,77,1.3.4,1 +336,3,1.3.4.1,0 +336,81,1.3.4,1 +336,77,1.3.4,1 +339,3,1.3.4.1,0 +339,77,1.3.4,1 +341,3,1.3.4.1,0 +341,77,1.3.4,1 +343,80,1.3.4,1 +343,3,1.3.4.1,0 +344,80,1.3.4,1 +344,3,1.3.4.1,0 +347,80,1.3.4,1 +347,3,1.3.4.1,0 +349,80,1.3.4,1 +349,3,1.3.4.1,0 +350,3,1.3.4.1,0 +350,80,1.3.4,1 +352,106,1.2,1 +352,97,1.2,1 +352,126,1.2,1 +352,4,1.2.2,0 +352,67,1.2,1 +353,97,1.2,1 +353,4,1.2.2,0 +353,106,1.2,1 +354,106,1.2,1 +354,4,1.2.2,0 +355,4,1.2.2,0 +355,126,1.2,1 +355,97,1.2,1 +356,97,1.2,1 +356,4,1.2.2,0 +357,4,1.2.2,0 +357,97,1.2,1 +358,4,1.2.2,0 +358,126,1.2,1 +360,97,1.2,1 +360,4,1.2.2,0 +361,4,1.2.2,0 +361,106,1.2,1 +361,126,1.2,1 +364,126,1.2,1 +364,4,1.2.2,0 +364,97,1.2,1 +366,4,1.2.2,0 +366,97,1.2,1 +367,4,1.2.2,0 +367,106,1.2,1 +369,106,1.2,1 +369,4,1.2.2,0 +372,97,1.2,1 +372,4,1.2.2,0 +373,97,1.2,1 +373,67,1.2,1 +373,4,1.2.2,0 +374,4,1.2.2,0 +374,97,1.2,1 +376,4,1.2.2,0 +376,67,1.2,1 +377,126,1.2,1 +377,4,1.2.2,0 +378,4,1.2.2,0 +378,97,1.2,1 +379,4,1.2.2,0 +379,67,1.2,1 +381,4,1.2.2,0 +381,97,1.2,1 +381,67,1.2,1 +382,97,1.2,1 +382,4,1.2.2,0 +383,67,1.2,1 +383,4,1.2.2,0 +384,67,1.2,1 +384,4,1.2.2,0 +386,126,1.2,1 +386,106,1.2,1 +386,4,1.2.2,0 +388,4,1.2.2,0 +388,97,1.2,1 +389,4,1.2.2,0 +389,126,1.2,1 +390,97,1.2,1 +390,4,1.2.2,0 +391,4,1.2.2,0 +391,126,1.2,1 +393,170,1,2 +393,4,1.2.2,0 +393,67,1.2,1 +393,97,1.2,1 +394,67,1.2,1 +394,4,1.2.2,0 +394,97,1.2,1 +397,106,1.2,1 +397,4,1.2.2,0 +398,106,1.2,1 +398,4,1.2.2,0 +398,126,1.2,1 +399,126,1.2,1 +399,4,1.2.2,0 +404,41,1.4.5,1 +404,5,1.4.5.3,0 +405,41,1.4.5,1 +405,5,1.4.5.3,0 +406,41,1.4.5,1 +406,5,1.4.5.3,0 +409,41,1.4.5,1 +409,5,1.4.5.3,0 +410,5,1.4.5.3,0 +410,41,1.4.5,1 +414,41,1.4.5,1 +414,5,1.4.5.3,0 +416,5,1.4.5.3,0 +416,41,1.4.5,1 +419,5,1.4.5.3,0 +419,41,1.4.5,1 +424,5,1.4.5.3,0 +424,41,1.4.5,1 +425,41,1.4.5,1 +425,170,1,3 +425,126,1.4,2 +425,5,1.4.5.3,0 +426,5,1.4.5.3,0 +426,41,1.4.5,1 +428,5,1.4.5.3,0 +428,41,1.4.5,1 +429,5,1.4.5.3,0 +429,41,1.4.5,1 +431,5,1.4.5.3,0 +431,41,1.4.5,1 +432,41,1.4.5,1 +432,5,1.4.5.3,0 +433,41,1.4.5,1 +433,5,1.4.5.3,0 +434,5,1.4.5.3,0 +434,41,1.4.5,1 +436,5,1.4.5.3,0 +436,41,1.4.5,1 +442,41,1.4.5,1 +442,5,1.4.5.3,0 +443,41,1.4.5,1 +443,5,1.4.5.3,0 +444,5,1.4.5.3,0 +444,41,1.4.5,1 +447,5,1.4.5.3,0 +447,41,1.4.5,1 +449,41,1.4.5,1 +449,5,1.4.5.3,0 +451,41,1.4.5,1 +451,5,1.4.5.4,0 +452,5,1.4.5.4,0 +452,41,1.4.5,1 +453,170,1,3 +453,126,1.4,2 +453,5,1.4.5.4,0 +453,41,1.4.5,1 +454,41,1.4.5,1 +454,5,1.4.5.4,0 +455,126,1.4,2 +455,41,1.4.5,1 +455,5,1.4.5.4,0 +455,170,1,3 +456,41,1.4.5,1 +456,5,1.4.5.4,0 +457,170,1,3 +457,5,1.4.5.4,0 +457,41,1.4.5,1 +457,126,1.4,2 +458,41,1.4.5,1 +458,126,1.4,2 +458,5,1.4.5.4,0 +458,170,1,3 +459,41,1.4.5,1 +459,5,1.4.5.4,0 +460,126,1.4,2 +460,5,1.4.5.4,0 +460,41,1.4.5,1 +460,170,1,3 +461,5,1.4.5.4,0 +461,126,1.4,2 +461,170,1,3 +461,41,1.4.5,1 +464,170,1,3 +464,5,1.4.5.4,0 +464,41,1.4.5,1 +464,126,1.4,2 +466,41,1.4.5,1 +466,5,1.4.5.4,0 +469,5,1.4.5.4,0 +469,41,1.4.5,1 +470,170,1,3 +470,41,1.4.5,1 +470,5,1.4.5.4,0 +470,126,1.4,2 +472,5,1.4.5.4,0 +472,41,1.4.5,1 +473,5,1.4.5.4,0 +473,41,1.4.5,1 +474,5,1.4.5.4,0 +474,126,1.4,2 +474,41,1.4.5,1 +474,170,1,3 +475,5,1.4.5.4,0 +475,41,1.4.5,1 +476,5,1.4.5.4,0 +476,41,1.4.5,1 +478,5,1.4.5.4,0 +478,41,1.4.5,1 +479,5,1.4.5.4,0 +479,41,1.4.5,1 +481,126,1.4,2 +481,170,1,3 +481,5,1.4.5.4,0 +481,41,1.4.5,1 +482,5,1.4.5.4,0 +482,41,1.4.5,1 +483,41,1.4.5,1 +483,5,1.4.5.4,0 +484,5,1.4.5.4,0 +484,41,1.4.5,1 +486,5,1.4.5.4,0 +486,41,1.4.5,1 +489,41,1.4.5,1 +489,5,1.4.5.4,0 +489,126,1.4,2 +489,170,1,3 +491,170,1,3 +491,126,1.4,2 +491,5,1.4.5.4,0 +491,41,1.4.5,1 +492,41,1.4.5,1 +492,5,1.4.5.4,0 +493,5,1.4.5.4,0 +493,41,1.4.5,1 +494,170,1,3 +494,5,1.4.5.4,0 +494,41,1.4.5,1 +494,126,1.4,2 +497,5,1.4.5.4,0 +497,41,1.4.5,1 +498,126,1.4,2 +498,5,1.4.5.4,0 +498,170,1,3 +498,41,1.4.5,1 +499,170,1,3 +499,126,1.4,2 +499,41,1.4.5,1 +499,5,1.4.5.4,0 +501,170,1,3 +501,126,1.4,2 +501,41,1.4.5,1 +501,5,1.4.5.5,0 +502,41,1.4.5,1 +502,170,1,3 +502,126,1.4,2 +502,5,1.4.5.5,0 +503,41,1.4.5,1 +503,5,1.4.5.5,0 +504,41,1.4.5,1 +504,5,1.4.5.5,0 +505,41,1.4.5,1 +505,5,1.4.5.5,0 +506,41,1.4.5,1 +506,5,1.4.5.5,0 +507,41,1.4.5,1 +507,5,1.4.5.5,0 +508,41,1.4.5,1 +508,126,1.4,2 +508,5,1.4.5.5,0 +508,170,1,3 +509,41,1.4.5,1 +509,5,1.4.5.5,0 +510,5,1.4.5.5,0 +510,41,1.4.5,1 +511,41,1.4.5,1 +511,5,1.4.5.5,0 +514,41,1.4.5,1 +514,5,1.4.5.5,0 +516,41,1.4.5,1 +516,5,1.4.5.5,0 +519,5,1.4.5.5,0 +519,41,1.4.5,1 +520,5,1.4.5.5,0 +520,41,1.4.5,1 +522,126,1.4,2 +522,41,1.4.5,1 +522,5,1.4.5.5,0 +522,170,1,3 +523,5,1.4.5.5,0 +523,126,1.4,2 +523,170,1,3 +523,41,1.4.5,1 +524,5,1.4.5.5,0 +524,41,1.4.5,1 +525,5,1.4.5.5,0 +525,41,1.4.5,1 +526,5,1.4.5.5,0 +526,41,1.4.5,1 +528,5,1.4.5.5,0 +528,41,1.4.5,1 +529,5,1.4.5.5,0 +529,41,1.4.5,1 +531,5,1.4.5.5,0 +531,41,1.4.5,1 +532,5,1.4.5.5,0 +532,41,1.4.5,1 +533,41,1.4.5,1 +533,5,1.4.5.5,0 +534,5,1.4.5.5,0 +534,41,1.4.5,1 +536,5,1.4.5.5,0 +536,41,1.4.5,1 +539,41,1.4.5,1 +539,5,1.4.5.5,0 +541,170,1,3 +541,126,1.4,2 +541,5,1.4.5.5,0 +541,41,1.4.5,1 +542,41,1.4.5,1 +542,126,1.4,2 +542,170,1,3 +542,5,1.4.5.5,0 +543,5,1.4.5.5,0 +543,41,1.4.5,1 +544,5,1.4.5.5,0 +544,41,1.4.5,1 +547,5,1.4.5.5,0 +547,41,1.4.5,1 +548,126,1.4,2 +548,5,1.4.5.5,0 +548,170,1,3 +548,41,1.4.5,1 +549,41,1.4.5,1 +549,5,1.4.5.5,0 +551,170,1,3 +551,126,1.4,2 +551,41,1.4.5,1 +551,5,1.4.5.9,0 +552,5,1.4.5.9,0 +552,41,1.4.5,1 +553,41,1.4.5,1 +553,5,1.4.5.9,0 +554,41,1.4.5,1 +554,5,1.4.5.9,0 +555,41,1.4.5,1 +555,5,1.4.5.9,0 +556,41,1.4.5,1 +556,5,1.4.5.9,0 +557,41,1.4.5,1 +557,5,1.4.5.9,0 +558,41,1.4.5,1 +558,5,1.4.5.9,0 +559,41,1.4.5,1 +559,5,1.4.5.9,0 +560,5,1.4.5.9,0 +560,41,1.4.5,1 +561,5,1.4.5.9,0 +561,126,1.4,2 +561,170,1,3 +561,41,1.4.5,1 +564,41,1.4.5,1 +564,5,1.4.5.9,0 +566,126,1.4,2 +566,5,1.4.5.9,0 +566,170,1,3 +566,41,1.4.5,1 +569,5,1.4.5.9,0 +569,41,1.4.5,1 +570,5,1.4.5.9,0 +570,41,1.4.5,1 +572,5,1.4.5.9,0 +572,41,1.4.5,1 +573,5,1.4.5.9,0 +573,41,1.4.5,1 +574,5,1.4.5.9,0 +574,126,1.4,2 +574,41,1.4.5,1 +574,170,1,3 +575,5,1.4.5.9,0 +575,41,1.4.5,1 +576,126,1.4,2 +576,5,1.4.5.9,0 +576,41,1.4.5,1 +576,170,1,3 +578,5,1.4.5.9,0 +578,41,1.4.5,1 +579,41,1.4.5,1 +579,170,1,3 +579,126,1.4,2 +579,5,1.4.5.9,0 +581,5,1.4.5.9,0 +581,41,1.4.5,1 +582,5,1.4.5.9,0 +582,41,1.4.5,1 +583,5,1.4.5.9,0 +583,170,1,3 +583,41,1.4.5,1 +583,126,1.4,2 +584,5,1.4.5.9,0 +584,41,1.4.5,1 +586,5,1.4.5.9,0 +586,41,1.4.5,1 +589,41,1.4.5,1 +589,5,1.4.5.9,0 +591,170,1,3 +591,126,1.4,2 +591,5,1.4.5.9,0 +591,41,1.4.5,1 +592,41,1.4.5,1 +592,5,1.4.5.9,0 +593,5,1.4.5.9,0 +593,41,1.4.5,1 +594,5,1.4.5.9,0 +594,41,1.4.5,1 +597,5,1.4.5.9,0 +597,41,1.4.5,1 +598,41,1.4.5,1 +598,5,1.4.5.9,0 +599,41,1.4.5,1 +599,5,1.4.5.9,0 +602,39,1.3.1,1 +602,100,1.3.1,1 +602,6,1.3.1.2,0 +605,99,1.3.1,1 +605,6,1.3.1.2,0 +605,100,1.3.1,1 +606,93,1.3.1,1 +606,6,1.3.1.2,0 +607,39,1.3.1,1 +607,6,1.3.1.2,0 +608,39,1.3.1,1 +608,6,1.3.1.2,0 +608,100,1.3.1,1 +610,6,1.3.1.2,0 +610,99,1.3.1,1 +611,39,1.3.1,1 +611,6,1.3.1.2,0 +611,99,1.3.1,1 +612,6,1.3.1.2,0 +612,100,1.3.1,1 +614,100,1.3.1,1 +614,6,1.3.1.2,0 +614,39,1.3.1,1 +616,6,1.3.1.2,0 +616,93,1.3.1,1 +619,93,1.3.1,1 +619,6,1.3.1.2,0 +619,100,1.3.1,1 +620,6,1.3.1.2,0 +620,85,1.3.1,1 +621,6,1.3.1.2,0 +621,100,1.3.1,1 +621,93,1.3.1,1 +622,6,1.3.1.2,0 +622,39,1.3.1,1 +623,99,1.3.1,1 +623,6,1.3.1.2,0 +624,39,1.3.1,1 +624,106,1.3,2 +624,6,1.3.1.2,0 +624,100,1.3.1,1 +625,93,1.3.1,1 +625,6,1.3.1.2,0 +626,6,1.3.1.2,0 +626,85,1.3.1,1 +626,93,1.3.1,1 +627,93,1.3.1,1 +627,6,1.3.1.2,0 +628,6,1.3.1.2,0 +628,39,1.3.1,1 +629,6,1.3.1.2,0 +629,85,1.3.1,1 +629,39,1.3.1,1 +631,85,1.3.1,1 +631,6,1.3.1.2,0 +632,6,1.3.1.2,0 +632,100,1.3.1,1 +633,93,1.3.1,1 +633,6,1.3.1.2,0 +634,6,1.3.1.2,0 +634,39,1.3.1,1 +636,100,1.3.1,1 +636,99,1.3.1,1 +636,93,1.3.1,1 +636,6,1.3.1.2,0 +637,6,1.3.1.2,0 +637,99,1.3.1,1 +639,6,1.3.1.2,0 +639,39,1.3.1,1 +639,100,1.3.1,1 +641,39,1.3.1,1 +641,6,1.3.1.2,0 +642,100,1.3.1,1 +642,6,1.3.1.2,0 +643,6,1.3.1.2,0 +643,100,1.3.1,1 +643,93,1.3.1,1 +643,85,1.3.1,1 +644,6,1.3.1.2,0 +644,93,1.3.1,1 +647,6,1.3.1.2,0 +647,99,1.3.1,1 +648,99,1.3.1,1 +648,39,1.3.1,1 +648,6,1.3.1.2,0 +652,6,2.1.2.1,0 +652,81,2.1.2,1 +652,58,2.1.2,1 +653,58,2.1.2,1 +653,79,2.1.2,1 +653,81,2.1.2,1 +653,6,2.1.2.1,0 +654,84,2.1.2,1 +654,6,2.1.2.1,0 +657,79,2.1.2,1 +657,6,2.1.2.1,0 +658,79,2.1.2,1 +658,6,2.1.2.1,0 +660,6,2.1.2.1,0 +660,84,2.1.2,1 +664,159,2.1.2,1 +664,84,2.1.2,1 +664,6,2.1.2.1,0 +666,58,2.1.2,1 +666,6,2.1.2.1,0 +666,84,2.1.2,1 +669,6,2.1.2.1,0 +669,81,2.1.2,1 +669,58,2.1.2,1 +670,6,2.1.2.1,0 +670,58,2.1.2,1 +672,6,2.1.2.1,0 +672,79,2.1.2,1 +673,6,2.1.2.1,0 +673,79,2.1.2,1 +673,81,2.1.2,1 +675,79,2.1.2,1 +675,6,2.1.2.1,0 +676,58,2.1.2,1 +676,6,2.1.2.1,0 +676,81,2.1.2,1 +679,6,2.1.2.1,0 +679,84,2.1.2,1 +681,6,2.1.2.1,0 +681,81,2.1.2,1 +681,58,2.1.2,1 +682,6,2.1.2.1,0 +682,58,2.1.2,1 +683,79,2.1.2,1 +683,6,2.1.2.1,0 +684,6,2.1.2.1,0 +684,58,2.1.2,1 +685,6,2.1.2.1,0 +685,81,2.1.2,1 +686,81,2.1.2,1 +686,6,2.1.2.1,0 +687,6,2.1.2.1,0 +687,84,2.1.2,1 +687,159,2.1.2,1 +688,79,2.1.2,1 +688,6,2.1.2.1,0 +689,6,2.1.2.1,0 +689,84,2.1.2,1 +693,84,2.1.2,1 +693,6,2.1.2.1,0 +694,81,2.1.2,1 +694,6,2.1.2.1,0 +697,6,2.1.2.1,0 +697,81,2.1.2,1 +698,6,2.1.2.1,0 +698,81,2.1.2,1 +701,81,2.1.2,1 +701,159,2.1.2,1 +701,58,2.1.2,1 +701,6,2.1.2.2,0 +702,6,2.1.2.2,0 +702,58,2.1.2,1 +702,84,2.1.2,1 +705,58,2.1.2,1 +705,6,2.1.2.2,0 +706,6,2.1.2.2,0 +706,79,2.1.2,1 +707,6,2.1.2.2,0 +707,84,2.1.2,1 +708,58,2.1.2,1 +708,6,2.1.2.2,0 +710,58,2.1.2,1 +710,6,2.1.2.2,0 +711,58,2.1.2,1 +711,159,2.1.2,1 +711,6,2.1.2.2,0 +714,6,2.1.2.2,0 +714,159,2.1.2,1 +714,79,2.1.2,1 +716,6,2.1.2.2,0 +716,81,2.1.2,1 +716,84,2.1.2,1 +716,159,2.1.2,1 +717,159,2.1.2,1 +717,6,2.1.2.2,0 +722,81,2.1.2,1 +722,6,2.1.2.2,0 +723,6,2.1.2.2,0 +723,81,2.1.2,1 +724,6,2.1.2.2,0 +724,58,2.1.2,1 +726,6,2.1.2.2,0 +726,79,2.1.2,1 +728,79,2.1.2,1 +728,6,2.1.2.2,0 +729,159,2.1.2,1 +729,6,2.1.2.2,0 +729,79,2.1.2,1 +731,6,2.1.2.2,0 +731,79,2.1.2,1 +732,81,2.1.2,1 +732,6,2.1.2.2,0 +732,79,2.1.2,1 +733,6,2.1.2.2,0 +733,159,2.1.2,1 +735,6,2.1.2.2,0 +735,79,2.1.2,1 +735,84,2.1.2,1 +736,6,2.1.2.2,0 +736,159,2.1.2,1 +737,6,2.1.2.2,0 +737,84,2.1.2,1 +737,159,2.1.2,1 +739,81,2.1.2,1 +739,6,2.1.2.2,0 +741,81,2.1.2,1 +741,6,2.1.2.2,0 +742,81,2.1.2,1 +742,58,2.1.2,1 +742,6,2.1.2.2,0 +743,81,2.1.2,1 +743,79,2.1.2,1 +743,6,2.1.2.2,0 +744,81,2.1.2,1 +744,6,2.1.2.2,0 +748,84,2.1.2,1 +748,6,2.1.2.2,0 +751,6,2.1.2.3,0 +751,79,2.1.2,1 +752,159,2.1.2,1 +752,79,2.1.2,1 +752,6,2.1.2.3,0 +752,84,2.1.2,1 +753,6,2.1.2.3,0 +753,159,2.1.2,1 +754,6,2.1.2.3,0 +754,81,2.1.2,1 +755,58,2.1.2,1 +755,6,2.1.2.3,0 +759,58,2.1.2,1 +759,6,2.1.2.3,0 +760,6,2.1.2.3,0 +760,58,2.1.2,1 +761,159,2.1.2,1 +761,84,2.1.2,1 +761,6,2.1.2.3,0 +764,6,2.1.2.3,0 +764,79,2.1.2,1 +764,84,2.1.2,1 +766,58,2.1.2,1 +766,79,2.1.2,1 +766,6,2.1.2.3,0 +770,6,2.1.2.3,0 +770,79,2.1.2,1 +772,6,2.1.2.3,0 +772,84,2.1.2,1 +775,6,2.1.2.3,0 +775,159,2.1.2,1 +776,58,2.1.2,1 +776,6,2.1.2.3,0 +777,84,2.1.2,1 +777,6,2.1.2.3,0 +778,58,2.1.2,1 +778,6,2.1.2.3,0 +779,6,2.1.2.3,0 +779,79,2.1.2,1 +781,6,2.1.2.3,0 +781,81,2.1.2,1 +781,58,2.1.2,1 +782,6,2.1.2.3,0 +782,79,2.1.2,1 +783,6,2.1.2.3,0 +783,58,2.1.2,1 +784,84,2.1.2,1 +784,6,2.1.2.3,0 +789,58,2.1.2,1 +789,6,2.1.2.3,0 +791,79,2.1.2,1 +791,6,2.1.2.3,0 +793,84,2.1.2,1 +793,6,2.1.2.3,0 +798,6,2.1.2.3,0 +798,84,2.1.2,1 +801,6,2.1.2.4,0 +801,58,2.1.2,1 +804,58,2.1.2,1 +804,6,2.1.2.4,0 +805,79,2.1.2,1 +805,6,2.1.2.4,0 +805,84,2.1.2,1 +806,6,2.1.2.4,0 +806,58,2.1.2,1 +808,81,2.1.2,1 +808,6,2.1.2.4,0 +809,58,2.1.2,1 +809,6,2.1.2.4,0 +811,159,2.1.2,1 +811,6,2.1.2.4,0 +814,81,2.1.2,1 +814,6,2.1.2.4,0 +814,159,2.1.2,1 +819,6,2.1.2.4,0 +819,79,2.1.2,1 +820,6,2.1.2.4,0 +820,81,2.1.2,1 +821,6,2.1.2.4,0 +821,159,2.1.2,1 +822,84,2.1.2,1 +822,6,2.1.2.4,0 +823,81,2.1.2,1 +823,84,2.1.2,1 +823,6,2.1.2.4,0 +824,159,2.1.2,1 +824,6,2.1.2.4,0 +824,58,2.1.2,1 +826,6,2.1.2.4,0 +826,159,2.1.2,1 +827,159,2.1.2,1 +827,6,2.1.2.4,0 +828,79,2.1.2,1 +828,6,2.1.2.4,0 +829,6,2.1.2.4,0 +829,84,2.1.2,1 +831,79,2.1.2,1 +831,58,2.1.2,1 +831,6,2.1.2.4,0 +834,6,2.1.2.4,0 +834,81,2.1.2,1 +836,6,2.1.2.4,0 +836,79,2.1.2,1 +836,58,2.1.2,1 +837,6,2.1.2.4,0 +837,84,2.1.2,1 +838,159,2.1.2,1 +838,6,2.1.2.4,0 +839,159,2.1.2,1 +839,6,2.1.2.4,0 +841,79,2.1.2,1 +841,6,2.1.2.4,0 +842,58,2.1.2,1 +842,159,2.1.2,1 +842,6,2.1.2.4,0 +843,6,2.1.2.4,0 +843,81,2.1.2,1 +844,6,2.1.2.4,0 +844,58,2.1.2,1 +846,79,2.1.2,1 +846,6,2.1.2.4,0 +847,6,2.1.2.4,0 +847,79,2.1.2,1 +849,84,2.1.2,1 +849,6,2.1.2.4,0 +850,81,2.1.2,1 +850,6,2.1.2.4,0 +854,7,2.2,0 +854,102,2,1 +856,98,2,1 +856,7,2.2,0 +857,98,2,1 +857,7,2.2,0 +858,98,2,1 +858,7,2.2,0 +860,98,2,1 +860,7,2.2,0 +861,98,2,1 +861,7,2.2,0 +864,98,2,1 +864,7,2.2,0 +869,102,2,1 +869,7,2.2,0 +872,7,2.2,0 +872,98,2,1 +873,102,2,1 +873,7,2.2,0 +876,98,2,1 +876,7,2.2,0 +878,98,2,1 +878,7,2.2,0 +879,7,2.2,0 +879,98,2,1 +881,98,2,1 +881,7,2.2,0 +882,98,2,1 +882,7,2.2,0 +883,7,2.2,0 +883,102,2,1 +884,98,2,1 +884,7,2.2,0 +885,102,2,1 +885,7,2.2,0 +889,7,2.2,0 +889,98,2,1 +890,7,2.2,0 +890,102,2,1 +893,7,2.2,0 +893,98,2,1 +894,7,2.2,0 +894,98,2,1 +897,7,2.2,0 +897,98,2,1 +899,102,2,1 +899,7,2.2,0 +902,8,1.4.1.1,0 +902,157,1.4.1,1 +904,157,1.4.1,1 +904,8,1.4.1.1,0 +905,8,1.4.1.1,0 +905,157,1.4.1,1 +906,8,1.4.1.1,0 +906,157,1.4.1,1 +907,8,1.4.1.1,0 +907,157,1.4.1,1 +908,8,1.4.1.1,0 +908,157,1.4.1,1 +909,157,1.4.1,1 +909,8,1.4.1.1,0 +910,157,1.4.1,1 +910,8,1.4.1.1,0 +911,8,1.4.1.1,0 +911,157,1.4.1,1 +914,8,1.4.1.1,0 +914,157,1.4.1,1 +916,157,1.4.1,1 +916,8,1.4.1.1,0 +920,157,1.4.1,1 +920,8,1.4.1.1,0 +922,8,1.4.1.1,0 +922,157,1.4.1,1 +923,8,1.4.1.1,0 +923,157,1.4.1,1 +925,8,1.4.1.1,0 +925,157,1.4.1,1 +926,157,1.4.1,1 +926,8,1.4.1.1,0 +928,157,1.4.1,1 +928,8,1.4.1.1,0 +929,157,1.4.1,1 +929,8,1.4.1.1,0 +931,8,1.4.1.1,0 +931,157,1.4.1,1 +932,157,1.4.1,1 +932,8,1.4.1.1,0 +933,8,1.4.1.1,0 +933,157,1.4.1,1 +934,157,1.4.1,1 +934,8,1.4.1.1,0 +936,8,1.4.1.1,0 +936,157,1.4.1,1 +939,157,1.4.1,1 +939,8,1.4.1.1,0 +941,8,1.4.1.1,0 +941,157,1.4.1,1 +942,157,1.4.1,1 +942,8,1.4.1.1,0 +943,157,1.4.1,1 +943,8,1.4.1.1,0 +944,157,1.4.1,1 +944,8,1.4.1.1,0 +947,8,1.4.1.1,0 +947,157,1.4.1,1 +948,8,1.4.1.1,0 +948,157,1.4.1,1 +952,9,1.3.3.6,0 +952,75,1.3.3,1 +954,9,1.3.3.6,0 +954,97,1.3.3,1 +955,9,1.3.3.6,0 +955,97,1.3.3,1 +956,99,1.3.3,1 +956,9,1.3.3.6,0 +958,9,1.3.3.6,0 +958,75,1.3.3,1 +959,9,1.3.3.6,0 +959,99,1.3.3,1 +960,75,1.3.3,1 +960,9,1.3.3.6,0 +961,75,1.3.3,1 +961,9,1.3.3.6,0 +961,99,1.3.3,1 +966,9,1.3.3.6,0 +966,99,1.3.3,1 +969,97,1.3.3,1 +969,9,1.3.3.6,0 +970,99,1.3.3,1 +970,9,1.3.3.6,0 +972,9,1.3.3.6,0 +972,75,1.3.3,1 +972,99,1.3.3,1 +973,99,1.3.3,1 +973,9,1.3.3.6,0 +976,75,1.3.3,1 +976,9,1.3.3.6,0 +979,9,1.3.3.6,0 +979,97,1.3.3,1 +982,9,1.3.3.6,0 +982,99,1.3.3,1 +984,97,1.3.3,1 +984,9,1.3.3.6,0 +985,99,1.3.3,1 +985,9,1.3.3.6,0 +986,75,1.3.3,1 +986,9,1.3.3.6,0 +990,99,1.3.3,1 +990,9,1.3.3.6,0 +991,75,1.3.3,1 +991,9,1.3.3.6,0 +993,75,1.3.3,1 +993,99,1.3.3,1 +993,9,1.3.3.6,0 +994,75,1.3.3,1 +994,9,1.3.3.6,0 +994,99,1.3.3,1 +995,9,1.3.3.6,0 +995,99,1.3.3,1 +997,9,1.3.3.6,0 +997,75,1.3.3,1 +998,97,1.3.3,1 +998,9,1.3.3.6,0 +999,99,1.3.3,1 +999,9,1.3.3.6,0 +999,97,1.3.3,1 +1001,9,1.3.3.7,0 +1001,99,1.3.3,1 +1002,97,1.3.3,1 +1002,99,1.3.3,1 +1002,29,1.3,2 +1002,9,1.3.3.7,0 +1004,9,1.3.3.7,0 +1004,75,1.3.3,1 +1005,75,1.3.3,1 +1005,9,1.3.3.7,0 +1005,97,1.3.3,1 +1006,9,1.3.3.7,0 +1006,99,1.3.3,1 +1006,75,1.3.3,1 +1007,75,1.3.3,1 +1007,9,1.3.3.7,0 +1008,9,1.3.3.7,0 +1008,99,1.3.3,1 +1008,75,1.3.3,1 +1009,97,1.3.3,1 +1009,9,1.3.3.7,0 +1010,99,1.3.3,1 +1010,75,1.3.3,1 +1010,9,1.3.3.7,0 +1012,9,1.3.3.7,0 +1012,99,1.3.3,1 +1012,170,1,3 +1012,29,1.3,2 +1014,99,1.3.3,1 +1014,9,1.3.3.7,0 +1014,75,1.3.3,1 +1014,97,1.3.3,1 +1019,9,1.3.3.7,0 +1019,99,1.3.3,1 +1019,29,1.3,2 +1020,99,1.3.3,1 +1020,9,1.3.3.7,0 +1020,75,1.3.3,1 +1022,75,1.3.3,1 +1022,99,1.3.3,1 +1022,9,1.3.3.7,0 +1023,99,1.3.3,1 +1023,97,1.3.3,1 +1023,75,1.3.3,1 +1023,9,1.3.3.7,0 +1024,9,1.3.3.7,0 +1024,97,1.3.3,1 +1026,99,1.3.3,1 +1026,75,1.3.3,1 +1026,9,1.3.3.7,0 +1028,9,1.3.3.7,0 +1028,75,1.3.3,1 +1029,75,1.3.3,1 +1029,9,1.3.3.7,0 +1029,99,1.3.3,1 +1030,9,1.3.3.7,0 +1030,99,1.3.3,1 +1031,97,1.3.3,1 +1031,9,1.3.3.7,0 +1031,99,1.3.3,1 +1032,75,1.3.3,1 +1032,9,1.3.3.7,0 +1033,75,1.3.3,1 +1033,9,1.3.3.7,0 +1033,170,1,3 +1033,29,1.3,2 +1034,75,1.3.3,1 +1034,9,1.3.3.7,0 +1035,99,1.3.3,1 +1035,9,1.3.3.7,0 +1036,99,1.3.3,1 +1036,97,1.3.3,1 +1036,9,1.3.3.7,0 +1037,9,1.3.3.7,0 +1037,99,1.3.3,1 +1038,9,1.3.3.7,0 +1038,99,1.3.3,1 +1039,9,1.3.3.7,0 +1039,75,1.3.3,1 +1040,99,1.3.3,1 +1040,9,1.3.3.7,0 +1041,75,1.3.3,1 +1041,9,1.3.3.7,0 +1042,9,1.3.3.7,0 +1042,97,1.3.3,1 +1042,99,1.3.3,1 +1043,75,1.3.3,1 +1043,106,1.3,2 +1043,97,1.3.3,1 +1043,9,1.3.3.7,0 +1044,9,1.3.3.7,0 +1044,75,1.3.3,1 +1044,97,1.3.3,1 +1045,9,1.3.3.7,0 +1045,97,1.3.3,1 +1047,9,1.3.3.7,0 +1047,97,1.3.3,1 +1048,99,1.3.3,1 +1048,9,1.3.3.7,0 +1049,99,1.3.3,1 +1049,9,1.3.3.7,0 +1052,75,1.3.3,1 +1052,10,1.3.3.5,0 +1054,75,1.3.3,1 +1054,10,1.3.3.5,0 +1055,97,1.3.3,1 +1055,10,1.3.3.5,0 +1056,10,1.3.3.5,0 +1056,75,1.3.3,1 +1057,75,1.3.3,1 +1057,10,1.3.3.5,0 +1058,75,1.3.3,1 +1058,10,1.3.3.5,0 +1059,75,1.3.3,1 +1059,10,1.3.3.5,0 +1060,10,1.3.3.5,0 +1060,99,1.3.3,1 +1061,97,1.3.3,1 +1061,10,1.3.3.5,0 +1061,99,1.3.3,1 +1064,75,1.3.3,1 +1064,99,1.3.3,1 +1064,10,1.3.3.5,0 +1066,10,1.3.3.5,0 +1066,75,1.3.3,1 +1066,99,1.3.3,1 +1069,99,1.3.3,1 +1069,10,1.3.3.5,0 +1070,75,1.3.3,1 +1070,10,1.3.3.5,0 +1072,99,1.3.3,1 +1072,75,1.3.3,1 +1072,10,1.3.3.5,0 +1073,75,1.3.3,1 +1073,10,1.3.3.5,0 +1076,75,1.3.3,1 +1076,99,1.3.3,1 +1076,10,1.3.3.5,0 +1077,10,1.3.3.5,0 +1077,99,1.3.3,1 +1078,10,1.3.3.5,0 +1078,97,1.3.3,1 +1079,97,1.3.3,1 +1079,10,1.3.3.5,0 +1081,99,1.3.3,1 +1081,10,1.3.3.5,0 +1081,75,1.3.3,1 +1082,75,1.3.3,1 +1082,10,1.3.3.5,0 +1083,10,1.3.3.5,0 +1083,97,1.3.3,1 +1084,10,1.3.3.5,0 +1084,75,1.3.3,1 +1085,99,1.3.3,1 +1085,10,1.3.3.5,0 +1086,75,1.3.3,1 +1086,97,1.3.3,1 +1086,10,1.3.3.5,0 +1087,97,1.3.3,1 +1087,10,1.3.3.5,0 +1088,10,1.3.3.5,0 +1088,97,1.3.3,1 +1089,10,1.3.3.5,0 +1089,97,1.3.3,1 +1090,99,1.3.3,1 +1090,10,1.3.3.5,0 +1091,10,1.3.3.5,0 +1091,75,1.3.3,1 +1092,99,1.3.3,1 +1092,10,1.3.3.5,0 +1093,97,1.3.3,1 +1093,10,1.3.3.5,0 +1094,10,1.3.3.5,0 +1094,99,1.3.3,1 +1094,97,1.3.3,1 +1097,10,1.3.3.5,0 +1097,75,1.3.3,1 +1098,75,1.3.3,1 +1098,10,1.3.3.5,0 +1100,97,1.3.3,1 +1100,99,1.3.3,1 +1100,10,1.3.3.5,0 +1101,11,1.4.4.2,0 +1101,0,1.4.4,1 +1102,11,1.4.4.2,0 +1102,0,1.4.4,1 +1102,40,1.4.4,1 +1103,126,1.4,2 +1103,40,1.4.4,1 +1103,11,1.4.4.2,0 +1103,0,1.4.4,1 +1104,0,1.4.4,1 +1104,11,1.4.4.2,0 +1105,11,1.4.4.2,0 +1105,0,1.4.4,1 +1105,40,1.4.4,1 +1105,126,1.4,2 +1106,40,1.4.4,1 +1106,11,1.4.4.2,0 +1106,0,1.4.4,1 +1107,0,1.4.4,1 +1107,11,1.4.4.2,0 +1107,126,1.4,2 +1108,11,1.4.4.2,0 +1108,0,1.4.4,1 +1109,170,1,3 +1109,40,1.4.4,1 +1109,126,1.4,2 +1109,11,1.4.4.2,0 +1109,0,1.4.4,1 +1110,11,1.4.4.2,0 +1110,0,1.4.4,1 +1110,126,1.4,2 +1111,126,1.4,2 +1111,0,1.4.4,1 +1111,40,1.4.4,1 +1111,11,1.4.4.2,0 +1114,0,1.4.4,1 +1114,11,1.4.4.2,0 +1114,40,1.4.4,1 +1116,40,1.4.4,1 +1116,11,1.4.4.2,0 +1116,0,1.4.4,1 +1117,11,1.4.4.2,0 +1117,40,1.4.4,1 +1119,0,1.4.4,1 +1119,11,1.4.4.2,0 +1119,40,1.4.4,1 +1119,126,1.4,2 +1119,170,1,3 +1120,11,1.4.4.2,0 +1120,0,1.4.4,1 +1121,126,1.4,2 +1121,11,1.4.4.2,0 +1121,40,1.4.4,1 +1122,11,1.4.4.2,0 +1122,0,1.4.4,1 +1123,0,1.4.4,1 +1123,40,1.4.4,1 +1123,126,1.4,2 +1123,11,1.4.4.2,0 +1123,170,1,3 +1124,40,1.4.4,1 +1124,11,1.4.4.2,0 +1124,126,1.4,2 +1124,0,1.4.4,1 +1125,11,1.4.4.2,0 +1125,0,1.4.4,1 +1126,0,1.4.4,1 +1126,126,1.4,2 +1126,40,1.4.4,1 +1126,11,1.4.4.2,0 +1126,170,1,3 +1127,40,1.4.4,1 +1127,11,1.4.4.2,0 +1128,40,1.4.4,1 +1128,0,1.4.4,1 +1128,11,1.4.4.2,0 +1129,170,1,3 +1129,126,1.4,2 +1129,11,1.4.4.2,0 +1129,40,1.4.4,1 +1129,0,1.4.4,1 +1131,0,1.4.4,1 +1131,40,1.4.4,1 +1131,11,1.4.4.2,0 +1132,0,1.4.4,1 +1132,11,1.4.4.2,0 +1132,126,1.4,2 +1132,40,1.4.4,1 +1132,170,1,3 +1133,0,1.4.4,1 +1133,11,1.4.4.2,0 +1134,40,1.4.4,1 +1134,11,1.4.4.2,0 +1134,0,1.4.4,1 +1135,11,1.4.4.2,0 +1135,40,1.4.4,1 +1136,40,1.4.4,1 +1136,11,1.4.4.2,0 +1136,0,1.4.4,1 +1136,126,1.4,2 +1137,40,1.4.4,1 +1137,11,1.4.4.2,0 +1138,11,1.4.4.2,0 +1138,40,1.4.4,1 +1139,11,1.4.4.2,0 +1139,0,1.4.4,1 +1139,40,1.4.4,1 +1140,11,1.4.4.2,0 +1140,40,1.4.4,1 +1141,11,1.4.4.2,0 +1141,0,1.4.4,1 +1142,11,1.4.4.2,0 +1142,40,1.4.4,1 +1142,0,1.4.4,1 +1143,170,1,3 +1143,40,1.4.4,1 +1143,0,1.4.4,1 +1143,126,1.4,2 +1143,11,1.4.4.2,0 +1144,170,1,3 +1144,0,1.4.4,1 +1144,40,1.4.4,1 +1144,11,1.4.4.2,0 +1144,126,1.4,2 +1145,11,1.4.4.2,0 +1145,40,1.4.4,1 +1146,40,1.4.4,1 +1146,11,1.4.4.2,0 +1147,0,1.4.4,1 +1147,126,1.4,2 +1147,11,1.4.4.2,0 +1148,126,1.4,2 +1148,11,1.4.4.2,0 +1148,0,1.4.4,1 +1148,40,1.4.4,1 +1148,170,1,3 +1149,40,1.4.4,1 +1149,126,1.4,2 +1149,11,1.4.4.2,0 +1150,126,1.4,2 +1150,40,1.4.4,1 +1150,11,1.4.4.2,0 +1152,126,1.2,1 +1152,12,1.2.1,0 +1154,12,1.2.1,0 +1154,67,1.2,1 +1156,97,1.2,1 +1156,12,1.2.1,0 +1157,67,1.2,1 +1157,12,1.2.1,0 +1158,97,1.2,1 +1158,12,1.2.1,0 +1161,12,1.2.1,0 +1161,67,1.2,1 +1164,12,1.2.1,0 +1164,97,1.2,1 +1166,106,1.2,1 +1166,12,1.2.1,0 +1169,12,1.2.1,0 +1169,126,1.2,1 +1172,97,1.2,1 +1172,12,1.2.1,0 +1173,106,1.2,1 +1173,12,1.2.1,0 +1176,126,1.2,1 +1176,12,1.2.1,0 +1176,67,1.2,1 +1177,126,1.2,1 +1177,12,1.2.1,0 +1178,12,1.2.1,0 +1178,97,1.2,1 +1179,12,1.2.1,0 +1179,106,1.2,1 +1181,12,1.2.1,0 +1181,106,1.2,1 +1182,67,1.2,1 +1182,12,1.2.1,0 +1183,67,1.2,1 +1183,12,1.2.1,0 +1184,106,1.2,1 +1184,12,1.2.1,0 +1185,126,1.2,1 +1185,12,1.2.1,0 +1186,126,1.2,1 +1186,97,1.2,1 +1186,12,1.2.1,0 +1190,106,1.2,1 +1190,12,1.2.1,0 +1192,12,1.2.1,0 +1192,126,1.2,1 +1193,12,1.2.1,0 +1193,97,1.2,1 +1194,12,1.2.1,0 +1194,67,1.2,1 +1197,67,1.2,1 +1197,12,1.2.1,0 +1199,106,1.2,1 +1199,12,1.2.1,0 +1202,67,1.2,1 +1202,13,1.2.2,0 +1204,13,1.2.2,0 +1204,106,1.2,1 +1204,67,1.2,1 +1205,67,1.2,1 +1205,13,1.2.2,0 +1206,13,1.2.2,0 +1206,67,1.2,1 +1207,106,1.2,1 +1207,13,1.2.2,0 +1208,106,1.2,1 +1208,67,1.2,1 +1208,13,1.2.2,0 +1211,13,1.2.2,0 +1211,67,1.2,1 +1211,106,1.2,1 +1211,126,1.2,1 +1214,13,1.2.2,0 +1214,106,1.2,1 +1214,126,1.2,1 +1214,97,1.2,1 +1216,13,1.2.2,0 +1216,106,1.2,1 +1216,67,1.2,1 +1220,13,1.2.2,0 +1220,97,1.2,1 +1220,126,1.2,1 +1222,106,1.2,1 +1222,13,1.2.2,0 +1223,13,1.2.2,0 +1223,67,1.2,1 +1223,126,1.2,1 +1226,126,1.2,1 +1226,13,1.2.2,0 +1227,97,1.2,1 +1227,13,1.2.2,0 +1228,126,1.2,1 +1228,13,1.2.2,0 +1229,67,1.2,1 +1229,106,1.2,1 +1229,13,1.2.2,0 +1230,126,1.2,1 +1230,13,1.2.2,0 +1231,67,1.2,1 +1231,126,1.2,1 +1231,13,1.2.2,0 +1233,13,1.2.2,0 +1233,67,1.2,1 +1234,97,1.2,1 +1234,13,1.2.2,0 +1236,97,1.2,1 +1236,67,1.2,1 +1236,13,1.2.2,0 +1237,106,1.2,1 +1237,13,1.2.2,0 +1239,13,1.2.2,0 +1239,67,1.2,1 +1242,126,1.2,1 +1242,13,1.2.2,0 +1243,97,1.2,1 +1243,13,1.2.2,0 +1243,126,1.2,1 +1244,13,1.2.2,0 +1244,126,1.2,1 +1247,13,1.2.2,0 +1247,97,1.2,1 +1248,106,1.2,1 +1248,13,1.2.2,0 +1249,126,1.2,1 +1249,13,1.2.2,0 +1250,97,1.2,1 +1250,13,1.2.2,0 +1250,106,1.2,1 +1251,106,2.1.3,1 +1251,13,2.1.3.1,0 +1252,74,2.1.3,1 +1252,13,2.1.3.1,0 +1252,97,2.1.3,1 +1252,108,2.1.3,1 +1253,148,2.1.3,1 +1253,74,2.1.3,1 +1253,73,2.1.3,1 +1253,99,2.1,2 +1253,108,2.1.3,1 +1253,97,2.1.3,1 +1253,13,2.1.3.1,0 +1254,97,2.1.3,1 +1254,13,2.1.3.1,0 +1254,73,2.1.3,1 +1255,97,2.1.3,1 +1255,13,2.1.3.1,0 +1255,73,2.1.3,1 +1256,13,2.1.3.1,0 +1256,108,2.1.3,1 +1257,148,2.1.3,1 +1257,74,2.1.3,1 +1257,13,2.1.3.1,0 +1258,73,2.1.3,1 +1258,13,2.1.3.1,0 +1259,74,2.1.3,1 +1259,13,2.1.3.1,0 +1260,13,2.1.3.1,0 +1260,74,2.1.3,1 +1261,74,2.1.3,1 +1261,126,2.1.3,1 +1261,106,2.1.3,1 +1261,13,2.1.3.1,0 +1261,99,2.1,2 +1261,97,2.1.3,1 +1264,74,2.1.3,1 +1264,126,2.1.3,1 +1264,148,2.1.3,1 +1264,13,2.1.3.1,0 +1264,106,2.1.3,1 +1266,13,2.1.3.1,0 +1266,106,2.1.3,1 +1266,97,2.1.3,1 +1266,74,2.1.3,1 +1267,126,2.1.3,1 +1267,13,2.1.3.1,0 +1269,13,2.1.3.1,0 +1269,73,2.1.3,1 +1269,108,2.1.3,1 +1269,106,2.1.3,1 +1270,148,2.1.3,1 +1270,13,2.1.3.1,0 +1270,97,2.1.3,1 +1271,108,2.1.3,1 +1271,148,2.1.3,1 +1271,13,2.1.3.1,0 +1272,108,2.1.3,1 +1272,73,2.1.3,1 +1272,13,2.1.3.1,0 +1273,126,2.1.3,1 +1273,13,2.1.3.1,0 +1273,74,2.1.3,1 +1273,106,2.1.3,1 +1273,148,2.1.3,1 +1273,108,2.1.3,1 +1274,148,2.1.3,1 +1274,73,2.1.3,1 +1274,74,2.1.3,1 +1274,13,2.1.3.1,0 +1276,148,2.1.3,1 +1276,74,2.1.3,1 +1276,13,2.1.3.1,0 +1277,74,2.1.3,1 +1277,126,2.1.3,1 +1277,13,2.1.3.1,0 +1278,13,2.1.3.1,0 +1278,108,2.1.3,1 +1279,73,2.1.3,1 +1279,74,2.1.3,1 +1279,13,2.1.3.1,0 +1281,108,2.1.3,1 +1281,13,2.1.3.1,0 +1281,106,2.1.3,1 +1282,74,2.1.3,1 +1282,13,2.1.3.1,0 +1283,13,2.1.3.1,0 +1283,106,2.1.3,1 +1284,97,2.1.3,1 +1284,13,2.1.3.1,0 +1285,108,2.1.3,1 +1285,13,2.1.3.1,0 +1286,13,2.1.3.1,0 +1286,74,2.1.3,1 +1287,13,2.1.3.1,0 +1287,126,2.1.3,1 +1288,13,2.1.3.1,0 +1288,74,2.1.3,1 +1289,148,2.1.3,1 +1289,73,2.1.3,1 +1289,108,2.1.3,1 +1289,13,2.1.3.1,0 +1291,13,2.1.3.1,0 +1291,73,2.1.3,1 +1291,106,2.1.3,1 +1292,13,2.1.3.1,0 +1292,97,2.1.3,1 +1292,126,2.1.3,1 +1292,73,2.1.3,1 +1293,73,2.1.3,1 +1293,13,2.1.3.1,0 +1293,108,2.1.3,1 +1294,106,2.1.3,1 +1294,73,2.1.3,1 +1294,13,2.1.3.1,0 +1295,97,2.1.3,1 +1295,13,2.1.3.1,0 +1296,13,2.1.3.1,0 +1296,126,2.1.3,1 +1297,73,2.1.3,1 +1297,148,2.1.3,1 +1297,13,2.1.3.1,0 +1297,126,2.1.3,1 +1298,106,2.1.3,1 +1298,108,2.1.3,1 +1298,97,2.1.3,1 +1298,13,2.1.3.1,0 +1299,126,2.1.3,1 +1299,106,2.1.3,1 +1299,108,2.1.3,1 +1299,13,2.1.3.1,0 +1300,13,2.1.3.1,0 +1300,126,2.1.3,1 +1300,148,2.1.3,1 +1300,106,2.1.3,1 +1301,106,2.1.3,1 +1301,13,2.1.3.2,0 +1302,13,2.1.3.2,0 +1302,97,2.1.3,1 +1302,74,2.1.3,1 +1302,108,2.1.3,1 +1302,106,2.1.3,1 +1303,106,2.1.3,1 +1303,126,2.1.3,1 +1303,74,2.1.3,1 +1303,73,2.1.3,1 +1303,97,2.1.3,1 +1303,13,2.1.3.2,0 +1304,73,2.1.3,1 +1304,13,2.1.3.2,0 +1305,97,2.1.3,1 +1305,13,2.1.3.2,0 +1306,13,2.1.3.2,0 +1306,126,2.1.3,1 +1306,97,2.1.3,1 +1306,148,2.1.3,1 +1307,73,2.1.3,1 +1307,13,2.1.3.2,0 +1308,73,2.1.3,1 +1308,13,2.1.3.2,0 +1308,106,2.1.3,1 +1309,13,2.1.3.2,0 +1309,97,2.1.3,1 +1310,74,2.1.3,1 +1310,13,2.1.3.2,0 +1310,126,2.1.3,1 +1311,108,2.1.3,1 +1311,106,2.1.3,1 +1311,13,2.1.3.2,0 +1314,13,2.1.3.2,0 +1314,106,2.1.3,1 +1314,126,2.1.3,1 +1315,148,2.1.3,1 +1315,13,2.1.3.2,0 +1316,13,2.1.3.2,0 +1316,73,2.1.3,1 +1316,126,2.1.3,1 +1316,148,2.1.3,1 +1319,13,2.1.3.2,0 +1319,148,2.1.3,1 +1319,126,2.1.3,1 +1319,73,2.1.3,1 +1320,148,2.1.3,1 +1320,73,2.1.3,1 +1320,13,2.1.3.2,0 +1322,74,2.1.3,1 +1322,13,2.1.3.2,0 +1323,73,2.1.3,1 +1323,13,2.1.3.2,0 +1323,126,2.1.3,1 +1323,97,2.1.3,1 +1326,108,2.1.3,1 +1326,97,2.1.3,1 +1326,13,2.1.3.2,0 +1327,148,2.1.3,1 +1327,97,2.1.3,1 +1327,13,2.1.3.2,0 +1327,108,2.1.3,1 +1328,13,2.1.3.2,0 +1328,73,2.1.3,1 +1329,108,2.1.3,1 +1329,13,2.1.3.2,0 +1329,97,2.1.3,1 +1330,13,2.1.3.2,0 +1330,148,2.1.3,1 +1331,97,2.1.3,1 +1331,13,2.1.3.2,0 +1331,73,2.1.3,1 +1332,13,2.1.3.2,0 +1332,73,2.1.3,1 +1333,13,2.1.3.2,0 +1333,73,2.1.3,1 +1334,73,2.1.3,1 +1334,13,2.1.3.2,0 +1335,106,2.1.3,1 +1335,13,2.1.3.2,0 +1336,13,2.1.3.2,0 +1336,106,2.1.3,1 +1336,108,2.1.3,1 +1336,74,2.1.3,1 +1336,73,2.1.3,1 +1337,13,2.1.3.2,0 +1337,106,2.1.3,1 +1338,126,2.1.3,1 +1338,13,2.1.3.2,0 +1339,148,2.1.3,1 +1339,73,2.1.3,1 +1339,13,2.1.3.2,0 +1339,97,2.1.3,1 +1340,108,2.1.3,1 +1340,13,2.1.3.2,0 +1341,13,2.1.3.2,0 +1341,73,2.1.3,1 +1341,108,2.1.3,1 +1342,106,2.1.3,1 +1342,13,2.1.3.2,0 +1342,97,2.1.3,1 +1342,73,2.1.3,1 +1343,73,2.1.3,1 +1343,74,2.1.3,1 +1343,126,2.1.3,1 +1343,13,2.1.3.2,0 +1344,74,2.1.3,1 +1344,13,2.1.3.2,0 +1344,73,2.1.3,1 +1345,148,2.1.3,1 +1345,97,2.1.3,1 +1345,13,2.1.3.2,0 +1346,13,2.1.3.2,0 +1346,108,2.1.3,1 +1347,106,2.1.3,1 +1347,126,2.1.3,1 +1347,13,2.1.3.2,0 +1348,13,2.1.3.2,0 +1348,73,2.1.3,1 +1349,106,2.1.3,1 +1349,148,2.1.3,1 +1349,108,2.1.3,1 +1349,13,2.1.3.2,0 +1349,97,2.1.3,1 +1350,13,2.1.3.2,0 +1350,126,2.1.3,1 +1350,108,2.1.3,1 +1350,106,2.1.3,1 +1351,13,2.1.3.3,0 +1351,126,2.1.3,1 +1352,126,2.1.3,1 +1352,74,2.1.3,1 +1352,13,2.1.3.3,0 +1352,73,2.1.3,1 +1353,73,2.1.3,1 +1353,13,2.1.3.3,0 +1354,126,2.1.3,1 +1354,13,2.1.3.3,0 +1354,74,2.1.3,1 +1355,148,2.1.3,1 +1355,108,2.1.3,1 +1355,13,2.1.3.3,0 +1355,73,2.1.3,1 +1356,13,2.1.3.3,0 +1356,148,2.1.3,1 +1356,73,2.1.3,1 +1356,126,2.1.3,1 +1357,13,2.1.3.3,0 +1357,74,2.1.3,1 +1358,73,2.1.3,1 +1358,126,2.1.3,1 +1358,13,2.1.3.3,0 +1359,106,2.1.3,1 +1359,13,2.1.3.3,0 +1360,13,2.1.3.3,0 +1360,148,2.1.3,1 +1360,126,2.1.3,1 +1360,106,2.1.3,1 +1361,106,2.1.3,1 +1361,148,2.1.3,1 +1361,13,2.1.3.3,0 +1364,108,2.1.3,1 +1364,73,2.1.3,1 +1364,13,2.1.3.3,0 +1364,126,2.1.3,1 +1364,106,2.1.3,1 +1365,108,2.1.3,1 +1365,13,2.1.3.3,0 +1366,13,2.1.3.3,0 +1366,97,2.1.3,1 +1366,108,2.1.3,1 +1369,13,2.1.3.3,0 +1369,108,2.1.3,1 +1370,126,2.1.3,1 +1370,148,2.1.3,1 +1370,13,2.1.3.3,0 +1370,74,2.1.3,1 +1372,126,2.1.3,1 +1372,108,2.1.3,1 +1372,73,2.1.3,1 +1372,13,2.1.3.3,0 +1372,148,2.1.3,1 +1373,126,2.1.3,1 +1373,13,2.1.3.3,0 +1373,74,2.1.3,1 +1373,148,2.1.3,1 +1373,108,2.1.3,1 +1374,108,2.1.3,1 +1374,13,2.1.3.3,0 +1375,13,2.1.3.3,0 +1375,148,2.1.3,1 +1376,106,2.1.3,1 +1376,13,2.1.3.3,0 +1376,108,2.1.3,1 +1377,126,2.1.3,1 +1377,13,2.1.3.3,0 +1378,13,2.1.3.3,0 +1378,73,2.1.3,1 +1379,148,2.1.3,1 +1379,106,2.1.3,1 +1379,13,2.1.3.3,0 +1380,13,2.1.3.3,0 +1380,126,2.1.3,1 +1381,97,2.1.3,1 +1381,13,2.1.3.3,0 +1381,148,2.1.3,1 +1381,106,2.1.3,1 +1382,13,2.1.3.3,0 +1382,108,2.1.3,1 +1383,13,2.1.3.3,0 +1383,73,2.1.3,1 +1384,73,2.1.3,1 +1384,13,2.1.3.3,0 +1384,126,2.1.3,1 +1386,126,2.1.3,1 +1386,13,2.1.3.3,0 +1386,73,2.1.3,1 +1386,108,2.1.3,1 +1387,13,2.1.3.3,0 +1387,108,2.1.3,1 +1388,74,2.1.3,1 +1388,13,2.1.3.3,0 +1389,97,2.1.3,1 +1389,108,2.1.3,1 +1389,13,2.1.3.3,0 +1389,126,2.1.3,1 +1389,73,2.1.3,1 +1389,99,2.1,2 +1390,126,2.1.3,1 +1390,106,2.1.3,1 +1390,13,2.1.3.3,0 +1390,97,2.1.3,1 +1391,13,2.1.3.3,0 +1391,73,2.1.3,1 +1392,13,2.1.3.3,0 +1392,97,2.1.3,1 +1392,74,2.1.3,1 +1392,148,2.1.3,1 +1392,73,2.1.3,1 +1393,13,2.1.3.3,0 +1393,106,2.1.3,1 +1393,108,2.1.3,1 +1394,106,2.1.3,1 +1394,13,2.1.3.3,0 +1394,108,2.1.3,1 +1395,13,2.1.3.3,0 +1395,106,2.1.3,1 +1397,13,2.1.3.3,0 +1397,97,2.1.3,1 +1397,108,2.1.3,1 +1397,148,2.1.3,1 +1397,126,2.1.3,1 +1398,126,2.1.3,1 +1398,148,2.1.3,1 +1398,13,2.1.3.3,0 +1398,106,2.1.3,1 +1399,13,2.1.3.3,0 +1399,99,2.1,2 +1399,108,2.1.3,1 +1399,74,2.1.3,1 +1400,74,2.1.3,1 +1400,13,2.1.3.3,0 +1400,148,2.1.3,1 +1400,97,2.1.3,1 +1401,97,2.1.3,1 +1401,108,2.1.3,1 +1401,13,2.1.3.4,0 +1402,126,2.1.3,1 +1402,74,2.1.3,1 +1402,13,2.1.3.4,0 +1403,13,2.1.3.4,0 +1403,97,2.1.3,1 +1403,74,2.1.3,1 +1403,73,2.1.3,1 +1403,148,2.1.3,1 +1404,13,2.1.3.4,0 +1404,126,2.1.3,1 +1404,97,2.1.3,1 +1405,126,2.1.3,1 +1405,74,2.1.3,1 +1405,73,2.1.3,1 +1405,13,2.1.3.4,0 +1406,13,2.1.3.4,0 +1406,73,2.1.3,1 +1406,148,2.1.3,1 +1407,126,2.1.3,1 +1407,73,2.1.3,1 +1407,108,2.1.3,1 +1407,13,2.1.3.4,0 +1408,106,2.1.3,1 +1408,13,2.1.3.4,0 +1409,74,2.1.3,1 +1409,13,2.1.3.4,0 +1410,97,2.1.3,1 +1410,13,2.1.3.4,0 +1410,148,2.1.3,1 +1411,108,2.1.3,1 +1411,148,2.1.3,1 +1411,13,2.1.3.4,0 +1411,97,2.1.3,1 +1412,106,2.1.3,1 +1412,108,2.1.3,1 +1412,13,2.1.3.4,0 +1414,126,2.1.3,1 +1414,148,2.1.3,1 +1414,13,2.1.3.4,0 +1414,73,2.1.3,1 +1416,74,2.1.3,1 +1416,13,2.1.3.4,0 +1416,97,2.1.3,1 +1416,148,2.1.3,1 +1417,108,2.1.3,1 +1417,13,2.1.3.4,0 +1419,106,2.1.3,1 +1419,13,2.1.3.4,0 +1420,13,2.1.3.4,0 +1420,97,2.1.3,1 +1421,108,2.1.3,1 +1421,13,2.1.3.4,0 +1421,126,2.1.3,1 +1422,148,2.1.3,1 +1422,13,2.1.3.4,0 +1422,73,2.1.3,1 +1422,126,2.1.3,1 +1423,73,2.1.3,1 +1423,13,2.1.3.4,0 +1423,108,2.1.3,1 +1423,126,2.1.3,1 +1424,73,2.1.3,1 +1424,13,2.1.3.4,0 +1424,97,2.1.3,1 +1425,13,2.1.3.4,0 +1425,73,2.1.3,1 +1426,13,2.1.3.4,0 +1426,97,2.1.3,1 +1426,73,2.1.3,1 +1427,97,2.1.3,1 +1427,13,2.1.3.4,0 +1428,13,2.1.3.4,0 +1428,106,2.1.3,1 +1429,73,2.1.3,1 +1429,74,2.1.3,1 +1429,148,2.1.3,1 +1429,13,2.1.3.4,0 +1430,106,2.1.3,1 +1430,13,2.1.3.4,0 +1430,108,2.1.3,1 +1431,74,2.1.3,1 +1431,13,2.1.3.4,0 +1432,73,2.1.3,1 +1432,13,2.1.3.4,0 +1433,13,2.1.3.4,0 +1433,73,2.1.3,1 +1434,13,2.1.3.4,0 +1434,97,2.1.3,1 +1434,148,2.1.3,1 +1435,148,2.1.3,1 +1435,13,2.1.3.4,0 +1436,126,2.1.3,1 +1436,13,2.1.3.4,0 +1436,97,2.1.3,1 +1436,106,2.1.3,1 +1436,74,2.1.3,1 +1437,13,2.1.3.4,0 +1437,97,2.1.3,1 +1438,106,2.1.3,1 +1438,13,2.1.3.4,0 +1439,126,2.1.3,1 +1439,73,2.1.3,1 +1439,13,2.1.3.4,0 +1440,108,2.1.3,1 +1440,13,2.1.3.4,0 +1440,148,2.1.3,1 +1441,13,2.1.3.4,0 +1441,126,2.1.3,1 +1441,73,2.1.3,1 +1441,106,2.1.3,1 +1442,73,2.1.3,1 +1442,126,2.1.3,1 +1442,13,2.1.3.4,0 +1443,74,2.1.3,1 +1443,13,2.1.3.4,0 +1443,97,2.1.3,1 +1444,106,2.1.3,1 +1444,13,2.1.3.4,0 +1444,97,2.1.3,1 +1445,108,2.1.3,1 +1445,13,2.1.3.4,0 +1447,73,2.1.3,1 +1447,13,2.1.3.4,0 +1448,126,2.1.3,1 +1448,108,2.1.3,1 +1448,13,2.1.3.4,0 +1448,106,2.1.3,1 +1449,74,2.1.3,1 +1449,108,2.1.3,1 +1449,13,2.1.3.4,0 +1449,148,2.1.3,1 +1450,108,2.1.3,1 +1450,13,2.1.3.4,0 +1450,106,2.1.3,1 +1450,97,2.1.3,1 +1451,126,2.1.3,1 +1451,13,2.1.3.5,0 +1452,74,2.1.3,1 +1452,13,2.1.3.5,0 +1452,108,2.1.3,1 +1453,13,2.1.3.5,0 +1453,148,2.1.3,1 +1453,108,2.1.3,1 +1454,74,2.1.3,1 +1454,13,2.1.3.5,0 +1455,74,2.1.3,1 +1455,106,2.1.3,1 +1455,13,2.1.3.5,0 +1455,73,2.1.3,1 +1456,13,2.1.3.5,0 +1456,74,2.1.3,1 +1456,108,2.1.3,1 +1457,126,2.1.3,1 +1457,13,2.1.3.5,0 +1458,73,2.1.3,1 +1458,108,2.1.3,1 +1458,13,2.1.3.5,0 +1459,106,2.1.3,1 +1459,13,2.1.3.5,0 +1460,74,2.1.3,1 +1460,13,2.1.3.5,0 +1460,106,2.1.3,1 +1460,148,2.1.3,1 +1461,106,2.1.3,1 +1461,13,2.1.3.5,0 +1461,73,2.1.3,1 +1461,108,2.1.3,1 +1462,13,2.1.3.5,0 +1462,126,2.1.3,1 +1464,126,2.1.3,1 +1464,148,2.1.3,1 +1464,13,2.1.3.5,0 +1464,73,2.1.3,1 +1466,106,2.1.3,1 +1466,73,2.1.3,1 +1466,126,2.1.3,1 +1466,13,2.1.3.5,0 +1469,13,2.1.3.5,0 +1469,148,2.1.3,1 +1469,97,2.1.3,1 +1470,74,2.1.3,1 +1470,13,2.1.3.5,0 +1470,126,2.1.3,1 +1471,13,2.1.3.5,0 +1471,106,2.1.3,1 +1472,73,2.1.3,1 +1472,13,2.1.3.5,0 +1473,106,2.1.3,1 +1473,13,2.1.3.5,0 +1473,108,2.1.3,1 +1473,126,2.1.3,1 +1474,108,2.1.3,1 +1474,13,2.1.3.5,0 +1476,106,2.1.3,1 +1476,74,2.1.3,1 +1476,148,2.1.3,1 +1476,13,2.1.3.5,0 +1477,126,2.1.3,1 +1477,106,2.1.3,1 +1477,13,2.1.3.5,0 +1478,13,2.1.3.5,0 +1478,74,2.1.3,1 +1479,148,2.1.3,1 +1479,13,2.1.3.5,0 +1480,148,2.1.3,1 +1480,13,2.1.3.5,0 +1481,97,2.1.3,1 +1481,13,2.1.3.5,0 +1481,106,2.1.3,1 +1482,13,2.1.3.5,0 +1482,148,2.1.3,1 +1482,74,2.1.3,1 +1483,13,2.1.3.5,0 +1483,106,2.1.3,1 +1484,108,2.1.3,1 +1484,73,2.1.3,1 +1484,13,2.1.3.5,0 +1485,106,2.1.3,1 +1485,126,2.1.3,1 +1485,148,2.1.3,1 +1485,13,2.1.3.5,0 +1487,13,2.1.3.5,0 +1487,108,2.1.3,1 +1487,106,2.1.3,1 +1488,97,2.1.3,1 +1488,13,2.1.3.5,0 +1489,126,2.1.3,1 +1489,73,2.1.3,1 +1489,108,2.1.3,1 +1489,148,2.1.3,1 +1489,13,2.1.3.5,0 +1490,13,2.1.3.5,0 +1490,148,2.1.3,1 +1491,13,2.1.3.5,0 +1491,108,2.1.3,1 +1492,13,2.1.3.5,0 +1492,97,2.1.3,1 +1492,108,2.1.3,1 +1492,106,2.1.3,1 +1492,73,2.1.3,1 +1493,74,2.1.3,1 +1493,13,2.1.3.5,0 +1494,97,2.1.3,1 +1494,13,2.1.3.5,0 +1494,74,2.1.3,1 +1495,126,2.1.3,1 +1495,13,2.1.3.5,0 +1497,13,2.1.3.5,0 +1497,97,2.1.3,1 +1498,106,2.1.3,1 +1498,13,2.1.3.5,0 +1498,73,2.1.3,1 +1498,74,2.1.3,1 +1499,97,2.1.3,1 +1499,108,2.1.3,1 +1499,13,2.1.3.5,0 +1499,148,2.1.3,1 +1500,148,2.1.3,1 +1500,13,2.1.3.5,0 +1503,13,2.1.3.6,0 +1503,108,2.1.3,1 +1504,74,2.1.3,1 +1504,13,2.1.3.6,0 +1505,108,2.1.3,1 +1505,74,2.1.3,1 +1505,13,2.1.3.6,0 +1506,13,2.1.3.6,0 +1506,126,2.1.3,1 +1506,73,2.1.3,1 +1507,73,2.1.3,1 +1507,13,2.1.3.6,0 +1509,126,2.1.3,1 +1509,13,2.1.3.6,0 +1510,97,2.1.3,1 +1510,13,2.1.3.6,0 +1514,74,2.1.3,1 +1514,13,2.1.3.6,0 +1515,148,2.1.3,1 +1515,13,2.1.3.6,0 +1516,74,2.1.3,1 +1516,13,2.1.3.6,0 +1516,73,2.1.3,1 +1516,97,2.1.3,1 +1516,148,2.1.3,1 +1517,108,2.1.3,1 +1517,13,2.1.3.6,0 +1519,13,2.1.3.6,0 +1519,108,2.1.3,1 +1522,74,2.1.3,1 +1522,13,2.1.3.6,0 +1524,126,2.1.3,1 +1524,13,2.1.3.6,0 +1527,97,2.1.3,1 +1527,13,2.1.3.6,0 +1527,148,2.1.3,1 +1528,13,2.1.3.6,0 +1528,106,2.1.3,1 +1529,97,2.1.3,1 +1529,106,2.1.3,1 +1529,13,2.1.3.6,0 +1531,108,2.1.3,1 +1531,13,2.1.3.6,0 +1531,126,2.1.3,1 +1532,74,2.1.3,1 +1532,13,2.1.3.6,0 +1533,13,2.1.3.6,0 +1533,74,2.1.3,1 +1534,74,2.1.3,1 +1534,148,2.1.3,1 +1534,13,2.1.3.6,0 +1535,108,2.1.3,1 +1535,106,2.1.3,1 +1535,13,2.1.3.6,0 +1536,13,2.1.3.6,0 +1536,108,2.1.3,1 +1536,74,2.1.3,1 +1537,13,2.1.3.6,0 +1537,108,2.1.3,1 +1538,148,2.1.3,1 +1538,13,2.1.3.6,0 +1539,126,2.1.3,1 +1539,148,2.1.3,1 +1539,74,2.1.3,1 +1539,13,2.1.3.6,0 +1541,73,2.1.3,1 +1541,148,2.1.3,1 +1541,13,2.1.3.6,0 +1543,74,2.1.3,1 +1543,13,2.1.3.6,0 +1543,97,2.1.3,1 +1544,13,2.1.3.6,0 +1544,73,2.1.3,1 +1544,97,2.1.3,1 +1547,13,2.1.3.6,0 +1547,97,2.1.3,1 +1548,106,2.1.3,1 +1548,97,2.1.3,1 +1548,13,2.1.3.6,0 +1548,73,2.1.3,1 +1549,126,2.1.3,1 +1549,148,2.1.3,1 +1549,13,2.1.3.6,0 +1550,13,2.1.3.6,0 +1550,108,2.1.3,1 +1550,97,2.1.3,1 +1551,106,2.1.3,1 +1551,13,2.1.3.7,0 +1552,126,2.1.3,1 +1552,13,2.1.3.7,0 +1552,73,2.1.3,1 +1553,126,2.1.3,1 +1553,74,2.1.3,1 +1553,73,2.1.3,1 +1553,99,2.1,2 +1553,108,2.1.3,1 +1553,13,2.1.3.7,0 +1554,108,2.1.3,1 +1554,13,2.1.3.7,0 +1555,108,2.1.3,1 +1555,13,2.1.3.7,0 +1556,73,2.1.3,1 +1556,106,2.1.3,1 +1556,13,2.1.3.7,0 +1556,108,2.1.3,1 +1556,97,2.1.3,1 +1558,108,2.1.3,1 +1558,13,2.1.3.7,0 +1559,13,2.1.3.7,0 +1559,97,2.1.3,1 +1560,148,2.1.3,1 +1560,97,2.1.3,1 +1560,13,2.1.3.7,0 +1561,74,2.1.3,1 +1561,108,2.1.3,1 +1561,13,2.1.3.7,0 +1562,13,2.1.3.7,0 +1562,106,2.1.3,1 +1564,73,2.1.3,1 +1564,13,2.1.3.7,0 +1564,106,2.1.3,1 +1564,108,2.1.3,1 +1565,106,2.1.3,1 +1565,13,2.1.3.7,0 +1566,73,2.1.3,1 +1566,74,2.1.3,1 +1566,13,2.1.3.7,0 +1566,108,2.1.3,1 +1567,13,2.1.3.7,0 +1567,106,2.1.3,1 +1567,148,2.1.3,1 +1570,13,2.1.3.7,0 +1570,97,2.1.3,1 +1571,148,2.1.3,1 +1571,13,2.1.3.7,0 +1572,13,2.1.3.7,0 +1572,97,2.1.3,1 +1573,108,2.1.3,1 +1573,13,2.1.3.7,0 +1574,97,2.1.3,1 +1574,13,2.1.3.7,0 +1576,126,2.1.3,1 +1576,73,2.1.3,1 +1576,13,2.1.3.7,0 +1577,108,2.1.3,1 +1577,148,2.1.3,1 +1577,13,2.1.3.7,0 +1578,13,2.1.3.7,0 +1578,106,2.1.3,1 +1579,73,2.1.3,1 +1579,97,2.1.3,1 +1579,13,2.1.3.7,0 +1580,13,2.1.3.7,0 +1580,108,2.1.3,1 +1581,13,2.1.3.7,0 +1581,73,2.1.3,1 +1581,148,2.1.3,1 +1581,97,2.1.3,1 +1582,126,2.1.3,1 +1582,13,2.1.3.7,0 +1583,13,2.1.3.7,0 +1583,97,2.1.3,1 +1584,73,2.1.3,1 +1584,148,2.1.3,1 +1584,13,2.1.3.7,0 +1585,97,2.1.3,1 +1585,13,2.1.3.7,0 +1585,74,2.1.3,1 +1586,106,2.1.3,1 +1586,97,2.1.3,1 +1586,73,2.1.3,1 +1586,108,2.1.3,1 +1586,13,2.1.3.7,0 +1587,13,2.1.3.7,0 +1587,148,2.1.3,1 +1588,106,2.1.3,1 +1588,13,2.1.3.7,0 +1589,108,2.1.3,1 +1589,13,2.1.3.7,0 +1589,148,2.1.3,1 +1589,126,2.1.3,1 +1589,73,2.1.3,1 +1590,106,2.1.3,1 +1590,97,2.1.3,1 +1590,13,2.1.3.7,0 +1590,108,2.1.3,1 +1590,126,2.1.3,1 +1590,148,2.1.3,1 +1591,13,2.1.3.7,0 +1591,73,2.1.3,1 +1591,106,2.1.3,1 +1591,126,2.1.3,1 +1592,13,2.1.3.7,0 +1592,126,2.1.3,1 +1592,106,2.1.3,1 +1593,13,2.1.3.7,0 +1593,97,2.1.3,1 +1593,108,2.1.3,1 +1594,13,2.1.3.7,0 +1594,73,2.1.3,1 +1594,97,2.1.3,1 +1597,106,2.1.3,1 +1597,13,2.1.3.7,0 +1598,73,2.1.3,1 +1598,74,2.1.3,1 +1598,97,2.1.3,1 +1598,13,2.1.3.7,0 +1599,74,2.1.3,1 +1599,108,2.1.3,1 +1599,13,2.1.3.7,0 +1599,148,2.1.3,1 +1599,97,2.1.3,1 +1600,108,2.1.3,1 +1600,97,2.1.3,1 +1600,13,2.1.3.7,0 +1602,81,2.1.4.1,1 +1602,13,2.1.4.1.1,0 +1606,13,2.1.4.1.1,0 +1606,79,2.1.4.1,1 +1609,79,2.1.4.1,1 +1609,13,2.1.4.1.1,0 +1619,13,2.1.4.1.1,0 +1619,79,2.1.4.1,1 +1627,81,2.1.4.1,1 +1627,13,2.1.4.1.1,0 +1629,79,2.1.4.1,1 +1629,13,2.1.4.1.1,0 +1631,13,2.1.4.1.1,0 +1631,79,2.1.4.1,1 +1632,79,2.1.4.1,1 +1632,13,2.1.4.1.1,0 +1633,13,2.1.4.1.1,0 +1633,79,2.1.4.1,1 +1635,13,2.1.4.1.1,0 +1635,81,2.1.4.1,1 +1639,81,2.1.4.1,1 +1639,13,2.1.4.1.1,0 +1648,13,2.1.4.1.1,0 +1648,81,2.1.4.1,1 +1652,81,2.1.4.1,1 +1652,13,2.1.4.1.2,0 +1653,79,2.1.4.1,1 +1653,13,2.1.4.1.2,0 +1656,81,2.1.4.1,1 +1656,13,2.1.4.1.2,0 +1657,13,2.1.4.1.2,0 +1657,79,2.1.4.1,1 +1661,79,2.1.4.1,1 +1661,13,2.1.4.1.2,0 +1664,13,2.1.4.1.2,0 +1664,81,2.1.4.1,1 +1670,13,2.1.4.1.2,0 +1670,79,2.1.4.1,1 +1672,13,2.1.4.1.2,0 +1672,79,2.1.4.1,1 +1674,79,2.1.4.1,1 +1674,13,2.1.4.1.2,0 +1676,79,2.1.4.1,1 +1676,13,2.1.4.1.2,0 +1679,79,2.1.4.1,1 +1679,13,2.1.4.1.2,0 +1681,13,2.1.4.1.2,0 +1681,81,2.1.4.1,1 +1683,13,2.1.4.1.2,0 +1683,79,2.1.4.1,1 +1690,81,2.1.4.1,1 +1690,13,2.1.4.1.2,0 +1692,79,2.1.4.1,1 +1692,13,2.1.4.1.2,0 +1693,81,2.1.4.1,1 +1693,13,2.1.4.1.2,0 +1698,79,2.1.4.1,1 +1698,13,2.1.4.1.2,0 +1705,13,2.1.4.1.3,0 +1705,79,2.1.4.1,1 +1706,13,2.1.4.1.3,0 +1706,81,2.1.4.1,1 +1707,13,2.1.4.1.3,0 +1707,81,2.1.4.1,1 +1714,79,2.1.4.1,1 +1714,81,2.1.4.1,1 +1714,13,2.1.4.1.3,0 +1716,13,2.1.4.1.3,0 +1716,79,2.1.4.1,1 +1716,81,2.1.4.1,1 +1720,13,2.1.4.1.3,0 +1720,79,2.1.4.1,1 +1722,13,2.1.4.1.3,0 +1722,79,2.1.4.1,1 +1723,13,2.1.4.1.3,0 +1723,79,2.1.4.1,1 +1723,81,2.1.4.1,1 +1734,81,2.1.4.1,1 +1734,13,2.1.4.1.3,0 +1741,13,2.1.4.1.3,0 +1741,81,2.1.4.1,1 +1744,79,2.1.4.1,1 +1744,13,2.1.4.1.3,0 +1747,13,2.1.4.1.3,0 +1747,79,2.1.4.1,1 +1751,79,2.1.4.1,1 +1751,13,2.1.4.1.4,0 +1752,81,2.1.4.1,1 +1752,13,2.1.4.1.4,0 +1753,13,2.1.4.1.4,0 +1753,79,2.1.4.1,1 +1755,81,2.1.4.1,1 +1755,13,2.1.4.1.4,0 +1756,13,2.1.4.1.4,0 +1756,79,2.1.4.1,1 +1757,79,2.1.4.1,1 +1757,13,2.1.4.1.4,0 +1758,81,2.1.4.1,1 +1758,13,2.1.4.1.4,0 +1766,79,2.1.4.1,1 +1766,13,2.1.4.1.4,0 +1769,13,2.1.4.1.4,0 +1769,81,2.1.4.1,1 +1769,79,2.1.4.1,1 +1770,81,2.1.4.1,1 +1770,13,2.1.4.1.4,0 +1771,13,2.1.4.1.4,0 +1771,81,2.1.4.1,1 +1772,81,2.1.4.1,1 +1772,13,2.1.4.1.4,0 +1773,13,2.1.4.1.4,0 +1773,79,2.1.4.1,1 +1773,81,2.1.4.1,1 +1778,81,2.1.4.1,1 +1778,13,2.1.4.1.4,0 +1779,81,2.1.4.1,1 +1779,13,2.1.4.1.4,0 +1782,81,2.1.4.1,1 +1782,13,2.1.4.1.4,0 +1786,13,2.1.4.1.4,0 +1786,81,2.1.4.1,1 +1790,81,2.1.4.1,1 +1790,13,2.1.4.1.4,0 +1791,13,2.1.4.1.4,0 +1791,81,2.1.4.1,1 +1802,81,2.1.4.2,1 +1802,13,2.1.4.2.1,0 +1804,13,2.1.4.2.1,0 +1804,81,2.1.4.2,1 +1807,13,2.1.4.2.1,0 +1807,81,2.1.4.2,1 +1810,79,2.1.4.2,1 +1810,13,2.1.4.2.1,0 +1811,13,2.1.4.2.1,0 +1811,79,2.1.4.2,1 +1822,81,2.1.4.2,1 +1822,13,2.1.4.2.1,0 +1823,13,2.1.4.2.1,0 +1823,79,2.1.4.2,1 +1828,79,2.1.4.2,1 +1828,13,2.1.4.2.1,0 +1831,13,2.1.4.2.1,0 +1831,79,2.1.4.2,1 +1834,81,2.1.4.2,1 +1834,13,2.1.4.2.1,0 +1851,13,2.1.4.2.2,0 +1851,79,2.1.4.2,1 +1858,81,2.1.4.2,1 +1858,13,2.1.4.2.2,0 +1860,13,2.1.4.2.2,0 +1860,79,2.1.4.2,1 +1866,79,2.1.4.2,1 +1866,13,2.1.4.2.2,0 +1870,13,2.1.4.2.2,0 +1870,81,2.1.4.2,1 +1876,13,2.1.4.2.2,0 +1876,81,2.1.4.2,1 +1877,81,2.1.4.2,1 +1877,13,2.1.4.2.2,0 +1879,81,2.1.4.2,1 +1879,13,2.1.4.2.2,0 +1882,79,2.1.4.2,1 +1882,13,2.1.4.2.2,0 +1884,13,2.1.4.2.2,0 +1884,79,2.1.4.2,1 +1885,13,2.1.4.2.2,0 +1885,81,2.1.4.2,1 +1886,13,2.1.4.2.2,0 +1886,79,2.1.4.2,1 +1887,13,2.1.4.2.2,0 +1887,81,2.1.4.2,1 +1889,79,2.1.4.2,1 +1889,13,2.1.4.2.2,0 +1891,13,2.1.4.2.2,0 +1891,81,2.1.4.2,1 +1892,79,2.1.4.2,1 +1892,13,2.1.4.2.2,0 +1893,81,2.1.4.2,1 +1893,13,2.1.4.2.2,0 +1902,124,2.3,1 +1902,95,2.3,1 +1902,13,2.3.1,0 +1904,13,2.3.1,0 +1904,124,2.3,1 +1906,13,2.3.1,0 +1906,126,2.3,1 +1907,84,2.3,1 +1907,13,2.3.1,0 +1908,99,2.3,1 +1908,13,2.3.1,0 +1909,13,2.3.1,0 +1909,84,2.3,1 +1910,99,2.3,1 +1910,13,2.3.1,0 +1914,155,2.3,1 +1914,13,2.3.1,0 +1916,155,2.3,1 +1916,13,2.3.1,0 +1916,124,2.3,1 +1919,13,2.3.1,0 +1919,155,2.3,1 +1919,124,2.3,1 +1920,13,2.3.1,0 +1920,84,2.3,1 +1923,124,2.3,1 +1923,13,2.3.1,0 +1926,124,2.3,1 +1926,99,2.3,1 +1926,13,2.3.1,0 +1927,124,2.3,1 +1927,13,2.3.1,0 +1928,13,2.3.1,0 +1928,155,2.3,1 +1929,99,2.3,1 +1929,95,2.3,1 +1929,13,2.3.1,0 +1931,13,2.3.1,0 +1931,124,2.3,1 +1931,126,2.3,1 +1933,13,2.3.1,0 +1933,84,2.3,1 +1934,13,2.3.1,0 +1934,84,2.3,1 +1936,13,2.3.1,0 +1936,124,2.3,1 +1937,13,2.3.1,0 +1937,99,2.3,1 +1938,126,2.3,1 +1938,13,2.3.1,0 +1939,13,2.3.1,0 +1939,95,2.3,1 +1941,13,2.3.1,0 +1941,84,2.3,1 +1943,84,2.3,1 +1943,13,2.3.1,0 +1944,13,2.3.1,0 +1944,155,2.3,1 +1945,13,2.3.1,0 +1945,155,2.3,1 +1947,99,2.3,1 +1947,84,2.3,1 +1947,155,2.3,1 +1947,124,2.3,1 +1947,13,2.3.1,0 +1948,13,2.3.1,0 +1948,124,2.3,1 +1949,99,2.3,1 +1949,13,2.3.1,0 +1949,124,2.3,1 +1950,155,2.3,1 +1950,13,2.3.1,0 +1951,124,2.3,1 +1951,13,2.3.2,0 +1952,124,2.3,1 +1952,13,2.3.2,0 +1955,126,2.3,1 +1955,13,2.3.2,0 +1955,155,2.3,1 +1958,95,2.3,1 +1958,126,2.3,1 +1958,13,2.3.2,0 +1960,13,2.3.2,0 +1960,124,2.3,1 +1961,124,2.3,1 +1961,95,2.3,1 +1961,13,2.3.2,0 +1964,13,2.3.2,0 +1964,126,2.3,1 +1964,95,2.3,1 +1964,99,2.3,1 +1964,84,2.3,1 +1966,13,2.3.2,0 +1966,124,2.3,1 +1966,95,2.3,1 +1970,13,2.3.2,0 +1970,155,2.3,1 +1970,95,2.3,1 +1972,126,2.3,1 +1972,13,2.3.2,0 +1976,126,2.3,1 +1976,13,2.3.2,0 +1976,95,2.3,1 +1977,126,2.3,1 +1977,13,2.3.2,0 +1978,155,2.3,1 +1978,13,2.3.2,0 +1979,126,2.3,1 +1979,13,2.3.2,0 +1981,84,2.3,1 +1981,13,2.3.2,0 +1982,13,2.3.2,0 +1982,84,2.3,1 +1983,13,2.3.2,0 +1983,95,2.3,1 +1984,84,2.3,1 +1984,13,2.3.2,0 +1986,13,2.3.2,0 +1986,124,2.3,1 +1987,13,2.3.2,0 +1987,99,2.3,1 +1988,124,2.3,1 +1988,13,2.3.2,0 +1989,126,2.3,1 +1989,84,2.3,1 +1989,13,2.3.2,0 +1989,155,2.3,1 +1990,155,2.3,1 +1990,13,2.3.2,0 +1991,155,2.3,1 +1991,13,2.3.2,0 +1991,84,2.3,1 +1993,95,2.3,1 +1993,84,2.3,1 +1993,13,2.3.2,0 +1993,98,2,2 +1994,124,2.3,1 +1994,13,2.3.2,0 +1994,84,2.3,1 +1997,13,2.3.2,0 +1997,95,2.3,1 +1998,13,2.3.2,0 +1998,99,2.3,1 +1998,84,2.3,1 +1999,155,2.3,1 +1999,13,2.3.2,0 +2000,126,2.3,1 +2000,13,2.3.2,0 +2002,124,2.3,1 +2002,13,2.3.3,0 +2004,13,2.3.3,0 +2004,95,2.3,1 +2005,13,2.3.3,0 +2005,99,2.3,1 +2006,13,2.3.3,0 +2006,95,2.3,1 +2007,126,2.3,1 +2007,13,2.3.3,0 +2008,13,2.3.3,0 +2008,84,2.3,1 +2009,13,2.3.3,0 +2009,84,2.3,1 +2010,155,2.3,1 +2010,13,2.3.3,0 +2016,124,2.3,1 +2016,95,2.3,1 +2016,126,2.3,1 +2016,13,2.3.3,0 +2020,13,2.3.3,0 +2020,95,2.3,1 +2022,126,2.3,1 +2022,84,2.3,1 +2022,13,2.3.3,0 +2024,155,2.3,1 +2024,13,2.3.3,0 +2026,13,2.3.3,0 +2026,84,2.3,1 +2027,126,2.3,1 +2027,13,2.3.3,0 +2028,124,2.3,1 +2028,13,2.3.3,0 +2029,13,2.3.3,0 +2029,124,2.3,1 +2031,13,2.3.3,0 +2031,99,2.3,1 +2031,95,2.3,1 +2032,13,2.3.3,0 +2032,95,2.3,1 +2034,84,2.3,1 +2034,13,2.3.3,0 +2035,126,2.3,1 +2035,13,2.3.3,0 +2036,126,2.3,1 +2036,13,2.3.3,0 +2037,13,2.3.3,0 +2037,126,2.3,1 +2039,13,2.3.3,0 +2039,155,2.3,1 +2042,95,2.3,1 +2042,13,2.3.3,0 +2043,99,2.3,1 +2043,13,2.3.3,0 +2043,95,2.3,1 +2044,13,2.3.3,0 +2044,84,2.3,1 +2047,155,2.3,1 +2047,84,2.3,1 +2047,13,2.3.3,0 +2048,13,2.3.3,0 +2048,99,2.3,1 +2049,124,2.3,1 +2049,13,2.3.3,0 +2052,97,1.3.3,1 +2052,99,1.3.3,1 +2052,14,1.3.3.4,0 +2053,14,1.3.3.4,0 +2053,97,1.3.3,1 +2054,75,1.3.3,1 +2054,14,1.3.3.4,0 +2055,99,1.3.3,1 +2055,14,1.3.3.4,0 +2056,97,1.3.3,1 +2056,14,1.3.3.4,0 +2057,97,1.3.3,1 +2057,14,1.3.3.4,0 +2058,75,1.3.3,1 +2058,14,1.3.3.4,0 +2059,99,1.3.3,1 +2059,14,1.3.3.4,0 +2060,14,1.3.3.4,0 +2060,75,1.3.3,1 +2061,75,1.3.3,1 +2061,14,1.3.3.4,0 +2061,99,1.3.3,1 +2061,97,1.3.3,1 +2064,99,1.3.3,1 +2064,14,1.3.3.4,0 +2066,99,1.3.3,1 +2066,14,1.3.3.4,0 +2070,97,1.3.3,1 +2070,14,1.3.3.4,0 +2072,14,1.3.3.4,0 +2072,75,1.3.3,1 +2073,99,1.3.3,1 +2073,14,1.3.3.4,0 +2076,14,1.3.3.4,0 +2076,75,1.3.3,1 +2076,97,1.3.3,1 +2078,97,1.3.3,1 +2078,14,1.3.3.4,0 +2079,14,1.3.3.4,0 +2079,99,1.3.3,1 +2079,97,1.3.3,1 +2081,99,1.3.3,1 +2081,14,1.3.3.4,0 +2082,75,1.3.3,1 +2082,14,1.3.3.4,0 +2083,99,1.3.3,1 +2083,14,1.3.3.4,0 +2084,97,1.3.3,1 +2084,14,1.3.3.4,0 +2088,14,1.3.3.4,0 +2088,99,1.3.3,1 +2089,75,1.3.3,1 +2089,14,1.3.3.4,0 +2091,75,1.3.3,1 +2091,14,1.3.3.4,0 +2093,75,1.3.3,1 +2093,99,1.3.3,1 +2093,14,1.3.3.4,0 +2094,97,1.3.3,1 +2094,75,1.3.3,1 +2094,14,1.3.3.4,0 +2097,14,1.3.3.4,0 +2097,75,1.3.3,1 +2098,14,1.3.3.4,0 +2098,75,1.3.3,1 +2098,99,1.3.3,1 +2101,14,1.3.4.3,0 +2101,81,1.3.4,1 +2102,81,1.3.4,1 +2102,80,1.3.4,1 +2102,77,1.3.4,1 +2102,14,1.3.4.3,0 +2103,14,1.3.4.3,0 +2103,80,1.3.4,1 +2104,77,1.3.4,1 +2104,81,1.3.4,1 +2104,14,1.3.4.3,0 +2105,80,1.3.4,1 +2105,77,1.3.4,1 +2105,14,1.3.4.3,0 +2106,77,1.3.4,1 +2106,14,1.3.4.3,0 +2106,81,1.3.4,1 +2107,77,1.3.4,1 +2107,14,1.3.4.3,0 +2108,77,1.3.4,1 +2108,14,1.3.4.3,0 +2109,106,1.3,2 +2109,14,1.3.4.3,0 +2109,77,1.3.4,1 +2110,77,1.3.4,1 +2110,81,1.3.4,1 +2110,14,1.3.4.3,0 +2111,14,1.3.4.3,0 +2111,77,1.3.4,1 +2112,81,1.3.4,1 +2112,14,1.3.4.3,0 +2114,14,1.3.4.3,0 +2114,81,1.3.4,1 +2114,80,1.3.4,1 +2116,14,1.3.4.3,0 +2116,81,1.3.4,1 +2117,81,1.3.4,1 +2117,14,1.3.4.3,0 +2119,14,1.3.4.3,0 +2119,81,1.3.4,1 +2120,77,1.3.4,1 +2120,14,1.3.4.3,0 +2122,77,1.3.4,1 +2122,14,1.3.4.3,0 +2123,14,1.3.4.3,0 +2123,77,1.3.4,1 +2123,80,1.3.4,1 +2123,81,1.3.4,1 +2124,80,1.3.4,1 +2124,14,1.3.4.3,0 +2126,14,1.3.4.3,0 +2126,77,1.3.4,1 +2126,80,1.3.4,1 +2127,81,1.3.4,1 +2127,14,1.3.4.3,0 +2128,81,1.3.4,1 +2128,14,1.3.4.3,0 +2129,80,1.3.4,1 +2129,77,1.3.4,1 +2129,14,1.3.4.3,0 +2131,80,1.3.4,1 +2131,14,1.3.4.3,0 +2131,77,1.3.4,1 +2132,106,1.3,2 +2132,29,1.3,2 +2132,14,1.3.4.3,0 +2132,81,1.3.4,1 +2132,170,1,3 +2132,77,1.3.4,1 +2133,80,1.3.4,1 +2133,14,1.3.4.3,0 +2134,77,1.3.4,1 +2134,14,1.3.4.3,0 +2135,14,1.3.4.3,0 +2135,81,1.3.4,1 +2136,14,1.3.4.3,0 +2136,81,1.3.4,1 +2136,80,1.3.4,1 +2137,80,1.3.4,1 +2137,14,1.3.4.3,0 +2138,80,1.3.4,1 +2138,14,1.3.4.3,0 +2139,77,1.3.4,1 +2139,14,1.3.4.3,0 +2140,81,1.3.4,1 +2140,14,1.3.4.3,0 +2140,80,1.3.4,1 +2141,81,1.3.4,1 +2141,14,1.3.4.3,0 +2142,80,1.3.4,1 +2142,14,1.3.4.3,0 +2143,81,1.3.4,1 +2143,77,1.3.4,1 +2143,14,1.3.4.3,0 +2144,14,1.3.4.3,0 +2144,80,1.3.4,1 +2145,81,1.3.4,1 +2145,14,1.3.4.3,0 +2146,80,1.3.4,1 +2146,14,1.3.4.3,0 +2147,14,1.3.4.3,0 +2147,77,1.3.4,1 +2148,14,1.3.4.3,0 +2148,80,1.3.4,1 +2148,81,1.3.4,1 +2150,14,1.3.4.3,0 +2150,81,1.3.4,1 +2151,99,1.3.3,1 +2151,15,1.3.3.5,0 +2152,29,1.3,2 +2152,15,1.3.3.5,0 +2152,97,1.3.3,1 +2152,99,1.3.3,1 +2154,15,1.3.3.5,0 +2154,75,1.3.3,1 +2155,75,1.3.3,1 +2155,99,1.3.3,1 +2155,15,1.3.3.5,0 +2156,97,1.3.3,1 +2156,15,1.3.3.5,0 +2157,75,1.3.3,1 +2157,15,1.3.3.5,0 +2158,97,1.3.3,1 +2158,15,1.3.3.5,0 +2159,29,1.3,2 +2159,97,1.3.3,1 +2159,15,1.3.3.5,0 +2160,15,1.3.3.5,0 +2160,75,1.3.3,1 +2161,15,1.3.3.5,0 +2161,75,1.3.3,1 +2161,99,1.3.3,1 +2162,99,1.3.3,1 +2162,15,1.3.3.5,0 +2164,97,1.3.3,1 +2164,15,1.3.3.5,0 +2164,75,1.3.3,1 +2166,15,1.3.3.5,0 +2166,75,1.3.3,1 +2166,97,1.3.3,1 +2169,99,1.3.3,1 +2169,15,1.3.3.5,0 +2170,15,1.3.3.5,0 +2170,75,1.3.3,1 +2172,75,1.3.3,1 +2172,15,1.3.3.5,0 +2173,99,1.3.3,1 +2173,15,1.3.3.5,0 +2173,97,1.3.3,1 +2173,75,1.3.3,1 +2174,15,1.3.3.5,0 +2174,99,1.3.3,1 +2176,99,1.3.3,1 +2176,15,1.3.3.5,0 +2178,75,1.3.3,1 +2178,15,1.3.3.5,0 +2179,75,1.3.3,1 +2179,15,1.3.3.5,0 +2180,99,1.3.3,1 +2180,15,1.3.3.5,0 +2181,97,1.3.3,1 +2181,15,1.3.3.5,0 +2182,97,1.3.3,1 +2182,15,1.3.3.5,0 +2183,75,1.3.3,1 +2183,15,1.3.3.5,0 +2184,75,1.3.3,1 +2184,15,1.3.3.5,0 +2185,15,1.3.3.5,0 +2185,99,1.3.3,1 +2185,97,1.3.3,1 +2186,99,1.3.3,1 +2186,15,1.3.3.5,0 +2186,97,1.3.3,1 +2189,75,1.3.3,1 +2189,15,1.3.3.5,0 +2191,15,1.3.3.5,0 +2191,97,1.3.3,1 +2192,15,1.3.3.5,0 +2192,97,1.3.3,1 +2192,99,1.3.3,1 +2193,75,1.3.3,1 +2193,15,1.3.3.5,0 +2194,15,1.3.3.5,0 +2194,75,1.3.3,1 +2194,97,1.3.3,1 +2197,97,1.3.3,1 +2197,15,1.3.3.5,0 +2198,97,1.3.3,1 +2198,15,1.3.3.5,0 +2198,75,1.3.3,1 +2199,15,1.3.3.5,0 +2199,97,1.3.3,1 +2202,126,1.1,1 +2202,16,1.1.3,0 +2204,16,1.1.3,0 +2204,126,1.1,1 +2205,16,1.1.3,0 +2205,86,1.1,1 +2205,105,1.1,1 +2207,16,1.1.3,0 +2207,106,1.1,1 +2208,86,1.1,1 +2208,16,1.1.3,0 +2209,16,1.1.3,0 +2209,94,1.1,1 +2210,86,1.1,1 +2210,16,1.1.3,0 +2211,16,1.1.3,0 +2211,106,1.1,1 +2211,126,1.1,1 +2211,94,1.1,1 +2211,105,1.1,1 +2214,86,1.1,1 +2214,16,1.1.3,0 +2214,126,1.1,1 +2216,106,1.1,1 +2216,94,1.1,1 +2216,16,1.1.3,0 +2219,16,1.1.3,0 +2219,126,1.1,1 +2219,105,1.1,1 +2219,170,1,2 +2222,16,1.1.3,0 +2222,105,1.1,1 +2228,16,1.1.3,0 +2228,86,1.1,1 +2229,105,1.1,1 +2229,16,1.1.3,0 +2229,106,1.1,1 +2232,86,1.1,1 +2232,16,1.1.3,0 +2233,16,1.1.3,0 +2233,94,1.1,1 +2236,106,1.1,1 +2236,86,1.1,1 +2236,16,1.1.3,0 +2238,106,1.1,1 +2238,16,1.1.3,0 +2239,16,1.1.3,0 +2239,106,1.1,1 +2241,106,1.1,1 +2241,16,1.1.3,0 +2242,16,1.1.3,0 +2242,126,1.1,1 +2242,106,1.1,1 +2243,126,1.1,1 +2243,16,1.1.3,0 +2244,16,1.1.3,0 +2244,126,1.1,1 +2245,16,1.1.3,0 +2245,105,1.1,1 +2247,86,1.1,1 +2247,106,1.1,1 +2247,16,1.1.3,0 +2248,126,1.1,1 +2248,86,1.1,1 +2248,16,1.1.3,0 +2252,95,2.3,1 +2252,16,2.3.1,0 +2254,126,2.3,1 +2254,16,2.3.1,0 +2255,16,2.3.1,0 +2255,124,2.3,1 +2256,99,2.3,1 +2256,16,2.3.1,0 +2256,155,2.3,1 +2258,99,2.3,1 +2258,16,2.3.1,0 +2259,16,2.3.1,0 +2259,95,2.3,1 +2260,16,2.3.1,0 +2260,95,2.3,1 +2260,126,2.3,1 +2261,84,2.3,1 +2261,99,2.3,1 +2261,16,2.3.1,0 +2264,16,2.3.1,0 +2264,124,2.3,1 +2266,16,2.3.1,0 +2266,99,2.3,1 +2266,95,2.3,1 +2270,84,2.3,1 +2270,16,2.3.1,0 +2272,16,2.3.1,0 +2272,84,2.3,1 +2273,99,2.3,1 +2273,16,2.3.1,0 +2277,16,2.3.1,0 +2277,95,2.3,1 +2278,16,2.3.1,0 +2278,84,2.3,1 +2279,84,2.3,1 +2279,16,2.3.1,0 +2281,155,2.3,1 +2281,16,2.3.1,0 +2281,124,2.3,1 +2282,99,2.3,1 +2282,16,2.3.1,0 +2286,95,2.3,1 +2286,124,2.3,1 +2286,84,2.3,1 +2286,16,2.3.1,0 +2291,16,2.3.1,0 +2291,95,2.3,1 +2292,16,2.3.1,0 +2292,155,2.3,1 +2293,124,2.3,1 +2293,155,2.3,1 +2293,16,2.3.1,0 +2294,84,2.3,1 +2294,155,2.3,1 +2294,16,2.3.1,0 +2296,16,2.3.1,0 +2296,126,2.3,1 +2297,16,2.3.1,0 +2297,99,2.3,1 +2298,95,2.3,1 +2298,16,2.3.1,0 +2304,84,2.3,1 +2304,16,2.3.2,0 +2306,16,2.3.2,0 +2306,124,2.3,1 +2307,16,2.3.2,0 +2307,95,2.3,1 +2308,16,2.3.2,0 +2308,84,2.3,1 +2308,126,2.3,1 +2309,16,2.3.2,0 +2309,84,2.3,1 +2310,16,2.3.2,0 +2310,95,2.3,1 +2310,126,2.3,1 +2310,155,2.3,1 +2311,155,2.3,1 +2311,84,2.3,1 +2311,16,2.3.2,0 +2314,16,2.3.2,0 +2314,126,2.3,1 +2316,155,2.3,1 +2316,16,2.3.2,0 +2320,84,2.3,1 +2320,16,2.3.2,0 +2322,124,2.3,1 +2322,126,2.3,1 +2322,16,2.3.2,0 +2322,99,2.3,1 +2322,84,2.3,1 +2323,95,2.3,1 +2323,124,2.3,1 +2323,16,2.3.2,0 +2324,155,2.3,1 +2324,16,2.3.2,0 +2326,99,2.3,1 +2326,126,2.3,1 +2326,16,2.3.2,0 +2327,126,2.3,1 +2327,16,2.3.2,0 +2328,124,2.3,1 +2328,16,2.3.2,0 +2333,126,2.3,1 +2333,16,2.3.2,0 +2334,84,2.3,1 +2334,16,2.3.2,0 +2336,126,2.3,1 +2336,16,2.3.2,0 +2338,124,2.3,1 +2338,16,2.3.2,0 +2339,16,2.3.2,0 +2339,124,2.3,1 +2341,16,2.3.2,0 +2341,99,2.3,1 +2345,95,2.3,1 +2345,16,2.3.2,0 +2347,16,2.3.2,0 +2347,155,2.3,1 +2348,155,2.3,1 +2348,16,2.3.2,0 +2348,84,2.3,1 +2350,124,2.3,1 +2350,16,2.3.2,0 +2351,16,2.3.3,0 +2351,126,2.3,1 +2352,84,2.3,1 +2352,155,2.3,1 +2352,16,2.3.3,0 +2354,16,2.3.3,0 +2354,84,2.3,1 +2355,155,2.3,1 +2355,84,2.3,1 +2355,16,2.3.3,0 +2356,16,2.3.3,0 +2356,95,2.3,1 +2357,155,2.3,1 +2357,16,2.3.3,0 +2359,16,2.3.3,0 +2359,84,2.3,1 +2360,126,2.3,1 +2360,16,2.3.3,0 +2360,155,2.3,1 +2360,84,2.3,1 +2360,124,2.3,1 +2364,16,2.3.3,0 +2364,95,2.3,1 +2366,16,2.3.3,0 +2366,155,2.3,1 +2372,16,2.3.3,0 +2372,84,2.3,1 +2373,155,2.3,1 +2373,124,2.3,1 +2373,16,2.3.3,0 +2374,16,2.3.3,0 +2374,99,2.3,1 +2379,84,2.3,1 +2379,126,2.3,1 +2379,16,2.3.3,0 +2383,16,2.3.3,0 +2383,84,2.3,1 +2384,95,2.3,1 +2384,16,2.3.3,0 +2386,16,2.3.3,0 +2386,95,2.3,1 +2388,16,2.3.3,0 +2388,99,2.3,1 +2389,16,2.3.3,0 +2389,124,2.3,1 +2389,126,2.3,1 +2389,84,2.3,1 +2390,126,2.3,1 +2390,16,2.3.3,0 +2393,99,2.3,1 +2393,126,2.3,1 +2393,16,2.3.3,0 +2394,16,2.3.3,0 +2394,126,2.3,1 +2394,124,2.3,1 +2395,16,2.3.3,0 +2395,95,2.3,1 +2397,16,2.3.3,0 +2397,126,2.3,1 +2398,16,2.3.3,0 +2398,124,2.3,1 +2399,126,2.3,1 +2399,16,2.3.3,0 +2402,142,1.4.2,1 +2402,17,1.4.2.4,0 +2404,142,1.4.2,1 +2404,17,1.4.2.4,0 +2405,142,1.4.2,1 +2405,17,1.4.2.4,0 +2406,17,1.4.2.4,0 +2406,142,1.4.2,1 +2407,142,1.4.2,1 +2407,17,1.4.2.4,0 +2408,17,1.4.2.4,0 +2408,142,1.4.2,1 +2409,17,1.4.2.4,0 +2409,142,1.4.2,1 +2410,142,1.4.2,1 +2410,17,1.4.2.4,0 +2411,17,1.4.2.4,0 +2411,142,1.4.2,1 +2414,142,1.4.2,1 +2414,17,1.4.2.4,0 +2416,142,1.4.2,1 +2416,17,1.4.2.4,0 +2420,17,1.4.2.4,0 +2420,142,1.4.2,1 +2422,142,1.4.2,1 +2422,17,1.4.2.4,0 +2423,17,1.4.2.4,0 +2423,142,1.4.2,1 +2426,17,1.4.2.4,0 +2426,142,1.4.2,1 +2428,142,1.4.2,1 +2428,17,1.4.2.4,0 +2429,142,1.4.2,1 +2429,17,1.4.2.4,0 +2431,142,1.4.2,1 +2431,17,1.4.2.4,0 +2432,17,1.4.2.4,0 +2432,142,1.4.2,1 +2433,142,1.4.2,1 +2433,17,1.4.2.4,0 +2434,142,1.4.2,1 +2434,17,1.4.2.4,0 +2436,142,1.4.2,1 +2436,17,1.4.2.4,0 +2439,142,1.4.2,1 +2439,17,1.4.2.4,0 +2441,17,1.4.2.4,0 +2441,142,1.4.2,1 +2443,142,1.4.2,1 +2443,17,1.4.2.4,0 +2444,17,1.4.2.4,0 +2444,142,1.4.2,1 +2447,17,1.4.2.4,0 +2447,142,1.4.2,1 +2448,17,1.4.2.4,0 +2448,142,1.4.2,1 +2452,18,1.3.3.2,0 +2452,97,1.3.3,1 +2455,97,1.3.3,1 +2455,18,1.3.3.2,0 +2456,97,1.3.3,1 +2456,18,1.3.3.2,0 +2457,97,1.3.3,1 +2457,18,1.3.3.2,0 +2458,97,1.3.3,1 +2458,18,1.3.3.2,0 +2461,75,1.3.3,1 +2461,18,1.3.3.2,0 +2464,99,1.3.3,1 +2464,18,1.3.3.2,0 +2466,99,1.3.3,1 +2466,18,1.3.3.2,0 +2469,97,1.3.3,1 +2469,18,1.3.3.2,0 +2472,75,1.3.3,1 +2472,18,1.3.3.2,0 +2476,75,1.3.3,1 +2476,99,1.3.3,1 +2476,18,1.3.3.2,0 +2477,18,1.3.3.2,0 +2477,99,1.3.3,1 +2478,18,1.3.3.2,0 +2478,97,1.3.3,1 +2479,18,1.3.3.2,0 +2479,97,1.3.3,1 +2482,75,1.3.3,1 +2482,18,1.3.3.2,0 +2483,18,1.3.3.2,0 +2483,75,1.3.3,1 +2484,18,1.3.3.2,0 +2484,75,1.3.3,1 +2485,99,1.3.3,1 +2485,18,1.3.3.2,0 +2486,97,1.3.3,1 +2486,18,1.3.3.2,0 +2490,99,1.3.3,1 +2490,18,1.3.3.2,0 +2493,18,1.3.3.2,0 +2493,75,1.3.3,1 +2494,99,1.3.3,1 +2494,97,1.3.3,1 +2494,18,1.3.3.2,0 +2495,99,1.3.3,1 +2495,18,1.3.3.2,0 +2497,18,1.3.3.2,0 +2497,97,1.3.3,1 +2502,142,1.4.2,1 +2502,19,1.4.2.1,0 +2504,142,1.4.2,1 +2504,19,1.4.2.1,0 +2505,19,1.4.2.1,0 +2505,142,1.4.2,1 +2506,142,1.4.2,1 +2506,19,1.4.2.1,0 +2507,142,1.4.2,1 +2507,19,1.4.2.1,0 +2508,19,1.4.2.1,0 +2508,142,1.4.2,1 +2509,142,1.4.2,1 +2509,19,1.4.2.1,0 +2510,142,1.4.2,1 +2510,19,1.4.2.1,0 +2511,142,1.4.2,1 +2511,19,1.4.2.1,0 +2514,142,1.4.2,1 +2514,19,1.4.2.1,0 +2516,142,1.4.2,1 +2516,19,1.4.2.1,0 +2520,19,1.4.2.1,0 +2520,142,1.4.2,1 +2522,142,1.4.2,1 +2522,19,1.4.2.1,0 +2523,142,1.4.2,1 +2523,19,1.4.2.1,0 +2526,142,1.4.2,1 +2526,19,1.4.2.1,0 +2528,19,1.4.2.1,0 +2528,142,1.4.2,1 +2529,142,1.4.2,1 +2529,19,1.4.2.1,0 +2531,142,1.4.2,1 +2531,19,1.4.2.1,0 +2532,142,1.4.2,1 +2532,19,1.4.2.1,0 +2533,142,1.4.2,1 +2533,19,1.4.2.1,0 +2534,142,1.4.2,1 +2534,19,1.4.2.1,0 +2536,19,1.4.2.1,0 +2536,142,1.4.2,1 +2539,142,1.4.2,1 +2539,19,1.4.2.1,0 +2541,19,1.4.2.1,0 +2541,142,1.4.2,1 +2543,142,1.4.2,1 +2543,19,1.4.2.1,0 +2544,19,1.4.2.1,0 +2544,142,1.4.2,1 +2547,142,1.4.2,1 +2547,19,1.4.2.1,0 +2548,142,1.4.2,1 +2548,19,1.4.2.1,0 +2552,93,1.3.1,1 +2552,20,1.3.1.2,0 +2553,100,1.3.1,1 +2553,20,1.3.1.2,0 +2554,39,1.3.1,1 +2554,20,1.3.1.2,0 +2555,93,1.3.1,1 +2555,20,1.3.1.2,0 +2556,20,1.3.1.2,0 +2556,39,1.3.1,1 +2557,20,1.3.1.2,0 +2557,39,1.3.1,1 +2558,39,1.3.1,1 +2558,20,1.3.1.2,0 +2559,20,1.3.1.2,0 +2559,100,1.3.1,1 +2560,20,1.3.1.2,0 +2560,39,1.3.1,1 +2561,93,1.3.1,1 +2561,85,1.3.1,1 +2561,20,1.3.1.2,0 +2564,93,1.3.1,1 +2564,39,1.3.1,1 +2564,99,1.3.1,1 +2564,20,1.3.1.2,0 +2566,20,1.3.1.2,0 +2566,99,1.3.1,1 +2569,100,1.3.1,1 +2569,20,1.3.1.2,0 +2570,20,1.3.1.2,0 +2570,39,1.3.1,1 +2572,20,1.3.1.2,0 +2572,99,1.3.1,1 +2573,100,1.3.1,1 +2573,20,1.3.1.2,0 +2573,93,1.3.1,1 +2576,39,1.3.1,1 +2576,20,1.3.1.2,0 +2576,85,1.3.1,1 +2577,20,1.3.1.2,0 +2577,93,1.3.1,1 +2578,20,1.3.1.2,0 +2578,39,1.3.1,1 +2579,100,1.3.1,1 +2579,20,1.3.1.2,0 +2581,39,1.3.1,1 +2581,20,1.3.1.2,0 +2581,100,1.3.1,1 +2582,39,1.3.1,1 +2582,20,1.3.1.2,0 +2583,20,1.3.1.2,0 +2583,93,1.3.1,1 +2584,93,1.3.1,1 +2584,20,1.3.1.2,0 +2585,85,1.3.1,1 +2585,20,1.3.1.2,0 +2586,20,1.3.1.2,0 +2586,99,1.3.1,1 +2588,20,1.3.1.2,0 +2588,99,1.3.1,1 +2589,93,1.3.1,1 +2589,20,1.3.1.2,0 +2590,99,1.3.1,1 +2590,20,1.3.1.2,0 +2591,20,1.3.1.2,0 +2591,39,1.3.1,1 +2592,20,1.3.1.2,0 +2592,100,1.3.1,1 +2593,99,1.3.1,1 +2593,20,1.3.1.2,0 +2594,85,1.3.1,1 +2594,20,1.3.1.2,0 +2594,93,1.3.1,1 +2597,20,1.3.1.2,0 +2597,93,1.3.1,1 +2598,100,1.3.1,1 +2598,20,1.3.1.2,0 +2600,20,1.3.1.2,0 +2600,100,1.3.1,1 +2602,85,1.3.1,1 +2602,21,1.3.1.3,0 +2603,39,1.3.1,1 +2603,100,1.3.1,1 +2603,21,1.3.1.3,0 +2603,93,1.3.1,1 +2604,21,1.3.1.3,0 +2604,39,1.3.1,1 +2605,21,1.3.1.3,0 +2605,93,1.3.1,1 +2605,85,1.3.1,1 +2606,21,1.3.1.3,0 +2606,100,1.3.1,1 +2607,39,1.3.1,1 +2607,21,1.3.1.3,0 +2608,99,1.3.1,1 +2608,21,1.3.1.3,0 +2608,85,1.3.1,1 +2609,21,1.3.1.3,0 +2609,39,1.3.1,1 +2610,100,1.3.1,1 +2610,21,1.3.1.3,0 +2610,85,1.3.1,1 +2611,99,1.3.1,1 +2611,100,1.3.1,1 +2611,85,1.3.1,1 +2611,21,1.3.1.3,0 +2611,93,1.3.1,1 +2614,21,1.3.1.3,0 +2614,99,1.3.1,1 +2614,85,1.3.1,1 +2616,21,1.3.1.3,0 +2616,85,1.3.1,1 +2616,99,1.3.1,1 +2617,100,1.3.1,1 +2617,21,1.3.1.3,0 +2619,99,1.3.1,1 +2619,39,1.3.1,1 +2619,21,1.3.1.3,0 +2620,85,1.3.1,1 +2620,21,1.3.1.3,0 +2621,21,1.3.1.3,0 +2621,93,1.3.1,1 +2622,100,1.3.1,1 +2622,21,1.3.1.3,0 +2622,39,1.3.1,1 +2623,99,1.3.1,1 +2623,39,1.3.1,1 +2623,93,1.3.1,1 +2623,85,1.3.1,1 +2623,100,1.3.1,1 +2623,21,1.3.1.3,0 +2624,39,1.3.1,1 +2624,93,1.3.1,1 +2624,21,1.3.1.3,0 +2625,100,1.3.1,1 +2625,21,1.3.1.3,0 +2626,93,1.3.1,1 +2626,99,1.3.1,1 +2626,21,1.3.1.3,0 +2628,93,1.3.1,1 +2628,21,1.3.1.3,0 +2629,29,1.3,2 +2629,39,1.3.1,1 +2629,21,1.3.1.3,0 +2629,93,1.3.1,1 +2631,85,1.3.1,1 +2631,21,1.3.1.3,0 +2631,100,1.3.1,1 +2631,39,1.3.1,1 +2632,93,1.3.1,1 +2632,106,1.3,2 +2632,21,1.3.1.3,0 +2632,85,1.3.1,1 +2633,39,1.3.1,1 +2633,21,1.3.1.3,0 +2634,21,1.3.1.3,0 +2634,39,1.3.1,1 +2635,99,1.3.1,1 +2635,93,1.3.1,1 +2635,100,1.3.1,1 +2635,21,1.3.1.3,0 +2636,93,1.3.1,1 +2636,85,1.3.1,1 +2636,21,1.3.1.3,0 +2636,39,1.3.1,1 +2637,21,1.3.1.3,0 +2637,99,1.3.1,1 +2639,100,1.3.1,1 +2639,93,1.3.1,1 +2639,21,1.3.1.3,0 +2640,21,1.3.1.3,0 +2640,100,1.3.1,1 +2641,39,1.3.1,1 +2641,100,1.3.1,1 +2641,21,1.3.1.3,0 +2642,99,1.3.1,1 +2642,21,1.3.1.3,0 +2642,93,1.3.1,1 +2643,100,1.3.1,1 +2643,21,1.3.1.3,0 +2643,85,1.3.1,1 +2643,93,1.3.1,1 +2644,21,1.3.1.3,0 +2644,85,1.3.1,1 +2644,99,1.3.1,1 +2645,21,1.3.1.3,0 +2645,100,1.3.1,1 +2645,93,1.3.1,1 +2646,21,1.3.1.3,0 +2646,100,1.3.1,1 +2647,85,1.3.1,1 +2647,21,1.3.1.3,0 +2648,21,1.3.1.3,0 +2648,99,1.3.1,1 +2648,85,1.3.1,1 +2649,21,1.3.1.3,0 +2649,100,1.3.1,1 +2650,99,1.3.1,1 +2650,85,1.3.1,1 +2650,21,1.3.1.3,0 +2652,22,1.2.1,0 +2652,106,1.2,1 +2657,67,1.2,1 +2657,22,1.2.1,0 +2658,22,1.2.1,0 +2658,126,1.2,1 +2660,22,1.2.1,0 +2660,106,1.2,1 +2661,126,1.2,1 +2661,22,1.2.1,0 +2661,106,1.2,1 +2664,67,1.2,1 +2664,22,1.2.1,0 +2672,22,1.2.1,0 +2672,67,1.2,1 +2678,67,1.2,1 +2678,22,1.2.1,0 +2681,97,1.2,1 +2681,22,1.2.1,0 +2682,22,1.2.1,0 +2682,67,1.2,1 +2684,22,1.2.1,0 +2684,67,1.2,1 +2685,22,1.2.1,0 +2685,106,1.2,1 +2688,22,1.2.1,0 +2688,126,1.2,1 +2694,22,1.2.1,0 +2694,106,1.2,1 +2697,67,1.2,1 +2697,22,1.2.1,0 +2702,22,1.2.2,0 +2702,126,1.2,1 +2705,22,1.2.2,0 +2705,106,1.2,1 +2706,106,1.2,1 +2706,22,1.2.2,0 +2707,67,1.2,1 +2707,22,1.2.2,0 +2708,97,1.2,1 +2708,22,1.2.2,0 +2710,126,1.2,1 +2710,67,1.2,1 +2710,22,1.2.2,0 +2711,22,1.2.2,0 +2711,97,1.2,1 +2711,67,1.2,1 +2714,106,1.2,1 +2714,22,1.2.2,0 +2714,67,1.2,1 +2716,22,1.2.2,0 +2716,106,1.2,1 +2716,97,1.2,1 +2722,22,1.2.2,0 +2722,67,1.2,1 +2726,106,1.2,1 +2726,22,1.2.2,0 +2728,67,1.2,1 +2728,22,1.2.2,0 +2729,22,1.2.2,0 +2729,97,1.2,1 +2731,106,1.2,1 +2731,22,1.2.2,0 +2732,22,1.2.2,0 +2732,67,1.2,1 +2733,97,1.2,1 +2733,22,1.2.2,0 +2734,67,1.2,1 +2734,22,1.2.2,0 +2735,106,1.2,1 +2735,22,1.2.2,0 +2736,106,1.2,1 +2736,22,1.2.2,0 +2736,97,1.2,1 +2736,67,1.2,1 +2739,22,1.2.2,0 +2739,67,1.2,1 +2740,106,1.2,1 +2740,22,1.2.2,0 +2741,22,1.2.2,0 +2741,97,1.2,1 +2742,22,1.2.2,0 +2742,126,1.2,1 +2744,97,1.2,1 +2744,22,1.2.2,0 +2744,67,1.2,1 +2745,22,1.2.2,0 +2745,106,1.2,1 +2747,67,1.2,1 +2747,22,1.2.2,0 +2753,97,1.3.3,1 +2753,22,1.3.3.6,0 +2754,22,1.3.3.6,0 +2754,75,1.3.3,1 +2756,22,1.3.3.6,0 +2756,99,1.3.3,1 +2757,75,1.3.3,1 +2757,22,1.3.3.6,0 +2759,22,1.3.3.6,0 +2759,97,1.3.3,1 +2760,97,1.3.3,1 +2760,22,1.3.3.6,0 +2776,99,1.3.3,1 +2776,22,1.3.3.6,0 +2778,22,1.3.3.6,0 +2778,97,1.3.3,1 +2779,22,1.3.3.6,0 +2779,99,1.3.3,1 +2781,22,1.3.3.6,0 +2781,97,1.3.3,1 +2781,99,1.3.3,1 +2782,75,1.3.3,1 +2782,22,1.3.3.6,0 +2784,22,1.3.3.6,0 +2784,75,1.3.3,1 +2786,75,1.3.3,1 +2786,22,1.3.3.6,0 +2789,22,1.3.3.6,0 +2789,97,1.3.3,1 +2791,97,1.3.3,1 +2791,22,1.3.3.6,0 +2793,99,1.3.3,1 +2793,22,1.3.3.6,0 +2794,22,1.3.3.6,0 +2794,97,1.3.3,1 +2798,106,1.3,2 +2798,29,1.3,2 +2798,97,1.3.3,1 +2798,22,1.3.3.6,0 +2801,148,2.1.1,1 +2801,22,2.1.1.1,0 +2802,22,2.1.1.1,0 +2802,106,2.1.1,1 +2805,80,2.1.1,1 +2805,22,2.1.1.1,0 +2805,85,2.1.1,1 +2806,106,2.1.1,1 +2806,22,2.1.1.1,0 +2809,80,2.1.1,1 +2809,22,2.1.1.1,0 +2810,22,2.1.1.1,0 +2810,106,2.1.1,1 +2811,22,2.1.1.1,0 +2811,80,2.1.1,1 +2819,106,2.1.1,1 +2819,22,2.1.1.1,0 +2820,85,2.1.1,1 +2820,22,2.1.1.1,0 +2822,148,2.1.1,1 +2822,22,2.1.1.1,0 +2822,80,2.1.1,1 +2823,80,2.1.1,1 +2823,85,2.1.1,1 +2823,22,2.1.1.1,0 +2825,22,2.1.1.1,0 +2825,80,2.1.1,1 +2828,22,2.1.1.1,0 +2828,80,2.1.1,1 +2829,22,2.1.1.1,0 +2829,106,2.1.1,1 +2831,80,2.1.1,1 +2831,22,2.1.1.1,0 +2832,106,2.1.1,1 +2832,22,2.1.1.1,0 +2833,22,2.1.1.1,0 +2833,148,2.1.1,1 +2834,85,2.1.1,1 +2834,22,2.1.1.1,0 +2837,106,2.1.1,1 +2837,22,2.1.1.1,0 +2839,106,2.1.1,1 +2839,22,2.1.1.1,0 +2840,106,2.1.1,1 +2840,148,2.1.1,1 +2840,22,2.1.1.1,0 +2841,106,2.1.1,1 +2841,22,2.1.1.1,0 +2842,80,2.1.1,1 +2842,22,2.1.1.1,0 +2843,106,2.1.1,1 +2843,22,2.1.1.1,0 +2844,22,2.1.1.1,0 +2844,80,2.1.1,1 +2848,22,2.1.1.1,0 +2848,80,2.1.1,1 +2849,148,2.1.1,1 +2849,22,2.1.1.1,0 +2851,148,2.1.1,1 +2851,22,2.1.1.2,0 +2852,22,2.1.1.2,0 +2852,85,2.1.1,1 +2854,148,2.1.1,1 +2854,22,2.1.1.2,0 +2855,106,2.1.1,1 +2855,22,2.1.1.2,0 +2855,80,2.1.1,1 +2856,106,2.1.1,1 +2856,22,2.1.1.2,0 +2857,106,2.1.1,1 +2857,22,2.1.1.2,0 +2859,148,2.1.1,1 +2859,22,2.1.1.2,0 +2862,148,2.1.1,1 +2862,22,2.1.1.2,0 +2862,106,2.1.1,1 +2866,22,2.1.1.2,0 +2866,106,2.1.1,1 +2870,80,2.1.1,1 +2870,22,2.1.1.2,0 +2872,22,2.1.1.2,0 +2872,80,2.1.1,1 +2873,85,2.1.1,1 +2873,22,2.1.1.2,0 +2874,22,2.1.1.2,0 +2874,148,2.1.1,1 +2876,85,2.1.1,1 +2876,80,2.1.1,1 +2876,22,2.1.1.2,0 +2878,22,2.1.1.2,0 +2878,80,2.1.1,1 +2879,148,2.1.1,1 +2879,22,2.1.1.2,0 +2881,85,2.1.1,1 +2881,22,2.1.1.2,0 +2883,22,2.1.1.2,0 +2883,80,2.1.1,1 +2884,22,2.1.1.2,0 +2884,80,2.1.1,1 +2886,148,2.1.1,1 +2886,22,2.1.1.2,0 +2888,22,2.1.1.2,0 +2888,106,2.1.1,1 +2889,80,2.1.1,1 +2889,22,2.1.1.2,0 +2894,22,2.1.1.2,0 +2894,80,2.1.1,1 +2898,80,2.1.1,1 +2898,22,2.1.1.2,0 +2898,148,2.1.1,1 +2902,22,2.1.1.3,0 +2902,85,2.1.1,1 +2904,106,2.1.1,1 +2904,22,2.1.1.3,0 +2906,148,2.1.1,1 +2906,22,2.1.1.3,0 +2907,80,2.1.1,1 +2907,22,2.1.1.3,0 +2908,22,2.1.1.3,0 +2908,80,2.1.1,1 +2909,106,2.1.1,1 +2909,22,2.1.1.3,0 +2910,22,2.1.1.3,0 +2910,80,2.1.1,1 +2911,22,2.1.1.3,0 +2911,85,2.1.1,1 +2919,148,2.1.1,1 +2919,22,2.1.1.3,0 +2919,106,2.1.1,1 +2920,85,2.1.1,1 +2920,22,2.1.1.3,0 +2923,148,2.1.1,1 +2923,80,2.1.1,1 +2923,22,2.1.1.3,0 +2928,22,2.1.1.3,0 +2928,80,2.1.1,1 +2929,22,2.1.1.3,0 +2929,106,2.1.1,1 +2931,80,2.1.1,1 +2931,99,2.1,2 +2931,85,2.1.1,1 +2931,22,2.1.1.3,0 +2932,80,2.1.1,1 +2932,22,2.1.1.3,0 +2933,22,2.1.1.3,0 +2933,80,2.1.1,1 +2936,85,2.1.1,1 +2936,22,2.1.1.3,0 +2937,22,2.1.1.3,0 +2937,106,2.1.1,1 +2938,22,2.1.1.3,0 +2938,148,2.1.1,1 +2939,22,2.1.1.3,0 +2939,80,2.1.1,1 +2943,22,2.1.1.3,0 +2943,148,2.1.1,1 +2944,106,2.1.1,1 +2944,85,2.1.1,1 +2944,22,2.1.1.3,0 +2947,85,2.1.1,1 +2947,148,2.1.1,1 +2947,22,2.1.1.3,0 +2948,106,2.1.1,1 +2948,80,2.1.1,1 +2948,22,2.1.1.3,0 +2950,148,2.1.1,1 +2950,22,2.1.1.3,0 +2951,106,2.1.1,1 +2951,22,2.1.1.4,0 +2952,22,2.1.1.4,0 +2952,85,2.1.1,1 +2954,80,2.1.1,1 +2954,22,2.1.1.4,0 +2955,22,2.1.1.4,0 +2955,85,2.1.1,1 +2956,85,2.1.1,1 +2956,22,2.1.1.4,0 +2958,22,2.1.1.4,0 +2958,80,2.1.1,1 +2959,85,2.1.1,1 +2959,22,2.1.1.4,0 +2961,22,2.1.1.4,0 +2961,148,2.1.1,1 +2964,22,2.1.1.4,0 +2964,148,2.1.1,1 +2966,22,2.1.1.4,0 +2966,80,2.1.1,1 +2973,106,2.1.1,1 +2973,22,2.1.1.4,0 +2974,22,2.1.1.4,0 +2974,148,2.1.1,1 +2976,148,2.1.1,1 +2976,85,2.1.1,1 +2976,22,2.1.1.4,0 +2978,80,2.1.1,1 +2978,22,2.1.1.4,0 +2979,22,2.1.1.4,0 +2979,106,2.1.1,1 +2982,106,2.1.1,1 +2982,22,2.1.1.4,0 +2983,22,2.1.1.4,0 +2983,85,2.1.1,1 +2985,22,2.1.1.4,0 +2985,106,2.1.1,1 +2986,85,2.1.1,1 +2986,80,2.1.1,1 +2986,22,2.1.1.4,0 +2990,148,2.1.1,1 +2990,22,2.1.1.4,0 +2991,80,2.1.1,1 +2991,22,2.1.1.4,0 +2992,22,2.1.1.4,0 +2992,106,2.1.1,1 +2992,80,2.1.1,1 +2994,22,2.1.1.4,0 +2994,85,2.1.1,1 +2997,85,2.1.1,1 +2997,22,2.1.1.4,0 +2998,80,2.1.1,1 +2998,22,2.1.1.4,0 +3000,22,2.1.1.4,0 +3000,106,2.1.1,1 +3006,148,2.1.1,1 +3006,22,2.1.1.5,0 +3007,85,2.1.1,1 +3007,22,2.1.1.5,0 +3008,22,2.1.1.5,0 +3008,106,2.1.1,1 +3010,22,2.1.1.5,0 +3010,106,2.1.1,1 +3022,106,2.1.1,1 +3022,22,2.1.1.5,0 +3025,22,2.1.1.5,0 +3025,80,2.1.1,1 +3026,22,2.1.1.5,0 +3026,106,2.1.1,1 +3028,22,2.1.1.5,0 +3028,106,2.1.1,1 +3029,22,2.1.1.5,0 +3029,80,2.1.1,1 +3030,148,2.1.1,1 +3030,22,2.1.1.5,0 +3031,85,2.1.1,1 +3031,80,2.1.1,1 +3031,22,2.1.1.5,0 +3032,85,2.1.1,1 +3032,22,2.1.1.5,0 +3034,148,2.1.1,1 +3034,22,2.1.1.5,0 +3036,85,2.1.1,1 +3036,22,2.1.1.5,0 +3040,22,2.1.1.5,0 +3040,106,2.1.1,1 +3041,22,2.1.1.5,0 +3041,148,2.1.1,1 +3042,148,2.1.1,1 +3042,22,2.1.1.5,0 +3043,148,2.1.1,1 +3043,106,2.1.1,1 +3043,22,2.1.1.5,0 +3047,148,2.1.1,1 +3047,22,2.1.1.5,0 +3050,22,2.1.1.5,0 +3050,106,2.1.1,1 +3052,22,2.1.3.1,0 +3052,74,2.1.3,1 +3052,73,2.1.3,1 +3052,97,2.1.3,1 +3052,108,2.1.3,1 +3053,126,2.1.3,1 +3053,148,2.1.3,1 +3053,22,2.1.3.1,0 +3053,108,2.1.3,1 +3054,106,2.1.3,1 +3054,148,2.1.3,1 +3054,22,2.1.3.1,0 +3055,108,2.1.3,1 +3055,22,2.1.3.1,0 +3055,97,2.1.3,1 +3056,148,2.1.3,1 +3056,22,2.1.3.1,0 +3056,106,2.1.3,1 +3056,126,2.1.3,1 +3057,73,2.1.3,1 +3057,22,2.1.3.1,0 +3058,22,2.1.3.1,0 +3058,74,2.1.3,1 +3058,126,2.1.3,1 +3060,22,2.1.3.1,0 +3060,106,2.1.3,1 +3060,74,2.1.3,1 +3061,126,2.1.3,1 +3061,108,2.1.3,1 +3061,148,2.1.3,1 +3061,22,2.1.3.1,0 +3062,126,2.1.3,1 +3062,22,2.1.3.1,0 +3062,108,2.1.3,1 +3064,22,2.1.3.1,0 +3064,73,2.1.3,1 +3066,74,2.1.3,1 +3066,97,2.1.3,1 +3066,22,2.1.3.1,0 +3066,108,2.1.3,1 +3067,148,2.1.3,1 +3067,22,2.1.3.1,0 +3067,106,2.1.3,1 +3070,126,2.1.3,1 +3070,73,2.1.3,1 +3070,22,2.1.3.1,0 +3071,108,2.1.3,1 +3071,126,2.1.3,1 +3071,22,2.1.3.1,0 +3072,106,2.1.3,1 +3072,22,2.1.3.1,0 +3072,148,2.1.3,1 +3073,148,2.1.3,1 +3073,106,2.1.3,1 +3073,108,2.1.3,1 +3073,22,2.1.3.1,0 +3074,97,2.1.3,1 +3074,22,2.1.3.1,0 +3075,108,2.1.3,1 +3075,22,2.1.3.1,0 +3075,73,2.1.3,1 +3076,74,2.1.3,1 +3076,73,2.1.3,1 +3076,108,2.1.3,1 +3076,22,2.1.3.1,0 +3078,22,2.1.3.1,0 +3078,74,2.1.3,1 +3079,106,2.1.3,1 +3079,74,2.1.3,1 +3079,22,2.1.3.1,0 +3080,148,2.1.3,1 +3080,22,2.1.3.1,0 +3081,108,2.1.3,1 +3081,22,2.1.3.1,0 +3081,74,2.1.3,1 +3082,73,2.1.3,1 +3082,22,2.1.3.1,0 +3084,22,2.1.3.1,0 +3084,73,2.1.3,1 +3084,148,2.1.3,1 +3085,22,2.1.3.1,0 +3085,97,2.1.3,1 +3085,108,2.1.3,1 +3085,126,2.1.3,1 +3086,73,2.1.3,1 +3086,22,2.1.3.1,0 +3086,97,2.1.3,1 +3087,97,2.1.3,1 +3087,22,2.1.3.1,0 +3088,22,2.1.3.1,0 +3088,97,2.1.3,1 +3089,74,2.1.3,1 +3089,108,2.1.3,1 +3089,22,2.1.3.1,0 +3089,126,2.1.3,1 +3090,22,2.1.3.1,0 +3090,106,2.1.3,1 +3090,108,2.1.3,1 +3090,148,2.1.3,1 +3091,106,2.1.3,1 +3091,126,2.1.3,1 +3091,22,2.1.3.1,0 +3092,97,2.1.3,1 +3092,148,2.1.3,1 +3092,22,2.1.3.1,0 +3093,22,2.1.3.1,0 +3093,74,2.1.3,1 +3093,106,2.1.3,1 +3094,22,2.1.3.1,0 +3094,73,2.1.3,1 +3094,108,2.1.3,1 +3095,108,2.1.3,1 +3095,22,2.1.3.1,0 +3097,22,2.1.3.1,0 +3097,108,2.1.3,1 +3097,148,2.1.3,1 +3097,126,2.1.3,1 +3097,73,2.1.3,1 +3098,108,2.1.3,1 +3098,126,2.1.3,1 +3098,74,2.1.3,1 +3098,22,2.1.3.1,0 +3099,74,2.1.3,1 +3099,108,2.1.3,1 +3099,148,2.1.3,1 +3099,22,2.1.3.1,0 +3100,126,2.1.3,1 +3100,22,2.1.3.1,0 +3102,22,2.1.3.2,0 +3102,148,2.1.3,1 +3102,97,2.1.3,1 +3104,22,2.1.3.2,0 +3104,108,2.1.3,1 +3105,106,2.1.3,1 +3105,126,2.1.3,1 +3105,22,2.1.3.2,0 +3105,73,2.1.3,1 +3106,108,2.1.3,1 +3106,97,2.1.3,1 +3106,22,2.1.3.2,0 +3106,73,2.1.3,1 +3106,126,2.1.3,1 +3107,97,2.1.3,1 +3107,22,2.1.3.2,0 +3108,108,2.1.3,1 +3108,22,2.1.3.2,0 +3109,106,2.1.3,1 +3109,22,2.1.3.2,0 +3110,22,2.1.3.2,0 +3110,108,2.1.3,1 +3111,22,2.1.3.2,0 +3111,108,2.1.3,1 +3111,106,2.1.3,1 +3112,126,2.1.3,1 +3112,22,2.1.3.2,0 +3114,108,2.1.3,1 +3114,73,2.1.3,1 +3114,97,2.1.3,1 +3114,106,2.1.3,1 +3114,22,2.1.3.2,0 +3116,22,2.1.3.2,0 +3116,97,2.1.3,1 +3116,74,2.1.3,1 +3117,148,2.1.3,1 +3117,108,2.1.3,1 +3117,22,2.1.3.2,0 +3119,22,2.1.3.2,0 +3119,148,2.1.3,1 +3121,126,2.1.3,1 +3121,148,2.1.3,1 +3121,106,2.1.3,1 +3121,22,2.1.3.2,0 +3121,108,2.1.3,1 +3122,73,2.1.3,1 +3122,22,2.1.3.2,0 +3123,148,2.1.3,1 +3123,108,2.1.3,1 +3123,97,2.1.3,1 +3123,22,2.1.3.2,0 +3124,97,2.1.3,1 +3124,22,2.1.3.2,0 +3124,126,2.1.3,1 +3124,73,2.1.3,1 +3125,108,2.1.3,1 +3125,22,2.1.3.2,0 +3125,73,2.1.3,1 +3126,97,2.1.3,1 +3126,73,2.1.3,1 +3126,22,2.1.3.2,0 +3128,22,2.1.3.2,0 +3128,74,2.1.3,1 +3129,22,2.1.3.2,0 +3129,97,2.1.3,1 +3129,74,2.1.3,1 +3131,97,2.1.3,1 +3131,74,2.1.3,1 +3131,22,2.1.3.2,0 +3132,22,2.1.3.2,0 +3132,108,2.1.3,1 +3132,97,2.1.3,1 +3133,97,2.1.3,1 +3133,22,2.1.3.2,0 +3134,106,2.1.3,1 +3134,22,2.1.3.2,0 +3135,22,2.1.3.2,0 +3135,108,2.1.3,1 +3136,73,2.1.3,1 +3136,22,2.1.3.2,0 +3137,126,2.1.3,1 +3137,22,2.1.3.2,0 +3138,22,2.1.3.2,0 +3138,97,2.1.3,1 +3139,22,2.1.3.2,0 +3139,108,2.1.3,1 +3140,148,2.1.3,1 +3140,22,2.1.3.2,0 +3141,74,2.1.3,1 +3141,22,2.1.3.2,0 +3142,22,2.1.3.2,0 +3142,108,2.1.3,1 +3142,97,2.1.3,1 +3143,22,2.1.3.2,0 +3143,74,2.1.3,1 +3144,74,2.1.3,1 +3144,22,2.1.3.2,0 +3144,97,2.1.3,1 +3145,108,2.1.3,1 +3145,22,2.1.3.2,0 +3147,97,2.1.3,1 +3147,73,2.1.3,1 +3147,22,2.1.3.2,0 +3148,74,2.1.3,1 +3148,97,2.1.3,1 +3148,22,2.1.3.2,0 +3150,22,2.1.3.2,0 +3150,97,2.1.3,1 +3151,106,2.1.3,1 +3151,22,2.1.3.3,0 +3152,22,2.1.3.3,0 +3152,148,2.1.3,1 +3152,73,2.1.3,1 +3152,97,2.1.3,1 +3152,106,2.1.3,1 +3153,22,2.1.3.3,0 +3153,108,2.1.3,1 +3154,97,2.1.3,1 +3154,22,2.1.3.3,0 +3155,97,2.1.3,1 +3155,22,2.1.3.3,0 +3155,74,2.1.3,1 +3156,22,2.1.3.3,0 +3156,97,2.1.3,1 +3157,73,2.1.3,1 +3157,22,2.1.3.3,0 +3158,22,2.1.3.3,0 +3158,97,2.1.3,1 +3159,73,2.1.3,1 +3159,22,2.1.3.3,0 +3160,73,2.1.3,1 +3160,22,2.1.3.3,0 +3161,126,2.1.3,1 +3161,148,2.1.3,1 +3161,97,2.1.3,1 +3161,22,2.1.3.3,0 +3164,22,2.1.3.3,0 +3164,74,2.1.3,1 +3164,97,2.1.3,1 +3166,73,2.1.3,1 +3166,97,2.1.3,1 +3166,74,2.1.3,1 +3166,22,2.1.3.3,0 +3167,106,2.1.3,1 +3167,148,2.1.3,1 +3167,22,2.1.3.3,0 +3169,73,2.1.3,1 +3169,126,2.1.3,1 +3169,97,2.1.3,1 +3169,22,2.1.3.3,0 +3170,73,2.1.3,1 +3170,108,2.1.3,1 +3170,22,2.1.3.3,0 +3171,22,2.1.3.3,0 +3171,126,2.1.3,1 +3171,108,2.1.3,1 +3172,22,2.1.3.3,0 +3172,106,2.1.3,1 +3172,126,2.1.3,1 +3172,73,2.1.3,1 +3173,73,2.1.3,1 +3173,126,2.1.3,1 +3173,97,2.1.3,1 +3173,22,2.1.3.3,0 +3174,22,2.1.3.3,0 +3174,148,2.1.3,1 +3174,73,2.1.3,1 +3174,74,2.1.3,1 +3175,22,2.1.3.3,0 +3175,73,2.1.3,1 +3176,73,2.1.3,1 +3176,74,2.1.3,1 +3176,22,2.1.3.3,0 +3177,22,2.1.3.3,0 +3177,108,2.1.3,1 +3179,22,2.1.3.3,0 +3179,126,2.1.3,1 +3179,97,2.1.3,1 +3181,97,2.1.3,1 +3181,73,2.1.3,1 +3181,22,2.1.3.3,0 +3182,106,2.1.3,1 +3182,22,2.1.3.3,0 +3183,22,2.1.3.3,0 +3183,97,2.1.3,1 +3184,22,2.1.3.3,0 +3184,108,2.1.3,1 +3185,22,2.1.3.3,0 +3185,74,2.1.3,1 +3185,108,2.1.3,1 +3185,148,2.1.3,1 +3186,106,2.1.3,1 +3186,148,2.1.3,1 +3186,22,2.1.3.3,0 +3186,73,2.1.3,1 +3187,97,2.1.3,1 +3187,108,2.1.3,1 +3187,22,2.1.3.3,0 +3188,22,2.1.3.3,0 +3188,148,2.1.3,1 +3189,73,2.1.3,1 +3189,22,2.1.3.3,0 +3191,74,2.1.3,1 +3191,22,2.1.3.3,0 +3191,148,2.1.3,1 +3191,108,2.1.3,1 +3192,22,2.1.3.3,0 +3192,108,2.1.3,1 +3192,148,2.1.3,1 +3192,73,2.1.3,1 +3193,73,2.1.3,1 +3193,22,2.1.3.3,0 +3193,74,2.1.3,1 +3194,74,2.1.3,1 +3194,22,2.1.3.3,0 +3194,73,2.1.3,1 +3195,148,2.1.3,1 +3195,22,2.1.3.3,0 +3196,148,2.1.3,1 +3196,22,2.1.3.3,0 +3196,108,2.1.3,1 +3197,126,2.1.3,1 +3197,106,2.1.3,1 +3197,22,2.1.3.3,0 +3198,108,2.1.3,1 +3198,22,2.1.3.3,0 +3198,97,2.1.3,1 +3199,22,2.1.3.3,0 +3199,106,2.1.3,1 +3199,148,2.1.3,1 +3200,126,2.1.3,1 +3200,22,2.1.3.3,0 +3200,106,2.1.3,1 +3202,126,2.1.3,1 +3202,22,2.1.3.4,0 +3203,22,2.1.3.4,0 +3203,74,2.1.3,1 +3203,73,2.1.3,1 +3203,126,2.1.3,1 +3204,106,2.1.3,1 +3204,22,2.1.3.4,0 +3205,148,2.1.3,1 +3205,22,2.1.3.4,0 +3205,73,2.1.3,1 +3205,74,2.1.3,1 +3206,22,2.1.3.4,0 +3206,74,2.1.3,1 +3207,73,2.1.3,1 +3207,22,2.1.3.4,0 +3208,22,2.1.3.4,0 +3208,73,2.1.3,1 +3209,126,2.1.3,1 +3209,22,2.1.3.4,0 +3210,22,2.1.3.4,0 +3210,106,2.1.3,1 +3210,74,2.1.3,1 +3211,22,2.1.3.4,0 +3211,106,2.1.3,1 +3211,73,2.1.3,1 +3214,22,2.1.3.4,0 +3214,74,2.1.3,1 +3216,22,2.1.3.4,0 +3216,106,2.1.3,1 +3216,73,2.1.3,1 +3216,108,2.1.3,1 +3217,148,2.1.3,1 +3217,22,2.1.3.4,0 +3219,97,2.1.3,1 +3219,126,2.1.3,1 +3219,108,2.1.3,1 +3219,22,2.1.3.4,0 +3220,106,2.1.3,1 +3220,22,2.1.3.4,0 +3220,74,2.1.3,1 +3220,108,2.1.3,1 +3221,22,2.1.3.4,0 +3221,126,2.1.3,1 +3222,97,2.1.3,1 +3222,22,2.1.3.4,0 +3223,106,2.1.3,1 +3223,73,2.1.3,1 +3223,148,2.1.3,1 +3223,22,2.1.3.4,0 +3224,74,2.1.3,1 +3224,22,2.1.3.4,0 +3224,126,2.1.3,1 +3224,73,2.1.3,1 +3226,74,2.1.3,1 +3226,106,2.1.3,1 +3226,22,2.1.3.4,0 +3227,108,2.1.3,1 +3227,22,2.1.3.4,0 +3228,22,2.1.3.4,0 +3228,73,2.1.3,1 +3229,73,2.1.3,1 +3229,22,2.1.3.4,0 +3229,108,2.1.3,1 +3230,148,2.1.3,1 +3230,22,2.1.3.4,0 +3231,126,2.1.3,1 +3231,22,2.1.3.4,0 +3232,148,2.1.3,1 +3232,74,2.1.3,1 +3232,73,2.1.3,1 +3232,22,2.1.3.4,0 +3233,22,2.1.3.4,0 +3233,97,2.1.3,1 +3234,74,2.1.3,1 +3234,22,2.1.3.4,0 +3235,22,2.1.3.4,0 +3235,74,2.1.3,1 +3236,73,2.1.3,1 +3236,108,2.1.3,1 +3236,22,2.1.3.4,0 +3237,126,2.1.3,1 +3237,97,2.1.3,1 +3237,22,2.1.3.4,0 +3238,22,2.1.3.4,0 +3238,148,2.1.3,1 +3239,22,2.1.3.4,0 +3239,97,2.1.3,1 +3240,126,2.1.3,1 +3240,22,2.1.3.4,0 +3241,106,2.1.3,1 +3241,73,2.1.3,1 +3241,22,2.1.3.4,0 +3242,22,2.1.3.4,0 +3242,108,2.1.3,1 +3242,73,2.1.3,1 +3242,97,2.1.3,1 +3243,73,2.1.3,1 +3243,22,2.1.3.4,0 +3243,106,2.1.3,1 +3244,74,2.1.3,1 +3244,22,2.1.3.4,0 +3244,73,2.1.3,1 +3245,22,2.1.3.4,0 +3245,97,2.1.3,1 +3246,22,2.1.3.4,0 +3246,108,2.1.3,1 +3247,74,2.1.3,1 +3247,22,2.1.3.4,0 +3248,148,2.1.3,1 +3248,22,2.1.3.4,0 +3248,97,2.1.3,1 +3250,126,2.1.3,1 +3250,148,2.1.3,1 +3250,22,2.1.3.4,0 +3251,148,2.1.3,1 +3251,22,2.1.3.5,0 +3252,22,2.1.3.5,0 +3252,126,2.1.3,1 +3252,73,2.1.3,1 +3252,108,2.1.3,1 +3253,97,2.1.3,1 +3253,22,2.1.3.5,0 +3253,74,2.1.3,1 +3253,73,2.1.3,1 +3253,108,2.1.3,1 +3254,106,2.1.3,1 +3254,148,2.1.3,1 +3254,22,2.1.3.5,0 +3255,148,2.1.3,1 +3255,97,2.1.3,1 +3255,22,2.1.3.5,0 +3255,73,2.1.3,1 +3256,97,2.1.3,1 +3256,22,2.1.3.5,0 +3257,73,2.1.3,1 +3257,22,2.1.3.5,0 +3258,22,2.1.3.5,0 +3258,73,2.1.3,1 +3258,108,2.1.3,1 +3259,74,2.1.3,1 +3259,22,2.1.3.5,0 +3260,126,2.1.3,1 +3260,22,2.1.3.5,0 +3261,22,2.1.3.5,0 +3261,148,2.1.3,1 +3262,22,2.1.3.5,0 +3262,108,2.1.3,1 +3264,74,2.1.3,1 +3264,106,2.1.3,1 +3264,97,2.1.3,1 +3264,22,2.1.3.5,0 +3264,108,2.1.3,1 +3266,22,2.1.3.5,0 +3266,106,2.1.3,1 +3267,126,2.1.3,1 +3267,22,2.1.3.5,0 +3269,22,2.1.3.5,0 +3269,73,2.1.3,1 +3269,74,2.1.3,1 +3270,22,2.1.3.5,0 +3270,74,2.1.3,1 +3270,106,2.1.3,1 +3272,22,2.1.3.5,0 +3272,106,2.1.3,1 +3272,97,2.1.3,1 +3272,73,2.1.3,1 +3272,148,2.1.3,1 +3272,108,2.1.3,1 +3273,74,2.1.3,1 +3273,97,2.1.3,1 +3273,22,2.1.3.5,0 +3274,106,2.1.3,1 +3274,22,2.1.3.5,0 +3276,22,2.1.3.5,0 +3276,108,2.1.3,1 +3276,97,2.1.3,1 +3277,22,2.1.3.5,0 +3277,74,2.1.3,1 +3278,22,2.1.3.5,0 +3278,97,2.1.3,1 +3279,73,2.1.3,1 +3279,97,2.1.3,1 +3279,22,2.1.3.5,0 +3280,22,2.1.3.5,0 +3280,108,2.1.3,1 +3281,73,2.1.3,1 +3281,108,2.1.3,1 +3281,22,2.1.3.5,0 +3282,73,2.1.3,1 +3282,22,2.1.3.5,0 +3283,22,2.1.3.5,0 +3283,73,2.1.3,1 +3284,22,2.1.3.5,0 +3284,126,2.1.3,1 +3285,22,2.1.3.5,0 +3285,108,2.1.3,1 +3286,126,2.1.3,1 +3286,148,2.1.3,1 +3286,22,2.1.3.5,0 +3286,97,2.1.3,1 +3286,108,2.1.3,1 +3287,74,2.1.3,1 +3287,22,2.1.3.5,0 +3288,126,2.1.3,1 +3288,22,2.1.3.5,0 +3289,22,2.1.3.5,0 +3289,74,2.1.3,1 +3291,73,2.1.3,1 +3291,22,2.1.3.5,0 +3291,148,2.1.3,1 +3292,22,2.1.3.5,0 +3292,148,2.1.3,1 +3292,126,2.1.3,1 +3293,73,2.1.3,1 +3293,22,2.1.3.5,0 +3293,97,2.1.3,1 +3294,22,2.1.3.5,0 +3294,97,2.1.3,1 +3294,126,2.1.3,1 +3295,148,2.1.3,1 +3295,22,2.1.3.5,0 +3295,74,2.1.3,1 +3296,148,2.1.3,1 +3296,126,2.1.3,1 +3296,22,2.1.3.5,0 +3297,108,2.1.3,1 +3297,22,2.1.3.5,0 +3298,22,2.1.3.5,0 +3298,108,2.1.3,1 +3300,126,2.1.3,1 +3300,148,2.1.3,1 +3300,108,2.1.3,1 +3300,22,2.1.3.5,0 +3302,22,2.1.3.6,0 +3302,74,2.1.3,1 +3302,148,2.1.3,1 +3303,97,2.1.3,1 +3303,22,2.1.3.6,0 +3303,73,2.1.3,1 +3303,108,2.1.3,1 +3304,97,2.1.3,1 +3304,22,2.1.3.6,0 +3305,22,2.1.3.6,0 +3305,73,2.1.3,1 +3306,22,2.1.3.6,0 +3306,74,2.1.3,1 +3306,126,2.1.3,1 +3307,74,2.1.3,1 +3307,22,2.1.3.6,0 +3308,22,2.1.3.6,0 +3308,74,2.1.3,1 +3309,97,2.1.3,1 +3309,22,2.1.3.6,0 +3310,73,2.1.3,1 +3310,22,2.1.3.6,0 +3311,22,2.1.3.6,0 +3311,73,2.1.3,1 +3311,108,2.1.3,1 +3311,97,2.1.3,1 +3312,126,2.1.3,1 +3312,108,2.1.3,1 +3312,22,2.1.3.6,0 +3314,106,2.1.3,1 +3314,22,2.1.3.6,0 +3316,22,2.1.3.6,0 +3316,97,2.1.3,1 +3319,97,2.1.3,1 +3319,22,2.1.3.6,0 +3320,74,2.1.3,1 +3320,22,2.1.3.6,0 +3321,108,2.1.3,1 +3321,22,2.1.3.6,0 +3322,73,2.1.3,1 +3322,22,2.1.3.6,0 +3323,126,2.1.3,1 +3323,106,2.1.3,1 +3323,22,2.1.3.6,0 +3324,22,2.1.3.6,0 +3324,106,2.1.3,1 +3326,106,2.1.3,1 +3326,74,2.1.3,1 +3326,148,2.1.3,1 +3326,73,2.1.3,1 +3326,22,2.1.3.6,0 +3327,22,2.1.3.6,0 +3327,148,2.1.3,1 +3328,22,2.1.3.6,0 +3328,74,2.1.3,1 +3329,22,2.1.3.6,0 +3329,73,2.1.3,1 +3329,108,2.1.3,1 +3330,126,2.1.3,1 +3330,22,2.1.3.6,0 +3331,74,2.1.3,1 +3331,22,2.1.3.6,0 +3331,106,2.1.3,1 +3332,74,2.1.3,1 +3332,22,2.1.3.6,0 +3333,22,2.1.3.6,0 +3333,73,2.1.3,1 +3334,22,2.1.3.6,0 +3334,126,2.1.3,1 +3336,22,2.1.3.6,0 +3336,73,2.1.3,1 +3340,108,2.1.3,1 +3340,22,2.1.3.6,0 +3340,106,2.1.3,1 +3341,22,2.1.3.6,0 +3341,148,2.1.3,1 +3342,22,2.1.3.6,0 +3342,148,2.1.3,1 +3342,126,2.1.3,1 +3343,22,2.1.3.6,0 +3343,126,2.1.3,1 +3344,74,2.1.3,1 +3344,22,2.1.3.6,0 +3344,73,2.1.3,1 +3347,74,2.1.3,1 +3347,22,2.1.3.6,0 +3348,74,2.1.3,1 +3348,22,2.1.3.6,0 +3348,73,2.1.3,1 +3349,22,2.1.3.6,0 +3349,106,2.1.3,1 +3349,108,2.1.3,1 +3350,126,2.1.3,1 +3350,108,2.1.3,1 +3350,22,2.1.3.6,0 +3351,148,2.1.3,1 +3351,22,2.1.3.7,0 +3352,126,2.1.3,1 +3352,22,2.1.3.7,0 +3352,148,2.1.3,1 +3354,97,2.1.3,1 +3354,22,2.1.3.7,0 +3354,73,2.1.3,1 +3355,106,2.1.3,1 +3355,22,2.1.3.7,0 +3356,22,2.1.3.7,0 +3356,74,2.1.3,1 +3356,148,2.1.3,1 +3357,73,2.1.3,1 +3357,22,2.1.3.7,0 +3358,22,2.1.3.7,0 +3358,74,2.1.3,1 +3359,73,2.1.3,1 +3359,22,2.1.3.7,0 +3360,74,2.1.3,1 +3360,22,2.1.3.7,0 +3360,106,2.1.3,1 +3361,22,2.1.3.7,0 +3361,106,2.1.3,1 +3361,148,2.1.3,1 +3361,74,2.1.3,1 +3364,126,2.1.3,1 +3364,74,2.1.3,1 +3364,22,2.1.3.7,0 +3364,97,2.1.3,1 +3366,22,2.1.3.7,0 +3366,126,2.1.3,1 +3366,97,2.1.3,1 +3366,148,2.1.3,1 +3369,22,2.1.3.7,0 +3369,148,2.1.3,1 +3369,126,2.1.3,1 +3369,97,2.1.3,1 +3370,74,2.1.3,1 +3370,22,2.1.3.7,0 +3371,108,2.1.3,1 +3371,22,2.1.3.7,0 +3372,148,2.1.3,1 +3372,108,2.1.3,1 +3372,73,2.1.3,1 +3372,106,2.1.3,1 +3372,22,2.1.3.7,0 +3372,97,2.1.3,1 +3373,74,2.1.3,1 +3373,106,2.1.3,1 +3373,148,2.1.3,1 +3373,22,2.1.3.7,0 +3374,22,2.1.3.7,0 +3374,73,2.1.3,1 +3374,108,2.1.3,1 +3376,106,2.1.3,1 +3376,108,2.1.3,1 +3376,22,2.1.3.7,0 +3377,22,2.1.3.7,0 +3377,106,2.1.3,1 +3378,22,2.1.3.7,0 +3378,73,2.1.3,1 +3379,73,2.1.3,1 +3379,22,2.1.3.7,0 +3379,106,2.1.3,1 +3380,126,2.1.3,1 +3380,106,2.1.3,1 +3380,22,2.1.3.7,0 +3381,108,2.1.3,1 +3381,22,2.1.3.7,0 +3381,106,2.1.3,1 +3382,74,2.1.3,1 +3382,22,2.1.3.7,0 +3383,22,2.1.3.7,0 +3383,73,2.1.3,1 +3384,22,2.1.3.7,0 +3384,97,2.1.3,1 +3385,106,2.1.3,1 +3385,22,2.1.3.7,0 +3385,108,2.1.3,1 +3385,74,2.1.3,1 +3386,148,2.1.3,1 +3386,126,2.1.3,1 +3386,22,2.1.3.7,0 +3386,97,2.1.3,1 +3386,108,2.1.3,1 +3387,22,2.1.3.7,0 +3387,108,2.1.3,1 +3388,22,2.1.3.7,0 +3388,108,2.1.3,1 +3389,74,2.1.3,1 +3389,22,2.1.3.7,0 +3389,148,2.1.3,1 +3389,126,2.1.3,1 +3390,106,2.1.3,1 +3390,22,2.1.3.7,0 +3391,74,2.1.3,1 +3391,126,2.1.3,1 +3391,22,2.1.3.7,0 +3392,22,2.1.3.7,0 +3392,108,2.1.3,1 +3392,106,2.1.3,1 +3393,22,2.1.3.7,0 +3393,73,2.1.3,1 +3393,74,2.1.3,1 +3394,106,2.1.3,1 +3394,73,2.1.3,1 +3394,22,2.1.3.7,0 +3395,22,2.1.3.7,0 +3395,126,2.1.3,1 +3396,148,2.1.3,1 +3396,106,2.1.3,1 +3396,22,2.1.3.7,0 +3397,106,2.1.3,1 +3397,73,2.1.3,1 +3397,22,2.1.3.7,0 +3398,106,2.1.3,1 +3398,22,2.1.3.7,0 +3399,74,2.1.3,1 +3399,106,2.1.3,1 +3399,22,2.1.3.7,0 +3400,126,2.1.3,1 +3400,22,2.1.3.7,0 +3400,97,2.1.3,1 +3400,106,2.1.3,1 +3402,81,2.1.4.1,1 +3402,22,2.1.4.1.1,0 +3405,22,2.1.4.1.1,0 +3405,79,2.1.4.1,1 +3407,79,2.1.4.1,1 +3407,22,2.1.4.1.1,0 +3409,81,2.1.4.1,1 +3409,22,2.1.4.1.1,0 +3424,22,2.1.4.1.1,0 +3424,79,2.1.4.1,1 +3426,81,2.1.4.1,1 +3426,22,2.1.4.1.1,0 +3428,22,2.1.4.1.1,0 +3428,79,2.1.4.1,1 +3429,81,2.1.4.1,1 +3429,22,2.1.4.1.1,0 +3431,81,2.1.4.1,1 +3431,22,2.1.4.1.1,0 +3434,22,2.1.4.1.1,0 +3434,81,2.1.4.1,1 +3436,81,2.1.4.1,1 +3436,79,2.1.4.1,1 +3436,22,2.1.4.1.1,0 +3437,81,2.1.4.1,1 +3437,22,2.1.4.1.1,0 +3439,79,2.1.4.1,1 +3439,22,2.1.4.1.1,0 +3441,81,2.1.4.1,1 +3441,22,2.1.4.1.1,0 +3444,81,2.1.4.1,1 +3444,22,2.1.4.1.1,0 +3444,79,2.1.4.1,1 +3447,79,2.1.4.1,1 +3447,22,2.1.4.1.1,0 +3452,81,2.1.4.1,1 +3452,22,2.1.4.1.2,0 +3457,81,2.1.4.1,1 +3457,22,2.1.4.1.2,0 +3459,79,2.1.4.1,1 +3459,22,2.1.4.1.2,0 +3460,79,2.1.4.1,1 +3460,22,2.1.4.1.2,0 +3461,22,2.1.4.1.2,0 +3461,81,2.1.4.1,1 +3466,79,2.1.4.1,1 +3466,22,2.1.4.1.2,0 +3469,22,2.1.4.1.2,0 +3469,79,2.1.4.1,1 +3470,22,2.1.4.1.2,0 +3470,81,2.1.4.1,1 +3476,79,2.1.4.1,1 +3476,22,2.1.4.1.2,0 +3477,22,2.1.4.1.2,0 +3477,81,2.1.4.1,1 +3478,81,2.1.4.1,1 +3478,22,2.1.4.1.2,0 +3481,79,2.1.4.1,1 +3481,22,2.1.4.1.2,0 +3484,22,2.1.4.1.2,0 +3484,79,2.1.4.1,1 +3489,79,2.1.4.1,1 +3489,22,2.1.4.1.2,0 +3497,102,2.1.4,2 +3497,22,2.1.4.1.2,0 +3497,84,2.1.4,2 +3497,81,2.1.4.1,1 +3498,81,2.1.4.1,1 +3498,22,2.1.4.1.2,0 +3499,22,2.1.4.1.2,0 +3499,81,2.1.4.1,1 +3502,22,2.1.4.1.3,0 +3502,81,2.1.4.1,1 +3503,22,2.1.4.1.3,0 +3503,81,2.1.4.1,1 +3503,79,2.1.4.1,1 +3504,22,2.1.4.1.3,0 +3504,79,2.1.4.1,1 +3505,81,2.1.4.1,1 +3505,22,2.1.4.1.3,0 +3507,79,2.1.4.1,1 +3507,22,2.1.4.1.3,0 +3508,81,2.1.4.1,1 +3508,22,2.1.4.1.3,0 +3509,79,2.1.4.1,1 +3509,22,2.1.4.1.3,0 +3511,22,2.1.4.1.3,0 +3511,81,2.1.4.1,1 +3514,22,2.1.4.1.3,0 +3514,81,2.1.4.1,1 +3516,79,2.1.4.1,1 +3516,22,2.1.4.1.3,0 +3520,79,2.1.4.1,1 +3520,22,2.1.4.1.3,0 +3528,79,2.1.4.1,1 +3528,22,2.1.4.1.3,0 +3531,81,2.1.4.1,1 +3531,22,2.1.4.1.3,0 +3532,79,2.1.4.1,1 +3532,22,2.1.4.1.3,0 +3533,79,2.1.4.1,1 +3533,22,2.1.4.1.3,0 +3534,22,2.1.4.1.3,0 +3534,79,2.1.4.1,1 +3536,81,2.1.4.1,1 +3536,79,2.1.4.1,1 +3536,22,2.1.4.1.3,0 +3539,79,2.1.4.1,1 +3539,22,2.1.4.1.3,0 +3541,81,2.1.4.1,1 +3541,22,2.1.4.1.3,0 +3542,22,2.1.4.1.3,0 +3542,79,2.1.4.1,1 +3545,22,2.1.4.1.3,0 +3545,81,2.1.4.1,1 +3548,79,2.1.4.1,1 +3548,81,2.1.4.1,1 +3548,22,2.1.4.1.3,0 +3553,22,2.1.4.1.4,0 +3553,79,2.1.4.1,1 +3555,81,2.1.4.1,1 +3555,22,2.1.4.1.4,0 +3557,22,2.1.4.1.4,0 +3557,81,2.1.4.1,1 +3560,81,2.1.4.1,1 +3560,22,2.1.4.1.4,0 +3564,79,2.1.4.1,1 +3564,22,2.1.4.1.4,0 +3564,81,2.1.4.1,1 +3583,79,2.1.4.1,1 +3583,22,2.1.4.1.4,0 +3584,22,2.1.4.1.4,0 +3584,79,2.1.4.1,1 +3589,79,2.1.4.1,1 +3589,22,2.1.4.1.4,0 +3599,22,2.1.4.1.4,0 +3599,81,2.1.4.1,1 +3601,22,2.1.4.2.1,0 +3601,79,2.1.4.2,1 +3604,22,2.1.4.2.1,0 +3604,79,2.1.4.2,1 +3605,81,2.1.4.2,1 +3605,22,2.1.4.2.1,0 +3609,79,2.1.4.2,1 +3609,22,2.1.4.2.1,0 +3611,81,2.1.4.2,1 +3611,22,2.1.4.2.1,0 +3614,22,2.1.4.2.1,0 +3614,81,2.1.4.2,1 +3616,22,2.1.4.2.1,0 +3616,81,2.1.4.2,1 +3620,79,2.1.4.2,1 +3620,22,2.1.4.2.1,0 +3622,22,2.1.4.2.1,0 +3622,79,2.1.4.2,1 +3623,79,2.1.4.2,1 +3623,22,2.1.4.2.1,0 +3626,79,2.1.4.2,1 +3626,22,2.1.4.2.1,0 +3629,79,2.1.4.2,1 +3629,22,2.1.4.2.1,0 +3629,81,2.1.4.2,1 +3631,81,2.1.4.2,1 +3631,22,2.1.4.2.1,0 +3632,79,2.1.4.2,1 +3632,22,2.1.4.2.1,0 +3633,79,2.1.4.2,1 +3633,22,2.1.4.2.1,0 +3634,22,2.1.4.2.1,0 +3634,79,2.1.4.2,1 +3639,81,2.1.4.2,1 +3639,22,2.1.4.2.1,0 +3641,79,2.1.4.2,1 +3641,22,2.1.4.2.1,0 +3643,81,2.1.4.2,1 +3643,22,2.1.4.2.1,0 +3647,22,2.1.4.2.1,0 +3647,79,2.1.4.2,1 +3654,22,2.1.4.2.2,0 +3654,81,2.1.4.2,1 +3655,79,2.1.4.2,1 +3655,22,2.1.4.2.2,0 +3655,81,2.1.4.2,1 +3656,22,2.1.4.2.2,0 +3656,79,2.1.4.2,1 +3657,22,2.1.4.2.2,0 +3657,81,2.1.4.2,1 +3658,79,2.1.4.2,1 +3658,22,2.1.4.2.2,0 +3659,22,2.1.4.2.2,0 +3659,79,2.1.4.2,1 +3660,79,2.1.4.2,1 +3660,22,2.1.4.2.2,0 +3661,22,2.1.4.2.2,0 +3661,81,2.1.4.2,1 +3670,22,2.1.4.2.2,0 +3670,81,2.1.4.2,1 +3672,81,2.1.4.2,1 +3672,22,2.1.4.2.2,0 +3673,81,2.1.4.2,1 +3673,22,2.1.4.2.2,0 +3676,79,2.1.4.2,1 +3676,22,2.1.4.2.2,0 +3682,81,2.1.4.2,1 +3682,22,2.1.4.2.2,0 +3683,79,2.1.4.2,1 +3683,22,2.1.4.2.2,0 +3686,81,2.1.4.2,1 +3686,22,2.1.4.2.2,0 +3689,22,2.1.4.2.2,0 +3689,79,2.1.4.2,1 +3698,79,2.1.4.2,1 +3698,22,2.1.4.2.2,0 +3702,155,2.3,1 +3702,124,2.3,1 +3702,22,2.3.1,0 +3702,99,2.3,1 +3703,22,2.3.1,0 +3703,124,2.3,1 +3705,22,2.3.1,0 +3705,84,2.3,1 +3705,155,2.3,1 +3706,22,2.3.1,0 +3706,95,2.3,1 +3708,22,2.3.1,0 +3708,84,2.3,1 +3710,84,2.3,1 +3710,22,2.3.1,0 +3711,22,2.3.1,0 +3711,155,2.3,1 +3711,84,2.3,1 +3714,22,2.3.1,0 +3714,124,2.3,1 +3716,22,2.3.1,0 +3716,95,2.3,1 +3719,126,2.3,1 +3719,22,2.3.1,0 +3720,22,2.3.1,0 +3720,99,2.3,1 +3723,126,2.3,1 +3723,155,2.3,1 +3723,22,2.3.1,0 +3726,124,2.3,1 +3726,22,2.3.1,0 +3728,124,2.3,1 +3728,22,2.3.1,0 +3729,22,2.3.1,0 +3729,126,2.3,1 +3732,22,2.3.1,0 +3732,95,2.3,1 +3733,84,2.3,1 +3733,22,2.3.1,0 +3734,22,2.3.1,0 +3734,155,2.3,1 +3736,99,2.3,1 +3736,22,2.3.1,0 +3736,155,2.3,1 +3738,22,2.3.1,0 +3738,155,2.3,1 +3739,22,2.3.1,0 +3739,95,2.3,1 +3741,22,2.3.1,0 +3741,99,2.3,1 +3743,22,2.3.1,0 +3743,95,2.3,1 +3748,99,2.3,1 +3748,22,2.3.1,0 +3752,22,2.3.2,0 +3752,99,2.3,1 +3753,22,2.3.2,0 +3753,155,2.3,1 +3754,22,2.3.2,0 +3754,155,2.3,1 +3754,99,2.3,1 +3755,22,2.3.2,0 +3755,84,2.3,1 +3756,22,2.3.2,0 +3756,155,2.3,1 +3757,84,2.3,1 +3757,22,2.3.2,0 +3759,95,2.3,1 +3759,22,2.3.2,0 +3760,22,2.3.2,0 +3760,155,2.3,1 +3761,124,2.3,1 +3761,22,2.3.2,0 +3761,84,2.3,1 +3766,22,2.3.2,0 +3766,126,2.3,1 +3766,95,2.3,1 +3769,124,2.3,1 +3769,22,2.3.2,0 +3769,95,2.3,1 +3772,124,2.3,1 +3772,22,2.3.2,0 +3772,84,2.3,1 +3773,84,2.3,1 +3773,155,2.3,1 +3773,22,2.3.2,0 +3776,99,2.3,1 +3776,22,2.3.2,0 +3776,84,2.3,1 +3777,22,2.3.2,0 +3777,124,2.3,1 +3778,22,2.3.2,0 +3778,84,2.3,1 +3779,99,2.3,1 +3779,22,2.3.2,0 +3781,155,2.3,1 +3781,99,2.3,1 +3781,95,2.3,1 +3781,22,2.3.2,0 +3782,124,2.3,1 +3782,155,2.3,1 +3782,22,2.3.2,0 +3783,124,2.3,1 +3783,22,2.3.2,0 +3784,22,2.3.2,0 +3784,99,2.3,1 +3785,155,2.3,1 +3785,22,2.3.2,0 +3785,124,2.3,1 +3786,95,2.3,1 +3786,99,2.3,1 +3786,22,2.3.2,0 +3786,155,2.3,1 +3788,155,2.3,1 +3788,22,2.3.2,0 +3790,99,2.3,1 +3790,155,2.3,1 +3790,124,2.3,1 +3790,22,2.3.2,0 +3791,84,2.3,1 +3791,22,2.3.2,0 +3792,22,2.3.2,0 +3792,99,2.3,1 +3793,126,2.3,1 +3793,84,2.3,1 +3793,22,2.3.2,0 +3794,155,2.3,1 +3794,22,2.3.2,0 +3797,99,2.3,1 +3797,22,2.3.2,0 +3798,155,2.3,1 +3798,22,2.3.2,0 +3798,126,2.3,1 +3802,84,2.3,1 +3802,22,2.3.3,0 +3805,95,2.3,1 +3805,22,2.3.3,0 +3807,126,2.3,1 +3807,84,2.3,1 +3807,22,2.3.3,0 +3807,124,2.3,1 +3808,22,2.3.3,0 +3808,99,2.3,1 +3809,126,2.3,1 +3809,22,2.3.3,0 +3810,124,2.3,1 +3810,22,2.3.3,0 +3810,95,2.3,1 +3811,22,2.3.3,0 +3811,95,2.3,1 +3811,155,2.3,1 +3811,99,2.3,1 +3814,95,2.3,1 +3814,99,2.3,1 +3814,22,2.3.3,0 +3816,22,2.3.3,0 +3816,95,2.3,1 +3816,99,2.3,1 +3819,155,2.3,1 +3819,22,2.3.3,0 +3820,22,2.3.3,0 +3820,99,2.3,1 +3822,22,2.3.3,0 +3822,95,2.3,1 +3823,95,2.3,1 +3823,22,2.3.3,0 +3823,126,2.3,1 +3826,126,2.3,1 +3826,22,2.3.3,0 +3827,22,2.3.3,0 +3827,155,2.3,1 +3828,99,2.3,1 +3828,22,2.3.3,0 +3829,99,2.3,1 +3829,22,2.3.3,0 +3830,126,2.3,1 +3830,22,2.3.3,0 +3832,124,2.3,1 +3832,22,2.3.3,0 +3833,124,2.3,1 +3833,22,2.3.3,0 +3834,22,2.3.3,0 +3834,84,2.3,1 +3835,99,2.3,1 +3835,22,2.3.3,0 +3836,22,2.3.3,0 +3836,84,2.3,1 +3837,95,2.3,1 +3837,124,2.3,1 +3837,22,2.3.3,0 +3839,22,2.3.3,0 +3839,95,2.3,1 +3841,155,2.3,1 +3841,22,2.3.3,0 +3842,99,2.3,1 +3842,22,2.3.3,0 +3842,155,2.3,1 +3844,126,2.3,1 +3844,22,2.3.3,0 +3847,124,2.3,1 +3847,22,2.3.3,0 +3852,105,1.1,1 +3852,23,1.1.2,0 +3854,106,1.1,1 +3854,23,1.1.2,0 +3857,86,1.1,1 +3857,23,1.1.2,0 +3858,23,1.1.2,0 +3858,126,1.1,1 +3860,86,1.1,1 +3860,23,1.1.2,0 +3861,23,1.1.2,0 +3861,106,1.1,1 +3864,106,1.1,1 +3864,23,1.1.2,0 +3866,106,1.1,1 +3866,94,1.1,1 +3866,23,1.1.2,0 +3873,86,1.1,1 +3873,23,1.1.2,0 +3878,23,1.1.2,0 +3878,105,1.1,1 +3879,23,1.1.2,0 +3879,105,1.1,1 +3882,105,1.1,1 +3882,23,1.1.2,0 +3884,94,1.1,1 +3884,23,1.1.2,0 +3885,23,1.1.2,0 +3885,106,1.1,1 +3886,105,1.1,1 +3886,86,1.1,1 +3886,23,1.1.2,0 +3889,23,1.1.2,0 +3889,94,1.1,1 +3893,23,1.1.2,0 +3893,94,1.1,1 +3897,23,1.1.2,0 +3897,106,1.1,1 +3897,86,1.1,1 +3900,23,1.1.2,0 +3900,94,1.1,1 +3902,75,1.3.3,1 +3902,23,1.3.3.1,0 +3904,75,1.3.3,1 +3904,23,1.3.3.1,0 +3907,97,1.3.3,1 +3907,23,1.3.3.1,0 +3908,23,1.3.3.1,0 +3908,75,1.3.3,1 +3910,23,1.3.3.1,0 +3910,75,1.3.3,1 +3910,99,1.3.3,1 +3911,97,1.3.3,1 +3911,23,1.3.3.1,0 +3911,99,1.3.3,1 +3914,23,1.3.3.1,0 +3914,97,1.3.3,1 +3920,23,1.3.3.1,0 +3920,97,1.3.3,1 +3926,23,1.3.3.1,0 +3926,75,1.3.3,1 +3926,97,1.3.3,1 +3928,23,1.3.3.1,0 +3928,97,1.3.3,1 +3933,75,1.3.3,1 +3933,23,1.3.3.1,0 +3934,23,1.3.3.1,0 +3934,97,1.3.3,1 +3936,23,1.3.3.1,0 +3936,99,1.3.3,1 +3938,97,1.3.3,1 +3938,23,1.3.3.1,0 +3941,99,1.3.3,1 +3941,23,1.3.3.1,0 +3943,23,1.3.3.1,0 +3943,99,1.3.3,1 +3944,75,1.3.3,1 +3944,23,1.3.3.1,0 +3947,23,1.3.3.1,0 +3947,75,1.3.3,1 +3948,99,1.3.3,1 +3948,97,1.3.3,1 +3948,23,1.3.3.1,0 +3954,99,1.3.3,1 +3954,23,1.3.3.2,0 +3958,23,1.3.3.2,0 +3958,97,1.3.3,1 +3961,97,1.3.3,1 +3961,23,1.3.3.2,0 +3972,23,1.3.3.2,0 +3972,99,1.3.3,1 +3984,23,1.3.3.2,0 +3984,97,1.3.3,1 +3986,75,1.3.3,1 +3986,23,1.3.3.2,0 +3989,23,1.3.3.2,0 +3989,75,1.3.3,1 +3991,97,1.3.3,1 +3991,23,1.3.3.2,0 +3994,75,1.3.3,1 +3994,23,1.3.3.2,0 +3997,99,1.3.3,1 +3997,23,1.3.3.2,0 +4004,99,1.3.3,1 +4004,23,1.3.3.3,0 +4005,23,1.3.3.3,0 +4005,97,1.3.3,1 +4006,23,1.3.3.3,0 +4006,99,1.3.3,1 +4006,75,1.3.3,1 +4007,99,1.3.3,1 +4007,23,1.3.3.3,0 +4008,23,1.3.3.3,0 +4008,99,1.3.3,1 +4010,97,1.3.3,1 +4010,23,1.3.3.3,0 +4014,23,1.3.3.3,0 +4014,99,1.3.3,1 +4016,97,1.3.3,1 +4016,99,1.3.3,1 +4016,23,1.3.3.3,0 +4020,97,1.3.3,1 +4020,23,1.3.3.3,0 +4022,23,1.3.3.3,0 +4022,75,1.3.3,1 +4023,97,1.3.3,1 +4023,23,1.3.3.3,0 +4026,23,1.3.3.3,0 +4026,75,1.3.3,1 +4026,97,1.3.3,1 +4028,23,1.3.3.3,0 +4028,75,1.3.3,1 +4029,75,1.3.3,1 +4029,23,1.3.3.3,0 +4031,75,1.3.3,1 +4031,23,1.3.3.3,0 +4031,99,1.3.3,1 +4034,97,1.3.3,1 +4034,23,1.3.3.3,0 +4035,23,1.3.3.3,0 +4035,97,1.3.3,1 +4036,97,1.3.3,1 +4036,99,1.3.3,1 +4036,23,1.3.3.3,0 +4036,75,1.3.3,1 +4037,23,1.3.3.3,0 +4037,97,1.3.3,1 +4040,23,1.3.3.3,0 +4040,97,1.3.3,1 +4041,75,1.3.3,1 +4041,23,1.3.3.3,0 +4041,99,1.3.3,1 +4044,97,1.3.3,1 +4044,29,1.3,2 +4044,106,1.3,2 +4044,99,1.3.3,1 +4044,23,1.3.3.3,0 +4045,97,1.3.3,1 +4045,23,1.3.3.3,0 +4047,99,1.3.3,1 +4047,23,1.3.3.3,0 +4047,75,1.3.3,1 +4052,97,1.3.3,1 +4052,23,1.3.3.4,0 +4054,97,1.3.3,1 +4054,23,1.3.3.4,0 +4055,97,1.3.3,1 +4055,23,1.3.3.4,0 +4056,23,1.3.3.4,0 +4056,99,1.3.3,1 +4057,75,1.3.3,1 +4057,23,1.3.3.4,0 +4058,23,1.3.3.4,0 +4058,99,1.3.3,1 +4059,23,1.3.3.4,0 +4059,75,1.3.3,1 +4061,75,1.3.3,1 +4061,23,1.3.3.4,0 +4066,75,1.3.3,1 +4066,97,1.3.3,1 +4066,23,1.3.3.4,0 +4066,99,1.3.3,1 +4070,97,1.3.3,1 +4070,23,1.3.3.4,0 +4072,23,1.3.3.4,0 +4072,99,1.3.3,1 +4074,99,1.3.3,1 +4074,23,1.3.3.4,0 +4078,99,1.3.3,1 +4078,23,1.3.3.4,0 +4079,23,1.3.3.4,0 +4079,97,1.3.3,1 +4081,75,1.3.3,1 +4081,23,1.3.3.4,0 +4081,99,1.3.3,1 +4082,99,1.3.3,1 +4082,23,1.3.3.4,0 +4083,97,1.3.3,1 +4083,23,1.3.3.4,0 +4084,75,1.3.3,1 +4084,23,1.3.3.4,0 +4085,97,1.3.3,1 +4085,23,1.3.3.4,0 +4085,99,1.3.3,1 +4086,23,1.3.3.4,0 +4086,97,1.3.3,1 +4087,23,1.3.3.4,0 +4087,97,1.3.3,1 +4089,23,1.3.3.4,0 +4089,99,1.3.3,1 +4090,23,1.3.3.4,0 +4090,97,1.3.3,1 +4091,75,1.3.3,1 +4091,23,1.3.3.4,0 +4093,97,1.3.3,1 +4093,23,1.3.3.4,0 +4093,75,1.3.3,1 +4094,23,1.3.3.4,0 +4094,99,1.3.3,1 +4098,97,1.3.3,1 +4098,23,1.3.3.4,0 +4098,99,1.3.3,1 +4101,170,1,3 +4101,142,1.4.2,1 +4101,126,1.4,2 +4101,23,1.4.2.7,0 +4102,142,1.4.2,1 +4102,170,1,3 +4102,126,1.4,2 +4102,23,1.4.2.7,0 +4103,23,1.4.2.7,0 +4103,170,1,3 +4103,126,1.4,2 +4103,142,1.4.2,1 +4104,126,1.4,2 +4104,23,1.4.2.7,0 +4104,142,1.4.2,1 +4104,170,1,3 +4105,126,1.4,2 +4105,170,1,3 +4105,23,1.4.2.7,0 +4105,142,1.4.2,1 +4106,23,1.4.2.7,0 +4106,142,1.4.2,1 +4106,126,1.4,2 +4106,170,1,3 +4107,170,1,3 +4107,142,1.4.2,1 +4107,126,1.4,2 +4107,23,1.4.2.7,0 +4108,142,1.4.2,1 +4108,126,1.4,2 +4108,23,1.4.2.7,0 +4108,170,1,3 +4109,170,1,3 +4109,23,1.4.2.7,0 +4109,126,1.4,2 +4109,142,1.4.2,1 +4110,126,1.4,2 +4110,142,1.4.2,1 +4110,23,1.4.2.7,0 +4110,170,1,3 +4111,142,1.4.2,1 +4111,126,1.4,2 +4111,170,1,3 +4111,23,1.4.2.7,0 +4112,126,1.4,2 +4112,142,1.4.2,1 +4112,23,1.4.2.7,0 +4112,170,1,3 +4113,126,1.4,2 +4113,23,1.4.2.7,0 +4113,170,1,3 +4113,142,1.4.2,1 +4114,142,1.4.2,1 +4114,23,1.4.2.7,0 +4114,170,1,3 +4114,126,1.4,2 +4115,170,1,3 +4115,126,1.4,2 +4115,23,1.4.2.7,0 +4115,142,1.4.2,1 +4116,126,1.4,2 +4116,142,1.4.2,1 +4116,170,1,3 +4116,23,1.4.2.7,0 +4117,126,1.4,2 +4117,142,1.4.2,1 +4117,170,1,3 +4117,23,1.4.2.7,0 +4118,142,1.4.2,1 +4118,170,1,3 +4118,126,1.4,2 +4118,23,1.4.2.7,0 +4119,142,1.4.2,1 +4119,23,1.4.2.7,0 +4119,126,1.4,2 +4119,170,1,3 +4120,142,1.4.2,1 +4120,170,1,3 +4120,23,1.4.2.7,0 +4120,126,1.4,2 +4121,170,1,3 +4121,126,1.4,2 +4121,23,1.4.2.7,0 +4121,142,1.4.2,1 +4122,23,1.4.2.7,0 +4122,126,1.4,2 +4122,142,1.4.2,1 +4122,170,1,3 +4123,142,1.4.2,1 +4123,126,1.4,2 +4123,23,1.4.2.7,0 +4123,170,1,3 +4124,126,1.4,2 +4124,23,1.4.2.7,0 +4124,142,1.4.2,1 +4124,170,1,3 +4125,23,1.4.2.7,0 +4125,170,1,3 +4125,142,1.4.2,1 +4125,126,1.4,2 +4126,126,1.4,2 +4126,23,1.4.2.7,0 +4126,142,1.4.2,1 +4126,170,1,3 +4127,126,1.4,2 +4127,23,1.4.2.7,0 +4127,170,1,3 +4127,142,1.4.2,1 +4128,142,1.4.2,1 +4128,23,1.4.2.7,0 +4128,170,1,3 +4128,126,1.4,2 +4129,170,1,3 +4129,126,1.4,2 +4129,142,1.4.2,1 +4129,23,1.4.2.7,0 +4130,142,1.4.2,1 +4130,170,1,3 +4130,126,1.4,2 +4130,23,1.4.2.7,0 +4131,126,1.4,2 +4131,170,1,3 +4131,142,1.4.2,1 +4131,23,1.4.2.7,0 +4132,23,1.4.2.7,0 +4132,126,1.4,2 +4132,142,1.4.2,1 +4132,170,1,3 +4133,23,1.4.2.7,0 +4133,170,1,3 +4133,142,1.4.2,1 +4133,126,1.4,2 +4134,142,1.4.2,1 +4134,126,1.4,2 +4134,170,1,3 +4134,23,1.4.2.7,0 +4135,170,1,3 +4135,126,1.4,2 +4135,142,1.4.2,1 +4135,23,1.4.2.7,0 +4136,23,1.4.2.7,0 +4136,142,1.4.2,1 +4136,170,1,3 +4136,126,1.4,2 +4137,126,1.4,2 +4137,23,1.4.2.7,0 +4137,170,1,3 +4137,142,1.4.2,1 +4138,170,1,3 +4138,23,1.4.2.7,0 +4138,126,1.4,2 +4138,142,1.4.2,1 +4139,126,1.4,2 +4139,170,1,3 +4139,23,1.4.2.7,0 +4139,142,1.4.2,1 +4140,170,1,3 +4140,23,1.4.2.7,0 +4140,142,1.4.2,1 +4140,126,1.4,2 +4141,170,1,3 +4141,23,1.4.2.7,0 +4141,126,1.4,2 +4141,142,1.4.2,1 +4142,126,1.4,2 +4142,170,1,3 +4142,23,1.4.2.7,0 +4142,142,1.4.2,1 +4143,23,1.4.2.7,0 +4143,142,1.4.2,1 +4143,170,1,3 +4143,126,1.4,2 +4144,170,1,3 +4144,142,1.4.2,1 +4144,23,1.4.2.7,0 +4144,126,1.4,2 +4145,170,1,3 +4145,23,1.4.2.7,0 +4145,142,1.4.2,1 +4145,126,1.4,2 +4146,170,1,3 +4146,23,1.4.2.7,0 +4146,142,1.4.2,1 +4146,126,1.4,2 +4147,170,1,3 +4147,126,1.4,2 +4147,142,1.4.2,1 +4147,23,1.4.2.7,0 +4148,126,1.4,2 +4148,142,1.4.2,1 +4148,170,1,3 +4148,23,1.4.2.7,0 +4149,170,1,3 +4149,142,1.4.2,1 +4149,126,1.4,2 +4149,23,1.4.2.7,0 +4150,170,1,3 +4150,142,1.4.2,1 +4150,126,1.4,2 +4150,23,1.4.2.7,0 +4152,74,2.1.3,1 +4152,73,2.1.3,1 +4152,97,2.1.3,1 +4152,23,2.1.3.6,0 +4154,148,2.1.3,1 +4154,23,2.1.3.6,0 +4155,106,2.1.3,1 +4155,108,2.1.3,1 +4155,23,2.1.3.6,0 +4156,148,2.1.3,1 +4156,23,2.1.3.6,0 +4157,97,2.1.3,1 +4157,23,2.1.3.6,0 +4158,23,2.1.3.6,0 +4158,74,2.1.3,1 +4158,126,2.1.3,1 +4159,23,2.1.3.6,0 +4159,74,2.1.3,1 +4160,23,2.1.3.6,0 +4160,106,2.1.3,1 +4161,74,2.1.3,1 +4161,106,2.1.3,1 +4161,148,2.1.3,1 +4161,23,2.1.3.6,0 +4164,23,2.1.3.6,0 +4164,126,2.1.3,1 +4164,97,2.1.3,1 +4166,106,2.1.3,1 +4166,23,2.1.3.6,0 +4166,126,2.1.3,1 +4166,148,2.1.3,1 +4169,148,2.1.3,1 +4169,23,2.1.3.6,0 +4170,73,2.1.3,1 +4170,23,2.1.3.6,0 +4172,126,2.1.3,1 +4172,97,2.1.3,1 +4172,23,2.1.3.6,0 +4173,148,2.1.3,1 +4173,126,2.1.3,1 +4173,23,2.1.3.6,0 +4173,97,2.1.3,1 +4173,73,2.1.3,1 +4174,23,2.1.3.6,0 +4174,73,2.1.3,1 +4175,73,2.1.3,1 +4175,23,2.1.3.6,0 +4176,23,2.1.3.6,0 +4176,108,2.1.3,1 +4176,97,2.1.3,1 +4177,106,2.1.3,1 +4177,23,2.1.3.6,0 +4178,23,2.1.3.6,0 +4178,106,2.1.3,1 +4179,23,2.1.3.6,0 +4179,148,2.1.3,1 +4179,108,2.1.3,1 +4181,23,2.1.3.6,0 +4181,73,2.1.3,1 +4181,106,2.1.3,1 +4182,23,2.1.3.6,0 +4182,73,2.1.3,1 +4182,148,2.1.3,1 +4183,23,2.1.3.6,0 +4183,74,2.1.3,1 +4184,108,2.1.3,1 +4184,23,2.1.3.6,0 +4185,23,2.1.3.6,0 +4185,148,2.1.3,1 +4186,74,2.1.3,1 +4186,23,2.1.3.6,0 +4187,23,2.1.3.6,0 +4187,126,2.1.3,1 +4188,106,2.1.3,1 +4188,23,2.1.3.6,0 +4189,23,2.1.3.6,0 +4189,148,2.1.3,1 +4191,73,2.1.3,1 +4191,23,2.1.3.6,0 +4191,108,2.1.3,1 +4192,148,2.1.3,1 +4192,73,2.1.3,1 +4192,23,2.1.3.6,0 +4193,23,2.1.3.6,0 +4193,148,2.1.3,1 +4194,148,2.1.3,1 +4194,23,2.1.3.6,0 +4194,126,2.1.3,1 +4195,108,2.1.3,1 +4195,23,2.1.3.6,0 +4197,23,2.1.3.6,0 +4197,106,2.1.3,1 +4198,23,2.1.3.6,0 +4198,108,2.1.3,1 +4198,148,2.1.3,1 +4199,126,2.1.3,1 +4199,148,2.1.3,1 +4199,23,2.1.3.6,0 +4202,99,2.3,1 +4202,23,2.3.1,0 +4204,124,2.3,1 +4204,23,2.3.1,0 +4205,126,2.3,1 +4205,23,2.3.1,0 +4206,23,2.3.1,0 +4206,84,2.3,1 +4208,23,2.3.1,0 +4208,126,2.3,1 +4210,124,2.3,1 +4210,23,2.3.1,0 +4211,124,2.3,1 +4211,95,2.3,1 +4211,23,2.3.1,0 +4216,155,2.3,1 +4216,23,2.3.1,0 +4216,126,2.3,1 +4216,124,2.3,1 +4222,124,2.3,1 +4222,155,2.3,1 +4222,23,2.3.1,0 +4226,99,2.3,1 +4226,126,2.3,1 +4226,23,2.3.1,0 +4227,124,2.3,1 +4227,23,2.3.1,0 +4228,95,2.3,1 +4228,23,2.3.1,0 +4229,23,2.3.1,0 +4229,95,2.3,1 +4231,23,2.3.1,0 +4231,155,2.3,1 +4231,99,2.3,1 +4232,23,2.3.1,0 +4232,95,2.3,1 +4233,23,2.3.1,0 +4233,99,2.3,1 +4234,23,2.3.1,0 +4234,99,2.3,1 +4235,155,2.3,1 +4235,23,2.3.1,0 +4236,95,2.3,1 +4236,99,2.3,1 +4236,23,2.3.1,0 +4238,126,2.3,1 +4238,23,2.3.1,0 +4239,124,2.3,1 +4239,23,2.3.1,0 +4240,126,2.3,1 +4240,124,2.3,1 +4240,155,2.3,1 +4240,23,2.3.1,0 +4240,95,2.3,1 +4243,23,2.3.1,0 +4243,126,2.3,1 +4244,124,2.3,1 +4244,23,2.3.1,0 +4244,95,2.3,1 +4248,23,2.3.1,0 +4248,84,2.3,1 +4252,95,2.3,1 +4252,23,2.3.2,0 +4254,84,2.3,1 +4254,23,2.3.2,0 +4255,95,2.3,1 +4255,23,2.3.2,0 +4255,99,2.3,1 +4256,23,2.3.2,0 +4256,84,2.3,1 +4257,23,2.3.2,0 +4257,99,2.3,1 +4258,23,2.3.2,0 +4258,99,2.3,1 +4259,124,2.3,1 +4259,23,2.3.2,0 +4260,84,2.3,1 +4260,23,2.3.2,0 +4261,99,2.3,1 +4261,23,2.3.2,0 +4264,23,2.3.2,0 +4264,155,2.3,1 +4266,84,2.3,1 +4266,99,2.3,1 +4266,23,2.3.2,0 +4269,155,2.3,1 +4269,23,2.3.2,0 +4270,23,2.3.2,0 +4270,99,2.3,1 +4273,99,2.3,1 +4273,126,2.3,1 +4273,23,2.3.2,0 +4276,23,2.3.2,0 +4276,95,2.3,1 +4277,23,2.3.2,0 +4277,155,2.3,1 +4278,23,2.3.2,0 +4278,84,2.3,1 +4279,95,2.3,1 +4279,84,2.3,1 +4279,23,2.3.2,0 +4280,23,2.3.2,0 +4280,155,2.3,1 +4280,124,2.3,1 +4281,23,2.3.2,0 +4281,84,2.3,1 +4281,124,2.3,1 +4282,99,2.3,1 +4282,23,2.3.2,0 +4283,23,2.3.2,0 +4283,84,2.3,1 +4284,95,2.3,1 +4284,23,2.3.2,0 +4285,23,2.3.2,0 +4285,99,2.3,1 +4285,126,2.3,1 +4285,124,2.3,1 +4286,23,2.3.2,0 +4286,84,2.3,1 +4287,23,2.3.2,0 +4287,155,2.3,1 +4289,23,2.3.2,0 +4289,155,2.3,1 +4291,23,2.3.2,0 +4291,95,2.3,1 +4293,124,2.3,1 +4293,99,2.3,1 +4293,23,2.3.2,0 +4294,124,2.3,1 +4294,23,2.3.2,0 +4294,155,2.3,1 +4297,23,2.3.2,0 +4297,126,2.3,1 +4298,23,2.3.2,0 +4298,124,2.3,1 +4302,126,2.3,1 +4302,95,2.3,1 +4302,23,2.3.3,0 +4302,99,2.3,1 +4305,84,2.3,1 +4305,23,2.3.3,0 +4305,99,2.3,1 +4306,23,2.3.3,0 +4306,155,2.3,1 +4307,95,2.3,1 +4307,23,2.3.3,0 +4308,23,2.3.3,0 +4308,124,2.3,1 +4310,99,2.3,1 +4310,23,2.3.3,0 +4311,84,2.3,1 +4311,23,2.3.3,0 +4314,126,2.3,1 +4314,99,2.3,1 +4314,155,2.3,1 +4314,23,2.3.3,0 +4316,23,2.3.3,0 +4316,124,2.3,1 +4316,99,2.3,1 +4319,124,2.3,1 +4319,23,2.3.3,0 +4322,23,2.3.3,0 +4322,99,2.3,1 +4324,155,2.3,1 +4324,23,2.3.3,0 +4326,84,2.3,1 +4326,23,2.3.3,0 +4327,23,2.3.3,0 +4327,95,2.3,1 +4328,95,2.3,1 +4328,23,2.3.3,0 +4329,23,2.3.3,0 +4329,95,2.3,1 +4331,23,2.3.3,0 +4331,99,2.3,1 +4331,124,2.3,1 +4332,23,2.3.3,0 +4332,84,2.3,1 +4333,84,2.3,1 +4333,23,2.3.3,0 +4336,23,2.3.3,0 +4336,99,2.3,1 +4336,124,2.3,1 +4337,124,2.3,1 +4337,23,2.3.3,0 +4338,124,2.3,1 +4338,23,2.3.3,0 +4340,23,2.3.3,0 +4340,155,2.3,1 +4341,84,2.3,1 +4341,23,2.3.3,0 +4341,124,2.3,1 +4344,23,2.3.3,0 +4344,95,2.3,1 +4347,99,2.3,1 +4347,23,2.3.3,0 +4348,23,2.3.3,0 +4348,99,2.3,1 +4348,126,2.3,1 +4349,23,2.3.3,0 +4349,95,2.3,1 +4349,155,2.3,1 +4352,24,1.1.1,0 +4352,86,1.1,1 +4356,94,1.1,1 +4356,24,1.1.1,0 +4357,24,1.1.1,0 +4357,94,1.1,1 +4361,24,1.1.1,0 +4361,126,1.1,1 +4362,126,1.1,1 +4362,24,1.1.1,0 +4364,24,1.1.1,0 +4364,106,1.1,1 +4369,24,1.1.1,0 +4369,126,1.1,1 +4376,106,1.1,1 +4376,24,1.1.1,0 +4376,86,1.1,1 +4378,24,1.1.1,0 +4378,105,1.1,1 +4382,24,1.1.1,0 +4382,94,1.1,1 +4383,24,1.1.1,0 +4383,94,1.1,1 +4384,94,1.1,1 +4384,24,1.1.1,0 +4386,126,1.1,1 +4386,24,1.1.1,0 +4390,24,1.1.1,0 +4390,94,1.1,1 +4393,24,1.1.1,0 +4393,126,1.1,1 +4394,94,1.1,1 +4394,126,1.1,1 +4394,24,1.1.1,0 +4399,126,1.1,1 +4399,24,1.1.1,0 +4402,100,1.3.1,1 +4402,85,1.3.1,1 +4402,25,1.3.1.7,0 +4403,25,1.3.1.7,0 +4403,93,1.3.1,1 +4404,25,1.3.1.7,0 +4404,85,1.3.1,1 +4405,93,1.3.1,1 +4405,25,1.3.1.7,0 +4405,100,1.3.1,1 +4406,39,1.3.1,1 +4406,100,1.3.1,1 +4406,25,1.3.1.7,0 +4407,25,1.3.1.7,0 +4407,39,1.3.1,1 +4408,39,1.3.1,1 +4408,25,1.3.1.7,0 +4408,93,1.3.1,1 +4408,100,1.3.1,1 +4409,25,1.3.1.7,0 +4409,85,1.3.1,1 +4410,85,1.3.1,1 +4410,100,1.3.1,1 +4410,25,1.3.1.7,0 +4411,25,1.3.1.7,0 +4411,99,1.3.1,1 +4411,85,1.3.1,1 +4411,39,1.3.1,1 +4414,25,1.3.1.7,0 +4414,39,1.3.1,1 +4416,25,1.3.1.7,0 +4416,29,1.3,2 +4416,39,1.3.1,1 +4416,93,1.3.1,1 +4416,85,1.3.1,1 +4420,99,1.3.1,1 +4420,25,1.3.1.7,0 +4420,100,1.3.1,1 +4420,85,1.3.1,1 +4421,100,1.3.1,1 +4421,25,1.3.1.7,0 +4422,25,1.3.1.7,0 +4422,99,1.3.1,1 +4423,99,1.3.1,1 +4423,25,1.3.1.7,0 +4426,25,1.3.1.7,0 +4426,100,1.3.1,1 +4426,39,1.3.1,1 +4427,25,1.3.1.7,0 +4427,93,1.3.1,1 +4428,25,1.3.1.7,0 +4428,85,1.3.1,1 +4429,25,1.3.1.7,0 +4429,100,1.3.1,1 +4430,100,1.3.1,1 +4430,25,1.3.1.7,0 +4431,29,1.3,2 +4431,100,1.3.1,1 +4431,93,1.3.1,1 +4431,25,1.3.1.7,0 +4432,25,1.3.1.7,0 +4432,39,1.3.1,1 +4432,85,1.3.1,1 +4433,29,1.3,2 +4433,93,1.3.1,1 +4433,25,1.3.1.7,0 +4434,85,1.3.1,1 +4434,25,1.3.1.7,0 +4434,29,1.3,2 +4436,85,1.3.1,1 +4436,25,1.3.1.7,0 +4437,25,1.3.1.7,0 +4437,99,1.3.1,1 +4438,25,1.3.1.7,0 +4438,99,1.3.1,1 +4439,93,1.3.1,1 +4439,25,1.3.1.7,0 +4440,93,1.3.1,1 +4440,25,1.3.1.7,0 +4440,85,1.3.1,1 +4441,39,1.3.1,1 +4441,25,1.3.1.7,0 +4443,25,1.3.1.7,0 +4443,93,1.3.1,1 +4443,85,1.3.1,1 +4444,25,1.3.1.7,0 +4444,39,1.3.1,1 +4444,100,1.3.1,1 +4445,100,1.3.1,1 +4445,25,1.3.1.7,0 +4446,100,1.3.1,1 +4446,25,1.3.1.7,0 +4447,93,1.3.1,1 +4447,100,1.3.1,1 +4447,25,1.3.1.7,0 +4448,106,1.3,2 +4448,99,1.3.1,1 +4448,85,1.3.1,1 +4448,25,1.3.1.7,0 +4448,100,1.3.1,1 +4449,100,1.3.1,1 +4449,25,1.3.1.7,0 +4450,25,1.3.1.7,0 +4450,100,1.3.1,1 +4451,26,2.1.3.1,0 +4451,108,2.1.3,1 +4452,26,2.1.3.1,0 +4452,106,2.1.3,1 +4452,148,2.1.3,1 +4454,97,2.1.3,1 +4454,26,2.1.3.1,0 +4455,26,2.1.3.1,0 +4455,126,2.1.3,1 +4455,106,2.1.3,1 +4456,73,2.1.3,1 +4456,26,2.1.3.1,0 +4457,26,2.1.3.1,0 +4457,97,2.1.3,1 +4458,26,2.1.3.1,0 +4458,106,2.1.3,1 +4459,73,2.1.3,1 +4459,26,2.1.3.1,0 +4460,97,2.1.3,1 +4460,148,2.1.3,1 +4460,26,2.1.3.1,0 +4461,73,2.1.3,1 +4461,26,2.1.3.1,0 +4461,106,2.1.3,1 +4464,26,2.1.3.1,0 +4464,73,2.1.3,1 +4464,108,2.1.3,1 +4464,126,2.1.3,1 +4469,26,2.1.3.1,0 +4469,106,2.1.3,1 +4469,148,2.1.3,1 +4469,126,2.1.3,1 +4470,73,2.1.3,1 +4470,26,2.1.3.1,0 +4472,97,2.1.3,1 +4472,26,2.1.3.1,0 +4473,97,2.1.3,1 +4473,126,2.1.3,1 +4473,26,2.1.3.1,0 +4476,26,2.1.3.1,0 +4476,97,2.1.3,1 +4476,73,2.1.3,1 +4476,108,2.1.3,1 +4477,106,2.1.3,1 +4477,26,2.1.3.1,0 +4478,26,2.1.3.1,0 +4478,148,2.1.3,1 +4479,108,2.1.3,1 +4479,26,2.1.3.1,0 +4481,97,2.1.3,1 +4481,26,2.1.3.1,0 +4481,73,2.1.3,1 +4482,74,2.1.3,1 +4482,26,2.1.3.1,0 +4483,73,2.1.3,1 +4483,26,2.1.3.1,0 +4485,26,2.1.3.1,0 +4485,148,2.1.3,1 +4486,26,2.1.3.1,0 +4486,126,2.1.3,1 +4487,26,2.1.3.1,0 +4487,108,2.1.3,1 +4487,106,2.1.3,1 +4488,108,2.1.3,1 +4488,26,2.1.3.1,0 +4489,106,2.1.3,1 +4489,26,2.1.3.1,0 +4491,97,2.1.3,1 +4491,26,2.1.3.1,0 +4491,126,2.1.3,1 +4492,73,2.1.3,1 +4492,108,2.1.3,1 +4492,26,2.1.3.1,0 +4493,73,2.1.3,1 +4493,106,2.1.3,1 +4493,26,2.1.3.1,0 +4494,97,2.1.3,1 +4494,26,2.1.3.1,0 +4497,106,2.1.3,1 +4497,26,2.1.3.1,0 +4498,106,2.1.3,1 +4498,148,2.1.3,1 +4498,26,2.1.3.1,0 +4501,26,2.1.3.2,0 +4501,108,2.1.3,1 +4502,74,2.1.3,1 +4502,26,2.1.3.2,0 +4503,108,2.1.3,1 +4503,26,2.1.3.2,0 +4504,126,2.1.3,1 +4504,73,2.1.3,1 +4504,26,2.1.3.2,0 +4505,74,2.1.3,1 +4505,26,2.1.3.2,0 +4505,148,2.1.3,1 +4506,73,2.1.3,1 +4506,26,2.1.3.2,0 +4507,26,2.1.3.2,0 +4507,73,2.1.3,1 +4508,74,2.1.3,1 +4508,26,2.1.3.2,0 +4508,148,2.1.3,1 +4509,74,2.1.3,1 +4509,26,2.1.3.2,0 +4510,148,2.1.3,1 +4510,73,2.1.3,1 +4510,26,2.1.3.2,0 +4511,26,2.1.3.2,0 +4511,148,2.1.3,1 +4511,73,2.1.3,1 +4511,74,2.1.3,1 +4512,26,2.1.3.2,0 +4512,108,2.1.3,1 +4514,74,2.1.3,1 +4514,148,2.1.3,1 +4514,26,2.1.3.2,0 +4516,108,2.1.3,1 +4516,97,2.1.3,1 +4516,74,2.1.3,1 +4516,26,2.1.3.2,0 +4517,26,2.1.3.2,0 +4517,106,2.1.3,1 +4519,26,2.1.3.2,0 +4519,106,2.1.3,1 +4519,97,2.1.3,1 +4519,108,2.1.3,1 +4520,73,2.1.3,1 +4520,26,2.1.3.2,0 +4522,108,2.1.3,1 +4522,26,2.1.3.2,0 +4522,97,2.1.3,1 +4523,106,2.1.3,1 +4523,26,2.1.3.2,0 +4524,26,2.1.3.2,0 +4524,73,2.1.3,1 +4526,108,2.1.3,1 +4526,26,2.1.3.2,0 +4527,74,2.1.3,1 +4527,26,2.1.3.2,0 +4528,126,2.1.3,1 +4528,26,2.1.3.2,0 +4529,73,2.1.3,1 +4529,126,2.1.3,1 +4529,26,2.1.3.2,0 +4532,26,2.1.3.2,0 +4532,73,2.1.3,1 +4532,74,2.1.3,1 +4533,74,2.1.3,1 +4533,26,2.1.3.2,0 +4534,148,2.1.3,1 +4534,26,2.1.3.2,0 +4535,108,2.1.3,1 +4535,26,2.1.3.2,0 +4535,148,2.1.3,1 +4536,26,2.1.3.2,0 +4536,148,2.1.3,1 +4537,26,2.1.3.2,0 +4537,126,2.1.3,1 +4539,126,2.1.3,1 +4539,74,2.1.3,1 +4539,26,2.1.3.2,0 +4540,108,2.1.3,1 +4540,26,2.1.3.2,0 +4540,97,2.1.3,1 +4541,26,2.1.3.2,0 +4541,106,2.1.3,1 +4543,73,2.1.3,1 +4543,26,2.1.3.2,0 +4544,73,2.1.3,1 +4544,26,2.1.3.2,0 +4544,108,2.1.3,1 +4545,108,2.1.3,1 +4545,26,2.1.3.2,0 +4547,106,2.1.3,1 +4547,73,2.1.3,1 +4547,26,2.1.3.2,0 +4548,106,2.1.3,1 +4548,26,2.1.3.2,0 +4548,74,2.1.3,1 +4548,73,2.1.3,1 +4549,126,2.1.3,1 +4549,26,2.1.3.2,0 +4549,97,2.1.3,1 +4550,148,2.1.3,1 +4550,26,2.1.3.2,0 +4552,26,2.1.3.3,0 +4552,74,2.1.3,1 +4552,108,2.1.3,1 +4554,108,2.1.3,1 +4554,73,2.1.3,1 +4554,26,2.1.3.3,0 +4555,97,2.1.3,1 +4555,26,2.1.3.3,0 +4556,97,2.1.3,1 +4556,73,2.1.3,1 +4556,106,2.1.3,1 +4556,26,2.1.3.3,0 +4556,108,2.1.3,1 +4557,26,2.1.3.3,0 +4557,108,2.1.3,1 +4558,148,2.1.3,1 +4558,97,2.1.3,1 +4558,26,2.1.3.3,0 +4559,74,2.1.3,1 +4559,26,2.1.3.3,0 +4560,26,2.1.3.3,0 +4560,74,2.1.3,1 +4561,106,2.1.3,1 +4561,126,2.1.3,1 +4561,97,2.1.3,1 +4561,73,2.1.3,1 +4561,26,2.1.3.3,0 +4564,148,2.1.3,1 +4564,108,2.1.3,1 +4564,74,2.1.3,1 +4564,26,2.1.3.3,0 +4566,26,2.1.3.3,0 +4566,106,2.1.3,1 +4566,73,2.1.3,1 +4566,126,2.1.3,1 +4570,148,2.1.3,1 +4570,73,2.1.3,1 +4570,26,2.1.3.3,0 +4571,97,2.1.3,1 +4571,26,2.1.3.3,0 +4572,26,2.1.3.3,0 +4572,97,2.1.3,1 +4573,106,2.1.3,1 +4573,97,2.1.3,1 +4573,26,2.1.3.3,0 +4576,108,2.1.3,1 +4576,97,2.1.3,1 +4576,26,2.1.3.3,0 +4578,26,2.1.3.3,0 +4578,74,2.1.3,1 +4579,148,2.1.3,1 +4579,74,2.1.3,1 +4579,26,2.1.3.3,0 +4580,148,2.1.3,1 +4580,106,2.1.3,1 +4580,26,2.1.3.3,0 +4582,73,2.1.3,1 +4582,26,2.1.3.3,0 +4583,74,2.1.3,1 +4583,26,2.1.3.3,0 +4585,26,2.1.3.3,0 +4585,148,2.1.3,1 +4586,26,2.1.3.3,0 +4586,106,2.1.3,1 +4586,97,2.1.3,1 +4587,26,2.1.3.3,0 +4587,106,2.1.3,1 +4589,106,2.1.3,1 +4589,26,2.1.3.3,0 +4590,26,2.1.3.3,0 +4590,108,2.1.3,1 +4590,74,2.1.3,1 +4591,106,2.1.3,1 +4591,26,2.1.3.3,0 +4593,126,2.1.3,1 +4593,26,2.1.3.3,0 +4594,148,2.1.3,1 +4594,26,2.1.3.3,0 +4594,97,2.1.3,1 +4595,26,2.1.3.3,0 +4595,148,2.1.3,1 +4596,26,2.1.3.3,0 +4596,126,2.1.3,1 +4596,108,2.1.3,1 +4597,74,2.1.3,1 +4597,26,2.1.3.3,0 +4598,148,2.1.3,1 +4598,73,2.1.3,1 +4598,26,2.1.3.3,0 +4599,106,2.1.3,1 +4599,26,2.1.3.3,0 +4599,108,2.1.3,1 +4600,126,2.1.3,1 +4600,108,2.1.3,1 +4600,26,2.1.3.3,0 +4602,26,2.1.3.4,0 +4602,108,2.1.3,1 +4602,73,2.1.3,1 +4604,108,2.1.3,1 +4604,73,2.1.3,1 +4604,26,2.1.3.4,0 +4606,26,2.1.3.4,0 +4606,126,2.1.3,1 +4606,73,2.1.3,1 +4607,26,2.1.3.4,0 +4607,74,2.1.3,1 +4608,26,2.1.3.4,0 +4608,148,2.1.3,1 +4608,97,2.1.3,1 +4609,97,2.1.3,1 +4609,26,2.1.3.4,0 +4610,148,2.1.3,1 +4610,26,2.1.3.4,0 +4610,73,2.1.3,1 +4611,126,2.1.3,1 +4611,26,2.1.3.4,0 +4611,148,2.1.3,1 +4611,108,2.1.3,1 +4611,74,2.1.3,1 +4612,126,2.1.3,1 +4612,26,2.1.3.4,0 +4614,148,2.1.3,1 +4614,26,2.1.3.4,0 +4614,97,2.1.3,1 +4615,26,2.1.3.4,0 +4615,126,2.1.3,1 +4616,126,2.1.3,1 +4616,26,2.1.3.4,0 +4617,126,2.1.3,1 +4617,26,2.1.3.4,0 +4619,26,2.1.3.4,0 +4619,148,2.1.3,1 +4619,73,2.1.3,1 +4620,148,2.1.3,1 +4620,26,2.1.3.4,0 +4621,26,2.1.3.4,0 +4621,108,2.1.3,1 +4621,148,2.1.3,1 +4622,73,2.1.3,1 +4622,26,2.1.3.4,0 +4623,97,2.1.3,1 +4623,74,2.1.3,1 +4623,26,2.1.3.4,0 +4626,26,2.1.3.4,0 +4626,148,2.1.3,1 +4627,126,2.1.3,1 +4627,26,2.1.3.4,0 +4628,26,2.1.3.4,0 +4628,74,2.1.3,1 +4629,106,2.1.3,1 +4629,74,2.1.3,1 +4629,26,2.1.3.4,0 +4631,108,2.1.3,1 +4631,26,2.1.3.4,0 +4631,73,2.1.3,1 +4631,97,2.1.3,1 +4632,106,2.1.3,1 +4632,108,2.1.3,1 +4632,26,2.1.3.4,0 +4633,126,2.1.3,1 +4633,26,2.1.3.4,0 +4634,26,2.1.3.4,0 +4634,73,2.1.3,1 +4635,106,2.1.3,1 +4635,26,2.1.3.4,0 +4635,126,2.1.3,1 +4635,108,2.1.3,1 +4636,106,2.1.3,1 +4636,97,2.1.3,1 +4636,126,2.1.3,1 +4636,148,2.1.3,1 +4636,26,2.1.3.4,0 +4637,108,2.1.3,1 +4637,26,2.1.3.4,0 +4638,26,2.1.3.4,0 +4638,97,2.1.3,1 +4639,106,2.1.3,1 +4639,26,2.1.3.4,0 +4640,26,2.1.3.4,0 +4640,108,2.1.3,1 +4640,126,2.1.3,1 +4641,126,2.1.3,1 +4641,26,2.1.3.4,0 +4642,148,2.1.3,1 +4642,26,2.1.3.4,0 +4643,26,2.1.3.4,0 +4643,106,2.1.3,1 +4643,74,2.1.3,1 +4644,126,2.1.3,1 +4644,26,2.1.3.4,0 +4645,148,2.1.3,1 +4645,26,2.1.3.4,0 +4647,73,2.1.3,1 +4647,26,2.1.3.4,0 +4648,26,2.1.3.4,0 +4648,74,2.1.3,1 +4648,126,2.1.3,1 +4649,26,2.1.3.4,0 +4649,108,2.1.3,1 +4649,126,2.1.3,1 +4649,106,2.1.3,1 +4650,108,2.1.3,1 +4650,26,2.1.3.4,0 +4650,148,2.1.3,1 +4652,74,2.1.3,1 +4652,148,2.1.3,1 +4652,26,2.1.3.5,0 +4652,97,2.1.3,1 +4652,106,2.1.3,1 +4653,26,2.1.3.5,0 +4653,73,2.1.3,1 +4653,148,2.1.3,1 +4654,73,2.1.3,1 +4654,26,2.1.3.5,0 +4655,74,2.1.3,1 +4655,26,2.1.3.5,0 +4656,26,2.1.3.5,0 +4656,148,2.1.3,1 +4656,97,2.1.3,1 +4656,126,2.1.3,1 +4657,26,2.1.3.5,0 +4657,74,2.1.3,1 +4658,97,2.1.3,1 +4658,26,2.1.3.5,0 +4659,26,2.1.3.5,0 +4659,97,2.1.3,1 +4660,73,2.1.3,1 +4660,108,2.1.3,1 +4660,26,2.1.3.5,0 +4661,148,2.1.3,1 +4661,74,2.1.3,1 +4661,26,2.1.3.5,0 +4661,106,2.1.3,1 +4664,73,2.1.3,1 +4664,106,2.1.3,1 +4664,108,2.1.3,1 +4664,26,2.1.3.5,0 +4666,74,2.1.3,1 +4666,97,2.1.3,1 +4666,26,2.1.3.5,0 +4666,108,2.1.3,1 +4669,126,2.1.3,1 +4669,26,2.1.3.5,0 +4670,108,2.1.3,1 +4670,26,2.1.3.5,0 +4671,26,2.1.3.5,0 +4671,148,2.1.3,1 +4672,106,2.1.3,1 +4672,26,2.1.3.5,0 +4673,106,2.1.3,1 +4673,26,2.1.3.5,0 +4674,26,2.1.3.5,0 +4674,97,2.1.3,1 +4674,73,2.1.3,1 +4675,73,2.1.3,1 +4675,26,2.1.3.5,0 +4676,148,2.1.3,1 +4676,74,2.1.3,1 +4676,26,2.1.3.5,0 +4677,106,2.1.3,1 +4677,26,2.1.3.5,0 +4678,73,2.1.3,1 +4678,26,2.1.3.5,0 +4679,126,2.1.3,1 +4679,26,2.1.3.5,0 +4681,74,2.1.3,1 +4681,26,2.1.3.5,0 +4681,106,2.1.3,1 +4682,108,2.1.3,1 +4682,26,2.1.3.5,0 +4683,97,2.1.3,1 +4683,26,2.1.3.5,0 +4684,74,2.1.3,1 +4684,26,2.1.3.5,0 +4685,97,2.1.3,1 +4685,108,2.1.3,1 +4685,26,2.1.3.5,0 +4686,26,2.1.3.5,0 +4686,74,2.1.3,1 +4686,73,2.1.3,1 +4686,148,2.1.3,1 +4686,97,2.1.3,1 +4687,26,2.1.3.5,0 +4687,106,2.1.3,1 +4688,74,2.1.3,1 +4688,26,2.1.3.5,0 +4689,106,2.1.3,1 +4689,26,2.1.3.5,0 +4691,26,2.1.3.5,0 +4691,106,2.1.3,1 +4692,108,2.1.3,1 +4692,26,2.1.3.5,0 +4692,106,2.1.3,1 +4693,74,2.1.3,1 +4693,148,2.1.3,1 +4693,26,2.1.3.5,0 +4694,73,2.1.3,1 +4694,26,2.1.3.5,0 +4694,74,2.1.3,1 +4696,26,2.1.3.5,0 +4696,108,2.1.3,1 +4697,74,2.1.3,1 +4697,26,2.1.3.5,0 +4698,106,2.1.3,1 +4698,26,2.1.3.5,0 +4698,126,2.1.3,1 +4698,74,2.1.3,1 +4699,26,2.1.3.5,0 +4699,74,2.1.3,1 +4702,148,2.1.3,1 +4702,26,2.1.3.6,0 +4702,97,2.1.3,1 +4703,74,2.1.3,1 +4703,26,2.1.3.6,0 +4703,73,2.1.3,1 +4703,126,2.1.3,1 +4704,73,2.1.3,1 +4704,26,2.1.3.6,0 +4706,26,2.1.3.6,0 +4706,108,2.1.3,1 +4707,106,2.1.3,1 +4707,26,2.1.3.6,0 +4708,108,2.1.3,1 +4708,26,2.1.3.6,0 +4709,26,2.1.3.6,0 +4709,73,2.1.3,1 +4710,97,2.1.3,1 +4710,26,2.1.3.6,0 +4711,26,2.1.3.6,0 +4711,126,2.1.3,1 +4714,148,2.1.3,1 +4714,108,2.1.3,1 +4714,26,2.1.3.6,0 +4716,73,2.1.3,1 +4716,26,2.1.3.6,0 +4719,73,2.1.3,1 +4719,74,2.1.3,1 +4719,26,2.1.3.6,0 +4720,148,2.1.3,1 +4720,26,2.1.3.6,0 +4723,73,2.1.3,1 +4723,74,2.1.3,1 +4723,26,2.1.3.6,0 +4725,73,2.1.3,1 +4725,26,2.1.3.6,0 +4728,26,2.1.3.6,0 +4728,74,2.1.3,1 +4731,73,2.1.3,1 +4731,26,2.1.3.6,0 +4731,148,2.1.3,1 +4733,106,2.1.3,1 +4733,26,2.1.3.6,0 +4735,26,2.1.3.6,0 +4735,126,2.1.3,1 +4737,106,2.1.3,1 +4737,26,2.1.3.6,0 +4741,26,2.1.3.6,0 +4741,108,2.1.3,1 +4743,126,2.1.3,1 +4743,26,2.1.3.6,0 +4743,106,2.1.3,1 +4744,26,2.1.3.6,0 +4744,108,2.1.3,1 +4745,148,2.1.3,1 +4745,26,2.1.3.6,0 +4746,26,2.1.3.6,0 +4746,108,2.1.3,1 +4747,73,2.1.3,1 +4747,108,2.1.3,1 +4747,126,2.1.3,1 +4747,26,2.1.3.6,0 +4748,106,2.1.3,1 +4748,26,2.1.3.6,0 +4751,97,2.1.3,1 +4751,26,2.1.3.7,0 +4751,108,2.1.3,1 +4752,26,2.1.3.7,0 +4752,97,2.1.3,1 +4752,108,2.1.3,1 +4753,148,2.1.3,1 +4753,73,2.1.3,1 +4753,26,2.1.3.7,0 +4754,108,2.1.3,1 +4754,26,2.1.3.7,0 +4754,148,2.1.3,1 +4755,97,2.1.3,1 +4755,74,2.1.3,1 +4755,26,2.1.3.7,0 +4756,26,2.1.3.7,0 +4756,73,2.1.3,1 +4757,26,2.1.3.7,0 +4757,97,2.1.3,1 +4758,26,2.1.3.7,0 +4758,73,2.1.3,1 +4758,126,2.1.3,1 +4759,108,2.1.3,1 +4759,26,2.1.3.7,0 +4760,26,2.1.3.7,0 +4760,108,2.1.3,1 +4761,73,2.1.3,1 +4761,26,2.1.3.7,0 +4761,148,2.1.3,1 +4767,26,2.1.3.7,0 +4767,126,2.1.3,1 +4769,26,2.1.3.7,0 +4769,73,2.1.3,1 +4769,108,2.1.3,1 +4770,108,2.1.3,1 +4770,73,2.1.3,1 +4770,26,2.1.3.7,0 +4770,106,2.1.3,1 +4771,26,2.1.3.7,0 +4771,108,2.1.3,1 +4772,26,2.1.3.7,0 +4772,108,2.1.3,1 +4773,26,2.1.3.7,0 +4773,126,2.1.3,1 +4773,73,2.1.3,1 +4773,148,2.1.3,1 +4773,108,2.1.3,1 +4774,26,2.1.3.7,0 +4774,148,2.1.3,1 +4776,74,2.1.3,1 +4776,26,2.1.3.7,0 +4776,97,2.1.3,1 +4776,108,2.1.3,1 +4778,108,2.1.3,1 +4778,26,2.1.3.7,0 +4779,126,2.1.3,1 +4779,74,2.1.3,1 +4779,26,2.1.3.7,0 +4781,108,2.1.3,1 +4781,126,2.1.3,1 +4781,26,2.1.3.7,0 +4782,74,2.1.3,1 +4782,73,2.1.3,1 +4782,26,2.1.3.7,0 +4783,26,2.1.3.7,0 +4783,148,2.1.3,1 +4784,26,2.1.3.7,0 +4784,97,2.1.3,1 +4785,26,2.1.3.7,0 +4785,106,2.1.3,1 +4785,126,2.1.3,1 +4787,26,2.1.3.7,0 +4787,106,2.1.3,1 +4788,26,2.1.3.7,0 +4788,126,2.1.3,1 +4791,73,2.1.3,1 +4791,26,2.1.3.7,0 +4791,108,2.1.3,1 +4793,106,2.1.3,1 +4793,26,2.1.3.7,0 +4794,74,2.1.3,1 +4794,26,2.1.3.7,0 +4794,108,2.1.3,1 +4795,26,2.1.3.7,0 +4795,106,2.1.3,1 +4796,26,2.1.3.7,0 +4796,108,2.1.3,1 +4797,148,2.1.3,1 +4797,74,2.1.3,1 +4797,126,2.1.3,1 +4797,26,2.1.3.7,0 +4798,148,2.1.3,1 +4798,26,2.1.3.7,0 +4798,126,2.1.3,1 +4799,126,2.1.3,1 +4799,26,2.1.3.7,0 +4801,27,1.4.4.2,0 +4801,0,1.4.4,1 +4802,27,1.4.4.2,0 +4802,170,1,3 +4802,40,1.4.4,1 +4802,126,1.4,2 +4802,0,1.4.4,1 +4803,126,1.4,2 +4803,40,1.4.4,1 +4803,27,1.4.4.2,0 +4803,0,1.4.4,1 +4804,0,1.4.4,1 +4804,27,1.4.4.2,0 +4805,27,1.4.4.2,0 +4805,0,1.4.4,1 +4805,40,1.4.4,1 +4805,126,1.4,2 +4806,40,1.4.4,1 +4806,0,1.4.4,1 +4806,27,1.4.4.2,0 +4807,27,1.4.4.2,0 +4807,0,1.4.4,1 +4808,27,1.4.4.2,0 +4808,0,1.4.4,1 +4809,40,1.4.4,1 +4809,27,1.4.4.2,0 +4809,0,1.4.4,1 +4810,27,1.4.4.2,0 +4810,0,1.4.4,1 +4811,0,1.4.4,1 +4811,40,1.4.4,1 +4811,27,1.4.4.2,0 +4814,27,1.4.4.2,0 +4814,0,1.4.4,1 +4814,40,1.4.4,1 +4816,40,1.4.4,1 +4816,27,1.4.4.2,0 +4816,0,1.4.4,1 +4817,27,1.4.4.2,0 +4817,40,1.4.4,1 +4819,40,1.4.4,1 +4819,126,1.4,2 +4819,27,1.4.4.2,0 +4819,0,1.4.4,1 +4820,27,1.4.4.2,0 +4820,0,1.4.4,1 +4821,126,1.4,2 +4821,40,1.4.4,1 +4821,27,1.4.4.2,0 +4822,27,1.4.4.2,0 +4822,0,1.4.4,1 +4823,0,1.4.4,1 +4823,40,1.4.4,1 +4823,27,1.4.4.2,0 +4824,40,1.4.4,1 +4824,0,1.4.4,1 +4824,27,1.4.4.2,0 +4825,27,1.4.4.2,0 +4825,0,1.4.4,1 +4826,40,1.4.4,1 +4826,27,1.4.4.2,0 +4826,0,1.4.4,1 +4827,40,1.4.4,1 +4827,27,1.4.4.2,0 +4828,40,1.4.4,1 +4828,0,1.4.4,1 +4828,27,1.4.4.2,0 +4829,170,1,3 +4829,126,1.4,2 +4829,40,1.4.4,1 +4829,27,1.4.4.2,0 +4829,0,1.4.4,1 +4831,40,1.4.4,1 +4831,0,1.4.4,1 +4831,27,1.4.4.2,0 +4832,40,1.4.4,1 +4832,27,1.4.4.2,0 +4832,0,1.4.4,1 +4833,0,1.4.4,1 +4833,27,1.4.4.2,0 +4834,126,1.4,2 +4834,0,1.4.4,1 +4834,40,1.4.4,1 +4834,27,1.4.4.2,0 +4835,27,1.4.4.2,0 +4835,40,1.4.4,1 +4836,27,1.4.4.2,0 +4836,40,1.4.4,1 +4836,0,1.4.4,1 +4836,126,1.4,2 +4837,40,1.4.4,1 +4837,27,1.4.4.2,0 +4838,27,1.4.4.2,0 +4838,40,1.4.4,1 +4839,0,1.4.4,1 +4839,40,1.4.4,1 +4839,27,1.4.4.2,0 +4840,27,1.4.4.2,0 +4840,40,1.4.4,1 +4840,126,1.4,2 +4841,0,1.4.4,1 +4841,27,1.4.4.2,0 +4842,27,1.4.4.2,0 +4842,40,1.4.4,1 +4842,0,1.4.4,1 +4843,27,1.4.4.2,0 +4843,40,1.4.4,1 +4843,0,1.4.4,1 +4844,40,1.4.4,1 +4844,0,1.4.4,1 +4844,27,1.4.4.2,0 +4845,27,1.4.4.2,0 +4845,40,1.4.4,1 +4846,27,1.4.4.2,0 +4846,40,1.4.4,1 +4847,27,1.4.4.2,0 +4847,0,1.4.4,1 +4848,126,1.4,2 +4848,0,1.4.4,1 +4848,40,1.4.4,1 +4848,170,1,3 +4848,27,1.4.4.2,0 +4849,40,1.4.4,1 +4849,27,1.4.4.2,0 +4850,27,1.4.4.2,0 +4850,40,1.4.4,1 +4854,102,2,1 +4854,28,2.2,0 +4856,28,2.2,0 +4856,98,2,1 +4857,98,2,1 +4857,28,2.2,0 +4858,28,2.2,0 +4858,98,2,1 +4861,102,2,1 +4861,28,2.2,0 +4864,28,2.2,0 +4864,98,2,1 +4872,102,2,1 +4872,28,2.2,0 +4873,102,2,1 +4873,28,2.2,0 +4876,28,2.2,0 +4876,102,2,1 +4878,28,2.2,0 +4878,98,2,1 +4879,98,2,1 +4879,28,2.2,0 +4882,28,2.2,0 +4882,98,2,1 +4883,28,2.2,0 +4883,102,2,1 +4884,102,2,1 +4884,28,2.2,0 +4892,102,2,1 +4892,28,2.2,0 +4893,98,2,1 +4893,28,2.2,0 +4894,98,2,1 +4894,28,2.2,0 +4895,28,2.2,0 +4895,102,2,1 +4897,28,2.2,0 +4897,102,2,1 +4899,102,2,1 +4899,28,2.2,0 +4901,29,1.3,0 +4901,170,1,1 +4902,29,1.3,0 +4902,170,1,1 +4903,29,1.3,0 +4903,170,1,1 +4904,170,1,1 +4904,29,1.3,0 +4905,29,1.3,0 +4905,170,1,1 +4906,170,1,1 +4906,29,1.3,0 +4907,170,1,1 +4907,29,1.3,0 +4908,170,1,1 +4908,29,1.3,0 +4909,29,1.3,0 +4909,170,1,1 +4910,29,1.3,0 +4910,170,1,1 +4911,29,1.3,0 +4911,170,1,1 +4914,170,1,1 +4914,29,1.3,0 +4916,170,1,1 +4916,29,1.3,0 +4919,29,1.3,0 +4919,170,1,1 +4920,170,1,1 +4920,29,1.3,0 +4922,170,1,1 +4922,29,1.3,0 +4923,170,1,1 +4923,29,1.3,0 +4924,170,1,1 +4924,29,1.3,0 +4925,170,1,1 +4925,29,1.3,0 +4926,170,1,1 +4926,29,1.3,0 +4928,29,1.3,0 +4928,170,1,1 +4929,29,1.3,0 +4929,170,1,1 +4930,29,1.3,0 +4930,170,1,1 +4931,170,1,1 +4931,29,1.3,0 +4932,29,1.3,0 +4932,170,1,1 +4933,170,1,1 +4933,29,1.3,0 +4934,29,1.3,0 +4934,170,1,1 +4935,170,1,1 +4935,29,1.3,0 +4936,29,1.3,0 +4936,170,1,1 +4939,170,1,1 +4939,29,1.3,0 +4940,29,1.3,0 +4940,170,1,1 +4941,170,1,1 +4941,29,1.3,0 +4942,170,1,1 +4942,29,1.3,0 +4943,170,1,1 +4943,29,1.3,0 +4944,29,1.3,0 +4944,170,1,1 +4945,170,1,1 +4945,29,1.3,0 +4946,29,1.3,0 +4946,170,1,1 +4947,170,1,1 +4947,29,1.3,0 +4948,170,1,1 +4948,29,1.3,0 +4949,29,1.3,0 +4949,170,1,1 +4950,29,1.3,0 +4950,170,1,1 +4951,142,1.4.2,1 +4951,30,1.4.2.6,0 +4952,142,1.4.2,1 +4952,30,1.4.2.6,0 +4953,142,1.4.2,1 +4953,30,1.4.2.6,0 +4954,142,1.4.2,1 +4954,30,1.4.2.6,0 +4955,142,1.4.2,1 +4955,30,1.4.2.6,0 +4956,30,1.4.2.6,0 +4956,142,1.4.2,1 +4957,30,1.4.2.6,0 +4957,142,1.4.2,1 +4958,142,1.4.2,1 +4958,126,1.4,2 +4958,30,1.4.2.6,0 +4958,170,1,3 +4959,142,1.4.2,1 +4959,30,1.4.2.6,0 +4960,142,1.4.2,1 +4960,30,1.4.2.6,0 +4961,30,1.4.2.6,0 +4961,142,1.4.2,1 +4964,142,1.4.2,1 +4964,30,1.4.2.6,0 +4966,142,1.4.2,1 +4966,30,1.4.2.6,0 +4969,142,1.4.2,1 +4969,30,1.4.2.6,0 +4970,30,1.4.2.6,0 +4970,142,1.4.2,1 +4972,126,1.4,2 +4972,30,1.4.2.6,0 +4972,142,1.4.2,1 +4972,170,1,3 +4973,30,1.4.2.6,0 +4973,142,1.4.2,1 +4974,30,1.4.2.6,0 +4974,126,1.4,2 +4974,142,1.4.2,1 +4974,170,1,3 +4975,30,1.4.2.6,0 +4975,142,1.4.2,1 +4976,126,1.4,2 +4976,30,1.4.2.6,0 +4976,142,1.4.2,1 +4976,170,1,3 +4978,142,1.4.2,1 +4978,30,1.4.2.6,0 +4979,170,1,3 +4979,126,1.4,2 +4979,30,1.4.2.6,0 +4979,142,1.4.2,1 +4981,30,1.4.2.6,0 +4981,142,1.4.2,1 +4982,30,1.4.2.6,0 +4982,126,1.4,2 +4982,142,1.4.2,1 +4982,170,1,3 +4983,142,1.4.2,1 +4983,30,1.4.2.6,0 +4984,142,1.4.2,1 +4984,30,1.4.2.6,0 +4986,142,1.4.2,1 +4986,30,1.4.2.6,0 +4989,30,1.4.2.6,0 +4989,142,1.4.2,1 +4991,30,1.4.2.6,0 +4991,142,1.4.2,1 +4992,142,1.4.2,1 +4992,30,1.4.2.6,0 +4993,30,1.4.2.6,0 +4993,142,1.4.2,1 +4994,142,1.4.2,1 +4994,30,1.4.2.6,0 +4997,30,1.4.2.6,0 +4997,142,1.4.2,1 +4998,142,1.4.2,1 +4998,30,1.4.2.6,0 +5002,31,1.3.3.3,0 +5002,99,1.3.3,1 +5002,97,1.3.3,1 +5002,75,1.3.3,1 +5004,75,1.3.3,1 +5004,31,1.3.3.3,0 +5005,75,1.3.3,1 +5005,99,1.3.3,1 +5005,31,1.3.3.3,0 +5006,31,1.3.3.3,0 +5006,75,1.3.3,1 +5007,97,1.3.3,1 +5007,31,1.3.3.3,0 +5008,31,1.3.3.3,0 +5008,97,1.3.3,1 +5010,31,1.3.3.3,0 +5010,75,1.3.3,1 +5011,31,1.3.3.3,0 +5011,99,1.3.3,1 +5011,97,1.3.3,1 +5011,75,1.3.3,1 +5014,75,1.3.3,1 +5014,31,1.3.3.3,0 +5020,31,1.3.3.3,0 +5020,99,1.3.3,1 +5022,99,1.3.3,1 +5022,31,1.3.3.3,0 +5024,29,1.3,2 +5024,97,1.3.3,1 +5024,106,1.3,2 +5024,31,1.3.3.3,0 +5028,99,1.3.3,1 +5028,31,1.3.3.3,0 +5032,31,1.3.3.3,0 +5032,97,1.3.3,1 +5033,75,1.3.3,1 +5033,31,1.3.3.3,0 +5034,75,1.3.3,1 +5034,31,1.3.3.3,0 +5036,99,1.3.3,1 +5036,75,1.3.3,1 +5036,31,1.3.3.3,0 +5041,97,1.3.3,1 +5041,31,1.3.3.3,0 +5043,97,1.3.3,1 +5043,31,1.3.3.3,0 +5043,75,1.3.3,1 +5049,31,1.3.3.3,0 +5049,97,1.3.3,1 +5051,31,2.1.4.1.1,0 +5051,79,2.1.4.1,1 +5052,31,2.1.4.1.1,0 +5052,79,2.1.4.1,1 +5054,31,2.1.4.1.1,0 +5054,81,2.1.4.1,1 +5055,81,2.1.4.1,1 +5055,31,2.1.4.1.1,0 +5057,31,2.1.4.1.1,0 +5057,81,2.1.4.1,1 +5059,81,2.1.4.1,1 +5059,31,2.1.4.1.1,0 +5060,79,2.1.4.1,1 +5060,31,2.1.4.1.1,0 +5061,31,2.1.4.1.1,0 +5061,79,2.1.4.1,1 +5064,31,2.1.4.1.1,0 +5064,81,2.1.4.1,1 +5070,31,2.1.4.1.1,0 +5070,79,2.1.4.1,1 +5072,81,2.1.4.1,1 +5072,31,2.1.4.1.1,0 +5073,31,2.1.4.1.1,0 +5073,79,2.1.4.1,1 +5078,79,2.1.4.1,1 +5078,31,2.1.4.1.1,0 +5089,81,2.1.4.1,1 +5089,31,2.1.4.1.1,0 +5091,79,2.1.4.1,1 +5091,31,2.1.4.1.1,0 +5094,81,2.1.4.1,1 +5094,31,2.1.4.1.1,0 +5101,31,2.1.4.1.2,0 +5101,79,2.1.4.1,1 +5104,81,2.1.4.1,1 +5104,31,2.1.4.1.2,0 +5108,81,2.1.4.1,1 +5108,31,2.1.4.1.2,0 +5114,31,2.1.4.1.2,0 +5114,79,2.1.4.1,1 +5116,81,2.1.4.1,1 +5116,31,2.1.4.1.2,0 +5121,31,2.1.4.1.2,0 +5121,81,2.1.4.1,1 +5122,31,2.1.4.1.2,0 +5122,81,2.1.4.1,1 +5123,31,2.1.4.1.2,0 +5123,79,2.1.4.1,1 +5123,81,2.1.4.1,1 +5126,31,2.1.4.1.2,0 +5126,81,2.1.4.1,1 +5135,31,2.1.4.1.2,0 +5135,81,2.1.4.1,1 +5144,31,2.1.4.1.2,0 +5144,79,2.1.4.1,1 +5154,31,2.1.4.1.3,0 +5154,81,2.1.4.1,1 +5156,31,2.1.4.1.3,0 +5156,79,2.1.4.1,1 +5157,31,2.1.4.1.3,0 +5157,81,2.1.4.1,1 +5158,79,2.1.4.1,1 +5158,31,2.1.4.1.3,0 +5159,81,2.1.4.1,1 +5159,31,2.1.4.1.3,0 +5160,31,2.1.4.1.3,0 +5160,81,2.1.4.1,1 +5164,79,2.1.4.1,1 +5164,31,2.1.4.1.3,0 +5172,81,2.1.4.1,1 +5172,31,2.1.4.1.3,0 +5174,31,2.1.4.1.3,0 +5174,79,2.1.4.1,1 +5179,31,2.1.4.1.3,0 +5179,79,2.1.4.1,1 +5182,31,2.1.4.1.3,0 +5182,79,2.1.4.1,1 +5189,79,2.1.4.1,1 +5189,31,2.1.4.1.3,0 +5193,79,2.1.4.1,1 +5193,31,2.1.4.1.3,0 +5194,81,2.1.4.1,1 +5194,31,2.1.4.1.3,0 +5194,79,2.1.4.1,1 +5197,31,2.1.4.1.3,0 +5197,79,2.1.4.1,1 +5202,81,2.1.4.1,1 +5202,31,2.1.4.1.4,0 +5211,31,2.1.4.1.4,0 +5211,81,2.1.4.1,1 +5216,81,2.1.4.1,1 +5216,31,2.1.4.1.4,0 +5229,31,2.1.4.1.4,0 +5229,79,2.1.4.1,1 +5231,31,2.1.4.1.4,0 +5231,79,2.1.4.1,1 +5232,31,2.1.4.1.4,0 +5232,79,2.1.4.1,1 +5233,31,2.1.4.1.4,0 +5233,79,2.1.4.1,1 +5234,81,2.1.4.1,1 +5234,31,2.1.4.1.4,0 +5239,79,2.1.4.1,1 +5239,31,2.1.4.1.4,0 +5244,81,2.1.4.1,1 +5244,31,2.1.4.1.4,0 +5248,79,2.1.4.1,1 +5248,31,2.1.4.1.4,0 +5252,31,2.1.4.2.1,0 +5252,81,2.1.4.2,1 +5253,31,2.1.4.2.1,0 +5253,79,2.1.4.2,1 +5255,81,2.1.4.2,1 +5255,31,2.1.4.2.1,0 +5260,79,2.1.4.2,1 +5260,31,2.1.4.2.1,0 +5269,79,2.1.4.2,1 +5269,31,2.1.4.2.1,0 +5272,81,2.1.4.2,1 +5272,31,2.1.4.2.1,0 +5274,31,2.1.4.2.1,0 +5274,79,2.1.4.2,1 +5276,79,2.1.4.2,1 +5276,31,2.1.4.2.1,0 +5276,81,2.1.4.2,1 +5278,81,2.1.4.2,1 +5278,31,2.1.4.2.1,0 +5279,31,2.1.4.2.1,0 +5279,81,2.1.4.2,1 +5281,81,2.1.4.2,1 +5281,31,2.1.4.2.1,0 +5282,31,2.1.4.2.1,0 +5282,79,2.1.4.2,1 +5289,79,2.1.4.2,1 +5289,31,2.1.4.2.1,0 +5291,79,2.1.4.2,1 +5291,31,2.1.4.2.1,0 +5292,31,2.1.4.2.1,0 +5292,79,2.1.4.2,1 +5297,31,2.1.4.2.1,0 +5297,81,2.1.4.2,1 +5298,81,2.1.4.2,1 +5298,31,2.1.4.2.1,0 +5302,31,2.1.4.2.2,0 +5302,79,2.1.4.2,1 +5306,31,2.1.4.2.2,0 +5306,81,2.1.4.2,1 +5308,79,2.1.4.2,1 +5308,31,2.1.4.2.2,0 +5309,79,2.1.4.2,1 +5309,31,2.1.4.2.2,0 +5310,31,2.1.4.2.2,0 +5310,81,2.1.4.2,1 +5314,31,2.1.4.2.2,0 +5314,79,2.1.4.2,1 +5320,31,2.1.4.2.2,0 +5320,79,2.1.4.2,1 +5324,79,2.1.4.2,1 +5324,31,2.1.4.2.2,0 +5331,31,2.1.4.2.2,0 +5331,79,2.1.4.2,1 +5332,31,2.1.4.2.2,0 +5332,81,2.1.4.2,1 +5334,81,2.1.4.2,1 +5334,31,2.1.4.2.2,0 +5344,81,2.1.4.2,1 +5344,31,2.1.4.2.2,0 +5344,79,2.1.4.2,1 +5349,81,2.1.4.2,1 +5349,31,2.1.4.2.2,0 +5352,32,1.2.3,0 +5352,106,1.2,1 +5354,126,1.2,1 +5354,32,1.2.3,0 +5356,32,1.2.3,0 +5356,67,1.2,1 +5357,67,1.2,1 +5357,32,1.2.3,0 +5358,97,1.2,1 +5358,32,1.2.3,0 +5360,106,1.2,1 +5360,32,1.2.3,0 +5361,106,1.2,1 +5361,32,1.2.3,0 +5364,32,1.2.3,0 +5364,106,1.2,1 +5366,97,1.2,1 +5366,32,1.2.3,0 +5372,126,1.2,1 +5372,32,1.2.3,0 +5373,106,1.2,1 +5373,32,1.2.3,0 +5374,32,1.2.3,0 +5374,126,1.2,1 +5376,106,1.2,1 +5376,32,1.2.3,0 +5376,67,1.2,1 +5378,32,1.2.3,0 +5378,97,1.2,1 +5379,126,1.2,1 +5379,32,1.2.3,0 +5382,97,1.2,1 +5382,32,1.2.3,0 +5383,97,1.2,1 +5383,32,1.2.3,0 +5384,67,1.2,1 +5384,32,1.2.3,0 +5386,126,1.2,1 +5386,32,1.2.3,0 +5387,32,1.2.3,0 +5387,106,1.2,1 +5388,32,1.2.3,0 +5388,126,1.2,1 +5389,32,1.2.3,0 +5389,106,1.2,1 +5389,170,1,2 +5391,32,1.2.3,0 +5391,126,1.2,1 +5392,126,1.2,1 +5392,32,1.2.3,0 +5393,32,1.2.3,0 +5393,67,1.2,1 +5394,32,1.2.3,0 +5394,106,1.2,1 +5395,32,1.2.3,0 +5395,126,1.2,1 +5397,32,1.2.3,0 +5397,97,1.2,1 +5401,58,2.1.2,1 +5401,33,2.1.2.1,0 +5402,79,2.1.2,1 +5402,33,2.1.2.1,0 +5403,159,2.1.2,1 +5403,33,2.1.2.1,0 +5404,33,2.1.2.1,0 +5404,79,2.1.2,1 +5408,33,2.1.2.1,0 +5408,79,2.1.2,1 +5409,58,2.1.2,1 +5409,33,2.1.2.1,0 +5410,33,2.1.2.1,0 +5410,58,2.1.2,1 +5411,79,2.1.2,1 +5411,84,2.1.2,1 +5411,33,2.1.2.1,0 +5412,84,2.1.2,1 +5412,33,2.1.2.1,0 +5414,33,2.1.2.1,0 +5414,159,2.1.2,1 +5414,79,2.1.2,1 +5414,84,2.1.2,1 +5416,33,2.1.2.1,0 +5416,81,2.1.2,1 +5422,81,2.1.2,1 +5422,33,2.1.2.1,0 +5423,33,2.1.2.1,0 +5423,84,2.1.2,1 +5424,79,2.1.2,1 +5424,33,2.1.2.1,0 +5424,84,2.1.2,1 +5426,159,2.1.2,1 +5426,33,2.1.2.1,0 +5431,33,2.1.2.1,0 +5431,79,2.1.2,1 +5432,81,2.1.2,1 +5432,33,2.1.2.1,0 +5435,33,2.1.2.1,0 +5435,81,2.1.2,1 +5435,159,2.1.2,1 +5439,79,2.1.2,1 +5439,33,2.1.2.1,0 +5440,33,2.1.2.1,0 +5440,159,2.1.2,1 +5441,79,2.1.2,1 +5441,33,2.1.2.1,0 +5441,84,2.1.2,1 +5444,84,2.1.2,1 +5444,159,2.1.2,1 +5444,33,2.1.2.1,0 +5446,33,2.1.2.1,0 +5446,159,2.1.2,1 +5447,159,2.1.2,1 +5447,58,2.1.2,1 +5447,33,2.1.2.1,0 +5448,33,2.1.2.1,0 +5448,159,2.1.2,1 +5450,159,2.1.2,1 +5450,33,2.1.2.1,0 +5451,33,2.1.2.2,0 +5451,79,2.1.2,1 +5452,33,2.1.2.2,0 +5452,58,2.1.2,1 +5455,33,2.1.2.2,0 +5455,79,2.1.2,1 +5456,33,2.1.2.2,0 +5456,159,2.1.2,1 +5457,33,2.1.2.2,0 +5457,79,2.1.2,1 +5457,159,2.1.2,1 +5458,81,2.1.2,1 +5458,33,2.1.2.2,0 +5459,79,2.1.2,1 +5459,33,2.1.2.2,0 +5460,33,2.1.2.2,0 +5460,84,2.1.2,1 +5461,81,2.1.2,1 +5461,84,2.1.2,1 +5461,33,2.1.2.2,0 +5464,33,2.1.2.2,0 +5464,159,2.1.2,1 +5464,79,2.1.2,1 +5469,33,2.1.2.2,0 +5469,58,2.1.2,1 +5469,159,2.1.2,1 +5470,79,2.1.2,1 +5470,33,2.1.2.2,0 +5472,33,2.1.2.2,0 +5472,79,2.1.2,1 +5476,79,2.1.2,1 +5476,81,2.1.2,1 +5476,33,2.1.2.2,0 +5477,84,2.1.2,1 +5477,33,2.1.2.2,0 +5478,58,2.1.2,1 +5478,33,2.1.2.2,0 +5479,81,2.1.2,1 +5479,84,2.1.2,1 +5479,33,2.1.2.2,0 +5481,33,2.1.2.2,0 +5481,81,2.1.2,1 +5482,33,2.1.2.2,0 +5482,58,2.1.2,1 +5483,33,2.1.2.2,0 +5483,79,2.1.2,1 +5484,159,2.1.2,1 +5484,33,2.1.2.2,0 +5485,33,2.1.2.2,0 +5485,159,2.1.2,1 +5486,33,2.1.2.2,0 +5486,81,2.1.2,1 +5488,84,2.1.2,1 +5488,33,2.1.2.2,0 +5489,84,2.1.2,1 +5489,33,2.1.2.2,0 +5489,79,2.1.2,1 +5489,58,2.1.2,1 +5493,159,2.1.2,1 +5493,33,2.1.2.2,0 +5494,79,2.1.2,1 +5494,33,2.1.2.2,0 +5495,33,2.1.2.2,0 +5495,159,2.1.2,1 +5497,58,2.1.2,1 +5497,33,2.1.2.2,0 +5498,159,2.1.2,1 +5498,33,2.1.2.2,0 +5502,81,2.1.2,1 +5502,33,2.1.2.3,0 +5505,81,2.1.2,1 +5505,33,2.1.2.3,0 +5506,33,2.1.2.3,0 +5506,79,2.1.2,1 +5506,159,2.1.2,1 +5507,84,2.1.2,1 +5507,33,2.1.2.3,0 +5508,33,2.1.2.3,0 +5508,81,2.1.2,1 +5509,79,2.1.2,1 +5509,33,2.1.2.3,0 +5510,58,2.1.2,1 +5510,33,2.1.2.3,0 +5510,159,2.1.2,1 +5511,79,2.1.2,1 +5511,81,2.1.2,1 +5511,33,2.1.2.3,0 +5514,58,2.1.2,1 +5514,33,2.1.2.3,0 +5514,84,2.1.2,1 +5517,159,2.1.2,1 +5517,33,2.1.2.3,0 +5520,33,2.1.2.3,0 +5520,159,2.1.2,1 +5522,58,2.1.2,1 +5522,33,2.1.2.3,0 +5523,58,2.1.2,1 +5523,79,2.1.2,1 +5523,33,2.1.2.3,0 +5526,79,2.1.2,1 +5526,33,2.1.2.3,0 +5528,58,2.1.2,1 +5528,33,2.1.2.3,0 +5529,81,2.1.2,1 +5529,33,2.1.2.3,0 +5531,33,2.1.2.3,0 +5531,79,2.1.2,1 +5533,79,2.1.2,1 +5533,33,2.1.2.3,0 +5534,33,2.1.2.3,0 +5534,58,2.1.2,1 +5536,33,2.1.2.3,0 +5536,79,2.1.2,1 +5537,159,2.1.2,1 +5537,33,2.1.2.3,0 +5542,33,2.1.2.3,0 +5542,58,2.1.2,1 +5542,84,2.1.2,1 +5543,58,2.1.2,1 +5543,33,2.1.2.3,0 +5544,33,2.1.2.3,0 +5544,84,2.1.2,1 +5544,58,2.1.2,1 +5545,33,2.1.2.3,0 +5545,159,2.1.2,1 +5548,84,2.1.2,1 +5548,33,2.1.2.3,0 +5548,58,2.1.2,1 +5549,84,2.1.2,1 +5549,33,2.1.2.3,0 +5550,159,2.1.2,1 +5550,33,2.1.2.3,0 +5551,33,2.1.2.4,0 +5551,159,2.1.2,1 +5551,79,2.1.2,1 +5552,81,2.1.2,1 +5552,33,2.1.2.4,0 +5552,79,2.1.2,1 +5554,33,2.1.2.4,0 +5554,81,2.1.2,1 +5555,33,2.1.2.4,0 +5555,79,2.1.2,1 +5556,33,2.1.2.4,0 +5556,79,2.1.2,1 +5556,159,2.1.2,1 +5557,33,2.1.2.4,0 +5557,81,2.1.2,1 +5558,33,2.1.2.4,0 +5558,81,2.1.2,1 +5561,81,2.1.2,1 +5561,33,2.1.2.4,0 +5561,84,2.1.2,1 +5561,79,2.1.2,1 +5564,33,2.1.2.4,0 +5564,159,2.1.2,1 +5566,79,2.1.2,1 +5566,33,2.1.2.4,0 +5570,33,2.1.2.4,0 +5570,84,2.1.2,1 +5572,58,2.1.2,1 +5572,33,2.1.2.4,0 +5575,79,2.1.2,1 +5575,33,2.1.2.4,0 +5576,33,2.1.2.4,0 +5576,159,2.1.2,1 +5576,84,2.1.2,1 +5578,33,2.1.2.4,0 +5578,84,2.1.2,1 +5579,81,2.1.2,1 +5579,33,2.1.2.4,0 +5581,33,2.1.2.4,0 +5581,81,2.1.2,1 +5583,84,2.1.2,1 +5583,33,2.1.2.4,0 +5584,33,2.1.2.4,0 +5584,81,2.1.2,1 +5585,33,2.1.2.4,0 +5585,159,2.1.2,1 +5587,159,2.1.2,1 +5587,33,2.1.2.4,0 +5589,79,2.1.2,1 +5589,33,2.1.2.4,0 +5590,79,2.1.2,1 +5590,33,2.1.2.4,0 +5591,33,2.1.2.4,0 +5591,58,2.1.2,1 +5593,79,2.1.2,1 +5593,33,2.1.2.4,0 +5595,33,2.1.2.4,0 +5595,159,2.1.2,1 +5600,79,2.1.2,1 +5600,33,2.1.2.4,0 +5602,34,1.3.3.3,0 +5602,97,1.3.3,1 +5604,97,1.3.3,1 +5604,34,1.3.3.3,0 +5605,99,1.3.3,1 +5605,34,1.3.3.3,0 +5606,34,1.3.3.3,0 +5606,75,1.3.3,1 +5607,75,1.3.3,1 +5607,34,1.3.3.3,0 +5608,75,1.3.3,1 +5608,106,1.3,2 +5608,34,1.3.3.3,0 +5610,34,1.3.3.3,0 +5610,97,1.3.3,1 +5611,34,1.3.3.3,0 +5611,99,1.3.3,1 +5614,75,1.3.3,1 +5614,97,1.3.3,1 +5614,34,1.3.3.3,0 +5616,34,1.3.3.3,0 +5616,97,1.3.3,1 +5616,99,1.3.3,1 +5620,75,1.3.3,1 +5620,34,1.3.3.3,0 +5622,75,1.3.3,1 +5622,34,1.3.3.3,0 +5623,99,1.3.3,1 +5623,97,1.3.3,1 +5623,34,1.3.3.3,0 +5626,34,1.3.3.3,0 +5626,97,1.3.3,1 +5626,99,1.3.3,1 +5628,75,1.3.3,1 +5628,34,1.3.3.3,0 +5629,97,1.3.3,1 +5629,34,1.3.3.3,0 +5631,97,1.3.3,1 +5631,34,1.3.3.3,0 +5631,75,1.3.3,1 +5632,75,1.3.3,1 +5632,34,1.3.3.3,0 +5633,99,1.3.3,1 +5633,34,1.3.3.3,0 +5634,97,1.3.3,1 +5634,34,1.3.3.3,0 +5635,99,1.3.3,1 +5635,34,1.3.3.3,0 +5636,99,1.3.3,1 +5636,97,1.3.3,1 +5636,34,1.3.3.3,0 +5637,34,1.3.3.3,0 +5637,97,1.3.3,1 +5638,34,1.3.3.3,0 +5638,99,1.3.3,1 +5639,34,1.3.3.3,0 +5639,75,1.3.3,1 +5641,75,1.3.3,1 +5641,34,1.3.3.3,0 +5643,99,1.3.3,1 +5643,75,1.3.3,1 +5643,34,1.3.3.3,0 +5644,75,1.3.3,1 +5644,34,1.3.3.3,0 +5647,34,1.3.3.3,0 +5647,75,1.3.3,1 +5648,75,1.3.3,1 +5648,97,1.3.3,1 +5648,34,1.3.3.3,0 +5649,99,1.3.3,1 +5649,34,1.3.3.3,0 +5652,86,1.1,1 +5652,35,1.1.3,0 +5654,105,1.1,1 +5654,35,1.1.3,0 +5655,126,1.1,1 +5655,35,1.1.3,0 +5656,105,1.1,1 +5656,35,1.1.3,0 +5657,105,1.1,1 +5657,35,1.1.3,0 +5658,35,1.1.3,0 +5658,94,1.1,1 +5660,105,1.1,1 +5660,35,1.1.3,0 +5661,35,1.1.3,0 +5661,86,1.1,1 +5664,35,1.1.3,0 +5664,106,1.1,1 +5666,105,1.1,1 +5666,35,1.1.3,0 +5669,126,1.1,1 +5669,35,1.1.3,0 +5672,35,1.1.3,0 +5672,94,1.1,1 +5673,35,1.1.3,0 +5673,94,1.1,1 +5674,35,1.1.3,0 +5674,126,1.1,1 +5676,35,1.1.3,0 +5676,86,1.1,1 +5676,94,1.1,1 +5678,35,1.1.3,0 +5678,86,1.1,1 +5679,35,1.1.3,0 +5679,94,1.1,1 +5681,106,1.1,1 +5681,35,1.1.3,0 +5682,86,1.1,1 +5682,35,1.1.3,0 +5683,105,1.1,1 +5683,35,1.1.3,0 +5684,35,1.1.3,0 +5684,94,1.1,1 +5685,35,1.1.3,0 +5685,106,1.1,1 +5686,35,1.1.3,0 +5686,106,1.1,1 +5689,35,1.1.3,0 +5689,86,1.1,1 +5690,106,1.1,1 +5690,35,1.1.3,0 +5691,106,1.1,1 +5691,35,1.1.3,0 +5693,105,1.1,1 +5693,35,1.1.3,0 +5694,35,1.1.3,0 +5694,105,1.1,1 +5695,35,1.1.3,0 +5695,106,1.1,1 +5697,94,1.1,1 +5697,35,1.1.3,0 +5698,35,1.1.3,0 +5698,126,1.1,1 +5700,35,1.1.3,0 +5700,94,1.1,1 +5704,106,1.1,1 +5704,36,1.1.1,0 +5706,105,1.1,1 +5706,36,1.1.1,0 +5707,86,1.1,1 +5707,36,1.1.1,0 +5711,94,1.1,1 +5711,36,1.1.1,0 +5714,94,1.1,1 +5714,36,1.1.1,0 +5723,106,1.1,1 +5723,36,1.1.1,0 +5726,105,1.1,1 +5726,36,1.1.1,0 +5728,36,1.1.1,0 +5728,86,1.1,1 +5729,36,1.1.1,0 +5729,105,1.1,1 +5731,126,1.1,1 +5731,36,1.1.1,0 +5732,94,1.1,1 +5732,36,1.1.1,0 +5733,36,1.1.1,0 +5733,86,1.1,1 +5734,36,1.1.1,0 +5734,105,1.1,1 +5736,36,1.1.1,0 +5736,86,1.1,1 +5738,36,1.1.1,0 +5738,126,1.1,1 +5740,106,1.1,1 +5740,36,1.1.1,0 +5742,94,1.1,1 +5742,36,1.1.1,0 +5743,36,1.1.1,0 +5743,86,1.1,1 +5744,126,1.1,1 +5744,36,1.1.1,0 +5745,36,1.1.1,0 +5745,126,1.1,1 +5749,94,1.1,1 +5749,36,1.1.1,0 +5751,157,1.4.1,1 +5751,37,1.4.1.2,0 +5753,157,1.4.1,1 +5753,37,1.4.1.2,0 +5754,126,1.4,2 +5754,37,1.4.1.2,0 +5754,157,1.4.1,1 +5754,170,1,3 +5755,157,1.4.1,1 +5755,37,1.4.1.2,0 +5757,157,1.4.1,1 +5757,37,1.4.1.2,0 +5758,37,1.4.1.2,0 +5758,157,1.4.1,1 +5760,126,1.4,2 +5760,37,1.4.1.2,0 +5760,157,1.4.1,1 +5760,170,1,3 +5761,37,1.4.1.2,0 +5761,157,1.4.1,1 +5764,157,1.4.1,1 +5764,37,1.4.1.2,0 +5766,157,1.4.1,1 +5766,37,1.4.1.2,0 +5769,157,1.4.1,1 +5769,37,1.4.1.2,0 +5773,157,1.4.1,1 +5773,37,1.4.1.2,0 +5774,157,1.4.1,1 +5774,37,1.4.1.2,0 +5778,157,1.4.1,1 +5778,37,1.4.1.2,0 +5781,37,1.4.1.2,0 +5781,157,1.4.1,1 +5782,37,1.4.1.2,0 +5782,157,1.4.1,1 +5783,37,1.4.1.2,0 +5783,157,1.4.1,1 +5789,37,1.4.1.2,0 +5789,157,1.4.1,1 +5791,37,1.4.1.2,0 +5791,157,1.4.1,1 +5793,157,1.4.1,1 +5793,37,1.4.1.2,0 +5798,157,1.4.1,1 +5798,37,1.4.1.2,0 +5802,157,1.4.1,1 +5802,37,1.4.1.4,0 +5804,157,1.4.1,1 +5804,37,1.4.1.4,0 +5805,157,1.4.1,1 +5805,37,1.4.1.4,0 +5807,157,1.4.1,1 +5807,37,1.4.1.4,0 +5809,37,1.4.1.4,0 +5809,157,1.4.1,1 +5809,170,1,3 +5809,126,1.4,2 +5810,126,1.4,2 +5810,37,1.4.1.4,0 +5810,157,1.4.1,1 +5810,170,1,3 +5811,157,1.4.1,1 +5811,37,1.4.1.4,0 +5816,157,1.4.1,1 +5816,37,1.4.1.4,0 +5820,157,1.4.1,1 +5820,37,1.4.1.4,0 +5822,37,1.4.1.4,0 +5822,157,1.4.1,1 +5825,157,1.4.1,1 +5825,37,1.4.1.4,0 +5826,157,1.4.1,1 +5826,37,1.4.1.4,0 +5828,37,1.4.1.4,0 +5828,157,1.4.1,1 +5829,157,1.4.1,1 +5829,37,1.4.1.4,0 +5831,37,1.4.1.4,0 +5831,157,1.4.1,1 +5832,37,1.4.1.4,0 +5832,157,1.4.1,1 +5834,37,1.4.1.4,0 +5834,157,1.4.1,1 +5841,37,1.4.1.4,0 +5841,157,1.4.1,1 +5848,157,1.4.1,1 +5848,37,1.4.1.4,0 +5851,142,1.4.2,1 +5851,37,1.4.2.2,0 +5852,142,1.4.2,1 +5852,37,1.4.2.2,0 +5853,142,1.4.2,1 +5853,37,1.4.2.2,0 +5854,142,1.4.2,1 +5854,37,1.4.2.2,0 +5855,142,1.4.2,1 +5855,37,1.4.2.2,0 +5856,37,1.4.2.2,0 +5856,142,1.4.2,1 +5856,126,1.4,2 +5856,170,1,3 +5857,37,1.4.2.2,0 +5857,142,1.4.2,1 +5858,37,1.4.2.2,0 +5858,142,1.4.2,1 +5859,142,1.4.2,1 +5859,37,1.4.2.2,0 +5860,142,1.4.2,1 +5860,37,1.4.2.2,0 +5861,142,1.4.2,1 +5861,37,1.4.2.2,0 +5861,126,1.4,2 +5861,170,1,3 +5864,142,1.4.2,1 +5864,170,1,3 +5864,37,1.4.2.2,0 +5864,126,1.4,2 +5866,142,1.4.2,1 +5866,37,1.4.2.2,0 +5869,142,1.4.2,1 +5869,37,1.4.2.2,0 +5870,142,1.4.2,1 +5870,37,1.4.2.2,0 +5872,37,1.4.2.2,0 +5872,142,1.4.2,1 +5873,142,1.4.2,1 +5873,37,1.4.2.2,0 +5874,126,1.4,2 +5874,142,1.4.2,1 +5874,37,1.4.2.2,0 +5874,170,1,3 +5875,37,1.4.2.2,0 +5875,170,1,3 +5875,142,1.4.2,1 +5875,126,1.4,2 +5876,126,1.4,2 +5876,37,1.4.2.2,0 +5876,142,1.4.2,1 +5876,170,1,3 +5878,142,1.4.2,1 +5878,37,1.4.2.2,0 +5879,142,1.4.2,1 +5879,37,1.4.2.2,0 +5881,37,1.4.2.2,0 +5881,142,1.4.2,1 +5882,37,1.4.2.2,0 +5882,142,1.4.2,1 +5883,142,1.4.2,1 +5883,37,1.4.2.2,0 +5884,37,1.4.2.2,0 +5884,142,1.4.2,1 +5884,126,1.4,2 +5884,170,1,3 +5886,142,1.4.2,1 +5886,37,1.4.2.2,0 +5889,142,1.4.2,1 +5889,37,1.4.2.2,0 +5891,37,1.4.2.2,0 +5891,142,1.4.2,1 +5892,37,1.4.2.2,0 +5892,142,1.4.2,1 +5893,142,1.4.2,1 +5893,37,1.4.2.2,0 +5894,142,1.4.2,1 +5894,37,1.4.2.2,0 +5897,170,1,3 +5897,126,1.4,2 +5897,142,1.4.2,1 +5897,37,1.4.2.2,0 +5898,142,1.4.2,1 +5898,37,1.4.2.2,0 +5901,170,1,3 +5901,142,1.4.3,1 +5901,126,1.4,2 +5901,37,1.4.3.1,0 +5902,142,1.4.3,1 +5902,170,1,3 +5902,37,1.4.3.1,0 +5902,126,1.4,2 +5903,142,1.4.3,1 +5903,37,1.4.3.1,0 +5904,142,1.4.3,1 +5904,37,1.4.3.1,0 +5905,142,1.4.3,1 +5905,37,1.4.3.1,0 +5906,142,1.4.3,1 +5906,37,1.4.3.1,0 +5907,37,1.4.3.1,0 +5907,142,1.4.3,1 +5908,37,1.4.3.1,0 +5908,142,1.4.3,1 +5909,142,1.4.3,1 +5909,37,1.4.3.1,0 +5910,126,1.4,2 +5910,37,1.4.3.1,0 +5910,142,1.4.3,1 +5910,170,1,3 +5911,142,1.4.3,1 +5911,37,1.4.3.1,0 +5911,126,1.4,2 +5911,170,1,3 +5914,142,1.4.3,1 +5914,37,1.4.3.1,0 +5916,142,1.4.3,1 +5916,37,1.4.3.1,0 +5919,142,1.4.3,1 +5919,37,1.4.3.1,0 +5920,142,1.4.3,1 +5920,37,1.4.3.1,0 +5922,37,1.4.3.1,0 +5922,142,1.4.3,1 +5923,142,1.4.3,1 +5923,37,1.4.3.1,0 +5924,142,1.4.3,1 +5924,37,1.4.3.1,0 +5925,142,1.4.3,1 +5925,37,1.4.3.1,0 +5926,37,1.4.3.1,0 +5926,142,1.4.3,1 +5928,142,1.4.3,1 +5928,37,1.4.3.1,0 +5929,142,1.4.3,1 +5929,37,1.4.3.1,0 +5931,37,1.4.3.1,0 +5931,142,1.4.3,1 +5932,37,1.4.3.1,0 +5932,142,1.4.3,1 +5933,142,1.4.3,1 +5933,37,1.4.3.1,0 +5934,142,1.4.3,1 +5934,37,1.4.3.1,0 +5936,142,1.4.3,1 +5936,170,1,3 +5936,126,1.4,2 +5936,37,1.4.3.1,0 +5939,142,1.4.3,1 +5939,37,1.4.3.1,0 +5941,37,1.4.3.1,0 +5941,142,1.4.3,1 +5942,37,1.4.3.1,0 +5942,142,1.4.3,1 +5943,142,1.4.3,1 +5943,37,1.4.3.1,0 +5943,170,1,3 +5943,126,1.4,2 +5944,37,1.4.3.1,0 +5944,170,1,3 +5944,142,1.4.3,1 +5944,126,1.4,2 +5947,37,1.4.3.1,0 +5947,142,1.4.3,1 +5948,142,1.4.3,1 +5948,37,1.4.3.1,0 +5951,0,1.4.4,1 +5951,37,1.4.4.3,0 +5952,0,1.4.4,1 +5952,37,1.4.4.3,0 +5952,40,1.4.4,1 +5953,0,1.4.4,1 +5953,40,1.4.4,1 +5953,37,1.4.4.3,0 +5954,37,1.4.4.3,0 +5954,0,1.4.4,1 +5955,0,1.4.4,1 +5955,40,1.4.4,1 +5955,37,1.4.4.3,0 +5955,126,1.4,2 +5956,40,1.4.4,1 +5956,0,1.4.4,1 +5956,37,1.4.4.3,0 +5956,126,1.4,2 +5956,170,1,3 +5957,37,1.4.4.3,0 +5957,0,1.4.4,1 +5958,37,1.4.4.3,0 +5958,0,1.4.4,1 +5959,40,1.4.4,1 +5959,37,1.4.4.3,0 +5959,0,1.4.4,1 +5960,37,1.4.4.3,0 +5960,0,1.4.4,1 +5961,126,1.4,2 +5961,0,1.4.4,1 +5961,40,1.4.4,1 +5961,37,1.4.4.3,0 +5964,0,1.4.4,1 +5964,37,1.4.4.3,0 +5964,40,1.4.4,1 +5966,40,1.4.4,1 +5966,0,1.4.4,1 +5966,126,1.4,2 +5966,170,1,3 +5966,37,1.4.4.3,0 +5967,37,1.4.4.3,0 +5967,40,1.4.4,1 +5969,37,1.4.4.3,0 +5969,40,1.4.4,1 +5969,0,1.4.4,1 +5970,126,1.4,2 +5970,37,1.4.4.3,0 +5970,0,1.4.4,1 +5971,40,1.4.4,1 +5971,37,1.4.4.3,0 +5972,0,1.4.4,1 +5972,126,1.4,2 +5972,170,1,3 +5972,37,1.4.4.3,0 +5973,0,1.4.4,1 +5973,40,1.4.4,1 +5973,37,1.4.4.3,0 +5974,40,1.4.4,1 +5974,37,1.4.4.3,0 +5974,0,1.4.4,1 +5975,0,1.4.4,1 +5975,37,1.4.4.3,0 +5976,0,1.4.4,1 +5976,126,1.4,2 +5976,37,1.4.4.3,0 +5976,40,1.4.4,1 +5976,170,1,3 +5977,37,1.4.4.3,0 +5977,40,1.4.4,1 +5978,40,1.4.4,1 +5978,0,1.4.4,1 +5978,37,1.4.4.3,0 +5979,0,1.4.4,1 +5979,37,1.4.4.3,0 +5979,40,1.4.4,1 +5981,40,1.4.4,1 +5981,37,1.4.4.3,0 +5981,0,1.4.4,1 +5982,40,1.4.4,1 +5982,37,1.4.4.3,0 +5982,0,1.4.4,1 +5983,0,1.4.4,1 +5983,37,1.4.4.3,0 +5984,40,1.4.4,1 +5984,0,1.4.4,1 +5984,37,1.4.4.3,0 +5985,40,1.4.4,1 +5985,37,1.4.4.3,0 +5985,126,1.4,2 +5986,40,1.4.4,1 +5986,170,1,3 +5986,126,1.4,2 +5986,0,1.4.4,1 +5986,37,1.4.4.3,0 +5987,40,1.4.4,1 +5987,37,1.4.4.3,0 +5988,37,1.4.4.3,0 +5988,40,1.4.4,1 +5989,37,1.4.4.3,0 +5989,0,1.4.4,1 +5989,40,1.4.4,1 +5990,37,1.4.4.3,0 +5990,40,1.4.4,1 +5991,37,1.4.4.3,0 +5991,0,1.4.4,1 +5992,40,1.4.4,1 +5992,37,1.4.4.3,0 +5992,0,1.4.4,1 +5993,37,1.4.4.3,0 +5993,170,1,3 +5993,40,1.4.4,1 +5993,0,1.4.4,1 +5993,126,1.4,2 +5994,40,1.4.4,1 +5994,0,1.4.4,1 +5994,37,1.4.4.3,0 +5995,37,1.4.4.3,0 +5995,40,1.4.4,1 +5996,37,1.4.4.3,0 +5996,40,1.4.4,1 +5997,37,1.4.4.3,0 +5997,0,1.4.4,1 +5998,0,1.4.4,1 +5998,40,1.4.4,1 +5998,37,1.4.4.3,0 +5999,40,1.4.4,1 +5999,37,1.4.4.3,0 +6000,40,1.4.4,1 +6000,37,1.4.4.3,0 +6001,41,1.4.5,1 +6001,37,1.4.5.2,0 +6002,37,1.4.5.2,0 +6002,41,1.4.5,1 +6003,41,1.4.5,1 +6003,37,1.4.5.2,0 +6004,126,1.4,2 +6004,37,1.4.5.2,0 +6004,170,1,3 +6004,41,1.4.5,1 +6005,41,1.4.5,1 +6005,37,1.4.5.2,0 +6006,41,1.4.5,1 +6006,37,1.4.5.2,0 +6007,41,1.4.5,1 +6007,37,1.4.5.2,0 +6008,41,1.4.5,1 +6008,126,1.4,2 +6008,37,1.4.5.2,0 +6008,170,1,3 +6009,37,1.4.5.2,0 +6009,41,1.4.5,1 +6010,126,1.4,2 +6010,37,1.4.5.2,0 +6010,41,1.4.5,1 +6010,170,1,3 +6011,41,1.4.5,1 +6011,37,1.4.5.2,0 +6014,41,1.4.5,1 +6014,37,1.4.5.2,0 +6016,41,1.4.5,1 +6016,37,1.4.5.2,0 +6019,37,1.4.5.2,0 +6019,41,1.4.5,1 +6020,41,1.4.5,1 +6020,37,1.4.5.2,0 +6022,126,1.4,2 +6022,41,1.4.5,1 +6022,170,1,3 +6022,37,1.4.5.2,0 +6023,37,1.4.5.2,0 +6023,41,1.4.5,1 +6024,37,1.4.5.2,0 +6024,41,1.4.5,1 +6025,41,1.4.5,1 +6025,37,1.4.5.2,0 +6026,41,1.4.5,1 +6026,37,1.4.5.2,0 +6028,41,1.4.5,1 +6028,37,1.4.5.2,0 +6029,37,1.4.5.2,0 +6029,41,1.4.5,1 +6031,37,1.4.5.2,0 +6031,41,1.4.5,1 +6032,41,1.4.5,1 +6032,37,1.4.5.2,0 +6033,41,1.4.5,1 +6033,37,1.4.5.2,0 +6034,41,1.4.5,1 +6034,37,1.4.5.2,0 +6036,41,1.4.5,1 +6036,37,1.4.5.2,0 +6039,41,1.4.5,1 +6039,37,1.4.5.2,0 +6041,170,1,3 +6041,126,1.4,2 +6041,41,1.4.5,1 +6041,37,1.4.5.2,0 +6042,41,1.4.5,1 +6042,37,1.4.5.2,0 +6043,41,1.4.5,1 +6043,37,1.4.5.2,0 +6043,170,1,3 +6043,126,1.4,2 +6044,37,1.4.5.2,0 +6044,170,1,3 +6044,41,1.4.5,1 +6044,126,1.4,2 +6047,41,1.4.5,1 +6047,37,1.4.5.2,0 +6048,37,1.4.5.2,0 +6048,41,1.4.5,1 +6049,41,1.4.5,1 +6049,37,1.4.5.2,0 +6052,38,2.1.1.1,0 +6052,148,2.1.1,1 +6052,85,2.1.1,1 +6052,80,2.1.1,1 +6054,106,2.1.1,1 +6054,38,2.1.1.1,0 +6057,148,2.1.1,1 +6057,38,2.1.1.1,0 +6058,38,2.1.1.1,0 +6058,80,2.1.1,1 +6058,148,2.1.1,1 +6061,148,2.1.1,1 +6061,85,2.1.1,1 +6061,38,2.1.1.1,0 +6064,38,2.1.1.1,0 +6064,80,2.1.1,1 +6064,85,2.1.1,1 +6066,85,2.1.1,1 +6066,38,2.1.1.1,0 +6066,80,2.1.1,1 +6070,80,2.1.1,1 +6070,38,2.1.1.1,0 +6072,38,2.1.1.1,0 +6072,85,2.1.1,1 +6076,80,2.1.1,1 +6076,38,2.1.1.1,0 +6078,38,2.1.1.1,0 +6078,80,2.1.1,1 +6079,38,2.1.1.1,0 +6079,80,2.1.1,1 +6081,38,2.1.1.1,0 +6081,148,2.1.1,1 +6082,106,2.1.1,1 +6082,38,2.1.1.1,0 +6083,38,2.1.1.1,0 +6083,85,2.1.1,1 +6086,38,2.1.1.1,0 +6086,80,2.1.1,1 +6087,38,2.1.1.1,0 +6087,85,2.1.1,1 +6088,148,2.1.1,1 +6088,38,2.1.1.1,0 +6089,80,2.1.1,1 +6089,38,2.1.1.1,0 +6091,80,2.1.1,1 +6091,38,2.1.1.1,0 +6093,85,2.1.1,1 +6093,38,2.1.1.1,0 +6094,106,2.1.1,1 +6094,38,2.1.1.1,0 +6095,148,2.1.1,1 +6095,38,2.1.1.1,0 +6097,85,2.1.1,1 +6097,38,2.1.1.1,0 +6099,106,2.1.1,1 +6099,38,2.1.1.1,0 +6100,38,2.1.1.1,0 +6100,106,2.1.1,1 +6102,38,2.1.1.2,0 +6102,106,2.1.1,1 +6104,106,2.1.1,1 +6104,38,2.1.1.2,0 +6105,148,2.1.1,1 +6105,106,2.1.1,1 +6105,38,2.1.1.2,0 +6108,38,2.1.1.2,0 +6108,80,2.1.1,1 +6109,106,2.1.1,1 +6109,38,2.1.1.2,0 +6110,38,2.1.1.2,0 +6110,80,2.1.1,1 +6111,106,2.1.1,1 +6111,148,2.1.1,1 +6111,38,2.1.1.2,0 +6114,38,2.1.1.2,0 +6114,106,2.1.1,1 +6115,148,2.1.1,1 +6115,38,2.1.1.2,0 +6116,148,2.1.1,1 +6116,38,2.1.1.2,0 +6119,106,2.1.1,1 +6119,38,2.1.1.2,0 +6120,85,2.1.1,1 +6120,38,2.1.1.2,0 +6123,106,2.1.1,1 +6123,38,2.1.1.2,0 +6123,80,2.1.1,1 +6129,38,2.1.1.2,0 +6129,80,2.1.1,1 +6132,38,2.1.1.2,0 +6132,148,2.1.1,1 +6139,148,2.1.1,1 +6139,85,2.1.1,1 +6139,38,2.1.1.2,0 +6141,106,2.1.1,1 +6141,38,2.1.1.2,0 +6142,38,2.1.1.2,0 +6142,85,2.1.1,1 +6142,106,2.1.1,1 +6142,80,2.1.1,1 +6147,38,2.1.1.2,0 +6147,148,2.1.1,1 +6150,38,2.1.1.2,0 +6150,106,2.1.1,1 +6154,85,2.1.1,1 +6154,38,2.1.1.3,0 +6158,38,2.1.1.3,0 +6158,85,2.1.1,1 +6159,38,2.1.1.3,0 +6159,85,2.1.1,1 +6160,85,2.1.1,1 +6160,38,2.1.1.3,0 +6164,38,2.1.1.3,0 +6164,106,2.1.1,1 +6164,148,2.1.1,1 +6166,38,2.1.1.3,0 +6166,85,2.1.1,1 +6166,148,2.1.1,1 +6169,106,2.1.1,1 +6169,38,2.1.1.3,0 +6171,38,2.1.1.3,0 +6171,148,2.1.1,1 +6172,106,2.1.1,1 +6172,38,2.1.1.3,0 +6176,80,2.1.1,1 +6176,38,2.1.1.3,0 +6177,148,2.1.1,1 +6177,38,2.1.1.3,0 +6178,38,2.1.1.3,0 +6178,80,2.1.1,1 +6179,38,2.1.1.3,0 +6179,85,2.1.1,1 +6181,38,2.1.1.3,0 +6181,106,2.1.1,1 +6182,38,2.1.1.3,0 +6182,106,2.1.1,1 +6183,38,2.1.1.3,0 +6183,106,2.1.1,1 +6184,106,2.1.1,1 +6184,38,2.1.1.3,0 +6186,38,2.1.1.3,0 +6186,148,2.1.1,1 +6186,80,2.1.1,1 +6189,106,2.1.1,1 +6189,38,2.1.1.3,0 +6191,80,2.1.1,1 +6191,38,2.1.1.3,0 +6193,85,2.1.1,1 +6193,38,2.1.1.3,0 +6194,106,2.1.1,1 +6194,148,2.1.1,1 +6194,38,2.1.1.3,0 +6195,38,2.1.1.3,0 +6195,106,2.1.1,1 +6197,38,2.1.1.3,0 +6197,106,2.1.1,1 +6202,38,2.1.1.4,0 +6202,148,2.1.1,1 +6205,38,2.1.1.4,0 +6205,148,2.1.1,1 +6205,85,2.1.1,1 +6206,148,2.1.1,1 +6206,38,2.1.1.4,0 +6207,38,2.1.1.4,0 +6207,106,2.1.1,1 +6208,80,2.1.1,1 +6208,38,2.1.1.4,0 +6209,106,2.1.1,1 +6209,38,2.1.1.4,0 +6210,38,2.1.1.4,0 +6210,80,2.1.1,1 +6211,106,2.1.1,1 +6211,38,2.1.1.4,0 +6214,38,2.1.1.4,0 +6214,148,2.1.1,1 +6223,148,2.1.1,1 +6223,38,2.1.1.4,0 +6228,38,2.1.1.4,0 +6228,106,2.1.1,1 +6229,38,2.1.1.4,0 +6229,80,2.1.1,1 +6231,38,2.1.1.4,0 +6231,148,2.1.1,1 +6232,38,2.1.1.4,0 +6232,85,2.1.1,1 +6233,38,2.1.1.4,0 +6233,148,2.1.1,1 +6234,106,2.1.1,1 +6234,38,2.1.1.4,0 +6236,38,2.1.1.4,0 +6236,106,2.1.1,1 +6241,80,2.1.1,1 +6241,38,2.1.1.4,0 +6243,38,2.1.1.4,0 +6243,106,2.1.1,1 +6244,80,2.1.1,1 +6244,38,2.1.1.4,0 +6247,80,2.1.1,1 +6247,38,2.1.1.4,0 +6248,85,2.1.1,1 +6248,38,2.1.1.4,0 +6248,106,2.1.1,1 +6254,80,2.1.1,1 +6254,38,2.1.1.5,0 +6255,80,2.1.1,1 +6255,38,2.1.1.5,0 +6255,85,2.1.1,1 +6258,38,2.1.1.5,0 +6258,85,2.1.1,1 +6260,38,2.1.1.5,0 +6260,80,2.1.1,1 +6266,38,2.1.1.5,0 +6266,148,2.1.1,1 +6272,80,2.1.1,1 +6272,38,2.1.1.5,0 +6276,148,2.1.1,1 +6276,85,2.1.1,1 +6276,38,2.1.1.5,0 +6279,38,2.1.1.5,0 +6279,85,2.1.1,1 +6281,80,2.1.1,1 +6281,38,2.1.1.5,0 +6281,106,2.1.1,1 +6282,106,2.1.1,1 +6282,38,2.1.1.5,0 +6284,38,2.1.1.5,0 +6284,148,2.1.1,1 +6285,106,2.1.1,1 +6285,38,2.1.1.5,0 +6286,85,2.1.1,1 +6286,38,2.1.1.5,0 +6286,148,2.1.1,1 +6286,80,2.1.1,1 +6289,106,2.1.1,1 +6289,38,2.1.1.5,0 +6291,38,2.1.1.5,0 +6291,106,2.1.1,1 +6293,106,2.1.1,1 +6293,38,2.1.1.5,0 +6294,85,2.1.1,1 +6294,38,2.1.1.5,0 +6295,148,2.1.1,1 +6295,38,2.1.1.5,0 +6297,38,2.1.1.5,0 +6297,148,2.1.1,1 +6298,38,2.1.1.5,0 +6298,106,2.1.1,1 +6304,39,1.3.1,0 +6304,29,1.3,1 +6305,106,1.3,1 +6305,29,1.3,1 +6305,39,1.3.1,0 +6307,39,1.3.1,0 +6307,106,1.3,1 +6309,106,1.3,1 +6309,39,1.3.1,0 +6314,106,1.3,1 +6314,39,1.3.1,0 +6316,39,1.3.1,0 +6316,29,1.3,1 +6328,29,1.3,1 +6328,39,1.3.1,0 +6336,39,1.3.1,0 +6336,106,1.3,1 +6339,29,1.3,1 +6339,39,1.3.1,0 +6343,39,1.3.1,0 +6343,106,1.3,1 +6344,39,1.3.1,0 +6344,106,1.3,1 +6347,106,1.3,1 +6347,39,1.3.1,0 +6348,106,1.3,1 +6348,29,1.3,1 +6348,39,1.3.1,0 +6354,40,1.4.2.1,0 +6354,142,1.4.2,1 +6355,142,1.4.2,1 +6355,40,1.4.2.1,0 +6357,40,1.4.2.1,0 +6357,142,1.4.2,1 +6358,40,1.4.2.1,0 +6358,142,1.4.2,1 +6372,142,1.4.2,1 +6372,40,1.4.2.1,0 +6376,40,1.4.2.1,0 +6376,142,1.4.2,1 +6378,40,1.4.2.1,0 +6378,142,1.4.2,1 +6379,40,1.4.2.1,0 +6379,142,1.4.2,1 +6381,40,1.4.2.1,0 +6381,142,1.4.2,1 +6383,142,1.4.2,1 +6383,40,1.4.2.1,0 +6386,142,1.4.2,1 +6386,40,1.4.2.1,0 +6389,40,1.4.2.1,0 +6389,142,1.4.2,1 +6393,142,1.4.2,1 +6393,40,1.4.2.1,0 +6394,142,1.4.2,1 +6394,40,1.4.2.1,0 +6401,170,1,3 +6401,142,1.4.2,1 +6401,126,1.4,2 +6401,40,1.4.2.5,0 +6402,40,1.4.2.5,0 +6402,142,1.4.2,1 +6403,142,1.4.2,1 +6403,40,1.4.2.5,0 +6404,40,1.4.2.5,0 +6404,142,1.4.2,1 +6405,142,1.4.2,1 +6405,40,1.4.2.5,0 +6406,40,1.4.2.5,0 +6406,142,1.4.2,1 +6406,126,1.4,2 +6406,170,1,3 +6407,40,1.4.2.5,0 +6407,142,1.4.2,1 +6408,40,1.4.2.5,0 +6408,142,1.4.2,1 +6409,40,1.4.2.5,0 +6409,142,1.4.2,1 +6410,126,1.4,2 +6410,40,1.4.2.5,0 +6410,142,1.4.2,1 +6410,170,1,3 +6411,40,1.4.2.5,0 +6411,142,1.4.2,1 +6414,142,1.4.2,1 +6414,170,1,3 +6414,40,1.4.2.5,0 +6414,126,1.4,2 +6416,142,1.4.2,1 +6416,40,1.4.2.5,0 +6419,142,1.4.2,1 +6419,40,1.4.2.5,0 +6420,142,1.4.2,1 +6420,170,1,3 +6420,40,1.4.2.5,0 +6420,126,1.4,2 +6422,40,1.4.2.5,0 +6422,126,1.4,2 +6422,142,1.4.2,1 +6422,170,1,3 +6423,142,1.4.2,1 +6423,40,1.4.2.5,0 +6424,142,1.4.2,1 +6424,40,1.4.2.5,0 +6425,40,1.4.2.5,0 +6425,170,1,3 +6425,142,1.4.2,1 +6425,126,1.4,2 +6426,40,1.4.2.5,0 +6426,142,1.4.2,1 +6428,40,1.4.2.5,0 +6428,142,1.4.2,1 +6429,170,1,3 +6429,126,1.4,2 +6429,40,1.4.2.5,0 +6429,142,1.4.2,1 +6431,40,1.4.2.5,0 +6431,142,1.4.2,1 +6432,40,1.4.2.5,0 +6432,142,1.4.2,1 +6433,142,1.4.2,1 +6433,40,1.4.2.5,0 +6434,142,1.4.2,1 +6434,40,1.4.2.5,0 +6434,126,1.4,2 +6434,170,1,3 +6436,142,1.4.2,1 +6436,40,1.4.2.5,0 +6439,40,1.4.2.5,0 +6439,142,1.4.2,1 +6441,142,1.4.2,1 +6441,40,1.4.2.5,0 +6442,126,1.4,2 +6442,170,1,3 +6442,40,1.4.2.5,0 +6442,142,1.4.2,1 +6443,142,1.4.2,1 +6443,40,1.4.2.5,0 +6444,142,1.4.2,1 +6444,40,1.4.2.5,0 +6447,142,1.4.2,1 +6447,40,1.4.2.5,0 +6448,40,1.4.2.5,0 +6448,142,1.4.2,1 +6451,40,1.4.3.3,0 +6451,142,1.4.3,1 +6452,40,1.4.3.3,0 +6452,142,1.4.3,1 +6453,40,1.4.3.3,0 +6453,142,1.4.3,1 +6454,142,1.4.3,1 +6454,40,1.4.3.3,0 +6455,142,1.4.3,1 +6455,40,1.4.3.3,0 +6457,40,1.4.3.3,0 +6457,142,1.4.3,1 +6460,142,1.4.3,1 +6460,40,1.4.3.3,0 +6461,142,1.4.3,1 +6461,40,1.4.3.3,0 +6464,142,1.4.3,1 +6464,40,1.4.3.3,0 +6466,142,1.4.3,1 +6466,40,1.4.3.3,0 +6472,142,1.4.3,1 +6472,40,1.4.3.3,0 +6476,40,1.4.3.3,0 +6476,142,1.4.3,1 +6478,40,1.4.3.3,0 +6478,142,1.4.3,1 +6479,40,1.4.3.3,0 +6479,142,1.4.3,1 +6481,142,1.4.3,1 +6481,40,1.4.3.3,0 +6483,40,1.4.3.3,0 +6483,142,1.4.3,1 +6486,142,1.4.3,1 +6486,40,1.4.3.3,0 +6493,142,1.4.3,1 +6493,40,1.4.3.3,0 +6494,142,1.4.3,1 +6494,40,1.4.3.3,0 +6497,142,1.4.3,1 +6497,40,1.4.3.3,0 +6498,126,1.4,2 +6498,142,1.4.3,1 +6498,40,1.4.3.3,0 +6498,170,1,3 +6502,126,1.4,1 +6502,40,1.4.4,0 +6504,40,1.4.4,0 +6504,126,1.4,1 +6505,126,1.4,1 +6505,40,1.4.4,0 +6506,126,1.4,1 +6506,40,1.4.4,0 +6507,126,1.4,1 +6507,40,1.4.4,0 +6507,170,1,2 +6508,40,1.4.4,0 +6508,126,1.4,1 +6509,40,1.4.4,0 +6509,126,1.4,1 +6510,126,1.4,1 +6510,40,1.4.4,0 +6511,40,1.4.4,0 +6511,126,1.4,1 +6514,126,1.4,1 +6514,40,1.4.4,0 +6516,126,1.4,1 +6516,40,1.4.4,0 +6516,170,1,2 +6522,126,1.4,1 +6522,40,1.4.4,0 +6523,126,1.4,1 +6523,40,1.4.4,0 +6526,126,1.4,1 +6526,40,1.4.4,0 +6528,126,1.4,1 +6528,40,1.4.4,0 +6529,40,1.4.4,0 +6529,126,1.4,1 +6531,40,1.4.4,0 +6531,126,1.4,1 +6531,170,1,2 +6532,40,1.4.4,0 +6532,126,1.4,1 +6533,40,1.4.4,0 +6533,170,1,2 +6533,126,1.4,1 +6534,40,1.4.4,0 +6534,126,1.4,1 +6536,126,1.4,1 +6536,40,1.4.4,0 +6539,40,1.4.4,0 +6539,126,1.4,1 +6539,170,1,2 +6541,126,1.4,1 +6541,170,1,2 +6541,40,1.4.4,0 +6543,126,1.4,1 +6543,40,1.4.4,0 +6544,40,1.4.4,0 +6544,126,1.4,1 +6547,40,1.4.4,0 +6547,170,1,2 +6547,126,1.4,1 +6548,40,1.4.4,0 +6548,126,1.4,1 +6552,157,1.4.1,1 +6552,41,1.4.1.2,0 +6554,157,1.4.1,1 +6554,41,1.4.1.2,0 +6556,41,1.4.1.2,0 +6556,157,1.4.1,1 +6557,41,1.4.1.2,0 +6557,157,1.4.1,1 +6558,41,1.4.1.2,0 +6558,157,1.4.1,1 +6559,157,1.4.1,1 +6559,41,1.4.1.2,0 +6560,41,1.4.1.2,0 +6560,157,1.4.1,1 +6561,41,1.4.1.2,0 +6561,157,1.4.1,1 +6569,157,1.4.1,1 +6569,41,1.4.1.2,0 +6570,157,1.4.1,1 +6570,41,1.4.1.2,0 +6572,41,1.4.1.2,0 +6572,157,1.4.1,1 +6573,157,1.4.1,1 +6573,41,1.4.1.2,0 +6574,157,1.4.1,1 +6574,41,1.4.1.2,0 +6575,41,1.4.1.2,0 +6575,157,1.4.1,1 +6576,157,1.4.1,1 +6576,41,1.4.1.2,0 +6578,157,1.4.1,1 +6578,41,1.4.1.2,0 +6579,157,1.4.1,1 +6579,41,1.4.1.2,0 +6584,41,1.4.1.2,0 +6584,157,1.4.1,1 +6586,41,1.4.1.2,0 +6586,157,1.4.1,1 +6589,157,1.4.1,1 +6589,41,1.4.1.2,0 +6591,157,1.4.1,1 +6591,41,1.4.1.2,0 +6592,157,1.4.1,1 +6592,41,1.4.1.2,0 +6593,157,1.4.1,1 +6593,170,1,3 +6593,126,1.4,2 +6593,41,1.4.1.2,0 +6594,157,1.4.1,1 +6594,41,1.4.1.2,0 +6597,41,1.4.1.2,0 +6597,157,1.4.1,1 +6603,157,1.4.1,1 +6603,41,1.4.1.5,0 +6604,157,1.4.1,1 +6604,41,1.4.1.5,0 +6605,126,1.4,2 +6605,41,1.4.1.5,0 +6605,157,1.4.1,1 +6605,170,1,3 +6606,41,1.4.1.5,0 +6606,157,1.4.1,1 +6607,41,1.4.1.5,0 +6607,157,1.4.1,1 +6609,157,1.4.1,1 +6609,41,1.4.1.5,0 +6610,157,1.4.1,1 +6610,41,1.4.1.5,0 +6611,41,1.4.1.5,0 +6611,157,1.4.1,1 +6616,157,1.4.1,1 +6616,41,1.4.1.5,0 +6619,157,1.4.1,1 +6619,41,1.4.1.5,0 +6620,157,1.4.1,1 +6620,41,1.4.1.5,0 +6622,41,1.4.1.5,0 +6622,157,1.4.1,1 +6625,41,1.4.1.5,0 +6625,157,1.4.1,1 +6626,41,1.4.1.5,0 +6626,157,1.4.1,1 +6628,157,1.4.1,1 +6628,41,1.4.1.5,0 +6629,157,1.4.1,1 +6629,41,1.4.1.5,0 +6631,157,1.4.1,1 +6631,126,1.4,2 +6631,170,1,3 +6631,41,1.4.1.5,0 +6632,157,1.4.1,1 +6632,126,1.4,2 +6632,41,1.4.1.5,0 +6632,170,1,3 +6633,41,1.4.1.5,0 +6633,157,1.4.1,1 +6634,41,1.4.1.5,0 +6634,157,1.4.1,1 +6641,157,1.4.1,1 +6641,41,1.4.1.5,0 +6643,157,1.4.1,1 +6643,41,1.4.1.5,0 +6644,157,1.4.1,1 +6644,41,1.4.1.5,0 +6647,41,1.4.1.5,0 +6647,157,1.4.1,1 +6648,157,1.4.1,1 +6648,41,1.4.1.5,0 +6651,41,1.4.3.1,0 +6651,142,1.4.3,1 +6652,41,1.4.3.1,0 +6652,142,1.4.3,1 +6652,170,1,3 +6652,126,1.4,2 +6653,41,1.4.3.1,0 +6653,142,1.4.3,1 +6654,142,1.4.3,1 +6654,41,1.4.3.1,0 +6655,142,1.4.3,1 +6655,41,1.4.3.1,0 +6656,41,1.4.3.1,0 +6656,142,1.4.3,1 +6657,41,1.4.3.1,0 +6657,142,1.4.3,1 +6658,41,1.4.3.1,0 +6658,142,1.4.3,1 +6658,126,1.4,2 +6658,170,1,3 +6659,170,1,3 +6659,126,1.4,2 +6659,41,1.4.3.1,0 +6659,142,1.4.3,1 +6660,142,1.4.3,1 +6660,41,1.4.3.1,0 +6661,41,1.4.3.1,0 +6661,142,1.4.3,1 +6664,142,1.4.3,1 +6664,41,1.4.3.1,0 +6666,41,1.4.3.1,0 +6666,142,1.4.3,1 +6669,142,1.4.3,1 +6669,41,1.4.3.1,0 +6670,41,1.4.3.1,0 +6670,142,1.4.3,1 +6672,126,1.4,2 +6672,41,1.4.3.1,0 +6672,142,1.4.3,1 +6672,170,1,3 +6673,142,1.4.3,1 +6673,41,1.4.3.1,0 +6674,126,1.4,2 +6674,142,1.4.3,1 +6674,41,1.4.3.1,0 +6674,170,1,3 +6675,41,1.4.3.1,0 +6675,170,1,3 +6675,142,1.4.3,1 +6675,126,1.4,2 +6676,126,1.4,2 +6676,41,1.4.3.1,0 +6676,142,1.4.3,1 +6676,170,1,3 +6678,142,1.4.3,1 +6678,41,1.4.3.1,0 +6679,142,1.4.3,1 +6679,41,1.4.3.1,0 +6681,126,1.4,2 +6681,170,1,3 +6681,142,1.4.3,1 +6681,41,1.4.3.1,0 +6682,41,1.4.3.1,0 +6682,142,1.4.3,1 +6683,170,1,3 +6683,41,1.4.3.1,0 +6683,142,1.4.3,1 +6683,126,1.4,2 +6684,142,1.4.3,1 +6684,41,1.4.3.1,0 +6686,142,1.4.3,1 +6686,41,1.4.3.1,0 +6689,41,1.4.3.1,0 +6689,126,1.4,2 +6689,170,1,3 +6689,142,1.4.3,1 +6691,142,1.4.3,1 +6691,41,1.4.3.1,0 +6692,41,1.4.3.1,0 +6692,142,1.4.3,1 +6693,142,1.4.3,1 +6693,41,1.4.3.1,0 +6694,170,1,3 +6694,41,1.4.3.1,0 +6694,142,1.4.3,1 +6694,126,1.4,2 +6697,41,1.4.3.1,0 +6697,142,1.4.3,1 +6698,126,1.4,2 +6698,142,1.4.3,1 +6698,170,1,3 +6698,41,1.4.3.1,0 +6701,170,1,3 +6701,142,1.4.3,1 +6701,126,1.4,2 +6701,41,1.4.3.2,0 +6702,41,1.4.3.2,0 +6702,142,1.4.3,1 +6702,170,1,3 +6702,126,1.4,2 +6703,170,1,3 +6703,126,1.4,2 +6703,142,1.4.3,1 +6703,41,1.4.3.2,0 +6704,126,1.4,2 +6704,142,1.4.3,1 +6704,170,1,3 +6704,41,1.4.3.2,0 +6705,126,1.4,2 +6705,41,1.4.3.2,0 +6705,170,1,3 +6705,142,1.4.3,1 +6706,142,1.4.3,1 +6706,126,1.4,2 +6706,41,1.4.3.2,0 +6706,170,1,3 +6707,170,1,3 +6707,41,1.4.3.2,0 +6707,142,1.4.3,1 +6707,126,1.4,2 +6708,41,1.4.3.2,0 +6708,142,1.4.3,1 +6708,126,1.4,2 +6708,170,1,3 +6709,170,1,3 +6709,126,1.4,2 +6709,41,1.4.3.2,0 +6709,142,1.4.3,1 +6710,126,1.4,2 +6710,142,1.4.3,1 +6710,41,1.4.3.2,0 +6710,170,1,3 +6711,142,1.4.3,1 +6711,126,1.4,2 +6711,170,1,3 +6711,41,1.4.3.2,0 +6712,126,1.4,2 +6712,142,1.4.3,1 +6712,41,1.4.3.2,0 +6712,170,1,3 +6713,126,1.4,2 +6713,170,1,3 +6713,41,1.4.3.2,0 +6713,142,1.4.3,1 +6714,142,1.4.3,1 +6714,170,1,3 +6714,41,1.4.3.2,0 +6714,126,1.4,2 +6715,170,1,3 +6715,126,1.4,2 +6715,41,1.4.3.2,0 +6715,142,1.4.3,1 +6716,126,1.4,2 +6716,142,1.4.3,1 +6716,170,1,3 +6716,41,1.4.3.2,0 +6717,126,1.4,2 +6717,142,1.4.3,1 +6717,41,1.4.3.2,0 +6717,170,1,3 +6718,41,1.4.3.2,0 +6718,142,1.4.3,1 +6718,170,1,3 +6718,126,1.4,2 +6719,142,1.4.3,1 +6719,126,1.4,2 +6719,170,1,3 +6719,41,1.4.3.2,0 +6720,142,1.4.3,1 +6720,170,1,3 +6720,41,1.4.3.2,0 +6720,126,1.4,2 +6721,170,1,3 +6721,126,1.4,2 +6721,41,1.4.3.2,0 +6721,142,1.4.3,1 +6722,126,1.4,2 +6722,41,1.4.3.2,0 +6722,142,1.4.3,1 +6722,170,1,3 +6723,142,1.4.3,1 +6723,126,1.4,2 +6723,170,1,3 +6723,41,1.4.3.2,0 +6724,126,1.4,2 +6724,142,1.4.3,1 +6724,41,1.4.3.2,0 +6724,170,1,3 +6725,41,1.4.3.2,0 +6725,170,1,3 +6725,142,1.4.3,1 +6725,126,1.4,2 +6726,126,1.4,2 +6726,41,1.4.3.2,0 +6726,142,1.4.3,1 +6726,170,1,3 +6727,126,1.4,2 +6727,170,1,3 +6727,142,1.4.3,1 +6727,41,1.4.3.2,0 +6728,41,1.4.3.2,0 +6728,142,1.4.3,1 +6728,170,1,3 +6728,126,1.4,2 +6729,41,1.4.3.2,0 +6729,170,1,3 +6729,126,1.4,2 +6729,142,1.4.3,1 +6730,142,1.4.3,1 +6730,170,1,3 +6730,126,1.4,2 +6730,41,1.4.3.2,0 +6731,126,1.4,2 +6731,170,1,3 +6731,142,1.4.3,1 +6731,41,1.4.3.2,0 +6732,126,1.4,2 +6732,41,1.4.3.2,0 +6732,142,1.4.3,1 +6732,170,1,3 +6733,170,1,3 +6733,41,1.4.3.2,0 +6733,142,1.4.3,1 +6733,126,1.4,2 +6734,41,1.4.3.2,0 +6734,142,1.4.3,1 +6734,126,1.4,2 +6734,170,1,3 +6735,170,1,3 +6735,126,1.4,2 +6735,142,1.4.3,1 +6735,41,1.4.3.2,0 +6736,41,1.4.3.2,0 +6736,142,1.4.3,1 +6736,170,1,3 +6736,126,1.4,2 +6737,126,1.4,2 +6737,170,1,3 +6737,142,1.4.3,1 +6737,41,1.4.3.2,0 +6738,170,1,3 +6738,126,1.4,2 +6738,142,1.4.3,1 +6738,41,1.4.3.2,0 +6739,41,1.4.3.2,0 +6739,126,1.4,2 +6739,170,1,3 +6739,142,1.4.3,1 +6740,170,1,3 +6740,142,1.4.3,1 +6740,41,1.4.3.2,0 +6740,126,1.4,2 +6741,170,1,3 +6741,126,1.4,2 +6741,142,1.4.3,1 +6741,41,1.4.3.2,0 +6742,41,1.4.3.2,0 +6742,126,1.4,2 +6742,170,1,3 +6742,142,1.4.3,1 +6743,142,1.4.3,1 +6743,41,1.4.3.2,0 +6743,170,1,3 +6743,126,1.4,2 +6744,170,1,3 +6744,41,1.4.3.2,0 +6744,142,1.4.3,1 +6744,126,1.4,2 +6745,170,1,3 +6745,41,1.4.3.2,0 +6745,142,1.4.3,1 +6745,126,1.4,2 +6746,170,1,3 +6746,142,1.4.3,1 +6746,126,1.4,2 +6746,41,1.4.3.2,0 +6747,41,1.4.3.2,0 +6747,170,1,3 +6747,126,1.4,2 +6747,142,1.4.3,1 +6748,126,1.4,2 +6748,142,1.4.3,1 +6748,170,1,3 +6748,41,1.4.3.2,0 +6749,170,1,3 +6749,142,1.4.3,1 +6749,126,1.4,2 +6749,41,1.4.3.2,0 +6750,170,1,3 +6750,142,1.4.3,1 +6750,126,1.4,2 +6750,41,1.4.3.2,0 +6751,41,1.4.3.4,0 +6751,142,1.4.3,1 +6752,142,1.4.3,1 +6752,41,1.4.3.4,0 +6753,41,1.4.3.4,0 +6753,142,1.4.3,1 +6754,142,1.4.3,1 +6754,41,1.4.3.4,0 +6755,142,1.4.3,1 +6755,41,1.4.3.4,0 +6756,41,1.4.3.4,0 +6756,142,1.4.3,1 +6757,170,1,3 +6757,41,1.4.3.4,0 +6757,142,1.4.3,1 +6757,126,1.4,2 +6758,41,1.4.3.4,0 +6758,142,1.4.3,1 +6759,170,1,3 +6759,126,1.4,2 +6759,41,1.4.3.4,0 +6759,142,1.4.3,1 +6760,126,1.4,2 +6760,142,1.4.3,1 +6760,41,1.4.3.4,0 +6760,170,1,3 +6761,41,1.4.3.4,0 +6761,142,1.4.3,1 +6764,142,1.4.3,1 +6764,41,1.4.3.4,0 +6766,41,1.4.3.4,0 +6766,142,1.4.3,1 +6769,142,1.4.3,1 +6769,41,1.4.3.4,0 +6770,41,1.4.3.4,0 +6770,142,1.4.3,1 +6772,41,1.4.3.4,0 +6772,142,1.4.3,1 +6773,142,1.4.3,1 +6773,41,1.4.3.4,0 +6774,142,1.4.3,1 +6774,41,1.4.3.4,0 +6775,41,1.4.3.4,0 +6775,170,1,3 +6775,142,1.4.3,1 +6775,126,1.4,2 +6776,126,1.4,2 +6776,41,1.4.3.4,0 +6776,142,1.4.3,1 +6776,170,1,3 +6778,142,1.4.3,1 +6778,41,1.4.3.4,0 +6779,41,1.4.3.4,0 +6779,170,1,3 +6779,126,1.4,2 +6779,142,1.4.3,1 +6781,142,1.4.3,1 +6781,41,1.4.3.4,0 +6782,126,1.4,2 +6782,41,1.4.3.4,0 +6782,142,1.4.3,1 +6782,170,1,3 +6783,142,1.4.3,1 +6783,41,1.4.3.4,0 +6784,41,1.4.3.4,0 +6784,142,1.4.3,1 +6784,126,1.4,2 +6784,170,1,3 +6786,41,1.4.3.4,0 +6786,142,1.4.3,1 +6786,170,1,3 +6786,126,1.4,2 +6789,142,1.4.3,1 +6789,41,1.4.3.4,0 +6791,142,1.4.3,1 +6791,41,1.4.3.4,0 +6792,41,1.4.3.4,0 +6792,142,1.4.3,1 +6793,142,1.4.3,1 +6793,41,1.4.3.4,0 +6793,170,1,3 +6793,126,1.4,2 +6794,142,1.4.3,1 +6794,41,1.4.3.4,0 +6797,41,1.4.3.4,0 +6797,142,1.4.3,1 +6798,142,1.4.3,1 +6798,41,1.4.3.4,0 +6801,170,1,3 +6801,142,1.4.3,1 +6801,126,1.4,2 +6801,41,1.4.3.5,0 +6802,142,1.4.3,1 +6802,41,1.4.3.5,0 +6803,41,1.4.3.5,0 +6803,142,1.4.3,1 +6804,142,1.4.3,1 +6804,41,1.4.3.5,0 +6805,142,1.4.3,1 +6805,41,1.4.3.5,0 +6806,41,1.4.3.5,0 +6806,142,1.4.3,1 +6807,41,1.4.3.5,0 +6807,142,1.4.3,1 +6808,41,1.4.3.5,0 +6808,142,1.4.3,1 +6808,126,1.4,2 +6808,170,1,3 +6809,170,1,3 +6809,126,1.4,2 +6809,41,1.4.3.5,0 +6809,142,1.4.3,1 +6810,142,1.4.3,1 +6810,41,1.4.3.5,0 +6811,142,1.4.3,1 +6811,126,1.4,2 +6811,170,1,3 +6811,41,1.4.3.5,0 +6814,142,1.4.3,1 +6814,41,1.4.3.5,0 +6816,126,1.4,2 +6816,142,1.4.3,1 +6816,170,1,3 +6816,41,1.4.3.5,0 +6819,142,1.4.3,1 +6819,126,1.4,2 +6819,170,1,3 +6819,41,1.4.3.5,0 +6820,41,1.4.3.5,0 +6820,142,1.4.3,1 +6822,126,1.4,2 +6822,41,1.4.3.5,0 +6822,142,1.4.3,1 +6822,170,1,3 +6823,142,1.4.3,1 +6823,41,1.4.3.5,0 +6824,126,1.4,2 +6824,142,1.4.3,1 +6824,41,1.4.3.5,0 +6824,170,1,3 +6825,142,1.4.3,1 +6825,41,1.4.3.5,0 +6826,126,1.4,2 +6826,41,1.4.3.5,0 +6826,142,1.4.3,1 +6826,170,1,3 +6828,41,1.4.3.5,0 +6828,142,1.4.3,1 +6828,170,1,3 +6828,126,1.4,2 +6829,142,1.4.3,1 +6829,41,1.4.3.5,0 +6831,142,1.4.3,1 +6831,41,1.4.3.5,0 +6832,41,1.4.3.5,0 +6832,142,1.4.3,1 +6833,142,1.4.3,1 +6833,41,1.4.3.5,0 +6834,142,1.4.3,1 +6834,41,1.4.3.5,0 +6836,142,1.4.3,1 +6836,41,1.4.3.5,0 +6839,41,1.4.3.5,0 +6839,126,1.4,2 +6839,170,1,3 +6839,142,1.4.3,1 +6841,142,1.4.3,1 +6841,41,1.4.3.5,0 +6842,41,1.4.3.5,0 +6842,142,1.4.3,1 +6843,142,1.4.3,1 +6843,41,1.4.3.5,0 +6844,142,1.4.3,1 +6844,41,1.4.3.5,0 +6847,41,1.4.3.5,0 +6847,142,1.4.3,1 +6848,142,1.4.3,1 +6848,41,1.4.3.5,0 +6851,41,1.4.5,0 +6851,126,1.4,1 +6851,170,1,2 +6852,41,1.4.5,0 +6852,170,1,2 +6852,126,1.4,1 +6853,170,1,2 +6853,126,1.4,1 +6853,41,1.4.5,0 +6854,126,1.4,1 +6854,41,1.4.5,0 +6854,170,1,2 +6855,126,1.4,1 +6855,41,1.4.5,0 +6855,170,1,2 +6856,170,1,2 +6856,41,1.4.5,0 +6856,126,1.4,1 +6857,126,1.4,1 +6857,41,1.4.5,0 +6857,170,1,2 +6858,170,1,2 +6858,41,1.4.5,0 +6858,126,1.4,1 +6859,41,1.4.5,0 +6859,170,1,2 +6859,126,1.4,1 +6860,170,1,2 +6860,41,1.4.5,0 +6860,126,1.4,1 +6861,126,1.4,1 +6861,170,1,2 +6861,41,1.4.5,0 +6862,170,1,2 +6862,126,1.4,1 +6862,41,1.4.5,0 +6863,41,1.4.5,0 +6863,170,1,2 +6863,126,1.4,1 +6864,126,1.4,1 +6864,41,1.4.5,0 +6864,170,1,2 +6865,126,1.4,1 +6865,170,1,2 +6865,41,1.4.5,0 +6866,41,1.4.5,0 +6866,126,1.4,1 +6866,170,1,2 +6867,41,1.4.5,0 +6867,126,1.4,1 +6867,170,1,2 +6868,126,1.4,1 +6868,41,1.4.5,0 +6868,170,1,2 +6869,41,1.4.5,0 +6869,170,1,2 +6869,126,1.4,1 +6870,126,1.4,1 +6870,170,1,2 +6870,41,1.4.5,0 +6871,170,1,2 +6871,41,1.4.5,0 +6871,126,1.4,1 +6872,126,1.4,1 +6872,170,1,2 +6872,41,1.4.5,0 +6873,170,1,2 +6873,126,1.4,1 +6873,41,1.4.5,0 +6874,41,1.4.5,0 +6874,170,1,2 +6874,126,1.4,1 +6875,126,1.4,1 +6875,41,1.4.5,0 +6875,170,1,2 +6876,126,1.4,1 +6876,170,1,2 +6876,41,1.4.5,0 +6877,126,1.4,1 +6877,41,1.4.5,0 +6877,170,1,2 +6878,170,1,2 +6878,126,1.4,1 +6878,41,1.4.5,0 +6879,126,1.4,1 +6879,170,1,2 +6879,41,1.4.5,0 +6880,41,1.4.5,0 +6880,126,1.4,1 +6880,170,1,2 +6881,41,1.4.5,0 +6881,126,1.4,1 +6881,170,1,2 +6882,170,1,2 +6882,41,1.4.5,0 +6882,126,1.4,1 +6883,170,1,2 +6883,41,1.4.5,0 +6883,126,1.4,1 +6884,41,1.4.5,0 +6884,170,1,2 +6884,126,1.4,1 +6885,170,1,2 +6885,41,1.4.5,0 +6885,126,1.4,1 +6886,41,1.4.5,0 +6886,126,1.4,1 +6886,170,1,2 +6887,126,1.4,1 +6887,41,1.4.5,0 +6887,170,1,2 +6888,41,1.4.5,0 +6888,170,1,2 +6888,126,1.4,1 +6889,126,1.4,1 +6889,170,1,2 +6889,41,1.4.5,0 +6890,41,1.4.5,0 +6890,126,1.4,1 +6890,170,1,2 +6891,41,1.4.5,0 +6891,126,1.4,1 +6891,170,1,2 +6892,126,1.4,1 +6892,41,1.4.5,0 +6892,170,1,2 +6893,170,1,2 +6893,126,1.4,1 +6893,41,1.4.5,0 +6894,41,1.4.5,0 +6894,126,1.4,1 +6894,170,1,2 +6895,170,1,2 +6895,126,1.4,1 +6895,41,1.4.5,0 +6896,126,1.4,1 +6896,170,1,2 +6896,41,1.4.5,0 +6897,170,1,2 +6897,126,1.4,1 +6897,41,1.4.5,0 +6898,41,1.4.5,0 +6898,170,1,2 +6898,126,1.4,1 +6899,170,1,2 +6899,41,1.4.5,0 +6899,126,1.4,1 +6900,170,1,2 +6900,41,1.4.5,0 +6900,126,1.4,1 +6901,42,1.3.1.1,0 +6901,100,1.3.1,1 +6902,42,1.3.1.1,0 +6902,39,1.3.1,1 +6903,42,1.3.1.1,0 +6903,39,1.3.1,1 +6903,99,1.3.1,1 +6903,93,1.3.1,1 +6905,42,1.3.1.1,0 +6905,99,1.3.1,1 +6905,100,1.3.1,1 +6906,42,1.3.1.1,0 +6906,93,1.3.1,1 +6907,39,1.3.1,1 +6907,42,1.3.1.1,0 +6908,39,1.3.1,1 +6908,42,1.3.1.1,0 +6909,42,1.3.1.1,0 +6909,85,1.3.1,1 +6910,85,1.3.1,1 +6910,42,1.3.1.1,0 +6911,42,1.3.1.1,0 +6911,99,1.3.1,1 +6914,85,1.3.1,1 +6914,42,1.3.1.1,0 +6919,99,1.3.1,1 +6919,42,1.3.1.1,0 +6919,93,1.3.1,1 +6920,99,1.3.1,1 +6920,39,1.3.1,1 +6920,100,1.3.1,1 +6920,42,1.3.1.1,0 +6921,42,1.3.1.1,0 +6921,93,1.3.1,1 +6922,93,1.3.1,1 +6922,42,1.3.1.1,0 +6925,42,1.3.1.1,0 +6925,39,1.3.1,1 +6927,42,1.3.1.1,0 +6927,99,1.3.1,1 +6928,42,1.3.1.1,0 +6928,39,1.3.1,1 +6929,39,1.3.1,1 +6929,100,1.3.1,1 +6929,42,1.3.1.1,0 +6930,42,1.3.1.1,0 +6930,100,1.3.1,1 +6931,42,1.3.1.1,0 +6931,39,1.3.1,1 +6932,39,1.3.1,1 +6932,42,1.3.1.1,0 +6932,100,1.3.1,1 +6933,42,1.3.1.1,0 +6933,85,1.3.1,1 +6934,100,1.3.1,1 +6934,42,1.3.1.1,0 +6936,39,1.3.1,1 +6936,100,1.3.1,1 +6936,42,1.3.1.1,0 +6936,93,1.3.1,1 +6937,85,1.3.1,1 +6937,42,1.3.1.1,0 +6938,42,1.3.1.1,0 +6938,99,1.3.1,1 +6939,100,1.3.1,1 +6939,42,1.3.1.1,0 +6940,100,1.3.1,1 +6940,42,1.3.1.1,0 +6941,39,1.3.1,1 +6941,42,1.3.1.1,0 +6943,42,1.3.1.1,0 +6943,85,1.3.1,1 +6944,93,1.3.1,1 +6944,42,1.3.1.1,0 +6944,99,1.3.1,1 +6947,100,1.3.1,1 +6947,42,1.3.1.1,0 +6948,85,1.3.1,1 +6948,99,1.3.1,1 +6948,42,1.3.1.1,0 +6949,99,1.3.1,1 +6949,42,1.3.1.1,0 +6949,100,1.3.1,1 +6952,42,1.3.1.3,0 +6952,100,1.3.1,1 +6952,93,1.3.1,1 +6953,100,1.3.1,1 +6953,42,1.3.1.3,0 +6954,42,1.3.1.3,0 +6954,99,1.3.1,1 +6955,39,1.3.1,1 +6955,42,1.3.1.3,0 +6955,85,1.3.1,1 +6956,42,1.3.1.3,0 +6956,39,1.3.1,1 +6957,99,1.3.1,1 +6957,42,1.3.1.3,0 +6959,42,1.3.1.3,0 +6959,85,1.3.1,1 +6960,99,1.3.1,1 +6960,42,1.3.1.3,0 +6960,39,1.3.1,1 +6960,100,1.3.1,1 +6961,42,1.3.1.3,0 +6961,85,1.3.1,1 +6962,93,1.3.1,1 +6962,42,1.3.1.3,0 +6962,99,1.3.1,1 +6964,99,1.3.1,1 +6964,42,1.3.1.3,0 +6964,39,1.3.1,1 +6966,42,1.3.1.3,0 +6966,100,1.3.1,1 +6966,93,1.3.1,1 +6969,39,1.3.1,1 +6969,100,1.3.1,1 +6969,42,1.3.1.3,0 +6969,93,1.3.1,1 +6970,42,1.3.1.3,0 +6970,99,1.3.1,1 +6970,39,1.3.1,1 +6970,93,1.3.1,1 +6971,100,1.3.1,1 +6971,42,1.3.1.3,0 +6972,42,1.3.1.3,0 +6972,99,1.3.1,1 +6972,100,1.3.1,1 +6972,85,1.3.1,1 +6973,99,1.3.1,1 +6973,42,1.3.1.3,0 +6974,100,1.3.1,1 +6974,42,1.3.1.3,0 +6975,39,1.3.1,1 +6975,42,1.3.1.3,0 +6976,100,1.3.1,1 +6976,39,1.3.1,1 +6976,42,1.3.1.3,0 +6977,85,1.3.1,1 +6977,42,1.3.1.3,0 +6978,42,1.3.1.3,0 +6978,85,1.3.1,1 +6979,42,1.3.1.3,0 +6979,85,1.3.1,1 +6979,99,1.3.1,1 +6980,100,1.3.1,1 +6980,42,1.3.1.3,0 +6981,93,1.3.1,1 +6981,42,1.3.1.3,0 +6982,39,1.3.1,1 +6982,42,1.3.1.3,0 +6983,39,1.3.1,1 +6983,42,1.3.1.3,0 +6984,42,1.3.1.3,0 +6984,85,1.3.1,1 +6986,42,1.3.1.3,0 +6986,100,1.3.1,1 +6986,99,1.3.1,1 +6987,42,1.3.1.3,0 +6987,93,1.3.1,1 +6987,100,1.3.1,1 +6989,39,1.3.1,1 +6989,42,1.3.1.3,0 +6989,93,1.3.1,1 +6990,42,1.3.1.3,0 +6990,93,1.3.1,1 +6991,39,1.3.1,1 +6991,42,1.3.1.3,0 +6991,99,1.3.1,1 +6992,39,1.3.1,1 +6992,100,1.3.1,1 +6992,42,1.3.1.3,0 +6992,85,1.3.1,1 +6992,99,1.3.1,1 +6993,42,1.3.1.3,0 +6993,106,1.3,2 +6993,85,1.3.1,1 +6993,39,1.3.1,1 +6994,39,1.3.1,1 +6994,93,1.3.1,1 +6994,42,1.3.1.3,0 +6995,99,1.3.1,1 +6995,42,1.3.1.3,0 +6997,42,1.3.1.3,0 +6997,39,1.3.1,1 +6998,39,1.3.1,1 +6998,42,1.3.1.3,0 +6998,93,1.3.1,1 +6998,29,1.3,2 +6998,100,1.3.1,1 +7000,99,1.3.1,1 +7000,93,1.3.1,1 +7000,42,1.3.1.3,0 +7002,93,1.3.1,1 +7002,106,1.3,2 +7002,42,1.3.1.4,0 +7002,100,1.3.1,1 +7002,29,1.3,2 +7003,93,1.3.1,1 +7003,39,1.3.1,1 +7003,42,1.3.1.4,0 +7003,99,1.3.1,1 +7004,42,1.3.1.4,0 +7004,85,1.3.1,1 +7005,42,1.3.1.4,0 +7005,99,1.3.1,1 +7006,42,1.3.1.4,0 +7006,85,1.3.1,1 +7007,39,1.3.1,1 +7007,42,1.3.1.4,0 +7008,99,1.3.1,1 +7008,42,1.3.1.4,0 +7009,42,1.3.1.4,0 +7009,100,1.3.1,1 +7010,39,1.3.1,1 +7010,42,1.3.1.4,0 +7011,42,1.3.1.4,0 +7011,99,1.3.1,1 +7017,100,1.3.1,1 +7017,42,1.3.1.4,0 +7019,100,1.3.1,1 +7019,42,1.3.1.4,0 +7020,42,1.3.1.4,0 +7020,93,1.3.1,1 +7022,85,1.3.1,1 +7022,42,1.3.1.4,0 +7023,42,1.3.1.4,0 +7023,93,1.3.1,1 +7024,99,1.3.1,1 +7024,42,1.3.1.4,0 +7026,39,1.3.1,1 +7026,42,1.3.1.4,0 +7027,85,1.3.1,1 +7027,42,1.3.1.4,0 +7028,42,1.3.1.4,0 +7028,39,1.3.1,1 +7029,42,1.3.1.4,0 +7029,85,1.3.1,1 +7029,39,1.3.1,1 +7030,42,1.3.1.4,0 +7030,93,1.3.1,1 +7031,85,1.3.1,1 +7031,42,1.3.1.4,0 +7031,99,1.3.1,1 +7032,42,1.3.1.4,0 +7032,93,1.3.1,1 +7033,42,1.3.1.4,0 +7033,85,1.3.1,1 +7034,42,1.3.1.4,0 +7034,85,1.3.1,1 +7038,42,1.3.1.4,0 +7038,100,1.3.1,1 +7039,39,1.3.1,1 +7039,93,1.3.1,1 +7039,42,1.3.1.4,0 +7039,99,1.3.1,1 +7040,42,1.3.1.4,0 +7040,93,1.3.1,1 +7041,85,1.3.1,1 +7041,42,1.3.1.4,0 +7041,99,1.3.1,1 +7043,42,1.3.1.4,0 +7043,39,1.3.1,1 +7043,85,1.3.1,1 +7044,39,1.3.1,1 +7044,93,1.3.1,1 +7044,42,1.3.1.4,0 +7047,42,1.3.1.4,0 +7047,93,1.3.1,1 +7047,39,1.3.1,1 +7048,99,1.3.1,1 +7048,85,1.3.1,1 +7048,42,1.3.1.4,0 +7049,93,1.3.1,1 +7049,42,1.3.1.4,0 +7052,100,1.3.1,1 +7052,43,1.3.1.5,0 +7054,43,1.3.1.5,0 +7054,93,1.3.1,1 +7054,39,1.3.1,1 +7055,39,1.3.1,1 +7055,85,1.3.1,1 +7055,43,1.3.1.5,0 +7056,43,1.3.1.5,0 +7056,85,1.3.1,1 +7057,39,1.3.1,1 +7057,43,1.3.1.5,0 +7058,43,1.3.1.5,0 +7058,93,1.3.1,1 +7058,100,1.3.1,1 +7059,43,1.3.1.5,0 +7059,39,1.3.1,1 +7060,93,1.3.1,1 +7060,99,1.3.1,1 +7060,39,1.3.1,1 +7060,29,1.3,2 +7060,170,1,3 +7060,43,1.3.1.5,0 +7060,106,1.3,2 +7060,100,1.3.1,1 +7061,43,1.3.1.5,0 +7061,99,1.3.1,1 +7061,93,1.3.1,1 +7061,39,1.3.1,1 +7064,99,1.3.1,1 +7064,43,1.3.1.5,0 +7064,39,1.3.1,1 +7066,39,1.3.1,1 +7066,43,1.3.1.5,0 +7066,99,1.3.1,1 +7066,85,1.3.1,1 +7067,43,1.3.1.5,0 +7067,93,1.3.1,1 +7069,43,1.3.1.5,0 +7069,93,1.3.1,1 +7070,43,1.3.1.5,0 +7070,99,1.3.1,1 +7070,39,1.3.1,1 +7070,93,1.3.1,1 +7071,100,1.3.1,1 +7071,43,1.3.1.5,0 +7072,43,1.3.1.5,0 +7072,85,1.3.1,1 +7073,100,1.3.1,1 +7073,93,1.3.1,1 +7073,43,1.3.1.5,0 +7074,99,1.3.1,1 +7074,39,1.3.1,1 +7074,43,1.3.1.5,0 +7076,100,1.3.1,1 +7076,85,1.3.1,1 +7076,43,1.3.1.5,0 +7076,39,1.3.1,1 +7076,99,1.3.1,1 +7077,99,1.3.1,1 +7077,43,1.3.1.5,0 +7078,39,1.3.1,1 +7078,43,1.3.1.5,0 +7079,93,1.3.1,1 +7079,43,1.3.1.5,0 +7079,99,1.3.1,1 +7080,100,1.3.1,1 +7080,93,1.3.1,1 +7080,43,1.3.1.5,0 +7081,85,1.3.1,1 +7081,100,1.3.1,1 +7081,43,1.3.1.5,0 +7082,39,1.3.1,1 +7082,43,1.3.1.5,0 +7083,43,1.3.1.5,0 +7083,39,1.3.1,1 +7084,85,1.3.1,1 +7084,43,1.3.1.5,0 +7084,29,1.3,2 +7085,100,1.3.1,1 +7085,43,1.3.1.5,0 +7085,99,1.3.1,1 +7086,39,1.3.1,1 +7086,43,1.3.1.5,0 +7087,43,1.3.1.5,0 +7087,99,1.3.1,1 +7089,100,1.3.1,1 +7089,43,1.3.1.5,0 +7089,93,1.3.1,1 +7090,100,1.3.1,1 +7090,43,1.3.1.5,0 +7090,85,1.3.1,1 +7091,99,1.3.1,1 +7091,43,1.3.1.5,0 +7092,93,1.3.1,1 +7092,39,1.3.1,1 +7092,43,1.3.1.5,0 +7092,85,1.3.1,1 +7093,85,1.3.1,1 +7093,39,1.3.1,1 +7093,43,1.3.1.5,0 +7094,39,1.3.1,1 +7094,43,1.3.1.5,0 +7094,85,1.3.1,1 +7097,85,1.3.1,1 +7097,43,1.3.1.5,0 +7098,39,1.3.1,1 +7098,99,1.3.1,1 +7098,43,1.3.1.5,0 +7099,93,1.3.1,1 +7099,99,1.3.1,1 +7099,43,1.3.1.5,0 +7099,100,1.3.1,1 +7099,85,1.3.1,1 +7100,99,1.3.1,1 +7100,85,1.3.1,1 +7100,100,1.3.1,1 +7100,43,1.3.1.5,0 +7102,85,1.3.1,1 +7102,39,1.3.1,1 +7102,99,1.3.1,1 +7102,43,1.3.1.6,0 +7103,100,1.3.1,1 +7103,93,1.3.1,1 +7103,43,1.3.1.6,0 +7104,43,1.3.1.6,0 +7104,39,1.3.1,1 +7105,93,1.3.1,1 +7105,100,1.3.1,1 +7105,43,1.3.1.6,0 +7105,85,1.3.1,1 +7106,43,1.3.1.6,0 +7106,85,1.3.1,1 +7108,43,1.3.1.6,0 +7108,85,1.3.1,1 +7109,85,1.3.1,1 +7109,43,1.3.1.6,0 +7110,39,1.3.1,1 +7110,43,1.3.1.6,0 +7111,43,1.3.1.6,0 +7111,100,1.3.1,1 +7114,43,1.3.1.6,0 +7114,93,1.3.1,1 +7116,43,1.3.1.6,0 +7116,100,1.3.1,1 +7116,99,1.3.1,1 +7117,43,1.3.1.6,0 +7117,93,1.3.1,1 +7119,106,1.3,2 +7119,99,1.3.1,1 +7119,43,1.3.1.6,0 +7119,100,1.3.1,1 +7119,39,1.3.1,1 +7120,39,1.3.1,1 +7120,43,1.3.1.6,0 +7121,43,1.3.1.6,0 +7121,93,1.3.1,1 +7122,43,1.3.1.6,0 +7122,100,1.3.1,1 +7122,85,1.3.1,1 +7123,100,1.3.1,1 +7123,93,1.3.1,1 +7123,43,1.3.1.6,0 +7124,100,1.3.1,1 +7124,43,1.3.1.6,0 +7127,85,1.3.1,1 +7127,43,1.3.1.6,0 +7128,39,1.3.1,1 +7128,43,1.3.1.6,0 +7131,93,1.3.1,1 +7131,99,1.3.1,1 +7131,43,1.3.1.6,0 +7134,99,1.3.1,1 +7134,43,1.3.1.6,0 +7135,85,1.3.1,1 +7135,43,1.3.1.6,0 +7135,100,1.3.1,1 +7136,39,1.3.1,1 +7136,43,1.3.1.6,0 +7137,93,1.3.1,1 +7137,43,1.3.1.6,0 +7138,93,1.3.1,1 +7138,43,1.3.1.6,0 +7139,43,1.3.1.6,0 +7139,93,1.3.1,1 +7139,100,1.3.1,1 +7140,100,1.3.1,1 +7140,43,1.3.1.6,0 +7141,85,1.3.1,1 +7141,43,1.3.1.6,0 +7142,93,1.3.1,1 +7142,43,1.3.1.6,0 +7142,99,1.3.1,1 +7143,99,1.3.1,1 +7143,43,1.3.1.6,0 +7144,43,1.3.1.6,0 +7144,99,1.3.1,1 +7144,93,1.3.1,1 +7147,39,1.3.1,1 +7147,43,1.3.1.6,0 +7148,99,1.3.1,1 +7148,43,1.3.1.6,0 +7148,39,1.3.1,1 +7148,100,1.3.1,1 +7150,99,1.3.1,1 +7150,43,1.3.1.6,0 +7152,105,1.1,1 +7152,44,1.1.1,0 +7154,105,1.1,1 +7154,44,1.1.1,0 +7156,44,1.1.1,0 +7156,106,1.1,1 +7157,106,1.1,1 +7157,44,1.1.1,0 +7158,44,1.1.1,0 +7158,94,1.1,1 +7161,44,1.1.1,0 +7161,86,1.1,1 +7164,86,1.1,1 +7164,44,1.1.1,0 +7173,106,1.1,1 +7173,44,1.1.1,0 +7176,44,1.1.1,0 +7176,86,1.1,1 +7178,86,1.1,1 +7178,44,1.1.1,0 +7179,86,1.1,1 +7179,44,1.1.1,0 +7181,94,1.1,1 +7181,44,1.1.1,0 +7182,126,1.1,1 +7182,44,1.1.1,0 +7183,94,1.1,1 +7183,44,1.1.1,0 +7184,86,1.1,1 +7184,44,1.1.1,0 +7185,44,1.1.1,0 +7185,105,1.1,1 +7186,44,1.1.1,0 +7186,106,1.1,1 +7192,106,1.1,1 +7192,44,1.1.1,0 +7193,94,1.1,1 +7193,44,1.1.1,0 +7194,44,1.1.1,0 +7194,106,1.1,1 +7194,86,1.1,1 +7199,44,1.1.1,0 +7199,105,1.1,1 +7202,45,1.3.3.1,0 +7202,97,1.3.3,1 +7204,45,1.3.3.1,0 +7204,75,1.3.3,1 +7205,75,1.3.3,1 +7205,45,1.3.3.1,0 +7206,45,1.3.3.1,0 +7206,75,1.3.3,1 +7209,45,1.3.3.1,0 +7209,97,1.3.3,1 +7210,75,1.3.3,1 +7210,45,1.3.3.1,0 +7211,45,1.3.3.1,0 +7211,99,1.3.3,1 +7214,75,1.3.3,1 +7214,45,1.3.3.1,0 +7220,99,1.3.3,1 +7220,45,1.3.3.1,0 +7223,45,1.3.3.1,0 +7223,75,1.3.3,1 +7229,45,1.3.3.1,0 +7229,75,1.3.3,1 +7229,97,1.3.3,1 +7231,99,1.3.3,1 +7231,45,1.3.3.1,0 +7232,99,1.3.3,1 +7232,45,1.3.3.1,0 +7233,99,1.3.3,1 +7233,45,1.3.3.1,0 +7239,99,1.3.3,1 +7239,45,1.3.3.1,0 +7242,97,1.3.3,1 +7242,45,1.3.3.1,0 +7243,45,1.3.3.1,0 +7243,75,1.3.3,1 +7247,99,1.3.3,1 +7247,45,1.3.3.1,0 +7252,81,1.3.4,1 +7252,45,1.3.4.1,0 +7256,45,1.3.4.1,0 +7256,77,1.3.4,1 +7257,45,1.3.4.1,0 +7257,81,1.3.4,1 +7258,77,1.3.4,1 +7258,45,1.3.4.1,0 +7259,77,1.3.4,1 +7259,45,1.3.4.1,0 +7260,81,1.3.4,1 +7260,45,1.3.4.1,0 +7261,77,1.3.4,1 +7261,45,1.3.4.1,0 +7269,45,1.3.4.1,0 +7269,81,1.3.4,1 +7270,45,1.3.4.1,0 +7270,77,1.3.4,1 +7270,81,1.3.4,1 +7272,77,1.3.4,1 +7272,45,1.3.4.1,0 +7273,45,1.3.4.1,0 +7273,77,1.3.4,1 +7273,81,1.3.4,1 +7278,77,1.3.4,1 +7278,45,1.3.4.1,0 +7282,80,1.3.4,1 +7282,45,1.3.4.1,0 +7283,45,1.3.4.1,0 +7283,81,1.3.4,1 +7286,80,1.3.4,1 +7286,45,1.3.4.1,0 +7287,80,1.3.4,1 +7287,45,1.3.4.1,0 +7288,81,1.3.4,1 +7288,45,1.3.4.1,0 +7289,77,1.3.4,1 +7289,45,1.3.4.1,0 +7290,81,1.3.4,1 +7290,45,1.3.4.1,0 +7292,45,1.3.4.1,0 +7292,81,1.3.4,1 +7293,77,1.3.4,1 +7293,45,1.3.4.1,0 +7293,81,1.3.4,1 +7294,77,1.3.4,1 +7294,45,1.3.4.1,0 +7294,81,1.3.4,1 +7297,77,1.3.4,1 +7297,45,1.3.4.1,0 +7298,80,1.3.4,1 +7298,77,1.3.4,1 +7298,45,1.3.4.1,0 +7298,81,1.3.4,1 +7302,45,1.3.4.2,0 +7302,80,1.3.4,1 +7302,77,1.3.4,1 +7303,45,1.3.4.2,0 +7303,81,1.3.4,1 +7304,80,1.3.4,1 +7304,45,1.3.4.2,0 +7305,80,1.3.4,1 +7305,77,1.3.4,1 +7305,45,1.3.4.2,0 +7306,45,1.3.4.2,0 +7306,77,1.3.4,1 +7307,45,1.3.4.2,0 +7307,80,1.3.4,1 +7308,81,1.3.4,1 +7308,77,1.3.4,1 +7308,45,1.3.4.2,0 +7309,80,1.3.4,1 +7309,45,1.3.4.2,0 +7310,81,1.3.4,1 +7310,45,1.3.4.2,0 +7310,77,1.3.4,1 +7311,80,1.3.4,1 +7311,45,1.3.4.2,0 +7314,45,1.3.4.2,0 +7314,77,1.3.4,1 +7314,81,1.3.4,1 +7314,80,1.3.4,1 +7316,77,1.3.4,1 +7316,81,1.3.4,1 +7316,45,1.3.4.2,0 +7317,81,1.3.4,1 +7317,45,1.3.4.2,0 +7320,77,1.3.4,1 +7320,29,1.3,2 +7320,170,1,3 +7320,45,1.3.4.2,0 +7321,45,1.3.4.2,0 +7321,80,1.3.4,1 +7322,80,1.3.4,1 +7322,45,1.3.4.2,0 +7323,45,1.3.4.2,0 +7323,80,1.3.4,1 +7324,81,1.3.4,1 +7324,45,1.3.4.2,0 +7326,45,1.3.4.2,0 +7326,77,1.3.4,1 +7326,80,1.3.4,1 +7328,45,1.3.4.2,0 +7328,106,1.3,2 +7328,77,1.3.4,1 +7329,80,1.3.4,1 +7329,45,1.3.4.2,0 +7329,77,1.3.4,1 +7330,45,1.3.4.2,0 +7330,81,1.3.4,1 +7331,77,1.3.4,1 +7331,80,1.3.4,1 +7331,45,1.3.4.2,0 +7332,77,1.3.4,1 +7332,80,1.3.4,1 +7332,45,1.3.4.2,0 +7333,45,1.3.4.2,0 +7333,77,1.3.4,1 +7334,106,1.3,2 +7334,81,1.3.4,1 +7334,45,1.3.4.2,0 +7336,106,1.3,2 +7336,77,1.3.4,1 +7336,29,1.3,2 +7336,170,1,3 +7336,81,1.3.4,1 +7336,45,1.3.4.2,0 +7337,45,1.3.4.2,0 +7337,80,1.3.4,1 +7338,81,1.3.4,1 +7338,45,1.3.4.2,0 +7339,77,1.3.4,1 +7339,45,1.3.4.2,0 +7340,80,1.3.4,1 +7340,45,1.3.4.2,0 +7341,81,1.3.4,1 +7341,77,1.3.4,1 +7341,45,1.3.4.2,0 +7342,80,1.3.4,1 +7342,45,1.3.4.2,0 +7343,80,1.3.4,1 +7343,45,1.3.4.2,0 +7343,77,1.3.4,1 +7344,45,1.3.4.2,0 +7344,77,1.3.4,1 +7344,80,1.3.4,1 +7345,45,1.3.4.2,0 +7345,81,1.3.4,1 +7346,80,1.3.4,1 +7346,45,1.3.4.2,0 +7347,80,1.3.4,1 +7347,45,1.3.4.2,0 +7348,81,1.3.4,1 +7348,77,1.3.4,1 +7348,45,1.3.4.2,0 +7349,80,1.3.4,1 +7349,29,1.3,2 +7349,170,1,3 +7349,81,1.3.4,1 +7349,45,1.3.4.2,0 +7349,106,1.3,2 +7350,45,1.3.4.2,0 +7350,80,1.3.4,1 +7351,45,2.1.4.1.1,0 +7351,79,2.1.4.1,1 +7354,45,2.1.4.1.1,0 +7354,81,2.1.4.1,1 +7356,79,2.1.4.1,1 +7356,45,2.1.4.1.1,0 +7357,45,2.1.4.1.1,0 +7357,81,2.1.4.1,1 +7358,81,2.1.4.1,1 +7358,45,2.1.4.1.1,0 +7360,81,2.1.4.1,1 +7360,45,2.1.4.1.1,0 +7361,81,2.1.4.1,1 +7361,45,2.1.4.1.1,0 +7370,45,2.1.4.1.1,0 +7370,81,2.1.4.1,1 +7372,81,2.1.4.1,1 +7372,45,2.1.4.1.1,0 +7376,79,2.1.4.1,1 +7376,45,2.1.4.1.1,0 +7378,81,2.1.4.1,1 +7378,45,2.1.4.1.1,0 +7382,79,2.1.4.1,1 +7382,45,2.1.4.1.1,0 +7383,45,2.1.4.1.1,0 +7383,81,2.1.4.1,1 +7391,45,2.1.4.1.1,0 +7391,79,2.1.4.1,1 +7393,79,2.1.4.1,1 +7393,81,2.1.4.1,1 +7393,45,2.1.4.1.1,0 +7399,45,2.1.4.1.1,0 +7399,81,2.1.4.1,1 +7402,45,2.1.4.1.2,0 +7402,79,2.1.4.1,1 +7403,45,2.1.4.1.2,0 +7403,79,2.1.4.1,1 +7404,45,2.1.4.1.2,0 +7404,81,2.1.4.1,1 +7406,81,2.1.4.1,1 +7406,45,2.1.4.1.2,0 +7407,79,2.1.4.1,1 +7407,45,2.1.4.1.2,0 +7408,45,2.1.4.1.2,0 +7408,79,2.1.4.1,1 +7410,81,2.1.4.1,1 +7410,45,2.1.4.1.2,0 +7411,79,2.1.4.1,1 +7411,45,2.1.4.1.2,0 +7414,79,2.1.4.1,1 +7414,45,2.1.4.1.2,0 +7414,81,2.1.4.1,1 +7416,45,2.1.4.1.2,0 +7416,79,2.1.4.1,1 +7416,81,2.1.4.1,1 +7419,79,2.1.4.1,1 +7419,45,2.1.4.1.2,0 +7420,45,2.1.4.1.2,0 +7420,81,2.1.4.1,1 +7422,45,2.1.4.1.2,0 +7422,79,2.1.4.1,1 +7424,45,2.1.4.1.2,0 +7424,79,2.1.4.1,1 +7426,81,2.1.4.1,1 +7426,45,2.1.4.1.2,0 +7429,45,2.1.4.1.2,0 +7429,81,2.1.4.1,1 +7434,45,2.1.4.1.2,0 +7434,79,2.1.4.1,1 +7443,81,2.1.4.1,1 +7443,45,2.1.4.1.2,0 +7444,81,2.1.4.1,1 +7444,45,2.1.4.1.2,0 +7447,45,2.1.4.1.2,0 +7447,81,2.1.4.1,1 +7450,45,2.1.4.1.2,0 +7450,81,2.1.4.1,1 +7458,79,2.1.4.1,1 +7458,45,2.1.4.1.3,0 +7460,79,2.1.4.1,1 +7460,45,2.1.4.1.3,0 +7461,79,2.1.4.1,1 +7461,45,2.1.4.1.3,0 +7472,45,2.1.4.1.3,0 +7472,79,2.1.4.1,1 +7478,81,2.1.4.1,1 +7478,45,2.1.4.1.3,0 +7481,45,2.1.4.1.3,0 +7481,79,2.1.4.1,1 +7482,81,2.1.4.1,1 +7482,45,2.1.4.1.3,0 +7483,45,2.1.4.1.3,0 +7483,79,2.1.4.1,1 +7484,45,2.1.4.1.3,0 +7484,79,2.1.4.1,1 +7486,81,2.1.4.1,1 +7486,45,2.1.4.1.3,0 +7491,45,2.1.4.1.3,0 +7491,79,2.1.4.1,1 +7493,79,2.1.4.1,1 +7493,45,2.1.4.1.3,0 +7494,81,2.1.4.1,1 +7494,45,2.1.4.1.3,0 +7498,45,2.1.4.1.3,0 +7498,81,2.1.4.1,1 +7502,45,2.1.4.1.4,0 +7502,79,2.1.4.1,1 +7504,45,2.1.4.1.4,0 +7504,81,2.1.4.1,1 +7505,79,2.1.4.1,1 +7505,45,2.1.4.1.4,0 +7509,81,2.1.4.1,1 +7509,45,2.1.4.1.4,0 +7510,79,2.1.4.1,1 +7510,45,2.1.4.1.4,0 +7514,79,2.1.4.1,1 +7514,45,2.1.4.1.4,0 +7516,79,2.1.4.1,1 +7516,45,2.1.4.1.4,0 +7520,79,2.1.4.1,1 +7520,45,2.1.4.1.4,0 +7523,45,2.1.4.1.4,0 +7523,81,2.1.4.1,1 +7524,79,2.1.4.1,1 +7524,45,2.1.4.1.4,0 +7526,81,2.1.4.1,1 +7526,79,2.1.4.1,1 +7526,45,2.1.4.1.4,0 +7528,45,2.1.4.1.4,0 +7528,79,2.1.4.1,1 +7531,45,2.1.4.1.4,0 +7531,79,2.1.4.1,1 +7532,81,2.1.4.1,1 +7532,45,2.1.4.1.4,0 +7532,79,2.1.4.1,1 +7536,81,2.1.4.1,1 +7536,45,2.1.4.1.4,0 +7538,81,2.1.4.1,1 +7538,45,2.1.4.1.4,0 +7542,79,2.1.4.1,1 +7542,45,2.1.4.1.4,0 +7547,45,2.1.4.1.4,0 +7547,79,2.1.4.1,1 +7548,79,2.1.4.1,1 +7548,45,2.1.4.1.4,0 +7552,45,2.1.4.2.1,0 +7552,79,2.1.4.2,1 +7556,45,2.1.4.2.1,0 +7556,79,2.1.4.2,1 +7560,81,2.1.4.2,1 +7560,45,2.1.4.2.1,0 +7561,81,2.1.4.2,1 +7561,45,2.1.4.2.1,0 +7570,45,2.1.4.2.1,0 +7570,81,2.1.4.2,1 +7573,45,2.1.4.2.1,0 +7573,81,2.1.4.2,1 +7578,79,2.1.4.2,1 +7578,45,2.1.4.2.1,0 +7583,45,2.1.4.2.1,0 +7583,81,2.1.4.2,1 +7586,81,2.1.4.2,1 +7586,45,2.1.4.2.1,0 +7589,81,2.1.4.2,1 +7589,45,2.1.4.2.1,0 +7593,45,2.1.4.2.1,0 +7593,79,2.1.4.2,1 +7594,81,2.1.4.2,1 +7594,45,2.1.4.2.1,0 +7595,45,2.1.4.2.1,0 +7595,81,2.1.4.2,1 +7597,79,2.1.4.2,1 +7597,45,2.1.4.2.1,0 +7602,81,2.1.4.2,1 +7602,45,2.1.4.2.2,0 +7603,45,2.1.4.2.2,0 +7603,79,2.1.4.2,1 +7611,79,2.1.4.2,1 +7611,81,2.1.4.2,1 +7611,45,2.1.4.2.2,0 +7619,45,2.1.4.2.2,0 +7619,79,2.1.4.2,1 +7622,79,2.1.4.2,1 +7622,45,2.1.4.2.2,0 +7623,45,2.1.4.2.2,0 +7623,79,2.1.4.2,1 +7623,81,2.1.4.2,1 +7636,81,2.1.4.2,1 +7636,45,2.1.4.2.2,0 +7639,81,2.1.4.2,1 +7639,45,2.1.4.2.2,0 +7641,45,2.1.4.2.2,0 +7641,79,2.1.4.2,1 +7644,79,2.1.4.2,1 +7644,45,2.1.4.2.2,0 +7647,45,2.1.4.2.2,0 +7647,81,2.1.4.2,1 +7651,93,1.3.1,1 +7651,46,1.3.1.2,0 +7652,99,1.3.1,1 +7652,93,1.3.1,1 +7652,29,1.3,2 +7652,46,1.3.1.2,0 +7654,93,1.3.1,1 +7654,46,1.3.1.2,0 +7655,39,1.3.1,1 +7655,46,1.3.1.2,0 +7656,100,1.3.1,1 +7656,46,1.3.1.2,0 +7657,46,1.3.1.2,0 +7657,85,1.3.1,1 +7658,46,1.3.1.2,0 +7658,93,1.3.1,1 +7659,46,1.3.1.2,0 +7659,39,1.3.1,1 +7660,39,1.3.1,1 +7660,46,1.3.1.2,0 +7660,100,1.3.1,1 +7661,85,1.3.1,1 +7661,93,1.3.1,1 +7661,99,1.3.1,1 +7661,46,1.3.1.2,0 +7664,100,1.3.1,1 +7664,46,1.3.1.2,0 +7664,99,1.3.1,1 +7666,39,1.3.1,1 +7666,99,1.3.1,1 +7666,46,1.3.1.2,0 +7669,46,1.3.1.2,0 +7669,39,1.3.1,1 +7670,93,1.3.1,1 +7670,46,1.3.1.2,0 +7672,85,1.3.1,1 +7672,99,1.3.1,1 +7672,46,1.3.1.2,0 +7673,39,1.3.1,1 +7673,46,1.3.1.2,0 +7674,100,1.3.1,1 +7674,46,1.3.1.2,0 +7675,39,1.3.1,1 +7675,46,1.3.1.2,0 +7676,46,1.3.1.2,0 +7676,100,1.3.1,1 +7677,46,1.3.1.2,0 +7677,100,1.3.1,1 +7678,99,1.3.1,1 +7678,46,1.3.1.2,0 +7679,99,1.3.1,1 +7679,100,1.3.1,1 +7679,46,1.3.1.2,0 +7680,100,1.3.1,1 +7680,46,1.3.1.2,0 +7681,93,1.3.1,1 +7681,46,1.3.1.2,0 +7682,93,1.3.1,1 +7682,46,1.3.1.2,0 +7683,46,1.3.1.2,0 +7683,85,1.3.1,1 +7684,93,1.3.1,1 +7684,46,1.3.1.2,0 +7685,46,1.3.1.2,0 +7685,99,1.3.1,1 +7686,46,1.3.1.2,0 +7686,93,1.3.1,1 +7689,46,1.3.1.2,0 +7689,100,1.3.1,1 +7690,100,1.3.1,1 +7690,46,1.3.1.2,0 +7691,85,1.3.1,1 +7691,46,1.3.1.2,0 +7691,100,1.3.1,1 +7693,46,1.3.1.2,0 +7693,93,1.3.1,1 +7694,100,1.3.1,1 +7694,46,1.3.1.2,0 +7697,106,1.3,2 +7697,39,1.3.1,1 +7697,100,1.3.1,1 +7697,46,1.3.1.2,0 +7698,93,1.3.1,1 +7698,46,1.3.1.2,0 +7699,99,1.3.1,1 +7699,46,1.3.1.2,0 +7700,99,1.3.1,1 +7700,100,1.3.1,1 +7700,46,1.3.1.2,0 +7704,148,2.1.1,1 +7704,47,2.1.1.1,0 +7705,80,2.1.1,1 +7705,85,2.1.1,1 +7705,47,2.1.1.1,0 +7706,80,2.1.1,1 +7706,47,2.1.1.1,0 +7707,80,2.1.1,1 +7707,47,2.1.1.1,0 +7709,47,2.1.1.1,0 +7709,80,2.1.1,1 +7710,47,2.1.1.1,0 +7710,80,2.1.1,1 +7711,80,2.1.1,1 +7711,47,2.1.1.1,0 +7714,47,2.1.1.1,0 +7714,148,2.1.1,1 +7714,80,2.1.1,1 +7717,148,2.1.1,1 +7717,47,2.1.1.1,0 +7719,148,2.1.1,1 +7719,47,2.1.1.1,0 +7719,85,2.1.1,1 +7719,106,2.1.1,1 +7720,47,2.1.1.1,0 +7720,148,2.1.1,1 +7726,47,2.1.1.1,0 +7726,106,2.1.1,1 +7726,80,2.1.1,1 +7727,47,2.1.1.1,0 +7727,148,2.1.1,1 +7728,47,2.1.1.1,0 +7728,85,2.1.1,1 +7729,148,2.1.1,1 +7729,47,2.1.1.1,0 +7731,47,2.1.1.1,0 +7731,148,2.1.1,1 +7731,106,2.1.1,1 +7732,85,2.1.1,1 +7732,47,2.1.1.1,0 +7733,47,2.1.1.1,0 +7733,80,2.1.1,1 +7734,80,2.1.1,1 +7734,47,2.1.1.1,0 +7735,47,2.1.1.1,0 +7735,148,2.1.1,1 +7738,47,2.1.1.1,0 +7738,85,2.1.1,1 +7739,80,2.1.1,1 +7739,47,2.1.1.1,0 +7741,85,2.1.1,1 +7741,47,2.1.1.1,0 +7743,47,2.1.1.1,0 +7743,148,2.1.1,1 +7744,47,2.1.1.1,0 +7744,148,2.1.1,1 +7744,106,2.1.1,1 +7745,47,2.1.1.1,0 +7745,106,2.1.1,1 +7747,47,2.1.1.1,0 +7747,85,2.1.1,1 +7748,85,2.1.1,1 +7748,47,2.1.1.1,0 +7749,148,2.1.1,1 +7749,47,2.1.1.1,0 +7752,47,2.1.1.2,0 +7752,148,2.1.1,1 +7754,85,2.1.1,1 +7754,47,2.1.1.2,0 +7755,47,2.1.1.2,0 +7755,80,2.1.1,1 +7755,85,2.1.1,1 +7756,80,2.1.1,1 +7756,47,2.1.1.2,0 +7757,80,2.1.1,1 +7757,47,2.1.1.2,0 +7758,47,2.1.1.2,0 +7758,148,2.1.1,1 +7759,47,2.1.1.2,0 +7759,85,2.1.1,1 +7760,80,2.1.1,1 +7760,47,2.1.1.2,0 +7761,47,2.1.1.2,0 +7761,85,2.1.1,1 +7764,85,2.1.1,1 +7764,80,2.1.1,1 +7764,47,2.1.1.2,0 +7766,47,2.1.1.2,0 +7766,85,2.1.1,1 +7766,148,2.1.1,1 +7769,148,2.1.1,1 +7769,47,2.1.1.2,0 +7770,148,2.1.1,1 +7770,47,2.1.1.2,0 +7772,47,2.1.1.2,0 +7772,80,2.1.1,1 +7773,106,2.1.1,1 +7773,47,2.1.1.2,0 +7774,47,2.1.1.2,0 +7774,106,2.1.1,1 +7776,47,2.1.1.2,0 +7776,85,2.1.1,1 +7778,47,2.1.1.2,0 +7778,80,2.1.1,1 +7779,85,2.1.1,1 +7779,47,2.1.1.2,0 +7781,47,2.1.1.2,0 +7781,80,2.1.1,1 +7781,106,2.1.1,1 +7782,85,2.1.1,1 +7782,47,2.1.1.2,0 +7783,47,2.1.1.2,0 +7783,85,2.1.1,1 +7784,47,2.1.1.2,0 +7784,106,2.1.1,1 +7785,106,2.1.1,1 +7785,148,2.1.1,1 +7785,47,2.1.1.2,0 +7786,80,2.1.1,1 +7786,47,2.1.1.2,0 +7786,85,2.1.1,1 +7786,148,2.1.1,1 +7787,47,2.1.1.2,0 +7787,148,2.1.1,1 +7789,80,2.1.1,1 +7789,47,2.1.1.2,0 +7790,106,2.1.1,1 +7790,47,2.1.1.2,0 +7792,47,2.1.1.2,0 +7792,148,2.1.1,1 +7793,80,2.1.1,1 +7793,47,2.1.1.2,0 +7793,148,2.1.1,1 +7794,47,2.1.1.2,0 +7794,148,2.1.1,1 +7794,85,2.1.1,1 +7797,47,2.1.1.2,0 +7797,80,2.1.1,1 +7797,148,2.1.1,1 +7797,106,2.1.1,1 +7798,47,2.1.1.2,0 +7798,148,2.1.1,1 +7800,47,2.1.1.2,0 +7800,148,2.1.1,1 +7806,80,2.1.1,1 +7806,47,2.1.1.3,0 +7807,47,2.1.1.3,0 +7807,80,2.1.1,1 +7809,47,2.1.1.3,0 +7809,85,2.1.1,1 +7810,148,2.1.1,1 +7810,47,2.1.1.3,0 +7810,80,2.1.1,1 +7814,47,2.1.1.3,0 +7814,106,2.1.1,1 +7814,85,2.1.1,1 +7816,85,2.1.1,1 +7816,47,2.1.1.3,0 +7822,47,2.1.1.3,0 +7822,85,2.1.1,1 +7824,47,2.1.1.3,0 +7824,85,2.1.1,1 +7825,80,2.1.1,1 +7825,47,2.1.1.3,0 +7827,85,2.1.1,1 +7827,47,2.1.1.3,0 +7828,106,2.1.1,1 +7828,47,2.1.1.3,0 +7829,148,2.1.1,1 +7829,80,2.1.1,1 +7829,47,2.1.1.3,0 +7832,80,2.1.1,1 +7832,47,2.1.1.3,0 +7833,47,2.1.1.3,0 +7833,148,2.1.1,1 +7834,80,2.1.1,1 +7834,47,2.1.1.3,0 +7836,106,2.1.1,1 +7836,47,2.1.1.3,0 +7839,47,2.1.1.3,0 +7839,85,2.1.1,1 +7841,85,2.1.1,1 +7841,47,2.1.1.3,0 +7843,47,2.1.1.3,0 +7843,80,2.1.1,1 +7843,106,2.1.1,1 +7845,148,2.1.1,1 +7845,47,2.1.1.3,0 +7847,47,2.1.1.3,0 +7847,80,2.1.1,1 +7851,106,2.1.1,1 +7851,47,2.1.1.4,0 +7852,47,2.1.1.4,0 +7852,148,2.1.1,1 +7854,80,2.1.1,1 +7854,47,2.1.1.4,0 +7855,47,2.1.1.4,0 +7855,80,2.1.1,1 +7855,106,2.1.1,1 +7856,148,2.1.1,1 +7856,47,2.1.1.4,0 +7859,47,2.1.1.4,0 +7859,80,2.1.1,1 +7860,47,2.1.1.4,0 +7860,85,2.1.1,1 +7861,47,2.1.1.4,0 +7861,85,2.1.1,1 +7866,106,2.1.1,1 +7866,80,2.1.1,1 +7866,47,2.1.1.4,0 +7866,85,2.1.1,1 +7869,106,2.1.1,1 +7869,148,2.1.1,1 +7869,47,2.1.1.4,0 +7872,47,2.1.1.4,0 +7872,148,2.1.1,1 +7873,106,2.1.1,1 +7873,47,2.1.1.4,0 +7873,80,2.1.1,1 +7874,148,2.1.1,1 +7874,47,2.1.1.4,0 +7875,80,2.1.1,1 +7875,47,2.1.1.4,0 +7876,148,2.1.1,1 +7876,47,2.1.1.4,0 +7876,80,2.1.1,1 +7877,47,2.1.1.4,0 +7877,85,2.1.1,1 +7879,47,2.1.1.4,0 +7879,148,2.1.1,1 +7879,85,2.1.1,1 +7882,47,2.1.1.4,0 +7882,80,2.1.1,1 +7883,47,2.1.1.4,0 +7883,80,2.1.1,1 +7884,80,2.1.1,1 +7884,47,2.1.1.4,0 +7885,148,2.1.1,1 +7885,47,2.1.1.4,0 +7887,47,2.1.1.4,0 +7887,106,2.1.1,1 +7889,148,2.1.1,1 +7889,47,2.1.1.4,0 +7889,80,2.1.1,1 +7891,85,2.1.1,1 +7891,47,2.1.1.4,0 +7893,47,2.1.1.4,0 +7893,80,2.1.1,1 +7893,85,2.1.1,1 +7894,47,2.1.1.4,0 +7894,148,2.1.1,1 +7895,148,2.1.1,1 +7895,47,2.1.1.4,0 +7897,47,2.1.1.4,0 +7897,80,2.1.1,1 +7897,148,2.1.1,1 +7898,85,2.1.1,1 +7898,47,2.1.1.4,0 +7898,106,2.1.1,1 +7900,47,2.1.1.4,0 +7900,148,2.1.1,1 +7902,81,2.1.2,1 +7902,58,2.1.2,1 +7902,47,2.1.2.1,0 +7903,159,2.1.2,1 +7903,47,2.1.2.1,0 +7904,79,2.1.2,1 +7904,47,2.1.2.1,0 +7905,84,2.1.2,1 +7905,47,2.1.2.1,0 +7906,47,2.1.2.1,0 +7906,58,2.1.2,1 +7907,58,2.1.2,1 +7907,47,2.1.2.1,0 +7908,58,2.1.2,1 +7908,47,2.1.2.1,0 +7909,47,2.1.2.1,0 +7909,84,2.1.2,1 +7910,58,2.1.2,1 +7910,47,2.1.2.1,0 +7911,58,2.1.2,1 +7911,47,2.1.2.1,0 +7914,58,2.1.2,1 +7914,84,2.1.2,1 +7914,47,2.1.2.1,0 +7916,58,2.1.2,1 +7916,47,2.1.2.1,0 +7916,81,2.1.2,1 +7920,47,2.1.2.1,0 +7920,79,2.1.2,1 +7926,47,2.1.2.1,0 +7926,79,2.1.2,1 +7928,159,2.1.2,1 +7928,47,2.1.2.1,0 +7932,47,2.1.2.1,0 +7932,84,2.1.2,1 +7934,84,2.1.2,1 +7934,47,2.1.2.1,0 +7936,47,2.1.2.1,0 +7936,84,2.1.2,1 +7939,47,2.1.2.1,0 +7939,58,2.1.2,1 +7940,84,2.1.2,1 +7940,47,2.1.2.1,0 +7942,47,2.1.2.1,0 +7942,58,2.1.2,1 +7943,81,2.1.2,1 +7943,47,2.1.2.1,0 +7943,58,2.1.2,1 +7944,47,2.1.2.1,0 +7944,79,2.1.2,1 +7944,58,2.1.2,1 +7945,159,2.1.2,1 +7945,47,2.1.2.1,0 +7945,79,2.1.2,1 +7947,79,2.1.2,1 +7947,47,2.1.2.1,0 +7949,159,2.1.2,1 +7949,47,2.1.2.1,0 +7954,58,2.1.2,1 +7954,47,2.1.2.2,0 +7955,47,2.1.2.2,0 +7955,159,2.1.2,1 +7956,58,2.1.2,1 +7956,47,2.1.2.2,0 +7957,47,2.1.2.2,0 +7957,159,2.1.2,1 +7959,47,2.1.2.2,0 +7959,58,2.1.2,1 +7960,47,2.1.2.2,0 +7960,58,2.1.2,1 +7960,159,2.1.2,1 +7960,84,2.1.2,1 +7961,79,2.1.2,1 +7961,47,2.1.2.2,0 +7964,47,2.1.2.2,0 +7964,58,2.1.2,1 +7964,159,2.1.2,1 +7970,58,2.1.2,1 +7970,47,2.1.2.2,0 +7971,84,2.1.2,1 +7971,81,2.1.2,1 +7971,47,2.1.2.2,0 +7972,47,2.1.2.2,0 +7972,81,2.1.2,1 +7973,47,2.1.2.2,0 +7973,79,2.1.2,1 +7973,58,2.1.2,1 +7975,79,2.1.2,1 +7975,47,2.1.2.2,0 +7976,58,2.1.2,1 +7976,47,2.1.2.2,0 +7977,47,2.1.2.2,0 +7977,79,2.1.2,1 +7978,159,2.1.2,1 +7978,47,2.1.2.2,0 +7979,84,2.1.2,1 +7979,47,2.1.2.2,0 +7980,84,2.1.2,1 +7980,47,2.1.2.2,0 +7981,47,2.1.2.2,0 +7981,84,2.1.2,1 +7982,79,2.1.2,1 +7982,47,2.1.2.2,0 +7983,47,2.1.2.2,0 +7983,58,2.1.2,1 +7984,47,2.1.2.2,0 +7984,81,2.1.2,1 +7986,47,2.1.2.2,0 +7986,84,2.1.2,1 +7991,84,2.1.2,1 +7991,47,2.1.2.2,0 +7992,84,2.1.2,1 +7992,47,2.1.2.2,0 +7993,47,2.1.2.2,0 +7993,58,2.1.2,1 +7994,79,2.1.2,1 +7994,47,2.1.2.2,0 +7994,58,2.1.2,1 +7996,47,2.1.2.2,0 +7996,79,2.1.2,1 +7997,47,2.1.2.2,0 +7997,79,2.1.2,1 +8000,84,2.1.2,1 +8000,81,2.1.2,1 +8000,47,2.1.2.2,0 +8001,47,2.1.2.3,0 +8001,79,2.1.2,1 +8004,159,2.1.2,1 +8004,47,2.1.2.3,0 +8005,81,2.1.2,1 +8005,47,2.1.2.3,0 +8006,47,2.1.2.3,0 +8006,84,2.1.2,1 +8007,79,2.1.2,1 +8007,47,2.1.2.3,0 +8008,81,2.1.2,1 +8008,47,2.1.2.3,0 +8009,47,2.1.2.3,0 +8009,58,2.1.2,1 +8010,47,2.1.2.3,0 +8010,79,2.1.2,1 +8016,81,2.1.2,1 +8016,47,2.1.2.3,0 +8019,79,2.1.2,1 +8019,58,2.1.2,1 +8019,84,2.1.2,1 +8019,47,2.1.2.3,0 +8020,58,2.1.2,1 +8020,47,2.1.2.3,0 +8021,47,2.1.2.3,0 +8021,81,2.1.2,1 +8021,159,2.1.2,1 +8023,47,2.1.2.3,0 +8023,84,2.1.2,1 +8023,79,2.1.2,1 +8024,47,2.1.2.3,0 +8024,58,2.1.2,1 +8024,81,2.1.2,1 +8026,84,2.1.2,1 +8026,47,2.1.2.3,0 +8026,81,2.1.2,1 +8027,47,2.1.2.3,0 +8027,79,2.1.2,1 +8028,79,2.1.2,1 +8028,47,2.1.2.3,0 +8029,81,2.1.2,1 +8029,47,2.1.2.3,0 +8031,47,2.1.2.3,0 +8031,79,2.1.2,1 +8031,159,2.1.2,1 +8032,159,2.1.2,1 +8032,47,2.1.2.3,0 +8032,58,2.1.2,1 +8034,81,2.1.2,1 +8034,47,2.1.2.3,0 +8035,79,2.1.2,1 +8035,159,2.1.2,1 +8035,47,2.1.2.3,0 +8035,84,2.1.2,1 +8037,47,2.1.2.3,0 +8037,84,2.1.2,1 +8037,159,2.1.2,1 +8038,47,2.1.2.3,0 +8038,84,2.1.2,1 +8039,47,2.1.2.3,0 +8039,58,2.1.2,1 +8040,81,2.1.2,1 +8040,47,2.1.2.3,0 +8041,47,2.1.2.3,0 +8041,58,2.1.2,1 +8042,159,2.1.2,1 +8042,47,2.1.2.3,0 +8046,47,2.1.2.3,0 +8046,79,2.1.2,1 +8047,47,2.1.2.3,0 +8047,81,2.1.2,1 +8048,47,2.1.2.3,0 +8048,81,2.1.2,1 +8048,159,2.1.2,1 +8050,47,2.1.2.3,0 +8050,159,2.1.2,1 +8052,47,2.1.2.4,0 +8052,84,2.1.2,1 +8053,81,2.1.2,1 +8053,79,2.1.2,1 +8053,47,2.1.2.4,0 +8053,58,2.1.2,1 +8055,58,2.1.2,1 +8055,47,2.1.2.4,0 +8056,84,2.1.2,1 +8056,79,2.1.2,1 +8056,47,2.1.2.4,0 +8057,47,2.1.2.4,0 +8057,84,2.1.2,1 +8059,58,2.1.2,1 +8059,47,2.1.2.4,0 +8061,81,2.1.2,1 +8061,47,2.1.2.4,0 +8064,84,2.1.2,1 +8064,47,2.1.2.4,0 +8066,47,2.1.2.4,0 +8066,79,2.1.2,1 +8066,81,2.1.2,1 +8066,159,2.1.2,1 +8069,159,2.1.2,1 +8069,47,2.1.2.4,0 +8070,58,2.1.2,1 +8070,47,2.1.2.4,0 +8071,47,2.1.2.4,0 +8071,79,2.1.2,1 +8071,84,2.1.2,1 +8071,81,2.1.2,1 +8072,159,2.1.2,1 +8072,47,2.1.2.4,0 +8076,84,2.1.2,1 +8076,47,2.1.2.4,0 +8076,81,2.1.2,1 +8077,84,2.1.2,1 +8077,47,2.1.2.4,0 +8078,79,2.1.2,1 +8078,47,2.1.2.4,0 +8079,47,2.1.2.4,0 +8079,79,2.1.2,1 +8081,84,2.1.2,1 +8081,47,2.1.2.4,0 +8081,159,2.1.2,1 +8082,79,2.1.2,1 +8082,47,2.1.2.4,0 +8083,47,2.1.2.4,0 +8083,58,2.1.2,1 +8084,47,2.1.2.4,0 +8084,79,2.1.2,1 +8085,159,2.1.2,1 +8085,79,2.1.2,1 +8085,84,2.1.2,1 +8085,47,2.1.2.4,0 +8087,47,2.1.2.4,0 +8087,159,2.1.2,1 +8089,81,2.1.2,1 +8089,47,2.1.2.4,0 +8091,81,2.1.2,1 +8091,47,2.1.2.4,0 +8092,159,2.1.2,1 +8092,47,2.1.2.4,0 +8093,84,2.1.2,1 +8093,47,2.1.2.4,0 +8093,79,2.1.2,1 +8094,84,2.1.2,1 +8094,47,2.1.2.4,0 +8094,58,2.1.2,1 +8097,79,2.1.2,1 +8097,47,2.1.2.4,0 +8097,159,2.1.2,1 +8099,84,2.1.2,1 +8099,81,2.1.2,1 +8099,47,2.1.2.4,0 +8102,47,2.1.3.6,0 +8102,108,2.1.3,1 +8104,148,2.1.3,1 +8104,47,2.1.3.6,0 +8104,74,2.1.3,1 +8105,106,2.1.3,1 +8105,74,2.1.3,1 +8105,47,2.1.3.6,0 +8106,73,2.1.3,1 +8106,97,2.1.3,1 +8106,47,2.1.3.6,0 +8107,126,2.1.3,1 +8107,47,2.1.3.6,0 +8107,73,2.1.3,1 +8107,148,2.1.3,1 +8108,73,2.1.3,1 +8108,106,2.1.3,1 +8108,47,2.1.3.6,0 +8109,47,2.1.3.6,0 +8109,73,2.1.3,1 +8110,148,2.1.3,1 +8110,47,2.1.3.6,0 +8110,108,2.1.3,1 +8111,47,2.1.3.6,0 +8111,106,2.1.3,1 +8111,148,2.1.3,1 +8114,47,2.1.3.6,0 +8114,73,2.1.3,1 +8114,106,2.1.3,1 +8114,97,2.1.3,1 +8115,106,2.1.3,1 +8115,47,2.1.3.6,0 +8116,106,2.1.3,1 +8116,47,2.1.3.6,0 +8119,108,2.1.3,1 +8119,47,2.1.3.6,0 +8120,74,2.1.3,1 +8120,47,2.1.3.6,0 +8122,47,2.1.3.6,0 +8122,126,2.1.3,1 +8122,74,2.1.3,1 +8123,74,2.1.3,1 +8123,47,2.1.3.6,0 +8123,97,2.1.3,1 +8126,73,2.1.3,1 +8126,74,2.1.3,1 +8126,47,2.1.3.6,0 +8128,47,2.1.3.6,0 +8128,73,2.1.3,1 +8129,74,2.1.3,1 +8129,47,2.1.3.6,0 +8131,47,2.1.3.6,0 +8131,97,2.1.3,1 +8131,148,2.1.3,1 +8132,108,2.1.3,1 +8132,47,2.1.3.6,0 +8132,106,2.1.3,1 +8133,47,2.1.3.6,0 +8133,73,2.1.3,1 +8134,47,2.1.3.6,0 +8134,126,2.1.3,1 +8135,74,2.1.3,1 +8135,47,2.1.3.6,0 +8136,126,2.1.3,1 +8136,106,2.1.3,1 +8136,47,2.1.3.6,0 +8136,148,2.1.3,1 +8136,97,2.1.3,1 +8137,47,2.1.3.6,0 +8137,108,2.1.3,1 +8138,97,2.1.3,1 +8138,47,2.1.3.6,0 +8139,47,2.1.3.6,0 +8139,126,2.1.3,1 +8139,108,2.1.3,1 +8139,73,2.1.3,1 +8141,97,2.1.3,1 +8141,47,2.1.3.6,0 +8142,108,2.1.3,1 +8142,47,2.1.3.6,0 +8142,73,2.1.3,1 +8143,47,2.1.3.6,0 +8143,108,2.1.3,1 +8144,47,2.1.3.6,0 +8144,106,2.1.3,1 +8145,47,2.1.3.6,0 +8145,106,2.1.3,1 +8146,47,2.1.3.6,0 +8146,108,2.1.3,1 +8148,47,2.1.3.6,0 +8148,148,2.1.3,1 +8151,126,1.2,1 +8151,48,1.2.2,0 +8152,48,1.2.2,0 +8152,97,1.2,1 +8154,106,1.2,1 +8154,48,1.2.2,0 +8155,97,1.2,1 +8155,106,1.2,1 +8155,48,1.2.2,0 +8156,106,1.2,1 +8156,48,1.2.2,0 +8156,67,1.2,1 +8157,106,1.2,1 +8157,48,1.2.2,0 +8158,48,1.2.2,0 +8158,67,1.2,1 +8159,67,1.2,1 +8159,48,1.2.2,0 +8160,106,1.2,1 +8160,48,1.2.2,0 +8161,106,1.2,1 +8161,126,1.2,1 +8161,97,1.2,1 +8161,48,1.2.2,0 +8164,48,1.2.2,0 +8164,97,1.2,1 +8166,67,1.2,1 +8166,126,1.2,1 +8166,48,1.2.2,0 +8169,106,1.2,1 +8169,48,1.2.2,0 +8169,126,1.2,1 +8170,48,1.2.2,0 +8170,126,1.2,1 +8172,106,1.2,1 +8172,48,1.2.2,0 +8173,126,1.2,1 +8173,48,1.2.2,0 +8173,97,1.2,1 +8173,106,1.2,1 +8174,126,1.2,1 +8174,48,1.2.2,0 +8176,48,1.2.2,0 +8176,97,1.2,1 +8176,67,1.2,1 +8177,48,1.2.2,0 +8177,126,1.2,1 +8178,48,1.2.2,0 +8178,67,1.2,1 +8179,48,1.2.2,0 +8179,67,1.2,1 +8181,106,1.2,1 +8181,48,1.2.2,0 +8182,48,1.2.2,0 +8182,67,1.2,1 +8183,97,1.2,1 +8183,48,1.2.2,0 +8184,67,1.2,1 +8184,48,1.2.2,0 +8185,106,1.2,1 +8185,48,1.2.2,0 +8186,126,1.2,1 +8186,106,1.2,1 +8186,48,1.2.2,0 +8187,48,1.2.2,0 +8187,97,1.2,1 +8188,106,1.2,1 +8188,48,1.2.2,0 +8189,48,1.2.2,0 +8189,106,1.2,1 +8190,126,1.2,1 +8190,48,1.2.2,0 +8191,67,1.2,1 +8191,48,1.2.2,0 +8193,126,1.2,1 +8193,48,1.2.2,0 +8194,106,1.2,1 +8194,48,1.2.2,0 +8197,48,1.2.2,0 +8197,126,1.2,1 +8198,67,1.2,1 +8198,97,1.2,1 +8198,48,1.2.2,0 +8199,106,1.2,1 +8199,48,1.2.2,0 +8200,48,1.2.2,0 +8200,97,1.2,1 +8202,100,1.3.1,1 +8202,49,1.3.1.1,0 +8203,93,1.3.1,1 +8203,49,1.3.1.1,0 +8206,49,1.3.1.1,0 +8206,39,1.3.1,1 +8207,93,1.3.1,1 +8207,49,1.3.1.1,0 +8208,85,1.3.1,1 +8208,49,1.3.1.1,0 +8208,100,1.3.1,1 +8209,49,1.3.1.1,0 +8209,93,1.3.1,1 +8210,99,1.3.1,1 +8210,49,1.3.1.1,0 +8211,49,1.3.1.1,0 +8211,93,1.3.1,1 +8214,93,1.3.1,1 +8214,49,1.3.1.1,0 +8216,49,1.3.1.1,0 +8216,99,1.3.1,1 +8219,100,1.3.1,1 +8219,49,1.3.1.1,0 +8220,93,1.3.1,1 +8220,49,1.3.1.1,0 +8222,93,1.3.1,1 +8222,39,1.3.1,1 +8222,49,1.3.1.1,0 +8226,100,1.3.1,1 +8226,49,1.3.1.1,0 +8229,49,1.3.1.1,0 +8229,93,1.3.1,1 +8229,39,1.3.1,1 +8231,39,1.3.1,1 +8231,49,1.3.1.1,0 +8232,85,1.3.1,1 +8232,49,1.3.1.1,0 +8233,49,1.3.1.1,0 +8233,100,1.3.1,1 +8234,39,1.3.1,1 +8234,49,1.3.1.1,0 +8235,85,1.3.1,1 +8235,49,1.3.1.1,0 +8235,99,1.3.1,1 +8236,93,1.3.1,1 +8236,99,1.3.1,1 +8236,49,1.3.1.1,0 +8237,99,1.3.1,1 +8237,49,1.3.1.1,0 +8237,100,1.3.1,1 +8239,85,1.3.1,1 +8239,49,1.3.1.1,0 +8241,49,1.3.1.1,0 +8241,100,1.3.1,1 +8243,49,1.3.1.1,0 +8243,93,1.3.1,1 +8244,49,1.3.1.1,0 +8244,100,1.3.1,1 +8247,39,1.3.1,1 +8247,49,1.3.1.1,0 +8248,49,1.3.1.1,0 +8248,39,1.3.1,1 +8248,85,1.3.1,1 +8248,93,1.3.1,1 +8249,93,1.3.1,1 +8249,49,1.3.1.1,0 +8249,99,1.3.1,1 +8251,49,1.3.1.4,0 +8251,99,1.3.1,1 +8252,39,1.3.1,1 +8252,49,1.3.1.4,0 +8252,85,1.3.1,1 +8253,49,1.3.1.4,0 +8253,100,1.3.1,1 +8254,39,1.3.1,1 +8254,49,1.3.1.4,0 +8255,49,1.3.1.4,0 +8255,85,1.3.1,1 +8256,99,1.3.1,1 +8256,49,1.3.1.4,0 +8257,93,1.3.1,1 +8257,49,1.3.1.4,0 +8258,85,1.3.1,1 +8258,49,1.3.1.4,0 +8259,49,1.3.1.4,0 +8259,93,1.3.1,1 +8260,49,1.3.1.4,0 +8260,39,1.3.1,1 +8260,100,1.3.1,1 +8260,99,1.3.1,1 +8261,100,1.3.1,1 +8261,49,1.3.1.4,0 +8261,39,1.3.1,1 +8264,49,1.3.1.4,0 +8264,93,1.3.1,1 +8264,39,1.3.1,1 +8269,49,1.3.1.4,0 +8269,93,1.3.1,1 +8270,39,1.3.1,1 +8270,49,1.3.1.4,0 +8272,49,1.3.1.4,0 +8272,39,1.3.1,1 +8273,49,1.3.1.4,0 +8273,93,1.3.1,1 +8273,85,1.3.1,1 +8275,49,1.3.1.4,0 +8275,93,1.3.1,1 +8276,100,1.3.1,1 +8276,49,1.3.1.4,0 +8278,49,1.3.1.4,0 +8278,85,1.3.1,1 +8279,93,1.3.1,1 +8279,49,1.3.1.4,0 +8281,39,1.3.1,1 +8281,49,1.3.1.4,0 +8282,99,1.3.1,1 +8282,49,1.3.1.4,0 +8283,39,1.3.1,1 +8283,49,1.3.1.4,0 +8285,100,1.3.1,1 +8285,49,1.3.1.4,0 +8289,85,1.3.1,1 +8289,49,1.3.1.4,0 +8290,99,1.3.1,1 +8290,49,1.3.1.4,0 +8292,39,1.3.1,1 +8292,49,1.3.1.4,0 +8292,99,1.3.1,1 +8293,49,1.3.1.4,0 +8293,85,1.3.1,1 +8293,93,1.3.1,1 +8294,49,1.3.1.4,0 +8294,85,1.3.1,1 +8294,99,1.3.1,1 +8295,100,1.3.1,1 +8295,99,1.3.1,1 +8295,49,1.3.1.4,0 +8297,49,1.3.1.4,0 +8297,99,1.3.1,1 +8298,85,1.3.1,1 +8298,99,1.3.1,1 +8298,49,1.3.1.4,0 +8298,100,1.3.1,1 +8300,99,1.3.1,1 +8300,100,1.3.1,1 +8300,49,1.3.1.4,0 +8301,49,1.3.1.6,0 +8301,100,1.3.1,1 +8302,49,1.3.1.6,0 +8302,93,1.3.1,1 +8306,49,1.3.1.6,0 +8306,93,1.3.1,1 +8307,49,1.3.1.6,0 +8307,85,1.3.1,1 +8308,93,1.3.1,1 +8308,49,1.3.1.6,0 +8309,49,1.3.1.6,0 +8309,99,1.3.1,1 +8310,49,1.3.1.6,0 +8310,93,1.3.1,1 +8311,39,1.3.1,1 +8311,49,1.3.1.6,0 +8311,100,1.3.1,1 +8314,85,1.3.1,1 +8314,99,1.3.1,1 +8314,49,1.3.1.6,0 +8316,49,1.3.1.6,0 +8316,39,1.3.1,1 +8317,49,1.3.1.6,0 +8317,93,1.3.1,1 +8320,99,1.3.1,1 +8320,49,1.3.1.6,0 +8320,29,1.3,2 +8320,85,1.3.1,1 +8320,100,1.3.1,1 +8322,49,1.3.1.6,0 +8322,39,1.3.1,1 +8323,49,1.3.1.6,0 +8323,93,1.3.1,1 +8323,99,1.3.1,1 +8323,85,1.3.1,1 +8324,93,1.3.1,1 +8324,39,1.3.1,1 +8324,49,1.3.1.6,0 +8326,85,1.3.1,1 +8326,49,1.3.1.6,0 +8328,93,1.3.1,1 +8328,49,1.3.1.6,0 +8331,93,1.3.1,1 +8331,39,1.3.1,1 +8331,49,1.3.1.6,0 +8332,49,1.3.1.6,0 +8332,100,1.3.1,1 +8332,99,1.3.1,1 +8333,39,1.3.1,1 +8333,49,1.3.1.6,0 +8335,93,1.3.1,1 +8335,49,1.3.1.6,0 +8336,93,1.3.1,1 +8336,85,1.3.1,1 +8336,49,1.3.1.6,0 +8337,100,1.3.1,1 +8337,49,1.3.1.6,0 +8338,85,1.3.1,1 +8338,106,1.3,2 +8338,93,1.3.1,1 +8338,49,1.3.1.6,0 +8338,29,1.3,2 +8339,85,1.3.1,1 +8339,49,1.3.1.6,0 +8340,93,1.3.1,1 +8340,49,1.3.1.6,0 +8341,99,1.3.1,1 +8341,39,1.3.1,1 +8341,49,1.3.1.6,0 +8342,93,1.3.1,1 +8342,39,1.3.1,1 +8342,49,1.3.1.6,0 +8343,49,1.3.1.6,0 +8343,85,1.3.1,1 +8344,49,1.3.1.6,0 +8344,93,1.3.1,1 +8347,49,1.3.1.6,0 +8347,39,1.3.1,1 +8348,85,1.3.1,1 +8348,49,1.3.1.6,0 +8348,93,1.3.1,1 +8350,100,1.3.1,1 +8350,49,1.3.1.6,0 +8352,49,1.3.3.1,0 +8352,75,1.3.3,1 +8354,49,1.3.3.1,0 +8354,99,1.3.3,1 +8357,49,1.3.3.1,0 +8357,75,1.3.3,1 +8358,49,1.3.3.1,0 +8358,97,1.3.3,1 +8359,49,1.3.3.1,0 +8359,75,1.3.3,1 +8361,49,1.3.3.1,0 +8361,75,1.3.3,1 +8364,75,1.3.3,1 +8364,49,1.3.3.1,0 +8366,49,1.3.3.1,0 +8366,75,1.3.3,1 +8366,99,1.3.3,1 +8370,75,1.3.3,1 +8370,49,1.3.3.1,0 +8372,97,1.3.3,1 +8372,49,1.3.3.1,0 +8373,99,1.3.3,1 +8373,49,1.3.3.1,0 +8376,49,1.3.3.1,0 +8376,75,1.3.3,1 +8379,75,1.3.3,1 +8379,99,1.3.3,1 +8379,49,1.3.3.1,0 +8382,97,1.3.3,1 +8382,49,1.3.3.1,0 +8384,49,1.3.3.1,0 +8384,97,1.3.3,1 +8386,75,1.3.3,1 +8386,49,1.3.3.1,0 +8389,97,1.3.3,1 +8389,49,1.3.3.1,0 +8391,75,1.3.3,1 +8391,49,1.3.3.1,0 +8393,49,1.3.3.1,0 +8393,75,1.3.3,1 +8394,49,1.3.3.1,0 +8394,97,1.3.3,1 +8398,99,1.3.3,1 +8398,49,1.3.3.1,0 +8401,49,2.1.2.1,0 +8401,79,2.1.2,1 +8402,84,2.1.2,1 +8402,49,2.1.2.1,0 +8404,49,2.1.2.1,0 +8404,81,2.1.2,1 +8405,58,2.1.2,1 +8405,159,2.1.2,1 +8405,49,2.1.2.1,0 +8406,58,2.1.2,1 +8406,49,2.1.2.1,0 +8407,49,2.1.2.1,0 +8407,84,2.1.2,1 +8408,49,2.1.2.1,0 +8408,159,2.1.2,1 +8408,58,2.1.2,1 +8409,49,2.1.2.1,0 +8409,58,2.1.2,1 +8411,49,2.1.2.1,0 +8411,81,2.1.2,1 +8416,49,2.1.2.1,0 +8416,79,2.1.2,1 +8420,49,2.1.2.1,0 +8420,79,2.1.2,1 +8422,49,2.1.2.1,0 +8422,58,2.1.2,1 +8423,49,2.1.2.1,0 +8423,58,2.1.2,1 +8425,49,2.1.2.1,0 +8425,159,2.1.2,1 +8426,84,2.1.2,1 +8426,58,2.1.2,1 +8426,49,2.1.2.1,0 +8428,49,2.1.2.1,0 +8428,79,2.1.2,1 +8431,81,2.1.2,1 +8431,49,2.1.2.1,0 +8432,49,2.1.2.1,0 +8432,58,2.1.2,1 +8433,49,2.1.2.1,0 +8433,58,2.1.2,1 +8436,159,2.1.2,1 +8436,49,2.1.2.1,0 +8436,79,2.1.2,1 +8437,79,2.1.2,1 +8437,49,2.1.2.1,0 +8442,159,2.1.2,1 +8442,49,2.1.2.1,0 +8442,79,2.1.2,1 +8443,49,2.1.2.1,0 +8443,58,2.1.2,1 +8443,81,2.1.2,1 +8444,49,2.1.2.1,0 +8444,159,2.1.2,1 +8447,49,2.1.2.1,0 +8447,58,2.1.2,1 +8448,49,2.1.2.1,0 +8448,58,2.1.2,1 +8451,49,2.1.2.2,0 +8451,58,2.1.2,1 +8452,81,2.1.2,1 +8452,159,2.1.2,1 +8452,49,2.1.2.2,0 +8453,79,2.1.2,1 +8453,49,2.1.2.2,0 +8454,49,2.1.2.2,0 +8454,79,2.1.2,1 +8455,81,2.1.2,1 +8455,49,2.1.2.2,0 +8455,84,2.1.2,1 +8457,49,2.1.2.2,0 +8457,84,2.1.2,1 +8458,49,2.1.2.2,0 +8458,84,2.1.2,1 +8466,49,2.1.2.2,0 +8466,58,2.1.2,1 +8466,159,2.1.2,1 +8470,84,2.1.2,1 +8470,49,2.1.2.2,0 +8472,159,2.1.2,1 +8472,49,2.1.2.2,0 +8473,159,2.1.2,1 +8473,49,2.1.2.2,0 +8475,58,2.1.2,1 +8475,49,2.1.2.2,0 +8476,159,2.1.2,1 +8476,49,2.1.2.2,0 +8476,58,2.1.2,1 +8478,159,2.1.2,1 +8478,49,2.1.2.2,0 +8479,49,2.1.2.2,0 +8479,58,2.1.2,1 +8479,159,2.1.2,1 +8481,49,2.1.2.2,0 +8481,159,2.1.2,1 +8482,49,2.1.2.2,0 +8482,84,2.1.2,1 +8483,49,2.1.2.2,0 +8483,58,2.1.2,1 +8485,49,2.1.2.2,0 +8485,159,2.1.2,1 +8486,49,2.1.2.2,0 +8486,58,2.1.2,1 +8489,58,2.1.2,1 +8489,49,2.1.2.2,0 +8491,49,2.1.2.2,0 +8491,58,2.1.2,1 +8494,49,2.1.2.2,0 +8494,58,2.1.2,1 +8497,49,2.1.2.2,0 +8497,159,2.1.2,1 +8498,79,2.1.2,1 +8498,49,2.1.2.2,0 +8502,58,2.1.2,1 +8502,49,2.1.2.3,0 +8502,84,2.1.2,1 +8503,81,2.1.2,1 +8503,79,2.1.2,1 +8503,49,2.1.2.3,0 +8504,58,2.1.2,1 +8504,49,2.1.2.3,0 +8505,84,2.1.2,1 +8505,58,2.1.2,1 +8505,49,2.1.2.3,0 +8507,49,2.1.2.3,0 +8507,58,2.1.2,1 +8508,58,2.1.2,1 +8508,49,2.1.2.3,0 +8509,49,2.1.2.3,0 +8509,159,2.1.2,1 +8510,81,2.1.2,1 +8510,49,2.1.2.3,0 +8511,49,2.1.2.3,0 +8511,159,2.1.2,1 +8511,81,2.1.2,1 +8514,159,2.1.2,1 +8514,49,2.1.2.3,0 +8516,58,2.1.2,1 +8516,49,2.1.2.3,0 +8516,81,2.1.2,1 +8516,159,2.1.2,1 +8520,84,2.1.2,1 +8520,49,2.1.2.3,0 +8522,81,2.1.2,1 +8522,49,2.1.2.3,0 +8523,159,2.1.2,1 +8523,49,2.1.2.3,0 +8525,79,2.1.2,1 +8525,49,2.1.2.3,0 +8528,49,2.1.2.3,0 +8528,84,2.1.2,1 +8531,84,2.1.2,1 +8531,49,2.1.2.3,0 +8532,49,2.1.2.3,0 +8532,58,2.1.2,1 +8533,49,2.1.2.3,0 +8533,58,2.1.2,1 +8534,58,2.1.2,1 +8534,49,2.1.2.3,0 +8536,49,2.1.2.3,0 +8536,79,2.1.2,1 +8536,84,2.1.2,1 +8536,81,2.1.2,1 +8536,58,2.1.2,1 +8539,84,2.1.2,1 +8539,49,2.1.2.3,0 +8541,49,2.1.2.3,0 +8541,84,2.1.2,1 +8542,49,2.1.2.3,0 +8542,159,2.1.2,1 +8543,49,2.1.2.3,0 +8543,81,2.1.2,1 +8543,58,2.1.2,1 +8544,79,2.1.2,1 +8544,49,2.1.2.3,0 +8544,159,2.1.2,1 +8547,159,2.1.2,1 +8547,49,2.1.2.3,0 +8548,49,2.1.2.3,0 +8548,58,2.1.2,1 +8549,49,2.1.2.3,0 +8549,159,2.1.2,1 +8550,84,2.1.2,1 +8550,81,2.1.2,1 +8550,49,2.1.2.3,0 +8552,49,2.1.2.4,0 +8552,81,2.1.2,1 +8554,49,2.1.2.4,0 +8554,79,2.1.2,1 +8555,81,2.1.2,1 +8555,49,2.1.2.4,0 +8557,49,2.1.2.4,0 +8557,81,2.1.2,1 +8558,58,2.1.2,1 +8558,49,2.1.2.4,0 +8559,49,2.1.2.4,0 +8559,159,2.1.2,1 +8560,58,2.1.2,1 +8560,49,2.1.2.4,0 +8561,49,2.1.2.4,0 +8561,159,2.1.2,1 +8564,81,2.1.2,1 +8564,49,2.1.2.4,0 +8566,49,2.1.2.4,0 +8566,58,2.1.2,1 +8570,84,2.1.2,1 +8570,49,2.1.2.4,0 +8572,81,2.1.2,1 +8572,49,2.1.2.4,0 +8573,49,2.1.2.4,0 +8573,79,2.1.2,1 +8575,58,2.1.2,1 +8575,49,2.1.2.4,0 +8582,159,2.1.2,1 +8582,49,2.1.2.4,0 +8582,58,2.1.2,1 +8583,49,2.1.2.4,0 +8583,58,2.1.2,1 +8586,84,2.1.2,1 +8586,49,2.1.2.4,0 +8589,81,2.1.2,1 +8589,49,2.1.2.4,0 +8590,81,2.1.2,1 +8590,84,2.1.2,1 +8590,49,2.1.2.4,0 +8592,49,2.1.2.4,0 +8592,84,2.1.2,1 +8593,58,2.1.2,1 +8593,49,2.1.2.4,0 +8593,159,2.1.2,1 +8594,49,2.1.2.4,0 +8594,79,2.1.2,1 +8598,49,2.1.2.4,0 +8598,159,2.1.2,1 +8600,84,2.1.2,1 +8600,49,2.1.2.4,0 +8600,159,2.1.2,1 +8601,50,1.3.1.5,0 +8601,100,1.3.1,1 +8602,85,1.3.1,1 +8602,93,1.3.1,1 +8602,29,1.3,2 +8602,99,1.3.1,1 +8602,50,1.3.1.5,0 +8603,99,1.3.1,1 +8603,29,1.3,2 +8603,50,1.3.1.5,0 +8603,39,1.3.1,1 +8603,93,1.3.1,1 +8603,85,1.3.1,1 +8604,50,1.3.1.5,0 +8604,93,1.3.1,1 +8605,93,1.3.1,1 +8605,39,1.3.1,1 +8605,50,1.3.1.5,0 +8605,100,1.3.1,1 +8606,99,1.3.1,1 +8606,39,1.3.1,1 +8606,93,1.3.1,1 +8606,100,1.3.1,1 +8606,50,1.3.1.5,0 +8607,50,1.3.1.5,0 +8607,85,1.3.1,1 +8608,39,1.3.1,1 +8608,99,1.3.1,1 +8608,50,1.3.1.5,0 +8609,50,1.3.1.5,0 +8609,85,1.3.1,1 +8610,85,1.3.1,1 +8610,50,1.3.1.5,0 +8611,85,1.3.1,1 +8611,106,1.3,2 +8611,29,1.3,2 +8611,100,1.3.1,1 +8611,93,1.3.1,1 +8611,50,1.3.1.5,0 +8611,170,1,3 +8611,39,1.3.1,1 +8612,99,1.3.1,1 +8612,50,1.3.1.5,0 +8614,50,1.3.1.5,0 +8614,100,1.3.1,1 +8614,93,1.3.1,1 +8614,85,1.3.1,1 +8616,100,1.3.1,1 +8616,50,1.3.1.5,0 +8616,99,1.3.1,1 +8616,93,1.3.1,1 +8617,100,1.3.1,1 +8617,50,1.3.1.5,0 +8619,99,1.3.1,1 +8619,93,1.3.1,1 +8619,50,1.3.1.5,0 +8619,100,1.3.1,1 +8620,50,1.3.1.5,0 +8620,39,1.3.1,1 +8621,100,1.3.1,1 +8621,50,1.3.1.5,0 +8622,100,1.3.1,1 +8622,50,1.3.1.5,0 +8622,85,1.3.1,1 +8623,50,1.3.1.5,0 +8623,85,1.3.1,1 +8624,93,1.3.1,1 +8624,50,1.3.1.5,0 +8625,39,1.3.1,1 +8625,50,1.3.1.5,0 +8626,39,1.3.1,1 +8626,50,1.3.1.5,0 +8626,99,1.3.1,1 +8627,100,1.3.1,1 +8627,50,1.3.1.5,0 +8628,50,1.3.1.5,0 +8628,85,1.3.1,1 +8629,39,1.3.1,1 +8629,99,1.3.1,1 +8629,50,1.3.1.5,0 +8630,50,1.3.1.5,0 +8630,99,1.3.1,1 +8631,85,1.3.1,1 +8631,50,1.3.1.5,0 +8631,100,1.3.1,1 +8631,39,1.3.1,1 +8631,106,1.3,2 +8631,29,1.3,2 +8632,93,1.3.1,1 +8632,50,1.3.1.5,0 +8632,85,1.3.1,1 +8633,39,1.3.1,1 +8633,50,1.3.1.5,0 +8634,93,1.3.1,1 +8634,50,1.3.1.5,0 +8635,85,1.3.1,1 +8635,50,1.3.1.5,0 +8635,100,1.3.1,1 +8635,93,1.3.1,1 +8636,93,1.3.1,1 +8636,50,1.3.1.5,0 +8636,99,1.3.1,1 +8636,85,1.3.1,1 +8637,100,1.3.1,1 +8637,50,1.3.1.5,0 +8637,99,1.3.1,1 +8639,50,1.3.1.5,0 +8639,99,1.3.1,1 +8639,39,1.3.1,1 +8640,50,1.3.1.5,0 +8640,93,1.3.1,1 +8640,99,1.3.1,1 +8640,85,1.3.1,1 +8641,50,1.3.1.5,0 +8641,93,1.3.1,1 +8641,100,1.3.1,1 +8642,93,1.3.1,1 +8642,100,1.3.1,1 +8642,50,1.3.1.5,0 +8643,39,1.3.1,1 +8643,100,1.3.1,1 +8643,93,1.3.1,1 +8643,50,1.3.1.5,0 +8644,99,1.3.1,1 +8644,93,1.3.1,1 +8644,50,1.3.1.5,0 +8646,100,1.3.1,1 +8646,50,1.3.1.5,0 +8647,100,1.3.1,1 +8647,50,1.3.1.5,0 +8647,85,1.3.1,1 +8648,85,1.3.1,1 +8648,50,1.3.1.5,0 +8648,100,1.3.1,1 +8648,93,1.3.1,1 +8649,50,1.3.1.5,0 +8649,100,1.3.1,1 +8650,99,1.3.1,1 +8650,50,1.3.1.5,0 +8652,51,1.4.2.1,0 +8652,142,1.4.2,1 +8654,142,1.4.2,1 +8654,51,1.4.2.1,0 +8655,142,1.4.2,1 +8655,51,1.4.2.1,0 +8656,142,1.4.2,1 +8656,51,1.4.2.1,0 +8657,51,1.4.2.1,0 +8657,142,1.4.2,1 +8658,51,1.4.2.1,0 +8658,142,1.4.2,1 +8659,51,1.4.2.1,0 +8659,142,1.4.2,1 +8660,51,1.4.2.1,0 +8660,142,1.4.2,1 +8661,142,1.4.2,1 +8661,51,1.4.2.1,0 +8664,51,1.4.2.1,0 +8664,142,1.4.2,1 +8666,142,1.4.2,1 +8666,51,1.4.2.1,0 +8670,51,1.4.2.1,0 +8670,142,1.4.2,1 +8672,51,1.4.2.1,0 +8672,142,1.4.2,1 +8673,51,1.4.2.1,0 +8673,142,1.4.2,1 +8676,142,1.4.2,1 +8676,51,1.4.2.1,0 +8678,51,1.4.2.1,0 +8678,142,1.4.2,1 +8679,51,1.4.2.1,0 +8679,142,1.4.2,1 +8681,51,1.4.2.1,0 +8681,142,1.4.2,1 +8682,51,1.4.2.1,0 +8682,142,1.4.2,1 +8683,142,1.4.2,1 +8683,51,1.4.2.1,0 +8684,142,1.4.2,1 +8684,51,1.4.2.1,0 +8686,142,1.4.2,1 +8686,51,1.4.2.1,0 +8689,51,1.4.2.1,0 +8689,142,1.4.2,1 +8691,142,1.4.2,1 +8691,51,1.4.2.1,0 +8693,142,1.4.2,1 +8693,51,1.4.2.1,0 +8694,142,1.4.2,1 +8694,51,1.4.2.1,0 +8697,142,1.4.2,1 +8697,51,1.4.2.1,0 +8698,142,1.4.2,1 +8698,51,1.4.2.1,0 +8701,170,1,3 +8701,52,1.4.5.5,0 +8701,126,1.4,2 +8701,41,1.4.5,1 +8702,52,1.4.5.5,0 +8702,41,1.4.5,1 +8703,170,1,3 +8703,126,1.4,2 +8703,52,1.4.5.5,0 +8703,41,1.4.5,1 +8704,52,1.4.5.5,0 +8704,41,1.4.5,1 +8705,41,1.4.5,1 +8705,52,1.4.5.5,0 +8706,52,1.4.5.5,0 +8706,41,1.4.5,1 +8707,170,1,3 +8707,41,1.4.5,1 +8707,126,1.4,2 +8707,52,1.4.5.5,0 +8708,41,1.4.5,1 +8708,126,1.4,2 +8708,170,1,3 +8708,52,1.4.5.5,0 +8709,52,1.4.5.5,0 +8709,41,1.4.5,1 +8710,126,1.4,2 +8710,41,1.4.5,1 +8710,52,1.4.5.5,0 +8710,170,1,3 +8711,41,1.4.5,1 +8711,52,1.4.5.5,0 +8714,52,1.4.5.5,0 +8714,170,1,3 +8714,41,1.4.5,1 +8714,126,1.4,2 +8716,126,1.4,2 +8716,52,1.4.5.5,0 +8716,170,1,3 +8716,41,1.4.5,1 +8719,52,1.4.5.5,0 +8719,126,1.4,2 +8719,170,1,3 +8719,41,1.4.5,1 +8720,170,1,3 +8720,52,1.4.5.5,0 +8720,41,1.4.5,1 +8720,126,1.4,2 +8722,41,1.4.5,1 +8722,52,1.4.5.5,0 +8723,52,1.4.5.5,0 +8723,41,1.4.5,1 +8724,52,1.4.5.5,0 +8724,41,1.4.5,1 +8725,52,1.4.5.5,0 +8725,41,1.4.5,1 +8726,41,1.4.5,1 +8726,52,1.4.5.5,0 +8728,52,1.4.5.5,0 +8728,41,1.4.5,1 +8729,41,1.4.5,1 +8729,52,1.4.5.5,0 +8731,126,1.4,2 +8731,170,1,3 +8731,52,1.4.5.5,0 +8731,41,1.4.5,1 +8732,41,1.4.5,1 +8732,52,1.4.5.5,0 +8733,52,1.4.5.5,0 +8733,41,1.4.5,1 +8734,41,1.4.5,1 +8734,52,1.4.5.5,0 +8736,41,1.4.5,1 +8736,170,1,3 +8736,126,1.4,2 +8736,52,1.4.5.5,0 +8739,52,1.4.5.5,0 +8739,41,1.4.5,1 +8741,170,1,3 +8741,126,1.4,2 +8741,41,1.4.5,1 +8741,52,1.4.5.5,0 +8742,52,1.4.5.5,0 +8742,41,1.4.5,1 +8742,126,1.4,2 +8742,170,1,3 +8743,52,1.4.5.5,0 +8743,41,1.4.5,1 +8744,170,1,3 +8744,52,1.4.5.5,0 +8744,41,1.4.5,1 +8744,126,1.4,2 +8747,41,1.4.5,1 +8747,170,1,3 +8747,126,1.4,2 +8747,52,1.4.5.5,0 +8748,126,1.4,2 +8748,170,1,3 +8748,52,1.4.5.5,0 +8748,41,1.4.5,1 +8749,170,1,3 +8749,126,1.4,2 +8749,41,1.4.5,1 +8749,52,1.4.5.5,0 +8756,53,1.4.1.3,0 +8756,157,1.4.1,1 +8757,157,1.4.1,1 +8757,53,1.4.1.3,0 +8759,157,1.4.1,1 +8759,53,1.4.1.3,0 +8761,53,1.4.1.3,0 +8761,157,1.4.1,1 +8770,53,1.4.1.3,0 +8770,157,1.4.1,1 +8772,53,1.4.1.3,0 +8772,157,1.4.1,1 +8776,157,1.4.1,1 +8776,53,1.4.1.3,0 +8784,157,1.4.1,1 +8784,53,1.4.1.3,0 +8792,53,1.4.1.3,0 +8792,157,1.4.1,1 +8797,53,1.4.1.3,0 +8797,157,1.4.1,1 +8798,157,1.4.1,1 +8798,53,1.4.1.3,0 +8801,170,1,3 +8801,53,1.4.1.4,0 +8801,157,1.4.1,1 +8801,126,1.4,2 +8802,157,1.4.1,1 +8802,53,1.4.1.4,0 +8803,157,1.4.1,1 +8803,53,1.4.1.4,0 +8806,53,1.4.1.4,0 +8806,157,1.4.1,1 +8807,53,1.4.1.4,0 +8807,157,1.4.1,1 +8808,126,1.4,2 +8808,157,1.4.1,1 +8808,53,1.4.1.4,0 +8808,170,1,3 +8809,157,1.4.1,1 +8809,53,1.4.1.4,0 +8810,157,1.4.1,1 +8810,53,1.4.1.4,0 +8814,53,1.4.1.4,0 +8814,157,1.4.1,1 +8816,53,1.4.1.4,0 +8816,157,1.4.1,1 +8819,53,1.4.1.4,0 +8819,157,1.4.1,1 +8822,53,1.4.1.4,0 +8822,157,1.4.1,1 +8823,157,1.4.1,1 +8823,53,1.4.1.4,0 +8823,126,1.4,2 +8823,170,1,3 +8824,157,1.4.1,1 +8824,53,1.4.1.4,0 +8828,157,1.4.1,1 +8828,53,1.4.1.4,0 +8829,157,1.4.1,1 +8829,53,1.4.1.4,0 +8831,53,1.4.1.4,0 +8831,157,1.4.1,1 +8833,53,1.4.1.4,0 +8833,157,1.4.1,1 +8836,53,1.4.1.4,0 +8836,157,1.4.1,1 +8839,53,1.4.1.4,0 +8839,157,1.4.1,1 +8842,157,1.4.1,1 +8842,53,1.4.1.4,0 +8843,157,1.4.1,1 +8843,53,1.4.1.4,0 +8844,157,1.4.1,1 +8844,53,1.4.1.4,0 +8847,53,1.4.1.4,0 +8847,157,1.4.1,1 +8851,157,1.4.1,1 +8851,53,1.4.1.5,0 +8852,157,1.4.1,1 +8852,53,1.4.1.5,0 +8853,157,1.4.1,1 +8853,53,1.4.1.5,0 +8854,53,1.4.1.5,0 +8854,157,1.4.1,1 +8855,157,1.4.1,1 +8855,53,1.4.1.5,0 +8856,53,1.4.1.5,0 +8856,157,1.4.1,1 +8858,53,1.4.1.5,0 +8858,157,1.4.1,1 +8859,157,1.4.1,1 +8859,53,1.4.1.5,0 +8860,53,1.4.1.5,0 +8860,157,1.4.1,1 +8861,53,1.4.1.5,0 +8861,157,1.4.1,1 +8864,157,1.4.1,1 +8864,53,1.4.1.5,0 +8869,53,1.4.1.5,0 +8869,157,1.4.1,1 +8873,157,1.4.1,1 +8873,53,1.4.1.5,0 +8874,157,1.4.1,1 +8874,53,1.4.1.5,0 +8875,53,1.4.1.5,0 +8875,157,1.4.1,1 +8876,157,1.4.1,1 +8876,53,1.4.1.5,0 +8881,53,1.4.1.5,0 +8881,157,1.4.1,1 +8882,53,1.4.1.5,0 +8882,157,1.4.1,1 +8886,53,1.4.1.5,0 +8886,157,1.4.1,1 +8889,53,1.4.1.5,0 +8889,157,1.4.1,1 +8891,157,1.4.1,1 +8891,53,1.4.1.5,0 +8892,157,1.4.1,1 +8892,53,1.4.1.5,0 +8893,157,1.4.1,1 +8893,53,1.4.1.5,0 +8894,157,1.4.1,1 +8894,53,1.4.1.5,0 +8897,53,1.4.1.5,0 +8897,157,1.4.1,1 +8898,157,1.4.1,1 +8898,53,1.4.1.5,0 +8901,170,1,3 +8901,53,1.4.2.3,0 +8901,142,1.4.2,1 +8901,126,1.4,2 +8902,53,1.4.2.3,0 +8902,142,1.4.2,1 +8902,170,1,3 +8902,126,1.4,2 +8903,170,1,3 +8903,126,1.4,2 +8903,142,1.4.2,1 +8903,53,1.4.2.3,0 +8904,126,1.4,2 +8904,53,1.4.2.3,0 +8904,142,1.4.2,1 +8904,170,1,3 +8905,53,1.4.2.3,0 +8905,126,1.4,2 +8905,170,1,3 +8905,142,1.4.2,1 +8906,142,1.4.2,1 +8906,126,1.4,2 +8906,53,1.4.2.3,0 +8906,170,1,3 +8907,53,1.4.2.3,0 +8907,170,1,3 +8907,142,1.4.2,1 +8907,126,1.4,2 +8908,142,1.4.2,1 +8908,126,1.4,2 +8908,53,1.4.2.3,0 +8908,170,1,3 +8909,53,1.4.2.3,0 +8909,170,1,3 +8909,126,1.4,2 +8909,142,1.4.2,1 +8910,126,1.4,2 +8910,142,1.4.2,1 +8910,170,1,3 +8910,53,1.4.2.3,0 +8911,142,1.4.2,1 +8911,53,1.4.2.3,0 +8911,126,1.4,2 +8911,170,1,3 +8912,126,1.4,2 +8912,142,1.4.2,1 +8912,53,1.4.2.3,0 +8912,170,1,3 +8913,126,1.4,2 +8913,53,1.4.2.3,0 +8913,170,1,3 +8913,142,1.4.2,1 +8914,142,1.4.2,1 +8914,170,1,3 +8914,53,1.4.2.3,0 +8914,126,1.4,2 +8915,53,1.4.2.3,0 +8915,170,1,3 +8915,126,1.4,2 +8915,142,1.4.2,1 +8916,126,1.4,2 +8916,53,1.4.2.3,0 +8916,142,1.4.2,1 +8916,170,1,3 +8917,53,1.4.2.3,0 +8917,126,1.4,2 +8917,142,1.4.2,1 +8917,170,1,3 +8918,142,1.4.2,1 +8918,170,1,3 +8918,126,1.4,2 +8918,53,1.4.2.3,0 +8919,142,1.4.2,1 +8919,53,1.4.2.3,0 +8919,126,1.4,2 +8919,170,1,3 +8920,53,1.4.2.3,0 +8920,142,1.4.2,1 +8920,170,1,3 +8920,126,1.4,2 +8921,170,1,3 +8921,126,1.4,2 +8921,142,1.4.2,1 +8921,53,1.4.2.3,0 +8922,126,1.4,2 +8922,142,1.4.2,1 +8922,170,1,3 +8922,53,1.4.2.3,0 +8923,142,1.4.2,1 +8923,53,1.4.2.3,0 +8923,126,1.4,2 +8923,170,1,3 +8924,126,1.4,2 +8924,53,1.4.2.3,0 +8924,142,1.4.2,1 +8924,170,1,3 +8925,170,1,3 +8925,53,1.4.2.3,0 +8925,142,1.4.2,1 +8925,126,1.4,2 +8926,126,1.4,2 +8926,142,1.4.2,1 +8926,53,1.4.2.3,0 +8926,170,1,3 +8927,126,1.4,2 +8927,170,1,3 +8927,142,1.4.2,1 +8927,53,1.4.2.3,0 +8928,53,1.4.2.3,0 +8928,142,1.4.2,1 +8928,170,1,3 +8928,126,1.4,2 +8929,170,1,3 +8929,53,1.4.2.3,0 +8929,126,1.4,2 +8929,142,1.4.2,1 +8930,142,1.4.2,1 +8930,170,1,3 +8930,126,1.4,2 +8930,53,1.4.2.3,0 +8931,126,1.4,2 +8931,170,1,3 +8931,53,1.4.2.3,0 +8931,142,1.4.2,1 +8932,126,1.4,2 +8932,53,1.4.2.3,0 +8932,142,1.4.2,1 +8932,170,1,3 +8933,53,1.4.2.3,0 +8933,170,1,3 +8933,142,1.4.2,1 +8933,126,1.4,2 +8934,53,1.4.2.3,0 +8934,142,1.4.2,1 +8934,126,1.4,2 +8934,170,1,3 +8935,53,1.4.2.3,0 +8935,170,1,3 +8935,126,1.4,2 +8935,142,1.4.2,1 +8936,53,1.4.2.3,0 +8936,142,1.4.2,1 +8936,170,1,3 +8936,126,1.4,2 +8937,126,1.4,2 +8937,170,1,3 +8937,142,1.4.2,1 +8937,53,1.4.2.3,0 +8938,53,1.4.2.3,0 +8938,170,1,3 +8938,126,1.4,2 +8938,142,1.4.2,1 +8939,126,1.4,2 +8939,170,1,3 +8939,53,1.4.2.3,0 +8939,142,1.4.2,1 +8940,170,1,3 +8940,142,1.4.2,1 +8940,53,1.4.2.3,0 +8940,126,1.4,2 +8941,170,1,3 +8941,126,1.4,2 +8941,142,1.4.2,1 +8941,53,1.4.2.3,0 +8942,126,1.4,2 +8942,170,1,3 +8942,53,1.4.2.3,0 +8942,142,1.4.2,1 +8943,142,1.4.2,1 +8943,53,1.4.2.3,0 +8943,170,1,3 +8943,126,1.4,2 +8944,170,1,3 +8944,142,1.4.2,1 +8944,53,1.4.2.3,0 +8944,126,1.4,2 +8945,170,1,3 +8945,142,1.4.2,1 +8945,126,1.4,2 +8945,53,1.4.2.3,0 +8946,170,1,3 +8946,142,1.4.2,1 +8946,126,1.4,2 +8946,53,1.4.2.3,0 +8947,53,1.4.2.3,0 +8947,170,1,3 +8947,126,1.4,2 +8947,142,1.4.2,1 +8948,126,1.4,2 +8948,53,1.4.2.3,0 +8948,142,1.4.2,1 +8948,170,1,3 +8949,170,1,3 +8949,53,1.4.2.3,0 +8949,142,1.4.2,1 +8949,126,1.4,2 +8950,170,1,3 +8950,142,1.4.2,1 +8950,126,1.4,2 +8950,53,1.4.2.3,0 +8954,142,1.4.2,1 +8954,53,1.4.2.4,0 +8957,142,1.4.2,1 +8957,53,1.4.2.4,0 +8959,142,1.4.2,1 +8959,53,1.4.2.4,0 +8964,142,1.4.2,1 +8964,53,1.4.2.4,0 +8966,53,1.4.2.4,0 +8966,142,1.4.2,1 +8981,53,1.4.2.4,0 +8981,142,1.4.2,1 +8984,142,1.4.2,1 +8984,53,1.4.2.4,0 +8994,142,1.4.2,1 +8994,53,1.4.2.4,0 +9004,126,1.4,2 +9004,53,1.4.3.3,0 +9004,142,1.4.3,1 +9004,170,1,3 +9005,142,1.4.3,1 +9005,53,1.4.3.3,0 +9006,142,1.4.3,1 +9006,53,1.4.3.3,0 +9007,142,1.4.3,1 +9007,53,1.4.3.3,0 +9008,53,1.4.3.3,0 +9008,142,1.4.3,1 +9009,142,1.4.3,1 +9009,53,1.4.3.3,0 +9010,142,1.4.3,1 +9010,53,1.4.3.3,0 +9016,53,1.4.3.3,0 +9016,142,1.4.3,1 +9020,53,1.4.3.3,0 +9020,142,1.4.3,1 +9022,53,1.4.3.3,0 +9022,142,1.4.3,1 +9023,53,1.4.3.3,0 +9023,142,1.4.3,1 +9024,142,1.4.3,1 +9024,53,1.4.3.3,0 +9025,53,1.4.3.3,0 +9025,142,1.4.3,1 +9026,53,1.4.3.3,0 +9026,142,1.4.3,1 +9031,142,1.4.3,1 +9031,53,1.4.3.3,0 +9032,53,1.4.3.3,0 +9032,142,1.4.3,1 +9034,142,1.4.3,1 +9034,53,1.4.3.3,0 +9039,53,1.4.3.3,0 +9039,142,1.4.3,1 +9041,53,1.4.3.3,0 +9041,142,1.4.3,1 +9042,53,1.4.3.3,0 +9042,142,1.4.3,1 +9043,142,1.4.3,1 +9043,53,1.4.3.3,0 +9048,142,1.4.3,1 +9048,53,1.4.3.3,0 +9051,170,1,3 +9051,53,1.4.3.4,0 +9051,142,1.4.3,1 +9051,126,1.4,2 +9052,53,1.4.3.4,0 +9052,142,1.4.3,1 +9052,170,1,3 +9052,126,1.4,2 +9053,142,1.4.3,1 +9053,53,1.4.3.4,0 +9054,142,1.4.3,1 +9054,53,1.4.3.4,0 +9055,142,1.4.3,1 +9055,53,1.4.3.4,0 +9056,142,1.4.3,1 +9056,53,1.4.3.4,0 +9057,142,1.4.3,1 +9057,53,1.4.3.4,0 +9058,53,1.4.3.4,0 +9058,142,1.4.3,1 +9059,142,1.4.3,1 +9059,53,1.4.3.4,0 +9060,126,1.4,2 +9060,142,1.4.3,1 +9060,170,1,3 +9060,53,1.4.3.4,0 +9061,142,1.4.3,1 +9061,53,1.4.3.4,0 +9061,126,1.4,2 +9061,170,1,3 +9064,142,1.4.3,1 +9064,53,1.4.3.4,0 +9066,53,1.4.3.4,0 +9066,142,1.4.3,1 +9069,142,1.4.3,1 +9069,53,1.4.3.4,0 +9070,53,1.4.3.4,0 +9070,142,1.4.3,1 +9072,53,1.4.3.4,0 +9072,142,1.4.3,1 +9073,53,1.4.3.4,0 +9073,142,1.4.3,1 +9074,142,1.4.3,1 +9074,53,1.4.3.4,0 +9075,170,1,3 +9075,53,1.4.3.4,0 +9075,142,1.4.3,1 +9075,126,1.4,2 +9076,53,1.4.3.4,0 +9076,142,1.4.3,1 +9078,142,1.4.3,1 +9078,53,1.4.3.4,0 +9079,142,1.4.3,1 +9079,53,1.4.3.4,0 +9081,53,1.4.3.4,0 +9081,142,1.4.3,1 +9082,53,1.4.3.4,0 +9082,142,1.4.3,1 +9083,53,1.4.3.4,0 +9083,170,1,3 +9083,142,1.4.3,1 +9083,126,1.4,2 +9084,142,1.4.3,1 +9084,53,1.4.3.4,0 +9086,142,1.4.3,1 +9086,53,1.4.3.4,0 +9089,126,1.4,2 +9089,170,1,3 +9089,53,1.4.3.4,0 +9089,142,1.4.3,1 +9091,53,1.4.3.4,0 +9091,142,1.4.3,1 +9092,142,1.4.3,1 +9092,53,1.4.3.4,0 +9093,142,1.4.3,1 +9093,53,1.4.3.4,0 +9094,170,1,3 +9094,142,1.4.3,1 +9094,53,1.4.3.4,0 +9094,126,1.4,2 +9097,53,1.4.3.4,0 +9097,170,1,3 +9097,126,1.4,2 +9097,142,1.4.3,1 +9098,142,1.4.3,1 +9098,53,1.4.3.4,0 +9101,53,1.4.3.5,0 +9101,142,1.4.3,1 +9102,142,1.4.3,1 +9102,53,1.4.3.5,0 +9103,142,1.4.3,1 +9103,53,1.4.3.5,0 +9104,142,1.4.3,1 +9104,53,1.4.3.5,0 +9105,142,1.4.3,1 +9105,53,1.4.3.5,0 +9106,142,1.4.3,1 +9106,126,1.4,2 +9106,53,1.4.3.5,0 +9106,170,1,3 +9107,142,1.4.3,1 +9107,53,1.4.3.5,0 +9108,142,1.4.3,1 +9108,126,1.4,2 +9108,53,1.4.3.5,0 +9108,170,1,3 +9109,53,1.4.3.5,0 +9109,170,1,3 +9109,126,1.4,2 +9109,142,1.4.3,1 +9110,142,1.4.3,1 +9110,53,1.4.3.5,0 +9111,53,1.4.3.5,0 +9111,142,1.4.3,1 +9114,142,1.4.3,1 +9114,53,1.4.3.5,0 +9116,126,1.4,2 +9116,53,1.4.3.5,0 +9116,142,1.4.3,1 +9116,170,1,3 +9119,142,1.4.3,1 +9119,53,1.4.3.5,0 +9120,53,1.4.3.5,0 +9120,142,1.4.3,1 +9122,53,1.4.3.5,0 +9122,142,1.4.3,1 +9123,53,1.4.3.5,0 +9123,142,1.4.3,1 +9124,142,1.4.3,1 +9124,53,1.4.3.5,0 +9125,53,1.4.3.5,0 +9125,142,1.4.3,1 +9126,53,1.4.3.5,0 +9126,142,1.4.3,1 +9128,142,1.4.3,1 +9128,53,1.4.3.5,0 +9129,170,1,3 +9129,53,1.4.3.5,0 +9129,126,1.4,2 +9129,142,1.4.3,1 +9131,53,1.4.3.5,0 +9131,142,1.4.3,1 +9132,126,1.4,2 +9132,53,1.4.3.5,0 +9132,142,1.4.3,1 +9132,170,1,3 +9133,142,1.4.3,1 +9133,53,1.4.3.5,0 +9134,53,1.4.3.5,0 +9134,142,1.4.3,1 +9134,126,1.4,2 +9134,170,1,3 +9136,142,1.4.3,1 +9136,53,1.4.3.5,0 +9139,53,1.4.3.5,0 +9139,142,1.4.3,1 +9141,53,1.4.3.5,0 +9141,142,1.4.3,1 +9142,142,1.4.3,1 +9142,53,1.4.3.5,0 +9143,142,1.4.3,1 +9143,53,1.4.3.5,0 +9144,170,1,3 +9144,142,1.4.3,1 +9144,53,1.4.3.5,0 +9144,126,1.4,2 +9147,53,1.4.3.5,0 +9147,142,1.4.3,1 +9148,142,1.4.3,1 +9148,53,1.4.3.5,0 +9151,170,1,3 +9151,53,1.4.3.6,0 +9151,142,1.4.3,1 +9151,126,1.4,2 +9152,53,1.4.3.6,0 +9152,142,1.4.3,1 +9152,170,1,3 +9152,126,1.4,2 +9153,170,1,3 +9153,126,1.4,2 +9153,142,1.4.3,1 +9153,53,1.4.3.6,0 +9154,126,1.4,2 +9154,53,1.4.3.6,0 +9154,142,1.4.3,1 +9154,170,1,3 +9155,53,1.4.3.6,0 +9155,126,1.4,2 +9155,170,1,3 +9155,142,1.4.3,1 +9156,142,1.4.3,1 +9156,126,1.4,2 +9156,53,1.4.3.6,0 +9156,170,1,3 +9157,53,1.4.3.6,0 +9157,170,1,3 +9157,142,1.4.3,1 +9157,126,1.4,2 +9158,142,1.4.3,1 +9158,126,1.4,2 +9158,53,1.4.3.6,0 +9158,170,1,3 +9159,53,1.4.3.6,0 +9159,170,1,3 +9159,126,1.4,2 +9159,142,1.4.3,1 +9160,126,1.4,2 +9160,142,1.4.3,1 +9160,170,1,3 +9160,53,1.4.3.6,0 +9161,142,1.4.3,1 +9161,53,1.4.3.6,0 +9161,126,1.4,2 +9161,170,1,3 +9162,126,1.4,2 +9162,142,1.4.3,1 +9162,53,1.4.3.6,0 +9162,170,1,3 +9163,126,1.4,2 +9163,53,1.4.3.6,0 +9163,170,1,3 +9163,142,1.4.3,1 +9164,142,1.4.3,1 +9164,170,1,3 +9164,53,1.4.3.6,0 +9164,126,1.4,2 +9165,53,1.4.3.6,0 +9165,170,1,3 +9165,126,1.4,2 +9165,142,1.4.3,1 +9166,126,1.4,2 +9166,53,1.4.3.6,0 +9166,142,1.4.3,1 +9166,170,1,3 +9167,53,1.4.3.6,0 +9167,126,1.4,2 +9167,142,1.4.3,1 +9167,170,1,3 +9168,142,1.4.3,1 +9168,170,1,3 +9168,126,1.4,2 +9168,53,1.4.3.6,0 +9169,142,1.4.3,1 +9169,53,1.4.3.6,0 +9169,126,1.4,2 +9169,170,1,3 +9170,53,1.4.3.6,0 +9170,142,1.4.3,1 +9170,170,1,3 +9170,126,1.4,2 +9171,170,1,3 +9171,126,1.4,2 +9171,142,1.4.3,1 +9171,53,1.4.3.6,0 +9172,126,1.4,2 +9172,142,1.4.3,1 +9172,170,1,3 +9172,53,1.4.3.6,0 +9173,142,1.4.3,1 +9173,53,1.4.3.6,0 +9173,126,1.4,2 +9173,170,1,3 +9174,126,1.4,2 +9174,53,1.4.3.6,0 +9174,142,1.4.3,1 +9174,170,1,3 +9175,170,1,3 +9175,53,1.4.3.6,0 +9175,142,1.4.3,1 +9175,126,1.4,2 +9176,126,1.4,2 +9176,142,1.4.3,1 +9176,53,1.4.3.6,0 +9176,170,1,3 +9177,126,1.4,2 +9177,170,1,3 +9177,142,1.4.3,1 +9177,53,1.4.3.6,0 +9178,53,1.4.3.6,0 +9178,142,1.4.3,1 +9178,170,1,3 +9178,126,1.4,2 +9179,170,1,3 +9179,53,1.4.3.6,0 +9179,126,1.4,2 +9179,142,1.4.3,1 +9180,142,1.4.3,1 +9180,170,1,3 +9180,126,1.4,2 +9180,53,1.4.3.6,0 +9181,126,1.4,2 +9181,170,1,3 +9181,53,1.4.3.6,0 +9181,142,1.4.3,1 +9182,126,1.4,2 +9182,53,1.4.3.6,0 +9182,142,1.4.3,1 +9182,170,1,3 +9183,53,1.4.3.6,0 +9183,170,1,3 +9183,142,1.4.3,1 +9183,126,1.4,2 +9184,53,1.4.3.6,0 +9184,142,1.4.3,1 +9184,126,1.4,2 +9184,170,1,3 +9185,53,1.4.3.6,0 +9185,170,1,3 +9185,126,1.4,2 +9185,142,1.4.3,1 +9186,53,1.4.3.6,0 +9186,142,1.4.3,1 +9186,170,1,3 +9186,126,1.4,2 +9187,126,1.4,2 +9187,170,1,3 +9187,142,1.4.3,1 +9187,53,1.4.3.6,0 +9188,53,1.4.3.6,0 +9188,170,1,3 +9188,126,1.4,2 +9188,142,1.4.3,1 +9189,126,1.4,2 +9189,170,1,3 +9189,53,1.4.3.6,0 +9189,142,1.4.3,1 +9190,170,1,3 +9190,142,1.4.3,1 +9190,53,1.4.3.6,0 +9190,126,1.4,2 +9191,170,1,3 +9191,126,1.4,2 +9191,142,1.4.3,1 +9191,53,1.4.3.6,0 +9192,126,1.4,2 +9192,170,1,3 +9192,53,1.4.3.6,0 +9192,142,1.4.3,1 +9193,142,1.4.3,1 +9193,53,1.4.3.6,0 +9193,170,1,3 +9193,126,1.4,2 +9194,170,1,3 +9194,142,1.4.3,1 +9194,53,1.4.3.6,0 +9194,126,1.4,2 +9195,170,1,3 +9195,142,1.4.3,1 +9195,126,1.4,2 +9195,53,1.4.3.6,0 +9196,170,1,3 +9196,142,1.4.3,1 +9196,126,1.4,2 +9196,53,1.4.3.6,0 +9197,53,1.4.3.6,0 +9197,170,1,3 +9197,126,1.4,2 +9197,142,1.4.3,1 +9198,126,1.4,2 +9198,53,1.4.3.6,0 +9198,142,1.4.3,1 +9198,170,1,3 +9199,170,1,3 +9199,53,1.4.3.6,0 +9199,142,1.4.3,1 +9199,126,1.4,2 +9200,170,1,3 +9200,142,1.4.3,1 +9200,126,1.4,2 +9200,53,1.4.3.6,0 +9201,53,1.4.4.4,0 +9201,0,1.4.4,1 +9202,40,1.4.4,1 +9202,0,1.4.4,1 +9202,53,1.4.4.4,0 +9203,0,1.4.4,1 +9203,53,1.4.4.4,0 +9203,40,1.4.4,1 +9204,0,1.4.4,1 +9204,53,1.4.4.4,0 +9205,0,1.4.4,1 +9205,53,1.4.4.4,0 +9205,40,1.4.4,1 +9206,40,1.4.4,1 +9206,0,1.4.4,1 +9206,126,1.4,2 +9206,53,1.4.4.4,0 +9206,170,1,3 +9207,53,1.4.4.4,0 +9207,0,1.4.4,1 +9208,53,1.4.4.4,0 +9208,0,1.4.4,1 +9209,40,1.4.4,1 +9209,53,1.4.4.4,0 +9209,0,1.4.4,1 +9210,0,1.4.4,1 +9210,53,1.4.4.4,0 +9210,126,1.4,2 +9211,126,1.4,2 +9211,0,1.4.4,1 +9211,53,1.4.4.4,0 +9211,40,1.4.4,1 +9214,0,1.4.4,1 +9214,53,1.4.4.4,0 +9214,40,1.4.4,1 +9216,0,1.4.4,1 +9216,53,1.4.4.4,0 +9216,40,1.4.4,1 +9217,53,1.4.4.4,0 +9217,40,1.4.4,1 +9219,53,1.4.4.4,0 +9219,40,1.4.4,1 +9219,0,1.4.4,1 +9220,126,1.4,2 +9220,53,1.4.4.4,0 +9220,0,1.4.4,1 +9221,40,1.4.4,1 +9221,53,1.4.4.4,0 +9222,53,1.4.4.4,0 +9222,0,1.4.4,1 +9223,53,1.4.4.4,0 +9223,40,1.4.4,1 +9223,0,1.4.4,1 +9224,40,1.4.4,1 +9224,53,1.4.4.4,0 +9224,0,1.4.4,1 +9225,53,1.4.4.4,0 +9225,0,1.4.4,1 +9226,0,1.4.4,1 +9226,126,1.4,2 +9226,40,1.4.4,1 +9226,53,1.4.4.4,0 +9226,170,1,3 +9227,40,1.4.4,1 +9227,53,1.4.4.4,0 +9228,40,1.4.4,1 +9228,53,1.4.4.4,0 +9228,170,1,3 +9228,0,1.4.4,1 +9228,126,1.4,2 +9229,53,1.4.4.4,0 +9229,0,1.4.4,1 +9229,40,1.4.4,1 +9231,40,1.4.4,1 +9231,53,1.4.4.4,0 +9231,0,1.4.4,1 +9232,0,1.4.4,1 +9232,126,1.4,2 +9232,53,1.4.4.4,0 +9232,40,1.4.4,1 +9232,170,1,3 +9233,0,1.4.4,1 +9233,53,1.4.4.4,0 +9234,126,1.4,2 +9234,0,1.4.4,1 +9234,53,1.4.4.4,0 +9234,40,1.4.4,1 +9235,40,1.4.4,1 +9235,126,1.4,2 +9235,53,1.4.4.4,0 +9236,40,1.4.4,1 +9236,0,1.4.4,1 +9236,53,1.4.4.4,0 +9237,53,1.4.4.4,0 +9237,40,1.4.4,1 +9238,53,1.4.4.4,0 +9238,40,1.4.4,1 +9239,53,1.4.4.4,0 +9239,0,1.4.4,1 +9239,40,1.4.4,1 +9240,53,1.4.4.4,0 +9240,40,1.4.4,1 +9241,53,1.4.4.4,0 +9241,0,1.4.4,1 +9242,53,1.4.4.4,0 +9242,40,1.4.4,1 +9242,0,1.4.4,1 +9243,53,1.4.4.4,0 +9243,40,1.4.4,1 +9243,0,1.4.4,1 +9244,40,1.4.4,1 +9244,53,1.4.4.4,0 +9244,0,1.4.4,1 +9245,53,1.4.4.4,0 +9245,40,1.4.4,1 +9246,40,1.4.4,1 +9246,53,1.4.4.4,0 +9247,53,1.4.4.4,0 +9247,0,1.4.4,1 +9248,53,1.4.4.4,0 +9248,0,1.4.4,1 +9248,40,1.4.4,1 +9249,40,1.4.4,1 +9249,53,1.4.4.4,0 +9250,53,1.4.4.4,0 +9250,40,1.4.4,1 +9251,53,1.4.5.2,0 +9251,41,1.4.5,1 +9252,53,1.4.5.2,0 +9252,41,1.4.5,1 +9253,41,1.4.5,1 +9253,53,1.4.5.2,0 +9254,41,1.4.5,1 +9254,53,1.4.5.2,0 +9255,41,1.4.5,1 +9255,53,1.4.5.2,0 +9256,41,1.4.5,1 +9256,53,1.4.5.2,0 +9257,53,1.4.5.2,0 +9257,170,1,3 +9257,41,1.4.5,1 +9257,126,1.4,2 +9258,53,1.4.5.2,0 +9258,41,1.4.5,1 +9259,41,1.4.5,1 +9259,53,1.4.5.2,0 +9260,41,1.4.5,1 +9260,53,1.4.5.2,0 +9261,53,1.4.5.2,0 +9261,126,1.4,2 +9261,170,1,3 +9261,41,1.4.5,1 +9264,53,1.4.5.2,0 +9264,41,1.4.5,1 +9266,53,1.4.5.2,0 +9266,41,1.4.5,1 +9269,53,1.4.5.2,0 +9269,41,1.4.5,1 +9270,53,1.4.5.2,0 +9270,170,1,3 +9270,41,1.4.5,1 +9270,126,1.4,2 +9272,41,1.4.5,1 +9272,53,1.4.5.2,0 +9273,53,1.4.5.2,0 +9273,41,1.4.5,1 +9274,53,1.4.5.2,0 +9274,41,1.4.5,1 +9275,53,1.4.5.2,0 +9275,41,1.4.5,1 +9276,41,1.4.5,1 +9276,53,1.4.5.2,0 +9278,41,1.4.5,1 +9278,53,1.4.5.2,0 +9279,41,1.4.5,1 +9279,53,1.4.5.2,0 +9281,53,1.4.5.2,0 +9281,41,1.4.5,1 +9282,41,1.4.5,1 +9282,53,1.4.5.2,0 +9283,53,1.4.5.2,0 +9283,41,1.4.5,1 +9284,41,1.4.5,1 +9284,53,1.4.5.2,0 +9284,126,1.4,2 +9284,170,1,3 +9286,41,1.4.5,1 +9286,53,1.4.5.2,0 +9289,53,1.4.5.2,0 +9289,41,1.4.5,1 +9291,170,1,3 +9291,126,1.4,2 +9291,41,1.4.5,1 +9291,53,1.4.5.2,0 +9292,41,1.4.5,1 +9292,53,1.4.5.2,0 +9293,41,1.4.5,1 +9293,53,1.4.5.2,0 +9293,170,1,3 +9293,126,1.4,2 +9294,170,1,3 +9294,41,1.4.5,1 +9294,53,1.4.5.2,0 +9294,126,1.4,2 +9297,41,1.4.5,1 +9297,53,1.4.5.2,0 +9298,41,1.4.5,1 +9298,53,1.4.5.2,0 +9299,41,1.4.5,1 +9299,53,1.4.5.2,0 +9301,53,1.4.5.3,0 +9301,41,1.4.5,1 +9302,53,1.4.5.3,0 +9302,41,1.4.5,1 +9303,41,1.4.5,1 +9303,53,1.4.5.3,0 +9304,41,1.4.5,1 +9304,53,1.4.5.3,0 +9305,53,1.4.5.3,0 +9305,41,1.4.5,1 +9307,41,1.4.5,1 +9307,53,1.4.5.3,0 +9308,53,1.4.5.3,0 +9308,41,1.4.5,1 +9311,41,1.4.5,1 +9311,53,1.4.5.3,0 +9314,53,1.4.5.3,0 +9314,41,1.4.5,1 +9319,53,1.4.5.3,0 +9319,41,1.4.5,1 +9320,53,1.4.5.3,0 +9320,41,1.4.5,1 +9322,41,1.4.5,1 +9322,53,1.4.5.3,0 +9323,53,1.4.5.3,0 +9323,41,1.4.5,1 +9324,53,1.4.5.3,0 +9324,41,1.4.5,1 +9325,41,1.4.5,1 +9325,170,1,3 +9325,53,1.4.5.3,0 +9325,126,1.4,2 +9326,41,1.4.5,1 +9326,53,1.4.5.3,0 +9328,53,1.4.5.3,0 +9328,41,1.4.5,1 +9332,41,1.4.5,1 +9332,53,1.4.5.3,0 +9334,41,1.4.5,1 +9334,53,1.4.5.3,0 +9336,41,1.4.5,1 +9336,53,1.4.5.3,0 +9339,53,1.4.5.3,0 +9339,41,1.4.5,1 +9341,53,1.4.5.3,0 +9341,41,1.4.5,1 +9343,41,1.4.5,1 +9343,53,1.4.5.3,0 +9347,41,1.4.5,1 +9347,53,1.4.5.3,0 +9348,41,1.4.5,1 +9348,53,1.4.5.3,0 +9351,53,1.4.5.6,0 +9351,41,1.4.5,1 +9352,53,1.4.5.6,0 +9352,41,1.4.5,1 +9352,170,1,3 +9352,126,1.4,2 +9353,170,1,3 +9353,126,1.4,2 +9353,41,1.4.5,1 +9353,53,1.4.5.6,0 +9354,126,1.4,2 +9354,53,1.4.5.6,0 +9354,170,1,3 +9354,41,1.4.5,1 +9355,41,1.4.5,1 +9355,53,1.4.5.6,0 +9356,126,1.4,2 +9356,41,1.4.5,1 +9356,53,1.4.5.6,0 +9356,170,1,3 +9357,53,1.4.5.6,0 +9357,170,1,3 +9357,41,1.4.5,1 +9357,126,1.4,2 +9358,53,1.4.5.6,0 +9358,41,1.4.5,1 +9359,41,1.4.5,1 +9359,53,1.4.5.6,0 +9360,41,1.4.5,1 +9360,53,1.4.5.6,0 +9361,41,1.4.5,1 +9361,53,1.4.5.6,0 +9364,53,1.4.5.6,0 +9364,41,1.4.5,1 +9366,53,1.4.5.6,0 +9366,41,1.4.5,1 +9369,53,1.4.5.6,0 +9369,126,1.4,2 +9369,170,1,3 +9369,41,1.4.5,1 +9370,53,1.4.5.6,0 +9370,41,1.4.5,1 +9372,41,1.4.5,1 +9372,53,1.4.5.6,0 +9373,53,1.4.5.6,0 +9373,41,1.4.5,1 +9374,53,1.4.5.6,0 +9374,41,1.4.5,1 +9375,53,1.4.5.6,0 +9375,41,1.4.5,1 +9376,126,1.4,2 +9376,41,1.4.5,1 +9376,53,1.4.5.6,0 +9376,170,1,3 +9378,41,1.4.5,1 +9378,53,1.4.5.6,0 +9379,41,1.4.5,1 +9379,53,1.4.5.6,0 +9381,53,1.4.5.6,0 +9381,41,1.4.5,1 +9382,41,1.4.5,1 +9382,53,1.4.5.6,0 +9383,53,1.4.5.6,0 +9383,41,1.4.5,1 +9384,41,1.4.5,1 +9384,53,1.4.5.6,0 +9386,41,1.4.5,1 +9386,53,1.4.5.6,0 +9389,53,1.4.5.6,0 +9389,41,1.4.5,1 +9391,53,1.4.5.6,0 +9391,41,1.4.5,1 +9392,41,1.4.5,1 +9392,53,1.4.5.6,0 +9393,41,1.4.5,1 +9393,53,1.4.5.6,0 +9393,170,1,3 +9393,126,1.4,2 +9394,53,1.4.5.6,0 +9394,41,1.4.5,1 +9397,41,1.4.5,1 +9397,53,1.4.5.6,0 +9398,126,1.4,2 +9398,53,1.4.5.6,0 +9398,170,1,3 +9398,41,1.4.5,1 +9399,41,1.4.5,1 +9399,53,1.4.5.6,0 +9401,170,1,3 +9401,53,1.4.5.7,0 +9401,126,1.4,2 +9401,41,1.4.5,1 +9402,53,1.4.5.7,0 +9402,41,1.4.5,1 +9403,170,1,3 +9403,126,1.4,2 +9403,41,1.4.5,1 +9403,53,1.4.5.7,0 +9404,41,1.4.5,1 +9404,53,1.4.5.7,0 +9405,53,1.4.5.7,0 +9405,126,1.4,2 +9405,41,1.4.5,1 +9405,170,1,3 +9406,126,1.4,2 +9406,41,1.4.5,1 +9406,53,1.4.5.7,0 +9406,170,1,3 +9407,53,1.4.5.7,0 +9407,170,1,3 +9407,41,1.4.5,1 +9407,126,1.4,2 +9408,41,1.4.5,1 +9408,126,1.4,2 +9408,53,1.4.5.7,0 +9408,170,1,3 +9409,41,1.4.5,1 +9409,53,1.4.5.7,0 +9410,126,1.4,2 +9410,41,1.4.5,1 +9410,170,1,3 +9410,53,1.4.5.7,0 +9411,53,1.4.5.7,0 +9411,126,1.4,2 +9411,170,1,3 +9411,41,1.4.5,1 +9414,170,1,3 +9414,53,1.4.5.7,0 +9414,41,1.4.5,1 +9414,126,1.4,2 +9416,126,1.4,2 +9416,53,1.4.5.7,0 +9416,170,1,3 +9416,41,1.4.5,1 +9419,53,1.4.5.7,0 +9419,41,1.4.5,1 +9420,53,1.4.5.7,0 +9420,170,1,3 +9420,41,1.4.5,1 +9420,126,1.4,2 +9422,126,1.4,2 +9422,41,1.4.5,1 +9422,170,1,3 +9422,53,1.4.5.7,0 +9423,53,1.4.5.7,0 +9423,41,1.4.5,1 +9424,53,1.4.5.7,0 +9424,41,1.4.5,1 +9425,53,1.4.5.7,0 +9425,41,1.4.5,1 +9426,41,1.4.5,1 +9426,53,1.4.5.7,0 +9428,53,1.4.5.7,0 +9428,41,1.4.5,1 +9428,170,1,3 +9428,126,1.4,2 +9429,41,1.4.5,1 +9429,170,1,3 +9429,53,1.4.5.7,0 +9429,126,1.4,2 +9431,53,1.4.5.7,0 +9431,41,1.4.5,1 +9432,41,1.4.5,1 +9432,53,1.4.5.7,0 +9433,53,1.4.5.7,0 +9433,41,1.4.5,1 +9434,41,1.4.5,1 +9434,53,1.4.5.7,0 +9434,126,1.4,2 +9434,170,1,3 +9436,41,1.4.5,1 +9436,53,1.4.5.7,0 +9439,53,1.4.5.7,0 +9439,41,1.4.5,1 +9441,53,1.4.5.7,0 +9441,41,1.4.5,1 +9442,41,1.4.5,1 +9442,53,1.4.5.7,0 +9443,41,1.4.5,1 +9443,53,1.4.5.7,0 +9444,53,1.4.5.7,0 +9444,41,1.4.5,1 +9447,41,1.4.5,1 +9447,53,1.4.5.7,0 +9448,41,1.4.5,1 +9448,53,1.4.5.7,0 +9449,41,1.4.5,1 +9449,53,1.4.5.7,0 +9451,170,1,3 +9451,53,1.4.5.8,0 +9451,126,1.4,2 +9451,41,1.4.5,1 +9452,53,1.4.5.8,0 +9452,41,1.4.5,1 +9452,170,1,3 +9452,126,1.4,2 +9453,170,1,3 +9453,126,1.4,2 +9453,41,1.4.5,1 +9453,53,1.4.5.8,0 +9454,126,1.4,2 +9454,53,1.4.5.8,0 +9454,170,1,3 +9454,41,1.4.5,1 +9455,53,1.4.5.8,0 +9455,126,1.4,2 +9455,41,1.4.5,1 +9455,170,1,3 +9456,126,1.4,2 +9456,41,1.4.5,1 +9456,53,1.4.5.8,0 +9456,170,1,3 +9457,53,1.4.5.8,0 +9457,170,1,3 +9457,41,1.4.5,1 +9457,126,1.4,2 +9458,41,1.4.5,1 +9458,126,1.4,2 +9458,53,1.4.5.8,0 +9458,170,1,3 +9459,53,1.4.5.8,0 +9459,170,1,3 +9459,126,1.4,2 +9459,41,1.4.5,1 +9460,126,1.4,2 +9460,41,1.4.5,1 +9460,170,1,3 +9460,53,1.4.5.8,0 +9461,53,1.4.5.8,0 +9461,126,1.4,2 +9461,170,1,3 +9461,41,1.4.5,1 +9462,126,1.4,2 +9462,53,1.4.5.8,0 +9462,41,1.4.5,1 +9462,170,1,3 +9463,126,1.4,2 +9463,53,1.4.5.8,0 +9463,170,1,3 +9463,41,1.4.5,1 +9464,170,1,3 +9464,53,1.4.5.8,0 +9464,41,1.4.5,1 +9464,126,1.4,2 +9465,53,1.4.5.8,0 +9465,170,1,3 +9465,126,1.4,2 +9465,41,1.4.5,1 +9466,126,1.4,2 +9466,53,1.4.5.8,0 +9466,170,1,3 +9466,41,1.4.5,1 +9467,53,1.4.5.8,0 +9467,126,1.4,2 +9467,41,1.4.5,1 +9467,170,1,3 +9468,41,1.4.5,1 +9468,170,1,3 +9468,126,1.4,2 +9468,53,1.4.5.8,0 +9469,53,1.4.5.8,0 +9469,126,1.4,2 +9469,170,1,3 +9469,41,1.4.5,1 +9470,53,1.4.5.8,0 +9470,170,1,3 +9470,41,1.4.5,1 +9470,126,1.4,2 +9471,170,1,3 +9471,126,1.4,2 +9471,41,1.4.5,1 +9471,53,1.4.5.8,0 +9472,126,1.4,2 +9472,41,1.4.5,1 +9472,170,1,3 +9472,53,1.4.5.8,0 +9473,53,1.4.5.8,0 +9473,126,1.4,2 +9473,170,1,3 +9473,41,1.4.5,1 +9474,126,1.4,2 +9474,53,1.4.5.8,0 +9474,41,1.4.5,1 +9474,170,1,3 +9475,41,1.4.5,1 +9475,170,1,3 +9475,53,1.4.5.8,0 +9475,126,1.4,2 +9476,126,1.4,2 +9476,41,1.4.5,1 +9476,53,1.4.5.8,0 +9476,170,1,3 +9477,126,1.4,2 +9477,170,1,3 +9477,53,1.4.5.8,0 +9477,41,1.4.5,1 +9478,53,1.4.5.8,0 +9478,41,1.4.5,1 +9478,170,1,3 +9478,126,1.4,2 +9479,41,1.4.5,1 +9479,170,1,3 +9479,53,1.4.5.8,0 +9479,126,1.4,2 +9480,170,1,3 +9480,126,1.4,2 +9480,41,1.4.5,1 +9480,53,1.4.5.8,0 +9481,126,1.4,2 +9481,170,1,3 +9481,53,1.4.5.8,0 +9481,41,1.4.5,1 +9482,126,1.4,2 +9482,53,1.4.5.8,0 +9482,41,1.4.5,1 +9482,170,1,3 +9483,53,1.4.5.8,0 +9483,170,1,3 +9483,41,1.4.5,1 +9483,126,1.4,2 +9484,41,1.4.5,1 +9484,53,1.4.5.8,0 +9484,126,1.4,2 +9484,170,1,3 +9485,53,1.4.5.8,0 +9485,170,1,3 +9485,126,1.4,2 +9485,41,1.4.5,1 +9486,53,1.4.5.8,0 +9486,41,1.4.5,1 +9486,170,1,3 +9486,126,1.4,2 +9487,126,1.4,2 +9487,170,1,3 +9487,41,1.4.5,1 +9487,53,1.4.5.8,0 +9488,53,1.4.5.8,0 +9488,170,1,3 +9488,126,1.4,2 +9488,41,1.4.5,1 +9489,41,1.4.5,1 +9489,126,1.4,2 +9489,170,1,3 +9489,53,1.4.5.8,0 +9490,170,1,3 +9490,53,1.4.5.8,0 +9490,41,1.4.5,1 +9490,126,1.4,2 +9491,170,1,3 +9491,126,1.4,2 +9491,41,1.4.5,1 +9491,53,1.4.5.8,0 +9492,41,1.4.5,1 +9492,126,1.4,2 +9492,170,1,3 +9492,53,1.4.5.8,0 +9493,41,1.4.5,1 +9493,53,1.4.5.8,0 +9493,170,1,3 +9493,126,1.4,2 +9494,170,1,3 +9494,41,1.4.5,1 +9494,53,1.4.5.8,0 +9494,126,1.4,2 +9495,170,1,3 +9495,41,1.4.5,1 +9495,126,1.4,2 +9495,53,1.4.5.8,0 +9496,170,1,3 +9496,126,1.4,2 +9496,53,1.4.5.8,0 +9496,41,1.4.5,1 +9497,53,1.4.5.8,0 +9497,41,1.4.5,1 +9497,170,1,3 +9497,126,1.4,2 +9498,126,1.4,2 +9498,53,1.4.5.8,0 +9498,170,1,3 +9498,41,1.4.5,1 +9499,170,1,3 +9499,53,1.4.5.8,0 +9499,126,1.4,2 +9499,41,1.4.5,1 +9500,170,1,3 +9500,126,1.4,2 +9500,41,1.4.5,1 +9500,53,1.4.5.8,0 +9501,157,1.4.1,1 +9501,54,1.4.1.3,0 +9507,157,1.4.1,1 +9507,54,1.4.1.3,0 +9510,54,1.4.1.3,0 +9510,157,1.4.1,1 +9520,54,1.4.1.3,0 +9520,157,1.4.1,1 +9526,157,1.4.1,1 +9526,54,1.4.1.3,0 +9532,54,1.4.1.3,0 +9532,157,1.4.1,1 +9536,54,1.4.1.3,0 +9536,157,1.4.1,1 +9539,157,1.4.1,1 +9539,54,1.4.1.3,0 +9541,157,1.4.1,1 +9541,54,1.4.1.3,0 +9543,54,1.4.1.3,0 +9543,157,1.4.1,1 +9554,142,1.4.2,1 +9554,54,1.4.2.4,0 +9555,142,1.4.2,1 +9555,54,1.4.2.4,0 +9558,54,1.4.2.4,0 +9558,142,1.4.2,1 +9561,142,1.4.2,1 +9561,54,1.4.2.4,0 +9570,54,1.4.2.4,0 +9570,142,1.4.2,1 +9572,142,1.4.2,1 +9572,54,1.4.2.4,0 +9579,54,1.4.2.4,0 +9579,142,1.4.2,1 +9582,54,1.4.2.4,0 +9582,142,1.4.2,1 +9583,142,1.4.2,1 +9583,54,1.4.2.4,0 +9586,142,1.4.2,1 +9586,54,1.4.2.4,0 +9589,54,1.4.2.4,0 +9589,142,1.4.2,1 +9591,142,1.4.2,1 +9591,54,1.4.2.4,0 +9597,54,1.4.2.4,0 +9597,142,1.4.2,1 +9601,0,1.4.4,1 +9601,54,1.4.4.3,0 +9602,0,1.4.4,1 +9602,40,1.4.4,1 +9602,54,1.4.4.3,0 +9603,0,1.4.4,1 +9603,54,1.4.4.3,0 +9603,40,1.4.4,1 +9604,0,1.4.4,1 +9604,54,1.4.4.3,0 +9605,40,1.4.4,1 +9605,126,1.4,2 +9605,0,1.4.4,1 +9605,54,1.4.4.3,0 +9605,170,1,3 +9606,54,1.4.4.3,0 +9606,40,1.4.4,1 +9606,0,1.4.4,1 +9607,54,1.4.4.3,0 +9607,0,1.4.4,1 +9608,54,1.4.4.3,0 +9608,0,1.4.4,1 +9609,40,1.4.4,1 +9609,54,1.4.4.3,0 +9609,0,1.4.4,1 +9610,54,1.4.4.3,0 +9610,0,1.4.4,1 +9611,0,1.4.4,1 +9611,40,1.4.4,1 +9611,54,1.4.4.3,0 +9614,170,1,3 +9614,40,1.4.4,1 +9614,54,1.4.4.3,0 +9614,0,1.4.4,1 +9614,126,1.4,2 +9616,40,1.4.4,1 +9616,0,1.4.4,1 +9616,126,1.4,2 +9616,54,1.4.4.3,0 +9616,170,1,3 +9617,54,1.4.4.3,0 +9617,40,1.4.4,1 +9619,40,1.4.4,1 +9619,54,1.4.4.3,0 +9619,0,1.4.4,1 +9620,126,1.4,2 +9620,54,1.4.4.3,0 +9620,0,1.4.4,1 +9621,126,1.4,2 +9621,40,1.4.4,1 +9621,54,1.4.4.3,0 +9622,0,1.4.4,1 +9622,54,1.4.4.3,0 +9623,54,1.4.4.3,0 +9623,0,1.4.4,1 +9623,40,1.4.4,1 +9624,40,1.4.4,1 +9624,126,1.4,2 +9624,0,1.4.4,1 +9624,54,1.4.4.3,0 +9625,54,1.4.4.3,0 +9625,0,1.4.4,1 +9626,0,1.4.4,1 +9626,126,1.4,2 +9626,54,1.4.4.3,0 +9626,40,1.4.4,1 +9626,170,1,3 +9627,40,1.4.4,1 +9627,54,1.4.4.3,0 +9627,126,1.4,2 +9628,40,1.4.4,1 +9628,170,1,3 +9628,0,1.4.4,1 +9628,54,1.4.4.3,0 +9628,126,1.4,2 +9629,54,1.4.4.3,0 +9629,170,1,3 +9629,126,1.4,2 +9629,40,1.4.4,1 +9629,0,1.4.4,1 +9631,40,1.4.4,1 +9631,0,1.4.4,1 +9631,54,1.4.4.3,0 +9632,54,1.4.4.3,0 +9632,0,1.4.4,1 +9632,40,1.4.4,1 +9633,0,1.4.4,1 +9633,54,1.4.4.3,0 +9634,40,1.4.4,1 +9634,0,1.4.4,1 +9634,54,1.4.4.3,0 +9635,54,1.4.4.3,0 +9635,40,1.4.4,1 +9636,40,1.4.4,1 +9636,54,1.4.4.3,0 +9636,0,1.4.4,1 +9637,40,1.4.4,1 +9637,54,1.4.4.3,0 +9638,54,1.4.4.3,0 +9638,40,1.4.4,1 +9639,0,1.4.4,1 +9639,54,1.4.4.3,0 +9639,40,1.4.4,1 +9640,54,1.4.4.3,0 +9640,40,1.4.4,1 +9640,126,1.4,2 +9641,0,1.4.4,1 +9641,54,1.4.4.3,0 +9642,54,1.4.4.3,0 +9642,40,1.4.4,1 +9642,0,1.4.4,1 +9643,54,1.4.4.3,0 +9643,40,1.4.4,1 +9643,0,1.4.4,1 +9644,40,1.4.4,1 +9644,0,1.4.4,1 +9644,54,1.4.4.3,0 +9645,54,1.4.4.3,0 +9645,40,1.4.4,1 +9646,54,1.4.4.3,0 +9646,40,1.4.4,1 +9647,54,1.4.4.3,0 +9647,0,1.4.4,1 +9648,0,1.4.4,1 +9648,40,1.4.4,1 +9648,54,1.4.4.3,0 +9649,40,1.4.4,1 +9649,54,1.4.4.3,0 +9650,40,1.4.4,1 +9650,54,1.4.4.3,0 +9654,157,1.4.1,1 +9654,55,1.4.1.1,0 +9657,157,1.4.1,1 +9657,55,1.4.1.1,0 +9658,55,1.4.1.1,0 +9658,157,1.4.1,1 +9659,157,1.4.1,1 +9659,55,1.4.1.1,0 +9660,157,1.4.1,1 +9660,55,1.4.1.1,0 +9664,55,1.4.1.1,0 +9664,157,1.4.1,1 +9666,157,1.4.1,1 +9666,55,1.4.1.1,0 +9670,157,1.4.1,1 +9670,55,1.4.1.1,0 +9675,157,1.4.1,1 +9675,55,1.4.1.1,0 +9678,157,1.4.1,1 +9678,55,1.4.1.1,0 +9679,157,1.4.1,1 +9679,55,1.4.1.1,0 +9682,55,1.4.1.1,0 +9682,157,1.4.1,1 +9683,55,1.4.1.1,0 +9683,157,1.4.1,1 +9686,55,1.4.1.1,0 +9686,157,1.4.1,1 +9689,157,1.4.1,1 +9689,55,1.4.1.1,0 +9694,55,1.4.1.1,0 +9694,157,1.4.1,1 +9697,157,1.4.1,1 +9697,55,1.4.1.1,0 +9701,157,1.4.1,1 +9701,55,1.4.1.2,0 +9702,157,1.4.1,1 +9702,55,1.4.1.2,0 +9703,157,1.4.1,1 +9703,55,1.4.1.2,0 +9705,157,1.4.1,1 +9705,55,1.4.1.2,0 +9706,55,1.4.1.2,0 +9706,157,1.4.1,1 +9709,157,1.4.1,1 +9709,55,1.4.1.2,0 +9714,55,1.4.1.2,0 +9714,157,1.4.1,1 +9716,157,1.4.1,1 +9716,55,1.4.1.2,0 +9720,55,1.4.1.2,0 +9720,157,1.4.1,1 +9722,157,1.4.1,1 +9722,55,1.4.1.2,0 +9725,157,1.4.1,1 +9725,55,1.4.1.2,0 +9726,157,1.4.1,1 +9726,55,1.4.1.2,0 +9729,157,1.4.1,1 +9729,55,1.4.1.2,0 +9731,55,1.4.1.2,0 +9731,157,1.4.1,1 +9732,55,1.4.1.2,0 +9732,157,1.4.1,1 +9733,55,1.4.1.2,0 +9733,157,1.4.1,1 +9734,157,1.4.1,1 +9734,55,1.4.1.2,0 +9736,55,1.4.1.2,0 +9736,157,1.4.1,1 +9742,157,1.4.1,1 +9742,55,1.4.1.2,0 +9744,55,1.4.1.2,0 +9744,157,1.4.1,1 +9747,157,1.4.1,1 +9747,55,1.4.1.2,0 +9748,157,1.4.1,1 +9748,55,1.4.1.2,0 +9752,157,1.4.1,1 +9752,55,1.4.1.3,0 +9754,157,1.4.1,1 +9754,55,1.4.1.3,0 +9755,157,1.4.1,1 +9755,55,1.4.1.3,0 +9761,55,1.4.1.3,0 +9761,157,1.4.1,1 +9766,157,1.4.1,1 +9766,55,1.4.1.3,0 +9769,157,1.4.1,1 +9769,55,1.4.1.3,0 +9772,157,1.4.1,1 +9772,55,1.4.1.3,0 +9779,55,1.4.1.3,0 +9779,157,1.4.1,1 +9781,55,1.4.1.3,0 +9781,157,1.4.1,1 +9782,55,1.4.1.3,0 +9782,157,1.4.1,1 +9783,55,1.4.1.3,0 +9783,157,1.4.1,1 +9784,55,1.4.1.3,0 +9784,157,1.4.1,1 +9792,157,1.4.1,1 +9792,55,1.4.1.3,0 +9794,55,1.4.1.3,0 +9794,157,1.4.1,1 +9798,55,1.4.1.3,0 +9798,157,1.4.1,1 +9804,142,1.4.2,1 +9804,55,1.4.2.1,0 +9805,142,1.4.2,1 +9805,55,1.4.2.1,0 +9806,142,1.4.2,1 +9806,55,1.4.2.1,0 +9807,55,1.4.2.1,0 +9807,142,1.4.2,1 +9808,55,1.4.2.1,0 +9808,142,1.4.2,1 +9809,142,1.4.2,1 +9809,55,1.4.2.1,0 +9810,142,1.4.2,1 +9810,55,1.4.2.1,0 +9811,55,1.4.2.1,0 +9811,142,1.4.2,1 +9822,142,1.4.2,1 +9822,55,1.4.2.1,0 +9823,55,1.4.2.1,0 +9823,142,1.4.2,1 +9829,55,1.4.2.1,0 +9829,142,1.4.2,1 +9831,55,1.4.2.1,0 +9831,142,1.4.2,1 +9832,55,1.4.2.1,0 +9832,142,1.4.2,1 +9834,142,1.4.2,1 +9834,55,1.4.2.1,0 +9836,142,1.4.2,1 +9836,55,1.4.2.1,0 +9839,142,1.4.2,1 +9839,55,1.4.2.1,0 +9843,142,1.4.2,1 +9843,55,1.4.2.1,0 +9844,55,1.4.2.1,0 +9844,142,1.4.2,1 +9847,142,1.4.2,1 +9847,55,1.4.2.1,0 +9848,142,1.4.2,1 +9848,55,1.4.2.1,0 +9851,170,1,3 +9851,55,1.4.2.2,0 +9851,142,1.4.2,1 +9851,126,1.4,2 +9852,142,1.4.2,1 +9852,55,1.4.2.2,0 +9853,142,1.4.2,1 +9853,55,1.4.2.2,0 +9854,142,1.4.2,1 +9854,55,1.4.2.2,0 +9855,142,1.4.2,1 +9855,55,1.4.2.2,0 +9856,142,1.4.2,1 +9856,55,1.4.2.2,0 +9857,55,1.4.2.2,0 +9857,142,1.4.2,1 +9858,55,1.4.2.2,0 +9858,142,1.4.2,1 +9859,142,1.4.2,1 +9859,55,1.4.2.2,0 +9860,126,1.4,2 +9860,142,1.4.2,1 +9860,170,1,3 +9860,55,1.4.2.2,0 +9861,142,1.4.2,1 +9861,126,1.4,2 +9861,170,1,3 +9861,55,1.4.2.2,0 +9864,142,1.4.2,1 +9864,170,1,3 +9864,55,1.4.2.2,0 +9864,126,1.4,2 +9866,126,1.4,2 +9866,55,1.4.2.2,0 +9866,142,1.4.2,1 +9866,170,1,3 +9869,142,1.4.2,1 +9869,55,1.4.2.2,0 +9869,126,1.4,2 +9869,170,1,3 +9870,55,1.4.2.2,0 +9870,142,1.4.2,1 +9872,142,1.4.2,1 +9872,55,1.4.2.2,0 +9873,55,1.4.2.2,0 +9873,142,1.4.2,1 +9874,142,1.4.2,1 +9874,55,1.4.2.2,0 +9875,170,1,3 +9875,142,1.4.2,1 +9875,126,1.4,2 +9875,55,1.4.2.2,0 +9876,142,1.4.2,1 +9876,55,1.4.2.2,0 +9878,142,1.4.2,1 +9878,55,1.4.2.2,0 +9879,55,1.4.2.2,0 +9879,142,1.4.2,1 +9881,55,1.4.2.2,0 +9881,142,1.4.2,1 +9882,55,1.4.2.2,0 +9882,142,1.4.2,1 +9883,55,1.4.2.2,0 +9883,142,1.4.2,1 +9884,142,1.4.2,1 +9884,55,1.4.2.2,0 +9886,142,1.4.2,1 +9886,55,1.4.2.2,0 +9889,55,1.4.2.2,0 +9889,126,1.4,2 +9889,170,1,3 +9889,142,1.4.2,1 +9891,55,1.4.2.2,0 +9891,142,1.4.2,1 +9892,126,1.4,2 +9892,170,1,3 +9892,55,1.4.2.2,0 +9892,142,1.4.2,1 +9893,142,1.4.2,1 +9893,55,1.4.2.2,0 +9894,55,1.4.2.2,0 +9894,142,1.4.2,1 +9897,142,1.4.2,1 +9897,55,1.4.2.2,0 +9898,142,1.4.2,1 +9898,55,1.4.2.2,0 +9901,55,1.4.4.4,0 +9901,0,1.4.4,1 +9902,55,1.4.4.4,0 +9902,40,1.4.4,1 +9902,0,1.4.4,1 +9903,55,1.4.4.4,0 +9903,0,1.4.4,1 +9903,40,1.4.4,1 +9904,55,1.4.4.4,0 +9904,0,1.4.4,1 +9905,55,1.4.4.4,0 +9905,0,1.4.4,1 +9905,40,1.4.4,1 +9905,126,1.4,2 +9906,40,1.4.4,1 +9906,0,1.4.4,1 +9906,126,1.4,2 +9906,55,1.4.4.4,0 +9906,170,1,3 +9907,55,1.4.4.4,0 +9907,0,1.4.4,1 +9908,55,1.4.4.4,0 +9908,0,1.4.4,1 +9909,40,1.4.4,1 +9909,0,1.4.4,1 +9909,55,1.4.4.4,0 +9910,55,1.4.4.4,0 +9910,0,1.4.4,1 +9911,0,1.4.4,1 +9911,126,1.4,2 +9911,40,1.4.4,1 +9911,170,1,3 +9911,55,1.4.4.4,0 +9914,170,1,3 +9914,40,1.4.4,1 +9914,0,1.4.4,1 +9914,55,1.4.4.4,0 +9914,126,1.4,2 +9916,40,1.4.4,1 +9916,55,1.4.4.4,0 +9916,0,1.4.4,1 +9917,55,1.4.4.4,0 +9917,40,1.4.4,1 +9919,0,1.4.4,1 +9919,55,1.4.4.4,0 +9919,40,1.4.4,1 +9919,126,1.4,2 +9919,170,1,3 +9920,55,1.4.4.4,0 +9920,0,1.4.4,1 +9921,40,1.4.4,1 +9921,55,1.4.4.4,0 +9922,55,1.4.4.4,0 +9922,0,1.4.4,1 +9923,55,1.4.4.4,0 +9923,0,1.4.4,1 +9923,40,1.4.4,1 +9924,40,1.4.4,1 +9924,55,1.4.4.4,0 +9924,126,1.4,2 +9924,0,1.4.4,1 +9925,170,1,3 +9925,0,1.4.4,1 +9925,126,1.4,2 +9925,55,1.4.4.4,0 +9926,0,1.4.4,1 +9926,126,1.4,2 +9926,55,1.4.4.4,0 +9926,40,1.4.4,1 +9926,170,1,3 +9927,40,1.4.4,1 +9927,55,1.4.4.4,0 +9928,40,1.4.4,1 +9928,170,1,3 +9928,0,1.4.4,1 +9928,126,1.4,2 +9928,55,1.4.4.4,0 +9929,0,1.4.4,1 +9929,55,1.4.4.4,0 +9929,40,1.4.4,1 +9931,40,1.4.4,1 +9931,55,1.4.4.4,0 +9931,0,1.4.4,1 +9931,126,1.4,2 +9931,170,1,3 +9932,55,1.4.4.4,0 +9932,0,1.4.4,1 +9932,126,1.4,2 +9932,40,1.4.4,1 +9932,170,1,3 +9933,55,1.4.4.4,0 +9933,0,1.4.4,1 +9934,55,1.4.4.4,0 +9934,0,1.4.4,1 +9934,40,1.4.4,1 +9934,126,1.4,2 +9934,170,1,3 +9935,40,1.4.4,1 +9935,55,1.4.4.4,0 +9935,126,1.4,2 +9936,40,1.4.4,1 +9936,0,1.4.4,1 +9936,55,1.4.4.4,0 +9937,55,1.4.4.4,0 +9937,40,1.4.4,1 +9938,40,1.4.4,1 +9938,55,1.4.4.4,0 +9939,0,1.4.4,1 +9939,40,1.4.4,1 +9939,55,1.4.4.4,0 +9939,126,1.4,2 +9939,170,1,3 +9940,55,1.4.4.4,0 +9940,40,1.4.4,1 +9941,55,1.4.4.4,0 +9941,0,1.4.4,1 +9942,55,1.4.4.4,0 +9942,40,1.4.4,1 +9942,0,1.4.4,1 +9943,55,1.4.4.4,0 +9943,170,1,3 +9943,40,1.4.4,1 +9943,0,1.4.4,1 +9943,126,1.4,2 +9944,170,1,3 +9944,0,1.4.4,1 +9944,55,1.4.4.4,0 +9944,40,1.4.4,1 +9944,126,1.4,2 +9945,55,1.4.4.4,0 +9945,40,1.4.4,1 +9946,55,1.4.4.4,0 +9946,40,1.4.4,1 +9947,0,1.4.4,1 +9947,126,1.4,2 +9947,55,1.4.4.4,0 +9948,0,1.4.4,1 +9948,40,1.4.4,1 +9948,55,1.4.4.4,0 +9949,40,1.4.4,1 +9949,55,1.4.4.4,0 +9950,55,1.4.4.4,0 +9950,40,1.4.4,1 +9961,105,1.1,1 +9961,56,1.1.1,0 +9966,105,1.1,1 +9966,56,1.1.1,0 +9973,94,1.1,1 +9973,56,1.1.1,0 +9979,86,1.1,1 +9979,56,1.1.1,0 +9984,94,1.1,1 +9984,56,1.1.1,0 +9993,56,1.1.1,0 +9993,86,1.1,1 +9994,56,1.1.1,0 +9994,106,1.1,1 +10002,39,1.3.1,1 +10002,85,1.3.1,1 +10002,99,1.3.1,1 +10002,56,1.3.1.7,0 +10003,93,1.3.1,1 +10003,56,1.3.1.7,0 +10004,85,1.3.1,1 +10004,56,1.3.1.7,0 +10005,39,1.3.1,1 +10005,99,1.3.1,1 +10005,85,1.3.1,1 +10005,56,1.3.1.7,0 +10006,93,1.3.1,1 +10006,56,1.3.1.7,0 +10007,93,1.3.1,1 +10007,56,1.3.1.7,0 +10008,85,1.3.1,1 +10008,56,1.3.1.7,0 +10009,56,1.3.1.7,0 +10009,39,1.3.1,1 +10010,39,1.3.1,1 +10010,56,1.3.1.7,0 +10010,99,1.3.1,1 +10011,100,1.3.1,1 +10011,56,1.3.1.7,0 +10014,100,1.3.1,1 +10014,99,1.3.1,1 +10014,56,1.3.1.7,0 +10014,85,1.3.1,1 +10016,106,1.3,2 +10016,100,1.3.1,1 +10016,99,1.3.1,1 +10016,56,1.3.1.7,0 +10019,100,1.3.1,1 +10019,56,1.3.1.7,0 +10019,93,1.3.1,1 +10020,93,1.3.1,1 +10020,56,1.3.1.7,0 +10021,93,1.3.1,1 +10021,56,1.3.1.7,0 +10021,99,1.3.1,1 +10022,56,1.3.1.7,0 +10022,39,1.3.1,1 +10023,100,1.3.1,1 +10023,93,1.3.1,1 +10023,56,1.3.1.7,0 +10024,56,1.3.1.7,0 +10024,100,1.3.1,1 +10024,39,1.3.1,1 +10025,39,1.3.1,1 +10025,56,1.3.1.7,0 +10026,56,1.3.1.7,0 +10026,85,1.3.1,1 +10028,56,1.3.1.7,0 +10028,85,1.3.1,1 +10029,56,1.3.1.7,0 +10029,85,1.3.1,1 +10029,93,1.3.1,1 +10031,85,1.3.1,1 +10031,39,1.3.1,1 +10031,56,1.3.1.7,0 +10032,56,1.3.1.7,0 +10032,85,1.3.1,1 +10033,85,1.3.1,1 +10033,56,1.3.1.7,0 +10034,93,1.3.1,1 +10034,56,1.3.1.7,0 +10035,56,1.3.1.7,0 +10035,100,1.3.1,1 +10035,93,1.3.1,1 +10036,100,1.3.1,1 +10036,85,1.3.1,1 +10036,56,1.3.1.7,0 +10037,93,1.3.1,1 +10037,56,1.3.1.7,0 +10038,56,1.3.1.7,0 +10038,99,1.3.1,1 +10039,56,1.3.1.7,0 +10039,99,1.3.1,1 +10039,39,1.3.1,1 +10039,100,1.3.1,1 +10039,93,1.3.1,1 +10040,100,1.3.1,1 +10040,56,1.3.1.7,0 +10041,100,1.3.1,1 +10041,56,1.3.1.7,0 +10042,100,1.3.1,1 +10042,56,1.3.1.7,0 +10042,99,1.3.1,1 +10044,56,1.3.1.7,0 +10044,99,1.3.1,1 +10047,85,1.3.1,1 +10047,56,1.3.1.7,0 +10048,99,1.3.1,1 +10048,56,1.3.1.7,0 +10048,100,1.3.1,1 +10049,56,1.3.1.7,0 +10049,93,1.3.1,1 +10050,56,1.3.1.7,0 +10050,85,1.3.1,1 +10050,93,1.3.1,1 +10053,97,1.3.3,1 +10053,57,1.3.3.3,0 +10053,99,1.3.3,1 +10054,57,1.3.3.3,0 +10054,75,1.3.3,1 +10055,75,1.3.3,1 +10055,57,1.3.3.3,0 +10056,97,1.3.3,1 +10056,57,1.3.3.3,0 +10057,57,1.3.3.3,0 +10057,75,1.3.3,1 +10058,97,1.3.3,1 +10058,57,1.3.3.3,0 +10060,57,1.3.3.3,0 +10060,75,1.3.3,1 +10061,97,1.3.3,1 +10061,57,1.3.3.3,0 +10064,99,1.3.3,1 +10064,57,1.3.3.3,0 +10064,97,1.3.3,1 +10069,99,1.3.3,1 +10069,57,1.3.3.3,0 +10069,29,1.3,2 +10070,75,1.3.3,1 +10070,57,1.3.3.3,0 +10072,99,1.3.3,1 +10072,57,1.3.3.3,0 +10073,57,1.3.3.3,0 +10073,99,1.3.3,1 +10073,75,1.3.3,1 +10077,29,1.3,2 +10077,170,1,3 +10077,57,1.3.3.3,0 +10077,106,1.3,2 +10077,97,1.3.3,1 +10079,57,1.3.3.3,0 +10079,170,1,3 +10079,99,1.3.3,1 +10079,106,1.3,2 +10079,75,1.3.3,1 +10081,57,1.3.3.3,0 +10081,97,1.3.3,1 +10082,99,1.3.3,1 +10082,57,1.3.3.3,0 +10083,75,1.3.3,1 +10083,57,1.3.3.3,0 +10084,57,1.3.3.3,0 +10084,97,1.3.3,1 +10088,99,1.3.3,1 +10088,57,1.3.3.3,0 +10089,57,1.3.3.3,0 +10089,99,1.3.3,1 +10092,57,1.3.3.3,0 +10092,99,1.3.3,1 +10093,99,1.3.3,1 +10093,57,1.3.3.3,0 +10094,106,1.3,2 +10094,57,1.3.3.3,0 +10094,170,1,3 +10094,99,1.3.3,1 +10094,75,1.3.3,1 +10094,29,1.3,2 +10097,99,1.3.3,1 +10097,57,1.3.3.3,0 +10097,75,1.3.3,1 +10098,57,1.3.3.3,0 +10098,99,1.3.3,1 +10101,57,2.3.1,0 +10101,126,2.3,1 +10102,126,2.3,1 +10102,57,2.3.1,0 +10104,84,2.3,1 +10104,57,2.3.1,0 +10105,126,2.3,1 +10105,95,2.3,1 +10105,57,2.3.1,0 +10107,57,2.3.1,0 +10107,95,2.3,1 +10108,57,2.3.1,0 +10108,84,2.3,1 +10109,84,2.3,1 +10109,57,2.3.1,0 +10111,57,2.3.1,0 +10111,126,2.3,1 +10114,155,2.3,1 +10114,99,2.3,1 +10114,57,2.3.1,0 +10119,99,2.3,1 +10119,57,2.3.1,0 +10120,57,2.3.1,0 +10120,124,2.3,1 +10121,95,2.3,1 +10121,57,2.3.1,0 +10122,99,2.3,1 +10122,57,2.3.1,0 +10124,57,2.3.1,0 +10124,95,2.3,1 +10126,126,2.3,1 +10126,57,2.3.1,0 +10126,95,2.3,1 +10128,95,2.3,1 +10128,57,2.3.1,0 +10129,124,2.3,1 +10129,126,2.3,1 +10129,57,2.3.1,0 +10131,57,2.3.1,0 +10131,95,2.3,1 +10132,155,2.3,1 +10132,57,2.3.1,0 +10133,57,2.3.1,0 +10133,95,2.3,1 +10136,126,2.3,1 +10136,57,2.3.1,0 +10137,95,2.3,1 +10137,124,2.3,1 +10137,57,2.3.1,0 +10139,57,2.3.1,0 +10139,99,2.3,1 +10141,124,2.3,1 +10141,57,2.3.1,0 +10142,124,2.3,1 +10142,57,2.3.1,0 +10143,95,2.3,1 +10143,57,2.3.1,0 +10144,57,2.3.1,0 +10144,124,2.3,1 +10145,57,2.3.1,0 +10145,124,2.3,1 +10148,57,2.3.1,0 +10148,126,2.3,1 +10148,155,2.3,1 +10148,95,2.3,1 +10149,126,2.3,1 +10149,57,2.3.1,0 +10150,57,2.3.1,0 +10150,155,2.3,1 +10152,95,2.3,1 +10152,57,2.3.2,0 +10152,99,2.3,1 +10152,84,2.3,1 +10152,124,2.3,1 +10155,57,2.3.2,0 +10155,124,2.3,1 +10157,155,2.3,1 +10157,57,2.3.2,0 +10157,84,2.3,1 +10161,57,2.3.2,0 +10161,99,2.3,1 +10162,57,2.3.2,0 +10162,126,2.3,1 +10162,155,2.3,1 +10164,57,2.3.2,0 +10164,84,2.3,1 +10166,124,2.3,1 +10166,57,2.3.2,0 +10166,84,2.3,1 +10170,126,2.3,1 +10170,57,2.3.2,0 +10170,84,2.3,1 +10171,57,2.3.2,0 +10171,155,2.3,1 +10172,155,2.3,1 +10172,57,2.3.2,0 +10173,57,2.3.2,0 +10173,155,2.3,1 +10174,57,2.3.2,0 +10174,95,2.3,1 +10176,155,2.3,1 +10176,57,2.3.2,0 +10179,57,2.3.2,0 +10179,124,2.3,1 +10179,95,2.3,1 +10182,95,2.3,1 +10182,124,2.3,1 +10182,57,2.3.2,0 +10183,57,2.3.2,0 +10183,95,2.3,1 +10189,57,2.3.2,0 +10189,99,2.3,1 +10191,126,2.3,1 +10191,57,2.3.2,0 +10192,126,2.3,1 +10192,57,2.3.2,0 +10193,155,2.3,1 +10193,57,2.3.2,0 +10194,95,2.3,1 +10194,126,2.3,1 +10194,57,2.3.2,0 +10195,155,2.3,1 +10195,57,2.3.2,0 +10197,57,2.3.2,0 +10197,99,2.3,1 +10198,95,2.3,1 +10198,57,2.3.2,0 +10198,124,2.3,1 +10199,95,2.3,1 +10199,57,2.3.2,0 +10199,124,2.3,1 +10202,124,2.3,1 +10202,99,2.3,1 +10202,57,2.3.3,0 +10203,57,2.3.3,0 +10203,155,2.3,1 +10207,57,2.3.3,0 +10207,84,2.3,1 +10209,57,2.3.3,0 +10209,99,2.3,1 +10211,126,2.3,1 +10211,124,2.3,1 +10211,57,2.3.3,0 +10211,155,2.3,1 +10214,155,2.3,1 +10214,57,2.3.3,0 +10214,124,2.3,1 +10214,84,2.3,1 +10216,57,2.3.3,0 +10216,84,2.3,1 +10220,126,2.3,1 +10220,57,2.3.3,0 +10220,99,2.3,1 +10220,84,2.3,1 +10222,95,2.3,1 +10222,57,2.3.3,0 +10223,57,2.3.3,0 +10223,95,2.3,1 +10226,99,2.3,1 +10226,155,2.3,1 +10226,57,2.3.3,0 +10228,99,2.3,1 +10228,57,2.3.3,0 +10231,84,2.3,1 +10231,57,2.3.3,0 +10232,124,2.3,1 +10232,57,2.3.3,0 +10233,57,2.3.3,0 +10233,124,2.3,1 +10234,57,2.3.3,0 +10234,95,2.3,1 +10235,155,2.3,1 +10235,57,2.3.3,0 +10235,126,2.3,1 +10236,99,2.3,1 +10236,57,2.3.3,0 +10236,124,2.3,1 +10238,126,2.3,1 +10238,57,2.3.3,0 +10239,57,2.3.3,0 +10239,84,2.3,1 +10241,126,2.3,1 +10241,57,2.3.3,0 +10243,57,2.3.3,0 +10243,84,2.3,1 +10243,95,2.3,1 +10244,95,2.3,1 +10244,57,2.3.3,0 +10248,155,2.3,1 +10248,57,2.3.3,0 +10250,57,2.3.3,0 +10250,95,2.3,1 +10251,126,1.2,1 +10251,58,1.2.2,0 +10252,58,1.2.2,0 +10252,106,1.2,1 +10254,67,1.2,1 +10254,58,1.2.2,0 +10254,126,1.2,1 +10255,67,1.2,1 +10255,126,1.2,1 +10255,58,1.2.2,0 +10256,58,1.2.2,0 +10256,126,1.2,1 +10257,67,1.2,1 +10257,58,1.2.2,0 +10258,106,1.2,1 +10258,58,1.2.2,0 +10259,67,1.2,1 +10259,58,1.2.2,0 +10260,58,1.2.2,0 +10260,67,1.2,1 +10262,106,1.2,1 +10262,126,1.2,1 +10262,58,1.2.2,0 +10264,67,1.2,1 +10264,58,1.2.2,0 +10264,126,1.2,1 +10266,58,1.2.2,0 +10266,126,1.2,1 +10269,126,1.2,1 +10269,58,1.2.2,0 +10272,58,1.2.2,0 +10272,67,1.2,1 +10273,106,1.2,1 +10273,58,1.2.2,0 +10274,126,1.2,1 +10274,58,1.2.2,0 +10276,126,1.2,1 +10276,97,1.2,1 +10276,58,1.2.2,0 +10277,126,1.2,1 +10277,58,1.2.2,0 +10278,58,1.2.2,0 +10278,97,1.2,1 +10279,106,1.2,1 +10279,58,1.2.2,0 +10279,97,1.2,1 +10281,97,1.2,1 +10281,126,1.2,1 +10281,58,1.2.2,0 +10282,106,1.2,1 +10282,58,1.2.2,0 +10283,106,1.2,1 +10283,58,1.2.2,0 +10284,97,1.2,1 +10284,58,1.2.2,0 +10285,58,1.2.2,0 +10285,126,1.2,1 +10286,126,1.2,1 +10286,58,1.2.2,0 +10288,126,1.2,1 +10288,58,1.2.2,0 +10289,126,1.2,1 +10289,58,1.2.2,0 +10289,97,1.2,1 +10290,106,1.2,1 +10290,126,1.2,1 +10290,58,1.2.2,0 +10291,126,1.2,1 +10291,67,1.2,1 +10291,58,1.2.2,0 +10292,58,1.2.2,0 +10292,106,1.2,1 +10293,67,1.2,1 +10293,106,1.2,1 +10293,58,1.2.2,0 +10294,106,1.2,1 +10294,58,1.2.2,0 +10295,58,1.2.2,0 +10295,106,1.2,1 +10297,67,1.2,1 +10297,58,1.2.2,0 +10298,67,1.2,1 +10298,126,1.2,1 +10298,58,1.2.2,0 +10298,97,1.2,1 +10302,58,1.3.1.6,0 +10302,85,1.3.1,1 +10302,99,1.3.1,1 +10303,93,1.3.1,1 +10303,58,1.3.1.6,0 +10303,99,1.3.1,1 +10303,100,1.3.1,1 +10304,39,1.3.1,1 +10304,58,1.3.1.6,0 +10304,93,1.3.1,1 +10305,39,1.3.1,1 +10305,58,1.3.1.6,0 +10305,85,1.3.1,1 +10306,93,1.3.1,1 +10306,39,1.3.1,1 +10306,58,1.3.1.6,0 +10306,100,1.3.1,1 +10307,99,1.3.1,1 +10307,58,1.3.1.6,0 +10308,39,1.3.1,1 +10308,100,1.3.1,1 +10308,58,1.3.1.6,0 +10309,58,1.3.1.6,0 +10309,39,1.3.1,1 +10310,85,1.3.1,1 +10310,58,1.3.1.6,0 +10312,58,1.3.1.6,0 +10312,100,1.3.1,1 +10314,58,1.3.1.6,0 +10314,100,1.3.1,1 +10314,93,1.3.1,1 +10316,58,1.3.1.6,0 +10316,85,1.3.1,1 +10316,39,1.3.1,1 +10316,93,1.3.1,1 +10317,100,1.3.1,1 +10317,58,1.3.1.6,0 +10319,100,1.3.1,1 +10319,58,1.3.1.6,0 +10319,93,1.3.1,1 +10320,58,1.3.1.6,0 +10320,39,1.3.1,1 +10321,100,1.3.1,1 +10321,58,1.3.1.6,0 +10322,93,1.3.1,1 +10322,58,1.3.1.6,0 +10322,39,1.3.1,1 +10323,58,1.3.1.6,0 +10323,85,1.3.1,1 +10323,39,1.3.1,1 +10325,39,1.3.1,1 +10325,58,1.3.1.6,0 +10326,39,1.3.1,1 +10326,93,1.3.1,1 +10326,58,1.3.1.6,0 +10327,85,1.3.1,1 +10327,58,1.3.1.6,0 +10328,58,1.3.1.6,0 +10328,85,1.3.1,1 +10329,93,1.3.1,1 +10329,85,1.3.1,1 +10329,58,1.3.1.6,0 +10330,100,1.3.1,1 +10330,58,1.3.1.6,0 +10331,85,1.3.1,1 +10331,39,1.3.1,1 +10331,58,1.3.1.6,0 +10332,93,1.3.1,1 +10332,58,1.3.1.6,0 +10332,85,1.3.1,1 +10334,58,1.3.1.6,0 +10334,39,1.3.1,1 +10335,58,1.3.1.6,0 +10335,100,1.3.1,1 +10336,39,1.3.1,1 +10336,58,1.3.1.6,0 +10337,58,1.3.1.6,0 +10337,85,1.3.1,1 +10339,93,1.3.1,1 +10339,39,1.3.1,1 +10339,99,1.3.1,1 +10339,29,1.3,2 +10339,58,1.3.1.6,0 +10341,58,1.3.1.6,0 +10341,93,1.3.1,1 +10343,85,1.3.1,1 +10343,93,1.3.1,1 +10343,58,1.3.1.6,0 +10344,58,1.3.1.6,0 +10344,85,1.3.1,1 +10344,99,1.3.1,1 +10345,58,1.3.1.6,0 +10345,100,1.3.1,1 +10347,85,1.3.1,1 +10347,58,1.3.1.6,0 +10348,85,1.3.1,1 +10348,99,1.3.1,1 +10348,58,1.3.1.6,0 +10348,93,1.3.1,1 +10349,58,1.3.1.6,0 +10349,93,1.3.1,1 +10349,99,1.3.1,1 +10352,29,1.3,1 +10352,58,1.3.2,0 +10354,58,1.3.2,0 +10354,29,1.3,1 +10355,106,1.3,1 +10355,29,1.3,1 +10355,170,1,2 +10355,58,1.3.2,0 +10356,29,1.3,1 +10356,58,1.3.2,0 +10357,29,1.3,1 +10357,58,1.3.2,0 +10357,170,1,2 +10358,170,1,2 +10358,29,1.3,1 +10358,58,1.3.2,0 +10359,29,1.3,1 +10359,58,1.3.2,0 +10360,29,1.3,1 +10360,58,1.3.2,0 +10361,106,1.3,1 +10361,58,1.3.2,0 +10361,29,1.3,1 +10364,170,1,2 +10364,106,1.3,1 +10364,29,1.3,1 +10364,58,1.3.2,0 +10366,106,1.3,1 +10366,29,1.3,1 +10366,58,1.3.2,0 +10366,170,1,2 +10369,106,1.3,1 +10369,58,1.3.2,0 +10372,29,1.3,1 +10372,58,1.3.2,0 +10373,106,1.3,1 +10373,58,1.3.2,0 +10373,29,1.3,1 +10374,58,1.3.2,0 +10374,106,1.3,1 +10376,106,1.3,1 +10376,170,1,2 +10376,29,1.3,1 +10376,58,1.3.2,0 +10377,106,1.3,1 +10377,58,1.3.2,0 +10378,29,1.3,1 +10378,58,1.3.2,0 +10379,29,1.3,1 +10379,106,1.3,1 +10379,58,1.3.2,0 +10381,29,1.3,1 +10381,58,1.3.2,0 +10381,106,1.3,1 +10382,29,1.3,1 +10382,58,1.3.2,0 +10383,29,1.3,1 +10383,58,1.3.2,0 +10384,29,1.3,1 +10384,58,1.3.2,0 +10385,58,1.3.2,0 +10385,106,1.3,1 +10386,106,1.3,1 +10386,29,1.3,1 +10386,58,1.3.2,0 +10387,58,1.3.2,0 +10387,106,1.3,1 +10388,106,1.3,1 +10388,58,1.3.2,0 +10389,58,1.3.2,0 +10389,29,1.3,1 +10390,106,1.3,1 +10390,58,1.3.2,0 +10391,58,1.3.2,0 +10391,170,1,2 +10391,29,1.3,1 +10392,106,1.3,1 +10392,58,1.3.2,0 +10393,29,1.3,1 +10393,58,1.3.2,0 +10393,106,1.3,1 +10394,58,1.3.2,0 +10394,170,1,2 +10394,29,1.3,1 +10394,106,1.3,1 +10395,58,1.3.2,0 +10395,106,1.3,1 +10397,58,1.3.2,0 +10397,29,1.3,1 +10398,106,1.3,1 +10398,58,1.3.2,0 +10398,29,1.3,1 +10399,106,1.3,1 +10399,58,1.3.2,0 +10400,58,1.3.2,0 +10400,106,1.3,1 +10402,77,1.3.4,1 +10402,81,1.3.4,1 +10402,58,1.3.4.1,0 +10405,81,1.3.4,1 +10405,58,1.3.4.1,0 +10405,77,1.3.4,1 +10406,80,1.3.4,1 +10406,58,1.3.4.1,0 +10407,80,1.3.4,1 +10407,58,1.3.4.1,0 +10409,77,1.3.4,1 +10409,58,1.3.4.1,0 +10411,58,1.3.4.1,0 +10411,77,1.3.4,1 +10414,58,1.3.4.1,0 +10414,77,1.3.4,1 +10416,77,1.3.4,1 +10416,58,1.3.4.1,0 +10422,58,1.3.4.1,0 +10422,77,1.3.4,1 +10423,81,1.3.4,1 +10423,58,1.3.4.1,0 +10424,81,1.3.4,1 +10424,58,1.3.4.1,0 +10426,58,1.3.4.1,0 +10426,81,1.3.4,1 +10428,58,1.3.4.1,0 +10428,81,1.3.4,1 +10429,80,1.3.4,1 +10429,58,1.3.4.1,0 +10429,81,1.3.4,1 +10431,77,1.3.4,1 +10431,58,1.3.4.1,0 +10434,77,1.3.4,1 +10434,58,1.3.4.1,0 +10439,80,1.3.4,1 +10439,58,1.3.4.1,0 +10441,80,1.3.4,1 +10441,58,1.3.4.1,0 +10442,80,1.3.4,1 +10442,58,1.3.4.1,0 +10443,77,1.3.4,1 +10443,58,1.3.4.1,0 +10443,81,1.3.4,1 +10444,77,1.3.4,1 +10444,58,1.3.4.1,0 +10447,58,1.3.4.1,0 +10447,77,1.3.4,1 +10448,58,1.3.4.1,0 +10448,80,1.3.4,1 +10451,81,1.3.4,1 +10451,58,1.3.4.2,0 +10452,58,1.3.4.2,0 +10452,77,1.3.4,1 +10452,81,1.3.4,1 +10452,80,1.3.4,1 +10453,58,1.3.4.2,0 +10453,80,1.3.4,1 +10454,58,1.3.4.2,0 +10454,77,1.3.4,1 +10454,81,1.3.4,1 +10455,81,1.3.4,1 +10455,58,1.3.4.2,0 +10456,81,1.3.4,1 +10456,58,1.3.4.2,0 +10457,77,1.3.4,1 +10457,58,1.3.4.2,0 +10459,58,1.3.4.2,0 +10459,77,1.3.4,1 +10460,58,1.3.4.2,0 +10460,77,1.3.4,1 +10461,77,1.3.4,1 +10461,58,1.3.4.2,0 +10461,80,1.3.4,1 +10461,81,1.3.4,1 +10464,58,1.3.4.2,0 +10464,80,1.3.4,1 +10466,80,1.3.4,1 +10466,106,1.3,2 +10466,77,1.3.4,1 +10466,58,1.3.4.2,0 +10466,81,1.3.4,1 +10469,81,1.3.4,1 +10469,58,1.3.4.2,0 +10470,80,1.3.4,1 +10470,58,1.3.4.2,0 +10471,58,1.3.4.2,0 +10471,81,1.3.4,1 +10472,77,1.3.4,1 +10472,81,1.3.4,1 +10472,58,1.3.4.2,0 +10473,58,1.3.4.2,0 +10473,29,1.3,2 +10473,77,1.3.4,1 +10473,170,1,3 +10473,81,1.3.4,1 +10474,80,1.3.4,1 +10474,58,1.3.4.2,0 +10476,77,1.3.4,1 +10476,58,1.3.4.2,0 +10477,58,1.3.4.2,0 +10477,81,1.3.4,1 +10478,81,1.3.4,1 +10478,58,1.3.4.2,0 +10479,29,1.3,2 +10479,81,1.3.4,1 +10479,58,1.3.4.2,0 +10481,81,1.3.4,1 +10481,58,1.3.4.2,0 +10482,77,1.3.4,1 +10482,58,1.3.4.2,0 +10482,81,1.3.4,1 +10483,58,1.3.4.2,0 +10483,77,1.3.4,1 +10484,106,1.3,2 +10484,58,1.3.4.2,0 +10484,77,1.3.4,1 +10484,170,1,3 +10484,29,1.3,2 +10485,58,1.3.4.2,0 +10485,80,1.3.4,1 +10485,81,1.3.4,1 +10486,77,1.3.4,1 +10486,80,1.3.4,1 +10486,58,1.3.4.2,0 +10487,58,1.3.4.2,0 +10487,81,1.3.4,1 +10489,58,1.3.4.2,0 +10489,77,1.3.4,1 +10489,81,1.3.4,1 +10490,81,1.3.4,1 +10490,58,1.3.4.2,0 +10491,81,1.3.4,1 +10491,58,1.3.4.2,0 +10492,58,1.3.4.2,0 +10492,81,1.3.4,1 +10493,81,1.3.4,1 +10493,58,1.3.4.2,0 +10493,77,1.3.4,1 +10494,80,1.3.4,1 +10494,58,1.3.4.2,0 +10495,58,1.3.4.2,0 +10495,80,1.3.4,1 +10497,58,1.3.4.2,0 +10497,77,1.3.4,1 +10498,80,1.3.4,1 +10498,58,1.3.4.2,0 +10498,81,1.3.4,1 +10499,58,1.3.4.2,0 +10499,106,1.3,2 +10499,29,1.3,2 +10499,81,1.3.4,1 +10500,81,1.3.4,1 +10500,58,1.3.4.2,0 +10502,81,1.3.4,1 +10502,58,1.3.4.3,0 +10502,77,1.3.4,1 +10504,58,1.3.4.3,0 +10504,77,1.3.4,1 +10505,80,1.3.4,1 +10505,58,1.3.4.3,0 +10505,81,1.3.4,1 +10506,58,1.3.4.3,0 +10506,77,1.3.4,1 +10507,80,1.3.4,1 +10507,58,1.3.4.3,0 +10508,81,1.3.4,1 +10508,58,1.3.4.3,0 +10509,80,1.3.4,1 +10509,58,1.3.4.3,0 +10510,58,1.3.4.3,0 +10510,80,1.3.4,1 +10511,81,1.3.4,1 +10511,58,1.3.4.3,0 +10511,80,1.3.4,1 +10514,80,1.3.4,1 +10514,58,1.3.4.3,0 +10514,77,1.3.4,1 +10516,58,1.3.4.3,0 +10516,77,1.3.4,1 +10516,80,1.3.4,1 +10516,81,1.3.4,1 +10519,81,1.3.4,1 +10519,58,1.3.4.3,0 +10520,58,1.3.4.3,0 +10520,77,1.3.4,1 +10521,81,1.3.4,1 +10521,58,1.3.4.3,0 +10521,80,1.3.4,1 +10522,81,1.3.4,1 +10522,58,1.3.4.3,0 +10523,81,1.3.4,1 +10523,58,1.3.4.3,0 +10526,77,1.3.4,1 +10526,80,1.3.4,1 +10526,58,1.3.4.3,0 +10527,81,1.3.4,1 +10527,58,1.3.4.3,0 +10528,58,1.3.4.3,0 +10528,77,1.3.4,1 +10529,81,1.3.4,1 +10529,58,1.3.4.3,0 +10529,106,1.3,2 +10529,29,1.3,2 +10530,81,1.3.4,1 +10530,58,1.3.4.3,0 +10531,77,1.3.4,1 +10531,58,1.3.4.3,0 +10532,81,1.3.4,1 +10532,80,1.3.4,1 +10532,58,1.3.4.3,0 +10533,58,1.3.4.3,0 +10533,77,1.3.4,1 +10534,77,1.3.4,1 +10534,58,1.3.4.3,0 +10535,58,1.3.4.3,0 +10535,80,1.3.4,1 +10536,77,1.3.4,1 +10536,80,1.3.4,1 +10536,58,1.3.4.3,0 +10537,81,1.3.4,1 +10537,58,1.3.4.3,0 +10538,80,1.3.4,1 +10538,58,1.3.4.3,0 +10539,81,1.3.4,1 +10539,77,1.3.4,1 +10539,58,1.3.4.3,0 +10541,77,1.3.4,1 +10541,58,1.3.4.3,0 +10542,81,1.3.4,1 +10542,58,1.3.4.3,0 +10542,80,1.3.4,1 +10543,58,1.3.4.3,0 +10543,80,1.3.4,1 +10544,77,1.3.4,1 +10544,58,1.3.4.3,0 +10544,81,1.3.4,1 +10545,80,1.3.4,1 +10545,58,1.3.4.3,0 +10546,80,1.3.4,1 +10546,58,1.3.4.3,0 +10547,77,1.3.4,1 +10547,58,1.3.4.3,0 +10547,81,1.3.4,1 +10548,106,1.3,2 +10548,58,1.3.4.3,0 +10548,29,1.3,2 +10548,81,1.3.4,1 +10548,77,1.3.4,1 +10549,80,1.3.4,1 +10549,81,1.3.4,1 +10549,58,1.3.4.3,0 +10550,80,1.3.4,1 +10550,29,1.3,2 +10550,58,1.3.4.3,0 +10550,81,1.3.4,1 +10557,99,2.1,1 +10557,58,2.1.2,0 +10558,58,2.1.2,0 +10558,99,2.1,1 +10561,58,2.1.2,0 +10561,99,2.1,1 +10564,99,2.1,1 +10564,58,2.1.2,0 +10566,58,2.1.2,0 +10566,99,2.1,1 +10576,58,2.1.2,0 +10576,99,2.1,1 +10586,99,2.1,1 +10586,58,2.1.2,0 +10591,58,2.1.2,0 +10591,98,2,2 +10591,102,2,2 +10591,99,2.1,1 +10601,59,1.4.2.5,0 +10601,142,1.4.2,1 +10602,59,1.4.2.5,0 +10602,142,1.4.2,1 +10602,170,1,3 +10602,126,1.4,2 +10603,142,1.4.2,1 +10603,59,1.4.2.5,0 +10604,142,1.4.2,1 +10604,59,1.4.2.5,0 +10605,126,1.4,2 +10605,59,1.4.2.5,0 +10605,170,1,3 +10605,142,1.4.2,1 +10606,59,1.4.2.5,0 +10606,142,1.4.2,1 +10607,59,1.4.2.5,0 +10607,142,1.4.2,1 +10608,142,1.4.2,1 +10608,126,1.4,2 +10608,59,1.4.2.5,0 +10608,170,1,3 +10609,170,1,3 +10609,126,1.4,2 +10609,59,1.4.2.5,0 +10609,142,1.4.2,1 +10610,142,1.4.2,1 +10610,59,1.4.2.5,0 +10611,59,1.4.2.5,0 +10611,142,1.4.2,1 +10614,142,1.4.2,1 +10614,170,1,3 +10614,59,1.4.2.5,0 +10614,126,1.4,2 +10616,59,1.4.2.5,0 +10616,142,1.4.2,1 +10619,142,1.4.2,1 +10619,59,1.4.2.5,0 +10620,142,1.4.2,1 +10620,59,1.4.2.5,0 +10622,59,1.4.2.5,0 +10622,142,1.4.2,1 +10623,142,1.4.2,1 +10623,59,1.4.2.5,0 +10624,59,1.4.2.5,0 +10624,142,1.4.2,1 +10625,59,1.4.2.5,0 +10625,142,1.4.2,1 +10626,126,1.4,2 +10626,142,1.4.2,1 +10626,59,1.4.2.5,0 +10626,170,1,3 +10628,142,1.4.2,1 +10628,170,1,3 +10628,126,1.4,2 +10628,59,1.4.2.5,0 +10629,142,1.4.2,1 +10629,59,1.4.2.5,0 +10631,59,1.4.2.5,0 +10631,142,1.4.2,1 +10632,59,1.4.2.5,0 +10632,142,1.4.2,1 +10633,170,1,3 +10633,59,1.4.2.5,0 +10633,142,1.4.2,1 +10633,126,1.4,2 +10634,142,1.4.2,1 +10634,59,1.4.2.5,0 +10636,142,1.4.2,1 +10636,170,1,3 +10636,126,1.4,2 +10636,59,1.4.2.5,0 +10639,142,1.4.2,1 +10639,59,1.4.2.5,0 +10641,142,1.4.2,1 +10641,59,1.4.2.5,0 +10642,126,1.4,2 +10642,170,1,3 +10642,59,1.4.2.5,0 +10642,142,1.4.2,1 +10643,142,1.4.2,1 +10643,59,1.4.2.5,0 +10643,170,1,3 +10643,126,1.4,2 +10644,142,1.4.2,1 +10644,59,1.4.2.5,0 +10647,142,1.4.2,1 +10647,59,1.4.2.5,0 +10648,126,1.4,2 +10648,142,1.4.2,1 +10648,59,1.4.2.5,0 +10648,170,1,3 +10652,80,2.1.1,1 +10652,60,2.1.1.1,0 +10654,80,2.1.1,1 +10654,60,2.1.1.1,0 +10655,106,2.1.1,1 +10655,60,2.1.1.1,0 +10657,60,2.1.1.1,0 +10657,80,2.1.1,1 +10658,85,2.1.1,1 +10658,60,2.1.1.1,0 +10659,60,2.1.1.1,0 +10659,85,2.1.1,1 +10661,106,2.1.1,1 +10661,148,2.1.1,1 +10661,60,2.1.1.1,0 +10664,148,2.1.1,1 +10664,60,2.1.1.1,0 +10666,60,2.1.1.1,0 +10666,148,2.1.1,1 +10670,80,2.1.1,1 +10670,60,2.1.1.1,0 +10672,106,2.1.1,1 +10672,60,2.1.1.1,0 +10673,148,2.1.1,1 +10673,60,2.1.1.1,0 +10673,85,2.1.1,1 +10675,60,2.1.1.1,0 +10675,80,2.1.1,1 +10676,85,2.1.1,1 +10676,60,2.1.1.1,0 +10678,148,2.1.1,1 +10678,60,2.1.1.1,0 +10679,60,2.1.1.1,0 +10679,80,2.1.1,1 +10681,85,2.1.1,1 +10681,60,2.1.1.1,0 +10682,80,2.1.1,1 +10682,60,2.1.1.1,0 +10686,60,2.1.1.1,0 +10686,148,2.1.1,1 +10691,148,2.1.1,1 +10691,60,2.1.1.1,0 +10692,60,2.1.1.1,0 +10692,85,2.1.1,1 +10692,80,2.1.1,1 +10693,80,2.1.1,1 +10693,60,2.1.1.1,0 +10697,60,2.1.1.1,0 +10697,80,2.1.1,1 +10701,60,2.1.1.2,0 +10701,106,2.1.1,1 +10702,80,2.1.1,1 +10702,60,2.1.1.2,0 +10706,60,2.1.1.2,0 +10706,85,2.1.1,1 +10707,80,2.1.1,1 +10707,60,2.1.1.2,0 +10709,80,2.1.1,1 +10709,60,2.1.1.2,0 +10711,80,2.1.1,1 +10711,60,2.1.1.2,0 +10714,60,2.1.1.2,0 +10714,148,2.1.1,1 +10714,80,2.1.1,1 +10720,60,2.1.1.2,0 +10720,80,2.1.1,1 +10722,148,2.1.1,1 +10722,60,2.1.1.2,0 +10723,60,2.1.1.2,0 +10723,85,2.1.1,1 +10725,60,2.1.1.2,0 +10725,80,2.1.1,1 +10728,60,2.1.1.2,0 +10728,85,2.1.1,1 +10731,85,2.1.1,1 +10731,60,2.1.1.2,0 +10732,106,2.1.1,1 +10732,60,2.1.1.2,0 +10734,80,2.1.1,1 +10734,60,2.1.1.2,0 +10736,85,2.1.1,1 +10736,60,2.1.1.2,0 +10739,148,2.1.1,1 +10739,60,2.1.1.2,0 +10741,80,2.1.1,1 +10741,148,2.1.1,1 +10741,60,2.1.1.2,0 +10744,85,2.1.1,1 +10744,60,2.1.1.2,0 +10747,80,2.1.1,1 +10747,60,2.1.1.2,0 +10748,106,2.1.1,1 +10748,60,2.1.1.2,0 +10749,106,2.1.1,1 +10749,60,2.1.1.2,0 +10752,80,2.1.1,1 +10752,60,2.1.1.3,0 +10754,60,2.1.1.3,0 +10754,85,2.1.1,1 +10755,106,2.1.1,1 +10755,60,2.1.1.3,0 +10757,148,2.1.1,1 +10757,60,2.1.1.3,0 +10759,80,2.1.1,1 +10759,60,2.1.1.3,0 +10761,80,2.1.1,1 +10761,60,2.1.1.3,0 +10764,60,2.1.1.3,0 +10764,80,2.1.1,1 +10764,148,2.1.1,1 +10766,60,2.1.1.3,0 +10766,148,2.1.1,1 +10772,80,2.1.1,1 +10772,60,2.1.1.3,0 +10773,106,2.1.1,1 +10773,60,2.1.1.3,0 +10776,148,2.1.1,1 +10776,85,2.1.1,1 +10776,60,2.1.1.3,0 +10779,60,2.1.1.3,0 +10779,80,2.1.1,1 +10781,60,2.1.1.3,0 +10781,80,2.1.1,1 +10781,148,2.1.1,1 +10782,85,2.1.1,1 +10782,60,2.1.1.3,0 +10784,60,2.1.1.3,0 +10784,85,2.1.1,1 +10785,106,2.1.1,1 +10785,60,2.1.1.3,0 +10785,148,2.1.1,1 +10786,148,2.1.1,1 +10786,60,2.1.1.3,0 +10792,60,2.1.1.3,0 +10792,80,2.1.1,1 +10792,85,2.1.1,1 +10793,60,2.1.1.3,0 +10793,148,2.1.1,1 +10794,80,2.1.1,1 +10794,60,2.1.1.3,0 +10802,85,2.1.1,1 +10802,60,2.1.1.4,0 +10804,60,2.1.1.4,0 +10804,106,2.1.1,1 +10806,60,2.1.1.4,0 +10806,80,2.1.1,1 +10808,60,2.1.1.4,0 +10808,106,2.1.1,1 +10810,80,2.1.1,1 +10810,60,2.1.1.4,0 +10811,80,2.1.1,1 +10811,60,2.1.1.4,0 +10812,148,2.1.1,1 +10812,60,2.1.1.4,0 +10823,60,2.1.1.4,0 +10823,85,2.1.1,1 +10828,60,2.1.1.4,0 +10828,80,2.1.1,1 +10831,60,2.1.1.4,0 +10831,106,2.1.1,1 +10833,60,2.1.1.4,0 +10833,106,2.1.1,1 +10836,85,2.1.1,1 +10836,60,2.1.1.4,0 +10839,85,2.1.1,1 +10839,60,2.1.1.4,0 +10841,148,2.1.1,1 +10841,60,2.1.1.4,0 +10842,60,2.1.1.4,0 +10842,148,2.1.1,1 +10843,60,2.1.1.4,0 +10843,148,2.1.1,1 +10844,80,2.1.1,1 +10844,106,2.1.1,1 +10844,60,2.1.1.4,0 +10847,85,2.1.1,1 +10847,60,2.1.1.4,0 +10849,60,2.1.1.4,0 +10849,85,2.1.1,1 +10852,80,2.1.1,1 +10852,60,2.1.1.5,0 +10854,60,2.1.1.5,0 +10854,148,2.1.1,1 +10855,85,2.1.1,1 +10855,60,2.1.1.5,0 +10856,60,2.1.1.5,0 +10856,80,2.1.1,1 +10857,148,2.1.1,1 +10857,60,2.1.1.5,0 +10858,60,2.1.1.5,0 +10858,80,2.1.1,1 +10860,80,2.1.1,1 +10860,60,2.1.1.5,0 +10866,80,2.1.1,1 +10866,60,2.1.1.5,0 +10869,60,2.1.1.5,0 +10869,85,2.1.1,1 +10873,106,2.1.1,1 +10873,85,2.1.1,1 +10873,148,2.1.1,1 +10873,60,2.1.1.5,0 +10877,85,2.1.1,1 +10877,60,2.1.1.5,0 +10879,60,2.1.1.5,0 +10879,80,2.1.1,1 +10882,80,2.1.1,1 +10882,60,2.1.1.5,0 +10883,60,2.1.1.5,0 +10883,106,2.1.1,1 +10885,148,2.1.1,1 +10885,60,2.1.1.5,0 +10887,60,2.1.1.5,0 +10887,106,2.1.1,1 +10888,148,2.1.1,1 +10888,60,2.1.1.5,0 +10890,60,2.1.1.5,0 +10890,85,2.1.1,1 +10891,80,2.1.1,1 +10891,60,2.1.1.5,0 +10892,60,2.1.1.5,0 +10892,80,2.1.1,1 +10893,80,2.1.1,1 +10893,85,2.1.1,1 +10893,60,2.1.1.5,0 +10894,80,2.1.1,1 +10894,60,2.1.1.5,0 +10897,106,2.1.1,1 +10897,60,2.1.1.5,0 +10902,61,1.3.3.3,0 +10902,75,1.3.3,1 +10902,99,1.3.3,1 +10904,97,1.3.3,1 +10904,61,1.3.3.3,0 +10905,61,1.3.3.3,0 +10905,97,1.3.3,1 +10906,97,1.3.3,1 +10906,61,1.3.3.3,0 +10907,61,1.3.3.3,0 +10907,75,1.3.3,1 +10908,61,1.3.3.3,0 +10908,75,1.3.3,1 +10910,61,1.3.3.3,0 +10910,75,1.3.3,1 +10911,75,1.3.3,1 +10911,61,1.3.3.3,0 +10914,99,1.3.3,1 +10914,61,1.3.3.3,0 +10914,97,1.3.3,1 +10916,61,1.3.3.3,0 +10916,99,1.3.3,1 +10920,97,1.3.3,1 +10920,61,1.3.3.3,0 +10922,75,1.3.3,1 +10922,61,1.3.3.3,0 +10923,61,1.3.3.3,0 +10923,75,1.3.3,1 +10924,61,1.3.3.3,0 +10924,99,1.3.3,1 +10926,61,1.3.3.3,0 +10926,75,1.3.3,1 +10928,61,1.3.3.3,0 +10928,97,1.3.3,1 +10929,106,1.3,2 +10929,61,1.3.3.3,0 +10929,97,1.3.3,1 +10929,29,1.3,2 +10929,99,1.3.3,1 +10931,99,1.3.3,1 +10931,61,1.3.3.3,0 +10932,75,1.3.3,1 +10932,61,1.3.3.3,0 +10933,61,1.3.3.3,0 +10933,97,1.3.3,1 +10934,75,1.3.3,1 +10934,61,1.3.3.3,0 +10935,99,1.3.3,1 +10935,61,1.3.3.3,0 +10936,61,1.3.3.3,0 +10936,97,1.3.3,1 +10937,61,1.3.3.3,0 +10937,97,1.3.3,1 +10938,61,1.3.3.3,0 +10938,99,1.3.3,1 +10939,61,1.3.3.3,0 +10939,99,1.3.3,1 +10939,75,1.3.3,1 +10940,99,1.3.3,1 +10940,61,1.3.3.3,0 +10941,61,1.3.3.3,0 +10941,99,1.3.3,1 +10943,97,1.3.3,1 +10943,61,1.3.3.3,0 +10944,97,1.3.3,1 +10944,61,1.3.3.3,0 +10945,99,1.3.3,1 +10945,61,1.3.3.3,0 +10947,75,1.3.3,1 +10947,61,1.3.3.3,0 +10948,97,1.3.3,1 +10948,75,1.3.3,1 +10948,61,1.3.3.3,0 +10948,99,1.3.3,1 +10952,100,1.3.1,1 +10952,62,1.3.1.2,0 +10953,39,1.3.1,1 +10953,62,1.3.1.2,0 +10954,62,1.3.1.2,0 +10954,39,1.3.1,1 +10954,100,1.3.1,1 +10955,93,1.3.1,1 +10955,62,1.3.1.2,0 +10955,99,1.3.1,1 +10957,39,1.3.1,1 +10957,62,1.3.1.2,0 +10959,62,1.3.1.2,0 +10959,39,1.3.1,1 +10964,85,1.3.1,1 +10964,99,1.3.1,1 +10964,62,1.3.1.2,0 +10966,62,1.3.1.2,0 +10966,100,1.3.1,1 +10970,100,1.3.1,1 +10970,62,1.3.1.2,0 +10971,93,1.3.1,1 +10971,62,1.3.1.2,0 +10972,62,1.3.1.2,0 +10972,100,1.3.1,1 +10973,85,1.3.1,1 +10973,62,1.3.1.2,0 +10976,99,1.3.1,1 +10976,62,1.3.1.2,0 +10976,93,1.3.1,1 +10977,62,1.3.1.2,0 +10977,100,1.3.1,1 +10978,85,1.3.1,1 +10978,62,1.3.1.2,0 +10979,93,1.3.1,1 +10979,62,1.3.1.2,0 +10979,85,1.3.1,1 +10981,85,1.3.1,1 +10981,62,1.3.1.2,0 +10981,39,1.3.1,1 +10982,85,1.3.1,1 +10982,62,1.3.1.2,0 +10984,85,1.3.1,1 +10984,62,1.3.1.2,0 +10986,85,1.3.1,1 +10986,39,1.3.1,1 +10986,62,1.3.1.2,0 +10987,93,1.3.1,1 +10987,62,1.3.1.2,0 +10989,85,1.3.1,1 +10989,62,1.3.1.2,0 +10991,62,1.3.1.2,0 +10991,39,1.3.1,1 +10993,99,1.3.1,1 +10993,62,1.3.1.2,0 +10994,39,1.3.1,1 +10994,85,1.3.1,1 +10994,62,1.3.1.2,0 +10995,100,1.3.1,1 +10995,62,1.3.1.2,0 +10997,85,1.3.1,1 +10997,62,1.3.1.2,0 +10998,62,1.3.1.2,0 +10998,100,1.3.1,1 +11001,58,2.1.2,1 +11001,62,2.1.2.1,0 +11002,159,2.1.2,1 +11002,62,2.1.2.1,0 +11003,79,2.1.2,1 +11003,62,2.1.2.1,0 +11004,62,2.1.2.1,0 +11004,81,2.1.2,1 +11006,62,2.1.2.1,0 +11006,81,2.1.2,1 +11007,62,2.1.2.1,0 +11007,84,2.1.2,1 +11008,159,2.1.2,1 +11008,62,2.1.2.1,0 +11010,79,2.1.2,1 +11010,62,2.1.2.1,0 +11010,159,2.1.2,1 +11011,62,2.1.2.1,0 +11011,159,2.1.2,1 +11011,81,2.1.2,1 +11014,81,2.1.2,1 +11014,62,2.1.2.1,0 +11020,81,2.1.2,1 +11020,62,2.1.2.1,0 +11022,58,2.1.2,1 +11022,62,2.1.2.1,0 +11025,58,2.1.2,1 +11025,62,2.1.2.1,0 +11028,62,2.1.2.1,0 +11028,84,2.1.2,1 +11029,62,2.1.2.1,0 +11029,159,2.1.2,1 +11029,81,2.1.2,1 +11032,79,2.1.2,1 +11032,62,2.1.2.1,0 +11033,62,2.1.2.1,0 +11033,58,2.1.2,1 +11034,84,2.1.2,1 +11034,62,2.1.2.1,0 +11038,62,2.1.2.1,0 +11038,81,2.1.2,1 +11039,62,2.1.2.1,0 +11039,81,2.1.2,1 +11042,62,2.1.2.1,0 +11042,159,2.1.2,1 +11045,81,2.1.2,1 +11045,62,2.1.2.1,0 +11047,62,2.1.2.1,0 +11047,84,2.1.2,1 +11048,79,2.1.2,1 +11048,62,2.1.2.1,0 +11053,62,2.1.2.2,0 +11053,58,2.1.2,1 +11054,62,2.1.2.2,0 +11054,84,2.1.2,1 +11055,62,2.1.2.2,0 +11055,79,2.1.2,1 +11056,62,2.1.2.2,0 +11056,84,2.1.2,1 +11058,58,2.1.2,1 +11058,62,2.1.2.2,0 +11061,62,2.1.2.2,0 +11061,159,2.1.2,1 +11074,62,2.1.2.2,0 +11074,79,2.1.2,1 +11074,159,2.1.2,1 +11075,58,2.1.2,1 +11075,62,2.1.2.2,0 +11077,62,2.1.2.2,0 +11077,81,2.1.2,1 +11081,81,2.1.2,1 +11081,62,2.1.2.2,0 +11081,58,2.1.2,1 +11082,58,2.1.2,1 +11082,62,2.1.2.2,0 +11084,62,2.1.2.2,0 +11084,79,2.1.2,1 +11085,62,2.1.2.2,0 +11085,81,2.1.2,1 +11086,81,2.1.2,1 +11086,84,2.1.2,1 +11086,79,2.1.2,1 +11086,62,2.1.2.2,0 +11086,58,2.1.2,1 +11089,79,2.1.2,1 +11089,62,2.1.2.2,0 +11091,62,2.1.2.2,0 +11091,58,2.1.2,1 +11092,62,2.1.2.2,0 +11092,58,2.1.2,1 +11093,84,2.1.2,1 +11093,62,2.1.2.2,0 +11097,159,2.1.2,1 +11097,62,2.1.2.2,0 +11099,159,2.1.2,1 +11099,62,2.1.2.2,0 +11100,62,2.1.2.2,0 +11100,159,2.1.2,1 +11101,62,2.1.2.3,0 +11101,58,2.1.2,1 +11102,62,2.1.2.3,0 +11102,58,2.1.2,1 +11103,79,2.1.2,1 +11103,62,2.1.2.3,0 +11105,62,2.1.2.3,0 +11105,159,2.1.2,1 +11107,79,2.1.2,1 +11107,62,2.1.2.3,0 +11114,81,2.1.2,1 +11114,62,2.1.2.3,0 +11116,62,2.1.2.3,0 +11116,84,2.1.2,1 +11120,81,2.1.2,1 +11120,62,2.1.2.3,0 +11122,62,2.1.2.3,0 +11122,58,2.1.2,1 +11123,62,2.1.2.3,0 +11123,81,2.1.2,1 +11123,84,2.1.2,1 +11124,62,2.1.2.3,0 +11124,159,2.1.2,1 +11125,58,2.1.2,1 +11125,62,2.1.2.3,0 +11129,58,2.1.2,1 +11129,62,2.1.2.3,0 +11129,79,2.1.2,1 +11133,62,2.1.2.3,0 +11133,84,2.1.2,1 +11136,84,2.1.2,1 +11136,62,2.1.2.3,0 +11139,79,2.1.2,1 +11139,62,2.1.2.3,0 +11141,62,2.1.2.3,0 +11141,58,2.1.2,1 +11142,62,2.1.2.3,0 +11142,79,2.1.2,1 +11143,79,2.1.2,1 +11143,159,2.1.2,1 +11143,62,2.1.2.3,0 +11145,84,2.1.2,1 +11145,62,2.1.2.3,0 +11147,62,2.1.2.3,0 +11147,81,2.1.2,1 +11148,79,2.1.2,1 +11148,62,2.1.2.3,0 +11149,159,2.1.2,1 +11149,62,2.1.2.3,0 +11152,62,2.1.2.4,0 +11152,58,2.1.2,1 +11154,62,2.1.2.4,0 +11154,159,2.1.2,1 +11156,62,2.1.2.4,0 +11156,58,2.1.2,1 +11157,62,2.1.2.4,0 +11157,58,2.1.2,1 +11158,84,2.1.2,1 +11158,62,2.1.2.4,0 +11160,62,2.1.2.4,0 +11160,159,2.1.2,1 +11160,79,2.1.2,1 +11161,62,2.1.2.4,0 +11161,79,2.1.2,1 +11161,84,2.1.2,1 +11164,62,2.1.2.4,0 +11164,84,2.1.2,1 +11166,62,2.1.2.4,0 +11166,84,2.1.2,1 +11169,62,2.1.2.4,0 +11169,81,2.1.2,1 +11169,79,2.1.2,1 +11173,84,2.1.2,1 +11173,62,2.1.2.4,0 +11173,159,2.1.2,1 +11173,58,2.1.2,1 +11174,62,2.1.2.4,0 +11174,159,2.1.2,1 +11175,79,2.1.2,1 +11175,62,2.1.2.4,0 +11177,62,2.1.2.4,0 +11177,79,2.1.2,1 +11179,62,2.1.2.4,0 +11179,159,2.1.2,1 +11181,62,2.1.2.4,0 +11181,58,2.1.2,1 +11183,79,2.1.2,1 +11183,62,2.1.2.4,0 +11186,81,2.1.2,1 +11186,62,2.1.2.4,0 +11186,159,2.1.2,1 +11189,58,2.1.2,1 +11189,159,2.1.2,1 +11189,62,2.1.2.4,0 +11193,58,2.1.2,1 +11193,159,2.1.2,1 +11193,62,2.1.2.4,0 +11194,159,2.1.2,1 +11194,62,2.1.2.4,0 +11197,62,2.1.2.4,0 +11197,81,2.1.2,1 +11198,79,2.1.2,1 +11198,62,2.1.2.4,0 +11198,58,2.1.2,1 +11198,81,2.1.2,1 +11208,63,1.4.1.1,0 +11208,157,1.4.1,1 +11209,157,1.4.1,1 +11209,63,1.4.1.1,0 +11210,63,1.4.1.1,0 +11210,157,1.4.1,1 +11211,157,1.4.1,1 +11211,63,1.4.1.1,0 +11216,63,1.4.1.1,0 +11216,157,1.4.1,1 +11220,63,1.4.1.1,0 +11220,157,1.4.1,1 +11223,157,1.4.1,1 +11223,63,1.4.1.1,0 +11225,63,1.4.1.1,0 +11225,157,1.4.1,1 +11226,157,1.4.1,1 +11226,63,1.4.1.1,0 +11228,157,1.4.1,1 +11228,63,1.4.1.1,0 +11231,63,1.4.1.1,0 +11231,157,1.4.1,1 +11232,63,1.4.1.1,0 +11232,157,1.4.1,1 +11236,157,1.4.1,1 +11236,63,1.4.1.1,0 +11239,63,1.4.1.1,0 +11239,157,1.4.1,1 +11241,157,1.4.1,1 +11241,63,1.4.1.1,0 +11243,63,1.4.1.1,0 +11243,157,1.4.1,1 +11244,157,1.4.1,1 +11244,63,1.4.1.1,0 +11248,157,1.4.1,1 +11248,63,1.4.1.1,0 +11252,126,1.4,2 +11252,63,1.4.2.4,0 +11252,142,1.4.2,1 +11260,142,1.4.2,1 +11260,63,1.4.2.4,0 +11275,63,1.4.2.4,0 +11275,142,1.4.2,1 +11278,142,1.4.2,1 +11278,63,1.4.2.4,0 +11282,63,1.4.2.4,0 +11282,142,1.4.2,1 +11284,142,1.4.2,1 +11284,63,1.4.2.4,0 +11289,63,1.4.2.4,0 +11289,142,1.4.2,1 +11292,63,1.4.2.4,0 +11292,142,1.4.2,1 +11301,170,1,3 +11301,63,1.4.4.5,0 +11301,126,1.4,2 +11301,0,1.4.4,1 +11301,40,1.4.4,1 +11302,170,1,3 +11302,40,1.4.4,1 +11302,63,1.4.4.5,0 +11302,126,1.4,2 +11302,0,1.4.4,1 +11303,0,1.4.4,1 +11303,170,1,3 +11303,126,1.4,2 +11303,63,1.4.4.5,0 +11303,40,1.4.4,1 +11304,126,1.4,2 +11304,0,1.4.4,1 +11304,63,1.4.4.5,0 +11304,40,1.4.4,1 +11304,170,1,3 +11305,40,1.4.4,1 +11305,126,1.4,2 +11305,0,1.4.4,1 +11305,63,1.4.4.5,0 +11305,170,1,3 +11306,63,1.4.4.5,0 +11306,40,1.4.4,1 +11306,0,1.4.4,1 +11306,126,1.4,2 +11306,170,1,3 +11307,170,1,3 +11307,63,1.4.4.5,0 +11307,126,1.4,2 +11307,40,1.4.4,1 +11307,0,1.4.4,1 +11308,40,1.4.4,1 +11308,126,1.4,2 +11308,63,1.4.4.5,0 +11308,170,1,3 +11308,0,1.4.4,1 +11309,170,1,3 +11309,40,1.4.4,1 +11309,63,1.4.4.5,0 +11309,126,1.4,2 +11309,0,1.4.4,1 +11310,126,1.4,2 +11310,40,1.4.4,1 +11310,0,1.4.4,1 +11310,63,1.4.4.5,0 +11310,170,1,3 +11311,0,1.4.4,1 +11311,126,1.4,2 +11311,40,1.4.4,1 +11311,170,1,3 +11311,63,1.4.4.5,0 +11312,126,1.4,2 +11312,40,1.4.4,1 +11312,0,1.4.4,1 +11312,63,1.4.4.5,0 +11312,170,1,3 +11313,126,1.4,2 +11313,170,1,3 +11313,40,1.4.4,1 +11313,0,1.4.4,1 +11313,63,1.4.4.5,0 +11314,170,1,3 +11314,63,1.4.4.5,0 +11314,40,1.4.4,1 +11314,0,1.4.4,1 +11314,126,1.4,2 +11315,170,1,3 +11315,0,1.4.4,1 +11315,40,1.4.4,1 +11315,126,1.4,2 +11315,63,1.4.4.5,0 +11316,40,1.4.4,1 +11316,0,1.4.4,1 +11316,63,1.4.4.5,0 +11316,126,1.4,2 +11316,170,1,3 +11317,126,1.4,2 +11317,40,1.4.4,1 +11317,170,1,3 +11317,63,1.4.4.5,0 +11317,0,1.4.4,1 +11318,63,1.4.4.5,0 +11318,40,1.4.4,1 +11318,170,1,3 +11318,126,1.4,2 +11318,0,1.4.4,1 +11319,0,1.4.4,1 +11319,63,1.4.4.5,0 +11319,40,1.4.4,1 +11319,126,1.4,2 +11319,170,1,3 +11320,170,1,3 +11320,40,1.4.4,1 +11320,0,1.4.4,1 +11320,63,1.4.4.5,0 +11320,126,1.4,2 +11321,170,1,3 +11321,40,1.4.4,1 +11321,0,1.4.4,1 +11321,126,1.4,2 +11321,63,1.4.4.5,0 +11322,40,1.4.4,1 +11322,0,1.4.4,1 +11322,126,1.4,2 +11322,63,1.4.4.5,0 +11322,170,1,3 +11323,0,1.4.4,1 +11323,40,1.4.4,1 +11323,126,1.4,2 +11323,170,1,3 +11323,63,1.4.4.5,0 +11324,63,1.4.4.5,0 +11324,0,1.4.4,1 +11324,126,1.4,2 +11324,40,1.4.4,1 +11324,170,1,3 +11325,40,1.4.4,1 +11325,170,1,3 +11325,63,1.4.4.5,0 +11325,0,1.4.4,1 +11325,126,1.4,2 +11326,0,1.4.4,1 +11326,126,1.4,2 +11326,40,1.4.4,1 +11326,63,1.4.4.5,0 +11326,170,1,3 +11327,126,1.4,2 +11327,170,1,3 +11327,63,1.4.4.5,0 +11327,40,1.4.4,1 +11327,0,1.4.4,1 +11328,40,1.4.4,1 +11328,170,1,3 +11328,0,1.4.4,1 +11328,63,1.4.4.5,0 +11328,126,1.4,2 +11329,170,1,3 +11329,126,1.4,2 +11329,40,1.4.4,1 +11329,63,1.4.4.5,0 +11329,0,1.4.4,1 +11330,170,1,3 +11330,126,1.4,2 +11330,0,1.4.4,1 +11330,40,1.4.4,1 +11330,63,1.4.4.5,0 +11331,40,1.4.4,1 +11331,0,1.4.4,1 +11331,126,1.4,2 +11331,170,1,3 +11331,63,1.4.4.5,0 +11332,0,1.4.4,1 +11332,63,1.4.4.5,0 +11332,126,1.4,2 +11332,40,1.4.4,1 +11332,170,1,3 +11333,0,1.4.4,1 +11333,40,1.4.4,1 +11333,63,1.4.4.5,0 +11333,170,1,3 +11333,126,1.4,2 +11334,0,1.4.4,1 +11334,63,1.4.4.5,0 +11334,40,1.4.4,1 +11334,126,1.4,2 +11334,170,1,3 +11335,63,1.4.4.5,0 +11335,170,1,3 +11335,126,1.4,2 +11335,40,1.4.4,1 +11335,0,1.4.4,1 +11336,63,1.4.4.5,0 +11336,40,1.4.4,1 +11336,170,1,3 +11336,126,1.4,2 +11336,0,1.4.4,1 +11337,126,1.4,2 +11337,40,1.4.4,1 +11337,63,1.4.4.5,0 +11337,170,1,3 +11337,0,1.4.4,1 +11338,63,1.4.4.5,0 +11338,40,1.4.4,1 +11338,0,1.4.4,1 +11338,170,1,3 +11338,126,1.4,2 +11339,0,1.4.4,1 +11339,40,1.4.4,1 +11339,126,1.4,2 +11339,170,1,3 +11339,63,1.4.4.5,0 +11340,170,1,3 +11340,63,1.4.4.5,0 +11340,126,1.4,2 +11340,0,1.4.4,1 +11340,40,1.4.4,1 +11341,170,1,3 +11341,0,1.4.4,1 +11341,40,1.4.4,1 +11341,126,1.4,2 +11341,63,1.4.4.5,0 +11342,63,1.4.4.5,0 +11342,126,1.4,2 +11342,170,1,3 +11342,40,1.4.4,1 +11342,0,1.4.4,1 +11343,63,1.4.4.5,0 +11343,170,1,3 +11343,40,1.4.4,1 +11343,0,1.4.4,1 +11343,126,1.4,2 +11344,170,1,3 +11344,0,1.4.4,1 +11344,40,1.4.4,1 +11344,63,1.4.4.5,0 +11344,126,1.4,2 +11345,0,1.4.4,1 +11345,170,1,3 +11345,40,1.4.4,1 +11345,126,1.4,2 +11345,63,1.4.4.5,0 +11346,0,1.4.4,1 +11346,40,1.4.4,1 +11346,170,1,3 +11346,63,1.4.4.5,0 +11346,126,1.4,2 +11347,63,1.4.4.5,0 +11347,170,1,3 +11347,126,1.4,2 +11347,0,1.4.4,1 +11347,40,1.4.4,1 +11348,126,1.4,2 +11348,63,1.4.4.5,0 +11348,0,1.4.4,1 +11348,40,1.4.4,1 +11348,170,1,3 +11349,170,1,3 +11349,0,1.4.4,1 +11349,126,1.4,2 +11349,63,1.4.4.5,0 +11349,40,1.4.4,1 +11350,170,1,3 +11350,40,1.4.4,1 +11350,63,1.4.4.5,0 +11350,126,1.4,2 +11350,0,1.4.4,1 +11352,126,1.1,1 +11352,64,1.1.2,0 +11354,64,1.1.2,0 +11354,94,1.1,1 +11356,94,1.1,1 +11356,64,1.1.2,0 +11357,94,1.1,1 +11357,64,1.1.2,0 +11358,64,1.1.2,0 +11358,126,1.1,1 +11360,64,1.1.2,0 +11360,105,1.1,1 +11361,126,1.1,1 +11361,105,1.1,1 +11361,106,1.1,1 +11361,64,1.1.2,0 +11362,126,1.1,1 +11362,64,1.1.2,0 +11364,64,1.1.2,0 +11364,94,1.1,1 +11366,64,1.1.2,0 +11366,106,1.1,1 +11369,126,1.1,1 +11369,64,1.1.2,0 +11372,64,1.1.2,0 +11372,94,1.1,1 +11373,105,1.1,1 +11373,64,1.1.2,0 +11376,64,1.1.2,0 +11376,126,1.1,1 +11376,105,1.1,1 +11376,86,1.1,1 +11378,64,1.1.2,0 +11378,106,1.1,1 +11379,94,1.1,1 +11379,64,1.1.2,0 +11380,126,1.1,1 +11380,105,1.1,1 +11380,64,1.1.2,0 +11381,106,1.1,1 +11381,126,1.1,1 +11381,64,1.1.2,0 +11382,94,1.1,1 +11382,64,1.1.2,0 +11383,64,1.1.2,0 +11383,86,1.1,1 +11384,106,1.1,1 +11384,64,1.1.2,0 +11385,64,1.1.2,0 +11385,126,1.1,1 +11386,86,1.1,1 +11386,64,1.1.2,0 +11386,106,1.1,1 +11387,126,1.1,1 +11387,64,1.1.2,0 +11389,64,1.1.2,0 +11389,86,1.1,1 +11390,126,1.1,1 +11390,64,1.1.2,0 +11391,64,1.1.2,0 +11391,94,1.1,1 +11393,64,1.1.2,0 +11393,105,1.1,1 +11394,106,1.1,1 +11394,64,1.1.2,0 +11394,105,1.1,1 +11397,64,1.1.2,0 +11397,105,1.1,1 +11399,64,1.1.2,0 +11399,126,1.1,1 +11404,67,1.2,1 +11404,65,1.2.1,0 +11406,106,1.2,1 +11406,65,1.2.1,0 +11407,65,1.2.1,0 +11407,106,1.2,1 +11408,65,1.2.1,0 +11408,97,1.2,1 +11411,65,1.2.1,0 +11411,170,1,2 +11411,97,1.2,1 +11414,106,1.2,1 +11414,65,1.2.1,0 +11414,126,1.2,1 +11419,65,1.2.1,0 +11419,126,1.2,1 +11422,65,1.2.1,0 +11422,67,1.2,1 +11423,65,1.2.1,0 +11423,97,1.2,1 +11426,65,1.2.1,0 +11426,106,1.2,1 +11428,106,1.2,1 +11428,65,1.2.1,0 +11429,65,1.2.1,0 +11429,67,1.2,1 +11431,65,1.2.1,0 +11431,126,1.2,1 +11432,65,1.2.1,0 +11432,97,1.2,1 +11433,65,1.2.1,0 +11433,106,1.2,1 +11434,65,1.2.1,0 +11434,126,1.2,1 +11436,65,1.2.1,0 +11436,106,1.2,1 +11438,65,1.2.1,0 +11438,126,1.2,1 +11439,65,1.2.1,0 +11439,97,1.2,1 +11440,65,1.2.1,0 +11440,106,1.2,1 +11441,65,1.2.1,0 +11441,126,1.2,1 +11443,65,1.2.1,0 +11443,106,1.2,1 +11444,67,1.2,1 +11444,65,1.2.1,0 +11444,97,1.2,1 +11447,97,1.2,1 +11447,65,1.2.1,0 +11449,106,1.2,1 +11449,65,1.2.1,0 +11454,97,1.2,1 +11454,66,1.2.1,0 +11456,97,1.2,1 +11456,66,1.2.1,0 +11457,67,1.2,1 +11457,66,1.2.1,0 +11458,106,1.2,1 +11458,66,1.2.1,0 +11460,97,1.2,1 +11460,66,1.2.1,0 +11461,126,1.2,1 +11461,67,1.2,1 +11461,66,1.2.1,0 +11464,66,1.2.1,0 +11464,67,1.2,1 +11464,126,1.2,1 +11466,97,1.2,1 +11466,67,1.2,1 +11466,66,1.2.1,0 +11472,67,1.2,1 +11472,66,1.2.1,0 +11473,106,1.2,1 +11473,66,1.2.1,0 +11476,66,1.2.1,0 +11476,97,1.2,1 +11478,66,1.2.1,0 +11478,97,1.2,1 +11479,66,1.2.1,0 +11479,67,1.2,1 +11481,106,1.2,1 +11481,66,1.2.1,0 +11482,67,1.2,1 +11482,66,1.2.1,0 +11483,66,1.2.1,0 +11483,97,1.2,1 +11484,66,1.2.1,0 +11484,67,1.2,1 +11485,66,1.2.1,0 +11485,126,1.2,1 +11486,126,1.2,1 +11486,97,1.2,1 +11486,66,1.2.1,0 +11489,106,1.2,1 +11489,66,1.2.1,0 +11490,66,1.2.1,0 +11490,106,1.2,1 +11491,66,1.2.1,0 +11491,67,1.2,1 +11492,106,1.2,1 +11492,66,1.2.1,0 +11493,66,1.2.1,0 +11493,67,1.2,1 +11494,126,1.2,1 +11494,66,1.2.1,0 +11495,106,1.2,1 +11495,66,1.2.1,0 +11497,67,1.2,1 +11497,66,1.2.1,0 +11499,106,1.2,1 +11499,66,1.2.1,0 +11502,67,1.2,0 +11502,170,1,1 +11504,170,1,1 +11504,67,1.2,0 +11505,67,1.2,0 +11505,170,1,1 +11506,170,1,1 +11506,67,1.2,0 +11507,67,1.2,0 +11507,170,1,1 +11509,67,1.2,0 +11509,170,1,1 +11522,170,1,1 +11522,67,1.2,0 +11523,170,1,1 +11523,67,1.2,0 +11526,170,1,1 +11526,67,1.2,0 +11528,67,1.2,0 +11528,170,1,1 +11529,170,1,1 +11529,67,1.2,0 +11530,170,1,1 +11530,67,1.2,0 +11531,170,1,1 +11531,67,1.2,0 +11532,170,1,1 +11532,67,1.2,0 +11535,67,1.2,0 +11535,170,1,1 +11536,67,1.2,0 +11536,170,1,1 +11539,170,1,1 +11539,67,1.2,0 +11540,67,1.2,0 +11540,170,1,1 +11543,170,1,1 +11543,67,1.2,0 +11544,170,1,1 +11544,67,1.2,0 +11546,170,1,1 +11546,67,1.2,0 +11550,170,1,1 +11550,67,1.2,0 +11551,93,1.3.1,1 +11551,68,1.3.1.1,0 +11552,68,1.3.1.1,0 +11552,93,1.3.1,1 +11554,68,1.3.1.1,0 +11554,85,1.3.1,1 +11555,93,1.3.1,1 +11555,68,1.3.1.1,0 +11557,68,1.3.1.1,0 +11557,85,1.3.1,1 +11558,39,1.3.1,1 +11558,68,1.3.1.1,0 +11559,68,1.3.1.1,0 +11559,39,1.3.1,1 +11560,68,1.3.1.1,0 +11560,93,1.3.1,1 +11561,39,1.3.1,1 +11561,68,1.3.1.1,0 +11564,100,1.3.1,1 +11564,68,1.3.1.1,0 +11564,99,1.3.1,1 +11566,93,1.3.1,1 +11566,68,1.3.1.1,0 +11569,39,1.3.1,1 +11569,99,1.3.1,1 +11569,68,1.3.1.1,0 +11571,100,1.3.1,1 +11571,68,1.3.1.1,0 +11572,68,1.3.1.1,0 +11572,100,1.3.1,1 +11573,99,1.3.1,1 +11573,68,1.3.1.1,0 +11574,93,1.3.1,1 +11574,100,1.3.1,1 +11574,68,1.3.1.1,0 +11575,68,1.3.1.1,0 +11575,93,1.3.1,1 +11576,39,1.3.1,1 +11576,68,1.3.1.1,0 +11576,93,1.3.1,1 +11577,68,1.3.1.1,0 +11577,93,1.3.1,1 +11578,99,1.3.1,1 +11578,68,1.3.1.1,0 +11581,68,1.3.1.1,0 +11581,99,1.3.1,1 +11582,68,1.3.1.1,0 +11582,100,1.3.1,1 +11583,39,1.3.1,1 +11583,68,1.3.1.1,0 +11584,68,1.3.1.1,0 +11584,39,1.3.1,1 +11585,68,1.3.1.1,0 +11585,100,1.3.1,1 +11586,85,1.3.1,1 +11586,68,1.3.1.1,0 +11589,39,1.3.1,1 +11589,100,1.3.1,1 +11589,68,1.3.1.1,0 +11589,93,1.3.1,1 +11592,93,1.3.1,1 +11592,68,1.3.1.1,0 +11592,85,1.3.1,1 +11593,68,1.3.1.1,0 +11593,39,1.3.1,1 +11593,93,1.3.1,1 +11593,100,1.3.1,1 +11594,100,1.3.1,1 +11594,99,1.3.1,1 +11594,68,1.3.1.1,0 +11595,85,1.3.1,1 +11595,29,1.3,2 +11595,68,1.3.1.1,0 +11595,93,1.3.1,1 +11597,68,1.3.1.1,0 +11597,93,1.3.1,1 +11598,68,1.3.1.1,0 +11598,100,1.3.1,1 +11602,39,1.3.1,1 +11602,68,1.3.1.2,0 +11602,99,1.3.1,1 +11603,68,1.3.1.2,0 +11603,93,1.3.1,1 +11603,100,1.3.1,1 +11604,68,1.3.1.2,0 +11604,85,1.3.1,1 +11606,85,1.3.1,1 +11606,99,1.3.1,1 +11606,68,1.3.1.2,0 +11607,93,1.3.1,1 +11607,68,1.3.1.2,0 +11608,39,1.3.1,1 +11608,68,1.3.1.2,0 +11608,100,1.3.1,1 +11610,68,1.3.1.2,0 +11610,93,1.3.1,1 +11616,100,1.3.1,1 +11616,93,1.3.1,1 +11616,68,1.3.1.2,0 +11617,100,1.3.1,1 +11617,68,1.3.1.2,0 +11619,99,1.3.1,1 +11619,68,1.3.1.2,0 +11623,100,1.3.1,1 +11623,68,1.3.1.2,0 +11623,93,1.3.1,1 +11624,68,1.3.1.2,0 +11624,93,1.3.1,1 +11627,100,1.3.1,1 +11627,68,1.3.1.2,0 +11628,68,1.3.1.2,0 +11628,39,1.3.1,1 +11631,68,1.3.1.2,0 +11631,99,1.3.1,1 +11632,99,1.3.1,1 +11632,68,1.3.1.2,0 +11633,39,1.3.1,1 +11633,68,1.3.1.2,0 +11634,68,1.3.1.2,0 +11634,39,1.3.1,1 +11639,68,1.3.1.2,0 +11639,39,1.3.1,1 +11641,85,1.3.1,1 +11641,68,1.3.1.2,0 +11642,93,1.3.1,1 +11642,68,1.3.1.2,0 +11643,68,1.3.1.2,0 +11643,39,1.3.1,1 +11644,68,1.3.1.2,0 +11644,85,1.3.1,1 +11644,99,1.3.1,1 +11645,93,1.3.1,1 +11645,68,1.3.1.2,0 +11646,68,1.3.1.2,0 +11646,100,1.3.1,1 +11647,39,1.3.1,1 +11647,68,1.3.1.2,0 +11648,85,1.3.1,1 +11648,68,1.3.1.2,0 +11649,93,1.3.1,1 +11649,100,1.3.1,1 +11649,85,1.3.1,1 +11649,68,1.3.1.2,0 +11650,68,1.3.1.2,0 +11650,93,1.3.1,1 +11650,85,1.3.1,1 +11652,68,1.3.1.3,0 +11652,93,1.3.1,1 +11652,39,1.3.1,1 +11652,99,1.3.1,1 +11653,68,1.3.1.3,0 +11653,93,1.3.1,1 +11653,85,1.3.1,1 +11653,39,1.3.1,1 +11653,99,1.3.1,1 +11654,68,1.3.1.3,0 +11654,100,1.3.1,1 +11654,85,1.3.1,1 +11654,99,1.3.1,1 +11655,93,1.3.1,1 +11655,99,1.3.1,1 +11655,68,1.3.1.3,0 +11656,68,1.3.1.3,0 +11656,99,1.3.1,1 +11656,39,1.3.1,1 +11657,93,1.3.1,1 +11657,68,1.3.1.3,0 +11658,39,1.3.1,1 +11658,93,1.3.1,1 +11658,68,1.3.1.3,0 +11659,99,1.3.1,1 +11659,68,1.3.1.3,0 +11660,39,1.3.1,1 +11660,68,1.3.1.3,0 +11661,39,1.3.1,1 +11661,68,1.3.1.3,0 +11664,100,1.3.1,1 +11664,68,1.3.1.3,0 +11664,93,1.3.1,1 +11664,85,1.3.1,1 +11665,99,1.3.1,1 +11665,68,1.3.1.3,0 +11666,85,1.3.1,1 +11666,39,1.3.1,1 +11666,68,1.3.1.3,0 +11667,68,1.3.1.3,0 +11667,93,1.3.1,1 +11667,99,1.3.1,1 +11669,68,1.3.1.3,0 +11669,100,1.3.1,1 +11669,99,1.3.1,1 +11669,93,1.3.1,1 +11670,68,1.3.1.3,0 +11670,93,1.3.1,1 +11670,106,1.3,2 +11672,68,1.3.1.3,0 +11672,85,1.3.1,1 +11673,100,1.3.1,1 +11673,68,1.3.1.3,0 +11673,39,1.3.1,1 +11674,93,1.3.1,1 +11674,100,1.3.1,1 +11674,68,1.3.1.3,0 +11676,68,1.3.1.3,0 +11676,99,1.3.1,1 +11676,85,1.3.1,1 +11677,93,1.3.1,1 +11677,68,1.3.1.3,0 +11678,68,1.3.1.3,0 +11678,39,1.3.1,1 +11679,39,1.3.1,1 +11679,85,1.3.1,1 +11679,68,1.3.1.3,0 +11680,93,1.3.1,1 +11680,68,1.3.1.3,0 +11680,100,1.3.1,1 +11681,68,1.3.1.3,0 +11681,100,1.3.1,1 +11682,85,1.3.1,1 +11682,39,1.3.1,1 +11682,68,1.3.1.3,0 +11682,29,1.3,2 +11683,100,1.3.1,1 +11683,68,1.3.1.3,0 +11684,68,1.3.1.3,0 +11684,39,1.3.1,1 +11686,39,1.3.1,1 +11686,85,1.3.1,1 +11686,68,1.3.1.3,0 +11688,68,1.3.1.3,0 +11688,100,1.3.1,1 +11688,93,1.3.1,1 +11689,39,1.3.1,1 +11689,68,1.3.1.3,0 +11689,100,1.3.1,1 +11690,99,1.3.1,1 +11690,68,1.3.1.3,0 +11692,100,1.3.1,1 +11692,93,1.3.1,1 +11692,68,1.3.1.3,0 +11693,68,1.3.1.3,0 +11693,93,1.3.1,1 +11693,99,1.3.1,1 +11693,100,1.3.1,1 +11694,93,1.3.1,1 +11694,68,1.3.1.3,0 +11697,68,1.3.1.3,0 +11697,39,1.3.1,1 +11697,99,1.3.1,1 +11698,68,1.3.1.3,0 +11698,93,1.3.1,1 +11699,100,1.3.1,1 +11699,93,1.3.1,1 +11699,99,1.3.1,1 +11699,68,1.3.1.3,0 +11699,85,1.3.1,1 +11700,68,1.3.1.3,0 +11700,100,1.3.1,1 +11706,106,1.1,1 +11706,69,1.1.1,0 +11707,69,1.1.1,0 +11707,94,1.1,1 +11708,86,1.1,1 +11708,69,1.1.1,0 +11711,126,1.1,1 +11711,69,1.1.1,0 +11714,69,1.1.1,0 +11714,106,1.1,1 +11719,69,1.1.1,0 +11719,94,1.1,1 +11722,69,1.1.1,0 +11722,105,1.1,1 +11723,69,1.1.1,0 +11723,94,1.1,1 +11726,69,1.1.1,0 +11726,105,1.1,1 +11728,94,1.1,1 +11728,69,1.1.1,0 +11729,105,1.1,1 +11729,69,1.1.1,0 +11731,69,1.1.1,0 +11731,126,1.1,1 +11732,86,1.1,1 +11732,69,1.1.1,0 +11733,94,1.1,1 +11733,69,1.1.1,0 +11734,69,1.1.1,0 +11734,94,1.1,1 +11736,69,1.1.1,0 +11736,105,1.1,1 +11743,69,1.1.1,0 +11743,86,1.1,1 +11744,94,1.1,1 +11744,69,1.1.1,0 +11745,126,1.1,1 +11745,69,1.1.1,0 +11749,69,1.1.1,0 +11749,105,1.1,1 +11752,70,1.3.3.2,0 +11752,99,1.3.3,1 +11755,70,1.3.3.2,0 +11755,99,1.3.3,1 +11756,70,1.3.3.2,0 +11756,75,1.3.3,1 +11757,70,1.3.3.2,0 +11757,75,1.3.3,1 +11758,70,1.3.3.2,0 +11758,99,1.3.3,1 +11764,70,1.3.3.2,0 +11764,97,1.3.3,1 +11773,97,1.3.3,1 +11773,70,1.3.3.2,0 +11776,99,1.3.3,1 +11776,70,1.3.3.2,0 +11776,97,1.3.3,1 +11778,75,1.3.3,1 +11778,70,1.3.3.2,0 +11779,75,1.3.3,1 +11779,70,1.3.3.2,0 +11781,99,1.3.3,1 +11781,70,1.3.3.2,0 +11782,70,1.3.3.2,0 +11782,97,1.3.3,1 +11784,97,1.3.3,1 +11784,70,1.3.3.2,0 +11786,70,1.3.3.2,0 +11786,99,1.3.3,1 +11786,75,1.3.3,1 +11788,70,1.3.3.2,0 +11788,99,1.3.3,1 +11790,70,1.3.3.2,0 +11790,97,1.3.3,1 +11792,70,1.3.3.2,0 +11792,97,1.3.3,1 +11793,97,1.3.3,1 +11793,70,1.3.3.2,0 +11794,70,1.3.3.2,0 +11794,75,1.3.3,1 +11794,99,1.3.3,1 +11797,70,1.3.3.2,0 +11797,75,1.3.3,1 +11803,70,1.3.3.4,0 +11803,97,1.3.3,1 +11803,99,1.3.3,1 +11804,97,1.3.3,1 +11804,70,1.3.3.4,0 +11805,70,1.3.3.4,0 +11805,97,1.3.3,1 +11805,75,1.3.3,1 +11806,97,1.3.3,1 +11806,70,1.3.3.4,0 +11808,70,1.3.3.4,0 +11808,97,1.3.3,1 +11810,70,1.3.3.4,0 +11810,75,1.3.3,1 +11811,70,1.3.3.4,0 +11811,99,1.3.3,1 +11814,70,1.3.3.4,0 +11814,99,1.3.3,1 +11814,75,1.3.3,1 +11814,97,1.3.3,1 +11816,70,1.3.3.4,0 +11816,97,1.3.3,1 +11819,99,1.3.3,1 +11819,70,1.3.3.4,0 +11820,75,1.3.3,1 +11820,70,1.3.3.4,0 +11822,97,1.3.3,1 +11822,70,1.3.3.4,0 +11823,99,1.3.3,1 +11823,75,1.3.3,1 +11823,70,1.3.3.4,0 +11826,99,1.3.3,1 +11826,70,1.3.3.4,0 +11827,99,1.3.3,1 +11827,70,1.3.3.4,0 +11828,70,1.3.3.4,0 +11828,75,1.3.3,1 +11829,99,1.3.3,1 +11829,70,1.3.3.4,0 +11830,99,1.3.3,1 +11830,70,1.3.3.4,0 +11831,99,1.3.3,1 +11831,70,1.3.3.4,0 +11832,75,1.3.3,1 +11832,70,1.3.3.4,0 +11833,75,1.3.3,1 +11833,70,1.3.3.4,0 +11835,70,1.3.3.4,0 +11835,99,1.3.3,1 +11836,70,1.3.3.4,0 +11836,75,1.3.3,1 +11836,99,1.3.3,1 +11838,97,1.3.3,1 +11838,70,1.3.3.4,0 +11839,70,1.3.3.4,0 +11839,75,1.3.3,1 +11840,70,1.3.3.4,0 +11840,99,1.3.3,1 +11841,70,1.3.3.4,0 +11841,99,1.3.3,1 +11842,70,1.3.3.4,0 +11842,99,1.3.3,1 +11843,99,1.3.3,1 +11843,70,1.3.3.4,0 +11844,75,1.3.3,1 +11844,70,1.3.3.4,0 +11844,99,1.3.3,1 +11847,70,1.3.3.4,0 +11847,75,1.3.3,1 +11852,71,1.3.1.2,0 +11852,85,1.3.1,1 +11853,39,1.3.1,1 +11853,71,1.3.1.2,0 +11854,71,1.3.1.2,0 +11854,85,1.3.1,1 +11855,93,1.3.1,1 +11855,71,1.3.1.2,0 +11856,71,1.3.1.2,0 +11856,39,1.3.1,1 +11857,85,1.3.1,1 +11857,71,1.3.1.2,0 +11858,85,1.3.1,1 +11858,71,1.3.1.2,0 +11859,71,1.3.1.2,0 +11859,39,1.3.1,1 +11860,71,1.3.1.2,0 +11860,39,1.3.1,1 +11861,100,1.3.1,1 +11861,71,1.3.1.2,0 +11861,39,1.3.1,1 +11864,71,1.3.1.2,0 +11864,100,1.3.1,1 +11866,71,1.3.1.2,0 +11866,99,1.3.1,1 +11869,39,1.3.1,1 +11869,100,1.3.1,1 +11869,99,1.3.1,1 +11869,71,1.3.1.2,0 +11869,93,1.3.1,1 +11870,71,1.3.1.2,0 +11870,99,1.3.1,1 +11872,71,1.3.1.2,0 +11872,100,1.3.1,1 +11873,100,1.3.1,1 +11873,85,1.3.1,1 +11873,71,1.3.1.2,0 +11873,39,1.3.1,1 +11875,39,1.3.1,1 +11875,71,1.3.1.2,0 +11876,99,1.3.1,1 +11876,71,1.3.1.2,0 +11877,71,1.3.1.2,0 +11877,99,1.3.1,1 +11878,93,1.3.1,1 +11878,71,1.3.1.2,0 +11879,71,1.3.1.2,0 +11879,93,1.3.1,1 +11879,39,1.3.1,1 +11881,93,1.3.1,1 +11881,71,1.3.1.2,0 +11882,39,1.3.1,1 +11882,71,1.3.1.2,0 +11883,71,1.3.1.2,0 +11883,39,1.3.1,1 +11884,71,1.3.1.2,0 +11884,39,1.3.1,1 +11886,71,1.3.1.2,0 +11886,99,1.3.1,1 +11887,71,1.3.1.2,0 +11887,85,1.3.1,1 +11888,93,1.3.1,1 +11888,71,1.3.1.2,0 +11889,93,1.3.1,1 +11889,71,1.3.1.2,0 +11890,100,1.3.1,1 +11890,71,1.3.1.2,0 +11891,99,1.3.1,1 +11891,71,1.3.1.2,0 +11892,39,1.3.1,1 +11892,71,1.3.1.2,0 +11892,99,1.3.1,1 +11893,71,1.3.1.2,0 +11893,100,1.3.1,1 +11894,93,1.3.1,1 +11894,71,1.3.1.2,0 +11894,85,1.3.1,1 +11897,99,1.3.1,1 +11897,71,1.3.1.2,0 +11898,71,1.3.1.2,0 +11898,99,1.3.1,1 +11899,93,1.3.1,1 +11899,71,1.3.1.2,0 +11900,93,1.3.1,1 +11900,71,1.3.1.2,0 +11901,93,1.3.1,1 +11901,72,1.3.1.2,0 +11902,85,1.3.1,1 +11902,72,1.3.1.2,0 +11904,93,1.3.1,1 +11904,72,1.3.1.2,0 +11904,100,1.3.1,1 +11905,72,1.3.1.2,0 +11905,39,1.3.1,1 +11905,85,1.3.1,1 +11906,72,1.3.1.2,0 +11906,85,1.3.1,1 +11907,85,1.3.1,1 +11907,72,1.3.1.2,0 +11908,85,1.3.1,1 +11908,72,1.3.1.2,0 +11909,93,1.3.1,1 +11909,72,1.3.1.2,0 +11910,85,1.3.1,1 +11910,72,1.3.1.2,0 +11911,100,1.3.1,1 +11911,72,1.3.1.2,0 +11914,39,1.3.1,1 +11914,100,1.3.1,1 +11914,72,1.3.1.2,0 +11914,93,1.3.1,1 +11914,85,1.3.1,1 +11916,39,1.3.1,1 +11916,72,1.3.1.2,0 +11917,72,1.3.1.2,0 +11917,93,1.3.1,1 +11920,72,1.3.1.2,0 +11920,93,1.3.1,1 +11920,39,1.3.1,1 +11922,72,1.3.1.2,0 +11922,39,1.3.1,1 +11923,99,1.3.1,1 +11923,72,1.3.1.2,0 +11923,93,1.3.1,1 +11924,93,1.3.1,1 +11924,39,1.3.1,1 +11924,72,1.3.1.2,0 +11926,72,1.3.1.2,0 +11926,39,1.3.1,1 +11928,93,1.3.1,1 +11928,72,1.3.1.2,0 +11929,99,1.3.1,1 +11929,72,1.3.1.2,0 +11931,72,1.3.1.2,0 +11931,100,1.3.1,1 +11931,99,1.3.1,1 +11932,72,1.3.1.2,0 +11932,93,1.3.1,1 +11933,72,1.3.1.2,0 +11933,85,1.3.1,1 +11934,72,1.3.1.2,0 +11934,85,1.3.1,1 +11935,99,1.3.1,1 +11935,100,1.3.1,1 +11935,72,1.3.1.2,0 +11936,93,1.3.1,1 +11936,99,1.3.1,1 +11936,72,1.3.1.2,0 +11936,100,1.3.1,1 +11936,39,1.3.1,1 +11936,85,1.3.1,1 +11937,72,1.3.1.2,0 +11937,85,1.3.1,1 +11938,100,1.3.1,1 +11938,72,1.3.1.2,0 +11939,85,1.3.1,1 +11939,72,1.3.1.2,0 +11941,72,1.3.1.2,0 +11941,93,1.3.1,1 +11942,39,1.3.1,1 +11942,72,1.3.1.2,0 +11942,93,1.3.1,1 +11943,29,1.3,2 +11943,72,1.3.1.2,0 +11943,39,1.3.1,1 +11943,85,1.3.1,1 +11944,39,1.3.1,1 +11944,93,1.3.1,1 +11944,72,1.3.1.2,0 +11945,72,1.3.1.2,0 +11945,100,1.3.1,1 +11947,93,1.3.1,1 +11947,72,1.3.1.2,0 +11948,85,1.3.1,1 +11948,93,1.3.1,1 +11948,39,1.3.1,1 +11948,72,1.3.1.2,0 +11949,100,1.3.1,1 +11949,72,1.3.1.2,0 +11950,99,1.3.1,1 +11950,100,1.3.1,1 +11950,72,1.3.1.2,0 +11950,93,1.3.1,1 +11952,99,2.1,1 +11952,73,2.1.3,0 +11955,73,2.1.3,0 +11955,99,2.1,1 +11970,73,2.1.3,0 +11970,99,2.1,1 +11973,73,2.1.3,0 +11973,99,2.1,1 +11981,99,2.1,1 +11981,73,2.1.3,0 +11982,99,2.1,1 +11982,73,2.1.3,0 +11986,73,2.1.3,0 +11986,99,2.1,1 +11991,73,2.1.3,0 +11991,99,2.1,1 +11994,73,2.1.3,0 +11994,99,2.1,1 +11998,99,2.1,1 +11998,73,2.1.3,0 +12002,74,1.3.3.2,0 +12002,75,1.3.3,1 +12004,74,1.3.3.2,0 +12004,99,1.3.3,1 +12007,75,1.3.3,1 +12007,74,1.3.3.2,0 +12011,97,1.3.3,1 +12011,74,1.3.3.2,0 +12011,75,1.3.3,1 +12014,75,1.3.3,1 +12014,74,1.3.3.2,0 +12020,74,1.3.3.2,0 +12020,75,1.3.3,1 +12022,75,1.3.3,1 +12022,74,1.3.3.2,0 +12026,74,1.3.3.2,0 +12026,97,1.3.3,1 +12028,97,1.3.3,1 +12028,74,1.3.3.2,0 +12029,75,1.3.3,1 +12029,74,1.3.3.2,0 +12032,74,1.3.3.2,0 +12032,75,1.3.3,1 +12033,99,1.3.3,1 +12033,74,1.3.3.2,0 +12034,74,1.3.3.2,0 +12034,75,1.3.3,1 +12036,97,1.3.3,1 +12036,74,1.3.3.2,0 +12039,74,1.3.3.2,0 +12039,75,1.3.3,1 +12040,97,1.3.3,1 +12040,74,1.3.3.2,0 +12044,74,1.3.3.2,0 +12044,75,1.3.3,1 +12044,97,1.3.3,1 +12056,99,2.1,1 +12056,74,2.1.3,0 +12058,74,2.1.3,0 +12058,99,2.1,1 +12061,74,2.1.3,0 +12061,99,2.1,1 +12070,74,2.1.3,0 +12070,99,2.1,1 +12073,74,2.1.3,0 +12073,99,2.1,1 +12097,99,2.1,1 +12097,74,2.1.3,0 +12102,106,1.3,1 +12102,75,1.3.3,0 +12104,29,1.3,1 +12104,75,1.3.3,0 +12105,106,1.3,1 +12105,29,1.3,1 +12105,170,1,2 +12105,75,1.3.3,0 +12106,106,1.3,1 +12106,75,1.3.3,0 +12108,75,1.3.3,0 +12108,106,1.3,1 +12109,106,1.3,1 +12109,75,1.3.3,0 +12110,29,1.3,1 +12110,75,1.3.3,0 +12111,106,1.3,1 +12111,75,1.3.3,0 +12111,170,1,2 +12111,29,1.3,1 +12114,75,1.3.3,0 +12114,106,1.3,1 +12114,29,1.3,1 +12116,75,1.3.3,0 +12116,29,1.3,1 +12122,106,1.3,1 +12122,75,1.3.3,0 +12123,106,1.3,1 +12123,29,1.3,1 +12123,75,1.3.3,0 +12124,106,1.3,1 +12124,75,1.3.3,0 +12126,29,1.3,1 +12126,106,1.3,1 +12126,75,1.3.3,0 +12128,29,1.3,1 +12128,75,1.3.3,0 +12129,106,1.3,1 +12129,170,1,2 +12129,75,1.3.3,0 +12131,106,1.3,1 +12131,29,1.3,1 +12131,75,1.3.3,0 +12132,75,1.3.3,0 +12132,29,1.3,1 +12133,29,1.3,1 +12133,75,1.3.3,0 +12134,75,1.3.3,0 +12134,29,1.3,1 +12135,75,1.3.3,0 +12135,106,1.3,1 +12136,75,1.3.3,0 +12136,29,1.3,1 +12137,75,1.3.3,0 +12137,106,1.3,1 +12137,170,1,2 +12138,75,1.3.3,0 +12138,106,1.3,1 +12139,75,1.3.3,0 +12139,29,1.3,1 +12141,75,1.3.3,0 +12141,106,1.3,1 +12142,106,1.3,1 +12142,75,1.3.3,0 +12143,106,1.3,1 +12143,170,1,2 +12143,75,1.3.3,0 +12143,29,1.3,1 +12145,75,1.3.3,0 +12145,170,1,2 +12145,106,1.3,1 +12147,106,1.3,1 +12147,75,1.3.3,0 +12149,106,1.3,1 +12149,75,1.3.3,0 +12150,75,1.3.3,0 +12150,106,1.3,1 +12151,93,1.3.1,1 +12151,76,1.3.1.3,0 +12152,39,1.3.1,1 +12152,76,1.3.1.3,0 +12152,99,1.3.1,1 +12153,76,1.3.1.3,0 +12153,99,1.3.1,1 +12154,76,1.3.1.3,0 +12154,39,1.3.1,1 +12155,100,1.3.1,1 +12155,39,1.3.1,1 +12155,76,1.3.1.3,0 +12156,76,1.3.1.3,0 +12156,99,1.3.1,1 +12156,85,1.3.1,1 +12156,100,1.3.1,1 +12157,76,1.3.1.3,0 +12157,100,1.3.1,1 +12157,39,1.3.1,1 +12157,99,1.3.1,1 +12157,93,1.3.1,1 +12158,39,1.3.1,1 +12158,100,1.3.1,1 +12158,76,1.3.1.3,0 +12159,76,1.3.1.3,0 +12159,39,1.3.1,1 +12160,99,1.3.1,1 +12160,76,1.3.1.3,0 +12161,76,1.3.1.3,0 +12161,39,1.3.1,1 +12161,93,1.3.1,1 +12161,100,1.3.1,1 +12161,99,1.3.1,1 +12162,76,1.3.1.3,0 +12162,100,1.3.1,1 +12164,100,1.3.1,1 +12164,76,1.3.1.3,0 +12164,93,1.3.1,1 +12164,39,1.3.1,1 +12166,39,1.3.1,1 +12166,76,1.3.1.3,0 +12166,99,1.3.1,1 +12166,93,1.3.1,1 +12167,100,1.3.1,1 +12167,76,1.3.1.3,0 +12167,93,1.3.1,1 +12170,76,1.3.1.3,0 +12170,39,1.3.1,1 +12171,93,1.3.1,1 +12171,100,1.3.1,1 +12171,76,1.3.1.3,0 +12171,99,1.3.1,1 +12172,76,1.3.1.3,0 +12172,39,1.3.1,1 +12173,93,1.3.1,1 +12173,76,1.3.1.3,0 +12173,85,1.3.1,1 +12174,39,1.3.1,1 +12174,76,1.3.1.3,0 +12174,85,1.3.1,1 +12175,76,1.3.1.3,0 +12175,99,1.3.1,1 +12175,39,1.3.1,1 +12176,39,1.3.1,1 +12176,76,1.3.1.3,0 +12176,100,1.3.1,1 +12176,85,1.3.1,1 +12177,76,1.3.1.3,0 +12177,99,1.3.1,1 +12178,76,1.3.1.3,0 +12178,39,1.3.1,1 +12179,76,1.3.1.3,0 +12179,99,1.3.1,1 +12179,100,1.3.1,1 +12181,85,1.3.1,1 +12181,76,1.3.1.3,0 +12181,99,1.3.1,1 +12181,39,1.3.1,1 +12182,106,1.3,2 +12182,100,1.3.1,1 +12182,99,1.3.1,1 +12182,76,1.3.1.3,0 +12183,85,1.3.1,1 +12183,76,1.3.1.3,0 +12184,85,1.3.1,1 +12184,76,1.3.1.3,0 +12185,76,1.3.1.3,0 +12185,85,1.3.1,1 +12185,99,1.3.1,1 +12185,29,1.3,2 +12185,100,1.3.1,1 +12186,93,1.3.1,1 +12186,100,1.3.1,1 +12186,99,1.3.1,1 +12186,76,1.3.1.3,0 +12187,76,1.3.1.3,0 +12187,85,1.3.1,1 +12188,85,1.3.1,1 +12188,76,1.3.1.3,0 +12188,93,1.3.1,1 +12189,85,1.3.1,1 +12189,76,1.3.1.3,0 +12190,100,1.3.1,1 +12190,93,1.3.1,1 +12190,76,1.3.1.3,0 +12190,85,1.3.1,1 +12191,76,1.3.1.3,0 +12191,106,1.3,2 +12191,99,1.3.1,1 +12191,85,1.3.1,1 +12192,76,1.3.1.3,0 +12192,39,1.3.1,1 +12193,39,1.3.1,1 +12193,99,1.3.1,1 +12193,76,1.3.1.3,0 +12194,85,1.3.1,1 +12194,39,1.3.1,1 +12194,76,1.3.1.3,0 +12194,100,1.3.1,1 +12195,76,1.3.1.3,0 +12195,85,1.3.1,1 +12195,93,1.3.1,1 +12196,106,1.3,2 +12196,93,1.3.1,1 +12196,76,1.3.1.3,0 +12197,100,1.3.1,1 +12197,85,1.3.1,1 +12197,76,1.3.1.3,0 +12198,85,1.3.1,1 +12198,99,1.3.1,1 +12198,76,1.3.1.3,0 +12198,39,1.3.1,1 +12199,93,1.3.1,1 +12199,76,1.3.1.3,0 +12200,100,1.3.1,1 +12200,76,1.3.1.3,0 +12202,77,1.3.3.6,0 +12202,97,1.3.3,1 +12203,97,1.3.3,1 +12203,77,1.3.3.6,0 +12205,75,1.3.3,1 +12205,77,1.3.3.6,0 +12206,77,1.3.3.6,0 +12206,75,1.3.3,1 +12207,77,1.3.3.6,0 +12207,99,1.3.3,1 +12208,77,1.3.3.6,0 +12208,75,1.3.3,1 +12209,77,1.3.3.6,0 +12209,75,1.3.3,1 +12210,77,1.3.3.6,0 +12210,75,1.3.3,1 +12211,77,1.3.3.6,0 +12211,97,1.3.3,1 +12211,75,1.3.3,1 +12214,99,1.3.3,1 +12214,77,1.3.3.6,0 +12216,97,1.3.3,1 +12216,99,1.3.3,1 +12216,77,1.3.3.6,0 +12217,99,1.3.3,1 +12217,77,1.3.3.6,0 +12217,106,1.3,2 +12220,77,1.3.3.6,0 +12220,99,1.3.3,1 +12222,77,1.3.3.6,0 +12222,75,1.3.3,1 +12226,77,1.3.3.6,0 +12226,75,1.3.3,1 +12226,97,1.3.3,1 +12227,77,1.3.3.6,0 +12227,99,1.3.3,1 +12228,75,1.3.3,1 +12228,77,1.3.3.6,0 +12229,77,1.3.3.6,0 +12229,75,1.3.3,1 +12231,99,1.3.3,1 +12231,77,1.3.3.6,0 +12232,97,1.3.3,1 +12232,77,1.3.3.6,0 +12233,77,1.3.3.6,0 +12233,97,1.3.3,1 +12234,77,1.3.3.6,0 +12234,99,1.3.3,1 +12235,99,1.3.3,1 +12235,77,1.3.3.6,0 +12236,99,1.3.3,1 +12236,77,1.3.3.6,0 +12236,97,1.3.3,1 +12238,77,1.3.3.6,0 +12238,99,1.3.3,1 +12239,77,1.3.3.6,0 +12239,75,1.3.3,1 +12240,97,1.3.3,1 +12240,77,1.3.3.6,0 +12241,75,1.3.3,1 +12241,77,1.3.3.6,0 +12242,97,1.3.3,1 +12242,77,1.3.3.6,0 +12243,75,1.3.3,1 +12243,77,1.3.3.6,0 +12244,75,1.3.3,1 +12244,99,1.3.3,1 +12244,77,1.3.3.6,0 +12247,99,1.3.3,1 +12247,77,1.3.3.6,0 +12247,75,1.3.3,1 +12250,77,1.3.3.6,0 +12250,97,1.3.3,1 +12252,77,1.3.4,0 +12252,29,1.3,1 +12254,29,1.3,1 +12254,77,1.3.4,0 +12256,77,1.3.4,0 +12256,29,1.3,1 +12257,29,1.3,1 +12257,77,1.3.4,0 +12258,77,1.3.4,0 +12258,29,1.3,1 +12259,29,1.3,1 +12259,77,1.3.4,0 +12261,29,1.3,1 +12261,77,1.3.4,0 +12261,170,1,2 +12261,106,1.3,1 +12264,106,1.3,1 +12264,77,1.3.4,0 +12266,77,1.3.4,0 +12266,106,1.3,1 +12266,29,1.3,1 +12272,106,1.3,1 +12272,77,1.3.4,0 +12273,77,1.3.4,0 +12273,29,1.3,1 +12274,77,1.3.4,0 +12274,106,1.3,1 +12278,29,1.3,1 +12278,77,1.3.4,0 +12279,29,1.3,1 +12279,77,1.3.4,0 +12281,77,1.3.4,0 +12281,29,1.3,1 +12281,106,1.3,1 +12282,29,1.3,1 +12282,77,1.3.4,0 +12283,29,1.3,1 +12283,77,1.3.4,0 +12284,77,1.3.4,0 +12284,170,1,2 +12284,29,1.3,1 +12286,106,1.3,1 +12286,77,1.3.4,0 +12286,29,1.3,1 +12289,77,1.3.4,0 +12289,106,1.3,1 +12291,77,1.3.4,0 +12291,29,1.3,1 +12293,106,1.3,1 +12293,170,1,2 +12293,77,1.3.4,0 +12293,29,1.3,1 +12297,77,1.3.4,0 +12297,29,1.3,1 +12298,106,1.3,1 +12298,29,1.3,1 +12298,77,1.3.4,0 +12302,148,2.1.1,1 +12302,78,2.1.1.1,0 +12302,106,2.1.1,1 +12303,148,2.1.1,1 +12303,78,2.1.1.1,0 +12303,85,2.1.1,1 +12304,106,2.1.1,1 +12304,78,2.1.1.1,0 +12304,80,2.1.1,1 +12305,78,2.1.1.1,0 +12305,148,2.1.1,1 +12306,80,2.1.1,1 +12306,78,2.1.1.1,0 +12307,85,2.1.1,1 +12307,78,2.1.1.1,0 +12308,85,2.1.1,1 +12308,78,2.1.1.1,0 +12314,106,2.1.1,1 +12314,78,2.1.1.1,0 +12322,106,2.1.1,1 +12322,78,2.1.1.1,0 +12323,78,2.1.1.1,0 +12323,148,2.1.1,1 +12323,80,2.1.1,1 +12324,78,2.1.1.1,0 +12324,148,2.1.1,1 +12327,85,2.1.1,1 +12327,78,2.1.1.1,0 +12328,78,2.1.1.1,0 +12328,106,2.1.1,1 +12329,80,2.1.1,1 +12329,85,2.1.1,1 +12329,78,2.1.1.1,0 +12332,78,2.1.1.1,0 +12332,80,2.1.1,1 +12332,85,2.1.1,1 +12333,78,2.1.1.1,0 +12333,106,2.1.1,1 +12334,106,2.1.1,1 +12334,78,2.1.1.1,0 +12335,85,2.1.1,1 +12335,78,2.1.1.1,0 +12336,78,2.1.1.1,0 +12336,106,2.1.1,1 +12339,148,2.1.1,1 +12339,78,2.1.1.1,0 +12341,85,2.1.1,1 +12341,78,2.1.1.1,0 +12342,78,2.1.1.1,0 +12342,106,2.1.1,1 +12343,78,2.1.1.1,0 +12343,80,2.1.1,1 +12344,78,2.1.1.1,0 +12344,85,2.1.1,1 +12345,78,2.1.1.1,0 +12345,85,2.1.1,1 +12347,80,2.1.1,1 +12347,78,2.1.1.1,0 +12348,106,2.1.1,1 +12348,78,2.1.1.1,0 +12348,148,2.1.1,1 +12348,80,2.1.1,1 +12352,148,2.1.1,1 +12352,85,2.1.1,1 +12352,78,2.1.1.2,0 +12353,85,2.1.1,1 +12353,78,2.1.1.2,0 +12354,80,2.1.1,1 +12354,78,2.1.1.2,0 +12355,78,2.1.1.2,0 +12355,148,2.1.1,1 +12356,106,2.1.1,1 +12356,80,2.1.1,1 +12356,78,2.1.1.2,0 +12357,78,2.1.1.2,0 +12357,85,2.1.1,1 +12358,80,2.1.1,1 +12358,78,2.1.1.2,0 +12358,148,2.1.1,1 +12360,148,2.1.1,1 +12360,78,2.1.1.2,0 +12360,85,2.1.1,1 +12361,78,2.1.1.2,0 +12361,80,2.1.1,1 +12361,106,2.1.1,1 +12366,78,2.1.1.2,0 +12366,80,2.1.1,1 +12372,85,2.1.1,1 +12372,78,2.1.1.2,0 +12373,148,2.1.1,1 +12373,78,2.1.1.2,0 +12376,148,2.1.1,1 +12376,78,2.1.1.2,0 +12376,80,2.1.1,1 +12377,85,2.1.1,1 +12377,78,2.1.1.2,0 +12379,148,2.1.1,1 +12379,85,2.1.1,1 +12379,78,2.1.1.2,0 +12381,148,2.1.1,1 +12381,78,2.1.1.2,0 +12382,78,2.1.1.2,0 +12382,80,2.1.1,1 +12382,85,2.1.1,1 +12383,78,2.1.1.2,0 +12383,80,2.1.1,1 +12384,78,2.1.1.2,0 +12384,148,2.1.1,1 +12386,78,2.1.1.2,0 +12386,106,2.1.1,1 +12389,85,2.1.1,1 +12389,78,2.1.1.2,0 +12393,80,2.1.1,1 +12393,85,2.1.1,1 +12393,78,2.1.1.2,0 +12394,106,2.1.1,1 +12394,148,2.1.1,1 +12394,78,2.1.1.2,0 +12397,106,2.1.1,1 +12397,78,2.1.1.2,0 +12398,106,2.1.1,1 +12398,78,2.1.1.2,0 +12400,148,2.1.1,1 +12400,78,2.1.1.2,0 +12402,78,2.1.1.3,0 +12402,148,2.1.1,1 +12402,85,2.1.1,1 +12404,80,2.1.1,1 +12404,78,2.1.1.3,0 +12405,78,2.1.1.3,0 +12405,148,2.1.1,1 +12406,106,2.1.1,1 +12406,78,2.1.1.3,0 +12407,78,2.1.1.3,0 +12407,85,2.1.1,1 +12411,106,2.1.1,1 +12411,148,2.1.1,1 +12411,78,2.1.1.3,0 +12414,78,2.1.1.3,0 +12414,85,2.1.1,1 +12416,78,2.1.1.3,0 +12416,80,2.1.1,1 +12420,80,2.1.1,1 +12420,78,2.1.1.3,0 +12423,78,2.1.1.3,0 +12423,85,2.1.1,1 +12425,80,2.1.1,1 +12425,78,2.1.1.3,0 +12426,148,2.1.1,1 +12426,78,2.1.1.3,0 +12426,106,2.1.1,1 +12429,106,2.1.1,1 +12429,78,2.1.1.3,0 +12434,78,2.1.1.3,0 +12434,85,2.1.1,1 +12436,106,2.1.1,1 +12436,78,2.1.1.3,0 +12439,85,2.1.1,1 +12439,78,2.1.1.3,0 +12441,85,2.1.1,1 +12441,148,2.1.1,1 +12441,78,2.1.1.3,0 +12443,78,2.1.1.3,0 +12443,106,2.1.1,1 +12447,80,2.1.1,1 +12447,78,2.1.1.3,0 +12448,85,2.1.1,1 +12448,78,2.1.1.3,0 +12449,106,2.1.1,1 +12449,78,2.1.1.3,0 +12449,148,2.1.1,1 +12450,78,2.1.1.3,0 +12450,106,2.1.1,1 +12452,78,2.1.1.4,0 +12452,80,2.1.1,1 +12454,78,2.1.1.4,0 +12454,85,2.1.1,1 +12455,106,2.1.1,1 +12455,78,2.1.1.4,0 +12456,80,2.1.1,1 +12456,78,2.1.1.4,0 +12457,78,2.1.1.4,0 +12457,85,2.1.1,1 +12459,85,2.1.1,1 +12459,78,2.1.1.4,0 +12460,148,2.1.1,1 +12460,78,2.1.1.4,0 +12461,78,2.1.1.4,0 +12461,80,2.1.1,1 +12464,80,2.1.1,1 +12464,78,2.1.1.4,0 +12464,85,2.1.1,1 +12466,78,2.1.1.4,0 +12466,148,2.1.1,1 +12470,80,2.1.1,1 +12470,78,2.1.1.4,0 +12472,106,2.1.1,1 +12472,78,2.1.1.4,0 +12473,148,2.1.1,1 +12473,78,2.1.1.4,0 +12473,80,2.1.1,1 +12476,78,2.1.1.4,0 +12476,106,2.1.1,1 +12478,78,2.1.1.4,0 +12478,85,2.1.1,1 +12478,99,2.1,2 +12479,80,2.1.1,1 +12479,78,2.1.1.4,0 +12481,78,2.1.1.4,0 +12481,80,2.1.1,1 +12481,106,2.1.1,1 +12482,148,2.1.1,1 +12482,78,2.1.1.4,0 +12484,78,2.1.1.4,0 +12484,148,2.1.1,1 +12485,78,2.1.1.4,0 +12485,148,2.1.1,1 +12486,148,2.1.1,1 +12486,78,2.1.1.4,0 +12487,148,2.1.1,1 +12487,78,2.1.1.4,0 +12488,85,2.1.1,1 +12488,78,2.1.1.4,0 +12489,78,2.1.1.4,0 +12489,80,2.1.1,1 +12490,148,2.1.1,1 +12490,78,2.1.1.4,0 +12491,78,2.1.1.4,0 +12491,85,2.1.1,1 +12493,85,2.1.1,1 +12493,78,2.1.1.4,0 +12493,106,2.1.1,1 +12494,106,2.1.1,1 +12494,78,2.1.1.4,0 +12498,78,2.1.1.4,0 +12498,148,2.1.1,1 +12502,78,2.1.1.5,0 +12502,148,2.1.1,1 +12504,80,2.1.1,1 +12504,78,2.1.1.5,0 +12514,78,2.1.1.5,0 +12514,148,2.1.1,1 +12522,80,2.1.1,1 +12522,78,2.1.1.5,0 +12526,85,2.1.1,1 +12526,78,2.1.1.5,0 +12533,78,2.1.1.5,0 +12533,106,2.1.1,1 +12536,148,2.1.1,1 +12536,78,2.1.1.5,0 +12541,85,2.1.1,1 +12541,78,2.1.1.5,0 +12542,80,2.1.1,1 +12542,78,2.1.1.5,0 +12547,80,2.1.1,1 +12547,78,2.1.1.5,0 +12549,78,2.1.1.5,0 +12549,85,2.1.1,1 +12552,39,1.3.1,1 +12552,79,1.3.1.1,0 +12552,93,1.3.1,1 +12553,39,1.3.1,1 +12553,79,1.3.1.1,0 +12554,39,1.3.1,1 +12554,79,1.3.1.1,0 +12555,39,1.3.1,1 +12555,79,1.3.1.1,0 +12555,99,1.3.1,1 +12556,39,1.3.1,1 +12556,100,1.3.1,1 +12556,79,1.3.1.1,0 +12557,79,1.3.1.1,0 +12557,39,1.3.1,1 +12559,79,1.3.1.1,0 +12559,39,1.3.1,1 +12560,39,1.3.1,1 +12560,79,1.3.1.1,0 +12561,79,1.3.1.1,0 +12561,85,1.3.1,1 +12566,79,1.3.1.1,0 +12566,39,1.3.1,1 +12566,100,1.3.1,1 +12570,79,1.3.1.1,0 +12570,39,1.3.1,1 +12573,100,1.3.1,1 +12573,85,1.3.1,1 +12573,79,1.3.1.1,0 +12573,93,1.3.1,1 +12574,93,1.3.1,1 +12574,99,1.3.1,1 +12574,79,1.3.1.1,0 +12575,39,1.3.1,1 +12575,79,1.3.1.1,0 +12576,39,1.3.1,1 +12576,79,1.3.1.1,0 +12576,85,1.3.1,1 +12578,79,1.3.1.1,0 +12578,85,1.3.1,1 +12579,99,1.3.1,1 +12579,85,1.3.1,1 +12579,79,1.3.1.1,0 +12581,93,1.3.1,1 +12581,79,1.3.1.1,0 +12582,39,1.3.1,1 +12582,79,1.3.1.1,0 +12583,79,1.3.1.1,0 +12583,85,1.3.1,1 +12584,93,1.3.1,1 +12584,79,1.3.1.1,0 +12585,79,1.3.1.1,0 +12585,85,1.3.1,1 +12585,100,1.3.1,1 +12585,93,1.3.1,1 +12586,99,1.3.1,1 +12586,79,1.3.1.1,0 +12587,79,1.3.1.1,0 +12587,100,1.3.1,1 +12591,79,1.3.1.1,0 +12591,93,1.3.1,1 +12592,93,1.3.1,1 +12592,100,1.3.1,1 +12592,79,1.3.1.1,0 +12593,79,1.3.1.1,0 +12593,100,1.3.1,1 +12594,39,1.3.1,1 +12594,79,1.3.1.1,0 +12596,93,1.3.1,1 +12596,79,1.3.1.1,0 +12597,85,1.3.1,1 +12597,79,1.3.1.1,0 +12598,79,1.3.1.1,0 +12598,99,1.3.1,1 +12599,93,1.3.1,1 +12599,85,1.3.1,1 +12599,79,1.3.1.1,0 +12600,79,1.3.1.1,0 +12600,93,1.3.1,1 +12600,99,1.3.1,1 +12602,79,1.3.1.4,0 +12602,93,1.3.1,1 +12602,99,1.3.1,1 +12604,79,1.3.1.4,0 +12604,99,1.3.1,1 +12605,39,1.3.1,1 +12605,79,1.3.1.4,0 +12605,100,1.3.1,1 +12606,39,1.3.1,1 +12606,100,1.3.1,1 +12606,79,1.3.1.4,0 +12606,99,1.3.1,1 +12607,79,1.3.1.4,0 +12607,39,1.3.1,1 +12608,100,1.3.1,1 +12608,79,1.3.1.4,0 +12609,79,1.3.1.4,0 +12609,85,1.3.1,1 +12610,79,1.3.1.4,0 +12610,93,1.3.1,1 +12611,79,1.3.1.4,0 +12611,100,1.3.1,1 +12612,100,1.3.1,1 +12612,99,1.3.1,1 +12612,79,1.3.1.4,0 +12614,79,1.3.1.4,0 +12614,85,1.3.1,1 +12616,39,1.3.1,1 +12616,100,1.3.1,1 +12616,93,1.3.1,1 +12616,79,1.3.1.4,0 +12617,93,1.3.1,1 +12617,79,1.3.1.4,0 +12617,99,1.3.1,1 +12620,100,1.3.1,1 +12620,85,1.3.1,1 +12620,79,1.3.1.4,0 +12621,79,1.3.1.4,0 +12621,93,1.3.1,1 +12621,100,1.3.1,1 +12621,99,1.3.1,1 +12622,93,1.3.1,1 +12622,79,1.3.1.4,0 +12623,100,1.3.1,1 +12623,99,1.3.1,1 +12623,79,1.3.1.4,0 +12623,39,1.3.1,1 +12624,93,1.3.1,1 +12624,79,1.3.1.4,0 +12625,39,1.3.1,1 +12625,79,1.3.1.4,0 +12626,79,1.3.1.4,0 +12626,93,1.3.1,1 +12626,99,1.3.1,1 +12628,93,1.3.1,1 +12628,79,1.3.1.4,0 +12629,79,1.3.1.4,0 +12629,39,1.3.1,1 +12631,93,1.3.1,1 +12631,39,1.3.1,1 +12631,79,1.3.1.4,0 +12632,93,1.3.1,1 +12632,39,1.3.1,1 +12632,79,1.3.1.4,0 +12633,39,1.3.1,1 +12633,79,1.3.1.4,0 +12634,79,1.3.1.4,0 +12634,39,1.3.1,1 +12636,100,1.3.1,1 +12636,85,1.3.1,1 +12636,99,1.3.1,1 +12636,79,1.3.1.4,0 +12637,79,1.3.1.4,0 +12637,99,1.3.1,1 +12639,79,1.3.1.4,0 +12639,93,1.3.1,1 +12639,39,1.3.1,1 +12639,100,1.3.1,1 +12641,100,1.3.1,1 +12641,39,1.3.1,1 +12641,79,1.3.1.4,0 +12642,79,1.3.1.4,0 +12642,39,1.3.1,1 +12643,39,1.3.1,1 +12643,79,1.3.1.4,0 +12643,99,1.3.1,1 +12643,100,1.3.1,1 +12644,39,1.3.1,1 +12644,79,1.3.1.4,0 +12647,39,1.3.1,1 +12647,79,1.3.1.4,0 +12648,79,1.3.1.4,0 +12648,39,1.3.1,1 +12649,99,1.3.1,1 +12649,100,1.3.1,1 +12649,79,1.3.1.4,0 +12652,93,1.3.1,1 +12652,79,1.3.1.6,0 +12652,100,1.3.1,1 +12653,39,1.3.1,1 +12653,79,1.3.1.6,0 +12653,99,1.3.1,1 +12654,93,1.3.1,1 +12654,79,1.3.1.6,0 +12655,79,1.3.1.6,0 +12655,100,1.3.1,1 +12655,39,1.3.1,1 +12656,39,1.3.1,1 +12656,79,1.3.1.6,0 +12657,79,1.3.1.6,0 +12657,100,1.3.1,1 +12657,85,1.3.1,1 +12658,79,1.3.1.6,0 +12658,93,1.3.1,1 +12660,79,1.3.1.6,0 +12660,100,1.3.1,1 +12661,79,1.3.1.6,0 +12661,93,1.3.1,1 +12661,85,1.3.1,1 +12664,39,1.3.1,1 +12664,100,1.3.1,1 +12664,79,1.3.1.6,0 +12669,29,1.3,2 +12669,99,1.3.1,1 +12669,79,1.3.1.6,0 +12669,93,1.3.1,1 +12672,99,1.3.1,1 +12672,79,1.3.1.6,0 +12673,100,1.3.1,1 +12673,79,1.3.1.6,0 +12673,39,1.3.1,1 +12674,99,1.3.1,1 +12674,79,1.3.1.6,0 +12674,39,1.3.1,1 +12675,100,1.3.1,1 +12675,79,1.3.1.6,0 +12676,79,1.3.1.6,0 +12676,93,1.3.1,1 +12676,99,1.3.1,1 +12677,100,1.3.1,1 +12677,79,1.3.1.6,0 +12679,85,1.3.1,1 +12679,39,1.3.1,1 +12679,79,1.3.1.6,0 +12682,79,1.3.1.6,0 +12682,100,1.3.1,1 +12682,39,1.3.1,1 +12682,85,1.3.1,1 +12683,79,1.3.1.6,0 +12683,85,1.3.1,1 +12684,79,1.3.1.6,0 +12684,85,1.3.1,1 +12686,85,1.3.1,1 +12686,99,1.3.1,1 +12686,93,1.3.1,1 +12686,79,1.3.1.6,0 +12687,79,1.3.1.6,0 +12687,100,1.3.1,1 +12689,85,1.3.1,1 +12689,79,1.3.1.6,0 +12689,100,1.3.1,1 +12690,100,1.3.1,1 +12690,99,1.3.1,1 +12690,79,1.3.1.6,0 +12691,79,1.3.1.6,0 +12691,93,1.3.1,1 +12692,79,1.3.1.6,0 +12692,100,1.3.1,1 +12693,100,1.3.1,1 +12693,39,1.3.1,1 +12693,79,1.3.1.6,0 +12694,85,1.3.1,1 +12694,79,1.3.1.6,0 +12697,79,1.3.1.6,0 +12697,93,1.3.1,1 +12697,100,1.3.1,1 +12699,93,1.3.1,1 +12699,100,1.3.1,1 +12699,79,1.3.1.6,0 +12700,99,1.3.1,1 +12700,79,1.3.1.6,0 +12702,79,2.1.2,0 +12702,99,2.1,1 +12705,79,2.1.2,0 +12705,99,2.1,1 +12706,99,2.1,1 +12706,79,2.1.2,0 +12707,99,2.1,1 +12707,79,2.1.2,0 +12708,99,2.1,1 +12708,79,2.1.2,0 +12711,98,2,2 +12711,99,2.1,1 +12711,170,1,3 +12711,79,2.1.2,0 +12711,102,2,2 +12722,99,2.1,1 +12722,79,2.1.2,0 +12723,99,2.1,1 +12723,79,2.1.2,0 +12729,99,2.1,1 +12729,170,1,3 +12729,98,2,2 +12729,102,2,2 +12729,79,2.1.2,0 +12736,99,2.1,1 +12736,79,2.1.2,0 +12741,79,2.1.2,0 +12741,99,2.1,1 +12743,79,2.1.2,0 +12743,99,2.1,1 +12744,79,2.1.2,0 +12744,99,2.1,1 +12751,126,2.1.3,1 +12751,79,2.1.3.1,0 +12752,126,2.1.3,1 +12752,79,2.1.3.1,0 +12753,79,2.1.3.1,0 +12753,73,2.1.3,1 +12754,108,2.1.3,1 +12754,73,2.1.3,1 +12754,79,2.1.3.1,0 +12755,79,2.1.3.1,0 +12755,126,2.1.3,1 +12755,74,2.1.3,1 +12756,97,2.1.3,1 +12756,106,2.1.3,1 +12756,79,2.1.3.1,0 +12756,73,2.1.3,1 +12757,79,2.1.3.1,0 +12757,73,2.1.3,1 +12757,108,2.1.3,1 +12758,73,2.1.3,1 +12758,79,2.1.3.1,0 +12758,126,2.1.3,1 +12759,106,2.1.3,1 +12759,79,2.1.3.1,0 +12760,79,2.1.3.1,0 +12760,73,2.1.3,1 +12761,74,2.1.3,1 +12761,108,2.1.3,1 +12761,79,2.1.3.1,0 +12761,99,2.1,2 +12761,148,2.1.3,1 +12761,97,2.1.3,1 +12762,148,2.1.3,1 +12762,79,2.1.3.1,0 +12762,126,2.1.3,1 +12764,108,2.1.3,1 +12764,74,2.1.3,1 +12764,79,2.1.3.1,0 +12764,97,2.1.3,1 +12764,106,2.1.3,1 +12764,148,2.1.3,1 +12765,106,2.1.3,1 +12765,79,2.1.3.1,0 +12766,106,2.1.3,1 +12766,73,2.1.3,1 +12766,126,2.1.3,1 +12766,79,2.1.3.1,0 +12769,79,2.1.3.1,0 +12769,73,2.1.3,1 +12769,74,2.1.3,1 +12770,79,2.1.3.1,0 +12770,74,2.1.3,1 +12770,106,2.1.3,1 +12772,97,2.1.3,1 +12772,126,2.1.3,1 +12772,73,2.1.3,1 +12772,148,2.1.3,1 +12772,79,2.1.3.1,0 +12773,73,2.1.3,1 +12773,79,2.1.3.1,0 +12774,148,2.1.3,1 +12774,79,2.1.3.1,0 +12776,126,2.1.3,1 +12776,79,2.1.3.1,0 +12776,97,2.1.3,1 +12777,108,2.1.3,1 +12777,79,2.1.3.1,0 +12778,79,2.1.3.1,0 +12778,73,2.1.3,1 +12779,73,2.1.3,1 +12779,79,2.1.3.1,0 +12779,97,2.1.3,1 +12780,97,2.1.3,1 +12780,106,2.1.3,1 +12780,79,2.1.3.1,0 +12780,108,2.1.3,1 +12781,79,2.1.3.1,0 +12781,74,2.1.3,1 +12781,97,2.1.3,1 +12782,79,2.1.3.1,0 +12782,73,2.1.3,1 +12783,74,2.1.3,1 +12783,79,2.1.3.1,0 +12784,73,2.1.3,1 +12784,79,2.1.3.1,0 +12784,126,2.1.3,1 +12785,126,2.1.3,1 +12785,148,2.1.3,1 +12785,79,2.1.3.1,0 +12786,79,2.1.3.1,0 +12786,97,2.1.3,1 +12786,106,2.1.3,1 +12786,108,2.1.3,1 +12786,73,2.1.3,1 +12787,79,2.1.3.1,0 +12787,148,2.1.3,1 +12787,74,2.1.3,1 +12789,126,2.1.3,1 +12789,79,2.1.3.1,0 +12789,74,2.1.3,1 +12790,126,2.1.3,1 +12790,148,2.1.3,1 +12790,79,2.1.3.1,0 +12790,97,2.1.3,1 +12791,73,2.1.3,1 +12791,79,2.1.3.1,0 +12791,148,2.1.3,1 +12792,106,2.1.3,1 +12792,79,2.1.3.1,0 +12792,148,2.1.3,1 +12793,79,2.1.3.1,0 +12793,126,2.1.3,1 +12793,97,2.1.3,1 +12794,79,2.1.3.1,0 +12794,108,2.1.3,1 +12794,74,2.1.3,1 +12795,97,2.1.3,1 +12795,79,2.1.3.1,0 +12796,108,2.1.3,1 +12796,106,2.1.3,1 +12796,79,2.1.3.1,0 +12797,97,2.1.3,1 +12797,79,2.1.3.1,0 +12798,99,2.1,2 +12798,97,2.1.3,1 +12798,79,2.1.3.1,0 +12798,73,2.1.3,1 +12799,74,2.1.3,1 +12799,79,2.1.3.1,0 +12799,148,2.1.3,1 +12799,97,2.1.3,1 +12799,126,2.1.3,1 +12800,108,2.1.3,1 +12800,148,2.1.3,1 +12800,97,2.1.3,1 +12800,106,2.1.3,1 +12800,79,2.1.3.1,0 +12801,79,2.1.3.2,0 +12801,126,2.1.3,1 +12802,126,2.1.3,1 +12802,79,2.1.3.2,0 +12802,108,2.1.3,1 +12802,73,2.1.3,1 +12803,79,2.1.3.2,0 +12803,74,2.1.3,1 +12803,73,2.1.3,1 +12803,148,2.1.3,1 +12804,106,2.1.3,1 +12804,74,2.1.3,1 +12804,79,2.1.3.2,0 +12805,79,2.1.3.2,0 +12805,73,2.1.3,1 +12805,74,2.1.3,1 +12806,106,2.1.3,1 +12806,79,2.1.3.2,0 +12807,79,2.1.3.2,0 +12807,108,2.1.3,1 +12807,74,2.1.3,1 +12808,79,2.1.3.2,0 +12808,126,2.1.3,1 +12808,97,2.1.3,1 +12809,79,2.1.3.2,0 +12809,73,2.1.3,1 +12810,148,2.1.3,1 +12810,73,2.1.3,1 +12810,79,2.1.3.2,0 +12811,126,2.1.3,1 +12811,79,2.1.3.2,0 +12811,148,2.1.3,1 +12811,97,2.1.3,1 +12812,148,2.1.3,1 +12812,79,2.1.3.2,0 +12813,148,2.1.3,1 +12813,79,2.1.3.2,0 +12814,108,2.1.3,1 +12814,74,2.1.3,1 +12814,79,2.1.3.2,0 +12815,106,2.1.3,1 +12815,79,2.1.3.2,0 +12816,106,2.1.3,1 +12816,73,2.1.3,1 +12816,79,2.1.3.2,0 +12816,108,2.1.3,1 +12816,148,2.1.3,1 +12819,106,2.1.3,1 +12819,79,2.1.3.2,0 +12819,73,2.1.3,1 +12819,97,2.1.3,1 +12820,126,2.1.3,1 +12820,79,2.1.3.2,0 +12820,74,2.1.3,1 +12820,106,2.1.3,1 +12822,126,2.1.3,1 +12822,97,2.1.3,1 +12822,79,2.1.3.2,0 +12823,148,2.1.3,1 +12823,108,2.1.3,1 +12823,74,2.1.3,1 +12823,79,2.1.3.2,0 +12824,108,2.1.3,1 +12824,79,2.1.3.2,0 +12826,74,2.1.3,1 +12826,106,2.1.3,1 +12826,79,2.1.3.2,0 +12827,106,2.1.3,1 +12827,79,2.1.3.2,0 +12828,79,2.1.3.2,0 +12828,97,2.1.3,1 +12829,73,2.1.3,1 +12829,74,2.1.3,1 +12829,79,2.1.3.2,0 +12830,106,2.1.3,1 +12830,108,2.1.3,1 +12830,79,2.1.3.2,0 +12831,79,2.1.3.2,0 +12831,148,2.1.3,1 +12831,74,2.1.3,1 +12831,106,2.1.3,1 +12832,148,2.1.3,1 +12832,74,2.1.3,1 +12832,79,2.1.3.2,0 +12833,79,2.1.3.2,0 +12833,73,2.1.3,1 +12834,79,2.1.3.2,0 +12834,97,2.1.3,1 +12835,79,2.1.3.2,0 +12835,97,2.1.3,1 +12835,126,2.1.3,1 +12836,126,2.1.3,1 +12836,79,2.1.3.2,0 +12836,148,2.1.3,1 +12836,97,2.1.3,1 +12836,74,2.1.3,1 +12837,79,2.1.3.2,0 +12837,108,2.1.3,1 +12837,74,2.1.3,1 +12838,106,2.1.3,1 +12838,79,2.1.3.2,0 +12839,148,2.1.3,1 +12839,108,2.1.3,1 +12839,79,2.1.3.2,0 +12840,126,2.1.3,1 +12840,148,2.1.3,1 +12840,79,2.1.3.2,0 +12841,79,2.1.3.2,0 +12841,148,2.1.3,1 +12841,74,2.1.3,1 +12842,108,2.1.3,1 +12842,126,2.1.3,1 +12842,79,2.1.3.2,0 +12842,73,2.1.3,1 +12843,106,2.1.3,1 +12843,79,2.1.3.2,0 +12843,97,2.1.3,1 +12844,106,2.1.3,1 +12844,97,2.1.3,1 +12844,79,2.1.3.2,0 +12846,126,2.1.3,1 +12846,106,2.1.3,1 +12846,79,2.1.3.2,0 +12847,97,2.1.3,1 +12847,79,2.1.3.2,0 +12848,79,2.1.3.2,0 +12848,108,2.1.3,1 +12848,126,2.1.3,1 +12848,97,2.1.3,1 +12849,126,2.1.3,1 +12849,79,2.1.3.2,0 +12850,79,2.1.3.2,0 +12850,97,2.1.3,1 +12850,106,2.1.3,1 +12850,108,2.1.3,1 +12850,74,2.1.3,1 +12851,148,2.1.3,1 +12851,79,2.1.3.3,0 +12852,79,2.1.3.3,0 +12852,97,2.1.3,1 +12852,108,2.1.3,1 +12853,148,2.1.3,1 +12853,79,2.1.3.3,0 +12854,148,2.1.3,1 +12854,73,2.1.3,1 +12854,79,2.1.3.3,0 +12855,74,2.1.3,1 +12855,79,2.1.3.3,0 +12855,73,2.1.3,1 +12857,126,2.1.3,1 +12857,79,2.1.3.3,0 +12857,74,2.1.3,1 +12858,106,2.1.3,1 +12858,79,2.1.3.3,0 +12858,73,2.1.3,1 +12859,79,2.1.3.3,0 +12859,97,2.1.3,1 +12860,73,2.1.3,1 +12860,126,2.1.3,1 +12860,148,2.1.3,1 +12860,79,2.1.3.3,0 +12861,74,2.1.3,1 +12861,108,2.1.3,1 +12861,73,2.1.3,1 +12861,79,2.1.3.3,0 +12862,97,2.1.3,1 +12862,79,2.1.3.3,0 +12862,108,2.1.3,1 +12864,126,2.1.3,1 +12864,79,2.1.3.3,0 +12864,106,2.1.3,1 +12866,74,2.1.3,1 +12866,79,2.1.3.3,0 +12866,126,2.1.3,1 +12867,79,2.1.3.3,0 +12867,126,2.1.3,1 +12869,79,2.1.3.3,0 +12869,126,2.1.3,1 +12869,106,2.1.3,1 +12869,148,2.1.3,1 +12870,79,2.1.3.3,0 +12870,126,2.1.3,1 +12872,74,2.1.3,1 +12872,79,2.1.3.3,0 +12873,108,2.1.3,1 +12873,79,2.1.3.3,0 +12873,74,2.1.3,1 +12874,79,2.1.3.3,0 +12874,97,2.1.3,1 +12874,73,2.1.3,1 +12875,148,2.1.3,1 +12875,79,2.1.3.3,0 +12875,73,2.1.3,1 +12876,148,2.1.3,1 +12876,73,2.1.3,1 +12876,74,2.1.3,1 +12876,79,2.1.3.3,0 +12877,108,2.1.3,1 +12877,74,2.1.3,1 +12877,79,2.1.3.3,0 +12878,79,2.1.3.3,0 +12878,148,2.1.3,1 +12878,74,2.1.3,1 +12879,108,2.1.3,1 +12879,73,2.1.3,1 +12879,74,2.1.3,1 +12879,79,2.1.3.3,0 +12880,126,2.1.3,1 +12880,79,2.1.3.3,0 +12881,74,2.1.3,1 +12881,79,2.1.3.3,0 +12881,73,2.1.3,1 +12882,74,2.1.3,1 +12882,108,2.1.3,1 +12882,73,2.1.3,1 +12882,79,2.1.3.3,0 +12883,79,2.1.3.3,0 +12883,73,2.1.3,1 +12884,74,2.1.3,1 +12884,79,2.1.3.3,0 +12884,148,2.1.3,1 +12885,106,2.1.3,1 +12885,126,2.1.3,1 +12885,97,2.1.3,1 +12885,79,2.1.3.3,0 +12886,126,2.1.3,1 +12886,74,2.1.3,1 +12886,79,2.1.3.3,0 +12886,97,2.1.3,1 +12888,74,2.1.3,1 +12888,79,2.1.3.3,0 +12889,106,2.1.3,1 +12889,79,2.1.3.3,0 +12890,108,2.1.3,1 +12890,97,2.1.3,1 +12890,79,2.1.3.3,0 +12890,148,2.1.3,1 +12891,73,2.1.3,1 +12891,79,2.1.3.3,0 +12891,106,2.1.3,1 +12892,106,2.1.3,1 +12892,108,2.1.3,1 +12892,79,2.1.3.3,0 +12892,97,2.1.3,1 +12893,79,2.1.3.3,0 +12893,74,2.1.3,1 +12893,108,2.1.3,1 +12894,79,2.1.3.3,0 +12894,97,2.1.3,1 +12894,108,2.1.3,1 +12895,108,2.1.3,1 +12895,79,2.1.3.3,0 +12895,74,2.1.3,1 +12895,126,2.1.3,1 +12897,79,2.1.3.3,0 +12897,73,2.1.3,1 +12898,74,2.1.3,1 +12898,97,2.1.3,1 +12898,79,2.1.3.3,0 +12899,79,2.1.3.3,0 +12899,148,2.1.3,1 +12899,126,2.1.3,1 +12901,79,2.1.3.4,0 +12901,106,2.1.3,1 +12902,79,2.1.3.4,0 +12902,148,2.1.3,1 +12902,97,2.1.3,1 +12902,108,2.1.3,1 +12904,73,2.1.3,1 +12904,106,2.1.3,1 +12904,79,2.1.3.4,0 +12905,79,2.1.3.4,0 +12905,126,2.1.3,1 +12905,106,2.1.3,1 +12906,97,2.1.3,1 +12906,79,2.1.3.4,0 +12907,126,2.1.3,1 +12907,79,2.1.3.4,0 +12907,108,2.1.3,1 +12907,74,2.1.3,1 +12908,74,2.1.3,1 +12908,79,2.1.3.4,0 +12909,79,2.1.3.4,0 +12909,73,2.1.3,1 +12910,79,2.1.3.4,0 +12910,126,2.1.3,1 +12911,126,2.1.3,1 +12911,79,2.1.3.4,0 +12911,106,2.1.3,1 +12911,73,2.1.3,1 +12912,148,2.1.3,1 +12912,79,2.1.3.4,0 +12912,108,2.1.3,1 +12914,74,2.1.3,1 +12914,108,2.1.3,1 +12914,79,2.1.3.4,0 +12914,106,2.1.3,1 +12915,148,2.1.3,1 +12915,79,2.1.3.4,0 +12916,74,2.1.3,1 +12916,79,2.1.3.4,0 +12916,108,2.1.3,1 +12917,108,2.1.3,1 +12917,79,2.1.3.4,0 +12919,148,2.1.3,1 +12919,79,2.1.3.4,0 +12920,108,2.1.3,1 +12920,79,2.1.3.4,0 +12920,73,2.1.3,1 +12920,106,2.1.3,1 +12921,106,2.1.3,1 +12921,79,2.1.3.4,0 +12921,97,2.1.3,1 +12922,97,2.1.3,1 +12922,148,2.1.3,1 +12922,79,2.1.3.4,0 +12923,108,2.1.3,1 +12923,148,2.1.3,1 +12923,79,2.1.3.4,0 +12923,74,2.1.3,1 +12924,79,2.1.3.4,0 +12924,97,2.1.3,1 +12925,79,2.1.3.4,0 +12925,73,2.1.3,1 +12926,106,2.1.3,1 +12926,108,2.1.3,1 +12926,79,2.1.3.4,0 +12927,97,2.1.3,1 +12927,79,2.1.3.4,0 +12928,79,2.1.3.4,0 +12928,74,2.1.3,1 +12929,97,2.1.3,1 +12929,106,2.1.3,1 +12929,79,2.1.3.4,0 +12930,126,2.1.3,1 +12930,148,2.1.3,1 +12930,79,2.1.3.4,0 +12931,79,2.1.3.4,0 +12931,73,2.1.3,1 +12931,148,2.1.3,1 +12931,74,2.1.3,1 +12932,79,2.1.3.4,0 +12932,126,2.1.3,1 +12933,108,2.1.3,1 +12933,79,2.1.3.4,0 +12934,79,2.1.3.4,0 +12934,97,2.1.3,1 +12935,126,2.1.3,1 +12935,148,2.1.3,1 +12935,108,2.1.3,1 +12935,79,2.1.3.4,0 +12936,73,2.1.3,1 +12936,148,2.1.3,1 +12936,79,2.1.3.4,0 +12939,148,2.1.3,1 +12939,74,2.1.3,1 +12939,79,2.1.3.4,0 +12940,106,2.1.3,1 +12940,97,2.1.3,1 +12940,74,2.1.3,1 +12940,79,2.1.3.4,0 +12941,74,2.1.3,1 +12941,79,2.1.3.4,0 +12942,79,2.1.3.4,0 +12942,126,2.1.3,1 +12942,108,2.1.3,1 +12943,79,2.1.3.4,0 +12943,126,2.1.3,1 +12943,148,2.1.3,1 +12944,79,2.1.3.4,0 +12944,148,2.1.3,1 +12944,108,2.1.3,1 +12945,74,2.1.3,1 +12945,79,2.1.3.4,0 +12947,79,2.1.3.4,0 +12947,148,2.1.3,1 +12947,97,2.1.3,1 +12948,79,2.1.3.4,0 +12948,97,2.1.3,1 +12948,73,2.1.3,1 +12949,97,2.1.3,1 +12949,148,2.1.3,1 +12949,79,2.1.3.4,0 +12952,73,2.1.3,1 +12952,97,2.1.3,1 +12952,79,2.1.3.5,0 +12952,148,2.1.3,1 +12952,126,2.1.3,1 +12954,108,2.1.3,1 +12954,97,2.1.3,1 +12954,79,2.1.3.5,0 +12955,106,2.1.3,1 +12955,79,2.1.3.5,0 +12956,126,2.1.3,1 +12956,73,2.1.3,1 +12956,79,2.1.3.5,0 +12956,108,2.1.3,1 +12957,79,2.1.3.5,0 +12957,108,2.1.3,1 +12957,74,2.1.3,1 +12958,97,2.1.3,1 +12958,79,2.1.3.5,0 +12959,79,2.1.3.5,0 +12959,73,2.1.3,1 +12960,148,2.1.3,1 +12960,97,2.1.3,1 +12960,79,2.1.3.5,0 +12961,108,2.1.3,1 +12961,97,2.1.3,1 +12961,79,2.1.3.5,0 +12961,74,2.1.3,1 +12961,126,2.1.3,1 +12962,148,2.1.3,1 +12962,79,2.1.3.5,0 +12964,97,2.1.3,1 +12964,126,2.1.3,1 +12964,74,2.1.3,1 +12964,79,2.1.3.5,0 +12966,79,2.1.3.5,0 +12966,74,2.1.3,1 +12966,126,2.1.3,1 +12966,108,2.1.3,1 +12967,79,2.1.3.5,0 +12967,106,2.1.3,1 +12969,108,2.1.3,1 +12969,79,2.1.3.5,0 +12969,106,2.1.3,1 +12969,73,2.1.3,1 +12969,126,2.1.3,1 +12969,148,2.1.3,1 +12970,79,2.1.3.5,0 +12970,73,2.1.3,1 +12970,148,2.1.3,1 +12971,79,2.1.3.5,0 +12971,108,2.1.3,1 +12972,74,2.1.3,1 +12972,79,2.1.3.5,0 +12973,74,2.1.3,1 +12973,126,2.1.3,1 +12973,73,2.1.3,1 +12973,148,2.1.3,1 +12973,79,2.1.3.5,0 +12973,97,2.1.3,1 +12974,79,2.1.3.5,0 +12974,126,2.1.3,1 +12975,79,2.1.3.5,0 +12975,126,2.1.3,1 +12975,73,2.1.3,1 +12976,73,2.1.3,1 +12976,126,2.1.3,1 +12976,79,2.1.3.5,0 +12977,126,2.1.3,1 +12977,79,2.1.3.5,0 +12978,73,2.1.3,1 +12978,79,2.1.3.5,0 +12979,73,2.1.3,1 +12979,74,2.1.3,1 +12979,148,2.1.3,1 +12979,79,2.1.3.5,0 +12979,126,2.1.3,1 +12980,126,2.1.3,1 +12980,148,2.1.3,1 +12980,79,2.1.3.5,0 +12981,79,2.1.3.5,0 +12981,97,2.1.3,1 +12981,73,2.1.3,1 +12982,79,2.1.3.5,0 +12982,73,2.1.3,1 +12982,148,2.1.3,1 +12982,74,2.1.3,1 +12983,79,2.1.3.5,0 +12983,73,2.1.3,1 +12984,148,2.1.3,1 +12984,73,2.1.3,1 +12984,79,2.1.3.5,0 +12985,79,2.1.3.5,0 +12985,97,2.1.3,1 +12985,148,2.1.3,1 +12986,126,2.1.3,1 +12986,106,2.1.3,1 +12986,74,2.1.3,1 +12986,79,2.1.3.5,0 +12987,79,2.1.3.5,0 +12987,108,2.1.3,1 +12988,97,2.1.3,1 +12988,79,2.1.3.5,0 +12989,79,2.1.3.5,0 +12989,126,2.1.3,1 +12989,148,2.1.3,1 +12989,73,2.1.3,1 +12990,126,2.1.3,1 +12990,106,2.1.3,1 +12990,79,2.1.3.5,0 +12990,108,2.1.3,1 +12991,73,2.1.3,1 +12991,79,2.1.3.5,0 +12991,148,2.1.3,1 +12991,108,2.1.3,1 +12993,106,2.1.3,1 +12993,79,2.1.3.5,0 +12993,73,2.1.3,1 +12994,79,2.1.3.5,0 +12994,106,2.1.3,1 +12994,73,2.1.3,1 +12995,108,2.1.3,1 +12995,79,2.1.3.5,0 +12997,106,2.1.3,1 +12997,108,2.1.3,1 +12997,97,2.1.3,1 +12997,79,2.1.3.5,0 +12997,73,2.1.3,1 +12998,126,2.1.3,1 +12998,79,2.1.3.5,0 +12998,97,2.1.3,1 +12998,73,2.1.3,1 +12999,126,2.1.3,1 +12999,79,2.1.3.5,0 +13000,126,2.1.3,1 +13000,97,2.1.3,1 +13000,79,2.1.3.5,0 +13000,106,2.1.3,1 +13001,148,2.1.3,1 +13001,79,2.1.3.6,0 +13001,106,2.1.3,1 +13001,108,2.1.3,1 +13002,79,2.1.3.6,0 +13002,73,2.1.3,1 +13004,108,2.1.3,1 +13004,73,2.1.3,1 +13004,106,2.1.3,1 +13004,79,2.1.3.6,0 +13005,79,2.1.3.6,0 +13005,97,2.1.3,1 +13005,73,2.1.3,1 +13006,148,2.1.3,1 +13006,97,2.1.3,1 +13006,79,2.1.3.6,0 +13007,97,2.1.3,1 +13007,79,2.1.3.6,0 +13008,148,2.1.3,1 +13008,79,2.1.3.6,0 +13008,73,2.1.3,1 +13008,108,2.1.3,1 +13009,74,2.1.3,1 +13009,79,2.1.3.6,0 +13010,79,2.1.3.6,0 +13010,73,2.1.3,1 +13011,108,2.1.3,1 +13011,74,2.1.3,1 +13011,126,2.1.3,1 +13011,97,2.1.3,1 +13011,79,2.1.3.6,0 +13012,148,2.1.3,1 +13012,79,2.1.3.6,0 +13014,79,2.1.3.6,0 +13014,73,2.1.3,1 +13016,79,2.1.3.6,0 +13016,108,2.1.3,1 +13019,79,2.1.3.6,0 +13019,73,2.1.3,1 +13019,97,2.1.3,1 +13020,108,2.1.3,1 +13020,126,2.1.3,1 +13020,73,2.1.3,1 +13020,79,2.1.3.6,0 +13021,108,2.1.3,1 +13021,79,2.1.3.6,0 +13022,106,2.1.3,1 +13022,79,2.1.3.6,0 +13023,108,2.1.3,1 +13023,79,2.1.3.6,0 +13024,79,2.1.3.6,0 +13024,73,2.1.3,1 +13024,148,2.1.3,1 +13024,74,2.1.3,1 +13026,126,2.1.3,1 +13026,79,2.1.3.6,0 +13026,108,2.1.3,1 +13027,126,2.1.3,1 +13027,79,2.1.3.6,0 +13027,106,2.1.3,1 +13028,79,2.1.3.6,0 +13028,148,2.1.3,1 +13029,106,2.1.3,1 +13029,74,2.1.3,1 +13029,79,2.1.3.6,0 +13030,148,2.1.3,1 +13030,108,2.1.3,1 +13030,79,2.1.3.6,0 +13031,97,2.1.3,1 +13031,79,2.1.3.6,0 +13032,97,2.1.3,1 +13032,79,2.1.3.6,0 +13033,108,2.1.3,1 +13033,79,2.1.3.6,0 +13034,73,2.1.3,1 +13034,79,2.1.3.6,0 +13035,79,2.1.3.6,0 +13035,148,2.1.3,1 +13036,106,2.1.3,1 +13036,97,2.1.3,1 +13036,79,2.1.3.6,0 +13036,73,2.1.3,1 +13036,126,2.1.3,1 +13037,79,2.1.3.6,0 +13037,148,2.1.3,1 +13038,126,2.1.3,1 +13038,79,2.1.3.6,0 +13039,79,2.1.3.6,0 +13039,73,2.1.3,1 +13040,126,2.1.3,1 +13040,106,2.1.3,1 +13040,148,2.1.3,1 +13040,79,2.1.3.6,0 +13040,108,2.1.3,1 +13040,97,2.1.3,1 +13041,79,2.1.3.6,0 +13041,74,2.1.3,1 +13042,79,2.1.3.6,0 +13042,106,2.1.3,1 +13043,79,2.1.3.6,0 +13043,73,2.1.3,1 +13043,74,2.1.3,1 +13044,74,2.1.3,1 +13044,79,2.1.3.6,0 +13044,106,2.1.3,1 +13047,74,2.1.3,1 +13047,79,2.1.3.6,0 +13048,74,2.1.3,1 +13048,79,2.1.3.6,0 +13048,108,2.1.3,1 +13049,74,2.1.3,1 +13049,79,2.1.3.6,0 +13050,148,2.1.3,1 +13050,106,2.1.3,1 +13050,79,2.1.3.6,0 +13051,126,2.1.3,1 +13051,79,2.1.3.7,0 +13052,74,2.1.3,1 +13052,79,2.1.3.7,0 +13052,73,2.1.3,1 +13052,97,2.1.3,1 +13052,106,2.1.3,1 +13053,79,2.1.3.7,0 +13053,148,2.1.3,1 +13053,97,2.1.3,1 +13054,74,2.1.3,1 +13054,106,2.1.3,1 +13054,79,2.1.3.7,0 +13055,106,2.1.3,1 +13055,73,2.1.3,1 +13055,79,2.1.3.7,0 +13055,148,2.1.3,1 +13056,106,2.1.3,1 +13056,79,2.1.3.7,0 +13057,79,2.1.3.7,0 +13057,108,2.1.3,1 +13057,148,2.1.3,1 +13057,73,2.1.3,1 +13058,79,2.1.3.7,0 +13058,73,2.1.3,1 +13058,97,2.1.3,1 +13058,148,2.1.3,1 +13059,79,2.1.3.7,0 +13059,73,2.1.3,1 +13060,148,2.1.3,1 +13060,73,2.1.3,1 +13060,79,2.1.3.7,0 +13061,126,2.1.3,1 +13061,79,2.1.3.7,0 +13061,106,2.1.3,1 +13061,97,2.1.3,1 +13062,148,2.1.3,1 +13062,79,2.1.3.7,0 +13062,126,2.1.3,1 +13064,73,2.1.3,1 +13064,74,2.1.3,1 +13064,79,2.1.3.7,0 +13064,97,2.1.3,1 +13064,106,2.1.3,1 +13064,148,2.1.3,1 +13066,106,2.1.3,1 +13066,73,2.1.3,1 +13066,79,2.1.3.7,0 +13066,108,2.1.3,1 +13067,148,2.1.3,1 +13067,79,2.1.3.7,0 +13070,73,2.1.3,1 +13070,79,2.1.3.7,0 +13072,74,2.1.3,1 +13072,79,2.1.3.7,0 +13073,126,2.1.3,1 +13073,97,2.1.3,1 +13073,106,2.1.3,1 +13073,79,2.1.3.7,0 +13074,79,2.1.3.7,0 +13074,126,2.1.3,1 +13075,79,2.1.3.7,0 +13075,73,2.1.3,1 +13075,108,2.1.3,1 +13076,74,2.1.3,1 +13076,79,2.1.3.7,0 +13077,97,2.1.3,1 +13077,79,2.1.3.7,0 +13077,148,2.1.3,1 +13078,79,2.1.3.7,0 +13078,73,2.1.3,1 +13079,126,2.1.3,1 +13079,97,2.1.3,1 +13079,79,2.1.3.7,0 +13081,73,2.1.3,1 +13081,74,2.1.3,1 +13081,79,2.1.3.7,0 +13082,148,2.1.3,1 +13082,126,2.1.3,1 +13082,73,2.1.3,1 +13082,79,2.1.3.7,0 +13083,79,2.1.3.7,0 +13083,73,2.1.3,1 +13084,73,2.1.3,1 +13084,79,2.1.3.7,0 +13085,79,2.1.3.7,0 +13085,126,2.1.3,1 +13086,74,2.1.3,1 +13086,73,2.1.3,1 +13086,148,2.1.3,1 +13086,79,2.1.3.7,0 +13087,108,2.1.3,1 +13087,79,2.1.3.7,0 +13087,74,2.1.3,1 +13089,73,2.1.3,1 +13089,97,2.1.3,1 +13089,79,2.1.3.7,0 +13090,74,2.1.3,1 +13090,79,2.1.3.7,0 +13090,108,2.1.3,1 +13091,97,2.1.3,1 +13091,79,2.1.3.7,0 +13092,108,2.1.3,1 +13092,79,2.1.3.7,0 +13092,73,2.1.3,1 +13092,97,2.1.3,1 +13093,106,2.1.3,1 +13093,79,2.1.3.7,0 +13093,74,2.1.3,1 +13094,74,2.1.3,1 +13094,108,2.1.3,1 +13094,79,2.1.3.7,0 +13095,97,2.1.3,1 +13095,79,2.1.3.7,0 +13097,79,2.1.3.7,0 +13097,126,2.1.3,1 +13098,79,2.1.3.7,0 +13098,97,2.1.3,1 +13098,73,2.1.3,1 +13098,106,2.1.3,1 +13099,126,2.1.3,1 +13099,148,2.1.3,1 +13099,79,2.1.3.7,0 +13100,126,2.1.3,1 +13100,148,2.1.3,1 +13100,79,2.1.3.7,0 +13101,115,2.1.4,1 +13101,79,2.1.4.1,0 +13102,79,2.1.4.1,0 +13102,84,2.1.4,1 +13102,115,2.1.4,1 +13103,115,2.1.4,1 +13103,79,2.1.4.1,0 +13104,84,2.1.4,1 +13104,79,2.1.4.1,0 +13104,115,2.1.4,1 +13105,79,2.1.4.1,0 +13105,84,2.1.4,1 +13105,102,2.1.4,1 +13106,84,2.1.4,1 +13106,115,2.1.4,1 +13106,79,2.1.4.1,0 +13107,79,2.1.4.1,0 +13107,84,2.1.4,1 +13108,79,2.1.4.1,0 +13108,84,2.1.4,1 +13108,115,2.1.4,1 +13109,79,2.1.4.1,0 +13109,84,2.1.4,1 +13110,84,2.1.4,1 +13110,115,2.1.4,1 +13110,79,2.1.4.1,0 +13111,99,2.1,2 +13111,98,2,3 +13111,170,1,4 +13111,102,2,3 +13111,102,2.1.4,1 +13111,115,2.1.4,1 +13111,84,2.1.4,1 +13111,79,2.1.4.1,0 +13112,79,2.1.4.1,0 +13112,115,2.1.4,1 +13114,115,2.1.4,1 +13114,102,2.1.4,1 +13114,79,2.1.4.1,0 +13114,84,2.1.4,1 +13116,84,2.1.4,1 +13116,99,2.1,2 +13116,79,2.1.4.1,0 +13116,170,1,4 +13116,115,2.1.4,1 +13116,98,2,3 +13116,102,2,3 +13116,102,2.1.4,1 +13117,115,2.1.4,1 +13117,79,2.1.4.1,0 +13119,79,2.1.4.1,0 +13119,115,2.1.4,1 +13119,102,2.1.4,1 +13120,79,2.1.4.1,0 +13120,99,2.1,2 +13120,115,2.1.4,1 +13120,84,2.1.4,1 +13121,79,2.1.4.1,0 +13121,115,2.1.4,1 +13122,115,2.1.4,1 +13122,84,2.1.4,1 +13122,79,2.1.4.1,0 +13123,99,2.1,2 +13123,115,2.1.4,1 +13123,84,2.1.4,1 +13123,102,2.1.4,1 +13123,79,2.1.4.1,0 +13124,79,2.1.4.1,0 +13124,102,2.1.4,1 +13126,79,2.1.4.1,0 +13126,102,2.1.4,1 +13126,84,2.1.4,1 +13127,79,2.1.4.1,0 +13127,102,2.1.4,1 +13128,79,2.1.4.1,0 +13128,84,2.1.4,1 +13129,84,2.1.4,1 +13129,79,2.1.4.1,0 +13130,115,2.1.4,1 +13130,79,2.1.4.1,0 +13131,84,2.1.4,1 +13131,102,2.1.4,1 +13131,79,2.1.4.1,0 +13132,99,2.1,2 +13132,79,2.1.4.1,0 +13132,84,2.1.4,1 +13133,84,2.1.4,1 +13133,79,2.1.4.1,0 +13134,84,2.1.4,1 +13134,79,2.1.4.1,0 +13135,115,2.1.4,1 +13135,79,2.1.4.1,0 +13135,102,2.1.4,1 +13136,115,2.1.4,1 +13136,102,2.1.4,1 +13136,84,2.1.4,1 +13136,99,2.1,2 +13136,79,2.1.4.1,0 +13137,79,2.1.4.1,0 +13137,102,2.1.4,1 +13138,102,2.1.4,1 +13138,79,2.1.4.1,0 +13139,115,2.1.4,1 +13139,84,2.1.4,1 +13139,79,2.1.4.1,0 +13140,102,2.1.4,1 +13140,79,2.1.4.1,0 +13140,115,2.1.4,1 +13140,99,2.1,2 +13141,79,2.1.4.1,0 +13141,115,2.1.4,1 +13141,84,2.1.4,1 +13142,115,2.1.4,1 +13142,102,2.1.4,1 +13142,79,2.1.4.1,0 +13143,84,2.1.4,1 +13143,102,2.1.4,1 +13143,79,2.1.4.1,0 +13144,79,2.1.4.1,0 +13144,84,2.1.4,1 +13144,102,2.1.4,1 +13145,99,2.1,2 +13145,79,2.1.4.1,0 +13145,102,2.1.4,1 +13147,84,2.1.4,1 +13147,99,2.1,2 +13147,115,2.1.4,1 +13147,79,2.1.4.1,0 +13148,98,2,3 +13148,115,2.1.4,1 +13148,84,2.1.4,1 +13148,99,2.1,2 +13148,102,2,3 +13148,102,2.1.4,1 +13148,79,2.1.4.1,0 +13148,170,1,4 +13149,79,2.1.4.1,0 +13149,115,2.1.4,1 +13149,102,2.1.4,1 +13150,79,2.1.4.1,0 +13150,102,2.1.4,1 +13150,115,2.1.4,1 +13151,115,2.1.4,1 +13151,79,2.1.4.2,0 +13152,115,2.1.4,1 +13152,79,2.1.4.2,0 +13152,84,2.1.4,1 +13153,115,2.1.4,1 +13153,79,2.1.4.2,0 +13154,84,2.1.4,1 +13154,115,2.1.4,1 +13154,79,2.1.4.2,0 +13155,79,2.1.4.2,0 +13155,102,2.1.4,1 +13155,84,2.1.4,1 +13156,84,2.1.4,1 +13156,115,2.1.4,1 +13156,79,2.1.4.2,0 +13157,79,2.1.4.2,0 +13157,84,2.1.4,1 +13158,79,2.1.4.2,0 +13158,84,2.1.4,1 +13158,115,2.1.4,1 +13159,79,2.1.4.2,0 +13159,84,2.1.4,1 +13160,84,2.1.4,1 +13160,115,2.1.4,1 +13160,79,2.1.4.2,0 +13161,99,2.1,2 +13161,98,2,3 +13161,170,1,4 +13161,102,2,3 +13161,102,2.1.4,1 +13161,115,2.1.4,1 +13161,84,2.1.4,1 +13161,79,2.1.4.2,0 +13162,79,2.1.4.2,0 +13162,115,2.1.4,1 +13164,115,2.1.4,1 +13164,102,2.1.4,1 +13164,84,2.1.4,1 +13164,79,2.1.4.2,0 +13166,79,2.1.4.2,0 +13166,102,2.1.4,1 +13166,84,2.1.4,1 +13166,115,2.1.4,1 +13167,115,2.1.4,1 +13167,79,2.1.4.2,0 +13169,79,2.1.4.2,0 +13169,115,2.1.4,1 +13169,102,2.1.4,1 +13170,79,2.1.4.2,0 +13170,115,2.1.4,1 +13170,84,2.1.4,1 +13171,79,2.1.4.2,0 +13171,115,2.1.4,1 +13172,115,2.1.4,1 +13172,84,2.1.4,1 +13172,79,2.1.4.2,0 +13173,115,2.1.4,1 +13173,84,2.1.4,1 +13173,102,2.1.4,1 +13173,79,2.1.4.2,0 +13174,79,2.1.4.2,0 +13174,102,2.1.4,1 +13176,99,2.1,2 +13176,102,2,3 +13176,102,2.1.4,1 +13176,170,1,4 +13176,84,2.1.4,1 +13176,98,2,3 +13176,79,2.1.4.2,0 +13177,79,2.1.4.2,0 +13177,102,2.1.4,1 +13178,79,2.1.4.2,0 +13178,84,2.1.4,1 +13179,84,2.1.4,1 +13179,79,2.1.4.2,0 +13180,115,2.1.4,1 +13180,79,2.1.4.2,0 +13181,79,2.1.4.2,0 +13181,99,2.1,2 +13181,84,2.1.4,1 +13181,102,2.1.4,1 +13182,79,2.1.4.2,0 +13182,84,2.1.4,1 +13183,84,2.1.4,1 +13183,79,2.1.4.2,0 +13184,79,2.1.4.2,0 +13184,84,2.1.4,1 +13185,115,2.1.4,1 +13185,79,2.1.4.2,0 +13185,102,2.1.4,1 +13186,115,2.1.4,1 +13186,102,2.1.4,1 +13186,84,2.1.4,1 +13186,99,2.1,2 +13186,79,2.1.4.2,0 +13187,79,2.1.4.2,0 +13187,102,2.1.4,1 +13188,102,2.1.4,1 +13188,79,2.1.4.2,0 +13189,115,2.1.4,1 +13189,84,2.1.4,1 +13189,79,2.1.4.2,0 +13190,102,2.1.4,1 +13190,79,2.1.4.2,0 +13190,115,2.1.4,1 +13190,99,2.1,2 +13191,79,2.1.4.2,0 +13191,115,2.1.4,1 +13191,84,2.1.4,1 +13192,115,2.1.4,1 +13192,102,2.1.4,1 +13192,79,2.1.4.2,0 +13193,79,2.1.4.2,0 +13193,102,2.1.4,1 +13193,84,2.1.4,1 +13194,79,2.1.4.2,0 +13194,84,2.1.4,1 +13194,102,2.1.4,1 +13195,102,2.1.4,1 +13195,79,2.1.4.2,0 +13197,79,2.1.4.2,0 +13197,84,2.1.4,1 +13197,115,2.1.4,1 +13198,84,2.1.4,1 +13198,99,2.1,2 +13198,115,2.1.4,1 +13198,79,2.1.4.2,0 +13198,102,2.1.4,1 +13199,115,2.1.4,1 +13199,102,2.1.4,1 +13199,79,2.1.4.2,0 +13200,79,2.1.4.2,0 +13200,102,2.1.4,1 +13200,115,2.1.4,1 +13201,99,2.3,1 +13201,79,2.3.1,0 +13202,84,2.3,1 +13202,79,2.3.1,0 +13203,79,2.3.1,0 +13203,124,2.3,1 +13204,84,2.3,1 +13204,79,2.3.1,0 +13205,155,2.3,1 +13205,79,2.3.1,0 +13206,155,2.3,1 +13206,79,2.3.1,0 +13207,79,2.3.1,0 +13207,99,2.3,1 +13208,79,2.3.1,0 +13208,124,2.3,1 +13209,95,2.3,1 +13209,79,2.3.1,0 +13210,79,2.3.1,0 +13210,155,2.3,1 +13211,124,2.3,1 +13211,79,2.3.1,0 +13211,99,2.3,1 +13211,95,2.3,1 +13214,79,2.3.1,0 +13214,84,2.3,1 +13214,95,2.3,1 +13216,79,2.3.1,0 +13216,126,2.3,1 +13216,99,2.3,1 +13216,84,2.3,1 +13219,79,2.3.1,0 +13219,95,2.3,1 +13221,155,2.3,1 +13221,79,2.3.1,0 +13222,95,2.3,1 +13222,155,2.3,1 +13222,79,2.3.1,0 +13223,99,2.3,1 +13223,95,2.3,1 +13223,84,2.3,1 +13223,79,2.3.1,0 +13224,79,2.3.1,0 +13224,95,2.3,1 +13226,84,2.3,1 +13226,79,2.3.1,0 +13228,99,2.3,1 +13228,79,2.3.1,0 +13229,124,2.3,1 +13229,84,2.3,1 +13229,79,2.3.1,0 +13231,95,2.3,1 +13231,126,2.3,1 +13231,79,2.3.1,0 +13232,79,2.3.1,0 +13232,124,2.3,1 +13233,79,2.3.1,0 +13233,99,2.3,1 +13234,84,2.3,1 +13234,79,2.3.1,0 +13235,79,2.3.1,0 +13235,99,2.3,1 +13235,124,2.3,1 +13235,126,2.3,1 +13236,79,2.3.1,0 +13236,155,2.3,1 +13237,79,2.3.1,0 +13237,126,2.3,1 +13239,79,2.3.1,0 +13239,84,2.3,1 +13241,79,2.3.1,0 +13241,95,2.3,1 +13241,126,2.3,1 +13243,79,2.3.1,0 +13243,126,2.3,1 +13243,155,2.3,1 +13244,95,2.3,1 +13244,79,2.3.1,0 +13247,124,2.3,1 +13247,79,2.3.1,0 +13248,79,2.3.1,0 +13248,155,2.3,1 +13251,155,2.3,1 +13251,79,2.3.2,0 +13252,84,2.3,1 +13252,155,2.3,1 +13252,79,2.3.2,0 +13254,79,2.3.2,0 +13254,124,2.3,1 +13255,79,2.3.2,0 +13255,99,2.3,1 +13255,95,2.3,1 +13256,79,2.3.2,0 +13256,95,2.3,1 +13257,79,2.3.2,0 +13257,95,2.3,1 +13258,79,2.3.2,0 +13258,84,2.3,1 +13259,95,2.3,1 +13259,79,2.3.2,0 +13260,79,2.3.2,0 +13260,95,2.3,1 +13261,79,2.3.2,0 +13261,126,2.3,1 +13264,79,2.3.2,0 +13264,99,2.3,1 +13264,155,2.3,1 +13264,124,2.3,1 +13269,79,2.3.2,0 +13269,155,2.3,1 +13272,155,2.3,1 +13272,79,2.3.2,0 +13273,99,2.3,1 +13273,95,2.3,1 +13273,124,2.3,1 +13273,126,2.3,1 +13273,79,2.3.2,0 +13276,124,2.3,1 +13276,79,2.3.2,0 +13278,95,2.3,1 +13278,79,2.3.2,0 +13279,99,2.3,1 +13279,84,2.3,1 +13279,79,2.3.2,0 +13281,79,2.3.2,0 +13281,124,2.3,1 +13281,95,2.3,1 +13282,79,2.3.2,0 +13282,155,2.3,1 +13283,124,2.3,1 +13283,79,2.3.2,0 +13284,79,2.3.2,0 +13284,155,2.3,1 +13285,126,2.3,1 +13285,79,2.3.2,0 +13286,79,2.3.2,0 +13286,124,2.3,1 +13287,99,2.3,1 +13287,124,2.3,1 +13287,79,2.3.2,0 +13289,99,2.3,1 +13289,84,2.3,1 +13289,79,2.3.2,0 +13294,99,2.3,1 +13294,126,2.3,1 +13294,79,2.3.2,0 +13297,84,2.3,1 +13297,79,2.3.2,0 +13298,95,2.3,1 +13298,79,2.3.2,0 +13298,126,2.3,1 +13299,124,2.3,1 +13299,79,2.3.2,0 +13299,155,2.3,1 +13300,99,2.3,1 +13300,126,2.3,1 +13300,79,2.3.2,0 +13304,84,2.3,1 +13304,79,2.3.3,0 +13304,99,2.3,1 +13304,124,2.3,1 +13305,124,2.3,1 +13305,79,2.3.3,0 +13305,126,2.3,1 +13306,124,2.3,1 +13306,84,2.3,1 +13306,79,2.3.3,0 +13306,126,2.3,1 +13308,79,2.3.3,0 +13308,84,2.3,1 +13309,99,2.3,1 +13309,79,2.3.3,0 +13316,79,2.3.3,0 +13316,84,2.3,1 +13316,155,2.3,1 +13316,126,2.3,1 +13320,84,2.3,1 +13320,155,2.3,1 +13320,79,2.3.3,0 +13322,124,2.3,1 +13322,155,2.3,1 +13322,79,2.3.3,0 +13323,99,2.3,1 +13323,126,2.3,1 +13323,79,2.3.3,0 +13326,124,2.3,1 +13326,79,2.3.3,0 +13327,126,2.3,1 +13327,79,2.3.3,0 +13328,79,2.3.3,0 +13328,84,2.3,1 +13329,124,2.3,1 +13329,79,2.3.3,0 +13329,99,2.3,1 +13331,95,2.3,1 +13331,126,2.3,1 +13331,79,2.3.3,0 +13332,79,2.3.3,0 +13332,95,2.3,1 +13333,79,2.3.3,0 +13333,95,2.3,1 +13334,79,2.3.3,0 +13334,126,2.3,1 +13339,79,2.3.3,0 +13339,124,2.3,1 +13339,155,2.3,1 +13340,124,2.3,1 +13340,79,2.3.3,0 +13341,155,2.3,1 +13341,79,2.3.3,0 +13341,95,2.3,1 +13343,155,2.3,1 +13343,79,2.3.3,0 +13344,79,2.3.3,0 +13344,124,2.3,1 +13344,155,2.3,1 +13345,155,2.3,1 +13345,79,2.3.3,0 +13347,79,2.3.3,0 +13347,95,2.3,1 +13348,95,2.3,1 +13348,79,2.3.3,0 +13348,84,2.3,1 +13349,126,2.3,1 +13349,79,2.3.3,0 +13350,99,2.3,1 +13350,79,2.3.3,0 +13352,80,1.3.4,0 +13352,106,1.3,1 +13354,80,1.3.4,0 +13354,29,1.3,1 +13355,80,1.3.4,0 +13355,29,1.3,1 +13355,106,1.3,1 +13357,106,1.3,1 +13357,80,1.3.4,0 +13358,80,1.3.4,0 +13358,106,1.3,1 +13359,29,1.3,1 +13359,80,1.3.4,0 +13360,80,1.3.4,0 +13360,29,1.3,1 +13361,80,1.3.4,0 +13361,29,1.3,1 +13364,170,1,2 +13364,106,1.3,1 +13364,29,1.3,1 +13364,80,1.3.4,0 +13366,29,1.3,1 +13366,80,1.3.4,0 +13369,106,1.3,1 +13369,80,1.3.4,0 +13372,29,1.3,1 +13372,80,1.3.4,0 +13373,106,1.3,1 +13373,29,1.3,1 +13373,80,1.3.4,0 +13376,106,1.3,1 +13376,170,1,2 +13376,29,1.3,1 +13376,80,1.3.4,0 +13378,29,1.3,1 +13378,80,1.3.4,0 +13379,106,1.3,1 +13379,80,1.3.4,0 +13381,80,1.3.4,0 +13381,29,1.3,1 +13381,106,1.3,1 +13383,80,1.3.4,0 +13383,29,1.3,1 +13385,80,1.3.4,0 +13385,106,1.3,1 +13389,80,1.3.4,0 +13389,29,1.3,1 +13390,80,1.3.4,0 +13390,106,1.3,1 +13392,106,1.3,1 +13392,80,1.3.4,0 +13394,80,1.3.4,0 +13394,106,1.3,1 +13394,29,1.3,1 +13395,80,1.3.4,0 +13395,106,1.3,1 +13397,80,1.3.4,0 +13397,29,1.3,1 +13398,170,1,2 +13398,80,1.3.4,0 +13398,106,1.3,1 +13399,106,1.3,1 +13399,80,1.3.4,0 +13400,80,1.3.4,0 +13400,106,1.3,1 +13407,99,2.1,1 +13407,80,2.1.1,0 +13409,80,2.1.1,0 +13409,99,2.1,1 +13414,80,2.1.1,0 +13414,99,2.1,1 +13416,99,2.1,1 +13416,80,2.1.1,0 +13429,99,2.1,1 +13429,80,2.1.1,0 +13431,99,2.1,1 +13431,80,2.1.1,0 +13432,99,2.1,1 +13432,80,2.1.1,0 +13439,80,2.1.1,0 +13439,99,2.1,1 +13452,29,1.3,1 +13452,81,1.3.4,0 +13454,106,1.3,1 +13454,81,1.3.4,0 +13455,170,1,2 +13455,81,1.3.4,0 +13455,29,1.3,1 +13455,106,1.3,1 +13456,81,1.3.4,0 +13456,29,1.3,1 +13457,29,1.3,1 +13457,81,1.3.4,0 +13458,81,1.3.4,0 +13458,29,1.3,1 +13460,29,1.3,1 +13460,81,1.3.4,0 +13461,81,1.3.4,0 +13461,106,1.3,1 +13464,29,1.3,1 +13464,81,1.3.4,0 +13466,106,1.3,1 +13466,81,1.3.4,0 +13469,81,1.3.4,0 +13469,106,1.3,1 +13472,81,1.3.4,0 +13472,29,1.3,1 +13473,106,1.3,1 +13473,81,1.3.4,0 +13476,106,1.3,1 +13476,170,1,2 +13476,29,1.3,1 +13476,81,1.3.4,0 +13477,106,1.3,1 +13477,81,1.3.4,0 +13478,81,1.3.4,0 +13478,106,1.3,1 +13479,29,1.3,1 +13479,81,1.3.4,0 +13479,106,1.3,1 +13482,29,1.3,1 +13482,81,1.3.4,0 +13483,81,1.3.4,0 +13483,106,1.3,1 +13484,81,1.3.4,0 +13484,29,1.3,1 +13486,106,1.3,1 +13486,81,1.3.4,0 +13486,29,1.3,1 +13487,81,1.3.4,0 +13487,106,1.3,1 +13488,81,1.3.4,0 +13488,106,1.3,1 +13489,81,1.3.4,0 +13489,29,1.3,1 +13491,81,1.3.4,0 +13491,29,1.3,1 +13493,81,1.3.4,0 +13493,29,1.3,1 +13493,106,1.3,1 +13494,106,1.3,1 +13494,170,1,2 +13494,29,1.3,1 +13494,81,1.3.4,0 +13497,106,1.3,1 +13497,81,1.3.4,0 +13498,81,1.3.4,0 +13498,170,1,2 +13498,29,1.3,1 +13499,106,1.3,1 +13499,81,1.3.4,0 +13504,81,2.1.2,0 +13504,99,2.1,1 +13506,99,2.1,1 +13506,81,2.1.2,0 +13509,81,2.1.2,0 +13509,99,2.1,1 +13510,99,2.1,1 +13510,81,2.1.2,0 +13514,99,2.1,1 +13514,81,2.1.2,0 +13520,99,2.1,1 +13520,81,2.1.2,0 +13523,99,2.1,1 +13523,81,2.1.2,0 +13528,99,2.1,1 +13528,81,2.1.2,0 +13532,99,2.1,1 +13532,81,2.1.2,0 +13539,81,2.1.2,0 +13539,99,2.1,1 +13543,81,2.1.2,0 +13543,99,2.1,1 +13547,99,2.1,1 +13547,81,2.1.2,0 +13548,99,2.1,1 +13548,81,2.1.2,0 +13551,115,2.1.4,1 +13551,81,2.1.4.1,0 +13552,115,2.1.4,1 +13552,84,2.1.4,1 +13552,81,2.1.4.1,0 +13553,115,2.1.4,1 +13553,81,2.1.4.1,0 +13554,81,2.1.4.1,0 +13554,84,2.1.4,1 +13554,115,2.1.4,1 +13555,102,2.1.4,1 +13555,81,2.1.4.1,0 +13555,84,2.1.4,1 +13556,84,2.1.4,1 +13556,115,2.1.4,1 +13556,81,2.1.4.1,0 +13557,84,2.1.4,1 +13557,81,2.1.4.1,0 +13558,81,2.1.4.1,0 +13558,84,2.1.4,1 +13558,115,2.1.4,1 +13559,81,2.1.4.1,0 +13559,84,2.1.4,1 +13560,84,2.1.4,1 +13560,115,2.1.4,1 +13560,81,2.1.4.1,0 +13561,81,2.1.4.1,0 +13561,98,2,3 +13561,115,2.1.4,1 +13561,102,2,3 +13561,102,2.1.4,1 +13561,170,1,4 +13561,99,2.1,2 +13561,84,2.1.4,1 +13562,81,2.1.4.1,0 +13562,115,2.1.4,1 +13564,115,2.1.4,1 +13564,102,2.1.4,1 +13564,84,2.1.4,1 +13564,81,2.1.4.1,0 +13566,84,2.1.4,1 +13566,115,2.1.4,1 +13566,102,2.1.4,1 +13566,81,2.1.4.1,0 +13567,81,2.1.4.1,0 +13567,115,2.1.4,1 +13569,115,2.1.4,1 +13569,81,2.1.4.1,0 +13569,102,2.1.4,1 +13570,115,2.1.4,1 +13570,81,2.1.4.1,0 +13570,84,2.1.4,1 +13571,115,2.1.4,1 +13571,81,2.1.4.1,0 +13572,81,2.1.4.1,0 +13572,115,2.1.4,1 +13572,84,2.1.4,1 +13573,99,2.1,2 +13573,81,2.1.4.1,0 +13573,115,2.1.4,1 +13573,84,2.1.4,1 +13573,102,2.1.4,1 +13574,81,2.1.4.1,0 +13574,102,2.1.4,1 +13576,81,2.1.4.1,0 +13576,102,2.1.4,1 +13576,84,2.1.4,1 +13577,81,2.1.4.1,0 +13577,102,2.1.4,1 +13578,81,2.1.4.1,0 +13578,84,2.1.4,1 +13579,81,2.1.4.1,0 +13579,84,2.1.4,1 +13580,115,2.1.4,1 +13580,81,2.1.4.1,0 +13581,81,2.1.4.1,0 +13581,99,2.1,2 +13581,84,2.1.4,1 +13581,102,2.1.4,1 +13582,81,2.1.4.1,0 +13582,84,2.1.4,1 +13583,84,2.1.4,1 +13583,81,2.1.4.1,0 +13584,84,2.1.4,1 +13584,81,2.1.4.1,0 +13585,115,2.1.4,1 +13585,102,2.1.4,1 +13585,81,2.1.4.1,0 +13586,115,2.1.4,1 +13586,102,2.1.4,1 +13586,84,2.1.4,1 +13586,99,2.1,2 +13586,81,2.1.4.1,0 +13587,102,2,3 +13587,102,2.1.4,1 +13587,170,1,4 +13587,99,2.1,2 +13587,81,2.1.4.1,0 +13587,98,2,3 +13588,81,2.1.4.1,0 +13588,102,2.1.4,1 +13589,115,2.1.4,1 +13589,84,2.1.4,1 +13589,81,2.1.4.1,0 +13590,102,2.1.4,1 +13590,81,2.1.4.1,0 +13590,115,2.1.4,1 +13591,81,2.1.4.1,0 +13591,115,2.1.4,1 +13591,84,2.1.4,1 +13592,102,2,3 +13592,102,2.1.4,1 +13592,98,2,3 +13592,99,2.1,2 +13592,170,1,4 +13592,115,2.1.4,1 +13592,81,2.1.4.1,0 +13593,84,2.1.4,1 +13593,81,2.1.4.1,0 +13593,102,2.1.4,1 +13594,81,2.1.4.1,0 +13594,102,2,3 +13594,102,2.1.4,1 +13594,170,1,4 +13594,84,2.1.4,1 +13594,99,2.1,2 +13594,98,2,3 +13595,81,2.1.4.1,0 +13595,102,2.1.4,1 +13597,84,2.1.4,1 +13597,99,2.1,2 +13597,115,2.1.4,1 +13597,81,2.1.4.1,0 +13598,84,2.1.4,1 +13598,102,2.1.4,1 +13598,115,2.1.4,1 +13598,81,2.1.4.1,0 +13599,115,2.1.4,1 +13599,99,2.1,2 +13599,170,1,4 +13599,98,2,3 +13599,81,2.1.4.1,0 +13599,102,2,3 +13599,102,2.1.4,1 +13600,102,2.1.4,1 +13600,115,2.1.4,1 +13600,81,2.1.4.1,0 +13601,115,2.1.4,1 +13601,81,2.1.4.2,0 +13602,115,2.1.4,1 +13602,84,2.1.4,1 +13602,81,2.1.4.2,0 +13603,81,2.1.4.2,0 +13603,99,2.1,2 +13603,115,2.1.4,1 +13604,81,2.1.4.2,0 +13604,84,2.1.4,1 +13604,115,2.1.4,1 +13605,102,2.1.4,1 +13605,81,2.1.4.2,0 +13605,84,2.1.4,1 +13606,84,2.1.4,1 +13606,115,2.1.4,1 +13606,81,2.1.4.2,0 +13607,84,2.1.4,1 +13607,81,2.1.4.2,0 +13608,84,2.1.4,1 +13608,81,2.1.4.2,0 +13608,170,1,4 +13608,102,2,3 +13608,99,2.1,2 +13608,98,2,3 +13608,115,2.1.4,1 +13609,81,2.1.4.2,0 +13609,84,2.1.4,1 +13610,81,2.1.4.2,0 +13610,84,2.1.4,1 +13610,115,2.1.4,1 +13611,81,2.1.4.2,0 +13611,98,2,3 +13611,115,2.1.4,1 +13611,102,2,3 +13611,102,2.1.4,1 +13611,170,1,4 +13611,99,2.1,2 +13611,84,2.1.4,1 +13612,81,2.1.4.2,0 +13612,115,2.1.4,1 +13614,115,2.1.4,1 +13614,102,2.1.4,1 +13614,84,2.1.4,1 +13614,81,2.1.4.2,0 +13616,84,2.1.4,1 +13616,99,2.1,2 +13616,170,1,4 +13616,81,2.1.4.2,0 +13616,115,2.1.4,1 +13616,98,2,3 +13616,102,2,3 +13616,102,2.1.4,1 +13617,81,2.1.4.2,0 +13617,115,2.1.4,1 +13619,102,2.1.4,1 +13619,115,2.1.4,1 +13619,81,2.1.4.2,0 +13620,115,2.1.4,1 +13620,81,2.1.4.2,0 +13620,84,2.1.4,1 +13621,81,2.1.4.2,0 +13621,99,2.1,2 +13621,115,2.1.4,1 +13622,81,2.1.4.2,0 +13622,115,2.1.4,1 +13622,84,2.1.4,1 +13623,99,2.1,2 +13623,81,2.1.4.2,0 +13623,115,2.1.4,1 +13623,84,2.1.4,1 +13623,102,2.1.4,1 +13624,81,2.1.4.2,0 +13624,102,2.1.4,1 +13626,81,2.1.4.2,0 +13626,102,2.1.4,1 +13626,84,2.1.4,1 +13627,81,2.1.4.2,0 +13627,102,2.1.4,1 +13628,81,2.1.4.2,0 +13628,84,2.1.4,1 +13629,81,2.1.4.2,0 +13629,84,2.1.4,1 +13630,81,2.1.4.2,0 +13630,99,2.1,2 +13630,115,2.1.4,1 +13631,84,2.1.4,1 +13631,81,2.1.4.2,0 +13631,102,2.1.4,1 +13632,81,2.1.4.2,0 +13632,84,2.1.4,1 +13633,81,2.1.4.2,0 +13633,84,2.1.4,1 +13634,81,2.1.4.2,0 +13634,84,2.1.4,1 +13635,81,2.1.4.2,0 +13635,99,2.1,2 +13635,115,2.1.4,1 +13635,102,2.1.4,1 +13636,115,2.1.4,1 +13636,102,2.1.4,1 +13636,84,2.1.4,1 +13636,99,2.1,2 +13636,81,2.1.4.2,0 +13637,81,2.1.4.2,0 +13637,102,2.1.4,1 +13638,81,2.1.4.2,0 +13638,102,2.1.4,1 +13639,115,2.1.4,1 +13639,81,2.1.4.2,0 +13639,84,2.1.4,1 +13640,102,2.1.4,1 +13640,81,2.1.4.2,0 +13640,115,2.1.4,1 +13640,99,2.1,2 +13641,81,2.1.4.2,0 +13641,115,2.1.4,1 +13641,84,2.1.4,1 +13642,81,2.1.4.2,0 +13642,115,2.1.4,1 +13642,102,2.1.4,1 +13643,84,2.1.4,1 +13643,81,2.1.4.2,0 +13643,102,2.1.4,1 +13644,81,2.1.4.2,0 +13644,102,2,3 +13644,102,2.1.4,1 +13644,170,1,4 +13644,84,2.1.4,1 +13644,99,2.1,2 +13644,98,2,3 +13645,81,2.1.4.2,0 +13645,102,2.1.4,1 +13647,84,2.1.4,1 +13647,115,2.1.4,1 +13647,81,2.1.4.2,0 +13648,98,2,3 +13648,115,2.1.4,1 +13648,81,2.1.4.2,0 +13648,84,2.1.4,1 +13648,99,2.1,2 +13648,102,2,3 +13648,102,2.1.4,1 +13648,170,1,4 +13649,115,2.1.4,1 +13649,102,2.1.4,1 +13649,81,2.1.4.2,0 +13650,102,2.1.4,1 +13650,115,2.1.4,1 +13650,81,2.1.4.2,0 +13651,79,2.1.2,1 +13651,82,2.1.2.1,0 +13652,79,2.1.2,1 +13652,82,2.1.2.1,0 +13652,159,2.1.2,1 +13654,82,2.1.2.1,0 +13654,159,2.1.2,1 +13655,81,2.1.2,1 +13655,159,2.1.2,1 +13655,82,2.1.2.1,0 +13658,81,2.1.2,1 +13658,82,2.1.2.1,0 +13659,82,2.1.2.1,0 +13659,79,2.1.2,1 +13660,82,2.1.2.1,0 +13660,81,2.1.2,1 +13666,82,2.1.2.1,0 +13666,84,2.1.2,1 +13666,159,2.1.2,1 +13669,79,2.1.2,1 +13669,82,2.1.2.1,0 +13669,58,2.1.2,1 +13673,82,2.1.2.1,0 +13673,79,2.1.2,1 +13673,81,2.1.2,1 +13674,81,2.1.2,1 +13674,58,2.1.2,1 +13674,82,2.1.2.1,0 +13676,82,2.1.2.1,0 +13676,81,2.1.2,1 +13677,84,2.1.2,1 +13677,82,2.1.2.1,0 +13678,58,2.1.2,1 +13678,82,2.1.2.1,0 +13679,82,2.1.2.1,0 +13679,79,2.1.2,1 +13679,58,2.1.2,1 +13680,82,2.1.2.1,0 +13680,84,2.1.2,1 +13681,82,2.1.2.1,0 +13681,84,2.1.2,1 +13682,159,2.1.2,1 +13682,84,2.1.2,1 +13682,82,2.1.2.1,0 +13683,84,2.1.2,1 +13683,82,2.1.2.1,0 +13684,58,2.1.2,1 +13684,82,2.1.2.1,0 +13688,82,2.1.2.1,0 +13688,84,2.1.2,1 +13691,159,2.1.2,1 +13691,82,2.1.2.1,0 +13691,58,2.1.2,1 +13696,82,2.1.2.1,0 +13696,159,2.1.2,1 +13698,82,2.1.2.1,0 +13698,84,2.1.2,1 +13700,81,2.1.2,1 +13700,79,2.1.2,1 +13700,82,2.1.2.1,0 +13705,84,2.1.2,1 +13705,82,2.1.2.2,0 +13706,81,2.1.2,1 +13706,82,2.1.2.2,0 +13709,81,2.1.2,1 +13709,82,2.1.2.2,0 +13711,79,2.1.2,1 +13711,82,2.1.2.2,0 +13711,58,2.1.2,1 +13714,58,2.1.2,1 +13714,82,2.1.2.2,0 +13716,79,2.1.2,1 +13716,82,2.1.2.2,0 +13719,82,2.1.2.2,0 +13719,159,2.1.2,1 +13720,82,2.1.2.2,0 +13720,79,2.1.2,1 +13722,159,2.1.2,1 +13722,82,2.1.2.2,0 +13723,82,2.1.2.2,0 +13723,81,2.1.2,1 +13723,84,2.1.2,1 +13724,58,2.1.2,1 +13724,82,2.1.2.2,0 +13732,82,2.1.2.2,0 +13732,81,2.1.2,1 +13733,81,2.1.2,1 +13733,82,2.1.2.2,0 +13736,82,2.1.2.2,0 +13736,159,2.1.2,1 +13738,82,2.1.2.2,0 +13738,79,2.1.2,1 +13739,82,2.1.2.2,0 +13739,84,2.1.2,1 +13741,79,2.1.2,1 +13741,82,2.1.2.2,0 +13742,79,2.1.2,1 +13742,82,2.1.2.2,0 +13743,82,2.1.2.2,0 +13743,159,2.1.2,1 +13743,79,2.1.2,1 +13745,79,2.1.2,1 +13745,82,2.1.2.2,0 +13747,82,2.1.2.2,0 +13747,79,2.1.2,1 +13748,159,2.1.2,1 +13748,82,2.1.2.2,0 +13748,58,2.1.2,1 +13748,81,2.1.2,1 +13750,81,2.1.2,1 +13750,82,2.1.2.2,0 +13752,81,2.1.2,1 +13752,82,2.1.2.3,0 +13752,79,2.1.2,1 +13753,82,2.1.2.3,0 +13753,159,2.1.2,1 +13754,84,2.1.2,1 +13754,159,2.1.2,1 +13754,79,2.1.2,1 +13754,82,2.1.2.3,0 +13755,84,2.1.2,1 +13755,82,2.1.2.3,0 +13756,82,2.1.2.3,0 +13756,81,2.1.2,1 +13757,82,2.1.2.3,0 +13757,58,2.1.2,1 +13758,82,2.1.2.3,0 +13758,79,2.1.2,1 +13759,82,2.1.2.3,0 +13759,79,2.1.2,1 +13761,79,2.1.2,1 +13761,82,2.1.2.3,0 +13764,159,2.1.2,1 +13764,82,2.1.2.3,0 +13764,58,2.1.2,1 +13770,79,2.1.2,1 +13770,82,2.1.2.3,0 +13772,82,2.1.2.3,0 +13772,79,2.1.2,1 +13776,82,2.1.2.3,0 +13776,79,2.1.2,1 +13777,84,2.1.2,1 +13777,82,2.1.2.3,0 +13778,79,2.1.2,1 +13778,82,2.1.2.3,0 +13779,159,2.1.2,1 +13779,82,2.1.2.3,0 +13782,81,2.1.2,1 +13782,82,2.1.2.3,0 +13783,82,2.1.2.3,0 +13783,84,2.1.2,1 +13784,159,2.1.2,1 +13784,82,2.1.2.3,0 +13785,82,2.1.2.3,0 +13785,81,2.1.2,1 +13786,82,2.1.2.3,0 +13786,159,2.1.2,1 +13789,81,2.1.2,1 +13789,82,2.1.2.3,0 +13790,159,2.1.2,1 +13790,82,2.1.2.3,0 +13791,84,2.1.2,1 +13791,82,2.1.2.3,0 +13797,82,2.1.2.3,0 +13797,84,2.1.2,1 +13798,79,2.1.2,1 +13798,82,2.1.2.3,0 +13802,82,2.1.2.4,0 +13802,79,2.1.2,1 +13804,58,2.1.2,1 +13804,82,2.1.2.4,0 +13805,159,2.1.2,1 +13805,82,2.1.2.4,0 +13806,82,2.1.2.4,0 +13806,84,2.1.2,1 +13808,82,2.1.2.4,0 +13808,84,2.1.2,1 +13809,81,2.1.2,1 +13809,82,2.1.2.4,0 +13810,82,2.1.2.4,0 +13810,58,2.1.2,1 +13811,58,2.1.2,1 +13811,82,2.1.2.4,0 +13814,58,2.1.2,1 +13814,82,2.1.2.4,0 +13814,79,2.1.2,1 +13816,82,2.1.2.4,0 +13816,84,2.1.2,1 +13816,159,2.1.2,1 +13820,82,2.1.2.4,0 +13820,159,2.1.2,1 +13822,159,2.1.2,1 +13822,82,2.1.2.4,0 +13823,58,2.1.2,1 +13823,82,2.1.2.4,0 +13825,58,2.1.2,1 +13825,82,2.1.2.4,0 +13826,79,2.1.2,1 +13826,58,2.1.2,1 +13826,82,2.1.2.4,0 +13828,58,2.1.2,1 +13828,82,2.1.2.4,0 +13829,84,2.1.2,1 +13829,82,2.1.2.4,0 +13829,58,2.1.2,1 +13832,82,2.1.2.4,0 +13832,58,2.1.2,1 +13832,81,2.1.2,1 +13833,84,2.1.2,1 +13833,82,2.1.2.4,0 +13834,84,2.1.2,1 +13834,82,2.1.2.4,0 +13836,82,2.1.2.4,0 +13836,58,2.1.2,1 +13839,58,2.1.2,1 +13839,82,2.1.2.4,0 +13841,79,2.1.2,1 +13841,82,2.1.2.4,0 +13843,82,2.1.2.4,0 +13843,84,2.1.2,1 +13844,159,2.1.2,1 +13844,82,2.1.2.4,0 +13848,79,2.1.2,1 +13848,82,2.1.2.4,0 +13848,84,2.1.2,1 +13852,75,1.3.3,1 +13852,83,1.3.3.2,0 +13853,97,1.3.3,1 +13853,83,1.3.3.2,0 +13856,99,1.3.3,1 +13856,83,1.3.3.2,0 +13857,99,1.3.3,1 +13857,83,1.3.3.2,0 +13858,83,1.3.3.2,0 +13858,75,1.3.3,1 +13860,99,1.3.3,1 +13860,83,1.3.3.2,0 +13861,75,1.3.3,1 +13861,83,1.3.3.2,0 +13864,75,1.3.3,1 +13864,83,1.3.3.2,0 +13864,97,1.3.3,1 +13869,83,1.3.3.2,0 +13869,97,1.3.3,1 +13872,97,1.3.3,1 +13872,83,1.3.3.2,0 +13873,99,1.3.3,1 +13873,83,1.3.3.2,0 +13874,83,1.3.3.2,0 +13874,99,1.3.3,1 +13876,99,1.3.3,1 +13876,83,1.3.3.2,0 +13876,75,1.3.3,1 +13877,83,1.3.3.2,0 +13877,99,1.3.3,1 +13878,83,1.3.3.2,0 +13878,75,1.3.3,1 +13879,83,1.3.3.2,0 +13879,97,1.3.3,1 +13882,83,1.3.3.2,0 +13882,75,1.3.3,1 +13883,83,1.3.3.2,0 +13883,97,1.3.3,1 +13884,83,1.3.3.2,0 +13884,99,1.3.3,1 +13885,83,1.3.3.2,0 +13885,97,1.3.3,1 +13886,83,1.3.3.2,0 +13886,75,1.3.3,1 +13886,97,1.3.3,1 +13888,83,1.3.3.2,0 +13888,99,1.3.3,1 +13890,83,1.3.3.2,0 +13890,97,1.3.3,1 +13892,97,1.3.3,1 +13892,83,1.3.3.2,0 +13893,75,1.3.3,1 +13893,83,1.3.3.2,0 +13894,83,1.3.3.2,0 +13894,99,1.3.3,1 +13897,97,1.3.3,1 +13897,83,1.3.3.2,0 +13902,84,2.1.2,0 +13902,99,2.1,1 +13905,84,2.1.2,0 +13905,99,2.1,1 +13909,99,2.1,1 +13909,84,2.1.2,0 +13910,84,2.1.2,0 +13910,99,2.1,1 +13916,99,2.1,1 +13916,84,2.1.2,0 +13920,84,2.1.2,0 +13920,99,2.1,1 +13926,84,2.1.2,0 +13926,99,2.1,1 +13928,99,2.1,1 +13928,84,2.1.2,0 +13931,99,2.1,1 +13931,84,2.1.2,0 +13933,99,2.1,1 +13933,84,2.1.2,0 +13934,84,2.1.2,0 +13934,99,2.1,1 +13944,84,2.1.2,0 +13944,99,2.1,1 +13947,99,2.1,1 +13947,84,2.1.2,0 +13948,99,2.1,1 +13948,84,2.1.2,0 +13955,84,2.1.4,0 +13955,99,2.1,1 +13956,99,2.1,1 +13956,84,2.1.4,0 +13957,99,2.1,1 +13957,84,2.1.4,0 +13958,99,2.1,1 +13958,84,2.1.4,0 +13958,98,2,2 +13958,102,2,2 +13958,170,1,3 +13959,98,2,2 +13959,102,2,2 +13959,170,1,3 +13959,84,2.1.4,0 +13959,99,2.1,1 +13960,84,2.1.4,0 +13960,99,2.1,1 +13970,84,2.1.4,0 +13970,99,2.1,1 +13973,99,2.1,1 +13973,84,2.1.4,0 +13976,84,2.1.4,0 +13976,99,2.1,1 +13978,99,2.1,1 +13978,84,2.1.4,0 +13981,99,2.1,1 +13981,84,2.1.4,0 +13982,99,2.1,1 +13982,84,2.1.4,0 +13983,84,2.1.4,0 +13983,99,2.1,1 +13986,99,2.1,1 +13986,84,2.1.4,0 +13989,99,2.1,1 +13989,84,2.1.4,0 +13993,84,2.1.4,0 +13993,99,2.1,1 +13994,84,2.1.4,0 +13994,99,2.1,1 +14004,84,2.3,0 +14004,102,2,1 +14009,102,2,1 +14009,84,2.3,0 +14011,98,2,1 +14011,84,2.3,0 +14014,102,2,1 +14014,84,2.3,0 +14016,102,2,1 +14016,84,2.3,0 +14022,98,2,1 +14022,84,2.3,0 +14026,84,2.3,0 +14026,98,2,1 +14026,102,2,1 +14029,98,2,1 +14029,84,2.3,0 +14033,98,2,1 +14033,84,2.3,0 +14036,84,2.3,0 +14036,102,2,1 +14039,98,2,1 +14039,84,2.3,0 +14041,98,2,1 +14041,84,2.3,0 +14044,84,2.3,0 +14044,102,2,1 +14047,98,2,1 +14047,84,2.3,0 +14052,29,1.3,1 +14052,85,1.3.1,0 +14054,106,1.3,1 +14054,85,1.3.1,0 +14056,29,1.3,1 +14056,85,1.3.1,0 +14057,106,1.3,1 +14057,85,1.3.1,0 +14058,85,1.3.1,0 +14058,29,1.3,1 +14059,29,1.3,1 +14059,85,1.3.1,0 +14060,85,1.3.1,0 +14060,29,1.3,1 +14064,85,1.3.1,0 +14064,29,1.3,1 +14066,85,1.3.1,0 +14066,29,1.3,1 +14077,106,1.3,1 +14077,85,1.3.1,0 +14081,85,1.3.1,0 +14081,106,1.3,1 +14082,29,1.3,1 +14082,85,1.3.1,0 +14083,29,1.3,1 +14083,85,1.3.1,0 +14084,85,1.3.1,0 +14084,29,1.3,1 +14086,29,1.3,1 +14086,85,1.3.1,0 +14091,85,1.3.1,0 +14091,106,1.3,1 +14091,170,1,2 +14093,106,1.3,1 +14093,85,1.3.1,0 +14093,29,1.3,1 +14094,29,1.3,1 +14094,85,1.3.1,0 +14097,85,1.3.1,0 +14097,29,1.3,1 +14102,99,2.1,1 +14102,85,2.1.1,0 +14106,99,2.1,1 +14106,85,2.1.1,0 +14108,85,2.1.1,0 +14108,99,2.1,1 +14111,85,2.1.1,0 +14111,99,2.1,1 +14122,85,2.1.1,0 +14122,99,2.1,1 +14123,99,2.1,1 +14123,85,2.1.1,0 +14126,99,2.1,1 +14126,85,2.1.1,0 +14128,99,2.1,1 +14128,85,2.1.1,0 +14129,99,2.1,1 +14129,85,2.1.1,0 +14131,85,2.1.1,0 +14131,99,2.1,1 +14133,99,2.1,1 +14133,85,2.1.1,0 +14136,85,2.1.1,0 +14136,99,2.1,1 +14139,85,2.1.1,0 +14139,99,2.1,1 +14141,170,1,3 +14141,85,2.1.1,0 +14141,99,2.1,1 +14141,98,2,2 +14141,102,2,2 +14143,99,2.1,1 +14143,85,2.1.1,0 +14147,99,2.1,1 +14147,85,2.1.1,0 +14148,170,1,3 +14148,99,2.1,1 +14148,85,2.1.1,0 +14148,98,2,2 +14148,102,2,2 +14152,86,1.1,0 +14152,170,1,1 +14157,86,1.1,0 +14157,170,1,1 +14159,86,1.1,0 +14159,170,1,1 +14161,170,1,1 +14161,86,1.1,0 +14164,170,1,1 +14164,86,1.1,0 +14166,170,1,1 +14166,86,1.1,0 +14169,86,1.1,0 +14169,170,1,1 +14172,170,1,1 +14172,86,1.1,0 +14174,86,1.1,0 +14174,170,1,1 +14176,86,1.1,0 +14176,170,1,1 +14183,86,1.1,0 +14183,170,1,1 +14186,86,1.1,0 +14186,170,1,1 +14189,170,1,1 +14189,86,1.1,0 +14194,170,1,1 +14194,86,1.1,0 +14195,86,1.1,0 +14195,170,1,1 +14197,170,1,1 +14197,86,1.1,0 +14198,170,1,1 +14198,86,1.1,0 +14199,86,1.1,0 +14199,170,1,1 +14206,94,1.1,1 +14206,87,1.1.1,0 +14207,87,1.1.1,0 +14207,86,1.1,1 +14208,87,1.1.1,0 +14208,126,1.1,1 +14211,87,1.1.1,0 +14211,94,1.1,1 +14214,87,1.1.1,0 +14214,105,1.1,1 +14219,126,1.1,1 +14219,87,1.1.1,0 +14222,87,1.1.1,0 +14222,94,1.1,1 +14223,106,1.1,1 +14223,87,1.1.1,0 +14226,86,1.1,1 +14226,87,1.1.1,0 +14228,87,1.1.1,0 +14228,86,1.1,1 +14231,94,1.1,1 +14231,87,1.1.1,0 +14232,86,1.1,1 +14232,87,1.1.1,0 +14234,106,1.1,1 +14234,87,1.1.1,0 +14236,126,1.1,1 +14236,105,1.1,1 +14236,87,1.1.1,0 +14239,126,1.1,1 +14239,87,1.1.1,0 +14242,94,1.1,1 +14242,87,1.1.1,0 +14243,87,1.1.1,0 +14243,94,1.1,1 +14244,87,1.1.1,0 +14244,94,1.1,1 +14252,106,1.1,1 +14252,88,1.1.3,0 +14253,126,1.1,1 +14253,88,1.1.3,0 +14253,106,1.1,1 +14254,86,1.1,1 +14254,88,1.1.3,0 +14255,88,1.1.3,0 +14255,86,1.1,1 +14255,94,1.1,1 +14256,88,1.1.3,0 +14256,86,1.1,1 +14256,105,1.1,1 +14256,106,1.1,1 +14257,86,1.1,1 +14257,88,1.1.3,0 +14258,105,1.1,1 +14258,88,1.1.3,0 +14258,170,1,2 +14260,86,1.1,1 +14260,105,1.1,1 +14260,88,1.1.3,0 +14260,106,1.1,1 +14261,86,1.1,1 +14261,88,1.1.3,0 +14262,105,1.1,1 +14262,126,1.1,1 +14262,88,1.1.3,0 +14264,88,1.1.3,0 +14264,106,1.1,1 +14264,105,1.1,1 +14266,106,1.1,1 +14266,105,1.1,1 +14266,94,1.1,1 +14266,88,1.1.3,0 +14269,88,1.1.3,0 +14269,106,1.1,1 +14270,126,1.1,1 +14270,88,1.1.3,0 +14272,86,1.1,1 +14272,88,1.1.3,0 +14273,88,1.1.3,0 +14273,126,1.1,1 +14274,88,1.1.3,0 +14274,106,1.1,1 +14276,105,1.1,1 +14276,88,1.1.3,0 +14276,86,1.1,1 +14278,86,1.1,1 +14278,88,1.1.3,0 +14279,86,1.1,1 +14279,88,1.1.3,0 +14281,86,1.1,1 +14281,105,1.1,1 +14281,88,1.1.3,0 +14282,106,1.1,1 +14282,88,1.1.3,0 +14283,170,1,2 +14283,88,1.1.3,0 +14283,86,1.1,1 +14284,88,1.1.3,0 +14284,105,1.1,1 +14285,88,1.1.3,0 +14285,94,1.1,1 +14285,126,1.1,1 +14286,105,1.1,1 +14286,126,1.1,1 +14286,88,1.1.3,0 +14286,94,1.1,1 +14287,88,1.1.3,0 +14287,106,1.1,1 +14289,94,1.1,1 +14289,88,1.1.3,0 +14291,94,1.1,1 +14291,88,1.1.3,0 +14292,126,1.1,1 +14292,88,1.1.3,0 +14292,105,1.1,1 +14293,88,1.1.3,0 +14293,86,1.1,1 +14293,106,1.1,1 +14294,106,1.1,1 +14294,105,1.1,1 +14294,88,1.1.3,0 +14295,88,1.1.3,0 +14295,126,1.1,1 +14297,86,1.1,1 +14297,88,1.1.3,0 +14298,105,1.1,1 +14298,88,1.1.3,0 +14298,94,1.1,1 +14299,126,1.1,1 +14299,88,1.1.3,0 +14300,126,1.1,1 +14300,88,1.1.3,0 +14302,106,1.1,1 +14302,89,1.1.2,0 +14303,89,1.1.2,0 +14303,126,1.1,1 +14304,89,1.1.2,0 +14304,86,1.1,1 +14306,89,1.1.2,0 +14306,105,1.1,1 +14307,89,1.1.2,0 +14307,105,1.1,1 +14308,106,1.1,1 +14308,89,1.1.2,0 +14310,106,1.1,1 +14310,89,1.1.2,0 +14314,89,1.1.2,0 +14314,105,1.1,1 +14314,126,1.1,1 +14316,105,1.1,1 +14316,89,1.1.2,0 +14322,89,1.1.2,0 +14322,106,1.1,1 +14323,105,1.1,1 +14323,89,1.1.2,0 +14324,89,1.1.2,0 +14324,94,1.1,1 +14326,89,1.1.2,0 +14326,86,1.1,1 +14328,126,1.1,1 +14328,89,1.1.2,0 +14331,89,1.1.2,0 +14331,86,1.1,1 +14331,105,1.1,1 +14332,105,1.1,1 +14332,89,1.1.2,0 +14333,89,1.1.2,0 +14333,106,1.1,1 +14336,126,1.1,1 +14336,106,1.1,1 +14336,89,1.1.2,0 +14337,105,1.1,1 +14337,89,1.1.2,0 +14341,89,1.1.2,0 +14341,86,1.1,1 +14342,89,1.1.2,0 +14342,106,1.1,1 +14342,126,1.1,1 +14347,106,1.1,1 +14347,89,1.1.2,0 +14354,89,1.2.1,0 +14354,106,1.2,1 +14355,97,1.2,1 +14355,89,1.2.1,0 +14356,97,1.2,1 +14356,89,1.2.1,0 +14357,106,1.2,1 +14357,89,1.2.1,0 +14358,106,1.2,1 +14358,89,1.2.1,0 +14360,97,1.2,1 +14360,89,1.2.1,0 +14366,89,1.2.1,0 +14366,67,1.2,1 +14372,89,1.2.1,0 +14372,106,1.2,1 +14373,126,1.2,1 +14373,89,1.2.1,0 +14376,126,1.2,1 +14376,89,1.2.1,0 +14378,67,1.2,1 +14378,89,1.2.1,0 +14379,97,1.2,1 +14379,89,1.2.1,0 +14382,89,1.2.1,0 +14382,97,1.2,1 +14383,89,1.2.1,0 +14383,106,1.2,1 +14384,89,1.2.1,0 +14384,97,1.2,1 +14386,126,1.2,1 +14386,89,1.2.1,0 +14393,106,1.2,1 +14393,89,1.2.1,0 +14394,89,1.2.1,0 +14394,97,1.2,1 +14399,106,1.2,1 +14399,89,1.2.1,0 +14402,89,1.3.3.1,0 +14402,97,1.3.3,1 +14403,89,1.3.3.1,0 +14403,99,1.3.3,1 +14404,89,1.3.3.1,0 +14404,97,1.3.3,1 +14405,97,1.3.3,1 +14405,89,1.3.3.1,0 +14406,97,1.3.3,1 +14406,89,1.3.3.1,0 +14407,89,1.3.3.1,0 +14407,97,1.3.3,1 +14411,75,1.3.3,1 +14411,89,1.3.3.1,0 +14416,75,1.3.3,1 +14416,97,1.3.3,1 +14416,89,1.3.3.1,0 +14420,89,1.3.3.1,0 +14420,97,1.3.3,1 +14422,89,1.3.3.1,0 +14422,75,1.3.3,1 +14423,89,1.3.3.1,0 +14423,97,1.3.3,1 +14432,106,1.3,2 +14432,89,1.3.3.1,0 +14432,97,1.3.3,1 +14433,89,1.3.3.1,0 +14433,99,1.3.3,1 +14434,75,1.3.3,1 +14434,89,1.3.3.1,0 +14436,75,1.3.3,1 +14436,89,1.3.3.1,0 +14438,89,1.3.3.1,0 +14438,99,1.3.3,1 +14439,89,1.3.3.1,0 +14439,75,1.3.3,1 +14441,97,1.3.3,1 +14441,89,1.3.3.1,0 +14442,89,1.3.3.1,0 +14442,99,1.3.3,1 +14443,89,1.3.3.1,0 +14443,97,1.3.3,1 +14444,89,1.3.3.1,0 +14444,75,1.3.3,1 +14445,99,1.3.3,1 +14445,89,1.3.3.1,0 +14447,75,1.3.3,1 +14447,89,1.3.3.1,0 +14452,39,1.3.1,1 +14452,100,1.3.1,1 +14452,90,1.3.1.7,0 +14452,93,1.3.1,1 +14453,85,1.3.1,1 +14453,106,1.3,2 +14453,99,1.3.1,1 +14453,100,1.3.1,1 +14453,39,1.3.1,1 +14453,90,1.3.1.7,0 +14454,93,1.3.1,1 +14454,90,1.3.1.7,0 +14455,99,1.3.1,1 +14455,39,1.3.1,1 +14455,90,1.3.1.7,0 +14456,90,1.3.1.7,0 +14456,85,1.3.1,1 +14457,93,1.3.1,1 +14457,90,1.3.1.7,0 +14458,39,1.3.1,1 +14458,90,1.3.1.7,0 +14459,90,1.3.1.7,0 +14459,93,1.3.1,1 +14460,39,1.3.1,1 +14460,90,1.3.1.7,0 +14461,90,1.3.1.7,0 +14461,39,1.3.1,1 +14461,93,1.3.1,1 +14462,93,1.3.1,1 +14462,99,1.3.1,1 +14462,90,1.3.1.7,0 +14464,100,1.3.1,1 +14464,93,1.3.1,1 +14464,39,1.3.1,1 +14464,90,1.3.1.7,0 +14466,106,1.3,2 +14466,99,1.3.1,1 +14466,90,1.3.1.7,0 +14466,93,1.3.1,1 +14469,39,1.3.1,1 +14469,85,1.3.1,1 +14469,90,1.3.1.7,0 +14470,90,1.3.1.7,0 +14470,85,1.3.1,1 +14472,90,1.3.1.7,0 +14472,39,1.3.1,1 +14473,39,1.3.1,1 +14473,90,1.3.1.7,0 +14473,100,1.3.1,1 +14473,85,1.3.1,1 +14474,90,1.3.1.7,0 +14474,93,1.3.1,1 +14475,39,1.3.1,1 +14475,90,1.3.1.7,0 +14476,39,1.3.1,1 +14476,93,1.3.1,1 +14476,90,1.3.1.7,0 +14477,93,1.3.1,1 +14477,90,1.3.1.7,0 +14478,90,1.3.1.7,0 +14478,39,1.3.1,1 +14479,93,1.3.1,1 +14479,39,1.3.1,1 +14479,90,1.3.1.7,0 +14480,90,1.3.1.7,0 +14480,100,1.3.1,1 +14481,85,1.3.1,1 +14481,90,1.3.1.7,0 +14481,39,1.3.1,1 +14482,90,1.3.1.7,0 +14482,100,1.3.1,1 +14483,39,1.3.1,1 +14483,90,1.3.1.7,0 +14484,90,1.3.1.7,0 +14484,99,1.3.1,1 +14485,90,1.3.1.7,0 +14485,99,1.3.1,1 +14486,39,1.3.1,1 +14486,93,1.3.1,1 +14486,90,1.3.1.7,0 +14487,100,1.3.1,1 +14487,90,1.3.1.7,0 +14489,39,1.3.1,1 +14489,90,1.3.1.7,0 +14490,100,1.3.1,1 +14490,90,1.3.1.7,0 +14490,93,1.3.1,1 +14490,99,1.3.1,1 +14491,39,1.3.1,1 +14491,90,1.3.1.7,0 +14492,39,1.3.1,1 +14492,106,1.3,2 +14492,93,1.3.1,1 +14492,85,1.3.1,1 +14492,90,1.3.1.7,0 +14492,100,1.3.1,1 +14493,29,1.3,2 +14493,39,1.3.1,1 +14493,85,1.3.1,1 +14493,90,1.3.1.7,0 +14494,100,1.3.1,1 +14494,90,1.3.1.7,0 +14494,85,1.3.1,1 +14495,99,1.3.1,1 +14495,90,1.3.1.7,0 +14497,99,1.3.1,1 +14497,39,1.3.1,1 +14497,90,1.3.1.7,0 +14498,90,1.3.1.7,0 +14498,39,1.3.1,1 +14498,93,1.3.1,1 +14499,99,1.3.1,1 +14499,100,1.3.1,1 +14499,90,1.3.1.7,0 +14500,99,1.3.1,1 +14500,100,1.3.1,1 +14500,85,1.3.1,1 +14500,90,1.3.1.7,0 +14500,93,1.3.1,1 +14502,67,1.2,1 +14502,91,1.2.1,0 +14504,91,1.2.1,0 +14504,67,1.2,1 +14506,67,1.2,1 +14506,91,1.2.1,0 +14507,126,1.2,1 +14507,91,1.2.1,0 +14508,67,1.2,1 +14508,91,1.2.1,0 +14510,91,1.2.1,0 +14510,106,1.2,1 +14511,91,1.2.1,0 +14511,97,1.2,1 +14514,91,1.2.1,0 +14514,106,1.2,1 +14514,97,1.2,1 +14522,97,1.2,1 +14522,91,1.2.1,0 +14526,106,1.2,1 +14526,67,1.2,1 +14526,91,1.2.1,0 +14528,126,1.2,1 +14528,91,1.2.1,0 +14529,97,1.2,1 +14529,91,1.2.1,0 +14532,91,1.2.1,0 +14532,97,1.2,1 +14533,91,1.2.1,0 +14533,126,1.2,1 +14534,91,1.2.1,0 +14534,126,1.2,1 +14536,67,1.2,1 +14536,97,1.2,1 +14536,91,1.2.1,0 +14540,126,1.2,1 +14540,91,1.2.1,0 +14541,91,1.2.1,0 +14541,67,1.2,1 +14543,126,1.2,1 +14543,91,1.2.1,0 +14544,106,1.2,1 +14544,91,1.2.1,0 +14552,92,1.3.3.4,0 +14552,99,1.3.3,1 +14552,75,1.3.3,1 +14554,92,1.3.3.4,0 +14554,99,1.3.3,1 +14555,75,1.3.3,1 +14555,99,1.3.3,1 +14555,92,1.3.3.4,0 +14556,92,1.3.3.4,0 +14556,75,1.3.3,1 +14557,92,1.3.3.4,0 +14557,75,1.3.3,1 +14558,97,1.3.3,1 +14558,92,1.3.3.4,0 +14559,75,1.3.3,1 +14559,92,1.3.3.4,0 +14560,92,1.3.3.4,0 +14560,75,1.3.3,1 +14561,97,1.3.3,1 +14561,92,1.3.3.4,0 +14564,75,1.3.3,1 +14564,97,1.3.3,1 +14564,106,1.3,2 +14564,92,1.3.3.4,0 +14566,92,1.3.3.4,0 +14566,75,1.3.3,1 +14570,75,1.3.3,1 +14570,92,1.3.3.4,0 +14572,92,1.3.3.4,0 +14572,75,1.3.3,1 +14573,75,1.3.3,1 +14573,92,1.3.3.4,0 +14573,97,1.3.3,1 +14576,92,1.3.3.4,0 +14576,97,1.3.3,1 +14578,92,1.3.3.4,0 +14578,97,1.3.3,1 +14579,92,1.3.3.4,0 +14579,75,1.3.3,1 +14581,92,1.3.3.4,0 +14581,75,1.3.3,1 +14582,75,1.3.3,1 +14582,92,1.3.3.4,0 +14583,75,1.3.3,1 +14583,92,1.3.3.4,0 +14584,92,1.3.3.4,0 +14584,97,1.3.3,1 +14585,97,1.3.3,1 +14585,92,1.3.3.4,0 +14586,97,1.3.3,1 +14586,75,1.3.3,1 +14586,92,1.3.3.4,0 +14586,99,1.3.3,1 +14586,29,1.3,2 +14588,92,1.3.3.4,0 +14588,99,1.3.3,1 +14589,92,1.3.3.4,0 +14589,75,1.3.3,1 +14590,92,1.3.3.4,0 +14590,99,1.3.3,1 +14591,97,1.3.3,1 +14591,92,1.3.3.4,0 +14592,99,1.3.3,1 +14592,92,1.3.3.4,0 +14593,92,1.3.3.4,0 +14593,97,1.3.3,1 +14594,92,1.3.3.4,0 +14594,97,1.3.3,1 +14595,92,1.3.3.4,0 +14595,97,1.3.3,1 +14597,99,1.3.3,1 +14597,92,1.3.3.4,0 +14598,75,1.3.3,1 +14598,92,1.3.3.4,0 +14599,92,1.3.3.4,0 +14599,99,1.3.3,1 +14602,29,1.3,1 +14602,93,1.3.1,0 +14605,106,1.3,1 +14605,93,1.3.1,0 +14606,106,1.3,1 +14606,93,1.3.1,0 +14607,93,1.3.1,0 +14607,29,1.3,1 +14609,106,1.3,1 +14609,93,1.3.1,0 +14611,93,1.3.1,0 +14611,29,1.3,1 +14616,106,1.3,1 +14616,93,1.3.1,0 +14622,106,1.3,1 +14622,93,1.3.1,0 +14623,106,1.3,1 +14623,93,1.3.1,0 +14623,29,1.3,1 +14626,29,1.3,1 +14626,93,1.3.1,0 +14629,106,1.3,1 +14629,93,1.3.1,0 +14629,29,1.3,1 +14631,93,1.3.1,0 +14631,29,1.3,1 +14632,29,1.3,1 +14632,93,1.3.1,0 +14633,93,1.3.1,0 +14633,29,1.3,1 +14634,93,1.3.1,0 +14634,29,1.3,1 +14636,29,1.3,1 +14636,93,1.3.1,0 +14638,93,1.3.1,0 +14638,106,1.3,1 +14641,106,1.3,1 +14641,93,1.3.1,0 +14643,93,1.3.1,0 +14643,29,1.3,1 +14648,29,1.3,1 +14648,93,1.3.1,0 +14655,94,1.1,0 +14655,170,1,1 +14659,94,1.1,0 +14659,170,1,1 +14673,170,1,1 +14673,94,1.1,0 +14675,170,1,1 +14675,94,1.1,0 +14678,94,1.1,0 +14678,170,1,1 +14679,170,1,1 +14679,94,1.1,0 +14685,94,1.1,0 +14685,170,1,1 +14686,94,1.1,0 +14686,170,1,1 +14692,170,1,1 +14692,94,1.1,0 +14702,67,1.2,1 +14702,95,1.2.3,0 +14704,95,1.2.3,0 +14704,67,1.2,1 +14705,126,1.2,1 +14705,95,1.2.3,0 +14706,95,1.2.3,0 +14706,97,1.2,1 +14707,95,1.2.3,0 +14707,67,1.2,1 +14708,95,1.2.3,0 +14708,106,1.2,1 +14711,95,1.2.3,0 +14711,67,1.2,1 +14711,97,1.2,1 +14714,95,1.2.3,0 +14714,97,1.2,1 +14722,67,1.2,1 +14722,95,1.2.3,0 +14723,106,1.2,1 +14723,95,1.2.3,0 +14723,97,1.2,1 +14726,97,1.2,1 +14726,95,1.2.3,0 +14727,97,1.2,1 +14727,95,1.2.3,0 +14729,95,1.2.3,0 +14729,97,1.2,1 +14731,97,1.2,1 +14731,95,1.2.3,0 +14733,67,1.2,1 +14733,95,1.2.3,0 +14734,95,1.2.3,0 +14734,67,1.2,1 +14734,126,1.2,1 +14735,106,1.2,1 +14735,97,1.2,1 +14735,95,1.2.3,0 +14736,97,1.2,1 +14736,106,1.2,1 +14736,95,1.2.3,0 +14736,67,1.2,1 +14737,95,1.2.3,0 +14737,106,1.2,1 +14738,95,1.2.3,0 +14738,126,1.2,1 +14739,95,1.2.3,0 +14739,126,1.2,1 +14739,67,1.2,1 +14739,170,1,2 +14741,95,1.2.3,0 +14741,67,1.2,1 +14743,97,1.2,1 +14743,95,1.2.3,0 +14744,106,1.2,1 +14744,95,1.2.3,0 +14744,97,1.2,1 +14745,126,1.2,1 +14745,95,1.2.3,0 +14748,95,1.2.3,0 +14748,67,1.2,1 +14752,95,2.3,0 +14752,98,2,1 +14755,95,2.3,0 +14755,102,2,1 +14756,98,2,1 +14756,95,2.3,0 +14757,102,2,1 +14757,95,2.3,0 +14758,95,2.3,0 +14758,98,2,1 +14759,95,2.3,0 +14759,98,2,1 +14760,95,2.3,0 +14760,102,2,1 +14761,98,2,1 +14761,95,2.3,0 +14764,98,2,1 +14764,95,2.3,0 +14764,102,2,1 +14766,95,2.3,0 +14766,102,2,1 +14766,98,2,1 +14778,95,2.3,0 +14778,98,2,1 +14779,95,2.3,0 +14779,102,2,1 +14783,98,2,1 +14783,95,2.3,0 +14784,98,2,1 +14784,95,2.3,0 +14786,95,2.3,0 +14786,98,2,1 +14789,95,2.3,0 +14789,98,2,1 +14793,98,2,1 +14793,95,2.3,0 +14794,95,2.3,0 +14794,98,2,1 +14797,102,2,1 +14797,95,2.3,0 +14806,96,1.2.1,0 +14806,126,1.2,1 +14807,97,1.2,1 +14807,96,1.2.1,0 +14808,96,1.2.1,0 +14808,126,1.2,1 +14814,106,1.2,1 +14814,96,1.2.1,0 +14819,96,1.2.1,0 +14819,126,1.2,1 +14822,67,1.2,1 +14822,96,1.2.1,0 +14823,126,1.2,1 +14823,96,1.2.1,0 +14829,67,1.2,1 +14829,96,1.2.1,0 +14831,97,1.2,1 +14831,96,1.2.1,0 +14832,96,1.2.1,0 +14832,126,1.2,1 +14833,67,1.2,1 +14833,96,1.2.1,0 +14835,126,1.2,1 +14835,96,1.2.1,0 +14836,97,1.2,1 +14836,96,1.2.1,0 +14838,96,1.2.1,0 +14838,126,1.2,1 +14841,97,1.2,1 +14841,96,1.2.1,0 +14843,96,1.2.1,0 +14843,97,1.2,1 +14847,97,1.2,1 +14847,96,1.2.1,0 +14852,67,1.2,1 +14852,96,1.2.3,0 +14852,170,1,2 +14854,97,1.2,1 +14854,96,1.2.3,0 +14855,96,1.2.3,0 +14855,106,1.2,1 +14856,96,1.2.3,0 +14856,67,1.2,1 +14857,106,1.2,1 +14857,96,1.2.3,0 +14861,126,1.2,1 +14861,96,1.2.3,0 +14864,96,1.2.3,0 +14864,67,1.2,1 +14866,126,1.2,1 +14866,106,1.2,1 +14866,96,1.2.3,0 +14871,96,1.2.3,0 +14871,126,1.2,1 +14872,97,1.2,1 +14872,96,1.2.3,0 +14876,96,1.2.3,0 +14876,126,1.2,1 +14878,126,1.2,1 +14878,96,1.2.3,0 +14879,67,1.2,1 +14879,97,1.2,1 +14879,96,1.2.3,0 +14881,96,1.2.3,0 +14881,126,1.2,1 +14882,96,1.2.3,0 +14882,67,1.2,1 +14883,126,1.2,1 +14883,96,1.2.3,0 +14884,96,1.2.3,0 +14884,106,1.2,1 +14886,106,1.2,1 +14886,97,1.2,1 +14886,96,1.2.3,0 +14888,96,1.2.3,0 +14888,97,1.2,1 +14888,170,1,2 +14889,96,1.2.3,0 +14889,67,1.2,1 +14891,96,1.2.3,0 +14891,67,1.2,1 +14892,97,1.2,1 +14892,106,1.2,1 +14892,96,1.2.3,0 +14893,96,1.2.3,0 +14893,126,1.2,1 +14894,126,1.2,1 +14894,67,1.2,1 +14894,96,1.2.3,0 +14897,67,1.2,1 +14897,126,1.2,1 +14897,96,1.2.3,0 +14898,96,1.2.3,0 +14898,106,1.2,1 +14899,126,1.2,1 +14899,96,1.2.3,0 +14900,126,1.2,1 +14900,96,1.2.3,0 +14901,170,1,1 +14901,97,1.2,0 +14903,97,1.2,0 +14903,170,1,1 +14905,97,1.2,0 +14905,170,1,1 +14906,170,1,1 +14906,97,1.2,0 +14908,170,1,1 +14908,97,1.2,0 +14911,97,1.2,0 +14911,170,1,1 +14914,170,1,1 +14914,97,1.2,0 +14916,170,1,1 +14916,97,1.2,0 +14919,97,1.2,0 +14919,170,1,1 +14920,97,1.2,0 +14920,170,1,1 +14923,170,1,1 +14923,97,1.2,0 +14924,97,1.2,0 +14924,170,1,1 +14928,170,1,1 +14928,97,1.2,0 +14933,170,1,1 +14933,97,1.2,0 +14934,97,1.2,0 +14934,170,1,1 +14941,97,1.2,0 +14941,170,1,1 +14945,97,1.2,0 +14945,170,1,1 +14948,97,1.2,0 +14948,170,1,1 +14952,29,1.3,1 +14952,97,1.3.3,0 +14954,97,1.3.3,0 +14954,106,1.3,1 +14956,97,1.3.3,0 +14956,29,1.3,1 +14957,97,1.3.3,0 +14957,29,1.3,1 +14958,97,1.3.3,0 +14958,29,1.3,1 +14959,29,1.3,1 +14959,97,1.3.3,0 +14960,97,1.3.3,0 +14960,106,1.3,1 +14966,106,1.3,1 +14966,97,1.3.3,0 +14966,29,1.3,1 +14969,106,1.3,1 +14969,97,1.3.3,0 +14972,29,1.3,1 +14972,97,1.3.3,0 +14973,29,1.3,1 +14973,97,1.3.3,0 +14974,97,1.3.3,0 +14974,106,1.3,1 +14977,106,1.3,1 +14977,97,1.3.3,0 +14978,106,1.3,1 +14978,97,1.3.3,0 +14979,29,1.3,1 +14979,170,1,2 +14979,97,1.3.3,0 +14981,97,1.3.3,0 +14981,106,1.3,1 +14982,29,1.3,1 +14982,97,1.3.3,0 +14983,97,1.3.3,0 +14983,29,1.3,1 +14984,29,1.3,1 +14984,97,1.3.3,0 +14986,97,1.3.3,0 +14986,29,1.3,1 +14986,106,1.3,1 +14991,97,1.3.3,0 +14991,29,1.3,1 +14992,97,1.3.3,0 +14992,106,1.3,1 +14993,29,1.3,1 +14993,106,1.3,1 +14993,97,1.3.3,0 +14994,106,1.3,1 +14994,97,1.3.3,0 +14994,29,1.3,1 +14997,29,1.3,1 +14997,97,1.3.3,0 +14998,106,1.3,1 +14998,29,1.3,1 +14998,97,1.3.3,0 +14999,106,1.3,1 +14999,97,1.3.3,0 +15022,97,2.1.3,0 +15022,99,2.1,1 +15029,99,2.1,1 +15029,97,2.1.3,0 +15032,99,2.1,1 +15032,97,2.1.3,0 +15041,97,2.1.3,0 +15041,99,2.1,1 +15048,99,2.1,1 +15048,97,2.1.3,0 +15051,98,2,0 +15051,170,1,1 +15052,170,1,1 +15052,98,2,0 +15053,170,1,1 +15053,98,2,0 +15054,98,2,0 +15054,170,1,1 +15055,98,2,0 +15055,170,1,1 +15056,98,2,0 +15056,170,1,1 +15057,98,2,0 +15057,170,1,1 +15058,98,2,0 +15058,170,1,1 +15059,98,2,0 +15059,170,1,1 +15060,98,2,0 +15060,170,1,1 +15061,98,2,0 +15061,170,1,1 +15064,170,1,1 +15064,98,2,0 +15066,170,1,1 +15066,98,2,0 +15069,98,2,0 +15069,170,1,1 +15070,170,1,1 +15070,98,2,0 +15072,170,1,1 +15072,98,2,0 +15073,170,1,1 +15073,98,2,0 +15074,98,2,0 +15074,170,1,1 +15075,98,2,0 +15075,170,1,1 +15076,98,2,0 +15076,170,1,1 +15078,98,2,0 +15078,170,1,1 +15079,98,2,0 +15079,170,1,1 +15080,170,1,1 +15080,98,2,0 +15081,98,2,0 +15081,170,1,1 +15082,170,1,1 +15082,98,2,0 +15083,98,2,0 +15083,170,1,1 +15084,98,2,0 +15084,170,1,1 +15085,98,2,0 +15085,170,1,1 +15086,98,2,0 +15086,170,1,1 +15089,170,1,1 +15089,98,2,0 +15090,170,1,1 +15090,98,2,0 +15091,170,1,1 +15091,98,2,0 +15092,170,1,1 +15092,98,2,0 +15093,170,1,1 +15093,98,2,0 +15094,170,1,1 +15094,98,2,0 +15095,98,2,0 +15095,170,1,1 +15096,170,1,1 +15096,98,2,0 +15097,98,2,0 +15097,170,1,1 +15098,170,1,1 +15098,98,2,0 +15099,170,1,1 +15099,98,2,0 +15100,98,2,0 +15100,170,1,1 +15105,99,1.1.2,0 +15105,126,1.1,1 +15105,106,1.1,1 +15106,99,1.1.2,0 +15106,106,1.1,1 +15107,86,1.1,1 +15107,99,1.1.2,0 +15108,86,1.1,1 +15108,99,1.1.2,0 +15109,99,1.1.2,0 +15109,105,1.1,1 +15116,126,1.1,1 +15116,99,1.1.2,0 +15119,94,1.1,1 +15119,105,1.1,1 +15119,99,1.1.2,0 +15119,106,1.1,1 +15122,86,1.1,1 +15122,105,1.1,1 +15122,99,1.1.2,0 +15123,99,1.1.2,0 +15123,86,1.1,1 +15124,99,1.1.2,0 +15124,106,1.1,1 +15129,99,1.1.2,0 +15129,86,1.1,1 +15131,99,1.1.2,0 +15131,106,1.1,1 +15132,94,1.1,1 +15132,99,1.1.2,0 +15133,99,1.1.2,0 +15133,94,1.1,1 +15136,94,1.1,1 +15136,99,1.1.2,0 +15138,94,1.1,1 +15138,99,1.1.2,0 +15139,105,1.1,1 +15139,99,1.1.2,0 +15144,99,1.1.2,0 +15144,105,1.1,1 +15145,105,1.1,1 +15145,99,1.1.2,0 +15147,99,1.1.2,0 +15147,126,1.1,1 +15148,94,1.1,1 +15148,99,1.1.2,0 +15148,126,1.1,1 +15150,99,1.1.2,0 +15150,126,1.1,1 +15152,126,1.2,1 +15152,67,1.2,1 +15152,99,1.2.1,0 +15154,97,1.2,1 +15154,99,1.2.1,0 +15158,99,1.2.1,0 +15158,106,1.2,1 +15161,99,1.2.1,0 +15161,67,1.2,1 +15182,99,1.2.1,0 +15182,106,1.2,1 +15186,99,1.2.1,0 +15186,67,1.2,1 +15186,106,1.2,1 +15191,97,1.2,1 +15191,99,1.2.1,0 +15193,99,1.2.1,0 +15193,67,1.2,1 +15194,97,1.2,1 +15194,99,1.2.1,0 +15202,106,1.3,1 +15202,99,1.3.1,0 +15206,29,1.3,1 +15206,99,1.3.1,0 +15207,29,1.3,1 +15207,99,1.3.1,0 +15210,29,1.3,1 +15210,99,1.3.1,0 +15211,29,1.3,1 +15211,106,1.3,1 +15211,99,1.3.1,0 +15214,29,1.3,1 +15214,106,1.3,1 +15214,170,1,2 +15214,99,1.3.1,0 +15219,106,1.3,1 +15219,99,1.3.1,0 +15222,29,1.3,1 +15222,99,1.3.1,0 +15223,106,1.3,1 +15223,99,1.3.1,0 +15226,106,1.3,1 +15226,99,1.3.1,0 +15228,99,1.3.1,0 +15228,106,1.3,1 +15231,99,1.3.1,0 +15231,106,1.3,1 +15232,99,1.3.1,0 +15232,106,1.3,1 +15234,99,1.3.1,0 +15234,106,1.3,1 +15236,99,1.3.1,0 +15236,106,1.3,1 +15238,106,1.3,1 +15238,99,1.3.1,0 +15239,99,1.3.1,0 +15239,29,1.3,1 +15241,29,1.3,1 +15241,99,1.3.1,0 +15244,106,1.3,1 +15244,99,1.3.1,0 +15245,99,1.3.1,0 +15245,106,1.3,1 +15247,99,1.3.1,0 +15247,29,1.3,1 +15250,99,1.3.1,0 +15250,106,1.3,1 +15252,29,1.3,1 +15252,99,1.3.3,0 +15254,29,1.3,1 +15254,99,1.3.3,0 +15255,99,1.3.3,0 +15255,29,1.3,1 +15255,106,1.3,1 +15256,99,1.3.3,0 +15256,29,1.3,1 +15257,29,1.3,1 +15257,99,1.3.3,0 +15258,99,1.3.3,0 +15258,29,1.3,1 +15259,29,1.3,1 +15259,99,1.3.3,0 +15260,29,1.3,1 +15260,99,1.3.3,0 +15261,106,1.3,1 +15261,99,1.3.3,0 +15261,29,1.3,1 +15264,170,1,2 +15264,106,1.3,1 +15264,29,1.3,1 +15264,99,1.3.3,0 +15266,106,1.3,1 +15266,99,1.3.3,0 +15272,29,1.3,1 +15272,99,1.3.3,0 +15273,106,1.3,1 +15273,99,1.3.3,0 +15276,99,1.3.3,0 +15276,106,1.3,1 +15276,29,1.3,1 +15278,99,1.3.3,0 +15278,29,1.3,1 +15279,99,1.3.3,0 +15279,29,1.3,1 +15279,106,1.3,1 +15281,99,1.3.3,0 +15281,29,1.3,1 +15282,99,1.3.3,0 +15282,106,1.3,1 +15283,99,1.3.3,0 +15283,106,1.3,1 +15285,99,1.3.3,0 +15285,106,1.3,1 +15286,106,1.3,1 +15286,99,1.3.3,0 +15288,170,1,2 +15288,99,1.3.3,0 +15288,106,1.3,1 +15289,99,1.3.3,0 +15289,29,1.3,1 +15290,106,1.3,1 +15290,99,1.3.3,0 +15291,29,1.3,1 +15291,99,1.3.3,0 +15294,106,1.3,1 +15294,29,1.3,1 +15294,99,1.3.3,0 +15295,99,1.3.3,0 +15295,170,1,2 +15295,106,1.3,1 +15297,99,1.3.3,0 +15297,29,1.3,1 +15298,99,1.3.3,0 +15298,29,1.3,1 +15298,106,1.3,1 +15300,99,1.3.3,0 +15300,106,1.3,1 +15301,99,2.1,0 +15301,102,2,1 +15301,98,2,1 +15301,170,1,2 +15302,98,2,1 +15302,99,2.1,0 +15302,102,2,1 +15302,170,1,2 +15303,102,2,1 +15303,170,1,2 +15303,98,2,1 +15303,99,2.1,0 +15304,170,1,2 +15304,102,2,1 +15304,99,2.1,0 +15304,98,2,1 +15305,98,2,1 +15305,170,1,2 +15305,99,2.1,0 +15305,102,2,1 +15306,102,2,1 +15306,170,1,2 +15306,98,2,1 +15306,99,2.1,0 +15307,99,2.1,0 +15307,98,2,1 +15307,102,2,1 +15307,170,1,2 +15308,99,2.1,0 +15308,98,2,1 +15308,102,2,1 +15308,170,1,2 +15309,98,2,1 +15309,99,2.1,0 +15309,170,1,2 +15309,102,2,1 +15310,98,2,1 +15310,102,2,1 +15310,99,2.1,0 +15310,170,1,2 +15311,98,2,1 +15311,99,2.1,0 +15311,170,1,2 +15311,102,2,1 +15312,170,1,2 +15312,102,2,1 +15312,98,2,1 +15312,99,2.1,0 +15313,170,1,2 +15313,99,2.1,0 +15313,102,2,1 +15313,98,2,1 +15314,170,1,2 +15314,99,2.1,0 +15314,102,2,1 +15314,98,2,1 +15315,98,2,1 +15315,102,2,1 +15315,170,1,2 +15315,99,2.1,0 +15316,98,2,1 +15316,102,2,1 +15316,99,2.1,0 +15316,170,1,2 +15317,170,1,2 +15317,98,2,1 +15317,102,2,1 +15317,99,2.1,0 +15318,102,2,1 +15318,98,2,1 +15318,170,1,2 +15318,99,2.1,0 +15319,99,2.1,0 +15319,170,1,2 +15319,98,2,1 +15319,102,2,1 +15320,170,1,2 +15320,98,2,1 +15320,99,2.1,0 +15320,102,2,1 +15321,170,1,2 +15321,99,2.1,0 +15321,98,2,1 +15321,102,2,1 +15322,98,2,1 +15322,102,2,1 +15322,170,1,2 +15322,99,2.1,0 +15323,98,2,1 +15323,99,2.1,0 +15323,102,2,1 +15323,170,1,2 +15324,98,2,1 +15324,102,2,1 +15324,170,1,2 +15324,99,2.1,0 +15325,102,2,1 +15325,170,1,2 +15325,98,2,1 +15325,99,2.1,0 +15326,170,1,2 +15326,98,2,1 +15326,102,2,1 +15326,99,2.1,0 +15327,102,2,1 +15327,99,2.1,0 +15327,98,2,1 +15327,170,1,2 +15328,170,1,2 +15328,102,2,1 +15328,98,2,1 +15328,99,2.1,0 +15329,99,2.1,0 +15329,98,2,1 +15329,102,2,1 +15329,170,1,2 +15330,98,2,1 +15330,102,2,1 +15330,99,2.1,0 +15330,170,1,2 +15331,99,2.1,0 +15331,170,1,2 +15331,102,2,1 +15331,98,2,1 +15332,102,2,1 +15332,99,2.1,0 +15332,170,1,2 +15332,98,2,1 +15333,102,2,1 +15333,98,2,1 +15333,99,2.1,0 +15333,170,1,2 +15334,99,2.1,0 +15334,170,1,2 +15334,102,2,1 +15334,98,2,1 +15335,170,1,2 +15335,102,2,1 +15335,99,2.1,0 +15335,98,2,1 +15336,170,1,2 +15336,99,2.1,0 +15336,98,2,1 +15336,102,2,1 +15337,98,2,1 +15337,102,2,1 +15337,99,2.1,0 +15337,170,1,2 +15338,99,2.1,0 +15338,170,1,2 +15338,102,2,1 +15338,98,2,1 +15339,170,1,2 +15339,102,2,1 +15339,99,2.1,0 +15339,98,2,1 +15340,102,2,1 +15340,99,2.1,0 +15340,98,2,1 +15340,170,1,2 +15341,98,2,1 +15341,170,1,2 +15341,102,2,1 +15341,99,2.1,0 +15342,99,2.1,0 +15342,102,2,1 +15342,170,1,2 +15342,98,2,1 +15343,99,2.1,0 +15343,98,2,1 +15343,102,2,1 +15343,170,1,2 +15344,102,2,1 +15344,99,2.1,0 +15344,170,1,2 +15344,98,2,1 +15345,98,2,1 +15345,102,2,1 +15345,99,2.1,0 +15345,170,1,2 +15346,102,2,1 +15346,98,2,1 +15346,99,2.1,0 +15346,170,1,2 +15347,99,2.1,0 +15347,102,2,1 +15347,170,1,2 +15347,98,2,1 +15348,102,2,1 +15348,98,2,1 +15348,99,2.1,0 +15348,170,1,2 +15349,98,2,1 +15349,99,2.1,0 +15349,102,2,1 +15349,170,1,2 +15350,102,2,1 +15350,99,2.1,0 +15350,170,1,2 +15350,98,2,1 +15354,98,2,1 +15354,99,2.3,0 +15355,102,2,1 +15355,99,2.3,0 +15355,98,2,1 +15357,98,2,1 +15357,99,2.3,0 +15361,102,2,1 +15361,99,2.3,0 +15373,99,2.3,0 +15373,102,2,1 +15374,99,2.3,0 +15374,102,2,1 +15381,98,2,1 +15381,99,2.3,0 +15382,98,2,1 +15382,99,2.3,0 +15386,98,2,1 +15386,99,2.3,0 +15390,102,2,1 +15390,99,2.3,0 +15393,99,2.3,0 +15393,102,2,1 +15394,102,2,1 +15394,99,2.3,0 +15398,99,2.3,0 +15398,98,2,1 +15398,102,2,1 +15404,29,1.3,1 +15404,100,1.3.1,0 +15405,29,1.3,1 +15405,100,1.3.1,0 +15408,100,1.3.1,0 +15408,29,1.3,1 +15409,29,1.3,1 +15409,100,1.3.1,0 +15410,106,1.3,1 +15410,100,1.3.1,0 +15411,106,1.3,1 +15411,100,1.3.1,0 +15416,106,1.3,1 +15416,100,1.3.1,0 +15422,29,1.3,1 +15422,100,1.3.1,0 +15423,100,1.3.1,0 +15423,29,1.3,1 +15426,29,1.3,1 +15426,106,1.3,1 +15426,100,1.3.1,0 +15428,29,1.3,1 +15428,100,1.3.1,0 +15429,29,1.3,1 +15429,106,1.3,1 +15429,100,1.3.1,0 +15431,100,1.3.1,0 +15431,29,1.3,1 +15435,100,1.3.1,0 +15435,106,1.3,1 +15439,106,1.3,1 +15439,100,1.3.1,0 +15441,100,1.3.1,0 +15441,29,1.3,1 +15444,29,1.3,1 +15444,100,1.3.1,0 +15447,100,1.3.1,0 +15447,106,1.3,1 +15448,106,1.3,1 +15448,100,1.3.1,0 +15450,100,1.3.1,0 +15450,106,1.3,1 +15452,105,1.1,1 +15452,101,1.1.1,0 +15455,106,1.1,1 +15455,101,1.1.1,0 +15456,105,1.1,1 +15456,101,1.1.1,0 +15457,101,1.1.1,0 +15457,86,1.1,1 +15458,101,1.1.1,0 +15458,94,1.1,1 +15461,94,1.1,1 +15461,101,1.1.1,0 +15464,86,1.1,1 +15464,101,1.1.1,0 +15466,126,1.1,1 +15466,101,1.1.1,0 +15473,126,1.1,1 +15473,101,1.1.1,0 +15478,106,1.1,1 +15478,101,1.1.1,0 +15481,101,1.1.1,0 +15481,106,1.1,1 +15482,105,1.1,1 +15482,101,1.1.1,0 +15483,86,1.1,1 +15483,101,1.1.1,0 +15484,94,1.1,1 +15484,101,1.1.1,0 +15485,105,1.1,1 +15485,101,1.1.1,0 +15486,101,1.1.1,0 +15486,86,1.1,1 +15493,101,1.1.1,0 +15493,94,1.1,1 +15494,94,1.1,1 +15494,106,1.1,1 +15494,101,1.1.1,0 +15501,170,1,1 +15501,102,2,0 +15502,170,1,1 +15502,102,2,0 +15503,170,1,1 +15503,102,2,0 +15504,170,1,1 +15504,102,2,0 +15505,102,2,0 +15505,170,1,1 +15506,170,1,1 +15506,102,2,0 +15507,102,2,0 +15507,170,1,1 +15508,102,2,0 +15508,170,1,1 +15509,102,2,0 +15509,170,1,1 +15510,102,2,0 +15510,170,1,1 +15511,102,2,0 +15511,170,1,1 +15514,102,2,0 +15514,170,1,1 +15516,102,2,0 +15516,170,1,1 +15519,102,2,0 +15519,170,1,1 +15520,170,1,1 +15520,102,2,0 +15522,102,2,0 +15522,170,1,1 +15523,170,1,1 +15523,102,2,0 +15524,170,1,1 +15524,102,2,0 +15525,170,1,1 +15525,102,2,0 +15526,170,1,1 +15526,102,2,0 +15528,170,1,1 +15528,102,2,0 +15529,170,1,1 +15529,102,2,0 +15530,102,2,0 +15530,170,1,1 +15531,102,2,0 +15531,170,1,1 +15532,102,2,0 +15532,170,1,1 +15533,170,1,1 +15533,102,2,0 +15534,102,2,0 +15534,170,1,1 +15535,102,2,0 +15535,170,1,1 +15536,102,2,0 +15536,170,1,1 +15539,102,2,0 +15539,170,1,1 +15540,102,2,0 +15540,170,1,1 +15541,170,1,1 +15541,102,2,0 +15542,170,1,1 +15542,102,2,0 +15543,170,1,1 +15543,102,2,0 +15544,170,1,1 +15544,102,2,0 +15545,170,1,1 +15545,102,2,0 +15546,170,1,1 +15546,102,2,0 +15547,102,2,0 +15547,170,1,1 +15548,170,1,1 +15548,102,2,0 +15549,170,1,1 +15549,102,2,0 +15550,170,1,1 +15550,102,2,0 +15552,99,2.1,1 +15552,102,2.1.4,0 +15554,102,2.1.4,0 +15554,99,2.1,1 +15555,102,2.1.4,0 +15555,99,2.1,1 +15556,99,2.1,1 +15556,102,2.1.4,0 +15557,99,2.1,1 +15557,102,2.1.4,0 +15559,102,2.1.4,0 +15559,99,2.1,1 +15560,102,2.1.4,0 +15560,99,2.1,1 +15561,102,2.1.4,0 +15561,99,2.1,1 +15564,99,2.1,1 +15564,102,2.1.4,0 +15566,102,2.1.4,0 +15566,99,2.1,1 +15572,102,2.1.4,0 +15572,99,2.1,1 +15573,99,2.1,1 +15573,102,2.1.4,0 +15576,99,2.1,1 +15576,102,2.1.4,0 +15578,99,2.1,1 +15578,170,1,3 +15578,98,2,2 +15578,102,2,2 +15578,102,2.1.4,0 +15579,99,2.1,1 +15579,102,2.1.4,0 +15583,99,2.1,1 +15583,102,2.1.4,0 +15584,102,2.1.4,0 +15584,99,2.1,1 +15591,102,2.1.4,0 +15591,99,2.1,1 +15597,102,2.1.4,0 +15597,99,2.1,1 +15598,102,2.1.4,0 +15598,99,2.1,1 +15602,103,1.1.1,0 +15602,86,1.1,1 +15606,105,1.1,1 +15606,103,1.1.1,0 +15607,103,1.1.1,0 +15607,106,1.1,1 +15608,103,1.1.1,0 +15608,86,1.1,1 +15611,103,1.1.1,0 +15611,86,1.1,1 +15614,103,1.1.1,0 +15614,105,1.1,1 +15616,105,1.1,1 +15616,103,1.1.1,0 +15619,126,1.1,1 +15619,103,1.1.1,0 +15622,103,1.1.1,0 +15622,105,1.1,1 +15623,94,1.1,1 +15623,103,1.1.1,0 +15626,103,1.1.1,0 +15626,94,1.1,1 +15627,103,1.1.1,0 +15627,126,1.1,1 +15628,103,1.1.1,0 +15628,86,1.1,1 +15631,103,1.1.1,0 +15631,126,1.1,1 +15632,103,1.1.1,0 +15632,94,1.1,1 +15633,103,1.1.1,0 +15633,86,1.1,1 +15634,103,1.1.1,0 +15634,126,1.1,1 +15642,126,1.1,1 +15642,103,1.1.1,0 +15643,105,1.1,1 +15643,103,1.1.1,0 +15644,103,1.1.1,0 +15644,94,1.1,1 +15644,105,1.1,1 +15649,126,1.1,1 +15649,103,1.1.1,0 +15656,94,1.1,1 +15656,104,1.1.1,0 +15657,105,1.1,1 +15657,104,1.1.1,0 +15661,105,1.1,1 +15661,104,1.1.1,0 +15664,86,1.1,1 +15664,104,1.1.1,0 +15669,104,1.1.1,0 +15669,94,1.1,1 +15672,104,1.1.1,0 +15672,94,1.1,1 +15673,126,1.1,1 +15673,104,1.1.1,0 +15676,105,1.1,1 +15676,104,1.1.1,0 +15678,106,1.1,1 +15678,104,1.1.1,0 +15679,104,1.1.1,0 +15679,106,1.1,1 +15682,104,1.1.1,0 +15682,86,1.1,1 +15683,104,1.1.1,0 +15683,86,1.1,1 +15684,104,1.1.1,0 +15684,86,1.1,1 +15685,105,1.1,1 +15685,104,1.1.1,0 +15685,126,1.1,1 +15689,126,1.1,1 +15689,104,1.1.1,0 +15692,104,1.1.1,0 +15692,105,1.1,1 +15693,94,1.1,1 +15693,104,1.1.1,0 +15694,104,1.1.1,0 +15694,86,1.1,1 +15701,170,1,1 +15701,105,1.1,0 +15702,105,1.1,0 +15702,170,1,1 +15703,105,1.1,0 +15703,170,1,1 +15704,170,1,1 +15704,105,1.1,0 +15706,170,1,1 +15706,105,1.1,0 +15708,105,1.1,0 +15708,170,1,1 +15710,105,1.1,0 +15710,170,1,1 +15716,105,1.1,0 +15716,170,1,1 +15719,105,1.1,0 +15719,170,1,1 +15720,105,1.1,0 +15720,170,1,1 +15722,170,1,1 +15722,105,1.1,0 +15729,170,1,1 +15729,105,1.1,0 +15731,105,1.1,0 +15731,170,1,1 +15732,170,1,1 +15732,105,1.1,0 +15740,105,1.1,0 +15740,170,1,1 +15741,105,1.1,0 +15741,170,1,1 +15743,170,1,1 +15743,105,1.1,0 +15750,170,1,1 +15750,105,1.1,0 +15753,170,1,1 +15753,106,1.1,0 +15756,106,1.1,0 +15756,170,1,1 +15760,106,1.1,0 +15760,170,1,1 +15761,170,1,1 +15761,106,1.1,0 +15773,106,1.1,0 +15773,170,1,1 +15776,106,1.1,0 +15776,170,1,1 +15780,106,1.1,0 +15780,170,1,1 +15781,106,1.1,0 +15781,170,1,1 +15784,106,1.1,0 +15784,170,1,1 +15785,106,1.1,0 +15785,170,1,1 +15789,106,1.1,0 +15789,170,1,1 +15790,106,1.1,0 +15790,170,1,1 +15796,170,1,1 +15796,106,1.1,0 +15797,170,1,1 +15797,106,1.1,0 +15798,170,1,1 +15798,106,1.1,0 +15799,106,1.1,0 +15799,170,1,1 +15801,106,1.2,0 +15801,170,1,1 +15804,170,1,1 +15804,106,1.2,0 +15807,106,1.2,0 +15807,170,1,1 +15809,106,1.2,0 +15809,170,1,1 +15810,170,1,1 +15810,106,1.2,0 +15816,106,1.2,0 +15816,170,1,1 +15819,170,1,1 +15819,106,1.2,0 +15820,170,1,1 +15820,106,1.2,0 +15824,170,1,1 +15824,106,1.2,0 +15825,106,1.2,0 +15825,170,1,1 +15826,170,1,1 +15826,106,1.2,0 +15829,170,1,1 +15829,106,1.2,0 +15836,106,1.2,0 +15836,170,1,1 +15839,106,1.2,0 +15839,170,1,1 +15840,106,1.2,0 +15840,170,1,1 +15841,106,1.2,0 +15841,170,1,1 +15842,106,1.2,0 +15842,170,1,1 +15844,106,1.2,0 +15844,170,1,1 +15846,170,1,1 +15846,106,1.2,0 +15847,170,1,1 +15847,106,1.2,0 +15849,106,1.2,0 +15849,170,1,1 +15850,170,1,1 +15850,106,1.2,0 +15851,106,1.3,0 +15851,170,1,1 +15852,170,1,1 +15852,106,1.3,0 +15853,170,1,1 +15853,106,1.3,0 +15854,170,1,1 +15854,106,1.3,0 +15855,106,1.3,0 +15855,170,1,1 +15856,170,1,1 +15856,106,1.3,0 +15857,106,1.3,0 +15857,170,1,1 +15858,170,1,1 +15858,106,1.3,0 +15859,106,1.3,0 +15859,170,1,1 +15860,106,1.3,0 +15860,170,1,1 +15861,106,1.3,0 +15861,170,1,1 +15864,106,1.3,0 +15864,170,1,1 +15866,106,1.3,0 +15866,170,1,1 +15869,106,1.3,0 +15869,170,1,1 +15870,170,1,1 +15870,106,1.3,0 +15872,106,1.3,0 +15872,170,1,1 +15873,106,1.3,0 +15873,170,1,1 +15874,170,1,1 +15874,106,1.3,0 +15875,170,1,1 +15875,106,1.3,0 +15876,170,1,1 +15876,106,1.3,0 +15878,170,1,1 +15878,106,1.3,0 +15879,170,1,1 +15879,106,1.3,0 +15880,106,1.3,0 +15880,170,1,1 +15881,106,1.3,0 +15881,170,1,1 +15882,170,1,1 +15882,106,1.3,0 +15883,170,1,1 +15883,106,1.3,0 +15884,106,1.3,0 +15884,170,1,1 +15885,106,1.3,0 +15885,170,1,1 +15886,170,1,1 +15886,106,1.3,0 +15889,170,1,1 +15889,106,1.3,0 +15890,106,1.3,0 +15890,170,1,1 +15891,170,1,1 +15891,106,1.3,0 +15892,106,1.3,0 +15892,170,1,1 +15893,106,1.3,0 +15893,170,1,1 +15894,106,1.3,0 +15894,170,1,1 +15895,170,1,1 +15895,106,1.3,0 +15896,170,1,1 +15896,106,1.3,0 +15897,170,1,1 +15897,106,1.3,0 +15898,170,1,1 +15898,106,1.3,0 +15899,106,1.3,0 +15899,170,1,1 +15900,106,1.3,0 +15900,170,1,1 +15902,106,2.1.1,0 +15902,99,2.1,1 +15904,106,2.1.1,0 +15904,99,2.1,1 +15905,106,2.1.1,0 +15905,99,2.1,1 +15906,99,2.1,1 +15906,106,2.1.1,0 +15907,99,2.1,1 +15907,106,2.1.1,0 +15908,99,2.1,1 +15908,106,2.1.1,0 +15910,99,2.1,1 +15910,106,2.1.1,0 +15911,106,2.1.1,0 +15911,99,2.1,1 +15914,106,2.1.1,0 +15914,99,2.1,1 +15916,106,2.1.1,0 +15916,99,2.1,1 +15920,106,2.1.1,0 +15920,99,2.1,1 +15923,106,2.1.1,0 +15923,99,2.1,1 +15926,99,2.1,1 +15926,106,2.1.1,0 +15932,106,2.1.1,0 +15932,99,2.1,1 +15933,99,2.1,1 +15933,106,2.1.1,0 +15934,106,2.1.1,0 +15934,99,2.1,1 +15936,99,2.1,1 +15936,106,2.1.1,0 +15943,99,2.1,1 +15943,106,2.1.1,0 +15944,106,2.1.1,0 +15944,99,2.1,1 +15947,99,2.1,1 +15947,106,2.1.1,0 +15948,106,2.1.1,0 +15948,99,2.1,1 +15957,99,2.1,1 +15957,106,2.1.3,0 +15961,106,2.1.3,0 +15961,99,2.1,1 +15964,106,2.1.3,0 +15964,99,2.1,1 +15966,99,2.1,1 +15966,106,2.1.3,0 +15976,99,2.1,1 +15976,106,2.1.3,0 +15978,99,2.1,1 +15978,106,2.1.3,0 +15993,99,2.1,1 +15993,106,2.1.3,0 +16008,102,2,1 +16008,106,2.2,0 +16022,106,2.2,0 +16022,98,2,1 +16026,98,2,1 +16026,106,2.2,0 +16028,98,2,1 +16028,106,2.2,0 +16029,98,2,1 +16029,106,2.2,0 +16031,98,2,1 +16031,106,2.2,0 +16031,102,2,1 +16032,106,2.2,0 +16032,102,2,1 +16033,98,2,1 +16033,106,2.2,0 +16043,98,2,1 +16043,106,2.2,0 +16044,106,2.2,0 +16044,98,2,1 +16051,107,1.4.3.3,0 +16051,142,1.4.3,1 +16052,142,1.4.3,1 +16052,107,1.4.3.3,0 +16053,142,1.4.3,1 +16053,107,1.4.3.3,0 +16054,142,1.4.3,1 +16054,107,1.4.3.3,0 +16055,142,1.4.3,1 +16055,107,1.4.3.3,0 +16056,107,1.4.3.3,0 +16056,142,1.4.3,1 +16057,107,1.4.3.3,0 +16057,142,1.4.3,1 +16058,107,1.4.3.3,0 +16058,142,1.4.3,1 +16059,142,1.4.3,1 +16059,107,1.4.3.3,0 +16060,107,1.4.3.3,0 +16060,142,1.4.3,1 +16061,142,1.4.3,1 +16061,107,1.4.3.3,0 +16064,142,1.4.3,1 +16064,107,1.4.3.3,0 +16066,142,1.4.3,1 +16066,107,1.4.3.3,0 +16070,142,1.4.3,1 +16070,107,1.4.3.3,0 +16072,107,1.4.3.3,0 +16072,142,1.4.3,1 +16073,107,1.4.3.3,0 +16073,142,1.4.3,1 +16074,142,1.4.3,1 +16074,107,1.4.3.3,0 +16075,107,1.4.3.3,0 +16075,142,1.4.3,1 +16076,107,1.4.3.3,0 +16076,142,1.4.3,1 +16078,142,1.4.3,1 +16078,107,1.4.3.3,0 +16079,107,1.4.3.3,0 +16079,142,1.4.3,1 +16081,142,1.4.3,1 +16081,107,1.4.3.3,0 +16082,107,1.4.3.3,0 +16082,142,1.4.3,1 +16083,142,1.4.3,1 +16083,107,1.4.3.3,0 +16084,142,1.4.3,1 +16084,107,1.4.3.3,0 +16086,107,1.4.3.3,0 +16086,142,1.4.3,1 +16089,107,1.4.3.3,0 +16089,142,1.4.3,1 +16091,107,1.4.3.3,0 +16091,142,1.4.3,1 +16092,107,1.4.3.3,0 +16092,142,1.4.3,1 +16093,142,1.4.3,1 +16093,107,1.4.3.3,0 +16093,170,1,3 +16093,126,1.4,2 +16094,142,1.4.3,1 +16094,107,1.4.3.3,0 +16097,107,1.4.3.3,0 +16097,170,1,3 +16097,126,1.4,2 +16097,142,1.4.3,1 +16098,142,1.4.3,1 +16098,107,1.4.3.3,0 +16104,108,2.1.3,0 +16104,99,2.1,1 +16108,108,2.1.3,0 +16108,99,2.1,1 +16110,99,2.1,1 +16110,108,2.1.3,0 +16126,99,2.1,1 +16126,108,2.1.3,0 +16129,108,2.1.3,0 +16129,99,2.1,1 +16134,108,2.1.3,0 +16134,99,2.1,1 +16139,108,2.1.3,0 +16139,99,2.1,1 +16143,99,2.1,1 +16143,108,2.1.3,0 +16154,108,2.2,0 +16154,98,2,1 +16156,98,2,1 +16156,108,2.2,0 +16157,98,2,1 +16157,108,2.2,0 +16158,98,2,1 +16158,108,2.2,0 +16160,98,2,1 +16160,108,2.2,0 +16182,98,2,1 +16182,108,2.2,0 +16194,102,2,1 +16194,108,2.2,0 +16202,97,1.3.3,1 +16202,109,1.3.3.1,0 +16204,97,1.3.3,1 +16204,109,1.3.3.1,0 +16205,109,1.3.3.1,0 +16205,99,1.3.3,1 +16206,109,1.3.3.1,0 +16206,75,1.3.3,1 +16207,97,1.3.3,1 +16207,109,1.3.3.1,0 +16208,109,1.3.3.1,0 +16208,75,1.3.3,1 +16209,99,1.3.3,1 +16209,109,1.3.3.1,0 +16210,97,1.3.3,1 +16210,109,1.3.3.1,0 +16211,99,1.3.3,1 +16211,109,1.3.3.1,0 +16211,75,1.3.3,1 +16214,99,1.3.3,1 +16214,109,1.3.3.1,0 +16214,97,1.3.3,1 +16216,99,1.3.3,1 +16216,109,1.3.3.1,0 +16219,99,1.3.3,1 +16219,109,1.3.3.1,0 +16220,75,1.3.3,1 +16220,109,1.3.3.1,0 +16222,109,1.3.3.1,0 +16222,75,1.3.3,1 +16223,99,1.3.3,1 +16223,109,1.3.3.1,0 +16226,109,1.3.3.1,0 +16226,75,1.3.3,1 +16226,97,1.3.3,1 +16228,75,1.3.3,1 +16228,109,1.3.3.1,0 +16229,109,1.3.3.1,0 +16229,97,1.3.3,1 +16231,97,1.3.3,1 +16231,109,1.3.3.1,0 +16232,109,1.3.3.1,0 +16232,75,1.3.3,1 +16233,75,1.3.3,1 +16233,109,1.3.3.1,0 +16234,109,1.3.3.1,0 +16234,75,1.3.3,1 +16236,99,1.3.3,1 +16236,109,1.3.3.1,0 +16236,97,1.3.3,1 +16237,97,1.3.3,1 +16237,109,1.3.3.1,0 +16239,109,1.3.3.1,0 +16239,75,1.3.3,1 +16241,99,1.3.3,1 +16241,109,1.3.3.1,0 +16242,109,1.3.3.1,0 +16242,99,1.3.3,1 +16243,75,1.3.3,1 +16243,109,1.3.3.1,0 +16244,109,1.3.3.1,0 +16244,97,1.3.3,1 +16244,99,1.3.3,1 +16245,97,1.3.3,1 +16245,109,1.3.3.1,0 +16247,109,1.3.3.1,0 +16247,75,1.3.3,1 +16248,109,1.3.3.1,0 +16248,75,1.3.3,1 +16249,99,1.3.3,1 +16249,109,1.3.3.1,0 +16250,99,1.3.3,1 +16250,109,1.3.3.1,0 +16252,75,1.3.3,1 +16252,110,1.3.3.5,0 +16253,97,1.3.3,1 +16253,99,1.3.3,1 +16253,110,1.3.3.5,0 +16254,110,1.3.3.5,0 +16254,75,1.3.3,1 +16254,99,1.3.3,1 +16255,110,1.3.3.5,0 +16255,99,1.3.3,1 +16256,110,1.3.3.5,0 +16256,75,1.3.3,1 +16257,99,1.3.3,1 +16257,106,1.3,2 +16257,29,1.3,2 +16257,110,1.3.3.5,0 +16257,170,1,3 +16258,110,1.3.3.5,0 +16258,97,1.3.3,1 +16259,99,1.3.3,1 +16259,110,1.3.3.5,0 +16260,97,1.3.3,1 +16260,110,1.3.3.5,0 +16261,97,1.3.3,1 +16261,110,1.3.3.5,0 +16264,110,1.3.3.5,0 +16264,99,1.3.3,1 +16264,75,1.3.3,1 +16264,97,1.3.3,1 +16266,110,1.3.3.5,0 +16266,97,1.3.3,1 +16267,110,1.3.3.5,0 +16267,99,1.3.3,1 +16272,99,1.3.3,1 +16272,110,1.3.3.5,0 +16273,110,1.3.3.5,0 +16273,97,1.3.3,1 +16274,97,1.3.3,1 +16274,110,1.3.3.5,0 +16276,110,1.3.3.5,0 +16276,75,1.3.3,1 +16276,97,1.3.3,1 +16277,110,1.3.3.5,0 +16277,97,1.3.3,1 +16278,110,1.3.3.5,0 +16278,97,1.3.3,1 +16279,97,1.3.3,1 +16279,110,1.3.3.5,0 +16281,97,1.3.3,1 +16281,110,1.3.3.5,0 +16281,99,1.3.3,1 +16282,110,1.3.3.5,0 +16282,97,1.3.3,1 +16283,97,1.3.3,1 +16283,110,1.3.3.5,0 +16284,110,1.3.3.5,0 +16284,99,1.3.3,1 +16286,106,1.3,2 +16286,97,1.3.3,1 +16286,99,1.3.3,1 +16286,110,1.3.3.5,0 +16288,110,1.3.3.5,0 +16288,99,1.3.3,1 +16289,110,1.3.3.5,0 +16289,75,1.3.3,1 +16291,75,1.3.3,1 +16291,110,1.3.3.5,0 +16292,110,1.3.3.5,0 +16292,99,1.3.3,1 +16292,97,1.3.3,1 +16293,99,1.3.3,1 +16293,110,1.3.3.5,0 +16294,99,1.3.3,1 +16294,110,1.3.3.5,0 +16295,97,1.3.3,1 +16295,110,1.3.3.5,0 +16297,99,1.3.3,1 +16297,110,1.3.3.5,0 +16298,110,1.3.3.5,0 +16298,99,1.3.3,1 +16303,39,1.3.1,1 +16303,111,1.3.1.6,0 +16304,111,1.3.1.6,0 +16304,100,1.3.1,1 +16306,111,1.3.1.6,0 +16306,100,1.3.1,1 +16307,100,1.3.1,1 +16307,39,1.3.1,1 +16307,111,1.3.1.6,0 +16308,99,1.3.1,1 +16308,111,1.3.1.6,0 +16309,111,1.3.1.6,0 +16309,39,1.3.1,1 +16310,39,1.3.1,1 +16310,111,1.3.1.6,0 +16311,39,1.3.1,1 +16311,93,1.3.1,1 +16311,111,1.3.1.6,0 +16311,99,1.3.1,1 +16314,111,1.3.1.6,0 +16314,99,1.3.1,1 +16316,100,1.3.1,1 +16316,99,1.3.1,1 +16316,111,1.3.1.6,0 +16317,100,1.3.1,1 +16317,111,1.3.1.6,0 +16320,106,1.3,2 +16320,111,1.3.1.6,0 +16320,93,1.3.1,1 +16320,29,1.3,2 +16320,100,1.3.1,1 +16321,111,1.3.1.6,0 +16321,100,1.3.1,1 +16322,111,1.3.1.6,0 +16322,93,1.3.1,1 +16323,99,1.3.1,1 +16323,111,1.3.1.6,0 +16326,39,1.3.1,1 +16326,111,1.3.1.6,0 +16326,85,1.3.1,1 +16327,100,1.3.1,1 +16327,111,1.3.1.6,0 +16328,111,1.3.1.6,0 +16328,39,1.3.1,1 +16329,111,1.3.1.6,0 +16329,93,1.3.1,1 +16330,99,1.3.1,1 +16330,111,1.3.1.6,0 +16331,85,1.3.1,1 +16331,111,1.3.1.6,0 +16331,100,1.3.1,1 +16333,39,1.3.1,1 +16333,111,1.3.1.6,0 +16334,85,1.3.1,1 +16334,111,1.3.1.6,0 +16336,111,1.3.1.6,0 +16336,100,1.3.1,1 +16336,99,1.3.1,1 +16339,39,1.3.1,1 +16339,111,1.3.1.6,0 +16341,39,1.3.1,1 +16341,111,1.3.1.6,0 +16344,39,1.3.1,1 +16344,100,1.3.1,1 +16344,111,1.3.1.6,0 +16345,85,1.3.1,1 +16345,111,1.3.1.6,0 +16346,100,1.3.1,1 +16346,111,1.3.1.6,0 +16347,99,1.3.1,1 +16347,111,1.3.1.6,0 +16349,100,1.3.1,1 +16349,85,1.3.1,1 +16349,111,1.3.1.6,0 +16355,97,1.3.3,1 +16355,75,1.3.3,1 +16355,111,1.3.3.1,0 +16357,75,1.3.3,1 +16357,111,1.3.3.1,0 +16358,111,1.3.3.1,0 +16358,99,1.3.3,1 +16358,75,1.3.3,1 +16359,111,1.3.3.1,0 +16359,75,1.3.3,1 +16360,111,1.3.3.1,0 +16360,75,1.3.3,1 +16361,111,1.3.3.1,0 +16361,97,1.3.3,1 +16364,111,1.3.3.1,0 +16364,99,1.3.3,1 +16366,97,1.3.3,1 +16366,111,1.3.3.1,0 +16369,111,1.3.3.1,0 +16369,99,1.3.3,1 +16372,97,1.3.3,1 +16372,111,1.3.3.1,0 +16376,111,1.3.3.1,0 +16376,97,1.3.3,1 +16377,99,1.3.3,1 +16377,111,1.3.3.1,0 +16378,75,1.3.3,1 +16378,111,1.3.3.1,0 +16379,99,1.3.3,1 +16379,111,1.3.3.1,0 +16381,75,1.3.3,1 +16381,97,1.3.3,1 +16381,111,1.3.3.1,0 +16383,97,1.3.3,1 +16383,111,1.3.3.1,0 +16384,111,1.3.3.1,0 +16384,99,1.3.3,1 +16386,97,1.3.3,1 +16386,111,1.3.3.1,0 +16389,99,1.3.3,1 +16389,75,1.3.3,1 +16389,111,1.3.3.1,0 +16391,97,1.3.3,1 +16391,111,1.3.3.1,0 +16393,111,1.3.3.1,0 +16393,97,1.3.3,1 +16397,111,1.3.3.1,0 +16397,97,1.3.3,1 +16398,75,1.3.3,1 +16398,111,1.3.3.1,0 +16398,97,1.3.3,1 +16402,111,1.3.4.1,0 +16402,80,1.3.4,1 +16402,77,1.3.4,1 +16403,111,1.3.4.1,0 +16403,80,1.3.4,1 +16404,111,1.3.4.1,0 +16404,80,1.3.4,1 +16405,81,1.3.4,1 +16405,111,1.3.4.1,0 +16407,111,1.3.4.1,0 +16407,77,1.3.4,1 +16408,80,1.3.4,1 +16408,111,1.3.4.1,0 +16410,111,1.3.4.1,0 +16410,77,1.3.4,1 +16411,80,1.3.4,1 +16411,81,1.3.4,1 +16411,111,1.3.4.1,0 +16414,111,1.3.4.1,0 +16414,77,1.3.4,1 +16414,80,1.3.4,1 +16416,77,1.3.4,1 +16416,111,1.3.4.1,0 +16416,80,1.3.4,1 +16423,77,1.3.4,1 +16423,111,1.3.4.1,0 +16423,80,1.3.4,1 +16425,111,1.3.4.1,0 +16425,80,1.3.4,1 +16426,77,1.3.4,1 +16426,80,1.3.4,1 +16426,111,1.3.4.1,0 +16431,81,1.3.4,1 +16431,111,1.3.4.1,0 +16432,111,1.3.4.1,0 +16432,81,1.3.4,1 +16433,111,1.3.4.1,0 +16433,80,1.3.4,1 +16434,77,1.3.4,1 +16434,111,1.3.4.1,0 +16436,80,1.3.4,1 +16436,111,1.3.4.1,0 +16437,81,1.3.4,1 +16437,111,1.3.4.1,0 +16440,80,1.3.4,1 +16440,111,1.3.4.1,0 +16440,81,1.3.4,1 +16441,81,1.3.4,1 +16441,111,1.3.4.1,0 +16442,80,1.3.4,1 +16442,111,1.3.4.1,0 +16444,81,1.3.4,1 +16444,111,1.3.4.1,0 +16447,111,1.3.4.1,0 +16447,80,1.3.4,1 +16448,81,1.3.4,1 +16448,111,1.3.4.1,0 +16452,112,1.3.3.7,0 +16452,75,1.3.3,1 +16452,106,1.3,2 +16452,97,1.3.3,1 +16452,99,1.3.3,1 +16453,106,1.3,2 +16453,112,1.3.3.7,0 +16453,99,1.3.3,1 +16454,112,1.3.3.7,0 +16454,75,1.3.3,1 +16454,99,1.3.3,1 +16455,112,1.3.3.7,0 +16455,99,1.3.3,1 +16456,112,1.3.3.7,0 +16456,75,1.3.3,1 +16457,112,1.3.3.7,0 +16457,75,1.3.3,1 +16458,75,1.3.3,1 +16458,112,1.3.3.7,0 +16459,75,1.3.3,1 +16459,112,1.3.3.7,0 +16460,97,1.3.3,1 +16460,112,1.3.3.7,0 +16461,112,1.3.3.7,0 +16461,99,1.3.3,1 +16461,75,1.3.3,1 +16461,97,1.3.3,1 +16464,97,1.3.3,1 +16464,112,1.3.3.7,0 +16464,99,1.3.3,1 +16466,97,1.3.3,1 +16466,99,1.3.3,1 +16466,75,1.3.3,1 +16466,112,1.3.3.7,0 +16467,112,1.3.3.7,0 +16467,99,1.3.3,1 +16469,99,1.3.3,1 +16469,112,1.3.3.7,0 +16469,29,1.3,2 +16470,112,1.3.3.7,0 +16470,75,1.3.3,1 +16472,75,1.3.3,1 +16472,112,1.3.3.7,0 +16472,99,1.3.3,1 +16473,112,1.3.3.7,0 +16473,75,1.3.3,1 +16474,99,1.3.3,1 +16474,112,1.3.3.7,0 +16476,112,1.3.3.7,0 +16476,75,1.3.3,1 +16476,97,1.3.3,1 +16477,112,1.3.3.7,0 +16477,99,1.3.3,1 +16478,112,1.3.3.7,0 +16478,75,1.3.3,1 +16479,112,1.3.3.7,0 +16479,75,1.3.3,1 +16479,97,1.3.3,1 +16481,75,1.3.3,1 +16481,97,1.3.3,1 +16481,112,1.3.3.7,0 +16482,75,1.3.3,1 +16482,112,1.3.3.7,0 +16483,106,1.3,2 +16483,97,1.3.3,1 +16483,112,1.3.3.7,0 +16484,112,1.3.3.7,0 +16484,97,1.3.3,1 +16485,112,1.3.3.7,0 +16485,97,1.3.3,1 +16485,99,1.3.3,1 +16486,112,1.3.3.7,0 +16486,99,1.3.3,1 +16486,75,1.3.3,1 +16486,97,1.3.3,1 +16487,112,1.3.3.7,0 +16487,99,1.3.3,1 +16488,97,1.3.3,1 +16488,112,1.3.3.7,0 +16489,112,1.3.3.7,0 +16489,75,1.3.3,1 +16490,97,1.3.3,1 +16490,112,1.3.3.7,0 +16491,75,1.3.3,1 +16491,112,1.3.3.7,0 +16492,99,1.3.3,1 +16492,112,1.3.3.7,0 +16493,106,1.3,2 +16493,112,1.3.3.7,0 +16493,29,1.3,2 +16493,75,1.3.3,1 +16494,75,1.3.3,1 +16494,97,1.3.3,1 +16494,112,1.3.3.7,0 +16495,112,1.3.3.7,0 +16495,97,1.3.3,1 +16497,75,1.3.3,1 +16497,112,1.3.3.7,0 +16498,75,1.3.3,1 +16498,97,1.3.3,1 +16498,112,1.3.3.7,0 +16499,112,1.3.3.7,0 +16499,97,1.3.3,1 +16500,99,1.3.3,1 +16500,112,1.3.3.7,0 +16500,97,1.3.3,1 +16505,113,1.1.1,0 +16505,105,1.1,1 +16506,113,1.1.1,0 +16506,86,1.1,1 +16507,126,1.1,1 +16507,113,1.1.1,0 +16508,86,1.1,1 +16508,113,1.1.1,0 +16511,113,1.1.1,0 +16511,105,1.1,1 +16514,113,1.1.1,0 +16514,105,1.1,1 +16516,126,1.1,1 +16516,113,1.1.1,0 +16519,113,1.1.1,0 +16519,126,1.1,1 +16526,106,1.1,1 +16526,113,1.1.1,0 +16528,113,1.1.1,0 +16528,86,1.1,1 +16529,113,1.1.1,0 +16529,106,1.1,1 +16531,113,1.1.1,0 +16531,126,1.1,1 +16532,113,1.1.1,0 +16532,94,1.1,1 +16534,105,1.1,1 +16534,113,1.1.1,0 +16536,126,1.1,1 +16536,113,1.1.1,0 +16536,106,1.1,1 +16540,113,1.1.1,0 +16540,106,1.1,1 +16543,113,1.1.1,0 +16543,105,1.1,1 +16544,106,1.1,1 +16544,113,1.1.1,0 +16545,126,1.1,1 +16545,113,1.1.1,0 +16551,170,1,3 +16551,114,1.3.5.1,0 +16551,130,1.3.5,1 +16551,29,1.3,2 +16551,106,1.3,2 +16552,130,1.3.5,1 +16552,114,1.3.5.1,0 +16553,170,1,3 +16553,130,1.3.5,1 +16553,29,1.3,2 +16553,106,1.3,2 +16553,114,1.3.5.1,0 +16554,130,1.3.5,1 +16554,114,1.3.5.1,0 +16555,106,1.3,2 +16555,114,1.3.5.1,0 +16555,130,1.3.5,1 +16555,29,1.3,2 +16555,170,1,3 +16556,114,1.3.5.1,0 +16556,130,1.3.5,1 +16557,130,1.3.5,1 +16557,114,1.3.5.1,0 +16558,114,1.3.5.1,0 +16558,130,1.3.5,1 +16559,114,1.3.5.1,0 +16559,130,1.3.5,1 +16560,114,1.3.5.1,0 +16560,130,1.3.5,1 +16561,114,1.3.5.1,0 +16561,29,1.3,2 +16561,170,1,3 +16561,106,1.3,2 +16561,130,1.3.5,1 +16564,130,1.3.5,1 +16564,114,1.3.5.1,0 +16566,114,1.3.5.1,0 +16566,130,1.3.5,1 +16569,114,1.3.5.1,0 +16569,130,1.3.5,1 +16570,114,1.3.5.1,0 +16570,130,1.3.5,1 +16572,106,1.3,2 +16572,114,1.3.5.1,0 +16572,29,1.3,2 +16572,130,1.3.5,1 +16572,170,1,3 +16573,114,1.3.5.1,0 +16573,130,1.3.5,1 +16574,114,1.3.5.1,0 +16574,130,1.3.5,1 +16575,130,1.3.5,1 +16575,114,1.3.5.1,0 +16576,114,1.3.5.1,0 +16576,130,1.3.5,1 +16578,29,1.3,2 +16578,170,1,3 +16578,114,1.3.5.1,0 +16578,130,1.3.5,1 +16578,106,1.3,2 +16579,130,1.3.5,1 +16579,114,1.3.5.1,0 +16581,130,1.3.5,1 +16581,114,1.3.5.1,0 +16582,29,1.3,2 +16582,106,1.3,2 +16582,114,1.3.5.1,0 +16582,130,1.3.5,1 +16582,170,1,3 +16583,114,1.3.5.1,0 +16583,130,1.3.5,1 +16584,114,1.3.5.1,0 +16584,130,1.3.5,1 +16586,114,1.3.5.1,0 +16586,130,1.3.5,1 +16589,29,1.3,2 +16589,130,1.3.5,1 +16589,170,1,3 +16589,106,1.3,2 +16589,114,1.3.5.1,0 +16591,114,1.3.5.1,0 +16591,170,1,3 +16591,29,1.3,2 +16591,106,1.3,2 +16591,130,1.3.5,1 +16592,130,1.3.5,1 +16592,114,1.3.5.1,0 +16593,114,1.3.5.1,0 +16593,29,1.3,2 +16593,106,1.3,2 +16593,170,1,3 +16593,130,1.3.5,1 +16594,170,1,3 +16594,29,1.3,2 +16594,130,1.3.5,1 +16594,106,1.3,2 +16594,114,1.3.5.1,0 +16597,130,1.3.5,1 +16597,114,1.3.5.1,0 +16598,130,1.3.5,1 +16598,114,1.3.5.1,0 +16599,114,1.3.5.1,0 +16599,130,1.3.5,1 +16602,86,1.1,1 +16602,115,1.1.3,0 +16604,115,1.1.3,0 +16604,105,1.1,1 +16606,94,1.1,1 +16606,115,1.1.3,0 +16607,115,1.1.3,0 +16607,106,1.1,1 +16608,105,1.1,1 +16608,115,1.1.3,0 +16610,94,1.1,1 +16610,115,1.1.3,0 +16611,115,1.1.3,0 +16611,126,1.1,1 +16614,94,1.1,1 +16614,115,1.1.3,0 +16620,105,1.1,1 +16620,115,1.1.3,0 +16622,126,1.1,1 +16622,115,1.1.3,0 +16622,86,1.1,1 +16623,106,1.1,1 +16623,115,1.1.3,0 +16623,105,1.1,1 +16623,94,1.1,1 +16623,86,1.1,1 +16626,106,1.1,1 +16626,105,1.1,1 +16626,115,1.1.3,0 +16627,105,1.1,1 +16627,115,1.1.3,0 +16628,115,1.1.3,0 +16628,105,1.1,1 +16629,115,1.1.3,0 +16629,94,1.1,1 +16631,86,1.1,1 +16631,115,1.1.3,0 +16631,94,1.1,1 +16634,115,1.1.3,0 +16634,86,1.1,1 +16634,126,1.1,1 +16636,126,1.1,1 +16636,115,1.1.3,0 +16636,86,1.1,1 +16639,126,1.1,1 +16639,115,1.1.3,0 +16639,94,1.1,1 +16643,115,1.1.3,0 +16643,94,1.1,1 +16644,94,1.1,1 +16644,86,1.1,1 +16644,115,1.1.3,0 +16645,115,1.1.3,0 +16645,105,1.1,1 +16647,115,1.1.3,0 +16647,106,1.1,1 +16649,105,1.1,1 +16649,115,1.1.3,0 +16652,115,2.1.4,0 +16652,99,2.1,1 +16654,115,2.1.4,0 +16654,99,2.1,1 +16658,99,2.1,1 +16658,98,2,2 +16658,102,2,2 +16658,115,2.1.4,0 +16658,170,1,3 +16661,99,2.1,1 +16661,115,2.1.4,0 +16664,99,2.1,1 +16664,115,2.1.4,0 +16666,98,2,2 +16666,115,2.1.4,0 +16666,102,2,2 +16666,99,2.1,1 +16666,170,1,3 +16672,115,2.1.4,0 +16672,99,2.1,1 +16679,115,2.1.4,0 +16679,170,1,3 +16679,102,2,2 +16679,99,2.1,1 +16679,98,2,2 +16681,99,2.1,1 +16681,115,2.1.4,0 +16682,99,2.1,1 +16682,115,2.1.4,0 +16684,99,2.1,1 +16684,115,2.1.4,0 +16686,115,2.1.4,0 +16686,99,2.1,1 +16689,115,2.1.4,0 +16689,99,2.1,1 +16691,98,2,2 +16691,99,2.1,1 +16691,115,2.1.4,0 +16691,102,2,2 +16693,99,2.1,1 +16693,115,2.1.4,0 +16694,99,2.1,1 +16694,115,2.1.4,0 +16697,115,2.1.4,0 +16697,99,2.1,1 +16698,115,2.1.4,0 +16698,99,2.1,1 +16701,116,1.3.1.7,0 +16701,93,1.3.1,1 +16702,116,1.3.1.7,0 +16702,99,1.3.1,1 +16703,85,1.3.1,1 +16703,39,1.3.1,1 +16703,116,1.3.1.7,0 +16703,99,1.3.1,1 +16704,93,1.3.1,1 +16704,116,1.3.1.7,0 +16704,39,1.3.1,1 +16705,93,1.3.1,1 +16705,116,1.3.1.7,0 +16705,85,1.3.1,1 +16706,116,1.3.1.7,0 +16706,39,1.3.1,1 +16707,85,1.3.1,1 +16707,116,1.3.1.7,0 +16708,93,1.3.1,1 +16708,116,1.3.1.7,0 +16709,39,1.3.1,1 +16709,116,1.3.1.7,0 +16710,85,1.3.1,1 +16710,116,1.3.1.7,0 +16711,116,1.3.1.7,0 +16711,93,1.3.1,1 +16712,116,1.3.1.7,0 +16712,100,1.3.1,1 +16714,93,1.3.1,1 +16714,106,1.3,2 +16714,116,1.3.1.7,0 +16714,99,1.3.1,1 +16716,116,1.3.1.7,0 +16716,100,1.3.1,1 +16717,116,1.3.1.7,0 +16717,93,1.3.1,1 +16719,100,1.3.1,1 +16719,93,1.3.1,1 +16719,116,1.3.1.7,0 +16720,39,1.3.1,1 +16720,116,1.3.1.7,0 +16722,116,1.3.1.7,0 +16722,85,1.3.1,1 +16723,93,1.3.1,1 +16723,99,1.3.1,1 +16723,116,1.3.1.7,0 +16723,39,1.3.1,1 +16724,116,1.3.1.7,0 +16724,39,1.3.1,1 +16725,93,1.3.1,1 +16725,116,1.3.1.7,0 +16726,99,1.3.1,1 +16726,116,1.3.1.7,0 +16727,100,1.3.1,1 +16727,116,1.3.1.7,0 +16728,116,1.3.1.7,0 +16728,39,1.3.1,1 +16729,116,1.3.1.7,0 +16729,39,1.3.1,1 +16729,99,1.3.1,1 +16731,39,1.3.1,1 +16731,116,1.3.1.7,0 +16731,100,1.3.1,1 +16732,93,1.3.1,1 +16732,116,1.3.1.7,0 +16733,99,1.3.1,1 +16733,116,1.3.1.7,0 +16734,39,1.3.1,1 +16734,116,1.3.1.7,0 +16735,116,1.3.1.7,0 +16735,99,1.3.1,1 +16736,39,1.3.1,1 +16736,99,1.3.1,1 +16736,116,1.3.1.7,0 +16737,93,1.3.1,1 +16737,116,1.3.1.7,0 +16738,93,1.3.1,1 +16738,100,1.3.1,1 +16738,116,1.3.1.7,0 +16739,85,1.3.1,1 +16739,116,1.3.1.7,0 +16740,100,1.3.1,1 +16740,116,1.3.1.7,0 +16741,99,1.3.1,1 +16741,85,1.3.1,1 +16741,116,1.3.1.7,0 +16742,116,1.3.1.7,0 +16742,39,1.3.1,1 +16743,99,1.3.1,1 +16743,116,1.3.1.7,0 +16744,39,1.3.1,1 +16744,85,1.3.1,1 +16744,116,1.3.1.7,0 +16746,100,1.3.1,1 +16746,99,1.3.1,1 +16746,116,1.3.1.7,0 +16747,116,1.3.1.7,0 +16747,93,1.3.1,1 +16748,116,1.3.1.7,0 +16748,39,1.3.1,1 +16748,93,1.3.1,1 +16749,93,1.3.1,1 +16749,99,1.3.1,1 +16749,85,1.3.1,1 +16749,116,1.3.1.7,0 +16750,100,1.3.1,1 +16750,116,1.3.1.7,0 +16756,85,2.1.1,1 +16756,117,2.1.1.1,0 +16757,117,2.1.1.1,0 +16757,106,2.1.1,1 +16759,117,2.1.1.1,0 +16759,85,2.1.1,1 +16760,117,2.1.1.1,0 +16760,148,2.1.1,1 +16761,117,2.1.1.1,0 +16761,85,2.1.1,1 +16766,117,2.1.1.1,0 +16766,106,2.1.1,1 +16773,106,2.1.1,1 +16773,117,2.1.1.1,0 +16779,117,2.1.1.1,0 +16779,106,2.1.1,1 +16781,80,2.1.1,1 +16781,117,2.1.1.1,0 +16781,106,2.1.1,1 +16784,80,2.1.1,1 +16784,117,2.1.1.1,0 +16786,85,2.1.1,1 +16786,106,2.1.1,1 +16786,117,2.1.1.1,0 +16791,80,2.1.1,1 +16791,117,2.1.1.1,0 +16793,85,2.1.1,1 +16793,117,2.1.1.1,0 +16794,117,2.1.1.1,0 +16794,85,2.1.1,1 +16797,148,2.1.1,1 +16797,117,2.1.1.1,0 +16798,85,2.1.1,1 +16798,117,2.1.1.1,0 +16800,148,2.1.1,1 +16800,117,2.1.1.1,0 +16804,80,2.1.1,1 +16804,117,2.1.1.2,0 +16808,117,2.1.1.2,0 +16808,106,2.1.1,1 +16809,117,2.1.1.2,0 +16809,80,2.1.1,1 +16811,117,2.1.1.2,0 +16811,85,2.1.1,1 +16814,106,2.1.1,1 +16814,117,2.1.1.2,0 +16814,85,2.1.1,1 +16816,117,2.1.1.2,0 +16816,80,2.1.1,1 +16823,80,2.1.1,1 +16823,117,2.1.1.2,0 +16825,80,2.1.1,1 +16825,117,2.1.1.2,0 +16826,148,2.1.1,1 +16826,117,2.1.1.2,0 +16826,106,2.1.1,1 +16829,117,2.1.1.2,0 +16829,80,2.1.1,1 +16831,80,2.1.1,1 +16831,117,2.1.1.2,0 +16833,117,2.1.1.2,0 +16833,106,2.1.1,1 +16834,117,2.1.1.2,0 +16834,85,2.1.1,1 +16836,80,2.1.1,1 +16836,117,2.1.1.2,0 +16838,117,2.1.1.2,0 +16838,148,2.1.1,1 +16841,85,2.1.1,1 +16841,117,2.1.1.2,0 +16843,117,2.1.1.2,0 +16843,106,2.1.1,1 +16845,117,2.1.1.2,0 +16845,106,2.1.1,1 +16848,85,2.1.1,1 +16848,117,2.1.1.2,0 +16851,148,2.1.1,1 +16851,117,2.1.1.3,0 +16852,117,2.1.1.3,0 +16852,80,2.1.1,1 +16855,117,2.1.1.3,0 +16855,80,2.1.1,1 +16856,80,2.1.1,1 +16856,117,2.1.1.3,0 +16858,117,2.1.1.3,0 +16858,148,2.1.1,1 +16866,117,2.1.1.3,0 +16866,80,2.1.1,1 +16870,80,2.1.1,1 +16870,117,2.1.1.3,0 +16872,117,2.1.1.3,0 +16872,80,2.1.1,1 +16873,80,2.1.1,1 +16873,85,2.1.1,1 +16873,117,2.1.1.3,0 +16876,117,2.1.1.3,0 +16876,106,2.1.1,1 +16879,117,2.1.1.3,0 +16879,148,2.1.1,1 +16883,117,2.1.1.3,0 +16883,85,2.1.1,1 +16889,117,2.1.1.3,0 +16889,80,2.1.1,1 +16891,80,2.1.1,1 +16891,117,2.1.1.3,0 +16892,80,2.1.1,1 +16892,117,2.1.1.3,0 +16893,117,2.1.1.3,0 +16893,85,2.1.1,1 +16894,117,2.1.1.3,0 +16894,85,2.1.1,1 +16898,85,2.1.1,1 +16898,117,2.1.1.3,0 +16899,106,2.1.1,1 +16899,117,2.1.1.3,0 +16904,117,2.1.1.4,0 +16904,85,2.1.1,1 +16905,117,2.1.1.4,0 +16905,148,2.1.1,1 +16907,117,2.1.1.4,0 +16907,85,2.1.1,1 +16908,117,2.1.1.4,0 +16908,148,2.1.1,1 +16914,106,2.1.1,1 +16914,117,2.1.1.4,0 +16914,80,2.1.1,1 +16916,117,2.1.1.4,0 +16916,85,2.1.1,1 +16920,80,2.1.1,1 +16920,117,2.1.1.4,0 +16922,106,2.1.1,1 +16922,80,2.1.1,1 +16922,117,2.1.1.4,0 +16923,85,2.1.1,1 +16923,117,2.1.1.4,0 +16929,117,2.1.1.4,0 +16929,80,2.1.1,1 +16932,80,2.1.1,1 +16932,117,2.1.1.4,0 +16936,117,2.1.1.4,0 +16936,148,2.1.1,1 +16939,106,2.1.1,1 +16939,117,2.1.1.4,0 +16942,80,2.1.1,1 +16942,117,2.1.1.4,0 +16943,148,2.1.1,1 +16943,117,2.1.1.4,0 +16944,117,2.1.1.4,0 +16944,148,2.1.1,1 +16952,80,2.1.1,1 +16952,117,2.1.1.5,0 +16954,117,2.1.1.5,0 +16954,106,2.1.1,1 +16956,106,2.1.1,1 +16956,117,2.1.1.5,0 +16957,117,2.1.1.5,0 +16957,106,2.1.1,1 +16961,117,2.1.1.5,0 +16961,106,2.1.1,1 +16961,85,2.1.1,1 +16964,148,2.1.1,1 +16964,117,2.1.1.5,0 +16969,148,2.1.1,1 +16969,117,2.1.1.5,0 +16970,85,2.1.1,1 +16970,117,2.1.1.5,0 +16978,117,2.1.1.5,0 +16978,148,2.1.1,1 +16979,117,2.1.1.5,0 +16979,85,2.1.1,1 +16981,117,2.1.1.5,0 +16981,106,2.1.1,1 +16982,117,2.1.1.5,0 +16982,85,2.1.1,1 +16983,117,2.1.1.5,0 +16983,85,2.1.1,1 +16984,106,2.1.1,1 +16984,117,2.1.1.5,0 +16985,148,2.1.1,1 +16985,117,2.1.1.5,0 +16989,148,2.1.1,1 +16989,117,2.1.1.5,0 +16991,80,2.1.1,1 +16991,117,2.1.1.5,0 +17003,79,2.1.4.1,1 +17003,117,2.1.4.1.1,0 +17008,117,2.1.4.1.1,0 +17008,79,2.1.4.1,1 +17011,117,2.1.4.1.1,0 +17011,81,2.1.4.1,1 +17014,117,2.1.4.1.1,0 +17014,79,2.1.4.1,1 +17016,117,2.1.4.1.1,0 +17016,79,2.1.4.1,1 +17020,79,2.1.4.1,1 +17020,117,2.1.4.1.1,0 +17022,117,2.1.4.1.1,0 +17022,79,2.1.4.1,1 +17023,117,2.1.4.1.1,0 +17023,81,2.1.4.1,1 +17028,81,2.1.4.1,1 +17028,117,2.1.4.1.1,0 +17032,117,2.1.4.1.1,0 +17032,81,2.1.4.1,1 +17033,117,2.1.4.1.1,0 +17033,79,2.1.4.1,1 +17034,117,2.1.4.1.1,0 +17034,79,2.1.4.1,1 +17042,117,2.1.4.1.1,0 +17042,79,2.1.4.1,1 +17043,81,2.1.4.1,1 +17043,117,2.1.4.1.1,0 +17048,117,2.1.4.1.1,0 +17048,81,2.1.4.1,1 +17054,117,2.1.4.1.2,0 +17054,79,2.1.4.1,1 +17055,117,2.1.4.1.2,0 +17055,81,2.1.4.1,1 +17061,117,2.1.4.1.2,0 +17061,81,2.1.4.1,1 +17078,81,2.1.4.1,1 +17078,117,2.1.4.1.2,0 +17082,117,2.1.4.1.2,0 +17082,79,2.1.4.1,1 +17083,81,2.1.4.1,1 +17083,117,2.1.4.1.2,0 +17086,117,2.1.4.1.2,0 +17086,79,2.1.4.1,1 +17089,81,2.1.4.1,1 +17089,117,2.1.4.1.2,0 +17091,79,2.1.4.1,1 +17091,117,2.1.4.1.2,0 +17097,79,2.1.4.1,1 +17097,117,2.1.4.1.2,0 +17098,79,2.1.4.1,1 +17098,81,2.1.4.1,1 +17098,117,2.1.4.1.2,0 +17101,117,2.1.4.1.3,0 +17101,79,2.1.4.1,1 +17105,117,2.1.4.1.3,0 +17105,79,2.1.4.1,1 +17106,117,2.1.4.1.3,0 +17106,79,2.1.4.1,1 +17110,117,2.1.4.1.3,0 +17110,81,2.1.4.1,1 +17116,117,2.1.4.1.3,0 +17116,81,2.1.4.1,1 +17119,79,2.1.4.1,1 +17119,117,2.1.4.1.3,0 +17126,117,2.1.4.1.3,0 +17126,79,2.1.4.1,1 +17128,79,2.1.4.1,1 +17128,117,2.1.4.1.3,0 +17131,117,2.1.4.1.3,0 +17131,79,2.1.4.1,1 +17132,117,2.1.4.1.3,0 +17132,81,2.1.4.1,1 +17133,117,2.1.4.1.3,0 +17133,81,2.1.4.1,1 +17143,81,2.1.4.1,1 +17143,117,2.1.4.1.3,0 +17154,117,2.1.4.1.4,0 +17154,79,2.1.4.1,1 +17155,117,2.1.4.1.4,0 +17155,79,2.1.4.1,1 +17156,81,2.1.4.1,1 +17156,117,2.1.4.1.4,0 +17158,117,2.1.4.1.4,0 +17158,79,2.1.4.1,1 +17170,81,2.1.4.1,1 +17170,117,2.1.4.1.4,0 +17172,117,2.1.4.1.4,0 +17172,79,2.1.4.1,1 +17189,81,2.1.4.1,1 +17189,117,2.1.4.1.4,0 +17193,79,2.1.4.1,1 +17193,117,2.1.4.1.4,0 +17194,79,2.1.4.1,1 +17194,117,2.1.4.1.4,0 +17194,81,2.1.4.1,1 +17197,117,2.1.4.1.4,0 +17197,79,2.1.4.1,1 +17198,81,2.1.4.1,1 +17198,117,2.1.4.1.4,0 +17204,117,2.1.4.2.1,0 +17204,79,2.1.4.2,1 +17206,117,2.1.4.2.1,0 +17206,79,2.1.4.2,1 +17208,117,2.1.4.2.1,0 +17208,79,2.1.4.2,1 +17209,117,2.1.4.2.1,0 +17209,79,2.1.4.2,1 +17216,117,2.1.4.2.1,0 +17216,81,2.1.4.2,1 +17222,117,2.1.4.2.1,0 +17222,79,2.1.4.2,1 +17224,81,2.1.4.2,1 +17224,117,2.1.4.2.1,0 +17224,79,2.1.4.2,1 +17227,117,2.1.4.2.1,0 +17227,81,2.1.4.2,1 +17232,117,2.1.4.2.1,0 +17232,81,2.1.4.2,1 +17242,117,2.1.4.2.1,0 +17242,79,2.1.4.2,1 +17243,81,2.1.4.2,1 +17243,117,2.1.4.2.1,0 +17251,117,2.1.4.2.2,0 +17251,79,2.1.4.2,1 +17255,79,2.1.4.2,1 +17255,117,2.1.4.2.2,0 +17257,79,2.1.4.2,1 +17257,117,2.1.4.2.2,0 +17258,81,2.1.4.2,1 +17258,117,2.1.4.2.2,0 +17264,81,2.1.4.2,1 +17264,117,2.1.4.2.2,0 +17276,117,2.1.4.2.2,0 +17276,79,2.1.4.2,1 +17276,81,2.1.4.2,1 +17281,117,2.1.4.2.2,0 +17281,79,2.1.4.2,1 +17283,117,2.1.4.2.2,0 +17283,79,2.1.4.2,1 +17284,117,2.1.4.2.2,0 +17284,79,2.1.4.2,1 +17289,117,2.1.4.2.2,0 +17289,81,2.1.4.2,1 +17293,79,2.1.4.2,1 +17293,117,2.1.4.2.2,0 +17297,79,2.1.4.2,1 +17297,117,2.1.4.2.2,0 +17302,118,1.3.3.6,0 +17302,99,1.3.3,1 +17302,97,1.3.3,1 +17304,75,1.3.3,1 +17304,118,1.3.3.6,0 +17305,97,1.3.3,1 +17305,118,1.3.3.6,0 +17305,99,1.3.3,1 +17306,118,1.3.3.6,0 +17306,75,1.3.3,1 +17307,118,1.3.3.6,0 +17307,97,1.3.3,1 +17308,75,1.3.3,1 +17308,118,1.3.3.6,0 +17309,75,1.3.3,1 +17309,118,1.3.3.6,0 +17310,97,1.3.3,1 +17310,118,1.3.3.6,0 +17311,75,1.3.3,1 +17311,118,1.3.3.6,0 +17311,97,1.3.3,1 +17314,75,1.3.3,1 +17314,99,1.3.3,1 +17314,97,1.3.3,1 +17314,118,1.3.3.6,0 +17316,97,1.3.3,1 +17316,118,1.3.3.6,0 +17322,118,1.3.3.6,0 +17322,97,1.3.3,1 +17323,118,1.3.3.6,0 +17323,97,1.3.3,1 +17326,118,1.3.3.6,0 +17326,97,1.3.3,1 +17327,118,1.3.3.6,0 +17327,97,1.3.3,1 +17328,118,1.3.3.6,0 +17328,97,1.3.3,1 +17329,97,1.3.3,1 +17329,118,1.3.3.6,0 +17331,118,1.3.3.6,0 +17331,75,1.3.3,1 +17331,97,1.3.3,1 +17332,97,1.3.3,1 +17332,118,1.3.3.6,0 +17333,75,1.3.3,1 +17333,118,1.3.3.6,0 +17334,75,1.3.3,1 +17334,118,1.3.3.6,0 +17336,99,1.3.3,1 +17336,97,1.3.3,1 +17336,118,1.3.3.6,0 +17337,97,1.3.3,1 +17337,118,1.3.3.6,0 +17338,118,1.3.3.6,0 +17338,99,1.3.3,1 +17339,99,1.3.3,1 +17339,118,1.3.3.6,0 +17341,97,1.3.3,1 +17341,118,1.3.3.6,0 +17343,97,1.3.3,1 +17343,118,1.3.3.6,0 +17344,118,1.3.3.6,0 +17344,97,1.3.3,1 +17345,118,1.3.3.6,0 +17345,99,1.3.3,1 +17347,118,1.3.3.6,0 +17347,97,1.3.3,1 +17350,99,1.3.3,1 +17350,118,1.3.3.6,0 +17352,119,1.3.1.1,0 +17352,100,1.3.1,1 +17352,99,1.3.1,1 +17354,85,1.3.1,1 +17354,99,1.3.1,1 +17354,100,1.3.1,1 +17354,119,1.3.1.1,0 +17355,119,1.3.1.1,0 +17355,100,1.3.1,1 +17356,119,1.3.1.1,0 +17356,85,1.3.1,1 +17357,85,1.3.1,1 +17357,119,1.3.1.1,0 +17358,119,1.3.1.1,0 +17358,93,1.3.1,1 +17359,119,1.3.1.1,0 +17359,93,1.3.1,1 +17360,85,1.3.1,1 +17360,119,1.3.1.1,0 +17361,119,1.3.1.1,0 +17361,93,1.3.1,1 +17361,85,1.3.1,1 +17362,119,1.3.1.1,0 +17362,99,1.3.1,1 +17364,119,1.3.1.1,0 +17364,99,1.3.1,1 +17364,93,1.3.1,1 +17366,85,1.3.1,1 +17366,39,1.3.1,1 +17366,119,1.3.1.1,0 +17369,119,1.3.1.1,0 +17369,100,1.3.1,1 +17369,85,1.3.1,1 +17369,39,1.3.1,1 +17369,93,1.3.1,1 +17372,119,1.3.1.1,0 +17372,99,1.3.1,1 +17373,100,1.3.1,1 +17373,119,1.3.1.1,0 +17373,93,1.3.1,1 +17373,85,1.3.1,1 +17373,39,1.3.1,1 +17374,39,1.3.1,1 +17374,119,1.3.1.1,0 +17376,85,1.3.1,1 +17376,100,1.3.1,1 +17376,119,1.3.1.1,0 +17377,85,1.3.1,1 +17377,119,1.3.1.1,0 +17378,119,1.3.1.1,0 +17378,39,1.3.1,1 +17379,119,1.3.1.1,0 +17379,85,1.3.1,1 +17381,85,1.3.1,1 +17381,99,1.3.1,1 +17381,119,1.3.1.1,0 +17382,93,1.3.1,1 +17382,119,1.3.1.1,0 +17383,119,1.3.1.1,0 +17383,99,1.3.1,1 +17384,119,1.3.1.1,0 +17384,85,1.3.1,1 +17385,119,1.3.1.1,0 +17385,93,1.3.1,1 +17386,100,1.3.1,1 +17386,119,1.3.1.1,0 +17388,119,1.3.1.1,0 +17388,93,1.3.1,1 +17389,119,1.3.1.1,0 +17389,39,1.3.1,1 +17391,85,1.3.1,1 +17391,119,1.3.1.1,0 +17393,119,1.3.1.1,0 +17393,93,1.3.1,1 +17394,119,1.3.1.1,0 +17394,39,1.3.1,1 +17394,85,1.3.1,1 +17397,119,1.3.1.1,0 +17397,39,1.3.1,1 +17398,39,1.3.1,1 +17398,119,1.3.1.1,0 +17399,85,1.3.1,1 +17399,119,1.3.1.1,0 +17400,100,1.3.1,1 +17400,119,1.3.1.1,0 +17402,120,1.2.3,0 +17402,106,1.2,1 +17404,120,1.2.3,0 +17404,97,1.2,1 +17405,106,1.2,1 +17405,120,1.2.3,0 +17406,120,1.2.3,0 +17406,67,1.2,1 +17407,120,1.2.3,0 +17407,97,1.2,1 +17408,120,1.2.3,0 +17408,67,1.2,1 +17409,97,1.2,1 +17409,120,1.2.3,0 +17410,120,1.2.3,0 +17410,67,1.2,1 +17411,126,1.2,1 +17411,97,1.2,1 +17411,120,1.2.3,0 +17412,126,1.2,1 +17412,120,1.2.3,0 +17414,120,1.2.3,0 +17414,126,1.2,1 +17416,106,1.2,1 +17416,120,1.2.3,0 +17419,120,1.2.3,0 +17419,126,1.2,1 +17422,106,1.2,1 +17422,120,1.2.3,0 +17423,126,1.2,1 +17423,120,1.2.3,0 +17424,120,1.2.3,0 +17424,97,1.2,1 +17426,120,1.2.3,0 +17426,67,1.2,1 +17427,120,1.2.3,0 +17427,126,1.2,1 +17428,67,1.2,1 +17428,120,1.2.3,0 +17429,106,1.2,1 +17429,120,1.2.3,0 +17431,120,1.2.3,0 +17431,106,1.2,1 +17432,120,1.2.3,0 +17432,97,1.2,1 +17433,120,1.2.3,0 +17433,106,1.2,1 +17434,67,1.2,1 +17434,120,1.2.3,0 +17435,126,1.2,1 +17435,120,1.2.3,0 +17436,126,1.2,1 +17436,120,1.2.3,0 +17437,106,1.2,1 +17437,120,1.2.3,0 +17438,120,1.2.3,0 +17438,106,1.2,1 +17439,97,1.2,1 +17439,120,1.2.3,0 +17441,97,1.2,1 +17441,120,1.2.3,0 +17442,120,1.2.3,0 +17442,126,1.2,1 +17443,120,1.2.3,0 +17443,67,1.2,1 +17444,120,1.2.3,0 +17444,67,1.2,1 +17447,97,1.2,1 +17447,126,1.2,1 +17447,120,1.2.3,0 +17448,120,1.2.3,0 +17448,67,1.2,1 +17449,126,1.2,1 +17449,120,1.2.3,0 +17452,121,1.4.2.4,0 +17452,142,1.4.2,1 +17454,142,1.4.2,1 +17454,121,1.4.2.4,0 +17455,142,1.4.2,1 +17455,121,1.4.2.4,0 +17456,121,1.4.2.4,0 +17456,142,1.4.2,1 +17457,121,1.4.2.4,0 +17457,142,1.4.2,1 +17458,142,1.4.2,1 +17458,121,1.4.2.4,0 +17459,142,1.4.2,1 +17459,121,1.4.2.4,0 +17460,121,1.4.2.4,0 +17460,142,1.4.2,1 +17461,121,1.4.2.4,0 +17461,142,1.4.2,1 +17464,121,1.4.2.4,0 +17464,142,1.4.2,1 +17466,121,1.4.2.4,0 +17466,142,1.4.2,1 +17470,121,1.4.2.4,0 +17470,142,1.4.2,1 +17472,121,1.4.2.4,0 +17472,142,1.4.2,1 +17473,142,1.4.2,1 +17473,121,1.4.2.4,0 +17476,121,1.4.2.4,0 +17476,142,1.4.2,1 +17478,121,1.4.2.4,0 +17478,142,1.4.2,1 +17479,142,1.4.2,1 +17479,121,1.4.2.4,0 +17481,121,1.4.2.4,0 +17481,142,1.4.2,1 +17482,121,1.4.2.4,0 +17482,142,1.4.2,1 +17483,142,1.4.2,1 +17483,121,1.4.2.4,0 +17484,121,1.4.2.4,0 +17484,142,1.4.2,1 +17486,142,1.4.2,1 +17486,121,1.4.2.4,0 +17489,121,1.4.2.4,0 +17489,142,1.4.2,1 +17491,121,1.4.2.4,0 +17491,142,1.4.2,1 +17493,142,1.4.2,1 +17493,121,1.4.2.4,0 +17494,142,1.4.2,1 +17494,121,1.4.2.4,0 +17497,121,1.4.2.4,0 +17497,142,1.4.2,1 +17498,142,1.4.2,1 +17498,121,1.4.2.4,0 +17501,170,1,3 +17501,142,1.4.2,1 +17501,126,1.4,2 +17501,122,1.4.2.6,0 +17502,142,1.4.2,1 +17502,170,1,3 +17502,122,1.4.2.6,0 +17502,126,1.4,2 +17503,142,1.4.2,1 +17503,122,1.4.2.6,0 +17504,142,1.4.2,1 +17504,122,1.4.2.6,0 +17505,142,1.4.2,1 +17505,122,1.4.2.6,0 +17506,122,1.4.2.6,0 +17506,142,1.4.2,1 +17507,142,1.4.2,1 +17507,122,1.4.2.6,0 +17508,122,1.4.2.6,0 +17508,142,1.4.2,1 +17509,142,1.4.2,1 +17509,122,1.4.2.6,0 +17510,122,1.4.2.6,0 +17510,142,1.4.2,1 +17511,142,1.4.2,1 +17511,126,1.4,2 +17511,170,1,3 +17511,122,1.4.2.6,0 +17514,122,1.4.2.6,0 +17514,142,1.4.2,1 +17516,142,1.4.2,1 +17516,122,1.4.2.6,0 +17519,142,1.4.2,1 +17519,122,1.4.2.6,0 +17520,142,1.4.2,1 +17520,170,1,3 +17520,126,1.4,2 +17520,122,1.4.2.6,0 +17522,122,1.4.2.6,0 +17522,142,1.4.2,1 +17523,142,1.4.2,1 +17523,122,1.4.2.6,0 +17524,122,1.4.2.6,0 +17524,126,1.4,2 +17524,142,1.4.2,1 +17524,170,1,3 +17525,122,1.4.2.6,0 +17525,142,1.4.2,1 +17526,122,1.4.2.6,0 +17526,142,1.4.2,1 +17528,122,1.4.2.6,0 +17528,142,1.4.2,1 +17529,122,1.4.2.6,0 +17529,170,1,3 +17529,126,1.4,2 +17529,142,1.4.2,1 +17531,122,1.4.2.6,0 +17531,142,1.4.2,1 +17532,122,1.4.2.6,0 +17532,142,1.4.2,1 +17533,142,1.4.2,1 +17533,122,1.4.2.6,0 +17534,142,1.4.2,1 +17534,122,1.4.2.6,0 +17536,142,1.4.2,1 +17536,170,1,3 +17536,126,1.4,2 +17536,122,1.4.2.6,0 +17539,122,1.4.2.6,0 +17539,142,1.4.2,1 +17541,122,1.4.2.6,0 +17541,142,1.4.2,1 +17542,126,1.4,2 +17542,170,1,3 +17542,122,1.4.2.6,0 +17542,142,1.4.2,1 +17543,122,1.4.2.6,0 +17543,142,1.4.2,1 +17544,142,1.4.2,1 +17544,122,1.4.2.6,0 +17547,142,1.4.2,1 +17547,122,1.4.2.6,0 +17548,126,1.4,2 +17548,142,1.4.2,1 +17548,122,1.4.2.6,0 +17548,170,1,3 +17554,123,1.1.2,0 +17554,106,1.1,1 +17556,123,1.1.2,0 +17556,86,1.1,1 +17557,86,1.1,1 +17557,123,1.1.2,0 +17558,123,1.1.2,0 +17558,105,1.1,1 +17560,123,1.1.2,0 +17560,106,1.1,1 +17561,123,1.1.2,0 +17561,86,1.1,1 +17564,86,1.1,1 +17564,123,1.1.2,0 +17564,126,1.1,1 +17572,106,1.1,1 +17572,123,1.1.2,0 +17573,106,1.1,1 +17573,123,1.1.2,0 +17576,105,1.1,1 +17576,123,1.1.2,0 +17577,123,1.1.2,0 +17577,105,1.1,1 +17578,123,1.1.2,0 +17578,86,1.1,1 +17579,126,1.1,1 +17579,123,1.1.2,0 +17579,106,1.1,1 +17581,126,1.1,1 +17581,123,1.1.2,0 +17582,86,1.1,1 +17582,123,1.1.2,0 +17583,123,1.1.2,0 +17583,105,1.1,1 +17584,123,1.1.2,0 +17584,105,1.1,1 +17585,106,1.1,1 +17585,126,1.1,1 +17585,123,1.1.2,0 +17585,105,1.1,1 +17586,126,1.1,1 +17586,94,1.1,1 +17586,123,1.1.2,0 +17587,123,1.1.2,0 +17587,106,1.1,1 +17589,126,1.1,1 +17589,123,1.1.2,0 +17591,123,1.1.2,0 +17591,94,1.1,1 +17592,105,1.1,1 +17592,123,1.1.2,0 +17592,94,1.1,1 +17593,123,1.1.2,0 +17593,86,1.1,1 +17594,123,1.1.2,0 +17594,126,1.1,1 +17595,123,1.1.2,0 +17595,106,1.1,1 +17597,94,1.1,1 +17597,123,1.1.2,0 +17600,123,1.1.2,0 +17600,105,1.1,1 +17604,126,1.2,1 +17604,124,1.2.1,0 +17605,97,1.2,1 +17605,124,1.2.1,0 +17606,67,1.2,1 +17606,124,1.2.1,0 +17607,124,1.2.1,0 +17607,97,1.2,1 +17608,124,1.2.1,0 +17608,97,1.2,1 +17611,126,1.2,1 +17611,124,1.2.1,0 +17614,97,1.2,1 +17614,124,1.2.1,0 +17616,124,1.2.1,0 +17616,106,1.2,1 +17619,124,1.2.1,0 +17619,126,1.2,1 +17622,126,1.2,1 +17622,124,1.2.1,0 +17626,124,1.2.1,0 +17626,97,1.2,1 +17627,97,1.2,1 +17627,124,1.2.1,0 +17631,124,1.2.1,0 +17631,126,1.2,1 +17634,97,1.2,1 +17634,124,1.2.1,0 +17639,124,1.2.1,0 +17639,97,1.2,1 +17641,67,1.2,1 +17641,124,1.2.1,0 +17652,124,2.3,0 +17652,98,2,1 +17656,98,2,1 +17656,124,2.3,0 +17657,98,2,1 +17657,124,2.3,0 +17658,98,2,1 +17658,124,2.3,0 +17660,98,2,1 +17660,124,2.3,0 +17664,124,2.3,0 +17664,98,2,1 +17672,124,2.3,0 +17672,98,2,1 +17673,124,2.3,0 +17673,98,2,1 +17677,124,2.3,0 +17677,102,2,1 +17678,124,2.3,0 +17678,98,2,1 +17682,124,2.3,0 +17682,102,2,1 +17684,98,2,1 +17684,124,2.3,0 +17691,124,2.3,0 +17691,102,2,1 +17698,98,2,1 +17698,170,1,2 +17698,124,2.3,0 +17700,102,2,1 +17700,124,2.3,0 +17702,97,1.2,1 +17702,125,1.2.3,0 +17704,67,1.2,1 +17704,125,1.2.3,0 +17705,126,1.2,1 +17705,125,1.2.3,0 +17706,125,1.2.3,0 +17706,67,1.2,1 +17707,97,1.2,1 +17707,125,1.2.3,0 +17708,67,1.2,1 +17708,125,1.2.3,0 +17710,106,1.2,1 +17710,125,1.2.3,0 +17711,126,1.2,1 +17711,97,1.2,1 +17711,125,1.2.3,0 +17714,125,1.2.3,0 +17714,106,1.2,1 +17714,97,1.2,1 +17716,125,1.2.3,0 +17716,126,1.2,1 +17719,106,1.2,1 +17719,125,1.2.3,0 +17722,67,1.2,1 +17722,125,1.2.3,0 +17723,125,1.2.3,0 +17723,126,1.2,1 +17726,126,1.2,1 +17726,106,1.2,1 +17726,125,1.2.3,0 +17728,126,1.2,1 +17728,125,1.2.3,0 +17729,67,1.2,1 +17729,125,1.2.3,0 +17731,97,1.2,1 +17731,125,1.2.3,0 +17732,125,1.2.3,0 +17732,67,1.2,1 +17733,125,1.2.3,0 +17733,67,1.2,1 +17734,67,1.2,1 +17734,125,1.2.3,0 +17736,67,1.2,1 +17736,106,1.2,1 +17736,125,1.2.3,0 +17738,126,1.2,1 +17738,125,1.2.3,0 +17739,125,1.2.3,0 +17739,97,1.2,1 +17740,126,1.2,1 +17740,125,1.2.3,0 +17741,125,1.2.3,0 +17741,106,1.2,1 +17742,125,1.2.3,0 +17742,126,1.2,1 +17743,125,1.2.3,0 +17743,97,1.2,1 +17744,97,1.2,1 +17744,126,1.2,1 +17744,125,1.2.3,0 +17745,106,1.2,1 +17745,125,1.2.3,0 +17747,97,1.2,1 +17747,125,1.2.3,0 +17751,126,1.1,0 +17751,170,1,1 +17754,170,1,1 +17754,126,1.1,0 +17755,126,1.1,0 +17755,170,1,1 +17757,126,1.1,0 +17757,170,1,1 +17758,170,1,1 +17758,126,1.1,0 +17764,170,1,1 +17764,126,1.1,0 +17770,126,1.1,0 +17770,170,1,1 +17774,126,1.1,0 +17774,170,1,1 +17775,126,1.1,0 +17775,170,1,1 +17778,170,1,1 +17778,126,1.1,0 +17780,126,1.1,0 +17780,170,1,1 +17782,170,1,1 +17782,126,1.1,0 +17783,126,1.1,0 +17783,170,1,1 +17784,170,1,1 +17784,126,1.1,0 +17791,170,1,1 +17791,126,1.1,0 +17792,170,1,1 +17792,126,1.1,0 +17793,170,1,1 +17793,126,1.1,0 +17794,170,1,1 +17794,126,1.1,0 +17795,126,1.1,0 +17795,170,1,1 +17796,170,1,1 +17796,126,1.1,0 +17800,126,1.1,0 +17800,170,1,1 +17802,126,1.2,0 +17802,170,1,1 +17803,170,1,1 +17803,126,1.2,0 +17808,170,1,1 +17808,126,1.2,0 +17810,126,1.2,0 +17810,170,1,1 +17811,170,1,1 +17811,126,1.2,0 +17814,126,1.2,0 +17814,170,1,1 +17822,126,1.2,0 +17822,170,1,1 +17825,126,1.2,0 +17825,170,1,1 +17830,170,1,1 +17830,126,1.2,0 +17831,126,1.2,0 +17831,170,1,1 +17832,170,1,1 +17832,126,1.2,0 +17833,126,1.2,0 +17833,170,1,1 +17834,170,1,1 +17834,126,1.2,0 +17835,126,1.2,0 +17835,170,1,1 +17842,170,1,1 +17842,126,1.2,0 +17843,170,1,1 +17843,126,1.2,0 +17845,126,1.2,0 +17845,170,1,1 +17847,170,1,1 +17847,126,1.2,0 +17848,170,1,1 +17848,126,1.2,0 +17849,170,1,1 +17849,126,1.2,0 +17851,126,1.4,0 +17851,170,1,1 +17852,126,1.4,0 +17852,170,1,1 +17853,126,1.4,0 +17853,170,1,1 +17854,126,1.4,0 +17854,170,1,1 +17855,170,1,1 +17855,126,1.4,0 +17856,126,1.4,0 +17856,170,1,1 +17857,170,1,1 +17857,126,1.4,0 +17858,126,1.4,0 +17858,170,1,1 +17859,170,1,1 +17859,126,1.4,0 +17860,126,1.4,0 +17860,170,1,1 +17861,126,1.4,0 +17861,170,1,1 +17862,126,1.4,0 +17862,170,1,1 +17863,170,1,1 +17863,126,1.4,0 +17864,170,1,1 +17864,126,1.4,0 +17865,170,1,1 +17865,126,1.4,0 +17866,126,1.4,0 +17866,170,1,1 +17867,126,1.4,0 +17867,170,1,1 +17868,170,1,1 +17868,126,1.4,0 +17869,126,1.4,0 +17869,170,1,1 +17870,126,1.4,0 +17870,170,1,1 +17871,126,1.4,0 +17871,170,1,1 +17872,170,1,1 +17872,126,1.4,0 +17873,126,1.4,0 +17873,170,1,1 +17874,170,1,1 +17874,126,1.4,0 +17875,170,1,1 +17875,126,1.4,0 +17876,126,1.4,0 +17876,170,1,1 +17877,170,1,1 +17877,126,1.4,0 +17878,170,1,1 +17878,126,1.4,0 +17879,126,1.4,0 +17879,170,1,1 +17880,126,1.4,0 +17880,170,1,1 +17881,126,1.4,0 +17881,170,1,1 +17882,126,1.4,0 +17882,170,1,1 +17883,170,1,1 +17883,126,1.4,0 +17884,126,1.4,0 +17884,170,1,1 +17885,170,1,1 +17885,126,1.4,0 +17886,170,1,1 +17886,126,1.4,0 +17887,126,1.4,0 +17887,170,1,1 +17888,126,1.4,0 +17888,170,1,1 +17889,170,1,1 +17889,126,1.4,0 +17890,126,1.4,0 +17890,170,1,1 +17891,126,1.4,0 +17891,170,1,1 +17892,170,1,1 +17892,126,1.4,0 +17893,170,1,1 +17893,126,1.4,0 +17894,126,1.4,0 +17894,170,1,1 +17895,170,1,1 +17895,126,1.4,0 +17896,126,1.4,0 +17896,170,1,1 +17897,126,1.4,0 +17897,170,1,1 +17898,170,1,1 +17898,126,1.4,0 +17899,170,1,1 +17899,126,1.4,0 +17900,126,1.4,0 +17900,170,1,1 +17902,126,2.1.1.5,0 +17902,85,2.1.1,1 +17905,80,2.1.1,1 +17905,126,2.1.1.5,0 +17906,80,2.1.1,1 +17906,126,2.1.1.5,0 +17907,126,2.1.1.5,0 +17907,80,2.1.1,1 +17908,80,2.1.1,1 +17908,126,2.1.1.5,0 +17910,126,2.1.1.5,0 +17910,85,2.1.1,1 +17911,126,2.1.1.5,0 +17911,80,2.1.1,1 +17911,106,2.1.1,1 +17911,148,2.1.1,1 +17911,85,2.1.1,1 +17914,126,2.1.1.5,0 +17914,80,2.1.1,1 +17916,126,2.1.1.5,0 +17916,80,2.1.1,1 +17917,126,2.1.1.5,0 +17917,148,2.1.1,1 +17920,85,2.1.1,1 +17920,126,2.1.1.5,0 +17922,126,2.1.1.5,0 +17922,85,2.1.1,1 +17923,106,2.1.1,1 +17923,126,2.1.1.5,0 +17924,126,2.1.1.5,0 +17924,85,2.1.1,1 +17925,80,2.1.1,1 +17925,126,2.1.1.5,0 +17926,80,2.1.1,1 +17926,126,2.1.1.5,0 +17926,106,2.1.1,1 +17928,126,2.1.1.5,0 +17928,80,2.1.1,1 +17929,126,2.1.1.5,0 +17929,106,2.1.1,1 +17933,126,2.1.1.5,0 +17933,80,2.1.1,1 +17934,85,2.1.1,1 +17934,126,2.1.1.5,0 +17937,126,2.1.1.5,0 +17937,148,2.1.1,1 +17938,85,2.1.1,1 +17938,126,2.1.1.5,0 +17939,126,2.1.1.5,0 +17939,85,2.1.1,1 +17941,85,2.1.1,1 +17941,126,2.1.1.5,0 +17943,126,2.1.1.5,0 +17943,80,2.1.1,1 +17945,126,2.1.1.5,0 +17945,106,2.1.1,1 +17948,106,2.1.1,1 +17948,148,2.1.1,1 +17948,126,2.1.1.5,0 +17948,80,2.1.1,1 +17954,99,2.1,1 +17954,126,2.1.3,0 +17956,99,2.1,1 +17956,126,2.1.3,0 +17959,126,2.1.3,0 +17959,99,2.1,1 +17960,99,2.1,1 +17960,126,2.1.3,0 +17966,99,2.1,1 +17966,126,2.1.3,0 +17983,126,2.1.3,0 +17983,99,2.1,1 +17984,99,2.1,1 +17984,126,2.1.3,0 +17986,126,2.1.3,0 +17986,99,2.1,1 +17997,99,2.1,1 +17997,126,2.1.3,0 +18004,126,2.2,0 +18004,98,2,1 +18006,102,2,1 +18006,126,2.2,0 +18010,98,2,1 +18010,126,2.2,0 +18014,98,2,1 +18014,126,2.2,0 +18019,126,2.2,0 +18019,102,2,1 +18022,126,2.2,0 +18022,98,2,1 +18026,126,2.2,0 +18026,102,2,1 +18032,126,2.2,0 +18032,102,2,1 +18034,98,2,1 +18034,126,2.2,0 +18039,126,2.2,0 +18039,98,2,1 +18043,126,2.2,0 +18043,102,2,1 +18047,98,2,1 +18047,126,2.2,0 +18052,126,2.3,0 +18052,102,2,1 +18054,98,2,1 +18054,126,2.3,0 +18055,126,2.3,0 +18055,98,2,1 +18056,102,2,1 +18056,126,2.3,0 +18058,102,2,1 +18058,126,2.3,0 +18059,126,2.3,0 +18059,98,2,1 +18060,98,2,1 +18060,126,2.3,0 +18066,126,2.3,0 +18066,98,2,1 +18072,102,2,1 +18072,126,2.3,0 +18073,126,2.3,0 +18073,98,2,1 +18074,102,2,1 +18074,126,2.3,0 +18076,126,2.3,0 +18076,102,2,1 +18079,98,2,1 +18079,126,2.3,0 +18081,126,2.3,0 +18081,102,2,1 +18081,98,2,1 +18082,98,2,1 +18082,126,2.3,0 +18084,102,2,1 +18084,126,2.3,0 +18086,126,2.3,0 +18086,102,2,1 +18091,126,2.3,0 +18091,102,2,1 +18093,102,2,1 +18093,126,2.3,0 +18094,126,2.3,0 +18094,98,2,1 +18095,126,2.3,0 +18095,102,2,1 +18097,102,2,1 +18097,126,2.3,0 +18098,126,2.3,0 +18098,102,2,1 +18104,105,1.1,1 +18104,127,1.1.1,0 +18105,106,1.1,1 +18105,127,1.1.1,0 +18106,126,1.1,1 +18106,127,1.1.1,0 +18111,94,1.1,1 +18111,127,1.1.1,0 +18114,94,1.1,1 +18114,127,1.1.1,0 +18116,105,1.1,1 +18116,127,1.1.1,0 +18128,127,1.1.1,0 +18128,126,1.1,1 +18129,105,1.1,1 +18129,127,1.1.1,0 +18132,127,1.1.1,0 +18132,106,1.1,1 +18133,127,1.1.1,0 +18133,94,1.1,1 +18134,86,1.1,1 +18134,127,1.1.1,0 +18136,126,1.1,1 +18136,127,1.1.1,0 +18143,127,1.1.1,0 +18143,106,1.1,1 +18144,105,1.1,1 +18144,127,1.1.1,0 +18144,126,1.1,1 +18149,127,1.1.1,0 +18149,94,1.1,1 +18151,127,1.1.3,0 +18151,126,1.1,1 +18152,94,1.1,1 +18152,105,1.1,1 +18152,106,1.1,1 +18152,127,1.1.3,0 +18154,94,1.1,1 +18154,127,1.1.3,0 +18155,106,1.1,1 +18155,127,1.1.3,0 +18156,86,1.1,1 +18156,127,1.1.3,0 +18157,94,1.1,1 +18157,127,1.1.3,0 +18158,127,1.1.3,0 +18158,126,1.1,1 +18159,127,1.1.3,0 +18159,94,1.1,1 +18160,106,1.1,1 +18160,127,1.1.3,0 +18161,106,1.1,1 +18161,127,1.1.3,0 +18161,86,1.1,1 +18164,127,1.1.3,0 +18164,126,1.1,1 +18166,126,1.1,1 +18166,127,1.1.3,0 +18172,126,1.1,1 +18172,127,1.1.3,0 +18173,127,1.1.3,0 +18173,105,1.1,1 +18173,86,1.1,1 +18173,126,1.1,1 +18176,94,1.1,1 +18176,127,1.1.3,0 +18177,106,1.1,1 +18177,127,1.1.3,0 +18178,127,1.1.3,0 +18178,106,1.1,1 +18179,105,1.1,1 +18179,86,1.1,1 +18179,127,1.1.3,0 +18181,127,1.1.3,0 +18181,105,1.1,1 +18182,105,1.1,1 +18182,127,1.1.3,0 +18183,127,1.1.3,0 +18183,126,1.1,1 +18184,94,1.1,1 +18184,127,1.1.3,0 +18185,106,1.1,1 +18185,127,1.1.3,0 +18186,105,1.1,1 +18186,94,1.1,1 +18186,127,1.1.3,0 +18187,94,1.1,1 +18187,126,1.1,1 +18187,127,1.1.3,0 +18189,106,1.1,1 +18189,127,1.1.3,0 +18190,94,1.1,1 +18190,127,1.1.3,0 +18191,127,1.1.3,0 +18191,94,1.1,1 +18193,105,1.1,1 +18193,127,1.1.3,0 +18193,126,1.1,1 +18194,127,1.1.3,0 +18194,126,1.1,1 +18194,105,1.1,1 +18197,127,1.1.3,0 +18197,86,1.1,1 +18198,106,1.1,1 +18198,105,1.1,1 +18198,127,1.1.3,0 +18204,106,1.1,1 +18204,128,1.1.2,0 +18205,128,1.1.2,0 +18205,105,1.1,1 +18206,86,1.1,1 +18206,128,1.1.2,0 +18207,106,1.1,1 +18207,128,1.1.2,0 +18208,86,1.1,1 +18208,128,1.1.2,0 +18211,128,1.1.2,0 +18211,94,1.1,1 +18212,128,1.1.2,0 +18212,126,1.1,1 +18214,128,1.1.2,0 +18214,105,1.1,1 +18216,94,1.1,1 +18216,128,1.1.2,0 +18222,126,1.1,1 +18222,128,1.1.2,0 +18223,94,1.1,1 +18223,126,1.1,1 +18223,128,1.1.2,0 +18226,126,1.1,1 +18226,106,1.1,1 +18226,128,1.1.2,0 +18227,128,1.1.2,0 +18227,94,1.1,1 +18228,128,1.1.2,0 +18228,86,1.1,1 +18229,105,1.1,1 +18229,128,1.1.2,0 +18231,105,1.1,1 +18231,128,1.1.2,0 +18231,94,1.1,1 +18232,128,1.1.2,0 +18232,86,1.1,1 +18233,128,1.1.2,0 +18233,86,1.1,1 +18234,86,1.1,1 +18234,128,1.1.2,0 +18235,126,1.1,1 +18235,128,1.1.2,0 +18236,105,1.1,1 +18236,128,1.1.2,0 +18237,126,1.1,1 +18237,128,1.1.2,0 +18239,105,1.1,1 +18239,128,1.1.2,0 +18241,86,1.1,1 +18241,128,1.1.2,0 +18242,106,1.1,1 +18242,128,1.1.2,0 +18243,128,1.1.2,0 +18243,106,1.1,1 +18244,126,1.1,1 +18244,128,1.1.2,0 +18244,105,1.1,1 +18247,128,1.1.2,0 +18247,86,1.1,1 +18249,105,1.1,1 +18249,128,1.1.2,0 +18252,86,1.1,1 +18252,129,1.1.2,0 +18253,129,1.1.2,0 +18253,106,1.1,1 +18254,105,1.1,1 +18254,129,1.1.2,0 +18255,126,1.1,1 +18255,129,1.1.2,0 +18256,106,1.1,1 +18256,129,1.1.2,0 +18257,105,1.1,1 +18257,129,1.1.2,0 +18258,129,1.1.2,0 +18258,94,1.1,1 +18259,105,1.1,1 +18259,129,1.1.2,0 +18260,86,1.1,1 +18260,129,1.1.2,0 +18261,86,1.1,1 +18261,129,1.1.2,0 +18261,105,1.1,1 +18272,126,1.1,1 +18272,129,1.1.2,0 +18273,94,1.1,1 +18273,129,1.1.2,0 +18276,129,1.1.2,0 +18276,94,1.1,1 +18278,94,1.1,1 +18278,129,1.1.2,0 +18279,106,1.1,1 +18279,129,1.1.2,0 +18282,106,1.1,1 +18282,129,1.1.2,0 +18283,129,1.1.2,0 +18283,106,1.1,1 +18284,105,1.1,1 +18284,129,1.1.2,0 +18285,126,1.1,1 +18285,129,1.1.2,0 +18286,86,1.1,1 +18286,105,1.1,1 +18286,129,1.1.2,0 +18290,126,1.1,1 +18290,129,1.1.2,0 +18291,105,1.1,1 +18291,129,1.1.2,0 +18293,105,1.1,1 +18293,129,1.1.2,0 +18293,86,1.1,1 +18294,129,1.1.2,0 +18294,106,1.1,1 +18294,94,1.1,1 +18297,129,1.1.2,0 +18297,105,1.1,1 +18304,106,1.2,1 +18304,129,1.2.3,0 +18305,126,1.2,1 +18305,129,1.2.3,0 +18306,97,1.2,1 +18306,129,1.2.3,0 +18307,106,1.2,1 +18307,129,1.2.3,0 +18308,129,1.2.3,0 +18308,97,1.2,1 +18310,97,1.2,1 +18310,129,1.2.3,0 +18314,129,1.2.3,0 +18314,67,1.2,1 +18314,126,1.2,1 +18316,106,1.2,1 +18316,129,1.2.3,0 +18320,129,1.2.3,0 +18320,126,1.2,1 +18322,126,1.2,1 +18322,129,1.2.3,0 +18326,129,1.2.3,0 +18326,97,1.2,1 +18328,67,1.2,1 +18328,129,1.2.3,0 +18329,106,1.2,1 +18329,129,1.2.3,0 +18331,129,1.2.3,0 +18331,126,1.2,1 +18332,129,1.2.3,0 +18332,126,1.2,1 +18335,106,1.2,1 +18335,129,1.2.3,0 +18336,97,1.2,1 +18336,129,1.2.3,0 +18336,106,1.2,1 +18339,129,1.2.3,0 +18339,106,1.2,1 +18341,106,1.2,1 +18341,129,1.2.3,0 +18343,129,1.2.3,0 +18343,67,1.2,1 +18345,129,1.2.3,0 +18345,106,1.2,1 +18347,129,1.2.3,0 +18347,106,1.2,1 +18352,29,1.3,1 +18352,130,1.3.2,0 +18354,29,1.3,1 +18354,130,1.3.2,0 +18355,130,1.3.2,0 +18355,29,1.3,1 +18355,106,1.3,1 +18356,29,1.3,1 +18356,170,1,2 +18356,130,1.3.2,0 +18357,130,1.3.2,0 +18357,29,1.3,1 +18358,29,1.3,1 +18358,130,1.3.2,0 +18359,29,1.3,1 +18359,130,1.3.2,0 +18360,29,1.3,1 +18360,130,1.3.2,0 +18361,130,1.3.2,0 +18361,106,1.3,1 +18361,29,1.3,1 +18364,130,1.3.2,0 +18364,106,1.3,1 +18364,29,1.3,1 +18366,106,1.3,1 +18366,29,1.3,1 +18366,130,1.3.2,0 +18369,106,1.3,1 +18369,130,1.3.2,0 +18372,29,1.3,1 +18372,130,1.3.2,0 +18373,130,1.3.2,0 +18373,106,1.3,1 +18373,29,1.3,1 +18374,130,1.3.2,0 +18374,106,1.3,1 +18376,29,1.3,1 +18376,106,1.3,1 +18376,130,1.3.2,0 +18377,130,1.3.2,0 +18377,106,1.3,1 +18377,170,1,2 +18378,29,1.3,1 +18378,130,1.3.2,0 +18379,29,1.3,1 +18379,106,1.3,1 +18379,130,1.3.2,0 +18381,29,1.3,1 +18381,130,1.3.2,0 +18381,106,1.3,1 +18382,29,1.3,1 +18382,130,1.3.2,0 +18383,130,1.3.2,0 +18383,29,1.3,1 +18384,130,1.3.2,0 +18384,29,1.3,1 +18385,170,1,2 +18385,106,1.3,1 +18385,130,1.3.2,0 +18386,106,1.3,1 +18386,130,1.3.2,0 +18386,29,1.3,1 +18387,106,1.3,1 +18387,130,1.3.2,0 +18388,130,1.3.2,0 +18388,106,1.3,1 +18389,130,1.3.2,0 +18389,29,1.3,1 +18390,106,1.3,1 +18390,130,1.3.2,0 +18391,130,1.3.2,0 +18391,29,1.3,1 +18392,106,1.3,1 +18392,170,1,2 +18392,130,1.3.2,0 +18393,130,1.3.2,0 +18393,106,1.3,1 +18393,170,1,2 +18393,29,1.3,1 +18394,130,1.3.2,0 +18394,170,1,2 +18394,29,1.3,1 +18394,106,1.3,1 +18395,130,1.3.2,0 +18395,170,1,2 +18395,106,1.3,1 +18397,29,1.3,1 +18397,130,1.3.2,0 +18398,29,1.3,1 +18398,106,1.3,1 +18398,170,1,2 +18398,130,1.3.2,0 +18399,106,1.3,1 +18399,130,1.3.2,0 +18400,130,1.3.2,0 +18400,170,1,2 +18400,106,1.3,1 +18405,130,1.3.4.1,0 +18405,80,1.3.4,1 +18406,130,1.3.4.1,0 +18406,77,1.3.4,1 +18408,130,1.3.4.1,0 +18408,80,1.3.4,1 +18410,130,1.3.4.1,0 +18410,77,1.3.4,1 +18414,130,1.3.4.1,0 +18414,80,1.3.4,1 +18414,81,1.3.4,1 +18416,81,1.3.4,1 +18416,130,1.3.4.1,0 +18416,80,1.3.4,1 +18424,81,1.3.4,1 +18424,130,1.3.4.1,0 +18426,80,1.3.4,1 +18426,130,1.3.4.1,0 +18428,130,1.3.4.1,0 +18428,77,1.3.4,1 +18429,77,1.3.4,1 +18429,81,1.3.4,1 +18429,130,1.3.4.1,0 +18431,130,1.3.4.1,0 +18431,80,1.3.4,1 +18431,77,1.3.4,1 +18432,130,1.3.4.1,0 +18432,77,1.3.4,1 +18433,80,1.3.4,1 +18433,130,1.3.4.1,0 +18434,81,1.3.4,1 +18434,130,1.3.4.1,0 +18436,81,1.3.4,1 +18436,77,1.3.4,1 +18436,130,1.3.4.1,0 +18438,81,1.3.4,1 +18438,130,1.3.4.1,0 +18439,81,1.3.4,1 +18439,130,1.3.4.1,0 +18441,130,1.3.4.1,0 +18441,77,1.3.4,1 +18447,81,1.3.4,1 +18447,130,1.3.4.1,0 +18448,77,1.3.4,1 +18448,130,1.3.4.1,0 +18449,130,1.3.4.1,0 +18449,81,1.3.4,1 +18452,81,1.3.4,1 +18452,130,1.3.4.2,0 +18453,81,1.3.4,1 +18453,130,1.3.4.2,0 +18454,77,1.3.4,1 +18454,130,1.3.4.2,0 +18455,130,1.3.4.2,0 +18455,80,1.3.4,1 +18455,77,1.3.4,1 +18456,106,1.3,2 +18456,130,1.3.4.2,0 +18456,77,1.3.4,1 +18456,81,1.3.4,1 +18457,130,1.3.4.2,0 +18457,77,1.3.4,1 +18458,81,1.3.4,1 +18458,77,1.3.4,1 +18458,130,1.3.4.2,0 +18459,130,1.3.4.2,0 +18459,77,1.3.4,1 +18460,130,1.3.4.2,0 +18460,81,1.3.4,1 +18461,81,1.3.4,1 +18461,130,1.3.4.2,0 +18461,77,1.3.4,1 +18464,77,1.3.4,1 +18464,81,1.3.4,1 +18464,130,1.3.4.2,0 +18466,130,1.3.4.2,0 +18466,80,1.3.4,1 +18469,81,1.3.4,1 +18469,130,1.3.4.2,0 +18469,80,1.3.4,1 +18470,77,1.3.4,1 +18470,130,1.3.4.2,0 +18470,29,1.3,2 +18470,106,1.3,2 +18470,81,1.3.4,1 +18471,81,1.3.4,1 +18471,130,1.3.4.2,0 +18472,77,1.3.4,1 +18472,130,1.3.4.2,0 +18473,130,1.3.4.2,0 +18473,81,1.3.4,1 +18473,77,1.3.4,1 +18473,29,1.3,2 +18473,80,1.3.4,1 +18475,130,1.3.4.2,0 +18475,80,1.3.4,1 +18476,130,1.3.4.2,0 +18476,80,1.3.4,1 +18476,106,1.3,2 +18476,81,1.3.4,1 +18476,29,1.3,2 +18476,170,1,3 +18477,130,1.3.4.2,0 +18477,80,1.3.4,1 +18478,77,1.3.4,1 +18478,130,1.3.4.2,0 +18479,77,1.3.4,1 +18479,130,1.3.4.2,0 +18479,29,1.3,2 +18479,80,1.3.4,1 +18481,77,1.3.4,1 +18481,80,1.3.4,1 +18481,130,1.3.4.2,0 +18481,29,1.3,2 +18482,80,1.3.4,1 +18482,81,1.3.4,1 +18482,130,1.3.4.2,0 +18483,80,1.3.4,1 +18483,170,1,3 +18483,130,1.3.4.2,0 +18483,106,1.3,2 +18484,29,1.3,2 +18484,77,1.3.4,1 +18484,130,1.3.4.2,0 +18484,106,1.3,2 +18484,170,1,3 +18485,130,1.3.4.2,0 +18485,81,1.3.4,1 +18486,80,1.3.4,1 +18486,81,1.3.4,1 +18486,130,1.3.4.2,0 +18487,81,1.3.4,1 +18487,130,1.3.4.2,0 +18488,80,1.3.4,1 +18488,130,1.3.4.2,0 +18489,130,1.3.4.2,0 +18489,80,1.3.4,1 +18490,81,1.3.4,1 +18490,130,1.3.4.2,0 +18491,130,1.3.4.2,0 +18491,77,1.3.4,1 +18492,81,1.3.4,1 +18492,130,1.3.4.2,0 +18492,80,1.3.4,1 +18493,80,1.3.4,1 +18493,130,1.3.4.2,0 +18494,77,1.3.4,1 +18494,130,1.3.4.2,0 +18494,81,1.3.4,1 +18495,130,1.3.4.2,0 +18495,81,1.3.4,1 +18497,77,1.3.4,1 +18497,130,1.3.4.2,0 +18497,81,1.3.4,1 +18498,80,1.3.4,1 +18498,77,1.3.4,1 +18498,130,1.3.4.2,0 +18500,81,1.3.4,1 +18500,130,1.3.4.2,0 +18502,130,1.3.4.3,0 +18502,80,1.3.4,1 +18503,80,1.3.4,1 +18503,81,1.3.4,1 +18503,130,1.3.4.3,0 +18504,80,1.3.4,1 +18504,130,1.3.4.3,0 +18505,130,1.3.4.3,0 +18505,77,1.3.4,1 +18506,81,1.3.4,1 +18506,130,1.3.4.3,0 +18507,77,1.3.4,1 +18507,130,1.3.4.3,0 +18507,81,1.3.4,1 +18508,106,1.3,2 +18508,81,1.3.4,1 +18508,77,1.3.4,1 +18508,130,1.3.4.3,0 +18509,130,1.3.4.3,0 +18509,77,1.3.4,1 +18510,130,1.3.4.3,0 +18510,77,1.3.4,1 +18511,130,1.3.4.3,0 +18511,80,1.3.4,1 +18511,81,1.3.4,1 +18511,77,1.3.4,1 +18514,77,1.3.4,1 +18514,130,1.3.4.3,0 +18514,81,1.3.4,1 +18516,80,1.3.4,1 +18516,29,1.3,2 +18516,77,1.3.4,1 +18516,130,1.3.4.3,0 +18519,130,1.3.4.3,0 +18519,80,1.3.4,1 +18520,80,1.3.4,1 +18520,130,1.3.4.3,0 +18521,130,1.3.4.3,0 +18521,106,1.3,2 +18521,80,1.3.4,1 +18522,81,1.3.4,1 +18522,77,1.3.4,1 +18522,130,1.3.4.3,0 +18523,29,1.3,2 +18523,77,1.3.4,1 +18523,130,1.3.4.3,0 +18523,80,1.3.4,1 +18524,130,1.3.4.3,0 +18524,81,1.3.4,1 +18526,130,1.3.4.3,0 +18526,81,1.3.4,1 +18527,130,1.3.4.3,0 +18527,80,1.3.4,1 +18528,77,1.3.4,1 +18528,106,1.3,2 +18528,29,1.3,2 +18528,130,1.3.4.3,0 +18529,80,1.3.4,1 +18529,77,1.3.4,1 +18529,130,1.3.4.3,0 +18531,80,1.3.4,1 +18531,81,1.3.4,1 +18531,130,1.3.4.3,0 +18532,130,1.3.4.3,0 +18532,80,1.3.4,1 +18532,77,1.3.4,1 +18533,130,1.3.4.3,0 +18533,77,1.3.4,1 +18534,130,1.3.4.3,0 +18534,81,1.3.4,1 +18535,130,1.3.4.3,0 +18535,81,1.3.4,1 +18536,77,1.3.4,1 +18536,81,1.3.4,1 +18536,130,1.3.4.3,0 +18537,81,1.3.4,1 +18537,130,1.3.4.3,0 +18539,81,1.3.4,1 +18539,130,1.3.4.3,0 +18540,81,1.3.4,1 +18540,130,1.3.4.3,0 +18541,81,1.3.4,1 +18541,130,1.3.4.3,0 +18541,106,1.3,2 +18541,77,1.3.4,1 +18541,29,1.3,2 +18542,130,1.3.4.3,0 +18542,81,1.3.4,1 +18543,80,1.3.4,1 +18543,77,1.3.4,1 +18543,130,1.3.4.3,0 +18544,130,1.3.4.3,0 +18544,77,1.3.4,1 +18544,80,1.3.4,1 +18547,77,1.3.4,1 +18547,130,1.3.4.3,0 +18547,81,1.3.4,1 +18548,80,1.3.4,1 +18548,130,1.3.4.3,0 +18548,77,1.3.4,1 +18549,130,1.3.4.3,0 +18549,81,1.3.4,1 +18551,130,1.3.5,0 +18551,29,1.3,1 +18551,106,1.3,1 +18551,170,1,2 +18552,29,1.3,1 +18552,106,1.3,1 +18552,170,1,2 +18552,130,1.3.5,0 +18553,29,1.3,1 +18553,106,1.3,1 +18553,170,1,2 +18553,130,1.3.5,0 +18554,106,1.3,1 +18554,170,1,2 +18554,29,1.3,1 +18554,130,1.3.5,0 +18555,106,1.3,1 +18555,29,1.3,1 +18555,130,1.3.5,0 +18555,170,1,2 +18556,29,1.3,1 +18556,170,1,2 +18556,130,1.3.5,0 +18556,106,1.3,1 +18557,106,1.3,1 +18557,29,1.3,1 +18557,130,1.3.5,0 +18557,170,1,2 +18558,29,1.3,1 +18558,106,1.3,1 +18558,170,1,2 +18558,130,1.3.5,0 +18559,170,1,2 +18559,130,1.3.5,0 +18559,29,1.3,1 +18559,106,1.3,1 +18560,29,1.3,1 +18560,170,1,2 +18560,106,1.3,1 +18560,130,1.3.5,0 +18561,130,1.3.5,0 +18561,106,1.3,1 +18561,170,1,2 +18561,29,1.3,1 +18562,170,1,2 +18562,130,1.3.5,0 +18562,106,1.3,1 +18562,29,1.3,1 +18563,29,1.3,1 +18563,106,1.3,1 +18563,170,1,2 +18563,130,1.3.5,0 +18564,130,1.3.5,0 +18564,170,1,2 +18564,106,1.3,1 +18564,29,1.3,1 +18565,29,1.3,1 +18565,130,1.3.5,0 +18565,106,1.3,1 +18565,170,1,2 +18566,29,1.3,1 +18566,106,1.3,1 +18566,170,1,2 +18566,130,1.3.5,0 +18567,106,1.3,1 +18567,170,1,2 +18567,29,1.3,1 +18567,130,1.3.5,0 +18568,106,1.3,1 +18568,29,1.3,1 +18568,170,1,2 +18568,130,1.3.5,0 +18569,130,1.3.5,0 +18569,29,1.3,1 +18569,106,1.3,1 +18569,170,1,2 +18570,29,1.3,1 +18570,170,1,2 +18570,106,1.3,1 +18570,130,1.3.5,0 +18571,170,1,2 +18571,130,1.3.5,0 +18571,106,1.3,1 +18571,29,1.3,1 +18572,29,1.3,1 +18572,106,1.3,1 +18572,130,1.3.5,0 +18572,170,1,2 +18573,130,1.3.5,0 +18573,106,1.3,1 +18573,170,1,2 +18573,29,1.3,1 +18574,106,1.3,1 +18574,29,1.3,1 +18574,170,1,2 +18574,130,1.3.5,0 +18575,106,1.3,1 +18575,29,1.3,1 +18575,130,1.3.5,0 +18575,170,1,2 +18576,106,1.3,1 +18576,170,1,2 +18576,29,1.3,1 +18576,130,1.3.5,0 +18577,130,1.3.5,0 +18577,106,1.3,1 +18577,170,1,2 +18577,29,1.3,1 +18578,130,1.3.5,0 +18578,106,1.3,1 +18578,170,1,2 +18578,29,1.3,1 +18579,130,1.3.5,0 +18579,29,1.3,1 +18579,106,1.3,1 +18579,170,1,2 +18580,130,1.3.5,0 +18580,106,1.3,1 +18580,29,1.3,1 +18580,170,1,2 +18581,130,1.3.5,0 +18581,106,1.3,1 +18581,29,1.3,1 +18581,170,1,2 +18582,130,1.3.5,0 +18582,29,1.3,1 +18582,170,1,2 +18582,106,1.3,1 +18583,130,1.3.5,0 +18583,29,1.3,1 +18583,170,1,2 +18583,106,1.3,1 +18584,106,1.3,1 +18584,170,1,2 +18584,29,1.3,1 +18584,130,1.3.5,0 +18585,130,1.3.5,0 +18585,106,1.3,1 +18585,170,1,2 +18585,29,1.3,1 +18586,170,1,2 +18586,106,1.3,1 +18586,29,1.3,1 +18586,130,1.3.5,0 +18587,106,1.3,1 +18587,29,1.3,1 +18587,130,1.3.5,0 +18587,170,1,2 +18588,106,1.3,1 +18588,130,1.3.5,0 +18588,170,1,2 +18588,29,1.3,1 +18589,130,1.3.5,0 +18589,29,1.3,1 +18589,170,1,2 +18589,106,1.3,1 +18590,29,1.3,1 +18590,106,1.3,1 +18590,130,1.3.5,0 +18590,170,1,2 +18591,130,1.3.5,0 +18591,170,1,2 +18591,106,1.3,1 +18591,29,1.3,1 +18592,130,1.3.5,0 +18592,106,1.3,1 +18592,170,1,2 +18592,29,1.3,1 +18593,29,1.3,1 +18593,130,1.3.5,0 +18593,106,1.3,1 +18593,170,1,2 +18594,130,1.3.5,0 +18594,170,1,2 +18594,29,1.3,1 +18594,106,1.3,1 +18595,130,1.3.5,0 +18595,29,1.3,1 +18595,170,1,2 +18595,106,1.3,1 +18596,130,1.3.5,0 +18596,106,1.3,1 +18596,29,1.3,1 +18596,170,1,2 +18597,29,1.3,1 +18597,130,1.3.5,0 +18597,170,1,2 +18597,106,1.3,1 +18598,29,1.3,1 +18598,106,1.3,1 +18598,170,1,2 +18598,130,1.3.5,0 +18599,130,1.3.5,0 +18599,29,1.3,1 +18599,170,1,2 +18599,106,1.3,1 +18600,130,1.3.5,0 +18600,29,1.3,1 +18600,170,1,2 +18600,106,1.3,1 +18606,85,2.1.1,1 +18606,131,2.1.1.1,0 +18607,106,2.1.1,1 +18607,131,2.1.1.1,0 +18608,131,2.1.1.1,0 +18608,80,2.1.1,1 +18610,131,2.1.1.1,0 +18610,148,2.1.1,1 +18611,106,2.1.1,1 +18611,131,2.1.1.1,0 +18614,106,2.1.1,1 +18614,131,2.1.1.1,0 +18622,131,2.1.1.1,0 +18622,148,2.1.1,1 +18624,148,2.1.1,1 +18624,131,2.1.1.1,0 +18626,148,2.1.1,1 +18626,131,2.1.1.1,0 +18627,85,2.1.1,1 +18627,131,2.1.1.1,0 +18628,131,2.1.1.1,0 +18628,85,2.1.1,1 +18631,131,2.1.1.1,0 +18631,85,2.1.1,1 +18633,131,2.1.1.1,0 +18633,85,2.1.1,1 +18636,148,2.1.1,1 +18636,131,2.1.1.1,0 +18636,85,2.1.1,1 +18640,131,2.1.1.1,0 +18640,148,2.1.1,1 +18641,131,2.1.1.1,0 +18641,148,2.1.1,1 +18644,80,2.1.1,1 +18644,131,2.1.1.1,0 +18645,148,2.1.1,1 +18645,131,2.1.1.1,0 +18654,85,2.1.1,1 +18654,131,2.1.1.2,0 +18656,148,2.1.1,1 +18656,131,2.1.1.2,0 +18660,131,2.1.1.2,0 +18660,148,2.1.1,1 +18664,131,2.1.1.2,0 +18664,148,2.1.1,1 +18666,85,2.1.1,1 +18666,131,2.1.1.2,0 +18666,106,2.1.1,1 +18670,148,2.1.1,1 +18670,131,2.1.1.2,0 +18672,131,2.1.1.2,0 +18672,106,2.1.1,1 +18681,131,2.1.1.2,0 +18681,106,2.1.1,1 +18682,131,2.1.1.2,0 +18682,80,2.1.1,1 +18683,131,2.1.1.2,0 +18683,85,2.1.1,1 +18684,131,2.1.1.2,0 +18684,85,2.1.1,1 +18685,85,2.1.1,1 +18685,106,2.1.1,1 +18685,131,2.1.1.2,0 +18687,131,2.1.1.2,0 +18687,106,2.1.1,1 +18694,106,2.1.1,1 +18694,131,2.1.1.2,0 +18697,85,2.1.1,1 +18697,131,2.1.1.2,0 +18702,131,2.1.1.3,0 +18702,106,2.1.1,1 +18704,80,2.1.1,1 +18704,131,2.1.1.3,0 +18705,131,2.1.1.3,0 +18705,85,2.1.1,1 +18706,148,2.1.1,1 +18706,131,2.1.1.3,0 +18707,131,2.1.1.3,0 +18707,85,2.1.1,1 +18709,80,2.1.1,1 +18709,131,2.1.1.3,0 +18710,131,2.1.1.3,0 +18710,148,2.1.1,1 +18711,106,2.1.1,1 +18711,85,2.1.1,1 +18711,131,2.1.1.3,0 +18716,131,2.1.1.3,0 +18716,106,2.1.1,1 +18720,85,2.1.1,1 +18720,131,2.1.1.3,0 +18722,131,2.1.1.3,0 +18722,85,2.1.1,1 +18723,148,2.1.1,1 +18723,106,2.1.1,1 +18723,131,2.1.1.3,0 +18726,80,2.1.1,1 +18726,131,2.1.1.3,0 +18728,131,2.1.1.3,0 +18728,106,2.1.1,1 +18729,131,2.1.1.3,0 +18729,85,2.1.1,1 +18732,131,2.1.1.3,0 +18732,148,2.1.1,1 +18733,131,2.1.1.3,0 +18733,85,2.1.1,1 +18734,80,2.1.1,1 +18734,131,2.1.1.3,0 +18736,80,2.1.1,1 +18736,131,2.1.1.3,0 +18736,85,2.1.1,1 +18744,80,2.1.1,1 +18744,148,2.1.1,1 +18744,131,2.1.1.3,0 +18748,106,2.1.1,1 +18748,148,2.1.1,1 +18748,131,2.1.1.3,0 +18749,148,2.1.1,1 +18749,131,2.1.1.3,0 +18755,131,2.1.1.4,0 +18755,80,2.1.1,1 +18756,85,2.1.1,1 +18756,131,2.1.1.4,0 +18757,131,2.1.1.4,0 +18757,80,2.1.1,1 +18758,85,2.1.1,1 +18758,131,2.1.1.4,0 +18760,131,2.1.1.4,0 +18760,106,2.1.1,1 +18761,85,2.1.1,1 +18761,148,2.1.1,1 +18761,131,2.1.1.4,0 +18766,131,2.1.1.4,0 +18766,106,2.1.1,1 +18770,148,2.1.1,1 +18770,131,2.1.1.4,0 +18772,80,2.1.1,1 +18772,131,2.1.1.4,0 +18776,106,2.1.1,1 +18776,80,2.1.1,1 +18776,131,2.1.1.4,0 +18779,131,2.1.1.4,0 +18779,106,2.1.1,1 +18779,148,2.1.1,1 +18781,131,2.1.1.4,0 +18781,85,2.1.1,1 +18783,85,2.1.1,1 +18783,131,2.1.1.4,0 +18784,85,2.1.1,1 +18784,131,2.1.1.4,0 +18786,131,2.1.1.4,0 +18786,106,2.1.1,1 +18789,131,2.1.1.4,0 +18789,148,2.1.1,1 +18793,80,2.1.1,1 +18793,131,2.1.1.4,0 +18799,106,2.1.1,1 +18799,131,2.1.1.4,0 +18804,148,2.1.1,1 +18804,131,2.1.1.5,0 +18805,148,2.1.1,1 +18805,131,2.1.1.5,0 +18808,131,2.1.1.5,0 +18808,148,2.1.1,1 +18809,131,2.1.1.5,0 +18809,85,2.1.1,1 +18814,106,2.1.1,1 +18814,131,2.1.1.5,0 +18814,80,2.1.1,1 +18814,85,2.1.1,1 +18816,131,2.1.1.5,0 +18816,148,2.1.1,1 +18823,131,2.1.1.5,0 +18823,85,2.1.1,1 +18834,80,2.1.1,1 +18834,131,2.1.1.5,0 +18836,131,2.1.1.5,0 +18836,80,2.1.1,1 +18836,106,2.1.1,1 +18837,131,2.1.1.5,0 +18837,148,2.1.1,1 +18844,106,2.1.1,1 +18844,148,2.1.1,1 +18844,131,2.1.1.5,0 +18847,85,2.1.1,1 +18847,131,2.1.1.5,0 +18848,131,2.1.1.5,0 +18848,80,2.1.1,1 +18852,132,1.3.3.2,0 +18852,97,1.3.3,1 +18855,132,1.3.3.2,0 +18855,99,1.3.3,1 +18856,132,1.3.3.2,0 +18856,75,1.3.3,1 +18857,97,1.3.3,1 +18857,132,1.3.3.2,0 +18858,75,1.3.3,1 +18858,132,1.3.3.2,0 +18860,97,1.3.3,1 +18860,132,1.3.3.2,0 +18861,75,1.3.3,1 +18861,132,1.3.3.2,0 +18864,132,1.3.3.2,0 +18864,97,1.3.3,1 +18866,132,1.3.3.2,0 +18866,97,1.3.3,1 +18869,132,1.3.3.2,0 +18869,99,1.3.3,1 +18870,75,1.3.3,1 +18870,132,1.3.3.2,0 +18872,132,1.3.3.2,0 +18872,75,1.3.3,1 +18873,99,1.3.3,1 +18873,132,1.3.3.2,0 +18876,132,1.3.3.2,0 +18876,75,1.3.3,1 +18878,75,1.3.3,1 +18878,132,1.3.3.2,0 +18879,132,1.3.3.2,0 +18879,97,1.3.3,1 +18882,75,1.3.3,1 +18882,132,1.3.3.2,0 +18883,75,1.3.3,1 +18883,132,1.3.3.2,0 +18884,75,1.3.3,1 +18884,132,1.3.3.2,0 +18886,99,1.3.3,1 +18886,132,1.3.3.2,0 +18890,99,1.3.3,1 +18890,132,1.3.3.2,0 +18891,97,1.3.3,1 +18891,132,1.3.3.2,0 +18892,132,1.3.3.2,0 +18892,99,1.3.3,1 +18893,75,1.3.3,1 +18893,132,1.3.3.2,0 +18894,132,1.3.3.2,0 +18894,97,1.3.3,1 +18895,132,1.3.3.2,0 +18895,97,1.3.3,1 +18897,132,1.3.3.2,0 +18897,75,1.3.3,1 +18902,157,1.4.1,1 +18902,133,1.4.1.3,0 +18903,157,1.4.1,1 +18903,133,1.4.1.3,0 +18908,133,1.4.1.3,0 +18908,157,1.4.1,1 +18914,133,1.4.1.3,0 +18914,157,1.4.1,1 +18923,133,1.4.1.3,0 +18923,157,1.4.1,1 +18925,157,1.4.1,1 +18925,133,1.4.1.3,0 +18928,133,1.4.1.3,0 +18928,157,1.4.1,1 +18929,157,1.4.1,1 +18929,133,1.4.1.3,0 +18931,157,1.4.1,1 +18931,133,1.4.1.3,0 +18933,157,1.4.1,1 +18933,133,1.4.1.3,0 +18934,133,1.4.1.3,0 +18934,157,1.4.1,1 +18936,133,1.4.1.3,0 +18936,157,1.4.1,1 +18943,133,1.4.1.3,0 +18943,157,1.4.1,1 +18944,157,1.4.1,1 +18944,133,1.4.1.3,0 +18951,133,1.4.4.1,0 +18951,40,1.4.4,1 +18952,0,1.4.4,1 +18952,133,1.4.4.1,0 +18953,133,1.4.4.1,0 +18953,0,1.4.4,1 +18954,133,1.4.4.1,0 +18954,0,1.4.4,1 +18955,40,1.4.4,1 +18955,133,1.4.4.1,0 +18955,0,1.4.4,1 +18956,133,1.4.4.1,0 +18956,0,1.4.4,1 +18957,133,1.4.4.1,0 +18957,0,1.4.4,1 +18958,40,1.4.4,1 +18958,133,1.4.4.1,0 +18959,40,1.4.4,1 +18959,133,1.4.4.1,0 +18960,0,1.4.4,1 +18960,133,1.4.4.1,0 +18960,126,1.4,2 +18961,40,1.4.4,1 +18961,133,1.4.4.1,0 +18961,0,1.4.4,1 +18964,0,1.4.4,1 +18964,133,1.4.4.1,0 +18964,40,1.4.4,1 +18966,133,1.4.4.1,0 +18966,40,1.4.4,1 +18969,40,1.4.4,1 +18969,133,1.4.4.1,0 +18969,126,1.4,2 +18970,133,1.4.4.1,0 +18970,0,1.4.4,1 +18971,133,1.4.4.1,0 +18971,40,1.4.4,1 +18972,133,1.4.4.1,0 +18972,0,1.4.4,1 +18973,0,1.4.4,1 +18973,133,1.4.4.1,0 +18973,40,1.4.4,1 +18974,40,1.4.4,1 +18974,133,1.4.4.1,0 +18976,0,1.4.4,1 +18976,133,1.4.4.1,0 +18978,0,1.4.4,1 +18978,133,1.4.4.1,0 +18979,0,1.4.4,1 +18979,40,1.4.4,1 +18979,133,1.4.4.1,0 +18981,40,1.4.4,1 +18981,133,1.4.4.1,0 +18982,0,1.4.4,1 +18982,133,1.4.4.1,0 +18983,0,1.4.4,1 +18983,133,1.4.4.1,0 +18984,133,1.4.4.1,0 +18984,0,1.4.4,1 +18986,40,1.4.4,1 +18986,133,1.4.4.1,0 +18989,40,1.4.4,1 +18989,133,1.4.4.1,0 +18990,133,1.4.4.1,0 +18990,40,1.4.4,1 +18991,133,1.4.4.1,0 +18991,0,1.4.4,1 +18991,126,1.4,2 +18992,133,1.4.4.1,0 +18992,40,1.4.4,1 +18992,0,1.4.4,1 +18993,133,1.4.4.1,0 +18993,40,1.4.4,1 +18993,0,1.4.4,1 +18994,40,1.4.4,1 +18994,133,1.4.4.1,0 +18995,133,1.4.4.1,0 +18995,40,1.4.4,1 +18996,40,1.4.4,1 +18996,133,1.4.4.1,0 +18997,133,1.4.4.1,0 +18997,40,1.4.4,1 +18998,133,1.4.4.1,0 +18998,40,1.4.4,1 +19000,40,1.4.4,1 +19000,133,1.4.4.1,0 +19002,29,1.3,2 +19002,134,1.3.3.5,0 +19002,97,1.3.3,1 +19002,99,1.3.3,1 +19004,134,1.3.3.5,0 +19004,99,1.3.3,1 +19005,97,1.3.3,1 +19005,75,1.3.3,1 +19005,134,1.3.3.5,0 +19006,97,1.3.3,1 +19006,134,1.3.3.5,0 +19007,99,1.3.3,1 +19007,134,1.3.3.5,0 +19008,75,1.3.3,1 +19008,134,1.3.3.5,0 +19009,106,1.3,2 +19009,134,1.3.3.5,0 +19009,75,1.3.3,1 +19010,134,1.3.3.5,0 +19010,75,1.3.3,1 +19011,99,1.3.3,1 +19011,134,1.3.3.5,0 +19011,97,1.3.3,1 +19011,75,1.3.3,1 +19014,97,1.3.3,1 +19014,134,1.3.3.5,0 +19016,99,1.3.3,1 +19016,134,1.3.3.5,0 +19022,97,1.3.3,1 +19022,134,1.3.3.5,0 +19023,134,1.3.3.5,0 +19023,99,1.3.3,1 +19026,134,1.3.3.5,0 +19026,97,1.3.3,1 +19028,134,1.3.3.5,0 +19028,75,1.3.3,1 +19029,75,1.3.3,1 +19029,134,1.3.3.5,0 +19031,134,1.3.3.5,0 +19031,75,1.3.3,1 +19032,75,1.3.3,1 +19032,134,1.3.3.5,0 +19033,75,1.3.3,1 +19033,134,1.3.3.5,0 +19034,97,1.3.3,1 +19034,134,1.3.3.5,0 +19035,134,1.3.3.5,0 +19035,99,1.3.3,1 +19036,99,1.3.3,1 +19036,75,1.3.3,1 +19036,134,1.3.3.5,0 +19037,134,1.3.3.5,0 +19037,99,1.3.3,1 +19039,99,1.3.3,1 +19039,134,1.3.3.5,0 +19040,134,1.3.3.5,0 +19040,97,1.3.3,1 +19041,134,1.3.3.5,0 +19041,99,1.3.3,1 +19042,99,1.3.3,1 +19042,134,1.3.3.5,0 +19043,134,1.3.3.5,0 +19043,75,1.3.3,1 +19044,75,1.3.3,1 +19044,134,1.3.3.5,0 +19044,97,1.3.3,1 +19047,134,1.3.3.5,0 +19047,75,1.3.3,1 +19048,97,1.3.3,1 +19048,99,1.3.3,1 +19048,134,1.3.3.5,0 +19049,99,1.3.3,1 +19049,134,1.3.3.5,0 +19052,94,1.1,1 +19052,105,1.1,1 +19052,135,1.1.3,0 +19054,86,1.1,1 +19054,135,1.1.3,0 +19055,126,1.1,1 +19055,135,1.1.3,0 +19056,126,1.1,1 +19056,135,1.1.3,0 +19057,135,1.1.3,0 +19057,86,1.1,1 +19058,106,1.1,1 +19058,135,1.1.3,0 +19059,135,1.1.3,0 +19059,105,1.1,1 +19060,135,1.1.3,0 +19060,126,1.1,1 +19061,135,1.1.3,0 +19061,105,1.1,1 +19062,135,1.1.3,0 +19062,126,1.1,1 +19064,106,1.1,1 +19064,135,1.1.3,0 +19064,105,1.1,1 +19064,86,1.1,1 +19064,170,1,2 +19066,135,1.1.3,0 +19066,126,1.1,1 +19072,105,1.1,1 +19072,135,1.1.3,0 +19078,94,1.1,1 +19078,135,1.1.3,0 +19081,135,1.1.3,0 +19081,106,1.1,1 +19082,135,1.1.3,0 +19082,94,1.1,1 +19083,86,1.1,1 +19083,135,1.1.3,0 +19084,86,1.1,1 +19084,135,1.1.3,0 +19086,105,1.1,1 +19086,135,1.1.3,0 +19088,106,1.1,1 +19088,135,1.1.3,0 +19089,135,1.1.3,0 +19089,94,1.1,1 +19091,135,1.1.3,0 +19091,86,1.1,1 +19091,126,1.1,1 +19093,135,1.1.3,0 +19093,94,1.1,1 +19094,94,1.1,1 +19094,135,1.1.3,0 +19094,86,1.1,1 +19097,135,1.1.3,0 +19097,94,1.1,1 +19098,106,1.1,1 +19098,135,1.1.3,0 +19099,126,1.1,1 +19099,135,1.1.3,0 +19101,170,1,3 +19101,58,1.3.2,1 +19101,130,1.3.2,1 +19101,29,1.3,2 +19101,106,1.3,2 +19101,135,1.3.2.1,0 +19102,29,1.3,2 +19102,135,1.3.2.1,0 +19102,170,1,3 +19102,106,1.3,2 +19102,58,1.3.2,1 +19102,130,1.3.2,1 +19103,170,1,3 +19103,130,1.3.2,1 +19103,29,1.3,2 +19103,58,1.3.2,1 +19103,106,1.3,2 +19103,135,1.3.2.1,0 +19104,58,1.3.2,1 +19104,130,1.3.2,1 +19104,135,1.3.2.1,0 +19104,29,1.3,2 +19104,170,1,3 +19104,106,1.3,2 +19105,135,1.3.2.1,0 +19105,106,1.3,2 +19105,130,1.3.2,1 +19105,58,1.3.2,1 +19105,29,1.3,2 +19105,170,1,3 +19106,130,1.3.2,1 +19106,135,1.3.2.1,0 +19106,29,1.3,2 +19106,106,1.3,2 +19106,58,1.3.2,1 +19106,170,1,3 +19107,170,1,3 +19107,130,1.3.2,1 +19107,29,1.3,2 +19107,58,1.3.2,1 +19107,106,1.3,2 +19107,135,1.3.2.1,0 +19108,130,1.3.2,1 +19108,135,1.3.2.1,0 +19108,106,1.3,2 +19108,58,1.3.2,1 +19108,170,1,3 +19108,29,1.3,2 +19109,135,1.3.2.1,0 +19109,130,1.3.2,1 +19109,170,1,3 +19109,29,1.3,2 +19109,58,1.3.2,1 +19109,106,1.3,2 +19110,130,1.3.2,1 +19110,29,1.3,2 +19110,135,1.3.2.1,0 +19110,58,1.3.2,1 +19110,106,1.3,2 +19110,170,1,3 +19111,29,1.3,2 +19111,170,1,3 +19111,58,1.3.2,1 +19111,135,1.3.2.1,0 +19111,106,1.3,2 +19111,130,1.3.2,1 +19112,58,1.3.2,1 +19112,135,1.3.2.1,0 +19112,130,1.3.2,1 +19112,29,1.3,2 +19112,106,1.3,2 +19112,170,1,3 +19113,106,1.3,2 +19113,130,1.3.2,1 +19113,170,1,3 +19113,135,1.3.2.1,0 +19113,29,1.3,2 +19113,58,1.3.2,1 +19114,130,1.3.2,1 +19114,135,1.3.2.1,0 +19114,170,1,3 +19114,106,1.3,2 +19114,58,1.3.2,1 +19114,29,1.3,2 +19115,135,1.3.2.1,0 +19115,170,1,3 +19115,29,1.3,2 +19115,130,1.3.2,1 +19115,58,1.3.2,1 +19115,106,1.3,2 +19116,29,1.3,2 +19116,135,1.3.2.1,0 +19116,106,1.3,2 +19116,58,1.3.2,1 +19116,170,1,3 +19116,130,1.3.2,1 +19117,29,1.3,2 +19117,106,1.3,2 +19117,135,1.3.2.1,0 +19117,170,1,3 +19117,58,1.3.2,1 +19117,130,1.3.2,1 +19118,130,1.3.2,1 +19118,29,1.3,2 +19118,170,1,3 +19118,106,1.3,2 +19118,135,1.3.2.1,0 +19118,58,1.3.2,1 +19119,130,1.3.2,1 +19119,58,1.3.2,1 +19119,29,1.3,2 +19119,135,1.3.2.1,0 +19119,106,1.3,2 +19119,170,1,3 +19120,29,1.3,2 +19120,170,1,3 +19120,135,1.3.2.1,0 +19120,130,1.3.2,1 +19120,58,1.3.2,1 +19120,106,1.3,2 +19121,170,1,3 +19121,135,1.3.2.1,0 +19121,106,1.3,2 +19121,130,1.3.2,1 +19121,29,1.3,2 +19121,58,1.3.2,1 +19122,106,1.3,2 +19122,29,1.3,2 +19122,130,1.3.2,1 +19122,58,1.3.2,1 +19122,170,1,3 +19122,135,1.3.2.1,0 +19123,135,1.3.2.1,0 +19123,106,1.3,2 +19123,58,1.3.2,1 +19123,29,1.3,2 +19123,170,1,3 +19123,130,1.3.2,1 +19124,130,1.3.2,1 +19124,106,1.3,2 +19124,29,1.3,2 +19124,58,1.3.2,1 +19124,135,1.3.2.1,0 +19124,170,1,3 +19125,58,1.3.2,1 +19125,170,1,3 +19125,135,1.3.2.1,0 +19125,106,1.3,2 +19125,29,1.3,2 +19125,130,1.3.2,1 +19126,130,1.3.2,1 +19126,106,1.3,2 +19126,58,1.3.2,1 +19126,29,1.3,2 +19126,135,1.3.2.1,0 +19126,170,1,3 +19127,58,1.3.2,1 +19127,135,1.3.2.1,0 +19127,106,1.3,2 +19127,170,1,3 +19127,29,1.3,2 +19127,130,1.3.2,1 +19128,29,1.3,2 +19128,170,1,3 +19128,130,1.3.2,1 +19128,106,1.3,2 +19128,58,1.3.2,1 +19128,135,1.3.2.1,0 +19129,58,1.3.2,1 +19129,135,1.3.2.1,0 +19129,170,1,3 +19129,29,1.3,2 +19129,106,1.3,2 +19129,130,1.3.2,1 +19130,58,1.3.2,1 +19130,170,1,3 +19130,29,1.3,2 +19130,106,1.3,2 +19130,130,1.3.2,1 +19130,135,1.3.2.1,0 +19131,130,1.3.2,1 +19131,106,1.3,2 +19131,170,1,3 +19131,58,1.3.2,1 +19131,135,1.3.2.1,0 +19131,29,1.3,2 +19132,29,1.3,2 +19132,106,1.3,2 +19132,130,1.3.2,1 +19132,58,1.3.2,1 +19132,135,1.3.2.1,0 +19132,170,1,3 +19133,29,1.3,2 +19133,106,1.3,2 +19133,170,1,3 +19133,135,1.3.2.1,0 +19133,130,1.3.2,1 +19133,58,1.3.2,1 +19134,106,1.3,2 +19134,58,1.3.2,1 +19134,29,1.3,2 +19134,135,1.3.2.1,0 +19134,170,1,3 +19134,130,1.3.2,1 +19135,130,1.3.2,1 +19135,170,1,3 +19135,29,1.3,2 +19135,106,1.3,2 +19135,135,1.3.2.1,0 +19135,58,1.3.2,1 +19136,106,1.3,2 +19136,58,1.3.2,1 +19136,135,1.3.2.1,0 +19136,170,1,3 +19136,29,1.3,2 +19136,130,1.3.2,1 +19137,106,1.3,2 +19137,130,1.3.2,1 +19137,58,1.3.2,1 +19137,135,1.3.2.1,0 +19137,29,1.3,2 +19137,170,1,3 +19138,58,1.3.2,1 +19138,106,1.3,2 +19138,29,1.3,2 +19138,170,1,3 +19138,130,1.3.2,1 +19138,135,1.3.2.1,0 +19139,29,1.3,2 +19139,135,1.3.2.1,0 +19139,58,1.3.2,1 +19139,130,1.3.2,1 +19139,170,1,3 +19139,106,1.3,2 +19140,170,1,3 +19140,58,1.3.2,1 +19140,135,1.3.2.1,0 +19140,29,1.3,2 +19140,106,1.3,2 +19140,130,1.3.2,1 +19141,170,1,3 +19141,29,1.3,2 +19141,106,1.3,2 +19141,135,1.3.2.1,0 +19141,130,1.3.2,1 +19141,58,1.3.2,1 +19142,58,1.3.2,1 +19142,170,1,3 +19142,130,1.3.2,1 +19142,135,1.3.2.1,0 +19142,29,1.3,2 +19142,106,1.3,2 +19143,29,1.3,2 +19143,106,1.3,2 +19143,170,1,3 +19143,130,1.3.2,1 +19143,135,1.3.2.1,0 +19143,58,1.3.2,1 +19144,170,1,3 +19144,29,1.3,2 +19144,130,1.3.2,1 +19144,135,1.3.2.1,0 +19144,106,1.3,2 +19144,58,1.3.2,1 +19145,29,1.3,2 +19145,135,1.3.2.1,0 +19145,170,1,3 +19145,130,1.3.2,1 +19145,106,1.3,2 +19145,58,1.3.2,1 +19146,29,1.3,2 +19146,170,1,3 +19146,106,1.3,2 +19146,58,1.3.2,1 +19146,130,1.3.2,1 +19146,135,1.3.2.1,0 +19147,170,1,3 +19147,58,1.3.2,1 +19147,130,1.3.2,1 +19147,106,1.3,2 +19147,135,1.3.2.1,0 +19147,29,1.3,2 +19148,29,1.3,2 +19148,106,1.3,2 +19148,170,1,3 +19148,58,1.3.2,1 +19148,130,1.3.2,1 +19148,135,1.3.2.1,0 +19149,58,1.3.2,1 +19149,135,1.3.2.1,0 +19149,170,1,3 +19149,106,1.3,2 +19149,29,1.3,2 +19149,130,1.3.2,1 +19150,170,1,3 +19150,58,1.3.2,1 +19150,106,1.3,2 +19150,135,1.3.2.1,0 +19150,130,1.3.2,1 +19150,29,1.3,2 +19152,135,1.3.4.1,0 +19152,80,1.3.4,1 +19153,135,1.3.4.1,0 +19153,81,1.3.4,1 +19154,77,1.3.4,1 +19154,135,1.3.4.1,0 +19158,77,1.3.4,1 +19158,135,1.3.4.1,0 +19159,81,1.3.4,1 +19159,135,1.3.4.1,0 +19160,135,1.3.4.1,0 +19160,77,1.3.4,1 +19161,81,1.3.4,1 +19161,135,1.3.4.1,0 +19164,135,1.3.4.1,0 +19164,81,1.3.4,1 +19166,135,1.3.4.1,0 +19166,81,1.3.4,1 +19170,77,1.3.4,1 +19170,135,1.3.4.1,0 +19171,81,1.3.4,1 +19171,135,1.3.4.1,0 +19172,81,1.3.4,1 +19172,135,1.3.4.1,0 +19173,135,1.3.4.1,0 +19173,80,1.3.4,1 +19176,135,1.3.4.1,0 +19176,77,1.3.4,1 +19177,80,1.3.4,1 +19177,135,1.3.4.1,0 +19178,80,1.3.4,1 +19178,135,1.3.4.1,0 +19182,135,1.3.4.1,0 +19182,77,1.3.4,1 +19182,80,1.3.4,1 +19183,77,1.3.4,1 +19183,135,1.3.4.1,0 +19184,80,1.3.4,1 +19184,135,1.3.4.1,0 +19185,81,1.3.4,1 +19185,135,1.3.4.1,0 +19191,80,1.3.4,1 +19191,135,1.3.4.1,0 +19193,80,1.3.4,1 +19193,135,1.3.4.1,0 +19194,135,1.3.4.1,0 +19194,80,1.3.4,1 +19195,135,1.3.4.1,0 +19195,80,1.3.4,1 +19201,135,2.1.3.1,0 +19201,126,2.1.3,1 +19202,135,2.1.3.1,0 +19202,73,2.1.3,1 +19204,74,2.1.3,1 +19204,135,2.1.3.1,0 +19205,148,2.1.3,1 +19205,135,2.1.3.1,0 +19205,73,2.1.3,1 +19205,74,2.1.3,1 +19206,97,2.1.3,1 +19206,135,2.1.3.1,0 +19207,135,2.1.3.1,0 +19207,74,2.1.3,1 +19208,97,2.1.3,1 +19208,135,2.1.3.1,0 +19208,148,2.1.3,1 +19209,135,2.1.3.1,0 +19209,73,2.1.3,1 +19210,126,2.1.3,1 +19210,73,2.1.3,1 +19210,108,2.1.3,1 +19210,135,2.1.3.1,0 +19211,135,2.1.3.1,0 +19211,73,2.1.3,1 +19213,148,2.1.3,1 +19213,135,2.1.3.1,0 +19214,135,2.1.3.1,0 +19214,97,2.1.3,1 +19216,135,2.1.3.1,0 +19216,148,2.1.3,1 +19216,73,2.1.3,1 +19216,108,2.1.3,1 +19217,135,2.1.3.1,0 +19217,108,2.1.3,1 +19219,135,2.1.3.1,0 +19219,148,2.1.3,1 +19219,126,2.1.3,1 +19219,108,2.1.3,1 +19220,148,2.1.3,1 +19220,135,2.1.3.1,0 +19222,135,2.1.3.1,0 +19222,108,2.1.3,1 +19223,74,2.1.3,1 +19223,73,2.1.3,1 +19223,135,2.1.3.1,0 +19223,97,2.1.3,1 +19224,106,2.1.3,1 +19224,73,2.1.3,1 +19224,135,2.1.3.1,0 +19225,108,2.1.3,1 +19225,148,2.1.3,1 +19225,135,2.1.3.1,0 +19225,73,2.1.3,1 +19226,148,2.1.3,1 +19226,126,2.1.3,1 +19226,135,2.1.3.1,0 +19227,97,2.1.3,1 +19227,135,2.1.3.1,0 +19227,148,2.1.3,1 +19228,73,2.1.3,1 +19228,135,2.1.3.1,0 +19229,135,2.1.3.1,0 +19229,97,2.1.3,1 +19229,106,2.1.3,1 +19230,135,2.1.3.1,0 +19230,126,2.1.3,1 +19231,148,2.1.3,1 +19231,135,2.1.3.1,0 +19231,73,2.1.3,1 +19232,135,2.1.3.1,0 +19232,106,2.1.3,1 +19233,135,2.1.3.1,0 +19233,73,2.1.3,1 +19234,74,2.1.3,1 +19234,135,2.1.3.1,0 +19235,74,2.1.3,1 +19235,135,2.1.3.1,0 +19235,106,2.1.3,1 +19236,106,2.1.3,1 +19236,74,2.1.3,1 +19236,135,2.1.3.1,0 +19236,126,2.1.3,1 +19236,108,2.1.3,1 +19238,135,2.1.3.1,0 +19238,108,2.1.3,1 +19239,135,2.1.3.1,0 +19239,73,2.1.3,1 +19240,126,2.1.3,1 +19240,106,2.1.3,1 +19240,135,2.1.3.1,0 +19240,74,2.1.3,1 +19241,97,2.1.3,1 +19241,135,2.1.3.1,0 +19242,135,2.1.3.1,0 +19242,126,2.1.3,1 +19242,108,2.1.3,1 +19243,74,2.1.3,1 +19243,135,2.1.3.1,0 +19243,97,2.1.3,1 +19244,74,2.1.3,1 +19244,148,2.1.3,1 +19244,135,2.1.3.1,0 +19244,97,2.1.3,1 +19245,135,2.1.3.1,0 +19245,74,2.1.3,1 +19247,135,2.1.3.1,0 +19247,74,2.1.3,1 +19247,108,2.1.3,1 +19248,135,2.1.3.1,0 +19248,73,2.1.3,1 +19248,74,2.1.3,1 +19250,108,2.1.3,1 +19250,135,2.1.3.1,0 +19251,126,2.1.3,1 +19251,135,2.1.3.2,0 +19252,73,2.1.3,1 +19252,135,2.1.3.2,0 +19253,135,2.1.3.2,0 +19253,108,2.1.3,1 +19253,126,2.1.3,1 +19254,106,2.1.3,1 +19254,135,2.1.3.2,0 +19254,148,2.1.3,1 +19255,106,2.1.3,1 +19255,135,2.1.3.2,0 +19255,97,2.1.3,1 +19256,74,2.1.3,1 +19256,135,2.1.3.2,0 +19257,135,2.1.3.2,0 +19257,74,2.1.3,1 +19258,135,2.1.3.2,0 +19258,73,2.1.3,1 +19259,73,2.1.3,1 +19259,135,2.1.3.2,0 +19260,108,2.1.3,1 +19260,135,2.1.3.2,0 +19260,74,2.1.3,1 +19261,74,2.1.3,1 +19261,126,2.1.3,1 +19261,135,2.1.3.2,0 +19261,97,2.1.3,1 +19261,73,2.1.3,1 +19262,97,2.1.3,1 +19262,135,2.1.3.2,0 +19262,148,2.1.3,1 +19264,73,2.1.3,1 +19264,135,2.1.3.2,0 +19264,148,2.1.3,1 +19264,97,2.1.3,1 +19264,126,2.1.3,1 +19266,135,2.1.3.2,0 +19266,106,2.1.3,1 +19267,135,2.1.3.2,0 +19267,106,2.1.3,1 +19269,135,2.1.3.2,0 +19269,126,2.1.3,1 +19270,126,2.1.3,1 +19270,135,2.1.3.2,0 +19270,74,2.1.3,1 +19270,106,2.1.3,1 +19271,135,2.1.3.2,0 +19271,108,2.1.3,1 +19272,73,2.1.3,1 +19272,108,2.1.3,1 +19272,148,2.1.3,1 +19272,135,2.1.3.2,0 +19273,106,2.1.3,1 +19273,73,2.1.3,1 +19273,135,2.1.3.2,0 +19273,126,2.1.3,1 +19273,74,2.1.3,1 +19274,106,2.1.3,1 +19274,135,2.1.3.2,0 +19275,73,2.1.3,1 +19275,148,2.1.3,1 +19275,135,2.1.3.2,0 +19276,73,2.1.3,1 +19276,74,2.1.3,1 +19276,135,2.1.3.2,0 +19276,148,2.1.3,1 +19277,126,2.1.3,1 +19277,135,2.1.3.2,0 +19278,73,2.1.3,1 +19278,135,2.1.3.2,0 +19279,135,2.1.3.2,0 +19279,106,2.1.3,1 +19280,135,2.1.3.2,0 +19280,148,2.1.3,1 +19281,135,2.1.3.2,0 +19281,73,2.1.3,1 +19281,106,2.1.3,1 +19282,135,2.1.3.2,0 +19282,108,2.1.3,1 +19282,106,2.1.3,1 +19283,106,2.1.3,1 +19283,135,2.1.3.2,0 +19284,135,2.1.3.2,0 +19284,108,2.1.3,1 +19284,73,2.1.3,1 +19285,97,2.1.3,1 +19285,126,2.1.3,1 +19285,148,2.1.3,1 +19285,135,2.1.3.2,0 +19286,106,2.1.3,1 +19286,135,2.1.3.2,0 +19286,97,2.1.3,1 +19286,108,2.1.3,1 +19288,135,2.1.3.2,0 +19288,97,2.1.3,1 +19289,106,2.1.3,1 +19289,135,2.1.3.2,0 +19289,73,2.1.3,1 +19290,126,2.1.3,1 +19290,106,2.1.3,1 +19290,135,2.1.3.2,0 +19290,74,2.1.3,1 +19291,73,2.1.3,1 +19291,135,2.1.3.2,0 +19291,106,2.1.3,1 +19292,135,2.1.3.2,0 +19292,126,2.1.3,1 +19293,108,2.1.3,1 +19293,135,2.1.3.2,0 +19293,106,2.1.3,1 +19294,135,2.1.3.2,0 +19294,148,2.1.3,1 +19295,135,2.1.3.2,0 +19295,74,2.1.3,1 +19297,135,2.1.3.2,0 +19297,148,2.1.3,1 +19297,108,2.1.3,1 +19298,106,2.1.3,1 +19298,108,2.1.3,1 +19298,126,2.1.3,1 +19298,135,2.1.3.2,0 +19299,74,2.1.3,1 +19299,108,2.1.3,1 +19299,148,2.1.3,1 +19299,135,2.1.3.2,0 +19301,135,2.1.3.3,0 +19301,126,2.1.3,1 +19302,135,2.1.3.3,0 +19302,106,2.1.3,1 +19302,148,2.1.3,1 +19303,106,2.1.3,1 +19303,97,2.1.3,1 +19303,135,2.1.3.3,0 +19303,74,2.1.3,1 +19303,73,2.1.3,1 +19303,148,2.1.3,1 +19304,106,2.1.3,1 +19304,74,2.1.3,1 +19304,135,2.1.3.3,0 +19305,108,2.1.3,1 +19305,135,2.1.3.3,0 +19305,106,2.1.3,1 +19306,74,2.1.3,1 +19306,126,2.1.3,1 +19306,135,2.1.3.3,0 +19307,135,2.1.3.3,0 +19307,73,2.1.3,1 +19307,108,2.1.3,1 +19308,135,2.1.3.3,0 +19308,74,2.1.3,1 +19309,135,2.1.3.3,0 +19309,73,2.1.3,1 +19310,97,2.1.3,1 +19310,135,2.1.3.3,0 +19311,135,2.1.3.3,0 +19311,74,2.1.3,1 +19311,108,2.1.3,1 +19312,148,2.1.3,1 +19312,135,2.1.3.3,0 +19314,73,2.1.3,1 +19314,135,2.1.3.3,0 +19314,148,2.1.3,1 +19314,97,2.1.3,1 +19316,135,2.1.3.3,0 +19316,106,2.1.3,1 +19316,148,2.1.3,1 +19317,135,2.1.3.3,0 +19317,126,2.1.3,1 +19319,135,2.1.3.3,0 +19319,108,2.1.3,1 +19319,73,2.1.3,1 +19319,106,2.1.3,1 +19319,148,2.1.3,1 +19320,97,2.1.3,1 +19320,135,2.1.3.3,0 +19321,148,2.1.3,1 +19321,135,2.1.3.3,0 +19321,108,2.1.3,1 +19322,97,2.1.3,1 +19322,135,2.1.3.3,0 +19323,148,2.1.3,1 +19323,106,2.1.3,1 +19323,73,2.1.3,1 +19323,135,2.1.3.3,0 +19324,148,2.1.3,1 +19324,135,2.1.3.3,0 +19326,126,2.1.3,1 +19326,106,2.1.3,1 +19326,135,2.1.3.3,0 +19327,106,2.1.3,1 +19327,135,2.1.3.3,0 +19328,73,2.1.3,1 +19328,135,2.1.3.3,0 +19329,135,2.1.3.3,0 +19329,73,2.1.3,1 +19329,108,2.1.3,1 +19330,135,2.1.3.3,0 +19330,148,2.1.3,1 +19330,108,2.1.3,1 +19331,135,2.1.3.3,0 +19331,74,2.1.3,1 +19332,74,2.1.3,1 +19332,135,2.1.3.3,0 +19333,97,2.1.3,1 +19333,135,2.1.3.3,0 +19334,73,2.1.3,1 +19334,135,2.1.3.3,0 +19335,106,2.1.3,1 +19335,97,2.1.3,1 +19335,135,2.1.3.3,0 +19336,74,2.1.3,1 +19336,148,2.1.3,1 +19336,135,2.1.3.3,0 +19336,108,2.1.3,1 +19337,97,2.1.3,1 +19337,135,2.1.3.3,0 +19338,135,2.1.3.3,0 +19338,126,2.1.3,1 +19339,126,2.1.3,1 +19339,74,2.1.3,1 +19339,135,2.1.3.3,0 +19340,135,2.1.3.3,0 +19340,148,2.1.3,1 +19340,126,2.1.3,1 +19341,135,2.1.3.3,0 +19341,97,2.1.3,1 +19342,126,2.1.3,1 +19342,135,2.1.3.3,0 +19343,148,2.1.3,1 +19343,135,2.1.3.3,0 +19343,73,2.1.3,1 +19343,97,2.1.3,1 +19344,74,2.1.3,1 +19344,73,2.1.3,1 +19344,135,2.1.3.3,0 +19347,135,2.1.3.3,0 +19347,73,2.1.3,1 +19347,148,2.1.3,1 +19348,106,2.1.3,1 +19348,99,2.1,2 +19348,74,2.1.3,1 +19348,73,2.1.3,1 +19348,135,2.1.3.3,0 +19349,126,2.1.3,1 +19349,135,2.1.3.3,0 +19350,74,2.1.3,1 +19350,148,2.1.3,1 +19350,108,2.1.3,1 +19350,135,2.1.3.3,0 +19352,73,2.1.3,1 +19352,97,2.1.3,1 +19352,74,2.1.3,1 +19352,135,2.1.3.4,0 +19352,148,2.1.3,1 +19353,135,2.1.3.4,0 +19353,108,2.1.3,1 +19353,148,2.1.3,1 +19354,74,2.1.3,1 +19354,135,2.1.3.4,0 +19355,148,2.1.3,1 +19355,97,2.1.3,1 +19355,135,2.1.3.4,0 +19355,106,2.1.3,1 +19356,108,2.1.3,1 +19356,135,2.1.3.4,0 +19356,148,2.1.3,1 +19356,74,2.1.3,1 +19357,135,2.1.3.4,0 +19357,106,2.1.3,1 +19358,148,2.1.3,1 +19358,126,2.1.3,1 +19358,73,2.1.3,1 +19358,135,2.1.3.4,0 +19358,97,2.1.3,1 +19359,135,2.1.3.4,0 +19359,73,2.1.3,1 +19360,73,2.1.3,1 +19360,108,2.1.3,1 +19360,135,2.1.3.4,0 +19360,106,2.1.3,1 +19361,135,2.1.3.4,0 +19361,74,2.1.3,1 +19361,97,2.1.3,1 +19364,106,2.1.3,1 +19364,97,2.1.3,1 +19364,108,2.1.3,1 +19364,135,2.1.3.4,0 +19364,126,2.1.3,1 +19364,73,2.1.3,1 +19366,135,2.1.3.4,0 +19366,97,2.1.3,1 +19366,148,2.1.3,1 +19366,73,2.1.3,1 +19366,106,2.1.3,1 +19369,73,2.1.3,1 +19369,126,2.1.3,1 +19369,108,2.1.3,1 +19369,106,2.1.3,1 +19369,135,2.1.3.4,0 +19370,73,2.1.3,1 +19370,135,2.1.3.4,0 +19372,108,2.1.3,1 +19372,126,2.1.3,1 +19372,74,2.1.3,1 +19372,135,2.1.3.4,0 +19373,126,2.1.3,1 +19373,106,2.1.3,1 +19373,135,2.1.3.4,0 +19373,97,2.1.3,1 +19376,126,2.1.3,1 +19376,135,2.1.3.4,0 +19376,74,2.1.3,1 +19376,108,2.1.3,1 +19376,73,2.1.3,1 +19377,135,2.1.3.4,0 +19377,148,2.1.3,1 +19378,73,2.1.3,1 +19378,135,2.1.3.4,0 +19379,135,2.1.3.4,0 +19379,148,2.1.3,1 +19381,148,2.1.3,1 +19381,135,2.1.3.4,0 +19381,106,2.1.3,1 +19381,97,2.1.3,1 +19382,74,2.1.3,1 +19382,135,2.1.3.4,0 +19383,135,2.1.3.4,0 +19383,73,2.1.3,1 +19384,73,2.1.3,1 +19384,108,2.1.3,1 +19384,135,2.1.3.4,0 +19384,148,2.1.3,1 +19385,97,2.1.3,1 +19385,135,2.1.3.4,0 +19386,74,2.1.3,1 +19386,135,2.1.3.4,0 +19386,108,2.1.3,1 +19388,135,2.1.3.4,0 +19388,74,2.1.3,1 +19389,126,2.1.3,1 +19389,106,2.1.3,1 +19389,135,2.1.3.4,0 +19389,73,2.1.3,1 +19390,135,2.1.3.4,0 +19390,148,2.1.3,1 +19391,135,2.1.3.4,0 +19391,74,2.1.3,1 +19392,97,2.1.3,1 +19392,106,2.1.3,1 +19392,135,2.1.3.4,0 +19393,73,2.1.3,1 +19393,135,2.1.3.4,0 +19393,97,2.1.3,1 +19394,74,2.1.3,1 +19394,73,2.1.3,1 +19394,135,2.1.3.4,0 +19395,108,2.1.3,1 +19395,135,2.1.3.4,0 +19397,106,2.1.3,1 +19397,135,2.1.3.4,0 +19397,108,2.1.3,1 +19397,74,2.1.3,1 +19397,126,2.1.3,1 +19398,135,2.1.3.4,0 +19398,106,2.1.3,1 +19398,73,2.1.3,1 +19398,74,2.1.3,1 +19399,135,2.1.3.4,0 +19399,126,2.1.3,1 +19399,106,2.1.3,1 +19400,106,2.1.3,1 +19400,135,2.1.3.4,0 +19400,126,2.1.3,1 +19401,135,2.1.3.5,0 +19401,108,2.1.3,1 +19404,73,2.1.3,1 +19404,97,2.1.3,1 +19404,135,2.1.3.5,0 +19405,148,2.1.3,1 +19405,108,2.1.3,1 +19405,135,2.1.3.5,0 +19406,73,2.1.3,1 +19406,135,2.1.3.5,0 +19407,126,2.1.3,1 +19407,135,2.1.3.5,0 +19407,73,2.1.3,1 +19407,108,2.1.3,1 +19408,135,2.1.3.5,0 +19408,74,2.1.3,1 +19409,135,2.1.3.5,0 +19409,73,2.1.3,1 +19410,135,2.1.3.5,0 +19410,73,2.1.3,1 +19410,108,2.1.3,1 +19411,126,2.1.3,1 +19411,135,2.1.3.5,0 +19411,73,2.1.3,1 +19411,97,2.1.3,1 +19412,97,2.1.3,1 +19412,135,2.1.3.5,0 +19412,108,2.1.3,1 +19414,135,2.1.3.5,0 +19414,148,2.1.3,1 +19416,135,2.1.3.5,0 +19416,73,2.1.3,1 +19416,97,2.1.3,1 +19416,148,2.1.3,1 +19417,135,2.1.3.5,0 +19417,126,2.1.3,1 +19419,135,2.1.3.5,0 +19419,108,2.1.3,1 +19420,148,2.1.3,1 +19420,73,2.1.3,1 +19420,135,2.1.3.5,0 +19421,108,2.1.3,1 +19421,148,2.1.3,1 +19421,135,2.1.3.5,0 +19422,126,2.1.3,1 +19422,97,2.1.3,1 +19422,135,2.1.3.5,0 +19423,108,2.1.3,1 +19423,135,2.1.3.5,0 +19423,73,2.1.3,1 +19423,148,2.1.3,1 +19424,73,2.1.3,1 +19424,135,2.1.3.5,0 +19424,74,2.1.3,1 +19425,148,2.1.3,1 +19425,135,2.1.3.5,0 +19426,73,2.1.3,1 +19426,135,2.1.3.5,0 +19426,97,2.1.3,1 +19427,135,2.1.3.5,0 +19427,148,2.1.3,1 +19428,135,2.1.3.5,0 +19428,74,2.1.3,1 +19429,135,2.1.3.5,0 +19429,97,2.1.3,1 +19429,74,2.1.3,1 +19430,135,2.1.3.5,0 +19430,126,2.1.3,1 +19431,135,2.1.3.5,0 +19431,74,2.1.3,1 +19431,126,2.1.3,1 +19432,135,2.1.3.5,0 +19432,97,2.1.3,1 +19433,97,2.1.3,1 +19433,135,2.1.3.5,0 +19434,108,2.1.3,1 +19434,135,2.1.3.5,0 +19435,126,2.1.3,1 +19435,135,2.1.3.5,0 +19436,73,2.1.3,1 +19436,108,2.1.3,1 +19436,135,2.1.3.5,0 +19436,106,2.1.3,1 +19439,135,2.1.3.5,0 +19439,108,2.1.3,1 +19439,97,2.1.3,1 +19440,106,2.1.3,1 +19440,74,2.1.3,1 +19440,148,2.1.3,1 +19440,108,2.1.3,1 +19440,135,2.1.3.5,0 +19440,97,2.1.3,1 +19441,135,2.1.3.5,0 +19441,106,2.1.3,1 +19441,74,2.1.3,1 +19442,135,2.1.3.5,0 +19442,126,2.1.3,1 +19442,73,2.1.3,1 +19442,74,2.1.3,1 +19443,135,2.1.3.5,0 +19443,97,2.1.3,1 +19443,106,2.1.3,1 +19444,106,2.1.3,1 +19444,108,2.1.3,1 +19444,135,2.1.3.5,0 +19445,135,2.1.3.5,0 +19445,97,2.1.3,1 +19447,73,2.1.3,1 +19447,148,2.1.3,1 +19447,135,2.1.3.5,0 +19448,148,2.1.3,1 +19448,97,2.1.3,1 +19448,135,2.1.3.5,0 +19449,108,2.1.3,1 +19449,148,2.1.3,1 +19449,97,2.1.3,1 +19449,135,2.1.3.5,0 +19449,126,2.1.3,1 +19450,108,2.1.3,1 +19450,135,2.1.3.5,0 +19450,74,2.1.3,1 +19450,106,2.1.3,1 +19452,135,2.1.3.6,0 +19452,108,2.1.3,1 +19452,106,2.1.3,1 +19455,135,2.1.3.6,0 +19455,148,2.1.3,1 +19455,97,2.1.3,1 +19457,126,2.1.3,1 +19457,135,2.1.3.6,0 +19458,135,2.1.3.6,0 +19458,148,2.1.3,1 +19459,106,2.1.3,1 +19459,135,2.1.3.6,0 +19460,108,2.1.3,1 +19460,135,2.1.3.6,0 +19460,74,2.1.3,1 +19461,73,2.1.3,1 +19461,135,2.1.3.6,0 +19464,135,2.1.3.6,0 +19464,126,2.1.3,1 +19464,74,2.1.3,1 +19464,148,2.1.3,1 +19464,108,2.1.3,1 +19466,135,2.1.3.6,0 +19466,74,2.1.3,1 +19466,126,2.1.3,1 +19467,135,2.1.3.6,0 +19467,148,2.1.3,1 +19469,148,2.1.3,1 +19469,135,2.1.3.6,0 +19470,97,2.1.3,1 +19470,135,2.1.3.6,0 +19471,148,2.1.3,1 +19471,126,2.1.3,1 +19471,135,2.1.3.6,0 +19472,108,2.1.3,1 +19472,135,2.1.3.6,0 +19472,73,2.1.3,1 +19472,148,2.1.3,1 +19473,106,2.1.3,1 +19473,108,2.1.3,1 +19473,135,2.1.3.6,0 +19473,148,2.1.3,1 +19478,73,2.1.3,1 +19478,135,2.1.3.6,0 +19479,97,2.1.3,1 +19479,73,2.1.3,1 +19479,135,2.1.3.6,0 +19481,135,2.1.3.6,0 +19481,74,2.1.3,1 +19482,135,2.1.3.6,0 +19482,73,2.1.3,1 +19483,135,2.1.3.6,0 +19483,148,2.1.3,1 +19484,106,2.1.3,1 +19484,73,2.1.3,1 +19484,135,2.1.3.6,0 +19485,97,2.1.3,1 +19485,135,2.1.3.6,0 +19486,148,2.1.3,1 +19486,108,2.1.3,1 +19486,135,2.1.3.6,0 +19487,135,2.1.3.6,0 +19487,74,2.1.3,1 +19488,106,2.1.3,1 +19488,135,2.1.3.6,0 +19489,135,2.1.3.6,0 +19489,74,2.1.3,1 +19489,108,2.1.3,1 +19490,135,2.1.3.6,0 +19490,97,2.1.3,1 +19491,97,2.1.3,1 +19491,135,2.1.3.6,0 +19492,106,2.1.3,1 +19492,135,2.1.3.6,0 +19492,108,2.1.3,1 +19492,97,2.1.3,1 +19493,73,2.1.3,1 +19493,135,2.1.3.6,0 +19493,97,2.1.3,1 +19494,126,2.1.3,1 +19494,135,2.1.3.6,0 +19494,97,2.1.3,1 +19495,135,2.1.3.6,0 +19495,97,2.1.3,1 +19497,135,2.1.3.6,0 +19497,73,2.1.3,1 +19498,126,2.1.3,1 +19498,135,2.1.3.6,0 +19498,97,2.1.3,1 +19499,108,2.1.3,1 +19499,135,2.1.3.6,0 +19500,126,2.1.3,1 +19500,148,2.1.3,1 +19500,135,2.1.3.6,0 +19500,97,2.1.3,1 +19500,106,2.1.3,1 +19502,74,2.1.3,1 +19502,148,2.1.3,1 +19502,135,2.1.3.7,0 +19502,108,2.1.3,1 +19503,135,2.1.3.7,0 +19503,108,2.1.3,1 +19504,73,2.1.3,1 +19504,135,2.1.3.7,0 +19505,74,2.1.3,1 +19505,108,2.1.3,1 +19505,135,2.1.3.7,0 +19505,73,2.1.3,1 +19506,126,2.1.3,1 +19506,135,2.1.3.7,0 +19507,135,2.1.3.7,0 +19507,74,2.1.3,1 +19507,148,2.1.3,1 +19508,135,2.1.3.7,0 +19508,106,2.1.3,1 +19509,135,2.1.3.7,0 +19509,97,2.1.3,1 +19510,135,2.1.3.7,0 +19510,73,2.1.3,1 +19510,108,2.1.3,1 +19510,126,2.1.3,1 +19511,126,2.1.3,1 +19511,135,2.1.3.7,0 +19511,73,2.1.3,1 +19511,108,2.1.3,1 +19511,97,2.1.3,1 +19512,135,2.1.3.7,0 +19512,108,2.1.3,1 +19512,106,2.1.3,1 +19514,135,2.1.3.7,0 +19514,148,2.1.3,1 +19514,108,2.1.3,1 +19514,126,2.1.3,1 +19516,135,2.1.3.7,0 +19516,106,2.1.3,1 +19516,97,2.1.3,1 +19516,74,2.1.3,1 +19517,108,2.1.3,1 +19517,135,2.1.3.7,0 +19519,135,2.1.3.7,0 +19519,74,2.1.3,1 +19519,73,2.1.3,1 +19519,97,2.1.3,1 +19519,108,2.1.3,1 +19519,106,2.1.3,1 +19520,148,2.1.3,1 +19520,135,2.1.3.7,0 +19520,108,2.1.3,1 +19521,135,2.1.3.7,0 +19521,148,2.1.3,1 +19522,73,2.1.3,1 +19522,135,2.1.3.7,0 +19523,99,2.1,2 +19523,73,2.1.3,1 +19523,135,2.1.3.7,0 +19523,97,2.1.3,1 +19523,74,2.1.3,1 +19524,97,2.1.3,1 +19524,135,2.1.3.7,0 +19524,73,2.1.3,1 +19525,73,2.1.3,1 +19525,135,2.1.3.7,0 +19526,148,2.1.3,1 +19526,135,2.1.3.7,0 +19526,73,2.1.3,1 +19526,97,2.1.3,1 +19527,106,2.1.3,1 +19527,135,2.1.3.7,0 +19528,97,2.1.3,1 +19528,135,2.1.3.7,0 +19529,135,2.1.3.7,0 +19529,74,2.1.3,1 +19529,108,2.1.3,1 +19530,108,2.1.3,1 +19530,148,2.1.3,1 +19530,126,2.1.3,1 +19530,135,2.1.3.7,0 +19531,97,2.1.3,1 +19531,135,2.1.3.7,0 +19531,74,2.1.3,1 +19532,135,2.1.3.7,0 +19532,108,2.1.3,1 +19533,74,2.1.3,1 +19533,135,2.1.3.7,0 +19534,108,2.1.3,1 +19534,135,2.1.3.7,0 +19536,106,2.1.3,1 +19536,74,2.1.3,1 +19536,135,2.1.3.7,0 +19537,106,2.1.3,1 +19537,135,2.1.3.7,0 +19538,74,2.1.3,1 +19538,135,2.1.3.7,0 +19539,135,2.1.3.7,0 +19539,97,2.1.3,1 +19540,135,2.1.3.7,0 +19540,148,2.1.3,1 +19542,135,2.1.3.7,0 +19542,148,2.1.3,1 +19542,73,2.1.3,1 +19543,73,2.1.3,1 +19543,135,2.1.3.7,0 +19543,97,2.1.3,1 +19544,106,2.1.3,1 +19544,135,2.1.3.7,0 +19544,97,2.1.3,1 +19545,135,2.1.3.7,0 +19545,106,2.1.3,1 +19547,135,2.1.3.7,0 +19547,73,2.1.3,1 +19547,108,2.1.3,1 +19548,126,2.1.3,1 +19548,74,2.1.3,1 +19548,135,2.1.3.7,0 +19548,108,2.1.3,1 +19550,135,2.1.3.7,0 +19550,74,2.1.3,1 +19550,106,2.1.3,1 +19557,135,2.2,0 +19557,102,2,1 +19561,98,2,1 +19561,135,2.2,0 +19576,98,2,1 +19576,135,2.2,0 +19578,102,2,1 +19578,135,2.2,0 +19584,98,2,1 +19584,135,2.2,0 +19593,135,2.2,0 +19593,98,2,1 +19597,135,2.2,0 +19597,102,2,1 +19602,67,1.2,1 +19602,136,1.2.1,0 +19604,106,1.2,1 +19604,136,1.2.1,0 +19606,136,1.2.1,0 +19606,67,1.2,1 +19607,67,1.2,1 +19607,136,1.2.1,0 +19608,136,1.2.1,0 +19608,67,1.2,1 +19611,97,1.2,1 +19611,67,1.2,1 +19611,106,1.2,1 +19611,136,1.2.1,0 +19614,136,1.2.1,0 +19614,67,1.2,1 +19616,136,1.2.1,0 +19616,126,1.2,1 +19619,136,1.2.1,0 +19619,106,1.2,1 +19622,97,1.2,1 +19622,136,1.2.1,0 +19626,126,1.2,1 +19626,136,1.2.1,0 +19626,67,1.2,1 +19627,97,1.2,1 +19627,136,1.2.1,0 +19628,136,1.2.1,0 +19628,97,1.2,1 +19629,67,1.2,1 +19629,136,1.2.1,0 +19631,136,1.2.1,0 +19631,126,1.2,1 +19632,136,1.2.1,0 +19632,67,1.2,1 +19633,136,1.2.1,0 +19633,97,1.2,1 +19634,67,1.2,1 +19634,136,1.2.1,0 +19636,126,1.2,1 +19636,136,1.2.1,0 +19640,106,1.2,1 +19640,136,1.2.1,0 +19643,136,1.2.1,0 +19643,67,1.2,1 +19644,126,1.2,1 +19644,136,1.2.1,0 +19644,67,1.2,1 +19647,97,1.2,1 +19647,136,1.2.1,0 +19649,126,1.2,1 +19649,136,1.2.1,0 +19654,137,2.1.4.1.1,0 +19654,79,2.1.4.1,1 +19655,137,2.1.4.1.1,0 +19655,79,2.1.4.1,1 +19657,79,2.1.4.1,1 +19657,137,2.1.4.1.1,0 +19666,79,2.1.4.1,1 +19666,137,2.1.4.1.1,0 +19666,81,2.1.4.1,1 +19672,137,2.1.4.1.1,0 +19672,79,2.1.4.1,1 +19676,79,2.1.4.1,1 +19676,137,2.1.4.1.1,0 +19677,137,2.1.4.1.1,0 +19677,81,2.1.4.1,1 +19686,81,2.1.4.1,1 +19686,137,2.1.4.1.1,0 +19694,79,2.1.4.1,1 +19694,137,2.1.4.1.1,0 +19697,137,2.1.4.1.1,0 +19697,79,2.1.4.1,1 +19698,79,2.1.4.1,1 +19698,137,2.1.4.1.1,0 +19700,81,2.1.4.1,1 +19700,137,2.1.4.1.1,0 +19704,137,2.1.4.1.2,0 +19704,79,2.1.4.1,1 +19705,79,2.1.4.1,1 +19705,137,2.1.4.1.2,0 +19706,137,2.1.4.1.2,0 +19706,79,2.1.4.1,1 +19709,81,2.1.4.1,1 +19709,137,2.1.4.1.2,0 +19722,81,2.1.4.1,1 +19722,137,2.1.4.1.2,0 +19727,81,2.1.4.1,1 +19727,137,2.1.4.1.2,0 +19728,79,2.1.4.1,1 +19728,137,2.1.4.1.2,0 +19731,137,2.1.4.1.2,0 +19731,79,2.1.4.1,1 +19732,137,2.1.4.1.2,0 +19732,81,2.1.4.1,1 +19734,81,2.1.4.1,1 +19734,137,2.1.4.1.2,0 +19736,81,2.1.4.1,1 +19736,79,2.1.4.1,1 +19736,137,2.1.4.1.2,0 +19741,81,2.1.4.1,1 +19741,137,2.1.4.1.2,0 +19743,137,2.1.4.1.2,0 +19743,79,2.1.4.1,1 +19744,137,2.1.4.1.2,0 +19744,79,2.1.4.1,1 +19747,137,2.1.4.1.2,0 +19747,79,2.1.4.1,1 +19752,137,2.1.4.1.3,0 +19752,79,2.1.4.1,1 +19754,137,2.1.4.1.3,0 +19754,79,2.1.4.1,1 +19757,137,2.1.4.1.3,0 +19757,79,2.1.4.1,1 +19759,81,2.1.4.1,1 +19759,137,2.1.4.1.3,0 +19760,137,2.1.4.1.3,0 +19760,79,2.1.4.1,1 +19773,137,2.1.4.1.3,0 +19773,79,2.1.4.1,1 +19774,137,2.1.4.1.3,0 +19774,79,2.1.4.1,1 +19776,137,2.1.4.1.3,0 +19776,81,2.1.4.1,1 +19777,81,2.1.4.1,1 +19777,137,2.1.4.1.3,0 +19779,137,2.1.4.1.3,0 +19779,79,2.1.4.1,1 +19779,81,2.1.4.1,1 +19787,81,2.1.4.1,1 +19787,137,2.1.4.1.3,0 +19789,81,2.1.4.1,1 +19789,137,2.1.4.1.3,0 +19791,79,2.1.4.1,1 +19791,137,2.1.4.1.3,0 +19797,137,2.1.4.1.3,0 +19797,81,2.1.4.1,1 +19798,79,2.1.4.1,1 +19798,137,2.1.4.1.3,0 +19807,79,2.1.4.1,1 +19807,137,2.1.4.1.4,0 +19808,81,2.1.4.1,1 +19808,137,2.1.4.1.4,0 +19810,137,2.1.4.1.4,0 +19810,81,2.1.4.1,1 +19811,137,2.1.4.1.4,0 +19811,81,2.1.4.1,1 +19811,79,2.1.4.1,1 +19816,137,2.1.4.1.4,0 +19816,81,2.1.4.1,1 +19820,137,2.1.4.1.4,0 +19820,79,2.1.4.1,1 +19824,137,2.1.4.1.4,0 +19824,79,2.1.4.1,1 +19826,137,2.1.4.1.4,0 +19826,81,2.1.4.1,1 +19827,81,2.1.4.1,1 +19827,137,2.1.4.1.4,0 +19829,137,2.1.4.1.4,0 +19829,79,2.1.4.1,1 +19834,137,2.1.4.1.4,0 +19834,79,2.1.4.1,1 +19836,79,2.1.4.1,1 +19836,137,2.1.4.1.4,0 +19839,81,2.1.4.1,1 +19839,137,2.1.4.1.4,0 +19841,79,2.1.4.1,1 +19841,137,2.1.4.1.4,0 +19842,137,2.1.4.1.4,0 +19842,81,2.1.4.1,1 +19842,79,2.1.4.1,1 +19843,81,2.1.4.1,1 +19843,137,2.1.4.1.4,0 +19844,137,2.1.4.1.4,0 +19844,79,2.1.4.1,1 +19851,137,2.1.4.2.1,0 +19851,79,2.1.4.2,1 +19852,137,2.1.4.2.1,0 +19852,79,2.1.4.2,1 +19855,137,2.1.4.2.1,0 +19855,79,2.1.4.2,1 +19857,137,2.1.4.2.1,0 +19857,81,2.1.4.2,1 +19859,81,2.1.4.2,1 +19859,137,2.1.4.2.1,0 +19861,137,2.1.4.2.1,0 +19861,79,2.1.4.2,1 +19864,79,2.1.4.2,1 +19864,137,2.1.4.2.1,0 +19870,79,2.1.4.2,1 +19870,137,2.1.4.2.1,0 +19876,137,2.1.4.2.1,0 +19876,81,2.1.4.2,1 +19877,81,2.1.4.2,1 +19877,137,2.1.4.2.1,0 +19878,81,2.1.4.2,1 +19878,137,2.1.4.2.1,0 +19879,137,2.1.4.2.1,0 +19879,79,2.1.4.2,1 +19882,81,2.1.4.2,1 +19882,137,2.1.4.2.1,0 +19884,137,2.1.4.2.1,0 +19884,79,2.1.4.2,1 +19893,79,2.1.4.2,1 +19893,137,2.1.4.2.1,0 +19894,81,2.1.4.2,1 +19894,137,2.1.4.2.1,0 +19902,137,2.1.4.2.2,0 +19902,79,2.1.4.2,1 +19904,137,2.1.4.2.2,0 +19904,79,2.1.4.2,1 +19909,81,2.1.4.2,1 +19909,137,2.1.4.2.2,0 +19911,79,2.1.4.2,1 +19911,137,2.1.4.2.2,0 +19916,137,2.1.4.2.2,0 +19916,81,2.1.4.2,1 +19922,137,2.1.4.2.2,0 +19922,79,2.1.4.2,1 +19923,137,2.1.4.2.2,0 +19923,79,2.1.4.2,1 +19924,137,2.1.4.2.2,0 +19924,79,2.1.4.2,1 +19927,81,2.1.4.2,1 +19927,137,2.1.4.2.2,0 +19928,79,2.1.4.2,1 +19928,137,2.1.4.2.2,0 +19929,137,2.1.4.2.2,0 +19929,79,2.1.4.2,1 +19931,81,2.1.4.2,1 +19931,137,2.1.4.2.2,0 +19933,81,2.1.4.2,1 +19933,137,2.1.4.2.2,0 +19936,79,2.1.4.2,1 +19936,137,2.1.4.2.2,0 +19941,81,2.1.4.2,1 +19941,137,2.1.4.2.2,0 +19943,81,2.1.4.2,1 +19943,137,2.1.4.2.2,0 +19947,137,2.1.4.2.2,0 +19947,81,2.1.4.2,1 +19948,137,2.1.4.2.2,0 +19948,81,2.1.4.2,1 +19951,93,1.3.1,1 +19951,138,1.3.1.5,0 +19952,39,1.3.1,1 +19952,100,1.3.1,1 +19952,99,1.3.1,1 +19952,138,1.3.1.5,0 +19952,93,1.3.1,1 +19953,93,1.3.1,1 +19953,100,1.3.1,1 +19953,138,1.3.1.5,0 +19954,100,1.3.1,1 +19954,138,1.3.1.5,0 +19954,39,1.3.1,1 +19954,99,1.3.1,1 +19955,99,1.3.1,1 +19955,138,1.3.1.5,0 +19956,39,1.3.1,1 +19956,138,1.3.1.5,0 +19957,100,1.3.1,1 +19957,39,1.3.1,1 +19957,138,1.3.1.5,0 +19958,39,1.3.1,1 +19958,138,1.3.1.5,0 +19959,138,1.3.1.5,0 +19959,93,1.3.1,1 +19960,100,1.3.1,1 +19960,93,1.3.1,1 +19960,138,1.3.1.5,0 +19961,85,1.3.1,1 +19961,99,1.3.1,1 +19961,138,1.3.1.5,0 +19964,100,1.3.1,1 +19964,138,1.3.1.5,0 +19964,93,1.3.1,1 +19964,39,1.3.1,1 +19964,85,1.3.1,1 +19966,39,1.3.1,1 +19966,138,1.3.1.5,0 +19966,100,1.3.1,1 +19967,93,1.3.1,1 +19967,99,1.3.1,1 +19967,138,1.3.1.5,0 +19969,85,1.3.1,1 +19969,39,1.3.1,1 +19969,138,1.3.1.5,0 +19970,93,1.3.1,1 +19970,138,1.3.1.5,0 +19972,100,1.3.1,1 +19972,138,1.3.1.5,0 +19972,39,1.3.1,1 +19973,99,1.3.1,1 +19973,138,1.3.1.5,0 +19973,85,1.3.1,1 +19973,39,1.3.1,1 +19974,99,1.3.1,1 +19974,138,1.3.1.5,0 +19975,39,1.3.1,1 +19975,99,1.3.1,1 +19975,138,1.3.1.5,0 +19976,85,1.3.1,1 +19976,138,1.3.1.5,0 +19976,93,1.3.1,1 +19977,138,1.3.1.5,0 +19977,93,1.3.1,1 +19978,99,1.3.1,1 +19978,138,1.3.1.5,0 +19979,85,1.3.1,1 +19979,93,1.3.1,1 +19979,138,1.3.1.5,0 +19981,93,1.3.1,1 +19981,138,1.3.1.5,0 +19982,39,1.3.1,1 +19982,138,1.3.1.5,0 +19983,100,1.3.1,1 +19983,85,1.3.1,1 +19983,138,1.3.1.5,0 +19984,138,1.3.1.5,0 +19984,39,1.3.1,1 +19985,85,1.3.1,1 +19985,138,1.3.1.5,0 +19985,99,1.3.1,1 +19986,106,1.3,2 +19986,99,1.3.1,1 +19986,138,1.3.1.5,0 +19986,100,1.3.1,1 +19986,39,1.3.1,1 +19987,93,1.3.1,1 +19987,138,1.3.1.5,0 +19987,85,1.3.1,1 +19988,93,1.3.1,1 +19988,85,1.3.1,1 +19988,138,1.3.1.5,0 +19989,85,1.3.1,1 +19989,100,1.3.1,1 +19989,138,1.3.1.5,0 +19990,100,1.3.1,1 +19990,138,1.3.1.5,0 +19991,138,1.3.1.5,0 +19991,93,1.3.1,1 +19991,39,1.3.1,1 +19992,100,1.3.1,1 +19992,138,1.3.1.5,0 +19993,99,1.3.1,1 +19993,93,1.3.1,1 +19993,138,1.3.1.5,0 +19994,39,1.3.1,1 +19994,85,1.3.1,1 +19994,138,1.3.1.5,0 +19995,85,1.3.1,1 +19995,138,1.3.1.5,0 +19995,93,1.3.1,1 +19997,138,1.3.1.5,0 +19997,99,1.3.1,1 +19997,39,1.3.1,1 +19998,99,1.3.1,1 +19998,100,1.3.1,1 +19998,85,1.3.1,1 +19998,138,1.3.1.5,0 +19999,93,1.3.1,1 +19999,99,1.3.1,1 +19999,138,1.3.1.5,0 +20000,85,1.3.1,1 +20000,138,1.3.1.5,0 +20000,93,1.3.1,1 +20002,139,1.3.3.7,0 +20002,75,1.3.3,1 +20003,99,1.3.3,1 +20003,139,1.3.3.7,0 +20003,97,1.3.3,1 +20004,97,1.3.3,1 +20004,139,1.3.3.7,0 +20005,75,1.3.3,1 +20005,139,1.3.3.7,0 +20005,97,1.3.3,1 +20006,99,1.3.3,1 +20006,139,1.3.3.7,0 +20006,75,1.3.3,1 +20007,99,1.3.3,1 +20007,139,1.3.3.7,0 +20008,97,1.3.3,1 +20008,139,1.3.3.7,0 +20009,106,1.3,2 +20009,75,1.3.3,1 +20009,139,1.3.3.7,0 +20010,139,1.3.3.7,0 +20010,75,1.3.3,1 +20011,139,1.3.3.7,0 +20011,75,1.3.3,1 +20011,99,1.3.3,1 +20011,97,1.3.3,1 +20014,139,1.3.3.7,0 +20014,75,1.3.3,1 +20016,75,1.3.3,1 +20016,99,1.3.3,1 +20016,139,1.3.3.7,0 +20016,97,1.3.3,1 +20019,139,1.3.3.7,0 +20019,97,1.3.3,1 +20019,29,1.3,2 +20020,97,1.3.3,1 +20020,139,1.3.3.7,0 +20022,139,1.3.3.7,0 +20022,75,1.3.3,1 +20023,29,1.3,2 +20023,97,1.3.3,1 +20023,99,1.3.3,1 +20023,139,1.3.3.7,0 +20026,99,1.3.3,1 +20026,139,1.3.3.7,0 +20026,97,1.3.3,1 +20027,97,1.3.3,1 +20027,139,1.3.3.7,0 +20028,139,1.3.3.7,0 +20028,97,1.3.3,1 +20029,97,1.3.3,1 +20029,139,1.3.3.7,0 +20031,139,1.3.3.7,0 +20031,170,1,3 +20031,75,1.3.3,1 +20031,99,1.3.3,1 +20031,106,1.3,2 +20031,29,1.3,2 +20032,97,1.3.3,1 +20032,139,1.3.3.7,0 +20033,75,1.3.3,1 +20033,139,1.3.3.7,0 +20033,170,1,3 +20033,29,1.3,2 +20034,75,1.3.3,1 +20034,139,1.3.3.7,0 +20036,75,1.3.3,1 +20036,139,1.3.3.7,0 +20037,97,1.3.3,1 +20037,139,1.3.3.7,0 +20038,139,1.3.3.7,0 +20038,99,1.3.3,1 +20039,97,1.3.3,1 +20039,139,1.3.3.7,0 +20040,139,1.3.3.7,0 +20040,97,1.3.3,1 +20041,75,1.3.3,1 +20041,139,1.3.3.7,0 +20043,106,1.3,2 +20043,97,1.3.3,1 +20043,99,1.3.3,1 +20043,139,1.3.3.7,0 +20044,75,1.3.3,1 +20044,97,1.3.3,1 +20044,139,1.3.3.7,0 +20045,99,1.3.3,1 +20045,139,1.3.3.7,0 +20047,139,1.3.3.7,0 +20047,75,1.3.3,1 +20048,99,1.3.3,1 +20048,97,1.3.3,1 +20048,75,1.3.3,1 +20048,139,1.3.3.7,0 +20049,99,1.3.3,1 +20049,139,1.3.3.7,0 +20050,97,1.3.3,1 +20050,139,1.3.3.7,0 +20052,157,1.4.1,1 +20052,140,1.4.1.1,0 +20055,140,1.4.1.1,0 +20055,157,1.4.1,1 +20056,140,1.4.1.1,0 +20056,157,1.4.1,1 +20072,140,1.4.1.1,0 +20072,157,1.4.1,1 +20083,140,1.4.1.1,0 +20083,157,1.4.1,1 +20084,140,1.4.1.1,0 +20084,157,1.4.1,1 +20101,140,1.4.1.4,0 +20101,157,1.4.1,1 +20103,157,1.4.1,1 +20103,140,1.4.1.4,0 +20104,157,1.4.1,1 +20104,140,1.4.1.4,0 +20105,140,1.4.1.4,0 +20105,157,1.4.1,1 +20106,140,1.4.1.4,0 +20106,157,1.4.1,1 +20108,140,1.4.1.4,0 +20108,157,1.4.1,1 +20111,157,1.4.1,1 +20111,140,1.4.1.4,0 +20114,157,1.4.1,1 +20114,140,1.4.1.4,0 +20119,157,1.4.1,1 +20119,140,1.4.1.4,0 +20120,140,1.4.1.4,0 +20120,157,1.4.1,1 +20123,140,1.4.1.4,0 +20123,157,1.4.1,1 +20124,157,1.4.1,1 +20124,140,1.4.1.4,0 +20125,140,1.4.1.4,0 +20125,157,1.4.1,1 +20126,157,1.4.1,1 +20126,140,1.4.1.4,0 +20132,140,1.4.1.4,0 +20132,157,1.4.1,1 +20133,140,1.4.1.4,0 +20133,157,1.4.1,1 +20134,140,1.4.1.4,0 +20134,157,1.4.1,1 +20136,157,1.4.1,1 +20136,140,1.4.1.4,0 +20139,157,1.4.1,1 +20139,140,1.4.1.4,0 +20139,126,1.4,2 +20139,170,1,3 +20141,140,1.4.1.4,0 +20141,157,1.4.1,1 +20142,157,1.4.1,1 +20142,140,1.4.1.4,0 +20143,157,1.4.1,1 +20143,140,1.4.1.4,0 +20144,157,1.4.1,1 +20144,140,1.4.1.4,0 +20147,140,1.4.1.4,0 +20147,157,1.4.1,1 +20148,157,1.4.1,1 +20148,140,1.4.1.4,0 +20151,157,1.4.1,1 +20151,140,1.4.1.5,0 +20152,140,1.4.1.5,0 +20152,157,1.4.1,1 +20157,157,1.4.1,1 +20157,140,1.4.1.5,0 +20158,140,1.4.1.5,0 +20158,157,1.4.1,1 +20164,157,1.4.1,1 +20164,140,1.4.1.5,0 +20166,157,1.4.1,1 +20166,140,1.4.1.5,0 +20170,140,1.4.1.5,0 +20170,157,1.4.1,1 +20172,140,1.4.1.5,0 +20172,157,1.4.1,1 +20173,140,1.4.1.5,0 +20173,157,1.4.1,1 +20174,157,1.4.1,1 +20174,140,1.4.1.5,0 +20178,140,1.4.1.5,0 +20178,157,1.4.1,1 +20179,140,1.4.1.5,0 +20179,157,1.4.1,1 +20183,140,1.4.1.5,0 +20183,157,1.4.1,1 +20184,140,1.4.1.5,0 +20184,157,1.4.1,1 +20186,157,1.4.1,1 +20186,140,1.4.1.5,0 +20189,157,1.4.1,1 +20189,140,1.4.1.5,0 +20189,126,1.4,2 +20189,170,1,3 +20192,157,1.4.1,1 +20192,140,1.4.1.5,0 +20201,170,1,3 +20201,126,1.4,2 +20201,140,1.4.5.1,0 +20201,41,1.4.5,1 +20202,41,1.4.5,1 +20202,170,1,3 +20202,140,1.4.5.1,0 +20202,126,1.4,2 +20203,170,1,3 +20203,126,1.4,2 +20203,41,1.4.5,1 +20203,140,1.4.5.1,0 +20204,126,1.4,2 +20204,140,1.4.5.1,0 +20204,170,1,3 +20204,41,1.4.5,1 +20205,126,1.4,2 +20205,140,1.4.5.1,0 +20205,41,1.4.5,1 +20205,170,1,3 +20206,140,1.4.5.1,0 +20206,126,1.4,2 +20206,41,1.4.5,1 +20206,170,1,3 +20207,170,1,3 +20207,41,1.4.5,1 +20207,126,1.4,2 +20207,140,1.4.5.1,0 +20208,41,1.4.5,1 +20208,126,1.4,2 +20208,140,1.4.5.1,0 +20208,170,1,3 +20209,170,1,3 +20209,140,1.4.5.1,0 +20209,126,1.4,2 +20209,41,1.4.5,1 +20210,126,1.4,2 +20210,140,1.4.5.1,0 +20210,41,1.4.5,1 +20210,170,1,3 +20211,126,1.4,2 +20211,170,1,3 +20211,41,1.4.5,1 +20211,140,1.4.5.1,0 +20212,126,1.4,2 +20212,41,1.4.5,1 +20212,170,1,3 +20212,140,1.4.5.1,0 +20213,126,1.4,2 +20213,170,1,3 +20213,41,1.4.5,1 +20213,140,1.4.5.1,0 +20214,140,1.4.5.1,0 +20214,170,1,3 +20214,41,1.4.5,1 +20214,126,1.4,2 +20215,170,1,3 +20215,140,1.4.5.1,0 +20215,126,1.4,2 +20215,41,1.4.5,1 +20216,140,1.4.5.1,0 +20216,126,1.4,2 +20216,170,1,3 +20216,41,1.4.5,1 +20217,140,1.4.5.1,0 +20217,126,1.4,2 +20217,41,1.4.5,1 +20217,170,1,3 +20218,41,1.4.5,1 +20218,140,1.4.5.1,0 +20218,170,1,3 +20218,126,1.4,2 +20219,140,1.4.5.1,0 +20219,126,1.4,2 +20219,170,1,3 +20219,41,1.4.5,1 +20220,170,1,3 +20220,41,1.4.5,1 +20220,140,1.4.5.1,0 +20220,126,1.4,2 +20221,170,1,3 +20221,140,1.4.5.1,0 +20221,126,1.4,2 +20221,41,1.4.5,1 +20222,126,1.4,2 +20222,41,1.4.5,1 +20222,170,1,3 +20222,140,1.4.5.1,0 +20223,126,1.4,2 +20223,170,1,3 +20223,140,1.4.5.1,0 +20223,41,1.4.5,1 +20224,126,1.4,2 +20224,140,1.4.5.1,0 +20224,41,1.4.5,1 +20224,170,1,3 +20225,140,1.4.5.1,0 +20225,41,1.4.5,1 +20225,170,1,3 +20225,126,1.4,2 +20226,126,1.4,2 +20226,140,1.4.5.1,0 +20226,41,1.4.5,1 +20226,170,1,3 +20227,140,1.4.5.1,0 +20227,126,1.4,2 +20227,170,1,3 +20227,41,1.4.5,1 +20228,41,1.4.5,1 +20228,170,1,3 +20228,140,1.4.5.1,0 +20228,126,1.4,2 +20229,41,1.4.5,1 +20229,170,1,3 +20229,126,1.4,2 +20229,140,1.4.5.1,0 +20230,140,1.4.5.1,0 +20230,170,1,3 +20230,126,1.4,2 +20230,41,1.4.5,1 +20231,140,1.4.5.1,0 +20231,126,1.4,2 +20231,170,1,3 +20231,41,1.4.5,1 +20232,140,1.4.5.1,0 +20232,126,1.4,2 +20232,41,1.4.5,1 +20232,170,1,3 +20233,170,1,3 +20233,41,1.4.5,1 +20233,140,1.4.5.1,0 +20233,126,1.4,2 +20234,41,1.4.5,1 +20234,140,1.4.5.1,0 +20234,126,1.4,2 +20234,170,1,3 +20235,170,1,3 +20235,140,1.4.5.1,0 +20235,126,1.4,2 +20235,41,1.4.5,1 +20236,41,1.4.5,1 +20236,170,1,3 +20236,126,1.4,2 +20236,140,1.4.5.1,0 +20237,126,1.4,2 +20237,170,1,3 +20237,140,1.4.5.1,0 +20237,41,1.4.5,1 +20238,140,1.4.5.1,0 +20238,170,1,3 +20238,126,1.4,2 +20238,41,1.4.5,1 +20239,140,1.4.5.1,0 +20239,41,1.4.5,1 +20239,126,1.4,2 +20239,170,1,3 +20240,170,1,3 +20240,140,1.4.5.1,0 +20240,41,1.4.5,1 +20240,126,1.4,2 +20241,170,1,3 +20241,126,1.4,2 +20241,41,1.4.5,1 +20241,140,1.4.5.1,0 +20242,140,1.4.5.1,0 +20242,41,1.4.5,1 +20242,126,1.4,2 +20242,170,1,3 +20243,41,1.4.5,1 +20243,170,1,3 +20243,140,1.4.5.1,0 +20243,126,1.4,2 +20244,170,1,3 +20244,41,1.4.5,1 +20244,140,1.4.5.1,0 +20244,126,1.4,2 +20245,170,1,3 +20245,41,1.4.5,1 +20245,140,1.4.5.1,0 +20245,126,1.4,2 +20246,170,1,3 +20246,140,1.4.5.1,0 +20246,126,1.4,2 +20246,41,1.4.5,1 +20247,41,1.4.5,1 +20247,170,1,3 +20247,126,1.4,2 +20247,140,1.4.5.1,0 +20248,126,1.4,2 +20248,140,1.4.5.1,0 +20248,170,1,3 +20248,41,1.4.5,1 +20249,170,1,3 +20249,140,1.4.5.1,0 +20249,126,1.4,2 +20249,41,1.4.5,1 +20250,170,1,3 +20250,126,1.4,2 +20250,41,1.4.5,1 +20250,140,1.4.5.1,0 +20251,41,1.4.5,1 +20251,140,1.4.5.3,0 +20252,140,1.4.5.3,0 +20252,41,1.4.5,1 +20253,41,1.4.5,1 +20253,140,1.4.5.3,0 +20256,140,1.4.5.3,0 +20256,41,1.4.5,1 +20257,41,1.4.5,1 +20257,140,1.4.5.3,0 +20258,41,1.4.5,1 +20258,126,1.4,2 +20258,140,1.4.5.3,0 +20258,170,1,3 +20259,140,1.4.5.3,0 +20259,41,1.4.5,1 +20260,41,1.4.5,1 +20260,140,1.4.5.3,0 +20261,41,1.4.5,1 +20261,140,1.4.5.3,0 +20266,140,1.4.5.3,0 +20266,41,1.4.5,1 +20270,140,1.4.5.3,0 +20270,41,1.4.5,1 +20272,126,1.4,2 +20272,41,1.4.5,1 +20272,170,1,3 +20272,140,1.4.5.3,0 +20273,140,1.4.5.3,0 +20273,41,1.4.5,1 +20279,140,1.4.5.3,0 +20279,41,1.4.5,1 +20281,140,1.4.5.3,0 +20281,41,1.4.5,1 +20283,140,1.4.5.3,0 +20283,41,1.4.5,1 +20289,140,1.4.5.3,0 +20289,41,1.4.5,1 +20291,140,1.4.5.3,0 +20291,41,1.4.5,1 +20292,41,1.4.5,1 +20292,140,1.4.5.3,0 +20294,140,1.4.5.3,0 +20294,41,1.4.5,1 +20298,41,1.4.5,1 +20298,140,1.4.5.3,0 +20299,41,1.4.5,1 +20299,140,1.4.5.3,0 +20301,41,1.4.5,1 +20301,140,1.4.5.4,0 +20302,140,1.4.5.4,0 +20302,41,1.4.5,1 +20303,41,1.4.5,1 +20303,140,1.4.5.4,0 +20304,140,1.4.5.4,0 +20304,41,1.4.5,1 +20305,140,1.4.5.4,0 +20305,41,1.4.5,1 +20306,140,1.4.5.4,0 +20306,41,1.4.5,1 +20307,41,1.4.5,1 +20307,140,1.4.5.4,0 +20308,41,1.4.5,1 +20308,126,1.4,2 +20308,140,1.4.5.4,0 +20308,170,1,3 +20309,170,1,3 +20309,140,1.4.5.4,0 +20309,126,1.4,2 +20309,41,1.4.5,1 +20310,126,1.4,2 +20310,140,1.4.5.4,0 +20310,41,1.4.5,1 +20310,170,1,3 +20311,126,1.4,2 +20311,170,1,3 +20311,41,1.4.5,1 +20311,140,1.4.5.4,0 +20314,41,1.4.5,1 +20314,140,1.4.5.4,0 +20316,140,1.4.5.4,0 +20316,126,1.4,2 +20316,170,1,3 +20316,41,1.4.5,1 +20319,41,1.4.5,1 +20319,140,1.4.5.4,0 +20320,140,1.4.5.4,0 +20320,41,1.4.5,1 +20322,140,1.4.5.4,0 +20322,41,1.4.5,1 +20323,126,1.4,2 +20323,170,1,3 +20323,140,1.4.5.4,0 +20323,41,1.4.5,1 +20324,126,1.4,2 +20324,140,1.4.5.4,0 +20324,41,1.4.5,1 +20324,170,1,3 +20325,140,1.4.5.4,0 +20325,41,1.4.5,1 +20325,170,1,3 +20325,126,1.4,2 +20326,41,1.4.5,1 +20326,140,1.4.5.4,0 +20328,140,1.4.5.4,0 +20328,41,1.4.5,1 +20329,140,1.4.5.4,0 +20329,41,1.4.5,1 +20331,140,1.4.5.4,0 +20331,41,1.4.5,1 +20332,41,1.4.5,1 +20332,140,1.4.5.4,0 +20333,170,1,3 +20333,41,1.4.5,1 +20333,140,1.4.5.4,0 +20333,126,1.4,2 +20334,41,1.4.5,1 +20334,140,1.4.5.4,0 +20336,41,1.4.5,1 +20336,140,1.4.5.4,0 +20339,140,1.4.5.4,0 +20339,41,1.4.5,1 +20341,140,1.4.5.4,0 +20341,41,1.4.5,1 +20342,140,1.4.5.4,0 +20342,41,1.4.5,1 +20342,126,1.4,2 +20342,170,1,3 +20343,41,1.4.5,1 +20343,170,1,3 +20343,140,1.4.5.4,0 +20343,126,1.4,2 +20344,140,1.4.5.4,0 +20344,41,1.4.5,1 +20347,140,1.4.5.4,0 +20347,41,1.4.5,1 +20348,126,1.4,2 +20348,140,1.4.5.4,0 +20348,170,1,3 +20348,41,1.4.5,1 +20349,170,1,3 +20349,140,1.4.5.4,0 +20349,126,1.4,2 +20349,41,1.4.5,1 +20351,41,1.4.5,1 +20351,140,1.4.5.9,0 +20352,140,1.4.5.9,0 +20352,41,1.4.5,1 +20353,41,1.4.5,1 +20353,140,1.4.5.9,0 +20354,140,1.4.5.9,0 +20354,41,1.4.5,1 +20355,140,1.4.5.9,0 +20355,41,1.4.5,1 +20356,140,1.4.5.9,0 +20356,126,1.4,2 +20356,41,1.4.5,1 +20356,170,1,3 +20357,170,1,3 +20357,41,1.4.5,1 +20357,126,1.4,2 +20357,140,1.4.5.9,0 +20358,41,1.4.5,1 +20358,126,1.4,2 +20358,140,1.4.5.9,0 +20358,170,1,3 +20359,170,1,3 +20359,140,1.4.5.9,0 +20359,126,1.4,2 +20359,41,1.4.5,1 +20360,126,1.4,2 +20360,140,1.4.5.9,0 +20360,41,1.4.5,1 +20360,170,1,3 +20361,41,1.4.5,1 +20361,140,1.4.5.9,0 +20364,140,1.4.5.9,0 +20364,170,1,3 +20364,41,1.4.5,1 +20364,126,1.4,2 +20366,140,1.4.5.9,0 +20366,126,1.4,2 +20366,170,1,3 +20366,41,1.4.5,1 +20369,41,1.4.5,1 +20369,140,1.4.5.9,0 +20370,140,1.4.5.9,0 +20370,41,1.4.5,1 +20372,140,1.4.5.9,0 +20372,41,1.4.5,1 +20373,126,1.4,2 +20373,170,1,3 +20373,140,1.4.5.9,0 +20373,41,1.4.5,1 +20374,126,1.4,2 +20374,140,1.4.5.9,0 +20374,41,1.4.5,1 +20374,170,1,3 +20375,41,1.4.5,1 +20375,140,1.4.5.9,0 +20376,41,1.4.5,1 +20376,140,1.4.5.9,0 +20378,140,1.4.5.9,0 +20378,41,1.4.5,1 +20379,140,1.4.5.9,0 +20379,41,1.4.5,1 +20381,140,1.4.5.9,0 +20381,41,1.4.5,1 +20382,140,1.4.5.9,0 +20382,126,1.4,2 +20382,41,1.4.5,1 +20382,170,1,3 +20383,140,1.4.5.9,0 +20383,41,1.4.5,1 +20384,41,1.4.5,1 +20384,140,1.4.5.9,0 +20384,126,1.4,2 +20384,170,1,3 +20386,41,1.4.5,1 +20386,170,1,3 +20386,126,1.4,2 +20386,140,1.4.5.9,0 +20389,140,1.4.5.9,0 +20389,41,1.4.5,1 +20389,126,1.4,2 +20389,170,1,3 +20391,170,1,3 +20391,126,1.4,2 +20391,41,1.4.5,1 +20391,140,1.4.5.9,0 +20392,41,1.4.5,1 +20392,140,1.4.5.9,0 +20393,41,1.4.5,1 +20393,170,1,3 +20393,140,1.4.5.9,0 +20393,126,1.4,2 +20394,140,1.4.5.9,0 +20394,41,1.4.5,1 +20397,140,1.4.5.9,0 +20397,41,1.4.5,1 +20398,41,1.4.5,1 +20398,140,1.4.5.9,0 +20399,41,1.4.5,1 +20399,140,1.4.5.9,0 +20402,141,1.3.3.2,0 +20402,75,1.3.3,1 +20406,141,1.3.3.2,0 +20406,75,1.3.3,1 +20407,141,1.3.3.2,0 +20407,75,1.3.3,1 +20408,97,1.3.3,1 +20408,141,1.3.3.2,0 +20410,97,1.3.3,1 +20410,141,1.3.3.2,0 +20411,141,1.3.3.2,0 +20411,99,1.3.3,1 +20414,75,1.3.3,1 +20414,141,1.3.3.2,0 +20414,99,1.3.3,1 +20422,97,1.3.3,1 +20422,141,1.3.3.2,0 +20423,99,1.3.3,1 +20423,141,1.3.3.2,0 +20426,141,1.3.3.2,0 +20426,75,1.3.3,1 +20426,97,1.3.3,1 +20427,99,1.3.3,1 +20427,141,1.3.3.2,0 +20428,141,1.3.3.2,0 +20428,97,1.3.3,1 +20429,97,1.3.3,1 +20429,141,1.3.3.2,0 +20431,141,1.3.3.2,0 +20431,75,1.3.3,1 +20432,97,1.3.3,1 +20432,141,1.3.3.2,0 +20433,75,1.3.3,1 +20433,141,1.3.3.2,0 +20434,75,1.3.3,1 +20434,141,1.3.3.2,0 +20436,99,1.3.3,1 +20436,75,1.3.3,1 +20436,141,1.3.3.2,0 +20440,99,1.3.3,1 +20440,141,1.3.3.2,0 +20442,99,1.3.3,1 +20442,141,1.3.3.2,0 +20443,141,1.3.3.2,0 +20443,97,1.3.3,1 +20444,99,1.3.3,1 +20444,141,1.3.3.2,0 +20447,141,1.3.3.2,0 +20447,75,1.3.3,1 +20449,99,1.3.3,1 +20449,141,1.3.3.2,0 +20454,157,1.4.1,1 +20454,142,1.4.1.1,0 +20455,142,1.4.1.1,0 +20455,157,1.4.1,1 +20456,142,1.4.1.1,0 +20456,157,1.4.1,1 +20457,157,1.4.1,1 +20457,142,1.4.1.1,0 +20464,142,1.4.1.1,0 +20464,157,1.4.1,1 +20479,157,1.4.1,1 +20479,142,1.4.1.1,0 +20484,142,1.4.1.1,0 +20484,157,1.4.1,1 +20491,157,1.4.1,1 +20491,142,1.4.1.1,0 +20492,142,1.4.1.1,0 +20492,157,1.4.1,1 +20493,142,1.4.1.1,0 +20493,157,1.4.1,1 +20501,126,1.4,1 +20501,142,1.4.2,0 +20501,170,1,2 +20502,142,1.4.2,0 +20502,170,1,2 +20502,126,1.4,1 +20503,170,1,2 +20503,126,1.4,1 +20503,142,1.4.2,0 +20504,126,1.4,1 +20504,142,1.4.2,0 +20504,170,1,2 +20505,126,1.4,1 +20505,142,1.4.2,0 +20505,170,1,2 +20506,142,1.4.2,0 +20506,170,1,2 +20506,126,1.4,1 +20507,126,1.4,1 +20507,142,1.4.2,0 +20507,170,1,2 +20508,142,1.4.2,0 +20508,170,1,2 +20508,126,1.4,1 +20509,142,1.4.2,0 +20509,170,1,2 +20509,126,1.4,1 +20510,142,1.4.2,0 +20510,170,1,2 +20510,126,1.4,1 +20511,126,1.4,1 +20511,170,1,2 +20511,142,1.4.2,0 +20512,170,1,2 +20512,126,1.4,1 +20512,142,1.4.2,0 +20513,170,1,2 +20513,126,1.4,1 +20513,142,1.4.2,0 +20514,126,1.4,1 +20514,170,1,2 +20514,142,1.4.2,0 +20515,126,1.4,1 +20515,170,1,2 +20515,142,1.4.2,0 +20516,142,1.4.2,0 +20516,126,1.4,1 +20516,170,1,2 +20517,142,1.4.2,0 +20517,126,1.4,1 +20517,170,1,2 +20518,126,1.4,1 +20518,142,1.4.2,0 +20518,170,1,2 +20519,170,1,2 +20519,142,1.4.2,0 +20519,126,1.4,1 +20520,126,1.4,1 +20520,170,1,2 +20520,142,1.4.2,0 +20521,170,1,2 +20521,142,1.4.2,0 +20521,126,1.4,1 +20522,126,1.4,1 +20522,170,1,2 +20522,142,1.4.2,0 +20523,142,1.4.2,0 +20523,170,1,2 +20523,126,1.4,1 +20524,142,1.4.2,0 +20524,170,1,2 +20524,126,1.4,1 +20525,126,1.4,1 +20525,142,1.4.2,0 +20525,170,1,2 +20526,142,1.4.2,0 +20526,126,1.4,1 +20526,170,1,2 +20527,126,1.4,1 +20527,170,1,2 +20527,142,1.4.2,0 +20528,170,1,2 +20528,142,1.4.2,0 +20528,126,1.4,1 +20529,142,1.4.2,0 +20529,126,1.4,1 +20529,170,1,2 +20530,142,1.4.2,0 +20530,126,1.4,1 +20530,170,1,2 +20531,142,1.4.2,0 +20531,126,1.4,1 +20531,170,1,2 +20532,142,1.4.2,0 +20532,170,1,2 +20532,126,1.4,1 +20533,142,1.4.2,0 +20533,170,1,2 +20533,126,1.4,1 +20534,170,1,2 +20534,126,1.4,1 +20534,142,1.4.2,0 +20535,170,1,2 +20535,142,1.4.2,0 +20535,126,1.4,1 +20536,126,1.4,1 +20536,170,1,2 +20536,142,1.4.2,0 +20537,126,1.4,1 +20537,142,1.4.2,0 +20537,170,1,2 +20538,170,1,2 +20538,126,1.4,1 +20538,142,1.4.2,0 +20539,126,1.4,1 +20539,170,1,2 +20539,142,1.4.2,0 +20540,126,1.4,1 +20540,170,1,2 +20540,142,1.4.2,0 +20541,142,1.4.2,0 +20541,126,1.4,1 +20541,170,1,2 +20542,126,1.4,1 +20542,142,1.4.2,0 +20542,170,1,2 +20543,170,1,2 +20543,126,1.4,1 +20543,142,1.4.2,0 +20544,126,1.4,1 +20544,170,1,2 +20544,142,1.4.2,0 +20545,142,1.4.2,0 +20545,170,1,2 +20545,126,1.4,1 +20546,126,1.4,1 +20546,142,1.4.2,0 +20546,170,1,2 +20547,170,1,2 +20547,142,1.4.2,0 +20547,126,1.4,1 +20548,170,1,2 +20548,142,1.4.2,0 +20548,126,1.4,1 +20549,170,1,2 +20549,142,1.4.2,0 +20549,126,1.4,1 +20550,142,1.4.2,0 +20550,170,1,2 +20550,126,1.4,1 +20551,126,1.4,1 +20551,142,1.4.3,0 +20551,170,1,2 +20552,142,1.4.3,0 +20552,170,1,2 +20552,126,1.4,1 +20553,170,1,2 +20553,126,1.4,1 +20553,142,1.4.3,0 +20554,126,1.4,1 +20554,142,1.4.3,0 +20554,170,1,2 +20555,126,1.4,1 +20555,142,1.4.3,0 +20555,170,1,2 +20556,142,1.4.3,0 +20556,170,1,2 +20556,126,1.4,1 +20557,126,1.4,1 +20557,142,1.4.3,0 +20557,170,1,2 +20558,142,1.4.3,0 +20558,170,1,2 +20558,126,1.4,1 +20559,142,1.4.3,0 +20559,170,1,2 +20559,126,1.4,1 +20560,142,1.4.3,0 +20560,170,1,2 +20560,126,1.4,1 +20561,126,1.4,1 +20561,170,1,2 +20561,142,1.4.3,0 +20562,170,1,2 +20562,126,1.4,1 +20562,142,1.4.3,0 +20563,170,1,2 +20563,126,1.4,1 +20563,142,1.4.3,0 +20564,126,1.4,1 +20564,170,1,2 +20564,142,1.4.3,0 +20565,126,1.4,1 +20565,170,1,2 +20565,142,1.4.3,0 +20566,142,1.4.3,0 +20566,126,1.4,1 +20566,170,1,2 +20567,142,1.4.3,0 +20567,126,1.4,1 +20567,170,1,2 +20568,126,1.4,1 +20568,142,1.4.3,0 +20568,170,1,2 +20569,170,1,2 +20569,142,1.4.3,0 +20569,126,1.4,1 +20570,126,1.4,1 +20570,170,1,2 +20570,142,1.4.3,0 +20571,170,1,2 +20571,142,1.4.3,0 +20571,126,1.4,1 +20572,126,1.4,1 +20572,170,1,2 +20572,142,1.4.3,0 +20573,142,1.4.3,0 +20573,170,1,2 +20573,126,1.4,1 +20574,142,1.4.3,0 +20574,170,1,2 +20574,126,1.4,1 +20575,126,1.4,1 +20575,142,1.4.3,0 +20575,170,1,2 +20576,142,1.4.3,0 +20576,126,1.4,1 +20576,170,1,2 +20577,126,1.4,1 +20577,170,1,2 +20577,142,1.4.3,0 +20578,170,1,2 +20578,142,1.4.3,0 +20578,126,1.4,1 +20579,142,1.4.3,0 +20579,126,1.4,1 +20579,170,1,2 +20580,142,1.4.3,0 +20580,126,1.4,1 +20580,170,1,2 +20581,142,1.4.3,0 +20581,126,1.4,1 +20581,170,1,2 +20582,142,1.4.3,0 +20582,170,1,2 +20582,126,1.4,1 +20583,142,1.4.3,0 +20583,170,1,2 +20583,126,1.4,1 +20584,170,1,2 +20584,126,1.4,1 +20584,142,1.4.3,0 +20585,170,1,2 +20585,142,1.4.3,0 +20585,126,1.4,1 +20586,126,1.4,1 +20586,170,1,2 +20586,142,1.4.3,0 +20587,126,1.4,1 +20587,142,1.4.3,0 +20587,170,1,2 +20588,170,1,2 +20588,126,1.4,1 +20588,142,1.4.3,0 +20589,126,1.4,1 +20589,170,1,2 +20589,142,1.4.3,0 +20590,126,1.4,1 +20590,170,1,2 +20590,142,1.4.3,0 +20591,142,1.4.3,0 +20591,126,1.4,1 +20591,170,1,2 +20592,126,1.4,1 +20592,142,1.4.3,0 +20592,170,1,2 +20593,170,1,2 +20593,126,1.4,1 +20593,142,1.4.3,0 +20594,126,1.4,1 +20594,170,1,2 +20594,142,1.4.3,0 +20595,142,1.4.3,0 +20595,170,1,2 +20595,126,1.4,1 +20596,126,1.4,1 +20596,142,1.4.3,0 +20596,170,1,2 +20597,170,1,2 +20597,142,1.4.3,0 +20597,126,1.4,1 +20598,170,1,2 +20598,142,1.4.3,0 +20598,126,1.4,1 +20599,170,1,2 +20599,142,1.4.3,0 +20599,126,1.4,1 +20600,142,1.4.3,0 +20600,170,1,2 +20600,126,1.4,1 +20601,143,2.1.1.1,0 +20601,106,2.1.1,1 +20602,143,2.1.1.1,0 +20602,85,2.1.1,1 +20604,143,2.1.1.1,0 +20604,85,2.1.1,1 +20606,148,2.1.1,1 +20606,143,2.1.1.1,0 +20609,143,2.1.1.1,0 +20609,106,2.1.1,1 +20610,143,2.1.1.1,0 +20610,80,2.1.1,1 +20610,106,2.1.1,1 +20614,85,2.1.1,1 +20614,143,2.1.1.1,0 +20616,85,2.1.1,1 +20616,143,2.1.1.1,0 +20616,106,2.1.1,1 +20616,80,2.1.1,1 +20620,85,2.1.1,1 +20620,143,2.1.1.1,0 +20622,143,2.1.1.1,0 +20622,80,2.1.1,1 +20623,106,2.1.1,1 +20623,143,2.1.1.1,0 +20624,143,2.1.1.1,0 +20624,106,2.1.1,1 +20626,143,2.1.1.1,0 +20626,85,2.1.1,1 +20626,106,2.1.1,1 +20629,143,2.1.1.1,0 +20629,85,2.1.1,1 +20633,143,2.1.1.1,0 +20633,80,2.1.1,1 +20634,143,2.1.1.1,0 +20634,148,2.1.1,1 +20635,106,2.1.1,1 +20635,148,2.1.1,1 +20635,143,2.1.1.1,0 +20636,80,2.1.1,1 +20636,143,2.1.1.1,0 +20638,148,2.1.1,1 +20638,143,2.1.1.1,0 +20639,148,2.1.1,1 +20639,143,2.1.1.1,0 +20639,85,2.1.1,1 +20643,148,2.1.1,1 +20643,106,2.1.1,1 +20643,143,2.1.1.1,0 +20644,143,2.1.1.1,0 +20644,148,2.1.1,1 +20647,143,2.1.1.1,0 +20647,106,2.1.1,1 +20648,143,2.1.1.1,0 +20648,106,2.1.1,1 +20648,148,2.1.1,1 +20650,148,2.1.1,1 +20650,143,2.1.1.1,0 +20652,80,2.1.1,1 +20652,143,2.1.1.2,0 +20654,143,2.1.1.2,0 +20654,148,2.1.1,1 +20655,143,2.1.1.2,0 +20655,85,2.1.1,1 +20657,143,2.1.1.2,0 +20657,85,2.1.1,1 +20658,85,2.1.1,1 +20658,143,2.1.1.2,0 +20660,85,2.1.1,1 +20660,143,2.1.1.2,0 +20661,148,2.1.1,1 +20661,143,2.1.1.2,0 +20672,143,2.1.1.2,0 +20672,148,2.1.1,1 +20672,85,2.1.1,1 +20673,148,2.1.1,1 +20673,143,2.1.1.2,0 +20676,143,2.1.1.2,0 +20676,106,2.1.1,1 +20677,148,2.1.1,1 +20677,85,2.1.1,1 +20677,143,2.1.1.2,0 +20678,85,2.1.1,1 +20678,143,2.1.1.2,0 +20679,143,2.1.1.2,0 +20679,80,2.1.1,1 +20681,143,2.1.1.2,0 +20681,148,2.1.1,1 +20682,106,2.1.1,1 +20682,143,2.1.1.2,0 +20683,143,2.1.1.2,0 +20683,148,2.1.1,1 +20686,143,2.1.1.2,0 +20686,106,2.1.1,1 +20687,143,2.1.1.2,0 +20687,148,2.1.1,1 +20691,80,2.1.1,1 +20691,143,2.1.1.2,0 +20692,143,2.1.1.2,0 +20692,85,2.1.1,1 +20692,80,2.1.1,1 +20693,143,2.1.1.2,0 +20693,85,2.1.1,1 +20694,143,2.1.1.2,0 +20694,80,2.1.1,1 +20698,85,2.1.1,1 +20698,80,2.1.1,1 +20698,143,2.1.1.2,0 +20699,143,2.1.1.2,0 +20699,85,2.1.1,1 +20704,143,2.1.1.3,0 +20704,106,2.1.1,1 +20705,148,2.1.1,1 +20705,80,2.1.1,1 +20705,143,2.1.1.3,0 +20705,85,2.1.1,1 +20706,143,2.1.1.3,0 +20706,85,2.1.1,1 +20708,106,2.1.1,1 +20708,80,2.1.1,1 +20708,143,2.1.1.3,0 +20709,106,2.1.1,1 +20709,143,2.1.1.3,0 +20711,80,2.1.1,1 +20711,148,2.1.1,1 +20711,143,2.1.1.3,0 +20714,80,2.1.1,1 +20714,143,2.1.1.3,0 +20716,143,2.1.1.3,0 +20716,106,2.1.1,1 +20722,106,2.1.1,1 +20722,143,2.1.1.3,0 +20724,143,2.1.1.3,0 +20724,106,2.1.1,1 +20726,143,2.1.1.3,0 +20726,85,2.1.1,1 +20729,143,2.1.1.3,0 +20729,85,2.1.1,1 +20731,106,2.1.1,1 +20731,99,2.1,2 +20731,143,2.1.1.3,0 +20731,85,2.1.1,1 +20732,85,2.1.1,1 +20732,143,2.1.1.3,0 +20733,143,2.1.1.3,0 +20733,80,2.1.1,1 +20734,148,2.1.1,1 +20734,143,2.1.1.3,0 +20735,143,2.1.1.3,0 +20735,148,2.1.1,1 +20737,143,2.1.1.3,0 +20737,148,2.1.1,1 +20738,106,2.1.1,1 +20738,143,2.1.1.3,0 +20739,143,2.1.1.3,0 +20739,148,2.1.1,1 +20740,106,2.1.1,1 +20740,148,2.1.1,1 +20740,143,2.1.1.3,0 +20741,106,2.1.1,1 +20741,143,2.1.1.3,0 +20743,143,2.1.1.3,0 +20743,80,2.1.1,1 +20748,80,2.1.1,1 +20748,143,2.1.1.3,0 +20748,148,2.1.1,1 +20752,143,2.1.1.4,0 +20752,80,2.1.1,1 +20754,143,2.1.1.4,0 +20754,106,2.1.1,1 +20756,106,2.1.1,1 +20756,143,2.1.1.4,0 +20757,80,2.1.1,1 +20757,143,2.1.1.4,0 +20758,148,2.1.1,1 +20758,143,2.1.1.4,0 +20759,143,2.1.1.4,0 +20759,80,2.1.1,1 +20761,106,2.1.1,1 +20761,143,2.1.1.4,0 +20764,143,2.1.1.4,0 +20764,106,2.1.1,1 +20764,85,2.1.1,1 +20766,143,2.1.1.4,0 +20766,148,2.1.1,1 +20767,148,2.1.1,1 +20767,143,2.1.1.4,0 +20769,148,2.1.1,1 +20769,143,2.1.1.4,0 +20770,85,2.1.1,1 +20770,143,2.1.1.4,0 +20772,85,2.1.1,1 +20772,143,2.1.1.4,0 +20774,143,2.1.1.4,0 +20774,106,2.1.1,1 +20775,143,2.1.1.4,0 +20775,80,2.1.1,1 +20776,143,2.1.1.4,0 +20776,85,2.1.1,1 +20777,143,2.1.1.4,0 +20777,148,2.1.1,1 +20778,148,2.1.1,1 +20778,143,2.1.1.4,0 +20781,143,2.1.1.4,0 +20781,85,2.1.1,1 +20781,80,2.1.1,1 +20782,143,2.1.1.4,0 +20782,148,2.1.1,1 +20783,143,2.1.1.4,0 +20783,80,2.1.1,1 +20784,143,2.1.1.4,0 +20784,80,2.1.1,1 +20786,80,2.1.1,1 +20786,143,2.1.1.4,0 +20789,106,2.1.1,1 +20789,143,2.1.1.4,0 +20790,143,2.1.1.4,0 +20790,106,2.1.1,1 +20794,143,2.1.1.4,0 +20794,85,2.1.1,1 +20795,85,2.1.1,1 +20795,143,2.1.1.4,0 +20797,143,2.1.1.4,0 +20797,148,2.1.1,1 +20798,80,2.1.1,1 +20798,143,2.1.1.4,0 +20798,148,2.1.1,1 +20799,106,2.1.1,1 +20799,148,2.1.1,1 +20799,143,2.1.1.4,0 +20800,143,2.1.1.4,0 +20800,106,2.1.1,1 +20802,143,2.1.1.5,0 +20802,148,2.1.1,1 +20802,106,2.1.1,1 +20804,143,2.1.1.5,0 +20804,85,2.1.1,1 +20805,143,2.1.1.5,0 +20805,148,2.1.1,1 +20806,143,2.1.1.5,0 +20806,85,2.1.1,1 +20807,106,2.1.1,1 +20807,143,2.1.1.5,0 +20809,148,2.1.1,1 +20809,143,2.1.1.5,0 +20810,143,2.1.1.5,0 +20810,148,2.1.1,1 +20814,143,2.1.1.5,0 +20814,106,2.1.1,1 +20814,85,2.1.1,1 +20820,80,2.1.1,1 +20820,143,2.1.1.5,0 +20822,143,2.1.1.5,0 +20822,85,2.1.1,1 +20823,143,2.1.1.5,0 +20823,80,2.1.1,1 +20824,143,2.1.1.5,0 +20824,148,2.1.1,1 +20826,148,2.1.1,1 +20826,143,2.1.1.5,0 +20829,143,2.1.1.5,0 +20829,85,2.1.1,1 +20831,143,2.1.1.5,0 +20831,148,2.1.1,1 +20832,80,2.1.1,1 +20832,143,2.1.1.5,0 +20833,143,2.1.1.5,0 +20833,85,2.1.1,1 +20834,143,2.1.1.5,0 +20834,80,2.1.1,1 +20839,143,2.1.1.5,0 +20839,80,2.1.1,1 +20844,143,2.1.1.5,0 +20844,85,2.1.1,1 +20847,80,2.1.1,1 +20847,143,2.1.1.5,0 +20848,85,2.1.1,1 +20848,143,2.1.1.5,0 +20848,148,2.1.1,1 +20852,84,2.1.2,1 +20852,144,2.1.2.1,0 +20853,58,2.1.2,1 +20853,144,2.1.2.1,0 +20854,144,2.1.2.1,0 +20854,84,2.1.2,1 +20855,84,2.1.2,1 +20855,79,2.1.2,1 +20855,144,2.1.2.1,0 +20856,79,2.1.2,1 +20856,159,2.1.2,1 +20856,144,2.1.2.1,0 +20857,144,2.1.2.1,0 +20857,159,2.1.2,1 +20858,144,2.1.2.1,0 +20858,79,2.1.2,1 +20859,79,2.1.2,1 +20859,144,2.1.2.1,0 +20864,79,2.1.2,1 +20864,144,2.1.2.1,0 +20869,79,2.1.2,1 +20869,81,2.1.2,1 +20869,144,2.1.2.1,0 +20870,84,2.1.2,1 +20870,144,2.1.2.1,0 +20872,81,2.1.2,1 +20872,144,2.1.2.1,0 +20873,159,2.1.2,1 +20873,84,2.1.2,1 +20873,144,2.1.2.1,0 +20874,79,2.1.2,1 +20874,58,2.1.2,1 +20874,144,2.1.2.1,0 +20875,144,2.1.2.1,0 +20875,79,2.1.2,1 +20877,84,2.1.2,1 +20877,144,2.1.2.1,0 +20878,79,2.1.2,1 +20878,144,2.1.2.1,0 +20881,144,2.1.2.1,0 +20881,84,2.1.2,1 +20881,159,2.1.2,1 +20882,81,2.1.2,1 +20882,144,2.1.2.1,0 +20883,144,2.1.2.1,0 +20883,81,2.1.2,1 +20884,144,2.1.2.1,0 +20884,79,2.1.2,1 +20886,144,2.1.2.1,0 +20886,81,2.1.2,1 +20886,58,2.1.2,1 +20889,144,2.1.2.1,0 +20889,84,2.1.2,1 +20889,159,2.1.2,1 +20889,79,2.1.2,1 +20889,58,2.1.2,1 +20890,144,2.1.2.1,0 +20890,81,2.1.2,1 +20891,159,2.1.2,1 +20891,144,2.1.2.1,0 +20892,144,2.1.2.1,0 +20892,81,2.1.2,1 +20892,79,2.1.2,1 +20893,79,2.1.2,1 +20893,144,2.1.2.1,0 +20894,58,2.1.2,1 +20894,144,2.1.2.1,0 +20894,79,2.1.2,1 +20895,84,2.1.2,1 +20895,144,2.1.2.1,0 +20898,144,2.1.2.1,0 +20898,58,2.1.2,1 +20900,81,2.1.2,1 +20900,144,2.1.2.1,0 +20902,159,2.1.2,1 +20902,144,2.1.2.2,0 +20902,79,2.1.2,1 +20903,144,2.1.2.2,0 +20903,79,2.1.2,1 +20904,144,2.1.2.2,0 +20904,84,2.1.2,1 +20905,58,2.1.2,1 +20905,144,2.1.2.2,0 +20906,58,2.1.2,1 +20906,79,2.1.2,1 +20906,144,2.1.2.2,0 +20907,144,2.1.2.2,0 +20907,58,2.1.2,1 +20908,81,2.1.2,1 +20908,144,2.1.2.2,0 +20909,144,2.1.2.2,0 +20909,58,2.1.2,1 +20910,79,2.1.2,1 +20910,144,2.1.2.2,0 +20911,81,2.1.2,1 +20911,144,2.1.2.2,0 +20914,79,2.1.2,1 +20914,84,2.1.2,1 +20914,144,2.1.2.2,0 +20916,144,2.1.2.2,0 +20916,84,2.1.2,1 +20920,144,2.1.2.2,0 +20920,81,2.1.2,1 +20922,58,2.1.2,1 +20922,144,2.1.2.2,0 +20923,144,2.1.2.2,0 +20923,58,2.1.2,1 +20926,81,2.1.2,1 +20926,144,2.1.2.2,0 +20928,84,2.1.2,1 +20928,144,2.1.2.2,0 +20931,144,2.1.2.2,0 +20931,79,2.1.2,1 +20932,159,2.1.2,1 +20932,144,2.1.2.2,0 +20933,144,2.1.2.2,0 +20933,79,2.1.2,1 +20934,144,2.1.2.2,0 +20934,58,2.1.2,1 +20938,81,2.1.2,1 +20938,144,2.1.2.2,0 +20939,81,2.1.2,1 +20939,144,2.1.2.2,0 +20940,144,2.1.2.2,0 +20940,81,2.1.2,1 +20942,159,2.1.2,1 +20942,144,2.1.2.2,0 +20943,144,2.1.2.2,0 +20943,58,2.1.2,1 +20944,81,2.1.2,1 +20944,144,2.1.2.2,0 +20945,81,2.1.2,1 +20945,144,2.1.2.2,0 +20947,144,2.1.2.2,0 +20947,84,2.1.2,1 +20948,144,2.1.2.2,0 +20948,81,2.1.2,1 +20948,84,2.1.2,1 +20951,58,2.1.2,1 +20951,159,2.1.2,1 +20951,144,2.1.2.3,0 +20952,159,2.1.2,1 +20952,144,2.1.2.3,0 +20953,58,2.1.2,1 +20953,144,2.1.2.3,0 +20955,79,2.1.2,1 +20955,144,2.1.2.3,0 +20956,84,2.1.2,1 +20956,144,2.1.2.3,0 +20959,144,2.1.2.3,0 +20959,159,2.1.2,1 +20960,84,2.1.2,1 +20960,144,2.1.2.3,0 +20961,58,2.1.2,1 +20961,144,2.1.2.3,0 +20964,81,2.1.2,1 +20964,144,2.1.2.3,0 +20966,144,2.1.2.3,0 +20966,84,2.1.2,1 +20970,58,2.1.2,1 +20970,144,2.1.2.3,0 +20973,144,2.1.2.3,0 +20973,58,2.1.2,1 +20974,159,2.1.2,1 +20974,144,2.1.2.3,0 +20974,79,2.1.2,1 +20976,81,2.1.2,1 +20976,144,2.1.2.3,0 +20976,58,2.1.2,1 +20979,144,2.1.2.3,0 +20979,84,2.1.2,1 +20982,79,2.1.2,1 +20982,144,2.1.2.3,0 +20984,84,2.1.2,1 +20984,144,2.1.2.3,0 +20986,144,2.1.2.3,0 +20986,58,2.1.2,1 +20991,159,2.1.2,1 +20991,144,2.1.2.3,0 +20993,79,2.1.2,1 +20993,144,2.1.2.3,0 +20997,58,2.1.2,1 +20997,144,2.1.2.3,0 +20998,144,2.1.2.3,0 +20998,159,2.1.2,1 +20999,144,2.1.2.3,0 +20999,81,2.1.2,1 +21001,58,2.1.2,1 +21001,144,2.1.2.4,0 +21002,144,2.1.2.4,0 +21002,84,2.1.2,1 +21002,159,2.1.2,1 +21003,58,2.1.2,1 +21003,144,2.1.2.4,0 +21005,144,2.1.2.4,0 +21005,84,2.1.2,1 +21008,144,2.1.2.4,0 +21008,58,2.1.2,1 +21009,81,2.1.2,1 +21009,144,2.1.2.4,0 +21010,79,2.1.2,1 +21010,144,2.1.2.4,0 +21016,81,2.1.2,1 +21016,144,2.1.2.4,0 +21022,144,2.1.2.4,0 +21022,79,2.1.2,1 +21024,79,2.1.2,1 +21024,144,2.1.2.4,0 +21028,84,2.1.2,1 +21028,144,2.1.2.4,0 +21032,159,2.1.2,1 +21032,144,2.1.2.4,0 +21032,79,2.1.2,1 +21034,58,2.1.2,1 +21034,144,2.1.2.4,0 +21038,159,2.1.2,1 +21038,144,2.1.2.4,0 +21041,58,2.1.2,1 +21041,144,2.1.2.4,0 +21042,79,2.1.2,1 +21042,58,2.1.2,1 +21042,144,2.1.2.4,0 +21043,81,2.1.2,1 +21043,144,2.1.2.4,0 +21044,81,2.1.2,1 +21044,144,2.1.2.4,0 +21044,79,2.1.2,1 +21045,81,2.1.2,1 +21045,144,2.1.2.4,0 +21047,144,2.1.2.4,0 +21047,81,2.1.2,1 +21048,144,2.1.2.4,0 +21048,81,2.1.2,1 +21050,159,2.1.2,1 +21050,144,2.1.2.4,0 +21050,81,2.1.2,1 +21052,100,1.3.1,1 +21052,145,1.3.1.4,0 +21053,145,1.3.1.4,0 +21053,100,1.3.1,1 +21053,93,1.3.1,1 +21054,39,1.3.1,1 +21054,145,1.3.1.4,0 +21055,39,1.3.1,1 +21055,145,1.3.1.4,0 +21055,85,1.3.1,1 +21055,100,1.3.1,1 +21056,145,1.3.1.4,0 +21056,39,1.3.1,1 +21056,100,1.3.1,1 +21057,145,1.3.1.4,0 +21057,85,1.3.1,1 +21058,145,1.3.1.4,0 +21058,100,1.3.1,1 +21059,145,1.3.1.4,0 +21059,39,1.3.1,1 +21060,100,1.3.1,1 +21060,145,1.3.1.4,0 +21061,145,1.3.1.4,0 +21061,93,1.3.1,1 +21061,85,1.3.1,1 +21064,39,1.3.1,1 +21064,85,1.3.1,1 +21064,100,1.3.1,1 +21064,145,1.3.1.4,0 +21064,93,1.3.1,1 +21064,99,1.3.1,1 +21066,145,1.3.1.4,0 +21066,85,1.3.1,1 +21066,100,1.3.1,1 +21069,99,1.3.1,1 +21069,93,1.3.1,1 +21069,100,1.3.1,1 +21069,145,1.3.1.4,0 +21071,93,1.3.1,1 +21071,145,1.3.1.4,0 +21072,145,1.3.1.4,0 +21072,99,1.3.1,1 +21073,145,1.3.1.4,0 +21073,39,1.3.1,1 +21074,145,1.3.1.4,0 +21074,85,1.3.1,1 +21075,145,1.3.1.4,0 +21075,39,1.3.1,1 +21076,100,1.3.1,1 +21076,145,1.3.1.4,0 +21078,99,1.3.1,1 +21078,145,1.3.1.4,0 +21079,99,1.3.1,1 +21079,145,1.3.1.4,0 +21081,93,1.3.1,1 +21081,145,1.3.1.4,0 +21082,145,1.3.1.4,0 +21082,39,1.3.1,1 +21083,99,1.3.1,1 +21083,145,1.3.1.4,0 +21084,99,1.3.1,1 +21084,145,1.3.1.4,0 +21085,145,1.3.1.4,0 +21085,99,1.3.1,1 +21086,145,1.3.1.4,0 +21086,93,1.3.1,1 +21087,145,1.3.1.4,0 +21087,99,1.3.1,1 +21089,39,1.3.1,1 +21089,145,1.3.1.4,0 +21091,39,1.3.1,1 +21091,145,1.3.1.4,0 +21092,100,1.3.1,1 +21092,93,1.3.1,1 +21092,145,1.3.1.4,0 +21093,99,1.3.1,1 +21093,145,1.3.1.4,0 +21094,145,1.3.1.4,0 +21094,93,1.3.1,1 +21097,145,1.3.1.4,0 +21097,93,1.3.1,1 +21098,145,1.3.1.4,0 +21098,93,1.3.1,1 +21102,146,1.3.1.1,0 +21102,85,1.3.1,1 +21104,146,1.3.1.1,0 +21104,100,1.3.1,1 +21105,93,1.3.1,1 +21105,146,1.3.1.1,0 +21106,93,1.3.1,1 +21106,146,1.3.1.1,0 +21107,99,1.3.1,1 +21107,146,1.3.1.1,0 +21108,39,1.3.1,1 +21108,146,1.3.1.1,0 +21109,85,1.3.1,1 +21109,146,1.3.1.1,0 +21110,39,1.3.1,1 +21110,146,1.3.1.1,0 +21111,39,1.3.1,1 +21111,146,1.3.1.1,0 +21111,100,1.3.1,1 +21111,99,1.3.1,1 +21114,39,1.3.1,1 +21114,100,1.3.1,1 +21114,99,1.3.1,1 +21114,93,1.3.1,1 +21114,85,1.3.1,1 +21114,146,1.3.1.1,0 +21116,99,1.3.1,1 +21116,93,1.3.1,1 +21116,146,1.3.1.1,0 +21119,146,1.3.1.1,0 +21119,99,1.3.1,1 +21120,85,1.3.1,1 +21120,146,1.3.1.1,0 +21121,100,1.3.1,1 +21121,146,1.3.1.1,0 +21122,146,1.3.1.1,0 +21122,39,1.3.1,1 +21123,146,1.3.1.1,0 +21123,39,1.3.1,1 +21124,39,1.3.1,1 +21124,146,1.3.1.1,0 +21124,85,1.3.1,1 +21125,146,1.3.1.1,0 +21125,100,1.3.1,1 +21126,93,1.3.1,1 +21126,99,1.3.1,1 +21126,146,1.3.1.1,0 +21127,146,1.3.1.1,0 +21127,100,1.3.1,1 +21128,93,1.3.1,1 +21128,146,1.3.1.1,0 +21129,146,1.3.1.1,0 +21129,99,1.3.1,1 +21131,85,1.3.1,1 +21131,100,1.3.1,1 +21131,146,1.3.1.1,0 +21132,106,1.3,2 +21132,146,1.3.1.1,0 +21132,85,1.3.1,1 +21133,39,1.3.1,1 +21133,146,1.3.1.1,0 +21134,93,1.3.1,1 +21134,146,1.3.1.1,0 +21135,99,1.3.1,1 +21135,146,1.3.1.1,0 +21136,39,1.3.1,1 +21136,85,1.3.1,1 +21136,146,1.3.1.1,0 +21138,93,1.3.1,1 +21138,146,1.3.1.1,0 +21139,85,1.3.1,1 +21139,146,1.3.1.1,0 +21140,99,1.3.1,1 +21140,146,1.3.1.1,0 +21141,39,1.3.1,1 +21141,146,1.3.1.1,0 +21142,146,1.3.1.1,0 +21142,93,1.3.1,1 +21143,85,1.3.1,1 +21143,146,1.3.1.1,0 +21144,146,1.3.1.1,0 +21144,85,1.3.1,1 +21145,146,1.3.1.1,0 +21145,100,1.3.1,1 +21147,85,1.3.1,1 +21147,146,1.3.1.1,0 +21148,106,1.3,2 +21148,100,1.3.1,1 +21148,146,1.3.1.1,0 +21152,105,1.1,1 +21152,86,1.1,1 +21152,147,1.1.2,0 +21154,147,1.1.2,0 +21154,86,1.1,1 +21155,147,1.1.2,0 +21155,105,1.1,1 +21156,105,1.1,1 +21156,147,1.1.2,0 +21157,86,1.1,1 +21157,147,1.1.2,0 +21158,147,1.1.2,0 +21158,94,1.1,1 +21160,86,1.1,1 +21160,147,1.1.2,0 +21161,147,1.1.2,0 +21161,126,1.1,1 +21164,147,1.1.2,0 +21164,94,1.1,1 +21166,126,1.1,1 +21166,147,1.1.2,0 +21170,126,1.1,1 +21170,147,1.1.2,0 +21170,106,1.1,1 +21172,86,1.1,1 +21172,147,1.1.2,0 +21173,106,1.1,1 +21173,147,1.1.2,0 +21173,126,1.1,1 +21176,126,1.1,1 +21176,94,1.1,1 +21176,147,1.1.2,0 +21178,106,1.1,1 +21178,147,1.1.2,0 +21179,147,1.1.2,0 +21179,94,1.1,1 +21181,147,1.1.2,0 +21181,86,1.1,1 +21182,94,1.1,1 +21182,147,1.1.2,0 +21183,147,1.1.2,0 +21183,94,1.1,1 +21184,147,1.1.2,0 +21184,94,1.1,1 +21185,94,1.1,1 +21185,147,1.1.2,0 +21186,106,1.1,1 +21186,86,1.1,1 +21186,147,1.1.2,0 +21187,105,1.1,1 +21187,147,1.1.2,0 +21189,86,1.1,1 +21189,147,1.1.2,0 +21190,147,1.1.2,0 +21190,106,1.1,1 +21191,106,1.1,1 +21191,147,1.1.2,0 +21192,106,1.1,1 +21192,147,1.1.2,0 +21193,147,1.1.2,0 +21193,106,1.1,1 +21194,86,1.1,1 +21194,94,1.1,1 +21194,147,1.1.2,0 +21195,94,1.1,1 +21195,147,1.1.2,0 +21197,105,1.1,1 +21197,147,1.1.2,0 +21198,94,1.1,1 +21198,147,1.1.2,0 +21199,147,1.1.2,0 +21199,126,1.1,1 +21204,98,2,2 +21204,102,2,2 +21204,148,2.1.1,0 +21204,99,2.1,1 +21204,170,1,3 +21205,99,2.1,1 +21205,148,2.1.1,0 +21209,99,2.1,1 +21209,148,2.1.1,0 +21210,99,2.1,1 +21210,148,2.1.1,0 +21220,148,2.1.1,0 +21220,99,2.1,1 +21222,148,2.1.1,0 +21222,99,2.1,1 +21228,99,2.1,1 +21228,148,2.1.1,0 +21234,148,2.1.1,0 +21234,99,2.1,1 +21241,148,2.1.1,0 +21241,99,2.1,1 +21244,148,2.1.1,0 +21244,99,2.1,1 +21252,148,2.1.3,0 +21252,99,2.1,1 +21255,99,2.1,1 +21255,148,2.1.3,0 +21257,99,2.1,1 +21257,148,2.1.3,0 +21259,99,2.1,1 +21259,148,2.1.3,0 +21264,99,2.1,1 +21264,148,2.1.3,0 +21272,148,2.1.3,0 +21272,99,2.1,1 +21278,99,2.1,1 +21278,148,2.1.3,0 +21281,148,2.1.3,0 +21281,99,2.1,1 +21283,148,2.1.3,0 +21283,99,2.1,1 +21289,148,2.1.3,0 +21289,99,2.1,1 +21294,148,2.1.3,0 +21294,99,2.1,1 +21306,148,2.2,0 +21306,102,2,1 +21307,98,2,1 +21307,148,2.2,0 +21311,102,2,1 +21311,148,2.2,0 +21314,148,2.2,0 +21314,98,2,1 +21322,102,2,1 +21322,148,2.2,0 +21323,102,2,1 +21323,148,2.2,0 +21329,98,2,1 +21329,148,2.2,0 +21333,98,2,1 +21333,148,2.2,0 +21339,148,2.2,0 +21339,98,2,1 +21344,98,2,1 +21344,148,2.2,0 +21354,58,2.1.2,1 +21354,149,2.1.2.1,0 +21356,79,2.1.2,1 +21356,149,2.1.2.1,0 +21357,149,2.1.2.1,0 +21357,58,2.1.2,1 +21357,81,2.1.2,1 +21360,79,2.1.2,1 +21360,149,2.1.2.1,0 +21361,79,2.1.2,1 +21361,159,2.1.2,1 +21361,149,2.1.2.1,0 +21364,149,2.1.2.1,0 +21364,81,2.1.2,1 +21364,159,2.1.2,1 +21366,79,2.1.2,1 +21366,149,2.1.2.1,0 +21371,81,2.1.2,1 +21371,149,2.1.2.1,0 +21372,149,2.1.2.1,0 +21372,79,2.1.2,1 +21373,149,2.1.2.1,0 +21373,58,2.1.2,1 +21376,84,2.1.2,1 +21376,79,2.1.2,1 +21376,149,2.1.2.1,0 +21378,58,2.1.2,1 +21378,149,2.1.2.1,0 +21379,81,2.1.2,1 +21379,58,2.1.2,1 +21379,149,2.1.2.1,0 +21381,149,2.1.2.1,0 +21381,79,2.1.2,1 +21381,58,2.1.2,1 +21384,149,2.1.2.1,0 +21384,79,2.1.2,1 +21386,84,2.1.2,1 +21386,99,2.1,2 +21386,79,2.1.2,1 +21386,58,2.1.2,1 +21386,149,2.1.2.1,0 +21391,81,2.1.2,1 +21391,149,2.1.2.1,0 +21393,79,2.1.2,1 +21393,159,2.1.2,1 +21393,149,2.1.2.1,0 +21395,149,2.1.2.1,0 +21395,159,2.1.2,1 +21397,159,2.1.2,1 +21397,149,2.1.2.1,0 +21398,149,2.1.2.1,0 +21398,81,2.1.2,1 +21402,149,2.1.2.2,0 +21402,79,2.1.2,1 +21402,84,2.1.2,1 +21403,159,2.1.2,1 +21403,58,2.1.2,1 +21403,149,2.1.2.2,0 +21404,58,2.1.2,1 +21404,149,2.1.2.2,0 +21405,81,2.1.2,1 +21405,149,2.1.2.2,0 +21406,149,2.1.2.2,0 +21406,81,2.1.2,1 +21407,149,2.1.2.2,0 +21407,58,2.1.2,1 +21408,79,2.1.2,1 +21408,149,2.1.2.2,0 +21409,149,2.1.2.2,0 +21409,58,2.1.2,1 +21414,149,2.1.2.2,0 +21414,84,2.1.2,1 +21414,81,2.1.2,1 +21416,81,2.1.2,1 +21416,149,2.1.2.2,0 +21419,79,2.1.2,1 +21419,149,2.1.2.2,0 +21420,149,2.1.2.2,0 +21420,58,2.1.2,1 +21421,149,2.1.2.2,0 +21421,159,2.1.2,1 +21422,58,2.1.2,1 +21422,149,2.1.2.2,0 +21424,149,2.1.2.2,0 +21424,84,2.1.2,1 +21426,84,2.1.2,1 +21426,149,2.1.2.2,0 +21428,58,2.1.2,1 +21428,149,2.1.2.2,0 +21429,149,2.1.2.2,0 +21429,79,2.1.2,1 +21431,149,2.1.2.2,0 +21431,58,2.1.2,1 +21431,159,2.1.2,1 +21433,84,2.1.2,1 +21433,149,2.1.2.2,0 +21434,149,2.1.2.2,0 +21434,58,2.1.2,1 +21439,159,2.1.2,1 +21439,149,2.1.2.2,0 +21440,149,2.1.2.2,0 +21440,84,2.1.2,1 +21441,79,2.1.2,1 +21441,149,2.1.2.2,0 +21441,159,2.1.2,1 +21444,149,2.1.2.2,0 +21444,159,2.1.2,1 +21447,58,2.1.2,1 +21447,149,2.1.2.2,0 +21448,149,2.1.2.2,0 +21448,58,2.1.2,1 +21454,58,2.1.2,1 +21454,149,2.1.2.3,0 +21455,149,2.1.2.3,0 +21455,79,2.1.2,1 +21456,58,2.1.2,1 +21456,149,2.1.2.3,0 +21457,149,2.1.2.3,0 +21457,81,2.1.2,1 +21458,58,2.1.2,1 +21458,149,2.1.2.3,0 +21460,84,2.1.2,1 +21460,149,2.1.2.3,0 +21461,84,2.1.2,1 +21461,149,2.1.2.3,0 +21464,79,2.1.2,1 +21464,149,2.1.2.3,0 +21466,79,2.1.2,1 +21466,149,2.1.2.3,0 +21469,79,2.1.2,1 +21469,149,2.1.2.3,0 +21469,81,2.1.2,1 +21470,149,2.1.2.3,0 +21470,81,2.1.2,1 +21472,84,2.1.2,1 +21472,149,2.1.2.3,0 +21473,159,2.1.2,1 +21473,81,2.1.2,1 +21473,149,2.1.2.3,0 +21478,81,2.1.2,1 +21478,149,2.1.2.3,0 +21479,58,2.1.2,1 +21479,149,2.1.2.3,0 +21481,81,2.1.2,1 +21481,149,2.1.2.3,0 +21483,159,2.1.2,1 +21483,149,2.1.2.3,0 +21486,81,2.1.2,1 +21486,149,2.1.2.3,0 +21488,159,2.1.2,1 +21488,149,2.1.2.3,0 +21489,79,2.1.2,1 +21489,149,2.1.2.3,0 +21491,81,2.1.2,1 +21491,149,2.1.2.3,0 +21494,58,2.1.2,1 +21494,149,2.1.2.3,0 +21494,79,2.1.2,1 +21495,149,2.1.2.3,0 +21495,159,2.1.2,1 +21497,79,2.1.2,1 +21497,149,2.1.2.3,0 +21501,149,2.1.2.4,0 +21501,79,2.1.2,1 +21502,58,2.1.2,1 +21502,149,2.1.2.4,0 +21502,159,2.1.2,1 +21503,79,2.1.2,1 +21503,149,2.1.2.4,0 +21503,159,2.1.2,1 +21504,149,2.1.2.4,0 +21504,79,2.1.2,1 +21507,79,2.1.2,1 +21507,149,2.1.2.4,0 +21508,79,2.1.2,1 +21508,149,2.1.2.4,0 +21510,149,2.1.2.4,0 +21510,159,2.1.2,1 +21512,149,2.1.2.4,0 +21512,84,2.1.2,1 +21512,159,2.1.2,1 +21514,149,2.1.2.4,0 +21514,81,2.1.2,1 +21514,58,2.1.2,1 +21516,58,2.1.2,1 +21516,149,2.1.2.4,0 +21517,159,2.1.2,1 +21517,149,2.1.2.4,0 +21519,149,2.1.2.4,0 +21519,58,2.1.2,1 +21520,149,2.1.2.4,0 +21520,58,2.1.2,1 +21522,58,2.1.2,1 +21522,149,2.1.2.4,0 +21523,81,2.1.2,1 +21523,149,2.1.2.4,0 +21523,79,2.1.2,1 +21526,149,2.1.2.4,0 +21526,58,2.1.2,1 +21526,79,2.1.2,1 +21528,58,2.1.2,1 +21528,149,2.1.2.4,0 +21529,58,2.1.2,1 +21529,149,2.1.2.4,0 +21531,84,2.1.2,1 +21531,149,2.1.2.4,0 +21532,149,2.1.2.4,0 +21532,84,2.1.2,1 +21533,159,2.1.2,1 +21533,149,2.1.2.4,0 +21534,149,2.1.2.4,0 +21534,58,2.1.2,1 +21536,149,2.1.2.4,0 +21536,79,2.1.2,1 +21536,159,2.1.2,1 +21541,81,2.1.2,1 +21541,149,2.1.2.4,0 +21542,149,2.1.2.4,0 +21542,79,2.1.2,1 +21547,58,2.1.2,1 +21547,149,2.1.2.4,0 +21552,86,1.1,1 +21552,150,1.1.1,0 +21556,150,1.1.1,0 +21556,86,1.1,1 +21557,150,1.1.1,0 +21557,94,1.1,1 +21558,106,1.1,1 +21558,150,1.1.1,0 +21561,105,1.1,1 +21561,150,1.1.1,0 +21564,86,1.1,1 +21564,105,1.1,1 +21564,150,1.1.1,0 +21566,150,1.1.1,0 +21566,126,1.1,1 +21569,105,1.1,1 +21569,150,1.1.1,0 +21576,150,1.1.1,0 +21576,94,1.1,1 +21578,126,1.1,1 +21578,150,1.1.1,0 +21582,150,1.1.1,0 +21582,105,1.1,1 +21584,150,1.1.1,0 +21584,94,1.1,1 +21586,106,1.1,1 +21586,150,1.1.1,0 +21592,126,1.1,1 +21592,150,1.1.1,0 +21593,94,1.1,1 +21593,150,1.1.1,0 +21594,150,1.1.1,0 +21594,105,1.1,1 +21599,150,1.1.1,0 +21599,106,1.1,1 +21601,170,1,3 +21601,151,1.3.5.1,0 +21601,130,1.3.5,1 +21601,29,1.3,2 +21601,106,1.3,2 +21602,130,1.3.5,1 +21602,151,1.3.5.1,0 +21603,151,1.3.5.1,0 +21603,170,1,3 +21603,130,1.3.5,1 +21603,29,1.3,2 +21603,106,1.3,2 +21604,151,1.3.5.1,0 +21604,130,1.3.5,1 +21605,106,1.3,2 +21605,130,1.3.5,1 +21605,29,1.3,2 +21605,151,1.3.5.1,0 +21605,170,1,3 +21606,151,1.3.5.1,0 +21606,130,1.3.5,1 +21607,151,1.3.5.1,0 +21607,130,1.3.5,1 +21608,130,1.3.5,1 +21608,106,1.3,2 +21608,151,1.3.5.1,0 +21608,170,1,3 +21608,29,1.3,2 +21609,130,1.3.5,1 +21609,170,1,3 +21609,29,1.3,2 +21609,151,1.3.5.1,0 +21609,106,1.3,2 +21610,130,1.3.5,1 +21610,151,1.3.5.1,0 +21611,130,1.3.5,1 +21611,151,1.3.5.1,0 +21614,130,1.3.5,1 +21614,170,1,3 +21614,106,1.3,2 +21614,151,1.3.5.1,0 +21614,29,1.3,2 +21616,29,1.3,2 +21616,106,1.3,2 +21616,170,1,3 +21616,151,1.3.5.1,0 +21616,130,1.3.5,1 +21619,151,1.3.5.1,0 +21619,130,1.3.5,1 +21619,29,1.3,2 +21619,106,1.3,2 +21619,170,1,3 +21620,130,1.3.5,1 +21620,151,1.3.5.1,0 +21622,130,1.3.5,1 +21622,151,1.3.5.1,0 +21623,151,1.3.5.1,0 +21623,130,1.3.5,1 +21624,130,1.3.5,1 +21624,151,1.3.5.1,0 +21624,106,1.3,2 +21624,29,1.3,2 +21624,170,1,3 +21625,130,1.3.5,1 +21625,151,1.3.5.1,0 +21626,130,1.3.5,1 +21626,151,1.3.5.1,0 +21626,106,1.3,2 +21626,29,1.3,2 +21626,170,1,3 +21628,29,1.3,2 +21628,151,1.3.5.1,0 +21628,170,1,3 +21628,130,1.3.5,1 +21628,106,1.3,2 +21629,130,1.3.5,1 +21629,151,1.3.5.1,0 +21631,130,1.3.5,1 +21631,151,1.3.5.1,0 +21632,151,1.3.5.1,0 +21632,130,1.3.5,1 +21633,130,1.3.5,1 +21633,151,1.3.5.1,0 +21634,130,1.3.5,1 +21634,151,1.3.5.1,0 +21636,106,1.3,2 +21636,151,1.3.5.1,0 +21636,170,1,3 +21636,29,1.3,2 +21636,130,1.3.5,1 +21639,130,1.3.5,1 +21639,151,1.3.5.1,0 +21641,151,1.3.5.1,0 +21641,130,1.3.5,1 +21642,130,1.3.5,1 +21642,151,1.3.5.1,0 +21643,130,1.3.5,1 +21643,151,1.3.5.1,0 +21644,151,1.3.5.1,0 +21644,130,1.3.5,1 +21647,130,1.3.5,1 +21647,151,1.3.5.1,0 +21648,29,1.3,2 +21648,106,1.3,2 +21648,170,1,3 +21648,130,1.3.5,1 +21648,151,1.3.5.1,0 +21649,170,1,3 +21649,151,1.3.5.1,0 +21649,106,1.3,2 +21649,29,1.3,2 +21649,130,1.3.5,1 +21651,152,1.4.4.1,0 +21651,0,1.4.4,1 +21652,126,1.4,2 +21652,152,1.4.4.1,0 +21652,40,1.4.4,1 +21653,152,1.4.4.1,0 +21653,40,1.4.4,1 +21654,0,1.4.4,1 +21654,152,1.4.4.1,0 +21655,40,1.4.4,1 +21655,0,1.4.4,1 +21655,152,1.4.4.1,0 +21656,152,1.4.4.1,0 +21656,0,1.4.4,1 +21657,152,1.4.4.1,0 +21657,0,1.4.4,1 +21657,126,1.4,2 +21658,152,1.4.4.1,0 +21658,0,1.4.4,1 +21659,40,1.4.4,1 +21659,0,1.4.4,1 +21659,152,1.4.4.1,0 +21660,152,1.4.4.1,0 +21660,0,1.4.4,1 +21661,152,1.4.4.1,0 +21661,40,1.4.4,1 +21661,0,1.4.4,1 +21664,0,1.4.4,1 +21664,152,1.4.4.1,0 +21664,40,1.4.4,1 +21666,0,1.4.4,1 +21666,152,1.4.4.1,0 +21667,126,1.4,2 +21667,152,1.4.4.1,0 +21667,40,1.4.4,1 +21669,152,1.4.4.1,0 +21669,40,1.4.4,1 +21670,0,1.4.4,1 +21670,152,1.4.4.1,0 +21671,152,1.4.4.1,0 +21671,40,1.4.4,1 +21672,0,1.4.4,1 +21672,152,1.4.4.1,0 +21673,152,1.4.4.1,0 +21673,40,1.4.4,1 +21674,40,1.4.4,1 +21674,152,1.4.4.1,0 +21676,0,1.4.4,1 +21676,40,1.4.4,1 +21676,152,1.4.4.1,0 +21677,152,1.4.4.1,0 +21677,40,1.4.4,1 +21677,126,1.4,2 +21678,0,1.4.4,1 +21678,152,1.4.4.1,0 +21679,152,1.4.4.1,0 +21679,0,1.4.4,1 +21679,40,1.4.4,1 +21681,40,1.4.4,1 +21681,0,1.4.4,1 +21681,126,1.4,2 +21681,170,1,3 +21681,152,1.4.4.1,0 +21682,40,1.4.4,1 +21682,152,1.4.4.1,0 +21683,152,1.4.4.1,0 +21683,40,1.4.4,1 +21684,0,1.4.4,1 +21684,152,1.4.4.1,0 +21685,152,1.4.4.1,0 +21685,40,1.4.4,1 +21686,152,1.4.4.1,0 +21686,0,1.4.4,1 +21686,40,1.4.4,1 +21687,152,1.4.4.1,0 +21687,126,1.4,2 +21687,40,1.4.4,1 +21688,40,1.4.4,1 +21688,152,1.4.4.1,0 +21689,152,1.4.4.1,0 +21689,0,1.4.4,1 +21689,40,1.4.4,1 +21690,152,1.4.4.1,0 +21690,40,1.4.4,1 +21691,126,1.4,2 +21691,170,1,3 +21691,152,1.4.4.1,0 +21691,40,1.4.4,1 +21692,152,1.4.4.1,0 +21692,40,1.4.4,1 +21693,170,1,3 +21693,40,1.4.4,1 +21693,0,1.4.4,1 +21693,126,1.4,2 +21693,152,1.4.4.1,0 +21694,152,1.4.4.1,0 +21694,0,1.4.4,1 +21694,40,1.4.4,1 +21695,40,1.4.4,1 +21695,152,1.4.4.1,0 +21697,152,1.4.4.1,0 +21697,0,1.4.4,1 +21698,152,1.4.4.1,0 +21698,40,1.4.4,1 +21698,0,1.4.4,1 +21699,40,1.4.4,1 +21699,152,1.4.4.1,0 +21700,152,1.4.4.1,0 +21700,40,1.4.4,1 +21702,153,1.3.1.1,0 +21702,85,1.3.1,1 +21704,39,1.3.1,1 +21704,153,1.3.1.1,0 +21704,99,1.3.1,1 +21705,39,1.3.1,1 +21705,153,1.3.1.1,0 +21705,85,1.3.1,1 +21706,153,1.3.1.1,0 +21706,85,1.3.1,1 +21707,99,1.3.1,1 +21707,153,1.3.1.1,0 +21708,153,1.3.1.1,0 +21708,99,1.3.1,1 +21709,153,1.3.1.1,0 +21709,99,1.3.1,1 +21710,153,1.3.1.1,0 +21710,93,1.3.1,1 +21711,100,1.3.1,1 +21711,153,1.3.1.1,0 +21714,153,1.3.1.1,0 +21714,39,1.3.1,1 +21716,153,1.3.1.1,0 +21716,85,1.3.1,1 +21716,100,1.3.1,1 +21720,153,1.3.1.1,0 +21720,93,1.3.1,1 +21722,99,1.3.1,1 +21722,153,1.3.1.1,0 +21723,99,1.3.1,1 +21723,153,1.3.1.1,0 +21724,99,1.3.1,1 +21724,153,1.3.1.1,0 +21727,153,1.3.1.1,0 +21727,93,1.3.1,1 +21728,99,1.3.1,1 +21728,153,1.3.1.1,0 +21729,93,1.3.1,1 +21729,153,1.3.1.1,0 +21731,93,1.3.1,1 +21731,153,1.3.1.1,0 +21731,100,1.3.1,1 +21732,99,1.3.1,1 +21732,153,1.3.1.1,0 +21733,153,1.3.1.1,0 +21733,93,1.3.1,1 +21734,85,1.3.1,1 +21734,153,1.3.1.1,0 +21736,39,1.3.1,1 +21736,85,1.3.1,1 +21736,153,1.3.1.1,0 +21739,93,1.3.1,1 +21739,153,1.3.1.1,0 +21740,85,1.3.1,1 +21740,153,1.3.1.1,0 +21740,93,1.3.1,1 +21740,99,1.3.1,1 +21740,100,1.3.1,1 +21741,85,1.3.1,1 +21741,153,1.3.1.1,0 +21742,100,1.3.1,1 +21742,153,1.3.1.1,0 +21743,153,1.3.1.1,0 +21743,39,1.3.1,1 +21745,100,1.3.1,1 +21745,153,1.3.1.1,0 +21746,93,1.3.1,1 +21746,153,1.3.1.1,0 +21747,99,1.3.1,1 +21747,153,1.3.1.1,0 +21748,153,1.3.1.1,0 +21748,93,1.3.1,1 +21750,100,1.3.1,1 +21750,153,1.3.1.1,0 +21752,39,1.3.1,1 +21752,153,1.3.1.4,0 +21753,99,1.3.1,1 +21753,39,1.3.1,1 +21753,153,1.3.1.4,0 +21754,93,1.3.1,1 +21754,153,1.3.1.4,0 +21756,153,1.3.1.4,0 +21756,93,1.3.1,1 +21757,93,1.3.1,1 +21757,153,1.3.1.4,0 +21758,39,1.3.1,1 +21758,99,1.3.1,1 +21758,153,1.3.1.4,0 +21759,153,1.3.1.4,0 +21759,85,1.3.1,1 +21760,153,1.3.1.4,0 +21760,85,1.3.1,1 +21761,39,1.3.1,1 +21761,153,1.3.1.4,0 +21762,99,1.3.1,1 +21762,153,1.3.1.4,0 +21766,93,1.3.1,1 +21766,153,1.3.1.4,0 +21766,99,1.3.1,1 +21769,39,1.3.1,1 +21769,153,1.3.1.4,0 +21770,153,1.3.1.4,0 +21770,39,1.3.1,1 +21772,39,1.3.1,1 +21772,153,1.3.1.4,0 +21773,99,1.3.1,1 +21773,153,1.3.1.4,0 +21773,85,1.3.1,1 +21774,93,1.3.1,1 +21774,153,1.3.1.4,0 +21774,39,1.3.1,1 +21776,106,1.3,2 +21776,99,1.3.1,1 +21776,85,1.3.1,1 +21776,39,1.3.1,1 +21776,153,1.3.1.4,0 +21777,153,1.3.1.4,0 +21777,100,1.3.1,1 +21778,153,1.3.1.4,0 +21778,39,1.3.1,1 +21781,153,1.3.1.4,0 +21781,99,1.3.1,1 +21782,153,1.3.1.4,0 +21782,85,1.3.1,1 +21782,100,1.3.1,1 +21783,153,1.3.1.4,0 +21783,100,1.3.1,1 +21784,93,1.3.1,1 +21784,153,1.3.1.4,0 +21785,153,1.3.1.4,0 +21785,99,1.3.1,1 +21786,100,1.3.1,1 +21786,99,1.3.1,1 +21786,153,1.3.1.4,0 +21786,39,1.3.1,1 +21787,153,1.3.1.4,0 +21787,93,1.3.1,1 +21787,85,1.3.1,1 +21788,153,1.3.1.4,0 +21788,93,1.3.1,1 +21789,153,1.3.1.4,0 +21789,99,1.3.1,1 +21790,99,1.3.1,1 +21790,153,1.3.1.4,0 +21790,100,1.3.1,1 +21791,153,1.3.1.4,0 +21791,85,1.3.1,1 +21792,99,1.3.1,1 +21792,100,1.3.1,1 +21792,153,1.3.1.4,0 +21794,153,1.3.1.4,0 +21794,99,1.3.1,1 +21795,99,1.3.1,1 +21795,153,1.3.1.4,0 +21798,153,1.3.1.4,0 +21798,100,1.3.1,1 +21798,93,1.3.1,1 +21799,99,1.3.1,1 +21799,153,1.3.1.4,0 +21800,85,1.3.1,1 +21800,100,1.3.1,1 +21800,153,1.3.1.4,0 +21802,79,2.1.4.1,1 +21802,154,2.1.4.1.1,0 +21803,154,2.1.4.1.1,0 +21803,79,2.1.4.1,1 +21804,154,2.1.4.1.1,0 +21804,79,2.1.4.1,1 +21806,79,2.1.4.1,1 +21806,154,2.1.4.1.1,0 +21808,154,2.1.4.1.1,0 +21808,79,2.1.4.1,1 +21809,154,2.1.4.1.1,0 +21809,79,2.1.4.1,1 +21814,154,2.1.4.1.1,0 +21814,81,2.1.4.1,1 +21823,154,2.1.4.1.1,0 +21823,81,2.1.4.1,1 +21829,154,2.1.4.1.1,0 +21829,79,2.1.4.1,1 +21832,154,2.1.4.1.1,0 +21832,81,2.1.4.1,1 +21834,154,2.1.4.1.1,0 +21834,79,2.1.4.1,1 +21839,79,2.1.4.1,1 +21839,154,2.1.4.1.1,0 +21842,79,2.1.4.1,1 +21842,154,2.1.4.1.1,0 +21848,79,2.1.4.1,1 +21848,154,2.1.4.1.1,0 +21852,79,2.1.4.1,1 +21852,154,2.1.4.1.2,0 +21855,154,2.1.4.1.2,0 +21855,79,2.1.4.1,1 +21856,79,2.1.4.1,1 +21856,154,2.1.4.1.2,0 +21858,81,2.1.4.1,1 +21858,154,2.1.4.1.2,0 +21859,154,2.1.4.1.2,0 +21859,79,2.1.4.1,1 +21860,154,2.1.4.1.2,0 +21860,81,2.1.4.1,1 +21870,79,2.1.4.1,1 +21870,154,2.1.4.1.2,0 +21873,154,2.1.4.1.2,0 +21873,81,2.1.4.1,1 +21878,79,2.1.4.1,1 +21878,154,2.1.4.1.2,0 +21879,154,2.1.4.1.2,0 +21879,79,2.1.4.1,1 +21881,154,2.1.4.1.2,0 +21881,81,2.1.4.1,1 +21882,154,2.1.4.1.2,0 +21882,79,2.1.4.1,1 +21883,79,2.1.4.1,1 +21883,154,2.1.4.1.2,0 +21886,154,2.1.4.1.2,0 +21886,81,2.1.4.1,1 +21889,81,2.1.4.1,1 +21889,154,2.1.4.1.2,0 +21891,81,2.1.4.1,1 +21891,154,2.1.4.1.2,0 +21893,154,2.1.4.1.2,0 +21893,79,2.1.4.1,1 +21894,81,2.1.4.1,1 +21894,154,2.1.4.1.2,0 +21901,154,2.1.4.1.3,0 +21901,79,2.1.4.1,1 +21902,154,2.1.4.1.3,0 +21902,79,2.1.4.1,1 +21903,154,2.1.4.1.3,0 +21903,79,2.1.4.1,1 +21905,81,2.1.4.1,1 +21905,154,2.1.4.1.3,0 +21906,79,2.1.4.1,1 +21906,154,2.1.4.1.3,0 +21911,154,2.1.4.1.3,0 +21911,79,2.1.4.1,1 +21911,81,2.1.4.1,1 +21920,154,2.1.4.1.3,0 +21920,81,2.1.4.1,1 +21923,81,2.1.4.1,1 +21923,154,2.1.4.1.3,0 +21926,154,2.1.4.1.3,0 +21926,79,2.1.4.1,1 +21926,81,2.1.4.1,1 +21929,81,2.1.4.1,1 +21929,154,2.1.4.1.3,0 +21933,81,2.1.4.1,1 +21933,154,2.1.4.1.3,0 +21936,154,2.1.4.1.3,0 +21936,79,2.1.4.1,1 +21943,81,2.1.4.1,1 +21943,154,2.1.4.1.3,0 +21951,79,2.1.4.1,1 +21951,154,2.1.4.1.4,0 +21952,79,2.1.4.1,1 +21952,154,2.1.4.1.4,0 +21954,154,2.1.4.1.4,0 +21954,79,2.1.4.1,1 +21956,79,2.1.4.1,1 +21956,154,2.1.4.1.4,0 +21957,154,2.1.4.1.4,0 +21957,81,2.1.4.1,1 +21959,154,2.1.4.1.4,0 +21959,79,2.1.4.1,1 +21960,154,2.1.4.1.4,0 +21960,79,2.1.4.1,1 +21972,81,2.1.4.1,1 +21972,154,2.1.4.1.4,0 +21976,154,2.1.4.1.4,0 +21976,79,2.1.4.1,1 +21979,154,2.1.4.1.4,0 +21979,81,2.1.4.1,1 +21981,154,2.1.4.1.4,0 +21981,81,2.1.4.1,1 +21983,81,2.1.4.1,1 +21983,154,2.1.4.1.4,0 +21984,154,2.1.4.1.4,0 +21984,81,2.1.4.1,1 +21986,154,2.1.4.1.4,0 +21986,79,2.1.4.1,1 +21991,79,2.1.4.1,1 +21991,154,2.1.4.1.4,0 +21993,81,2.1.4.1,1 +21993,154,2.1.4.1.4,0 +21993,79,2.1.4.1,1 +21995,81,2.1.4.1,1 +21995,154,2.1.4.1.4,0 +22003,154,2.1.4.2.1,0 +22003,79,2.1.4.2,1 +22004,154,2.1.4.2.1,0 +22004,81,2.1.4.2,1 +22006,79,2.1.4.2,1 +22006,154,2.1.4.2.1,0 +22007,154,2.1.4.2.1,0 +22007,79,2.1.4.2,1 +22008,81,2.1.4.2,1 +22008,154,2.1.4.2.1,0 +22010,154,2.1.4.2.1,0 +22010,81,2.1.4.2,1 +22014,81,2.1.4.2,1 +22014,154,2.1.4.2.1,0 +22016,79,2.1.4.2,1 +22016,154,2.1.4.2.1,0 +22023,81,2.1.4.2,1 +22023,154,2.1.4.2.1,0 +22031,154,2.1.4.2.1,0 +22031,79,2.1.4.2,1 +22036,154,2.1.4.2.1,0 +22036,79,2.1.4.2,1 +22037,81,2.1.4.2,1 +22037,154,2.1.4.2.1,0 +22041,81,2.1.4.2,1 +22041,154,2.1.4.2.1,0 +22044,79,2.1.4.2,1 +22044,154,2.1.4.2.1,0 +22048,79,2.1.4.2,1 +22048,154,2.1.4.2.1,0 +22048,81,2.1.4.2,1 +22052,81,2.1.4.2,1 +22052,154,2.1.4.2.2,0 +22054,154,2.1.4.2.2,0 +22054,79,2.1.4.2,1 +22055,81,2.1.4.2,1 +22055,154,2.1.4.2.2,0 +22056,79,2.1.4.2,1 +22056,154,2.1.4.2.2,0 +22057,154,2.1.4.2.2,0 +22057,79,2.1.4.2,1 +22064,154,2.1.4.2.2,0 +22064,81,2.1.4.2,1 +22066,79,2.1.4.2,1 +22066,154,2.1.4.2.2,0 +22070,79,2.1.4.2,1 +22070,154,2.1.4.2.2,0 +22071,81,2.1.4.2,1 +22071,154,2.1.4.2.2,0 +22078,79,2.1.4.2,1 +22078,154,2.1.4.2.2,0 +22082,79,2.1.4.2,1 +22082,154,2.1.4.2.2,0 +22091,79,2.1.4.2,1 +22091,154,2.1.4.2.2,0 +22092,79,2.1.4.2,1 +22092,154,2.1.4.2.2,0 +22094,154,2.1.4.2.2,0 +22094,81,2.1.4.2,1 +22097,154,2.1.4.2.2,0 +22097,79,2.1.4.2,1 +22102,155,2.3,0 +22102,102,2,1 +22104,102,2,1 +22104,155,2.3,0 +22107,155,2.3,0 +22107,102,2,1 +22111,102,2,1 +22111,155,2.3,0 +22123,102,2,1 +22123,155,2.3,0 +22126,98,2,1 +22126,155,2.3,0 +22128,102,2,1 +22128,155,2.3,0 +22133,155,2.3,0 +22133,102,2,1 +22139,155,2.3,0 +22139,102,2,1 +22141,155,2.3,0 +22141,98,2,1 +22142,102,2,1 +22142,155,2.3,0 +22143,98,2,1 +22143,155,2.3,0 +22147,98,2,1 +22147,155,2.3,0 +22151,156,1.3.1.7,0 +22151,99,1.3.1,1 +22152,93,1.3.1,1 +22152,156,1.3.1.7,0 +22154,156,1.3.1.7,0 +22154,39,1.3.1,1 +22155,100,1.3.1,1 +22155,156,1.3.1.7,0 +22156,156,1.3.1.7,0 +22156,85,1.3.1,1 +22157,39,1.3.1,1 +22157,156,1.3.1.7,0 +22158,156,1.3.1.7,0 +22158,39,1.3.1,1 +22159,156,1.3.1.7,0 +22159,85,1.3.1,1 +22160,39,1.3.1,1 +22160,156,1.3.1.7,0 +22161,100,1.3.1,1 +22161,85,1.3.1,1 +22161,156,1.3.1.7,0 +22161,99,1.3.1,1 +22164,156,1.3.1.7,0 +22164,85,1.3.1,1 +22166,156,1.3.1.7,0 +22166,29,1.3,2 +22166,39,1.3.1,1 +22166,85,1.3.1,1 +22167,100,1.3.1,1 +22167,156,1.3.1.7,0 +22169,99,1.3.1,1 +22169,156,1.3.1.7,0 +22170,156,1.3.1.7,0 +22170,39,1.3.1,1 +22172,85,1.3.1,1 +22172,156,1.3.1.7,0 +22172,100,1.3.1,1 +22173,156,1.3.1.7,0 +22173,93,1.3.1,1 +22174,99,1.3.1,1 +22174,156,1.3.1.7,0 +22176,156,1.3.1.7,0 +22176,100,1.3.1,1 +22176,85,1.3.1,1 +22176,93,1.3.1,1 +22178,93,1.3.1,1 +22178,156,1.3.1.7,0 +22179,156,1.3.1.7,0 +22179,85,1.3.1,1 +22181,93,1.3.1,1 +22181,99,1.3.1,1 +22181,156,1.3.1.7,0 +22182,39,1.3.1,1 +22182,156,1.3.1.7,0 +22183,39,1.3.1,1 +22183,156,1.3.1.7,0 +22184,39,1.3.1,1 +22184,156,1.3.1.7,0 +22185,100,1.3.1,1 +22185,156,1.3.1.7,0 +22186,100,1.3.1,1 +22186,156,1.3.1.7,0 +22186,99,1.3.1,1 +22186,93,1.3.1,1 +22188,156,1.3.1.7,0 +22188,100,1.3.1,1 +22189,85,1.3.1,1 +22189,156,1.3.1.7,0 +22191,85,1.3.1,1 +22191,156,1.3.1.7,0 +22192,99,1.3.1,1 +22192,156,1.3.1.7,0 +22193,93,1.3.1,1 +22193,100,1.3.1,1 +22193,39,1.3.1,1 +22193,156,1.3.1.7,0 +22194,156,1.3.1.7,0 +22194,99,1.3.1,1 +22194,93,1.3.1,1 +22195,93,1.3.1,1 +22195,85,1.3.1,1 +22195,156,1.3.1.7,0 +22197,156,1.3.1.7,0 +22197,39,1.3.1,1 +22198,85,1.3.1,1 +22198,156,1.3.1.7,0 +22200,100,1.3.1,1 +22200,156,1.3.1.7,0 +22201,157,1.4.1,0 +22201,126,1.4,1 +22201,170,1,2 +22202,170,1,2 +22202,157,1.4.1,0 +22202,126,1.4,1 +22203,157,1.4.1,0 +22203,170,1,2 +22203,126,1.4,1 +22204,126,1.4,1 +22204,170,1,2 +22204,157,1.4.1,0 +22205,126,1.4,1 +22205,157,1.4.1,0 +22205,170,1,2 +22206,170,1,2 +22206,126,1.4,1 +22206,157,1.4.1,0 +22207,126,1.4,1 +22207,157,1.4.1,0 +22207,170,1,2 +22208,157,1.4.1,0 +22208,170,1,2 +22208,126,1.4,1 +22209,157,1.4.1,0 +22209,170,1,2 +22209,126,1.4,1 +22210,157,1.4.1,0 +22210,170,1,2 +22210,126,1.4,1 +22211,126,1.4,1 +22211,157,1.4.1,0 +22211,170,1,2 +22212,170,1,2 +22212,126,1.4,1 +22212,157,1.4.1,0 +22213,170,1,2 +22213,157,1.4.1,0 +22213,126,1.4,1 +22214,126,1.4,1 +22214,157,1.4.1,0 +22214,170,1,2 +22215,157,1.4.1,0 +22215,126,1.4,1 +22215,170,1,2 +22216,126,1.4,1 +22216,170,1,2 +22216,157,1.4.1,0 +22217,126,1.4,1 +22217,170,1,2 +22217,157,1.4.1,0 +22218,126,1.4,1 +22218,157,1.4.1,0 +22218,170,1,2 +22219,157,1.4.1,0 +22219,170,1,2 +22219,126,1.4,1 +22220,126,1.4,1 +22220,170,1,2 +22220,157,1.4.1,0 +22221,157,1.4.1,0 +22221,170,1,2 +22221,126,1.4,1 +22222,126,1.4,1 +22222,157,1.4.1,0 +22222,170,1,2 +22223,157,1.4.1,0 +22223,170,1,2 +22223,126,1.4,1 +22224,170,1,2 +22224,126,1.4,1 +22224,157,1.4.1,0 +22225,157,1.4.1,0 +22225,126,1.4,1 +22225,170,1,2 +22226,126,1.4,1 +22226,170,1,2 +22226,157,1.4.1,0 +22227,126,1.4,1 +22227,157,1.4.1,0 +22227,170,1,2 +22228,170,1,2 +22228,157,1.4.1,0 +22228,126,1.4,1 +22229,126,1.4,1 +22229,170,1,2 +22229,157,1.4.1,0 +22230,126,1.4,1 +22230,170,1,2 +22230,157,1.4.1,0 +22231,126,1.4,1 +22231,170,1,2 +22231,157,1.4.1,0 +22232,170,1,2 +22232,157,1.4.1,0 +22232,126,1.4,1 +22233,157,1.4.1,0 +22233,170,1,2 +22233,126,1.4,1 +22234,157,1.4.1,0 +22234,170,1,2 +22234,126,1.4,1 +22235,157,1.4.1,0 +22235,170,1,2 +22235,126,1.4,1 +22236,157,1.4.1,0 +22236,126,1.4,1 +22236,170,1,2 +22237,126,1.4,1 +22237,157,1.4.1,0 +22237,170,1,2 +22238,157,1.4.1,0 +22238,170,1,2 +22238,126,1.4,1 +22239,126,1.4,1 +22239,170,1,2 +22239,157,1.4.1,0 +22240,157,1.4.1,0 +22240,126,1.4,1 +22240,170,1,2 +22241,157,1.4.1,0 +22241,126,1.4,1 +22241,170,1,2 +22242,157,1.4.1,0 +22242,126,1.4,1 +22242,170,1,2 +22243,157,1.4.1,0 +22243,170,1,2 +22243,126,1.4,1 +22244,126,1.4,1 +22244,170,1,2 +22244,157,1.4.1,0 +22245,157,1.4.1,0 +22245,170,1,2 +22245,126,1.4,1 +22246,126,1.4,1 +22246,157,1.4.1,0 +22246,170,1,2 +22247,170,1,2 +22247,126,1.4,1 +22247,157,1.4.1,0 +22248,170,1,2 +22248,157,1.4.1,0 +22248,126,1.4,1 +22249,170,1,2 +22249,157,1.4.1,0 +22249,126,1.4,1 +22250,170,1,2 +22250,157,1.4.1,0 +22250,126,1.4,1 +22251,158,1.4.4.1,0 +22251,0,1.4.4,1 +22252,158,1.4.4.1,0 +22252,0,1.4.4,1 +22252,40,1.4.4,1 +22253,0,1.4.4,1 +22253,40,1.4.4,1 +22253,158,1.4.4.1,0 +22254,158,1.4.4.1,0 +22254,40,1.4.4,1 +22255,158,1.4.4.1,0 +22255,40,1.4.4,1 +22255,0,1.4.4,1 +22256,158,1.4.4.1,0 +22256,0,1.4.4,1 +22257,40,1.4.4,1 +22257,158,1.4.4.1,0 +22258,0,1.4.4,1 +22258,158,1.4.4.1,0 +22259,158,1.4.4.1,0 +22259,0,1.4.4,1 +22260,158,1.4.4.1,0 +22260,40,1.4.4,1 +22261,158,1.4.4.1,0 +22261,0,1.4.4,1 +22261,40,1.4.4,1 +22264,0,1.4.4,1 +22264,158,1.4.4.1,0 +22264,40,1.4.4,1 +22266,0,1.4.4,1 +22266,158,1.4.4.1,0 +22266,40,1.4.4,1 +22269,158,1.4.4.1,0 +22269,40,1.4.4,1 +22270,40,1.4.4,1 +22270,158,1.4.4.1,0 +22271,40,1.4.4,1 +22271,158,1.4.4.1,0 +22272,0,1.4.4,1 +22272,126,1.4,2 +22272,158,1.4.4.1,0 +22272,170,1,3 +22273,158,1.4.4.1,0 +22273,0,1.4.4,1 +22274,158,1.4.4.1,0 +22274,40,1.4.4,1 +22276,40,1.4.4,1 +22276,158,1.4.4.1,0 +22278,158,1.4.4.1,0 +22278,0,1.4.4,1 +22279,158,1.4.4.1,0 +22279,0,1.4.4,1 +22279,40,1.4.4,1 +22281,0,1.4.4,1 +22281,158,1.4.4.1,0 +22282,40,1.4.4,1 +22282,0,1.4.4,1 +22282,158,1.4.4.1,0 +22283,0,1.4.4,1 +22283,158,1.4.4.1,0 +22284,158,1.4.4.1,0 +22284,0,1.4.4,1 +22286,0,1.4.4,1 +22286,158,1.4.4.1,0 +22289,158,1.4.4.1,0 +22289,0,1.4.4,1 +22290,158,1.4.4.1,0 +22290,40,1.4.4,1 +22291,158,1.4.4.1,0 +22291,0,1.4.4,1 +22292,158,1.4.4.1,0 +22292,0,1.4.4,1 +22293,158,1.4.4.1,0 +22293,40,1.4.4,1 +22293,0,1.4.4,1 +22294,0,1.4.4,1 +22294,158,1.4.4.1,0 +22295,158,1.4.4.1,0 +22295,40,1.4.4,1 +22297,0,1.4.4,1 +22297,158,1.4.4.1,0 +22298,158,1.4.4.1,0 +22298,0,1.4.4,1 +22299,40,1.4.4,1 +22299,158,1.4.4.1,0 +22300,40,1.4.4,1 +22300,158,1.4.4.1,0 +22304,159,2.1.2,0 +22304,99,2.1,1 +22322,159,2.1.2,0 +22322,99,2.1,1 +22329,99,2.1,1 +22329,170,1,3 +22329,98,2,2 +22329,102,2,2 +22329,159,2.1.2,0 +22331,99,2.1,1 +22331,159,2.1.2,0 +22332,99,2.1,1 +22332,159,2.1.2,0 +22333,99,2.1,1 +22333,159,2.1.2,0 +22334,159,2.1.2,0 +22334,99,2.1,1 +22339,159,2.1.2,0 +22339,99,2.1,1 +22351,157,1.4.1,1 +22351,160,1.4.1.3,0 +22352,160,1.4.1.3,0 +22352,157,1.4.1,1 +22353,157,1.4.1,1 +22353,160,1.4.1.3,0 +22354,157,1.4.1,1 +22354,160,1.4.1.3,0 +22355,160,1.4.1.3,0 +22355,157,1.4.1,1 +22356,160,1.4.1.3,0 +22356,157,1.4.1,1 +22357,160,1.4.1.3,0 +22357,157,1.4.1,1 +22358,160,1.4.1.3,0 +22358,157,1.4.1,1 +22359,157,1.4.1,1 +22359,160,1.4.1.3,0 +22360,157,1.4.1,1 +22360,160,1.4.1.3,0 +22361,160,1.4.1.3,0 +22361,157,1.4.1,1 +22364,160,1.4.1.3,0 +22364,157,1.4.1,1 +22366,157,1.4.1,1 +22366,160,1.4.1.3,0 +22369,157,1.4.1,1 +22369,160,1.4.1.3,0 +22370,160,1.4.1.3,0 +22370,157,1.4.1,1 +22372,160,1.4.1.3,0 +22372,157,1.4.1,1 +22373,157,1.4.1,1 +22373,160,1.4.1.3,0 +22375,160,1.4.1.3,0 +22375,157,1.4.1,1 +22376,157,1.4.1,1 +22376,160,1.4.1.3,0 +22378,157,1.4.1,1 +22378,160,1.4.1.3,0 +22379,160,1.4.1.3,0 +22379,157,1.4.1,1 +22381,160,1.4.1.3,0 +22381,157,1.4.1,1 +22382,160,1.4.1.3,0 +22382,157,1.4.1,1 +22383,160,1.4.1.3,0 +22383,157,1.4.1,1 +22384,160,1.4.1.3,0 +22384,157,1.4.1,1 +22386,160,1.4.1.3,0 +22386,157,1.4.1,1 +22389,160,1.4.1.3,0 +22389,157,1.4.1,1 +22391,160,1.4.1.3,0 +22391,157,1.4.1,1 +22392,157,1.4.1,1 +22392,160,1.4.1.3,0 +22393,157,1.4.1,1 +22393,160,1.4.1.3,0 +22394,160,1.4.1.3,0 +22394,157,1.4.1,1 +22397,160,1.4.1.3,0 +22397,157,1.4.1,1 +22398,157,1.4.1,1 +22398,160,1.4.1.3,0 +22402,126,2.3,1 +22402,155,2.3,1 +22402,161,2.3.1,0 +22403,161,2.3.1,0 +22403,155,2.3,1 +22404,161,2.3.1,0 +22404,99,2.3,1 +22405,161,2.3.1,0 +22405,99,2.3,1 +22405,84,2.3,1 +22406,161,2.3.1,0 +22406,95,2.3,1 +22407,161,2.3.1,0 +22407,99,2.3,1 +22408,95,2.3,1 +22408,161,2.3.1,0 +22410,99,2.3,1 +22410,161,2.3.1,0 +22411,161,2.3.1,0 +22411,155,2.3,1 +22411,126,2.3,1 +22414,161,2.3.1,0 +22414,126,2.3,1 +22416,161,2.3.1,0 +22416,84,2.3,1 +22420,126,2.3,1 +22420,95,2.3,1 +22420,161,2.3.1,0 +22422,161,2.3.1,0 +22422,84,2.3,1 +22423,124,2.3,1 +22423,155,2.3,1 +22423,161,2.3.1,0 +22423,95,2.3,1 +22426,161,2.3.1,0 +22426,95,2.3,1 +22427,161,2.3.1,0 +22427,126,2.3,1 +22428,161,2.3.1,0 +22428,84,2.3,1 +22429,155,2.3,1 +22429,161,2.3.1,0 +22431,99,2.3,1 +22431,84,2.3,1 +22431,161,2.3.1,0 +22432,161,2.3.1,0 +22432,84,2.3,1 +22434,161,2.3.1,0 +22434,124,2.3,1 +22438,161,2.3.1,0 +22438,95,2.3,1 +22439,161,2.3.1,0 +22439,84,2.3,1 +22440,161,2.3.1,0 +22440,155,2.3,1 +22441,161,2.3.1,0 +22441,84,2.3,1 +22442,95,2.3,1 +22442,99,2.3,1 +22442,161,2.3.1,0 +22443,99,2.3,1 +22443,124,2.3,1 +22443,161,2.3.1,0 +22444,99,2.3,1 +22444,126,2.3,1 +22444,161,2.3.1,0 +22445,161,2.3.1,0 +22445,99,2.3,1 +22447,126,2.3,1 +22447,161,2.3.1,0 +22448,124,2.3,1 +22448,161,2.3.1,0 +22448,99,2.3,1 +22448,84,2.3,1 +22452,126,2.3,1 +22452,161,2.3.2,0 +22453,161,2.3.2,0 +22453,126,2.3,1 +22453,99,2.3,1 +22453,155,2.3,1 +22454,155,2.3,1 +22454,95,2.3,1 +22454,161,2.3.2,0 +22454,126,2.3,1 +22456,161,2.3.2,0 +22456,95,2.3,1 +22458,124,2.3,1 +22458,161,2.3.2,0 +22459,161,2.3.2,0 +22459,84,2.3,1 +22461,155,2.3,1 +22461,161,2.3.2,0 +22464,161,2.3.2,0 +22464,124,2.3,1 +22466,155,2.3,1 +22466,161,2.3.2,0 +22466,99,2.3,1 +22467,161,2.3.2,0 +22467,126,2.3,1 +22470,161,2.3.2,0 +22470,95,2.3,1 +22472,161,2.3.2,0 +22472,99,2.3,1 +22474,126,2.3,1 +22474,161,2.3.2,0 +22476,161,2.3.2,0 +22476,155,2.3,1 +22481,155,2.3,1 +22481,161,2.3.2,0 +22481,99,2.3,1 +22482,95,2.3,1 +22482,161,2.3.2,0 +22482,84,2.3,1 +22484,161,2.3.2,0 +22484,155,2.3,1 +22486,95,2.3,1 +22486,161,2.3.2,0 +22486,155,2.3,1 +22487,155,2.3,1 +22487,126,2.3,1 +22487,161,2.3.2,0 +22488,161,2.3.2,0 +22488,95,2.3,1 +22489,126,2.3,1 +22489,161,2.3.2,0 +22491,155,2.3,1 +22491,161,2.3.2,0 +22491,95,2.3,1 +22492,126,2.3,1 +22492,161,2.3.2,0 +22493,126,2.3,1 +22493,124,2.3,1 +22493,161,2.3.2,0 +22494,95,2.3,1 +22494,84,2.3,1 +22494,161,2.3.2,0 +22495,99,2.3,1 +22495,161,2.3.2,0 +22496,155,2.3,1 +22496,161,2.3.2,0 +22497,84,2.3,1 +22497,161,2.3.2,0 +22502,95,2.3,1 +22502,161,2.3.3,0 +22504,126,2.3,1 +22504,161,2.3.3,0 +22505,95,2.3,1 +22505,161,2.3.3,0 +22505,124,2.3,1 +22506,84,2.3,1 +22506,161,2.3.3,0 +22508,95,2.3,1 +22508,126,2.3,1 +22508,161,2.3.3,0 +22509,161,2.3.3,0 +22509,95,2.3,1 +22511,126,2.3,1 +22511,124,2.3,1 +22511,95,2.3,1 +22511,161,2.3.3,0 +22511,84,2.3,1 +22512,155,2.3,1 +22512,161,2.3.3,0 +22514,161,2.3.3,0 +22514,126,2.3,1 +22514,84,2.3,1 +22519,161,2.3.3,0 +22519,126,2.3,1 +22520,161,2.3.3,0 +22520,124,2.3,1 +22521,155,2.3,1 +22521,161,2.3.3,0 +22523,161,2.3.3,0 +22523,155,2.3,1 +22523,84,2.3,1 +22523,124,2.3,1 +22524,126,2.3,1 +22524,161,2.3.3,0 +22526,126,2.3,1 +22526,161,2.3.3,0 +22526,95,2.3,1 +22528,84,2.3,1 +22528,161,2.3.3,0 +22529,155,2.3,1 +22529,161,2.3.3,0 +22531,84,2.3,1 +22531,161,2.3.3,0 +22531,124,2.3,1 +22532,155,2.3,1 +22532,161,2.3.3,0 +22532,84,2.3,1 +22533,155,2.3,1 +22533,161,2.3.3,0 +22534,161,2.3.3,0 +22534,155,2.3,1 +22536,95,2.3,1 +22536,155,2.3,1 +22536,84,2.3,1 +22536,161,2.3.3,0 +22537,161,2.3.3,0 +22537,99,2.3,1 +22539,161,2.3.3,0 +22539,99,2.3,1 +22541,161,2.3.3,0 +22541,95,2.3,1 +22542,124,2.3,1 +22542,126,2.3,1 +22542,161,2.3.3,0 +22544,161,2.3.3,0 +22544,99,2.3,1 +22545,126,2.3,1 +22545,161,2.3.3,0 +22547,126,2.3,1 +22547,161,2.3.3,0 +22548,155,2.3,1 +22548,161,2.3.3,0 +22548,126,2.3,1 +22550,155,2.3,1 +22550,161,2.3.3,0 +22550,124,2.3,1 +22551,162,1.4.5.6,0 +22551,41,1.4.5,1 +22552,41,1.4.5,1 +22552,162,1.4.5.6,0 +22553,41,1.4.5,1 +22553,162,1.4.5.6,0 +22554,41,1.4.5,1 +22554,162,1.4.5.6,0 +22555,162,1.4.5.6,0 +22555,41,1.4.5,1 +22556,41,1.4.5,1 +22556,162,1.4.5.6,0 +22557,170,1,3 +22557,162,1.4.5.6,0 +22557,41,1.4.5,1 +22557,126,1.4,2 +22558,41,1.4.5,1 +22558,126,1.4,2 +22558,162,1.4.5.6,0 +22558,170,1,3 +22559,162,1.4.5.6,0 +22559,41,1.4.5,1 +22560,162,1.4.5.6,0 +22560,41,1.4.5,1 +22561,41,1.4.5,1 +22561,162,1.4.5.6,0 +22564,170,1,3 +22564,162,1.4.5.6,0 +22564,41,1.4.5,1 +22564,126,1.4,2 +22566,162,1.4.5.6,0 +22566,126,1.4,2 +22566,170,1,3 +22566,41,1.4.5,1 +22569,162,1.4.5.6,0 +22569,41,1.4.5,1 +22570,170,1,3 +22570,162,1.4.5.6,0 +22570,41,1.4.5,1 +22570,126,1.4,2 +22572,41,1.4.5,1 +22572,162,1.4.5.6,0 +22573,162,1.4.5.6,0 +22573,41,1.4.5,1 +22574,162,1.4.5.6,0 +22574,41,1.4.5,1 +22575,41,1.4.5,1 +22575,162,1.4.5.6,0 +22576,126,1.4,2 +22576,41,1.4.5,1 +22576,162,1.4.5.6,0 +22576,170,1,3 +22578,162,1.4.5.6,0 +22578,41,1.4.5,1 +22578,170,1,3 +22578,126,1.4,2 +22579,162,1.4.5.6,0 +22579,41,1.4.5,1 +22581,126,1.4,2 +22581,170,1,3 +22581,162,1.4.5.6,0 +22581,41,1.4.5,1 +22582,162,1.4.5.6,0 +22582,126,1.4,2 +22582,41,1.4.5,1 +22582,170,1,3 +22583,41,1.4.5,1 +22583,162,1.4.5.6,0 +22584,41,1.4.5,1 +22584,162,1.4.5.6,0 +22584,126,1.4,2 +22584,170,1,3 +22586,162,1.4.5.6,0 +22586,41,1.4.5,1 +22586,170,1,3 +22586,126,1.4,2 +22589,162,1.4.5.6,0 +22589,41,1.4.5,1 +22591,162,1.4.5.6,0 +22591,41,1.4.5,1 +22592,162,1.4.5.6,0 +22592,41,1.4.5,1 +22593,41,1.4.5,1 +22593,170,1,3 +22593,126,1.4,2 +22593,162,1.4.5.6,0 +22594,162,1.4.5.6,0 +22594,41,1.4.5,1 +22597,41,1.4.5,1 +22597,162,1.4.5.6,0 +22598,162,1.4.5.6,0 +22598,41,1.4.5,1 +22599,41,1.4.5,1 +22599,162,1.4.5.6,0 +22601,170,1,3 +22601,162,1.4.5.7,0 +22601,126,1.4,2 +22601,41,1.4.5,1 +22602,41,1.4.5,1 +22602,162,1.4.5.7,0 +22603,41,1.4.5,1 +22603,162,1.4.5.7,0 +22604,41,1.4.5,1 +22604,162,1.4.5.7,0 +22605,162,1.4.5.7,0 +22605,41,1.4.5,1 +22606,162,1.4.5.7,0 +22606,126,1.4,2 +22606,41,1.4.5,1 +22606,170,1,3 +22607,41,1.4.5,1 +22607,162,1.4.5.7,0 +22608,41,1.4.5,1 +22608,162,1.4.5.7,0 +22609,162,1.4.5.7,0 +22609,41,1.4.5,1 +22610,162,1.4.5.7,0 +22610,41,1.4.5,1 +22611,41,1.4.5,1 +22611,162,1.4.5.7,0 +22614,41,1.4.5,1 +22614,162,1.4.5.7,0 +22616,41,1.4.5,1 +22616,162,1.4.5.7,0 +22619,162,1.4.5.7,0 +22619,41,1.4.5,1 +22620,162,1.4.5.7,0 +22620,41,1.4.5,1 +22622,126,1.4,2 +22622,41,1.4.5,1 +22622,162,1.4.5.7,0 +22622,170,1,3 +22623,162,1.4.5.7,0 +22623,126,1.4,2 +22623,170,1,3 +22623,41,1.4.5,1 +22624,162,1.4.5.7,0 +22624,41,1.4.5,1 +22625,41,1.4.5,1 +22625,162,1.4.5.7,0 +22626,126,1.4,2 +22626,41,1.4.5,1 +22626,162,1.4.5.7,0 +22626,170,1,3 +22628,162,1.4.5.7,0 +22628,41,1.4.5,1 +22628,170,1,3 +22628,126,1.4,2 +22629,41,1.4.5,1 +22629,170,1,3 +22629,126,1.4,2 +22629,162,1.4.5.7,0 +22631,41,1.4.5,1 +22631,162,1.4.5.7,0 +22632,41,1.4.5,1 +22632,162,1.4.5.7,0 +22633,162,1.4.5.7,0 +22633,170,1,3 +22633,41,1.4.5,1 +22633,126,1.4,2 +22634,162,1.4.5.7,0 +22634,41,1.4.5,1 +22636,41,1.4.5,1 +22636,162,1.4.5.7,0 +22639,162,1.4.5.7,0 +22639,41,1.4.5,1 +22641,162,1.4.5.7,0 +22641,41,1.4.5,1 +22642,162,1.4.5.7,0 +22642,41,1.4.5,1 +22643,162,1.4.5.7,0 +22643,41,1.4.5,1 +22644,162,1.4.5.7,0 +22644,41,1.4.5,1 +22647,41,1.4.5,1 +22647,162,1.4.5.7,0 +22648,126,1.4,2 +22648,170,1,3 +22648,162,1.4.5.7,0 +22648,41,1.4.5,1 +22649,170,1,3 +22649,162,1.4.5.7,0 +22649,126,1.4,2 +22649,41,1.4.5,1 +22652,163,2.1.4.1.1,0 +22652,79,2.1.4.1,1 +22655,163,2.1.4.1.1,0 +22655,81,2.1.4.1,1 +22658,81,2.1.4.1,1 +22658,163,2.1.4.1.1,0 +22660,79,2.1.4.1,1 +22660,163,2.1.4.1.1,0 +22661,79,2.1.4.1,1 +22661,163,2.1.4.1.1,0 +22664,163,2.1.4.1.1,0 +22664,79,2.1.4.1,1 +22666,81,2.1.4.1,1 +22666,163,2.1.4.1.1,0 +22669,79,2.1.4.1,1 +22669,163,2.1.4.1.1,0 +22673,163,2.1.4.1.1,0 +22673,79,2.1.4.1,1 +22674,79,2.1.4.1,1 +22674,163,2.1.4.1.1,0 +22676,163,2.1.4.1.1,0 +22676,81,2.1.4.1,1 +22679,81,2.1.4.1,1 +22679,163,2.1.4.1.1,0 +22681,81,2.1.4.1,1 +22681,163,2.1.4.1.1,0 +22681,79,2.1.4.1,1 +22686,163,2.1.4.1.1,0 +22686,79,2.1.4.1,1 +22693,163,2.1.4.1.1,0 +22693,79,2.1.4.1,1 +22697,163,2.1.4.1.1,0 +22697,81,2.1.4.1,1 +22701,163,2.1.4.1.2,0 +22701,79,2.1.4.1,1 +22702,163,2.1.4.1.2,0 +22702,79,2.1.4.1,1 +22705,81,2.1.4.1,1 +22705,163,2.1.4.1.2,0 +22706,163,2.1.4.1.2,0 +22706,79,2.1.4.1,1 +22708,79,2.1.4.1,1 +22708,163,2.1.4.1.2,0 +22709,81,2.1.4.1,1 +22709,163,2.1.4.1.2,0 +22710,79,2.1.4.1,1 +22710,163,2.1.4.1.2,0 +22723,163,2.1.4.1.2,0 +22723,79,2.1.4.1,1 +22729,81,2.1.4.1,1 +22729,163,2.1.4.1.2,0 +22732,163,2.1.4.1.2,0 +22732,81,2.1.4.1,1 +22734,163,2.1.4.1.2,0 +22734,81,2.1.4.1,1 +22738,163,2.1.4.1.2,0 +22738,81,2.1.4.1,1 +22739,79,2.1.4.1,1 +22739,163,2.1.4.1.2,0 +22741,79,2.1.4.1,1 +22741,163,2.1.4.1.2,0 +22742,163,2.1.4.1.2,0 +22742,79,2.1.4.1,1 +22752,163,2.1.4.1.3,0 +22752,84,2.1.4,2 +22752,115,2.1.4,2 +22752,79,2.1.4.1,1 +22759,163,2.1.4.1.3,0 +22759,79,2.1.4.1,1 +22769,79,2.1.4.1,1 +22769,163,2.1.4.1.3,0 +22770,163,2.1.4.1.3,0 +22770,81,2.1.4.1,1 +22772,163,2.1.4.1.3,0 +22772,81,2.1.4.1,1 +22777,163,2.1.4.1.3,0 +22777,81,2.1.4.1,1 +22781,81,2.1.4.1,1 +22781,163,2.1.4.1.3,0 +22789,81,2.1.4.1,1 +22789,163,2.1.4.1.3,0 +22790,81,2.1.4.1,1 +22790,163,2.1.4.1.3,0 +22792,102,2.1.4,2 +22792,79,2.1.4.1,1 +22792,163,2.1.4.1.3,0 +22797,81,2.1.4.1,1 +22797,163,2.1.4.1.3,0 +22802,163,2.1.4.1.4,0 +22802,79,2.1.4.1,1 +22804,81,2.1.4.1,1 +22804,163,2.1.4.1.4,0 +22806,163,2.1.4.1.4,0 +22806,79,2.1.4.1,1 +22808,79,2.1.4.1,1 +22808,163,2.1.4.1.4,0 +22809,163,2.1.4.1.4,0 +22809,79,2.1.4.1,1 +22811,79,2.1.4.1,1 +22811,163,2.1.4.1.4,0 +22814,163,2.1.4.1.4,0 +22814,81,2.1.4.1,1 +22819,79,2.1.4.1,1 +22819,163,2.1.4.1.4,0 +22822,163,2.1.4.1.4,0 +22822,79,2.1.4.1,1 +22823,163,2.1.4.1.4,0 +22823,79,2.1.4.1,1 +22828,79,2.1.4.1,1 +22828,163,2.1.4.1.4,0 +22831,81,2.1.4.1,1 +22831,163,2.1.4.1.4,0 +22833,163,2.1.4.1.4,0 +22833,81,2.1.4.1,1 +22841,81,2.1.4.1,1 +22841,163,2.1.4.1.4,0 +22847,81,2.1.4.1,1 +22847,163,2.1.4.1.4,0 +22848,163,2.1.4.1.4,0 +22848,81,2.1.4.1,1 +22850,163,2.1.4.1.4,0 +22850,81,2.1.4.1,1 +22852,163,2.1.4.2.1,0 +22852,79,2.1.4.2,1 +22855,163,2.1.4.2.1,0 +22855,79,2.1.4.2,1 +22856,163,2.1.4.2.1,0 +22856,81,2.1.4.2,1 +22857,163,2.1.4.2.1,0 +22857,79,2.1.4.2,1 +22858,79,2.1.4.2,1 +22858,163,2.1.4.2.1,0 +22859,81,2.1.4.2,1 +22859,163,2.1.4.2.1,0 +22864,163,2.1.4.2.1,0 +22864,79,2.1.4.2,1 +22866,79,2.1.4.2,1 +22866,163,2.1.4.2.1,0 +22869,79,2.1.4.2,1 +22869,163,2.1.4.2.1,0 +22870,163,2.1.4.2.1,0 +22870,81,2.1.4.2,1 +22883,79,2.1.4.2,1 +22883,163,2.1.4.2.1,0 +22886,163,2.1.4.2.1,0 +22886,79,2.1.4.2,1 +22886,81,2.1.4.2,1 +22887,81,2.1.4.2,1 +22887,163,2.1.4.2.1,0 +22889,79,2.1.4.2,1 +22889,163,2.1.4.2.1,0 +22891,81,2.1.4.2,1 +22891,163,2.1.4.2.1,0 +22894,163,2.1.4.2.1,0 +22894,79,2.1.4.2,1 +22898,163,2.1.4.2.1,0 +22898,79,2.1.4.2,1 +22899,163,2.1.4.2.1,0 +22899,81,2.1.4.2,1 +22900,81,2.1.4.2,1 +22900,163,2.1.4.2.1,0 +22902,163,2.1.4.2.2,0 +22902,79,2.1.4.2,1 +22903,79,2.1.4.2,1 +22903,163,2.1.4.2.2,0 +22903,81,2.1.4.2,1 +22904,163,2.1.4.2.2,0 +22904,81,2.1.4.2,1 +22906,163,2.1.4.2.2,0 +22906,79,2.1.4.2,1 +22909,81,2.1.4.2,1 +22909,163,2.1.4.2.2,0 +22914,163,2.1.4.2.2,0 +22914,79,2.1.4.2,1 +22916,81,2.1.4.2,1 +22916,163,2.1.4.2.2,0 +22919,79,2.1.4.2,1 +22919,163,2.1.4.2.2,0 +22929,81,2.1.4.2,1 +22929,79,2.1.4.2,1 +22929,163,2.1.4.2.2,0 +22931,81,2.1.4.2,1 +22931,163,2.1.4.2.2,0 +22933,81,2.1.4.2,1 +22933,163,2.1.4.2.2,0 +22940,81,2.1.4.2,1 +22940,163,2.1.4.2.2,0 +22943,163,2.1.4.2.2,0 +22943,79,2.1.4.2,1 +22948,163,2.1.4.2.2,0 +22948,79,2.1.4.2,1 +22948,81,2.1.4.2,1 +22952,164,1.3.3.6,0 +22952,75,1.3.3,1 +22952,99,1.3.3,1 +22954,75,1.3.3,1 +22954,164,1.3.3.6,0 +22955,164,1.3.3.6,0 +22955,75,1.3.3,1 +22955,99,1.3.3,1 +22956,164,1.3.3.6,0 +22956,75,1.3.3,1 +22957,75,1.3.3,1 +22957,164,1.3.3.6,0 +22958,164,1.3.3.6,0 +22958,97,1.3.3,1 +22959,164,1.3.3.6,0 +22959,97,1.3.3,1 +22960,97,1.3.3,1 +22960,164,1.3.3.6,0 +22961,97,1.3.3,1 +22961,164,1.3.3.6,0 +22961,99,1.3.3,1 +22964,75,1.3.3,1 +22964,164,1.3.3.6,0 +22964,97,1.3.3,1 +22969,99,1.3.3,1 +22969,164,1.3.3.6,0 +22972,164,1.3.3.6,0 +22972,75,1.3.3,1 +22973,99,1.3.3,1 +22973,164,1.3.3.6,0 +22976,164,1.3.3.6,0 +22976,75,1.3.3,1 +22976,97,1.3.3,1 +22977,164,1.3.3.6,0 +22977,99,1.3.3,1 +22978,164,1.3.3.6,0 +22978,75,1.3.3,1 +22979,75,1.3.3,1 +22979,164,1.3.3.6,0 +22981,75,1.3.3,1 +22981,164,1.3.3.6,0 +22982,75,1.3.3,1 +22982,164,1.3.3.6,0 +22983,75,1.3.3,1 +22983,164,1.3.3.6,0 +22984,164,1.3.3.6,0 +22984,97,1.3.3,1 +22985,99,1.3.3,1 +22985,164,1.3.3.6,0 +22986,164,1.3.3.6,0 +22986,99,1.3.3,1 +22986,97,1.3.3,1 +22987,99,1.3.3,1 +22987,164,1.3.3.6,0 +22988,99,1.3.3,1 +22988,164,1.3.3.6,0 +22989,164,1.3.3.6,0 +22989,75,1.3.3,1 +22990,99,1.3.3,1 +22990,164,1.3.3.6,0 +22991,164,1.3.3.6,0 +22991,99,1.3.3,1 +22992,97,1.3.3,1 +22992,164,1.3.3.6,0 +22993,164,1.3.3.6,0 +22993,75,1.3.3,1 +22994,75,1.3.3,1 +22994,164,1.3.3.6,0 +22994,99,1.3.3,1 +22995,99,1.3.3,1 +22995,164,1.3.3.6,0 +22997,164,1.3.3.6,0 +22997,99,1.3.3,1 +22999,99,1.3.3,1 +22999,164,1.3.3.6,0 +23004,58,2.1.2,1 +23004,165,2.1.2.1,0 +23005,165,2.1.2.1,0 +23005,58,2.1.2,1 +23005,79,2.1.2,1 +23006,159,2.1.2,1 +23006,165,2.1.2.1,0 +23010,165,2.1.2.1,0 +23010,159,2.1.2,1 +23011,165,2.1.2.1,0 +23011,84,2.1.2,1 +23011,58,2.1.2,1 +23014,165,2.1.2.1,0 +23014,58,2.1.2,1 +23016,165,2.1.2.1,0 +23016,159,2.1.2,1 +23020,58,2.1.2,1 +23020,159,2.1.2,1 +23020,165,2.1.2.1,0 +23022,165,2.1.2.1,0 +23022,84,2.1.2,1 +23023,159,2.1.2,1 +23023,165,2.1.2.1,0 +23025,58,2.1.2,1 +23025,165,2.1.2.1,0 +23029,165,2.1.2.1,0 +23029,79,2.1.2,1 +23031,165,2.1.2.1,0 +23031,159,2.1.2,1 +23032,79,2.1.2,1 +23032,159,2.1.2,1 +23032,165,2.1.2.1,0 +23033,81,2.1.2,1 +23033,165,2.1.2.1,0 +23034,81,2.1.2,1 +23034,165,2.1.2.1,0 +23036,159,2.1.2,1 +23036,165,2.1.2.1,0 +23039,81,2.1.2,1 +23039,165,2.1.2.1,0 +23041,58,2.1.2,1 +23041,165,2.1.2.1,0 +23042,84,2.1.2,1 +23042,165,2.1.2.1,0 +23042,58,2.1.2,1 +23044,84,2.1.2,1 +23044,165,2.1.2.1,0 +23048,79,2.1.2,1 +23048,165,2.1.2.1,0 +23048,84,2.1.2,1 +23048,159,2.1.2,1 +23049,84,2.1.2,1 +23049,81,2.1.2,1 +23049,165,2.1.2.1,0 +23052,81,2.1.2,1 +23052,165,2.1.2.2,0 +23054,165,2.1.2.2,0 +23054,79,2.1.2,1 +23057,165,2.1.2.2,0 +23057,79,2.1.2,1 +23058,165,2.1.2.2,0 +23058,81,2.1.2,1 +23059,165,2.1.2.2,0 +23059,159,2.1.2,1 +23060,165,2.1.2.2,0 +23060,81,2.1.2,1 +23061,165,2.1.2.2,0 +23061,84,2.1.2,1 +23064,81,2.1.2,1 +23064,165,2.1.2.2,0 +23066,165,2.1.2.2,0 +23066,79,2.1.2,1 +23066,58,2.1.2,1 +23069,79,2.1.2,1 +23069,58,2.1.2,1 +23069,165,2.1.2.2,0 +23072,165,2.1.2.2,0 +23072,84,2.1.2,1 +23073,165,2.1.2.2,0 +23073,159,2.1.2,1 +23073,79,2.1.2,1 +23073,84,2.1.2,1 +23074,79,2.1.2,1 +23074,165,2.1.2.2,0 +23075,165,2.1.2.2,0 +23075,159,2.1.2,1 +23076,84,2.1.2,1 +23076,159,2.1.2,1 +23076,165,2.1.2.2,0 +23078,165,2.1.2.2,0 +23078,84,2.1.2,1 +23079,165,2.1.2.2,0 +23079,81,2.1.2,1 +23079,58,2.1.2,1 +23081,165,2.1.2.2,0 +23081,84,2.1.2,1 +23084,159,2.1.2,1 +23084,165,2.1.2.2,0 +23086,79,2.1.2,1 +23086,165,2.1.2.2,0 +23090,165,2.1.2.2,0 +23090,159,2.1.2,1 +23091,81,2.1.2,1 +23091,165,2.1.2.2,0 +23092,165,2.1.2.2,0 +23092,79,2.1.2,1 +23092,159,2.1.2,1 +23093,81,2.1.2,1 +23093,165,2.1.2.2,0 +23094,84,2.1.2,1 +23094,159,2.1.2,1 +23094,165,2.1.2.2,0 +23098,79,2.1.2,1 +23098,165,2.1.2.2,0 +23103,165,2.1.2.3,0 +23103,58,2.1.2,1 +23104,84,2.1.2,1 +23104,165,2.1.2.3,0 +23105,165,2.1.2.3,0 +23105,159,2.1.2,1 +23106,165,2.1.2.3,0 +23106,58,2.1.2,1 +23106,79,2.1.2,1 +23108,165,2.1.2.3,0 +23108,84,2.1.2,1 +23110,165,2.1.2.3,0 +23110,81,2.1.2,1 +23111,58,2.1.2,1 +23111,165,2.1.2.3,0 +23112,81,2.1.2,1 +23112,165,2.1.2.3,0 +23114,79,2.1.2,1 +23114,84,2.1.2,1 +23114,165,2.1.2.3,0 +23116,165,2.1.2.3,0 +23116,159,2.1.2,1 +23119,159,2.1.2,1 +23119,58,2.1.2,1 +23119,165,2.1.2.3,0 +23122,165,2.1.2.3,0 +23122,79,2.1.2,1 +23124,58,2.1.2,1 +23124,165,2.1.2.3,0 +23124,79,2.1.2,1 +23125,58,2.1.2,1 +23125,165,2.1.2.3,0 +23126,84,2.1.2,1 +23126,165,2.1.2.3,0 +23126,159,2.1.2,1 +23129,165,2.1.2.3,0 +23129,159,2.1.2,1 +23131,165,2.1.2.3,0 +23131,159,2.1.2,1 +23131,58,2.1.2,1 +23132,81,2.1.2,1 +23132,165,2.1.2.3,0 +23133,165,2.1.2.3,0 +23133,79,2.1.2,1 +23134,165,2.1.2.3,0 +23134,79,2.1.2,1 +23136,159,2.1.2,1 +23136,165,2.1.2.3,0 +23138,165,2.1.2.3,0 +23138,159,2.1.2,1 +23139,165,2.1.2.3,0 +23139,81,2.1.2,1 +23140,159,2.1.2,1 +23140,84,2.1.2,1 +23140,165,2.1.2.3,0 +23142,81,2.1.2,1 +23142,165,2.1.2.3,0 +23142,58,2.1.2,1 +23142,79,2.1.2,1 +23143,84,2.1.2,1 +23143,81,2.1.2,1 +23143,165,2.1.2.3,0 +23144,84,2.1.2,1 +23144,81,2.1.2,1 +23144,165,2.1.2.3,0 +23147,165,2.1.2.3,0 +23147,58,2.1.2,1 +23148,81,2.1.2,1 +23148,165,2.1.2.3,0 +23149,81,2.1.2,1 +23149,165,2.1.2.3,0 +23154,84,2.1.2,1 +23154,165,2.1.2.4,0 +23155,58,2.1.2,1 +23155,81,2.1.2,1 +23155,165,2.1.2.4,0 +23157,58,2.1.2,1 +23157,165,2.1.2.4,0 +23157,159,2.1.2,1 +23158,79,2.1.2,1 +23158,165,2.1.2.4,0 +23160,84,2.1.2,1 +23160,165,2.1.2.4,0 +23161,58,2.1.2,1 +23161,165,2.1.2.4,0 +23164,79,2.1.2,1 +23164,165,2.1.2.4,0 +23164,159,2.1.2,1 +23169,165,2.1.2.4,0 +23169,58,2.1.2,1 +23170,81,2.1.2,1 +23170,165,2.1.2.4,0 +23172,165,2.1.2.4,0 +23172,84,2.1.2,1 +23173,165,2.1.2.4,0 +23173,159,2.1.2,1 +23174,79,2.1.2,1 +23174,58,2.1.2,1 +23174,165,2.1.2.4,0 +23178,81,2.1.2,1 +23178,165,2.1.2.4,0 +23179,165,2.1.2.4,0 +23179,81,2.1.2,1 +23179,79,2.1.2,1 +23181,165,2.1.2.4,0 +23181,81,2.1.2,1 +23181,79,2.1.2,1 +23182,165,2.1.2.4,0 +23182,81,2.1.2,1 +23183,81,2.1.2,1 +23183,165,2.1.2.4,0 +23184,84,2.1.2,1 +23184,165,2.1.2.4,0 +23186,81,2.1.2,1 +23186,84,2.1.2,1 +23186,165,2.1.2.4,0 +23187,79,2.1.2,1 +23187,165,2.1.2.4,0 +23189,165,2.1.2.4,0 +23189,79,2.1.2,1 +23190,165,2.1.2.4,0 +23190,159,2.1.2,1 +23190,81,2.1.2,1 +23191,84,2.1.2,1 +23191,165,2.1.2.4,0 +23194,81,2.1.2,1 +23194,165,2.1.2.4,0 +23195,159,2.1.2,1 +23195,165,2.1.2.4,0 +23197,58,2.1.2,1 +23197,165,2.1.2.4,0 +23198,159,2.1.2,1 +23198,165,2.1.2.4,0 +23198,58,2.1.2,1 +23198,84,2.1.2,1 +23202,166,1.2.3,0 +23202,97,1.2,1 +23204,166,1.2.3,0 +23204,106,1.2,1 +23206,67,1.2,1 +23206,166,1.2.3,0 +23207,106,1.2,1 +23207,166,1.2.3,0 +23208,126,1.2,1 +23208,166,1.2.3,0 +23210,166,1.2.3,0 +23210,67,1.2,1 +23211,106,1.2,1 +23211,166,1.2.3,0 +23211,67,1.2,1 +23214,166,1.2.3,0 +23214,126,1.2,1 +23214,106,1.2,1 +23219,106,1.2,1 +23219,166,1.2.3,0 +23221,106,1.2,1 +23221,166,1.2.3,0 +23222,67,1.2,1 +23222,166,1.2.3,0 +23223,97,1.2,1 +23223,166,1.2.3,0 +23226,166,1.2.3,0 +23226,106,1.2,1 +23227,106,1.2,1 +23227,166,1.2.3,0 +23228,166,1.2.3,0 +23228,97,1.2,1 +23229,67,1.2,1 +23229,166,1.2.3,0 +23232,97,1.2,1 +23232,166,1.2.3,0 +23233,97,1.2,1 +23233,166,1.2.3,0 +23234,166,1.2.3,0 +23234,126,1.2,1 +23235,126,1.2,1 +23235,166,1.2.3,0 +23236,126,1.2,1 +23236,166,1.2.3,0 +23236,67,1.2,1 +23237,166,1.2.3,0 +23237,126,1.2,1 +23238,106,1.2,1 +23238,166,1.2.3,0 +23239,126,1.2,1 +23239,166,1.2.3,0 +23240,126,1.2,1 +23240,166,1.2.3,0 +23241,97,1.2,1 +23241,166,1.2.3,0 +23242,126,1.2,1 +23242,166,1.2.3,0 +23243,126,1.2,1 +23243,166,1.2.3,0 +23244,126,1.2,1 +23244,166,1.2.3,0 +23244,97,1.2,1 +23247,67,1.2,1 +23247,166,1.2.3,0 +23248,166,1.2.3,0 +23248,106,1.2,1 +23254,167,1.1.1,0 +23254,105,1.1,1 +23256,167,1.1.1,0 +23256,126,1.1,1 +23257,167,1.1.1,0 +23257,105,1.1,1 +23258,167,1.1.1,0 +23258,94,1.1,1 +23261,106,1.1,1 +23261,167,1.1.1,0 +23264,94,1.1,1 +23264,167,1.1.1,0 +23266,126,1.1,1 +23266,167,1.1.1,0 +23269,126,1.1,1 +23269,167,1.1.1,0 +23276,106,1.1,1 +23276,167,1.1.1,0 +23277,167,1.1.1,0 +23277,105,1.1,1 +23278,167,1.1.1,0 +23278,94,1.1,1 +23281,126,1.1,1 +23281,167,1.1.1,0 +23282,167,1.1.1,0 +23282,106,1.1,1 +23283,126,1.1,1 +23283,167,1.1.1,0 +23284,94,1.1,1 +23284,167,1.1.1,0 +23286,86,1.1,1 +23286,167,1.1.1,0 +23289,167,1.1.1,0 +23289,106,1.1,1 +23292,126,1.1,1 +23292,94,1.1,1 +23292,167,1.1.1,0 +23293,167,1.1.1,0 +23293,106,1.1,1 +23294,167,1.1.1,0 +23294,126,1.1,1 +23294,105,1.1,1 +23299,126,1.1,1 +23299,167,1.1.1,0 +23301,168,1.1.2,0 +23301,126,1.1,1 +23302,168,1.1.2,0 +23302,106,1.1,1 +23304,168,1.1.2,0 +23304,105,1.1,1 +23305,168,1.1.2,0 +23305,105,1.1,1 +23306,86,1.1,1 +23306,168,1.1.2,0 +23310,168,1.1.2,0 +23310,126,1.1,1 +23311,168,1.1.2,0 +23311,94,1.1,1 +23314,86,1.1,1 +23314,168,1.1.2,0 +23314,106,1.1,1 +23316,105,1.1,1 +23316,168,1.1.2,0 +23319,105,1.1,1 +23319,168,1.1.2,0 +23326,106,1.1,1 +23326,168,1.1.2,0 +23328,86,1.1,1 +23328,168,1.1.2,0 +23329,126,1.1,1 +23329,86,1.1,1 +23329,168,1.1.2,0 +23331,168,1.1.2,0 +23331,94,1.1,1 +23332,168,1.1.2,0 +23332,94,1.1,1 +23333,168,1.1.2,0 +23333,105,1.1,1 +23334,86,1.1,1 +23334,168,1.1.2,0 +23339,168,1.1.2,0 +23339,94,1.1,1 +23341,126,1.1,1 +23341,168,1.1.2,0 +23343,94,1.1,1 +23343,168,1.1.2,0 +23343,86,1.1,1 +23344,168,1.1.2,0 +23344,86,1.1,1 +23345,105,1.1,1 +23345,168,1.1.2,0 +23348,168,1.1.2,0 +23348,126,1.1,1 +23349,168,1.1.2,0 +23349,126,1.1,1 +23353,99,1.3.3,1 +23353,168,1.3.3.1,0 +23354,168,1.3.3.1,0 +23354,97,1.3.3,1 +23356,97,1.3.3,1 +23356,168,1.3.3.1,0 +23359,168,1.3.3.1,0 +23359,99,1.3.3,1 +23364,168,1.3.3.1,0 +23364,99,1.3.3,1 +23364,97,1.3.3,1 +23373,97,1.3.3,1 +23373,168,1.3.3.1,0 +23373,75,1.3.3,1 +23376,99,1.3.3,1 +23376,168,1.3.3.1,0 +23378,99,1.3.3,1 +23378,168,1.3.3.1,0 +23381,168,1.3.3.1,0 +23381,99,1.3.3,1 +23381,75,1.3.3,1 +23382,168,1.3.3.1,0 +23382,75,1.3.3,1 +23383,75,1.3.3,1 +23383,168,1.3.3.1,0 +23383,29,1.3,2 +23384,99,1.3.3,1 +23384,168,1.3.3.1,0 +23390,99,1.3.3,1 +23390,168,1.3.3.1,0 +23391,75,1.3.3,1 +23391,168,1.3.3.1,0 +23393,99,1.3.3,1 +23393,168,1.3.3.1,0 +23394,168,1.3.3.1,0 +23394,99,1.3.3,1 +23397,168,1.3.3.1,0 +23397,97,1.3.3,1 +23402,168,1.3.3.2,0 +23402,75,1.3.3,1 +23406,99,1.3.3,1 +23406,168,1.3.3.2,0 +23407,168,1.3.3.2,0 +23407,97,1.3.3,1 +23408,75,1.3.3,1 +23408,168,1.3.3.2,0 +23411,99,1.3.3,1 +23411,168,1.3.3.2,0 +23416,99,1.3.3,1 +23416,168,1.3.3.2,0 +23422,99,1.3.3,1 +23422,168,1.3.3.2,0 +23423,168,1.3.3.2,0 +23423,97,1.3.3,1 +23429,99,1.3.3,1 +23429,168,1.3.3.2,0 +23431,168,1.3.3.2,0 +23431,75,1.3.3,1 +23432,99,1.3.3,1 +23432,168,1.3.3.2,0 +23433,168,1.3.3.2,0 +23433,75,1.3.3,1 +23441,99,1.3.3,1 +23441,168,1.3.3.2,0 +23451,168,1.3.3.4,0 +23451,99,1.3.3,1 +23452,168,1.3.3.4,0 +23452,75,1.3.3,1 +23454,168,1.3.3.4,0 +23454,75,1.3.3,1 +23456,168,1.3.3.4,0 +23456,75,1.3.3,1 +23457,168,1.3.3.4,0 +23457,75,1.3.3,1 +23458,75,1.3.3,1 +23458,168,1.3.3.4,0 +23459,97,1.3.3,1 +23459,168,1.3.3.4,0 +23460,97,1.3.3,1 +23460,168,1.3.3.4,0 +23469,99,1.3.3,1 +23469,168,1.3.3.4,0 +23472,97,1.3.3,1 +23472,168,1.3.3.4,0 +23473,168,1.3.3.4,0 +23473,97,1.3.3,1 +23476,99,1.3.3,1 +23476,75,1.3.3,1 +23476,168,1.3.3.4,0 +23477,168,1.3.3.4,0 +23477,97,1.3.3,1 +23478,75,1.3.3,1 +23478,168,1.3.3.4,0 +23479,75,1.3.3,1 +23479,168,1.3.3.4,0 +23483,168,1.3.3.4,0 +23483,75,1.3.3,1 +23484,75,1.3.3,1 +23484,168,1.3.3.4,0 +23489,168,1.3.3.4,0 +23489,99,1.3.3,1 +23491,97,1.3.3,1 +23491,168,1.3.3.4,0 +23492,168,1.3.3.4,0 +23492,97,1.3.3,1 +23494,75,1.3.3,1 +23494,168,1.3.3.4,0 +23495,99,1.3.3,1 +23495,168,1.3.3.4,0 +23497,168,1.3.3.4,0 +23497,99,1.3.3,1 +23497,75,1.3.3,1 +23498,97,1.3.3,1 +23498,168,1.3.3.4,0 +23499,99,1.3.3,1 +23499,168,1.3.3.4,0 +23499,97,1.3.3,1 +23500,99,1.3.3,1 +23500,168,1.3.3.4,0 +23502,84,2.3,1 +23502,168,2.3.1,0 +23503,168,2.3.1,0 +23503,155,2.3,1 +23504,155,2.3,1 +23504,95,2.3,1 +23504,168,2.3.1,0 +23504,126,2.3,1 +23505,168,2.3.1,0 +23505,99,2.3,1 +23505,95,2.3,1 +23506,168,2.3.1,0 +23506,84,2.3,1 +23507,168,2.3.1,0 +23507,84,2.3,1 +23508,168,2.3.1,0 +23508,95,2.3,1 +23509,168,2.3.1,0 +23509,99,2.3,1 +23510,168,2.3.1,0 +23510,84,2.3,1 +23514,168,2.3.1,0 +23514,84,2.3,1 +23514,95,2.3,1 +23514,98,2,2 +23514,126,2.3,1 +23514,99,2.3,1 +23517,168,2.3.1,0 +23517,124,2.3,1 +23520,155,2.3,1 +23520,95,2.3,1 +23520,168,2.3.1,0 +23522,95,2.3,1 +23522,168,2.3.1,0 +23523,168,2.3.1,0 +23523,84,2.3,1 +23523,126,2.3,1 +23524,168,2.3.1,0 +23524,124,2.3,1 +23526,84,2.3,1 +23526,168,2.3.1,0 +23528,99,2.3,1 +23528,168,2.3.1,0 +23529,99,2.3,1 +23529,155,2.3,1 +23529,168,2.3.1,0 +23530,168,2.3.1,0 +23530,155,2.3,1 +23531,84,2.3,1 +23531,168,2.3.1,0 +23532,168,2.3.1,0 +23532,84,2.3,1 +23533,168,2.3.1,0 +23533,95,2.3,1 +23534,95,2.3,1 +23534,168,2.3.1,0 +23535,126,2.3,1 +23535,168,2.3.1,0 +23536,126,2.3,1 +23536,168,2.3.1,0 +23536,84,2.3,1 +23537,155,2.3,1 +23537,168,2.3.1,0 +23539,168,2.3.1,0 +23539,124,2.3,1 +23540,124,2.3,1 +23540,168,2.3.1,0 +23540,95,2.3,1 +23541,124,2.3,1 +23541,168,2.3.1,0 +23543,84,2.3,1 +23543,99,2.3,1 +23543,168,2.3.1,0 +23544,84,2.3,1 +23544,168,2.3.1,0 +23544,99,2.3,1 +23545,168,2.3.1,0 +23545,126,2.3,1 +23547,168,2.3.1,0 +23547,126,2.3,1 +23547,84,2.3,1 +23547,155,2.3,1 +23549,168,2.3.1,0 +23549,155,2.3,1 +23549,126,2.3,1 +23550,95,2.3,1 +23550,124,2.3,1 +23550,168,2.3.1,0 +23552,155,2.3,1 +23552,168,2.3.2,0 +23552,126,2.3,1 +23553,99,2.3,1 +23553,168,2.3.2,0 +23555,168,2.3.2,0 +23555,126,2.3,1 +23555,84,2.3,1 +23556,168,2.3.2,0 +23556,84,2.3,1 +23556,155,2.3,1 +23558,168,2.3.2,0 +23558,155,2.3,1 +23559,99,2.3,1 +23559,168,2.3.2,0 +23560,168,2.3.2,0 +23560,84,2.3,1 +23560,126,2.3,1 +23561,126,2.3,1 +23561,95,2.3,1 +23561,168,2.3.2,0 +23564,168,2.3.2,0 +23564,95,2.3,1 +23566,168,2.3.2,0 +23566,126,2.3,1 +23569,126,2.3,1 +23569,168,2.3.2,0 +23570,124,2.3,1 +23570,168,2.3.2,0 +23573,168,2.3.2,0 +23573,84,2.3,1 +23576,84,2.3,1 +23576,168,2.3.2,0 +23577,168,2.3.2,0 +23577,155,2.3,1 +23578,95,2.3,1 +23578,168,2.3.2,0 +23579,155,2.3,1 +23579,168,2.3.2,0 +23579,124,2.3,1 +23581,168,2.3.2,0 +23581,126,2.3,1 +23583,168,2.3.2,0 +23583,84,2.3,1 +23584,124,2.3,1 +23584,168,2.3.2,0 +23586,168,2.3.2,0 +23586,126,2.3,1 +23586,99,2.3,1 +23586,84,2.3,1 +23590,95,2.3,1 +23590,168,2.3.2,0 +23591,124,2.3,1 +23591,168,2.3.2,0 +23592,95,2.3,1 +23592,124,2.3,1 +23592,168,2.3.2,0 +23593,168,2.3.2,0 +23593,95,2.3,1 +23593,99,2.3,1 +23597,168,2.3.2,0 +23597,124,2.3,1 +23598,168,2.3.2,0 +23598,99,2.3,1 +23600,155,2.3,1 +23600,124,2.3,1 +23600,168,2.3.2,0 +23602,168,2.3.3,0 +23602,155,2.3,1 +23603,168,2.3.3,0 +23603,155,2.3,1 +23604,168,2.3.3,0 +23604,99,2.3,1 +23606,99,2.3,1 +23606,168,2.3.3,0 +23606,155,2.3,1 +23607,168,2.3.3,0 +23607,124,2.3,1 +23608,95,2.3,1 +23608,168,2.3.3,0 +23609,124,2.3,1 +23609,168,2.3.3,0 +23610,84,2.3,1 +23610,168,2.3.3,0 +23611,99,2.3,1 +23611,168,2.3.3,0 +23614,168,2.3.3,0 +23614,124,2.3,1 +23619,95,2.3,1 +23619,99,2.3,1 +23619,168,2.3.3,0 +23621,155,2.3,1 +23621,168,2.3.3,0 +23623,168,2.3.3,0 +23623,99,2.3,1 +23623,84,2.3,1 +23624,124,2.3,1 +23624,168,2.3.3,0 +23626,99,2.3,1 +23626,168,2.3.3,0 +23626,95,2.3,1 +23628,126,2.3,1 +23628,168,2.3.3,0 +23629,95,2.3,1 +23629,84,2.3,1 +23629,168,2.3.3,0 +23631,155,2.3,1 +23631,168,2.3.3,0 +23631,126,2.3,1 +23632,99,2.3,1 +23632,168,2.3.3,0 +23633,168,2.3.3,0 +23633,99,2.3,1 +23634,99,2.3,1 +23634,168,2.3.3,0 +23635,168,2.3.3,0 +23635,95,2.3,1 +23635,124,2.3,1 +23636,126,2.3,1 +23636,168,2.3.3,0 +23636,155,2.3,1 +23640,99,2.3,1 +23640,168,2.3.3,0 +23640,124,2.3,1 +23641,168,2.3.3,0 +23641,126,2.3,1 +23641,84,2.3,1 +23642,168,2.3.3,0 +23642,155,2.3,1 +23643,168,2.3.3,0 +23643,84,2.3,1 +23644,84,2.3,1 +23644,168,2.3.3,0 +23644,99,2.3,1 +23645,126,2.3,1 +23645,168,2.3.3,0 +23647,168,2.3.3,0 +23647,84,2.3,1 +23648,124,2.3,1 +23648,168,2.3.3,0 +23648,84,2.3,1 +23648,95,2.3,1 +23650,155,2.3,1 +23650,168,2.3.3,0 +23656,94,1.1,1 +23656,169,1.1.1,0 +23657,169,1.1.1,0 +23657,86,1.1,1 +23661,169,1.1.1,0 +23661,86,1.1,1 +23664,106,1.1,1 +23664,169,1.1.1,0 +23669,106,1.1,1 +23669,169,1.1.1,0 +23672,169,1.1.1,0 +23672,105,1.1,1 +23673,169,1.1.1,0 +23673,105,1.1,1 +23676,169,1.1.1,0 +23676,86,1.1,1 +23677,105,1.1,1 +23677,169,1.1.1,0 +23678,94,1.1,1 +23678,169,1.1.1,0 +23679,169,1.1.1,0 +23679,106,1.1,1 +23681,169,1.1.1,0 +23681,105,1.1,1 +23682,105,1.1,1 +23682,169,1.1.1,0 +23683,86,1.1,1 +23683,169,1.1.1,0 +23684,105,1.1,1 +23684,169,1.1.1,0 +23686,126,1.1,1 +23686,106,1.1,1 +23686,169,1.1.1,0 +23690,126,1.1,1 +23690,169,1.1.1,0 +23692,105,1.1,1 +23692,169,1.1.1,0 +23693,169,1.1.1,0 +23693,86,1.1,1 +23694,169,1.1.1,0 +23694,86,1.1,1 +23695,169,1.1.1,0 +23695,105,1.1,1 +23699,169,1.1.1,0 +23699,105,1.1,1 diff --git a/analysis/count_dcp.csv b/analysis/count_dcp.csv index ca63932..d4160fe 100644 --- a/analysis/count_dcp.csv +++ b/analysis/count_dcp.csv @@ -1,700 +1,1908 @@ up_id_firm,up_name_firm,up_id_product,up_name_product,down_id_firm,down_name_firm,down_id_product,down_name_product,count -126,华为,1.4,工业互联网安全,170,Pseudo1,1,供给,118 -142,深信服,1.4.3,网络安全,126,华为,1.4,工业互联网安全,96 -41,启明星辰,1.4.5,数据安全,126,华为,1.4,工业互联网安全,92 -142,深信服,1.4.2,控制安全,126,华为,1.4,工业互联网安全,92 -53,天融信,1.4.3.6,沙箱类设备,142,深信服,1.4.3,网络安全,50 -23,和利时,1.4.2.7,工控原生安全,142,深信服,1.4.2,控制安全,50 -157,新华三,1.4.1,设备安全,126,华为,1.4,工业互联网安全,50 +126,华为,1.4,工业互联网安全,170,Pseudo1,1,供给,926 +41,启明星辰,1.4.5,数据安全,170,Pseudo1,1,供给,290 +41,启明星辰,1.4.5,数据安全,126,华为,1.4,工业互联网安全,290 +106,阿里巴巴,1.3,工业软件,170,Pseudo1,1,供给,212 +142,深信服,1.4.3,网络安全,126,华为,1.4,工业互联网安全,211 +142,深信服,1.4.3,网络安全,170,Pseudo1,1,供给,211 +29,京东工业品,1.3,工业软件,170,Pseudo1,1,供给,210 +142,深信服,1.4.2,控制安全,126,华为,1.4,工业互联网安全,205 +142,深信服,1.4.2,控制安全,170,Pseudo1,1,供给,204 +40,奇安信,1.4.4,平台安全,126,华为,1.4,工业互联网安全,152 +0,360科技,1.4.4,平台安全,126,华为,1.4,工业互联网安全,149 +98,Microsoft Azure,2,工业互联网平台,170,Pseudo1,1,供给,119 +102,Amazon AWS,2,工业互联网平台,170,Pseudo1,1,供给,118 +0,360科技,1.4.4,平台安全,170,Pseudo1,1,供给,100 +40,奇安信,1.4.4,平台安全,170,Pseudo1,1,供给,99 +99,Siemens,2.1,PaaS,102,Amazon AWS,2,工业互联网平台,79 +99,Siemens,2.1,PaaS,98,Microsoft Azure,2,工业互联网平台,79 +130,金蝶,1.3.2,采购供应,29,京东工业品,1.3,工业软件,77 +58,用友,1.3.2,采购供应,29,京东工业品,1.3,工业软件,77 +99,Siemens,2.1,PaaS,170,Pseudo1,1,供给,77 +130,金蝶,1.3.5,仓储物流,29,京东工业品,1.3,工业软件,75 +130,金蝶,1.3.5,仓储物流,106,阿里巴巴,1.3,工业软件,75 +130,金蝶,1.3.5,仓储物流,170,Pseudo1,1,供给,75 +130,金蝶,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,73 +58,用友,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,73 +157,新华三,1.4.1,设备安全,126,华为,1.4,工业互联网安全,63 +157,新华三,1.4.1,设备安全,170,Pseudo1,1,供给,63 +130,金蝶,1.3.2,采购供应,170,Pseudo1,1,供给,59 +58,用友,1.3.2,采购供应,170,Pseudo1,1,供给,58 +63,长扬科技,1.4.4.5,安全态势感知,40,奇安信,1.4.4,平台安全,50 +53,天融信,1.4.3.6,沙箱类设备,126,华为,1.4,工业互联网安全,50 53,天融信,1.4.5.8,数据加密,41,启明星辰,1.4.5,数据安全,50 -41,启明星辰,1.4.3.2,流量检测,142,深信服,1.4.3,网络安全,50 +53,天融信,1.4.5.8,数据加密,170,Pseudo1,1,供给,50 +53,天融信,1.4.5.8,数据加密,126,华为,1.4,工业互联网安全,50 +63,长扬科技,1.4.4.5,安全态势感知,170,Pseudo1,1,供给,50 +53,天融信,1.4.3.6,沙箱类设备,170,Pseudo1,1,供给,50 +53,天融信,1.4.3.6,沙箱类设备,142,深信服,1.4.3,网络安全,50 +135,浪潮,1.3.2.1,供应链管理SCM,106,阿里巴巴,1.3,工业软件,50 +135,浪潮,1.3.2.1,供应链管理SCM,130,金蝶,1.3.2,采购供应,50 +135,浪潮,1.3.2.1,供应链管理SCM,170,Pseudo1,1,供给,50 +135,浪潮,1.3.2.1,供应链管理SCM,29,京东工业品,1.3,工业软件,50 +135,浪潮,1.3.2.1,供应链管理SCM,58,用友,1.3.2,采购供应,50 53,天融信,1.4.2.3,工控漏洞扫描,142,深信服,1.4.2,控制安全,50 +53,天融信,1.4.2.3,工控漏洞扫描,170,Pseudo1,1,供给,50 +23,和利时,1.4.2.7,工控原生安全,126,华为,1.4,工业互联网安全,50 +53,天融信,1.4.2.3,工控漏洞扫描,126,华为,1.4,工业互联网安全,50 +63,长扬科技,1.4.4.5,安全态势感知,126,华为,1.4,工业互联网安全,50 +23,和利时,1.4.2.7,工控原生安全,170,Pseudo1,1,供给,50 +41,启明星辰,1.4.3.2,流量检测,126,华为,1.4,工业互联网安全,50 +140,山石网科,1.4.5.1,恶意代码检测系统,170,Pseudo1,1,供给,50 140,山石网科,1.4.5.1,恶意代码检测系统,41,启明星辰,1.4.5,数据安全,50 -99,Siemens,2.1,PaaS,102,Amazon AWS,2,工业互联网平台,41 -135,浪潮,1.3.2.1,供应链管理SCM,130,金蝶,1.3.2,采购供应,40 -130,金蝶,1.3.5,仓储物流,106,阿里巴巴,1.3,工业软件,39 -63,长扬科技,1.4.4.5,安全态势感知,0,360科技,1.4.4,平台安全,38 -63,长扬科技,1.4.4.5,安全态势感知,40,奇安信,1.4.4,平台安全,38 -135,浪潮,1.3.2.1,供应链管理SCM,58,用友,1.3.2,采购供应,36 -99,Siemens,2.1,PaaS,98,Microsoft Azure,2,工业互联网平台,36 -130,金蝶,1.3.5,仓储物流,29,京东工业品,1.3,工业软件,33 -130,金蝶,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23 -135,浪潮,1.3.2.1,供应链管理SCM,106,阿里巴巴,1.3,工业软件,23 -53,天融信,1.4.3.6,沙箱类设备,126,华为,1.4,工业互联网安全,23 -41,启明星辰,1.4.3.2,流量检测,126,华为,1.4,工业互联网安全,23 -58,用友,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23 -53,天融信,1.4.5.8,数据加密,126,华为,1.4,工业互联网安全,21 -140,山石网科,1.4.5.1,恶意代码检测系统,126,华为,1.4,工业互联网安全,21 -142,深信服,1.4.3,网络安全,170,Pseudo1,1,供给,21 -53,天融信,1.4.2.3,工控漏洞扫描,126,华为,1.4,工业互联网安全,21 -23,和利时,1.4.2.7,工控原生安全,126,华为,1.4,工业互联网安全,21 -41,启明星辰,1.4.5,数据安全,170,Pseudo1,1,供给,19 -142,深信服,1.4.2,控制安全,170,Pseudo1,1,供给,19 -130,金蝶,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14 -58,用友,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14 -135,浪潮,1.3.2.1,供应链管理SCM,29,京东工业品,1.3,工业软件,14 -157,新华三,1.4.1,设备安全,170,Pseudo1,1,供给,9 -41,启明星辰,1.4.3.2,流量检测,170,Pseudo1,1,供给,6 -53,天融信,1.4.3.6,沙箱类设备,170,Pseudo1,1,供给,6 -99,Siemens,2.1,PaaS,170,Pseudo1,1,供给,5 -53,天融信,1.4.2.3,工控漏洞扫描,170,Pseudo1,1,供给,5 -40,奇安信,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5 -98,Microsoft Azure,2,工业互联网平台,170,Pseudo1,1,供给,5 -63,长扬科技,1.4.4.5,安全态势感知,126,华为,1.4,工业互联网安全,5 -140,山石网科,1.4.5.1,恶意代码检测系统,170,Pseudo1,1,供给,5 -23,和利时,1.4.2.7,工控原生安全,170,Pseudo1,1,供给,5 -53,天融信,1.4.5.8,数据加密,170,Pseudo1,1,供给,5 -0,360科技,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5 -102,Amazon AWS,2,工业互联网平台,170,Pseudo1,1,供给,5 -131,九物互联,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,4 -42,山大华天,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,4 -13,东方国信,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,4 -79,PTC,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,4 -78,OutSystems,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,3 -68,中望软件,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,3 -13,东方国信,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3 -13,东方国信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,3 -13,东方国信,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,3 -13,东方国信,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,3 -79,PTC,2.3.3,协议转换,126,华为,2.3,边缘层,3 -69,紫光集团,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3 -79,PTC,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,3 -43,神舟软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,3 -16,东土科技,2.3.3,协议转换,126,华为,2.3,边缘层,3 -79,PTC,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,3 +41,启明星辰,1.4.3.2,流量检测,142,深信服,1.4.3,网络安全,50 +63,长扬科技,1.4.4.5,安全态势感知,0,360科技,1.4.4,平台安全,50 +41,启明星辰,1.4.3.2,流量检测,170,Pseudo1,1,供给,50 +23,和利时,1.4.2.7,工控原生安全,142,深信服,1.4.2,控制安全,50 +140,山石网科,1.4.5.1,恶意代码检测系统,126,华为,1.4,工业互联网安全,50 +102,Amazon AWS,2.1.4,工业大数据,99,Siemens,2.1,PaaS,49 +115,富士康,2.1.4,工业大数据,99,Siemens,2.1,PaaS,47 +84,Bosch,2.1.4,工业大数据,99,Siemens,2.1,PaaS,43 +53,天融信,1.4.5.7,数据恢复,41,启明星辰,1.4.5,数据安全,35 +53,天融信,1.4.5.6,数据容灾备份,41,启明星辰,1.4.5,数据安全,35 +52,天空卫士,1.4.5.5,敏感数据发现与监控,41,启明星辰,1.4.5,数据安全,35 +5,安华金和,1.4.5.9,数据防火墙,41,启明星辰,1.4.5,数据安全,35 +5,安华金和,1.4.5.5,敏感数据发现与监控,41,启明星辰,1.4.5,数据安全,35 +114,富勒科技,1.3.5.1,仓储物流管理WMS,130,金蝶,1.3.5,仓储物流,35 +140,山石网科,1.4.5.4,数据脱敏,41,启明星辰,1.4.5,数据安全,35 +140,山石网科,1.4.5.9,数据防火墙,41,启明星辰,1.4.5,数据安全,35 +37,绿盟,1.4.5.2,数据防泄漏系统,41,启明星辰,1.4.5,数据安全,35 +151,唯智信息,1.3.5.1,仓储物流管理WMS,130,金蝶,1.3.5,仓储物流,35 +162,壹进制,1.4.5.6,数据容灾备份,41,启明星辰,1.4.5,数据安全,35 +77,Oracle,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,35 +162,壹进制,1.4.5.7,数据恢复,41,启明星辰,1.4.5,数据安全,35 +5,安华金和,1.4.5.4,数据脱敏,41,启明星辰,1.4.5,数据安全,35 +53,天融信,1.4.5.2,数据防泄漏系统,41,启明星辰,1.4.5,数据安全,35 +37,绿盟,1.4.4.3,接入认证,40,奇安信,1.4.4,平台安全,34 +37,绿盟,1.4.2.2,工控主机卫士,142,深信服,1.4.2,控制安全,34 +27,江南天安,1.4.4.2,密钥管理,40,奇安信,1.4.4,平台安全,34 +27,江南天安,1.4.4.2,密钥管理,0,360科技,1.4.4,平台安全,34 +53,天融信,1.4.4.4,工业应用行为监控,40,奇安信,1.4.4,平台安全,34 +37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,142,深信服,1.4.3,网络安全,34 +37,绿盟,1.4.4.3,接入认证,0,360科技,1.4.4,平台安全,34 +11,北信源,1.4.4.2,密钥管理,0,360科技,1.4.4,平台安全,34 +30,可信华泰,1.4.2.6,隐私计算,142,深信服,1.4.2,控制安全,34 +53,天融信,1.4.3.4,攻击溯源,142,深信服,1.4.3,网络安全,34 +11,北信源,1.4.4.2,密钥管理,40,奇安信,1.4.4,平台安全,34 +54,网御星云,1.4.4.3,接入认证,0,360科技,1.4.4,平台安全,34 +40,奇安信,1.4.2.5,安全日志与审计,142,深信服,1.4.2,控制安全,34 +41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,142,深信服,1.4.3,网络安全,34 +122,国民技术,1.4.2.6,隐私计算,142,深信服,1.4.2,控制安全,34 +54,网御星云,1.4.4.3,接入认证,40,奇安信,1.4.4,平台安全,34 +55,威努特,1.4.2.2,工控主机卫士,142,深信服,1.4.2,控制安全,34 +55,威努特,1.4.4.4,工业应用行为监控,0,360科技,1.4.4,平台安全,34 +55,威努特,1.4.4.4,工业应用行为监控,40,奇安信,1.4.4,平台安全,34 +53,天融信,1.4.3.5,负载均衡,142,深信服,1.4.3,网络安全,34 +99,Siemens,1.3.3,生产制造,29,京东工业品,1.3,工业软件,34 +59,优特捷,1.4.2.5,安全日志与审计,142,深信服,1.4.2,控制安全,34 +41,启明星辰,1.4.3.4,攻击溯源,142,深信服,1.4.3,网络安全,34 +41,启明星辰,1.4.3.5,负载均衡,142,深信服,1.4.3,网络安全,34 +53,天融信,1.4.4.4,工业应用行为监控,0,360科技,1.4.4,平台安全,34 +160,亚信科技,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,33 +107,安恒信息,1.4.3.3,APT检测,142,深信服,1.4.3,网络安全,33 +75,IBM,1.3.3,生产制造,106,阿里巴巴,1.3,工业软件,33 +152,卫士通,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,31 +93,Cadence,1.3.1,设计研发,29,京东工业品,1.3,工业软件,31 +81,SAP,1.3.4,企业运营管理,106,阿里巴巴,1.3,工业软件,31 +81,SAP,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,31 +85,Dassault,1.3.1,设计研发,29,京东工业品,1.3,工业软件,31 +8,梆梆安全,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,30 +97,General Electric,1.3.3,生产制造,29,京东工业品,1.3,工业软件,30 +81,SAP,2.1.4.1,工业大数据存储,84,Bosch,2.1.4,工业大数据,29 +79,PTC,2.1.4.1,工业大数据存储,84,Bosch,2.1.4,工业大数据,29 +79,PTC,2.1.4.1,工业大数据存储,115,富士康,2.1.4,工业大数据,29 +51,天地和兴,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,28 +121,广州智臣,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,28 +79,PTC,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,28 +100,Synopsys,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,28 +81,SAP,2.1.4.1,工业大数据存储,115,富士康,2.1.4,工业大数据,28 +17,国保金泰,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,28 +19,国泰网信,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,28 +99,Siemens,1.3.3,生产制造,106,阿里巴巴,1.3,工业软件,28 +79,PTC,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,28 +81,SAP,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,28 +81,SAP,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,28 +99,Siemens,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,27 +53,天融信,1.4.1.5,统一威胁管理系统,157,新华三,1.4.1,设备安全,26 +158,信大捷安,1.4.4.1,身份鉴别与访问控制,0,360科技,1.4.4,平台安全,26 +97,General Electric,1.3.3,生产制造,106,阿里巴巴,1.3,工业软件,26 +58,用友,1.3.4.2,客户关系管理CRM,81,SAP,1.3.4,企业运营管理,26 +41,启明星辰,1.4.1.5,统一威胁管理系统,157,新华三,1.4.1,设备安全,25 +41,启明星辰,1.4.1.2,下一代防火墙,157,新华三,1.4.1,设备安全,25 +140,山石网科,1.4.1.4,入侵检测系统,157,新华三,1.4.1,设备安全,25 +39,Autodesk,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,25 +67,中国移动,1.2,工业互联网网络,170,Pseudo1,1,供给,25 +53,天融信,1.4.5.3,数据审计系统,41,启明星辰,1.4.5,数据安全,25 +53,天融信,1.4.1.4,入侵检测系统,157,新华三,1.4.1,设备安全,24 +133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,24 +80,Salesforce,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,24 +152,卫士通,1.4.4.1,身份鉴别与访问控制,0,360科技,1.4.4,平台安全,24 +5,安华金和,1.4.5.3,数据审计系统,41,启明星辰,1.4.5,数据安全,23 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,23 +106,阿里巴巴,1.2,工业互联网网络,170,Pseudo1,1,供给,23 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,23 +77,Oracle,1.3.4,企业运营管理,106,阿里巴巴,1.3,工业软件,23 +45,石化盈科,1.3.4.2,客户关系管理CRM,80,Salesforce,1.3.4,企业运营管理,23 +75,IBM,1.3.3,生产制造,29,京东工业品,1.3,工业软件,23 +112,东华测试,1.3.3.7,故障预测与健康管理PHM,75,IBM,1.3.3,生产制造,23 +80,Salesforce,1.3.4,企业运营管理,106,阿里巴巴,1.3,工业软件,23 +79,PTC,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,23 +81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,23 +53,天融信,1.4.3.3,APT检测,142,深信服,1.4.3,网络安全,22 +126,华为,1.1,工业自动化,170,Pseudo1,1,供给,22 +106,阿里巴巴,2.1.1,开发工具,99,Siemens,2.1,PaaS,22 +81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,22 +55,威努特,1.4.1.2,下一代防火墙,157,新华三,1.4.1,设备安全,22 +130,金蝶,1.3.4.2,客户关系管理CRM,81,SAP,1.3.4,企业运营管理,22 +100,Synopsys,1.3.1,设计研发,29,京东工业品,1.3,工业软件,22 +14,东华软件,1.3.4.3,人力资源管理HRM,81,SAP,1.3.4,企业运营管理,22 +79,PTC,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,22 +140,山石网科,1.4.5.3,数据审计系统,41,启明星辰,1.4.5,数据安全,22 +93,Cadence,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,22 +40,奇安信,1.4.3.3,APT检测,142,深信服,1.4.3,网络安全,21 +118,工邦邦,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,21 +105,Intel,1.1,工业自动化,170,Pseudo1,1,供给,21 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,97,General Electric,1.3.3,生产制造,21 +37,绿盟,1.4.1.2,下一代防火墙,157,新华三,1.4.1,设备安全,21 +58,用友,1.3.4.3,人力资源管理HRM,81,SAP,1.3.4,企业运营管理,21 +158,信大捷安,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,21 +97,General Electric,1.2,工业互联网网络,170,Pseudo1,1,供给,21 +126,华为,1.2,工业互联网网络,170,Pseudo1,1,供给,21 +133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,0,360科技,1.4.4,平台安全,21 +50,索为系统,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,21 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,75,IBM,1.3.3,生产制造,20 +11,北信源,1.4.4.2,密钥管理,126,华为,1.4,工业互联网安全,20 +45,石化盈科,1.3.4.2,客户关系管理CRM,77,Oracle,1.3.4,企业运营管理,20 +55,威努特,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,20 +130,金蝶,1.3.4.3,人力资源管理HRM,77,Oracle,1.3.4,企业运营管理,20 +86,Dell EMC,1.1,工业自动化,170,Pseudo1,1,供给,20 +13,东方国信,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,20 +85,Dassault,2.1.1,开发工具,99,Siemens,2.1,PaaS,20 +85,Dassault,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,20 +130,金蝶,1.3.4.3,人力资源管理HRM,81,SAP,1.3.4,企业运营管理,20 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,20 +50,索为系统,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,20 +79,PTC,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,20 +14,东华软件,1.3.4.3,人力资源管理HRM,77,Oracle,1.3.4,企业运营管理,20 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,19 +43,神舟软件,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,19 +138,启明信息,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,19 +37,绿盟,1.4.1.4,入侵检测系统,157,新华三,1.4.1,设备安全,19 +22,航天云网,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,19 +112,东华测试,1.3.3.7,故障预测与健康管理PHM,97,General Electric,1.3.3,生产制造,19 +22,航天云网,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,19 +79,PTC,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,19 +58,用友,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,19 +79,PTC,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,19 +130,金蝶,1.3.4.2,客户关系管理CRM,77,Oracle,1.3.4,企业运营管理,19 +58,用友,1.2.2,标识解析,126,华为,1.2,工业互联网网络,19 +63,长扬科技,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,18 +14,东华软件,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,18 +13,东方国信,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,18 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,18 +22,航天云网,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,18 +22,航天云网,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,18 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,18 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,18 +4,爱创科技,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,18 +79,PTC,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,18 +68,中望软件,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,18 +25,华大九天,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,18 +39,Autodesk,1.3.1,设计研发,29,京东工业品,1.3,工业软件,18 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,18 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,18 +15,东软集团,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,18 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,17 +13,东方国信,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,17 +13,东方国信,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,17 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,17 +42,山大华天,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,17 +13,东方国信,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,17 +58,用友,1.3.4.3,人力资源管理HRM,77,Oracle,1.3.4,企业运营管理,17 +135,浪潮,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,17 +55,威努特,1.4.4.4,工业应用行为监控,126,华为,1.4,工业互联网安全,17 +58,用友,1.3.4.2,客户关系管理CRM,77,Oracle,1.3.4,企业运营管理,17 +140,山石网科,1.4.1.5,统一威胁管理系统,157,新华三,1.4.1,设备安全,17 +130,金蝶,1.3.4.2,客户关系管理CRM,80,Salesforce,1.3.4,企业运营管理,17 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,75,IBM,1.3.3,生产制造,17 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,17 +138,启明信息,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,17 +55,威努特,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,17 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,17 +50,索为系统,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,17 +99,Siemens,1.3.1,设计研发,29,京东工业品,1.3,工业软件,17 +52,天空卫士,1.4.5.5,敏感数据发现与监控,170,Pseudo1,1,供给,17 +3,艾克斯特,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,17 +15,东软集团,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,17 +106,阿里巴巴,1.1,工业自动化,170,Pseudo1,1,供给,17 +52,天空卫士,1.4.5.5,敏感数据发现与监控,126,华为,1.4,工业互联网安全,17 +112,东华测试,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,17 +13,东方国信,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,17 +79,PTC,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,17 +7,百望,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,17 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,17 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,17 +70,ABB,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,17 +50,索为系统,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,16 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,16 +95,Schneider,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,16 +48,曙光信息,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,16 +135,浪潮,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,16 +130,金蝶,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,16 +13,东方国信,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,16 +26,寄云科技,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,16 +73,FANUC,2.1.3,工业物联网,99,Siemens,2.1,PaaS,16 +79,PTC,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,16 +13,东方国信,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,16 +22,航天云网,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,16 +49,数码大方,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,16 +135,浪潮,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,16 +79,PTC,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,16 +164,震坤行,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,16 +116,概伦电子,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,16 +119,广联达,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,16 +164,震坤行,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,16 +5,安华金和,1.4.5.4,数据脱敏,126,华为,1.4,工业互联网安全,15 +58,用友,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,15 +102,Amazon AWS,2.1.4,工业大数据,170,Pseudo1,1,供给,15 +43,神舟软件,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,15 +138,启明信息,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,15 +102,Amazon AWS,2.1.4,工业大数据,98,Microsoft Azure,2,工业互联网平台,15 +115,富士康,2.1.4,工业大数据,98,Microsoft Azure,2,工业互联网平台,15 +116,概伦电子,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,15 +138,启明信息,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,15 +79,PTC,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,15 +23,和利时,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,15 +58,用友,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,15 +5,安华金和,1.4.5.4,数据脱敏,170,Pseudo1,1,供给,15 +53,天融信,1.4.5.7,数据恢复,126,华为,1.4,工业互联网安全,15 +58,用友,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,15 +53,天融信,1.4.5.7,数据恢复,170,Pseudo1,1,供给,15 +115,富士康,2.1.4,工业大数据,102,Amazon AWS,2,工业互联网平台,15 +26,寄云科技,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,15 +68,中望软件,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,15 +22,航天云网,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,15 +102,Amazon AWS,2.1.4,工业大数据,102,Amazon AWS,2,工业互联网平台,15 +79,PTC,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,15 +84,Bosch,2.1.2,工业模型库,99,Siemens,2.1,PaaS,15 +55,威努特,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,15 +135,浪潮,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,15 +140,山石网科,1.4.5.9,数据防火墙,170,Pseudo1,1,供给,15 +135,浪潮,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,15 +45,石化盈科,1.3.4.2,客户关系管理CRM,81,SAP,1.3.4,企业运营管理,15 +135,浪潮,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,15 +77,Oracle,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,15 +140,山石网科,1.4.5.9,数据防火墙,126,华为,1.4,工业互联网安全,15 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,15 +79,PTC,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,15 +22,航天云网,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,15 +26,寄云科技,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,15 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,15 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,15 +13,东方国信,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,15 +84,Bosch,2.1.4,工业大数据,98,Microsoft Azure,2,工业互联网平台,14 +25,华大九天,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,14 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,14 +126,华为,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,14 +135,浪潮,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,14 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,14 +151,唯智信息,1.3.5.1,仓储物流管理WMS,106,阿里巴巴,1.3,工业软件,14 +151,唯智信息,1.3.5.1,仓储物流管理WMS,170,Pseudo1,1,供给,14 +135,浪潮,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,14 +151,唯智信息,1.3.5.1,仓储物流管理WMS,29,京东工业品,1.3,工业软件,14 +9,北京航天测控,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,14 +79,PTC,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,14 +133,蓝盾股份,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,14 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,14 +40,奇安信,1.4.2.1,工控安全监测与审计,142,深信服,1.4.2,控制安全,14 +109,宝信软件,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,14 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,14 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,14 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,14 +135,浪潮,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,14 +13,东方国信,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,14 +115,富士康,2.1.4,工业大数据,170,Pseudo1,1,供给,14 +68,中望软件,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,14 +13,东方国信,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,14 +84,Bosch,2.1.4,工业大数据,170,Pseudo1,1,供给,14 +13,东方国信,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,14 +13,东方国信,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,14 +79,PTC,2.1.2,工业模型库,99,Siemens,2.1,PaaS,14 +79,PTC,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,14 +13,东方国信,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,14 +47,首自信,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,14 +22,航天云网,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,14 +13,东方国信,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,14 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,39,Autodesk,1.3.1,设计研发,14 +45,石化盈科,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,14 +46,适创科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,14 +84,Bosch,2.1.4,工业大数据,102,Amazon AWS,2,工业互联网平台,14 +68,中望软件,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,14 +68,中望软件,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,14 +13,东方国信,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,14 +135,浪潮,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,14 +144,树根互联,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,14 +138,启明信息,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,14 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,14 +42,山大华天,1.3.1.3,计算机辅助制造CAM,100,Synopsys,1.3.1,设计研发,14 +43,神舟软件,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,14 +88,HPE,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,14 +56,芯愿景,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,14 +42,山大华天,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,14 +56,芯愿景,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,14 +79,PTC,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,14 +22,航天云网,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,14 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,14 +79,PTC,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,13 +135,浪潮,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,13 +79,PTC,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,13 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,13 +79,PTC,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,13 +135,浪潮,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,13 +148,腾讯,2.1.3,工业物联网,99,Siemens,2.1,PaaS,13 +135,浪潮,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,13 +79,PTC,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,13 +140,山石网科,1.4.5.4,数据脱敏,126,华为,1.4,工业互联网安全,13 +43,神舟软件,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,13 +126,华为,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,13 +79,PTC,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,13 +79,PTC,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,13 +50,索为系统,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,13 +79,PTC,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,13 +47,首自信,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,13 +47,首自信,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,13 +45,石化盈科,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,13 +45,石化盈科,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,13 +43,神舟软件,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,13 +14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,13 +79,PTC,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,13 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,13 +14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,13 +109,宝信软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,13 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,13 +13,东方国信,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,13 +56,芯愿景,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,13 +135,浪潮,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,13 +23,和利时,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,13 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,13 +22,航天云网,2.3.2,边缘数据处理,155,小米,2.3,边缘层,13 +22,航天云网,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,13 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,13 +22,航天云网,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,13 +88,HPE,1.1.3,工业服务器,105,Intel,1.1,工业自动化,13 +22,航天云网,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,13 +22,航天云网,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,13 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,13 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,13 +22,航天云网,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,13 +22,航天云网,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,13 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,13 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,13 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,13 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,13 +13,东方国信,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,13 +13,东方国信,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,13 +13,东方国信,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,13 +168,中控技术,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,13 +13,东方国信,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,13 +13,东方国信,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,13 +55,威努特,1.4.4.4,工业应用行为监控,170,Pseudo1,1,供给,13 +13,东方国信,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,13 +140,山石网科,1.4.5.4,数据脱敏,170,Pseudo1,1,供给,13 +71,Altair,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,13 +74,HoneyWell,2.1.3,工业物联网,99,Siemens,2.1,PaaS,13 +135,浪潮,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,13 +79,PTC,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,13 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,97,General Electric,1.3.3,生产制造,13 +108,百度,2.1.3,工业物联网,99,Siemens,2.1,PaaS,13 +26,寄云科技,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,13 +54,网御星云,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,13 +3,艾克斯特,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,13 +3,艾克斯特,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,13 +81,SAP,2.1.2,工业模型库,99,Siemens,2.1,PaaS,13 +15,东软集团,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,13 +79,PTC,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,13 +77,Oracle,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,13 +13,东方国信,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,13 +3,艾克斯特,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,13 +116,概伦电子,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,13 +79,PTC,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,12 +162,壹进制,1.4.5.6,数据容灾备份,126,华为,1.4,工业互联网安全,12 +162,壹进制,1.4.5.6,数据容灾备份,170,Pseudo1,1,供给,12 +22,航天云网,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,12 +95,Schneider,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,12 +82,Uptake,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,12 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,12 +3,艾克斯特,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,12 +45,石化盈科,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,12 +79,PTC,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,12 +20,海基科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,12 +163,优也科技,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,12 +168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,12 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,12 +41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,126,华为,1.4,工业互联网安全,12 +22,航天云网,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,12 +42,山大华天,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,12 +41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,170,Pseudo1,1,供给,12 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,12 +79,PTC,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,12 +81,SAP,2.1.4.2,工业大数据管理,99,Siemens,2.1,PaaS,12 +79,PTC,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,12 +96,Cisco,1.2.3,数据互通,126,华为,1.2,工业互联网网络,12 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,12 +42,山大华天,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,12 +23,和利时,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,12 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,12 +26,寄云科技,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,12 +42,山大华天,1.3.1.3,计算机辅助制造CAM,93,Cadence,1.3.1,设计研发,12 +26,寄云科技,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,12 +26,寄云科技,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,12 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,12 +22,航天云网,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,12 +22,航天云网,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,12 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,12 +22,航天云网,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,12 +79,PTC,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,12 +46,适创科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,12 +109,宝信软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,12 +70,ABB,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,12 +58,用友,1.3.4.2,客户关系管理CRM,80,Salesforce,1.3.4,企业运营管理,12 +13,东方国信,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,12 +48,曙光信息,1.2.2,标识解析,126,华为,1.2,工业互联网网络,12 +13,东方国信,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,12 +49,数码大方,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,12 +13,东方国信,2.3.1,工业数据接入,124,海尔,2.3,边缘层,12 +135,浪潮,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,12 +59,优特捷,1.4.2.5,安全日志与审计,126,华为,1.4,工业互联网安全,12 +49,数码大方,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,12 +59,优特捷,1.4.2.5,安全日志与审计,170,Pseudo1,1,供给,12 +13,东方国信,1.2.2,标识解析,126,华为,1.2,工业互联网网络,12 +136,美的,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,12 +49,数码大方,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,12 +64,中电智科,1.1.2,工业控制器,126,华为,1.1,工业自动化,12 +111,鼎捷软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,12 +49,数码大方,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,12 +132,科远智慧,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,12 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,12 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,12 +135,浪潮,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,12 +135,浪潮,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,12 +126,华为,2.1.3,工业物联网,99,Siemens,2.1,PaaS,12 +47,首自信,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,12 +88,HPE,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,12 +58,用友,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,12 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,12 +135,浪潮,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,12 +47,首自信,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,12 +79,PTC,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,12 +58,用友,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,12 +13,东方国信,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,12 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,12 +135,浪潮,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,12 +47,首自信,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,12 +47,首自信,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,12 +47,首自信,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,12 +135,浪潮,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,11 +135,浪潮,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,11 +79,PTC,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,11 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,11 +78,OutSystems,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,11 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,11 +114,富勒科技,1.3.5.1,仓储物流管理WMS,106,阿里巴巴,1.3,工业软件,11 +126,华为,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,11 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,11 +135,浪潮,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,11 +79,PTC,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,11 +77,Oracle,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,11 +28,金山云,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,11 +135,浪潮,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,11 +161,研华科技,2.3.3,协议转换,126,华为,2.3,边缘层,11 +161,研华科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,11 +6,安世亚太,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,11 +22,航天云网,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,11 +97,General Electric,2.1.3,工业物联网,99,Siemens,2.1,PaaS,11 +22,航天云网,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,11 +135,浪潮,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,11 +75,IBM,1.3.3,生产制造,170,Pseudo1,1,供给,11 +114,富勒科技,1.3.5.1,仓储物流管理WMS,170,Pseudo1,1,供给,11 +74,HoneyWell,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,11 +154,西格数据,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,11 +22,航天云网,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,11 +22,航天云网,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,11 +22,航天云网,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,11 +13,东方国信,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,11 +22,航天云网,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,11 +58,用友,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,11 +58,用友,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,11 +13,东方国信,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,11 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,11 +57,亚控科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,11 +13,东方国信,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,11 +13,东方国信,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,11 +13,东方国信,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,11 +56,芯愿景,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,11 +22,航天云网,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,11 +13,东方国信,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,11 +54,网御星云,1.4.4.3,接入认证,126,华为,1.4,工业互联网安全,11 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,11 +114,富勒科技,1.3.5.1,仓储物流管理WMS,29,京东工业品,1.3,工业软件,11 +25,华大九天,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,11 +26,寄云科技,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,11 +26,寄云科技,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,11 +89,Rockwell,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,11 +9,北京航天测控,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,11 +149,天泽智云,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,11 +26,寄云科技,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,11 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,11 +53,天融信,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,11 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,11 +20,海基科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,11 +13,东方国信,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,11 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,11 +79,PTC,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,11 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,11 +13,东方国信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,11 +41,启明星辰,1.4.3.5,负载均衡,126,华为,1.4,工业互联网安全,11 +41,启明星辰,1.4.3.5,负载均衡,170,Pseudo1,1,供给,11 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,11 +66,中国联通,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,11 +18,国能智深,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,11 +48,曙光信息,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,11 +168,中控技术,2.3.3,协议转换,99,Siemens,2.3,边缘层,11 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,11 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,11 +47,首自信,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,11 +124,海尔,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,11 +47,首自信,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,11 +47,首自信,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,11 +13,东方国信,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,11 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,11 +14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,11 +120,广州数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,11 +79,PTC,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,11 +45,石化盈科,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,11 +143,沈阳自动化研究所,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,11 +166,中国电子科技网络信息安全,1.2.3,数据互通,126,华为,1.2,工业互联网网络,11 +95,Schneider,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,11 +45,石化盈科,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,11 +47,首自信,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,11 +79,PTC,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,11 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,11 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,11 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,11 +38,牛刀,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,11 +33,蓝谷信息,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,11 +33,蓝谷信息,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,11 +60,宇动源,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,11 +149,天泽智云,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,11 +13,东方国信,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,11 +22,航天云网,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,11 +79,PTC,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,11 +135,浪潮,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,11 +22,航天云网,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,11 +83,Emerson,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,11 +38,牛刀,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,11 +135,浪潮,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,11 +135,浪潮,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,11 +38,牛刀,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,11 +62,云道智造,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,11 +147,拓邦股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,11 +135,浪潮,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,11 +4,爱创科技,1.2.2,标识解析,126,华为,1.2,工业互联网网络,11 +79,PTC,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,11 +79,PTC,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,11 +168,中控技术,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,10 +22,航天云网,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,10 +22,航天云网,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,10 +68,中望软件,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,10 +60,宇动源,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,10 +22,航天云网,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,10 +82,Uptake,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,10 +22,航天云网,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,10 +2,706所,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,10 +68,中望软件,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,10 +60,宇动源,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,10 +6,安世亚太,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,10 +68,中望软件,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,10 +22,航天云网,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,10 +65,中国电信,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,10 +83,Emerson,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,10 +22,航天云网,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,10 +168,中控技术,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,10 +22,航天云网,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,10 +79,PTC,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,10 +22,航天云网,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,10 +41,启明星辰,1.4.3.4,攻击溯源,170,Pseudo1,1,供给,10 +79,PTC,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,10 +78,OutSystems,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,10 +79,PTC,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,10 +37,绿盟,1.4.4.3,接入认证,126,华为,1.4,工业互联网安全,10 +78,OutSystems,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,10 +40,奇安信,1.4.2.5,安全日志与审计,126,华为,1.4,工业互联网安全,10 +40,奇安信,1.4.2.5,安全日志与审计,170,Pseudo1,1,供给,10 +79,PTC,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,10 +79,PTC,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,10 +49,数码大方,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,10 +49,数码大方,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,10 +41,启明星辰,1.4.3.4,攻击溯源,126,华为,1.4,工业互联网安全,10 +49,数码大方,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,10 +22,航天云网,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,10 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,10 +48,曙光信息,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,10 +42,山大华天,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,10 +47,首自信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,10 +42,山大华天,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,10 +47,首自信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,10 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,10 +47,首自信,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,10 +79,PTC,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,10 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,10 +79,PTC,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,10 +79,PTC,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,10 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,10 +33,蓝谷信息,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,10 +33,蓝谷信息,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,10 +31,昆仑数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,10 +22,航天云网,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,10 +88,HPE,1.1.3,工业服务器,126,华为,1.1,工业自动化,10 +22,航天云网,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,10 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,10 +23,和利时,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,10 +71,Altair,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,10 +23,和利时,2.3.3,协议转换,99,Siemens,2.3,边缘层,10 +71,Altair,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,10 +25,华大九天,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,10 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,10 +54,网御星云,1.4.1.3,防毒墙,157,新华三,1.4.1,设备安全,10 +26,寄云科技,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,10 +26,寄云科技,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,10 +26,寄云科技,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,10 +165,智能云科,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,10 +26,寄云科技,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,10 +27,江南天安,1.4.4.2,密钥管理,126,华为,1.4,工业互联网安全,10 +46,适创科技,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,10 +79,PTC,2.1.4.1,工业大数据存储,99,Siemens,2.1,PaaS,10 +84,Bosch,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,10 +78,OutSystems,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,10 +78,OutSystems,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,10 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,10 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,10 +79,PTC,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,10 +166,中国电子科技网络信息安全,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,10 +26,寄云科技,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,10 +144,树根互联,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,10 +162,壹进制,1.4.5.7,数据恢复,126,华为,1.4,工业互联网安全,10 +13,东方国信,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,10 +13,东方国信,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,10 +13,东方国信,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,10 +161,研华科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,10 +135,浪潮,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,10 +161,研华科技,2.3.3,协议转换,155,小米,2.3,边缘层,10 +162,壹进制,1.4.5.7,数据恢复,170,Pseudo1,1,供给,10 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,10 +163,优也科技,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,10 +137,美林数据,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,10 +13,东方国信,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,10 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,10 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,10 +149,天泽智云,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,10 +129,华中数控,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,10 +117,格创东智,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,10 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,10 +127,华为海思,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,10 +127,华为海思,1.1.3,工业服务器,126,华为,1.1,工业自动化,10 +16,东土科技,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,10 +119,广联达,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,10 +142,深信服,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,10 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,10 +130,金蝶,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,10 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,10 +125,华数机器人,1.2.3,数据互通,126,华为,1.2,工业互联网网络,10 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,10 +154,西格数据,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,10 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,10 +126,华为,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,10 +154,西格数据,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,10 +135,浪潮,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,10 +154,西格数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,10 +148,腾讯,2.1.1,开发工具,99,Siemens,2.1,PaaS,10 +135,浪潮,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,10 +1,51WORLD,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,10 +135,浪潮,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,10 +1,51WORLD,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,10 +135,浪潮,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,10 +144,树根互联,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,9 +13,东方国信,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,9 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,9 +79,PTC,2.3.3,协议转换,124,海尔,2.3,边缘层,9 +168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,9 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,9 +79,PTC,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,9 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,9 +26,寄云科技,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,9 +13,东方国信,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,9 +31,昆仑数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,9 +122,国民技术,1.4.2.6,隐私计算,170,Pseudo1,1,供给,9 +149,天泽智云,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,9 +47,首自信,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,9 +22,航天云网,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,9 +79,PTC,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,9 +70,ABB,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,9 +122,国民技术,1.4.2.6,隐私计算,126,华为,1.4,工业互联网安全,9 +13,东方国信,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,9 +31,昆仑数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,9 +23,和利时,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,9 +57,亚控科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,9 +33,蓝谷信息,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,9 +135,浪潮,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,9 +22,航天云网,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,9 +38,牛刀,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,9 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,9 +33,蓝谷信息,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,9 +161,研华科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,9 +22,航天云网,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,9 +81,SAP,1.3.4,企业运营管理,170,Pseudo1,1,供给,9 +22,航天云网,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,9 +4,爱创科技,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,9 +26,寄云科技,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,9 +80,Salesforce,2.1.1,开发工具,99,Siemens,2.1,PaaS,9 +32,兰光创新,1.2.3,数据互通,126,华为,1.2,工业互联网网络,9 +32,兰光创新,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,9 +78,OutSystems,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,9 +16,东土科技,2.3.3,协议转换,84,Bosch,2.3,边缘层,9 +53,天融信,1.4.4.4,工业应用行为监控,126,华为,1.4,工业互联网安全,9 +16,东土科技,2.3.3,协议转换,126,华为,2.3,边缘层,9 +79,PTC,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,9 +120,广州数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,9 +77,Oracle,1.3.4,企业运营管理,170,Pseudo1,1,供给,9 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,9 +23,和利时,2.3.1,工业数据接入,124,海尔,2.3,边缘层,9 +23,和利时,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,9 +117,格创东智,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,9 +147,拓邦股份,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,9 +118,工邦邦,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,9 +79,PTC,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,9 +127,华为海思,1.1.3,工业服务器,105,Intel,1.1,工业自动化,9 +60,宇动源,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,9 +16,东土科技,1.1.3,工业服务器,126,华为,1.1,工业自动化,9 +143,沈阳自动化研究所,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,9 +49,数码大方,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,9 +135,浪潮,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,9 +119,广联达,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,9 +28,金山云,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,9 +23,和利时,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,9 +127,华为海思,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,9 +55,威努特,1.4.2.2,工控主机卫士,170,Pseudo1,1,供给,9 +23,和利时,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,9 +79,PTC,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,9 +45,石化盈科,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,9 +116,概伦电子,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,9 +16,东土科技,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,9 +22,航天云网,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,9 +22,航天云网,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9 +53,天融信,1.4.5.6,数据容灾备份,126,华为,1.4,工业互联网安全,9 +53,天融信,1.4.5.6,数据容灾备份,170,Pseudo1,1,供给,9 +120,广州数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,9 +132,科远智慧,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,9 +56,芯愿景,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,9 +120,广州数控,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,9 +22,航天云网,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,9 +79,PTC,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,9 +79,PTC,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,9 +117,格创东智,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,9 +129,华中数控,1.1.2,工业控制器,105,Intel,1.1,工业自动化,9 +4,爱创科技,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,9 +55,威努特,1.4.2.2,工控主机卫士,126,华为,1.4,工业互联网安全,9 +22,航天云网,2.3.3,协议转换,95,Schneider,2.3,边缘层,9 +22,航天云网,2.3.3,协议转换,99,Siemens,2.3,边缘层,9 +130,金蝶,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,9 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,9 +22,航天云网,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,9 +116,概伦电子,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,9 +2,706所,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,9 +62,云道智造,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,9 +78,OutSystems,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,9 +137,美林数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,9 +6,安世亚太,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,9 +6,安世亚太,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,9 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,9 +2,706所,1.1.3,工业服务器,105,Intel,1.1,工业自动化,9 +163,优也科技,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,9 +62,云道智造,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,9 +20,海基科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,9 +165,智能云科,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,9 +13,东方国信,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9 +165,智能云科,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,9 +135,浪潮,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,9 +135,浪潮,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,9 +137,美林数据,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,9 +137,美林数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,9 +26,寄云科技,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,9 +111,鼎捷软件,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,9 +163,优也科技,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,9 +135,浪潮,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,9 +11,北信源,1.4.4.2,密钥管理,170,Pseudo1,1,供给,9 +26,寄云科技,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,9 +169,中芯国际,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,9 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,9 +94,Mitsubishi,1.1,工业自动化,170,Pseudo1,1,供给,9 +49,数码大方,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,9 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,9 +165,智能云科,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,9 +164,震坤行,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,9 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,9 +135,浪潮,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,9 +26,寄云科技,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,9 +26,寄云科技,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,9 +135,浪潮,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,9 +137,美林数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,9 +6,安世亚太,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,9 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,9 +137,美林数据,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,9 +106,阿里巴巴,2.1.3,工业物联网,99,Siemens,2.1,PaaS,9 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,9 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,9 +163,优也科技,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9 +161,研华科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,9 +45,石化盈科,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,9 +6,安世亚太,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,9 +58,用友,2.1.2,工业模型库,99,Siemens,2.1,PaaS,9 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,9 +53,天融信,1.4.3.4,攻击溯源,126,华为,1.4,工业互联网安全,9 +155,小米,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,9 +26,寄云科技,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,9 +165,智能云科,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,9 +6,安世亚太,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,9 +53,天融信,1.4.3.4,攻击溯源,170,Pseudo1,1,供给,9 +22,航天云网,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,9 +13,东方国信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,9 +47,首自信,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,9 +82,Uptake,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,9 +47,首自信,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,9 +68,中望软件,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,9 +6,安世亚太,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,9 +79,PTC,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,9 +13,东方国信,2.3.2,边缘数据处理,126,华为,2.3,边缘层,9 +79,PTC,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,9 +115,富士康,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,9 +22,航天云网,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,9 +81,SAP,2.1.4.1,工业大数据存储,99,Siemens,2.1,PaaS,9 +79,PTC,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,9 +125,华数机器人,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,9 +125,华数机器人,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,9 +137,美林数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,9 +26,寄云科技,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,9 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,9 +96,Cisco,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,9 +13,东方国信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,9 +49,数码大方,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,9 +83,Emerson,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,9 +26,寄云科技,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,9 +22,航天云网,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,9 +47,首自信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,9 +165,智能云科,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,9 +115,富士康,1.1.3,工业服务器,105,Intel,1.1,工业自动化,9 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,9 +137,美林数据,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,9 +78,OutSystems,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,8 +78,OutSystems,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,8 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,8 +78,OutSystems,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,8 +26,寄云科技,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,8 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,8 +26,寄云科技,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,8 +38,牛刀,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,8 +26,寄云科技,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,8 +13,东方国信,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,8 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,8 +144,树根互联,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,8 +13,东方国信,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,8 +66,中国联通,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,8 +13,东方国信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,8 +66,中国联通,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,8 +33,蓝谷信息,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,8 +13,东方国信,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,8 +13,东方国信,2.3.1,工业数据接入,155,小米,2.3,边缘层,8 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,8 +64,中电智科,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,8 +35,凌昊智能,1.1.3,工业服务器,105,Intel,1.1,工业自动化,8 +144,树根互联,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,8 +64,中电智科,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8 +35,凌昊智能,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,8 +13,东方国信,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,8 +63,长扬科技,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,8 +6,安世亚太,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,8 +62,云道智造,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,8 +6,安世亚太,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,8 +62,云道智造,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,8 +37,绿盟,1.4.2.2,工控主机卫士,126,华为,1.4,工业互联网安全,8 +37,绿盟,1.4.2.2,工控主机卫士,170,Pseudo1,1,供给,8 +6,安世亚太,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,8 +62,云道智造,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,8 +62,云道智造,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,8 +13,东方国信,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,8 +33,蓝谷信息,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,8 +68,中望软件,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,8 +60,宇动源,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,8 +68,中望软件,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,8 +6,安世亚太,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,8 +152,卫士通,1.4.4.1,身份鉴别与访问控制,126,华为,1.4,工业互联网安全,8 +128,华伍股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,8 +128,华伍股份,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,8 +13,东方国信,2.3.3,协议转换,95,Schneider,2.3,边缘层,8 +3,艾克斯特,1.3.1.5,产品数据管理PDM,99,Siemens,1.3.1,设计研发,8 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,8 +6,安世亚太,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,8 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,8 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,8 +13,东方国信,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,8 +3,艾克斯特,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,8 +70,ABB,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,8 +70,ABB,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,8 +58,用友,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,8 +144,树根互联,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,8 +31,昆仑数据,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,8 +31,昆仑数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,8 +31,昆仑数据,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,8 +31,昆仑数据,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,8 +147,拓邦股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,8 +144,树根互联,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,8 +149,天泽智云,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,8 +154,西格数据,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,8 +99,Siemens,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,8 +23,和利时,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,8 +6,安世亚太,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,8 +79,PTC,2.3.3,协议转换,155,小米,2.3,边缘层,8 +22,航天云网,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,8 +53,天融信,1.4.3.5,负载均衡,170,Pseudo1,1,供给,8 +22,航天云网,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,8 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,8 +106,阿里巴巴,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,8 +22,航天云网,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,8 +168,中控技术,2.3.3,协议转换,84,Bosch,2.3,边缘层,8 +22,航天云网,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,8 +154,西格数据,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,8 +168,中控技术,2.3.3,协议转换,155,小米,2.3,边缘层,8 +47,首自信,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,8 +22,航天云网,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,8 +79,PTC,2.3.2,边缘数据处理,155,小米,2.3,边缘层,8 +22,航天云网,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,8 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,93,Cadence,1.3.1,设计研发,8 +168,中控技术,2.3.2,边缘数据处理,126,华为,2.3,边缘层,8 +79,PTC,2.3.3,协议转换,126,华为,2.3,边缘层,8 +16,东土科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,8 +79,PTC,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,8 +16,东土科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,8 +168,中控技术,2.3.1,工业数据接入,155,小米,2.3,边缘层,8 +16,东土科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,8 +47,首自信,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,8 +22,航天云网,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,8 +89,Rockwell,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,8 +22,航天云网,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,8 +161,研华科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,8 +47,首自信,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,8 +89,Rockwell,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,8 +2,706所,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,8 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,8 +47,首自信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,8 +135,浪潮,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,8 +163,优也科技,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,8 +22,航天云网,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,8 +53,天融信,1.4.2.4,安全隔离与信息交换系统,142,深信服,1.4.2,控制安全,8 +82,Uptake,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,8 +22,航天云网,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,8 +82,Uptake,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,8 +47,首自信,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,8 +161,研华科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,8 +47,首自信,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,8 +18,国能智深,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,8 +163,优也科技,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,8 +135,浪潮,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,8 +22,航天云网,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,8 +22,航天云网,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,8 +163,优也科技,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,8 +161,研华科技,2.3.3,协议转换,84,Bosch,2.3,边缘层,8 +53,天融信,1.4.3.5,负载均衡,126,华为,1.4,工业互联网安全,8 +89,Rockwell,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,8 +22,航天云网,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,8 +22,航天云网,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,8 +5,安华金和,1.4.5.5,敏感数据发现与监控,170,Pseudo1,1,供给,8 +143,沈阳自动化研究所,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,8 +131,九物互联,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,8 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,8 +5,安华金和,1.4.5.9,数据防火墙,126,华为,1.4,工业互联网安全,8 +23,和利时,2.3.3,协议转换,124,海尔,2.3,边缘层,8 +123,海得控制,1.1.2,工业控制器,105,Intel,1.1,工业自动化,8 +123,海得控制,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,8 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,8 +165,智能云科,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,8 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,8 +124,海尔,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,8 +79,PTC,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,8 +79,PTC,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,8 +5,安华金和,1.4.5.5,敏感数据发现与监控,126,华为,1.4,工业互联网安全,8 +45,石化盈科,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,8 +99,Siemens,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,8 +49,数码大方,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,8 +57,亚控科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,8 +57,亚控科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,8 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,8 +154,西格数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,8 +154,西格数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,8 +78,OutSystems,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,8 +154,西格数据,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,8 +12,大唐软件,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,8 +23,和利时,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,8 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,8 +131,九物互联,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,8 +168,中控技术,2.3.1,工业数据接入,126,华为,2.3,边缘层,8 +117,格创东智,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,8 +79,PTC,2.3.1,工业数据接入,155,小米,2.3,边缘层,8 +168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,8 +165,智能云科,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,8 +22,航天云网,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,8 +47,首自信,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,8 +22,航天云网,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,8 +159,徐工集团,2.1.2,工业模型库,99,Siemens,2.1,PaaS,8 +49,数码大方,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,8 +79,PTC,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,8 +119,广联达,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,8 +99,Siemens,1.3.3,生产制造,170,Pseudo1,1,供给,8 +167,中环股份,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,8 +135,浪潮,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,8 +23,和利时,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,8 +46,适创科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,8 +1,51WORLD,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,8 +5,安华金和,1.4.5.9,数据防火墙,170,Pseudo1,1,供给,8 +118,工邦邦,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,8 +49,数码大方,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,7 +49,数码大方,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,7 +137,美林数据,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,7 +135,浪潮,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,7 +49,数码大方,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,7 +135,浪潮,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,7 +135,浪潮,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,7 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,7 +137,美林数据,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,7 +47,首自信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,7 +47,首自信,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,7 +13,东方国信,2.3.3,协议转换,84,Bosch,2.3,边缘层,7 +58,用友,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,7 +131,九物互联,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,7 +45,石化盈科,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,7 +45,石化盈科,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,7 +130,金蝶,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,7 +6,安世亚太,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,7 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,7 +57,亚控科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,7 +45,石化盈科,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,7 +58,用友,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,7 +57,亚控科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7 +44,圣邦微电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,7 +57,亚控科技,2.3.3,协议转换,84,Bosch,2.3,边缘层,7 +53,天融信,1.4.5.2,数据防泄漏系统,170,Pseudo1,1,供给,7 +13,东方国信,2.3.3,协议转换,126,华为,2.3,边缘层,7 +58,用友,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,7 +47,首自信,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,7 +137,美林数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,7 +47,首自信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,7 +13,东方国信,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,7 +47,首自信,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,7 +47,首自信,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,7 +13,东方国信,2.3.2,边缘数据处理,155,小米,2.3,边缘层,7 +144,树根互联,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,7 +47,首自信,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,7 +135,浪潮,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,7 +135,浪潮,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,7 +135,浪潮,1.1.3,工业服务器,126,华为,1.1,工业自动化,7 +42,山大华天,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,7 +42,山大华天,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,7 +53,天融信,1.4.5.2,数据防泄漏系统,126,华为,1.4,工业互联网安全,7 +135,浪潮,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,7 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,7 +49,数码大方,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,7 +12,大唐软件,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,7 +9,北京航天测控,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,7 +79,PTC,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,7 +168,中控技术,2.3.3,协议转换,124,海尔,2.3,边缘层,7 +117,格创东智,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,7 +117,格创东智,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,7 +60,宇动源,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,7 +117,格创东智,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,7 +119,广联达,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,7 +12,大唐软件,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,7 +23,和利时,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,7 +12,大唐软件,1.2.1,网络互联,126,华为,1.2,工业互联网网络,7 +79,PTC,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,7 +23,和利时,2.3.1,工业数据接入,126,华为,2.3,边缘层,7 +91,Moxa,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,7 +168,中控技术,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,7 +79,PTC,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,7 +23,和利时,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,7 +23,和利时,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7 +23,和利时,2.3.2,边缘数据处理,155,小米,2.3,边缘层,7 +123,海得控制,1.1.2,工业控制器,126,华为,1.1,工业自动化,7 +23,和利时,2.3.3,协议转换,95,Schneider,2.3,边缘层,7 +123,海得控制,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,7 +24,华大电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,7 +24,华大电子,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,7 +125,华数机器人,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,7 +25,华大九天,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,7 +26,寄云科技,2.1.3.1,物联网服务,108,百度,2.1.3,工业物联网,7 +168,中控技术,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7 +168,中控技术,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,7 +168,中控技术,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,7 +18,国能智深,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,7 +89,Rockwell,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,7 +26,寄云科技,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,7 +79,PTC,2.3.3,协议转换,84,Bosch,2.3,边缘层,7 +22,航天云网,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,7 +82,Uptake,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,7 +22,航天云网,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,7 +82,Uptake,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,7 +22,航天云网,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,7 +22,航天云网,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,7 +82,Uptake,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,7 +161,研华科技,2.3.3,协议转换,124,海尔,2.3,边缘层,7 +115,富士康,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,7 +82,Uptake,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,7 +161,研华科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,7 +161,研华科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,7 +117,格创东智,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,7 +82,Uptake,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,7 +22,航天云网,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,7 +89,Rockwell,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,7 +16,东土科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,7 +16,东土科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,7 +16,东土科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,7 +163,优也科技,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,7 +84,Bosch,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,7 +22,航天云网,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,7 +79,PTC,2.3.1,工业数据接入,124,海尔,2.3,边缘层,7 +111,鼎捷软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,7 +87,Texas Instruments,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,7 +22,航天云网,2.3.1,工业数据接入,155,小米,2.3,边缘层,7 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,7 +88,HPE,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,7 +20,海基科技,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,7 +163,优也科技,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,7 +26,寄云科技,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,7 +79,PTC,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,7 +149,天泽智云,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,7 +37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,170,Pseudo1,1,供给,7 +33,蓝谷信息,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,7 +166,中国电子科技网络信息安全,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,7 +33,蓝谷信息,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,7 +65,中国电信,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,7 +166,中国电子科技网络信息安全,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,7 +1,51WORLD,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,7 +35,凌昊智能,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,7 +64,中电智科,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,7 +13,东方国信,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,7 +62,云道智造,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,7 +62,云道智造,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,7 +165,智能云科,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,7 +37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,126,华为,1.4,工业互联网安全,7 +165,智能云科,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,7 +149,天泽智云,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,7 +33,蓝谷信息,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,7 +37,绿盟,1.4.5.2,数据防泄漏系统,126,华为,1.4,工业互联网安全,7 +37,绿盟,1.4.5.2,数据防泄漏系统,170,Pseudo1,1,供给,7 +165,智能云科,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,7 +165,智能云科,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,7 +38,牛刀,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,7 +13,东方国信,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,7 +38,牛刀,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,7 +165,智能云科,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,7 +13,东方国信,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,7 +165,智能云科,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,7 +38,牛刀,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,7 +38,牛刀,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,7 +165,智能云科,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,7 +38,牛刀,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,7 +154,西格数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,7 +22,航天云网,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,7 +71,Altair,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,7 +71,Altair,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,7 +96,Cisco,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,7 +78,OutSystems,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,7 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,7 +26,寄云科技,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,7 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,7 +128,华伍股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,7 +68,中望软件,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,7 +168,中控技术,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,7 +96,Cisco,1.2.1,网络互联,126,华为,1.2,工业互联网网络,7 +26,寄云科技,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,7 +95,Schneider,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,7 +126,华为,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,7 +26,寄云科技,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,7 +70,ABB,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,7 +149,天泽智云,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,7 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,7 +13,东方国信,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,7 +7,百望,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,7 +69,紫光集团,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,7 +13,东方国信,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,7 +13,东方国信,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,7 +135,浪潮,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,6 +96,Cisco,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,6 +135,浪潮,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,6 +135,浪潮,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,6 +108,百度,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,6 +103,STMicroelectronics ,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,6 +91,Moxa,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,6 +82,Uptake,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,6 +113,飞腾信息,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,6 +96,Cisco,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,6 +103,STMicroelectronics ,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,6 +91,Moxa,1.2.1,网络互联,126,华为,1.2,工业互联网网络,6 +135,浪潮,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,6 +99,Siemens,1.1.2,工业控制器,105,Intel,1.1,工业自动化,6 +99,Siemens,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,6 +95,Schneider,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,6 +6,安世亚太,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,6 +82,Uptake,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,6 +117,格创东智,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,6 +57,亚控科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,6 +78,OutSystems,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,6 +57,亚控科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,6 +78,OutSystems,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,6 +78,OutSystems,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6 +74,HoneyWell,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,6 +129,华中数控,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,6 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,6 +129,华中数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,6 +68,中望软件,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,6 +68,中望软件,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,6 +13,东方国信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,6 +65,中国电信,1.2.1,网络互联,126,华为,1.2,工业互联网网络,6 +13,东方国信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,6 +13,东方国信,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,6 +62,云道智造,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,6 +62,云道智造,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,6 +6,安世亚太,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6 +13,东方国信,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,6 +60,宇动源,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,6 +60,宇动源,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,6 +60,宇动源,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,6 +60,宇动源,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,6 +57,亚控科技,2.3.3,协议转换,155,小米,2.3,边缘层,6 +126,华为,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,6 +57,亚控科技,2.3.3,协议转换,124,海尔,2.3,边缘层,6 +131,九物互联,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,6 +80,Salesforce,1.3.4,企业运营管理,170,Pseudo1,1,供给,6 +117,格创东智,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6 +79,PTC,2.3.3,协议转换,95,Schneider,2.3,边缘层,6 +79,PTC,2.3.2,边缘数据处理,126,华为,2.3,边缘层,6 +79,PTC,2.3.1,工业数据接入,126,华为,2.3,边缘层,6 +135,浪潮,1.1.3,工业服务器,105,Intel,1.1,工业自动化,6 +79,PTC,2.1.4.2,工业大数据管理,99,Siemens,2.1,PaaS,6 +132,科远智慧,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,6 +117,格创东智,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,6 +117,格创东智,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,6 +131,九物互联,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,6 +79,PTC,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,6 +54,网御星云,1.4.4.3,接入认证,170,Pseudo1,1,供给,6 +131,九物互联,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,6 +117,格创东智,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,6 +131,九物互联,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,6 +117,格创东智,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,6 +117,格创东智,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,6 +131,九物互联,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,6 +131,九物互联,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6 +131,九物互联,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,6 +130,金蝶,1.3.4.2,客户关系管理CRM,29,京东工业品,1.3,工业软件,6 +131,九物互联,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,6 +136,美的,1.2.1,网络互联,126,华为,1.2,工业互联网网络,6 +168,中控技术,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,6 +16,东土科技,1.1.3,工业服务器,105,Intel,1.1,工业自动化,6 +22,航天云网,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,6 +23,和利时,2.3.3,协议转换,84,Bosch,2.3,边缘层,6 +22,航天云网,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,6 +23,和利时,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,6 +23,和利时,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,6 +38,牛刀,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,6 +23,和利时,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,6 +23,和利时,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,6 +22,航天云网,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,6 +38,牛刀,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,6 +161,研华科技,2.3.1,工业数据接入,155,小米,2.3,边缘层,6 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,6 +45,石化盈科,2.1.4.1.1,关系型数据库,79,PTC,2.1.4.1,工业大数据存储,6 +45,石化盈科,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,6 +144,树根互联,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6 +23,和利时,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,6 +168,中控技术,1.1.2,工业控制器,126,华为,1.1,工业自动化,6 +148,腾讯,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,6 +37,绿盟,1.4.4.3,接入认证,170,Pseudo1,1,供给,6 +23,和利时,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,6 +149,天泽智云,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,6 +140,山石网科,1.4.1.1,工业防火墙,157,新华三,1.4.1,设备安全,6 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,6 +38,牛刀,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,6 +38,牛刀,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,6 +38,牛刀,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,6 +168,中控技术,2.3.3,协议转换,95,Schneider,2.3,边缘层,6 +144,树根互联,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,6 +26,寄云科技,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,6 +26,寄云科技,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,6 +144,树根互联,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,6 +144,树根互联,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,6 +26,寄云科技,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,6 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,6 +144,树根互联,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,6 +168,中控技术,2.3.2,边缘数据处理,155,小米,2.3,边缘层,6 +144,树根互联,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,6 +22,航天云网,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,6 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,6 +26,寄云科技,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,6 +26,寄云科技,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,6 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,6 +168,中控技术,2.3.1,工业数据接入,124,海尔,2.3,边缘层,6 +169,中芯国际,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,6 +147,拓邦股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,6 +44,圣邦微电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,6 +2,706所,1.1.3,工业服务器,126,华为,1.1,工业自动化,6 +168,中控技术,1.1.2,工业控制器,105,Intel,1.1,工业自动化,6 +26,寄云科技,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,6 +49,数码大方,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,6 +31,昆仑数据,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,6 +33,蓝谷信息,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6 +49,数码大方,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,6 +49,数码大方,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,6 +35,凌昊智能,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,6 +49,数码大方,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,6 +22,航天云网,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,6 +49,数码大方,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,6 +163,优也科技,2.1.4.1.2,分布式数据库,81,SAP,2.1.4.1,工业大数据存储,6 +33,蓝谷信息,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,6 +149,天泽智云,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,6 +47,首自信,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,6 +149,天泽智云,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,6 +16,东土科技,2.3.3,协议转换,155,小米,2.3,边缘层,6 +31,昆仑数据,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,6 +165,智能云科,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,6 +33,蓝谷信息,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,6 +32,兰光创新,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,6 +30,可信华泰,1.4.2.6,隐私计算,126,华为,1.4,工业互联网安全,6 +165,智能云科,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,6 +16,东土科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,6 +33,蓝谷信息,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,6 +47,首自信,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,6 +22,航天云网,2.3.3,协议转换,124,海尔,2.3,边缘层,6 +49,数码大方,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,6 +30,可信华泰,1.4.2.6,隐私计算,170,Pseudo1,1,供给,6 +136,美的,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,6 +31,昆仑数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,6 +22,航天云网,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,6 +22,航天云网,2.3.3,协议转换,126,华为,2.3,边缘层,6 +149,天泽智云,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,5 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,5 +89,Rockwell,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,5 +147,拓邦股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,5 +113,飞腾信息,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,5 +68,中望软件,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,5 +26,寄云科技,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,5 +126,华为,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,5 +26,寄云科技,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,5 +33,蓝谷信息,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,5 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,5 +26,寄云科技,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,5 +66,中国联通,1.2.1,网络互联,126,华为,1.2,工业互联网网络,5 +78,OutSystems,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,5 +26,寄云科技,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,5 +144,树根互联,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,5 +26,寄云科技,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,5 +26,寄云科技,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,5 +127,华为海思,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,5 +31,昆仑数据,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,5 +32,兰光创新,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,5 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,5 +60,宇动源,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,5 +150,唯捷创芯,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5 +38,牛刀,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,5 +22,航天云网,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,5 +129,华中数控,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,5 +129,华中数控,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5 +38,牛刀,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,5 +113,飞腾信息,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5 +149,天泽智云,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,5 +13,东方国信,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,5 +62,云道智造,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,5 +22,航天云网,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,5 +62,云道智造,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,5 +129,华中数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,5 +62,云道智造,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,5 +82,Uptake,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,5 +60,宇动源,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,5 +22,航天云网,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,5 +82,Uptake,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,5 +22,航天云网,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,5 +13,东方国信,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,5 +36,龙芯中科,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,5 +3,艾克斯特,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,5 +82,Uptake,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,5 +128,华伍股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,5 +36,龙芯中科,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,5 +13,东方国信,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,5 +62,云道智造,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,5 +22,航天云网,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,5 +128,华伍股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5 +69,紫光集团,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5 +60,宇动源,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,5 +60,宇动源,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,5 +62,云道智造,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,5 +89,Rockwell,1.1.2,工业控制器,126,华为,1.1,工业自动化,5 +33,蓝谷信息,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,5 +81,SAP,2.1.4.1,工业大数据存储,170,Pseudo1,1,供给,5 +168,中控技术,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,5 +23,和利时,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5 +47,首自信,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,5 +131,九物互联,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,5 +168,中控技术,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,5 +117,格创东智,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,5 +22,航天云网,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,5 +46,适创科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,5 +16,东土科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,5 +23,和利时,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,5 +168,中控技术,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,5 +45,石化盈科,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,5 +45,石化盈科,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,5 +143,沈阳自动化研究所,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,5 +81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2,工业互联网平台,5 +103,STMicroelectronics ,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,5 +104,Infineon,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,5 +117,格创东智,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,5 +117,格创东智,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,5 +95,Schneider,1.2.3,数据互通,126,华为,1.2,工业互联网网络,5 +22,航天云网,2.3.3,协议转换,155,小米,2.3,边缘层,5 +22,航天云网,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,5 +117,格创东智,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,5 +117,格创东智,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,5 +117,格创东智,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,5 +47,首自信,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,5 +22,航天云网,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,5 +167,中环股份,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,5 +99,Siemens,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,5 +49,数码大方,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,5 +99,Siemens,1.1.2,工业控制器,126,华为,1.1,工业自动化,5 +47,首自信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,5 +135,浪潮,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,5 +99,Siemens,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,5 +23,和利时,1.1.2,工业控制器,105,Intel,1.1,工业自动化,5 +117,格创东智,2.1.4.1.3,实时数据库,81,SAP,2.1.4.1,工业大数据存储,5 +101,Analog Devices,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,5 +23,和利时,2.3.1,工业数据接入,155,小米,2.3,边缘层,5 +22,航天云网,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,5 +22,航天云网,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,5 +16,东土科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,5 +82,Uptake,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,5 +81,SAP,2.1.4.1,工业大数据存储,98,Microsoft Azure,2,工业互联网平台,5 +22,航天云网,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,5 +79,PTC,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,5 +130,金蝶,1.3.4.2,客户关系管理CRM,106,阿里巴巴,1.3,工业软件,5 +22,航天云网,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,5 +104,Infineon,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,5 +154,西格数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,5 +16,东土科技,2.3.3,协议转换,124,海尔,2.3,边缘层,5 +16,东土科技,2.3.1,工业数据接入,155,小米,2.3,边缘层,5 +49,数码大方,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,5 +149,天泽智云,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,5 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,5 +13,东方国信,2.3.3,协议转换,124,海尔,2.3,边缘层,5 +168,中控技术,2.3.3,协议转换,126,华为,2.3,边缘层,5 +57,亚控科技,2.3.3,协议转换,126,华为,2.3,边缘层,5 +22,航天云网,2.3.1,工业数据接入,124,海尔,2.3,边缘层,5 +49,数码大方,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,5 +81,SAP,2.1.4.2,工业大数据管理,98,Microsoft Azure,2,工业互联网平台,5 +57,亚控科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,5 +49,数码大方,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,5 +115,富士康,1.1.3,工业服务器,126,华为,1.1,工业自动化,5 +57,亚控科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,5 +81,SAP,2.1.4.2,工业大数据管理,170,Pseudo1,1,供给,5 +161,研华科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,5 +167,中环股份,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,5 +124,海尔,1.2.1,网络互联,126,华为,1.2,工业互联网网络,5 +81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2,工业互联网平台,5 +117,格创东智,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,5 +79,PTC,2.3.3,协议转换,99,Siemens,2.3,边缘层,5 +23,和利时,2.3.3,协议转换,155,小米,2.3,边缘层,5 +168,中控技术,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,5 +117,格创东智,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,4 +13,东方国信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,4 +16,东土科技,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,4 +33,蓝谷信息,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,4 +33,蓝谷信息,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,4 +78,OutSystems,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,4 +23,和利时,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,4 +112,东华测试,1.3.3.7,故障预测与健康管理PHM,106,阿里巴巴,1.3,工业软件,4 +124,海尔,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,4 +82,Uptake,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,4 +26,寄云科技,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,4 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,4 +155,小米,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,4 +22,航天云网,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,4 +26,寄云科技,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,4 +25,华大九天,1.3.1.7,电子设计自动化EDA,29,京东工业品,1.3,工业软件,4 +127,华为海思,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4 +22,航天云网,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,4 +127,华为海思,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,4 +22,航天云网,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,4 +31,昆仑数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,4 +115,富士康,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,4 +127,华为海思,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4 +161,研华科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,4 +123,海得控制,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,4 +150,唯捷创芯,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4 +129,华中数控,1.1.2,工业控制器,126,华为,1.1,工业自动化,4 +126,华为,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,4 +117,格创东智,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,4 +161,研华科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,4 +22,航天云网,2.3.3,协议转换,84,Bosch,2.3,边缘层,4 +62,云道智造,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,4 +16,东土科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,4 +13,东方国信,2.3.3,协议转换,155,小米,2.3,边缘层,4 +144,树根互联,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,4 +131,九物互联,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,4 +169,中芯国际,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,4 +101,Analog Devices,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,4 +47,首自信,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,4 +47,首自信,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,4 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,29,京东工业品,1.3,工业软件,4 +53,天融信,1.4.4.4,工业应用行为监控,170,Pseudo1,1,供给,4 +47,首自信,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,4 +6,安世亚太,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,4 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,29,京东工业品,1.3,工业软件,4 +130,金蝶,1.3.4.3,人力资源管理HRM,29,京东工业品,1.3,工业软件,4 +99,Siemens,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,4 +60,宇动源,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,4 +101,Analog Devices,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,4 +60,宇动源,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,4 +38,牛刀,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,4 +60,宇动源,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,4 +131,九物互联,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,4 +131,九物互联,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,4 +101,Analog Devices,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4 +144,树根互联,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,4 +130,金蝶,1.3.4.3,人力资源管理HRM,106,阿里巴巴,1.3,工业软件,4 +45,石化盈科,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,4 +57,亚控科技,2.3.1,工业数据接入,155,小米,2.3,边缘层,4 +45,石化盈科,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,4 +57,亚控科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,4 +44,圣邦微电子,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4 +57,亚控科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,4 +44,圣邦微电子,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4 +104,Infineon,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4 +13,东方国信,2.3.3,协议转换,99,Siemens,2.3,边缘层,4 +149,天泽智云,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,4 +91,Moxa,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,4 +58,用友,1.3.4.2,客户关系管理CRM,29,京东工业品,1.3,工业软件,4 +103,STMicroelectronics ,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,4 +168,中控技术,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,4 +165,智能云科,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,4 +131,九物互联,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,4 +89,Rockwell,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,4 +47,首自信,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,4 +60,宇动源,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,4 +62,云道智造,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,4 +62,云道智造,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,4 +87,Texas Instruments,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,4 +50,索为系统,1.3.1.5,产品数据管理PDM,29,京东工业品,1.3,工业软件,4 +62,云道智造,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,4 +167,中环股份,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4 +165,智能云科,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,4 +87,Texas Instruments,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,4 +136,美的,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,4 +135,浪潮,2.2,IaaS,98,Microsoft Azure,2,工业互联网平台,4 +62,云道智造,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,4 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,4 +36,龙芯中科,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,4 +36,龙芯中科,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,4 +35,凌昊智能,1.1.3,工业服务器,126,华为,1.1,工业自动化,4 +64,中电智科,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,4 +149,天泽智云,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,4 +49,数码大方,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,4 +65,中国电信,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,4 +62,云道智造,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,4 +45,石化盈科,1.3.4.2,客户关系管理CRM,106,阿里巴巴,1.3,工业软件,4 +163,优也科技,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,4 +49,数码大方,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,4 +62,云道智造,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,4 +20,海基科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,4 +137,美林数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,4 +148,腾讯,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,4 +62,云道智造,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,4 +62,云道智造,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,4 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,170,Pseudo1,1,供给,3 +49,数码大方,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,3 +45,石化盈科,1.3.4.2,客户关系管理CRM,29,京东工业品,1.3,工业软件,3 +45,石化盈科,1.3.4.2,客户关系管理CRM,170,Pseudo1,1,供给,3 +131,九物互联,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,3 +23,和利时,2.3.2,边缘数据处理,126,华为,2.3,边缘层,3 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,3 +23,和利时,2.3.3,协议转换,126,华为,2.3,边缘层,3 +135,浪潮,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,3 +53,天融信,1.4.1.4,入侵检测系统,170,Pseudo1,1,供给,3 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,3 +79,PTC,2.1.4.1,工业大数据存储,102,Amazon AWS,2,工业互联网平台,3 +117,格创东智,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,3 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,3 +49,数码大方,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,3 +79,PTC,2.1.4.1,工业大数据存储,98,Microsoft Azure,2,工业互联网平台,3 +16,东土科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,3 +99,Siemens,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,3 +117,格创东智,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,3 +22,航天云网,2.3.1,工业数据接入,126,华为,2.3,边缘层,3 +99,Siemens,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,3 +133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,126,华为,1.4,工业互联网安全,3 +168,中控技术,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,3 +49,数码大方,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,3 +16,东土科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,3 +47,首自信,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,3 +131,九物互联,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,3 +79,PTC,2.1.4.1,工业大数据存储,170,Pseudo1,1,供给,3 +22,航天云网,2.3.2,边缘数据处理,126,华为,2.3,边缘层,3 +23,和利时,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,3 117,格创东智,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,3 -79,PTC,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,3 -79,PTC,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3 -79,PTC,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,3 -79,PTC,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,3 -32,兰光创新,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,3 -103,STMicroelectronics ,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,3 -169,中芯国际,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 -47,首自信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,2 -74,HoneyWell,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,2 -72,ANSYS,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2 -57,亚控科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2 -22,航天云网,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,2 -71,Altair,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2 -47,首自信,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2 -70,ABB,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,2 -22,航天云网,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,2 -104,Infineon,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 -57,亚控科技,2.3.3,协议转换,155,小米,2.3,边缘层,2 -57,亚控科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,2 -47,首自信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,2 -22,航天云网,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2 -22,航天云网,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2 -48,曙光信息,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2 -145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,2 -49,数码大方,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,2 -78,OutSystems,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,2 -57,亚控科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2 -6,安世亚太,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,2 -78,OutSystems,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2 -79,PTC,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,2 -168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,2 -135,浪潮,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2 -135,浪潮,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2 -167,中环股份,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2 -79,PTC,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,2 -168,中控技术,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,2 -22,航天云网,2.3.3,协议转换,99,Siemens,2.3,边缘层,2 -79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,2 -138,启明信息,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,2 -56,芯愿景,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 -14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,2 -167,中环股份,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 -166,中国电子科技网络信息安全,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2 -103,STMicroelectronics ,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 -47,首自信,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,2 -117,格创东智,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,2 -22,航天云网,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2 -47,首自信,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,2 -49,数码大方,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,2 -165,智能云科,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2 -58,用友,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2 -103,STMicroelectronics ,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 -153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2 -60,宇动源,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2 -49,数码大方,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2 -60,宇动源,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2 -115,富士康,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2 -16,东土科技,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,2 -16,东土科技,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2 -161,研华科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2 -6,安世亚太,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2 -6,安世亚太,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2 -16,东土科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2 -16,东土科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,2 -6,安世亚太,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,2 -6,安世亚太,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,2 -161,研华科技,2.3.3,协议转换,155,小米,2.3,边缘层,2 -16,东土科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2 -6,安世亚太,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2 -169,中芯国际,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 -6,安世亚太,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2 -49,数码大方,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,2 -153,武汉开目,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,2 -61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,2 -135,浪潮,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,2 -49,数码大方,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,2 -147,拓邦股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2 -168,中控技术,2.3.3,协议转换,126,华为,2.3,边缘层,2 -147,拓邦股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2 -64,中电智科,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2 -149,天泽智云,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,2 -101,Analog Devices,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 -149,天泽智云,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,2 -62,云道智造,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2 -22,航天云网,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2 -49,数码大方,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2 -62,云道智造,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2 -106,阿里巴巴,1.3,工业软件,170,Pseudo1,1,供给,2 -22,航天云网,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2 -150,唯捷创芯,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 -49,数码大方,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,2 -33,蓝谷信息,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2 -22,航天云网,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,2 -79,PTC,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,2 -150,唯捷创芯,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2 -13,东方国信,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,2 -82,Uptake,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2 -38,牛刀,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,2 -26,寄云科技,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2 -13,东方国信,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2 -13,东方国信,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2 -9,北京航天测控,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,2 -42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2 -26,寄云科技,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,2 -13,东方国信,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,2 -13,东方国信,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,2 -127,华为海思,1.1.3,工业服务器,126,华为,1.1,工业自动化,2 -24,华大电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 -90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,2 -79,PTC,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,2 -44,圣邦微电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 -127,华为海思,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 -13,东方国信,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,2 -111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,2 -31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,2 -46,适创科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,2 -29,京东工业品,1.3,工业软件,170,Pseudo1,1,供给,2 +96,Cisco,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,3 +117,格创东智,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,3 +161,研华科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,3 +53,天融信,1.4.1.4,入侵检测系统,126,华为,1.4,工业互联网安全,3 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,106,阿里巴巴,1.3,工业软件,3 +16,东土科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,3 +23,和利时,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,3 +165,智能云科,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,3 +57,亚控科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,3 +150,唯捷创芯,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,3 +82,Uptake,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,3 +127,华为海思,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,3 +152,卫士通,1.4.4.1,身份鉴别与访问控制,170,Pseudo1,1,供给,3 +89,Rockwell,1.2.1,网络互联,126,华为,1.2,工业互联网网络,3 +60,宇动源,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,3 +38,牛刀,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,3 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,3 +150,唯捷创芯,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,3 +60,宇动源,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,3 +150,唯捷创芯,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3 +38,牛刀,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,3 +41,启明星辰,1.4.1.5,统一威胁管理系统,170,Pseudo1,1,供给,3 +113,飞腾信息,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,3 +129,华中数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,3 +149,天泽智云,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,3 +149,天泽智云,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,3 +149,天泽智云,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,3 +69,紫光集团,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,3 +69,紫光集团,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3 +22,航天云网,1.2.2,标识解析,126,华为,1.2,工业互联网网络,3 +22,航天云网,1.2.1,网络互联,126,华为,1.2,工业互联网网络,3 +36,龙芯中科,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,3 +41,启明星辰,1.4.1.5,统一威胁管理系统,126,华为,1.4,工业互联网安全,3 +27,江南天安,1.4.4.2,密钥管理,170,Pseudo1,1,供给,3 +78,OutSystems,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,3 +106,阿里巴巴,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,3 +58,用友,1.3.4.3,人力资源管理HRM,29,京东工业品,1.3,工业软件,3 +58,用友,1.3.4.2,客户关系管理CRM,106,阿里巴巴,1.3,工业软件,3 +144,树根互联,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,3 +144,树根互联,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,3 +78,OutSystems,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,3 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,3 +161,研华科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,3 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,3 +104,Infineon,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3 +154,西格数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,3 +144,树根互联,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,3 +13,东方国信,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,3 +22,航天云网,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,3 +130,金蝶,1.3.4.2,客户关系管理CRM,170,Pseudo1,1,供给,3 +13,东方国信,2.3.1,工业数据接入,126,华为,2.3,边缘层,3 +13,东方国信,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,3 +87,Texas Instruments,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 87,Texas Instruments,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 -13,东方国信,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,2 -3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,2 -88,HPE,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2 -13,东方国信,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,2 -4,爱创科技,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,2 -13,东方国信,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2 -82,Uptake,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,2 -113,飞腾信息,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 -89,Rockwell,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,2 -13,东方国信,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2 -13,东方国信,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,2 -13,东方国信,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2 -129,华中数控,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2 -79,PTC,2.3.1,工业数据接入,126,华为,2.3,边缘层,2 -127,华为海思,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 -79,PTC,2.3.1,工业数据接入,124,海尔,2.3,边缘层,2 -123,海得控制,1.1.2,工业控制器,126,华为,1.1,工业自动化,2 -131,九物互联,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2 -38,牛刀,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2 -79,PTC,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2 -23,和利时,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2 -99,Siemens,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2 -23,和利时,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2 -120,广州数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2 -99,Siemens,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,2 -35,凌昊智能,1.1.3,工业服务器,105,Intel,1.1,工业自动化,2 -135,浪潮,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2 -113,飞腾信息,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2 -79,PTC,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2 -34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,2 -46,适创科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,2 -117,格创东智,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2 -79,PTC,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,2 -13,东方国信,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,2 -23,和利时,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2 -95,Schneider,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2 -79,PTC,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,2 -95,Schneider,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2 -38,牛刀,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,2 -79,PTC,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2 -79,PTC,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2 -79,PTC,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2 -109,宝信软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1 -104,Infineon,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 -49,数码大方,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1 -36,龙芯中科,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +93,Cadence,1.3.1,设计研发,170,Pseudo1,1,供给,2 +112,东华测试,1.3.3.7,故障预测与健康管理PHM,29,京东工业品,1.3,工业软件,2 +85,Dassault,1.3.1,设计研发,170,Pseudo1,1,供给,2 +104,Infineon,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +88,HPE,1.1.3,工业服务器,170,Pseudo1,1,供给,2 +85,Dassault,2.1.1,开发工具,98,Microsoft Azure,2,工业互联网平台,2 +85,Dassault,2.1.1,开发工具,170,Pseudo1,1,供给,2 +97,General Electric,1.3.3,生产制造,170,Pseudo1,1,供给,2 +117,格创东智,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2 +100,Synopsys,1.3.1,设计研发,170,Pseudo1,1,供给,2 +82,Uptake,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,2 +107,安恒信息,1.4.3.3,APT检测,126,华为,1.4,工业互联网安全,2 +99,Siemens,1.3.1,设计研发,170,Pseudo1,1,供给,2 +96,Cisco,1.2.3,数据互通,170,Pseudo1,1,供给,2 +82,Uptake,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,2 +89,Rockwell,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,2 +168,中控技术,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,2 +169,中芯国际,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,106,阿里巴巴,1.3,工业软件,2 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,170,Pseudo1,1,供给,2 +107,安恒信息,1.4.3.3,APT检测,170,Pseudo1,1,供给,2 +169,中芯国际,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2 +101,Analog Devices,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2 +85,Dassault,2.1.1,开发工具,102,Amazon AWS,2,工业互联网平台,2 +3,艾克斯特,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,2 +6,安世亚太,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,2 +15,东软集团,1.3.3.5,企业资产管理系统EAM,29,京东工业品,1.3,工业软件,2 +39,Autodesk,1.3.1,设计研发,170,Pseudo1,1,供给,2 +58,用友,1.3.4.2,客户关系管理CRM,170,Pseudo1,1,供给,2 +26,寄云科技,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2 +149,天泽智云,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,2 +37,绿盟,1.4.1.4,入侵检测系统,170,Pseudo1,1,供给,2 +3,艾克斯特,1.3.1.5,产品数据管理PDM,29,京东工业品,1.3,工业软件,2 +140,山石网科,1.4.5.3,数据审计系统,126,华为,1.4,工业互联网安全,2 +74,HoneyWell,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,2 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,2 +140,山石网科,1.4.5.3,数据审计系统,170,Pseudo1,1,供给,2 +13,东方国信,2.1.3.1,物联网服务,99,Siemens,2.1,PaaS,2 +24,华大电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 +43,神舟软件,1.3.1.5,产品数据管理PDM,29,京东工业品,1.3,工业软件,2 +69,紫光集团,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +13,东方国信,2.1.3.3,工业引擎服务,99,Siemens,2.1,PaaS,2 +56,芯愿景,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 +37,绿盟,1.4.1.4,入侵检测系统,126,华为,1.4,工业互联网安全,2 +37,绿盟,1.4.1.2,下一代防火墙,170,Pseudo1,1,供给,2 +56,芯愿景,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 +56,芯愿景,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2 +33,蓝谷信息,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2 +37,绿盟,1.4.1.2,下一代防火墙,126,华为,1.4,工业互联网安全,2 +14,东华软件,1.3.4.3,人力资源管理HRM,106,阿里巴巴,1.3,工业软件,2 +131,九物互联,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,2 +79,PTC,2.1.2,工业模型库,102,Amazon AWS,2,工业互联网平台,2 +58,用友,1.3.4.3,人力资源管理HRM,106,阿里巴巴,1.3,工业软件,2 +79,PTC,2.1.4.2,工业大数据管理,98,Microsoft Azure,2,工业互联网平台,2 +79,PTC,2.1.4.2,工业大数据管理,170,Pseudo1,1,供给,2 +117,格创东智,2.1.1.3,流程开发工具,106,阿里巴巴,2.1.1,开发工具,2 +79,PTC,2.1.4.2,工业大数据管理,102,Amazon AWS,2,工业互联网平台,2 +117,格创东智,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,2 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,106,阿里巴巴,1.3,工业软件,2 +49,数码大方,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,2 +50,索为系统,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,2 +49,数码大方,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,2 +23,和利时,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,2 +79,PTC,2.1.3.1,物联网服务,99,Siemens,2.1,PaaS,2 +6,安世亚太,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,2 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,170,Pseudo1,1,供给,2 +79,PTC,2.1.2,工业模型库,170,Pseudo1,1,供给,2 +79,PTC,2.1.2,工业模型库,98,Microsoft Azure,2,工业互联网平台,2 +24,华大电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +124,海尔,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,2 +43,神舟软件,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,1 108,百度,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1 -49,数码大方,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 -35,凌昊智能,1.1.3,工业服务器,126,华为,1.1,工业自动化,1 -49,数码大方,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 -104,Infineon,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 -56,芯愿景,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 -38,牛刀,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1 -39,Autodesk,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1 -36,龙芯中科,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 -36,龙芯中科,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 -103,STMicroelectronics ,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 -38,牛刀,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1 -35,凌昊智能,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 -38,牛刀,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 -50,索为系统,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,1 -38,牛刀,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 -50,索为系统,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,1 -46,适创科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1 -39,Autodesk,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1 -45,石化盈科,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1 -45,石化盈科,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1 -45,石化盈科,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1 -47,首自信,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1 -47,首自信,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 -45,石化盈科,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1 -45,石化盈科,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1 -47,首自信,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1 -47,首自信,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 -47,首自信,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 -47,首自信,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 -47,首自信,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1 -47,首自信,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 -45,石化盈科,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1 -47,首自信,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1 -47,首自信,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1 -47,首自信,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1 -45,石化盈科,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1 -46,适创科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1 -47,首自信,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1 -44,圣邦微电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 -49,数码大方,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 -49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1 -4,爱创科技,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1 -49,数码大方,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 -111,鼎捷软件,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1 -49,数码大方,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1 -111,鼎捷软件,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1 -111,鼎捷软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1 -49,数码大方,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1 -49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 -111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1 -47,首自信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 -49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1 -42,山大华天,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1 -42,山大华天,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,1 -42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1 -42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 -47,首自信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1 -43,神舟软件,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,1 -43,神舟软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1 -56,芯愿景,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 -119,广联达,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1 -56,芯愿景,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 -82,Uptake,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1 -81,SAP,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,1 -81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,1 -81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,1 -80,Salesforce,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,1 -79,PTC,2.3.3,协议转换,95,Schneider,2.3,边缘层,1 -79,PTC,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 -79,PTC,2.3.3,协议转换,155,小米,2.3,边缘层,1 -79,PTC,2.3.3,协议转换,102,Amazon AWS,2,工业互联网平台,1 -79,PTC,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1 -79,PTC,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1 -79,PTC,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 -79,PTC,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 -79,PTC,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1 -79,PTC,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 -79,PTC,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1 -79,PTC,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1 -79,PTC,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1 -79,PTC,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1 -79,PTC,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1 -79,PTC,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1 -79,PTC,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1 -79,PTC,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,1 -79,PTC,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1 -79,PTC,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1 -79,PTC,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,1 -79,PTC,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1 -79,PTC,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,1 -81,SAP,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,1 -82,Uptake,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 -79,PTC,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,1 -82,Uptake,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 -10,北京英贝思,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1 -10,北京英贝思,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1 -99,Siemens,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 -100,Synopsys,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1 -97,General Electric,1.3.3,生产制造,29,京东工业品,1.3,工业软件,1 -96,Cisco,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1 -95,Schneider,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1 -93,Cadence,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1 -93,Cadence,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1 -92,Omron,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1 -91,Moxa,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 -90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1 -9,北京航天测控,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1 -89,Rockwell,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1 -89,Rockwell,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1 -89,Rockwell,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 -89,Rockwell,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 -88,HPE,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 -87,Texas Instruments,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 -85,Dassault,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1 -83,Emerson,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1 -83,Emerson,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1 -82,Uptake,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 -82,Uptake,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 -82,Uptake,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1 -82,Uptake,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1 -82,Uptake,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 -79,PTC,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1 -79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 -56,芯愿景,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 -62,云道智造,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1 -62,云道智造,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1 -62,云道智造,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1 -62,云道智造,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 -60,宇动源,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 -60,宇动源,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1 -60,宇动源,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1 -60,宇动源,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 -60,宇动源,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1 -60,宇动源,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1 -60,宇动源,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1 -6,安世亚太,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1 -6,安世亚太,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 -6,安世亚太,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 -6,安世亚太,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1 -6,安世亚太,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1 -6,安世亚太,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 -103,STMicroelectronics ,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 -58,用友,1.3.2,采购供应,170,Pseudo1,1,供给,1 -58,用友,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,1 -58,用友,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1 -57,亚控科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 -57,亚控科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1 -57,亚控科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 -57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1 -57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,1 -56,芯愿景,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1 -56,芯愿景,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1 -62,云道智造,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1 -62,云道智造,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 -79,PTC,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1 -62,云道智造,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 -79,PTC,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1 -79,PTC,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 -78,OutSystems,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 -78,OutSystems,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 -78,OutSystems,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1 -78,OutSystems,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1 -78,OutSystems,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 -77,Oracle,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1 -77,Oracle,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,1 -72,ANSYS,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 -71,Altair,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1 -71,Altair,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 -70,ABB,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1 -69,紫光集团,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 -69,紫光集团,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 -68,中望软件,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1 -68,中望软件,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1 -68,中望软件,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1 -68,中望软件,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 -66,中国联通,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 -65,中国电信,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 -65,中国电信,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 -65,中国电信,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 -64,中电智科,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 -101,Analog Devices,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 -62,云道智造,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 -62,云道智造,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1 -33,蓝谷信息,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 -23,和利时,2.3.3,协议转换,99,Siemens,2.3,边缘层,1 -33,蓝谷信息,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 -137,美林数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1 -135,浪潮,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,1 -135,浪潮,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1 -135,浪潮,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1 -135,浪潮,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 -135,浪潮,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1 -135,浪潮,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1 -137,美林数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1 -135,浪潮,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1 -139,容知日新,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,1 -14,东华软件,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,1 -117,格创东智,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1 -117,格创东智,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 -141,上海新华控制,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1 -141,上海新华控制,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1 -135,浪潮,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,1 -135,浪潮,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1 -116,概伦电子,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1 -117,格创东智,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 -131,九物互联,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,1 -132,科远智慧,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1 -133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,1 -134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1 -134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,1 -135,浪潮,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 -117,格创东智,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 -135,浪潮,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,1 -135,浪潮,1.3.2.1,供应链管理SCM,170,Pseudo1,1,供给,1 -117,格创东智,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,1 -135,浪潮,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1 -135,浪潮,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,1 -135,浪潮,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1 -135,浪潮,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1 -117,格创东智,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1 -116,概伦电子,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1 -150,唯捷创芯,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 -149,天泽智云,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1 -146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 -146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1 -146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1 -149,天泽智云,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1 -149,天泽智云,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 -149,天泽智云,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 -149,天泽智云,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1 -145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1 -149,天泽智云,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 -149,天泽智云,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 -149,天泽智云,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1 -149,天泽智云,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 -15,东软集团,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1 -15,东软集团,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1 -145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1 -144,树根互联,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 -143,沈阳自动化研究所,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 -143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 -144,树根互联,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 -144,树根互联,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1 -144,树根互联,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 -144,树根互联,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 -144,树根互联,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 -144,树根互联,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1 -144,树根互联,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1 -144,树根互联,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 -131,九物互联,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 -131,九物互联,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1 -131,九物互联,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1 -13,东方国信,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1 -128,华伍股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 -129,华中数控,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1 -129,华中数控,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1 -129,华中数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1 -13,东方国信,1.2.2,标识解析,126,华为,1.2,工业互联网网络,1 -13,东方国信,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1 -13,东方国信,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,1 -127,华为海思,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 -13,东方国信,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,1 -13,东方国信,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1 -13,东方国信,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,1 -13,东方国信,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1 -13,东方国信,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,1 -13,东方国信,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1 -128,华伍股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,1 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,1 +13,东方国信,2.3.2,边缘数据处理,98,Microsoft Azure,2,工业互联网平台,1 +44,圣邦微电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,106,阿里巴巴,1.3,工业软件,1 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,29,京东工业品,1.3,工业软件,1 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,99,Siemens,2.1,PaaS,1 +58,用友,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,1 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,106,阿里巴巴,1.3,工业软件,1 +58,用友,2.1.2,工业模型库,98,Microsoft Azure,2,工业互联网平台,1 +43,神舟软件,1.3.1.5,产品数据管理PDM,170,Pseudo1,1,供给,1 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,106,阿里巴巴,1.3,工业软件,1 +168,中控技术,2.3.1,工业数据接入,98,Microsoft Azure,2,工业互联网平台,1 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,29,京东工业品,1.3,工业软件,1 +42,山大华天,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,1 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,29,京东工业品,1.3,工业软件,1 +58,用友,2.1.2,工业模型库,102,Amazon AWS,2,工业互联网平台,1 +42,山大华天,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1 +22,航天云网,2.1.4.1.2,分布式数据库,102,Amazon AWS,2.1.4,工业大数据,1 +95,Schneider,1.2.3,数据互通,170,Pseudo1,1,供给,1 +56,芯愿景,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,1 +135,浪潮,2.1.3.7,制造类API,99,Siemens,2.1,PaaS,1 +50,索为系统,1.3.1.5,产品数据管理PDM,170,Pseudo1,1,供给,1 +135,浪潮,2.1.3.3,工业引擎服务,99,Siemens,2.1,PaaS,1 +167,中环股份,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +49,数码大方,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,1 +53,天融信,1.4.3.3,APT检测,126,华为,1.4,工业互联网安全,1 +138,启明信息,1.3.1.5,产品数据管理PDM,106,阿里巴巴,1.3,工业软件,1 +53,天融信,1.4.3.3,APT检测,170,Pseudo1,1,供给,1 +99,Siemens,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 +135,浪潮,1.1.3,工业服务器,170,Pseudo1,1,供给,1 +14,东华软件,1.3.4.3,人力资源管理HRM,170,Pseudo1,1,供给,1 +14,东华软件,1.3.4.3,人力资源管理HRM,29,京东工业品,1.3,工业软件,1 +53,天融信,1.4.5.3,数据审计系统,126,华为,1.4,工业互联网安全,1 +53,天融信,1.4.5.3,数据审计系统,170,Pseudo1,1,供给,1 +140,山石网科,1.4.1.4,入侵检测系统,126,华为,1.4,工业互联网安全,1 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,29,京东工业品,1.3,工业软件,1 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,106,阿里巴巴,1.3,工业软件,1 +140,山石网科,1.4.1.4,入侵检测系统,170,Pseudo1,1,供给,1 +140,山石网科,1.4.1.5,统一威胁管理系统,126,华为,1.4,工业互联网安全,1 +103,STMicroelectronics ,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +140,山石网科,1.4.1.5,统一威胁管理系统,170,Pseudo1,1,供给,1 +41,启明星辰,1.4.1.2,下一代防火墙,170,Pseudo1,1,供给,1 +46,适创科技,1.3.1.2,计算机辅助工程CAE,29,京东工业品,1.3,工业软件,1 +46,适创科技,1.3.1.2,计算机辅助工程CAE,106,阿里巴巴,1.3,工业软件,1 +131,九物互联,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 +96,Cisco,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 +56,芯愿景,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +168,中控技术,1.3.3.1,制造执行系统MES,29,京东工业品,1.3,工业软件,1 +89,Rockwell,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,1 +41,启明星辰,1.4.1.2,下一代防火墙,126,华为,1.4,工业互联网安全,1 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,106,阿里巴巴,1.3,工业软件,1 +22,航天云网,1.3.3.6,运维保障系统MRO,29,京东工业品,1.3,工业软件,1 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,29,京东工业品,1.3,工业软件,1 +113,飞腾信息,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 +5,安华金和,1.4.5.3,数据审计系统,170,Pseudo1,1,供给,1 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,106,阿里巴巴,1.3,工业软件,1 +77,Oracle,1.3.3.6,运维保障系统MRO,106,阿里巴巴,1.3,工业软件,1 127,华为海思,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 -117,格创东智,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1 -123,海得控制,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,1 -119,广联达,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1 -12,大唐软件,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 -12,大唐软件,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 -12,大唐软件,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1 -120,广州数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,1 -123,海得控制,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,106,阿里巴巴,1.3,工业软件,1 +78,OutSystems,2.1.1.4,组态建模工具,99,Siemens,2.1,PaaS,1 +78,OutSystems,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 +26,寄云科技,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,1 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,29,京东工业品,1.3,工业软件,1 +22,航天云网,2.1.1.3,流程开发工具,99,Siemens,2.1,PaaS,1 +124,海尔,2.3,边缘层,170,Pseudo1,1,供给,1 +79,PTC,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,1 +25,华大九天,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,1 124,海尔,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 -126,华为,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,1 -124,海尔,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 -124,海尔,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1 -125,华数机器人,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1 -118,工邦邦,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1 -126,华为,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1 -126,华为,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1 -13,东方国信,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1 -13,东方国信,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,1 -13,东方国信,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1 -13,东方国信,2.3.3,协议转换,124,海尔,2.3,边缘层,1 -13,东方国信,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1 -13,东方国信,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 -13,东方国信,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1 -13,东方国信,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 -13,东方国信,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1 -13,东方国信,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 -13,东方国信,2.3.3,协议转换,155,小米,2.3,边缘层,1 -13,东方国信,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,1 -117,格创东智,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1 -130,金蝶,1.3.2,采购供应,170,Pseudo1,1,供给,1 -117,格创东智,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1 -130,金蝶,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1 -117,格创东智,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1 -130,金蝶,1.3.5,仓储物流,170,Pseudo1,1,供给,1 -13,东方国信,2.3.1,工业数据接入,155,小米,2.3,边缘层,1 -13,东方国信,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 -13,东方国信,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1 -13,东方国信,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1 -13,东方国信,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1 -13,东方国信,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,1 -13,东方国信,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1 -13,东方国信,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1 -13,东方国信,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,1 -13,东方国信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1 -13,东方国信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 -13,东方国信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 -13,东方国信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1 -13,东方国信,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,1 -13,东方国信,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1 -13,东方国信,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1 -13,东方国信,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1 -150,唯捷创芯,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 -153,武汉开目,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 -33,蓝谷信息,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1 -23,和利时,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,1 -22,航天云网,2.3.3,协议转换,95,Schneider,2.3,边缘层,1 -23,和利时,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1 -23,和利时,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1 -23,和利时,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1 -23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1 -23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1 -115,富士康,1.1.3,工业服务器,105,Intel,1.1,工业自动化,1 -22,航天云网,2.3.3,协议转换,126,华为,2.3,边缘层,1 -113,飞腾信息,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 -23,和利时,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 -23,和利时,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1 -23,和利时,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 -23,和利时,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 -23,和利时,2.3.3,协议转换,124,海尔,2.3,边缘层,1 -1,51WORLD,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1 -22,航天云网,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1 -23,和利时,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 -22,航天云网,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1 -22,航天云网,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1 -22,航天云网,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1 -22,航天云网,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,1 -22,航天云网,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1 -22,航天云网,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1 -22,航天云网,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1 -22,航天云网,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 -22,航天云网,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 -22,航天云网,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 -22,航天云网,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1 -22,航天云网,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 -22,航天云网,2.3.1,工业数据接入,155,小米,2.3,边缘层,1 -22,航天云网,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 -22,航天云网,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1 -23,和利时,2.3.3,协议转换,126,华为,2.3,边缘层,1 -23,和利时,2.3.3,协议转换,95,Schneider,2.3,边缘层,1 -153,武汉开目,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1 -31,昆仑数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1 -3,艾克斯特,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1 -3,艾克斯特,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1 -3,艾克斯特,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1 -3,艾克斯特,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,1 -31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1 -31,昆仑数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1 -31,昆仑数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1 -26,寄云科技,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 -32,兰光创新,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1 -33,蓝谷信息,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1 -33,蓝谷信息,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1 -33,蓝谷信息,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1 -33,蓝谷信息,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 -33,蓝谷信息,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1 -3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 -26,寄云科技,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1 -119,广联达,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1 -26,寄云科技,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1 -24,华大电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 -24,华大电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 -25,华大九天,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1 -25,华大九天,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1 -26,寄云科技,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1 -26,寄云科技,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 -22,航天云网,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1 -22,航天云网,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 -22,航天云网,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 -163,优也科技,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1 -161,研华科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 -161,研华科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1 -161,研华科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1 -161,研华科技,2.3.3,协议转换,124,海尔,2.3,边缘层,1 -163,优也科技,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1 -163,优也科技,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1 -163,优也科技,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1 -161,研华科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 -164,震坤行,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1 -164,震坤行,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1 -165,智能云科,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1 -165,智能云科,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 -165,智能云科,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1 -165,智能云科,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1 -161,研华科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 -161,研华科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 -22,航天云网,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 -116,概伦电子,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1 -153,武汉开目,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1 -153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1 -154,西格数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1 -154,西格数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1 -156,芯禾科技,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1 -156,芯禾科技,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1 -16,东土科技,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,1 -161,研华科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1 -16,东土科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1 -16,东土科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 -16,东土科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 -16,东土科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1 -16,东土科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1 -16,东土科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 -165,智能云科,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 -165,智能云科,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1 -165,智能云科,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 -20,海基科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1 -169,中芯国际,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 -169,中芯国际,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 -18,国能智深,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1 -2,706所,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,1 -2,706所,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 -20,海基科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 -20,海基科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1 -165,智能云科,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1 -21,Hexagon,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,1 -22,航天云网,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1 -22,航天云网,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1 -22,航天云网,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1 -22,航天云网,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1 -22,航天云网,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 -168,中控技术,2.3.3,协议转换,99,Siemens,2.3,边缘层,1 -168,中控技术,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 -168,中控技术,2.3.3,协议转换,124,海尔,2.3,边缘层,1 -168,中控技术,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 -168,中控技术,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1 -168,中控技术,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 -168,中控技术,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 -168,中控技术,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1 -168,中控技术,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 -168,中控技术,2.3.1,工业数据接入,155,小米,2.3,边缘层,1 -168,中控技术,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1 -168,中控技术,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1 -168,中控技术,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1 -168,中控技术,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1 -167,中环股份,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 -166,中国电子科技网络信息安全,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,1 -165,智能云科,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,1 -22,航天云网,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 +24,华大电子,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 +158,信大捷安,1.4.4.1,身份鉴别与访问控制,126,华为,1.4,工业互联网安全,1 +116,概伦电子,1.3.1.7,电子设计自动化EDA,106,阿里巴巴,1.3,工业软件,1 +158,信大捷安,1.4.4.1,身份鉴别与访问控制,170,Pseudo1,1,供给,1 +159,徐工集团,2.1.2,工业模型库,102,Amazon AWS,2,工业互联网平台,1 +159,徐工集团,2.1.2,工业模型库,170,Pseudo1,1,供给,1 +159,徐工集团,2.1.2,工业模型库,98,Microsoft Azure,2,工业互联网平台,1 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,1 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1 +23,和利时,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 +16,东土科技,1.1.3,工业服务器,170,Pseudo1,1,供给,1 +22,航天云网,1.3.3.6,运维保障系统MRO,106,阿里巴巴,1.3,工业软件,1 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,1 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,1 +40,奇安信,1.4.3.3,APT检测,170,Pseudo1,1,供给,1 +40,奇安信,1.4.3.3,APT检测,126,华为,1.4,工业互联网安全,1 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,170,Pseudo1,1,供给,1 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,29,京东工业品,1.3,工业软件,1 +4,爱创科技,1.2.2,标识解析,170,Pseudo1,1,供给,1 +89,Rockwell,1.3.3.1,制造执行系统MES,106,阿里巴巴,1.3,工业软件,1 +148,腾讯,2.1.1,开发工具,102,Amazon AWS,2,工业互联网平台,1 +148,腾讯,2.1.1,开发工具,170,Pseudo1,1,供给,1 +163,优也科技,2.1.4.1.3,实时数据库,84,Bosch,2.1.4,工业大数据,1 +22,航天云网,2.1.4.1.2,分布式数据库,84,Bosch,2.1.4,工业大数据,1 +148,腾讯,2.1.1,开发工具,98,Microsoft Azure,2,工业互联网平台,1 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,29,京东工业品,1.3,工业软件,1 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1 +22,航天云网,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,106,阿里巴巴,1.3,工业软件,1 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,29,京东工业品,1.3,工业软件,1 +149,天泽智云,2.1.2.1,数据算法模型,99,Siemens,2.1,PaaS,1 +163,优也科技,2.1.4.1.3,实时数据库,115,富士康,2.1.4,工业大数据,1 +63,长扬科技,1.4.2.4,安全隔离与信息交换系统,126,华为,1.4,工业互联网安全,1 +13,东方国信,2.1.3.7,制造类API,99,Siemens,2.1,PaaS,1 +163,优也科技,2.1.4.1.3,实时数据库,102,Amazon AWS,2.1.4,工业大数据,1 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,106,阿里巴巴,1.3,工业软件,1 +65,中国电信,1.2.1,网络互联,170,Pseudo1,1,供给,1 +68,中望软件,1.3.1.1,计算机辅助设计CAD,29,京东工业品,1.3,工业软件,1 +32,兰光创新,1.2.3,数据互通,170,Pseudo1,1,供给,1 +68,中望软件,1.3.1.3,计算机辅助制造CAM,106,阿里巴巴,1.3,工业软件,1 +68,中望软件,1.3.1.3,计算机辅助制造CAM,29,京东工业品,1.3,工业软件,1 +5,安华金和,1.4.5.3,数据审计系统,126,华为,1.4,工业互联网安全,1 diff --git a/analysis/count_dcp_network.png b/analysis/count_dcp_network.png new file mode 100644 index 0000000..da3864c Binary files /dev/null and b/analysis/count_dcp_network.png differ diff --git a/analysis/count_dcp_prod.csv b/analysis/count_dcp_prod.csv index ab522b0..7475df0 100644 --- a/analysis/count_dcp_prod.csv +++ b/analysis/count_dcp_prod.csv @@ -1,98 +1,227 @@ up_id_product,up_name_product,down_id_product,down_name_product,count -1.4,工业互联网安全,1,供给,118 -1.4.3,网络安全,1.4,工业互联网安全,96 -1.4.5,数据安全,1.4,工业互联网安全,92 -1.4.2,控制安全,1.4,工业互联网安全,92 -2.1,PaaS,2,工业互联网平台,77 -1.4.4.5,安全态势感知,1.4.4,平台安全,76 -1.3.2.1,供应链管理SCM,1.3.2,采购供应,76 -1.3.2,采购供应,1.3,工业软件,74 -1.3.5,仓储物流,1.3,工业软件,72 -1.1.1,工业计算芯片,1.1,工业自动化,67 -1.4.5.8,数据加密,1.4.5,数据安全,50 -1.4.5.1,恶意代码检测系统,1.4.5,数据安全,50 +1.4,工业互联网安全,1,供给,926 +1.3,工业软件,1,供给,422 +2.1.3.5,容器服务,2.1.3,工业物联网,397 +2.1.3.4,应用管理服务,2.1.3,工业物联网,396 +2.1.3.3,工业引擎服务,2.1.3,工业物联网,396 +2.1.3.6,微服务,2.1.3,工业物联网,396 +2.1.3.1,物联网服务,2.1.3,工业物联网,390 +2.1.3.7,制造类API,2.1.3,工业物联网,390 +2.1.3.2,平台基础服务,2.1.3,工业物联网,389 +2.3.2,边缘数据处理,2.3,边缘层,332 +2.3.1,工业数据接入,2.3,边缘层,323 +1.3.1.2,计算机辅助工程CAE,1.3.1,设计研发,323 +2.3.3,协议转换,2.3,边缘层,321 +1.3.1.1,计算机辅助设计CAD,1.3.1,设计研发,317 +2.1.2.4,行业机理模型,2.1.2,工业模型库,307 +1.3.1.7,电子设计自动化EDA,1.3.1,设计研发,306 +1.3.1.5,产品数据管理PDM,1.3.1,设计研发,304 +2.1.2.3,研发仿真模型,2.1.2,工业模型库,303 +2.1.2.1,数据算法模型,2.1.2,工业模型库,302 +1.3.1.3,计算机辅助制造CAM,1.3.1,设计研发,302 +2.1.2.2,业务流程模型,2.1.2,工业模型库,301 +1.3.1.6,产品生命周期管理PLM,1.3.1,设计研发,301 +1.4.4,平台安全,1.4,工业互联网安全,301 +1.3.2,采购供应,1.3,工业软件,300 +1.3.1.4,计算机辅助工艺过程设计CAPP,1.3.1,设计研发,299 +1.4.5,数据安全,1,供给,290 +1.4.5,数据安全,1.4,工业互联网安全,290 +1.1.3,工业服务器,1.1,工业自动化,278 +1.1.2,工业控制器,1.1,工业自动化,276 +1.1.1,工业计算芯片,1.1,工业自动化,268 +1.3.1,设计研发,1.3,工业软件,241 +2,工业互联网平台,1,供给,237 +2.1.1.1,算法建模工具,2.1.1,开发工具,231 +1.2.3,数据互通,1.2,工业互联网网络,229 +2.1.1.2,低代码开发工具,2.1.1,开发工具,225 +1.2.2,标识解析,1.2,工业互联网网络,222 +2.1.1.4,组态建模工具,2.1.1,开发工具,221 +1.2.1,网络互联,1.2,工业互联网网络,218 +2.1.1.3,流程开发工具,2.1.1,开发工具,214 +2.1.1.5,数字孪生建模工具,2.1.1,开发工具,212 +1.4.3,网络安全,1.4,工业互联网安全,211 +1.4.3,网络安全,1,供给,211 +1.4.2,控制安全,1.4,工业互联网安全,205 +1.4.2,控制安全,1,供给,204 +1.4.4,平台安全,1,供给,199 +1.3.3.4,可编程逻揖控制系统PLC,1.3.3,生产制造,177 +1.3.3.1,制造执行系统MES,1.3.3,生产制造,176 +1.3.3.2,分布式控制系统DCS,1.3.3,生产制造,175 +1.3.3.5,企业资产管理系统EAM,1.3.3,生产制造,174 +1.3.3,生产制造,1.3,工业软件,174 +1.3.4.3,人力资源管理HRM,1.3.4,企业运营管理,173 +1.3.4.2,客户关系管理CRM,1.3.4,企业运营管理,171 +1.3.3.3,数据采集与监视控制系统SCADA,1.3.3,生产制造,170 +1.3.3.6,运维保障系统MRO,1.3.3,生产制造,169 +1.3.4,企业运营管理,1.3,工业软件,167 +1.3.3.7,故障预测与健康管理PHM,1.3.3,生产制造,166 +1.3.4.1,企业资源计划ERP,1.3.4,企业运营管理,166 +2.1.4.1,工业大数据存储,2.1.4,工业大数据,161 +2.1,PaaS,2,工业互联网平台,158 +2.1.4.2,工业大数据管理,2.1.4,工业大数据,156 +1.3.5,仓储物流,1.3,工业软件,150 +1.4.4.1,身份鉴别与访问控制,1.4.4,平台安全,147 +2.1.4,工业大数据,2.1,PaaS,139 +1.4.4.4,工业应用行为监控,1.4.4,平台安全,136 +1.4.4.2,密钥管理,1.4.4,平台安全,136 +1.4.4.3,接入认证,1.4.4,平台安全,136 +2.1.4.1.2,分布式数据库,2.1.4.1,工业大数据存储,130 +2.1.4.1.4,时序数据库,2.1.4.1,工业大数据存储,129 +2.1.4.2.1,数据质量管理,2.1.4.2,工业大数据管理,127 +2.1.4.2.2,数据安全管理,2.1.4.2,工业大数据管理,125 +2.1.4.1.3,实时数据库,2.1.4.1,工业大数据存储,124 +2.1.4.1.1,关系型数据库,2.1.4.1,工业大数据存储,122 +1.3.2,采购供应,1,供给,117 +2.3,边缘层,2,工业互联网平台,109 +1.4.4.5,安全态势感知,1.4.4,平台安全,100 +1.3.2.1,供应链管理SCM,1.3,工业软件,100 +1.3.2.1,供应链管理SCM,1.3.2,采购供应,100 +2.2,IaaS,2,工业互联网平台,91 +1.4.2.1,工控安全监测与审计,1.4.2,控制安全,90 +1.2,工业互联网网络,1,供给,90 +1.1,工业自动化,1,供给,89 +2.1.4,工业大数据,2,工业互联网平台,88 +2.1.3,工业物联网,2.1,PaaS,87 +1.4.2.4,安全隔离与信息交换系统,1.4.2,控制安全,85 +1.4.1.3,防毒墙,1.4.1,设备安全,83 +1.4.1.1,工业防火墙,1.4.1,设备安全,81 +2.1,PaaS,1,供给,77 +1.4.3.3,APT检测,1.4.3,网络安全,76 +1.3.5,仓储物流,1,供给,75 +1.4.5.4,数据脱敏,1.4.5,数据安全,70 +1.4.5.5,敏感数据发现与监控,1.4.5,数据安全,70 +1.4.5.3,数据审计系统,1.4.5,数据安全,70 +1.4.5.2,数据防泄漏系统,1.4.5,数据安全,70 +1.4.5.6,数据容灾备份,1.4.5,数据安全,70 +1.3.5.1,仓储物流管理WMS,1.3.5,仓储物流,70 +1.4.5.7,数据恢复,1.4.5,数据安全,70 +1.4.5.9,数据防火墙,1.4.5,数据安全,70 +1.4.1.2,下一代防火墙,1.4.1,设备安全,68 +1.4.3.5,负载均衡,1.4.3,网络安全,68 +1.4.3.4,攻击溯源,1.4.3,网络安全,68 +1.4.3.1,网络漏洞扫描和补丁管理,1.4.3,网络安全,68 +1.4.1.5,统一威胁管理系统,1.4.1,设备安全,68 +1.4.1.4,入侵检测系统,1.4.1,设备安全,68 +1.4.2.2,工控主机卫士,1.4.2,控制安全,68 +1.4.2.6,隐私计算,1.4.2,控制安全,68 +1.4.2.5,安全日志与审计,1.4.2,控制安全,68 +1.4.1,设备安全,1,供给,63 +1.4.1,设备安全,1.4,工业互联网安全,63 +2.1.1,开发工具,2.1,PaaS,61 +2.1.2,工业模型库,2.1,PaaS,59 +1.4.4.5,安全态势感知,1.4,工业互联网安全,50 +1.4.4.5,安全态势感知,1,供给,50 1.4.3.6,沙箱类设备,1.4.3,网络安全,50 -1.4.2.7,工控原生安全,1.4.2,控制安全,50 +1.3.5.1,仓储物流管理WMS,1.3,工业软件,50 +1.4.2.3,工控漏洞扫描,1,供给,50 +1.4.2.3,工控漏洞扫描,1.4,工业互联网安全,50 +1.4.5.1,恶意代码检测系统,1,供给,50 1.4.2.3,工控漏洞扫描,1.4.2,控制安全,50 -1.4.1,设备安全,1.4,工业互联网安全,50 +1.3.2.1,供应链管理SCM,1,供给,50 +1.4.5.1,恶意代码检测系统,1.4,工业互联网安全,50 +1.4.3.6,沙箱类设备,1.4,工业互联网安全,50 +1.4.5.8,数据加密,1,供给,50 +1.4.2.7,工控原生安全,1.4.2,控制安全,50 +1.4.2.7,工控原生安全,1.4,工业互联网安全,50 +1.4.3.2,流量检测,1,供给,50 +1.4.3.2,流量检测,1.4,工业互联网安全,50 1.4.3.2,流量检测,1.4.3,网络安全,50 -2.3.3,协议转换,2.3,边缘层,37 -1.3.2.1,供应链管理SCM,1.3,工业软件,37 -2.3.1,工业数据接入,2.3,边缘层,33 -2.1.3.6,微服务,2.1.3,工业物联网,33 -2.3.2,边缘数据处理,2.3,边缘层,30 -2.1.3.4,应用管理服务,2.1.3,工业物联网,30 -2.1.2.4,行业机理模型,2.1.2,工业模型库,30 -2.1.2.2,业务流程模型,2.1.2,工业模型库,28 -2.1.3.7,制造类API,2.1.3,工业物联网,28 -1.3.1.1,计算机辅助设计CAD,1.3.1,设计研发,28 -2.1.2.1,数据算法模型,2.1.2,工业模型库,27 -1.3.1.2,计算机辅助工程CAE,1.3.1,设计研发,26 -2.1.3.1,物联网服务,2.1.3,工业物联网,25 -1.1.2,工业控制器,1.1,工业自动化,24 -2.1.3.5,容器服务,2.1.3,工业物联网,24 -1.4.3.6,沙箱类设备,1.4,工业互联网安全,23 -2.1.1.2,低代码开发工具,2.1.1,开发工具,23 -1.1.3,工业服务器,1.1,工业自动化,23 -1.4.3.2,流量检测,1.4,工业互联网安全,23 -2.1.3.3,工业引擎服务,2.1.3,工业物联网,23 -1.4.5.1,恶意代码检测系统,1.4,工业互联网安全,21 -1.4.5.8,数据加密,1.4,工业互联网安全,21 -1.4.2.3,工控漏洞扫描,1.4,工业互联网安全,21 -2.1.3.2,平台基础服务,2.1.3,工业物联网,21 -1.4.2.7,工控原生安全,1.4,工业互联网安全,21 -1.4.3,网络安全,1,供给,21 -1.3.1.4,计算机辅助工艺过程设计CAPP,1.3.1,设计研发,20 -1.4.5,数据安全,1,供给,19 -1.4.2,控制安全,1,供给,19 -2.1.2.3,研发仿真模型,2.1.2,工业模型库,18 -2.1.1.5,数字孪生建模工具,2.1.1,开发工具,18 -1.3.1.6,产品生命周期管理PLM,1.3.1,设计研发,18 -1.2.3,数据互通,1.2,工业互联网网络,17 -2.1.1.1,算法建模工具,2.1.1,开发工具,15 -2.1.1.4,组态建模工具,2.1.1,开发工具,14 -1.3.3.2,分布式控制系统DCS,1.3.3,生产制造,14 -1.2.2,标识解析,1.2,工业互联网网络,13 -1.2.1,网络互联,1.2,工业互联网网络,13 -2.1.1.3,流程开发工具,2.1.1,开发工具,12 -1.3.1.7,电子设计自动化EDA,1.3.1,设计研发,12 -1.3.3.3,数据采集与监视控制系统SCADA,1.3.3,生产制造,11 -2,工业互联网平台,1,供给,10 -1.3.3.6,运维保障系统MRO,1.3.3,生产制造,10 -1.3.3.1,制造执行系统MES,1.3.3,生产制造,10 -1.4.4,平台安全,1.4,工业互联网安全,10 -1.4.1,设备安全,1,供给,9 -1.3.1,设计研发,1.3,工业软件,8 -1.3.3.4,可编程逻揖控制系统PLC,1.3.3,生产制造,7 -1.3.4.1,企业资源计划ERP,1.3.4,企业运营管理,6 -1.3.3.5,企业资产管理系统EAM,1.3.3,生产制造,6 -1.4.3.6,沙箱类设备,1,供给,6 -1.4.3.2,流量检测,1,供给,6 -1.4.5.1,恶意代码检测系统,1,供给,5 -1.4.4.5,安全态势感知,1.4,工业互联网安全,5 -2.1,PaaS,1,供给,5 -1.4.2.7,工控原生安全,1,供给,5 -1.3.1.5,产品数据管理PDM,1.3.1,设计研发,5 -1.4.5.8,数据加密,1,供给,5 -1.4.2.3,工控漏洞扫描,1,供给,5 -2.1.4.2.2,数据安全管理,2.1.4.2,工业大数据管理,5 -2.1.4.2.1,数据质量管理,2.1.4.2,工业大数据管理,5 -1.3,工业软件,1,供给,4 -2.1.4.1.4,时序数据库,2.1.4.1,工业大数据存储,4 -2.3,边缘层,2,工业互联网平台,3 -2.2,IaaS,2,工业互联网平台,3 -2.1.4.1.1,关系型数据库,2.1.4.1,工业大数据存储,3 -2.1.4.1.2,分布式数据库,2.1.4.1,工业大数据存储,3 -2.1.4.1.3,实时数据库,2.1.4.1,工业大数据存储,3 -2.1.4.2,工业大数据管理,2.1.4,工业大数据,3 -1.3.1.3,计算机辅助制造CAM,1.3.1,设计研发,2 -1.3.2,采购供应,1,供给,2 -1.3.3,生产制造,1.3,工业软件,1 -2.3.3,协议转换,2,工业互联网平台,1 -1.3.4.3,人力资源管理HRM,1.3.4,企业运营管理,1 -2.1.4.1,工业大数据存储,2.1.4,工业大数据,1 -1.3.3.7,故障预测与健康管理PHM,1.3.3,生产制造,1 -1.3.4,企业运营管理,1.3,工业软件,1 -1.3.5,仓储物流,1,供给,1 -1.4.4.1,身份鉴别与访问控制,1.4.4,平台安全,1 -1.3.2.1,供应链管理SCM,1,供给,1 +1.4.5.8,数据加密,1.4.5,数据安全,50 +1.4.5.8,数据加密,1.4,工业互联网安全,50 +1.4.3.6,沙箱类设备,1,供给,50 +1.4.5.1,恶意代码检测系统,1.4.5,数据安全,50 +1.4.2.7,工控原生安全,1,供给,50 +2.1.4,工业大数据,1,供给,43 +1.4.4.2,密钥管理,1.4,工业互联网安全,30 +1.4.5.4,数据脱敏,1,供给,28 +1.4.5.4,数据脱敏,1.4,工业互联网安全,28 +1.4.4.4,工业应用行为监控,1.4,工业互联网安全,26 +1.4.5.5,敏感数据发现与监控,1,供给,25 +1.4.5.7,数据恢复,1.4,工业互联网安全,25 +1.4.5.7,数据恢复,1,供给,25 +1.3.5.1,仓储物流管理WMS,1,供给,25 +1.3.4.2,客户关系管理CRM,1.3,工业软件,25 +1.4.5.5,敏感数据发现与监控,1.4,工业互联网安全,25 +1.3.4,企业运营管理,1,供给,24 +1.4.5.9,数据防火墙,1.4,工业互联网安全,23 +1.4.5.9,数据防火墙,1,供给,23 +1.4.2.5,安全日志与审计,1.4,工业互联网安全,22 +1.4.2.5,安全日志与审计,1,供给,22 +1.3.3,生产制造,1,供给,21 +1.4.4.3,接入认证,1.4,工业互联网安全,21 +1.4.5.6,数据容灾备份,1.4,工业互联网安全,21 +1.4.5.6,数据容灾备份,1,供给,21 +1.4.3.5,负载均衡,1.4,工业互联网安全,19 +1.4.3.4,攻击溯源,1.4,工业互联网安全,19 +1.4.3.1,网络漏洞扫描和补丁管理,1.4,工业互联网安全,19 +1.4.3.1,网络漏洞扫描和补丁管理,1,供给,19 +1.4.3.4,攻击溯源,1,供给,19 +2.1.4.1,工业大数据存储,2.1,PaaS,19 +1.4.3.5,负载均衡,1,供给,19 +2.1.4.2,工业大数据管理,2.1,PaaS,18 +1.3.3.7,故障预测与健康管理PHM,1.3,工业软件,18 +1.4.4.4,工业应用行为监控,1,供给,17 +1.4.2.2,工控主机卫士,1,供给,17 +1.4.2.2,工控主机卫士,1.4,工业互联网安全,17 +2.1.4.1,工业大数据存储,2,工业互联网平台,16 +1.3.4.3,人力资源管理HRM,1.3,工业软件,16 +1.4.2.6,隐私计算,1,供给,15 +1.4.2.6,隐私计算,1.4,工业互联网安全,15 +1.4.5.2,数据防泄漏系统,1,供给,14 +2.1.4.2,工业大数据管理,2,工业互联网平台,14 +1.3.1.5,产品数据管理PDM,1.3,工业软件,14 +1.4.5.2,数据防泄漏系统,1.4,工业互联网安全,14 +1.3.3.3,数据采集与监视控制系统SCADA,1.3,工业软件,13 +1.4.4.2,密钥管理,1,供给,12 +1.4.4.1,身份鉴别与访问控制,1.4,工业互联网安全,12 +1.4.4.3,接入认证,1,供给,12 +1.3.1.7,电子设计自动化EDA,1.3,工业软件,12 +1.3.1,设计研发,1,供给,10 +1.3.1.3,计算机辅助制造CAM,1.3,工业软件,10 +1.3.1.6,产品生命周期管理PLM,1.3,工业软件,10 +1.3.4.2,客户关系管理CRM,1,供给,8 +2.1.2,工业模型库,2,工业互联网平台,8 +2.1.4.1,工业大数据存储,1,供给,8 +1.3.3.5,企业资产管理系统EAM,1.3,工业软件,7 +2.1.4.2,工业大数据管理,1,供给,7 +2.1.1,开发工具,2,工业互联网平台,6 +1.4.1.4,入侵检测系统,1.4,工业互联网安全,6 +1.4.1.4,入侵检测系统,1,供给,6 +1.3.1.2,计算机辅助工程CAE,1.3,工业软件,4 +1.4.1.5,统一威胁管理系统,1,供给,4 +1.4.4.1,身份鉴别与访问控制,1,供给,4 +2.1.3.1,物联网服务,2.1,PaaS,4 +1.4.3.3,APT检测,1,供给,4 +1.4.5.3,数据审计系统,1,供给,4 +1.4.1.5,统一威胁管理系统,1.4,工业互联网安全,4 +1.3.3.7,故障预测与健康管理PHM,1,供给,4 +1.3.1.4,计算机辅助工艺过程设计CAPP,1.3,工业软件,4 +1.4.5.3,数据审计系统,1.4,工业互联网安全,4 +1.4.3.3,APT检测,1.4,工业互联网安全,4 +1.2.3,数据互通,1,供给,4 +1.1.3,工业服务器,1,供给,4 +1.3.1.1,计算机辅助设计CAD,1.3,工业软件,3 +1.3.3.6,运维保障系统MRO,1.3,工业软件,3 +1.4.1.2,下一代防火墙,1,供给,3 +2.1.1,开发工具,1,供给,3 +1.3.3.3,数据采集与监视控制系统SCADA,1,供给,3 +2.1.3.3,工业引擎服务,2.1,PaaS,3 +2.1.2,工业模型库,1,供给,3 +2.1.4.1.3,实时数据库,2.1.4,工业大数据,3 +1.4.1.2,下一代防火墙,1.4,工业互联网安全,3 +2.1.1.3,流程开发工具,2.1,PaaS,2 +2.1.4.1.2,分布式数据库,2.1.4,工业大数据,2 +1.3.1.5,产品数据管理PDM,1,供给,2 +2.1.3.7,制造类API,2.1,PaaS,2 +1.3.3.1,制造执行系统MES,1.3,工业软件,2 +1.3.3.4,可编程逻揖控制系统PLC,1.3,工业软件,2 +2.1.1.4,组态建模工具,2.1,PaaS,1 +2.1.2.1,数据算法模型,2.1,PaaS,1 +1.3.4.3,人力资源管理HRM,1,供给,1 +2.3,边缘层,1,供给,1 +1.2.2,标识解析,1,供给,1 +2.3.1,工业数据接入,2,工业互联网平台,1 +1.2.1,网络互联,1,供给,1 +2.3.2,边缘数据处理,2,工业互联网平台,1 +1.3.3.5,企业资产管理系统EAM,1,供给,1 +1.4.2.4,安全隔离与信息交换系统,1.4,工业互联网安全,1 diff --git a/analysis/count_dcp_prod_network.png b/analysis/count_dcp_prod_network.png new file mode 100644 index 0000000..e137d04 Binary files /dev/null and b/analysis/count_dcp_prod_network.png differ diff --git a/analysis/count_firm.csv b/analysis/count_firm.csv index 1caf1b0..07c560e 100644 --- a/analysis/count_firm.csv +++ b/analysis/count_firm.csv @@ -1,144 +1,172 @@ id_firm,Name,count -126,华为,468 -142,深信服,300 -41,启明星辰,200 -53,天融信,150 -106,阿里巴巴,146 -170,Pseudo1,125 -99,Siemens,120 -79,PTC,117 -130,金蝶,91 -13,东方国信,80 -135,浪潮,73 -23,和利时,71 -58,用友,62 -97,General Electric,54 -29,京东工业品,52 -63,长扬科技,50 -85,Dassault,50 -157,新华三,50 -140,山石网科,50 -148,腾讯,49 -102,Amazon AWS,47 -22,航天云网,46 -40,奇安信,39 -0,360科技,38 -98,Microsoft Azure,38 -84,Bosch,35 -81,SAP,35 -74,HoneyWell,32 -100,Synopsys,29 -86,Dell EMC,28 -80,Salesforce,28 -108,百度,25 -105,Intel,25 -49,数码大方,24 -47,首自信,24 -95,Schneider,22 -39,Autodesk,21 -168,中控技术,20 -6,安世亚太,20 -16,东土科技,20 -94,Mitsubishi,19 -75,IBM,19 -73,FANUC,18 -124,海尔,18 -117,格创东智,17 -26,寄云科技,17 -155,小米,17 -159,徐工集团,16 -57,亚控科技,13 -149,天泽智云,13 -93,Cadence,13 -62,云道智造,13 -82,Uptake,12 -78,OutSystems,12 -161,研华科技,12 -60,宇动源,11 -165,智能云科,11 -33,蓝谷信息,10 -42,山大华天,10 -67,中国移动,10 -131,九物互联,10 -38,牛刀,10 -103,STMicroelectronics ,9 -144,树根互联,9 -56,芯愿景,8 -143,沈阳自动化研究所,8 -127,华为海思,8 -153,武汉开目,8 -3,艾克斯特,7 -45,石化盈科,7 -68,中望软件,7 -31,昆仑数据,6 -46,适创科技,6 -111,鼎捷软件,6 -89,Rockwell,6 -150,唯捷创芯,6 -169,中芯国际,6 -69,紫光集团,5 -113,飞腾信息,5 -167,中环股份,5 -129,华中数控,5 -43,神舟软件,5 -71,Altair,4 -104,Infineon,4 -77,Oracle,4 -123,海得控制,4 -145,思普软件,4 -35,凌昊智能,4 -163,优也科技,4 -24,华大电子,4 -32,兰光创新,4 -115,富士康,4 -147,拓邦股份,4 -9,北京航天测控,3 -88,HPE,3 -87,Texas Instruments,3 -120,广州数控,3 -12,大唐软件,3 -64,中电智科,3 -90,Mentor Graphics,3 -101,Analog Devices,3 -116,概伦电子,3 -166,中国电子科技网络信息安全,3 -119,广联达,3 -70,ABB,3 -20,海基科技,3 -65,中国电信,3 -72,ANSYS,3 -4,爱创科技,3 -36,龙芯中科,3 -44,圣邦微电子,3 -146,苏州浩辰,3 -14,东华软件,3 -83,Emerson,2 -138,启明信息,2 -10,北京英贝思,2 -128,华伍股份,2 -15,东软集团,2 -154,西格数据,2 -156,芯禾科技,2 -48,曙光信息,2 -50,索为系统,2 -141,上海新华控制,2 -61,元年科技,2 -164,震坤行,2 -2,706所,2 -134,朗坤智慧,2 -137,美林数据,2 -25,华大九天,2 -34,力控科技,2 -132,科远智慧,1 -92,Omron,1 -21,Hexagon,1 -96,Cisco,1 -18,国能智深,1 -118,工邦邦,1 -91,Moxa,1 -125,华数机器人,1 -133,蓝盾股份,1 -109,宝信软件,1 -139,容知日新,1 -66,中国联通,1 -1,51WORLD,1 +126,华为,1955 +170,Pseudo1,1525 +106,阿里巴巴,1446 +99,Siemens,1342 +79,PTC,1271 +97,General Electric,991 +142,深信服,969 +81,SAP,883 +41,启明星辰,842 +85,Dassault,705 +148,腾讯,697 +22,航天云网,657 +58,用友,546 +84,Bosch,543 +13,东方国信,501 +80,Salesforce,499 +39,Autodesk,486 +93,Cadence,485 +53,天融信,484 +73,FANUC,472 +100,Synopsys,459 +75,IBM,454 +29,京东工业品,453 +108,百度,441 +40,奇安信,426 +157,新华三,418 +74,HoneyWell,400 +135,浪潮,396 +0,360科技,352 +102,Amazon AWS,313 +130,金蝶,307 +23,和利时,272 +47,首自信,267 +26,寄云科技,252 +159,徐工集团,243 +98,Microsoft Azure,233 +77,Oracle,227 +49,数码大方,221 +95,Schneider,216 +105,Intel,201 +124,海尔,195 +67,中国移动,191 +140,山石网科,190 +37,绿盟,188 +155,小米,182 +86,Dell EMC,179 +45,石化盈科,178 +168,中控技术,175 +94,Mitsubishi,174 +117,格创东智,160 +115,富士康,155 +55,威努特,153 +6,安世亚太,148 +5,安华金和,128 +143,沈阳自动化研究所,126 +3,艾克斯特,124 +62,云道智造,119 +78,OutSystems,115 +38,牛刀,112 +33,蓝谷信息,111 +42,山大华天,109 +60,宇动源,107 +57,亚控科技,107 +165,智能云科,106 +144,树根互联,106 +16,东土科技,104 +31,昆仑数据,103 +68,中望软件,101 +82,Uptake,100 +149,天泽智云,98 +137,美林数据,93 +163,优也科技,92 +154,西格数据,92 +161,研华科技,90 +131,九物互联,86 +111,鼎捷软件,79 +63,长扬科技,76 +43,神舟软件,75 +14,东华软件,72 +162,壹进制,70 +153,武汉开目,69 +54,网御星云,68 +9,北京航天测控,65 +89,Rockwell,64 +133,蓝盾股份,52 +70,ABB,51 +129,华中数控,47 +127,华为海思,47 +56,芯愿景,46 +27,江南天安,45 +76,MasterCAM,45 +11,北信源,45 +50,索为系统,45 +96,Cisco,45 +116,概伦电子,44 +152,卫士通,43 +138,启明信息,43 +90,Mentor Graphics,42 +21,Hexagon,42 +112,东华测试,41 +25,华大九天,39 +71,Altair,38 +158,信大捷安,38 +72,ANSYS,38 +146,苏州浩辰,38 +48,曙光信息,38 +46,适创科技,38 +88,HPE,37 +139,容知日新,37 +156,芯禾科技,37 +15,东软集团,36 +20,海基科技,36 +120,广州数控,36 +10,北京英贝思,36 +145,思普软件,35 +151,唯智信息,35 +52,天空卫士,35 +119,广联达,35 +114,富勒科技,35 +92,Omron,34 +30,可信华泰,34 +4,爱创科技,34 +109,宝信软件,34 +110,晨科软件,34 +122,国民技术,34 +59,优特捷,34 +164,震坤行,34 +61,元年科技,33 +147,拓邦股份,33 +160,亚信科技,33 +107,安恒信息,33 +2,706所,33 +134,朗坤智慧,32 +35,凌昊智能,32 +1,51WORLD,31 +64,中电智科,31 +118,工邦邦,31 +166,中国电子科技网络信息安全,31 +34,力控科技,31 +8,梆梆安全,30 +125,华数机器人,30 +128,华伍股份,29 +66,中国联通,28 +123,海得控制,28 +32,兰光创新,28 +17,国保金泰,28 +51,天地和兴,28 +19,国泰网信,28 +121,广州智臣,28 +12,大唐软件,27 +132,科远智慧,27 +83,Emerson,27 +65,中国电信,25 +7,百望,24 +136,美的,24 +141,上海新华控制,24 +18,国能智深,24 +169,中芯国际,22 +44,圣邦微电子,21 +103,STMicroelectronics ,21 +167,中环股份,21 +36,龙芯中科,21 +91,Moxa,20 +28,金山云,20 +69,紫光集团,20 +113,飞腾信息,19 +87,Texas Instruments,18 +104,Infineon,18 +101,Analog Devices,18 +24,华大电子,17 +150,唯捷创芯,17 diff --git a/analysis/count_firm_prod.csv b/analysis/count_firm_prod.csv index b3ab1fd..7d1f831 100644 --- a/analysis/count_firm_prod.csv +++ b/analysis/count_firm_prod.csv @@ -1,358 +1,476 @@ id_firm,name_firm,id_product,name_product,count -126,华为,1.4,工业互联网安全,385 -142,深信服,1.4.3,网络安全,150 -41,启明星辰,1.4.5,数据安全,150 -142,深信服,1.4.2,控制安全,150 -170,Pseudo1,1,供给,125 -106,阿里巴巴,1.3,工业软件,67 -29,京东工业品,1.3,工业软件,52 -53,天融信,1.4.2.3,工控漏洞扫描,50 -41,启明星辰,1.4.3.2,流量检测,50 +170,Pseudo1,1,供给,1525 +126,华为,1.4,工业互联网安全,1012 +41,启明星辰,1.4.5,数据安全,640 +142,深信服,1.4.2,控制安全,529 +39,Autodesk,1.3.1,设计研发,486 +93,Cadence,1.3.1,设计研发,485 +73,FANUC,2.1.3,工业物联网,472 +100,Synopsys,1.3.1,设计研发,459 +75,IBM,1.3.3,生产制造,454 +29,京东工业品,1.3,工业软件,453 +108,百度,2.1.3,工业物联网,434 +106,阿里巴巴,1.3,工业软件,433 +142,深信服,1.4.3,网络安全,430 +97,General Electric,1.3.3,生产制造,424 +99,Siemens,1.3.3,生产制造,418 +157,新华三,1.4.1,设备安全,418 +85,Dassault,1.3.1,设计研发,412 +99,Siemens,1.3.1,设计研发,404 +148,腾讯,2.1.3,工业物联网,402 +97,General Electric,2.1.3,工业物联网,385 +74,HoneyWell,2.1.3,工业物联网,383 +106,阿里巴巴,2.1.3,工业物联网,372 +126,华为,2.1.3,工业物联网,362 +40,奇安信,1.4.4,平台安全,357 +0,360科技,1.4.4,平台安全,352 +99,Siemens,2.1,PaaS,323 +79,PTC,2.1.4.1,工业大数据存储,317 +80,Salesforce,2.1.1,开发工具,310 +85,Dassault,2.1.1,开发工具,293 +148,腾讯,2.1.1,开发工具,285 +58,用友,2.1.2,工业模型库,281 +79,PTC,2.1.2,工业模型库,280 +81,SAP,2.1.4.1,工业大数据存储,278 +106,阿里巴巴,2.1.1,开发工具,271 +159,徐工集团,2.1.2,工业模型库,243 +81,SAP,2.1.2,工业模型库,235 +98,Microsoft Azure,2,工业互联网平台,233 +84,Bosch,2.1.2,工业模型库,230 +81,SAP,1.3.4,企业运营管理,209 +102,Amazon AWS,2,工业互联网平台,203 +105,Intel,1.1,工业自动化,201 +77,Oracle,1.3.4,企业运营管理,194 +67,中国移动,1.2,工业互联网网络,191 +126,华为,1.2,工业互联网网络,190 +95,Schneider,2.3,边缘层,190 +80,Salesforce,1.3.4,企业运营管理,189 +106,阿里巴巴,1.2,工业互联网网络,188 +84,Bosch,2.3,边缘层,182 +97,General Electric,1.2,工业互联网网络,182 +155,小米,2.3,边缘层,182 +79,PTC,2.1.4.2,工业大数据管理,181 +124,海尔,2.3,边缘层,179 +86,Dell EMC,1.1,工业自动化,179 +126,华为,1.1,工业自动化,178 +94,Mitsubishi,1.1,工业自动化,174 +126,华为,2.3,边缘层,174 +106,阿里巴巴,1.1,工业自动化,172 +99,Siemens,2.3,边缘层,166 +81,SAP,2.1.4.2,工业大数据管理,161 +115,富士康,2.1.4,工业大数据,131 +84,Bosch,2.1.4,工业大数据,131 +130,金蝶,1.3.5,仓储物流,120 +102,Amazon AWS,2.1.4,工业大数据,110 +130,金蝶,1.3.2,采购供应,88 +58,用友,1.3.2,采购供应,88 23,和利时,1.4.2.7,工控原生安全,50 -63,长扬科技,1.4.4.5,安全态势感知,50 -157,新华三,1.4.1,设备安全,50 -53,天融信,1.4.5.8,数据加密,50 -140,山石网科,1.4.5.1,恶意代码检测系统,50 -135,浪潮,1.3.2.1,供应链管理SCM,50 -130,金蝶,1.3.5,仓储物流,50 -99,Siemens,2.1,PaaS,50 53,天融信,1.4.3.6,沙箱类设备,50 -102,Amazon AWS,2,工业互联网平台,45 -130,金蝶,1.3.2,采购供应,40 -40,奇安信,1.4.4,平台安全,39 -0,360科技,1.4.4,平台安全,38 -98,Microsoft Azure,2,工业互联网平台,38 -58,用友,1.3.2,采购供应,36 -148,腾讯,2.1.3,工业物联网,32 -74,HoneyWell,2.1.3,工业物联网,30 -100,Synopsys,1.3.1,设计研发,29 -85,Dassault,1.3.1,设计研发,29 -86,Dell EMC,1.1,工业自动化,28 -99,Siemens,1.3.1,设计研发,27 -97,General Electric,2.1.3,工业物联网,27 -106,阿里巴巴,2.1.3,工业物联网,27 -126,华为,2.1.3,工业物联网,26 -105,Intel,1.1,工业自动化,25 -80,Salesforce,2.1.1,开发工具,25 -79,PTC,2.1.2,工业模型库,25 -108,百度,2.1.3,工业物联网,24 -84,Bosch,2.1.2,工业模型库,22 -58,用友,2.1.2,工业模型库,22 -39,Autodesk,1.3.1,设计研发,21 -97,General Electric,1.3.3,生产制造,21 -106,阿里巴巴,1.1,工业自动化,21 -85,Dassault,2.1.1,开发工具,21 -126,华为,1.1,工业自动化,21 -99,Siemens,1.3.3,生产制造,20 -99,Siemens,2.3,边缘层,20 -106,阿里巴巴,2.1.1,开发工具,19 -126,华为,2.3,边缘层,19 -75,IBM,1.3.3,生产制造,19 -94,Mitsubishi,1.1,工业自动化,19 -73,FANUC,2.1.3,工业物联网,18 -81,SAP,2.1.2,工业模型库,18 -95,Schneider,2.3,边缘层,18 -155,小米,2.3,边缘层,17 -148,腾讯,2.1.1,开发工具,17 -124,海尔,2.3,边缘层,16 -159,徐工集团,2.1.2,工业模型库,16 -126,华为,1.2,工业互联网网络,15 -93,Cadence,1.3.1,设计研发,13 -106,阿里巴巴,1.2,工业互联网网络,12 -84,Bosch,2.3,边缘层,12 -13,东方国信,2.1.3.7,制造类API,11 -13,东方国信,2.1.3.4,应用管理服务,11 -13,东方国信,2.1.3.5,容器服务,10 -79,PTC,2.1.3.2,平台基础服务,10 -67,中国移动,1.2,工业互联网网络,10 -79,PTC,2.1.3.1,物联网服务,9 -79,PTC,2.1.3.4,应用管理服务,9 -103,STMicroelectronics ,1.1.1,工业计算芯片,9 -13,东方国信,2.1.3.1,物联网服务,9 -13,东方国信,2.1.3.3,工业引擎服务,8 -79,PTC,2.1.3.5,容器服务,8 -79,PTC,2.1.4.1,工业大数据存储,7 -13,东方国信,2.1.3.6,微服务,7 -79,PTC,2.1.3.7,制造类API,7 -81,SAP,2.1.4.1,工业大数据存储,7 -81,SAP,2.1.4.2,工业大数据管理,7 -79,PTC,2.1.3.6,微服务,7 -79,PTC,2.3.3,协议转换,6 -79,PTC,2.1.3.3,工业引擎服务,6 -16,东土科技,2.3.1,工业数据接入,6 -150,唯捷创芯,1.1.1,工业计算芯片,6 -49,数码大方,1.3.1.1,计算机辅助设计CAD,6 -79,PTC,2.3.1,工业数据接入,6 -47,首自信,2.1.3.6,微服务,6 -56,芯愿景,1.1.1,工业计算芯片,6 -169,中芯国际,1.1.1,工业计算芯片,6 -97,General Electric,1.2,工业互联网网络,6 -46,适创科技,1.3.1.2,计算机辅助工程CAE,6 -47,首自信,2.1.2.1,数据算法模型,6 -13,东方国信,2.1.3.2,平台基础服务,6 -16,东土科技,1.1.3,工业服务器,5 -161,研华科技,2.3.3,协议转换,5 -16,东土科技,2.3.3,协议转换,5 -22,航天云网,2.1.3.6,微服务,5 -168,中控技术,2.3.3,协议转换,5 -13,东方国信,2.3.2,边缘数据处理,5 -22,航天云网,2.3.1,工业数据接入,5 -153,武汉开目,1.3.1.1,计算机辅助设计CAD,5 -69,紫光集团,1.1.1,工业计算芯片,5 -22,航天云网,2.3.3,协议转换,5 -127,华为海思,1.1.1,工业计算芯片,5 -6,安世亚太,2.1.2.1,数据算法模型,5 -79,PTC,2.1.4.2,工业大数据管理,5 -23,和利时,2.3.3,协议转换,5 -42,山大华天,1.3.1.1,计算机辅助设计CAD,5 -113,飞腾信息,1.1.1,工业计算芯片,5 -167,中环股份,1.1.1,工业计算芯片,5 -78,OutSystems,2.1.1.5,数字孪生建模工具,4 -32,兰光创新,1.2.3,数据互通,4 -68,中望软件,1.3.1.2,计算机辅助工程CAE,4 -78,OutSystems,2.1.1.2,低代码开发工具,4 -6,安世亚太,2.1.2.4,行业机理模型,4 -165,智能云科,2.1.2.2,业务流程模型,4 -24,华大电子,1.1.1,工业计算芯片,4 -62,云道智造,2.1.2.2,业务流程模型,4 -23,和利时,2.3.2,边缘数据处理,4 -16,东土科技,2.3.2,边缘数据处理,4 -6,安世亚太,2.1.2.3,研发仿真模型,4 -22,航天云网,2.1.3.4,应用管理服务,4 -71,Altair,1.3.1.2,计算机辅助工程CAE,4 -161,研华科技,2.3.2,边缘数据处理,4 -168,中控技术,2.3.2,边缘数据处理,4 -35,凌昊智能,1.1.3,工业服务器,4 -33,蓝谷信息,2.1.2.4,行业机理模型,4 -57,亚控科技,2.3.3,协议转换,4 -129,华中数控,1.1.2,工业控制器,4 -13,东方国信,2.3.1,工业数据接入,4 -104,Infineon,1.1.1,工业计算芯片,4 -131,九物互联,2.1.1.2,低代码开发工具,4 -95,Schneider,1.2.3,数据互通,4 -149,天泽智云,2.1.2.4,行业机理模型,4 -42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,4 -135,浪潮,2.1.3.7,制造类API,4 -117,格创东智,2.1.1.4,组态建模工具,4 -82,Uptake,2.1.2.4,行业机理模型,4 -57,亚控科技,2.3.2,边缘数据处理,4 -43,神舟软件,1.3.1.6,产品生命周期管理PLM,4 -145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,4 -123,海得控制,1.1.2,工业控制器,4 -38,牛刀,2.1.1.5,数字孪生建模工具,4 -149,天泽智云,2.1.2.3,研发仿真模型,4 -147,拓邦股份,1.1.2,工业控制器,4 -6,安世亚太,2.1.2.2,业务流程模型,4 -4,爱创科技,1.2.2,标识解析,3 -36,龙芯中科,1.1.1,工业计算芯片,3 -33,蓝谷信息,2.1.2.2,业务流程模型,3 -115,富士康,1.1.3,工业服务器,3 -49,数码大方,2.1.2.1,数据算法模型,3 -49,数码大方,1.3.3.1,制造执行系统MES,3 -23,和利时,2.1.3.6,微服务,3 -49,数码大方,2.1.2.2,业务流程模型,3 -64,中电智科,1.1.2,工业控制器,3 -49,数码大方,1.3.1.6,产品生命周期管理PLM,3 -49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,3 -47,首自信,2.1.2.4,行业机理模型,3 -47,首自信,2.1.1.2,低代码开发工具,3 -62,云道智造,2.1.2.4,行业机理模型,3 -117,格创东智,2.1.1.2,低代码开发工具,3 -60,宇动源,2.1.1.1,算法建模工具,3 -26,寄云科技,2.1.3.1,物联网服务,3 -117,格创东智,2.1.1.1,算法建模工具,3 -26,寄云科技,2.1.3.3,工业引擎服务,3 -44,圣邦微电子,1.1.1,工业计算芯片,3 -62,云道智造,1.3.1.2,计算机辅助工程CAE,3 -26,寄云科技,2.1.3.6,微服务,3 -6,安世亚太,1.3.1.2,计算机辅助工程CAE,3 -57,亚控科技,2.3.1,工业数据接入,3 -3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,3 -116,概伦电子,1.3.1.7,电子设计自动化EDA,3 -3,艾克斯特,1.3.1.6,产品生命周期管理PLM,3 -31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,3 -60,宇动源,2.1.1.2,低代码开发工具,3 -65,中国电信,1.2.1,网络互联,3 -23,和利时,2.3.1,工业数据接入,3 -68,中望软件,1.3.1.1,计算机辅助设计CAD,3 -87,Texas Instruments,1.1.1,工业计算芯片,3 -149,天泽智云,2.1.2.2,业务流程模型,3 -120,广州数控,1.2.3,数据互通,3 -146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,3 -144,树根互联,2.1.2.4,行业机理模型,3 -22,航天云网,2.1.3.7,制造类API,3 -80,Salesforce,1.3.4,企业运营管理,3 -81,SAP,1.3.4,企业运营管理,3 -82,Uptake,2.1.2.1,数据算法模型,3 -82,Uptake,2.1.2.2,业务流程模型,3 -111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,3 -135,浪潮,2.1.3.4,应用管理服务,3 -12,大唐软件,1.2.1,网络互联,3 -135,浪潮,2.1.3.3,工业引擎服务,3 -88,HPE,1.1.3,工业服务器,3 -89,Rockwell,1.1.2,工业控制器,3 -9,北京航天测控,1.3.3.6,运维保障系统MRO,3 -135,浪潮,1.1.3,工业服务器,3 -90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,3 -131,九物互联,2.1.1.4,组态建模工具,3 -13,东方国信,1.2.2,标识解析,3 -101,Analog Devices,1.1.1,工业计算芯片,3 -127,华为海思,1.1.3,工业服务器,3 -153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,3 -79,PTC,2.3.2,边缘数据处理,3 -161,研华科技,2.3.1,工业数据接入,3 -168,中控技术,1.3.3.2,分布式控制系统DCS,3 -22,航天云网,2.1.3.3,工业引擎服务,3 -72,ANSYS,1.3.1.2,计算机辅助工程CAE,3 -22,航天云网,1.2.2,标识解析,3 -20,海基科技,1.3.1.2,计算机辅助工程CAE,3 -119,广联达,1.3.1.1,计算机辅助设计CAD,3 -168,中控技术,2.3.1,工业数据接入,3 -79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,3 -165,智能云科,2.1.2.1,数据算法模型,3 -79,PTC,1.3.1.6,产品生命周期管理PLM,3 -79,PTC,1.3.1.1,计算机辅助设计CAD,3 -166,中国电子科技网络信息安全,1.2.3,数据互通,3 -165,智能云科,2.1.2.4,行业机理模型,3 -58,用友,1.3.1.6,产品生命周期管理PLM,2 -117,格创东智,2.1.1.3,流程开发工具,2 -70,ABB,1.3.3.2,分布式控制系统DCS,2 -10,北京英贝思,1.3.3.5,企业资产管理系统EAM,2 -102,Amazon AWS,2.1.4,工业大数据,2 -99,Siemens,1.1.2,工业控制器,2 -74,HoneyWell,1.3.3.2,分布式控制系统DCS,2 -77,Oracle,1.3.3.6,运维保障系统MRO,2 -77,Oracle,1.3.4,企业运营管理,2 -49,数码大方,2.1.2.4,行业机理模型,2 -50,索为系统,1.3.1.5,产品数据管理PDM,2 -89,Rockwell,1.2.1,网络互联,2 -58,用友,1.2.2,标识解析,2 -78,OutSystems,2.1.1.1,算法建模工具,2 -56,芯愿景,1.3.1.7,电子设计自动化EDA,2 -111,鼎捷软件,1.3.4.1,企业资源计划ERP,2 -57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,2 -78,OutSystems,2.1.1.3,流程开发工具,2 -61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,2 -83,Emerson,1.3.3.2,分布式控制系统DCS,2 -82,Uptake,2.1.2.3,研发仿真模型,2 -60,宇动源,2.1.1.5,数字孪生建模工具,2 -60,宇动源,2.1.1.4,组态建模工具,2 -62,云道智造,2.1.2.1,数据算法模型,2 -33,蓝谷信息,2.1.2.3,研发仿真模型,2 -48,曙光信息,1.2.2,标识解析,2 -22,航天云网,1.3.3.6,运维保障系统MRO,2 -26,寄云科技,2.1.3.2,平台基础服务,2 -144,树根互联,2.1.2.2,业务流程模型,2 -25,华大九天,1.3.1.7,电子设计自动化EDA,2 -23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,2 -138,启明信息,1.3.1.5,产品数据管理PDM,2 -23,和利时,1.3.3.1,制造执行系统MES,2 -22,航天云网,2.3.2,边缘数据处理,2 -22,航天云网,2.1.3.5,容器服务,2 -14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,2 -22,航天云网,2.1.3.1,物联网服务,2 -22,航天云网,2.1.1.5,数字孪生建模工具,2 -22,航天云网,2.1.1.3,流程开发工具,2 -22,航天云网,2.1.1.2,低代码开发工具,2 -22,航天云网,2.1.1.1,算法建模工具,2 -141,上海新华控制,1.3.3.2,分布式控制系统DCS,2 -26,寄云科技,2.1.3.5,容器服务,2 -2,706所,1.1.3,工业服务器,2 -124,海尔,1.2.1,网络互联,2 -168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,2 -143,沈阳自动化研究所,2.1.1.2,低代码开发工具,2 -168,中控技术,1.1.2,工业控制器,2 -143,沈阳自动化研究所,2.1.1.3,流程开发工具,2 -164,震坤行,1.3.3.6,运维保障系统MRO,2 -163,优也科技,2.1.4.2.2,数据安全管理,2 -143,沈阳自动化研究所,2.1.1.4,组态建模工具,2 -156,芯禾科技,1.3.1.7,电子设计自动化EDA,2 -143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,2 -144,树根互联,2.1.2.1,数据算法模型,2 -15,东软集团,1.3.3.5,企业资产管理系统EAM,2 -149,天泽智云,2.1.2.1,数据算法模型,2 -26,寄云科技,2.1.3.4,应用管理服务,2 -144,树根互联,2.1.2.3,研发仿真模型,2 -26,寄云科技,2.1.3.7,制造类API,2 -135,浪潮,2.1.3.1,物联网服务,2 -117,格创东智,2.1.1.5,数字孪生建模工具,2 -134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,2 -13,东方国信,2.3.3,协议转换,2 -38,牛刀,2.1.1.2,低代码开发工具,2 -38,牛刀,2.1.1.1,算法建模工具,2 -13,东方国信,2.1.4.1.4,时序数据库,2 -34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,2 -135,浪潮,2.1.3.2,平台基础服务,2 -128,华伍股份,1.1.2,工业控制器,2 -47,首自信,2.1.2.2,业务流程模型,2 -135,浪潮,2.1.3.5,容器服务,2 -135,浪潮,2.1.3.6,微服务,2 -131,九物互联,2.1.1.1,算法建模工具,2 -99,Siemens,1.2.1,网络互联,1 -13,东方国信,2.1.4.1.2,分布式数据库,1 -131,九物互联,2.1.1.3,流程开发工具,1 -111,鼎捷软件,1.3.3.1,制造执行系统MES,1 -129,华中数控,1.2.3,数据互通,1 -13,东方国信,2.1.4.2.1,数据质量管理,1 -126,华为,2.1.1.5,数字孪生建模工具,1 -130,金蝶,1.3.4.1,企业资源计划ERP,1 -96,Cisco,1.2.3,数据互通,1 -91,Moxa,1.2.1,网络互联,1 -132,科远智慧,1.3.3.2,分布式控制系统DCS,1 -133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,1 -92,Omron,1.3.3.4,可编程逻揖控制系统PLC,1 -108,百度,2.2,IaaS,1 -14,东华软件,1.3.4.3,人力资源管理HRM,1 -125,华数机器人,1.2.3,数据互通,1 -139,容知日新,1.3.3.7,故障预测与健康管理PHM,1 -89,Rockwell,1.3.3.1,制造执行系统MES,1 -135,浪潮,1.3.4.1,企业资源计划ERP,1 -137,美林数据,2.1.4.2.1,数据质量管理,1 -137,美林数据,2.1.4.1.3,实时数据库,1 -84,Bosch,2.1.4,工业大数据,1 -135,浪潮,2.2,IaaS,1 -109,宝信软件,1.3.3.1,制造执行系统MES,1 -18,国能智深,1.3.3.2,分布式控制系统DCS,1 -154,西格数据,2.1.4.1.2,分布式数据库,1 -45,石化盈科,1.3.4.1,企业资源计划ERP,1 -115,富士康,2.1.4,工业大数据,1 -38,牛刀,2.1.1.3,流程开发工具,1 -38,牛刀,2.1.1.4,组态建模工具,1 -117,格创东智,2.1.4.2.1,数据质量管理,1 -117,格创东智,2.1.4.1.1,关系型数据库,1 -42,山大华天,1.3.1.3,计算机辅助制造CAM,1 -43,神舟软件,1.3.1.5,产品数据管理PDM,1 -45,石化盈科,1.3.3.1,制造执行系统MES,1 -45,石化盈科,2.1.4.1.2,分布式数据库,1 -31,昆仑数据,2.1.4.2.1,数据质量管理,1 -45,石化盈科,2.1.4.1.3,实时数据库,1 -45,石化盈科,2.1.4.1.4,时序数据库,1 -45,石化盈科,2.1.4.2.1,数据质量管理,1 -45,石化盈科,2.1.4.2.2,数据安全管理,1 -49,数码大方,2.1.2.3,研发仿真模型,1 -47,首自信,2.1.1.1,算法建模工具,1 -47,首自信,2.1.1.3,流程开发工具,1 -47,首自信,2.1.1.4,组态建模工具,1 -33,蓝谷信息,2.1.2.1,数据算法模型,1 -31,昆仑数据,2.1.4.1.3,实时数据库,1 -154,西格数据,2.1.4.2.2,数据安全管理,1 -70,ABB,1.3.3.4,可编程逻揖控制系统PLC,1 -163,优也科技,2.1.4.1.1,关系型数据库,1 -163,优也科技,2.1.4.1.4,时序数据库,1 -165,智能云科,2.1.2.3,研发仿真模型,1 -168,中控技术,1.3.3.1,制造执行系统MES,1 -47,首自信,2.1.2.3,研发仿真模型,1 -21,Hexagon,1.3.1.3,计算机辅助制造CAM,1 -22,航天云网,2.1.1.4,组态建模工具,1 -22,航天云网,2.1.3.2,平台基础服务,1 -23,和利时,1.3.3.2,分布式控制系统DCS,1 -31,昆仑数据,2.1.4.1.1,关系型数据库,1 -66,中国联通,1.2.1,网络互联,1 -23,和利时,1.3.3.4,可编程逻揖控制系统PLC,1 -118,工邦邦,1.3.3.6,运维保障系统MRO,1 -1,51WORLD,2.1.1.5,数字孪生建模工具,1 -62,云道智造,2.1.2.3,研发仿真模型,1 -117,格创东智,2.1.4.2.2,数据安全管理,1 -3,艾克斯特,1.3.4.1,企业资源计划ERP,1 -60,宇动源,2.1.1.3,流程开发工具,1 -126,华为,2.2,IaaS,1 +53,天融信,1.4.2.3,工控漏洞扫描,50 +63,长扬科技,1.4.4.5,安全态势感知,50 +135,浪潮,1.3.2.1,供应链管理SCM,50 +41,启明星辰,1.4.3.2,流量检测,50 +140,山石网科,1.4.5.1,恶意代码检测系统,50 +53,天融信,1.4.5.8,数据加密,50 +13,东方国信,2.1.3.4,应用管理服务,46 +54,网御星云,1.4.4.3,接入认证,45 +53,天融信,1.4.4.4,工业应用行为监控,45 +11,北信源,1.4.4.2,密钥管理,45 +76,MasterCAM,1.3.1.3,计算机辅助制造CAM,45 +50,索为系统,1.3.1.5,产品数据管理PDM,45 +37,绿盟,1.4.4.3,接入认证,45 +79,PTC,2.1.3.2,平台基础服务,45 +55,威努特,1.4.4.4,工业应用行为监控,45 +27,江南天安,1.4.4.2,密钥管理,45 +116,概伦电子,1.3.1.7,电子设计自动化EDA,44 +135,浪潮,2.1.3.2,平台基础服务,44 +79,PTC,2.1.3.1,物联网服务,44 +135,浪潮,2.1.3.3,工业引擎服务,44 +152,卫士通,1.4.4.1,身份鉴别与访问控制,43 +22,航天云网,2.1.3.4,应用管理服务,43 +22,航天云网,2.1.3.5,容器服务,43 +22,航天云网,2.1.3.3,工业引擎服务,43 +13,东方国信,2.1.3.1,物联网服务,43 +79,PTC,2.1.3.5,容器服务,43 +79,PTC,2.1.3.4,应用管理服务,43 +14,东华软件,1.3.4.3,人力资源管理HRM,43 +13,东方国信,2.1.3.7,制造类API,43 +22,航天云网,2.1.3.7,制造类API,43 +13,东方国信,2.1.3.5,容器服务,43 +138,启明信息,1.3.1.5,产品数据管理PDM,43 +13,东方国信,2.1.3.2,平台基础服务,43 +13,东方国信,2.1.3.3,工业引擎服务,43 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,42 +135,浪潮,2.1.3.7,制造类API,42 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,42 +79,PTC,2.1.3.3,工业引擎服务,42 +135,浪潮,2.1.3.5,容器服务,42 +79,PTC,2.1.3.7,制造类API,42 +135,浪潮,2.1.3.1,物联网服务,42 +79,PTC,2.1.3.6,微服务,42 +112,东华测试,1.3.3.7,故障预测与健康管理PHM,41 +26,寄云科技,2.1.3.4,应用管理服务,41 +22,航天云网,2.1.3.1,物联网服务,41 +45,石化盈科,1.3.4.2,客户关系管理CRM,41 +22,航天云网,2.1.3.2,平台基础服务,40 +43,神舟软件,1.3.1.5,产品数据管理PDM,40 +42,山大华天,1.3.1.3,计算机辅助制造CAM,40 +58,用友,1.3.4.3,人力资源管理HRM,40 +130,金蝶,1.3.4.2,客户关系管理CRM,40 +26,寄云科技,2.1.3.5,容器服务,40 +26,寄云科技,2.1.3.2,平台基础服务,40 +58,用友,1.3.4.2,客户关系管理CRM,40 +56,芯愿景,1.3.1.7,电子设计自动化EDA,39 +25,华大九天,1.3.1.7,电子设计自动化EDA,39 +68,中望软件,1.3.1.3,计算机辅助制造CAM,39 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,38 +48,曙光信息,1.2.2,标识解析,38 +46,适创科技,1.3.1.2,计算机辅助工程CAE,38 +135,浪潮,2.1.3.4,应用管理服务,38 +133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,38 +3,艾克斯特,1.3.1.5,产品数据管理PDM,38 +130,金蝶,1.3.4.3,人力资源管理HRM,38 +71,Altair,1.3.1.2,计算机辅助工程CAE,38 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,38 +158,信大捷安,1.4.4.1,身份鉴别与访问控制,38 +22,航天云网,2.1.3.6,微服务,38 +58,用友,1.3.1.6,产品生命周期管理PLM,38 +9,北京航天测控,1.3.3.7,故障预测与健康管理PHM,38 +23,和利时,2.1.3.6,微服务,38 +88,HPE,1.1.3,工业服务器,37 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,37 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,37 +58,用友,1.2.2,标识解析,36 +120,广州数控,1.2.3,数据互通,36 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,36 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,36 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,36 +15,东软集团,1.3.3.5,企业资产管理系统EAM,36 +20,海基科技,1.3.1.2,计算机辅助工程CAE,36 +26,寄云科技,2.1.3.7,制造类API,36 +135,浪潮,2.1.3.6,微服务,36 +26,寄云科技,2.1.3.3,工业引擎服务,35 +42,山大华天,1.3.1.1,计算机辅助设计CAD,35 +162,壹进制,1.4.5.7,数据恢复,35 +37,绿盟,1.4.5.2,数据防泄漏系统,35 +162,壹进制,1.4.5.6,数据容灾备份,35 +119,广联达,1.3.1.1,计算机辅助设计CAD,35 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,35 +140,山石网科,1.4.5.4,数据脱敏,35 +168,中控技术,2.3.1,工业数据接入,35 +114,富勒科技,1.3.5.1,仓储物流管理WMS,35 +140,山石网科,1.4.5.9,数据防火墙,35 +53,天融信,1.4.5.7,数据恢复,35 +5,安华金和,1.4.5.5,敏感数据发现与监控,35 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,35 +53,天融信,1.4.5.2,数据防泄漏系统,35 +5,安华金和,1.4.5.9,数据防火墙,35 +151,唯智信息,1.3.5.1,仓储物流管理WMS,35 +53,天融信,1.4.5.6,数据容灾备份,35 +52,天空卫士,1.4.5.5,敏感数据发现与监控,35 +5,安华金和,1.4.5.4,数据脱敏,35 +47,首自信,2.1.3.6,微服务,35 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,34 +55,威努特,1.4.2.2,工控主机卫士,34 +79,PTC,2.3.1,工业数据接入,34 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,34 +109,宝信软件,1.3.3.1,制造执行系统MES,34 +59,优特捷,1.4.2.5,安全日志与审计,34 +53,天融信,1.4.3.5,负载均衡,34 +53,天融信,1.4.3.4,攻击溯源,34 +30,可信华泰,1.4.2.6,隐私计算,34 +122,国民技术,1.4.2.6,隐私计算,34 +37,绿盟,1.4.3.1,网络漏洞扫描和补丁管理,34 +110,晨科软件,1.3.3.5,企业资产管理系统EAM,34 +37,绿盟,1.4.2.2,工控主机卫士,34 +4,爱创科技,1.2.2,标识解析,34 +40,奇安信,1.4.2.5,安全日志与审计,34 +47,首自信,2.1.1.2,低代码开发工具,34 +41,启明星辰,1.4.3.1,网络漏洞扫描和补丁管理,34 +41,启明星辰,1.4.3.4,攻击溯源,34 +41,启明星辰,1.4.3.5,负载均衡,34 +164,震坤行,1.3.3.6,运维保障系统MRO,34 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,34 +2,706所,1.1.3,工业服务器,33 +107,安恒信息,1.4.3.3,APT检测,33 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,33 +49,数码大方,1.3.1.6,产品生命周期管理PLM,33 +13,东方国信,2.1.3.6,微服务,33 +160,亚信科技,1.4.1.3,防毒墙,33 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,33 +26,寄云科技,2.1.3.1,物联网服务,33 +68,中望软件,1.3.1.1,计算机辅助设计CAD,33 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,33 +147,拓邦股份,1.1.2,工业控制器,33 +79,PTC,1.3.1.1,计算机辅助设计CAD,33 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,33 +77,Oracle,1.3.3.6,运维保障系统MRO,33 +23,和利时,2.3.2,边缘数据处理,32 +6,安世亚太,2.1.2.4,行业机理模型,32 +79,PTC,1.3.1.6,产品生命周期管理PLM,32 +47,首自信,2.1.2.3,研发仿真模型,32 +35,凌昊智能,1.1.3,工业服务器,32 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,32 +168,中控技术,2.3.3,协议转换,32 +127,华为海思,1.1.3,工业服务器,32 +118,工邦邦,1.3.3.6,运维保障系统MRO,31 +64,中电智科,1.1.2,工业控制器,31 +13,东方国信,2.3.1,工业数据接入,31 +161,研华科技,2.3.1,工业数据接入,31 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,31 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,31 +1,51WORLD,2.1.1.5,数字孪生建模工具,31 +22,航天云网,2.3.2,边缘数据处理,31 +70,ABB,1.3.3.4,可编程逻揖控制系统PLC,31 +144,树根互联,2.1.2.1,数据算法模型,31 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,31 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,31 +166,中国电子科技网络信息安全,1.2.3,数据互通,31 +57,亚控科技,2.3.1,工业数据接入,31 +161,研华科技,2.3.3,协议转换,31 +47,首自信,2.1.2.4,行业机理模型,30 +49,数码大方,2.1.2.3,研发仿真模型,30 +47,首自信,2.1.2.2,业务流程模型,30 +13,东方国信,2.3.2,边缘数据处理,30 +13,东方国信,1.2.2,标识解析,30 +79,PTC,2.3.2,边缘数据处理,30 +8,梆梆安全,1.4.1.1,工业防火墙,30 +33,蓝谷信息,2.1.2.2,业务流程模型,30 +144,树根互联,2.1.2.2,业务流程模型,30 +125,华数机器人,1.2.3,数据互通,30 +165,智能云科,2.1.2.3,研发仿真模型,30 +47,首自信,2.1.1.4,组态建模工具,30 +47,首自信,2.1.1.1,算法建模工具,29 +78,OutSystems,2.1.1.4,组态建模工具,29 +13,东方国信,2.3.3,协议转换,29 +6,安世亚太,2.1.2.2,业务流程模型,29 +128,华伍股份,1.1.2,工业控制器,29 +49,数码大方,1.3.1.1,计算机辅助设计CAD,29 +68,中望软件,1.3.1.2,计算机辅助工程CAE,29 +22,航天云网,2.3.3,协议转换,29 +14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,29 +168,中控技术,2.3.2,边缘数据处理,28 +121,广州智臣,1.4.2.4,安全隔离与信息交换系统,28 +62,云道智造,1.3.1.2,计算机辅助工程CAE,28 +96,Cisco,1.2.3,数据互通,28 +33,蓝谷信息,2.1.2.3,研发仿真模型,28 +123,海得控制,1.1.2,工业控制器,28 +32,兰光创新,1.2.3,数据互通,28 +17,国保金泰,1.4.2.4,安全隔离与信息交换系统,28 +51,天地和兴,1.4.2.1,工控安全监测与审计,28 +6,安世亚太,2.1.2.1,数据算法模型,28 +66,中国联通,1.2.1,网络互联,28 +161,研华科技,2.3.2,边缘数据处理,28 +19,国泰网信,1.4.2.1,工控安全监测与审计,28 +23,和利时,2.3.3,协议转换,28 +149,天泽智云,2.1.2.2,业务流程模型,27 +79,PTC,2.3.3,协议转换,27 +78,OutSystems,2.1.1.1,算法建模工具,27 +126,华为,2.1.1.5,数字孪生建模工具,27 +165,智能云科,2.1.2.4,行业机理模型,27 +132,科远智慧,1.3.3.2,分布式控制系统DCS,27 +135,浪潮,1.1.3,工业服务器,27 +22,航天云网,2.1.1.1,算法建模工具,27 +26,寄云科技,2.1.3.6,微服务,27 +23,和利时,1.3.3.4,可编程逻揖控制系统PLC,27 +33,蓝谷信息,2.1.2.4,行业机理模型,27 +9,北京航天测控,1.3.3.6,运维保障系统MRO,27 +12,大唐软件,1.2.1,网络互联,27 +83,Emerson,1.3.3.2,分布式控制系统DCS,27 +47,首自信,2.1.2.1,数据算法模型,26 +16,东土科技,1.1.3,工业服务器,26 +82,Uptake,2.1.2.4,行业机理模型,26 +16,东土科技,2.3.1,工业数据接入,26 +53,天融信,1.4.1.5,统一威胁管理系统,26 +78,OutSystems,2.1.1.2,低代码开发工具,26 +95,Schneider,1.2.3,数据互通,26 +16,东土科技,2.3.2,边缘数据处理,26 +49,数码大方,2.1.2.1,数据算法模型,26 +16,东土科技,2.3.3,协议转换,26 +168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,26 +22,航天云网,1.2.2,标识解析,26 +165,智能云科,2.1.2.2,业务流程模型,26 +38,牛刀,2.1.1.1,算法建模工具,26 +149,天泽智云,2.1.2.4,行业机理模型,26 +22,航天云网,2.1.1.4,组态建模工具,26 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,26 +33,蓝谷信息,2.1.2.1,数据算法模型,26 +82,Uptake,2.1.2.3,研发仿真模型,26 +6,安世亚太,2.1.2.3,研发仿真模型,25 +82,Uptake,2.1.2.1,数据算法模型,25 +22,航天云网,2.1.1.3,流程开发工具,25 +53,天融信,1.4.5.3,数据审计系统,25 +129,华中数控,1.1.2,工业控制器,25 +143,沈阳自动化研究所,2.1.1.1,算法建模工具,25 +23,和利时,2.3.1,工业数据接入,25 +57,亚控科技,2.3.3,协议转换,25 +65,中国电信,1.2.1,网络互联,25 +41,启明星辰,1.4.1.2,下一代防火墙,25 +49,数码大方,2.1.2.2,业务流程模型,25 +140,山石网科,1.4.1.4,入侵检测系统,25 +41,启明星辰,1.4.1.5,统一威胁管理系统,25 +57,亚控科技,2.3.2,边缘数据处理,25 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,25 +49,数码大方,2.1.2.4,行业机理模型,24 +22,航天云网,2.1.1.2,低代码开发工具,24 +62,云道智造,2.1.2.1,数据算法模型,24 +7,百望,2.2,IaaS,24 +168,中控技术,1.1.2,工业控制器,24 +18,国能智深,1.3.3.2,分布式控制系统DCS,24 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,24 +53,天融信,1.4.1.4,入侵检测系统,24 +149,天泽智云,2.1.2.3,研发仿真模型,24 +45,石化盈科,1.3.4.1,企业资源计划ERP,24 +136,美的,1.2.1,网络互联,24 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,24 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,24 +135,浪潮,1.3.4.1,企业资源计划ERP,24 +22,航天云网,2.3.1,工业数据接入,24 +115,富士康,1.1.3,工业服务器,24 +38,牛刀,2.1.1.3,流程开发工具,24 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,24 +62,云道智造,2.1.2.4,行业机理模型,23 +62,云道智造,2.1.2.3,研发仿真模型,23 +144,树根互联,2.1.2.3,研发仿真模型,23 +5,安华金和,1.4.5.3,数据审计系统,23 +89,Rockwell,1.3.3.1,制造执行系统MES,23 +58,用友,1.3.4.1,企业资源计划ERP,23 +60,宇动源,2.1.1.5,数字孪生建模工具,23 +111,鼎捷软件,1.3.3.1,制造执行系统MES,23 +82,Uptake,2.1.2.2,业务流程模型,23 +60,宇动源,2.1.1.1,算法建模工具,23 +165,智能云科,2.1.2.1,数据算法模型,23 +22,航天云网,2.1.4.1.3,实时数据库,22 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,22 +55,威努特,1.4.1.2,下一代防火墙,22 +60,宇动源,2.1.1.2,低代码开发工具,22 +144,树根互联,2.1.2.4,行业机理模型,22 +169,中芯国际,1.1.1,工业计算芯片,22 +53,天融信,1.4.3.3,APT检测,22 +129,华中数控,1.2.3,数据互通,22 +89,Rockwell,1.1.2,工业控制器,22 +78,OutSystems,2.1.1.3,流程开发工具,22 +3,艾克斯特,1.3.4.1,企业资源计划ERP,22 +131,九物互联,2.1.1.3,流程开发工具,22 +140,山石网科,1.4.5.3,数据审计系统,22 +38,牛刀,2.1.1.4,组态建模工具,22 +99,Siemens,1.1.2,工业控制器,22 +37,绿盟,1.4.1.2,下一代防火墙,21 +103,STMicroelectronics ,1.1.1,工业计算芯片,21 +62,云道智造,2.1.2.2,业务流程模型,21 +149,天泽智云,2.1.2.1,数据算法模型,21 +36,龙芯中科,1.1.1,工业计算芯片,21 +47,首自信,2.1.1.3,流程开发工具,21 +45,石化盈科,2.1.4.1.2,分布式数据库,21 +44,圣邦微电子,1.1.1,工业计算芯片,21 +167,中环股份,1.1.1,工业计算芯片,21 +40,奇安信,1.4.3.3,APT检测,21 +130,金蝶,1.3.4.1,企业资源计划ERP,21 +49,数码大方,1.3.3.1,制造执行系统MES,21 +60,宇动源,2.1.1.3,流程开发工具,20 +91,Moxa,1.2.1,网络互联,20 +69,紫光集团,1.1.1,工业计算芯片,20 +70,ABB,1.3.3.2,分布式控制系统DCS,20 +22,航天云网,2.1.1.5,数字孪生建模工具,20 +38,牛刀,2.1.1.2,低代码开发工具,20 +55,威努特,1.4.2.1,工控安全监测与审计,20 +28,金山云,2.2,IaaS,20 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,20 +22,航天云网,2.1.4.2.1,数据质量管理,20 +38,牛刀,2.1.1.5,数字孪生建模工具,20 +23,和利时,1.3.3.1,制造执行系统MES,19 +45,石化盈科,2.1.4.1.4,时序数据库,19 +89,Rockwell,1.2.1,网络互联,19 +37,绿盟,1.4.1.4,入侵检测系统,19 +113,飞腾信息,1.1.1,工业计算芯片,19 +13,东方国信,2.1.4.1.4,时序数据库,19 +23,和利时,1.1.2,工业控制器,19 +60,宇动源,2.1.1.4,组态建模工具,19 +163,优也科技,2.1.4.2.1,数据质量管理,19 +117,格创东智,2.1.1.2,低代码开发工具,19 +117,格创东智,2.1.1.3,流程开发工具,19 +87,Texas Instruments,1.1.1,工业计算芯片,18 +131,九物互联,2.1.1.1,算法建模工具,18 +137,美林数据,2.1.4.2.2,数据安全管理,18 +131,九物互联,2.1.1.4,组态建模工具,18 +154,西格数据,2.1.4.1.2,分布式数据库,18 +63,长扬科技,1.4.1.1,工业防火墙,18 +104,Infineon,1.1.1,工业计算芯片,18 +101,Analog Devices,1.1.1,工业计算芯片,18 +22,航天云网,1.3.3.6,运维保障系统MRO,18 +45,石化盈科,1.3.3.1,制造执行系统MES,18 +168,中控技术,1.3.3.1,制造执行系统MES,17 +24,华大电子,1.1.1,工业计算芯片,17 +13,东方国信,2.1.4.2.2,数据安全管理,17 +31,昆仑数据,2.1.4.2.1,数据质量管理,17 +13,东方国信,2.1.4.1.2,分布式数据库,17 +96,Cisco,1.2.1,网络互联,17 +22,航天云网,2.1.4.2.2,数据安全管理,17 +22,航天云网,2.1.4.1.2,分布式数据库,17 +117,格创东智,2.1.1.1,算法建模工具,17 +163,优也科技,2.1.4.1.4,时序数据库,17 +140,山石网科,1.4.1.5,统一威胁管理系统,17 +154,西格数据,2.1.4.1.4,时序数据库,17 +55,威努特,1.4.1.1,工业防火墙,17 +74,HoneyWell,1.3.3.2,分布式控制系统DCS,17 +117,格创东智,2.1.1.5,数字孪生建模工具,17 +150,唯捷创芯,1.1.1,工业计算芯片,17 +137,美林数据,2.1.4.1.4,时序数据库,17 +163,优也科技,2.1.4.1.1,关系型数据库,16 +124,海尔,1.2.1,网络互联,16 +45,石化盈科,2.1.4.1.1,关系型数据库,16 +117,格创东智,2.1.1.4,组态建模工具,16 +22,航天云网,2.1.4.1.1,关系型数据库,16 +31,昆仑数据,2.1.4.1.1,关系型数据库,16 +137,美林数据,2.1.4.2.1,数据质量管理,16 +163,优也科技,2.1.4.1.2,分布式数据库,15 +137,美林数据,2.1.4.1.2,分布式数据库,15 +55,威努特,1.4.1.3,防毒墙,15 +117,格创东智,2.1.4.1.1,关系型数据库,15 +131,九物互联,2.1.1.2,低代码开发工具,15 +31,昆仑数据,2.1.4.1.3,实时数据库,15 +154,西格数据,2.1.4.2.1,数据质量管理,15 +127,华为海思,1.1.1,工业计算芯片,15 +154,西格数据,2.1.4.2.2,数据安全管理,15 +137,美林数据,2.1.4.1.3,实时数据库,15 +22,航天云网,1.2.1,网络互联,15 +45,石化盈科,2.1.4.1.3,实时数据库,14 +45,石化盈科,2.1.4.2.1,数据质量管理,14 +40,奇安信,1.4.2.1,工控安全监测与审计,14 +163,优也科技,2.1.4.2.2,数据安全管理,14 +133,蓝盾股份,1.4.1.3,防毒墙,14 +154,西格数据,2.1.4.1.1,关系型数据库,14 +31,昆仑数据,2.1.4.2.2,数据安全管理,13 +168,中控技术,1.3.3.2,分布式控制系统DCS,13 +131,九物互联,2.1.1.5,数字孪生建模工具,13 +54,网御星云,1.4.2.4,安全隔离与信息交换系统,13 +154,西格数据,2.1.4.1.3,实时数据库,13 +13,东方国信,2.1.4.1.3,实时数据库,12 +117,格创东智,2.1.4.1.3,实时数据库,12 +13,东方国信,2.1.4.1.1,关系型数据库,12 +126,华为,2.2,IaaS,12 +117,格创东智,2.1.4.2.2,数据安全管理,12 +137,美林数据,2.1.4.1.1,关系型数据库,12 +31,昆仑数据,2.1.4.1.2,分布式数据库,11 +117,格创东智,2.1.4.2.1,数据质量管理,11 +45,石化盈科,2.1.4.2.2,数据安全管理,11 +53,天融信,1.4.1.3,防毒墙,11 +117,格创东智,2.1.4.1.2,分布式数据库,11 +78,OutSystems,2.1.1.5,数字孪生建模工具,11 +117,格创东智,2.1.4.1.4,时序数据库,11 +163,优也科技,2.1.4.1.3,实时数据库,11 +31,昆仑数据,2.1.4.1.4,时序数据库,11 +142,深信服,1.4.1.1,工业防火墙,10 +106,阿里巴巴,2.2,IaaS,10 +13,东方国信,2.1.4.2.1,数据质量管理,10 +54,网御星云,1.4.1.3,防毒墙,10 +148,腾讯,2.2,IaaS,10 +23,和利时,1.3.3.2,分布式控制系统DCS,10 +22,航天云网,2.1.4.1.4,时序数据库,9 +99,Siemens,1.2.1,网络互联,9 +53,天融信,1.4.2.4,安全隔离与信息交换系统,8 +63,长扬科技,1.4.2.4,安全隔离与信息交换系统,8 +135,浪潮,2.2,IaaS,7 +56,芯愿景,1.1.1,工业计算芯片,7 +108,百度,2.2,IaaS,7 +140,山石网科,1.4.1.1,工业防火墙,6 diff --git a/analysis/count_prod.csv b/analysis/count_prod.csv index 494f17d..caea6ca 100644 --- a/analysis/count_prod.csv +++ b/analysis/count_prod.csv @@ -1,82 +1,108 @@ id_product,Name,count -1.4,工业互联网安全,385 -2.1.3,工业物联网,184 -1.4.5,数据安全,150 -1.4.3,网络安全,150 -1.4.2,控制安全,150 -1,供给,125 -1.3,工业软件,119 -1.3.1,设计研发,119 -1.1,工业自动化,114 -2.1.2,工业模型库,103 -2.3,边缘层,102 -2,工业互联网平台,83 -2.1.1,开发工具,82 -1.4.4,平台安全,77 -1.3.2,采购供应,76 -1.1.1,工业计算芯片,67 -1.3.3,生产制造,60 -2.1,PaaS,50 -1.3.5,仓储物流,50 +2.1.3,工业物联网,2810 +1.3.1,设计研发,2246 +1,供给,1525 +1.3.3,生产制造,1296 +2.1.2,工业模型库,1269 +2.1.1,开发工具,1159 +2.3,边缘层,1073 +1.4,工业互联网安全,1012 +1.1,工业自动化,904 +1.3,工业软件,886 +1.2,工业互联网网络,751 +1.4.4,平台安全,709 +1.4.5,数据安全,640 +2.1.4.1,工业大数据存储,595 +1.3.4,企业运营管理,592 +1.4.2,控制安全,529 +2,工业互联网平台,436 +1.4.3,网络安全,430 +1.4.1,设备安全,418 +2.1.4,工业大数据,372 +2.1.4.2,工业大数据管理,342 +2.1,PaaS,323 +1.1.1,工业计算芯片,255 +2.1.3.6,微服务,249 +2.1.2.3,研发仿真模型,241 +2.1.2.2,业务流程模型,241 +1.3.1.2,计算机辅助工程CAE,241 +2.1.2.4,行业机理模型,237 +2.3.1,工业数据接入,237 +1.3.1.1,计算机辅助设计CAD,236 +1.1.2,工业控制器,233 +2.1.2.1,数据算法模型,230 +2.3.2,边缘数据处理,230 +2.3.3,协议转换,227 +2.1.3.2,平台基础服务,212 +2.1.3.4,应用管理服务,211 +1.1.3,工业服务器,211 +2.1.3.5,容器服务,211 +2.1.3.3,工业引擎服务,207 +1.3.1.4,计算机辅助工艺过程设计CAPP,207 +2.1.3.7,制造类API,206 +2.1.3.1,物联网服务,203 +1.3.1.7,电子设计自动化EDA,201 +1.2.3,数据互通,201 +1.3.1.6,产品生命周期管理PLM,200 +1.2.1,网络互联,200 +2.1.1.1,算法建模工具,192 +2.1.1.4,组态建模工具,191 +2.1.1.5,数字孪生建模工具,184 +2.1.1.2,低代码开发工具,184 +2.1.1.3,流程开发工具,177 +1.3.2,采购供应,176 +1.3.1.5,产品数据管理PDM,166 +1.3.1.3,计算机辅助制造CAM,166 +1.2.2,标识解析,164 +1.3.3.2,分布式控制系统DCS,162 +1.3.3.1,制造执行系统MES,155 +1.3.3.4,可编程逻揖控制系统PLC,147 +1.3.3.6,运维保障系统MRO,143 +1.3.4.1,企业资源计划ERP,139 +1.3.3.5,企业资产管理系统EAM,138 +1.3.3.3,数据采集与监视控制系统SCADA,134 +2.1.4.1.2,分布式数据库,125 +2.1.4.2.1,数据质量管理,122 +1.3.4.3,人力资源管理HRM,121 +1.3.4.2,客户关系管理CRM,121 +2.1.4.1.4,时序数据库,120 +1.3.5,仓储物流,120 +1.4.4.1,身份鉴别与访问控制,119 +2.1.4.2.2,数据安全管理,117 +2.1.4.1.1,关系型数据库,117 +1.3.3.7,故障预测与健康管理PHM,116 +2.1.4.1.3,实时数据库,114 +1.4.2.1,工控安全监测与审计,90 +2.2,IaaS,90 +1.4.4.3,接入认证,90 +1.4.4.4,工业应用行为监控,90 +1.4.4.2,密钥管理,90 +1.4.2.4,安全隔离与信息交换系统,85 +1.4.1.3,防毒墙,83 +1.4.1.1,工业防火墙,81 +1.4.3.3,APT检测,76 +1.4.5.9,数据防火墙,70 +1.4.5.7,数据恢复,70 +1.4.5.6,数据容灾备份,70 +1.4.5.5,敏感数据发现与监控,70 +1.4.5.4,数据脱敏,70 +1.4.5.3,数据审计系统,70 +1.4.5.2,数据防泄漏系统,70 +1.3.5.1,仓储物流管理WMS,70 +1.4.3.4,攻击溯源,68 +1.4.3.5,负载均衡,68 +1.4.3.1,网络漏洞扫描和补丁管理,68 +1.4.2.6,隐私计算,68 +1.4.2.5,安全日志与审计,68 +1.4.2.2,工控主机卫士,68 +1.4.1.5,统一威胁管理系统,68 +1.4.1.4,入侵检测系统,68 +1.4.1.2,下一代防火墙,68 1.3.2.1,供应链管理SCM,50 -1.4.5.8,数据加密,50 1.4.5.1,恶意代码检测系统,50 1.4.4.5,安全态势感知,50 1.4.3.6,沙箱类设备,50 1.4.3.2,流量检测,50 1.4.2.7,工控原生安全,50 1.4.2.3,工控漏洞扫描,50 -1.4.1,设备安全,50 -1.2,工业互联网网络,43 -2.3.3,协议转换,37 -2.3.1,工业数据接入,33 -2.1.3.6,微服务,33 -2.3.2,边缘数据处理,30 -2.1.2.4,行业机理模型,30 -2.1.3.4,应用管理服务,29 -1.3.1.1,计算机辅助设计CAD,28 -2.1.2.2,业务流程模型,28 -2.1.2.1,数据算法模型,27 -2.1.3.7,制造类API,27 -1.3.1.2,计算机辅助工程CAE,26 -2.1.3.1,物联网服务,25 -1.1.2,工业控制器,24 -2.1.3.5,容器服务,24 -2.1.3.3,工业引擎服务,23 -2.1.1.2,低代码开发工具,23 -1.1.3,工业服务器,23 -2.1.3.2,平台基础服务,21 -1.3.1.4,计算机辅助工艺过程设计CAPP,20 -2.1.2.3,研发仿真模型,18 -2.1.1.5,数字孪生建模工具,18 -1.3.1.6,产品生命周期管理PLM,18 -1.2.3,数据互通,17 -2.1.1.1,算法建模工具,15 -2.1.1.4,组态建模工具,14 -2.1.4.1,工业大数据存储,14 -1.3.3.2,分布式控制系统DCS,14 -1.2.2,标识解析,13 -1.2.1,网络互联,13 -2.1.4.2,工业大数据管理,12 -1.3.1.7,电子设计自动化EDA,12 -2.1.1.3,流程开发工具,12 -1.3.3.3,数据采集与监视控制系统SCADA,11 -1.3.3.1,制造执行系统MES,10 -1.3.3.6,运维保障系统MRO,10 -1.3.4,企业运营管理,8 -1.3.3.4,可编程逻揖控制系统PLC,7 -1.3.3.5,企业资产管理系统EAM,6 -1.3.4.1,企业资源计划ERP,6 -2.1.4.2.1,数据质量管理,5 -2.1.4.2.2,数据安全管理,5 -1.3.1.5,产品数据管理PDM,5 -2.1.4,工业大数据,4 -2.1.4.1.4,时序数据库,4 -2.1.4.1.1,关系型数据库,3 -2.1.4.1.2,分布式数据库,3 -2.1.4.1.3,实时数据库,3 -2.2,IaaS,3 -1.3.1.3,计算机辅助制造CAM,2 -1.3.3.7,故障预测与健康管理PHM,1 -1.4.4.1,身份鉴别与访问控制,1 -1.3.4.3,人力资源管理HRM,1 +1.4.5.8,数据加密,50 diff --git a/analysis/count_prod_network.png b/analysis/count_prod_network.png new file mode 100644 index 0000000..7c779a7 Binary files /dev/null and b/analysis/count_prod_network.png differ diff --git a/analysis/count_prod_pie.png b/analysis/count_prod_pie.png index b7e8737..8d36d6e 100644 Binary files a/analysis/count_prod_pie.png and b/analysis/count_prod_pie.png differ diff --git a/analysis/dissertation_count.csv b/analysis/dissertation_count.csv new file mode 100644 index 0000000..9b72392 --- /dev/null +++ b/analysis/dissertation_count.csv @@ -0,0 +1,3539 @@ +s_id,id_firm,id_product,ts,is_disrupted,is_removed +8257,49,1.3.1.4,0,1,1.0 +8257,100,1.3.1,1,1, +1369,13,2.1.3.3,0,1,1.0 +1369,106,2.1.3,1,1,1.0 +21519,149,2.1.2.4,0,1,1.0 +21519,58,2.1.2,1,1, +15317,99,2.1,0,1,1.0 +15317,102,2,1,1, +3165,22,2.1.3.3,0,1,1.0 +3165,148,2.1.3,1,1, +5733,36,1.1.1,0,1,1.0 +5733,94,1.1,1,1, +19407,135,2.1.3.5,0,1,1.0 +19407,148,2.1.3,1,1, +13052,79,2.1.3.7,0,1,1.0 +13052,106,2.1.3,1,1, +5599,33,2.1.2.4,0,1,1.0 +5599,79,2.1.2,1,1,1.0 +11157,62,2.1.2.4,0,1,1.0 +11157,159,2.1.2,1,1, +22232,157,1.4.1,0,1,1.0 +22232,126,1.4,1,1, +9164,53,1.4.3.6,0,1,1.0 +9164,142,1.4.3,1,1,1.0 +9164,126,1.4,2,1,1.0 +9164,170,1,3,1,1.0 +1515,13,2.1.3.6,0,1,1.0 +1515,74,2.1.3,1,1, +8906,53,1.4.2.3,0,1,1.0 +8906,142,1.4.2,1,1,1.0 +8906,126,1.4,2,1, +17853,126,1.4,0,1,1.0 +17853,170,1,1,1, +21799,153,1.3.1.4,0,1,1.0 +21799,39,1.3.1,1,1,1.0 +4105,23,1.4.2.7,0,1,1.0 +4105,142,1.4.2,1,1,1.0 +4105,126,1.4,2,1,1.0 +4105,170,1,3,1,1.0 +265,3,1.3.1.6,0,1,1.0 +265,39,1.3.1,1,1,1.0 +4133,23,1.4.2.7,0,1,1.0 +4133,142,1.4.2,1,1, +9153,53,1.4.3.6,0,1,1.0 +9153,142,1.4.3,1,1, +19557,135,2.2,0,1,1.0 +19557,102,2,1,1, +15307,99,2.1,0,1,1.0 +15307,102,2,1,1, +23269,167,1.1.1,0,1,1.0 +23269,106,1.1,1,1, +10688,60,2.1.1.1,0,1,1.0 +10688,148,2.1.1,1,1,1.0 +7749,47,2.1.1.1,0,1,1.0 +7749,148,2.1.1,1,1,1.0 +20568,142,1.4.3,0,1,1.0 +20568,126,1.4,1,1, +15624,103,1.1.1,0,1,1.0 +15624,86,1.1,1,1, +20531,142,1.4.2,0,1,1.0 +20531,126,1.4,1,1,1.0 +20531,170,1,2,1,1.0 +3208,22,2.1.3.4,0,1,1.0 +3208,148,2.1.3,1,1, +8937,53,1.4.2.3,0,1,1.0 +8937,142,1.4.2,1,1,1.0 +8937,126,1.4,2,1, +17870,126,1.4,0,1,1.0 +17870,170,1,1,1, +13057,79,2.1.3.7,0,1,1.0 +13057,148,2.1.3,1,1, +20567,142,1.4.3,0,1,1.0 +20567,126,1.4,1,1, +13692,82,2.1.2.1,0,1,1.0 +13692,79,2.1.2,1,1,1.0 +19120,135,1.3.2.1,0,1,1.0 +19120,58,1.3.2,1,1,1.0 +3737,22,2.3.1,0,1,1.0 +3737,95,2.3,1,1,1.0 +9977,56,1.1.1,0,1,1.0 +9977,86,1.1,1,1,1.0 +10708,60,2.1.1.2,0,1,1.0 +10708,106,2.1.1,1,1, +18799,131,2.1.1.4,0,1,1.0 +18799,80,2.1.1,1,1,1.0 +11345,63,1.4.4.5,0,1,1.0 +11345,0,1.4.4,1,1,1.0 +22248,157,1.4.1,0,1,1.0 +22248,126,1.4,1,1, +10857,60,2.1.1.5,0,1,1.0 +10857,80,2.1.1,1,1, +12657,79,1.3.1.6,0,1,1.0 +12657,85,1.3.1,1,1, +3299,22,2.1.3.5,0,1,1.0 +3299,108,2.1.3,1,1,1.0 +12831,79,2.1.3.2,0,1,1.0 +12831,97,2.1.3,1,1, +4135,23,1.4.2.7,0,1,1.0 +4135,142,1.4.2,1,1, +15346,99,2.1,0,1,1.0 +15346,102,2,1,1, +15346,98,2,1,1,1.0 +6890,41,1.4.5,0,1,1.0 +6890,126,1.4,1,1, +18573,130,1.3.5,0,1,1.0 +18573,106,1.3,1,1, +12769,79,2.1.3.1,0,1,1.0 +12769,74,2.1.3,1,1,1.0 +18594,130,1.3.5,0,1,1.0 +18594,106,1.3,1,1, +18594,29,1.3,1,1, +9470,53,1.4.5.8,0,1,1.0 +9470,41,1.4.5,1,1, +15483,101,1.1.1,0,1,1.0 +15483,86,1.1,1,1, +1462,13,2.1.3.5,0,1,1.0 +1462,74,2.1.3,1,1, +1272,13,2.1.3.1,0,1,1.0 +1272,74,2.1.3,1,1, +13807,82,2.1.2.4,0,1,1.0 +13807,58,2.1.2,1,1, +22549,161,2.3.3,0,1,1.0 +22549,95,2.3,1,1,1.0 +13307,79,2.3.3,0,1,1.0 +13307,155,2.3,1,1, +20549,142,1.4.2,0,1,1.0 +20549,126,1.4,1,1, +3738,22,2.3.1,0,1,1.0 +3738,155,2.3,1,1,1.0 +17349,118,1.3.3.6,0,1,1.0 +17349,75,1.3.3,1,1,1.0 +21549,149,2.1.2.4,0,1,1.0 +21549,79,2.1.2,1,1,1.0 +10257,58,1.2.2,0,1,1.0 +10257,106,1.2,1,1, +9455,53,1.4.5.8,0,1,1.0 +9455,41,1.4.5,1,1,1.0 +9455,126,1.4,2,1,1.0 +9455,170,1,3,1,1.0 +17876,126,1.4,0,1,1.0 +17876,170,1,1,1,1.0 +19140,135,1.3.2.1,0,1,1.0 +19140,130,1.3.2,1,1,1.0 +19140,58,1.3.2,1,1,1.0 +19140,106,1.3,2,1,1.0 +19140,29,1.3,2,1,1.0 +19140,170,1,3,1,1.0 +4116,23,1.4.2.7,0,1,1.0 +4116,142,1.4.2,1,1,1.0 +4116,126,1.4,2,1, +9484,53,1.4.5.8,0,1,1.0 +9484,41,1.4.5,1,1, +22230,157,1.4.1,0,1,1.0 +22230,126,1.4,1,1, +17602,124,1.2.1,0,1,1.0 +17602,106,1.2,1,1, +6107,38,2.1.1.2,0,1,1.0 +6107,148,2.1.1,1,1, +11707,69,1.1.1,0,1,1.0 +11707,126,1.1,1,1, +8905,53,1.4.2.3,0,1,1.0 +8905,142,1.4.2,1,1,1.0 +8905,126,1.4,2,1,1.0 +8905,170,1,3,1,1.0 +299,3,1.3.1.6,0,1,1.0 +299,99,1.3.1,1,1,1.0 +1486,13,2.1.3.5,0,1,1.0 +1486,126,2.1.3,1,1, +2099,14,1.3.3.4,0,1,1.0 +2099,75,1.3.3,1,1,1.0 +9172,53,1.4.3.6,0,1,1.0 +9172,142,1.4.3,1,1, +20204,140,1.4.5.1,0,1,1.0 +20204,41,1.4.5,1,1,1.0 +20204,126,1.4,2,1, +12507,78,2.1.1.5,0,1,1.0 +12507,106,2.1.1,1,1, +6883,41,1.4.5,0,1,1.0 +6883,126,1.4,1,1, +8499,49,2.1.2.2,0,1,1.0 +8499,84,2.1.2,1,1,1.0 +4799,26,2.1.3.7,0,1,1.0 +4799,74,2.1.3,1,1,1.0 +4757,26,2.1.3.7,0,1,1.0 +4757,73,2.1.3,1,1, +1958,13,2.3.2,0,1,1.0 +1958,99,2.3,1,1,1.0 +23137,165,2.1.2.3,0,1,1.0 +23137,79,2.1.2,1,1,1.0 +107,2,1.1.3,0,1,1.0 +107,106,1.1,1,1, +10349,58,1.3.1.6,0,1,1.0 +10349,100,1.3.1,1,1,1.0 +1352,13,2.1.3.3,0,1,1.0 +1352,148,2.1.3,1,1,1.0 +9459,53,1.4.5.8,0,1,1.0 +9459,41,1.4.5,1,1,1.0 +9459,126,1.4,2,1, +20212,140,1.4.5.1,0,1,1.0 +20212,41,1.4.5,1,1,1.0 +20212,126,1.4,2,1, +8242,49,1.3.1.1,0,1,1.0 +8242,100,1.3.1,1,1,1.0 +6748,41,1.4.3.2,0,1,1.0 +6748,142,1.4.3,1,1, +22236,157,1.4.1,0,1,1.0 +22236,126,1.4,1,1, +8944,53,1.4.2.3,0,1,1.0 +8944,142,1.4.2,1,1, +12981,79,2.1.3.5,0,1,1.0 +12981,106,2.1.3,1,1,1.0 +9468,53,1.4.5.8,0,1,1.0 +9468,41,1.4.5,1,1,1.0 +9468,126,1.4,2,1,1.0 +9468,170,1,3,1,1.0 +6743,41,1.4.3.2,0,1,1.0 +6743,142,1.4.3,1,1, +4599,26,2.1.3.3,0,1,1.0 +4599,126,2.1.3,1,1,1.0 +12919,79,2.1.3.4,0,1,1.0 +12919,73,2.1.3,1,1,1.0 +11192,62,2.1.2.4,0,1,1.0 +11192,58,2.1.2,1,1,1.0 +2391,16,2.3.3,0,1,1.0 +2391,126,2.3,1,1, +19103,135,1.3.2.1,0,1,1.0 +19103,130,1.3.2,1,1,1.0 +19103,58,1.3.2,1,1,1.0 +19103,106,1.3,2,1,1.0 +21037,144,2.1.2.4,0,1,1.0 +21037,79,2.1.2,1,1,1.0 +21507,149,2.1.2.4,0,1,1.0 +21507,159,2.1.2,1,1, +10669,60,2.1.1.1,0,1,1.0 +10669,106,2.1.1,1,1, +2715,22,1.2.2,0,1,1.0 +2715,126,1.2,1,1,1.0 +15107,99,1.1.2,0,1,1.0 +15107,105,1.1,1,1, +21441,149,2.1.2.2,0,1,1.0 +21441,84,2.1.2,1,1, +17880,126,1.4,0,1,1.0 +17880,170,1,1,1, +20599,142,1.4.3,0,1,1.0 +20599,126,1.4,1,1, +17392,119,1.3.1.1,0,1,1.0 +17392,85,1.3.1,1,1,1.0 +21491,149,2.1.2.3,0,1,1.0 +21491,159,2.1.2,1,1,1.0 +17859,126,1.4,0,1,1.0 +17859,170,1,1,1,1.0 +6718,41,1.4.3.2,0,1,1.0 +6718,142,1.4.3,1,1,1.0 +6718,126,1.4,2,1,1.0 +6718,170,1,3,1,1.0 +15340,99,2.1,0,1,1.0 +15340,102,2,1,1,1.0 +15340,98,2,1,1, +6879,41,1.4.5,0,1,1.0 +6879,126,1.4,1,1, +11302,63,1.4.4.5,0,1,1.0 +11302,0,1.4.4,1,1,1.0 +20506,142,1.4.2,0,1,1.0 +20506,126,1.4,1,1, +17852,126,1.4,0,1,1.0 +17852,170,1,1,1,1.0 +11331,63,1.4.4.5,0,1,1.0 +11331,0,1.4.4,1,1, +11331,40,1.4.4,1,1,1.0 +807,6,2.1.2.4,0,1,1.0 +807,79,2.1.2,1,1, +4128,23,1.4.2.7,0,1,1.0 +4128,142,1.4.2,1,1, +15207,99,1.3.1,0,1,1.0 +15207,106,1.3,1,1, +4139,23,1.4.2.7,0,1,1.0 +4139,142,1.4.2,1,1, +23558,168,2.3.2,0,1,1.0 +23558,95,2.3,1,1,1.0 +18567,130,1.3.5,0,1,1.0 +18567,29,1.3,1,1,1.0 +18567,106,1.3,1,1, +22205,157,1.4.1,0,1,1.0 +22205,126,1.4,1,1, +10237,57,2.3.3,0,1,1.0 +10237,155,2.3,1,1,1.0 +1057,10,1.3.3.5,0,1,1.0 +1057,99,1.3.3,1,1, +958,9,1.3.3.6,0,1,1.0 +958,97,1.3.3,1,1, +22499,161,2.3.2,0,1,1.0 +22499,124,2.3,1,1,1.0 +20589,142,1.4.3,0,1,1.0 +20589,126,1.4,1,1, +2599,20,1.3.1.2,0,1,1.0 +2599,100,1.3.1,1,1,1.0 +6747,41,1.4.3.2,0,1,1.0 +6747,142,1.4.3,1,1,1.0 +6747,126,1.4,2,1,1.0 +6747,170,1,3,1, +20202,140,1.4.5.1,0,1,1.0 +20202,41,1.4.5,1,1,1.0 +20202,126,1.4,2,1, +18857,132,1.3.3.2,0,1,1.0 +18857,97,1.3.3,1,1, +17863,126,1.4,0,1,1.0 +17863,170,1,1,1,1.0 +17407,120,1.2.3,0,1,1.0 +17407,67,1.2,1,1, +3007,22,2.1.1.5,0,1,1.0 +3007,80,2.1.1,1,1, +17607,124,1.2.1,0,1,1.0 +17607,126,1.2,1,1, +12972,79,2.1.3.5,0,1,1.0 +12972,74,2.1.3,1,1, +10757,60,2.1.1.3,0,1,1.0 +10757,80,2.1.1,1,1, +21492,149,2.1.2.3,0,1,1.0 +21492,159,2.1.2,1,1,1.0 +14057,85,1.3.1,0,1,1.0 +14057,106,1.3,1,1, +18552,130,1.3.5,0,1,1.0 +18552,106,1.3,1,1, +1482,13,2.1.3.5,0,1,1.0 +1482,148,2.1.3,1,1,1.0 +13015,79,2.1.3.6,0,1,1.0 +13015,97,2.1.3,1,1, +19101,135,1.3.2.1,0,1,1.0 +19101,130,1.3.2,1,1,1.0 +5657,35,1.1.3,0,1,1.0 +5657,105,1.1,1,1, +11858,71,1.3.1.2,0,1,1.0 +11858,39,1.3.1,1,1,1.0 +20569,142,1.4.3,0,1,1.0 +20569,126,1.4,1,1, +20545,142,1.4.2,0,1,1.0 +20545,126,1.4,1,1, +22243,157,1.4.1,0,1,1.0 +22243,126,1.4,1,1, +6099,38,2.1.1.1,0,1,1.0 +6099,106,2.1.1,1,1,1.0 +19144,135,1.3.2.1,0,1,1.0 +19144,130,1.3.2,1,1,1.0 +2807,22,2.1.1.1,0,1,1.0 +2807,106,2.1.1,1,1, +8945,53,1.4.2.3,0,1,1.0 +8945,142,1.4.2,1,1,1.0 +8945,126,1.4,2,1, +1907,13,2.3.1,0,1,1.0 +1907,124,2.3,1,1, +13657,82,2.1.2.1,0,1,1.0 +13657,159,2.1.2,1,1, +17565,123,1.1.2,0,1,1.0 +17565,126,1.1,1,1,1.0 +6866,41,1.4.5,0,1,1.0 +6866,126,1.4,1,1, +18559,130,1.3.5,0,1,1.0 +18559,106,1.3,1,1,1.0 +11399,64,1.1.2,0,1,1.0 +11399,105,1.1,1,1,1.0 +7008,42,1.3.1.4,0,1,1.0 +7008,99,1.3.1,1,1, +20565,142,1.4.3,0,1,1.0 +20565,126,1.4,1,1, +15457,101,1.1.1,0,1,1.0 +15457,106,1.1,1,1, +19131,135,1.3.2.1,0,1,1.0 +19131,58,1.3.2,1,1,1.0 +4557,26,2.1.3.3,0,1,1.0 +4557,126,2.1.3,1,1, +157,3,1.3.1.4,0,1,1.0 +157,99,1.3.1,1,1, +5699,35,1.1.3,0,1,1.0 +5699,105,1.1,1,1,1.0 +8057,47,2.1.2.4,0,1,1.0 +8057,79,2.1.2,1,1, +13792,82,2.1.2.3,0,1,1.0 +13792,159,2.1.2,1,1,1.0 +13338,79,2.3.3,0,1,1.0 +13338,126,2.3,1,1,1.0 +7682,46,1.3.1.2,0,1,1.0 +7682,93,1.3.1,1,1, +11092,62,2.1.2.2,0,1,1.0 +11092,159,2.1.2,1,1,1.0 +1431,13,2.1.3.4,0,1,1.0 +1431,74,2.1.3,1,1,1.0 +15314,99,2.1,0,1,1.0 +15314,98,2,1,1,1.0 +10207,57,2.3.3,0,1,1.0 +10207,99,2.3,1,1, +2292,16,2.3.1,0,1,1.0 +2292,99,2.3,1,1,1.0 +4242,23,2.3.1,0,1,1.0 +4242,95,2.3,1,1,1.0 +6723,41,1.4.3.2,0,1,1.0 +6723,142,1.4.3,1,1, +6704,41,1.4.3.2,0,1,1.0 +6704,142,1.4.3,1,1,1.0 +6704,126,1.4,2,1, +15305,99,2.1,0,1,1.0 +15305,98,2,1,1,1.0 +15305,102,2,1,1,1.0 +15305,170,1,2,1, +6299,38,2.1.1.5,0,1,1.0 +6299,148,2.1.1,1,1,1.0 +9167,53,1.4.3.6,0,1,1.0 +9167,142,1.4.3,1,1, +23082,165,2.1.2.2,0,1,1.0 +23082,159,2.1.2,1,1, +15325,99,2.1,0,1,1.0 +15325,98,2,1,1,1.0 +15325,102,2,1,1, +15344,99,2.1,0,1,1.0 +15344,98,2,1,1, +9157,53,1.4.3.6,0,1,1.0 +9157,142,1.4.3,1,1, +23007,165,2.1.2.1,0,1,1.0 +23007,81,2.1.2,1,1, +8299,49,1.3.1.4,0,1,1.0 +8299,99,1.3.1,1,1,1.0 +8615,50,1.3.1.5,0,1,1.0 +8615,39,1.3.1,1,1,1.0 +12817,79,2.1.3.2,0,1,1.0 +12817,108,2.1.3,1,1,1.0 +3002,22,2.1.1.5,0,1,1.0 +3002,106,2.1.1,1,1, +18587,130,1.3.5,0,1,1.0 +18587,29,1.3,1,1,1.0 +6701,41,1.4.3.2,0,1,1.0 +6701,142,1.4.3,1,1, +19114,135,1.3.2.1,0,1,1.0 +19114,130,1.3.2,1,1,1.0 +20534,142,1.4.2,0,1,1.0 +20534,126,1.4,1,1, +18157,127,1.1.3,0,1,1.0 +18157,126,1.1,1,1, +4407,25,1.3.1.7,0,1,1.0 +4407,85,1.3.1,1,1, +7099,43,1.3.1.5,0,1,1.0 +7099,93,1.3.1,1,1,1.0 +1451,13,2.1.3.5,0,1,1.0 +1451,97,2.1.3,1,1, +11592,68,1.3.1.1,0,1,1.0 +11592,93,1.3.1,1,1,1.0 +5399,32,1.2.3,0,1,1.0 +5399,106,1.2,1,1,1.0 +11344,63,1.4.4.5,0,1,1.0 +11344,0,1.4.4,1,1, +11344,40,1.4.4,1,1,1.0 +15319,99,2.1,0,1,1.0 +15319,98,2,1,1, +15319,102,2,1,1, +9471,53,1.4.5.8,0,1,1.0 +9471,41,1.4.5,1,1, +17894,126,1.4,0,1,1.0 +17894,170,1,1,1,1.0 +2357,16,2.3.3,0,1,1.0 +2357,126,2.3,1,1, +6884,41,1.4.5,0,1,1.0 +6884,126,1.4,1,1, +12851,79,2.1.3.3,0,1,1.0 +12851,126,2.1.3,1,1, +20657,143,2.1.1.2,0,1,1.0 +20657,148,2.1.1,1,1, +6721,41,1.4.3.2,0,1,1.0 +6721,142,1.4.3,1,1, +20587,142,1.4.3,0,1,1.0 +20587,126,1.4,1,1,1.0 +20587,170,1,2,1,1.0 +19137,135,1.3.2.1,0,1,1.0 +19137,130,1.3.2,1,1,1.0 +19137,58,1.3.2,1,1,1.0 +19137,106,1.3,2,1,1.0 +5607,34,1.3.3.3,0,1,1.0 +5607,75,1.3.3,1,1, +16638,115,1.1.3,0,1,1.0 +16638,86,1.1,1,1,1.0 +17878,126,1.4,0,1,1.0 +17878,170,1,1,1,1.0 +11314,63,1.4.4.5,0,1,1.0 +11314,0,1.4.4,1,1, +11314,40,1.4.4,1,1,1.0 +20542,142,1.4.2,0,1,1.0 +20542,126,1.4,1,1, +18589,130,1.3.5,0,1,1.0 +18589,106,1.3,1,1, +15341,99,2.1,0,1,1.0 +15341,102,2,1,1, +20742,143,2.1.1.3,0,1,1.0 +20742,148,2.1.1,1,1,1.0 +17871,126,1.4,0,1,1.0 +17871,170,1,1,1, +10707,60,2.1.1.2,0,1,1.0 +10707,106,2.1.1,1,1, +4136,23,1.4.2.7,0,1,1.0 +4136,142,1.4.2,1,1, +20503,142,1.4.2,0,1,1.0 +20503,126,1.4,1,1, +17856,126,1.4,0,1,1.0 +17856,170,1,1,1,1.0 +15642,103,1.1.1,0,1,1.0 +15642,106,1.1,1,1,1.0 +13707,82,2.1.2.2,0,1,1.0 +13707,81,2.1.2,1,1, +9184,53,1.4.3.6,0,1,1.0 +9184,142,1.4.3,1,1, +9469,53,1.4.5.8,0,1,1.0 +9469,41,1.4.5,1,1, +15674,104,1.1.1,0,1,1.0 +15674,126,1.1,1,1, +20525,142,1.4.2,0,1,1.0 +20525,126,1.4,1,1, +19105,135,1.3.2.1,0,1,1.0 +19105,58,1.3.2,1,1,1.0 +3357,22,2.1.3.7,0,1,1.0 +3357,106,2.1.3,1,1, +20570,142,1.4.3,0,1,1.0 +20570,126,1.4,1,1, +9488,53,1.4.5.8,0,1,1.0 +9488,41,1.4.5,1,1, +11309,63,1.4.4.5,0,1,1.0 +11309,40,1.4.4,1,1,1.0 +11309,0,1.4.4,1,1, +13238,79,2.3.1,0,1,1.0 +13238,124,2.3,1,1,1.0 +3099,22,2.1.3.1,0,1,1.0 +3099,126,2.1.3,1,1,1.0 +4465,26,2.1.3.1,0,1,1.0 +4465,106,2.1.3,1,1, +20516,142,1.4.2,0,1,1.0 +20516,126,1.4,1,1, +15329,99,2.1,0,1,1.0 +15329,102,2,1,1, +6891,41,1.4.5,0,1,1.0 +6891,126,1.4,1,1, +999,9,1.3.3.6,0,1,1.0 +999,97,1.3.3,1,1,1.0 +10907,61,1.3.3.3,0,1,1.0 +10907,97,1.3.3,1,1, +5388,32,1.2.3,0,1,1.0 +5388,106,1.2,1,1,1.0 +1457,13,2.1.3.5,0,1,1.0 +1457,108,2.1.3,1,1, +4649,26,2.1.3.4,0,1,1.0 +4649,97,2.1.3,1,1,1.0 +23299,167,1.1.1,0,1,1.0 +23299,105,1.1,1,1,1.0 +3819,22,2.3.3,0,1,1.0 +3819,126,2.3,1,1, +16407,111,1.3.4.1,0,1,1.0 +16407,81,1.3.4,1,1, +21407,149,2.1.2.2,0,1,1.0 +21407,81,2.1.2,1,1, +7607,45,2.1.4.2.2,0,1,1.0 +7607,79,2.1.4.2,1,1, +8515,49,2.1.2.3,0,1,1.0 +8515,81,2.1.2,1,1,1.0 +12809,79,2.1.3.2,0,1,1.0 +12809,106,2.1.3,1,1, +17858,126,1.4,0,1,1.0 +17858,170,1,1,1,1.0 +17862,126,1.4,0,1,1.0 +17862,170,1,1,1,1.0 +11333,63,1.4.4.5,0,1,1.0 +11333,40,1.4.4,1,1,1.0 +11333,0,1.4.4,1,1,1.0 +11333,126,1.4,2,1, +20563,142,1.4.3,0,1,1.0 +20563,126,1.4,1,1,1.0 +20563,170,1,2,1,1.0 +20234,140,1.4.5.1,0,1,1.0 +20234,41,1.4.5,1,1, +1344,13,2.1.3.2,0,1,1.0 +1344,148,2.1.3,1,1,1.0 +9200,53,1.4.3.6,0,1,1.0 +9200,142,1.4.3,1,1, +18187,127,1.1.3,0,1,1.0 +18187,126,1.1,1,1,1.0 +18593,130,1.3.5,0,1,1.0 +18593,29,1.3,1,1,1.0 +18593,106,1.3,1,1, +20227,140,1.4.5.1,0,1,1.0 +20227,41,1.4.5,1,1, +11807,70,1.3.3.4,0,1,1.0 +11807,97,1.3.3,1,1, +13652,82,2.1.2.1,0,1,1.0 +13652,84,2.1.2,1,1, +17886,126,1.4,0,1,1.0 +17886,170,1,1,1,1.0 +17449,120,1.2.3,0,1,1.0 +17449,126,1.2,1,1,1.0 +12542,78,2.1.1.5,0,1,1.0 +12542,80,2.1.1,1,1,1.0 +199,3,1.3.1.4,0,1,1.0 +199,85,1.3.1,1,1,1.0 +6900,41,1.4.5,0,1,1.0 +6900,126,1.4,1,1, +20561,142,1.4.3,0,1,1.0 +20561,126,1.4,1,1,1.0 +20561,170,1,2,1,1.0 +8369,49,1.3.3.1,0,1,1.0 +8369,99,1.3.3,1,1, +8291,49,1.3.1.4,0,1,1.0 +8291,85,1.3.1,1,1, +16891,117,2.1.1.3,0,1,1.0 +16891,85,2.1.1,1,1, +9177,53,1.4.3.6,0,1,1.0 +9177,142,1.4.3,1,1, +9462,53,1.4.5.8,0,1,1.0 +9462,41,1.4.5,1,1,1.0 +9462,126,1.4,2,1, +11326,63,1.4.4.5,0,1,1.0 +11326,40,1.4.4,1,1,1.0 +8909,53,1.4.2.3,0,1,1.0 +8909,142,1.4.2,1,1,1.0 +8909,126,1.4,2,1, +8917,53,1.4.2.3,0,1,1.0 +8917,142,1.4.2,1,1, +15333,99,2.1,0,1,1.0 +15333,102,2,1,1,1.0 +15333,98,2,1,1,1.0 +15333,170,1,2,1, +6705,41,1.4.3.2,0,1,1.0 +6705,142,1.4.3,1,1,1.0 +6705,126,1.4,2,1,1.0 +6705,170,1,3,1,1.0 +23349,168,1.1.2,0,1,1.0 +23349,86,1.1,1,1,1.0 +20593,142,1.4.3,0,1,1.0 +20593,126,1.4,1,1, +9457,53,1.4.5.8,0,1,1.0 +9457,41,1.4.5,1,1, +6725,41,1.4.3.2,0,1,1.0 +6725,142,1.4.3,1,1, +4106,23,1.4.2.7,0,1,1.0 +4106,142,1.4.2,1,1,1.0 +4106,126,1.4,2,1, +22210,157,1.4.1,0,1,1.0 +22210,126,1.4,1,1, +1554,13,2.1.3.7,0,1,1.0 +1554,126,2.1.3,1,1, +17900,126,1.4,0,1,1.0 +17900,170,1,1,1,1.0 +4102,23,1.4.2.7,0,1,1.0 +4102,142,1.4.2,1,1,1.0 +4102,126,1.4,2,1, +12862,79,2.1.3.3,0,1,1.0 +12862,108,2.1.3,1,1, +5292,31,2.1.4.2.1,0,1,1.0 +5292,79,2.1.4.2,1,1,1.0 +12967,79,2.1.3.5,0,1,1.0 +12967,97,2.1.3,1,1, +12812,79,2.1.3.2,0,1,1.0 +12812,106,2.1.3,1,1, +21015,144,2.1.2.4,0,1,1.0 +21015,58,2.1.2,1,1,1.0 +15335,99,2.1,0,1,1.0 +15335,98,2,1,1,1.0 +15335,102,2,1,1,1.0 +15335,170,1,2,1,1.0 +11619,68,1.3.1.2,0,1,1.0 +11619,85,1.3.1,1,1, +19109,135,1.3.2.1,0,1,1.0 +19109,130,1.3.2,1,1,1.0 +19109,58,1.3.2,1,1,1.0 +19109,106,1.3,2,1,1.0 +13349,79,2.3.3,0,1,1.0 +13349,126,2.3,1,1,1.0 +20523,142,1.4.2,0,1,1.0 +20523,126,1.4,1,1, +5692,35,1.1.3,0,1,1.0 +5692,86,1.1,1,1,1.0 +23641,168,2.3.3,0,1,1.0 +23641,84,2.3,1,1, +742,6,2.1.2.2,0,1,1.0 +742,58,2.1.2,1,1,1.0 +20206,140,1.4.5.1,0,1,1.0 +20206,41,1.4.5,1,1,1.0 +20206,126,1.4,2,1, +12332,78,2.1.1.1,0,1,1.0 +12332,85,2.1.1,1,1, +9163,53,1.4.3.6,0,1,1.0 +9163,142,1.4.3,1,1,1.0 +9163,126,1.4,2,1,1.0 +9163,170,1,3,1,1.0 +19118,135,1.3.2.1,0,1,1.0 +19118,58,1.3.2,1,1,1.0 +11752,70,1.3.3.2,0,1,1.0 +11752,99,1.3.3,1,1, +11857,71,1.3.1.2,0,1,1.0 +11857,100,1.3.1,1,1, +20203,140,1.4.5.1,0,1,1.0 +20203,41,1.4.5,1,1, +4558,26,2.1.3.3,0,1,1.0 +4558,108,2.1.3,1,1,1.0 +19141,135,1.3.2.1,0,1,1.0 +19141,130,1.3.2,1,1,1.0 +21107,146,1.3.1.1,0,1,1.0 +21107,93,1.3.1,1,1, +20215,140,1.4.5.1,0,1,1.0 +20215,41,1.4.5,1,1,1.0 +20215,126,1.4,2,1, +19116,135,1.3.2.1,0,1,1.0 +19116,58,1.3.2,1,1,1.0 +19116,130,1.3.2,1,1,1.0 +19116,106,1.3,2,1,1.0 +19116,29,1.3,2,1, +13308,79,2.3.3,0,1,1.0 +13308,84,2.3,1,1,1.0 +22158,156,1.3.1.7,0,1,1.0 +22158,39,1.3.1,1,1,1.0 +18569,130,1.3.5,0,1,1.0 +18569,106,1.3,1,1, +18569,29,1.3,1,1, +8943,53,1.4.2.3,0,1,1.0 +8943,142,1.4.2,1,1, +4140,23,1.4.2.7,0,1,1.0 +4140,142,1.4.2,1,1,1.0 +4140,126,1.4,2,1, +12658,79,1.3.1.6,0,1,1.0 +12658,93,1.3.1,1,1,1.0 +8938,53,1.4.2.3,0,1,1.0 +8938,142,1.4.2,1,1, +8915,53,1.4.2.3,0,1,1.0 +8915,142,1.4.2,1,1,1.0 +8915,126,1.4,2,1, +14269,88,1.1.3,0,1,1.0 +14269,94,1.1,1,1, +20507,142,1.4.2,0,1,1.0 +20507,126,1.4,1,1, +18138,127,1.1.1,0,1,1.0 +18138,106,1.1,1,1,1.0 +19143,135,1.3.2.1,0,1,1.0 +19143,58,1.3.2,1,1,1.0 +19143,130,1.3.2,1,1,1.0 +19143,29,1.3,2,1, +19143,106,1.3,2,1, +9456,53,1.4.5.8,0,1,1.0 +9456,41,1.4.5,1,1,1.0 +9456,126,1.4,2,1, +9458,53,1.4.5.8,0,1,1.0 +9458,41,1.4.5,1,1,1.0 +9458,126,1.4,2,1, +2457,18,1.3.3.2,0,1,1.0 +2457,99,1.3.3,1,1, +11307,63,1.4.4.5,0,1,1.0 +11307,40,1.4.4,1,1, +11307,0,1.4.4,1,1, +1436,13,2.1.3.4,0,1,1.0 +1436,74,2.1.3,1,1, +20221,140,1.4.5.1,0,1,1.0 +20221,41,1.4.5,1,1, +20501,142,1.4.2,0,1,1.0 +20501,126,1.4,1,1, +18565,130,1.3.5,0,1,1.0 +18565,106,1.3,1,1, +18565,29,1.3,1,1, +20699,143,2.1.1.2,0,1,1.0 +20699,80,2.1.1,1,1,1.0 +9483,53,1.4.5.8,0,1,1.0 +9483,41,1.4.5,1,1, +20597,142,1.4.3,0,1,1.0 +20597,126,1.4,1,1,1.0 +20597,170,1,2,1,1.0 +10191,57,2.3.2,0,1,1.0 +10191,155,2.3,1,1,1.0 +11907,72,1.3.1.2,0,1,1.0 +11907,100,1.3.1,1,1, +3215,22,2.1.3.4,0,1,1.0 +3215,108,2.1.3,1,1,1.0 +20509,142,1.4.2,0,1,1.0 +20509,126,1.4,1,1,1.0 +20509,170,1,2,1, +23642,168,2.3.3,0,1,1.0 +23642,126,2.3,1,1,1.0 +21115,146,1.3.1.1,0,1,1.0 +21115,85,1.3.1,1,1, +18579,130,1.3.5,0,1,1.0 +18579,29,1.3,1,1, +6733,41,1.4.3.2,0,1,1.0 +6733,142,1.4.3,1,1, +22203,157,1.4.1,0,1,1.0 +22203,126,1.4,1,1, +18555,130,1.3.5,0,1,1.0 +18555,29,1.3,1,1, +18555,106,1.3,1,1,1.0 +12399,78,2.1.1.2,0,1,1.0 +12399,148,2.1.1,1,1,1.0 +20899,144,2.1.2.1,0,1,1.0 +20899,79,2.1.2,1,1,1.0 +1992,13,2.3.2,0,1,1.0 +1992,126,2.3,1,1,1.0 +12249,77,1.3.3.6,0,1,1.0 +12249,97,1.3.3,1,1,1.0 +14757,95,2.3,0,1,1.0 +14757,98,2,1,1, +7592,45,2.1.4.2.1,0,1,1.0 +7592,79,2.1.4.2,1,1,1.0 +6709,41,1.4.3.2,0,1,1.0 +6709,142,1.4.3,1,1,1.0 +6709,126,1.4,2,1, +15327,99,2.1,0,1,1.0 +15327,102,2,1,1, +15327,98,2,1,1, +849,6,2.1.2.4,0,1,1.0 +849,58,2.1.2,1,1,1.0 +6867,41,1.4.5,0,1,1.0 +6867,126,1.4,1,1, +3942,23,1.3.3.1,0,1,1.0 +3942,75,1.3.3,1,1,1.0 +1399,13,2.1.3.3,0,1,1.0 +1399,74,2.1.3,1,1, +17884,126,1.4,0,1,1.0 +17884,170,1,1,1, +11315,63,1.4.4.5,0,1,1.0 +11315,0,1.4.4,1,1, +11315,40,1.4.4,1,1, +752,6,2.1.2.3,0,1,1.0 +752,81,2.1.2,1,1, +20572,142,1.4.3,0,1,1.0 +20572,126,1.4,1,1, +19117,135,1.3.2.1,0,1,1.0 +19117,58,1.3.2,1,1,1.0 +21563,150,1.1.1,0,1,1.0 +21563,126,1.1,1,1,1.0 +14708,95,1.2.3,0,1,1.0 +14708,67,1.2,1,1,1.0 +6715,41,1.4.3.2,0,1,1.0 +6715,142,1.4.3,1,1,1.0 +6715,126,1.4,2,1, +7699,46,1.3.1.2,0,1,1.0 +7699,39,1.3.1,1,1,1.0 +19145,135,1.3.2.1,0,1,1.0 +19145,130,1.3.2,1,1,1.0 +19145,58,1.3.2,1,1,1.0 +19145,29,1.3,2,1, +1555,13,2.1.3.7,0,1,1.0 +1555,74,2.1.3,1,1, +8903,53,1.4.2.3,0,1,1.0 +8903,142,1.4.2,1,1, +1799,13,2.1.4.1.4,0,1,1.0 +1799,79,2.1.4.1,1,1,1.0 +5057,31,2.1.4.1.1,0,1,1.0 +5057,81,2.1.4.1,1,1, +4107,23,1.4.2.7,0,1,1.0 +4107,142,1.4.2,1,1, +9174,53,1.4.3.6,0,1,1.0 +9174,142,1.4.3,1,1, +6892,41,1.4.5,0,1,1.0 +6892,126,1.4,1,1, +16315,111,1.3.1.6,0,1,1.0 +16315,99,1.3.1,1,1, +17889,126,1.4,0,1,1.0 +17889,170,1,1,1, +1807,13,2.1.4.2.1,0,1,1.0 +1807,81,2.1.4.2,1,1, +8931,53,1.4.2.3,0,1,1.0 +8931,142,1.4.2,1,1,1.0 +8931,126,1.4,2,1, +6942,42,1.3.1.1,0,1,1.0 +6942,85,1.3.1,1,1,1.0 +18578,130,1.3.5,0,1,1.0 +18578,106,1.3,1,1, +13019,79,2.1.3.6,0,1,1.0 +13019,97,2.1.3,1,1, +23182,165,2.1.2.4,0,1,1.0 +23182,79,2.1.2,1,1, +17885,126,1.4,0,1,1.0 +17885,170,1,1,1,1.0 +8557,49,2.1.2.4,0,1,1.0 +8557,84,2.1.2,1,1, +8913,53,1.4.2.3,0,1,1.0 +8913,142,1.4.2,1,1,1.0 +8913,126,1.4,2,1,1.0 +8913,170,1,3,1,1.0 +12907,79,2.1.3.4,0,1,1.0 +12907,148,2.1.3,1,1, +20548,142,1.4.2,0,1,1.0 +20548,126,1.4,1,1, +1594,13,2.1.3.7,0,1,1.0 +1594,106,2.1.3,1,1,1.0 +19129,135,1.3.2.1,0,1,1.0 +19129,130,1.3.2,1,1,1.0 +19129,58,1.3.2,1,1,1.0 +19129,106,1.3,2,1, +19129,29,1.3,2,1, +18292,129,1.1.2,0,1,1.0 +18292,94,1.1,1,1,1.0 +2057,14,1.3.3.4,0,1,1.0 +2057,75,1.3.3,1,1, +18600,130,1.3.5,0,1,1.0 +18600,29,1.3,1,1,1.0 +18600,106,1.3,1,1, +10299,58,1.2.2,0,1,1.0 +10299,67,1.2,1,1,1.0 +4115,23,1.4.2.7,0,1,1.0 +4115,142,1.4.2,1,1,1.0 +4115,126,1.4,2,1, +20246,140,1.4.5.1,0,1,1.0 +20246,41,1.4.5,1,1, +1208,13,1.2.2,0,1,1.0 +1208,126,1.2,1,1,1.0 +2392,16,2.3.3,0,1,1.0 +2392,126,2.3,1,1,1.0 +3107,22,2.1.3.2,0,1,1.0 +3107,126,2.1.3,1,1, +2608,21,1.3.1.3,0,1,1.0 +2608,85,1.3.1,1,1, +19128,135,1.3.2.1,0,1,1.0 +19128,58,1.3.2,1,1,1.0 +19128,130,1.3.2,1,1,1.0 +19128,29,1.3,2,1, +13086,79,2.1.3.7,0,1,1.0 +13086,97,2.1.3,1,1, +21591,150,1.1.1,0,1,1.0 +21591,105,1.1,1,1, +11642,68,1.3.1.2,0,1,1.0 +11642,85,1.3.1,1,1,1.0 +11336,63,1.4.4.5,0,1,1.0 +11336,0,1.4.4,1,1, +1581,13,2.1.3.7,0,1,1.0 +1581,108,2.1.3,1,1, +5392,32,1.2.3,0,1,1.0 +5392,106,1.2,1,1,1.0 +6887,41,1.4.5,0,1,1.0 +6887,126,1.4,1,1,1.0 +6887,170,1,2,1,1.0 +20225,140,1.4.5.1,0,1,1.0 +20225,41,1.4.5,1,1, +8932,53,1.4.2.3,0,1,1.0 +8932,142,1.4.2,1,1,1.0 +8932,126,1.4,2,1, +9479,53,1.4.5.8,0,1,1.0 +9479,41,1.4.5,1,1,1.0 +9479,126,1.4,2,1, +20595,142,1.4.3,0,1,1.0 +20595,126,1.4,1,1, +23507,168,2.3.1,0,1,1.0 +23507,99,2.3,1,1, +21007,144,2.1.2.4,0,1,1.0 +21007,84,2.1.2,1,1, +23674,169,1.1.1,0,1,1.0 +23674,126,1.1,1,1, +1562,13,2.1.3.7,0,1,1.0 +1562,108,2.1.3,1,1, +15477,101,1.1.1,0,1,1.0 +15477,86,1.1,1,1,1.0 +14458,90,1.3.1.7,0,1,1.0 +14458,99,1.3.1,1,1, +19127,135,1.3.2.1,0,1,1.0 +19127,58,1.3.2,1,1,1.0 +22225,157,1.4.1,0,1,1.0 +22225,126,1.4,1,1, +22408,161,2.3.1,0,1,1.0 +22408,124,2.3,1,1,1.0 +21065,145,1.3.1.4,0,1,1.0 +21065,99,1.3.1,1,1, +20562,142,1.4.3,0,1,1.0 +20562,126,1.4,1,1, +23637,168,2.3.3,0,1,1.0 +23637,124,2.3,1,1,1.0 +20559,142,1.4.3,0,1,1.0 +20559,126,1.4,1,1,1.0 +20559,170,1,2,1, +11038,62,2.1.2.1,0,1,1.0 +11038,159,2.1.2,1,1,1.0 +9452,53,1.4.5.8,0,1,1.0 +9452,41,1.4.5,1,1,1.0 +9452,126,1.4,2,1, +6860,41,1.4.5,0,1,1.0 +6860,126,1.4,1,1, +22214,157,1.4.1,0,1,1.0 +22214,126,1.4,1,1,1.0 +22214,170,1,2,1,1.0 +9463,53,1.4.5.8,0,1,1.0 +9463,41,1.4.5,1,1,1.0 +9463,126,1.4,2,1,1.0 +9463,170,1,3,1,1.0 +20407,141,1.3.3.2,0,1,1.0 +20407,99,1.3.3,1,1, +20584,142,1.4.3,0,1,1.0 +20584,126,1.4,1,1, +18688,131,2.1.1.2,0,1,1.0 +18688,106,2.1.1,1,1,1.0 +18699,131,2.1.1.2,0,1,1.0 +18699,106,2.1.1,1,1,1.0 +4150,23,1.4.2.7,0,1,1.0 +4150,142,1.4.2,1,1, +17399,119,1.3.1.1,0,1,1.0 +17399,93,1.3.1,1,1,1.0 +18597,130,1.3.5,0,1,1.0 +18597,106,1.3,1,1,1.0 +11199,62,2.1.2.4,0,1,1.0 +11199,58,2.1.2,1,1,1.0 +14374,89,1.2.1,0,1,1.0 +14374,67,1.2,1,1, +17869,126,1.4,0,1,1.0 +17869,170,1,1,1, +20588,142,1.4.3,0,1,1.0 +20588,126,1.4,1,1, +23357,168,1.3.3.1,0,1,1.0 +23357,97,1.3.3,1,1, +19449,135,2.1.3.5,0,1,1.0 +19449,97,2.1.3,1,1,1.0 +12588,79,1.3.1.1,0,1,1.0 +12588,100,1.3.1,1,1,1.0 +12922,79,2.1.3.4,0,1,1.0 +12922,148,2.1.3,1,1, +6707,41,1.4.3.2,0,1,1.0 +6707,142,1.4.3,1,1, +6739,41,1.4.3.2,0,1,1.0 +6739,142,1.4.3,1,1, +4715,26,2.1.3.6,0,1,1.0 +4715,73,2.1.3,1,1,1.0 +18202,128,1.1.2,0,1,1.0 +18202,106,1.1,1,1, +12786,79,2.1.3.1,0,1,1.0 +12786,73,2.1.3,1,1, +21765,153,1.3.1.4,0,1,1.0 +21765,100,1.3.1,1,1,1.0 +4132,23,1.4.2.7,0,1,1.0 +4132,142,1.4.2,1,1,1.0 +4132,126,1.4,2,1, +11319,63,1.4.4.5,0,1,1.0 +11319,0,1.4.4,1,1,1.0 +11319,40,1.4.4,1,1, +20992,144,2.1.2.3,0,1,1.0 +20992,79,2.1.2,1,1,1.0 +6938,42,1.3.1.1,0,1,1.0 +6938,85,1.3.1,1,1,1.0 +16349,111,1.3.1.6,0,1,1.0 +16349,85,1.3.1,1,1,1.0 +13569,81,2.1.4.1,0,1,1.0 +13569,102,2.1.4,1,1,1.0 +11069,62,2.1.2.2,0,1,1.0 +11069,58,2.1.2,1,1, +12916,79,2.1.3.4,0,1,1.0 +12916,74,2.1.3,1,1,1.0 +6731,41,1.4.3.2,0,1,1.0 +6731,142,1.4.3,1,1,1.0 +6731,126,1.4,2,1, +8099,47,2.1.2.4,0,1,1.0 +8099,84,2.1.2,1,1,1.0 +22228,157,1.4.1,0,1,1.0 +22228,126,1.4,1,1, +22949,163,2.1.4.2.2,0,1,1.0 +22949,81,2.1.4.2,1,1,1.0 +18564,130,1.3.5,0,1,1.0 +18564,29,1.3,1,1, +18564,106,1.3,1,1,1.0 +18149,127,1.1.1,0,1,1.0 +18149,106,1.1,1,1,1.0 +19102,135,1.3.2.1,0,1,1.0 +19102,130,1.3.2,1,1,1.0 +19102,58,1.3.2,1,1,1.0 +19102,106,1.3,2,1,1.0 +19102,29,1.3,2,1, +8911,53,1.4.2.3,0,1,1.0 +8911,142,1.4.2,1,1,1.0 +8911,126,1.4,2,1, +18133,127,1.1.1,0,1,1.0 +18133,105,1.1,1,1, +12607,79,1.3.1.4,0,1,1.0 +12607,99,1.3.1,1,1, +21508,149,2.1.2.4,0,1,1.0 +21508,84,2.1.2,1,1,1.0 +19158,135,1.3.4.1,0,1,1.0 +19158,81,1.3.4,1,1,1.0 +7949,47,2.1.2.1,0,1,1.0 +7949,84,2.1.2,1,1,1.0 +20577,142,1.4.3,0,1,1.0 +20577,126,1.4,1,1, +19007,134,1.3.3.5,0,1,1.0 +19007,75,1.3.3,1,1, +12557,79,1.3.1.1,0,1,1.0 +12557,99,1.3.1,1,1, +20248,140,1.4.5.1,0,1,1.0 +20248,41,1.4.5,1,1, +11303,63,1.4.4.5,0,1,1.0 +11303,40,1.4.4,1,1, +11303,0,1.4.4,1,1, +18557,130,1.3.5,0,1,1.0 +18557,106,1.3,1,1, +21741,153,1.3.1.1,0,1,1.0 +21741,93,1.3.1,1,1,1.0 +11317,63,1.4.4.5,0,1,1.0 +11317,0,1.4.4,1,1, +6703,41,1.4.3.2,0,1,1.0 +6703,142,1.4.3,1,1, +4383,24,1.1.1,0,1,1.0 +4383,86,1.1,1,1, +23274,167,1.1.1,0,1,1.0 +23274,126,1.1,1,1, +7665,46,1.3.1.2,0,1,1.0 +7665,39,1.3.1,1,1,1.0 +14207,87,1.1.1,0,1,1.0 +14207,105,1.1,1,1, +6349,39,1.3.1,0,1,1.0 +6349,106,1.3,1,1,1.0 +18576,130,1.3.5,0,1,1.0 +18576,106,1.3,1,1,1.0 +18576,29,1.3,1,1, +2282,16,2.3.1,0,1,1.0 +2282,124,2.3,1,1, +7669,46,1.3.1.2,0,1,1.0 +7669,100,1.3.1,1,1, +4146,23,1.4.2.7,0,1,1.0 +4146,142,1.4.2,1,1, +4125,23,1.4.2.7,0,1,1.0 +4125,142,1.4.2,1,1, +19138,135,1.3.2.1,0,1,1.0 +19138,130,1.3.2,1,1,1.0 +19138,58,1.3.2,1,1,1.0 +19138,106,1.3,2,1, +19138,29,1.3,2,1, +16533,113,1.1.1,0,1,1.0 +16533,94,1.1,1,1, +6871,41,1.4.5,0,1,1.0 +6871,126,1.4,1,1, +19515,135,2.1.3.7,0,1,1.0 +19515,74,2.1.3,1,1, +20214,140,1.4.5.1,0,1,1.0 +20214,41,1.4.5,1,1,1.0 +20214,126,1.4,2,1,1.0 +20214,170,1,3,1,1.0 +14224,87,1.1.1,0,1,1.0 +14224,86,1.1,1,1, +14958,97,1.3.3,0,1,1.0 +14958,29,1.3,1,1, +8007,47,2.1.2.3,0,1,1.0 +8007,81,2.1.2,1,1, +2857,22,2.1.1.2,0,1,1.0 +2857,106,2.1.1,1,1, +10115,57,2.3.1,0,1,1.0 +10115,99,2.3,1,1,1.0 +4111,23,1.4.2.7,0,1,1.0 +4111,142,1.4.2,1,1,1.0 +4111,126,1.4,2,1, +6889,41,1.4.5,0,1,1.0 +6889,126,1.4,1,1, +11599,68,1.3.1.1,0,1,1.0 +11599,99,1.3.1,1,1,1.0 +19126,135,1.3.2.1,0,1,1.0 +19126,130,1.3.2,1,1,1.0 +16432,111,1.3.4.1,0,1,1.0 +16432,77,1.3.4,1,1, +15334,99,2.1,0,1,1.0 +15334,98,2,1,1,1.0 +15334,102,2,1,1,1.0 +15334,170,1,2,1,1.0 +11557,68,1.3.1.1,0,1,1.0 +11557,100,1.3.1,1,1, +11058,62,2.1.2.2,0,1,1.0 +11058,58,2.1.2,1,1,1.0 +5008,31,1.3.3.3,0,1,1.0 +5008,99,1.3.3,1,1, +7115,43,1.3.1.6,0,1,1.0 +7115,85,1.3.1,1,1, +9189,53,1.4.3.6,0,1,1.0 +9189,142,1.4.3,1,1, +5749,36,1.1.1,0,1,1.0 +5749,106,1.1,1,1,1.0 +5658,35,1.1.3,0,1,1.0 +5658,126,1.1,1,1,1.0 +20537,142,1.4.2,0,1,1.0 +20537,126,1.4,1,1,1.0 +20537,170,1,2,1,1.0 +20524,142,1.4.2,0,1,1.0 +20524,126,1.4,1,1, +18562,130,1.3.5,0,1,1.0 +18562,29,1.3,1,1, +20758,143,2.1.1.4,0,1,1.0 +20758,85,2.1.1,1,1,1.0 +9152,53,1.4.3.6,0,1,1.0 +9152,142,1.4.3,1,1,1.0 +9152,126,1.4,2,1, +20585,142,1.4.3,0,1,1.0 +20585,126,1.4,1,1, +7407,45,2.1.4.1.2,0,1,1.0 +7407,79,2.1.4.1,1,1, +23519,168,2.3.1,0,1,1.0 +23519,84,2.3,1,1, +8939,53,1.4.2.3,0,1,1.0 +8939,142,1.4.2,1,1, +23157,165,2.1.2.4,0,1,1.0 +23157,81,2.1.2,1,1, +6716,41,1.4.3.2,0,1,1.0 +6716,142,1.4.3,1,1,1.0 +6716,126,1.4,2,1, +5465,33,2.1.2.2,0,1,1.0 +5465,58,2.1.2,1,1,1.0 +8926,53,1.4.2.3,0,1,1.0 +8926,142,1.4.2,1,1,1.0 +8926,126,1.4,2,1, +13002,79,2.1.3.6,0,1,1.0 +13002,148,2.1.3,1,1, +20515,142,1.4.2,0,1,1.0 +20515,126,1.4,1,1, +8108,47,2.1.3.6,0,1,1.0 +8108,97,2.1.3,1,1, +17860,126,1.4,0,1,1.0 +17860,170,1,1,1, +8947,53,1.4.2.3,0,1,1.0 +8947,142,1.4.2,1,1,1.0 +8947,126,1.4,2,1,1.0 +8947,170,1,3,1, +8308,49,1.3.1.6,0,1,1.0 +8308,99,1.3.1,1,1, +2288,16,2.3.1,0,1,1.0 +2288,95,2.3,1,1,1.0 +3837,22,2.3.3,0,1,1.0 +3837,84,2.3,1,1,1.0 +15649,103,1.1.1,0,1,1.0 +15649,105,1.1,1,1,1.0 +9156,53,1.4.3.6,0,1,1.0 +9156,142,1.4.3,1,1,1.0 +9156,126,1.4,2,1, +23407,168,1.3.3.2,0,1,1.0 +23407,75,1.3.3,1,1, +11757,70,1.3.3.2,0,1,1.0 +11757,99,1.3.3,1,1, +9154,53,1.4.3.6,0,1,1.0 +9154,142,1.4.3,1,1,1.0 +9154,126,1.4,2,1, +4357,24,1.1.1,0,1,1.0 +4357,86,1.1,1,1, +10949,61,1.3.3.3,0,1,1.0 +10949,97,1.3.3,1,1,1.0 +20535,142,1.4.2,0,1,1.0 +20535,126,1.4,1,1, +4352,24,1.1.1,0,1,1.0 +4352,106,1.1,1,1, +7938,47,2.1.2.1,0,1,1.0 +7938,58,2.1.2,1,1,1.0 +1157,12,1.2.1,0,1,1.0 +1157,106,1.2,1,1, +11311,63,1.4.4.5,0,1,1.0 +11311,40,1.4.4,1,1, +11311,0,1.4.4,1,1, +20205,140,1.4.5.1,0,1,1.0 +20205,41,1.4.5,1,1,1.0 +20205,126,1.4,2,1,1.0 +20205,170,1,3,1,1.0 +16782,117,2.1.1.1,0,1,1.0 +16782,80,2.1.1,1,1, +20576,142,1.4.3,0,1,1.0 +20576,126,1.4,1,1,1.0 +20576,170,1,2,1, +3307,22,2.1.3.6,0,1,1.0 +3307,106,2.1.3,1,1, +5707,36,1.1.1,0,1,1.0 +5707,86,1.1,1,1, +6712,41,1.4.3.2,0,1,1.0 +6712,142,1.4.3,1,1,1.0 +6712,126,1.4,2,1, +17657,124,2.3,0,1,1.0 +17657,98,2,1,1, +8914,53,1.4.2.3,0,1,1.0 +8914,142,1.4.2,1,1,1.0 +8914,126,1.4,2,1,1.0 +8914,170,1,3,1,1.0 +9175,53,1.4.3.6,0,1,1.0 +9175,142,1.4.3,1,1, +20526,142,1.4.2,0,1,1.0 +20526,126,1.4,1,1,1.0 +20526,170,1,2,1, +9485,53,1.4.5.8,0,1,1.0 +9485,41,1.4.5,1,1, +8910,53,1.4.2.3,0,1,1.0 +8910,142,1.4.2,1,1, +20554,142,1.4.3,0,1,1.0 +20554,126,1.4,1,1, +15607,103,1.1.1,0,1,1.0 +15607,126,1.1,1,1, +11324,63,1.4.4.5,0,1,1.0 +11324,40,1.4.4,1,1, +11340,63,1.4.4.5,0,1,1.0 +11340,0,1.4.4,1,1,1.0 +8215,49,1.3.1.1,0,1,1.0 +8215,99,1.3.1,1,1, +15192,99,1.2.1,0,1,1.0 +15192,67,1.2,1,1,1.0 +19299,135,2.1.3.2,0,1,1.0 +19299,108,2.1.3,1,1,1.0 +23694,169,1.1.1,0,1,1.0 +23694,106,1.1,1,1, +22223,157,1.4.1,0,1,1.0 +22223,126,1.4,1,1, +1908,13,2.3.1,0,1,1.0 +1908,126,2.3,1,1,1.0 +11339,63,1.4.4.5,0,1,1.0 +11339,0,1.4.4,1,1, +11339,40,1.4.4,1,1,1.0 +357,4,1.2.2,0,1,1.0 +357,106,1.2,1,1, +20521,142,1.4.2,0,1,1.0 +20521,126,1.4,1,1, +4207,23,2.3.1,0,1,1.0 +4207,99,2.3,1,1, +6706,41,1.4.3.2,0,1,1.0 +6706,142,1.4.3,1,1,1.0 +6706,126,1.4,2,1, +16307,111,1.3.1.6,0,1,1.0 +16307,99,1.3.1,1,1, +3332,22,2.1.3.6,0,1,1.0 +3332,97,2.1.3,1,1, +11942,72,1.3.1.2,0,1,1.0 +11942,99,1.3.1,1,1,1.0 +15343,99,2.1,0,1,1.0 +15343,102,2,1,1, +18553,130,1.3.5,0,1,1.0 +18553,106,1.3,1,1, +4249,23,2.3.1,0,1,1.0 +4249,95,2.3,1,1,1.0 +21057,145,1.3.1.4,0,1,1.0 +21057,100,1.3.1,1,1, +2557,20,1.3.1.2,0,1,1.0 +2557,39,1.3.1,1,1, +20223,140,1.4.5.1,0,1,1.0 +20223,41,1.4.5,1,1, +5649,34,1.3.3.3,0,1,1.0 +5649,75,1.3.3,1,1,1.0 +22241,157,1.4.1,0,1,1.0 +22241,126,1.4,1,1, +2849,22,2.1.1.1,0,1,1.0 +2849,85,2.1.1,1,1,1.0 +12836,79,2.1.3.2,0,1,1.0 +12836,148,2.1.3,1,1, +11334,63,1.4.4.5,0,1,1.0 +11334,0,1.4.4,1,1, +18591,130,1.3.5,0,1,1.0 +18591,29,1.3,1,1, +3319,22,2.1.3.6,0,1,1.0 +3319,126,2.1.3,1,1, +22208,157,1.4.1,0,1,1.0 +22208,126,1.4,1,1,1.0 +22208,170,1,2,1,1.0 +7249,45,1.3.3.1,0,1,1.0 +7249,97,1.3.3,1,1,1.0 +13059,79,2.1.3.7,0,1,1.0 +13059,97,2.1.3,1,1, +9196,53,1.4.3.6,0,1,1.0 +9196,142,1.4.3,1,1, +11341,63,1.4.4.5,0,1,1.0 +11341,0,1.4.4,1,1, +6873,41,1.4.5,0,1,1.0 +6873,126,1.4,1,1, +12407,78,2.1.1.3,0,1,1.0 +12407,80,2.1.1,1,1, +17891,126,1.4,0,1,1.0 +17891,170,1,1,1, +2215,16,1.1.3,0,1,1.0 +2215,106,1.1,1,1,1.0 +10219,57,2.3.3,0,1,1.0 +10219,99,2.3,1,1, +14557,92,1.3.3.4,0,1,1.0 +14557,97,1.3.3,1,1, +5558,33,2.1.2.4,0,1,1.0 +5558,58,2.1.2,1,1,1.0 +3399,22,2.1.3.7,0,1,1.0 +3399,74,2.1.3,1,1,1.0 +17868,126,1.4,0,1,1.0 +17868,170,1,1,1,1.0 +19791,137,2.1.4.1.3,0,1,1.0 +19791,79,2.1.4.1,1,1,1.0 +15304,99,2.1,0,1,1.0 +15304,98,2,1,1,1.0 +16732,116,1.3.1.7,0,1,1.0 +16732,100,1.3.1,1,1, +6877,41,1.4.5,0,1,1.0 +6877,126,1.4,1,1, +20213,140,1.4.5.1,0,1,1.0 +20213,41,1.4.5,1,1,1.0 +20213,126,1.4,2,1,1.0 +20213,170,1,3,1,1.0 +7757,47,2.1.1.2,0,1,1.0 +7757,80,2.1.1,1,1, +11607,68,1.3.1.2,0,1,1.0 +11607,85,1.3.1,1,1, +19113,135,1.3.2.1,0,1,1.0 +19113,58,1.3.2,1,1,1.0 +18560,130,1.3.5,0,1,1.0 +18560,106,1.3,1,1, +18560,29,1.3,1,1,1.0 +16949,117,2.1.1.4,0,1,1.0 +16949,148,2.1.1,1,1,1.0 +6915,42,1.3.1.1,0,1,1.0 +6915,39,1.3.1,1,1,1.0 +13049,79,2.1.3.6,0,1,1.0 +13049,108,2.1.3,1,1,1.0 +22231,157,1.4.1,0,1,1.0 +22231,126,1.4,1,1,1.0 +22231,170,1,2,1,1.0 +8920,53,1.4.2.3,0,1,1.0 +8920,142,1.4.2,1,1, +665,6,2.1.2.1,0,1,1.0 +665,84,2.1.2,1,1,1.0 +11349,63,1.4.4.5,0,1,1.0 +11349,40,1.4.4,1,1, +9186,53,1.4.3.6,0,1,1.0 +9186,142,1.4.3,1,1,1.0 +9186,126,1.4,2,1, +11392,64,1.1.2,0,1,1.0 +11392,126,1.1,1,1,1.0 +3365,22,2.1.3.7,0,1,1.0 +3365,106,2.1.3,1,1, +20518,142,1.4.2,0,1,1.0 +20518,126,1.4,1,1, +20578,142,1.4.3,0,1,1.0 +20578,126,1.4,1,1, +15328,99,2.1,0,1,1.0 +15328,98,2,1,1, +15328,102,2,1,1, +9487,53,1.4.5.8,0,1,1.0 +9487,41,1.4.5,1,1,1.0 +9487,126,1.4,2,1, +11328,63,1.4.4.5,0,1,1.0 +11328,0,1.4.4,1,1, +11328,40,1.4.4,1,1, +22542,161,2.3.3,0,1,1.0 +22542,155,2.3,1,1,1.0 +11305,63,1.4.4.5,0,1,1.0 +11305,40,1.4.4,1,1,1.0 +11305,0,1.4.4,1,1,1.0 +11305,126,1.4,2,1, +19532,135,2.1.3.7,0,1,1.0 +19532,97,2.1.3,1,1, +4112,23,1.4.2.7,0,1,1.0 +4112,142,1.4.2,1,1,1.0 +4112,126,1.4,2,1, +20530,142,1.4.2,0,1,1.0 +20530,126,1.4,1,1, +20208,140,1.4.5.1,0,1,1.0 +20208,41,1.4.5,1,1,1.0 +20208,126,1.4,2,1, +3157,22,2.1.3.3,0,1,1.0 +3157,106,2.1.3,1,1, +16715,116,1.3.1.7,0,1,1.0 +16715,39,1.3.1,1,1,1.0 +8142,47,2.1.3.6,0,1,1.0 +8142,108,2.1.3,1,1,1.0 +20209,140,1.4.5.1,0,1,1.0 +20209,41,1.4.5,1,1,1.0 +20209,126,1.4,2,1, +13282,79,2.3.2,0,1,1.0 +13282,99,2.3,1,1, +1319,13,2.1.3.2,0,1,1.0 +1319,73,2.1.3,1,1,1.0 +10232,57,2.3.3,0,1,1.0 +10232,155,2.3,1,1, +9166,53,1.4.3.6,0,1,1.0 +9166,142,1.4.3,1,1,1.0 +9166,126,1.4,2,1, +12502,78,2.1.1.5,0,1,1.0 +12502,80,2.1.1,1,1, +20514,142,1.4.2,0,1,1.0 +20514,126,1.4,1,1,1.0 +20514,170,1,2,1,1.0 +658,6,2.1.2.1,0,1,1.0 +658,159,2.1.2,1,1,1.0 +8119,47,2.1.3.6,0,1,1.0 +8119,148,2.1.3,1,1, +2299,16,2.3.1,0,1,1.0 +2299,84,2.3,1,1,1.0 +13337,79,2.3.3,0,1,1.0 +13337,126,2.3,1,1,1.0 +13337,102,2,2,1, +16542,113,1.1.1,0,1,1.0 +16542,126,1.1,1,1,1.0 +12807,79,2.1.3.2,0,1,1.0 +12807,106,2.1.3,1,1, +20201,140,1.4.5.1,0,1,1.0 +20201,41,1.4.5,1,1, +4134,23,1.4.2.7,0,1,1.0 +4134,142,1.4.2,1,1, +6897,41,1.4.5,0,1,1.0 +6897,126,1.4,1,1,1.0 +6897,170,1,2,1,1.0 +1254,13,2.1.3.1,0,1,1.0 +1254,97,2.1.3,1,1, +23192,165,2.1.2.4,0,1,1.0 +23192,159,2.1.2,1,1,1.0 +17893,126,1.4,0,1,1.0 +17893,170,1,1,1, +3932,23,1.3.3.1,0,1,1.0 +3932,99,1.3.3,1,1, +18657,131,2.1.1.2,0,1,1.0 +18657,106,2.1.1,1,1, +20230,140,1.4.5.1,0,1,1.0 +20230,41,1.4.5,1,1, +12859,79,2.1.3.3,0,1,1.0 +12859,74,2.1.3,1,1, +2007,13,2.3.3,0,1,1.0 +2007,155,2.3,1,1, +19123,135,1.3.2.1,0,1,1.0 +19123,58,1.3.2,1,1,1.0 +19123,130,1.3.2,1,1,1.0 +19123,106,1.3,2,1, +1422,13,2.1.3.4,0,1,1.0 +1422,108,2.1.3,1,1, +1552,13,2.1.3.7,0,1,1.0 +1552,106,2.1.3,1,1, +12949,79,2.1.3.4,0,1,1.0 +12949,108,2.1.3,1,1,1.0 +2258,16,2.3.1,0,1,1.0 +2258,99,2.3,1,1,1.0 +9187,53,1.4.3.6,0,1,1.0 +9187,142,1.4.3,1,1,1.0 +9187,126,1.4,2,1, +17851,126,1.4,0,1,1.0 +17851,170,1,1,1, +19142,135,1.3.2.1,0,1,1.0 +19142,130,1.3.2,1,1,1.0 +19142,58,1.3.2,1,1,1.0 +19142,106,1.3,2,1, +19249,135,2.1.3.1,0,1,1.0 +19249,148,2.1.3,1,1,1.0 +1360,13,2.1.3.3,0,1,1.0 +1360,97,2.1.3,1,1, +20541,142,1.4.2,0,1,1.0 +20541,126,1.4,1,1, +20538,142,1.4.2,0,1,1.0 +20538,126,1.4,1,1, +18575,130,1.3.5,0,1,1.0 +18575,29,1.3,1,1,1.0 +18575,106,1.3,1,1, +12936,79,2.1.3.4,0,1,1.0 +12936,73,2.1.3,1,1, +17896,126,1.4,0,1,1.0 +17896,170,1,1,1,1.0 +14233,87,1.1.1,0,1,1.0 +14233,105,1.1,1,1, +6746,41,1.4.3.2,0,1,1.0 +6746,142,1.4.3,1,1, +657,6,2.1.2.1,0,1,1.0 +657,159,2.1.2,1,1, +9486,53,1.4.5.8,0,1,1.0 +9486,41,1.4.5,1,1, +17875,126,1.4,0,1,1.0 +17875,170,1,1,1,1.0 +6738,41,1.4.3.2,0,1,1.0 +6738,142,1.4.3,1,1, +10057,57,1.3.3.3,0,1,1.0 +10057,99,1.3.3,1,1, +22212,157,1.4.1,0,1,1.0 +22212,126,1.4,1,1, +4120,23,1.4.2.7,0,1,1.0 +4120,142,1.4.2,1,1, +13215,79,2.3.1,0,1,1.0 +13215,126,2.3,1,1,1.0 +6736,41,1.4.3.2,0,1,1.0 +6736,142,1.4.3,1,1,1.0 +6736,126,1.4,2,1, +1152,12,1.2.1,0,1,1.0 +1152,97,1.2,1,1, +18758,131,2.1.1.4,0,1,1.0 +18758,106,2.1.1,1,1, +13008,79,2.1.3.6,0,1,1.0 +13008,108,2.1.3,1,1,1.0 +6750,41,1.4.3.2,0,1,1.0 +6750,142,1.4.3,1,1, +1366,13,2.1.3.3,0,1,1.0 +1366,106,2.1.3,1,1,1.0 +20245,140,1.4.5.1,0,1,1.0 +20245,41,1.4.5,1,1,1.0 +20245,126,1.4,2,1, +4142,23,1.4.2.7,0,1,1.0 +4142,142,1.4.2,1,1, +23592,168,2.3.2,0,1,1.0 +23592,99,2.3,1,1,1.0 +23657,169,1.1.1,0,1,1.0 +23657,105,1.1,1,1, +5365,32,1.2.3,0,1,1.0 +5365,97,1.2,1,1,1.0 +12649,79,1.3.1.4,0,1,1.0 +12649,100,1.3.1,1,1,1.0 +607,6,1.3.1.2,0,1,1.0 +607,99,1.3.1,1,1, +15633,103,1.1.1,0,1,1.0 +15633,94,1.1,1,1, +9494,53,1.4.5.8,0,1,1.0 +9494,41,1.4.5,1,1, +11330,63,1.4.4.5,0,1,1.0 +11330,0,1.4.4,1,1, +17864,126,1.4,0,1,1.0 +17864,170,1,1,1,1.0 +23057,165,2.1.2.2,0,1,1.0 +23057,79,2.1.2,1,1, +16908,117,2.1.1.4,0,1,1.0 +16908,80,2.1.1,1,1,1.0 +22215,157,1.4.1,0,1,1.0 +22215,126,1.4,1,1, +17883,126,1.4,0,1,1.0 +17883,170,1,1,1, +1309,13,2.1.3.2,0,1,1.0 +1309,73,2.1.3,1,1,1.0 +9176,53,1.4.3.6,0,1,1.0 +9176,142,1.4.3,1,1,1.0 +9176,126,1.4,2,1, +6880,41,1.4.5,0,1,1.0 +6880,126,1.4,1,1, +9491,53,1.4.5.8,0,1,1.0 +9491,41,1.4.5,1,1, +15336,99,2.1,0,1,1.0 +15336,98,2,1,1, +6876,41,1.4.5,0,1,1.0 +6876,126,1.4,1,1,1.0 +6876,170,1,2,1, +19349,135,2.1.3.3,0,1,1.0 +19349,126,2.1.3,1,1,1.0 +18554,130,1.3.5,0,1,1.0 +18554,29,1.3,1,1, +22249,157,1.4.1,0,1,1.0 +22249,126,1.4,1,1, +10849,60,2.1.1.4,0,1,1.0 +10849,80,2.1.1,1,1,1.0 +792,6,2.1.2.3,0,1,1.0 +792,84,2.1.2,1,1,1.0 +19358,135,2.1.3.4,0,1,1.0 +19358,106,2.1.3,1,1, +6852,41,1.4.5,0,1,1.0 +6852,126,1.4,1,1, +7499,45,2.1.4.1.3,0,1,1.0 +7499,79,2.1.4.1,1,1,1.0 +8930,53,1.4.2.3,0,1,1.0 +8930,142,1.4.2,1,1, +6726,41,1.4.3.2,0,1,1.0 +6726,142,1.4.3,1,1,1.0 +6726,126,1.4,2,1, +17877,126,1.4,0,1,1.0 +17877,170,1,1,1,1.0 +22457,161,2.3.2,0,1,1.0 +22457,95,2.3,1,1, +4191,23,2.1.3.6,0,1,1.0 +4191,97,2.1.3,1,1, +4103,23,1.4.2.7,0,1,1.0 +4103,142,1.4.2,1,1, +22221,157,1.4.1,0,1,1.0 +22221,126,1.4,1,1, +13032,79,2.1.3.6,0,1,1.0 +13032,106,2.1.3,1,1, +5557,33,2.1.2.4,0,1,1.0 +5557,84,2.1.2,1,1, +9489,53,1.4.5.8,0,1,1.0 +9489,41,1.4.5,1,1, +6868,41,1.4.5,0,1,1.0 +6868,126,1.4,1,1, +17257,117,2.1.4.2.2,0,1,1.0 +17257,79,2.1.4.2,1,1, +2157,15,1.3.3.5,0,1,1.0 +2157,75,1.3.3,1,1, +3207,22,2.1.3.4,0,1,1.0 +3207,97,2.1.3,1,1, +1472,13,2.1.3.5,0,1,1.0 +1472,97,2.1.3,1,1, +12799,79,2.1.3.1,0,1,1.0 +12799,74,2.1.3,1,1, +17007,117,2.1.4.1.1,0,1,1.0 +17007,81,2.1.4.1,1,1, +4315,23,2.3.3,0,1,1.0 +4315,99,2.3,1,1,1.0 +16791,117,2.1.1.1,0,1,1.0 +16791,80,2.1.1,1,1, +4137,23,1.4.2.7,0,1,1.0 +4137,142,1.4.2,1,1,1.0 +4137,126,1.4,2,1, +19107,135,1.3.2.1,0,1,1.0 +19107,130,1.3.2,1,1,1.0 +19107,58,1.3.2,1,1,1.0 +19107,29,1.3,2,1, +19107,106,1.3,2,1, +2569,20,1.3.1.2,0,1,1.0 +2569,93,1.3.1,1,1, +23457,168,1.3.3.4,0,1,1.0 +23457,97,1.3.3,1,1, +15616,103,1.1.1,0,1,1.0 +15616,106,1.1,1,1, +20573,142,1.4.3,0,1,1.0 +20573,126,1.4,1,1, +23607,168,2.3.3,0,1,1.0 +23607,99,2.3,1,1, +20247,140,1.4.5.1,0,1,1.0 +20247,41,1.4.5,1,1,1.0 +20247,126,1.4,2,1,1.0 +20247,170,1,3,1, +11338,63,1.4.4.5,0,1,1.0 +11338,0,1.4.4,1,1,1.0 +11338,40,1.4.4,1,1,1.0 +11338,126,1.4,2,1, +158,3,1.3.1.4,0,1,1.0 +158,85,1.3.1,1,1, +9467,53,1.4.5.8,0,1,1.0 +9467,41,1.4.5,1,1, +8901,53,1.4.2.3,0,1,1.0 +8901,142,1.4.2,1,1, +20566,142,1.4.3,0,1,1.0 +20566,126,1.4,1,1, +19125,135,1.3.2.1,0,1,1.0 +19125,130,1.3.2,1,1,1.0 +19125,58,1.3.2,1,1,1.0 +19125,106,1.3,2,1,1.0 +19125,29,1.3,2,1, +20242,140,1.4.5.1,0,1,1.0 +20242,41,1.4.5,1,1, +18308,129,1.2.3,0,1,1.0 +18308,97,1.2,1,1,1.0 +20229,140,1.4.5.1,0,1,1.0 +20229,41,1.4.5,1,1,1.0 +20229,126,1.4,2,1, +8929,53,1.4.2.3,0,1,1.0 +8929,142,1.4.2,1,1,1.0 +8929,126,1.4,2,1, +12772,79,2.1.3.1,0,1,1.0 +12772,97,2.1.3,1,1, +9197,53,1.4.3.6,0,1,1.0 +9197,142,1.4.3,1,1,1.0 +9197,126,1.4,2,1,1.0 +9197,170,1,3,1, +12382,78,2.1.1.2,0,1,1.0 +12382,80,2.1.1,1,1, +17890,126,1.4,0,1,1.0 +17890,170,1,1,1,1.0 +10749,60,2.1.1.2,0,1,1.0 +10749,80,2.1.1,1,1,1.0 +6853,41,1.4.5,0,1,1.0 +6853,126,1.4,1,1, +14299,88,1.1.3,0,1,1.0 +14299,86,1.1,1,1,1.0 +11346,63,1.4.4.5,0,1,1.0 +11346,0,1.4.4,1,1, +9496,53,1.4.5.8,0,1,1.0 +9496,41,1.4.5,1,1, +4144,23,1.4.2.7,0,1,1.0 +4144,142,1.4.2,1,1, +17588,123,1.1.2,0,1,1.0 +17588,94,1.1,1,1,1.0 +1412,13,2.1.3.4,0,1,1.0 +1412,97,2.1.3,1,1, +5469,33,2.1.2.2,0,1,1.0 +5469,81,2.1.2,1,1, +19111,135,1.3.2.1,0,1,1.0 +19111,58,1.3.2,1,1,1.0 +19111,130,1.3.2,1,1,1.0 +19111,106,1.3,2,1, +6307,39,1.3.1,0,1,1.0 +6307,29,1.3,1,1, +8921,53,1.4.2.3,0,1,1.0 +8921,142,1.4.2,1,1, +15310,99,2.1,0,1,1.0 +15310,98,2,1,1, +20552,142,1.4.3,0,1,1.0 +20552,126,1.4,1,1, +22222,157,1.4.1,0,1,1.0 +22222,126,1.4,1,1, +19099,135,1.1.3,0,1,1.0 +19099,94,1.1,1,1,1.0 +20564,142,1.4.3,0,1,1.0 +20564,126,1.4,1,1,1.0 +20564,170,1,2,1,1.0 +20540,142,1.4.2,0,1,1.0 +20540,126,1.4,1,1, +3257,22,2.1.3.5,0,1,1.0 +3257,106,2.1.3,1,1, +15320,99,2.1,0,1,1.0 +15320,102,2,1,1, +15320,98,2,1,1,1.0 +8199,48,1.2.2,0,1,1.0 +8199,126,1.2,1,1,1.0 +6724,41,1.4.3.2,0,1,1.0 +6724,142,1.4.3,1,1, +20218,140,1.4.5.1,0,1,1.0 +20218,41,1.4.5,1,1,1.0 +20218,126,1.4,2,1,1.0 +20218,170,1,3,1,1.0 +8946,53,1.4.2.3,0,1,1.0 +8946,142,1.4.2,1,1, +4057,23,1.3.3.4,0,1,1.0 +4057,99,1.3.3,1,1, +16527,113,1.1.1,0,1,1.0 +16527,105,1.1,1,1,1.0 +8649,50,1.3.1.5,0,1,1.0 +8649,85,1.3.1,1,1,1.0 +18958,133,1.4.4.1,0,1,1.0 +18958,40,1.4.4,1,1,1.0 +6735,41,1.4.3.2,0,1,1.0 +6735,142,1.4.3,1,1, +18563,130,1.3.5,0,1,1.0 +18563,29,1.3,1,1,1.0 +15249,99,1.3.1,0,1,1.0 +15249,106,1.3,1,1,1.0 +7157,44,1.1.1,0,1,1.0 +7157,106,1.1,1,1, +6732,41,1.4.3.2,0,1,1.0 +6732,142,1.4.3,1,1,1.0 +6732,126,1.4,2,1, +15308,99,2.1,0,1,1.0 +15308,98,2,1,1, +15308,102,2,1,1, +14899,96,1.2.3,0,1,1.0 +14899,126,1.2,1,1,1.0 +6728,41,1.4.3.2,0,1,1.0 +6728,142,1.4.3,1,1, +11711,69,1.1.1,0,1,1.0 +11711,94,1.1,1,1,1.0 +15347,99,2.1,0,1,1.0 +15347,102,2,1,1, +15347,98,2,1,1,1.0 +6729,41,1.4.3.2,0,1,1.0 +6729,142,1.4.3,1,1,1.0 +6729,126,1.4,2,1, +99,1,2.1.1.5,0,1,1.0 +99,148,2.1.1,1,1,1.0 +8249,49,1.3.1.1,0,1,1.0 +8249,99,1.3.1,1,1,1.0 +9490,53,1.4.5.8,0,1,1.0 +9490,41,1.4.5,1,1,1.0 +9490,126,1.4,2,1, +22202,157,1.4.1,0,1,1.0 +22202,126,1.4,1,1, +6741,41,1.4.3.2,0,1,1.0 +6741,142,1.4.3,1,1, +4101,23,1.4.2.7,0,1,1.0 +4101,142,1.4.2,1,1, +11308,63,1.4.4.5,0,1,1.0 +11308,40,1.4.4,1,1,1.0 +23683,169,1.1.1,0,1,1.0 +23683,106,1.1,1,1, +22204,157,1.4.1,0,1,1.0 +22204,126,1.4,1,1, +17866,126,1.4,0,1,1.0 +17866,170,1,1,1,1.0 +9188,53,1.4.3.6,0,1,1.0 +9188,142,1.4.3,1,1, +20551,142,1.4.3,0,1,1.0 +20551,126,1.4,1,1, +20536,142,1.4.2,0,1,1.0 +20536,126,1.4,1,1, +16808,117,2.1.1.2,0,1,1.0 +16808,85,2.1.1,1,1,1.0 +1058,10,1.3.3.5,0,1,1.0 +1058,75,1.3.3,1,1, +8916,53,1.4.2.3,0,1,1.0 +8916,142,1.4.2,1,1,1.0 +8916,126,1.4,2,1, +20211,140,1.4.5.1,0,1,1.0 +20211,41,1.4.5,1,1,1.0 +20211,126,1.4,2,1, +11407,65,1.2.1,0,1,1.0 +11407,126,1.2,1,1, +5457,33,2.1.2.2,0,1,1.0 +5457,79,2.1.2,1,1, +20216,140,1.4.5.1,0,1,1.0 +20216,41,1.4.5,1,1,1.0 +20216,126,1.4,2,1, +9482,53,1.4.5.8,0,1,1.0 +9482,41,1.4.5,1,1,1.0 +9482,126,1.4,2,1, +20222,140,1.4.5.1,0,1,1.0 +20222,41,1.4.5,1,1, +4114,23,1.4.2.7,0,1,1.0 +4114,142,1.4.2,1,1,1.0 +4114,126,1.4,2,1,1.0 +4114,170,1,3,1,1.0 +20574,142,1.4.3,0,1,1.0 +20574,126,1.4,1,1, +6745,41,1.4.3.2,0,1,1.0 +6745,142,1.4.3,1,1,1.0 +6745,126,1.4,2,1, +2042,13,2.3.3,0,1,1.0 +2042,124,2.3,1,1,1.0 +12857,79,2.1.3.3,0,1,1.0 +12857,148,2.1.3,1,1, +16157,108,2.2,0,1,1.0 +16157,102,2,1,1, +17874,126,1.4,0,1,1.0 +17874,170,1,1,1, +8928,53,1.4.2.3,0,1,1.0 +8928,142,1.4.2,1,1, +19134,135,1.3.2.1,0,1,1.0 +19134,58,1.3.2,1,1,1.0 +19134,130,1.3.2,1,1,1.0 +19134,106,1.3,2,1, +14441,89,1.3.3.1,0,1,1.0 +14441,75,1.3.3,1,1, +20598,142,1.4.3,0,1,1.0 +20598,126,1.4,1,1, +1508,13,2.1.3.6,0,1,1.0 +1508,74,2.1.3,1,1, +7132,43,1.3.1.6,0,1,1.0 +7132,39,1.3.1,1,1, +18595,130,1.3.5,0,1,1.0 +18595,106,1.3,1,1, +9966,56,1.1.1,0,1,1.0 +9966,126,1.1,1,1, +23215,166,1.2.3,0,1,1.0 +23215,67,1.2,1,1,1.0 +1915,13,2.3.1,0,1,1.0 +1915,95,2.3,1,1,1.0 +1549,13,2.1.3.6,0,1,1.0 +1549,126,2.1.3,1,1,1.0 +6858,41,1.4.5,0,1,1.0 +6858,126,1.4,1,1,1.0 +6858,170,1,2,1,1.0 +19507,135,2.1.3.7,0,1,1.0 +19507,106,2.1.3,1,1, +20517,142,1.4.2,0,1,1.0 +20517,126,1.4,1,1, +17898,126,1.4,0,1,1.0 +17898,170,1,1,1,1.0 +20224,140,1.4.5.1,0,1,1.0 +20224,41,1.4.5,1,1, +13842,82,2.1.2.4,0,1,1.0 +13842,159,2.1.2,1,1,1.0 +12819,79,2.1.3.2,0,1,1.0 +12819,74,2.1.3,1,1,1.0 +15142,99,1.1.2,0,1,1.0 +15142,105,1.1,1,1,1.0 +1446,13,2.1.3.4,0,1,1.0 +1446,108,2.1.3,1,1, +9475,53,1.4.5.8,0,1,1.0 +9475,41,1.4.5,1,1, +8924,53,1.4.2.3,0,1,1.0 +8924,142,1.4.2,1,1, +10099,57,1.3.3.3,0,1,1.0 +10099,97,1.3.3,1,1,1.0 +6949,42,1.3.1.1,0,1,1.0 +6949,85,1.3.1,1,1,1.0 +6869,41,1.4.5,0,1,1.0 +6869,126,1.4,1,1, +14742,95,1.2.3,0,1,1.0 +14742,67,1.2,1,1,1.0 +6865,41,1.4.5,0,1,1.0 +6865,126,1.4,1,1, +6708,41,1.4.3.2,0,1,1.0 +6708,142,1.4.3,1,1,1.0 +6708,126,1.4,2,1, +22507,161,2.3.3,0,1,1.0 +22507,95,2.3,1,1, +4415,25,1.3.1.7,0,1,1.0 +4415,100,1.3.1,1,1,1.0 +21357,149,2.1.2.1,0,1,1.0 +21357,58,2.1.2,1,1, +738,6,2.1.2.2,0,1,1.0 +738,79,2.1.2,1,1,1.0 +15321,99,2.1,0,1,1.0 +15321,102,2,1,1, +15321,98,2,1,1,1.0 +22220,157,1.4.1,0,1,1.0 +22220,126,1.4,1,1, +15306,99,2.1,0,1,1.0 +15306,98,2,1,1,1.0 +15306,102,2,1,1, +18299,129,1.1.2,0,1,1.0 +18299,105,1.1,1,1,1.0 +21719,153,1.3.1.1,0,1,1.0 +21719,39,1.3.1,1,1, +8592,49,2.1.2.4,0,1,1.0 +8592,58,2.1.2,1,1,1.0 +11337,63,1.4.4.5,0,1,1.0 +11337,0,1.4.4,1,1,1.0 +20600,142,1.4.3,0,1,1.0 +20600,126,1.4,1,1, +22219,157,1.4.1,0,1,1.0 +22219,126,1.4,1,1, +1249,13,1.2.2,0,1,1.0 +1249,106,1.2,1,1,1.0 +8927,53,1.4.2.3,0,1,1.0 +8927,142,1.4.2,1,1, +19008,134,1.3.3.5,0,1,1.0 +19008,97,1.3.3,1,1, +20008,139,1.3.3.7,0,1,1.0 +20008,99,1.3.3,1,1, +21437,149,2.1.2.2,0,1,1.0 +21437,81,2.1.2,1,1,1.0 +11888,71,1.3.1.2,0,1,1.0 +11888,99,1.3.1,1,1,1.0 +8115,47,2.1.3.6,0,1,1.0 +8115,126,2.1.3,1,1, +6702,41,1.4.3.2,0,1,1.0 +6702,142,1.4.3,1,1,1.0 +6702,126,1.4,2,1, +23661,169,1.1.1,0,1,1.0 +23661,86,1.1,1,1,1.0 +15345,99,2.1,0,1,1.0 +15345,98,2,1,1, +15345,102,2,1,1, +10007,56,1.3.1.7,0,1,1.0 +10007,93,1.3.1,1,1, +22229,157,1.4.1,0,1,1.0 +22229,126,1.4,1,1, +9961,56,1.1.1,0,1,1.0 +9961,105,1.1,1,1,1.0 +12805,79,2.1.3.2,0,1,1.0 +12805,106,2.1.3,1,1, +7941,47,2.1.2.1,0,1,1.0 +7941,58,2.1.2,1,1,1.0 +17857,126,1.4,0,1,1.0 +17857,170,1,1,1,1.0 +20580,142,1.4.3,0,1,1.0 +20580,126,1.4,1,1, +23542,168,2.3.1,0,1,1.0 +23542,155,2.3,1,1,1.0 +6864,41,1.4.5,0,1,1.0 +6864,126,1.4,1,1,1.0 +6864,170,1,2,1,1.0 +14707,95,1.2.3,0,1,1.0 +14707,126,1.2,1,1, +6862,41,1.4.5,0,1,1.0 +6862,126,1.4,1,1, +23088,165,2.1.2.2,0,1,1.0 +23088,84,2.1.2,1,1,1.0 +18561,130,1.3.5,0,1,1.0 +18561,106,1.3,1,1,1.0 +4113,23,1.4.2.7,0,1,1.0 +4113,142,1.4.2,1,1,1.0 +4113,126,1.4,2,1,1.0 +4113,170,1,3,1,1.0 +3757,22,2.3.2,0,1,1.0 +3757,84,2.3,1,1, +3199,22,2.1.3.3,0,1,1.0 +3199,148,2.1.3,1,1,1.0 +8419,49,2.1.2.1,0,1,1.0 +8419,79,2.1.2,1,1, +20504,142,1.4.2,0,1,1.0 +20504,126,1.4,1,1, +6057,38,2.1.1.1,0,1,1.0 +6057,106,2.1.1,1,1, +21142,146,1.3.1.1,0,1,1.0 +21142,100,1.3.1,1,1,1.0 +13066,79,2.1.3.7,0,1,1.0 +13066,148,2.1.3,1,1,1.0 +17861,126,1.4,0,1,1.0 +17861,170,1,1,1,1.0 +7907,47,2.1.2.1,0,1,1.0 +7907,84,2.1.2,1,1, +18757,131,2.1.1.4,0,1,1.0 +18757,80,2.1.1,1,1, +22157,156,1.3.1.7,0,1,1.0 +22157,85,1.3.1,1,1, +19132,135,1.3.2.1,0,1,1.0 +19132,130,1.3.2,1,1,1.0 +4607,26,2.1.3.4,0,1,1.0 +4607,126,2.1.3,1,1, +19135,135,1.3.2.1,0,1,1.0 +19135,58,1.3.2,1,1,1.0 +20586,142,1.4.3,0,1,1.0 +20586,126,1.4,1,1, +11306,63,1.4.4.5,0,1,1.0 +11306,0,1.4.4,1,1,1.0 +11306,40,1.4.4,1,1, +9151,53,1.4.3.6,0,1,1.0 +9151,142,1.4.3,1,1, +20532,142,1.4.2,0,1,1.0 +20532,126,1.4,1,1, +22234,157,1.4.1,0,1,1.0 +22234,126,1.4,1,1, +757,6,2.1.2.3,0,1,1.0 +757,81,2.1.2,1,1, +8922,53,1.4.2.3,0,1,1.0 +8922,142,1.4.2,1,1, +11321,63,1.4.4.5,0,1,1.0 +11321,40,1.4.4,1,1, +1281,13,2.1.3.1,0,1,1.0 +1281,74,2.1.3,1,1, +19357,135,2.1.3.4,0,1,1.0 +19357,108,2.1.3,1,1, +14341,89,1.1.2,0,1,1.0 +14341,86,1.1,1,1, +4182,23,2.1.3.6,0,1,1.0 +4182,148,2.1.3,1,1, +11320,63,1.4.4.5,0,1,1.0 +11320,40,1.4.4,1,1, +6875,41,1.4.5,0,1,1.0 +6875,126,1.4,1,1, +14732,95,1.2.3,0,1,1.0 +14732,126,1.2,1,1, +13841,82,2.1.2.4,0,1,1.0 +13841,84,2.1.2,1,1, +20228,140,1.4.5.1,0,1,1.0 +20228,41,1.4.5,1,1, +22207,157,1.4.1,0,1,1.0 +22207,126,1.4,1,1, +16919,117,2.1.1.4,0,1,1.0 +16919,85,2.1.1,1,1, +1490,13,2.1.3.5,0,1,1.0 +1490,73,2.1.3,1,1, +3707,22,2.3.1,0,1,1.0 +3707,95,2.3,1,1, +4307,23,2.3.3,0,1,1.0 +4307,126,2.3,1,1, +9480,53,1.4.5.8,0,1,1.0 +9480,41,1.4.5,1,1, +14549,91,1.2.1,0,1,1.0 +14549,67,1.2,1,1,1.0 +4123,23,1.4.2.7,0,1,1.0 +4123,142,1.4.2,1,1, +22218,157,1.4.1,0,1,1.0 +22218,126,1.4,1,1, +8107,47,2.1.3.6,0,1,1.0 +8107,148,2.1.3,1,1, +11615,68,1.3.1.2,0,1,1.0 +11615,99,1.3.1,1,1, +3792,22,2.3.2,0,1,1.0 +3792,155,2.3,1,1,1.0 +12638,79,1.3.1.4,0,1,1.0 +12638,100,1.3.1,1,1,1.0 +4699,26,2.1.3.5,0,1,1.0 +4699,97,2.1.3,1,1,1.0 +22519,161,2.3.3,0,1,1.0 +22519,155,2.3,1,1, +6893,41,1.4.5,0,1,1.0 +6893,126,1.4,1,1, +13208,79,2.3.1,0,1,1.0 +13208,84,2.3,1,1,1.0 +4457,26,2.1.3.1,0,1,1.0 +4457,148,2.1.3,1,1, +19149,135,1.3.2.1,0,1,1.0 +19149,130,1.3.2,1,1,1.0 +2232,16,1.1.3,0,1,1.0 +2232,94,1.1,1,1, +7507,45,2.1.4.1.4,0,1,1.0 +7507,81,2.1.4.1,1,1, +1466,13,2.1.3.5,0,1,1.0 +1466,106,2.1.3,1,1,1.0 +15637,103,1.1.1,0,1,1.0 +15637,86,1.1,1,1,1.0 +4104,23,1.4.2.7,0,1,1.0 +4104,142,1.4.2,1,1,1.0 +4104,126,1.4,2,1, +9182,53,1.4.3.6,0,1,1.0 +9182,142,1.4.3,1,1,1.0 +9182,126,1.4,2,1, +23049,165,2.1.2.1,0,1,1.0 +23049,81,2.1.2,1,1,1.0 +9466,53,1.4.5.8,0,1,1.0 +9466,41,1.4.5,1,1,1.0 +9466,126,1.4,2,1, +1301,13,2.1.3.2,0,1,1.0 +1301,97,2.1.3,1,1, +4349,23,2.3.3,0,1,1.0 +4349,124,2.3,1,1,1.0 +18570,130,1.3.5,0,1,1.0 +18570,106,1.3,1,1, +18570,29,1.3,1,1,1.0 +1957,13,2.3.2,0,1,1.0 +1957,95,2.3,1,1, +1409,13,2.1.3.4,0,1,1.0 +1409,148,2.1.3,1,1, +12810,79,2.1.3.2,0,1,1.0 +12810,148,2.1.3,1,1, +11733,69,1.1.1,0,1,1.0 +11733,126,1.1,1,1, +21557,150,1.1.1,0,1,1.0 +21557,126,1.1,1,1, +3742,22,2.3.1,0,1,1.0 +3742,84,2.3,1,1,1.0 +11719,69,1.1.1,0,1,1.0 +11719,86,1.1,1,1, +18207,128,1.1.2,0,1,1.0 +18207,126,1.1,1,1, +1587,13,2.1.3.7,0,1,1.0 +1587,108,2.1.3,1,1, +1587,74,2.1.3,1,1, +18574,130,1.3.5,0,1,1.0 +18574,106,1.3,1,1, +11343,63,1.4.4.5,0,1,1.0 +11343,40,1.4.4,1,1,1.0 +11343,0,1.4.4,1,1,1.0 +11343,126,1.4,2,1, +21157,147,1.1.2,0,1,1.0 +21157,105,1.1,1,1, +9957,56,1.1.1,0,1,1.0 +9957,106,1.1,1,1, +3315,22,2.1.3.6,0,1,1.0 +3315,148,2.1.3,1,1, +19857,137,2.1.4.2.1,0,1,1.0 +19857,81,2.1.4.2,1,1, +14608,93,1.3.1,0,1,1.0 +14608,106,1.3,1,1, +1541,13,2.1.3.6,0,1,1.0 +1541,73,2.1.3,1,1, +6898,41,1.4.5,0,1,1.0 +6898,126,1.4,1,1, +8908,53,1.4.2.3,0,1,1.0 +8908,142,1.4.2,1,1,1.0 +8908,126,1.4,2,1, +1757,13,2.1.4.1.4,0,1,1.0 +1757,81,2.1.4.1,1,1, +20522,142,1.4.2,0,1,1.0 +20522,126,1.4,1,1, +1402,13,2.1.3.4,0,1,1.0 +1402,148,2.1.3,1,1,1.0 +10199,57,2.3.2,0,1,1.0 +10199,99,2.3,1,1,1.0 +15348,99,2.1,0,1,1.0 +15348,98,2,1,1,1.0 +15348,102,2,1,1, +6882,41,1.4.5,0,1,1.0 +6882,126,1.4,1,1, +11347,63,1.4.4.5,0,1,1.0 +11347,0,1.4.4,1,1,1.0 +11347,40,1.4.4,1,1,1.0 +11347,126,1.4,2,1, +20449,141,1.3.3.2,0,1,1.0 +20449,75,1.3.3,1,1,1.0 +9193,53,1.4.3.6,0,1,1.0 +9193,142,1.4.3,1,1, +11310,63,1.4.4.5,0,1,1.0 +11310,0,1.4.4,1,1, +21082,145,1.3.1.4,0,1,1.0 +21082,85,1.3.1,1,1, +18581,130,1.3.5,0,1,1.0 +18581,29,1.3,1,1, +18581,106,1.3,1,1, +21169,147,1.1.2,0,1,1.0 +21169,105,1.1,1,1, +9451,53,1.4.5.8,0,1,1.0 +9451,41,1.4.5,1,1, +19148,135,1.3.2.1,0,1,1.0 +19148,130,1.3.2,1,1,1.0 +19148,58,1.3.2,1,1,1.0 +19148,106,1.3,2,1, +4141,23,1.4.2.7,0,1,1.0 +4141,142,1.4.2,1,1, +1302,13,2.1.3.2,0,1,1.0 +1302,126,2.1.3,1,1,1.0 +20249,140,1.4.5.1,0,1,1.0 +20249,41,1.4.5,1,1, +19136,135,1.3.2.1,0,1,1.0 +19136,58,1.3.2,1,1,1.0 +19136,130,1.3.2,1,1,1.0 +19136,106,1.3,2,1, +10157,57,2.3.2,0,1,1.0 +10157,155,2.3,1,1, +2108,14,1.3.4.3,0,1,1.0 +2108,80,1.3.4,1,1,1.0 +4148,23,1.4.2.7,0,1,1.0 +4148,142,1.4.2,1,1, +6713,41,1.4.3.2,0,1,1.0 +6713,142,1.4.3,1,1,1.0 +6713,126,1.4,2,1,1.0 +6713,170,1,3,1,1.0 +12049,74,1.3.3.2,0,1,1.0 +12049,97,1.3.3,1,1,1.0 +16841,117,2.1.1.2,0,1,1.0 +16841,106,2.1.1,1,1, +7957,47,2.1.2.2,0,1,1.0 +7957,159,2.1.2,1,1, +12962,79,2.1.3.5,0,1,1.0 +12962,108,2.1.3,1,1, +22238,157,1.4.1,0,1,1.0 +22238,126,1.4,1,1, +7769,47,2.1.1.2,0,1,1.0 +7769,106,2.1.1,1,1, +15302,99,2.1,0,1,1.0 +15302,98,2,1,1,1.0 +15302,102,2,1,1,1.0 +15302,170,1,2,1,1.0 +20237,140,1.4.5.1,0,1,1.0 +20237,41,1.4.5,1,1,1.0 +20237,126,1.4,2,1, +12852,79,2.1.3.3,0,1,1.0 +12852,126,2.1.3,1,1,1.0 +20591,142,1.4.3,0,1,1.0 +20591,126,1.4,1,1, +1657,13,2.1.4.1.2,0,1,1.0 +1657,79,2.1.4.1,1,1, +4130,23,1.4.2.7,0,1,1.0 +4130,142,1.4.2,1,1, +8457,49,2.1.2.2,0,1,1.0 +8457,79,2.1.2,1,1, +9169,53,1.4.3.6,0,1,1.0 +9169,142,1.4.3,1,1, +8907,53,1.4.2.3,0,1,1.0 +8907,142,1.4.2,1,1, +3957,23,1.3.3.2,0,1,1.0 +3957,75,1.3.3,1,1, +692,6,2.1.2.1,0,1,1.0 +692,81,2.1.2,1,1,1.0 +2249,16,1.1.3,0,1,1.0 +2249,86,1.1,1,1,1.0 +20236,140,1.4.5.1,0,1,1.0 +20236,41,1.4.5,1,1, +20207,140,1.4.5.1,0,1,1.0 +20207,41,1.4.5,1,1, +257,3,1.3.1.6,0,1,1.0 +257,85,1.3.1,1,1, +19965,138,1.3.1.5,0,1,1.0 +19965,100,1.3.1,1,1,1.0 +18582,130,1.3.5,0,1,1.0 +18582,106,1.3,1,1, +18582,29,1.3,1,1, +4269,23,2.3.2,0,1,1.0 +4269,99,2.3,1,1, +17879,126,1.4,0,1,1.0 +17879,170,1,1,1,1.0 +10892,60,2.1.1.5,0,1,1.0 +10892,148,2.1.1,1,1,1.0 +4157,23,2.1.3.6,0,1,1.0 +4157,97,2.1.3,1,1, +8933,53,1.4.2.3,0,1,1.0 +8933,142,1.4.2,1,1, +4549,26,2.1.3.2,0,1,1.0 +4549,126,2.1.3,1,1,1.0 +6894,41,1.4.5,0,1,1.0 +6894,126,1.4,1,1, +4149,23,1.4.2.7,0,1,1.0 +4149,142,1.4.2,1,1, +20942,144,2.1.2.2,0,1,1.0 +20942,81,2.1.2,1,1,1.0 +16507,113,1.1.1,0,1,1.0 +16507,94,1.1,1,1, +12996,79,2.1.3.5,0,1,1.0 +12996,148,2.1.3,1,1, +4109,23,1.4.2.7,0,1,1.0 +4109,142,1.4.2,1,1,1.0 +4109,126,1.4,2,1, +17855,126,1.4,0,1,1.0 +17855,170,1,1,1,1.0 +20543,142,1.4.2,0,1,1.0 +20543,126,1.4,1,1, +16607,115,1.1.3,0,1,1.0 +16607,86,1.1,1,1, +15316,99,2.1,0,1,1.0 +15316,98,2,1,1, +6249,38,2.1.1.4,0,1,1.0 +6249,85,2.1.1,1,1,1.0 +1316,13,2.1.3.2,0,1,1.0 +1316,106,2.1.3,1,1,1.0 +7992,47,2.1.2.2,0,1,1.0 +7992,58,2.1.2,1,1,1.0 +18558,130,1.3.5,0,1,1.0 +18558,106,1.3,1,1, +18558,29,1.3,1,1, +17872,126,1.4,0,1,1.0 +17872,170,1,1,1,1.0 +17415,120,1.2.3,0,1,1.0 +17415,126,1.2,1,1,1.0 +9460,53,1.4.5.8,0,1,1.0 +9460,41,1.4.5,1,1, +1416,13,2.1.3.4,0,1,1.0 +1416,97,2.1.3,1,1,1.0 +3719,22,2.3.1,0,1,1.0 +3719,99,2.3,1,1, +6878,41,1.4.5,0,1,1.0 +6878,126,1.4,1,1, +16642,115,1.1.3,0,1,1.0 +16642,105,1.1,1,1,1.0 +9454,53,1.4.5.8,0,1,1.0 +9454,41,1.4.5,1,1,1.0 +9454,126,1.4,2,1, +15318,99,2.1,0,1,1.0 +15318,98,2,1,1, +15318,102,2,1,1,1.0 +23599,168,2.3.2,0,1,1.0 +23599,155,2.3,1,1,1.0 +19057,135,1.1.3,0,1,1.0 +19057,86,1.1,1,1, +21708,153,1.3.1.1,0,1,1.0 +21708,100,1.3.1,1,1,1.0 +9195,53,1.4.3.6,0,1,1.0 +9195,142,1.4.3,1,1,1.0 +9195,126,1.4,2,1, +15323,99,2.1,0,1,1.0 +15323,102,2,1,1, +358,4,1.2.2,0,1,1.0 +358,97,1.2,1,1,1.0 +6717,41,1.4.3.2,0,1,1.0 +6717,142,1.4.3,1,1, +9465,53,1.4.5.8,0,1,1.0 +9465,41,1.4.5,1,1,1.0 +9465,126,1.4,2,1, +9474,53,1.4.5.8,0,1,1.0 +9474,41,1.4.5,1,1, +20583,142,1.4.3,0,1,1.0 +20583,126,1.4,1,1, +18588,130,1.3.5,0,1,1.0 +18588,106,1.3,1,1, +15657,104,1.1.1,0,1,1.0 +15657,94,1.1,1,1, +15342,99,2.1,0,1,1.0 +15342,98,2,1,1, +4143,23,1.4.2.7,0,1,1.0 +4143,142,1.4.2,1,1, +20957,144,2.1.2.3,0,1,1.0 +20957,84,2.1.2,1,1, +6727,41,1.4.3.2,0,1,1.0 +6727,142,1.4.3,1,1, +21099,145,1.3.1.4,0,1,1.0 +21099,99,1.3.1,1,1,1.0 +14457,90,1.3.1.7,0,1,1.0 +14457,99,1.3.1,1,1, +18192,127,1.1.3,0,1,1.0 +18192,86,1.1,1,1,1.0 +13892,83,1.3.3.2,0,1,1.0 +13892,99,1.3.3,1,1,1.0 +21192,147,1.1.2,0,1,1.0 +21192,94,1.1,1,1,1.0 +9497,53,1.4.5.8,0,1,1.0 +9497,41,1.4.5,1,1,1.0 +9497,126,1.4,2,1,1.0 +9497,170,1,3,1, +6749,41,1.4.3.2,0,1,1.0 +6749,142,1.4.3,1,1, +8941,53,1.4.2.3,0,1,1.0 +8941,142,1.4.2,1,1, +9191,53,1.4.3.6,0,1,1.0 +9191,142,1.4.3,1,1, +22224,157,1.4.1,0,1,1.0 +22224,126,1.4,1,1, +18551,130,1.3.5,0,1,1.0 +18551,29,1.3,1,1, +18551,106,1.3,1,1,1.0 +11457,66,1.2.1,0,1,1.0 +11457,126,1.2,1,1, +22233,157,1.4.1,0,1,1.0 +22233,126,1.4,1,1, +22211,157,1.4.1,0,1,1.0 +22211,126,1.4,1,1,1.0 +22211,170,1,2,1,1.0 +16357,111,1.3.3.1,0,1,1.0 +16357,99,1.3.3,1,1, +20241,140,1.4.5.1,0,1,1.0 +20241,41,1.4.5,1,1, +18257,129,1.1.2,0,1,1.0 +18257,86,1.1,1,1, +1942,13,2.3.1,0,1,1.0 +1942,155,2.3,1,1,1.0 +1559,13,2.1.3.7,0,1,1.0 +1559,148,2.1.3,1,1, +3838,22,2.3.3,0,1,1.0 +3838,95,2.3,1,1,1.0 +7015,42,1.3.1.4,0,1,1.0 +7015,39,1.3.1,1,1,1.0 +6157,38,2.1.1.3,0,1,1.0 +6157,148,2.1.1,1,1, +4507,26,2.1.3.2,0,1,1.0 +4507,73,2.1.3,1,1, +14607,93,1.3.1,0,1,1.0 +14607,29,1.3,1,1, +19104,135,1.3.2.1,0,1,1.0 +19104,130,1.3.2,1,1,1.0 +8912,53,1.4.2.3,0,1,1.0 +8912,142,1.4.2,1,1,1.0 +8912,126,1.4,2,1, +9159,53,1.4.3.6,0,1,1.0 +9159,142,1.4.3,1,1,1.0 +9159,126,1.4,2,1, +12952,79,2.1.3.5,0,1,1.0 +12952,97,2.1.3,1,1, +18407,130,1.3.4.1,0,1,1.0 +18407,77,1.3.4,1,1, +9178,53,1.4.3.6,0,1,1.0 +9178,142,1.4.3,1,1, +19150,135,1.3.2.1,0,1,1.0 +19150,130,1.3.2,1,1,1.0 +19150,58,1.3.2,1,1,1.0 +19150,29,1.3,2,1, +12207,77,1.3.3.6,0,1,1.0 +12207,99,1.3.3,1,1, +15339,99,2.1,0,1,1.0 +15339,102,2,1,1, +6710,41,1.4.3.2,0,1,1.0 +6710,142,1.4.3,1,1, +17895,126,1.4,0,1,1.0 +17895,170,1,1,1,1.0 +15311,99,2.1,0,1,1.0 +15311,98,2,1,1, +15311,102,2,1,1, +23692,169,1.1.1,0,1,1.0 +23692,86,1.1,1,1,1.0 +6859,41,1.4.5,0,1,1.0 +6859,126,1.4,1,1,1.0 +6859,170,1,2,1, +17892,126,1.4,0,1,1.0 +17892,170,1,1,1,1.0 +702,6,2.1.2.2,0,1,1.0 +702,58,2.1.2,1,1, +2349,16,2.3.2,0,1,1.0 +2349,99,2.3,1,1,1.0 +6856,41,1.4.5,0,1,1.0 +6856,126,1.4,1,1, +4124,23,1.4.2.7,0,1,1.0 +4124,142,1.4.2,1,1, +4341,23,2.3.3,0,1,1.0 +4341,95,2.3,1,1,1.0 +22206,157,1.4.1,0,1,1.0 +22206,126,1.4,1,1, +22541,161,2.3.3,0,1,1.0 +22541,124,2.3,1,1,1.0 +11322,63,1.4.4.5,0,1,1.0 +11322,40,1.4.4,1,1, +11322,0,1.4.4,1,1, +6881,41,1.4.5,0,1,1.0 +6881,126,1.4,1,1,1.0 +6881,170,1,2,1,1.0 +9495,53,1.4.5.8,0,1,1.0 +9495,41,1.4.5,1,1,1.0 +9495,126,1.4,2,1, +20250,140,1.4.5.1,0,1,1.0 +20250,41,1.4.5,1,1, +20520,142,1.4.2,0,1,1.0 +20520,126,1.4,1,1, +20560,142,1.4.3,0,1,1.0 +20560,126,1.4,1,1, +13291,79,2.3.2,0,1,1.0 +13291,126,2.3,1,1, +18584,130,1.3.5,0,1,1.0 +18584,29,1.3,1,1,1.0 +18584,106,1.3,1,1,1.0 +18584,170,1,2,1,1.0 +6958,42,1.3.1.3,0,1,1.0 +6958,99,1.3.1,1,1, +1359,13,2.1.3.3,0,1,1.0 +1359,148,2.1.3,1,1, +18585,130,1.3.5,0,1,1.0 +18585,106,1.3,1,1, +4138,23,1.4.2.7,0,1,1.0 +4138,142,1.4.2,1,1, +23302,168,1.1.2,0,1,1.0 +23302,105,1.1,1,1, +2957,22,2.1.1.4,0,1,1.0 +2957,85,2.1.1,1,1, +20556,142,1.4.3,0,1,1.0 +20556,126,1.4,1,1, +1557,13,2.1.3.7,0,1,1.0 +1557,106,2.1.3,1,1, +20217,140,1.4.5.1,0,1,1.0 +20217,41,1.4.5,1,1, +18638,131,2.1.1.1,0,1,1.0 +18638,85,2.1.1,1,1,1.0 +22957,164,1.3.3.6,0,1,1.0 +22957,75,1.3.3,1,1, +20233,140,1.4.5.1,0,1,1.0 +20233,41,1.4.5,1,1, +3807,22,2.3.3,0,1,1.0 +3807,99,2.3,1,1, +22213,157,1.4.1,0,1,1.0 +22213,126,1.4,1,1,1.0 +22213,170,1,2,1,1.0 +6885,41,1.4.5,0,1,1.0 +6885,126,1.4,1,1, +6252,38,2.1.1.5,0,1,1.0 +6252,148,2.1.1,1,1, +1481,13,2.1.3.5,0,1,1.0 +1481,126,2.1.3,1,1, +12959,79,2.1.3.5,0,1,1.0 +12959,106,2.1.3,1,1, +22217,157,1.4.1,0,1,1.0 +22217,126,1.4,1,1, +22245,157,1.4.1,0,1,1.0 +22245,126,1.4,1,1, +20707,143,2.1.1.3,0,1,1.0 +20707,85,2.1.1,1,1, +13342,79,2.3.3,0,1,1.0 +13342,95,2.3,1,1,1.0 +17865,126,1.4,0,1,1.0 +17865,170,1,1,1,1.0 +15332,99,2.1,0,1,1.0 +15332,102,2,1,1, +12449,78,2.1.1.3,0,1,1.0 +12449,85,2.1.1,1,1,1.0 +22099,154,2.1.4.2.2,0,1,1.0 +22099,81,2.1.4.2,1,1,1.0 +20547,142,1.4.2,0,1,1.0 +20547,126,1.4,1,1,1.0 +20547,170,1,2,1,1.0 +1182,12,1.2.1,0,1,1.0 +1182,126,1.2,1,1, +9170,53,1.4.3.6,0,1,1.0 +9170,142,1.4.3,1,1, +4131,23,1.4.2.7,0,1,1.0 +4131,142,1.4.2,1,1,1.0 +4131,126,1.4,2,1, +10107,57,2.3.1,0,1,1.0 +10107,99,2.3,1,1, +791,6,2.1.2.3,0,1,1.0 +791,84,2.1.2,1,1, +9983,56,1.1.1,0,1,1.0 +9983,94,1.1,1,1, +20571,142,1.4.3,0,1,1.0 +20571,126,1.4,1,1, +9161,53,1.4.3.6,0,1,1.0 +9161,142,1.4.3,1,1,1.0 +9161,126,1.4,2,1, +957,9,1.3.3.6,0,1,1.0 +957,75,1.3.3,1,1, +15301,99,2.1,0,1,1.0 +15301,102,2,1,1, +22487,161,2.3.2,0,1,1.0 +22487,155,2.3,1,1,1.0 +20511,142,1.4.2,0,1,1.0 +20511,126,1.4,1,1,1.0 +20511,170,1,2,1,1.0 +2208,16,1.1.3,0,1,1.0 +2208,86,1.1,1,1,1.0 +6899,41,1.4.5,0,1,1.0 +6899,126,1.4,1,1, +7108,43,1.3.1.6,0,1,1.0 +7108,85,1.3.1,1,1, +22242,157,1.4.1,0,1,1.0 +22242,126,1.4,1,1, +22237,157,1.4.1,0,1,1.0 +22237,126,1.4,1,1,1.0 +22237,170,1,2,1,1.0 +10691,60,2.1.1.1,0,1,1.0 +10691,85,2.1.1,1,1, +20596,142,1.4.3,0,1,1.0 +20596,126,1.4,1,1, +1507,13,2.1.3.6,0,1,1.0 +1507,106,2.1.3,1,1, +23249,166,1.2.3,0,1,1.0 +23249,106,1.2,1,1,1.0 +18598,130,1.3.5,0,1,1.0 +18598,29,1.3,1,1, +699,6,2.1.2.1,0,1,1.0 +699,81,2.1.2,1,1,1.0 +4118,23,1.4.2.7,0,1,1.0 +4118,142,1.4.2,1,1,1.0 +4118,126,1.4,2,1,1.0 +4118,170,1,3,1,1.0 +115,2,1.1.3,0,1,1.0 +115,86,1.1,1,1,1.0 +9453,53,1.4.5.8,0,1,1.0 +9453,41,1.4.5,1,1, +13241,79,2.3.1,0,1,1.0 +13241,95,2.3,1,1,1.0 +20240,140,1.4.5.1,0,1,1.0 +20240,41,1.4.5,1,1,1.0 +20240,126,1.4,2,1, +15615,103,1.1.1,0,1,1.0 +15615,94,1.1,1,1,1.0 +9493,53,1.4.5.8,0,1,1.0 +9493,41,1.4.5,1,1, +18599,130,1.3.5,0,1,1.0 +18599,106,1.3,1,1, +18599,29,1.3,1,1, +14257,88,1.1.3,0,1,1.0 +14257,94,1.1,1,1, +4110,23,1.4.2.7,0,1,1.0 +4110,142,1.4.2,1,1, +6861,41,1.4.5,0,1,1.0 +6861,126,1.4,1,1,1.0 +6861,170,1,2,1,1.0 +6265,38,2.1.1.5,0,1,1.0 +6265,85,2.1.1,1,1,1.0 +9492,53,1.4.5.8,0,1,1.0 +9492,41,1.4.5,1,1, +18592,130,1.3.5,0,1,1.0 +18592,106,1.3,1,1, +18592,29,1.3,1,1,1.0 +4049,23,1.3.3.3,0,1,1.0 +4049,75,1.3.3,1,1,1.0 +16242,109,1.3.3.1,0,1,1.0 +16242,97,1.3.3,1,1,1.0 +4127,23,1.4.2.7,0,1,1.0 +4127,142,1.4.2,1,1, +4741,26,2.1.3.6,0,1,1.0 +4741,126,2.1.3,1,1, +22250,157,1.4.1,0,1,1.0 +22250,126,1.4,1,1, +20528,142,1.4.2,0,1,1.0 +20528,126,1.4,1,1, +20244,140,1.4.5.1,0,1,1.0 +20244,41,1.4.5,1,1, +6744,41,1.4.3.2,0,1,1.0 +6744,142,1.4.3,1,1, +20592,142,1.4.3,0,1,1.0 +20592,126,1.4,1,1, +9158,53,1.4.3.6,0,1,1.0 +9158,142,1.4.3,1,1,1.0 +9158,126,1.4,2,1, +17899,126,1.4,0,1,1.0 +17899,170,1,1,1, +3057,22,2.1.3.1,0,1,1.0 +3057,97,2.1.3,1,1, +4119,23,1.4.2.7,0,1,1.0 +4119,142,1.4.2,1,1, +8925,53,1.4.2.3,0,1,1.0 +8925,142,1.4.2,1,1, +22458,161,2.3.2,0,1,1.0 +22458,84,2.3,1,1,1.0 +11388,64,1.1.2,0,1,1.0 +11388,105,1.1,1,1,1.0 +16807,117,2.1.1.2,0,1,1.0 +16807,80,2.1.1,1,1, +1502,13,2.1.3.6,0,1,1.0 +1502,148,2.1.3,1,1, +19106,135,1.3.2.1,0,1,1.0 +19106,130,1.3.2,1,1,1.0 +19106,58,1.3.2,1,1,1.0 +19106,106,1.3,2,1, +6886,41,1.4.5,0,1,1.0 +6886,126,1.4,1,1, +8141,47,2.1.3.6,0,1,1.0 +8141,108,2.1.3,1,1, +20508,142,1.4.2,0,1,1.0 +20508,126,1.4,1,1,1.0 +20508,170,1,2,1,1.0 +20533,142,1.4.2,0,1,1.0 +20533,126,1.4,1,1, +7937,47,2.1.2.1,0,1,1.0 +7937,79,2.1.2,1,1,1.0 +11007,62,2.1.2.1,0,1,1.0 +11007,81,2.1.2,1,1, +8207,49,1.3.1.1,0,1,1.0 +8207,39,1.3.1,1,1, +6855,41,1.4.5,0,1,1.0 +6855,126,1.4,1,1, +20210,140,1.4.5.1,0,1,1.0 +20210,41,1.4.5,1,1, +15652,104,1.1.1,0,1,1.0 +15652,106,1.1,1,1, +8357,49,1.3.3.1,0,1,1.0 +8357,97,1.3.3,1,1, +15349,99,2.1,0,1,1.0 +15349,102,2,1,1, +15349,98,2,1,1, +4707,26,2.1.3.6,0,1,1.0 +4707,106,2.1.3,1,1, +12592,79,1.3.1.1,0,1,1.0 +12592,39,1.3.1,1,1,1.0 +1459,13,2.1.3.5,0,1,1.0 +1459,74,2.1.3,1,1, +11335,63,1.4.4.5,0,1,1.0 +11335,40,1.4.4,1,1, +22907,163,2.1.4.2.2,0,1,1.0 +22907,79,2.1.4.2,1,1, +22407,161,2.3.1,0,1,1.0 +22407,84,2.3,1,1, +9198,53,1.4.3.6,0,1,1.0 +9198,142,1.4.3,1,1, +8940,53,1.4.2.3,0,1,1.0 +8940,142,1.4.2,1,1,1.0 +8940,126,1.4,2,1, +4257,23,2.3.2,0,1,1.0 +4257,124,2.3,1,1, +14349,89,1.1.2,0,1,1.0 +14349,126,1.1,1,1,1.0 +6907,42,1.3.1.1,0,1,1.0 +6907,85,1.3.1,1,1, +17887,126,1.4,0,1,1.0 +17887,170,1,1,1,1.0 +6742,41,1.4.3.2,0,1,1.0 +6742,142,1.4.3,1,1,1.0 +6742,126,1.4,2,1,1.0 +6742,170,1,3,1,1.0 +20550,142,1.4.2,0,1,1.0 +20550,126,1.4,1,1, +9461,53,1.4.5.8,0,1,1.0 +9461,41,1.4.5,1,1,1.0 +9461,126,1.4,2,1, +7183,44,1.1.1,0,1,1.0 +7183,106,1.1,1,1, +9173,53,1.4.3.6,0,1,1.0 +9173,142,1.4.3,1,1, +9199,53,1.4.3.6,0,1,1.0 +9199,142,1.4.3,1,1, +8382,49,1.3.3.1,0,1,1.0 +8382,97,1.3.3,1,1, +11716,69,1.1.1,0,1,1.0 +11716,126,1.1,1,1, +19108,135,1.3.2.1,0,1,1.0 +19108,130,1.3.2,1,1,1.0 +13081,79,2.1.3.7,0,1,1.0 +13081,148,2.1.3,1,1,1.0 +15350,99,2.1,0,1,1.0 +15350,102,2,1,1,1.0 +15350,98,2,1,1, +19110,135,1.3.2.1,0,1,1.0 +19110,58,1.3.2,1,1,1.0 +19110,130,1.3.2,1,1,1.0 +19110,106,1.3,2,1,1.0 +19110,29,1.3,2,1, +6720,41,1.4.3.2,0,1,1.0 +6720,142,1.4.3,1,1, +20594,142,1.4.3,0,1,1.0 +20594,126,1.4,1,1, +7799,47,2.1.1.2,0,1,1.0 +7799,148,2.1.1,1,1,1.0 +23415,168,1.3.3.2,0,1,1.0 +23415,75,1.3.3,1,1, +17907,126,2.1.1.5,0,1,1.0 +17907,85,2.1.1,1,1, +8902,53,1.4.2.3,0,1,1.0 +8902,142,1.4.2,1,1,1.0 +8902,126,1.4,2,1, +8407,49,2.1.2.1,0,1,1.0 +8407,84,2.1.2,1,1, +15683,104,1.1.1,0,1,1.0 +15683,106,1.1,1,1, +19307,135,2.1.3.3,0,1,1.0 +19307,126,2.1.3,1,1, +9155,53,1.4.3.6,0,1,1.0 +9155,142,1.4.3,1,1,1.0 +9155,126,1.4,2,1,1.0 +9155,170,1,3,1,1.0 +6287,38,2.1.1.5,0,1,1.0 +6287,80,2.1.1,1,1,1.0 +2882,22,2.1.1.2,0,1,1.0 +2882,106,2.1.1,1,1, +17882,126,1.4,0,1,1.0 +17882,170,1,1,1,1.0 +9179,53,1.4.3.6,0,1,1.0 +9179,142,1.4.3,1,1,1.0 +9179,126,1.4,2,1, +6142,38,2.1.1.2,0,1,1.0 +6142,148,2.1.1,1,1,1.0 +20546,142,1.4.2,0,1,1.0 +20546,126,1.4,1,1, +20502,142,1.4.2,0,1,1.0 +20502,126,1.4,1,1, +12388,78,2.1.1.2,0,1,1.0 +12388,85,2.1.1,1,1,1.0 +23632,168,2.3.3,0,1,1.0 +23632,126,2.3,1,1, +16907,117,2.1.1.4,0,1,1.0 +16907,80,2.1.1,1,1, +13207,79,2.3.1,0,1,1.0 +13207,126,2.3,1,1, +9478,53,1.4.5.8,0,1,1.0 +9478,41,1.4.5,1,1, +11350,63,1.4.4.5,0,1,1.0 +11350,0,1.4.4,1,1,1.0 +11350,40,1.4.4,1,1, +20527,142,1.4.2,0,1,1.0 +20527,126,1.4,1,1, +9165,53,1.4.3.6,0,1,1.0 +9165,142,1.4.3,1,1,1.0 +9165,126,1.4,2,1, +20557,142,1.4.3,0,1,1.0 +20557,126,1.4,1,1, +10138,57,2.3.1,0,1,1.0 +10138,126,2.3,1,1,1.0 +15303,99,2.1,0,1,1.0 +15303,98,2,1,1, +15303,102,2,1,1, +2907,22,2.1.1.3,0,1,1.0 +2907,148,2.1.1,1,1, +19999,138,1.3.1.5,0,1,1.0 +19999,100,1.3.1,1,1,1.0 +20582,142,1.4.3,0,1,1.0 +20582,126,1.4,1,1, +13096,79,2.1.3.7,0,1,1.0 +13096,74,2.1.3,1,1, +4122,23,1.4.2.7,0,1,1.0 +4122,142,1.4.2,1,1, +20239,140,1.4.5.1,0,1,1.0 +20239,41,1.4.5,1,1, +18692,131,2.1.1.2,0,1,1.0 +18692,106,2.1.1,1,1,1.0 +9183,53,1.4.3.6,0,1,1.0 +9183,142,1.4.3,1,1, +15313,99,2.1,0,1,1.0 +15313,98,2,1,1,1.0 +6874,41,1.4.5,0,1,1.0 +6874,126,1.4,1,1, +6711,41,1.4.3.2,0,1,1.0 +6711,142,1.4.3,1,1,1.0 +6711,126,1.4,2,1, +19399,135,2.1.3.4,0,1,1.0 +19399,108,2.1.3,1,1,1.0 +19257,135,2.1.3.2,0,1,1.0 +19257,73,2.1.3,1,1, +21757,153,1.3.1.4,0,1,1.0 +21757,39,1.3.1,1,1, +6857,41,1.4.5,0,1,1.0 +6857,126,1.4,1,1, +20238,140,1.4.5.1,0,1,1.0 +20238,41,1.4.5,1,1, +4108,23,1.4.2.7,0,1,1.0 +4108,142,1.4.2,1,1,1.0 +4108,126,1.4,2,1, +17707,125,1.2.3,0,1,1.0 +17707,126,1.2,1,1, +12357,78,2.1.1.2,0,1,1.0 +12357,148,2.1.1,1,1, +1449,13,2.1.3.4,0,1,1.0 +1449,126,2.1.3,1,1, +20539,142,1.4.2,0,1,1.0 +20539,126,1.4,1,1, +13619,81,2.1.4.2,0,1,1.0 +13619,102,2.1.4,1,1,1.0 +20512,142,1.4.2,0,1,1.0 +20512,126,1.4,1,1, +707,6,2.1.2.2,0,1,1.0 +707,159,2.1.2,1,1, +21857,154,2.1.4.1.2,0,1,1.0 +21857,79,2.1.4.1,1,1, +20519,142,1.4.2,0,1,1.0 +20519,126,1.4,1,1, +8948,53,1.4.2.3,0,1,1.0 +8948,142,1.4.2,1,1, +6734,41,1.4.3.2,0,1,1.0 +6734,142,1.4.3,1,1, +20510,142,1.4.2,0,1,1.0 +20510,126,1.4,1,1, +13742,82,2.1.2.2,0,1,1.0 +13742,79,2.1.2,1,1,1.0 +13607,81,2.1.4.2,0,1,1.0 +13607,115,2.1.4,1,1,1.0 +13607,84,2.1.4,1,1, +8936,53,1.4.2.3,0,1,1.0 +8936,142,1.4.2,1,1, +20220,140,1.4.5.1,0,1,1.0 +20220,41,1.4.5,1,1, +21577,150,1.1.1,0,1,1.0 +21577,105,1.1,1,1,1.0 +12665,79,1.3.1.6,0,1,1.0 +12665,100,1.3.1,1,1,1.0 +6719,41,1.4.3.2,0,1,1.0 +6719,142,1.4.3,1,1, +15338,99,2.1,0,1,1.0 +15338,98,2,1,1, +12752,79,2.1.3.1,0,1,1.0 +12752,126,2.1.3,1,1, +8208,49,1.3.1.1,0,1,1.0 +8208,39,1.3.1,1,1,1.0 +12886,79,2.1.3.3,0,1,1.0 +12886,73,2.1.3,1,1,1.0 +17867,126,1.4,0,1,1.0 +17867,170,1,1,1,1.0 +18590,130,1.3.5,0,1,1.0 +18590,106,1.3,1,1, +8307,49,1.3.1.6,0,1,1.0 +8307,100,1.3.1,1,1, +21742,153,1.3.1.1,0,1,1.0 +21742,93,1.3.1,1,1,1.0 +11316,63,1.4.4.5,0,1,1.0 +11316,40,1.4.4,1,1,1.0 +15324,99,2.1,0,1,1.0 +15324,102,2,1,1, +9160,53,1.4.3.6,0,1,1.0 +9160,142,1.4.3,1,1, +22244,157,1.4.1,0,1,1.0 +22244,126,1.4,1,1, +5532,33,2.1.2.3,0,1,1.0 +5532,84,2.1.2,1,1, +15330,99,2.1,0,1,1.0 +15330,102,2,1,1, +12816,79,2.1.3.2,0,1,1.0 +12816,108,2.1.3,1,1,1.0 +1407,13,2.1.3.4,0,1,1.0 +1407,74,2.1.3,1,1, +4117,23,1.4.2.7,0,1,1.0 +4117,142,1.4.2,1,1, +19065,135,1.1.3,0,1,1.0 +19065,94,1.1,1,1,1.0 +9473,53,1.4.5.8,0,1,1.0 +9473,41,1.4.5,1,1, +7192,44,1.1.1,0,1,1.0 +7192,86,1.1,1,1,1.0 +5199,31,2.1.4.1.3,0,1,1.0 +5199,79,2.1.4.1,1,1,1.0 +19549,135,2.1.3.7,0,1,1.0 +19549,73,2.1.3,1,1,1.0 +5007,31,1.3.3.3,0,1,1.0 +5007,75,1.3.3,1,1, +15312,99,2.1,0,1,1.0 +15312,98,2,1,1, +15312,102,2,1,1, +20513,142,1.4.2,0,1,1.0 +20513,126,1.4,1,1,1.0 +20513,170,1,2,1,1.0 +9477,53,1.4.5.8,0,1,1.0 +9477,41,1.4.5,1,1, +18572,130,1.3.5,0,1,1.0 +18572,106,1.3,1,1, +18572,29,1.3,1,1, +2165,15,1.3.3.5,0,1,1.0 +2165,99,1.3.3,1,1, +16952,117,2.1.1.5,0,1,1.0 +16952,106,2.1.1,1,1, +16757,117,2.1.1.1,0,1,1.0 +16757,80,2.1.1,1,1, +19121,135,1.3.2.1,0,1,1.0 +19121,58,1.3.2,1,1,1.0 +19121,130,1.3.2,1,1,1.0 +19121,29,1.3,2,1,1.0 +19121,106,1.3,2,1, +1257,13,2.1.3.1,0,1,1.0 +1257,126,2.1.3,1,1, +20243,140,1.4.5.1,0,1,1.0 +20243,41,1.4.5,1,1, +12937,79,2.1.3.4,0,1,1.0 +12937,73,2.1.3,1,1, +12937,74,2.1.3,1,1, +1988,13,2.3.2,0,1,1.0 +1988,124,2.3,1,1,1.0 +18556,130,1.3.5,0,1,1.0 +18556,29,1.3,1,1, +11057,62,2.1.2.2,0,1,1.0 +11057,81,2.1.2,1,1, +21487,149,2.1.2.3,0,1,1.0 +21487,58,2.1.2,1,1,1.0 +23283,167,1.1.1,0,1,1.0 +23283,126,1.1,1,1, +12957,79,2.1.3.5,0,1,1.0 +12957,74,2.1.3,1,1, +12349,78,2.1.1.1,0,1,1.0 +12349,85,2.1.1,1,1,1.0 +9185,53,1.4.3.6,0,1,1.0 +9185,142,1.4.3,1,1, +21583,150,1.1.1,0,1,1.0 +21583,86,1.1,1,1, +3249,22,2.1.3.4,0,1,1.0 +3249,148,2.1.3,1,1,1.0 +7657,46,1.3.1.2,0,1,1.0 +7657,85,1.3.1,1,1, +13219,79,2.3.1,0,1,1.0 +13219,124,2.3,1,1, +6872,41,1.4.5,0,1,1.0 +6872,126,1.4,1,1, +20544,142,1.4.2,0,1,1.0 +20544,126,1.4,1,1, +18707,131,2.1.1.3,0,1,1.0 +18707,85,2.1.1,1,1, +2799,22,1.3.3.6,0,1,1.0 +2799,99,1.3.3,1,1,1.0 +2257,16,2.3.1,0,1,1.0 +2257,126,2.3,1,1, +18116,127,1.1.1,0,1,1.0 +18116,105,1.1,1,1, +20231,140,1.4.5.1,0,1,1.0 +20231,41,1.4.5,1,1,1.0 +20231,126,1.4,2,1, +11442,65,1.2.1,0,1,1.0 +11442,67,1.2,1,1,1.0 +22209,157,1.4.1,0,1,1.0 +22209,126,1.4,1,1,1.0 +22209,170,1,2,1, +2399,16,2.3.3,0,1,1.0 +2399,95,2.3,1,1,1.0 +22227,157,1.4.1,0,1,1.0 +22227,126,1.4,1,1, +7692,46,1.3.1.2,0,1,1.0 +7692,100,1.3.1,1,1,1.0 +4145,23,1.4.2.7,0,1,1.0 +4145,142,1.4.2,1,1,1.0 +4145,126,1.4,2,1, +9190,53,1.4.3.6,0,1,1.0 +9190,142,1.4.3,1,1,1.0 +9190,126,1.4,2,1, +13257,79,2.3.2,0,1,1.0 +13257,99,2.3,1,1, +3849,22,2.3.3,0,1,1.0 +3849,99,2.3,1,1,1.0 +15407,100,1.3.1,0,1,1.0 +15407,29,1.3,1,1, +2338,16,2.3.2,0,1,1.0 +2338,84,2.3,1,1,1.0 +16987,117,2.1.1.5,0,1,1.0 +16987,148,2.1.1,1,1,1.0 +11899,71,1.3.1.2,0,1,1.0 +11899,99,1.3.1,1,1,1.0 +16707,116,1.3.1.7,0,1,1.0 +16707,93,1.3.1,1,1, +13757,82,2.1.2.3,0,1,1.0 +13757,58,2.1.2,1,1, +6863,41,1.4.5,0,1,1.0 +6863,126,1.4,1,1,1.0 +6863,170,1,2,1,1.0 +19146,135,1.3.2.1,0,1,1.0 +19146,130,1.3.2,1,1,1.0 +16857,117,2.1.1.3,0,1,1.0 +16857,85,2.1.1,1,1, +14307,89,1.1.2,0,1,1.0 +14307,86,1.1,1,1, +7107,43,1.3.1.6,0,1,1.0 +7107,85,1.3.1,1,1, +9171,53,1.4.3.6,0,1,1.0 +9171,142,1.4.3,1,1, +9476,53,1.4.5.8,0,1,1.0 +9476,41,1.4.5,1,1,1.0 +9476,126,1.4,2,1, +23257,167,1.1.1,0,1,1.0 +23257,105,1.1,1,1, +8918,53,1.4.2.3,0,1,1.0 +8918,142,1.4.2,1,1,1.0 +8918,126,1.4,2,1,1.0 +8918,170,1,3,1,1.0 +4126,23,1.4.2.7,0,1,1.0 +4126,142,1.4.2,1,1,1.0 +4126,126,1.4,2,1, +22247,157,1.4.1,0,1,1.0 +22247,126,1.4,1,1,1.0 +22247,170,1,2,1,1.0 +19130,135,1.3.2.1,0,1,1.0 +19130,130,1.3.2,1,1,1.0 +19130,58,1.3.2,1,1,1.0 +19130,106,1.3,2,1,1.0 +2307,16,2.3.2,0,1,1.0 +2307,124,2.3,1,1, +9481,53,1.4.5.8,0,1,1.0 +9481,41,1.4.5,1,1,1.0 +9481,126,1.4,2,1, +9194,53,1.4.3.6,0,1,1.0 +9194,142,1.4.3,1,1, +1262,13,2.1.3.1,0,1,1.0 +1262,148,2.1.3,1,1, +6722,41,1.4.3.2,0,1,1.0 +6722,142,1.4.3,1,1, +6854,41,1.4.5,0,1,1.0 +6854,126,1.4,1,1, +4007,23,1.3.3.3,0,1,1.0 +4007,99,1.3.3,1,1, +13702,82,2.1.2.2,0,1,1.0 +13702,79,2.1.2,1,1, +13007,79,2.1.3.6,0,1,1.0 +13007,108,2.1.3,1,1, +22235,157,1.4.1,0,1,1.0 +22235,126,1.4,1,1, +4299,23,2.3.2,0,1,1.0 +4299,155,2.3,1,1,1.0 +23499,168,1.3.3.4,0,1,1.0 +23499,97,1.3.3,1,1,1.0 +9500,53,1.4.5.8,0,1,1.0 +9500,41,1.4.5,1,1, +315,3,1.3.4.1,0,1,1.0 +315,80,1.3.4,1,1,1.0 +22226,157,1.4.1,0,1,1.0 +22226,126,1.4,1,1,1.0 +22226,170,1,2,1, +20219,140,1.4.5.1,0,1,1.0 +20219,41,1.4.5,1,1, +1252,13,2.1.3.1,0,1,1.0 +1252,74,2.1.3,1,1, +17881,126,1.4,0,1,1.0 +17881,170,1,1,1,1.0 +23242,166,1.2.3,0,1,1.0 +23242,67,1.2,1,1,1.0 +11325,63,1.4.4.5,0,1,1.0 +11325,0,1.4.4,1,1, +1440,13,2.1.3.4,0,1,1.0 +1440,73,2.1.3,1,1, +19112,135,1.3.2.1,0,1,1.0 +19112,130,1.3.2,1,1,1.0 +11301,63,1.4.4.5,0,1,1.0 +11301,40,1.4.4,1,1, +22246,157,1.4.1,0,1,1.0 +22246,126,1.4,1,1, +1982,13,2.3.2,0,1,1.0 +1982,155,2.3,1,1, +23449,168,1.3.3.2,0,1,1.0 +23449,97,1.3.3,1,1,1.0 +1259,13,2.1.3.1,0,1,1.0 +1259,74,2.1.3,1,1, +18107,127,1.1.1,0,1,1.0 +18107,86,1.1,1,1, +11432,65,1.2.1,0,1,1.0 +11432,106,1.2,1,1, +23557,168,2.3.2,0,1,1.0 +23557,124,2.3,1,1, +17888,126,1.4,0,1,1.0 +17888,170,1,1,1,1.0 +1207,13,1.2.2,0,1,1.0 +1207,106,1.2,1,1, +5537,33,2.1.2.3,0,1,1.0 +5537,159,2.1.2,1,1,1.0 +22657,163,2.1.4.1.1,0,1,1.0 +22657,81,2.1.4.1,1,1, +8923,53,1.4.2.3,0,1,1.0 +8923,142,1.4.2,1,1, +17854,126,1.4,0,1,1.0 +17854,170,1,1,1,1.0 +21457,149,2.1.2.3,0,1,1.0 +21457,79,2.1.2,1,1, +7807,47,2.1.1.3,0,1,1.0 +7807,80,2.1.1,1,1, +6737,41,1.4.3.2,0,1,1.0 +6737,142,1.4.3,1,1,1.0 +6737,126,1.4,2,1, +10982,62,1.3.1.2,0,1,1.0 +10982,99,1.3.1,1,1, +19133,135,1.3.2.1,0,1,1.0 +19133,58,1.3.2,1,1,1.0 +4499,26,2.1.3.1,0,1,1.0 +4499,106,2.1.3,1,1,1.0 +22999,164,1.3.3.6,0,1,1.0 +22999,99,1.3.3,1,1,1.0 +20232,140,1.4.5.1,0,1,1.0 +20232,41,1.4.5,1,1,1.0 +20232,126,1.4,2,1, +18596,130,1.3.5,0,1,1.0 +18596,106,1.3,1,1, +11329,63,1.4.4.5,0,1,1.0 +11329,40,1.4.4,1,1, +11329,0,1.4.4,1,1, +7919,47,2.1.2.1,0,1,1.0 +7919,81,2.1.2,1,1, +13358,80,1.3.4,0,1,1.0 +13358,29,1.3,1,1, +18649,131,2.1.1.1,0,1,1.0 +18649,106,2.1.1,1,1,1.0 +10307,58,1.3.1.6,0,1,1.0 +10307,100,1.3.1,1,1, +22432,161,2.3.1,0,1,1.0 +22432,126,2.3,1,1, +4319,23,2.3.3,0,1,1.0 +4319,84,2.3,1,1, +18577,130,1.3.5,0,1,1.0 +18577,29,1.3,1,1, +18577,106,1.3,1,1, +9498,53,1.4.5.8,0,1,1.0 +9498,41,1.4.5,1,1, +6740,41,1.4.3.2,0,1,1.0 +6740,142,1.4.3,1,1,1.0 +6740,126,1.4,2,1, +20579,142,1.4.3,0,1,1.0 +20579,126,1.4,1,1, +7007,42,1.3.1.4,0,1,1.0 +7007,85,1.3.1,1,1, +12909,79,2.1.3.4,0,1,1.0 +12909,126,2.1.3,1,1, +20555,142,1.4.3,0,1,1.0 +20555,126,1.4,1,1, +17569,123,1.1.2,0,1,1.0 +17569,126,1.1,1,1, +6851,41,1.4.5,0,1,1.0 +6851,126,1.4,1,1, +20235,140,1.4.5.1,0,1,1.0 +20235,41,1.4.5,1,1, +19139,135,1.3.2.1,0,1,1.0 +19139,58,1.3.2,1,1,1.0 +4147,23,1.4.2.7,0,1,1.0 +4147,142,1.4.2,1,1,1.0 +4147,126,1.4,2,1,1.0 +4147,170,1,3,1, +399,4,1.2.2,0,1,1.0 +399,97,1.2,1,1,1.0 +20907,144,2.1.2.2,0,1,1.0 +20907,84,2.1.2,1,1, +8934,53,1.4.2.3,0,1,1.0 +8934,142,1.4.2,1,1, +7049,42,1.3.1.4,0,1,1.0 +7049,39,1.3.1,1,1,1.0 +12767,79,2.1.3.1,0,1,1.0 +12767,126,2.1.3,1,1, +8449,49,2.1.2.1,0,1,1.0 +8449,79,2.1.2,1,1,1.0 +11312,63,1.4.4.5,0,1,1.0 +11312,40,1.4.4,1,1,1.0 +11312,0,1.4.4,1,1, +837,6,2.1.2.4,0,1,1.0 +837,58,2.1.2,1,1,1.0 +8092,47,2.1.2.4,0,1,1.0 +8092,79,2.1.2,1,1,1.0 +12751,79,2.1.3.1,0,1,1.0 +12751,73,2.1.3,1,1, +1266,13,2.1.3.1,0,1,1.0 +1266,73,2.1.3,1,1,1.0 +17873,126,1.4,0,1,1.0 +17873,170,1,1,1, +11142,62,2.1.2.3,0,1,1.0 +11142,84,2.1.2,1,1,1.0 +11313,63,1.4.4.5,0,1,1.0 +11313,40,1.4.4,1,1, +11313,0,1.4.4,1,1,1.0 +9992,56,1.1.1,0,1,1.0 +9992,106,1.1,1,1,1.0 +6895,41,1.4.5,0,1,1.0 +6895,126,1.4,1,1, +6896,41,1.4.5,0,1,1.0 +6896,126,1.4,1,1, +20575,142,1.4.3,0,1,1.0 +20575,126,1.4,1,1, +8949,53,1.4.2.3,0,1,1.0 +8949,142,1.4.2,1,1, +15322,99,2.1,0,1,1.0 +15322,102,2,1,1, +5049,31,1.3.3.3,0,1,1.0 +5049,99,1.3.3,1,1,1.0 +20226,140,1.4.5.1,0,1,1.0 +20226,41,1.4.5,1,1,1.0 +20226,126,1.4,2,1, +1586,13,2.1.3.7,0,1,1.0 +1586,97,2.1.3,1,1, +12541,78,2.1.1.5,0,1,1.0 +12541,80,2.1.1,1,1, +20857,144,2.1.2.1,0,1,1.0 +20857,84,2.1.2,1,1, +1532,13,2.1.3.6,0,1,1.0 +1532,74,2.1.3,1,1, +20529,142,1.4.2,0,1,1.0 +20529,126,1.4,1,1, +18571,130,1.3.5,0,1,1.0 +18571,29,1.3,1,1, +6870,41,1.4.5,0,1,1.0 +6870,126,1.4,1,1, +8492,49,2.1.2.2,0,1,1.0 +8492,79,2.1.2,1,1,1.0 +19122,135,1.3.2.1,0,1,1.0 +19122,58,1.3.2,1,1,1.0 +19122,130,1.3.2,1,1,1.0 +19122,106,1.3,2,1,1.0 +12007,74,1.3.3.2,0,1,1.0 +12007,97,1.3.3,1,1, +18583,130,1.3.5,0,1,1.0 +18583,106,1.3,1,1, +6714,41,1.4.3.2,0,1,1.0 +6714,142,1.4.3,1,1,1.0 +6714,126,1.4,2,1,1.0 +6714,170,1,3,1,1.0 +15309,99,2.1,0,1,1.0 +15309,98,2,1,1,1.0 +15309,102,2,1,1, +10957,62,1.3.1.2,0,1,1.0 +10957,39,1.3.1,1,1, +9181,53,1.4.3.6,0,1,1.0 +9181,142,1.4.3,1,1,1.0 +9181,126,1.4,2,1, +14357,89,1.2.1,0,1,1.0 +14357,97,1.2,1,1, +9464,53,1.4.5.8,0,1,1.0 +9464,41,1.4.5,1,1,1.0 +9464,126,1.4,2,1,1.0 +9464,170,1,3,1,1.0 +17592,123,1.1.2,0,1,1.0 +17592,105,1.1,1,1,1.0 +15331,99,2.1,0,1,1.0 +15331,102,2,1,1,1.0 +8332,49,1.3.1.6,0,1,1.0 +8332,100,1.3.1,1,1, +22201,157,1.4.1,0,1,1.0 +22201,126,1.4,1,1, +11332,63,1.4.4.5,0,1,1.0 +11332,40,1.4.4,1,1,1.0 +21199,147,1.1.2,0,1,1.0 +21199,94,1.1,1,1,1.0 +19119,135,1.3.2.1,0,1,1.0 +19119,130,1.3.2,1,1,1.0 +19207,135,2.1.3.1,0,1,1.0 +19207,148,2.1.3,1,1, +10008,56,1.3.1.7,0,1,1.0 +10008,100,1.3.1,1,1,1.0 +19124,135,1.3.2.1,0,1,1.0 +19124,130,1.3.2,1,1,1.0 +19124,58,1.3.2,1,1,1.0 +19124,29,1.3,2,1, +19124,106,1.3,2,1, +17207,117,2.1.4.2.1,0,1,1.0 +17207,81,2.1.4.2,1,1, +16508,113,1.1.1,0,1,1.0 +16508,105,1.1,1,1,1.0 +20590,142,1.4.3,0,1,1.0 +20590,126,1.4,1,1, +18586,130,1.3.5,0,1,1.0 +18586,106,1.3,1,1,1.0 +18586,29,1.3,1,1, +15315,99,2.1,0,1,1.0 +15315,102,2,1,1, +15315,98,2,1,1, +10192,57,2.3.2,0,1,1.0 +10192,126,2.3,1,1,1.0 +10832,60,2.1.1.4,0,1,1.0 +10832,80,2.1.1,1,1, +15326,99,2.1,0,1,1.0 +15326,102,2,1,1,1.0 +15611,103,1.1.1,0,1,1.0 +15611,94,1.1,1,1,1.0 +6888,41,1.4.5,0,1,1.0 +6888,126,1.4,1,1, +19457,135,2.1.3.6,0,1,1.0 +19457,74,2.1.3,1,1, +8950,53,1.4.2.3,0,1,1.0 +8950,142,1.4.2,1,1, +18007,126,2.2,0,1,1.0 +18007,102,2,1,1, +20581,142,1.4.3,0,1,1.0 +20581,126,1.4,1,1,1.0 +20581,170,1,2,1,1.0 +21392,149,2.1.2.1,0,1,1.0 +21392,79,2.1.2,1,1,1.0 +642,6,1.3.1.2,0,1,1.0 +642,100,1.3.1,1,1,1.0 +4129,23,1.4.2.7,0,1,1.0 +4129,142,1.4.2,1,1,1.0 +4129,126,1.4,2,1, +15337,99,2.1,0,1,1.0 +15337,98,2,1,1,1.0 +15337,102,2,1,1, +22240,157,1.4.1,0,1,1.0 +22240,126,1.4,1,1, +2749,22,1.2.2,0,1,1.0 +2749,106,1.2,1,1,1.0 +12781,79,2.1.3.1,0,1,1.0 +12781,126,2.1.3,1,1, +2342,16,2.3.2,0,1,1.0 +2342,124,2.3,1,1,1.0 +20553,142,1.4.3,0,1,1.0 +20553,126,1.4,1,1, +1386,13,2.1.3.3,0,1,1.0 +1386,73,2.1.3,1,1, +9168,53,1.4.3.6,0,1,1.0 +9168,142,1.4.3,1,1,1.0 +9168,126,1.4,2,1,1.0 +9168,170,1,3,1,1.0 +19147,135,1.3.2.1,0,1,1.0 +19147,130,1.3.2,1,1,1.0 +22807,163,2.1.4.1.4,0,1,1.0 +22807,81,2.1.4.1,1,1, +19315,135,2.1.3.3,0,1,1.0 +19315,108,2.1.3,1,1,1.0 +608,6,1.3.1.2,0,1,1.0 +608,85,1.3.1,1,1, +20807,143,2.1.1.5,0,1,1.0 +20807,85,2.1.1,1,1, +4265,23,2.3.2,0,1,1.0 +4265,155,2.3,1,1,1.0 +11327,63,1.4.4.5,0,1,1.0 +11327,40,1.4.4,1,1, +11327,0,1.4.4,1,1, +20802,143,2.1.1.5,0,1,1.0 +20802,80,2.1.1,1,1, +11323,63,1.4.4.5,0,1,1.0 +11323,0,1.4.4,1,1, +11323,40,1.4.4,1,1,1.0 +8219,49,1.3.1.1,0,1,1.0 +8219,100,1.3.1,1,1, +11342,63,1.4.4.5,0,1,1.0 +11342,0,1.4.4,1,1, +11342,40,1.4.4,1,1,1.0 +19115,135,1.3.2.1,0,1,1.0 +19115,130,1.3.2,1,1,1.0 +23008,165,2.1.2.1,0,1,1.0 +23008,58,2.1.2,1,1,1.0 +8904,53,1.4.2.3,0,1,1.0 +8904,142,1.4.2,1,1,1.0 +8904,126,1.4,2,1, +7899,47,2.1.1.4,0,1,1.0 +7899,85,2.1.1,1,1,1.0 +19499,135,2.1.3.6,0,1,1.0 +19499,108,2.1.3,1,1,1.0 +13832,82,2.1.2.4,0,1,1.0 +13832,84,2.1.2,1,1, +2915,22,2.1.1.3,0,1,1.0 +2915,85,2.1.1,1,1,1.0 +21566,150,1.1.1,0,1,1.0 +21566,106,1.1,1,1, +1357,13,2.1.3.3,0,1,1.0 +1357,126,2.1.3,1,1, +8935,53,1.4.2.3,0,1,1.0 +8935,142,1.4.2,1,1, +23099,165,2.1.2.2,0,1,1.0 +23099,58,2.1.2,1,1,1.0 +6730,41,1.4.3.2,0,1,1.0 +6730,142,1.4.3,1,1, +17357,119,1.3.1.1,0,1,1.0 +17357,99,1.3.1,1,1, +17897,126,1.4,0,1,1.0 +17897,170,1,1,1,1.0 +7265,45,1.3.4.1,0,1,1.0 +7265,81,1.3.4,1,1,1.0 +21707,153,1.3.1.1,0,1,1.0 +21707,85,1.3.1,1,1, +22239,157,1.4.1,0,1,1.0 +22239,126,1.4,1,1, +20558,142,1.4.3,0,1,1.0 +20558,126,1.4,1,1,1.0 +20558,170,1,2,1,1.0 +11318,63,1.4.4.5,0,1,1.0 +11318,40,1.4.4,1,1,1.0 +2757,22,1.3.3.6,0,1,1.0 +2757,99,1.3.3,1,1, +9472,53,1.4.5.8,0,1,1.0 +9472,41,1.4.5,1,1, +13857,83,1.3.3.2,0,1,1.0 +13857,75,1.3.3,1,1, +20791,143,2.1.1.4,0,1,1.0 +20791,80,2.1.1,1,1, +12946,79,2.1.3.4,0,1,1.0 +12946,74,2.1.3,1,1, +2207,16,1.1.3,0,1,1.0 +2207,106,1.1,1,1, +3349,22,2.1.3.6,0,1,1.0 +3349,106,2.1.3,1,1,1.0 +4657,26,2.1.3.5,0,1,1.0 +4657,126,2.1.3,1,1, +18566,130,1.3.5,0,1,1.0 +18566,106,1.3,1,1, +8157,48,1.2.2,0,1,1.0 +8157,126,1.2,1,1, +11304,63,1.4.4.5,0,1,1.0 +11304,40,1.4.4,1,1,1.0 +18568,130,1.3.5,0,1,1.0 +18568,29,1.3,1,1, +9499,53,1.4.5.8,0,1,1.0 +9499,41,1.4.5,1,1, +5407,33,2.1.2.1,0,1,1.0 +5407,81,2.1.2,1,1, +20505,142,1.4.2,0,1,1.0 +20505,126,1.4,1,1, +14499,90,1.3.1.7,0,1,1.0 +14499,85,1.3.1,1,1,1.0 +4121,23,1.4.2.7,0,1,1.0 +4121,142,1.4.2,1,1, +9192,53,1.4.3.6,0,1,1.0 +9192,142,1.4.3,1,1,1.0 +9192,126,1.4,2,1,1.0 +9192,170,1,3,1,1.0 +22216,157,1.4.1,0,1,1.0 +22216,126,1.4,1,1, +9180,53,1.4.3.6,0,1,1.0 +9180,142,1.4.3,1,1, +18291,129,1.1.2,0,1,1.0 +18291,94,1.1,1,1, +12757,79,2.1.3.1,0,1,1.0 +12757,74,2.1.3,1,1, +841,6,2.1.2.4,0,1,1.0 +841,79,2.1.2,1,1,1.0 +11348,63,1.4.4.5,0,1,1.0 +11348,40,1.4.4,1,1,1.0 +11348,0,1.4.4,1,1, +1267,13,2.1.3.1,0,1,1.0 +1267,97,2.1.3,1,1, +4392,24,1.1.1,0,1,1.0 +4392,126,1.1,1,1,1.0 +18580,130,1.3.5,0,1,1.0 +18580,29,1.3,1,1, +2707,22,1.2.2,0,1,1.0 +2707,126,1.2,1,1, +10999,62,1.3.1.2,0,1,1.0 +10999,100,1.3.1,1,1,1.0 +1567,13,2.1.3.7,0,1,1.0 +1567,148,2.1.3,1,1, +5588,33,2.1.2.4,0,1,1.0 +5588,79,2.1.2,1,1,1.0 +2365,16,2.3.3,0,1,1.0 +2365,95,2.3,1,1,1.0 +9162,53,1.4.3.6,0,1,1.0 +9162,142,1.4.3,1,1,1.0 +9162,126,1.4,2,1, +8919,53,1.4.2.3,0,1,1.0 +8919,142,1.4.2,1,1, +8942,53,1.4.2.3,0,1,1.0 +8942,142,1.4.2,1,1, +11908,72,1.3.1.2,0,1,1.0 +11908,99,1.3.1,1,1, diff --git a/analysis/dissertation_count_dcp.csv b/analysis/dissertation_count_dcp.csv new file mode 100644 index 0000000..ca63932 --- /dev/null +++ b/analysis/dissertation_count_dcp.csv @@ -0,0 +1,700 @@ +up_id_firm,up_name_firm,up_id_product,up_name_product,down_id_firm,down_name_firm,down_id_product,down_name_product,count +126,华为,1.4,工业互联网安全,170,Pseudo1,1,供给,118 +142,深信服,1.4.3,网络安全,126,华为,1.4,工业互联网安全,96 +41,启明星辰,1.4.5,数据安全,126,华为,1.4,工业互联网安全,92 +142,深信服,1.4.2,控制安全,126,华为,1.4,工业互联网安全,92 +53,天融信,1.4.3.6,沙箱类设备,142,深信服,1.4.3,网络安全,50 +23,和利时,1.4.2.7,工控原生安全,142,深信服,1.4.2,控制安全,50 +157,新华三,1.4.1,设备安全,126,华为,1.4,工业互联网安全,50 +53,天融信,1.4.5.8,数据加密,41,启明星辰,1.4.5,数据安全,50 +41,启明星辰,1.4.3.2,流量检测,142,深信服,1.4.3,网络安全,50 +53,天融信,1.4.2.3,工控漏洞扫描,142,深信服,1.4.2,控制安全,50 +140,山石网科,1.4.5.1,恶意代码检测系统,41,启明星辰,1.4.5,数据安全,50 +99,Siemens,2.1,PaaS,102,Amazon AWS,2,工业互联网平台,41 +135,浪潮,1.3.2.1,供应链管理SCM,130,金蝶,1.3.2,采购供应,40 +130,金蝶,1.3.5,仓储物流,106,阿里巴巴,1.3,工业软件,39 +63,长扬科技,1.4.4.5,安全态势感知,0,360科技,1.4.4,平台安全,38 +63,长扬科技,1.4.4.5,安全态势感知,40,奇安信,1.4.4,平台安全,38 +135,浪潮,1.3.2.1,供应链管理SCM,58,用友,1.3.2,采购供应,36 +99,Siemens,2.1,PaaS,98,Microsoft Azure,2,工业互联网平台,36 +130,金蝶,1.3.5,仓储物流,29,京东工业品,1.3,工业软件,33 +130,金蝶,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23 +135,浪潮,1.3.2.1,供应链管理SCM,106,阿里巴巴,1.3,工业软件,23 +53,天融信,1.4.3.6,沙箱类设备,126,华为,1.4,工业互联网安全,23 +41,启明星辰,1.4.3.2,流量检测,126,华为,1.4,工业互联网安全,23 +58,用友,1.3.2,采购供应,106,阿里巴巴,1.3,工业软件,23 +53,天融信,1.4.5.8,数据加密,126,华为,1.4,工业互联网安全,21 +140,山石网科,1.4.5.1,恶意代码检测系统,126,华为,1.4,工业互联网安全,21 +142,深信服,1.4.3,网络安全,170,Pseudo1,1,供给,21 +53,天融信,1.4.2.3,工控漏洞扫描,126,华为,1.4,工业互联网安全,21 +23,和利时,1.4.2.7,工控原生安全,126,华为,1.4,工业互联网安全,21 +41,启明星辰,1.4.5,数据安全,170,Pseudo1,1,供给,19 +142,深信服,1.4.2,控制安全,170,Pseudo1,1,供给,19 +130,金蝶,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14 +58,用友,1.3.2,采购供应,29,京东工业品,1.3,工业软件,14 +135,浪潮,1.3.2.1,供应链管理SCM,29,京东工业品,1.3,工业软件,14 +157,新华三,1.4.1,设备安全,170,Pseudo1,1,供给,9 +41,启明星辰,1.4.3.2,流量检测,170,Pseudo1,1,供给,6 +53,天融信,1.4.3.6,沙箱类设备,170,Pseudo1,1,供给,6 +99,Siemens,2.1,PaaS,170,Pseudo1,1,供给,5 +53,天融信,1.4.2.3,工控漏洞扫描,170,Pseudo1,1,供给,5 +40,奇安信,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5 +98,Microsoft Azure,2,工业互联网平台,170,Pseudo1,1,供给,5 +63,长扬科技,1.4.4.5,安全态势感知,126,华为,1.4,工业互联网安全,5 +140,山石网科,1.4.5.1,恶意代码检测系统,170,Pseudo1,1,供给,5 +23,和利时,1.4.2.7,工控原生安全,170,Pseudo1,1,供给,5 +53,天融信,1.4.5.8,数据加密,170,Pseudo1,1,供给,5 +0,360科技,1.4.4,平台安全,126,华为,1.4,工业互联网安全,5 +102,Amazon AWS,2,工业互联网平台,170,Pseudo1,1,供给,5 +131,九物互联,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,4 +42,山大华天,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,4 +13,东方国信,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,4 +79,PTC,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,4 +78,OutSystems,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,3 +68,中望软件,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,3 +13,东方国信,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3 +13,东方国信,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,3 +13,东方国信,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,3 +13,东方国信,2.1.3.7,制造类API,108,百度,2.1.3,工业物联网,3 +79,PTC,2.3.3,协议转换,126,华为,2.3,边缘层,3 +69,紫光集团,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,3 +79,PTC,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,3 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,3 +16,东土科技,2.3.3,协议转换,126,华为,2.3,边缘层,3 +79,PTC,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,3 +117,格创东智,2.1.1.1,算法建模工具,80,Salesforce,2.1.1,开发工具,3 +79,PTC,2.1.3.1,物联网服务,74,HoneyWell,2.1.3,工业物联网,3 +79,PTC,2.1.3.4,应用管理服务,74,HoneyWell,2.1.3,工业物联网,3 +79,PTC,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,3 +79,PTC,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,3 +32,兰光创新,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,3 +103,STMicroelectronics ,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,3 +169,中芯国际,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +47,首自信,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,2 +74,HoneyWell,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,2 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2 +57,亚控科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2 +22,航天云网,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,2 +71,Altair,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,2 +47,首自信,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2 +70,ABB,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,2 +22,航天云网,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,2 +104,Infineon,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +57,亚控科技,2.3.3,协议转换,155,小米,2.3,边缘层,2 +57,亚控科技,2.3.3,协议转换,99,Siemens,2.3,边缘层,2 +47,首自信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,2 +22,航天云网,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2 +22,航天云网,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2 +48,曙光信息,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,2 +49,数码大方,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,2 +78,OutSystems,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,2 +57,亚控科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2 +6,安世亚太,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,2 +78,OutSystems,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2 +79,PTC,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,2 +168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,2 +135,浪潮,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2 +135,浪潮,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2 +167,中环股份,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2 +79,PTC,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,2 +168,中控技术,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,2 +22,航天云网,2.3.3,协议转换,99,Siemens,2.3,边缘层,2 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,2 +138,启明信息,1.3.1.5,产品数据管理PDM,100,Synopsys,1.3.1,设计研发,2 +56,芯愿景,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,75,IBM,1.3.3,生产制造,2 +167,中环股份,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 +166,中国电子科技网络信息安全,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2 +103,STMicroelectronics ,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 +47,首自信,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,2 +117,格创东智,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,2 +22,航天云网,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2 +47,首自信,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,2 +49,数码大方,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,2 +165,智能云科,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2 +58,用友,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2 +103,STMicroelectronics ,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2 +60,宇动源,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2 +49,数码大方,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2 +60,宇动源,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2 +115,富士康,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2 +16,东土科技,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,2 +16,东土科技,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,2 +161,研华科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2 +6,安世亚太,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2 +6,安世亚太,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2 +16,东土科技,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,2 +16,东土科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,2 +6,安世亚太,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,2 +6,安世亚太,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,2 +161,研华科技,2.3.3,协议转换,155,小米,2.3,边缘层,2 +16,东土科技,2.3.3,协议转换,95,Schneider,2.3,边缘层,2 +6,安世亚太,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2 +169,中芯国际,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 +6,安世亚太,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,2 +49,数码大方,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,2 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,2 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,2 +135,浪潮,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,2 +49,数码大方,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,2 +147,拓邦股份,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2 +168,中控技术,2.3.3,协议转换,126,华为,2.3,边缘层,2 +147,拓邦股份,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2 +64,中电智科,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2 +149,天泽智云,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,2 +101,Analog Devices,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 +149,天泽智云,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,2 +62,云道智造,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,2 +22,航天云网,1.2.2,标识解析,126,华为,1.2,工业互联网网络,2 +49,数码大方,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,2 +62,云道智造,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,2 +106,阿里巴巴,1.3,工业软件,170,Pseudo1,1,供给,2 +22,航天云网,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,2 +150,唯捷创芯,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 +49,数码大方,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,2 +33,蓝谷信息,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,2 +22,航天云网,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,2 +79,PTC,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,2 +150,唯捷创芯,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,2 +13,东方国信,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,2 +82,Uptake,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,2 +38,牛刀,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,2 +26,寄云科技,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2 +13,东方国信,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2 +13,东方国信,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2 +9,北京航天测控,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,2 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,39,Autodesk,1.3.1,设计研发,2 +26,寄云科技,2.1.3.1,物联网服务,106,阿里巴巴,2.1.3,工业物联网,2 +13,东方国信,2.1.3.7,制造类API,148,腾讯,2.1.3,工业物联网,2 +13,东方国信,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,2 +127,华为海思,1.1.3,工业服务器,126,华为,1.1,工业自动化,2 +24,华大电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,2 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,99,Siemens,1.3.1,设计研发,2 +79,PTC,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,2 +44,圣邦微电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +127,华为海思,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 +13,东方国信,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,2 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,2 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,2 +46,适创科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,2 +29,京东工业品,1.3,工业软件,170,Pseudo1,1,供给,2 +87,Texas Instruments,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 +13,东方国信,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,2 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,2 +88,HPE,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2 +13,东方国信,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,2 +4,爱创科技,1.2.2,标识解析,97,General Electric,1.2,工业互联网网络,2 +13,东方国信,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,2 +82,Uptake,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,2 +113,飞腾信息,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,2 +89,Rockwell,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,2 +13,东方国信,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,2 +13,东方国信,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,2 +13,东方国信,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2 +129,华中数控,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,2 +79,PTC,2.3.1,工业数据接入,126,华为,2.3,边缘层,2 +127,华为海思,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,2 +79,PTC,2.3.1,工业数据接入,124,海尔,2.3,边缘层,2 +123,海得控制,1.1.2,工业控制器,126,华为,1.1,工业自动化,2 +131,九物互联,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2 +38,牛刀,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,2 +79,PTC,2.1.3.4,应用管理服务,148,腾讯,2.1.3,工业物联网,2 +23,和利时,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,2 +99,Siemens,1.1.2,工业控制器,105,Intel,1.1,工业自动化,2 +23,和利时,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2 +120,广州数控,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2 +99,Siemens,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,2 +35,凌昊智能,1.1.3,工业服务器,105,Intel,1.1,工业自动化,2 +135,浪潮,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,2 +113,飞腾信息,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,2 +79,PTC,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,2 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,2 +46,适创科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,2 +117,格创东智,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,2 +79,PTC,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,2 +13,东方国信,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,2 +23,和利时,2.3.2,边缘数据处理,155,小米,2.3,边缘层,2 +95,Schneider,1.2.3,数据互通,126,华为,1.2,工业互联网网络,2 +79,PTC,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,2 +95,Schneider,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,2 +38,牛刀,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,2 +79,PTC,2.1.3.5,容器服务,74,HoneyWell,2.1.3,工业物联网,2 +79,PTC,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,2 +79,PTC,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,2 +109,宝信软件,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1 +104,Infineon,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 +49,数码大方,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1 +36,龙芯中科,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +108,百度,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1 +49,数码大方,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 +35,凌昊智能,1.1.3,工业服务器,126,华为,1.1,工业自动化,1 +49,数码大方,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 +104,Infineon,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +56,芯愿景,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 +38,牛刀,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1 +39,Autodesk,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1 +36,龙芯中科,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +36,龙芯中科,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 +103,STMicroelectronics ,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +38,牛刀,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1 +35,凌昊智能,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 +38,牛刀,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 +50,索为系统,1.3.1.5,产品数据管理PDM,85,Dassault,1.3.1,设计研发,1 +38,牛刀,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 +50,索为系统,1.3.1.5,产品数据管理PDM,39,Autodesk,1.3.1,设计研发,1 +46,适创科技,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1 +39,Autodesk,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1 +45,石化盈科,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1 +45,石化盈科,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1 +45,石化盈科,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1 +47,首自信,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1 +47,首自信,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 +45,石化盈科,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1 +45,石化盈科,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1 +47,首自信,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1 +47,首自信,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 +47,首自信,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 +47,首自信,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 +47,首自信,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1 +47,首自信,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 +45,石化盈科,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1 +47,首自信,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1 +47,首自信,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1 +47,首自信,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1 +45,石化盈科,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1 +46,适创科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1 +47,首自信,2.1.2.3,研发仿真模型,81,SAP,2.1.2,工业模型库,1 +44,圣邦微电子,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +49,数码大方,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1 +4,爱创科技,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1 +49,数码大方,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1 +49,数码大方,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1 +111,鼎捷软件,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1 +49,数码大方,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1 +47,首自信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1 +42,山大华天,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1 +42,山大华天,1.3.1.3,计算机辅助制造CAM,99,Siemens,1.3.1,设计研发,1 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 +47,首自信,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1 +43,神舟软件,1.3.1.5,产品数据管理PDM,93,Cadence,1.3.1,设计研发,1 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1 +56,芯愿景,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +119,广联达,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1 +56,芯愿景,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +82,Uptake,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1 +81,SAP,2.1.4.2,工业大数据管理,115,富士康,2.1.4,工业大数据,1 +81,SAP,2.1.4.2,工业大数据管理,102,Amazon AWS,2.1.4,工业大数据,1 +81,SAP,2.1.4.1,工业大数据存储,102,Amazon AWS,2.1.4,工业大数据,1 +80,Salesforce,1.3.4,企业运营管理,29,京东工业品,1.3,工业软件,1 +79,PTC,2.3.3,协议转换,95,Schneider,2.3,边缘层,1 +79,PTC,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 +79,PTC,2.3.3,协议转换,155,小米,2.3,边缘层,1 +79,PTC,2.3.3,协议转换,102,Amazon AWS,2,工业互联网平台,1 +79,PTC,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1 +79,PTC,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1 +79,PTC,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 +79,PTC,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 +79,PTC,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1 +79,PTC,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 +79,PTC,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1 +79,PTC,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1 +79,PTC,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1 +79,PTC,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1 +79,PTC,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1 +79,PTC,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1 +79,PTC,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1 +79,PTC,2.1.3.3,工业引擎服务,148,腾讯,2.1.3,工业物联网,1 +79,PTC,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1 +79,PTC,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1 +79,PTC,2.1.3.2,平台基础服务,74,HoneyWell,2.1.3,工业物联网,1 +79,PTC,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1 +79,PTC,1.3.1.6,产品生命周期管理PLM,93,Cadence,1.3.1,设计研发,1 +81,SAP,2.1.4.2,工业大数据管理,84,Bosch,2.1.4,工业大数据,1 +82,Uptake,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 +79,PTC,1.3.1.6,产品生命周期管理PLM,100,Synopsys,1.3.1,设计研发,1 +82,Uptake,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1 +99,Siemens,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 +100,Synopsys,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1 +97,General Electric,1.3.3,生产制造,29,京东工业品,1.3,工业软件,1 +96,Cisco,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1 +95,Schneider,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1 +93,Cadence,1.3.1,设计研发,29,京东工业品,1.3,工业软件,1 +93,Cadence,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1 +91,Moxa,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1 +9,北京航天测控,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1 +89,Rockwell,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1 +89,Rockwell,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1 +89,Rockwell,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 +89,Rockwell,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 +88,HPE,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 +87,Texas Instruments,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +85,Dassault,1.3.1,设计研发,106,阿里巴巴,1.3,工业软件,1 +83,Emerson,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1 +83,Emerson,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1 +82,Uptake,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 +82,Uptake,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 +82,Uptake,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1 +82,Uptake,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1 +82,Uptake,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 +79,PTC,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 +56,芯愿景,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 +62,云道智造,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1 +62,云道智造,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1 +62,云道智造,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1 +62,云道智造,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 +60,宇动源,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 +60,宇动源,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1 +60,宇动源,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1 +60,宇动源,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 +60,宇动源,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1 +60,宇动源,2.1.1.1,算法建模工具,148,腾讯,2.1.1,开发工具,1 +60,宇动源,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1 +6,安世亚太,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1 +6,安世亚太,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 +6,安世亚太,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,85,Dassault,1.3.1,设计研发,1 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 +103,STMicroelectronics ,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 +58,用友,1.3.2,采购供应,170,Pseudo1,1,供给,1 +58,用友,1.2.2,标识解析,67,中国移动,1.2,工业互联网网络,1 +58,用友,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1 +57,亚控科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 +57,亚控科技,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1 +57,亚控科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,97,General Electric,1.3.3,生产制造,1 +56,芯愿景,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1 +56,芯愿景,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1 +62,云道智造,2.1.2.1,数据算法模型,159,徐工集团,2.1.2,工业模型库,1 +62,云道智造,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 +79,PTC,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1 +62,云道智造,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 +79,PTC,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1 +79,PTC,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 +78,OutSystems,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 +78,OutSystems,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 +78,OutSystems,2.1.1.3,流程开发工具,80,Salesforce,2.1.1,开发工具,1 +78,OutSystems,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1 +78,OutSystems,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 +77,Oracle,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1 +77,Oracle,1.3.3.6,运维保障系统MRO,97,General Electric,1.3.3,生产制造,1 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 +71,Altair,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1 +71,Altair,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 +70,ABB,1.3.3.4,可编程逻揖控制系统PLC,97,General Electric,1.3.3,生产制造,1 +69,紫光集团,1.1.1,工业计算芯片,94,Mitsubishi,1.1,工业自动化,1 +69,紫光集团,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +68,中望软件,1.3.1.2,计算机辅助工程CAE,99,Siemens,1.3.1,设计研发,1 +68,中望软件,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1 +68,中望软件,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1 +68,中望软件,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 +66,中国联通,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 +65,中国电信,1.2.1,网络互联,67,中国移动,1.2,工业互联网网络,1 +65,中国电信,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 +65,中国电信,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 +64,中电智科,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 +101,Analog Devices,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +62,云道智造,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 +62,云道智造,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1 +33,蓝谷信息,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 +23,和利时,2.3.3,协议转换,99,Siemens,2.3,边缘层,1 +33,蓝谷信息,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 +137,美林数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1 +135,浪潮,2.1.3.6,微服务,74,HoneyWell,2.1.3,工业物联网,1 +135,浪潮,2.1.3.7,制造类API,106,阿里巴巴,2.1.3,工业物联网,1 +135,浪潮,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1 +135,浪潮,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 +135,浪潮,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1 +135,浪潮,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1 +137,美林数据,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1 +135,浪潮,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,99,Siemens,1.3.3,生产制造,1 +14,东华软件,1.3.4.3,人力资源管理HRM,80,Salesforce,1.3.4,企业运营管理,1 +117,格创东智,2.1.1.2,低代码开发工具,85,Dassault,2.1.1,开发工具,1 +117,格创东智,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1 +135,浪潮,2.1.3.6,微服务,108,百度,2.1.3,工业物联网,1 +135,浪潮,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1 +116,概伦电子,1.3.1.7,电子设计自动化EDA,93,Cadence,1.3.1,设计研发,1 +117,格创东智,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 +131,九物互联,2.1.1.4,组态建模工具,106,阿里巴巴,2.1.1,开发工具,1 +132,科远智慧,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1 +133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,40,奇安信,1.4.4,平台安全,1 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,97,General Electric,1.3.3,生产制造,1 +135,浪潮,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 +117,格创东智,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 +135,浪潮,2.1.3.4,应用管理服务,106,阿里巴巴,2.1.3,工业物联网,1 +135,浪潮,1.3.2.1,供应链管理SCM,170,Pseudo1,1,供给,1 +117,格创东智,2.1.1.4,组态建模工具,148,腾讯,2.1.1,开发工具,1 +135,浪潮,1.3.4.1,企业资源计划ERP,81,SAP,1.3.4,企业运营管理,1 +135,浪潮,2.1.3.2,平台基础服务,108,百度,2.1.3,工业物联网,1 +135,浪潮,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1 +135,浪潮,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1 +117,格创东智,2.1.1.2,低代码开发工具,106,阿里巴巴,2.1.1,开发工具,1 +116,概伦电子,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1 +150,唯捷创芯,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +149,天泽智云,2.1.2.3,研发仿真模型,58,用友,2.1.2,工业模型库,1 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1 +149,天泽智云,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1 +149,天泽智云,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 +149,天泽智云,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 +149,天泽智云,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1 +149,天泽智云,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 +149,天泽智云,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 +149,天泽智云,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1 +149,天泽智云,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 +15,东软集团,1.3.3.5,企业资产管理系统EAM,75,IBM,1.3.3,生产制造,1 +15,东软集团,1.3.3.5,企业资产管理系统EAM,99,Siemens,1.3.3,生产制造,1 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,85,Dassault,1.3.1,设计研发,1 +144,树根互联,2.1.2.4,行业机理模型,84,Bosch,2.1.2,工业模型库,1 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,148,腾讯,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,80,Salesforce,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,80,Salesforce,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 +144,树根互联,2.1.2.1,数据算法模型,79,PTC,2.1.2,工业模型库,1 +144,树根互联,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1 +144,树根互联,2.1.2.1,数据算法模型,84,Bosch,2.1.2,工业模型库,1 +144,树根互联,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 +144,树根互联,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 +144,树根互联,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1 +144,树根互联,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1 +144,树根互联,2.1.2.4,行业机理模型,58,用友,2.1.2,工业模型库,1 +131,九物互联,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 +131,九物互联,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1 +131,九物互联,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1 +13,东方国信,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1 +128,华伍股份,1.1.2,工业控制器,126,华为,1.1,工业自动化,1 +129,华中数控,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1 +129,华中数控,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1 +129,华中数控,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1 +13,东方国信,1.2.2,标识解析,126,华为,1.2,工业互联网网络,1 +13,东方国信,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1 +13,东方国信,2.1.3.1,物联网服务,73,FANUC,2.1.3,工业物联网,1 +127,华为海思,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 +13,东方国信,2.1.3.2,平台基础服务,106,阿里巴巴,2.1.3,工业物联网,1 +13,东方国信,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1 +13,东方国信,2.1.3.2,平台基础服务,148,腾讯,2.1.3,工业物联网,1 +13,东方国信,2.1.3.2,平台基础服务,97,General Electric,2.1.3,工业物联网,1 +13,东方国信,2.1.3.3,工业引擎服务,126,华为,2.1.3,工业物联网,1 +13,东方国信,2.1.3.3,工业引擎服务,73,FANUC,2.1.3,工业物联网,1 +128,华伍股份,1.1.2,工业控制器,106,阿里巴巴,1.1,工业自动化,1 +127,华为海思,1.1.1,工业计算芯片,86,Dell EMC,1.1,工业自动化,1 +117,格创东智,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1 +123,海得控制,1.1.2,工业控制器,94,Mitsubishi,1.1,工业自动化,1 +119,广联达,1.3.1.1,计算机辅助设计CAD,99,Siemens,1.3.1,设计研发,1 +12,大唐软件,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 +12,大唐软件,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 +12,大唐软件,1.2.1,网络互联,97,General Electric,1.2,工业互联网网络,1 +120,广州数控,1.2.3,数据互通,67,中国移动,1.2,工业互联网网络,1 +123,海得控制,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1 +124,海尔,1.2.1,网络互联,106,阿里巴巴,1.2,工业互联网网络,1 +126,华为,2.3,边缘层,102,Amazon AWS,2,工业互联网平台,1 +124,海尔,1.2.1,网络互联,126,华为,1.2,工业互联网网络,1 +124,海尔,2.3,边缘层,98,Microsoft Azure,2,工业互联网平台,1 +125,华数机器人,1.2.3,数据互通,126,华为,1.2,工业互联网网络,1 +118,工邦邦,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1 +126,华为,2.1.1.5,数字孪生建模工具,85,Dassault,2.1.1,开发工具,1 +126,华为,2.2,IaaS,102,Amazon AWS,2,工业互联网平台,1 +13,东方国信,2.1.3.3,工业引擎服务,74,HoneyWell,2.1.3,工业物联网,1 +13,东方国信,2.1.3.3,工业引擎服务,97,General Electric,2.1.3,工业物联网,1 +13,东方国信,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1 +13,东方国信,2.3.3,协议转换,124,海尔,2.3,边缘层,1 +13,东方国信,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1 +13,东方国信,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 +13,东方国信,2.3.2,边缘数据处理,126,华为,2.3,边缘层,1 +13,东方国信,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 +13,东方国信,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1 +13,东方国信,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 +13,东方国信,2.3.3,协议转换,155,小米,2.3,边缘层,1 +13,东方国信,2.1.3.4,应用管理服务,73,FANUC,2.1.3,工业物联网,1 +117,格创东智,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1 +130,金蝶,1.3.2,采购供应,170,Pseudo1,1,供给,1 +117,格创东智,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1 +130,金蝶,1.3.4.1,企业资源计划ERP,77,Oracle,1.3.4,企业运营管理,1 +117,格创东智,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1 +130,金蝶,1.3.5,仓储物流,170,Pseudo1,1,供给,1 +13,东方国信,2.3.1,工业数据接入,155,小米,2.3,边缘层,1 +13,东方国信,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 +13,东方国信,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1 +13,东方国信,2.1.4.2.1,数据质量管理,81,SAP,2.1.4.2,工业大数据管理,1 +13,东方国信,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1 +13,东方国信,2.1.4.1.4,时序数据库,79,PTC,2.1.4.1,工业大数据存储,1 +13,东方国信,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1 +13,东方国信,2.1.3.7,制造类API,97,General Electric,2.1.3,工业物联网,1 +13,东方国信,2.1.3.7,制造类API,126,华为,2.1.3,工业物联网,1 +13,东方国信,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1 +13,东方国信,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 +13,东方国信,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 +13,东方国信,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1 +13,东方国信,2.1.3.5,容器服务,73,FANUC,2.1.3,工业物联网,1 +13,东方国信,2.1.3.5,容器服务,148,腾讯,2.1.3,工业物联网,1 +13,东方国信,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1 +13,东方国信,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1 +150,唯捷创芯,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,100,Synopsys,1.3.1,设计研发,1 +33,蓝谷信息,2.1.2.3,研发仿真模型,84,Bosch,2.1.2,工业模型库,1 +23,和利时,1.3.3.4,可编程逻揖控制系统PLC,99,Siemens,1.3.3,生产制造,1 +22,航天云网,2.3.3,协议转换,95,Schneider,2.3,边缘层,1 +23,和利时,1.3.3.1,制造执行系统MES,75,IBM,1.3.3,生产制造,1 +23,和利时,1.3.3.1,制造执行系统MES,99,Siemens,1.3.3,生产制造,1 +23,和利时,1.3.3.2,分布式控制系统DCS,75,IBM,1.3.3,生产制造,1 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,99,Siemens,1.3.3,生产制造,1 +115,富士康,1.1.3,工业服务器,105,Intel,1.1,工业自动化,1 +22,航天云网,2.3.3,协议转换,126,华为,2.3,边缘层,1 +113,飞腾信息,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +23,和利时,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 +23,和利时,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1 +23,和利时,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 +23,和利时,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 +23,和利时,2.3.3,协议转换,124,海尔,2.3,边缘层,1 +1,51WORLD,2.1.1.5,数字孪生建模工具,148,腾讯,2.1.1,开发工具,1 +22,航天云网,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1 +23,和利时,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 +22,航天云网,2.1.3.5,容器服务,108,百度,2.1.3,工业物联网,1 +22,航天云网,2.1.3.1,物联网服务,97,General Electric,2.1.3,工业物联网,1 +22,航天云网,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1 +22,航天云网,2.1.3.3,工业引擎服务,106,阿里巴巴,2.1.3,工业物联网,1 +22,航天云网,2.1.3.4,应用管理服务,108,百度,2.1.3,工业物联网,1 +22,航天云网,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1 +22,航天云网,2.1.3.5,容器服务,106,阿里巴巴,2.1.3,工业物联网,1 +22,航天云网,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 +22,航天云网,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 +22,航天云网,2.1.3.6,微服务,148,腾讯,2.1.3,工业物联网,1 +22,航天云网,2.1.3.6,微服务,97,General Electric,2.1.3,工业物联网,1 +22,航天云网,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 +22,航天云网,2.3.1,工业数据接入,155,小米,2.3,边缘层,1 +22,航天云网,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 +22,航天云网,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1 +23,和利时,2.3.3,协议转换,126,华为,2.3,边缘层,1 +23,和利时,2.3.3,协议转换,95,Schneider,2.3,边缘层,1 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,39,Autodesk,1.3.1,设计研发,1 +31,昆仑数据,2.1.4.1.3,实时数据库,79,PTC,2.1.4.1,工业大数据存储,1 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,39,Autodesk,1.3.1,设计研发,1 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,85,Dassault,1.3.1,设计研发,1 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,99,Siemens,1.3.1,设计研发,1 +3,艾克斯特,1.3.4.1,企业资源计划ERP,80,Salesforce,1.3.4,企业运营管理,1 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,75,IBM,1.3.3,生产制造,1 +31,昆仑数据,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1 +31,昆仑数据,2.1.4.2.1,数据质量管理,79,PTC,2.1.4.2,工业大数据管理,1 +26,寄云科技,2.1.3.7,制造类API,74,HoneyWell,2.1.3,工业物联网,1 +32,兰光创新,1.2.3,数据互通,97,General Electric,1.2,工业互联网网络,1 +33,蓝谷信息,2.1.2.1,数据算法模型,81,SAP,2.1.2,工业模型库,1 +33,蓝谷信息,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1 +33,蓝谷信息,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1 +33,蓝谷信息,2.1.2.2,业务流程模型,81,SAP,2.1.2,工业模型库,1 +33,蓝谷信息,2.1.2.3,研发仿真模型,159,徐工集团,2.1.2,工业模型库,1 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,99,Siemens,1.3.1,设计研发,1 +26,寄云科技,2.1.3.7,制造类API,73,FANUC,2.1.3,工业物联网,1 +119,广联达,1.3.1.1,计算机辅助设计CAD,93,Cadence,1.3.1,设计研发,1 +26,寄云科技,2.1.3.2,平台基础服务,73,FANUC,2.1.3,工业物联网,1 +24,华大电子,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +24,华大电子,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +25,华大九天,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1 +25,华大九天,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1 +26,寄云科技,2.1.3.1,物联网服务,148,腾讯,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.2,平台基础服务,126,华为,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.3,工业引擎服务,108,百度,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.6,微服务,73,FANUC,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.4,应用管理服务,126,华为,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.4,应用管理服务,97,General Electric,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.5,容器服务,126,华为,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.5,容器服务,97,General Electric,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.6,微服务,106,阿里巴巴,2.1.3,工业物联网,1 +26,寄云科技,2.1.3.6,微服务,126,华为,2.1.3,工业物联网,1 +22,航天云网,2.1.3.1,物联网服务,126,华为,2.1.3,工业物联网,1 +22,航天云网,2.1.1.5,数字孪生建模工具,80,Salesforce,2.1.1,开发工具,1 +22,航天云网,2.1.1.5,数字孪生建模工具,106,阿里巴巴,2.1.1,开发工具,1 +163,优也科技,2.1.4.2.2,数据安全管理,79,PTC,2.1.4.2,工业大数据管理,1 +161,研华科技,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 +161,研华科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1 +161,研华科技,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1 +161,研华科技,2.3.3,协议转换,124,海尔,2.3,边缘层,1 +163,优也科技,2.1.4.1.1,关系型数据库,81,SAP,2.1.4.1,工业大数据存储,1 +163,优也科技,2.1.4.1.4,时序数据库,81,SAP,2.1.4.1,工业大数据存储,1 +163,优也科技,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1 +161,研华科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 +164,震坤行,1.3.3.6,运维保障系统MRO,75,IBM,1.3.3,生产制造,1 +164,震坤行,1.3.3.6,运维保障系统MRO,99,Siemens,1.3.3,生产制造,1 +165,智能云科,2.1.2.1,数据算法模型,58,用友,2.1.2,工业模型库,1 +165,智能云科,2.1.2.2,业务流程模型,159,徐工集团,2.1.2,工业模型库,1 +165,智能云科,2.1.2.2,业务流程模型,58,用友,2.1.2,工业模型库,1 +165,智能云科,2.1.2.2,业务流程模型,79,PTC,2.1.2,工业模型库,1 +161,研华科技,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 +161,研华科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 +22,航天云网,2.1.1.4,组态建模工具,85,Dassault,2.1.1,开发工具,1 +116,概伦电子,1.3.1.7,电子设计自动化EDA,100,Synopsys,1.3.1,设计研发,1 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,85,Dassault,1.3.1,设计研发,1 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,100,Synopsys,1.3.1,设计研发,1 +154,西格数据,2.1.4.1.2,分布式数据库,79,PTC,2.1.4.1,工业大数据存储,1 +154,西格数据,2.1.4.2.2,数据安全管理,81,SAP,2.1.4.2,工业大数据管理,1 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,39,Autodesk,1.3.1,设计研发,1 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,85,Dassault,1.3.1,设计研发,1 +16,东土科技,1.1.3,工业服务器,94,Mitsubishi,1.1,工业自动化,1 +161,研华科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1 +16,东土科技,2.3.1,工业数据接入,124,海尔,2.3,边缘层,1 +16,东土科技,2.3.1,工业数据接入,126,华为,2.3,边缘层,1 +16,东土科技,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 +16,东土科技,2.3.1,工业数据接入,95,Schneider,2.3,边缘层,1 +16,东土科技,2.3.2,边缘数据处理,84,Bosch,2.3,边缘层,1 +16,东土科技,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 +165,智能云科,2.1.2.2,业务流程模型,84,Bosch,2.1.2,工业模型库,1 +165,智能云科,2.1.2.3,研发仿真模型,79,PTC,2.1.2,工业模型库,1 +165,智能云科,2.1.2.4,行业机理模型,159,徐工集团,2.1.2,工业模型库,1 +20,海基科技,1.3.1.2,计算机辅助工程CAE,39,Autodesk,1.3.1,设计研发,1 +169,中芯国际,1.1.1,工业计算芯片,105,Intel,1.1,工业自动化,1 +169,中芯国际,1.1.1,工业计算芯片,126,华为,1.1,工业自动化,1 +18,国能智深,1.3.3.2,分布式控制系统DCS,99,Siemens,1.3.3,生产制造,1 +2,706所,1.1.3,工业服务器,106,阿里巴巴,1.1,工业自动化,1 +2,706所,1.1.3,工业服务器,86,Dell EMC,1.1,工业自动化,1 +20,海基科技,1.3.1.2,计算机辅助工程CAE,100,Synopsys,1.3.1,设计研发,1 +20,海基科技,1.3.1.2,计算机辅助工程CAE,93,Cadence,1.3.1,设计研发,1 +165,智能云科,2.1.2.4,行业机理模型,79,PTC,2.1.2,工业模型库,1 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,85,Dassault,1.3.1,设计研发,1 +22,航天云网,1.2.2,标识解析,106,阿里巴巴,1.2,工业互联网网络,1 +22,航天云网,2.1.1.1,算法建模工具,106,阿里巴巴,2.1.1,开发工具,1 +22,航天云网,2.1.1.1,算法建模工具,85,Dassault,2.1.1,开发工具,1 +22,航天云网,2.1.1.3,流程开发工具,148,腾讯,2.1.1,开发工具,1 +22,航天云网,2.1.1.3,流程开发工具,85,Dassault,2.1.1,开发工具,1 +168,中控技术,2.3.3,协议转换,99,Siemens,2.3,边缘层,1 +168,中控技术,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 +168,中控技术,2.3.3,协议转换,124,海尔,2.3,边缘层,1 +168,中控技术,2.3.2,边缘数据处理,99,Siemens,2.3,边缘层,1 +168,中控技术,2.3.2,边缘数据处理,95,Schneider,2.3,边缘层,1 +168,中控技术,2.3.2,边缘数据处理,155,小米,2.3,边缘层,1 +168,中控技术,2.3.2,边缘数据处理,124,海尔,2.3,边缘层,1 +168,中控技术,2.3.1,工业数据接入,99,Siemens,2.3,边缘层,1 +168,中控技术,2.3.1,工业数据接入,84,Bosch,2.3,边缘层,1 +168,中控技术,2.3.1,工业数据接入,155,小米,2.3,边缘层,1 +168,中控技术,1.3.3.2,分布式控制系统DCS,97,General Electric,1.3.3,生产制造,1 +168,中控技术,1.3.3.1,制造执行系统MES,97,General Electric,1.3.3,生产制造,1 +168,中控技术,1.1.2,工业控制器,86,Dell EMC,1.1,工业自动化,1 +168,中控技术,1.1.2,工业控制器,105,Intel,1.1,工业自动化,1 +167,中环股份,1.1.1,工业计算芯片,106,阿里巴巴,1.1,工业自动化,1 +166,中国电子科技网络信息安全,1.2.3,数据互通,106,阿里巴巴,1.2,工业互联网网络,1 +165,智能云科,2.1.2.4,行业机理模型,81,SAP,2.1.2,工业模型库,1 +22,航天云网,2.3.3,协议转换,84,Bosch,2.3,边缘层,1 diff --git a/analysis/count_dcp_network20230407.png b/analysis/dissertation_count_dcp_network20230407.png similarity index 100% rename from analysis/count_dcp_network20230407.png rename to analysis/dissertation_count_dcp_network20230407.png diff --git a/analysis/count_dcp_network20230526_de.png b/analysis/dissertation_count_dcp_network20230526_de.png similarity index 100% rename from analysis/count_dcp_network20230526_de.png rename to analysis/dissertation_count_dcp_network20230526_de.png diff --git a/analysis/dissertation_count_dcp_prod.csv b/analysis/dissertation_count_dcp_prod.csv new file mode 100644 index 0000000..ab522b0 --- /dev/null +++ b/analysis/dissertation_count_dcp_prod.csv @@ -0,0 +1,98 @@ +up_id_product,up_name_product,down_id_product,down_name_product,count +1.4,工业互联网安全,1,供给,118 +1.4.3,网络安全,1.4,工业互联网安全,96 +1.4.5,数据安全,1.4,工业互联网安全,92 +1.4.2,控制安全,1.4,工业互联网安全,92 +2.1,PaaS,2,工业互联网平台,77 +1.4.4.5,安全态势感知,1.4.4,平台安全,76 +1.3.2.1,供应链管理SCM,1.3.2,采购供应,76 +1.3.2,采购供应,1.3,工业软件,74 +1.3.5,仓储物流,1.3,工业软件,72 +1.1.1,工业计算芯片,1.1,工业自动化,67 +1.4.5.8,数据加密,1.4.5,数据安全,50 +1.4.5.1,恶意代码检测系统,1.4.5,数据安全,50 +1.4.3.6,沙箱类设备,1.4.3,网络安全,50 +1.4.2.7,工控原生安全,1.4.2,控制安全,50 +1.4.2.3,工控漏洞扫描,1.4.2,控制安全,50 +1.4.1,设备安全,1.4,工业互联网安全,50 +1.4.3.2,流量检测,1.4.3,网络安全,50 +2.3.3,协议转换,2.3,边缘层,37 +1.3.2.1,供应链管理SCM,1.3,工业软件,37 +2.3.1,工业数据接入,2.3,边缘层,33 +2.1.3.6,微服务,2.1.3,工业物联网,33 +2.3.2,边缘数据处理,2.3,边缘层,30 +2.1.3.4,应用管理服务,2.1.3,工业物联网,30 +2.1.2.4,行业机理模型,2.1.2,工业模型库,30 +2.1.2.2,业务流程模型,2.1.2,工业模型库,28 +2.1.3.7,制造类API,2.1.3,工业物联网,28 +1.3.1.1,计算机辅助设计CAD,1.3.1,设计研发,28 +2.1.2.1,数据算法模型,2.1.2,工业模型库,27 +1.3.1.2,计算机辅助工程CAE,1.3.1,设计研发,26 +2.1.3.1,物联网服务,2.1.3,工业物联网,25 +1.1.2,工业控制器,1.1,工业自动化,24 +2.1.3.5,容器服务,2.1.3,工业物联网,24 +1.4.3.6,沙箱类设备,1.4,工业互联网安全,23 +2.1.1.2,低代码开发工具,2.1.1,开发工具,23 +1.1.3,工业服务器,1.1,工业自动化,23 +1.4.3.2,流量检测,1.4,工业互联网安全,23 +2.1.3.3,工业引擎服务,2.1.3,工业物联网,23 +1.4.5.1,恶意代码检测系统,1.4,工业互联网安全,21 +1.4.5.8,数据加密,1.4,工业互联网安全,21 +1.4.2.3,工控漏洞扫描,1.4,工业互联网安全,21 +2.1.3.2,平台基础服务,2.1.3,工业物联网,21 +1.4.2.7,工控原生安全,1.4,工业互联网安全,21 +1.4.3,网络安全,1,供给,21 +1.3.1.4,计算机辅助工艺过程设计CAPP,1.3.1,设计研发,20 +1.4.5,数据安全,1,供给,19 +1.4.2,控制安全,1,供给,19 +2.1.2.3,研发仿真模型,2.1.2,工业模型库,18 +2.1.1.5,数字孪生建模工具,2.1.1,开发工具,18 +1.3.1.6,产品生命周期管理PLM,1.3.1,设计研发,18 +1.2.3,数据互通,1.2,工业互联网网络,17 +2.1.1.1,算法建模工具,2.1.1,开发工具,15 +2.1.1.4,组态建模工具,2.1.1,开发工具,14 +1.3.3.2,分布式控制系统DCS,1.3.3,生产制造,14 +1.2.2,标识解析,1.2,工业互联网网络,13 +1.2.1,网络互联,1.2,工业互联网网络,13 +2.1.1.3,流程开发工具,2.1.1,开发工具,12 +1.3.1.7,电子设计自动化EDA,1.3.1,设计研发,12 +1.3.3.3,数据采集与监视控制系统SCADA,1.3.3,生产制造,11 +2,工业互联网平台,1,供给,10 +1.3.3.6,运维保障系统MRO,1.3.3,生产制造,10 +1.3.3.1,制造执行系统MES,1.3.3,生产制造,10 +1.4.4,平台安全,1.4,工业互联网安全,10 +1.4.1,设备安全,1,供给,9 +1.3.1,设计研发,1.3,工业软件,8 +1.3.3.4,可编程逻揖控制系统PLC,1.3.3,生产制造,7 +1.3.4.1,企业资源计划ERP,1.3.4,企业运营管理,6 +1.3.3.5,企业资产管理系统EAM,1.3.3,生产制造,6 +1.4.3.6,沙箱类设备,1,供给,6 +1.4.3.2,流量检测,1,供给,6 +1.4.5.1,恶意代码检测系统,1,供给,5 +1.4.4.5,安全态势感知,1.4,工业互联网安全,5 +2.1,PaaS,1,供给,5 +1.4.2.7,工控原生安全,1,供给,5 +1.3.1.5,产品数据管理PDM,1.3.1,设计研发,5 +1.4.5.8,数据加密,1,供给,5 +1.4.2.3,工控漏洞扫描,1,供给,5 +2.1.4.2.2,数据安全管理,2.1.4.2,工业大数据管理,5 +2.1.4.2.1,数据质量管理,2.1.4.2,工业大数据管理,5 +1.3,工业软件,1,供给,4 +2.1.4.1.4,时序数据库,2.1.4.1,工业大数据存储,4 +2.3,边缘层,2,工业互联网平台,3 +2.2,IaaS,2,工业互联网平台,3 +2.1.4.1.1,关系型数据库,2.1.4.1,工业大数据存储,3 +2.1.4.1.2,分布式数据库,2.1.4.1,工业大数据存储,3 +2.1.4.1.3,实时数据库,2.1.4.1,工业大数据存储,3 +2.1.4.2,工业大数据管理,2.1.4,工业大数据,3 +1.3.1.3,计算机辅助制造CAM,1.3.1,设计研发,2 +1.3.2,采购供应,1,供给,2 +1.3.3,生产制造,1.3,工业软件,1 +2.3.3,协议转换,2,工业互联网平台,1 +1.3.4.3,人力资源管理HRM,1.3.4,企业运营管理,1 +2.1.4.1,工业大数据存储,2.1.4,工业大数据,1 +1.3.3.7,故障预测与健康管理PHM,1.3.3,生产制造,1 +1.3.4,企业运营管理,1.3,工业软件,1 +1.3.5,仓储物流,1,供给,1 +1.4.4.1,身份鉴别与访问控制,1.4.4,平台安全,1 +1.3.2.1,供应链管理SCM,1,供给,1 diff --git a/analysis/count_dcp_prod_network20230407.png b/analysis/dissertation_count_dcp_prod_network20230407.png similarity index 100% rename from analysis/count_dcp_prod_network20230407.png rename to analysis/dissertation_count_dcp_prod_network20230407.png diff --git a/analysis/dissertation_count_firm.csv b/analysis/dissertation_count_firm.csv new file mode 100644 index 0000000..1caf1b0 --- /dev/null +++ b/analysis/dissertation_count_firm.csv @@ -0,0 +1,144 @@ +id_firm,Name,count +126,华为,468 +142,深信服,300 +41,启明星辰,200 +53,天融信,150 +106,阿里巴巴,146 +170,Pseudo1,125 +99,Siemens,120 +79,PTC,117 +130,金蝶,91 +13,东方国信,80 +135,浪潮,73 +23,和利时,71 +58,用友,62 +97,General Electric,54 +29,京东工业品,52 +63,长扬科技,50 +85,Dassault,50 +157,新华三,50 +140,山石网科,50 +148,腾讯,49 +102,Amazon AWS,47 +22,航天云网,46 +40,奇安信,39 +0,360科技,38 +98,Microsoft Azure,38 +84,Bosch,35 +81,SAP,35 +74,HoneyWell,32 +100,Synopsys,29 +86,Dell EMC,28 +80,Salesforce,28 +108,百度,25 +105,Intel,25 +49,数码大方,24 +47,首自信,24 +95,Schneider,22 +39,Autodesk,21 +168,中控技术,20 +6,安世亚太,20 +16,东土科技,20 +94,Mitsubishi,19 +75,IBM,19 +73,FANUC,18 +124,海尔,18 +117,格创东智,17 +26,寄云科技,17 +155,小米,17 +159,徐工集团,16 +57,亚控科技,13 +149,天泽智云,13 +93,Cadence,13 +62,云道智造,13 +82,Uptake,12 +78,OutSystems,12 +161,研华科技,12 +60,宇动源,11 +165,智能云科,11 +33,蓝谷信息,10 +42,山大华天,10 +67,中国移动,10 +131,九物互联,10 +38,牛刀,10 +103,STMicroelectronics ,9 +144,树根互联,9 +56,芯愿景,8 +143,沈阳自动化研究所,8 +127,华为海思,8 +153,武汉开目,8 +3,艾克斯特,7 +45,石化盈科,7 +68,中望软件,7 +31,昆仑数据,6 +46,适创科技,6 +111,鼎捷软件,6 +89,Rockwell,6 +150,唯捷创芯,6 +169,中芯国际,6 +69,紫光集团,5 +113,飞腾信息,5 +167,中环股份,5 +129,华中数控,5 +43,神舟软件,5 +71,Altair,4 +104,Infineon,4 +77,Oracle,4 +123,海得控制,4 +145,思普软件,4 +35,凌昊智能,4 +163,优也科技,4 +24,华大电子,4 +32,兰光创新,4 +115,富士康,4 +147,拓邦股份,4 +9,北京航天测控,3 +88,HPE,3 +87,Texas Instruments,3 +120,广州数控,3 +12,大唐软件,3 +64,中电智科,3 +90,Mentor Graphics,3 +101,Analog Devices,3 +116,概伦电子,3 +166,中国电子科技网络信息安全,3 +119,广联达,3 +70,ABB,3 +20,海基科技,3 +65,中国电信,3 +72,ANSYS,3 +4,爱创科技,3 +36,龙芯中科,3 +44,圣邦微电子,3 +146,苏州浩辰,3 +14,东华软件,3 +83,Emerson,2 +138,启明信息,2 +10,北京英贝思,2 +128,华伍股份,2 +15,东软集团,2 +154,西格数据,2 +156,芯禾科技,2 +48,曙光信息,2 +50,索为系统,2 +141,上海新华控制,2 +61,元年科技,2 +164,震坤行,2 +2,706所,2 +134,朗坤智慧,2 +137,美林数据,2 +25,华大九天,2 +34,力控科技,2 +132,科远智慧,1 +92,Omron,1 +21,Hexagon,1 +96,Cisco,1 +18,国能智深,1 +118,工邦邦,1 +91,Moxa,1 +125,华数机器人,1 +133,蓝盾股份,1 +109,宝信软件,1 +139,容知日新,1 +66,中国联通,1 +1,51WORLD,1 diff --git a/analysis/dissertation_count_firm_prod.csv b/analysis/dissertation_count_firm_prod.csv new file mode 100644 index 0000000..b3ab1fd --- /dev/null +++ b/analysis/dissertation_count_firm_prod.csv @@ -0,0 +1,358 @@ +id_firm,name_firm,id_product,name_product,count +126,华为,1.4,工业互联网安全,385 +142,深信服,1.4.3,网络安全,150 +41,启明星辰,1.4.5,数据安全,150 +142,深信服,1.4.2,控制安全,150 +170,Pseudo1,1,供给,125 +106,阿里巴巴,1.3,工业软件,67 +29,京东工业品,1.3,工业软件,52 +53,天融信,1.4.2.3,工控漏洞扫描,50 +41,启明星辰,1.4.3.2,流量检测,50 +23,和利时,1.4.2.7,工控原生安全,50 +63,长扬科技,1.4.4.5,安全态势感知,50 +157,新华三,1.4.1,设备安全,50 +53,天融信,1.4.5.8,数据加密,50 +140,山石网科,1.4.5.1,恶意代码检测系统,50 +135,浪潮,1.3.2.1,供应链管理SCM,50 +130,金蝶,1.3.5,仓储物流,50 +99,Siemens,2.1,PaaS,50 +53,天融信,1.4.3.6,沙箱类设备,50 +102,Amazon AWS,2,工业互联网平台,45 +130,金蝶,1.3.2,采购供应,40 +40,奇安信,1.4.4,平台安全,39 +0,360科技,1.4.4,平台安全,38 +98,Microsoft Azure,2,工业互联网平台,38 +58,用友,1.3.2,采购供应,36 +148,腾讯,2.1.3,工业物联网,32 +74,HoneyWell,2.1.3,工业物联网,30 +100,Synopsys,1.3.1,设计研发,29 +85,Dassault,1.3.1,设计研发,29 +86,Dell EMC,1.1,工业自动化,28 +99,Siemens,1.3.1,设计研发,27 +97,General Electric,2.1.3,工业物联网,27 +106,阿里巴巴,2.1.3,工业物联网,27 +126,华为,2.1.3,工业物联网,26 +105,Intel,1.1,工业自动化,25 +80,Salesforce,2.1.1,开发工具,25 +79,PTC,2.1.2,工业模型库,25 +108,百度,2.1.3,工业物联网,24 +84,Bosch,2.1.2,工业模型库,22 +58,用友,2.1.2,工业模型库,22 +39,Autodesk,1.3.1,设计研发,21 +97,General Electric,1.3.3,生产制造,21 +106,阿里巴巴,1.1,工业自动化,21 +85,Dassault,2.1.1,开发工具,21 +126,华为,1.1,工业自动化,21 +99,Siemens,1.3.3,生产制造,20 +99,Siemens,2.3,边缘层,20 +106,阿里巴巴,2.1.1,开发工具,19 +126,华为,2.3,边缘层,19 +75,IBM,1.3.3,生产制造,19 +94,Mitsubishi,1.1,工业自动化,19 +73,FANUC,2.1.3,工业物联网,18 +81,SAP,2.1.2,工业模型库,18 +95,Schneider,2.3,边缘层,18 +155,小米,2.3,边缘层,17 +148,腾讯,2.1.1,开发工具,17 +124,海尔,2.3,边缘层,16 +159,徐工集团,2.1.2,工业模型库,16 +126,华为,1.2,工业互联网网络,15 +93,Cadence,1.3.1,设计研发,13 +106,阿里巴巴,1.2,工业互联网网络,12 +84,Bosch,2.3,边缘层,12 +13,东方国信,2.1.3.7,制造类API,11 +13,东方国信,2.1.3.4,应用管理服务,11 +13,东方国信,2.1.3.5,容器服务,10 +79,PTC,2.1.3.2,平台基础服务,10 +67,中国移动,1.2,工业互联网网络,10 +79,PTC,2.1.3.1,物联网服务,9 +79,PTC,2.1.3.4,应用管理服务,9 +103,STMicroelectronics ,1.1.1,工业计算芯片,9 +13,东方国信,2.1.3.1,物联网服务,9 +13,东方国信,2.1.3.3,工业引擎服务,8 +79,PTC,2.1.3.5,容器服务,8 +79,PTC,2.1.4.1,工业大数据存储,7 +13,东方国信,2.1.3.6,微服务,7 +79,PTC,2.1.3.7,制造类API,7 +81,SAP,2.1.4.1,工业大数据存储,7 +81,SAP,2.1.4.2,工业大数据管理,7 +79,PTC,2.1.3.6,微服务,7 +79,PTC,2.3.3,协议转换,6 +79,PTC,2.1.3.3,工业引擎服务,6 +16,东土科技,2.3.1,工业数据接入,6 +150,唯捷创芯,1.1.1,工业计算芯片,6 +49,数码大方,1.3.1.1,计算机辅助设计CAD,6 +79,PTC,2.3.1,工业数据接入,6 +47,首自信,2.1.3.6,微服务,6 +56,芯愿景,1.1.1,工业计算芯片,6 +169,中芯国际,1.1.1,工业计算芯片,6 +97,General Electric,1.2,工业互联网网络,6 +46,适创科技,1.3.1.2,计算机辅助工程CAE,6 +47,首自信,2.1.2.1,数据算法模型,6 +13,东方国信,2.1.3.2,平台基础服务,6 +16,东土科技,1.1.3,工业服务器,5 +161,研华科技,2.3.3,协议转换,5 +16,东土科技,2.3.3,协议转换,5 +22,航天云网,2.1.3.6,微服务,5 +168,中控技术,2.3.3,协议转换,5 +13,东方国信,2.3.2,边缘数据处理,5 +22,航天云网,2.3.1,工业数据接入,5 +153,武汉开目,1.3.1.1,计算机辅助设计CAD,5 +69,紫光集团,1.1.1,工业计算芯片,5 +22,航天云网,2.3.3,协议转换,5 +127,华为海思,1.1.1,工业计算芯片,5 +6,安世亚太,2.1.2.1,数据算法模型,5 +79,PTC,2.1.4.2,工业大数据管理,5 +23,和利时,2.3.3,协议转换,5 +42,山大华天,1.3.1.1,计算机辅助设计CAD,5 +113,飞腾信息,1.1.1,工业计算芯片,5 +167,中环股份,1.1.1,工业计算芯片,5 +78,OutSystems,2.1.1.5,数字孪生建模工具,4 +32,兰光创新,1.2.3,数据互通,4 +68,中望软件,1.3.1.2,计算机辅助工程CAE,4 +78,OutSystems,2.1.1.2,低代码开发工具,4 +6,安世亚太,2.1.2.4,行业机理模型,4 +165,智能云科,2.1.2.2,业务流程模型,4 +24,华大电子,1.1.1,工业计算芯片,4 +62,云道智造,2.1.2.2,业务流程模型,4 +23,和利时,2.3.2,边缘数据处理,4 +16,东土科技,2.3.2,边缘数据处理,4 +6,安世亚太,2.1.2.3,研发仿真模型,4 +22,航天云网,2.1.3.4,应用管理服务,4 +71,Altair,1.3.1.2,计算机辅助工程CAE,4 +161,研华科技,2.3.2,边缘数据处理,4 +168,中控技术,2.3.2,边缘数据处理,4 +35,凌昊智能,1.1.3,工业服务器,4 +33,蓝谷信息,2.1.2.4,行业机理模型,4 +57,亚控科技,2.3.3,协议转换,4 +129,华中数控,1.1.2,工业控制器,4 +13,东方国信,2.3.1,工业数据接入,4 +104,Infineon,1.1.1,工业计算芯片,4 +131,九物互联,2.1.1.2,低代码开发工具,4 +95,Schneider,1.2.3,数据互通,4 +149,天泽智云,2.1.2.4,行业机理模型,4 +42,山大华天,1.3.1.4,计算机辅助工艺过程设计CAPP,4 +135,浪潮,2.1.3.7,制造类API,4 +117,格创东智,2.1.1.4,组态建模工具,4 +82,Uptake,2.1.2.4,行业机理模型,4 +57,亚控科技,2.3.2,边缘数据处理,4 +43,神舟软件,1.3.1.6,产品生命周期管理PLM,4 +145,思普软件,1.3.1.4,计算机辅助工艺过程设计CAPP,4 +123,海得控制,1.1.2,工业控制器,4 +38,牛刀,2.1.1.5,数字孪生建模工具,4 +149,天泽智云,2.1.2.3,研发仿真模型,4 +147,拓邦股份,1.1.2,工业控制器,4 +6,安世亚太,2.1.2.2,业务流程模型,4 +4,爱创科技,1.2.2,标识解析,3 +36,龙芯中科,1.1.1,工业计算芯片,3 +33,蓝谷信息,2.1.2.2,业务流程模型,3 +115,富士康,1.1.3,工业服务器,3 +49,数码大方,2.1.2.1,数据算法模型,3 +49,数码大方,1.3.3.1,制造执行系统MES,3 +23,和利时,2.1.3.6,微服务,3 +49,数码大方,2.1.2.2,业务流程模型,3 +64,中电智科,1.1.2,工业控制器,3 +49,数码大方,1.3.1.6,产品生命周期管理PLM,3 +49,数码大方,1.3.1.4,计算机辅助工艺过程设计CAPP,3 +47,首自信,2.1.2.4,行业机理模型,3 +47,首自信,2.1.1.2,低代码开发工具,3 +62,云道智造,2.1.2.4,行业机理模型,3 +117,格创东智,2.1.1.2,低代码开发工具,3 +60,宇动源,2.1.1.1,算法建模工具,3 +26,寄云科技,2.1.3.1,物联网服务,3 +117,格创东智,2.1.1.1,算法建模工具,3 +26,寄云科技,2.1.3.3,工业引擎服务,3 +44,圣邦微电子,1.1.1,工业计算芯片,3 +62,云道智造,1.3.1.2,计算机辅助工程CAE,3 +26,寄云科技,2.1.3.6,微服务,3 +6,安世亚太,1.3.1.2,计算机辅助工程CAE,3 +57,亚控科技,2.3.1,工业数据接入,3 +3,艾克斯特,1.3.1.4,计算机辅助工艺过程设计CAPP,3 +116,概伦电子,1.3.1.7,电子设计自动化EDA,3 +3,艾克斯特,1.3.1.6,产品生命周期管理PLM,3 +31,昆仑数据,1.3.3.3,数据采集与监视控制系统SCADA,3 +60,宇动源,2.1.1.2,低代码开发工具,3 +65,中国电信,1.2.1,网络互联,3 +23,和利时,2.3.1,工业数据接入,3 +68,中望软件,1.3.1.1,计算机辅助设计CAD,3 +87,Texas Instruments,1.1.1,工业计算芯片,3 +149,天泽智云,2.1.2.2,业务流程模型,3 +120,广州数控,1.2.3,数据互通,3 +146,苏州浩辰,1.3.1.1,计算机辅助设计CAD,3 +144,树根互联,2.1.2.4,行业机理模型,3 +22,航天云网,2.1.3.7,制造类API,3 +80,Salesforce,1.3.4,企业运营管理,3 +81,SAP,1.3.4,企业运营管理,3 +82,Uptake,2.1.2.1,数据算法模型,3 +82,Uptake,2.1.2.2,业务流程模型,3 +111,鼎捷软件,1.3.1.6,产品生命周期管理PLM,3 +135,浪潮,2.1.3.4,应用管理服务,3 +12,大唐软件,1.2.1,网络互联,3 +135,浪潮,2.1.3.3,工业引擎服务,3 +88,HPE,1.1.3,工业服务器,3 +89,Rockwell,1.1.2,工业控制器,3 +9,北京航天测控,1.3.3.6,运维保障系统MRO,3 +135,浪潮,1.1.3,工业服务器,3 +90,Mentor Graphics,1.3.1.7,电子设计自动化EDA,3 +131,九物互联,2.1.1.4,组态建模工具,3 +13,东方国信,1.2.2,标识解析,3 +101,Analog Devices,1.1.1,工业计算芯片,3 +127,华为海思,1.1.3,工业服务器,3 +153,武汉开目,1.3.1.4,计算机辅助工艺过程设计CAPP,3 +79,PTC,2.3.2,边缘数据处理,3 +161,研华科技,2.3.1,工业数据接入,3 +168,中控技术,1.3.3.2,分布式控制系统DCS,3 +22,航天云网,2.1.3.3,工业引擎服务,3 +72,ANSYS,1.3.1.2,计算机辅助工程CAE,3 +22,航天云网,1.2.2,标识解析,3 +20,海基科技,1.3.1.2,计算机辅助工程CAE,3 +119,广联达,1.3.1.1,计算机辅助设计CAD,3 +168,中控技术,2.3.1,工业数据接入,3 +79,PTC,1.3.1.4,计算机辅助工艺过程设计CAPP,3 +165,智能云科,2.1.2.1,数据算法模型,3 +79,PTC,1.3.1.6,产品生命周期管理PLM,3 +79,PTC,1.3.1.1,计算机辅助设计CAD,3 +166,中国电子科技网络信息安全,1.2.3,数据互通,3 +165,智能云科,2.1.2.4,行业机理模型,3 +58,用友,1.3.1.6,产品生命周期管理PLM,2 +117,格创东智,2.1.1.3,流程开发工具,2 +70,ABB,1.3.3.2,分布式控制系统DCS,2 +10,北京英贝思,1.3.3.5,企业资产管理系统EAM,2 +102,Amazon AWS,2.1.4,工业大数据,2 +99,Siemens,1.1.2,工业控制器,2 +74,HoneyWell,1.3.3.2,分布式控制系统DCS,2 +77,Oracle,1.3.3.6,运维保障系统MRO,2 +77,Oracle,1.3.4,企业运营管理,2 +49,数码大方,2.1.2.4,行业机理模型,2 +50,索为系统,1.3.1.5,产品数据管理PDM,2 +89,Rockwell,1.2.1,网络互联,2 +58,用友,1.2.2,标识解析,2 +78,OutSystems,2.1.1.1,算法建模工具,2 +56,芯愿景,1.3.1.7,电子设计自动化EDA,2 +111,鼎捷软件,1.3.4.1,企业资源计划ERP,2 +57,亚控科技,1.3.3.3,数据采集与监视控制系统SCADA,2 +78,OutSystems,2.1.1.3,流程开发工具,2 +61,元年科技,1.3.3.3,数据采集与监视控制系统SCADA,2 +83,Emerson,1.3.3.2,分布式控制系统DCS,2 +82,Uptake,2.1.2.3,研发仿真模型,2 +60,宇动源,2.1.1.5,数字孪生建模工具,2 +60,宇动源,2.1.1.4,组态建模工具,2 +62,云道智造,2.1.2.1,数据算法模型,2 +33,蓝谷信息,2.1.2.3,研发仿真模型,2 +48,曙光信息,1.2.2,标识解析,2 +22,航天云网,1.3.3.6,运维保障系统MRO,2 +26,寄云科技,2.1.3.2,平台基础服务,2 +144,树根互联,2.1.2.2,业务流程模型,2 +25,华大九天,1.3.1.7,电子设计自动化EDA,2 +23,和利时,1.3.3.3,数据采集与监视控制系统SCADA,2 +138,启明信息,1.3.1.5,产品数据管理PDM,2 +23,和利时,1.3.3.1,制造执行系统MES,2 +22,航天云网,2.3.2,边缘数据处理,2 +22,航天云网,2.1.3.5,容器服务,2 +14,东华软件,1.3.3.4,可编程逻揖控制系统PLC,2 +22,航天云网,2.1.3.1,物联网服务,2 +22,航天云网,2.1.1.5,数字孪生建模工具,2 +22,航天云网,2.1.1.3,流程开发工具,2 +22,航天云网,2.1.1.2,低代码开发工具,2 +22,航天云网,2.1.1.1,算法建模工具,2 +141,上海新华控制,1.3.3.2,分布式控制系统DCS,2 +26,寄云科技,2.1.3.5,容器服务,2 +2,706所,1.1.3,工业服务器,2 +124,海尔,1.2.1,网络互联,2 +168,中控技术,1.3.3.4,可编程逻揖控制系统PLC,2 +143,沈阳自动化研究所,2.1.1.2,低代码开发工具,2 +168,中控技术,1.1.2,工业控制器,2 +143,沈阳自动化研究所,2.1.1.3,流程开发工具,2 +164,震坤行,1.3.3.6,运维保障系统MRO,2 +163,优也科技,2.1.4.2.2,数据安全管理,2 +143,沈阳自动化研究所,2.1.1.4,组态建模工具,2 +156,芯禾科技,1.3.1.7,电子设计自动化EDA,2 +143,沈阳自动化研究所,2.1.1.5,数字孪生建模工具,2 +144,树根互联,2.1.2.1,数据算法模型,2 +15,东软集团,1.3.3.5,企业资产管理系统EAM,2 +149,天泽智云,2.1.2.1,数据算法模型,2 +26,寄云科技,2.1.3.4,应用管理服务,2 +144,树根互联,2.1.2.3,研发仿真模型,2 +26,寄云科技,2.1.3.7,制造类API,2 +135,浪潮,2.1.3.1,物联网服务,2 +117,格创东智,2.1.1.5,数字孪生建模工具,2 +134,朗坤智慧,1.3.3.5,企业资产管理系统EAM,2 +13,东方国信,2.3.3,协议转换,2 +38,牛刀,2.1.1.2,低代码开发工具,2 +38,牛刀,2.1.1.1,算法建模工具,2 +13,东方国信,2.1.4.1.4,时序数据库,2 +34,力控科技,1.3.3.3,数据采集与监视控制系统SCADA,2 +135,浪潮,2.1.3.2,平台基础服务,2 +128,华伍股份,1.1.2,工业控制器,2 +47,首自信,2.1.2.2,业务流程模型,2 +135,浪潮,2.1.3.5,容器服务,2 +135,浪潮,2.1.3.6,微服务,2 +131,九物互联,2.1.1.1,算法建模工具,2 +99,Siemens,1.2.1,网络互联,1 +13,东方国信,2.1.4.1.2,分布式数据库,1 +131,九物互联,2.1.1.3,流程开发工具,1 +111,鼎捷软件,1.3.3.1,制造执行系统MES,1 +129,华中数控,1.2.3,数据互通,1 +13,东方国信,2.1.4.2.1,数据质量管理,1 +126,华为,2.1.1.5,数字孪生建模工具,1 +130,金蝶,1.3.4.1,企业资源计划ERP,1 +96,Cisco,1.2.3,数据互通,1 +91,Moxa,1.2.1,网络互联,1 +132,科远智慧,1.3.3.2,分布式控制系统DCS,1 +133,蓝盾股份,1.4.4.1,身份鉴别与访问控制,1 +92,Omron,1.3.3.4,可编程逻揖控制系统PLC,1 +108,百度,2.2,IaaS,1 +14,东华软件,1.3.4.3,人力资源管理HRM,1 +125,华数机器人,1.2.3,数据互通,1 +139,容知日新,1.3.3.7,故障预测与健康管理PHM,1 +89,Rockwell,1.3.3.1,制造执行系统MES,1 +135,浪潮,1.3.4.1,企业资源计划ERP,1 +137,美林数据,2.1.4.2.1,数据质量管理,1 +137,美林数据,2.1.4.1.3,实时数据库,1 +84,Bosch,2.1.4,工业大数据,1 +135,浪潮,2.2,IaaS,1 +109,宝信软件,1.3.3.1,制造执行系统MES,1 +18,国能智深,1.3.3.2,分布式控制系统DCS,1 +154,西格数据,2.1.4.1.2,分布式数据库,1 +45,石化盈科,1.3.4.1,企业资源计划ERP,1 +115,富士康,2.1.4,工业大数据,1 +38,牛刀,2.1.1.3,流程开发工具,1 +38,牛刀,2.1.1.4,组态建模工具,1 +117,格创东智,2.1.4.2.1,数据质量管理,1 +117,格创东智,2.1.4.1.1,关系型数据库,1 +42,山大华天,1.3.1.3,计算机辅助制造CAM,1 +43,神舟软件,1.3.1.5,产品数据管理PDM,1 +45,石化盈科,1.3.3.1,制造执行系统MES,1 +45,石化盈科,2.1.4.1.2,分布式数据库,1 +31,昆仑数据,2.1.4.2.1,数据质量管理,1 +45,石化盈科,2.1.4.1.3,实时数据库,1 +45,石化盈科,2.1.4.1.4,时序数据库,1 +45,石化盈科,2.1.4.2.1,数据质量管理,1 +45,石化盈科,2.1.4.2.2,数据安全管理,1 +49,数码大方,2.1.2.3,研发仿真模型,1 +47,首自信,2.1.1.1,算法建模工具,1 +47,首自信,2.1.1.3,流程开发工具,1 +47,首自信,2.1.1.4,组态建模工具,1 +33,蓝谷信息,2.1.2.1,数据算法模型,1 +31,昆仑数据,2.1.4.1.3,实时数据库,1 +154,西格数据,2.1.4.2.2,数据安全管理,1 +70,ABB,1.3.3.4,可编程逻揖控制系统PLC,1 +163,优也科技,2.1.4.1.1,关系型数据库,1 +163,优也科技,2.1.4.1.4,时序数据库,1 +165,智能云科,2.1.2.3,研发仿真模型,1 +168,中控技术,1.3.3.1,制造执行系统MES,1 +47,首自信,2.1.2.3,研发仿真模型,1 +21,Hexagon,1.3.1.3,计算机辅助制造CAM,1 +22,航天云网,2.1.1.4,组态建模工具,1 +22,航天云网,2.1.3.2,平台基础服务,1 +23,和利时,1.3.3.2,分布式控制系统DCS,1 +31,昆仑数据,2.1.4.1.1,关系型数据库,1 +66,中国联通,1.2.1,网络互联,1 +23,和利时,1.3.3.4,可编程逻揖控制系统PLC,1 +118,工邦邦,1.3.3.6,运维保障系统MRO,1 +1,51WORLD,2.1.1.5,数字孪生建模工具,1 +62,云道智造,2.1.2.3,研发仿真模型,1 +117,格创东智,2.1.4.2.2,数据安全管理,1 +3,艾克斯特,1.3.4.1,企业资源计划ERP,1 +60,宇动源,2.1.1.3,流程开发工具,1 +126,华为,2.2,IaaS,1 diff --git a/analysis/dissertation_count_prod.csv b/analysis/dissertation_count_prod.csv new file mode 100644 index 0000000..494f17d --- /dev/null +++ b/analysis/dissertation_count_prod.csv @@ -0,0 +1,82 @@ +id_product,Name,count +1.4,工业互联网安全,385 +2.1.3,工业物联网,184 +1.4.5,数据安全,150 +1.4.3,网络安全,150 +1.4.2,控制安全,150 +1,供给,125 +1.3,工业软件,119 +1.3.1,设计研发,119 +1.1,工业自动化,114 +2.1.2,工业模型库,103 +2.3,边缘层,102 +2,工业互联网平台,83 +2.1.1,开发工具,82 +1.4.4,平台安全,77 +1.3.2,采购供应,76 +1.1.1,工业计算芯片,67 +1.3.3,生产制造,60 +2.1,PaaS,50 +1.3.5,仓储物流,50 +1.3.2.1,供应链管理SCM,50 +1.4.5.8,数据加密,50 +1.4.5.1,恶意代码检测系统,50 +1.4.4.5,安全态势感知,50 +1.4.3.6,沙箱类设备,50 +1.4.3.2,流量检测,50 +1.4.2.7,工控原生安全,50 +1.4.2.3,工控漏洞扫描,50 +1.4.1,设备安全,50 +1.2,工业互联网网络,43 +2.3.3,协议转换,37 +2.3.1,工业数据接入,33 +2.1.3.6,微服务,33 +2.3.2,边缘数据处理,30 +2.1.2.4,行业机理模型,30 +2.1.3.4,应用管理服务,29 +1.3.1.1,计算机辅助设计CAD,28 +2.1.2.2,业务流程模型,28 +2.1.2.1,数据算法模型,27 +2.1.3.7,制造类API,27 +1.3.1.2,计算机辅助工程CAE,26 +2.1.3.1,物联网服务,25 +1.1.2,工业控制器,24 +2.1.3.5,容器服务,24 +2.1.3.3,工业引擎服务,23 +2.1.1.2,低代码开发工具,23 +1.1.3,工业服务器,23 +2.1.3.2,平台基础服务,21 +1.3.1.4,计算机辅助工艺过程设计CAPP,20 +2.1.2.3,研发仿真模型,18 +2.1.1.5,数字孪生建模工具,18 +1.3.1.6,产品生命周期管理PLM,18 +1.2.3,数据互通,17 +2.1.1.1,算法建模工具,15 +2.1.1.4,组态建模工具,14 +2.1.4.1,工业大数据存储,14 +1.3.3.2,分布式控制系统DCS,14 +1.2.2,标识解析,13 +1.2.1,网络互联,13 +2.1.4.2,工业大数据管理,12 +1.3.1.7,电子设计自动化EDA,12 +2.1.1.3,流程开发工具,12 +1.3.3.3,数据采集与监视控制系统SCADA,11 +1.3.3.1,制造执行系统MES,10 +1.3.3.6,运维保障系统MRO,10 +1.3.4,企业运营管理,8 +1.3.3.4,可编程逻揖控制系统PLC,7 +1.3.3.5,企业资产管理系统EAM,6 +1.3.4.1,企业资源计划ERP,6 +2.1.4.2.1,数据质量管理,5 +2.1.4.2.2,数据安全管理,5 +1.3.1.5,产品数据管理PDM,5 +2.1.4,工业大数据,4 +2.1.4.1.4,时序数据库,4 +2.1.4.1.1,关系型数据库,3 +2.1.4.1.2,分布式数据库,3 +2.1.4.1.3,实时数据库,3 +2.2,IaaS,3 +1.3.1.3,计算机辅助制造CAM,2 +1.3.3.7,故障预测与健康管理PHM,1 +1.4.4.1,身份鉴别与访问控制,1 +1.3.4.3,人力资源管理HRM,1 diff --git a/analysis/count_prod.xlsx b/analysis/dissertation_count_prod.xlsx similarity index 100% rename from analysis/count_prod.xlsx rename to analysis/dissertation_count_prod.xlsx diff --git a/analysis/count_prod_network20230406.png b/analysis/dissertation_count_prod_network20230406.png similarity index 100% rename from analysis/count_prod_network20230406.png rename to analysis/dissertation_count_prod_network20230406.png diff --git a/analysis/dissertation_count_prod_pie.png b/analysis/dissertation_count_prod_pie.png new file mode 100644 index 0000000..b7e8737 Binary files /dev/null and b/analysis/dissertation_count_prod_pie.png differ diff --git a/analysis/dissertation_g_bom_exp_id_1.png b/analysis/dissertation_g_bom_exp_id_1.png new file mode 100644 index 0000000..7ff2bf1 Binary files /dev/null and b/analysis/dissertation_g_bom_exp_id_1.png differ diff --git a/analysis/g_firm_sample_id_1.png b/analysis/dissertation_g_firm_sample_id_1.png similarity index 100% rename from analysis/g_firm_sample_id_1.png rename to analysis/dissertation_g_firm_sample_id_1.png diff --git a/analysis/dissertation_g_firm_sample_id_1_de.png b/analysis/dissertation_g_firm_sample_id_1_de.png new file mode 100644 index 0000000..175abef Binary files /dev/null and b/analysis/dissertation_g_firm_sample_id_1_de.png differ diff --git a/analysis/experiment_result-L27.csv b/analysis/experiment_result-L27.csv new file mode 100644 index 0000000..7708325 --- /dev/null +++ b/analysis/experiment_result-L27.csv @@ -0,0 +1,28 @@ +,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t +0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0 +1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0 +2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0 +3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0 +4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0 +5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0 +6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0 +7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0 +8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0 +9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0 +10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0 +11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0 +12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0 +13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0 +14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0 +15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0 +16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0 +17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0 +18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0 +19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0 +20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0 +21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0 +22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0 +23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0 +24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0 +25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0 +26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0 diff --git a/analysis/experiment_result.csv b/analysis/experiment_result.csv index 7708325..dcdbc05 100644 --- a/analysis/experiment_result.csv +++ b/analysis/experiment_result.csv @@ -1,28 +1,37 @@ -,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t -0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0 -1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0 -2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0 -3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0 -4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0 -5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0 -6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0 -7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0 -8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0 -9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0 -10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0 -11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0 -12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0 -13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0 -14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0 -15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0 -16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0 -17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0 -18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0 -19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0 -20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0 -21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0 -22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0 -23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0 -24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0 -25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0 -26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0 +idx_scenario,n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n,mean_count_firm_prod,mean_count_firm,mean_count_prod,mean_max_ts_firm_prod,mean_max_ts_firm,mean_max_ts_prod,mean_n_remove_firm_prod,mean_n_all_prod_remove_firm,mean_end_ts +0,7,1,1,uniform,5.0000,0.3000,3,3,2.6375,2.6375,2.0861,1.0861,1.0861,1.0861,0.6034,0.2116,1.5507 +1,5,1,1,uniform,10.0000,0.5000,5,2,2.7680,2.7657,2.2021,1.2021,1.2021,1.2021,0.8602,0.3032,2.2992 +2,3,1,1,uniform,15.0000,0.7000,7,1,2.5724,2.5693,2.1728,1.1728,1.1728,1.1728,0.9326,0.3135,3.0844 +3,7,1,1,uniform,5.0000,0.3000,3,2,2.6731,2.6731,2.1181,1.1181,1.1181,1.1181,0.6080,0.2147,1.5562 +4,5,1,1,uniform,10.0000,0.5000,5,1,2.5528,2.5499,2.1568,1.1568,1.1568,1.1568,0.8128,0.2853,2.3352 +5,3,1,1,uniform,15.0000,0.7000,7,3,2.7758,2.7731,2.2036,1.2036,1.2036,1.2036,1.0053,0.3469,3.1764 +6,7,1,1,normal,5.0000,0.5000,7,3,2.8051,2.8051,2.1349,1.1349,1.1349,1.1349,0.6017,0.2112,2.1840 +7,5,1,1,normal,10.0000,0.7000,3,2,2.4440,2.4432,2.0097,1.0097,1.0097,1.0097,0.6482,0.2261,1.5912 +8,3,1,1,normal,15.0000,0.3000,5,1,2.5905,2.5857,2.1907,1.1907,1.1907,1.1907,0.8535,0.3027,2.5069 +9,7,1,0,uniform,5.0000,0.7000,5,3,2.6484,2.6484,2.0897,1.0897,1.0897,1.0897,0.6034,0.2116,1.8699 +10,5,1,0,uniform,10.0000,0.3000,7,2,2.7800,2.7777,2.2126,1.2126,1.2126,1.2126,0.8669,0.3067,2.8625 +11,3,1,0,uniform,15.0000,0.5000,3,1,2.6061,2.6008,2.2017,1.2017,1.2017,1.2017,1.0899,0.3779,2.0444 +12,7,1,0,normal,10.0000,0.7000,3,1,2.4703,2.4701,2.0848,1.0848,1.0848,1.0848,0.6754,0.2326,1.6291 +13,5,1,0,normal,15.0000,0.3000,5,3,2.8619,2.8602,2.1882,1.1882,1.1882,1.1882,0.8069,0.2745,2.2118 +14,3,1,0,normal,5.0000,0.5000,7,2,2.4358,2.4358,2.0008,1.0008,1.0008,1.0008,0.6013,0.2105,2.1909 +15,7,1,0,normal,10.0000,0.7000,5,3,2.8232,2.8225,2.1522,1.1522,1.1522,1.1522,0.6636,0.2312,1.9735 +16,5,1,0,normal,15.0000,0.3000,7,2,2.4954,2.4939,2.0549,1.0549,1.0549,1.0549,0.7598,0.2646,2.6013 +17,3,1,0,normal,5.0000,0.5000,3,1,2.4886,2.4880,2.1011,1.1011,1.1011,1.1011,0.7004,0.2467,1.6741 +18,7,0,1,normal,10.0000,0.3000,7,1,2.5133,2.5112,2.1253,1.1253,1.1253,1.1253,0.6949,0.2459,2.6966 +19,5,0,1,normal,15.0000,0.5000,3,3,2.8387,2.8366,2.1686,1.1686,1.1686,1.1686,0.8318,0.2914,1.7528 +20,3,0,1,normal,5.0000,0.7000,5,2,2.4606,2.4606,1.9937,0.9937,0.9937,0.9937,0.6004,0.2105,1.8640 +21,7,0,1,normal,10.0000,0.5000,7,1,2.4653,2.4642,2.0829,1.0829,1.0829,1.0829,0.6514,0.2267,2.4522 +22,5,0,1,normal,15.0000,0.7000,3,3,2.8364,2.8343,2.1667,1.1667,1.1667,1.1667,0.8267,0.2888,1.7461 +23,3,0,1,normal,5.0000,0.3000,5,2,2.4608,2.4608,1.9939,0.9939,0.9939,0.9939,0.6006,0.2107,1.8651 +24,7,0,1,uniform,15.0000,0.5000,3,2,2.5840,2.5794,2.1474,1.1474,1.1474,1.1474,0.9568,0.3301,1.8722 +25,5,0,1,uniform,5.0000,0.7000,5,1,2.4339,2.4339,2.0541,1.0541,1.0541,1.0541,0.6048,0.2118,1.9189 +26,3,0,1,uniform,10.0000,0.3000,7,3,2.7619,2.7602,2.1701,1.1701,1.1701,1.1701,0.8429,0.2994,2.8086 +27,7,0,0,normal,15.0000,0.5000,5,2,2.5179,2.5160,2.0465,1.0465,1.0465,1.0465,0.7621,0.2688,2.1512 +28,5,0,0,normal,5.0000,0.7000,7,1,2.4286,2.4284,2.0486,1.0486,1.0486,1.0486,0.6006,0.2105,2.2440 +29,3,0,0,normal,10.0000,0.3000,3,3,2.7964,2.7962,2.1312,1.1312,1.1312,1.1312,0.6960,0.2406,1.6377 +30,7,0,0,uniform,15.0000,0.7000,7,2,2.5851,2.5806,2.1476,1.1476,1.1476,1.1476,0.9295,0.3154,2.9756 +31,5,0,0,uniform,5.0000,0.3000,3,1,2.4966,2.4952,2.1103,1.1103,1.1103,1.1103,0.8017,0.2952,1.7958 +32,3,0,0,uniform,10.0000,0.5000,5,3,2.7703,2.7686,2.1771,1.1771,1.1771,1.1771,0.8387,0.2956,2.3099 +33,7,0,0,uniform,15.0000,0.3000,5,1,2.6002,2.5941,2.2002,1.2002,1.2002,1.2002,1.0322,0.3707,2.7615 +34,5,0,0,uniform,5.0000,0.5000,7,3,2.6827,2.6827,2.0994,1.0994,1.0994,1.0994,0.6025,0.2122,2.1867 +35,3,0,0,uniform,10.0000,0.7000,3,2,2.5514,2.5495,2.1181,1.1181,1.1181,1.1181,0.8352,0.2867,1.7676 diff --git a/analysis/g_bom_exp_id_1.png b/analysis/g_bom_exp_id_1.png index 7ff2bf1..ad12be6 100644 Binary files a/analysis/g_bom_exp_id_1.png and b/analysis/g_bom_exp_id_1.png differ diff --git a/analysis/g_firm_sample_id_1_de.png b/analysis/g_firm_sample_id_1_de.png index 175abef..de74bae 100644 Binary files a/analysis/g_firm_sample_id_1_de.png and b/analysis/g_firm_sample_id_1_de.png differ diff --git a/analysis_count.py b/analysis_count.py index eb7e27c..9a8a70d 100644 --- a/analysis_count.py +++ b/analysis_count.py @@ -5,4 +5,4 @@ print(count) print(len(count['s_id'].unique())) count_max_ts = count.groupby('s_id')['ts'].max() print(count_max_ts.value_counts()) -print(count_max_ts.value_counts()/1593) \ No newline at end of file +print(count_max_ts.value_counts()/1593) diff --git a/analysis_firm_network.py b/analysis_firm_network.py index 5cd6beb..a6dab56 100644 --- a/analysis_firm_network.py +++ b/analysis_firm_network.py @@ -6,7 +6,6 @@ plt.rcParams['font.sans-serif'] = 'SimHei' # count firm category count_firm = pd.read_csv("analysis\\count_firm.csv") -count_firm = count_firm[count_firm['count'] > 4] print(count_firm.describe()) count_dcp = pd.read_csv("analysis\\count_dcp.csv", @@ -15,7 +14,7 @@ count_dcp = pd.read_csv("analysis\\count_dcp.csv", 'down_id_firm': str }) # print(count_dcp) -count_dcp = count_dcp[count_dcp['count'] > 2] +count_dcp = count_dcp[count_dcp['count'] > 35] list_firm = count_dcp['up_id_firm'].tolist( ) + count_dcp['down_id_firm'].tolist() @@ -53,7 +52,6 @@ for _, row in count_dcp.iterrows(): 'up_name_product': row['up_name_product'], 'down_id_product': row['down_id_product'], 'down_name_product': row['down_name_product'], - # 'edge_label': f"{row['up_id_product']} {row['up_name_product']} - {row['down_id_product']} {row['down_name_product']}", 'edge_label': f"{row['up_id_product']} - {row['down_id_product']}", 'edge_width': k * (row['count'] - count_min), 'count': row['count'] @@ -87,7 +85,7 @@ nx.draw(G_firm, pos, node_size=node_size, labels=node_label, - font_size=6, + font_size=8, width=3, edge_color=colors, edge_cmap=cmap, @@ -96,7 +94,9 @@ nx.draw(G_firm, nx.draw_networkx_edge_labels(G_firm, pos, edge_label, font_size=6) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] -position = fig.add_axes([0.9, 0.05, 0.01, 0.3]) -plt.colorbar(sm, fraction=0.01, cax=position) -plt.savefig("analysis\\count_dcp_network20230526_de") +position = fig.add_axes([0.95, 0.05, 0.01, 0.3]) +cb = plt.colorbar(sm, fraction=0.01, cax=position) +cb.ax.tick_params(labelsize=10) +cb.outline.set_visible(False) +plt.savefig("analysis\\count_dcp_network") plt.close() diff --git a/analysis_prod_network.py b/analysis_prod_network.py index 6742eaf..c4f6bf3 100644 --- a/analysis_prod_network.py +++ b/analysis_prod_network.py @@ -1,8 +1,6 @@ import pandas as pd -import numpy as np import matplotlib.pyplot as plt import networkx as nx -import math plt.rcParams['font.sans-serif'] = 'SimHei' @@ -32,7 +30,7 @@ for code in G.nodes: index_list = count_prod[count_prod['id_product'] == code].index.tolist() index = index_list[0] if len(index_list) == 1 else -1 node_attr['count'] = count_prod['count'].get(index, 0) - node_attr['node_size'] = 5 * count_prod['count'].get(index, 0) + node_attr['node_size'] = count_prod['count'].get(index, 0) node_attr['node_color'] = count_prod['count'].get(index, 0) labels_dict[code] = node_attr nx.set_node_attributes(G, labels_dict) @@ -62,8 +60,10 @@ nx.draw(G, sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] position = fig.add_axes([0.01, 0.05, 0.01, 0.3]) -plt.colorbar(sm, fraction=0.01, cax=position) -# plt.savefig("analysis\\count_prod_network") +cb = plt.colorbar(sm, fraction=0.01, cax=position) +cb.ax.tick_params(labelsize=8) +cb.outline.set_visible(False) +plt.savefig("analysis\\count_prod_network") plt.close() # dcp_prod @@ -72,13 +72,17 @@ count_dcp = pd.read_csv("analysis\\count_dcp.csv", 'up_id_firm': str, 'down_id_firm': str }) -count_dcp_prod = count_dcp.groupby(['up_id_product','up_name_product', 'down_id_product', 'down_name_product'])['count'].sum() +count_dcp_prod = count_dcp.groupby( + ['up_id_product', + 'up_name_product', + 'down_id_product', + 'down_name_product'])['count'].sum() count_dcp_prod = count_dcp_prod.reset_index() count_dcp_prod.sort_values('count', inplace=True, ascending=False) count_dcp_prod.to_csv('analysis\\count_dcp_prod.csv', - index=False, - encoding='utf-8-sig') -count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 2] + index=False, + encoding='utf-8-sig') +count_dcp_prod = count_dcp_prod[count_dcp_prod['count'] > 50] # print(count_dcp_prod) list_prod = count_dcp_prod['up_id_product'].tolist( @@ -116,6 +120,8 @@ for _, row in count_dcp_prod.iterrows(): # dcp_networkx pos = nx.nx_agraph.graphviz_layout(g_bom, prog="dot", args="") node_labels = nx.get_node_attributes(g_bom, 'Name') +# rename node 1 +node_labels['1'] = '解决方案' temp = {} for key, value in node_labels.items(): temp[key] = key + " " + value @@ -126,28 +132,7 @@ vmin = min(colors) vmax = max(colors) cmap = plt.cm.Blues -# dct_row = {} -# for node, p in pos.items(): -# if p[1] not in dct_row.keys(): -# dct_row[p[1]] = {node: p} -# else: -# dct_row[p[1]][node] = p -# dct_row = dict(sorted(dct_row.items(), key=lambda d: d[0], reverse=True)) -# dct_up = dct_row[max(dct_row.keys())] -# dct_up = dict(sorted(dct_up.items(), key=lambda d: d[1][0], reverse=True)) -# h = list(dct_row.keys())[0] - list(dct_row.keys())[1] -# n = len(dct_up.items()) -# arr_h = np.linspace(list(dct_row.keys())[0]-h/2, list(dct_row.keys())[0]+2*h, num=n) -# dct_up_new = {} -# for index, (node, p) in enumerate(dct_up.items()): -# dct_up_new[node] = (p[0], arr_h[index]) -# pos_new = {} -# for row, dct in dct_row.items(): -# if row == list(dct_row.keys())[0]: -# pos_new.update(dct_up_new) -# else: -# pos_new.update(dct) -pos_new ={} +pos_new = {} for node, p in pos.items(): pos_new[node] = (p[1], p[0]) @@ -157,8 +142,8 @@ nx.draw(g_bom, pos_new, node_size=50, labels=node_labels, - font_size=6, - width = 1.5, + font_size=5, + width=1.5, edge_color=colors, edge_cmap=cmap, edge_vmin=vmin, @@ -170,7 +155,9 @@ axis.set_ylim([1.2*y for y in axis.get_ylim()]) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] -position=fig.add_axes([0.1, 0.4, 0.01, 0.2]) -plt.colorbar(sm, fraction=0.01, cax=position) -# plt.savefig("analysis\\count_dcp_prod_network") -plt.close() \ No newline at end of file +position = fig.add_axes([0.75, 0.1, 0.01, 0.2]) +cb = plt.colorbar(sm, fraction=0.01, cax=position) +cb.ax.tick_params(labelsize=8) +cb.outline.set_visible(False) +plt.savefig("analysis\\count_dcp_prod_network") +plt.close() diff --git a/sum_result.py b/analysis_sum_result.py similarity index 81% rename from sum_result.py rename to analysis_sum_result.py index 73223fe..395d02f 100644 --- a/sum_result.py +++ b/analysis_sum_result.py @@ -10,20 +10,13 @@ Firm['Code'] = Firm['Code'].astype('string') Firm.fillna(0, inplace=True) BomNodes = pd.read_csv('BomNodes.csv', index_col=0) -result = pd.read_sql(sql='select * from iiabmdb_dissertation.not_test_result where ts > 0;', +with open('SQL_analysis_risk.sql', 'r') as f: + str_sql = f.read() +result = pd.read_sql(sql=str_sql, con=engine) -lst_s_id = list(set(result['s_id'].to_list())) -for s_id in lst_s_id: - query = pd.read_sql( - sql=f'select * from iiabmdb_dissertation.not_test_result where ts = 0 and s_id = {s_id};', - con=engine) - result = pd.concat([result, query]) -result.set_index('id', inplace=True) -result.sort_index(inplace=True) -result['id_firm'] = result['id_firm'].astype('string') -# result.to_csv('analysis\\count.csv', -# index=False, -# encoding='utf-8-sig') +result.to_csv('analysis\\count.csv', + index=False, + encoding='utf-8-sig') print(result) # G bom @@ -31,17 +24,20 @@ plt.rcParams['font.sans-serif'] = 'SimHei' exp_id = 1 G_bom_str = pd.read_sql( - sql=f'select g_bom from iiabmdb_dissertation.not_test_experiment where id = {exp_id};', + sql=f'select g_bom from iiabmdb.without_exp_experiment ' + f'where id = {exp_id};', con=engine)['g_bom'].tolist()[0] G_bom = nx.adjacency_graph(json.loads(G_bom_str)) pos = nx.nx_agraph.graphviz_layout(G_bom, prog="twopi", args="") node_labels = nx.get_node_attributes(G_bom, 'Name') +# rename node 1 +node_labels['1'] = '解决方案' plt.figure(figsize=(12, 12), dpi=300) nx.draw_networkx_nodes(G_bom, pos) nx.draw_networkx_edges(G_bom, pos) nx.draw_networkx_labels(G_bom, pos, labels=node_labels, font_size=6) # plt.show() -# plt.savefig(f"analysis\\g_bom_exp_id_{exp_id}.png") +plt.savefig(f"analysis\\g_bom_exp_id_{exp_id}.png") plt.close() # G firm @@ -49,7 +45,7 @@ plt.rcParams['font.sans-serif'] = 'SimHei' sample_id = 1 G_firm_str = pd.read_sql( - sql=f'select g_firm from iiabmdb_dissertation.not_test_sample where id = {exp_id};', + sql=f'select g_firm from iiabmdb.without_exp_sample where id = {exp_id};', con=engine)['g_firm'].tolist()[0] G_firm = nx.adjacency_graph(json.loads(G_firm_str)) pos = nx.nx_agraph.graphviz_layout(G_firm, prog="twopi", args="") @@ -91,9 +87,9 @@ count_firm_prod.rename(columns={'Name': 'name_product'}, inplace=True) count_firm_prod = count_firm_prod[[ 'id_firm', 'name_firm', 'id_product', 'name_product', 'count' ]] -# count_firm_prod.to_csv('analysis\\count_firm_prod.csv', -# index=False, -# encoding='utf-8-sig') +count_firm_prod.to_csv('analysis\\count_firm_prod.csv', + index=False, + encoding='utf-8-sig') print(count_firm_prod) # count firm @@ -107,9 +103,9 @@ count_firm = pd.merge(count_firm, count_firm.drop('Code', axis=1, inplace=True) count_firm.sort_values('count', inplace=True, ascending=False) count_firm = count_firm[['id_firm', 'Name', 'count']] -# count_firm.to_csv('analysis\\count_firm.csv', -# index=False, -# encoding='utf-8-sig') +count_firm.to_csv('analysis\\count_firm.csv', + index=False, + encoding='utf-8-sig') print(count_firm) # count product @@ -123,14 +119,13 @@ count_prod = pd.merge(count_prod, count_prod.drop('Code', axis=1, inplace=True) count_prod.sort_values('count', inplace=True, ascending=False) count_prod = count_prod[['id_product', 'Name', 'count']] -# count_prod.to_csv('analysis\\count_prod.csv', -# index=False, -# encoding='utf-8-sig') +count_prod.to_csv('analysis\\count_prod.csv', + index=False, + encoding='utf-8-sig') print(count_prod) # DCP disruption causing probability -result_disrupt_ts_above_0 = result[(result['ts'] > 0) - & (result['is_disrupted'] == 1)] +result_disrupt_ts_above_0 = result[result['ts'] > 0] print(result_disrupt_ts_above_0) result_dcp = pd.DataFrame(columns=[ 's_id', 'up_id_firm', 'up_id_product', 'down_id_firm', 'down_id_product' @@ -188,5 +183,5 @@ count_dcp = count_dcp[[ 'down_id_firm', 'down_name_firm', 'down_id_product', 'down_name_product', 'count' ]] -# count_dcp.to_csv('analysis\\count_dcp.csv', index=False, encoding='utf-8-sig') +count_dcp.to_csv('analysis\\count_dcp.csv', index=False, encoding='utf-8-sig') print(count_dcp) diff --git a/anova.py b/anova.py index 032b0b0..40eb89c 100644 --- a/anova.py +++ b/anova.py @@ -110,49 +110,16 @@ def anova(lst_col_seg, n_level, oa_file, result_file, alpha=0.1): if __name__ == '__main__': # prep data - str_sql = """ - select * from - (select distinct idx_scenario, n_max_trial, crit_supplier, - firm_pref_request, firm_pref_accept, netw_pref_cust_n, - netw_pref_cust_size, cap_limit, diff_new_conn, diff_remove - from iiabmdb.with_exp_experiment) as a - inner join - ( - select idx_scenario, - sum(n_disrupt_s) as n_disrupt_s, sum(n_disrupt_t) as n_disrupt_t from - iiabmdb.with_exp_experiment as a - inner join - ( - select e_id, count(n_s_disrupt_t) as n_disrupt_s, - sum(n_s_disrupt_t) as n_disrupt_t from - iiabmdb.with_exp_sample as a - inner join - (select a.s_id as s_id, count(id) as n_s_disrupt_t from - iiabmdb.with_exp_result as a - inner join - (select distinct s_id from iiabmdb.with_exp_result where ts > 0) as b - on a.s_id = b.s_id - group by s_id - ) as b - on a.id = b.s_id - group by e_id - ) as b - on a.id = b.e_id - group by idx_scenario) as b - on a.idx_scenario = b.idx_scenario; - - """ - result = pd.read_sql(sql=str_sql, - con=engine) + result = pd.read_csv("experiment_result.csv", index_col=None) result.drop('idx_scenario', 1, inplace=True) df_oa = pd.read_csv("oa_with_exp.csv", index_col=None) - result = pd.concat( + scenario_result = pd.concat( [result.iloc[:, 0:10], df_oa.iloc[:, -4:], result.iloc[:, -2:]], axis=1) result.to_csv('analysis\\experiment_result.csv') - # 9 factors (X), 4 for error (E), and 2 indicators (Y) - the_lst_col_seg = [10, 3, 2] + # 10 factors (X), 13 for error (E), and 9 indicators (Y) + the_lst_col_seg = [10, 13, 9] the_n_level = 3 anova(the_lst_col_seg, the_n_level, "oa25.txt", result, 0.1) diff --git a/anova.xlsx b/anova.xlsx deleted file mode 100644 index 30fa7a8..0000000 Binary files a/anova.xlsx and /dev/null differ diff --git a/anova_visualization.ipynb b/anova_visualization.ipynb new file mode 100644 index 0000000..802b8e5 --- /dev/null +++ b/anova_visualization.ipynb @@ -0,0 +1,573 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
自变量level系统恢复用时R1产业-企业边累计扰乱次数R2产业-企业边最大传导深度R3产业-企业边断裂总数R4
15新供应关系构成概率P72.2402.6721.1430.7640
16新供应关系构成概率P72.1322.6741.1430.7859
17新供应关系构成概率P72.1792.6491.1240.7575
9是否已有连接偏好P4不倾向2.1772.6681.1410.7804
8是否已有连接偏好P4倾向2.1912.6631.1330.7579
4是否规模偏好P2不倾向2.1712.6691.1370.7726
3是否规模偏好P2倾向2.1962.6611.1370.7657
18最大尝试时间步P81.7262.6461.1230.7782
19最大尝试时间步P82.1862.6821.1440.7599
20最大尝试时间步P82.6402.6671.1430.7694
7最大尝试次数P32.2862.6911.1540.8254
6最大尝试次数P32.1242.6521.1270.7431
5最大尝试次数P32.1412.6521.1300.7390
2采购策略P1单供应商2.2612.5191.1210.7919
1采购策略P1双供应商2.1462.6501.1330.7615
0采购策略P1三供应商2.1442.8261.1560.7541
10额外产能分布P5均匀分布2.3162.6811.1580.8403
11额外产能分布P5正态分布2.0522.6501.1150.6980
14额外产能分布参数P62.4362.7051.1710.9121
13额外产能分布参数P62.2022.6661.1420.7655
12额外产能分布参数P61.9142.6241.0980.6299
\n", + "
" + ], + "text/plain": [ + " 自变量 level 系统恢复用时R1 产业-企业边累计扰乱次数R2 产业-企业边最大传导深度R3 产业-企业边断裂总数R4\n", + "15 新供应关系构成概率P7 低 2.240 2.672 1.143 0.7640\n", + "16 新供应关系构成概率P7 中 2.132 2.674 1.143 0.7859\n", + "17 新供应关系构成概率P7 高 2.179 2.649 1.124 0.7575\n", + "9 是否已有连接偏好P4 不倾向 2.177 2.668 1.141 0.7804\n", + "8 是否已有连接偏好P4 倾向 2.191 2.663 1.133 0.7579\n", + "4 是否规模偏好P2 不倾向 2.171 2.669 1.137 0.7726\n", + "3 是否规模偏好P2 倾向 2.196 2.661 1.137 0.7657\n", + "18 最大尝试时间步P8 低 1.726 2.646 1.123 0.7782\n", + "19 最大尝试时间步P8 中 2.186 2.682 1.144 0.7599\n", + "20 最大尝试时间步P8 高 2.640 2.667 1.143 0.7694\n", + "7 最大尝试次数P3 低 2.286 2.691 1.154 0.8254\n", + "6 最大尝试次数P3 中 2.124 2.652 1.127 0.7431\n", + "5 最大尝试次数P3 高 2.141 2.652 1.130 0.7390\n", + "2 采购策略P1 单供应商 2.261 2.519 1.121 0.7919\n", + "1 采购策略P1 双供应商 2.146 2.650 1.133 0.7615\n", + "0 采购策略P1 三供应商 2.144 2.826 1.156 0.7541\n", + "10 额外产能分布P5 均匀分布 2.316 2.681 1.158 0.8403\n", + "11 额外产能分布P5 正态分布 2.052 2.650 1.115 0.6980\n", + "14 额外产能分布参数P6 低 2.436 2.705 1.171 0.9121\n", + "13 额外产能分布参数P6 中 2.202 2.666 1.142 0.7655\n", + "12 额外产能分布参数P6 高 1.914 2.624 1.098 0.6299" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "config = {\"figure.dpi\": 300,\n", + " \"font.family\": 'serif',\n", + " \"font.serif\": ['SimSun']}\n", + "df = pd.read_csv('analysis/anova_visualization.csv', encoding='utf-8-sig')\n", + "df['sort_index'] = df['level'].map({'不倾向':0,\n", + " '倾向':1,\n", + " '低':0,\n", + " '中':1,\n", + " '高':2,\n", + " '单供应商':0,\n", + " '双供应商':1,\n", + " '三供应商':2})\n", + "df.sort_values(['自变量', 'sort_index'], inplace=True)\n", + "df.drop(columns='sort_index', inplace=True)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\1808291987.py:10: UserWarning: \n", + "The markers list has fewer values (1) than needed (3) and will cycle, which may produce an uninterpretable plot.\n", + " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAVjCAYAAAAmTdnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeZyN5f/H8fdZZx9mYZixlUhF2iS+vpWQqEiLJFlaKZESbfYkvyjqWyllaReVSotSSoqSlDYREmObxcyY9ay/P8YcM845M+fMnDGD1/PxmIf73Pd9XffnDGnMe67rY3C73W4BAAAAAAAAAAAAqFHGmi4AAAAAAAAAAAAAAMEdAAAAAAAAAAAAUCsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAAAAAAAAAUAsQ3AEAAAAAAAAAAAC1AMEdAAAAABxjcnJytHjxYl155ZVatGhRTZfj5csvv9TWrVtrugwtX768ynM4HA7t2rUrBNUcfWvWrNErr7wim81W06UAAAAACBDBHQAAAADUcg6HQ7///rvmzZunW2+9VR07dtQjjzyizZs3a8qUKfr5559rusQy3njjDV1++eW6++679dtvv9VIDZs2bdKIESM0dOhQZWZmVnqedevW6aqrrtKyZctCWN3RsXz5ck2dOlWXXXaZ3nvvPblcrpouCQAAAEAFDG63213TRQAAAAAAiu3bt09///23tm7dqr///lubN2/WH3/8oaKiIr9jkpKS9O677yoxMfEoVurfhRdeqH379nleDx06VKNGjTqqNTzyyCNavHixJKl+/fp64okndMEFFwQ9z5gxY/T+++9Lkvr06aNx48YpKioqpLVWl65du2rnzp2SJKvVqvHjx+u6666r4aoAAAAAlMdc0wUAAAAAwImksLBQu3fvVmpqqnbt2qXU1FTP8fbt23Xw4MGA5jGbzapbt67i4uJUt25dffDBB7r55psrHJebm6vt27erTZs2Qdf+/PPPq0mTJrr88sv93pOenl4mtLv77rs1bNiwoJ9VFfv37/eEbZJUr149JSUlBT1PZmamPv30U8/r7OxsZWZmHhPB3T///OMJ7SIjI/XBBx+ocePGNVwVAAAAgIoQ3AEAAABAFdhsNh08eFBZWVk6cOCAsrKylJWVpczMTGVmZiojI0MZGRnav3+/9u/fr+zsbL9zxcbG6uSTT1ZCQoLi4+OVmJio+Ph4JSQkeM6VvI6NjZXBYAi63vz8fF177bW6+OKLdcsttyghISGgccuWLdNzzz0nk8kkt9utK664wud9P/74o+e4WbNmuuuuuypVZ1XMmTPH09ctJSVFL730kuLj4/3en5GRofj4eK86X3vtNc9Kx//85z/63//+J5PJVO6zt23bpjp16gT8ea0uq1at8hz369eP0A4AAAA4RhDcAQAAAEAQvvrqK82YMUN5eXnKy8uTzWaT0WiU0WiU1WpVeHi4wsLCPL9GREQoMjJSrVu3VkxMjGJiYhQbG6uYmBjFxcUpMTHR82G1Wqu9fovF4nkfX331VdDjnU6nxowZoxYtWujUU0/1ul46uOvXr99RD+127typt99+W5IUERGh5557rtzQbteuXRo4cKAuueQSPfLII57zBw8e1KuvvipJatKkiZ588skKQ7utW7dq0KBBio+P16uvvqo6deqE4B1Vzscffyyp+Pd78ODBAY3Zv3+/li9frptuuqkaKwMAAABQHoI7AAAAAAjCxRdfrIsvvrjGnv/8888rMjJSAwcOrFQoVjocvPbaazV16tSAxo0ePVoffvihrFarnnzySZ+hnSStXr1akhQWFqY+ffoEXV9VPfbYY7Lb7ZKkW2+9VRaLRVu3bvV5b25urkaNGqXU1FS9+uqrioqK8vTie+6555STkyOz2az777/fs3LSnwMHDuiee+5RWlqa0tLSdOutt2r+/PmKjo4ut94lS5aoT58+FYaCpX3//fcqKCjw++dw165d2rBhgyTpqquuCmib0NzcXN1xxx36448/tHv3bo0dOzbgemqL/Px89enTR5MnT1b79u1ruhwAAACgUgjuAAAAAOAoeeONN1RYWKibbrrJs/ItGG63W4sXL1Zqaqo+++wzTZs2TU2aNAlqjso8t7S4uDh169bN57UdO3Zo+/btkqQePXqobt26Qc/vdrsrvUrv66+/1pdfful5/cwzz+iZZ54JePycOXMUHR2tLl26eFbbORwO3X333UHXsnHjRg0bNkxz585VeHh4uc9csmSJpk+frqZNm1Y47759+zRq1CgdOHBAY8eO9bma7qOPPvIcL126tEy/P3/cbrcn8Jw3b54OHjyoyZMny2g0+h0zYsQILV++vMK5S0RGRiomJkbJyclq27atLr74YnXo0CHg8eXJycnR/fffr3/++Sck8wEAAAA1heAOAAAAACopIyMjqF5mXbp00dVXX6133nlHkyZN0nnnnRfU89avX6/U1FRJxVtS9urVS9OmTVOPHj0CnsNsrr5/BpYOzW644Yagxx84cEC333677rjjDnXt2jWosQcPHtT48eMlSY0aNdJrr72mhg0bSpIefPBB7dixQ0888YRSUlIqnOuWW26R3W5Xhw4d9MILLygsLExFRUW69tpr1alTJ919992KjIwM+v35YrFYtGHDBl166aVBj502bZrCw8PVr1+/MueXLVsmSapbt64uueQSDRw4sMK55s+f7wn4zGaznE6nsrKyyt1m9MEHH9SwYcO0ceNGTZo0SU6nU1Jxb8OHHnrI8/mXpMLCQuXk5Ojvv//WDz/8oNdee00LFixQ8+bNNX78eF1wwQVBvXe3260DBw5oz549WrlypZYsWaI9e/YENQcAAABQGxHcAQAAAEAljRo1SmeddZaGDx8eUH+6pKQkPfHEExoyZIgGDBigAQMG6P7771dYWFhAzzty5VSfPn100UUXBVVzST8+l8sV1LhAfPjhh5KKg7OYmBi/W1T6YrfbNWbMGP3111+65557NHPmTHXv3j3g8VOmTNHevXvVsGFDLVy4sExo9Mgjj6h79+66+uqr9dJLL6lNmzZ+51m8eLFWr16tiy66SE8//bTn9yYsLExTp05V37599dlnn+nZZ59Vq1atAq7Pn5I/N507d9b9999fpo758+erfv36WrBggef8X3/95dnOs0+fPrrmmmvKzPfnn39q8+bNkqQnnnhCjz/+uFq0aFFuYJuenq7PP/9ckmQymfTaa6/p7LPPrrD2hg0bqmHDhjrttNO0ZMkSbdy4UZI0cOBAv38uO3XqpMGDBys1NVUPPPCAfvjhBw0ZMkT33nuvbrvttgqfuXTpUj300ENyuVxyu90V3g8AAAAcawjuAAAAAKCSHn30UfXu3VsrV67UE088EVCQ07FjR/Xt21dvv/22Xn31Vf3000+aO3duhSv3MjMz9cEHH3he9+/fXxMmTKhU3WazWTabzet8amqq6tWrF1AIeaStW7fq999/l1TcY61nz56Vqk0qDvHuu+8+NW/eXKecckqF97/99tt6//33Vb9+fS1cuFCNGjUqcz0qKkp33HGHHn30UQ0ePFhvvfWWWrRo4TXPpk2bNGXKFF1zzTWaNGmS17aiZ555pi6//HItW7ZMN9xwg15++WWdc845lX6fkjy97aKjo9W8eXPP+ZKVbhaLpcz5gwcPeo6HDx/uVeObb74pSbrwwgt14YUX6u2339Znn31W7u/H008/rfz8fEnSoEGDAgrtjlR6O9CIiIgK709JSdHLL7+sgQMHasOGDZoxY4bi4+O9gsgjXXLJJVq6dKnndV5ent56660y5wAAAIBjmf/N6gEAAAAA5WrSpIlGjRqlzZs367rrrtOiRYsCGnfvvfcqKipKkvT777/rvvvuq3DMa6+9psLCQklSixYtNHbs2ErX7a9v2apVq9StWze9/vrrPoO98pQEJ1FRUVq7dq3++uuvoD9KtrEMCwvTrFmzAgrtfv75Z02ZMkX16tXTggUL/PaJu+qqqxQeHq7c3FxNmTLF63peXp7uvfdejRo1So899pjfXoBDhgyRJOXn5+vRRx8N5FNTrpLgLhRyc3O1bNkyhYeH6+GHH5Ykde/eXc8++6zfFZZbt27VkiVLJElNmzbVyJEjQ1ZPRaxWqyZOnOh5PW3aNGVkZJQ7JjY2Vi1btvR8nH322Zo6darnvycAAADgWEdwBwAAAABVcOONN6pVq1ay2WwaP368pk2bVuGYuLg4DRo0yPN6zZo1nt51vhQUFOj111+XVLya6amnniqzwilY/oK7iIgI7d27V5MnT1a3bt08W19WxGazecKfQYMGKS4urlJ1ORwOScVbMAbS4+6ff/7R0KFD1ahRI7355ptlVqYdKSYmRu3atZMk/fLLL17XDxw4oMcff9wTzPnTunVrz2q99PT0CmusSCiDu0WLFikvL0/Dhw9Xs2bNJEndunXT3r17vbZZLTFjxgw5nU4ZDAZNnTq1Sn+uKqNVq1Zq27atpOLVhIGG36WZzWbVrVs3xJUBAAAANYPgDgAAAACqwGQy6YEHHvC8XrBggebPn1/huOuvv75MgLZnzx6/97766qvKysqSJI0bN87nNo/B8Bfcld4i02q16swzzwxovk8//VSZmZmKjY2tMPgqT0lwF8hWnbt379Ytt9yic845R4sXL1bjxo0rHPOf//xHknTaaad5Xbv22mv10ksvad26dRXOU9K/rU+fPhXeW5Hyes8Fw2azaeHChWrbtm2Z34Pw8HBdccUVmjlzpnJycsqM+fTTT/Xll19KKu5LVxJsHm2lt+b86quvaqQGAAAAoLYguAMAAACAKurQoUOZXmevvPJKhWMaNGjgCUoiIyN16qmn+rwvMzNTL7zwgqTicKmiHmCBCCS4e+CBB/xuO3mkhQsXSpLuvvtuxcbGVrouu90uqXirzPKkp6frtttu08CBA/Xcc88pOjo6oPmvuOIKDRw4UDNnzvS6FhMTo+XLl2vAgAEaOnSo3G6333kuu+wyXXvttbrrrru8rm3YsEHvvvtuQPVIksFgCPje8rzxxhvKz8/Xk08+6RUGDhkyRBkZGZo+fbrnXGZmpiZNmiRJOumkk3TvvfeGpI7KaNiwoef433//rbE6AAAAgNogND/aBwAAAAAnuJtuukk//fSTpOLVYDt37qxwFdill16q77//XsOGDVNMTIzPe2bPnq3c3FydeeaZmjBhQkhq9RcWlQ58/IV7R/r222/122+/6YwzztCNN95YpbpKVtxVFNzFxsbq6aefLndrTF/q1avn6f12pJJnJiUlacKECeUGam3atFGbNm28zn/22WcaPXq0bDabHA6H+vbtW2FNgX6ey3Pw4EG98MILeuyxx9SoUSOv682aNVO3bt20ZMkSderUST169NDkyZOVmZkpi8WiGTNmHPUtMksr3Z8uNze3xuoAAAAAagOCOwAAAAAIga5duyo2NlY5OTkyGAwB9dy69tprZTabdf311/u8vnnzZi1evFj169fX//73v4C2kAyEv1CqMiHSnDlzZDQaNXHixDL92p5++mk1btxYvXr1CriPW6Ar7iwWi5o2beoJ+kKhJLQ86aSTVK9evaDnfu211zR9+nS5XC5J0vjx4+V2u/3+3pYIRXA3Y8YMDRgwQJdeeqnfe4YPH64VK1booYce0vbt2/XJJ59IkkaNGqXWrVtXuYaqOHjwoOc4Pj6+BisBAAAAah7BHQAAAACEgNVqVffu3bV48WL17dvX7wq6EjfccINGjBihfv36+bzudDr10EMPKSwsTHPmzFFSUlJ1lF1GsCHSN998ox9++EHDhw/36oe3YsUK/fXXX5o7d65GjhypSy+9tMJtIUuCu4oCyoKCAt1yyy2eFY6htHbtWp1xxhlVnsftdmvChAlyu91+f4+lqgd3brdbzZs318CBA8u9r2XLlrr22mu1aNEizZ49W5LUuXNn3XzzzVV6fijs37/fcxxIr0IAAADgeEZwBwAAAAAhcvfddysqKkr33Xdfhfdu27ZNgwcPVseOHXXvvfd6bb348ssva9OmTXruuedCEiSV5q9/WzAhktvt1syZM9WuXTvdeeedZa5lZWVpy5YtkqStW7dq+vTpOumkk9SyZUu/85WEdlLFK+4iIyM1d+5cTZgwQYmJiWrTpo3q16+v2NhYRUREBPweShs+fLg2b96ss88+u0wvuKqq6HNa1R53BoOhwtCuxB133KG3335bbrdbUVFRevzxx0PWY68qfvjhB8/xf//73xqsBAAAAKh5BHcAAAAAECJJSUl68MEHA7o3KipKWVlZ+u6777RmzRotWrRIbdu2lVQcdj3//POaMWOGLrzwwpDX6S+4CybEWbJkidLT0/XCCy94bYW5Zs0az5aRZ511lubNm1emj5kvpbemDKTfWnR0tGbOnBlwvRWxWCyeZzdt2jRk81bkaAVnDodDU6ZM8fze5+Xl6f7779dTTz2l6Ojoo1KDL3/88Yf++OMPSVJERISuuuqqGqsFAAAAqA2qvpk+AAAAACBopVeV3X777Z7QTpLS0tL0f//3f7rssssCnm/hwoUaN25cQPeWhGpHCjREOnDggJ5//nm9+OKLPrfw/PLLLz3Hd9xxR4WhnRTcirvapKioSHl5eVWeJzc3V1u3bvV8ZGZmSir+vJQ+v3v37qDndrlcGjNmjFauXCmTyaTOnTtLklatWqV+/fpp586dVa6/MgoKCjRp0iRPmHjXXXepQYMGNVILAAAAUFuw4g4AAAAAaoDZfPifY3379i1z7YILLghqrnfeeUfTpk2T2+1WfHy8Ro0aVe79/oK7QG3btk2TJk3S6aef7nXNbrdr5cqVkqSTTjrJExJVxGazeY4DWXHnz7p165SUlKQmTZpUeo5AOZ1O3XfffcrJydHcuXMrFTiWhKUrV670fN5K279/v3r27FnpGl0ul8aNG6ePPvpIVqtVTz75pLp166ZZs2bp+eef15YtW9S7d2/deeedGjRokGflYXXbsWOHxo4dq59//lmSNHDgQN12221H5dkAAABAbUZwBwAAAAAVyMnJUVpaWkjnLB2e7dy5U0VFRZWaZ+PGjRo3bpxn1dKcOXMUHx+vQYMG+R0TyFaZ5a2+O/fcc/1e+/bbb3Xw4EFJ0m233RbwKr7SK+6qEtz98ccfGjJkiPr166e+fft6bePpT0lwWFhYqK1btwY0Zt68efr8888lSffcc4+eeeaZMoFsIEo+P1deeaVmzJjhOf/iiy9q5syZSklJKbOC8eeff9b1118f0NyFhYW67777tGLFCsXGxuqZZ57xhML33HOPwsLCNHv2bOXl5emJJ57Q4sWLNXbsWHXu3DnkW3i6XC4dOHBAv/32mz799FMtW7ZMNptNdevW1cMPP6xevXqF9HkAAADAsYrgDgAAAAAqYDAY9OCDD+qXX36plvkHDx4c0vmmTZumuLg4v2GIv+Cu9Kq3QAOvI73//vuSpEaNGgUVxpR+dlW2yoyMjJTdbterr76qV199NejxGzZsqNQKt6+//lrffvutLrrooqDG+fu9qKoDBw5o2LBh2rBhg5o1a6bnn39eJ598cpl7hg0bphYtWuiBBx7QwYMH9c8//2jYsGFq3Lixrr32Wl199dWqX79+0M9++OGH9cgjj5Q553K5PO81PDxcZ511li677DL16dNHkZGRlX+jAAAAwHGG4A4AAAAAKhATE6N58+ZpwYIFOvnkk3Xqqaeqbt26iomJkdVqDXieV155RVOnTvU6/8UXX2jJkiWy2+26//77Q1m6T/62yiy96q8y4Vlubq5nddjw4cM92y6WPM9o9N9mvfSKu4iIiKCfXaJ0P71XXnlF7du3D2jc1Vdfrd9//10dOnTQggULAhozY8YMzZ07V5K0YMECnX/++UHXWx3+/PNPjRw5Ujt27FDnzp01ffp01alTx+e9Xbt21bvvvqtRo0bpt99+k1S8AvSpp57SM888o7POOkvnnnuuzj33XJ1zzjmKiYmp8PkjRoxQly5dvM6bTCbFxsYqLi4u6JWJAAAAwImCr5QBAAAAIADR0dEaPnx4pccfOHBA//vf/zyvzWazHA6H5/U111yjXr166eabb1ZCQkKVaq2Iv1VepYO7YALJEsuWLVNhYaFOPfVU9e7d23P++++/10svvaSZM2eqbt26PseGqsddTQVC55xzTqXGhXrF3euvv67HH39ckvTQQw+Vu2VqiSZNmujtt9/WG2+8odmzZ3u2OnU4HPrxxx/1448/Kj4+Xj169ND48eMrnC8pKUktW7as2hsBAAAATlD+f9wRAAAAABAyTz/9tLKzsyVJHTp00KmnnlrmeuPGjdWmTRu9+OKL1V5L6dVtpeXm5nqO/YVn/lbrSdKbb74pSXrwwQfLrK674IILVFBQoGuuuUabNm3yObZ0cFeVrRMru8VnTQlVcJeVlaURI0Zo8uTJOvPMM7V06dKAQrsSJpNJN910kz799FP17dvXs1pSku688059/fXXAYV2AAAAAKqG4A4AAAAAqtnGjRu1aNEiScUr2SZOnOgzsLn++uv11ltvae/evdVWi7/QTpJ27drlOU5OTvZ5T+lVeaWtWrVKmzZt0hVXXKEOHTqUuWYwGDRx4kTt3btXN9xwg77++muv8aWDu6pslVmZ4M5ut3tC1WPRBx98oB49emjDhg1q0KCBnnrqKTVv3jzoebKzs7Vs2TJNnjxZK1as0KBBg9S5c2eNHDmyUiswAQAAAASP4A4AAAAAqpHNZtMDDzwgp9MpSRo6dKiaNWvm897LLrtMiYmJevTRR6utntLbcx5p586dkqT4+HjFxsb6vKewsNDrnNPp1JNPPqnExEQ9/PDDPse1bNlS1113nfLz83XnnXfq448/9jtvVYI7g8EQ9JgpU6Z4Qktf7686lbeCsSL//vuvbr75Zi1evFjjx4/XypUrVVhYqH79+mnr1q1BzeV0OnXvvfdq2rRpGjp0qCIjI/XQQw9pzpw5la4PAAAAQPDocQcAAAAA1Wj27NmeEOXcc8/V0KFDJfneItFkMunWW2/VxIkT9cUXX6hLly4hr6e84O7ff/+VJL/BolQcRDqdzjIr255//nn99ddfeuGFFxQfH+937F133aWlS5eqoKBAY8aMUaNGjXTmmWdKKhuYVWWrzJKANFCLFi3yrIaUpA0bNuiNN95Q//79Q/4sX6oS3G3fvl0PPvigWrRoUeZ8amqqevbsWel5v/rqKw0YMEDvvPNOmS0zAQAAAFQ/gjsAAAAAqCbffPON5s2bJ0mqW7euZs6c6Qm8Sgd3pY+vueYaPfvss5oyZYrat2+v6OjokNbkb6vMgoICbd68WZJ0xhlnlDtHfn6+YmJi5HQ6NX/+fP3vf//TqFGjdOGFF3ruKSoqUlZWlrKyspSdne05Pvnkk/X777/LbrfrpZde0tNPPy2pbHBXlfccTJj27bffasqUKWXONWvWTLNmzVKzZs3UsWNHSdKvv/6qDRs2KDk5WfXr11e9evUUERGhDRs2SCpe5Wc2V+6f11UJ7i688EI1btzY57Xu3btr5MiRQc03duxY/frrr4qNjdW0adMI7QAAAIAaQHAHAAAAANUgNTVVo0ePlsvlkslk0v/93/+pYcOGnuv+Ahur1apRo0bpoYce0sMPP6zZs2eHtK6S4K5OnTo6++yzPec3bNjgufbf//7X59iGDRvq9ttv96yImzNnjp5++mlZrVZ99913+vjjjz0hXUFBgWdcvXr11L59e7Vr104jR47U7bffLklavXq1557c3FzPcVRUVKXfX6DB3YYNGzR8+HDZ7XbVqVNHVqtVaWlpatiwoYYNG6bhw4drwYIFOvPMM5WYmKi0tDQtWLBAqampXnPVq1ev0vX6WnkZKF+rJ0vmi4mJCbrPXckWpY0bN64wvAUAAABQPehxBwAAAAAhVlRUpBEjRigrK0uS9PDDD+uiiy4qc4+/FXeSdPXVV6t169b69NNPtWDBgpDWZrVaNXHiRH399de69tprPed/+OEHSVJYWJjat2/vNW7gwIH67LPP1L9/f8+qwVtvvVVNmzaVzWbT2rVrtWnTJu3Zs0c2m03nn3++7r//fn344YdavXq1Zs6cqX79+umiiy5S69atJRWHhyVKB3dVWXEXSI+6P//8U3fccYfy8/MVGxurefPmqX79+p7rV111lbp3767bbrtNmzZtUsOGDXXfffdp+fLlGjdunMLCwsrMd/HFF1e63qpst+lrbFWCQAAAAAA1j+AOAAAAAELI6XTq3nvv1W+//SZJuvnmm3XjjTd63Vd6xd2RYYvBYNAjjzwig8GgJ554QmvXrg1ZfXFxcbrhhhs8q6tKfPrpp5Kkjh07Kjw8XDt37tTvv//uuX7mmWfKarWWGRMWFqZJkyZ5Xp9++ukaP368Vq9erVdffVW33nqrWrZs6VXD5ZdfLpPJpLFjx3rO5eTkSCp+77GxsZV+f3l5eZ5jg8Hgdf2nn37SwIEDlZ2drTp16ujll1/2BImlTZw4USkpKRo4cKDWr18vSbJYLBowYIDmz5/v+Vx07NhRY8aMqXS9JX8O3G63HA6H56P0n4/S50uHdb62PSW4AwAAAI5tbJUJAAAAACE0adIkrVixQpLUt29fv6FOecGdJJ199tkaMmSI5s2bp2HDhumll17SueeeWy01//zzz9q+fbsk6aabbpJUvOpt5MiRSkpK0siRI9WqVSufYzt06KC77rpL5513nqcnXEV69+6ts88+u8xWnenp6ZKKV+GVrOirjMLCQnXq1Ek33XST2rVrV+baN998o7vvvlsFBQVKSUnR3Llz/W4nGRYWpmeffVbXX3+9br75Zk2fPl2XXXaZJOncc8/V+PHjFRUVpZ49e1a6VunwdpfLli3TsmXLvK6npqb63bbSZrN5nSO4AwAAAI5tBHcAAAAAECIzZ87UokWLJEkDBgzwrJrzpXTA4q/f3ahRo7RmzRr9+eefuu222/Tyyy+XCbtC5d1335UktWzZUv/5z38kFa/Me+WVV3Trrbfqqquu0hVXXKF7771XycnJXuNHjBgR1PMSEhKUkJBQ5lxaWpokKTExsTJvwWPgwIG65ZZbvM6//vrrmjZtmux2u84880w9//zzFT6rYcOGmjt3rgYMGKCRI0dq4MCBGjNmjCwWi6677roq1Vmi5Pe+S5cuZVYg+vPnn39q5MiRklSmj+CR84WipmNJeVvPAgAAAMcStsoEAAAAgBB4/PHH9eKLL0qSbrvtNo0bN85vaCeV7U/mL2iwWq2aOXOmoqOjlZeXpyFDhuijjz4Kad379u3T0qVLJRX3rCstOjpaL774olq1aqUPP/xQPXv21AsvvOBZJRZKO3bskCSfwWAwLBZLmdc2m00PP/ywJk+eLLvdrv79++v1118POCA89dRTNX/+fNWtW1evvPKKrr76am3cuLFKNZZWst1lZGSkmjZtWuFHgwYNPGN9BXehcKwFXzabTfv37/e83rlzZw1WAwAAAFQNwR0AAAAAVIHL5dKkSZM0f/58WSwWPfbYYxo9enRA40qUDvGO1Lx5c82ePVtms1kFBQW69957NW3atJCFZ88++6yKiop0/vnnq3fv3l7XY2NjNW/ePKWkpKigoEBPPvmk+vfvr3379oXk+VLx9papqamSpKZNm4Zs3u3bt6tfv35asmSJYmJi9NRTT2nChAlevfoq0rp1a73xxhtq2rSpNm/erOuvv17jx49XRkZGlWv01aeuPOHh4erZs6dmzpyp888/3+t6eX+WAlWZFXeFhYWe49J9Bo+GpUuXlvnvYdGiRUF/XgEAAIDaguAOAAAAACopLy9Pd955p9544w0lJCRowYIFuuaaawIaWzpgqSgo6dSpkyZMmOB5vWDBAvXp00dr166tXOGHbNu2Te+++66sVqsmTZrk9774+Hg999xzioiIkCT98ssvGjRokM8ea5Xx66+/ej4Hp556akjmXLRokfr06aPff/9dF110kT766KMq9aNr3ry53n77bXXs2FEul0uLFi1S165dNX369CqFmHa7XXXq1NEFF1wQ0P2tWrXSU089pSuuuEJRUVFe10OxWi7Q8G/79u3atGmTFi9erN9//91zfuHChfrqq6+0efPmkISbpeXk5Gjz5s3atGmT1qxZoyeeeEJTpkwpc8+vv/6qvn376p133tFPP/2kzZs3e3o4AgAAALUdPe4AAAAAoBL27NmjoUOHatOmTfrvf/+radOmqV69egGPDya4k6S+ffvKZrPp0Ucfldvt1ubNmzVo0CB1795dt956q84888yg6nc4HBo7dqzsdrseeughnXzyyeXe36pVK02cONHTh2379u16//33Q9LrbdWqVZ7jtm3bVmmu1NRUTZw4UatWrVJ8fLwmTpyoq666qsJxgfwe1K1bVy+99JJmzZqll156Sfn5+Zo3b54WLlyoTp066ZJLLlH79u110kknBVzv3XffrW7duvkM4SojFCvuAp3jlltu8ayULG3nzp264447JEnDhw/X3XffXeWaSqxYsUIPPvhghff98ccfeuihhzyvU1JS9OWXX4asDgAAAKC6ENwBAAAAQJC+/PJLPfjgg8rPz9dDDz2kgQMHltvPzpfS4Uig214OGDBAUVFRevjhhz3jly9fruXLl+v0009X37591alTJzVu3LjCuebMmaONGzfq+uuv16BBgwJ6/lVXXaWlS5dqzZo1kqRPP/20wuDu008/1S+//KJTTjlFTZs2VePGjZWYmCiTySRJ2rx5sxYvXixJatCggVq0aBFQLUdyOp169dVXNXv2bNlsNg0cOFAjRoxQTExMQOMD/T0wmUy67777dNFFF2ns2LHatWuXnE6nvv76a3399deSpHr16qlt27Zq2rSpTjrpJLVs2dJvIBlIqBiMUAR3gX4uaiIIu/rqq3X11Vcf9ecCAAAARwvBHQAAAAAEyGaz6YknntArr7yiTp06ady4cWrWrFml5iodsAQTtvTp00dJSUm67777lJmZ6Tn/xx9/aOLEiZKk5ORk3Xrrrbrxxht9zrFq1So9//zz6tixo8aPHx9U3Y888oh69+4th8PhCd/Kc8455+jAgQNavHixNmzYIEkyGo2KjIyU0+lUQUGB597rrrsu6ABUktauXatp06Zp06ZN6tatm0aNGqXmzZsHNUdJT7TSvdrKc9555+n999/Xs88+q1dffbVMT7W0tDStWLFCUvHWn9dee22VVxIGonTgtmTJEi1ZsqRS89AfDgAAAKg5BHcAAAAAEIANGzZo3LhxysnJ0VNPPVWlfmlS2bAu2KCkY8eOWrp0qUaNGqX169d7zlutVt100026+OKL/a66+/XXXzVy5EhddNFFeuqpp2Q2B/fPwlNOOUU9e/bUhx9+qAEDBlR4f/369XXDDTfohhtu0IYNG/Too4/qt99+U25ubpn7GjdurFtuuSWoWnbs2KEnnnhCn3/+uTp16qQlS5aoTZs2Qc1RoqRfX15eXsBjoqOjNXbsWPXv318zZszQ8uXLPT3m6tSpo2nTpqlLly6VqqcySgd33bt318iRI4MaP3bsWP36668h610IAAAAIHgEdwAAAABQjvz8fM2cOVMff/yxbrnlFg0YMEDh4eFVnrcqwZ0kJSUl6bXXXtObb76pWbNmebaKPOOMM/yO2bx5s+644w5deeWVmjBhQkAr5nx5+OGH1bt3b3Xq1CmocWeffbYWLVqkCRMmlFkNlpiYqBdffFEREREBzbN7924999xz+uCDD9S1a1e99957Ov3004Oq5UglYVV+fn7QYxs3bqzZs2dr+/btWrRokd577z3Nnj1bF1xwQZVqClbpP0cxMTFBrzos+fwXFRWFtC4AAAAAgSO4AwAAAIByOJ1OJSQk6PPPP1d0dHTI5i29OqqyQYnRaNSNN96oyy67TNu3by83tPv+++9133336a677vK7hWag6tatG3RoV8JsNuvRRx/Vrl27tHbtWnXq1EmPPfaYkpKSAhr/2muvaf78+bryyiv1ySefKCUlpVJ1HKlki8xAt8r05aSTTtIDDzyg++67TxaLJSR1BaMkfDQajWrYsGHQ4yMjI3XFFVeod+/eoS4NAAAAQIAM7pJ9PAAAAAAAR81pp52mpk2bql+/frr22mtDGgoeadOmTZo8ebKmTp2qk046qdqeE4y///5baWlp6tChQ1Dj9u3bp8TExEqvFvSnXbt2uvLKK3XzzTerUaNGIZ37aDlw4IDee+89XX755QEHoaU5nc6Qf14BAAAABIfgDgAAAABqwJo1a4IOrSrL6XTK7XYH3c/uRJKZman4+PiaLgMAAADACY7gDgAAAAAAAAAAAKgFjDVdAAAAAAAAAAAAAACCOwAAAAAAAAAAAKBWILgDAAAAAAAAAAAAagGCOwAAAAAAAAAAAKAWMNd0AQAAAAAAAAAAAKjY+vXr9dFHH2n9+vXas2eP8vPzFR0drYSEBLVu3VodO3ZUjx49ZLVaa7pUnwoKCvTRRx9p7dq1+v3335WZmam8vDxFRkYqMTFRbdu2VefOndW1a1cZjZVbe7Zv3z69//77+v7777V582ZlZWXJbDYrLi5OrVu31sUXX6wrrrii1n6ODG63213TRQAAAAAAAAAAAMC3jRs36tFHH9Xff/+tXr16qVOnTmrQoIHsdrv27Nmj1atX64MPPpDdble9evU0adIkdenSpabLLuP111/X7NmzlZ+fr+7du6tDhw5q3LixYmJilJubq61bt+qzzz7Td999pyZNmujRRx9V+/btA54/Pz9fs2bN0ptvvqkLLrhAXbt2VfPmzWW1WrV//36tXbtW77zzjvLz85WUlKTHH39cHTt2rMZ3XDkEdwAAAAAAAAAAALXUK6+8omnTpumcc87Rk08+qaSkJJ/3/fPPP7r99tu1Y8cOGQwGjR8/Xv379z/K1XpzOp0aPXq0Pv74Y51yyil6/vnn1aRJE7/3r1ixQvfee6/sdrseeeQR3XjjjRU+IyMjQzfffLO2bdum+fPn67zzzvN53969e3XLLbfo77//ltFo1NSpU3X11VdX+r1VB4I7AAAAAAAAAACAWmjRokUaP368mjVrpqVLlyoiIqLc+3fs2KHevXuroKBAZrNZb7zxhtq2bXuUqvXt0Ucf1auvvqr4+Hh98MEHqlevXoVjPvzwQ40ePVoGg0HPPPOMunXrVu79Q4YM0XfffacuXbroueeeK/fe1NRUXXHFFcrPz5fZbNaCBQvUrl27oN5TdarcBqEAAAAAAAAAAACoNmlpaZo+fbokacCAARWGdpLUtGlTXX/99ZIkh8OhGTNmVGuNFdm4caNee+01SdI999wTUGgnSVdeeaXOO+88ud1uTZo0SXl5eeU+47vvvpMkhYWFVTh3SkqKBg4cKKn4czRu3DjVpjVuBHcAAAAAAAAAAAC1zLJlyzyBVdOmTQMed/nll3uOf/jhB+3evTvktQXqzTfflNvtVlhYmHr37h3U2Ouuu05ScYC5YsUKv/f9/PPPnuOffvpJ+fn5Fc5dupbt27dr3bp1QdVWnQjuAAAAAAAAAAAAapmSVWSStGXLloDHtWrVSiaTyfP6xx9/DGldwfj+++8lSaeccorCw8ODGlu6T93atWv93udyuTzHe/fu1fLlyyuc++STT1ZkZKTn9R9//BFUbdWJ4A4AAAAAAAAAAKCW2bdvn+d4zpw5Sk9PD2ic1WpVTEyM5/X+/ftDXlug0tLSKj22fv36Ac1zwQUXlAkqk5OTA5o/Ojrac2y32ytRYfUguAMAAAAAAAAAAKhlSvddy8nJ0VtvvRXwWIvF4jkuvSLtaLNarZKKVwxmZWUFNdbhcHiOy1ut16pVK73yyiu6+eab9dhjj6l9+/YBzZ+bm+s5btiwYVC1VSeCOwAAAAAAAAAAgFqmTZs2ZV4XFhYGNM7pdJYJyUqvXDvaWrRoIUmy2Wx64YUXghq7Y8cOz/Hpp59e7r3nnXeexo4dq2uuuSaguf/9919PLzyj0VhmW86aZq7pAoATjcvlUkFBgdd5s9ksg8FQAxUBAAAAAAAAAGqb4cOHKycnR7/88otSUlJ07bXXymazVThu06ZNZbZ+bNWqVUDjqkOXLl20YcMGSdKCBQt02mmn6bLLLvN7v9vt9qy0K+lVZzQadfnll4e0ro8//thz3LVrVzVo0CCk81cFwR1wlBUUFGjTpk01XQYAAAAAAAAAoJYbMmSI5zgjI0MZGRkVjlmyZInnuGHDhsrLy9Ovv/5aLfVVpFWrVoqLi9OBAwfkcrn0wAMP6LffflP37t3LHZeXl6fXX39dUnGwlpiYGLKadu3apXnz5kmS4uLi9OCDD4Zs7lBgq0wAAAAAAAAAAIDjgNPp1KpVqzyvu3btWoPVSJGRkRo6dKhMJpOk4voWLlyomTNnKj093ecYp9Op5557Tjk5OTrllFPUv3//kNWzefNm3XLLLcrOzlZKSormz5+v5OTkkM0fCqy4AwAAAAAAAAAAOA6sWrXKE4jVq1evxoM7qbhX34gRI/S///3Ps4Xn+vXr9euvv6pr16668sorVadOHUnSwYMH9dxzz+mXX35R27ZtNWLECFmt1ko/u7CwUOnp6fr999/12Wefafny5QoPD9cdd9yh2267TTExMSF5j6FkcLvd7pouAjiR5OXlsVUmAAAAAAAAACCk8vLyNHr0aGVnZ8toNOrhhx/WaaedVtNlefz777+aM2eO/vnnnzLnzWazzj//fDVt2lQfffSRHA6HrrvuOl166aUyGAySirfcjIqKCup5Cxcu1GOPPVbmXJMmTTRjxgy1bdu2Su+lOhHcAUcZwR0AAAAAAAAAINSef/55ffPNN5KKe+N169athivy5nA49Pjjj+uPP/7weT0iIkITJ05U48aNy5yvTHCXmZmp7du3Kzc3V9u3b9fGjRu1cuVK5efn6z//+Y8efPBBtWjRotLvpboQ3AFHWVFRkX777Tev861atZLFYqmBimqWw+HQn3/+WebcaaedJrOZnXwBAABQ/fh6FAAAADUtFF+TLl26VOPGjZMkjR49WoMGDQppjaGwZcsWjR07Vtu3b9fQoUNls9m0ePFiHThwoMx9kZGRGjhwoC688ELPudatWyssLKzKNWRnZ+v555/X/PnzZTabNXr0aA0ZMqTK84YS/xIBjrKSpb1HslgsVdqr91jl6/NhsVhOyBATAAAARx9fjwIAAKCmVfVr0h9//FGTJ0+WwWDQuHHjdOONN4a6xCpbvny5xowZI0l67rnndNFFF0mShg8frjfffFNz5szxBHj5+fmaM2eOtmzZoiFDhshoNPr9vnqw6tSpowceeEBJSUl6/PHH9fjjjysrK0ujRo0KyfyhYKzpAgAAAAAAAAAAABC8v/76S3fddZdcLpemTZtWa0O7UaNGqaioSDNmzPCEdpIUFhamwYMHa8WKFerfv3+ZgO6LL77QnDlzqqWmIUOG6Pzzz5ckzZkzR19//XW1PKcyCO4AAAAAAAAAAACOMVu3btWQIUOUm5urmTNnqk+fPjVdkpetW7dq7Nixcjqd6tevn9++e9HR0ZowYYJeeOEFRUdHe86vXr1aH374YbXUdvvtt3uOp0+fLpfLVS3PCRbBHQAAAAAAAAAAwDFk27ZtGjRokHJycjR79mz16NGjpkvyacqUKSooKFBkZKRGjhxZ4f0dOnTQpEmTVLduXc+5d955R3v27Al5bR07dlRkZKSk4oDx22+/DfkzKoPgDgAAAAAAAAAA4Bixfft2DRw4UNnZ2XrmmWfUtWvXmi7Jpy1btmjNmjWSpMsvv1xxcXEBjWvYsKHGjBnj6fFns9n0xhtvhLw+k8mk008/3fN6xYoVIX9GZRDcAQAAAAAAAAAAHAN27dqlwYMHKysrS08//bQ6d+5c0yX5tXLlSs9xsHU2a9ZMvXr18rz+4osvQlZXaQkJCZ7jP//8s1qeESyCOwAAAAAAAAAAgFouLS1NQ4YMUUZGhmbNmlWrQztJ+uuvvzzHp512WtDju3XrJpPJJEnauXOn8vPz/d67detWffLJJ8rOzg7qGSWr+iQFPba6ENwBAAAAAAAAAADUYrm5ubr11lu1a9cuTZ8+PeDtMdPT07Vu3bpqrs63rKwsz3FiYmLQ42NjY9WwYUPP64MHD/q874svvlDv3r11zz336MYbb5Tdbg/4GXl5eWWeVxsQ3AEAAAAAAAAAANRSDodDI0aM0KZNmzRhwgRdfvnlAY/94IMPNHPmzGqszr+IiAjPscPhqNQc4eHhnmN/PfImTpzoCeu2bNmir7/+OuD509PTPcdNmjSpVI2hRnAHAAAAAAAAAABQS02ZMkXffvuthg8frn79+gU1ds2aNTUWSJ188sme4927d1dqjpLtKxs3biyr1ep1PSMjQ/v37y9zLjc3N6C5XS6X/v77b8/rCy+8sFI1hhrBHQAAAAAAAAAAQC20ZMkSvfXWW7rqqqt09913BzV2z549WrNmjZo2ber3no8//lg9evTQeeedp5EjRyozM7OqJXtcccUVnuNVq1YFPf7AgQNKS0uTJL9bg9apU6dMnzqLxaL//Oc/Ac2/fv16FRQUSJISEhIC3n60uhHcAQAAAAAAAAAA1DKbN2/WlClTdNZZZ2nKlClBjXW5XJo0aZLsdruaNWvm856ffvpJ9913n7Zt26aDBw/q008/1YgRI+R2u0NQvdSyZUv16dNHkrRgwQJPSBaoL7/8UpIUGRmpgQMH+rzHbDbrkksu8bxu37696tWrF9D8b731lud4xIgRioqKCqq+6kJwBwAAAAAAAAAAUIs4HA7df//9MpvNmjVrls9tIv3Ztm2b7rzzTq1cuVKS/95tK1askMvlKnNu3bp1+ueffypd95EefvhhnX766dq3b58eeOABr+f5s2fPHi1btkwGg0FDhgxRYmKi33tHjx7tCd0CDR2//fZbffTRR5Kkyy+/POgtSKuTuaYLAAAAAAAAAAAAwGEfffSRNm3aJIvFoquuuirgcTabTfn5+WXO+Vtx50+g4VogYmJiNH/+fN1111369NNPlZubq2nTpql+/fp+x2zbtk1PPvmkHA6HhgwZUuHWl02aNNELL7ygYcOG6bvvvtNbb71VbhD3+eefa8yYMXK73erevbsee+yxSr+/6kBwBwAAAAAAAAAAUIvk5ORIkux2u7Kysio9T3x8vGJiYnxe69q1q+bPn18mqGvZsmXQQV9F6tatq1deeUUvv/yy5s6dq65du6pnz576z3/+o5SUFIWHhys7O1tbt27VV199pdWrV6tp06a65557dMoppwT0jHbt2undd9/VhAkTNGHCBE9fwJYtW6pu3brKzs7Wpk2btHz5cm3YsEFxcXEaOXKkBg0aJIPBENL3W1UEdwAAAAAAAAAAAMehpk2b+r12zjnnaObMmXr66ae1b98+tWvXTuPHj5fJZAp5HSaTSbfffrtuvPFGLVu2TN9++61mz56tjIwM2e121alTRw0aNNBZZ52lCy+8UGeccUbQz2jSpInmz5+vX375RR988IHef/99paamKi8vT9HR0YqLi9MZZ5yh6667Tj169FBkZGTI32coGNyh6jIIICA2m02//vqr1/k2bdoEtU/x8cJut2vjxo1lzp155pmyWCw1VBEAAABOJHw9CgAAgJrG16SH8f1zyVjTBQAAAAAAAAAAAAAguAMAAAAAAAAAAABqBYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAYI7AAAAAAAAAAAAoBYguAMAAAAAAAAAAABqAXNNFwAAAAAAAAAAAHCiMhgMSkxMVFhYmAwGg9xut4xG1l2dqAjuAAAAAAAAAAAAaojZbFbTpk1rugzUEkS2AAAAAAAAAAAAQC3AijsAAAAAAAAAAIAa4nLYZNv3j2xpO+W2F8pgCZe1XmNZk5rJaLbWdHk4ygjuAAAAAAAAAAAAjrLC3VuUs+5j5f25Rm6n3eu6wWRR1GkdFNuup8KTW9RAhagJBHcAAAAAAAAAAABHiauoQBlfLNTBDZ+Xe5/baVfub6uU+9sqxZzdTQldBskYFnGUqkRNoccdAAAAAAAAAADAUeA4mKHU+WMrDO2OdHDD50qdP1aOgxnVVBlqC4I7AAAAAAAAAACAauYqKtCe1yfJnpFaqfH2jFTteWOyXEUFIa4MtQnBHQAAAAAAAAAAQDXL+GJhpUO7Evb0Xcr48pUQVYTaiOAOAAAAAAAAAACgGhXu3hL09pj+HPzpMxXu3hKSuVD7ENwBAAAAAAAAAABUo5x1H4d4vk9COh9qD4I7AAAAAAAAAACAauJy2JT355qQzpn353dyOWwhnRO1A8EdAAAAAAAAAABACLiddtnSdqpo73bPOdu+f+R22kP/nP07QjonageCOwAAAAAAAAAAgAC53W6/1/a8OUW7XrxHBdt+9pyzpe2sljps+/+tlnlRs8w1XQAAAAAAAAAAAEBt43bYZT+wV/aMVNkydsuemSp7eqrsmbvVeNj/ZIqM9RpjiU9W4Y7fJdPh+MVtL6ye+uxF1TIvahbBHQAAAAAAAAAAOCG53W658nNky9gle8Zu2TNSZc/YLVtGqhxZ+yW3y+c4e8Zu38FdQnLxgdPhOWewhFdL7QZLWLXMi5pFcAcAAAAAAAAAAI57jpwMFe3+W7aM1DKr51yFeUHPZcvYpfDGrbzOW+NTJEn27P2Hz9VrXPmiy2Gt36Ra5kXNIrgDAAAAAAAAAADHPLfbLWdetoxmi4zhUV7X8zatUcbn80PyLHvGbp/nLYnFwV3Rnq2ec9akZjKYLHI77SF5tiQZTBZZ6zcN2XyoPQjuAAAAAAAAAADAMaO83nOuwjwl9rhDsedc6jXOkpASshrsGak+z5vr1JNMZtnSdsplL5LREiaj2aqo0zoo97dVIXt+1GkdZTRbQzYfag+COwAAAAAAAAAAUKuUrJ6zZ6YG1XtO8h+qhTa4873izmA0qfEds2WOTZDBZPGcj23XM6TBXWy7HiGbC7ULwR0AAAAAAAAAAKhRzrxs5fz8RZV7z0mSzU+oZq6TKIPZKrfDFtyEBqMscUmyxCfLkpgiS3yKrImN/N5uiWvgdS48uYVizu6mgxs+D+7ZPsScc6nCk1tUeR7UTgR3AAAAAAAAAACg2pRePWcwmhTeqJX3PU6HDnz1ekie52/FncFglCW+oWz7d/i8bgyPliUhWZaEFFkP/WpJSJElLqnM6rnKSugySIX//uG3vkBYEhsp4ZKBVa4FtRfBHQAAAAAAAAAAqDKv3nMZqcUfpVbPRZzcVg1vGO811hQTL4MlXG57YZXrcGSnye2wy2D2Dtus9ZrI7bAVr54rCeYSkmVNSJExMlYGg6HKz/fHGBahhjdO0J43Jsuevivo8ZbERmrYf7yMYRHVUB1qC4I7AAAAAAAAAAAQkDK95w5taRlo7zmpnN5wBoMsCcmy7d0WgiJdsh/YI2u9Jl6X6vUeWa3hXEXMMQlKGfy4Mr5YGNS2mTHnXKqESwYS2p0ACO4AAAAAAAAAAEC50pe/pKLdf1ep95xUvBrOZS+S0RLmdS3o4M5glLlufVlLrZwr3uayePWczyE1GNqVMIZFqF7PoYo5q4ty1n2ivD+/k9tp97rPYLIo6rSOim3Xg552JxCCOwAAAAAAAAAATkBHrp5z5B5Q/IXX+7y3KHWLivb8HZLn2jP3KCypmdd5a3yKfEWCXr3n4lNkSQxd77maEp7cQuG9W8h1+VDZ9u+Qbf+/ctuLZLCEyVq/iaz1m8pottZ0mTjKCO4AAAAAAAAAADiOFfee23NoS8tSvecyUuUqyi9zb932vXxux2hJSA5dcJeR6jO4C0s+RZGnnFscysUfvd5zNc1othaHeKyqgwjuAAAAAAAAAAA45lW191wJe+ZuhTVs7nXekpASkjqN4VFyFRX4vBZ5yjmKPOWckDwHOFYR3AEAAAAAAAAAcAw78M1iZf/wYZV6z5WwZ4QguKug99zxvHquMhwOh1JTU2W1WmU0GuVyuVS/fn2ZTKaaLg01gOAOAAAAAAAAAIBaxO12y5WfI1vGLtkzdh/6SFXcxf19bjFpMJlCEtpJki0j1ed5a0Ky1zljeJQnmLMmHN7e0hLXQAbzsdt77mhzu91KT08vcy4xMZHg7gRFcAcAAAAAAAAAQA0o7j23V/aM1OLec6W2ufQVxEWd3tFncBeqbSyl4v5zvpjjG6pO+16sngOqGcEdAAAAAAAAAADVJFS956TibSx9CUVw51k9l9jI93WzVQldB1X5OQDKR3AHAAAAAAAAAEA1Kfj7J+19+7GQzOVvNZwlLkkyGCsOAb16zx3e5pLVc0DtQHAHAAAAAAAAAEAA/PWes2WkKvq0jorvfKPXGHN8w5A93+ZnxZ3BZJElLkn2zD2S6D0HHMsI7gAAAAAAAAAAKMXttMueudezpaU9M9UT0vnqPSdJtvSdPs9b6taXjGbJ5ahyXY7MPXK7nDIYTV7XEi69RQZLGKvngGMcwR0AAAAAAAAA4ITkdjlVuGuT1+q5YHvPSf77zxlM5uLVcH62uayIMTy6eLVcQoqsCclyOx0+g7vI5mdXan4AtQvBHQAAAAAAAADguOV22OXMz5E5NsHn9T1vTJacVV8NZz+wtzhUM3l/292SkFx+cGcwyhKXJEt8Mr3ngBMcwR0AAAAAAAAA4Jjm3Xsu1bPNpSNrvyxxSWo87H9e4wxGkyzxDWVP873NZVBcTtmz9suakOx1yZKQImmd1+o5S3yKLIkpssQlyWCi9xwAgjsAAAAAAAAAwDHC7bDLfuCI3nPpqbJn7vbbe06S7Af2ye20+wzHrAkpoQnuJNkzUn0Gd3Xb91Ld9r1YPQegQgR3AAAAAAAAAIBaKe+v71W4c1OVes9Jktwu2Q/skzWxkdclS7x30BYIr9VzCSkKT2np815TVJ1KPQPAiYfgDgAAAAAAAABw1B1ePZeqyFPOlcHsvRou949vlffHtyF5nj0j1Xdwl5jifxC95wAcZQR3AAAAAAAAAIBq4Xa75czLLt7S0kfvuZLVc41ue0rW+k28xld2NZwv9oxUn+ct8Sn0ngNQaxDcAQAAAAAAAACqpPTqOVvG7oB7z5WwZaT6DO6sCeWshguSLWO3z/Nhyaeo6b0LWD0HoFYguAMAAAAAAAAABC1/2y/KWfdR1XrPHeJ3NVwlgrvi1XMlW1qW2uIyLsnn/QR2AGoTgrta5q+//tK7776rH374Qbt27VJBQYGioqJUv359tW3bVt26ddOFF15Yo/8zKSoq0llnnSWXq/L/I166dKlOO+00n9cuueQSpab6/h91RV555RW1b9++0nUBAAAAAAAAJ7ojV89FNGut8JSWXve5CnOV//f6kDzTf3DX0PeA0r3nElOKt7ak9xyA4wDBXS2xe/duTZ06VWvWrFH//v01btw4NW7cWC6XS7t379Y333yj1157TYsXL9YZZ5yhp556Sk2bNq2RWrdu3Vql0C4iIkL16tULYUWH+QsDAQAAAAAAABwWaO85SdJ/r/cZ3FVmNZw/dj/bWBqtEYpscZ6METFeq+foPQfgeERwVwv88ssvuuOOO5SQkKCPPvpIDRuW/SmSpKQknX322erbt6+GDBmi33//Xddff72WLFmiRo0aHfV6t2zZUua11WpVUlKSzOby/zjl5uYqLS1Nd955pxITE8u9t27duoqLiwuqrnr16ik2NjaoMQAAAAAAAMDxrKq95yTJlulnNVy8n9VwwTIY5Xa7/V5u0PfB0DwHAI4BBHc1LDMzU0OHDlVWVpZef/11r9CutAYNGuipp55Snz59dODAAY0ZM0ZvvPHGUay2WElwFx0drYceekhXXHGFwsLCKhx35513aseOHRoyZEiF9w4YMEB33313lWsFAAAAAAAATkSOnHTtfm1ClXvPSZI93XdwZ7SEyRybKEdOekDzlNd7jtVzAFCM4K6GzZkzR5mZmWrVqpWaN29e4f2tWrVSp06dtGrVKq1fv14//PCDzj///KNQ6WF///23TCaTXnjhBZ133nkBjVm7dq2++OILLViwQBYL/xMGAAAAAAAAglW8em7PoS0ti7e3NMcmKv7iG7zuNUXWCUloJ0n2zD1yu90++8ZZElPKBnc+es9ZE1NkiU+m9xwABIDgroZ9+umnkiS73R7wmI4dO2rVqlWSpJUrVx714G7Lli3q3bt3wKGdy+XStGnTdNFFF6lDhw7VXB0AAAAAAABw7CrTe+7QlpZ+e89JstZv6jO4M5gtMtetL8eBvVWvyV4o58FMmWMTvK7FtOmsiKatWT0HACFCcFeD8vPztW/fPknS1q1btWrVKl144YUVjmvcuLHn+N9//622+nzJz89XamqqbrjB+4sBf959911t2bJFM2fOrMbKAAAAAAAAgGOHr9VzJR+uovyA5yleDeeSwWD0umaJT65acGcwyly3vqwJKXI7inzeEt36v5WfHwDgheCuBhUUFJR5PX369ICCu4iICM+xzWYLeV3lKSws1IABA9SmTZuA7i8oKNDs2bPVq1cvnXLKKdVcHQAAAAAAAHBs2PXSfbJn+O4dFwy3wyZHTrosdep7XbMmJKtg608VzlHce66455w1IVmW+JTibS5ZPQcARx3BXQ2Kj49XvXr1lJaWJkme1XcVOXDggOe4YcOG1VKbP/Hx8XrkkUcCvn/+/PnKyMjQ0KFDq7EqAAAAAAAAoOaUXT2XKvuhFXSO7P1qMmKuDEaT1xhLfMOQBHeSZE9P9RncWRJSDr/w0XvOkpAsa0IKvecAoBYhuKtBBoNBs2bN0qxZs5SVlaWBAwcGNO63337zHJ966qnVVV6VZWZm6uWXX1bPnj3VrFmzmi4HAAAAAAAAqDRfvedsh3711XuuhCNrvyzx3j98b0lIlraEpjZ75m6p+dle5yOan6Wka8fQew4AjiEEdzXsvPPO02uvvRbw/W63W5999pkkyWw2q0ePHtVVWpW98MILys3N1a233lqledauXauPP/5YGzZs0N69e1VYWKh69erpnHPOUd++fXX++eeHqGIAAAAAKN/69ev10Ucfaf369dqzZ4/y8/MVHR2thIQEtW7dWh07dlSPHj1ktVprutQKbdq0SR9//LF++OEH7dixQwcPHpTFYlGjRo3UqVMn3XTTTUpOTg5oru+//z7gH0b15/nnn9cll1xSpTkAIFTs2ftl27OtzOq5YHvPeebK2O0nuEvxcXeASq+eS0hRWIPmPm+z1KnvcyUeAKD2Irg7xqxcuVKpqcVL6Lt27ar4+Pgarsi3ffv26c0331S7du3UqlWrSs3hdDo1fvx4LVmyRFJxb7/4+Hi5XC6lpqYqNTVVH374ofr27auJEyfKZPLecgAAAAAAQmHjxo169NFH9ffff6tXr166++671aBBA9ntdu3Zs0erV6/WBx98oKVLl+qJJ57QpEmT1KVLl5ou26edO3dq6tSpWrlypdq1a6devXrp5JNPVnR0tPbu3auXX35Z8+bN01tvvaWpU6eqZ8+eR6Wu1q1bH5XnAIB0ePWcMSxCRkuY1/WDP32mrO/eC8mzbJmpitS5XuetAQR3xb3nSra0TD50zOo5ADieEdwdQ5xOp2bPni1JioyM1OjRo2u4Iv9eeOEFFRUV6aabbqr0HOPGjdOyZct0xx136KqrrtLJJ5/sufbjjz9q8uTJ+uuvv/T222+roKBAM2bMCEXpNcbhcJyQe4k7HI6AzgEAAADVIZCvR1977TX93//9n84++2x9+OGHql+/7MqF1q1bq1u3brr55ps1bNgw/fvvv7rrrrv08MMPq1+/ftVaf7C++eYbjRkzRhaLRc8884w6d+5c5vqpp56qU045Rd27d1d+fr7uu+8+WSwWXXzxxeXOW/I5i4yMrNRqw4SEBMXFxclutwc9FgDK43bY5cjaK3vmHjkyUot/zdwte+ZuuYvyldhntCJanOc1zlgnKWQ1FO3f6fvvt9hD/z8xGGWuW1/m+BRZ4hvKHJ8sS0KyzPHJMkbE+Px+kcMlycXfmcDxgu+RHnaivu/SDG63213TRSAw8+bN0/Tp0yVJM2bM0JVXXlnDFfm2b98+de3aVZGRkVq9erUsluB++ueSSy6R1WrVvn37NH/+fJ111lk+78vLy9N1112nrVu3SpL+7//+T717965q+dXOZrPp119/rekyAAAAAATgiy++0Msvv6wGDRpo2rRpCgvzXpVR2t69e/Xggw+qqKhIJpNJEyZM0CmnnHKUqi3fL7/8opkzZyo6OloPP/ywUlJ8r/TIzMzU8OHDPa9POukkTZ06tdy5//jjDz366KO64447dNFFF4W0bgCokNstgy1PprwMGfMyZcrL8Bwb87NkkP9vf+a37Kyikzt4nTdlpSp27cKQlGePa6zc9j5+uN3tljEvQ67IOMnITlIAUJ42bdocE9vRhwIr7o4Rv/32m5588klJ0tixY2ttaCdJL7/8smw2m6699tqgQ7sS27dv12OPPeY3tJOkqKgoTZw40bOqb9asWbriiivYMhMAAABASGRlZemNN96QJHXv3r3C0E6SGjRooEsuuUSffPKJnE6n3nzzTY0bN666S63Qvn379Mwzz8jpdGrEiBF+QztJOnjwYJnXgbxvADiaDAXZCtv9myekM+ZlyOgoqtRcprxMn+ddUZVrT+M2GOSKiJMzKl6uqAQ5oxLkjPHTY85gkCs6sVLPAQAcvwjujgH79+/X8OHD5XA4NH78eN144401XZJf2dnZWrx4sSTpiiuuqNQcQ4YMUXp6uq655poK7z3//PPVqlUrbdq0Sbt379bq1av56U4AAAAAIfHtt9+qoKBAUnEgF6gOHTrok08+kST9+eefSk9PV2JizX5jdu7cucrPz9fZZ59dYR/ypk2b6oorrtAvv/yi2NhY3XDDDUepSgBQqdVzmXKbw+SM9d6y0mjLU8SWr0PyOFNehu8yLBFyWSNltOX7vO4yhxcHc9EJZUI6Vs8BAKqK4K6Wy8nJ0e233660tDT93//9n3r16lXTJZXr7bffVn5+vurUqaOzzz67UnME2xfv4osv1qZNmyRJ33//PcEdAAAAgJD47bffPMc7d+5U27ZtAxrXrFkzGY1GuVwuSdKmTZvUqVOnaqkxED/99JP++OMPSQr430v9+/dX//79q7MsACc6l0PGvAOHtrXMlLH09paOQklSUXIb5Z/pveuUMyohZGUY/QR3kuSMrid3YU5xIFcSzEXFyxmVILc1UvLRew4AgKoiuKvFDh48qJtvvlnbtm3TM888o0suuaSmSyqX2+3WokWLJEkXXHCBjEbjUXnu6aef7jn+888/j8ozq8Npp51W6a1Fj2UOh8PzTYQSp59+usxm/noCAABA9Svv69GS1XaStGzZMt1+++0Br5yLjY1VVlaWJCk8PFxnnnlmyGoOVknbBaPRqH79+ik6OjrkzygsLP4me+PGjWv0vQKoXdxut1z52bJn7JYjc7fsmXvkyCw+dmTvl9z+e89JUowKdYqfv1NS18TJlXegyjUa7QU6o8VJMkXEeNffprUMhqPz/S0AJza+R3qY3W4/pr/PHwon3u/6MSI7O1s333yztm7dqhdeeEEdOng3ya1tfvjhB+3cuVOSdO655x615zZq1MhzfOBA1b9gqylms/mEDO584XMBAACAmuTr69GcnBy98847Gj58eEBzlB5vMBhq7OvbHTt26Mcff5QkNW/eXHFxcdXynJJvKplMJr6WB05wbrdLacuelT09VfaMVLmKfG81GQhH5m6ZzWYZfKxssyYmqzCY4M5glCUuSZb4ZFkSUg59JMuakCJjZKzPZwBATTpRv0fqruCHOk4EBHe10IEDBzRkyBD9+++/eumll3TeeefVdEkB+eyzzzzHp5566lF7blRUlOc4P7/yXwwCAAAAQGlt2rTR5s2bPa9LVpVVxOl0elbbSVL9+vVDXVrAVqxY4Tk+5ZRTaqwOAMc+t9stZ1627JmpsmfslstWoLrtvVu6GAxGFWz/Vc6D/regDJSrME+u/ByZoup4XbMkpKhwx+9e543h0bIkFIdz1oRSIV1ckgymE+8b4ACAYw/BXS1TstKuJLQ755xzarqkgH399eGmwM2bNz9qzy3pGyFJkZGRR+25AAAAAI5v9957r3Jzc7VhwwY1atRIN9xwQ0DjNm/eLLvd7nndpk2b6iqxQt99953nuHHjxjVWB4Bjh9thl/3AXtkzUmXL2F0c1KWnyp65W67CPM99Bmu46px/pZ/VcCkqCEFwJ0m2jF2K8BHchTc6Vc6cDFbPAQCOOwR3tUhubq5uueUW/fPPP5o3b57OPvvsmi4pYP/8849nm0xJqlu3bqXmmTNnjl555RUlJSXpxRdfVL169SocU3qVXWxsbKWeCwAAAABHSkxM1NNPPx30uNKr3Jo1a3ZUf7DxSL/++qvn+Mh/X/32229699139eOPP2rfvn0KCwtTYmKizjjjDF166aXq1KlTlb75vW/fPi1btkzr1q3T9u3blZWVpcjISDVq1EhdunRRnz59VKeO9zfjAVS/4t5zObJl7JI9Y7fsGcWr6GwZqXJk7ZfcrornsBXKmXtA5ph4r2uW+GQVbN9Y5TqN4dFyFeT6vBbT5mLFtLm4ys8AAKC2IbirJWw2m+68805t2bJFc+fODSi0s9vtGjVqlJ544glFREQchSr9++mnnzzHYWFhldp7d/369XrqqackSRkZGXrnnXc0dOjQCsft27fPc8zWLwAAAABqksPh0Hvvved53b9//xqrZe/evcrOzva8LgnJDh48qIkTJ2rZsmVeY/bt26fff/9db7/9ttq3b6/HHnusTF/xQC1atEhTp05VUVFRmfNZWVnavXu3fvjhB82dO1ePPvqoOnfuHPT8ACov/fP5yt24sszqucqyZ6T6Du4SUgKfpHTvucQUWeJZPQcAOLER3NUCbrdbDzzwgNavX6/nnntO559/fkDj/vzzT61Zs6bGQztJ+vnnnz3HNptNDofD05w8UBs2bCjz+sh/4PmzdetWz/GZZ54Z1DMBAAAAIJTee+89paamSlJQ22tWh3///bfM66ioKGVmZmrgwIHasmWL2rRpowEDBqh9+/ZKSEhQenq6Pv30U/3vf/9TXl6evv/+ew0cOFCLFy9WQkJCwM9duHChHnvsMbVv315XX3212rZtq6SkJNlsNv3555+aN2+eVq1apfT0dA0fPlwzZ87UZZddFuq3D5wwyvSeO7SlpT1jtxJ73CFzrI//dt3ukIR2UnFwF9HMeztgX8EdvecAAAgMwV0t8Oyzz+qjjz7S448/rosuuijgcZ9++qmaNGlSjZUFrnR45na7lZ6ergYNGgQ1R+ltLi0Wi3r37h3QuJKeDVarVRdffHFQzwQAAACAUMnJydGsWbMkSSaTSY8//risVmuN1bN///4yr61Wq0aNGqWtW7fqwQcf1KBBg8qsZElOTtbNN9+szp0768Ybb1RGRoZSU1M1ZswYvfzyywE987vvvtMnn3yiyZMn6/rrry9zLTIyUh06dNAFF1ygadOmaeHChXI4HHrggQd0+umn15p/3wK1lVfvuYzU4o8jes+VsKXv8hncWROSQ1aTLWO3z/PW+k1Vp30ves8BAFAJBHc17Ouvv9b//vc/DRs2TH369Al4XGpqqt566y3997//9Xl99+7dmjhxotatW6dGjRrpwQcfVMeOHUNVtpfS/e2k4u1hgtWxY0cZjUa5XC5dfvnlatasWYVj9uzZo3Xr1kmSevbsWeneegAAAABQVVOnTlV6erok6eGHH1a7du1qtJ6srKwyr5ctW6a1a9dq4sSJ5a4EPOmkk/TUU09p4MCBkqTVq1dr9erV6tSpU4XP/PDDDzV8+HCv0K40g8GgMWPGaN26dfrjjz9UUFCgKVOmaO7cuYG9MeA45m/1XDC950rYM1Klk9t6nQ9qG0s/ilfPpchcp57P6+boukroOqjKzwEA4EREcFeD0tLSNHbsWF1wwQUaMWJEwOM2bNigsWPHKi8vz+9PJI4dO1Y//PCDJGnz5s2688479cknn6hhw4Yhqf1IpfsmVFajRo3Ur18/vfHGG4qMjAxozOzZs+VwOBQTE6P77ruvyjUAAAAAQGW8++67Wrp0qaTif4/deOONNVuQpPz8/DKvP/zwQ3Xv3j2g7Tvbt2+vbt266fPPP5ckvfLKK+UGdyWraE455RQNGzaswvnNZrOGDh3q+bfwN998o3/++SegH+AEjmcHf/lS6R89F5K57BmpPs8HHNz56D1nTUyRJT6Z1XMAAFQjgrsa9Mwzz+jAgQP6+++/1bNnz4DG5OTkKCMjw/PaX3D322+/lXldUFCgX3/9tdqCO7fbXea1yWSq1DwPPPCA9uzZo/fff19XXXWV2rb1/smwEgsWLNB7770nq9WqJ554QvXr16/UMwEAAACgKn788UeNHz9eBoNB48aNqxWhnSTZ7fYyry0Wix566KGAx19zzTWe4G716tXKzMxUfHy8z3vPP/98rV+/Xna7PeB+5507d1ZkZKTy8/Pldrv18ccf68477wy4PqC2K2/1XJ12l6tOO+/vBVnig2s7Uh57pu9tLE3RcTJYw+W2FUo6vHqueEtLes8BAFDTCO5qUMkWKmlpaUpLS6vUHP6Cu9atW3tW3EnF/0Br1apVpZ4RiJNPPll//vmnJMloNCouLq5S84SFhenZZ5/Vyy+/rMGDB6t9+/bq0qWLTj/9dCUmJsrhcGjLli166623tHLlSjVp0kSTJ09Whw4dQvl2AAAAACAgf/31l+666y65XC5NmzYtqBYI1e3IAO2aa64Jqhd5u3btZDAYisMHp1MbNmxQly5d/N4fHR0dVH1Wq1Xt2rXT119/LUnauHFjUOOB2qK499yeQ6Fcqd5zGalyFeX7HGNL3+nzvCW+6ttYHn6G7xV3BoNB9a8cIVNULKvnAACohQjujnH+grvp06d7etwlJSXpvvvuq9ZG3w8//LAeeughZWRkaMCAAQoPD6/0XCaTSbfffruuvfZavffee/r44481a9YsZWdnKzw8XPHx8TrjjDM0ffp09ezZs0abvQMAAAA4cW3dulVDhgxRbm6uZs6cqR49etR0SWUc2YKgvNDNl+joaCUnJys1tfib/5s2bQp6joo0b97cE9xt2bIlpHMDoeZ22FW4e3OVe89J/rexNEXVkTEs0m/gV5Eyq+cSG8ntdvsM5aJata/U/AAAoPoR3NWg554LzZ7lviQnJ+vFF1+stvmP1K5dO88WKqESHx+vW265RbfccktI5wUAAACAqtq2bZsGDRqknJwczZ49W127dq3pkrxERUWVeV1UVBT0HHXr1vUEdwcOHAhJXaUlJSV5jkPROx2oKrfDLmdhrszR3jsJuWwF2vPq+JA8x57hextLg8EgS0KKinaXE2SX9J47FNDRew4AgOMLwR0AAAAAAEHYvn27Bg4cqOzsbD3zzDPq3LlzTZfkU926dcu8LigoCHqO0rupVCb4q0jpVYGVqQ+oDF+952yHfnVk7Vd4o1OVPPBRr3GmyFgZI2LkKjhY5RqcuQfkKsqXMSzS61pJcFe299yhkI7ecwAAHPcI7gAAAAAACNCuXbs0ePBgZWVl1erQTirehrK0kj7rwbDZbJ7jYHvYBcLpdHqOj9zaE6iqsr3nUmUv1X+uvK0o7Zm+V8NJkiUhWUW7/gpJfbaM3QpPPsXrfPzF/ZXQZSCr5wAAOEER3AEAAAAAEIC0tDQNGTJEGRkZmjVrVq0O7SSpcePGCg8PV2FhoaTi7T2DVXqVXWxsrM978vPzNX36dK1bt05t27bVpEmTAu5Fnp9/ODyJiYkJuj6gtNzfv1HRnq1lVs8F23tOkpx52XIW5MoU4R1WWxNSKhXc+Vw9F9fA573m2ISg5wcAAMcPgjsAAAAAACqQm5urW2+9Vbt27dKMGTMC7mmXnp6u7du3q127dtVcoTej0ajTTjtNGzZskCRt2VJOzyw/SvedS0lJ8XnP448/rkWLFkmStm7dqvbt2+uqq64KaP7MzEzPcdOmTYOuDycOz+q5zL2KbNnO50q0nJ8+U+G/f4TkefbM3TKltPQ6b0nw/d+BJHrPAQCAkCC4AwAAAACgHA6HQyNGjNCmTZs0adIkXX755QGP/eCDD/TZZ5/prbfeqsYK/evatasnuNu4caMOHjwY8Mo2m82m/fv3e16fffbZPu9bvnx5mdc7d+4MuL7SqwBbt24d8Dgcnzy95w5tZ3lk77mS1XNN75knU1Qdr/GW+OTQBXcZqQr3E9zRew4AAFQngjsAAAAAAMoxZcoUffvttxo+fLj69esX1Ng1a9aoSZMm1VRZxbp3764nnnhCUnEA+c0336hnz54Bjf3333/ldrslSQ0bNlTjxo193udwOMq8PvfccwOa3+1269dff/W87tixY0DjcOyrbO+5EvbM3b6Du8RyVsMFyZ6R6vN8ZItz1fTeBayeAwAA1YbgDgAAAAAAP5YsWaK33npLV111le6+++6gxu7Zs0dr1qzRsGHD/N7z8ccf65lnnlFaWpr+85//aMKECYqPj69q2R6NGzdWt27d9Pnnn0uSFixYEHBwt3btWs9x//79/d7XokULz6q+//73vwEHcL/++qvS0tIkSY0aNdIFF1wQ0Dgcm3I3rdHBn7+sUu+5EraMVIU3Ps3rvDU++OCu7Oq5QyvnDq2e88VgMAb9DAAAgGAQ3AEAAAAA4MPmzZs1ZcoUnXXWWZoyZUpQY10ulyZNmiS73a5mzZr5vOenn37SfffdJ5erOMD49NNPlZGRoVdffTWkq3lGjx6tr776Sna7Xb/88ou+/PJLXXLJJRWOK9kCMy4uTtdff73f+6655hpPcHfxxRcHXNeCBQs8x7fddhsrmI5RR66eizq1vayJjbzuc+ZkqGDrTyF5pr/VcJaEZN8DSnrPxSfLkpgiS/zhbS7pPQcAAGobgjsAAAAAAI7gcDh0//33y2w2a9asWbJarQGP3bZtm/7v//5PK1eulCS/W2WuWLHCE9qVWLdunf755x+ddNJJlS/+CM2aNdPo0aM1bdo0SdIjjzyipUuXqn79+n7HrF69Wj/88IOMRqNmzJihOnW8tyUscc0112jZsmVau3at/vnnn4Bq+v777/XJJ59IKu6dV14wiJrn1XsuI1W2jN0+V8+ZImJ8BneWhFBuY7nb53lz3foKb3yazHEN6D0HAACOWQR3AAAAAAAcYdmyZdq0aZMsFouuuuqqgMfZbDbl55ft0eVvxZ0/R4Z5oTB48GClp6dr7ty5ysjI0KBBgzR37lw1auQdsGzcuFH33nuvLBaLJk+erE6dOpU7t9Fo1LPPPqvhw4frrbfeUsuWLXXdddf5XcX0008/aeTIkXK5XGrZsqWeffZZVjzVElXtPSeVtxouRMGdwSi30+7nkknJAx8NzXMAAABqCMEdAAAAAABHyMrKkiTZ7XbPcWXEx8crJibG57WuXbtq/vz5ZYK6li1bBh30BWr06NFq27atJk2apG3btqlXr17q16+fOnTooLp162rv3r368ssv9f7776tZs2aaNGmS2rVrF9Dc0dHRevnll7Vw4UI9/vjjmjNnji655BKdc845ql+/vqxWq/bs2aPPP/9cn3zyiVwul66++mqNGTNGcXFx1fJ+Ebiivdu1790ZVe49J0k2f6vh6iTKYLbK7bAFNE95vedYPQcAAI5nBHcAAAAAAFSTpk2b+r12zjnnaObMmXr66ae1b98+tWvXTuPHj5fJZKq2erp166ZOnTpp5cqVWr58ub7++mstWbJEBQUFSkxM1BlnnKHp06erR48eMpuD+5aByWTSzTffrL59++rDDz/UN998oxUrVigzM1MGg0Hx8fFKTk7WnXfeqUsvvVQtWrSopncJ6fDqudIr56xJJ6lu+yu97jVFxspxYG9InutvxZ3BYJQlvqFs+3eUOnmo91zJtpbxKbImpsgSn0zvOQAAcMIiuAMAAAAA4AiDBw/W4MGDq/05PXv2VM+ePav9OaVFRERU63Ojo6N1ww036IYbbqiW+XFYce+5rDJbWtoOHTuy07xWz0XkZfkO7mLiZbCEy20vrHJNjuw0uR12Gczeq+Jiz7lUrqICes8BAACUg+AOAAAAAACgFvNePRd87zlJsvvZxtJgMBSvhtu3vfJFlqyei0+WqyhfJnMdr1tiz72s8vMDAACcIAjuAAAAAAAAaim3260ds2+VqzC3ynM5stPlshfJaAnzumZJTAkouKP3HAAAQPUiuAMAAAAAADhKSlbP2TN2e7a1tGekymUvUuPbn/K632AwyBLXQEV7/g7F02XP3KOwpGZeV6zxKcrzPPTw6jlLYoos8SVBXQq95wAAAKoZwR0AAAAAAEAIFfeey/aEcvbM3bKlF//qyNrv1XuuhMtWIKM1wuu8JSE5RMGdZM9I9RncRZ3WQdakpqyeAwAAqGEEdwAAAAAAAJVkP7BXRfu2V6n3nGeujD0Ka3iy13lLQkrlCzxy9VxcQ5+3Wes1lrVe48o/BwAAACFBcAcAAAAAAOBHyeo5U0SUz1VoB1YvUe7GlSF5lj0jtdLBHb3nAAAAjg8EdwAAAAAA4ITnr/dcyeq55MGPKzylhdc4a0JyyGqwZaT6PO95ho/ec9bEFFnik+k9BwAAcJwguAMAAAAAACcET++5zFTZD/WcKw7qUsvtPSdJ9sxUn8Fdlbax9HrGbp/nLQkpanTHbFbPAQAAnAAI7gAAAAAAwHHJlrFbeZvWeq2eqwx7hv9QrVJKVs8d2t7SEp/ic5tMSTKYzLImNqrccwAAAHBMIbgDAAAAAADHnNKr50xRdWX1EaDZM1J14KvXQ/I8u59tLC1xSZLB6He1Xtnec4dCOnrPAQAAwA+COwAAAAAAUGuV7T2XKnup/nMlq+fqdLhKCZfc5DU2lNtY2vysuDOYLLIkJEsuZ5nVc/SeAwAAQGUQ3AEAAAAAgBrlq/ec7dCvFfWek8pZDVe3vmQ0SS5nlWt0ZO6R2+WUwWjyutbo9qdkMBir/AwAAACA4A4AAAAAABx1rqJ8pS9/ucq95yT//ecMJrMscQ38Bnu+Bx3Rey4hpXiLy/jk4i0xfQ0htAMAAECIENwBAAAAAICQ8ayeOxTIyWhU7Fldve4zWMKU+8dqyemo8jPtB/bJ7XTIYPL+NoclIdlncEfvOQAAANRGBHcAAAAAACBogfSekyRLfEPfwZ3RJEt8Q9nTdla9GJdD9qz9siYke10Kb3K65HbTew4AAADHBII7AAAAAADg05Gr54LtPSeVrIaz+1zFZk1ICUlwZwyPljMvS/IR3NVt30tq36vKzwAAAACOBoI7AAAAAMAJy2AwKDExUWFhYTIYDHK73TIa6VcmSfs/eFr5m9dVqfecJMntkv3APlkTG3ldssR7B21+ldN7jtVzAAAAOF4Q3AEAAAAATlhms1lNmzat6TKOiuLVc1lltrS0Z+5R/WtGy2i2et/vsFc9tDvEnpHqO7hLTPE6d7j3XIqsCcn0ngMAAMAJheAOAAAAAIDjSEnvucN953z3nivhyNwra/0mXuctCd6hWmXZM1J9ng9LbqE6F/Ri9RwAAABwCMEdAAAAAOCE5XLYZNv3j2xpO+W2F8pgCZe1XmNZk5r5XIVWW3j1nstIlS1jd1C950rYMlJ9BnfWEAR3xohoWeJTZIyM9XndmpCihC6DqvwcAAAA4HhBcAcAAAAAOOEU7t6inHUfK+/PNXI77V7XDSaLok7roNh2PRWe3KIGKixf1nfv6cBXr4dkLn+r4SwJAfafMxhliWtweEvLhOTi1XMJKTL5CewAAAAA+EZwBwAAAAA4YbiKCpTxxUId3PB5ufe5nXbl/rZKub+tUszZ3ZTQZZCMYRHVUpOv3nMlq+fiO9+o6NM6eo2xxCWF7PmBBnclq+cO954rDunoPQcAAACEDsEdAAAAAOCE4DiYoT2vT/IbVPlzcMPnKvz3DzW8cYLMMQmVfn6wveckyZ62SzrN+3xo+8/t9nneaI1Qvd4jZalTj9VzAAAAwFFCcAcAAAAAOO65igoqFdqVsGekas8bk5Uy+PEKV9657EUq2v13lXvPSZIt089quPiGkgyS3EHNV8IYHu1ZMRfW4CS/98W0vrBS8wMAAACoHII7AAAAAMBxL+OLhZUO7UrY03cp48tXVK/HHeXe58japz2vja/Ssw4/03fNRkuYzHUS5chO8z/YYJQlLunwlpbxKbImpsgSnyxjZKwMBkNIagQAAAAQOgR3AAAAAIDjWuHuLRX2tAvUwZ8+U0zbSxSe3MLvPZa4hpLBGPTqOl/smXvkdrt9hmyWhBQ5stN89J471H+O3nMAAADAMYfgDgAAAABwXMtZ93GI5/tE4b39B3cGs0XmOvXkyNpX5We57YVyHsyUOda7t15ij9tltEbQew4AAAA4jhDcAQAAAACOWy6HTXl/rgnpnHl/fifX5UNlNFv93mNJSKlUcFe695z10K/G8Ejfz6ibFPT8AAAAAGo3gjsAAAAAwDHJ7XTIkZspZ06GHDnpcmSny5GTLku9xqpz7mWSJNu+f+R22kP8XLts+3eUu12mNSFZBVt/8n3RYJQlrsGhLS2TD21xSe85AAAAAAR3AAAAAIBayO12y5WfI0d2mhw5GXLklPya7vlw5mb57CMX33mA59iWtrNa6rPt/7f8PncJKcW95xJSZIkv6T1XvIKO3nMAAAAA/CG4AwAAAAAcdW632+fKssyVryv3z+/kzMmo/Eo50+F/6rrthZUtsVxue1G512PO6qLYcy6tlmcDAAAAOH4R3AEAAAAAQsrlsB3evjIn/fBKuex0OQ4Wv2506wyfPdpcRflyHNhbtQKcDs+hwRJetbn8MFjCyr9uNFXLcwEAAAAc3wjuAAAAAAABc7uccuZmeW9dmV0cyDkPpsuZl13hPI6cdJ/BnTk2oco12rP3e46t9RpXeT5frPWbVMu8AAAAAE5sBHcAAAAAAEmH+soVHJTBEiajjxVlWd+9p8yv3vDZVy5YjpwMn+dNsYlVnrtoz1bPsTWpmQwmS+W33fTBYLLIWr9pyOYDAAAAgBIEdwAAAABwgnAVFZTavvLwNpbOUsduh01J145V1Knne403hkWGJLSTJEd2us/z5koGdwZrhMx1EmWOSZS5bj25nQ4ZTGYZzVZFndZBub+tqkq5ZUSd1lFGszVk8wEAAABACYI7AAAAADgOuJ32Q1tXZpTdxjI7Xc5DfeVchXkBzeXI8ROq1an6argSTn/P8BXcmcwyxybKHJtw6NfEUq/ryRybIGN4lN9nxbbrGdLgLrZdj5DNBQAAAAClEdwBAAAAQC3ndjnlzMuWIyddpqi6stSt73VP3l8/aP97T4bkeX6DuxBsY1nhM2LildBtiCecM8UmyhQVK4PBWOlnhSe3UMzZ3XRww+eVnqNEzDmXKjy5RZXnAQAAAABfCO4AAAAAoAYV95XL9drC0lmyYi4nXY6DmZLLKUmKu7Cf4v57ndc8RyNUq0z/OWNEzBEr5BJlrpMoS0KKz/sNJrPqnH9F0M+pSEKXQSr89w/ZM1IrPYclsZESLhkYwqoAAAAAoCyCOwAAAACoZi5bgQp3bfZsYek8osec214U8FxHZzVchs/zxrBIGawRctsKJEkGS3hxX7nYhOLecnVKVskd3tLSaAkLWV1VYQyLUMMbJ2jPG5NlT98V9HhLYiM17D9exrCIaqgOAAAAAIoR3AEAAABAJbmdDjkOZnoCOXNUXUWcdKbXfY6cDO19c3JInukvVDNF15UMRsntCsEzfIeDBoNBDfo+IGN4dHEoFx4lg8FQ5ecdLeaYBKUMflwZXywMatvMmHMuVcIlAwntAAAAAFQ7gjsAAAAA8MHtdhX3lctOl+Pgoa0rs4sDOs92lrlZktyeMVGtOvgM7syxCSGry5GT5vO8wWiSOSbeb+h2xN0yRdcts4Wl6dAWluaYxHJX70U0bV3JymsHY1iE6vUcqpizuihn3SfK+/M7uZ12r/sMJouiTuuo2HY96GkHAAAA4KghuAMAAABwQnM7HTr484pSgVzGoRV0mZLLEdRc/kIzozVCxvBouQpzq1yvvxV3UnEPOkdOumdFXElPOU8oV7KFZUy8DCZLlWs5loUnt1B47xZyXT5Utv07ZNv/r9z2IhksYbLWbyJr/aYymq01XSYAAACAEwzBHQAAAIDjjste5AngnIcCOYM1XHXb9/K+2WhU+ufzJWdwIZ0v5a12M8cmyBaC4E4up1xFBT63bUy6erSMYeEyWtnSMVBGs7U4xGNVHQAAAIBagOAOAAAAwDHF7XLKeTDTs12lw8cWlq6Cg17jLPHJPoM7g8Eoc0yCHFn7qlybMzdLbqfd52o2c2yibPt3lD/Boe0uS7awNJWskCv1YYyI9ttXzhwTV+X3AAAAAACoOQR3AI4Z69ev10cffaT169drz549ys/PV3R0tBISEtS6dWt17NhRPXr0kNVae7Y0+v777zVw4MAqzfH888/rkksuCfj+TZs26f3339e6deu0c+dO5ebmKjo6WnXr1tXpp5+u9u3b68orr1RUVFSV6gIA4Gg58M1i2dL+LdtXzu0Keh5HTrrcbrfP0MscmxiS4E5yy3EwU5a6Sd7PqFNPpqi63oFcnUO/xiTIFF1XBqMpBHUgUA6HQ6mpqbJarTIajXK5XKpfv75MJn4fAAAAABx9BHcAar2NGzfq0Ucf1d9//61evXrp7rvvVoMGDWS327Vnzx6tXr1aH3zwgZYuXaonnnhCkyZNUpcuXWq67JBp3bp1QPdt375dU6dO1ffff6+ePXvq5ptvVqNGjSRJ+/bt0/fff6933nlHH3/8sWbOnKn7779fffv2rc7SAQDw4irMK7MyrmTFnKsoTw2ue8DnmLzNP8i2d1uVn+122OQqOChTZKzXNXOdxCrPbwyLlLlOoty2Ip/XE7rfqsTLbqvycxBabrdb6elltzhNTEwkuAMAAABQIwjuANRqr7zyiqZNm6ZzzjlHn3zyiZKSyv70+tlnn62ePXvq9ttv1+23364dO3borrvu0vjx49W/f/8aqtpbZGRkpVYCJiYmqn79+hXet3z5ct1///1q3Lix3n//fZ188sle93Tr1k1Dhw7VsGHDtHHjRo0bN07//vuvRo8eHXRdAAD44nLYPP3kvLawPJguR3a63LYC/+PtRTJawrzOm2MTQxLcScWr7nwGdzEJ5Y4zmK0yxybIFJsos4/tK82xiT57zpWZw8/2lgAAAAAAlCC4A1BrLVq0SFOnTlWzZs300ksvKSLC/zfDmjVrprlz56p3794qKCjQ1KlTdcYZZ6ht27ZHsWL/xo0bp6uvvrpa5l61apXuuecexcbGasGCBapXr57fexMTEzV37lxdccUVSktL09y5c9WmTRt17969WmoDABz/Dqx6W3lbfpQjJ02u/JwqzeU8mCFjfLLXeXNs1VfDlXDkZCisgfcPuFjrNVFYo1N9BnLm2AQZI2MJ3gAAAAAA1Y7gDkCtlJaWpunTp0uSBgwYUG5oV6Jp06a6/vrrtWDBAjkcDs2YMUOvvvpqdZdao4qKijRu3Di5XC716dOn3NCuRN26dXX77bdr6tSpkqQZM2aoS5cuMpv5XwIAnKjcbrdc+Tk+trA8vHIuZcjjMkfHeY21Z6fJtndrSOpw5GTI4jO4K381XEWMkbEyx9YrDuDCI33eE936v4pu/d8qPQcAAAAAgKriu7QAaqVly5YpLy9PUnEgF6jLL79cCxYskCT98MMP2r17t5KTvb8BeLz4+uuvtXfvXknBf55Kgrt///1XGzZsULt27aqlRgBAzXMVFfgN5JyHfnU7bOXO4cjJ8BncVTVUK/uMdJ/nzXX8/2CKwRpxaOvKeoe3sKxzeKWcKSbB5/abAAAAAADURgR3AGql7777znO8ZcsWXXjhhQGNa9WqlUwmk5xOpyTpxx9/VK9evaqlxtrgyM9ToBISEtSgQQNP6Pfjjz8S3AHAMcrtsEsGgwwm7y/ts9YsVda378hVlF/l5zhz0qXkU7zOm+uEcBvLbN/BnTWxsaLbXCRzzJHBXKKM4VEhez4AAAAAADWN4A5ArbRv3z7P8Zw5c9S7d28lJlb8jUGr1aqYmBhlZWVJkvbv319dJdYKpT9Pb7/9tvr166eWLVsGNDYhIcET3B3vnycAOFa5XU45c7PkOHhoC8vsw6vlSlbKOfOy1OCGcYo8+SzvCYymkIR2Ujmr4Srdf84gU3Rc8Sq5Q0FceKNTfd5prd9E9XuNqORzAAAAAAA4dhDcAaiV3G635zgnJ0dvvfWWhg8fHtBYi8XiOXa5XCGvrTYp/Xmy2+2aP3++pk2bFtBYq9XqOS5ZoQgAOHrcbrdcBble21c6S/eZO5gpuSr+O9rfSrWQroYLMrgzRkSX3b7y0IepJKiLjve5ShAAAAAAgBMZ/1IGUCu1adNGmzdv9rwuLCwMaJzT6fSstpOk+vXrh7q0WqVNmzZauXKl53WgnydJysjI8BwnJSWFtC4AgOSyFcqRky5jeLTM0XW9ruf++rXSPnwmJM/yG6rFHIXgrk49xf33+uJArmQby5gEGa3hIXs2AAAAAAAnCoI7ALXSvffeq9zcXG3YsEGNGjXSDTfcENC4zZs3y263e163adOmukqsFQYPHqxdu3bpu+++U3x8vG677baAxmVnZ2vnzp2e18f75wkAQs3ttMtxMPPQyrgMObJLtq5M95xzFeZKkuK7DFTdC3p7zWGOTQhZPY6cDJ/nK7WNpdFU3EvO00cuQaaYRIUlNfV9uyVMcRf2Df45AAAAAADAC8EdgFopMTFRTz/9dNDjVqxY4Tlu1qyZmjdvHsqyQmLfvn1atmyZ1q1bp+3btysrK0uRkZFq1KiRunTpoj59+qhOnToBzRUVFRXw1pilffHFF55tNmNiYtS+ffug5wCA45nLXiTb/n/lOJheKpQ7vIWlMzdLkruiaSSVt8Vk6II7Z06az/Om6DqS0Sy5HIfPRdWVuU7xFpamUltYFm9pWU+m6DoyGIwhqw0AAAAAAASO4A7AccPhcOi9997zvO7fv38NVuPbokWLNHXqVBUVFZU5n5WVpd27d+uHH37Q3Llz9eijj6pz587VVsfbb7/tOb766qsVFhZWbc8CgNrE7XbLVZjnCeBMkbEKT2npdZ89I1W7FzwQkmf66z9niqn+FXcGg1FJfUbJGBFzaAvLeBlMFp/3AgAAAACAmkdwB+C48d577yk1NVWSgtpe82hZuHChHnvsMbVv315XX3212rZtq6SkJNlsNv3555+aN2+eVq1apfT0dA0fPlwzZ87UZZddFvI61qxZow0bNkgqXm03dOjQkD8DAGqKy150eFXcoS0sHTnpxSvnDr122w/3A41ufaHP4M4cWy9kNfkL1YyWMBkjY+XKzwloHoPZenjryth6h1bIHeopV8d/vVGtLqhU3QAAAAAA4OgjuANwXMjJydGsWbMkSSaTSY8//risVmvNFlXKd999p08++USTJ0/W9ddfX+ZaZGSkOnTooAsuuEDTpk3TwoUL5XA49MADD+j0009XkyZNQlaHw+HQ1KlTPa/Hjx+v+Pj4kM0PAEeD22lX3qa1h0O5UltYugoOBjWX31AtIloGs1Vuh63K9ToP+l5xJxX3oLPl50gGo8wx8TLXqSdTSSBXZgvLRBkjYmQwGKpcDwAAAAAAqL0I7gAcF6ZOnar09OJvjD788MNq165dDVdU1ocffqjhw4d7hXalGQwGjRkzRuvWrdMff/yhgoICTZkyRXPnzg1ZHc8995y2bNkiSbrlllvUq1evkM0NAFXhdrvkzMs51Euu+MNgDVfsWV193G3Q/qWzFWiPufL46z9nMBhkjk2UPXN3lZ/hzMuR22GXwey9RWX9q+6R0RIuU3RdGYymKj8LAAAAAAAc2wjuABzz3n33XS1dulSSNHbsWN144401W1ApJSsjTjnlFA0bNqzC+81ms4YOHaoRI0ZIkr755hv9888/atasWZVrWbNmjZ5//nlJ0k033aT777+/ynMCQKCK+8plyJGTVmaFXOkVc3I6yoyx1m/qM7gzmMwyRdeVM/dAletyHMyQ2+2SwWD0umauE1hwZwyLlMmzMu6ILSxjE2WOSfAZ2kmSNSGlyu8BAAAAAAAcPwjuABzTfvzxR40fP14Gg0Hjxo2rVaGdJJ1//vlav3697Ha7zObA/srt3LmzIiMjlZ+fL7fbrY8//lh33nlnlerYtm2bRo4cKZfLpdtuu02jR4+u0nwAUJ6stR/InpFaJqhz2wqCnsffNpZS8RaToQju5HTImZctc3Sc1yVTTKIMJkvx1pV1DgVyMYcCujqHAzpjWGTV6wAAAAAAABDBHYBj2F9//aW77rpLLpdL06ZNU58+fWq6JJ+io6ODut9qtapdu3b6+uuvJUkbN26s0vP37t2r2267TdnZ2Ro5cmSVQ0AAJxa3yyln7oHilXGlesq57UWqd4Xvv08ObvxS9rSdVX62qzBXLluBjNYIr2vm2EQV7d5StQcYjDJFx8lVmCf5CO4SL7tV9a64k75yAAAAAADgqCG4A3BM2rp1q4YMGaLc3FzNnDlTPXr0qOmSQqp58+ae4K6kJ11lpKWladCgQdq1a5cefPBBDR48OEQVAjgeuN1uufJzyt3C0nkwU3K7vAcbjErseYfPvmzmmMSQBHdS8ao7a2Ij72fEJlQ41hgZW7xVpZ8tLE3RceX2lTNawqpUOwAAAAAAQLAI7gAcc7Zt26ZBgwYpJydHs2fPVteu3v2PjnVJSUme4+zs7ErNkZaWpoEDB2rHjh0aP358rdtGFEDNOPDtuyr4Z6OcJSvnHLbKTeR2yZmb5TNACyRUC5QjJ91ncGeJT5YlsdGhYC7xcEB3aAtLU0wCwRsAAAAAADjmENwBOKZs375dAwcOVHZ2tp555hl17ty5pkuqFpGRh/slFRQE3xcqIyNDgwYN0vbt2zVx4kT169cvlOUBqAXcDrscBzPKrI47vJVlupIHPipTeJTXONv+f1T4z68hqcGRk+4nuEus2sQms8wxCTLXSZTB5PvL1dhzuyv23O5Vew4AAAAAAEAtQ3AH4Jixa9cuDR48WFlZWcd1aCdJTqfTc1w6xAtEVlaWhgwZom3bthHaAcco96HVbGW2rTwUyjkPbWfpzMsqdw5nTrrP4K7KoVopjpx0Sad6P6NOec8wyBQTV2oLy8Mr5kwlv0bFymAwhqxOAAAAAACAYwXBHYBjQlpamoYMGaKMjAzNmjXrmAjt8vPzNX36dK1bt05t27bVpEmTZLVaAx5bIiYmJqhn3nbbbfrrr7/0/+zdd3iUVf7+8XtqeiGFXkURFUGUItgLfldcFVBRsVEUUVF3FUVXRWkqigKy7lpXxIYuikoRbKwKoqDyE1ARpEMiJCG9Tvv9kWSYITPJTDLJTOD9ui4unmeec87zmQBhMveccyZNmkRoB0Qgl8slSTIYDDWu5X3/sQrWfSJ7YY7kdNS4Hgx7frasLTvVeDz0wV1NlrQOij2uj/cylklpMiWmyhyf4ncWHQAAAAAAwNGOd00ARLyioiLdfPPN2rt3r2bOnBnwnnbZ2dnasWOH+vbt28gV+vbkk0/q3XfflSRt27ZN/fv315AhQwLqe/DgQfdxp04133j3xWaz6c4779SGDRs0YcKEgPe0Kyoq0vr163XWWWcF1B5A7ZwVZYeWriyoniVXfZ4le0GOWl/zsGI6nlizs8Mue/6BkNThL1RrSHBnsERX7SOXJnNCmqzpHX22i257rFoPf7De9wEAAAAAADhaEdwBiGh2u1133XWXNm/erMmTJ+uSSy4JuO/HH3+sTz/9VAsWLGjECv1bsWKF1/mePXsC7rt9+3b3cY8ePQLqM2nSJK1atUq33nqrbrnlloDvtXr1ak2dOlWrVq0KuA9wtHI57LIXHqwZyOVXBnL2wmw5S4vqHMdfqGZqgtlwfoM7o1nmxBTvWXKJqe7lK82JaTJGx/mcKQgAAAAAAIDQILgDENGmTp2q1atXa/z48UEv+7hmzRp17Oh7NkhTsNvtXuennXZaQP1cLpc2btzoPh84cGCdfV566SV98MEHGjp0qO65556g6lyzZk3As/qAI5nL5ZSjOF8Gs9Xn3nCFG1Yqa/HzklwNvpfDb6iW2uCxq9kLc3zfo0UrJfX7q1cgZ05Mkyk+iX3lAAAAAAAAwozgDkDEWrhwoRYsWKAhQ4bozjvvDKpvZmam1qxZo9tuu81vm2XLlmnu3LnKysrSGWecoUcffVQpKSkNLdvtuOOO0/r16yVJZ511VkABnCRt3LhRWVlZkqT27dvr9NNPr7X96tWrNWvWLJ1++umaNm1aUDWWlJTok08+0QUXXBBUP6C5cblccpaXyJ6fJYfHEpZ2zyUsCw9KDrtSLxqjpL6Da4xhiklUKEI7SbIX+AnVEtPrNZ4xOr5yCcvqEC4xTVFtuvpsa4qOU+qgUfW6DwAAAAAAABoXwR2AiLRlyxZNnTpVp5xyiqZOnRpUX6fTqcmTJ8tms6lz584+2/z000+699575XQ6JUnLly9XTk6O3njjjZAtA3fFFVe4g7tzzz034H7z5s1zH99yyy211nPgwAFNmDBB7dq103PPPSezObhv6zNnzlReXp7frxPQXLgcNtnysqqWrsyuscecvSBbroqygMbyN1PNFMrZcPlZPh83J6RIMsgzIDSYrZWBXFKaTAlph/aY81jO0miNCVltAAAAAAAACB+COwARx26367777pPZbNbs2bNltVoD7rt9+3Y99dRTWrlypST5XSrz888/d4d21datW6edO3eqS5cu9S/ewxVXXKElS5bou+++086dOwPq8/333+uTTz6RJPXu3VtXX311re0ffvhh5efn6+WXX1ZSUlLAtWVmZuqf//ynFi5cKMn/1wmIBC6nQ47Cg7IX5MgYHStres2/r+WZ25Tx+kMhuZ/fUC2pfrPhfN7Dz4w7g8mstEvGyRSbVDWDLl3GmHj2lQMAAAAAADhKENwBiDhLly7V5s2bZbFYNGTIkID7VVRUqKSkxOuxYGeSHR7mNYTRaNTzzz+v8ePHa8GCBerWrZuuuuoqv2/A//TTT7r77rvldDrVrVs3Pf/887W+Wb9u3Tp99dVXMplMGjNmTMB12e12FRUVeT3GjDuEi8vlkrOkQPb8rMoZcoXZsud7L2HpKMqTXJX/NhNOuVDpl9RcAre+S0z64i9UM0bFymCNDnjmniSZ4pJlTkw9bD+5VFmSW/ntk3jKhUHXDAAAAAAAgCMDwR2AiFNQUCBJstlsysvLq/c4KSkpSkhI8Hntwgsv1GuvveYV1HXr1i3kAVZ8fLxeffVVvf7663ryySf1wgsv6Pzzz9epp56qli1bymq1KjMzU5999pk++eQTOZ1ODRs2TPfff79atGhR69j5+fmSJIfD0aCvk8SMOzQul92m0p0bfS5h6SjIkcthC3gsf6GaKT5ZMhjdAV9DOAqyfT5uMBhkTkyTLXuvpMog7/BAzmsJy4RUGcyWBtcDAAAAAACAowfBHYAjVqdOnfxeO/XUU/XMM8/oueee0/79+9W3b19NmjRJJpMp5HWYTCaNHj1aw4cP1+LFi/XNN9/o888/18GDB2UwGJSSkqK2bdvq9ttv10UXXaTjjjsu5DXUJj09XbGxsU16TxwZnPYKOTxCOIM1WvHdB9Ro53La9ee700NyT3uhn1DNaJIpIcVv6BbcPQ7K5XTIYKz5/aDlpXfKYKncc84Yxb8bAAAAAAAAhBbBHYCIc8MNN2j06NGNfp/Bgwdr8ODBjX6favHx8br22mt17bXXhmS8Cy+8UL///ntIxgIO53I65CjKk70g69AMOY8lLB2F2XIU53v1iWp7nM/gzmiNkTE6Ts6y4gbXZc/3H8yZE9MCC+4MRpkSUqr2kDtsxlxiusyJqZWz93yIantsfUsHAAAAAAAA6kRwBwDAUa7gp09ly/3TaxlLR+HBoJed9LeMpVQZqlWEILhzVZTKWVYsY3Scj3ukqlySMTaxZiCXlO4O6kzxLXzOpgMAAAAAAADCjeAOAIAjjLO81GM/ucpfLoddqeff4LN93poPZc/b3+D7Oopy5XLYZDDV3NfNnJimigO7GnwPgzVGjpJ8n8Fd2l9uUfpf75DREtXg+wAAAAAAAADhQHAHAEAz4rLbZC/MqZoZ572MpaOwcsacryUpDWarUs67XgaDocY1c2JaSII7ySV7Ya4syS1rXDElptbd3WT2WLLS9xKWvgI7d/eYhIYUDwAAAAAAAIQdwR0AABEs7/vFKtvzmxzVS1gW59VrHJe9Qs7SIplia4Zb5kBCtQDZC7J9BneW5FZV+8r5DuRMiWkyxSXK4GdvOQAAAAAAAOBoQHAHAEATcLlccpYW1VjCsjqQaz1ikoxma41+Zbt/VcmWtSGpwV6Q7Se4S2vw2MaYhMpx/OyLlzxgiJIHDGnwfQAAAAAAAIAjGcEdAAAh4KwoqwrjDi1h6fAK6XLkspX77e8oyJExpU2Nx0MRqlWzF2QrqnWXoO9hsETLnFQ1Qy4hreo4TSbPJSzZVw4AAAAAAABoMII7AADqKX/tEhX+vFL2wmw5S4saNJa9IFsWX8FdUmiDO18sae0U3fFEryUsTR5LWhqj43zujQcAAAAAAAAgtAjuAABHNZfLKUdRfuWsuMKqpSvzs6pmzlXOlmt91QOKantsjb6O0iJVHNgZkjr8hWoNm3FnkCk++VAgl5Tus1VMpx6KuaFHA+4DAAAAAAAAIBQI7gAARyyXyyVnWbHHXnLegVzlr4OS017rOPaCbJ/BXWiXsczx+bg5MdVvH2N0fOXylYnVS1emHVrSMjFN5oQUGUyWkNUIAAAAAAAAoHER3AEAmi1n1Z5xvvZXK9ywUtkrXpGroqzB9/E/G85/qBb0PfKzfN8jubXie57nMWvu0HKWRmtMyO4PAAAAAAAAIPwI7gAAEcnldMhReNBjZlzNJSydpYVKu+Q2JZ5yYY3+Bmt0SEI7qZbZcH6WnqyTwShzQorHDLk0Rbfv7vse8clqeen4+t0HAAAAAAAAQLNCcAcAaHIul0uO4nw5qgM5H0tYOoryJJezzrH8LzFZz1DN5z38zIbzM+POFJd0aOnKxFSZE9O9l7SMT5bBaApZfQAAAAAAAACODAR3AICQq9xXLkcGa5Qsya1qXC/btUmZbz0WknvZ85tgGUs/4aDRGqOU82+QKS65MphLSpcpIUVGszVk9wYAAAAAAABw9CC4AwAExWmvkMNrdpzHEpaF2bLnZ8tVUSpJSuwzWGn/N6bGGKEM1RyFvoM7U1ySZDRLTnvAYxlMFpmqZ8YlpcmcUDljzpLa1m+f5AFDgi0ZAAAAAAAAAHwiuAMAeHE5bCrP3HZo6cp8j4CuIEvOkoKAx7IX+AnVEkI5G873PQwGo8yJqbLn7a96wChTfItDoZzH0pXVv4yxiTIYDCGrDQAAAAAAAACCQXAHIKwMBoPS0tIUFRUlg8Egl8slo9EY7rKOSC6XS86SAncgZ7BEKfaYXjXaOctLlfH6QyG5p98lJi1RMsYmBhUC+r1HfrZcLpfPwC198DgZzFaZE1NlSkhhXzkAAAAAAAAAEY3gDkBYmc1mderUKdxlHBGc5aUey1dmey1l6aj63WWvcLeP7nSSz+DOGJMgg9nq1ba+7AVZfq+ZE9NUEWBwZ7BG15gdZ/ZY0tKfmC49g64ZAAAAAAAAAMKF4A4AmpnCTV9X7ilXtYSlo2pfOWd5SVDj2PP9LTFpkDkxTbaDGQ2u1VlSIKe9QkaztcY1c2KqKv7cLpnMMid47ivncZyYJlNimoxRsSxhCQAAAAAAAOCIR3AHIKyc9gpV7N+piqw9ctnKZLBEy5reQdZWnX2GPUcil9MhR1Ge7IWH9pST06HkgUN9tj/4xXw5inIbfF97YY5cLqcMhppLk5oTU0MS3EkGOQoPytiidY0raReNkS6+Vaa4JJ81AAAAAAAAAMDRhuAOQFiUZWxVwbplKv5tjVwOW43rBpNFcScMUGLfwYpue1wYKgwNl8slZ2lRjeUrHVX7zNkLsmUvPCg5HV79jNHxfoM7c2JaSII7OexyFBfIHJ9c45Ip0f/yk56MMQney1YmVs+SS62cMRefIoPJ93815qT0hlQPAAAAAAAAAEccgjsATcpZXqqcL15X4frPam3ncthUtOlrFW36Wgm9Byn1gptkjIppoirrr+DH5SrL2Fa5fGX1vnK28qDHcZYVyVlRKqO15nM2J6aqPGNrKMqVvSDbZ3BnTkyTwRLtP5BLrFzS0miNDkkdAAAAAAAAAACCOwBNyF6Yo8y3JsuWsy+ofoXrP1PZ7l/V5rpHZU5IbaTqanI5bLIXHnQHcPb8bDkKsmUvzFGrK++XwWiq0ad4yzqVbv9/Ibm/vSBH1rT2NR43BzgbrlZGk8wJqX5DxRZnXqkWZ1/NvnIAAAAAAAAA0IQI7gA0CWd5ab1Cu2q2nH3KfHuK2o18MiQz71wupxxF+YctX3lolpy9IFuOojxJLp/9HUV5MifWDBFDEqpVsRdk+wzuAlnG0hSXLHNSusyJqTJ5zJirnEGXLlN87fvK+VveEgAAAAAAAADQeHhnFkCTyPni9XqHdtVs2XuV8+V8pV98a7365//wiYp/+7YqnDsoOe31rsVekN0kwZ0vlpQ2srbs5LF8ZVUg517CMkUGkyVkdQAAAAAAAAAAmgbBHYBGV5axtc497QJV+NOnSuh1vqLbHidJqsjJUPGvq9yz5OwF2Wo1bIKs6R1q9LXnZ6ls968hqaMyVDu+xuO+wrxgGMxW98w4U0yCzzZxx/VR3HF9GnQfAAAAAAAAAEDkIbgD0OgK1i0L8XifKPryyuDOnJCi3NXvS45Ds+fs+Qd8BnehnQ2X4/Nxc1K6/04Go8wJKTInpcuUmOqxfGX1EpZpMsYksK8cAAAAAAAAABylCO4izO+//64PPvhAa9eu1d69e1VaWqq4uDi1bNlSvXr10qBBg3T22WeH/Y39888/X/v21W/Zw/nz56t///4BtS0sLNQ777yjzz77TH/88YdcLpfat2+vfv366brrrlPXrl3rVQOajtNeoeLf1oR0zOLfvpXzknEymq0yWqNlbdlJFZnb3Nf9hmoNnA3nyV6Q5fNxS4vWij2+v3svObNHQGeKT5bBaApZDQAAAAAAAACAIwvBXYTIyMjQ9OnTtWbNGo0YMUKPPPKIOnToIKfTqYyMDH3zzTd688039d///lcnnXSSZs2apU6dOoW77Ho54YQTAmr37bff6r777lN2draGDRumSZMmKSUlRRs3btScOXP0zjvv6G9/+5tuvbV++52haVTs3ymXwxbSMV0OmyoO7HIvlxnV+hjv4C7fd6hmTqxlNlwdjFGxh/aSS0xXdMcTfd8jKV2tr7y/3vcBAAAAAAAAABy9CO4iwM8//6xbb71VqampWrp0qdq0aeN1vVWrVurdu7eGDx+uUaNG6ZdfftHVV1+thQsXqn379mGqWkpOTlaLFi2C6pOenq7ExMQ6261cuVJ33nmnbDab7r33Xo0dO9Z9rV27djrnnHN03XXX6dlnn1VmZqYee+yxYMtHE6nI2tM44x7Y7Q7uzEktva7ZC4ObcWcwWSqXrkyqmiGXkCZz0mFLWEbFhvYJAAAAAAAAAABwGIK7MDt48KDGjRunvLw8vfXWWzVCO0+tW7fWrFmzNHToUOXm5ur+++/X22+/3YTVerv++ut15513hnzcXbt26Z577pHNZtPZZ5/tFdpVi4mJ0ezZs3XxxRfrnXfe0QknnKCrr7465LWg4Vy2skYat9x9bDBbvK7ZC7J99jHGJippwBCZE1K9lrA0xiaGfflZAAAAAAAAAACM4S7gaPfCCy/o4MGDOv744wPar6179+4688wzJUk//vij1q5d29glNrkpU6aopKRERqNR99/vf8nBjh076tJLL5UkPfHEE8rK8r08IsLLYIlupHGj3MfG6DjFduurxD6DlXL+DUruf7nvPgaDUs+/QUl9Byvu+P6KatNVprgkQjsAAAAAAAAAQEQguAuz5cuXS5JstsD3ABs4cKD7eOXKlSGvKZx++OEHrVq1SlLl8zzuuONqbT906FBJUmlpqf797383en0InjW9Q+OM27Kj+zix1/lqfdUDSvu/MUoeMESxx53WKPcEAAAAAAAAAKAxEdyFUUlJifbv3y9J2rZtm77++uuA+nXocCgI2b17d6PUFi4vv/yy+/jyy33PmvLUp08fJScnS5L++9//qqioqLFKQz1ZW3WWwWSpu2EQDCaLrC07hXRMAAAAAAAAAADCjeAujEpLS73OZ8yYEVC/mJgY93FFRUVIawqnwsJCrV692n1+1lln1dnHZDLplFNOkVT5tfjf//7XSNWhvoxmq+JOGBDSMeNOGCij2RrSMQEAAAAAAAAACDeCuzBKSUlRenq6+7x69l1dcnNz3cdt2rQJeV3hsnLlSveSoZ07d1aLFi0C6nfiiSe6jz///PNGqQ0Nk9h3cIjHuzik4wEAAAAAAAAAEAkI7sLIYDBo9uzZ6tu3r4477jjdf//9AfXbtGmT+/j4449vrPKa3Pr1693HPXr0CLif5z54v/zyS0hrQmhEtz1OCb0HhWSshFMvUnTb2vc+BAAAAAAAAACgOTKHu4CjXZ8+ffTmm28G3N7lcunTTz+VJJnNZl18cWTMPPruu++0bNkyrV+/Xn/++afKysqUnp6uU089VcOHD1e/fv3qHGPr1q3u43bt2gV875YtW7qP9+7dq7KyMkVHRwf3BNDoUi+4SWW7f5UtZ1+9x7CktVfq+TeGsCoAAAAAAAAAACIHM+6amZUrV2rfvsrg48ILL1RKSkpY63E4HHrooYd000036d1339WePXuUkJAgq9Wqffv2afHixbrhhhv0yCOPyOFw1DrWH3/84T5u27ZtwDV4BndOp1M7d+4M+nmg8RmjYtTmukdlSWtfr/6WtPZqM2KSjFExdTcGAAAAAAAAAKAZYsZdM+JwODRnzhxJUmxsrCZMmBDmiqRHHnlES5Ys0a233qohQ4bomGOOcV/74YcfNGXKFP3+++967733VFpaqpkzZ/ocx+l0eu3dl5SUFHAN8fHxXud5eXnBPYkIYbfbZTAYwl1GyBkMBplMJhkMBpkTUtVu5JPK+eJ1Fa7/LOAxEk69SKnn3+gO7VwulxwOh1wuV2OVDQAAgKOE3W4P6DEAAACgsfCa9JCj9Xl7IrhrRl5//XVt3rxZkjRlyhR16NAhrPUsXbpU+/fv1/z583XKKafUuN6nTx+98847uuqqq7Rt2zYtXrxYZ511li6//PIabUtKSrzOg1nqMioqqtaxmovffvst3CU0mtTUVHXq1EkGg0HGqBilDx6nhFMuUMG6T1T827dyOWw1+hhMFsWdMFCJfS/22tPO5XJp165dysnJacqnAAAAgKPIr7/+Gu4SAAAAcJTjNenRi+Cumdi0aZOeffZZSdLEiRN16aWXhrkiaceOHXr88cd9hnbV4uLi9Nhjj+mGG26QJM2ePVt//etfZTKZvNoVFxd7nQcT3B3e9vCxEH45OTlyOBzq1KmTzObKbzvRbY9T9OXHyXnJOFUc2KWKA7vlspXLYImStWVHWVt2ktFs9RrHbrdr165dzXZWJQAAAAAAAAAAtSG4awYOHDig8ePHy263a9KkSbruuuvCXZJGjRql7OxsXXHFFXW27devn7p3767NmzcrIyNDq1at0jnnnOPV5vAlIoNZAtHpdHqdG41s3RiJ8vLyVFRUpI4dO6pFixbux41ma2WI5zGrzpfc3Fzt3r2bqdIAAAAAAAAAgCMWwV2EKygo0NixY5WVlaWnnnpKl112WbhLkiT3DLpAnXvuue5lPr///vsawV1cXJzXeVlZWcBjl5eX1zoWIofdbtf27dsVExOj9PR0paSk1Jh96cnhcOjgwYPKyspSaWlpE1YKAAAAAAAAAEDTI7iLYIWFhRo9erS2b9+uuXPn6vzzzw93SfV24oknuo997eUWGxsrg8Hgnml3eBhXm4qKihpjNUcnnHCCLBZLuMtoUk6nUzabTfv375fVapXRaJTT6VRqaqqMRqNcLpeSk5OVnJwc7lIBAABwhLLb7TX2DznxxBPdS7wDAAAAjY3XpIfYbDafGcLR5Oj7U28m8vPzNXr0aG3btk0vvviiBgwYEO6SGqR9+/bu49zc3BrXDQaDkpOT3dfy8/MDHruwsNDrPCUlpZ5VhpfZbD7qgrtq2dnZXudpaWlH5X9KAAAAiAxH82tzAAAARIaj9TVpMNtoHanYDCwC5ebm6qabbtKOHTv0yiuvNPvQTvJevrKkpMRnm65du7qPMzMzAx57//797mOLxaJOnTrVo0IAAAAAAAAAAIDwIriLMNUz7Xbv3q1XXnlFffr0CXdJIeF0Ot3H/payPPbYY93HGRkZAY/tGdx17NjxqPwUAgAAAAAAAAAAaP4I7iJIUVGRxowZo507d+rVV1/VqaeeGu6SfHrhhRc0cOBADR06VFlZWQH18Zxll5iY6LNNz5493cebN28OuJ6tW7e6j3v16hVwPwAAAAAAAAAAgEhCcBchKioqdPvtt2vr1q168cUX1bt37zr72Gw2jR8/XqWlpU1QYaUff/xRs2bNUk5Ojn799Ve9//77AfXznBXnObPO03nnnSeTySRJ+uOPP1RUVBTQ2L/88ov7+IILLgioDwAAAAAAAAAAQKQhuIsALpdLDzzwgH788Uc999xz6tevX0D9fvvtN61Zs0YxMTGNXOEh69ev9zovLy8PqN+2bdvcx54z6zylpKS4n7vT6dR3331X57gVFRX6+eefJVUuwXnmmWcGVA8AAAAAAAAAAECkIbiLAM8//7yWLl2qadOm6Zxzzgm43/Lly9WxY8dGrKwmz2UuLRaLLr/88oD6ffvtt5Ikq9Wqc88912+70aNHu48//PDDgMYtLCyUJF133XWKjo4OqB4AAAAAAAAAAIBIQ3AXZl999ZX++c9/6rbbbtPQoUMD7rdv3z4tWLDAb3CXkZGhsWPHqnfv3rr00kvdwVlDDRw4UEZj5V+bSy65RJ07d66zT2ZmptatWydJGjx4sJKTk/22Pfvss9W/f39J0v/+9z/t2bOn1rGrl+qMj4/XzTffHMAzAAAAAAAAAAAAiEwEd2GUlZWliRMn6vTTT9ddd90VcL/169dr1KhRKi4u9hvcTZw4UV999ZVKSkq0ZcsW3X777crMzGxwze3bt9c111wjqXJpykDMmTNHdrtdCQkJuvfee+tsP2XKFCUlJclms+npp5/2227Tpk367LPPJEmPPvporYEgAAAAAAAAAABApDOHu4Cj2dy5c5Wbm6s//vhDgwcPDqhPQUGBcnJy3Of+grtNmzZ5nZeWlmrjxo1q06ZN/Quu8sADDygzM1MfffSRhgwZol69evltO2/ePC1atEhWq1VPP/20WrZsWef4nTt31pw5czR27FitWLFCb7zxhm644QavNnl5ebr33nvlcrk0cuRIXXbZZQ1+XgAAAAAAAAAAAOFEcBdG2dnZkipn3mVlZdVrDH/BXY8ePbR27Vr3ucViUffu3et1j8NFRUXp+eef16uvvqqRI0eqf//+uuCCC3TiiScqLS1NdrtdW7du1YIFC7Ry5Up17NhRU6ZM0YABAwK+x4ABA/TWW2/p7rvv1vTp07V161ZdffXVatGihf7f//t/evbZZ5WRkaH77ruPJTIBAAAAAAAAAMARgeCumfMX3M2YMUOPPfaY1q1bp1atWunee+/127Y+TCaTxo4dqyuvvFKLFi3SsmXLNHv2bOXn5ys6OlopKSk66aSTNGPGDA0ePFhWqzXoe/Ts2VNLly7VRx99pMWLF2vs2LEqLi5Wu3btdPbZZ+uGG25Qly5dQvacAAAAAAAAAAAAwsngcrlc4S4COJpUVFRo48aNNR4/+eST6xVwNnc2m00bNmzweqxnz56yWCxhqggAAABHE16PAgAAINx4TXoI759LxnAXAAAAAAAAAAAAAIDgDgAAAAAAAAAAAIgIBHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAAAAAEQAgjsAAAAAAAAAAAAgAhDcAQAAAAAAAAAAABGA4A4AAAAAAAAAAACIAAR3AAAAAAAAAAAAQAQguAMAAAAAAAAAAAAiAMEdAAAAAAAAAAAAEAEI7gAAAAAAAAAAAIAIQHAHAAAAAAAAAAAARACCOwAAAAAAAAAAACACENwBAAAAAAAAAAAAEYDgDgAAAAAAAAAAAIgABHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAAAAAEQAgjsAAAAAAAAAAAAgAhDcAQAAAAAAAAAAABGA4A4AAAAAAAAAAACIAAR3AAAAAAAAAAAAQAQguAMAAAAAAAAAAAAiAMEdAAAAAAAAAAAAEAEI7gAAAAAAAAAAAIAIQHAHAAAAAAAAAAAARACCOwAAAAAAAAAAACACENwBAAAAAAAAAAAAEYDgDgAAAAAAAAAAAIgABHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABzOEuAAAC9eOPP2rp0qX68ccflZmZqZKSEsXHxys1NVU9evTQwIEDdfHFF8tqtYa7VL82b96sjz76SOvWrdOePXtUVFSk+Ph4JScn68QTT1T//v116aWXKi4uLiT3WrZsmdauXatdu3apsLBQFotF7du315lnnqkbbrhBbdu2DcGzAgAAAAAAAACEgsHlcrnCXQRwNKmoqNDGjRtrPH7yySdHdODUWGw2mzZs2OD1WM+ePWWxWNznGzZs0LRp0/THH3/osssu05lnnqnWrVvLZrMpMzNTq1at0scffyybzab09HRNnjxZF1xwQVM/lVrt2LFD06dP1/fff6/BgwfrnHPOUfv27SVJ+/fv1/fff6/3339fJSUlSkxM1H333afhw4fX61579uzR9OnTtXLlSvXt21eDBw/WMccco/j4eP3555969dVX9dNPPyk2NlbTp0/X4MGDQ/lUAQAAmpVAXo8CAAAAjYnXpIfw/jkz7gBEuPnz5+uJJ57Qqaeeqk8++UStWrXyut67d28NHjxYY8eO1dixY7Vr1y7dcccdmjRpkkaMGBGmqr2tWLFC9913nzp06KCPPvpIxxxzTI02gwYN0rhx43Tbbbdpw4YNeuSRR7R7925NmDAhqHt99dVXuvfee2W1WvWvf/2rRoDZo0cPde/eXRdccIFKSkp07733KiYmRuedd16DniMAAAAAAAAAoOHY4w5AxHr33Xc1ffp0dezYUa+88kqN0M5T586d9fLLLysmJkYul0vTp0/Xzz//3ITV+vb111/rb3/7m2JiYjRv3jyfoV21tLQ0vfzyy0pPT5ckvfzyy1qxYkVQ97rjjjsUHR2tN954w++sQ89P6jidTs2dOzfgewAAAAAAAAAAGg/BHYCIlJWVpRkzZkiSrr/+esXExNTZp1OnTrr66qslSXa7XTNnzmzUGutSXl6uRx55RE6nU0OHDnUHcrVJTk7W2LFj3eczZ86U3W6vs9/u3bt1zz33yG63a/bs2eratavftrm5uV7nsbGxdY4PAAAAAAAAAGh8BHcAItKSJUtUXFwsqTKQC9Qll1ziPl67dq0yMjJCXlugvvrqK/3555+S6v8cdu/erfXr19fZ5+GHH1ZhYaHOPfdc9enTp9a23bt315gxY9StWzedfvrpmjhxYsC1AQAAAAAAAAAaD8EdgIj07bffuo+3bt0acL/u3bvLZDK5z3/44YeQ1hWM+j6H1NRUtW7d2n1e13NYuXKlvv/+e0nS0KFDA7rH/fffr8WLF+v111/XySefHHBtAAAAAAAAAIDGQ3AHICLt37/fffzCCy8oOzs7oH5Wq1UJCQnu8wMHDoS8tkB5Pof33ntPW7ZsCbhvamqq+7iu5/Dqq69KkoxGo84444wgqwQAAAAAAAAARAqCOwARyeVyuY8LCgq0YMGCgPtaLBb3sdPpDGldwfB8DjabTa+99lrAfa1Wq/vY4XD4bbdr1y6tW7dOktS1a1fFx8fXo1IAAAAAAAAAQCQguAMQkQ5fvrGsrCygfg6HQ3l5ee7zli1bhrKsoNT3OUhSTk6O+7hVq1Z+233++efu42OPPTaI6gAAAAAAAAAAkcYc7gIAwJd77rlHRUVFWr9+vdq3b69rr702oH5btmyRzWZzn4dz/7aRI0dq7969+vbbb5WSkqJbbrkloH75+fnas2eP+7y25+C5j16HDh3qXywAAAAAAAAAIOwI7gBEpLS0ND333HNB9/Ocgda5c2d17do1lGUFJS4uTk888UTQ/b744gv3MpsJCQnq37+/37YbN250H6enp3td27Rpkz744AP98MMP2r9/v6KiopSWlqaTTjpJF110kc4880wZDIag6wMAAAAAAAAANA6COwBHDLvdrkWLFrnPR4wYEcZq6u+9995zHw8bNkxRUVE+2/3555/Kz893nyclJUmSCgsL9dhjj2nJkiU1+uzfv1+//PKL3nvvPfXv31+PP/642rdvH+JnAAAAAAAAAACoD/a4A3DEWLRokfbt2ydJQS2vGUnWrFmj9evXS6qcbTdu3Di/bXfv3u11HhcXp4MHD+raa6/VkiVLdPLJJ2vGjBn63//+p40bN2rlypWaOHGi4uLiJEnff/+9brzxRq/99AAAAAAAAAAA4UNwB+CIUFBQoNmzZ0uSTCaTnnzySVmt1vAWFSS73a7p06e7zydNmqSUlBS/7Q8cOOB1brVa9fe//13btm3Tgw8+qP/+978aMmSI2rRpI6vVqrZt22r06NF6//33lZqaKknat2+f7r///sZ5QgAAAAAAAACAoBDcATgiTJ8+XdnZ2ZKkhx56SH379g1zRcH717/+pa1bt0qSxowZo8suu6zW9nl5eV7nS5Ys0XfffadJkyZp5MiRfvev69Kli2bNmuU+X7VqlVatWtWw4gEAAAAAAAAADUZwB6DZ++CDD/Thhx9KkiZOnKjrrrsuvAXVw5o1a/Tvf/9bknTDDTfovvvuq7NPSUmJ1/nixYv1f//3fwEtEdq/f38NGjTIfT5//vwgKwYAAAAAAAAAhBrBHYBm7YcfftCkSZNkMBg0adIkjR49OtwlBW379u26++675XQ6dcstt+jhhx/2O1vOk81m8zq3WCz6xz/+EfB9r7jiCvfxqlWrdPDgwcCLBgAAAAAAAACEHMEdgGbr999/1x133CGn06knnniiWc60+/PPP3XLLbcoPz9fd999tyZMmBBwX7PZ7HV+xRVXqHXr1gH379u3rzsgdDgcWr9+fcB9AQAAAAAAAAChR3AHoFnatm2bRo0apaKiIj3zzDMaOnRouEsKWlZWlm666Sbt3btXDz74oG6//fag+sfGxnqdX3DBBUH1j4+PV9u2bd3nmzdvDqo/AAAAAAAAACC0CO4ANDvbt2/XTTfdpIKCAs2ZM0cXX3xxuEsKWlZWlm688Ubt2rVLkyZN0siRI4MeIy4uzuu8vLw86DGSk5Pdx7m5uUH3BwAAAAAAAACEjrnuJgAQOXbs2KEbb7xR+fn5mjt3rs4777xwlxS0nJwc3XTTTdqxY4cee+wxXXPNNfUaxzN0k6TS0tKgx4iOjnYf1yf4AwAAAAAAAACEDsEdgGZj7969GjlypPLy8pptaJeXl6dRo0Zp+/btDQrtJKlr165e59nZ2UGPUVFR4T6Oj4+vdy0AAAAAAAAAgIZjqUwAzUJWVpZGjRqlnJwczZ49u1mGdiUlJbrlllv0+++/65FHHmlQaCdJHTp08Joxt3379qDH8Jxll5iY2KB6AAAAAAAAAAANQ3AHIOIVFRXp5ptv1t69ezVjxgxdeOGFAfXLzs7WunXrGrm6wNhsNt15553asGGDJkyYoOuuuy6gfkVFRfrmm298XjMajTrhhBPc51u3bg26rvz8fPdxu3btgu4PAAAAAAAAAAgdgjsAEc1ut+uuu+7S5s2b9eijj+qSSy4JuO/HH3+sZ555phGrC9ykSZO0atUq3XrrrbrlllsC7rd69Wo9+OCDfq97hpgbNmxQYWFhwGNXVFTowIED7vPevXsH3BcAAAAAAAAAEHoEdwAi2tSpU7V69WqNHz8+6KUl16xZo44dOzZSZYF76aWX9MEHH2jo0KG65557guq7Zs0aderUye/1//u//3Mf2+12v7PzfNm9e7dcLpckqU2bNurQoUNQtQEAAAAAAAAAQovgDkDEWrhwoRYsWKAhQ4bozjvvDKpvZmZmnaHXsmXLdPHFF6tPnz66++67dfDgwYaWXMPq1as1a9YsnX766Zo2bVpQfUtKSvTJJ5/U+hw6dOigQYMGuc/nzZsX8Pjfffed+3jEiBFB1QYAAAAAAAAACD2COwARacuWLZo6dapOOeUUTZ06Nai+TqdTkydPls1mU+fOnX22+emnn3Tvvfdq+/btKiws1PLly3XXXXe5Z6CFwoEDBzRhwgS1a9dOzz33nMxmc1D9Z86cqby8PL/PodqECRNksVgkST///LO+/PLLgMZfsWKFJKlFixa6+uqrg6oNAAAAAAAAABB6BHcAIo7dbtd9990ns9ms2bNny2q1Btx3+/btuv3227Vy5UpJ8rtU5ueffy6n0+n12Lp167Rz58561324hx9+WPn5+Zo9e7aSkpIC7peZmamHHnpIb731liT/z6Fa586dNWHCBK/7eu5d58uqVau0du1aGY1GzZw5M6j6AAAAAAAAAACNI7jpHwDQBJYuXarNmzfLYrFoyJAhAferqKhQSUmJ12N1zVY73OFhXn2tW7dOX331lUwmk8aMGRNwP7vdrqKiIq/HAnkOI0eOVHZ2tl5++WXl5OTopptu0ssvv6z27dvXaLthwwbdc889slgsmjJlis4888yA6wMAAAAAAAAANB6COwARp6CgQJJks9mUl5dX73FSUlKUkJDg89qFF16o1157zSuo69atW9BBnz/5+fmSJIfD0aDnINU9467ahAkT1KtXL02ePFnbt2/XZZddpmuuuUYDBgxQcnKy/vzzT3355Zf66KOP1LlzZ02ePFl9+/ZtUG0AAAAAAAAAgNAhuANwxOrUqZPfa6eeeqqeeeYZPffcc9q/f7/69u2rSZMmyWQyNWGFdUtPT1dsbGzA7QcNGqQzzzxTK1eu1IoVK/TVV19p4cKFKi0tVVpamk466STNmDFDF198cdB77gEAAAAAAAAAGpfB5XK5wl0EcDSpqKjQxo0bazx+8sknB7WX25HCZrNpw4YNXo/17NlTFoslTBUBAADgaMLrUQAAAIQbr0kP4f1zyRjuAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAAARgeAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAAAAAEQAgjsAAAAAAAAAAAAgAhDcAQAAAAAAAAAAABGA4A4AAAAAAAAAAACIAAR3AAAAAAAAAAAAQAQguAMAAAAAAAAAAAAiAMEdAAAAAAAAAAAAEAEI7gAAAAAAAAAAAIAIQHAHAAAAAAAAAAAARABzuAsAcHQzGAxKS0tTVFSUDAaDXC6XjEY+UwAAAAAAAAAAOPoQ3AEIK7PZrE6dOoW7DAAAAAAAAAAAwo5pLQAAAAAAAAAAAEAEYMYdgLCqsDm0I6NAu/4sUHmFQ1FWkzq1TlSXtomyWkzhLg8AAAAAAAAAgCZDcAcgLLbsztXib7Zr9YYM2ezOGtctZqPO6NlWl551jLp1bBGGCgEAAAAAAAAAaFoEdwCaVEmZXa8t3qTl3+2qtZ3N7tT/ftqr//20V385vZNGXdpDsdF8ywIAAAAAAAAAHLl4FzzC/P777/rggw+0du1a7d27V6WlpYqLi1PLli3Vq1cvDRo0SGeffbYMBkO4S3X78ccf9fHHH+vHH39URkaGKioqlJCQoDZt2uiUU07RJZdcotNOOy3g8c4//3zt27evXrXMnz9f/fv3r1dfNL6c/FI9/MK32nugKKh+y7/bpU3bczRt3EClJsU0UnUAAAAAAAAAAIQXwV2EyMjI0PTp07VmzRqNGDFCjzzyiDp06CCn06mMjAx98803evPNN/Xf//5XJ510kmbNmqVOnTqFteYtW7ZoypQp2r59u66//no98cQTatu2rSoqKrRnzx598cUXWrBggd566y2dccYZevrpp5WamtqoNZ1wwgmNOj7qr6TMXq/QrtreA0V65MU1mnnX2cy8AwAAAAAAAAAckXj3OwL8/PPPuvXWW5WamqqlS5eqTZs2XtdbtWql3r17a/jw4Ro1apR++eUXXX311Vq4cKHat28flpq//PJL3XPPPerRo4c++eQTJSUleV1v06aN+vXrpyuuuEKjR4/W6tWrNWLECL333ns12vqSnJysFi2C29csPT1diYmJQfVB03lt8aZ6h3bV9uwv1GtLftEdV/YKUVUAAAAAAAAAAEQOgrswO3jwoMaNG6e8vDy99dZbNUI7T61bt9asWbM0dOhQ5ebm6v7779fbb7/dhNVW2rZtm/72t7/JbDbrueeeqzWI69atm6ZOnapx48Zp586dmjZtmp5++uk673H99dfrzjvvDGXZCKMtu3Pr3NMuUMvX7NSgfh3VrWNwwS4AAAAAAAAAAJHOGO4CjnYvvPCCDh48qOOPP15du3ats3337t115plnSqrcW27t2rWNXWINzz77rMrLy3X66acrJSWlzvbnnXeejj32WEnSkiVLtGfPnsYuERFm8TfbQzreklWhHQ8AAAAAAAAAgEhAcBdmy5cvlyTZbLaA+wwcONB9vHLlypDXVJuSkhJ9/fXXkoKrecCAAZIkp9Pp7o+jQ4XNodUbMkI65qqfM1Rhc4R0TAAAAAAAAAAAwo2lMsOopKRE+/fvl1S5/OTXX3+ts88+u85+HTp0cB/v3r270erzZd++faqoqJAkrVmzRps3b1b37t3r7Oe5F9+uXaFZMhHNw46MAtnszpCOabM7tTOzwL1c5ruf/a7Nu3KVkhitFolRSk2MrjqOVmpStJLjo2Qy8TkFAAAAAAAAAEBkI7gLo9LSUq/zGTNmBBTcxcTEuI+rQ7Sm4lmzzWbTs88+q5deeqnOfrGxse7jpq4Z4bXrz4JGGdczuDMaDfrht/1+2xoMUnJ8lFpUBXqpSR7BXtVjKUnRSoqPksloaJR6AQAAAAAAAACoC8FdGKWkpCg9PV1ZWVmS5J59V5fc3Fz3cZs2bRqlNn86duyo6OholZWVSapfzW3btm2U2hCZyisaZ0nLco+lMi3m2mfTuVxSbmG5cgvLtX1fvt92RoOUnBDlDvVSqoO9JO/zRAI+AAAAAAAAAEAjILgLI4PBoNmzZ2v27NnKy8vTjTfeGFC/TZs2uY+PP/74xirPp+TkZM2cOVMvv/yyysvLdddddwXUL5w1I7yirKbGGddyaNxQLcXpdEkHC8p1sKBcUi0Bn9Gg5PgopSRVBnnVoV71bL4WCZXXkuKiZCTgAwAAAAAAAAAEiOAuzPr06aM333wz4PYul0uffvqpJMlsNuviiy9urNL8GjRokAYNGhRw++LiYq1atUqS1KJFCw0cODCo+3333XdatmyZ1q9frz///FNlZWVKT0/XqaeequHDh6tfv35BjYem1al1YqOM27nNoXEPHCxplHv443S6dLCgTAcLyvRHLe1MRoNaJBxaojMl6VDAdyjki1ZinJWADwAAAAAAAABAcNfcrFy5Uvv27ZMkXXjhhUpJSQlzRXX74IMPVFJSGawMGzZMFosloH4Oh0OTJk3SwoULJVXu7ZeSkiKn06l9+/Zp3759Wrx4sYYPH67HHntMJlPjzOxqKna7XQbDkRHeGAwGmc2V3166tE2UxWwM2aw4qXJpTM/g7o+9/mfHhZPD6VJ2fpmy88tqbecZ8LVIiFJKYtVyne7Qr/I8IdZyxPwdAQAAiBR2uz2gx45kDodDY8aM0ZAhQzRkyJBwlwMAAHDU4TXpIUfr8/ZEcNeMOBwOzZkzR5IUGxurCRMmhLmiuhUVFenFF1+UJLVs2VLjxo0LuO8jjzyiJUuW6NZbb9WQIUN0zDHHuK/98MMPmjJlin7//Xe99957Ki0t1cyZM0Nef1P67bffwl1CyBgMBvXq1Usmk0lWi0ln9Gyr//20N2Tjn9mrraxVS2Xa7A4dk+5SSmycCkudKixxqLDUocIyh5yhywobVaABn9EoJUSblBBjUkKsSfHRRiXEVp1Hm6qOjYqxGgn4AAAAGuDXX3/1e+3333/Xt99+qy1btig7O1tlZWWKjY1VYmKijjnmGJ188sk6/fTT3R9ki3QVFRWaN2+efvjhB5122mnasGFDvcb59ddfNW3atAbVcu+99+q0005r0BgAAABHitpek+LI1jx+koAk6fXXX9fmzZslSVOmTFGHDh3CXFHdZs2apaysLFksFj3zzDNKTAxs2cSlS5dq//79mj9/vk455ZQa1/v06aN33nlHV111lbZt26bFixfrrLPO0uWXXx7iZ4D6cLlcys3NVVpamiTp0rOOCWlw99czD4W4ebkHNfCEBJ81lJQ7VVjqUFFp5e/ev6qvOeR0hay0RuV0SvklDuWXOKQc/+1MRik+pirQc/8yep/HmhRtMRDwAQAABGjbtm16/fXXtW/fPp1xxhkaNmyYUlNTZbfblZOTo40bN2rVqlX65ptv9Pbbb2vMmDERG0IVFRUpNzdXGzZs0MqVK5WRkRHukiTJ68OaAAAAOHo4nU5NmzZN55xzjs4555xwlxN2BHfNxKZNm/Tss89KkiZOnKhLL700zBXV7csvv9Sbb74ps9msp556Kqi96Hbs2KHHH3/cZ2hXLS4uTo899phuuOEGSdLs2bP117/+tdkvmXmkOHDggDu469axhf5yeict/25Xg8f9y4DO6taxhfs8KyvLZzuDwaC4aJPiok1SC59NJEnOqoCv6LBAr/pXkcdjrmYS8DmcUn6xQ/nFjlrbmU1SQoypzpAvioAPAAAc5ZYvX6433nhDxx9/vGbOnKkWLWq+wBwwYIAuvfRSPfXUU9q/f7+effZZjRw5Mqj9wRvTb7/9punTp8vlcsnViC9so6Oj6zXbMCkpyefXFQAAAN6O1BUgNm/e3GSh3ZYtWzRs2DDZbDZ98cUXat++fZPcN1DN40/uKHfgwAGNHz9edrtdkyZN0nXXXRfukuq0detW3X///bJarZo1a5YuvPDCgPuOGjVK2dnZuuKKK+ps269fP3Xv3l2bN29WRkaGVq1aRSIfIUpLS5Wbm+v+4XvUpT20aXuO9h4oqveYHVolaNRfT3Kf5+bmqrS0tEF1Gg0GxUebFB9tUusAAr7CUkfVcpyeYd+h0K+orPkEfHaHlFvkUG5RXQGfoeaMvapf8dWPx5oUZSbgAwAAR54vvvhC8+fPV+vWrTVx4kRFRUX5bdumTRtNnDhRDz74oMrLyzV//nx16dJFxx57bBNW7FuXLl30xBNPuM8rKir0/fffa8mSJSG9z0033cTPZAAAAI2AFSBCw+l06uGHH5bNZmuyewaL4C7CFRQUaOzYscrKytJTTz2lyy67LNwl1SkjI0Njx46Vw+HQSy+9pAEDBgTVv3oGXaDOPfdc9xKi33//fbP9IfGEE06QxWIJdxkh53K5ZDAYFBtt1rRxA/XIi2u0Z39h0ON0aJWgqbcOUGy02T1ufHy8evbsGeqSG8ThdKmguEK5BWU6WFhe+XtBuQ4WlCnX4zy/qLzZLNFpd7gCCviirSa1SIhSi8RopSRGqUVCtFokRiklMUop7uNoxUTxXw8AAIgcdru9xv4hJ554osxms7Kzs7VgwQJJlR8w7Nu3b53j9ezZU//v//0/zZ8/Xw6HQx9//LHmzZvXGKU32NChQ/Xrr79q+/btkqQOHTrU+/V1WVlZg8cAAAA4WtX2mlSS3nzzTT311FPq3bu3XnrpJbVs2dLnOLt27dJtt92m3bt369lnn9VDDz2ka665ptHrD8S6det08803y+Vyyel0+mzToUMHnXDCCfrtt98arY758+fr559/brTxQ4F3TyNYYWGhRo8ere3bt2vu3Lk6//zzw11Snf7880/deOONKi4u1uuvv94kP7CdeOKJ7uPG/Afd2Mxm8xEZ3HlKTYrRzLvO1muLNwW1bOZfBnTWqL+e5A7tpMqlMCPx62WRFB1lVcuU+FrbOZwu5ReV62B+mQ4WllX+XnDoV05+mXILypRXVN5sZvCVVTiUmVOizJySWtvFRJmUkhhdFfBV/kpNilaLhGilJEUrteoaAR8AAAiX6tfmy5cvV3FxsaTK/dcCff156aWXav78+ZKkH374QVlZWWrbtm2j1dsQaWlp7uDOZDLV+zV29ZtKDRkDAAAAh1S/Jn333Xf15JNPqnPnznr11VcVExPjt8+xxx6rV155RZdffrlKS0v15JNPqmfPnurVq1cTVu7bKaecog8//NB9XlZWpuXLl+vVV191P2YymRp1ic+9e/dqzpw5jTZ+qPCuaITKz8/X6NGjtW3bNr344otBz1oLh3379ummm25ScXGx5s+fr+7duzfJfT3Xn83NzW2Se6L+YqPNuuOqUzSofyctWbVdq37OkM1e8xMWFrNRZ/Zqq7+eeYzXnnZHCpPR4A6tauNwOJVXVDljrzLkK1dOfqlyq2bxVf/Kb0YBX2m5Q/uyirUvq7jWdjFR5hqhXkpidbAXVXmeEK1oAj4AANBIvv32W/fx1q1bdfbZZwfUr3v37jKZTHI4Klcs+OGHH5rF6ikAAACILFlZWZoxY4Yk6frrr681tKvWqVMnXX311Zo3b57sdrtmzpypN954o7FLrVNsbKy6devm9VjPnj31v//9T9u2bWuSGh599FEZjcYmuVdD8G5nBMrNzdWoUaO0e/duvfLKK+rTp0+4S6rTnj17dOONN8pms+nNN99U165dm+zecXFx7uOSktpn+iBydOvYQveMOE3jrzpFOzMLtDOzQOU2h6IsJnVuk6jObRJltZjCXWbYmUxGpSbFKDUpRurgv53d4VReoXeYVx325RRUzt7LLShXXlF50xXfQKXldu3LKtK+rNr3RYyNNrtD0Oowrzrkq/7VIjFK0Vb+ywMAAMHZv3+/+/iFF17Q5ZdfrrS0tDr7Wa1WJSQkKC8vT1LlvuUAAABAsJYsWeJeAaJTp04B97vkkkvcy7WvXbtWGRkZEbsCRGpqapMEd4sWLdKqVav07LPP6p577mn0+zUE72JGmOqZdtWh3amnnhrukuq0d+9e3XTTTbLb7XrjjTfUpUuXJr2/53q4sbGxTXpvNJzVYlK3ji2OyFl1TclsMiotOUZpybV/6sZmrw74SqvCPY/ZfB6BX0FxRRNV3nAlZXaVlBVp74HaA764GEtVkBflFeodHvIRGAMAgGoujyUNCgoKtGDBAo0fPz6gvp7LRfrbwwMAAACoDStAhEZOTo6efPJJnXfeebrkkksI7hC4oqIijRkzRjt37tR//vMf9e7dO9wl1Wn//v0aOXKkKioq9Oabb6pz584NGu+FF17Q/Pnz1apVK7300ktKT0+vs4/nLLvExMQG3R840lnMRqW3iFF6i7oCPod7Oc7qGXvVe+8d9DgvLLE1UeUNV1xqU3GpTXv2F9baLj7GUiPMqxn0RcliJuADAOBId/LJJ2vLli3u87KysoD6ORwO92w7SWrZsmWoSwMAAMBRgBUgQmPatGlyOByaPHlyuEsJCMFdhKioqNDtt9+urVu36uWXXw4otLPZbPr73/+up59+OqC1bUMtPz9fY8aMUXFxsd54442AQrv9+/fr6aef1syZM2tc+/HHHzVr1ixJlQn4+++/r3HjxgU0ZrVjjz028CeAiGC327Vv3z5ZrVYZjUY5nU61bNlSJhOhSDhZzCa1TIlVy5TaZ7FW2BzuWXq5BeXKKfDYf89jmc6i0uYT8BWV2lRUatPuP2sP+BJiLX5n7Xku0UnABwBA83XPPfeoqKhI69evV/v27XXttdcG1G/Lli2y2Q69/jn55JMbq0QAAAAcwVgBouG+/PJLLVu2TFOnTlWrVq3CXU5ACO4igMvl0gMPPKAff/xR//rXv9SvX7+A+v32229as2ZNWEK76qAxIyNDb7zxRsCB2U8//eT1iVVP69ev9zovLw9sLy7P9W979uwZUB9EDpfLpezsbK/H0tLSCO6aCavFpNapcWqdGldru3KbQ7lVM/ZyC6t+97EfX3GZvYkqb7jCEpsKS2zaVUfAlxhnrTljLyHKI+yLUYvEKJlNkb8xLgAAR5u0tDQ999xzQff7/PPP3cedO3du0j3AI8n+/fu1ZMkSrVu3Tjt27FBeXp5iY2PVvn17XXDBBRo6dKiSkpLCXSYAAEDEYgWIhikqKtJjjz2m/v37a/jw4eEuJ2AEdxHg+eef19KlS/Xkk0/qnHPOCbjf8uXL1bFjx0aszL9HH31UP//8s1566SWddNJJAferrWbPZS4tFosuv/zygMasXufXarXq3HPPDbgWAE0nKsCAr6zC7p69dzC/TAcLa+6/d7CgTCXNKOArKK5QQXGFdmYW1NouKd5aNUsvWqkeIV+LhGilVoV8yQkEfAAARDq73a5Fixa5z0eMGBHGasLn3Xff1fTp02t8IDMvL08ZGRlau3atXn75ZU2bNk3nnXdemKoEAACIbKwA0TBPP/20CgoKNG3atHCXEhSCuzD76quv9M9//lO33Xabhg4dGnC/ffv2acGCBTrrrLN8Xs/IyNBjjz2mdevWqX379nrwwQc1cODAkNT8zjvv6IMPPtC0adOCGnPDhg367LPPNHLkSJ/XBw4c6F4q8ZJLLglo6c3MzEytW7dOkjR48GAlJycHXA+AyBNtNattWrzapsXX2q6s3O4O9apn8R2sDvvcAV+pSssdTVR5w+UXVSi/qEI7MvwHfAaDlBQX5RHqVc7cS3UvzVkZ8iXHR8lEwAcAQFgsWrRI+/btk6Sg3lw5krz++ut6/PHH1b9/fw0bNky9evVSq1atVFFRod9++03/+c9/9PXXXys7O1vjx4/XM888o7/85S/hLhsAACDisAJE/f3www969913df/994dtAlR9EdyFUVZWliZOnKjTTz9dd911V8D91q9fr4kTJ6q4uNjvX7iJEydq7dq1kirT9dtvv12ffPKJ2rRp06Cat2zZoieeeELDhg3TVVddFVAfl8ulr7/+Wg888IAcDoffmtu3b69rrrlGb7/9tmJja99Xq9qcOXNkt9uVkJCge++9N+DnAaB5i44yq21U3QFfSZlNuYWH9tzzXJbTczZfWUXzCPhcLimvqFx5ReXanpHvt53BICXFR7mX50ytmrnnHfJFEfABABBiBQUFmj17tiTJZDLpySeflNVqDW9RTezbb7/VJ598oilTpujqq6/2uhYbG6sBAwbo9NNP1xNPPKHXX39ddrtdDzzwgE488cRm94YKAABAJGIFiMqtvh5++GH16NFDN910U7jLCRrBXRjNnTtXubm5+uOPPzR48OCA+hQUFCgnJ8d97u8Hm02bNnmdl5aWauPGjQ0O7mbMmKHy8nJ99913AX8iMjc312s93dp+GHvggQeUmZmpjz76SEOGDFGvXr38tp03b54WLVokq9Wqp59++qhdpxeAf7HRFsVGW9Quve6A79BMvcNn7h0K+sqbU8BXWK68wnJt3+c/4DMapOSEKLXw2IMvtWrmXvUefKmJ0UqMj5LJaGjCZwAAQPM0ffp09/7NDz30kPr27Rvmipre4sWLNX78+BqhnSeDwaD7779f69at06+//qrS0lJNnTpVL7/8chNWCgAAcGRiBYjK7cn27t2r999/XyaTKdzlBI3gLoyqf6DLyspSVlZWvcbwF4L16NHDPeNOqtwzrnv37vW6h6fqmjMyMuo9Rm3BXVRUlJ5//nm9+uqrGjlypPr3768LLrhAJ554otLS0mS327V161YtWLBAK1euVMeOHTVlyhQNGDCg3vUAQHXA175lgt82LpdLJWV2n4FeddCXW1CunIIyVdiaR8DndKkyqCwo1zbVEvAZDUqOP7Qsp2fQl5J4aOnOpLgoGQn4AABHqQ8++EAffvihpMoVUK677rrwFtTEDIbK1wDHHnusbrvttjrbm81mjRs3zr36zDfffKOdO3cGtGUCAAAAfGMFCGnz5s165ZVXNG7cOB1//PHhLqdeCO6aOX8h2IwZM9x73LVq1Ur33ntvRCw7YrFY6pz1ZzKZNHbsWF155ZVatGiRli1bptmzZys/P1/R0dFKSUnRSSedpBkzZmjw4MFH3TceAOFhMBgUF2NRXIxFHVrVHvAVl9q8grzK47LK4/xD5xV2ZxM+g/pzOl3usPKPWtqZjAYlJxxaorN61t7hvxLjrAR8AIAjyg8//KBJkybJYDDokUceOepCO0nq16+ffvzxR9lsNpnNgb3VcN555yk2NlYlJSVyuVxatmyZbr/99kauFAAA4Mh1tK8A4XA49NBDD6lLly669dZbw11OvRHchdG//vWvRhu7bdu2eumll0I+7kcffRTyMf1JSUnRmDFjNGbMmCa7JwA0lMFgUHysVfGxVnVs7b9ddcCXc/j+e1WB30GPoM/uaB4Bn8PpUk5+mXLyy2ptZzIaqmbtHRbyJXiHfQmxBHwAgMj3+++/64477pDT6dQTTzyhoUOHhruksImPr3158sNZrVb17dtXX331lSRpw4YNjVEWAADAUeFoXwFCqtxe69dff9WCBQua9YQfgjsAAMLAM+Dr1DrRbzuXy6WiUpsO5h8K8nILK8Ox6pl71YGf3eFqwmdQfw6nS9l5pcrOK621ndlkOGxZzsN+JVUHfBb38lwAADSlbdu2adSoUSoqKtIzzzyjiy++ONwlNTtdu3Z1B3dbt24NczUAAADNEytASLt379Zzzz2nG2+8Ub169Qp3OQ1CcAcAQAQzGAxKiLUqIdaqTm1qD/gKiis8ZuyVKsdj9l518JdX2HwCPrvDpazcUmXl1hXwGb322jt85l714/ExBHwAgNDZvn27brrpJhUUFGjOnDm68MILw11Ss9SqVSv3cX6+/z13AQAA4BsrQFSaNGmS0tPT9be//S3cpTQYwR0AAEcAg8GgpPgoJcVHqUtb/+2cTpcKSyoOLc1ZPZPPc/ZefpkOFpbL6WwuAZ9TB3JLdaCOgM9iNtYI81okRCn1sJAvjoAPAFCHHTt26MYbb1R+fr7mzp2r8847L9wlNVuxsbHu49LS2v8vBwAAgDdWgKi0cOFCrVmzRvPmzVNMTEy4y2kwgjsAAI4iRqNnwJfkt53T6VJ+cfmhGXueoZ7nfnzNKOCz2Z3af7BE+w+W1NrOaja6Z+y1SIxWauJhx1XXYqPNBHwAcBTau3evRo4cqby8PEK7EHA4HO5jzxAPAAAAtWMFiEpZWVl66qmndNVVV2nAgAHhLickCO6Ao5DL5ZLT6ZTLFf432+12u8/HeDMcCL+EGLMSYszq2CrObxuH06XC4grlFpYpr7BcuYVlyi2sPM8tKFdeYalyCyuUX1imZpLvSXIpr6BUeQW1f+rfajGpRUK0WiRGqUVCtJITrEpJiFZyYpSSEypn86UkRinaSsAHAJEsmNejOTk5Gj16tHJycjR79mxCuyolJSWaMWOG1q1bp169emny5MmyWq0B962WkJDQWCUCAAAcUVgB4pCpU6cqKipKEydODHcpIUNwBxwFXC6XSkpKVFBQoKKiIp9vToSLr/Bwx44dvMkNNEPxRik+SeqQJElRVb8q9+VzuSSH0ymHwyW7wym7o+rY6XFc9XvzZKv8ZStWYY5UmCPtqbpiMFTuw2cyGWU2GWoeGyt/Nxr5vgcA4RDo61GHw6EdO3bolltuUbt27dShQwfl5eUpPj5eZrP/H62zs7O1Y8cO9e3bN+S1R4onn3xS7777rqTK5Zr69++vIUOGBNT34MGD7uNOnTo1RnkAAABHFFaAOOTPP//UihUrZDAY1L9//3qNcdFFF9V47PHHHw/49WxjILgDjmAul0sHDhxQfn6+1xI0ANDUqsMrs0mKkslvO5fLJYfT5RXm2R0uORzOqpCv8rg5BXwuV+UynTa7s9Z2BmNVwGc8FOpVhnzVxwaZjAR8ABAOLpdLe/bsUVlZmdq2basWLVqoqKhIRUVFkqTo6Gilp6crPj6+Rt+PP/5Yn376qRYsWNDUZTeZFStWeJ3v2bPHT8uatm/f7j7u0aNHyGoCAAA4EmVlZWnUqFGsAFElNTVVixcvDrrfpZde6j5+6aWX1LJlS6/rrVu3bnBtDUFwBxyhXC6XMjIyVFBQEO5S6hQdHR3uEgBECIPB4A6t6uJyueRySa7KE7kqf5NU9Xj1tSOEw1k5a9GgyiBUqvx6GQySofLE45pBTFwGgMDV9XrUZrOpVatWateunSwWS43rZWVl2rNnj9q0aaPk5GSva2vWrFHHjh1DWW7EOXxFj9NOOy2gfi6XSxs3bnSfDxw4MKR1AQAAHEmKiop08803a+/evZo5c2bAe9odyStAWCwWdevWrUFjdO7cWe3btw9RRaFR97tiAJqd5hTaAUB9GQwGGY0GmYyGqqUnjbKYjbKYTbJaTIqyVv2yGGU1V10zGapmrhlkNErG6tCrGXFJcroqf1XOTnTJ5nDJZneqwu5Uuc2pcptD5RUOVdgqf9ns1UuSOuVwuuR0utzBJwCgdna7XQ6HQyaTyWdo5ykzM1PZ2dnu5TczMzO1Zs2aWpeAXLZsmS6++GL16dNHd999t9fSkc3Fcccd5z4+66yzAg7gNm7cqKysLElS+/btdfrppzdKfQAAAM2d3W7XXXfdpc2bN+vRRx/VJZdcEnDfjz/+WM8880wjVodQY8YdcAQ6cOCAz9AuOjpaCQkJiouLk9lsjoh95JxOp8rKyrwei46OltHI5woANB2ny+UOtSqX6Kzcf8/pcMrurFqq01EZeB1pjEZD5XKcRqPMRoOMXnvxHQpGjRHwfwYANIbaXo+Wl5drx44dSkhIUKdOnWQwGORwOFReXq7CwkIVFxfL6fReCjkrK0smk0lJSUmaPHmybDabOnfu7PPeP/30k+699173GMuXL1dOTo7eeOONJnut7rnHn6/9/gJxxRVXaP369ZKkc889N+B+8+bNcx/fcsstEfHzCQAAQCSaOnWqVq9erfHjx+uaa64Jqu/RsALEkYbgDjjCuFwu5efnez1mMBjUvn17n3tuhJvT6ZTJ5L3fldlsJrgD0PRqn0Qh6VDA5953ryrgc9i9Az5HMwr4XJLsDsnucFWd+d6Lz2Ssmq1oqgz4TGZjZdhX/ZiJgA9A8+Tv9ajBYFBmZqaMRqM6deokq9UqqXI5nujoaCUlJcnlcikrK0s5OTle/ffs2aMHH3xQK1eulCS/b5R8/vnnNYK/devWaefOnerSpUuonmKt9u7d6z4OZm86T1dccYWWLFmi7777Tjt37gyoz/fff69PPvlEktS7d29dffXV9bo3AADAkW7hwoVasGCBhgwZojvvvDOovtUrQNx2221+2yxbtkxz585VVlaWzjjjDD366KNKSUlpaNloAII74AhTUlIih8Ph9VikhnYA0NwYDQYZzSZZ6ngF5XS65HB6Bnw+wr5mFvA5nFX12nwHe9W8Ar6qWXsEfACao7y8PJWVlclgMGjbtm21trXb7e4lNXfv3i2Hw6HffvvNfd3fjDt/Dg/zGsvq1auVmZnpPv/44481evRoJSYmBjWO0WjU888/r/Hjx2vBggXq1q2brrrqKr8z6H766Sfdfffdcjqd6tatm55//nlm2wEAAPiwZcsWTZ06VaeccoqmTp0aVF+n03nUrABxpCG4A44why+RGR0dTWgHAE3MaDTIaAwu4Kveg+7QcWXAZ3c41UTv34ZEfQM+z9l8lYFf5WO8kQsgXKo/DOdyuWp8MM4fo9Go6OhoFRcXq3fv3vrkk0+UkpKihIQEn+0vvPBCvfbaa15BXbdu3YIO+gJRUlKivXv3yuVyqaCgQD/88INeffVVrzb79u3TFVdcoZEjR6pbt25KSkpy11SX+Ph4vfrqq3r99df15JNP6oUXXtD555+vU089VS1btpTValVmZqY+++wzffLJJ3I6nRo2bJjuv/9+tWjRIuTPFwAAoLmz2+267777ZDabNXv2bPcKEIHYvn27nnrqqaNmBYhgVFRU1HoeCQjugCNMUVGR17m/NwkAAOEXTMBnr9qDz141g8/hcB02k8+pZjSBL8iAz3vGnvdMvspjAj4A4WQwGGQ0GuVwOJSQkKDi4mKddNJJ+uSTT9SpUye//U499VQ988wzeu6557R//3717dtXkyZNqrF0Zyhs3LhRN954Y53tdu/erSlTpng99vvvvwd0D5PJpNGjR2v48OFavHixvvnmG33++ec6ePCgDAaDUlJS1LZtW91+++266KKLdNxxx9XruQAAABwNli5dqs2bN8tisWjIkCEB96uoqFBJSYnXY81pBYjrr7++Ue+5ceNGr/P169frmGOOadR7BsvgYu4h0KQqKipqfHOQpJNPPjmoT0344nK5tHnzZq/HOnfurJiYmAaN25icTqdKS0u9HouJiWGPOwCoB+fhwd5hy3VWh33NKeALlK8lOc2HLddJwAfAl1C9Hi0tLfXa381gMOj444/n+w4AAADqZLPZtGHDBq/Hfv75Z82YMaPBY6ekpGjNmjU+r/3000+67rrraqwA8eGHH4b8w2T+VoAoLCz0atehQwddeOGFXts/dejQoV7vn9tsNu3YsUNS5ev1rVu36t///rfXLL+EhATdeuutOvXUU5WQkKCYmBh16NChgc+2YZhxBxxBfH0SwmzmnzkAHC2MRoOsRpOsltpfXDuch0I898w9Z839+JpTwOdwVC5lV27z38agyoDPe0nOwwI+k1EmIwEfgOAd/saGy+WSy+Xi+wkAAADCqrmtALFnzx699tprXo+9/fbb9brn/v37demll9baprCwUDNnznSf9+vXT2+88Ua97hcqzLgDmlhjzriz2+3aunWr12PHHXdcRId3zLgDgMjkcrnkdLl8BHxO2e3ee/Mdaa8mqwO+6hDPc889Aj7gyBOq16PN8bU4AAAAIoOvGXc9e/aUxWIJU0Xh05jvnzcX/AQBAACAGgwGg0wGg0xG1TqD7/CAz+4O+jyW6XQ2r4DPJVU9D0et7bwCvuqlOs3GGvvyEfABAAAAAIBAEdwBAACg3oIK+Jwun0tyusO+oyDgO7QHX+VynSYCPgAAAAAA4IHgDgAAAI3OYDBU7S8nKZCAz+GS3XnYzD3P2XxO15EX8BnkEeYZvcM+o9F9bCTgAwAAAADgiEVwBwAAgIjhGfBFqfaAz+H02IPP6RnsNdOAzyXZHC7ZHA5J/kO+wwO+Q7P4qn43EvABAAAAANBcEdwBAACg2TEYDDKbDDIHHPDV3HPPexafS80k3wsu4POxJKfZvS9f5TUCPgAAAAAAIgfBHQAAAI5YhwI+o6JqaXd4wOe1B5/TcxZfMwv47E7ZJAUb8LmDPfexQUYDAR8AAAAAAI2N4A4AAABHvWADPs8lOQ/twef0unbEBnzVe+6ZDVXLch7aj4+ADwAAAACAhiG4AwAAYbNv3z61bduWN/mbQHFxseLi4sJdRrPnGfDVxnfA53FcNbuvWQZ8dqm2gM9okM8lOQ8P+EzG2r+GAAAAAAAcjQjuAABA2MyZM0e7du3So48+qhNPPDHc5dTptddek9Vq1dVXXy2zufm8jNq3b5+uuOIKDR8+XKNHj1ZycnK4S6ph586d6ty5c6ONX1FRoblz52rs2LFKSEhotPtUCyrgc7i8luP0nsV36Fpz4XRJzgADPu8wryrsMx56zGwyymgk2AcAAAAAHD2azztOAADgiPPbb79py5YtuvLKK3Xttdfqb3/7W5OEKvXVu3dvXXPNNXrrrbc0efJk9e3bN9wlBaRdu3a68847NWXKFL311lu67bbbNHLkyIgKH8ePH69WrVrp5ptv1oABA0I+/qxZs/Sf//xHS5Ys0YwZM9SvX7+Q36M+DAZD5ZKTCjDgO2zPPc9lOu2Oyll+zYXTJVXYnVLAAZ/3nnve+/IR8AEAAAAAjgyR824NAAA4quTn5+uPP/6QJDkcDmVlZckY4UvnnXLKKbr88sv14Ycf6oYbbtD111+viRMnymKxhLu0Ol133XX6/vvvtWLFCj399NP69NNP9fzzzys9PT3cpUmSYmJitGrVKq1atapR75ORkaFbb71VH3/8sTp06NCo9wold8Bnrjvg8wrznB4z9xxO93HzDPictbYzGlVjzz2z6VCwZ6parpOADwAAAAAQyQjuAABAWKxdu1ZOZ+Ub8RdffLGeffbZiA/uJOmuu+7S0qVLZbPZ9MYbb8hms2ny5MnhLisgjzzyiL799lsVFhbq559/1vXXX6/3339f8fHx9RrP5XIpPz8/JEtvRkdHS5JatmypefPmNXi8w7311lt66623JEkvvfRSswrtgmEwGGQxG2SpI+Bzug7tsWc/bEnOZhvwOaUKp7My5KuF0WjwsSTnoYDPXLX/HgEfAAAAACAcCO4AAEBYfPXVV5Kk448/XjNmzGgWoZ1UuezkxRdfrI8//liS9P777+sf//iHoqKiAh7DbreHZZnK9PR0XXvttXrppZckVe4r9+OPP+qcc84JeiyXy6VJkyZp7dq1mj9/vlq1atWg2qq/HhaLRV27dm3QWL60aNHCfdwc9lNsbEaDQUazSZY6/hpWB3w19tyze8/ma14Bn0sVTpcqVHvAZzIaKoM9o49gz+N3o4GADwAAAAAQOgR3AACgyTkcDn3++eeyWCx6+umngwq9IsEVV1zhDu5MJpNMJlPAfQsLC3XzzTfr8ssv14gRIxqrRL+uueYad3DXqlWreu3TVx3avffee5KkG2+8scHhXTBfQzSdgAM+p0sOZ8099+zVs/qqZvM1p4DP4aysN5CAzx3mGQ0ymY2HhX0EfAAAAACAwBHcAQCAJrd27Vrl5ubqjjvu0PHHHx9UX5vNVq895b788ksVFBRoyJAhQfc9XJ8+fRQXF6fi4mJdccUVAc+eKyws1JgxY/Tzzz/r559/lsvl0nXXXVdrnx07driXFA2V9PR05eXlacKECcrMzAy6/7x589yhnVQ5c6+h4Z2hKtSw2Wzatm1bvcaoTW5urvvY5Wo+4VFzYTQaZDQGF/B5LsnpGfDZHS45m2HAJ1sQAZ/nzL2qvfeqQz4DAV+Tq9xD0uw185s/BwAAAADhQnAHAAB8WrhwoZKTk3XhhRf6beNyufTAAw/o4osv1rnnnut+fOnSpTrzzDOVlJTks9+iRYvUuXNnjRs3Lui6Jk+eLKPRqEceeSSoAK+0tFQTJ07U8uXLNXny5AbNDjObzRo5cqQyMzN1//33B9THM7STKr92U6dOlaRaw7s1a9ZoypQpjRI23XfffSEba+fOnbrhhhv0xhtv1OtrW/2G+YEDBzR48OCQ1eULwV34BBPw2R1OOZzVe/B57r9X9ZjTqRBn2o0q2IDPM8yrPK5etrPymGApdAwGQ7Ob+Q0AAIAji8FgUFpamqKiomQwGORyuZrNliIIPYI7AADgU25urh566CH93//9n0aPHu1zKcPPP/9cH374oT766CPdfvvtGj9+vIxGo1atWqUZM2boiSee0BlnnOHVp6ioSJ9++qmef/55Wa3WoGpau3atFi5cKJfLpW3btmnu3LlKSUkJqG91yLdy5UqtXLkyqPvW5oMPPqh3X5fLpSlTpkjyH96NGDFCCQkJOnjwoE466SS1bdtWiYmJiouLq/ON+++//1433nijJOnuu+/W7bff7rPdv/71L82ZM0eSNH/+fPXv37++T6neqsO0du3a6csvvwz5+HPnztU///lPSQr5DEaEntFokNVY9/Kp7oDPUbnnnlew57FsZzOawOcO+MrrCvhq7L/nEfCZKpfrJOADAAAAmgez2axOnTqFuwxECII7AADgU/XsgxUrVujLL7/0+eavw+GQVBm6LFiwQMOGDVP79u1lsVi0f/9+jR492u/4tV0LxA8//KAZM2ZoxowZAbX3nJ03ZMgQjR07tkH3D6W63li/9NJLm6iS8GnKWXDVf2/R/LkDPkvtIZ/DediMvcP246u+1qwCPodLDodD5Tb/bQyqDPi8l+SsCvY8jk3GozvgczpdqrA5VG5zyOWSDAYpymKS1WKS0Xj0fl0AAAAAhAfBHQAA8Mkz6Jo3b5769OlTo82sWbP0wgsvSJL+85//qH379pLknkmXlpam+fPnh6ymvXv3ugO3QYMGuZeaDITn80lOTlbXrl1DVhcarilnwdlstSQdOCKZjEaZjJI12ICvaiZfdcBXHfY1l4DPJVXtIehQeS3tqgO+6hDvaAn4ysrtyisqV1GpTb4+O2AwSPExFiXHRyk6ih+dAQAA0HgqbA7tyCjQrj8LVF7hUJTVpE6tE9WlbWKdP8fgyMNPHwAAwCezObiXCV26dHEfVy+raTKZGi0gO//884NaatMzuDuS3niWpN9//13z58/X5MmTg/5zixTVYZrNZtO2bdtCPn5ubm6NewGHCyTgc7lccrpcNZfkdDplt7vkqJrNZ3c4fYZBkcgz4KuNV8BXvVSn+VDYV71sZ6QHfA6nSzl5pcovrqi1ncslFZbYVFhiU1KcVanJMTIxAw8AAAAhtGV3rhZ/s12rN2TIZq/5gVaL2agzerbVpWcdo24dW4ShQoRD83xnBwAANDrPoCtYkRgeHcnB3cyZM/X111/rwIEDmjNnjmJjYxs85tdff61vvvlGt9xyi1q2bBmCKmtXvXzlgQMHNHjw4Ea9V1lZWaOOjyObwWCQyWCoV8Dn3o/PHfYd+QHfoT34KpfrNIU54LPbndqXVaQKH2+K1Ca/uEKl5Xa1S4+X2WxspOoAAABwtCgps+u1xZu0/Ltdtbaz2Z3630979b+f9uovp3fSqEt7KDY68t5zQWjxJwwAAHxqSPhWPeMukhiNR+YbrZ9//rm+/vprSZVh2w033KCXXnpJqampDRr39NNP18qVKzVo0CBdc801Gjt2bIPHrE15eeVCfu3atdOXX34Z8vHnzp2rf/7zn7JYLE26nx6OXkEFfE5XZZjn9F6S0yvsc7qOvIDPII/ZekbvsM946LFQBXwOp6teoV21CrtT+7KL1L5lAjPvAAAAUG85+aV6+IVvtfdAUVD9ln+3S5u252jauIFKTYpppOoQCQjuAACATw0JuiI9uKvPG8Br1qzR/v37NWTIkHrdv6ioSBMnTtQ//vEPtWvXrl5jHK64uFiPP/64+zw2NlYnnXSSCgoKGhyyWa1WPfroozrttNP0yCOP6L333tP111+vm2++WUlJSQ0tvYbq4C4lJSXkY0uV+y2OHz9eV199td8ZhAsXLtTgwYNDMmMRCJTBYKgMp0ySFFjAZ3c4vZbkdDTXgM/lGfD5D/kMBnnM1vOcxVf1u7Hy2FhHwJeTV1rv0K5ahc2pnLxStUzh+wQAAACCV1Jmr1doV23vgSI98uIazbzrbGbeHcH4kwUAAD41JLgLxew2p9MZ0llynmMdPm5JSUmdYU2LFi1022236eSTT67Xvn0bN27U559/rtWrV2vcuHEaPXp0UHv0+TJjxgzt27dPkpScnKzXX39d3bt3b9CYh/vrX/+qbt266bbbbtNLL72kd999V7fccotuvPFGRUVFhew+vXv31t///nede+65IRvT07XXXuv3msvl0vTp0/XGG29oxYoV+ve//x2Ry73i6OYZ8EXVEfA5nC6fS3J6z+JzqZnke3K5JJvDJVsgAZ/HkpzJCVGKiar8t1xWbq9zT7tA5RdXKDHOqugovk8AAAAgOK8t3lTv0K7anv2Fem3JL7rjyl4hqgqRhp80AACATw0JzfzNeFizZo0qKip0zjnn1Nr/u+++09y5czV37tyQzcDyF9zZbDYNHz5cb7zxhlq08L/Rc/fu3dWrVy/9/e9/18KFC4MO3TZu3ChJKi0t1axZs/TRRx9p9uzZOv7444N8JpW++uorvfvuu5KkhIQEvfrqqyEP7ap169ZNCxcu1J133ql169Zp5syZeueddzRhwoSA9qPbvn17nctT3nTTTZKkHTt2hKTmYPzrX//SkiVLJFUuN/qPf/xDM2bMOOL2QsTRwWAwyFy15GRt0frhAV/lLL7q/fg8Z/E1s4DP7pRNksHgUCuPWXF5ReUhvVdeUblaVwV3LpdLpeV2ORx2OZ2VX61yW2XA+NuOHBlN3j92V39rMcjgdS6D129V17y/D3meGuR14tW3ut/h38bcj3s96LtvjXo9Hvfd3/c9fd7XT59g6vXsX2vfw7+uh41Z5z39XPc9RnD35P8ZAACOLlt259a5p12glq/ZqUH9OqpbR//vY6D5IrgDAAA+NcZSmUVFRRo/fryuvPJKTZgwwecst7KyMj388MPas2ePrrzySr3wwgvq1q1bvWup5i+4s1gsOuOMM/SPf/xD//73v2sd46abbtJtt92mZ599Vg888EBQ99+0aZPXeWpqqo455pigxqiWnZ2tBx98UFLl8pgvv/yyevToUa+xAtWiRQv95z//0YMPPqglS5Zo37597hBzypQpat++vd++a9eu1WOPPdZs9pb76KOPlJqaqokTJ4a7FKDRBBvweYZ57mNn5AZ8URaTjFX70DmdLhWV2kI6flGpTU6ny708Z05+mUrLKtxLce6r+hT1/C93qMwWSV8ZNAfeAa33g0GHhT4DYd99D28X8D0PC2I9OwVc72GF1BV++rxvoPf0kcr6+xr4DbIPv2egYa2vhD7Qe9ZRS80Q2nN831+jGuMGGuTXGtQH1vfwQmp88MBnm8PuG4J6D+8XaJhfV711fgggkA8e1HU9gA8WHP5BicP71fk9I6A/88C+V9TsX/s9fd237npr+9rV/jUI9HtG0P/efT2v+n7/cl+v+Y/Z378D7/Hqvqe/72+19a3rvsH+2621Hh99gvnQUG33Pfz7VzD/DmrU5HGQnhzjvrb4m+2+O9fTklXbdc+I00I6JiIDwR0AAAg5f58gj46OllS5l9jChQvrHGffvn2aPHmy3nzzzQZ/Kt2z/+HB4vXXX6+LLrpICxYs0DXXXON3jPPOO08dO3bU66+/rvPPP1/9+vUL+P7VM+6kyv3jnnjiCVksliCeQSW73a577rlHOTk5SkxM1EsvvaTevXsHPU59WK1WzZw5U4mJiXr77bclSatXr9bQoUP1wgsv6LTTfP/AcM011yg9PV0FBQU68cQT1apVKyUlJTHTAGgGPAO+2tQa8HnM5muqgC/Kcuj7fIXNEfJ9/1yuynGrl8uMsphUWhbae+Do5fn31eXrQe/WjVwNAACor2PbJ2vW3ytXHKqwObR6Q0ZIx1/1c4bGX3WKrBb/S+mjeSK4AwAAPjUkVPE3W89zeckHH3xQF154YY02FRUVuvjiiyVJp556ql588cWQBDw226HZFofX16FDB11wwQV68skn1a9fP78z4QwGg4YNG6bZs2frgQce0OLFixUXF1fnvbOyspSRcegF+ogRI9ShQ4d6PY/p06fr+++/V0pKil599VWdeOKJ9RqnvgwGgx599FEZjUa9+eabkqSCggLdc889+uSTT/zuFXjBBRf4HXPPnj1q1apVg/f8q0tZWZkyMjLqPdMRgH9BBXyHzdbzDvtccjgrf28Is/lQHdXLVoZauUdw53k/AAAAQJKO7ZDsPt6RUSBb1eoMoWKzO7Uzs4DlMo9A/HQBAAB8ashSmf5ERR1akK1FixZq3759jV/t2rVzt+nXr5/i4+NDcu+yskNTIXwt5Xn99dertLRUEydOlN1u9zvO0KFDZTQatW/fPs2aNSuge3/33XfuY6vVqptvvjmIyg9555139Pbbb6tVq1Z68803mzy08/Twww/rL3/5i/v8zz//1KefflqvsZYvX66//OUvWrhwYa1f+4Z68MEHNWTIEM2bN6/ZLNsJHGkMBoPMZqOirWbFxViUFB+l1KQYtUyJVdv0eHVsnaAubZN0bPskdWmTqA4t49UmLVYtW8QoJTFKiXFWxUWbFWUxyWT0/6EOz897NNY/d89xmUAMAACAw3nuubzrz4JGucfOzMYZF+HFjDsAAOBTQ4INfzPkGiMMDFRpaan72Fdw179/f3Xq1EkbNmzQiy++qDvuuMPnOK1bt9YZZ5yhb775Rm+99ZYuvfRS9erVq9Z7r1mzxn08ZMgQpaenB13/999/r+nTp6tbt256+eWX1bp166DHqK/9+/erVatWXo8ZDAY9+eST2r59u7Zs2SKpcuZdfVitVu3bt08PPfSQHnrooQbXW5cnnnhCGzdu1DPPPNPo9wJQP5UBn6HOmWwul6tyll71zL2qJTmt5kPf5xsrVGuKcBAAAADNl9l06AVjeUXjrQKBIw/BHQAA8KkxgjtfgVlT8ZxxZzbXfAlkMBh05ZVX6plnntG///1vXXDBBerevbvPsS6++GJ98803cjqdmjJliv773//WGkp6zri78cYbg659w4YNGj9+vPr06aO5c+cqISEh6DHqa926dbr55pv1wAMP6Nprr/W6FhMTo+eff14jRoxQTk6OzjrrrHrdw3OJzBkzZujkk0+us8+KFSs0Z84cSdKrr76qNm3a1Nnn5ptvVkZGho477jg98MAD9aoVQGQxGAyymA2y1BLwRTXSnh+e49pDvOwRAAAAmj/P5d+jrI3/mhRHDoI7AADgU2MsJRhscBfKGjxn3MXExPhsM2zYMM2ZM0c2m00PP/yw3nvvPZ+B3HnnnSeTySSHw6FNmzZp6dKluvTSS32OuWfPHu3bt09S5dKfxx13XFB1b9iwQaNHj9ZFF12kyZMny2KxSJIyMzNVUlJSa9/MzEz3cW5urrZt2+azXW5urlef6nZZWVm68847VVZWpscee0zFxcU1lvns2LGjFi5cqN9//11dunQJ6rlV8wzu2rRpo65du9bZx3PWYocOHdSpU6c6+1QHtj169KjXrEcAzZPVYpLBENpZcQZD5bjVWqbEKiXRqq0lByRJXdsnS5LenNKn8ntP1c2rSzhUi8vr3LNE12EP+rzm9dhh7fzcs/a+vu/p7//jQ2P67l/bGIHe09+fm+d4h305677nYV8bHVZLve5Zxxh13fPwGmurK9C6a9zTq96a11w+GgZ8T68/c399/f078B7g8L9Xh9fie4wg7+nrz7LGPfz93fRzzzpqqevfUUD39Pfv2k8/X/f1ul8A30vq/Lfrs966v5f4/HsZSF111BPMv4PD29f5/ahGvXXc0+/3kpr3DPh7RgDfS2qOVfN+wdRd6/eSAP/t1Ri3jq+hr/vW99/e4Se+vgaBfs8I/HvPYc8liO9xddYSyPfEOr/HBXtP1Nf+g4d+Zu/UOrFR7tG5TeOMi/AiuAMAABErlMGd54y72NhYn23S0tI0YMAAffPNN9q4caPefvttXX/99TXapaSk6NRTT9W6deskSS+++KLf4M5ztt3hM9bqsmHDBo0dO1Z///vfdd1113ldy8rK0ujRo1VYWBjQWPPnz9f8+fPrbDdx4kS/155++mkZDAaNGTPG6/HWrVs3aOlOz+AOAELNaDQoPsaiwhJbyMaMj7HIGMAeeyajoWovPjbBAwAAzZ+vgNc7JA0u5HT5GKjuDw74eNDHPUPxYSW/H1I6rBDvgPTQmdl06IPAXdomymI2yhbClRosZiPB3RGK4A4AAPjkdAb3YjKQkM3fEpqhqqE2+fn57uP4+Hi/7aqXwZSk5557TpdddpkSE2u+EO7Xr587uNu6das2btzoc4nHr7/+WlLlDLFBgwYFVfO///1v/fOf/1SfPn1qXOvZs6feeecd5eTkqHv37kpOTnZf++yzzzRhwgR9+OGH9Z4FV1ZWphEjRuiXX36RJLVs2VK33nqrrrjiinqNV5vqWYRNpTFmkwKIbMnxUSEN7pLjo0I2FgAAQHNR/TO9/x/t+bCSP1aLSWf0bKv//bQ3ZGOe2aut1yoQOHIQ3AEAAJ+CDc082/sL6MIZ3P3555/u45YtW/ptN2jQID366KOy2WzKz8/Xu+++q1tuuaVGu169enmdf//99zWCu4qKCq1atUqSdM011wQdUP373/+u9fpxxx3nc+nNQYMGqUePHvrHP/6ht956q9b993xxuVyaOHGiO7RLTEzUvHnzAlrCsj48Z9zVZw/Aiy66KKj2ofx7BaB5iI4yKynOqvziigaPlRRnVXQUP0oDAAAgOJeedUxIg7u/nnlMyMZCZOGnDQAA4FOw4Ybdbncf+5vR1JAxG8ozuGvTpo3fdomJierdu7fWrl0rqXL2mq/grmfPnl7nBw4cqNFm9erVKikpkcVi0TXXXFPf0utl4sSJGj58uObNm6fRo0cH1ff555/X8uXLJVXOhnvuuecaLbSTvPc+nDFjhs+Zi4dbsWKF5syZI0l69dVXa/0zrXbzzTcrIyOD4A44SqUmx6i03K6KBixPZLUYlZrse59UAAAAoDbdOrbQX07vpOXf7WrwWH8Z0FndOrYIQVWIRAR3AADAp2CXEwxlyFYtlAFLZmamJCk6Olqpqam1tj399NPdwd2GDRuUl5fntRSlJLVo0ULJycnKy8uTpBrXpcpwSZIGDx6stLS0hj2BIPXs2VPDhg3Ts88+q9NOO63GDEF/PvzwQ82dO1dS5QzJqVOnasCAAY1ZqioqDs2AadOmTUAhYXp6uvu4Q4cO6tSpU519zObKl74Ed8DRyWQ0qF16vPZlF6nCFvz3AavFqHZp8VV71gEAAADBG3VpD23anqO9B4rqPUaHVgka9deTQlgVIg3BHQAA8MkziFu9erX27dtXo83WrVvdx57hiz8Oh8N9nJWVpW3bttVoY7PZfB43VPWMu2OPPbbOtv3793cfu1wu7d6922cw1717d3333XeSVGMfuoqKCn3xxReS6rf8YyhMnDhRX3/9te666y4tWrRIKSkptbb/9ttv9fDDD7vP//GPf2jo0KGNXWZAf3dCqTFCZgDNg9lsVPuWCcrJKw1q2cykOKtSk2MI7QAAANAgsdFmTRs3UI+8uEZ79hcG3b9DqwRNvXWAYqOJdo5k/OkCAACfPMONpUuXKiam5tJg2dnZ7uPy8nL3sb/Zep7B3dNPP62nn3661hpCFdxVVFTo4MGDkqQTTzyxzvbdu3eXwWBwP4+ysjKf7S666CJ99913GjBggPr27et17ZtvvlFBQYFOPfVU9ejRo4HPoH6SkpI0adIk3Xnnnbrrrrv0n//8x2s/OU+//PKLxo8f7/6a33nnnU0WOIYyoI3E+wGILCajQS1TYpUYZ1VeUbmKSm3y9d+WwSDFx1iUHB/FnnYAAAAImdSkGM2862y9tnhTUMtm/mVAZ43660mEdkcB/oQBAIBPnsHd448/XmNGmSTNmjVLL7zwgqTAgjvPMZ966ildfvnlNdqUl5e7948L1UysP//8013TCSecUGf7+Ph4denSRdu3b5ckdezY0We7q6++Wq1atdI555wjg8F7FsbSpUslhW+2XbWLLrpIw4YN0wcffKAJEyZo9uzZMhqNXm22bt2q0aNHq7i4WJJ0++23a/z48U1Wo+efc2Zmps+ZmIfLyspyH+/ZsyegWXTVbTz/rgI4ekVHmdU6yiyn06UKm0PlNodcrsrALspiktVikpEZdgAAAGgEsdFm3XHVKRrUv5OWrNquVT9nyOZjL2aL2agze7XVX888hj3tjiIEdwAAwKdglhM0m801gitfgg1MQhWw/P777+7jfv36BdTnrLPO0vbt23XKKaeodevWPtuYzWZdeOGFNR4vKirSF198oTZt2mjQoEH1KzqEJk2apI0bN2rFihV67LHHNHnyZPef144dOzRq1Cj3Xn133323br/99iatzzO4mzhxYtD9x4wZE1T70tLSoO8B4MhlNBoUHWVmVh0AAACaXLeOLXTPiNM0/qpTtDOzQDszC1RucyjKYlLnNonq3CZRVosp3GWiifGTCQAA8CmQ5QQtFouGDRum2267zWtWmtNZ81Ni0qHApGXLln5nsUlS27Ztde211+qqq64KsmrfNm3a5L5vIHvcSdINN9ygbdu26bHHHgv6fp999pnKysp0/fXXy2wO/8utmJgYzZkzR8OHD9e7774rm82madOm6Y8//tDo0aPdS57ed999uvnmm5u8Ps+/a/Pnz/faY9Cf//73v+79+D799FN16tSpzj6DBg2Sw+HQJZdcUv9iAQAAAAAIMavFpG4dWzCrDpII7gAAgB/Vs6AsFovi4+N9thk3bpzPYMrfUpktWrTQs88+q4suukgWi8Vnm6ioKH3++ecymUL3ibJffvlFknTmmWcG3KdDhw569dVX63W/RYsWKTY2VsOHD69X/8bQtWtXzZ07V2PHjtUHH3ygAwcOaNOmTcrLy5PZbNbUqVM1bNiwsNQWFRWlyy+/XBdddJF69+7daPeZOXOmTj75ZBmNRhUVFfn9ew3g6OJyuVRRUSGDweDe39RisQQ0kxwAAAAAQs1YdxMAAHA0MhqNGjFihD7//HN1797dZxt/s8n8zbjr3bu3LrnkEr+hXbVQhnZ2u10///yzJGnw4MEhG9efjIwMrV27VkOHDlViYmKj3y8YAwcO1PTp0yVJq1atUl5enmJiYvT888+HLbSTpBEjRuipp57ShRdeKKvV2mj36dWrlyTpueee06BBg7R169ZGuxeA5sPlcslut8tms6miokI2m83vB1AAAACAxmC327Vr1y5lZmZq//79yszMlMPhCHdZCBNm3AEAAJ/GjBlT79kGkfSG57p161RQUKD09HQNHDiw0e+3aNEiSZVLbUaagwcP6tNPP/V6LCUlJSwzz3JycvwGvIEoKipyH+fm5io2NrbOPuXl5Zo8ebK+/vprSdKoUaP09ttv17psKwAAAAAAjc3lcrm3saiWlpYW0g82o/kguAMAAD41ZImwhgQyobZy5UpJ0mWXXdboL3hdLpcWLVqkc889V126dPHbrqKiQsuWLdOQIUMatR5Pn376qaZMmaKsrCxJlfsI7t+/X/v27dP111+va665RnfddZdSUlKarJ7JkyeHJOS9+uqr69UvKytLI0eO1FtvvaU2bdo0uA4AAAAAAICGIrgDAAAh11jLOZSWlgbV3uVy6YsvvpDVatVNN93UKDV5Wrt2rfbs2aNp06b5bWOz2XTXXXdp5cqV2r9/v2699dZGrWnXrl2aNm2ae5ZZdHS0xo0bpzFjxmj9+vW69957lZWVpXfeeUcff/yxRo8ereuvv17JycmNWte1116rmJgY7dy5Uz169FD79u2VkJCg+Pj4gELjjz76yP11XrRokdq3b1/vWqKiourdFwAAAAAAIJQI7gAAQMg1VnD37bffBtX+u+++0969e3X11VerVatWjVKTp4ULF+qEE07Q6aef7vO60+nU/fff754F+OyzzyoqKkojR44MeS0HDhzQv/71Ly1cuFA2m00mk0mXX3657rzzTrVt21aS1L9/fy1evFhPPPGEPvroIxUXF2vu3Ll65ZVXdPnll2v48OE66aSTQl5btYbMOIyOjnYfx8XFRdx+ggAAAAAAAPVBcAcAAEKuIcHdpEmTFBcXp9jYWEVHR8tqtcpoNGrHjh1699133e0CmZW1YMECRUVFec1qy8zMVElJSb3r86eiokKffvqpbrnlFm3bts1nm1deeUXLli3zeuyJJ56Q1WrViBEjQlLHnj179Nprr+n9999XWVmZLBaLhg4dqltvvdXn8p0tWrTQU089paFDh+rJJ5/U5s2bVVpaqgULFmjBggU65phjdMkll+icc85Rjx49GrSEaiT773//q9zcXI0dOzbcpQAAAAAAgKMYwR0AAAg5u91e775/+ctftH79en3zzTf6f//v//ndA61Dhw61jpOdna0vvvhCt956q9q1a+d+PCsrS2PGjFFBQUG9a6zN3LlzNXfu3KD6TJkyRVFRUbriiivqdU+Xy6XVq1fr3Xff1RdffCGHw6H09HTddNNNuu666wKabThgwAAtWrRIH3/8sV544QXt2LFDkrR9+3b3c0pJSVHfvn3Vs2dP9erVS926dVNSUlK9ao4k8+fP1+OPPy5J6tKliwYNGhTmigAAAAAAwNGK4A4AAISczWard9+BAwdq4MCBuuOOO7Rnzx69/PLLeu+997wCvNatW+uUU06pdZz58+erZcuWNWZQ9ezZU/PmzdOqVat0wgknqEuXLkpMTFR8fLxMJlO96w6H7du3a9myZVq0aJH27t0rq9Wq8847AzAGAQABAABJREFUT0OHDtW5554rszm4l3pGo1FDhgzRZZddps8//1zz58/XunXr3NcPHjyoFStWaMWKFe7HUlJSdMwxx6hNmzZKT09X165ddeWVV3qNW15err179zbsyR4mKyvLfbxnz556h8UrVqzQnDlz3Of33Xef3nrrrUZdIhQAAAAAAMAfgjsAABByDZlx56lDhw6aMmWKTj/9dN1zzz1yuVwym82aMmVKraFUbm6u3nrrLT333HOKioqqcf2kk05qtsHMr7/+qpUrV+rTTz/V5s2blZiYqAEDBuhvf/ubzjvvPMXHxzf4HkajURdddJEuuugi/fHHH3r//fe1bNky/fnnnzXaHjx4UAcPHpTJZNLZZ5+tTp061WhjsVj0yiuv6IMPPmhwbb6MGTMmZGOVlpZq3LhxWrhwYZPsiwgAAAAAAOCJ4A4AAIRcRUWF0tPTNWrUqJCMN3jwYH344YfKyMjQo48+qr59+9ba/rXXXtPw4cN1xhlnhOT+4ZSZmanvv/9ea9eu1TfffKPi4mL17NlTgwYN0qOPPqpevXo16kzBY489VhMnTtT999+vH3/8UV988YW++uorr338jjnmGP3zn/9U165dfY5hNBr1+OOP6/jjj1dCQoJOOOEEpaWlKSEhQTExMY1WOwAAAAAAQHNDcAcAAELuhhtu0LRp02S1WkM25uOPP660tLSA2ubk5OjRRx8N2b3DZeXKlXr55ZfVvXt39e7dWzfccIO6desWliU9DQaD+vTpoz59+mjixInuQPGHH37QzTffrM6dO9fZf+TIkU1SKwAAAAAAQHNFcAcAAELu5JNPDvmYgYZ2kjR9+vSQ3z8czjvvPJ133nnhLsOnNm3aaMiQIRoyZEi4SwEAAAAAADhiGMNdAAAAAAAAAAAAAACCOwAAAAAAAAAAACAiENwBAAAAAAAAAAAAEYDgDgAAAAAAAAAAAIgABHcAAAAAAAAAAABABCC4AwAAAAAAAAAAACIAwR0AAAAAAAAAAAAQAQjuAAAAAAAAAAAAgAhAcAcAAAAAAAAAAABEAII7AAAAAAAAAAAAIAIQ3AEAAAAAAAAAAAARgOAOAAAAAAAAAAAAiAAEdwAAAAAAAAAAAEAEILgDAAAAAAAAAAAAIgDBHQAAAAAAAAAAABABCO4AAAAAAAAAAACACEBwBwAAAAAAAOD/s3fXcVGl3wPHP4N0magodnfr6tq1a2K3GAgqdnd3d7diu9jt2q6uLXatBShi0M3M7w9+zBekZmAId8/79eLlMPc+zz0zDMN4zz3nEUIIIUQ6IIk7IYQQQgghhBBCCCGEEEIIIdIBSdwJIYQQQgghhBBCCCGEEEIIkQ5I4k4IIYQQQgghhBBCCCGEEEKIdEASd0IIIYQQQgghhBBCCCGEEEKkA5K4E0IIke5FRETw119/MX78eCZPnqzTuT98+IC/v3+Sxj58+BA/Pz+dxpOQw4cP8/LlyySNdXd3JyAgQMcRJY9SqUzrEISWrly5gru7e1qHIYQQQgghhBBCCPGvJYk7IYQQ6ZKHhweHDh1i+PDh1KhRg169evHHH3+wd+9etm7dqrPjrFu3jpYtW3Lr1i2txz548IAGDRqwfv16QkNDdRZTfG7fvk3Lli0ZNmwYr1690mrskSNHqFWrFtOnT9d6bErw9/enZcuW3LhxI61DidPRo0fx9PRM1WMeOXKEefPmERYWlqrH1cbNmzf57bffmDFjBl5eXmkdjhBCCCGEEEIIIcS/jiTuhBBCpDk/Pz9u3rzJ1q1bGTFiBHXr1qVevXqMGTOG48eP4+3tHWP/BQsWJCnR9qPQ0FBOnz6Nu7s7dnZ2zJs3j4iICI3Hd+vWjV9++YVFixZha2vLw4cPkx1TQoyMjFAqlZw4cYL+/fvj4+Oj8divX78SEBDAzp07adasGWvXrk3BSBO3e/duXr58Sc+ePZk3b16qJD618eDBA5o3b87BgwdT5Xjfv39n9uzZbN68ma5du6bbqjYjIyPCwsJwdnamUaNGOk2iCyGEEEIIIYQQQgjQT+sAhBBC/DeEhITg7u6Om5sbHz584M2bN/zzzz+8efMGDw+PWPsrFAqyZctG9uzZyZEjB1mzZiVTpkyYmJhgYGDAmzdvqFKlSrJiOn36NL6+vurvCxQoQIYMGbSaY/LkyVy7do1//vmHbt26sXnzZipVqpSsuOJjaGgIQMaMGdmzZw8ZM2bUeOy3b9/Ut+3s7HB0dNR5fJry8/Nj48aNAKhUKlxcXChcuDBt27bV2TEuXrxI5cqVMTc3T9J4IyMjfH19GTt2LGPHjtVZXJp48OABp0+fpnfv3ql6XE3o6//vo2PNmjVp2bJlGkYjhBBCCCGEEEII8e8jiTshhBDJolKp8Pb25uvXr3h5efHlyxc8PT359OkTnz9/5tOnT3h4ePDlyxdUKpV6nL6+PjY2NuTPn5/q1auTK1cucuXKhbW1tfrfqERVSnF2dlbfnjJlCh06dNB6jmzZsmFnZ8fq1asJDg5m5cqVbNmyRZdhqhkZGQFgbm5O1qxZtRr7+fNn9W17e3v09NKu6H716tXqKsoqVaqwadMm9WPThSNHjjB27FjKlCnDpk2bkpS8i56gOnfuHGZmZhqN27VrFytWrMDa2hoXFxeNj/fp0ydat24NQPfu3dNl0g5iPi9jx44lS5YsaRiNEEIIIYQQQgghxL+PJO6EEEIk2eLFi7l06RIKhQJjY2OMjY0xMTHBzMwMMzMz8uTJQ8mSJbGwsMDCwgJLS0ssLS158OAB8+bNo3jx4gwYMICiRYumeuyurq7cv38fgPbt29OpU6ckz9WpUyfWrl2LUqkkPDw8wX3v3r1Lnjx5sLKy0vo42lYDRvfPP/8AYGVlRc6cObUeHxwcTGBgYLITNS9evGD79u0AZM6cmalTpxIQEEBAQECy5o1y6dIlJkyYQEREBPfv38fe3j5JyTsDAwP17YwZM2JpaanROBMTEwD09PS0eq4CAwPVt0uWLKnxuOfPn1OkSJFEE7GhoaEsWbKEfv36aVWp+aPoz4sQQgghhBBCCCGE0D1J3AkhhEiy4cOHM3z4cK3GfPr0CScnJ1QqFadOneL06dO0a9eOSZMm6bTqKjErV64EIH/+/EyYMCFZc+XIkYNy5cpx//79BCulbt++jYODA4UKFcLZ2RljY2OtjpPUxJ2Pjw9fv34FoHTp0lqPDwkJwcnJic+fP7N9+/YkJ+8iIiKYOHGiOrn5/ft3mjVrlqS5NHX//n369OnDxo0btUreJSdJmprWrVvH8+fPcXJyokmTJvEm8GbNmsWePXs4d+4cq1atSnKyPC0rNXUhIiKCzp07M2LECKpVq5bW4QghhBBCCCGEEELEIok7IcS/ikqlIigknLBwJQb6epgY6aNQKNI6LPH//Pz8cHBw4Pv370DkmnJOTk40bdo0Rgu+lObq6qquFJw1a5a6SupH3t7eKJVKjeZs3749tWvXply5cjHWk4sSlVwJDAzk4cOHjB49mmXLlmn1+kxqMunNmzfq29om7qKSdteuXQOgR48ebNu2LUnJu02bNvHgwQMA2rZty6xZs9Lt7+fPkrgzMjLi1atXGifR379/T7du3Th16lSSfobJSdy5uLgwbtw4jfY1MTHBwsKCggULUqFCBWxtbSlQoECSjw2gVCqZO3eu+jUohBBCCCGEEEIIkR5J4k4I8dN7+9GXy/fcePH+O6/dfPAPClNvMzcxoJBNRormzUydCjbks9as3Z3QvYCAAPr378+LFy8wMDDA0dGRfv36pfg6dnGZO3cuAL169aJy5crx7nfixAmmT58eY22+xCxbtkyj/U6fPs3ixYsZMWKExnPHlzTZtWuXxnGuWLGCFStWaHzMH7148SJJybvbt2+rn5tWrVoxc+bMdJu0A9J1bNFFT3hfv3493v1mzpzJ8ePHMTIyYunSpUmumkxOQrN58+Y0aNCAly9f4ujoqG6P2rlzZ/r3769OoPv7++Pp6cmdO3fYt28fN27cYM2aNbRp04bx48djYWGh8TFVKhXfv3/nxo0bODs7c+fOnSTHL4QQQgghhBBCCJEaJHEnhPhp3XryiT8uvOLxP1/j3cc/KIwHL7/w4OUX9v/5klIFs9KufhEql8iRipEKX19fHB0duXfvHtbW1ixdupTy5ctrNPbVq1fcunWLzp076ySWEydOcOfOHUqUKMGwYcPi3GfJkiV0796dLl26kDVrVoKCgihZsiRZs2bFwsIiRrLx6NGjjBs3jjFjxtC9e3edxBifqGTSp0+fmD17NgMHDsTS0pIuXbpgY2ODQqGgUKFCsVpwLliwABcXFwCOHDmSpPX1fmRmZqbxvp6engwdOpTw8HBatGhB69atdZoY8/X1Zc6cOQwfPlwnjw1+noq76Im7hJJxUa/ZbNmyUaNGjSQfL6GfW0REBD4+PvHGYWhoiKGhIZUrV6ZUqVLcvHkTgJ49e5Ijx//eky0tLcmVKxcVKlSgZ8+ezJkzB2dnZ1xcXHj9+jVbt27F1NQ0wTinTp3KsWPHCAoKSnTdSSGEEEIIIYQQQoj0RBJ3iVi5ciUDBw5M6zCEENH4BoSy7qArl++5az328T9fefzPV+pUsMGxdRkszVK/2uu/5u3bt/Tv359//vmHmjVrsmDBAo2rfT5+/IijoyPu7u68fv2acePGJSuh4u3tzezZszE1NWXx4sVxVvvdvXuXtWvX4uLiwpIlS/jtt98SnHPz5s2EhYUxc+ZMHjx4wIwZM+JtvZkUX758IVu2bDHuy549Oy9evOD3339n4sSJNG3alNq1a8c7x/PnzwHInTs3xYoVU9+vVCr5+vWrzpJdcfH29qZPnz54eXnRo0cPxo0bR9OmTTEwMGDAgAFUqVIlWfNHREQwbNgwbt26xV9//cWqVauStI7fzyq1E4zxJe7Cw8MZOXIkT58+Zfv27TEScXGJHndCbXL19fWZNGkS7u7uXLhwgQcPHrB27dpE24IOHjyYPn36AJGvc1dXVyZMmEBwcHCC44QQQgghhBBCCCHSmiTuErBy5UpWrVoliTsh0pE3Hj5M3XCDb77JO/l66Z4bD19/YZpjdfJL+8wUc+bMGSZMmEBAQACDBw+mf//+Gq+R9e7dO3r37o27e2SCdseOHbx9+5alS5dibm6epHhmzpyJl5cX8+bNo2DBgnHus3TpUgA+f/5Mjx492LBhQ7wVSidOnODJkycAmJqakidPHoKCgnSWuIuIiKBz586cPXs2xv16enrMnz+f5s2bM2zYMK5cucL06dMxMDCINUdwcLA6cVepUqVY2+vXr4+trS29e/eO9zlJKn9/f/r27cvLly8ZN24cPXv2BMDAwIDnz58zePBgnR7v06dPdO3alQMHDlCkSJFkzfWztMpMD4m78PBwRowYwalTpwCws7PTKHmnjREjRnDhwgUgsjXs4MGDE0z4ZcmSJcYFAnnz5uXPP//kxIkTOotJCCGEEEIIIYQQIiWky8Sdp6enTk/2JMXq1atZuXLlT3PiToj/gjcePoxffS3GGnbJ8c03mHGrrjJnQE1J3unY169fmT9/PocOHSJv3rysX7+eChUqaDz++vXrDB06FG9vbyAyKdasWTPq1q1LaGhokmLauXMnR48epU2bNrRq1SrOff7880/+/vtvIDK5NGXKlHiTdoGBgSxcuBCAUqVKsWzZMvLkyZOk2OLz9u1bPD0949yWPXt2xowZw/jx43FxcUGlUqnX7ovu0aNH6laBP67np6enh1KpZP/+/Rw4cICGDRsyd+7cJCdGo/v69St9+vTB3d2dVatW0aBBA/W26AnGqKRictja2vLs2TNMTU1ZvXp1spN28PMk7pIS5/Pnz+nRowffv39P1rGj/0yje/v2rc6Td0WKFCFv3ry8f/8ePz8/Hj9+TLly5bSaI7H2mkIIIYQQQgghhBDpQbpL3Hl6emJnZ8fp06fTLIb9+/ezfPnyNDu+ECI234BQpm64obOkXRT/oDCmrL/OipH1pG2mDnz8+JF9+/axbds2QkNDcXBwYMCAARpVoIWGhhIcHMyWLVtYu3YtSqUSU1NTevXqRa9evbCwsEhyXCdOnGD27NkUL16cKVOmxLmPv78/s2bNAiITSytWrKBevXrxzrlkyRLc3d2pXr06q1atirHmm0ql0kni5/79+4SEhMS7vU2bNuzatYtHjx5x8OBB2rVrFys5d/36dfXtX3/9NdYchoaGhIeHo6+vT+PGjXWStHv//j0ODg5YWFjg4uKCjY1NjO1xVQbqQubMmalevXqKzJ1eaVrBGl2xYsXYunUrx48fp1SpUuTLlw9zc3ON1i08cuQIc+bMAeDgwYPkzJkz3n112TIWoHDhwrx//x4g3oS2EEIIIYQQQgghxM8uXSXuopJ2USdl0kqjRo1wdnbWSRWAEEI31h10TXZ7zPh88w1m/cGHjOwWu42g0ExwcDAdO3bkxYsXKJVKMmTIQIMGDfD19WXy5MkEBwerv4KCguL8NyIiIsaczZo1Y8yYMcmq2AkMDGTRokXs3LmTDBky0Lt3b27cuIG3tzfe3t74+Pjg6+uLr68vr1+/xt3dHYVCwfz58xNM2v311184OztTtWpV1q5di7GxcYztd+7cYenSpfTv3z/OZJmmrl69CkBYWFicyS6FQsHgwYNxdHQEwM3NLVbi7tq1awAULVo0VgIN/pdEK1CgAC1btkxyrNGPN3r0aNq3b4+Tk1Oc6wimVOIupSRlHT53d/cY6wmmlKQmiIsXL07x4sW1Hhc9uWdpaanxepW6EP3YYWG6vYhDCCGEEEIIIYQQIr1IN4m7qKTdu3fv0rw9VaZMmdi2bRs9evTgxYsXaRqLEAJuPfnE5XvuKXqMS/fcqFMxN1VKxl89IuJnbGxMpUqVePbsGRC5NtuZM2di7GNmZkb+/PnJmzcvuXPnJleuXFhbW5M5c2YOHjyIi4sLYWFhlCpVivHjx8dKQCWFiYkJrq6uqFQqwsPDGT16tHpbjhw5KFeuHKVKlcLY2JgjR44AMGzYMJo2bRrvnF5eXowaNYoSJUqwZs2aWEk7iGxJ2apVK/r06UOZMmUYOXIkVatW1Sp2Hx8fLly4gEKhSHAds9q1a2NjY8O3b9+oW7dujG1+fn48fPgQiFzLLi5RcxsZGWkVX1w+fvzIpk2b2L59O4UKFYp3v+jJvG/fviX7uEqlMtlz/EilUqlvnz9/XuPqsV27drFixQqsra1xcXHR+HifPn2idevWWseZlIq7n5W/v7/6dubMmdMwEiGEEEIIIYQQQoiUk24Sd1evXuXdu3cJ7hMaGsoff/xB586dUzyeTJkyMW/evCSdRBNC6NYfF16l2nEkcZd0ffv2Zf/+/YSGhqJQKChRogS//PILlSpVolSpUlhbW8cac+HCBUaOHImbmxtWVlYMGTKEtm3b6iwZoVAomDRpEh06dEClUlGxYkWaN29OgwYN1C3+PD091e/17dq1o2/fvvHOFxISwoABAzA2Nmb9+vUJtpVs164dBgYGjB07lu7du1OvXj1GjRqVYEIrurVr1xIUFIS5uXmCz4dCocDJyQk9PT0yZcoUY9u1a9fU69vFtx6Zn58fAPr6yf9IYG1tzebNmxPdL3rFXXptbRm9AtTKyirOysG4RCX49PT0tKpGCwwM1C7A/5fWFzulpjdv3gCRjzkp1YJCCCGEEEIIIYQQP4N0k7hr27Ytfn5+zJ07N87tKpWKESNG8Oeff1K4cOEkta3SlqYn6YQQKeftR18e//M1VY71+J+vvPvoSz5ry1Q53r9Njhw56Nu3L3p6erRq1YpcuXLFu+/79++ZM2cO58+fx8jICEdHR/r27auT9dV+VLZsWQYNGkTp0qWpU6dOjG3h4eEMGzaMr1+/Urt2baZNmxbvPGFhYYwYMYJ3796xZ88esmXLluixbW1tCQ4OZvLkyVy4cIGrV6/i6OiIk5NTgomyy5cvs2XLFgDy5cuX6HHatm0b5/2nTp0CoGDBgpQtWxaAhQsXMnLkSCCygkmTloMXLlygUqVKWFrq/ndDF22pbW1t1dWeuhK9ii89fx5IbuLO39+f8PDwWEnf9Ob9+/e8ffsWgAoVKqRqi04hhBBCCCGEEEKI1JRuEncAPXv2JCwsjMWLF8faNmvWLM6ePQuAnZ1daocmxH+W57ekVYFoSqlUEhwcc+064yCVusLo5F9vUvT4Pzrx11va1CucqseMLkcW0zQ7ti4MHDgwwe0BAQGsW7eOLVu2EBoaSpMmTRg5cmSca6/dvXsXHx8fateunWCrSE0MGDAgzvvnzJnDnTt3KF26NEuXLo03mebv78/IkSO5evUqW7ZsoUCBAhofu2PHjnz//p0lS5YQFhbGqlWrePjwIevWrYuzkk6pVDJlyhR1q0ZtW2xGCQkJ4dKlSwDqikJvb2/27t2rTtx5e3ur94+qzPuRn58fY8eOVVfT6SJhklLrk+myZWZoaCjwc63HFxAQEO+2+H6+f//9N9OnT2fu3LnptvoRYNmyZerb8f0+CyGEEEIIIYQQQvwbpKvEHUS28voxcRcaGsqrV5Gt8hQKRYx1Z1Laf6kFlRBx6TPrbFqHkKpO/PWGE6mcLIzu6CLbNDt2SoqIiODAgQOsWLECLy8vypcvz9ixY6lQoUK8Y3Lnzs2CBQuYPHky7dq1o1OnTuTIkUNnMW3ZsgVnZ2fy5cvHhg0bMDMzi3O/o0ePsnTpUtzc3Gjfvj3+/v4cP36cgIAAAgMD8ff3JzAwkMDAQPV9Ubf9/PwICQkhICAAAwMDdcLq8uXLuLq6Ur58+VjHCw8PVyfUihQpgr29fZIe36VLlwgMDCRDhgzY2ka+rv7+++8YSTMfHx/17aCgoDjnWbFiBd7e3nh7e9OlSxe2bt2qbjOaVFFJMV2LLzmVFFExpudqux9VrFhR6zENGjTg9OnT9OrVi379+jF48OB0tW6eUqlk+fLlHDt2DAAnJydq1qyZxlEJIYQQQgghhBBCpJx0l7iLi6GhIRs3bmTixIkcPnwYBweHWPv4+Piwf/9++vTpo/NtQgghkkalUnH27FmWLl3K69evsbGxYfHixTRr1izRsTly5GDbtm2MHz+e1atXs379epo2bYqjoyNFihRJVlxnzpxh/vz5WFlZsWnTpgSryO7fv4+bmxsA+/fvj/Pvgr6+Pjly5CB37tzkzp2bc+fOAZEtLO3s7MiZMyempqZ06NCBp0+fAvDly5c4j2doaMjRo0cJCQmhYMGCSb6AxMXFBYhMzEQlPE+ePBmjguzDhw/q29++fYs1x507d9ixY4f6MVarVi3Bqi5N6TLBFp0uK/mi1pwzMjLS2ZwpzdXVNd5tEydO5MiRI3FumzRpEteuXWPNmjW4urqybNkyLCwsUipMjXz79o0bN26wZcsWXF1dMTExYdSoUXTt2jVN4xJCCCGEEEIIIYRIaT9F4g4iTxg6ODhw+PBhRowYEWv769ev2b9/f4psE0IIoR2lUsnZs2dZvXo1z549I1OmTIwbN44uXbpoVcFkaGjIggULyJw5M9u3b+fIkSMcO3aMVq1aMXr0aDJnzqx1bLdu3WLUqFGYmZmxceNG8uTJk+D+9vb27N27V50UsrS0pFKlSly4cAGAX375hc2bN8do53nw4EEAateuTfHixdX3L168mNatWxMcHJxgu824Wodqw9PTk8uXL6vjB/j8+TPnz5+PsZZZ1LpwBgYGfPv2DX9/f/U6g76+vowdOxalUknhwoWZP38+pUqVSlZcUaIn2OJKGGorqkVmVLJNF37GxF1CsSbUbtbCwoJRo0YxZswYrl27RteuXXF2dk6RNQ3j0rJlyxhVfiEhIeqKx0KFCtG7d2+6d++e4LqZQgghhBBCCCGEEP8WP03iDhJuW5na24QQQsT2/ft3Dh8+jLOzMx8+fMDMzAwnJyfs7e3VCSFtKRQKRo0aRUhICHv37kWpVOLi4sKVK1fYtGkTxYoV03iuO3fu4OjoiEqlYs2aNTGSavHJlSsXLVq0wMPDgx49elCrVi0ASpcurd6u6Rp8BQsWZPjw4Zw/f55ChQppHLe2Dh48SEREBJUqVVK341y5ciUhISFkz55dvV9U4q5AgQL4+/vz+vVrypUrh0qlYvTo0bx//57WrVszZcoUTExMdBZf9MSdLtdVCw0NJSQkRCfJNj8/PwCdPu70zNbWlvXr1/P69WueP3/O9OnTWbhwYaoce/369THar27YsIE9e/YAMHfuXMqWLZsqcQghhBBCCCGEEEKkBz9V4k4IIUT68+7dO65fv87Fixe5evUqYWFhmJiY0KlTJzp27IiRkRH//PMPAQEBBAQE4O/vr74dtSZc9O/j+lIoFGTMmJGcOXPy6dMnALy8vBg0aBAnT57UKHF24sQJxo4dS0REBCtXrqRKlSqx9vny5Qvu7u58+PABNzc3VCoV/fv3Z+rUqTGSQcHBwerbxsbGWj1fdnZ2dOzYUasx2ggLC2P37t0A9O3bF4h87Hv37gWgaNGi6n1fvHgBQL58+VCpVLi6ulKuXDkWL17MlStXmDx5coq0JgwPD0dPT4/69eszbNgwnJyc6NOnD61atUrSmnLDhw8nb968/P777zqrkIta/8/U1FQn86V3CoUCe3t7xo8fD8CxY8cYOXJkstcz1ETOnDljVJna2dmpE3e7du2SxJ0QQgghhBBCCCH+UyRxl848f/4cFxcXbt68iZubG0FBQZiZmZE9e3bKlStHo0aNqF27drqqBgwJCeHAgQOcPHmS58+fExISQq5cuShfvjxdunRJ1gm3lJxbCKEbHh4eTJkyJcZ9QUFB7NmzR33yPS6mpqaEhYURFhZGzpw56dy5MxkzZiRTpkyxvqKqngIDA2nXrh2vX78GIpOGHz58IH/+/PEe5/379yxbtoxjx44B0LFjRwICAli/fj0eHh64u7vj7u6Oh4cHQUFB5MmTh4oVK1KxYkUqV64MxG5BGL1iTNuKLIVCoXWyTxvHjx/n06dPVK1alTp16uDm5saECRPU2+vWrQv8L0kJkYk7MzMzrly5gkKhYO/evWzcuFGn1XDRtW/fnoYNG2JjY8Po0aN59+4dkyZNYseOHWzcuFG9Jp+mBg4cSJYsWWK0AU2ur1+/ApE/X23aeQYFBQGR7Tu1Gefr66tdgP9PpVIlaVxcfv/9d2bMmEFQUBAqlUqnrUe1UahQISpVqsSdO3c4ceIEY8aMSVJbXCGEEEIIIYQQQoifUZom7iIiIjRuL/Zv5+HhwaxZs7h+/TpdunRh0qRJ5MmTB6VSiYeHB1euXMHZ2Zn9+/dTqlQplixZQr58+dI6bJ48ecLQoUN59+4d9erVY+3ateTOnZvnz5+zevVq2rdvT7du3Rg7diwGBgbpZm6huY0TGqXo/EqlMkb1EkRWMEWtd7Ro5x2evk3+GliaKlEgCyO6VEq14/0bVK9enerVq3P9+vUY9xsYGFCkSBGKFi1Kvnz5yJcvHzly5CBHjhxYWVlhbGxM9+7duXnzJrly5aJfv36JHsvU1JRly5bRpk0b9RpYFhYWCY5RKBScOXNG/f3evXvV1WcAmTNnpnr16vTu3ZtatWpplDSKnmRJ7PipbfPmzQCMGjUKiKycikrAFC1alAYNGgCo1+gDKFeuHBYWFqxevZq3b9+ye/fuFG3l2bNnTyDyff7o0aMAVK5cmaVLl2JqakpAQIDGc7m6ujJ48GBy5szJpk2bYrQCTQ4vLy8gck3EpCQwP378mGKJz+h0mbgzMzOjZs2anD17lvLly1OwYEGdza2tDh06cOfOHfUFPA4ODmkWixBCCCGEEEIIIURqSrPEXUhICH369GHDhg0pWnnwM3jw4AF9+/Yla9asHD9+HGtr6xjbc+TIQYUKFejQoQO9evXi8ePHdOzYkQMHDsRoLZXaHj58SI8ePQgICKBTp05MmzZNvS1nzpzUqlWLfv364ezsjJubG2vWrFEnY9JybqGdHFlStk2cUqkkKChmBamJiYn651m6UNZUTdyVLpg1xR/zv9Hw4cPp2LEjFSpUoE6dOlStWpVSpUolqe1hYooUKYKjoyMrV66kTJkyZM2aNcH98+TJQ48ePdiwYYP6vkyZMtGiRQt+//13KlasqPX7R9T6ZwBZsmTR7gGkoHPnzvH8+XOaNWumrkju2LEjBgYGWFhY0KhRI/UFM+fPnwciE6w1atTAwMAAhUJB9+7dUzRpF0WlUjFz5kyUSiUAt2/fpmbNmkmez9fXly5durBlyxby5MmTrNgCAwPVrTLbtGnDnDlzNB67adMm5s+fT+7cudXPsSbc3NzUSdW01KxZM65evRrj725a+P3335k9ezY+Pj7s3r0be3t7+TsvhBBCCCGEEEKI/4Q0S9zt27ePW7du0bt3b0qWLImJiQkmJibqqoDdu3djZGSEsbGx+t8vX76kVbgp5tu3b/Tr1w9vb2927twZK2kXXc6cOVmyZAmtW7fm+/fvjB49ml27dqVitP/j7e2Nk5MTAQEBFC1alEmTJsXaR09Pj4ULF9KgQQMuXrzI0qVLGT58eJrOLX4+tSvYsP/Pl6l2vDoV0i4Z/jMrW7Ys165di5XEUqlUBAcHa91OMjF9+/blzZs3dO7cWaP9+/Xrh4uLCwqFAicnJ9q2bZusi0ai/z2ysrJK8jy6pFQqWbp0KRkzZlSvUwaRFYX29vYx9g0ODlZXSFauXBlzc3MAypcvz5EjR+jevXuKx7t9+3bu3LmDqakppUuXplixYuoqQU0dPnyYyZMnq6vO8uTJg5ubW7ITd1EtRCHmmoCa0GUFnCaiEp+62v/333+nTJkyaXphEERWXrds2ZIdO3bg7u7OpUuXqFevXprGJIQQQgghhBBCCJEa0iRxFxYWxqZNm1AoFNy7d4979+7F2K5SqZg+fXpahJbq1q5dy7dv3yhevLhGFQ7FixenZs2aXL58mTt37nDz5k2qVq2aCpHGtHjxYj5//gxEtmPT14/7pWRpaYmdnR0rV65k/fr1NG3alOLFi6fZ3OLnk9/aklIFs/L4n68pfqxSBbOSz9oyxY/zbxVX5dmePXs4evQoGzZswMzMTKN5bt++TebMmRN8TzQ0NGTx4sUax2Zubs7SpUspWrSoTtZB+/jxo/p2cpNEunLkyBFevnzJ7NmzyZYtW4L7Xr58Wb0WW7NmzdT3161bl/nz5/P06VNKlCiRYrE+ffqURYsWkSFDBpYsWUK5cuVo2bIlpUuXplWrVhrNceTIEaZMmYJKpUKhUDBlyhSNE7mJ+eeff9S3tf27om0iLbm0TRQmFp9CoUjzpF2UDh06sGPHDgB27twpiTshhBBCCCGEEEL8J6RJz6FDhw7x6dMnVCpVnF9Agtv+TU6dOgVEJjM1VaNGDfXt6GsUpZYPHz7g4uICQP78+aldu3aC+7du3RqI/JkuWbIkzeYWP6+29QqnynHa1S+SKsf5r/jw4QMLFizgzp07ODg4aLxumbm5OYMGDcLe3p7Lly/r7L2/atWqOknaAbx79w4AfX198ubNq5M5kyMwMJAlS5ZQs2ZN2rZtm+j+zs7OAGTPnh1bW1v1/Y0bNwZg/fr1KRMokVXVgwcPJiQkhEmTJlG3bl0yZ87M3LlzmTRpEpcvX050jv379zNmzBiUSiUZMmRgzpw5OkvaAbx8GVnlq6+vT7ly5bQam94r7n6mz1JFixalfPnyAFy9epX379+nbUBCCCGEEEIIIYQQqSBNEnelSpXC2dmZvXv3sn//fvbt28eePXvYtm0b06dPR6FQsHLlShYtWsSsWbOYNGkSo0ePplu3bmkRbooJDAzE09MTgNevX2t0shJiVnekxUmsLVu2qBONmlRG2NjYUKxYMQAuXrwYo5IhNecWP68qJXNSu0LuFD1GnQo2VC6RI0WP8V8SFBTEwIED1ck6bZJ3xYsX58CBA1hZWeHg4ECzZs3Yv38/oaGhKR12nMLDw2Pd9/TpUwAKFSqEkZFRaocUy6pVq4iIiGD+/PmJ7vvo0SP+/vtvAHr27BljHcI8efJQqlQpTp06xfPnz3UeZ2hoKE5OTri5ucWqkPv111/p1KkTgwYN4saNG/HOsWHDBiZOnIhSqcTY2Jjly5erL+LQlUePHgFQunRpTE21W/MyKpGWWgkybY8TERGRQpGkjA4dOgCRj3P37t1pHI0QQgghhBBCCCFEykuTxF3JkiWpXLky5cqVo0yZMpQtW5by5ctTrVo1KleuDEDDhg1p1qwZbdu2pWvXrvTu3ZsuXbqkRbgpJqpNWZR58+ZpNC76WlGpfSJbqVRy5swZ9fe1atXSaFzUzxXg7NmzqT63+Pn1bV2WLJZJX5MsIVksjXFsXSZF5v4vioiIYPTo0Tx79gyIbL3XpEkTxo4dq/Fad6ampsydO5eZM2fy4cMHJk6cSP369dm4caN6LdSUEB4ezsOHD9m6dSuDBw+mSZMm3Lx5M8Y+YWFhPHjwAIj5/qMtXbVUfP36NTt27GDx4sVkzZo10f2jknt58+aNs0qtXbt2KJVKZs6cqZP4ooSFhTF06FAePHjA/Pnz4/ybPmrUKIoXL46DgwOnT5+ONX7ixIksXLgQiFy7b9u2bTRs2FCncSqVSu7cuQNAgwYNtB4flRhLrcRd9ETct2/f4v2K+rzwsyXumjZtql6D0cXFheDg4DSOSAghhBBCCCGEECJlpUniTkTKkiULVlZW6u+jqu8S8/37d/Vta2trnceVkHv37uHl5QVEnljXdO2fkiVLqm+fO3cu1ecWPz9LM0OmOVbH3MRAp/OamxgwzbE6lmaGie8sEqVSqZg4caI6CZ8/f362b9/O0qVLKVu2LHp62v3Zad++PTt37iR79ux4eXmxYMEC6tevz+bNm3Vy4YK3tzeXLl1i6dKl2NnZUblyZezs7Hj48CGtWrXiyJEjMdoTQ+QafH5+fgDUrFkzScd98OAB/fr1S3b8ERERjBs3jiFDhmi03umJEyf4+++/USgUzJ49O85qspYtW2JmZsbNmzfZs2dPsmOEyKTb8OHDuXfvHhs3bqRFixZx7mdoaMjq1avJnj07Q4cOZe3atahUKjw9PenZsyf79+8H/leVGdVGUZcePXqEr68vAL/99pvW46O3/E4N0RPA1atXj/fr+PHjQOpf8JNcJiYm6teLt7c3x44dS+OIhBBCCCGEEEIIIVKWfloH8F+mUChYunQpS5cuxdvbGzs7O43GRbXwAtRtIlPLvXv3YhxbX1+zl1CRIv9bO+zZs2dERESQIUOGVJtb/Dvkt7ZkzoCaTFl/nW++ya+6yGJpzDTH6uS3ttRBdCI8PJxx48Zx5MgRILLF3fjx4zWusotP2bJl2b9/P46Ojjx//pzv378zb948du/ezbx586hYsaJG8/j7+/Ps2TMeP37Mo0ePcHV15e3bt0DkWmY1a9Zk1qxZNGjQAGPj+Ks7d+3aBUCmTJmSnLgLCAjQam3TKD9WS61bt45SpUphb2+f6FhPT0+mTZsGgJ2dHVWqVIlzP3Nzc9q3b8/WrVuZO3cuFSpUSNbfmsDAQAYNGkRAQACHDh0iR46EW9JmzZqV9evX06lTJ5YsWcJff/3F8+fP8fb2BqB58+bMnDkz2a+r+Fy9ehWAKlWqkC9fPq3HR7VW1VVFZWKivyYSam86duxYDh48+NMl7gA6duyobpO5a9cu2rVrl6R5ohLugPr1JIQQQgghhBBCCJHeSOIujVWuXBlnZ2eN91epVOpKFn19fZo0aZJSocXp5cuX6tu5c2u+5lj27NnVt0NDQ3n//j0FChRItbnFv0d+a0tWjKzH+oMPuXTPLcnz1Klgg2PrMlJppyP+/v4MGzaMy5cvY2FhwcyZM/n99991Nn/OnDnZtWsXjo6O6jaG79+/x87OjpUrV1K3bt14xw4dOpT79+/z8ePHWNtKlSpF27ZtadKkCVmyZEk0jqdPn6orezt16hRjfTht+Pj4xEgiaCp6NZe/vz/v3r1j9uzZiY4LDQ1lyJAheHt7U69ePUaPHp3g/g4ODuzdu5egoCAcHBzYs2cPuXLl0jpeT09PhgwZQo0aNejfvz8GBppVzBYqVIg5c+YwYMAA9Xp8RkZGTJ48OclJG01FVaYltT13VMIuLRJ3mggPDycsLEzjn0VKiR53Yo+hRIkSlClThocPH/L48WPu3r2rccI+SkBAAHfv3lV/f/78+SRVVAohhBBCCCGEEEKktJ8qcRccHIxKpeLQoUOxtn3+/BkgRbalJxcuXMDd3R2IXAdQkxPNuvTq1Sv1bW1O4lpZWaFQKNQnnV+/fh0ruZaSc/8MwsPDUSgUyZ7jx/ZsSqUy1U4g61JCMZub6DO8SwVqV8iFy8VXPP7nm8bzliqYhTZ1C1O5RI5EjyM08/LlSwYPHszbt28pXbo0S5YswcbGRqPnNvo+ie1vamrK+vXrcXBwUJ+ADwsLY9SoUZw9exZLy7grJwsXLszJkyfV32fIkIHmzZvTvXt3SpUqpfHxQ0NDmTBhAkqlkqxZs9KjR49Ex6hUqjj38fHx4fPnz1q//qKquSIiIjA1NWXOnDmJxq5SqRg7diz37t2jYsWKLF68GD09vQTHZMmSBTs7O9atW4enpyfdunVjzZo1MSqcE+Pm5sa8efOYNm2aepymj/f8+fOx1tgLDQ3lypUrVKhQIcXe4x8/fsyrV6/Inz8/jRo1StL7Q/SfkTbjQ0JC1Lfje93EJXrlZmKvg4wZM+Lg4IBCoUjye1/0cdrECZE/w6CgIP755x8eP36svn/btm04OjpiamqqXs/uR+3atePhw4cATJo0iQULFpArVy7Mzc3jbMEbFBREWFgY/v7+vHnzhjVr1qjbcUPk5z59fX3atWtH7ty5MTQ0xMjICCMjI40fjxDi30/b90qlUhnrs3hYWFiqtU8WQgghhBA/r6jzCYnd91/wX33c0aXbxF1c7Q7XrVsHwLhx4+IdlxLb0ouIiAiWLVsGRJ7AHjlyZKrH8O3b/xIkGTNm1Hicvr4+JiYmBAYGApEnrVNz7p/B06dPdTpfVKu/4ODgn651aFBQkEb7lcpvSameFfng6c+1h5947ebLPx99CQj635u7mYk+Ba0tKWRjya9lcpInh7lWxxAJO3PmDNOmTSM8PBwHBwf69OmDgYGBxs/v169fgcgTXZqMUSgULFmyBDs7O969eweAr68vFy9epFGjRnGOadeuHZs3byYgIICaNWsycuRI8ubNC2j+Oohau+/x48dkyJCBqVOnYmRklOj4kJCQOPfx9PTk8+fPeHp6xptwjEtUm8Pw8HCNYlcqlUyfPp3jx49TpUoVFi5ciEql0mhsz549OXnyJO/fv8fd3Z3OnTszcuRIbG1tNYrVwsKCuXPnoqenp/Hz/PDhQ1asWMHt27eByHakvXv35uvXr+zcuZNTp05x5swZatWqRceOHalatarW6yYmJGoNPQcHhyS3lIxKwGn6M4oSvc2lNmOjjmdmZpbgmN9++41hw4ZhYWERI0moraj1/yDy74s2j/HIkSNMnTo11v07d+5k586dWFtbqysef9SgQQPmz59PQEAAr169onXr1gDs27ePwoULx9p/ypQpHD16NMF4Dhw4wIEDB9TfOzo66mTtSSHEv0NSPitGRESok3TBwZFt3Z88eaLTuIQQQgghxH+HfJb870q3iTtfX18yZ86s/v7GjRucPn0aIFWvWExuBZQubdu2jWfPngEwffp08uTJk+oxBAQEqG8ntAZUXAwNDdXJtah/U2tu8e+WJ4c5nXJEnrhVqVQEh0YQFq7EQF8PY8MM6er3+N8iODiYFStWsHv3bsqXL8/EiRMpWLBgnPsOHDiQiIgIsmfPTrZs2cicOTMWFha8f/+eN2/eAGiVXLawsGDevHl069ZNfQVOQr/3FhYWdOjQASsrKzp16qTFo4wUFhbG5MmTOX36NCYmJkyfPp1ff/01wTFRVcCenp5xbv/w4QMqlYoTJ05oFVNUS0FNrjwKCQlh6tSpnD59mvbt2zNq1CiN1w6FyNaUU6ZMoW/fvoSHhxMQEMC0adM4evQojo6OVK1aNcHxmrYRValU/PXXX2zfvp1bt24BkQm7jh070rVrV3UFVosWLZg7dy63b9/m0qVLXLp0CSsrKxo2bEiNGjWoWLFista98/Hx4ciRI5QrVy5ZbV6jfjZx/YyePn3Kvn37yJgxI+bm5pibm2NoaEhoaKh6DTfQ/m9g586d6dOnT4L7VKtWTeP5njx5gomJiboSLYpKpVKvAQja/d4CtGzZkpYtW2o1JoqpqSlXrlzReP9p06ap13QUQgghhBBCCCGE+Jmk28Sdj49PjMSdkZERK1asULcxMjQ0xNDQEH19ffT19VPkxPyHDx/SzZXXjx49YvHixQCMGTOGFi1apEkc0U+Oa9tOKvqJyOhJutSYW/x3KBQKTIz0MZFuZynmzp07TJ8+nQwZMrBw4ULq16+f4P7Lly/n0aNHnDp1ij179sR5BXuhQoW0iqFo0aJ07NiRnTt3AmBjY5Pg/gMHDkzS34kPHz4wYcIEHj16RP78+Zk7dy5FixZNdFz27Nnx9PRk8+bNWFpaUrhwYQwNDYmIiODRo0fqC1EWL16Mubk5zZs31yieqCqwxCqmvLy8GDFiBG/fvmXy5Mm0atVKo/l/VKFCBYYPH878+fPV9929e5d+/foxZswYOnbsmKR5IbId9bFjxzh06BBubpHrVebPn58OHTpga2sbKwlXsGBB1q9fz5kzZ9i6dSvPnj3Dy8uL3bt3s3v3bgwMDChSpAglS5akYMGC5MmTB2trazJnzoylpWWiSab9+/cTFhbGuHHjkvWZIqqtWlwVezlz5qRMmTLcvn0bFxcX/P3945xDm9+HSZMmaZ3oS8z169f5448/8PT0JHPmzGTLlg1TU1O+fv3Khw8fgMjErJWVlU6PK4QQQgghhBBCCCHSaeJOpVLx/Plz8ufPr76vQoUKaRZPaGioxpUDKeHz588MHDiQ8PBwJk+eTNeuXdMsluSIvkaELlubpfTcQohIgYGBLF++nLt372Jvb0/Tpk01quDS09OjbNmylC1blt69ezN16lT++usv9fYMGTLQpk0brePp378/N2/exMzMjIoVKya4r7aJGKVSyb59+1i1ahVKpZKBAwfSvXt3DAwMNBpfu3Zt9u/fj7e3d5ytAaMYGRlRpkwZjeOKSgYl1MbxwoULzJgxgwoVKrBo0aJkJ1c6derEp0+f2L59OzY2NvTv35+aNWtiYWGh9VwfP37k8uXLnDlzhvv376NSqbCwsKBFixbY2tom+nMEaNy4MY0bN+bOnTvs3LmTy5cvo1QqCQsL48mTJ3G2kVAoFBgaGpIpUybmzp1LuXLlYmz39/dn9+7d9O/fX6PEbEKiKu0yZ85MeHh4jN+RzJkz06ZNG9q0aUNgYCC7du1i/fr1MarzSpYsqdUafrpO2gHY29tjb2/PkydPcHFx4ejRozHW0gN03qZUCCGEEEIIIYQQQkRKl4k7iGzT9Ntvv6V1GAD4+fmRNWvWNDm2r68vjo6OeHl5MX/+/CS3mNIVMzMzvL29gf+t26Cp6CeazczMUnXun0GJEiU0TgrEJzw8XN16MIqxsbFW7fHSwo8VWMlpdydSTkBAAHXr1mXq1KlJrkjKkycPa9eupWPHjjx9+hR9fX2mTJkSK5GiCRMTEw4cOEBERIROXzM3b95k3rx5fPr0iV69etG5c2eyZMmi1RxjxozB0NCQP//8k2/fvqlbXEYxNzendOnSDBs2jOLFi2s8b9RFCiqVigwZMsS4qOTr168sWLCAZ8+eMWvWrEQrIbUxbtw48uXLR7NmzbRagzQgIIDbt29z8+ZNrly5wsuXLwHIly8fnTp1om7dulSvXj1J7301a9akZs2aeHh4cP78eS5cuMCtW7diJZggMjk8evRoOnToEOf74Zo1ayhZsiT9+vVLdjIqX758TJs2jVatWiV40Y+JiQmDBg2iRIkSDBo0CIj8+zVz5sx08x5YqVIlKlWqhL29PU5OTup1Jc3MzBg1alS6iVMIIXRBF59Hw8PD1Z+RosYXKFAg3X8WF0IIIYQQaS88PDzWxcglS5b8T36WDAsL4+nTp2kdRppK05+6s7MzVlZWsRJ0efLkoUuXLmkUVUwqlYqvX7+mSeLOz8+P3r17888//7BixQqdnoRNqujJtcRatf0o+v6mpqapOvfPQF9fP9mJO4VCESuhoqenl66rIqJXS0aXnmP+r8qePTsNGjRI9jxGRkZ06dKFa9eu0b9/f60SVz/SZbXRly9fmDp1Kkqlkj59+tCwYUOt2/ZGsbCwYPLkyUyePFln8UHkB5eaNWsycuTIGI/977//Zs2aNXTt2pV58+alSPvobt26JbpPYGAgZ86cwdXVlfv37/Ps2TMsLCwoVKgQNWrUoF+/flSsWJFcuXLpLC4bGxvs7Oyws7PD39+f69ev8+jRI168eMGLFy9wd3dn1KhR8cb/8eNHrl27xrZt23TyYbh///5a7d+4cWOqVq2KQqFg8uTJFC5cONkx6FrhwoVZu3YtzZs3J3fu3CxdujRZv7dCCJHe6OrzqJ6eXqy/wQYGBv/Jky1CCCGEECL5dHG++GekUqnSOoQ0l2b/g/D09GTJkiVYWlpSvXp1LC0tAciUKRPOzs7kyJEjrUKL5enTp8lunaUtHx8fevfuzevXr1m3bh3Vq1dP1ePHJ3PmzLi7uwORMWoqNDQ0RhVdXNUrKTm3ECJ96dChAx06dEjrMGKwsLBg7ty5mJubp3Uo8Ro2bBjZs2ePdX+FChXYunVr6gf0g8DAQHx8fKhatSotWrQgX758qfqebG5uTqNGjWjUqJH6voCAgAQTsBkzZmTt2rXqzyFpYe3atem+WrxgwYKsXr2amjVrygloIYQQQgghhBBCiBSUZmdeZs+eTUBAAIGBgdStWxdbW1u6du2aLq80//LlS6oe7/v37/Tq1Yv379+zceNGKleunKrHT0ihQoV49OgRAB4eHhqP8/LyipEpL1SoUKrOLYQQiTEyMkpyhV1qiStpB6TpOqzRZcuWjR49eqR1GDEklhAzNTVN80rt9J60i1K3bt20DkEIIYQQQgghhBDiXy9NetFdunSJ06dPA5Flj4GBgezZs4cWLVrQo0cPzpw5E2+7kk+fPqVmqPz+++/06tUr1Y4XVWmXHpN2QIzE6sePHzUe5+npqb5tampK7ty5U3VuIYQQQgghhBBCCCGEEEKI9C5NEnc1atRg27Zt9OnTh2LFigGRCTyVSsXNmzcZMmQI9erVY+XKlXz+/Fk97u3bt7Rq1Yq3b9+mSpy5c+dm8eLFqXIsAH9/f+zt7Xn79i2bNm2iYsWKqXZsTZUtW1Z9+/nz5/EmWH/08uVL9e3SpUvHuf5SSs4thBBCCCGEEEIIIYQQQgiR3qVJq0wDAwOqVatGtWrVGDlyJB8+fODMmTOcOXOGBw8eAJFVVKtWrWLt2rXUrVuX9u3bs2PHDry9vWnfvn2KrEUTlTxUKpWEh4cTFhZGSEgIoaGhLFiwgObNm+v8mFFCQ0NxcnLi5cuXbNiwgQoVKiQ6JiwsjGHDhrFgwQJMTExSLLboKleuTKZMmfD29sbf359Xr15ptP7f48eP1bcbNmyY6nMLIYQQQgghhBBCCCGEEEKkd2m2xl10efLkwd7eHnt7ez58+MDhw4c5evQo7969Izw8nD///JM///wTAIVCgZ+fH35+fqka48mTJ1MscadSqRg7dix37txh9erVVK1aVaNxT58+5fr166mWtAPQ19enYcOGHDhwAIC//vpLo+Ta7du3gcifX3zJtZScWwghhBBCCCGEEEIIIYQQIr1LF4m76PLkycPAgQMZOHAgd+/eZc+ePZw5c4bg4GAgMjmjUCiwsLCgZs2aOjuuSqUiIiKC8PBwdbVdaGio+svDw4OwsDAMDAx0dswoq1at4vjx48ydO5c6depoPO7UqVPkzZtX5/EkpmfPnhw8eJCIiAgOHz5Mz549E9z/5cuXvH79GoAmTZokuAZdSs4thBBCCCGEEEIIIYQQQgiRnqW7xF10FStWpGLFikycOJFDhw6xc+dO3r17B4Cfnx8+Pj7MmDGDXLlypXGkSXfp0iVWrlxJ//79ad26tcbj3N3d2bNnD7Vq1Ypzu4eHB1OnTuXWrVvY2Ngwbtw4atSooZOYixQpgq2tLS4uLjx58oQ7d+5QqVKlePf/448/AMiQIQODBg1Ks7mFEEIIIYQQQgghhBBCCCHSM720DkATlpaW2NnZcerUKVatWkWVKlVQqVT89ddftGjRgj179qR1iEni5eXFmDFj+OWXXxg8eLDG4+7du0evXr0ICAiIt+JuzJgxXLp0icDAQF68eIGTkxMfP37UVeiMGjUKGxsbAObOnYtKpYpzP09PT3bv3g3AoEGDKFiwYJrOLYQQQgghhBBCCCGEEEIIkV6l64q7HykUCho0aECDBg1wdXVl9erVXLx4kWnTpnHp0iVmz55N5syZ0zpMja1YsYLv37/z6tUrmjZtqtEYX19fvn79qv4+vsTdo0ePYnwfFBTEw4cPsba2TnrA0WTJkoU1a9bQtWtXXF1dmTt3LuPGjYuxT2hoKEOHDiU4OJjGjRvTr1+/NJ9bCCGEEEIIIYQQQgghhBAivfqpEnfRlS1blrVr1/L06VOWLVvGhQsXsLW1ZdmyZVSoUCGtw9PIly9fgMjKOy8vryTNEV/irnTp0ty8eVP9vYGBAcWLF0/SMeJTtGhR9u/fz6BBg9i6dSseHh7Y29uTM2dO9c/l6dOn9OjRgzFjxqBQKNLF3EIIIYQQQgghhBBCCCGEEOnRT5u4i1KiRAnWrl3LzZs3mT9/PnZ2dowbN44uXbqkdWipIr7E3bx589Rr3OXIkYMRI0bEu29y5M+fnz/++INTp05x8OBBBg8ejI+PDzlz5qRChQrMmjWLUqVKpbu5hRBCCCGEEEIIIYQQQggh0huFKr4FxH5SR44cYf78+TRt2pTx48endThCxBIaGsrDhw9j3V+mTBkMDQ2TNXd4eDgvX76McV+RIkXQ10+/OXqlUklQUFCM+0xMTNDT+ymW4BRCCCGEED85XX0e/Rk/iwshhBBCiPQhLCwMV1fXGPeVLVsWAwODNIoo7aTk+fOfxb/uzHjLli05efIkERERbNy4Ma3DEUIIIYQQQgghhBBCCCGEEEIj/8pL/ywsLJg0aVJahyGEEEIIIYQQQgghhBBCCCGExv51FXdCCCGEEEIIIYQQQgghhBBC/IwkcSeEEEIIIYQQQgghhBBCCCFEOiCJOyGEEEIIIYQQQgghhBBCCCHSgXSduDt69CgqlSqtwxBCCCGEEEIIIYQQQgghhBAixaXbxN369esZPXo0M2bMwN/fn+DgYMLDw9M6LCGEEEIIIYQQQgghhBBCCCFShH5aBxCXvXv3smTJElQqFbt372b37t0xtmfIkAEDAwP1l6GhIQYGBhgZGWFoaIixsTHGxsYYGRlhYmKCiYkJpqammJmZYW5ujqWlJRkzZiRTpkxky5YNa2trTExM0ujRCiGEEEIIIYQQQgghhBBCCJFOE3deXl6oVCoUCkWcrTLDw8MJDw8nKChIfZ9CoUjWMbNnz07lypWpX78+jRo1wtDQMFnzCSGEEEIIIYQQQgghhBBCCKGNdJm4GzhwIFmzZmXatGnUrFkTQ0NDwsLC1F8hISGEhoaqv0JCQggODiYkJCTJ7TQ/f/7MiRMnOHHiBJkyZaJfv37Y2dklOyEohBBCCCGEEEIIIYQQQgghhCbSZeIOoHPnzkybNo0JEyZQoEABjcdFREQQFBREUFAQgYGB+Pv7ExAQgJ+fH35+fvj6+vLt2ze+ffvG58+fef/+Pe/fv4+R8Pv+/Ttz587l+vXrrFixAgMDg5R4iEII8Z90+vRpcubMSbly5dI6FKED165dw8vLi1atWqV1KP9Jq1ev5pdffqFixYppHYpIIf7+/vzzzz+ULVtW67GhoaE8fvyYChUqpEBkIrrXr1/z/ft3KleunNahAPDq1SsKFy6cpLEeHh5kzZoVIyMjHUclhBBCCCGEEEITemkdgK5lyJABc3NzrKysyJcvH6VKlaJq1ao0aNCAVq1aYWdnx9ChQ5k+fTpr167lxIkT3Llzh23bttGhQweMjIzULTovXbrEokWL0vohCSHEv4pCoaBjx44MHTqUjx8/pnU48Tp37hwfPnxIdL/Dhw/z+fPnVIgofVqzZg1jxozB3t5eo+crLezatYvQ0NAE9/H29ubQoUNJrtzXhoeHR6LxaOry5ct07tyZVq1asX///hhtxFOKl5dXqr3m7927R0RERLLm8PT01FE0kW7cuMHDhw91OmdCgoODad++Pd27d+fSpUtaj+/UqRM9evTg77//ToHoUsfWrVuZPHkyz58/T+tQ4nXlyhW6du1Kz549uX37dlqHQ//+/enWrRsXLlyIc+mBhOzYsYPff/+d48ePp1B0QgghhBBCCCES8q9L3CWFkZER1apVY/r06Rw+fBhra2t18m779u3p4j/fQgjxb9G4cWN69+7NyZMnadq0KXv37k3rkOJ07do1mjRpwoQJExJMSJ04cYIGDRowdepU3NzcUjHCtPfw4UNu3boFwNWrV2nRokW6PNE7f/58GjZsiLOzc7wJM6VSyZgxY2jcuDG7d+/WWWItLjdv3qRJkyacPn062XNFrcn79OlTtm/fjo+PT7LnTMznz5/57bffWLduHb6+vgQEBKTI15UrV+jevTv9+vUjICAgyfFu2LABe3t77t69q5PH/+zZM9q1a4ednV2SEmnaMjY2BiJfN46OjvTu3VvjBLOhoSEKhYIbN25gZ2dH586d+fLli3p7cHBwisSsDX9/f5YuXcq9e/fi3SciIoK9e/fSsmVLunbtytWrV3VybD8/P/bu3auThP2TJ08AuH79Ol27dmXcuHHJnjM5DA0NuXXrFv369WPYsGGxtr9+/Tresffv38fDw4Phw4fTsWNHHjx4kJKhCiGEEEIIIYT4wb86cbdhwwatk2758+dnyJAhqFQqFAoFSqVSqu6EEELHhg4dSv78+QkMDGTy5MksXrw4rUOKxcTEhLCwMA4cOECTJk04c+ZMnPsZGxsTGhrK7t27+e233zh79mwqR5p2Nm/eHOP7Zs2aUa9evTSKJn4mJiZ4enoyY8YMmjVrFmdyy8TEBAB3d3emTp1KixYt+P79e4rE06pVKxo3bszgwYPp378/3759S/JcGTJkUN/etm0bOXPm1EWICTIxMSEwMJDFixdTpUoVKlasmCJfffr0ISwsjMuXL9OzZ88kV95NnDiR/Pnz07lzZ/r375/sytCoFup///03jo6OrF+/PlnzaXo8gBIlSjB37lz09TXvdh+1r5GREZ06dSJbtmxAZDKsY8eOLF68GF9fX90GrYFnz54xe/Zs6tevz5o1a+jXrx9v3ryJc9/oLRuVSiVFihTRSQympqb8+eefNG/enOvXrydrrqiLGABKlSrFqFGjkhtegtavX8/+/fvj3R71nJUoUYIZM2bE2Pb27VtatmzJsmXLCAsLi7EtLCyMx48fq7/X09MjR44cOoxcCCGEEEIIIURi/tWJu7JlyzJ69Gj8/f21GpcvX74Y39+/fz/Gf8aFEEIkj6GhIRMnTlR/v27dunRX3Wxqaqq+3aNHDxo1ahTnflEnR/X19VmwYEG8+/3bPH36lFOnTqm/t7S0pEqVKjGet/QiKimXMWNG5syZQ8aMGWPtEz0xUKxYMTZu3EjmzJlTLKbhw4dTqlQpzp8/T9u2beNNWCRGTy/yo5y+vj5ZsmTRZYjxiv5cbdq0CVdX10S/ol8Epcn+rq6ujBgxAoh8vxg2bFiMJKW2JkyYQOPGjTl//jzNmjVj9+7dSZ4retKsefPm9OnTJ8lzaSJ64q5KlSpkz549SeOLFy+Ora2t+v4MGTKwePFi9uzZQ6NGjdi+fXuy25Im5PPnz5w8eZIZM2bQoEEDbG1t2bZtmzqR7u3tTZ8+fWJUBP74GAAmT56ss0RShgwZWLJkCQYGBvTs2ZOJEycmqQrx3bt3eHh4qGOdM2dOiv8+NmrUiBkzZuDg4BBn8j/qdVq8eHEsLCxibDt48CDh4eGsXr2azp07x7iY4fHjx4SEhACQLVs21q1blyoXBAghhBBCCCGE+J9/deKuWrVqFCtWjFmzZmk17scTQ82bN8fGxkaXoQkhxH9erVq1KFy4sPr7R48eaT3H0aNHmTdvni7DUot+cr5v374oFIo494tKYpiYmNC0adMUiSU9mjdvHkqlEoAiRYqwb98+Fi5cyPv379M4stiiTvpXrlyZypUrx7mPnp6eer9q1aqRJ0+eFI9p6tSpKBQKPDw8cHBw0PpCI0C9dpWZmZmuQ4xX9N8NAwMDjIyMEv2KPkaT/Y2MjNSfx6ysrKhRo0ayYtbT02POnDnkzp2bkJAQpk6dyrp165L9+H/99Vd18jSl6OnpaVVh96Oo5zGuxGehQoVYsGABPj4+zJo1i/bt2yfYQlET/v7+PHv2jCNHjjB//nzs7e2pWbMmtWrVYujQoTg7O+Pm5oaJiQkFChSgatWqNG/enG7dutGiRQtcXV1jzRk9cadrZmZmLF68GCMjI/bv30/nzp35+vWrVnNcvnxZfbtJkyYUK1ZM12HGUqBAAezs7Lh8+TJt2rTh5cuXMbbH95wFBQWxZ88eAMqXL8/y5ctjXMxw8+ZN9e1evXphaWmZAtELIYQQQgghhEjIvzpxBzB69GiOHj3KhQsXNB7j5+envt2rVy8WLFiAtbV1SoQnhBD/aS1btgQiq9saN26s1dhjx44xZswYNm/ezJw5c3Qem6bVPSl5Qjm9unTpkrqtnKGhIQsXLlSfRB46dChBQUFpHGFM6fVnWbZsWXVr0Q8fPrB9+3at54hKnqZm4i45lW9pydzcnKlTp6q/X7ZsGZ8+fdJ6nrR4/MlJDkavyoxLnTp16N27NxBZbdWhQ4c4k2fx+fDhA3379qVly5b8+uuvNGjQACcnJzZt2sTDhw8xNTWlbt266ovgGjZsyPXr17l//z6nTp1ix44dLFq0iEmTJjF06FDq168f6xgp/btZpEgRBgwYAESuVWdvb09gYKDG46O3SO7Ro4fO44uPo6MjZmZmfPz4EXt7+xjJ//hep9u2bcPb25uiRYuyadMmcuXKFWN7VOLOyMiIdu3apVzwQgghhBBCCCHilfTLd9OZwMBAbt26Rf78+WO0uixQoAAdOnRg0qRJnDhxQqOrRqNa9JQqVYrRo0enWMxCCN1TqVSoQoNQRYSjyKCPwtAk3kopkTRBQUE6S8zY2NigUCgYP348xsbGGq/1deXKFcaNG6du67Z161YUCgVjx47VSVyg+YnilK62SW+Cg4OZPXu2+vvhw4dTvHhxIPJil6NHjzJixAhWrlyZbp4bTauV0uK9olOnTpw/fx6A58+faz0+quIuqh1oaviZ31Nr165NpUqVuHPnDhEREbi5uWndBjAtEnfJOWbU72FC72mDBw/m9OnTuLm54e/vz+TJkzl06JBG81tbW7NgwQJMTU0T/F3r27cvbm5uWFhYaN1GMjWe8x49euDs7Mznz595+vQpy5YtY9y4cert79+/Z8+ePbH+b+Dt7c2dO3eAyKre0qVLp3isUSwtLWnTpg07duzA09OTXbt24ejoCMT9nHl7e7Nx40Zy587Nxo0bMTc3j7E9LCyMu3fvAvDbb7+RKVOmZMXn5uZGgwYNNNrX0NAQCwsLcufOTZkyZWjSpAmVK1fW+v3G19eXQ4cOcfnyZZ49e4a3tzeGhoZkypSJYsWK8csvv9CmTZtY7UOFEEIIIYQQIj35VyTuDh48yLx589TrM7Ro0YLJkyer/zM6cOBADh06xOzZs5k7d26i87m5uaFQKBg5cuRPfXJKiP+K0M/v8H98lRCPl4R8eoMy+H9XnOsZm2OUswBGuYpgXqoWhtnzpmGk/w5fv37Fzs4Od3d3nc05ceLEGGveJcWWLVtQKBSMGTNGR1Fp5r/2d2LJkiW8ffsWiGx32rNnT/U2AwMD5s+fT/v27Zk5cyaTJ09OmyB/oOnPKC0SjdWrVydjxoz4+PhQtmxZrceHhYUBaZe48/Pz0yjhHhAQoL6taYI+pSo3e/bsyZ07d8iYMSNFixbVenxa/M4n55iJVdwBGBsbM2jQIPX7p6enp8bz6+vrp3g7xeS0CtWUsbExHTt2ZMWKFQCcOnUqRuJu586dlCxZMta4U6dOER4eDhDj/TC1tGzZkh07dgDEqBKM6/1s6dKlGBsbs2XLljjXCbx79676d7V9+/bJji1XrlzcunWLL1++MHLkSB4/fgxAhQoVmD17NtmyZQMif9e/f//Ow4cPOXz4MDt37mTnzp3q/QoWLJjoscLDw9m6dSurVq2iatWqdOjQgRIlSmBmZsb379958OABO3fuZPbs2SxbtozJkyfTqlWrZD9GIYQQQgghhEgJP33ibtGiRWzcuFF9xTlErnn0zz//cODAAQCyZMlC7969WbVqFc2bN6dmzZoJzvnhwwdKlCjBL7/8kqKxCyGSJ/DlHbyvHyT4w9N491EG+xP09iFBbx/i/ZcLxnlKkKlGa0wLV0rFSP9dbGxs2L59O+fOnaNEiRLky5cPc3NzzMzMYp1cjoiISFalxNevX8maNWtyQxY6cufOHXU7xzx58rBo0aJYP/MSJUowZMgQFi5ciL6+PuPHj0+LUH8ahoaGTJgwgXfv3iXppH9UwkDTxN2BAwfImzcvVatW1fpYPx4TULcX1Eb16tWTfGxdaNy4MePGjaNChQpJSjilRYI3rsRdeHg4I0aMoFq1anTp0iXesVHxJvZe3Lx5cxYuXIiXl1eyXh8pIbWSpS1atFAn7nLnzq2+PzAwkLNnzzJs2LBYY44cOQJEvidqWl32oydPnrB8+XKWLFmidRK+bNmy5MuXDw8PjxiJqB9fp48ePeLcuXNs3bo1RneS6K5cuQJAvnz5qFKlisYx+Pv7x6rei4rB0tISS0tL6tWrp07ctWnTJkYyztLSkhw5clC8eHHat2/P4cOHmTBhAvfu3aNLly7s3LmTQoUKxXv8wMBABg8ezPXr15k/fz7NmjWLsT1LliwUKlSI1q1bM2vWLHbs2MGYMWMICAiga9euGj9OIYQQQgghhEgtaZq4O3z4MLa2tkkev3PnTjZs2IBCoUChUKiTd4ULF8bOzi7Gvr169WLnzp1MmTKFY8eOJfif4pcvX8oVmEKkYxGBfnw5s5GAx1e1Hhv84Smf9j7FvFQtsja2J4OptEpKChsbG42SDJMmTaJAgQLY29trfbLb19eX+vXr065dO/r376++Mv9n9+XLl5/ysfj5+TFu3DiUSiUmJiasXLmSjBkzxrmvvb09t27dYtu2bSiVSiZMmPCvq0wMCAhAoVBgamqa7LmS81koKolmZGSU6L4HDhxg4sSJmJiYsG7duiQnZ6In7rZv3061atUSHXPq1CmGDBkCaN4SdNOmTcyfPz/GxVm6kpzKqJR4LX///j3Bxxl1zJCQEHXF4tSpUzl9+jSnT58GSDB5B4m3/9XX18fe3p6NGzcycuRIbcJPcan1/pEvXz4KFizIP//8g4ODg/r+Q4cOUbNmTYyNjWPs7+7urm4t2a1btyQldZ89e0avXr3w9vZm4MCBrFmzBkNDQ63mmDBhAiEhIeTPn19934/P2fXr19m0aROFCxcGIqvv/Pz8mDRpknqfy5cvA5GJNU2f823btrF582a2b98eb0IQYiaOE6ugtLW15cuXL8yfP5/v378zYcIE9uzZE+/+06dP58qVK/Tt2zdW0i66qNbcDx48wNXVldmzZ/PLL78kmBQUQgghhBBCiLSQZom7d+/eqU/ktWzZUuvxz549Y86cOeqEnYmJCR07dqR169YUK1Ys1v5mZmb06dOHBQsWsGzZsnjXQVKpVLx+/ZrffvtN65iEECkvxPMtn/bMIsJfs1Zr8fF/fIWgd4+x7jwRw+zxn2gSyePo6IitrS2XL19m8eLFWFlZaTz26tWrBAcH4+zsjIuLC3Z2djg5OWmUoIjLihUrGDhwYJomkEJDQ2nWrBl9+/alV69eP00yS6VSMWrUKN69e4dCoWD27Nnqde3ioqenx8KFC2nfvj07duzg27dvzJ07V+uT0XF59eoVL168oGnTpsmeKzkuXLjAihUrWLhwIWXKlNHp3C9evMDOzo7v379rPObq1atxfv6JS2BgIH379mXfvn0UKVJE6/iiJ+5SQ0hISKoeLzEpUXF3+PBh5syZk+h+e/fuZe/evTHuU6lUTJ8+HYg7eRf1PqNJu8levXrRtWtXDA0NCQoKStUWrOmFk5MTT548oV69eur7olos/uiPP/5QJ1znzJmj0c8wIVevXmXEiBEsXbo0zgrJ8PBwfH19Y90f9R4UvQ1t1O9paGgo3759o23btup9tm3bxtq1a9X7Tpo0iQ8fPvD8+XMUCgV16tTRqKXt0aNH1c+LnZ1dosk7bXTv3p2tW7fy+fNn7t27h6ura5zthJ89e8bBgwcBaNKkSaLz6unp0atXL4YNG0Z4eDgbN25M9s9NCCGEEEIIIXQtzRJ3ixcvJjw8nOnTp/P69Wu6dOkS51oLcYmIiGDs2LGEh4eTIUMGunTpQv/+/RNd6L5bt25s2bKFHTt28Pvvv1O+fPlY+4SFhbFgwQKNYxFCpJ4Qz7d8dJ4SYw275Ijw/4bHjsnk6j5dkncpJH/+/Dg4OLBixQratm3Lhg0bNE4uHD58WH27VKlSNGjQIMlJO4is4Nu4cWOMKorUdufOHby9vZk3bx6XL19m3rx5P8Xfm5UrV3LhwgUAxo4dq1HSzNLSktWrV9OpUyeOHz/Ox48fWbVqVaJ/qxOTJ08enJycKF26NHnzpt2alZcvX+bt27d07tyZQYMG4eDgoLOETtGiRdmyZQsHDx6kTJkyFChQgIwZM2JmZhZr37Zt2+Lh4cFvv/3G1KlTE5x32bJl6qqVhg0bJrnKJGpdvdQSGhqaqsdLTEok3Hv27EnFihUxNzcnT548sarjKleujJ+fH3Z2dkyYMCFJx9B0nThDQ0NevXqFo6MjrVu3ZtCgQUk6XlJ9/PgRa2vrVD1mdC1atKBFixbq769du4ZCoaBcuXIx9gsLC2Pfvn0AtGrVKsnrq06ZMoUzZ86ov//48SOPHj2KdTyITNL+uH9ijh8/zvHjx+Pd7uzsDESuRxd1jKR0Hvn06ZNOk3eGhobUrl1bvfTBjRs34kzcnTx5Un1b0/em6O16o/62CSGEEEIIIUR6kiaJO1dXV06fPo1CoSAgIID169ezadMmfvvtN3r06BHnf8qic3Z25tmzZ5QsWZKZM2fGuVB8XIyMjOjduzfz589n7NixHD58ONZJYENDQxo2bJjkxyaESBkRgX582jNLZ0m7KMpgfz7unomNw2Jpm5lC7O3t2bNnD56envTq1Ys//vgj0ZOynz9/5urVyFaohQoVYu3atXGun6ONXr160bRpU6pXr07p0qWTNVdS/fnnn+rb169fp2XLlmzbti3B6rW0dvLkSVatWgWAg4NDnC0G79y5Q8WKFWMlNAoVKsS6devo3bs3d+/epV27dsyfP5/KlSsnOR4jIyPatm3LiBEj2L17t8bJCF0KDw/n0qVLQOSJ4sWLF3Pr1i3WrFmTaDvCuISGhsaqRixRogQlSpRIcJxSqcTLywuAggULJpoU9ff/3/vniBEjkpxojF5x5+fnp1FlTkBAgPq2JvsDBAUFAemv4i6lJPb5N6mifi81XW/0xo0bDBo0CF9fX1auXMnXr1+ZPHlyqqztN2fOHA4ePMiWLVsoVapUih9PEzt27KBNmzax7j979ixeXl5YWFgwevToGL9/Dx48oEyZMok+Z58+fVInjvLmzcvMmTMTbD1rYGDAkiVL2LVrF7ly5aJo0aJkzJgRc3Nz9c932bJlrF69Wj2mdevWzJ07N9HH2alTJyDywoGjR4/Gu9/evXuZPHkyABs3bqRWrVqJzp1U0SuCP3/+HOc+b968Ud/esmULS5YsSXTezJkzY2FhgZ+fH9+/f8fPzy/OCyOEEEIIIYQQIq2kSeIuqjVL9LU8wsPDOXHiBCdOnKBcuXLY2dnFeUVzaGgoa9asoW/fvgwaNEjrE3adO3dmw4YNvHv3jvnz58dY10EIkX59ObMx2e0x4xPh/42vZzaRvdXQFJn/v87ExITOnTuzfPlyvn79ypw5c1i+fHmCY3bu3El4eDgZM2ZkzZo1yU7aQWQ1QaNGjRg5ciSHDh2KtVZRSlMqleq1qAAqVKjA+PHj03XS7sqVK4waNQqVSkWXLl3iXfdq9uzZREREMHToUOrWrRtjW8WKFVmxYgX9+/fH3d0dOzs7+vXrh5OTU5KTbp07d2bt2rWsWrVKvW5aavrrr7/w9vZWf+/o6Ejv3r2TlLRbuHAhjx8/Zt26dVq3EvXy8lJXmNjY2CS6/5cvX4DIBI42bWt/FBERob49YMAArcdHr3bRhK4r/EJCQpJVvZuUiruPHz+SM2fOFKnWO3fuHEOHDk30eXJxccHFxUXr+Xfv3s33799ZsGCBTtrdxmfevHls3boViLzQIj0k796/f8+1a9eYNWtWrG1RsQ4ZMoSsWbPG2DZnzhwCAgIYMmRIghcEbtu2jbCwMEqUKMGWLVvInDlzojHp6+vHWss7yvXr12O0wITI5QkePHhAyZIl432PevfuHffu3aNQoUIxkuxxiZ54T877iCaiJ9Piq7yNSvADnDhxgl69emmUBDcxMcHPz089tyTuhBBCCCGEEOlJmiTuVq9ezdevX3nx4gV3797l7t273Lp1S/0fsgcPHjBixAgA9uzZw5AhQzA1NQUiK+KOHTtGtmzZknRsExMTunbtysqVK9m1axdVq1aV9eyESOcCX94h4PHVFD2G/+MrmJeqhWmRSil6nP+qdu3asWLFClQqFX/++WeCayeFhISwd+9eMmTIwOLFi3W2Xg5A7969adWqFfPmzWPKlCk6m1cTt2/fVlcMGBgYMH/+/DRt9ZiY27dvM2jQIMLCwnBwcIg3aQeRj+fRo0f07duX8uXLM2HChBgnTmvVqsXq1asZNGgQwcHBrFq1ijNnzjBs2DAaNGigdWyWlpa0a9eOdevWUadOnThbX6ek6K3ZqlWrpv7MEpfv37/HuFApuv3797NhwwYg8uT/ihUrtEpmfvjwQX1bk9fS169fAciePbvG1VdxiV5xt3379gQrhCCyUqZPnz7UqVMnwefqR5s2bWL+/PmoVKo4qxKTYsuWLRw7dowdO3aoP1umtDdv3tCtWzcaNWqUaDvTpGjYsCFbtmwhPDycokWLxkoONmnSBG9v7xjtHJcuXcrevXsxNzfn7NmzGh3nx3kjIiIYPnw4p06d0iregwcPqtcki4+Pj0+6SN5t376d2rVrx0rMXbx4kQcPHlCsWLE41xUMCQnhxYsXDBgwgDJlyrBq1apYbZH9/PzYu3cvefPmZePGjRol7RLi6enJqFGjUCqV1K1bl7CwMK5du8b379/p3bs3SqWSX375hebNm9O4ceMYSbwjR44A0KNHD9avX4+3tzeZMmWK8zjR197Mnj17smJOTFRiDYj3+SlWrBiXL19Wfx9fZV50SqUSHx8fILKKO0uWLPG+TwshhBBCCCFEWkizNe6yZs1K9erV1VddBwcHc+PGDc6dO8fZs2fV/5navn07x48fZ/jw4eo2NUlN2kXp1q0bmzZtIigoiAkTJlC0aFEKFCiQvAckhEgx3tcTPsGns+PcOCSJuxSSI0cOypYty4MHDzA0NEzwBPyBAwf4/v07Y8aMoWbNmgnO6+vry8WLF2nZsqVGcZQoUYJffvmFXbt2Ua9ePWrXrq3V40iOqHV6ADp27Jiuk3Y3b96kf//+BAcHM2rUKPr06ZPg/tFPAOfOnZv8+fPH2qd27dps2rSJvn374u/vz8uXL3FycqJixYr07NmTevXqaZWY6dGjBzt37mTUqFEcPnw41ZIw/v7+6kSFQqFg1KhRCe7v4uLC/PnzE5334sWLnD9/nsaNG2scy6NHjwDQ09PTqG14VFvNnDlzanyMuERVdllbW8dKaPzozp07jBgxgo8fP/L8+XMAjZN3pqamtGjRAltbW42rGZ88eRKjIjC6v/76i8WLFwMwePBg1q5dm+KtVt3d3enVqxdfvnxh9+7dGBsbM3bsWJ0fp0qVKvFui2qRmiVLFnU7x6iKQ4VCkeR1JzNkyMCiRYvUbVpLlChB5syZsbS0jDMxPGrUKK5evUqzZs2YOHGiRsdIyQq/xPj7++Pi4sKiRYtibYuqGp88eXKcjzUwMFB9+9dff41zLdM9e/ZgYGDA+vXrk/1/Gx8fH/r06YOXlxc1a9ZkxYoV6rUJy5cvz8CBAxk4cCDnz5/n/PnzlChRAmdnZ8zNzYmIiMDFxYUcOXLQqlUrdu/ejYeHR7yJO09PTyDyZ5PcZGNi3r59q74d33uco6MjX758wdXVlaJFi2rUuvPly5fqFrxRyW5J3AkhhBBCCCHSkzRL3P3I2NiYunXrUrduXaZOncq1a9c4cOAAFy5c4MuXL0yYMIF9+/Yxa9YsChUqlKxjZcqUiRYtWrBv3z78/f1xcHBg7969iZ58EkKkvtDP7wj+8DRVjhX8/gmhn99jmD39JlTSoz///JP69esn2gKufv36PHjwAHt7+3irfcLCwti4cSMtW7akd+/eCc737ds37O3tefLkibqiRxPdu3fnxo0bTJw4kePHj2NhkfJrG/r5+anbZJqZmeHk5JTix0yqU6dOMWrUKIyNjVm7dm2s1pdxiUqq5MqVS50YiUvlypXZt28fTk5O6hOyUZX3lpaWNGrUiEqVKlGsWDGKFCmSYDtDGxsb6tWrx7lz51i4cKF6zaWUdvz4cfVJ+aZNm1KmTJkE97e3t8fKygqlUkmJEiXIli0bFhYWGBoasmLFClauXImFhQWrVq1KtHLtR66urkBkxUli7WRDQ0PV7T0TW2MyMbly5WL79u1UrVo13t/7kJAQ1qxZw4YNG9QVetbW1rx69YpXr15RuHDhRI/TuXNnOnfurFVsL168YPz48fEm76JcuXIFZ2dnevbsyefPn3FycopRwahQKFAoFCiVylhjo7eknDFjBvPmzYv3OMHBwQQHB6u/37JlC0ZGRgwbNkybh5Wg0NBQzp07R+3atWO9Dvz9/dXPvy5aDv9IX19f43a1UUlSQ0PDJCcLU9OBAwcwNTWNdYHHyZMnefz4Me3bt493vc6oqrQsWbLEWV0eGhrK7t27WbZsWbIvHgwKCqJv3768ePGCOnXqsHz58lgJTxsbG3bv3s2AAQO4du0aT58+ZevWrQwcOJALFy7g4eHBnDlzMDIywsLCAnd393gTZVGJu9y5c6dI69coERER6rVuTU1N422xa2lpqdEaftGdOXNGfbt58+ZJD1IIIYQQQgghUki6SdxFp6+vT506dahTpw5eXl7s37+fXbt2cf/+fVq3bk2/fv3o27dvsto8de3alX379qFQKHBzc6NXr15s3LgxxVu+CPGzCfNOvOWQJhT6Buibx31ldoSPV8xjhhijp6cHgM+d03ENSTE+d0+T6RfbeLcn9Dh08VwZZPr53oNGjx5N7ty5GTBgQIIVcs2bN8fLy4sePXrEu4bOkSNHMDc3Z9y4cQmus+Pj44OjoyMvX74EYMGCBYSFhdG/f/9E461fvz42Nja4ubkxe/Zs5syZk+iY5HJxcVGfvO/Xr1+6vVBkx44dzJ49myJFirB8+fI4K+fiEpW40+QkbqFChdi/fz+jRo3i4sWL6vt9fX35448/+OOPP8iSJQvDhw+nffv2Cc7VvXt3zp07x65du2jcuDG//PKLRvEmx+7du4HIiiVNK8cSqwjNmTOn1kk7gPv37wPEmzyILqpNJiQ/cWdtbR3vHCqVipMnT7J48WI+fPhA1qxZad68OS1btqR06dJxjjl58iTPnz9n6NChyYoLoFWrVuTKlYtbt27x8uVLnj9/jpWVFTY2Nnz//p3z589jYGDAunXr+PXXX4HIdn9r1qzh8OHDFClShO/fv/Po0SPevHkDRLbVU6lUqFQqlEol379/V7/3TJo0Sd0RIrV9/PiRPXv2cPDgQRo3bhzn+2/UuobAT5EsSy8iIiLYvn07rVu3jvH/jYCAAObMmUPevHnjrZyMiIjA19cXgLJly6orTaP7+vUrQ4YMSfZ7lo+PD05OTty7d4/u3bszbty4eP9/ZGJiwpo1a7Czs+P+/fvqiyd27NhBqVKlaNWqFRCZ4H3x4gWNGjWKcx53d3cA8uTJk6zYE/PHH3+oj2VnZ4elpaVO5g0NDWXfvn3A/6p6hRBCCCGEECK9SZeJu+isrKxwcnKiT58+7Nu3j82bN7N8+XKuXLnCkiVLktzuqVixYpQvX5779++jUCh48eIFmzdvTpH2RUL8zD6sSjwRognjvKXI1X16nNu+bNF8zaOU5nfnFH534l+vJ6HHoYvnquCEP5I9R2ozMTHh+fPnDB48WKP9nZ2dE90nvivrE7J06VLCw8PV7cHio6enR8eOHVm0aBEuLi40b95cfQI/JSiVSrZv3w5EVj307NkzxY6VVIGBgUyePJnjx4/Tq1cvhg4dqlWLOm3bDVpaWrJu3Tr27NnDvHnz1BVsefLkYfLkyRq3MP3ll18oVKgQr1+/ZvLkyRw5cgRjY2OtYtHGjRs3ePo0sgK4V69e5M6dO8WOlZhXr16pT2pr8vqNqpKByIo5XQsNDeXEiRNs2rSJFy9eUKFCBQYNGkSTJk0SfC1t27aNuXPnolQqKVq0KE2bNk12LFWrVqVKlSoEBARgYGCgrtx0cXFRJ+5+fM6srKxiVO1GJTHicu7cOQYMGJDsOJNCpVLx119/sWvXLs6fP0+NGjXYsmVLvN0oov/craysUivMn96ZM2dwd3enbdu2Me5fsWIFvr6+7NmzJ94KRk9PT3XbxZIlS3L+/PlY+1hbW2NrG/9FQprw8PDAwcGBd+/eMWXKlDjX2vuRkZERK1asoE2bNhQqVIgHDx5w584dDhw4oL5gytraWt2G90eBgYHqNeR0uf7sj86fP8+MGTOAyPf5gQMH6mxuZ2dn9WNwcnJKtxfSCCGEEEIIIf7b0n3iLoqhoSHdunWjY8eOODs7s3btWmxtbZk/fz516tRJdHyLFi1YvHgxRYoUUd/XunVr7t+/j56eHsOHD8fe3j4lH4IQQvwrRZ2Uz5Url3rtr/Subdu2LF++nLCwMCZNmsSJEydSLOFz5swZ3NzcABg7dmyartkUl5cvXzJ48GAUCgU7duyIUb0VFham0dpimq4/9qNOnTpRp04dlixZwuXLl9m9e7fWyYUOHTowZ84c3r17x8qVKxk5cmSSYtHEli1bgMgKLUdHxxQ7jiaiWr1lzpw50bUgAfWJakh+xV2UiIgIHj16xIkTJzh69ChhYWG0bNmSRYsWUbRo0QTH+vv7M2XKFI4dO6a+b/z48RQpUiTGZ7WkUigUKdIaMq3t3r2bHTt2UKBAAVavXp1oK9uPHz+qb8e1zpqI2+bNm6lcuXKMquMHDx7g7OzMkiVLKF68eLxjoxLqAPnz58fPz4+QkJAEW/9qy9XVlQEDBpA5c2YOHDiQYDxRCbko2bNnZ/fu3VhYWDB69GicnJxijM+fP3+MVpLRvXv3Tn1bF7+n0QUFBXH//n327t3LyZMnAWjfvj2TJ09O8t+YH7m7u7NixQoAatWqJf/3E0IIIYQQQqRbP03iLoqbmxstW7akTZs2LF++nIEDBzJmzBi6deuW4LjSpUuzdu3aGAvM//bbb6xYsYJFixYlqUWVEEKI/1EoFDo9MZmSsmbNSv369Tl9+jTu7u6sW7dO43WatKFSqVi7di0AtWvXjrf12I9atGgR44R7ct2+fTvWfVHrCTo7O+Pg4EC3bt1iVc5t2bKFp0+f0rdv3wRPDGtbcRedtbU18+fPx9/fP0mJllatWrFw4ULCwsLYunUrbdq0oWDBgkmOJz5PnjxRt/YcN24cZmZmOj+GNs6ePQtAs2bNNDqp7eX1v5bEya248/X1Va+p5e/vT5YsWWjZsiWNGjXCwMAAf39/bt26RURERJxfQUFBrFq1ivfv3wNQoUIF2rZtS+3atSW5FI1KpeLy5cs4Ozvj5+cHRFY4DxgwgG7dumn0c49qhwho3Pr2v+7mzZu4urrGWDfN39+fESNGMHbs2ETfx6Ne1xCZ3MqePTsPHjygatWqOolv69atLFu2DDs7OwYMGBDnxSBfv35FoVDQtm3bOLuJ5MmTh+vXr6NUKunXr1+Mbfnz58fLywtPT89Yv4/R235qsk5lfKZNm8bs2bPV30dERKgrr7Nnz06rVq3o0qUL5cqVS/IxfhQWFsbw4cMJDAykQoUKLFu2LFZSUwghhBBCCCHSi58qcffw4UP69u3Lzp07KVCgAJMmTcLW1paJEyeSMWPGBNcoaNWqFfb29gwdOlS9JkOmTJk4efIkFhYWqfUQhBDiXyuqNdjPwtbWltOnI9dQ3LRpEx07dkxy++X4/Pnnnzx9+hQjIyMmTZqk8bgNGzYQHh6u01iiu337NnPnzqVKlSocPXo03rWvDA0NOXHiBCdPnqRu3br0798/2SdSPTw84kwcJbU6KlOmTNStW5ezZ88SFhbGvHnzWLduXbJijMuqVasAqFGjhk7aOSaHq6srT548AdB4fbVPnz6pbyc3cWdpaUmuXLm4e/cuAN++fWPr1q1s3bo11r6ZMmXCysqKbNmyYWJiwvXr1wkKCkJPT4/ff/+dvn37UrJkyWTF82/z9etXXFxc2Lt3Lx8+fIixrXXr1vTq1UvjuaLW6cuaNat83tXQ+vXrMTc35/fff1ffN2PGDNq1a5fohYLwv+RWhgwZKFSoEMWKFePq1avJTtyFhIQwcuRIDA0NOXLkSIJrzNnZ2aFSqejcuXO8P/fg4GAWLlwYK3lVoEABIHINzd9++y3GtmfPngGRj61EiRJJfiyDBw+OMfetW7fUCUY7OzscHBySPHd8pk2bxv3796levTqrV6/G1NRU58cQQgghhBBCCF35aRJ3N27cwMnJiaCgoBj3ly1bFhcXF0JCQhIcX61aNbJnz86GDRuYPv1/61PJSQwhhEieqITdz3bleu3atbG0tMTX15eQkBBWrVqlXlNHF5RKJcuXLwdgwIAB5M2bV+Oxuk4g/ujLly+sW7cu0bV9oiooVSoVV69epW7duslK3B06dIiJEyeyYMECmjRpkuR5ftS8eXN1BdrFixe5e/cuFStW1Nn8rq6u/PnnnxgbGzNt2jSdzZtUUQmyevXqUapUKY3GRCXuLCwsyJgxY7JjcHJyUreYrVixIkWKFCFXrlzkzJmT7Nmzkz17drJly4ahoSHfv39n+/btODs7ExoaSsuWLenfv3+sykhXV1eKFy+e7trJpgZ/f38uX77MsWPHuHz5MmFhYUBk4nPAgAEsXbqUgIAAreeNSrQkVDGrS/PmzcPBwSHeiwHic+XKFS5evMjEiRNRKBQpFF3iHj16xJUrV+jYsSMmJibq+/v166dOaCUmKnFXvHhxjIyMKF68OPv372f48OHJis3IyIihQ4fGu55hlLdv3/Lq1SsAHB0dcXR0ZMSI2GsJ16tXL87xuXPnxsTEhIsXL8ZK3N2/fx+AQoUKJSvxlTlzZmxsbNTfW1tbs3jxYj5//syePXuwt7fX6WeKFStWsH//fho1asTixYv/k+8xQgghhBBCiJ/LT5G4CwoKYuTIkQQGBsb5n3l9fX2N2nTZ2tqyceNGnJycUvykqBBC/FdEtbf62a5eNzAwoH79+hw6dAiITCqNGDGCTJky6WT+w4cP8/z5c4oXL57u1tGJXkmSkOgnrpcuXUrDhg2TfMxDhw4xbtw4lEolI0eORE9PL9ZJ4aSqU6cOxsbGBAcHA5GJLV0m7hYuXIhKpWLw4MFaJWBTgru7u7pSdNCgQRqPi2q9mtxquyiFChVi7dq1VK1aNcbrJDo3Nze2bt3KH3/8QXh4OLa2tvTp0yfelo13795l4MCB9O3blw4dOuhsXav0LjQ0lPbt2/PPP/+o71MoFHTo0IHhw4eTKVMm9UUA2vD391evSaZpgje5bty4wZEjR5g+fToVKlSIsS2qijg0NJRv376p73dzc2Po0KH4+/sTEBDArFmzyJAhQ6rE+6Nly5YB0K5duxj3a5q0Cw8Px9XVFYBKlSoBUKJECZ48ecLXr18TvVgiMYkl7QCOHz+uvt2oUaM4E4aHDh2iZcuWcSbH9PT0KFeuHBcvXkSpVKr3CQkJ4dGjRwCxfrbJlSFDBtq2bcuaNWtwc3Pj8uXLia7fqKl169axcuVKWrVqxezZs9PstSWEEEIIIYQQ2vgpEncmJiZs2LCBXr164ePjk+R52rRpw5o1a9i4cSMTJ07UYYRC/HvlGbBGJ/Mo9OM/AZut16IY3xsZG6tPFH0+vJQQt+dxDUsRRjbFyW4b/1pnCT0OXT1XP5uoZMnPlriDyIRPVOIuNDSUGzduaJzUSkhwcDDLly/HwMCAuXPnJmsNuLQU/QRn7ty5E93f3d2dYsWKJbpfeHg4w4cPZ+nSpRqv+5cQExMTqlSpwpUrVwDU/+rCpUuX+Pvvvylfvjw9e/bU2bxJtWDBAsLDw2nevLlWyRgPDw+AGFUuyVWnTp0477979y47duzg9OnTWFhY0L17d7p3746VlVWC8/Xs2RN/f3+mT5/O9u3bGT16NA0aNNBZvOmVoaEh8+bNo3PnzoSHh2NjY8O8efOoXLlysua9c+eOuiI6uXNpysjIiC9fvuDk5BTvPsePH4+RXIru4MGDWFlZxVkhlpLCw8Nxdnbm8uXLFC9enLJlyyZpnsePH6svZvnll1+AyMo7AwMDjh07Ro8ePZIVZ2hoqLoaMz6HDx8GItujTpw4UR1PlB07drBkyRLOnj3LwoUL40y8V6lShRs3bnD//n31RRA3b95UH7tGjRrJehxxad++PevWrUOpVLJz506dJO5WrVrF8uXL6dSpE1OnTk3Tak4hhBBCCCGE0MZPcyaxRIkS7Nixg5YtWyZ5jjx58lCxYkUOHDhAv379yJYtmw4jFOLfySBT9hQ/RoaMMU/mGpiYqBN3JnlLpWriziRvySQ/5tR4rtIbpVKpTtxZWlqmcTTaq1atWozv3dzcdDLv+vXr8fDwYMSIEclaByitaVuZYG1tjYuLi8b76zKhWa1aNXXCLjAwkG/fvmndru9HoaGhzJ49G1NTUxYsWJDmlRq3b9/m5MmTWFlZaXUBUlhYmLpVpi4Td9H5+/tz/Phx9u7dy+PHjylSpAhTpkzB1tYWY2NjjecZOHAg/v7+bNmyBScnJ37//XemT5+uk/ae6VnZsmXp27cvf//9N2vWrNHJ++mNGzeAyOri1ErcRVVJFi9eXJ1ASoybm5s6QVuvXj369euXYvFFefPmDQMHDsTc3ByVSsW7d+/w9vYGoGPHjkme9+LFi0DkxQS//vorAMbGxlStWpX9+/cnO3H35s0bevbsGaNiMT5fv36NN7kOcO7cOQYMGMCmTZtiJbSi1uM7e/asOnF3+fJlIPLvQlRSUpdy585NjRo1uHr1KleuXOH9+/fJqnBeunQpa9asoUePHowfP16HkQohhBBCCCFEykvTBYmmTJnChw8fNN6/SJEi6iuHk6p169YEBwezYcOGZM0jhEgd5qVqpvLxaqXq8X52USc6AXLkyJF2gSRR1qxZY8StizV1Pnz4wMaNG6lWrRp9+vRJ9nxpSdtElZ6eHlmyZNH4S5fJ3h+rz3RRWbFlyxbevn3LpEmT0rxFZkhIiHp9vRkzZpA5c2aNx7q5uREREQGg08fh5eXF/v376du3L9WrV2fatGlYW1uzZcsWjh07RseOHRNM2qlUKvz9/fHw8OD58+fcvn2b8+fPU7x4cXWF56lTp+jcuXOM95p/KycnJ1auXKmz34uoREvVqlUxMzPTyZyJSW570wYNGqRKrAUKFMDZ2ZkWLVrg6ekZ4/VVpUqVJM977tw5AGrVqhXjtV+rVi1evnzJ3bt3kzw3QLFixdi6dSvDhg1j48aNnDlzhuvXr+Pq6oqrqytNmzYFIhOn9+/fV98f9XXlyhX12qWNGzdm0aJFcb5XlitXDkNDQ/U64kqlUt2it3LlyjprKf2jqKSpSqVi9+7dSZ5n+fLlrFmzht69e0vSTgghhBBCCPFTSrOKu6dPn7J3715u3LjBhAkTtDpZevfuXdzd3ZN0XHNzcxQKBXv37sXBwUGq7oRI5wyz58M4TwmCPzxN8WMZ5y2JYfa0PTn/s/nZE3cABQsWxNPTE4Dy5csne74ZM2ZgaWnJokWLdJIITEtpXWGmjYIFC6pv58+fX6vEVlzc3NxYu3Ytbdq0oU2bNskNL9lmzZrFixcv6NevH/Xq1dNqbPS10/Lly5esOD59+sSsWbN4/Pix+rOYvr4+NWrUoGnTppiamuLu7s6WLVvw9fXFz88PPz8/fH198ff3j3Gfv78/SqUShUJBxowZyZYtm/qrcePGXLt2jRcvXvD69WtmzpzJwoULkxV7eqevr5/s122U169f8+rVKwCaNGmikzk18TO952XOnJlu3brRqlUrHBwc1Em1pK5D9+TJE168eAHEXiOvbt26zJkzhx07diR7/c1ixYrF2ZL4xYsXnDp1CoBJkybF2QLz8OHDhISEYGBgwMSJE+N9vRkZGVGjRg0uXrzI0aNHyZ07t/rvpC7aScenfv36WFlZ4eXlhYuLC0OGDNGqYhciK95XrVpF7969GTNmTApFKoQQQgghhBApK80SdytXrgTg/fv39O3bV6uxulifLiQkhA0bNjBu3LhkzyWESFmZqrfmUyok7jJVb5Xix/i3iZ64y5MnT9oFkgyVK1fm+vXr2NraJvuE6tGjR/nrr7/Ytm1bout5Cd3KmTMnNjY2fPr0iUmTJiV7vilTplCoUCGmTJmig+iSJ6oFZevWrRk2bJjW458+/d/7pyZrECYkZ86ceHh4xLiAKjw8nMuXL6srvKKzsLDAxsYGGxsbvn79yuvXrylatCgTJkzAysoKKysrsmXLFmel1pMnT2jXrh0RERGcOnWK+fPnp3hiaM2aNbRu3ZqcOXOm6HFS2sGDB4HItUdTM3H3M67naW5uTt++fdX/H0nqBQt79+4FIls+1qoVs3o/f/78lC9fnpMnT9K7d2/KlCmTvKDjsHjxYpRKJba2tnG2Rg0ODmbbtm0AtGzZMtGLbVq0aMHFixfZuXMnuXLlAiLbfjZr1kznsUfR19endevWrF+/Hm9vb44fP07btm01Hr93714WLVpE165dNU7abdmyhfz58yfYVlQIIYQQQgghUluaXBb79OlT/vzzTyCyFYo2X0kZE9/Xnj171FePCiHSL9MilTBL4ZaZ5qVqYVq4Uooe498o+ppwhQsXTsNIkq5Lly6MGDGC2bNnJ2ue0NBQ5syZw8yZM6lUSV5LaWHq1KmsWbOGmjWT935x7tw5Xr9+zapVq7Su9tC169evM3bsWBo1asTMmTOTPAeAlZUV2bMnfy3OoUOHxrqvcOHC2NraMmrUKJYvX46Liws3b97k9u3bHDp0iJUrV1KhQgUAsmfPToMGDShbtizW1tbxtlcsWbIk3bt3B8DMzCxFk3bh4eFMmDCBly9f/vRJu9DQUPVak7a2tpibmyd5rtevX7Np0yZdhZZqTp48qdX+FhYW6tthYWFaH8/Ly0udLO3Xr1+cr9XOnTujUqmYP3++1vMn5tatW1y4cAFzc3NGjRoV5z7Ozs54eXlhYGCAk5NTonM2aNAAU1NTnjx5om4B2rRp0xRfb7JDhw7q9p07d+7UeNyFCxeYNm0aLVu21OrijQMHDhAeHq51nEIIIYQQQgiRktLksthnz57RqVMnjIyM0NfXV3/p6emRIUMGFAqF+j+8CoUixtoLCxYsoE+fPmTJkiXJxw8JCWHZsmWEhoaydu3adHE1vRAiYdka9yH43RMi/L/pfO4M5lnI2the5/P+F7x+/RqIbI9WqFChNI4mabJkyYKjo2Oy5wkJCWHYsGG0atUq+UGJJPmxyiWpgoOD2blzZ5q3f3348CEDBgygY8eOjB8/Pt7Elb+/f7zJGTc3N3ULwBo1augkrlq1alGlShV8fHzo2LEjv/32G1ZWVvj6+nL//n1q166t1Xxubm7kypUrzsc3ZMgQTpw4QcOGDXUSe1wCAgIYMmQI7u7uHDhwIMWOk1r27dvH169fMTAwwMHBIVlzffr0iefPn2u8vy7WltSFpUuXalVp6O/vr77t4+OjdSv9tWvXEhISQv78+eNtrdukSRPmzJnDzZs3OX78uM4q15RKJXPmzAGgdOnSuLm5kTFjRgwNDdX7fPr0iVWrVgHQrVs3bGxsEp3XxMSEBg0acPToUSCyElEXfysTkydPHqpXr85ff/3F48ePefDgAeXKlUtwzIsXLxgxYgTVq1dn9uzZGr8OX716xatXr37ajgFCCCGEEEKIf680Sdy1bt2a1q1bJ2nsggULaNu2LQUKFEhWDBcuXMDV1ZX9+/fTo0cP8ufPn6z5hBApK4OpBdadJ+KxYzLKYP/EB2hIz9gc684TyWBqkfjOIpaoNZRKlCgR53o6/yUWFhb06tUrrcMQOtC8efMYa+alhEePHnHmzBkA3N3defbsGcWLF1dvv379OiNGjGD48OF069Yt3nnCwsKws7MjNDSUMmXKULp0aYoUKaJey27KlCkolUpAt2tTrVixgkyZMqlPkIeGhjJ06FBu3brFli1b4mzVF58zZ86wc+dOGjduTOvWrSlatKh6m6mpKevWrUuxE+ufP3+mb9++vHnzhv3792NmZpYix0kt/v7+rF27FoCuXbuSO3fuZM3n7e2Nr6+vxvunh8SdUqnEzc0NpVKpcZVm9Nav37590+pClCdPnrB7924UCgXTp0+Pt12okZERvXr1YsmSJUyePJnSpUsne81JgMDAQNq1a0exYsV49OgRXbt2JUOGDJQuXZoKFSpQsWJFNm3aRGBgIHnz5mXQoEEazx3955knT55kv5401b59e/766y8gsuouocSdv78/gwYNwtrammXLlsVbwRuXqHUz8+aV9Y2FEEIIIYQQ6cvPs4K8jjVt2hSAiIgIFixYkMbRCCE0YZg9H7m6TyeDedIrbqPLYJ6FXN2nY5g9+SfO/qseP34MQN26ddM2ECF+Ej4+PkyZMoX27dtTuHBhDh06RKNGjejRowe3b98G4NChQyxZsoQtW7YkmLQDMDAwwMXFhenTp/P27VumT59O9+7dqV27NrVr1+bq1atAZCtLXf6eZs6cWX1SPywsjBEjRnDt2jVCQ0NxcnJSV+Nqonfv3mzYsIH79+/TokUL2rdvz/79+wkKCgIiW2ZGb2WoKy9fvqRjx448efKEyZMnU6RIEZ0fI7UtXLgQLy8vcubMqVWCJj7fv3+PsZZpYqLa2qclb29vwsPDtYo7+uv106dPGo8LDg5mzJgxREREYGdnR7Vq1RLcv0ePHuTIkQN/f3+GDBlCSEiIxseKj7m5OV26dGHOnDkcPXqUa9euMWPGDKysrNizZw8DBgxQV93mypWLq1evEhwcnOi8y5cv58iRI+rv3759y8iRI4mIiEh2zIlp2LChurvKyZMn+fYt/m4L06ZN49OnT6xYsULjtrDfvn1j7NixXLhwASsrK0xNTXUStxBCCCGEEELoyn82cRe95dL58+c5f/58GkYjhNCUYfZ82DgsxrxU8lrimZeqhY3DYknaJcOjR4/4+PEjenp62NrapnU4QqRrKpWKP/74g99//509e/bQr18/lixZQokSJZg/fz6//fYbPXv2xNnZGQsLC3bt2kWxYsU0nr9ixYrs2rWLkSNHxtpmZmbGvHnzUmSNuKCgIJycnNTVgxCZzNi8ebNW8xQsWJCdO3cyZswYnj17xsSJE6lTpw6LFi3i69evOok1esLh77//pkuXLnh4eGBraxtve8OfyZ07d9izZw96enrMmzcvWWvbRdG24i49JO68vLyAyGpKTb18+VJ9O/rarYmZPHkyL168oEaNGowePTrR/U1MTBg8eDAQueb34MGDdZK8iy5z5sy0atWKqVOnUqpUqRjbbty4weDBg/n1119ZsmQJoaGhcc6xe/dudWvNunXrqtsQnz59mgkTJiQpeRd9TGLjDQ0N1d1ZQkND2bdvX5z73bt3jyNHjqBQKHBycuL3339P9KtBgwbUrFlTvSahtMkUQgghhBBCpEf/2cSdjY2N+spqlUrF1KlTE7yaUwiRfmQwtSB7q6Hk7DAe47wltRprnLckOTuOJ3urodIeM5nOnj0LQP369XXS7uu/5MGDB8ycOTNdnOQWybNs2TKuXLmS4D7Pnj2jS5cujB8/nm/fvuHg4MCQIUNi7DNlyhTq1q3LjBkz2LNnjzr5oA2FQoGDgwNDhw5V31esWDF27dpF6dKltZ4vMZ6ennTp0oXLly8DkD9/fqZOncq1a9eYNWuW1vPp6enRu3dv9u3bR758+fDx8WH9+vU0bNiQ9evXJ7vSJ+pzXnBwMPb29vj6+pI/f36t1zrWJgGRWnx9fRk/fjwqlYqhQ4fyyy+/6GReb29vrV6LUe9pSqWSb9++afQVPTGoi+czKtHr6emp8Zg3b96ob2uauFu4cCGHDx/ml19+YdWqVfG2yPxR27ZtqVq1KgAXL16kb9++6upSXXny5Ant2rXj5s2b5MmTh927d7N161aqVKkC/K+l6rRp02KN3blzJ9OnTwegc+fOrF69msWLF6uXFTh48CA9e/bky5cvicahVCrx9fXl7du3XLhwQX3/oUOH+Oeff/D19VW38v1Rhw4d1LfXr1/PpUuX8PHxiZFsjPpZBwUF8ebNG42+3NzcYrzO5POLEEIIIYQQIj1KkzXukuvbt2/JXuMOoE6dOrx8+RKFQoGXlxdOTk5s2rTpp1/fRIj/CtMilTAtUonQz+/xf3yFkI+vCPn4T4w18PSMzTGyLoiRdWHMS9XCMLusY6ILSqWSkydPkiFDhhhJApG4Bw8eYG9vj5+fH0FBQcycOTNdrAuVlk6cOIG/v3+ME7U/g0WLFrF+/XqMjIxYvXo1NWvWjLXPyZMnGTFihPpEcatWreKsisuQIQOLFy9m+PDhnD17lsaNG9OxY0fat2+vVeUdgIODA15eXtSoUYMGDRqkyOvr+vXrjBw5ki9fvmBtbc3gwYNp1apVglV9mlZulShRgj/++IOhQ4dy9epVAgMDWbRoETdu3GD16tUYGxsnKeb79+8Dke9fSqUSAwMDFi1apPXnvrRI3CXU2jAiIoJhw4bx9u1bOnbsSN++fROdL+o1kVi116dPn9SJF03Wgw4PDwfgxYsXVK9ePdH9fxRfBVj05E7UMeLz7t07AB4+fEidOnU0Oq6Pj4/6tiYJqfnz57Np0ybq1KnDihUrMDIy0ug4EPncz5s3j5YtW+Ln58f169fp2rUrCxYs0GptvbiEhYWxefNmVq9eTXBwMG3atGHChAnq6svq1atz8eJFpk2bhoeHB4cPH2bKlCkYGhqiVCqZN28eW7duRU9Pj1GjRtGnTx8ALC0tWbNmDd26dePr16/cvHmTVq1aMX36dOrXrx9vPB4eHjRo0CDW/bdv36ZJkyYA/Pnnn9jY2MTaJ3/+/FStWpWbN28SEBCAo6MjAJMmTUq0hbA2pOJOCCGEEEIIkR79lIk7V1dXKlWqlOx5ateuzcaNG4HI/0T/+uuvssaBED8hw+x5yZK9KxB5tb8qNBhVRBiKDAYoDI3/80mRlHDixAnevXtHjx490vW6UCqVKskn1qNXw0VERMR7sjj6fomdUH706BF9+vTBz88PgAMHDqBQKJgxY8Z/9nV67tw5Ro0aRUREBAYGBur2aD+KiIhIdoWiSqVK9Gek6X7Lli1j/fr1QGTyw8nJiTVr1vDrr7/G2K9Ro0Y0b96cw4cPU6JECWbMmBHvnIaGhqxYsYINGzawcuVKduzYwY4dO8iTJw+VKlWiRIkS5M+fnyxZspA1a1bMzMwwNjbGyMgoxutHX1+fyZMnx3mMiIgIQkJCCAwMxMfHBz8/P3x8fMiUKRPlypVL9LkJDQ1lxYoVbNy4EQMDAwYMGICjo6M6mbZu3TqyZcuGlZUVWbNmJWPGjJiZmeHm5sb169cBNGrZaWFhwbp16xgzZgzHjh0D4P/Yu+/wpsr+j+OfdNEyC1KQXZZSQEQQeUDZIAooS0DZyEYQBNlTQDbIkC2yRKYMWSICgoAoSwGZoqyCrEKB7jb5/dFfY0tXkqbtQd6v6/J6TpJz7vNNm4Y855PvfR84cEBz587VRx99lOzxCT3vM2fOxLmvZ8+eDnUixn5tODO4279/v7JmzSpfX19lzZrVev/BgwcVEREhKXpNw8eNHz9e+/fvV9OmTTVq1CibzuXh4SEp+veZWCgXFRWlEydOSIr+vY4fPz7ZcWMCthIlSmjTpk021XLt2jVruJNYkBg7rL148aJeeOGFRMc7dOiQJGnNmjVq06aNsmXLlmwNvr6+OnfunKSkp/sMDQ3V8OHD9e2336pJkyYaPXp0gr+T5OTNm1ejR49W3759ZbFY9Mcff6hJkybq16+fWrdu7dC0tocPH9aoUaP0559/6rnnntPHH3+cYHBZvXp1VahQQePHj9f69esVFRWloKAgDRgwQD/88IMKFCig8ePHW7vzYhQpUkSLFy9W27ZtrZ2Y3bt3V/ny5fXRRx/F21+KnuEk5ufqiOXLlyf5eO3atVM0PgAAAAAY1RMX3Pn6+uqtt95yylgvvfSSvLy8lClTJk2ePNmhbwYDMBaTySRTBi9JXuldyn+W2WzW3Llz5evr69AF9LR048YNtW7dWv7+/ikax5Zp5x4+fBhvPSFbrF27ViaTSaNHj06z8C40NFTBwcHJ7vfo0b/dqw8ePEh0SumYLpmY6fFs9dtvv6lPnz7WIGTIkCFyd3dXgwYN4u27adMmDR06NNFp1Wyxe/dum35HMYGZPcLCwtS9e/d44Z2bm5smTpyonDlzqmnTptbAJDEmk0ldunTRm2++qVmzZmnbtm26evWqrl69qo0bNyZ6nIeHhzJkyGAdP/ZryWKxKCwsTGFhYdYAKPb5KlWqpLZt2yb7HI8fP67hw4fr0qVLatasmXr06KFnn302zj7FihXTwYMHtXPnzkSnKsySxbZpit3c3DRp0iQ9fPhQe/fulRS9jpsjXF1dNXfuXLVq1UpBQUEqU6aMOnfu7NBYsbvCnLk+WWBgoKZOnarTp0/L29tbOXPmlLu7u/7880/rPo93X06cOFHLly9Xly5d1LdvX5vfQ4oVK2bd7t+/vz766CPlzp3bep/FYtHatWutv8P169crV65cyb7nP/76sldinYUlSpSQyWSSxWLRhAkT9PDhQ/n5+cXrljxy5Ih1vcWbN2+qdevWWrNmjby8kv5M0K1bNw0ZMkQhISGJBth///23+vTpo6tXr2ry5Ml6++23HXiG/6pXr56uXr2qadOmSYp+7p9++qm+/vprdezYUQ0bNkz2/UKKfs7z5s3TTz/9pIIFC2ry5Mlq0KBBkuFfpkyZNHbsWPXp00e///67hgwZIn9/f7Vo0UIDBw5MtAv1+eef19KlS9W5c2frGoJHjx5V69atlS9fPr3++utq166d8uTJ48BPBAAAAAAQ44kL7pYtW6acOXM6ZSx3d3d1795dTZo0cdqYAPBft3HjRl27dk2rV69O9mJoesubN6+WL1+u1atXq0SJEipSpIiyZMmizJkzG67DzWKxpFlNgYGBatu2rS5dumTzMbYEOzdu3EjRl2DMZrMGDhwod3d31a1bN85jTZo0kaenp65fv65SpUopV65cypIli8PTJqYWV1fXePeZTCYNGDDArnEKFCigSZMmqV+/ftq2bZu+//57nTx5MtFgJDw8PNFpBhNTqFAhTZ8+XSVLJr1W6J07dzRt2jR99913atKkiebPn698+fIluG+tWrVUq1YtDRkyRDt37tSUKVN09erVOPvY8xpxdXXVlClT1KhRI/n7+6doOnM/Pz/NnDlTPXr00NixYxP8XdkidsedLQG4rerXr6/69etr//79mjhxos6fPx/n8ezZs1s7qMxms0aOHKktW7Zo0qRJatiwoV3nqlOnjmbMmKHr16/rxIkT6tChQ5L7Z8uWLcEpDx9n72vwcYkFobly5VKDBg20efNm3bt3T2PHjrVpvDfffNOmf6fq1aun6tWr6/Lly3ruuefiPBYVFaWlS5dqxowZKl26tDZs2OC0ddG6du2q27dvx/miwOXLl7V8+XJdvnw5wWl1pejX4N69e7V48WIdP35cVapU0YwZM1S7dm2b19oLDg7W7NmztXLlSr344ouaMGGCde29pJQoUUJr1qxR586ddeHCBev9YWFhunfvnlP/JgAAAADgafXEBXe5cuVy6ngx6yUAAJJ348YNjR8/XuPHj1eJEiXSuxyb5MuXT3379k3vMgwld+7cWrZsmbZt26YSJUqocOHCypw5szJlymS4QDO2evXqpXcJaS537tzq0KGDOnTooLCwMJ06dUoXL17UpUuXdPPmTd27d0/3799XcHCwQkJCFBoaqvDwcEVERCTb/TRhwoQkQ7vw8HAtWLBAP/zwg9566y3t2bPHpmkHpejA7Y033tCrr76qVq1aWaezq1y5cqLToSYma9asmjdvnjp16qSmTZvadezjXnvtNW3YsCFFa4nFDpdCQkJSVE9CXnvtNb3yyisaMWKENmzYICl6qshPP/1U3t7eunv3rgYOHKgHDx7om2++UZEiRew+R6ZMmfTVV19pzpw5OnPmTIKBm6urq7JkyaLy5curVatWNn0Gj+mYi1lTzVa+vr7q1KlTkgHkuHHjlDt3bn333Xe6e/duotOUZsyYUaVLl1abNm1UvXp1m2vImDGj/Pz84tx34MABTZgwQRaLRdOmTbMpvLTXsGHDlD17ds2cOVO1a9fWqFGj5OPjk+C+Z8+e1YYNG7Rz504VKFBAtWrV0vTp0+36AmJUVJQ2bNigzz//XFmzZtXs2bPtfl558uTR6tWrNWLECG3ZskW9e/dWp06dbOoQBAAAAAAkz2RJ6YIxAOwSHh6ukydPxrv/hRdeSPEFj8jIyDjffpak4sWL2/zt6/RgNpvjXfj08vJyaH0XpC6LxaL27duratWq6tixY3qXA8AGUVFR1v/MZrN1/S6LxZJs56nFYtGRI0f08ssvpyjQ3bFjh7744gs1atRILVq0cPjfJLPZbIh/GxYsWKB169apRYsWatKkibJnz54q54mMjFSdOnVUsGBBDRw4UCVLltSBAwc0duxYtWzZUq1atTLEzyO2ESNG6NVXX1WtWrVs/j1HRkbKxcXFUM/l0KFDmjdvniwWi9555x3Vq1fP4Q5NW/3000+qVKlSoj+3R48eacWKFapQoYJeeOEFu9fWs1gs2r59u+bMmSNfX181a9ZMVatWTfGXNXbt2pUqgWZac9bn0SfxszgAAACMISIiwrrOeIwyZco4tK72ky41r58/KQjugDRGcBcXwd2TIzQ0VFu2bNE777yT3qUAQLoJCAhQ9uzZ06Q7NSAgQDly5LDeXr16terWrStvb+9UP/fTKigoSF999ZUaNGiQ6JSwT6ILFy5o3759atSokZ555pn0LsdwCO4AAACQ3gju/kVw9wROlQkASB+enp6EdgCeerGDtLQ+V4sWLdLs3E+rTJkyqWvXruldhtMVL15cxYsXT+8yAAAAAAA2oKUFAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAOApcffuXd2/fz+9ywAAAAAAJILgDgCQpnbs2KHff/89vcuAkxw4cEAbN25M7zKeWnPmzNGxY8fS5dznz59PlXHPnj2rrl276tatW6kyvi0CAwO1YMECPXjwIN1qSExkZKRDx0VERDi5Ejypzp8/r9q1a+vTTz/V7du307scAAAAAMBjCO4AAGnKZDKpRYsW6tOnj27cuJHe5STqhx9+0NWrV5Pdb9OmTekaMKS3uXPnauDAgerYsaNNP6/08PXXXys8PDzJfe7fv6+NGzc6HIrY4/r168nWY6t9+/bpvffeU6NGjbR27VqFhIQ4ZVxbjBw5Uu3atdPJkyedNmZUVJSGDh2qH3/8UW+//bZ++OEHp41tDxcXF02dOlXVq1fXhAkTDPVe9cEHH2jBggV2v1Y7dOigiRMnptn71aVLl7R///5UGTs4OFiDBw8mdHJQpUqV1K1bNy1btkx16tTR/PnzFRUVld5lAQAAAAD+H8EdACBNvf7663r//fe1fft21atXT6tXr07vkhJ04MABvfnmmxo6dGiSgdS2bdtUq1YtjRo1SteuXUvDCtPfyZMndfjwYUnS/v379dZbb2nr1q3pXFV8kyZNUu3atfXVV18lGpiZzWYNHDhQr7/+ulauXOm0YC0hv/76q958803t2LEjxWN5eHhIks6cOaNly5YpMDAwxWPaytPTU4cOHdI777yj559/3in/lSxZUqdOnZIk3bt3T0uXLk3V30ViYn6uQUFBWrx4sT744IN0qeNxDx8+1IEDBzR16lQ1adJEJ06csPnYixcv6ssvv7S+XwUEBKRipdKjR4/UsWNHde7cWWfOnFFAQIBT/rt165a6du2q9evXq23btikO7y5cuKAxY8bo7t27TnrmT4aOHTvq1VdfVUhIiKZNm6Zhw4ald0kAAAAAgP/nlt4FAACePn369NGuXbt06dIljRgxQv7+/urbt296lxWHl5eXIiIitG7dOm3atEnTpk3T66+/Hm8/T09PhYeHa+XKlVq7dq2mT5+uOnXqpEPFae/LL7+Mc7t+/fqqUaNGOlWTOC8vL928eVNjxozR0qVLtW7dOmXLli3ePpLk7++vUaNGacmSJVq1apWyZ8/u9HoaNWqkc+fO6cMPP1TNmjX16aefKkeOHA6N5erqat1eunSpw+M4IkOGDJKkPHnyaP369U4bt1u3bvr9999VrFgxLVq0yBqipSV3d3frdp48efTFF1+kSx2P++mnn6xTXp47d049e/bU2rVrlTt37iSPCw8P17179yRFT5mZLVs2eXt7p2qtMa+Pffv2ad++falyjr/++kt9+vTRV199JZPJ5NAYRYsW1aVLl1SnTh11795d7du3j/P7T0iNGjW0atWqZH/utgoMDNTt27dVrFgxp4xnC5PJpJEjR6pevXqKjIy0BqF+fn42jxHTPezr65t6hQIAAADAU4jgDgCQ5jw8PDRs2DB16tRJkjR//nxVrVpVL7/8cjpX9q+MGTNat9u1a5doGBdzcdrNzU2TJ09+akK7M2fO6LvvvrPezpo1qypUqBDn52YUMaFctmzZNH78+HihnfTv71GSnn/+ec2ePTtVQrsYffv21S+//KLdu3eradOm+vLLL1W4cGG7x3FxiZ48wc3NLU1DO+nfn5mLi4tTzx0TRubIkSPdwjIXFxeZTCZZLBYVKFAgzX+2idmzZ49129vbWytWrLApPLp586YsFoskqXbt2vroo49SrcYYscOvwYMHq3379k4bu2bNmvL399eLL76oOXPmOBzaSf9Oi9qwYUNNmTJF3377raZMmaLnn38+wf2vX7+u69ev6/bt204J7m7evKmOHTvq9u3bWrhwocqUKWPzscePH9eDBw9UrVo1h85dqFAh1a5dW999950yZMggHx8fm4+9ceOG2rZtq7CwMC1fvpzwDgAAAACciKkyAQDpokqVKnG6C2Kmx7PH5s2bNXHiRGeWZeXm9u93W7p27ZroheGY8MLLy0v16tVLlVqMaOLEiTKbzZKk4sWLa82aNZoyZYquXLmSzpXFFxMgvPzyy4mGwy4uLtb9KlasqAIFCqR6TaNGjZLJZNL169fVuXNnPXr0yO5xYsKYTJkyObvEZMWEhv9Vsd8DjCA0NFS7du2y3h48eLDNr9N//vnHul22bFlnl5ag2N2gqaVgwYIJBvH28vb21qRJk2QymXT+/Hm9++67OnPmTIL7HjlyRJLUtGlTp0wPW7VqVV24cEH3799Xhw4drOPbIjQ0VF26dFH37t0dXmO0bt26MplMGj16tHLmzGnTMf/884/atm2rq1ev6tatW2rbtq0uX77s0PkBAAAAAPEZ64oEAKSQxWJRSGSoIs1RcnNxlZebZ4q+iY/U9fbbb2vatGnKmDFjgtNQJmXLli0aOHCgoqKiZDabNXjwYKfWZutF5+SmVPsv2rt3r37++WdJ0d2TU6ZMUeHChdW2bVv16dNHK1assHa5GYE9v8uYaQjTQpkyZVSjRg3t3r1bV69e1bJly9SjRw+7xogJT/+LwV1MKJlejBZM7t69W0FBQZKkIkWK6O2337b52L/++su6/eKLLzq9toSkRfDpzNdIxYoV1aRJE33zzTcKDg7WrFmzNGfOnHj7xUz7OXPmTFWoUCHF5503b56WLl0qKfrLBQ8ePLD52KxZs0qKfm3s3r07RXUMHDhQAwcOdOjYmzdvqk2bNlq+fLkKFSqUojoAAAAAAAR3AP4Drtz31/4rh3Ux4JL+undVQeHB1scyeWRUkewFVDSHr14rWEEFvfOlY6X/DSEhIQoJCXHKWPnz55fJZNKQIUPk6empgIAAm4776aefNHjwYEVFRUmSlixZIpPJpEGDBjmlLsn2QM5oF/dTW2hoqMaNG2e93bdvX5UoUUKS1KFDB23evFn9+vXT559/bpifja0BQnqE/O+++671gvu5c+fsPj4muEiPoDQmEPX39090WsGUSO/gzmhf+ti8ebN1u3v37nb9fV24cEFS9O+sVKlSTq8tIWnx9x8TXDtL7969tXnzZoWHhyfYPXz//n3t3LlTUvTfXEqnUA0NDdW3334rT09Pffrpp2rQoIFdx3t6elq3O3bsaJ1+OiFRUVHWKWBTS+x6JOnatWuqVauWTcd6eHgoS5Ysypcvn1544QW9+eabevnll+2q12KxaP/+/dq2bZt+++033bx5U+Hh4fL29tbzzz+vatWq6Z133jHklM4AAAAAEBvBHYAn1rHrJ7Xp7Pc6c/vPRPcJCg/WyZvndPLmOW08s0N+PsXUsERdlctbOg0r/W+5e/eu2rZtK39/f6eNOWzYMA0bNixFYyxevFgmk8nhjgFHGe3ifmr77LPPdOnSJUnR053GXrfK3d1dkyZNUrNmzTR27FiNGDEifYp8jK2/o/QIGitVqqRs2bIpMDDQrrWtYsR0CKZHcBfzc82TJ4/Wr1/vtHG7deum33//3emhjL2MEjxLUkBAgH766SdJ0euS1a9f367jY0LhokWLpllokRZTZUZGRjp1vNy5c6tu3bravHmz2rZtKyk6DPr9999VtmxZTZw4UaGhoZIUZ1rJ+/fvK2PGjHavybhx40aFhYVp0aJFDq3xGvvv3sPDI8kg8ebNm+rQoYN69+5t81qso0aNUvHixdW0adN4oZwt8ubNq8OHD+vOnTv6+OOP9ccff0iSXnrpJY0bN876MwwJCdG9e/d08uRJbdq0SStWrNCKFSus+xUpUiTZc509e1bDhg1TWFiYmjZtqnbt2snHx0cPHz7UiRMn9PXXX+vTTz/V3LlzNXHiRFWtWtXu5wMAAAAAaYXgDsAT52HYI315bLUOXLF9HZgYZ27/qTO3/9RrBSuoQ7nmypIhcypU+N+WP39+LVu2TD/88IP8/PxUqFAhZc6cWZkyZYoXkERFRaXo4u3du3f1zDPPpLRkOMnRo0e1bNkySVKBAgU0derUeL9zPz8/9e7dW1OmTJGbm5uGDBmSHqU+MTw8PDR06FBdvnw5Tghqq5jgwtbgbt26dSpYsKBeeeUVu8/1uJiOVxcXlxR3HsUW855Bx92/Vq9ebQ1pu3btavf76vnz5yVJpUsn/6WVI0eOaMKECZo3b57Na54lJC1+fqkxtW2/fv1UuXJlNWnSRFL0+962bduUIUMGa0D94osvys/Pz3rM9OnTdebMGc2cOVO5c+eON+Z3332nkJAQ1atXz7ouqsVi0YoVK/T55587FNpJccPR5ILujBkz6sKFC+rZs6deeOEF9e/fXxUrVkzymDt37mjlypWaNWuWWrZsqfbt21un57SFi4uLsmbNqqxZs6pGjRrW4K5JkyZxwrisWbMqd+7cKlGihJo1a6ZNmzZp6NChOn78uFq2bKkVK1aoaNGiiZ7nyJEj6ty5s1588UWtXr06zs/lmWeeka+vr9566y2NGTNGK1asUNeuXTVt2jS9+eabNj8XAAAAAEhLBHcAniiX71/TuH2f615IYIrG2X/lsP64fV5Dq/Zi+kwH5M+f36aQYfjw4SpcuLA6duxod/fKgwcPVLNmTb3zzjvq3r17ii4gG8mdO3eeyOfy8OFDDR48WGazWV5eXvr888+VLVu2BPft2LGjDh8+rKVLl8psNmvo0KGGCkGcISgoSCaTySndSw0bNnT42JjgLiYMSMq6des0bNgweXl5af78+SkO71I7WHN2N5W9nPWanTt3rkqVKuVwh09kZKRWrVolScqXL1+c10tQUJDCwsKSPP7evXu6f/++JKlw4cJJTkl87tw59ejRQ8HBwWrbtq2WLVvm8PtV7J/f+PHjNX78eIfGScrjz71ixYr65ZdfUjRmnjx5rKGdFB26VatWTQULFtSECRNkMplUt25d6/P7559/tG7dOkVERKhx48b67LPP4gViFStW1Mcff6wJEyaoefPmat26tXx8fDRmzBiVLVvW4VrtCe5id8x5eHgob968yY4fs3bmw4cP5eLikqL3u9i1Jjd9ccOGDXXnzh1NmjRJ9+7d09ChQ61/A48LDw9X3759FRwcrDfeeCPRUNtkMlnDwNOnT2vAgAF6/vnnbermAwAAAIC0RnAH4Ilx+f41jdrzWZw17FLiXkigRu6Zpk9q9CW8SyVdunRRw4YNtW/fPk2bNk0+Pj42H7t//36Fhobqq6++0vr169W2bVv16NHDpoAiIbNmzVLPnj3TNUAKDw9X/fr11bVrV3Xo0OGJCbMsFov69++vy5cvy2Qyady4cdZ17RLi4uKiKVOmqFmzZlq+fLkCAgI0YcIEu6eRS8iff/6p8+fPq169eikeKyX27NmjWbNmacqUKXrhhRecOvb58+fVtm1b3bt3z+Zj9u/fb/M6c8HBweratavWrFmj4sWLO1qmteMutaT2+Gnh888/16xZs+Th4aHZs2c7FN798MMP+ueffyRJnTp1ihN6+Pv7q127djavDzp16lRNnTrVpn0vXryodu3aadmyZQ51Psd+f+vTp49atGhh9xiJadKkiW7cuKGgoCDrfVFRUXr06JHTziFFh2F79uzRxx9/LE9PTzVu3DjePuPGjYvT+XfhwoV4wV327Nm1cOFCTZs2TQsWLNDixYvVuHFj9ejRI0X12fOFGHd3d7m4uMhsNqtx48YqUKBAssfEvGeXKVNGPXv2jPf42bNnk/y3ICXatGmjJUuW6NatWzp+/LhOnDiR4HTC+/bt082bNyVFv7clxdXVVV26dFGfPn0UHh6u6dOna+bMmalSPwAAAACkBMEdgCfCw7BHGrfvc6eFdjGCwoP16b5ZmlJ3GNNmpgJfX1917txZs2bNUtOmTbVw4UKbw4VNmzZZt0uVKqVatWo5HNpJ0R18X3zxhTp37uzwGCl19OhR3b9/XxMnTtS+ffs0ceLEBKdVM5rPP/9ce/bskSQNGjTIptAsa9asmjNnjt59911t3bpVN27c0OzZs1M8pWKBAgXUo0cPlS5dWgULFkzRWCmxb98+Xbp0Se+995569eqlzp07O21NtOeee06LFy/Whg0b9MILL6hw4cLKli2btfsltqZNm+r69euqW7euRo0aleS4M2bMsHat1K5dO8mp52wR0xFnNpttDo5sERPYpcY0iPZIabA+Z84czZo1S1J0aP/BBx84FN4tWLBAUnRX5eNT+z333HNavny5fv31V5UsWVJ58uRRlixZ4nRGLVy4UFOmTJGLi4sOHz6szJnT5t+62D8/Ly8vp06nmi1bNtWuXVutWrWy3vfo0SNFRkYqJCQkyaljHzx4IHd3d5umlz1y5Ih8fX0TXd9tx44d2rFjhySpXr16GjVqVKKdyC4uLvr444+VN29ejRkzRmvWrNG3336r3r176/3330+2luTY8v7j6upq19qRSU3Junr1ao0cOVIjR47Ue++9Z/OYtvLw8FDVqlW1bt06SdKhQ4cSDO6uXLli3V61apXatGkjd3f3RMetUqWKNcDcs2ePIiMjk+0ABAAAAIC0xv9LAfBE+PLY6hRPj5mYeyGBWnxsjT6slPILZ4ivY8eOWrVqlW7evKkOHTrom2++UZ48eZI85tatW9q/f78kqWjRopo3b16KLzZ36NBB9erVU6VKlWxa5yk17Nq1y7r9888/6+2339bSpUtTrWPBGbZv367Zs2dLkjp37pzgFKlHjx5VuXLl4gUdRYsW1fz58/X+++/r2LFjeueddzRp0iSH13OSosOLpk2bql+/flq5cmW6XHCNjIzU3r17JUWHS9OmTdPhw4c1d+7cJC8YJyY8PDxeN6Kfn1+cNbQSYjabdfv2bUlSkSJFkg1GYncj9evXL8VBY2hoqCTpxo0bqlSpUorGSkhyU0AmZvLkyfriiy+cVsevv/5q8xcOkuJIeLdnzx7rumBhYWF666231Lt3bzVp0sQaqhQrVkzFihVLdIyTJ09Kiv57TKvQTkrdNe7Wrl0b728mpkP1zp07SXaTXb9+Xb169VLbtm317rvvJvk3u23btkR/V7dv39bo0aNlMpnUr18/m78U0rJlS2XOnFkDBgxQaGioJk6cKJPJpA4dOth0fGyxQzhbgzt7AvHE3l+//fZbjRo1ShaLRZ988ok8PDzUtGlTm8e1VeyO4Fu3biW4T+ypXC9fvqxHjx4pe/bsiY6ZOXNmZc+eXXfv3lV4eLgCAgKUK1cu5xUNAAAAAE5AcAfA8I5dP6kDV46k6jn2Xzms1wpVULm8zp3yDtGdFu+9955mzpypu3fvavz48clOTbVixQpFRkYqW7Zsmjt3rlMuNufNm1d16tTRxx9/rI0bNybaQZFazGaztTNDkl566SUNGTLE0KHdTz/9pP79+8tisahly5b6+OOPE9xv3LhxioqKUp8+fVS9evU4j5UrV06zZs1S9+7d5e/vr7Zt26pbt27q0aOHw6Hbe++9p3nz5mn27Nnq3bu3Q2OkxMGDB61rhknRU8K+//77DoV2U6ZM0R9//KH58+fbPZXo7du3rRfh8+fPn+z+d+7ckRR98d6eaWsTExOs5cuXT7t3707xeDHee+89HTt2LF6H4e3bt22qu3///ipdurQyZcokX19fh98/qlatqoiICL300kuaM2eOQ2MkxJ7XSUxoHuP27dv67rvvVKdOHXl7e9s0xqlTpyRJL774os3nNbqE/lZiXt+XLl1KMrgrUaKEBg0apA8++EBff/21Ro8erQoVKsTbLyoqSjt27NDXX38d77HIyEj16dNH9+/f14QJE9SoUaM4j4eFhWnEiBHq2rVrgmuovf322woICLCu+zdr1iy1atXK7veA2OtMuri4aODAgdq4cWOyxw0bNkzDhg2z+TzHjh1LNLy2WCwaNmyYPDw89NZbb9k8pi1ivweEh4cnuM8bb7yh7777TgcPHlTdunWTDO1ixA48E+pkBgAAAID0RnAHwPA2nf0+jc6zk+AulbzzzjuaNWuWLBaLdu3aleRUZmFhYVq9erVcXV01bdo0FSpUyGl1vP/++2rUqJEmTpyokSNHOm1cWxw5csTaMeDu7q5Jkyal61SPyTly5Ih69eqliIgIde7cOdHQTop+PqdOnVLXrl1VtmxZDR06NM6UZlWqVNGcOXPUq1cvhYaGavbs2fr+++/10UcfqVatWnbXljVrVr3zzjuaP3++qlWrprJlyzryFB22fft263bFihXVr1+/RPe9d+9enIvrsa1du1YLFy6UJPXu3VuzZs2yK8y8evWqdduW19Ldu3clSbly5UpyCjxbFS1aVOXLl3do3bak1K1bV3369NErr7xivW/btm0aOnSoGjZsqOHDhydb/+NTStorMDDQGopGRUU5dZpHW/3www86efKk3N3dZbFYFBkZqVKlSumLL76wuZstICBA/v7+ktI3uEuLaU9j/h6OHTumKlWqJLlvrVq11LlzZy1YsEBt27ZVz5499cEHH8TZ59ChQ8qYMaMKFy4c7/jJkyfrxIkTmjFjhmrXrh3v8QwZMmjz5s369ttvVbduXXXr1i3elzTat2+vQ4cOac+ePQoKCtKjR4/sfp3FdL1Kkqenp8aPH69q1arp2WefVcGCBeN14dWsWVMhISEaPHiw3n777WTHnz59ulavXq0XX3xR8+bNS3JfZ7ynPO7hw4fW7cQCOQ8PD7uC9aCgIAUGRs/gULBgQYI7AAAAAIbknMVYACCVXLnvrzO3/0yTc525fUFX7vunybmeNrlz57YGOR4eHkl2Faxbt0737t3Txx9/rNdeey3JcR88eKBvv/3W5jr8/Pz0v//9T19//bX27dtn83HOELNOjyS1aNHC0KHdr7/+qq5duyo0NFT9+/dPMrST4nYQ5cuXT76+vvH2qVq1qhYtWmTtfrpw4YJ69Oih9957Tzt27Ei0myIx7dq1kxTdXRUc7Ny1L5Py6NEjfffdd5KipwLs379/kvuvX79elSpVSvC/adOmWff78ccf7e5ai+mkcnFxUcmSJZPdP2ZazWeffdau8yRm1KhR6tOnj8qVK+eU8WK0b99eFStWlMlkUlRUlCZPnqyPPvpIwcHBWrlypbp06RJn2s/UENO9JUl//PGHU9fws0VERIQmT54sSerVq5f1iw6ZMmWyawrKmNeIJJteIwnV4ajYQc7Zs2cdHsdWx48flxQdiD948CDZ/Xv37i0/Pz+ZzWbNnDlTy5cvj/P41q1bEwylV65cqTVr1mj+/PkJhnYxMmTIILPZrO3bt2vlypUJ7jNixAh5enoqf/78DoXDISEh1m0PDw+5uLioXr16KleunHLmzKkcOXLE+S/mSwSZMmWK91hC/8WsK+vq6prsvomt7ZcSly5dsm478vpNyIEDB6wddw0aNHDKmAAAAADgbHTcAUjSraC7Cd7v7ZlVHq7xp/sKCg9WUERIvPs9XNzk7ZXwRZ07wXEviGYwe8rFxUXenlm1/8phB6p23IErR1TQO59Dz8MZP6tcmZ5xoOr0tWvXLtWsWTPZi8k1a9bU77//ro4dOyb6zfyIiAh98cUXevvtt/X++0mvORgQEKCOHTvq9OnTunXrljp16mRTvW3atNGhQ4c0bNgwbd26VVmyZLHpuJR4+PChdZrMTJkyqUePHql+Tkd999136t+/vzw9PTVv3rx4U18mJCa4y5s3b5ww6nEvv/yy1qxZox49elgvyB47dkzHjh1T1qxZVadOHZUvX17PP/+8ihcvbr1onJD8+fOrRo0a+uGHHzRlyhSNGDHCrufpqK1bt1qDwnr16umFF5Lu0u3YsaN8fHxkNpvl5+ennDlzKkuWLPLw8NCsWbP0+eefK0uWLJo9e7YqVqxoVy0nTpyQJD3//PPJTgcZHh5und4zuTUmpei/r7Zt2+rChQt21ZQW9u/fr3fffVfz5s2zaYpQR9y4ccO6HRUVpV27dqlZs2apcq6ErFixQpcuXdJLL72kTp06WTsz7RUT3Lm7u+u5556z69ht27ZpxowZ+vLLL5UvXz67z505c2Z5e3vr/v372rZtm8qVK6f69evbPMWnraKiorR//37rlzhu376tdu3aad26dUl2gbm5uWnUqFFq0aKFpOi/7TZt2kiK/nvZuXOnJk6cGOeYnTt3atGiRVq5cmWy0xx7eHgoODhYNWrU0CeffJLgPnnz5tW4ceMcnjY49pcWEutijy32FJH2SKxrODXF/F4lKWPGjE5ZRzMiIkJz586VFP2FouQ+ZwAAAABAeiG4A5CknlsSXgNlZI2PVCpX/IuAW8/v1ro/tsa7v6RPcY2q2TfBsfrvHpfoOS4GXLK9WCf48//P58jzcMbPak2LuXZWnP4GDBigfPny6YMPPkiyQ65BgwbWC6pBQUEJ7vPtt98qc+bMGjx4cKL7SNHT2HXp0sUaKkyePFkRERHq3r17svXWrFlT+fPn17Vr1zRu3DjrGkOpaf369dYpzbp166ZnnjFmQLt8+XKNGzdOxYsX18yZMxPsnEtITHBnSydQ0aJFtXbtWvXv318//vij9f4HDx7om2++0TfffKMcOXKob9++yQYlbdq00Q8//KCvv/5ar7/+uv73v//ZVG9KxHTOZMiQIckpMmNLbkq6Z5991u7QTpJ+++03SdGBaHJipsmUbAvucuTIoaVLl2rv3r0qUqSIChQoIJPJpGvXrll/L8OHD1e9evUSHePcuXNq3769JGnDhg1O6/SLkZrrVP7999/W7Zdeekk7duxIs+AuICBAc+bMUcaMGTV58uQEw6fw8HCbuuFiwt3ChQsrIiLC5g66nTt3asiQIYqKilKbNm20dOnSJNeNS0yjRo20ZMkSmc1mjR49WqNHj3b6lIpmszlOsOTq6qpWrVrZdJ6yZcuqcuXKOnjwYJyOsZ9++kkhISFx3lOuXr2qVatWac2aNTZ1x8WEcckFlfXr1092rMTE7rjLmDFjsvtHRUU5dJ60mOr0cd988411mte2bdsqa9asKRovJCREQ4YM0enTp+Xj46MFCxakyRd3AAAAAMARBHcADMtiseive1eT39GJ/rp3JV2+Wf4k8/Ly0rlz5/Thhx/atP9XX32V7D6OfLN++vTpioyMVK9evZLcz8XFRS1atNDUqVO1fv16NWjQQK+++qrd57OV2WzWsmXLJEV3icUEGUYSHBysESNGaOvWrerQoYP69OmT5HSmj7O3WyRr1qyaP3++Vq1apYkTJ1q7RgoUKKARI0bYvGba//73PxUtWlQXL17UiBEj9O2336ZqmHPo0CGdOXNGktShQweHupCc5c8//7Re1Lbl9Xvz5k3rdt68eW06xzPPPKMmTZrEuS/2mlMZM2ZMMsCI3QWYNWtWh9eJCwkJ0d27d1Otuy4hsafo6969u7p37y5/f/80+Z1PnDhRgYGBmjZtWqJh2aVLl9SuXTubp/A8f/68w1Oa+vv7q02bNlq2bJndU/z269dPWbJk0ebNm3X9+nWFh4c7HB4lxdPTU88884zKly+vVq1a2bXuZYsWLXTo0KE4r/WtW7eqfPnyccKw/Pnza968eXGmBk6Kve+LP//8s55//nm7/k5if8EluWDLYrE8McHd7t27NWbMGEnR7/M9e/Z0aJyIiAhdvHhRBw8e1IoVK3Tz5k21aNFCffr0SZd1KwEAAADAVgR3AAwrPCpcQeFpt3aVFD19ZWhkWJqe80kXE/DkzZvXuvaX0TVt2lQzZ85URESEhg8frm3btqVa4PP999/r2rVrkqRBgwbZFYilhQsXLujDDz+UyWTS8uXL43RvRURE2HSR2tYL2Y979913Va1aNX322Wfat2+fVq5cKR8fH7vGaN68ucaPH6/Lly/r888/T3Y9vpRYvHixJClXrlzq0qVLqp3HFt9//70kKXv27MmuBSlJt27dsm7b0nFnJCNHjtTBgwe1cOFC+fn5pck5T58+LSk6nKxataoKFSqkr776SgMHDkzV8x4+fFgbN25Uq1atkuzEeu6557Rs2TL99NNP8vPzU/78+ZU5c+Y4QdO9e/dUrVo1SdHvPS1btkxRbY50ynl4eKhnz54OBy8xDhw4oLx586pw4cIpGichb7zxhp5//nnr2EFBQdq9e3e8mk0mk13vdfasRXjs2DF1795dpUqV0uLFi23+dyJ2x11ywV3s8G3YsGEaNizhWQISEtMxnppCQkL022+/afXq1dq+fbskqVmzZhoxYoRD/8a8/vrrunz5svV2lixZNHnyZL355ptOqxkAAAAAUgvBHQDDinJwLZaUijBHpst5n3QmkynJNcmM5JlnnlHNmjW1Y8cO+fv7a/78+erdu7fTz2OxWDRv3jxJUtWqVVWnTh2bjnvrrbfirLGVUkeOHIl3X8x6gl999ZU6d+6s1q1bx+sQWbx4sc6cOaOuXbsmuZ6To+szSdEh0qRJk/To0aNk12lLSKNGjTRlyhRFRERoyZIlatKkiYoUKeJwPYk5ffq0dWrPwYMHK1OmTE4/hz127twpKXqaPVsuat++fdu6bWvHnTOZzWbNnTvX5g6xGAEBAdqyZYskqXXr1vr888+dstZVUiIjI63BXZkyZWQymVS3bl2tWLFCvXr1smlKQkcEBwdr6NChevHFFzVo0KBk9y9evLiKFy+e6OMx69tJUsWKFZ+Y9+eE/Pbbb+rUqZPq1KmjLl26qHTp0k4dP3YguHPnToWEhMQLxB89eqTw8HCbx4zp3g8PD0/yde/v769u3bopJCRER44c0YgRIzRhwgSbzhE7uEtuCuawsH+/lDR48OBkp/CVojvZV69erezZs9tUj60++eQTjRv37zTpUVFR1s7rXLlyqVGjRmrZsqVefPFFh8+xaNEi3bt3T7du3dKpU6e0c+dO9enTR/PmzdOQIUMcmp4YAAAAANIKwR0Aw3J1cUmX87q78NboiCdtitGGDRtqx44dkqIv8LVo0cLpa3Dt2rVLZ86cUYYMGTR8+HCbj1u4cKEiI1MvQD5y5IgmTJigChUqaPPmzYlOGebh4aFt27Zp+/btql69urp3756iC6mSdP369QSDI0dCOyl6/ajq1atr586dioiI0MSJEzV//vwU1ZiQ2bNnS5IqV66c5LpuaeHEiRPWYOnxqSwT888//1i3nRXcDR48WIMHD7ZpXxcXF9WoUUODBg1S7ty5FRUVpYCAAFWuXDnJ48yxvsDh4eGhq1evpnpwd/bsWWuHUcz0ks2aNdP8+fO1cuVKdezYMVXOO3nyZEVFRWnu3LlO6cz95ZdfJEV3GiUVvD8JMmbMKLPZrB07dmjnzp1asGCBqlSpkirn2rx5s3x8fPT888/Huf/q1atq37697t+/b9d4W7du1dat8dfMTcyGDRtUpEgRm7p6YwfyOXPmTHLf4OBgFSlSRG3atFHjxo3l5eWV7Pjly5dXrVq1bJ6+2FYffvih6tata719+PBha1jdtm1bde7cOcXnKFCggHWq2dq1a6t3797asmWLhg8frrZt26pbt27q06ePXZ2RAAAAAJBWuDoNwLA8XD2UySNjmk6XmckjozzdntyuhPQQE9i5pFPQ6qiqVasqa9asevDggcLCwjR79mzrmjrOYDabNXPmTEnSBx98YNfaUM4OEB93584dzZ8/P9kOjZgOHYvFov3796t69eopCu42btyoYcOGOX26sgYNGlg70H788UcdO3bM4fW8EnLixAnt2rVLnp6e+uSTT5w2rqOWLFkiSapRo4ZKlSpl0zExwV2WLFmULVs2p9QxfPjwJEPMc+fOxVnTsUSJEtq4caMk6fLly+rRo0eyU5vG/LxdXV21evVqu9dYc8TBgwet2zFdOfny5VO1atW0YMECNWvWLNlpCe21Z88ebdu2TV9//XWyf5e22r9/v6To8PFJe39+XOwgc/LkyQmGdlFRURo+fLgaN26sChUqOHSeW7du6eeff1aDBg3iBTp+fn5asmSJfv31V5UqVUoFChRQ5syZ43Tfzp07V9OnT49zXOPGjXXu3DlNmjQpyQ5JR8SsXent7Z1sJ2jOnDm1bds2u4Kqhg0bWrdXr16t+vXrO/wli9iyZ88eZ83KPHnyaNq0abp165ZWrVqljh07Ov01azKZ9NZbbylz5szq1q2b5s2bJ5PJpD59+jj1PAAAAADgDAR3AJL0eYOxCd7v7ZnwRcv6z9VU9cLxuyE8kuhim1xzSJzbGTw95eLiIm/PrCqSvYBO3jxnR8UpUyR7QZlMJoeeh7N+Vk+amOmtUmv6uNTi7u6umjVrWoOEjRs3ql+/fvL29nbK+Js2bdK5c+dUokSJVOvQcdQbb7xh036xOzKmT5+u2rVrO3zOjRs3avDgwTKbzfr444/l4uISp+MiJapVqyZPT09rl9SSJUucGtxNmTJFFotFH374YZoER0nx9/e3dor26tXL5uNipl515jSZGTNmTLRbU0q6i7JQoUIKDg7W2bNnE+0Ge/TokfXv880330yzn/1PP/0kKTrkLF++vPX+Vq1aac+ePZo/f7769+/vtPNdu3ZNn376qb744gsVLVrUKWNeuXJFf/31lyTFWbcyOfv379dvv/2W4jXpnC32dLxly5aN93hUVJQGDBigLVu2aPv27Vq4cKFdzzvGt99+q6ioKL366qsJPu7n55foOot3797VwoULJUlFihTRw4cPrR1xTZs21YQJE7Ro0SK7a0pKTCBvy9+GI2sUxpg3b54+++wzbdq0SV988YXT/713dXVV06ZNNXfuXF27dk379u1T9erVnXqOGDVq1FCtWrW0a9cuzZs3T7Vq1dILL7yQKucCAAAAAEcR3AFIUq5M9n3zP5NHRmXysO+CTs6McS/8enl5Wb9pXTSHb5oGd8Vy+Epy7Hmkxc/KiGLCkictuJOiA5+YYCA8PFyHDh2yOdRKSmhoqGbOnCl3d3dNmDAhRWvApafYF3rz5cuX7P7+/v7xppdLSGRkpPr27avp06fbvO5fUry8vFShQgVr4BLzv86wd+9e/fLLLypbtmyc7rH0MnnyZEVGRqpBgwY2d9tJ0VOUSorT5ZLeKleurNWrV2vkyJEJPr5ixQoFBwfLZDKpa9euaVJTYGCgjh8/Lim6Kzf2+oFVqlRRmTJltHz5crVs2dKmvwlbBAQE6LPPPnNaeBASEqJp06ZZb9saYB05ckQ9e/ZUSEiI7ty5oxEjRtjU9RQUFORwrbaKiIiwboeGhsY5p8Vi0ciRI61rIQYHB6tz584OhXfffPONTCZTosFdUmbMmGGta8SIERoy5N8vJb399tuaPHmyfvjhhxR9AeJxMcFdsWLF4j22d+9e9ezZ0651+ZJz9OhRde/eXfPnz5enp6fTxpX+nY7WbDZrxYoVqRbcSVKLFi20a9cuWSwWzZkzR3Pnzk21cwEAAACAI57MK4kAnhqvFaygjWd2pNn5Xi1o/zf0n2Zms9ka3Dl76ri0EDMNXoxr1645ZdwFCxbo+vXr6tevX6LdGU8Cezs08uTJo/Xr19u8vzMDzYoVK1oDu+DgYAUEBCTZDWaL8PBwjRs3ThkzZtTkyZNT1LHiDEeOHNH27dvl4+OjYcOG2XxcRESE9QK/kYK7119/Xb1799aHH36o7Nmzx3ksJCTEOiXoG2+8oeeeey5Navr222+tIVHsaQJj9O7dWx07dtSIESOc1j1VpkwZp4wTY968edq+fbv19nvvvWf3GCtXrlRgYKAmTpyY7Hp7X3zxhebMmWP3ORxVv379ZPdxJLw7fPiw/vrrLz333HPJrhf3uOPHj2vNmjWSoqfufXwdxqxZs+qNN97QJ598oooVKypLlix2jZ+YmL/rIkWKxHusWrVqWrp0qcLDw1W8eHGZTCYNHz5cderUsWvNuuXLl1t/v5kzZ1b58uVTZQ3WfPnyqXLlytq/f79++uknXblyJdW6bMuXLy+TySSLxaK9e/cqMDDQab8TAAAAAHAGgjsAhlbQO5/8fIrpzO0/U/1cfj7FVdDbOR0UT4v79+9bt3Pnzp1+hTjomWeeUe7cua3rBDljTZ2rV6/qiy++UMWKFdWpU6cUj5ee7A2qXFxcUhyWOerx7jN71nFKzOLFi3Xp0iWNHz8+3afIDAsLs673NmbMmHhBV1KuXbumqKgoSbZNqWerwYMHa/DgwQ4fX7lyZWXIkEHLli1T79694zz21VdfKSAgQG5ubmm6BtW6deskRb+fvfbaa/Eef+2111ShQgXt379f69evV5MmTdKsNlv17t1bAQEBWrNmjapUqaJJkyYle8yDBw/UokUL63t6oUKFVKpUKd25cyfZ6VV79+6tvHnzymQyyc/PTzly5FCWLFnidCteuHBBefLkcXh9tPXr12vUqFGSpO3bt9vc7WjPe3pMEPt46JaciIgIjRgxQhaLRblz59bw4cMT3K9NmzbauHGjPv30U02YMMGucyQkJCREgYGBkuK//8V4fMrgIUOGqFWrVqpQoYJNP8Nz587piy++kBTdVb9y5cpUDdFbtGih/fv3y2KxaOXKlRo4cGCqnCdz5szKmjWrAgMDFRUVpVOnTtn9ewcAAACA1ERwB8DwGpZ4PU2Cu4YlXk/1c/zXPOnBnRTdqRAT3CW0dpK9xowZo6xZs2rq1KlOCQLTU3p3mNkjdseJr6+vXcFWQq5du6Z58+apSZMmhghnPv30U50/f17dunVTjRo17Do2Zq0zKTqQcZbhw4erXr16iT5+7ty5JKcXdXd3V/369bV48WI1a9bMGhDdv39fCxYskCQ1b95cvr6+Tqs5Kfv379fZs2clSe3atUv09T948GA1a9ZMEyZM0GuvvaZcuXKlSX22cnFx0ZgxY1S8eHE1bdpUmTJlSvaYMWPGWN/Pu3Tpol69eiXbaRdbs2bNknx87969Wr9+vT777DOHOgxjd+d6eHgoQ4YMdo+RlA0bNmjPnj2SpFdeecWuY6dNm6bz58/LZDJp4sSJ1nVSLRZLnP1Kly6tunXrasOGDfrf//6nRo0apajmmG47FxcXm3+m+fLlU6tWrdSzZ0999dVXSb42Hj16pN69eys8PFwmk0mTJ09O9c7XmjVrysfHR7dv39b69evVu3dvm6bk/Pvvv3Xt2jVVrFjR5tetp6enNfgMCAhIUd0AAAAA4GxP9hVFAE+FcnlfSPUpLF8rWEHl8pZO1XP8F8UO7goUKJB+haRAzDRqDRs2jNedYK/Nmzfr4MGDmjFjhnx8fJxRHmz07LPPKn/+/HJzc0u048UeI0eOVNGiRRNdfy0tbd26VatXr1bjxo310Ucf2X38mTNnrNu2rEFoq4wZMypHjhyJ/mdLd1W7du0UFhYWpwNp1qxZevDggbJnzx6vEy+1WCwWTZkyRZLk7e2tFi1aJLpvqVKl1KZNGwUGBqp///7Wbkajadu2rU2h3ZYtW7Rt2za5urpq/Pjx6tevn12hnS06deoki8Wili1bau3atU4d216//fabmjZtqi5dumjAgAHq06ePhg4dan3cnn8HDhw4oMWLF0uSevbsmWzX1kcffSQ3NzeNGjXKGhI76sKFC5Ki17ezp5Px/fffV4YMGdSnT59Ep7w0m836+OOP9ffff0uSPvzwQ6euzZcYNzc3NW7cWFL054utW7cme8zu3bv11ltvqVOnTnZ1AD969Mi6/SRO9Q0AAADgv43gDsAT4f1yLZTdK1uqjJ3dK5s6lGueKmP/18VeE65YsWLpWInjWrZsqX79+mncuHEpGic8PFzjx4/X2LFjVb58eSdVB3uMGjVKc+fOTXCKQ3v88MMPunjxombPnm1Tt0dq+vnnnzVo0CDVqVNHY8eOdXgMSfLx8TFMd9ijR4/04MEDFSpUSLVq1dKOHTu0evVqnThxQl9//bUkqX///tbupdT2zTffWAPODz/8MNkg5MMPP1SePHl06NAhTZ06NS1KTBU3b97U6NGj5eLiovHjx6dad2mGDBnUo0cPRUREaNiwYZo1a1aqnMcWZcuW1RdffKHatWvrzJkz2r59uzV89fb2tnm632vXrqlfv36yWCx6/fXX9cEHH8R5/PGOO0kqXLiwmjZtqpCQEHXq1ClF66r+8ccfkmT3+52rq6smT56so0ePatCgQQkGz+PGjbN2IDZp0kQ9evRwuE57NW/e3DrV8YoVK5Ldf9KkSdZ1Kbdu3WrtokvKo0ePFBwcbL39pH5+AQAAAPDfRXAH4ImQJUNmDa3aS5k8Mjp13EweGTW0ai9lyeDYujtPu4sXL0qKnqqraNGi6VyNY3LkyKEuXbrEmYrNEWFhYercuXOKpz+D46pUqaKqVaumeJzQ0FB9+eWX6T7968mTJ/XBBx+oRYsWmjlzZqKv0didI4+7du2ajh07Jil6Tbn08scff+irr77SwIEDVb9+fbVr184aPMR0IY0dO1b9+/eX2WzWa6+9lmZTlF65csUa3JcuXVrvvvtussdkypRJ48ePl4uLixYtWqQlS5akcpXOZ7FYNGjQID148ECffPKJGjZsmKrna9SokXU61M8//1zLli1L1fMlJXv27GrevLk2btwYZ7pXW9eADAoKUo8ePXTv3j299NJLmjhxYrx1NRMK7qTo0Nfb21u3b99W+/btdfXqVYeeQ0zQ7Mh7XoECBTRx4kRt2bJFH3/8cZzOu7lz52r58uWSokPB0aNHO1SfowoUKGDtXPzjjz/0+++/J7l/zJShUvT0u7ZMo3rq1Cnr76dkyZI2r5kIAAAAAGmF4A7AE6Ogdz59UqOv0zrvsntl0yc1+qqgNxdsHPXnn9FrD/r5+cnLyyudq0lfWbJkUYcOHdK7DDhBgwYN4qyZlxpOnTql77//XpLk7+8fb9q8n3/+WV27dlXfvn01bNiwRNdLjIiIUNu2bdWgQQMNHjxYK1as0K+//qqbN2/q5s2bGjlypMxmsyTpjTfeSNXnJEnBwcE6ceKE1q1bp6+++sp6f//+/bV3716VLVtWX375pb755hvrxfmiRYuqVatWCg8P16VLl+Tt7a1x48bFC0JSQ3h4uPr166egoCBlzJhRU6dOtXltx0qVKlk7kcaPH29dly+9Xb58OckwN8ZXX32lgwcPavDgwWrePPW7zt3c3OKcZ9KkSbp161aqnzcprq6ucaafzZ8/f7LHhIeHq2fPnjp37pxKlSqlhQsXKmPG+F8qivm7e1zOnDk1ZswYSdLVq1fVsmVLa4htq6ioKP3+++/KkSOHdbpne9WpU0ddu3bVtm3b1KFDB927d08LFizQ9OnTJUnly5fX559/Lnd3d4fGT4nYayYm13VXokQJ63aDBg1s6pLevn27dTstuwkBAAAAwFYpay8AgDRW0DufptQdpsXH1mj/lcMOj/NawQrqUK45nXYpFHOxsXr16ulbCPCECAwM1LRp07RmzRq98cYbmjRpkhYvXqx27dpp9uzZevnll7Vx40Z9/fXXWrx4cbJr0rm7u2v9+vU6duyYJk+erPXr1ye4X7FixZz+d3rt2jVt2bJFFy5c0Llz53ThwgX5+/tbO1lihxmbNm1S4cKFEx2rbNmyWrp0qfW40NBQp9aaELPZrAEDBujEiRNydXXV1KlT5evra9cYH3zwgY4ePaqff/5ZU6dOlb+/v4YOHer0NeLscfr0aU2cOFHFixfX66+/rtq1ayt79uxx9rl48aKmTJmi7t27q127dmlWW/369a3BUEREhM6fP5/u07fGPn9yU6RGRESoT58+OnjwoMqXL6+5c+cqS5Ysdp/z9ddfV5MmTbR+/XrdunVL7777rgYMGKDWrVvbFFgfP35c9+/fV5s2bVIUrPXp00e3bt3S+vXr9eabb+revXuSpJdeekkLFixIty/k1K5dWzly5FBAQIC2b9+uQYMGJTqFaadOnazTlJYunfxaxX///bc2btwoSapXr57q1KnjtLoBAAAAwFnouAPwxMmSIbM+rPS+BlXpIT+f4nYd6+dTXIOqfKAPK71PaJdCp06d0o0bN+Ti4pLqU6wBTzqLxaJvvvlGb7zxhlatWqVu3brps88+k5+fnyZNmqS6deuqffv2+uqrr5QlSxZ9/fXXyYZ2sZUrV05ff/21Pv7443iPZcqUSRMnTky0ay85t2/f1i+//KKVK1dq3rx51vtnz56tfv36ad68edqzZ48ePXqkOnXqaPjw4dq8ebM1iJOUZLhw4sQJDRkyRCaTSdmyZdP169f17rvv6siRIw7Va6tRo0Zp+/btcnNz06effqqaNWvaPYaLi4umTZtmDSVXrVqlFi1a6MKFC06tNaZ7K6H1yB735ptvavv27apYsaKmTJmi1157Te+//77WrVunBw8eKDIyUgMGDFDDhg3Vp08fp9aZnIIFC6p48X//3c6TJ0+anj8h169ft24nFVSFhISoe/fu2rVrl9544w0tWbJE2bIlPgNAcr+roUOHqkCBApKiu/jGjh2rd955R7/88kuyNe/du1dS3M40R5hMJg0YMEA5c+a0hnYFCxbUokWLkg0x7RX755Hcz8bDw0ONGzeWFP2zWbNmTaL71q5d29o1t2nTpjhr1z3u2rVr6t69u0JDQ1WpUiWNHz/enqcAAAAAAGmGjjsAT6xyeV9Qubwv6Mp9fx24ckR/BlzSX/euKCj834s2mTwyqkj2giqWw1evFnyZaTGdaOfOnZKkmjVrqlChQulczZPl999/1+bNmzV06NA0mQ4QqWfGjBkqV66cqlSpkug+Z8+e1SeffGJda65z587q3bt3nH1GjhypgIAAjRkzRlWrVlXJkiXtDjVMJpM6d+6syMhIa1fT888/r0mTJsWZTs5WvXv31k8//aSgoKAEH/fy8lL58uVVuXJlVapUSX5+fnFezydPnkz2HBcuXFCXLl0UERGhSZMmqVSpUmrTpo3u3r2r9u3b6+OPP1a7du2c+ncSERGh4cOHa8OGDcqYMaNmzJiRorURc+TIocWLF6tly5a6fv26Tp8+rcaNG6t9+/bq0qWLsmbNmuKaY4KO2GuRJcXLy0udOnVSixYttGDBAi1ZskQHDhzQJ598omLFislkMmnEiBEprssRjRo10uTJk9WgQQNDrI0a83cpJR7c3b59Wz179tQff/yhwYMH2/SajOk8jYiISPDxzJkza8GCBWrZsqU1NDt16pTatm2r5557TmvXrk102sddu3apRo0adoX7Cdm0aZMmTZqkO3fuWO+7cuWKWrdurd69e6e4S9dsNuvRo0cKCAjQnj17rPdv3LhR5cuXV86cOZU5c+YEv1TQvHlzLVq0SJK0YMEC+fn5qWzZsvLy8orX0dq7d2/5+vpq3LhxatCggVq0aKHXXntNuXPnVmhoqK5evardu3dr7dq1MpvN6tKli3r37p3itW0BAAAAILXw/1YAPPEKeuezBnIWi0WhkWGKMEfK3cVNnm4ZCEZSgdls1vbt2+Xq6prmHRtPut9//10dO3bUw4cPFRISorFjxz71r9Ft27bp0aNHabLOljNNnTpVCxYsUIYMGTRnzhy99tpr8fbZvn27+vXrZw1eGjVqlGBXnKurq6ZNm6a+fftq586dev3119WiRQs1a9bM7ovznTt31u3bt1W5cmXVqlXL4dfXO++8o++++y7OfYUKFVLNmjVVtWpVvfzyyymaEvL06dN6//33FRERoTlz5qhatWqSpCVLlqhdu3YKCAjQ+PHjtWvXLg0ZMkR+fn4OnyvGw4cP1atXL/3888/y8fHRvHnzbJpeLzl58uTRl19+qdatW+vOnTuKiIjQwoULtWrVKrVp00bvvvuucufO7fD49gZ3MbJkyaJ+/fqpefPmGjdunHbv3q3Tp09Lil4PrE2bNmrWrFmaTu3Zvn17lShRQq+++qrNx9y9ezfV6vn111+TfPy3335Tr169lDNnTq1evVqlSpWyadyYLsmwsLBE9ylSpIgWLFigdu3aKTg4WDVq1NB7772nggULJvo7OXbsmC5evKgJEybYVEdCLly4oNGjR1ufu6+vr7p3766///5bCxcu1OnTp9W1a1eVKVNGjRo1Ut26dZUzZ067z3P9+nXVqlUr3v1HjhzRm2++KSk6hExobUFfX1+98sor+vXXXxUUFKQuXbpIkoYPH67WrVvH279hw4aqVauWvv32W+3Zs0fLly/X/fv35e7uLm9vbxUtWlQ9e/ZUo0aNHHouAAAAAJCWCO4A/KeYTCZ5uXsqfVZleXps27ZNly9fVrt27eJMe2Y0FovFpqnlEjs2RlRUVKIXzGPvl9xF9VOnTqlTp056+PChJGndunUymUwaM2bMUxve/fDDD+rfv7+ioqLk7u5unR7tcVFRUXF+1o6wWCw2BR+27DdjxgwtWLBAUvSF+R49emju3Lnxwog6deqoQYMG2rRpk/z8/DRmzJhEx/Tw8NCsWbO0cOFCff7551q+fLmWL1+uAgUKqHz58vLz85Ovr69y5MihZ555RpkyZZKnp6cyZIj7BQU3N7dEu6mioqIUFham4OBgBQYG6uHDhwoMDJS3t7defPHFOPtWqVJFDRo00LZt21SvXj21a9dOZcqUSfLnYqsjR46oe/fu8vHx0eeff64iRYpYH3vuuee0atUqdenSRZcuXdKvv/6qRo0aqUyZMnr77bf1yiuvqFChQol2IyXm2LFj6t+/v65du6Z69eppxIgR8dZ+S4nChQtb6/7rr78kRQeFc+bM0YIFC1SlShXVrVtXNWrUkLe3t83jWiwWa9dWYt1bySlQoIDmzp2r77//XmPGjNGtW7f0999/a/To0Zo3b54GDRqk+vXrOzS2vdzc3OKF3J07d1ZQUJBy586tXLlyycfHRzlz5lT27Nl19+7dONOuOjtkTGxqysjISM2bN0+rVq1S9+7d9e6778rV1dXmcWP+7UkquJOkMmXKaObMmdaAMDlr1qzRq6++6tDf4unTp7VgwQLt2LFDZrNZhQoVUo8ePfTWW29Zn1utWrU0aNAgXbx4USdOnNCJEyc0duxYVahQQdWrV1epUqVUsmRJm9b2y58/v86dO2d3nTGWL19u1/6ZM2dWy5Yt1bJlS4fPCQAAAABGQHAHALCL2WzW3Llz5evrq48++ii9y0nSjRs31Lp1a/n7+6donP/973/J7vPw4UObOzFiW7t2rUwmk0aPHp1m4V1oaGiS6wDFePTokXX7wYMHCggISHC/8PBwSdGvjcT2Schvv/2mPn36WEOyIUOGyN3dXQ0aNIi376ZNmzR06FBrF4sjdu/ebdPvKCYws0dYWJi6d+8eL7xzc3PTxIkTlTNnTjVt2jTZ0MFkMqlLly568803NWvWLG3btk1Xr17V1atXtXHjxkSP8/DwUIYMGazjx34tWSwWhYWFKSwsLF7wYzKZVKlSJbVt2zbBcYcOHaqGDRumaCrJx23YsEHDhw9X/fr1NWLECGXKlCnePoUKFdLq1av10Ucf6eDBg5JkDRFi6q5evXqcNfcSEx4ervnz52vu3LnKli2bZs6cqbp16zrt+cRWoEABrVq1Sh988IEOHz5svT8yMlJ79uzRiRMndOPGDeuaXLaI/TuL+Vtz1Ouvv66KFStq9OjR2rJliyTp1q1b6tu3r86fP59u7+ljx47V3r17tXXrVm3fvj3RkD5nzpzy8fFx2nlDQ0P1zz//JPjY999/r0yZMmnnzp1Jrn2XmJj3NVt+Z1WqVElyut0YgYGB2rFjh3UKSVv98ssvWrBggfbv3y9JqlChgpo3b6769evHCyPLlCmjTZs2aePGjZo/f76uXr0qs9msX375xRpymkwmFShQQEWLFlXOnDn1zDPPKEeOHPL19bV2zgIAAAAAHEdwZ3BBQUF66623tGzZsgSnkQGAtLZx40Zdu3ZNq1evduhiZlrKmzevli9frtWrV6tEiRIqUqSIsmTJosyZMxuuw81isaRZTYGBgWrbtq0uXbpk8zGJBTux3bhxQ5UqVXK4LrPZrIEDB8rd3T1esNKkSRN5enrq+vXrKlWqlHLlyqUsWbLY3XWV2hLqyDGZTBowYIBd4xQoUECTJk1Sv379tG3bNn3//fc6efJkoh1X4eHhdoc6hQoV0vTp01WyZMlE98mRI4fTQruIiAhNnTpVmzZt0meffaY6deokub+3t7e+/PJLLV26VNOmTbN2LjVs2FAdO3bUc889l+w5f/zxR40fP163b99Wly5d9P777ztlzbmkZMuWTV9++aVmzpypRYsWyWw2K0eOHPrkk09Uu3btBNfzSkrs37mjHXeP1zd16lRVqVJFn3zyiTXEnz9/vqpWrary5cun+Bz2yp07t5o3b67mzZvr77//1pw5c/Ttt9/G26979+5OfZ/09PSUj4+Pbt++LUlxfjf16tVL0di2dtzZY/HixXr77bdVrly5ZPe9ePGiNm/erK1bt+rKlSvKlSuXunbtqqZNmya7Lq27u7uaNWumxo0ba8uWLVqzZo2OHTtmDVQtFouuXLmiK1euWI8pV65coh3TAAAAAAD7ENwZWFhYmAYPHpziThFnCwsLU9myZVPU9bBx48ZE16qpWbOmw8952bJlqlixosN1AUjajRs3NH78eI0fP14lSpRI73Jski9fPvXt2ze9yzCU3Llza9myZdq2bZtKlCihwoULK3PmzMqUKZPhAs3YUnoh/UmUO3dudejQQR06dFBYWJhOnTqlixcv6tKlS7p586bu3bun+/fvKzg4WCEhIQoNDVV4eLgiIiKSDXkmTJiQZGjnLCaTSTdu3FDfvn1VpEgRbd26VTly5LD52Pbt26t27dqaMWOGvL29NXTo0GSPO378uGbPnq2jR4+qdevW6tixo13TU6aUh4eHPv74Y9WoUUOffPKJPvvsMxUtWtShsWIHPyntuIutUaNGKlmypHr06KGrV6/KYrFo37596RLcxVa4cGFNnjxZdevW1UcffWR9zp06dUpwbbOUWrp0qb788ktduXLFad1isac3dXNzzv/dunfvnnbu3KnVq1cn+HhoaKh+//13HT58WD/88IPOnTunkiVLql69eqpSpYpeeuklu6b6lKJrb9SokRo1aqQbN25oy5Yt+v777/XHH39Yg0kvLy999tlnqlGjRoqfIwAAAAAgGsGdwURFRenOnTvat2+fli1bpvPnz6d3SfFcvHgxRaGdl5eXU6c5ii2xMBBAylksFg0aNEjdunV7KgOU/5qYQAhPjgwZMqh8+fJ2BStRUVHW/8xmc5yOmcyZM6dWqVbPPfecRo4cqZMnT2rAgAF6+eWXHRonf/78mjx5crL7nThxQlOmTFFkZKSaNGmiGTNmJDgVZ1opX758gp1j9oiIiFDWrFlVp04dNWzY0EmVRYtZT/D999/XuXPnVLhwYaeOnxK1a9fWhx9+qM2bN2vAgAHx1sVzlqJFi+rTTz916pihoaEqVaqU2rZt67R/L5csWaL+/fvH+7tdtmyZtm/frlu3bsnX11fPPfecunTpokqVKjl1Dcc8efKoc+fO1vUIf/vtNx05ckR58+YltAMAAAAAJyO4M4iuXbvq6NGjCg4Otn6D1aguXLgQ57aHh4dy586d7DeKHz16pNu3b6tHjx7KmTNnkvt6e3vbfbHBx8cn1ae/Ap5mYWFheuutt/TOO++kdykAbOTq6mp3l42zFC1aVOvXr5e7u7vDgZ293NzcNHr0aPn6+qbJ+dJCjhw5dODAgWTXR3RUzpw5tXTpUm3atMlwX8po3769OnfunN5l2M3Ly0vr16936pjt27dP8LNx1apV1ahRozT9DJwpUya9+uqrcdbzBAAAAAA4D8GdQYwdO9Y6FVJkZKQOHDigMWPGWL8ZbyQxwV3mzJk1ZMgQNWjQQBkyZEj2uB49eujy5cs2dXi0bt1avXr1SnGtAJzH09OT0A6AzTJmzJjm50yLqT/Tmru7e6qfI3v27Grfvn2qn8deafHcnxSJfaHtvxRSAwAAAACiEdwZxONTR/r6+mrTpk36/fff06mixP35559ydXXV/Pnzbf4G/aFDh7Rr1y4tWbKEizAAAAAAAAAAAAAJcEnvApC49Pimui0uXLighg0b2hzamc1mjR8/XtWqVVOlSpVSuToAAAAAAAAAAIAnEx13sEtwcLD8/f313nvv2XzM+vXrdeHCBU2dOjUVKwMAAAAAAAAAAHiy0XEHu4SGhqp169Z64YUXbNo/JCREM2bM0Ntvv61ixYqlcnUAAAAAAAAAAABPLjruYJccOXJo2LBhNu+/ePFi3b17V926dUvFqgAAAAAAAAAAAJ58dNwh1QQEBGjRokWqV6+efH1907scAAAAAAAAAAAAQ6PjDqlm/vz5evTokTp16pSicQ4dOqRt27bp+PHj+ueffxQaGiofHx+VK1dOzZs31yuvvOKkigEAAAAAAAAAANIPwR1Sxc2bN7Vy5UpVqFBBJUqUcGiMqKgojRgxQuvWrZMkeXl5KUeOHDKbzfL395e/v782b96s5s2ba9SoUXJ1dXXmU0hzkZGRMplMKR7DYrHEuc9sNstsNqdo3PTwJNYMAACA/w57P4+azeZ4n8UjIiLi3QcAAAA8LjIy0qb7ngZP6/OOjeAOqWL+/PkKCwtTmzZtHB5j+PDh2rJli7p27apGjRqpSJEi1seOHDmi0aNH69y5c1qzZo1CQkI0ZcoUZ5Sebs6cOePU8TJkyCCTyaSQkBC5uT1Zf+ohISHpXQIAAACeYo58Ho0J6SwWi8LCwiRJp0+fdnZpAAAAeErwWfLp9WRdzccT4ebNm1q7dq28vb1Vs2ZNh8bYunWrbt68qWXLlqls2bLxHn/55Ze1cuVKNWvWTBcvXtTmzZtVpUoVNWzYMIXV//fQuQYAAACkPj53AwAAAHAGl/QuAP89ixYtUnh4uOrVqyd3d3eHxvj77781bNiwBEO7GJkyZdKoUaOst6dPn66oqCiHzvdfFDMlT3h4eDpXAgAAAPz3xXTZMTUmAAAAgJQguINTBQYGau3atZKkBg0aODRGhw4d1K1bNzVt2jTZfV955RXrGnrXr1/X/v37HTrnf1HMN36Dg4PTuRIAAADgvy/mczdfJgQAAACQEkyVCadas2aNgoODlS1bNr300ksOjWHvunjVq1fX2bNnJUm//PKLqlWr5tB505ufn5/DHYqxBQYG6tatW9bb4eHh8vT0lMlkSvHYqeXxNUS8vLzSqRIAAAA8jVL6eTQyMlLh4eEymUzy8PCQJOXJk0eZM2d2Wo0AAAD474qMjIy3pl3JkiXl5vb0RTgRERE6c+ZMepeRrp6+3zpSjcVi0erVqyVJ//vf/+TikjYNnSVLlrRuP8l/0G5ubk4J7ry9vXX79m3rbbPZrLt37ypXrlwpHjs1JLYWSFq9fgAAAPB0S+nnUbPZrH/++UeSrF+Wc3FxUbZs2fhMCwAAAIc563rxk4ap55kqE07066+/6urVq5Kk8uXLp9l58+fPb92+d+9emp3XqNzc3OTp6Rnnvrt37+ru3bu86QEAAABOFBkZqWvXrikoKCjO/ZkzZya0AwAAAOAQOu7gNN9//711+/nnn0+z82bKlMm6zXpu0Xx8fKwhaoxbt24pICBA2bJlU5YsWeTq6mqIiwlmszneOiCRkZGGqA0AAAD/ffZ8HjWbzTKbzQoJCdGDBw8S/P8fLi4ueuaZZ1KtXgAAAAD/bQR3cJq9e/dat4sWLZpm5409tU3GjBnT7LxGljlzZuXJk0c3btyIc39kZKS1+84oLBZLvE5Ak8lk6DX5AAAA8N/hzM+jLi4uKliwYLwZMAAAAADAVrS0wCkuXboUp8PL29vboXHmzZunypUrq3HjxnHWaUtK7G+5Zs2a1aHz/hd5e3vLx8cnvcsAAAAAngoxoZ2Xl1d6lwIAAADgCUZwB6c4duyYdTtDhgwOLZp59OhRffbZZ7p7965Onz6tb775xqbjbt68ad0uVqyY3ef9L3vmmWf07LPPKkOGDOldSpJCQ0Pj/AcAAACkpZR8HnVxcVHWrFlVqFAhQjsAAAAAKcZUmXCK3377zbodHh6uyMhIubnZ9/I6fvx4nNthYWE2HXfx4kXrdpkyZew653+dyWRS9uzZlT17doWGhiowMFAPHz5UZGRkvOmAAAAAANjG1dVVmTJlUpYsWZQ5c2bWZwYAAADgNAR3cIrY4ZnFYtGdO3f07LPP2jVG7Gku3d3d1bBhQ5uOO3jwoCTJw8ND1atXt+ucTxNPT095enoqd+7c1nU8Yq8PmF4iIiJ0+vTpOPcVLlzYoa5NAAAAwF72fB41mUxycXFhPWYAAAAAqYbg7j/q+vXrGjVqlA4fPqz8+fNr8ODBqly5cqqdL/b6dpIUGRlp9xiVK1eWi4uLzGaz6tevL19f32SPuXHjhg4fPixJqlevnsNr6z1tTCaT9aJDekuo88/Nzc3ujk0AAADAEXweBQAAAGAk6X/VHol68OCBdfv+/ft2HTtw4EDt3btXwcHBOn/+vHr06KEbN244ucJ/BQYGpniM/Pnz691335UkZcyY0aZjZsyYocjISGXJkkX9+vVLcQ0AAAAAAAAAAADpheDOoG7evKk///zTenv37t12HX/q1Kk4t0NCQnTy5Emn1JaQx7+l6urq6tA4gwYNUo0aNbRp0yb9/vvvSe67ZMkSbdiwQR4eHpo8ebJy5crl0DkBAAAAAAAAAACMgLk/DCIoKEhRUVEKDAzU2bNnNXPmTIWFhVkfnzdvnsLCwlS/fn09++yzcnNzk6enpzw8PBIcr3Tp0vr111+tt93d3VWiRIlUq79IkSI6c+aMJMnFxUXZs2d3aJwMGTJo9uzZWrRokdq3b6+KFSuqVq1aKlmypHLmzKnIyEhduHBBq1at0p49e1SwYEGNHj1alSpVcubTAQAAAAAAAAAASHMmS0IT+iPNtWnTJk7QZovx48erSZMmCT4We4273Llzq1+/fqpTp44zSk3Q4cOHNWTIEN29e1etW7dW3759UzxmQECANmzYoP379+v8+fMKDAyUp6encuTIoVKlSqlatWqqV69eouGlUYWHhyfY/fjCCy88cc/FGSIiInTixIk495UpU0bu7u7pVBEAAACeJnweBQAAQHrjM+m/uH5OcAekOd544uIfJQAAAKQnPo8CAAAgvfGZ9F9cP2eNOwAAAAAAAAAAAMAQCO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgzuCCgoJUs2ZNXbt2Lb1LAQAAAAAAAAAAQCpyS+8CkLiwsDANHjxY/v7+6V1KPDVr1nS4rmXLlqlixYo27fvw4UOtXLlSO3fu1J9//imLxaL8+fPrlVdeUatWrVS0aFGHagAAAAAAAAAAADAaOu4MJioqSjdv3tTatWv1zjvvaMeOHeldktP5+fnZtN/Bgwf1xhtvaOrUqSpWrJiWLVumrVu3qmfPnvr555/VoEEDzZ8/P5WrBQAAAAAAAAAASBt03BlE165ddfToUQUHBysqKiq9y7GJt7e3smfPbtcxPj4+ypo1a7L77dmzR7169VJERIT69eunLl26WB/Lly+fqlWrplatWmnatGm6ceOGRo0aZW/5AAAAAAAAAAAAhkJwZxBjx45VWFiYJCkyMlIHDhzQmDFjZLFY0rmyxLVu3Vq9evVy+riXL19W3759FRERoapVq8YJ7WJ4eXlp+vTpevPNN7Vy5Ur5+fmpRYsWTq8FAAAAAAAAAAAgrTBVpkH4+Pgof/78yp8/v3x9fdWqVSuVKVMmvctKF6NHj1ZwcLBcXFw0YMCARPcrWLCg3nrrLUnS+PHjdfv27bQqEQAAAAAAAAAAwOkI7gwsY8aM6V1Cmjty5Ij2798vSapcubKKFy+e5P6NGzeWJIWEhGju3LmpXh8AAAAAAAAAAEBqIbiDoSxcuNC63bBhw2T3f/nll+Xt7S1JWrt2rR49epRapQEAAAAAAAAAAKQqgjsYxsOHD3XgwAHr7SpVqiR7jKurq8qWLStJCg8P148//phK1QEAAAAAAAAAAKQugjsYxp49exQRESFJ8vX1Vfbs2W06rmTJktbtH374IVVqAwAAAAAAAAAASG0EdzCM48ePW7dLly5t83Gx18H7448/nFoTAAAAAAAAAABAWnFL7wLw33Do0CFt27ZNx48f1z///KPQ0FD5+PioXLlyat68uV555ZVkx7hw4YJ1O1++fDafO1euXNbta9euKTQ0VJ6envY9AQAAAAAAAAAAgHRGcIcUiYqK0ogRI7Ru3TpJkpeXl3LkyCGz2Sx/f3/5+/tr8+bNat68uUaNGiVXV9dEx/rzzz+t23nz5rW5htjBndls1qVLl1SiRAkHng0AAAAAAAAAAED6IbhDigwfPlxbtmxR165d1ahRIxUpUsT62JEjRzR69GidO3dOa9asUUhIiKZMmZLgOGazWffu3bPezpYtm801ZM6cOc7t+/fv2/ckDCIyMlImkym9y0hzkZGRNt0HAAAApAY+jwIAACC98Zn0X0/r846N4A4O27p1q27evKlly5apbNmy8R5/+eWXtXLlSjVr1kwXL17U5s2bVaVKFTVs2DDevsHBwXFu2zPVZYYMGZIc60lx5syZ9C7BME6fPp3eJQAAAOApxudRAAAApDc+kz69XNK7ADy5/v77bw0bNizB0C5GpkyZNGrUKOvt6dOnKyoqKt5+QUFBcW7bE9w9vu/jYwEAAAAAAAAAADwJCO7gkA4dOqhbt25q2rRpsvu+8sor1jXnrl+/rv3798fb5/EpIi0Wi821mM3mOLddXHhZAwAAAAAAAACAJw9TZcIhbdq0sWv/6tWr6+zZs5KkX375RdWqVYvzeKZMmeLcDg0NtXnssLCwJMcCAAAAAAAAAAB4EhDcIU2ULFnSup3QWm4ZM2aUyWSydto9HsYlJTw8PN5YTyI/Pz+5u7undxlpLjIyMt58zSVLlpSbG29PAAAASH18HgUAAEB64zPpvyIiIhLMEJ4mT99vHekif/781u179+7Fe9xkMsnb29v6WGBgoM1jP3z4MM7tHDlyOFhl+nJzc3sqg7uE8LMAAABAeuLzKAAAANLb0/qZ1J5ltP6rWAwMaSL29JXBwcEJ7lO0aFHr9o0bN2we++bNm9Ztd3d3FSpUyIEKAQAAAAAAAAAA0hfBHdKE2Wy2bic2lWWxYsWs29evX7d57NjBXcGCBZ/KbyEAAAAAAAAAAIAnH8Ed7DZv3jxVrlxZjRs31u3bt206JnaXXdasWRPcp0yZMtbts2fP2lzPhQsXrNsvvviizccBAAAAAAAAAAAYCcEd7HL06FF99tlnunv3rk6fPq1vvvnGpuNid8XF7qyLrUaNGnJ1dZUk/fnnn3r06JFNY//xxx/W7Vq1atl0DAAAAAAAAAAAgNEQ3MEux48fj3M7LCzMpuMuXrxo3Y7dWRdbjhw59Morr0iKnlrz0KFDyY4bHh6u33//XVL0FJyvvfaaTfUAAAAAAAAAAAAYDcEd7BJ7mkt3d3c1bNjQpuMOHjwoSfLw8FD16tUT3e/999+3bm/cuNGmcR8+fChJatWqlTw9PW2qBwAAAAAAAAAAwGgI7v6jrl+/ri5duuill17SW2+9ZQ3OUqpy5cpycYl+2dSvX1++vr7JHnPjxg0dPnxYklSvXj15e3snum/VqlVVsWJFSdKPP/6oq1evJjl2zFSdmTNnVqdOnWx4BgAAAAAAAAAAAMZEcGdgDx48sG7fv3/frmMHDhyovXv3Kjg4WOfPn1ePHj1048aNFNeUP39+vfvuu5Kip6a0xYwZMxQZGaksWbKoX79+ye4/evRoZcuWTREREZo8eXKi+506dUo7d+6UJI0cOTLJQBAAAAAAAAAAAMDoCO4M6ubNm/rzzz+tt3fv3m3X8adOnYpzOyQkRCdPnnRKbYMGDVKNGjW0adMm6/pyiVmyZIk2bNggDw8PTZ48Wbly5Up2fF9fX82YMUMeHh7asWOHli9fHm+f+/fvq1+/frJYLGrfvr3efvtth58PAAAAAAAAAACAEbildwGIFhQUpKioKAUGBurs2bOaOXOmwsLCrI/PmzdPYWFhql+/vp599lm5ubnJ09NTHh4eCY5XunRp/frrr9bb7u7uKlGihFNqzZAhg2bPnq1Fixapffv2qlixomrVqqWSJUsqZ86cioyM1IULF7Rq1Srt2bNHBQsW1OjRo1WpUiWbz1GpUiWtWLFCvXv31qeffqoLFy6oRYsWyp49u3777TdNmzZN169fV//+/ZkiEwAAAAAAAAAA/CeYLBaLJb2LgNSmTZs4QZstxo8fryZNmiT42PXr1zVq1CgdPnxYuXPnVr9+/VSnTh1nlBpHQECANmzYoP379+v8+fMKDAyUp6encuTIoVKlSqlatWqqV69eogFjcoKDg7Vp0yZt3rxZly9fVlBQkPLly6eKFSuqTZs2Kly4sJOfUeoLDw9PsPvxhRdecPjn9CSLiIjQiRMn4txXpkwZubu7p1NFAAAAeJrweRQAAADpjc+k/+L6OcEdkOZ444mLf5QAAACQnvg8CgAAgPTGZ9J/cf2cNe4AAAAAAAAAAAAAQyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDmfSfZwAAIDgSURBVAAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuAAAAAAAAAAAAAAMguAMAAAAAAAAAAAAMgOAOAAAAAAAAAAAAMACCOwAAAAAAAAAAAMAACO4AAAAAAAAAAAAAAyC4AwAAAAAAAAAAAAyA4A4AAAAAAAAAAAAwAII7AAAAAAAAAAAAwAAI7gAAAAAAAAAAAAADILgDAAAAAAAAAAAADIDgDgAAAAAAAAAAADAAgjsAAAAAAAAAAADAAAjuDC4oKEg1a9bUtWvX0rsUAAAAAAAAAAAApCK39C4AiQsLC9PgwYPl7++f3qUk6ejRo/r222919OhRXb9+XeHh4cqSJYvy5MmjsmXLqn79+ipfvrzN49WsWdPh57xs2TJVrFjRoWMBAAAAAAAAAADSE8GdwURFRenOnTvat2+fli1bpvPnz6d3SYk6f/68Ro8erb/++kutW7fW+PHjlTdvXoWHh+vq1avatWuXVq1apRUrVujVV1/V5MmT9cwzz6RqTX5+fqk6PgAAAAAAAAAAQGohuDOIrl276ujRowoODlZUVFR6l5Os3bt3q2/fvipdurS2b9+ubNmyxXk8T548euWVV9S0aVO9//77OnDggFq2bKk1a9bE2zch3t7eyp49u101+fj4KGvWrHYdAwAAAAAAAAAAYBQEdwYxduxYhYWFSZIiIyN14MABjRkzRhaLJZ0ri+/ixYvq06eP3NzcNHPmzCSDuOeee05jxoxRt27ddOnSJY0dO1aTJ09O9hytW7dWr169nFk2AAAAAAAAAACAobmkdwGI5uPjo/z58yt//vzy9fVVq1atVKZMmfQuK0HTpk1TWFiY/ve//ylHjhzJ7l+jRg0VK1ZMkrRlyxZdvXo1tUsEAAAAAAAAAAB44hDcGVjGjBnTu4R4goODtW/fPklSRESEzcdVqlRJkmQ2m63HAwAAAAAAAAAA4F8Ed7CLv7+/wsPDJUk///yzzp49a9Nx+fPnt25fvnw5VWoDAAAAAAAAAOBpEhwcrLp16+qXX35J71IcFhUVpdatW2v9+vXpXYohsMYd7BISEmLdjoiI0LRp07RgwYJkj4vdPRgT/AEAAAAAAAAAAMc8ePBA/fv316VLl9K7FIeFhYVp9OjROnz4sJo0aeL08c+ePatt27bp119/1eXLl/Xw4UO5u7srf/78eu2119SmTRvlzZvX6edNCYI72KVgwYLy9PRUaGioJOnmzZs2HXfv3j3rttH+CAAAAAAAAAAAMDqLxaJ79+7pxo0b2rNnj9atW6cbN26kd1l2CwwM1M2bN7V//36tXbtWf/31l9PPcfXqVX366afas2ePKlSooLfffltFihRR5syZ9c8//2jRokX68ssvtWrVKn366aeqV6+e02twFMEd7OLt7a0pU6Zo4cKFCgsL04cffmjTcadOnbJuP//886lVHgAAAAAAAAAA/ykbN27UkCFDZDabZbFY0rsch/z6669q3769LBaLzGZzqp5r79696tevnzw8PDRnzhzVqlUrzuOlS5dWiRIlVKtWLQUHB6tfv37y8vJSjRo1UrUuWxHcwW516tRRnTp1bN4/KChI+/fvlyRlz55dlStXtut8hw4d0rZt23T8+HH9888/Cg0NlY+Pj8qVK6fmzZvrlVdesWs8AAAAAAAAAACeFDVr1tTGjRutt4OCgrRq1ao49xld6dKl49QbGhqq7777TosWLXLqefbt26cPPvhA3t7eWrp0qYoWLZrgfu7u7tZts9msWbNmEdzh6bF+/XoFBwdLkpo0aRLnDyIpUVFRGjFihNatWydJ8vLyUo4cOWQ2m+Xv7y9/f39t3rxZzZs316hRo+Tq6ppqzwHA/7V39/E1l48fx9+7t1uzuc19bnIvIpQSkagUUpKbRW4qpaL6UlQiKeUm3XxJiUqUm1TUN79Qym3kJrkJw2Y2dxu7se3snN8fa8fmfM52zna2c8br+Xh4+JzPuT7XdX222bmc97muCwAAAAAAAIA7hIWFKSwsLM+5pk2b6qefflJKSoqbeuWcoKAg1a9fP8+5Zs2aad26dTp06JBL2jh27JieffZZmUwmzZgxw25oJ+Xd3iunf56C4A7FKjk5Wf/9738lSRUrVtSIESMcvnb8+PH67rvvNHz4cN1333269tprrc9t27ZNEydO1P79+7VkyRKlpaVp2rRpLu9/STKZTPLy8nJ3N0qcyWRy6BwAAABQHBiPAgAAwN0KOyYtW7asNbgzmUzKzMx0ed+KW7ly5azHWVlZRRqLv/TSS7pw4YI6duyoVq1a5Vu2QYMGGjJkiH799VdFRERozJgxhW7X1QjuUKymT5+uU6dOyc/PT2+//bbNpwLs+f777xUfH68FCxbo+uuvt3m+VatWWrRokfr06aNDhw7p22+/1S233KJ7773XxXdQcv7++293d8Fj7N27191dAAAAwFWM8SgAAADczZExaUZGhvX48OHDKlOmTHF2qVjknjF4/PjxQr9PvnbtWm3evFmS1LNnT4euef755/X8888Xqr3i5O3uDuDK9fPPP+uzzz6Tr6+v3nzzTaf2ojty5Iheeuklw9AuR3BwsF555RXr4xkzZigrK6sIPQYAAAAAAAAAAKVNzl553t7euvnmm93cm6IhuEOxOHjwoJ5//nn5+/tr5syZ6t69u8PXPvLIIxoxYoR69+5dYNkbb7xRDRo0kCSdOHFCGzZsKHSfAQAAAAAAAABA6XL06FFt3bpVklSnTh2FhIS4uUdFw1KZcLkTJ05o2LBhysrK0pw5c9SuXTunrh8wYIBT5W+77Tbt27dPkrR582Z16NDBqesBAAAAAAAAAEDptGbNGutx3bp13dgT1yC4g0udPHlSAwcOVEpKij799FM1a9as2Nts1KiR9bg07xPXsGFD+fn5ubsbJc5kMtms19yoUSP5+vLrCQAAAMWP8SgAAADcrbBjUn9/f+vxtddeWyLvx7tacHCw9bh69epq2LCh0+/z//7773nqKO34nwhcJjY2VoMGDVJKSooWLFhgXcKyuFWrVs16fO7cuRJpszj4+vpelcGdEb4WAAAAcCfGowAAAHA3R8akXl5eTpX3RN7el3Z08/HxKdQH6Hbv3m09rlChQp7n9uzZo2XLlmnbtm2Kj49XQECAypcvr8aNG+uOO+5Q+/bt83wdPQF73MEljh8/rv79++vixYv67LPPSiy0k/Im8qmpqSXWLgAAAACkpqaqa9eu2rx5s7u7UmhZWVnq37+/li1b5u6uAAAAAE45efKkkpKSrI/Lli0rSbpw4YJGjx6t3r176/PPP9f+/fuVmJio+Ph4/fXXX1qyZIkeffRRDRo0SDExMe7qviFm3KHIYmJiNGjQIJlMJi1cuFC1a9cu0fbNZrP1OCgoqETbBgAAAHD1On/+vJ577jlFR0e7uyuFlp6erokTJ2rr1q3q1auXS+pMTEzUd999pw0bNmjfvn3WlVHCw8PVsGFDtW/fXj179szzIUwAAACgMI4dO5bncXBwsM6ePauBAwfq4MGDatq0qfr37682bdooMjJSp0+f1g8//KDZs2crJSVFmzdv1sCBA/XVV18pMjLSTXeRF8EdiiQ+Pl5RUVHKyMjQZ599plq1ahWpvg8//FALFixQpUqVNGfOHJtprUZyz7ILCwsrUvsAAAAAYI/FYtG5c+cUFxentWvX6uuvv1ZcXJy7u+W0pKQkxcfHa8OGDfrqq690+PBhl9RrMpk0Z84czZ07V40aNdIdd9yhqKgohYSE6MyZM9q6dau+/vprrV27Vu+++65efPFF9ejRwyVtAwAA4OqUkJCQ57G/v7+eeeYZHTp0SGPHjtWgQYPyLIV5zTXXaPDgwerYsaMefvhhnTlzRrGxsXr++ec1b968ku6+IYI7FFpSUpKGDBmilJQULVy40KHQLj4+Xm+99ZamTZtm89wff/yh6dOnS5LOnDmjpUuXasSIEQ7VmaNu3bqO3wAAAAAAOGDFihUaN26czGazLBaLu7tTKFu2bFFUVJQsFkueVUtcJS0tTSNGjNCmTZs0ffp0de/e3aZMhw4dNHToUI0cOVJbtmzRc889p2PHjmnkyJEu7w8AAACuDomJiXkef/fdd9q0aZNeeeUVPfTQQ3avq127tqZPn66BAwdKkjZs2KANGzaoffv2xdldhxDcoVAyMjL0+OOP68SJE1q4cKHDgdn27dt14MABw+d27NiR53F6erpDdR46dMh63KxZM4euAQAAAABHderUSStWrLA+TklJ0ZdffpnnnKdr0qRJnv5evHhRP/zwg8s+VTx58mRt2rRJDRo0MAztcpQtW1YffPCBunfvrvj4eL377ruqWbOm7rnnHpf0AwAAAFeX3CvySdK3336rrl275hva5WjTpo26dOmin376SZK0YMECgjuUXi+//LJ27typOXPmqHHjxg5f98MPP6hGjRqGz+Ve5tLPz0/33nuvQ3X+/vvvkrKnwN52220O9wUAAAAAHBEWFmazLH/Tpk31008/KSUlxU29ck5QUJDq16+f51yzZs20bt26PB+GLIz4+HgtW7ZMkhQQEFBg+ZCQED355JN66aWXJEmTJk1Sx44dFRISUqR+AAAA4OqTmZmZ57Gfn5/GjRvn8PW9e/e2BncbNmzQ2bNnFRER4dI+Osvbra2j2Jw4cULDhg1TixYtdM8991jDLVdYtGiRli1bppdfflk33XSTw9ft2rVLP/30k93g7qabbpK3d/aP5F133eXQ0ptxcXHaunWrJKl79+4KDw93uD8AAAAAUFi+vr5XxP8/IiMji1zHnj17lJWVJUk6cOCAzT4jRrp37y5f3+zPEicmJlrfLAEAAACckTOmzNG7d29VrlzZ4etbt25t3QMvKyvLZmVAdyC482Dnz5+3Hl++TmtBXnjhBa1fv16pqak6cOCAHn/8cZdsmn7gwAFNmTJFvXr1Up8+fRy6xmKxaP369Ro+fLiysrLsBnfVqlVT3759JWV/GtQRM2fOlMlkUmhoqEaPHu3YTeCKkZqaqq5du2rz5s3u7kqhZWVlqX///tZPKAMAAAClTe59/9LS0rRkyZICrwkODs7zYc29e/cWR9cAAABwhbs8S7j99tuduj4kJETXXHON9fG+fftc0q+iYKlMDxUfH69//vnH+vjnn39WkyZNHL5+z549eR6npaVp9+7dqlKlSpH6NXXqVKWnp2vTpk268847Hbrm3LlzeYJHe8GdJP3nP/9RXFycvvnmG913331q3ry53bLz58/X8uXL5e/vr7feeksVK1Z0+D5Q+p0/f17PPfecoqOj3d2VQktPT9fEiRO1detW9erVy2X17tu3T9988422bt2q48ePKzk5WSEhIQoPD1ejRo3Upk0b3XPPPQoODnZZmwAAALh6NW/eXMHBwdZlQ3O/8ZGf0NBQ6/HlSxwBAAAAjrj8Pc709HSn6wgPD1dsbKyk7DzD3QjuPERKSoqysrKUlJSkffv2adasWXl+wD788EOlp6frrrvuUuXKleXr66syZcrI39/fsL4mTZpoy5Yt1sd+fn5q0KBBkft5+vRpSdlLcRZWfsFdQECA3nvvPc2bN09RUVFq06aNbr/9djVq1Ejly5eXyWTSwYMH9eWXX2rt2rWqUaOGJk6cqHbt2hW6PygdLBaLzp07p7i4OK1du1Zff/21S2aRlrSkpCTFx8drw4YN+uqrr3T48GGX1X3kyBFNnjxZmzdvVvfu3TV48GBVq1ZNUvaHATZv3qylS5dq1apVevvtt/Xcc8/pgQcecFn7AAAAuDpVqFBBixYt0sqVK1WpUiX16NHDoeuSk5Otx0X9kCkAAACuTpcvX5+WluZ0HWXKlLEeFyb4czWCOw8xYsSIPEHb5bKysvTRRx/po48+sp7LWbLSyNSpU/XKK69o69atqlSpkkaPHp1vYFZS/Pz8CvwPmY+Pj4YNG6b7779fy5cv16pVqzRjxgwlJSWpTJkyioiIUOPGjTV16lR1797dbniJK8OKFSs0btw4mc3mPEvwlCZbtmxRVFSULBaLzGZzsbTx448/6rnnnlP16tX1zTff6Nprr7Up06VLF40YMUKPPfaYdu3apfHjx+vYsWMaM2ZMsfQJAAAAV4/rrrtOzz33nMPl09LSdPToUevjG2+8sTi6BQAAgCtcnTp18jzOmXzkjIyMDOtxSEhIkftUVAR3HmLhwoUure+aa67RnDlzXFqnJH3zzTcur9OeiIgIDRkyREOGDCmxNuF5OnXqpBUrVlgfp6Sk6Msvv8xzztM1adIkT38vXryoH374QfPmzXNJ/b/88ouefvpphYWFaf78+apQoYLdsuXLl9fcuXN1991369SpU5o7d66aNm2qrl27uqQvAAAAgCPWrFljfYOkcePGatGihZt7BAAAgNKoevXqKlOmjC5evChJhVrhLPcsu7CwMJf1rbAI7gB4tLCwMJtflk2bNtVPP/1k3UPD0wUFBal+/fp5zjVr1kzr1q3ToUOHilR3enq6xo8fL7PZrJ49e+Yb2uUIDw/XsGHDNHnyZEnStGnTdPvtt8vXl5cEAAAAFL+kpCTNnDlTUvayRBMnTnRzjwAAAFBaeXt7q2HDhtqxY4ck6eDBg07XkZSUZD2uWrWqy/pWWN7u7gAAOMvX19dm7eLSKDIyssh1rF+/XidPnpQk1axZ0+Hr7rrrLuvxsWPHrC9sAAAAQHE6ceKEhg4dquPHjys8PFwffPCBmjRp4u5uAQAAoBTr3Lmz9XjXrl26cOGCw9dmZGQoISHB+tgTVoIguAOAUuz333+3HjvzaZLIyEhVrlzZ+njbtm0u7RcAAAAgZb8REh8fr7Vr12rChAm66667tH//fj300EP69ttvddNNN7m7iwAAACjlcm8DZDKZ9Ouvvzp87bFjx2SxWCRJVapUUfXq1V3eP2cR3AFAKRYfH289XrJkiQ4cOODwtbln/OX+VAkAAADgCmvWrFHTpk116623asSIEVq8eLHKlCmjWbNm6ZVXXlHFihXd3UUAAICr3qpVq9StWze1atVKo0aN0tmzZ93dJadVr15dXbp0sT6eP3++w9du2rTJetyvXz9XdqvQCO4AoBTL+TSIJGVmZuqTTz5x+Fp/f3/rcVZWlkv7BQAAALRt21Zffvml5s6dq5dfflk9e/aU2WzWsGHD1Lt3b23fvt3dXQQAACjVcr83mPvYUdu3b9fo0aN1+PBhXbhwQT/88IOeeuqpQtVVWEW9hxxjxoyRn5+fJGnnzp36+eefHbruxx9/lCSVK1dODz74YKHbdyWCOwAoxZo2bZrn8cWLFx2+9syZM9bjSpUquaxPAAAAgCSFhISoRYsWuvXWW9WvXz+98cYbWrdunUaPHq2///5bDz30kKZOnSqz2ezurgIAAJQ6l+/Ndvz4cafrWLNmjc1YbOvWrYqOji5q9xwWExNjPS7MPeSoVauWxowZY3380ksvFbjK2IYNG7RlyxZ5e3tr2rRpKlu2bKHbdyWCOwAoxaKiotSrVy9VrlxZjRo10tChQx26LikpKc8L4eUBIAAAAFAcAgMDNWzYME2fPl2S9PHHH+uFF15wc68AAABKnxUrVshkMlkfL168WJmZmS6pu6Q+WPXbb78pLi7O+njlypU6f/58oeuLioqyvj965swZDRo0KE8wmNuuXbv07LPPys/PT5MnT1b79u0L3a6r+bq7AwCAwgsODtaUKVOcvu7//u//rFPPQ0ND1aZNG1d3DQAAALCra9eu6tmzp5YvX66VK1eqRYsWHrOnCAAAgKc5f/68Tp48KbPZrHPnzmnDhg1asGBBnjK7d+/WAw88oP79+6t27doKCQmRn5+fateubbfezp0765NPPskT1NWvX1+1atVy+T2kpqYqJiZGFotF58+f17Zt2zRv3rw8ZWJjY9W3b1917txZ1apVU0hIiKTsPewcNWbMGDVv3lyvvvqqDh8+rB49eqhv375q166dwsPDdfLkSf3888/65ptvVKtWLb366qtq3bq1S++1qAjuAOAqtGTJEutxr169FBAQ4MbeAAAA4Go0dOhQLV++XJI0a9Ys9ejRw/rmDAAAAC5Zs2aNxo4dW2C5vXv3aty4cdbHVatWzXevt5YtW+rtt9/WrFmzFB8fr9atW2vChAny8fFxSb9z2717twYOHFhguePHj+uTTz7Jc+6LL75wqq0uXbqoffv2Wrt2rX788UetX79eX3/9tdLS0lS+fHk1btxYU6dOVbdu3eTr63kxmef1CABQrDZu3KgdO3ZIyp5tN2LECDf3CAAAAFejOnXq6Nprr9Xhw4d17tw5fffdd+rbt6+7uwUAAOBxevXqpV69ehVL3d27d1f37t2Lpe7c2rRpo/379xdYLiMjQ7t37y5ye4GBgSV2b67GHncAcBUxmUyaPHmy9fGECRMUERHhxh4BAADgapZ7r+U1a9a4sScAAACAZyC4A4CryPvvv6+DBw9KkoYMGaIePXq4uUcAAAC4mkVGRlqP//77bzf2BAAAAPAMBHcAcJXYuHGjPvjgA0nSgAED9Nxzz7m5RwAAALhSxMbGatWqVUpISHDqOn9/f+txUlKSq7sFAAAAlDrscQcAV4HDhw9r1KhRMpvNGjp0qMaMGePuLgEAAOAKsWvXLkVFRSklJUUVKlTQypUrHV6OPTk52XocFhZWXF0EAAAASg1m3AHAFe7kyZMaOnSokpKSNGrUKEI7AAAAuNTrr7+ulJQUSdKpU6e0cuVKh689ffq09bhGjRou7xsAAABQ2jDjDgCuYKdOndKgQYMUExOjsWPHKioqyt1dAgAAwBXm8r3pckI8R+zfv996fOutt7qsTwAAAEBpxYw7ALhCnTp1SgMHDtTRo0c1YcIEQjsAAAAPtGrVKnXr1k2tWrXSqFGjdPbsWXd3yWmRkZF5Hnfo0MGh62JjYxUdHS1JCggIUM+ePV3dNQAAAKDUIbgDgCvQmTNnNGjQIB05ckSvvPKKHn74YXd3CQAA4IpjsVgMjx21fft2jR49WocPH9aFCxf0ww8/6KmnnipUXYVV1HuQpK5du1qPa9eurSZNmjh03ZIlS6xtDho0SFWqVClU+wAAAMCVhOAOAK4wiYmJeuSRR3T48GG98sor6tu3r7u7BAAAcMXJyMhQQkKC9fHx48edrmPNmjUym815zm3dutU6C60kxMTEWI8Lcw+SNHz4cFWuXFmS4+HfgQMH9PHHH0uSWrVqpaeeeqpQbQMAAABXGoI7ALiCpKamaujQodq/f7/Gjx9PaAcAAFBMVqxYIZPJZH28ePFiZWZmuqTuy8O84vLbb78pLi7O+njlypU6f/680/WEh4fro48+UuXKlRUdHa0ZM2bkew/btm1TVFSUMjIy1Lp1a82ePVt+fn6FugcAAADgSuPr7g4AAFwjMzNTTz75pHbt2qUxY8Y4vDxmcnKyduzYoVtuuaWYewgAAFA6nT9/XidPnpTZbNa5c+e0YcMGLViwIE+Z3bt364EHHlD//v1Vu3ZthYSEyM/PT7Vr17Zbb+fOnfXJJ5/kCbnq16+vWrVqufweUlNTFRMTI4vFovPnz2vbtm2aN29enjKxsbHq3bu3oqKiVL9+fZUtW9bap4LUq1dPy5Yt06RJk/TBBx9o1apV6tWrlxo1aqTy5cvrwoULOnTokP7v//5PGzZsUFBQkEaMGKGRI0cS2gEAAAC5ENwBwBViwoQJ2rBhg4YPH66hQ4c6fN1vv/2m1157TRs2bCjG3gEAAJRea9as0dixYwsst3fvXo0bN876uGrVqvr555/tlm/ZsqXefvttzZo1S/Hx8WrdurUmTJggHx8fl/Q7t927d2vgwIEFljt27JgmTpyY59z+/fsdaiMyMlLTp0/XE088oWXLlunnn3/WJ598ouTkZAUFBalcuXK67rrrNGHCBHXv3l3lypUr1L0AAAAAVzKCOwC4AsyZM0fLli1Tz5499eyzzzp17caNG1WzZs1i6hkAAEDp16tXL/Xq1atY6u7evbu6d+9eLHXn1qZNG4cDuKKqW7eunn/++RJpCwAAALjSsMcdgKvWqlWr1K1bN7Vq1UqjRo3S2bNn3d2lQvntt980ffp0tW3bVpMmTXLq2tTUVK1evZrgDgAAAAAAAAA8ADPuAJRKFovF8NhR27dv1+jRo637ifzwww86c+aMFi5cKC8vL5f1Mz9FvQdJSkhI0JgxY1S1alXNmjVLvr7O/VqfNm2aEhMTi2UfFQAAAAAAAACAcwjuAJQ6GRkZSkhIsD4+fvy42rZt61Qda9assYZ2ObZu3aro6GjVrl3bJf0sSExMjPX4+PHjharjpZdeUlJSkubOnauyZcs6fF1cXJxmz56tr7/+WpJUo0aNQrUPAAAAAAAAoGi8vLxUvnx5BQQEyMvLSxaLRd7eLJh4tSK4A1DqrFixQiaTyfp48eLFuu++++Tn51fkui8P84rLb7/9pri4OOvjlStXavDgwQoLC3O4jq1bt2r9+vXy8fHRkCFDHL7OZDIpOTk5zzlm3AEAAAAAAADu4evry1Y2sCK4A+DRzp8/r5MnT8psNuvcuXPasGGDFixYkKfM7t279cADD6h///6qXbu2QkJC5Ofnl+/Muc6dO+uTTz7JE9TVr1+/WAKs1NRUxcTEyGKx6Pz589q2bZvmzZuXp0xsbKx69+6tqKgo1a9f3zp7rn79+nbrTUpKkiRlZWUpMTGxSH1kxh0AAAAAAAAAuB/BHQCPtmbNGo0dO7bAcnv37tW4ceOsj6tWraqff/7ZbvmWLVvq7bff1qxZsxQfH6/WrVtrwoQJ8vHxcUm/c9u9e7cGDhxYYLljx45p4sSJec7t37/f5f25XIUKFRQUFFTs7QAAAAAAAACwlZGVqaOJMTqedELppgwF+PqretlrVDO8mvx9ir7KGEoXL4vFYnF3J4CrSUZGhnbv3m1zvmnTpvL393dDj9wrMzNTu3btynOuWbNmLln2EgAAACgI41EAAAC4yz9norX64FptOr5dmWaTzfN+3r5qW72lutXrqLqRtUq+g27A++fMuAMAAAAAAAAAACgxaZkXtXDnUq05tCHfcplmk349ukW/Ht2iznXaa0Dz3gr0K1NCvYS7ENwBAAAAAAAAAACUgLOpiXpt3UzFXjjp1HVrDm3Q3wn/aPxtoxQRFF48nYNH8HZ3BwAAAAAAAAAAAK50aZkXCxXa5Yi9cFKvrZ+ptMyLLu4ZPAnBHQAAAAAAAAAAQDFbuHNpoUO7HLHnT+qznctc1CN4IoI7AAAAAAAAAACAYvTPmegC97Rz1E+HftU/Z6JdUhc8D8EdAAAAAAAAAABAMVp9cK1H1wfP4evuDgAAAAAAAAAAABSFxWJRlsUss8Usfx8/wzIx5+OUbspQljlLJnOWsixZyjJnqVrZKiofFGFY/s+4vTKZTcr6t7zJnKVA3zLq2ehOwzbmbP1cZ9MSVTE4UoNv6CtJysjK1Kbj2113s5I2Hd+u4a37271XlF4EdwAAAAAAAAAAXKUsFovMFrOy8gm8Tpw/qYumDGvQlRN6VQ2rbBh4xZ4/qT/j/rIGXSZz9nUBvv7q1aibYRsfbVuk02nnsgOyXCHZfQ27qnXV5jblfz/2h+Zs+zxXqGaWJEUEhuvDHlMM25j6y/uKTzltc354q4d1e532NucPnz2mBX9+bXM+IjDcbnC3O2G/4pNPqUudW6znjibGKNNsMixfWJlmk44lxqpuZC2X1gv3I7gDAAAAAAAAAKAQzGazsixZ8rMXeF2IN5zhdU1YJcPA68SF+OzAy2zODqT+Da/8ffzsBl7z/vhSp1PP5gq7zMoyZ6lHgy66sdr1NuU3Hd+u/279TCaL2Rp6SVK5MmX133vfMGzjjV/f18nkUzbnh97QT13q3mJz/si5Y/rUIPAKLxNm9z52J+xT3IUEm/Pn0pIMy5stZqVmptmcz7kfIz7ePobnsyzG1/jaKW/KJ4Tz9cq+pkJwpPXc8aQTdssXxbEkgrsrEcEdAAAAAOCq5eXlpfLlyysgIEBeXl6yWCzy9mY7eAAAipvZYpbZbJavj/Fb1CcvJOiiKT1P2GXKJ/A6eSFBOwxmePn5+NoNiuZvX6KEnMAr1wyvu6+7XW2qtbApvyXmT32wdeGlEM6cJYssKhsQqrn3vWnYxpu/fqATF+Jtzj96Q1/dUbeDzfnoc8c1f8dXNufDAkLs3see+P2KvXDS5vzZtETD8maLRSkGgZfJTnglSb7ext8ne4GX3YAsn1AtJ/By9Bq7oVo+92GvXyY7bRTmPnKuyd2/dFOG3fJFkZ5VPPXCvQjuAAAAAABXLV9fX9WsWdPd3QAAwGE5yxraCxTik0/poindGi7lBF9VQiqqfLBB4JV8Sn/G/WUNonJmefl62w+8Pt3xtRJSTucJu7LMWepev5PaVm9pU35b7E59sGVhdn/+DeHMFrNCA0I07763DNuYuuEDxZ63DaMGt3xQd9a7zeZ8dGKMPtmxxOZ8qH+w/Rle8ft0/Hyczfl2BvcgZYeNKRmpNucLE3gVR1Dk6DX2Aq/CtGHvPpy97/zacHY2XL7hoN1rzMZ9shMmmizG5SXJ598PgeW+1wBff7vliyLAp3jqhXsR3AEAAAAAAAC44lkslnxnVicknzac4VU5pIJh4JWQfDrXDC+TNbzy8faxGxQt/HOp4pNPW8OrnODrznq3qV31G2zKbz+xW+9tWWAtmx2qmRXsH6RPer5t2MabGz40XJYvqkUfda/fyeb80cQYfbx9sc35YL/AfAOvY0mxNueNQjspe4bXhYwUm/P5ByyuCbwKM/vKbohTqMDL+OetOIIimzZcGXg5ORvO/n24dzacvfuwt/RloZbK/Pdn91TKGeu56mWvsVu+KGqUrVos9cK9CO4AAAAAAFetjKxMHU2M0fGkE0o3ZSjA11/Vy16jmuHV5G9nrxoAuBqZLWZ5e9kJvFLO6GLmRWVZzHn28aoUXN448Eo5oz/j9vwbdJmtwZe3l7fdoOiLXSsUdyEh1wwvk0xms7rW7aCbatgGXn/G/aXZm+dn98faL5MC/cro017TDdt4a8OHOmoQRg28/n7dfd3tNuePJsVq3vYvbc4H+pXJN/CKToyxOd+6anPD8maLWRfSk23Ou3tGkbNhRkksm2jvPkpiv7NC3Ucx7Klme00JhJwunQ3nZFjrgnDQS152702Sgv2DVDO8mny9fOTjnf3H19vbbl8l6eYarXRd5LV59rirGV5Nft6+yszn++gsP29f1QgnuLsSEdwBAAAAAK46/5yJ1uqDa7Xp+HbDN1D8vH3VtnpLdavXUXUja5V8BwFcMSwWi7y8vAyfO5VyJs+ShjmzvCraCbxOpZzJnuGVa3lCkzlL3l5edoOiRbu+UdyFBJsZXl3q3KKbarSyKb/r5N96d9MnecqbzFkK8PXXgt4zDNt4e8N/dSTxuM35/s17qUeDLjbnjyXG6qM/bAOvAN8Au/ex6+TfOnzumM35G65palg+y2LWeScDL2fDJbuhgQuXG3TnjCJXLpto/2tlP8RwVVCU3/fD6cDLzbPI7P0+sbdPYGFCTnttGPXLx9tHFovFsK4gv0DVLFs1V9jlI59/wy97bbSr3lJ1ImrK19tXvt7e1vKNKtQzbKNWeDWNuXl4dt3/1p9zbK+N/9z6hKTskNDXy6fAvY3rRdbWW11fzLfM5Yxmtvr7+Klt9Zb69egWp+rKT9vqLfmg2RWK4A4AAAAAcNVIy7yohTuXas2hDfmWyzSb9OvRLfr16BZ1rtNeA5r3VqBfmRLqJQAp/8DrdOpZa+CVO/SqEBRpGHidTjmba0nDS+GVJLtB0Ze7V+rEhfg8YZfJnKXbr22v9jVb25TfHb9P72765N8ZXpf65eftq4X3zzRs453f5urQuaM25x9u1lP3NrzD5vzxpDh99Mcim/N+Pn72A6/4v3XorG0bzSs3MiyfZclSUvoF2/Meu7+WnRlehZh9ZW8GTUnMviqJoMjefeT3tbUbFLnqe24xOxUUZffLufswF6INZ+8jZ99Bo1mpRm14e3nLYmdGY5BfoGqUrSofb+/LZnnZD6PaVGuh2uHV/y3nay3fsEJdwzZqlL1Go28elifoyjm254X2j1m/Bj7ePvL28rb7O1qS6kbW0lt3vmT3eSNGgVd+wsqE6sZq1zt1TZBfoFPlXalbvY4uDe661evosrrgWQjuAAAAAABXhbOpiXpt3UzFXjjp1HVrDm3Q3wn/aPxtoxQRFF48nQNKyNnURKWZLtrM8CofFGEYeJ1JPWczwyvLnCWLLHaDoiV7vlXs+fg8AVaWOUudrr1J7WveaFP+r4QDmrXx47wzvCxZ8vby1uf3zzJs453f5uqfs9E25x9qeq96NrrT5nzM+TjN/eMLm/O+3r75Lml48MwRm/NNKzUwLJ9lNivx4nmb8yUxo8jdQZH9UMaFM4qcDljs7fl1dQZFkvPfcyn7XoyetxuMOvmzm32N2fDn1Oh76OXlZXeGV6BvGVUPq3Ip6MoVetm7jzbVWqhmeDVr0JUzK8xe4FWt7DV69qahhjO87Blz83BZZJGvV3ao5u3tbXfZWUmqE1FT00og8GpTrYVT1wT5uy/wulLUjaylznXaF/gBMkd0qXMLq0JcwQjuALiVl5eXypcvr4CAAOvgq6Ap6gAAAICz0jIvFiq0yxF74aReWz9Tr3d+gZl3V6mzaYm6aEqXKcuUZx+v8kHlDAOvs6mJ2hG3J1fYlb2Pl9lithsUff3XKsWcj7tshpdJHWq106212tiU35twUDM3zcsVdpmtb/5/0eddwzbe+X2uDpw5bHO+b9Mehv2KPX9Sc7Z9bnM+v73Idp/cp/0GbTSuWN+wfJY5S+cuJtmcN3vZ31/LVTOKCrdPmOuCImeX9rvSgyKLLC4Miuy/7elMUCQ5v9xgzjVGyxc6H9bmcx/mLHn72PbZ6HvoJfuBV5BfGVX7N/C6fB8ve9e0rtpc1cpWuay8rxqUr2NY/pqwynr2pqE2YZePl4+87czaevamYbJYLJeWWfx3lpc910bU0NvdJth93ki3+s7NWAoLCFHb6i2duibYP8ip8riyDWjeW38n/FPoMakkVQ2rrP7Ne7mwV/A0BHcA3MrX11c1a9Z0dzcAAABwhVu4c2mR3iCRsgOMz3Yu09BW/VzUq6tDYlqS0i7bw8tkNiky0E7glZaoP+P+yrOcocmcf+C1bO9qxSTFZe/3lWvW1q212hgGXvtOHdLMjfNyLWdoUta/bSx64D3DNqb//pH2nz5kc/6BJnfr/sZ32Zw/ceGk/msQeHnJ/l5ku+P/1t+n/rE536C88cwPsyVL59JsAy/J/jKTbp1R5ORMnPyCIqcDr/yCIrPZ8AOkzgZF+c24sRcUuWpPtZxrPCkoyilv3Eb+92FvLy0jJrNxwJvv98OcZdgHe19fs50lDQP9AlQ1rLLNcoY+Xj4yyzjwanVNM10TWslmhlcDOzO8qoRW1NPtHrUGV765gy87/R3VbsilwCvXLC97apWrrncIvIASEehXRuNvG6XX1s9U7Hnnx6ZVwyprfIdRfJDsCkdwBwAAAAC4ov1zJtolSxJJ0k+HflXH2jeVyNJEiRfPW/fwygmWTOYsRQSGGwZeiWlJefbwyh182QuKVvz9o44lncjTRpYlS+1r3KgOtdvalD9w+rCmb/woz3KG2deY9cX97xqGONM3ztPfpw7anL+/cXc90OQem/NxFxL04dbPDPvbs+Gdhm3sjt+nvxIO2JyvX762YT1mS5bOpJ0zfs5OiOOqmVHuDoqcDVgKExTZC36c/VrltFHcQZHJkiV/OTOLzDjEKSjwMuqDs0tM5nsfZpOd74drfnal7Pvw8/Gzvcbuz67x16qMb8Cl8Cr37CtvHztxl3TDNU1VKaS8NSTL2cfL3gyvyiEV9HS7IYYzvPzsfK+eajtYZovZWnd2efv7eNUMr6bp3V6202NjzgZeoQEhuqnGDU5dE+If7FR5ACUrIihcr3d+waF9l3PrUucW9W/ei9DuKkBwB8CtMrIydTQxRseTTijdlKEAX39VL3uNaoZXk7/BfwYAAABwZciZSZN7Ro3RG86ZWZlKvHjeWs6sS9dVDatsOBPnWGKsqpWtYn1u9cG1Lu376oNr9WTkI9b+zd40X+nmTGWZs3RzjVa6rXY7m2v+OROtd36fa7Pnl8mSpc97zzIMcWZunGcYRvVq1E19m/awOX/iQoI+2LrQsM/3Nehq2Mauk39rT8J+m/N1IoxXxciyZOlMqnHg5ezSc4XZa8nujCJn9/AqTIhjL5goxH04HxQV8mvlRFBkbx+2ggIvX4O3llx5HyZng6LCBHdmk+H/P+3fh/HXqqDvhzPXZNkJB8v4BqhKaMW8M7y88t9fq0WVJqoQFJlnRpivt4/qRxoHXpWCy2tUu8E2YZevt4/h90KSRraJUpYly2apRXvLGtYIr6oZ3V+x22cjd9a7zany2YFXK6euCQkg8AJQMgL9ymhYq4fVqfbNWn1wrTYd365Mg9cXP29fta3eUt3qdWRPu6sIwR0At/jnTDQvSgAAwCNlmbOUlnkxT0iUExRFBpUzfBPy5IUEJWekWvfmySkfERiuyqEVbconp6dod8K+XMFVznUW3VqrjeEbzJuOb9fJ5FPW+nOuaVC+jq6v0timfELKGa34+8c84VjO8WM3DjB88/XL3St18MwRa/2Wf/++uUYrwxkCRxNjNO23OdZyucO1d++aqDK+ATbXTP31fW0/sUeWy+ZU9GjQxXCvjqOJsRq3ZqrNeUla0HuGYRv/d/g3PdLyAUnZHxTbdHy74fWFten4dg1v3V/+Pn7y8/FTfMppHT53TJJUu1x1w2uyLFk6nXrW8Dl7Ic6VMqPIpQFLCQRFWeYsyeDfh6uXAjRqw9n7KLANA04HkAUEXpLtv0Hn91TL/+fKmX6Z7MxUC/ANUOWQCtaZVLnDJXuur9xIEYHhNssgXlf+WsPyFUMi9VTbwTZhl4+3j/x9/Q2veezGAdbQO3cQZ29Zw2plq2hm91ft9tmIs4FXSECwbq7R2ulrAADOqxtZS09GPqLhrfvrWGKsjiXFKj0rQwE+/qpRtqpqhFdlcsNViOAOQIlKy7zo0DTwTLNJvx7dol+PblHnOu01oHlvpoEDAK5YFosle28l5Z2BZLFYFOwfZLg809nURKWZLuYJY8wWs8LKhKp8kO0SeqkZadp/5lCuAOfS3zdWu97wzd8dcXsUn3w6V4iTfU2diBpqUqmBTfnTqWe16sBaw6DokZYPGAZFy/f+oENnj14q++/XoE21Fupc5xab8jFJcZq16eM8oVJOUPRW1xcNQ5zpv3+kP+P+sgnh7qrfSQOu721TPjoxRmN/esPmvCQt6DVdZQzGJPN3fKXtcXtszt9d/3YNbHG/zfmTyac0/fePDNu4qXpLw+/HuiMb7bZhFNxdSE/WmkO/GrYxtFU/w+9H9Lnj2h2/z+Z8/Ujj5QazzFmKTz5l+JzFYrzYmUWyCe2k7OUJjXjbWZ4svzaqhFayHh9NjDH8oFhRZJpNOpYYa/2A2bURNazBnSuDoitlRpG9UKYwQZGz1xQ6VHOiDXtBUcGBl0G/nP6e239bx9l+2Q+8/FUppEL2LK3LAiwvGf/7vL5yQ4UHhNrs+WUv8KoQHKGRbaLk6+17Wejlbfh7XZJGtO6voTc8lCfsym8fr6phlTXrromGz9njdODlH6z2NZ0LvEIDQpwqDwC4Mvn7+KluZC0mMEASwR2AEnQ2NVGvrZup2AvObby65tAG/Z3wj8bfNkoRQeHF0zkAuMrlDop8vH0Mg6Lk9BSlZ2XkCWTMsijYL1Bly4TZlL+YeVHRiTG5AqJ/wx+Z1axSQ8M3DvfE79fp1LPWa3LaqhleVQ0q1LUpfy4tSWsO/ZprltOlv/s27WH4JvWqAz/r8Nljee7BbDHrhipN1fHam2zKn7gQrw+3LDRcpm/i7WMM31B8f/MC7Yzfa3Mfd9S9Vf2a3WdT/si5Y/qPnaDo017TDT+8MuePL7T9xG6b83fVv12DDIOiBE355T3DNub3eke+3oE25//3zy/6w04bRsHd+YsX9N3+NYZt9L++l2FQtP/MYcP7qBZ2jWE9GVmZik6MMXzOXvCTkZWhNNNFm/P29t2x90a0JJntBEX2lgIz29mpx175/Nqwt79O4dqwF5LZuQ97XysPbSM81++k40kn7F5fFMeSLgV3FYIirec9NSiy2y8Xz4Zzpl92y+fzPffEwMteGwE+/qoUXP6yYCn72N7vmWaVGyg0IEQ+3t55QrL6kcaBV2RQuX8DL9sZXkG+xh98HNqqnx5p+YDDSy1eE1pJ7zoZeN1Rt4NT5YP9g3RrrTZOXUPgBQAArlQEdwBKRFrmxUKFdjliL5zUa+tn6vXOLzDzDriKZJgyZDJn2QQsAT7+CvYPMix/4kK8YVBUP/JawzekDp45orNpiZfNWrLomtBKhp90S7p4Xr9Eb5FFZpt27mvY1TAoWnPo1zwBVk6I07xyQ7WveaNN+ZPJp/TJ9sW292Exa9ytIw1n+8z740vtiv87z2wqi8WijtfepAea3G1TPvrccY1b8+al5e1yvfE/v+c7CvK3DXHe2/KpYYjTvX4nRbXoY3P+xIUETfj5bZvz+bXx/YH/s9uGUXCXePG8vvrre8M2ejfqZvj92BO/X9tO7LI5Xz6wnGE96aYM7Tt9yPA5e0FRckaKzqUl2ZzPMGUYli+J8KMwIY69frmyDefvI59QTe78WtkJ1Tz0a2Vvppr9NuyVzy/ktNMvO4GF/QDS+TZyh0vpdv7dFVV61qV6/XLtuVao5QZdFBSVxEw117Zh/P0L8PVXheDIPEFXTrhk7/dSk0rXKcivzL+zu3yts7zq2ZktGhEYriduHJRnv6+c4CvYz/b1SZIebdlXUdf3kY+3t0NLLVYOrah3737N8Dl7SiLwCiPwAgDA45hMJsXGxsrf31/e3t4ym82qWLGifHzsj71w5SK4A1AiFu5cWujQLkfs+ZP6bOcyDW3Vz0W9AmxZcpaCu2y5Oh8vb8N9KTKzMnUmLTHvDKR/r6te9hrDN3Kiz8UoKf28zf5BFYPLq1a5ajblL6Qna3PMDoMQx6Ku9ToYBhO/RG/WsaQTNkvoNa5YX22rt7Qpn5ByRp/vXG57H7LomXaPGgZFC/9cqr8SDtjcxy21blSvRt1syh9LjNUra6dfWtou19d47r1TDYO4GZs+1rbYnTbnu9XraN27KLcTF+L1/P9etzkvSR/3nKYQf9u9N5bv/cEwxOluZ4/Nc2lJWrhzqWEb3et3NPx+bI/7y/A+gvwCDYO7i5kXtSPuL8M27L25ezYtUXEXEmzOp2SkGpaXvOzOWnA2xHE2AMivDbcGEy4MDdwZfhTu++Fcv+y1YS+8yr9frgy8nOuXs32SnJ/dVhJt2P03m+/MQRfNhsunDefDQdeFnLnPB9jZV6qoAnwu1ZuZden3qb3f04XZw8vZJSb9ffxVISgib3j1b7hk799B44r1VcY3wCaIqmdnmaZygWX1+I0DL5vhlb28odFruSQNbvGABjTvZdOGvVlylUIq6L27Jxk+Z88ddW91qnyQf6A61G7r1DVhZUKdKg8AAOAoi8Wi06dP5zlXvnx5grurFMEdgGL3z5noAve0c9RPh35Vx9o3XfHrPVv+nf1i9EZVljlLFzJSDIOiisHlDfd0iLuQoAvpyXlCH7PFrMigcqoaVtmmfHJGSvZeQJftg2SxWNShdlvDYGLT8e2KPX8yzwwns8Wi+pG11apqc5vyp1PP6qs939vch1kWPd56gGFQtGTPt9qbcDB7STzzpdlX7arfoB4NutiUjzkfpynrZ+fa0+jSfbx710TDN5em/fZfbXUiKIo9H6/n/zfZ5rwkfXzfNMNN2r/66zvDNu6sd5sGl3vQ5vyZ1ETN2faFYRsda7cz/H5siflTW2L/tDnv5eVlGNylZqRp4/E/DNuwt1dPfPJp634+uSWmnTcsb5FFyRkphs+VRDDhqtklpS2YKNysJVfdh2cGEyUxM8r+kobum32V/8+uvX+DJTDjzk4bbg2E7eyPlN817p1xZ+dr5cr7sPdv1qVfK9f93r2Qnmw9rl7WeNnVoqpRtqr1uEJwpLrX7yRfbx/VjahlWD68TJgeaz0g1wwvX2vwFWrwwRJJGnR9b/Vreu+lPcJy7eNlpGJwpN67x3hcYo/TgZdfoG6r3c6pawi8AAAAAMcR3AEodqsPrnV5fU9GPiIpO1D48eA6mcxZ1v2Nri1XQ9dXaWxz3dm0RK38+3+GIc4jLfoYBkUr/v5R+04f+neG0KVrWldtru71O9mUj7uQoGkbPrSZrWWxWDS16zjD2T6zNn6sLbF/5umPRRbdWfc2Db7BNsSJOR+n5340fkNm3n1vGe718PnO5YYhjr02zqSe06xNnxi20bZ6C8OgaMOxrdoSY9tG17odDIO71Iw0rT3yu2Ebj97wkIwWRD2WdEJ7Tx20OV8vwngJJLPZrFOpZw2fs7uvkQcGE4WZiePS+7hCggl3LjfozmDCvbPhPDOYcPZr5dqfq9IVCHtmGyWw/KMLZ5HZK+/rnR3WeHt5y8vLS95e3tZjeyqHVFDdiFr/lvWS179/XxNaybB8kF+g2lW/IU9Zby9vecvLcL9BSWpdtbkqhZS39ifnmtrlqhuWL1emrIa1evhS3V7e8pKXvL29FGRnucHejbqpc532l+5D2X+HG+yVKUmVgyvo3bsm2nytvL28FWJnhlfu/SprhleTn7evMu3MMi4MP29f1Qi/FNy1r9la7Wu2zveaQL8yhvto5sdo/1AAAAAAVzaCOwDFKiMrU5uOb3dpnZuOb9fw1v3l7+MnX28f/Xp0S55ZP3fUvdUwuEtOT9EqOyHiw83uMwzuDp09qu0Gey0ZzVKTJJPZpOPn4wyfs7ekkcmcpYysTJvzpW1JKlcGE3ZnfrjwPkqijRIJJly1ZJsLww9PDSacDWWc/dpm98sTg4nStfeV80saunJ2YiHacNnsRBfeh50++Xh5y8/b1zAosti5JuLfmdnWoETZ15UPjjAsH+hbRi2qNDEOiuzMELq+SmOFlQm9VL93dvBjb1+qsDKhGnh970sBUa77sLcP7t31b9fNNVpddo2XIoLCDctXCI7Um3e8mCuM8rK2YW9vqMdaD9CIVg/n6U9+QVzl0Iqa13Oa4XP2PNTsXj2kex0uHxEYrmduetSpNrLDp/wDqNyC/YPUuU57p9rIHXg5wtfHV5VCKjh1Te5/U/4+fmpbvaV+PbrFqTry07Z6S8MPMgEAAABAURHcAShWRxNjXPrpZknKNJt0LDHWulzmtRE18gR3pS2YKIklqey+geyhwYSzb54XbvZVKQomCrVHkZPBRH5tlKJgonDf8+IPB53/2S2J2YmFCejt/ew61ievXCGOva9VWECIIoPK2QRF9mbiBPj4q2GFujaBjJeXt3wN9piUpEYV6snf2y9PGOPt5a3rytcx7pN/iB5ocrdNSOTt5a1AX+Og6I66t/4bYOWdtVQxONKwfPnAcprYaYxxUGRnibkhLftq4PX329yHvSX0KodW1Od93jV8zp6B1/fWwOt7O1w+IihcY299wqk2bqvdzqll90L8g3X3dZ2dasPZJbb9fPwM9xzNT3HtowbX6Favo0uDu271OrqsLgAAAADIjeAOQLE6nnSiWOo9lnQpuKsQlPdN0NIWTHjm3lfuDSacDbBcO3OwaMFEUfrl2llk7ps56LFLM9pZwjPQt4yC/QJtAplgO0u8+fv4qXZ49ctmLf07u8hOsF43spZM5qx/y10KWerbCYpC/IN0z3WdDZaF87IbFN1Wq60alK+TN/SRl6qEVjQsHxEYrnG3jrS9D3nbnVE04Pre6tPkbpugqIxPgGH5SiEV9EWf2f/W65VvsJpjcMsHNbil7RK+9kQGldOrnUY7XF7KDtWc2dMpJCBY9ze+y6k2Glaop4ZOTBDy9/VXgwrGPw/59QuAY+pG1lLnOu1dsu9ylzq3XPH7LQMAAABwH4I7AMUq3ZRRPPVmXarXzyfvr7IrJZgoVBtO7i1WMvuEuW6mmt02nAxeC9WGC2dZ+nr5yCfX/jw54Ye9Jbd8fXxVOaSCbYjz7+wfI7XCq+pCeqO8oZKXl64tV8OwfJB/kLrUuSXPjCjvf4OoMr7GoczNNVqpZnjVS/fx7zX2lpINLxOmZ28aeim4yjV7yV5Q9GCTe3RX/dvzhFHeXl4KsrOnUcWgSH3cc1ree8j1dTMyrPXDGtb6YcPnjEQGldPUruMcLi9J3et3MtwX057QgBANcGKWkyQ1q9xQzdTQ4fIBvv6Gywrnp1xgWafKe3l5ydfLeNYbAJS0Ac176++EfxR74WSh66gaVln9m/dyYa8AAAAAIC+COwDFqriWjQrwuVRvZlbepThLZh+kwsz2cVEb+S6b6Pi95xc4+Xr7KLxMmGFQZO+6KqEVdV2e2T7ZM3eqla1iWD7Qt4za17wxu6zyLgtn7+emdbXmqhgSmSf08fLyUk07e+WEBYTqsdYDDGcthdoJino2ulOdrr3ZJiiyV758UITev3tyrjYu9SvIzoytx9sM1ONtBho+Z6+NWXdNdLi8JPVocId6NLjD4fJhASEa2qqfU220vKapWl7T1OHyZXwD1LZ6S6faqBhSXsbzxYx5e3srxJ9ZSAAAW4F+ZTT+tlF6bf1MxZ53PryrGlZZ4zuMsruXIgAAAAC4gpfF3jvcAIpFRkaGdu/ebXO+adOm8ve/8vZGOXjmiF5c86bL63298wvWJYqW/bVaW2N3WoOZFlUaq3fj7jbXnL94QR9u+9w6Cyd3yDLw+t4qa7B/0oajW3Xo7FGbZeFql6uuNtVa2JRPy7yodUc25ll2LicsalOtheEbPdHnjutsWqLNzKByZcJ0jcHMJVOWSSeTT+WZRZVzXbkyZeVjsKdTZlamLFKupfAcW7IOAADgSpOWeVELdy51atnMLnVuUf/mvQjtAAAAUCwyMzO1a9euPOeaNWsmPz/j1ZmuZFfb++dGCO6AEna1/eLJyMrUI8ueVabZVHBhB/l5++qTXu/YXVYQAAAAKMg/Z6K1+uBabTq+3XCs6uftq7bVW6pbvY7saQcAAIBiRXB3ydX2/rkRlsoEUKz8ffzUtnpL/Xp0i8vqbFu9JaEdAAAAiqRuZC09GfmIhrfur2OJsTqWFKv0rAwF+PirRtmqqhFelTEnAAAAgBJHcAeg2HWr19GlwV23eh1dVhcAAACubv4+fqobWYtZdQAAAAA8gre7OwDgylc3spY612nvkrq61LmFN1UAAAAAAAAAAFckZtwBKBEDmvfW3wn/KPbCyULXUTWssvo37+XCXgEAAOBqZzKZFBsbK39/f3l7e8tsNqtixYry8fFxd9cAAAAAXIWYcQegRAT6ldH420apaljlQl1fNayyxncYpUC/Mi7uGQAAAK5mFotFp0+f1okTJxQTE6MTJ07IbDa7u1sAAAAArlIEdwBKTERQuF7v/ILTy2Z2qXOLXu/8giKCwounYwAAAAAAAAAAeACWygRQogL9ymhYq4fVqfbNWn1wrTYd365Ms8mmnJ+3r9pWb6lu9Tqypx0AAAAAAAAA4KpAcAfALepG1tKTkY9oeOv+OpYYq2NJsUrPylCAj79qlK2qGuFV5e/j5+5uAgAAAAAAAABQYgjuALiVv4+f6kbWYlYdAAAAAAAAAOCqxx53AAAAAAAAAAAAgAdgxh0AtzKZTIqNjZW/v7+8vb1lNptVsWJF+fj4uLtrAAAAAAAAAACUKII7AG5lsVh0+vTpPOfKly9PcAcAAAAAAAAAuOqwVCYAAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAAAAAAAAAMADENwBAAAAAAAAAAAAHoDgDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAH8HV3B4CrjcViMTyfmZlZwj3xDCaTyeZcZmam3a8TAAAA4EqMRwEAAOBujEkvsfc++dX0tfCyXE13C3iAlJQU7du3z93dAAAAAAAAAACgVGjQoIGCg4Pd3Y0SwVKZAAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAP4GWxWCzu7gRwNTGbzUpLS7M57+vrKy8vLzf0CAAAAAAAAAAA97NYLDKZTDbnAwMD5e19dcxFI7gDAAAAAAAAAAAAPMDVEU8CAAAAAAAAAAAAHo7gDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAAAAAAAAAMADENwBAAAAAAAAAAAAHoDgDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEd4CLJSYmFun6v/76SydPnnRNZxxw6tQp7d+/P98ysbGxMplMBdaVlpbmqm65TFxcnLu74LClS5fqt99+c3c3AAAAShxjUs/BmBQAAFytGJN6jqt9TEpwB7jYc889p0mTJik5OblQ13/yySe69957tX79ehf3zNj333+vPn366PPPP7dbZtWqVerWrZuWLVuW7wvT999/r6ioKP3xxx/F0dVCefrppzV8+HAdOXLE3V0pkK+vrwYPHqxevXrp119/dXd3AAAASgxjUs/BmBQAAFytGJN6jqt9TEpwB7jYG2+8oTVr1qh79+7avHmzU9empaXp559/VmJiooYPH6633nrLoU9wFMXq1auVnp6uiRMnasSIETp79qxNmaCgIB07dkxjx45Vt27ddPToUcO6goODtXHjRvXr10+DBw9WdHR0sfbdEePHj9f69evVo0cPffDBBzKbze7ukl333nuvHnnkEf3111969NFHNX78eFksFnd3CwAAoNgxJvUcjEkBAMDVijGp57jax6QEd4CLRUZG6s0339SpU6cUFRWl2bNnO/xLZdmyZUpJSZGU/akCHx8fXbx4sdj6Ghsbqz///NP6OCAgQAkJCTblAgMDrccDBgxQzZo1DesLCgqyHtevX1/VqlVzXWcLqUmTJrrrrruUkZGhGTNmaNSoUe7uUr6effZZ1a1bV5K0ZMkSffbZZ4WqZ+PGjYbfSwAAAE/DmNTzMCYFAABXG8aknudqHpMS3AHF4MYbb9RDDz0ks9msd999V+PHjy/wGrPZrE8//VSSVLZsWc2fP1/PPvusQkJCiq2fq1atsh7fdNNNmjlzpho0aGBTzs/Pz3rcr18/u/X5+vpaj4cNG5bnsTs9/vjj1uP//e9/2rVrlxt7kz9/f3898cQT1scHDx50uo7Vq1dr6NChGjhwYKl7UQIAAKVHYZeGvxxjUs/DmBQAAJQGCxYsYEzqJMakpYNn/LQAV6BRo0Zp5cqVunDhgr766ivdfPPN6tatm93yP/74o44eParQ0FB9+umnatiwYbH3cfny5dbjp59+2m45Hx8fh+rzlBegy9WpU0etWrXStm3bJDn3JtO8efPk5eWlwYMH51suOTlZGRkZRepnjmbNmkmSwsPD1adPH8Np+fasWbNGL7/8ssxms44cOaKBAwdq4cKFqlChgkv6BgAASrfdu3dr1apVGj16dJHGbt98841mzJih9957T40aNSpSnxiTFowxKQAAQF6vv/66Pv30U61atUofffRRkSc/MCYtGGPSkuOZPz3AFaBs2bJ66KGHNGfOHEnSzp077QZ3ZrNZs2fPlr+/v95///0SCe127typQ4cOSZI6duyo5s2b2y2b+5MkJW3Pnj36559/dN999xWpng4dOmjbtm2qWrWqWrdu7dA18+bN05tvvilJ8vLy0iOPPGK37PHjxxUVFaXExMQi9TO3xMRE3X///UWqI+dFacGCBaXiRQkAAOQvIyOj0J8qzszM1JgxYxQdHa0///xTM2bMUExMjNN7KqempurVV19VSkqK+vXrp9dff13du3cvVJ8YkxaMMSkAAEBeOaGdJO3YsUOPPvpokcI7xqQFY0xasgjugGLUt29fffTRRzKbzfl+Evm7777ToUOH9M477+jGG28skb4tXbpUUvYv2vw+RZJTxl0uXryoF154QT/88IPGjh2r0NDQQtXTvn17rVmzRmPGjNGFCxcKLL906VJNmzbN+viNN96Ql5eXoqKiDMs3bNhQ8+fP15YtW9S4cWNVr15dISEhCg4OzlNuxYoVSkxMVP/+/Qv9yZv58+erTZs2JRLwAgAAz5Kenq4RI0Zo586dRapn+/btevLJJxUVFaXnnntO/v7+yszMVJ06dQq8Nisry7ov88WLF/XPP/8Uuh+MSfPHmBQAAHiyPXv26JFHHtH58+fd2o8dO3Zo6NCh+uijj2zGPY5gTJo/xqQlj+AOKILDhw/rxIkTat++veHzVatW1cMPP6yYmBjdddddhmXS0tL0zjvvaOTIkXY/qbx582alpaXptttuc0m/k5OT9f3330uSunbtarhes6fw9/eXJK1du1Zr164tcn0DBgwo9LVTpkyRpHxflAp6kejYsaN69uyp5cuXa8qUKU4vLZWcnKx3331X06ZN04gRIzR8+HC3ftIHAACUrNDQUM2bN09ffvml6tevrzp16igsLEwhISHy9s5/C/OYmBjdfvvtkqQ2bdpo9uzZCgsLU+3atVWzZk3dfvvtWr58eYH1/PXXX+rVq5ckacyYMXr00UcLdS+MSQuHMSkAAPAUTZo00bx58/Tjjz+qWbNmqlGjhsLCwhQYGOiW/hRmPMKYtHAYkxYvgjugCBITEzVkyBDdeuutevbZZ1WpUiWbMjkbfiYlJRnW8emnn6pOnTrq16+f4Rq9MTExeuKJJ5ScnKxHH31UTz/9dJHXSF6+fLmSk5Pl4+Ojp556qkh1OSMlJcXpT73k/mU7btw4DRo0yNXdKlFly5bVW2+9pYcfflgPPPCAnn/+eQ0cONDh6xcvXmxdHmvhwoVq0KCBOnfuXFzdBQAAHig0NFRDhw51+rqtW7daj4cPH66wsDBJsv6HOiwsTCdOnFC1atXyrSf3pvA33HCD0/3IwZjUfRiTAgAAV2nWrJl1H7LSiDGp+zAmtY/gDiiCnADtl19+0S+//FKkutq1a1dgmblz5yooKMgaBhaGxWLRZ599Jknq0aOHQ8shucL8+fO1cOFCLViwQFWrVnX4utwvSO6ciu5KN9xwgx544AEtXrxYkydPVlpamoYPH17gdenp6frkk08kSc2bN9fMmTNVpUqV4u4uAAC4QmzZskWSFBQUZLiXRcWKFRUdHe1UcFevXr1C9YUxqfsxJgUAAFc7xqTux5jUGMEdUAS5f1mOHTvW7tTg3Dp16qTY2Fj17NlTb7zxRoHlcy9pNHz4cD322GOF7q8krV+/XtHR0fLz89MTTzxhPW+xWOyuaZyammo9vnDhgnx8fAosl5KSYg02ly5dar3XgQMHauHChbrmmmsc6u+V+IIkSU888YSWLl0qk8mkjz/+2KEXpMWLF+vUqVO67bbbNGPGDLctOwAAAEqnzZs3S5Latm1rXWYntwoVKig6OtruMvA59u3bJ0mqUqWKQkJCCtUXxqSegTEpAAC4mjEm9QyMSW0R3AFFUNQlK53VpUuXIv9Sfv/99yVJd999t6pXr2497+Xlpffee0/z58/P9/q2bds61I69ackxMTEaMGCAwy9Kub/GpekFyWKx5NvfSpUqqV27dvr1119Vvnz5Auu7ePGi5syZo65du+qdd96x+7NnMpmUkpKismXLFrrvAACgdMjIyDAM4IwcOHBAsbGxkqRbb73VsEzOjLuC5AR3Rdn/gzFpyWBMCgAAYB9j0pLBmNR5BHdAEdj7RIWn2rBhg3bu3ClJ+vbbb+Xj46ORI0dapxGPHTtWNWvWVFBQkBo2bKiIiAiFhobql19+0ZNPPilJ2r17t7y9vQ3r37p1q3XW4W+//abw8HC7fXH0a5f7l7qzL0gnTpxQ+fLlHX5DK7ddu3bpuuuuU0BAgNPXStLo0aN1zTXX6KGHHrI75b1z587asGFDnk/02PPFF1+oRYsWBb4YPfvss9q0aZMef/xx9evXr1D3DgAAPJ/FYtHjjz+u559/XvXr1y+w/Lp16yRlj6c6depkWKZy5cr6v//7v3zrSUhI0OnTpyVJTZo0ca7T/2JM6jjGpAAAAMWDManjGJOWPII7oAhyT08uDd59913rsclk0rFjx2zuoV+/fjbX5X4B8vb2tvsL0dFyzrD3wpWRkSEfH598X9gWLlwok8mkF1980el2p0+frpiYGL300kvq0KGD09enpqZq7ty5mjt3boFln3nmGT3zzDMO1du4cWOHyk2ZMkVHjx7Vyy+/7FB5AABQunh5eWnChAkaOnSoZs+eXeBec2vXrpUkNWvWTJUqVTIsU69ePc2cOVMmk8nuOG7Xrl3W40aNGhWq74xJHceYFAAAoHgwJnUcY9KSR3AHFEFJL5VpsVgKfe0PP/ygP//8U76+vjKZTJKkSZMmOTT92J1yf3ok9wve6tWrdfToUT311FN2r+3fv7/uuOMOtW/f3qkXFYvFoj179uj8+fMaNmyY7rjjDr344ouqXLmyw3XkfIKjefPm+vDDDx2+rqgefvhhHT58WB07dizUCzEAACg9atSoof/85z+KiorS/Pnz7YZ38fHx2rFjhyTpjjvusFvfddddp9TUVP39999q2rSpYZncwV3z5s2d7jNjUsakAAAA7saYlDGppyO4A4ogd3CXlpams2fPFniN2WyWlP1JCEfKnz9/vvAd/FdmZqamT58uLy8vjRo1Sm+//XaR6ywpuV+Ecn9q5M4771SnTp100003qVWrVobXVq1aVbfffrvGjRunb7/9VhEREQ61GR0dnefrvm3bNqWnpzvV75xP6Pj4+BTY7tNPP63HH3/coWWuCpLzNWrcuHGJB8sAAKDkdezYUX369NHAgQO1YMECw/Bu9erV1g+A5RfclS9fXpGRkdq+fbvd4O7PP/+UJNWsWVORkZFO9ZUxKWNSAAAAd2NMypi0NDBegBWAQ3L/g58xY4batWtX4J+4uDhJ0vfff+9Q+Z49e1rbKOyMuwULFig6OlrDhg3TLbfcUrSbLmGXTyvPERAQoPvvv1/PP/+8kpOT7V4/cOBAnT59WhMmTHC4zdyfJJek8ePHq2bNmk702vHZmD/++KNWr16tAQMG2LSbY9asWXr66af11Vdf6eTJk071AwAAXPmefPJJ1alTR1FRUTp69KjN86tWrZIkNW3aVDVq1Mi3ruuuu07bt283fC4zM9O6D0jLli2d7idjUsakAAAA7saYlDFpaUBwBxRB7unJY8eO1f79+wv8k7MBZ8+ePR0q/3//93/WNnJm6zkjPj5e7733nm688UaNGjWq6DddwjIzM63Hl6/T3K9fPyUkJGjixIl2r2/VqpVq1aqln376SStWrHCozZw3pCTp+uuvV/fu3Z3rtBx7QUpOTtbUqVMlSYmJiRo6dKji4+Ntyj355JO6/vrrNWnSJHXo0EE9e/bU+++/r+PHjzvdLwAAcOXx8fHR22+/raysLA0ePFgJCQnW544cOWId2+T+QJg9DRo00ObNm5WVlWXz3O7du3Xx4kVJUps2bZzqI2NSxqQAAADuxpiUMWlpQXAHFEHOGsglxegNlIJMnjxZYWFhmjlzZr4blHqqtLQ063HuT5JIUqVKldSpUyd98803+t///me3jt69e0vK3ojUkeVJN23aZD1+/PHHne2yYV+NvPzyy4qNjZUk3XjjjVqyZIkqVapkU87Ly0tRUVFavHixatSoob1792rmzJnq0qWLRo4cqTNnzhSqjwAA4MpRqVIlvf7664qJidGjjz5qXc5m6dKlkrKXp3HkP9ktW7bUuXPntGXLFpvnfv/9d+vxTTfd5FT/GJMyJgUAACiqVatW6bPPPiv09YxJGZOWFgR3QBGUdHDn7Iy7H374QevXr9e7777r8LrFnibnU92S7SdJJKlPnz6SpFdeecXui819990nb29vJSYmasqUKfm2l5CQoEOHDkmS6tev79RmrbkV9IL09ddf67vvvpOXl5eeeOIJffrppwVOM2/QoIGWLl1qXavaYrHop59+0pdfflmoPgIAgCtLp06d1KdPH+3fv1+PPfaYkpOTrZ+k7dSpk8qVK1dgHW3atJGPj4/hf/Z/++03SVKdOnUM/xNtD2PSbIxJAQAACu/nn3/W888/r0mTJmnJkiVOX8+YNBtj0tKB4A4ogtzTk0uCMzPuTp8+rddee01Tp05V06ZNi7FXxSv3J0lyNjLN7eabb1bVqlV15swZvfbaa4Z1VKxYUS1atJAkrVy50u6+LZK0ceNG6/HAgQML2+18X5A2btyoV155RUFBQZo1a5aeeuophz55IklhYWGaN2+ebrzxRuu5K20qOAAAKLyxY8eqatWq2rZtm3r37q1Tp05JkgYMGODQ9WFhYWrcuLF++umnPPsrJyYmWveZ6Nixo8P9YUx6CWNSAABwJUtKStLZs2eL5c+6des0atQoZWZmymKx6OWXX3Z4qUeJMWlujElLB4I7oAhKesado+1ZLBY9//zzGjx4sO68885i7lXxyv1JkuDgYJvnvb29dd9990nKni6/fv16w3puv/126/GMGTPstpcz/Ts0NFR33313IXp8qV9G9u/fryeffFKVK1fWokWLdMcddzhdd5kyZTRz5kxVqVJFkuTv71/ofgIAgCtLcHCwXnnlFUlSdHS0pOxPo7Zu3drhOm666SadOnVK27Zts55bt26ddSzaqVMnh+phTGqLMSkAALhSrV27VjfffLPatWvn8j/Dhw9XRkaGtS2z2axx48Zp1apVBfaLMaktxqSej+AOKILcM+DS0tIc+oRIznKXGRkZDpXP2Z9EcnyG39GjR9WiRQsNGTLEtTfsAnv27HFq5mBqaqr1OCgoyLBM7hfd119/3TDgvO2226zHmzdv1r59+wzrytm7pVevXgoMDHS4n5fz8vKyOXfw4EENHjxYbdu21bJly2SxWJwKf5OSkvTGG28oMzNTERERmj59usLDw0v9oAMAALjWrbfemmcPOmeWtZQu7V+Xe/+QH374QZJUuXJl6yd0C8KYlDEpAAC4etx3332aPXu23njjDa1cuVIbN27Unj17tH///mL5s3fvXof2cGZMypi0NPJ1dweA0iz3L5MZM2bk+wmFy33//ff6/vvvnWovPT3doXK1atXSk08+6VTdJeG3337TiBEj1LVrV7355psOTXtOSEiwHtvbl6V+/fqqU6eODh06pOjoaH333XfWT5fkqFOnjsLDw5WYmChJ+t///qcGDRrkKbN3716dPHlS3t7eDi8n5ah9+/bp8ccf18iRI/XQQw9Jkt5++21t3rxZY8aMUefOnQusY+LEifruu++0f/9+vfvuu2rRooU2btzo8PRxAABwdYiLi9OOHTusj9evX6/333/f4c3kb7jhBkVEROinn35SbGysgoODtWHDBklS9+7dHR57MCZlTAoAAK4uuWdyeQrGpIxJSyOCO6AIcs+AGzt2rKKiogq8plOnToqNjVXPnj31xhtvFFg+JibG+qJn9OmEokpNTc0zzdpIcnKy9TgxMdHuL8ALFy5Yj5OSkvI899dff2nkyJHKyMjQt99+K19fX73++usF/jI9efKk9fiaa66xW65jx47WzVJXr15t84IkSc2aNdMvv/wiKftTHZf76aefJGV/6qR69er59stZS5Ys0bx581S7dm3rucDAQB05ckRPPPGEU3X9/vvveuGFF/Tee+9dMS9GAADAdaZOnaq0tDRFREQoMDBQsbGxmjVrlpo0aaJbb721wOt9fX111113aeHChVq4cKEqV65sHff27NmzWPrMmPQSxqQAAADuwZj0Esak7kVwBxRB7hl3xfWLISAgQIMHD9b999+vOnXquLz+hIQEDRgwIM8nNvJz8803O1SuoGnJy5cvl4+PjyZNmpRvIBkXFydJioiIUEBAgN1ybdu21UcffSQpe1PTzMxMm01a69WrZ31BMvp+/e9//5NUtM1Wc1x+TxMmTLApU6ZMGUlShQoVtHLlygLrnDRpkr7//nvVqFFDr776apH7CAAArjybN2/W6tWrJUmTJ0+Wj4+Phg0bJovFoueee04rV650aOnMHj16aOHChfrqq68UGRkpKXsmXv369Yul34xJL2FMCgAA4B6MSS9hTOpeBHdAEfj4+KhHjx7q0aNHnn1EXKlChQp64YUXbM7v3r1bQUFBRQ7zatWqpQULFmjdunVq3LixatSooZCQEIWEhBSpXlfJeUGqW7duvuVuuOEGeXt7y2w2Kz09XSdPnrT5NEjuOho2bJjnuQMHDuiff/5R/fr11a5duyL322KxFFgm5wXW29tbERERBZbP2Vz12muvVfny5YvWQQAAcMVJT0/XxIkTJUkPPvigOnXqJEnq1q2bVq9ercTERI0bN07z5s0rsK5mzZqpVq1aio6Otn6q2NVL5OTGmDQbY1IAAAD3YUyajTGp+xHcAUXQrFkzvfXWWyXe7i+//KJRo0YpICBAc+fOVdOmTYtUX+3atfNMTfYkOVPAL19n+XJBQUGqWbOmjhw5Ikkym802ZW6++Wb5+fkpMDDQZop4zn6DrvgUiaN8fHxKrC0AAHDlmzJliv755x/VrFlT//nPf6znX3jhBa1bt05paWnasGGDvvvuO919990F1nfPPffo3XfflZQ9XuzatWux9T2nDcakjEkBAADciTEpY1JPcOUs+glcJVasWKHHHntMqampOnfunAYNGqRNmzYVe7uTJ0/Wxo0bi72d3Mxms/UFqXHjxgWWb9GihaTsF6eqVavaPF+pUiW99957WrZsmSpXrpznue+//14RERHq0aOHC3rumCtp3WUAAOBea9as0aJFi1SmTBm9/fbbCgoKsj5XpUoVPfroo9bHM2fOVFZWVr71mUwmrVu3zvq4cuXKHjF2YUzqep7wfQUAAChNGJO6HmPSvJhxBzjgq6++0vjx4x2a1uuo5cuXa/ny5UWuJyUlRUOHDtX06dPVuXNnF/TMVlxcnBYtWqQvvvhCL7/8sh544AGbMps3b9bx48fVu3fvfNdidsbhw4eVkZEhSbrxxhsLLN+lSxctW7ZMDz/8sHx9jX+9dejQwebcH3/8oePHj+uxxx7Ld31oZzjys8InSQAAgCvExcXpxRdflLe3t9566y3D1RgeeeQRffbZZzp37pyOHTumDRs2GI6Lcrz33nvavXu39fHGjRu1dOlS9e7du1juwRGMSZ3HmBQAAMC1GJM6jzGp8wjuAAf06dNHlStXVlZWlq699toirWvcs2dPnTx5UnfddZdeeukll/WxOH+5TZ8+XZmZmZKk8ePHKzY2Vs8880yeMtdff70+/vhjLV68WC+//LKaNGlS5Hb37NkjKXt96WuuuabA8h07dtScOXPyfRPKyDfffCM/Pz89/PDDheqnEaMp6Jdz1Qs3AAC4eqWlpenJJ59UYmKixo4dqzvuuMOwXHBwsIYMGaJp06ZJUr7B3f/93//pgw8+kJQ9Dt64caNiYmI0adIkXX/99UXeY7mwGJM6jzEpAACAazEmdR5jUucR3AEOuuWWW1xST84vIX9/f4c22nS3rVu3auXKlZKyw8FRo0apT58+NuUCAgI0e/ZsvfDCC+rTp48efPBBjR49WqGhoYVuO+cFydEXGC8vL6dfjDIyMrR69WrdfffdqlChgtN9tMeRFySTyeSy9gAAwNUnKytLzzzzjHbv3q0BAwYoKioq3/J9+/bV+++/r9TUVJ06dcqwzK5duzRmzBhZLBb16NFDr732mn777TcNGTJEqampGjlypBYvXqywsLBiuCP7GJMWDmNSAAAA12FMWjiMSZ1HcAeUsJypwa5cdrO4pKen51ki9MUXX8z30xZ+fn6aNm2aAgICtGjRIq1Zs0YvvviiunXrVqj2f/31V0kq1vWU16xZo/Pnzxf4RpezHPn+5rxomc1mnT17tsDyOdPhAQAApOy9NdauXasBAwboxRdfLLB8aGio7r33Xi1atEhVqlSxef7AgQMaOnSoUlNT1aVLF02ZMkVeXl5q37697r33Xn3zzTc6fPiwHn/8cX300UcqU6ZMcdyWDcakhceYFAAAwDUYkxYeY1LnEdwBJSwrK0uSY580cLc333xTR44ckZS9L4ojU6S9vb01adIkpaSk6Mcff9TTTz+tVatW6dVXX3VqhuGRI0cUHR2tunXrumQ6uT1Lly5V27Zt1aBBA7tl0tLSFBgY6FS9jnx/c34WTp06pXbt2jlVPwAAuLrNnTtXn3/+uZ588kmNHDnS4esefPBBLVq0SHfeeWee83v37tXgwYOVmJioO+64Q2+//XaevTAmTJigHTt26NixY9q6dauGDh2qDz74oEhLyDuKMWk2xqQAAADG1q9frx07dujpp58utjYYk2ZjTFoyvN3dAeBq4+7gztF2169fr88++0ySdM899+iFF15wuA0fHx9NmzZNN910kyTpf//7n3r06KHNmzc7XMfPP/8sSRo4cKDD1zjr5MmT+v333zV48GC7ZXbt2qUuXbpo06ZNTtXtyNc5PT1dklSpUiXt37+/wD89e/Z0qg8AAODKNG/ePL3zzjuaMGGCU6GdJDVs2FAfffSRmjdvbj23ceNGDRw4UOfOndOIESM0a9Ys+fv757kuJCREM2bMsJ7fsmWL+vbtq+jo6ELdA2PSSxiTAgAAFN7PP/+sJ554Qh988IHefPNNp65lTHoJY1LPQnAHlDB3B3c57Uv2pynHxsbq+eeflyTdfvvt1mWSnOHv76/Zs2erUaNGkrI/LTFkyBCtXbvWoetXrFihSpUqFesv4aVLl6p27dq69dZbDZ/fs2ePhgwZolOnTmnEiBHaunWrw3U7si5zWlqaw/XlCA0NzXe/xdKwBCsAACi8Dz/8UPPmzdN///vfQm8Yn3ss8fXXX2vo0KHKzMzUO++8o2eeecbuuK9x48Z65ZVXrI8PHjyonj17av78+crMzHSqD4xJL2FMCgAASousrCydPXvWY/6sXr1aTz31lHUsOm/ePL3xxhtO3U8OxqSMST0JS2UCJSznhcRdG27mbteoD+np6XryySeVmJiojh07asaMGfLz8ytUW8HBwfrwww/Vu3dvnTp1SpmZmRo9erRWrVqlypUr271u+/btOnDggMaPH2/9VHdiYqLTbwgVZNmyZXrggQd0+vRpm+eOHz+uxx57TOfPn5eU/eIxbNgwzZs3Ty1btiyw7twv/PakpaWpXr16hpvYGunTp49eeumlfJekSk1NdaguAABQ+syePVvbtm3TN998U+TN4jMyMjR58mR9+eWXatCggd544w01bNiwwOt69+6tmJgYvf/++5Kyxx5TpkzRZ599pv79+6tv374O7X3HmPQSxqQAAKC08PLy0ptvvqnly5e7uyt2ffLJJ8rKynJoD2jGpJcwJvUsBHdACct5EXD1L1dH5W738k08LRaLnnvuOf3111+68847NW3atEK/GOWoVKmSZs2apYEDByozM1MpKSlaunSpnnjiCbvXLF68WPXr11ffvn2t5/bs2aPHH3/cOm3aVd555x298847DpVNTU3V0KFD9fHHH+dZXsqIIy9IzzzzjMqVK+dQ25J0ww03WI+jo6NlsVgUFBSkMmXKyMfHR7/++qtOnDghqXR/ogQAANhKTk5WYGCgPv74Y3l7F23hlKNHj+rZZ5/VgQMH9PTTT2vo0KF59rMryKhRo5SQkKCvv/46T/82b96sbt26ORTcMSbNizEpAAAoDby9vfX666+rcePGqlixoq677jqVK1dOoaGhRR6jugNj0rwYk3oOgjughOW8IFy8eNGt7Uu2L0hTp07Vjz/+qAEDBmjcuHEue8Ft2bKlnnnmGes60+fOnbNb9uTJk1q9erU+/vjjPG8gtW/fXnPnztXRo0fVqFEjVapUSaGhoQ69MeQOjrwgOfNidLl169Zp2bJl2r9/v+HzVapUKXTdAADA84SEhGjIkCFFrufrr7/W5MmT1bRpU33zzTe69tprC1XPpEmTJEkrV67UuHHjdP/99zv1RgZj0pLBmBQAALiat7e3BgwY4O5uuARj0pLBmNR5BHdACcrMzHR7wp/7BSl3eDhjxgx99tlnmjBhQqH3S8nPI488ojVr1mj79u35vkH03//+V71791arVq1snmvTpo3atGnj8r4Vh8tf7F0tKipKUVFROnTokGbOnKkff/zR+lzZsmXVpUuXYm0fAACULnFxcRo/frzS09P1wQcfqG3btkWqz8vLS5MmTVKvXr3yfNrVUYxJSwZjUgAAAPsYk5YMxqTOK33zV4FSLCMjQ40bN9abb76puXPnuqUPuadQ5xy/8847WrlypRYuXFgsL0ZS9qdxJk2apBYtWqhHjx6GZU6ePKmdO3fqP//5T7H0oSTlLIkaFBRUrO3UqVNHs2bN0oMPPihJCg8P13vvvafw8PBibRcAAJQun3/+uYYNG6aFCxcWObTL4eXlVajQTmJMWlIYkwIAANjHmLRkMCZ1npfF3dN/AJSolStX6osvvtDQoUPVqVMnzZgxQ+fOndPzzz+f72aeJeHQoUMym82qV6+eW/vhCvPnz1ft2rXVvn17+fj4FHt7cXFxWrJkiQYMGKCIiIhibw8AAKAoGJOWDMakAAAA9jEmLRmMSZ1HcAdcZS5evJhnveO0tDQFBga6sUcAAAC42jAmBQAAgLsxJoWnIrgDAAAAAAAAAAAAPAB73AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAACAR0tLS3N3FwAAAACgRBDcAQAAAAA8WqdOnfTGG2/o2LFj7u6K21gsFs2dO1eJiYnu7goAAACAYuRlsVgs7u4EAAAAAAD2tGjRQqmpqfLy8tItt9yi/v37q0OHDu7uVomxWCx69dVXtWjRIjVq1EiffPKJwsPD3d0tAAAAAMWAGXcAAAAAAI/m7+8vKTvA2rhxo2JiYtzco5KTO7STpL179+qRRx5h5h0AAABwhWLGHQAAAADAo7Vv316nTp2SJM2ZM6fEZ9vNnz9fU6ZMKdE2C9KwYUPNnz+fmXcAAADAFcbX3R0AAAAAACA/AQEB1uPrrruuxNuPioqSv7+/du/erSZNmqhGjRoKDQ1VSEiIvLy8HKrjo48+0rJlyyRJzz77rDp37lycXQYAAABQShHcAQAAAAA8Ws5SmZIcDspcrV+/fkW6PvfMuAoVKqhOnTpF7BEAAACAKxF73AEAAAAAPFru4C4lJcWNPSlZaWlp+uCDD2Q2m93dFQAAAAAlhOAOAAAAAODRfHx8rMfnz593Y0+k/fv3a+rUqcrIyCj2tn788UfNmDFDgwcP1pkzZ4q9PQAAAADuR3AHAAAAACg1YmNjnb4mOTlZTz31lJKTk4vcft26dfXHH3/owQcf1NGjR4tcX35y9sTbuHGj7rvvPm3btq1Y2wMAAADgfgR3AAAAAIBS49ChQ05fM2nSJP3444967LHHdPHixSK17+Pjo6lTp+rw4cPq1auX1qxZU6T67Dly5Ii2bNlifZyYmKj169eXyEw/AAAAAO5DcAcAAAAAKDWcnXX25Zdfavny5ZKkLVu26KmnnlJmZmaR+lC7dm2NGDFCycnJGjlypGbPnl2k+oz897//lcVikSSVL19eX331lUaPHp1nvz8AAAAAVx6COwAAAABAqbFjxw6Hl7z8/fff9dprr+U5FxcXp99//73I/RgyZIhq1aoli8Wid999V2PHjlVWVlaR65Wk48eP69tvv5UkhYWFacGCBWrQoIFL6gYAAADg2QjuAAAAAAAeYfv27QWWiYiI0E8//VRguV27dumJJ56QyWSSJLVo0UKff/65vv32W3Xo0KHIffX399ezzz5rfbxs2TJNmjSpyPVK0ocffiiTySQfHx/NmDFDderUcUm9AAAAADwfwR0AAAAAwO3++OMPDRgwQM8991y+S1neeuutWrZsWb517dmzR48++qhSU1MVFBSkCRMmaNGiRWrVqpVL+3zHHXeofv361seLFi3SX3/9VaQ69+7da72/CRMm6Oabby5SfQAAAABKF193dwAAAAAAcGVJTEzUmTNnHC6fkZGhZ599ViaTSStXrtTp06f17rvvKiQkxKZshw4dtGTJEh05ckS1a9e2ef7PP//UsGHDlJSUpBYtWmjq1KmqWbNmke7HHi8vL/Xv318TJkyQJFksFi1evFgTJ04sdJ0TJ06U2WzW0KFD1bdvX1d1FQAAAEApQXAHAAAAAHC55557rtCzz37//Xf95z//0ezZs22ea9CggSpWrKjPP/9cL730Up7nfvvtN40cOVKZmZl69tln9eijj8rHx6dQfXBU9+7dNXnyZKWnp0uSoqOjC13XN998ox07dqh79+4aPXq0i3oIAAAAoDQhuAMAAAAAuFR4eLg++eQTzZ8/X3Xr1lWDBg0UHh6u0NBQ+fv725Q/ePCg7r77buvjiRMnqnfv3nbr79Chg5YvX66nn37aOitvxYoVeumll1SrVi299dZbatiwoetvzEBoaKjatWundevWSZLq1q1bqHpOnz6tKVOmqE2bNpo6daq8vLxc2EsAAAAApQV73AEAAAAAXK5s2bIaNWqU7rrrLtWpU0eRkZGGoZ0kbdiwwXrcqFEjPfjgg/L1tf850zvvvFPJycn68ssvJUmzZ8/W2LFj1a9fPy1durTEQrscOSFjUFCQBg0aVKg6XnrpJdWrV0///e9/7X6dcjOZTIVqBwAAAIBnY8YdAAAAAMCtcgd3nTt3LrB8u3btVKFCBX366afau3evtm3bpnnz5ummm24qzm7adccdd+ixxx5Tp06dCrWf3tdff63z58/ro48+UmBgYIHlDx06pBEjRmjKlClq1apVYboMAAAAwEMx4w4AAAAA4Dbp6enatm2b9bEjwZ2Pj4/uuusuJSQk6PTp01q5cqXbQrscTz/9tJo1a1aoa00mk+bMmaOgoKACy0ZHRysqKkrHjh3T0KFD83ztAAAAAJR+zLgDAAAAALjNL7/8oosXL0qSatSooeuuu86h63r06KH58+fr9OnTCg0NdVl/MjIydPz4cZfVlyMxMdF6fOrUKR06dMj6uHXr1oqPj1d8fHy+dVy4cEGjRo1SQkKCJCk1NVVDhw7VvHnz1LJlS5f3GQAAAEDJI7gDAAAAALjNqlWrrMf33nuvw9c1btxYDRo00L59+7R48WL169fPJf3x9/fXokWLtHDhQpfUZ+Sdd97RO++845K6UlNT9eijj2revHlq0aKFS+oEAAAA4D4EdwAAAAAAt0hLS9O6deskZS9/ef/99zt1/aBBgzR27FjNnj1bPXr0UEhIiEv69dJLL6l69eoKCAhQo0aNVKlSJYWGhjq0lKU9U6dO1ccffyxJmjJlinr16uWSvgIAAAC4srDHHQAAAADALX766SelpqZKktq3b6/KlSs7df3dd9+tChUq6MyZM3rvvfdc2rdBgwapb9++atasmSpVqlSk0A4AAAAAHEVwBwAAAABwiy+++MJ6/MADDzh9vb+/vx566CFJ0qeffqo9e/a4rG8AAAAA4A4EdwAAAACAErdv3z7t2LFDknTttdeqU6dOharnoYceUnBwsLKysvTSSy/JZDK5spsAAAAAUKII7gAAAAAAJe7zzz+3Hg8fPlze3oX772lERIQGDx4sSfr777/14YcfuqR/AAAAAOAOBHcAAAAAgBIVHx+vFStWSJKqVq2qu+++u0j1DR48WBUqVJAkvf/++9q6dWtRuwgAAAAAbkFwBwAAAAAoUXPmzFFGRoYkaeTIkfL19S1SfUFBQXriiSckSVlZWRo9erTOnj1b5H4CAAAAQEkjuAMAAAAAlJiEhAR99dVXkqRmzZqpZ8+eLqm3T58+aty4saTsGX2jRo2yhoMAAAAAUFoQ3AEAAAAASsz06dOVnp4uLy8vjR8/Xl5eXi6p19fXV6+//rr8/PwkSVu2bNF//vMfWSwWl9QPAAAAACWB4A4AAAAAUCJ27dql5cuXS5Luv/9+NWvWzKX1N2jQQEOHDrU+/v777zV58mSXtgEAAAAAxYngDgAAAABQ7CwWiyZNmiSLxaIaNWpo7NixxdLOY489pkaNGlkfL1y4UOPHj5fZbC6W9gAAAADAlQjuAAAAAADFbuHChdq5c6d8fX319ttvKzg4uFja8ff31+zZs1WuXDnruSVLluiZZ55RampqsbQJAAAAAK5CcAcAAAAAKFaHDx/W22+/LUl65plnXL5E5uWqVq2q6dOny9fX13ruhx9+0P3336+DBw8Wa9v25J7xx757AAAAAOwhuAMAAAAAFBuTyaQXXnhBFy9e1AMPPKBHH320RNpt166dxo0bl+fcoUOHdP/99+vDDz9URkZGifQjR+6wLjMzs0TbBgAAAFB6ENwBAAAAAIrNG2+8oV27dumWW27Ryy+/XKJtP/zwwxo9enSecxcvXtT06dN15513atmyZUpPTy+RvuSecUdwBwAAAMAegjsAAAAAQLFYsWKFFi5cqDZt2mjmzJl5lq4sKcOGDdOoUaNszsfGxmrs2LG65ZZb9NVXXxV7P0wmk/WY4A4AAACAPSX/vyYAAAAAwBVv586dmjBhgjp16qSZM2fK39+/0HXlnq1WGI8//rgCAwP15ptvWusKDAzU7bffrpYtW6pp06ZFqt8RzLgDAAAA4AiCOwAAAACASx08eFDDhg3TPffco1dffbVIM+1MJpPi4uKsj729C7dwzCOPPKJrr71Wo0ePVpUqVfThhx+qatWqhe6Xs3KHdQR3AAAAAOwhuAMAAAAAuExMTIyeeOIJPf/88+rdu7dD16xatUrR0dGKiIhQ2bJlVbZsWQUHB8vLy0srV65UYmKitWyZMmUK3bcOHTpo8eLFyszMLNHQTpIyMjKsxwR3AAAAAOwhuAMAAAAAuExKSopmz56t+vXrO3xNnTp1tH//fn366ac6fPiw3XLlypVTREREkfpXp06dIl1fWLnDutwhHgAAAADkRnAHAAAAAHCZ6667rlDXXHfddXrmmWe0bds2zZo1S5s3b7Ypd/fdd7uii26RO6wr6p59AAAAAK5cXhaLxeLuTgAAAAAAkNv777+vmTNnWh/XrFlTS5YsUXh4uPs6VQSDBw9WWlqa+vXrp65du8rf39/dXQIAAADggQjuAAAAAAAeqV+/fvrjjz/UqVMnTZw4URUqVHB3lwrt1KlTpbr/AAAAAEoGwR0AAAAAwCNt3bpV5cqVU926dd3dFQAAAAAoEQR3AAAAAAAAAAAAgAfwdncHAAAAAAAAAAAAABDcAQAAAAAAAAAAAB6B4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAcguAMAAAAAAAAAAAA8AMEdAAAAAAAAAAAA4AEI7gAAAAAAAAAAAAAPQHAHAAAAAAAAAAAAeACCOwAAAAAAAAAAAMADENwBAAAAAAAAAAAAHoDgDgAAAAAAAAAAAPAABHcAAAAAAAAAAACAByC4AwAAAAAAAAAAADwAwR0AAAAAAAAAAADgAQjuAAAAAAAAAAAAAA9AcAcAAAAAAAAAAAB4AII7AAAAAAAAAAAAwAMQ3AEAAAAAAAAAAAAegOAOAAAAAAAAAAAA8AAEdwAAAAAAAAAAAIAHILgDAAAAAAAAAAAAPADBHQAAAAAAAAAAAOABCO4AAAAAAAAAAAAAD0BwBwAAAAAAAAAAAHgAgjsAAAAAAAAAAADAAxDcAQAAAAAAAAAAAB6A4A4AAAAAAAAAAADwAAR3AAAAAAAAAAAAgAf4f7AjRPWgzGgTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_name = '采购策略P1'\n", + "y_choose = [0, 1, 2]\n", + "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n", + " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n", + " 'palette': sns.color_palette(\"deep\")[0:4]})\n", + "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n", + ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n", + "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n", + "sns.set_theme(style=\"whitegrid\", rc=config)\n", + "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n", + " markers=['o'],\n", + " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n", + " palette=y_prop.loc[y_choose]['palette'].to_list(),\n", + " legend='brief')\n", + "ax.set_title(x_name)\n", + "for item in df_x.groupby('响应变量'):\n", + " for x, y, m in item[1][['水平', '均值', '均值']].values:\n", + " ax.text(x, y+0.05, f'{m:.2f}')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\1224603408.py:10: UserWarning: \n", + "The markers list has fewer values (1) than needed (4) and will cycle, which may produce an uninterpretable plot.\n", + " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAViCAYAAADtEQplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3iTVR/G8TvdhQKlhUKh7GHZgmxFtlpUhryKyp6CgAgoiAoKgoiobAUZAoqiIg4EGSKCbFFk701ZpczSmSbvH7WxpUmblrQJ9Pu5Li6fJ3nOOb904EPunHMMZrPZLAAAAAAAAAAAAABO5ebsAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAAAugeAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAAAAAAAAAXADBHQAAAAAAAAAAAOACCO4AAAAAAAAAAAAAF0BwBwAAAAAAAAAAALgAgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AII7gAAAAAAAAAAAAAXQHAHAAAAAAAAAAAAuACCOwAAAAAAAAAAAMAFENwBAAAAAAAAAAAALoDgDgAAAAAAAAAAAHABBHcAAAAAAAAAAACACyC4AwAAAAAAAAAAAFwAwR0AAAAAAAAAAADgAgjuAAAAAAAAAAAAABdAcAcAAAAAAAAAAAC4AII7AAAAAAAAAAAAwAUQ3AEAAAAAAAAAAAAugOAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAcM9LSEhwdgn3JKPR6OwScJe5evXqHf/cXLlyRSaTyUEVAQAAAK6F4A4AAACAU8XGxmrbtm3ZOsZHH32kPn366PLly9k6jj1Wr16tUaNG6cSJE84u5Y5NmzZNb7zxhk6dOuXsUrLdt99+q2vXrjm7DLvNnz9fV69edXYZaWzZskUtWrTQvHnzFBUVlaU+5s6dq/bt22f73xsAAACAMxDcAQAAAHAqs9msLl26qFevXjpw4IDD+9+3b58WLFig9evXq3Xr1lq3bp3Dx8gMNzc3ff3112rVqpX69++vv//+26n13AkPDw8tWbJEYWFhGjp0qA4fPuzskrLNkiVL1KJFC3366aeKjY2VJCUmJurYsWNOriytqKgovffee2revLk++ugjlwrwvL29df78eU2YMEFNmjTRvHnz0lyT0QzZXbt2af/+/erSpYtefPFFnTx5MpuqBQAAAHKeh7MLAAAAAJC7eXt7S5L++OMP/fHHH9k6VmRkpGbPnq0HH3xQXl5e2TqWLcnjmkwm/frrrzp69Ki+/vpr+fv7O6WelOLi4izfD3v4+PhISgqwfv75Z5UuXVoVK1a0ef2FCxc0efJkjR49OlPjpCchIUFmsznbv5/u7u66efOmPvzwQy1atEjDhg1TnTp11LVrV1WoUEG9e/dWw4YNs9T30aNHZTQaFRoa6pBaDx06JLPZrFu3bmnWrFn64osvNHz4cHXo0MEh/afnhx9+0MMPP6yAgACrz6f8vgcFBemRRx5Jc03v3r3VuHFjde3aVW5uqT9vnJiYqH379lnO165dq+LFi2vEiBFprgUAAADuRgR3AAAAAJzKzc1NXl5eio+PV0hIiD799FOH9h8ZGanOnTtLku6//3599tlnTgvtJMnT09NyHBQUpIULF7pEaCclzSpbv369hg8frnLlymV4va+vr+W4bdu2GjhwYLrXf/bZZ/r+++914sQJzZgxQ4UKFbrjmlevXq158+Zp6tSpKl68+B33Z4uHx3//fPb19VXFihUVFBSkOXPmqGPHjurevbvq1q2r119/XZUqVcpU3wkJCerUqZMeeeQRvfLKKwoMDLyjWv/8889U57Vr11arVq3uqE97nThxQhMmTNCYMWPUsmXLNM+n/Pnv1auXQkJCUj1/7tw5bdu2TVu2bNGqVas0fvx4lSlTxvL84cOHFR0dbTkfMmSIXnjhhWx4JQAAAIBz8HE0AAAAAE6XPAvH09NT5cqVc+ifkiVLWsYpU6aMw2Z6ZVXK4KJ06dIqUqSIE6tJ7fnnn5eXl5fatGmjDz/8UHFxcelenzzjTlKGs82uXLmib775RpL0zz//6Omnn9bBgwfvuObHHntM0dHReuqpp7Rp06Y77s+WlMHdJ598ogoVKkiSQkNDNXHiRBkMBm3fvl3/+9//NH/+/Ez1XalSJX300Uf68ccfFRYWph9++OGOak2591vhwoX1wQcfKF++fHfUp7369++vvHnzasCAARo9erSMRmOq51N+Ha35/PPPZTKZJElXr17V0aNHUz2fMpQsW7asevXq5aDKAQAAANdAcAcAAADA6dzd3Z1dQo7JKLhwJoPBoHHjxsnf31+ffvqp2rVrp0OHDtm8PjNLE3788cepZkrdd999ioqKuqN6paSfnUGDBunatWt64YUXtGLFijvu09Y4yW7/HjZr1kydOnWSJBmNRo0fP14bNmzIVP+NGzfWCy+8oOvXr2v48OEaMWJEhnu9WRMbG5tq38RBgwYpf/78me4nq7y8vDRkyBBJ0pdffqkBAwYoMTHR8nzK4Pp2165ds4S7devW1dKlS9PM2tuxY4fluHPnzrnq7w4AAADkDgR3AAAAAJwuN+1N5eqvtUCBAho9erQk6dixY3r22WdThSVZER4ersWLF0tKml35wQcfaObMmapdu/Yd1ytJjzzyiMqUKaOEhAQNHTpUS5cudUi/KaWcXWg2m9M8P3ToUAUFBVnOd+7cmekx+vfvr2rVqkmSli5dqoEDB6YKveyxceNGxcbGSpICAwPVpk2bTNdxp8LCwizLW65bt05ffPGF5bn0graZM2cqKipKFStW1IwZM5Q3b9401yTPuMuTJ49at27t4MoBAAAA53Pdj3oCAAAAyDWSw6yEhAQdO3bMoX1HRkZajpOX4HMmVw/uJKl58+aqV6+etm3bpujoaL300ktatWpVlpdbfP/995WQkCAfHx/NmjVL9evXd2i9bm5u6tq1q95++22ZTCaNHDlSZcqUUc2aNR02Rp48eSzH1mbC+fr6ql+/fpbQs2rVqpkew8PDQyNGjNDzzz8vKSn0+uijj/Tqq6+muu7MmTPy8PBQcHBwmj5+/fVXy3Hy0qc5zWAwqGPHjho7dqwk6dtvv1XXrl0l2Q7uzp49q0WLFqlEiRKaM2eO1VmCR44c0ZUrVyRJTz75pPz8/BxSb/LPt73y5MmjfPnyqVixYqpRo4aaNGmiBg0aZGnsixcv6scff9S2bdt0+PBhXbt2TR4eHipYsKCqVq2qJk2a6IknnnDqvpwAAADIWQR3AAAAAJwuOcw6e/asWrVqlW3jWJspldMMBoOzS7DLgAEDLHulRUZGau3atWrbtm2m+9m2bZtWrlwpT09PTZs2zeGhXbInn3xSEyZMUExMjIxGoyZNmqSFCxc6rP+Us79sLWH51FNPaebMmSpQoICaNGmSpXEeeOABNW7cWOvXr5ckzZ8/X127dk01m2/GjBlq1KiRHn/88VRtExIStG7dOklJS1Y+99xzWarBEcLCwjR+/HglJiaqYMGClsdtBdfvvvuuAgMDNX/+fJv7Pm7cuNFy/L///c9htY4YMUL9+vXT7t27NXr0aMssx9KlS+v1119PFZDGxsbqxo0bOnr0qLZv364vvvhC8+fPV7ly5TRq1Ci7f76jo6M1efJkffXVV6pfv74eeeQR9evXT15eXrp06ZK2bt2q7777TqtWrdLkyZP13nvvZbiPJAAAAO4NBHcAAAAAnC45UCtTpoxWrlzp0L4vXLigxo0bS3KNGXd3y55cdevWVbly5SwzII1GY6b7MBqNGjt2rNzc3DRx4kQ9/PDDji7Tws/PTw8++KBlxtnhw4cd2n/KGXfx8fFWr/Hx8dHMmTOVN29effbZZ+revXuWvt//+9//LMGd0WjU2bNnLcHdlStXtHHjRo0ZMyZNuw0bNujatWuSpCeeeEKBgYGZHjuZyWTStWvXFBAQkKX2hQoVUoMGDbRx40b17NnT8ri14Pr333/X3r179fnnnyskJERSUgh5+354ycHdfffdp+rVq2eqnnPnzqlYsWJWnwsODlZwcLAqVaqkJUuWaPfu3ZKkLl26WP7uuN1DDz2kbt26KTw8XK+99pq2b9+u7t27a8iQIerdu3e6tURGRqpHjx46fvy4PvvsM6tLxrZo0UK9evVSz549dfToUfXs2VPjxo3TU089lanXDQAAgLuP66/RAgAAAOCel1OBWmb3C7tbJIc1mXXu3Dl16tTJ5vNPPvmkJCl//vxq1KhRpvtfsGCBDh8+rLffflthYWEZXr9jxw598sknmR4n2YMPPmg5zspSlelJOeMueQ85aypVqqTp06dr4sSJGjVqVJbGatKkiSUozJMnjypWrGh57uuvv9YjjzxidenEn376yXKcvDRlVphMJo0YMULPPfdcqqVmM+vVV1/VmDFjUs0+tBbc7dmzRwsXLlSpUqUkSVu2bFFYWFiqZXNjY2Mtey22b98+U3VMmzZNjz/+uF17Nabcy9DX1zfD64sXL665c+eqZs2aMplM+uCDD/Tdd9+l2+aVV17RwYMH1ahRo3T3eSxatKg+/fRT5cmTx7IEbPIefwAAALh3EdwBAAAAcLqcCtRcIbhz9FKZ8+fPV1hYmA4dOpTpttu3b7c5e0ySOnbsqKZNm2r27Nk2ly+0JTw8XNOmTdPgwYPVoUOHDK+/fPmyBg8erKlTp2rTpk2ZGitZnTp1JCUtx5hylpcjpAzuoqKibF43btw4S4C2ZMkSTZo0KdNjeXl5WYLSfv36WfZyMxqN+uqrr6wuExkVFWVZJrNSpUry9PTUsWPHsvRnxIgR+uGHH3Ty5El1795d169fz/RrkKTQ0NA033trP/8DBw5U6dKlJUmbN29W3759debMGXXt2tUS3m3atEmxsbHy9PRU69at7a5h2rRpmj59uqKjo9W7d2+7wrvM8vLy0ttvv205Hz9+vM3Ac/fu3dq8ebMkydvbO8O+ixcvri5dukhK+v6PHDnSJZb8BQAAQPZhqUwAAAAATpdTb0Tb2pvsbjV//nyNHz9eUtIMq/nz5ys0NNTu9n/88Yfi4uJSzWy63auvvipJVq+JiIhIdZzymvfee08NGjRQy5Yt0+0/2ZgxY3Tp0iVJSTOSvv/+exUtWtTu1yJJFSpUUNeuXVW/fn01aNDA8rjRaNTgwYO1evXqTPVnS79+/ey+dubMmQoKClLHjh0zPUaBAgXUq1cvy2OrV69WQECAKleunOb677//XnFxcZKkAwcOOGyvyEOHDqlXr1767LPPLAHi7Xbs2KHevXsrOjo6U32PGDFCI0aMsPl8RESEunTpooULF1qWQE1ISMjyPonJ4d2nn35qCXkdJTQ0VDVq1NCuXbt08+ZNff3113rxxRfTXPfPP/9Yjv/++29FR0enWobVmjZt2mjmzJmSpBMnTujPP/9U3bp1HVo/AAAAXAfBHQAAAACnSw7UTpw4ofvuuy/bxklvdll6zp0757DQ78KFC5bj2NhYnTp1Kkv9rFmzRhMnTrScX716Vd26dbM7vIuKitLatWsVExPjkJBn4sSJqepJ9ttvv2W6rytXrujll1/W559/nmafs4y8/vrraR7z8PDQRx99pNGjR8vLy0u1atVScHCw/P397e73+PHjGjBggKSkPeh69Ohhd9us7HNXqVIlvfPOO6keW7hwodXZdmazWV9++aUkKSQkRCtWrLBrNpc1N27cUJMmTXTr1i1JSTPk3Nzc9M8//+ihhx6y2qZ27dqaO3euFixYoCpVqqh8+fLKnz+/8ufPb3nt169fV+/evVPNVhwyZIhatGiRYU158uTR77//Lkl64IEH0nxdbvfqq69q3759kqQ5c+ak2dsu5XKYjlSzZk3t2rVLUtK+fdaCu5TLAl+4cEGrVq1Su3bt0u23bNmyypMnjyUY3b9/P8EdAADAPYzgDgAAAIDTJe8ZFhISok8//dShfUdGRqpz586SlOkZQcmOHDmiAQMGZDn4s2X37t165JFHHNbf1atX1bVrVy1YsCDD8G7hwoWKiYlRnTp19MUXXzishqw4c+aMWrVqZfn6li1bVg8++KAuXbqk4sWLO2QMT09PjR079o7aJ/Pw8FC5cuUcUZbd9uzZo3379mnWrFlpntuyZYuOHz8uSXrjjTdShXYxMTG6dOmSZf+4jCxevNgS2pUrV05jx45VrVq1MmxXq1atdK976aWX0iwxWqhQIbu+jps2bdKVK1dUuHBh3bhxI8M2MTExluOaNWvanCnoaMHBwZbj06dPW72mfv36cnd3tyzbe3uoaIufn5/l7697beYwAAAAUiO4AwAAAOBU8fHxllko3t7eDg9EkvcmK1iwYJqZLevXr1dQUJAqVaqUbh+NGzfWF198oWvXrqlUqVIqVqyY3NyytmX47t279dxzz0lK2pNt/vz5WeonPRnVtn//fs2ePVuSlC9fPoePn1kTJkxQfHy8/P39NWLECLVp08bhewHeqZRfp/T2uMsuCxcuVIsWLVSgQIE0zy1YsECS1KRJEzVr1izVc5GRkWrVqpXatWun/v37pwqXbhcfH6+FCxdKkurVq6eZM2dmuIyjPZYuXapVq1ZJkqpUqWKZDffWW2/p22+/Vd26dfXwww+rVq1aVn92ly1bJknq2bOnpk2bluF4V69elST5+vrmWGgn2bcPYmhoqBYuXKi1a9eqfPnyqlevnl19p+wvve8hAAAA7n4EdwAAAACcKi4uTuXKlVP79u3Vtm1bh/fv6emp/v37q0ePHqnexN+7d69efvll5c2bV1999ZVKlCiRbj81atRwSD1XrlyxHCckJMjDI2f/WbZ161YNGjTIMnunbNmyOTr+7bZs2aI1a9aoWrVqmj59eqb3tcsp+fPnl5ubm0wmU44HdxEREfrll1+szrbbvXu3fv/9d3l5eemNN95I83xcXJyMRqO+/fZb/fjjj3r22Wf14osvqmDBgmmu/emnnxQREaFq1arpk08+cUhot2/fPsvSlg0bNtTw4cPVpk0bSUn7+G3evFmzZs3SrFmzVKxYMfXo0UOdOnWyBLcxMTFavXq1ChQooA4dOmjixIm6fv261QBTkhITE3X9+nVJSTP6ctLNmzctxwEBATavq127tmrXrm13v6dPn7b8vrq5uWWqLQAAAO4+WfuIKAAAAAA4SL58+bRixQr17NlTgYGBDu8/MDBQL730UqrQ7uzZs+rbt6+io6MVERGhnj17KjIy0uFjW5NynH379llChpxw7Ngx9enTR9euXbM8dvsMrewUERGR6jwxMVHvvvuumjZtqi+++MIhod2VK1dS7SPmKO7u7pawK6eDuy+//FKFCxdWgwYN0jw3ZcoUSVKvXr1UsmTJNM+nXDYyPj5eERERVgM5s9msefPmqUSJEvr0009TzR7LqjNnzqhPnz6Kjo5WzZo1NWPGjFRLjgYHB2vBggXq0KGDpKS9JMeOHaupU6darlm+fLlu3bqlrl27Kk+ePPLz89O5c+dsjhkREWH5/uf0zLRLly5ZjjP6IEBmrFixwnLcokULlw23AQAA4BjMuAMAAACQbaKionTx4kVnl5GK0WjU4MGDU4VIp06dUu/evbVw4cJsX1ov5dcjISFBv/32W5olPLPLyZMnFRcXZzlv06aNHnjggRwZe9euXerTp48ef/xxjRw5UgaDQefPn1eDBg00bNgwh808fOONNxQVFaWJEyc6POAoVKiQIiMjdfnyZYf2m564uDgtXrxYzz//fJplJHfs2KGNGzeqRIkSeuGFF6y2TxnSenl5qWXLlqn2wEv2+++/KyIiQosXL053tpi9rl69qt69e+vy5ct64IEHbC676eHhoTFjxihfvnyaM2eOJOmLL77QoEGDJMlST7du3SQl7fUWHh5uc3nblL9fISEhd/w6MmP79u2W40aNGjmkz7Nnz2revHmSkpb7HTFihEP6BQAAgOsiuAMAAACQbdzd3fXOO+9oy5Ytzi4lQ/v27dOAAQP06aefysvLK9vGOXHihOU4ODhYq1atyrHgrnnz5ho9erS2bt2qOnXq6Nlnn82RcdevX69BgwYpJiZGixYt0vXr1/Xee+8pJCREr7/+eqb6OnHihM0ZdcePH9dvv/0mKSmUHDdunFq0aJHluk0mk86fP6/ixYtLkooUKaJDhw7pwoULWe4zs3766SddvXpVTz31VKrHjUajxowZIzc3N40fP14+Pj5W26dcmrVy5co6fPiwHn/88TTXffnll5o0aZJD9phMnsV64sQJPfbYY5o4cWKGv1OvvvqqIiIi9OOPPyoqKkomk0l79+7Vnj17NGrUKMsMwPz58+vQoUM2v6/h4eGW4+TvW07Yv3+/9u/fLylpbz1HLPt7+PBhDRw4UNevX1fx4sU1Y8YMFStW7I77BQAAgGsjuAMAAACQbXx9fTVr1ixt3rxZJUqUUMmSJS1v4L/22mv6/vvvJSUFOxnNjurcubO2b9+uKlWqaOnSpdlee3ZJGdz17NlT77//vq5cueKQWU72ePbZZ60GdhcvXlSXLl108uTJbK/h559/1s2bNzV16lSbgZMtu3bt0htvvCGj0ZjuddeuXdNnn32mhg0bZmmvNqPRqOHDh+vPP//UN998o6JFi1qCoNjY2Bz5npnNZs2fP1/169dPE0J9/vnnOnTokAYMGKA6derY7CNlcFejRg0dOnTI6nWTJk1yyGzTs2fPqnv37jp9+rR69OihYcOGWfary8iYMWN04MABGY1Gubm56dNPP9X999+v5557znJN0aJFtW/fPpt9nDp1ynJcunTpLL+OzIiJidHo0aNlNpslSf3798/SbM/Y2FhdvnxZ+/bt0+rVq7Vq1Sr5+PjohRdeUO/evZUvXz5Hlw4AAAAXRHAHAAAAIFt5e3uradOmzi4jlejoaO3bty/dwCM7JCYmWoIxb29vPfPMM5oyZYq++uor9e/fP0druV2RIkW0cOFCvf/++6pQoYJCQ0OVP39+5c+f3+7gJbMyCt+sadu2rYKCgnT58mVVqlRJQUFBlhp37Nihjh07SpJatWqlDz74QO7u7pKSliU9ffq03eN8+OGHWrt2rSSpT58++vLLL1OFZ+fOncv24G7Dhg06evSo+vXrl+rxCxcuaOrUqWratKkGDBiQbh8pZ6Ddf//9+vXXX61e54jQ7tChQ+rVq5fi4+M1Y8aMTM929PHx0Zw5c3T48GEdO3ZMGzZs0JIlS1ItEVqmTJlUe77dLuX3uHz58pl/EZl06tQpDR8+XP/8848kqUuXLurdu3em+1mwYIHefffdVI+VLFlSH3zwgWrUqOGIUgEAAHCXILgDAAAAkKuYTCYNGTJEGzZs0LBhwyx7Z+WEI0eOKCYmRpJ03333ydvbW40bN9ZXX32lPn36yNPTM8dqsaZIkSL68MMPnVqDPRo2bJjhNWXLlrWEdpLk6empJUuWWPYLy4xDhw5p0KBBeuaZZyyPnT17VlWrVs10X5kxd+5cFShQQC1btrQ8ZjKZ9Oqrr6ps2bL66KOPMgxVz549azmuXr26rl69qhs3bih//vwOrXXZsmUaNWqUatasqffee09BQUHpXv/QQw9Z3QeuSJEiKlKkiPr376+hQ4eqYsWKqZ4vVaqULly4YHPG4+HDhyUlLdNbtmzZO3hF1plMJl29elV79+7VypUr9fPPPys+Pl7+/v5644031Lp16yz1++STT6pq1aqKiorSiRMntHv3bq1bt07PPPOMHnzwQY0YMUIVKlRw8KsBAACAKyK4AwAAAOB0p0+f1q1bt9K9JjnwkqTIyEi98847qR6z19WrV7Vr1y5J0vjx43Xo0CGNHj06W/e1S5Y8riTVqlVLktS6dWv9/PPPWrFihdq0aZPtNeRmw4cPV/HixeXj46Pq1aurSJEiKlCggKSk/d8SExNVt25dff7551bbp1zm9ODBg3rssceyrdbdu3dr27Zt6tSpk7y9vS2Pf/LJJ7p06ZIWLVpk1xKgyTM88+TJo+LFi6tEiRLatm1bqjDwTiQkJGjChAlas2aN3nrrLbVp08ZmmLhjxw7NmTNHAwYM0MCBA232eezYMbm5ualr165pnitVqpQkac+ePWrcuHGq50wmk44ePSopaWbenf5Ov/HGG3rzzTfTjJG8JKaPj4/uv/9+PfbYY2rXrl2WlmRNFhAQYAkik1/X9evX9cknn+izzz5T27Zt9corr6h79+5ZHgMAAAB3B4I7AAAAAE7XuXPnTF0fGBiojh07aurUqSpdurTMZrN27NihTp06Zdj24MGDlgAtT548CgkJsbwRn93+/vtvy3FycPfwww+rRIkS+vjjj/X444/LwyP3/TPt4sWLKlKkSI6MZc/PiC0lS5aUj4+PYmNjdeDAAQdWldann34qSXr66actjx07dkw//vijFixYoEKFCmXYR1xcnGXPt4oVK8pgMCg0NFR//PGHw4K7pUuXyt/fXytXrpSvr2+6165Zs0br1q3Tpk2bFB4erm7duik0NDTNdeXKldOkSZOs9lGmTBlJ0ubNm9MEd8ePH1dsbKwkqVq1all5Oam89NJLat68eZrH3d3dlT9/fhUsWDBbf18LFCig1157TUWKFNF7772n9957T9euXdPgwYOzbUwAAAA4X+77FyEAAAAAl7N+/XoVLVo03Ws6d+6s7du3W87r1KljmRl17do1NWvWTP/73//k4+OTbj+vvvqq5fi9997To48+egeV289sNmvTpk2Skt74r1+/viTJYDDo2Wef1cSJE/Xtt9/queeey5F6XMXmzZvVr18/vfLKK5kOcHOau7u7QkND9c8//2j//v3ZNs7hw4f166+/qmrVqqmCrbJly2rx4sV27613+PBhJSYmSpJq1qwpSapUqZK++OILh9XaoUMHu69dt26dJCk+Pl5btmxR3759bV5rKxArWrSoAgIC9Pvvv2vEiBGpnksZjDsiuCtSpEiapTqdoXv37vrtt9+0fft2zZw5U7Vq1UoTWgIAAODe4ZbxJQAAAADg2vz9/VWiRAlt2LAh3euuX7+uVatWSUpacs9Rs47sceDAAUVEREhKmm2XvESjJLVv316+vr6aMWOGoqOjc6wmZ9uyZYv69eun2NhYjR07VgsXLnR2SRlK3tfu0qVLunTpUraMMWXKFJnN5lR76klJIa+9oZ0k/fXXX5bj2rVrS5JCQ0N19uxZyxKaOWXv3r2W2X+enp6aMWOGSpcunea6999/P8PZjA888IBOnjxp6S9ZyuDugQceuPOiXUifPn0sxxMmTJDJZHJiNQAAAMhOBHcAAAAA7gl169bVsmXL0r3m22+/VVxcnCSpa9eucnPLuX8S/fbbb5bjFi1apHquYMGC6tixoyIiIjR79uwcq8mZkmdcJS9tKEnjxo1z+fAuZSCUPIPSUcxms5YuXapff/1VefLk0eOPP35H/f3555+SkmYKJtddpUoVubu76+eff77jepNduXIlwz/ff/+95frnnntOxYoVS3PNokWLNHfuXHXs2DHdED45hPz9999TPZ78/QgICNB9993nsNfnCho2bGjZQ+/YsWMO/9kDAACA62CpTAAAAAD3hMaNG6tPnz46f/68goOD0zwfHx9vCYUKFSqkp556KsdqSw5kpKQlAJ944ok01/Tu3VuLFy/W7NmzFRYWli1L9JnNZo0ePVpfffWVw/t2lHHjxslsNqtr167OLsWqunXrWo7/+OMPtWvXLst9TZ8+XYcOHVKBAgV069YtHTx4UMePH5ckPfHEE/Lz88ty3/Hx8dq6daukpLCxYMGCkqT8+fOrRo0a+u677/Tiiy86JLz+8ssvNW3aNLuvX7hwYboB7a1bt9SvXz/NmzdP9erVS/N8cnC3evVqy8/JwYMHLTMgGzRoIIPBkJmX4PLc3d1VuXJl7dixQ5L066+/qlGjRk6uCgAAANmB4A4AAACA050+fVq3bt1K95qYmJh0n69Xr578/Py0aNEivfLKK2meX7ZsmS5evCgpKSTz9fXNesGZtHnzZoWHh0uSGjVqpEKFCqW5xt/fX926ddP06dP1+uuv6+uvv5a7u7tD6zAYDHrrrbdUoEAB3bhxQ1WqVFFwcLDy5cunvHnzZtg+ISFBPXr0UNGiRfX222/b1SardZrNZpcMXwoVKqTQ0FAdPHhQmzZtkslkynL49dxzz2nlypX6+uuvdejQoVTP3ekeZlu3blVUVJQkqXnz5mn6njRpkv744w+H7JU2YMAAFShQQJGRkapataqKFSuW6mdq7dq1evPNNyVJo0aNUlhYWJo+EhMT1bZtW12+fFmBgYEaN26c1dBOStqnL2/evNqxY4eOHj2q8uXLa+XKlZbnb5/Req8IDAy0HGe0nCgAAADuXgR3AAAAAJyuc+fOd9yHp6enmjZtqsWLF6tnz56WGUZSUuD0ySefSJKCgoL03HPP3fF4mTF//nzLcffu3W1e16NHDy1ZskR79uzR/Pnz1bNnT4fXYjAYNHjw4Cy1/eyzzxQZGanIyEi9+uqrmjJlikJDQx1coetr0qSJDh48qGvXrmnbtm1q0KBBlvoJDAxUx44d9fzzz+vbb7/VmDFjlJCQIEkqWrToHdW4YsUKSUm/F08++WSq5x5++GFNmjRJixcvdkhwJ9n+HTaZTJaf/xo1auj555+3GsiuWLFCly9flpQUrDdt2tTmWO7u7nrooYe0atUqffXVVxo5cqTl9Xp5eenhhx++w1eTvY4dO6bDhw+rYcOGqfa6zIinp6fl+Pr169lRGgAAAFwAe9wBAAAAcLr169fr0KFD6f5JuUShLe3bt9fNmzc1Y8aMVI8vWbJEZ86ckZQ0O8jb2ztbXoc1W7dutezXdf/999ucRSRJefPm1ciRIyVJU6ZM0cGDB3OkRnucOXNGU6dOtZyfPHlSzz77rHbv3u3EqjIvJiZG33333R318dhjj1mOlyxZcqclyWAw6JlnnlGXLl0sj93JjNCbN29aZqC1aNEi1UwtSapcubJKlSqldevWZfv378cff9TRo0fl5uamUaNGWQ3tzGazZW/H/Pnz65lnnsmw3+T9/3744QetXbtWp06dkiS1bNnyjpYYzW5r165VmzZt9PLLL6tjx46WoNYeKWcl58+fPzvKAwAAgAsguAMAAABwz6hbt65CQ0O1ePFiy15hUVFR+vjjjyUlBRZPP/10jtVjNps1ceJEy/mrr76aYZsWLVqoZcuWiouL08CBA3Xjxo3sLNEuiYmJeu211xQdHW15rFmzZlq6dKmqV6/uxMoyx2g06uWXX9axY8fuqJ9KlSqpfPnykpL2Wbt27ZrNa3fv3i2TyWRXvylnLyYmJma5vm+//daytKytGZ7PPvuszGazJkyYkOVxMhIXF2cJe59++mlVrVrV6nVr1qzR/v37JSXNOrVnCdYmTZoob968ioqK0ogRIyyP2xP6OdPbb79tCeuOHDmi9evX2902eUaiJJUsWdLhtQEAAMA1ENwBAAAAuCckhyNdu3ZVQkKCXnnlFcXHx2v69Om6dOmSJOmNN97I8n5kWTFnzhzt3btXktSqVSvVrl3brnYjR45UgQIFdPr0afXr10+xsbHZWWaGPvzwQ+3YsUOSVKBAAU2ePFmffPKJypYta7PNli1b9N1339kdWuWEt956SydPntRLL710x30lB8Dx8fH69ttvbV43ePBgu3/mUn6tMtrT0ZbY2FjNmzdPUlK4VaNGDavXPfXUU/L29taOHTu0Zs2aLI2Vkfnz5+vcuXPy9/e3uTxrbGysJTwsXLiwunbtalff3t7elr37kpeNDA0NVf369R1QefaIjIy0/F2ULHkfwoyYTCYdPXrUcu7qy4ECAAAg6wjuAAAAANx1oqOjtWPHDn322WcaPHiwHn30UUtY0bp1a5UpU0b79u3TK6+8os8//1yS9L///c/u4MwRdu/erSlTpkhKCiSSl8C0R5EiRTR+/HgZDAbt2LFDAwYMcFp498svv2ju3LmSpCpVquiHH35QWFhYhu0qVaqkhQsX6qmnntL27duzu8wMTZkyRd99953GjRsnHx+fTLVNTEzUjh079OGHH+rIkSOSpHbt2ln6mTNnjm7evJmmXWRkpOLi4uweJzIy0nKc3iy+9MyZM0cRERHy9PTU0KFDbV7n7+9vWW5y7NixunLlSpbGsyU6OlpLly6VlPRann32WY0YMULffPONjhw5IrPZLEl6//33dfbsWUnS66+/rjx58tg9RnJwl+zFF190UPXZo0CBAqn2qfP09NSDDz5oV9u//vrLEuYGBgaqRYsW2VIjAAAAnI/gDgAAAIBLi4+P18GDBy1BxqFDh/TAAw+oT58+2rlzpxo3bqzFixerV69ekiQPDw8NGzZMkrRq1SoZjUYFBwenWk4vu0VGRmrIkCFKSEiQh4eHJk6cqICAgEz10bx5c8syh3/88Ye6deuW5TAnq3bu3Knhw4dLStpT7Msvv1SxYsXsauvv76/PPvtMRqNRnTt31uDBg3Xx4sXsLNemr7/+Wh9//LE6depkd3gbGRmp77//Xi+//LLq16+vUaNGqWjRoipevLikpBDmqaeekpQUTM2ZMydNH/v27ZO/v7/ddSYHWJLSzMyyx8mTJ/Xpp59Kkl544QVVrFgx3etffPFFeXp66sKFC3r11VcdOjsyT548WrVqlTZs2KAZM2bokUce0d69ezVy5Eg98cQTqlu3rjp16qRFixZJkp544gm1atXK7v5v3LiRZi/LjRs3Oqz+7ODh4aFmzZpZzuvVq6fChQvb1Xbx4sWW45deesmu5UQBAABwdyK4AwAAAOASTCaTTp48qTVr1mj69OkaNGiQWrVqpZo1a6pNmzY6fPiwJKlQoUKaPXu2tm7dqqlTp6pt27YqWLBgqr6aNWuWar+wdu3ayc/PL0dex82bN9WzZ0+dOXNGkjRmzBg1aNAgS30NHTpUDzzwgKSkEK19+/bavXu3w2pNz7Fjx/Tiiy8qLi5OPXr00IcffpjpmWoBAQFasGCBSpcurRUrVujxxx/XN998k00VW7d27VqNHj1aISEhGjJkSIbXnzhxQu3bt9eDDz6oN954QwkJCZo6dapWrFihjh07ppoR1qNHD3l4eEhKWhYyeV/FZPv371e+fPnsrjXlUoiZDTnj4+M1ePBgxcXFqXbt2urbt2+GbUqUKKHnn39eUlLolbwXpCMVKVJELVq00NChQ7Vs2TKtXbtWb7zxhry8vPTnn39arlu1apW6dOmiRYsWWZ29mFJcXJz69etn+TsheSnSb775RpMmTXL4a3CkV155xRK6Jc86zMimTZu0fPlySUkB+rPPPptt9QEAAMD5CO4AAAAA5Lj4+HhFR0dbznv16qWaNWvq0Ucf1YABAzRt2jStXLlSFy9e1IMPPqhXX33VMnsoMDBQDz30kLy8vGz2/+233+rgwYOW85kzZ1qWzMxOt27dUt++fXXgwAF5eHho7Nixat++fZb78/Dw0IwZM1S+fHlJSTOynn/+eU2fPl3x8fGOKjuNEydOqGvXrrp27ZreeOMNDR8+XAaDIUt9BQYGatasWfL399fNmzc1cuRI9evXTzdu3HBw1Wnt3LlTQ4YMkclk0tixY9MswxgVFaXVq1dr+PDhSkxMlCRFRETo3Llz6t27t3799VfNmDHDZvBaokQJy/c3NjZWQ4cOTfV92b9/f6ZmRqUM7pKDX3u99dZb2r9/v0JCQjRt2rRUSzKmp1+/fsqfP78kadq0aZo/f36mxs2sokWL6vTp07p8+bIkKSQkRD4+PkpISNC2bds0ZswYNWnSxOa+gYmJiRo8eLBlz8Unn3xSX375pSVUnjlzpsaPH5/l2YMpl6S9detWlvpIT8mSJTVr1izly5dPmzdvTjWTzpo1a9ZowIABMpvNevTRR/Xuu+86vCYAAAC4FoPZ3o94AQAAAEAWbNu2TSdOnNDJkyd14sQJHT9+XOHh4ZagJCUfHx/VqlVLDRo0UL169VS1alW5u7tLkjp37qzt27erSpUqlr2zrFm3bp369+8vk8mkvn376ocfftD58+clSR06dNCbb76ZbuiXVZcuXdILL7yg/fv3K0+ePJo8ebIaN27skL4vXryo5557TuHh4ZbHSpcurSFDhuiRRx7Jcqhmzd9//62BAwcqKipKH3zwgVq2bOmQfrdu3aqePXvKaDRKkipUqKAFCxYoMDDQIf1L0j///KMOHTpISpqZtGnTJl27dk0dOnTQmDFjlJCQoD179mjr1q3atGmTdu3apYSEBEv7kiVLqnv37mrfvr28vb3tGvPy5ct69NFHFRUVJSnp5/TNN9+UlLTcaeXKlTVt2rQM+7lx44bq1KljOa9du7ZlGcmMfPDBB5o9e7ZKly6tBQsWqGjRona1S/bDDz9YlkSVpEGDBmXLfnFXrlzRoEGDtH37dhkMBnXp0kVDhw7VzZs3NXfuXC1evDhVoP/555+rbt26lvOoqCgNHjxYGzZskJS01OegQYMkScuWLdMrr7xiubZp06Z677337Fqq9MSJE4qLi9OePXv01ltvWf5uKlGihN58800VK1ZMgYGBDv1ZPX36tN566y1t3rxZlSpVUtu2bVWxYkX5+/vr+vXrOnjwoFatWqWdO3eqYMGC6tu3r7p27erQ33UAAAC4JoI7AAAAANnqlVde0bJly6w+ZzAYVKlSJTVq1EgNGjTQAw88YDNUsye4W79+vQYOHKjExESNHz9erVu31unTp9WpUyfL0oOVK1fW+++/rwoVKjjmBUo6ePCg+vbtq/Pnz6tIkSKaMWOGqlWr5rD+JaV5Hcnuu+8+de/eXWFhYZleyjKl+Ph4zZ8/X1OnTpW/v78+/vhjVa9e/U7LlpS0DGpsbKwWLlyYainDunXrasGCBZalDu/Ub7/9pn79+qV6rEiRIlqxYoX8/PzUo0cPbdq0KU27qlWrqmfPnnr00UctQXFmLFq0SGPGjLGcDxw4UF26dFGdOnUUFhamyZMnZ9jH6dOnU4WkpUuX1qpVq9JtYzab9f7772vevHmqWLGi5s2bZ/eeabd76aWXUo33v//9T6+//rrD9lL7/vvv9f777+vKlSsqUqSIJkyYkGYm44ULFzR69Gj99ttvkqTu3bvrtddekySdP39eL7zwgg4dOiQvLy+98847atu2bar2M2fOTPXzFRQUpFGjRmUYPjdr1ixVKG7NgAEDNHDgQHtfrt127dqln376SX///bfCw8N169Yt+fn5qWDBgqpSpYoaNmyosLCwNLNFAQAAcO8iuAMAAACQra5cuaKwsDBdu3ZNUtLyj40aNVKLFi3UpEkTFSpUyK5+MgruVq9erSFDhihv3ryaNGmSGjZsaHnu1KlT6t69u+XNeU9PTz377LPq2LGjypQpc0evb9GiRXr//fcVGxurNm3a6M0337QsPehoFy5cUJ8+fXTo0KE0z+XPn19hYWFq3ry5GjRokKlZhfPnz9e8efN08eJF+fj4aNCgQSpYsKDi4uIUGxuruLg4y3F8fLxiY2NTHad8Pvk45bmPj49lxtKFCxdShSRjx47V008/7ZCvz9ChQ/Xzzz+nemzq1Kl69NFHJUnHjx9X27ZtFRcXJ0l66KGH1KtXryzvQZjMbDarV69e2rhxo+WxZs2a6bffftPDDz+s2bNnZ9hHbGysateubZkBGBISorVr19q8Pi4uTm+++aZ++ukn1apVSx9//HGavR4z4+rVq2rXrp1ldmpyDe+9916qmYCZdezYMb399tvavn27fHx81LFjR/Xt2zfd35EVK1bojTfeUNeuXfXyyy9r165d6t+/vyIiIlSlShVNmDDBZvA+efJkffLJJ6keq1u3rvr27auGDRsyYw0AAAAuj+AOAAAAQLZbunSpRo4cqS5duqhbt24qUqRIpvtIL7j7+uuvNWbMGFWsWFHTpk1TSEhImvYRERHq27ev9u7dm+rxatWqqXnz5ipXrpxKlSql0qVL27VM4uXLl/XGG2/o999/V+HChTVmzBg1a9Ys068rs6KiojRo0KBUIVFKfn5+euutt9S6dWu7+9y2bZu6dOmS6Vp8fX0VHBys4OBgFSlSREFBQZY/hQsXVqFChVS4cOFUX89NmzapR48elvO6des6bP/BV199VT/99JPl3FpoNnfuXE2cOFHvv/9+pr5GGUlekvPkyZOpHq9WrZqWLFliVx+vv/66vvvuO0lS48aN9emnn1q97vTp03rppZd06NAh9enTRwMHDpSHh8cd1S9Jhw8fVseOHVPtP2gwGPTII4+oV69emZqBeeTIEc2aNUsrVqyQm5ub/ve//+nFF19UUFCQXe1v3Lghk8mkzz77THPmzJHBYFDfvn3Vt2/fDF/rjBkzNHXq1DSPlyhRQo899pgee+wxVa1a1e7XAgAAAOQkgjsAAAAAOWLPnj13tHykteAuMTFREyZM0MKFC9W5c2e98sor6YZuMTExGjlypM2lO/39/TV69Gg99thjNvtISEjQ559/rhkzZshsNqtLly7q0aNHts2ys8ZoNGratGmaPXu2ZT+uKlWq6NVXX83y7LEBAwZozZo1aR738vJS2bJlVaFCBUu4GRISopCQEAUEBGRprGeffVY7d+6UJLVo0UIzZszIUj+3MxqNGjhwoH777Te5u7tr2bJlKleuXKprTCaTVq1apbCwMIeMmdK5c+fUvXv3VOFd4cKFbYastzOZTPrjjz906NAhPfbYYypZsmSq581ms7788kt98MEH8vPz0/vvv3/HswVvt337dvXs2VPx8fFpnnvwwQc1b968dNvv3LlTc+bM0dq1axUcHKzWrVvr6aefthqmp2fv3r0aMWKEDh8+rAcffFDDhg1TaGio3e2///57jRw5MtUehpJUsWJFy2xbAAAAwBUR3AEAAAC4K9we3EVGRmrYsGE6fvy43n333UwFGL/88ovefvtty/KdVapU0Wuvvaa6devabGM2m7V27Vp98MEHunjxojp16qSePXvK39//Dl9Z1v3zzz8aPny4goKCNGfOHLtmCtpy+vRptWrVSiaTSQ888ICaNm2qBx54QJUrV5anp6cDq5Y2btyonj17SkpaptOR4VNcXJx69+6tEiVKaNy4cQ7r117Xrl3TsGHDtH79estjv/76q0qUKHFH/e7Zs0fvvvuuDh48qB49eqhHjx4O23/udlu2bNHAgQN18+ZNFSxYUH379lWjRo1UsGBBq2HthQsX9NNPP+n7779XZGSkmjRponbt2ql+/fqZXpoyMjJSM2fO1JdffqkaNWpo8ODBWV6qc8eOHRoyZIguXryohx56SK+//nqaIBcAAABwNQR3AAAAAO4KycFd8pv5I0aM0COPPKKXXnpJfn5+me7v+vXr+vTTT7V582Z99dVX8vHxsXpdYmKifv75Z82ePVsGg0Ht2rVT27ZtszzbzNFiYmIUExPjkHpWrlypatWqqXjx4g6oLH09e/ZUlSpVNGTIEIf3fevWLcXExNi9f6Kjmc1mffbZZ5o0aZLi4+P1/vvvq02bNlnq6+TJk5oxY4Z+/fVXPfXUU3rxxRcVGBjo4IrTOnz4sEaOHKnJkycrODjY5nVLly7Vhg0b9MADD6hOnTq67777srSP3PXr1zVv3jwtWrRItWvXVseOHdWoUaM7eQmSkvbYnDhxosaMGePwABoAAADIDgR3AAAAAO4KnTt3VsGCBTV06FBNnjxZL7zwQqaWzrPFbDanGzSsXLlSW7ZsUfv27TO1xxdw9OhRjR8/XlWrVtXgwYMz3f7111/XmTNn1Lp1a4WFhWUpoL4b7N69W++8845atmyptm3b2r0PHgAAAHAvIrgDAAAAcFc4fvy4ypYt6+wygBxz/fp1FShQwNllZLuMwnMAAAAgNyG4AwAAAAAAAAAAAFyAm7MLAAAAAAAAAAAAAEBwBwAAAAAAAAAAALgEgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AI8nF0AANjrr7/+0vLly/XXX3/p/Pnzio6Olp+fnwIDA1W1alU1bNhQYWFh8vLycnapGTp48KBWrFih7du369SpU7p586Y8PT0VEhKihx56SJ07d1axYsUy3e+lS5e0YsUK/fHHHzp58qSuXLkig8GgoKAglS1bVmFhYWrevLny5MmTDa8KAAAAAAAAAHAnDGaz2ezsIgAgPbt379bYsWN19OhRtW7dWg899JCKFi2qhIQEnT9/Xhs3btRPP/2khIQEFS5cWKNHj1bz5s2dXbZVZ86c0bhx47Ru3TrVqVNHrVq1UtmyZeXn56cLFy5o7ty5+vvvv5UnTx6NGzdOrVq1sqvfxMREffLJJ5o7d66io6PVpEkThYWFqUSJEnJzc1N4eLhWr16ttWvXKiAgQO+8846aNGmSvS8WAAAAAAAAAJApBHcAXNrChQs1fvx41apVSx999JGKFCli9bqTJ0+qT58+OnXqlAwGg0aNGqXnn38+h6tN3/r16zV06FB5eXnpnXfesRounj171vK4m5ubPv74YzVt2jTdfuPj4zVkyBCtWbNG3t7e+uijj9SiRQur1/75558aOHCgrl69qqFDh6pPnz53/sIAAAAAAAAAAA7BHncAXNbXX3+tcePGqWTJkpozZ47N0E6SSpcurdmzZ8vX11dms1njxo3Trl27crDa9G3YsEH9+/eXj4+PPv/8c5szAj09PS3HJpNJ06ZNy7DvsWPHas2aNZKkkSNH2gztJKlOnTqaOHGiDAaDPvzwQy1dujSTrwQAAAAAAAAAkF0I7gC4pIiICE2YMEGS1KlTJ/n6+mbYplSpUurQoYMkyWg06oMPPsjWGu11+vRpDRkyREajUZMnT1a5cuVsXnv16tVU5xntRbdx40Z9/fXXkqTKlSvr6aefzrCeRo0aWWbxvfPOO4qIiMiwDQAAAAAAAAAg+xHcAXBJP//8s27duiUpKZCz1+OPP2453r59u86dO+fw2jLrzTff1M2bN9WkSRPVrl073WtDQ0PVs2dPVaxYUfXr19fw4cPTvf6TTz6xHGdmadAuXbpIkqKjozVp0iS72wEAAAAAAAAAso+HswsAchuTyaSYmJg0j3t4eMhgMDihIte0ceNGy/HBgwdVv359u9qVK1dO7u7uSkxMlCRt3bpVTzzxRLbUaI/169dr27ZtkqQnn3xS8fHxGbZ5+eWX9fLLL1vObbU5fvy4duzYIUkyGAx66KGH7OpfkqpXry4/Pz9FRUXpxx9/1ODBg1WgQAG72gIAAAAAAABAdjCbzTIajWke9/X1lZtb7piLRnAH5LCYmBgdPHjQ2WW4vNOnT1uOP/nkE5UvX97uYMnX11dRUVGSpN27d2dqxp6jTZ8+XVJSsJY/f37t2bPHYX0n72snSYGBgTp37lymZhiWKVNGe/bskdFo1MKFC9WkSROH1QYAAAAAAAAAjhIaGqq8efM6u4wckTviSQB3HbPZbDmOjo7Wr7/+andbD4//PpOQsp+cduHCBUtIW7x48Qz3q8uskydPWo6Dg4Mz3b5YsWKW47/++ssRJQEAAAAAAAAA7gDBHQCXVK5cuVTn9i4BaTKZLLPtJKlgwYIOrSszkpexlKSQkBCH93/jxg3LcVZCwYCAAMvxqVOnHFITAAAAAAAAACDrWCoTgEvq0KGDoqOjdeTIERUuXFgtWrSwq93p06dTrYFctmzZ7CoxQymXxQwKCnJ4/3FxcZZjT0/PTLf38fGxHF++fFnR0dEOnxUIAAAAAAAAALAfwR0Al1SgQAG9/PLLmW6XcpZbcHCwihcv7sCqMuf48eOWY39//zTPrV+/XocOHdKVK1fk5eWl/Pnzq0yZMqpbt66qV68ug8GQbv8pg7eUIZ69bt/M9cKFC04NOgEAAAAAAAAgtyO4A3JYyv3XUgoNDc3SrKm7ndFo1IEDB1I9VqlSJZtfp4z62rp1q+W8S5cuqlat2h3XmBUXLlzQrVu3LOehoaGqVq2abt68qXfeeUe//PJLmjZXrlzRyZMntW7dOtWtW1djxoxJN3gMCQmxBJUmkynTr/X2fQOLFi3qtK8XAACAszjyfhQAAADICu5J/5OQkKCDBw+meTw3fS1yzysFXIStWVSenp7y8vLK4Wqcz9rXw9PTM0sh5o8//qhz585JSgq1OnXq5LSv6YULF1KdFyhQQFFRUeratauOHDmiatWqqVOnTqpXr54CAwN1+fJlrVy5UtOnT9etW7e0fft29ezZU99++60CAwOtjlGhQgXL8bFjxzL9WtevX5/qPC4uLlf+DAIAgNzNkfejAAAAQFZwT5qxjFYnu5e4ZXwJALi+GzduaPLkyZIkd3d3vffee04NoS5dupTq3MvLS4MHD9axY8c0YsQIffvtt2rbtq2Cg4Pl5eWlYsWKqUePHvruu+8sQV14eLiGDRtmc4z777/fcnzt2jUdPnzY7vp+/fVXHTt2LNVj0dHRdrcHAAAAAAAAADgeM+5czKFDh7R06VJt375dZ8+eVUxMjPLmzaugoCDVqFFDLVu21MMPP+zUdDkuLk7333+/TCZTlvv44YcfVKlSJavPNWvWTOHh4Vnqd+HChapXr16W68Lda9y4cbp8+bIk6Y033lCdOnWcWs+1a9dSnf/888/aunWr3n77bT333HM225UpU0aTJk1Sly5dJEkbN27Uxo0b9dBDD6W5tmbNmipevLjl9+XHH3/Uq6++mmFtUVFRevfdd1O1lcRsOwAAAAAAAABwMmbcuYhz586pf//+eu655+Tp6amRI0dqxYoVWrt2rWbOnKmWLVtq9erV6tOnj9q3b69Tp045rdZjx47dUWjn6+urwoULO7Ci/9gKA3FvW7p0qX744QdJ0vDhw9WxY0fnFqS0s9eWLVumRx99NN3QLlm9evXUsmVLy/nChQutXufu7q4ePXpYzr/44gudPXs23b4TExM1YsQIlS1bVo0bN071XN68eTOsDQAAAAAAAACQfZhx5wJ27dqlF154QYGBgVq+fLmCg4NTPV+kSBHVrFlTzzzzjLp37659+/apQ4cOWrJkiUJCQnK83iNHjqQ69/LyUpEiRTLcHDIqKkoRERF68cUXVahQoXSv9ff3V8GCBTNVV+HChZU/f/5MtcHdb8eOHRo1apQMBoNGjhzpEqGdlLSJakqenp56/fXX7W7fvn17rVmzRlLSrLsrV64oICAgzXUdO3bUxo0btW7dOsXGxqpfv35asGCB1WtjYmL05ptv6siRI1qwYIGmT5+e6nk/Pz+76wMAAAAAAAAAOB7BnZNduXJFffv21bVr17Ro0aI0oV1KRYsW1aRJk9SuXTtdvXpVw4YN05dffpmD1SZJDu78/Pz0+uuv64knnpC3t3eG7V588UWdOnVK3bt3z/DaTp06aeDAgXdcK+5thw4dUv/+/WUymTR+/Hi1a9fO2SVZ3B5kt2/fXkWLFrW7fZ06dWQwGGQ2m5WYmKidO3eqefPmaa4zGAyaOnWq3n77bX333Xc6fPiwWrdurQEDBqhZs2YKDAxURESE1q9fr3nz5qlAgQL68ssvFRAQkGZWYIECBbL2YgEAAAAAAAAADsFSmU42c+ZMXblyRffdd5/KlSuX4fWhoaGWva7++usvbd++PbtLTOPo0aNyd3fXrFmz1L59e7tCu61bt2rt2rV688035enpmQNV4l537Ngxde/eXVFRUfrwww9dKrSTpDx58qQ6txa6pcfPz0/FihWznB88eNDmtV5eXnr33Xf1zTff6IknnpDRaNRbb72lRo0aqXLlymrRooW+//579erVS1999ZVlNl5UVJSlD09PT5UsWTJTNQIAAAAAAAAAHIsZd062cuVKSWmX1UtPw4YNtWHDBknSunXrVLdu3WypzZYjR46oTZs2ql27tl3XJ8+Gaty4sRo0aJDN1SE3OH78uLp27aobN25oypQpatGihbNLSuP2/eLi4uIy3Ye/v7/Cw8MlSVevXs3w+ho1aujDDz+U2WzW1atXdf36dXl6eiooKEheXl5prr98+bLluGzZshkudwsAAICkD1AuX75cf/31l86fP6/o6Gj5+fkpMDBQVatWVcOGDRUWFmb1/svVHDx4UCtWrND27dt16tQp3bx5U56engoJCdFDDz2kzp07p/owWXq2bdumLl263FE9n3zyiZo1a3ZHfQAAANzrcsP9aGBgoKpXr65HH300w223kt1L96O8S+tE0dHRunjxoqSk2UMbNmzQww8/nGG7EiVKWI5Pnz6dbfVZEx0drfDwcD333HN2t1m6dKmOHDmiDz/8MBsrQ25x4sQJdenSRdevX9e0adPUtGlTZ5dklb+/f6rzmJiYTPfh4+NjOc5M8GcwGBQQEGB1n7uUkv/+kaSKFStmuj4AAIDcZPfu3Ro7dqyOHj2q1q1ba+DAgSpatKgSEhJ0/vx5bdy4UT/99JN++OEHTZw4UaNHj870qgs55cyZMxo3bpzWrVunOnXqqHXr1ipbtqz8/Px04cIFzZ07V/PmzdPixYs1btw4tWrVKkfqqlq1ao6MAwAAcDfKLfejZ86c0ccff6zly5dr7dq16tOnj+rXr58jdbnK/SjBnRPd/kb+hAkT7ArufH19Lcfx8fEOrys9sbGx6tSpk6pVq2bX9TExMZoyZYpat26t8uXLZ3N1uNedPXtW3bp107Vr11w6tJOUZunblLPb7JXy99vPz++Oa0opOjpaERERlvOc+p8fAADA3WjhwoUaP368atWqpV9++UVFihRJ9XzNmjXVqlUr9enTR3369NGpU6fUv39/jRo1Ss8//7yTqrZu/fr1Gjp0qLy8vPTxxx+neTOnatWqCg0NVfPmzRUdHa2hQ4fK19fX7nvvPHnyZOnT3YUKFVJQUFCm2wEAAOQGuel+tGLFijIYDBo0aJBiY2M1bdo0eXl52Z1J3Av3owR3ThQQEKDChQtb3jxPOfslPSmXzAsODs6W2mwJCAjQm2++aff1n332mSIjI9W3b99srAq5QUREhLp3767IyEhNnjzZpUM7KWlmrI+Pj2JjYyUlLe+ZWSln2eXPn99htUlJS94m8/DwcMnlRgEAAFzB119/rXHjxql06dKaM2dOqg9S3q506dKaPXu22rRpo5iYGI0bN05VqlRRjRo1crBi2zZs2KD+/fvL399fCxYssLnPesp9yU0mU6Y+NDdy5Eg99dRTDqkXAAAAufN+1N3d3XJsNpv13XffqWvXrnaNcS/cj7o5u4DczGAwaPLkyapTp44qVKigYcOG2dVu7969luP77rsvu8q7Y1euXNHcuXPVqlUrlS5d2tnl4C4WFRWlXr166ezZs5owYYLdIdPly5f1559/ZnN11rm5ualSpUqW85RBmb2uX79uOS5evLhD6kq2e/duy3HdunXTLO0JAACApA+PTZgwQZLUqVOndN8kSVaqVCl16NBBkmQ0GvXBBx9ka432On36tIYMGSKj0ajJkyfbfJNESru/cp48ebK7PAAAAFiRW+9Hb968merc29s7u8tzKcy4c7LatWvriy++sPt6s9ms1atXS0qaJRMWFpZdpd2xWbNmWQKXO7F161atWLFCO3fu1IULFxQbG6vChQurVq1aeuaZZ1S3bl0HVQxXZDQa9dJLL+ngwYMaPXq0Hn/8cbvb/vTTT1q9erUWL16cjRXa1qJFC+3cuVNSUlB28+ZN5cuXz6628fHxunTpkuW8Zs2aDq1t06ZNluPM7FkJAACQm/z888+6deuWpKQ3QOz1+OOPa/78+ZKk7du369y5cypWrFh2lGi3N998Uzdv3lTTpk1Vu3btdK8NDQ1Vz5499ccffyggIECvvPJKDlUJAACAlHLr/WipUqX0xBNPaNeuXcqfP3+ue/+S4O4us27dOoWHh0tKCgUCAgKcXJF1Fy9e1FdffaU6deooNDQ0S30kJiZq1KhRWrJkiaSkvf0CAgJkMpkUHh6u8PBwLVu2TM8884zefvvtVNNn70ZGo1EGg8HZZeQ4o9GY7mNjxozRpk2b1K9fP7Vv314JCQl2971582aFhIRkqo0jNW/eXBMnTpSU9JrWrVtnd9h+/Phxmc1mSVLRokUtG81ak5CQYPmfeKtWrTL8e+H69euW4K5SpUpq0qSJ075GAAAAzpbe/WjKDzsdPHhQDRo0sKvP8uXLy93dXYmJiZKkbdu26YknnnBAtVnz+++/a9u2bZKk1q1b23XvN3jwYA0ePNhynlGb5K9ZYmIi95YAAACZZOueNDfejyZ/LZ5//nmX258vpxDc3UUSExM1ZcoUSUlLlbjypx5nzZqluLg4de7cOct9jBw5Uj///LNeeOEFtW3bVmXLlrU8t2PHDo0ZM0aHDh3SN998o5iYGJeZ8ptVBw4ccHYJLmP//v2Skv5C/+abb9SoUSM1atQo1fKOGYmMjNTmzZvVrl07m+22bNmi7777TteuXVO1atXUvXt3h+8lV6dOHctynbNmzbJ7yctVq1ZZjps0aZLua//000/1+++/S0r6FM7rr7+ebt8//PCD4uPjJUlPPPGE9uzZY1dNAAAAuUXy/eipU6csj33yyScqX768ChQoYFcfvr6+ioqKkiTt2rVLJUuWdHyhdpo+fbqkpO0a8uXLl6n7ansl7+l85syZbOkfAAAgt9m/fz/3o7kUe9zdRRYsWKCDBw9KSpqFVKJECSdXZN3Fixf17bffyt/fX82aNctSH8uXL9cvv/yihQsXasiQIalCOylpidGvvvrKsg7usmXL9OOPP95x7XAdZ86c0fz581W+fHn17t07U21NJpM+++wzJSYmqmjRolavOXz4sKZPn65z584pOjpa27Zt0+TJky2z3Bzl2WeftcwGPXr0qP766y+72m3fvl2SlC9fvgx/j5I/rSJJ+/bts4Ry1ly6dEnLli2TJNWvX9/hS3ACAADcS1LeG0ZHR+vXX3+1u62Hx3+fk3X0PWZmXLhwwfLvyOLFi7NfHQAAwF2E+9HcieDuLrF371599NFHkqThw4frySefdHJFts2dO1fx8fFq1aqVPD09s9THiRMn9Oabb+r++++3eU3evHn19ttvW84nT55smfqLu1tiYqI+/vhjubu7a9CgQan+J5ORc+fO6aOPPtLff/8tSTaDux07dqT5H9bBgwd14cKFrBduRXBwcKop3bNnz9bVq1fTbbN7924dOHBABoNB/fv3l5+fX7rXp9yc1Ww26/r161avS0hI0Mcff6yYmBiVKFHijvefBAAAuNclf1AwWXofkErJZDJZPt0sSQULFnRoXZmxY8cOy3FISIjT6gAAAEDmcT+aO7FU5l3g0qVLGjBggIxGo0aNGqWOHTs6uySbrl+/rm+//VaSsrxmbvfu3XX58mW1b98+w2vr1q2r0NBQHTx4UOfOndPGjRvVuHHjLI0L17Fp0yadOnVK7u7uGjFihN3tjEajYmNjUz1mK7izxWQyZep6e4SFhenatWtatmyZbty4oXHjxmn48OEqXLhwmmuPHj2qadOmyd3dXb169VL16tUz7L9FixaWvSClpFmvt/d948YNTZo0SYcPH1apUqU0fPhwPt0CAACQgQ4dOig6OlpHjhxR4cKF1aJFC7vanT59OtU+JbevIJKTUi6LHhQU5LQ6AAAAkHncj+ZOBHcu7saNG+rTp48iIiL0/vvvq3Xr1s4uKV3ffPONoqOjVaBAgSwvwZfZffGaNGlimWq7bdu2uza4q1SpUpZnKN7NjEajZQ+RZMkzzBITE1N9MiSzAgICVL9+favPJSYmasWKFamCugoVKuiRRx6xLG3pSNWrV1fz5s01btw4nTt3Tq+//rqeeeYZ1a9fXwUKFNCFCxf0+++/a9myZSpVqpRGjRql2rVr29V3lSpV5O3trS+//FJms9nSR8GCBXXx4kXt2LFDS5YsUVxcnDp16qRBgwbJ19fX4a8RAADgbmTtfrRy5cqWVR8aNWqU6T7/+OMPy3Hp0qUVFhZ2Z0XegZT7olSuXDnVB8P27dunH374QX/99ZcuXbokb29vBQYGqnLlymrZsqUaNmwog8Fg1zjJH6ArUaKEZYxLly5p+fLl2rFjh06dOqVr167J19dXxYsXV7NmzdSmTRu792gBAAC4l6V3T5rb7kcDAgJUtGhR1a1bV9WrV7f7ftSaixcv6ueff9aff/6pEydO6Nq1a8qTJ49CQkLUvHlztWvXziXvRwnuXNjNmzfVo0cPHT9+XNOmTcvyfnE5xWw26+uvv5aUtHeWm1vOrMRauXJly/GBAwdyZMzs4OHhkSuDO2scFZyVKlXK5te0bt26+vDDDzV16lRdvHhRderU0ahRo+Tj4+OQsa0JCwtTkyZNtG7dOq1atUp//PGHli5dqpiYGBUqVEhVqlTRhAkTFBYWlqnlQT09PTVq1Cg988wz+uabb7R9+3a9/PLLSkhIUL58+VS+fHn16NFD7dq1U/HixbPt9QEAANwr7uTe3Gg06qeffrKcP//88067z79w4YJu3LhhOQ8ICJCnp6du3rypt99+Wz///HOaNhcvXtT+/fu1ZMkS1atXT++++65dSxol37+6u7vL09NTX3/9tcaNG6e4uLhU1127dk3nz5/Xjh07NG/ePI0dO1ZNmza9w1cKAABw78nqPem9cD964MABrVu3TpUrV9YLL7xgdeWyjKR3P3ru3Dlt375ds2fPdsn7UYI7F3X9+nX16NFDx44d06xZs9SgQQNnl5Sh7du368yZM5KkBx54IMfGTfmPyIz2DsPdoXPnzurRo0e2j9OqVSu1atUq28dJydfXN9vGDQ0N1ahRoxzeLwAAAOz3/fffKzw8XFLSv1Wee+45p9Vy+vTpVOd58+bVlStX1KVLFx05ckTVqlVTp06dVK9ePQUGBury5ctauXKlpk+frlu3bmnbtm3q0qWLvv32WwUGBto97oIFC/Tuu++qXr16euqpp1SjRg0VKVJE8fHxOnDggObNm6cNGzbo8uXLGjBggD788EM99thjjn75AAAAudLdfj+6fPlyzZgxQzExMdq/f7/Gjh2rMWPGZGrcu/1+lODOBV29elXdu3fX6dOnNWfOHLuXy3O21atXW47vu+++HBs3b968luPo6OgcGxcAAAAAUrpx44YmT54sKWnm2XvvvScvLy+n1XPp0qVU515eXho8eLCOHTumESNGqGvXrqmWHipWrJh69Oihpk2bqmPHjoqMjFR4eLiGDRumuXPn2jXm5s2b9csvv2jMmDHq0KFDqufy5MmjBg0aqH79+ho/frwWLFggo9Go1157TZUrV1bJkiXv/EUDAADkYvfC/WjXrl0VHBys0aNH68aNG4qIiNDHH3+shx56yK4x74X70ZxZyxB2S55pd7eFdpK0fv16y3G5cuVybNyUe5TlyZMnx8YFAAAAgJTGjRuny5cvS5LeeOMN1alTx6n1XLt2LdX5zz//rK1bt2rUqFHq1q2bzf1CypQpo0mTJlnON27cqI0bN9o15rJly9S3b980b5KkZDAYNGzYMMu2BzExMXrnnXfs6h8AAAC23Sv3o8HBwXrppZcs53v27NHmzZvtGvNeuB8luHMhUVFR6tmzp06ePKm5c+eqVq1azi7JbidPnrQskylJ/v7+Wepn5syZatiwodq1a6eIiAi72qScZZc/f/4sjQsAAAAAd2Lp0qX64YcfJEnDhw9Xx44dnVuQ0q5IsmzZMj366KN2LZdUr149tWzZ0nK+cOHCdK9PftOlfPny6tevX4b9e3h4qG/fvpbzP/74QydPnsywHQAAAKy71+5HK1eunCp4/OKLL9K9/l66HyW4cxHx8fF68cUXdeTIEc2aNUs1a9bMsE1CQoIGDBigmJiYHKgwfX///bfl2NvbO0ubXf7111+aNGmSIiMjtX//fn333Xd2tbt48aLluHz58pkeFwAAAADuxI4dOzRq1CgZDAaNGjUqR/ZrtkdCQkKqc09PT73++ut2t2/fvr3leOPGjbpy5YrNa+vWrau//vpLX3zxhTw87NuVo2nTppZVU8xms1asWGF3bQAAAPjPvXo/2rhxY8vx5s2bc839KMGdCzCbzXrttdf0119/aerUqapbt65d7Q4cOKAtW7bI19c3myvM2D///GM5jo+Pl9FozHQfO3fuTHUeFxdnV7tjx45ZjqtXr57pcQEAAAAgqw4dOqT+/fvLZDJp/PjxLvHJ5mS3v2HRvn17FS1a1O72derUsXxyOTExMc2/2W7n5+enggUL2t2/l5dXqk9R79692+62AAAASHIv349WqlQpV96PEty5gBkzZmj58uUaO3ZsqgQ5IytXrnSZzRJThmdms9myjm5mpFzm0tPTU23atLGrXfLatl5eXmrSpEmmxwUAAACArDh27Ji6d++uqKgoffjhh2rXrp2zS0rl9j3Amzdvnqn2fn5+KlasmOX84MGDDqkrpZT7ox85csTh/QMAANzL7vX7UV9fXwUGBlrOc8v9KMGdk61fv17Tp09Xv379MvVLFR4ersWLF9sM7s6dO6c+ffqoZs2aevLJJ+3euDGrUu5vJylLM+4aNmwoN7ekH8nHH39cpUuXzrDN+fPn9eeff0qSWrVqleW99QAAAAAgM44fP66uXbvqxo0bmjJlisLCwpxdUhp58+ZNdW7vqiYppfw31tWrV++0pDSKFCliOb5+/brD+wcAALhX5Zb7UT8/P8txbrkfJbhzooiICA0fPlz169fXSy+9ZHe7nTt3qnv37rp165bN4G748OFav369oqOjdfjwYb344os6f/68o0pPwxE/0CEhIXr22WclpU3ibZkyZYqMRqPy5cunoUOH3nENAAAAAJCREydOqEuXLrp+/bqmTZumFi1aOLskq27/YGNW9kf38fGxHGfljZaMpPy3nyvs3w4AAHA3yE33o97e3pbj3HI/at8OfcgW06ZN09WrV3X06FG1atXKrjY3btxQZGSk5dxWcLd3795U5zExMdqzZ4+Cg4OzXnA6zGZzqnN3d/cs9fPaa6/p/Pnz+vHHH9W2bVvVqFHD5rXz58/X999/Ly8vL02cOFFBQUFZGhMAAAAA7HX27Fl169ZN165d07Rp09S0aVNnl2RTymV/JGVpS4P4+HjLccpPOztKYmKi5djeD3ACAADkZrntfjQhIcFynFvuRwnunCj5hzQiIkIRERFZ6sNWcFe1alVt377dcu7p6anQ0NAsjWGPsmXL6sCBA5IkNze3TG0AmZK3t7dmzJihuXPnqlu3bqpXr56aN2+uypUrq1ChQjIajTpy5IgWL16sdevWqWTJkhozZowaNGjgyJcDAAAAAGlERESoe/fuioyM1OTJk136TRJJKlGihHx8fBQbGyspaTmlzEr5qeaU+5KnFB0drQkTJujPP/9UjRo1NHr0aHl5ednVf3R0tOU4X758ma4PAAAgN8mN96Mpg7vccj/KUpl3OVvB3YQJE9S4cWPlyZNHZcqU0aRJk2xe6whvvPGGSpYsqbx586p3796pllPJLHd3d/Xp00dr165VnTp1tGLFCvXp00fNmzdXmzZt9O6778rX11cTJkzQ8uXLCe0AAAAAZLuoqCj16tVLZ8+e1YQJE+xejujy5cuWfblzmpubmypVqmQ5P3LkSKb7SLktQvHixa1e895772nx4sU6duyYli5dqhUrVtjd/5UrVyzHpUqVynR9AAAAuUVuvR+9deuW5Ti33I8y486JPv7442zru1ixYvr000+zrf/b1alTR2vWrHFonwEBAerZs6d69uzp0H7hWgwGgwoVKiRvb28ZDAaZzWa5ufGZAgAAALgOo9Gol156SQcPHtTo0aP1+OOP2932p59+0urVq7V48eJsrNC2Fi1aaOfOnZKk3bt36+bNm3Z/kjg+Pl6XLl2ynNesWdPqdatWrUp1fubMGbvrS/mp66pVq9rdDgAAIDfJrfejRqNRV69etZznlvtR3h0H4FQeHh4qVaqUihYtqiJFiqho0aJZ3iMRAAAAyA7vvPOONm3apAEDBujZZ5/NVNstW7Zk6+onGXn00Uctx0ajUX/88YfdbU+fPm3Zzzw4OFglSpSwep3RaEx1/sADD9jVv9ls1p49eyznDRs2tLs2AACA3CS33o9euHDBcj9atGjRXHM/SnAHAAAAAIANS5Ys0eLFi9W2bVsNHDgwU23Pnz+vLVu2pLvkzooVKxQWFqbatWtr0KBBqZbqcYQSJUqoZcuWlvP58+fb3Xbr1q2W4+eff97mdRUqVLAcN2rUyO43PPbs2WPZ7z0kJET169e3uzYAAIDcIjffj+7bt89y3KFDB5vX3Wv3owR3AJzKZIxXbPhh3fhnra7/uVw3/lmr2PDDMhnjnV0aAAAAcrnDhw/rnXfe0f3336933nknU21NJpNGjx6thIQElS5d2uo1f//9t4YOHarjx4/r5s2bWrlypV566SXLp4od5ZVXXpGnp6ckadeuXfrtt9/sape85FDBggXTfaOkffv2luMmTZrYXVfKN2169+4tg8Fgd1sAAIDcILffj27fvl2SlC9fPj399NM2r7vX7kcJ7gA4Rey5I7r04xSd+qCLzs0focvLP1bk6nm6vPxjnZs/Qqc+6KJLP05R7LnMb1gKAAAA3Cmj0ahXX31VHh4emjx5sry8vOxue/z4cb344otat26dJNlcmujXX3+VyWRK9diff/6pkydPZrlua0qXLq1XXnnFcv7mm2+m2rvOmo0bN2r79u1yc3PTBx98oAIFCti8tn379pZPJ9tb+7Zt2/TLL79IStqrJL1gEAAAIDfK7feju3fv1oEDB2QwGNS/f/9cdT/q4ewCAOQuprgYRa5doJs716R7nTkxQVF7Nyhq7wblq9lSgc27ys3bN4eqBAAAQG73888/6+DBg/L09FTbtm3tbhcfH6/o6OhUj9n6hLMtt7954gjdunXT5cuXNXv2bEVGRqpr166aPXu2QkJC0ly7e/duDRkyRJ6enhozZoweeuihdPt2c3PTjBkzNGDAAC1evFgVK1bU008/bfMTy3///bcGDRokk8mkihUrasaMGS7z6WYAAABXsXz58lx7P3r06FFNmzZN7u7u6tWrl6pXr55u3/fa/ajB7Og5jwDSFR8fn2rDy2TVqlXL1Kcm7kbGm5E6v2i0EiLDM93WM7C4gju+JY98gdlQGQAAAHKrhIQE7d69O9Vj1atX16JFizR+/Pg77j8gIEBbtmyx+tzff/+tjh07pnpjpGLFivrhhx/k7u5+x2Nbs2bNGo0ePVoRERHKmzevnn32WTVo0ED+/v66cOGCfvvtN/34448qXbq0Ro8erTp16tjdd2JiohYsWKDp06fL399fzZo1U61atRQUFCQvLy+dP39ea9as0S+//CKTyaS2bdtq2LBhKliwYLa8VgAAgLuFtXvSXbt2acKECXfc9912P7pmzRotW7ZMwcHB6tGjhypVqiTJvvfP75X7UYI7IIfl1uDOFBej8M+GZym0S+ZZKETFu73HzDsAAAA4THYHdzVr1tTixYttPr9ixQpNnTpVFy9eVJ06dTRq1Cirnzp2pJiYGK1bt06rVq3S0aNHFRERoZiYGBUqVEhVqlTRo48+qrCwMHl4ZG2RnqioKC1btkx//PGH9u/frytXrshgMCggIEDFihVTw4YN9cgjj6hChQoOfmUAAAB3p+wM7u62+9FKlSopNDRU9evXTxUeZub987v9fpTgDshhuTW4i1gxM8PlMe2Rr9YjKhz2ggMqAgAAAGwHd56enk6qCAAAALkN96T/ya3vn6fk5uwCANz7Ys8dcUhoJ0k3/16t2HNHHNIXAAAAAAAAAACuhOAOQLa78ecKB/f3i0P7AwAAAAAAAADAFWRtwXoAsJPJGK9bB6xvfppVtw5slunxvnLzSJoafeOftTLFRsng7imDh6c8CxaVb+lqadqZTYlKuHJeBg9PGdy9kv7r4SmDu4cMbtmz2SoAAAAAAAAAAPYiuAOQreIvnpQ5McGhfZoTExR/6ZR8iiVtHhp321KceSs1sBrcmWKidHbWIOudurn/G+R5JQV5Hv8Ge+6eqf/77/M+IaEqUKdV2jES4hS1e53k7im32/uwHHvJ4PHvGCmek5uHDAaDY75IAAAAAAAAAIC7DsEdgGwVH3Eme/q9dNoS3HkUCEr1nMHD+ial6QaIpkSZ4xNljo+1a3yDwU2yFtzFROnyytl29WGl11QBX97Q+ir0WO80VyXG3NTlFbPSCQWth43Wwkg333zy8PPPYr0AAAAAAAAAAEciuAOQrcwJ9gVhme83znJs8PBM9ZzB3fP2y5PaGOMdNv7tY1rGuKPZhWaZjfGWOk02vnamuBjdOuiY5Uf9qj6soDZpZyEab0Tq7JyhVmYdWplFaFl6NO0sQoO7l7wKh8i3VNW0rzYxQfGXw/+bgeh+W+jI7EMAAAAAAAAAuQzBHYBsZfD0yaZ+vS3HZmPqsMxmqGZ03JKdtsNBR46RhZmDmR3D1uxEY5xMMTcdMoZf9WZWgzvjzSsKnzPUdsN/Zwm6eXj+u/TobQFiilmEvqWrK/8Dj6bpwhR7Szd3r7M96zDNfoe3LWXK3ocAAAAAAAAAchDBHYBs5VW4RPb0G1TScmy8finVc7aCO5MjQ7WcCAc9rP8V7dhw0NYYRseNkdXXkWiUOdGoxH8nVyamc6mbbz6rjxtvXVfkms/sqNIGg5sl1MtXvakCW3RLO8bNK7r8y6fWw780oWDK5UvTLnPqnqeAPPIVzHq9AAAAAAAAAO5qBHcAspVXkdIyuHs6dpaYu6e8gkpZzs2mRHkVLStzYoLMxgS55ylgvWFOzFRLdORynLZmw+XEjLu77HVk1/KoZpPMCXFJf2zUa4qNUvSRP+9snH/lq/mICrd6Ic3j8ZHhCp833MrehUnHybMSk469LDMU9e9zKZcy9SpSRr6lqqR9HQlxSog4Y2OfRE/JzYPlSwEAAAAAAIBsRnAHIFu5eXgpb6UGitq7wWF95q3UMCmc+FfQE/3tauddrLxKvjRH5sR4mY1JIV9S2Hf7+b+PJRr/ey4x9fPeweWtD+LmIc/A4lb7kMyZep02wyiHhoO2xnDgjDtbs/ocGqTmwOvIkVmWNsZIiJc5Pkbm+Jg7HiN/7TCrwZ3x6gWFfzY8veqszx60svdhngp1lL9mizQ9JN66/t/SpWlCSHuWMvVg+VIAAAAAAADc0wjuAGS7/HVaOTS4y18nLEvtDO6e2b4MoU+x8irRd2qax81ms2RKTBvoWYLC20LExAR5FrK+zKh7Xn/lq/WIzEajlRAy+dj64zKlDrKcO+POgWNk14w7e8bIkQAy+8fIeClZ878/nxl/TT0LFrX6uPFGpK789nmG7dPl5i6Dh6cK1G6lgKYd0zydcPWCLq+ck2JZUmv7GKZ8PG1gmDxr0cOvoDzyB95ZvQAAAAAAAEAmENwByHY+xSooX82WurlzzR33la/WI/IpVsEBVeUsg8EguXskzT7z9r2jvrwCi6twWNrlFO1hNptSBXpuNkI1z8IlFfTU0P+uTTdsTEj9+G3Pe+S1vnRpjsxUu9vGsBlAOnIM69/zu2YpWVOizPGJMptNVp9OjL6pmOM773wcSQXqtVZgi65pHo87f0znFr753yxBq7MF05tF+N8sRe/iFeRb0srSpXExio84baPdv/0y+xAAHMJgMKhQoULy9vaWwWCQ2WyWm5ubs8sCAABALsI9KVIiuAOQIwKbd1Xs6f1KiAzPch+ehUIU2KyLA6vKfQwGNxk8vSVP73Sv8/Dzl1+lhtlai2/paio1+LPbZhveNovQykzENI8nGuUdXM7qGAYPT3kFlUzq10romBn3zOxEmzPucmAJVocGkLaWYM2Z12GZfRgXfUdjFGjQ1mpwF3/5jM4teD2DAt2szx68Lezzq/yg8tVolqa58Uakbu753Xo4aCuM9PCQwd3Lsoeiwd2TvQ8B3PU8PDxUqlSpjC8EAAAAsgn3pEiJ4A5AjnDz9lVwx7d0/ssxSrh8NtPtPQuFKPj5UXK7w9lqcB0Gdw+558mfrWP4lqyskN6TrD5nNpulf2cRmowJUmJCqv/eHvR5Fba+dKlH/sLKX6dVOqGjjRmJicnLlyZa+nLmzEEZHbmvYU68DlshZ068DhcJa80mmRPiZE6IS/cyW3tyJly7qKu/f5nxOBlx91DBhu1V8OFn0jwVf+mUItd8Jt22DKlbmqVMrYWOqZcy9chf2OrSpWZz0v6hBIgAAAAAAOBeQHAHIMd45AtU8W7vKXLtgkwtm5mv1iMKbNaF0A4OZTAYkmYMeXjqThYe8AoqqUKP9Mxye7Mp0bIMqa0Qx7t4BRX533DrQWCagNCYdoZiiufd8/pbHcOUEzPVHLkcZ46Eatn/OtzuhWVeE42SjcwsMfqGYk7uccgw/o2eUcDDHdI8Hnt6n84vGp16dmCmliz1sOyD6FuqqnxKhKZ9HTFRir90ysY+icnHHixfCtylTMZ4xV88qfiIMzInxMrg6SOvwiXkVaS0zWXFAQAAAEfinhQpEdwByFFu3r4q3Kqv8t3fXDf+/EW3Dmy2+ia4wd1TeSs1VP46YXflnnaAvQxu7klv9qezfKmHX0F53Fc3W+vIW7GuSr/yedqlS22FhP9eY222olfRslbHMHj5yKtoudQzE1P0LZP9s+VyJBzMkVDN1oy7nBjDRWYO2jtGejM57Zx9mKHGz1kN7uIuHNOFL8dk3N7Nw+aSpclBYv4azeVXtVGapglXL+jmnvVJYe6/sxKT/usleXjILVVIaH3PRIO7Z9J+qsw+BOwSe+6Ibvy5QrcObEnnfrSB8tdpxf0oAAAAsgX3pLCG4A6AU/gUqyCfNhVkeryv4i+dUvyl0zInxMng6S2voJLyCirFp0mAHGRwc5fBO4+U/vaHdyRPmRrK07OGzefNZpPdswhtLV3qWTBYBeq3trJHYvJSpkabfVqWLzWbJOXQkp829+rLiTEcuKyozZAzJ8ZwoaVkTUaZ440yx8favCRPGeu/AwlXzuvaH9/YN04GApp2kn/Ddmkejw0/rCtrF6a/j2HKx9M8919g6Fkw2MbSpSbJbGb2IVyaKS7GrhUgzIkJitq7QVF7NyhfzZYKbN6VFSAAAADgENyTIj0EdwCcys3DKynE4xMjQK5nMLjJ4Omd7uzDjHgXLSPvomXuqA6zKTFp6VI367dJPqWqqmiHN/4N+6zPHvwvMPzvcZMx3rKvYnJw6O5X0HoN98psOAcuwWpzWdEcWII1R5aSdeD3Q+7WQ7PEW9cVe+aAQ4YIaNZZ/g3apnk85uhOXfjmXcnN3crSpdaWKLUSIP773zzlasonxMrSpbeuK+7iSSthY1Kfbh6eSUshu3sy+xBpGG9G6vyi0UqIDM9Uu5s71yj29H4Fd3xLHvnShtYAAACAvbgnRUYI7gAAAFIwuLnL4GX702se+QrKI5/1wM1R/Ko1Vt7KD1rf09DWjEQrexqaE43yKlLa6hjuPn7yLl7RSuj438zE5NmHGcmJ2XDKiRmQOTGrL0dmcubEUrI2AuHkMUyJSSF4gu3Zhxlx981nNbiLPXtQF5e8b1+d7kkhnpuNADF/nVbyq9QwTbv4iNOK2vuH7RmJKfuy7HdofZlUubkTILoIU1xMlt4gSZYQGa7zX45R8W7v8SlnAAAAZAn3pLAHwR0ApzIajQoPD5eXl5fc3NxkMpkUFBQkdxuzBQAgNzAY3JKCEQ8vSXmzZYw8FR5QngoPpHtN0uxD27MILeFg4ZJW23sFlZJ/w6dShItWlijNYOnS5JlotpZPvvv2Ncz+GXc5MoatJVhzJIC0fwlWc2LS/puJNrY/zFv5QauPx18+q2ubl9o9TnoCH+mhAnUeT/N4zMk9urJuUcZLltqasZgiJPQqVML60qWJRplNiUltDW4OeT13s8i1C7L8BkmyhMtnFfnbQhUOe8FBVQEAACA34Z4U9iC4A+BUZrNZly9fTvVYoUKFCO4AwAUkzT50l7x8stTeO7icvIPL3VENZrNZMhklG6FDnvIPqOjzoySjUaaUS5emCQetLGV6W2DontfGTMqcCAcduuegreVRs3/GnemuCyCdNwMy8dY1xZ074pAxCj3WW/kfeCzN47cObdOl7z9KOnH3sLJ8adoZgtZnEXoo73315FO8YpoxjDciFX/pZIpQ0XbYKDcPp80+jD13JMP9Q+x18+/VylejGUu9AwAAIFO4J4W9CO4AAADgsgwGg81lMiXJI1+APPIFZGsN+R94TPlqPWIlFLQ9SzBtUJj0x9bsRPc8BeRTsrLVJUtTtpfMGdabI2GUjVAtR0LOu215VFdZSjbRmBRWx8dkaQjPgkWtBncxp/cp4scpdvZiSCck9JR/w6eU9766aVrFnT+mqH0bU89ETBUK3tbfv2GjV5HSlpmGN/5ckaXXbcuNP3+RTxveJAEAAID9uCeFvQjuAAAAgAwYDG4yeHpLnt7Z0n/e0HrKG1ov3WuSZx/+F+hZX3rU00Y46F2sggo26vBvKJg6VDQZ45OCHWO8TMak5SVT/jfleEo02gwHTQ6dqZYTy6PmwBg5EKQ6dynZzMyANP/7M2u9jSk2yurj8ZdO6fq2nzIxjuQVXE4hPZL2QjQZ43XrwJZMtc/IrQObZXq8r+Vrf2nZdMuSRwHNOsu3ZOU0baL2/aHrDnqzhjEYgzEYgzEYgzEYgzFcfwzPwOIKenKApJy5J8W9g+AOAAAAuAskzz40uHtKWdiE3Kd4BfkUv/NPY5rNJpvP+VV+UN7BZa3MTLRzn8MUswvd/QpYH99kSlo6NZ067OXUGXcODNXk4cQ9B42uucxrymV64y+edOzXW0nfv/hLpyxLExncPRQXfliSZIq9ZbWNMeqq5Zo7xRiMwRiMwRiMwRiMwRiuP4ZXkdKW45y4J8W9g+AOAAAAgN0MNvYblHJm6VL/ek/Kv96TMpsSUyxfGm9jydL0g0KvwOLWX0f+QPmWqX7b0qX/9W8yJkj/HmckJ/YcdLM1O9Ghew7amtWXA3sOZuENDs8CQZbj+IgzWa4pPfGXTlveJPFIMR4AAAAg5fw9Ke4dBHcAAAAA7joGN3cZvNwlLx+H9+1X+UH5VX4ww+vMZrPVJUZThYOFS1ht61Oysgo26WhjT8Tbw8YUj1sJI23OuEt05Gy4u2w/QPf/vibmhNislpQuc0Kc5djmvo8AAADIvXL4nhT3DoI7AAAAAMgCg8EgeXjK4OEp2/MQrfMJuU8+Ifc5pA6z2Wz18Xw1mv07czDtvoZpAkNbMxT//a97HutLl0oGGTy8/g3XrNdhL4cGdylCS4On48PdpH7/2/PSkQEmAAAA7hE5fE+KewfBHQAAAADcxQwGg9XHc2Lp0oIPPqWCDz6VFB6ajCn2M7x9tqCVsPDfWYTJsxU9Cxa1/joKFpFvuZopgkVjmuVLkx+XKenNkYTrlyztbc16vFNeQSUtx8YU4wEAAABSzt+T4t5BcAcAAAAAuCMGg0Fy90zap87b16F956vWWPmqNbbrWrPZ9G+Yl2h5zKtIaRncPbO0V54tBndPeQWVspx7F69o2efOq5D1vRN9QiqpYJOODhmfMRiDMRiDMRiDMRiDMVx/DHc////6z4F7Utw7DGZb66oAyBbx8fHas2dPmserVasmLy8vJ1TkXAkJCdq9e3eqx6pXry5PT/YJAQAAgGNc+nGKovZucFh/flUbK6jNSw7rDwAAAPc+7kntw/vnyvRWDAAAAAAA3FXy12nl4P7CHNofAAAA7n3ck8JeBHcAAAAAgHuaT7EKylezpUP6ylfrEfkUq+CQvgAAAJB7cE8KexHcAQAAAADueYHNu8oz0PreJfbyLBSiwGZdHFQRAAAAchvuSWEPgjsAAAAAwD3PzdtXwR3fkmehkCy19ywUouDnR8nN29fBlQEAACC34J4U9iC4AwAAAADkCh75AlW823uZXqIoX61HVLzbe/LIF5hNlQEAACC34J4UGfFwdgEAAAAAAOQUN29fFW7VV/nub64bf/6iWwc2y5yYkOY6g7un8lZqqPx1wtg/BAAAAA7FPSnSQ3AHAAAAAMh1fIpVkE+bCjI93lfxl04p/tJpmRPiZPD0lldQSXkFlZKbh5ezywQAAMA9jHtSWENwBwAAAADItdw8vJLeMOETzAAAAHAS7kmREnvcAQAAAAAAAAAAAC6AGXcAAAAAgFzLaDQqPDxcXl5ecnNzk8lkUlBQkNzd3Z1dGgAAAHIJ7kmREsEdAAAAACDXMpvNunz5cqrHChUqxJskAAAAyDHckyIllsoEAAAAAAAAAAAAXADBHQAAAAAAAAAAAOACCO4AAAAAAAAAAAAAF0BwBwAAAAAAAAAAALgAgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AII7gAAAAAAAAAAAAAXQHAHAAAAAAAAAAAAuACCOwAAAAAAAAAAAMAFENwBAAAAAAAAAAAALoDgDgAAAAAAAAAAAHABBHcAAAAAAAAAAACACyC4AwAAAAAAAAAAAFwAwR0AAAAAAAAAAADgAgjuAAAAAAAAAAAAABdAcAcAAAAAAAAAAAC4AII7AAAAAAAAAAAAwAUQ3AEAAAAAAAAAAAAugOAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAAAAAAAAAXADBHQAAAAAAAAAAAOACCO4AAAAAAAAAAAAAF0BwBwAAAAAAAAAAALgAgjsAAAAAAAAAAADABRDcAQAAAAAAAAAAAC6A4A4AAAAAAAAAAABwAQR3AAAAAAAAAAAAgAsguAMAAAAAAAAAAABcAMEdAAAAAAAAAAAA4AII7gAAAAAAAAAAAAAXQHAHAAAAAAAAAAAAuACCOwAAAAAAAAAAAMAFENwBAAAAAAAAAAAALoDgDgAAAAAAAAAAAHABBHcAAAAAAAAAAACACyC4AwAAAAAAAAAAAFwAwR0AAAAAAAAAAADgAgjuAAAAAAAAAAAAABdAcAcAAAAAAAAAAAC4AII7AAAAAAAAAAAAwAUQ3AEAAAAAAAAAAAAugOAOAAAAAAAAAAAAcAEEdwAAAAAAAAAAAIALILgDAAAAAAAAAAAAXICHswtAaocOHdLSpUu1fft2nT17VjExMcqbN6+CgoJUo0YNtWzZUg8//LAMBoNT62zWrJnCw8Oz1HbhwoWqV6+eXdfevHlTX331ldasWaOjR4/KbDYrJCREdevWVceOHVWuXLks1QAAAAAAAAAAAOBqmHHnIs6dO6f+/fvrueeek6enp0aOHKkVK1Zo7dq1mjlzplq2bKnVq1erT58+at++vU6dOuXskrOsUqVKdl23efNmPfbYY/rwww9Vvnx5LVy4UMuXL9eAAQO0ZcsWPfHEE5o1a1Y2VwsAAAAAAAAAAJAzmHHnAnbt2qUXXnhBgYGBWr58uYKDg1M9X6RIEdWsWVPPPPOMunfvrn379qlDhw5asmSJQkJCnFS15O/vr4IFC2aqTeHChZU/f/4Mr1u3bp0GDhyohIQEDR06VH369LE8V7x4cTVu3FgdO3bURx99pPPnz+vtt9/ObPkAAAAAAAAAAAAuheDOya5cuaK+ffvq2rVrWrRoUZrQLqWiRYtq0qRJateuna5evaphw4bpyy+/zMFqU+vUqZMGDhzo8H5PnTqlIUOGKCEhQQ8//HCq0C6Zr6+vJk+erLCwMH311VeqVKmSOnTo4PBaAAAAAAAAAAAAcgpLZTrZzJkzdeXKFd1333127dcWGhqqhx56SJL0119/afv27dldYo4bM2aMoqOj5ebmpmHDhtm8rmTJknryySclSePHj1dEREROlQgAAAAAAAAAAOBwBHdOtnLlSklSQkKC3W0aNmxoOV63bp3Da3KmHTt2aOPGjZKSXmeFChXSvb5du3aSpJiYGH3yySfZXh8AAAAAAAAAAEB2IbhzoujoaF28eFGSdOzYMW3YsMGudiVKlLAcnz59Oltqc5bZs2dbjtu0aZPh9bVr15a/v78k6dtvv1VUVFR2lQYAAAAAAAAAAJCtCO6cKCYmJtX5hAkT7Grn6+trOY6Pj3doTc508+ZNbdq0yXLeqFGjDNu4u7vr/vvvl5T0tfj999+zqToAAAAAAAAAAIDsRXDnRAEBASpcuLDlPHn2XUauXr1qOQ4ODnZ4Xc6ybt06y5KhpUuXVsGCBe1qV7lyZcvxr7/+mi21AQAAAAAAAAAAZDeCOycyGAyaPHmy6tSpowoVKmjYsGF2tdu7d6/l+L777suu8nLczp07LcdVq1a1u13KffD27dvn0JoAAAAAAAAAAAByioezC8jtateurS+++MLu681ms1avXi1J8vDwUFhYWHaVlilbt27VihUrtHPnTl24cEGxsbEqXLiwatWqpWeeeUZ169bNsI8jR45YjosXL2732EFBQZbjs2fPKjY2Vj4+Ppl7AQAAAAAAAAAAAE5GcHeXWbduncLDwyVJLVq0UEBAgFPrSUxM1KhRo7RkyRJJSfvvBQQEyGQyKTw8XOHh4Vq2bJmeeeYZvf3223J3d7fZ19GjRy3HxYoVs7uGlMGdyWTSyZMnFRoamoVX41xGo1EGg8HZZeQ4o9Fo12MAAABAduB+FAAAAM7GPel/cuvrTong7i6SmJioKVOmSJLy5MmjV155xckVSSNHjtTPP/+sF154QW3btlXZsmUtz+3YsUNjxozRoUOH9M033ygmJkYffPCB1X5MJlOqvfsKFChgdw1+fn6pzq9du5a5F+EiDhw44OwSXMb+/fudXQIAAAByMe5HAQAA4Gzck+ZeBHd3kQULFujgwYOSpDFjxqhEiRJOrWf58uW6ePGiFi5cqPvvvz/N87Vr19ZXX32lp59+WseOHdOyZcvUqFEjtWnTJs210dHRqc4zs9Slt7d3un0BAAAAAAAAAADcDdycXQDss3fvXn300UeSpOHDh+vJJ590ckXSiRMn9Oabb1oN7ZLlzZtXb7/9tuV88uTJSkxMTHPdrVu3Up1nJri7/drb+wIAAAAAAAAAALgbENzdBS5duqQBAwbIaDRq1KhR6tGjh7NLUvfu3dW3b1+1b98+w2vr1q1r2XPu3Llz2rhxY5prbt/bzWw2212LyWRKde7mxo81AAAAAAAAAAC4+7BUpou7ceOG+vTpo4iICL3//vtq3bq1s0uSJHXu3DlT1zdp0sSyzOe2bdvUuHHjVM/nzZs31XlsbKzdfcfFxaXb192iUqVK8vT0dHYZOc5oNKZZr7ly5cry8OCvJwAAAGQ/7kcBAADgbNyT/ichIUEHDhxwdhlOlfu+63eRmzdvqkePHjp+/LimTZumZs2aObukLKtcubLl2NovXZ48eWQwGCwz7W4P49ITHx+fpq+7kYeHR64M7qzhawEAAABn4n4UAAAAzpZb70kzsxrfvYo1BV3U9evX1a1bNx09elSzZs26q0M7SQoJCbEcX716Nc3zBoNB/v7+lvPr16/b3ffNmzdTnQcEBGS+QAAAAAAAAAAAACcjuHNBV69eVdeuXXXixAnNmTNHDRo0cHZJdyzl8pXR0dFWrylXrpzl+Pz583b3ffHiRcuxp6enSpUqlYUKAQAAAAAAAAAAnIvgzsVcv35dPXr00OnTpzVnzhzVrl3b2SU5hMlkshzbWsqyfPnyluNz587Z3XfK4K5kyZK5cvowAAAAAAAAAAC4+xHcuZCoqCj17NlTJ0+e1Ny5c1WrVi1nl2TVzJkz1bBhQ7Vr104RERF2tUk5yy5//vxWr6levbrl+ODBg3bXc+TIEctxjRo17G4HAAAAAAAAAADgSgjuXER8fLxefPFFHTlyRLNmzVLNmjUzbJOQkKABAwYoJiYmBypM8tdff2nSpEmKjIzU/v379d1339nVLuWsuJQz61Jq2rSp3N3dJUlHjx5VVFSUXX3v27fPcty8eXO72gAAAAAAAAAAALgagjsXYDab9dprr+mvv/7S1KlTVbduXbvaHThwQFu2bJGvr282V/ifnTt3pjqPi4uzq92xY8csxyln1qUUEBBgee0mk0lbt27NsN/4+Hjt2rVLUtISnA899JBd9QAAAAAAAAAAALgagjsXMGPGDC1fvlxjx45V48aN7W63cuVKlSxZMhsrSyvlMpeenp5q06aNXe02b94sSfLy8lKTJk1sXtejRw/L8Q8//GBXvzdv3pQkdezYUT4+PnbVAwAAAAAAAAAA4GoI7pxs/fr1mj59uvr166d27drZ3S48PFyLFy+2GdydO3dOffr0Uc2aNfXkk09agrM71bBhQ7m5Jf3YPP744ypdunSGbc6fP68///xTktSqVSv5+/vbvPbhhx9WvXr1JEm///67zpw5k27fyUt1+vn5qVevXna8AgAAAAAAAAAAANdEcOdEERERGj58uOrXr6+XXnrJ7nY7d+5U9+7ddevWLZvB3fDhw7V+/XpFR0fr8OHDevHFF3X+/Pk7rjkkJETPPvuspKSlKe0xZcoUGY1G5cuXT0OHDs3w+jFjxqhAgQJKSEjQxIkTbV63d+9erVmzRpL01ltvpRsIAgAAAAAAAAAAuDoPZxeQm02bNk1Xr17V0aNH1apVK7va3LhxQ5GRkZZzW8Hd3r17U53HxMRoz549Cg4OznrB/3rttdd0/vx5/fjjj2rbtq1q1Khh89r58+fr+++/l5eXlyZOnKigoKAM+y9durSmTJmiPn36aNWqVfr888/VuXPnVNdcu3ZNQ4cOldlsVrdu3dS6des7fl0AAAAAAAAAAADORHDnRJcvX5aUNPMuIiIiS33YCu6qVq2q7du3W849PT0VGhqapTFu5+3trRkzZmju3Lnq1q2b6tWrp+bNm6ty5coqVKiQjEajjhw5osWLF2vdunUqWbKkxowZowYNGtg9RoMGDbRo0SINGjRI48aN05EjR9ShQwcVLFhQ//zzjz766COdO3dOr776KktkAgAAAAAAAACAewLB3V3OVnA3YcIEvf322/rzzz9VpEgRDR061Oa1WeHu7q4+ffrof//7n77//nutWLFCkydP1vXr1+Xj46OAgABVqVJFEyZMUKtWreTl5ZXpMapXr67ly5frxx9/1LJly9SnTx/dunVLxYsX18MPP6zOnTurTJkyDntNAAAAAAAAAAAAzmQwm81mZxcB5Cbx8fHas2dPmserVauWpYDzbpeQkKDdu3eneqx69ery9PR0UkUAAADITbgfBQAAgLNxT/of3j+X3JxdAAAAAAAAAAAAAACCOwAAAAAAAAAAAMAlENwBAAAAAAAAAAAALoDgDgAA4P/s3Xd4lFX6xvF7WhrpFZCuIipgL9jWhmtFwIaNKtgA94e66KqoFBWlKRYEXRUbugiKoujCYgFRUFlBV4qElgSSkJ5Mkqm/P5IMCZkkk2SSmcD3c11evDPve877TECYzJ3nHAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAAAAAAAQBAjuAAAAAAAAAAAAgCBAcAcAAAAAAAAAAAAEAYI7AAAAAAAAAAAAIAgQ3AEAAAAAAAAAAABBgOAOAAAAAAAAAAAACAIEdwAAAAAAAAAAAEAQILgDAAAAAAAAAAAAggDBHQAAAAAAAAAAABAECO4AAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgQHAHAAAAAAAAAAAABAGCOwAAAAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAAAAAAAQBAjuAAAAAAAAAAAAgCBgDnQBAOCrn3/+WcuXL9fPP/+sffv2yWq1KjIyUgkJCerdu7fOOeccXXHFFQoJCQl0qXXasmWLPvnkE23YsEF79+5VcXGxIiMjFRsbqxNOOEFnnXWWrrnmGrVr165J82dlZenzzz/Xd999p127dik3N1cGg0HJycnq0aOHrrjiCl1yySWKiIjw8ysDAAAAAAAAADQXwR2AoLdp0yZNnTpVf/75pwYMGKBx48apffv2stvt2rdvn9asWaNly5bp448/1nPPPacnn3xSl1xySaDLrmHnzp2aNm2afvzxR1155ZUaOXKkOnXqJEnKzMzUjz/+qI8++kiff/65Zs6cqQcffFA33nijz/M7nU698sorev3112W1WnXhhRdq3Lhx6ty5s4xGo9LT0/XVV1/poYceUnx8vKZMmaILL7ywhV4tAAAAAAAAAKApDG632x3oIoAjic1m0+bNm2s936dPn6DuFGspdrtdmzZtqvFc3759ZbFYJEkLFy7U008/rVNPPVWzZs1SSkqK13l27dqlMWPGaPfu3TIYDJo0aZJuueWWFq/fF19++aUefPBBde7cWXPnzlWPHj28XnfgwAHdfffdnq/H6NGj9cADDzQ4v81m04QJE/Tvf/9boaGhmjVrli699FKv127YsEHjxo1TXl6e7r//fo0ZM6bpLwwAAOAw0ND7UQAAAKCl8Z70ID4/Z487AEHsgw8+0LRp09SlSxe99tprdYZ2ktStWzctWLBA4eHhcrvdmjZtmn799ddWrNa7b7/9Vn/7298UHh6uN998s87QTpISExO1YMECJSUlSZIWLFigL7/8ssF7TJ06Vf/+978lSY899lidoZ0knXHGGXruuedkMBg0c+ZMLVmypJGvCAAAAAAAAADQUgjuAASl7OxsTZ8+XZJ02223KTw8vMExXbt21U033SRJcjgcmjFjRovW2JDy8nI99thjcrlcGjRokCeQq09sbGyNLrgZM2bI4XDUef2aNWv0wQcfSJJOOOEE3XDDDQ3e4/zzz9dFF10kSZoyZYqys7MbHAMAAAAAAAAAaHkEdwCC0meffaaSkhJJFYGcr6666irP8fr165WRkeH32nz1zTffaP/+/ZKa/hr27NmjjRs31nntK6+84jluzNKgQ4cOlSRZrVbNnj3b53EAAAAAAAAAgJZDcAcgKH3//fee4+3bt/s8rlevXjKZTJ7HP/30k1/raoymvoaEhAS1b9/e87iu17Bjxw7POYPBoIsvvtjne5x++umKjIyUJC1btkwFBQU+jwUAAAAAAAAAtAyCOwBBKTMz03M8b948HThwwKdxISEhioqK8jzOysrye22+qv4aPvzwQ23bts3nsQkJCZ7jul7DDz/84Dnu2LFjjTENsVgsOvnkkyVVbH5btUceAAAAAAAAACBwCO4ABCW32+05Liws1KJFi3wea7FYPMcul8uvdTVG9ddgt9v1xhtv+Dw2JCTEc+x0Or1e88cff3iOu3Xr1uj6unfv7jletWpVo8cDAAAAAAAAAPyL4A5AUOrTp0+Nx2VlZT6Nczqdys/P9zxOTk72Z1mN0tTXIEk5OTme45SUFK/X5Obmeo6rdxn6qvpynFu2bGn0eAAAAAAAAACAf5kDXQAAeDNhwgQVFxdr48aN6tSpk26++Wafxm3btk12u93z+NDwrDUNHz5caWlp+v777xUfH6/Ro0f7NK6goEB79+71PK7rNZSWlnqOQ0NDG11feHi45zgjI0PFxcWefe8AAAAAAAAAAK2P4A5AUEpMTNQLL7zQ6HErV670HHfr1k1HH320P8tqlHbt2unpp59u9LhVq1Z5ltmMiorSWWed5fW6iIgIz7HVam30fUwmU43Hu3btUu/evRs9DwAAAAAAAADAP1gqE8Bhw+FwaOnSpZ7Ht9xySwCraboPP/zQczx48OA6u+mio6M9x9WXB/VVWlpajcdFRUWNngMAAAAAAAAA4D8EdwAOG0uXLlV6erokNWp5zWCybt06bdy4UVJFt91dd91V57XVuwm3b9/e6Hv95z//qfG4pKSk0XMAAAAAAAAAAPyH4A7AYaGwsFBz5syRVLEE5DPPPKOQkJDAFtVIDodD06ZN8zyeNGmS4uPj67z+5JNP9hzn5+dr27ZtPt9r5cqV2rFjR43nmrLcJgAAAAAAAADAfwjuABwWpk2bpgMHDkiSHnnkEZ1xxhkBrqjxXn75ZU/n3KhRozRgwIB6rz/llFN01FFHeR5/8sknPt2nuLhYTz31VI2xktpc0AkAAAAAAAAAhxuCOwBt3pIlS/Txxx9LkiZOnKhbb701sAU1wbp16/TKK69Ikm6//XY9+OCDDY4xmUwaOXKk5/E777xTa9+6QzmdTj388MPq0aOH/vKXv9Q4165duyZUDgAAAAAAAADwF4I7AG3aTz/9pEmTJslgMGjSpEk1gqy2IjU1Vffdd59cLpdGjx6tRx99VAaDwaext956qy666CJJUllZme6++27l5uZ6vba0tFR///vftX37dk2bNk0Oh6PG+cjIyOa9EAAAAAAAAABAsxDcAWiztm7dqnvvvVcul0tPP/10m+y0279/v0aPHq2CggLdd999euCBBxo13mAw6IUXXtB1110nSdq2bZsGDBigRYsWKSsrS06nU/v379cHH3yggQMHau/evXrvvfeUkpJSa0+7mJgYv70uAAAAAAAAAEDjmQNdAAA0xY4dOzRixAgVFxdr5syZuuKKKwJdUqNlZ2dr2LBhSktL08MPP6zhw4c3aZ6QkBA99dRTuummm7Rw4UKtXbtWjz/+uB5//HFJksViUe/evXXHHXdo8ODBMplMkir2uqtisVjUpUuXZr8mAAAAAAAAAEDTEdwBaHNSU1M1bNgwFRYW6vnnn9ell14a6JIaLTs7W0OHDtXu3bs1adIkv3QLnnTSSZo5c6bcbrfy8vJUUFAgi8Wi5ORkhYSE1Lr+wIEDnuMePXrIbOafBAAAAAAAAAAIJD6lBdCm7Ny5U0OHDlVBQYHmzp3r2d+tLcnJydGwYcO0c+dOPfHEExoyZIhf5zcYDIqPj1d8fHy912VmZnqOe/bs6dcaAAAAAAAAAACNR3AHoM1IS0vT8OHDlZ+f32ZDu/z8fI0YMUKpqaktEtr5ymq1Kjs72/P47LPPDkgdAAAAAAAAAICDjIEuAAB8kZ2drREjRignJ0dz5sxpk6Gd1WrV6NGjtXXrVj322GMBC+0kafv27Z5js9ncJpcbBQAAAAAAAIDDDcEdgKBXXFysO+64Q2lpaZo+fbrPIdOBAwe0YcOGFq7ON3a7XePGjdOmTZv0wAMP+LynXXFxsb777ju/17Np0ybP8ZlnnqnY2Fi/3wMAAAAAAAAA0DgEdwCCmsPh0Pjx47VlyxY9/vjjuuqqq3weu2zZMs2cObMFq/PdpEmTtGbNGt15550aPXq0z+PWrl2rhx9+2O/1rF271nN88803+31+AAAAAAAAAEDjsccdgKA2ZcoUrV27VmPHjm300pLr1q1Tly5dWqgy382fP19LlizRoEGDNGHChEaNXbdunbp27VrvNXa7XcuWLVNJSYmuvvpqxcfH13t9fn6+J7g74YQT1L9//0bVBAAAAAAAAABoGXTcAQhaixcv1qJFizRw4ECNGzeuUWP37dvXYOj1+eef64orrtDpp5+u++67T7m5uc0tuZa1a9dq9uzZOvvsszV16tRGjbVarfriiy8aDO6eeOIJ/eMf/9C0adN0//33NzjvokWLZLPZJEn33XefDAZDo+oCAAAAAAAAALQMOu4ABKVt27ZpypQpOvnkkzVlypRGjXW5XHryySdlt9vVrVs3r9f88ssvuv/+++VyuSRJK1asUE5Ojt5++22/BVlZWVl64IEHdNRRR+mFF16Q2dy4v3JnzJih/Pz8Ol9DlS+++MJz/MMPP6isrExhYWFer927d68WLFggSbriiit04YUXNqomAAAAAAAAAEDLoeMOQNBxOBx68MEHZTabNWfOHIWEhPg8NjU1Vffcc49Wr14tSXUulbly5UpPaFdlw4YN2rVrV5PrPtSjjz6qgoICzZkzRzExMT6P27dvnx555BG9++67kup+DVUiIiI8xy6XSzk5OV6vs9lsevDBB1VcXKyePXs2OhAFAAAAAAAAALQsOu4ABJ3ly5dry5YtslgsGjhwoM/jbDabrFZrjeca6lY71KFhXlNt2LBB33zzjUwmk0aNGuXzOIfDoeLi4hrPNfQahgwZorlz53oe79mzR0cddVSNa3JzczV27Fht3LhRvXr10muvvaaoqCif6wIAAAAAAAAAtDyCOwBBp7CwUJJkt9uVn5/f5Hni4+PrDKcuvfRSvfHGGzWCup49ezY66KtLQUGBJMnpdDbrNUgNd9zdfffdys/P1zvvvCO3261Zs2bpvvvuU1xcnPbv368NGzboww8/lM1m09ChQzVhwgSFh4c3qyYAAAAAAAAAgP8R3AE4bHXt2rXOc6eeeqpmzpypF154QZmZmTrjjDM0adIkmUymVqywYUlJSTWWwvTGZDLp0Ucf1fXXX68PP/xQ69ev19ixY2W32xUVFaVjjjlGI0eO1KBBg2p14gEAAAAAAAAAgofB7Xa7A10EcCSx2WzavHlzref79OnTqL3cDhd2u12bNm2q8Vzfvn1lsVgCVBEAAACOJLwfBQAAQKDxnvQgPj+XjIEuAAAAAAAAAAAAAADBHQAAAAAAAAAAABAUCO4AAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgYA50AQCObAaDQYmJiQoNDZXBYJDb7ZbRyM8UAAAAAAAAAACOPAR3AALKbDara9eugS4DAAAAAAAAAICAo60FAAAAAAAAAAAACAJ03AEIKJvdqZ0Zhdq9v1DlNqdCQ0zq2j5a3TtGK8RiCnR5AAAAAAAAAAC0GoI7AAGxbU+ePv0uVWs3ZcjucNU6bzEbdW7fjrrm/B7q2SUuABUCAAAAAAAAANC6CO4AtCprmUNvfPqbVvywu97r7A6Xvv4lTV//kqbLz+6qEdf0VkQYf2UBAAAAAAAAAA5ffAoOoNXkFJTq0XnfKy2ruFHjVvywW7+l5mjqXecoISa8haoDAAAAAAAAACCwjIEuAMCRwVrmaFJoVyUtq1iPvbpO1jKHnysDAAAAAAAAACA4ENwBaBVvfPpbk0O7Knszi/TGZ7/7qSIAAAAAAAAAAIILwR2AFrdtT16De9r5asW6Xdq2J88vcwEAAAAAAAAAEEwI7gC0uE+/S/XrfJ+t8e98AAAAAAAAAAAEA4I7AC3KZndq7aYMv8655tcM2exOv84JAAAAAAAAAECgEdwBaFE7Mwpld7j8Oqfd4dKufYWexy6X26/zAwAAAAAAAAAQCOZAFwDg8LZ7f2HDFzXBrn2F6tklTpK05Os/tWLdLqXERyg5LkLJceFKjo+o+C8uQokxYTKZ+DkFAAAAAAAAAEBwI7gD0KLKbS2zpGV5taUyzSaDMnOtysy1er3WaDQoISZMyXERSomPUFJcuFLiKkO++AglxobLYibYAwAAAAAAAAAEFsEdgBYVGmJqmXktB+dtaClOl8ut7LxSZeeV6vfUnFrnDQYpPvqQYK+yW6/qscXcMq8DAAAAAAAAAIAqBHcAWlTX9tEtMm+3Dgfnzaqj085XbreUU1CmnIIy/bEr1+s18dGhlctwVi3BGe5ZijM5PqJGkAgAAAAAAAAAQFMQ3AFoUd07RstiNjbYFdcYFrOxRnD3Z1qB3+auS25huXILy7Vld57X87FRoRVhnqdL72C3XnJchMJD+esWAAAAAAAAAFA/PkkG0KJCLCad27ejvv4lzW9znndSR4VUdriVlTu0a1+h3+ZuqvyicuUXlWvbnnyv56PbhdTs0jtkWc6IMEvrFgwAAAAAAAAACDoEd0Fm69atWrJkidavX6+0tDSVlpaqXbt2Sk5O1kknnaT+/fvrggsukMFgCHSpHj///LOWLVumn3/+WRkZGbLZbIqKilKHDh108skn66qrrtJpp53m83wXX3yx0tPTm1TLwoULddZZZzVpLFrONef38Gtwd/V5PTzHdodLE4eerqw8q7JyS5WVZ1VmrlXZeVYVWe1+u2dzFZbYVFhiq7M7MDLcUrnsZkW4lxJ3sGsvOT5CkeEEewAAAAAAAABwuCO4CxIZGRmaNm2a1q1bp1tuuUWPPfaYOnfuLJfLpYyMDH333Xd655139K9//UsnnniiZs+era5duwa05m3btmny5MlKTU3VbbfdpqefflodO3aUzWbT3r17tWrVKi1atEjvvvuuzj33XD333HNKSEho0ZqOP/74Fp0fTdOzS5wuP7urVvywu9lzXd6vm3p2ifM8jmoXorN7d/B6rbXMruy8UmXmWZWVWxXoVTzOzrOqoNjW7Hr8pbjUruLSAqVmeA/2IsLM1fbYCz+4HGflHntREZagCvQBAAAAAAAAAI1HcBcEfv31V915551KSEjQ8uXL1aFDzRAiJSVFp5xyim688UaNGDFCv//+u2666SYtXrxYnTp1CkjN//nPfzRhwgT17t1bX3zxhWJiYmqc79Chg84880xdd911GjlypNauXatbbrlFH374Ya1rvYmNjVVcXFyD11WXlJSk6Ojohi9EQIy4prd+S81RWlZxk+fonBKlEVef6PP1EWEWde1gUdcO3v9clJU7Kjr18korO/Yqj3OtysyzKr+ovMm1+pu1rGJJ0LqWBQ0PNSmp2hKchy7LGRMZQrAHAAAAAAAAAEHO4Ha73YEu4kiWm5urq666Snl5eVq+fLmOPvroeq/fsmWLBg0aJJfLpdNOO03vvfdeK1V60I4dOzRo0CCZzWatXLlS8fHx9V6/evVq3XXXXZKkAQMG6Lnnnqv3+osvvliDBg3SuHHj/FZzMLHZbNq8eXOt5/v06aOQkJAAVNR6cgpK9dir67Q3s6jRYzunRGnKnf2UEBPeApV5V253KrtyCc6qLr3M3IMBX25hWavV0lwhFtMhYV54ZcBX0bEXGxkqo5FgDwAAHHnsdrs2bdpU47m+ffvKYmGpcgAAALQO3pMedCR/fl6FjrsAmzdvnnJzc9WrV68GQztJ6tWrl8477zx9++23+vnnn7V+/XqdeeaZrVDpQbNmzVJ5ebnOO++8BkM7Sbrooot0zDHH6M8//9Rnn32m8ePHq3Pnzq1QKYJNQky4Zoy/QG98+lujls28vF83jbj6REWEte5fWaEWkzolR6lTcpTX83aHU9n5pbU69bLzSpWZa1VuQalcQfKjETa7U2lZxXV2PFrMRiXHhR/cVy/uYNdeSnyE4qLCCPYAAAAAAAAAoIUR3AXYihUrJFUk6r4655xz9O2330qq6GZrzeDOarV67t2Ymvv166c///xTLpdL3377rW699daWKhFBLiLMrHtvOFn9z+qqz9akas2vGbI7XLWus5iNOu+kjrr6vB419rQLJhazSR0TI9UxMdLrebvDpZyCimU4M3OqLclZuSzngYIyuYIk2bM7XErPLlF6donX82aTQUmxFfvrVXXpJccdPE6IDpPJZGzlqgEAAAAAAADg8EJwF0BWq1WZmZmSKpaf/Pbbb3XBBRc0OK56t9qePXtarD5v0tPTZbPZJEnr1q3Tli1b1KtXrwbHVd+Lb/du3zutcPjq2SVOE245TWNvONmzd1u53alQi0ndOkSrW4dohVhMgS6zWSxmo9ontFP7hHbSMbXPO50u5RSUecK8zNyq7r2KJTkP5JfKGSTBnsPp1r6cEu3L8R7sGY0GJcaGKyUuQknVluFMia94nBgbLjPBHgAAAAAAAADUi+AugEpLS2s8nj59uk/BXXj4wT2+qkK01lK9ZrvdrlmzZmn+/PkNjouIiPAct3bNCG4hFpN6dokL2q66lmQyGSs61+IjvJ53utzKrRbsZVXut1fVsZeVVyqHs3a3YiC4XO6KmnKtXs8bDVJCbPjBJTgrO/VSKn9NjA2XxUywBwAAAAAAAODIRnAXQPHx8UpKSlJ2drYkebrvGpKXl+c57tChQ4vUVpcuXbooLCxMZWVlkppWc8eOHVukNuBwYzIalBQXrqS4cJ2ohFrnXS638ovLK/bWy60K9w527WXlWmXzsgxpILjcUnZeqbLzSvW7l/MGgxQfHVYZ7FUsyVnRrVfZtRcb3uY7MAEAAAAAAACgIQR3AWQwGDRnzhzNmTNH+fn5Gjp0qE/jfvvtN8/xcccd11LleRUbG6sZM2ZowYIFKi8v1/jx430aF8iaEdwcDofS09MVEhIio9Eol8ul5ORkmUyENA0xGg2Kjw5TfHSYenWLr3Xe7T4Y7FUFepl5VmXnlXqCvnKbMwCV1+Z2SzkFZcopKNMfu3K9XhMXFVq5t15l194hy3GGhfBPGgAAAAAAAIC2jU85A+z000/XO++84/P1brdbX331lSTJbDbriiuuaKnS6tS/f3/179/f5+tLSkq0Zs0aSVJcXJzOOeecRt3vhx9+0Oeff66NGzdq//79KisrU1JSkk499VTdeOONOvPMMxs1H4KL2+3WgQMHajyXmJhIcOcHBoNBcVFhiosK03Fda593u90qLLHVWoJzf65V2ZVLc5aWB0ewJ0l5ReXKKyrX1t15Xs/HRIZ4luBMjotQSrVwLzk+QuGh/JMHAAAAAAAABBun06lhw4Zp8ODBuvrqqwNdTsDxKWYbs3r1aqWnp0uSLr30UsXH1+6yCTZLliyR1Vqx79XgwYNlsVh8Gud0OjVp0iQtXrxYUsXefvHx8XK5XEpPT1d6ero+/fRT3XjjjXriiSfafNDjcDhkMBgCXUarczgcPj2HlhERalS39pHq1j6y1jm3263iUruy80qVVbnMZVZ+qWfJy6w8q0rKguf3qqDYpoJim7bvzfd6PirCoqS4cCXHViw/mhwXUflrxeN2Yb793QQAAA4vvB8FAABAoDXmPekvv/yiL774Qr/88ov27dsnq9WqqKgoxcfH68QTT1S/fv10+eWX+/w5fKCVl5dr2rRp2rBhg6699tpWeS++bds2DR48WHa7XatWrVKnTp1a/J6NYXC73e5AFwHfOJ1ODR48WFu2bFFERISWLVumzp07B7qsehUXF+vyyy9Xdna2kpOTtXz5ckVHR9c75uKLL9agQYO0b98+ffbZZxo+fLgGDhyoHj16eK756aefNHnyZG3dulWSdM0112jGjBkt+lr8xWazafPmzYEuA/CLMptL+SUO5Zc4VVDi9BznF1f8WmoLjj32fBFmMSg20qzYdibFtKv4Nbbq10izwiyGIzJcBwAAAAAAQODt2LFDb731ltLT03XuueeqT58+SkhIkMPhUE5OjjZv3qw1a9bI4XAoNjZWo0aN0mmnnRbosr0qLi5WXl6eNm3apNWrVysjI0OSdOedd+ovf/mL1zF9+vRRSEhIs+/tcrk0ZMgQ/frrr5IUlMEdHXdtyFtvvaUtW7ZIkiZPnhz0oZ0kzZ49W9nZ2bJYLJo5c2aDoV2V5cuXKzMzUwsXLtTJJ59c6/zpp5+u999/XzfccIN27NihTz/9VOeff76uvfZaP78CAPUJCzGqfUiI2sd5P19ud1WGepWB3iHBnrU8eIK9Mrtb+/Ps2p9n93o+xFwZ7EWYFBtZEerFVAv3IkKNBHsAAAAAAADwuxUrVujtt9/WcccdpxkzZigurvaHcf369dM111yjZ599VpmZmZo1a5aGDx/eqG2vWtIff/yhadOmye12K5D9ZAsXLvSEdsGKjrs24rffftOQIUNkt9s1ceJEjRw5MtAlNeg///mP7r77bpnNZj333HO68sorfRp38cUXKz09XU899ZSuu+66eq9dv369br/9dklSx44dtXLlyqBfMpOOO+Agm8PltVOvKuwrLgueYK8hFrOhRpfeoV177cII9gAAAAAAANA4q1at0uuvv6727dvr6aefVmhoaL3X79+/Xw8//LDKy8tlMpn0+OOP65hjjmmlautWVlam7Oxsz2ObzaYff/xRn332mee5lu64S0tL0zXXXOPZ2kui4w5NlJWVpbFjx8rhcGjSpEm69dZbA11Sg7Zv366///3vCgkJ0ezZs3XppZf6PHbEiBE6cOBAg6GdJJ155pnq1auXtmzZooyMDK1Zs6bO/7EBBJ8Qs1FJMUYlxXhfc9vudFd06xU7lW91VIR8xQ7lW53KL3aqqNTZyhXXze5wK7vAoewC7+twm02Gyg69aktwVluKs12YUUaCPQAAAAAAAFTKz8/Xe++9J0n661//2mBoJ0nt27fXxRdfrC+++EJOp1Pvv/++HnvssZYutUFhYWG1VhE8+uijtXHjRqWnp7dKDY8//riMRmOr3Ks5CO6CXGFhocaMGaPs7Gw9++yzGjBgQKBLalBGRobGjBkjp9Op+fPnq1+/fo0aX9VB56sLL7zQs4Tojz/+2GaDu+OPP77NbBjqTw6HQ//73/9qPHfCCSfIbOavJzTM7nDpQH6psvNLlZVX8V92Xqmy86zKzCtVXmGZXEHSV+5wupVT6FBOoUNSea3zFrNRibFhSo6LUFJsuJLjwpUUd/DXuKgwmYwEewAA+BvvRwEAABBodb0nfffdd1VaWiqpYinMvn37+jTf0KFD9cUXX0iqWKIyKSlJHTp08G/RftKhQwdPcNe5c2cdf/zx+uOPP/x+n6VLl2rNmjWaNWuWJkyY4Pf5/YnvRIJYUVGRRo4cqdTUVM2dO1cXX3xxoEtq0P79+zV06FCVlJTorbfe8vkvkuY44YQTPMct8T90azGbzUdkcOcNXwv4ymKRuoSHqkuHWK/nHc6KYC8rz6qs3IpfM3Otys4rVWaeVQfyS+UKkmTP7nBp3wGr9h2wej1vMhoqg7yIiv/iI5QSH66kuAilxEUoISZMJlPw/8QQAABtAe9HAQAAEGhms1k//vij53Fqaqouuugin8b27t1bJpNJTmfFalX//e9/1aVLlxaps7mqd8CZTKYW+QG6nJwcPfPMM7rooot01VVXEdyhaQoKCjRy5Ejt2LFDr776aqO71gIhPT1dw4YNU0lJiRYuXKhevXq1yn2rrz+bl5fXKvcE0DaYTUa1T2in9gntvJ53Ol3KKSxTVm5FoJdV1a1XGe5l51vlcAZHsOd0ubU/x6r9Od6DPaPRoMTKTr3kuAilxEdUHMdXBH2JseEyE+wBAAAAAAC0GZmZmZ7jefPm6dprr1ViYmKD40JCQhQVFaX8/HxJFdtxHcmmTp0qp9OpJ598MtCl+ITgLgjl5eVpxIgR2rNnj1577TWdfvrpgS6pQXv37tXQoUNlt9v1zjvv6Oijj261e7drd/AD+eqbSgJAQ0wmo6eDrbeXv7acLrfyCssqO/aslctxVgV7FY/tDlfrF+6Fy+WuqDHXKimn1nmjQYqPCfeEeSmVXXtVj5Niw2Uxm1q/cAAAEHBOp1PDhg3T4MGDNXjw4ECXAwAAgEpu98EfKC8sLNSiRYs0duxYn8ZWX0HC5QqOz68C4T//+Y8+//xzTZkyRSkpKYEuxycEd0GmqtOuKrQ79dRTA11Sg9LS0jRs2DA5HA69/fbb6t69e6vev/pfOhEREa16bwCHN1NlF1tibLhO6J5Q67zL5VZ+cbkn2Kvq2qsI+SqeswVLsOeWDuSX6kB+qf63M7fWeYNBiosKq+zUi1ByfPVlOSuW5Ay1EOwBAPDzzz9r+fLl+vnnn7Vv3z5ZrVZFRkYqISFBvXv31jnnnKMrrrhCISEhgS7VJ+Xl5Zo8ebI2bNjg19Buy5Yt+uSTT7Rhwwbt3btXxcXFioyMVGxsrE444QSdddZZuuaaa2r8ICYAAABq6tOnj7Zt2+Z5XFZW5tM4p9Pp6baTpOTkZH+X1iYUFxfriSee0FlnnaUbb7wx0OX4jOAuiBQXF2vUqFHatWuX/vnPf+qUU04JdEkNyszM1PDhw2Wz2fTOO++oW7duzZpv3rx5WrhwoVJSUjR//nwlJSU1OKZ6l110dHSz7g8AjWE0GhQfHab46DD16hpf67zb7VZBsa0ixMuzKjOnMtDLK/UEe2U2ZwAqr83tlnILy5RbWKY/dtUO9iQpNipUKXERSooLrwj4qkK+yuU5w0J5WwEAOHxt2rRJU6dO1Z9//qkBAwZo3Lhxat++vex2u/bt26c1a9Zo2bJl+vjjj/Xcc8/pySef1CWXXBLosr0qKChQZmam1qxZo3/9619KTU3129w7d+7UtGnT9OOPP+rKK6/UyJEjPdsbZGZm6scff9RHH32kzz//XDNnztSDDz7Ypj5EAQAAaE0TJkxQcXGxNm7cqE6dOunmm2/2ady2bdtkt9s9j/v06dNSJQa15557ToWFhZo6dWqgS2kUPmELEjabTffcc4+2b9+uBQsW+BTa2e12/d///Z+ee+45hYeHt0KVNRUUFGjUqFEqKSnR22+/7VNol5mZqeeee04zZsyode7nn3/W7NmzJVVsFvnRRx/prrvu8mnOKsccc4zvLwAAWpjBYFBsVKhio0LVs0tcrfNut1uFJbaDYZ6nU+/gkpyl5Y4AVO5dflG58ovKtXWP9/1EYyJDqnXpRdRYljMpLlwRYRav4wAACHYLFy7U008/rVNPPVVffPFFrSV2TjnlFF155ZUaM2aMxowZo927d+vee+/VpEmTdMsttwSo6prWr1+v4cOHy+12t9hSSV9++aUefPBBde7cWZ988ol69OhR65r+/fvrrrvu0t13361Nmzbpscce0549e/TAAw+0SE0AAABtWWJiol544YVGj1u5cqXnuFu3bq26tVWw+Omnn/TBBx/o73//u7p06RLochqF4C4IuN1uPfTQQ/r555/18ssv68wzz/Rp3B9//KF169YFJLSrChozMjL09ttv+xyY/fLLLzVae6vbuHFjjcfl5eU+zbljxw7Pcd++fX0aAwDBwGAwKCYyVDGRoTq2s/dgr6TUrqy80splOA8uwVkV7hWX2r3MHBgFxTYVFNu0fW++1/NREZZqXXoVS3Ae3GsvQu3CCfYAAMHngw8+0LRp09StWze99tpr9X7/1a1bNy1YsEDXXnutSktLNW3aNJ144ok66aSTWrFi73r37q2PP/7Y87isrEwrVqzQ66+/7pf5v/32W/3tb39TdHS03nzzzXpXT0lMTNSCBQt09dVXKzs7WwsWLFCfPn3017/+1S+1AAAAHMkcDoeWLl3qeRwsP0jWmmw2mx599FH17t1bw4YNC3Q5jUZwFwReeuklLV++XM8884z+8pe/+DxuxYoVAUuKH3/8cf3666+aP3++TjzxRJ/H1Vdz9WUuLRaLrr32Wp/m/P777yVJISEhuvDCC32uBQCCncFgUGREiCIjQtTjqBiv11QEe1ZlV4Z7VQFfdp5VmbmlKrLaWrnquhVZ7SqyFmhHWoHX8+3CLZ5lN6vCvJTK/fVS4iMUGW6RwWBo5aoBAEey7OxsTZ8+XZJ02223+fRDk127dtVNN92kN998Uw6HQzNmzNDbb7/d0qU2KCIiQj179qzxXN++ffX111/X+GHIpigvL9djjz0ml8ulQYMG+bTlQWxsrMaMGaNp06ZJkmbMmKFLLrlEZjMfUwAAADTH0qVLlZ6eLkmNWl7zcPLSSy8pLS1NH330kUwmU6DLaTTeEQfYN998oxdffFF33323Bg0a5PO49PR0LVq0SOeff77X8xkZGXriiSe0YcMGderUSQ8//LDOOeccv9T8/vvva8mSJZo6dWqj5ty0aZP+/e9/a/jw4V7Pn3POOTIajXK5XLrqqqt8Wnpz37592rBhgyTpyiuvVGxsrM/1AMDhoF24Rd3DY9S9o/dgr7TccbBLr3I5zszKx9l5pcov9q27uTWUlNq1s9SunRmFXs+Hh5pqhHrJlYFecnxF2BfdLoRgDwDgV5999plKSkokVQRyvrrqqqv05ptvSqpYojIjI0MdO3ZsiRKbLSEhodnB3TfffKP9+/dLavzXqSq427NnjzZu3KgzzjijWbUAAAAcyQoLCzVnzhxJkslk0jPPPKOQkJDAFtXKtmzZotdee0133XWXjjvuuECX0yQEdwGUnZ2tiRMn6uyzz9b48eN9Hrdx40ZNnDhRJSUldXavTZw4UevXr5dUsRHlPffcoy+++EIdOnRoVs3btm3T008/rcGDB+uGG27waYzb7da3336rhx56SE6ns86aO3XqpCFDhui9995TRESET3M///zzcjgcioqK0v333+/z6wCAI0V4qFld20era/tor+fLyh3Kzi/1hHuZlYFeZmXXXm5h8AR7peVO7d5fpN37i7yeDw2pDPYq99ZLjouoXIqz4nFsZCjBHgCgUapW95Ck7du364ILLvBpXK9evWQymeR0OiVV7K8xYMCAFqkxGBz6dfJVQkKC2rdv7wn9fvrpJ4I7AACAZpg2bZoOHDggSXrkkUeOuPdWTqdTjzzyiLp3764777wz0OU0GcFdAM2dO1d5eXn6888/deWVV/o0prCwUDk5OZ7HdYVgv/32W43HpaWl2rx5c7ODu+nTp6u8vFw//PCDLr/8cp/G5OXlKT8/3/O4vuU9H3roIe3bt0+ffPKJBg4cWO9eEG+++aaWLl2qkJAQPffcc0pOTvb5dQAAKoSFmtU5JUqdU6K8nrfZnRXBnmePvVJl5hxcjjOnsExudysXXYdym1N7M4u0N9N7sBdiNnqW3awI9sJr7LcXFxUmo5FgDwBwUGZmpud43rx5uvbaa5WYmNjguJCQEEVFRXm+D8rKymqpEoNC9a/Thx9+qCFDhtRalrMuCQkJnuDucP86AQAAtKQlS5Z49jSeOHGibr311sAWFABvvvmm/ve//2nRokVtutOQ4C6AqpLv7OxsZWdnN2mOukKw3r17ezrupIo943r16tWke1RXVXNGRkaT56gvuAsNDdVLL72k119/XcOHD9dZZ52lSy65RCeccIISExPlcDi0fft2LVq0SKtXr1aXLl00efJk9evXr8n1AADqFmIx6aikSB2VFOn1vN3h0oH8aktwVl+WM8+qnPxSuYIk2LM5XErPLlZ6drHX82aTUUlx4ZVdejU795LjIhQfEyYTwR4AHFHc1X46pbCwUIsWLdLYsWN9GmuxWDzHLpfL77UFk+pfJ7vdrjfeeENPP/20T2Orf6BS1aEIAACAxvnpp580adIkGQwGPfbYY0dkaLdnzx698MILGjp0aL0NQW0BwV0bV1cINn36dM8edykpKbr//vvrDcxai8ViabDrz2QyacyYMbr++uu1dOlSff7555ozZ44KCgoUFham+Ph4nXjiiZo+fbquvPLKNp2cA0BbZzEb1SGxnToktvN63uGsCPay80orl+Gs2mOvYjnOA/mlcgVJsudwurTvQIn2HSjxet5kNCgxNryiY++QcC8lLkIJMWEymYytXDUAoCX16dNH27Zt8zwuKyvzaZzT6ayx6sjhvjpInz59tHr1as9jX79OkmqsKJOSkuLXugAAAI4EW7du1b333iuXy6Wnn35agwYNCnRJATFp0iQlJSXpb3/7W6BLaTaCuwB6+eWXW2zujh07av78+X6f95NPPvH7nHWJj4/XqFGjNGrUqFa7JwDAv8wmo9ontFP7hHbq4+W80+lSTmFZjS696styZudZ5XAGR7DndLmVWbkPoDdGo0GJMWEHl+Ostt9eSnyEEmPDZSbYA4A2ZcKECSouLtbGjRvVqVMn3XzzzT6N27Ztm+x2u+dxnz7e/hU8fAwfPlxpaWn6/vvvFR8fr9GjR/s0rqCgQHv37vU8Pty/TgAAAP62Y8cOjRgxQsXFxZo5c6auuOKKQJcUEIsXL9a6dev05ptvKjw8PNDlNBvBHQAACBiTyehZitIbl8utvKIyT4eeJ9SrFu7ZHcGx/JjL5a4MH0v1e2pOrfNGgxQfHVbRqVdtCc6U+Iq99pLiwmUxmwJQOQCgLomJiXrhhRcaPW7lypWe427duunoo4/2Z1lBp127dj4vjVndqlWrPMtsRkVF6ayzzvJ3aQAAAIet1NRUDRs2TIWFhXr++ed16aWXBrqkgMjOztazzz6rG2644bDZUovgDgAABC2j0aCEmHAlxITr+O7xtc67XG4VFJcrs1qQV7XfXnaeVZm5pbLZg2O/HJdbOlBQpgMFZfrfzlyv18RHh1ZbhrPacpyVx6EWgj0ACHYOh0NLly71PL7lllsCWE1w+/DDDz3HgwcPVmhoaACrAQAAaDt27typoUOHqqCgQHPnztVFF10U6JICZsqUKQoNDdXEiRMDXYrfENwBAIA2y2g0KC46THHRYerVrXaw53a7VVhiOxjsVS7JWf1xmS04gj1Jyi0sV25hubbszvN6PjYq1BPkpdTo3Kt4LiyUt3YAEGhLly5Venq6JDVqec0jzbp167Rx40ZJFd12d911V4ArAgAAaBvS0tI0fPhw5efnH/Gh3f79+/Xll1/KYDA0efWGyy67rNZzTz31lAYOHNjM6pqOT3cAAMBhy2AwKCYyVDGRoerZJa7WebfbrSKrvdrSmxV72GVXC/esZY4AVO5dflG58ovKtW1Pvtfz0e1CanTppRzSuRcRZmndggHgCFNYWKg5c+ZIkkwmk5555hmFhIQEtqgg5HA4NG3aNM/jSZMmKT6+9g/gAAAAoKbs7GyNGDFCOTk5mjNnzhEd2klSQkKCPv3000aPu+aaazzH8+fPV3Jyco3z7du3b3ZtzUFwBwAAjlgGg0HR7UIU3S5Ex3SO9XpNcWlFsFcR6FUtw1kZ7OVaVVxqb92i61FYYlNhiU1/7s33ej4qwqKk6oFeXHiNZTkjwwn2AKA5pk2bpgMHDkiSHnnkEZ1xxhkBrig4vfzyy9q+fbskadSoURowYECAKwIAAAh+xcXFuuOOO5SWlqYZM2b4vKfdgQMHtHPnzsPyvanFYlHPnj2bNUe3bt3UqVMnP1XkHwR3AAAA9YgMtyjyqBj1OCrG63lrmd2zt15Vx171ZTkLS2ytXHHdiqx2FVkLlJpe4PV8uzCzJ9hLiguvFvBVBHtRERYZDIZWrhoA2oYlS5bo448/liRNnDhRt956a2ALClLr1q3TK6+8Ikm6/fbb9eCDDwa4IgAAgODncDg0fvx4bdmyRU8++aSuuuoqn8cuW7ZMX331lRYtWtSCFcKfCO4AAACaISLMom4dLOrWIdrr+dJyh7IO6dKrWpYzK7dU+cXlrVxx3UrKHCrZV6hd+wq9ng8PNSk5LqJm1178wWU5o9uFEOwBOCL99NNPmjRpkgwGgx577DFCuzqkpqbqvvvuk8vl0ujRo/XAAw8EuiQAAIA2YcqUKVq7dq3Gjh2rIUOGNGrsunXr1KVLlxaqDC2B4A4AAKAFhYea1bV9tLq29x7sldkcys4rrQz2Siq69/IOBny5hcET7JWWO7V7f5F27y/yej40xKTkuPCKYK+ySy+lWrgXGxVKsAfgsLN161bde++9crlcevrppzVo0KBAlxSU9u/fr9GjR6ugoED33Xef7rnnnkCXBAAA0CYsXrxYixYt0sCBAzVu3LhGjd23b5/WrVunu+++u85rPv/8c82dO1fZ2dk699xz9fjjj7P/cIAR3AEAAARQWIhZnVOi1Dklyut5m92pA/mllctw1gz1MnOtyi0sk9vdykXXodzm1N7MYu3NLPZ6PsRsVJKXvfWqwr24qDAZjQR7ANqOHTt2aMSIESouLtbMmTN1xRVXBLqkoJSdna1hw4YpLS1NDz/8sIYPHx7okgAAANqEbdu2acqUKTr55JM1ZcqURo11uVx68sknZbfb1a1bN6/X/PLLL7r//vvlcrkkSStWrFBOTo7efvvtVvvBW3e1DzXcwfIBR4AR3AEAAASxEItJHZMi1TEp0ut5u8PlCfaq9tWr6tzLzrPqQH6pXEHyvtfmcCk9u1jp2d6DPbPJqKTYcE+HXlW4V7XnXkJMuEwEewCCRGpqqoYNG6bCwkI9//zzuvTSSwNdUlDKzs7W0KFDtXv3bk2aNIllRAEAAHzkcDj04IMPymw2a86cOQoJCfF5bGpqqp599lmtXr1akupcKnPlypWe0K7Khg0btGvXLnXv3r3pxTdCWlqa53jv3r0tfj+bzVbv42BAcAcAANCGWcxGdUhspw6J7byedzhdyikoU1ZuRYdedp5VmdX23DuQXypnkCR7DqdL+3JKtC+nxOt5k9GgxNhwT5CXUi3cS46PUGJMmEwmYytXDeBItHPnTg0dOlQFBQWaO3euLrrookCXFJRycnI0bNgw7dy5U0888USj92MBAAA4ki1fvlxbtmyRxWLRwIEDfR5ns9lktVprPFdXx11dDg3zWsratWu1b98+z+Nly5bptttua9F7bt68ucbjjRs3qkePHi16z8YiuAMAADiMmU1GpcRXdK318XLe6XIrt6CsomOvWtdeVu7BgM/hbJ037A1xutzKrAwgvTEapITY8Bpdep699uIjlBATLouZYA9A86SlpWn48OHKz88ntKtHfn6+RowYodTUVEI7AACAJigsLJQk2e125efnN3me+Ph4RUV5357j0ksv1RtvvFEjqOvZs2ejgz5fWK1WpaWlye12q7CwUD/99JNef/31Gtekp6dryJAhuvTSS9WpUydFRlasPtS5c+cm3dNut2vnzp2SpNLSUm3fvl2vvPJKjWuefvpp5ebm6tRTT1VUVJTCw8ObfD9/IbgDAAA4gpmMBiXFhSspLlwnKqHWeZfLrbyiMmXlllYGeRXBmSfgy7PK7giOYM/llrLzSpWdV6rfU3NqnTcYpIToMCVVBnsV3XoHl+VMig1XiMUUgMoBtBXZ2dkaMWKEcnJyNGfOHEK7OlitVo0ePVpbt27VpEmTCO0AAAACqGvXrnWeO/XUUzVz5ky98MILyszM1BlnnKFJkybJZPL/98abN2/W0KFDG7xu7969euONN2o899577zXpnpmZmbrmmmvqvaaoqEgzZszwPD7zzDP19ttvN+l+/kJwBwAAgDoZjQYlxFTsL3d89/ha510utwqKyyu79SrCvYOdexXhXrnNGYDKa3O7pQMFZTpQUKY/duV6vSY+OrQi2IurFuxVW44zlGAPOGIVFxfrjjvuUFpammbMmOHznnYHDhzQzp07dcYZZ7RwhcHBbrdr3Lhx2rRpkx544AGf97QrLi7Wxo0bdf7557dwhQAAAG3D7bffrpEjR7b4fa688kpdeeWVLX6fs846S1u3bm3wOpvNVms5y6bq1KmTT/cMNgR3AAAAaDKj0aC46DDFRYfpOC8/xOd2u1VYYqvo0qsM97IOCfdKy4Mj2JOk3MJy5RaWa+vuPK/nYyNDlRxf2aXnJdwLD+XtNXA4cjgcGj9+vLZs2aInn3xSV111lc9jly1bpq+++kqLFi1qwQqDx6RJk7RmzRrdeeedGj16tM/j1q5dqylTpmjNmjUtWB0AAAAQ/PhkAQAAAC3GYDAoJjJUMZGh6tklrtZ5t9utIqtdWZ5lOEs9oV5mbsVzJWWOAFTuXX5xufKLy7VtT77X81ERIUqJr9ald8iynBFhltYtGIBfTJkyRWvXrtXYsWMbvezjunXr1KVLlxaqLLjMnz9fS5Ys0aBBgzRhwoRGjV23bl29yzgBAAAARwqCOwAAAASMwWBQdLsQRbcL0TGdYr1eU1xqr7G3XsVee6WeYK/Iam/doutRZLWpyGrTn2kFXs9HhltqL8FZFe7FhatduEUGg6GVqwZQn8WLF2vRokUaOHCgxo0b16ix+/bt07p163T33XfXec3nn3+uuXPnKjs7W+eee64ef/xxxcfXXpo42K1du1azZ8/W2WefralTpzZqrNVq1RdffKFLLrmkhaoDAAAA2g6COwAAAAS1yHCLIsNj1L1jjNfz1jK7J8ir2levKuDLyrWqsMTWyhXXrbjUruL0AqWmew/2IsLM1ZbhDFdKfESNPfeiIgj2gNa0bds2TZkyRSeffLKmTJnSqLEul0tPPvmk7Ha7unXr5vWaX375Rffff79cLpckacWKFcrJydHbb7/dav+vu91ur8eNkZWVpQceeEBHHXWUXnjhBZnNjfuoYcaMGcrPz6/z6wQAAAAcSQjuAAAA0KZFhFnUtYNFXTtEez1fWu5QdlWgV2MZzlJl5lmVX1TeyhXXzVrm0K59hdq1r9Dr+bAQU7VOvWrBXuVzMZEhBHuAnzgcDj344IMym82aM2eOQkJCfB6bmpqqZ599VqtXr5akOpfKXLlypSe0q7Jhwwbt2rVL3bt3b3rxjZCWluY53rt3b5PmePTRR1VQUKAFCxYoJsb7D1l4s2/fPr344otavHixpLq/TgAAAMCRhOAOAAAAh7XwULO6tI9Wl/beg71yu7Mi2KvaXy+vWrCXa1VuYVkrV1y3MptTe/YXac/+Iq/nQywmzzKcVV161ZfljI0MldFIsAf44rPPPtOWLVtksVg0cOBAn8fZbDZZrdYazzW2k+zQMK+lrF27Vvv27fM8XrZsmUaOHKnoaO9/X3qzYcMGffPNNzKZTBo1apTP4xwOh4qLi2s8R8cdAAAAQHAHAACAI1yoxaROyVHqlBzl9bzd4VR2fqmnU696515WXqlyC0rlatrqcn5nszuVllWstKxir+ctZqOS48JrdOlVD/biosNkItgDJEn5+fmSJLvd7jluivj4eEVFef/75dJLL9Ubb7xRI6jr2bNniwRYVqtVaWlpcrvdKiws1E8//aTXX3+9xjXp6em67rrrNHz4cPXs2dPTPdezZ8865y0oqFj61+l0NuvrJNFxBwAAAEgEdwAAAEC9LGaTOiZGqmNipNfzdodLOQXVl+Gs2bmXU1AmV5Ake3aHS+nZJUrPLvF63mwyKCk2QkmVy3AmHxLuJcSEE+wBjdS1a9c6z5166qmaOXOmXnjhBWVmZuqMM87QpEmTZDKZ/F7H5s2bNXTo0Aav27NnjyZPnlzjua1bt/q9nkMlJSUpIiKixe8DAAAABDuDu6m7TwNoEpvNps2bN9d6vk+fPo3aN+NwYbfbtWnTphrP9e3bVxaLJUAVAQDgX06nSzkFZcrMsyo7rzLYy7V6wr3svFI5gyTYa4jJaFBCbLhS4qqFe5Xde0lx4UqMDZfZZAx0mUCj8H4UAAAAgcZ70oP4/JyOOwAAAKBFmUzGis61eO+dJE6XW3mFZZX76nlfjtPhbJ39rhridLkrasq1ej1vNEgJseG1luCs2m8vMTZcFjPBHgAAAAAAdSG4AwAAAALIZDQoMbaiW01KqHXe5XIrr6hMWdWW4MzKO7jnXnaeVTZHcAR7LreUnVeq7LxS/e7lvMEgxUeHVQZ7EUqOrwz54iuDvrgIhVj8v0QgAAAAAABtBcEdAAAAEMSMRoMSYsKVEBOu47vH1zrvdruVX1zu6c7LyrUqs1q3XlaeVeU2ZwAqr83tlnIKypRTUKY/duV6vSYuKrTG3nrV99pLigtXWAjfwgAAAAA4vBgMBiUmJio0NFQGg0Fut1tGI6uVHKn4rhcAAABowwwGg+KiwhQXFabjutY+73a7VVhiq1x6syLIy8w9uL9eZq5VpeWO1i+8DnlF5corKtfW3Xlez8dEhlTr0otQStWSnJWPw0P5FgcAAABA22I2m9W1q5dv6HBE4rtaAAAA4DBmMBgUExmqmMhQHds5rtZ5t9utklK7J8yruQxnqTLzrCoptQegcu8Kim0qKLZp+958r+ejIkKUEh+upLiIim69Q/bbaxd+5G3uDgAAAABoOwjuAAAAgCOYwWBQZESIIiNCdHSnWK/XFJfalV25/GZmtU69qi6+IqutdYuuR5HVpiKrTX+mFXg93y7copTKZTdT4iMqA76K/fVS4iuCPYPB0MpVAwAAADiS2exO7cwo1O79hSq3ORUaYlLX9tHq3jGafcCPQAR3AAAAAOoVGW5RZHiMuneM8XreWmb3dOdl51q1v7Jbr6KDz6qC4uAJ9kpK7UotLVBqhvdgLzzUfLBTrzLQq+jWqziObhdCsAcAAADAL7btydOn36Vq7aYM2R2uWuctZqPO7dtR15zfQz271F5BBYcngjsAAAAAzRIRZlHXDhZ17RDt9XxZuUPZ+dW79CqX5Kw8zisqb+WK61Za7tCufYXata/Q6/mwEFO1ZTgPBntVYV9MJMEeAAAAgPpZyxx649PftOKH3fVeZ3e49PUvafr6lzRdfnZXjbimtyLCiHUOd/wOAwAAAGhRYaFmdU6JUueUKK/nbXZnjf31qpbgzMqr2Gsvr6hMbncrF12HMptTezOLtDezyOv5EIupxp56VeFeSnxFwBcbGSqjkWAPAAAAOFLlFJTq0XnfKy2ruFHjVvywW7+l5mjqXecoISa8hapDMCC4AwAAABBQIRaTOiVHqVOy92DP7nAqO7/0YKfeIXvt5RaUyhUkwZ7N7lRaVnGd34SbTcYanXqe5Tgrw7246DCZCPYAAACAw5K1zNGk0K5KWlaxHnt1nWaMv4DOu8MYv7MAAAAAgprFbFLHxEh1TIz0et7hdOlAfmmNZTg9y3LmlepAfqlcQZLsOZwuZRwoUcaBEq/nzSaDEmMPdulVLMt5MNxLiAmTyWRs5aoBAAAA+MMbn/7W5NCuyt7MIr3x2e+69/qT/FQVgg3BHQAAAIA2zWwyqn1CO7VPaOf1vNPpUk5BWWWXXu0lObPzrXI4gyXYc2t/jlX7c6xezxuNBiXGhHmW4vTstVf5ODE2XGaCvUYxGAxKTExUaGioDAaD3G63jEa+hgAAAPCvbXvyGtzTzlcr1u1S/zO7qGeXOL/Mh+BCcAcAAADgsGYyGSuXpYzwet7pciu/qKyiS6/6Mpw5FeFedn6p7A5XK1ftncvlrgge80ol5dQ6bzRI8THhld164UqpWpKzMtxLig2XxWxq/cKDmNlsVteuXQNdBgAAAA5zn36X6tf5PluTqgm3nObXOREcCO4AAAAAHNFMRoMSYsKVEBOuE7on1DrvcrmVX1zu6dLLzK0M9qqW5sy1yhYswZ5bOpBfsTyoNwaDFBcVdjDYq+zUq9hzL1xJcREKtRDsAQAAoOW5XG653G65XG45XW7PY6ezruddcrkrx7nccrpccrlU7dqDjyuudcvlUuXzh8xVdVzP84fW4rn2kNrqqj0lIUL3XFexnKXN7tTaTRl+/fqt+TVDY284WSG8fz/sENwBAAAAQD2MRoPio8MUHx2mXt3ia513u6sHe9WW4cw7uO9emc0ZgMprc7ul3MIy5RaW6Y9d3q+JiwqtDPJqLsOZHFex115Y6OH1baTN7tTOjELt3l+ocptToSEmdW0fre4do/kQBAAA+MxbCFVXoFMrlDo0dKoMmqqHTnWFTd6CpPqebyic8laztxCsvvCr3sfVanMHx2r1Lebyft08xzszCv2+iofd4dKufYUsl3kYOry+4wIAAACAVmYwGBQXFaa4qDAd52XFRbfbrcISm6dLL7uyay8rt9TTwVda7mj9wuuQV1SuvKJybd2T5/V8TGRItS69CKVUC/eS4sIVEWZp5YqbZtuePH36XarWbsrw+iGKxWzUuX076prze/BhCADgiFN/UOQtYHJ7OqGqh07Vr/ElVKp6vq4gqaGQqO6urdqdWHXV42uYdejzh3sIhcZLqbZU/+79hS1yD4K7wxPBHQAAAAC0IIPBoJjIUMVEhuqYzrG1zrvdbpWU2pWVV1oR6FUtwZlXEe5l5llVUmpv/cLrUFBsU0GxTdv35ns9HxVhqdalV7EEZ3JcROXynBGKDA9ssGctc+iNT3/Tih9213ud3eHS17+k6etf0nT52V014preigjjW2gAaIsa7D46pBOq+nJ8tTqffA6K6u428nWZvvqDspqdT7Uf+7r0oPf7Amg+s8ngOS5voRU4yu3BsbIH/IvvOgAAAAAggAwGgyIjQhQZEaIeR8V4vaYi2LMeXI7Ts9eeVZm5pSqy2lq56roVWe0qshZoR1qB1/PtwswHg73KX1Mq99dLia8I9gwGg9exzZVTUKpH532vtKziRo1b8cNu/Zaao6l3naOEmPAWqQ0AfOF2H+xq8qX7qHoIdXCpu4YDnTo7nOq4Z61x9XZUueoMweq8TwP3bageAAgEh/Pg3z+hIS2zBDv7Ux+eCO4AAAAAIMi1C7eoe3iMunf0HuxZy+zKrranXlblspxVnXsFxcET7JWUObQzo1A7M7wvFxQeavbsrZcSF+EJ9Ko696LbhTQp2LOWOZoU2lVJyyrWY6+u04zxF9B5B/hRgwFMraXu3DVCqMZ1LR0SRh3aaVVH2OQtBKurE+vQ+bzuJVVXbT7uUQUAaBsyc62e467to1vkHt06tMy8CCy+2wAAAACANi4izKKuHSzqWsc37mU2R61gz7McZ55VuYXlrVxx3UrLHdq9v0i79xd5PR8aYqq29Ga4UjydexVhX2xkqNdg741Pf2tyaFdlb2aR3vjsd917/UnNmgeHr8Yvddf0rqWmLIVXu56aIZj3Tquay+/5Y4+q6s8DAOAvRoNkNBpkNBplMkpGQ9WxQUajZDQaZTQaZDIYKq8zVJ4z1Pu80eDlOlPDzyfFHVypoXvHaFnMRq97KzeVxWwkuDtMEdwBAAAAwGEuLMSszilR6pwS5fW8ze5Udn7lHnvV9tc7GOyVyR0kn6+X25zam1mkvZneg70Qs1FJcREaPbC3TuuVIknatievwT3tfLVi3S71P7OLenaJ88t8wcxfS93VtwSeT/su1XneS+fTISFUQ3tCNWaPqvr2rqp6DgAAf6k/hDokYDJ4CaHqeN7nEKqu643GihDMUHVcEYp5jg2Gino9x0avYVjj71vteZPR8/UxVX6NjAa12HLr/hBiMencvh319S9pfpvzvJM6KoSlMg9LBHcAAAAAcIQLsZh0VFKkjkqK9Hre7nApO9+q7MowLzPPquy8yqAvz6qc/FIFS2Zhc7iUmWvVid0TPM99+l2qX+/x2ZpUTbjlNEkVIdBPf2TK6Wxc+OPpvjokdPL2uKlBWXPDKAAA/KVWCGU0NhDMHAydvIZQPnY8HTq3yVg98DkkdGog/GqwU8tUu/a6XlO9IVTlNcEcQqFprjm/h1+Du6vP6+G3uRBcCO4AAAAAAPWymI3qmBipjonegz2H06WcgrJq3XrWyj32KoK+7PzSVg2CunWIVlhoxbe7NrtTazdl+HX+Nb9maOwNJyvEYpLJaNSir7bpz7R8v94DABC8jMbqAUy1EMpLMFNnGOUlnKoeNtXVIVWr88mgyuCn9v28z1NtuUCfOpvqP9/wPMHfCQW0lp5d4nT52V39shLE5f26HRErQBypCO4AAAAAAM1iNhmVEl+x75w3TqdLOYVlNbr0qi/JmZ1vlcPpv2DvmM6xnuOdGYV+3UtEquhA3LWv0PNhyTGdYgjuALRZDYVKdXUJNRQSeVumr67rDy6xVzOEOrQTqvZyfN46quq6h/dwqd5OKEIoAH424pre+i01p1l7L3dOidKIq0/0Y1UINgR3AAAAAIAWZTIZlRwXoeS4CJ3YI6HWeafLrfyiMu3PsSo7z6qsvNKa4V5eaaPCt+oB4u79hX55DYeqHtwl1xFYAmh99XUJ+dLxZGooyPHaUXUwdKr38SF7QvmyF5XJy/m6nq/dWVW5D5Wndi9LBBJCAUCriggza+pd5+ixV9fVuWdzfTqnRGnKnf0UEUa0czjjdxcAAAAAEFAmo0EJMeFKiAmXVDvYc7ncKigur9hbL7e0chnOqr32rMrMLZXN7vRcbzYd/BC63OasNZ8/lFe7n8VsbJF7AA11CTU2bKpzKbxqAU9dnU++dlo1uJ9THfXWF0753J1FCAUAaAMSYsI1Y/wFeuPT3xq1bObl/bppxNUnEtodAfgdBgAAAAAENaPRoLjoMMVFh6lX19rn3W63CktsnmU4k2LDPedCQ0wtUlOo5eC8/l6K83DlS3dRY5bpqxniVAudDIcsp+clADq066jhjiofltTzsldV3cv01Q7KvL02AABweIoIM+veG05W/7O66rM1qVrza4bX95QWs1HnndRRV5/Xgz3tjiAEdwAAAACANs1gMCgmMlQxkaG1PtDo2j66Re7ZrcPBefOLyhUZbvFtv6S6Op881zYcQnlb6s5bZ1Rjw6Za4VY93V41QrN6grLqrw0AAAA19ewSpwm3nKaxN5ysXfsKtWtfocrtToVaTOrWIVrdOkQrxNIyP4iG4EVwBwAAAAA4bHXvGC2L2ejXrjiL2VgjuBs9sI9GD+zjt/kBAABwZAmxmNSzSxxddZAksRA/AAAAAOCwFWIx6dy+Hf0653kndeQnnwEAAAC0CII7AAAAAMBh7Zrze/h1vqvP8+98AAAAOLI5HA7t3r1b+/btU2Zmpvbt2yen0xnoshAgLJUJAAAAADis9ewSp8vP7qoVP+xu9lyX9+vGEkYAAADwK7fbrQMHDtR4LjExUSYTqzwciei4AwAAAAAc9kZc01udkiObNUfnlCiNuPpEP1UEAAAAALUR3AEAAAAADnsRYWZNvescdU6JatL4zilRmnJnP0WEsXANAAAAgJZDcAcAAAAAOCIkxIRrxvgLdPnZXRs17vJ+3TRj/AVKiAlvocoAAAAAoAI/KggAAAAAOGJEhJl17w0nq/9ZXfXZmlSt+TVDdoer1nUWs1HnndRRV5/Xgz3tAAAAALQagjsAAAAAwBGnZ5c4TbjlNI294WTt2leoXfsKVW53KtRiUrcO0erWIVohFlOgywQAAABwhCG4AwAAAAAcsUIsJvXsEkdXHQAAAICgwB53AAAAAAAAAAAAQBCg4w4AAAAAcMRyOBxKT09XSEiIjEajXC6XkpOTZTKxTCYAAACA1kdwBwAAAAA4Yrndbh04cKDGc4mJiQR3AAAAAAKCpTIBAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgQHAHAAAAAAAAAAAABAGCOwAAAAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAAAAAAAQBAjuAAAAAAAAAAAAgCBAcAcAAAAAAAAAAAAEAYI7AAAAAAAAAAAAIAgQ3AEAAAAAAAAAAABBwBzoAgAAAAAAaElut1sul0tut7vWOYfD4fU5g8HQGqUBAAAAQfue1GAwyGg0BryOIw3BHQAAAADgsOJ2u2W1WlVYWKji4mKvH4RUv/ZQO3fu5MMJAAAAtJpgf09qNpsVGRmp6OhoRUREBE1dhyuCOwAAAADAYcHtdisrK0sFBQVyOp2BLgcAAAA4LDgcDuXn5ys/P18mk0kxMTFKTk4mwGshBHcAAAAAgDbP7XYrIyNDhYWFjR4bFhbWAhUBAAAAvmsr70mdTqdyc3PlcDjUsWNHwrsWYAx0AQAAAAAANEdzQjsAAAAAjVdYWKiMjAyvy3yieei4AwAAAAC0aVlZWV5Du7CwMEVFRaldu3Yym81efxrY5XKprKys1jijkZ9zBQAAQOsI1vekbrdbDodDJSUlKioqqlVjYWGhzGazUlJSAlTh4YngDgAAAADQZrndbhUUFNR4zmAwqFOnToqMjGxwvMvlkslkqvGc2WwO+IckAAAAOHIE83tSi8Wi8PBwJSYmqri4WGlpaTW67AoKCtjvzs8C/7sOAAAAAEATWa1WOZ3OGs/5GtoBAAAA8F1kZKQ6depU4zmn0ymr1Rqgig5PBHcAAAAAgDbr0CUyw8LCCO0AAACAFhIZGamwsLAaz7HXtH8R3AEAAAAA2qzi4uIaj6OiogJUCQAAAHBkOPQ996HvydE8BHcAAAAAgDbJ7XbL4XDUeK5du3YBqgYAAAA4Mhz6ntvhcNTY9w7NQ3AHAAAAAGiTXC5XrefMZnMAKgEAAACOHCaTqdZz3t6bo2kI7gAAAAAAbZK3n+o1GAwBqAQAAAA4chiNtaMlOu78h+AOAAAAAAAAAAAACAKsIRJktm7dqiVLlmj9+vVKS0tTaWmp2rVrp+TkZJ100knq37+/LrjggqD6KdLy8nItXrxYX3zxhbZu3ary8nJ17NhRJ598sm655Rb17ds3KOcGAAAAAAAAAAAIJnTcBYmMjAzde++9uvnmm2WxWPTYY4/p888/16pVqzRv3jz1799fX331lcaMGaPrrrtOu3fvDnTJkqT//e9/uuaaazR58mRFRkZq3rx5+uqrr/Twww9r586duuGGGzRlyhTZ7fagmhsAAAAAAAAAACDY0HEXBH799VfdeeedSkhI0PLly9WhQ4ca51NSUnTKKafoxhtv1IgRI/T777/rpptu0uLFi9WpU6cAVS1t3rxZw4YNU0lJiYYMGaInn3zSc659+/Y6//zzddddd+mdd95RWlqaXnnlFa9r37b23AAAAAAAAAAAAMGIpCPAcnNzdddddyk/P18vvPBCrdCuuvbt22v27NkyGo3Ky8vT3//+91astKb8/Hzdc889KikpUc+ePfXYY4/VusZoNGrGjBmKjo7W119/rTlz5gR8bgAAAAAAAAAAgGBFcBdg8+bNU25uro477jgdffTRDV7fq1cvnXfeeZKkn3/+WevXr2/pEr2aNWuWsrKyJEkPPvigzGbvzZvR0dEaOnSoJGn+/PnasmVLQOcGAAAAAAAAAAAIVgR3AbZixQpJatQ+beecc47nePXq1X6vqSF79+7VkiVLJEndunXTBRdcUO/1gwYNkiS53W7Nnj07YHMDAAAAAAAAAAAEM4K7ALJarcrMzJQk7dixQ99++61P4zp37uw53rNnT4vUVp833njDEzQOHDiwwes7deqk4447TpL09ddfKzU1NSBzAwAAAAAABFJ6errcbnegyzgilJSUBLoEAACahOAugEpLS2s8nj59uk/jwsPDPcc2m82vNTXE5XLpq6++8jw+//zzfRp3+umne47//e9/t/rcAAAAAAAAgfb8889ryJAh+t///hfoUnzyxhtv6N1335XD4Qh0KY2Snp6uSy65RLNmzVJ+fn6gy/Fq165dLTq/zWbTzJkzVVRU1KL3AQD4H8FdAMXHxyspKcnzuKr7riF5eXme4w4dOvi9rvps3LhR2dnZkqSIiAj16tXLp3EnnHCC53jlypWtPjcAAAAAAECg/fHHH/rvf/+r66+/XlOmTAn6UOWUU07RlClTNGDAAG3YsCHQ5fjsqKOO0rhx4/Tqq6/qkksu0WuvvRZ04ePYsWM1atQorVu3rkXmnz17tubPn68BAwZo/fr1LXIPAEDLMAe6gCOZwWDQnDlzNGfOHOXn52vo0KE+jfvtt988x1XLRLaWjRs31ri32ezbH6Fjjz3Wc7xlyxY5nU6ZTKZWmxsAAAAAACCQCgoK9Oeff0qSnE6nsrOzZTQG98/Un3zyybr22mv18ccf6/bbb9dtt92miRMnymKxBLq0Bt1666368ccf9eWXX+q5557TV199pZdeeqnGD9EHUnh4uNasWaM1a9a06H0yMjJ05513atmyZTW23wEABC+CuwA7/fTT9c477/h8vdvt9iwnaTabdcUVV7RUaV5t377dc3zUUUf5PC45OdlzbLPZtGfPHnXv3r3V5gYAAAAAAAik9evXy+VySZKuuOIKzZo1K+iDO0kaP368li9fLrvdrrffflt2u11PPvlkoMvyyWOPPabvv/9eRUVF+vXXX3Xbbbfpo48+UmRkZJPmc7vdKigoUGxsbLNrCwsLk1Txudabb77Z7PkO9e677+rdd9+VJM2fP5/QDgDaEIK7Nmb16tVKT0+XJF166aWKj49v1ftX/WSYJHXs2NHncUlJSTIYDJ4NmHfs2FErXGvJudsCh8Mhg8EQ6DJanbelKoJt+QoAAAAEJ4fD4fk+oIrL5fJ8MN4c/pgDAKr7+uuvJVWsMvT0009Laht/13To0EGXX365Pv30U0nSRx99pIceekihoaE+z+FwOHxeWcmfEhISNGTIEC1YsEBSxb5yGzZs0F/+8pdGz+V2u/X4449rw4YNeuutt2r8IHlTVK0WZTabW+RzrOrhYq9evdrEnzUAtQXr/7sul6vW+3C73V7ruabgs2GCuzbF6XTq+eefl1SxB9wDDzzQ6jXk5uZ6jmNiYnweZzabFR4eLqvVKqlieYjWnLst+OOPPwJdQtBoK5t0AwAAIHhUdS6UlZU1e+n80tJSf5QEAB5Op1MrV66UxWLR5MmT5XK52tTfNVdffbUnuDOZTLLZbD5/mFxUVKSxY8fq6quv1g033NCSZXp17bXXeoK75ORk9enTp9Ffe7fbralTp2rp0qWSpNtvv10LFixo1rKbVT+87Xa7W+TPgt1u9xyXlZW1ie5OADUF878TTqfTE9KVlZVJ4jNdfyK4a0PeeustbdmyRZI0efLkgLS4l5SUeI6rvjH2VUhIiCdcq/q1teYGAAAAAAAIlJ9//ln5+fkaPXq0jj322EaNtdvtTdpT7ptvvlFRUZGuvvrqRo891CmnnKJ27dqppKREAwYM8Ll7rqioSPfee69+++03/fbbb3K73brxxhvrHbN7926/d5gkJiYqPz9f48eP1/79+xs9/p133vGEdpK0Z88ejR49WvPnz29y511VcOdwOLRz584mzVGf/Px8z7E/OmAAAK2H4K6N+O233zRr1ixJ0sSJE3XNNdcEpI7qoVhjlkSQaoZx1UO61pgbAAAAAACgPh9//LFiYmJ00UUX1XlN1XKJ/fv31/nnn+95/ssvv1S/fv0UHR3tddynn36qrl27atSoUY2u65lnnpHRaNTf//73RgV4ZWVlmjRpkv7973/r0UcfbVZ3mNls1i233KL9+/frb3/7m09jqod2UsXXbvr06ZJUb3i3fv16PfPMMy0SNj366KN+m6sqvFuwYEGTwruq4C47O1vXXXed3+ryJliX2gMAeEdw1wZkZWVp7NixcjgcmjRpkm699dZAl9Qk1d8k+Ls9vyXnBgAAAAAAh7/8/HxNnjxZl1xyiW6//XavXWWrV6/WZ599puXLl+uOO+7QnXfeKaPRqO+//16zZ8/WE088obPPPrvGmJKSEq1atUqzZs1SSEhIo2r6+eef9fHHH8vtdis1NVUzZsxQXFycT2Or6v/uu+/017/+tVH3rU/VkplN4Xa7PaHcTTfd5PWaG264QZGRkcrLy9Pxxx+v9u3bKyoqSu3atfOEXXX56aefNGbMGEnSPffcozvuuMPrda+99ppefvllSdL8+fN1+umnN/k1NVeHDh20fPlyv887b948zZ8/XxIddwDQ1hDcBbnCwkKNGTNG2dnZevbZZzVgwICA1tOuXTtPq33V2rW+stlsNeZpzbnbguOPP75JS1+0dQ6Ho9b6xyeccEJANq0GAABA2+JtebGwsLBGv5c8dP+Q8PDwZtcGoO2JjIyUJK1atUrffvut15DI6XRKqghClixZoptuuklHHXWUwsPDlZWVpXvuuafO+es754uNGzfqhRde0DPPPOPT9dU/H7n22ms9gVYwMBgM9f5dO3jw4CbNW30FJ7PZXOc9qv87ERoaGpC/96v+fDX0tWiq6p8xWSwW/m0D2oC29J7U4XB4/h6rqrN79+5++UzXbrfrjz/+aPY8bRmfjAexoqIijRw5UqmpqZo7d64uvvjiQJdUI1wrLy9v1Njq10dERLTq3G2B2Ww+IoM7b/haAAAAwBcGg6HWB+tGo7FRq3DUtXwYK3kAR57q3XBvvvmm1y6s2bNna968eZKkf/7zn+rcubOkg4FRYmKiFi5c6Lea0tLSPIFb//79NXXqVJ//fqoeYsXFxemYY47xW13Bqvq/CQaDoc6vla/XtaSqLriWun/11+h0Ovl3DQhybe09qdForPU+3GKx+CW4o0uY4C5oFRQUaOTIkdqxY4deffVV9evXL9AlSap4o5eeni6pokZf2Wy2Gl108fHxrTo3AAAAAABAfRr7YWP37t09xyaTyfPr0Ucf7de6qlx88cWNWmqz+g/ENrTEZFuzdetWLVy4UE8++WSbXbHHbrd7ft2xY4ff58/Ly6t1LwBA29A2/2U7zOXl5WnEiBHas2ePXnvttYCus32oo48+2rOpcEZGhs/jsrOzayTl3t7EtuTcAAAAAAAA9WnOyi/BGB4dzsHdjBkz9O233yorK0vPP/+8X1Zf+vbbb/Xdd99p9OjRSk5O9kOV9atadjUrK0tXXnlli96rsVvSAAACK/jeVRzhqjrtqkK7U089NdAl1VB9WYV9+/b5PC4zM9NzHBERoaOOOqpV5wYAAAAAAKhPc8K3qo67YBKsy6s118qVK/Xtt99Kqgjbbr/9ds2fP18JCQnNmvfss8/W6tWr1b9/fw0ZMkRjxoxp9pz1qdr25aijjtJ//vMfv88/d+5cvfjii7JYLCw7BwBtzOH5L3gbVVxcrFGjRmnXrl16/fXXgy60k6S+fft6jrdu3Vrn2ruH2r59u+e4d+/eXn/SqyXnBgAAAAAAqE9zgq5gD+6a8lnJunXr9PHHHzf5/sXFxbr33ns926L4Q0lJiZ566inP44iICJ144okqLCxs9twhISF6/PHHNW3aNH344Ye69NJLNXPmzEZt59IYVcFdS235kpiYqLFjx+o///mPjj32WK/XLF68WFartUXuDwBoOoK7IGGz2XTPPfdo+/btevXVV3XKKac0OMZut2vs2LEqLS1thQornH766YqNjZVU8Qbszz//9Gnc77//7jm+9NJLW31uAAAAAACA+jQnuPNHd5uvP8Dsq+o1HVqfL2FNXFycnnjiiSbvv7Z582atXLlSV111lebNmyebzdakeaqbPn26JwiMjY3V+++/r8mTJ9fYb7C5rr76an3wwQeKj4/X/Pnz1b9/fy1YsMATtPnLKaecoldeeUUffvihX+etcvPNN2vcuHFel/10u92aOnWqHnnkEd13331yOBwtUgMAoGlYKjMIuN1uPfTQQ/r555/18ssv68wzz/Rp3B9//KF169YpPDy8hSs8yGw269JLL9XixYslSd9//7169uzZ4LiffvpJUsVPeNUVrrXk3AAAAAAAAPVpTvhWV0fbunXrZLPZ9Je//KXe8T/88IPmzp2ruXPn+q0Dq67gzm6368Ybb9Tbb7+tuLi4Osf36tVLJ510kv7v//5PixcvVkhISKPuv3nzZklSaWmpZs+erU8++URz5szRcccd18hXUuGbb77RBx98IEmKiorS66+/rl69ejVprob07NlTixcv1rhx47RhwwbNmDFD77//vh544AGf9qNLTU1tcHnKYcOGSZJ27tzpl5ob4+WXX9Znn30mqWK50X/84x+aPn06q1gBQJAguAsCL730kpYvX65nnnmmwTdy1a1YsUJdunRpwcq8Gz58uJYuXSqn06lPPvlEw4cPr/f67du3e34664orrqh3D7qWnBsAAAAAAKAuLbFUZnFxscaOHavrr79eDzzwgCIiImpdU1ZWpkcffVR79+7V9ddfr3nz5vn0g8wNqSu4s1gsOvfcc/WPf/xDr7zySr1zDBs2THfffbdmzZqlhx56qFH3/+2332o8TkhIUI8ePRo1R5UDBw7o4YcfllSxPOaCBQvUu3fvJs3lq7i4OP3zn//Uww8/rM8++0zp6emeEHPy5Mnq1KlTnWPXr1+vJ554os3sLffJJ58oISFBEydODHQpAAAR3AXcN998oxdffFF33323Bg0a5PO49PR0LVq0SOeff77X8xkZGXriiSe0YcMGderUSQ8//LDOOeccv9R87LHH6tprr9WSJUv0v//9Tz///LNOO+20Oq//6KOPJFW8iR03blzA5gYAAAAAAGgJdXUqhYWFSarYS6xqhaH6pKen68knn9Q777zT7O6n6uMPDRZvu+02XXbZZVq0aJGGDBlS5xwXXXSRunTporfeeksXX3yxz6tESQc77qSK/eOefvppWSyWRryCCg6HQxMmTFBOTo6io6M1f/58n7aY8YeQkBDNmDFD0dHReu+99yRJa9eu1aBBgzRv3rw6P7MaMmSIkpKSVFhYqBNOOEEpKSmKiYmhow0A4BP2uAug7OxsTZw4UWeffbbGjx/v87iNGzdqxIgRKikpqbPjbuLEifrmm29ktVq1bds23XPPPdq3b5+/SteDDz7o+cmiZ555ps6fIMrMzNT7778vSRo3bpxPP1nVknMDAAAAAAB405xQpa5uverLSz788MNatWpVrf+++OILzzWnnnqqXn31Vb8EPHa7vc76OnfurEsuuUTPPPOMUlNT65zDYDBo8ODBcrlceuihh1RSUuLTvbOzs5WRkeF5fMstt6hz586NfAUVpk2bph9//FHx8fF66623Wi20q2IwGPT444/rtttu8zxXWFioCRMm1LtX4CWXXKJBgwbpuOOOU2xsbI3f07179/plz7+GlJWV1fv7CwAITgR3ATR37lzl5eXpzz//1JVXXqnLL7+8wf/OOeccDRkyRLt375akOoO7Q5cjKC0trfGTTs0VHx+vV155RdHR0dq0aZOeeeaZWtfYbDb97W9/U1lZmS677DLdddddAZ8bAAAAAADAm+YslVmX0NBQz3FcXJw6depU67/q236ceeaZioyM9Mu9y8rKPMfelvK87bbbVFpaqokTJ8rhcNQ5z6BBg2Q0GpWenq7Zs2f7dO8ffvjBcxwSEqI77rijEZUf9P777+u9995TSkqK3nnnHZ1wwglNmscfHn30UV1++eWex/v379dXX33VpLlWrFihyy+/XIsXL673a99cDz/8sAYOHKg333yzzSzbCQBgqcyAOnDggKSKn0LKzs5u0hx1BXe9e/fW+vXrPY8tFovfN+zt2bOn/vWvf2ncuHF68803lZGRoVGjRql9+/b6448/9Pzzz+uPP/7QsGHDNHHixEb9tFhLzg0AAAAAAHCo5gQbdX0u0RJhoK9KS0s9x96Cu7POOktdu3bVpk2b9Oqrr+ree+/1Ok/79u117rnn6rvvvtO7776ra665RieddFK99163bp3neODAgUpKSmp0/T/++KOmTZumnj17asGCBWrfvn2j52iqzMxMpaSk1HjOYDB4OhS3bdsmqaLzrilCQkKUnp6uRx55RI888kiz623I008/rc2bN2vmzJktfi8AQPMR3LVxdQV306dP9+xxl5KSovvvv7/Oa5ujW7du+uijj7RixQotXbpU48ePV0FBgdq3b69TTjlF06ZN04knnhh0cwMAAAAAAFTXEsGdt8CstVTvuDOba38EaDAYdP3112vmzJl65ZVXdMkll9T5Q99XXHGFvvvuO7lcLk2ePFn/+te/6g0lq3fcDR06tNG1b9q0SWPHjtXpp5+uuXPnKioqqtFzNNWGDRt0xx136KGHHtLNN99c41x4eLheeukl3XLLLcrJydH555/fpHtUX0J1+vTp6tOnT4NjvvzySz3//POSpNdff10dOnRocMwdd9yhjIwMHXvssXrooYeaVCsAoPUR3AXQyy+/3GJzd+zYUfPnz2+x+asLCQnRgAEDNGDAgDY1NwAAAAAAQJWWWEqwscGdP2uo3nEXHh7u9ZrBgwfr+eefl91u16OPPqoPP/zQayB30UUXyWQyyel06rffftPy5ct1zTXXeJ1z7969Sk9Pl1Sx9Oexxx7bqLo3bdqkkSNH6rLLLtOTTz4pi8UiSdq3b1+9e8pVXVMlLy9PO3bs8HpdXl5ejTFV12VnZ2vcuHEqKyvTE088oZKSklrLfHbp0kWLFy/W1q1b1b1790a9tirVg7sOHTro6KOPbnBM9a7Fzp07q2vXrg2OqQpse/fu3aSuRwBAYBDcAQAAAAAAAEHAn8Fd9Y67iIgIr9ckJiaqX79++u6777R582a99957uu2222pdFx8fr1NPPVUbNmyQJL366qt1BnfVu+0O7VhryKZNmzRmzBj93//9n2699dYa57KzszVy5EgVFRX5NNfChQu1cOHCBq+bOHFineeee+45GQwGjRo1qsbz7du3b9bSndWDOwAADkVwBwAAAAAAgCOey+Vq1PW+hGx1LaHprxrqU1BQ4DmOjIys87qqZTAl6YUXXtCAAQMUHR1d67ozzzzTE9xt375dmzdv9rrE47fffiupokOsf//+jar5lVde0YsvvqjTTz+91rm+ffvq/fffV05Ojnr16qXY2FjPuX//+9964IEH9PHHHze5C66srEy33HKLfv/9d0lScnKy7rzzTl133XVNmq8+VV2EraUlukkBAC2H4A4AAAAAAABHvMaGZtWvryugC2Rwt3//fs9xcnJyndf1799fjz/+uOx2uwoKCvTBBx9o9OjRta476aSTajz+8ccfawV3NptNa9askSQNGTKk0QHVK6+8Uu/5Y4891uvSm/3791fv3r31j3/8Q++++269++9543a7NXHiRE9oFx0drTfffNOnJSybonrHXVP2ALzssssadb0//1wBAFoewR0AAAAAAACOeI0NNxwOh+e4ro6m5szZXNWDuw4dOtR5XXR0tE455RStX79eUkX3mrfgrm/fvjUeZ2Vl1bpm7dq1slqtslgsGjJkSFNLb5KJEyfqxhtv1JtvvqmRI0c2auxLL72kFStWSKrohnvhhRdaLLSTau59OH36dK+di4f68ssv9fzzz0uSXn/99Xp/T6vccccdysjIILgDgDaG4A4AAAAAAABHvMYuJ+jPkK2KPwOWffv2SZLCwsKUkJBQ77Vnn322J7jbtGmT8vPzayxFKUlxcXGKjY1Vfn6+JNU6L1WES5J05ZVXKjExsXkvoJH69u2rwYMHa9asWTrttNNqdQjW5eOPP9bcuXMlVXRITpkyRf369WvJUmWz2TzHHTp08CkkTEpK8hx37txZXbt2bXCM2Vzx0S/BHQC0LQR3AAAAAAAAOOJVD+LWrl2r9PT0Wtds377dc1w9fKmL0+n0HGdnZ2vHjh21rrHb7V6Pm6uq4+6YY45p8NqzzjrLc+x2u7Vnzx6vwVyvXr30ww8/SFKtfehsNptWrVolqWnLP/rDxIkT9e2332r8+PFaunSp4uPj673++++/16OPPup5/I9//EODBg1q6TJ9+rPjTy0RMgMAWg7BHQAAAAAAAI541cON5cuXKzw8vNY1Bw4c8ByXl5d7juvq1qse3D333HN67rnn6q3BX8GdzWZTbm6uJOmEE05o8PpevXrJYDB4XkdZWZnX6y677DL98MMP6tevn84444wa57777jsVFhbq1FNPVe/evZv5CpomJiZGkyZN0rhx4zR+/Hj985//rLGfXHW///67xo4d6/majxs3rtUCR38GtMF4PwBA8xDcAQAAAAAA4IhXPbh76qmnanWUSdLs2bM1b948Sb4Fd9XnfPbZZ3XttdfWuqa8vNyzf5y/OrH279/vqen4449v8PrIyEh1795dqampkqQuXbp4ve6mm25SSkqK/vKXv8hgMNQ4t3z5ckmB67arctlll2nw4MFasmSJHnjgAc2ZM0dGo7HGNdu3b9fIkSNVUlIiSbrnnns0duzYVqux+u/zvn37vHZiHio7O9tzvHfvXp+66Kquqf5nFQAQ/AjuAAAAAAAAcMRrzHKCZrO5VnDlTWMDE38FLFu3bvUcn3nmmT6NOf/885WamqqTTz5Z7du393qN2WzWpZdeWuv54uJirVq1Sh06dFD//v2bVrQfTZo0SZs3b9aXX36pJ554Qk8++aTn92vnzp0aMWKEZ6++++67T/fcc0+r1lc9uJs4cWKjx48aNapR15eWljb6HgCAwCG4AwAAAAAAwBHPl+UELRaLBg8erLvvvrtGV5rL5fJ6fVVgkpycXGcXmyR17NhRN998s2644YZGVu3db7/95rmvL3vcSdLtt9+uHTt26Iknnmj0/f7973+rrKxMt912m8zmwH/cGB4erueff1433nijPvjgA9ntdk2dOlV//vmnRo4c6Vny9MEHH9Qdd9zR6vVV/7O2cOHCGnsM1uVf//qXZz++r776Sl27dm1wTP/+/eV0OnXVVVc1vVgAQKsL/L+kAAAAAAAAQIBVdUFZLBZFRkZ6veauu+7yGkzVtVRmXFycZs2apcsuu0wWi8XrNaGhoVq5cqVMJlMTK6/t999/lySdd955Po/p3LmzXn/99Sbdb+nSpYqIiNCNN97YpPEt4eijj9bcuXM1ZswYLVmyRFlZWfrtt9+Un58vs9msKVOmaPDgwQGpLTQ0VNdee60uu+wynXLKKS12nxkzZqhPnz4yGo0qLi6u8881ACC4GBu+BAAAAAAAADi8GY1G3XLLLVq5cqV69erl9Zq6usnq6rg75ZRTdNVVV9UZ2lXxZ2jncDj066+/SpKuvPJKv81bl4yMDK1fv16DBg1SdHR0i9+vMc455xxNmzZNkrRmzRrl5+crPDxcL730UsBCO0m65ZZb9Oyzz+rSSy9VSEhIi93npJNOkiS98MIL6t+/v7Zv395i9wIA+A8ddwAAAAAAADjijRo1yqd967ypq+MuEDZs2KDCwkIlJSXpnHPOafH7LV26VFLFUpvBJjc3V1999VWN5+Lj4wPSeZaTk1NnwOuL4uJiz3FeXp4iIiIaHFNeXq4nn3xS3377rSRpxIgReu+99+pdthUAEHgEdwAAAAAAADjiNTW0k+ruuAuE1atXS5IGDBjg104+b9xut5YuXaoLL7xQ3bt3r/M6m82mzz//XAMHDmzReqr76quvNHnyZGVnZ0uq2EcwMzNT6enpuu222zRkyBCNHz9e8fHxrVbPk08+6ZeQ96abbmrSuOzsbA0fPlzvvvuuOnTo0Ow6AAAtg+AOAAAAAAAAaAan09ki85aWljbqerfbrVWrVikkJETDhg1rkZqqW79+vfbu3aupU6fWeY3dbtf48eO1evVqZWZm6s4772zRmnbv3q2pU6d6uszCwsJ01113adSoUdq4caPuv/9+ZWdn6/3339eyZcs0cuRI3XbbbYqNjW3Rum6++WaFh4dr165d6t27tzp16qSoqChFRkb6FBp/8sknnq/z0qVL1alTpybXEhoa2uSxAICWR3AHAAAAAAAANENLBXfff/99o67/4YcflJaWpptuukkpKSktUlN1ixcv1vHHH6+zzz7b63mXy6W///3vni7AWbNmKTQ0VMOHD/d7LVlZWXr55Ze1ePFi2e12mUwmXXvttRo3bpw6duwoSTrrrLP06aef6umnn9Ynn3yikpISzZ07V6+99pquvfZa3XjjjTrxxBP9XluV5nQchoWFeY7btWsXdPsJAgD8h+AOAAAAAAAAaIbmBHeTJk1Su3btFBERobCwMIWEhMhoNGrnzp364IMPPNf50pW1aNEihYaG1uhq27dvn6xWa5Prq4vNZtNXX32l0aNHa8eOHV6vee211/T555/XeO7pp59WSEiIbrnlFr/UsXfvXr3xxhv66KOPVFZWJovFokGDBunOO+/0unxnXFycnn32WQ0aNEjPPPOMtmzZotLSUi1atEiLFi1Sjx49dNVVV+kvf/mLevfu3awlVIPZv/71L+Xl5WnMmDGBLgUAcAiCOwAAAAAAAKAZHA5Hk8defvnl2rhxo7777jv997//rXMPtM6dO9c7z4EDB7Rq1SrdeeedOuqoozzPZ2dna9SoUSosLGxyjfWZO3eu5s6d26gxkydPVmhoqK677rom3dPtdmvt2rX64IMPtGrVKjmdTiUlJWnYsGG69dZbfeo27Nevn5YuXaply5Zp3rx52rlzpyQpNTXV85ri4+N1xhlnqG/fvjrppJPUs2dPxcTENKnmYLJw4UI99dRTkqTu3burf//+Aa4IAFAdwR0AAAAAAADQDHa7vcljzznnHJ1zzjm69957tXfvXi1YsEAffvhhjQCvffv2Ovnkk+udZ+HChUpOTq7VQdW3b1+9+eabWrNmjY4//nh1795d0dHRioyMlMlkanLdgZCamqrPP/9cS5cuVVpamkJCQnTRRRdp0KBBuvDCC2U2N+6jTqPRqIEDB2rAgAFauXKlFi5cqA0bNnjO5+bm6ssvv9SXX37peS4+Pl49evRQhw4dlJSUpKOPPlrXX399jXnLy8uVlpbWvBd7iOzsbM/x3r17mxwWf/nll3r++ec9jx988EG9++67LbpEKACgcQjuAAAAAAAAgGZoTsdddZ07d9bkyZN19tlna8KECXK73TKbzZo8eXK9oVReXp7effddvfDCCwoNDa11/sQTT2yzwcz//vc/rV69Wl999ZW2bNmi6Oho9evXT3/729900UUXKTIystn3MBqNuuyyy3TZZZfpzz//1EcffaTPP/9c+/fvr3Vtbm6ucnNzZTKZdMEFF6hr1661rrFYLHrttde0ZMmSZtfmzahRo/w2V2lpqe666y4tXry4VfZFBAA0jOAOAAAAAAAAaAabzaakpCSNGDHCL/NdeeWV+vjjj5WRkaHHH39cZ5xxRr3Xv/HGG7rxxht17rnn+uX+gbRv3z79+OOPWr9+vb777juVlJSob9++6t+/vx5//HGddNJJLdopeMwxx2jixIn6+9//rp9//lmrVq3SN998U2Mfvx49eujFF1/U0Ucf7XUOo9Gop556Sscdd5yioqJ0/PHHKzExUVFRUQoPD2+x2gEAhweCOwAAAAAAAKAZbr/9dk2dOlUhISF+m/Opp55SYmKiT9fm5OTo8ccf99u9A2X16tVasGCBevXqpVNOOUW33367evbsGZAlPQ0Gg04//XSdfvrpmjhxoidQ/Omnn3THHXeoW7duDY4fPnx4q9QKADi8ENwBAAAAAAAAzdCnTx+/z+lraCdJ06ZN8/v9A+Giiy7SRRddFOgyvOrQoYMGDhyogQMHBroUAMBhzhjoAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAABBgeAOAAAAAAAAAAAACAIEdwAAAAAAAAAAAEAQILgDAAAAAAAAAAAAggDBHQAAAAAAAAAAABAECO4AAAAAAAAAAACAIEBwBwAAAAAAAAAAAAQBgjsAAAAAAAAAAAAgCBDcAQAAAAAAAAAAAEGA4A4AAAAAAAAAAAAIAgR3AAAAAAAAAAAAQBAguAMAAAAAAAAAAACCAMEdAAAAAAAAAAAAEAQI7gAAAAAAAAAAAIAgQHAHAAAAAAAAAAAABAGCOwAAAAAAAAAAACAIENwBAAAAAAAAAAAAQYDgDgAAAAAAAAAAAAgCBHcAAAAAAAAAAABAECC4AwAAAAAAAAAAAIIAwR0AAAAAAEAQcTqd+v777/WPf/xDkyZN8uvce/fuVXFxcZPGbt68WUVFRX6tpz6ffPKJtm/f3qSx6enpKikp8XNFzKPlswABAABJREFUzeNyuQJdAhrpu+++U3p6eqDLAAAcYQjuAAAAAAAAAiwjI0Mff/yxJkyYoHPOOUcjRozQRx99pA8++EBvvvmm3+7z6quvasCAAdqwYUOjx/7666+65JJLNH/+fNlsNr/VVJeffvpJAwYM0P/93//pzz//bNTYZcuW6fzzz9fkyZMbPbYlFBcXa8CAAfrhhx8CXYpXn376qTIzM1v1nsuWLdP06dNlt9tb9b6NsX79ev31r3/VlClTlJ2dHehyAABHCII7AAAAAACAVlRUVKT169frzTff1P33368LL7xQF110kSZOnKjly5crPz+/xvXPPfdck4K2Q9lsNn355ZdKT0/X0KFDNX36dDmdTp/H33bbbTr77LM1c+ZMXXvttdq8eXOza6pPaGioXC6XPv/8c919990qKCjweWxOTo5KSkr07rvv6qqrrtK8efNasNKGvf/++9q+fbuGDx+u6dOnt0rw2Ri//vqrrr76ai1durRV7peXl6ennnpK//znP3XrrbcGbVdbaGio7Ha73nnnHfXv39+vIToAAHUxB7oAAAAAAACAw015ebnS09OVlpamvXv3aufOnUpNTdXOnTuVkZFR63qDwaDExEQlJycrJSVFCQkJio2NVXh4uCwWi3bu3KkzzjijWTV9+eWXKiws9Dzu3r27TCZTo+aYNGmS1q5dq9TUVN1222365z//qdNOO61ZddUlJCREkhQTE6NFixYpJibG57G5ubme46FDh2rMmDF+r89XRUVFeu211yRJbrdbS5Ys0THHHKPrrrvOb/f4+uuvdfrppysyMrJJ40NDQ1VYWKiHHnpIDz30kN/q8sWvv/6qL7/8UiNHjmzV+/rCbD740el5552nAQMGBLAaAMCRguAOAAAAAADAR263W/n5+crJyVF2drYOHDigzMxM7d+/X1lZWdq/f78yMjJ04MABud1uzziz2axOnTqpW7du6tevnzp27KiOHTuqQ4cOnl+rgqqW8s4773iOH3/8cd14442NniMxMVFDhw7Vyy+/rLKyMr344ot64403/FmmR2hoqCQpMjJSCQkJjRqblZXlOR41apSMxsAtOvXyyy97uijPOOMMvf76657X5g/Lli3TQw89pD59+uj1119vUnhXPaBauXKl2rVr59O49957T3PnzlWHDh20ZMkSn++3f/9+DRo0SJJ0++23B2VoJ9X8ujz00EOKj48PYDUAgCMFwR0AAAAAAIAPZs2apW+++UYGg0FhYWEKCwtTeHi42rVrp3bt2qlz58464YQTFBUVpaioKEVHRys6Olq//vqrpk+frl69eunee+9Vz549W732TZs26b///a8k6YYbbtCQIUOaPNeQIUM0b948uVwuORyOeq/95Zdf1LlzZyUlJTX6Po3tBqwuNTVVkpSUlKT27ds3enxZWZmsVmuzg5pt27Zp4cKFkqS4uDg98cQTKikpUUlJSbPmrfLNN9/okUcekdPp1H//+1+NGjWqSeGdxWLxHMfExCg6OtqnceHh4ZIko9HYqK+V1Wr1HJ9wwgk+j9u6dauOPfbYBoNYm82m2bNn66677mpUp+ahqn9dAABoLQR3AAAAAAAAPpgwYYImTJjQqDH79+/XPffcI7fbrRUrVujLL7/U9ddfr8cee8yvXVcNefHFFyVJ3bp10yOPPNKsuVJSUnTSSSfpv//9b72dUj/99JNGjx6to48+Wu+8847CwsIadZ+mBncFBQXKycmRJPXu3bvR48vLy3XPPfcoKytLCxcubHJ453Q69eijj3rCzby8PF111VVNmstX//3vf3XHHXfotddea1R415yQtDW9+uqr2rp1q+655x5dccUVdQZ406ZN06JFi7Ry5Uq99NJLTQ7LA9mp6Q9Op1M333yz7r//fp111lmBLgcA4COCOwAAAAAA2ii3263ScofsDpcsZqPCQ80yGAyBLguVioqKNHr0aOXl5Umq2FPunnvu0ZVXXlljCb6WtmnTJk+n4LRp0zxdUofKz8+Xy+Xyac4bbrhBF1xwgU466aQa+8lVqQpXrFarNm/erL///e96/vnnG/Xns6lh0s6dOz3HjQ3uqkK7tWvXSpKGDRumt956q0nh3euvv65ff/1VknTddddp2rRpQfv/Z1sJ7kJDQ/Xnn3/6HKLv2bNHt912m1asWNGk38P/Z++uw6JK3z+OvwfpEgPs7lzb1XVtXbu7sVDs7g5ssXtRxHaxde2OtXXtWEXBDrqZ+f3Bb+YLUjMw1O79ui6uHWbOec4zzDCy53Pu+0lKcOfu7s6ECRO02tbMzAwrKysKFixI+fLladmyJQUKFEj0sQGUSiXz5s3TvAeFEEKkHxLcCSGEEEIIIYQQ6cjr975cuOPJszffeenpg39QmOYxSzMjCuXOSNG8mahVPjf5cmjX7k7oX0BAAAMHDuTZs2cYGRnRv39/BgwYkOzr2MVm3rx5ANjb21OpUqU4tzt69CgzZ86MtjZfQpYtW6bVdsePH2fJkiWMGjVK67HjCk22b9+u9TxXrFjBihUrtD7mj549e5ao8O7mzZuan02rVq2YPXt2mg3tgDQ9t6iiBt5Xr16Nc7vZs2dz5MgRTExMcHZ2TnTVZFICzWbNmlGvXj2eP39O//79Ne1RO3fuzMCBAzUBur+/Px8/fuTWrVvs3r2ba9eusWbNGtq0acPEiROxsrLS+pgqlYrv379z7do13NzcuHXrVqLnL4QQIvVIcCeEEEIIIYQQQqQDNx594I+zL3j4z9c4t/EPCuPe8y/ce/6FPaefU6pgFtrVLUKlEtlScKbC19eX/v37c+fOHXLkyIGzszPlypXTat8XL15w48YNOnfurJe5HD16lFu3blGiRAlGjBgR6zZLly6le/fudOnShSxZshAUFETJkiXJkiULVlZW0cLGQ4cOMWHCBMaNG0f37t31Mse4qMOkDx8+MHfuXAYPHoy1tTVdunQhd+7cKBQKChUqFKMF58KFC3F3dwfg4MGDiVpf70cWFhZab/vx40eGDx9OeHg4zZs3p3Xr1noNxnx9fXFycmLkyJF6eW6QfiruogZ38YVx6vds1qxZqV69eqKPF9/rFhERgY+PT5zzMDY2xtjYmEqVKlGqVCmuX78OQK9evciW7X+fydbW1uTMmZPy5cvTq1cvnJyccHNzw93dnZcvX7J582bMzc3jnef06dM5fPgwQUFBCa47KYQQIu2T4E4IIYQQQgghhEjDfANCWbfvPhfueOm878N/vvLwn6/UKp+b/q3LYG2R8tVe/zWvX79m4MCB/PPPP9SoUYOFCxdqXe3z/v17+vfvj5eXFy9fvmTChAlJClS8vb2ZO3cu5ubmLFmyJNZqv9u3b7N27Vrc3d1ZunQpv/32W7xj/v7774SFhTF79mzu3bvHrFmz4my9mRhfvnwha9as0e6zs7Pj2bNnNGrUiMmTJ9OkSRNq1qwZ5xhPnz4FIFeuXBQrVkxzv1Kp5OvXr3oLu2Lj7e1N3759+fz5Mz179mTChAk0adIEIyMjBg0aROXKlZM0fkREBCNGjODGjRtcuXKFVatWJWodv/QqpQPGuIK78PBwRo8ezePHj3F1dY0WxMUm6rzja5NraGjIlClT8PLy4uzZs9y7d4+1a9cm2BZ06NCh9O3bF4h8n9+/f59JkyYRHBwc735CCCHSJgnuhBBCCCGEEEKINOrVOx+mb7jGN9+knXw9f8eTv19+YUb/auSX9pnJ5sSJE0yaNImAgACGDh3KwIEDtV4jy8PDg969e+PlFRnQbt26ldevX+Ps7IylpWWi5jN79mw+f/7M/PnzKViwYKzbODs7A/Dp0yd69uzJhg0b4qxQOnr0KI8ePQLA3NycPHnyEBQUpLfgLiIigs6dO3Py5Mlo9xsYGLBgwQKaNWvGiBEjuHjxIjNnzsTIyCjGGMHBwZrgrmLFijEer1u3Li1btqR3795x/kwSy9/fHwcHB54/f86ECRPo1asXAEZGRjx9+pShQ4fq9XgfPnyga9eu7N27lyJFiiRprPTSKjMtBHfh4eGMGjWKP//8E4AePXpoFd7pYtSoUZw9exaIbA07dOjQeAO/zJkzR7tAIG/evJw+fZqjR4/qbU5CCCFSjgR3QgghhBBCCCFEGvTqnQ8TV1+OtoZdUnzzDWbCqks4Daoh4Z2eff36lQULFrB//37y5s3L+vXrKV++vNb7X716leHDh+Pt7Q1EhmJNmzaldu3ahIaGJmpO27Zt49ChQ7Rp04ZWrVrFus3p06f566+/gMhwadq0aXGGdoGBgSxatAiAUqVKsWzZMvLkyZOoucXl9evXfPz4MdbH7OzsGDduHBMnTsTd3R2VSqVZuy+qBw8eaFoF/rien4GBAUqlkj179rB3717q16/PvHnzEh2MRvX161f69u2Ll5cXq1atol69eprHogaM6lAxKVq2bMmTJ08wNzdn9erVSQ7tIP0Ed4mZ59OnT+nZsyffv39P0rGjvqZRvX79Wu/hXZEiRcibNy9v3rzBz8+Phw8f8tNPP+k0RkLtNYUQQqRdEtwJIYQQQgghhBBpjG9AKNM3XNNbaKfmHxTGtPVXWTG6jrTN1IP379+ze/dutmzZQmhoKP369WPQoEFaVaCFhoYSHByMi4sLa9euRalUYm5ujr29Pfb29lhZWSV6XkePHmXu3LkUL16cadOmxbqNv78/c+bMASKDpRUrVlCnTp04x1y6dCleXl5Uq1aNVatWRVvzTaVS6SX4uXv3LiEhIXE+3qZNG7Zv386DBw/Yt28f7dq1ixHOXb16VXP7l19+iTGGsbEx4eHhGBoa0rBhQ72Edm/evKFfv35YWVnh7u5O7ty5oz0eW2WgPmTKlIlq1aoly9hplbYVrFEVK1aMzZs3c+TIEUqVKkW+fPmwtLTUat3CgwcP4uTkBMC+ffvInj17nNvqs2UsQOHChXnz5g1AnIG2EEKIfycJ7oQQQgghhBBCiDRm3b77SW6PGZdvvsGs3/c3o7vFbCMotBMcHEzHjh159uwZSqWSDBkyUK9ePXx9fZk6dSrBwcGar6CgoFj/GxEREW3Mpk2bMm7cuCRV7AQGBrJ48WK2bdtGhgwZ6N27N9euXcPb2xtvb298fHzw9fXF19eXly9f4uXlhUKhYMGCBfGGdleuXMHNzY0qVaqwdu1aTE1Noz1+69YtnJ2dGThwYKxhmbYuXboEQFhYWKxhl0KhYOjQofTv3x8AT0/PGMHd5cuXAShatGiMAA3+F6IVKFCAFi1aJHquUY83duxY2rdvj6OjY6zrCCZXcJdcErMOn5eXV7T1BJNLYgPi4sWLU7x4cZ33ixruWVtba71epT5EPXZYmH4v4hBCCJG2SXAnhBBCCCGEEEKkITcefeDCHa9kPcb5O57UqpCLyiXjrh4RcTM1NaVixYo8efIEiFyb7cSJE9G2sbCwIH/+/OTNm5dcuXKRM2dOcuTIQaZMmdi3bx/u7u6EhYVRqlQpJk6cGCOASgwzMzPu37+PSqUiPDycsWPHah7Lli0bP/30E6VKlcLU1JSDBw8CMGLECJo0aRLnmJ8/f2bMmDGUKFGCNWvWxAjtILIlZatWrejbty9lypRh9OjRVKlSRae5+/j4cPbsWRQKRbzrmNWsWZPcuXPz7ds3ateuHe0xPz8//v77byByLbvYqMc2MTHRaX6xef/+PZs2bcLV1ZVChQrFuV3UMO/bt29JPq5SqUzyGD9SqVSa22fOnNG6emz79u2sWLGCHDly4O7urvXxPnz4QOvWrXWeZ2Iq7tIrf39/ze1MmTKl4kyEEEKkNAnuhBBCCCGEEEKINOSPsy9S7DgS3CWeg4MDe/bsITQ0FIVCQYkSJfj555+pWLEipUqVIkeOHDH2OXv2LKNHj8bT0xNbW1uGDRtG27Zt9RZGKBQKpkyZQocOHVCpVFSoUIFmzZpRr149TYu/jx8/agKTdu3a4eDgEOd4ISEhDBo0CFNTU9avXx9vW8l27dphZGTE+PHj6d69O3Xq1GHMmDHxBlpRrV27lqCgICwtLeP9eSgUChwdHTEwMMDGxibaY5cvX9asbxfXemR+fn4AGBom/ZRYjhw5+P333xPcLmrFXVptbRm1AtTW1jbWysHYqAM+AwMDnarRAgMDdZvg/0sva/Hpw6tXr4DI55yYakEhhBDplwR3QgghhBBCCCFEGvH6vS8P//maIsd6+M9XPN77ki+HdYoc798mW7ZsODg4YGBgQKtWrciZM2ec27558wYnJyfOnDmDiYkJ/fv3x8HBQS/rq/2obNmyDBkyhNKlS1OrVq1oj4WHhzNixAi+fv1KzZo1mTFjRpzjhIWFMWrUKDw8PNi5cydZs2ZN8NgtW7YkODiYqVOncvbsWS5dukT//v1xdHSMNyi7cOECLi4uAOTLly/B47Rt2zbW+//8808AChYsSNmyZQFYtGgRo0ePBiIrmLRpOXj27FkqVqyItbX+fzeePn2a5DFatmypqfbUl6hVfNqGdqkhqcGdv78/4eHhMULftObNmze8fv0agPLly6doi04hhBCpT4I7IYQQQgghhBDi/336HoRpkCrV2rEdu/IqRY939Mpr2tQpnKLHjCpbZvNUO7Y+DB48ON7HAwICWLduHS4uLoSGhtK4cWNGjx4d69prt2/fxsfHh5o1a8bbKlIbgwYNivV+Jycnbt26RenSpXF2do4zTPP392f06NFcunQJFxcXChQooPWxO3bsyPfv31m6dClhYWGsWrWKv//+m3Xr1sX6e6VUKpk2bZqmVaOuLTbVQkJCOH/+PICmotDb25tdu3Zpgjtvb2/N9urKvB/5+fkxfvx4TTWdPgKT5FqfTJ8tM0NDQ4H0tR5fQEBAnI/F9fr+9ddfzJw5k3nz5qXZ6keAZcuWaW7H9fsshBDi30uCOyGEEEIIIYQQ4v8NXXo5taeQoo5eecXRFA4Lozq0uGWqHTs5RUREsHfvXlasWMHnz58pV64c48ePp3z58nHukytXLhYuXMjUqVNp164dnTp1Ilu2bHqbk4uLC25ubuTLl48NGzZgYWER63aHDh3C2dkZT09P2rdvj7+/P0eOHCEgIIDAwED8/f0JDAwkMDBQc5/6tp+fHyEhIQQEBGBkZKQJrC5cuMD9+/cpV65cjOOFh4drArUiRYrQp0+fRD2/8+fPExgYSIYMGWjZMvJ99ddff0ULzXx8fDS3g4KCYh1nxYoVeHt74+3tTZcuXdi8ebOmzWhiqUMxfYsrnEoM9RzTcrXdjypUqKDzPvXq1eP48ePY29szYMAAhg4dmqbWzVMqlSxfvpzDhw8D4OjoSI0aNVJ5VkIIIVKaBHdCCCGEEEIIIYQQeqBSqTh58iTOzs68fPmS3Llzs2TJEpo2bZrgvtmyZWPLli1MnDiR1atXs379epo0aUL//v0pUqRIkuZ14sQJFixYgK2tLZs2bYq3iuzu3bt4enoCsGfPHvbs2RNjG0NDQ7Jly0auXLnIlSsXp06dAiJbWPbo0YPs2bNjbm5Ohw4dePz4MQBfvnyJ9XjGxsYcOnSIkJAQChYsmOhWiO7u7kBkMKMOPI8dOxatguzt27ea29++fYsxxq1bt9i6davmOVatWjXeqi5t6TNgi0qflXzqNedMTEz0NmZyu3//fpyPTZ48mYMHD8b62JQpU7h8+TJr1qzh/v37LFu2DCsrq+Sapla+ffvGtWvXcHFx4f79+5iZmTFmzBi6du2aqvMSQgiROiS4E0IIIYQQQgghhEgCpVLJyZMnWb16NU+ePMHGxoYJEybQpUsXnSqYjI2NWbhwIZkyZcLV1ZWDBw9y+PBhWrVqxdixY8mUKZPOc7tx4wZjxozBwsKCjRs3kidPnni379OnD7t27dKEQtbW1lSsWJGzZ88C8PPPP/P7779Ha+e5b98+AGrWrEnx4sU19y9ZsoTWrVsTHBwcb7vN2FqH6uLjx49cuHBBM3+AT58+cebMmWhrmanXhTMyMuLbt2/4+/tr1hn09fVl/PjxKJVKChcuzIIFCyhVqlSS5qUWNWCLLTDUlbpFpjps04f0GNzFN9f42s1aWVkxZswYxo0bx+XLl+natStubm7JsqZhbFq0aBGtyi8kJERT8VioUCF69+5N9+7d4103UwghxL+bBHdCCCGEEEIIIYQQifD9+3cOHDiAm5sbb9++xcLCAkdHR/r06aMJhHSlUCgYM2YMISEh7Nq1C6VSibu7OxcvXmTTpk0UK1ZM67Fu3bpF//79UalUrFmzJlqoFpecOXPSvHlz3r17R8+ePfn1118BKF26tOZxbdfgK1iwICNHjuTMmTMUKlRI63nrat++fURERFCxYkVNO86VK1cSEhKCnZ2dZjt1cFegQAH8/f15+fIlP/30EyqVirFjx/LmzRtat27NtGnTMDMz09v8ogZ3+lxXLTQ0lJCQEL2EbX5+fgB6fd5pWcuWLVm/fj0vX77k6dOnzJw5k0WLFqXIsdevXx+t/eqGDRvYuXMnAPPmzaNs2bIpMg8hhBBplwR3QgghhBBCCCGEEFry8PDg6tWrnDt3jkuXLhEWFoaZmRmdOnWiY8eOmJiY8M8//xAQEEBAQAD+/v6a2+o14aJ+H9uXQqEgY8aMZM+enQ8fPgDw+fNnhgwZwrFjx7QKzo4ePcr48eOJiIhg5cqVVK5cOcY2X758wcvLi7dv3+Lp6YlKpWLgwIFMnz49WhgUHBysuW1qaqrTz6tHjx507NhRp310ERYWxo4dOwBwcHAAIp/7rl27AChatKhm22fPngGQL18+VCoV9+/f56effmLJkiVcvHiRqVOnJktrwvDwcAwMDKhbty4jRozA0dGRvn370qpVq0StKTdy5Ejy5s1Lo0aN9FYhp17/z9zcXC/jpXUKhYI+ffowceJEAA4fPszo0aOTvJ6hNrJnzx6tyrRHjx6a4G779u0S3AkhhJDgTgghhBBCCCGEEEJb7969Y9q0adHuCwoKYufOnZqT77ExNzcnLCyMsLAwsmfPTufOncmYMSM2NjYxvtRVT4GBgbRr146XL18CkaHh27dvyZ8/f5zHefPmDcuWLePw4cMAdOzYkYCAANavX8+7d+/w8vLCy8uLd+/eERQURJ48eahQoQIVKlSgUqVKQMwWhFErxnStyFIoFDqHfbo4cuQIHz58oEqVKtSqVQtPT08mTZqkebx27drA/0JKiAzuLCwsuHjxIgqFgl27drFx40a9VsNF1b59e+rXr0/u3LkZO3YsHh4eTJkyha1bt7Jx40bNmnzaGjx4MJkzZ47WBjSpvn79CkS+vrq08wwKCgIi23fqsp+vr69uE/x/KpUqUfvFplGjRsyaNYugoCBUKpVeW4/qolChQlSsWJFbt25x9OhRxo0bl6i2uEIIIf49JLgTQgghhBBCCCH+3/IRv2Bqahpt/aGUtHjbLR6/TvoaWNoqUSAzo7pUTLHj/RtUq1aNatWqcfXq1Wj3GxkZUaRIEYoWLUq+fPnIly8f2bJlI1u2bNja2mJqakr37t25fv06OXPmZMCAAQkey9zcnGXLltGmTRvNGlhWVlbx7qNQKDhx4oTm+127dmmqzwAyZcpEtWrV6N27N7/++qtWoVHUkCWh46e033//HYAxY8YAkZVT6gCmaNGi1KtXD0CzRh/ATz/9hJWVFatXr+b169fs2LEjWVt59urVC4BHjx5x6NAhACpVqoSzszPm5uYEBARoPdb9+/cZOnQo2bNnZ9OmTdFagSbF58+fgcg1ERMTYL5//z7Zgs+o9BncWVhYUKNGDU6ePEm5cuUoWLCg3sbWVYcOHbh16xYhISHs3buXfv36pdpchBBCpD4J7oQQQgghhBBCiP9nl8kMMzOzVAvuShfKkqLBXemCWciW+b/RGk+fRo4cSceOHSlfvjy1atWiSpUqlCpVKlFtDxNSpEgR+vfvz8qVKylTpgxZsmSJd/s8efLQs2dPNmzYoLnPxsaG5s2b06hRIypUqKDz+1u9/hlA5syZdXsCyejUqVM8ffqUpk2batoLduzYESMjI6ysrGjQoIGmreiZM2eAyIC1evXqGBkZoVAo6N69e7KGdmoqlYrZs2ejVCoBuHnzJjVq1Ej0eL6+vnTp0gUXFxfy5MmTpLkFBgZqWmW2adMGJycnrffdtGkTCxYsIFeuXJqfsTY8PT01oWpqatq0KZcuXWLGjBmpOo9GjRoxd+5cfHx82LFjB3369Em1f4eEEEKkPgnuhBBCCCGEEEKINKJm+dzsOf08xY5Xq3zuhDcSMZQtW5bLly/HCLFUKhXBwcE6t5NMiIODA69evaJz585abT9gwADc3d1RKBQ4OjrStm3bJLWr/PLli+a2ra1tosfRJ6VSibOzMxkzZtSsUwaRFYV9+vSJtm1wcLCmQrJSpUpYWloCUK5cOQ4ePEj37t2Tfb6urq7cunULc3NzSpcuTbFixTRVgto6cOAAU6dO1VSd5cmTB09PzyQHd+oWohB9TUBt6LMCThvq4FNf2zdq1IgyZcpEW3MuNZiamtKiRQu2bt2Kl5cX58+fp06dOqk6JyGEEKlHLt0QQgghhBBCCCHSiPw5rClVMP6KKn0pVTAL+XJYp8ix/o1iqzzbuXMnffr00an14c2bNzVr2MXF2NiYJUuWULlyZa3GtLS0xNnZmSNHjtC1a9ckrzH3/v17ze2khkT6cvDgQZ4/f864cePImjVrvNteuHBBsxZb06ZNNffXrl2b+/fv8/jx42Sd6+PHj1m8eDEZMmRg6dKlLF++nOPHj3Ps2DFMTEy0+jp+/DjTpk1DpVKhUCiYPn06Li4uemlP+c8//2huFy9eXKd9dQ3SkkrXoDCh+SkUilQP7dQ6dOigub1t27ZUnIkQQojUJsGdEEIIIYQQQgiRhrStUzhFjtOubpEUOc5/xdu3b1m4cCG3bt2iX79+Wod3lpaWDBkyhD59+nDhwgW9VTBVqVIFGxsbvYzl4eEBgKGhIXnz5tXLmEkRGBjI0qVLqVGjBm3btk1wezc3NwDs7Oxo2bKl5v6GDRsCsH79+uSZKODt7c3QoUMJCQlhypQp1K5dm0yZMjFv3jymTJnChQsXEhxjz549jBs3DqVSSYYMGXByctK6+lIbz59HVvkaGhry008/6bRvWq+4S+n5JUXRokUpV64cAJcuXeLNmzepOyEhhBCpRoI7IYQQQgghhBAiDalcMjs1y+dK1mPUKp+bSiWyJesx/kuCgoIYPHiwJqzTJbwrXrw4e/fuxdbWln79+tG0aVP27NlDaGhock87VuHh4THuU1ekFSpUCBMTk5SeUgyrVq0iIiKCBQsWJLjtgwcP+OuvvwDo1atXtHUI8+TJQ6lSpfjzzz95+vSp3ucZGhqKo6Mjnp6eTJs2LVrY9ssvv9CpUyeGDBnCtWvX4hxjw4YNTJ48GaVSiampKcuXL6d169Z6neeDBw8AKF26NObmuq15qQ7SUiog0/U4ERERyTST5KGuulOpVOzYsSOVZyOEECK1SHAnhBBCCCGEEEKkMQ6ty5LZOmntDeOS2dqU/q3LJMvY/0URERGMHTuWJ0+eAJGt9xo3bsz48eO1XuvO3NycefPmMXv2bN6+fcvkyZOpW7cuGzduJDAwMNnmHh4ezt9//83mzZsZOnQojRs35vr169G2CQsL4969e0Dk+nCJpa+Wii9fvmTr1q0sWbKELFkSbiurDvfy5s0ba5Vau3btUCqVzJ49Wy/zUwsLC2P48OHcu3ePBQsW0KVLlxjbjBkzhuLFi9OvXz+OHz8eY//JkyezaNEiIHLtvi1btlC/fn29zlOpVHLr1i0A6tWrp/P+6mAspYK7qEHct2/f4vxSB9/pLbhr0qSJZg1Gd3d3goODU3lGQgghUoMEd0IIIYQQQgghRBpjbWHMjP7VsDQz0uu4lmZGzOhfDWsL44Q3FglSqVRMnjyZEydOAJA/f35cXV1xdnambNmyGBjodtqlffv2bNu2DTs7Oz5//szChQupW7cuv//+u14q8Ly9vTl//jzOzs706NGDSpUq0aNHD/7++29atWrFwYMHqV69erR9bt68iZ+fHwA1atRI1HHv3bvHgAEDkjz/iIgIJkyYwLBhw6hSpUqC2x89epS//voLhULB3LlzY60ma9GiBRYWFly/fp2dO3cmeY4QGbqNHDmSO3fusHHjRpo3bx7rdsbGxqxevRo7OzuGDx/O2rVrUalUfPz4kV69erFnzx7gf1WZ6jaK+vTgwQN8fX0B+O2333TeXx3YpVRwFzUArlatWpxfR44cAUi1ytXEMjMz07xfvL29OXz4cCrPSAghRGowTO0JCCGEEEIIIYQQIqb8OaxxGlSDaeuv8s036VUXma1NmdG/GvlzWOthdiI8PJwJEyZw8OBBILLF3cSJE7WusotL2bJl2bNnD/379+fp06d8//6d+fPns2PHDubPn0+FChW0Gsff358nT57w8OFDHjx4wP3793n9+jUQuZZZjRo1mDNnDvXq1cPUNO7qzu3btwNgY2OT6OAuICCAsLAwnff7sVpq3bp1lCpVij59+iS478ePH5kxYwYAPXr0oHLlyrFuZ2lpSfv27dm8eTPz5s2jfPnyFCtWTOe5qgUGBjJkyBACAgLYv38/2bLF35I2S5YsrF+/nk6dOrF06VKuXLnC06dP8fb2BqBZs2bMnj07ye+ruFy6dAmAypUrky9fPp33V7dW1VdFZUKivifia286fvx49u3bl+6CO4COHTtq2mRu376ddu3aJWocdeAOaN5PQggh0gepuBNCCCGEEEIIIdKo/DmsWTG6DrXK507SOLXK52bF6DoS2umJv78/AwcO5ODBg1hZWbFs2TJmzZqlt3Ale/bsbN++nYoVK2rue/PmDT169ODcuXPx7jt8+HBq165NxYoV6dq1K3PnzuXgwYO8fv2aUqVKMXXqVC5evMi6deto2rRpvKHd48ePOXXqFACdOnWKtj6cLnx8fKKFCNqKWs3l7++Ph4cHkydPTnC/0NBQhg0bhre3N3Xq1GHs2LHxbt+vXz/MzMwICgqiX79+vHv3Tue5QmRY2Lt3b3766Se2bt2aYGinVqhQIZycnAD466+/8Pb2xsTEhDlz5rB48eJkC+0ATWVabK08taEO7FIjuNNGeHh4okJjfYs674SeQ4kSJShTJrKd8cOHD7l9+7bOxwsICIi235kzZ3QeQwghROqR4E4IIYQQQgghhEjDrC2MGd2tIlP7VKVUwYTX9IqqVMEsTOv7M6O7VZT2mHry/Plz2rZty4ULFyhdujT79u2jUaNGWu2rSztBS0tLNm7cGK3CLiwsjDFjxmhaG8amSJEivH//XvN9hgwZaNWqFe7u7ri7u9O1a1cyZ86c4PFDQ0OZNGkSSqWSLFmyYG9vr/Xcf+Tr68unT5903k8dcERERGBpacn8+fPJkCFDvPuoVComTJjAnTt3qFChAs7Ozhgaxt9wKmvWrPTs2ROIDN+6devG8+fPdZrr27dvmTVrFrNmzWLo0KEYGWnf5vb06dMx1tgLDQ3l0qVL/PPPPzrNQxcPHz7kxYsX5M+fP1FtMuF/FXe6BmqJrYRTH08bNjY2jBkzJsH3THIJDQ3Fx8eH27dv8/DhQ839rq6ufPz4EX9//zj37dChg+b21KlTefLkCb6+vnEGpEFBQfj6+vLu3TsuXbpE//79+fz5s+bx/fv3M3nyZO7du8eXL1/w9fUlJCRED89SCCFEcpBWmUIIIYQQQgghRDpQuWR2KpfMjsd7X87f8eT5G29eeHrjH/S/ahJLMyMK57ahSF4bapXPTT6psNOro0ePMmnSJMLCwhg0aBADBgzQqQrt27dvOh3P3NycdevW0b59e02bS19fXy5fvkzjxo1j3ad79+5s2rSJgIAAatWqxaRJk3RugahSqZg4cSIPHz4kQ4YMODk5YWNjo9V+sfn27RufPn3Cx8eHjBkzaj0PdUihbSikVCqZNGkShw8f5ueff2bFihXxVhRG5ejoyJ9//snr16/x8vKiY8eOTJo0ibZt22q1f7Zs2Vi+fLlO6xreu3ePxYsX89dffwGQKVMmHBwc+PLlC1u2bOHYsWMcP36c2rVr061bN6pVq6bzuonxcXd3B2Dw4MGJDrd0fY3UXr16pbmty3NSV89ZWFjEu12LFi2YOHEi1tZJ+wwMDAxM9L6HDx9mwoQJMe53c3PDzc2NXLlyxVkJ17RpU+bNm0dAQADPnz+nZcuWABw6dIiiRYvG2H7GjBns27cv3vns2bNHs24iRL7uQ4YM0eUpCSGESCES3AkhhBBCCCGEEOlIvhzW9MhREogMSoJCwgkLV2JkaICZiSEKhSKVZ/jvExwczOLFi3F1daVixYrMnDmTwoULx7pt3759iYiIIFu2bNja2pI5c2asra15/fo1L1++BEiwAiwqa2trli1bRrt27TShRXxhgrW1Nd26dcPOzo5u3brp8CwjhYaGMn78eI4cOYK5uTnz58+nVq1a8e6jUChQqVR8/Pgx1sc9PDxQqVQcPHiQ7t27az0XdRikTZVVSEgIEyZM4MiRI3Tp0oVJkybp9HNWt6bs2bMn4eHhBAQEMHHiRPbt28egQYOoVq1avPtrG+CqVCouXrzIpk2buHbtGhBZGda9e3d69eqFpaUlAG3atGHGjBn89ddfnDlzhjNnzmBnZ0ejRo349ddfqVy5cpJaaHp7e+Pu7k758uVp1qxZosdRvzaxvUYPHz5k27Zt2NjYYGVlhaWlJSYmJoSEhLB161bNdtqGq2rdu3fH0dEx3m2qV6+u9XgPHjzAzMyMPHnyRHsdVSoVFy5c0Hyvy/sJIl/DNm3a6LSPmoWFhU4tMufNm8e8efMSdSwhhBBpjwR3QgghhBBCCCFEOqVQKDA31b4ln9DdjRs3mDRpEgYGBqxcuZIGDRrEu/369eu5f/8+hw8fxs3NLdaQrUiRIjrNoXjx4nTt2pXNmzcDkDdv3ni3HzFiRKIC3Ddv3jBq1Cju379PgQIFcHZ2pnjx4gnuly1bNj58+MDatWuxtramaNGiGBsbExERwf379zXrqM2fPx8rKytatWql1XzU7RQTaun38eNHBg8ezD///MOcOXNo166dVuP/qFKlSowfPz5a28obN27Qq1cvpk6dSteuXRM1rnqO+/fvZ8+ePbx9+xaAggUL0rVrV9q2bRsjhCtUqBCurq4cPXqUDRs28OjRIz59+oSrqyuurq4YGRlRrFgxSpcuTZEiRciTJw+5cuUic+bMZMyYMcEKuu3btxMaGsr06dOTFParw9XYXqMcOXJQrlw5/vrrL3bt2hVna0hdfh/mzJmjc9CXkEuXLrFz504+fPhA5syZsbW1xcLCgi9fvuDh4QFEBrN2dnZ6Pa4QQggRFwnuhBBCCCGEEEIIIX4QEBDA4sWLuXHjBgMGDKBFixZaVdwYGBhQrlw5ypUrh4ODAxMmTODixYuaxzNkyBBt/SptDR06lKtXr2JpaUmlSpXi3VbXIEapVLJ9+3aWLFmCSqVi5MiR2Nvba11FVrduXbZv3873799jbQ2oZmxszE8//aT1vLQJ7k6dOsXkyZOpWLEiK1euJFu2bFqPH5vu3bvz/v17Nm3aRN68eRk6dCi1a9fGyspK57HevXvH2bNnOXr0KLdu3UKlUmFtbU2bNm1o27Ztgq8jQJMmTWjSpAnXr19n8+bNnD17FqVSSVhYGA8ePODBgwcx9lEoFBgbG5MpUyacnZ0pX758tMf9/f3ZunUrw4YN0yqYjY+60i5z5syEh4dH+x3JnDkzHTp0oEOHDgQEBLBlyxZWr16tqRwFKF26NIUKFdL6ePoO7QAGDBjAgAEDePDgAbt378bd3T3aHAG9tykVQggh4iPBnRBCCCGEEEIIIcQPgoKCqFGjBlOmTEl0RZKtrS1r1qyhQ4cOPHr0CENDQ6ZPn56osMTCwoK9e/cSERGh13ao169fZ968ebx//57evXvTpUsXMmfOrNMYo0aNwsDAgFOnTvHt27cY651ZWlpSpkwZRowYQYECBbQeVx3cqVQqQkNDowWJX79+ZcGCBTx+/Jg5c+ZQr149neYcn7Fjx5IrVy6aNWum05p8/v7+3Lp1i2vXrnHp0iWePXsGQP78+encuTO1a9emevXqGBnpXiVbpUoVqlSpwrt37zh9+jRnz57l+vXrMQImiAyHx40bR8eOHWMNm9etW0fJkiXp27evzvP4Ue7cuZk5cyatW7eON9i2sLDA0dGRokWLMmjQIM19UasbU1vp0qUpXbo0PXv2xNHRUbOupIWFBaNHj07dyQkhhPhPUajiWjlYCJEsQkND+fvvv2PcX6ZMGZ0WNf+3CAsL4/79+9HuK1u2bKL+R0YIIYQQQvy3hIeH8/z582j3FSlSRKd1iJRKJUFBQdHuMzMzk8oKoVe7d+/m8uXLDBw4MMkVTvry5csXpk+fjlKppGnTptSvXx8TE5PUnlY0EyZM4NOnT4wePZoSJUpo7v/rr79Ys2YNXbt2pX79+qm2rmNgYCAnTpzg/v373L17lydPnmBlZUWhQoUoXbo0ZcuWpUKFCuTMmTNZju/v78/Vq1d58OABz54949mzZ3h5eTF+/Hh69eoV6z7v37/H0dGRLVu2YG1tnSzzSkj37t1RKBRMnTo1zrUiU9s///xDs2bNyJUrF87OzpQqVSq1pySE+JdLb3+T6uPv8LjI+XMJ7oRIcfLBE50Ed0IIIYQQIrEkuBMi8UJCQggLC8PS0jK1pxKnT58+xbqu2I/Vd6nly5cvHDlyhGzZspEtWzby5cunc7WivgUEBGBiYhLn52BgYCB+fn5JbimaFAEBAVhYWKTa8bV17tw5atSooZeT0EIIkZD09jepBHfJS/7lScDKlSsZPHhwak9DCCGEEEIIIYQQQm9MTEzSXIXdj2IL7YA0c9Iua9as9OzZM7WnEU1CgZi5uTnm5uYpNJvYpYfQDqB27dqpPQUhhBD/UWkzrk0jVq5cyapVq1J7GkIIIYQQQgghhBBCCCGEEOI/IE0Gdx8/fkztKbB69WpWrlyZ2tMQQgghhBBCCCGEEEIIIYQQ/xFpLrj7+PEjPXr0SNU57Nmzh+XLl6fqHIQQQgghhBBCCCGEEEIIIcR/S5oK7tSh3Zs3b1J1Hg0aNKBYsWKpOgchhBBCCCGEEEIIIYQQQgjx35Jmgjt1aOfh4ZHaU8HGxoYtW7ZIeCeEEEIIIYQQQgghhBBCCCFSTJoJ7i5dupRgaBcaGsqOHTtSZD42NjbMnz8/RY4lhBBCCCGEEEIIIYQQQgghhGFqT0Ctbdu2+Pn5MW/evFgfV6lUjBo1itOnT1O4cGEqV66c7HMyNjZO9mMIIYQQQgghhBBCCCGEEEIIAWkouAPo1asXYWFhLFmyJMZjc+bM4eTJkwD06NEjpacmhBBCCCGEEEIIIYQQQgghRLJKM60y1erVqxfjvtDQUF68eAGAQqFApVKl2JcQQgghhBBCCCGEEEIIIYQQKSFNVdzFxdjYmI0bNzJ58mQOHDhAv379Ymzj4+PDnj176Nu3r94fE0IIIYQQQgghhBBCCCGEECK5pYvgDsDQ0JB+/fpx4MABRo0aFePxly9fsmfPnmR5LDUFBATQvHlzXF1dyZ07d6rORQghhBBCCCGEEEIIIYQQQiSfdBPcQWSbzLTyWEoICQlhwoQJeHl5peo8fhQSEkK5cuVQKpWJHmP//v2UKFEi1sfq1q2b6Ofs6upK1apVEz0vIYQQQgghhBBCCCGEEEKI1JKugrv/goiICL58+cKFCxdwdXXl2bNnqT2lGF6+fJmk0M7MzAxbW1s9zuh/4goDhRBCCCGEEEIIIYQQQggh0joJ7tIIBwcHbt26RWBgIBEREak9nXg9f/482vfGxsZky5YNQ8P4307+/v58/vwZR0dHsmbNGu+2NjY2ZMqUSad52draYm1trdM+QgghhBBCCCGEEEIIIYQQaUWqBncRERFkyJAhNaeQZsyePZuQkBAAwsPDuXz5MrNmzUKlUqXyzGJSB3eWlpZMnDiRZs2aYWJikuB+jo6OeHh4YG9vn+C23bp1Y8iQIUmeqxBCCCGEEEIIIYQQQgghRHqRasFdSEgIffv2ZcOGDZiamqbWNNKMH1tH5s+fnwMHDnDv3r1UmlHcXrx4QYYMGVi3bh2VKlXSap9r165x+vRpNm/ejJGRUTLPUAghhBBCCCGEEEIIIYQQIv1JteBu9+7d3Lhxg969e1OyZEnMzMwwMzMjMDAQgB07dmBiYoKpqanmv1++fEmt6aYKc3Pz1J5CrJ4/f07Lli21Du2USiVOTk7UqlWLatWqJfPshBBCCCGEEEIIIYQQQggh0qdUCe7CwsLYtGkTCoWCO3fucOfOnWiPq1QqZs6cmRpTEwkIDAzEy8uLzp07a72Pu7s7z58/Z/Hixck4MyGEEEIIIYQQQgghhBBCiPQtVYK7/fv38+HDh3i3iWttN4VCkRxTEloKDg6mW7dulClTRqvtg4KCWLZsGS1atKBw4cLJPDshhBBCCCGEEEIIIYQQQoj0K1WCu1KlSuHm5oaRkREGBgaoVCqUSiUhISF4eHgwbdo0VqxYQUhICMHBwQQHBxMSEsK7d+/Ytm1bakxZ/L/MmTMzefJkrbd3cXHh69evDBgwIBlnJYQQQgghhBBCCCGEEEIIkf6lSnBXsmTJOB+ztbUFoH79+jEe++effyS4S0e+ffvGpk2baNKkCfnz50/t6QghhBBCCCGEEEIIIYQQQqRpqRLcif+GdevW4e/vT9++fZM0zrVr1zh69Ch37tzhw4cPBAcHY2trS4UKFejQoQNVqlTR04xTV3h4+H+yFWx4eLhW9wkhhBBCCPGj8PDwGMssKJVKlEplksfWxxhCCCGEEEIkRVr9m1SpVMb4OzwsLCzOJdB0IeeGJbgTyeTjx4/s2LGDypUrU7x48USNERERwdSpU9m7dy8AZmZmZM6cGaVSiZeXF15eXhw6dIgOHTowffp0MmTIoM+nkOIeP36c2lNIMx49epTaUxBCCCGEEOmMqakpELkud1L/3yAoKEgfUxKC06dPY2dnp/U68SJtu3btGl++fKFZs2apPZX/pI0bN1K5cmV++umn1J6KSCb+/v68fv2a0qVL67xvWFgYjx49kvdHCvjnn3/w9vamQoUKqT0VIHI+BQsWTNS+79+/J3PmzJiYmOh5VvqRlv8mjYiI0IR0wcHBgJzT1SeD1J6A+Hdat24dISEhdO/ePdFjTJkyhUOHDuHg4MCxY8e4e/cuZ86c4datW2zbto1ixYoBsHv3bsaNG6evqQshhBBCCCGEEHrTq1cvxo0bx4cPH1J7KnE6e/YsXl5eCW535MgRPn/+nAIzSps2btzI1KlTcXR01OrnlRr27NlDaGhovNv4+Phw+PDhFKloeP/+fYLz0dbly5ext7enc+fO7Nu3L0VOaH/58iXF3vP37t0jIiIiSWN8+vRJT7OJdOPGjRQ9ER8SEkKPHj3o378/ly9f1nl/e3t7HBwcuHnzZjLMLmVs27aNOXPm8Pz589SeSpyuXLlC3759GTBgAHfu3Ent6TB8+HD69u3LhQsXdK722rlzJ61bt+b48ePJNDshEiddVdwFBwejUqnYv39/jMfU/zAlx2NCNx8/fmTPnj3Y2NhQt27dRI1x5MgRPn78iKurK+XKlYvxeKVKldixYwft27fn5cuXHDp0iF9//ZWWLVsmcfZCCCGEEEIIIYR+1KtXj+7du+Pq6sqlS5cYOXIkbdu2Te1pxXDt2jXGjRtHs2bN6NOnD7ly5Yp1u+PHjzNr1ixatmxJz549yZkzZwrPNPU8evSI27dvA5E/r/bt2zNt2jR+++23VJ5ZdEuXLmXTpk306tWLNm3aYGxsHGMbpVLJ1KlTWbt2Lb169aJFixaxbqcPt27dYt26dQwfPpx69eolaSwjIyMAnj59yo4dO6hevTpmZmb6mGacPn/+TL9+/ejduzft27dPtm5Pd+/eZfjw4VStWpX58+djbm6eqHE2b96Mh4cH/fv310vl2dOnT1myZAmVKlWiZ8+e/PLLL0keMz7qqqebN29y8+ZNfv75Z5YvX46hYcKnsI2MjFAoFNy4cYMbN25Qrlw5Fi5cSJYsWYDI88rq6vzUEhAQwJYtW/jll1/ifH0iIiL4448/+OOPPyhfvjx9+/alWrVqST62n58fJ06coGXLllr9POPz9OlTAK5fv87169dp3rw5M2bMSPIcE8vY2Jjbt29z+/ZtGjRowPz586M9Hl9F3t9//82HDx+YMGEC27dvZ/To0VIlL9KENBvcRURExPjHcN26dQBMmDAhzv2S4zGhm02bNhEaGkq7du00f1Tp6tWrV8ydOzfW0E7NwsKC6dOna6r6nJ2dadasWbpvmSmEEEIIIYQQ4t9j0KBBnD9/Hg8PD+bMmcO7d+8YMmRIak8rGjMzM8LDw9m/fz+HDx/Gyckp1pDFzMyM0NBQ9uzZw759+5g3b16iL9hNb1xdXaN936hRI2rWrJlKs4mbmZkZnz59YsGCBWzfvh03Nzesra2jbaMOL969e8fcuXPZtm0bLi4u2NjY6H0+zZo14/nz54wZM4ZatWoxdepUMmXKlKixop7vWbduXaLH0YWZmRmBgYGsXLmSlStXJvvxLl++zIABA3BxcUnU+a2xY8cyf/587O3tqVWrFqNGjSJ37tyJno860FUHaUOGDMHe3j7R4yUk6nnEYsWKMWPGDJ1CJkNDQ8LCwjAxMaFt27aa0C4iIoJevXrxyy+/0KtXL6ysrPQ+9/g8e/aMgwcPcvjwYXx9fdm7dy8uLi7ky5cvxrZRQ3SVSkXhwoX1Mgdzc3POnz/Ptm3bGDduHFWrVk30WLdu3dLcLl68OMOHD9fDDOPm4uJCpkyZaNWqVayPq39mxYoVY/LkydEee/PmDZ06dcLe3p6+fftGe4+FhYVFW7ooQ4YM2NnZ6f8JCJEIaTa48/X1jfYP8LVr1zQlq/pY4FBbCoUixY71b+Dj48OePXsAEt3z3d7eni9fvmh1FWKVKlUoXrw4T5484d27d1y6dIlatWol6riprUSJEokOOtOz8PDwGG0XSpYsmeSrf4QQQgghxL9feHg4r169inafqampzn9L/thuLbkrOMR/i5mZGZMnT6Zfv35A5AnIunXrUqlSpVSe2f9EDXZ69uxJ06ZNYz0fov7dMDQ0ZP78+TRp0iTF5piaHj9+zKlTpzTfW1tb8/PPP5M5c+ZUnFXszM3N+f79OxkzZmTevHlky5YtxjZR13IqVqwYK1asIEeOHMk2pzFjxnDr1i3Onz9Pt27d2LRpEwUKFNB5HPU5E0NDwxSr9oz6u7Fx40atfm9PnTrF6NGjgchKOm24urqyZMkSjI2NGTFiBJaWlomaL8DUqVP59u0bJ0+e5Nq1a4wfP55OnTolaqyo/x42bdqUAQMGYGCQfCsvRX1vVqlShbx58+q0v5GREWFhYRQrVox27dpFe2zJkiV07doVd3d3Bg0aRJcuXZLt4v9Pnz5x+/Ztbt68yfnz5/H09Iz2uLe3N0OGDGHHjh1kzZo12mMWFhaa21OnTtX5ZxAfZ2dnunTpwsCBA2nXrh2TJk3SuQrRw8ND0/rZyMiI+fPnJ/vvY+PGjWndujVnz55l3rx5MT571cFdiRIlYgRvx44dIzw8nA0bNnDt2jU2bNhAxowZgcjKwZCQEACyZs3KunXrYlzokNLS09+k4eHhmr8V1PMsUKCAXs7p/hiq/hel2TPjPj4+0YI7ExMTVqxYgYmJCSYmJhgbG2NsbIyhoSGGhobJErC9ffuWAQMG6H3cf7Pdu3cTGBhIxowZKV++fKLG0HVdvNq1a/PkyRMA/vrrr3Qb3BkaGv4ng7vYyM9CCCGEEEJoQ6FQxPh/QQMDA51OKiqVyljvT84Tk+K/p2bNmhQuXJgXL14AkW0Xq1SpotMYhw4d4tGjR8myxnvU//8aMGBAnCez1Sd4zczMEn2xbnq0cOFCzWdFkSJFWLFiBd27d6dixYp6PamuD+rXslKlSlSuXDnWbQwMDDQBR9WqVWOt+tEnExMTZsyYQYcOHXj//j0ODg7s379f53BKfSG/hYVFin1GR61+MjY21uoketTfJ21PuqtPdNva2lKjRg0dZxmdgYEB8+bN49GjR3h5eTFjxgz8/PxwcHDQeayoz6VGjRrJfpG1gYEBhoaGmkBA19dZ/dllaGgYY98iRYqwcOFCHBwcmDt3LgcOHGDhwoUUKlQo0fP19/fH09OTZ8+e8eTJE54+fcrTp09jrItoZmZG9uzZsbW1xc7ODhsbG6ysrHjw4EGMquWo7zld/6ZJiJWVFUuWLKFt27bs3buXR48esXHjRk1lojYuXbqkud24cWOKFy+ut/nFpVChQvTo0YMNGzbQrl07NmzYQJEiRTSPq39mP75ngoKC2LVrFwDlypVj6dKl0fKGqGsh2tvbJ0vVsS7S29+kBgYGMf4ONzIy0svnREoWbqVVaTK4U6lUPH36lPz582vuS2wIpA+hoaHJ1uv730SlUmk+DH/++ecU+1ApWbKk5vZ/PYkXQgghhBBC/LeoVCpUoUGoIsJRZDBEYWwmnWPSqBYtWrBkyRLMzc1p2LChTvsePnyYcePGERERgVKp1PtyH9pWnfwXL7A8f/48V69eBSJPDi9atIgCBQrQo0cPhg8fzrZt29JURYQur2VYWFgyz+Z/ypYtS506dThz5gxv377F1dUVR0dHncZQn9SOWpGU3NLrciyWlpZMnz5dU+m7bNkyWrZsSfbs2XUaJzWef1LOJ6r3jSs4qFWrFr1792bTpk08fPiQDh064OLiQtmyZbUa/+3bt8yePZv379/z9etXwsPDsbCwwMrKCmtra2xsbKhduzZXr17F09OT+vXrM2vWLJ2qc5P7c7ZIkSIMGjSIJUuW8OjRI/r06cP27du1Xlfx5MmTmts9e/ZMrmnG0L9/f7Zv38779+/p06cPR48e1YT/cb1Pt2zZgre3N0WLFmXTpk0xLha4fv06EHlxwY8VmkKktjQZ3EHk1WdpZYFfPz8/na48+K+6fv06b9++BaBixYopdtyovbq/f/+eYscVQgghhBBCiNQQ+skD/4eXCHn3nJAPr1AG+2seMzC1xCR7AUxyFsGy1K8Y26WtaqD0JigoKEbbqsTKnTs3CoWCiRMnYmpqyrdv37Ta7+LFi0yYMIGIiAgANm/ejEKhYPz48XqZF2h/ojitXvWfXIKDg5k7d67m+5EjR2qqS+zt7Tl06BCjRo1i5cqVaeZno22lQ2oE/J06deLMmTNAZIs6XakrMFIyKE3PF0LUrFmTihUrcuvWLSIiIvD09EwXwV1Sjqn+PYzvM23o0KEcP34cT09P/P39mTp1Kvv379dq/Bw5crBw4ULMzc3j/V1zcHDA09MTKysrnVvqpsTPvGfPnri5ufHp0yceP37MsmXLol0Q8ubNG3bu3MnYsWOj7eft7a1Z365SpUqULl062eeqZm1tTZs2bdi6dSsfP35k+/bt9O/fH4j9Z+bt7c3GjRvJlSsXGzdujBHahYWFcfv2bQB+++23JFfbeXp6xro2bGyMjY2xsrIiV65clClThsaNGyeqfbavry/79+/nwoULPHnyBG9vb4yNjbGxsaFYsWL8/PPPtGnTJsXXdBT6karBnZubG7a2tjECujx58tClS5dUmlV0KpWKr1+/SnCnhRMnTmhuFytWLMWOG/VKq8DAwBQ7rhBCCCGEEEKkpMDnt/C+uo/gt3F3GlEG+xP0+m+CXv+N9xV3TPOUwKZ6a8wLp9zFlf8mX79+pUePHnh5eeltzMmTJzN58uQkjeHi4oJCoUiWtpnxSc8hRmIsXbqU169fA/Drr7/Sq1cvzWNGRkYsWLCA9u3bM3v2bKZOnZo6k/yBtq9RagSN1apVI2PGjPj4+Ghd4RSVukIwtYI7Pz8/rQL3gIAAzW1tA3p9XSDwo169enHr1i0yZsxI0aJFdd4/NX7nk3LMhCruILLl75AhQzSfnx8/ftR6fENDw2RfAy2525FC5M+gY8eOrFixAoA///wzWnC3bdu2aB3O1P7880/Cw8MBon0eppQWLVqwdetWIPo54Ng+z5ydnTE1NcXFxSXWtT5v376t+V1t3759kueWM2dObty4wZcvXxg9ejQPHz4EIrsIzp07V7OWYVBQEN+/f+fvv//mwIEDbNu2jW3btlG+fHnmzJmjVbgeHh7O5s2bWbVqFVWqVKFDhw6UKFECCwsLvn//zr1799i2bRtz585l2bJlTJ06lVatWiX5OYqUlWrB3cePH1m6dCnW1tZUq1ZN86FnY2ODm5tbrL9QqeXx48eJ+sftv+b8+fOa20npD62rqP1/tS3rFkIIIYQQQoj0IiLQjy8nNhLw8FLCG/8g+O1jPux6jGWpX8nSsA8ZzOWqa13kzp0bV1dXTp06RYkSJciXLx+WlpZYWFjEOLkcERGRpEoJuWg4bbl16xaurq5A5AXmixcvjvGalyhRgmHDhrFo0SIMDQ2ZOHFiakw13TA2NmbSpEl4eHgk6qS/OjDQNrjbu3cvefPm1Xk9ydiOCTBo0CCd969WrVqij60PDRs2ZMKECZQvXz5RgVNqBLyxBXfh4eGMGjWKqlWrxlvsoZ5vQp/FzZo1Y9GiRXz+/DlJ74/kkFJhafPmzTXBXa5cuTT3BwYGcvLkSUaMGBFjn4MHDwKRn4naVpf96NGjRyxfvpylS5fqHMKXLVuWfPny8e7du2hB1I/v0wcPHnDq1Ck2b94c5xqeFy9eBCBfvnxxrgcaG39//1jX5zQwMMDa2hpra2vq1KmjCe7atGlDwYIFNdtZW1uTLVs2ihcvTvv27Tlw4ACTJk3izp07dO3alQ0bNkTb/keBgYEMHTqUq1evsmDBApo2bRrt8cyZM1OoUCFat27NnDlz2Lp1K+PGjSMgIICuXbtq/TxF6ku14G7u3LkEBAQQGBhI7dq1admyJV27dqVw4cKpNaU4ffnyJbWnkOa9fv1a0yYTSHR58dq1a3F1dSVbtmysX78eW1vbBPeJeoVFcl/1IoQQQgghhBApKeTjaz7snEOEv3ZVG3Hxf3iRII+H5Og8GWO72E9iidjlzp1bq5BhypQpFChQgD59+uh8stvX15e6devSrl07Bg4cqLkyP7378uVLunwufn5+TJgwAaVSiZmZGStXriRjxoyxbtunTx9u3LjBli1bUCqVTJo06V9XmRgQEIBCodDLxdItW7ZM9L7qEM3ExCTBbffu3cvkyZMxMzNj3bp1iQ5nogZ3rq6uVK1aNcF9/vzzT4YNGwZo3xJ006ZNLFiwQNMOVJ+SUhmVHO/l79+/x/s81ccMCQnRVCxOnz6d48ePc/z4cYAEO7Ul1P7X0NCQPn36sHHjRkaPHq3L9JNdSn1+5MuXj4IFC/LPP/9o1kIE2L9/PzVq1MDU1DTa9l5eXprWkt26dUtUqPvkyRPs7e3x9vZm8ODBrFmzBmNjY53GmDRpEiEhIeTPn19z348/s6tXr7Jp0yZNzuDs7Iyfnx9TpkzRbHPhwgUgMljT9me+ZcsWfv/9d1xdXeMMBCF6cJxQBWXLli358uULCxYs4Pv378yaNQsXF5c4t585cyYXL17EwcEhRmgXlbo1971797h//z5z587l559/TtFiG5E0qRLcnT9/XvNBq1KpCAwMZOfOnezcuZMqVarQtWtX6tevH+sHwIcPH3Tux5wUjRo1wt7ePsWOl16pP7gh8g+oxCykeuvWLZYuXQpEXmn4xx9/MGDAgAT3i1rSnhaDXyGEEEIIIYRIjJCPr3nvNi3aGnZJEeH/jXdbp5Kz+0wJ75JB//79admyJRcuXGDJkiVaXYiqdunSJYKDg3Fzc8Pd3Z0ePXrg6OioVUARmxUrVjB48OBUDZBCQ0Np2rQpDg4O2Nvbp5swS6VSMWbMGDw8PFAoFMydO1ezrl1sDAwMWLRoEe3bt2fr1q18+/aNefPm6XwyOjYvXrzg2bNnNGnSJMljJcXZs2dZsWIFixYtokyZMnod+9mzZ/To0YPv379rvc+lS5e0XqIlMDAQBwcHdu/eTZEiRXSeX9TgLiWEhISk6PESkhwVdwcOHMDJySnB7Xbt2sWuXbui3adSqZg5cyYQe3in/pzRpt2kvb09Xbt2xdjYmKCgoBRtwZpWODo68ujRI+rUqaO5T91i8Ud//PGHJnB1cnLS6jWMz6VLlxg1ahTOzs6xVkiGh4fj6+sb4371Z1DUNrTq39PQ0FC+fftG27ZtNdts2bKFtWvXaradMmUKb9++5enTpygUCmrVqqVVS9tDhw5pfi49evRIMLzTRffu3dm8eTOfPn3i3r17PHz4kFKlSsXY7smTJ+zbtw+Axo0bJziugYEB9vb2jBgxgvDwcDZu3Jjk102knFQJ7qpXr86WLVu4ePEiFy9e5OnTp5pf/OvXr3P9+nXs7Oxo3749HTp0wM7ODois6urUqRM7d+6Mlqonl1y5crFkyZJkP86/wd27dzW3Q0NDCQ8P17kn8507d6J9r+0fKy9fvtTcTkyPdCGEEEIIIYRIayIC/fiwc47eQjs1ZbA/73fMJne/JdI2U8/y589Pv379WLFiBW3btmXDhg1ahwsHDhzQ3C5VqhT16tVLdGgHkRV8GzdujFZFkdJu3bqFt7c38+fP58KFC8yfPz9NLYsSl5UrV3L27FkAxo8fr1VoZm1tzerVq+nUqRNHjhzh/fv3rFq1isyZMydpLnny5MHR0ZHSpUuTN2/eJI2VFBcuXOD169d07tyZIUOG0K9fP70FOkWLFsXFxYV9+/ZRpkwZChQoQMaMGbGwsIixbdu2bXn37h2//fYb06dPj3fcZcuWsXPnTgDq16+f6CoT9bp6KSU0NDRFj5eQ5Ajce/XqRYUKFbC0tCRPnjwxLv6vVKkSfn5+9OjRg0mTJiXqGNqekzQ2NubFixf079+f1q1bM2TIkEQdL7Hev39Pjhw5UvSYUTVv3pzmzZtrvr98+TIKhYKffvop2nZhYWHs3r0bgFatWiV6fdVp06Zx4sQJzffv37/nwYMHMY4HkSHtj9sn5MiRIxw5ciTOx93c3IDI9ejUx0jM2m8fPnzQa3hnbGxMzZo12bt3LwA3btyINbg7duyY5ra2n01R2/Wq/20T6UOqBHdGRkZUrVqVqlWrMnr0aN6+fcuJEyc4ceIE9+7dAyKrqFatWsXatWupXbu25solb29v2rdvnywtEVUqFSqVCqVSSXh4OGFhYYSEhBAaGsrChQtp1qyZ3o/5bxE1PFOpVHz58kXnysior6mRkZHW7ROuXLkCRH7I1a5dW6djCiGEEEIIIURa9OXExiS3x4xLhP83vp7YhF2r4cky/n9Znz592LlzJx8/fsTe3p4//vgjwZOynz594tKlyPULCxUqxNq1a2NdP0cX9vb2NGnShGrVqlG6dOkkjZVYp0+f1ty+evUqLVq0YMuWLfFWr6W2Y8eOsWrVKgD69esXa4vBW7duUaFChRiBRqFChVi3bh29e/fm9u3btGvXjgULFlCpUqVEz8fExIS2bdsyatQoduzYofMF0voQHh7O+fPngcgTxUuWLOHGjRusWbMmUd2WQkNDY1QjlihRghIlSsS7n1Kp5PPnzwAULFgwwVDU3/9/Fz2MGjUq0UFj1Io7Pz8/rSpzAgICNLe12R4gKCgISHsVd8kluS68V/9earve6LVr1xgyZAi+vr6sXLmSr1+/MnXq1BRZ28/JyYl9+/bh4uISa0iTGrZu3UqbNm1i3H/y5Ek+f/6MlZUVY8eOjfb7d+/ePcqUKZPgz+zDhw+a4Chv3rzMnj073tazRkZGLF26lO3bt5MzZ06KFi1KxowZsbS01Ly+y5YtY/Xq1Zp9Wrduzbx58xJ8np06dQIiLxw4dOhQnNvt2rWLqVOnArBx40Z+/fXXBMdOrKgVwZ8+fYp1m1evXmluu7i4aDrXxSdTpkxYWVnh5+fH9+/f8fPzw8pKLtxKD1Jtjbuo8uTJQ58+fejTpw9v377lwIEDHDp0CA8PD8LDwzl9+rTmDz6FQoGfnx9+fn4pOsdjx46lq+Du3bt3TJ8+nRs3bpA7d24mTJhA9erVk+14Ude3g8S1EqhevToGBgYolUqaNm2qVVXl+/fvuXHjBgBNmjRJ9Np6QgghhBBCCJFWBD6/RcDDS8l6DP+HF7Es9SvmRSom63H+a8zMzOjcuTPLly/n69evODk5sXz58nj32bZtG+Hh4WTMmJE1a9YkObSDyGqCBg0aMHr0aPbv3x9jraLkplQqNUukAJQvX56JEyem6dDu4sWLjBkzBpVKRZcuXeJc92ru3LlEREQwfPjwGBcPV6hQgRUrVjBw4EC8vLzo0aMHAwYMwNHRMdGhW+fOnVm7di2rVq3SrJuWkq5cuYK3t7fm+/79+9O7d+9EhXaLFi3i4cOHrFu3TudWop8/f9ZUmOTOnTvB7b98+QJEBji6tK39UUREhOb2oEGDdN4/arWLNvRd4RcSEpKk6t3EVNy9f/+e7NmzJ0u13qlTpxg+fHiCPyd3d3fc3d11Hn/Hjh18//6dhQsX6qXdbVzmz5/P5s2bgcgLLdJCePfmzRsuX77MnDlzYjymnuuwYcPIkiVLtMecnJwICAhg2LBh1K9fP87xt2zZQlhYGCVKlMDFxYVMmTIlOCdDQ0N69OgR62NXr16N1gITwMPDg3v37lGyZMk4P6M8PDy4c+cOhQoVihayxyZq8J6UzxFtRK0yjuv9rQ74AY4ePYq9vb1WIbiZmZkmS0lrVb0ibmkiuIsqT548DB48mMGDB3P79m127tzJiRMnCA4OBiL/wVAoFFhZWVGjRg29HVelUhEREUF4eLim2i40NFTz9e7dO8LCwhL1h0liRe3j6+3trdUfJmrjxo3j+vXrQGS/cEdHR44dO5Zs5dc+Pj5JHiN37tx06tSJ7du3a73g8bJlywgPD8fKyopRo0YleQ5CCCGEEEIIkdq8r+5LmeNc2y/BXTJo164dK1asQKVScfr06XjXTgoJCWHXrl1kyJCBJUuW6G29HIDevXvTqlUr5s+fz7Rp0/Q2rjZu3rypqRgwMjJiwYIFqdrqMSE3b95kyJAhhIWF0a9fvzhDO4h8Pg8ePMDBwYFy5coxadKkaCdOf/31V1avXs2QIUMIDg5m1apVnDhxghEjRlCvXj2d52ZtbU27du1Yt24dtWrVoly5col5iokWtTVb1apV4z338v37d81SOD/as2cPGzZsACJP/q9YsUKnMDPqBePavJe+fv0KgJ2dndbVV7GJemG6q6trvBVCEFkp07dvX2rVqqXTeapNmzaxYMECVCpVrFWJieHi4sLhw4fZunWr1ufZkurVq1d069aNBg0aJNjONDHq16+Pi4sL4eHhFC1aNEY42LhxY7y9vaO1c3R2dmbXrl1YWlpy8uRJrY7z47gRERGMHDmSP//8U6f57tu3T7MmWVx8fHzSRHjn6upKzZo1YwRz586d4969exQrVizWdQVDQkJ49uwZgwYNokyZMqxatSpGW2Q/Pz927dpF3rx52bhxo1ahXXw+fvzImDFjUCqV1K5dm7CwMC5fvsz379/p3bs3SqWSn3/+mWbNmtGwYcNo5/MPHjwIQM+ePVm/fj3e3t5xFoJEXXtTvZRXcolapBTXfIoVK8aFCxc038dVmReVUqnUnLc3MTFJcgtnkXLSXHAXVYUKFahQoQKTJ09m//79bNu2DQ8PDyDyzezj48OsWbM0fWn/TT5+/MiLFy803585c0an9hYPHjyI9n1QUBB///13sgV3P/5hltg/isaPH8/79+85cOAArVq1irXHsdrmzZvZt28fxsbGLFy4MNk/QIUQQgghhBAiuYV+8iD47eMUOVbwm0eEfnqDsV3aDVTSo2zZslG2bFnu3buHsbFxvCfg9+7dy/fv3xk3blyCFyf7+vpy7tw5WrRoodU8SpQowc8//8z27dupU6cONWvW1Ol5JIV6nR6Ajh07punQ7vr16wwcOJDg4GDGjBlD3759490+6gngXLlyxdotqGbNmmzatAkHBwf8/f15/vw5jo6OVKhQgV69elGnTh2dgpmePXuybds2xowZw4EDB1IshPH399cEFQqFgjFjxsS7vbu7OwsWLEhw3HPnznHmzBkaNmyo9VzU57kMDAwoWbJkgtur22rquozLj9SVLzly5IgRaPzo1q1bjBo1ivfv3/P06VMArcM7c3NzmjdvTsuWLbUuGnj06FG0isCorly5wpIlSwAYOnQoa9euTfZWq15eXtjb2/Plyxd27NiBqakp48eP1/txKleuHOdj6hapmTNn1gQU6opDhUKR6NAiQ4YMLF68WNOmtUSJEmTKlAlra+tYz4GOGTOGS5cu0bRpUyZPnqzVMZKzwi8h/v7+uLu7s3jx4hiPqavGp06dGutzDQwM1Nz+5ZdfYl3LdOfOnRgZGbF+/XqyZs2apLn6+PjQt29fPn/+TI0aNVixYoVmbcJy5cppCoLOnDnDmTNnKFGiBG5ublhaWhIREYG7uzvZsmWjVatW7Nixg3fv3sUZlH38+BGIfG2SGjYm5PXr15rbcVWn9+/fny9fvnD//n2KFi2qVevO58+fa1rwxhZ2i7QrTQd3atbW1vTo0YPu3btz5swZNm/ezI0bN7hy5QrNmzdnzJgxmt606VVAQAARERH4+Pjw5MkTli9fHq2v9dq1awkJCaFp06Zkz54dQ0NDTE1N4/xQL126tKbiDiL/sEzOlhQFCxbk8ePI/7k0MDBI9IeZiYkJq1atYtOmTfTq1YuqVatSr149SpYsSdasWQkPD+f58+fs3LmTs2fPkjdvXmbOnKlz6wEhhBBCCCGEiE2Ez2fCQkyTvL6NwtAIQ8vY/78ozDvuK6R9bh2P87Hk4HP7ODY/x72+eGKfh7aMbNLXBZinT5+mbt26CZ74qlu3Lvfu3aNPnz5xXtgaFhbGxo0badGiBb179453vG/fvtGnTx8ePXqkqejRRvfu3bl27RqTJ0/myJEjKbKujZ+fn6ZNpoWFBY6Ojsl+zMT6888/GTNmDKampqxduzZG68vYqEOVnDlzaoKR2FSqVIndu3fj6OioOSF7+/Ztbt++jbW1NQ0aNKBixYoUK1aMIkWKxNvOMHfu3NSpU4dTp06xaNEizZpLye3IkSOak/JNmjShTJky8W7fp08fbG1tUSqVlChRgqxZs2JlZYWxsTErVqxg5cqVWFlZsWrVqgQr1350//59ILLiJKF2sqGhoZr2nkm9gD1nzpy4urpSpUqVOH/vQ0JCWLNmDRs2bNBU6OXIkYMXL17w4sULChcunOBxOnfuTOfOnXWa27Nnz5g4cWKc4Z3axYsXcXNzo1evXnz69AlHR8doFYzq7mZKpTLGvlFb9s2aNYv58+fHeZzg4GBNxzSIrPgzMTFhxIgRujyteIWGhnLq1Clq1qwZ433g7++v+fnro+XwjwwNDbVuV6sOSY2NjdNFhdPevXsxNzePcYHHsWPHePjwIe3bt49zvU51VVrmzJljrS4PDQ1lx44dLFu2jAIFCiRpnkFBQTg4OPDs2TNq1arF8uXLY5wbz507Nzt27GDQoEFcvnyZx48fs3nzZgYPHszZs2d59+4dTk5OmJiYYGVlhZeXV5wXA6iDu1y5ciVr4BUREaFZ69bMzIwqVarEup21tbVWa/hFdeLECc3t9LQMmEgnwZ2aQqGgXr161KtXj/v377N69WrOnTvHjBkzOH/+PHPnzk329Du5DBgwIFrQ9qOIiAg2btzIxo0bNfc5OTnFumAoRPZKVq9xly1bNkaNGpWsV7hNmjSJiRMn8vXrV7p165ak/vkZMmSgf//+tGvXjn379nH06FGcnZ3x8fHB1NSUzJkzU6pUKebPn0+TJk1S9YoUIYQQQgghxL/LFxf9tOA3zVuKnN1nxvrY21UD9XIMffC79Sd+t+Ju/ZXcz6PgpD+SPEZKGjt2LLly5WLQoEHxVsg1a9aMz58/07NnzzjX0Dl48CCWlpZMmDAh3nV2fHx86N+/P8+fPwdg4cKFhIWFMXBgwj//unXrkjt3bjw9PZk7dy5OTk4J7pNU7u7umpP3AwYMSLBKKbVs3bqVuXPnUqRIEZYvXx5r5Vxs1MGdNidxCxUqxJ49exgzZgznzp3T3O/r68sff/zBH3/8QebMmRk5ciTt27ePd6zu3btz6tQptm/fTsOGDfn555+1mm9S7NixA4i8yFrbyrGEKkKzZ8+uc2gHcPfuXYA4w4Oo1G0yIenBXY4cOeIcQ6VScezYMZYsWcLbt2/JkiULzZo1o0WLFnF2zTp27BhPnz5l+PDhSZoXQKtWrciZMyc3btzg+fPnPH36FFtbW3Lnzs337985c+YMRkZGrFu3jl9++QWIbPe3Zs0aDhw4QJEiRfj+/TsPHjzg1atXQGRbPZVKhUqlQqlU8v37d81nz5QpU+I8D5nc3r9/z86dO9m3bx8NGzaM9fNXva4hkC7CsrQiIiICV1dXWrduHe1Ck4CAAJycnMibN2+clZMRERGapZ7Kli2rqTSN6uvXrwwbNizJn1k+Pj44Ojpy584dunfvzoQJE+K8MMbMzIw1a9bQo0cP7t69q7l4YuvWrZQqVYpWrVoBkQHvs2fPaNCgQazjeHl5AZFLeyWnP/74Q3Oszp076+0im9DQUHbv3g38r6pXpB/pKriLqmzZsqxdu5bHjx+zbNkyzp49S8uWLVm2bBnly5dP7enpbOvWrXodL2fOnKxfv16vY8ancuXKWveJ1lbmzJnp06cPffr00eu4QgghhBBCCCFEYpiZmfH06VOGDh2q1fZubm4JbpOYDjLOzs6Eh4dr2oPFxcDAgI4dO7J48WLc3d1p1qyZ5gR+clAqlbi6ugKRVQ+9evVKtmMlVmBgIFOnTuXIkSPY29szfPhwnS4I1rXdoLW1NevWrWPnzp3Mnz9fU8GWJ08epk6dqnUL059//plChQrx8uVLpk6dysGDB5N00XRCrl27pumsZG9vT65cuZLtWAl58eKF5qS2Nu9fdZUMkCzL64SGhnL06FE2bdrEs2fPKF++PEOGDKFx48bxvpe2bNnCvHnzUCqVFC1alCZNmiR5LlWqVKFy5coEBARgZGSkqdx0d3fXBHc//sxsbW2jVe2qQ4zYnDp1ikGDBiV5nomhUqm4cuUK27dv58yZM1SvXh0XFxcKFSoU6/ZRX3dbW9uUmma6d+LECby8vGjbtm20+1esWIGvry87d+6Ms4Lx48ePmuWTSpYsyZkzZ2JskyNHDlq2jLuyXxvv3r2jX79+eHh4MG3atFjX2vuRiYkJK1asoE2bNhQqVIh79+5x69Yt9u7dq+mqkCNHjhjLTakFBgZq1pDT5/qzPzpz5gyzZs0CIj/nHRwc9Da2m5ub5jk4Ojqm2QtpROzSbXCnVqJECdauXcv169dZsGABPXr0YMKECVr9AgshhBBCCCGEEEJoS31SPmfOnJq1v9K6tm3bsnz5csLCwpgyZQpHjx5NtsDnxIkTeHp6ApFr2Ke1DjnPnz9n6NChKBQKtm7dGq16KywsTKu1xbRdf+xHnTp1olatWixdupQLFy6wY8cOncOFDh064OTkhIeHBytXrmT06NGJmos2XFxcgMgKrf79+yfbcbShbvWWKVOmBNeCBDQnqiHpFXdqERERPHjwgKNHj3Lo0CHCwsJo0aIFixcvpmjRovHu6+/vz7Rp0zh8+LDmvokTJ1KkSBGKFCmS5LkpFIpkaQ2Z2nbs2MHWrVspUKAAq1evTrCV7fv37zW3Y1tnTcTu999/p1KlStGqju/du4ebmxtLly6Nd+kldaAOkD9/fvz8/AgJCYm39a+u7t+/z6BBg8iUKRN79+6Ndz4/tjm3s7Njx44dWFlZMXbsWBwdHaPtnz9//mitJKPy8PDQ3NbH72lUQUFB3L17l127dnHs2DEA2rdvz+TJkxNsfastLy8vVqxYAcCvv/4qhTHpULoP7tSqVKnC3r17OXjwIAsWLOD169dMnDgxtaclhBBCCCGEEEKIfxmFQqHXE5PJKUuWLNStW5fjx4/j5eXFunXrtF6nSRcqlYq1a9cCULNmzThbj/2oefPm0U64J9XNmzdj3KdeT9DNzY1+/frRrVu3GJVzLi4uPH78GAcHh3hPDOtacRdVjhw5WLBgAf7+/okKWlq1asWiRYsICwtj8+bNtGnThoIFCyZ6PnF59OiRprXnhAkTsLCw0PsxdKHu8NS0aVOtgtPPnz9rbie14s7X11ezppa/vz+ZM2emRYsWNGjQACMjI/z9/blx4wYRERGxfgUFBbFq1SrevHkDQPny5Wnbti01a9aUcCkKlUrFhQsXcHNzw8/PD4iscB40aBDdunXT6nVXt0MEtG59+193/fp17t+/H23dNH9/f0aNGsX48eMT/BxXv68hMtyys7Pj3r17ca7RpqvNmzezbNkyevTowaBBg2K9GOTr168oFAratm0ba0vPPHnycPXqVZRKJQMGDIj2WP78+fn8+TMfP36M8fsYte2nNutUxmXGjBnMnTtX831ERISm8trOzo5WrVrRpUsXfvrpJ5RKJUFBQYk+llpYWBgjR44kMDCQ8uXLs2zZsiSv3SxS3r8muFNr0aIFderUwdnZmY0bN2q9YLMQQgghhBBCCCGENtStwdKLli1bcvz4cQA2bdpEx44dyZ49u16Pcfr0aR4/foyJiQlTpkzRer8NGzYQHh6u17lEdfPmTebNm0flypU5dOhQnGtfGRsbc/ToUY4dO0bt2rUZOHAgP/30U5KO/e7du1iDo8RWR9nY2FC7dm1OnjxJWFgY8+fPZ926dUmaY2xWrVoFQPXq1fXSzjEp7t+/z6NHjwC0Xl/tw4cPmttJDe6sra3JmTMnt2/fBuDbt29s3ryZzZs3x9jWxsYGW1tbsmbNipmZGVevXiUoKAgDAwMaNWqEg4MDJUuWTNJ8/m2+fv2Ku7s7u3bt4u3bt9Eea926Nfb29lqPpV6nL0uWLHpbI+zfbv369VhaWtKoUSPNfbNmzaJdu3Z069Ytwf3V4VaGDBkoVKgQxYoV49KlS0kO7kJCQhg9ejTGxsYcPHgw3jXmevTogUqlindtuODgYBYtWhQjvCpQoAAQuYbmb7/9Fu2xJ0+eAJHPrUSJEol+LkOHDo029o0bNzQBY48ePejXr1+ix47LjBkzuHv3LtWqVWP16tWYm5vr/Rgi+f3rgjsAKysrnf5IFEIIIYQQQgghhEiIOrBLb1eu16xZE2tra3x9fQkJCWHVqlWaNXX0QalUsnz5cgAGDRpE3rx5td5X3wHij758+cK6desSXNtHXUGpUqm4dOkStWvXTlJwt3//fiZPnszChQtp3Lhxosf5UbNmzTQVaOfOneP27dtUqFBBb+Pfv3+f06dPY2pqyowZM/Q2bmKpA7I6depQqlQprfZRB3dWVlZkzJgxyXNwdHTUtJitUKECRYoUIWfOnGTPnh07Ozvs7OzImjUrxsbGfP/+HVdXV9zc3AgNDaVFixYMHDgwRmXk/fv3KV68eJprJ5sS/P39uXDhAocPH+bChQuEhYUBkcHnoEGDcHZ2JiAgQOdx1UFLfBWz+jR//nz69esX58UAcbl48SLnzp1j8uTJKBSKZJpdwh48eMDFixfp2LEjZmZmmvsHDBigCbQSog7uihcvjomJCcWLF2fPnj2MHDkySXMzMTFh+PDhca5nqPb69WtevHgBQP/+/enfvz+jRo2KsV2dOnVi3T9XrlyYmZlx7ty5GMHd3bt3AShUqFCSgq9MmTKRO3duzfc5cuRgyZIlfPr0iZ07d9KnTx+9/k2xYsUK9uzZQ4MGDViyZMl/8jPm3+JfGdwJIYQQQgghhBCJkdV+MSampkk+iaIwjLutV55Ba+J87NMBZ0I8n8b5uL6Z5C6OXcu42yYm9nn8W6nbW6W3q9eNjIyoW7cu+/fvByJDpVGjRmFjY6OX8Q8cOMDTp08pXrx4mltHJ2olSXyinrh2dnamfv36iT7m/v37mTBhAkqlktGjR2NgYBDjpHBi1apVC1NTU4KDg4HIYEufwd2iRYtQqVQMHTpUpwA2OXh5eWkqRYcMGaL1furWq0mttlMrVKgQa9eupUqVKtHeJ1F5enqyefNm/vjjD8LDw2nZsiV9+/aNs2Xj7du3GTx4MA4ODnTo0CHRayemN6GhobRv355//vlHc59CoaBDhw6MHDkSGxsbzUUAuvD399esSaZtwJtU165d4+DBg8ycOZPy5ctHe0xdRRwaGsq3b98093t6ejJ8+HD8/f0JCAhgzpw5ZMiQIUXm+6Nly5YB0K5du2j3axvahYeHc//+fQAqVqwIQIkSJXj06BFfv35N8GKJhCQU2gEcOXJEc7tBgwaxBob79++nRYsWsf5dZ2BgwE8//cS5c+dQKpWabUJCQnjw4AFAjNc2qTJkyEDbtm1Zs2YNnp6eXLhwIcH1G7W1bt06Vq5cSatWrZg7d26qvbeEfkhwJ4QQQgghhBBC/L8MGW0xMjNL1ooqIxu7OB8zy1sqRYM7s7wl451PfBK7X3qmDkvSW3AHkYGPOrgLDQ3l2rVrWoda8QkODmb58uUYGRkxb968JK0Bl5qinuDMlStXgtt7eXlRrFixBLcLDw9n5MiRODs7a73uX3zMzMyoXLkyFy9eBND8Vx/Onz/PX3/9Rbly5ejVq5fexk2shQsXEh4eTrNmzXQKY969ewcQrcolqWrVqhXr/bdv32br1q0cP34cKysrunfvTvfu3bG1tY13vF69euHv78/MmTNxdXVl7Nix1KtXT2/zTauMjY2ZP38+nTt3Jjw8nNy5czN//nwqVaqUpHFv3bqlqYhO6ljaMjEx4cuXLzg6Osa5zZEjR6KFS1Ht27cPW1vbWCvEklN4eDhubm5cuHCB4sWLU7Zs2USN8/DhQ83FLD///DMQWXlnZGTE4cOH6dmzZ5LmGRoaqqnGjMuBAweAyPaokydP1sxHbevWrSxdupSTJ0+yaNGiWIP3ypUrc+3aNe7evau5COL69euaY1evXj1JzyM27du3Z926dSiVSrZt26aX4G7VqlUsX76cTp06MX369FSt5hT6kT7/mhJCCCGEEEIIIf6FLEvVwPuKewoe79cUO1Z6p1QqNcGdtbV1Ks9Gd1WrVo32vaenp17GXb9+Pe/evWPUqFFJWgcotelamZAjRw7c3bX/XdVnoFm1alVNYBcYGMi3b990btf3o9DQUObOnYu5uTkLFy5M9UqNmzdvcuzYMWxtbZk8ebLW+4WFhWlaZeozuIvK39+fI0eOsGvXLh4+fEiRIkWYNm0aLVu2xNTUVOtxBg8ejL+/Py4uLjg6OtKoUSNmzpypl/aeaVnZsmVxcHDgr7/+Ys2aNXr5PL127RoQWV2cUsGdukqyePHimgApIZ6enpqAtk6dOgwYMCDZ5qf26tUrBg8ejKWlJSqVCg8PD7y9vQHo2LFjosc9d+4cEHkxwS+//AKAqakpVapUYc+ePUkO7l69ekWvXr2iVSzG5evXr3GG6wCnTp1i0KBBbNq0KUagpV6P7+TJk5rg7sKFC0DkvwvqUFKfcuXKRfXq1bl06RIXL17kzZs3SapwdnZ2Zs2aNfTs2ZOJEyfqcaYiNaXp4O7QoUM0a9ZMEmIhhBBCCCGEEP8Jxnb5MM1TguC3j5P9WKZ5S2Jsl7qt8NIT9YlOgGzZsqXeRBIpS5YsZMuWjY8fPwL6Wafv7du3bNy4kapVq9K3b98kj5eadA2qDAwMkhyWJdaP1Wf6OG/m4uLC69evcXJySvUWmSEhIZr19WbNmkWmTJm03tfT05OIiAgAvT6Pz58/c+7cOU6dOsWVK1eIiIigTp06jB49WquKHJVKRUBAAL6+vvj5+eHn54evry/FixcnV65ceHl58eeff/L8+XO2b9+utza2aZWjoyPdu3fX20UQ6qClSpUqWFhY6GXMhCS1vWm9evVSZK4FChTAzc2NI0eOsGHDhmj/llWuXDnR4546dQqAX3/9NVpg/euvv+Lk5JTk9TeLFSvG5s2bOXv2LKVKlSJv3rxYWVlpfmbjx4/n6NGjFC9enJ07d8b4N83Hx4f69esTEhJCw4YNmTlzZqyflT/99BPGxsa4u7szfPhwjIyMNC16K1WqlGy/ix07duTSpUuoVCp27NjBuHHjEjXO8uXLWbNmDb179070GCJtSrPB3fr161m6dCl37txh5MiRGBoaar6EEEIIIYQQQoh/K5tqrfmQAsGdTbVWyX6Mf5P0HtwBFCxYUBPclStXLsnjzZo1C2traxYvXpys7WVTQmpXmOmiYMGCmtv58+fXKdiKjaenJ2vXrqVNmza0adMmqdNLsjlz5vDs2TMGDBhAnTp1dNo36tpp+fLlS9I8Pnz4wJw5c3j48CFeXl5AZOVk9erVadKkCebm5nh5eeHi4hIjkPP39492n7+/P0qlEoVCQcaMGcmaNavmq2HDhly+fJlnz57x8uVLZs+ezaJFi5I097TO0NAwye9btZcvX/LixQsAGjdurJcxtZGePvMyZcpEt27daNWqFf369eP27dsAiV6H7tGjRzx79gyIuUZe7dq1cXJyYuvWrUlef7NYsWKxtiR+9uwZf/75JwBTpkyJtQXmgQMHCAkJwcjIiMmTJ8f5fjMxMaF69eqcO3eOQ4cOkStXLs2/k/poJx2XunXrYmtry+fPn3F3d2fYsGEYGxvrNMb69etZtWqVhHb/UmkyBdu1axdLly7VJM47duyI9niGDBkwMjLSfBkbG2NkZISJiQnGxsaYmppiamqKiYkJZmZmmJmZYW5ujoWFBZaWllhbW5MxY0ZsbGzImjUrOXLkiHNxWSGEEEIIIYQQIiWZF6mIRakaBDy8lGzHsCz1K+aFKybb+P9GUYO7PHnypN5EkqBSpUpcvXqVli1bJvmE6qFDh7hy5QpbtmxJcD0voV/Zs2cnd+7cfPjwgSlTpiR5vGnTplGoUCGmTZumh9kljboFZevWrRkxYoTO+z9+/L+LHrRZgzA+2bNn5927d5rQDiLXB7tw4YKmwisqKysrcufOTe7cufn69SsvX76kaNGiTJo0CVtbW2xtbcmaNWuslVqPHj2iXbt2RERE8Oeff7JgwYJkD4bWrFlD69atyZ49e7IeJ7nt27cPiFx7NCWDu/RYXGJpaYmDgwMODg5A4i9Y2LVrFxDZ8vHXX6O33M6fPz/lypXj2LFj9O7dmzJlyiRt0rFYsmQJSqWSli1bxtoaNTg4mC1btgDQokWLBC+2ad68OefOnWPbtm3kzJkTiGz72bRpU73PXc3Q0JDWrVuzfv16vL29OXLkCK1bt9Z6/127drF48WK6du2qdWjn4uJC/vz5db4gQqSONPkJ8/nzZ1QqFQqFQrOwaFTh4eGEh4cTFBSkuS+pbQHs7OyoVKkSdevWpUGDBjon3EIIIYQQQgghhL5kbdiXYI9HRPgnvLaLrjJYZiZLwz56H/ffLuqacIULF07FmSRely5dMDY2pnfv3kkaJzQ0FCcnJ2bPnk3FihIAp4bp06ejUqmoUaNGksY5deoUKpWKXbt26bQ+W3K4evUq48ePp0GDBsyePTvRYwDY2tpiZ2eX5DkNHz48RhvYwoULU6pUKYoWLUqePHk0YV3UtekmTZrEy5cvsbOz06xpFp+SJUvSvXt3Nm/ejIWFRbKGduHh4UybNo2goKB0H9qFhoZq1pps2bIllpaWiR7r5cuXnDt3jj590te/j8eOHdMpsLSystLcDgsL0/l4nz9/1oSlAwYMiPW92rlzZ+7evcuCBQvYunWrzseIz40bNzh79iyWlpaMGTMm1m3c3Nz4/PkzRkZGODo6JjhmvXr1MDc359GjRzx69AiAJk2aJPt6kx06dGDDhg2oVCq2bdumdXB39uxZZsyYQYsWLXS6eGPv3r0MHz48kbMVKS1NBneDBw8mS5YszJgxgxo1amBsbExYWJjmKyQkhNDQUM1XSEgIwcHBhISEEB4enqhjfvr0iaNHj3L06FFsbGwYMGAAPXr0kPX1hBBCCCGEEEKkuAzmVuToPJl3W6eiDPbX27gGppbk6DyZDOZWCW8sonn58iUQ2R6tUKFCqTybxMmcOTP9+/dP8jghISGMGDGCVq1aJX1SIlF+rHJJrODgYLZt25bq7V///vtvBg0aRMeOHZk4cWKcwZW/v3+c4Yynp6emBaA2685p49dff6Vy5cr4+PjQsWNHfvvtN2xtbfH19eXu3bvUrFlTp/E8PT3JmTNnrM9v2LBhHD16lPr16+tl7rEJCAhg2LBheHl5sXfv3mQ7TkrZvXs3X79+xcjIiH79+iVprA8fPvD06VOtt08r54ydnZ11Cu78/f/3N4WPjw9Zs2bV6Xhr164lJCSE/Pnzx9lat3Hjxjg5OXH9+nWOHDmit8o1pVKJk5MTAKVLl8bT05OMGTNGK8D58OEDq1atAqBbt27kzp07wXHNzMyoV68ehw4dAiIrEfXxb2VC8uTJQ7Vq1bhy5QoPHz7k3r17FC1aNN59nj17xqhRo6hWrRpz587V+n344sULXrx4kW47BvwXpcngDiKT+RkzZjBp0iQKFCig9X4REREEBQURFBREYGAg/v7+BAQEROsz/e3bN759+8anT5948+YNb968iRb4ff/+nXnz5nH16lVWrFiR5MVGhRBCCCGEEEIIXRnb5SNn95m83zFbL5V3GSwzk6PzZIztkrbu03+Veg2lEiVK/OeX27CyssLe3j61pyH0oFmzZtHWzEsODx484MSJEwB4eXnx5MkTihcvrnn86tWrjBo1ipEjR9KtW7c4xwkLC6NHjx6EhoZSpkwZSpcuTZEiRTRr2U2bNg2lUgnod22qFStWYGNjozlBHhoayvDhw7lx4wYuLi6xtuqLy4kTJ9i2bRsNGzakdevW0U7Sm5ubs27dumQ7sf7p0yccHBx49eoVe/bswcLCIlmOk1L8/f1Zu3YtAF27diVXrlxJGs/b2xtfX1+tt08LwZ1SqcTT0xOlUql1lWbU1q/fvn3T6UKUR48esWPHDhQKBTNnzoyzXaiJiQn29vYsXbqUqVOnUrp06SSvOQkQGBhIu3btKFasGA8ePKBr165kyJCB0qVLU758eSpUqMCmTZsIDAwkb968DBkyROuxo76eefLkSfL7SVvt27fnypUrAGzfvp3p06fHua2/vz9DhgwhR44cLFu2TKfMQr1uZt68eZM0X5Fy0mxwl1gZMmTA0tJSp9LokJAQ7t69y5EjRzhw4AChoaGoVCrOnz/P4sWLGT9+fDLOWAghhBBCCCGEiJ2xXT5y91vC1xOb8H94MdHjWJb6lSwN+0ilXRI8fPgQgNq1a6fuRIRIJ3x8fFiyZAm7d++mUaNGLFiwABcXF3r27MmqVauoVKkS+/fvZ/v27bi4uCS4Jp2RkRHu7u7cvn2bhQsXalok/qhw4cJ6/T3NlCmT5nZYWBijRo3i8uXLADg6OrJjxw6tw4/evXtTu3ZtJk2axO+//07ZsmXp0KEDzZo1w8zMjJIlS+pt3lE9f/6c/v378+7dO5ycnChSpEiyHCclLVq0iM+fP5M9e3adApq4fP/+PdpapgmJbXmnlObt7U14eDje3t5kzpxZq33U1eMQWZ2mreDgYMaNG0dERAQ9e/akatWq8W7fs2dPtm/fzsePHxk2bBi7du3CxMRE6+PFxtLSki5dumi+//79O+fPn+fMmTPs3LmTTZs2aR7LmTMnly5dolatWgm2AV6+fDkHDx7UfP/69WtGjx7N0qVLE70OoLbq169P5syZ+fbtG3/++SfDhg2L9pkT1YwZM/jw4QP79u3TOvv49u0bCxYs4OzZs9ja2mJubq7P6YtklLyrnKYTJiYmVK1alZkzZ3LgwAFy5MihWV/P1dWVmzdvpvYUhRBCCCGEEEL8R2Uwt8Ku1XCyd5iIaV7dTuqa5i1J9o4TsWs1XEK7JHjw4AHv37/HwMCAli1bpvZ0hEjTVCoVf/zxB40aNWLnzp0MGDCApUuXUqJECRYsWMBvv/1Gr169cHNzw8rKiu3btycY2kVVoUIFtm/fzujRo2M8ZmFhwfz585NljbigoCAcHR011YMQGWb8/vvvOo1TsGBBtm3bxrhx43jy5AmTJ0+mVq1aLF68mK9fv+plrhEREZrbf/31F126dOHdu3e0bNkyzvaG6cmtW7fYuXMnBgYGzJ8/P0lr26npWnGXFoK7z58/A5HVlNp6/vy55nbUtVsTMnXqVJ49e0b16tUZO3ZsgtubmZkxdOhQAB4/fszQoUMJCQnR+njayJQpE61atWL69OmUKlUq2mPXrl1j6NCh/PLLLyxdupTQ0NBYx9ixY4emtWbt2rU1bYiPHz/OpEmTov0uaSvqPgntb2xsrFnbLuqajT+6c+cOBw8eRKFQ4OjoSKNGjRL8qlevHjVq1NCsSShtMtOXf3Vwt2HDBp1Dt/z58zNs2DBUKhUKhQKlUsnixYuTaYZCCCGEEEIIIYR2zItUJGf3WeTutxSb6m0wK1AWA9PoJysNTC0xK1AWm+ptyN1vKTm7z8K8cMVUmvG/x8mTJwGoW7euXtp9/Zfcu3eP2bNnp4mT3CJpli1bxsWL8Vf+PnnyhC5dujBx4kS+fftGv379GDZsWLRtpk2bRu3atZk1axY7d+7UhA+6UCgU9OvXj+HDh2vuK1asGNu3b6d06dI6j5eQjx8/0qVLFy5cuABEnj+cPn06ly9fZs6cOTqPZ2BgQO/evdm9ezf58uXDx8eH9evXU79+fdavX5+osCCqb98i2ysHBwfTp08ffH19yZ8/P9OmTdNpHF0CiJTi6+vLxIkTUalUDB8+nJ9//lkv43p7e+v0XlR/pimVSs2yTAl9RQ0G9fHzVAe9Hz9+1HqfV69eaW5rG9wtWrSIAwcO8PPPP7Nq1ao4W2T+qG3btlSpUgWAc+fO4eDgQFBQkNZz1cajR49o164d169fJ0+ePOzYsYPNmzdTuXJl4H8tVWfMmBFj323btjFz5kwgctmu1atXs2TJEvLnzw/Avn376NWrF1++fElwHkqlEl9fX16/fs3Zs2c19+/fv59//vkHX19fTSvfH3Xo0EFze/PmzVy6dAlfX1/CwsI096tf66CgIF69eqXVl6enZ7T3mfz9kr7861plRlW2bFnGjh3LwYMHdbry4sc38d27d7lx44bmF14IIYQQQgghhEgtxnZ5yWzXFYg8cagKDUYVEYYigxEKY9M0se7Ov4lSqeTYsWNkyJAhWkggEnbv3j369OmDn58fQUFBzJ49+z///jx69Cj+/v7RTtSmB4sXL2b9+vWYmJiwevVqatSoEWObY8eOMWrUKM2J4latWsVaFZchQwaWLFnCyJEjOXnyJA0bNqRjx460b99ep8o7gH79+vH582eqV69OvXr1kuX9dfXqVUaPHs2XL1/IkSMHQ4cOpVWrVvFW9WlbuVWiRAn++OMPhg8fzqVLlwgMDGTx4sVcu3aN1atXJ9jiLy53794FIj+/lEolRkZGLF68WOd17VIjuAsODo7zsYiICEaMGMHr16/p2LEjDg4OCY6nfk8kVO314cMHTfCiDm7iEx4eDsCzZ8+oVq1agtv/KK4KsKjhjvoYcfHw8ADg77//platWlod18fHR3Nbm0BqwYIFbNq0iVq1arFixQqd2l0qFArmz59PixYt8PPz4+rVq3Tt2pWFCxfqtLZebMLCwvj9999ZvXo1wcHBtGnThkmTJmkygGrVqnHu3DlmzJjBu3fvOHDgANOmTcPY2BilUsn8+fPZvHkzBgYGjBkzhr59+wJgbW3NmjVr6NatG1+/fuX69eu0atWKmTNnUrdu3Tjn8+7dO+rVqxfj/ps3b9K4cWMATp8+Te7cuWNskz9/fqpUqcL169cJCAjQVCqOHTtWr+vJSsVd+vKvDu6qVq1KsWLFmDNnDk5OTlrv92Pv2mbNmsX6SyWEEEIIIYQQQqQmhUKBwsQMMEvtqfxrHT16FA8PD3r27Jmm14VSqVSJPrEetRouIiIizpPFUbdL6ITygwcP6Nu3L35+fgDs3bsXhULBrFmz/rPh3alTpxgzZgwREREYGRlp2qP9KCIiIskViiqVKsHXSNvtli1bxvr164HI8MPR0ZE1a9bwyy+/RNuuQYMGNGvWjAMHDlCiRAlmzZoV55jGxsasWLGCDRs2sHLlSrZu3crWrVvJkycPFStWpESJEuTPn5/MmTOTJUsWLCwsMDU1xcTEJNr7x9DQkKlTp8Z6jIiICEJCQggMDMTHxwc/Pz98fHywsbHhp59+SvBnExoayooVK9i4cSNGRkYMGjSI/v37a8K0devWkTVrVmxtbcmSJQsZM2bEwsICT09Prl69CqBVy04rKyvWrVvHuHHjOHz4MACXL19mzZo1jBgxIsH9Y3vejx8/jnbf4MGDE1WJGPW9oc/g7tKlS1hbW5M/f36sra0191+5ckVTZWRkZBRjPycnJy5dukTbtm2ZPn26VscyNjYGIl/PuEK5iIgI7t+/D0S+rtqcR1YHbMWLF+fAgQNazcXT01MT7sQVJEYNa1++fEmZMmXiHO/atWsA7N69m+7du5MxY8YE55A/f36ePn0KxN/uMzg4mClTpnDw4EHatGnDzJkzY31NEpIzZ05mzpzJyJEjUalUPHz4kDZt2jBq1Ci6deuWqLa2N27cYPr06bx48YKiRYsyevToWIPL2rVrU7lyZZycnHB3dyciIoKAgADGjh3LqVOnyJMnD05OTjGKdQoWLIiLiws9evTQVGIOHDiQihUrMmLEiFiLe3Lnzq35uSbG1q1bUSqVcVYk1q9fP0nji/TnXx3cQWQy3bx5cxo2bEidOnW02kf9RyWAvb0948aNS67pCSGEEEIIIYQQIo1SKpWsWbOG/PnzJ+oEekp6//493bp1w8vLK0njaNN2zs/PL8Z6QtrYs2cPCoWCmTNnplh4FxwcTGBgYILb+fv7a277+vpqWg3+SF0lo26Pp627d+8yfPhwTRAyceJEjIyMaNasWYxtDxw4wKRJk+Jsq6aNM2fOaPUaqQMzXYSEhDBw4MAY4Z2hoSHz588na9astG3bVhOYxEWhUNC/f38aN27MihUrOHr0KG/fvuXt27fs378/zv2MjY0xMTHRjB/1vaRSqQgJCSEkJCRamzn1dtWqVaNHjx4JPsc7d+4wZcoUXr9+Tfv27XF0dCR79uzRtilcuDBXrlzh5MmTcbYqtLLSbm1RQ0NDFixYgJ+fH+fPnwci13FLjAwZMrBmzRq6du1KQEAAZcuWpV+/fokaK2pVmD7XJ/Px8WHx4sU8evQIGxsbsmbNipGRES9evNBs82P15fz589m6dSv9+/dn5MiRWn+GFC5cWHN7zJgxjBgxgmzZsmnuU6lU7NmzR/Mauru7Y2dnl+Bn/o/vL13FVVlYvHhxFAoFKpWKefPm4efnR4kSJWJUS968eVOz3uLHjx/p1q0bu3fvxsws/gt5BgwYwMSJEwkKCoozwH716hXDhw/n7du3LFy4kBYtWiTiGf5PkyZNePv2LUuWLAEin/ucOXPYvn07ffr0oWXLlgl+XkDkc167di0XL14kb968LFy4kGbNmsUb/llYWDB79myGDx/OvXv3mDhxIl5eXnTs2JFx48bFWYVarFgxtmzZQr9+/TRrCN66dYtu3bqRK1cuGjZsSM+ePcmRI0cifiJCJOxfE9wFBgZy48YN8ufPH63VZYECBejQoQNTpkzh6NGj0a7iiIu6TLhUqVJaLbYphBBCCCGEEEKIf5/9+/fj6enJrl27EjwZmtpy5szJ1q1b2bVrF8WLF6dgwYJYWVlhaWmZ5ircVCpVis3Jx8eHHj168Pr1a6330SbYef/+faLa46kplUrGjRuHkZERv/32W7TH2rRpg6mpKe/evaNUqVLY2dlhZWWV6LaJyeXHjlUQGY7pei4tT548LFiwgFGjRnH06FFOnDjB33//HWcwEhoaGmebwbjky5cPZ2dnSpYsGe92X758YcmSJfz555+0adOGdevWkStXrli3rVevHvXq1WPixImcPHmSRYsW8fbt22jb6PIeyZAhA4sWLaJVq1Z4eXnp3NYyqhIlSrB8+XIcHR2ZPXt2rK+VNqJW3GkTgGuradOmNG3alEuXLjF//nyePXsW7fFMmTJpKqiUSiXTpk3j8OHDLFiwgJYtW+p0rAYNGrBs2TLevXvH/fv3E2w9mDFjxlhbHv5I1/fgj+IKQu3s7GjWrBmHDh3i+/fvzJ49W6vxGjdurNW/U02aNKF27dp4eHhQtGjRaI9FRESwZcsWli1bRunSpdm3b5/e1kVzcHDg8+fP0S4U8PDwYOvWrXh4eMTaVhci34Pnz5/HxcWFO3fu8Ouvv7Js2TLq16+v9Vp7gYGBrFq1ih07dvDTTz8xb948zdp78SlevDi7d++mX79+PH/+XHN/SEgI379/1+vvhBA/+lcEd/v27WP+/PmaHr3Nmzdn6tSpmp62gwcPZv/+/cydO5d58+YlOJ6npycKhYLRo0enuT9uhRBCCCGEEEIIkfzev3+Pk5MTTk5OFC9ePLWno5VcuXIxcuTI1J5GmpItWzZcXV05evQoxYsXp0CBAlhaWmJhYZGmz/k0adIktaeQ4rJly4a9vT329vaEhITw4MEDXr58yevXr/n48SPfv3/H29ubwMBAgoKCCA4OJjQ0lLCwsASrn+bNmxdvaBcaGsr69es5deoUzZs35+zZs1q1HYTIwK1Ro0b88ssvdO3aVdPOrnr16nG2Q42LtbU1a9eupW/fvrRt21anfX9Uo0YN9u3bl6S1xKKGS3G18EuKGjVqUKVKFaZOncq+ffuAyFaRc+bMwcbGhq9fvzJu3Dh8fX35448/KFiwoM7HsLCwwM3NjdWrV/P48eNYA7cMGTJgZWVFxYoV6dq1K3Z2dgmOq66YU59/1lb+/Pnp27dvvAHk3LlzyZYtG3/++Sdfv36Ns02pubk5pUuXpnv37tSuXVvrOZibm1OiRIlo912+fJl58+ahUqlYsmSJVuGlriZPnkymTJlYvnw59evXZ/r06dja2sa67ZMnT9i3bx8nT54kT5481KtXD2dnZ7Jmzar18SIiIti3bx8rV67E2tqaVatW6fy8cuTIwa5du5g6dSqHDx9m2LBh9O3bV6sKQSGSQqFKatPsZFS8eHGOHTtGgQIF4txm8eLFbNy4MVpPXoVCQalSpdi7d6/mvpUrV7Jq1So2bNgQ6wK6UU2YMIGnT5/i7u6e9CchxA9CQ0P5+++/Y9xfpkyZ/+SHflhYmKaPuFrZsmUT1TdbCCGEEEL8t4SHh0e7AhqgSJEiWl+BDcS6noiZmVmi1lwR/x4qlYpevXpRs2ZN+vTpk9rTEUJoISIiQvOlVCo15wpVKlWClacqlYqbN29SqVKlJAW6x48fZ+PGjbRq1YqOHTvq9O9RVEqlMk38O7R+/Xr27t1Lx44dadOmDZkyZUqW44SHh9OgQQPy5s3LuHHjKFmyJJcvX2b27Nl06dKFrl27pomfR1RTp07ll19+oV69elq/zuHh4RgYGKSp53Lt2jXWrl2LSqWiXbt2NGnSJNEVmtq6ePEi1apVi/Pn5u/vz7Zt26hcuTJlypTR+RyhSqXi2LFjrF69mvz589O+fXtq1qyZ5Is1Tp8+nSyBplp6+5tUH3+Hx0XOn6dycHfgwIF4ry5IKLjbtm1btEWN1U+lSJEi9OvXL1r/3YCAAOrXr4+5uTmHDx+Ot3S4Xbt2tGjRQqvWCELoSj54opPgTgghhBBCJJYEdyK5BAcHc/jwYdq1a5faUxFCiFTz7ds3MmXKlCLVqd++fSNz5sya73ft2sVvv/2GjY1Nsh/7vyogIAA3NzeaNWsWZ0vY9Oj58+dcuHCBVq1akSVLltSejtbS29+kEtwlr1Rrlenh4cGkSZNQKBSJWuDyyZMnODk5aRbrNDMzo2PHjrRu3TrG4qUQWRbdt29fFi5cyLJlyxg/fnys46pUKl6+fBmjv7gQQgghhBBCCCH+G0xNTSW0E0L850UN0lL6WB07dkyxY/9XWVhY4ODgkNrT0LsiRYpQpEiR1J6GEEmSanHtkiVLCA8PZ+bMmSxdupSPHz9qvW9ERATjx4/XlBd3796d06dPM378+FhDO7Vu3bqRNWtWtm7dyt27d2PdJiwsjIULF5ItWzZdn5IQQgghhBBCCCGEEEIIIYQQiZYqwd39+/c5fvw4CoWCgIAA1q9fT7169Rg1alSMlnmxcXNz48mTJ5QsWZI9e/YwadIkra4AMTExoXfv3prgL+oCq2rGxsbUr18/Uc9LCCGEEEIIIYQQQgghhBBCiMRKleBu7dq1QGRbSvVXeHg4R48epWPHjnTq1ImjR4/G2j85NDSUNWvW4ODgwO7duylZsqROx+7cuTOZMmXCw8ODBQsW6OX5CCGEEEIIIYQQQgghhBBCCJFUqRLcrV69msuXL+Pi4sKQIUP45ZdfMDY21oR49+7dY9SoUQDs3LmTwMBAzb7GxsYcPnyYESNGJGqhQzMzM7p27YpKpWL79u0cP35cb89LCCGEEEIIIYQQQgghhBBCiMRKtTXusmTJQrVq1Rg0aBCbNm3i+vXrrF27lnbt2mFtba0J8VxdXWnYsCHu7u6afbNmzZqkY3fr1g0zMzNUKhWTJk3i1atXSX06QgghhBBCCCGEEEIIIYQQQiRJqgV3PzI1NaV27drMnj2by5cvs27dOho0aECGDBn48uULkyZNolOnTrx8+TLJx7KxsaF58+YA+Pv7069fP75+/ZrkcYUQQgghhBBCCCGEEEIIIYRIrDQT3EVlaGhIrVq1WLFiBWfPnmXo0KFkyZKFu3fv0rp1a1avXk1ERESSjtG1a1cAFAoFnp6e2Nvb8+nTJ31MXwghhBBCCCGEEEIIIYQQQgidpcngLipbW1scHR05c+YMkydPJmvWrCxfvpxu3brx4cOHRI9brFgxypUrh0qlQqFQ8OzZM37//Xc9zlwIIYQQQgghhBBCCCGEEEII7aX54E7N2NiYbt26cfz4ccaNG8c///xDy5YtOX/+vFb7N2/enOfPn0e7r3Xr1gAYGBgwZswYxo8fr/d5CyGEEEIIIYQQQgghhBBCCKGNdBPcqXl6etKiRQtOnDhBs2bNGDx4MG5ubgnuV7p0adauXRvtvt9++42sWbPy+++/06dPn+SashBCCCGEEEIIIYQQQgghhBAJSlfB3d9//03Xrl3x9fUlY8aMTJkyhW3btrF7924OHToU776tWrXi+PHjvH37VnOfjY0Nx44do2rVqsk9dSGEEEIIIYQQQgghhBBCCCHilW6Cu2vXrvF/7N15XIzr+wfwz6R9k8haRDpkX084hMhOyc7RIm22IiGSJVsLskQJkTVLIpV9zZ7s+05xEpW0ztTM749+83xLMzVr5Zzr/Xp5nWnmee7nnrXO85nrum1tbZGRkVHq+nbt2iEqKgrm5ubl7m9qaoq6desiLCys1PVaWloynyshhBBCCCGEEEIIIYQQQggh4votgru8vDzMnTsXubm5Am9XVFSEhoZGheNYWlri2LFj+Oeff2Q9RUIIIYQQQgghhBBCCCGEEEKk8lsEd2pqaggLC4OOjo5U41hbW4PD4WD79u2ymRghhBBCCCGEEEIIIYQQQgghMvJbBHcAYGJigj179kg1hoGBATp16oQjR47g27dvMpoZIYQQQgghhBBCCCGEEEIIIdKr0uBuyZIl+PTpk8jbGxsbg8fjSXXMkSNHIj8/v8xad4QQQgghhBBCCCGEEEIIIYRUJcWqOvCzZ88QGRmJmzdvYtGiRVBQED1DTEpKQkpKikTH1dTUBIvFQmRkJBwdHVGnTh2JxiGEEEIIIYQQQgghhBBCCCFElqosuNu8eTMA4OPHj3B2dhZrX29vb6mPX1BQgLCwMHh5eUk9FiGEEEIIIYQQQgghhBBCCCHSqpJWmc+ePcP58+cBADweT6x/kuwj7N/BgweRmppaFQ8BIYQQQgghhBBCCCGEEEIIIaVUScXd8+fPMX78eKioqEBRUZH5p6CggBo1aoDFYjGtM1ksFlgsFrNvQEAApk6dCl1dXYmPX1BQgA0bNoDNZiMkJARLliyR+j4RQgghhBBCCCGEEEIIIYQQIo0qCe5GjhyJkSNHSrRvQEAARo0ahaZNm0o1h4sXL+Lhw4c4fPgwbG1tYWhoKNV4hBBCCCGEEEIIIYQQQgghhEijSlplVgdDhgwBABQVFSEgIKCKZ0MIIYQQQgghhBBCCCGEEFn5/v07MjMzq3oahIjtPxvc9e/fn7l84cIFXLhwoQpnQwghhBBCCCGEkH+b06dP48GDB1U9DSIj165dQ3R0dFVP4z9ry5YtSEpKqpJjv3z5Ui7jPn/+HM7Ozvj69atcxhfFjx8/sG3bNmRlZVXZHIQpLCyUaD8OhyPjmZDf1cuXL9G/f3+sXLkSaWlpVT0dQkT2nw3u9PX1YWxsDADg8XhYunQp0tPTq3hWhBBCCCGEEEII+bdgsVgYN24c3N3d8eXLl6qejlDnzp3Dp0+fKtzu+PHjVRowVLWtW7di/vz5cHBwEOnxqgr79+8Hm80ud5vMzExER0dLHIqI4/PnzxXOR1RXrlzBhAkTYGVlhcOHDyMvL08m44piyZIlsLW1xaNHj2Q2ZlFRERYtWoRLly5hxIgROHfunMzGFoeCggLWrl2LPn36YM2aNdXqs2r69OnYtm2b2K9Ve3t7+Pn5Vdrn1fv375GQkCCXsXNzc+Hl5UWhk4S6d+8OFxcXREREwMLCAqGhoSgqKqrqaRFSod8yuJNVwNa7d2/weDywWCykpaVh2rRpyMnJkcnYhBBCCCGEEEII+W8bMGAApkyZgvj4eAwZMgSRkZFVPSWBrl27hsGDB2PRokXlBlJxcXHo168fli5diuTk5EqcYdV79OgR7ty5AwBISEjA8OHDERsbW8WzKsvf3x/9+/fH3r17hQZmXC4X8+fPx4ABA3DgwAGZBWuC3L59G4MHD8bp06elHktZWRkA8OzZM0RERODHjx9SjykqVVVV3Lx5E6NHj0aLFi1k8q9Vq1Z4/PgxACAjIwO7d++W63MhDP9xzcnJQXh4OKZPn14l8/jVz58/ce3aNaxduxbW1tZ4+PChyPu+efMGO3fuZD6v5F2skZ2dDQcHBzg6OuLZs2dIT0+Xyb+vX7/C2dkZUVFRsLGxkTq8e/XqFXx9ffH9+3cZ3fPfg4ODA/766y/k5eVh3bp18Pb2ruopEVIhxaqegCQePnyIzp07Sz2OmZkZtm/fDqD4W3B//fUX1NXVpR6XEEIIIYQQQgghBADc3d1x/vx5vH//Hj4+PkhJScGcOXOqelqlqKmpgcPh4MiRIzh+/DjWrVuHAQMGlNlOVVUVbDYbBw4cwOHDhxEUFAQLC4sqmHHl27lzZ6mfhw4dir59+1bRbIRTU1NDamoqfH19sXv3bhw5cgQ1a9Yssw0ApKSkYOnSpdi1axcOHjyIWrVqyXw+VlZWePHiBWbNmgVzc3OsXLkSurq6Eo1Vo0YN5vLu3bslHkcSKioqAIAGDRogKipKZuO6uLjgwYMHaN68OXbs2MGEaJVJSUmJudygQQNs3769Subxq6tXrzItL1+8eIEZM2bg8OHDqFevXrn7sdlsZGRkAChumVmzZk3o6OjIda7818eVK1dw5coVuRzj7du3cHd3x969e8FisSQaw8jICO/fv4eFhQVcXV1hZ2dX6vkXpG/fvjh48GCFj7uofvz4gbS0NDRv3lwm44mCxWJhyZIlGDJkCAoLC5kg1MTEROQx+NXDhoaG8psoISX8dsGdoaEhhg8fLpOxOnbsCDU1NWhoaCAgIADdu3eXybiEEEIIIYQQQgghQHE1i7e3N6ZOnQoACA0NhZmZGbp06VLFM/ufkl9itrW1FRrG8U9OKyoqIiAg4D8T2j179gynTp1iftbW1kbXrl2r5Ze/+aFczZo1sXr16jKhHfC/5xEAWrRogeDgYLmEdnxz5szBrVu3cOHCBYwaNQo7d+5E06ZNxR5HQaG4cZiiomKlhnbA/x4zBQUFmR6bH0bq6upWWVimoKAAFosFHo8HAwODSn9shbl48SJzWUdHB/v27RMpPEpNTQWPxwMA9O/fH7Nnz5bbHPlKhl9eXl6ws7OT2djm5uZISUlB+/btsWXLFolDO+B/bVEtLS0RGBiIEydOIDAwEC1atBC4/efPn/H582ekpaXJJLhLTU2Fg4MD0tLSEBYWhnbt2om8771795CVlYXevXtLdOwmTZqgf//+OHXqFFRUVKCnpyfyvl++fIGNjQ0KCgqwZ88eCu9IpfjtWmVGRESgTp06MhlLSUkJrq6uiI6OptCOEEIIIYQQQgghctGrV69S1QX89njiiImJgZ+fnyynxVBU/N/3up2dnYWeGOaHF2pqahgyZIhc5lId+fn5gcvlAgCMjY1x6NAhBAYG4uPHj1U8s7L4AUKXLl2EhsMKCgrMdqampjAwMJD7nJYuXQoWi4XPnz/D0dER2dnZYo/DD2M0NDRkPcUK8UPDf6uSnwHVQX5+Ps6fP8/87OXlJfLr9J9//mEud+jQQdZTE6hkNai8NG7cWGAQLy4dHR34+/uDxWLh5cuXGD9+PJ49eyZw28TERADAqFGjZNIe1szMDK9evUJmZibs7e2Z8UWRn58PJycnuLq6SrzG6MCBA8FisbB8+XKR84V//vkHNjY2+PTpE75+/QobGxt8+PBBouMTIo7q9aksgrp168p0PCcnJ5mORwghhBBCCCGEVBYej4e8wnwUcougqFADaoqqUn0bn8jPiBEjsG7dOqirqwtsQ1mekydPYv78+SgqKgKXy4WXl5dM5ybqSeeKWqr9G12+fBk3btwAUFw9GRgYiKZNm8LGxgbu7u7Yt28fU+VWHYjzXPLbEFaGdu3aoW/fvrhw4QI+ffqEiIgITJs2Tawx+OHpvzG444eSVaW6BZMXLlxATk4OAKBZs2YYMWKEyPu+ffuWudy+fXuZz02Qygg+ZfkaMTU1hbW1NY4ePYrc3Fxs2rQJW7ZsKbMdv+3nxo0b0bVrV6mPGxISgt27dwMo/nJBVlaWyPtqa2sDKH5tXLhwQap5zJ8/H/Pnz5do39TUVEyePBl79uxBkyZNpJoHIeX57YI7QgghhBBCCCHkv+xjZgoSPt7Bm/T3eJvxCTnsXOY2DWV1NKtlACNdQ/Rs3BWNdRpV4Ux/f3l5ecjLy5PJWPr6+mCxWFi4cCFUVVWRnp4u0n5Xr16Fl5cXioqKAAC7du0Ci8XCggULZDIvQPRArrqd3Je3/Px8rFq1ivl5zpw5aNmyJQDA3t4eMTEx8PDwwObNm6vNYyNqgFAVAf/48eOZE+4vXrwQe39+cFEVQSk/EE1JSRHaVlAaVR3cVbcvfMTExDCXXV1dxXp/vXr1CkDxc9a6dWuZz02Qynj/84NrWXFzc0NMTAzYbLbA6uHMzEycPXsWQPF7TtoWqvn5+Thx4gRUVVWxcuVKDBs2TKz9VVVVmcsODg5M+2lBioqKmBaw8lJyPgCQnJyMfv36ibSvsrIytLS00KhRI7Rt2xaDBw8Wu302j8dDQkIC4uLicP/+faSmpoLNZkNHRwctWrRA7969MXr06GrZ0pmIhoI7QgghhBBCCCHkN5D0+RGOPz+DZ2mvhW6Tw87Fo9QXeJT6AtHPTsNErzksWw5Ep4ZtKnGm/x7fv3+HjY0NUlJSZDamt7c3vL29pRojPDwcLBZL4ooBSVW3k/vytn79erx//x5AcbvTkutWKSkpwd/fH2PGjMGKFSvg4+NTNZP8hajPUVUEjd27d0fNmjXx48cPsda24uNXCFZFcMd/XBs0aICoqCiZjevi4oIHDx7IPJQRV3UJngEgPT0dV69eBVC8LtnQoUPF2p8fChsZGVVaaFEZrTILCwtlOl69evUwcOBAxMTEwMbGBkBxGPTgwQN06NABfn5+yM/PB4BSbSUzMzOhrq4u9pqM0dHRKCgowI4dOyRa47Xk+15ZWbncIDE1NRX29vZwc3MTeS3WpUuXwtjYGKNGjSoTyomiYcOGuHPnDr59+4a5c+fiyZMnAICOHTti1apVzGOYl5eHjIwMPHr0CMePH8e+ffuwb98+dOzYEStXrkT9+vUrPNbz58/h7e2NgoICjBo1Cra2ttDT08PPnz/x8OFD7N+/HytXrsTWrVvh5+cHMzMzse8PqXoU3BFCCCGEEEIIIdXYz4Js7EyKxLWPoq8Fw/cs7TWepb1Gz8ZdYd9pLLRUNOUww38vfX19RERE4Ny5czAxMUGTJk2gqakJDQ2NMgFJUVGRVCdvv3//jtq1a0s7ZSIjd+/eRUREBADAwMAAa9euLfOcm5iYwM3NDYGBgVBUVMTChQurYqq/DWVlZSxatAgfPnwoFYKKih9ciBrcHTlyBI0bN8aff/4p9rF+xa94VVBQkLryqCT+ZwZV3P1PZGQkE9I6OzuL/bn68uVLAECbNhV/YSUxMRFr1qxBSEiIyGueCVIZj588Wtt6eHigR48esLa2BlD8uRcXFwcVFRUmoG7fvj1MTEyYfYKCgvDs2TNs3LgR9erVKzPmqVOnkJeXhyFDhjDrovJ4POzbtw+bN2+WKLQDSoejFQXd6urqePXqFWbMmIG2bdvC09MTpqam5e7z7ds3HDhwAJs2bcLEiRNhZ2fHtOcUhYKCArS1taGtrY2+ffsywZ21tTWaNWvGbKetrY169eqhZcuWGDNmDI4fP45Fixbh3r17mDRpEsLCwkpt/6vExEQ4Ojqiffv2iIyMLPW41K5dG4aGhhg+fDh8fX2xb98+ODs7Y926dRg8eLDI94VUDxTcEUIIIYQQQggh1dSHzGSsurIZGXk/pBon4eMdPEl7iUVmM6l9ppj09fVFChkWL16Mpk2bwsHBQezqlaysLJibm2P06NFwdXWV6gRydfLt27ff8r78/PkTXl5e4HK5UFNTw+bNm1GzZk2B2zo4OODOnTvYvXs3uFwuFi1aVK1CEFnIyckBi8WSSfWSpaWlxPvygzt+GFCeI0eOwNvbG2pqaggNDZU6vJN3sCbraipxyeo1u3XrVrRu3VriCp/CwkIcPHgQANCoUaNSr5ecnBwUFBSUu39GRgYyMzMBAE2bNi23JfGLFy8wbdo05ObmwsbGBhERERJ/XpV8/FavXo3Vq1dLNE55fr3vpqamuHXrllRjNmjQgAntgOLQrXfv3mjcuDHWrFkDFouFgQMHMvfvn3/+wZEjR8DhcDBy5EisX7++TCBmamqKuXPnYs2aNRg7diz+/vtv6OnpwdfXFx06dJB4ruIEdyUr5pSVldGwYcMKx+evnfnz508oKChI9XlXcq4VtS+2tLTEt2/f4O/vj4yMDPj6+iI8PFzgtmw2G3PmzEFubi4GDRokNNRmsVhMGPj06VPMmzcPLVq0KDcQJNUPBXeEEEIIIYQQQkg19CEzGUsvri+1hp00MvJ+YMnFdVjWdw6Fd3Lg5OQES0tLXLlyBevWrYOenp7I+yYkJCA/Px979+5FVFQUbGxsMG3aNJECCkE2bdqEGTNmVGmAxGazMXToUDg7O8Pe3v63CbN4PB48PT3x4cMHsFgsrFq1ilnXThAFBQUEBgZizJgx2LNnD9LT07FmzRqx28gJ8vr1a7x8+RJDhgyReixpXLx4EZs2bUJgYCDatm0r07FfvnwJGxsbZGRkiLxPQkKCyOvM5ebmwtnZGYcOHYKxsbGk02Qq7uRF3uNXhs2bN2PTpk1QVlZGcHCwROHduXPn8M8//wAApk6dWir0SElJga2trcjrg65duxZr164Vads3b97A1tYWERERElU+l/x8c3d3x7hx48QeQxhra2t8+fIFOTk5zHVFRUXIzs6W2TGA4jDs4sWLmDt3LlRVVTFy5Mgy26xatapU5d+rV6/KBHe1atVCWFgY1q1bh23btiE8PBwjR47EtGnTpJqfOF+IUVJSgoKCArhcLkaOHAkDA4MK9+F/Zrdr1w4zZswoc/vz58/L/V0gjcmTJ2PXrl34+vUrHjx4gCdPnghcn/HKlStITU0FUPzZVp4aNWrAyckJ7u7uYLPZCAoKwsaNG+UyfyIfFNwRQgghhBBCCCHVzM+CbKy6sllmoR1fDjsXK69sQuBAb2qbKWOGhoZwdHTEpk2bMGrUKISFhYkcLhw/fpy53Lp1a/Tr10/i0A4oruDbvn07HB0dJR5DWnfv3kVmZib8/Pxw5coV+Pn5CWyrVt1s3rwZFy9eBAAsWLBApNBMW1sbW7Zswfjx4xEbG4svX74gODhY6paKBgYGmDZtGtq0aYPGjRtLNZY0rly5gvfv32PChAmYOXMmHB0dZbYm2h9//IHw8HAcO3YMbdu2RdOmTVGzZk2m+qWkUaNG4fPnzxg4cCCWLl1a7rgbNmxgKrf69+8PIyMjqebJr4jjcrkiB0ei4Ad28miDKA5pg/UtW7Zg06ZNAIpD++nTp0sU3m3btg1AcVXlr639/vjjD+zZswe3b99Gq1at0KBBA2hpaZWqjAoLC0NgYCAUFBRw584daGpWzu+5ko+fmpqaTNup1qxZE/3798ekSZOY67Kzs1FYWIi8vLxyW8dmZWVBSUlJpPayiYmJMDQ0FLq+2+nTp3H69GkAwJAhQ7B06VKhlcgKCgqYO3cuGjZsCF9fXxw6dAgnTpyAm5sbpkyZUuFcKiLK50+NGjXEWjuyvJaskZGRWLJkCZYsWYIJEyaIPKaolJWVYWZmhiNHjgAA7ty5IzC4+/jxI3P54MGDmDx5MpSUlISO26tXLybAvHjxIgoLCyusACTVBz1ThBBCCCGEEEJINbMzKVLq9pjCZOT9QHjSIczqLv3JM1Kag4MDDh48iNTUVNjb2+Po0aNo0KBBuft8/foVCQkJAAAjIyOEhIRIfbLZ3t4eQ4YMQffu3UVa50kezp8/z1y+ceMGRowYgd27d8utYkEW4uPjERwcDABwdHQU2CL17t276NSpU5mgw8jICKGhoZgyZQqSkpIwevRo+Pv7S7yeE1AcXowaNQoeHh44cOBAlZxwLSwsxOXLlwEUh0vr1q3DnTt3sHXr1nJPGAvDZrPLVCOamJiUWkNLEC6Xi7S0NABAs2bNKgxGSlYjeXh4SB005ufnAwC+fPmC7t27SzWWIBW1gBQmICAA27dvl9k8bt++LfIXDsojSXh38eJFZl2wgoICDB8+HG5ubrC2tmZClebNm6N58+ZCx3j06BGA4vdjZYV2gHzXuDt8+HCZ9wy/QvXbt2/lVpN9/vwZM2fOhI2NDcaPH1/uezYuLk7oc5WWlobly5eDxWLBw8ND5C+FTJw4EZqampg3bx7y8/Ph5+cHFosFe3t7kfYvqWQIJ2pwJ04gLuzz9cSJE1i6dCl4PB6WLVsGZWVljBo1SuRxRVWyIvjr168CtynZyvXDhw/Izs5GrVq1hI6pqamJWrVq4fv372Cz2UhPT0fdunVlN2kiVxTcEUIIIYQQQggh1UjS50e49jFRrsdI+HgHPZt0RaeGsm1791+npqaGCRMmYOPGjfj+/TtWr15dYWuqffv2obCwEDVr1sTWrVtlcrK5YcOGsLCwwNy5cxEdHS20gkJeuFwuU5kBAB07dsTChQurdWh39epVeHp6gsfjYeLEiZg7d67A7VatWoWioiK4u7ujT58+pW7r1KkTNm3aBFdXV6SkpMDGxgYuLi6YNm2axKHbhAkTEBISguDgYLi5uUk0hjSuX7/OrBkGFLeEnTJlikShXWBgIJ48eYLQ0FCxW4mmpaUxJ+H19fUr3P7bt28Aik/ei9O2Vhh+sNaoUSNcuHBB6vH4JkyYgKSkpDIVhmlpaSLN29PTE23atIGGhgYMDQ0l/vwwMzMDh8NBx44dsWXLFonGEESc1wk/NOdLS0vDqVOnYGFhAR0dHZHGePz4MQCgffv2Ih+3uhP0XuG/vt+/f19ucNeyZUssWLAA06dPx/79+7F8+XJ07dq1zHZFRUU4ffo09u/fX+a2wsJCuLu7IzMzE2vWrIGVlVWp2wsKCuDj4wNnZ2eBa6iNGDEC6enpzLp/mzZtwqRJk8T+DCi5zqSCggLmz5+P6OjoCvfz9vaGt7e3yMdJSkoSGl7zeDx4e3tDWVkZw4cPF3lMUZT8DBAWOA4aNAinTp3C9evXMXDgwHJDO76SgaegSmZSfVFwRwghhBBCCCGEVCPHn5+ppOOcpeBODkaPHo1NmzaBx+Ph/Pnz5bYyKygoQGRkJGrUqIF169ahSZMmMpvHlClTYGVlBT8/PyxZskRm44oiMTGRqRhQUlKCv79/lbZ6rEhiYiJmzpwJDocDR0dHoaEdUHx/Hj9+DGdnZ3To0AGLFi1Cu3btmNt79eqFLVu2YObMmcjPz0dwcDDOnDmD2bNno1+/fmLPTVtbG6NHj0ZoaCh69+6NDh06SHIXJRYfH89cNjU1hYeHh9BtMzIySp1cL+nw4cMICwsDALi5uWHTpk1ihZmfPn1iLovyWvr+/TsAoG7duuW2wBOVkZEROnfuLNG6beUZOHAg3N3d8eeffzLXxcXFYdGiRbC0tMTixYsrnP+vLSXF9ePHDyYoKCoqkmmbR1GdO3cOjx49gpKSEng8HgoLC9G6dWts375d5Gq29PR0pKSkAKja4K4y2p7y3w9JSUno1atXudv269cPjo6O2LZtG2xsbDBjxgxMnz691DY3b96Euro6mjZtWmb/gIAAPHz4EBs2bED//v3L3K6iooKYmBicOHECAwcOhIuLS5kvadjZ2eHmzZu4ePEicnJykJ2dLfbrjF/1CgCqqqpYvXo1evfujfr166Nx48ZlqvDMzc2Rl5cHLy8vjBgxosLxg4KCEBkZifbt2yMkJKTcbWXxmfKrnz9/MpeFBdXKyspiBes5OTn48aO4e0Pjxo0puPvNyKYhNSGEEEIIIYQQQqT2MTMFz9JeV8qxnqW9wsfMlEo51n9JvXr1mCBHWVm53KqCI0eOICMjA3PnzkXPnj3LHTcrKwsnTpwQeR4mJibo1q0b9u/fjytXroi8nyzw1+kBgHHjxlXr0O727dtwdnZGfn4+PD09yw3tgNIVRI0aNYKhoWGZbczMzLBjxw6m+unVq1eYNm0aJkyYgNOnT4PNZos1R1tbWwDF1VW5ubJd97I82dnZOHXqFIDiVoCenp7lbh8VFYXu3bsL/Ldu3Tpmu0uXLoldtcavpFJQUECrVq0q3J7fVrN+/fpiHUeYpUuXwt3dHZ06dZLJeHx2dnYwNTUFi8VCUVERAgICMHv2bOTm5uLAgQNwcnIq1fZTHvjVWwDw5MkTma7hJwoOh4OAgAAAwMyZM5kvOmhoaIjVgpL/GgEg0mtE0DwkVTLIef78ucTjiOrevXsAigPxrKysCrd3c3ODiYkJuFwuNm7ciD179pS6PTY2VmAofeDAARw6dAihoaECQzs+FRUVcLlcxMfH48CBAwK38fHxgaqqKvT19SUKh/Py8pjLysrKUFBQwJAhQ9CpUyfUqVMHurq6pf7xv0SgoaFR5jZB//jrytaoUaPCbYWt7SeN9+/fM5dlVZ1+7do1puJu2LBhMhmTVB6quCOEEEIIIYQQQv7ft9x0qHBVy3xzW0dVG8o1yrb8ymHnIoeTV+Z6ZQVF6KgJPrHzNee7wOt1VLWR8PGOBLOW3LWPiWis00jm90PUx6quRm0JZl11zp8/D3Nz8wpPJpubm+PBgwdwcHAQ+s18DoeD7du3Y8SIEZgypfz1BtPT0+Hg4ICnT5/i69evmDp1qkjznTx5Mm7evAlvb2/ExsZCS0tLpP2k8fPnT6ZNpoaGBqZNmyb3Y0rq1KlT8PT0hKqqKkJCQsq0vhSEH9w1bNiwVBj1qy5duuDQoUOYNm0ac0I2KSkJSUlJ0NbWhoWFBTp37owWLVrA2NiYOWksiL6+Pvr27Ytz584hMDAQPj4+Yt1PScXGxjJB4ZAhQ9C2bfkVug4ODtDT0wOXy4WJiQnq1KkDLS0tKCsrY9OmTdi8eTO0tLQQHBwMU1NTseby8OFDAECLFi0qbAfJZrOZ9p4VrTEJFL+/bGxs8OrVK7HmVBkSEhIwfvx4hISEiNQiVBJfvnxhLhcVFeH8+fMYM2aMXI4lyL59+/D+/Xt07NgRU6dOZSozxcUP7pSUlPDHH3+ItW9cXBw2bNiAnTt3olGjRmIfW1NTEzo6OsjMzERcXBw6deqEoUOHitziU1RFRUVISEhgvsSRlpYGW1tbHDlypNwqMEVFRSxduhTjxo0DUPzenjx5MoDi98vZs2fh5+dXap+zZ89ix44dOHDgQIVBkrKyMnJzc9G3b18sW7ZM4DYNGzbEqlWrJG4bXPJLC8Kq2Esq2SJSHMKqhuWJ/7wCxfetZAWupDgcDrZu3Qqg+AtFFf2dQaofCu4IIYQQQgghhJD/53lhlcDrl/SdjdZ1y54IjH15AUeexJa5vpWeMZaazxE41oyTgtdaWdJ3Nt6kvxd9sjLw+v+PJ+v7IepjdWjcVjFnXLXmzZuHRo0aYfr06eVWyA0bNow5oZqTkyNwmxMnTkBTUxNeXl5CtwGK29g5OTkxoUJAQAA4HA5cXV0rnK+5uTn09fWRnJyMVatWMWsMyVNUVBTT0szFxQW1a1fPcHbPnj1YtWoVjI2NsXHjRoGVc4LwgztRKoGMjIxw+PBheHp64tKlS8z1WVlZOHr0KI4ePQpdXV3MmTOnwqBk8uTJOHfuHPbv348BAwagW7duIs1XGvzKGRUVlXJbZJZUUUu6+vXrix3aAcD9+/cBFAeiFeG3yQREC+50dXWxe/duXL58Gc2aNYOBgQFYLBaSk5OZ52Xx4sUYMmSI0DFevHgBOzs7AMCxY8dkVunHJ891Kt+9e8dc7tixI06fPl1pwV16ejq2bNkCdXV1BAQECAyf2Gy2SNVw/HC3adOm4HA4IlfQnT17FgsXLkRRUREmT56M3bt3l7tunDBWVlbYtWsXuFwuli9fjuXLl8u8pSKXyy0VLNWoUQOTJk0S6TgdOnRAjx49cP369VIVY1evXkVeXl6pz5RPnz7h4MGDOHTokEjVcfwwrqKgcujQoRWOJUzJijt1dfUKty8qKpLoOJXR6vRXR48eZdq8TpgwQeov2eTl5WHhwoV4+vQp9PT0sG3btkr54g6RLQruCCGEEEIIIYSQaoDH4+FtxqeKN5Shtxkfq+Tb5b8rNTU1vHjxArNmzRJp+71791a4Tffu3cWeR1BQEAoLCzFz5sxyt1NQUMC4ceOwdu1aREVFYdiwYfjrr7/EPp6ouFwuIiIiABRXifGDjOokNzcXPj4+iI2Nhb29Pdzd3cttZ/orcatFtLW1ERoaioMHD8LPz4+pGjEwMICPj4/Ia6Z169YNRkZGePPmDXx8fHDixAm5hjk3b97Es2fPAAD29vYSVSHJyuvXr5mT2qK8flNTU5nLDRs2FOkYtWvXhrW1danrSq45pa6uXm6AUbIKUFtbW+J14vLy8vD9+3e5VdcJUrJFn6urK1xdXZGSklIpz7mfnx9+/PiBdevWCQ3L3r9/D1tbW5FbeL58+VLilqYpKSmYPHkyIiIixG7x6+HhAS0tLcTExODz589gs9kSh0flUVVVRe3atdG5c2dMmjRJrHUvx40bh5s3b5Z6rcfGxqJz586lwjB9fX2EhISUag1cHnE/F2/cuIEWLVqI9T4p+QUXbW3tcrfl8Xi/TXB34cIF+Pr6Aij+nHd2dpZoHA6Hgzdv3uD69evYt28fUlNTMW7cOLi7u1fJupVEehTcEUIIIYQQQggh1QC7iI0cduWtXwUUt6/MLyyo1GP+zvgBT8OGDZm1v6q7UaNGYePGjeBwOFi8eDHi4uLkFvicOXMGycnJAIAFCxaIFYhVhlevXmHWrFlgsVjYs2dPqeotDocj0klqUU9k/2r8+PHo3bs31q9fjytXruDAgQPQ09MTa4yxY8di9erV+PDhAzZv3lzhenzSCA8PBwDUrVsXTk5OcjuOKM6cOQMAqFWrVoVrQQLA169fmcuiVNxVJ0uWLMH169cRFhYGExOTSjnm06dPARSHk2ZmZmjSpAn27t2L+fPny/W4d+7cQXR0NCZNmlRuJdYff/yBiIgIXL16FSYmJtDX14empmapoCkjIwO9e/cGUPzZM3HiRKnmJkmlnLKyMmbMmIEZM2ZIdexr166hYcOGaNq0qVTjCDJo0CC0aNGCGTsnJwcXLlwoM2cWiyXWZ504axEmJSXB1dUVrVu3Rnh4uMi/J0pW3FUU3JUM37y9veHtLbhDgCD8inF5ysvLw/379xEZGYn4+HgAwJgxY+Dt7S1R4DhgwAB8+PCB+VlLSwsBAQEYPHiwzOZMKh8Fd4QQQgghhBBCSDVQJOF6LNLicAur5Li/MxaLVe6aZNVJ7dq1YW5ujtOnTyMlJQWhoaFwc3OT+XF4PB5CQkIAAGZmZrCwsBBpv+HDh5daY0taiYmJZa7jrye4d+9eODo64u+//y5TIRIeHo5nz57B2dm53PWcJF2fCSgOkfz9/ZGdnV3hOm2CWFlZITAwEBwOB7t27YK1tTWaNWsm8XyEefr0KdPa08vLCxoaGjI/hjjOnj0LoLjNnihhQlpaGnNZ1Io7WeJyudi6davIFWJ86enpOHnyJADg77//xubNmyWqyBVHYWEhE9y1a9cOLBYLAwcOxL59+zBz5kyRWhJKIjc3F4sWLUL79u2xYMGCCrc3NjaGsbGx0Nv569sBgKmp6W/z+SzI/fv3MXXqVFhYWMDJyQlt2rSR6fglA8GzZ88iLy+vTCCenZ0NNpst8pj8yn02m13u6z4lJQUuLi7Iy8tDYmIifHx8sGbNGpGOUTK4q6gFc0HB/76Q5OXlVWELX6C4kj0yMhK1atUSaT6iWrZsGVat+l8b9qKiIqbyum7durCyssLEiRPRvn17cLncUvdTVDt27EBGRga+fv2Kx48f4+zZs3B3d0dISAgWLlwoUXtiUvUouCOEEEIIIYQQQqqBGgoKVXJcJQU6NSCu3629qKWlJU6fPg2g+ATfuHHjZL4G1/nz5/Hs2TOoqKhg8eLFIu8XFhaGwkL5hceJiYlYs2YNunbtipiYGKEtw5SVlREXF4f4+Hj06dMHrq6uaN++vVTH/vz5s8DgSJLQDiheP6pPnz44e/YsOBwO/Pz8EBoaKtUcBQkODgYA9OjRo9x13SrDw4cPmWDp11aWwvzzzz/MZVkFd15eXvDy8hJpWwUFBfTt2xcLFixAvXr1UFRUhPT0dPTo0aPc/bglvryhrKyMT58+yT24e/78OVNhxG8vOWbMGISGhuLAgQNwcHCQy3EDAgJQVFSErVu3yqQy99atWwCKK43KC95/B+rq6uByuTh9+jTOnj2Lbdu2oVevXnI5VkxMDPT09NCiRYtS13/69Al2dnbIzMwUa7zY2FjExpZdL1eYY8eOoVmzZiJV9ZYM5OvUqVPutrm5uWjWrBkmT56MkSNHQk1NrcLxO3fujH79+oncvlhUs2bNwsCBA5mf79y5w4TVNjY2cHR0lPoYBgYGTKvZ/v37w83NDSdPnsTixYthY2MDFxcXuLu7i1UZSaoe/XVOCCGEEEIIIYRUA8o1lKGhrF6p7TI1lNWhqvj7ViZUNn5gp1BFIaukzMzMoK2tjaysLBQUFCA4OJhZU0cWuFwuNm7cCACYPn26WGtDyTpA/NW3b98QGhpaYYUGv0KHx+MhISEBffr0kSq4i46Ohre3t8zblQ0bNoypQLt06RKSkpIkXs9LkIcPH+L8+fNQVVXFsmXLZDaupHbt2gUA6Nu3L1q3bi3SPvzgTktLCzVr1pTJPBYvXlxuiPnixYtSazq2bNkS0dHRAIAPHz5g2rRpFbY25T/eNWrUQGRkpNhrrEni+vXrzGV+VU6jRo3Qu3dvbNu2DWPGjKmwLaG4Ll68iLi4OOzfv7/C96WoEhISABSHj7/b5/OvSgaZAQEBAkO7oqIiLF68GCNHjkTXrl0lOs7Xr19x48YNDBs2rEygY2Jigl27duH27dto3bo1DAwMoKmpWar6duvWrQgKCiq138iRI/HixQv4+/uXWyEpCf7alTo6OhVWgtapUwdxcXFiBVWWlpbM5cjISAwdOlTiL1mUVKtWrVJrVjZo0ADr1q3D169fcfDgQTg4OMj8NctisTB8+HBoamrCxcUFISEhYLFYcHd3l+lxiHxRcEcIIYQQQgghhPy/APOFUFFVLXMSRUdV8InLoX+Yo0/TshURyuVUsW0etkLg9Tqq2mhWywCPUl+IMWPpNKvVGCwWS+b3QxBhx/id8Ntbyat9nLwoKSnB3NycCRKio6Ph4eEBHR0dmYx//PhxvHjxAi1btpRbhY6kBg0aJNJ2JSsygoKC0L9/f4mPGR0dDS8vL3C5XMydOxcKCgqlKi6k0bt3b6iqqjJVUrt27ZJpcBcYGAgej4dZs2ZVSnBUnpSUFKZSdObMmSLvx2+9Kss2merq6kKrNYHyqyibNGmC3NxcPH/+XGg1WHZ2NvP+HDx4cKU99levXgVQHHJ27tyZuX7SpEm4ePEiQkND4enpKbPjJScnY+XKldi+fTuMjIxkMubHjx/x9u1bACi1bmVFEhIScP/+fanXpJO1ku14O3ToUOb2oqIizJs3DydPnkR8fDzCwsLEut98J06cQFFREf766y+Bt5uYmAhdZ/H79+8ICwsDADRr1gw/f/5kKuJGjRqFNWvWYMeOHWLPqTz8QF6U94YkaxTyhYSEYP369Th+/Di2b98u89/3NWrUwKhRo7B161YkJyfjypUr6NOnj0yPwde3b1/069cP58+fR0hICPr164e2bdvK5VhE9ii4I4QQQgghhBBC/l8ddV2oqamJ/O1nDWV1aCiLd1KnrobwCgMjXcNKDe6a6xoCkP39EESSY1Q3/LDkdwvugOLAhx8MsNls3Lx5U+RQqzz5+fnYuHEjlJSUsGbNGqnWgKtKJU/0NmrUqMLtU1JSyrSXE6SwsBBz5sxBUFCQyOv+lUdNTQ1du3ZlAhf+f2Xh8uXLuHXrFjp06FCqeqyqBAQEoLCwEMOGDRO52g4oblEKoFSVS1Xr0aMHIiMjsWTJEoG379u3D7m5uWCxWHB2dq6UOf348QP37t0DUFyVW3L9wF69eqFdu3bYs2cPJk6cKNJ7QhTp6elYv369zMKDvLw8rFu3jvlZ1AArMTERM2bMQF5eHr59+wYfHx+Rfu/n5ORIPFdRcTgc5nJ+fn6pY/J4PCxZsoRZCzE3NxeOjo4ShXdHjx4Fi8USGtyVZ8OGDcy8fHx8sHDhQua2ESNGICAgAOfOnZPqCxC/4gd3zZs3L3Pb5cuXMWPGDLHW5avI3bt34erqitDQUKiqqspsXOB/7Wi5XC727dsnt+AOAMaNG4fz58+Dx+Nhy5Yt2Lp1q9yORWTr9/xrihBCCCGEEEII+Rfq2bgrop+drrTj/dVY/G/p/1dxuVwmuJN167jKwG+Dx5ecnCyTcbdt24bPnz/Dw8NDaHXG70DcCo0GDRogKipK5O1lGWiampoygV1ubi7S09PLrQYTBZvNxqpVq6Curo6AgACpKlZkITExEfHx8dDT04O3t7fI+3E4HOYEf3UK7gYMGAA3NzfMmjULtWrVKnVbXl4e0xJ00KBB+OOPPyplTidOnGBCopJtAvnc3Nzg4OAAHx8fmVVPtWvXTibj8IWEhCA+Pp75ecKECWKPceDAAfz48QN+fn4Vrre3fft2bNmyRexjSGro0KEVbiNJeHfnzh28ffsWf/zxR4Xrxf3q3r17OHToEIDi1r2/rsOora2NQYMGYdmyZTA1NYWWlpZY4wvDf183a9aszG29e/fG7t27wWazYWxsDBaLhcWLF8PCwkKsNev27NnDPL+ampro3LmzXNZgbdSoEXr06IGEhARcvXoVHz9+lFuVbefOncFiscDj8XD58mX8+PFDZi2EiXxRcEcIIYQQQgghhFQTjXUawUSvOZ6lvZb7sUz0jNFYRzZVFP8FmZmZzOV69epV3UQkVLt2bdSrV49ZJ0gWa+p8+vQJ27dvh6mpKaZOnSr1eFVJ3KBKQUFB6rBMUr9Wn4mzjpMw4eHheP/+PVavXl3lLTILCgqY9d58fX3LBF3lSU5ORlFREQDRWuqJysvLC15eXhLv36NHD6ioqCAiIgJubm6lbtu7dy/S09OhqKhYqWtQHTlyBEDx51nPnj3L3N6zZ0907doVCQkJiIqKgrW1daXNTVRubm5IT0/HoUOH0KtXL/j7+1e4T1ZWFsaNG8d8pjdp0gStW7fGt2/fKmyv6ubmhoYNG4LFYsHExAS6urrQ0tIqVa346tUrNGjQQOL10aKiorB06VIAQHx8vMjVjuJ8pvOD2F9Dt4pwOBz4+PiAx+OhXr16WLx4scDtJk+ejOjoaKxcuRJr1qwR6xiC5OXl4cePHwDKfv7x/doyeOHChZg0aRK6du0q0mP44sULbN++HUBxVf2BAwfkGqKPGzcOCQkJ4PF4OHDgAObPny+X42hqakJbWxs/fvxAUVERHj9+LFGVJal8FNwRQgghhBBCCCHViGXLAZUS3Fm2HCD3Y/yb/O7BHVBcqcAP7gStnSQuX19faGtrY+3atTIJAqtSVVeYiaNkxYmhoaFYwZYgycnJCAkJgbW1dbUIZ1auXImXL1/CxcUFffv2FWtf/lpnQHEgIyuLFy/GkCFDhN7+4sWLctuLKikpYejQoQgPD8eYMWOYgCgzMxPbtm0DAIwdOxaGhoYym3N5EhIS8Pz5cwCAra2t0Ne/l5cXxowZgzVr1qBnz56oW7dupcxPVAoKCvD19YWxsTFGjRoFDQ2NCvfx9fVlPs+dnJwwc+bMCivtShozZky5t1++fBlRUVFYv369RBWGJatzlZWVoaKiIvYY5Tl27BguXrwIAPjzzz/F2nfdunV4+fIlWCwW/Pz8mHVSeTxeqe3atGmDgQMH4tixY+jWrRusrKykmjO/2k5BQUHkx7RRo0aYNGkSZsyYgb1795b72sjOzoabmxvYbDZYLBYCAgLkXvlqbm4OPT09pKWlISoqCm5ubiK9Dt+9e4fk5GSYmpqK/LpVVVVlgs/09HSp5k0qz+/9VxUhhBBCCCGEEPIv06lhW7m3sOzZuCs6NWwj12P825QM7gwMDKpuIlLgt1GztLQsU50grpiYGFy/fh0bNmyAnp6eLKZHRFS/fn3o6+tDUVFRaMWLOJYsWQIjIyOh669VptjYWERGRmLkyJGYPXu22Ps/e/aMuSzKGoSiUldXh66urtB/olRX2draoqCgoFQF0qZNm5CVlYVatWqVqcSTFx6Ph8DAQACAjo4Oxo0bJ3Tb1q1bY/Lkyfjx4wc8PT2ZasbqxsbGRqTQ7uTJk4iLi0ONGjWwevVqeHh4iBXaiWLq1Kng8XiYOHEiDh8+LNOxxXX//n2MGjUKTk5OmDdvHtzd3bFo0SLmdnF+D1y7dg3h4eEAgBkzZlRYrTd79mwoKipi6dKlTEgsqVevXgEoXt9OnErGKVOmQEVFBe7u7kJbXnK5XMydOxfv3r0DAMyaNUuma/MJo6ioiJEjRwIo/vsiNja2wn0uXLiA4cOHY+rUqWJVAGdnZzOXf8dW3/9VFNwRQgghhBBCCCHVzJRO41BLTT5rkNRSqwn7TmPlMva/Wck14Zo3b16FM5HcxIkT4eHhgVWrVkk1DpvNxurVq7FixQp07txZRrMj4li6dCm2bt0qsMWhOM6dO4c3b94gODgYqqqqMpqdZG7cuIEFCxbAwsICK1askHgMANDT06s21WHZ2dnIyspCkyZN0K9fP5w+fRqRkZF4+PAh9u/fDwDw9PRkqpfk7ejRo0zAOWvWrAqDkFmzZqFBgwa4efMm1q5dWxlTlIvU1FQsX74cCgoKWL16tdyqS1VUVDBt2jRwOBx4e3tj06ZNcjmOKDp06IDt27ejf//+ePbsGeLj45nwVUdHR+R2v8nJyfDw8ACPx8OAAQMwffr0Urf/WnEHAE2bNsWoUaOQl5eHqVOnSrWu6pMnTwBA7M+7GjVqICAgAHfv3sWCBQsEBs+rVq1iKhCtra0xbdo0iecprrFjxzKtjvft21fh9v7+/sy6lLGxsUwVXXmys7ORm5vL/Py7/v3yX0TBHSGEEEIIIYQQUs1oqWhikdlMaCiry3RcDWV1LDKbCS0Vydbe+S978+YNgOJWXUZGRlU8G8no6urCycmpVCs2SRQUFMDR0VHq9mdEcr169YKZmZnU4+Tn52Pnzp1V3v710aNHmD59OsaNG4eNGzcKfY2WrBz5VXJyMpKSkgAUrylXVZ48eYK9e/di/vz5GDp0KGxtbZnggV+FtGLFCnh6eoLL5aJnz56V1qL048ePTHDfpk0bjB8/vsJ9NDQ0sHr1aigoKGDHjh3YtWuXnGcpezweDwsWLEBWVhaWLVsGS0tLuR7PysqKaYe6efNmREREyPV45alVqxbGjh2L6OjoUu1eRV0DMicnB9OmTUNGRgY6duwIPz+/MutqCgrugOLQV0dHB2lpabCzs8OnT58kug/8oFmSzzwDAwP4+fnh5MmTmDt3bqnKu61bt2LPnj0AikPB5cuXSzQ/SRkYGDCVi0+ePMGDBw/K3Z7fMhQobr8rShvVx48fM89Pq1atRF4zkVQ9Cu4IIYQQQgghhJBqqLFOIyzrO0dmlXe11GpiWd85aKxDJ20k8fp18bqDJiYmUFNTq+LZVC0tLS3Y29tX9TSIDAwbNqzUmnny8PjxY5w5cwYAkJKSUqZt3o0bN+Ds7Iw5c+bA29tb6HqJHA4HNjY2GDZsGLy8vLBv3z7cvn0bqampSE1NxZIlS8DlcgEAgwYNkut9AoDc3Fw8fPgQR44cwd69e5nrPT09cfnyZXTo0AE7d+7E0aNHmZPzRkZGmDRpEthsNt6/fw8dHR2sWrWqTBAiD2w2Gx4eHsjJyYG6ujrWrl0r8tqO3bt3ZyqRVq9ezazLV9U+fPhQbpjLt3fvXly/fh1eXl4YO1b+FeeKioqljuPv74+vX7/K/bjlqVGjRqn2s/r6+hXuw2azMWPGDLx48QKtW7dGWFgY1NXLfqGI/777VZ06deDr6wsA+PTpEyZOnMiE2KIqKirCgwcPoKury7R7FpeFhQWcnZ0RFxcHe3t7ZGRkYNu2bQgKCgIAdO7cGZs3b4aSkpJE40uj5JqJ/ApcYVq2bMlcHjZsmEhV0vHx8czlyqwmJNKT7itWhBBCCCGEEEIIkZvGOo0QONAb4UmHkPDxjsTj9GzcFfadxlKlnRT4Jxv79OlTtRMh5Dfx48cPrFu3DocOHcKgQYPg7++P8PBw2NraIjg4GF26dEF0dDT279+P8PDwCtekU1JSQlRUFJKSkhAQEICoqCiB2zVv3lzm79Pk5GScPHkSr169wosXL/Dq1SukpKQwlSwlw4zjx4+jadOmQsfq0KEDdu/ezeyXn58v07kKwuVyMW/ePDx8+BA1atTA2rVrYWhoKNYY06dPx927d3Hjxg2sXbsWKSkpWLRokczXiBPH06dP4efnB2NjYwwYMAD9+/dHrVq1Sm3z5s0bBAYGwtXVFba2tpU2t6FDhzLBEIfDwcuXL6u8fWvJ41fUIpXD4cDd3R3Xr19H586dsXXrVmhpaYl9zAEDBsDa2hpRUVH4+vUrxo8fj3nz5uHvv/8WKbC+d+8eMjMzMXnyZKmCNXd3d3z9+hVRUVEYPHgwMjIyAAAdO3bEtm3bquwLOf3794euri7S09Nx6tQpuLm5lXkN802dOpVpU9qmTcXrFL979w7R0dEAgCFDhsDCwkJm8ybyRxV3hBBCCCGEEEJINaaloolZ3adgQa9pMNEzFmtfEz1jLOg1HbO6T6HQTgqPHz/Gly9foKCgIPcWa4T87ng8Ho4ePYpBgwbh4MGDcHFxwfr162FiYgJ/f38MHDgQdnZ22Lt3L7S0tLB///4KQ7uSOnXqhP3792Pu3LllbtPQ0ICfn5/Qqr2KpKWl4datWzhw4ABCQkKY64ODg+Hh4YGQkBBcvHgR2dnZsLCwwOLFixETE8MEcQDKDRcePnyIhQsXgsVioWbNmvj8+TPGjx+PxMREieYrqqVLlyI+Ph6KiopYuXIlzM3NxR5DQUEB69atY0LJgwcPYty4cXj16pVM58qv3hK0HtmvBg8ejPj4eJiamiIwMBA9e/bElClTcOTIEWRlZaGwsBDz5s2DpaUl3N3dZTrPijRu3BjGxv/7nd2gQYNKPb4gnz9/Zi6XF1Tl5eXB1dUV58+fx6BBg7Br1y7UrCm8+r+i52rRokUwMDAAUFzFt2LFCowePRq3bt2qcM6XL18GULoyTRIsFgvz5s1DnTp1mNCucePG2LFjR4UhprhKPh4VPTbKysoYOXIkgOLHRtgXEoDikI9fNXf8+PFSa9f9Kjk5Ga6ursjPz0f37t2xevVqce4CqQao4o4QQgghhBBCCPkNdGrYFp0atsXHzBRc+5iI1+nv8TbjI3LY/ztxo6Gsjma1GqO5riH+atyF2mLKyNmzZwEA5ubmaNKkSRXP5vfy4MEDxMTEYNGiRZXSDpDIz4YNG9CpUyf06tVL6DbPnz/HsmXLmLXmHB0d4ebmVmqbJUuWID09Hb6+vjAzM0OrVq3EDjVYLBYcHR1RWFjIVDW1aNEC/v7+pdrJicrNzQ1Xr15FTk6OwNvV1NTQuXNn9OjRA927d4eJiUmp1/OjR48qPMarV6/g5OQEDocDf39/tG7dGpMnT8b3799hZ2eHuXPnwtbWVqbvEw6Hg8WLF+PYsWNQV1fHhg0bpFobUVdXF+Hh4Zg4cSI+f/6Mp0+fYuTIkbCzs4OTkxO0tbWlnjM/6Ci5Fll51NTUMHXqVIwbNw7btm3Drl27cO3aNSxbtgzNmzcHi8WCj4+P1POShJWVFQICAjBs2LBqsTYq/30JCA/u0tLSMGPGDDx58gReXl4ivSb5laccDkfg7Zqamti2bRsmTpzIhGaPHz+GjY0N/vjjDxw+fFho28fz58+jb9++YoX7ghw/fhz+/v749u0bc93Hjx/x999/w83NTeoqXS6Xi+zsbKSnp+PixYvM9dHR0ejcuTPq1KkDTU1NgV8qGDt2LHbs2AEA2LVrF1q0aIF27dpBTU2tzPPk5uYGQ0NDrFq1CsOGDcO4cePQs2dP1KtXD/n5+fj06RMuXLiAw4cPg8vlwsnJCW5ublKvbUsqHz1jhBBCCCGEEELIb6SxTiMmkOPxeMgvLACHWwglBUWoKqpQOCJjXC4X8fHxqFGjRqVXbPzuHjx4AAcHB/z8+RN5eXlYsWLFf/71GRcXh+zs7EpZZ0uW1q5di23btkFFRQVbtmxBz549y2wTHx8PDw8PJnixsrISWBVXo0YNrFu3DnPmzMHZs2cxYMAAjBs3DmPGjBH75LyjoyPS0tLQo0cP9OvXT+LX1+jRo3Hq1KlS1zVp0gTm5uYwMzNDly5dpGoJ+fTpU0yZMgUcDgdbtmxB7969ARSfpLe1tUV6ejpWr16N8+fPY+HChTAxMZH4WHw/f/7EzJkzcePGDejp6SEkJESk9noVadCgAXbu3Im///4b3759A4fDQVhYGA4ePIjJkydj/PjxqFevnsTjixvc8WlpacHDwwNjx47FqlWrcOHCBTx9+hRA8XpgkydPxpgxYyq1taednR1atmyJv/76S+R9vn//Lrf53L59u9zb79+/j5kzZ6JOnTqIjIxE69atRRqXXyVZUFAgdJtmzZph27ZtsLW1RW5uLvr27YsJEyagcePGQp+TpKQkvHnzBmvWrBFpHoK8evUKy5cvZ+67oaEhXF1d8e7dO4SFheHp06dwdnZGu3btYGVlhYEDB6JOnTpiH+fz58/o169fmesTExMxePBgAMUhpKC1BQ0NDfHnn3/i9u3byMnJwaxZswAA8+bNE7ierKWlJfr164cTJ07g4sWL2LNnDzIzM6GkpAQdHR0YGRlhxowZsLKykui+kOqBgjtCCCGEEEIIIeQ3xWKxoKakiqpZmeW/IS4uDh8+fICtrW2ptmfVDY/HE6m1nLB9+YqKioSeMC+5XUUn1R8/foypU6fi58+fAIAjR46AxWLB19f3PxvenTt3Dp6enigqKoKSkhLTHu1XRUVFpR5rSfB4PJGCD1G227BhA7Zt2wag+MT8tGnTsHXr1jJhhIWFBYYNG4bjx4/DxMQEvr6+QsdUVlbGpk2bEBYWhs2bN2PPnj3Ys2cPDAwM0LlzZ5iYmMDQ0BC6urqoXbs2NDQ0oKqqChWV0l9OUFRUFFpNVVRUhIKCAuTm5uLHjx/4+fMnfvz4AR0dHbRv377Utr169cKwYcMQFxeHIUOGwNbWFu3atSv3cRFVYmIiXF1doaenh82bN6NZs2bMbX/88QcOHjwIJycnvH//Hrdv34aVlRXatWuHESNG4M8//0STJk2EViMJk5SUBE9PTyQnJ2PIkCHw8fERum6WJJo2bcrM++3btwCKg8ItW7Zg27Zt6NWrFwYOHIi+fftCR0dH5HF5PB5TtSWseqsiBgYG2Lp1K86cOQNfX198/foV7969w/LlyxESEoIFCxZg6NChEo0tLkVFxTIht6OjI3JyclCvXj3UrVsXenp6qFOnDmrVqoXv37+Xarsq65BRWGvKwsJChISE4ODBg3B1dcX48eNRo0YNkcfl/+4pL7gDgHbt2mHjxo1MQFiRQ4cO4a+//pLovfj06VNs27YNp0+fBpfLRZMmTTBt2jQMHz6cuW/9+vXDggUL8ObNGzx8+BAPHz7EihUr0LVrV/Tp0wetW7dGq1atRFrbT19fHy9evBB7nnx79uwBl8tFXl6eSNtrampi4sSJmDhxosTHJNUbBXeEEEIIIYQQQgghAnC5XGzduhWGhoaYPXt2VU+nXF++fMHff/+NlJQUqcbp1q1bhdv8/PlT5EqMkg4fPgwWi4Xly5dXWniXn59f7jpAfNnZ2czlrKwspKenC9yOzWYDKH5tCNtGkPv378Pd3Z0JyRYuXAglJSUMGzaszLbHjx/HokWLmCoWSVy4cEGk54gfmImjoKAArq6uZcI7RUVF+Pn5oU6dOhg1alSFoQOLxYKTkxMGDx6MTZs2IS4uDp8+fcKnT58QHR0tdD9lZWWoqKgw45d8LfF4PBQUFKCgoKBM8MNisdC9e3fY2NgIHHfRokWwtLSUqpXkr44dO4bFixdj6NCh8PHxgYaGRpltmjRpgsjISMyePRvXr18HACZE4M+7T58+pdbcE4bNZiM0NBRbt25FzZo1sXHjRgwcOFBm96ckAwMDHDx4ENOnT8edO3eY6wsLC3Hx4kU8fPgQX758YdbkEkXJ54z/XpPUgAEDYGpqiuXLl+PkyZMAgK9fv2LOnDl4+fJllX2mr1ixApcvX0ZsbCzi4+OFhvR16tSBnp6ezI6bn5+Pf/75R+BtZ86cgYaGBs6ePVvu2nfC8D/XRHnOevXqVW67Xb4fP37g9OnTTAtJUd26dQvbtm1DQkICAKBr164YO3Yshg4dWiaMbNeuHY4fP47o6GiEhobi06dP4HK5uHXrFhNyslgsGBgYwMjICHXq1EHt2rWhq6sLQ0NDpnKWEHmg4I4QQgghhBBCCCFEgOjoaCQnJyMyMlKik5mVqWHDhtizZw8iIyPRsmVLNGvWDFpaWtDU1Kx2FW48Hq/S5vTjxw/Y2Njg/fv3Iu8jLNgp6cuXL+jevbvE8+JyuZg/fz6UlJTKBCvW1tZQVVXF58+f0bp1a9StWxdaWlpiV13Jm6CKHBaLhXnz5ok1joGBAfz9/eHh4YG4uDicOXMGjx49ElpxxWazxQ51mjRpgqCgILRq1UroNrq6ujIL7TgcDtauXYvjx49j/fr1sLCwKHd7HR0d7Ny5E7t378a6deuYyiVLS0s4ODjgjz/+qPCYly5dwurVq5GWlgYnJydMmTJFJmvOladmzZrYuXMnNm7ciB07doDL5UJXVxfLli1D//79Ba7nVZ6Sz7mkFXe/zm/t2rXo1asXli1bxoT4oaGhMDMzQ+fOnaU+hrjq1auHsWPHYuzYsXj37h22bNmCEydOlNnO1dVVpp+Tqqqq0NPTQ1paGgCUem6GDBki1diiVtyJIzw8HCNGjECnTp0q3PbNmzeIiYlBbGwsPn78iLp168LZ2RmjRo2qcF1aJSUljBkzBiNHjsTJkydx6NAhJCUlMYEqj8fDx48f8fHjR2afTp06Ca2YJkRWKLgjhBBCCCGEEEII+cWXL1+wevVqrF69Gi1btqzq6YikUaNGmDNnTlVPo1qpV68eIiIiEBcXh5YtW6Jp06bQ1NSEhoZGtQs0S5L2RPrvqF69erC3t4e9vT0KCgrw+PFjvHnzBu/fv0dqaioyMjKQmZmJ3Nxc5OXlIT8/H2w2GxwOp8KQZ82aNeWGdrLCYrHw5csXzJkzB82aNUNsbCx0dXVF3tfOzg79+/fHhg0boKOjg0WLFlW437179xAcHIy7d+/i77//hoODg1jtKaWlrKyMuXPnom/fvli2bBnWr18PIyMjicYqGfxIW3FXkpWVFVq1aoVp06bh06dP4PF4uHLlSpUEdyU1bdoUAQEBGDhwIGbPns3c56lTp+Lvv/+W+fF2796NnTt34uPHjzKrFivZ3lRRUTZRQ0ZGBs6ePYvIyEiBt+fn5+PBgwe4c+cOzp07hxcvXqBVq1YYMmQIevXqhY4dO4rV6hMonruVlRWsrKzw5csXnDx5EmfOnMGTJ0+YYFJNTQ3r169H3759pb6PhFSExZO2aTYhRCxsNhuPHj0qc33btm0rdYHc6oLD4TDtH/jatWsHJSWlKpoRIYQQQgj5XRQWFuLVq1elrjM2NhbrxJGg9UTU1NTErhIg/y48Hg92dnYwMzODg4NDVU+HECKCoqIi5h+Xyy1VMSPvytNHjx5h4cKFWLJkCR49eoS2bduiS5cucjseUNxOMzAwEIWFhbC2tsbgwYMFtuL8naSmpmLYsGGwsLCApaUlTE1NZTr+t2/fMGXKFLx48QJ+fn6wsrKS6fjSCAsLQ0xMDObNm1dmXbzqLC8vD5MmTYKNjQ2GDBkik3Ob69evR8eOHdGnT59S10dERCA+Ph5fv36FoaEh/vjjD7Rt2xbdu3eX6RqOJeXk5OD+/ftITExEw4YNMWbMGLkcB/j9/iaVxd/hwtD5cwruCKl09MFTGgV3hBBCCCFEUhTcEXnJz8/HyZMnMXr06KqeCiHkN5CbmwslJaVKPZfx9OlTqKurw9DQsNKOKW8cDgc8Hk+u58cyMjJw/PhxTJw4sVqdh+NwOHQu7P9lZGQIDOLev38PXV1dubeArSq/29+kFNzJF7XKJIQQQgghhBBCCClBVVWVQjtCiMjU1dUr/ZiV0fqzslVGcFWrVi3Y2dnJ/TjiotDuf4RVz/2bQmpCKlI941pCCCGEEEIIIYQQQgghhBBC/mMouCOEEEIIIYQQQgghhBBCCCGkGqDgjhBCCCGEEEIIIYQQQgghhJBqgII7QgghhBBCCCGEEEIIIYQQQqoBCu4IIYQQQgghhBBCCCGEEEIIqQYouCOEEEIIIYQQQgghhBBCCCGkGqDgjhBCCCGEEEIIIYQQQgghhJBqgIK7ai4nJwfm5uZITk6u6qkQQgghhBBCCCGEEEIIIYQQOVKs6gkQ4QoKCuDl5YWUlJSqnkoZ5ubmEs8rIiICpqamIm378+dPHDhwAGfPnsXr16/B4/Ggr6+PP//8E5MmTYKRkZFEcyCEEEIIIYQQQgghhBBCCKluqOKumikqKkJqaioOHz6M0aNH4/Tp01U9JZkzMTERabvr169j0KBBWLt2LZo3b46IiAjExsZixowZuHHjBoYNG4bQ0FA5z5YQQgghhBBCCCGEEEIIIaRyUMVdNeHs7Iy7d+8iNzcXRUVFVT0dkejo6KBWrVpi7aOnpwdtbe0Kt7t48SJmzpwJDocDDw8PODk5Mbc1atQIvXv3xqRJk7Bu3Tp8+fIFS5cuFXf6hBBCCCGEEEIIIYQQQggh1QoFd9XEihUrUFBQAAAoLCzEtWvX4OvrCx6PV8UzE+7vv//GzJkzZT7uhw8fMGfOHHA4HJiZmZUK7fjU1NQQFBSEwYMH48CBAzAxMcG4ceNkPhdCCCGEEEIIIYQQQgghhJDKQq0yqwk9PT3o6+tDX18fhoaGmDRpEtq1a1fV06oSy5cvR25uLhQUFDBv3jyh2zVu3BjDhw8HAKxevRppaWmVNUVCCCGEEEIIIYQQQgghhBCZo+CuGlNXV6/qKVS6xMREJCQkAAB69OgBY2PjcrcfOXIkACAvLw9bt26V+/wIIYQQQgghhBBCCCGEEELkhYI7Uq2EhYUxly0tLSvcvkuXLtDR0QEAHD58GNnZ2fKaGiGEEEIIIYQQQgghhBBCiFxRcEeqjZ8/f+LatWvMz7169apwnxo1aqBDhw4AADabjUuXLslpdoQQQgghhBBCCCGEEEIIIfJFwR2pNi5evAgOhwMAMDQ0RK1atUTar1WrVszlc+fOyWVuhBBCCCGEEEIIIYQQQggh8kbBHak27t27x1xu06aNyPuVXAfvyZMnMp0TIYQQQgghhBBCCCGEEEJIZVGs6gmQf4ebN28iLi4O9+7dwz///IP8/Hzo6emhU6dOGDt2LP78888Kx3j16hVzuVGjRiIfu27duszl5ORk5OfnQ1VVVbw7UA0UFhaCxWJV9TQqXWFhoUjXEUIIIYQQ8qvCwkLweLxS13G5XHC5XKnHlsUYhBBCCCGESKO6/k3K5XLL/B3O4XDKXCcJOjdMwR2RUlFREXx8fHDkyBEAgJqaGnR1dcHlcpGSkoKUlBTExMRg7NixWLp0KWrUqCF0rNevXzOXGzZsKPIcSgZ3XC4X79+/R8uWLSW4N1Xr2bNnVT2FauPp06dVPQVCCCGEEPKb4X95Lz8/v9z/7xBFXl6eLKZECCGEEEKIxKrz36RFRUVMSJefnw+AzunKEgV3RCqLFy/GyZMn4ezsDCsrKzRr1oy5LTExEcuXL8eLFy9w6NAh5OXlITAwUOA4XC4XGRkZzM81a9YUeQ6ampqlfs7MzBTvThBCCCGEEEIIIYQQQgghhFQDtMYdkVhsbCzi4+MRERGBOXPmlArtAKBLly44cOAAjIyMAAAxMTE4fvy4wLFyc3NL/SxOq0sVFZVyxyKEEEIIIYQQQqrC+fPn8ejRo6qeBpGRmzdv4uTJk1U9jf+s7du348GDB1U9jX+1oqIiidry+fj44MWLF3KYESRuu/f+/Xv4+vpWScXS+/fvJW5vmJOTg7S0NBnPiBDyu6Hgjkjs3bt38Pb2RocOHYRuo6GhgaVLlzI/BwUFoaioqMx2OTk5pX4WJ7j7ddtfxyKEEEIIIYQQQqqKnZ0d5s+fj3/++aeqpyLUxYsXkZKSUuF2sbGx/+kTytu3b4ePjw+mTZsm0uNVFQ4fPgw2m13uNj9+/MDJkycrZQ2hL1++VDgfUV27dg329vaYMGECjh07VqUt5Hbv3o0LFy7IZC0nQQoKCuQybnlycnLg7u4Of39/sfe9cOECJkyYAFdXV9y6dUtmc8rNzcWYMWNw5coVsfc9f/48jh07hkmTJsktVBRm9+7dGDlyJA4fPsy0EBRVUlISrKysEBYWJva+hJB/D2qVSSRib2+Pb9++YdSoURVu++eff6Jly5Z4/vw5Pn/+jISEBPTu3bvUNiwWq9TP4vzh8+s3WBQUfs882sTEBEpKSlU9jUpXWFhYpv9xq1atoKhIH0+EEEIIIaR8hYWFePfuXanrVFVVxf5b8teTv2pqalLPjRAAGDZsGJ49e4adO3fi2rVrmD9/PsaOHVvV0yojMTERCxYswIgRI+Di4gJ9fX2B2507dw6+vr6wtrbG1KlT0ahRo0qeadV5/PgxkpKSABRX3o0dOxa+vr4YOnRoFc+stKCgIOzcuROOjo4YM2YMlJWVy2yTn58PHx8fhIaGYurUqbC2tha4nSw8evQImzdvhqenJwYMGCDVWPwvbr948QKRkZEwNzeHrq6uLKbJOHnyJCwsLMp0d/pVSkoKNmzYABMTE0ybNg39+vUrc25LUleuXMGSJUswc+ZMWFtby2TMinz58gWurq5MwKWvrw9HR0eR91dXV0dubi4ePHiAwsJCmf0eVVNTw/Dhw+Hu7o4JEyZgwYIFIr9WL168CKC4+s3W1habNm2CmZmZTOZVEXV1dXz69AmrV6/Gvn37cPTo0VJL/bx9+7ZM5zK+p0+fIi8vD1u3bkV0dDRmz56N4cOHV8q8SdX7nf4mLSwsZD73+PNs2rSpTM7pcjgcPHv2TOpxfmd0ZpxIZPLkyWJt36dPHzx//hwAcOvWrTLBnYaGRqmfxflGya/fQvp1rN+FoqLifzK4E4QeC0IIIYQQIgoWi1XmRKmCgoJYX+YT1srqd/1CIKl+Zs+ejQsXLuD9+/dYsmQJPn/+jDlz5lT1tEpRV1cHh8PB0aNHceLECaxbt05gyKKmpgY2m42DBw/iyJEjCAoKgoWFRRXMuPKFh4eX+nno0KHo169ftfusUFNTQ2pqKlasWIGIiAgcOXIENWvWLLWNuro6gOLwadmyZdi9ezcOHjyIWrVqyXw+I0eOxMuXL+Hm5gZzc3OsXLlS4rCtRo0azOXdu3fLPLQDioPPgIAAODo6Yty4cUIDPH549OzZM4SHh6Nbt27Q1taW+LiFhYW4fPkydu/ezVSs+fj4QFNTE4MGDSp33zdv3sDW1lam1bDr169H/fr1YWlpiZs3b0JHRwctW7YUuj3/cZo8ebLUAe2vpk6disOHD+PAgQN4+fIlQkJCKnysnz9/znxJvH379ti4cSPq168vszldu3YNV69ehbu7u8CuYfzr1NXVsWXLllLz5fF4mDJlCtq3b4+lS5eidu3apfYt2Q62sLAQBgYG1e5zhsjH7/Y3qYKCQpm/w5WUlGQS3Mmrmvl3QsEdqRStWrViLgtKy9XV1cFisZg3pTgtAX5tucD/A5QQQgghhBBCCKlqysrK8Pb2xtSpUwEAoaGhMDMzQ5cuXap4Zv9T8v+jbW1thYZx/JPzioqKCAgI+M+Eds+ePcOpU6eYn7W1tdG1a9dqef6BX/VQs2ZNrF69ukxoB6BUGNWiRQsEBwfLJbTjmzNnDm7duoULFy5g1KhR2LlzJ5o2bSr2OPyT14qKinIJ7YDik84pKSlYuXIlrl+/jpCQEIHb8YO72rVrY9euXRVW6G3YsAHOzs6lQp709HTcvHkTV69excWLF5GRkVFqHy6XiyVLlqBBgwZo37690LGNjIywe/dunDhxAi1btoShoSE0NTWZL7a/fPkStra2AIC2bdti27ZtFT8QAHPy/cmTJ/D390evXr0wdepUdOvWTei2JcNVWVFWVsa0adPg7e2Nu3fvwsHBAXv37i33MT98+DCA4s+2wMBAmYZ2ANC1a1esWLECFy9exPr160ud9wT+93jUqlULxsbGpW67fv06UlNTcebMGSQmJmLHjh3M/oWFhXj48CGA4i8nbdy4EZ06dZLp3AkhvwcK7kilKNlm49c/RIDiX0Y6OjrMbT9+/BB57J8/f5b6WV5/vBFCCCGEEEIIIZLo1asXmjdvjtevXwMobrsobnAXExODp0+fYv78+TKfX8lvxzs7Owtt+cc/Ua6mpoYhQ4bIfB7VlZ+fH1MJYWxsjE2bNmHy5Mno1KkTGjduXMWzK43fvaZLly5CX2MKCgpQUlICh8OBqakpDAwM5D6npUuXYuzYsfj8+TMcHR0RHR1dqnWgKPhf9pZnpyX+e6Ft27ZYt26d0O34IaKqqmqpAInH44HNZpcJlbZv346YmBiMHTsWb9++xYMHD/D27VuoqqrCwMAAnTp1QpMmTdCsWTM0a9YMzZs3h5aWlsiVNkZGRpg9e7bA23bt2gWg+P3r5+cn9nkzfth49epVXL9+HYGBgWXe//II7EqytLREUFAQvn37hocPH2LHjh2YNm2awG1zcnJw4sQJAMDixYvl8h5VVlaGl5cXU5np5+dX6jEpr4vUzp07AQB6enoICgoqFfo9fvwYubm5AAAzMzMK7Qj5D6uedZbkX6fkH1X8X0C/MjIyYi5/+fJF5LFTU1OZy0pKSmjSpIkEMySEEEIIIYSQ3w+Px0Nhbi44WVkozM2l1kLV2IgRIwAUV4CI20ru5MmTmD9/Pnbu3InVq1fLfG6innT/Ly5pcPnyZdy4cQNA8cn6wMBANG3aFDY2NnB3dy+zHlFVq67PZbt27dC3b18AwKdPnxARESH2GPzwtDKCu+bNm0NdXR3//PNPudv96u3btxgzZgzevHlT6nolJSV8+vQJ169fh6mpKXx9fXHlyhXcv38fJ0+exJYtWzB//nyMGTMGnTt3Rs2aNWXSHu/ChQvMWm9z5swpde7tVydPnizT1QoovcZWRESEwNBe3sGdsrIyRo4cyfzMf08KcvjwYWRlZWHQoEFyXSOQXznNZrPh6elZqsWlsMcjKSkJCQkJ0NDQwPbt28uE67dv32YuT5o0ST4TJ4T8FqjijlSKkj16hbWSaN68ORITEwEAnz9/FnnsksFd48aN/5P/I0EIIYQQQgj578h5/wHfribg58tXyHn7DoXZ2cxtipqa0GjWFFp/GKOOWS9oNKle1UC/m7y8PJkFM/r6+mCxWFi4cCFUVVWRnp4u0n5Xr16Fl5cXioqKABRXz7BYLCxYsEAm8wJED3Gq6zo78pKfn49Vq1YxP8+ZM4dZ58ve3h4xMTHw8PDA5s2bq81jI+raQsKqKuVp/PjxuHDhAgDgxYsXYu/P/2JCySBJ1n4NXA4cOICvX79i6dKlparoygtmXrx4gVGjRmHhwoUYO3YsgP+9xzp37lwqgJKnzMxMLFu2DABgamrKtMsUZM+ePVixYgX+/PNPBAcHl1qTreR9rcoWv3369EFYWBgACP3SfmFhISIiItCgQQMsX75c7nOys7NDYmIiCgsLsXHjRuzYsQOA8NdHYGAglJWVERwcLHDNQP76hg0bNkSvXr2knp+5uTlSUlIq3K5GjRrQ0tKCnp4eTExM0LdvX/Tv359pCSsL6enpGDp0KNLT03H+/PlS3dkIIWVRcEfEFhISgoiICNSrVw/btm2Dnp5ehfuUrLITtoBsu3btcPDgQQDFi8iK6tWrV8zl8np+E0IIIYQQQsjvLD3xLlKOHkPW07LrhvMVZmfjx8NH+PHwEZKPREG7lQkajRoJ3S6dK3Gm/x7fv3+HjY2NSCc+ReXt7Q1vb2+pxggPDweLxZJL28zyVEXYU5XWr1+P9+/fAyhud2pnZ8fcpqSkBH9/f4wZMwYrVqyAj49P1UzyF6I+R1URNHbv3h01a9bEjx8/0K5dO7H353A4AOQb3P0aYjs6OqJ///548+YNQkNDmbUAhQWk/Oq2vLw8vHv3Dmw2G8rKyiIHqrLC4/GwYMECpmLw1q1bAoOiX92+fRsTJkxAWFgYGjZsCED+1XSiateuHVRVVVFUVIQJEyYI3CYmJgb//PMPIiIiBK7vKGu9e/dmXtMlv+Qh6DGLi4vDgwcPsGHDBnTv3r3M7fn5+bhz5w4AYNSoUTJ5j544cQI5OTkICgpCVFQUgOJ19zZv3gxjY2OwWCwUFhYiMzMTL1++xPnz5xEXF4cTJ06gQYMGWLZsGXr37i31PABg1apVIn9hhRBCwR0R0927d7F+/XoAxf8Dc/ToUbi4uFS4X8mquObNmwvcpm/fvqhRowaKiorw+vVrZGdni9Tv/MmTJ8zlfv36Vbg9IYQQQgghhPxOOFk/8TZsO75dSRB736ynz5D19BnqmPVCM0cHKGlryWGG/176+vqIiIjAuXPnYGJigiZNmkBTUxMaGhplApKioiKpTnB///4dtWvXlnbKREbu3r3LtHM0MDDA2rVryzznJiYmcHNzQ2BgIBQVFbFw4cKqmOpvQ1lZGYsWLcKHDx9KhaCiKiwsBCB6cHfkyBE0btwYf/75p8jH+DUs0dTUhK2tLYKCgmBra4v9+/dDU1NTYECan5+P69evAwDc3d3h6urK3FbZwd3atWtx8eJFKCkpYf369ejcWfiXN96+fQsbGxsUFRVBXV0dffr0KdV2ueRjwuPx5B7gf/z4EXXr1mXW1uNTVlbGjBkz8Mcff6B169Zl9uNwOAgODoaLi4vQysDY2FhoaGigT58+MpmrsrIyLCwscOTIEYwZM4a5/tfHKCcnBwEBAQgICED//v0FjnX79m0UFBRAQUFBrBaf5Z0/1dTUhKamJqysrJjg7q+//irz+Ojq6qJZs2YYNGgQ7Ozs4OLigi9fvsDFxQVr166Vek3Ty5cvIyYmRqoxCPmvqR51/OS3ce/evVI/FxQUiLRfyd7ewr5Vpaury/wxxeVycfPmzQrHZbPZTA9pdXV19OzZU6T5EEIIIYQQQsjvIOf9e9x3myNRaFfStytXcd9tDnLef5DRzP479PX1YWdnB1NTU9SvX1/oSfvFixcjLCys1FIRosrKyoK5uTl8fX3x7ds3WUy7Wvhd78vPnz/h5eUFLpcLNTU1bN68WWj1joODA3r37o3du3djxYoV/8p1JnNyckp1UpKGpaUlZs2aJVHIzQ/uSrasFObIkSPw9vaGs7NzqXXDKiIoYJs4cSJUVFTw4sUL+Pv7AxBcsXj27Fnk5eWhV69epUI7oHKr1nbt2oWwsDAoKSkhKCgIFhYW0NXVFfpv06ZNTCveFStWwNPTE40aNWLGK/l5J8nnm7iuXbsGCwsLREZGMs85n6Ojo9AKsKioKNSpUwfTp08XeHtycjIWL14MFxcXBAYGlhlbUi4uLpg9e3apFqi//o5ISkqCu7s7E4BdunQJkydPRnaJVtdXrlwBUFyZyq92rMjdu3fRr18/nD9/vtztSr7+KmqN3Lp1a6b9L5fLhY+Pj1SVctnZ2ViyZInE+xPyX0UVd0QsJdtcKikpwdLSUqT9+N84UlZWLvdbLVOmTGEWmI2Ojhb6LZSS4/78+RNA8aKtv34bhxBCCCGEEEJ+Vznv3+PxoiWl1rCTBjs9HY8X+aDNyuXQMBS8PhCRnJOTEywtLXHlyhWsW7dOpGUl+BISEpCfn4+9e/ciKioKNjY2mDZtmkgBhSCbNm3CjBkzqrS1JZvNxtChQ+Hs7Ax7e/vfps0mj8eDp6cnPnz4ABaLhVWrVpXbYlBBQQGBgYEYM2YM9uzZg/T0dKxZs0Yma0O9fv0aL1++lLraRVoXL17Epk2bEBgYiLZt28p07JcvX8LGxgYZGRki75OQkIAWLVqItG1ubi6cnZ1x6NAhGBsbV7i9oICtZs2asLCwwMmTJxEVFQVvb2+BwV10dDRq1aqF1atXl7mtslqThoeHY82aNahduzYcHBwqrDaMiYlhvjg/bNgwDB06tMw2JcM6aSuLRaGiooKvX7/Cx8dHoha0rVq1qnCbsLAwGBkZib3eYEZGRplwXkNDA2PHji0VbuXn5wMofuzS09OZCsH09HQkJSVh9uzZYLPZmDp1KrZv3w5NTU0mfOvfv79IQdnLly8xbdo05OTkwM3NDRs2bJBZJ7L27dvDwsICp0+fxs+fPxEVFYWpU6dKNNbatWvBZrPRvHlzvH79WibzI+S/gIK7f6nPnz9j6dKluHPnDvT19eHl5YUePXpIPW6PHj2Yb1wMHToUhoaGFe7z5csXpkfzkCFDoKOjI3RbMzMzmJqa4tatW7h06RI+ffoEAwMDodsfPXoUQHHpt6S/QAghhBBCCCGkuuFk/cTTZStlFtrxFWZn4+myFeiwYR21zZQxQ0NDODo6YtOmTRg1ahTCwsJEDheOHz/OXG7dujX69esncWgHFFfwbd++HY6OjhKPIa27d+8iMzMTfn5+uHLlCvz8/FCvXr0qm4+oNm/ezKxTtmDBApFCM21tbWzZsgXjx49HbGwsvnz5guDgYOjq6ko1FwMDA0ybNg1t2rRB48aNpRpLGleuXMH79+8xYcIEzJw5E46OjjILov744w+Eh4fj2LFjaNu2LZo2bYqaNWtCQ0OjzLajRo3C58+fMXDgQCxdurTccTds2ICDBw8CKA5CjIyMRJqPsPvVr18/nDx5Etra2lBWVi4TRH/+/Bk3btzAhg0bBIb28g67uFwu/P39ER4ejo4dOyIoKAgnTpxAv379MGvWLPz9999l5vzx40csW7YMANCkSROhVVH8ajyguB2lLELp8pT87AsODkanTp1kMm5SUhJTjTdz5kyxQzsAOHbsGPz8/ETe/suXLwLXs+O7d+8epk6dCnd3d3z+/BkAsGzZMuZ5ERWHw5F5eNevXz+cPn0aAHDz5k2JzrsmJibiwIEDWLduHQ4dOkTBHSFioOCuGsvKymIuZ2ZmQl9fX+R958+fz7QC4H8DIz4+Hg0aNJBqTvr6+hg/fjz2798PdXV1kfbZsGEDCgsLoaWlBQ8Pjwq3X758OcaOHYsfP34gICAAGzduFLjd48ePcfbsWQDAkiVLyg0ECSGEEEIIIeR38jZsO9hStKYqDzs9HW/DdqCFh7tcxv8vc3BwwMGDB5Gamgp7e3scPXq0wv8P//r1KxISiluhGhkZISQkRKT13stjb2+PIUOGoHv37mjTpo1UY0mqZOu2GzduYMSIEdi9e3e51WtVLT4+HsHBwQCKW/IJWoft7t276NSpU5kQxMjICKGhoZgyZQqSkpIwevRo+Pv7C11rSxQqKioYNWoUPDw8cODAgUpfJw0obk95+fJlAMXhwLp163Dnzh1s3bq1wpZ7grDZ7DLBj4mJCUxMTMrdj8vlIi0tDQDQrFmzCkPRki0IPTw8RA4ahW3Xo0cPKCkpwcXFBUDZVogHDx6ElZUVLCwsxBpXFjIzM+Hh4YH79+/D29sbkyZNgoKCAhwcHBAdHY0VK1bgyZMnWLNmDbNPfn4+Zs6ciZ8/f0JDQwNbtmwp1WWrpJIVdxwOR273g69kcKelpSV1AF5yLD5Jw8ApU6agfv36KCwshImJCWrXrg1NTU3mNX39+nU4ODgwj1mjRo1w4cKFCsddt24dc/nmzZuoVauWwO3evXuHQYMGASiu8hblPKukSlaopqamir0/m82Gt7c3+vXrhyFDhuDQoUOynB4h/3q0xl01lZqaWupbCKJ8yJf0+PHjUj/n5eXh0aNHMpnbggUL0LdvXxw/fpxZX06YXbt24dixY1BWVkZAQADq1q1b4fiGhobYsGEDlJWVcfr0aezZs6fMNvw/Sng8Huzs7DBixAiJ7w8hhBBCCCGEVCfpiXelXtOuIt+uXEV64l25HuO/SE1NDRMmTAAAfP/+XWDLvF/t27cPhYWFqFmzJrZu3Sp1aAcADRs2hIWFBebOncu0bKtMXC6XqdQAgI4dOyIsLKxah3ZXr16Fp6cneDweJk6ciLlz5wrcbtWqVRg5ciQuXbpU5rZOnTph06ZNUFJSQkpKCmxsbLBx40ap1tKaMGECXr9+zQSKle369evIzMxkfnZyckJAQIBEoV1gYCCcnZ3BZrPF3jctLY0JjUT5Yjt/fcUaNWqI1bZWWMCmo6ODPXv2YPLkyQJvv3fvHhYuXMj8nP1LtbQkrWLZbHaFj9X169cxevRoNGzYEHFxcZg8eTJzH2rUqAEnJycAxZVi/DXUOBwOPDw88Pz5cygqKmLdunVo3ry50GOU/AypjM+TymorKqkhQ4ZgxIgRMDY2hq6uLhPaffv2DZ6enqWCzpycHCQkJJR5PZTE4/EQExMDRUVFtG3blqm8E6RkC01xXteSKFn1KklgGxwcjO/fv9P6doRIqHp/Ev6H5OTkICsrC58+fcLZs2cxdepUFBQUMLeHhIQgICAAT58+RXp6OrKyssr95f3rN+qUlJRk9geyiooKgoOD4eLiAjs7O7i4uODw4cN48uQJUlNTkZKSgkuXLsHFxQWrV69G48aNsW3bNvTt21fkY3Tv3h379u1Dw4YNsXLlSvj4+ODJkyf4/Pkz4uLiMHr0aHz69Amenp7w8vKSyf0ihBBCCCGEkOog5eixyjlOVHSlHOe/ZvTo0cxJ+vPnzyMvL0/otgUFBYiMjESNGjWwbt06NGkiu7UHp0yZgnfv3onV1k1WEhMT8fXrVwDF5yP8/f3Rrl27Sp+HqBITEzFz5kxwOBw4OjqWe6JZSUkJz549g7OzM8aNG4eHDx+Wur1Xr17YsmULVFVVUVRUhODgYFhZWZWqQBSHtrY2Ro8ejdDQUNy/f1+iMaQRHx/PXDY1NYWHh4fQaqCMjAykp6cL/BcaGoqwsDBcv34dbm5uYoeZnz59Yi6L0jb0+/fvAIC6deuK1aayvICtY8eOzO2/bhceHs6E7lu2bIGVlRW+fPki8nF/xWaz4ebmhunTpws9/1dQUIArV64gIiICvr6+AlvRDhgwgAlZs7KyUFhYiDlz5uDcuXOoUaMGAgMD0adPn3Lnwg/r9PT05N7yE5B/W1F5KCwshKenJ759+wYDAwPY2NgAKP4Sg6+vL/78809MnDgRu3btKhWEA8Dt27fx+fNnDBo0CMbGxkhJSRF6nJJrQco7uPv58ydzWdh7Xpjnz59j+/btmDdvnkhFHISQsqhVZjXh4uLCtLYUpKioCNu3b8f27duZ61avXg1ra2uB2/v5+TFr3NWrVw8eHh4y7YfO/9bO6NGjcezYMcTFxSEoKAg/fvyAqqoqdHV10bp1a/j5+WHIkCES9b9u164dYmNjcfz4ccTExMDJyQk5OTlo1KgRzMzMMHnyZDRt2lRm94kQQgghhBBCqlrO+w/IevqsUo6V9eQpcj58hEaTqls769+oXr16aNeuHR48eABlZeVy/3/4yJEjyMjIwPz589GzZ89yx83KysKlS5dE7jhjYmKCbt26Yf/+/ejbty/MzMzEuh/SOHLkCHN53LhxVbo+W0Vu374NV1dX5Ofnw9PTs8J1nEpWmjVq1AiGhoZltjEzM8OOHTvg7OyM7OxsvHr1CtOmTUOnTp1gZ2eHvn37inWexNbWFvv27YOnpyeOHz8u8tIl0srOzsapU6cAFAdVnp6e5W4fFRUFf3//Cse9dOkSLly4gAEDBog8F35nKQUFBbRq1arC7fltNevXry/yMX518uRJpnLvV3fvFlcsZ2dnY9euXcz179+/x4EDBwAANjY22LNnD+rXr88EfXl5eaWqpgTh8Xjw9vZmum9Nnz4dwcHBZV4zKioqWLBgQbljqauro02bNlBQUEC3bt3g7OyMhIQEKCkpwc/PD4MHD8aHDx/QsGFDoVWUSkpKmD17NmxtbaGmpiZwG1m20KyMijsejyfTsby8vHD9+nU0atQIu3fvZt43WlpaOHbsGHx8fBATE4O7d+MoKOUAAN2xSURBVO9i69at2LVrF9Me9tChQ1BQUICjoyOioqLKrbgr2bJSmte2KN6/f89cFuU9x1dUVISFCxfizz//xJgxY+QwM0L+Gyi4qyYEtYOURsOGDbFt2zaZjimIrq4uHBwc4ODgIJfx1dXVMWHCBKbVCCGEEEIIIYTIU0FaGliqqlBgSXfiUEFZCcpifkOdnZGBf06drnhDGfon/jQajbQUeruk94PLLnsSV1FDA4qaGgL2+H2cP38e5ubmFba9Mzc3x4MHD+Dg4CC0eoTD4WD79u0YMWIEpkyZUu546enpcHBwwNOnT/H169cKwyW+yZMn4+bNm/D29kZsbGypNZ7k5efPn0ybTA0NDUybNk3ux5TUqVOn4OnpCVVVVYSEhFRYeQT8L7hr2LBhqXWpftWlSxccOnQI06ZNY06AJyUlISkpCdra2rCwsEDnzp3RokULGBsbl1rX61f6+vro27cvzp07h8DAQPj4+Ih1PyUVGxuL3NxcAMXtAdu2bVvu9g4ODtDT0wOXy4WJiQnq1KkDLS0tKCsrY9OmTdi8eTO0tLQQHBwMU1NTsebCr2xs0aJFhe1k2Ww2U9VU0RqT5WnZsiWcnJzQoEGDUuM8evSIeU45HE6Z5WqGDx/OXD5y5AimT5/OfGbs2LEDO3bsEGseV65cwYwZM7B582aJvhi/YsUKpKWlYezYsUhJSUGtWrWwefNmZv3F48ePIyoqCg4ODhg3blyZY0yaNAlA8eP648cPaGholFpv8eHDh0hOTgYAoevkieN3C+5WrlyJEydOoHHjxti5cycaNWpU6nZ1dXUEBgaiUaNGCAkJQWZmJlatWoU9e/YgPT0dp0+fhqWlJVq2bAktLS3msRSkZHAnSstYafDXtgSAfv36ibzfzp078e7dO5w4cUIe0yLkP4OCO0IIIYQQQggh5P89c/OQyTjabVqj7crlYu3zInA9sh4/kcnxRfVP/Cn8E39K6O2yvB8G48ei8YRxYs+xOpk3bx4aNWqE6dOnl1shN2zYMKSlpcHW1hY5OTkCtzlx4gQ0NTXh5eUldBsA+PHjB5ycnPDq1SsAQEBAADgcDlxdXSucr7m5OfT19ZGcnIxVq1aJtOaetKKiopjWei4uLqhdu7bcjymJPXv2YNWqVTA2NsbGjRsFVs4Jwg/uRFmzzMjICIcPH4anp2epNfGysrJw9OhRHD16FLq6upgzZ06FlSmTJ0/GuXPnsH//fgwYMADdunUTab7S4FeOqaiowMNDtM/GiipC69evL3ZoB4BpE8oPm8rDb5MJSBfcNW/enKl6K2n06NHM5Vq1aiEwMLDCsYqKigAA06ZNg5ubm8Bthg0bhlevXmHGjBmYOXOmhLMuLS8vD1FRUdi9ezcKCwvx559/ws/PDw0bNmS2mTFjBp49e4YVK1YgPDwcK1asQI8ePcqM9eHDB8yfPx9Pnz6FkpISVFRUwGKxkJWVxWxjbGws9Zz5j5U8lVyHTpox+AFc165dsWnTpnJbSs6ePRu5ubmIiIjAhw8fABS/x5SUlODu7g6guEIvMTFR6Bj8NppqampybZX5+vVrxMXFAShuESvo9SDIhw8fsHnzZsyePRsGBgZymx8h/wUU3BFCCCGEEEIIIdWALCsAiHyoqanhxYsXmDVrlkjb7927t8JtunfvLvY8goKCUFhYWOHJfQUFBYwbNw5r165FVFQUhg0bhr/++kvs44mKy+UiIiICQHE1iJ2dndyOJanc3Fz4+PggNjYW9vb2cHd3F6uKqWSlkSi0tbURGhqKgwcPws/Pj6lgMzAwgI+Pj8gtTLt16wYjIyO8efMGPj4+OHHiBFRVVcWaizhu3ryJZ8+K2/ba29uXqSKqTK9fv2YCC1FevyWrkkoGVLKQnp6OJ0/+98WE3NxcpKenQ1dXt9z9+EFReaGUrH8HnDp1CgEBAUhOTkbDhg3h5uYGS0vLMqGzgoICVq9eDUtLS6SkpGDq1KnYuXNnmXDY2NgYUVFRSE1NxeHDh7Fz585SXzpo3rx5hS1/RSHLtpvCSBvcsdlszJ07F6dPn8bo0aOxZMkSkT5HFixYgFevXoHFYjEhnqenJ9P2sn79+njy5Al4PJ7ALwfwKz3l2X747du3cHFxQWFhIerVq4f169eLtB+/xWvLli2ZNf4IIZKj4I4QQgghhBBCCKkOZFABQOSLf2K2YcOGzBpG1d2oUaOwceNGcDgcLF68GHFxcXILfM6cOcO0eVuwYIFEbf3k6dWrV5g1axZYLBb27NlTqnqLw+EIXeOrJFG2EWT8+PHo3bs31q9fjytXruDAgQNiV8yMHTsWq1evZqpa5s6dK9FcRBEeHg4AqFu3LpycnOR2HFGcOXMGQHF1myjB0NevX5nL0lTcCXLt2rVSoQ+Hw8H48ePh5ORUqhLvV6IEd7Jy+/ZtrFu3Dvfu3UOzZs3g6+sLKyurct+POjo6WLBgAdzd3VFUVIQ9e/YIreqsV68eZsyYAUtLS0yaNAmpqamoVasW1q5dK5M2l4WFhVKPIc9jfPv2DbNmzcLbt2+xYcMGDBo0SOi2vz4eNWrUQHBwMFJTU7F//360atWq1PJAhoaG+PnzJ96/f4+mTZuWGY9fqSeLysaSioqK8OLFC5w8eRL79+9HXl4eOnbsiKCgIJHX0jt06BDu3buH48ePV0q7U0L+7Si4I4QQQgghhBBCqgGquPt9sFisctckq05q164Nc3NznD59GikpKQgNDRXaqk8aPB4PISEhAAAzMzNYWFiItN/w4cPx5csXmc1DUJs5/nqCe/fuhaOjI/7+++8ylXPh4eF49uwZnJ2d0bJlS6Hji1txV1KDBg3g7++P7OzsCtdpE8TKygqBgYHgcDjYtWsXrK2t0axZM4nnI8zTp0+Z1p5eXl7Q0KjatSnPnj0LABg6dKhIwWlaWhpzWdYVdyVbngJAzZo14e/vD3t7e8TGxmLlypUCj8mvIisv0JDmdwCPx8Ply5cREhKCFy9ewNzcHG5ubujWrZtIbV0BYPDgwdiyZQtevnyJvLy8Crc3MDDAjBkzEBMTg+XLl6Np06YoKirCnTt3pGrlWhnBnaQVdzdu3ICnpyc6duyIjRs3ok6dOmW2yczMRFFRETp27IiVK1eWuV1DQwO1atXC8ePHsXv37lLPj6GhIVgsFh4/flwmuPv8+TN+/vwJoLi6UVInT57EuXPnmJ95PB5ycnLA4/GgoaGBrl27wtraGoMGDRL5tZOamoqAgAC4urrCyMhI4rkRQv6HgjtCCCGEEEIIIaQaEPUEGal6v1vIamlpidOnTwMAduzYgXHjxolcRSGq8+fP49mzZ1BRUcHixYtF3i8sLEyuJ+oTExOxZs0adO3aFTExMUJbGiorKyMuLg7x8fHo06cPXF1d0b59e6mO/fnzZ4EhjiShHVBcFdWnTx+cPXsWHA4Hfn5+CA0NlWqOggQHBwMAevTogSFDhsh8fHE8fPgQT58+BQBYW1uLtM8///zDXJZlcJeVlcUEHj179kRCQgIAoEOHDggKCoKLiwtGjBiBFStWlKnCYrPZAIorrmQpIyMDR44cQVxcHJo0aQIbGxv06dMH6urqEo1nbW2NNWvWYODAgSJtb2lpibFjxwIobhvq7u6Oq1evYsOGDRgwYIBEcyjZKvPnz59IT0+XaJxf8UOvX48hqpCQEFy+fBlBQUHlrrW4YcMGnDhxAvPmzRP6+ktPT8fKlSvLfB6pqqqiQYMGuH//PoYPH17qtufPnzOXW7duLfb8+czNzTFv3jzm55ycHIwaNQocDgedO3dGWFiY2GMuW7YMDRs2rPLqXEL+TSi4I4QQQgghhBBCqgNqLVXt8QO7360NmJmZGbS1tZGVlYWCggIEBwfD19dXZuNzuVxs3LgRADB9+nSx1l+SdYD4q2/fviE0NBS1a9cudzt+BSWPx0NCQgL69OkjVXAXHR0Nb29vBAQEYPDgwRKP86thw4YxFWiXLl1CUlISOnXqJLPxHz58iPPnz0NVVRXLli2T2biS2rVrFwCgb9++IocV/OBOS0sLNWvWlNlcYmJikJ+fjzZt2qB79+5McAcAvXv3hpubG9avXw83Nzd4eHiUCjH4wV157Sol+UJARkYG2rdvDzs7O4nbuJZkbW2N3NxcJoyrCP99k5aWBmdnZ2b9v7lz52Lnzp3lBlzClAzyp0+fLvb+oigoKBB7HwsLC7i4uJS7DY/Hw/nz55GdnQ0fHx+cPHkSO3bsKPO8l1eV1qxZM1y6dKnMFyDu37/PXG7Xrp3Y8+dTV1eHvr5+qev69++P+Ph4JCQk4NOnTzAwMBB5vLi4OFy6dAmHDh2SyWuQEFKMgjtCCCGEEEIIIeT/mWxYC1VVVSiwpAtmFJTFP3nV0nMOnq8JwM/nL6Q6tji0TFrij9nC2yZKcj9azJ0NLrtsNYNiFbfbk4Xc3FwAkLiapaooKSnB3Nwc0dHRAIpDJQ8PD+jo6Mhk/OPHj+PFixdo2bIlHBwcZDKmrJS3/lRJampqzOWgoCD0799f4mNGR0fDy8sLXC4Xc+fOhYKCgsgVTBXp3bs3VFVVkZ+fD6A42JJlcBcYGAgej4dZs2aJFcDKQ0pKClMpOnPmTJH347delXWbzCNHjgAoDpPevHkDoHTY5uTkhEuXLuHevXtYu3YtmjZtyrSM5X92SFptKcitW7fg7OwsUltLcfGDeEkVFBTA1dUV+/fvF3s9tpLBXUREBExNTcts8+XLF7HXL7x16xZsbGzKHENUorSAvHv3LlJTUwEUtxLdtGlTmdDu3Llz6Nq1q9BQuVOnTkhISMDLly/xxx9/lBobAJo2bSqzz26+cePGIT4+HlwuF/v378f8+fNF2i8zMxMrVqyAnZ0d2rRpI9M5EfJfR8EdIYQQQgghhBDy/1T09KCqplYlFVXKtWqhZpvWlRrc1WzdCqr16sp0TOVatWQ6XnXCD0t+t+AOKA58+MEdm83GzZs3RQ61ypOfn4+NGzdCSUkJa9askWoNuKpUsoVho0aNKtw+JSUFLVq0qHC7wsJCzJkzB0FBQSKv+1ceNTU1dO3aFVevXgUA5r+ycPnyZdy6dQsdOnSAnZ2dzMaVVEBAAAoLCzFs2DCxWgN+/vwZAMpUFUnj1q1bePr0Kfr06QNzc3O8fv0aQOm10hQUFLB06VJYWVmBx+Nh586dsLCwQG5uLoqKigAA2traQo8hbsWdqakpQkNDcfPmTbRu3Rr6+vrQ0tIqFUILwuFwMHXqVLx8+RIAYG9vDycnJ0RGRiI1NRWzZs0SeQ4VBWiqqqoij8VXWFgIbW1t9O3bF4aGhmVuz83Nhb29Pbp06YIZM2aIXLWroqICS0tLjBkzBl27dpVoXhVV6h09ehRAcevr5cuXQ0lJCTk5OcztDx8+hLu7OwwMDLBt2zaBlW1//vknAODChQtMcJednY0HDx4AKG5hK2vdunVD48aN8fHjR0RFRcHNzU2k52716tXQ0tIS6zVDCBHN7/nXFCGEEEIIIYQQ8i9Up1dPJB+JqrzjmfWqtGP97rhcLhPclXfyvbr6tWolOTlZJuNu27YNnz9/hoeHB0xMTGQyZlUQd+2xBg0aICpK9PeqLANNU1NTJrDLzc1Fenq60LX7RMVms7Fq1Sqoq6sjICBA5muxiSsxMRHx8fHQ09ODt7e3yPtxOBymVaYsg7uNGzdCVVWVmQs/ZPs1bGvZsiUGDhyIU6dOMeuolVxbrU6dOkKPIUmrTFNTU4EVaeVZtGgRE9pZWVlh/vz5YLFYGD9+PPr37w87OzuBgdmv/Pz8EBMTgwMHDojVWrEiQ4YMwdixY4W2FVVXV0doaCgmTJiAmJgYTJkyBc7OzhUGTR06dECHDh0knldeXh4cHByYAK08PB4P9vb2Qm9/+/YtJkyYgBMnTpR577Zv3x4qKio4c+YM05rz5s2bzOtJHsEdi8XCmDFjsHbtWmRmZiI2NhajRo0qd5+rV6/i+PHj2LNnj0QBLSGkfBTcEUIIIYQQQggh1YSGYRNotzJB1tNncj+WdutW0GhSta3wfieZmZnM5Xr16lXdRCRUu3Zt1KtXj2njJouq0k+fPmH79u0wNTXF1KlTpR6vKokbVCkoKEgdlknq1+ozFosl9Zjh4eF4//49Vq9eXeUtMgsKCpj19Xx9fVFLjCre5ORkprpNVvfj2rVrSExMxNKlS5mAin+MkhV3fBMmTMCpU6fQp08fAMXrLPKV99khSXAnrg0bNjAtP/v27YuVK1cyr59atWqhf//+WLlyJcLCwsodZ/Pmzdi5cycAwM7ODvv375fZ52LJ99W+ffugqqoKKyurUu/RJk2aYOPGjbCzs8OWLVsQExODwMBAqYK5imhpaWHHjh3YvXs3jI2N0bx5c2hra0NTUxMKCgo4cuQIli9fDjU1NZw4cULg4zFx4kQ8fvwYzZs3x4YNGwR+higrK6N9+/a4ffs2Hj58iHbt2iE+Ph5AcWjZs2dPudw/a2trbNy4ERwOB/v27aswuOM//66uriKNX7Kl64gRI8r8DkpMTBRzxoT8u1FwRwghhBBCCCGEVCONRo2slOCukbWV3I/xb/K7B3cA0KxZMya4k8UJbl9fX2hra2Pt2rVV0l5Wlqq6wkwczZo1Yy4bGhqKFWwJkpycjJCQEFhbW8Pa2lra6Ult5cqVePnyJVxcXNC3b1+x9n379i1zuUmTJlLPhcvlYv369Rg0aBAmTJhQ6nrgfwFeSd26dYOnpyezfVpaGoDisLe8MFFQCChL27Ztw5YtWwAUt2PcsGFDmUpQe3t7jBw5EmfOnMGAAQPKjMHhcODr64vIyEjmuoKCAixduhRBQUFQUVGReH7Hjh3DyJEjS12XmZmJjRs3Yvv27Zg1axYGDRrEBI1dunSBp6cnVq1ahU+fPmHy5MnMFwmECQ8Px8OHD2Fvb4927dqJPUctLS3MmDGjzPVsNpsJO52dnQU+zw8fPsTjx48BALNmzULz5s2FHqdPnz64ffs29u7dCx8fH5w/fx7A/9a4lIc6derA3Nwcp0+fxpMnT/DgwQO0b99e6Pb+/v4Vtg4tydPTE0lJSQCKX4uitjgl5L/q9/6rihBCCCGEEEII+ZfR7dIZdczk8416vjpmvaDbpbNcj/FvUzK4k2VbuMrUpUsXAIClpSU6deok1VgxMTG4fv06NmzYAD09PVlMj4iofv360NfXh6KiIhYvXiz1eEuWLIGRkRGWLFkig9lJJzY2FpGRkRg5ciRmz54t9v7Pnv3vSw+irEFYkT179iAnJwcrV64sdT0/ZBMWtk2dOhUaGhoAgHfv3gEorgAsL9iSZ8VdQEAA1q5dCwAwNjbG1q1bBc6lZcuWsLS0xOLFi8u00/3y5QsmT56MyMhIsFgs9OzZE2FhYbh69arQ8UT15s0bbN68ucz1/DHfvn2LlStXlnp+AcDGxoZZE47NZpd5nn41efJkpi2kra0t7t69K/GcS9q7dy++fPmCJk2awMHBQeA2ISEhAIrD9orWuxw2bBgUFBQQHx+PsLAwplqtoio4aY0ZM4a5vH///nK31dPTg76+vsj/Sr4++J9hJf8RQkqj4I4QQgghhBBCCKlmmjlOhbKc2vAp6+qimaPgE4tEuJInscurlKjOJk6cCA8PD6xatUqqcdhsNlavXo0VK1agc2cKgKvC0qVLsXXrVqnb5p07dw5v3rxBcHBwla9TdePGDSxYsAAWFhZYsWKFxGMAxaFC3bp1pZpPcnIy9u7di7CwMGhqapa6rbCwEACYdcfKw19PrqIKL3kEd3l5eXB3d8f27duZ69q0aVPm/pQ0e/ZsFBQUYNasWWCz2QCA6OhoWFlZ4enTpxg3bhxiY2OxY8cOmJmZyaRV64EDBwS2jVRSUmIu79y5E61atSp1O4vFgo+PD1Pxm5GRIXD827dv48KFC1BUVERgYCCGDRuGmzdvYuLEiZg+fbpUa35mZWUhNDQUQPH6gYLW5nv48CFTNTd9+vQKK5Tr1auHLl26gM1mM4Ff48aN5dYmk69nz55o1KgRACAuLg7p6elyPR4hRDgK7gghhBBCCCGEkGpGSVsLrZZ4Q7Gck6uSUNTURKsl3lDS1pLpuP8Fb968AVDc7s7IyKiKZyMZXV1dODk5lWmPJ66CggI4OjrCyspKNhMjYuvVqxfMzMykHic/Px87d+6s8vavjx49wvTp0zFu3Dhs3LhR6Gs0Oztb6BjJyclMK74ePXpIPac9e/Zg/fr1AquB+IGdKMHdrVu3AKDcFo6A7Ftlvn//HuPHj0d8fDw0NDREfo7r1auHuXPn4smTJ/Dy8oKDgwNWrlyJ8ePH4+LFi1i+fLlMPwP/+ecfREZGCgxaS7awVVdXF7i/sbExBg8eDAD466+/BG7z4cMHpo2qgoIC1qxZw2x77tw5jBgxAufOnZNo/ps3b0ZmZibq1q0LBQUF/Pz5s9TtRUVFWLp0KQCgbdu2GDZsmEjjjhgxotTPTk5OMglJy8OvRgSKv6DBXw+REFL5aI07QgghhBBCCCGkGtIwbII2K5fj6bIVYMvgW+/KurpotcQbGobSr/v0X/T69WsAgImJCdTU1Kp4NlVLS0sL9vb2VT0NIgPDhg0rtWaePDx+/BhnzpwBAKSkpOD58+do2bIlc/uNGzfg4eGBOXPm4O+//xY6DofDgY2NDdhsNtq2bYs2bdrA2NiYWctuyZIlTPg1aNAgqeft5eUl9DZRK+5ev36NlJQUKCoqwtzcvNxtBa2XJ6kjR45g5cqVyM3Nhbm5OZYsWYIlS5Ywa1xW5O+//8bNmzdx8uRJNG3aFOfOnUPNmjVlNr+SVq5cCTabLTAgFXXtzNmzZ+PZs2eYPn26wNszMzORlZXF/KykpISNGzfC2toaHz58QE5ODtzd3XHo0KEyVX0V6dChA3g8Hh49eoQZM2aAzWajefPm6NixIzp16oRHjx7hyZMnUFZWhq+vr0TrgSooKKBbt25i7ycJa2trbN68GYWFhTh48CCmTp36269hSsjviII7QgghhBBCCCGkmtIwbIIOG9bhbdgOfLtyVeJx6pj1QjNHB6q0k8KTJ08AAH369KnaiRDym/jx4wfWrVuHQ4cOYdCgQfD390d4eDhsbW0RHByMLl26IDo6Gvv370d4eHiFa9IpKSkhKioKSUlJCAgIQFRUlMDtmjdvLvf3aUFBAYDi9pZsNltge0QAOHbsGACgf//+AltBliSLVpnJyclYunQprl69CkNDQ3h6eqJ///4SjbVq1Sq8efMGb9++hYuLC4KCgmRemRkREcGEuoKq+EQNjAwMDBAfHy/09u/fv5ephNPU1MT69esxZswYFBUVgcPh4MiRI/Dx8RHjHgBDhgzBkCFDABS/Lm7cuIELFy7g4sWLiIyMZLarX78+Hj58CD09PdSpU6fcMRMSErBs2TLmZy6XC0dHR+zbtw+1a9cWa37iqlevHnr37o3z588jJSUFly5dqjB0FkXJ17c813Mk5N+C4nJCCCGEEEIIIaQaU9LWQgsPd5gsXgjt1uJVAmi3bgWTxQvRwsOdQjspPH78GF++fIGCggIsLS2rejqEVGs8Hg9Hjx7FoEGDcPDgQbi4uGD9+vUwMTGBv78/Bg4cCDs7O+zduxdaWlrYv39/haFdSZ06dcL+/fsxd+7cMrdpaGjAz89P7hVCKioqmDhxIo4fPw5lZWWcPHkSrq6uzJpwAJCTk4MjR45AUVFRaCVYSfyKO0kq7/Lz8xESEoJhw4bh+fPnWLJkCWJjYyUO7QBAW1sbu3fvRtOmTZGUlIThw4fjwIEDMmvpeeDAgVLrbQpaA1BWz2NycjK+fv1a5vrWrVtj3LhxzM8lq/IkoaKigj59+sDHxwcDBw4sddvHjx/h4+MDMzMzzJkzR+B8gOK2sTNnzgSHw0GTJk0wefJkAMC7d+8wZcoUidadK/ma4leLlqfkY7J3716xjydISkoKc/nDhw8yGZOQfzOquCOEEEIIIYQQQn4Dul06Q7dLZ+R8+IhvV67i56vXyHnzFoUl1nxS1NSEhlEzaBk3Rx2zXtBo0rgKZ/zvcfbsWQCAubk505aPiObBgweIiYnBokWL5L4+E5GvDRs2oFOnTujVq5fQbZ4/f45ly5Yxa805OjrCzc2t1DZLlixBeno6fH19YWZmhlatWqFBgwZizYXFYsHR0RGFhYUICgoCALRo0QL+/v6l2nCK4/Lly7h9+zaA4vW9ygtIXF1d/4+9+w6PqkrcOP5OSS+EktB7kSYIojQLIDYERVDXiri6yLJYfmJFBQVUFF1Ad8VVURRduwIqiKCoi4rSpIpAEEgghNDSk8mU3x8hkwwzE2aSSWaSfD/P4+OdO6fdEJLhvvec4zxetGiRJk+eLJvNpokTJ+pf//qXwsPD9c477+jEiRMaO3asOnXqdNr+SwIxX4KVsnU+//xzzZkzR+Hh4Xr44Yd19dVXKyIiwuc2SthsNv36669atmyZfvvtN3388cdKSkrSW2+9pTvuuEM7d+7UE088oY8++kh///vfddFFF1U4WFu0aJFz3zdJatu2bYX/3Hyxa9cur4HjhAkT9Mknn6iwsDAg+0YeP35c9957r9asWaPo6GhNnjxZffr00bx58/TFF1/IZrPpyy+/1K5du/Txxx+7/FmtX79eEyZMUF5ennr16qWXX35ZDRo0UEZGhr766ivt2LFDo0eP1ty5cz0GnafKyclRbm6ulixZ4jz3008/af369erQoYOioqI8zhY9//zz1bRpU6WlpenHH3/U66+/rlGjRikqKsqnpaItFosKCgpkt9t19OhRffDBB0pJSXG+P336dE2ePFmdO3dWVFSUIiIiKvQ9C9RmBHcAAAAAANQgMa1bKeaWmyQVz2yx5RfIYS2SwRwmU1Qk4UiA2e12LVu2TCaTSffee2+wh1OjbNq0Sbfffruys7OVn5+vGTNm1Pnvz6VLlyonJ0fXXXddsIfilxdeeEGvvvqqIiIi9PLLL+u8885zK7Ns2TJNmjTJObtn5MiRHmfFmUwm/fOf/9R9992nFStW6JJLLtFf/vIXXXvttX7NvJOKg8GMjAwNGDBAF110UYW/v6xWq+bOnau8vDxJ0pdffqkvv/zS73a+//57/eMf/9DkyZP1yiuvqGXLlrrrrrt8qlsSLJ1u3zyp+Gf/0qVLNW/ePDVu3FiTJ0+uUJBWNqxbsWKFTCaTxo4dqwcffNAZ6DRu3FgffvihnnjiCS1atEjbtm3TxIkT1aZNG11++eW66KKL1LVrV5lMJp/7LQlbpeLvh0cffdRjubJ/nhkZGR73wTud/fv3a+/evZKK91Ps37+/y/uJiYmaMmWKNm3apOHDh/vdfllff/21ZsyYofT0dJ111ll67rnnnA97PPfcc7rzzjv1+OOPa/369dq5c6d+++039e3bV1Lx99zDDz8si8Wiyy+/XM8++6wzzJo5c6bS09O1ceNGHTx4UDfeeKP+7//+T7fccovXZVol6corr3SZ6SYVLxt64403SpKeeeYZjRo1yq2e0WjUNddco5deekmSNGvWLM2aNUuXXnqpXnzxxdN+Hb744oty94jcu3evxo0b53w9ceJEn/+eAHUFwR0AAAAAADWUwWCQOTpK0umfgEfFLF26VPv27dOtt96qjh07Bns4XjkcjgotsVdSt4TNZvM646dsudPNCtq6davuuOMO575SH3/8sQwGg6ZPn15nw7uVK1fqgQcekM1mU1hYmK6++mqP5Ww2W6X3gHI4HD7N3PKl3Ny5c/Xqq69KKt7Da8KECZo3b54GDhzoUu7iiy/W8OHDtXjxYnXp0kXTp0/32mZ4eLheeuklvfbaa/rXv/6lhQsXauHChWrZsqXOPvtsdenSRW3atFGDBg3UsGFDxcTEKDIyUhERES7fP2az2eueZDabTYWFhcrLy1NmZqays7OVmZmphIQE9ezZ06Ws2WzWggULNG7cOG3cuFEzZ870+udzOna7Xbfffrsk6d///rdiY2N9qlfy51B2uc3ypKSk6NVXX1WzZs18Kp+ZmSmp+Ovy888/O8O6Y8eOqXHjxpo4caKuvfZaj0FQVFSUnn32WfXv31/PPfecjh49qr1792revHmaN2+eoqOj1bVrV7Vv314tW7ZUgwYNFBsbK4fDocsuu8ytvWeeeUYff/yxoqOjdfXVV6t3794ex1z2z3ru3LmaOXOmmjRp4tP1SsUB0cMPP+x8feedd2rq1KkaPXq0S7lrrrlG11xzjc/tnio1NVXTp0/Xd999pwYNGmjy5Mm6+eab3cLM9u3b691339W7776rmTNnqqioSA6HQ/PmzdOLL76oqKgoTZ48WTfccINLvaioKL322msaO3astm7dqqKiIj333HN69913dffdd+uKK65QWFiY27i+/fbbCl/TxIkTNXHixArVHTVqlMdAEIDvDA52gwSqlcVi0ZYtW9zOn3nmmeU+JVNbFRUVafPmzS7nevTo4fEDBwAAAFCW1WrVrl27XM517NhRZrPvz6ja7Xbl5+e7nIuKiqry/ZFQM9jtdo0YMUJWq1WLFi3yaYmwYDl48KBuvvlmt9kVoea6667TtGnTqi28KygocM6iKs8PP/yghx56SJL09ttvew1pn3jiCS1fvlxNmzbVp59+6vM4fvvtN919993O2VRGo1GzZs3yOMPn008/1aOPPhqwvcSqQkREhMfwzuFwaNasWRo9erTat2/vU1spKSl66aWXtHTpUp9mm4WHhysiIsJ5D6Xs95LD4VBhYaEKCwvd2jIYDOrfv7/GjBmjwYMHe2w7Pz9fq1at0rBhw3wauycvvvii5s2bpzlz5rjtc1aeHj16qLCwUKNHj3bZ+y0QDh8+rEsvvdTt70JcXJzGjx+vW265xeelCrOzs/Wvf/1L7777brl/Xr169dLAgQMrNZMqOTlZw4cPD9jfhXr16unTTz+t0Mw9T1JSUvTaa6/ps88+U0REhG677TaNHTtWMTExp6177Ngx5eTk6NFHH9Wvv/6qc889V08//bRatmzptU5mZqYmTJigdevWuZyPj4/XkCFDdP3116tXr16Vvi4ER037TBqIz+HecP+cGXcAAAAAAAAeLVq0SKmpqfrggw9COrSTpGbNmmnhwoX64IMP1LlzZ7Vr105xcXGKjY0NuRluDoej2saUmZmpMWPGOJfK88WYMWNOWyYtLc1tyT1/2O12PfTQQwoLC3MLd0aNGqXIyEgdPHhQ3bp1U1JSkuLi4hQZGVnh/qqCp6URDQaDHnzwQb/aadmypZ577jlNmjRJS5cu1ddff60tW7Z4DYUsFovPs9JKtG7dWnPmzFHXrl3LLRcVFVWp0G7RokV69dVX9fzzz/sV2klyzpgtLCyscP/efP/9926h3ejRo3X//ferQYMGfrUVFxenRx55RLfffrvee+89ffjhhzpy5Ijz/YSEBL300ks699xzKz3u9u3b66mnntILL7zg0kdF9O3bV1OmTAlIaLd582a98847+vLLL9W5c2c9/PDDGjFihOLj432q73A4tGzZMj3//POqV6+eZsyYoWuuuea0Pxfr1aunN998Uw8++KCWLVvmPG+xWJSdna0TJ05U5rIAhBBm3AHVjCcGXDHjDgAAABXFjDtUpbS0NF155ZV68sknK3UjH8GXnp6upUuXqnPnzmrbtq1iY2MVExMTcoEmShUWFmrr1q1KTk7W3r17lZ6eruPHj+vEiRPKy8tTfn6+CgoKZLFYVFRUdNqZeu+9957X5RgDZdWqVbrvvvv07LPP6pJLLvG7fufOnSVJ48ePD/h+mg6HQ2PGjNGvv/6qxMREPfvss26zJSvKYrFo9erV+vbbb/Xdd9/piSee0NChQwPSdgmHw6H09HTl5eX5vYysyWRSYmKiT7PgypOenq7Fixfr888/V1hYmAYMGKCrrrrK7yWU16xZo9mzZyslJUV33nmnbrjhBr/vBzocDr3++uuaM2eOLrzwQj399NNKSEjwqw2Enpr2mZQZd1WL4A6oZvzgcUVwBwAAgIoiuENVcTgcGjt2rC644ALnXlUAQpvNZnP+Z7fbnQGPw+Go8pmnX3/9tZ5//nm98MILOvPMM/2ub7fb9eijj+qOO+7weYlRf6Wmpuquu+7Syy+/rKZNm1ZJHyVf89oYii9cuFCtWrXS2Wef7fO+hWVt3rxZs2fPVl5enq655hpdccUVio6OrtSYNmzY4NwLEjVfTftMSnBXtVgqEwAAAAAAoIzCwkKNGDFC11xzTbCHAsBHJpPJ4/Kd1WH79u364IMPVL9+/QrVNxqNeuaZZwI8KlctWrTQRx99FJCb6t7UxsCuxC233FLhuhaLRd98840effRRdejQIWBjqupZpACCh+AOAAAAAACgjMjISEI7AD4L9NKWVaUqQzt4Fx4erv/7v/8L9jAA1CChOc8SAAAAAAAAAAAAqGMI7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAA1ksFgcDvncDiCMBIAAACg7rDb7W7nPH02R8UQ3AEAAAAAaiSj0f2ftFarNQgjAQAAAOoOm83mds7TZ3NUDF9JAAAAAECNZDAYZDabXc7l5uYGaTQAAABA3XDqZ26z2cyMuwAiuAMAAAAA1FixsbEur7Ozs4M0EgAAAKBuOPUz96mfyVE5BHcAAAAAgBorPj7e5XVBQYFycnKCNBoAAACgdsvJyVFBQYHLuVM/k6NyCO4AAAAAADVWdHS0TCaTy7nU1FTCOwAAACDAcnJylJqa6nLOZDIpOjo6SCOqncynLwIAAAAAQGgyGAyqV6+ejh075jzncDiUkpKiyMhIxcXFKSYmRiaTSUaj+7OrdrtdNpvN5ZzVavVYFgAAAKgKofqZtGRcubm5ys7OdptpJ0n16tVjf7sAI7gDAAAAANRoSUlJslqtysrKcjlfUFCggoICZWRkeK3rcDjkcDhczhkMBm4+AAAAoNrU1M+k8fHxSkpKCvYwah0eIQQAAAAA1GgGg0HNmjVjbw0AAACgmsTHx6tZs2YhHy7WRMy4AwAAAADUeCXhndlsVmZmpttSQ+U5dcmfqKioQA8PAAAAKFdN+UxqMplUr149JSUlEdpVEYI7AAAAAECtYDAY1LhxYyUlJSkvL09ZWVnKycmR1WoN9tAAAACAGstsNis2Nlbx8fGKjo4msKtiBHcAAAAAgFrFYDAoJiZGMTExkor3DLHb7W77hkhSUVGRtm/f7nKubdu2CgsLq5axAgAAAKH6mdRgMMhoNBLUVTOCOwAAAABArWYwGGQymTy+5ynMM5vNMpv55zIAAACqB59JUZYx2AMAAAAAAAAAAAAAQHAHAAAAAAAAAAAAhASCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAII7AAAAAAAAAAAAIAQQ3AEAAAAAAAAAAAAhgOAOAAAAAAAAAAAACAEEdwAAAAAAAAAAAEAIILgDAAAAAAAAAAAAQgDBHQAAAAAAAAAAABACCO4AAAAAAAAAAACAEEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAII7AAAAAAAAAAAAIAQQ3AEAAAAAAAAAAAAhgOAOAAAAAAAAAAAACAEEdwAAAAAAAAAAAEAIILgDAAAAAAAAAAAAQgDBHQAAAAAAAAAAABACCO4AAAAAAAAAAACAEEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAX4nJzczVkyBClpqYGeygAAAAAAAAAAACoQuZgDwDeFRYW6pFHHtGBAweCPZRyrV+/XkuWLNH69et18OBBWSwWxcXFqWnTpjrrrLN0xRVX6Oyzz/a5vSFDhlT4mt9++2317du3QnUBAAAAAAAAAACCieAuxNhsNh05ckQ//PCD3n77be3cuTPYQ/Jq586dmjZtmvbs2aObb75ZzzzzjJo1ayaLxaKUlBR98803ev/99/Xuu+9q4MCBmjVrlho2bFilY+rSpUuVtg8AAAAAAAAAAFBVCO5CxJ133qn169crLy9PNpst2MM5rW+//Vb33XefunfvrmXLlqlevXou7zdt2lTnnnuuRo8erb/+9a/68ccfdeONN+rDDz90K+tJQkKC6tev79eYEhMTFR8f71cdAAAAAAAAAACAUEFwFyJmzJihwsJCSZLVatWPP/6o6dOny+FwBHlk7pKTk3XvvffKbDbrxRdfLDeI69Spk6ZPn67x48dr7969mjFjhmbNmnXaPm6++WbdddddgRw2aqG8vDxdffXVmjZtWo1dItVms+nWW2/VqFGjNGrUqGAPBwAAAAAAAAAQRAR3ISIxMdHldZs2bbR48WJt2rQpSCPy7p///KcKCwt13nnnqUGDBqctP3jwYHXo0EG7d+/WF198obvvvlstW7ashpGiNsvKytIDDzygvXv3BnsoFVZYWKhp06Zp7dq1lQrtfvnlF40ZM6ZSY5k3b56GDBlSqTYAAAAAAAAAAJVDcBfCoqOjgz0EN3l5efrhhx8kSUVFRT7X69+/v3bv3i273a4ffvhBN910U1UNEbWUw+HQ8ePHlZaWplWrVunjjz9WWlpasIflt8zMTKWnp2v16tX66KOPtGfPnmAPSZLUvXv3YA8BAAAAAAAAAOo8gjv45cCBA7JYLJKkn3/+WTt27FDnzp1PW69FixbO43379lXZ+FD7LFq0SJMnT5bdbg/JpWN98euvv2rs2LFyOByy2+1V1k90dLTCw8P9rteoUSMlJSVVwYgAAAAAAAAAAP4guINf8vPzncdFRUX65z//qVdfffW09crOHiwJ/gBfDBkyRIsWLXK+zs3N1fvvv+9yLtR1797dZbwFBQX66quvNH/+/ID28/jjj7NPHgAAAAAAAADUYAR38EurVq0UGRmpgoICSVJ6erpP9Y4fP+48btasWZWMDbVTfHy84uPjXc6deeaZWrFihXJzc4M0Kv9ER0erU6dOLud69Oih7777TsnJyUEaFQAAAAAAAAAg1BiDPQDULAkJCXr++efVs2dPde7cWXfffbdP9bZu3eo8PuOMM6pqeKgjzGazEhISgj2MSmvYsGGwhwAAAAAAAAAACCHMuIPfLr74Yl188cU+l8/NzdXq1aslSfXr19eAAQP86m/NmjVaunSpNm7cqEOHDqmgoECJiYnq3bu3rrvuOp177rl+tReqrFarDAZDsIdR7axWq0/nTlV2vzur1aqioqKAjqs6lN3vzmazVfgaSr5elWkDAACgrqro51EAAAAgUPhMWqquXndZBHeocp9++qny8vIkSaNGjVJYWJhP9Ww2m6ZMmaKPP/5YkhQVFaUGDRrIbrfrwIEDOnDggD7//HNdd911euKJJ2QymarsGqrD77//HuwhhIzt27eftkzZvRL37NmjyMjIqhxSlSi71GdKSoo2b95coXb27NlT6TYAAABQypfPowAAAEBV4jNp3UVwhyqVk5Oj//znP5KkpKQkjR8/3ue6jz/+uL744gvdeeedGjlypNq1a+d8b926dZo2bZr++OMPffjhh8rPz9fzzz8f8PEDAAAAAAAAAABUF4I7VKnZs2crIyNDYWFheuGFFxQfH+9TvS+//FLp6el6++23ddZZZ7m936dPH7333nu69tprlZycrM8//1znn3++rrrqqgBfAQAAAAAAAAAAQPUwBnsAqL2+/fZbvfPOOzKbzXruuef82ovuzz//1GOPPeYxtCsRExOjJ554wvl6zpw5stlslRgxAAAAAAAAAABA8DDjDlVi165devDBBxUeHq7Zs2dr6NChPte97bbbdOTIEY0ePfq0Zc8991x17txZO3bs0MGDB7V69WpdeOGFlRl60HTp0sXn/f9qE6vV6rZec9euXWU2l//jKTw83Hncrl079ejRo0rGV5ViYmKcxy1btqzwNRQUFLi1cfjwYX355Zdat26d9u3bpxMnTigqKkrNmzfXkCFDdNVVV6levXqVvwgAAIAarqKfRwEAAIBAqcxn0ry8PF133XWaMmWKX5NnQonNZtPtt9+ukSNH6oorrtDvv/8e7CEFFf8SQcAdPHhQ48aNk81m06uvvqr+/fv7Vf+WW27xq/ygQYO0Y8cOSdIvv/xSY4M7s9lcJ4M7T3z5WhgMBr/KhyKjsXTSs8lkqvA1lPwCL2njgw8+0FNPPaXCwkKXcidOnFBaWprWrVunN954QzNmzNDgwYMrfgEAAAC1VE39fAkAAIDaw5fPpFlZWXrwwQe1d+/eGvsZtrCwUNOnT9e6des0evTogDxAd+LECX3xxRdavXq1duzYoePHj0uSEhIS1KVLF5133nm6+uqrXSZWhBKCOwTUoUOHNGbMGOXm5uqtt96qlllQXbt2dR7X9SQeeOutt/T000+rb9++GjVqlHr27KnGjRvLYrHo999/1xtvvKEffvhBR44c0cSJE/XCCy/osssuC/awAQAAaqy8vDxdffXVmjZtmvr27Rvs4VSIzWbTrbfeqlGjRmnUqFHBHg4AAAC8cDgcOn78uNLS0rRq1Sp9/PHHSktLC/aw/JaZman09HStXr1aH330kfbs2ROQdq1Wq1599VW99tpr6tq1qy655BKNHTtWsbGxOnr0qNauXauPP/5Yq1at0ksvvaRHH31UV155ZUD6DiSCOwTMgQMHdOuttyo3N1dvv/22OnfuXC39tmjRwnlckpwDddFPP/2kZcuWadq0afrLX/7i8l50dLT69++vfv366ZlnntFbb70lq9Wqhx9+WF27dlWrVq2CNGoAAICaKysrSw888ID27t0b7KFUWGFhoaZNm6a1a9cGLLSr6U84AwAAhJpFixZp8uTJstvtcjgcwR5Ohfz6668aO3asHA6H7HZ7wNvPz8/X+PHjtWbNGs2ePVvDhg1zK3PhhRfqb3/7myZOnKhff/1VDzzwgPbv36+JEycGfDyVQXCHgEhJSdGYMWNUVFSkd955R+3bt6+2vsv+Yy8vL6/a+gVCzeeff66JEye6hXZlGQwGPfjgg1q7dq22b9+u/Px8TZ8+Xa+99lo1jhQAAKBm4gnn8tWWJ5wBAABCzZAhQ7Ro0SLn69zcXL3//vsu50Jd9+7dXcZbUFCgr776SvPnzw9I+0899ZTWrFmjzp07ewztStSrV0/z5s3TsGHDlJ6erpdeekmtW7fWiBEjAjKOQCC4Q6Wlpqbq1ltvldVq1cKFC9W2bdtq7b9sOh8dHV2tfQOhoGS/vw4dOujvf//7acubzWaNHz9ed999tyTpf//7n/bu3as2bdpU5TABAABqLJ5wPr3a9IQzAABAqImPj1d8fLzLuTPPPFMrVqxQbm5ukEbln+joaHXq1MnlXI8ePfTdd98pOTm5Um2np6fr008/lSRFRESctnxsbKzuuusuPfbYY5KkGTNmaPDgwYqNja3UOALFGOwBoGZLT0/X2LFjZbFYAhLavfLKKxowYICuvvpqZWRk+FSn7Cy7U394AXXBueeeq/Xr1+udd97xefPWwYMHO4Nuh8OhpUuXVuUQAQAAarSSJ5yXLFmizz//XO+//75GjhwZ7GH5peQJ58WLF+vzzz/XRx99pNtvvz1g7fv7hHPjxo0lSS+99JI+//zzgI0DAACgrjCbzUpISAj2MCqtYcOGlW5j69atstlskqSdO3fq8OHDp60zbNgw573UEydOaMWKFZUeR6AQ3KHCMjMzdfvttys3N1cLFizwabZOenq67r//fo/vrV+/XrNnz9bRo0e1fft2ffLJJz6NIz093XncoUMHn+oAtU1sbKzq16/vc/nw8HCdc845ztebN2+uimEBAADUCvHx8erUqZPzv169eumpp56qUXu0lTzhXPJfjx499OCDDwZkm4OKPuFcYsaMGcrJyan0OAAAAFA3lV0VIz8/Xx9++OFp68TExLhkGtu3b6+KoVUIwR0qxGKxaMKECTp48KBef/11nwOzDRs2aOfOnR7f27hxo8vrwsJCn9osO422R48ePtUBIJebNLt27QriSAAAAGoennAuVduecAYAAEDN0rNnT5eH6po1a+ZTvbi4OOdxUVFRwMdVUQR3qJCpU6dq06ZN+te//qVu3br5XO+rr75Sq1atPL5XdpnLsLAwXXXVVT61+dNPP0kqnkE0aNAgn8cC1HUlyxNJxTNoAQAAgIqobU84AwAAoGZJTEzUe++9pzvuuEOPPvqorrzySp/qlV31oWnTplU1PL8R3NVSBw8e1Lhx49SrVy+NGDHCGW4FwnvvvadPP/1UU6dO1YABA3yut3nzZq1YscJrcDdgwAAZjcXfkldccYVPS2+mpaVp7dq1koqf2KwNT7wC1aVkjzup+AYLAAAAUBG17QlnAAAA1DxnnHGGHnjgAY0ZM8a5skN58vPztW/fPufrc889tyqH5xeCuxCWlZXlPD5x4oRfdR966CF9//33ysvL086dOzVhwgSlpaVVekw7d+7UM888o1GjRunaa6/1qY7D4dD333+vO++8UzabzWtw16JFC11//fWSXAOF8sydO1dWq1VxcXGaNGmSbxcBQJKcyxlJvv+dAwAAAE5V255wBgAAQO23cuVKWSwWSVK3bt3Uq1evII+o1OljRwRFenq6du/e7Xz97bffqnv37j7X37p1q8vr/Px8bdmypdL/GHr22WdVWFioNWvW6LLLLvOpzvHjx12CR2/BnSQ9/PDDSktL0+LFizVy5Ej17NnTa9kFCxbos88+U3h4uGbNmqWkpCSfrwOoLfLy8vTss89q7dq16tmzp5588kmFh4f7XLdE2aedAQAAAH+VPOHsq1B+whkAAAC1W2ZmpubOnStJioyM1LRp04I8IlcEdyEiNzdXNptNmZmZ2rFjh1588UUVFhY633/llVdUWFioK664Qk2aNJHZbFZkZKTXG/Tdu3fXr7/+6nwdFhamzp07V3qcR44ckVS8FGdFlRfcRURE6N///rfmz5+vsWPHqm/fvrrooovUtWtXNWrUSFarVbt27dL777+vVatWqVWrVpo2bZr69+9f4fEANdnMmTP1wQcfSJKSk5PVt29fjRw50qe6x44dcx63bt26KoYHAAAAeBTKTzgDAACg9jp48KDuvfdepaSkKCEhQbNnz/Zr0lR1ILgLEePHj3cJ2k5ls9n0+uuv6/XXX3eeK1my0pNnn31WTzzxhNauXavGjRtr0qRJ5QZm1SUsLOy0s/5MJpPGjRuna665Rp999pmWLl2qOXPmKDMzU5GRkWrQoIG6deumZ599VsOGDfN5dhFQGy1fvtzldUpKis919+zZ4zwOtV9OAAAAqL1C/QlnAAAA1B4Wi0XHjx/X9u3btWrVKn3++eey2+264YYbNGHChJBcyY/gLkQsXLgwoO01a9ZMr776akDblKTFixcHvE1vGjRooNtvv1233357tfUJ1DRWq9Xl9dlnn+1TPYfDoS1btjhfDxgwIKDjAgAAADypCU84AwAAoHZYuXKl/vGPf7ica9CggWbOnKkLL7wwSKM6PYI7AHXW0qVL9dJLLykjI0MDBw7U1KlT1aBBg2APyy8dO3bUxo0bJUnnn3++zwHcli1blJGRIUlq0aKF+vXrV2VjBAAAQN1VE59wBgAAQO3Qr18/vf/++8rOzlZqaqo2b96sVatWady4cerevbseffRR9e7dO9jDdENwB6BGcjgcHo99tWHDBk2aNEl2u12S9NVXX+no0aNauHChDAZDwMZZnspegySNHj3aGdwNGjTI53oLFixwHv/tb3+rtmsGAABA3VFTn3AGAABA7RAbG+uyl/KNN96o/Px8LVy4UHPmzNENN9ygv/71r3rggQdkNBqDOFJXoTMSAPCRxWLR4cOHna/92detxMqVK52hXYm1a9dq7969lR2ez1JTU53HFbkGqTi4K5kt5+vYf/nlFy1btkyS1KtXL/3lL3+pUN8AAABAeUqecH7ttdc0depUXX311bLb7Ro3bpxGjx6tDRs2BHuIAAAAqGOioqI0btw4zZ49W5L0xhtv6KGHHgryqFwR3AGocRYtWuSyt9sHH3ygoqKigLR9aphXVX788UelpaU5Xy9ZskRZWVl+t2M0GvXvf/9b/fv31/vvv68PP/yw3Nl7GzZs0D333CO73a5OnTrp3//+N7PtAAAAUCVKnnC+4IILdOONN2rmzJn67rvvNGnSJP3++++64YYb9Oyzz1bbZ3AAAACgxKWXXqqrr75aUvG92f/+979BHlEplsoEENKysrJ06NAh2e12HT9+XKtXr9bbb7/tUmbLli267rrrdPPNN6tt27aKjY1VWFiY2rZt67XdoUOH6s0333S5SdCpUye1adMm4NeQl5en1NRUORwOZWVlad26dZo/f75LmQMHDmj06NEaO3asOnXqpHr16jnHdDqxsbGaP3++3nrrLc2cOVOvvPKKhgwZot69eyspKUnh4eFKS0vTihUrtGzZMtntdo0aNUoPPvig6tevH/DrBQAAALwpecK5devWuvvuu/XGG2/oyJEjmjVrVrCHBgAAgDrmb3/7mz777DNJ0osvvqgrr7xSsbGxQR4VwR2AELdy5Uo98sgjpy23fft2TZ482fm6efPm+vbbb72W7927t1544QW9+OKLSk9P1znnnKMpU6bIZDIFZNxlbdmyRWPGjDltuf3792vatGku5/744w+f+jCZTPrrX/+q6667Tp9//rn+97//aeXKlTp27JgMBoMaNGigZs2aacKECbrkkkvUsWPHCl0LAAAAEAglTzh/9tlnWrJkiXr16qUbb7wx2MMCAABAHdK+fXu1a9dOe/bs0fHjx/XFF1/o+uuvD/awCO4AhLZRo0Zp1KhRVdL2sGHDNGzYsCppu6y+ffv6HMBVVmxsrG644QbdcMMN1dIfAAAAUFGh+oQzAAAA6o4zzzxTe/bskVQ8iSQUgjv2uAMAAAAAANWu5AlnSc4nnAEAAIDq1LBhQ+fx77//HsSRlCK4AwAAAAAAQXHmmWc6j1euXBnEkQAAAKAmO3DggJYuXarDhw/7VS88PNx5nJmZGehhVQhLZQIAAAAAgKAIxSecAQAAULNs3rxZY8eOVW5urhITE7VkyRI1aNDAp7o5OTnO4/j4+Koaol+YcQcAAAAAACqlNj3hDAAAgJrl6aefVm5uriQpIyNDS5Ys8bnukSNHnMetWrUK+Ngqghl3AAAAAACgwmrbE84AAACoWU5duaEkxPPFH3/84Ty+4IILAjamymDGHQAAAAAAqLDa9oQzAABAXbJ06VJdfvnl6tOnj+655x4dO3Ys2EPyW9nl1yXpwgsv9KnegQMHtHfvXklSRESErr766kAPrUII7gAAAAAAQIXVtiecAQAAagqHw+Hx2FcbNmzQpEmTtGfPHmVnZ+urr77S3XffXaG2Kqqy1yBJl156qfO4bdu26t69u0/1PvzwQ2eft956q5o2bVqh/gON4A4AAAAAgCDhCee9kkLrCWcAAICawGKxuOwvnJKS4ncbK1eulN1udzm3du1a52e06pCamuo8rsg1SNKdd96pJk2aSPI9/Nu5c6feeOMNSVKfPn109913V6jvqkBwBwAAAABABfCEc7Ha9oQzAABATbBo0SJZrVbn6w8++EBFRUUBafvUMK+q/Pjjj0pLS3O+XrJkibKysvxuJyEhQa+//rqaNGmivXv3as6cOeVew7p16zR27FhZLBadc845+te//qWwsLAKXUNVMAd7AAAAAAAA1DSennDu16+fX22U94Rz27ZtAzLO0wnUE85Lly7VoUOHasUTzgAAAKEmKytLhw4dkt1u1/Hjx7V69Wq9/fbbLmW2bNmi6667TjfffLPatm2r2NhYhYWFlfu5cujQoXrzzTddPpN26tRJbdq0Cfg15OXlKTU1VQ6HQ1lZWVq3bp3mz5/vUubAgQO6/vrrNXToULVo0UKxsbGSpJYtW562/Y4dO+rTTz/VjBkzNG/ePC1dulSjRo1S165d1ahRI2VnZys5OVnffPONVq9erejoaI0fP14TJ04MqdBOIrgDAAAAAMBvnp5wHjlyZED+0R/MJ5z/+te/Kj4+3q92Sp5wvuOOO5xPON99990yGj0v8rNu3TrdfffdziecX3rppZC7WQIAABBKVq5cqUceeeS05bZv367Jkyc7Xzdv3lzffvut1/K9e/fWCy+8oBdffFHp6ek655xzNGXKFJlMpoCMu6wtW7ZozJgxpy2XkpKiN9980+Xcf//7X5/6aNiwoWbPnq1//OMf+vTTT/Xtt9/qzTffVE5OjqKjo1W/fn2dccYZmjJlioYNG6b69etX6FqqmsFRnWtwAJDFYtGWLVvczp955pkKDw8PwoiCy2q16sCBA4qIiJDBYJDD4VBiYmKV/HIAAAAATlVUVKTNmze7nOvRo4dLkOTtCWeLxeJSr2vXrn494bxhwwbddNNNbk84L1q0KOCfh7094Zydne1SrlWrVho7dqw6deqkevXqOcfki6NHj2rGjBlaunSpWrdufdonnMeMGROSTzgDAABUN18+k9YV3D8nuAOqHT94AAAAgNDhy02STz/91KcnnE91uiecJWnp0qVuTzi3aNHC775O55dffvHpCWdP/vjjD7/K7969W59++qnWrVunffv2uT3h3K9fv5B+whkAAKC6EdyV4v45wR1Q7fjBAwAAAIQObpIAAAAg2PhMWor75+xxByDILLYi7TuRqpTMgyq0WhRhDlfLes3UOqGFwk117xcTAAAAAAAAAKDuIrgDEBS7j+7Vsl2rtCZlg4rsVrf3w4xm9WvZW5d3HKwODdtU/wABAAAAAAAAAKhmBHcAqlV+UYEWbvpEK5NXl1uuyG7V//b9qv/t+1VD25+nW3qOVlRYZDWNEgAAAAAAAACA6kdwB6DaHMs7oenfzdWB7EN+1VuZvFq/H96txwfdowbRCVUzOAAAAAAAAAAAgswY7AEAqBvyiwoqFNqVOJB9SNO/n6v8ooIAjwwAAAAAAAAAgNBAcAegWizc9EmFQ7sSB7IO6Z1NnwZoRAAAAAAAAAAAhBaCOwBVbvfRvafd085XK5L/p91H9wakLQAAAAAAAAAAQgnBHYAqt2zXqpBuDwAAAAAAAACAUGAO9gAA1G4WW5HWpGwIaJtrUjboznNuVrgpTJI0bdUcpWalyWw0y2Q06ZxmPTSm1zVu9XIsufr3L285y5kNpuL/G026ttsVSoiq51Zn86HfdSDrkLNccV2jkmIaqWPDtm7lrXabDpQZS9k+YsKiZTTyvAQAAAAAAAAAwDOCOwBVat+JVBXZrQFts8hu1f4TB9ShYRtJUpO4RG09/Ifz/czCbI/1CqyFWn9wi8f3Rpwx1OP5H/ev06o/f3I7f16rc9Sxv3twl1WQrQeWP+WxrbnDnlTTuCS38ws2fqQf962VyVga8pkNJp3dvIdu7DHSrXx2YY5eW/+ezEazMxg0GY0yG80a1eUyxUfGudXZdnin0rIPnwwfT9YxmJQY01Bt67d0K2+123Q490iZPownx2ZWuClMRgMBJAAAAAAAABAIBoNBjRo1UkREhAwGgxwOBxMA6jCCOwBVKiXzYJW0uz+zNLhLjG7o8p7JaPJYx2a3eW3P3zpmo+cfn9ZyQkpvfeRa8jyGjW0btPJYPt9a6HUW47COgxUv9+Du+z/X6Lu9P7udv6B1X03sN9bt/In8TN279AmPfbx4xTQ1iU10O//2xo+1JnWjS/hoMpp0drMzdW334W7lswtz9NbGj0uDxJN1zCazrjzjYsVGxLjV2ZGxW4dzjzqDSpOhuK+G0fXVsl4zt/I2u03H8zNd+zgZRvLhBwAAAAAAAKHAbDardevWwR4GQgTBHYAqVWi1VE27ttJ2w0yuP8q8h2r+B3dWh+c6/pYvHpeXOl7CPrMhcAGkt3H5O6byxpVZmK0jecfczrdKaO6xfF5Rvn7Y94vH9y5uf77H4G5l8mqPdS5s00//6Hur2/mjecc18cvHPfbxr+EzlBTT0O38wt8+0boDm50BZEmg2LvZmbq662Vu5bMKc/TfzYtcwsqSpVKv6DREMeHRbnV2HtmjI3nH3WZANohOULO4xm7lbXabsi25Ln2YjCZmPgIAEAA83QwAAAAglBDcAahSEebwqmnXVNpukc01ZKpI4OXvDDqTl5s55fbhdVz2gIypeFz+XXtFAkivdbzNTgzkn0cgg1Qv4zqen6m0nMNu55vXa+qxfK4lT9/u+dHje0PaDfAY3H21+3ut3ver2/nBbQfo7+fe4nY+I++Y7v5yitt5o8Gofw2frkbRDdzee3fTZ9qYts05O9F8Mhzs3ay7hntYGjarIFsfb1vqPjvRaNIlHS5QdFiUW53kY/t0PP9EaVh5cgZkQlQ9j6Go3W5XgbXQ2YfRYJTBYHArBwBAdeLpZgAAAASbxVakfSdSlZJ5UIVWiyLM4WpZr5laJ7RQuCks2MNDNSO4A1ClPC1fGAit6pXO4srIO+rynr/BkuR/uBTMWX3lB17+zaALZB9+h4MBXbrUSx+28kJOz+Gr19mJ1RII+9eH3WH3Oq6M3KPan3nA7bynZU4lKduSq692f+fxvQva9PUY3H3+x0r9tH+d2/mL2p2nO8+5ye38odwMtyVYS2YnvjjsSdWPqudW573Ni7U5/XfnMqqmkzMOezXtpss6DnIrn1WQrSV/rHCWc85qNJh0UbuBigyLdKuz93iKMguzTwaPZmewWC8iTg2iE9zK2x122e12mYwmgkcAAAAAAFBhu4/u1bJdq7QmZYOKPNwvCjOa1a9lb13ecbBz2yDUfgR3AKpU64QWCjOaPf7iqagwo9ll+cW+LXqrS6OOsjlsstptauUlLIyPiNWwjoNlddhks9tls9tktVtlddhkNnn+cdgouoFaxjeV1W47Wa/4v2gPN/+liu6j51+IE9AAslqW4/Q/5AzYdTg8z2asyLiqJxD2f+nSagmE/bwOf2akWu1WWe1Wmbws+5mWfVjJx/a5nW8UXd9j+azCHC3ZscLjewNbn+MxuPvs9+X6OWW92/mL25+vv/W50e38wex03bdsmqTiWY9l93V84fIpSoiMd6vz/pYl+j1jl3NWYsmsxl5Nuumi9ue5X0dBtpbt+q50ydYy9S5s08/jbOaUzIPKLsx1XYLVaFJceIzqeRiTw+GQJMJHAHUeTzcDAACguuUXFWjhpk+0Mnl1ueWK7Fb9b9+v+t++XzW0/Xm6pedoRXm5L4nag+AOQJUKN4WpX8ve+p+HZQErql/L3i43UXo26eJTvUYxDTS293V+9XX72df7Vb5t/ZZ6feQsZ8BXEgza7DavN35GdrlUF7TpK6vN5gwfbXab2tRv4bF8fESsLm5/fnH7Zcrb7DavYVRCVD01iU10li0ZU4Q5wmP5QIZRXoOiAO4HWJEwKmCz+gK4dGkgg9RAzoD09n0VmoGw//sz+v29W6a83WGX3WZXka2ouI6XADI1M02/Z+x2O18/0n2WoSSdKMjSJ9uXenyvX8veHoO7D7d+oV9SN7qdv6T9Bbqjzw1u51MyD+qB5U+VLo1qMDpnQM669FHFRcS61fl425fakZHsuqSqwaSeTbrqwrb93MpnFWRr5Z7VzvCx7BKsA1r18fhz8WDWIeUVFbj1ER0epdhw970vAaCieLoZAAAAwXAs74SmfzdXB7IP+VVvZfJq/X54tx4fdI/HFYJQexDcAahyl3ccHNDg7vKOgwPWVqCZjCbFe7jZXZ4uiR39Kp8U28jjLKDyjD/nZr/Kt6vfSq+MeMYZ8Fnt1pP/9z478crOF2tgqz6lQeLJULFDA897xsSFx2hQm/5ufdgcNq+BSVxErBpG1XcJRK12m8K8jKlaQpwK7AforU4gQzWvew4G8Dq8fX29fY8EcnnUin2t/LyOaggggzmT0+awyyGHc9ZjYZn3vM3C+/N4ijan/+52Pi4i1mNwdyw/U+9vWeKxrT7NengM7t7dvEhrD2xyO39Zh0H669l/cTu//8QBTV75rDPgKwkfTUaTZl78sMd9Jj/dvky7jv7prFMSKPZo0lkDW53jVj6rIFvf7/3l5J6RpXs6mowm9W1xlsI8XMehnAwVFBXKbCrtw2Q0KcocydORQJDxdDMAAACCJb+ooEKhXYkD2Yc0/fu5enroQ3w2rcUI7gBUuQ4N22ho+/NOe3PEFxe3P58nnquB2WT2+8mdMxt39qt8k7gkTeg7xq86d/W7za/y7Rq01otXTHOdAXmacPCKM4aob4texUHiyfDRarepc6N2HsvHhsdoQKs+Ln0U1/O+/1ykOVJxEbGlYaXdJpvDXrHZiUFcjtNrAOllTBULIL2EaqEapAZov8zquI6K7c9YDcF2Bb53LbYi6eSsx7K8BZC7jv6p9Qe3uJ2PCov0GNwdyTuuhZs+8djWgqv/6TG4e3vjx1p3cLPb+WEdB3uc/b3/xAFN/faF0lmGRrMz8Jsx9AGP+0wu+n259hzb7zY78cwmndW3RS+38lkF2fopZX2Z5VfNzuVYezc70+PX+EjuMVlsFpdA1Gw0KdwUzhKCqJF4uhkAAADBtHDTJxUO7UocyDqkdzZ96veD/ag5CO4AVItbeo7W74d3V+oXU/P4Jrq556gAjgq1XbgpTE1iE/2q06tpd7/KN49vonv73+5XnUkDx7mdczgczj3HTtWufmu9cNnjzhmGJeGjzW6T0ct+cpd1HKQ+zXuUhpUn63VN7OSxfExYtM5p3tNltmRJPW/LP4YZwxRhjnCGjw4Vj79CIY6XPrzOuKtAOOhvEFeR/Rn9D6P8u+7iOoFZSjZU92esLTNS/b0Oi61IuUX5Ht8zynMA+XvGbm1M2+p2Ptwc7jG4y8g7pjc2fOCxrbdGzfZ4/a9veF8bPIScV3S6SLf2usbt/N7jqXr6h5c8zIA06skhkxTpYYnmJTtWaN+J1NIg8eSejt0an6Gzm53pVj6rIFvrDm4us/xq6b6OPRp38fg1Pp6fKavd6taH2Wj2+nMUtQ9PNwMAACCYdh/dG5CJDZK0Ivl/Gtx2ABMcaimCOwDVIiosUo8PukfTv5+rA1n+3yxpHt9Ej194DzdJUGsZDAavs4MizOFqWa+ZX+2d2+Isv8q3SmiuB84b71edhy/4h8tru90uq93q9Tra1W+lmRc/7AweS5dVtXutc3GH83VW026uS7DarDqjUXuP5WPConRWk67OWY8lsxrtDruMXsJBo8Ego8Eou8Puct7fQMYgg9c+vIZqFQggvfdh93i+IvsB+nvtXgOvCoSDgZzV5/eSuIFcHjWogXBFZll6q+NfIGyxWXSiIMvje94CyK3pO/Tboe3u5Y0mj8Fdeu4RvbL2HY9tvT16jsexvbJ2oTambXM7P+KMobrlrNFu5/ceT9GsH/9TZinV0hmNjw+6R+Ee9pn84o9vlJqVVhwIllmCtWtSR/Vs0tWtfFZhjjalbXcLH00Gk7omdvQYKGYX5sh+coZ22SVYvf1cgCuebgYAAEAwLdu1KuDt3dXQv9WpUDMQ3AGoNg2iE/T00Id82lOkrIvbn6+be44itANCnNFoVLjR/WZ2iaiwSLXzsuehN56WLSxPm/otNfnCu/yq8/igeyVJdoe9OHx0FC95Gmb0vAxgu/qtNG3I/SfDwdL9H+3lBJBD2g1U98adT5nRaPX6ZFx0WKS6JXUqDSzttuJ98hwOr33YAzSLzGQweu3DagtMAGkwGLzOcvJ7Npy3PuS9D38DyHJDTn9ni1bDPpPVMyM1cH14//OowIxUr9fuXwBZYLUoI/eox/e8hWS/pW3zuAekQw6Pwd2h7MN66Zc3Pbb1zjUvKlzu/by45g1tOuTex8gul+rGHiPdzu89nqK5P7/hnPVoNpqdS6VOvmCixz1Jl+1cpbScwy7BoNloVudG7dW98Rlu5bMLc7Tt8M7ScPPkHpBmo0kdGrbx+PXKOzm7tKQPYzk/dwKFp5sBoFTZlT48/fy1O+yyOxySw+FcVaOkhrelsgutFtlP7qFctkKYyexxWXGrzao8a4FbHwZJ9SLjPfaRWZDl/KzhkMPZR3R4lMdlxQushcUPFDlcr8Gg4q0bPEnPyShehl2uX6eEyHjFR8a5lc+z5Cs998jJsmWvw6B2DVp57GPfiVQVWi2l132ym6SYhh6XY84uzNH+zINufRgNRnVL8ryiys4je5y/bx1yOPtoHt9YjT2sSnMiP1O7ju11WwXGaDCoT/OeHvvYfOh35Vhy3fpoU7+FWsQ3dSt/NO+4th3eWbzajEr7MRqMuqBNX499/Jr6m7IKc0qv+2S1jg3bqk39Fm7lD+ce1YaDW9z6MBlMurTjhR77+GHvL2UePCu9jm5JnTz+rk/LPqyfU9Y7v1YlvZiNJo3scqnHPr7e/YOO5Z9w6+Ospl3VJbGjW/nUrDR99+eak2VL+zEbTR4/80nFq1gczTvu9nfwnBY9PW5tsv/EAX21+/uTfwedI1OY0azbz77eYx8fbf1Ch09+Ri77d3BAqz7q3cx99aI9x/ZryR8r3P4OhhnNmthvrMc+Fv72iQ7lZJSWP1l3UNv+Hh9Q3n10rz7a9qVO/VqFmcL0oJeHk19b91+lZR92+R6Riu8/DmjVx638joxkvbv5M7evVbgpTFMH/5/HPv61ZoFSs9LUPL6Jc9sXi61Ia1I2eCxfUWtSNujOc25mG4NaiOAOQLWKCovUuD43aUjbgVq2a5XWpGxQkYebaWFGs/q17K3LOw7mpgiAamE0GGU0GWWWWZL7cn4lYsKj1TnR84w/bwa17e9X+XYNWnv9B4A304c+4Awey+65GOFhaUJJal+/taYMuqd0ZuLJenYvS7ZK0oVt+6lLUkfXQNFuVdv6LT2WjwqLVKeG7Ur3mDzZh8HLzCvJ//0A/Z2hV5E63mYzmowm7yFngAJIo8HoNSgK1NKlBoP32aJ+z+orJ4D0Plu0OpbE9TYjteqXR61IIOzvjFRvX9t8a4HXGWbe6qw9sElbD//hdv7qLpd5DO4OZB3SP396zWNb/732XzJ6+Cvywo+vakv6DpdzZqNZI7tcquu6D3crv/d4il7+9e3SZU5NZudSqQ+cN97j13jF7v9pcNv+znCyKp9uttlt2nBwq/PmT8t6zdTUww3hY/kntCMjWaU3XU8uMW0wqV/L3h772XBwq3IsuWVuRBX/v139VmqV0Nyt/JHcY9p0aLvLbXaHQzIZjRrSbqDHPn5OWa/MguyTZUtvdHZu1MHjTef0nAz9mrpJZW9dlVzHFWdc5LGPVXt+0vGCzDJ9FOvRuLM6edhH+GDWIa3ev1YOh1z6MRvNuqbbFR77WLZzlY7mnyhz3cX/P7vZmerq4cZ2SuZBfZO8WsW3wUtvcpqNJo3xsBSwVLy3aMkNy7I37/q17OUxoN97PEVLd64qE0oU/z/MGKY7z7nJYx/vb1msQzlH3Po4v/W56tO8h1v55GP79NnvX0llvlYOSeFGs+4dcIfHPhZs+FBpORk69Ws1pN1Aj9+LO4/s0Qdbl5zy51H8bzZvD0y9svad0pVWylzHZR0v1Hmtz3Ur/3vGLr298RO3r1W4KVzTL7rfYx9zfp6vlMyDbn2MOGOoBrcb4FZ+a/ofem39f92+VhGmcD1/2WMe+5j5v5e1/8QBtxvho7peros7nO9WfvOh3/XSLwvcwqhIU7j+PeIpj308uWq2/jyeUnrdJ/v4y5kjNKzTELfyGw5u1Qs/vep2IzzCHK43r37BYx+PfD1Tycf3uZ2/uecoXdn5YrfzG9O26dn/vex2PsIcoYWj53jsY+q3L2jP8f0+97Ep/Xe/+3jmh3/71ce2wzv97mP2T6/71cfvR3b73ce8Xxf61cfOo3/63ccbGz7wq4/k4/s1a/UrfvXx382LvPbhKbjbeyJV//plgcc+vAV3n25f5rUPT8FdSuZBj0vDR5gjvAZ3S3d+67UPT/ejDman6/0tSzz24S24+3bPjx77iAmP9hjcpecc0ZIdX3vsw1tw99P+dR77aBRT32Nwl5F3TCuT/+fehynca3C3/uAWj320SmjmMbg7XpCpn/av89jHRI312Me2wzs99uHt3+CZhdketw+IMHl/qDj52D6PffRq2s1j+dyiPP1xJNmvPlKz0rTn+H61L/Pw8r4TqR7vgVZGkd2q/ScOcO+0FiK4AxAUHRq20V0Nb9Od59ys/ScOaH/mARXaLIowhatVveZqldCcp0UAwE9Go7F4lo4PPz9jI2LU3cM/4MoztL37DarydGzYVjOGPuBXnWkX3e+cyejc19FhU7SXWdft6rfSw+f/w20GZHkGtuqjjg3buvXRqp77TXBJijSHq21CS+dszOJ69nL3RgtUqFZuAOnnPnpegyUvIVHxuAKzrKjZaPY75PR7/8ByZm35GwiXF6T6fR3MSPVpXOW1k1uUr70nUj2+Z/Ty5/HniRRdbCr+mVXVTzebjCZ9sn2p8waQt5uifx5P0ZyfX3c7H2GO8Brcfbj1c683Ez0Fd/syD+g/69712Ie34G7x71977cNTcJeadUgLN33isQ9vwd3y3d977CPcFOYxuEvLydDH25Z67MNbcPf93jUe+6gXGe8xuDuce1RLPQS6EaZwr8HdmpQNHvtoGpfoMbg7mn9C3+392WMf3oK739K2e+yjfYNWktyDuxMFWfo19TePfXiz40iyxz48hfOSlG3J1ZZ090C/vD72Hk/x2Me5LTzP3MkrKvAYLJXXx6Hsw6XBnct4czyWL7RZlJZ92K8+TuRn6kjeMbfz+VbP+9IW2a3K9LBktKWcPvKLCpwzo8ry9nPRIYeKTs4IK8tk8/655NRZJWXf8Us5D3iVU4k+6IM+qqGP8h6O9Fzef/Thfx+JMQ2d5zz9zgqE/ZkEd7URwR2AoAo3halDwzb8ggEASJJzry9fxUfGeXy6szyenl4vT+fEDnr20sl+1Zk6+F4VlQSJZfZ0jIuI9Vi+Xf1WmjRwXGmQeLJ8efq16K129Vu59dE8vonH8uGmcDWPb+Lso6RemJfwSvJ/yc+KzICsjlmW/u5r6G9AVlzHv/C1IkFqjZqRWqEgNXAzUpvENHIeV8fTze0atCoTUtSsG3304bvadjORPuijrvbhPcj03oe3Hz/0QR+h0oc3/v7qpI/A9lH2822h1eLvkHxSaKuadhFcBHcAAABAgEWGRcqfnVkTouqpb4tefvVxVZdL/CrfLamTZl8+1a86jw+6RxZbkXOZ05IZhwlR9TyWb1u/pe7ud5tL+FjespOS1Kd5T7Wq19ytjyYe9l+RipdmS4ppKNvJZV5L6pU3Uz9QoVptCSArdh3+LhHq/Z+agZqdWN51lN2HqDqebk6MLn2auqbd6KMP3/vwpqbeTKQP+qj9fVQgHvS7Cn3QB31URx/efzZ4+f0fIn2U/RwbYfY++7oyyps5jpqL4A5AUFmtVh04cEDh4eEyGo2y2+1KSkqSyeT7bAsAAFA1YiNi/CrfMLq+x72LynNNt2F+le/RpIv+NXyGX3UmX3iXCm0Wl70ZrXabGsU08Fi+TUILjT/nltIg8eSMRm+zuyTprKbd1OzkjMay9RK99GEymFQ/sp5L+Giz2yq4PGpglr2UArc8akWuw9/lOMubnVj2z6o6nm4OM/nyT+uadYOMPmp2H6Fyw5I+6CO4fXgr7z/6oA/6CG4f3nhZ4KH8Ov7O3q1EHxkle+OqeB/kquBtywfUbAR3AILK4XDoyJEjLucaNWpEcAcAAAKmvpcZgt4kxjTUkHYD/KpzY4+RfpXv3ay7/nPVTLfzjnKmJjx8/gQVWi3FsxnL7LnY2MvsxDYJLXTH2de7zYD0FsJJUo/GndUkNtFtBmTD6PoeyxsMBsWGx5TuMemwyeFwVGzmoN+z+rz3UWQrDfuq4+nmsv3Vlhtk9FGz+yhPdd6wpA/6oI/A91FS31hOO2ajuXiP4TKNGOT9QRyz0aSok3tKl7RvkGQuZ0WD2PAYxUfEll7PyT4izREey4ebwtQwqn7JRTjrlffwS6PoBsq15LmMSwYpNjzaY/mosAi1jG9aZjwn+yhnJYDm8U1kd9jLXLdBMkgJkfEey8eGR+uMhu2cfZwcUrmrDbSv31qR5ojSPgzFtbw94FUvMk5nndw7tXjp8eJ65X326ZbUSQ2iEkqv4eTAmsU19li+QVQ9DWh5tvM6Sr5XyruO3k27q3l8E7evlbfgqFF0fQ1td56zj5NDKvdz4oCWxfuRl/0+lMGg9g1aeyyfFNNII84YerKLsl8r7w/cDW47QD2adCm9hpPDO8PDvruS1DQ2SX/pPqJMHzrZh/fruKzjIJ0oyFS9yNJ/h7ROaKEwozmgS7iHGc0e9z1GzWdwlPcvQwABZ7FYtGXLFrfzZ555psLD697U5qKiIm3evNnlXI8ePRQW5v3DIQAAAEKX3W6XzWFTmJebfQez01VQVOgSPlrtdjWPb6zEmIYey284uNVZtmQGZJjRrGu7D/fYx+p9a3Ve63MkSbuO/qlHVz4XuAs86emhDzmXynxz44f6/s81Mki6ptsVuuKMi9zKb0nfobk/z5dU9oaaQWFGs14e8ZTHPmb+72XtO556sqycda/qfIku7XihW/nth3dq3tp3nMVLb4qG6fnLHvPYx5yfXtf+zIOn3Nw1aFinwRrSbqBb+R0ZyXpz4wcu12GQQWajSdOHPuCxj1d+XajUrENuN5CHtj9fF7Tp61Z+19E/9d/Ni5yvy97cfeSCiR77WLDhQx3MTj/ZvMFZc1DbfupfcmOyjD3H9uvj7UtPlirtw2w06d4Bd3js473Ni3UoJ8PtOga26qM+zXu6ld93IlWf/7HS5RoMMshkNOnOc27y2Men25cpI/eYWx/nND9LZzXt6lY+NTNNX+/+oeRynf2YjCaNOWu0xz6W7vxWR/OOn2y+9GvVq2k3dUvq5Fb+YHa6fti7xlmubB/eZk1/u+dHHcvPdF5HST/dk85QJw83RtNzMvRL6kZnHyU9GQ0Gj3+fJOmn/et0oiCrzE3X4v93athO7Rq0cit/JPeYNqZtO1m2tB+TwajBXh7W2HBwi7IKc5zjKemnTUILjzdKj+Wf0O8Zu8qUPxmwGAzq17K3xz62Hd7pDCZK2jdIah7fVE3jktzKZxVkK/n4Ppcx6eTXquRG9Kl2H92rAmuBczwlfSTFNPI4+zzHkqvUzEMny7pee8eGbT32kZqVJotzhnNp+fpR9TwGIPlFBc6ZKIYyAYvBYPC6X++R3GMqslvd/n7EhscoxkOQY7FalGU55c/v5P8bRCd47COnMFc2h80tjIowhSvcw4MgVrut9LrLfq1UvHS6J1ab1RnGl+3HKIOMHsIGh8Phdd9YADXLS2ve1P/2/Rqw9s5vfa7u6ndbwNoLFdw/J7gDqh0/eFwR3AEAAKAqWWxFuu3T+wL+dPObo/5Z7t6KAAAAQFm7j+7V5JXPBqy9sg+S1SbcP5e8zxkFAAAAAKCGCzeFeZ3pUlH9WvYmtAMAAIBfOjRso6HtzwtIWxe3P79WhnYoRnAHAAAAAKjVLu84OKTbAwAAQN1wS8/Rah7neUlgXzWPb6Kbe44K0IgQigjuAAAAAAC1Gk83AwAAIBREhUXq8UH3eN3P83SaxzfR4xfeoygv+2iidiC4AwAAAADUejzdDAAAgFDQIDpBTw99yO8Hyy5uf76eHvqQGkQnVM3AEDLMwR4AAAAAAABVreTp5unfz9WBrEN+1+fpZgAAAARKVFikxvW5SUPaDtSyXau0JmWDiuxWt3JhRrP6teytyzsOZtWHOoTgDgAAAABQJ5Q83bxw0ydambza53oXtz9fN/ccRWgHAACAgOrQsI3uanib7jznZu0/cUD7Mw+o0GZRhClcreo1V6uE5go3hQV7mKhmBHcAAAAAgDqDp5sBAAAQasJNYerQsA2fOyGJ4A4AAAAAUAfxdDMAAACAUERwBwAAAACos3i6GQAAAMFmtVp14MABhYeHy2g0ym63KykpSSaTKdhDQxAQ3AEAAAAAAAAAAASJw+HQkSNHXM41atSI4K6OIrgDAAAAANRZPN0MAAAAIJQQ3AEAAAAA6iyebgYAAAAQSozBHgAAAAAAAAAAAAAAgjsAAAAAAAAAAAAgJBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAII7AAAAAAAAAAAAIAQQ3AEAAAAAAAAAAAAhgOAOAAAAAAAAAAAACAEEdwAAAAAAAAAAAEAIILgDAAAAAAAAAAAAQgDBHQAAAAAAAAAAABACCO4AAAAAAAAAAACAEEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgLsTl5uZqyJAhSk1NDfZQAAAAAAAAAAAAUIXMwR4AvCssLNQjjzyiAwcOBHso5SosLNTHH3+sZcuW6Y8//lBhYaGaNWums846SzfeeKN69OgRkm0DAAAAAAAAAACEEmbchRibzab09HR99NFHuuaaa7R8+fJgD6lc27dv14gRIzRt2jTFxsbqlVde0ddff61HHnlEf/75p6699lpNnz5dRUVFIdU2AAAAAAAAAABAqGHGXYi48847tX79euXl5clmswV7OD7ZsmWLbr31VuXm5ur666/Xk08+6XyvSZMmOv/88zV+/Hi98847Sk1N1bx582Q0+pYVV2XbAAAAAAAAAAAAoYikI0TMmDFDixYt0tdff63ly5drypQpMhgMwR6WVydOnNCECROUm5urTp066fHHH3crYzQa9fzzzys+Pl7fffed5syZE/S2AQAAAAAAAAAAQhXBXYhITExUixYt1KJFC7Vp00Y33XRTSO/f9s9//lOHDx+WJD3wwAMymz1P3oyPj9eYMWMkSa+++qp27NgR1LYBAAAAAAAAAABCFcFdCIuOjg72EDxKSUnRp59+Kklq06aNLrjggnLLX3311ZIkh8Oh2bNnB61tAAAAAAAAAACAUEZwB7+9+eabKioqkiSNHDnytOVbtGihM844Q5L03Xffac+ePUFpGwAAAAAAAAAAIJQR3MEvdrtdX3/9tfP1+eef71O9Pn36OI9XrFhR7W0DAAAAAAAAAACEOoI7+GXjxo3KyMiQVLyUZ+fOnX2q17VrV+fxypUrq71tAAAAAAAAAACAUEdwB79s3LjReXzGGWfIbDb7VK9jx47O4x07dshms1Vr2wAAAAAAAAAAAKHOt2QEOGnXrl3O4+bNm/tcLykpyXlssVi0f/9+tW3bttrargmsVqsMBkOwh1HtrFarT+cAAACAqsDnUQAAAAQbn0lL1dXrLovgDn7ZvXu387hZs2Y+10tMTJTBYJDD4ZAkJScnu4VrVdl2TfD7778HewghY/v27cEeAgAAAOowPo8CAAAg2PhMWnexVCb8cuzYMedxvXr1fK5nNpsVFRXlfJ2ZmVmtbQMAAAAAAAAAAIQ6gjv4JTc313kcGRnpV93w8HDncV5eXrW2DQAAAAAAAAAAEOoI7uCXsqFYRESEX3XLhnFlQ7rqaBsAAAAAAAAAACDUsccdqo3dbnceG42BzYyrsu3q0qVLF4WFhQV7GNXOarW6rdfctWtXmc38eAIAAEDV4/MoAAAAgo3PpKWKior0+++/B3sYQVX3/tRRKTExMTpx4oQkqaCgwK+6FovFpZ3qbLsmMJvNdTK484SvBQAAAIKJz6MAAAAItrr6mdThcAR7CEFXM6cmIWjKhmKFhYV+1S1bPjo6ulrbBgAAAAAAAAAACHUEd/BL/fr1nceZmZk+17NYLC6z6Bo0aFCtbQMAAAAAAAAAAIQ6gjv4pX379s7jgwcP+lwvIyPDZYpr2Xaqo20AAAAAAAAAAIBQR3AHv3To0MF5nJaW5nO99PR053F0dLSaN29erW0DAAAAAAAAAACEOoI7+KVHjx7O4z/++EN2u92nert27XIed+/eXQaDoVrbBgAAAAAAAAAACHUEd/BLnz59lJCQIEnKycnR7t27faq3bds25/HQoUOrvW0AAAAAAAAAAIBQR3AHv5jNZpdw7KeffvKp3rp16yRJBoPBa7hWlW0DAAAAAAAAAACEOoI7+G3s2LEymUySpMWLF5+2/K5du5ScnCxJuvzyy8vdg64q2wYAAAAAAAAAAAhlBHe11MGDBzVu3Dj16tVLI0aM8Hn2mi86duyoq666SpK0fft2rV+/vtzyn3zyiSTJZDLprrvuClrbAAAAAAAAAAAAoYzgLoRlZWU5j0+cOOFX3Yceekjff/+98vLytHPnTk2YMEFpaWkBG9sDDzygFi1aSJJmzpwph8PhsVx6erree+89SdJdd92ldu3aBbVtAAAAAAAAAACAUEVwF6LS09O1e/du5+tvv/3Wr/pbt251eZ2fn68tW7YEZGyS1KBBA82bN0/x8fHavHmzZs6c6VbGYrHo3nvvVUFBgS655BKNHz8+6G0DAAAAAAAAAACEKoK7EJGbm6usrCylpKRoxYoVuuOOO1RYWOh8/5VXXtGsWbO0fft2HTt2TFlZWbJYLF7b6969u8vrsLAwde7cOaBj7tSpkz766CN16tRJCxYs0F133aXffvtNhw4d0qpVq3Tddddpw4YNuvXWWzVnzhwZDIaQaBsAAAAAAAAAACAUGRze1iFEtbrlllv066+/+lXnmWee0ahRozy+d/DgQT3xxBNau3atGjdurEmTJuniiy8OxFDdWCwWffXVV/rss8+UnJyszMxMNWnSRL169dItt9yibt26hWTbwWKxWDzOfjzzzDMVHh4ehBEFV1FRkTZv3uxyrkePHgoLCwvSiAAAAFCX8HkUAAAAwcZn0lLcPye4A6odP3hc8UsJAAAAwcTnUQAAAAQbn0lLcf+cpTIBAAAAAAAAAACAkEBwBwAAAAAAAAAAAIQAgjsAAAAAAAAAAAAgBBDcAQAAAAAAAAAAACGA4A4AAAAAAAAAAAAIAQR3AAAAAAAAAAAAQAgguAMAAAAAAAAAAABCAMEdAAAAAAAAAAAAEAII7gAAAAAAAAAAAIAQQHAHAAAAAAAAAAAAhACCOwAAAAAAAAAAACAEENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACDAHewAA4KuioiItXrxYy5Yt0/bt25WVlaW4uDh17dpVw4YN01VXXaWwsLBgD9Or/Px8ffnll1qzZo22bdumY8eOKTc3V9HR0WrUqJF69uypwYMHa+jQoTIaK/ZcRXp6uhYvXqxffvlFO3fu1IkTJ2Q2m1W/fn11795dgwYN0vDhwxUeHh7gqwMAAAAAAAAAVBbBHYAaYdu2bbrvvvu0d+9edezYUY888ojat2+vQ4cO6cMPP9Sjjz6q+fPna/bs2ercuXOwh+vm3Xff1dy5c5WXl6dLL71Ut99+u1q2bKm4uDjl5OQoOTlZX3/9te666y61atVKM2bMUN++fX1uPy8vT3PmzNF7772nfv366ZJLLtHf//53hYeH6/Dhw1qzZo0++eQTLV++XHPmzNHMmTM1YMCAKrxiAAAAAAAAAIC/DA6HwxHsQQB1icVi0ZYtW9zOn3nmmXVyFlRRUZE2b97scq5Hjx4uM+fWrl2rcePGKS8vTwMHDtS8efMUERHhUufll1/W3LlzFRMTo/nz56tXr17VMv7Tsdlsuv/++7V06VJ16NBB8+bNU6tWrbyWX7lype677z4VFRXpscce00033XTaPo4ePaq//vWv2rNnj95880316dPHY7lDhw7p9ttv1+7du2U0GvXUU09p1KhRFb42AACA2sCXz6MAAABAVeIzaSnun7PHHYAQl5KSon/84x/Ky8tTUlKSZs+e7RbaSdKECRM0aNAg5ebmavz48UpLSwvCaN0988wzWrp0qRo0aKAFCxaUG9pJ0tChQ/XUU0/Jbrdr+vTpWrFixWn7uP/++7Vjxw6df/75XkM7SWrSpIleffVVRUdHy2636/HHH9fatWv9viYAAAAAAAAAQNUguAMQ0iZPnqzMzExJ0n333ad69ep5LXv//fdLkk6cOKHHHnusWsZXns2bN+udd96RJN17771KTEz0qd6IESPUp08fORwOPfnkk8rNzS23j59++kmSPAaap2revLnGjBkjSbJarXr88cfFxGsAAAAAAAAACA0EdwBC1vfff69ff/1VktS4cWNdeeWV5Zbv2LGjzj77bEnS6tWrtWbNmiofY3nee+89ORwORURE6KqrrvKr7rXXXitJysjI0MqVK72W++2335zHGzZsUF5e3mnbLjuWP//8k1l3AAAAAAAAABAiCO4AhKyXXnrJeTx8+HCZTKbT1rnoooucx3PmzKmKYfnsl19+kSR16NBBkZGRftUtu+RleQGk3W53Hh86dEjLly8/bdvt2rVTdHS08/X27dv9GhsAAAAAAAAAoGoQ3AEISVu2bHHZhHT48OE+1Rs0aJDzeOPGjdq3b1+gh+azjIyMCtdNSkryqZ1+/fq5BJrNmjXzqf3Y2FjncVFRUQVGCAAAAAAAAAAINII7ACGp7PKQsbGx6ty5s0/12rVrp5iYGOfrr7/+OuBj81V4eLgkadeuXTpx4oRfda1Wq/O4vNl6nTt31ttvv62//vWvevrpp9W3b1+f2s/JyXEeN23a1K+xAQAAAAAAAACqBsEdgJD0zTffOI979uwpo9G3H1cGg0FnnHGG8/WqVasCPjZfdezYUZJksVj0n//8x6+6ZWcKdu3atdyyffr00UMPPaTRo0f71Pb+/fude+EZjUaXZTkBAAAAAAAAAMFDcAcg5OTl5Wn37t3O12WDOF+0b9/eebxjx46Ajctfl1xyifN4wYIFWrp0qc91v/32W0nFwdqIESMCOq6y4xg6dKiaNGkS0PYBAAAAAAAAABVDcAcg5CQnJ8vhcDhf+7pvW4nExETncW5urtLS0gI2Nn9cd911zr3q7Ha7HnjgAb3zzjunrZeVleUsd+ONN6ply5YBG1NqaqreeOMNSVL9+vX1yCOPBKxtAAAAAAAAAEDlENwBCDllZ9tJ/u/BVja4k4qDwGCIjY3Vs88+K7PZLKl437rp06fr73//uw4ePOixjtVq1YMPPqhjx47prLPO0gMPPBCw8ezcuVO33367MjMz1bx5c7355pt+h6IAAAAAAAAAgKpDcAcg5Bw+fNjldcOGDf2qn5CQ4PL62LFjlR1ShQ0YMEBz5sxRRESE89y3336ryy+/XDNnztSRI0ec548fP66///3vWrVqlc4//3zNnz9fkZGRFe67oKBAqampWr58uSZNmqRRo0bp6NGjuvPOO7V48WJ16dKlUtcGAAAAAAAAAAgsc7AHAACnysvLc3ntb3gVHh5ebnvV7eKLL9ZHH32kRx55RNu2bZNUHKq9+eabeuedd3TppZeqS5cueuONN2SxWPTYY4/p5ptvlsFgqHCfb731lp5++mmXc61atdLzzz+vnj17Vup6AAAAAAAAAABVg+AOQMg5NWgrO1vNF6eWz83NrfSYKuuMM87Q+++/rzvuuEO//PKL83xRUZG++OILffHFF4qNjdV7772nTp06Vbq/ESNGqHv37srJydGff/6pzZs3a9WqVbruuus0cOBAPfLII+rYsWOl+wEAAAAAAAAABA7BHYCQU1hY6PI6LCzMr/ole8p5ay8Ydu7cqUmTJmnPnj265557ZLFY9P777+v48ePOMjk5Obrxxhv12GOPaeTIkZXqr0GDBmrQoIEk6cILL5QkZWZmat68eXrzzTc1cuRI3X///brtttsq1Q8AAAAAAAAAIHDY4w5AyDl1aUyLxeJX/VPLR0dHV3pMlbF8+XJde+212r9/v15++WVNmDBB9957r77//ns98sgjql+/vrNsdna2HnroIU2dOlV2uz2g46hXr54efvhhPfzww7JarZo5c6Zmz54d0D4AAAAAAAAAABVHcAcg5ERFRbm89nfGXCgFd8uXL9f//d//qbCwUM8//7xz9ptUvKTn2LFjtXLlSt14440ue9q9//77euihh6pkTLfddpvOPfdcSdIrr7yi77//vkr6AQAAAAAAAAD4h+AOQMiJiYlxeV3Z4O7U9qpLcnKyHnroIdlsNl1//fW6+OKLPZaLjY3V1KlT9cYbbyghIcF5fsmSJXr99derZGzjxo1zHj/77LMBn90HAAAAAAAAAPAfwR2AkNOoUSOX10ePHvWrftl94yQpMTGx0mOqiOnTpys/P1/R0dG65557Tlt+wIABev/9913G+9JLL+ngwYMBH9uAAQOcMxGTk5P1448/BrwPAAAAAAAAAIB/CO4AhJz27du7vD506JBf9Q8fPlxue9Vh165d+vnnnyVJV1xxhcs+duVp27atXnvtNYWHh0uSCgoKtHDhwoCPz2QyqWvXrs7XK1euDHgfAAAAAAAAAAD/ENwBCDmnBm1paWl+1c/IyHAeJyQkqGHDhgEZlz9WrVrlPB48eLBfdbt06aI777zT+bqqQrWyX5fff/+9SvoAAAAAAAAAAPiO4A5AyImNjVWrVq2cr3fu3OlX/eTkZOdx9+7dAzYuf/zxxx/O4y5duvhd/8Ybb1RYWJgkaf/+/crLy/NaNjk5WcuWLVNmZqZffZS0L8nvugAAAAAAAACAwCO4AxCShgwZ4jzevHmzz/VsNptLaFa2nep04sQJ5/Gpe/b5okGDBmrTpo3zdXZ2tsdy33zzja666irde++9uummm1RUVORzH7m5uc7j+Ph4v8cIAAAAAAAAAAgsgjsAIeniiy92Hp84ccJlFl15du3apYKCAkmSwWDQ0KFDq2R8pxMVFeU8tlqtFWojJibGeextj7wnnnjCGdbt2rVL33//vc/tHzlyxHlcdoYjAAAAAAAAACA4CO4AhKTevXu7zDhbunSpT/XK7gc3cOBANW7cONBD80m7du2cxwcPHqxQGyV79bVq1Urh4eFu7x89elSHDx92OZeTk+NT23a7Xbt373a+vuCCCyo0RgAAAAAAAABA4BDcAQhJRqNR9957r/P14sWL5XA4Tltv+fLlzuN77rmn3LJLly7V5Zdfrj59+uiee+7RsWPHKjzeUw0fPtx5/MMPP/hdPz09XQcOHJAkXXLJJR7L1KtXz2WfurCwMA0cONCn9tevX6/8/HxJUsOGDYM2MxEAAAAAAAAAUIrgDkDIuuyyy9SzZ09JUkpKipYsWVJu+dWrV2vnzp2SisOuHj16eC27YcMGTZo0SXv27FF2dra++uor3X333T6Fg77o1KmTrr76aknSggULnCGZrz766CNJUlxcnG677TaPZcxms8sefn379lViYqJP7b///vvO47vvvttlWU4AAAAAAAAAQHAQ3AEIWQaDQbNmzVJcXJwkac6cOcrOzvZYtqioSLNnz5YkJSYmaurUqeW2vXLlStntdpdza9eu1d69eys/8JMeffRRde3aVenp6Xr44Yfd+vPmzz//1Pz582UwGDR16lQ1atTIa9n777/fGbr5Gjr++OOP+vLLLyVJV1xxha6//nqf6gEAAAAAAAAAqhbBHYCQ1rp1a82bN0/R0dE6ePCg7rrrLhUWFrqUsdvtevLJJ7V161bFx8frlVdeKTfsKo+v4Zov4uLi9Oabb6pPnz766quv9Le//c1tT7pTbdmyRWPHjlVRUZGmTp2qESNGlFu+VatW+s9//qO4uDj99NNPLjPpPFmxYoUmTpwoh8OhSy+9VE8//bTf1wUAAAAAAAAAqBoGR6DWhQPgE4vFoi1btridP/PMMxUeHh6EEQVXUVGRNm/e7HKuR48eLnu3SdKOHTs0adIk7d69W23atNG4cePUoUMHpaSkaOHChfrtt9/UsWNHzZ49Wx07djxtvxs2bNBNN93kEtR16tRJixYtkslkCszFnWSz2TR//ny99tprKiws1LBhwzRw4EA1b95ckZGRyszMVHJysn744Qf98MMP6tKli5544gnnMqG+2L9/v6ZOnaqffvpJXbp00ciRI9WpUyclJCQoMzNTO3bs0PLly7Vx40bVr19f48eP16233iqDwRDQawUAAKhpfP08CgAAAFQVPpOW4v45wR1Q7fjB48qfX0pWq1VLlizRl19+qW3btikrK0txcXHq2rWrhg8frquuukpms9nnvpcuXaoXX3xR6enpOuecczRlyhS1aNGi0tfkTW5urr744gv9+OOP2r59u44ePaqioiLVq1dPTZo0Ue/evTVkyBD179+/wn1s2rRJS5Ys0YYNG3TgwAHl5uYqNjZW9evXV7du3TRgwABdfvnlio6ODuCVAQAA1FzcJAEAAECw8Zm0FPfPCe6AascPHlf8UgIAAEAw8XkUAAAAwcZn0lLcP2ePOwAAAAAAAAAAACAkENwBAAAAAAAAAAAAIYDgDgAAAAAAAAAAAAgBBHcAAAAAAAAAAABACCC4AwAAAAAAAAAAAEIAwR0AAAAAAAAAAAAQAgjuAAAAAAAAAAAAgBBAcAcAAAAAAAAAAACEAHOwBwAAAAAAQE1RVFSkxYsXa9myZdq+fbuysrIUFxenrl27atiwYbrqqqsUFhYW7GG6mDt3rl5++eVKt7No0SJ16dKl0u3s3LlTo0aNUlFRkb755hu1aNGi0m0CAAAAtQUz7gAAAAAA8MG2bds0fPhwPfroo0pPT9cjjzyiDz/8UE899ZTCwsL06KOP6sorr9SOHTuCPVQXu3fvrnQbERERatSoUaXbsdvteuyxx1RUVFTptgAAAIDaiBl3AAAAAACcxtq1azVu3Djl5eVp4MCBmjdvniIiIiRJ3bp100UXXaSXX35Zc+fO1Y033qj58+erV69eQR51sV27drmdi42Nldl8+lsC+fn5Kiws1Lhx45SYmFjpsbz99tvatGlTpdsBAACoq1gBovavAEFwByCoDAaDGjVqpIiICBkMBjkcDhmNTAYGAABA6EhJSdE//vEP5eXlKSkpSbNnz3aGdmVNmDBBmzZt0nfffafx48dr0aJFatq0aRBGXMpisWj//v2SpAYNGui+++7TpZdeqvj4+NPWLSoq0vDhw+VwODRu3LhKjyU1NVVz586tdDsAAAB11bZt23Tfffdp79696tixox555BG1b99ehw4d0ocffqhHH31U8+fP1+zZs9W5c+dgD9eJFSD8Q3AHIKjMZrNat24d7GEAAAAAXk2ePFmZmZmSpPvuu0/16tXzWvb+++/Xd999pxMnTuixxx7T/Pnzq2uYHu3Zs0c2m00JCQn64IMP1KpVK5/r/ve//9XevXv16quvKjw8vNJjmTp1Kg/pAQAAVFBdWgHCarU6jwsLC1VUVKTbb7+9zqwAQXAHAAAAAIAX33//vX799VdJUuPGjXXllVeWW75jx446++yztX79eq1evVpr1qxRv379qmOoHpU83fzQQw/5FdplZmbq5ZdfVv/+/XXhhRdWehyfffaZVq9erX/+85+67777Kt0eAABAXVKXVoCwWCzasmWLpOIA78EHH5TD4dDtt99e6bHUlBUgeNQNQFDZLRZl79yp9BXf6OAXXyp9xTfK3rlTdosl2EMDAAAA9NJLLzmPhw8fLpPJdNo6F110kfN4zpw5VTEsn+3atUuJiYm66qqr/Ko3b948ZWZm6sEHH6z0GI4ePaqZM2dq8ODBuuKKKyrdHgAAQF3j7woQkpwrQATbqStAXHvttT4t2y5JK1as0KFDhzRmzJg6tQIEM+4ABEX2zl1K+2Kpjvz0sxwe1hM2hIWp0YD+ajp8mOI6dQzCCAEAAFDXbdmyxfm0r1Qc3Pli0KBBeu655yRJGzdu1L59+4K2PPyuXbt00UUX+RQ4lkhNTdW7776r4cOHq2vXrpUew4wZM2Sz2fTkk09Wui0AAIC6pq6uAJGTk6PPPvtM3bp1C8iSnzVpBYjQjxYB1Cq2/HztfvkVbX7gYWV8/4PH0E6SHEVFyvj+B21+4GHtfvkV2fLzq3mkAAAAqOtWrlzpPI6NjVXnzp19qteuXTvFxMQ4X3/99dcBH5uvnnzySU2cONGvOnPmzJHNZvO7nifffvutli5dqgcffFCNGzeudHsAAAB1TV1dAWLRokXKzc3VTTfdVOkx1LQVIAjuAFSbwqNHten+h5S+fIVf9dKXr9Cm+x9S4dGjVTQyAAAAwN0333zjPO7Zs6fPy+oYDAadccYZzterVq0K+Nh8lZiYqMTERJ/L79ixQ1988YUuv/xytWnTplJ95+Tk6IknnlDfvn113XXXVaotAACAuqgyK0CUKFkBIlgqsgJERkaGVqxYoQEDBlT6M6lU81aAILgDUC1s+fnaNuVJ5aceqFD9/NQD2jZ1GjPvAAAAUC1yc3Ody/pIcgnifNG+fXvn8Y4dOwI2rqo2e/ZsSdL48eMr3dasWbOUlZWlGTNmVLotAACAuqiurgDx4YcfymazadSoUZXuvyauAEFwB6Ba/PnmWxUO7Urkp6Rq74K3AzQiAAAAwLvk5GQ5HA7n62bNmvlVv+wst9zcXKWlpQVsbFVlw4YN+u6773TBBReoY8fK7TO9bt06ffDBB7r77rv92ssEAAAAperiChB//PGHfvrpJ/Xr109NmzatVN81dQUIgjsAVS575y6/l8f05tBXXyt7566AtAUAAAB4s2uX62dOf28anHpzIjk5udJjqmpz586VJN18882Vasdiseixxx5T9+7ddeuttwZiaAAAAHVOXl5enVwB4sUXX5QkjRw5stJt1dQVIAjuAFS5tC+WBra9L5cFtD0AAADgVIcPH3Z53bBhQ7/qJyQkuLw+duxYZYdUpdauXas1a9aoTZs2Ov/88yvV1r///W+lpqbqqaee8msvEwAAAJSqqytA/PDDD+rZs6datGhRqbZq8goQ5mAPAEDtZrdYdOSnnwPa5pEff1KHf4yXMTxckrT/vQ9lzc2VOTZG5phoRTVrpvpn9w5onwAAAKhbcnNzXV5HRkb6VT/85GfVEnl5eZUeU1V6+eWXJUnXXHONDAZDhdvZsWOHXn/9dY0fP97vp8IBAABQquxsOykwK0BUdunJqlayAsSll15aqXZq+goQBHcAqlTu3r1yFBUFtE1HUZFy9+5TXKfifTcsx4+5LMVZ/+xefgd3B79YKlturkwxxeGfOSZGppgYRTVrqvD69QM6fgAAAIS+U4O2iIgIv+qfWv7UIDCUbN68WT/99JMMBoOGDx9e4XZsNpseffRRtW3bVnfeeWcARwgAAFD31NUVIFq3bq0ePXpUqq2SFSA++eSTGrkCBMEdgCqVty+litrd7wzuIpOSXN4zxcT43d6hr5YrPyXV7XzbO25TsxG+37ywFxXpyI8/yRwTU/xfbMzJMDBGxoiISj29DAAAgOpTWFjo8josLMyv+maz6z+3T20vlLz22muSpHPOOadST2EvWLBA27dv1/vvv+824xAAAAD+OfVBsrqyAsSoUaPq/AoQBHcAqpStsKCK2i298WE45SaKOSbW//ZyPf/iMvsZAhZlZWnX7Bc9vmcwmdxm9JUEfKaT58yxsc7XkU0aK7qSazkDAACgYk69MWKxWPyqf2r56OjoSo+pKqSkpGjlypWSpKFDh1a4nf379+vFF1/UmDFj1LNnz0ANDwAAoM6qqytADBs2TBkZGRVqp7asAEFwB6BKmSL8exLE93ZLf/GcuhSnOcb/myJWL7+4/J29ZyvnF6DDZpM1K0vWrCyf2kq6aIg63v0Pv/o//N0PMhgNbsGgOS5WRj+fEgcAAKjLTg3a/J0xV1OCu/fee092u12SdN5551W4nSlTpigxMVH33ntvgEYGAABQt9XVFSCaNGlS4eCutqwAQXAHoEpFt25ZRe22ch4XnLLes79hm72oSHYvv7j8nXFn9TJzryIqEkD+Of9Nj8Fgp0n/p8QLfL8RYyssVN7efcXhX+zJpT4J/gAAQB0Sc8rnwMoGd6e2FwqKior02WefSZKaNGmi9u3bV6idjz/+WD///LMWLFigqKioQA4RAACgzmIFCP/UphUgCO4AVKmYNm1kCAtzmxVXGYawMMW0ae18HVavnur3OVvW3FxZc3IU4edGrbZy1nf2P7gL3JRzfwNIh8PhdcafOda/tvJTD2jzg4+4nDOGh5cu6XnK/n2lM/zclwENS6jn99cRAAAg2Bo1auTy+ujRo37VP378uMvrxMTESo8p0H788UcdO3ZMktSjR48KtZGRkaHnnntO1157rfr37x/I4QEAANRppz4QxQoQ5atNK0AQ3AGoUsbwcDUa0F8Z3/8QsDYbDRwgY5mpzq1vuqFS7TkcDtU/u5esOXnF4V9urmy5ubJbLDL5OevNmhO44M7fsMteWCiHzRaQtjwFkHaLRXaLRUXHT/jVVvPRV6vNmJv9qnNi02aZoqNdgkCjmV9ZAACg+nTo0MHl9aFDh/yqf/iUVSEqOputKq1YscJ53KlTpwq1MX36dEVEROihhx4K1LAAAACgursChL8zC6XatwIEd0EBVLmmw4cFNLhresXlAWtLksITEtR1ymNu5+1FRTKYTH63F5aQIGtOjhxWa6XG5XfYVk5o6G8AWd5eff7y9zocNpu2TXnS7bwxMlLdnnhc8V06+9yW3WKRraBA5piYCv1ZAgCAuuvU4C4tLc2v+mX35UhISFBDP1eFqA7/+9//nMft2rXzu/6hQ4e0fPlyGQwG9e3bt0JjuOSSS9zOPf300xo5cmSF2gMAAKgtWAHCN7VxBQiCOwBVLq5TRzW+9GKlL19x+sKn0eSySxTXqWMARnV6FdnTLWnQBUoadIGk4tCodAbfydl8OaUz+kres+aUvM5zec/fpTLLW6YzmEt++t23l6VL7QUFMkb4t6ls5pat2j7tKUnFwZ+5zJ59ZZf9LF3aM/rkvn6xrq+jown+AACoY2JjY9WqVSvt379fkrRz506/6icnJzuPu3fvHtCxBcLOnTuVnp7ufJ2QkOB3Gw0bNtTnn3/ud70RI0Y4j1999VUlJSW5vN+kSRO/2wQAAKhtTl2xgRUgPKuNK0AQ3AGoFm1vu1VZ27YrP/VAhduIatlCbcaOCeCoqpYxPFzh4eEKr1/f77oOh8P/OjabIps2kTU3T7bcXJdlMwM5e89f/gaQ5c32q8x12AsKZCkokMXPp5NKtBt3u5peMczn8g6bTYVHjsgcEytTdJQMRmOF+gUAAMEzZMgQLViwQJK0efNmn+vZbDb98ccfLu2Emg0bNri8jouL87uNsLCwCt9gKdGmTRu1aNGiUm0AAADURqcGbawA4a62rgBBcAegWpiiotRt2lRtmzpN+SmpftePatlC3Z6cIlMtWKPYFwaDwe86se3a6uxX/i2pOPizFxY6Z/CV3RPQF4GdcefnPoG5nmfcFbcVvJmDxshIv8oXZWZp/bgJxS8MBpmio5wz/Do/8pAiGyeV3wAAAAi6iy++2BncnThxQsnJyT49qbxr1y4VFBRIKv5cN3To0KocZoVs2rTJ5bXNy17JAAAACA5WgDi92roCBMEdgGoT0bChes6aqT/ffMuvZTObXHaJ2owdU2dCu0AwGAwyRUbKFBkpVeBpmlY3Xq8Wo0Y6l++05uSUWd4zz2WpT0/LfFpz8yS7XVIAwzaDQaZof0PAIC75WbZvh0O23DzZcvNUqAwZzP79+j387Xfa8/obZZb2LF3m0xxbdqnPk8exrsuAmqKiKhQGAwBQ1/Xu3Vtt2rTR3r17JUlLly7VXXfdddp6K1eudB4PHDhQjRs3rqohVljZGYGS+1JKAAAACD5WgChfbV0BguAOQLUyRUWpw4Txajz0IqV9uUxHfvxJjqIit3KGsDA1GjhATa+4vNr2tEMpg8EgU1SUTFFRimjkf/DnsNtlKyiQLTdXYfXq+VXXll8gGQzSKcuFVmS5yfKW3fSX/8t05nhvK9b/tmwng9FCv2qeZDTKHB0tU0y02t/5N9U/u7fPVUuWbSX4AwDURUajUffee6/uvfdeSdLixYs1ceLE0/5eXL58ufP4nnvuKbfs0qVL9dJLLykjI0MDBw7U1KlT1aBBg0qP/XRKwsgSuQH83AQAAIDAYAWIuongDkBQxHXqqLhOHdXhH+OVu3ef8vbtl62wUKaICEW3bqWYNq39Xt4RocNwMigy+zlDTpIa9j1HAz79ULb8/JOz+Ipn89ktFr/bCuSMO3/36vPWt8Fsrv6lS+12WXNyZM3J8Xv/xNw/92rTpAddZ/SdnPHX8f/ulikionJjAwAgxF122WXq2bOnNm3apJSUFC1ZskRXXXWV1/KrV692LmN0ySWXqEePHl7LbtiwQZMmTZL95EoFX331lY4ePaqFCxdW6UMzubm5BHUAAAA1ACtA1E0EdwCCyhge7gzxgBIGo9EZFFVGq5tuUJPLLztlac8812U+c9yX/bTlue+z5+9YbF726jPHxPh9Iy6YS37acnOLg7/sbFmzs13eO+OB+/xq69DXK5T+9Uq35T5dl/osuwxorEwx0TKGhzPjDwAQNAaDQbNmzdLo0aOVnZ2tOXPmaMiQIR6X8ikqKtLs2bMlSYmJiZo6dWq5ba9cudIZ2pVYu3at9u7dq7Zt2wbuIk6RU87KAFXNcsrDWKe+BgAAQClWgKibCO4AALVWeEKCwiuwsa3DZnPO+LOeDPfCG9T3qw1vYZu/M/ekAC/5GRvrV3mv1xEVJYPJ5FdbBYfSlbNrt191pOJZiq4BX7Ta3HarYtq09rstAAAqonXr1po3b57GjRungwcP6q677tJ//vMfRZSZeW632/Xkk09q69atio+P1yuvvKJGjRpVqL9Tw7xAM3n4HR4WFlalfZbYsmWLy+uNGzeqXbt21dI3AABATcQKEHUPwR2AoLJarTpw4IDCw8NlNBplt9uVlJTk8WYCUF0MJpPMsbF+h1xlJQ0ZpIReZ50y2y9XhgrcFAvmjDtrTvADSIfVqqLMTBVlZrqc80fmlq1KfuVVt+U+zfHxan3TDRUaFwCgbjnnnHP03nvvadKkSfr555915ZVXaty4cerQoYNSUlK0cOFC/fbbb+rYsaNmz56tjh1Pv6LE0KFD9eabb7oEdZ06dVKbNm2q8EqkRo0aKSkpyWU5oqZNmwa8n6KiIv3555+SpPz8fO3atUvz5s1zKfPMM8/o2LFj6t27t+Li4hQVFaWWLVsGfCwAAAA1FStABFZNWAGC4A5AUDkcDh05csTlXKNGjQjuUOOZIiMV1bRJQNpqce01SrzwwpOz/3KcS3qWLu/pugyovbDQ+7hi/Nt30FtoaPaznfLaqghzrH/BoeX4CeWnHnBvJy7O7+Du0NcrlLllq+tSn7ExHvcBNEVHy1hNMxgAAFWvc+fOWrx4sZYsWaIvv/xSs2bNUlZWluLi4tS1a1c9/fTTuuqqq2Q2+/ZP7d69e+uFF17Qiy++qPT0dJ1zzjmaMmVKtXwWnjVrlp544gmlp6dr8ODBOvvsswPeR3p6ukaMGFFumezsbD3//PPO1+eee64WLlwY8LEAAADUZKwAETg1YQUIgjsAAEJcXMcOiuvYwefy9qIi2fLynMt8lg34jOHhfvXtbZZcRfYftHrZ968i/J3x5z2A9P86snfs1JEfVvtc3hgR4XX/vpZ/uU7hCfX8HgMAIHjMZrNGjRqlUaNGBaS9YcOGadiwYQFpyx/9+vXTV199VaV9tGjRQn/88UeV9gEAAFBXsAKE/2rqChAEdwAA1DLGsDAZ69VTWL3KB0JJFw1RXOczZM3Nc5ndF1GBJ7YCuldftH8z/rwGkH7O3JP8nzloLyyUpbBQOnbM7b0W1/h30/f4ho1K+3LZyfCvdN+/8AYNlHjBeX61BQAAAAAAahZWgPBPTV0BguAOAAB4Fdk4SZGNkwLSVtPhV6jBuec4wz9rTm6ZZT9LlwA93f51pqgoGfz8AOktbKvOvfo88XfGX/6BAzq+br3b+aiWLfwO7g5/+53y09I8LPNZvNSnKSZG5uhov7/WAAAAAACg6rAChO9q6goQBHcAAKBa+BIsORwO2S2WMqGe6/591txcyeHwu29vy3RWbMnPwAR3BpNJxjJr0fvWd+Cu48jqH3V8/YbTljNFR5cGeZ728YuJUdNhl7GXHwAAAAAAQAAQ3AEAgJBhMBhkioiQKSJCatggYO0mDbpAMa1buc32i+vcye+2AhXcmWJiZDAY/Os7J5B7Dvp2Hba8PNny8qSMI17LNL3icr/6Pr5+g45v3HRytl9pABjRsKFiO7T3qy0AAAAAAIDahOAOAADUevFduyi+a5eAtJU06EIVHj1aZpnPsrMD86QyGzqXxxzj3z59kvdlOiuy5GegAkhjZKSMPq6dXyJr++9K+/wLt/P1zuyu7jOe9Kutoz//Ilt+fvEswNhomWNinUGgKSrS73AUAAAAAAAgmAjuAAAA/NDqxuu9vudwOGTLL3BZ5tN92c/igM8cF+t3397CtgrNuPMye89fFQkgvS35WZEAMuWjT5SbnOz5TaPRZUafy/59MTEyx8aWvo6NVYM+gd8IGwAAAAAAwB8EdwAAAAFiMBhkjo6SOTpKEYmNAt5+w37nKiIpyS0IjGyc5Hdb3mbv+SuQy3SaY/1vq9zrsNtlzc6RNTvntO2Y42LV9523/Or7xKbNyk89cDL4Kw0GwxISFBYf71dbAAAAAAAAEsEdAABAjZE0ZLCShlS+HYfNpoSzerrNArTleZ4JV56KzJKz5XoO0qpyr77TqUjfGT+s1uGV37idb3T+QJ1x/31+tZW5bbsMJtPJ8C9GpphoGcPDWeoTAAAAAIA6huAuxNhsNn3xxRdasmSJtm7dqtzcXDVp0kRdu3bVDTfcoP79+wd7iCosLNRZZ50lu497+HiyaNEideniea+hIUOG6MCBAxVq9+2331bfvn0rPC4AAOoCg8mkLo8+7HbeYbPJmpfnZf++kmU/81wCv+g2rf3u35rjOSD0NzxzOBwBC+6CHUDufGGOLEePupwzmM2ly3w6Z/SVLPt5yhKgJe/HxymqaVO/+wcAAAAAAKGB4C6EpKam6p577tHWrVvVq1cvzZ49W+3atdO+ffs0f/58jR07VpdeeqmeeeYZxVTghlCgJCcnVyq0i4qKUmJiYgBHVMpbGAgAAE7PYDIpLC5OYXFxVdpPfLcuMsfFnhIM5vkdntnyC6RKfCYpq2Kz/QK3V5+nANJhtaooM1NFmZk+txPVooV6/3uuX31n/7FT1tzcMiFh8d5/xrAwv9oBAAAAAACVR3AXIlJTU3X99dcrIyNDgwYN0ssvvyyTySRJatKkifr27aspU6bogw8+UGpqqt59911FRUUFZay7du1yeR0eHq7GjRvLbC7/2yknJ0cZGRmaMGGCGjUqf9+fhIQE1a9f369xJSYmKp79ZAAACHltbr3F43mHw+FXO3aLRVEtWjgDQLvFUuExmWOi/a7jfa++WL/acdhsshcU+N2/x74rEBqmfPSxjq9d73a+2cgr1fa2W/1qKz/tkMzRUTJFE/wBAAAAAFARBHchwGKxaMKECcrIyFCjRo30wgsvOEO7sqZMmaJffvlF27Zt02OPPaYXXnghCKMtDe5iY2M1efJkDR8+XBEREaetN2HCBO3bt0+33XbbacvefPPNuuuuuyo9VgAAUHP4u59beEI9l9ll9qKi4r36yizvaSuzzOepM/zKlgurV8/v8dq8BXd+hoCBWu5TksyxFQggczz3b/LzITGHw6GNE++Rw2qVJBkjIpz79bku81m81GfpEqCxp7yOKQ7+TvNQGBAoBoNBjRo1UkREhAwGgxwOh4xGY7CHBQAAAKCO4l/DIWDBggX6448/JEkTJ05UrJentM1ms+6880498sgj+uKLL3TFFVdoyJAh1TlUSdLu3btlMpn0n//8R3369PGpzpo1a/TNN99owYIFCuPpawAAUAWMYWEKT6gnJfgfwlVEZJMmktHkDABLAit/Z70FMrir2F59gQkg7RaL82sgSfbCQlkKC6Vjx/weU3z3bjrzqWl+1ck/eFAyGIvDv+hoGTw8CAd4Yjab1bq1//t1AgAAAEBVILgLspycHM2fP1+SFBcXp1GjRpVb/vLLL9eTTz6pgoICzZ49W4MGDar2p0F37dqlq666yufQzm6365lnntGFF16o/v37V/HoAAAAqke3J6c4jx0Oh+wWi2y5eTJF+zdTzZZfIIPJJIfNVukxVWyvPm/BnZ8BpJeZexVRkevY+cIc5exOdr42RUXJFBOjln+5Vk0uGepzOw6HQ7LbCf4AAAD+v707j4+qut84/kwmmaxIEgj7ToQAEkURfiwKUkUEFJWliAtgWRStCtQiiqi0VqkLpWILVgS1FllEEYXiQkUtFEQRRA0giOxLiEGyZ2bu7w/IMIEsc2cmmZvk8369lDsz957zPUkIM/e551wAlYZVIOCN4C7EFi9erMzMTElSv379yl1yMjo6Wt27d9fatWu1c+dOrV+/Xj179qyESk/LycnRwYMHdcstt/h8zPLly7Vr166QLe0JAABQ0Ww2m+yRkbL7sHz4ueJatVS3txbLXVAgZ1a2XNlZcmbneJb4LL70Z06py4DK7fYzuMsp8Xmzs/dKm7nnj2AEkK7cXLlyc00Hoq7sbG28daTsMTFnl/As+i8uttjjkpcBjZU9Jlo2PmRXGe6CAmXv3aucn/bLlZ8ne2SUYpo3VWyLFgpzOEJdHgAAAGoAVoGAN4K7EFu9erVn+4orrvDpmM6dO2vt2rWSpA8++KBSg7u8vDzddttt6tixo0/75+bmavbs2brhhhuUnJxcwdUBAABUTcWCvzqJpo83DEPuvDzzx7lcCouIkLugQHK7i71W1Zb8LC2A9HccrpwcuXJypOPppmuRzSZ7TLSSel2p1uPHmjrUlZenMIeD4K8SnNq5S4ffW6X09RtkFBae97otIkJ1u3dTw4H9VavNhSGoEAAAAEBNRHAXQkeOHNH27ds9jzt16uTTce3bt/dsf/zxx5oxw9z9PwKRmJioadOm+bz/ggULdOLECd11110VWBUAAEDNZrPZZI82t0SnJNnsdnX950IZhiFXbl6x2X2xLcxd7RnM4C48zlzYZhhG6ffqM9lWUMZhGHJl58hwucvf9xxf3XO/CjIyFB4TU2xGX5OhgxV/cWrgtUGu3Fz9uOBVHV3zYZn7GYWFOr7uUx1f96nqX3uNWo4e6dffMwAAAKA8rAIBbwR3IbRly5bT99CQlJSUpHr16vl03IUXnr3aMz09XUeOHFGDBg0qpMZAZGRkaP78+erfv79atGgR6nIAAABQCpvNpvCYaIXHRCsyqa5fbcRfnKrOL8/1BH/OrJxzlvk8u6znect+5uRIZ94XS1J4bIypvt35+aUuiRnae/WZG4d0ZslRt1vOrCw5s7KUf+b5hgOuM9VO7qFD+u6JJ88s4RlzdjnPuKIlPUtfBjTszH01qqP8Eyf07fQnlHvgoKnjjq75UL98+506zHhMkXXqVFB1AAAAqGlYBQIlIbgLoV27dnm2mzRp4vNxderUUXh4uJxOpyTphx9+sGRwN2/ePGVlZWnMmDEBtfO///1Pq1at0pYtW3TkyBHl5eUpKSlJl156qYYNG6YuXboEqWIAAAD4KywiQpFJSYpMSjJ9rOF2y5Wb6wn0IhLiTR1f1iw5u8nwzFXKkpv+MBsaGi6XXLm5Jb5mdvlQ56ks5R05YuqYIja7vVjgV6/PVaaDQyty5eb6FdoVyT1wUN8+NkMXP/M0M+8AAAAQEFaBQFkI7kLohx9+8Gw3atTI5+NsNpvq1q2rI2c+iO/evbtS73Pni6NHj2rRokW6/PLLlZKS4lcbLpdL06dP17JlyyRJ0dHRSkxMlNvt1sGDB3Xw4EGtXLlSw4YN0+OPPy673R7MIVQ6p9NZba9sLktRAF3ecwAAoJpzOGR3OGRPSJAkFZZwtWlpbHFxunThy55ZfK6cHE8IGHbBBabayv/lF9Oll1pXVJSpvp2nskp/MTLSVFt5J0/6vO+5DJdLzl9+kfPM1+KCTpeY6tswDH09/h6FRTpOz/SLOTPjLy5WDQb2V3Tjxn7XZlZERIRn+8cFr/od2hXJ3X9Aexe+ptZ3j/c8Z+ZrAwAAgJopPDzcc+43mKtAGIZR7c6lVrfx+IPgLoQyMjI827Vr1zZ1bK1atTzB3ckAPpRXlHnz5ik/P1+333673208+uijeu+99zR+/HjdeOONatWqlee1zZs3a8aMGdqxY4eWLFmi3NxcPfvss8EoPWS+//77UJdgGd99912oSwAAAFVddJQUHaXDXqtc+MKIciji9hFSXp6MvDwpL//Mn3ky8vLPPp+f73ldBQUltnXwRLqObNvmc9/un38u9bVd+/crLOuUz225gvje8tjJk8owMQ6jsFCFZz7r5J/z2snGjRR24oTPbbkPH5Fz7SdSVKRsUVFSZJRsUZFSdFTxx1Fef4af/pjbvHlz1a17eunXUzt3lXs1s6+O/PsD1ftVH89SRZmZmdq3b19Q2gYAAED106pVKyWcuUAx2KtA2Gw2ZWVlac+ePcEsGSFGcBdC2V5L+kRFRZk61uF1Q8qcnOAt5xMMR48e1dKlSxUfH68+ffr41cb777+vo0eP6rXXXtMll1xy3uudO3fWokWLNHToUO3evVsrV67UFVdcoUGDBgVYPQAAAGoyW1yc7HFxpo4xXK5iQV5R0BdmdmZZ3rkxl1ddUZHmasrLM9d3WUz2XdY4ZPJzj/HLL3LvNnkSIjxctrhYJbz0d89Th99bZa6Nchx+f7UnuEtMTNT+/fs99y8HAAAAikRHR3tCO6liVoFISEhQdHS0cktZdh9VD8FdCHkHbpGR5j4Mewd92WXc0yMU5s+fr4KCAg0ZMqTY0jRm/Pjjj/rTn/5UYmhXJDY2Vo8//rhnVt9f/vIXDRw4sMovmQkAAICqxWa3SzExssWYu5/eee3USZTjN6NOz+zLP2fGn8nPC2WGZ2brMhu2lREamm1L/gSQTqdi69aV/czXzF1QoPT1G8y3U4b0/65X8j13KczhkN1uV3R0dJkXVDrX/0/OTz49+0TREvneS+WX+Zznf4oYfKPsLVv4XKv78BEVLlte1ODZtmySY/wYzwxFXzi/3irXps0l16hzarWd+5yKHRdxza8U1tj3W0a409Pl/ODj4u2c+TNi6M2n/x76yLVjp1zfflduzbYSx2E7Ox5J9i6XK6ye7/f2dGdmnv4anu3E82d4n96yhYX53ta+/XL/uNfEz1Hpz4WltFFYfLzPfRtZWXLtLJrRXHwc9tSO5sZxPF3GsWO+11zG9y2scUNTv4uN/HwZR46W2KetSWNTt7MwsrNlZHmdnyn170L5z9niYmUzcT7FcLnO/r4892sXFWVuHG635H0hQgnfi5p4mw8A8Fe9evU82xW5CkRSUhKrQFQjBHcWYfbqTLfb7dm20humkydPaunSpZKkgQMH+tXG6NGjlZ6ersGDB5e7b5cuXZSSkqK0tDQdOnRIn3/+uXr16uVXvwAAAEAo2RwO2UwEGWUJS26t8Oio0pf69Hosl6vsxkyHhmWEbZU0czAuubVnO3vvXhlBvg+dUVio7L0/eU6UxMTElL0SisslBeteHS53+ft4czpl/JwZnL5PZZ0NOQJk5Jr83ubmyf3D7lIaM/d52jh2XO7twVmePywlRTIR3OlUllz/21TiS+G9r5TMBF4/7ZNz3We+912GiLp1JTPB3c+Zcr63usTX7Bd1MDeOtB1y/medz/uXJWLEcNmTW5W/4xnGseMqePWfJb4W+fDvJRPBtmvL1tNL+waB6XEcOqyCBa+V+Jrpcaz/n7lxlBG4RgwfKntr38fhPnhIBf9a7NXemf/ZpMgHfmsqoHd+8aVcGzZ6Be22c0LSkmsucRz9+ymsaRPfx3H0mArf/7fXGM625bh9hLkLDb79Tq6t3/hYr1eHJQTC4T27K6xBfd/HkZEh1+cbSmhPCu/fz1RA79rzo9y7dpfz/fDte2RPvUhhiYk+9238ckqu7d+W2J69S2dzFxocPiL3ocPljsPmw9jCmjeXrZbvqzwYubly7zvgac67zbDkVuYC+pMnZWSePPuEnxd9SJItMUE2E+8VjcJCGb+cWf79nHHY4mubG0dBgeT9Hi+AcchuN/Wz4CubzVZsth2rQMBXBHchFBsb69nOzzd3RWyB1300vNsJtSVLlignJ0e1a9dWp06d/GrD7H3xevfurbS0NEnSxo0bq2xw165dO79nKFZlTqfzvHvatW/fXuEmPlgAAADgHKm+7+ouKJAzO0eunGy5snPkzD79pys7W86cHNXt2VOOOr6fIMt0urSzhOdtdrtSL7vM1AmZA9/v0CGf9z4r0uvK5pyf9vvRQvlyftrnOVHSpEkTNWpUeuh6aNduHQhSv61atVTtVN+/wacckSrtjocdO6YqLML3992M43yM43zVZxwdFWbiM3owx9GyVUvFV5VxeJ8gPudkccuWfoyjlGXeOl7U0fzPVWamz/uXpWXjxuZ+rtJ26PsDJX8V/RpHaRctmNTy5hvNj+PrrSW+1unB35kfx8aSL1owK/nKK8yP46O1Jb52yehR5sfxfskXLZjVdtpU8+NYPKvE1zov+qe5cbz1tg4sWlz+jj7waxxPPVPia1VqHDt26vtHHzvzyHb6/e2ZAPKy1xd4fu/abDbP6nCVsQpEampqtQjuCgsL9X0Q79ldFXFmPIQCCe6897dKcGcYhhYvPv3L8v/+7/8UVgFXKZSkffv2nu2q/Bc6PDy8RgZ3JeFrAQAAUIkiIhQZGyvJxKyhMlyQnKw2kx/wBIDOrCw5s7NluNzF7tXtC39n3Hkv/+jKD+L9/ry4vD6T2e32MpfsD+Zno/CICFPvlcPLqCvCEaEwExfMhXQcZdTJOAJnN/kZrMxxRISbCoqsO46IkI3D7GfiajOO6vL7inGch9+756su46ix/37Y7ZK7KCAz5B2VlfZ7tzJWgaguEyGqQ/gYqOrxnayivKfJnjx5sow9z3fq1KkS2wmlTZs2af/+01ezXnbZZZXWb5MmZ5cr+PnnnyutXwAAAADni6yTqKQrrwhKW/GpHWWz2z0zAU+Hgdlntk/PCjRKWOrT8FqW0h5p8r56PrKbXULUgqx024VyVZcTOBYdh+mfhbLGEcKfK8ZRYmOBFRMAs+Mo60RtUL8mFSyo47CoKjUOi/7eNc2i46ipv6/8GUdlrAKB6oPgLoRatz5734VDh3xfAMblcik9Pd3zODk5Oah1+euDDz7wbLdt27bS+vWecVjmfSUAAAAAVCmJXS5XYpfLS33dMAy58/PPBnpZp0O98NoXePaJad60QmqLad7M950tegLZj8aC15bprjmhX0JjAVbjP8ZRYmMBVuO/6jIOywplSGXRnys/GgteW6a7rh5/PxhHiY0FWI3//BlHZawCgeqD4C6ELrzwbBJ++PBhn49LT0+Xy+uqUqsEd+vWnb2ZtHcoWdHc7rM3Z4+Jiam0fgEAAACEls1mkz0qSvaoKKlOnRL3iW3RQraIiKAuTWSLiFBsi+Y+71/3yp6Kbd3q7BOGIRmG1/km48xzZ7Z15oSQ4fXamcNiTPQrSdGNGir53rvPNOHdj0yfjI6/5GKFFc00NIyzJ63O+dMwjOIn07z3PfM4qkF9U31H1klUoxtvONuP99fP5DhiW7VU/WuuPlurznxNPA2eabvoNZ3ZxbPv2eci4uNN9R1RK04Jl1/m1Z/h93nHyKS6uqB9u7Pj8PFn6LyfAxmyR0eb6jvM4VBUwwae9o1i7ZkTFhmp8AvOhO1e3w/D6/tR9PU69+fI+4tnGIZUSbfsqHBVaTZTWUyPI3gn4UO7zJpFx1Fdvh+MI2CMowSV8HuXVSBgBsFdCHXs2NGzfeTIEWVkZCgxsfybvu/atcuz3bhxY9Up5QNqZdq7d69nmUxJijf54aXI3Llz9dprr6l+/fp66aWXlJRU/n02vGfZXXDBBWXsCQAAAKCmCXM4VLd7Nx1f92nQ2qzbo7vCTNyvL7phQ0U3bBi0/s1wJCR4QqpA1WrbRrXatglKW2ZFNWiglqNHBqWtxMs7K/HyzkFpy6yYZs3UftrDQWmrXp+rVK/PVUFpy6xaFybrsrkvBqWtxjfeoMZFoWwlu6B9O3VfvkRSCYGzyRCw0Y03qMF1/c488g6XvYJt7wC46CVPgOsdCNc21Xdc61bq9MKs4oFz0VBMjqNen6tUO7Wjp2bj3PZMhPaxLVua6jumSRO1nfK7YoGz4ec4Ert0VmSdRK/yigfWZkL76Ebmfn9H1aunZrfeUtRR8XDB5DguSGl79qKFosH4eeGHo0755xy9RdSuraTeV5Z84YLJkCO6UaPTFy0UlXnuhQuGd63n/3x5fw3D4+JM9W2PilZccuugXMASUSvu9EULReM478IFr+/PORcfnPt338y93CTJFmZXWNSZ4Ofc31ehDPuD2XeVGof50NASq0CgyiC4C6GmTZsqJSVFaWlpkqStW7fqqqvKf9P97bfferavvjo4H8AC9dVXX3m2IyMjTd3Ms8iXX36pWbNmSZJOnDiht956S3fddVe5xx09etSzbZXZhwAAAACso+HA/kEN7hoOuC5obQEIHZvNJtntp7cDbMseGRmyWQ/2qCjFNAvOidvIpLqKTKoblLbMiqhdW3W7dwtKW3GtWimuVavyd6wAkUlJajpsSFDair/kYsVfcnFQ2jIrpkkTtZl4f1DaSrqyp5Ku7BmUtsyKa91KFz/356C01XBAfzUc0D8obZl1QbsUdVv8RlDaavrroWo6dLDncZkz5YsFqFKxANeQwqLM/d6r1aaNOr/yUskXLpgMzxped63qdv+/s2Wec6FBSQF9sXF5jTm6SWNTfcc2b64OMx4r+cKFUgJ6K6wCgaqD4C7Err32Wk9wt379ep+Cu82bN3u2+/btW2G1mfH11197tgsKCuR0OhUebu7Ha8uWLcUe5/u4Pu/u3bs926mpqab6BAAAAFD91Wpzoepfe42Orvkw4LYa9OurWm0uLH9HAAAAC/K+aEEK/MIFM8IiIhQZpNXjImrXVkRtczOUgyU8Lk7xF5s7D22FVSBQdVSTxb+rruHDhys2NlaS9P7778vpdJa5/y+//KINGzZIki6++GJ17hya5T3O5R2eGYah9PR00214L3MZERGhQYMG+XTc+vXrJUkOh0O9e/c23S8AAACA6q/l6JGmr6Y+V3TTJmox6o4gVQQAAICapOHA4M7YZBWI6ovgLsQSExN15513Sjq9POSqVavK3H/FihUqPDOdduLEiaXud+jQIY0bN06dOnXS9ddf7wm3Kor3/e0klRtAlqR79+4KOzOVeMCAAWrRokW5xxw+fFhffPGFJKl///5+31sPAAAAQPVmj45WhxmPKbppE7+Oj27aRB2emC57dHSQKwMAAEBNULQKRDCwCkT1RnBnAWPHjlXHjqdv/Dtr1izl5eWVuF9ubq7mzZsnSRo6dKi6dSt93e8pU6Zo3bp1ysnJ0c6dOzVhwgQdPnw4+MWfcfLkyYDbaNKkiYYPHy5JiomJ8emY2bNny+l0qlatWpo8eXLANQAAAACoviLr1NHFzzxt+oRJg359dfEzTwdtaScAAADUTKwCAV8Q3FlAZGSkXnzxRTVs2FCHDh3S73//e7nd7mL7GIahKVOm6Pjx47rkkks0ffr0Mtvcvn17sce5ubn65ptvgl67d33e7F7rJJvx0EMP6aqrrtKKFSu0devWMvdduHCh3n77bTkcDj3zzDOqV6+eX30CAAAAqDns0dFKnnCXUp95Wkm9e8kWEVHifraICCX17qXUZ55W67vHM9MOAAAAAWMVCPgiPNQF4LT69etr2bJlmjhxotasWaORI0fqnnvuUcuWLbVnzx79/e9/18aNGzVgwAA9+eSTcpRz08mLLrpImzZt8jyOiIhQSkpKhdXfqlUrff/995KksLAwJSQk+NVOUYg5f/58jRo1Sl27dtWvfvUrtW/fXnXr1pXT6dSuXbv05ptv6j//+Y+aNWumGTNmlDn7EAAAAADOVavNharV5kIl33OXsvf+pJyf9smVny97ZKRimjdTbIvmCivncxcAAABgVtEqED8ueFVH13zo83EN+vVVi1F3ENrVADbj3KlSCCm3261PPvlES5Ys0c6dO5Wenq6kpCR16NBBt956q7p27epTO4cOHdLjjz+uL774QvXr19fkyZN1zTXBWT+3JF988YUefvhhnThxQrfddpsmTZoUcJsZGRl6++239fnnn2vnzp06efKkoqKilJiYqA4dOqhXr17q379/uSGm1RQUFJQ4+7Fjx45VbizBUFhYqG3bthV7LjU1VRGlXPkMAAAAAAAAANXBqZ27dPj91Ur/73oZhYXnvW6LiFDdHt3VcMB1Neaedpw/J7gDKh2/eIojuAMAAAAAAABQk7kLClgF4gzOn7NUJgAAAACgBnM6nTp48KAcDofCwsLkdrtVr149v+/bDQAAAJgV5nB4lnIHCO4AAAAAADWWYRhKT08v9lzdunUJ7gAAAACEBMEdAAAAAAAAAABAiLAKBLwR3AEAAAAAAAAAAIQIq0DAW1ioCwAAAAAAAAAAAABAcAcAAAAAAAAAAABYAsEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAWEh7oAoKYxDKPE5wsLCyu5EmtwOp3nPVdYWFjq1wkAAAAIJt6PAgAAINR4T3pWaefJa9LXwmbUpNECFpCdna20tLRQlwEAAAAAAAAAQJWQkpKi2NjYUJdRKVgqEwAAAAAAAAAAALAAgjsAAAAAAAAAAADAAgjuAAAAAAAAAAAAAAsguAMAAAAAAAAAAAAswGYYhhHqIoCaxO12Kzc397znw8PDZbPZQlARAAAAAAAAAAChZxiGnE7nec9HR0crLKxmzEUjuAMAAAAAAAAAAAAsoGbEkwAAAAAAAAAAAIDFEdwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAKtTJkyf11ltvhboMAAAAAAAAAAAsj+AOQIX6/PPP9fDDD+u3v/2tfv7551CXAwAAAJzntddeU3Z2dqjLAAAAQA2TlZWlVatWqaCgINSlwEII7gBUqDVr1kiSPvjgA11//fX65ptvgta2y+XSvHnzNGvWrKC1CQAAgJpn1qxZ6t27t55//nkdP3481OUAAACghoiKitI777yjq666SnPnzlVOTk6oS4IF2AzDMEJdBIDq6dSpU+rRo4fy8/MlScOGDdNjjz2m8PDwgNv+7LPP9OyzzyotLU2S9OSTT2rIkCEBtwsAAICap1u3bsrIyJAkNWjQQCtXrtQFF1wQ4qoAAABQE+Tk5GjYsGHatWuXGjVqpPnz56tVq1ahLgshxIw7ABVm9erVntCue/fueuKJJwIK7QoKCvTee+9p8ODBGjNmjCe0k6THH39cmzZtCrhmAAAA1DwRERGSpOjoaM2bN4/QDgAAAJUmJiZGzz77rMLDw3Xo0CHdd999oS4JIRb4tBcAKMXSpUslSZGRkZoxY4bCwsxfK+B0OvXVV19p1apVWr16tTIzM4u9npiYqJSUFLVq1UppaWnq0qVLMEoHAABADeJwOCSdfW8JAAAAVKaUlBTdeOONWrZsmXbt2qWsrCzFxcX53V6gxyO0CO4AVIgdO3Zo27ZtkqRbb71VTZs2Pe/1tm3blnjsiRMn9Omnn2rdunX6/PPPderUKUmnr4S++OKLlZqaqk6dOik1NfW8dgEAAACz7HZ7qEsAAABADTdq1Ci99dZbSklJCSh0y8jI0MiRI9WnTx9NnDgxiBWishDcAagQixcvlnR6qvfYsWPPe3348OG6/vrrdffdd+vYsWP65ptvPP/t2bNHkZGRat26tZo0aaLvv/9ekrR27VrVq1evUscBAACA6s+flSEAAAAAScrMzJTb7Q64nTp16uihhx5S165dPfdfNisnJ0cTJkzQzp07tXPnTtWqVUtjxowJuDZULoI7AEGXk5OjFStWSDod0CUmJp63T3h4uBYvXqzFixerUaNGatu2rdq1a6errrpKKSkpatasmcLCwrR06VJNmzZNEldCAwAAoGIEch9mAAAA1Gwff/yxpk2bFpTwLtieeeYZxcXFafjw4aEuBSbw6QRA0L399tvKysqSw+HQ6NGjS9wnMjJSkjR+/HhNmjSp1Laio6M921b8xw8AAADIzs5WTEyMbDZbqEsBAABAJRs8eLAaNGigrKwsJScnKzExUbGxsZ77KANmsR4IgKByu9169dVXJUmDBg0qdWnLon+4yju5ERUV5dl2Op1BqhIAAADVzYoVK1RYWOjXsYEGbo888ojGjRunzMzMgNoBAABA1dSjRw9de+21at26tRISEs4L7fxd+rIk33//PRMcqjlm3AEIqo8//lg//fSTJGnYsGGl7hcREeFTe94z7vw9EQMAAIDq76WXXtLcuXP1yCOPqH379qaOLTrx4Xa7TZ9U+fzzz7V69WpJ0k033aTZs2crNTXVVBsAAACo3iZMmKA6depo5MiR6tKli9/tLF++XI8++qiuueYa/fnPf2ZWXzVFcAcgqP7xj394tidMmKDHHntM11xzzXn7+Xq/Ou8ZdwR3AAAAKE1kZKS+/fZb/eY3v/G7jcOHD6tbt24BHb9t2zaCOwAAABQTERGhjz76SB999FFQ2lu9erVcLpdeeOGFoLQHayG4AxA0a9eu1datWz2PDcNQy5YtS9zX1+AuNjbWs52XlxdYgQAAAKi2ilZ0SElJ0YoVK0wdO2jQIKWlpalx48Zau3atqWM3btyoO+64Q5L08MMP67bbbjN1PAAAAKq/yMhISVLDhg21fPlyv9t57rnntGzZMjVq1Ei///3vg1UeLIbgDkBQGIah2bNnS5JiYmKUk5OjVq1aKTk5ucT9fb2PCMEdAAAAfGGFZYJKe+8LAACAmq3odkBhYWFKTEz0u52iALBx48Zq2rRpUGqD9YSFugAA1cP777+vtLQ0tW3bVgMHDix3f3+Cu/z8fL/rAwAAQPUWFsbHWwAAAFhTUeAWLEX3aEb1xCcbAAHLzc3Vs88+q4iICM2cOdOzTFEwxMXFebZzcnJ8qgUAAAA1T3g4C8oAAADAmgzDCGp7LpcrqO3BWgjuAARs7ty5Onz4sKZMmaJ27doFtW2Hw+FZ9igrK6vcOoYMGaITJ04EtQYAAABYn68rOgAAAACVLdgriRUWFga1PVgLlyQCCMi+ffv0yiuvqF+/frr99ttNH+90OpWdnV3mPrGxsSooKFBmZmap+/7zn//UrFmzJEl33HGHXnvtNdWpU8d0PQAAAKiaCO4AAABgVXl5eZKkgwcPqm3btgG3x6pj1RvBHQC/GYahRx99VMnJyXr66af9auPll1/Wyy+/7NO+Tz31lJ566qly9/vhhx8I7wAAAGoYgjsAAABYVdGMu4YNG2r58uV+t/Pcc89p2bJl5a5MhqqN4A6A3xYvXqw9e/Zo6dKlio6O9quNcePG6d577y1znylTpmj16tXq3bu3/vrXv/rcNvc5AQAAqDkI7gAAAGBVeXl5uuiiizRixAglJib63U7Dhg11yy23aODAgUGsDlbDWW0Afjl8+LDmzZun+fPnq0GDBn63ExYWpsjIyDL3ad68uaTTy3KWty8AAABqJsMwQl0CAAAAargtW7bokksuOe+isr/+9a9q2LBhwO2XNwHivffeU0pKipKTkwPuC6ETFuoCAFRNUVFRmj17ttq0aVPhfTVr1kyStH//frlcrgrvDwAAAFUPwR0AAABCbfbs2br11lu1Y8eOYs8HI7Qrz6JFi/S73/1Ot99+u9LS0iq8P1QcZtwB8EtCQoISEhIqpa+iGXeFhYX68ccfuWIEAAAA53G73aEuAQAAADVceHi4NmzYoBtuuCFkNWRkZOiOO+7QO++8o0aNGoWsDviP4A6A5XXo0EHh4eFyOp3atGkTwR0AAADOU7Qyg9vtVkZGhqlji0I/f449deqUZ9vpdJo6FgAAANVLePjpyOXiiy/W3LlzK7XvCRMmaMuWLYqKitKUKVMI7aowgjsAlhcdHa2UlBRt375dGzdu1IgRI0JdEgAAACymKLjbuXOnunXr5lcbhw8f9vtYScrNzfX7WAAAAFR9drvd82diYmKl9h0RESFJat++vQYPHlypfSO4CO4AVAmXXnqptm/frv/9738qKCiQw+EIdUkAAACwkMLCQklSSkqKVqxYYerYQYMGKS0tTY0bN9batWtNHbtx40bdcccdkgjuAAAAarqiGXel2bdvn2w2m5o2bWqq3Q0bNmj16tWaMWNGIOWhiggLdQEA4IvevXtLkjIzM/XJJ5+EtBYAAABYT1Fw5w/DMIJSA8EdAABAzVZecHfgwAENGDBAc+bMUXp6ujIyMsr977vvvtN9992nxYsX64UXXqikkSCUmHEHoEro2rWrEhIS9PPPP2v58uXq27dvqEsCAACAheTl5ally5a67777Kr3vOnXq6Oabb1afPn0qvW8AAABYR3nBncPhUH5+vl544QW/Qrg5c+aoc+fOAS3vDusjuANQJYSHh6tv375avHix1q1bp507d6pNmzahLgsAAAAWMXHiRF111VWe+4pUlo4dO2rdunWee4oAAACg5irvvaj37X+WLVumjh07lttmRkaGJ6i78847Ce1qAJbKBFBl3HLLLZIkt9ut559/vsx9V61apSVLllRGWQAAALCAq6++2u/QLpClMmNiYgjtAAAAIMm3GXeB6NWrV0DHo2oguANgSW63WytWrNDYsWPlcrkkSe3atVOPHj0kSf/5z3/02WeflXr8mjVr9PPPP1dKrQAAAKgegnWvOwAAANRM5QV3gV7w5Xa7AzoeVQPBHQDL+eijjzRo0CB9+OGHeuaZZ4pdOT1+/HjP9iOPPKKTJ0+ed7zL5dKGDRvUrFmzSqkXAAAA1QPBHQAAAAIRFlZ25BLojLuiCQ6o3gjuAFjG+vXrNXToUE2cOFHDhw/XnDlzFB8fX2yfrl27qm/fvpKko0eP6qGHHjrvSpOtW7fq5MmTaty4cWWVDgAAgCqs6P0kwR0AAAACUV6w5nQ6K7R9VA9lz9sEAD/4MmXbe5+vv/5azz//vDZu3KjGjRtr0aJFuuiii0o9durUqfrss8+Um5urtWvXaubMmZo6darn9aIlNOvXrx/AKAAAAFBTFAV2BHcAAAAIRHnBWkFBgWc7KytLGRkZ5bbpveKY9/GovgjuAARd0T9QZZ34yMzMlCQtWbJEc+fOlSR16dJFAwcO1Pvvv6+kpKRSg7dGjRrpkUce0bRp0yRJCxculM1m05QpU2Sz2TzBXUJCQrCGBAAAgGqs6P0r9wwBAABAIAoLC8t83Tt4GzVqlOn2c3NzTR+DqofgDkDQFU35Lm3q96FDh3Ts2DFJ8lxVctNNN+kPf/iD3G63Ro8erWuuuUYjRozQPffco1q1ap3XxtChQ7Vlyxa99dZbkqQFCxZoz549uv/++/Xtt99KCnzNaAAAANQMRRecEdwBAAAgEGZm3C1btkwdO3Yst82MjAx169ZNkpSXlxdYgagSuMcdgKArCuxKu8LEZrMVu3fd6NGj9fTTTysiIkKRkZH629/+pqSkJC1YsEDXXXedNm/eXGI7TzzxhK677jrP43Xr1mnIkCGeEy7e08gBAACA0hS9f+SeIQAAAAhEefewKwruEhISip0f9UXr1q114YUX+lsaqhCCOwBBVxTY5efnl/h6w4YN9fzzzyssLEx33HGHHnrooWKvx8fH68UXX5TD4dDx48c1duxY/fTTT+e1ExERoeeee05jxoyR3W6XVPwq6UOHDgVrSAAAAKjGWCoTAAAAwVBecBcZGalJkybp448/VtOmTX1qMzo6Wq+88opWrVqlSy+9tNT9uF9z9UFwByDoiv6BKmvqdo8ePTR37lxNnTq1xNdTUlL029/+VpKUk5OjlStXlrif3W7Xgw8+qKVLl6pnz57FXtuyZYs/5QMAAKCGKQruyjvRAgAAAJSlvBUcLr30Uo0fP16xsbE+txkdHa0ePXpIkrZt26Z58+bp3Xff1ebNm3XgwAEVFBQoOztbe/fulXR6sgOqNu5xByDoimbc5eTklLlfr169ynx99OjRevPNN3Xw4EHVr1+/zH07dOig+fPnKy0tTf/617+0Zs0a7dmzx1zhAAAAqJHKW+odAAAA8EVFXwjWrFkz7d69Wx9++KE++eQTFRQUyGazyW63e/pOSEio0BpQ8ZhxByDoCgoK1LNnT82aNSugdiIiInT33XcrPj5e/fr18+mYlJQUzZgxQxs3btQjjzwSUP8AAACoGYoCu8LCQmbdAQAAwG8V/V4yPj5eN910k1544QWtW7dO48aNU3h4eLF+O3XqVKE1oOLZDBY+BRBkR48eLXeGnK8Mw9C+ffvUvHnzoLQHAAAAnOuSSy5Rs2bNNGnSJPXu3TvU5QAAAKCKGjVqlFwulx544AFddtllldLn5s2bNXbsWOXk5KhJkyZatmwZs+6qOII7AAAAAECNtnLlSg0YMEBhYSxKAwAAAP/t27dPzZo1q/R+//nPf2rfvn2aMGGC4uPjK71/BBfBHQAAAAAAAAAAAGABXE4IAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAsLTc3NxQlwAAAAAAlYLgDgAAAABgaX369NHTTz+tffv2hbqUkDEMQ//4xz+UmZkZ6lIAAAAAVCCbYRhGqIsAAAAAAKA0nTp1Uk5Ojmw2m6644grddttt6tWrV6jLqjSGYeiJJ57QokWL1L59ey1YsEDx8fGhLgsAAABABWDGHQAAAADA0hwOh6TTAdaGDRt04MCBEFdUebxDO0n67rvvNHr0aGbeAQAAANUUM+4AAAAAAJbWs2dPHT9+XJL00ksvVfpsu4ULF+qpp56q1D7L065dOy1cuJCZdwAAAEA1Ex7qAgAAAAAAKEtkZKRnu23btpXe/6hRo+RwOPTNN9/ooosuUrNmzVSrVi3FxcXJZrP51MbLL7+s5cuXS5ImTZqkq6++uiJLBgAAAFBFEdwBAAAAACytaKlMST4HZcE2YsSIgI73nhmXlJSk1q1bB1gRAAAAgOqIe9wBAAAAACzNO7jLzs4OYSWVKzc3V3//+9/ldrtDXQoAAACASkJwBwAAAACwNLvd7tn+5ZdfQliJtGPHDs2cOVMFBQUV3teaNWv0l7/8RXfeeadOnDhR4f0BAAAACD2COwAAAABAlXHw4EHTx2RlZem+++5TVlZWwP0nJyfryy+/1K9//Wv99NNPAbdXlqJ74m3YsEE33nijNm/eXKH9AQAAAAg9gjsAAAAAQJWxe/du08f88Y9/1Jo1a3T33XcrLy8voP7tdrtmzpypPXv26Oabb9ZHH30UUHul+fHHH7Vp0ybP48zMTK1bt65SZvoBAAAACB2COwAAAABAlWF21tmbb76pt99+W5K0adMm3XfffSosLAyohpYtW+quu+5SVlaW7r33Xs2ZMyeg9koyb948GYYhSapbt66WLl2qyZMnF7vfHwAAAIDqh+AOAAAAAFBlbNmyxeclL9evX68//OEPxZ47fPiw1q9fH3Adv/nNb9SiRQsZhqEXXnhBU6dOlcvlCrhdSdq/f79WrlwpSbrgggv02muvKSUlJShtAwAAALA2gjsAAAAAgCV89dVX5e6TmJioDz/8sNz9tm3bpnvuuUdOp1OS1KlTJ73xxhtauXKlevXqFXCtDodDkyZN8jxevny5/vjHPwbcriTNnTtXTqdTdrtdf/nLX9S6deugtAsAAADA+gjuAAAAAAAh9+WXX+r222/Xgw8+WOZSlldeeaWWL19eZlvbt2/XmDFjlJOTo5iYGE2fPl2LFi1S586dg1pz37591aZNG8/jRYsW6dtvvw2oze+++84zvunTp6tHjx4BtQcAAACgagkPdQEAAAAAgOolMzNTJ06c8Hn/goICTZo0SU6nU++++67S09P1wgsvKC4u7rx9e/XqpSVLlujHH39Uy5Ytz3v966+/1rhx43Ty5El16tRJM2fOVPPmzQMaT2lsNptuu+02TZ8+XZJkGIYWL16sGTNm+N3mjBkz5Ha7NXbsWA0fPjxYpQIAAACoIgjuAAAAAABB9+CDD/o9+2z9+vV66KGHNGfOnPNeS0lJUb169fTGG29o2rRpxV7773//q3vvvVeFhYWaNGmSxowZI7vd7lcNvurfv7+efPJJ5efnS5L27t3rd1srVqzQli1b1L9/f02ePDlIFQIAAACoSgjuAAAAAABBFR8frwULFmjhwoVKTk5WSkqK4uPjVatWLTkcjvP237VrlwYOHOh5PGPGDA0ePLjU9nv16qW3335bDzzwgGdW3jvvvKNp06apRYsWeuaZZ9SuXbvgD6wEtWrVUrdu3fTJJ59IkpKTk/1qJz09XU899ZS6du2qmTNnymazBbFKAAAAAFUF97gDAAAAAARd7dq1df/992vAgAFq3bq16tSpU2JoJ0mff/65Z7t9+/b69a9/rfDw0q8z7devn7KysvTmm29KkubMmaOpU6dqxIgReuuttyottCtSFDLGxMRo5MiRfrUxbdo0XXjhhZo3b16pXydvTqfTr34AAAAAWBsz7gAAAAAAIeUd3F199dXl7t+tWzclJSXp1Vdf1XfffafNmzdr/vz56t69e0WWWaq+ffvq7rvvVp8+ffy6n96yZcv0yy+/6OWXX1Z0dHS5++/evVt33XWXnnrqKXXu3NmfkgEAAABYFDPuAAAAAAAhk5+fr82bN3se+xLc2e12DRgwQMeOHVN6errefffdkIV2RR544AGlpqb6dazT6dRLL72kmJiYcvfdu3evRo0apX379mns2LHFvnYAAAAAqj5m3AEAAAAAQubTTz9VXl6eJKlZs2Zq27atT8fdcMMNWrhwodLT01WrVq2g1VNQUKD9+/cHrb0imZmZnu3jx49r9+7dnseXX365jh49qqNHj5bZxqlTp3T//ffr2LFjkqScnByNHTtW8+fP16WXXhr0mgEAAABUPoI7AAAAAEDIrFq1yrM9aNAgn4/r0KGDUlJSlJaWpsWLF2vEiBFBqcfhcGjRokV6/fXXg9JeSZ5//nk9//zzQWkrJydHY8aM0fz589WpU6egtAkAAAAgdAjuAAAAAAAhkZubq08++UTS6eUvhwwZYur4kSNHaurUqZozZ45uuOEGxcXFBaWuadOmqWnTpoqMjFT79u1Vv3591apVy6elLEszc+ZMvfLKK5Kkp556SjfffHNQagUAAABQvXCPOwAAAABASHz44YfKycmRJPXs2VMNGjQwdfzAgQOVlJSkEydO6MUXXwxqbSNHjtTw4cOVmpqq+vXrBxTaAQAAAICvCO4AAAAAACHxr3/9y7M9bNgw08c7HA7dcsstkqRXX31V27dvD1ptAAAAABAKBHcAAAAAgEqXlpamLVu2SJJatWqlPn36+NXOLbfcotjYWLlcLk2bNk1OpzOYZQIAAABApSK4AwAAAABUujfeeMOzPX78eIWF+ffxNDExUXfeeack6fvvv9fcuXODUh8AAAAAhALBHQAAAACgUh09elTvvPOOJKlx48YaOHBgQO3deeedSkpKkiT97W9/0xdffBFoiQAAAAAQEgR3AAAAAIBK9dJLL6mgoECSdO+99yo8PDyg9mJiYnTPPfdIklwulyZPnqyMjIyA6wQAAACAykZwBwAAAACoNMeOHdPSpUslSampqbrpppuC0u7QoUPVoUMHSadn9N1///2ecBAAAAAAqgqCOwAAAABApZk1a5by8/Nls9n06KOPymazBaXd8PBw/elPf1JERIQkadOmTXrooYdkGEZQ2gcAAACAykBwBwAAAACoFNu2bdPbb78tSRoyZIhSU1OD2n5KSorGjh3refz+++/rySefDGofAAAAAFCRCO4AAAAAABXOMAz98Y9/lGEYatasmaZOnVoh/dx9991q37695/Hrr7+uRx99VG63u0L6AwAAAIBgIrgDAAAAAFS4119/XVu3blV4eLiee+45xcbGVkg/DodDc+bMUUJCgue5JUuWaOLEicrJyamQPgEAAAAgWAjuAAAAAAAVas+ePXruueckSRMnTgz6Epnnaty4sWbNmqXw8HDPc//+9781ZMgQ7dq1q0L7Lo33jD/uuwcAAACgNAR3AAAAAIAK43Q6NWXKFOXl5WnYsGEaM2ZMpfTbrVs3Pfzww8We2717t4YMGaK5c+eqoKCgUuoo4h3WFRYWVmrfAAAAAKoOgjsAAAAAQIV5+umntW3bNl1xxRV67LHHKrXvW2+9VZMnTy72XF5enmbNmqV+/fpp+fLlys/Pr5RavGfcEdwBAAAAKA3BHQAAAACgQrzzzjt6/fXX1bVrV82ePbvY0pWVZdy4cbr//vvPe/7gwYOaOnWqrrjiCi1durTC63A6nZ5tgjsAAAAApan8T00AAAAAgGpv69atmj59uvr06aPZs2fL4XD43Zb3bDV/TJgwQdHR0frzn//saSs6Olq/+tWvdOmll6pjx44Bte8LZtwBAAAA8AXBHQAAAAAgqHbt2qVx48bp+uuv1xNPPBHQTDun06nDhw97HoeF+bdwzOjRo9WqVStNnjxZDRs21Ny5c9W4cWO/6zLLO6wjuAMAAABQGoI7AAAAAEDQHDhwQPfcc49+//vfa/DgwT4ds2rVKu3du1eJiYmqXbu2ateurdjYWNlsNr377rvKzMz07BsVFeV3bb169dLixYtVWFhYqaGdJBUUFHi2Ce4AAAAAlIbgDgAAAAAQNNnZ2ZozZ47atGnj8zGtW7fWjh079Oqrr2rPnj2l7peQkKDExMSA6mvdunVAx/vLO6zzDvEAAAAAwBvBHQAAAAAgaNq2bevXMW3bttXEiRO1efNm/fWvf9XGjRvP22/gwIHBKDEkvMO6QO/ZBwAAAKD6shmGYYS6CAAAAAAAvP3tb3/T7NmzPY+bN2+uJUuWKD4+PnRFBeDOO+9Ubm6uRowYoWuvvVYOhyPUJQEAAACwIII7AAAAAIAljRgxQl9++aX69OmjGTNmKCkpKdQl+e348eNVun4AAAAAlYPgDgAAAABgSV988YUSEhKUnJwc6lIAAAAAoFIQ3AEAAAAAAAAAAAAWEBbqAgAAAAAAAAAAAAAQ3AEAAAAAAAAAAACWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGABBHcAAAAAAAAAAACABRDcAQAAAAAAAAAAABZAcAcAAAAAAAAAAABYAMEdAAAAAAAAAAAAYAEEdwAAAAAAAAAAAIAFENwBAAAAAAAAAAAAFkBwBwAAAAAAAAAAAFgAwR0AAAAAAAAAAABgAQR3AAAAAAAAAAAAgAUQ3AEAAAAAAAAAAAAWQHAHAAAAAAAAAAAAWADBHQAAAAAAAAAAAGAB/w+ev0qTq25k9gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_name = '最大尝试次数P3'\n", + "y_choose = [0, 1, 2, 3]\n", + "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n", + " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n", + " 'palette': sns.color_palette(\"deep\")[0:4]})\n", + "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n", + ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n", + "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n", + "sns.set_theme(style=\"whitegrid\", rc=config)\n", + "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n", + " markers=['o'],\n", + " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n", + " palette=y_prop.loc[y_choose]['palette'].to_list(),\n", + " legend='brief')\n", + "ax.set_title(x_name)\n", + "for item in df_x.groupby('响应变量'):\n", + " for x, y, m in item[1][['水平', '均值', '均值']].values:\n", + " ax.text(x, y+0.05, f'{m:.2f}')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\2665207915.py:10: UserWarning: \n", + "The markers list has fewer values (1) than needed (4) and will cycle, which may produce an uninterpretable plot.\n", + " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAViCAYAAADtEQplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3zO9f/H8ee189iY2RyHhYTIIRT5Rk5lOZVCDuWQ87GcIjkmKXKKCIUO+KaSU6ISSTmUcpbz2YzZbDa2a9f1+2M/13eza9t1zXXtuvC4327fW5/Pdb0Pr89m6ns9936/DWaz2SwAAAAAAAAAAAAALuXh6gIAAAAAAAAAAAAAENwBAAAAAAAAAAAAboHgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAADYJS4uztUlAAAAAMA9ieAOAAAAgEtFRUVp6tSpSkxMdFkNSUlJDhvr8OHDdzzGsWPHdOPGDQdU43gmk0kvvPCCXnvtNZ05c8bV5WTpwIED2rNnj6vLcCmz2ezqEuzyxx9/3HU1AwAAAI5EcAcAAADApUJCQvT333+rVatWOnDgQK7Pf+7cObVr104ffPCBQ8br1q2bOnXqdEeB0bp161S/fn1Nnz5dUVFRDqnLUTw8PDRx4kRt3LhRERERmjFjhkODT0eaO3euOnbsqNWrV9vd9/z589q/f78TqnIMW8OtmTNnasKECTp27JiTK7pzSUlJ6tmzpzp16nRX1AsAAAA4A8EdAAAAAJcyGAwaO3asJUDLSciSU7/99puef/557d+/X/PmzdPHH398R+NduXJFUVFR2rFjh9q0aaNBgwbp1KlTdo+TJ08eXb16VR999JGeeuopDR8+XLGxsXdUmyPVqFFDr732mpKSkjRnzhy98MILbrf67vDhw9q4caNu3rypIUOGaNq0aXat5Lp8+bKef/55dejQQRs2bFBKSooTq7WPyWTSSy+9pO3bt2fb9sEHH9Tnn3+uiIgIvffee7lQXc7t2bNHN27c0M6dO9WyZUu3DoUBAAAAZ/FydQEAAAAAUKZMGb300ktasmSJhg4dKk9PT0VERFht+/HHH2vq1KlOqWPq1KkKCAhQ+/btc9T/4MGDlmuz2azffvtNdevWValSpewax8/PL939o48+qvz58+eoJmfp3LmzVq9erYMHD+rw4cPq0KGDvvnmG4WEhLi6NEnS5MmTZTKZJEleXl6KiYlRdHS0ChYsaFN/X19fSdKuXbu0a9cuValSRZ9//rl8fHycVrOtfv31V+3evVtdunRR37591bt3b3l4WP+93KpVq0qSmjRposGDB+dilfb78ccfLdfJycmaN2+evLy81LdvXxdWBQAAAOQugjsAAAAAbuHVV1/V559/LpPJpAkTJqh+/frKkydPhnY9evSQJO3fv19Vq1ZV6dKllS9fPgUGBspgMFjaffPNN1qwYIGk1BVi48ePt6mOzAIQW+zcuTPd/bx581S9enW7x/Hy+t//VRs2bJjatGmT45qcxdPTU2+++aY6duwoSYqMjNTMmTNt/jrfzmg0pnvuO7FmzRr99ttvkqTSpUtr2rRpKl++vF1jpK2lVKlSmjJlSpahXWJiovz9/XNWsJ2WLl0qSUpJSdHMmTO1a9cuzZ492+rPS7FixVS4cGGdPn1anp6euVJfTm3cuNFyXahQIX3++ed2h94AAADA3Y7gDgAAAECuOX36tAwGg0qUKJHhvcKFC6tKlSravXu3oqOjtW3bNjVq1ChDO5PJZAnvsnJrtZUk9e7dW2XKlLmz4m2QduvCChUq5Ci0k5QuYAkICLjjupylZs2aeuihh3T48GFJUkxMTI7GOXXqlHr06KGxY8eqdu3ad1TT5cuXNWHCBElSnTp1NHPmTAUGBto9Ttrgrm3btipZsmSmbXfv3q3XXntNixYtUnh4uN1z2eP8+fPasmWL5b5cuXLq2bOn1dDulvr162v58uU6ceKEHnjgAafWl1O7du3S2bNnLff9+/cntAMAAMB9iTPuAAAAAOSamTNnauvWrZm+/8gjj0iS8ubNq8qVK2d4/+zZs2rRooUlKMrK+fPnJaWuuKpbt24OK7ZdQkKC9u3bZ7lv165djsdy95VRaTVv3txy3bZtW7v7nzp1Si+//LJOnjypXr166ffff89xLSaTSUOHDlVMTIyefPJJzZs3L0Nod+TIkXQruzJj6/fg+PHj6t27ty5cuKDu3bsrOjo6R7Xb6tNPP7Wct+ft7a3Zs2fr8ccfz7JPkyZNJEnff/+9U2u7E19//bXl+oEHHlDr1q0dNrY9ZxsCAAAArsaKOwAAAAC54vr169q0aZPCw8N17Ngxq23y5MkjT09PDR06VPHx8YqPj7e8ZzabNWTIEB05ckSdOnXS/PnzVaVKlUznu3DhgiTppZdecuyDZOK3335TcnKypNTgMW2gZa+0W366u4cffliSNGDAAD3xxBN29b0V2l28eFGSdOPGDfXq1Utz587N0cq7Dz/8UNu2bdNjjz2m2bNnW93aMigoSG+//ba++eYbjRs3ToUKFbI6li1bpu7evVu9evWyrDQ8ffq0evXqpSVLlmQ4p9ARoqOj9dVXX1nuO3bsmOVKwFsee+wx5c+fX99++6169uzpdsHwtWvXtH79esv9oEGDHFbjL7/8otmzZ2vevHkKDg622mbAgAH64YcfbB4zT548CgwMVLFixVSlShXVr1/frj+v33zzjUaMGGFze2tWrVqlhx566I7GAAAAgHsiuAMAAACQK77++mvFx8dr1qxZmjVrVpZtx44dm+X7sbGx6t27txYtWqRy5cpZbXPmzBn5+PioRYsWOS3ZLhs2bLBcN2vWTHnz5s3xWM4K7m4FY3eyqi0zM2fO1MyZM+94nJyGdxs2bNCcOXNUsWJFzZkzJ9Pz6EJDQzVlyhS9/PLLat68uSZNmqQGDRpkaJddcLRq1SqNGjVKN2/elJS6svPVV19VuXLlnLbCa8mSJUpMTJSUGkD27t3bpn7e3t5q2rSpli1bpjVr1qhly5ZOqS+nli9froSEBElS5cqV9cwzzzhk3F9++UX9+/dXUlKSOnfurEWLFlkN70aMGKHevXtrz549GjdunGVFY3h4uEaOHKmiRYta2t64cUPXrl3T0aNHtWPHDn3++edatGiRypQpo9GjR2e7+tER/P39VbZsWafPAwAAANcguAMAAADgdFFRUZo9e7Ykadq0aYqIiLB7jMOHD6tly5YKCQnR6NGj9dRTT8nb29tq2+vXrys6OlpNmzZVUFBQluMajcZ055nlRHJysn755RfL/Ysvvphtn/j4+Fw/v87Pz0/z5s3TxIkTFRAQoIoVKyokJESBgYFOWSF2J3x9fW1uu3PnTg0dOlTh4eFasGBBtl/XmjVrqkOHDvrss8/Up08f9e/fX3379rVprmvXrmncuHFas2aNJKls2bLq2bOnmjVrZtMqvZy6evWqvvjiC8v9kCFDlD9/fpv7d+rUScuWLdPcuXPVvHlzh9Z67tw53bhxI8f9v/zyS8v1888/n+mKXHscPnxYw4cPV1JSkuX+lVde0eLFizOEd0WLFlXRokVVoUIFrVixQnv27JEkvfzyy6pXr57V8evWravOnTvr3LlzeuONN7Rjxw516dJFr7/+urp3725TjQEBATn6u6dy5cput2oSAAAAjkNwBwAAAMCprl69qu7du1u2E0y7UmTNmjU6ffq0unXrlm1QM3v2bIWFhWnx4sUqXry4JGndunWqXLmySpQoka7tmTNnJCnb1XYpKSl67bXXVKJECQ0bNszeR7PYvn27rl27JkkqX7681fP50tq4caMmTJiguXPnqmLFijmeNyd8fX01fvx4m9quW7dOV69eVfv27XO8CnDDhg1asWKFBg0a5JRn/fXXXzVgwACFhobq008/VcGCBW3qN3DgQK1bt05XrlzRzJkzlZSUpNdee83y/u3Bltls1po1a/T+++8rMjJS1atX16uvvqoGDRrkytams2fPtvwZe/TRR/XCCy/Y1b9s2bKqW7eutm7dqu+++07PPfecw2o7c+aMevXqZVkNeCfGjRvngIqs+/fff/Xyyy9r8eLFmf45SRtg+/v7Zztm8eLFtXDhQr388svavXu3pkyZouDgYJvO6JszZ44ee+wx2x8AAAAA9wWCOwAAAABONXHiRB08eFCS9MADD+jBBx+0vPfjjz/q+++/14oVKzR06FA1bdrU6hj//vuv/v77b3355ZeW0E6S/vjjDw0fPlwdO3ZUp06dLCvwDhw4oICAAFWoUEFRUVGZ1vb+++9btrj08fHRoEGDcvSMq1atslw3btw4yzmvXr2qN998U7GxserQoYPef/99NWrUKEfzOtujjz6qZs2a6aefftL7779vcyiW1rZt27R582Zt2bJFTZo00cCBA1WmTJk7ri0qKkqffvqpFi1apOLFi2vx4sXptjTMTmBgoPr162cJiubOnas6depYgpS0YdyhQ4fUrl07HTx4UBEREerYsaMqVaqU6di7du3SQw89pMDAwBw+XXqnTp3SsmXLJKVuezlu3LgchYVdu3bV1q1b9c4776hOnToqXLiwQ+p7/PHHtXTpUiUnJ6tChQqZroS1pnfv3vr5558lpYZ27dq1c0hNucnHx0djx461bEE6adIk1a9fP0c/LwAAAADBHQAAAACneuihh/T9998rPDxcU6dOtQQOCQkJ2rx5s6TUrfZ2796tp556yuqWjfv27dPHH3+ssLCwdK/7+PgoKSlJn3zyiT755JMM/erXr29znQsWLNDTTz+tChUq2PF0qc+xceNGy70tZ/il7du/f3+7ttfLTYULF9awYcM0atQotWzZUh9++KGqVq1qc3+j0WgJRs1ms37++Wf5+/vrrbfeuqNtQk0mk7p06aIjR45ISj1fbsaMGUpKSlJSUpKSk5OtXqe9N5lMyp8/vwICAhQfHy9JWrlypdXg7sCBA+rYsaPmz5+vfPnyZVvfl19+qfbt26tGjRo5fsa03n33XSUnJ0uSBgwYkC78tscTTzxhWXU3cuRILVy40CH1SbL750aS9u7dawntypUrZ3WLWbPZnCsrGu9U+fLlVaVKFf3zzz+Ki4vT8uXL1adPH1eXBQAAgLsQwR0AAAAAp+revbu6dOmS4SynNWvWKCEhQZLUvHlzjRw50mr/8+fPq3HjxlZXL6Vd2bN27VoVKlTIrtpGjx6t77//Xv7+/vriiy9yFD5s2LDB8hyNGzfWO++8k2X7HTt2pDtPLU+ePCpfvrzbBhStW7fWl19+qQMHDuiVV17R3LlzVbt2bZv6/vrrr7py5Yqk1JD1s88+syv4y4yHh4cGDRpk+TqmPV9Qkjw9PVWkSBGFhYWpWLFiKly4sAoVKqTChQurSJEiKlKkiEJDQ+Xp6amPP/5YU6dOlaRMV4o9//zzeumll2yuz2g06uLFizl7uNt8//33lnCrRo0aevXVV+9ovBEjRqhly5baunWrPvzwQ/Xr188RZebIe++9Z7kePny41XPbVqxYoS1btqhTp06qVatWbpZnt2rVqumff/6RlPpnkuAOAAAAOUFwBwAAAMDpbg/tpNRVSZKUP39+jRgxwmq/Q4cO6dVXX1VoaKgWLlyo4ODgdO/7+PhYrgMCAmxaDWWtrrx58+rhhx+2q+8t3377reW6W7du2dawd+/edPcTJkzQf/7znxzNnRs8PDw0YMAA9erVSzdu3FD//v21Zs0aFSlSJNu+y5cvt1yPHz/eIaHdLY0aNbKscAoJCVHDhg1VvXp1Va5cWSVLlrR5u8bnnntOM2bMkNFoVMOGDS2v30mImpSUpBMnTuS4/y0xMTF6++23JaX+nEyePDnD2Xv2Klu2rDp27KhFixZp1qxZyps3r7p06XLHtdrrxx9/1I4dOyRJ9erVU926da228/X11YYNG7RhwwaVL19enTt3duj5fI6UdqvW06dPu7ASAAAA3M0I7gAAAADkut9++81y7l1sbKzq1KmTZfuoqCi1b99en376aboPx+05S8sZjh8/ru3bt0tKXW1TrVq1bPts27bNcl2jRg1FREQ4rT5HqV+/vsLDw3Xy5EnFxcXpww8/tARKmTl58qRlJZyzwpbhw4fr7Nmzat68eY4DrdDQUDVr1kzlypVTvXr1HFJXfHy8/v333zseZ/z48bp8+bIMBoPee++9DFvF5tTgwYO1fft2HTx4UO+++64MBoM6d+7skLFtcfPmTU2aNElSajCX2WpbKXVF6i0nT568oy1WnS1v3ryW61vbrwIAAAD2IrgDAAAAkOvmzp0rKXX1z4wZM6yubrpy5Yq6du2q5ORk5cmTRy+++KKCgoLStckuuPvyyy9VqVIlPfLIIw6r/fbxzWazJNm0heG1a9e0f/9+y33v3r2dUpejGQwGRUREaM6cOZKknTt3Ztvns88+k9ls1hNPPKFhw4Y5pa5HH31Ujz76aI76xsXFydfXVz4+Ppo8eXKWbW+dL2erqKgo/fvvv0pMTJS/v3+O6lu6dKnWrl0rKfXPiT3nNWbHx8dH06dP1/PPP6/r169r0qRJOnz4sMaMGWP1jElHmz9/vs6ePStJ6tWrl8LDwzNt6+vra7nu3LmzGjdu7OzyciwuLs5yffvqYAAAAMBWd7bHBgAAAADY6bffftOOHTvk7e2tqVOnqmzZsipTpkyG/61cudISmEycOFHdunXLEIJkt53hgQMH1KZNGw0dOtRhZ47dcv36dcs2mZUqVVKjRo2y7bNjxw6lpKRIkh544AE98cQT2fa5FQy6WtrnK1euXJZtr1y5ohUrVqhkyZKaNm2a1bPLbjdt2jTt2bPH7rq++uorrVu3zq6vk8lk0qBBg9S1a1fFxsZabZM2FN6+fbvN4588eVKnTp1SbGys3nrrLSUlJdlc1y0HDhywnJUYERGhAQMG2D1GdsLDwzV58mTL9+abb75Ru3btdPjwYYfPldbp06f18ccfS5LKlCmTbeCd9s+OtS13M+OKn5tLly5ZrkuUKJHr8wMAAODewIo7AAAAALkmJSXFsrppwIABKl++vNV2e/futYRi7du3z3Q7yey2R/T09JTZbNaqVau0ceNGDR06VB06dLiDJ/iflStXWrbDe+2112zq8/PPP1uuW7dubdM5auPHj9cvv/yiZs2aqX79+ulWIN2pPXv2KDk52aZVaxUrVlSRIkV05coV9e3bN8u2n3zyiTw8PDRnzhzlz58/y7Zms1njxo3T0qVL9fnnn2v+/PmqXr26zc8QFRWlUaNGacGCBerQoYNNK8b++OMPbd26VZLUtm1bzZ8/P0PQEhgYqAIFCujq1avatm2bXn75ZTVq1EgFCxbM9Pt24cIFy0pDSVq9erX8/Pyy3Vb09ufp27evkpKSVKdOHU2ePPmOztvLjMlkUuPGjfXOO+9oxIgRMplMOnjwoJ5//nm1b99eAwYMUGBgoMPnHT9+vG7evClJGjduXLpzKq3JyRaov/zyi2bOnKlp06apVKlSOaozJ26d2SfJ7nMrT548qXXr1mnXrl06e/asYmNjFRgYqFKlSqlJkyZq2bJlrqyGBAAAgOsR3AEAAADINZ999pkOHz6sKlWqaMOGDdq5c6caNmyoJk2aWLaWS0pK0siRI2UymfTwww9rxIgRmY6X3Yf6aVfoVKhQwWHb7CUnJ2vBggWSpKCgoHRnW2XV56effpKUWneLFi1smmvAgAE6ePCgJUiJiIjQCy+84JDtP8+dO6dBgwbpiSeeUL9+/bIMzAwGg9544w1JyjRwlaSYmBgtW7ZM7733nh588MEs5zeZTBo1apS+/vprSanngnXr1k0ff/yxatasadMz3Aoy9+/frxkzZihfvnzZ9klISLBcnzhxQuvXr1f37t0ztOvataumTp0qKTWUSRvM2KJWrVp6/fXXbW6fkJCgnj176vz586pZs6ZmzZqVbbCVEykpKRo+fLiCg4M1cuRIJScn66233pLZbJbRaNSSJUu0atUqtW7dWu3bt3fY2Xrr1q3Tr7/+ark/ePBgtltKpl3FdvXqVR07dizL9tHR0RoyZIji4uL03HPP6e23386VcyQPHDigAwcOSJL8/f3VqlUrm/vOmjVLc+bMkclkSvd6TEyMzpw5o61bt2rBggV67733bDpHEwAAAHc3gjsAAAAAueLkyZOaMWOGKlSooE8++UR58+bVli1btGDBAo0fP161a9dW8+bNdfjwYf3777/Kly+fZsyYkWVwkV1wl/aD8GnTpqlQoUIOeZaVK1fq/Pnz8vT01LPPPqt27dopPDxcbdu21Ysvvmh1pdK2bdsUExMjSapevboKFy5s01wFChTQlClT1LRpU40ZM0bLly/X8uXLVaFCBXXq1EnNmzfPcbhza+vR3377Tb/99pvN/QYNGpRtm379+uWopoSEBHXv3l0fffSRateunW37tFtaDho0SM8//3y2fbZt26YuXbpIkl5//XWroZ0k9ejRQ0WLFtXatWt1+fLlDMHK7Xx8fBQUFKSSJUuqXr16qlOnjs2r5ZKTk/Xaa69p//79atiwod59911FRkYqMjLSpv72+Oijj7R69WpJqSse33zzTYWEhGjIkCGWVaQxMTFauHChPv30Uz366KN6/PHHVbduXVWtWjVHc0ZHR2vChAnpXps4caJdY3zxxRf64osvbG5//fp1jRw5Ug888IAqVKhg11z2SExM1Lhx4ywrLfv27asiRYrY1Pedd97RkiVL9NRTT6lly5Z6+OGHFRoaqoSEBO3evVsff/yx/v77b50+fVpdu3bV/PnzVaNGDac9CwAAAFyP4A4AAACA0yUnJ2vIkCEqUqSIFixYoICAAElSvXr1VK9ePe3evVtz587V8OHDLX26dOmS7TlR2YUiaYMWe87HyorRaNS8efMkpQY7gwYNUtmyZTV+/HhNnjxZs2fP1quvvqpu3bqlC9TWr19vuc7JCqCGDRuqWrVqeuONN7R582YdPHhQI0eO1IwZM9SnTx+9+OKLNp0ll1barfcqV65s2cbUHdi6Jai9z3y7ypUrZ/l+8+bN1bx58zuaIzvJyckaMGCAfvnlF7Vr106jR4+Wh4eHpkyZouXLlzt17iVLlujBBx9UmzZt9NVXX6lPnz46ceKE5X2TyaSdO3dKSt0+NKfB3ciRIxUdHa0SJUro4sWLSk5OVpUqVfTf//43y367du2ybG/br18/9e/fP9u5KlasqJSUFBUvXlyLFi1SyZIlc1SzLU6dOqXhw4fr77//liS9/PLLmQbBt/vmm2/0/fff66OPPtJTTz2V7j0/Pz81bNhQTz75pAYPHqwffvhBCQkJGjRokNauXZvtFrQAAAC4exHcAQAAAHC6SZMm6caNG1q8eLFCQkIyvF+tWjUNHDhQO3bssGxjOGPGDG3evFmvvPKKnn76aasBTXahza0VMLa0tdXy5ct15swZVapUyXLWW/v27ZWYmKj33ntP8fHxmj59un755RfLysKkpCTLNpm+vr5q1qxZjuYODg7WvHnz9NFHH2nmzJkym82KjIzUmDFjtGrVKk2fPj3Hqwr9/PxUpkyZHPV1JUd9X2+XkpLitLHTSkpK0qBBg/T7779r8uTJ6bZYHDdunBo0aKCyZctmul1ltWrVLD8zGzZssOlMt6FDh2rVqlWSpF69eumFF16QJJUuXVpff/21Zs6cqc8++0wpKSkKCwvTtGnT7mhr1oULF2rTpk3Knz+/5s2bp9atWys5OTnH49mqePHiDg/tTCaTrl69qn379mn9+vVas2aNkpKSFBQUpDfffNPmLXCl1JW7kyZNyhDapeXt7a133nlHf//9tyIjIxUVFaVp06Zp7NixDngaAAAAuCP7T3kGAAAAADts3rxZR48e1RdffJFpqHT27Fn16NFDCQkJqlmzpjp16iQPDw/9/fffeu2119SkSRN9/fXXGbYqTBvMWXPz5k3LddrVZTkVExOjmTNnKl++fJo+fXq6bRq7deumTp06We7//vtvrVu3TlLq2V6xsbGSpMaNG9/RahmDwaA+ffpo+vTp6Vb0/fnnn+rZs6eSkpJyNG52X0t35axwrXPnznr//fd15swZp4wvSbGxserWrZtOnz6t5cuXZzgXzWAwqH79+pmGdlFRUZbQLk+ePDaHVHFxcZbr9u3bp9tyNm/evBoxYoRWrFih2rVra9GiRXcU2v3++++aOnWqvL299eGHH95V4fCbb76pihUrZvhfnTp11KNHD61bt05Vq1bV6NGjtWnTJptDu1tf7yeeeMKmrV0DAgLUuXNny/13331n2dIUAAAA9x5W3AEAAABwqlq1aqlu3bqZBixXr17Vq6++qqioKJUvX15z5sxRvnz5FBERoZEjR+rEiRM6e/asRo4cqS+++EIzZsywbKGZXdiUmJgoKTUAsXXrxazMnDlTMTExmj17ttVtPN944w3t379ff/31lyRZzidLey7XrdVNd+qZZ55RYGCgevfubQkoDxw4oC1btqhRo0YOmeNukHa71BEjRmjEiBEOGffGjRtasGCBPvnkE9WrV08DBgxQxYoVM23/1Vdf6caNG+nC26ycO3dOffr0UaNGjdSzZ88cnVN4+vRpy3W5cuVsPk/v+vXrluvMAu2KFStq0aJFdteU1rFjxzRw4ECZTCZNmjRJtWrVuqPxctuAAQPUsGHDDK97enoqX758KlCgQI624G3VqpXq1atnV99nn33WspVtQkKCfvrpJ7Vs2dLuuQEAAOD+CO4AAAAAOJW/v3+m7127dk09e/bUiRMnVKFCBX366afKly+fJKl69er69ttv9d577+nLL7+UJO3fv1/du3fX2rVr5enpmW1wd+PGDUmpq4jSrirKiT179mjZsmUaMGBApsGYl5eXJk6cqBYtWig5OVkPPPCA9u7dqz179kiSSpUqpccff/yO6kjriSee0JQpUzRgwADL1+Ly5cs290+7Os8RKxJdIW0g/Prrr9sUWv79998aOXJklm1uraY0mUzy9fVVeHh4pm3/+ecfjR8/XiaTSWXKlFGdOnWyrcFkMmnKlCl68MEHs22bmePHj1uuH3roIZv7pQ3uHBFoW3P58mX17NlT165d04QJE9KFTHfL6s7ChQurXLlyThm7QIECdtdStmxZHT16VFLq30cEdwAAAPcmtsoEAAAA4BJXrlxRp06d9M8//6hGjRpasmRJhg+z/f39NWbMGM2YMUN58+aVJJ04ccLy4XV2AcC1a9ckKdutKbM7byshIUFDhw5V8+bNLefaZaZ06dLq1KmTSpYsqQYNGqRbbdejRw+bV0XZqkmTJurRo4flPquA6Xa3ViRKsnx972ahoaEqU6ZMtv8rWrRotmPdCu6KFCmiGTNmKE+ePFbbnTx5Un379lVSUpKMRqMGDRqkkydPZjt+iRIl7ii0k2RZ2SmlnnVnq1s/F5Jzgru4uDh169ZNZ8+e1YQJE/Tiiy+me/9uCe7cTdptRo8cOeLCSgAAAOBMBHcAAAAAct358+fVvn17HTp0SE8//bQ++eQTy0o7a5555hl9+eWXCg0NlfS/VXwpKSlZznMroChYsGCW7bI7F+7999/Xgw8+qIkTJ2bZ7pZhw4Zp1apVunz5stasWSNJCgsLy3CGmaMMHDhQ//nPf1SgQAFVr17d5n5pg7vMgil35+gg9JZb2xhmdYbev//+q44dOyoqKsryWuHChTV37txs/2w6Qtrg7oknnrC5360z7vz9/R3+9bt+/bp69OihI0eO6O23384Q2kkEdzmV9ozQW2dmAgAA4N7DVpkAAAAActXu3bs1cOBARUZGqlevXho0aFCW4cHff/+t/fv3q0OHDlq+fHm68+WyC0dufbhdpEiRLNtlF9y1aNFClSpVsvlMKoPBIH9/f82ePduymq9Xr145Og/LFp6enpozZ47Onz9v11lpabdMDA4OdkZpd62sAjspNTTr3bu3YmJiJKWuhho+fLjq1auXC9WlbkV5a2XfQw89lC7Uyc6t4M7RYW1CQoJ69uypQ4cOac6cOapfv77VdgR3OZN2VWza0B0AAAD3FoI7AAAAALlm8eLFev/992UymSRJHh4eOnfuXKbtL126pN69eys2NlY+Pj568cUX9c4771jevzWONTdu3NCVK1ckpa52y0pKSopSUlIyDWvs2YbwluPHj2vVqlWSUrfPdNZqu1t8fHzs2iZTkiV0klJXiuF/sjoTcdGiRZoyZYqSk5MVHBysfv36qW3btk4LZq3ZsGGD5bpu3bo294uLi7ME3o4M7uLj49WzZ0+dPXtWS5cuVfny5TNtS3CXM2l/UeFuXSELAACA7BHcAQAAAHC66OhojRs3Tj/99JNefvllBQUFaerUqZozZ47mzJlj0xijR4/Www8/rIoVK1pey2ql3OnTpy0BQdmyZbMdPykpybIFpyPMmjVLKSkpMhgMGj9+vOXMNHdyLwR3ztoq01pwFx0drdGjR2vjxo3y9/dXt27d1L17dwUEBDilhqysX7/ect2iRQub+6X9nme1Pa09YmNj1b17d0nSf//732z/LN3PwV10dLQmTpyogwcPqn79+ho2bJjNfRMSEizXgYGBzigPAAAAboDgDgAAAIDTmM1mrVixQh988IHq1Kmj77//XiVKlNBnn30mSQoKCtKWLVsy7b9z505169ZNkjR58uR0oZ0kyzaU1hw/ftxyXaFChWxrdWRwt337dq1bt06S9MILL6hmzZoOGdfR0oY4JUuWdF0hdyBtCDRixAiNGDHCIeOmDQRv/TmeMmWKrl+/rrZt26pv374uCzujoqK0a9cuSVLlypWzXN12u7RnozkiuIuMjFT37t31n//8R4MGDbIpoM5qpey9bujQodq6dask6dixY3rqqads/vshOjracl2qVCmn1AcAAADXI7gDAAAA4BRms1ndu3dXwYIF9fnnn6tMmTJW2/n6+mY6RtoQoHbt2hneTxvc3b7y6vfff5eUei5UuXLlsqz1iSeeyLIOe9y8eVNjx46VJIWGhmro0KEOGdcZbm1T6uHhodKlS7u4mjv3+uuvq1GjRtm2+/vvvzVy5Mgs29z683T9+nW1b99ef//9t5o1a6b+/fu7PORcvny5ZdvEF1980a6+acMfRwR3I0eO1PDhw/XEE0/Y3Od+XXF3/fp1S2h3y5kzZ2wO7tL+MkKlSpUcWhsAAADcB8EdAAAAAKcwGAyaNWuW1VVsjvrg/saNGwoKCtLw4cMzrH7atm2bpNRQLrOzx8LDw/XRRx+pQYMGDqlHSl0ZePz4cXl7e2v69OnKnz+/w8Z2tGPHjkmSSpQoIT8/PxdXc+dCQ0MzDYjTioyMzLbNra0yr127puLFi2vixIk2h5spKSk6cuSIXSvhbJWUlKSlS5dKkgoWLKjmzZvb1T9tcBccHHzH9Xz88ceZng1pzf282s5oNKa79/T0VJUqVWzqGx8fny64s/aLDAAAALg3ZH7aNgAAAADcocy2nsxJcGftA//atWtr3bp1ev7559O9vnv3bp0+fVqS1KpVK/39999auXJlhjH69evn0NBuw4YN+uKLLySlbttYo0YNh43taJcvX7ZslWlreHA/Klq0qKZMmWLXisSrV6/qrbfecko9a9eu1eXLlyVJvXv3Vp48eezqHxUVZbkOCQm543rsCe2kjOHV/SR//vwKDQ213L/44os2Bc2StGXLFssK41q1arFVJgAAwD2M4A4AAABArstJcGetz9NPP62CBQtmeP3WGXqFChVS/fr1VbZsWf30009q3ry5fvrpJ/sLtsGhQ4c0fPhwSVLr1q3VoUMHp8zjKP/++6/l2p5tDt2Ns7ZdvH3rVXvEx8fr6tWrDqwmVVJSkj788ENJUvHixdW2bVu7x0gb3KUNkXKLvSvu7P3+ms1mt96K84UXXrBc169f3+Z+S5YssVx3797dkSUBAADAzRDcAQAAAMh1Odkuz9Y+hw8f1g8//CBJ6tu3rzw9PRUQEKBZs2YpIiJCffr0UceOHXXgwAG7a8jM2bNn1bNnTyUkJCgiIkITJkxw2NjO8vPPP0tKXRVpy7lw7spZWy/eSXCXkJCgyMhIhwdICxYs0NmzZyWlruj08fGxe4zz589brosXL+6w2mxl74q7zL6/p06d0u7duy2rRm/Zu3evW2/H2atXL5UtW1aSdPLkSZv6rFy5Urt375YkPfvss3ryySedVR4AAADcAGfcAQAAAMh1Oflg/dY2cdmNO3r0aBmNRpUrV04vvvhiuvf79u2r4sWL680331Tr1q3Vtm1bDR48WIGBgXbXc0tkZKS6dOmiixcvqmnTppoyZYrd2wdmxVmrh26tPHzuuecUEBDglDlygzuurkpKSlJSUpIuXryookWLOmTMvXv3as6cOZJSV3Q2btw4R+OcOXPGcl2iRAmH1GaPlJQUu9qn/bsi7fc6NjZW48eP14EDBxQQEKDChQvLz8/Pcm6jJKurcbNz48YNy/X169ft7p8dPz8/ffrpp+revbtmzZqlEiVKZBmc//jjjxo9erQk6bHHHtPEiRMdXhMAAADcC8EdAAAAgFznrOBu9uzZ+vvvv5UnTx5NmzbNaoDWqlUr+fr6asiQIVq6dKk2bdqkd999V7Vr17a7pjNnzqhLly46c+aMnn/+eU2YMMEhoV3agMIZwdS+fft0/vx5+fj4qFu3bg4fPze54+qqW6vK9u/f75DgLjIyUn379lVycrJq1KihsWPH5micpKQkHT9+XFJqgOSK4M6Wn+O00n5/04Z+jzzyiL799lvLz2/awO6Whg0b2jTHiRMndPPmTe3du1f79++3vL548WKVKFFCxYoVU8GCBXMUBFpTqFAhLV++XLNnz9Zrr72msLAwNWzYUI888ohCQ0Pl4eGh06dPa926dfr555/l7e2trl27auDAgfLz83NIDQAAAHBfBHcAAAAAcp29q26k1NAhK8uWLdOHH34oT09PTZo0ybIdnTVNmzZVXFyc3nrrLV28eFHdunXT2LFj1aZNG5vrOXjwoHr06KErV65oxIgR6ty5s819s5M2rHNGMPXFF19Ikjp16qSwsDCHj5+bcvL1uXnzps1to6Oj7R7/0qVLkqQNGzbc8Tak0dHRevXVVxUZGalq1app3rx5OdoiU5K2bNli+TmqUKGCPDxy//QMe7fKTPt3hbXv9VNPPaXatWtr+PDhWr9+veX1unXrqlmzZjbN0a1bN507dy7D62fOnFHPnj0lSf369VP//v3tqj0rfn5+Gjx4sLp06aKVK1dq27Zt+u677xQTEyMvLy8FBwerZMmSGjZsmJ5++um7/ucUAAAAtiO4AwAAAJDrbn0YHxMTo4ceesimPgkJCZm+N3/+fE2dOlXe3t56//339cwzz2Q7Xps2bXTw4EF9+eWXSklJ0dixY1WyZEk9/vjj2fbduHGjhg0bJj8/Py1cuDBHq/WykjbcsHeFUnbOnDmjVatWqUSJEurXr59Dx3aFnITA+/bts1xntqLR29tbkpSYmKidO3eqZs2aNo+/YcMGSdLq1av15JNP2hwg3e7ChQt69dVXdfToUTVo0EBTp05Vnjx5Mm1/5swZFSxY0Gqb69eva9q0aZZ7W/6cO0NSUpK8vb3VqFEjderUKdv2aX8WMvte+/n5acqUKfr33391+vRpvfTSSxo2bJjN5xTeOu/RFYKDg9W1a1d17drVZTUAAADAvRDcAQAAAMh1t8KofPnyadmyZZm227t3r4YPH67AwECr57AlJCRozJgxWrVqlYoUKaKpU6eqRo0aNtcxfPhwbd++XceOHVNKSorGjBmj9evXZ/qBv9Fo1AcffKBPPvlEzz77rN58800FBwfbPJ+t0q4scnRwN3fuXEnSu+++m2UIdLfIKrgbOXKktm7dqpCQEAUHBytfvnwyGo3pghp/f3+rfdMGyq+//rr69u2rUqVKWQI9axITE7V+/Xp9//33klK/j4MHD1bx4sVVrVo1u57rn3/+Ud++fRUdHa3+/furb9++2QZRX3/9tb788kv5+voqLCxMxYoVU4ECBSRJv/zyi+V8O29vbz3//PN21eMoISEh2rx5s83bTqb9/mb1s+Dt7a0JEyaoRIkSKly48B3XCQAAALgKwR0AAACAXHdruz4PDw+VKVMm03ZXrlxRs2bN9MYbbyg0NDTde//884+GDRumkydPqlmzZho1apQlpLDVrZU6L7zwglJSUnTy5EkdPnxY5cuXz9D21KlTGjZsmKKiojRv3jzVq1fPrrnskXZbUHu2dczOwYMH9d133+m1116zK+B0Z1ltvfjOO+/o6NGjWrZsmf773/9m+Frmz59flSpVstq3WbNmmj9/vmJiYnTp0iWNGTPG7toMBoN69OhhV2hnNpu1cOFCTZ8+XcWLF9esWbNs7j9o0CD16tVL3333nWbNmqW//vrLartu3bqpZMmSNtfkSHny5LErME77/b1x40aWbe+VP9MAAAC4v+X+hvYAAAAA7ns3b95UwYIFNXLkyCzb1ahRQ1OnTk0X2sXHx+udd95Ru3bt5O/vr88++0xTp061O7S7pWLFimrXrp3l/vbzw8xmsxYvXqwePXqoRYsWWr9+vVNDOyl9cJfVFqH2uHnzpoYOHapnn31Wr776qkPGdAfZrUgsW7asRo0apdWrV6tcuXLp3hsyZEim58UVKVJEn376qerWrWvXmXIeHh4qWrSonn/+eX3++ed6/fXXbe577NgxdezYUbNmzVLv3r21evVqu1fq+fn5qW3btlqzZo1q1aqV4f2GDRs69Kw2Z0v7/U1MTHRhJQAAAEDuYMUdAAAAgFxXr149DRw4UPnz58+ynYfH/37XMCUlRStWrNDMmTNVtGhRffjhh2rQoIHN51hlpX///lq7dq0CAgJUunTpdO8ZDAYVLVpUq1evtivAuRO3VhYFBgbqgQcecMiYH3zwgQoXLqwJEyY4ZDx3cevMtDZt2qh+/fqZtitVqpQWLFigZ555RkajUUOHDlWbNm2yHLtixYpauHChzGazoqOjsw0JPTw8FBwcLC8v+/6v9rVr1zRv3jx9+eWXat68uaZOnaoiRYrYNcbtgoKC9NFHH6lZs2a6cOGCDAaDOnXqpKFDh9pdnyul/Zpnt+IOAAAAuBfcPf+1DgAAAOCekZMVa1OnTtXVq1c1e/ZsVa1a1aH1FChQQLNnz9a1a9esvt+kSROHzped4OBgvfnmm2rdurXy5s3rkDEDAgL04Ycf5lr4mFuqVq2q77//XiVKlMi2beHChTVq1CjVrFnTrq0iDQaDzWey2evcuXNq3769GjRooFWrVtn0HLYKCAjQK6+8ol27dql79+4O/7nJDcnJycqbN69at26tl19+2dXlAAAAAE5nMJvNZlcXAQAAAADA/SomJkZBQUGuLsMtnTlzRgUKFFBAQICrSwEAAAByBcEdAAAAAAAAAAAA4AY8sm8CAAAAAAAAAAAAwNkI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBrxcXQAA2OrPP//U2rVr9eeff+rChQtKSEhQQECAChYsqEqVKqlOnTpq2rSpfHx8XF1qtg4dOqR169Zpx44dOnXqlOLi4uTt7a2wsDDVrVtXnTp1UrFixeweNzExUWvXrtUff/yh/fv3Kzo6WtevX1eePHkUEhKiKlWq6KmnnlKjRo3k4cHvbgAAAAAAAACAOzGYzWazq4sAgKzs2bNHb7/9to4ePaoWLVqobt26KlKkiJKTk3XhwgVt3bpVq1atUnJyskJDQzVu3Dg1bNjQ1WVbdebMGU2cOFGbNm1SzZo1FRERodKlSysgIEAXL17UwoUL9ddffylPnjyaOHGiIiIibB77iy++0IwZM5SQkKCnn35atWvXVokSJRQYGKj4+HgdO3ZMGzZs0LZt21SyZEm9/fbbeuyxx5z4tAAAAAAAAAAAexDcAXBrS5Ys0aRJk1S9enV98MEHKly4sNV2J0+eVI8ePXTq1CkZDAaNHj1a7du3z+Vqs7Z582YNHjxYPj4+mjBhgtVw8ezZs5bXPTw8NGfOHD311FNZjpuSkqIhQ4Zo3bp1Klu2rD766COVLFky0/Y//vijXn/9dSUnJ2vUqFHq0KHDnT0YAAAAAAAAAMAhCO4AuK3ly5dr9OjRCg8P18qVK+Xv759l+1OnTqlly5ZKTEyUl5eXvvzyS1WpUiWXqs3ali1b1KdPHwUFBWnx4sUqU6aM1XaRkZF68sknLfcPP/ywvvnmmyzHfvvtt/XZZ58pODhYq1atUmhoaLb1rF69WkOGDJHBYNCsWbPUuHFj+x4IAAAAAAAAAOBwHHAEwC1FRUVp8uTJkqSOHTtmG9pJUqlSpdS2bVtJktFo1JQpU5xao61Onz6t119/XUajUdOnT880tJOkq1evprvPkydPlmPv2bNHn3/+uSRp0KBBNoV2ktS8eXPVqFFDZrNZ48aN0/Xr123qBwAAAAAAAABwHi9XFwDcb0wmkxITEzO87uXlJYPB4IKK3NPKlSstYVLx4sWVlJRkU78mTZpo0aJFkqQdO3bo1KlTKlq0qLPKtMmbb76puLg41atXT4888kiWz1K6dGl16dJFW7duVXBwsF577bUs23/xxRcym83y9fVV06ZNbf46SdLzzz+vXbt2KSoqSuvXr1fz5s3tei4AAAAAAAAAcCSz2Syj0ZjhdX9/f3l43B9r0QjugFyWmJioQ4cOuboMt7dx40bL9a+//qr8+fPb1M9oNMrDw0Mmk0lSagBYt25dp9Roi7/++ks7duyQJFWrVk179+7Ntk/jxo0tW1eaTKYs+/z222+SpKJFi+rIkSN21ZY3b17L9Q8//KDw8HC7+gMAAAAAAABAbihfvny6zzPvZfdHPAngrpN2y8iVK1cqNjbWpn5eXl7ptpe8fevJ3LZmzRpJksFgUKVKlRw+fkxMTI77BgUFOWQcAAAAAAAAAIBjENwBcEtms9lynZCQoB9//NHmvl5e/1tMnHac3Hbx4kXL6srixYtne15dTtx61nPnzik+Pt6uvikpKZZrHx8fh9YFAAAAAAAAALAfW2W6mcOHD+ubb77Rjh07dPbsWSUmJipv3rwqVKiQqlSposaNG+vJJ5906VloN2/eVNWqVS1bEebEypUrVaFCBavvNWjQQOfOncvRuEuWLNFjjz2W47rgPsqUKaMzZ85Y7m09u81kMqULsAoUKODw2my1a9cuy3VYWJhT5ggLC9ORI0eUnJys7777Th06dLC578WLFy3XbJMJAAAAAAAAAK5HcOcmzp8/r4kTJ+r3339X+/bt9dZbb6lEiRIymUw6f/68fv31V33++ef66quv9PDDD2vatGkqVaqUS2o9duzYHYV2/v7+Cg0NdWBF/5NZGIi7T9u2bZWQkKAjR44oNDRUjRo1sqnf6dOn0x1eWrp0aWeVmK20Z9MVKlTIKXPUqlXLcrbdunXrVLp0adWuXdumvn/99Zek1G0869Sp45T6AAAAAAAAAAC2I7hzA//884969uypggULau3atSpatGi69wsXLqxq1aqpTZs26tKli/bv36+2bdtqxYoVTlvFk5VbIcEtPj4+Kly4cLrtCa2Jj49XVFSU+vTpo5CQkCzbBgUF2b1SKjQ0VPny5bOrjytk9nUqX768vL29c7ka1zMajTp48GC61ypUqCAvLy/VrVvX7vF+/fVXy3V4eLieeeaZO64xp06dOmW5rlixoipXrmy5379/v1auXKm//vpLly5dko+PjwoWLKiKFSuqcePGqlOnjk0rax944AFt3LhRly5dktls1kcffaSAgAC1b98+y37Xrl3Tzz//LElq166dzcEoAAAAAAAAAMfK6jPS+01ycrLl+KG07qevxf3zpG4qOjpavXr1UkxMjL744osMoV1aRYoU0bRp0/Tcc8/p6tWrGjZsmL788stcrDbVreAuICBAI0eOVLNmzeTr65ttvz59+ujUqVPq0qVLtm07duyo/v3733Gt7iizMMbb2/u+PGfM2tfD29s7RyGm0WjUqlWrLPft27d32df04sWLunbtmuU+ODhYPj4+iouL09ixY7VmzZoMfS5duqSDBw/q66+/1mOPPaZ33nkn23A+ODhYkydPVvfu3WU0GmU0GjVp0iRt375db731looVK5ahj9Fo1KhRoxQdHa2qVavqjTfeuC//7AEAAAAAAADuwJGfkd6rXHl8WG7zcHUB97u5c+cqOjpaDz30kMqUKZNt+/Lly1tWIf3555/asWOHs0vM4OjRo/L09NS8efPUunVrm0K7P/74Qz/99JNGjRrFXzZwmm+//dZyPmJYWJheeukll9Vy+vTpdPd58+ZVdHS0XnrpJa1Zs0aVK1fW5MmT9csvv2jv3r3atGmThg8frrx580qStm/frpdffllXrlzJdq46depo+vTp6X4Wf/75ZzVt2lTvvvuuLl++bHn96tWr6t27tzZt2qT//Oc/Wrhwofz8/Bz01AAAAAAAAACAO0Fw52Lr16+XlLr801Zpz6LatGmTw2vKzpEjR9SyZUvVqFHDpvYmk0mTJk1SvXr1bD57C7DXtWvXNH36dEmSp6en3n33XZeuIrt06VK6ex8fH7322ms6duyYRowYoa+++kqtWrVS0aJF5ePjo2LFiqlr1676+uuvVbBgQUnSuXPnNGzYMJvma9y4seUMzFtu3LihTz/9VPXr19fgwYO1YMECPfvss9q9e7dGjRql+fPnKyAgwHEPDQAAAAAAAAC4I2yV6UIJCQmKjIyUJB07dkxbtmzRk08+mW2/EiVKWK5vX9XjbAkJCTp37pxdK5m++eYbHTlyRFOnTnViZbjfTZw40bKy7M0331TNmjVdWk9MTEy6+zVr1uiPP/7Q2LFjs/z5eeCBBzRt2jS9/PLLkqStW7dq69atNp3399BDD2nZsmV69dVXtX37dsvrycnJWrNmjdasWaOAgAAtXbpU5cqVy9mDAQAAAAAAAHCZP//8U2vXrtWff/6pCxcuKCEhQQEBASpYsKAqVaqkOnXqqGnTpnfF0TiHDh3SunXrtGPHDp06dUpxcXHy9vZWwYIF9cgjj+jpp59WSEiITWPd2sHsTnz00Udq0KDBHY3hCKy4c6HExMR095MnT7apn7+/v+U6KSnJoTVl58aNG+rYsaMqV65sU/vExETNmDFDLVq0UNmyZZ1cHe5X33zzjVauXClJGj58uDp06ODagpQacqe1evVqPf300zaF3o899pgaN25suV+yZIlNc/77779q3bq1/vzzTw0cOFC9e/dWgQIF0rWJj49X+/btLV8vAAAAAAAAAO5vz549atOmjbp37y6TyaT+/fvrk08+0WeffabRo0erSpUqWrt2rYYNG6YGDRrop59+cnXJmTpz5ox69eqlli1b6q+//lKLFi00bdo0LVu2TO+88478/f0tz/LHH3/kWl2VKlXKtbmywoo7FwoODlZoaKiioqIkybL6LjtXr161XBctWtQptWUmODhYo0aNsrn9p59+qitXrqhXr15OrAr3s127dmn06NEyGAx666233CK0kzJuf+vt7a2RI0fa3L9169bauHGjpNRVd9HR0QoODs60/Q8//GDZVnPOnDmqV6+eJKl3795aunSp5s6da/m7Iy4uTsOHD9fu3bs1ZswYeXjwOxwAAAAAAACAu1qyZIkmTZqk6tWr6/vvv1fhwoXTvV+tWjVFRESoR48e6tGjh06dOqW+fftq9OjRat++vYuqtm7z5s0aPHiwfHx8NGfOHDVs2DDd++XKlZPBYNDAgQN148YNzZo1Sz4+PjYvJsqTJ0+OVhuGhISoUKFCdvdzBoI7FzIYDJo+fbqmT5+umJgYm5dx7tu3z3L90EMPOau8OxYdHa2FCxcqIiJC4eHhri4H96DDhw+rb9++lnMUn3vuOVeXZOHllf6v19atW6tIkSI2969Zs6YMBoPMZrNSUlK0e/fuDP8Su+WHH37Qa6+9JpPJpFmzZllCO0ny9fVV586d9cILL2jq1KlaunSpzGazJGnZsmVKSEjQ+++/n4MnBAAAAAAAAOBsy5cv18SJExUeHq4FCxak25HvduHh4Zo/f75atmypxMRETZw4UQ8//LCqVKmSixVnbsuWLerbt6+CgoK0ePFilSlTxmo7T09Py7XZbNbXX3+tV155xaY53nrrLT3//PMOqddVWGbhYjVq1NDnn3+uNWvWqE2bNtm2N5vN2rBhg6TUYKBp06bOLjHH5s2bp/j4eL366qt3NM4ff/yh0aNHq3nz5qpZs6YqV66sBg0aaMiQIdqxY4eDqsXd5tixY+rSpYvi4+M1depUtwrtpNTf7Egrs9AtMwEBASpWrJjl/tChQ1bbHTt2TMOHD1dKSoratWuXbovN28cbM2aMPvnkEwUFBVleX7VqlRYsWGBXbQAAAAAAAACcLyoqynLEVseOHbMM7W4pVaqU2rZtK0kyGo2aMmWKU2u01enTp/X666/LaDRq+vTpmYZ2UuqOYWn5+vo6uzy3woq7u8ymTZt07tw5SVKjRo2y3DrPlSIjI7V06VLVrFlT5cuXz9EYKSkpGj16tFasWCEp9Wy/4OBgmUwmnTt3TufOndPq1avVpk0bjR07Nl0KfzcyGo0yGAyuLiPXGY1Gm15L68SJE+rSpYtiY2M1depUNWzYMMPWlK7m5+eX7j4hIcHuGvPnz2/5eb9y5YrV/uPHj1diYqL8/f3Vt2/fbOeoWbOmPv/8c3Xp0sWyTe+sWbPUpEmTXN96FwAAAAAAAEDmn5F+9913un79uiQpLCzM5s8Xn376aS1atEiStGPHDp0+fdrln/29+eabiouLU7169VSlSpVMn8VoNKpUqVJq1qyZ/vnnH+XLl08vvfRSLlfrWgR3d5GUlBTNmDFDUupqniFDhri4oszNmzdPN2/eVKdOnXI8xltvvaU1a9aoZ8+eatWqlUqXLm15b9euXRo/frwOHz6s//73v0pMTHSb3xzIqYMHD7q6BLdx4MCBTN+7cOGCJkyYoOvXr2vQoEEKDQ3Vnj17crE626Q9i1JK3dazYMGCdo2RkpJiuT5//nyG5zx79qzlcNbHH39cp0+f1unTp20a+7XXXtOYMWOUnJysGzduaPr06W5zPiAAAAAAAABwvztw4IBl9z0pdZvJfPny2dTXaDTKw8NDJpNJkvTtt9+qbt26TqnTFn/99Zdl97xq1arZ9Hlu+/bt3e58vtzCVpl3kcWLF1u2yxs/frxKlCjh4oqsi4yM1FdffaWgoCA1aNAgR2OsXbtW33//vZYsWaLXX389XWgnpW4xunTpUsty2tWrV+u7776749rh3qKiojRx4kTFx8dr4MCBql69uqtLylTx4sXT3cfExNg9RtrfOrl9600p9V94t9j7tQgPD1eLFi0s97t27bK7PgAAAAAAAADOk3ZxwMqVKxUbG2tTPy8vr3SfJ96+yCC3rVmzRpJkMBhUqVIll9ZyNyC4u0vs27dPH3zwgSRp+PDhat68uYsrytzChQuVlJSkiIgIeXt752iMEydOaNSoUapatWqmbfLmzauxY8da7qdPn55uhRLuLTExMXrnnXcUGxurAQMGuHVoJ0mFChWSj4+P5f78+fN2j5E2uMubN2+G99OuritVqpTd4zdu3NiyxWxkZKRu3Lhh9xgAAAAAAAAAnMNsNluuExIS9OOPP9rc18vrfxsuph0nt128eNGyIKl48eJWFyggPYK7u8ClS5fUr18/GY1GjR49Wl27dnV1SZmKjY3VV199JUlq1qxZjsbo0qWLevXqpdatW2fbtlatWpYz9M6fP6+tW7fmaE64t4SEBE2ePFmXLl1S7969VaNGDZv6xcbGumwLUg8PD4WHh1vuz549a/cYt/avlqSQkJAM76c9pDV//vx2j58vX750e1snJibaPQYAAAAAAAAA57i149wtSUlJNvUzmUyKj4+33BcoUMChddkj7U5fYWFhLqvjbsIZd27u2rVr6tGjh6KiovTee++l29rOHf33v/9VQkKC8ufPr2rVquVoDHvPxatfv74lsd++fbvq1auXo3ldrUKFCjleoXg3MxqNGc60q1ixouU3QoxGo3r37q1Tp05p9OjRatOmjc1jL1q0SBs3blTbtm0dWrOtmjVrZlkpe/z4cT3wwAMKDAy0qW9ycnK6JezNmzfPsD1uoUKFLNcVKlTI0W+rFCxY0BIq1q5dO90qQQAAAAAAAADOl9lnpGPHjtXEiRP1zz//qHjx4urfv7+KFSuW7XiHDh2S0Wi03Ddt2jTDcVS55cMPP7RcP/zww3rkkUeybJ+cnOyyxRjuguDOjcXFxalr1646fvy4Zs2alePz4nKL2WzW8uXLJUmPP/64PDxyZ0FnxYoVLdd38w+0l5fXfRncWZP2a/H222/r999/V79+/dShQwe7xtmxY4fCw8Nd9nWNiIiwBHdGo1F//PGHIiIibOp76tQpyxL2okWLWv0Xa9myZfXTTz9JSj3/r2zZsnbXePnyZUlSyZIlrW7HCQAAAAAAACD3eXl5qWjRoumCL1v98ssvluvw8HA99NBDDqzMPvv377dcFylSJN1ntfv27dM333yjXbt2KTIyUr6+vgoODlaRIkVUq1YtPfLIIzIYDDmeOzIyUmvWrNHOnTt14sQJxcTEKE+ePAoLC1PDhg313HPP5WgnM2djq0w3FRsbq86dO+vo0aOaN2+e24d2UmpIcubMGUnSo48+mmvzpl1e6+pDNuFYK1as0LJly9SqVSv179/frr4XLlzQ77//nuXZb+vWrVPTpk1Vo0YNDRw4UNHR0XdacjolSpRQ48aNLfeLFi2yue8ff/xhuW7fvr3VNmm3o92yZYvd9UVGRurcuXOSpCZNmtjdHwAAAAAAAIB7MRqN+vbbby33mX22mBsuXryo2NhYy/2tkCwuLk6DBw9W69at9cUXX+jw4cOKiYlRZGSkDh48qE2bNmny5MmaOHGioqKicjT38uXL1bhxY7333nvatGmTTp48qZiYGJ0/f147duzQpEmTFBERoU2bNjnkWR2J4M4NXb16Va+88opOnDihBQsWqHbt2q4uySYbNmywXOdmgp92lVBCQkKuzQvn+vfffzVhwgRVrVpVEyZMsKuvyWTSuHHjlJycnO6cubT++usvDR48WMePH1dcXJzWr1+vAQMGOPyg1iFDhlh+i+Sff/7Rzz//bFO/H374QVLq/tOZbfVZrlw5Pffcc5JSQ0F7z6i7dR5lYGCgunTpYldfAAAAAAAAAO7n22+/tfyyflhYmF566SWX1XL69Ol093nz5lV0dLReeuklrVmzRpUrV9bkyZP1yy+/aO/evdq0aZOGDBkif39/SdKBAwf09ttvpwv/bLF48WKNHj1aVatW1eTJk7V+/Xrt3r1b27dv16JFi/Tkk09KSt2NrF+/flq/fr1jHthBCO7cTGxsrLp27arTp09rwYIFqlGjhqtLstnmzZst17cfmulMJpPJcp2TM77gfoxGo4YOHSovLy9Nnz7drnPXjh8/rj59+lh+U6JkyZJW2/3444/p/uxI0s6dO3Xy5Mkc121NeHi4hgwZYrkfNWqULl26lGWfrVu3aseOHfLw8NCUKVOyXK795ptvqmLFioqMjNQbb7yR4Zkyc+LECS1cuFAGg0FjxoxRSEiIbQ8EAAAAAAAAwC1du3ZN06dPlyR5enrq3XffteuzVUe7/XNQHx8fvfbaazp27JhGjBihr776Sq1atVLRokXl4+OjYsWK6ZVXXtHbb7+tfPnySUo9ImjOnDk2z7lt2za99957Gj9+vJYsWaJWrVrpgQceUJ48eRQUFKTatWvr448/1iuvvCIp9bPoN954I0PI6EqccedG4uPj1a1bN508eVKffPKJqlWr5uqSbHby5EnLNpmSFBQUlKNx5s6dqyVLlqhw4cL6+OOPFRoamm2ftKvsbv0w4+62du1aHTp0SN7e3mrVqpXN/ZKSkjKsusxsxV1mbA2+7NG5c2ddvnxZ8+fP15UrV/TKK69o/vz56bZ5vWXPnj16/fXX5e3trfHjx6tu3bpZjh0YGKhPP/1Uffv21fr16xUfH69JkyapUKFCmfbZu3ev+vXrp+TkZI0ZM0bNmze/42cEAAAAAAAA4FoTJ07U5cuXJaX+wn/NmjVdWk9MTEy6+zVr1uiPP/7Q2LFjs1wJWLRoUQ0YMEBvv/22pNTPM7dt26b69etnO+fq1avVr1+/THcxkySDwaBhw4Zp586dOnDggBITEzVhwgTNnz/fpudyNlbcuYmkpCT16dNHR44c0bx582wK7ZKTk9WvXz+7t8dzhr/++sty7evrm+6ASVv9+eefmjZtmq5cuaIDBw7o66+/tqlfZGSk5bps2bJ2zwv3c+3aNUmpf8ZjYmJs/t/toV1wcLACAwOtztGoUSN5eKT/K7BcuXJ2B322GjJkiD788EOFhobq+PHjatGihd577z39+uuv2rt3rzZu3KgRI0aoXbt2CgkJ0aeffqrnn3/eprGDgoK0ZMkSDR48WHv27FGjRo30xhtvaPXq1frrr7904MAB/f777/r888/Vo0cPvfjiiwoODtYXX3zh0qXyAAAAAAAAABzjm2++0cqVKyVJw4cPV4cOHVxbkDIebbV69Wo9/fTTNn0mWbFixXTB4+eff55le4PBICk1I+jdu3e243t5ealXr16W+19//dXhu7HlFCvu3IDZbNYbb7yhP//8U3PmzFGtWrVs6nfw4EH9/vvvlv1eXenvv/+2XCclJcloNMrLy74/Xrt37053f/PmTZv6HTt2zHL9yCOP2DUn7m2lSpXK9L3q1atr6tSpmjlzpiIjI1WzZk2NHj1anp6eTquncePGqlu3rjZt2qQffvhBmzdv1ooVK5SYmKiQkBA9/PDDmjx5spo2bWr3z4+np6d69OihDh06aM2aNfrtt980Y8YMXblyRcnJycqfP7+KFCmi6tWr69NPP71rzs4EAAAAAAAAkLVdu3Zp9OjRMhgMeuutt9witJNSF2ak5e3trZEjR9rcv169etq5c6ek1C0wo6OjFRwcbLVtrVq19Oeffyo5Odnmz1afeuop5cmTRwkJCTKbzVq3bp369Oljc33OQnDnBmbPnq21a9fq3XffVb169Wzut379+kzP78ptacMzs9msy5cvq0iRInaNkXabS29vb7Vs2dKmftu2bZOUuj+uLUtl4f46deqkrl27On2eiIgIRUREOH2etPz9/Z06b968edW2bdssl4IDAAAAAAAAuDccPnxYffv2lclk0qRJk/Tcc8+5uiSL2wO01q1b25UbVKhQQQaDQWazWSkpKdq9e7caNmyYafuAgAC76vPx8VHNmjW1efNmSanHGLkDtsp0sc2bN+vDDz9U79697fqBOnfunJYtW5ZpcHf+/Hn16NFD1apVU/PmzS3hlrOkPd9OSj3Q0V516tSxbF347LPP2rRl4YULFyyJe0RERI7P1gMAAAAAAAAA4G5y7NgxdenSRfHx8Zo6dapbhXaSlCdPnnT3WYVu1vj7+6tgwYKW+0OHDjmkrrTKlCljuT5y5IjDx88JgjsXioqK0vDhw/X4449rwIABNvfbvXu3unTpouvXr2ca3A0fPlybN29WQkKC/v33X/Xp00cXLlxwVOkZxMbG3vEYYWFhateunaSMP9CZmTFjhoxGowIDAzV48OA7rgEAAAAAAAAAAHd3/PhxvfLKK7p27ZpmzJihpk2burqkDPLmzZvu3tbjsdJKu4ru6tWrd1zT7QoXLmy5dkTO4QhslelCs2bN0tWrV3X06FGbt827du2arly5YrnPLLjbt29fuvvExETt3btXRYsWzXnBWTCbzenuc3pO2BtvvKELFy7ou+++U6tWrVSlSpVM2y5atEjffvutfHx89P7776tQoUI5mhMAAAAAAAAAgLvFiRMn9PLLLys2NlazZs3SU0895eqSrLp9h7zExES7x/D19bVc5yT4y07aRUQ5qc8ZCO5c6PLly5JSV95FRUXlaIzMgrtKlSppx44dlntvb2+VL18+R3PYonTp0jp48KAkycPDQwUKFMjROL6+vpo9e7YWLlyozp0767HHHlPDhg1VsWJFhYSEyGg06siRI1q2bJk2bdqkkiVLavz48apdu7YjHwcAAAAAAAAAALdz9uxZde7cWTExMW4d2knpt6GU/peJ2CM5Odlybe8ZdrZISUmxXNu6E6CzsVXmXS6z4G7y5MmqV6+e8uTJowceeEDTpk3LtK0jvPnmmypZsqTy5s2r7t27y8/PL8djeXp6qkePHvrpp59Us2ZNrVu3Tj169FDDhg3VsmVLvfPOO/L399fkyZO1du1aQjsAAAAAAAAAwD0vKipKXbp00ZUrVzR9+nS3Du0kqUSJEumyguPHj9s9RtrgLl++fFbbJCQkaMyYMYqIiNCIESOUlJRk8/gJCQmW68DAQLvrcwZW3LnQnDlznDZ2sWLF9PHHHztt/NvVrFlTGzdudOiYwcHB6tatm7p16+bQcQEAAAAAAAAAuJvEx8fr1Vdf1dmzZzVlyhQ1atTIpn6XL1/WiRMnVLNmTSdXmJGHh4cqVKig3bt3S5KOHDli9xjXr1+3XBcvXtxqm3fffVfLly+XJB07dkyPPfaYWrVqZdP40dHRlutSpUrZXZ8zsOIOAAAAAAAAAADATRmNRg0YMECHDh3SmDFj9Oyzz9rcd9WqVZo6daoTq8ta2oBxz549iouLs7mv0WjU1atXLffVqlWz2u6HH35Id3/mzBmb50i7CrBSpUo293MmgjsAAAAAAAAAAAA3NWHCBP3222/q16+f2rVrZ1ff33//3anHaGXn6aeftlwbjUb9+uuvNve9ePGizGazJKlIkSIqUaKE1XZGozHd/aOPPmrT+GazWXv37rXc16lTx+banIngDgAAAAAAAAAAwA2tWLFCy5YtU6tWrdS/f3+7+l64cEG///57lltArlu3Tk2bNlWNGjU0cODAdFtHOkKJEiXUuHFjy/2iRYts7rt//37Lddu2bTNt9+CDD1qu//Of/9gcwO3du1dRUVGSpLCwMD3++OM21+ZMBHcAAAAAAAAAAABu5t9//9WECRNUtWpVTZgwwa6+JpNJ48aNU3JyssLDw622+euvvzR48GAdP35ccXFxWr9+vQYMGGBZ5eYoQ4YMkbe3tyTpn3/+0c8//2xTvx07dkiSAgMD9eKLL2barnXr1pbr+vXr21xX2hCxe/fuMhgMNvd1JoI7AC5lMBgUEhKi4sWLKywsTMWLF5eHB381AQAAAAAAALh/GY1GDR06VF5eXpo+fbp8fHxs7nv8+HH16dNHmzZtkqRMt8r88ccfZTKZ0r22c+dOnTx5Msd1WxMeHq4hQ4ZY7keNGqVLly5l2WfPnj06ePCgDAaD+vbtq/z582fatnXr1pbVcrbWvn37dn3//feSUs/Oy2pFX27zcnUBAO5vXl5eWS7VBgAAAAAAAID7zdq1a3Xo0CF5e3urVatWNvdLSkpSQkJCutcyW3GXmdvDPEfo3LmzLl++rPnz5+vKlSt65ZVXNH/+fIWFhWVoe/ToUc2aNUuenp569dVX9cgjj2Q5toeHh2bPnq1+/fpp2bJlKleunF588cVMV9D99ddfGjhwoEwmk8qVK6fZs2e7zWo7ieAOAAAAAAAAAADArVy7dk2SlJycrJiYmByPExwcrMDAQKvvNWrUSJ9++mm6oK5cuXJ2B322GjJkiKpUqaJx48bp+PHjatGihdq1a6fatWsrKChIFy9e1MaNG7V69WoVLVpUXbt2VYUKFWwaOyAgQAsXLtTixYv17rvvau7cuWrQoIGqV6+uQoUKycfHRxcuXNDGjRv1/fffy2Qy6fnnn9ewYcNUoEABpzxvThnMjt6sFECWkpKStHfv3gyvV65c2a7lzvcKkzFJSZEnlRR1RubkGzJ4+8kntIR8CofLw+v++3oAAAAAAAAAuL8kJydrz5496V77559/NHny5Dseu1q1alq2bFmm769bt04zZ85UZGSkatasqdGjR1tdBedIiYmJ2rRpk3744QcdPXpUUVFRSkxMVEhIiCpUqKDy5cvr8ccfl6enp6WPPZ+fx8fHa/Xq1fr111914MABRUdHy2AwKDg4WMWKFVOdOnXUpEkTPfjgg856xDtCcAfkMoK7VDfOH9G1net0/eDvMqckZ3jf4OmtvBVqK1/NCPkVc8+/QAEAAAAAAADgTlkL7h555BF5e3u7qCLX4fNztsoEkMtMNxN15afFitu9Mct25pRkxe/bovh9WxRYrbEKNnxFHr7+uVQlAAAAAAAAAAC5z8PVBQC4fxjjrujcp8OzDe1uF7d7o859OlzGuCtOqgwAAAAAAAAAANcjuAOQK0w3E3Xhi3FKvnIuR/2Tr5zThS/Hy3Qz0cGVAQAAAAAAAADgHgjuAOSKKz8tznFod0vy5bO68vMSB1UEAAAAAAAAAIB7IbgD4HQ3zh+xe3vMzMT9tUE3zh9xyFgAAAAAAAAAALgTgjsATndt5zoHj/e9Q8cDAAAAAAAAAMAdeLm6AAD3NpMxSdcP/u7QMa8f3CbTs73k4eUjSYrZvkopcVclDw8ZDB7yKVJaARVqZ6zlZqLi/vlJMnjI4OEhGTwsfVL/6Sn9/+uG295L28fg4SHPvPnlHVwswxzmFKOMsVH/65thjozjpc5ncOjXCAAAAAAAAABw9yG4A+BUSZEnZU5JduiY5pRkJV06Jb9iD0qSkq+cT7cVZ0Dl+laDu5TEOF3Z+KlDagioXF+FWvTP8LoxLlpnPupn/4AGjwyBYsDDdRXatGfGOa5d0YUvxqQPBTMNIz0yhJFp2/qXfFj5Hn06wxwpiXG6unVF+nFsCCGtveZdoIj8wh7KMIcp+aZunDmULhC9/euQ6TPd/pqXjzy8fe3/ugMAAAAAAACAGyG4A+BUSVFnnDPupdOW4M4rf6H0bxoy2QXYbHJcAY6ew2ySzKZ03c1G64GnOSVZydEXcjbPbQxe3laDO9ON67q2Y41D5gh4pL7V4C7leowuLh3vsDkKNc8YpCbHXtKZOf1tDwCtBJ23/pmn7KMqUPeFDHMY42N0+fu5twWOnjkKIX0KhytvuZoZ5jDdTFT8ga1Zj2fjSlLPPIHyyh+aYQ6zKUUp12NtqxkAAAAAAACAUxDcAXAqc/INJ41703Jt8PJO957Bw3qwYDY5LrjLlTlyIYA0GDxzYY5MniM3vlYmk2Qypg9EcziHT0iY1dfNyTeU8O/OHI6aXsAjDawGdykJsbq8bq7D5ijUvG+G142xUTozJ+PrVmUTeAY8XFcFG3fJOMe1K7q4/J0st6G1NfD0K1FBgVUaZJgjJTFOsX+syhha5mAOr6BC8i1SOsMcJmOSki4ct3lr3Szn8/BMDXoBAAAAAAAAEdwBcDKDt5+Txv3ftogZVqbdjSvurMmFcDBX5sjka2XOhe+H2ZSSC3PcZYGwI+Ywm6QUkyUEvT0MNd1MtN7NeFNJl07aPk82rAV3psQ4xWz7xmHjhzbLGGamXLui80vedOocyTGROrdgiB3hoGem4WCestUV9FiLDHMY42N05cdPc7AKNWMg6lOolPKUrpJhDtPNRF0/stMh2+56+AXIKyAowxxmU4pMNxNZIQoAAAAAAO4JBHcAnMontIRzxi1U0nJtjL2U7r3MggmHrvDKbI7cWKl2l82RWTjoyO9HrsxxrwTC90ronAtBqjJZCZcroXNKikw3ExwyhXdQYauvm24m6Pr+rQ6ZI7BqI6vBnTH+qqK+m+GwOUKf7Z3h9eSrkTo7N+NWuRZ2bIkbULGugp/qkPE5rl1W5Dcf2LFFbeZz+IWVV8DDdTPMkZIYp2t//pD1HDZuu+uVP0Q+oSUzzGEyJin58tksVpx62vhMBvu+eQAAAACALBkMBoWEhMjX11cGg0Fms1kemX3ehXsewR0Ap/IpHC6Dp7fMKdbPa8sJg6e3fAqV+t+9t5/ylH009QN7s0neBYtb7+jpJZ9CJS3tbv1TJlPqB/G3/mnttVttLZO6MDS4y1bc3SsBpEsDYULnjFz5HLkROt9tYa07z5HNCtG0UhLjrL5uSrqhm+cOZ1uiLczGZOvB3fVYXd281CFzZBZyGmOjdG7hUAfMYFBgtcYKjeiZ4Z3kqxd1fsmoHJ7JmT7w9C9TXflrPJPxOeKv6uovS+9s293/f807tIT8Sz6cYQ7TzUQlntjjkK19DT7+8vQPyDCH2WySUlIIRAEAAADIy8tLpUqVyr4h7gsEdwCcysPLR3kr1Fb8vi0OGzNvhTry8PKx3Ic07mxTP5+CxRTWfdodzW0J8TL5cM0nJEwl+8+zIxxMyRAO3urjlckqGa/Aggpp2vN/Y6fpk36+lGzDSL+wh6zO4eHrrzwP1rBhjuwDTw+/jB9Wpn4tzakfcDrig/17fcvPXNlW9N4IhHPjOe62cJDQ2Y457pHQ2fmrkM1SJhmTOcWolPirDpnFM7Cg1ddNN64r7p+fHDJHYLUmVoM7Y9wVRX79nsPmsBpyXjmvs/MGpnnFkOOgMKDCEyrwnxczPkdslKLWzM6wAjT9OJ42hZB+xcsp70OPZZgjJTFOcXs2ZRPKemaowVotXoHB8g4ummEOszFZybGX7N52l0AUAAAAwN2I4A6A0+WrGeHQ4C5fzaYOG8teBoOH5Jn5MnWDp5e88oU4tQbPPIHKV72JU+fwDiqsIm1GOHUO38LhKj3yK0myuroxQ1CYRXjo6R9o/TkKFFaRdqPS981qjjQh5O2v+RYtY3UOT/9A5asZkbH+HDyTdwHrYa3Bw1NeBYrYNUemIUBmH2C6w8ooe2SyIlXmrNZT2cmVIee9EggTOmeQG6GzS1c63yuBsEtCZ7NkSpFZKVKK5RWbpJSwHpaakhKVeHKvjaNkzVz9aevBXfxVRf+42CFzBFZvotCm1ldynv14UM4GvS1QDKzWSCGNu2ScI/qCLiydcEdb4t5q61+6qvJVbZRhDmP8VcX89k2WW93aevand8Hi8iteLsMcpqRE3ThzKIvg1GDztrsGb195+DjnvGoAAACkZzImKSnypJKizsicfEMGbz/5hJaQT+HwdAsYcH8guAPgdH7FHlRgtcaK273xjscKrN5EfsUedEBVcCe3AlFH/068h28e5SlTzcGjpueVr6BCmnRz6hw+oSVUss9su/qYzeYM4aBMJsnT+r/6vUPCFNZrVo5XiKZ9zTu4mNU5vAILKrhR5yy3o7U18MwsSPXw8ZV/eOWsx7n1tcmmBg9v30y+uLkRfqQ4bI5755zJeyV0zmwOB4bOubEKmdD5zue4y0Lnu3Z7bcu/C///PsVovZkxWcaYyJzPk4ZnnvxWXzclxOnarnUOmSPfo89YDe6MsVG6uOxth80R8kz3DK8nRZ3W2fmDbQ4Aszr7M2+F2gqq3crqc1z+YYED5vCUb7GyylO2eoY5UhLjdP3AtsxXuGYb3v4vEPXKm19e+UMzzGFOMSrleozNW+sCAID7z43zR3Rt5zpdP/i71aOGDJ7eyluhtvLVjOAz0fsIwR2AXFGw4Su6cfqAkq+cy/EY3iFhKtjgZQdWBdy7Un+j3lOSZ+o/suHh5SOfgtYDN0fxzJtfQY81d+oc3sHFVLTDWKfO4VOktB54Y1nm28baEUJ6BgRZncMrqLAKtx6Wo+D09jky3RI3T4ACqza6bQVoSqarUDN9TpNJXvmsb2koDw95BhTIdrtdW9YV3TOrr3JjNVymK1LvrhV3hM72zJELoXOmc9xloTOBsGPmuD0Qle0rRNPyLW79w6eUG9eVcGRXDkbMKF+NplaDO+O1K7q8/mPHzJFJyJl85ZzOzn/d9oGyCCPzVW2o4Kc6Zpwj+rwurng/6xWbNp7L6f9AFQVWejLDHMb4q4rdscb6Kk475/AuUFS+RR7IMIcp6YZuXjxm89a6Wc1n8PSSIZNfVgMAwF2Ybibqyk+Ls13oYE5JVvy+LYrft0WB1RqrYMNX5OHrn0tVwlX4LxkAucLD119FO4zRhS/HK/nyWbv7e4eEqWj70fyLCYDLGQwGydPbpkA0pzz9A5S3fMYt6RzJO38hhT7b26lz+BYOV6mBC7Jtl+0qSJNJHt7WtwbxDi2h4t2m2Ly1blYrSX1CS1qdwzMwWAXqvXQHc/zvnz6FrB82bvD2lW/YQ3aFspnVkNmHlXfbirvMtxV13IrUTOdwaJB6j4TO9/o5k3dbIJwb52USOtvOUaGz2SSlmCwhaNoKTUk3rXYxJd1UctRp++bJhIdPHqvBXcr1WMX+vtIhc+SrESHfIhl3q0i+elEXPhvtsDlCns44R9Kl0zq3eESmK0Cth4OeVsPBvOUfV/6aERmfI/aSon/+PJs5DJmuEE1bg2/RMvIPr5xhjpTEOCUc+dMh2+56+OeTl5VfJDObUmS6kZDFqlbODwWAO2GMu6ILX4yze4FD3O6NunH6gIp2GCOvTM4Ex72B4A5ArvEKLKjind+16bdJ0gqs3kQFG7xMaAcA9yjLClEPT7u3zPXw9rX6m/uO5BUYrAJ1X3DqHD4hYSr+yjtOncO3aGmVGrzESjiYYvfZn175rZ/n6h1UWKEtB9oUNmb3vl/Jilbn8PQPUMDD/8lmS9ysAs+U/616zWt9S0ODUrdbtjaH3VjhZbvc2I7TlaHzXbbqldDZjjlcutUyoXMGmYRKZpNR5qQbOVodejufwuFWXzclxuv6gd8cMIOUr+azVoM7Y+xlRa2e5aA5Iqxu+5906bTOLRySRU+DzashA6s0UIH/tMk4x5Xzilo1084taq0Hon7hlRVQoXaGOYzxV1M/e8jhNrhp5/AqUFg+IWEZ5jAl31Ry1Jlstt31tPGZCESB+4HpZmKOQrtbkq+c04Uvx6t453f5rPQeRnAHIFd5+PorNKKXAqs21LWd3+v6wW1Z7N9cR/lqNmX/ZgAAHMDg4SlPv7xOncMzT6DV1RqO5B1cVIVaDXLqHL7Fyip8yGdW37P1LM5b1x6+eayO4xNSQsVemZj5ik07tt31LVLa6hxegcEKqvN89lve2jCHdybbKXt4+8in8APpAlF7VqGmC0RduvrqLgsmciGAJHS2Q26EzrnwHITOd8kcbhE6myVTisxKkVIsr1iVcuO69RGSEnXz/BGb6syWl7fV4C4l7qqublnukCny1XxWIU26Zng9+co5nft0uGPmqNVMIY27ZHg96dIpXfhyXPbb0doQDuZ96DHlq9Y4wxzG2ChFb1l+59vuGjzkW6S0/EqUzzBHSmK8Ek/udcjWvh6+eeXpH5BhDrMpReYUI4Eo3NqVnxbf0VFCkpR8+ayu/LxEoU17OqgquBuCOwAu4VfsQfm1fFCmZ3sp6dIpJV06LXPyTRm8feVTqKR8CpWSh5f1bdEAAABcxWDwkDw97F4dejsPX3/5hWX8UMuRvPKFKPipDk6dw6dQKYW9OuWOx0kN9qx/7OtbtLRKDpif421w04aR3gWKWJ3DK38hhUT0tnFL3JQsw0i/YuWszuHhm0d5ytVyyLa7WYbwnl45XyGaRq6EBmz5abvMvlYOWT+WzRyEzu41B6Gz7XPcbVtfZ7Za1JislOuxDpnD2qpBSUpJuKb4PZscMkf+x5pbDe6MMZG69M2d/zeDJOWv1UwFrYWckSd17pNht71q+wrRtP8MrNJAQbVbZZzjynld/n6u1RWg6cfxzDaE9Cv1sPI+WCPj1yo+RvH7Nme51W2G1zIJRL3yhcg7uGiGOUzJN2WMuZSjbXcJRHPuxvkjdu1ClpW4vzYosEoDFjzcowjuALiUh5dPaojHv2QAAADuW6kfFGXynqe3vAKDnTq/V0CQ8lVr5NQ5fELCVORFx6zKyIxf8XIq/cb/VpfYu0I0bXjokSfQ6hzeISVUpP1o+7aozWTbXd/i1kNOz4ACylerWTY1p/z/tTnLZ/IOKmx1DoOnt7yDi9m9CtVaiJUbW2Xmyko1V85xlwXChM52uFdCZwJh95rDrtDZ9hWiaaUkWA9LTTeu68ap/bbVaQOrwd21y4r+aYlDxs//WHMVbNQ5w+vJUWfubLVomlAyf61mVn9Z7GbkSUV+NTnLrW5tDVPzPFhTgY/UzzCHMTZKMb+vtB442hBCpn3Nt1Ap+RYrm2GOlBvXdfPsIZu31r19Dq/8oZag89rOdTn/mltxbef38mvJZ6r3IoI7AAAAAADuQY5aIZqWp19e5XmgigNHzMg7qLDV7eIcybdoaZXobf85YWazOUM4KA9Pq219ipRWid4f5ig4vX3VpXfB4lbn8AoqpIJNumbe144tcX0y2XbXwzeP/EtXyXxsm84XTb02+PhZ/7rebaGBC1eRucdWmQ6Y424LnTP5Ob/bAmFCZwfMQej8/wPc+rs9dYtSq02MSTLGXrqzef6fVya/iGOMj9G1P9c7ZI78j7e0GtwlXzmvi8tzdh65T9EyCuv6niTJZEzS9YO/31GNt7t+cJtMz/Zi17J7EMEdAJcyGo06d+6cfHx85OHhIZPJpEKFCsnTM5P/KAYAAAAAFzEYDJLBU5Jn6j+y4OHtKw8r25M5kldgsPLXfNapc/gUKqmiL4126hx+JSrogRH/zTrAtDGE9AosYP05Qkqo8Itv2Ly1blZhpH/Jilbn8AoIUmC1JpmuELW2CjWz5/TKV9D6F8vDU56BBW0KfrMNGHJhq8zMQwPrH/TfdXPcZYFw5nM47mtF6Oxmc9wjgfDdGjr7Fi1juU6KPClzSnKOx7LGnJKspEun2MnsHkRwB8ClzGazLl++nO61kJAQgjsAAAAAuE/YE4jmlGeeQOUtV9M5g/8/7+BiCo3o6dQ5/IqXU6kBH9vU1rJCNJNw0OBtfYWGb9EyCuv+QY5XiKYNRH0KhVudwzt/IQU/1eEO5zD9/xwlrc7h4eMvvxIVrMyRYvccBs9MPkK9V1aR5cL2qHfb+YyZn8lJ6OxOc7h7IOydv5DlOinqTI7HyUrSpdMEd/cggjsAAAAAAADgHmMJRD087doy18PHTz6FSjmtLknyyh+qoDrPO3UO3yKlVezlt506h1+JCgof8nkmKzZT7Dr70yt/qNU5vAuGqVCr13K47W5Kurn8SpS3Oodn3iAFVK53h1vipgainnmDrM5h8PCQh39ApnPYw5BZwp8bIWcuhIMOneNeCYTd7uxEG6UJ/c3JN3I+ThbMyTedMi5ci+AOAAAAAAAAAOxk8PCUwdffqXN4BQQp4OG6Tp3DJyRMhVoMcOocfiUqKPz1xZm+b8tZnLeuPXzzWB3Dt2gZFes8ySHb7lo760z6/9C57gs2bXmb3Rw+wcWszmHw8ZdPkTI5XiGabmVtLoSDLp3DoSvunBAIpxj/N7639XNe75TB29cp48K1CO4AAAAAAAAAAC5jMHhInh52rQ69nYdvHvkVL+ewmqzxLlBEwfVecuocfsXKKqzbew4Zy2y2ftalX8kKKjlwYY63wU0bDnpncp6rd0iYQp7tk+kq0ywDyNve9y1qPUj18A9U3vKPO2TbXQ//gEy/jgYvn3Rj2yo59pLl2ie0hM397JHZdsG4uxHcAQAAAAAAAABwjzEYrEehBk9veQUEOXVur8Bg5ava0Klz+BYOV+HWQ506h394ZT0wfKnl3nJ+qA0rO9Nuv+lTOFwGT2+ZU5IdVpvB09vpWxvDNQjuAAAAAAAAAAAAsmE5P1Seymx3TWs8vHyUt0Jtxe/b4rBa8laoIw8vH4eNB/eRyeawAAAAAAAAAAAAcIR8NSMcPF5Th44H90FwBwAAAAAAAAAA4ER+xR5UYLXGDhkrsHoT+RV70CFjwf0Q3AEAAAAAAAAAADhZwYavyLtg8TsawzskTAUbvOygiuCOCO4AAAAAAAAAAACczMPXX0U7jJF3SFiO+nuHhKlo+9Hy8PV3cGVwJwR3AAAAAAAAAAAAucArsKCKd37X7m0zA6s3UfHO78orsKCTKoO78HJ1AQAAAAAAAAAAAPcLD19/hUb0UmDVhrq283tdP7hN5pTkDO0Mnt7KW6GO8tVsypl29xGCOwAAAAAAAAAAgFzmV+xB+bV8UKZneynp0iklXTotc/JNGbx95VOopHwKlZKHl4+ry0QuI7gDAAAAAAAAAABwEQ8vn9QQj1V1EGfcAQAAAAAAAAAAAG6BFXcAAAAAAAAAAAAuYjQade7cOfn4+MjDw0Mmk0mFChWSp6enq0uDCxDcAQAAAAAAAAAAuIjZbNbly5fTvRYSEkJwd59iq0wAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN+Dl6gKQ3uHDh/XNN99ox44dOnv2rBITE5U3b14VKlRIVapUUePGjfXkk0/KYDC4tM4GDRro3LlzOeq7ZMkSPfbYYza1jYuL09KlS7Vx40YdPXpUZrNZYWFhqlWrljp06KAyZcrkqAYAAAAAAAAAAAB3w4o7N3H+/Hn17dtXL730kry9vfXWW29p3bp1+umnnzR37lw1btxYGzZsUI8ePdS6dWudOnXK1SXnWIUKFWxqt23bNj3zzDOaOnWqypYtqyVLlmjt2rXq16+ffv/9dzVr1kzz5s1zcrUAAAAAAAAAAAC5gxV3buCff/5Rz549VbBgQa1du1ZFixZN937hwoVVrVo1tWnTRl26dNH+/fvVtm1brVixQmFhYS6qWgoKClKBAgXs6hMaGqp8+fJl227Tpk3q37+/kpOTNXjwYPXo0cPyXvHixVWvXj116NBBH3zwgS5cuKCxY8faWz4AAAAAAAAAAIBbIbhzsejoaPXq1UsxMTH64osvMoR2aRUpUkTTpk3Tc889p6tXr2rYsGH68ssvc7Ha9Dp27Kj+/fs7fNxTp07p9ddfV3Jysp588sl0od0t/v7+mj59upo2baqlS5eqQoUKatu2rcNrAQAAAAAAAAAAyC1slelic+fOVXR0tB566CGbzmsrX7686tatK0n6888/tWPHDmeXmOvGjx+vhIQEeXh4aNiwYZm2K1mypJo3by5JmjRpkqKionKrRAAAAAAAAAAAAIcjuHOx9evXS5KSk5Nt7lOnTh3L9aZNmxxekyvt2rVLW7dulZT6nA8++GCW7Z977jlJUmJioj766COn1wcAAAAAAAAAAOAsBHculJCQoMjISEnSsWPHtGXLFpv6lShRwnJ9+vRpp9TmKvPnz7dct2zZMtv2NWrUUFBQkCTpq6++Unx8vLNKAwAAAAAAAAAAcCqCOxdKTExMdz958mSb+vn7+1uuk5KSHFqTK8XFxem3336z3P/nP//Jto+np6eqVq0qKfVr8csvvzipOgAAAAAAAAAAAOciuHOh4OBghYaGWu5vrb7LztWrVy3XRYsWdXhdrrJp0ybLlqHh4eEqUKCATf0qVqxouf7xxx+dUhsAAAAAAAAAAICzEdy5kMFg0PTp01WzZk09+OCDGjZsmE399u3bZ7l+6KGHnFVertu9e7flulKlSjb3S3sO3v79+x1aEwAAAAAAAAAAQG7xcnUB97saNWro888/t7m92WzWhg0bJEleXl5q2rSps0qzyx9//KF169Zp9+7dunjxom7cuKHQ0FBVr15dbdq0Ua1atbId48iRI5br4sWL2zx3oUKFLNdnz57VjRs35OfnZ98DuAGj0SiDweDqMnKd0Wi06TUAAAAAAAAAuBfxGen/3K/PnRbB3V1m06ZNOnfunCSpUaNGCg4Odmk9KSkpGj16tFasWCEp9fy94OBgmUwmnTt3TufOndPq1avVpk0bjR07Vp6enpmOdfToUct1sWLFbK4hbXBnMpl08uRJlS9fPgdP41oHDx50dQlu48CBA64uAQAAAAAAAABchs9I718Ed3eRlJQUzZgxQ5KUJ08eDRkyxMUVSW+99ZbWrFmjnj17qlWrVipdurTlvV27dmn8+PE6fPiw/vvf/yoxMVFTpkyxOo7JZEp3dl/+/PltriEgICDdfUxMjH0PAQAAAAAAAAAA4AYI7u4iixcv1qFDhyRJ48ePV4kSJVxaz9q1axUZGaklS5aoatWqGd6vUaOGli5dqhdffFHHjh3T6tWr9Z///EctW7bM0DYhISHdvT1bXfr6+mY5FgAAAAAAAAAAwN3Aw9UFwDb79u3TBx98IEkaPny4mjdv7uKKpBMnTmjUqFFWQ7tb8ubNq7Fjx1rup0+frpSUlAztrl+/nu7enuDu9ra3jwUAAAAAAAAAAHA3YMXdXeDSpUvq16+fjEajRo8erQ4dOri6JHXp0kWXL19W69ats21bq1YtlS9fXocOHdL58+e1detW1atXL10bg8GQ7t5sNttci8lkSnfv4XF35tEVKlSQt7e3q8vIdUajMcN+zRUrVpSXF389AQAAAAAAALj38Rnp/yQnJ+vgwYOuLsOl7r/v+l3m2rVr6tGjh6KiovTee++pRYsWri5JktSpUye72tevX9+yzef27dszBHd58+ZNd3/jxg2bx75582aWY90tvLy87svgzhq+FgAAAAAAAADuZ/frZ6T2LOq5VxHcubG4uDh17dpVx48f16xZs9SgQQNXl5RjFStWtFxbS8vz5Mkjg8Fg+aG8PYzLSlJSUoaxAAAAAAAAAAAA7jZ3556C94HY2Fh17txZR48e1bx58+7q0E6SwsLCLNdXr17N8L7BYFBQUJDlPjY21uax4+Li0t0HBwfbXyAAAAAAAAAAAICLEdy5oatXr+qVV17RiRMntGDBAtWuXdvVJd2xtNtXJiQkWG1TpkwZy/WFCxdsHjsyMtJy7e3trVKlSuWgQgAAAAAAAAAAANciuHMzsbGx6tq1q06fPq0FCxaoRo0ari7JIUwmk+U6s60sy5Yta7k+f/68zWOnDe5Klix5X+77CwAAAAAAAAAA7n4Ed24kPj5e3bp108mTJ7Vw4UJVr17d1SVZNXfuXNWpU0fPPfecoqKibOqTdpVdvnz5rLZ55JFHLNeHDh2yuZ4jR45YrqtUqWJzPwAAAAAAAAAAAHdCcOcmkpKS1KdPHx05ckTz5s1TtWrVsu2TnJysfv36KTExMRcqTPXnn39q2rRpunLlig4cOKCvv/7apn5pV8WlXVmX1lNPPSVPT09J0tGjRxUfH2/T2Pv377dcN2zY0KY+AAAAAAAAAAAA7obgzg2YzWa98cYb+vPPPzVz5kzVqlXLpn4HDx7U77//Ln9/fydX+D+7d+9Od3/z5k2b+h07dsxynXZlXVrBwcGWZzeZTPrjjz+yHTcpKUn//POPpNQtOOvWrWtTPQAAAAAAAAAAAO6G4M4NzJ49W2vXrtXbb7+tevXq2dxv/fr1KlmypBMryyjtNpfe3t5q2bKlTf22bdsmSfLx8VH9+vUzbde1a1fL9cqVK20aNy4uTpLUoUMH+fn52VQPAAAAAAAAAACAuyG4c7HNmzfrww8/VO/evfXcc8/Z3O/cuXNatmxZpsHd+fPn1aNHD1WrVk3Nmze3BGd3qk6dOvLwSP1j8+yzzyo8PDzbPhcuXNDOnTslSREREQoKCsq07ZNPPqnHHntMkvTLL7/ozJkzWY59a6vOgIAAvfrqqzY8AQAAAAAAAAAAgHsiuHOhqKgoDR8+XI8//rgGDBhgc7/du3erS5cuun79eqbB3fDhw7V582YlJCTo33//VZ8+fXThwoU7rjksLEzt2rWTlLo1pS1mzJgho9GowMBADR48ONv248ePV/78+ZWcnKz3338/03b79u3Txo0bJUljxozJMhAEAAAAAAAAAABwd16uLuB+NmvWLF29elVHjx5VRESETX2uXbumK1euWO4zC+727duX7j4xMVF79+5V0aJFc17w/3vjjTd04cIFfffdd2rVqpWqVKmSadtFixbp22+/lY+Pj95//30VKlQo2/HDw8M1Y8YM9ejRQz/88IM+++wzderUKV2bmJgYDR48WGazWZ07d1aLFi3u+LkAAAAAAAAAAABcieDOhS5fviwpdeVdVFRUjsbILLirVKmSduzYYbn39vZW+fLlczTH7Xx9fTV79mwtXLhQnTt31mOPPaaGDRuqYsWKCgkJkdFo1JEjR7Rs2TJt2rRJJUuW1Pjx41W7dm2b56hdu7a++OILDRw4UBMnTtSRI0fUtm1bFShQQH///bc++OADnT9/XkOHDmWLTAAAAAAAAAAAcE8guLvLZRbcTZ48WWPHjtXOnTtVuHBhDR48ONO2OeHp6akePXrohRde0Lfffqt169Zp+vTpio2NlZ+fn4KDg/Xwww9r8uTJioiIkI+Pj91zPPLII1q7dq2+++47rV69Wj169ND169dVvHhxPfnkk+rUqZMeeOABhz0TAAAAAAAAAACAKxnMZrPZ1UUA95OkpCTt3bs3w+uVK1fOUcB5t0tOTtaePXvSvfbII4/I29vbRRUBAAAAAAAAQO7hM9L/4fNzycPVBQAAAAAAAAAAAAAguAMAAAAAAAAAAADcAsEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAb8HJ1AQBgqz///FNr167Vn3/+qQsXLighIUEBAQEqWLCgKlWqpDp16qhp06by8fFxdalWxcTEaM2aNdq6dasOHTqkq1evSpKCgoJUoUIF1a1bV88995zy5s17R/McOnRI3333nXbu3KkzZ84oPj5eAQEBCgoKUsWKFfXYY4+pefPmdzwPAAAAAAAAAMCxDGaz2ezqIoD7SVJSkvbu3Zvh9cqVK7tt4ORMycnJ2rNnT7rXHnnkEXl7e1vu9+zZo7fffltHjx5VixYtVLduXRUpUkTJycm6cOGCtm7dqlWrVik5OVmhoaEaN26cGjZsmNuPkimj0aiPP/5Y8+fPV8WKFdWkSRM99NBDCggI0JUrV7Rz506tWLFCV69eVVBQkN588021aNHC7nlOnDihiRMnavv27YqIiFC9evUUFhYmSYqMjNT27dv19ddfKyEhQfny5dPQoUPVpk0bRz8uAAAAAAAAADvY8hnp/YLPzwnugFzHXzzpZfcvpSVLlmjSpEmqXr26PvjgAxUuXNjqOCdPnlSPHj106tQpGQwGjR49Wu3bt3d6/dlJTExUr1699Mcff2jatGmKiIiw2i42Nlb9+vXTjh07JEn9+/dXv379bJ7nhx9+0NChQ1WiRAnNmjVLpUuXttru8uXL6t27t+Vr3r17dw0ZMsTOpwIAAAAAAADgKAR3/8Pn55xxB8CNLV++XBMnTlTJkiW1YMGCTEM7SQoPD9f8+fPl7+8vs9msiRMn6p9//snFaq2bOHGi/vjjD5UvXz7T0E6S8ufPr48++sjyjLNmzdLq1attmmPLli0aNGiQ/P39tWjRokxDO0kKCQnR/PnzFRoaKkmaP3++fvjhBzueCAAAAAAAAADgLAR3ANxSVFSUJk+eLEnq2LGj/P39s+1TqlQptW3bVlLq9pRTpkxxao3ZiYyM1DfffCNJ8vX1zbZ9QECA+vfvb7l/++23FR8fn2Wfmzdv6q233pLJZNJzzz1nCeSyEhQUpB49eljup0yZIqPRmG0/AAAAAAAAAIBzEdwBcEtr1qzR9evXJaUGcrZ69tlnLdc7duzQ+fPnHV6brfbt26eUlBRJ0r///qtLly5l2yciIkJeXl6SpJiYGG3cuDHL9ps3b/4/9u47POoqbeP4PX3SJo0uVRRREcQua1fcVVcUXRu6KGBFYN+1oeuKiqKyFlAs2BUbugj2irJWFCwLuBaQopBQUiaZSZk+7x9JJjMpk0mdBL6f6+LiN78558wzASXMzXOOtm3bJqnlX6fff/9d33//fcJzAQAAAAAAAADtg+AOQKf05ZdfRq7XrVuX8LyhQ4fKZDJFHn/zzTdtWldzRB8hWllZqVdeeaXJOWlpaRo4cGDk8Y8//hh3fEu/Trm5uerVq1fkcTK/TgAAAAAAAACAKgR3ADql7du3R67nz5+vwsLChOZZrVZlZGREHifS5dZeRowYobS0tMjjPn36JDQvun6/3x93bPTX6ZVXXtHatWsTri83NzdyncyvEwAAAAAAAACgCsEdgE4pulvN5XJp4cKFCc+1WCyR61Ao1KZ1NUf37t310ksv6eKLL9aNN96oMWPGJDQv+ly73r17xx0b/XXy+/16+umnE67ParVGrmu29AQAAAAAAAAAJA/BHYBOab/99ot57PF4EpoXDAZVUlISedyjR4+2LKvZ9tprL1177bUaP3585Oy6eCorK/Xbb79FHh9yyCFxx7f06yRJRUVFkeuePXsmPA8AAAAAAAAA0D6a/hQZAJLgqquuUllZmb7//nv17dtX5513XkLz1q5dG7O9ZN1gq7NbunSpfD6fJGnffffVyJEj446/6KKLtGXLFn355ZfKycnRJZdcktDrlJaWavPmzZHHXe3rBAAAAAAAAAA7I4I7AJ1St27d9MADDzR73tKlSyPXAwcO1ODBg9uyrHZVWlqq+++/X5Jkt9s1c+bMJuekpaXpzjvvbPZrffTRR5FtNjMyMnTooYc2ew0AAAAAAAAAQNtiq0wAO41AIKAlS5ZEHo8bNy6J1TRPfn6+LrnkEm3evFlZWVl65JFHNGzYsHZ7vVdeeSVyfcYZZ8hms7XbawEAAAAAAAAAEkPHHYCdxpIlS5SXlydJzdpeMxl8Pp+cTqd+/PFHLVu2TG+++aZCoZDOO+88TZ48uV3P5lu+fLm+//57SVXddpdffnm7vRYAAAAAAAAAIHEEdwB2Ci6XS3PnzpUkmUwm3XXXXbJarcktqhFLly7VlVdeGXMvJydHd911l44++uh2fe1AIKBZs2ZFHs+YMUM5OTnt+poAAAAAAAAAgMQQ3AHYKcyaNUuFhYWSpBtvvFEHH3xwkitq3GGHHaaFCxfK7XZry5YtWr16tZYtW6ZLL71Uw4YN04033qgDDjigXV774Ycf1rp16yRJkyZN0pgxY9rldQAAAAAAAAAAzUdwB6DLW7x4sV577TVJ0vTp03X++ecnt6AmpKena+TIkZHH48aNU2VlpZ577jnNnTtX5513niZOnKhrr71WRmPbHUW6fPlyPfLII5Kkv/71r7r22mvbbG0AAAAAAAAAQOu13SfCAJAE33zzjWbMmCGDwaAZM2Zo4sSJyS6pRVJSUnTppZdqzpw5kqSnnnpK06dPb7P1N2zYoL/97W8KhUK65JJL9M9//lMGg6HN1gcAAAAAAAAAtB7BHYAu65dfftGVV16pUCikO++8s9N32iXij3/8o8aOHStJeuONN/Tiiy+2es1t27bpkksuUWlpqf72t7/pmmuuafWaAAAAAAAAAIC2R3AHoEtav369JkyYoLKyMt17772RsGtncMkll0SuH3jgAZWVlbV4rYKCAl144YXasmWLbrjhBk2ePLktSgQAAAAAAAAAtAOCOwBdzoYNG3ThhRfK5XLp/vvv10knnZTsktrU4MGDtfvuu0uSnE6n3nrrrRatU1BQoPHjx+u3337TjBkzdNFFF7VhlQAAAAAAAACAtkZwB6BL2bhxo8aPH6/S0lLNmzdPJ5xwQrJLahf77bdf5Hrp0qXNnl9UVKQLL7xQGzdu1C233LJTbCMKAAAAAAAAADs7c7ILAIBEbdmyRRdddJFKSko0b948HXvssckuqd3k5uZGrn/66admzS0pKdGECRO0YcMG3XLLLTr33HPbujwAAAAAAAAAQDug4w5Al1BQUKAJEyaoqKhIc+fO7TKhXV5ent555x3t2LGjWfOsVmvkurS0NOF5FRUVuuSSS/TLL7/opptuIrQDAAAAAAAAgC6E4A5Ap1dWVqaLL75YW7Zs0ezZsxPeHrOwsFArV65s5+oat3r1ap166qn6+9//rjPOOEPFxcUJzy0rK4tcOxyOhOb4/X5NnTpVq1ev1jXXXJPw9phlZWX67LPPEq4NAAAAAAAAANA+CO4AdGqBQEDTpk3Tzz//rJtvvlmnnHJKwnPfeOMN3Xvvve1YXXx33HGHysvLJVV1DL7xxhsJzy0sLIxc9+/fP6E5M2bM0Oeff67LLrtMl1xyScKv9cUXX+iGG25IeDwAAAAAAAAAoH0Q3AHo1G677TZ98cUXmjJlSrO3fVy+fHnCoVd7qHs2XU2Il4hffvklcn3UUUc1Of6xxx7T4sWLNXbsWF111VWJF6mqr9OAAQOaNQcAAAAAAAAA0PYI7gB0WosWLdLChQt1+umna+rUqc2au3Xr1iYDqXfeeUcnnXSSDjroIP3tb39r1laWicjNzY15fPTRRyc0Ly8vT5s2bZIk2Ww2jR07Nu74L774QnPmzNFhhx2m22+/vVk1VlRU6N133yW4AwAAAAAAAIBOgOAOQKe0du1a3Xbbbdp///112223NWtuKBTSrbfeKr/fr4EDBzY45rvvvtPVV1+tDRs2yO1267333tO0adMUDofboPoqf/zjHyPXgwYN0rBhwxKa98orr0TquPDCC9W7d+9Gx+7YsUPXXHONdtttNz3wwAMym83NqvGee+5RSUlJo18nAAAAAAAAAEDHIbgD0OkEAgFde+21MpvNmjt3rqxWa8JzN2zYoMmTJ2vZsmWSGj8fbunSpQqFQjH3Vq5cGel0awuXXXaZevXqJUkJB4Jr167VU089JUk66KCDNG3atLjj//nPf6q0tFRz585VZmZmwrVt3bpVN954o1544QVJiZ+jBwAAAAAAAABoP81rzQCADvD222/r559/lsVi0emnn57wPJ/Pp4qKiph7ze0kqxvmtUZWVpaeeOIJXXzxxdq0aZPmzp2radOmyWhs+N9MfPPNN5o2bZp8Pp8OPvhgzZs3TxaLpdH1V65cqU8++UQmk0mTJk1KuK5AIKCysrKYe3TcAQAAAAAAAEDyEdwB6HRcLpckye/3q6SkpMXr5OTkKCMjo8HnTjjhBD399NMxQd2QIUPaPMDac889tXjxYt1+++165JFH9M477+iMM87QPvvso27dusntdmv9+vX66KOP9Pnnnys1NVWXX365pkyZEje0k6TS0lJJUjAYbNXXSaLjDgAAAAAAAAA6A4I7ADutAQMGNPrcAQccoHvvvVcPPPCAtm/froMPPlgzZsyQyWRq8zpyc3M1Z84cXXnllVq8eLE+/vhjPf300yorK1Nqaqqys7O11157acaMGTr55JOVnZ3d5jXE0717d6WmpnboawIAAAAAAAAA6jOEEz14CUCb8Pl8WrNmTb37++23X7POcttZ+P1+rV69Oube8OHDm+w2AwAAAAAAAICdAZ+R1uLzc6nhg5YAAAAAAAAAAAAAdCiCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgFzsgsAsGszGAzq1q2bbDabDAaDwuGwjEb+TQEAAAAAAAAAYNdDcAcgqcxmswYMGJDsMgAAAAAAAAAASDraWgAAAAAAAAAAAIBOgI47AEnl8we1Md+l37a55PUFZbOaNKCXQ4P6OGS1mJJdHgAAAAAAAAAAHYbgDkBSrP3dqTc/26AvVufLHwjVe95iNuoPw/vo1CN315D+2UmoEAAAAAAAAACAjkVwB6BDVXgCevrNH/TeV7/FHecPhPSf77boP99t0Z8OG6AJpw5Tqp3/ZQEAAAAAAAAAdl58Cg6gwxSVVuqf87/Ulh1lzZr33le/6YcNRbr98lHKzUxpp+oAAAAAAAAAAEguY7ILALBrqPAEWhTa1diyo0w3PbpcFZ5AG1cGAAAAAAAAAEDnQHAHoEM8/eYPLQ7tamze7tbTb/2vjSoCAAAAAAAAAKBzIbgD0O7W/u5s8ky7RL23fJPW/u5sk7UAAAAAAAAAAOhMCO4AtLs3P9vQpuu99XnbrgcAAAAAAAAAQGdAcAegXfn8QX2xOr9N1/x8Vb58/mCbrgkAAAAAAAAAQLKZk10AgJ3bxnyX/IFQm67pD4S0aatLQ/pnS5IW/+dX/bq5RNkOm3IddmU77MrJsCsns+o6zW6WwWBo0xoAAAAAAAAAAGhrBHcA2tVv21ztsm50cBcMhvTZf/MaHWu1mJTjsCm7OszLcdT8iL2XnmIh4AMAAAAAAAAAJA3BHYB25fW1z5aW3qitMi3m+Lv++vxBbSuq0LaiirjjLGajsh326q49W23XXlS4l51hkyPNSsAHAAAAAAAAAGhzBHcA2pXNamqfdS2167bVVpz+QEg7iiu0ozh+wGc2GauCPUdtmJeTWbs9Z9U9uxxpVhmNBHwAAAAAAAAAgMQQ3AFoVwN6Odpl3YG9a9dtKmhra4FgSAXOShU4K+OOMxkNkVAvO6N6e87q69zM6sDPYZcj3SYTAR8AAAAAAAAA7PII7gC0q0F9HLKYjW3WFSdVbWkZHdz9uqW0zdZuS8FQWIWlHhWWeuKOMxoNykq3VZ2556g9gy9m206HXVnpNplM8bcFBQAAAAAAAAB0XQR3ANqV1WLSH4b30X++29Jmax4xoo+s1VtlBoIhHTC0h/r3ylCxyyOny6Nil0fuCn+bvV57C4XCKq6uW2o8hDQYpMz0BrbodMT+yMqwyUzABwAAAAAAAABdDsEdgHZ36pG7t2lw9+cjdo9cm01G/fWkveuN8QeCcrq8kUDM6fKoyOWJvef2qLTM12Z1tbdwWCpxe1Xi9mpDXvyAz5FmrdO1Z1dOzbadjtpz+CxmAj4AAAAAAAAA6CwI7gC0uyH9s/Wnwwbova9+a/Vafzp8oIb0z25ynMVsUo+cVPXISY07zh8Iyemu6dTzyun2qLjUExX4eVXs9qi0zKtwuNXld4hwWCot86m0zKeN+a64YzNSrbXn7WXWBno5mXblZNScyWeLdDgCAAAAAAAAANoPwR2ADjHh1GH6YUORtuwoa/Ea/XpmaMKf923DqqrOy+uRnaoe2fEDvkAwpNIyr4pKa7fjrAn6iko9kfCvxO1VqIsEfJLkrvDJXeHTpq3xx6WnWOqFeTmOmmt7VfjnsMtGwAcAAAAAAAAALUZwB6BDpNrNuv3yUbrp0eXavN3d7Pn9embotssOV6o9Of/bMpuMys1MUW5mStxxwWBIpeW+qq69mk6+0qhtOqvvOd1ehbpQwldW6VdZpV+/b4v/a5dmN0fCvJqgr3a7Tlvknt3GHz8AAAAAAAAAUBefnALoMLmZKbpn2lF6+s0fmrVt5p8OH6gJf943aaFdc5hMxqpONIc97rhgKCxXuVfFpVUhXrGrdnvO4uoOvmKXV06XR8EuFPCVewIq95Rp8/b4nZUpNnPk65RTE+pFPa7p6ku1WzqocgAAAAAAAABIvs7/KTiAnUqq3awrz9pfow8doLc+36DPV+XLHwjVG2cxG3XEiD768xG7J3SmXVdjMhqUnVHVmRZPKBSWu8IXE+pVde3Fhn1Ol0eBYNcJ+Cq9AeUVlCmvIH7AZ7eaqoO9mq69mnDPFnVtV6rdLIPB0EHVAwAAAAAAAED7ILgDkBRD+mfrqnEHaspZ+2vTVpc2bXXJ6w/KZjFpYG+HBvZ2yMp5aTIaDcpMtykz3aZBfTIbHRcOh+Uq99V270W69mqCvdqgr6GgtLPy+ILKLyxXfmF53HE2q6l6W05bnU6+qpCv5nFaioWADwAAAAAAAECnRXAHIKmsFpOG9M/eKbvqOpLBUBvwDeztaHRcOBxWeaU/qluvajvOYrendtvO6jP5fP5gB76D1vH6gtpaVK6tRfEDPqvZGNOpFx30RXf1ZaQS8AEAAAAAAADoeAR3ALALMRgMSk+1Kj3Vqv694gd8ld6Aimo690qrQr6abTlrgz6PKr1dJ+DzBULaXlyh7cUVcceZTcZ623E2tEVnRqpVRiMBHwAAAAAAAIC2QXAHIKkCgYDy8vJktVplNBoVCoXUo0cPmUxsk5lMBoNBqXaLUu0W9euZEXdshcdfb4vOotLY7Tmdbo8qPIEOqr71AsGQdjgrtcNZGXec2WRQVkbtdpz1z+Kr6urLTLMR8AEAAAAAAABoEsEdgKQKh8MqLCyMudetWzeCuy6kJuDbrXt63HEeb0DF7upAr9RTfV21LaczauvO8kp/B1XeeoFgWIUllSosiR/wmYwGZWXY6py9Fxv45Tjsyky3yUTABwAAAAAAAOyyCO4AAB3CbjOrjy1dfbrFD/i8/mBUkOeJ6uSL6uBzeeSu6DoBXzAUVlFpVSdiPEaDlJVRtR1ndoZduZlVP9cN+LIybDKbjB1UPQAAAAAAAICOQnAHAOhUbBaTeuWmqVduWtxxPn+wKsyL6t6rDfZqQz5Xua+DKm+9UFjVZwl6JZU2Os5gkDLTbJGtOBvq5KsJ/yxmAj4AAAAAAACgqyC4AwB0SVaLST1zUtUzJzXuOH8gJKc7djvOYlf9oK+kzNtBlbdeOCyVlFXXnB9/rCPNGnPeXk7U+Xu1YZ9NFjPb0wIAAAAAAADJRnAHANipWcxG9chOVY/s+AFfIBhSSZ3tOIvqdO85XR6VlHkVDndQ8W3AVe6Tq9ynTVtdccdlpFrqdO1VBX25jpSYwM9qIeADAAAAAAAA2gvBXSfzyy+/aPHixVqxYoW2bNmiyspKpaWlqUePHhoxYoRGjx6to446SgaDIdmlRnz77bd644039O233yo/P18+n08ZGRnq3bu39t9/f51yyik68MADE17vuOOOU15eXotqWbBggQ499NAWzQWwazObjOqWlaJuWSlxxwWDIZWUeettyRkd7hW7PCpxexXqQgGfu8Ivd4Vfv21zxx2XlmKJbMdZf4vO2sDPbuVbDAAAAAAAAKC5+FStk8jPz9esWbO0fPlyjRs3TjfddJP69eunUCik/Px8ffbZZ3r++ef173//W/vuu6/mzJmjAQMGJLXmtWvXaubMmdqwYYMuuOAC3XnnnerTp498Pp82b96sjz76SAsXLtQLL7ygP/zhD7r77ruVm5vbrjXtvffe7bo+AJhMRuVmpig3s4mALxSWq8xb3bVXu0VndLjndHlU7PYq1IUSvvJKv8or/dq8PX7Al2o3N7glZ811bvXPKTa+FQEAAAAAAABq8GlZJ7Bq1Spddtllys3N1dtvv63evXvHPN+zZ0+NHDlSZ599tiZMmKD//e9/Ouecc7Ro0SL17ds3KTV//PHHuuqqqzRs2DC9++67yszMjHm+d+/eOuSQQ3TmmWdq4sSJ+uKLLzRu3Di98sor9cY2JCsrS9nZ2c2qqXv37nI4HM2aAwDtxWQ0KLs6nIonFArLVe6rF+pFn79XXH1GXyDYdQK+Ck9AFZ4ybdlRFndcis1Uf4vODLtyMmO7+lJs5k7VbQ4AAAAAAAC0B0M43JVO6tn5FBcX65RTTpHT6dTbb7+twYMHxx3/888/a+zYsQqFQjrwwAP14osvdlCltdavX6+xY8fKbDZr6dKlysnJiTt+2bJluvzyyyVJY8aM0d133x13/HHHHaexY8dq6tSpbVZzZ+Lz+bRmzZp69/fbbz9ZrdYkVJRcfr9fq1evjrk3fPhwWSyWJFUEdE6hUFjuCl/UFp2VKnZ5o87iqwn7vAoEQ8kut83ZrKZ623Hm1AR81T9nO+xKsxPwAQAAAACAroXPSGvx+Tkdd0k3f/58FRcXa+jQoU2GdpI0dOhQHXHEEfr000/17bffasWKFTrkkEM6oNJa9913n7xer4444ogmQztJOvbYY7XHHnvo119/1VtvvaVp06apX79+HVApAOw8jEaDMtNtyky3aVCfxseFw2G5K/y123G6G96ms9jllc8f7Lg30EpeX1BbC8u1tbA87jirxaQchy2qa88eOZMv+l56ioWADwAAAAAAAJ0OwV2Svffee5KqEvVEjRo1Sp9++qmkqm62jgzuKioqIq/dnJoPP/xw/frrrwqFQvr00091/vnnt1eJALBLMxgMcqRZ5UizakDvxrcPDofDqvAEGgz0Yrfq9Mjj6zoBn88f1LaiCm0rqog7zmI2Vm3PmWGL7drLqA76Mu3KzrDJkWYl4AMAAAAAAECHIbhLooqKCm3fvl1S1faTn376qY466qgm50V3q/3+++/tVl9D8vLy5PP5JEnLly/Xzz//rKFDhzY5L/osvt9++63d6gMAJMZgMCgtxaK0FIv69cyIO7bC449s0VlU5xy+6G07K72BDqq+9fyBkHYUV2hHcfyAz2wyxmzLmR0V9GU77MqtDvscaVYZjQR8AAAAAAAAaB2CuySqrKyMeTx79uyEgruUlJTIdU2I1lGia/b7/brvvvv02GOPNTkvNTU1ct3RNQMAWifVblGq3aK+PeIHfJXeQEyoV3MGX90OvnJP1wn4AsGQCpyVKnBWxh1nMhqUnWGr6uJzRHftVW3TWXPPkW6TiYAPAAAAAAAAjSC4S6KcnBx1795dBQUFkhTpvmuK0+mMXPfu3btdamtM//79Zbfb5fF4JLWs5j594hzOBADoslJsZqV0T1ef7ulxx3l8gepOvbrbdNZ29RW7PCqvTHxL5mQLhsIqLPWosNQTd5zRaFBWuq06zEup6uaLCvtqHmel22QyGTuoegAAAAAAAHQWBHdJZDAYNHfuXM2dO1clJSUaP358QvN++OGHyPVee+3VXuU1KCsrS/fcc48ef/xxeb1eTZs2LaF5yawZANC52K1m9e5mVu9uaXHHef1BOSPbcdbv3Kvp6nNXdJ1O7lAoHHkPUmmj4wwGKTO9NtSLbNHpqOriq9miM9thk5mADwAAAAAAYKdBcJdkBx10kJ5//vmEx4fDYX3wwQeSJLPZrJNOOqm9SmvU6NGjNXr06ITHl5eX6/PPP5ckZWdna9SoUc16va+++krvvPOOvv/+e23btk0ej0fdu3fXAQccoLPPPluHHHJIs9brrAKBgAyGXW/7tECg/pZ5Dd0DsOsxSsp1WJXrsEpqfJtOfyAop9tXFfK5vXK6a7bp9Mrprgr9nG6vXOVdJ+ALh6USt1clbq825MUP+DJSrcpx2KqCvIyqbr7smseR+1ZZzKYOfAcAAAAAACBRfEZaa1d939EI7rqYZcuWKS8vT5J0wgknKCcnJ8kVNW3x4sWqqKiQJJ1xxhmyWCwJzQsGg5oxY4YWLVokqepsv5ycHIVCIeXl5SkvL09vvvmmzj77bN1yyy0ymbr2B5I//fRTskvoNH788cdklwCgi0qVlJom7ZYmqbck2ap/SIFgWOWeoNyVIbkrg3JXBlVWGZTbE1RZ1L1yTyh5b6CZwmHJVe6Tq9ynTVvdccem2IzKSDEpw25Ueoqp6jrFpIyU2sfpKSZZTLvePyIBAAAAAKCz4TPSXRfBXRcSDAZ1//33S5JSU1N1zTXXJLmippWVlenRRx+VJPXo0UOXX355wnNvuukmvfXWW7rssst0+umna/fdd488980332jmzJn65Zdf9Morr6iyslL33HNPm9cPANh5mE0GZaaZlRl/h04FQ2GVe+qEe5W1gV9N2FfuCSkc7pja20KlN6RKb0g7mhhntxoioV663aSM1KqwLyO1+nGKSekpRlnNbNEJAAAAAADQ1gjuupBnn31WP//8syRp5syZ6tevX5IratqcOXNUUFAgi8Wie++9Vw6HI6F5b7/9trZv364FCxZo//33r/f8QQcdpJdeeklnnXWW1q9frzfffFNHHnmkTjvttDZ+BwCAXY3JaJAj1SRHavxO7lAorHJv3YAvVCfsC6qsiwV8Hl9YHl9ABaXxt6awWaICvurOvZjH1WEfAR8AAAAAAEDiCO66iB9++EH33XefJGn69Ok69dRTk1xR0z7++GM9//zzMpvN+te//tWss+g2btyoO+64o8HQrkZaWppuueUW/fWvf5UkzZ07V3/+85+7/JaZAICuwWisDa7iCYXCqogO+DwhuSuquvaiA7+yyqBCXSjg8/rD8voDKnTFD/isZkN1117stpw1nXs11zYLAR8AAAAAAADBXRewY8cOTZkyRYFAQDNmzND555+f7JKatG7dOl133XWyWq2aM2eOTjjhhITnTpgwQYWFhTrzzDObHHvIIYdo6NCh+vnnn5Wfn6/PP/9cRx99dGtKT5q999474fP/diaBQKDefs377LOPzGb+9wRg1xIKheWu8Mnp9qrY5ZXT7ZHT5a1+7JHT7a1+7FEg2HUSPl8grCJXQEVNBHx2q0nZDpuyM+zKcdiUnVF1ne2wKSfDpmxH1XWqzSyDgXP4AAAAAAA7Dz4jreX3+/XTTz8lu4yk2vV+1bsYl8ulSy+9VAUFBfrXv/6lMWPGJLukJuXn5+vSSy9VMBjUY489psMPP7xZ82s66BJ1zDHHRLYQ/frrr7tscGc2m3fJ4K4hfC0A7KpsNqu6ZafHHRMOh+Wu8KvY5an6UeqR0+2JPHa6vJFrfyDUQZW3nscX1NbCCm0trIg7zmoxKbc6xMtx2JXjsCu7+uecqHtpKRYCPgAAAABAl7WrfkYa7krnjbQTgrtOzO12a+LEidqwYYPmzZun4447LtklNWnbtm0aP368ysvL9eyzz2r48OHt/pr77LNP5HpXT+IBADs/g8EgR5pVjjSrBvZu/OzYcDis8sqogM/lldMVFfC5vSou9ajY7ZHXF+zAd9A6Pn9QW4vKtbWoPO44q9kYFejVD/pyq3/OSCXgAwAAAAAAnQfBXSdVWlqqiRMnav369Xr00Ueb3bWWDHl5ebrwwgtVXl6uBQsWaOjQoR3yun379o1cO53ODnlNAAA6O4PBoPRUq9JTrerfK37AV+kNqKi0pmPPE9mqsybYq+nqq/R2oYAvENL24gptL47fwWc2Gau25owK+Wq696LvZaRaZTQS8AEAAAAAgPZFcNcJOZ1OTZgwQb///rueeOIJHXTQQckuqUmbN2/W+PHj5ff79fzzz2vw4MEd9tppaWmR64qK+B/OAQCAWAaDQal2i1LtFvXrmRF3bIXHHzlzr3aLTm/kuqj65wpP/PPsOpNAMKQdzkrtcFbGHWc2GZSVUbsdZ/2gr6qrLzPNRsAHAAAAAABajOCuk6nptKsJ7Q444IBkl9SkLVu26MILL1QgENBzzz2nQYMGdejrh0K15/ekpqZ26GsDALArqQn4duse/xw+jzegYnf1eXvVXXtOl0dFkY6+qsCvvNLfQZW3XiAYVmFJpQpL4gd8JqNBWRm2mO04G+rgy0y3yUTABwAAAAAA6iC460TKyso0adIkbdq0SU899ZRGjhyZ7JKatH37dl100UXy+Xx6/vnnNXDgwFatN3/+fC1YsEA9e/bUY489pu7duzc5J7rLzuFofCswAADQMew2s/rY0tWnW/yAz+sPxpy7V7VVp7fOY4/cFV0n4AuGwioqreo+/DXOOKNBkYAv0rHXQEdfVoZNZpOxw+oHAAAAAADJRXDXSfh8Pk2ePFnr1q3T448/nlBo5/f79fe//1133323UlJSOqDKWKWlpZo0aZLKy8v13HPPJRTabd++XXfffbfuueeees99++23mjNnjiSpqKhIr776qi6//PKE1qyxxx57JP4GAABAUtksJvXKTVOv3LS443z+oJxubwNde7FBn6vc10GVt14orKptRl1erVdpo+MMBikzzabs6kCvdlvO2JAvO8Mui5mADwAAAACAro7grhMIh8O6/vrr9e233+rhhx/WIYccktC8n376ScuXL09KaFcTNObn5+u5555LODD77rvvtHbt2gaf+/7772Mee73ehNZcv3595Hr48OEJzQEAAF2H1WJSz5xU9cyJvyW2PxCS0x27HWdDHX0lZYl9j9EZhMNSSVlVzRvzXXHHOtKsMeftRYd8uVFhn8Vs6qDqAQAAAABAcxHcdQIPPfSQ3n77bd111106+uijE5733nvvqX///u1YWeNuvvlmrVq1So899pj23XffhOfFqzl6m0uLxaLTTjstoTW//PJLSZLVatUxxxyTcC0AAGDnYjEb1SM7VT2y4wd8gWBIJe7YLTnrdu85XR6VlHkVDndQ8W3AVe6Tq9ynTVvjB3wZqZaY7Thrgr5cR0ok8Mt22GWzEPABAAAAANDRCO6S7JNPPtGDDz6oK664QmPHjk14Xl5enhYuXKgjjzyywefz8/N1yy23aOXKlerbt69uuOEGjRo1qk1qfumll7R48WLdfvvtzVpz9erV+vDDD3XRRRc1+PyoUaNkNBoVCoV0yimnJLT15tatW7Vy5UpJ0sknn6ysrKyE6wEAALsms8moblkp6pYVf9eCYDCkkjJvvXP3akO+ShW7vCpxexTqQgGfu8Ivd4Vfv21zxx2XlmKpDvZsdbr2orr6Muyy2/grBQAAAAAAbYW/ZSdRQUGBpk+frsMOO0zTpk1LeN7333+v6dOnq7y8vNHutenTp2vFihWSpLVr12ry5Ml699131bt371bVvHbtWt15550644wzdNZZZyU0JxwO69NPP9X111+vYDDYaM19+/bVueeeqxdffFGpqfH/pXyN+++/X4FAQBkZGbr66qsTfh8AAABNMZmMys1MUW5mEwFfKCxXmTfq/D1vpGsvJuxzexXqQglfeaVf5ZV+bd4eP+BLtZtrw7wMu3IyY8/fq3kuhYAPAAAAAIAm8bfnJJo3b56cTqd+/fVXnXzyyQnNcblcKioqijxuLAT74YcfYh5XVlZqzZo1rQ7uZs+eLa/Xq6+++kp/+tOfEprjdDpVUlISeRxve8/rr79eW7du1euvv67TTz9dI0aMaHTsM888oyVLlshqteruu+9Wjx49En4fAAAAbcVkNCi7OqSKJxQKy1Xui9mOMzrUKy71qLj6jL5AsOsEfBWegCo8ZdqyoyzuuBSbqTbMqw74ooO+7Ay7cjOrAj6DwdBB1QMAAAAA0LkQ3CVRYWGhpKrOu4KCghat0VgINmzYsEjHnVR1ZtzQoUNb9BrRamrOz89v8RrxgjubzaaHHnpITz75pC666CIdeuihOv7447XPPvuoW7duCgQCWrdunRYuXKhly5apf//+mjlzpg4//PAW1wMAANARjEaDsjJsysqwaffdMhsdFwqF5a7wNXjuXqSrrzroCwRDHfgOWqfSG1ReQbnyCsrjjrNZTZEuvegtOXMyowI/h11pdgI+AAAAAMDOh+Cui2ssBJs9e3bkjLuePXvq6quvjhuYdRSLxdJk15/JZNKll16qv/zlL1qyZIneeecdzZ07V6WlpbLb7crJydG+++6r2bNn6+STT5bVau2g6gEAANqf0WhQZrpNmek2DerT+LhwOKyySn9Vp15D3Xsuj5xuj4pLPfIFuk7A5/UFtbWwXFsL4wd8VrOxtmvPUdPBZ1NuTCefXekpFgI+AAAAAECXYQiHw11nHx5gJ+Dz+bRmzZp69/fbb79dMoT0+/1avXp1zL3hw4fLYrEkqSIAAHYu4XBY5Z5AVade1HacRVEdfTXbdnp8wWSX2+YsZmP19py2SNde9Nl7NYGfI81KwAcAAAAgKfiMtBafn9NxBwAAAOzUDAaD0lMsSk+xqF/PjLhjKzz+elt01m7VWXuv0hvooOpbzx8IaUdxhXYUV8QdZzYZ6py/Z4vartMe6eRzpFllNBLwAQAAAADaB8EdAAAAAElSqt2iVLtFfXvED/gqvYFIl57T5a09e88Vu0VnuafrBHyBYFgFzkoVOCvjjjMZDcrOsMV07dVe14Z9jnSbTAR8AAAAAIBmIrgDAAAA0CwpNrNSuqerT/f0uOM8vkDtdpzVYV5xA4FfWaW/gypvvWAorMJSjwpLPXHHGY0GZaXbqsO8FGVHhXq1gZ9NWek2mUzGDqoeAAAAANDZEdwBAAAAaBd2q1m9u5nVu1ta3HE+f7DelpxOt0dFpdGdfF65K3wdVHnrhULhyHuSShsdZzRImel1O/iqQr7sjNotOrMdNpkJ+AAAAABgp0dwBwAAACCprBaTeuWmqVdu/IDPHwhWBXvV3XtOl6e6ay/qntuj0rIuFPCFJafbK6fbqw15jQd8kpSZblV29Rl8OZGfq0O/6nvZDpssZlMHVQ8AAAAAaGsEdwAAAAC6BIvZpB45qeqRkxp3nD8QUonbW9u1567u2iuN6upze1Ra5lU43EHFt4HSMp9Ky3zatNUVd1xGqjVy3l62o7Zrr25Hn9VCwAcAAAAAnQ3BHQAAAICdisVsVPfsFHXPTok7LhgMqaTMWxvqub1RW3PWhHwelbi9CnWhgM9d4ZO7wqfftrnjjktPsVQFe1FhXk3YFx3y2a38tREAAAAAOgp/AwMAAACwSzKZjMrNTFFuZorUr/FxwVBYpTUBn6vm3D1v5Lqo+men26tQF0r4yir9Kqv0a/P2+AFfmt2snHpde/UDP7uNv14CAAAAQGvxNysAAAAAiMNkNETCqXiCobBc5d7qs/a89Tr3iqsDP6fLo2AXCvjKPQGVe8q0eXtZ3HEpNnP1Fp0pMYFe3S06U+2WDqocAAAAALoegjsAAAAAaAMmo0HZGVWdafGEQmG5K3y1wV6pR8Xu6rP36nT1BYKhDqq+9Sq9AeUVBJRXUB53nN1qqrclZ/SZfDX3Uu1mGQyGDqoeAAAAADoHgjsAAAAA6EBGo0GZ6TZlpts0qE9mo+PC4bDcFf6Y7Thju/hqgz5/oOsEfB5fUPmF5covjB/wWS2myHactVtzxgZ9OQ670lIsBHwAAAAAdhoEdwAAAADQCRkMBjnSrHKkWTWgt6PRceFwWOWV/qhQz1tne87a+z5/sAPfQev4/EFtLSrX1qImAj6zMRLo1d2iM7qDLyOVgA8AAABA50dwBwAAAABdmMFgUHqqVempVvXvFT/gq/AEqkI9d/UWndEhn7s27Kv0dqGALxDS9uIKbS+uiDvObDIqp7p7L/rcvdx6AZ9VRiMBHwAAAIDkILgDAAAAgF2AwWBQWopFaSkW9euZEXdshccvp7tu555XxaXVoV/1vQpPoIOqb71AMKQdzkrtcFbGHWcyGqqDvPrn7kUHfplpNgI+AAAAAG2O4A4AAAAAECPVblGq3aLduqfHHefxBqo79apCvZquvdoz+arCv/JKfwdV3nrBUFiFJZUqLIkf8BmNBmVn1Dl/L8OmnMzYsC8z3SYTAR8AAACABBHcAQAAAABaxG4zq48tXX26xQ/4vP5gpHPP6fKqyFVZFfZF7lX97K7oOgFfKBRWUalHRaUe/RpnnNEgZWXU2aIzw66czNqgL8dhV1a6TSaTscPqBwAAANA5EdwBAAAAANqVzWJSr9w09cpNizvO5w/K6fZGbc/piQr3aoM+V7mvgypvvVBY1Z2HXq1XaaPjDAYpM92mnIyqrThrt+WM3bYzO8Mui5mADwAAANhZEdwBAAAAADoFq8Wknjmp6pmTGnecPxCS0x17/l7dsM/p8qq03KtwuIOKb6VwWCpxe1Xi9kr58cc60qwx5+1Fh3y5UWGfxWzqmOIBAAAAtBmCOwAAAABAl2IxG9UjO1U9suMHfIFgSCXuultyeusEfB6VlnkV6iIBnyS5yn1ylfu0aasr7riMVEvMFp11g76asM9mIeADAAAAOguCOwAAAADATslsMqpbVoq6ZaXEHRcMhlRS5q137l5RZIvOShW7vCop8yrUhRI+d4Vf7gq/ft/mjjsuLcUSsx1npGuv+iy+bEfVFp52Gx8hAAAAAO2N77oBAAAAALs0k8mo3MwU5WY2EfCFwnKVRXfseaM6+WoDP6fbq2AXCvjKK/0qr/Rr8/ayuONS7WZlZ9iVm1l11l5OZtWWnLXXVT9SCPgAAACAFuO7aQAAAAAAEmAyGpRd3Y02OM64UCgsV7kvdotOt0fFpVWhXnFp1WOny6NAsOsEfBWegCo8ZcoriB/wpdhMtWFeTddeRlXIV3Odm1kV8BkMhg6qHgAAAOgaCO4AAAAAAGhDRqNBWRk2ZWXYtPtumY2OC4XCclf4asO86i05o4O+4urnAsFQB76D1qn0BlXpLVd+YXnccTarKSrYs8UEfTkZ1Vt0ZqYozU7ABwAAgF0HwR0AAAAAAElgNBqUmW5TZrpNA3s7Gh0XDodVVumv6uAr9cjp9qgounvPVXWvuNQjX6DrBHxeX1Bbi8q1tSh+wGc1G6O69mqDvtw699JTLAR8AAAA6PII7gAAAAAA6MQMBoMyUq3KSLVqQK/4AV+5J1DVsVca3bXnkbP6PL6ax15fsAPfQev4AiFtK6rQtqKKuOMsZqOyHXblZNiU7bArt3pb05qz97IdNuU47HKkWQn4AABAl/Xtt9/q7bff1rfffqutW7eqoqJC6enpys3N1bBhwzRq1CiddNJJslqtyS61UeFwWO+//77eeOMNrV69Wk6nU6mpqRoyZIiOP/547bXXXrLb7c1a8+uvv9b48eNbVdcjjzyi4447rlVrtAWCOwAAAAAAdgIGg0HpKRalp1jUr2dGo+PC4bAqvYHq8/e8Kqo5h88VFfBV/6j0BjrwHbSOPxDSjuIK7SiOH/CZTYbqgK82zKsN92qvHWlWGY0EfAAAoHNYvXq1br/9dv36668aM2aMpk6dql69esnv92vr1q36/PPP9cYbb+i1117T3XffrVtvvVXHH398ssuuZ/Pmzbr66qu1atUq9enTR1OnTtWwYcNUXFysN998U7Nnz1Z2drYmT56sfffdt0NrGzZsWIe+XmMI7gAAAAAA2IUYDAal2i1KtVvUt0fjAZ8kVXoDkW0464Z80Vt0lnu6TsAXCIZV4KxUgbMy7jiT0aDs6u69+sFebeDnSLfJRMAHAADa0YIFC3TnnXfqgAMO0LvvvquePXvGPD9y5EidfPLJuvTSS3XppZfqt99+05VXXqkZM2Zo3LhxSaq6vvXr12v8+PEqLCzU0KFD9eyzzyorKyvy/JFHHqlDDz1UN954o+666y5NmzZNBx98cLNeIzU1tUXdht26dVOPHj2aPa89ENwBAAAAAIAGpdjMSrGlq0+39LjjPL5ATLdeTLjn8ka27Syr9HdQ5a0XDIVVWOpRYakn7jij0aCsdFt1mJdSr4uvZpvOrHSbTCZjB1UPAAB2Fi+//LJmzZqlgQMH6oknnlBKSkqjYwcOHKjHH39cp512miorKzVr1iztu+++GjFiRAdW3LDS0lJdcsklKiwsVGpqqh588MGY0K7GqaeeqmXLlunDDz/Ugw8+qFtuuUWDBg1K+HVuuukmnXHGGW1YeccjuAMAAAAAAK1it5rVu5tZvbulxR3n8wfrhXnRYZ/T7VVRqUfuCl8HVd56oVA48h6k0kbHGQ1SZnrdDj5bvbP4sjJsMhPwAQAASQUFBZo9e7Yk6YILLogb2tUYMGCAzjnnHD3zzDMKBAK655579Nxzz7V3qU264447lJeXJ0maNGmS+vXr1+jYM888U5988ol8Pp8efvjhyNdgV0FwBwAAAAAAOoTVYlKv3DT1yo0f8PkDwUi453RVB3xub/XP1Vt3uj0qLetCAV9Ycrq9crq92pDXeMBnMEiZaTZlO2yRs/hyMu3Kqdm2M7P2fD6L2dSB7wAAAHS0t956S+Xl5ZKqArlEnXLKKXrmmWckSStWrFB+fr769OnTHiUmZN26dXrjjTckSTabTePHj4873uFw6JBDDtHnn3+uvLw8ffrpp52ia7CjENwBAAAAAIBOxWI2qUdOqnrkpMYd5w+EVOL2Vp21F7U9Z1WwV7t1Z2mZV+FwBxXfSuGwVFLmVUmZVxvzXXHHZqRaI+ftZdfZnrOmoy/HYZfVQsAHAEBX9OWXX0au161bp6OOOiqheUOHDpXJZFIwGJQkffPNNxozZky71JiIefPmKRQKSZKOPfZYORyOJucceOCB+vzzzyVJixcv1hVXXNGis+u6IoI7AAAAAADQJVnMRnXPTlH37PjbRgWDIZWUeSPbdBbVO4ev6ucSt1ehLhLwSZK7wid3hU+/bXPHHZeeYlG2w169LactKtiLDfnsVj4mAgCgM9m+fXvkev78+TrttNPUrVu3JudZrVZlZGSopKREkrRjx472KrFJRUVF+vDDDyOP//znPyc0b8SIEZHwsbCwUCtXrtTRRx/dXmV2KnxHBgAAAAAAdmomk1G5mSnKzWwi4AuFVVrmrRPoeSPXRVFn8YW6UMJXVulXWaVfm7fHD/jS7OZ6nXtVj2PDvhQbHycBANARwlFbBrhcLi1cuFBTpkxJaK7FYolc13S7JcNHH30U8/oHHnhgQvPsdrt69+6tLVu2RNYhuAMAAAAAANiFmIyGSEAVTzAUlqvcW3UOnyt2m87aTj6vnC6Pgl0o4Cv3BFTuKdOWHWVxx6XYzNVhXkq9Dr7orr5UuyXuOgAAIL799ttPa9eujTz2eDwJzQsGg5FuO0nq0aNHW5eWsI8++ihyPXDgQOXk5CQ8d8CAAZHg7j//+U9bl9ZpEdwBAAAAAAA0g8loUHaGXdkZdu2+W2aj40KhsNwVvgY7+OreCwST9y/hm6vSG1BeQUB5BeVxx9mtpgbO3rPVu5dqN8tgMHRQ9QAAdB1XXXWVysrK9P3336tv374677zzEpq3du1a+f3+yOP99tuvvUps0qpVqyLXe+21V7Pm7rbbbpHr7du3q6SkRFlZWW1VWqdFcAcAAAAAANAOjEaDMtNtyky3aVCfxgO+cDgsd4U/ZjvO2mAvNujzB7pOwOfxBbW1sFxbC+MHfFaLKbIdZ23Xnr3evbQUCwEfAGCX0q1bNz3wwAPNnrd06dLI9cCBAzV48OC2LCthRUVFcjqdkcd9+vRp1vy6Id2vv/6qgw46KOH527dv11tvvaWVK1dq48aNKikpUWpqqvr27avjjz9eY8eOVWZm49+jJQvBHQAAAAAAQBIZDAY50qxypFk1oLej0XHhcFjllf6oIM9bZ3vOqqCvyOWRzx/swHfQOj5/UNuKKrStqCLuOIvZGLUtp62Bs/iqfmSkEvABAHZdgUBAS5YsiTweN25c0mpZt25dzOPevXs3a37d4G79+vUJB3cvv/yyZs2aJa/XG3O/pKRE+fn5WrFihR5//HHdfvvtOvbYY5tVV3sjuAMAAAAAAOgCDAaD0lOtSk+1qn+v+AFfhSdQbztOp9uj4lKPiqt/dro9qvR2nYDPHwhpe3GFthfHD/jMJmO9LTmzHbaoTr6agM8qo5GADwCwc1myZIny8vIkqVnba7aHHTt2xDzOzc1t1vz09PSYx8XFxQnNe/bZZ3XHHXfo0EMP1RlnnKERI0aoZ8+e8vl8+umnn/TUU0/p008/VWFhoaZMmaJ7771Xf/rTn5pVW3siuAMAAAAAANiJGAwGpaVYlJZiUb+eGXHHVnoDDWzR6Y3p4it2eVThCXRQ9a0XCIa0w1mpHc7KuONMRkNkS87sDLtyMmPP3svOsCkn067MNBsBHwCgS3C5XJo7d64kyWQy6a677pLVak1aPeXlsdtl2+32Zs23WCwxjysq4v/jHUn68ssv9e6772rmzJk655xzYp5LTU3V4YcfrsMOO0x33nmnnn32WQUCAV1//fXaZ5991L9//2bV114I7gAAAAAAAHZRKTazUrqnq0/39LjjPN6AnO7Y8/ZiA7+q58or/R1UeesFQ2EVllSqsCR+wGc0GpSdUd3BVxPwVYd60fcy020yEfABAJJo1qxZKiwslCTdeOONOvjgg5NaT92gzWazNWt+3eCubhDYkDfffFNTpkypF9pFMxgMuu6667Ry5Ur9+OOPqqys1G233abHH3+8WfW1F4I7AAAAAAAAxGW3mdXbZlbvbmlxx3n9wUi3XtV5e5Vyurx1tu30yF3RdQK+UCisolKPiko9cccZDVJWdcCXnWFXbqa9tpOv+n5upl1Z6TaZTMYOqh4AsKtYvHixXnvtNUnS9OnTdf755ye3IKne+XJ1g7immEymuOtFqznfdo899tAVV1zR5Npms1mXX365pk2bJkn67LPPtGnTJg0cOLBZNbYHgjsAAAAAAAC0CZvFpF65aeqVGz/g8/mDcrrrb8kZHfIVuzxylfs6qPLWC4VV3XnolVTa6DiDQcpMt0U69bIzbNXn8NVs01kb/lnMBHwAgKZ98803mjFjhgwGg2666aZOEdpJ9bfG9Pma9+d6IBC7VXdKSkqjYw855BB9++238vv9MpsTi76OPfZYpaamqqKiQuFwWO+8844mT57crBrbA8EdAAAAAAAAOpTVYlLPnFT1zEmNO84fCMnpjt2O09lA0Fda7lU43EHFt1I4LJW4vSpxe7Uhv/GAT5IcadaY8/Yi5+857MqNhH02WcymuOsAAHZev/zyi6688kqFQiHdeeedGjt2bLJLikhNjf1zPl7HXEP8/tgO/bS0+P8wKD09/tbfdVmtVh188MH65JNPJEmrV69u1vz2QnAHAAAAAACATsliNqpHdqp6ZMcP+ALBkErcdYO9qC063R4Vl3pUWuZVqIsEfJLkKvfJVe7Tpq3xx2WkWqI69uoHfTVhn81CwAcAO5P169drwoQJKisr07333quTTjop2SXFqBu0tXdw1xKDBw+OBHfr1q1r8/VbguAOAAAAAAAAXZrZZFS3rBR1y2p8Cy1JCgZDKinzVnXqVYd5TpdHRTXde9X3Ssq8CnWhhM9d4Ze7wq/ft7njjktLsSjHEbU1Z+QMvuptOx1VW3jabXxkCACd3YYNG3ThhRfK5XLp/vvv1wknnJDskurp1q1bzOOioqJmzXe7Y/9c6969e6trqqtnz56R69LS+J3wHYU/hQEAAAAAALBLMJmMys1MUW5mEwFfKCxXWXUHn9urotLarr3abTqrngt2oYCvvNKv8kq/Nm8vizsu1W5WdoZduZlVZ+1lO2yR65pOvuwMm1Ltlg6qHAAQbePGjRo/frxKS0s1b948HXvssckuqUF77LFHzONt27Y1a77T6Yx5PHjw4FbXVFf0dp6VlZVtvn5LENwBAAAAAAAAUUxGg7Kru9LiCYXCcpX75HR7qsK96PP33N6qoK/6jL5AsOsEfBWegCo8ZcoriB/wpdhMtWFeTddeRtW5ezXXuZl2pdjMMhgMHVQ9AOzctmzZoosuukglJSWdOrSTqjrksrKyVFJSIknaurWJvZ/rqJlXY/fdd2+jymoFg8HIdd0z+ZKF4A4AAAAAAABoAaPRoKwMm7IybBrUJ7PRcaFQWO4KX22YF3XuXlHNuXxur5wuj/yBUAe+g9ap9AZV6S1XfmF53HE2qykq2LNFgr5sh125juotOjNTlGYn4AOAeAoKCjRhwgQVFRVp7ty5nTq0q7H33ntr+fLlkqS1a9c2a25eXl7keuDAgUpPT29wXEVFhWbPnq2VK1dqxIgRuvXWW2W1WhN6jYqKish1RkZGs+prLwR3AAAAAAAAQDsyGg3KTLcpM92mgb0djY4Lh8Mqq/RXde3VbM/p8ka6+Iqjtuz0daGAz+sLamtRubYWxQ/4rGZj1dl7NT9qgr4699JTLAR8AHY5ZWVluvjii7Vlyxbdc889CZ9pV1hYqI0bN+rggw9u5wobdtxxx0WCuw0bNsjtdicckG3atClyHS+kvOuuu/Tyyy9LktavX69DDz1Up59+ekKvUVxcHLkeMGBAQnPaG8EdAAAAAAAA0AkYDAZlpFqVkWrVgF7xA75yT6CqUy9qO86q7r2ooM/lkdcXbHSdzsYXCGl7cYW2F1fEHWcxGyOBXm3XXvUWnY6Uqg4+h12ONCsBH4CdQiAQ0LRp0/Tzzz/r1ltv1SmnnJLw3DfeeEMffPCBFi5c2I4VNm706NG64447FA6HFQ6H9d133+noo49ucl5ZWZm2b98eeXzcccc1Ovb999+Pebx58+aE69uwYUPketiwYQnPa08EdwAAAAAAAEAXYjAYlJ5iUXqKRf16Nt61EA6HVekNVJ2/V929F3MOX1TIV+kNdOA7aB1/IKQdzkrtcFbGHWc2GZSVEbUdZ3XXXkxXX3XAZzQS8AHovG677TZ98cUXmjJlis4999xmzV2+fLn69+/fTpU1rXfv3jr88MP15ZdfSpLefffdhIK77777TuFw1fmwu+22m4YPH97o2EAg9s+wAw88MKHawuGw1qxZE3k8atSohOa1N4I7AAAAAAAAYCdkMBiUarco1R4/4JMkjzeg4uptOJ0ub+Q6cq/653JP1wn4AsGwCksqVVgSP+AzGQ3KzrDFBHq117ZIV58j3SYTAR+ADrZo0SItXLhQp59+uqZOndqsuVu3btXy5ct1xRVXNDrmnXfe0bx581RQUKA//OEPuvnmm5WTk9PasmP8/e9/jwR377//vmbMmKHU1NS4c1asWBG5PvPMM2U0Ghsdu+eee+r777+XJB155JEJB3Br1qxRQUGBJKlv37467LDDEprX3gjuAAAAAAAAgF2c3WZWH1u6+nRLjzvO4wuoxO2t7eIrrdPBV32vrNLfQZW3XjAUVmGpR4WlnrjjjEaDstJtkTAvp86Pmq6+rHSbTKbGP2AGgEStXbtWt912m/bff3/ddtttzZobCoV06623yu/3a+DAgQ2O+e6773T11VcrFKo6N/W9995TUVGRnnvuuTbdanj48OE66aST9O6776qiokLPPPOMJk+e3Oj4vLy8SBA3aNAgHXrooXHXP/PMMyPjjznmmITreuaZZyLXl1xySafZXpngDgAAAAAAAEBC7FazeuWa1Ss3Le44nz8op9tbv2vPFR32eeWu8HVQ5a0XCoUjIaVU2ug4o0HKTK/bwWeLOouv6kdWhk1mAj4AjQgEArr22mtlNps1d+5cWa3WhOdu2LBB//rXv7Rs2TJJanSrzKVLl0ZCuxorV67Upk2bNGjQoJYX34Cbb75Zq1atUn5+vp544gmdfvrp6tOnT4NjX375ZYXDYdlsNk2ePLnJQO3MM8/UW2+9pa+++kqbNm1KqJ6vv/5a7777riRp5MiROuecc5r1ftoTwR0AAAAAAACANmW1mNQzJ1U9c+JvheYPVAd8Lk/V+XulHhW7q87iK6q55/KotKwLBXxhyen2yun2akNe4wGfwSBlptmUHbUdZ7bDrpwMm3Iya66rQj+L2dSB7wBAZ/D222/r559/lsVi0emnn57wPJ/Pp4qKiph7jXXcNaZumNcWsrOz9cQTT2j8+PEqLCzUZZddpueff16ZmZkx4+bPn69vvvlGFotF06ZN02677dbk2kajUQ899JCmTJmihQsXasiQITrrrLMaDfy+++47/e1vf1MoFNKQIUP00EMPdZpuO4ngDgAAAAAAAECSWMwm9chOVY/s+AFfIBiS0+Wt7dqL3p4z6nFpmVfhcAcV30rhsFRS5lVJmVcb811xx2akWhvdojN6m06rhYAP2Fm4XFX/X/D7/SopKWnxOjk5OcrIaPic0xNOOEFPP/10TFA3ZMiQZgd9iRo8eLBefvllXXPNNfr+++91yimn6IorrtA+++yjgoIC/fvf/9ann36q3NxcXXnllRo6dGjCa6enp+vJJ5/Us88+q7vuukvz58/XcccdpwMOOEA9evSQ1WrV1q1b9eGHH+rdd99VKBTSGWecoeuuu07Z2dnt8n5byhAOd5U/yoCdg8/n05o1a+rd32+//ZrV7ryz8Pv9Wr16dcy94cOHy2KxJKkiAAAAAADQVQWDIZWUeWu35Kzu3qsN+qp+LnF7FdoJPxVNT7FUh3u2OsFebMhnt9LPAXQmDX1GumrVKs2ePbvVa48cOVILFy5s9Pl33nlHDzzwgLZv366DDz5YM2bMUN++fVv9uvGEw2F9+OGHeu2117R69Wo5nU6lpKRoyJAhOuGEEzR06FDZbLaYOc35/LysrExvvvmmPvvsM/34448qLi6WwWBQTk6O+vTpo1GjRunEE0/Unnvu2R5vr9UI7oAORnAXi+AOAAAAAAB0tGAorNIyb0yYV+yq+9gjp9ur0E6Y8KXZzXXCvJprW8y9FBsBH9AR+Iy0Fp+fs1UmAAAAAAAAgF2MyWiIBFTxhEJhlZZ7Y7bkrHv+XrHLqxK3R4Fg1wn4yj0BlXvKtGVHWdxxKTZzdZiXEtmOsybUy43aojPFZu5U50MBQFdGcAcAAAAAAAAADTAaDcrOsCs7w67dd8tsdFwoFJa7whd17l5lpIMvdptOrwLBUKPrdDaV3oDyCgLKKyiPO85uNdXbjjO3zhadOQ67Uu0EfADQFII7AAAAAAAAAGgFo9GgzHSbMtNtGtSn8XHhcFjuCn8DXXueqNCv6r4v0HUCPo8vqK2F5dpaGD/gs1pMke04a7v27PXupaVYCPgA7LII7gAAAAAAAACgAxgMBjnSrHKkWTWgt6PRceFwWOWV/qhQz9tgyFfk8sjnD3bgO2gdnz+obUUV2lZUEXecxWystx1njqOq8zEns7aDLyOVgA/AzofgDgAAAAAAAAA6EYPBoPRUq9JTrerfK37AV+EJ1NmOszboi+7q8/i6TsDnD4S0o7hCO4rjB3xmkzEm2KvZpjOnXsBnldFIwAegayC4AwAAAAAAAIAuyGAwKC3ForQUi/r1zIg7tsLjl9Ndfe5eqUdOd/1OPqfLo3JPoIOqb71AMKQCZ6UKnJVxx5lNBmWl25STGdu1l51hV26mXdkZVc9lptkI+AAkHcEdAAAAAAAAAOzkUu0Wpdot2q17etxxHl8gctZecQPn8BVXP1de6e+gylsvEAyrsNSjwlJP3HFGY23AF+nay7BVncMXdS8z3SYTAR+AdkJwBwAAAAAAAACQJNmtZvXuZlbvbmlxx3n9wUioV3XeXmWDgZ+7ousEfKFQOFJ/PEaDlFUd6NV27dmVU71tZ7aj6l5Wuk0mk7GDqgewsyC4AwAAAAAAAAA0i81iUq/cNPXKjR/w+QPBmECvOCrsi37sKvd1UOWtFwqruvPQK6m00XEGg5SZZqs9e6/mLL6YoC9F2Q6bzAR8AKoR3AEAAAAAAAAA2oXFbFKPnFT1yEmNO84fCKnE7VWxqzKyHaezgaCvtNyrcLiDim+lcFgqKfOqpMwr5ccfm5lurQ7z7DFBX7bDrtzqn3McNlnMpo4pHkDSENwBAAAAAAAAAJLKYjaqe3aKumenxB0XCIZUWuZVUWl0sOeV0+2puuf2qLjUo9Iyr0JdJOCTpNIyn0rLfNq01RV3XEaqpSrEy6jp3Ks+ky96206HXTYLAR/QVRHcAQAAAAAAAAC6BLPJqNzMFOVmxg/4gsGQSst9Ki71xJ675/ZW3asO+ErKvAp1oYTPXeGXu8Kv37e5445LS7Eox2Gr6uLLrA36cjKqu/mqr+02IoLOwGAwqFu3brLZbDIYDAqHwzIa2T51V8V/lQAAAAAAAACAnYrJZIxsOxlPMBSWq6x6a053VSdf9DadNR18TrdXwS4U8JVX+lVe6dfm7WVxx6XazfW26MytOYMv0slnU6rd0kGV75rMZrMGDBiQ7DLQSRDcAQAAAAAAAAB2SSajQdnVZ8jFEwqF5Sr3VQV5Lk9M154zqovP6fIoEOw6AV+FJ6AKT5nyCuIHfCk2U0z3XrajJuyzRV3blWo3y2AwdFD1wM6J4A4AAAAAAAAAgDiMRoOyMmzKyrBpUJ/MRseFwzUBnzcS8NV07VUFe14VVXf0+QOhDnwHrVPpDarSW678wvK442xWU+z5e5FOPrtyqzv6chx2paVYCPii+PxBbcx36bdtLnl9QdmsJg3o5dCgPg5ZOa9wl0NwBwAAAAAAAABAGzAYDMpMtykz3aaBvR2NjguHwyqr9Mdsy1ns8saex1d9z+cPduA7aB2vL6itReXaWhQ/4LOajTGdejWBXsyPTLvSd/KAb+3vTr352QZ9sTq/wSDXYjbqD8P76NQjd9eQ/tlJqBDJQHAHAAAAAAAAAEAHMhgMyki1KiPVqgG94gd85Z5AVZAXtR1nVddebdBX7PLI6+s6AZ8vENL24gptL66IO85iNkY697Jjgj2bchwpkcDPkWbtUgFfhSegp9/8Qe999Vvccf5ASP/5bov+890W/emwAZpw6jCl2ol1dnb8CgMAAAAAAAAA0AkZDAalp1iUnmJRv54ZjY4Lh8Oq9Aaqu/WqtuOMbNMZ08XnVaU30IHvoHX8gZB2OCu1w1kZd5zZZFBWRu12nLVbc8Z28TnSrDIakxvwFZVW6p/zv9SWHfHPFazrva9+0w8binT75aOUm5nSTtWhMyC4AwAAAAAAAACgCzMYDEq1W5Rqt6hvj8YDPkmq9AaituKsCvOiH1eFfV6VV/o7qPrWCwTDKiypVGFJ/IDPVH1WYU7MNp01HXy1Z/E50m0ytUPAV+EJtCi0q7FlR5luenS57pl2FJ13OzF+ZQEAAAAAAAAA2EWk2MxK6Z6uPt3T447z+oNV23JGd+6VeuR0eyPbdhaXelTWhQK+YCisotKq9xSP0aBIwJddJ+TLjTqTLyvdJpPJmPDrP/3mDy0O7Wps3u7W02/9T1f+ZUSr1kHnRXAHAAAAAAAAAABi2Cwm9cpNU6/ctLjjfP5gTJgX081XE/S5PHKV+zqo8tYLhaVil1fFLq+k0kbHGQxSZnrdDr7ax3sPzFFmuk2StPZ3Z5Nn2iXqveWbNPqQ/hrSP7tN1kPnQnAHAAAAAAAAAABaxGoxqWdOqnrmpMYd5w+EqkI9d+15ezVn7xW5agO/0rKuE/CFw1KJ26sSt1cb8mIDPrPJqJduOyny+M3PNrTpa7/1+QZdNe7ANl0TnQPBHQAAAAAAAAAAaFcWs1E9clLVo4mALxAMqaS6Sy/6h9MVe6+0zKtwuIOKb4GBvR2y26oiGJ8/qC9W57fp+p+vyteUs/aX1WJq03WRfAR3AAAAAAAAAACgUzCbjOqWlaJuWSlxxwWDIZWUeSOhXnTXXnHUdYnbq1ASAr49+mVFrjfmu+QPhNp0fX8gpE1bXWyXuRMiuAMAAAAAAAAAAF2KyWRUbmaKcjObCPhCYbnK6gZ73tiz+FxVZ/GF2jDhi9469LdtrjZbNxrB3c6J4A4AAAAAAAAAAOyUTEaDsh12ZTvscceFQmGVlntjtuR01tmqs8jlUYnbo0Cw6YDPbDJErr2+YKvfR0O8/vZZF8lFcAcAAAAAAAAAAHZpRqNB2Rl2ZWfYtftumY2OC4XCclf4os7dq4x08EV39UV379ms7XMOnY3z7XZKBHcAAAAAAAAAAAAJMBoNyky3KTPdpkF9Gh8XDtcGdwN6OdqlloG922ddJJcx2QUAAAAAAAAAAADsTAyG2q0yB/VxyGJu2zjGYjYS3O2kCO4AAAAAAAAAAADaidVi0h+Gx2nPa4EjRvSRla0yd0oEdwAAAAAAAAAAAO3o1CN3b9P1/nxE266HzoPgDgAAAAAAAAAAoB0N6Z+tPx02oE3W+tPhAzWkf3abrIXOh+AOAAAAAAAAAACgnU04dZj69khv1Rr9emZowp/3baOK0BkR3AEAAAAAAAAAALSzVLtZt18+Sv16ZrRofr+eGbrtssOVaje3cWXoTPjVBQAAAADs1MLhsEKhkMLhcLJLAQAAwC4uM82i2VeO0gvv/aSPVm5OeN7xh/TX+X8cqhSbWYFAoB0rrGUwGGQ0GmUwGDrk9VCF4A4AAAAAsFMJh8OqqKiQy+VSWVlZh32wAQAAACTq6H3sOnSPQSot86mswqeG/o2ZwSClp1qVmW6V3WrWlt83dnyhksxms9LT0+VwOJSamkqQ184I7gAAAAAAO4VwOKwdO3aotLRUwWAw2eUAAAAAcdmtZtlzzOqRnSKvPyifP6RQOCyjwSCrxSibxdQpQrJAIKCSkhKVlJTIZDIpMzNTPXr06BS17YwI7gAAAAAAXV44HFZ+fr5cLleySwEAAACaxWAwVIV41mRX0rRgMKji4mIFAgH16dOH8K4dENx1Mr/88osWL16sFStWaMuWLaqsrFRaWpp69OihESNGaPTo0TrqqKM61X8MXq9XixYt0rvvvqtffvlFXq9Xffr00f77769x48Zp+PDhnXJtAAAAADsHQjsAAACgY9V870141/YI7jqJ/Px8zZo1S8uXL9e4ceN00003qV+/fgqFQsrPz9dnn32m559/Xv/+97+17777as6cORowYECyy9aPP/6o//u//9Nvv/2mY489VvPnz9duu+2mX375RQ8//LDOOussXXDBBbr++utlsVg6zdoAAAAAdh47duxoMLSz2+3KyMhQWlqazGYzHygAAACgUwqHw/L7/THfr3aG71/D4bACgYDKy8vldrvl8Xhinne5XDKbzerZs2eSKtw5GcLhho48REdatWqVLrvsMuXm5uqJJ55Q7969Gxy3bds2TZgwQRs2bFB2drYWLVqkvn37dnC1tdasWaMLL7xQ5eXlOvfcc3XrrbfGPB8KhXT55Zfrk08+0THHHKNHHnlERqMx6Wsnm8/n05o1a+rd32+//WS1doFe6Dbm9/u1evXqmHvDhw8njAUAAEBCwuGw1q1bF3OmncFgUN++fZWenp7EygAAAIDEhEIhVVZWxtxLSUnpdJ95l5WVacuWLYqOlUwmk/bcc882Cxn5/FzqXL/qu6Di4mJdfvnlKikp0QMPPNBoaCdJvXr10pw5c2Q0GuV0OnXdddd1YKWxSkpKNHnyZJWXl2vIkCG66aab6o0xGo2655575HA49J///Edz585N+toAAAAAdi4VFRUxoZ0kQjsAAACgHaSnp9drJgoGg6qoqEhSRTsngrskmz9/voqLi7XXXntp8ODBTY4fOnSojjjiCEnSt99+qxUrVrR3iQ267777tGPHDknStddeK7O54V1XHQ6Hxo8fL0l67LHH9PPPPyd1bQAAAAA7l7pbZNrtdkI7AAAAoJ2kp6fLbrfH3OOs6bZFcJdk7733nqSq7QITNWrUqMj1smXL2rympmzevFmLFy+WJA0cOFBHHXVU3PFjx46VVLWFzZw5c5K2NgAAAICdT1lZWczjjIyMJFUCAAAA7Brqfs9d93tytA7BXRJVVFRo+/btkqT169fr008/TWhev379Ite///57u9QWz9NPPx0JGk8//fQmx/ft21d77bWXJOk///mPNmzYkJS1AQAAAOxcwuGwAoFAzL20tLQkVQMAAADsGup+zx0IBGLOvUPrENwlUd3DJmfPnp3QvJSUlMi1z+dr05qaEgqF9MEHH0QeH3nkkQnNO+iggyLXH374YYevDQAAAGDnEwqF6t1rbKt9AAAAAG3DZDLVu9fQ9+ZoGYK7JMrJyVH37t0jj2u675ridDoj1717927zuuL5/vvvVVBQIElKTU3V0KFDE5q3zz77RK6XLl3a4WsDAAAA2Pk09K96DQZDEioBAAAAdh1GY/1oiY67tkNwl0QGg0Fz587VwQcfrD333FPXXXddQvN++OGHyHXNNpEd5fvvv4957UT/Neuee+4Zuf75558VDAY7dG0AAAAAAAAAAIDOjj1Ekuyggw7S888/n/D4cDgc2U7SbDbrpJNOaq/SGrRu3brI9W677ZbwvB49ekSufT6ffv/9dw0aNKjD1gYAAAAAAAAAAOjsCO66mGXLlikvL0+SdMIJJygnJ6dDX//XX3+NXPfp0yfhed27d5fBYIi0y65fv75euNaea3cFgUBgl9zWJxAIJHQPAAAAqCsQCNTbkicUCnG+BgAAAHYKnfX72lAoVO/7cL/f3ybbZfLZMMFdlxIMBnX//fdLqjoD7pprrunwGoqLiyPXmZmZCc8zm81KSUlRRUWFJKm0tLRD1+4Kfvrpp2SX0Gn8+OOPyS4BAAAAXYzdbpckeTwemUymJFcDAAAAtE5lZWWyS2hUMBiMhHQej0cSn+m2Jc6460KeffZZ/fzzz5KkmTNnql+/fh1eQ3l5eeS65i/GibJarZHrmpCto9YGAAAAAAAAAADo7AjuuogffvhB9913nyRp+vTpOvXUU5NSR3QoZrPZmjU3OoyLDuk6Ym0AAAAAAAAAAIDOjq0yu4AdO3ZoypQpCgQCmjFjhs4///xkl9Qi0fvxGo1tmxm359oAAAAAAAAAAAAdgeCuk3O5XLr00ktVUFCgf/3rXxozZkxS60lLS1NJSYmk2r1rE+Xz+WLW6ci1u4K9995bFosl2WV0uEAgUG//43322UdmM/97AgAAQHyBQEAbN26MuWe32/leEkCnlZeXpz59+shgMCS7lJ1eeXl5l/2MCMCuqe6ZdikpKUmqpGmBQCDyZ1lNnYMGDWqT78P9fr9++umnVq/TlfG3mU7M7XZr4sSJ2rBhg+bNm6fjjjsu2SXFhGter7dZc6PHp6amdujaXYHZbN4lg7uG8LUAAABAIgwGQ70Pv41GI7twAOi05s2bp99++00333yz9tlnn2SX06Snn35aVqtV55xzTpf6RxF5eXk688wzdfbZZ2vixInKyspKdkn1bNq0SQMHDmy39X0+n+bNm6dLL71UGRkZ7fY6ANpG9I5y0Trr97VGo7He9+EWi6VN/qwIh8OtXqOr65y/6lBpaakuuugi/frrr3r00Uc7RWgnSdnZ2ZHr0tLShOf5fL6YLrqcnJwOXRsAAAAAACDZfvrpJ/33v//VX/7yF912221yu93JLimukSNH6rbbbtOYMWO0cuXKZJeTsN12201Tp07Vo48+quOPP15PPPGEAoFAssuKMWXKFE2aNEnLly9vl/XnzJmjxx57TGPGjNGKFSva5TUAAO2j6/xTmV2I0+nUhAkT9Pvvv+uJJ57QQQcdlOySIgYPHqwffvhBkpSfn5/wvIKCgpikfPDgwR26NgAAAAAAQDKVlpbq119/lSQFg0EVFBR02k6KGvvvv79OO+00vfbaa/rrX/+qCy64QNOnT+8Su+Scf/75+vrrr/X+++/r7rvv1gcffKCHHnpI3bt3T3Zpkqq2lvv888/1+eeft+vr5Ofn67LLLtMbb7yhfv36tetrAQDaBsFdJ1NaWqqJEydGQrsDDjgg2SXF2GOPPSLXW7duTXje9u3bI9epqanabbfdOnRtAAAAAACAZFqxYkVkK7STTjpJ9913X6cP7iRp2rRpevvtt+X3+/Xcc8/J7/fr1ltvTXZZCbnpppv05Zdfyu12a9WqVbrgggv06quvKj09vUXrhcNhlZaWtsnWm3a7XZLUo0cPPfPMM61er64XXnhBL7zwgiTpscceI7QDgC6E4K4TKSsr06RJk7Rp0yY99dRTGjlyZLJLqmf48OGR619++UWhUCihbzLXrVsXuR42bFiDhzC359oAAAAAAADJ9Mknn0iS9tprL82ePbtLhHZS1baTJ510kt544w1J0quvvqp//OMfstlsCa8RCASSckZe9+7ddd555+mxxx6TVHWu3Lfffqujjz662WuFw2HNmDFDK1as0IIFC9SzZ89W1Vbz9bBYLO2ye1T0kTRd4TxFAECtrvEdwi7A5/Np8uTJWrdunR599NGEQju/368pU6aosrKyAyqsctBBB0X+VVFZWVlki4em/O9//4tcn3DCCR2+NgAAAAAAQLIEg0EtXbpUFotFd999d7NCr87gzDPPjFybTCaZTKaE57rdbp1//vl68cUX26O0Jp177rmR6549e+rggw9u9ho1od0rr7yiTZs2afz48TE7QLVEc76GAIBdCx13nUA4HNb111+vb7/9Vg8//LAOOeSQhOb99NNPWr58uVJSUtq5wlpms1knnHCCFi1aJEn68ssvNWTIkCbnffPNN5Ikg8HQaLjWnmsDAAAAAAAky4oVK+R0OnXllVdqr732atZcv9/fojPlPv74Y7lcLp1++unNnlvXQQcdpLS0NJWXl+vMM89MuHvO7XZr0qRJWrVqlVatWqVwOKzzzz8/7pyNGzdGthRtK927d1dJSYmuueaaZh3PUuOZZ57RK6+8EnlcE961pvOuZscov9+v9evXt2iNeJxOZ+Q6HA63+foAgPZDcNcJPPTQQ3r77bd11113NatV/7333lP//v3bsbKGXXTRRVqyZImCwaBef/11XXTRRXHHr1u3LvINyEknnRT3DLr2XBsAAAAAAKAxixYtUlZWVtx/FFzzj69POukkHXPMMZH7b7/9to444ghlZmY2OG/JkiUaOHCgLr/88mbXdeutt8poNOqmm25qVoBXWVmp6dOn67333tOtt97aqq0dzWazLrroIm3dulXXXXddQnOiQzup6mt32223SVLc8G758uWaOXNmu4RN1157bZuttWnTJv31r3/Vc88916Kvbc1WqTt27NDJJ5/cZnU1hOAOALoWgrsk++STT/Tggw/qiiuu0NixYxOel5eXp4ULF+rII49s8Pn8/HzdcsstWrlypfr27asbbrhBo0aNapOa99xzT5122mlavHixfvzxR3377bc68MADGx3/6quvSqraAmDq1KlJWxsAAAAAAKAxTqdTN954o/74xz9q4sSJDW5luHTpUr322mt6/fXXNXnyZE2ZMkVGo1Gff/65Zs+erTvvvFN/+MMfYuaUlZXpgw8+0EMPPSSr1dqsmlasWKFFixYpHA5r/fr1mjdvnnJychKaWxPyLVu2TMuWLWvW68azePHiFs8Nh8OaOXOmpMbDu3HjxikjI0PFxcXad9991adPHzkcDqWlpUW61Brz9ddfa/z48ZKkv/3tb5o8eXKD4x5++GHdf//9kqQFCxbo0EMPbelbarGaMG233XbTxx9/3Obrz5s3Tw8++KAktXkHIwCgfRHcJVFBQYGmT5+uww47TNOmTUt43vfff6/p06ervLy80Y676dOna8WKFZKktWvXavLkyXr33XfVu3fvNqn92muv1YoVK7RlyxbdddddeuWVVxr85mn79u166aWXJElTp07V7rvvntS1AQAAAAAAGlJz7tz777+vjz/+uMHPIoLBoKSq0GXhwoU644wz1LdvX1ksFm3fvl0TJ05sdP14zyXim2++0ezZszV79uyExkd3551++um69NJLW/X6bampAO7UU0/toEqSpyO74Gp+3wIAugaCuySaN2+enE6nfv3114Rb4l0ul4qKiiKPGwvufvjhh5jHlZWVWrNmTZsFdzk5OXrkkUd0/vnna/Xq1brrrrt0ww03xIzx+Xz6v//7P3k8Hp144okJbwfRnmsDAAAAAAA0JDroeuaZZ3TQQQfVGzNnzhzNnz9fkvTUU0+pb9++khTppOvWrZsWLFjQZjVt2bIlEriNHj06stVkIqLfT1ZWlgYPHtxmdaH1OrILzu/3d9hrAQBaj+AuiQoLCyVVdd4VFBS0aI3Ggrthw4ZFOu6kqm/Whg4d2qLXaMyQIUP073//W1OnTtUzzzyj/Px8TZo0Sb169dJPP/2k+++/Xz/99JMuvPBCTZ8+vcl/TdVRawMAAAAAANRlNjfvY7JBgwZFrmu21TSZTO0WkB133HHN2mozOrjb2T43+eWXX7RgwQLdeuutzf516yxqwjS/36/169e3+fpOp7PeawEAuoau+ScbIhoL7mbPnh05465nz566+uqrGx3bGgMHDtSrr76q9957T0uWLNG0adNUWlqqXr16aeTIkZo1a5b23XffTrc2AAAAAABAtOigq7k6Y3i0Mwd399xzjz799FPt2LFD999/v1JTU1u95qeffqrPPvtMl1xyiXr06NEGVcZXs33ljh07Et6Jq6U8Hk+7rg8AaFud77uKXcjDDz/cbmv36dNHjz32WLutH81qtWrMmDEaM2ZMl1obAAAAAACgRmvCt5qOu87EaDQmu4R2sXTpUn366aeSqsK2v/71r3rssceUm5vbqnUPO+wwLVu2TKNHj9a5556rSy+9tNVrxuP1eiVJu+22mz7++OM2X3/evHl68MEHZbFYOvQ8PQBA6+2cf4IDAAAAAAAAzdCaoKuzB3ct6bhbvny5XnvttRa/fllZma688krl5eW1eI26ysvLdccdd0Qep6amat9995XL5Wr12larVTfffLNmzZqlV155RSeccILuvfdelZaWtnrthtQEdzk5Oe2yfrdu3TRlyhR9/PHH2nPPPRscs2jRIlVUVLTL6wMAWo7gDgAAAAAAALu81gR3bdHdFgqFWr1GtOia6taXSFiTnZ2tW265pcXnr61Zs0ZLly7VKaecovnz58vn87VonWizZ8+OBIFZWVl66aWXNHPmzJjzBlvrz3/+s15++WXl5OToscce0+jRo/X4449Hgra2MnLkSD3yyCN65ZVX2nTdGuedd56mTp3a4Laf4XBYt99+u2688Ub97W9/UyAQaJcaAAAtw1aZAAAAAAAA2OW1JnxrrKNt+fLl8vl8Ovroo+PO/+qrrzRv3jzNmzevzTqwGgvu/H6/zj77bD333HPKzs5udP7QoUM1YsQI/f3vf9eiRYtktVqb9fpr1qyRJFVWVmrOnDl6/fXXNXfuXO21117NfCdVPvnkE7388suSpIyMDD355JMaOnRoi9ZqypAhQ7Ro0SJNnTpVK1eu1D333KOXXnpJ11xzTULn0W3YsKHJ7SkvvPBCSdLGjRvbpObmePjhh/XWW29Jqtpu9B//+Idmz569052FCABdFcEdAAAAAAAAdnntsVVmWVmZpkyZor/85S+65pprlJqaWm+Mx+PRP//5T23evFl/+ctfNH/+fA0ZMqTFtdRoLLizWCz6wx/+oH/84x965JFH4q5x4YUX6oorrtB9992n66+/vlmv/8MPP8Q8zs3N1e67796sNWoUFhbqhhtukFS1Pebjjz+uYcOGtWitRGVnZ+upp57SDTfcoLfeekt5eXmREHPmzJnq27dvo3NXrFihW265pcucLff6668rNzdX06dPT3YpAAAR3AEAAAAAAACt0linkt1ul1R1ltiiRYuaXCcvL0+33nqrnn/++VZ3P0XPrxssXnDBBTrxxBO1cOFCnXvuuY2uceyxx6p///569tlnddxxx+mQQw5J+PVrOu6kqvPj7rzzTlkslma8gyqBQEBXXXWVioqK5HA49Nhjj2nkyJHNXqclrFar7rnnHjkcDr344ouSpC+++EJjx47V/PnzdeCBBzY479xzz1X37t3lcrm0zz77qGfPnsrMzKSjDQCQEII7AAAAAAAA7PJaE6o01q0Xvb3kDTfcoBNOOKHeGJ/Pp5NOOkmSdMABB+jRRx9tk4DH7/c3Wl+/fv10/PHH66677tIhhxzSaCecwWDQGWecoblz5+r666/Xm2++qbS0tCZfu6CgQPn5+ZHH48aNU79+/Vr0PmbNmqWvv/5aOTk5evLJJ7XPPvu0aJ2WMhgMuvnmm2U0GvX8889Lklwul6666iq9++67DXZRStLxxx/f6JqbN29Wz549m739aHN5PB7l5+e3uNMRAJAcrT85FwAAAAAAAOjiWrNVZmNsNlvkOjs7W3379q33Y7fddouMOeSQQ5Sent4mr+3xeCLXDW3lecEFF6iyslLTp09XIBBodJ2xY8fKaDQqLy9Pc+bMSei1v/rqq8i11WrVxRdf3IzKa7300kt68cUX1bNnTz3//PMdHtpF++c//6k//elPkcfbtm3TBx980KK13nvvPf3pT3/SokWL4n7tW+uGG27Q6aefrmeeeabLbNsJAKDjDgAAAAAAAGhVsNFYh1x7hIGJqqysjFw3FNwdeuihGjBggFavXq1HH31UV155ZYPr9OrVS3/4wx/02Wef6YUXXtCpp56qESNGxH3t5cuXR65PP/10de/evdn1f/3115o1a5aGDBmixx9/XL169Wr2Gi21fft29ezZM+aewWDQXXfdpQ0bNmjt2rWSqjrvWsJqtSovL0833nijbrzxxlbX25Q777xTa9as0b333tvurwUAaD2COwAAAAAAAOzy2iO4aygw6yjRHXdmc/2PAA0Gg/7yl7/o3nvv1SOPPKLjjz9eQ4cObXCtk046SZ999plCoZBmzpypf//733FDyeiOu/Hjxze79tWrV2vKlCk66KCDNG/ePGVkZDR7jZZauXKlLr74Yl1//fU677zzYp5LSUnRQw89pHHjxqmoqEhHHnlki14jeovM2bNna7/99mtyzvvvv6/7779fkvTkk0+qd+/eTc65+OKLlZ+frz333FPXX399i2oFAHQ8gjsAAAAAAADs8tpjK8HmBndtWUN0x11KSkqDY8444wzdf//98vv9+uc//6lXXnmlwUDu2GOPlclkUjAY1A8//KC3335bp556aoNrbt68WXl5eZKqtv7cc889m1X36tWrNXHiRJ144om69dZbZbFYJElbt25VRUVF3Llbt26NXDudTq1fv77BcU6nM2ZOzbiCggJNnTpVHo9Ht9xyi8rLy+tt89m/f38tWrRIv/zyiwYNGtSs91YjOrjr3bu3Bg8e3OSc6K7Ffv36acCAAU3OqQlshw0b1qKuRwBAchDcAQAAAAAAAJ1AWwZ30R13qampDY7p1q2bDj/8cH322Wdas2aNXnzxRV1wwQX1xuXk5OiAAw7QypUrJUmPPvpoo8FddLdd3Y61pqxevVqXXnqp/v73v+v888+Pea6goEATJ06U2+1OaK0FCxZowYIFTY6bPn16o8/dfffdMhgMmjRpUsz9Xr16tWrrzujgDgCAugjuAAAAAAAAsMsLhULNGp9IyNbYFpptVUM8paWlkev09PRGx9VsgylJDzzwgMaMGSOHw1Fv3CGHHBIJ7tatW6c1a9Y0uMXjp59+KqmqQ2z06NHNqvmRRx7Rgw8+qIMOOqjec8OHD9dLL72koqIiDR06VFlZWZHnPvzwQ11zzTV67bXXWtwF5/F4NG7cOP3vf/+TJPXo0UOXXXaZzjzzzBatF09NF2FHaY9uUgBA+yG4AwAAAAAAwC6vuaFZ9PjGArpkBnfbtm2LXPfo0aPRcaNHj9bNN98sv9+v0tJSvfzyy7rkkkvqjRsxYkTM46+//rpecOfz+fT5559Lks4999xmB1SPPPJI3Of33HPPBrfeHD16tIYNG6Z//OMfeuGFF+Kev9eQcDis6dOnR0I7h8OhZ555JqEtLFsiuuOuJWcAnnjiic0a35a/rwAA7Y/gDgAAAAAAALu85oYbgUAgct1YR1Nr1myt6OCud+/ejY5zOBwaOXKkVqxYIamqe62h4G748OExj3fs2FFvzBdffKGKigpZLBade+65LS29RaZPn66zzz5bzzzzjCZOnNisuQ899JDee+89SVXdcA888EC7hXZS7NmHs2fPbrBzsa73339f999/vyTpySefjPtrWuPiiy9Wfn4+wR0AdDEEdwAAAAAAANjlNXc7wbYM2Wq0ZcCydetWSZLdbldubm7csYcddlgkuFu9erVKSkpitqKUpOzsbGVlZamkpESS6j0vVYVLknTyySerW7durXsDzTR8+HCdccYZuu+++3TggQfW6xBszGuvvaZ58+ZJquqQvO2223T44Ye3Z6ny+XyR6969eycUEnbv3j1y3a9fPw0YMKDJOWZz1Ue/BHcA0LUQ3AEAAAAAAGCXFx3EffHFF8rLy6s3Zt26dZHr6PClMcFgMHJdUFCg9evX1xvj9/sbvG6tmo67PfbYo8mxhx56aOQ6HA7r999/bzCYGzp0qL766itJqncOnc/n00cffSSpZds/toXp06fr008/1bRp07RkyRLl5OTEHf/ll1/qn//8Z+TxP/7xD40dO7a9y0zo905bao+QGQDQfgjuAAAAAAAAsMuLDjfefvttpaSk1BtTWFgYufZ6vZHrxrr1ooO7u+++W3fffXfcGtoquPP5fCouLpYk7bPPPk2OHzp0qAwGQ+R9eDyeBsedeOKJ+uqrr3T44Yfr4IMPjnnus88+k8vl0gEHHKBhw4a18h20TGZmpmbMmKGpU6dq2rRpeuqpp2LOk4v2v//9T1OmTIl8zadOndphgWNbBrSd8fUAAK1DcAcAAAAAAIBdXnRwd8cdd9TrKJOkOXPmaP78+ZISC+6i1/zXv/6l0047rd4Yr9cbOT+urTqxtm3bFqlp7733bnJ8enq6Bg0apA0bNkiS+vfv3+C4c845Rz179tTRRx8tg8EQ89zbb78tKXnddjVOPPFEnXHGGVq8eLGuueYazZ07V0ajMWbMunXrNHHiRJWXl0uSJk+erClTpnRYjdG/zlu3bm2wE7OugoKCyPXmzZsT6qKrGRP9exUA0PkR3AEAAAAAAGCX15ztBM1mc73gqiHNDUzaKmD55ZdfIteHHHJIQnOOPPJIbdiwQfvvv7969erV4Biz2awTTjih3v2ysjJ99NFH6t27t0aPHt2yotvQjBkztGbNGr3//vu65ZZbdOutt0Z+vTZu3KgJEyZEzur729/+psmTJ3dofdHB3fTp05s9f9KkSc0aX1lZ2ezXAAAkD8EdAAAAAAAAdnmJbCdosVh0xhln6IorrojpSguFQg2OrwlMevTo0WgXmyT16dNH5513ns4666xmVt2wH374IfK6iZxxJ0l//etftX79et1yyy3Nfr0PP/xQHo9HF1xwgczm5H/cmJKSovvvv19nn322Xn75Zfn9ft1+++369ddfNXHixMiWp9dee60uvvjiDq8v+vfaggULYs4YbMy///3vyHl8H3zwgQYMGNDknNGjRysYDOqUU05pebEAgA6X/D9JAQAAAAAAgCSr6YKyWCxKT09vcMzll1/eYDDV2FaZ2dnZuu+++3TiiSfKYrE0OMZms2np0qUymUwtrLy+//3vf5KkI444IuE5/fr105NPPtmi11uyZIlSU1N19tlnt2h+exg8eLDmzZunSy+9VIsXL9aOHTv0ww8/qKSkRGazWbfddpvOOOOMpNRms9l02mmn6cQTT9TIkSPb7XXuuece7bfffjIajSorK2v09zUAoHMxNj0EAAAAAAAA2LkZjUaNGzdOS5cu1dChQxsc01g3WWMddyNHjtQpp5zSaGhXoy1Du0AgoFWrVkmSTj755DZbtzH5+flasWKFxo4dK4fD0e6v1xyjRo3SrFmzJEmff/65SkpKlJKSooceeihpoZ0kjRs3Tv/61790wgknyGq1ttvrjBgxQpL0wAMPaPTo0Vq3bl27vRYAoO3QcQcAAAAAAIBd3qRJkxI6t64hjXXcJcPKlSvlcrnUvXt3jRo1qt1fb8mSJZKqttrsbIqLi/XBBx/E3MvJyUlK51lRUVGjAW8iysrKItdOp1OpqalNzvF6vbr11lv16aefSpImTJigF198Me62rQCA5CO4AwAAAAAAwC6vpaGd1HjHXTIsW7ZMkjRmzJg27eRrSDgc1pIlS3TMMcdo0KBBjY7z+Xx65513dPrpp7drPdE++OADzZw5UwUFBZKqzhHcvn278vLydMEFF+jcc8/VtGnTlJOT02H13HrrrW0S8p5zzjktmldQUKCLLrpIL7zwgnr37t3qOgAA7YPgDgAAAAAAAGiFYDDYLutWVlY2a3w4HNZHH30kq9WqCy+8sF1qirZixQpt3rxZt99+e6Nj/H6/pk2bpmXLlmn79u267LLL2rWm3377Tbfffnuky8xut+vyyy/XpEmT9P333+vqq69WQUGBXnrpJb3xxhuaOHGiLrjgAmVlZbVrXeedd55SUlK0adMmDRs2TH379lVGRobS09MTCo1ff/31yNd5yZIl6tu3b4trsdlsLZ4LAGh/BHcAAAAAAABAK7RXcPfll182a/xXX32lLVu26JxzzlHPnj3bpaZoixYt0t57763DDjuswedDoZCuu+66SBfgfffdJ5vNposuuqjNa9mxY4cefvhhLVq0SH6/XyaTSaeddpqmTp2qPn36SJIOPfRQvfnmm7rzzjv1+uuvq7y8XPPmzdMTTzyh0047TWeffbb23XffNq+tRms6Du12e+Q6LS2t050nCABoOwR3AAAAAAAAQCu0JribMWOG0tLSlJqaKrvdLqvVKqPRqI0bN+rll1+OjEukK2vhwoWy2WwxXW1bt25VRUVFi+trjM/n0wcffKBLLrlE69evb3DME088oXfeeSfm3p133imr1apx48a1SR2bN2/W008/rVdffVUej0cWi0Vjx47VZZdd1uD2ndnZ2frXv/6lsWPH6q677tLPP/+syspKLVy4UAsXLtTuu++uU045RUcffbSGDRvWqi1UO7N///vfcjqduvTSS5NdCgCgDoI7AAAAAAAAoBUCgUCL5/7pT3/S999/r88++0z//e9/Gz0DrV+/fnHXKSws1EcffaTLLrtMu+22W+R+QUGBJk2aJJfL1eIa45k3b57mzZvXrDkzZ86UzWbTmWee2aLXDIfD+uKLL/Tyyy/ro48+UjAYVPfu3XXhhRfq/PPPT6jb8PDDD9eSJUv0xhtvaP78+dq4caMkacOGDZH3lJOTo4MPPljDhw/XiBEjNGTIEGVmZrao5s5kwYIFuuOOOyRJgwYN0ujRo5NcEQAgGsEdAAAAAAAA0Ap+v7/Fc0eNGqVRo0bpyiuv1ObNm/X444/rlVdeiQnwevXqpf333z/uOgsWLFCPHj3qdVANHz5czzzzjD7//HPtvffeGjRokBwOh9LT02UymVpcdzJs2LBB77zzjpYsWaItW7bIarXq2GOP1dixY3XMMcfIbG7eR51Go1Gnn366xowZo6VLl2rBggVauXJl5Pni4mK9//77ev/99yP3cnJytPvuu6t3797q3r27Bg8erL/85S8x63q9Xm3ZsqV1b7aOgoKCyPXmzZtbHBa///77uv/++yOPr732Wr3wwgvtukUoAKB5CO4AAAAAAACAVmhNx120fv36aebMmTrssMN01VVXKRwOy2w2a+bMmXFDKafTqRdeeEEPPPCAbDZbvef33XffLhvM/Pjjj1q2bJk++OAD/fzzz3I4HDr88MP1f//3fzr22GOVnp7e6tcwGo068cQTdeKJJ+rXX3/Vq6++qnfeeUfbtm2rN7a4uFjFxcUymUw66qijNGDAgHpjLBaLnnjiCS1evLjVtTVk0qRJbbZWZWWlLr/8ci1atKhDzkUEADSN4A4AAAAAAABoBZ/Pp+7du2vChAltst7JJ5+s1157Tfn5+br55pt18MEHxx3/9NNP6+yzz9Yf/vCHNnn9ZNq6dau+/vprrVixQp999pnKy8s1fPhwjR49WjfffLNGjBjRrp2Ce+yxh6ZPn67rrrtO3377rT766CN98sknMef47b777nrwwQc1ePDgBtcwGo264447tNdeeykjI0N77723unXrpoyMDKWkpLRb7QCAnYMh3NjG2QDahc/n05o1a+rd32+//WS1WpNQUXL5/X6tXr065t7w4cNlsViSVBEAAAC6ikAgoHXr1sXc23PPPZu9VRoAtNaaNWu01157tenf6wsLC9WtW7eExt544426+eabu/znCsuWLdPjjz+uoUOHau+999awYcM0ZMiQTrGlZ02g+M033+jiiy/WwIEDk10SgJ1IKBRSZWVlzL2UlBQZjcYkVRRfe34fzufnBHdAh+N/PLEI7gAAANBSBHcAAADYGRDc1eLzc6lz/qoDAAAAAAAAAAAAuxiCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAAAAAAKATILgDAAAAAAAAAAAAOgGCOwAAAAAAgE4kGAzqyy+/1D/+8Q/NmDGjTdfevHmzysrKWjR3zZo1crvdbVpPPK+//rrWrVvXorl5eXkqLy9v44paJxQKJbsENNNnn32mvLy8ZJcBANjFENwBAAAAAAAkWX5+vl577TVdddVVGjVqlCZMmKBXX31VL7/8sp555pk2e51HH31UY8aM0cqVK5s9d9WqVTr++OP12GOPyefztVlNjfnmm280ZswY/f3vf9evv/7arLlvvPGGjjzySM2cObPZc9tDWVmZxowZo6+++irZpTTozTff1Pbt2zv0Nd944w3Nnj1bfr+/Q1+3OVasWKE//vGPuu2221RQUJDscgAAuwiCOwAAAAAAgA7kdru1YsUKPfPMM7r66qt1zDHH6Nhjj9X06dP1HJZukwABAABJREFU9ttvq6SkJGb83Xff3aKgrS6fz6f3339feXl5Gj9+vGbPnq1gMJjw/AsuuECHHXaY7r33Xp122mlas2ZNq2uKx2azKRQK6Z133tEVV1yh0tLShOcWFRWpvLxcL7zwgk455RTNnz+/HStt2ksvvaR169bpoosu0uzZszsk+GyOVatW6c9//rOWLFnSIa/ndDp1xx136KmnntL555/fabvabDab/H6/nn/+eY0ePbpNQ3QAABpjTnYBAAAAAAAAOxuv16u8vDxt2bJFmzdv1saNG7VhwwZt3LhR+fn59cYbDAZ169ZNPXr0UM+ePZWbm6usrCylpKTIYrFo48aNOvjgg1tV0/vvvy+XyxV5PGjQIJlMpmatMWPGDH3xxRfasGGDLrjgAj311FM68MADW1VXY6xWqyQpMzNTCxcuVGZmZsJzi4uLI9fjx4/XpZde2ub1JcrtduuJJ56QJIXDYS1evFh77LGHzjzzzDZ7jf/85z866KCDlJ6e3qL5NptNLpdL119/va6//vo2qysRq1at0vvvv6+JEyd26Osmwmyu/ej0iCOO0JgxY5JYDQBgV0FwBwAAAAAAkKBwOKySkhIVFRWpoKBAhYWF2r59u7Zt26YdO3Zo27Ztys/PV2FhocLhcGSe2WxW3759NXDgQB1++OHq06eP+vTpo969e0d+rgmq2svzzz8fub755pt19tlnN3uNbt26afz48Xr44Yfl8Xj04IMP6umnn27LMiNsNpskKT09Xbm5uc2au2PHjsj1pEmTZDQmb9Ophx9+ONJFefDBB+vJJ5+MvLe28MYbb+j666/XfvvtpyeffLJF4V10QLV06VKlpaUlNO/FF1/UvHnz1Lt3by1evDjh19u2bZvGjh0rSfrrX//aKUM7Kfbrcv311ysnJyeJ1QAAdhUEdwAAAAAAAAm477779Mknn8hgMMhut8tutyslJUVpaWlKS0tTv379tM8++ygjI0MZGRlyOBxyOBxatWqVZs+eraFDh+rKK6/UkCFDOrz21atX67///a8k6ayzztK5557b4rXOPfdczZ8/X6FQSIFAIO7Y7777Tv369VP37t2b/TrN7QaMtmHDBklS9+7d1atXr2bP93g8qqioaHVQs3btWi1YsECSlJ2drVtuuUXl5eUqLy9v1bo1PvnkE914440KBoP673//q0mTJrUovLNYLJHrzMxMORyOhOalpKRIkoxGY7O+VhUVFZHrffbZJ+F5v/zyi/bcc88mg1ifz6c5c+bo8ssvb1anZl3RXxcAADoKwR0AAAAAAEACrrrqKl111VXNmrNt2zZNnjxZ4XBY7733nt5//3395S9/0U033dSmXVdNefDBByVJAwcO1I033tiqtXr27KkRI0bov//9b9xOqW+++UaXXHKJBg8erOeff152u71Zr9PS4K60tFRFRUWSpGHDhjV7vtfr1eTJk7Vjxw4tWLCgxeFdMBjUP//5z0i46XQ6dcopp7RorUT997//1cUXX6wnnniiWeFda0LSjvToo4/ql19+0eTJk3XSSSc1GuDNmjVLCxcu1NKlS/XQQw+1OCxPZqdmWwgGgzrvvPN09dVX69BDD012OQCABBHcAQAAAADQRYXDYVV6A/IHQrKYjUqxmWUwGJJdFqq53W5dcsklcjqdkqrOlJs8ebJOPvnkmC342tvq1asjnYKzZs2KdEnVVVJSolAolNCaZ511lo466iiNGDEi5jy5GjXhSkVFhdasWaPrrrtO999/f7N+f7Y0TNq4cWPkurnBXU1o98UXX0iSLrzwQj377LMtCu+efPJJrVq1SpJ05plnatasWZ32v8+uEtzZbDb9+uuvCYfov//+uy644AK99957Lfo1bE1wt3jxYt1www0JjU1JSVFGRoZ23313jRw5UqeddpoGDRrU4teWpFAopLvuuivyexAA0HUQ3AEAAAAA0IVs2ur6f/buOizKtO3j+HfoFgO7uztW17V118buREGxuzuwRbFjMbBdbOzWtV117VgLsJVuZt4/eJkHpGZgCHfPz3F4PMPMfV/XNTDM8ty/Oc+LC3958vTNN154+hIQHK5+zMLUkCJ5M1E8f2bqVspLgVyatbsTuhcYGMjAgQN5+vQphoaG2NvbM2DAgFTfxy4+8+bNA6BPnz5UrVo1weM8PDyYOXNmrL35krJs2TKNjjt+/DhLlixh1KhRGo+dUGiyfft2jdfp4uKCi4uLxnN+7+nTp8kK727evKn+3tja2jJ79uwMG9oBGXptMcUMvK9cuZLgcbNnz+bIkSMYGxvj7Oyc7KrJlASaLVq0oGHDhjx79gx7e3t1e9QuXbowcOBAdYAeEBDAhw8fuHXrFrt37+bq1ausXr2atm3bMnHiRCwtLTWeU6VS8e3bN65evYqbmxu3bt1K9vqFEEKkHwnuhBBCCCGEEEKIH8CNh+/54+xzHvzzJcFjAoLDufvsM3effWbP6WeUKZyV9g2KUbVUjjRcqfDz88Pe3p6//vqLXLly4ezsTMWKFTU69/nz59y4cYMuXbroZC0eHh7cunWLUqVKMWLEiHiPWbp0KT169KBr165kzZqV4OBgSpcuTdasWbG0tIwVNh46dIgJEyYwbtw4evTooZM1JiQ6THr//j1z585l8ODBWFlZ0bVrV/LmzYtCoaBIkSJxWnAuXLgQd3d3AA4ePJis/fW+Z25urvGxHz58YPjw4URERNCyZUvatGmj02DMz88PJycnRo4cqZPnBj9OxV3M4C6xMC76NZstWzZq1aqV7PkS+7lFRkbi6+ub4DqMjIwwMjKiatWqlClThuvXrwPQu3dvcuT433uylZUVuXPnplKlSvTu3RsnJyfc3Nxwd3fnxYsXbNq0CTMzs0TXOX36dA4fPkxwcHCS+04KIYTI+CS4E0IIIYQQQgghMjC/wDDW7rvHhb+8tD73wT9fePDPF+pWyot9m3JYmad9tdd/zatXrxg4cCD//PMPtWvXZuHChRpX+7x79w57e3u8vLx48eIFEyZMSFGg4uPjw9y5czEzM2PJkiXxVvvdvn2bNWvW4O7uztKlS/n1118THfP3338nPDyc2bNnc/fuXWbNmpVg683k+Pz5M9myZYt1X/bs2Xn69Cm//fYbkydPplmzZtSpUyfBMZ48eQJAnjx5KFGihPp+pVLJly9fdBZ2xcfHx4d+/frx6dMnevXqxYQJE2jWrBmGhoYMGjSIatWqpWj8yMhIRowYwY0bN/jzzz9ZuXJlsvbx+1GldcCYUHAXERHB6NGjefToEVu2bIkVxMUn5roTa5NrYGDAlClT8PLy4uzZs9y9e5c1a9Yk2RZ06NCh9OvXD4h6nd+7d49JkyYREhKS6HlCCCEyJgnuhBBCCCGEEEKIDOqlty/T11/lq1/KLr6e/8uTv198ZoZ9TQpK+8xUc+LECSZNmkRgYCBDhw5l4MCBGu+R9fr1a/r27YuXV1RAu3XrVl69eoWzszMWFhbJWs/s2bP59OkT8+fPp3DhwvEe4+zsDMDHjx/p1asX69evT7BCycPDg4cPHwJgZmZGvnz5CA4O1llwFxkZSZcuXTh58mSs+/X09FiwYAEtWrRgxIgRXLx4kZkzZ2JoaBhnjJCQEHVwV6VKlTiPN2jQgNatW9O3b98EvyfJFRAQgIODA8+ePWPChAn07t0bAENDQ548ecLQoUN1Ot/79+/p1q0be/fupVixYika60dplZkRgruIiAhGjRrFsWPHAOjZs6dG4Z02Ro0axdmzZ4Go1rBDhw5NNPDLkiVLrA8I5M+fn9OnT+Ph4aGzNQkhhEg7EtwJIYQQQgghhBAZ0EtvXyauuhxrD7uU+OoXwoSVl3AaVFvCOx378uULCxYsYP/+/eTPn59169ZRqVIljc+/cuUKw4cPx8fHB4gKxZo3b069evUICwtL1pq2bdvGoUOHaNu2Lba2tvEec/r0aa5duwZEhUvTpk1LMLQLCgpi0aJFAJQpU4Zly5aRL1++ZK0tIa9eveLDhw/xPpY9e3bGjRvHxIkTcXd3R6VSqffui+n+/fvqVoHf7+enp6eHUqlkz5497N27l0aNGjFv3rxkB6MxffnyhX79+uHl5cXKlStp2LCh+rGYAWN0qJgSrVu35vHjx5iZmbFq1aoUh3bw4wR3yVnnkydP6NWrF9++fUvR3DF/pjG9evVK5+FdsWLFyJ8/P2/evMHf358HDx5QoUIFrcZIqr2mEEKIjEuCOyGEEEIIIYQQIoPxCwxj+vqrOgvtogUEhzNt3RVcRteXtpk68O7dO3bv3s3mzZsJCwujf//+DBo0SKMKtLCwMEJCQnB1dWXNmjUolUrMzMzo06cPffr0wdLSMtnr8vDwYO7cuZQsWZJp06bFe0xAQABz5swBooIlFxcX6tevn+CYS5cuxcvLi5o1a7Jy5cpYe76pVCqdBD937twhNDQ0wcfbtm3L9u3buX//Pvv27aN9+/ZxwrkrV66ob//8889xxjAyMiIiIgIDAwOaNGmik9DuzZs39O/fH0tLS9zd3cmbN2+sx+OrDNSFzJkzU7NmzVQZO6PStII1phIlSrBp0yaOHDlCmTJlKFCgABYWFhrtW3jw4EGcnJwA2LdvHzlz5kzwWF22jAUoWrQob968AUgw0BZCCPHvJMGdEEIIIYQQQgiRwazddy/F7TET8tUvhHX7/mZ097htBIVmQkJC6NSpE0+fPkWpVKKvr0/Dhg3x8/Nj6tSphISEqP8FBwfH+7+RkZGxxmzevDnjxo1LUcVOUFAQixcvZtu2bejr69O3b1+uXr2Kj48PPj4++Pr64ufnh5+fHy9evMDLywuFQsGCBQsSDe3+/PNP3NzcqF69OmvWrMHExCTW47du3cLZ2ZmBAwfGG5Zp6tKlSwCEh4fHG3YpFAqGDh2Kvb09AJ6ennGCu8uXLwNQvHjxOAEa/C9EK1SoEK1atUr2WmPON3bsWDp06ICjo2O8+wimVnCXWpKzD5+Xl1es/QRTS3ID4pIlS1KyZEmtz4sZ7llZWWm8X6UuxJw7PFy3H+IQQgiRsUlwJ4QQQgghhBBCZCA3Hr7nwl9eqTrH+b88qVs5D9VKJ1w9IhJmYmJClSpVePz4MRC1N9uJEydiHWNubk7BggXJnz8/efLkIXfu3OTKlYvMmTOzb98+3N3dCQ8Pp0yZMkycODFOAJUcpqam3Lt3D5VKRUREBGPHjlU/liNHDipUqECZMmUwMTHh4MGDAIwYMYJmzZolOOanT58YM2YMpUqVYvXq1XFCO4hqSWlra0u/fv0oV64co0ePpnr16lqt3dfXl7Nnz6JQKBLdx6xOnTrkzZuXr1+/Uq9evViP+fv78/fffwNRe9nFJ3psY2NjrdYXn3fv3rFx40a2bNlCkSJFEjwuZpj39evXFM+rVCpTPMb3VCqV+vaZM2c0rh7bvn07Li4u5MqVC3d3d43ne//+PW3atNF6ncmpuPtRBQQEqG9nzpw5HVcihBAirUlwJ4QQQgghhBBCZCB/nH2eZvNIcJd8Dg4O7Nmzh7CwMBQKBaVKleKnn36iSpUqlClThly5csU55+zZs4wePRpPT09sbGwYNmwY7dq101kYoVAomDJlCh07dkSlUlG5cmVatGhBw4YN1S3+Pnz4oA5M2rdvj4ODQ4LjhYaGMmjQIExMTFi3bl2ibSXbt2+PoaEh48ePp0ePHtSvX58xY8YkGmjFtGbNGoKDg7GwsEj0+6FQKHB0dERPTw9ra+tYj12+fFm9v11C+5H5+/sDYGCQ8ktiuXLl4vfff0/yuJgVdxm1tWXMClAbG5t4KwfjEx3w6enpaVWNFhQUpN0C/9+PshefLrx8+RKIes7JqRYUQgjx45LgTgghhBBCCCGEyCBevfPjwT9f0mSuB/984fU7PwrkskqT+f5tcuTIgYODA3p6etja2pI7d+4Ej33z5g1OTk6cOXMGY2Nj7O3tcXBw0Mn+at8rX748Q4YMoWzZstStWzfWYxEREYwYMYIvX75Qp04dZsyYkeA44eHhjBo1itevX7Nz506yZcuW5NytW7cmJCSEqVOncvbsWS5duoS9vT2Ojo6JBmUXLlzA1dUVgAIFCiQ5T7t27eK9/9ixYwAULlyY8uXLA7Bo0SJGjx4NRFUwadJy8OzZs1SpUgUrK93/bjx58iTFY7Ru3Vpd7akrMav4NA3t0kNKg7uAgAAiIiLihL4ZzZs3b3j16hUAlSpVStMWnUIIIdKfBHdCCCGEEEIIIcT/+/A1eVUgunL0z5dpOp/Hn69oW79oms4ZU44sZuk2ty4MHjw40ccDAwNZu3Ytrq6uhIWF0bRpU0aPHh3v3mu3b9/G19eXOnXqJNoqUhODBg2K934nJydu3bpF2bJlcXZ2TjBMCwgIYPTo0Vy6dAlXV1cKFSqk8dydOnXi27dvLF26lPDwcFauXMnff//N2rVr462kUyqVTJs2Td2qUdsWm9FCQ0M5f/48gLqi0MfHh127dqmDOx8fH/Xx0ZV53/P392f8+PHqajpdBCaptT+ZLltmhoWFAT/WfnyBgYEJPpbQz/fatWvMnDmTefPmZdjqR4Bly5apbyf0+yyEEOLfS4I7IYQQQgghhBDi//WbczK9l5CmPP58iUcah4UxHVrcOt3mTk2RkZHs3bsXFxcXPn36RMWKFRk/fjyVKlVK8Jw8efKwcOFCpk6dSvv27encuTM5cuTQ2ZpcXV1xc3OjQIECrF+/HnNz83iPO3ToEM7Oznh6etKhQwcCAgI4cuQIgYGBBAUFERAQQFBQEEFBQer7om/7+/sTGhpKYGAghoaG6sDqwoUL3Lt3j4oVK8aZLyIiQh2oFStWDDs7u2Q9v/PnzxMUFIS+vj6tW0e9rq5duxYrNPP19VXfDg4OjnccFxcXfHx88PHxoWvXrmzatEndZjS5okMxXUsonEqO6DVm5Gq771WuXFnrcxo2bMjx48fp06cPAwYMYOjQoRlq3zylUsny5cs5fPgwAI6OjtSuXTudVyWEECKtSXAnhBBCCCGEEEIIoQMqlYqTJ0/i7OzMixcvyJs3L0uWLKF58+ZJnpsjRw42b97MxIkTWbVqFevWraNZs2bY29tTrFixFK3rxIkTLFiwABsbGzZu3JhoFdmdO3fw9PQEYM+ePezZsyfOMQYGBuTIkYM8efKQJ08eTp06BUS1sOzZsyc5c+bEzMyMjh078ujRIwA+f/4c73xGRkYcOnSI0NBQChcunOxWiO7u7kBUMBMdeB49ejRWBdnbt2/Vt79+/RpnjFu3brF161b1c6xRo0aiVV2a0mXAFpMuK/mi95wzNjbW2Zip7d69ewk+NnnyZA4ePBjvY1OmTOHy5cusXr2ae/fusWzZMiwtLVNrmRr5+vUrV69exdXVlXv37mFqasqYMWPo1q1buq5LCCFE+pDgTgghhBBCCCGEECIFlEolJ0+eZNWqVTx+/Bhra2smTJhA165dtapgMjIyYuHChWTOnJktW7Zw8OBBDh8+jK2tLWPHjiVz5sxar+3GjRuMGTMGc3NzNmzYQL58+RI93s7Ojl27dqlDISsrK6pUqcLZs2cB+Omnn/j9999jtfPct28fAHXq1KFkyZLq+5csWUKbNm0ICQlJtN1mfK1DtfHhwwcuXLigXj/Ax48fOXPmTKy9zKL3hTM0NOTr168EBASo9xn08/Nj/PjxKJVKihYtyoIFCyhTpkyK1hUtZsAWX2CoregWmdFhmy78iMFdYmtNrN2spaUlY8aMYdy4cVy+fJlu3brh5uaWKnsaxqdVq1axqvxCQ0PVFY9FihShb9++9OjRI9F9M4UQQvy7SXAnhBBCCCGEEEIIkQzfvn3jwIEDuLm58fbtW8zNzXF0dMTOzk4dCGlLoVAwZswYQkND2bVrF0qlEnd3dy5evMjGjRspUaKExmPdunULe3t7VCoVq1evjhWqJSR37ty0bNkSb29vevXqxS+//AJA2bJl1Y9rugdf4cKFGTlyJGfOnKFIkSIar1tb+/btIzIykipVqqjbca5YsYLQ0FCyZ8+uPi46uCtUqBABAQG8ePGCChUqoFKpGDt2LG/evKFNmzZMmzYNU1NTna0vZnCny33VwsLCCA0N1UnY5u/vD6DT552RtW7dmnXr1vHixQuePHnCzJkzWbRoUZrMvW7duljtV9evX8/OnTsBmDdvHuXLl0+TdQghhMi4JLgTQgghhBBCCCGE0NDr16+5cuUK586d49KlS4SHh2Nqakrnzp3p1KkTxsbG/PPPPwQGBhIYGEhAQID6dvSecDG/ju+fQqEgU6ZM5MyZk/fv3wPw6dMnhgwZwtGjRzUKzjw8PBg/fjyRkZGsWLGCatWqxTnm8+fPeHl58fbtWzw9PVGpVAwcOJDp06fHCoNCQkLUt01MTLT6fvXs2ZNOnTppdY42wsPD2bFjBwAODg5A1HPftWsXAMWLF1cf+/TpUwAKFCiASqXi3r17VKhQgSVLlnDx4kWmTp2aKq0JIyIi0NPTo0GDBowYMQJHR0f69euHra1tsvaUGzlyJPnz5+e3337TWYVc9P5/ZmZmOhkvo1MoFNjZ2TFx4kQADh8+zOjRo1O8n6EmcubMGavKtGfPnurgbvv27RLcCSGEkOBOCCGEEEIIIYQQQlPe3t5MmzYt1n3BwcHs3LlTffE9PmZmZoSHhxMeHk7OnDnp0qULmTJlwtraOs6/6KqnoKAg2rdvz4sXL4Co0PDt27cULFgwwXnevHnDsmXLOHz4MACdOnUiMDCQdevW4e3tjZeXF15eXnh7exMcHEy+fPmoXLkylStXpmrVqkDcFoQxK8a0rchSKBRah33aOHLkCO/fv6d69erUrVsXT09PJk2apH68Xr16wP9CSogK7szNzbl48SIKhYJdu3axYcMGnVbDxdShQwcaNWpE3rx5GTt2LK9fv2bKlCls3bqVDRs2qPfk09TgwYPJkiVLrDagKfXlyxcg6uerTTvP4OBgIKp9pzbn+fn5abfA/6dSqZJ1Xnx+++03Zs2aRXBwMCqVSqetR7VRpEgRqlSpwq1bt/Dw8GDcuHHJaosrhBDi30OCOyGEEEIIIYQQ4v9tmNQ4XedfvO0Wj16lfA8sTZUqlIVRXauk2Xz/BjVr1qRmzZpcuXIl1v2GhoYUK1aM4sWLU6BAAQoUKECOHDnIkSMHNjY2mJiY0KNHD65fv07u3LkZMGBAknOZmZmxbNky2rZtq94Dy9LSMtFzFAoFJ06cUH+9a9cudfUZQObMmalZsyZ9+/bll19+0Sg0ihmyJDV/Wvv9998BGDNmDBBVORUdwBQvXpyGDRsCqPfoA6hQoQKWlpasWrWKV69esWPHjlRt5dm7d28AHj58yKFDhwCoWrUqzs7OmJmZERgYqPFY9+7dY+jQoeTMmZONGzfGagWaEp8+fQKi9kRMToD57t27VAs+Y9JlcGdubk7t2rU5efIkFStWpHDhwjobW1sdO3bk1q1bhIaGsnfvXvr3759uaxFCCJH+JLgTQgghhBBCCCH+X44s6dsmrmyRrGka3JUtnDXdn/OPaOTIkXTq1IlKlSpRt25dqlevTpkyZZLV9jApxYoVw97enhUrVlCuXDmyZs2a6PH58uWjV69erF+/Xn2ftbU1LVu25LfffqNy5cro6elptYbo/c8AsmTJot0TSEWnTp3iyZMnNG/eXN1esFOnThgaGmJpaUnjxo3VbUXPnDkDRAWstWrVwtDQEIVCQY8ePVI1tIumUqmYPXs2SqUSgJs3b1K7du1kj+fn50fXrl1xdXUlX758KVpbUFCQulVm27ZtcXJy0vjcjRs3smDBAvLkyaP+HmvC09NTHaqmp+bNm3Pp0iVmzJiRruv47bffmDt3Lr6+vuzYsQM7Ozutf0+FEEL8e0hwJ4QQQgghhBBCZBB1KuVlz+lnaTZf3Up5kz5IxFG+fHkuX74cJ8RSqVSEhIRo3U4yKQ4ODrx8+ZIuXbpodPyAAQNwd3dHoVDg6OhIu3btUtSu8vPnz+rbNjY2yR5Hl5RKJc7OzmTKlEm9TxlEVRTa2dnFOjYkJERdIVm1alUsLCwAqFixIgcPHqRHjx6pvt4tW7Zw69YtzMzMKFu2LCVKlFBXCWrqwIEDTJ06VV11li9fPjw9PVMc3EW3EIXYewJqQpcVcJqIDj51dfxvv/1GuXLlYu05lx5MTExo1aoVW7duxcvLi/Pnz1O/fv10XZMQQoj0Ix/dEEIIIYQQQgghMoiCuawoUzjxiipdKVM4KwVyWaXJXP9G8VWe7dy5Ezs7O61aH968eVO9h11CjIyMWLJkCdWqVdNoTAsLC5ydnTly5AjdunVL8R5z7969U99OaUikKwcPHuTZs2eMGzeObNmyJXrshQsX1HuxNW/eXH1/vXr1uHfvHo8ePUrVtT569IjFixejr6/P0qVLWb58OcePH+fo0aMYGxtr9O/48eNMmzYNlUqFQqFg+vTpuLq66qQ95T///KO+XbJkSa3O1TZISyltg8Kk1qdQKNI9tIvWsWNH9e1t27al40qEEEKkNwnuhBBCCCGEEEKIDKRd/aJpMk/7BsXSZJ7/irdv37Jw4UJu3bpF//79NQ7vLCwsGDJkCHZ2dly4cEFnFUzVq1fH2tpaJ2O9fv0aAAMDA/Lnz6+TMVMiKCiIpUuXUrt2bdq1a5fk8W5ubgBkz56d1q1bq+9v0qQJAOvWrUudhQI+Pj4MHTqU0NBQpkyZQr169cicOTPz5s1jypQpXLhwIckx9uzZw7hx41Aqlejr6+Pk5KRx9aUmnj2LqvI1MDCgQoUKWp2b0Svu0np9KVG8eHEqVqwIwKVLl3jz5k36LkgIIUS6keBOCCGEEEIIIYTIQKqVzkmdSnlSdY66lfJStVSOVJ3jvyQ4OJjBgwerwzptwruSJUuyd+9ebGxs6N+/P82bN2fPnj2EhYWl9rLjFREREee+6Iq0IkWKYGxsnNZLimPlypVERkayYMGCJI+9f/8+165dA6B3796x9iHMly8fZcqU4dixYzx58kTn6wwLC8PR0RFPT0+mTZsWK2z7+eef6dy5M0OGDOHq1asJjrF+/XomT56MUqnExMSE5cuX06ZNG52u8/79+wCULVsWMzPt9ryMDtLSKiDTdp7IyMhUWknqiK66U6lU7NixI51XI4QQIr1IcCeEEEIIIYQQQmQwDm3Kk8UqZe0NE5LFygT7NuVSZez/osjISMaOHcvjx4+BqNZ7TZs2Zfz48RrvdWdmZsa8efOYPXs2b9++ZfLkyTRo0IANGzYQFBSUamuPiIjg77//ZtOmTQwdOpSmTZty/fr1WMeEh4dz9+5dIGp/uOTSVUvFFy9esHXrVpYsWULWrEm3lY0O9/Lnzx9vlVr79u1RKpXMnj1bJ+uLFh4ezvDhw7l79y4LFiyga9eucY4ZM2YMJUuWpH///hw/fjzO+ZMnT2bRokVA1N59mzdvplGjRjpdp1Kp5NatWwA0bNhQ6/Ojg7G0Cu5iBnFfv35N8F908P2jBXfNmjVT78Ho7u5OSEhIOq9ICCFEepDgTgghhBBCCCGEyGCszI2YYV8TC1NDnY5rYWrIDPuaWJkbJX2wSJJKpWLy5MmcOHECgIIFC7JlyxacnZ0pX748enraXXbp0KED27ZtI3v27Hz69ImFCxfSoEEDfv/9d51U4Pn4+HD+/HmcnZ3p2bMnVatWpWfPnvz999/Y2tpy8OBBatWqFeucmzdv4u/vD0Dt2rWTNe/du3cZMGBAitcfGRnJhAkTGDZsGNWrV0/yeA8PD65du4ZCoWDu3LnxVpO1atUKc3Nzrl+/zs6dO1O8RogK3UaOHMlff/3Fhg0baNmyZbzHGRkZsWrVKrJnz87w4cNZs2YNKpWKDx8+0Lt3b/bs2QP8ryozuo2iLt2/fx8/Pz8Afv31V63Pjw7s0iq4ixkA16xZM8F/R44cAUi3ytXkMjU1Vb9efHx8OHz4cDqvSAghRHowSO8FCCGEEEIIIYQQIq6CuaxwGlSbaeuu8NUv5VUXWaxMmGFfk4K5rHSwOhEREcGECRM4ePAgENXibuLEiRpX2SWkfPny7NmzB3t7e548ecK3b9+YP38+O3bsYP78+VSuXFmjcQICAnj8+DEPHjzg/v373Lt3j1evXgFRe5nVrl2bOXPm0LBhQ0xMEq7u3L59OwDW1tbJDu4CAwMJDw/X+rzvq6XWrl1LmTJlsLOzS/LcDx8+MGPGDAB69uxJtWrV4j3OwsKCDh06sGnTJubNm0elSpUoUaKE1muNFhQUxJAhQwgMDGT//v3kyJF4S9qsWbOybt06OnfuzNKlS/nzzz958uQJPj4+ALRo0YLZs2en+HWVkEuXLgFQrVo1ChQooPX50a1VdVVRmZSYr4nE2puOHz+effv2/XDBHUCnTp3UbTK3b99O+/btkzVOdOAOqF9PQgghfgxScSeEEEIIIYQQQmRQBXNZ4TK6PnUr5U3ROHUr5cVldH0J7XQkICCAgQMHcvDgQSwtLVm2bBmzZs3SWbiSM2dOtm/fTpUqVdT3vXnzhp49e3Lu3LlEzx0+fDj16tWjSpUqdOvWjblz53Lw4EFevXpFmTJlmDp1KhcvXmTt2rU0b9480dDu0aNHnDp1CoDOnTvH2h9OG76+vrFCBE3FrOYKCAjg9evXTJ48OcnzwsLCGDZsGD4+PtSvX5+xY8cmenz//v0xNTUlODiY/v374+3trfVaISos7Nu3LxUqVGDr1q1JhnbRihQpgpOTEwDXrl3Dx8cHY2Nj5syZw+LFi1MttAPUlWnxtfLURHRglx7BnSYiIiKSFRrrWsx1J/UcSpUqRblyUe2MHzx4wO3bt7WeLzAwMNZ5Z86c0XoMIYQQ6UeCOyGEEEIIIYQQIgOzMjdidPcqTLWrQZnCSe/pFVOZwlmZ1u8nRnevIu0xdeTZs2e0a9eOCxcuULZsWfbt28dvv/2m0bnatBO0sLBgw4YNsSrswsPDGTNmjLq1YXyKFSvGu3fv1F/r6+tja2uLu7s77u7udOvWjSxZsiQ5f1hYGJMmTUKpVJI1a1b69Omj8dq/5+fnx8ePH7U+LzrgiIyMxMLCgvnz56Ovr5/oOSqVigkTJvDXX39RuXJlnJ2dMTBIvOFUtmzZ6NWrFxAVvnXv3p1nz55ptda3b98ya9YsZs2axdChQzE01LzN7enTp+PssRcWFsalS5f4559/tFqHNh48eMDz588pWLBgstpkwv8q7rQN1JJbCRc9nyasra0ZM2ZMkq+Z1BIWFoavry+3b9/mwYMH6vu3bNnChw8fCAgISPDcjh07qm9PnTqVx48f4+fnl2BAGhwcjJ+fH97e3ly6dAl7e3s+ffqkfnz//v1MnjyZu3fv8vnzZ/z8/AgNDdXBsxRCCJEapFWmEEIIIYQQQgjxA6hWOifVSufk9Ts/zv/lybM3Pjz39CEg+H/VJBamhhTNa02x/NbUrZSXAlJhp1MeHh5MmjSJ8PBwBg0axIABA7SqQvv69atW85mZmbF27Vo6dOigbnPp5+fH5cuXadq0abzn9OjRg40bNxIYGEjdunWZNGmS1i0QVSoVEydO5MGDB+jr6+Pk5IS1tbVG58Xn69evfPz4EV9fXzJlyqTxOqJDCk1DIaVSyaRJkzh8+DA//fQTLi4uiVYUxuTo6MixY8d49eoVXl5edOrUiUmTJtGuXTuNzs+RIwfLly/Xal/Du3fvsnjxYq5duwZA5syZcXBw4PPnz2zevJmjR49y/Phx6tWrR/fu3alZs6bW+yYmxt3dHYDBgwcnO9zS9mcU7eXLl+rb2jyn6Oo5c3PzRI9r1aoVEydOxMoqZe+BQUFByT738OHDTJgwIc79bm5uuLm5kSdPngQr4Zo3b868efMIDAzk2bNntG7dGoBDhw5RvHjxOMfPmDGDffv2JbqePXv2qPdNhKif+5AhQ7R5SkIIIdKIBHdCCCGEEEIIIcQPpEAuK3rmKg1EBSXBoRGERygxNNDD1NgAhUKRziv89wkJCWHx4sVs2bKFKlWqMHPmTIoWLRrvsf369SMyMpIcOXJgY2NDlixZsLKy4tWrV7x48QIgyQqwmKysrFi2bBnt27dXhxaJhQlWVlZ0796d7Nmz0717dy2eZZSwsDDGjx/PkSNHMDMzY/78+dStWzfRcxQKBSqVig8fPsT7+OvXr1GpVBw8eJAePXpovJboMEiTKqvQ0FAmTJjAkSNH6Nq1K5MmTdLq+xzdmrJXr15EREQQGBjIxIkT2bdvH4MGDaJmzZqJnq9pgKtSqbh48SIbN27k6tWrQFRlWI8ePejduzcWFhYAtG3blhkzZnDt2jXOnDnDmTNnyJ49O7/99hu//PIL1apVS1ELTR8fH9zd3alUqRItWrRI9jjRP5v4fkYPHjxg27ZtWFtbY2lpiYWFBcbGxoSGhrJ161b1cZqGq9F69OiBo6NjosfUqlVL4/Hu37+Pqakp+fLli/VzVKlUXLhwQf21Nq8niPoZtm3bVqtzopmbm2vVInPevHnMmzcvWXMJIYTIeCS4E0IIIYQQQgghflAKhQIzE81b8gnt3bhxg0mTJqGnp8eKFSto3LhxosevW7eOe/fucfjwYdzc3OIN2YoVK6bVGkqWLEm3bt3YtGkTAPnz50/0+BEjRiQrwH3z5g2jRo3i3r17FCpUCGdnZ0qWLJnkeTly5OD9+/esWbMGKysrihcvjpGREZGRkdy7d0+9j9r8+fOxtLTE1tZWo/VEt1NMqqXfhw8fGDx4MP/88w9z5syhffv2Go3/vapVqzJ+/PhYbStv3LhB7969mTp1Kt26dUvWuNFr3L9/P3v27OHt27cAFC5cmG7dutGuXbs4IVyRIkXYsmULHh4erF+/nocPH/Lx40e2bNnCli1bMDQ0pESJEpQtW5ZixYqRL18+8uTJQ5YsWciUKVOSFXTbt28nLCyM6dOnpyjsjw5X4/sZ5cqVi4oVK3Lt2jV27dqVYGtIbX4f5syZo3XQl5RLly6xc+dO3r9/T5YsWbCxscHc3JzPnz/z+vVrICqYzZ49u07nFUIIIRIiwZ0QQgghhBBCCCHEdwIDA1m8eDE3btxgwIABtGrVSqOKGz09PSpWrEjFihVxcHBgwoQJXLx4Uf24vr5+rP2rNDV06FCuXLmChYUFVatWTfRYbYMYpVLJ9u3bWbJkCSqVipEjR9KnTx+Nq8gaNGjA9u3b+fbtW7ytAaMZGRlRoUIFjdelSXB36tQpJk+eTJUqVVixYgU5cuTQePz49OjRg3fv3rFx40by58/P0KFDqVevHpaWllqP5e3tzdmzZ/Hw8ODWrVuoVCqsrKxo27Yt7dq1S/LnCNCsWTOaNWvG9evX2bRpE2fPnkWpVBIeHs79+/e5f/9+nHMUCgVGRkZkzpwZZ2dnKlWqFOvxgIAAtm7dyrBhwzQKZhMTXWmXJUsWIiIiYv2OZMmShY4dO9KxY0cCAwPZvHkzq1atUleOApQtW5YiRYpoPJ+uQzuAAQMGMGDAAO7fv8/u3btxd3ePtUZA521KhRBCiMRIcCeEEEIIIYQQQgjxneDgYGrXrs2UKVOSXZFkY2PD6tWr6dixIw8fPsTAwIDp06cnKywxNzdn7969REZG6rQd6vXr15k3bx7v3r2jb9++dO3alSxZsmg1xqhRo9DT0+PUqVN8/fo1zn5nFhYWlCtXjhEjRlCoUCGNx40O7lQqFWFhYbGCxC9fvrBgwQIePXrEnDlzaNiwoVZrTszYsWPJkycPLVq00GpPvoCAAG7dusXVq1e5dOkST58+BaBgwYJ06dKFevXqUatWLQwNta+SrV69OtWrV8fb25vTp09z9uxZrl+/HidggqhweNy4cXTq1CnesHnt2rWULl2afv36ab2O7+XNm5eZM2fSpk2bRINtc3NzHB0dKV68OIMGDVLfF7O6Mb2VLVuWsmXL0qtXLxwdHdX7SpqbmzN69Oj0XZwQQoj/FIUqoZ2DRYYQGBhIy5Yt2bJlC3nz5k3v5QgdCAsL4++//45zf7ly5bTa1PzfIjw8nHv37sW6r3z58sn6PzJCCCGEEOK/JSIigmfPnsW6r1ixYlrvQyREatu9ezeXL19m4MCBKa5w0pXPnz8zffp0lEolzZs3p1GjRhgbG6f3smKZMGECHz9+ZPTo0ZQqVUp9/7Vr11i9ejXdunWjUaNG6bavY1BQECdOnODevXvcuXOHx48fY2lpSZEiRShbtizly5encuXK5M6dO1XmDwgI4MqVK9y/f5+nT5/y9OlTvLy8GD9+PL179473nHfv3uHo6MjmzZuxsrJKlXUlpUePHigUCqZOnZrgXpHp7Z9//qFFixbkyZMHZ2dnypQpk95LEkL8yymVSoKDg2PdZ2pqmmGrfVPz73C5fi7BXYYWGhrKmDFjOH78OKdPn84wwV1oaCgVK1ZEqVQme4z9+/fH+qM7pgYNGuDl5ZWscbds2UKNGjWSva60IG88sUlwJ4QQQgghkkuCOyGSLzQ0lPDwcCwsLNJ7KQn6+PFjvPuKfV99l14+f/7MkSNHyJEjBzly5KBAgQJaVyvqWmBgIMbGxgm+DwYFBeHv75/ilqIpERgYiLm5ebrNr6lz585Ru3Zt+W+KECJNSHD3P3L9XFplJmnFihUMHjw4zeaLjIzk8+fPXLhwgS1btqjbKmQkL168SFFoZ2pqio2NjQ5X9D8JhYFCCCGEEEIIIYT4H2Nj4wxXYfe9+EI7IMNctMuWLRu9evVK72XEklQgZmZmhpmZWRqtJn4/QmgHUK9evfReghBCiP8oCe4SsWLFClauXJkmwZ2DgwO3bt0iKCgoTi/4jOb7JN3IyIgcOXIkmaYHBATw6dMnHB0dyZYtW6LHWltbkzlzZq3WZWNjk25tHoQQQgghhBBCCCGEEEIIIVIqQwZ3Hz58SNeSfYBVq1axYsWKNOuTPnv2bEJDQ4GoMtPLly8za9YsMmIn0+jgzsLCgokTJ9KiRQuNPqXn6OjI69ev6dOnT5LHdu/enSFDhqR4rUIIIYQQQgghhBBCCCGEED+KDBfcffjwgZ49e3L8+PF0W8OePXtYvnx5ms75fevIggULcuDAAe7evZum69DE8+fP0dfXZ+3atVStWlWjc65evcrp06fZtGmT7F0mhBBCCCGEEEIIIYQQQggRjwy1s2F0aPfmzZt0XUfjxo0pUaJEuq4BSPee4wl59uwZrVu31ji0UyqVODk5UbduXWrWrJnKqxNCCCGEEEIIIYQQQgghhPgxZZjgLjq0e/36dXovBWtrazZv3pwhwruMJigoCC8vL7p06aLxOe7u7jx79oyxY8em4sqEEEIIIYQQQgghhBBCCCF+bBkmuLt06VKSoV1YWBg7duxIk/VYW1szf/78NJnrRxISEkL37t0pV66cRscHBwezbNkyWrVqRdGiRVN5dUIIIYQQQgghhBBCCCGEED+uDLPHXbt27fD392fevHnxPq5SqRg1ahSnT5+maNGiVKtWLdXXZGRklOpz/GiyZMnC5MmTNT7e1dWVL1++MGDAgFRclRBCCCGEEEIIIYQQQgghxI8vwwR3AL179yY8PJwlS5bEeWzOnDmcPHkSgJ49e6b10kQyfP36lY0bN9KsWTMKFiyY3ssRQgghhBBCCCGEEEIIIYTI0DJUcAfQsGHDOMFdWFgYz58/B0ChUKBSqdJsPQqFIs3m+rdZu3YtAQEB9OvXL0XjXL16FQ8PD/766y/ev39PSEgINjY2VK5cmY4dO1K9enUdrVgIIYQQQgghhBBCCCGEECL9ZLjgLj5GRkZs2LCByZMnc+DAAfr37x/nGF9fX/bs2RNvSJTSx4T2Pnz4wI4dO6hWrRolS5ZM1hiRkZFMnTqVvXv3AmBqakqWLFlQKpV4eXnh5eXFoUOH6NixI9OnT0dfX1+XTyHNRURE/CeD4oiICI3uE0IIIYQQ4nsRERFxPtipVCpRKpXptCIhhBBCCCF0J6P+XatUKuP8HR4eHq6Toiu5NvyDBHcABgYG9O/fnwMHDjBq1Kg4j7948YI9e/akymNCe2vXriU0NJQePXoke4wpU6Zw+PBhHBwcsLW1pXDhwurHbt68ycyZM3ny5Am7d+8mODiYRYsW6WLp6ebRo0fpvYQM4+HDh+m9BCGEEEII8YMxMTEBICQk5If/UJ8QQgghhBDBwcHpvYQERUZGqkO6kJAQQK7p6tIPE9xB4m0r0/oxkbAPHz6wZ88erK2tadCgQbLGOHLkCB8+fGDLli1UrFgxzuNVq1Zlx44ddOjQgRcvXnDo0CF++eUXWrduncLVCyGEEEIIIYQQQgghhBBCpA+99F6A+PfZuHEjYWFhNGvWDENDw2SN8fLlSyZPnhxvaBfN3Nyc6dOnq792dnYmMjIyWfMJIYQQQgghhBBCCCGEEEKkNwnuhE7F3BewRYsWyRqjT58+DBgwgHbt2iV5bPXq1dV76Hl7e3Pp0qVkzSmEEEIIIYQQQgghhBBCCJHe0rVVZmRkpOw98C+ze/dugoKCyJQpE5UqVUrWGNrui1evXj0eP34MwLVr16hbt26y5k1vpUqVSnaF4o8sIiIiTv/j0qVLY2DwQ3XyFUIIIYQQ6SAiIoKXL1/Gus/ExET+lhRCCCGEED+c7/e0MzU1TaeVJC0iIkK91Vj0OgsVKqSTv8PDw8N59OhRisf5kaXb/5sJDQ2lX79+rF+/Xr2JuPixqVQqdu3aBcBPP/2Enl7aFHSWLl1afftH/oU2MDD4TwZ38ZHvhRBCCCGE0IRCoYizN7menl6a/X8RIYQQQgghdEGpVMZ7f0b9u1ZPTy/O3+GGhoY6Ce5UKlWKx/jRpVtwt3v3bm7cuEHfvn0pXbo0pqammJqaEhQUBMCOHTswNjbGxMRE/b+fP39Or+UKDVy/fp23b98CUKVKlTSbN2/evOrb3759S7N5hRBCCCGEEEIIIYQQQgghdCldgrvw8HA2btyIQqHgr7/+4q+//or1uEqlYubMmemxNJECJ06cUN8uUaJEms1rbm6uvh0d/AohhBBCCCGEEEIIIYQQQvxo0iW4279/P+/fv0/0mITKIb8vvxQZx/nz59W3ixQpkmbzxiwjNjMzS7N5hRBCCCGEEEIIIYQQQgghdCldgrsyZcrg5uaGoaEhenp6qFQqlEoloaGhvH79mmnTpuHi4kJoaCghISGEhIQQGhqKt7c327ZtS48liyS8evVK3SYTwNraOlnjrFmzhi1btpAjRw7WrVuHjY1NkufErLKzsrJK1rxCCCGEEEIIIYQQQgghhBDpLV2Cu9KlSyf4WHRQ06hRoziP/fPPPxLcZVC3b99W3zY2NsbQ0FDrMW7dusXSpUsB+PLlC3/88QcDBgxI8rwPHz6obxctWlTreYUQQgghhBBCCCGEEEIIITICvfRegPh3uHPnjvp2WFgYERERWo/x/V6HoaGhGp334sUL9e3y5ctrPa8QQgghhBBCCJEajh8/zt27d9N7GUJHLl++zP79+9N7Gf9Zq1ativXBcfHvExAQwL1795J1blhYWJxriyJ1vHjxgps3b6b3MtSeP3+e7HO9vb01vgYtRFqS4E7oRMzwTKVS8fnzZ63HiNnm0tDQkNatW2t03p9//gmAkZER9erV03peIYQQQgghhBAiNSgUCjp16sTw4cN59+5dei8nQadOnYq1/UVCDhw4wMePH9NgRRnT6tWrGTduHHZ2dhp9v9LD9u3bCQsLS/QYHx8f9u/fn6wPXWvL29s7yfVo6sKFC3Tp0gVbW1v27NlDcHCwTsZNzKdPn9LsNf/XX38RGRmZojFidqXShatXr/L333/rdMzEhISE0KFDB3r06MH58+e1Pr9z58706tWLa9eupcLq0samTZuYOnUqT548Se+lJOjixYt069aN3r17Z4gAb+DAgXTv3p2zZ8+iUqm0Onfr1q389ttvHDlyJJVWJ0TySHD3L+Xt7Y29vT2VKlWiZcuW6nArtXz/B2ty/virVasWenpRL8nmzZtTsGDBJM959+4dN27cAKBZs2bJ3ltPCCGEEEIIIYTQtSZNmtC3b1+OHj1Ks2bN2LVrV3ovKV6XL1+madOmTJo0KdFAysPDg4YNGzJ9+nQ8PT3TcIXp7++//1Zff7h06RItW7bMkBd6FyxYQKNGjXBzc0swMFMqlYwbN44mTZqwY8cOnQVr8bl+/TpNmzbl+PHjKR7LyMgIgEePHrFlyxZ8fX1TPGZSPn78yK+//sratWvx8/MjMDAwVf5dvHiRHj16MGDAAAIDA5O93vXr12NnZ6ezysTHjx/Tvn17evbsmawgTVsmJiZA1OvG3t6evn37anyN0cjICIVCwdWrV+nZsyddunSJVVgQEhKSKmvWRkBAAM7OzolWBkZGRrJr1y5atWpFt27duHTpkk7m9vf3Z9euXToJ7B8+fAjAlStX6NatGxMmTEjxmClhZGTEjRs3GDBgACNGjIjzeMyCk+/duXMHb29vRo4cSadOnaRKXmQY6bLHXXKFhISgUqnibUsQ/emX1Hgsvfj5+alv+/j4kDdvXo3PHTduHNevXwfg6dOnODo6cvToUXLlyqXzdQI6+WMpb968dO7cme3bt2NmZqbROcuWLSMiIgJLS0tGjRqV4jUIIYQQQgghhBC6NHz4cE6fPs2rV6+YOnUqXl5ejBw5Mr2XFYupqSnh4eHs3buXAwcOsGTJEpo0aRLnOBMTE8LCwtixYwd79uzB2dmZxo0bp8OK097vv/8e6+vmzZtTv379dFpNwkxNTfnw4QOzZs1i8+bN7N27l0yZMsU5BsDLy4vp06ezadMmdu7cSebMmXW+HltbW548ecLQoUNp0KABc+bMIUuWLMkaS19fX3178+bNyR5HG6ampgQFBbFkyRKWLFmS6vNduHCB3r17s3PnzljPV1OTJ09m1qxZdOnShQYNGjBx4kTy5cuX7PUYGhoCcO3aNa5du8aoUaOwt7dP9niazgdQqlQp5s2bh4GB5pevDQwMCA8Px9jYmM6dO5MtWzYgKgzr1KkTdevWpV+/frG6fqWFx48f4+7uzv79+/H19WXHjh3s3LmTQoUKxTnW2NhYfVupVFKsWDGdrMHMzIzTp0/j6urKtGnTqFmzZrLHiv4QA0CZMmUYM2aMLpaYoHXr1pE5c2Y6dOgQ7+PR37NSpUoxa9asWI+9evWKVq1aYW9vj6OjY6zXWHh4OA8ePFB/raenR44cOVLhGQihvQwb3EVGRsb5D9TatWsBEk3xU+Ox9PDhw4dY/XnPnDlD2bJlNT7//v37sb4ODg7m77//TrXg7vsy5OT8cQEwfvx43r17x4EDB7C1taVChQoJHrtp0yb27duHkZERCxcuJHv27MmaUwghhBBCCCGESC1GRkZMnjyZfv36AVHXNurUqUPVqlXTeWX/E/PDs7169UowjIu+OGpgYMDChQv/M6Hdo0ePOHbsmPprKysrqlWrpvGHjtNSdCiXKVMmnJyc4oR2EDsYKFGiBCtXrkyV0C7ayJEjuXbtGmfOnKFdu3b8/vvv8QYWSYnu0mRgYJAmoR3E/l5t3LiRatWqJXnOyZMn1R8u13S/ts2bN7N48WKMjIwYMWJEsq+rAUyaNImPHz9y4sQJLl++zIQJE+jSpUuyxooZmrVo0UL9PpZaYoYq1apV0/pan6GhIeHh4ZQsWTLWFjz6+vosWbKELl26sGvXLgYNGkS3bt1S9H1OzMePH7l16xY3b97k3LlzcSqUfXx86NevH7t27VKHizGfQ7SpU6fqLEjS19dn6dKldO7cmd69e9OhQwcmT56srnLU1OvXr/H29lav1cnJKdV/Hxs3bkzr1q05ceIE8+fPjzNf9Ou0ZMmSWFpaxnps3759REREsGrVKi5evMjGjRvV74sPHjxQ72+XLVs21q5dm+ahrhAJybDBnZ+fX6w/Gq5evaouq9e2V21KKBSKNJknMDCQyMhIfH19efz4McuXL4+1MeaaNWsIDQ2lefPm5MyZEwMDA0xMTNRtAr5XtmxZdcUdRL2RlixZMtXWX7hwYR49egRE/SGV3D/4jI2NWblyJRs3bqR3797UqFGDhg0bUrp0abJly0ZERATPnj1j586dnD17lvz58zNz5swUfUpECCGEEEIIIYRITb/88gtFixZVf0D3/v37Wgd3hw4d4uHDh4wbN07n64t5cd7BwSHBayHRIYapqSnNmjXT+Toyqvnz56NUKgEoVqwYLi4u9OjRg8qVK5M/f/50Xl1s0Rf9q1atmuBrTE9PTx1w1KhRI0UVWZquafr06XTs2BFvb2/69+/P/v37sbCw0Gqc6OuB5ubmqbHMeMX83TA0NIwV5GlyjibHw/8+AG9jY0OtWrW0XGVsenp6ODk58eDBA3VVpZ+fHw4ODlqPFfO5/Pzzz+rwNLXo6elhYGCQ7HaO0d/H+AK5IkWKsHDhQhwcHJgzZw779+9n4cKFFClSJNnrDQgIwNPTk6dPn/L48WOePHnCkydP+PTpU6zjTE1NyZkzJzY2NmTPnh1ra2ssLS25d+8eDRo0iHVszOBO18zNzVmyZAnt2rVjz549PHjwgA0bNpA1a1aNx7hw4YL6dtOmTSlRokRqLDWWQoUK0bNnT9avX0/btm1Zv359rErEhL5nwcHB7Ny5E4CKFSuydOnSWB9miHntvE+fPhLaiQwlwwZ3vr6+scIfY2NjXFxcMDY2xtjYGCMjI4yMjDAwMMDAwCBVAra3b98yYMAAnY8bnwEDBsR6s/heZGQkGzZsYMOGDer7nJycaNu2bbzHz58/n+nTp3Pjxg1y5MjBqFGjUvWPyUmTJjFx4kS+fPlC9+7dtf60Rkz6+vrY29vTvn179u3bh4eHB87Ozvj6+mJiYkKWLFkoU6YM8+fPp1mzZgmGl0IIIYQQQgghREbRqlUrlixZgpmZWbxtKBNz+PBhxo0bR2RkJEqlUuddgzStOknNC8oZ1fnz57ly5QoQVT25aNEi9UXk4cOHs23bNnWVW0agzc8yPDw8lVfzP+XLl6d+/fqcOXOGt2/fsmXLFhwdHbUaIzo8TcvgLrUqslKbhYUF06dPp3///kDUVjOtW7cmZ86cWo2THs8/JeFgzKrM+NStW5e+ffuyceNGHjx4QMeOHXF1daV8+fIajf/27Vtmz57Nu3fv+PLlCxEREZibm2NpaYmVlRXW1tbUq1ePK1eu4OnpSaNGjZg1a5ZWFWmp/T5brFgxBg0axJIlS3j48CF2dnZabVt08uRJ9e1evXql1jLjsLe3Z/v27bx79w47Ozs8PDzU4X9Cr9PNmzfj4+ND8eLF2bhxY5wPC0Rfizc2NqZ9+/ap+wSE0FKGDO5UKhVPnjyhYMGC6vsqVaqUbusJCwtL9XBo69atOh0vd+7crFu3TqdjJqZatWqx3rh1IUuWLNjZ2WFnZ6fTcYUQQgghhBDi30KlUqEKC0YVGYFC3wCFkWmadY75LwgODiY4OFgnY+XNmxeFQsHEiRMxMTHh69evGp138eJFJkyYQGRkJBC1bYRCoWD8+PE6WRdofqE4tattMpqQkBDmzp2r/nrkyJHqbkZ9+vTh0KFDjBo1ihUrVmSY742m+4Glx/tE586dOXPmDABPnjzR+vzoiru0DEp/5PfTOnXqUKVKFW7dukVkZCSenp4/RHCXkjmjfw8Te08bOnQox48fx9PTk4CAAKZOncr+/fs1Gj9XrlwsXLgQMzOzRH/XHBwc8PT0xNLSUus2kmnxPe/Vqxdubm58/PiRR48esWzZslgfCHnz5g07d+5k7Nixsc7z8fHh1q1bQFRVrzbbOqWUlZUVbdu2ZevWrXz48IHt27er91uM73vm4+PDhg0byJMnDxs2bIgT2oWHh3P79m0Afv31V6ytrVO0Pk9PTxo2bKjRsUZGRlhaWpInTx7KlStH06ZNk9U+28/Pj/3793PhwgUeP36Mj48PRkZGWFtbU6JECX766Sfatm0bp32o+DFkyOAO4OHDh/z666/pvQwA/P39tSoZFkIIIYQQQgghUkvYx9cEPLhEqPczQt+/RBkSoH5Mz8QC45yFMM5dDIsyv2CUPWO18fvRfPnyhZ49e+Ll5aWzMSdPnszkyZNTNIarqysKhSJV2mYm5kcOMZJj6dKlvHr1Cohqd9q7d2/1Y4aGhixYsIAOHTowe/Zspk6dmj6L/I6mP6P0CBpr1qxJpkyZ8PX11bjCKaboCsH0Cu78/f01CtwDAwPVtzUN6HX1AYHv9e7dm1u3bpEpUyaKFy+u9fnp8TufkjmTqrgDMDExYciQIer3zw8fPmg8voGBQaq3U9Q0fE8JExMTOnXqhIuLCwDHjh2LFdxt27aN0qVLxznv2LFj6jamMd8P00qrVq3UxS9BQUHq++N7P3N2dsbExARXV9d49wm8ffu2+ne1Q4cOKV5b7ty5uXHjBp8/f2b06NE8ePAAiCpGmjt3rnovw+DgYL59+8bff//NgQMH2LZtG9u2baNSpUrMmTNHo3A9IiKCTZs2sXLlSqpXr07Hjh0pVaoU5ubmfPv2jbt377Jt2zbmzp3LsmXLmDp1Kra2til+jiJtpWtw5+bmho2NTZyALl++fHTt2jWdVhWbSqXiy5cvEtwJIYQQQgghhEhXQc9u4XNlHyFvHyV4jDIkgOBXfxP86m98/nTHJF8prGu1waxolTRc6b9H3rx52bJlC6dOnaJUqVIUKFAACwsLzM3N41xcjoyMTFGlhFx7yFhu3brFli1bgKjrVIsXL47zMy9VqhTDhg1j0aJFGBgYMHHixPRY6g/DyMiISZMm8fr162Rd9I8ODDQN7vbu3Uv+/PmpXr261nN9PyfAoEGDtD6/Zs2ayZ5bF5o0acKECROoVKlSsgKn9Ah44wvuIiIiGDVqFDVq1Ej0mnH0epN6L27RogWLFi3i06dPKXp9pIa0CktbtmypDu7y5Mmjvj8oKIiTJ08yYsSIOOccPHgQiHpP1LS67HsPHz5k+fLlLF26VOsQvnz58hQoUABvb+9YQdT3r9P79+9z6tQpNm3aRIECBeId6+LFiwAUKFCAatWqabyGgICAePfn1NPTw8rKCisrK+rXr68O7tq2bUvhwoXVx1lZWZEjRw5KlixJhw4dOHDgAJMmTeKvv/6iW7durF+/Ptbx3wsKCmLo0KFcuXKFBQsW0Lx581iPZ8mShSJFitCmTRvmzJnD1q1bGTduHIGBgXTr1k3j5ynSX7oFdx8+fGDp0qVYWVlRs2ZN9X88rK2tcXNzizcJTy+PHj1K1qdShBBCCCGEEEKIlIoM8ufziQ0EPrik9bkhbx/xftcjLMr8QtYmduibSbskbeXNm1ejkGHKlCkUKlQIOzs7rS92+/n50aBBA9q3b8/AgQPVn8z/0X3+/PmHfC7+/v5MmDABpVKJqakpK1asIFOmTPEea2dnx40bN9i8eTNKpZJJkyb96yoTAwMDUSgUGu+BlZjWrVsn+9zoEM3Y2DjJY/fu3cvkyZMxNTVl7dq1yQ5nYgZ3W7ZsoUaNGkmec+zYMYYNGwZo3hJ048aNLFiwQN0OVJdSUhmVGq/lb9++Jfo8o+cMDQ1VVyxOnz6d48ePc/z4cYAkCz6Sav9rYGCAnZ0dGzZsYPTo0dosP9Wl1ftHgQIFKFy4MP/88496L0SA/fv3U7t2bUxMTGId7+XlpW4t2b1792SFuo8fP6ZPnz74+PgwePBgVq9erfX2VJMmTSI0NDTWFlvff8+uXLnCxo0bKVq0KBBVfefv78+UKVPUx1y4cAGICtY0/Z5v3ryZ33//nS1btiQYCELs4DipCsrWrVvz+fNnFixYwLdv35g1axaurq4JHj9z5kwuXryIg4NDnNAupujW3Hfv3uXevXvMnTuXn376iSJFiiS6HpFxpFtwN3fuXAIDAwkKCqJevXq0bt2abt26qX+hMpLPnz+n9xKEEEIIIYQQQvwHhX54xfudc4gM0KzdWkICHlwk+PUDcnWZjFH2hC82ieSzt7endevWXLhwgSVLlmBjY6PxuZcuXSIkJAQ3Nzfc3d3p2bMnjo6OGgUU8XFxcWHw4MHpGiCFhYXRvHlzHBwc6NOnzw8TZqlUKsaMGcPr169RKBTMnTtXva9dfPT09Fi0aBEdOnRg69atfP36lXnz5ml9MTo+z58/5+nTpzRr1izFY6XE2bNncXFxYdGiRZQrV06nYz99+pSePXvy7ds3jc+5dOkSJUqU0OjYoKAgHBwc2L17N8WKFdN6fTGDu7QQGhqapvMlJTUq7g4cOICTk1OSx+3atYtdu3bFuk+lUjFz5kwg/vAu+n1Gk3aTffr0oVu3bhgZGREcHJymLVgzCkdHRx4+fEj9+vXV90W3WPzeH3/8oQ5cnZycNPoZJubSpUuMGjUKZ2fneCskIyIi8PPzi3N/9HtQzDa00b+nYWFhfP36lXbt2qmP2bx5M2vWrFEfO2XKFN6+fcuTJ09QKBTUrVtXo5a2hw4dUn9fevbsmWR4p40ePXqwadMmPn78yN27d3nw4AFlypSJc9zjx4/Zt28fAE2bNk1yXD09Pfr06cOIESOIiIhgw4YNKf65ibSTLsHd+fPn1Z+QUKlUBAUFsXPnTnbu3En16tXp1q0bjRo1ivc/Du/fv9d6I9WU+O233+jTp0+azSeEEEIIIYQQQkBUaPfObVqsPexSIjLgK95bp5K7x0wJ71JBwYIF6d+/Py4uLrRr147169drHC4cOHBAfbtMmTI0bNgw2aEdRFXwbdiwIVYVRVq7desWPj4+zJ8/nwsXLjB//vwM1V0pIStWrODs2bMAjB8/XqPQzMrKilWrVtG5c2eOHDnCu3fvWLlyJVmyZEnRWvLly4ejoyNly5Ylf/7026/ywoULvHr1ii5dujBkyBD69++vs0CnePHiuLq6sm/fPsqVK0ehQoXIlCkT5ubmcY5t164d3t7e/Prrr0yfPj3RcZctW8bOnTsBaNSoUbKrTKL31UsrYWFhaTpfUlIjcO/duzeVK1fGwsKCfPnyxamOq1q1Kv7+/vTs2ZNJkyYlaw5N94kzMjLi+fPn2Nvb06ZNG4YMGZKs+ZLr3bt35MqVK03njKlly5a0bNlS/fXly5dRKBRUqFAh1nHh4eHs3r0bAFtb22Tvrzpt2jROnDih/vrdu3fcv38/znwQlRl8f3xSjhw5wpEjRxJ83M3NDYjajy56juTs/fb+/XudhndGRkbUqVOHvXv3AnDjxo14g7ujR4+qb2v63hSzXW/0f9vEjyFdgrtatWqxefNmLl68yMWLF3ny5Ik6sb9+/TrXr18ne/bsdOjQgY4dO5I9e3YAXr16RefOndm5c2esctjUkidPHpYsWZLq8wghhBBCCCGEEDFFBvnzfuccnYV20ZQhAbzbMZu8/ZdI28xUYGdnx86dO/nw4QN9+vThjz/+SPKi7MePH7l0KaoNapEiRVizZk28++doo0+fPjRr1oyaNWtStmzZFI2VXKdPn1bfvnLlCq1atWLz5s2JVq+lt6NHj7Jy5UoA+vfvH2+LwVu3blG5cuU4gUaRIkVYu3Ytffv25fbt27Rv354FCxZQtWrVZK/H2NiYdu3aMWrUKHbs2KFxGKFLERERnD9/Hoi6ULxkyRJu3LjB6tWrk2xHGJ+wsLA41YilSpWiVKlSiZ6nVCr59OkTAIULF04yFA0I+N9756hRo5IdNMasuPP399eoMicwMFB9W5PjAYKDg4GMV3GXWsqXL58q40b/Xmq63+jVq1cZMmQIfn5+rFixgi9fvjB16tQ02dvPycmJffv24erqGm9Ikx62bt1K27Zt49x/8uRJPn36hKWlJWPHjo31+3f37l3KlSuX5Pfs/fv36uAof/78zJ49O9HWs4aGhixdupTt27eTO3duihcvTqZMmbCwsFD/fJctW8aqVavU57Rp04Z58+Yl+Tw7d+4MRH1w4NChQwket2vXLqZOnQrAhg0b+OWXX5IcO7liVgR//Pgx3mNevnypvu3q6srSpUuTHDdz5sxYWlri7+/Pt2/f8Pf3x9JS/v77EaRLcGdoaEiNGjWoUaMGo0eP5u3bt5w4cYITJ05w9+5dIGoPvJUrV7JmzRrq1aunbjng4+NDhw4dkrWhalJUKhUqlQqlUklERATh4eGEhoYSFhbGwoULadGihc7nFEIIIYQQQgghvvf5xIYUt8dMSGTAV76c2Eh22+GpMv5/mampKV26dGH58uV8+fIFJycnli9fnug527ZtIyIigkyZMrF69eoUh3YQVU3QuHFjRo8ezf79++PsVZTalEqlutMSQKVKlZg4cWKGDu0uXrzImDFjUKlUdO3aNcF9r+bOnUtkZCTDhw+nXr16sR6rXLkyLi4uDBw4EC8vL3r27MmAAQNwdHRMdujWpUsX1qxZw8qVK9X7pqWlP//8Ex8fH/XX9vb29O3bN1mh3aJFi3jw4AFr167VupXop0+f1BUmefPmTfL46G1v9PX1tWpb+73IyEj17UGDBml9fsxqF03ousIvNDQ0RdW7yam4e/fuHTlz5kyVar1Tp04xfPjwJL9P7u7uuLu7az3+jh07+PbtGwsXLtRJu9uEzJ8/n02bNgFRH7TICOHdmzdvuHz5MnPmzInzWPRahw0bRtasWWM95uTkRGBgIMOGDaNRo0YJjr9582bCw8MpVaoUrq6uZM6cOck1GRgY0LNnz3gfu3LlSqwWmACvX7/m7t27lC5dOsH3qNevX/PXX39RpEiRWCF7fGIG7yl5H9FEzCrjhF7f0QE/gIeHB3369NEoBDc1NcXf3x/IeFW9ImHptsddTPny5cPOzg47Ozvevn3LgQMHOHToEK9fvyYiIoLTp0+rP6mlUCjw9/dXv9jSytGjRyW4E0IIIYQQQgiR6oKe3SLwwaVUnSPgwUUsyvyCWbEqqTrPf1H79u1xcXFBpVJx+vTpRPdOCg0NZdeuXejr67NkyRKd7ZcD0LdvX2xtbZk/fz7Tpk3T2biauHnzprpiwNDQkAULFqRrq8ek3Lx5kyFDhhAeHk7//v0TDO0g6vncv38fBwcHKlasyKRJk2JdOP3ll19YtWoVQ4YMISQkhJUrV3LixAlGjBhBw4YNtV6blZUV7du3Z+3atdStW5eKFSsm5ykmW8zWbDVq1GDUqFEJHvvt2zd1R63v7dmzh/Xr1wNRF/9dXFy0CjPfvn2rvq3Ja+nLly8AZM+eXePqq/jErLjbsmVLohVCEFUp069fP+rWrZvo9+p7GzduZMGCBahUqnirEpPD1dWVw4cPs3XrVszMzFI8niZevnxJ9+7dady4cZLtTJOjUaNGuLq6EhERQfHixeOEg02bNsXHxydWO0dnZ2d27dqFhYUFJ0+e1Gie78eNjIxk5MiRHDt2TKv17tu3T70nWUJ8fX0zRHi3ZcsW6tSpEyeYO3fuHHfv3qVEiRLx7isYGhrK06dPGTRoEOXKlWPlypVx2iL7+/uza9cu8ufPz4YNGzQK7RLz4cMHxowZg1KppF69eoSHh3P58mW+fftG3759USqV/PTTT7Ro0YImTZrECvEOHjwIQK9evVi3bh0+Pj5YW1vHO0/MvTejOwKmlphZR0LrKVGiBBcuXFB/nVBlXkxKpRJfX18gqoo7pS2cRdrJEMFdTPny5WPw4MEMHjyY27dvs3PnTk6cOEFISAgQ9capUCiwtLSkdu3aOptXpVIRGRlJRESEutouLCxM/c/b25vw8PBkfaJICCGEEEIIIYTQlM+VxC/y6Wyeq/sluEsFOXLkoHz58ty9excjI6NEL8Dv3buXb9++MW7cuCSvcfj5+XHu3DlatWql0TpKlSrFTz/9xPbt26lfvz516tTR6nmkRPQ+PQCdOnXK0KHd9evXGThwICEhIYwZM4Z+/folenzM60J58uSJdyuXOnXqsHHjRhwcHAgICODZs2c4OjpSuXJlevfuTf369bUKZnr16sW2bdsYM2YMBw4cSLMQJiAgQB1UKBQKxowZk+jx7u7uLFiwIMlxz507x5kzZ2jSpInGa7l//z4Aenp6lC5dOsnjo9tq5syZU+M54hNd+ZIrV644gcb3bt26xahRo3j37h1PnjwB0Di8MzMzo2XLlrRu3Vrja48PHz6MVREY059//qne/mfo0KGsWbMm1Vutenl50adPHz5//syOHTswMTFh/PjxOp+nWrVqCT4W3SI1S5Ys6oAiuuJQoVAkO7TQ19dn8eLF6jatpUqVInPmzFhZWcUbDI8ZM4ZLly7RvHlzJk+erNEcqVnhl5SAgADc3d1ZvHhxnMeiq8anTp0a73MNCgpS3/7555/j3ct0586dGBoasm7dOrJly5aitfr6+tKvXz8+ffpE7dq1cXFxUe9NWLFiRXWucObMGc6cOUOpUqVwc3PDwsKCyMhI3N3dyZEjB7a2tuzYsQNvb+8Eg7IPHz4AUT+blIaNSXn16pX6dkLV6fb29nz+/Jl79+5RvHhxjVp3Pnv2TN2CN76wW2RcGS64i6ly5cpUrlyZyZMns3//frZt28br16+BqBTa19eXWbNmqTeUFEIIIYQQQgghfmRhH18T8vZRmswV8uYhYR/fYJQ944YqGc3p06dp0KBBkhe+GjRowN27d7Gzs0uw2ic8PJwNGzbQqlUr+vbtm+h4X79+xc7OjocPH6orejTRo0cPrl69yuTJkzly5Eia7Gvj7++vbpNpbm6Oo6Njqs+ZXMeOHWPMmDGYmJiot2pJSnSokjt3bnUwEp+qVauye/duHB0d1Rdkb9++ze3bt7GysqJx48ZUqVKFEiVKUKxYsUTbGebNm5f69etz6tQpFi1apN5zKbUdOXJEfVG+WbNmlCtXLtHj7ezssLGxQalUUqpUKbJly4alpSVGRka4uLiwYsUKLC0tWblyZZKVa9+7d+8eEFVxklQ72bCwMHV7z6T2mExK7ty52bJlC9WrV0/w9z40NJTVq1ezfv16dYVerly5eP78Oc+fP6do0aJJztOlSxe6dOmi1dqePn3KxIkTEwzvol28eBE3Nzd69+7Nx48fcXR0jFXBGF0koVQq45wbs2XfrFmzmD9/foLzhISEqAsvIKriz9jYmBEjRmjztBIVFhbGqVOnqFOnTpzXQUBAgPr7r4uWw98zMDDQuF1tdEhqZGT0Q1Q47d27FzMzszgf8Dh69CgPHjygQ4cOCe7XGV2VliVLlniry8PCwtixYwfLli2jUKFCKVpncHAwDg4OPH36lLp167J8+fI4gWfevHnZsWMHgwYN4vLlyzx69IhNmzYxePBgzp49i7e3N05OThgbG2NpaYmXl1eCHwaIDu7y5MmTqoFXZGSkeq9bU1NTqlevHu9xVlZWGu3hF9OJEyfUt6Wb4I8lQwd30aysrOjZsyc9evTgzJkzbNq0iRs3bvDnn3/SsmVLxowZo95UUgghhBBCCCGESK5wn6TbDmlCYWCIgUX8n85ObA7fW8cTfCw1+N4+jvVPrRN8PLnPQ1OG1qnbekrXxo4dS548eRg0aFCiFXItWrTg06dP9OrVK8E9dA4ePIiFhQUTJkxIdJ8dX19f7O3tefbsGQALFy4kPDycgQMHJrneBg0akDdvXjw9PZk7dy5OTk5JnpNS7u7u6ov3AwYMSLJKKb1s3bqVuXPnUqxYMZYvXx5v5Vx8ooM7TS7iFilShD179jBmzBjOnTunvt/Pz48//viDP/74gyxZsjBy5Eg6dOiQ6Fg9evTg1KlTbN++nSZNmvDTTz9ptN6U2LFjBxBVsaRp5VhSFaE5c+bUOrQDuHPnDkCC4UFM0W0yIeXBXa5cuRIcQ6VScfToUZYsWcLbt2/JmjUrLVq0oFWrVpQtWzbec44ePcqTJ08YPnx4itYFYGtrS+7cublx4wbPnj3jyZMn2NjYkDdvXr59+8aZM2cwNDRk7dq1/Pzzz0BUu7/Vq1dz4MABihUrxrdv37h//z4vX74EotrqqVQqVCoVSqWSb9++qd97pkyZQtu2bVO87uR49+4dO3fuZN++fTRp0iTe99/ofQ2BHyIsyygiIyPZsmULbdq0ifVBk8DAQJycnMifP3+ClZORkZH4+fkBUL58eXWlaUxfvnxh2LBhKX7P8vX1xdHRkb/++osePXowYcKEBD8YY2pqyurVq+nZsyd37txRf3hi69atlClTBltbWyAq4H369CmNGzeOdxwvLy8gqkNgavrjjz/Uc3Xp0kVnH7IJCwtj9+7dwP+qesWP44cI7qIpFAoaNmxIw4YNuXfvHqtWreLcuXPMmDGD8+fPM3fu3FQvWxVCCCGEEEII8e/1dmXSYYgmTPKXIXePmak6hy743zqG/62E9+xJ7edReNIfKR4jLZmamvLkyROGDh2q0fFubm5JHlOzZk2t1+Hs7ExERIS6PVhC9PT06NSpE4sXL8bd3Z0WLVqoL+CnBqVSyZYtW4CoqofevXun2lzJFRQUxNSpUzly5Ah9+vRh+PDhWrWo07bdoJWVFWvXrmXnzp3Mnz9fXcGWL18+pk6dqnEL059++okiRYrw4sULpk6dysGDBzExMdFqLdq4evUqjx5FVf/26dOHPHnypNpcSXn+/Ln6orYmr9/oKhkgVbp0hYWF4eHhwcaNG3n69CmVKlViyJAhNG3aNNHX0ubNm5k3bx5KpZLixYvTrFmzFK+levXqVKtWjcDAQAwNDdWVm+7u7urg7vvvmY2NTayq3egQIz6nTp1i0KBBKV5ncqhUKv7880+2b9/OmTNnqFWrFq6urhQpUiTe42P+3G1sbNJqmT+8EydO4OXlRbt27WLd7+Ligp+fHzt37kywgvHDhw/qfS1Lly7NmTNn4hyTK1cuWrdO+ANCmvD29qZ///68fv2aadOmxbvX3veMjY1xcXGhbdu2FClShLt373Lr1i327t2Lnp6eem3RbXi/FxQUpN5DTpf7z37vzJkzzJo1C4h6n3dwcNDZ2G5uburn4OjomGE/SCPi90MFdzGVL1+eNWvW8OjRI5YtW8bZs2dp3bo1y5Yto1KlSum9PCGEEEIIIYQQQvzLRF+Uz507t3rvr4yuXbt2LF++nPDwcKZMmYKHh0eqBT4nTpzA09MTgPHjx6frnk3xefbsGUOHDkWhULB169ZY1Vvh4eEa7S2m6f5j3+vcuTN169Zl6dKlXLhwgR07dmgdLnTs2BEnJydev37NihUrGD16dLLWoglXV1cgqkLL3t4+1ebRRHSrt8yZMye5FySgvlANKa+4ixYZGcn9+/fx8PDg0KFDhIeH06pVKxYvXkzx4sUTPTcgIIBp06Zx+PBh9X0TJ06kWLFiFCtWLMVrUygUqdIaMr3t2LGDrVu3UqhQIVatWpVkK9t3796pb8e3z5qI3++//07VqlVjVR3fvXsXNzc3li5dmuB+a/C/ijSAggUL4u/vT2hoaKKtf7V17949Bg0aRObMmdm7d2+i64kO5KJlz56dHTt2YGlpydixY3F0dIx1fsGCBWO1kowpersuQCe/pzEFBwdz584ddu3axdGjRwHo0KEDkydPTrL1raa8vLxwcXEB4JdffsHOzk4n44q088MGd9FKlSrFmjVruH79OgsWLKBnz55MmDBBo+RdCCGEEEIIIYQQQlsKhUKnFyZTU9asWWnQoAHHjx/Hy8uLtWvXarxPkzZUKhVr1qwBoE6dOgm2Hvtey5YtY11wT6mbN2/GuS96P0E3Nzf69+9P9+7d41TOubq68ujRIxwcHBK9MKxtxV1MuXLlYsGCBQQEBCQraLG1tWXRokWEh4ezadMm2rZtS+HChZO9noQ8fPhQ3dpzwoQJmJub63wObZw8eRKA5s2baxScfvr0SX07pRV3fn5+6j21AgICyJIlC61ataJx48YYGhoSEBDAjRs3iIyMjPdfcHAwK1eu5M2bNwBUqlSJdu3aUadOHQmXYlCpVFy4cAE3Nzf8/f2BqArnQYMG0b17d41+7tHtEAGNW9/+112/fp179+7F2jctICCAUaNGMX78+CTfx6Nf1xAVbmXPnp27d+8muEebtjZt2sSyZcvo2bMngwYNivfDIF++fEGhUNCuXbt4W3rmy5ePK1euoFQqGTBgQKzHChYsyKdPn/jw4UOc38eYbT812acyITNmzGDu3LnqryMjI9WV19mzZ8fW1pauXbtSoUIFlEolwcHByZ4rWnh4OCNHjiQoKIhKlSqxbNmyOKGmyPh++OAuWvXq1dm7dy8HDx5kwYIFvHr1iokTJ6b3soQQQgghhBBCCPEvE90a7EfRunVrjh+P2j9x48aNdOrUiZw5c+p0jtOnT/Po0SOMjY2ZMmWKxuetX7+eiIgIna4lpps3bzJv3jyqVavGoUOHEtz7ysjICA8PD44ePUq9evUYOHAgFSpUSNHc3t7e8QZHya2Osra2pl69epw8eZLw8HDmz5/P2rVrU7TG+KxcuRKAWrVq6aSdY0rcu3ePhw8fAmi8v9r79+/Vt1Ma3FlZWZE7d25u374NwNevX9m0aRObNm2Kc6y1tTU2NjZky5YNU1NTrly5QnBwMHp6evz22284ODhQunTpFK3n3+bLly+4u7uza9cu3r59G+uxNm3a0KdPH43Hit6nL2vWrDrbI+zfbt26dVhYWPDbb7+p75s1axbt27ene/fuSZ4fHW7p6+tTpEgRSpQowaVLl1Ic3IWGhjJ69GiMjIw4ePBgonvM9ezZE5VKlejecCEhISxatChOeFWoUCEgag/NX3/9NdZjjx8/BqKeW6lSpZL9XIYOHRpr7Bs3bqgDxp49e9K/f/9kj52QGTNmcOfOHWrWrMmqVaswMzPT+Rwi9f1rgrtorVq1on79+jg7O7Nhw4ZYPZuFEEIIIYQQQgghkis6sPvRPrlep04drKys8PPzIzQ0lJUrV6r31NEFpVLJ8uXLARg0aBD58+fX+FxdB4jf+/z5M2vXrk1yb5/oCkqVSsWlS5eoV69eioK7/fv3M3nyZBYuXEjTpk2TPc73WrRooa5AO3fuHLdv36Zy5co6G//evXucPn0aExMTZsyYobNxkys6IKtfvz5lypTR6Jzo4M7S0pJMmTKleA2Ojo7qFrOVK1emWLFi5M6dm5w5c5I9e3ayZ89OtmzZMDIy4tu3b2zZsgU3NzfCwsJo1aoVAwcOjFMZee/ePUqWLJnh2smmhYCAAC5cuMDhw4e5cOEC4eHhQFTwOWjQIJydnQkMDNR63OigJbGKWV2aP38+/fv3T/DDAAm5ePEi586dY/LkySgUilRaXdLu37/PxYsX6dSpE6ampur7BwwYoA60khId3JUsWRJjY2NKlizJnj17GDlyZIrWZmxszPDhwxPczzDaq1eveP78OQD29vbY29szatSoOMfVr18/3vPz5MmDqakp586dixPc3blzB4AiRYqkKPjKnDkzefPmVX+dK1culixZwsePH9m5cyd2dnY6/ZvCxcWFPXv20LhxY5YsWfKffI/5t/jXBXcQ9R9mbT7dJYQQQgghhBBCCJGU6PZWP9qn1w0NDWnQoAH79+8HokKlUaNGYW1trZPxDxw4wJMnTyhZsmSG20cnZiVJYmJeuHZ2dqZRo0bJnnP//v1MmDABpVLJ6NGj0dPTi3NROLnq1q2LiYkJISEhQFSwpcvgbtGiRahUKoYOHapVAJsavLy81JWiQ4YM0fi86NarKa22i1akSBHWrFlD9erVY71OYvL09GTTpk388ccfRERE0Lp1a/r165dgy8bbt28zePBgHBwc6NixY7L3TvzRhIWF0aFDB/755x/1fQqFgo4dOzJy5Eisra3VHwLQRkBAgHpPMk0D3pS6evUqBw8eZObMmVSqVCnWY9FVxGFhYXz9+lV9v6enJ8OHDycgIIDAwEDmzJmDvr5+mqz3e8uWLQOgffv2se7XNLSLiIjg3r17AFSpUgWI2tLq4cOHfPnyJckPSyQlqdAO4MiRI+rbjRs3jjcw3L9/P61atYo3HNPT06NChQqcO3cOpVKpPiY0NJT79+8DxPnZppS+vj7t2rVj9erVeHp6cuHChST3b9TU2rVrWbFiBba2tsydOzfdXltCN/6VwZ0QQgghhBBCCJEc+Qat1sk4CoOEL8ImNsfHA86Eej5J8HFdM85bkuytE97vLLnP498qOiz50YI7iAp8ooO7sLAwrl69qnGolZiQkBCWL1+OoaEh8+bNS9EecOkp5gXOPHnyJHm8l5cXJUqUSPK4iIgIRo4cibOzs8b7/iXG1NSUatWqcfHiRQD1/+rC+fPnuXbtGhUrVqR37946Gze5Fi5cSEREBC1atNAqjPH29gaIVeWSUnXr1o33/tu3b7N161aOHz+OpaUlPXr0oEePHtjY2CQ6Xu/evQkICGDmzJls2bKFsWPH0rBhQ52tN6MyMjJi/vz5dOnShYiICPLmzcv8+fOpWrVqisa9deuWuiI6pWNpytjYmM+fP+Po6JjgMUeOHIkVLsW0b98+bGxs4q0QS00RERG4ublx4cIFSpYsSfny5ZM1zoMHD9QfZvnpp5+AqMo7Q0NDDh8+TK9evVK0zrCwMHU1ZkIOHDgARLVHnTx5sno90bZu3crSpUs5efIkixYtijd4r1atGlevXuXOnTvqD0Fcv35dPXetWrVS9Dzi06FDB9auXYtSqWTbtm06Ce5WrlzJ8uXL6dy5M9OnT0/Xak6hGz/mX1NCCCGEEEIIIUQqMLTOnq5zmOYvk6bBnWn+0sl+zmnxvcpIlEqlOrizsrJK59Vor0aNGrG+9vT01Mm469atw9vbm1GjRqVoH6D0pm1lQq5cuXB3d9f4eF0GmjVq1FAHdkFBQXz9+lXrdn3fCwsLY+7cuZiZmbFw4cJ0r9S4efMmR48excbGhsmTJ2t8Xnh4uLpVpi6Du5gCAgI4cuQIu3bt4sGDBxQrVoxp06bRunVrTExMNB5n8ODBBAQE4OrqiqOjI7/99hszZ87USXvPjKx8+fI4ODhw7do1Vq9erZP306tXrwJR1cVpFdxFV0mWLFlSHSAlxdPTUx3Q1q9fnwEDBqTa+qK9fPmSwYMHY2FhgUql4vXr1/j4+ADQqVOnZI977tw5IOrDBD///DMAJiYmVK9enT179qQ4uHv58iW9e/eOVbGYkC9fviQYrgOcOnWKQYMGsXHjxjiBVvR+fCdPnlQHdxcuXACi/rsQHUrqUp48eahVqxaXLl3i4sWLvHnzJkUVzs7OzqxevZpevXoxceJEHa5UpCcJ7oQQQgghhBBCiAzCokxtfP7UPAxI+Xy/pNlcP7roC50AOXLkSL+FJFPWrFnJkSMHHz58AHSzT9/bt2/ZsGEDNWrUoF+/fikeLz1pG1Tp6emlOCxLru+rz3RRWeHq6sqrV69wcnJK9xaZoaGh6v31Zs2aRebMmTU+19PTk8jISACdPo9Pnz5x7tw5Tp06xZ9//klkZCT169dn9OjRGlXkqFQqAgMD8fPzw9/fH39/f/z8/ChZsiR58uTBy8uLY8eO8ezZM7Zv366zNrYZlaOjIz169NDZhyCig5bq1atjbm6ukzGTktL2pg0bNkyTtRYqVAg3NzeOHDnC+vXrY/23rFq1aske99SpUwD88ssvsQLrX375BScnpxTvv1miRAk2bdrE2bNnKVOmDPnz58fS0lL9PRs/fjweHh6ULFmSnTt3xvlvmq+vL40aNSI0NJQmTZowc+bMeN8rK1SogJGREe7u7gwfPhxDQ0N1i96qVaum2u9ip06duHTpEiqVih07djBu3LhkjbN8+XJWr15N3759kz2GyJgydHB36NAhWrRoIaWdQgghhBBCCCH+E4yyF8AkXylC3j5K9blM8pfGKHv6XqD/kfzowR1A4cKF1cFdxYoVUzzerFmzsLKyYvHixToJAtNTeleYaaNw4cLq2wULFtQq2IqPp6cna9asoW3btrRt2zaly0uxOXPm8PTpUwYMGED9+vW1Ojfm3mkFChRI0Trev3/PnDlzePDgAV5eXkBU5WStWrVo1qwZZmZmeHl54erqGieQCwgIiHVfQEAASqUShUJBpkyZyJYtm/pfkyZNuHz5Mk+fPuXFixfMnj2bRYsWpWjtGZ2BgUGKX7fRXrx4wfPnzwFo2rSpTsbUxI/0npc5c2a6d++Ora0t/fv35/bt2wDJ3ofu4cOHPH36FIi7R169evVwcnJi69atKd5/s0SJEvG2JH769CnHjh0DYMqUKfG2wDxw4AChoaEYGhoyefLkBF9vxsbG1KpVi3PnznHo0CHy5Mmj/u+kLtpJJ6RBgwbY2Njw6dMn3N3dGTZsGEZGRlqNsW7dOlauXCmh3b9Uhg3u1q1bx9KlS/nrr78YOXIkBgYG6n9CCCGEEEIIIcS/lXXNNrxPg+DOuqZtqs/xbxIzuMuXL1/6LSQFqlatypUrV2jdunWKL6geOnSIP//8k82bNye5n5fQrZw5c5I3b17ev3/PlClTUjzetGnTKFKkCNOmTdPB6lImugVlmzZtGDFihNbnP3r0v/dOTfYgTEzOnDnx9vZWh3YQtT/YhQsX1BVeMVlaWpI3b17y5s3Lly9fePHiBcWLF2fSpEnY2NhgY2NDtmzZ4q3UevjwIe3btycyMpJjx46xYMGCVA+GVq9eTZs2bciZM2eqzpPa9u3bB0TtPZqWwd2PeI3awsICBwcHHBwcgOR/YGHXrl1AVMvHX36JXblfsGBBKlasyNGjR+nbty/lypVL2aLjsWTJEpRKJa1bt463NWpISAibN28GoFWrVkl+2KZly5acO3eObdu2kTt3biCq7Wfz5s11vvZoBgYGtGnThnXr1uHj48ORI0do06aNxufv2rWLxYsX061bN41DO1dXVwoWLKj1ByJE+siQ7zC7du1i6dKl6lLRHTt2xHpcX18fQ0ND9T8jIyMMDQ0xNjbGyMgIExMTTExMMDY2xtTUFFNTU8zMzDA3N8fCwgIrKysyZcqEtbU12bJlI1euXPEm80IIIYQQQgghRFozK1YF8zK1CXxwKdXmsCjzC2ZFq6Ta+P9GMfeEK1q0aDquJPm6du2KkZERffv2TdE4YWFhODk5MXv2bKpUkddRepg+fToqlYratWunaJxTp06hUqnYtWuXVvuzpYYrV64wfvx4GjduzOzZs5M9BoCNjQ3Zs6d8H87hw4fHaQNbtGhRypQpQ/HixcmXL586rIu5N92kSZN48eIF2bNnV+9plpjSpUvTo0cPNm3ahLm5eaqGdhEREUybNo3g4OAfPrQLCwtT7zXZunVrLCwskj3WixcvOHfuHHZ2drpaXpo4evSoVoGlpaWl+nZ4eLjW83369Ekdlg4YMCDe12qXLl24c+cOCxYsYOvWrVrPkZgbN25w9uxZLCwsGDNmTLzHuLm58enTJwwNDXF0dExyzIYNG2JmZsbDhw95+PAhAM2aNUv1/SY7duzI+vXrUalUbNu2TePg7uzZs8yYMYNWrVpp9eGNvXv3Mnz48GSuVqS1DBncffr0CZVKhUKhQKVSxXk8IiKCiIgIgoOD1feltJ1m9uzZqVq1Kg0aNKBx48Zal6YKIYQQQgghhBC6kq1JP0JePyQy4KvOx9a3yELWJj/WhcmM4MWLF0BUe7QiRYqk82qSJ0uWLNjb26d4nNDQUEaMGIGtrW3KFyWS5fsql+QKCQlh27Zt6d7+9e+//2bQoEF06tSJiRMnJhhcBQQEJBjOeHp6qlsAarLvnCZ++eUXqlWrhq+vL506deLXX3/FxsYGPz8/7ty5Q506dbQaz9PTk9y5c8f7/IYNG4aHhweNGjXSydrjExgYyLBhw/Dy8mLv3r2pNk9a2b17N1++fMHQ0JD+/funaKz379/z5MkTjY/PKFs7OTs7axXcBQQEqG/7+vqSLVs2reZbs2YNoaGhFCxYMMHWuk2bNsXJyYnr169z5MgRnVWuKZVKnJycAChbtiyenp5kypQp1nX89+/fs3LlSgC6d+9O3rx5kxzX1NSUhg0bcujQISCqaEgX/61MSr58+ahZsyZ//vknDx484O7duxQvXjzRc54+fcqoUaOoWbMmc+fO1fh1+Pz5c54/f/7Ddgz4L8qQwd3gwYPJmjUrM2bMoHbt2hgZGREeHq7+FxoaSlhYmPpfaGgoISEhhIaGEhERkaw5P378iIeHBx4eHlhbWzNgwAB69uyZYd6EhRBCCCGEEEL8d+ibWZKry2S8t05FGRKQ9Aka0jOxIFeXyeibWSZ9sIgleg+lUqVK/ee79lhaWtKnT5/0XobQgRYtWsTaMy813L9/nxMnTgDg5eXF48ePKVmypPrxK1euMGrUKEaOHEn37t0THCc8PJyePXsSFhZGuXLlKFu2LMWKFVPvZTdt2jSUSiWg272pXFxcsLa2Vl8jDAsLY/jw4dy4cQNXV9d4W/Ul5MSJE2zbto0mTZrQpk2bWBfpzczMWLt2bapdWP/48SMODg68fPmSPXv2YG5unirzpJWAgADWrFkDQLdu3ciTJ0+KxvPx8cHPz0/j4zPCNWOlUomnpydKpVLjKs2YrV+/fv2q1QdRHj58yI4dO1AoFMycOTPBdqHGxsb06dOHpUuXMnXqVMqWLZviPScBgoKCaN++PSVKlOD+/ft069YNfX19ypYtS6VKlahcuTIbN24kKCiI/PnzM2TIEI3HjvnzzJcvX4pfT5rq0KEDf/75JwDbt29n+vTpCR4bEBDAkCFDyJUrF8uWLYu37W5CovfNzJ9f9jb+UWTI4A6iSmpnzJjBpEmTKFSokMbnRUZGEhwcTHBwMEFBQQQEBBAYGBhrg9ivX7/y9etXPn78yJs3b3jz5k2swO/bt2/MmzePK1eu4OLiotUvgRBCCCGEEEIIoQtG2QuQu8dM3u2YrZPKO32LLOTqMhmj7Cm/ePZf9ODBAwDq1auXvgsR4gfh6+vLkiVL2L17N7/99hsLFizA1dWVXr16sXLlSqpWrcr+/fvZvn07rq6uSe5JZ2hoiLu7O7dv32bhwoXqFonfK1q0qE5/TzNnzqy+HR4ezqhRo7h8+TIAjo6O7NixQ+Pwo2/fvtSrV49Jkybx+++/U758eTp27EiLFi0wNTWldOnSOlt3TM+ePcPe3h5vb2+cnJwoVqxYqsyTlhYtWsSnT5/ImTOnVgFNQr59+xZrL9OkxNclLq35+PgQERGBj48PWbJk0eic6OpxiKpO01RISAjjxo0jMjKSXr16UaNGjUSP79WrF9u3b+fDhw8MGzaMXbt2YWxsrPF88bGwsKBr167qr799+8b58+c5c+YMO3fuZOPGjerHcufOzaVLl6hbt26SbYCXL1/OwYMH1V+/evWK0aNHs3Tp0mTvA6ipRo0akSVLFr5+/cqxY8cYNmxYrPecmGbMmMH79+/Zt2+fxm1hv379yoIFCzh79iw2NjaYmZnpcvkiFWXY4C659PX1sbCw0KqncWhoKHfu3OHIkSMcOHCAsLAwVCoV58+fZ/HixYwfPz4VVyyEEEIIIYQQQsTPKHsB8vZfwpcTGwl4cDHZ41iU+YWsTeyk0i6Z7t+/z7t379DT06N169bpvRwhMjSVSoW7uzuLFi3i69evODo6MmzYMAAWLFjA1KlT6d27N+PHjydXrlxs3749wcqd+FSuXJnt27ezYcMGdRVJNHNzc+bPn58qe8QFBwczdOhQLly4oL4vJCSE33//nTlz5mg8TuHChdm2bRubNm1i6dKlTJ48mYULF9KpUyd69+5N1qxZU7zWyMhI9e1r164xePBg/Pz8aN26dYLtDX8kt27dYufOnejp6TF//vwU7W0XTduKu4wQ3H369AmIqqbUNLh79uyZ+nbMvVuTMnXqVJ4+fUqtWrUYO3ZsksebmpoydOhQJk2axKNHjxg6dCjLly9PcXgXU+bMmbG1taVOnToMGzaM69evqx+7evUqV69excLCgu7duzNo0KB4t8basWOHurVmvXr1iIyM5OLFixw/fpxJkyYxZ84crcO7mL9/MW/Hx8jIiDZt2rBx40b1no3x7bP4119/cfDgQUxNTTXatw+iPmjw7t079RqkTeaPJfV2Ov2BGBsbU6NGDWbOnMmBAwfIlSuXen+9LVu2cPPmzfReohBCCCGEEEKI/yh9M0uy2w4nZ8eJmOTXrhrDJH9pcnaaSHbb4RLapcDJkycBaNCggU7aff2X3L17l9mzZ2eIi9wiZZYtW8bFi4l/gODx48d07dqViRMn8vXrV/r3768O7aJNmzaNevXqMWvWLHbu3KkOH7ShUCjo378/w4cPV99XokQJtm/fTtmyZbUeLykfPnyga9eu6tCuYMGCTJ8+ncuXL2sV2kXT09Ojb9++7N69mwIFCuDr68u6deto1KgR69atS/Jif1K+fo2q0g4JCcHOzg4/Pz8KFizItGnTtBpHmwAirfj5+TFx4kRUKhXDhw/np59+0sm4Pj4+Wr0Wo9/TlEqlurtbUv9iBoO6+H5++fIFiHp9aurly5fq25oGd4sWLeLAgQP89NNPrFy5UuOgvV27dlSvXh2Ac+fO4eDgQHBwsMZr1cTDhw9p3749169fJ1++fOzYsYNNmzZRrVo14H8tVWfMmBHn3G3btjFz5kwgqvvfqlWrWLJkCQULFgRg37599O7dm8+fPye5DqVSiZ+fH69eveLs2bPq+/fv388///yDn5+fupXv9zp27Ki+vWnTJi5duoSfnx/h4eHq+6N/1sHBwbx8+VKjf56enrFeZ/L3y4/lX1dxF9P69eupVKmSVr2mCxYsyLBhwxg3bhwKhQKlUsnixYvZsWNHKq5UCCGEEEIIIYRInFmxKpgVq0LYxzcEPLhI6LvnhL77J9YeeHomFhjnKoxxrqJYlPkFo+yyl0lKKZVKjh49ir6+fqyQQCTt7t272NnZ4e/vT3BwMLNnz84Q+0KlJw8PDwICAmJdqP0RLF68mHXr1mFsbMyqVauoXbt2nGOOHj3KqFGj1BeKbW1tGT16dJzj9PX1WbJkCSNHjuTkyZM0adKETp060aFDhyTbZX6vf//+fPr0iVq1atGwYcNUeX1duXKF0aNH8/nzZ3LlysXQoUOxtbVNtKpP08qtUqVK8ccffzB8+HAuXbpEUFAQixcv5urVq6xatSrJFn8JuXPnDhD1/qVUKjE0NGTx4sVa72uXHsFdSEhIgo9FRkYyYsQIXr16RadOnXBwcEhyvOjXRGhoaKLHvX//Xh28RAc3iYnedunp06fUrFkzyeO/FxYWFu/9McOdmFs7xef169cA/P3339StW1ejeX19fdW3NQmkFixYwMaNG6lbty4uLi5aVcwpFArmz59Pq1at8Pf358qVK3Tr1o2FCxdqtbdefMLDw/n9999ZtWoVISEhtG3blkmTJqmrL2vWrMm5c+eYMWMG3t7eHDhwgGnTpmFkZIRSqWT+/Pls2rQJPT09xowZQ79+/QCwsrJi9erVdO/enS9fvnD9+nVsbW2ZOXMmDRo0SHA93t7eNGzYMM79N2/epGnTpgCcPn2avHnzxjmmYMGCVK9enevXrxMYGMjQoUMBGDt2rE73k5WKux/Lvzq4K1++PGPHjuXgwYNalUx/nz7fuXOHGzduqJN6IYQQQgghhBAivRhlz0+W7N2AqE/8q8JCUEWGo9A3RGFk8p8PRnTNw8OD169f06tXrwy9L5RKpUr2hfWY1XCRkZEJXiyOeVxSF5Tv379Pv3798Pf3B2Dv3r0oFApmzZr1n32Nnjp1ijFjxhAZGYmhoSFt2rSJ97jIyMgUVyiqVKokf0aaHrds2TLWrVsHRIUfjo6OrF69mp9//jnWcY0bN6ZFixYcOHCAUqVKMWvWrATHNDIywsXFhfXr17NixQq2bt3K1q1byZcvH1WqVKFUqVIULFiQLFmykDVrVszNzTExMcHY2DjW68fAwICpU6fGO0dkZCShoaEEBQXh6+uLv78/vr6+WFtbU6FChSS/N2FhYbi4uLBhwwYMDQ0ZNGgQ9vb26jBt7dq1ZMuWDRsbG7JmzUqmTJkwNzfH09OTK1euAGjUstPS0pK1a9cybtw4Dh8+DMDly5dZvXo1I0aMSPL8+J73o0ePYt03ePDgZFUixnxt6DK4u3TpElZWVhQsWBArKyv1/X/++ae6ysjQ0DDOeU5OTly6dIl27doxffp0jeaKbo8YFhaWYCgXGRnJvXv3gKifq5OTU5LjRgdsJUuW5MCBAxqtxdPTUx3uJBQkxgxrX7x4Qbly5RIc7+rVqwDs3r2bHj16kClTpiTXULBgQZ48eQIk3u4zJCSEKVOmcPDgQdq2bcvMmTPj/ZkkJXfu3MycOZORI0eiUql48OABbdu2ZdSoUXTv3j1ZbW1v3LjB9OnTef78OcWLF2f06NHxBpf16tWjWrVqODk54e7uTmRkJIGBgYwdO5ZTp06RL18+nJyc4lzzL1y4MK6urvTs2VNdiTlw4ECqVKnCiBEj4s0I8ubNq/6+JsfWrVtRKpUJViQ2atQoReOLH8+/OrirUaMGJUqUYM6cORq94Ub7vm9tixYt4k3DhRBCCCGEEEKI9KRQKFAYmwKm6b2UfyWlUsnq1aspWLBgsi6gp6V3797RvXt3vLy8UjSOJm3n/P39KVOmjNZj79mzB4VCwcyZM9MsvAsJCSEoKCjJ4wIC/le56ufnp241+L3oKpno9niaunPnDsOHD1cHIRMnTsTQ0JAWLVrEOfbAgQNMmjQpwbZqmjhz5oxGP6PowEwboaGhDBw4ME54Z2BgwPz588mWLRvt2rWLdz+pmBQKBfb29jRt2hQXFxc8PDx4+/Ytb9++Zf/+/QmeZ2RkhLGxsXr8mK8llUpFaGgooaGhsdrMRR9Xs2ZNevbsmeRz/Ouvv5gyZQqvXr2iQ4cOODo6kjNnzljHFC1alD///JOTJ08m2KrQ0lKzFsUGBgYsWLAAf39/zp8/D0Tt45Yc+vr6rF69mm7duhEYGEj58uXp379/ssaKWRWWVMWaNnx9fVm8eDEPHz7E2tqabNmyYWhoyPPnz9XHfF99OX/+fLZu3Yq9vT0jR47U+D2kaNGi6ttjxoxhxIgR5MiRQ32fSqViz5496p+hu7s72bNnT/I9//vXl7YSqiwsWbKkegunefPm4e/vT6lSpeJUS968eZMTJ04AUa0yu3fvzu7duzE1TfzvgQEDBjBx4kSCg4MTDLBfvnzJ8OHDefv2LQsXLqRVq1bJeIb/06xZM96+fcuSJUuAqOc+Z84ctm/fjp2dHa1bt07y/QKinvOaNWu4ePEi+fPnZ+HChbRo0SLR8M/c3JzZs2czfPhw7t69y8SJE/Hy8qJTp06MGzcuwSrUEiVKsHnzZvr378/Hjx+BqN/J7t27kydPHpo0aUKvXr3IlStXMr4jQiTtXx3cQVRJacuWLWnSpAn169fX6JzoT4MB9OnTh3HjxqXW8oQQQgghhBBCCJFB7d+/H09PT3bt2pXkxdD0ljt3brZu3cquXbsoWbIkhQsXxtLSEgsLiwxX4aZSqdJsTb6+vvTs2ZNXr15pfI4mwc67d++S1R4vmlKpZNy4cRgaGvLrr7/Geqxt27aYmJjg7e1NmTJlyJ49O5aWlslum5havv/gO0SFY2PHjtVqnHz58rFgwQJGjRqFh4cHJ06c4O+//04wGAkLC0uwzWBCChQogLOzM6VLJ75P6OfPn1myZAnHjh2jbdu2rF27ljx58sR7bMOGDWnYsCETJ07k5MmTLFq0iLdv38Y6RpvXiL6+PosWLcLW1hYvLy+t21rGVKpUKZYvX46joyOzZ8+O92eliZgVd5oE4Jpq3rw5zZs359KlS8yfP5+nT5/Gejxz5szqCiqlUsm0adM4fPgwCxYsoHXr1lrN1bhxY5YtW4a3tzf37t1LsvVgpkyZ4m15+D1tX4PfSygIzZ49Oy1atODQoUN8+/aN2bNnazRe06ZNNfrvVLNmzahXrx6vX7+mePHisR6LjIxk8+bNLFu2jLJly7Jv3z6d7Yvm4ODAp0+fYn1Q4PXr12zdupXXr1/H21YXol6D58+fx9XVlb/++otffvmFZcuW0ahRI4332gsKCmLlypXs2LGDChUqMG/ePPXee4kpWbIku3fvpn///jx79kx9f2hoKN++fdPp74QQ3/vXBHdBQUHcuHGDggULxnpDKVSoEB07dmTKlCl4eHjEKr9OSHR/3zJlymj9x4YQQgghhBBCCCF+fO/evcPJyQknJydKliyZ3svRSJ48eRg5cmR6LyNDyZEjB1u2bMHDw4OSJUtSqFAhLCwsMDc3z3CBZkzNmjVL7yWkuRw5ctCnTx/69OlDaGgo9+/f58WLF7x69YoPHz7w7ds3fHx8CAoKIjg4mJCQEMLCwggPD0+y+mnevHmJhnZhYWGsW7eOU6dO0bJlS86ePatR20GICtx+++03fv75Z7p166ZuZ1erVq0E26EmxMrKijVr1tCvXz/atWun1bnfq127Nvv27UvRXmIxw6WEWvilRO3atalevTpTp05l3759QFSryDlz5mBtbc2XL18YN24cfn5+/PHHHxQuXFjrOczNzXFzc2PVqlU8evQo3sBNX18fS0tLqlSpQrdu3ciePXuS40ZXzGmzPRNEtars169fogHk3LlzyZEjB8eOHePLly8Jtik1MzOjbNmy9OjRg3r16mm8BjMzM0qVKhXrvsuXLzNv3jxUKhVLlizRKLzU1uTJk8mcOTPLly+nUaNGTJ8+HRsbm3iPffz4Mfv27ePkyZPky5ePhg0b4uzsTLZs2TSeLzIykn379rFixQqsrKxYuXKl1s8rV65c7Nq1i6lTp3L48GGGDRtGv379NKoQFCIlFKqUNs1ORSVLluTo0aMUKlQo0eP27dvH/Pnz1ZtrtmzZkqlTp6rfOL9+/UqjRo1o0qQJ8+bNS3LeVatW4eLigqurq0YtIoTQRlhYGH///Xec+8uVK/effNMPDw9X9xGPVr58+WT1zRZCCCGEEP8tERERsT4BDVCsWDGNP4EtREJUKhW9e/emTp062NnZpfdyhBAaiIyMVP9TKpXq/btUKlWSlacqlYqbN29StWrVFAW6x48fZ8OGDdja2tKpU6dk//dIqVQma+8vXVu3bh179+6lU6dOtG3blsyZM6fKPBERETRu3Jj8+fMzbtw4SpcuzeXLl5k9ezZdu3alW7duGeL7EdPUqVP5+eefadiwocY/54iICPT09DLUc7l69Spr1qxBpVLRvn17mjVrluwKTU1dvHiRmjVrJvh9CwgIYNu2bVSrVo1y5cppfY1QpVJx9OhRVq1aRcGCBenQoQN16tRJ8Yc1Tp8+nSqBZrT49rgzNTXNUK+XmFLz73C5fv4vCO4WL17Mhg0bYm2mqVAoKFOmDHv37lXft2LFClauXMn69eupXbt2ovNOmDCBJ0+e4O7unvInIcR35I0nNgnuhBBCCCFEcklwJ1JLSEgIhw8fpn379um9FCGESDdfv34lc+bMaVKd+vXrV7JkyaL+eteuXfz6669YW1un+tz/VYGBgbi5udGiRYsEW8L+iJ49e8aFCxewtbUla9as6b0cjUlw9z9y/RzS9ad+4MCBFJ2/bds21q9fD8TeiLZo0aJx+pH36dMHa2trpk2blmRp97Nnz7C1tU3R2oQQQgghhBBCCPFjMjExkdBOCPGflyVLljRrKRsztAPo1KmThHapzNzcHAcHh39VaAdR4ZGdnd0PFdoJ8b10C+5ev37NpEmTOHjwYLLOf/z4MU5OTigUClQqFSYmJvTu3ZsDBw5w6NAhWrVqFet4c3Nz+vXrh5eXF8uWLUtwXJVKxYsXL+JsDCyEEEIIIYQQQgghhBBCCCFEakq34G7JkiVEREQwc+ZMli5dyocPHzQ+NzIykvHjx6v7Avfo0YPTp08zfvx4SpQokeB53bt3J1u2bGzdupU7d+7Ee0x4eDgLFy4kR44c2j4lIYQQQgghhBBCCCGEEEIIIZItXYK7e/fucfz4cRQKBYGBgaxbt46GDRsyatSoOHtdxcfNzY3Hjx9TunRp9uzZw6RJk+KUU8fH2NiYvn37qoO/0NDQOMcYGRnRqFGjZD0vIYQQQgghhBBCCCGEEEIIIZIrXYK7NWvWAFFtKaP/RURE4OHhQadOnejcuTMeHh7x9lAOCwtj9erVODg4sHv3bkqXLq3V3F26dCFz5sy8fv2aBQsW6OT5CCGEEEIIIYQQQgghhBBCCJFS6RLcrVq1isuXL+Pq6sqQIUP4+eefMTIyUod4d+/eZdSoUQDs3LmToKAg9blGRkYcPnyYESNGYGBgoPXcpqamdOvWDZVKxfbt2zl+/LjOnpcQQgghhBBCCCGEEEIIIYQQyZVue9xlzZqVmjVrMmjQIDZu3Mj169dZs2YN7du3x8rKSh3ibdmyhSZNmuDu7q4+N1u2bCmau3v37piamqJSqZg0aRIvX75M6dMRQgghhBBCCCGEEEIIIYQQIkXSLbj7nomJCfXq1WP27NlcvnyZtWvX0rhxY/T19fn8+TOTJk2ic+fOvHjxIsVzWVtb07JlSwACAgLo378/X758SfG4QgghhBBCCCGEEEIIIYQQQiRXhgnuYjIwMKBu3bq4uLhw9uxZhg4dStasWblz5w5t2rRh1apVREZGpmiObt26AaBQKPD09KRPnz58/PhRF8sXQgghhBBCCCGEEEIIIYQQQmsZMriLycbGBkdHR86cOcPkyZPJli0by5cvp3v37rx//z7Z45YoUYKKFSuiUqlQKBQ8ffqU33//XYcrF0IIIYQQQgghhBBCCCGEEEJzGT64i2ZkZET37t05fvw448aN459//qF169acP39eo/NbtmzJs2fPYt3Xpk0bAPT09BgzZgzjx4/X+bqFEEIIIYQQQgghhBBCCCGE0MQPE9xF8/T0pFWrVpw4cYIWLVowePBg3NzckjyvbNmyrFmzJtZ9v/76K9myZeP333/Hzs4utZYshBBCCCGEEEIIIYQQQgghRJJ+qODu77//plu3bvj5+ZEpUyamTJnCtm3b2L17N4cOHUr0XFtbW44fP87bt2/V91lbW3P06FFq1KiR2ksXQgghhBBCCCGEEEIIIYQQIlE/THB39epVevXqxbdv32LdX758edzd3WnQoEGi59eoUYPs2bOz/v/Yu/O4mNf2D+Cfad8RcSwRCdn3DocQ2SmFLEdK2mxFQqQQ0WKXStayL4ko+5o9+75vFYkkrTM18/uj33yf0kzNWjmu9+vl9Uwz9/f+3jPNzOmZz1zXHRFR4nptbW2Zr5UQQgghhBBCCCGEEEIIIYQQcf0WwV1ubi5mz56NnJwcgbcrKSlBU1Oz3HksLCxw+PBhfP78WdZLJIQQQgghhBBCCCGEEEIIIUQqv0Vwp66ujoiICFSvXl2qeaysrMDhcLB582bZLIwQQgghhBBCCCGEEEIIIYQQGfktgjsAMDY2RlRUlFRz6Ovro2PHjjh48CC+fv0qo5URQgghhBBCCCGEEEIIIYQQIr1KDe58fX3x8eNHkccbGRmBx+NJdc4RI0YgLy+v1F53hBBCCCGEEEIIIYQQQgghhFQmpco68dOnT7Fv3z5cv34dCxYsgIKC6BninTt3kJycLNF5tbS0wGKxsG/fPjg6OqJWrVoSzUMIIYQQQgghhBBCCCGEEEKILFVacLdhwwYAwIcPH+Ds7CzWsd7e3lKfPz8/HxEREfDy8pJ6LkIIIYQQQgghhBBCCCGEEEKkVSmtMp8+fYqzZ88CAHg8nlj/JDlG2L+9e/ciNTW1Mh4CQgghhBBCCCGEEEIIIYQQQkqolIq7Z8+eYcyYMVBVVYWSkhLzT0FBAYqKimCxWEzrTBaLBRaLxRwbFBSEyZMnQ1dXV+Lz5+fnY+3atWCz2QgLC4Ovr6/U94kQQgghhBBCCCGEEEIIIYQQaVRKcDdixAiMGDFComODgoJgbW2Nxo0bS7WG8+fP48GDBzhw4AAmTpwIAwMDqeYjhBBCCCGEEEIIIYQQQgghRBqV0iqzKhg8eDAAoLCwEEFBQZW8GkIIIYQQQgghhBBCCCGEyMq3b9+QkZFR2csgRGx/bHDXr18/5vK5c+dw7ty5SlwNIYQQQgghhBBC/mtOnjyJ+/fvV/YyiIxcuXIFMTExlb2MP9bGjRtx586dSjn3ixcv5DLvs2fP4OzsjC9fvshlflH8+PEDmzZtQmZmZqWtQZiCggKJjuNwODJeCfldvXjxAv369cOyZcuQlpZW2cshRGR/bHDXoEEDGBkZAQB4PB4WLVqE9PT0Sl4VIYQQQgghhBBC/itYLBZsbGzg7u6OT58+VfZyhDpz5gw+fvxY7rgjR45UasBQ2UJDQzF37lw4ODiI9HhVht27d4PNZpc5JiMjAzExMRKHIuJISUkpdz2iunTpEsaOHQtLS0scOHAAubm5MplXFL6+vpg4cSIePnwoszkLCwuxYMECXLhwAcOHD8eZM2dkNrc4FBQUsHLlSvTu3RsrVqyoUu9VU6dOxaZNm8R+rtrb2yMgIKDC3q/evXuHhIQEucydk5MDLy8vCp0k1K1bN7i4uCAyMhLm5uYIDw9HYWFhZS+LkHL9lsGdrAK2Xr16gcfjgcViIS0tDVOmTEF2drZM5iaEEEIIIYQQQsifrX///pg0aRLi4+MxePBg7Nu3r7KXJNCVK1cwaNAgLFiwoMxAKi4uDn379sWiRYuQlJRUgSusfA8fPsStW7cAAAkJCRg2bBiOHz9eyasqLTAwEP369cPOnTuFBmZcLhdz585F//79sWfPHpkFa4LcvHkTgwYNwsmTJ6WeS0VFBQDw9OlTREZG4sePH1LPKSo1NTVcv34dI0eORPPmzWXyr2XLlnj06BEA4Pv379ixY4dcfxfC8B/X7OxsbNu2DVOnTq2Udfzq58+fuHLlClauXAkrKys8ePBA5GNfv36NrVu3Mu9X8i7WyMrKgoODAxwdHfH06VOkp6fL5N+XL1/g7OyM6Oho2NraSh3evXz5En5+fvj27ZuM7vnvwcHBAf/88w9yc3OxatUqeHt7V/aSCCmXUmUvQBIPHjxAp06dpJ7H1NQUmzdvBlD0Lbh//vkHGhoaUs9LCCGEEEIIIYQQAgDu7u44e/Ys3r17Bx8fHyQnJ2PWrFmVvawS1NXVweFwcPDgQRw5cgSrVq1C//79S41TU1MDm83Gnj17cODAAaxZswbm5uaVsOKKt3Xr1hI/DxkyBH369Kmk1Qinrq6O1NRU+Pn5YceOHTh48CCqVatWagwAJCcnY9GiRdi+fTv27t2LGjVqyHw9lpaWeP78OWbMmAEzMzMsW7YMurq6Es2lqKjIXN6xY4fE80hCVVUVAFC3bl1ER0fLbF4XFxfcv38fTZs2xZYtW5gQrSIpKyszl+vWrYvNmzdXyjp+dfnyZabl5fPnzzFt2jQcOHAAderUKfM4NpuN79+/AyhqmVmtWjVUr15drmvlPz8uXbqES5cuyeUcb968gbu7O3bu3AkWiyXRHIaGhnj37h3Mzc3h6uoKOzu7Er9/Qfr06YO9e/eW+7iL6sePH0hLS0PTpk1lMp8oWCwWfH19MXjwYBQUFDBBqLGxschz8KuHDQwM5LdQQor57YI7AwMDDBs2TCZzdejQAerq6tDU1ERQUBC6desmk3kJIYQQQgghhBBCgKJqFm9vb0yePBkAEB4eDlNTU3Tu3LmSV/Y/xb/EPHHiRKFhHP/DaSUlJQQFBf0xod3Tp09x4sQJ5mcdHR106dKlSn75mx/KVatWDcuXLy8V2gH/+z0CQPPmzRESEiKX0I5v1qxZuHHjBs6dOwdra2ts3boVjRs3FnseBYWixmFKSkoVGtoB/3vMFBQUZHpufhipq6tbaWGZgoICWCwWeDwe9PX1K/yxFeb8+fPM5erVq2PXrl0ihUepqang8XgAgH79+mHmzJlyWyNf8fDLy8sLdnZ2MpvbzMwMycnJaNeuHTZu3ChxaAf8ry2qhYUFgoODcfToUQQHB6N58+YCx6ekpCAlJQVpaWkyCe5SU1Ph4OCAtLQ0REREoG3btiIfe/fuXWRmZqJXr14SnbtRo0bo168fTpw4AVVVVejp6Yl87KdPn2Bra4v8/HxERUVReEcqxG/XKjMyMhK1atWSyVzKyspwdXVFTEwMhXaEEEIIIYQQQgiRi549e5aoLuC3xxNHbGwsAgICZLkshpLS/77X7ezsLPSDYX54oa6ujsGDB8tlLVVRQEAAuFwuAMDIyAj79+9HcHAwPnz4UMkrK40fIHTu3FloOKygoMCMMzExgb6+vtzXtGjRIrBYLKSkpMDR0RFZWVliz8MPYzQ1NWW9xHLxQ8P/quLvAVVBXl4ezp49y/zs5eUl8vP08+fPzOX27dvLemkCFa8GlZeGDRsKDOLFVb16dQQGBoLFYuHFixcYM2YMnj59KnBsYmIiAMDa2lom7WFNTU3x8uVLZGRkwN7enplfFHl5eXBycoKrq6vEe4wOGDAALBYLS5YsETlf+Pz5M2xtbfHx40d8+fIFtra2eP/+vUTnJ0QcVetdWQS1a9eW6XxOTk4ynY8QQgghhBBCCKkoPB4PuQV5KOAWQklBEepKalJ9G5/Iz/Dhw7Fq1SpoaGgIbENZlmPHjmHu3LkoLCwEl8uFl5eXTNcm6ofO5bVU+y+6ePEirl27BqCoejI4OBiNGzeGra0t3N3dsWvXLqbKrSoQ53fJb0NYEdq2bYs+ffrg3Llz+PjxIyIjIzFlyhSx5uCHp//F4I4fSlaWqhZMnjt3DtnZ2QCAJk2aYPjw4SIf++bNG+Zyu3btZL42QSoi+JTlc8TExARWVlY4dOgQcnJysH79emzcuLHUOH7bz3Xr1qFLly5SnzcsLAw7duwAUPTlgszMTJGP1dHRAVD03Dh37pxU65g7dy7mzp0r0bGpqamYMGECoqKi0KhRI6nWQUhZfrvgjhBCCCGEEEII+ZN9yEhGwodbeJ3+Dm++f0Q2O4e5TVNFA01q6MNQ1wA9GnZBw+r1K3Glv7/c3Fzk5ubKZK4GDRqAxWJh/vz5UFNTQ3p6ukjHXb58GV5eXigsLAQAbN++HSwWC/PmzZPJugDRA7mq9uG+vOXl5cHf35/5edasWWjRogUAwN7eHrGxsfDw8MCGDRuqzGMjaoBQGQH/mDFjmA/cnz9/Lvbx/OCiMoJSfiCanJwstK2gNCo7uKtqX/iIjY1lLru6uor1+nr58iWAot9Zq1atZL42QSri9c8PrmXFzc0NsbGxYLPZAquHMzIycPr0aQBFrzlpW6jm5eXh6NGjUFNTw7JlyzB06FCxjldTU2MuOzg4MO2nBSksLGRawMpL8fUAQFJSEvr27SvSsSoqKtDW1kb9+vXRpk0bDBo0SOz22TweDwkJCYiLi8O9e/eQmpoKNpuN6tWro3nz5ujVqxdGjhxZJVs6E9FQcEcIIYQQQgghhPwG7qQ8xJFnp/A07ZXQMdnsHDxMfY6Hqc8R8/QkjPWawqLFAHSs17oCV/rf8e3bN9ja2iI5OVlmc3p7e8Pb21uqObZt2wYWiyVxxYCkqtqH+/K2evVqvHv3DkBRu9Pi+1YpKysjMDAQo0aNwtKlS+Hj41M5i/yFqL+jyggau3XrhmrVquHHjx9i7W3Fx68QrIzgjv+41q1bF9HR0TKb18XFBffv35d5KCOuqhI8A0B6ejouX74MoGhfsiFDhoh1PD8UNjQ0rLDQoiJaZRYUFMh0vjp16mDAgAGIjY2Fra0tgKIw6P79+2jfvj0CAgKQl5cHACXaSmZkZEBDQ0PsPRljYmKQn5+PLVu2SLTHa/HXvYqKSplBYmpqKuzt7eHm5ibyXqyLFi2CkZERrK2tS4VyoqhXrx5u3bqFr1+/Yvbs2Xj8+DEAoEOHDvD392cew9zcXHz//h0PHz7EkSNHsGvXLuzatQsdOnTAsmXL8Ndff5V7rmfPnsHb2xv5+fmwtrbGxIkToaenh58/f+LBgwfYvXs3li1bhtDQUAQEBMDU1FTs+0MqHwV3hBBCCCGEEEJIFfYzPwtb7+zDlQ+i7wXD9zTtFZ6mvUKPhl1g33E0tFW15LDC/64GDRogMjISZ86cgbGxMRo1agQtLS1oamqWCkgKCwul+vD227dvqFmzprRLJjJy+/ZtREZGAgD09fWxcuXKUr9zY2NjuLm5ITg4GEpKSpg/f35lLPW3oaKiggULFuD9+/clQlBR8YMLUYO7gwcPomHDhujatavY5/oVv+JVQUFB6sqj4vjvGVRx9z/79u1jQlpnZ2ex31dfvHgBAGjduvwvrCQmJmLFihUICwsTec8zQSri8ZNHa1sPDw90794dVlZWAIre9+Li4qCqqsoE1O3atYOxsTFzzJo1a/D06VOsW7cOderUKTXniRMnkJubi8GDBzP7ovJ4POzatQsbNmyQKLQDSoaj5QXdGhoaePnyJaZNm4Y2bdrA09MTJiYmZR7z9etX7NmzB+vXr8e4ceNgZ2fHtOcUhYKCAnR0dKCjo4M+ffowwZ2VlRWaNGnCjNPR0UGdOnXQokULjBo1CkeOHMGCBQtw9+5djB8/HhERESXG/yoxMRGOjo5o164d9u3bV+JxqVmzJgwMDDBs2DD4+flh165dcHZ2xqpVqzBo0CCR7wupGii4I4QQQgghhBBCqqj3GUnwv7QB33N/SDVPwodbeJz2AgtMp1P7TDE1aNBApJBh4cKFaNy4MRwcHMSuXsnMzISZmRlGjhwJV1dXqT5Arkq+fv36W96Xnz9/wsvLC1wuF+rq6tiwYQOqVasmcKyDgwNu3bqFHTt2gMvlYsGCBVUqBJGF7OxssFgsmVQvWVhYSHwsP7jjhwFlOXjwILy9vaGuro7w8HCpwzt5B2uyrqYSl6yes6GhoWjVqpXEFT4FBQXYu3cvAKB+/folni/Z2dnIz88v8/jv378jIyMDANC4ceMyWxI/f/4cU6ZMQU5ODmxtbREZGSnx+1Xxx2/58uVYvny5RPOU5df7bmJighs3bkg1Z926dZnQDigK3Xr16oWGDRtixYoVYLFYGDBgAHP/Pn/+jIMHD4LD4WDEiBFYvXp1qUDMxMQEs2fPxooVKzB69Gj8+++/0NPTg5+fH9q3by/xWsUJ7opXzKmoqKBevXrlzs/fO/Pnz59QUFCQ6v2u+FrLa19sYWGBr1+/IjAwEN+/f4efnx+2bdsmcCybzcasWbOQk5ODgQMHCg21WSwWEwY+efIEc+bMQfPmzcsMBEnVQ8EdIYQQQgghhBBSBb3PSMKi86tL7GEnje+5P+B7fhUW95lF4Z0cODk5wcLCApcuXcKqVaugp6cn8rEJCQnIy8vDzp07ER0dDVtbW0yZMkWkgEKQ9evXY9q0aZUaILHZbAwZMgTOzs6wt7f/bcIsHo8HT09PvH//HiwWC/7+/sy+doIoKCggODgYo0aNQlRUFNLT07FixQqx28gJ8urVK7x48QKDBw+Wei5pnD9/HuvXr0dwcDDatGkj07lfvHgBW1tbfP/+XeRjEhISRN5nLicnB87Ozti/fz+MjIwkXSZTcScv8p6/ImzYsAHr16+HiooKQkJCJArvzpw5g8+fPwMAJk+eXCL0SE5OxsSJE0XeH3TlypVYuXKlSGNfv36NiRMnIjIyUqLK5+Lvb+7u7rCxsRF7DmGsrKzw6dMnZGdnM9cVFhYiKytLZucAisKw8+fPY/bs2VBTU8OIESNKjfH39y9R+ffy5ctSwV2NGjUQERGBVatWYdOmTdi2bRtGjBiBKVOmSLU+cb4Qo6ysDAUFBXC5XIwYMQL6+vrlHsN/z27bti2mTZtW6vZnz56V+d8CaUyYMAHbt2/Hly9fcP/+fTx+/Fjg/oyXLl1CamoqgKL3trIoKirCyckJ7u7uYLPZWLNmDdatWyeX9RP5oOCOEEIIIYQQQgipYn7mZ8H/0gaZhXZ82ewcLLu0HsEDvKltpowZGBjA0dER69evh7W1NSIiIkQOF44cOcJcbtWqFfr27StxaAcUVfBt3rwZjo6OEs8hrdu3byMjIwMBAQG4dOkSAgICBLZVq2o2bNiA8+fPAwDmzZsnUmimo6ODjRs3YsyYMTh+/Dg+ffqEkJAQqVsq6uvrY8qUKWjdujUaNmwo1VzSuHTpEt69e4exY8di+vTpcHR0lNmeaM2aNcO2bdtw+PBhtGnTBo0bN0a1atWY6pfirK2tkZKSggEDBmDRokVlzrt27Vqmcqtfv34wNDSUap38ijgulytycCQKfmAnjzaI4pA2WN+4cSPWr18PoCi0nzp1qkTh3aZNmwAUVVX+2tqvWbNmiIqKws2bN9GyZUvUrVsX2traJSqjIiIiEBwcDAUFBdy6dQtaWhXz37nij5+6urpM26lWq1YN/fr1w/jx45nrsrKyUFBQgNzc3DJbx2ZmZkJZWVmk9rKJiYkwMDAQur/byZMncfLkSQDA4MGDsWjRIqGVyAoKCpg9ezbq1asHPz8/7N+/H0ePHoWbmxsmTZpU7lrKI8r7j6Kiolh7R5bVknXfvn3w9fWFr68vxo4dK/KcolJRUYGpqSkOHjwIALh165bA4O7Dhw/M5b1792LChAlQVlYWOm/Pnj2ZAPP8+fMoKCgotwKQVB30myKEEEIIIYQQQqqYrXf2Sd0eU5jvuT+w7c5+zOgm/YdnpCQHBwfs3bsXqampsLe3x6FDh1C3bt0yj/ny5QsSEhIAAIaGhggLC5P6w2Z7e3sMHjwY3bp1E2mfJ3k4e/Ysc/natWsYPnw4duzYIbeKBVmIj49HSEgIAMDR0VFgi9Tbt2+jY8eOpYIOQ0NDhIeHY9KkSbhz5w5GjhyJwMBAifdzAorCC2tra3h4eGDPnj2V8oFrQUEBLl68CKAoXFq1ahVu3bqF0NDQMj8wFobNZpeqRjQ2Ni6xh5YgXC4XaWlpAIAmTZqUG4wUr0by8PCQOmjMy8sDAHz69AndunWTai5BymsBKUxQUBA2b94ss3XcvHlT5C8clEWS8O78+fPMvmD5+fkYNmwY3NzcYGVlxYQqTZs2RdOmTYXO8fDhQwBFr8eKCu0A+e5xd+DAgVKvGX6F6tevX8usJktJScH06dNha2uLMWPGlPmajYuLE/q7SktLw5IlS8BiseDh4SHyl0LGjRsHLS0tzJkzB3l5eQgICACLxYK9vb1IxxdXPIQTNbgTJxAX9v569OhRLFq0CDweD4sXL4aKigqsra1FnldUxSuCv3z5InBM8Vau79+/R1ZWFmrUqCF0Ti0tLdSoUQPfvn0Dm81Geno6ateuLbtFE7mi4I4QQgghhBBCCKlC7qQ8xJUPiXI9R8KHW+jRqAs61pNt27s/nbq6OsaOHYt169bh27dvWL58ebmtqXbt2oWCggJUq1YNoaGhMvmwuV69ejA3N8fs2bMRExMjtIJCXrhcLlOZAQAdOnTA/Pnzq3Rod/nyZXh6eoLH42HcuHGYPXu2wHH+/v4oLCyEu7s7evfuXeK2jh07Yv369XB1dUVycjJsbW3h4uKCKVOmSBy6jR07FmFhYQgJCYGbm5tEc0jj6tWrzJ5hQFFL2EmTJkkU2gUHB+Px48cIDw8Xu5VoWloa8yF8gwYNyh3/9etXAEUf3ovTtlYYfrBWv359nDt3Tur5+MaOHYs7d+6UqjBMS0sTad2enp5o3bo1NDU1YWBgIPH7h6mpKTgcDjp06ICNGzdKNIcg4jxP+KE5X1paGk6cOAFzc3NUr15dpDkePXoEAGjXrp3I563qBL1W+M/vd+/elRnctWjRAvPmzcPUqVOxe/duLFmyBF26dCk1rrCwECdPnsTu3btL3VZQUAB3d3dkZGRgxYoVsLS0LHF7fn4+fHx84OzsLHAPteHDhyM9PZ3Z92/9+vUYP3682O8BxfeZVFBQwNy5cxETE1Pucd7e3vD29hb5PHfu3BEaXvN4PHh7e0NFRQXDhg0TeU5RFH8PEBY4Dhw4ECdOnMDVq1cxYMCAMkM7vuKBp6BKZlJ1UXBHCCGEEEIIIYRUIUeenaqg85ym4E4ORo4cifXr14PH4+Hs2bNltjLLz8/Hvn37oKioiFWrVqFRo0YyW8ekSZNgaWmJgIAA+Pr6ymxeUSQmJjIVA8rKyggMDKzUVo/lSUxMxPTp08HhcODo6Cg0tAOK7s+jR4/g7OyM9u3bY8GCBWjbti1ze8+ePbFx40ZMnz4deXl5CAkJwalTpzBz5kz07dtX7LXp6Ohg5MiRCA8PR69evdC+fXtJ7qLE4uPjmcsmJibw8PAQOvb79+8lPlwv7sCBA4iIiAAAuLm5Yf369WKFmR8/fmQui/Jc+vbtGwCgdu3aZbbAE5WhoSE6deok0b5tZRkwYADc3d3RtWtX5rq4uDgsWLAAFhYWWLhwYbnr/7WlpLh+/PjBBAWFhYUybfMoqjNnzuDhw4dQVlYGj8dDQUEBWrVqhc2bN4tczZaeno7k5GQAlRvcVUTbU/7r4c6dO+jZs2eZY/v27QtHR0ds2rQJtra2mDZtGqZOnVpizPXr16GhoYHGjRuXOj4oKAgPHjzA2rVr0a9fv1K3q6qqIjY2FkePHsWAAQPg4uJS6ksadnZ2uH79Os6fP4/s7GxkZWWJ/TzjV70CgJqaGpYvX45evXrhr7/+QsOGDUtV4ZmZmSE3NxdeXl4YPnx4ufOvWbMG+/btQ7t27RAWFlbmWFm8p/zq58+fzGVhQbWKiopYwXp2djZ+/Cjq3tCwYUMK7n4zsmlITQghhBBCCCGEEKl9yEjG07RXFXKup2kv8SEjuULO9SepU6cOE+SoqKiUWVVw8OBBfP/+HbNnz0aPHj3KnDczMxNHjx4VeR3Gxsb4+++/sXv3bly6dEnk42SBv08PANjY2FTp0O7mzZtwdnZGXl4ePD09ywztgJIVRPXr14eBgUGpMaamptiyZQtT/fTy5UtMmTIFY8eOxcmTJ8Fms8Va48SJEwEUVVfl5Mh238uyZGVl4cSJEwCKWgF6enqWOT46OhrdunUT+G/VqlXMuAsXLohdtcavpFJQUEDLli3LHc9vq/nXX3+JdR5hFi1aBHd3d3Ts2FEm8/HZ2dnBxMQELBYLhYWFCAoKwsyZM5GTk4M9e/bAycmpRNtPeeBXbwHA48ePZbqHnyg4HA6CgoIAANOnT2e+6KCpqSlWC0r+cwSASM8RQeuQVPEg59mzZxLPI6q7d+8CKArEMzMzyx3v5uYGY2NjcLlcrFu3DlFRUSVuP378uMBQes+ePdi/fz/Cw8MFhnZ8qqqq4HK5iI+Px549ewSO8fHxgZqaGho0aCBROJybm8tcVlFRgYKCAgYPHoyOHTuiVq1a0NXVLfGP/yUCTU3NUrcJ+sffV1ZRUbHcscL29pPGu3fvmMuyqk6/cuUKU3E3dOhQmcxJKg5V3BFCCCGEEEIIIf/vS/Y3gddXV9OBimLpll/Z7Bxkc3JLXa+ioITq6oI/2CnrHAkfbomxWuld+ZCIhtXry/x+iPpY1dasKcGqK8/Zs2dhZmZW7ofJZmZmuH//PhwcHIR+M5/D4WDz5s0YPnw4Jk0qe7/B9PR0ODg44MmTJ/jy5QsmT54s0nonTJiA69evw9vbG8ePH4e2trZIx0nj58+fTJtMTU1NTJkyRe7nlNSJEyfg6ekJNTU1hIWFlWp9KQg/uKtXr16JMOpXnTt3xv79+zFlyhTmA9k7d+7gzp070NHRgbm5OTp16oTmzZvDyMiI+dBYkAYNGqBPnz44c+YMgoOD4ePjI9b9lNTx48eZoHDw4MFo06bsCl0HBwfo6emBy+XC2NgYtWrVgra2NlRUVLB+/Xps2LAB2traCAkJgYmJiVhrefDgAQCgefPm5baDZLPZTHvP8vaYBIpeX7a2tnj58qVYa6oICQkJGDNmDMLCwkRqESqJT58+MZcLCwtx9uxZjBo1Si7nEmTXrl149+4dOnTogMmTJzOVmeLiB3fKyspo1qyZWMfGxcVh7dq12Lp1K+rXry/2ubW0tFC9enVkZGQgLi4OHTt2xJAhQ0Ru8SmqwsJCJCQkMF/iSEtLw8SJE3Hw4MEyq8CUlJSwaNEi2NjYACh6bU+YMAFA0evl9OnTCAgIKHHM6dOnsWXLFuzZs6fcIElFRQU5OTno06cPFi9eLHBMvXr14O/vL3Hb4OJfWhBWxV5c8RaR4hBWNSxP/N8rUHTfilfgSorD4SA0NBRA0ReKyvs7g1Q9FNwRQgghhBBCCCH/b9oxwfug+PaZiVa1S38QePzFORx8fLzU9S31jLDIbJbY53id/k70xcrAq/8/n6zvh6iP1X6bUDFXXLnmzJmD+vXrY+rUqWVWyA0dOpT5QDU7O1vgmKNHj0JLSwteXl5CxwBFbeycnJyYUCEoKAgcDgeurq7lrtfMzAwNGjRAUlIS/P39mT2G5Ck6Opppaebi4oKaNatmOBsVFQV/f38YGRlh3bp1AivnBOEHd6JUAhkaGuLAgQPw9PTEhQsXmOszMzNx6NAhHDp0CLq6upg1a1a5QcmECRNw5swZ7N69G/3798fff/8t0nqlwa+cUVVVLbNFZnHltaT766+/xA7tAODevXsAigLR8vDbZAKiBXe6urrYsWMHLl68iCZNmkBfXx8sFgtJSUnM72XhwoUYPHiw0DmeP38OOzs7AMDhw4dlVunHJ899Kt++fctc7tChA06ePFlhwV16ejo2btwIDQ0NBAUFCQyf2Gy2SNVw/HC3cePG4HA4IlfQnT59GvPnz0dhYSEmTJiAHTt2lLlvnDCWlpbYvn07uFwulixZgiVLlsi8pSKXyy0RLCkqKmL8+PEinad9+/bo3r07rl69WqJi7PLly8jNzS3xnvLx40fs3bsX+/fvF6k6jh/GlRdUDhkypNy5hClecaehoVHu+MLCQonOUxGtTn916NAhps3r2LFjpf6STW5uLubPn48nT55AT08PmzZtqpAv7hDZouCOEEIIIYQQQgipAng8Ht58/1j+QBl68/1DpXy7/Helrq6O58+fY8aMGSKN37lzZ7ljunXrJvY61qxZg4KCAkyfPr3McQoKCrCxscHKlSsRHR2NoUOH4p9//hH7fKLicrmIjIwEUFQlxg8yqpKcnBz4+Pjg+PHjsLe3h7u7e5ntTH8lbrWIjo4OwsPDsXfvXgQEBDBVI/r6+vDx8RF5z7S///4bhoaGeP36NXx8fHD06FG5hjnXr1/H06dPAQD29vYSVSHJyqtXr5gPtUV5/qampjKX69WrJ9I5atasCSsrqxLXFd9zSkNDo8wAo3gVoI6OjsT7xOXm5uLbt29yq64TpHiLPldXV7i6uiI5OblCfucBAQH48eMHVq1aJTQse/fuHSZOnChyC88XL15I3NI0OTkZEyZMQGRkpNgtfj08PKCtrY3Y2FikpKSAzWZLHB6VRU1NDTVr1kSnTp0wfvx4sfa9tLGxwfXr10s8148fP45OnTqVCMMaNGiAsLCwEq2ByyLu++K1a9fQvHlzsV4nxb/goqOjU+ZYHo/32wR3586dg5+fH4Ci93lnZ2eJ5uFwOHj9+jWuXr2KXbt2ITU1FTY2NnB3d6+UfSuJ9Ci4I4QQQgghhBBCqgB2IRvZ7Irbvwooal+ZV5Bfoef8nfEDnnr16jF7f1V11tbWWLduHTgcDhYuXIi4uDi5BT6nTp1CUlISAGDevHliBWIV4eXLl5gxYwZYLBaioqJKVG9xOByRPqQW9YPsX40ZMwa9evXC6tWrcenSJezZswd6enpizTF69GgsX74c79+/x4YNG8rdj08a27ZtAwDUrl0bTk5OcjuPKE6dOgUAqFGjRrl7QQLAly9fmMuiVNxVJb6+vrh69SoiIiJgbGxcIed88uQJgKJw0tTUFI0aNcLOnTsxd+5cuZ731q1biImJwfjx48usxGrWrBkiIyNx+fJlGBsbo0GDBtDS0ioRNH3//h29evUCUPTeM27cOKnWJkmlnIqKCqZNm4Zp06ZJde4rV66gXr16aNy4sVTzCDJw4EA0b96cmTs7Oxvnzp0rtWYWiyXWe504exHeuXMHrq6uaNWqFbZt2ybyfyeKV9yVF9wVD9+8vb3h7S24Q4Ag/IpxecrNzcW9e/ewb98+xMfHAwBGjRoFb29viQLH/v374/3798zP2traCAoKwqBBg2S2ZlLxKLgjhBBCCCGEEEKqgEIJ92ORFodbUCnn/Z2xWKwy9ySrSmrWrAkzMzOcPHkSycnJCA8Ph5ubm8zPw+PxEBYWBgAwNTWFubm5SMcNGzasxB5b0kpMTCx1HX8/wZ07d8LR0RH//vtvqQqRbdu24enTp3B2di5zPydJ92cCikKkwMBAZGVllbtPmyCWlpYIDg4Gh8PB9u3bYWVlhSZNmki8HmGePHnCtPb08vKCpqamzM8hjtOnTwMoarMnSpiQlpbGXBa14k6WuFwuQkNDRa4Q40tPT8exY8cAAP/++y82bNggUUWuOAoKCpjgrm3btmCxWBgwYAB27dqF6dOni9SSUBI5OTlYsGAB2rVrh3nz5pU73sjICEZGRkJv5+9vBwAmJia/zfuzIPfu3cPkyZNhbm4OJycntG7dWqbzFw8ET58+jdzc3FKBeFZWFthstshz8iv32Wx2mc/75ORkuLi4IDc3F4mJifDx8cGKFStEOkfx4K68Fsz5+f/7QpKXl1e5LXyBokr2ffv2oUaNGiKtR1SLFy+Gv78/83NhYSFTeV27dm1YWlpi3LhxaNeuHbhcbon7KaotW7bg+/fv+PLlCx49eoTTp0/D3d0dYWFhmD9/vkTtiUnlo+COEEIIIYQQQgipAhQVFCrlvMoK9NGAuH639qIWFhY4efIkgKIP+GxsbGS+B9fZs2fx9OlTqKqqYuHChSIfFxERgYIC+YXHiYmJWLFiBbp06YLY2FihLcNUVFQQFxeH+Ph49O7dG66urmjXrp1U505JSREYHEkS2gFF+0f17t0bp0+fBofDQUBAAMLDw6VaoyAhISEAgO7du5e5r1tFePDgARMs/drKUpjPnz8zl2UV3Hl5ecHLy0uksQoKCujTpw/mzZuHOnXqoLCwEOnp6ejevXuZx3GLfXlDRUUFHz9+lHtw9+zZM6bCiN9ectSoUQgPD8eePXvg4OAgl/MGBQWhsLAQoaGhMqnMvXHjBoCiSqOygvffgYaGBrhcLk6ePInTp09j06ZN6Nmzp1zOFRsbCz09PTRv3rzE9R8/foSdnR0yMjLEmu/48eM4frz0frnCHD58GE2aNBGpqrd4IF+rVq0yx+bk5KBJkyaYMGECRowYAXV19XLn79SpE/r27Sty+2JRzZgxAwMGDGB+vnXrFhNW29rawtHRUepz6OvrM61m+/XrBzc3Nxw7dgwLFy6Era0tXFxc4O7uLlZlJKl89Nc5IYQQQgghhBBSBagoqkBTRaNC22VqqmhATen3rUyoaPzATqGSQlZJmZqaQkdHB5mZmcjPz0dISAizp44scLlcrFu3DgAwdepUsfaGknWA+KuvX78iPDy83AoNfoUOj8dDQkICevfuLVVwFxMTA29vb5m3Kxs6dChTgXbhwgXcuXNH4v28BHnw4AHOnj0LNTU1LF68WGbzSmr79u0AgD59+qBVq1YiHcMP7rS1tVGtWjWZrGPhwoVlhpjPnz8vsadjixYtEBMTAwB4//49pkyZUm5rU/7jraioiH379om9x5okrl69ylzmV+XUr18fvXr1wqZNmzBq1Khy2xKK6/z584iLi8Pu3bvLfV2KKiEhAUBR+Pi7vT//qniQGRQUJDC0KywsxMKFCzFixAh06dJFovN8+fIF165dw9ChQ0sFOsbGxti+fTtu3ryJVq1aQV9fH1paWiWqb0NDQ7FmzZoSx40YMQLPnz9HYGBgmRWSkuDvXVm9evVyK0Fr1aqFuLg4sYIqCwsL5vK+ffswZMgQib9kUVyNGjVK7FlZt25drFq1Cl++fMHevXvh4OAg8+csi8XCsGHDoKWlBRcXF4SFhYHFYsHd3V2m5yHyRcEdIYQQQgghhBDy/zYMXSrw+upqgj+4HNLMDL0bl66IUCmjiq2sczSpoY+Hqc9FWKlsNKnRECwWS+b3QxBh5/id8Ntbyat9nLwoKyvDzMyMCRJiYmLg4eGB6tWry2T+I0eO4Pnz52jRooXcKnQkNXDgQJHGFa/IWLNmDfr16yfxOWNiYuDl5QUul4vZs2dDQUGhRMWFNHr16gU1NTWmSmr79u0yDe6Cg4PB4/EwY8aMCgmOypKcnMxUik6fPl3k4/itV2XZJlNDQ0NotSZQdhVlo0aNkJOTg2fPngmtBsvKymJen4MGDaqwx/7y5csAikLOTp06MdePHz8e58+fR3h4ODw9PWV2vqSkJCxbtgybN2+GoaGhTOb88OED3rx5AwAl9q0sT0JCAu7duyf1nnSyVrwdb/v27UvdXlhYiDlz5uDYsWOIj49HRESEWPeb7+jRoygsLMQ///wj8HZjY2Oh+yx++/YNERERAIAmTZrg58+fTEWctbU1VqxYgS1btoi9prLwA3lRXhuS7FHIFxYWhtWrV+PIkSPYvHmzzP97r6ioCGtra4SGhiIpKQmXLl1C7969ZXoOvj59+qBv3744e/YswsLC0LdvX7Rp00Yu5yKyR8EdIYQQQgghhBDy/2privftf00VDWiqiPehTlnnMNQ1qNDgrqmuAQDZ3w9BJDlHVcMPS3634A4oCnz4wQCbzcb169dFDrXKkpeXh3Xr1kFZWRkrVqyQag+4ylT8g9769euXOz45OblUezlBCgoKMGvWLKxZs0bkff/Koq6uji5dujCBC/9/ZeHixYu4ceMG2rdvX6J6rLIEBQWhoKAAQ4cOFbnaDihqUQqgRJVLZevevTv27dsHX19fgbfv2rULOTk5YLFYcHZ2rpA1/fjxA3fv3gVQVJVbfP/Anj17om3btoiKisK4ceNEek2IIj09HatXr5ZZeJCbm4tVq1YxP4saYCUmJmLatGnIzc3F169f4ePjI1LVU3Z2tsRrFRWHw2Eu5+XllTgnj8eDr68vsxdiTk4OHB0dJQrvDh06BBaLJTS4K8vatWuZdfn4+GD+/PnMbcOHD0dQUBDOnDkj1RcgfsUP7po2bVrqtosXL2LatGli7ctXntu3b8PV1RXh4eFQU1OT2bzA/9rRcrlc7Nq1S27BHQDY2Njg7Nmz4PF42LhxI0JDQ+V2LiJbv+dfU4QQQgghhBBCyH9Qj4ZdEPP0ZIWd75+G4n9L/0/F5XKZ4E7WreMqAr8NHl9SUpJM5t20aRNSUlLg4eEhtDrjdyBuhUbdunURHR0t8nhZBpomJiZMYJeTk4P09PQyq8FEwWaz4e/vDw0NDQQFBUlVsSILiYmJiI+Ph56eHry9vUU+jsPhMB/wV6Xgrn///nBzc8OMGTNQo0aNErfl5uYyLUEHDhyIZs2aVciajh49yoRExdsE8rm5ucHBwQE+Pj4yq55q27atTObhCwsLQ3x8PPPz2LFjxZ5jz549+PHjBwICAsrdb2/z5s3YuHGj2OeQ1JAhQ8odI0l4d+vWLbx58wbNmjUrd7+4X929exf79+8HUNS699d9GHV0dDBw4EAsXrwYJiYm0NbWFmt+Yfiv6yZNmpS6rVevXtixYwfYbDaMjIzAYrGwcOFCmJubi7VnXVRUFPP71dLSQqdOneSyB2v9+vXRvXt3JCQk4PLly/jw4YPcqmw7deoEFosFHo+Hixcv4sePHzJrIUzki4I7QgghhBBCCCGkimhYvT6M9ZriadoruZ/LWM8IDavLporiT5CRkcFcrlOnTuUtREI1a9ZEnTp1mH2CZLGnzsePH7F582aYmJhg8uTJUs9XmcQNqhQUFKQOyyT1a/WZOPs4CbNt2za8e/cOy5cvr/QWmfn5+cx+b35+fqWCrrIkJSWhsLAQgGgt9UTl5eUFLy8viY/v3r07VFVVERkZCTc3txK37dy5E+np6VBSUqrQPagOHjwIoOj9rEePHqVu79GjB7p06YKEhARER0fDysqqwtYmKjc3N6Snp2P//v3o2bMnAgMDyz0mMzMTNjY2zHt6o0aN0KpVK3z9+rXc9qpubm6oV68eWCwWjI2NoaurC21t7RLVii9fvkTdunUl3h8tOjoaixYtAgDEx8eLXO0ozns6P4j9NXQrD4fDgY+PD3g8HurUqYOFCxcKHDdhwgTExMRg2bJlWLFihVjnECQ3Nxc/fvwAUPr9j+/XlsHz58/H+PHj0aVLF5Eew+fPn2Pz5s0Aiqrq9+zZI9cQ3cbGBgkJCeDxeNizZw/mzp0rl/NoaWlBR0cHP378QGFhIR49eiRRlSWpeBTcEUIIIYQQQgghVYhFi/4VEtxZtOgv93P8l/zuwR1QVKnAD+4E7Z0kLj8/P+jo6GDlypUyCQIrU2VXmImjeMWJgYGBWMGWIElJSQgLC4OVlVWVCGeWLVuGFy9ewMXFBX369BHrWP5eZ0BRICMrCxcuxODBg4Xe/vz58zLbiyorK2PIkCHYtm0bRo0axQREGRkZ2LRpEwBg9OjRMDAwkNmay5KQkIBnz54BACZOnCj0+e/l5YVRo0ZhxYoV6NGjB2rXrl0h6xOVgoIC/Pz8YGRkBGtra2hqapZ7jJ+fH/N+7uTkhOnTp5dbaVfcqFGjyrz94sWLiI6OxurVqyWqMCxenauiogJVVVWx5yjL4cOHcf78eQBA165dxTp21apVePHiBVgsFgICAph9Unk8XolxrVu3xoABA3D48GH8/fffsLS0lGrN/Go7BQUFkR/T+vXrY/z48Zg2bRp27txZ5nMjKysLbm5uYLPZYLFYCAoKknvlq5mZGfT09JCWlobo6Gi4ubmJ9Dx8+/YtkpKSYGJiIvLzVk1NjQk+09PTpVo3qTi/919VhBBCCCGEEELIf0zHem3k3sKyR8Mu6FivtVzP8V9TPLjT19evvIVIgd9GzcLColR1grhiY2Nx9epVrF27Fnp6erJYHhHRX3/9hQYNGkBJSUloxYs4fH19YWhoKHT/tYp0/Phx7Nu3DyNGjMDMmTPFPv7p06fMZVH2IBSVhoYGdHV1hf4Tpbpq4sSJyM/PL1GBtH79emRmZqJGjRqlKvHkhcfjITg4GABQvXp12NjYCB3bqlUrTJgwAT9+/ICnpydTzVjV2NraihTaHTt2DHFxcVBUVMTy5cvh4eEhVmgnismTJ4PH42HcuHE4cOCATOcW171792BtbQ0nJyfMmTMH7u7uWLBgAXO7OP8duHLlCrZt2wYAmDZtWrnVejNnzoSSkhIWLVrEhMSSevnyJYCi/e3EqWScNGkSVFVV4e7uLrTlJZfLxezZs/H27VsAwIwZM2S6N58wSkpKGDFiBICivy+OHz9e7jHnzp3DsGHDMHnyZLEqgLOyspjLv2Or7z8VBXeEEEIIIYQQQkgVM6mjDWqoy2cPkhrq1WDfcbRc5v4vK74nXNOmTStxJZIbN24cPDw84O/vL9U8bDYby5cvx9KlS9GpUycZrY6IY9GiRQgNDRXY4lAcZ86cwevXrxESEgI1NTUZrU4y165dw7x582Bubo6lS5dKPAcA6OnpVZnqsKysLGRmZqJRo0bo27cvTp48iX379uHBgwfYvXs3AMDT05OpXpK3Q4cOMQHnjBkzyg1CZsyYgbp16+L69etYuXJlRSxRLlJTU7FkyRIoKChg+fLlcqsuVVVVxZQpU8DhcODt7Y3169fL5TyiaN++PTZv3ox+/frh6dOniI+PZ8LX6tWri9zuNykpCR4eHuDxeOjfvz+mTp1a4vZfK+4AoHHjxrC2tkZubi4mT54s1b6qjx8/BgCx3+8UFRURFBSE27dvY968eQKDZ39/f6YC0crKClOmTJF4neIaPXo00+p4165d5Y4PDAxk9qU8fvw4U0VXlqysLOTk5DA//65/v/yJKLgjhBBCCCGEEEKqGG1VLSwwnQ5NFQ2ZzqupooEFptOhrSrZ3jt/stevXwMoatVlaGhYyauRjK6uLpycnEq0YpNEfn4+HB0dpW5/RiTXs2dPmJqaSj1PXl4etm7dWuntXx8+fIipU6fCxsYG69atE/ocLV458qukpCTcuXMHQNGecpXl8ePH2LlzJ+bOnYshQ4Zg4sSJTPDAr0JaunQpPD09weVy0aNHjwprUfrhwwcmuG/dujXGjBlT7jGamppYvnw5FBQUsGXLFmzfvl3Oq5Q9Ho+HefPmITMzE4sXL4aFhYVcz2dpacm0Q92wYQMiIyPler6y1KhRA6NHj0ZMTEyJdq+i7gGZnZ2NKVOm4Pv37+jQoQMCAgJK7aspKLgDikLf6tWrIy0tDXZ2dvj48aNE94EfNEvynqevr4+AgAAcO3YMs2fPLlF5FxoaiqioKABFoeCSJUskWp+k9PX1mcrFx48f4/79+2WO57cMBYra74rSRvXRo0fM76dly5Yi75lIKh8Fd4QQQgghhBBCSBXUsHp9LO4zS2aVdzXUq2Fxn1loWJ0+tJHEq1dF+w4aGxtDXV29kldTubS1tWFvb1/ZyyAyMHTo0BJ75snDo0ePcOrUKQBAcnJyqbZ5165dg7OzM2bNmgVvb2+h+yVyOBzY2tpi6NCh8PLywq5du3Dz5k2kpqYiNTUVvr6+4HK5AICBAwfK9T4BQE5ODh48eICDBw9i586dzPWenp64ePEi2rdvj61bt+LQoUPMh/OGhoYYP3482Gw23r17h+rVq8Pf379UECIPbDYbHh4eyM7OhoaGBlauXCny3o7dunVjKpGWL1/O7MtX2d6/f19mmMu3c+dOXL16FV5eXhg9Wv4V50pKSiXOExgYiC9fvsj9vGVRVFQs0X62QYMG5R7DZrMxbdo0PH/+HK1atUJERAQ0NEp/oYj/uvtVrVq14OfnBwD4+PEjxo0bx4TYoiosLMT9+/ehq6vLtHsWl7m5OZydnREXFwd7e3t8//4dmzZtwpo1awAAnTp1woYNG6CsrCzR/NIovmcivwJXmBYtWjCXhw4dKlKVdHx8PHO5IqsJifSk+4oVIYQQQgghhBBC5KZh9foIHuCNbXf2I+HDLYnn6dGwC+w7jqZKOynwP2zs3bt35S6EkN/Ejx8/sGrVKuzfvx8DBw5EYGAgtm3bhokTJyIkJASdO3dGTEwMdu/ejW3btpW7J52ysjKio6Nx584dBAUFITo6WuC4pk2byvx1mpSUhGPHjuHly5d4/vw5Xr58ieTkZKaSpXiYceTIETRu3FjoXO3bt8eOHTuY4/Ly8mS6VkG4XC7mzJmDBw8eQFFREStXroSBgYFYc0ydOhW3b9/GtWvXsHLlSiQnJ2PBggUy3yNOHE+ePEFAQACMjIzQv39/9OvXDzVq1Cgx5vXr1wgODoarqysmTpxYYWsbMmQIEwxxOBy8ePGi0tu3Fj9/eS1SORwO3N3dcfXqVXTq1AmhoaHQ1tYW+5z9+/eHlZUVoqOj8eXLF4wZMwZz5szBv//+K1JgfffuXWRkZGDChAlSBWvu7u748uULoqOjMWjQIHz//h0A0KFDB2zatKnSvpDTr18/6OrqIj09HSdOnICbm1up5zDf5MmTmTalrVuXv0/x27dvERMTAwAYPHgwzM3NZbZuIn9UcUcIIYQQQgghhFRh2qpamNFtEub1nAJjPSOxjjXWM8K8nlMxo9skCu2k8OjRI3z69AkKCgpyb7FGyO+Ox+Ph0KFDGDhwIPbu3QsXFxesXr0axsbGCAwMxIABA2BnZ4edO3dCW1sbu3fvLje0K65jx47YvXs3Zs+eXeo2TU1NBAQECK3aK09aWhpu3LiBPXv2ICwsjLk+JCQEHh4eCAsLw/nz55GVlQVzc3MsXLgQsbGxTBAHoMxw4cGDB5g/fz5YLBaqVauGlJQUjBkzBomJiRKtV1SLFi1CfHw8lJSUsGzZMpiZmYk9h4KCAlatWsWEknv37oWNjQ1evnwp07Xyq7cE7Uf2q0GDBiE+Ph4mJiYIDg5Gjx49MGnSJBw8eBCZmZkoKCjAnDlzYGFhAXd3d5muszwNGzaEkdH//ptdt27dCj2/ICkpKczlsoKq3NxcuLq64uzZsxg4cCC2b9+OatWEV/+X97tasGAB9PX1ARRV8S1duhQjR47EjRs3yl3zxYsXAZSsTJMEi8XCnDlzUKtWLSa0a9iwIbZs2VJuiCmu4o9HeY+NiooKRowYAaDosRH2hQSgKOTjV80dOXKkxN51v0pKSoKrqyvy8vLQrVs3LF++XJy7QKoAqrgjhBBCCCGEEEJ+Ax3rtUHHem3wISMZVz4k4lX6O7z5/gHZ7P99cKOpooEmNRqiqa4B/mnYmdpiysjp06cBAGZmZmjUqFElr+b3cv/+fcTGxmLBggUV0g6QyM/atWvRsWNH9OzZU+iYZ8+eYfHixcxec46OjnBzcysxxtfXF+np6fDz84OpqSlatmwpdqjBYrHg6OiIgoICpqqpefPmCAwMLNFOTlRubm64fPkysrOzBd6urq6OTp06oXv37ujWrRuMjY1LPJ8fPnxY7jlevnwJJycncDgcBAYGolWrVpgwYQK+ffsGOzs7zJ49GxMnTpTp64TD4WDhwoU4fPgwNDQ0sHbtWqn2RtTV1cW2bdswbtw4pKSk4MmTJxgxYgTs7Ozg5OQEHR0dqdfMDzqK70VWFnV1dUyePBk2NjbYtGkTtm/fjitXrmDx4sVo2rQpWCwWfHx8pF6XJCwtLREUFIShQ4dWib1R+a9LQHhwl5aWhmnTpuHx48fw8vIS6TnJrzzlcDgCb9fS0sKmTZswbtw4JjR79OgRbG1t0axZMxw4cEBo28ezZ8+iT58+YoX7ghw5cgSBgYH4+vUrc92HDx/w77//ws3NTeoqXS6Xi6ysLKSnp+P8+fPM9TExMejUqRNq1aoFLS0tgV8qGD16NLZs2QIA2L59O5o3b462bdtCXV291O/Jzc0NBgYG8Pf3x9ChQ2FjY4MePXqgTp06yMvLw8ePH3Hu3DkcOHAAXC4XTk5OcHNzk3pvW1Lx6DdWxWVnZ2PYsGGIjIwUqfcwIYQQQgghhJD/tobV6zOBHI/HQ15BPjjcAigrKEFNSZXCERnjcrmIj4+HoqJihVds/O7u378PBwcH/Pz5E7m5uVi6dOkf//yMi4tDVlZWheyzJUsrV67Epk2boKqqio0bN6JHjx6lxsTHx8PDw4MJXiwtLQVWxSkqKmLVqlWYNWsWTp8+jf79+8PGxgajRo0S+8N5R0dHpKWloXv37ujbt6/Ez6+RI0fixIkTJa5r1KgRzMzMYGpqis6dO0vVEvLJkyeYNGkSOBwONm7ciF69egEo+pB+4sSJSE9Px/Lly3H27FnMnz8fxsbGEp+L7+fPn5g+fTquXbsGPT09hIWFidRerzx169bF1q1b8e+//+Lr16/gcDiIiIjA3r17MWHCBIwZMwZ16tSReH5xgzs+bW1teHh4YPTo0fD398e5c+fw5MkTAEX7gU2YMAGjRo2q0NaednZ2aNGiBf755x+Rj/n27Zvc1nPz5s0yb7937x6mT5+OWrVqYd++fWjVqpVI8/KrJPPz84WOadKkCTZt2oSJEyciJycHffr0wdixY9GwYUOhv5M7d+7g9evXWLFihUjrEOTly5dYsmQJc98NDAzg6uqKt2/fIiIiAk+ePIGzszPatm0LS0tLDBgwALVq1RL7PCkpKejbt2+p6xMTEzFo0CAARSGkoM/3DQwM0LVrV9y8eRPZ2dmYMWMGAGDOnDkC95O1sLBA3759cfToUZw/fx5RUVHIyMiAsrIyqlevDkNDQ0ybNg2WlpYS3RdSNVBwV4Xl5+fDy8sLycnJlb2UUszMzCReV2RkJExMTEQa+/PnT+zZswenT5/Gq1evwOPx0KBBA3Tt2hXjx4+vEt9WIYQQQgghhJDKwmKxoK6shsrZmeXPEBcXh/fv32PixIkl2p5VNTweT6TWcsKO5SssLBT6gXnxceV9qP7o0SNMnjwZP3/+BAAcPHgQLBYLfn5+f2x4d+bMGXh6eqKwsBDKyspMe7RfFRYWlnisJcHj8UQKPkQZt3btWmzatAlA0WdVU6ZMQWhoaKkwwtzcHEOHDsWRI0dgbGwMPz8/oXOqqKhg/fr1iIiIwIYNGxAVFYWoqCjo6+ujU6dOMDY2hoGBAXR1dVGzZk1oampCTU0Nqqolv5ygpKQktJqqsLAQ+fn5yMnJwY8fP/Dz50/8+PED1atXR7t27UqM7dmzJ4YOHYq4uDgMHjwYEydORNu2bct8XESVmJgIV1dX6OnpYcOGDWjSpAlzW7NmzbB37144OTnh3bt3uHnzJiwtLdG2bVsMHz4cXbt2RaNGjYRWIwlz584deHp6IikpCYMHD4aPj4/QfbMk0bhxY2bdb968AVD0Gd7GjRuxadMm9OzZEwMGDECfPn1QvXp1kefl8XhM1Zaw6q3y6OvrIzQ0FKdOnYKfnx++fPmCt2/fYsmSJQgLC8O8efMwZMgQieYWl5KSUqmQ29HREdnZ2ahTpw5q164NPT091KpVCzVq1MC3b99KtF2VdcgorDVlQUEBwsLCsHfvXri6umLMmDFQVFQUeV7+f3vKCu4AoG3btli3bh0TEJZn//79+OeffyR6LT558gSbNm3CyZMnweVy0ahRI0yZMgXDhg1j7lvfvn0xb948vH79Gg8ePMCDBw+wdOlSdOnSBb1790arVq3QsmVLkfb2a9CgAZ4/fy72OvmioqLA5XKRm5sr0ngtLS2MGzcO48aNk/icpGqj4K6KKSwsxNevX3Hp0iVERkbixYsXlb0kmRP1W0NXr16Fp6cnvn79CisrK/j4+EBXVxcPHz7E2rVrsWfPHri7u8PZ2VnOKyaEEEIIIYQQ8ificrkIDQ2FgYEBZs6cWdnLKdOnT5/w77//Sv3l37///rvcMT9//hS5EqO4AwcOgMViYcmSJRUW3uXl5ZW5DxBfVlYWczkzMxPp6ekCx7HZbABFzw1hYwS5d+8e3N3dmZBs/vz5UFZWxtChQ0uNPXLkCBYsWMBUsUji3LlzIv2O+IGZOPLz8+Hq6loqvFNSUkJAQABq1aoFa2vrckMHFosFJycnDBo0COvXr0dcXBw+fvyIjx8/IiYmRuhxKioqUFVVZeYv/lzi8XjIz89Hfn5+qeCHxWKhW7dusLW1FTjvggULYGFhIVUryV8dPnwYCxcuxJAhQ+Dj4wNNTc1SYxo1aoR9+/Zh5syZuHr1KgAwIQJ/3b179y6x554wbDYb4eHhCA0NRbVq1bBu3ToMGDBAZvenOH19fezduxdTp07FrVu3mOsLCgpw/vx5PHjwAJ8+fWL25BJF8d8Z/7Umqf79+8PExARLlizBsWPHAABfvnzBrFmz8OLFi0p7T1+6dCkuXryI48ePIz4+XmhIX6tWLejp6cnsvHl5efj8+bPA206dOgVNTU2cPn26zL3vhOG/r4nyO+vZs2eZ7Xb5fvz4gZMnTzItJEV148YNbNq0CQkJCQCALl26YPTo0RgyZEipMLJt27Y4cuQIYmJiEB4ejo8fP4LL5eLGjRtMyMlisaCvrw9DQ0PUqlULNWvWhK6uLgwMDJjKWULkgYK7KsLZ2Rm3b99GTk6OxN+Qq2jVq1cX+9s6enp6IvW7Pn/+PKZPnw4OhwMPDw84OTkxt9WvXx+9evXC+PHjsWrVKnz69AmLFi0Sd/mEEEIIIYQQQkiZYmJikJSUhH379kn0YWZFqlevHqKiorBv3z60aNECTZo0gba2NrS0tKpchRuPx6uwNf348QO2trZ49+6dyMcIC3aK+/TpE7p16ybxurhcLubOnQtlZeVSwYqVlRXU1NSQkpKCVq1aoXbt2tDW1ha76kreBFXksFgszJkzR6x59PX1ERgYCA8PD8TFxeHUqVN4+PCh0IorNpstdqjTqFEjrFmzBi1bthQ6RldXV2ahHYfDwcqVK3HkyBGsXr0a5ubmZY6vXr06tm7dih07dmDVqlVM5ZKFhQUcHBzQrFmzcs954cIFLF++HGlpaXBycsKkSZNksudcWapVq4atW7di3bp12LJlC7hcLnR1dbF48WL069dP4H5eZSn+O5e04u7X9a1cuRI9e/bE4sWLmRA/PDwcpqam6NSpk9TnEFedOnUwevRojB49Gm/fvsXGjRtx9OjRUuNcXV1l+j6ppqYGPT09pKWlAUCJ383gwYOlmlvUijtxbNu2DcOHD0fHjh3LHfv69WvExsbi+PHj+PDhA2rXrg1nZ2dYW1uXuy+tsrIyRo0ahREjRuDYsWPYv38/7ty5wwSqPB4PHz58wIcPH5hjOnbsKLRimhBZYfGkrb0nMpGWlsa8uRUUFODKlSvw8/Nj3iSE9cCtLGZmZhgxYoRIZc3iev/+PSwtLZGTkwNTU1NEREQIHPfhwwcMGjQIBQUFWLJkCWxsbGS+Fnlgs9kCNy1u06ZNhfbZrio4HA7zLTK+tm3bQllZuZJWRAghhBBCfhcFBQV4+fJlieuMjIygpETfUSXS+/TpE4YPH47FixdL/aEmqVypqamIi4tDixYt0LhxY2hpaUFTU7PKBZrkf/Lz8/Ho0SO8fv0a7969Q2pqKr5//46MjAzk5OQgNzcXeXl5YLPZ4HA45YY8e/bsESkAkNTDhw8xcuRIsFgsREVFISgoCE2aNMGcOXOgq6sr1lxJSUlYu3YtqlevjgULFpQ7/u7duwgJCcHt27fx77//wsHBQaz2lLJy+/ZtLF68GKtXr5Z4a5v09HQmENfT02OqpmThxYsXmDJlCj5+/AgAcHFxqTKV1GfOnMHMmTOZQHry5Mnw9PSU+Xlev36NrVu34sOHD/Dw8ED79u2lnpPH46FFixYAiqrbdu7cKfWc379/x7///ot9+/ZBS0ur1O15eXm4f/8+bt26hTNnzuD58+do2bIlevTogZ49e6JDhw5itfr81adPn3Ds2DGcOnUKjx8/ZoJJdXV1rF69Gn369JF47rIIapWprq4udgBeUeT5dzh9fk7BXZU2evRo3L9/H8CfFdw5ODggISEBCgoKOHr0aJl7CMybNw+HDx+Guro6Tp8+LdMScnmhN56SKLgjhBBCCCGSouCOyAuPx4OdnR1MTU3h4OBQ2cshhIigsLCQ+cflcktUzMi78vThw4eYP38+fH198fDhQ7Rp0wadO3eW2/mAonaawcHBKCgogJWVFQYNGiSwFefvJDU1FUOHDoW5uTksLCxgYmIi0/m/fv2KSZMm4fnz5wgICIClpaVM55dGREQEYmNjMWfOnFL74lVlubm5GD9+PGxtbTF48GCZfLa5evVqdOjQAb179y5xfWRkJOLj4/HlyxcYGBigWbNmaNOmDbp16ybTPRyLy87Oxr1795CYmIh69eph1KhRcjkPQMFdcfT5ObXKrNI0NDQqewkVLjExkfk2Tffu3cvd+HvEiBE4fPgwcnNzERoaKnRDYkIIIYQQQgghRFT5+fkYNmwYRo4cWdlLIYSISFFRUaoqG2kYGhoiOjoaysrKcg/s+JSUlLBkyRIYGBhUyPkqgq6uLq5cuSK3D+Zr1aqFHTt24MiRI1WuktrOzg6Ojo6VvQyxqaurIzo6WqZz2tnZCQziTE1NYWlpKfcWsMVpamrin3/+KbGfJyEVoWrGteSPVbwtpoWFRbnjO3fuzJT/HzhwoMRm0oQQQgghhBBCiCTU1NQotCOEiExDQ6PCOwe1bNnyPxXaAUX7jcm7mqZGjRqws7OrclU71Hnqf4RVzxkYGFRoaEdIZaLgjlQZP3/+xJUrV5ife/bsWe4xioqKTD9mNpuNCxcuyGl1hBBCCCGEEEIIIYQQQggh8kXBHakyzp8/z2wmbGBgIHJv4pYtWzKXz5w5I5e1EUIIIYQQQgghhBBCCCGEyBsFd6TKuHv3LnO5devWIh9XfB+8x48fy3RNhBBCCCGEEEIIIYQQQgghFUWpshdA/huuX7+OuLg43L17F58/f0ZeXh709PTQsWNHjB49Gl27di13jpcvXzKX69evL/K5a9euzVxOSkpCXl4e1NTUxLsDhBBCCCGEEEIIIYQQQgghlYyCOyKVwsJC+Pj44ODBgwAAdXV16OrqgsvlIjk5GcnJyYiNjcXo0aOxaNEiKCoqCp3r1atXzOV69eqJvIbiwR2Xy8W7d+/QokULCe5N5SooKACLxarsZVS4goICka4jhBBCCCHkVwUFBeDxeCWu43K54HK5lbQiQgghhBBCZKeq/l3L5XJL/R3O4XBKXScJ+myYgjsipYULF+LYsWNwdnaGpaUlmjRpwtyWmJiIJUuW4Pnz59i/fz9yc3MRHBwscB4ul4vv378zP1erVk3kNWhpaZX4OSMjQ7w7UUU8ffq0spdQZTx58qSyl0AIIYQQQn4z/K4beXl5ZX5hkBBCCCGEkN9Bbm5uZS9BqMLCQiaky8vLA0Cf6coSBXdEYsePH0dqaioiIyPRvn37Urd37twZe/bswahRo/D69WvExsaiZ8+esLCwKDU2JyenxM/itLpUVVUtcy5CCCGEEEIIIYQQQgghhJDfgUJlL4D8vt6+fQtvb2+BoR2fpqYmFi1axPy8Zs0aFBYWlhqXnZ1d4mdxgrtfx/46FyGEEEIIIYQQQgghhBBCyO+AgjsiEXt7e7i4uMDa2rrcsV27dmX2nEtJSUFCQkKpMb/u7SZOL9xf+/wqKNDTmhBCCCGEEEIIIYQQQgghvx9qlUkkMmHCBLHG9+7dG8+ePQMA3LhxA7169Spxu6amZomf+X1xRZGfn1/mXL8LY2NjKCsrV/YyKlxBQUGp/sctW7aEkhK9PRFCCCGEkLIVFBTg7du3Ja5TU1OjvyUJIYQQQshv59c97dTV1StpJeUrKChginH462zcuLFM/g7ncDh4+vSp1PP8zuj/zZAK0bJlS+ayoBedhoYGWCwWU2n3axhXFjabXWqu35GSktIfGdwJQo8FIYQQQggRBYvFKtW9Q0FBgbpwEEIIIYSQ38qvXeX4qurftQoKCqX+DldWVpZJcCdON77/qqr5Wyf/OQ0aNGAuf//+vdTtLBYL1atXZ37+8eOHyHP//PmzxM+6urriL5AQQgghhBBCCCGEEEIIIaSSUXBHKkTx9pU5OTkCxxgaGjKXP336JPLcqampzGVlZWU0atRIghUSQgghhBBCCCGEEEIIIYRULgruSIUoXuorrJVl06ZNmcspKSkiz108uGvYsCG1WCSEEEIIIYQQQgghhBBCyG+JgjsitrCwMHTv3h0jRoxAWlqaSMcUr7LT0dEROKZt27bM5WfPnom8npcvXzKX27VrJ/JxhBBCCCGEEEIIIYQQQgghVQkFd0Qst2/fxurVq/Ht2zc8efIEhw4dEum44lVxxSvriuvTpw8UFRUBAK9evUJWVpZIcz9+/Ji53LdvX5GOIYQQQgghhBBCCCGEEEIIqWoouCNiuXv3bomf8/PzRTru9evXzOXilXXF6erqomvXrgCKWmtev3693HnZbDbu378PoKgFZ48ePURaDyGEEEIIIYQQQgghhBBCSFVDwR0RS/E2l8rKyrCwsBDpuKtXrwIAVFRU0Lt3b6HjJk2axFyOiYkRad6fP38CAMaPHw81NTWR1kMIIYQQQgghhBBCCCGEEFLVUHD3H5WSkgInJyd06NABw4YNY4IzaXXv3h0KCkVPmyFDhsDAwKDcYz59+oRbt24BAAYPHozq1asLHWtqagoTExMAwIULF/Dx48cy5+a36tTS0sLkyZNFuAeEEEIIIYQQQgghhBBCCCFVEwV3VVhmZiZzOSMjQ6xj586di4sXLyInJwcvXrzAlClT8OnTJ6nX1KBBA4wZMwZAUWtKUaxduxYFBQXQ1taGh4dHueOXLFmCatWqgcPhICgoSOi4R48e4fTp0wAAX1/fMgNBQgghhBBCCCGEEEIIIYSQqo6CuyoqNTUVr169Yn4+d+6cWMc/evSoxM+5ubl4+PChTNY2b9489OnTB0eOHGH2lxNm+/btOHz4MFRUVBAUFITatWuXO7+BgQHWrl0LFRUVnDx5ElFRUaXGZGRkwMPDAzweD3Z2dhg+fLjE94cQQgghhBBCCCGEEEIIIaQqoOCuisjOzkZmZiY+fvyI06dPY/LkycjPz2duDwsLQ1BQEJ48eYL09HRkZmaCzWYLna9169YlflZWVkaLFi1kslZVVVWEhITAxcUFdnZ2cHFxwYEDB/D48WOkpqYiOTkZFy5cgIuLC5YvX46GDRti06ZN6NOnj8jn6NatG3bt2oV69eph2bJl8PHxwePHj5GSkoK4uDiMHDkSHz9+hKenJ7y8vGRyvwghhBBCCCGEEFk6efJkuV94Jb+PK1euICYmprKX8cfauHEj7ty5U9nL+E8rLCwEl8sV+7i5c+fi6dOnclgRwOPxJDruzZs38Pb2Rm5uroxXJNq5JXkcASArKwtfvnyR8YoIIb8bCu6qCBcXF3Tp0gX9+vXDtGnT8OLFixK3FxYWYvPmzRgxYgS6deuGLl264NixY0LnCwgIQK9evaChoYHGjRtj9erVaNiwoczWq6ioCCcnJ5w9exZdunRBXFwcnJyc0LdvX1hYWMDf3x/q6uoICAjA8ePH0a1bN7HP0bZtWxw/fhy+vr549eoVnJycMHjwYISEhMDU1BTHjx+nfe0IIYQQQgghhFRZLBYLNjY2cHd3l8n2FfJy5syZcveYB4AjR4780R8oh4aGYu7cuXBwcBDp8aoMu3fvLvOL3kBRF6OYmBgUFBTIfT0pKSnlrkdUly5dwtixY2FpaYkDBw5USiDDt3nzZpw+fVriUKk8xb/MX1GysrLg4uKCpUuXin3sqVOnYGlpCXt7e1y9elVma8rOzsbQoUNx/vx5idZ04MABWFlZyS1UFGbz5s0YOHAgdu/ejby8PLGOTUxMxIABAxASEiL2sYSQ/w4WT17/hSGECMRmswW2LW3Tpg1UVFQqYUWVi8Ph4MGDByWua9u2LZSVlStpRYQQQggh5HdRUFCAly9flrjOyMgISkpKlbQiQkoLDAzEli1boKGhgXnz5sHGxqayl1TK4sWLceDAAVhYWMDFxQX6+voCxzk7O+Pq1auwtrbG5MmT0aBBgwpeaeV5+PAhRo4cyfysrq6OZcuWYciQIZW4qtLat28PHR0dODk5YfTo0QI/Z0hPT0e3bt1Qv359ODo6wtraWm6fR8TExGD9+vWYM2cOBgwYINVctra2uHHjBgCgWbNmiIiIwF9//SWLZTJiY2PRv39/qKqqljnO29sbBw4cgLGxMaZNm4a+ffuCxWLJZA0XL16Ej48PZsyYAWtra5nMWZ5Pnz7B2dkZz58/BwB4eHjAyclJ5OP/+ecffP36FWpqali5ciX69esns7WFhoZizZo1GDduHLy8vER+rlpZWeHx48cAABUVFWzYsAG9evWS2brKsnjxYuzevRsA0KhRI0RHR0NLS4u5/fXr1zA0NBR47OrVqxEWFgYAqFu3LmbNmkVbBP0huFxuqS8kqKurQ0GhatZeyfPvcPr8nCruCCGEEEIIIYQQQuTG3d0dBgYGyMnJgY+PD1atWlXZSypFXV0dHA4HBw8exKBBg3Dq1CmB49TU1MBms7Fnzx4MGDAAp0+fruCVVp6tW7eW+HnIkCFibQlSUdTV1ZGamgo/Pz8MGTIEP378EDgGAJKTk7Fo0SIMGzYM379/l8t6LC0t0b9/f8yYMQOurq5IT0+XeC5FRUXm8o4dO2Qe2gFFoUm/fv0QGRlZZtUb/8vGT58+xZYtW/Dz50+pzltQUICzZ8/C1tYWTk5O+Pz5MxYuXIgTJ06Ue+zr16/Ro0cPNG/eXOJ/vXv3ZkI7AFi1ahWOHDkCALh+/TqePXtW5hr4QeeECRNkGtoBgIODA+rVq4fdu3fDzs4OmZmZ5R7z7NkzJrRr164dTp8+LdPQ7sqVK1ixYoXQijj+46GhoYGQkJASoR2Px4O9vT2mT5+Ob9++lTr23r17zOWCgoI/6gsShJD/oa8hEkIIIYQQQgghhMiJiooKvL29ma0ewsPDYWpqis6dO1fyyv5HQ0ODuTxx4kSYm5sLHMf/MFpJSQlBQUFCx/3XPH36tESAoqOjgy5dupR43KoKfihXrVo1LF++HNWqVSs1png1WfPmzRESEoIaNWrIbU2zZs3CjRs3cO7cOVhbW2Pr1q1o3Lix2PPwq06UlJSgq6sr62UCKArkkpOTsWzZMly9epWpfPoVv+KjZs2a2L59e7kVemvXroWzszPU1NSY69LT03H9+nVcvnwZ58+fLxWecrlc+Pr6om7dumjXrp3QuQ0NDbFjxw4cPXoULVq0gIGBAbS0tKCpqQkAePHiBSZOnAigqFpl06ZN5T8QAFM18/jxYwQGBqJnz56YPHky/v77b6Fji4ersqKiooIpU6bA29sbt2/fhoODA3bu3FnmY37gwAEARe9twcHBMg95u3TpgqVLl+L8+fNYvXo1WrZsWeJ2/uNRo0YNGBkZlbjt6tWrSE1NxalTp5CYmIgtW7YwxxcUFDBdqVgsFtatW4eOHTvKdO2EkN8DBXeEEEIIIYQQQgghctSzZ080bdoUr169AgA8evRI7OAuNjYWT548wdy5c2W+vuJtrZydnYW2/ON/UK6uro7BgwfLfB1VVUBAALhcLoCiNmDr16/HhAkT0LFjRzRs2LCSV1cSvxKsc+fOQp9jCgoKUFZWBofDgYmJidDWqLJc06JFizB69GikpKTA0dERMTExJaqQRMHf7YcfSMkD/7XQpk2bMqtj+SGimppaiQCJx+OBzWaXCpU2b96M2NhYjB49Gm/evMH9+/fx5s0bqKmpQV9fHx07dkSjRo3QpEkTNGnSBE2bNoW2trbILfIMDQ0xc+ZMgbdt374dQNHrNyAgQOzQkx82Xr58GVevXkVwcHCp1788ArviLCwssGbNGnz9+hUPHjzAli1bMGXKFIFjs7OzcfToUQDAwoUL5fIaVVFRgZeXFxwdHWFjY4OAgIASj0lZ27/wq3f19PSwZs2aEqHfo0ePkJOTAwAwNTWl0I6QPxi1yiSEEEIIIYQQQgiRM/4eRRoaGujfv79Yxx47dgxz587F1q1bsXz5cpmvTdQP3f/EvcgvXryIa9euASj6sD44OBiNGzeGra0t3N3dS+1HVNmq6u+ybdu2TGvRjx8/IjIyUuw5+OFpRQR3TZs2hYaGBj5//lzmuF+9efMGo0aNwuvXr0tcr6ysjI8fP+Lq1aswMTGBn58fLl26hHv37uHYsWPYuHEj5s6di1GjRqFTp06oVq2aTPa1OnfuHM6fPw+gqPJR2L5qQNH7DJvNLnU9v4oTACIjIwWG9vIO7lRUVDBixAjmZ/5rUpADBw4gMzMTAwcOhJWVldzWxK+cZrPZ8PT0xP3795nbhD0ed+7cQUJCAjQ1NbF58+ZS4frNmzeZy+PHj5fPwgkhvwWquCOEEEIIIYQQQn5TPB4Phbm54BUUgKWkBEV1daHVUkR8ubm5MgtmGjRoABaLhfnz50NNTU3kvb4uX74MLy8vFBYWAiiqnmGxWJg3b55M1gWIHuLIIkj4neTl5cHf35/5edasWWjRogUAwN7eHrGxsfDw8MCGDRuqzGMjLFD6VWW8T4wZMwbnzp0DgBL7qYmKX3FXPEiStV8Dlz179uDLly9YtGhRiSq6soKZ58+fw9raGvPnz8fo0aMB/O811qlTpxIBlDxlZGRg8eLFAAATExOmXaYgUVFRWLp0Kbp27YqQkBDo6OgwtxW/r5XZ4rd3796IiIgAADRq1EjgmIKCAkRGRqJu3bpYsmSJ3NdkZ2eHxMREFBQUYN26ddiyZQsA4c+P4OBgqKioICQkhHkvKe7GjRsAgHr16qFnz55Sr8/MzAzJycnljlNUVIS2tjb09PRgbGyMPn36oF+/fkxLWFlIT0/HkCFDkJ6ejrNnz9LefYSUg4I7QgghhBBCCCHkN5L97j2+Xk7Azxcvkf3mLQqyspjblLS0oNmkMbSbGaGWaU9oNqpabfx+N9++fYOtra1IH3yKytvbG97e3lLNsW3bNrBYLLm0zSzLnxYKr169Gu/evQNQ1O7Uzs6OuU1ZWRmBgYEYNWoUli5dCh8fn8pZ5C9E/R1VRtDYrVs3VKtWDT9+/EDbtm3FPp7D4QCQb3D3a4jt6OiIfv364fXr1wgPD2f2AhQWkPKr23Jzc/H27Vuw2WyoqKiIHKjKCo/Hw7x585iKwRs3bggMin518+ZNjB07FhEREahXrx4A+VfTiapt27ZQU1NDYWEhxo4dK3BMbGwsPn/+jMjISIH7O8par169mOd08S95CHrM4uLicP/+faxduxbdunUrdXteXh5u3boFALC2tpbJa/To0aPIzs7GmjVrEB0dDaBo370NGzbAyMgILBYLBQUFyMjIwIsXL3D27FnExcXh6NGjqFu3LhYvXoxevXpJvQ4A8Pf3F/kLK4QQCu4IIYQQQgghhJDfQnribSQfOozMJ0+FjinIysKPBw/x48FDJB2Mhk5LY9S3HgHdzp0qcKX/HQ0aNEBkZCTOnDkDY2NjNGrUCFpaWtDU1CwVkBQWFkr1Afe3b99Qs2ZNaZdMZOT27dtMO0d9fX2sXLmy1O/c2NgYbm5uCA4OhpKSEubPn18ZS/1tqKioYMGCBXj//n2JEFRUBQUFAEQP7g4ePIiGDRuia9euIp/j17BES0sLEydOxJo1azBx4kTs3r0bWlpaAgPSvLw8XL16FQDg7u4OV1dX5raKDu5WrlyJ8+fPQ1lZGatXr0anTsL/G/DmzRvY2tqisLAQGhoa6N27N1PdCJR8THg8ntwD/A8fPqB27drM3np8KioqmDZtGpo1a4ZWrVqVOo7D4SAkJAQuLi5CKwOPHz8OTU1N9O7dWyZrVVFRgbm5OQ4ePIhRo0Yx1//6GGVnZyMoKAhBQUHo16+fwLlu3ryJ/Px8KCgoiNXiMysrS+h+kVpaWtDS0oKlpSUT3P3zzz+lHh9dXV00adIEAwcOhJ2dHVxcXPDp0ye4uLhg5cqVUu9pevHiRcTGxko1ByF/mqpRx08IIYQQQgghhBCBOJk/8Xzlajz18y8ztBMk88lTPPXzx/OVa8DJ/CmnFf63NWjQAHZ2djAxMcFff/0l9EP7hQsXIiIigtmHSxyZmZkwMzODn58fvn79KotlVwm/6335+fMnvLy8wOVyoa6ujg0bNgit3nFwcECvXr2wY8cOLF26tETg8V+RnZ2NnJwcmcxlYWGBGTNmSBRy84O74i0rhTl48CC8vb3h7OxcYt+w8ggK2MaNGwdVVVU8f/4cgYGBAARXLJ4+fRq5ubno2bNnidAOqNiqte3btyMiIgLKyspYs2YNzM3NoaurK/Tf+vXrmVa8S5cuhaenJ+rXr8/MV/z9TpL3N3FduXIF5ubm2LdvH/M753N0dBRaARYdHY1atWph6tSpAm9PSkrCwoUL4eLiguDg4FJzS8rFxQUzZ84s0QL11/9G3LlzB+7u7kwAduHCBUyYMAFZxSrmL126BKCoMpVf7Vie27dvo2/fvjh79myZ44o//8prjdyqVSum/S+Xy4WPj49UlXJZWVnw9fWV+HhC/lRUcUcIIYQQQgghhFRR2e/e4cniZWBL2V7q66XLyHz0GC19vaFpIHhvICIdJycnWFhY4NKlS1i1ahX09PREPjYhIQF5eXnYuXMnoqOjYWtriylTpogUUAiyfv16TJs2rVJbW7LZbAwZMgTOzs6wt7f/bdps8ng8eHp64v3792CxWPD39y+zxaCCggKCg4MxatQoREVFIT09HStWrJDJ3lCvXr3CixcvpK52kdb58+exfv16BAcHo02bNjKd+8WLF7C1tcX3799FPiYhIQHNmzcXaWxOTg6cnZ2xf/9+GBkZlTteUMBWrVo1mJub49ixY4iOjoa3t7fA4C4mJgY1atTA8uXLS91WUa1Jt23bhhUrVqBmzZpwcHAot9owNjYW169fBwAMHToUQ4YMKTWmeFgnbWWxKFRVVfHlyxf4+PhI1IK2ZcuW5Y6JiIiAoaGh2PsNfv/+vVQ4r6mpidGjR5cIt/Ly8gAUPXbp6elMhWB6ejru3LmDmTNngs1mY/Lkydi8eTO0tLSY8K1fv34iBWUvXrzAlClTkJ2dDTc3N6xduxZ9+/YV6/4I065dO5ibm+PkyZP4+fMnoqOjMXnyZInmWrlyJdhsNpo2bYpXr17JZH2E/AkouCOEEEIIIYQQQqqg7Hfv8GiBb4k97KTBTk/HowU+aL1sCYV3cmBgYABHR0esX78e1tbWiIiIEDlcOHLkCHO5VatW6Nu3r8ShHVBUwbd582Y4OjpKPIe0bt++jYyMDAQEBODSpUsICAhAnTp1Km09otqwYQOzT9m8efNECs10dHSwceNGjBkzBsePH8enT58QEhICXV1dqdair6+PKVOmoHXr1mjYsPL2q7x06RLevXuHsWPHYvr06XB0dJRZENWsWTNs27YNhw8fRps2bdC4cWNUq1YNmpqapcZaW1sjJSUFAwYMwKJFi8qcd+3atdi7dy+AoiDE0NBQpPUIu199+/bFsWPHoKOjAxUVlVJBdEpKCq5du4a1a9cKDO3lHXZxuVwEBgZi27Zt6NChA9asWYOjR4+ib9++mDFjBv79999Sa/7w4QMWL14MAGjUqJHQqih+NR5Q1I5SFqF0WYq/94WEhKBjx44ymffOnTtMNd706dPFDu0A4PDhwwgICBB5/KdPnwTuZ8d39+5dTJ48Ge7u7khJSQEALF68mPm9iIrD4cg8vOvbty9OnjwJALh+/bpEwV1iYiL27NmDVatWYf/+/RTcESIGCu4IIYQQQgghhJAqhpP5E08WL5NZaMdXkJWFJ4uXov3aVVDW0Zbp3KSobeLevXuRmpoKe3t7HDp0CHXr1i3zmC9fviAhIQEAYGhoiLCwMKH7FYnK3t4egwcPRrdu3dC6dWup5pJU8dZt165dw/Dhw7Fjx44yq9cqW3x8PEJCQgAUteQTtA/b7du30bFjx1IhiKGhIcLDwzFp0iTcuXMHI0eORGBgoNC9tkShqqoKa2treHh4YM+ePRW+TxpQ1J7y4sWLAIrCgVWrVuHWrVsIDQ0tt+WeIGw2u1TwY2xsDGNj4zKP43K5SEtLAwA0adKk3FC0eAtCDw8PkYNGYeO6d+8OZWVluLi4ACjdCnHv3r2wtLSEubm5WPPKQkZGBjw8PHDv3j14e3tj/PjxUFBQgIODA2JiYrB06VI8fvwYK1asYI7Jy8vD9OnT8fPnT2hqamLjxo3Q0dEROH/xijsOhyO3+8FXPLjT1taWOgAvPhefpGHgpEmT8Ndff6GgoADGxsaoWbMmtLS0mOf01atX4eDgwDxm9evXx7lz58qdd9WqVczl69evo0aNGgLHvX37FgMHDgRQVOXt4eEh0f0QRfEK1dTUVLGPZ7PZ8Pb2Rt++fTF48GDs379flssj5D+P9rgjhBBCCCGEEEKqmDcRm6VujykMOz0dbyK2yGXuP526ujrGjh0LAPj27ZvAlnm/2rVrFwoKClCtWjWEhoZKHdoBQL169WBubo7Zs2czLdsqEpfLZSo1AKBDhw6IiIio0qHd5cuX4enpCR6Ph3HjxmH27NkCx/n7+2PEiBG4cOFCqds6duyI9evXQ1lZGcnJybC1tcW6deuk2ktr7NixePXqFRMoVrSrV68iIyOD+dnJyQlBQUEShXbBwcFwdnYGm80W+9i0tDQmNGrQoEG54/n7KyoqKorVtlZYwFa9enVERUVhwoQJAm+/e/cu5s+fz/yc9cuXLiRpFctms8t9rK5evYqRI0eiXr16iIuLw4QJE5j7oKioCCcnJwBFlWL8PdQ4HA48PDzw7NkzKCkpYdWqVWjatKnQcxR/D6mI95OKaisqqcGDB2P48OEwMjKCrq4uE9p9/foVnp6eJYLO7OxsJCQklHo+FMfj8RAbGwslJSW0adOGqbwTpHgLTXGe15IoXvUqSWAbEhKCb9++0f52hEioar8TEkIIIYQQQgghf5j0xNv4eilBruf4euky0hNvy/Ucf6qRI0cyH9KfPXsWubm5Qsfm5+dj3759UFRUxKpVq9CokexamE6aNAlv374Vq62brCQmJuLLly8AAGVlZQQGBqJt27YVvg5RJSYmYvr06eBwOHB0dCzzg2ZlZWU8ffoUzs7OsLGxwYMHD0rc3rNnT2zcuBFqamooLCxESEgILC0tS1QgikNHRwcjR45EeHg47t27J9Ec0oiPj2cum5iYwMPDQ2g10Pfv35Geni7wX3h4OCIiInD16lW4ubmJHWZ+/PiRuSxK29Bv374BAGrXri1Wm8qyArYOHTowt/86btu2bUzovnHjRlhaWuLTp08in/dXbDYbbm5umDp1qtDwLj8/H5cuXUJkZCT8/PwEtqLt378/E7JmZmaioKAAs2bNwpkzZ6CoqIjg4GD07t27zLXwwzo9PT25t/wE5N9WVB4KCgrg6emJr1+/Ql9fH7a2tgCKvsTg5+eHrl27Yty4cdi+fXuJIBwAbt68iZSUFAwcOBBGRkZITk4Wep7ie0HKO7j7+fMnc1nYa16YZ8+eYfPmzZgzZw5q164t66UR8kegVpmEEEIIIYQQQkgVknzocMWcJzoGup07Vci5/iR16tRB27Ztcf/+faioqJS5H9TBgwfx/ft3zJ07Fz169Chz3szMTFy4cAHDhw8XaR3Gxsb4+++/sXv3bvTp0wempqZi3Q9pHDx4kLlsY2NTqfuzlefmzZtwdXVFXl4ePD09y93HqXilWf369WFgYFBqjKmpKbZs2QJnZ2dkZWXh5cuXmDJlCjp27Ag7Ozv06dNHrH3CJk6ciF27dsHT0xNHjhyBhoaGyMdKIysrCydOnABQFFR5enqWOT46OhqBgYHlznvhwgWcO3cO/fv3F3ktjx49AlBUjdWyZctyx/Pbav71118in+NXx44dYyr3fnX7dtEXH7KysrB9+3bm+nfv3mHPnj0AAFtbW0RFReGvv/5igr7c3NwSVVOC8Hg8eHt7My0Wp06dipCQkFLPGVVVVcybN6/MuTQ0NNC6dWsoKCjg77//hrOzMxISEqCsrIyAgAAMGjQI79+/R7169YRWUSorK2PmzJmYOHEi1NXVBY6RZQvNiqi44/F4Mp3Ly8sLV69eRf369bFjxw7mdaOtrY3Dhw/Dx8cHsbGxuH37NkJDQ7F9+3amPez+/fuhoKAAR0dHREdHl1lxV7xlpTTPbVG8e/eOuSzKa46vsLAQ8+fPR9euXTFq1Cg5rIyQPwMFd4QQQgghhBBCSBWR/e49Mp88rZBzZT5+guz3H6DZqOqGKlXN2bNnYWZmVm7bOzMzM9y/fx8ODg5Cq0c4HA42b96M4cOHY9KkSWXOl56eDgcHBzx58gRfvnwpN1zimzBhAq5fvw5vb28cP368xB5P8vLz50+mTaampiamTJki93NK6sSJE/D09ISamhrCwsLKrTwC/hfc1atXr8S+VL/q3Lkz9u/fjylTpjAfgN+5cwd37tyBjo4OzM3N0alTJzRv3hxGRkYl9vX6VYMGDdCnTx+cOXMGwcHB8PHxEet+Sur48ePIyckBUNQesE2bNmWOd4WHyd0AAPD1SURBVHBwgJ6eHrhcLoyNjVGrVi1oa2tDRUUF69evx4YNG6CtrY2QkBCYmJiItRZ+ZWPz5s3LbSfLZrOZqqby9pgsS4sWLeDk5IS6deuWmOfhw4fM75TD4TChIt+wYcOYywcPHsTUqVOZ94wtW7ZgyxbxWhVfunQJ06ZNw4YNG8QKfPmWLl2KtLQ0jB49GsnJyahRowY2bNjA7L945MgRREdHw8HBATY2NqXOMX78eABFj+uPHz+gqalZYr/FBw8eICkpCQCE7pMnjt8tuFu2bBmOHj2Khg0bYuvWrahfv36J2zU0NBAcHIz69esjLCwMGRkZ8Pf3R1RUFNLT03Hy5ElYWFigRYsW0NbWZh5LQYoHd6K0jJUGf29LAOjbt6/Ix23duhVv377F0aNH5bEsQv4YFNwRQgghhBBCCCH/Ly/1i0zmUVBRhoqYraXY37/j84mT5Q+Uoc/xJ1F/hIXQ2yW9H1x26eoLJU1NKGlpCjji9zFnzhzUr18fU6dOLbNCbujQoUhLS8PEiRORnZ0tcMzRo0ehpaUFLy8voWMA4MePH3BycsLLly8BAEFBQeBwOHB1dS13vWZmZmjQoAGSkpLg7+8v0p570oqOjmZa67m4uKBmzZpyP6ckoqKi4O/vDyMjI6xbt05g5Zwg/OBOlD3LDA0NceDAAXh6epbYEy8zMxOHDh3CoUOHoKuri1mzZpVbmTJhwgScOXMGu3fvRv/+/fH333+LtF5p8CvHVFVV4eHhIdIx5VWE/vXXX2KHdgCYNqH8sKks/DaZgHTBXdOmTZmqt+JGjhzJXK5RowaCg4PLnauwsBAAMGXKFLi5uQkcM3ToULx8+RLTpk3D9OnTJVx1Sbm5uYiOjsaOHTtQUFCArl27IiAgAPXq1WPGTJs2DU+fPsXSpUuxbds2LF26FN27dy811/v37zF37lw8efIEysrKUFVVBYvFQmZmJjPGyMhI6jXzHyt5Kr4PnTRz8AO4Ll26YP369WW2lJw5cyZycnIQGRmJ9+/fAyh6jSkrK8Pd3R1AUYVeYmKi0Dn4bTTV1dXl2irz1atXiIuLA1DUIlbQ80GQ9+/fY8OGDZg5cyb09fXltj5C/gQU3BFCCCGEEEIIIf/vtlP5YYgodFq3QptlS8Q65nnwamQ+eiyT84vqc/wJfI4/IfR2Wd4P/TGj0XCsjdhrrErU1dXx/PlzzJgxQ6TxO3fuLHdMt27dxF7HmjVrUFBQUO6H+woKCrCxscHKlSsRHR2NoUOH4p9//hH7fKLicrmIjIwEUFQNYmdnJ7dzSSonJwc+Pj44fvw47O3t4e7uLlYVU/FKI1Ho6OggPDwce/fuRUBAAFPBpq+vDx8fH5FbmP79998wNDTE69ev4ePjg6NHj0JNTU2stYjj+vXrePq0qPrX3t6+VBVRRXr16hUTWIjy/C1elVQ8oJKF9PR0PH78v/e3nJwcpKenQ1dXt8zj+EFRWaGULKvAgKKK0qCgICQlJaFevXpwc3ODhYVFqdBZQUEBy5cvh4WFBZKTkzF58mRs3bq1VDhsZGSE6OhopKam4sCBA9i6dWuJLx00bdq03Ja/opBl201hpA3u2Gw2Zs+ejZMnT2LkyJHw9fUV6X1k3rx5ePnyJVgsFhPieXp6Mm0v//rrLzx+/Bg8Hk/glwP4lZ7ybD/85s0buLi4oKCgAHXq1MHq1atFOo7f4rVFixbMHn+EEMlRcEcIIYQQQgghhFQBsv7Qlsge/4PZevXqMXsYVXXW1tZYt24dOBwOFi5ciLi4OLkFPqdOnWLavM2bN0+itn7y9PLlS8yYMQMsFgtRUVElqrc4HI7QPb6KE2WMIGPGjEGvXr2wevVqXLp0CXv27BG7Ymb06NFYvnw5U9Uye/ZsidYiim3btgEAateuDScnJ7mdRxSnTp0CUFTdJkow9OXL/yqnpam4E+TKlSslQh8Oh4MxY8bAycmpRCXer0QJ7mTl5s2bWLVqFe7evYsmTZrAz88PlpaWZb4eq1evjnnz5sHd3R2FhYWIiooSWtVZp04dTJs2DRYWFhg/fjxSU1NRo0YNrFy5UiZtLgsKCqSeQ57n+Pr1K2bMmIE3b95g7dq1GDhwoNCxvz4eioqKCAkJQWpqKnbv3o2WLVti7NixzO0GBgb4+fMn3r17h8aNG5eaj1+pJ4vKxuIKCwvx/PlzHDt2DLt370Zubi46dOiANWvWiLyX3v79+3H37l0cOXKkQtqdEvJfR8EdIYQQQgghhBBSFcigdRepGCwWq8w9yaqSmjVrwszMDCdPnkRycjLCw8OFtuqTBo/HQ1hYGADA1NQU5ubmIh03bNgwfPr0SWbrENRmjr+f4M6dO+Ho6Ih///23VOXctm3b8PTpUzg7O6NFixZC5xe34q64unXrIjAwEFlZWeXu0yaIpaUlgoODweFwsH37dlhZWaFJkyYSr0eYJ0+eMK09vby8oKlZuS1uT58+DQAYMmSISMFpWloac1nWFXfFW54CQLVq1RAYGAh7e3scP34cy5YtE3hOfhVZWYGGNF/e4PF4uHjxIsLCwvD8+XOYmZnBzc0Nf//9t0htXQFg0KBB2LhxI168eIHc3Nxyx+vr62PatGmIjY3FkiVL0LhxYxQWFuLWrVtStXKtiOBO0oq7a9euwdPTEx06dMC6detQq1atUmMyMjJQWFiIDh06YNmyZaVu19TURI0aNXDkyBHs2LGjxO/HwMAALBYLjx49KhXcpaSk4OfPnwCKqhsldezYMZw5c4b5mcfjITs7GzweD5qamujSpQusrKwwcOBAkZ87qampCAoKgqurKwwNDSVeGyHkfyi4I4QQQgghhBBCqgCquPt9/G6/KwsLC5w8WbR/4pYtW2BjYyNyFYWozp49i6dPn0JVVRULFy4U+biIiAi5flCfmJiIFStWoEuXLoiNjRXa0lBFRQVxcXGIj49H79694erqinbt2kl17pSUFIEhjiShHVBUFdW7d2+cPn0aHA4HAQEBCA8Pl2qNgoSEhAAAunfvjsGDB8t8fnE8ePAAT548AQBYWVmJdMznz5+Zy7IM7jIzM5nAo0ePHkhISAAAtG/fHmvWrIGLiwuGDx+OpUuXlqrCYrPZAIoqrmTp+/fvOHjwIOLi4tCoUSPY2tqid+/e0NDQkGg+KysrrFixAgMGDBBpvIWFBUaPHg2gqG2ou7s7Ll++jLVr16J///4SraF4q8yfP38iPT1donl+xQ+9fj2HqMLCwnDx4kWsWbOmzL0W165di6NHj2LOnDlCn3/p6elYtmxZqfcjNTU11K1bF/fu3cOwYcNK3Pbs2TPmcqtWrcReP5+ZmRnmzJnD/JydnQ1ra2twOBx06tQJERERYs+5ePFi1KtXr9Krcwn5L6HgjhBCCCGEEEIIqQJE/WY7qTz8wO53awNmamoKHR0dZGZmIj8/HyEhIfDz85PZ/FwuF+vWrQMATJ06Vaz9l2QdIP7q69evCA8PR82aNcscx6+g5PF4SEhIQO/evaUK7mJiYuDt7Y2goCAMGjRI4nl+NXToUKYC7cKFC7hz5w46duwos/kfPHiAs2fPQk1NDYsXL5bZvJLavn07AKBPnz4ihxX84E5bWxvVqlWT2VpiY2ORl5eH1q1bo1u3bkxwBwC9evWCm5sbVq9eDTc3N3h4eJQIMfjBXVntKiX5QsD379/Rrl072NnZSdzGtTgrKyvk5OQwYVx5+K+btLQ0ODs7M/v/zZ49G1u3bi0z4BKmeJA/depUsY8XRX5+vtjHmJubw8XFpcwxPB4PZ8+eRVZWFnx8fHDs2DFs2bKl1O+9rKq0Jk2a4MKFC6W+AHHv3j3mctu2bcVeP5+GhgYaNGhQ4rp+/fohPj4eCQkJ+PjxI/T19UWeLy4uDhcuXMD+/ftl8hwkhBSh4I4QQgghhBBCCKkKfrMw6E+Uk5MDABJXs1QWZWVlmJmZISYmBkBRqOTh4YHq1avLZP4jR47g+fPnaNGiBRwcHGQyp6yUtf9Ucerq6szlNWvWoF+/fhKfMyYmBl5eXuByuZg9ezYUFBRErmAqT69evaCmpoa8vDwARcGWLIO74OBg8Hg8zJgxQ6wAVh6Sk5OZStHp06eLfBy/9aqs22QePHgQQFGY9Pr1awAlwzYnJydcuHABd+/excqVK9G4cWOmZSz/vUPSaktBbty4AWdnZ5HaWoqLH8RLKj8/H66urti9e7fY+7EVD+4iIyNhYmJSasynT5/E3r/wxo0bsLW1LXUOUYnSAvL27dtITU0FUNRKdP369aVCuzNnzqBLly5CQ+WOHTsiISEBL168QLNmzUrMDQCNGzeW2Xs3n42NDeLj48HlcrF7927MnTtXpOMyMjKwdOlS2NnZoXXr1jJdEyF/OgruCCGEEEIIIYSQ/9dpU6hM5lFQEf9b5y08Z+HZiiD8fPZcJmsQhbZxCzSbKXy/M0nuR/PZM8Fll25DplTJ+2TJAj8s+d2CO6Ao8OEHd2w2G9evXxc51CpLXl4e1q1bB2VlZaxYsUKqPeAqU/EWhvXr1y93fHJyMpo3b17uuIKCAsyaNQtr1qwRed+/sqirq6NLly64fPkyADD/KwsXL17EjRs30L59e9jZ2clsXkkFBQWhoKAAQ4cOFas1YEpKCgCUqiqSxo0bN/DkyRP07t0bZmZmePXqFYCSe6UpKChg0aJFsLS0BI/Hw9atW2Fubo6cnBwUFhYCAHR0dISeQ9yKOxMTE4SHh+P69eto1aoVGjRoAG1t7RIhtCAcDgeTJ0/GixcvAAD29vZwcnLCvn37kJqaihkzZoi8hvICNDU1NZHn4isoKICOjg769OkDAwODUrfn5OTA3t4enTt3xrRp00Su2lVVVYWFhQVGjRqFLl26SLSu8ir1Dh06BKCogn7JkiVQVlZGdnY2c/uDBw/g7u4OfX19bNq0SWBlW9euXQEA586dY4K7rKws3L9/H0BRC1tZ+/vvv9GwYUN8+PAB0dHRcHNzE+l3t3z5cmhra4v1nCGEiOb3/GuKEEIIIYQQQgiRA7U6tSvt3Co1aqBa61YVGtxVa9VS5vdZpUYNmc5XVXC5XCa4K+vD96rq16qVpKQkmcy7adMmpKSkwMPDA8bGxjKZszKIu/dY3bp1ER0dLfJ4WQaaJiYmTGCXk5OD9PR0oXv3iYrNZsPf3x8aGhoICgqS+V5s4kpMTER8fDz09PTg7e0t8nEcDodplSnL4G7dunVQU1Nj1sIP2X4N21q0aIEBAwbgxIkTzD5qxfdWq1WrltBzSNIq08TERGBFWlkWLFjAhHaWlpaYO3cuWCwWxowZg379+sHOzk5gYPargIAAxMbGYs+ePWK1VizP4MGDMXr0aKFtRTU0NBAeHo6xY8ciNjYWkyZNgrOzc7lBU/v27dG+fXuJ15WbmwsHBwcmQCsLj8eDvb290NvfvHmDsWPH4ujRo6Veu+3atYOqqipOnTrFtOa8fv0683ySR3DHYrEwatQorFy5EhkZGTh+/Disra3LPOby5cs4cuQIoqKiJApoCSFlo+COEEIIIYQQQgipImr17IGkg6KHAVKfz7RnhZ3rd5eRkcFcrlOnTuUtREI1a9ZEnTp1mDZustin7+PHj9i8eTNMTEwwefJkqeerTOIGVQoKClKHZZL6tfpMFvtjbtu2De/evcPy5csrvUVmfn4+s7+en58faojxZYCkpCSmuk1W9+PKlStITEzEokWLmICKf47iFXd8Y8eOxYkTJ9C7d28ARfss8pX13iFJcCeutWvXMi0/+/Tpg2XLljHPnxo1aqBfv35YtmwZIiIiypxnw4YN2Lp1KwDAzs4Ou3fvltn7YvHX1a5du6CmpgZLS8sSr9FGjRph3bp1sLOzw8aNGxEbG4vg4GCpgrnyaGtrY8uWLdixYweMjIzQtGlT6OjoQEtLCwoKCjh48CCWLFkCdXV1HD16VODjMW7cODx69AhNmzbF2rVrBb6HqKiooF27drh58yYePHiAtm3bIj4+HkBRaNmjRw+53D8rKyusW7cOHA4Hu3btKje44//+XV1dRZq/eEvX4cOHl/pvUGJiopgrJuS/jYI7QgghhBBCCCGkitA0aASdlsbIfPJU7ufSadUSmo0q9wP638nvHtwBQJMmTZjgThYfcPv5+UFHRwcrV66USRBYmSq7wkwcTZo0YS4bGBiIFWwJkpSUhLCwMFhZWcHKykra5Ult2bJlePHiBVxcXNCnTx+xjn3z5g1zuVGjRlKvhcvlYvXq1Rg4cCDGjh1b4nrgfwFecX///Tc8PT2Z8WlpaQCKwt6ywkRBIaAsbdq0CRs3bgRQ1I5x7dq1pSpB7e3tMWLECJw6dQr9+/cvNQeHw4Gfnx/27dvHXJefn49FixZhzZo1UFVVlXh9hw8fxogRI0pcl5GRgXXr1mHz5s2YMWMGBg4cyASNnTt3hqenJ/z9/fHx40dMmDCB+SKBMNu2bcODBw9gb2+Ptm3bir1GbW1tTJs2rdT1bDabCTudnZ0F/p4fPHiAR48eAQBmzJiBpk2bCj1P7969cfPmTezcuRM+Pj44e/YsgP/tcSkPtWrVgpmZGU6ePInHjx/j/v37aNeundDxgYGB5bYOLc7T0xN37twBUPRcFLXFKSF/qt/7rypCCCGEEEIIIeQ/pr71iPIHyeI8VpYVcp7/iuLBnSzbwlWkzp07AwAsLCzQsWNHqeaKjY3F1atXsXbtWujp6clieUREf/31Fxo0aAAlJSUsXLhQ6vl8fX1haGgIX19fGaxOOsePH8e+ffswYsQIzJw5U+zjnz7935ceRNmDsDxRUVHIzs7GsmXLSlzPD9mEhW2TJ0+G5v/v6/n27VsARRWAZQVb8qy4CwoKwsqVKwEARkZGCA0NFbiWFi1awMLCAgsXLizVTvfTp0+YMGEC9u3bBxaLhR49eiAiIgKXL18WOp+oXr9+jQ0bNpS6nj/nmzdvsGzZshK/XwCwtbVl9oRjs9mlfk+/mjBhAtMWcuLEibh9+7bEay5u586d+PTpExo1agQHBweBY8LCwgAUhe3l7Xc5dOhQKCgoID4+HhEREUy1WnlVcNIaNWoUc3n37t1ljtXT00ODBg1E/lf8+cF/Dyv+jxBSEgV3hBBCCCGEEEJIFaLbuRNqmcqnFRZfLdOe0O3cSa7n+K8p/iF2WZUSVdm4cePg4eEBf39/qeZhs9lYvnw5li5dik6d6HlUGRYtWoTQ0FCp2+adOXMGr1+/RkhISKXvU3Xt2jXMmzcP5ubmWLp0qcRzAEWhQu3a0u3fmZSUhJ07dyIiIgJaWlolbisoKAAAZt+xsvD3kyuvwksewV1ubi7c3d2xefNm5rrWrVuXuj/FzZw5E/n5+ZgxYwbYbDYAICYmBpaWlnjy5AlsbGxw/PhxbNmyBaampjJp1bpnzx6BbSOVlZWZy1u3bkXLli1L3M5iseDj48NU/H7//l3g/Ddv3sS5c+egpKSE4OBgDB06FNevX8e4ceMwdepUqfb8zMzMRHh4OICi/QMF7c334MEDpmpu6tSp5VYo16lTB507dwabzWYCv4YNG8qtTSZfjx49UL9+fQBAXFwc0tPT5Xo+QohwFNwRQgghhBBCCCFVTBPHyVCR0/5ZKrq6aOIouCKACPf69WsARe3uDA0NK3k1ktHV1YWTk1Op9njiys/Ph6OjIywtLWWzMCK2nj17wtTUVOp58vLysHXr1kpv//rw4UNMnToVNjY2WLdundDnaFZWltA5kpKSmFZ83bt3l3pNUVFRWL16tcBqIH5gJ0pwd+PGDQAos4UjIPtWme/evcOYMWMQHx8PTU1NkX/HderUwezZs/H48WN4eXnBwcEBy5Ytw5gxY3D+/HksWbJEpu+Bnz9/xr59+wQGrcVb2GpoaAg83sjICIMGDQIA/PPPPwLHvH//nmmjqqCggBUrVjBjz5w5g+HDh+PMmTMSrX/Dhg3IyMhA7dq1oaCggJ8/f5a4vbCwEIsWLQIAtGnTBkOHDhVp3uHDh5f42cnJSSYhaVn41YhA0Rc0+PshEkIqHu1xRwghhBBCCCGEVDHKOtpo6euNRwt8UFDGB9XiUtLSQktfbyjraMtszj/Fq1evAADGxsZQV1ev5NVULm1tbdjb21f2MogMDB06tMSeefLw6NEjnDp1CgCQnJyMZ8+eoUWLFszt165dg4eHB2bNmoV///1X6DwcDge2trZgs9lo06YNWrduDSMjI2YvO19fXyb8GjhwoNTr9vLyEnqbqBV3r169QnJyMpSUlGBmZlbmWEH75Unq4MGDWLZsGXJycmBmZgZfX1/4+voye1yW599//8X169dx7NgxNG7cGGfOnEG1atVktr7ili1bBjabLTAgFXXvzJkzZ+Lp06eYOnWqwNszMjKQmZnJ/KysrIx169bBysoK79+/R3Z2Ntzd3bF///5SVX3lad++PXg8Hh4+fIhp06aBzWajadOm6NChAzp27IiHDx/i8ePHUFFRgZ+fn0T7gSooKODvv/8W+zhJWFlZYcOGDSgoKMDevXsxefLk334PU0J+R/SqI4QQQgghhBBCqiBNg0ZovWyJzCrvVHR10XrZEmgaNJLJfH+ax48fAwB69+5duQsh5Dfx48cP+Pr6YtSoUWjatCliYmJgbm6OiRMnIjExEUBRC8bVq1dj27ZtZYZ2QFHYEh0djSVLluDdu3dYsmQJJkyYAFNTU5iamiIhIQFAUStbeb9O8/PzARS1t+S3kxTk8OHDAIB+/foJbAVZnCxaZSYlJWHy5MlYsGABateujZCQEISGhuKvv/4Sey5/f380adIEb9++hYuLi8ihnzgiIyOZUFdQFZ+ogZG+vj7i4+OF7j/67du3Um0ftbS0sHr1aqaqj8PhSFRhNnjwYCxYsAB79+7FzZs3ERoaig4dOuD8+fOYO3cudu7cCaBoX7cHDx7g69ev5c6ZkJCAxYsXMz9zuVw4Ojri27dvYq9PXHXq1EGvXr0AFAXtFy5ckMm8xZ/f8tzPkZD/CgruCCGEEEIIIYSQKkrToBHar12FWqY9pZqnlmlPtF+7ikI7CT169AifPn2CgoICLCwsKns5hFRpPB4Phw4dwsCBA7F37164uLhg9erVMDY2RmBgIAYMGAA7Ozvs3LkT2tra2L17N5o3by7y/B07dsTu3bsxe/bsUrdpamoiICBA7hVCqqqqGDduHI4cOQIVFRUcO3YMrq6uJUK87OxsHDx4EEpKSkIrwYrjV9xJUnmXl5eHsLAwDB06FM+ePYOvry+OHz+Ofv36iT0Xn46ODnbs2IHGjRvjzp07GDZsGPbs2SOzlp579uwpsd+moD0AZfV7TEpKwpcvX0pd36pVK9jY2DA/F6/Kk4Sqqip69+4NHx8fDBgwoMRtHz58gI+PD0xNTTFr1iyB6wGK2sZOnz4dHA4HjRo1woQJEwAAb9++xaRJkyTad674c4pfLVqW4o8JP3iUVnJyMnP5/fv3MpmTkP8yCu4IIYQQQgghhJAqTFlHG8093GG8cD50WonXwkunVUsYL5yP5h7u1B5TCqdPnwYAmJmZMW35iGju37+PpUuXUoXFf8DatWtx+fLlMsc8e/YM48aNw/z585Geng5HR0e4ubmVGOPr64vevXvDz88Pe/fuRVpamthrYbFYcHR0hLu7O3Nd8+bNsXv3brRu3Vrs+QDg4sWLuHnzJoCi/b3S09OF/nN1dcX06dNRu3ZtxMTEYM6cOTh37hzTKhEoCjwyMjLw77//olmzZuWenx+IiRKsFD/myJEjGDRoEA4fPox58+bh7NmzGDdunNh7WRYWFuLatWv/x959h0dZpW8cv6ekkkYJNUBooUpRECmuShGxoVhWEZH9sZZlde2iqIi9i6hrZ2VF17ouooIUQRQVQUBAkapAIBBKSCGTMu33R5Ihw8yEeYdJZoDv57r22pk355z3zAQpc+d5jiZNmqQLL7xQ5eXlaty4sf79738rKytLBQUFmjx5si699FLNnz//qAK8mTNnavLkyZ7fF9q0aePVPjXcNm3apK1bt/r92vjx4xUXFydJYTk38sCBAxo3bpxmzJihxMREPfLII/ryyy81YsQIWSwWOZ1OffHFFxo3bpyncrPKihUr9Ne//lU2m029evXS+++/r/vuu8/T+nX9+vW65JJLtGbNmqD2cvDgQeXm5mrWrFmea99//71WrFihgoKCgNWip59+upo1ayZJ+u677/Tmm28qLy9PJSUlQd23vLxchYWFys/P15YtW/TYY48pOzvb8/WHH35YixcvVm5urgoLC33eBwCccQcAAAAAwDGhQe9T1KD3KSretl37vvlWRZs2q3jL715n4FmTklSvXVsld2ivRn86XfVat4rgjo8PLpdLc+bMkcVi8QoJcGSrV6/WuHHjVFRUpJKSEj3yyCMymUyR3lZEzZ49WwcPHtTll18e6a0Y8uyzz+r1119XXFycXn75ZQ0cONBnzJw5c3T77bd7qnsuuugiv1VxFotFzz33nG677TbNnz9fZ599tv785z/rsssuM1R5J0nXXnut9u7dq/79+2vw4MEh//pyOByaOnWqbDabJOmLL77QF198YXidxYsX6+9//7smTpyoV199VS1bttRNN90U1NyqIOxI5+ZJFVWNs2fP1iuvvKImTZpo4sSJGjx4sOEKNafTqWXLlmnOnDmaP3++LBaLxo4dq7vuukuxsbGSKlonfvjhh5o8ebJmzpypX3/9VTfeeKMyMzM1fPhwDR48WF26dPG0nAzG888/73lssVh07733+h1X/fu5d+9ev+fgHcn27ds9od0PP/ygfv36eX09PT1dkyZN0urVq3X++ecbXr+6efPm6ZFHHlFubq569uypp556yvPDHk899ZSuv/563X///VqxYoU2btyon3/+WX379pVU8Wvu7rvvVnl5uYYPH64nn3zSEyg+8cQTys3N1apVq5STk6NRo0bp1ltv1dVXX+35Pvlz4YUXelW6SRVtQ0eNGiVJevzxxzVy5EifeWazWZdeeqlefPFFSdLTTz+tp59+WsOGDdMLL7xwxPfh888/r/GMyK1bt+q6667zPL/xxhuD/u8EOFEQ3AEAAAAAcAyp17qV6l19laSKD2+dJaVyO+wyWWNkSYg/4YORcJs9e7a2bduma665Rh06dIj0dgJyu90htdirmlvF6XQGrPipPu5IVUG//PKL/vrXv6qoqEiS9PHHH8tkMunhhx8+YX+NLliwQHfeeaecTqdiYmJ08cUX+x3ndDqPukLR7XYHVbkVzLipU6fq9ddfl1Rxttv48eP1yiuvaMCAAV7jhg4dqvPPP1+ffvqpOnfurIcffjjgmrGxsXrxxRf1xhtv6KWXXtKMGTM0Y8YMtWzZUqeccoo6d+6szMxMNWjQQA0bNlS9evUUHx+vuLg4r18/VqtVkyZN8nsPp9OpsrIy2Ww2FRQUqKioSAUFBUpLS1OPHj28xlqtVk2fPl3XXXedVq1apSeeeCLg9+dIXC6Xxo0bJ0n65z//qaSkpKDmVX0fajozr7rs7Gy9/vrrat68eVDjCwoKJB2qrKsK6/Ly8tSkSRPdeOONuuyyy/wGQQkJCXryySfVr18/PfXUU9q/f7+2bt2qV155Ra+88ooSExPVpUsXtWvXTi1btlSDBg2UlJQkt9vtqRar7vHHH9fHH3+sxMREXXzxxTr55JP97rn693rq1Kl64oknDJ3Xt3XrVt19992e59dff70eeOABXXLJJV7jLr30Ul166aVBr3u4HTt26OGHH9bXX3+tBg0aaOLEiRo9erRPmNmuXTu9++67evfdd/XEE0/IbrfL7XbrlVde0QsvvKCEhARNnDhRV155pde8hIQEvfHGGxo7dqx++eUX2e12PfXUU3r33Xf1j3/8Q+edd55iYmJ89rVw4cKQX9ONN96oG2+8MaS5I0eO9BsIAgieyU2vAqBOlZeXa+3atT7XTzrppBp/SuZ4ZbfbfUr8u3fv7vcvHAAAAEB1DodDmzZt8rrWoUMHw+3BgEBcLpcuuOACORwOzZw5UwkJCZHeUkA5OTkaPXq0T3VFtLn88sv10EMP1Vl4V1pa6qmiqsk333yjCRMmSJLefvvtgCHt5MmTNXfuXDVr1kyffPJJ0Pv4+eef9Y9//MNTTWU2m/X000/7rfD55JNPdO+994btLLHaEBcX5ze8c7vdevrpp3XJJZeoXbt2Qa2VnZ2tF198UbNnzw6q2iw2NlZxcXGez1Cq/1pyu90qKytTWVmZz1omk0n9+vXTmDFjdNZZZ/ldu6SkRIsWLdK5554b1N79eeGFF/TKK6/o+eef9znnrCbdu3dXWVmZLrnkEq+z38Jhz549GjZsmM9/C8nJybrhhht09dVXe6q7jqSoqEgvvfSS3n333Rq/X7169dKAAQOOqpJqy5YtOv/888P230Jqaqo++eSTkCr3/MnOztYbb7yh//3vf4qLi9Nf/vIXjR07VvXq1Tvi3Ly8PB08eFD33nuvli1bplNPPVWPPfaYWrZsGXBOQUGBxo8fr59++snrekpKigYNGqQrrrhCvXr1OurXhchwuVw+7UgTEhJq/czOUNXm38P5/JyKOwAAAAAAAL9mzpypHTt26IMPPojq0E6SmjdvrhkzZuiDDz5Qp06d1LZtWyUnJyspKSnqKtzcbned7amgoEBjxowJeL6VP2PGjDnimF27dvm03DPC5XJpwoQJiomJ8Ql3Ro4cqfj4eOXk5Khr165q3LixkpOTFR8fH/L9aoO/1ogmk0l33XWXoXVatmypp556Srfffrtmz56tefPmae3atQFDofLy8qCr0qq0bt1azz//vLp0qfmc0ISEhKMK7WbOnKnXX39dzzzzjKHQTpKnYrY2zvtavHixT2h3ySWX6I477lCDBg0MrZWcnKx77rlH48aN03vvvacPP/xQ+/bt83w9LS1NL774ok499dSj3ne7du306KOP6tlnn/W6Ryj69u2rSZMmhSW0W7Nmjd555x198cUX6tSpk+6++25dcMEFSklJCWq+2+3WnDlz9Mwzzyg1NVWPPPKILr300iP+vpiamqq33npLd911l+bMmeO5Xl5erqKiIuXn5x/NywIQRai4A+oYPzHgjYo7AAAAhIqKO9SmXbt26cILL9SDDz54VB/kI/Jyc3M1e/ZsderUSW3atFFSUpLq1asXdYEmDikrK9Mvv/yiLVu2aOvWrcrNzdWBAweUn58vm82mkpISlZaWqry8XHa7/YiVeu+9917AdozhsmjRIt1222168skndfbZZxue36lTJ0nSDTfcEPbzNN1ut8aMGaNly5YpPT1dTz75pE+1ZKjKy8u1ZMkSLVy4UF9//bUmT56sIUOGhGXtKm63W7m5ubLZbIbbyFosFqWnpwdVBVeT3Nxcffrpp/rss88UExOj/v37a8SIEYZbKC9dulRTpkxRdna2rr/+el155ZWGPw90u91688039fzzz+uMM87QY489prS0NENrIPpQcXcIn58T3AF1jt94vBHcAQAAIFQEd6gtbrdbY8eO1Z/+9CfPWVUAopvT6fT8z+VyeQIet9td65Wn8+bN0zPPPKNnn31WJ510kuH5LpdL9957r/76178G3WLUqB07duimm27Syy+/rGbNmtXKPare8+MxFJ8xY4ZatWqlU045JehzC6tbs2aNpkyZIpvNpksvvVTnnXeeEhMTj2pPK1eu9JwFiWMfwd0hfH5Oq0wAAAAAAAAvZWVluuCCC3TppZdGeisAgmSxWPy276wL69at0wcffKD69euHNN9sNuvxxx8P8668ZWRk6KOPPqrVH245HgO7KldffXXIc8vLy/XVV1/p3nvvVfv27cO2p9quIgUQOQR3AAAAAAAA1cTHxxPaAQhauFtb1hYq0iMjNjZWt956a6S3AeAYEp11lgAAAAAAAAAAAMAJhuAOAAAAAAAAAAAAiAIEdwAAAAAAAAAAAEAUILgDAAAAAAAAAAAAogDBHQAAAAAAAAAAABAFCO4AAAAAAAAAAACAKEBwBwAAAAAAAAAAAEQBgjsAAAAAAAAAAAAgChDcAQAAAAAAAAAAAFGA4A4AAAAAcEwymUw+19xudwR2AgAAAJw4XC6XzzV/fzdHaAjuAAAAAADHJLPZ95+0DocjAjsBAAAAThxOp9Pnmr+/myM0vJMAAAAAgGOSyWSS1Wr1ulZcXByh3QAAAAAnhsP/zm21Wqm4CyOCOwAAAADAMSspKcnreVFRUYR2AgAAAJwYDv879+F/J8fRIbgDAAAAAByzUlJSvJ6Xlpbq4MGDEdoNAAAAcHw7ePCgSktLva4d/ndyHB2COwAAAADAMSsxMVEWi8Xr2o4dOwjvAAAAgDA7ePCgduzY4XXNYrEoMTExQjs6PlmPPAQAAAAAgOhkMpmUmpqqvLw8zzW3263s7GzFx8crOTlZ9erVk8VikdnMz64CAAAg+rhcLjmdTq9rDocj4n9/rdpXcXGxioqKfCrtJCk1NZXz7cKM4A4AAAAAcExr3LixHA6HCgsLva6XlpaqtLRUe/fujdDOAAAAgCNzu91yu91e10wmU9QHYikpKWrcuHGkt3Hc4ccNAQAAAADHNJPJpObNm3O2BgAAAFBHUlJS1Lx586gPF49FVNwBAAAAAI55VeGd1WpVQUGBT6shAAAAIJod3oYyISEhQjupmcViUWpqqho3bkxoV0sI7gAAAAAAxwWTyaQmTZqocePGstlsKiws1MGDB+VwOCK9NQAAAOCYZbValZSUpJSUFCUmJhLY1TKCOwAAAADAccVkMqlevXqqV6+epIozQ1wul8+5IQAAAEA0sNvtWrdunde1Nm3aKCYmJkI7qmAymWQ2mwnq6hjBHQAAAADguGYymWSxWCK9DQAAAMAvfz9gZrVaZbUS4ZyIzJHeAAAAAAAAAAAAAACCOwAAAAAAAAAAACAqENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAYI7AAAAAAAAAAAAIAoQ3AEAAAAAAAAAAABRgOAOAAAAAAAAAAAAiAIEdwAAAAAAAAAAAEAUILgDAAAAAAAAAAAAogDBHQAAAAAAAAAAABAFCO4AAAAAAAAAAACAKEBwBwAAAAAAAAAAAEQBgjsAAAAAAAAAAAAgChDcAQAAAAAAAAAAAFGA4A4AAAAAAAAAAACIAgR3AAAAAAAAAAAAQBQguAMAAAAAAAAAAACiAMEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcBfliouLNWjQIO3YsSPSWwEAAAAAAAAAAEAtskZ6AwisrKxM99xzj3bu3BnprdRoxYoVmjVrllasWKGcnByVl5crOTlZzZo1U8+ePXXeeefplFNOCXq9QYMGhfya3377bfXt2zekuQAAAAAAAAAAAJFExV2UcTqdys3N1UcffaRLL71Uc+fOjfSWAtq4caNGjx6tm266SU2aNNHjjz+u+fPna/78+Zo6dar69Omj//73vxo1apT+7//+T/v376/1PXXu3LnW74HoYbPZNGzYMP3444+R3krInE6nRo8erU8++STSWwEAAAAAAAAARBgVd1Hi+uuv14oVK2Sz2eR0OiO9nSNauHChbrvtNnXr1k1z5sxRamqq19ebNWumU089VZdccon+7//+T999951GjRqlDz/80GesP2lpaapfv76hPaWnpyslJcXQHBy7CgsLdeedd2rr1q2R3krIysrK9NBDD2n58uUaOXJk2Ndfv369Zs+erWXLlmnbtm0qKipSTEyMMjIyNHDgQF199dVq3rx52O8LAAAAAAAAAAgNwV2UeOSRR1RWViZJcjgc+u677/Twww/L7XZHeGe+tmzZoltuuUVWq1UvvPBCjUFcVlaWHn74Yd1www3aunWrHnnkET399NNHvEdVJR9Qxe1268CBA9q1a5cWLVqkjz/+WLt27Yr0tgwrKChQbm6ulixZoo8++ki///572O+RnZ2tRx99VIsWLVKfPn104YUXqm3btkpKStLu3bs1bdo0/etf/9L777+vRx99VOeee27Y9wAAAAAAAAAAMI7gLkqkp6d7Pc/MzNSnn36q1atXR2hHgT333HMqKyvTwIED1aBBgyOOP+uss9S+fXtt3rxZn3/+uf7xj3+oZcuWdbBTHA9mzpypiRMnyuVyRWWQHYxly5Zp7NixcrvdcrlctXqvxYsX6/bbb1dsbKxefvllDR482Ovr3bp1U6dOnTR48GDZbDbdfvvtSkhI0FlnnVWr+wIAAAAAAAAAHBnBXRRLTEyM9BZ82Gw2ffPNN5Iku90e9Lx+/fpp8+bNcrlc+uabb3TVVVfV1hZxnBk0aJBmzpzpeV5cXKz333/f61q069atm9d+S0tL9eWXX2ratGlhvc8333yjv//970pLS9O///1vtWvXzu+4mJgYz2OXy6UXX3yR4A4AAAAAAAAAogDBHQzZuXOnysvLJUk//PCD1q9fr06dOh1xXkZGhufxtm3bam1/OP6kpKT4nF140kknaf78+SouLo7QroxJTExUVlaW17Xu3bvr66+/1pYtW8Jyj+3bt+u2226Tw+HQ888/HzC0k6QDBw747A8AAAAAAAAAEHnmSG8Ax5aSkhLPY7vdrueeey6oedWDgargDwiV1WpVWlpapLdx1Bo2bBi2te677z4VFRXpzDPPVO/evWsc26lTJ40bN05ZWVk67bTTNGHChLDtAwAAAAAAAAAQOiruYEirVq0UHx+v0tJSSVJubm5Q86pX+DRv3rxW9gacqBYtWqQff/xRknTxxRcHNeeuu+7SXXfdVZvbAgAAAAAAAAAYRMUdDElLS9MzzzyjHj16qFOnTvrHP/4R1LxffvnF87hjx461tT3ghFR1Vp7ZbNaAAQMivBsAAAAAAAAAQKiouINhQ4cO1dChQ4MeX1xcrCVLlkiS6tevr/79+xu639KlSzV79mytWrVKu3fvVmlpqdLT03XyySfr8ssv16mnnmpoPeB4sm3bNi1fvlyS1K5dOyUlJUV4RwAAAAAAAACAUBHcodZ98sknstlskqSRI0cqJiYmqHlOp1OTJk3Sxx9/LElKSEhQgwYN5HK5tHPnTu3cuVOfffaZLr/8ck2ePFkWi6XWXkNdcDgcMplMkd5GnXM4HEFdO5zb7fYab7fbw7qvuuByuTyPnU5nSK9h7ty5nsdt27Y9Jt8HAAAAAAAA4EQW6mekx6MT9XVXR3CHWnXw4EG99tprkqTGjRvrhhtuCHru/fffr88//1zXX3+9LrroIrVt29bztZ9++kkPPfSQNmzYoA8//FAlJSV65plnwr7/uvTbb79FegtRY926dUccU15e7nn8+++/Kz4+vja3VCuKi4s9j7Ozs7VmzRrDa8ybN8/zOC4uLqQ1AAAAAAAAAESXYD4jxfGJ4A61asqUKdq7d69iYmL07LPPKiUlJah5X3zxhXJzc/X222+rZ8+ePl/v3bu33nvvPV122WXasmWLPvvsM51++ukaMWJEmF8BEN1+//13z+O0tDSfry1evFgbNmxQXl6eYmNjlZKSojZt2ujUU09V9+7dT8gqTwAAAAAAAACIVgR3qDULFy7UO++8I6vVqqeeesrQWXR//PGHHnvsMb+hXZV69epp8uTJuvrqqyVJzz//vM4///xjvmUmEKz9+/d7Ve1VnW9ns9n0r3/9S99//73PnLy8PG3dulWLFi1Sly5ddP311ys9Pb3O9gwAAAAAAAAACIzgDrVi06ZNuuuuuxQbG6spU6ZoyJAhQc/9y1/+on379umSSy454thTTz1VnTp10vr165WTk6MlS5bojDPOOJqtA8eMPXv2eD2Pj49XYWGhHnnkEe3YsUNt27bVsGHD1KVLF6Wmpio/P18//vijPvnkE5WUlGjdunV65JFH9NBDDyk1NTVCrwIAAAAAAAAAUIXgDmGXk5Oj6667Tk6nU6+//rr69etnaH5VBV2wzjzzTK1fv16S9OOPPx6zwV3nzp0VExMT6W3UOYfD4dOvuUuXLrJaa/7tKTY21vO4bdu26t69e63srzbVq1fP87hly5aGX8OOHTu8nmdlZemtt95STk6OJkyYoNGjR/u0whw0aJCuvPJKjRkzRnl5edq7d69mzJih119/PfQXAgAAAAAAACBkoX5Gejyy2+367bffIr2NiDrxvuuoVbt379aYMWNUXFysf//733USpnTp0sXz+Fj+D9pqtZ6QwZ0/wbwX1QOpY/W9M5vNnscWi8XwaygqKvJ6PmfOHP3444+aPHmyrrzyyoDzOnTooOeff15jxoyRJH3//ff68ccfNXDgQEP3BwAAAAAAAFA7jtXPPI+W2+2O9BYiznzkIUBwdu7cqdGjR6u4uFhvv/12nVVAZWRkeB4fOHCgTu4JRAObzeb1/LPPPtOwYcNqDO2q9O3bV0OHDvU8f/vtt8O+PwAAAAAAAACAMQR3CIvs7GyNHj1apaWleuedd9SpU6c6u3f1doOHBxnA8cxut3s9j4mJ0cSJE4OeX/0cySVLligvLy9sewMAAAAAAAAAGEdwh6O2Y8cOXXPNNXI4HJoxY4batWtXp/d3uVyex4mJiXV6byCSDu9xfckll6hp06ZBz+/Tp4+n5ajT6dSqVavCuj8AAAAAAAAAgDEEdzgqubm5Gjt2rMrLyzVjxgy1adPmqNZ79dVX1b9/f1188cXau3dvUHOqV9mlpKQc1f2BY8nhQfXgwYMNzU9KSlLz5s09z9evXx+WfQEAAAAAAAAAQkNwh5AVFBRo3LhxKi4u1vTp05WZmXnEObm5ubrjjjv8fm3FihWaMmWK9u/fr3Xr1um///1vUPvIzc31PG7fvn1Qc4DjQfU2sZJUVlZmeI20tDTPY86IBAAAAAAAAIDIIrhDSMrLyzV+/Hjl5OTozTffDDowW7lypTZu3Oj3a4e36Qs2hNiyZYvncffu3YOaAxwPqoduklRSUmJ4jfj4eM/jUII/AAAAAAAAAJFjs9k0bNgw/fjjj5HeSsicTqdGjx6tTz755Ji+R7gQ3CEkDzzwgFavXq2XXnpJXbt2DXrel19+qVatWvn9WvU2lzExMRoxYkRQa37//feSpNjYWJ155plB7wU41h1+nuS+ffsMr1FeXu55nJSUdNR7AgAAAAAAAFA3CgsLdeutt2rr1q2R3krIysrKNGnSJC1fvvyYvkc4WSO9AdSOnJwcTZ48WcuXL1dGRobuuece9e/fPyxrv/fee/rkk0/0yCOPGFpzzZo1mj9/vsaOHev36/3795fZbJbL5dJ5550XVOvNXbt2ef5jO/fcc30qkIDjWcuWLRUfH6/S0lJJ0u+//254jepVdpwRCQAAAAAAAEQvt9utAwcOaNeuXVq0aJE+/vhj7dq1K9LbMqygoEC5ublasmSJPvroo5A+14yGe9QWgrsoVlhY6Hmcn5+vjIyMoOdOmDBBy5YtkyRt3LhR48eP15w5c9SsWbOj2tPGjRv1+OOPa+TIkbrsssuCmuN2u/XNN9/o7rvvltPpDFhxl5GRoSuuuEL/+c9/lJiYGNTaU6dOlcPhUHJysm6//fagXwdwPDCbzercubOnzeymTZsMr1FQUOB53KJFi7DtDQAAAAAAAEB4zJw5UxMnTpTL5ZLb7Y70dkKybNkyjR07Vm63Wy6X65i9R10guItSubm52rx5s+f5woUL1a1bt6Dn//LLL17PS0pKtHbt2qMO7p588kmVlZVp6dKlOuecc4Kac+DAAeXn53ueBwruJOnuu+/Wrl279Omnn+qiiy5Sjx49Ao6dPn26/ve//yk2NlZPP/20GjduHPTrAI4XQ4YM8QR3a9asUVFRkZKTk4OaW15erj179nie9+rVq1b2CAAAAAAAACB0gwYN0syZMz3Pi4uL9f7773tdi3bdunXz2m9paam+/PJLTZs27Zi6R10guIsSxcXFcjqdKigo0Pr16/XCCy94tbB79dVXVVZWpvPOO09NmzaV1WpVfHy8YmNj/a7XrVs3T8WdVHFmXKdOnY56n1VnaOXk5IS8Rk3BXVxcnP75z39q2rRpGjt2rPr27avBgwerS5cuatSokRwOhzZt2qT3339fixYtUqtWrfTQQw+pX79+Ie8HOJYNGzZMTz/9tCTJ4XDo22+/1bnnnhvU3O3bt3t+QqdZs2Zq2bJlre0TAAAAAAAAQGhSUlJ8jrk56aSTNH/+fBUXF0doV8YkJiYqKyvL61r37t319ddfa8uWLcfMPeqCOdIbQIUbbrhBffr00ZAhQ3TjjTdq48aNXl93Op168803dfHFF6tfv37q06ePPv/884DrPfnkkzrjjDOUmJioNm3aaMqUKTUGZnUlJibmiFV/FotF1113nb766iv16dNHs2fP1nXXXafBgwdrxIgReuyxx5SQkKAnn3xSX3zxBaEdQjZ79mwNHz5cvXv31s0336y8vLxIb8mwli1baujQoZ7n06dPD3ru0qVLPY9HjRoVzm0BAAAAAAAAqEVWq1VpaWmR3sZRa9iw4XFxj3Ci4i5KzJgxI6zrNW/eXK+//npY15SkTz/9NOxrBtKgQQONGzdO48aNq7N74thRvZdzKH2dV65cqdtvv93T6/jLL7/U/v37NWPGDJlMprDtsyZH+xqq3HHHHfr6669lt9u1evVqLVy4UIMGDTrivLlz50qS6tevrz//+c8h3x8AAAAAAAAAEB5U3AE45hx+Nlt2drbhNRYsWOBzQOny5cu1devWo91e0Hbs2OF5HMprqJKZmak77rjD8/y+++7zen/8WbJkiZYtWyaz2axnnnlGqampId8fAAAAAAAAABAeBHcAjjkzZ86Uw+HwPP/ggw9kt9vDsvbhYV5t+e6777Rr1y7P81mzZqmwsDDk9caOHatrr71WkrR//35dc801XsFgdWvWrNFtt92mmJgYPfrooxo4cGDI9wUAAAAAAAAAhA+tMgFEtcLCQu3evVsul0sHDhzQkiVL9Pbbb3uNWbt2rS6//HKNHj1abdq0UVJSkmJiYtSmTZuA6w4ZMkRvvfWWV1CXlZWlzMzMsL8Gm82mHTt2yO12q7CwUD/99JOmTZvmNWbnzp265JJLNHbsWGVlZXkq4A4/TLUmd9xxh3r06KEHH3xQv//+uy688EJdccUV6tevn9LS0rR7924tXLhQn376qTIzM/Xggw+qT58+YX2tAAAAAAAAAIDQEdwBiGoLFizQPffcc8Rx69at08SJEz3PW7RooYULFwYcf/LJJ+vZZ5/VCy+8oNzcXPXp00eTJk2SxWIJy76rW7t2rcaMGXPEcdu3b9dDDz3kdW3Dhg2G7jV06FANHDhQixYt0ty5c7V48WJ9/PHHKikpUaNGjdS1a1c9+eSTGj58uKxW/ggAAAAAAAAAgGjCp7YAotrIkSM1cuTIWln73HPP1bnnnlsra1fXt29fwwHc0UhISKiz1wYAAAAAAAAACB/OuAMAAAAAAAAAAACiAMEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChgjfQGAJzYTCaTGjVqpLi4OJlMJrndbpnN/EwBAAAAAAAAAODEQ3AHIKKsVqtat24d6W0AAAAAAAAAABBxlLUAAAAAAAAAAAAAUYCKOwARVe60a1v+DmUX5KjMUa44a6xapjZX67QMxVpiIr09AAAAAAAAAADqDMEdgIjYvH+r5mxapKXZK2V3OXy+HmO26rSWJ2t4h7PUvmFm3W8QAAAAAAAAAI5zs2fP1osvvqi9e/dqwIABeuCBB9SgQYNIb+uERnAHoE6V2Es1Y/V/tWDLkhrH2V0Ofbttmb7dtkxD2g3U1T0uUUJMfB3tEgAAAAAAAACim9vt9vs4WCtXrtTtt98ul8slSfryyy+1f/9+zZgxQyaTKWz7rMnRvoZouUc4ccYdgDqTZ8vXxPlPHjG0O9yCLUs0cf6TyrPl187GAAAAAAAAAOAYUl5erj179nieZ2dnG15jwYIFntCuyvLly7V169aj3V7QduzY4XkcymuIlnuEE8EdgDpRYi/Vw19P1c6i3SHN31m0Ww8vnqoSe2mYdwYAAAAAAAAAx5aZM2fK4Th0BNEHH3wgu90elrUPD/Nqy3fffaddu3Z5ns+aNUuFhYXH3D3CjVaZAOrEjNX/DTm0q7KzcLfeWf2Jru09Kky7AgAAAAAAAIDoVlhYqN27d8vlcunAgQNasmSJ3n77ba8xa9eu1eWXX67Ro0erTZs2SkpKUkxMjNq0aRNw3SFDhuitt97yCuqysrKUmZkZ9tdgs9m0Y8cOud1uFRYW6qefftK0adO8xuzcuVNXXHGFhgwZooyMDCUlJUmSWrZsGdZ7XHLJJRo7dqyysrKUmpoqqeJ1RwuT+1ho6AkcR8rLy7V27Vqf6yeddJJiY2MjsKPat3n/Vk1c8GTY1ntsyAS1b5gZtvUAAAAAAAAAIFLsdrvWrFnjda179+6KiYmRJH3yySe65557DK/bokULLVy4sMYxs2fP1gsvvKDc3Fz16dNHkyZNUkZGhuF7HcmPP/6oMWPGhDT3P//5T1Cfnx/NPTZs2BDSvNpAcAfUsRMxuHtx6Vv6dtuysK13eutTddNpf5EkOV1OrchZK7PJJLPJIovZrPrxqWqV1sJnntPl1J7i/bKYzDKbzbKYLLKYLbKYzEqwxstspnswAAAAAAAAgLp1pODuRHIifn5+OFplAqhV5U67lmavDOuaS7NX6vo+oxVriZHFbNEn6+bo9wPbPV+vHuxVl19aqJtnP+B3zRfOfVBNkxv7XP/Xig/07bYfZa4M+CyV4eCpGb00puclPuMLS4v0/A/TZDGbK4JEk9kTDo7tdZnSElJ95vyQvUK/5233mdMqtblObn6Sz/gyR7lW5KyVxWyuCCFNFlnNFplNZmU1bKNYq+8fYAWlhSpz2itfg1lms0VWk0VWi1WxlhPvLwAAAAAAAAAAEI0I7gDUqm35O2R3OY480AC7y6Ht+Ts97TLbNmjlFdxZTBa/85zuwIeqms3+55Q4SlVsL/G5XlR20O/4Ume5ftnjv6x6VPeL/F5flfOrvt76g8/1P7Xu6ze4Kywr0vM/vOl3rZfOe1iNkxr5XH93zUx9/Yf/e9x42lif6/tsebrzy0d8AkuLyaL7z7pZjRIb+MyZtX6e1uau9wksuzTuoLPbn+Ezvrjcpk/Xz5O5MkysGF9xn0FtBigxNsFnzpa8bdpvO1Axp3I/ZpNZ9RNS1SKlqc94p8up/SX5PoGl2WxWrCVGZhNVlgAAAAAAAACiB8EdgFqVXZBTK+tuLzgU3KUnNvT6WqCWl06XM+B6lgABTqCwL9B4Vw33CLgvt/85lgBhYs0BZKB9+Z9T03vlL7CUJAVosLw9P0erd//mcz3WEquz2/uOLy63aeZvc/2u1Tejl9/gbs6mRfpm648+18/IPE1/73uNz/X9Jfm68fP7/N7jpfMfUeN6DX2uv7niPS3NXlkRCprNnqCvb0Yvv+FrfkmB/rnsbU8wWD20vKbnpUqJT/aZszR7pbbm7/AJLFumNlePpl18xpc6yrRm929egWXVPdo2aO23arKo7KDsTkdlW9jq96mo0AQAAAAAAAAQfQjuANSqMkd57azrPLRujMX7t7LAIZzx4C5QEBeoQq+mUM1qsBIwlHAwULWhI1A4GFJ1orH3N/D4wPcItK9AAWSgkLPm98r/vmz2UhX6qagsLC3yO77UUabVu9f5/dqV3Uf4vb5852q/5z6e1aa/3+Auv7RQz3z3mt+1Xj7/UTWq51sB+e9VH+ubbb4h55lt+mn8qb6H9O4p3q+J85/wCSwtJovuP/Nm1ffT5nXW+vlat2ejT2DZtXGWBrUd4DP+YFmxvti4sLItrLmyxWvFnDPb9FNCTLzPnN/ztutAaUFlW9hD90hLSFXTpHSf8U6XUwWlRb6BZeVjk8nk930EAAAAAAAAogHBHYBaFefnvLWwrGs5tK7d6d2K02joIxkP4gKGgzVW3BnbV6DAyxFCGBUw8DI4vqY5ht+rGoJUo2FfoHsECixrmhPOsNZoMBpSWBtwX8bCWofL4TewlCR3gDLLPw5s18pdv/hcj7HE+A3uCssP6r/rZvtdq29GL7/B3ecbFmjJ9uU+1we16a8bTr3a5/re4v36R4CzLF+94HE1SEzzuf7mive0fOdqr4DPYjKrb8uTdXm3833G55Xk6/Wf/uPTRtZsNmtMj0uUFFfPZ87S7JXaUbirsjXsoYrJlqnN1a1JR5/xpY4y/bpnoyew9IScZrPapLWU1eL7V7jicpscLsdh4WvFfQgsAQAAAAAAjg0EdwBqVcvU5rWybqvUFp7HhWVFSrDGy+l2yul2hdRiMmzVcDWGOMbCpYABZJ1Uwxmv6jNeDRdCOBggwIrWsNZoMBpadWKYgtQ6aSUbyq9dY7+uQqkWPVhWrAMlBT7XO5YW+h1fYi/Vypy1fr925Un+qyyXZq/U99krfK4PaTvQb3CXZzugJ7992e9ar174uBokpPlcf3PFe/pu+08+1we3Hajr+1zlc333wb16YOGzPoGl2WzR/Wf8w2+b11nr52vDvi0+lZld07N0RpvTfMYXlh3UvM3fVK5/KLQ0m8z6U2ZfxVvjfOZsPZCt/NKiyvFmT2CZGp/it72t0+XUwfJiAksAAAAAAHBcILgDUKtap2UoxmyV3eU48uAgxZitapV2KLi7ptdluqbXZUec1zK1uV694HE53E65XBUhn9PllMvt8vvhsSRd3HmYzsjsK6fLJZfbKafLJafbpYyUpn7Hp8Qna2SX4XJVru10u+RyueR0OxXj5xwySWqTliG7s9yzdtXe0v20P6xgUnJc0qHXUG2O8QqvAONrCtXCVuFlPBwMbzvOMIVRNd0jTO9VTd8Po2c6Bh4fxtalBr9/Uk3hudH3yngAGTg8r/2QM5Rfu4Z/0CBQ9a7T4TewlAJXWW7O26rlO1f7XI8xW/0Hd6VF+vCXz/yudWpGT7+/9/7vt7n6wV/I2e50Xdd7lM/1XQf36LY5D/m9x+sXPqE0P21e31zxnlbl/CKz2VKtLaxZ/Vqeoou7nOMzfr/tgN5a+aHfFqyje45UYozvmZw/7lilnMJcn8CyVWpzdUr3Pfiz1F6q9ft+9wSWVfcwm8xqldbC79mUNnuJXJW/93uCVwJLAAAAAACOaQR3AGpVrCVGp7U82e95XqE6reXJig0QgtXEarb4bZNXkw4N2xga3yAhTVecdKGhOZf5acVXk8z6GZp20dM+191u/x+0S9L4Pler1FnuE1gmxyX5Hd84qaFuH3CdT2DpqiGAPC3jZGWkNPMKEp1ul7Ia+X8P42Pi1KNpZ5/A0ul2Bgy84qxxqheT4CewDGc1XIAQJ6RWmbXfVjRcYa0rpNalBt+rEALI8FYnGg0gjYe1RvcVMIQL43sVzvA8nGGt0V/vIbX2DfBrsaC0SHtteT7XOzZq53d8cblNy3b+7PdrVwQ4y3LJtuX6cccqn+tnt/+T3+Bury1Pj33zot+13hjxpFLjU3yuv7rsHS3dsdLn+rD2Z2jcKVf4XM8pytWjX7/gcy6lxWTRvWfc5LfN62frF2hT3h8+gWXXJlka0KqPz/jC0iIt/OP7yraw1eaYzRrYqo9i/bTQ3pa/Q0VlBz3VlVWBZWp8shom1vcZ73Q5VeIoJbAEAAAAAByXCO4A1LrhHc4Ka3A3vMNZYVvreFLTB5Yp8cny/cg3sKTYeuqb0cvQ/f1V29SkeXIT3XvGPwzNuaXfOJ9rbrc7YHVQ67QWeum8hz2BoKsyJHS6nH4/PJakizoP058qqyydbmdl9aRLratVeVaXGp+sEZ3O9gksXS6nrGb/f8y2Tm2hMkeZZ+2qvTXw8wF1lcTKwLLqHlXhkfEAMnwVXoECrED3qLmVrNGKu1DOmTRaDRe+trtGz06sKUgNGMQZDbzCGNbWSSVnOM+ZDNh2N3xtkMNa6Wy0CjnAnuxOu9/AsiYb9m/Rsh0/+1y3Wqx+g7sDpQX6z5qZftfq06KH3997P/r1C7/3CBRA7izcrTvmPuJz3Wwy6/URTyrFzw+lvPnTe1qT+5t32Gc2q3/L3rqg0xCf8fuK8zRj9SeecVWBpdls1ujuFyvez5mcy3b8rN0H9/oElhkpzZTVqK3P+FJ7qTbnbZXZZKk8x/JQmNoipanfX/OljjLJ7fZUi5pMJgJLAAAAADjOENwBqHXtG2ZqSLuBWrBlyVGvNbTd6WrfMPPoN4Xjhslkkkn+P7SMscSocVIjQ+v5q4SpSaPEBrqqx8WG5lwZoEInkHYNWmv6yOe8rrndbrncroAf0P/t1DEqdZT5BJZpfqp2JKlpUrpu6TfOJ7B0ugMHkKe26KkWyU19gtF2DVr7HR9vjVPXxlk+gWVNVZNWs1Vx1jjfwDJg4GU8YAkUYPlrTSgdKRwMz9mJNVfDGQtrQwkgjZ6xGd5WsuE7n7EuwlrD4XkIQWr43qvwtd0NZwBptOo10Ot2uV0Bw/O80gLtPrjX53rHhr6BmiQdLC/227JVCnyW5ddbl+onP61kh3c4y29wt/vgPj309VS/a/3r4meUFOtbAfni0rd82tVaTGad0+EsXdPrUp/xOwt368lvX/YJLC0miyaecaPfNq+frV+gPw5s9zkzsmvjLJ3W8mSf8QWlhfpm67JqbWErz6Y0mdW/1Sl+K/W35+9Usd3mqa6s2ltKXJLf9rYul0vlznICSwAAAAAnBII7AHXi6h6X6Lc9m7WzaHfIa7RIaarRPUaGcVfAsctkMgX8EFyS6vv54LMmyXFJ6t+qt6E5g9sNNDQ+I7WZHjjrVkNz7hx4g9fzqsAykMy0DD1/7mTP2ZIV7V5rbsE6otMwnd66r/fZlG6X2tRv6Xd8WkKqzs8a7FvJ6XYGDBpapjZXmaPM69xLp9sVMEiVpDhLrGfd6q1wwxUO1hywGJtj9DzHmu9hrAVrOMPa0MJBo2cO1n44GHhPIbRHDWNlrdEgNXDbXeNhbXiD7ToIaw20Qa5pr2WOcr+BZU3W7d2oFTlrfa5bzVa/wd1+W75mrP6v37X6tOjhN7h7f+0s/ZSzxuf6uVmDNNbPucXbCnZqwrzHvK5VhJAWvX7hE6oXm+gz582f3tOvezd6wkSLJ0zsreFZvt0b9hTv1/trZ1W2jzUfailrMmtU94v8Vosu37lae4v3+wSWLVObqa2fH2IptZfqj/xsnzavFrNFzZIa+/31a3faK15vZVUmAAAAjk8mk0mNGjVSXFycTCaT3G53wH/f4PhHcAegTiTExOv+M2/Ww4unameh8fCuRUpT3X/GzUrw05oKwInjSIFlrDVWzZObGFqzW5OOhsY3rtdQY/xUttRkTM9LDI3PatRWMy49VInjcrvkcrvlcgUOB/926tUqtZf5BJb1E9L8jm+WnK4b+471CSydLmfAfxz0adFDzVOaeIWVLlfgkDPOEqdOjdr5BJYuV+BqUYvZLKvZ6htYhvMMyIABZPhaZQYMB0NoKxqNYW0o34/AbXdrP6wNb9tdY9+POgkHQ3qvojCsNfD9cLpdcjoDV2zvs+X5/TtnBz/Vj5JUVHZQSwK0dg90fvFXW5Zo5a5ffK6fnzXYb3CXU5SrBxY+53Ndkv49cooSzL5/z332+ze0sjJINclUWTFp1rlZgzSq+0U+47MLcvTc92/4BJZms0X3/OnvirfG+cz5fMMCbcvf6XXupdlsVrfGWerdoofP+ILSQn23/SevALIqWDyt5cl+K9Z3FOySzV7iE1gmx9ZTSnyyz/iqP4+q9gIAAHC8s1qtat3afwcjnHgI7gDUmQaJaXpsyATNWP1fQ20zh7Y7XaN7jCS0A3DCMpvMMpskBfhwXqpo22pEanyK/pTZ19CcYR3OMDQ+s36GHhp8h6E59/zpRs/j6oFloLZ4beu31rPn3F8ZVlaeM1kZEgaaM6Lz2Tq99amVYaWzcrxL7Rtk+h2fFp+iczqc6RNYOtzOgAFWi+RmlUHqoXMvnW6XUuJ8P6CWJLdcspgtfgMKc4DXYTxgCd+5hoFbyYbSjtNYOFhzK9noC2utEQxrQ2m7G86w1niwHUIAWSdtd6MjrHXLXfGDFnIGfE/KHOUBf0guUGvxtbnrtWrXrz7XrWaL3+Bub3Gepq/6yO9avVt09/v7w4zVn2iVn5Dzgo5DdLWfH275PW+7Ji540rPvqsDSYrLotQsf93vO5Js/vacN+7ZUawtb8f8DWvXR0Pan+4zPPbhX//11jtfaVY+vOOlCv9WiP+1co/22Az6BZUZKM2XWz/AZX2ov1faCnMpzLKvC1Iq9Na7X0O9/V87KP/OosAQAADhxEdwBqFMJMfG6rvdVGtRmgOZsWqSl2Stldzl8xsVUtmMa3uEszrQDgBNUMIFlnDVWLVObG1q3R9MuhsY3TW6s/zv5z4bm/N8pxsZ3Tu+g9y57SVJlYFntbMpAH97e0Ge0SuylnnGuypCwUWJ9v+ObJTfR3/pc7RNYumoIIHs3767myU18qiZbpbbwOz7eGqv2DTJ92si63G7DH0KH0mIyUFgbMGAx0JLy0ByjgZexSsOKOQFeR8CKu9oPa8N5rmHAIDXg9yOUsNZg1Ws4A8iQzpk0GkCGs0VxdIe11QNLyR7wvcot3qdtBTt9rvs7Y1KSCkqL9PXWH/x+7c8BqiznbV6sn3ev87k+otPZfoO77QU5uu+rp/2u9c4lU/22YH3y25f18+51ni4DVWdTnpc1SJd3u8Bn/Lb8HXpp6XSfwNJiNuvu0//uN4D8fMNX2lG4q/Icy0PnU3ZtnKVezbr5jM8vLdSyHas8VZbmyvUtJotObdHT7+8nOYW7Veoo8wksk2IT/Z7h6Xa75ZbxPysAADhelDvt2pa/Q9kFOSpzlHv+rds6LUOxfv48x/GN4A5ARLRvmKmbGv5F1/cZre35O7W9YKfKnOWKs8SqVWoLtUprwR9KAIATktlkltliPuJf1JskpRtat35Cqs5q29/QnPM6DjY0vm2D1nps6ARDcyaddYukwwJLtzNga812DTL11NkTfQJLZw2VmRd2GqrTW/fxVGO6KiszOwb4QL9+fIqGtjvdJ7B0u90B79EsuYlKHKVer8HpcirJz/lrUuBApqZKm3AFkCYFvke4KjmrqqSM7CtwK9k6CGtrCtUMn/sZyrmG4fl+hFT1GsGwti7a7hr9tS6F0HY3pFayNf9363a75XA75JAkZ+AK2hJ7md/AUpJMAV7Hz7t+1Zrc33z3ZDL7De72HNynN1e873et/1z6oszyvc+/Vn7o9x4XdR7mt83rpv1/6L6vnvYJLC0mi1698HG//zZ886f3tDlvq08F5IBWfTTIz593uw/u1ae/zfNau+J8SrP+3O0Cv0Hyypy1yispqKyaPBRYtkhp6vcHh0rtpcopyq3ck8WrorNhYn2/v2fV9GcLAOD4t3n/Voob4IPgDkBExVpi1L5hJn/wAABwggs2sEyIiVdmgHMVAzml+UmGxjdPaapre48yNOf6PlcZGn9Sk0764PKX5Xa7vc5/dNQQWPytz2jZ7KWeMyyrzrNsnNTI/+tIbqLreo/yCSxrChNObnaSmiU19mrz6nA7lZHSzO/4WEus2qS19GojW1PoIgU+q89oYGkxmQN+2B3wPECDIY65hnsYr4YL4R4B3ytjFXc1hbXhrOQ0+l6F0nY38HsVvlay4aqsrbl612Ab5HBW7xoMa2t8rwwGwkcKaw8PLCv25X9OTlGufj+w3ed6hwD/tswvKdBXv/s/suHPfqoZJemLjQu1Nne9z/WRXc7RFSeN8Lm+NX+HJi181u9a/7nsJb/B8yOLX9AvezZUVkBWnTVp1vkdh+jiLuf43uNAtl5d/o5PYGkxmTXh9PF+A8gvNnylXQf3eJ17aTFVVFl2b9rZZ3x+SYFW5Kz1BJBVAafFbNEpzU/y+33cXbRHZc5yn8AyMTZBiTEJft8TADiRldhLgzpOyO5y6Ntty/TttmUa0m6gru5xCccJnQAI7gAAAAAgAkwmU0WFncwKps9A85SmhtZvmFhfQ9r5nu1VkxGdzzY0PqtRWz05bKKhOQ8NvsNvYBmo20KHBm302JAJPoFlTQHkBZ2GakBJviesrKqA7NK4g9/xafEpGtSmv8+5lIHOhZOkJkmNKtvVHgosnS5XwA+ojQZLFXPC044zULgi1RwoGhlvMVsMB6mGKz9DCDmNnp0YWlhrLBStsbLW4OsIqXo3TGFtSNW7obSSNRzqh7MNstHwPLSw1u12y+52SNUqLewuu9/xNnuJ38BSChxs/5SzRr/u2ehnT2a/wV1O0R699tO7ftd6//J/+r3++k//0S97NvhcH9lluK7w0372t72bNHnRFJ/A0my26LULHvf7+9abK97T1gM7DgWJlaHigFZ9/J7dvLtojz7f+JVPYGkxm3Vp1/P8ft9X7fpFBaVFPoFli+Qmfv8cLrWXKrd436GQs1pFZ1p8CtWUAPzKs+Xr4a+nameR/7OJA1mwZYl+27NZ9595sxokptXO5hAVCO4ARJTD4dDOnTsVGxsrs9ksl8ulxo0by2IJfJ4RAAAAjl1GA8vE2ATD3RlOzehpaHyrtBa64dSrDc25se9YQ+N7NO2s9y57ySsYdFb+fyDX9xmtEkdpZVhZNcel5smN/Y5vkdJE/3fyn30Cy5r0atZNzZIb+7R5bZ7cxO/4OEvFeSvV28i6XK6QwkGjFV6B2kvWdA+j7ThrClIDVnIaDAcDtfus2Fd4Aq9A721N9zDcprem73nAVrLG3quQKmsDVnIGDpCjMaw13Aa5hnuEtQ1ymP6bcrr8B5ZS4AAyu2CXNu7/3ed6uwaZfsfvL8nXvM3f+P3aZV3P93v909/mad3eTT7XL+16ni7v5jvn9wPbNXnRFL9rvX/5P/3+AMjDX0/V+n1bvMJKi8msCzoO1QWdhvjeI2+7pq18/1DL1mqh4p0Db/D7PZm9caH2HNznFVaaTRZ1a5ylLo2zfMbnlxRo9e7fPOM8Z1OaLOrVrKvf78meg/tU7rL7BJYJMfGKt8b5fU8AVFTahRLaVdlZtFsPL56qx4ZMoPLuOEZwByCi3G639u3b53WtUaNGBHcAAAA4rnjO7pJFCvIs51ZpLQzdI71eQ53T4UxDcy7teq6h8Z3S2+vZc+43NOfhwXd4B5aVoWWgD3azGrWpmOMVWDrlruEe53ccrAMlBRX38YSiTnVq1M7v+PrxqfpTZl+fwLKmwKtRvYayVVZZVq8WDfQ6AgdeNYRqYaqGqzmANFipFkq1qNGzEwO11qzhvQrUWjgaw9pQgtSwhrWGz5k8tsLawG13az+sDfSDBjUFqXanveJ/h10vc5b7HV9st2nT/j9871FDkPrjjlX6be9mn+tmk8lvcLejcJf+uezffu/xwZ9f9nuPfy57W7/5CTkv63qeLvMTcv66Z6Me++Yln8DSYrLo5Qse9fs9eXPFe8ou2OUVPlpMZg1s3Uf9W/X2Gb+raI/mbvraJ7C0mMy6JMCfdz/vWqeD5Qd9AsvmKU3U1M+Z0qWOMu23HTjsNVQ8TolL8nsPoLoZq/8bcmhXZWfhbr2z+hPD7f1x7CC4AwAAAAAAtcZiNhZYJsXWU8cAgVsg/j7ArUlm/ZaGqyZv7f9XQ+N7Neuqdy6Z6nUGpKPyvMlAbugzWjZ7iae6siq4DHTOZIuUprqm56U+gWWgD/MlqUezLmqanO4VPrpcTjUJcF5mrCVGzZOb+ISvsebAHykFDAcDnYlnsC1sjfcwGECGt5LTWHglGX+vQglrA7+/tR/WGg1Sw/n9MNqyVQpf2906CWtr/CGAughrjVe9+gssawprtx3YoQ1+qyxb+x2/t3i/Zm9a5HPdXENw9991s7Vh3xaf63/udoHfOZv2/6GHv57qc91kMumDy/2HnA9//bw279/mdf6j2WzWhR2HanjWWT7jt+Rt09s//9cnfLSarbptwLV+7zFn4yLts+V5nXtpMVvUJT1LndJ9/0zNLynQL3s2VoaVlXMqH/troStJ+4rz5HA7vV6DxWRWnDUuYMtzeNu8f+sRz7QL1vwt3+qsNv0Nd6bAsYHgDgAAAAAAIMzMJrNirbGG5mTWb2lofJOkdJ3XcbChOf7OG6tJtyYd9fy5kw3NeXjInZ4Q8VA4GPgMyI6N2mnyWbd6BZYOl7PG88HO6zhY+aUFlW1hD4WWHQJ8gFk/IVUDWvX2BJZVVZbWGj5sbpBYX8X2Ep/2tvEBvq+hBJCBAy+jrWRDqIA0HA4aDyADV8PVfiVnaG13jQaQxl9HnYS1Rqtew/prt/bD2lAqOQMJV9vdmv77KLWXqcRR6nvdUeZ3fFFZsd9qxprC2iXbl/utzLzipAv9BnfbCnbqhaX/8nuP9y57ye89pv4wzW+QesVJF2pkl+E+13/JXa+nl7zmE1jGmmM09bwH/d5j2or3lVO02xNWVlU1DmzdR30zevmMzyncrYV/fO/TRtZqturCTkP93mPN7t9UbLf5BJZNkxurcb2GPuNLHWXKLy30CSwtJosSY/3/uRbIHD/B8tGYs2mRbmr4l7CuiehAcAcAAAAAAICwibXEBF1hKUnJcUl+2/fV5E+ZfQ2Nb9egtW7uN87QnLsG3mBo/CnNT9L0kc95nQHpdDnldgdu9Hpd76tks5dUVExWjne5XQFb5bZMba7RPS72BJZVIWeggEySujftrKZJjb325HI71Sixgd/xMZYYNanXyKta1Ol2KaGGc8vqphrOaOAVxlDN6BmFoQSpBs81DK0azmgAGUK1aETb7hqvrDXedjeU11H7YW3dhOfGvuflToffwDKmhj8ftuRt0+a8rT7XA1VZ5hbv06z1833vUUNw98HaWdrk5x6jul+kizoP87m+fu8WPfbNi37v8e5lvtelirMs/ziQrbb1W+m+M/8hSSp32rU0e6Xf8aFamr1S1/cZTcXjcYjgDgAAAAAAADhKFrNFiWZj1RdGW5w1S26sCzudbWjO6B4jDY3v0bSLXjz/YUNzKs6ldHqFg063S0mxiX7Hd2zUVved8Q+vwNLpdsqkwFWW52adpfzSwsq2sIeqJtvWb+V3fFp8ik7LONknsIy1BK6ETUtIVbG9xKdaNNCcQOGgNZRWmWGs8DLc5jWkADJMQWoYW8mGt+1u7b9XgSprQ2m7a7R6N5TK2ro4h9VwJWcorWQN/6CB8WrR4nKbDpYXe7Wh3pa/Q3aXI+CcUNhdDm3P30m7zOMQwR0AAAAAAACAkCXExBsanxqfou5NUwzNGdR2gKHxWY3a6rZGbQ3NufeMmwyN7928u6Zd9LTPmZGBayyl63qPqjjL0lV5NqXbKafLpbYN/AeQGanNdMVJF/oEljVVLXVr3FFNktJ92rw2TKzvd3yMJUYNE+t7VYu6XC4lWAN/X41XwxkPcYxXw4USFIWrHWdNAaT/fQWuhgtfWBvotYfWdjdM536GsXIwpOrdML1XwdwjvVrrzeyCnIDjj8b2AoK74xHBHQAAAAAAAAAYZLVYlWxJMjSnYyPf88ZqkpHSTBldmhma85eTLzc0/pTmJ+mU5icZmvPw4DvkcDm9zox0ul1KjUv2O75To/a6509/9wSWjsoKyEAVYZI0vMOZKigt8gofXS6nMtMy/I6vH5+q3i16+ASWNQXLKXFJqh+f6vUanG5X4FAt4JmR4azwqouzE+ugdWkdVMOFdHaiwXMNj+bsxOq/jsoc5QHHH40yZ+2si8giuAMAAAAAAAAABC0ptp6h8fUTUlU/IdXQnLPbn2FofKf09uqU3t7QnMmDbjM0vk+Lnnr9wic8AV9Vm9eaXNt7lErsJZXjK86mdLpc6hCgSiojpZku63pe5TmWlSGny6m4Gs6Z7Ny4gxonNfKce1lVoZkW7/89t5qtSotP8YShVa+npkpO4+FgKJWDYQoHw9mOM5RwsDLsq16tF2cN3Kb3aMTV0P4Xxy6COwAAAAAAAAAAjiDWEqNYgwFk18ZZhsa3SmuhVmktDM25rvcoQ+NPzeipUzN6Gprz0ODb5fCqZqyouAwUyHZO76C7Bt7gCSyr5sRYAkcSw9qfocKyomrjKyo6W6b6rzpNi09Rr2bdfALLQOdrSlJSTKKS45LkcjnlqBZcBj7XMPR2nHuL93uutUxtHnD80WiVauzXCo4NBHcAAAAAAAAAACCg1Hhj51I2TKwf8FzFQM7NGmRofLcmHdWtSUdDcx4dOsHQ+L4ZvdSlcYdq51hWhIkmmQLO+espV6jEXurVprV1WoZizFbZXQ5D969JjNlqOOTFsYHgDgAAAAAAAAAA4DBx1ljFWRsYmtOjaRefa7GWGJ3W8mR9u21ZuLam01qerNga2pvi2BW4nhMAAAAAAAAAAABHbXiHs6J6PUQPgjsAAAAAAAAAAIBa1L5hpoa0GxiWtYa2O13tG2aGZS1EH4I7AAAAAAAAAACAWnZ1j0vUIrnpUa3RIqWpRvcYGaYdIRoR3AEAAAAAAAAAANSyhJh43X/mzWqRElp41yKlqe4/42YlxMSHeWeIJgR3AAAAAAAAAAAAdaBBYpoeGzLBcNvMoe1O12NDJqhBYlrtbAxRwxrpDQAAAAAAAAAAAJwoEmLidV3vqzSozQDN2bRIS7NXyu5y+IyLMVt1WsuTNbzDWZxpdwIhuAMAAAAAAAAAAKhj7Rtm6qaGf9H1fUZre/5ObS/YqTJnueIssWqV2kKt0loo1hIT6W2ijhHcAQAAAAAAAAAAREisJUbtG2ZSVQdJnHEHAAAAAAAAAAAARAUq7gAAAAAAAAAAACLE4XBo586dio2NldlslsvlUuPGjWWxWCK9NUQAwR0AAAAAAAAAAECEuN1u7du3z+tao0aNCO5OULTKBAAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAYI7AAAAAAAAAAAAIAoQ3AEAAAAAAAAAAABRgOAOAAAAAAAAAAAAiAIEdwAAAAAAAAAAAEAUILgDAAAAAAAAAAAAogDBHQAAAAAAAAAAABAFCO4AAAAAAAAAAACAKEBwBwAAAAAAAAAAAEQBgjsAAAAAAAAAAAAgChDcAQAAAAAAAAAAAFGA4A4AAAAAAAAAAACIAgR3AAAAAAAAAAAAQBQguAMAAAAAAAAAAACiAMEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAYK7KFdcXKxBgwZpx44dkd4KAAAAAAAAAAAAapE10htAYGVlZbrnnnu0c+fOSG+lRmVlZfr44481Z84cbdiwQWVlZWrevLl69uypUaNGqXv37lG5NgAAAAAAAAAAQDSh4i7KOJ1O5ebm6qOPPtKll16quXPnRnpLNVq3bp0uuOACPfTQQ0pKStKrr76qefPm6Z577tEff/yhyy67TA8//LDsdntUrQ0AAAAAAAAAABBtqLiLEtdff71WrFghm80mp9MZ6e0EZe3atbrmmmtUXFysK664Qg8++KDna02bNtXpp5+uG264Qe+884527NihV155RWZzcFlxba4NAAAAAAAAAAAQjUg6osQjjzyimTNnat68eZo7d64mTZokk8kU6W0FlJ+fr/Hjx6u4uFhZWVm6//77fcaYzWY988wzSklJ0ddff63nn38+4msDAAAAAAAAAABEK4K7KJGenq6MjAxlZGQoMzNTV111VVSf3/bcc89pz549kqQ777xTVqv/4s2UlBSNGTNGkvT6669r/fr1EV0bAAAAAAAAAAAgWhHcRbHExMRIb8Gv7OxsffLJJ5KkzMxM/elPf6px/MUXXyxJcrvdmjJlSsTWBgAAAAAAAAAAiGYEdzDsrbfekt1ulyRddNFFRxyfkZGhjh07SpK+/vpr/f777xFZGwAAAAAAAAAAIJoR3MEQl8ulefPmeZ6ffvrpQc3r3bu35/H8+fPrfG0AAAAAAAAAAIBoR3AHQ1atWqW9e/dKqmjl2alTp6DmdenSxfN4wYIFdb42AAAAAAAAAABAtCO4gyGrVq3yPO7YsaOsVmtQ8zp06OB5vH79ejmdzjpdGwAAAAAAAAAAINoR3MGQTZs2eR63aNEi6HmNGzf2PC4vL9f27dvrdG0AAAAAAAAAAIBoF1xJE1Bp8+bNnsfNmzcPel56erpMJpPcbrckacuWLWrTpk2drX0scDgcMplMkd5GnXM4HEFdAwAAAAAAAIDjEZ+RHnKivu7qCO5gSF5enudxampq0POsVqsSEhJks9kkSQUFBXW69rHgt99+i/QWosa6desivQUAAAAAAAAAiBg+Iz1x0SoThhQXF3sex8fHG5obGxvreVwVstXV2gAAAAAAAAAAANGO4A6GVA/F4uLiDM2tHsZVD+nqYm0AAAAAAAAAAIBoR3CHOuNyuTyPzebw/tKrzbUBAAAAAAAAAADqAmfcwZB69eopPz9fklRaWmpobnl5udc6dbn2saBz586KiYmJ9DbqnMPh8OnX3KVLF1mt/PYEAAAAAAAA4PjHZ6SH2O12/fbbb5HeRkSdeN91HJXq4VpZWZmhudXHJyYm1unaxwKr1XpCBnf+8F4AAAAAAAAAOJGdqJ+Rut3uSG8h4ugpCEPq16/veVxQUBD0vPLycq8qugYNGtTp2gAAAAAAAAAAANGO4A6GtGvXzvM4Jycn6Hl79+71Ssqrr1MXawMAAAAAAAAAAEQ7gjsY0r59e8/jXbt2BT0vNzfX8zgxMVEtWrSo07UBAAAAAAAAAACiHcEdDOnevbvn8YYNG+RyuYKat2nTJs/jbt26yWQy1enaAAAAAAAAAAAA0Y7gDob07t1baWlpkqSDBw9q8+bNQc379ddfPY+HDBlS52sDAAAAAAAAAABEO4I7GGK1Wr3Cse+//z6oeT/99JMkyWQyBQzXanNtAAAAAAAAAACAaEdwB8PGjh0ri8UiSfr000+POH7Tpk3asmWLJGn48OE1nkFXm2sDAAAAAAAAAABEM4K741ROTo6uu+469erVSxdccEHQ1WvB6NChg0aMGCFJWrdunVasWFHj+P/+97+SJIvFoptuuiliawMAAAAAAAAAAEQzgrsoVlhY6Hmcn59vaO6ECRO0ePFi2Ww2bdy4UePHj9euXbvCtrc777xTGRkZkqQnnnhCbrfb77jc3Fy99957kqSbbrpJbdu2jejaAAAAAAAAAAAA0YrgLkrl5uZq8+bNnucLFy40NP+XX37xel5SUqK1a9eGZW+S1KBBA73yyitKSUnRmjVr9MQTT/iMKS8v1y233KLS0lKdffbZuuGGGyK+NgAAAAAAAAAAQLQiuIsSxcXFKiwsVHZ2tubPn6+//vWvKisr83z91Vdf1dNPP61169YpLy9PhYWFKi8vD7het27dvJ7HxMSoU6dOYd1zVlaWPvroI2VlZWn69Om66aab9PPPP2v37t1atGiRLr/8cq1cuVLXXHONnn/+eZlMpqhYGwAAAAAAAAAAIBqZ3IH6EKJOXX311Vq2bJmhOY8//rhGjhzp92s5OTmaPHmyli9friZNmuj222/X0KFDw7FVH+Xl5fryyy/1v//9T1u2bFFBQYGaNm2qXr166eqrr1bXrl2jcu1IKS8v91v9eNJJJyk2NjYCO4osu92uNWvWeF3r3r27YmJiIrQjAAAAAAAAAKg7fEZ6CJ+fE9wBdY7feLzxhxIAAAAAAACAExmfkR7C5+e0ygQAAAAAAAAAAACiAsEdAAAAAAAAAAAAEAUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKWCO9AQAIlt1u16effqo5c+Zo3bp1KiwsVHJysrp06aJzzz1XI0aMUExMTKS3GVBJSYm++OILLV26VL/++qvy8vJUXFysxMRENWrUSD169NBZZ52lIUOGyGyunZ+rWLJkicaNGydJ2rBhQ63cAwAAAAAAAAAQGoI7AMeEX3/9Vbfddpu2bt2qDh066J577lG7du20e/duffjhh7r33ns1bdo0TZkyRZ06dYr0dn28++67mjp1qmw2m4YNG6Zx48apZcuWSk5O1sGDB7VlyxbNmzdPN910k1q1aqVHHnlEffv2DesebDabJk2aFNY1AQAAAAAAAADhQ3AHIOotX75c1113nWw2mwYMGKBXXnlFcXFxkqSuXbtq8ODBevnllzV16lSNGjVK06ZNU69evSK86wpOp1N33HGHZs+erfbt2+uVV15Rq1atfMadeuqpuvLKK7VgwQLddtttGjt2rO677z5dddVVYdvLlClTtHPnzrCtBwAAAAAAAAAIL864AxDVsrOz9fe//102m02NGzfWlClTPKFddePHj9eZZ56p4uJi3XDDDdq1a1cEduvr8ccf1+zZs9WgQQNNnz7db2hX3ZAhQ/Too4/K5XLp4Ycf1vz588Oyj59//lnvvPNOWNYCAAAAAAAAANQOgjsAUW3ixIkqKCiQJN12221KTU0NOPaOO+6QJOXn5+u+++6rk/3VZM2aNZ6w7JZbblF6enpQ8y644AL17t1bbrdbDz74oIqLi49qH+Xl5brvvvuUmJh4VOsAAAAAAAAAAGoXwR2AqLV48WItW7ZMktSkSRNdeOGFNY7v0KGDTjnlFEnSkiVLtHTp0lrfY03ee+89ud1uxcXFacSIEYbmXnbZZZKkvXv3asGCBUe1j9dff11btmzR5MmTj2odAAAAAAAAAEDtIrgDELVefPFFz+Pzzz9fFovliHMGDx7sefz888/XxraC9uOPP0qS2rdvr/j4eENze/fu7Xl8NAHk5s2b9eqrr+qqq66KmnP/AAAAAAAAAAD+EdwBiEpr167V2rVrPc/PP//8oOadeeaZnserVq3Stm3bwr21oO3duzfkuY0bNz7qdVwul+677z41btxYt956a8h7AQAAAAAAAADUDYI7AFGpenvIpKQkderUKah5bdu2Vb169TzP582bF/a9BSs2NlaStGnTJuXn5xua63A4PI+NVutVeffdd7Vq1So99NBDXu8JAAAAAAAAACA6EdwBiEpfffWV53GPHj1kNgf325XJZFLHjh09zxctWhT2vQWrQ4cOkqTy8nK99tprhuZWrxTs0qWL4Xvn5OToueee08iRIzVw4EDD8wEAAAAAAAAAdY/gDkDUsdls2rx5s+d59SAuGO3atfM8Xr9+fdj2ZdTZZ5/teTx9+nTNnj076LkLFy6UJJnNZl1wwQWG7z1p0iTVq1dPd999t+G5AAAAAAAAAIDIILgDEHW2bNkit9vted68eXND89PT0z2Pi4uLtWvXrrDtzYjLL7/cc1ady+XSnXfeqXfeeeeI8woLCz3jRo0apZYtWxq676effqpvv/1W999/v1JTU41vHAAAAAAAAAAQEQR3AKJO9Wo7SWrWrJmh+dWDO6kiCIyEpKQkPfnkk7JarZIqzq17+OGH9be//U05OTl+5zgcDt11113Ky8tTz549deeddxq6Z15enh5//HGdffbZGjZs2FG/BgAAAAAAAABA3SG4AxB19uzZ4/W8YcOGhuanpaV5Pc/LyzvaLYWsf//+ev755xUXF+e5tnDhQg0fPlxPPPGE9u3b57l+4MAB/e1vf9OiRYt0+umna9q0aYqPjzd0v0cffVQul0uTJk0K22sAAAAAAAAAANQNgjsAUcdms3k9NxpexcbG1rheXRs6dKg++ugjde3a1XOttLRUb731ls4880zdfvvtevPNN3Xeeedp1apVuu+++/TGG28oKSnJ0H0WL16szz//XHfffbdP1SEAAAAAAAAAIPoR3AGIOocHbdWr1YJx+Pji4uKj3tPR6tixo95//3317dvX67rdbtfnn3+up59+WmVlZfrPf/6jq6++WiaTydD6Bw8e1AMPPKCBAwdq5MiR4dw6AAAAAAAAAKCOENwBiDplZWVez2NiYgzNrzpTLtB6kbBx40ZdcsklWrFihW6++Wb97W9/U/369b3GHDx4UKNGjdLMmTMNr//cc8+poKBADz30UJh2DAAAAAAAAACoawR3AKLO4a0xy8vLDc0/fHxiYuJR7+lozJ07V5dddpm2b9+ul19+WePHj9ctt9yixYsX65577vEK8IqKijRhwgQ98MADcrlcQa2/YsUK/ec//9Gtt96qFi1a1NbLAAAAAAAAAADUMoI7AFEnISHB67nRirloCu7mzp2rW2+9VWVlZXrmmWd0xhlneL4WFxensWPHasGCBRo1apRXe8z3339fEyZMOOL65eXluv/++9WzZ0+NHj26Vl4DAAAAAAAAAKBuENwBiDr16tXzen60wd3h69WVLVu2aMKECXI6nbriiis0dOhQv+OSkpL0wAMP6F//+pfS0tI812fNmqU333yzxnu88sorys7O1qOPPiqzmd/SAQAAAAAAAOBYxqe8AKJOo0aNvJ7v37/f0PwDBw54PU9PTz/qPYXi4YcfVklJiRITE3XzzTcfcXz//v31/vvve+33xRdfVE5Ojt/xGzZs0BtvvKHx48erXbt2Yds3AAAAAAAAACAyCO4ARJ3DQ6jdu3cbmr9nz54a16sLmzZt0g8//CBJOu+887zOsatJmzZt9MYbbyg2NlaSVFpaqhkzZviMc7lcuu+++9SuXTtde+214ds4AAAAAAAAACBirJHeAAAc7vCgbdeuXYbm79271/M4LS1NDRs2DMu+jFi0aJHn8VlnnWVobufOnXX99dfrxRdflCQtWLDA57y7lStXas2aNTKZTOrevXtIe+zSpYvPtenTp+vUU08NaT0AAAAAAAAAwNEhuAMQdZKSktSqVStt375dkrRx40ZD87ds2eJ53K1bt7DuLVgbNmzwPO7cubPh+aNGjdKrr74qu92u7du3y2azKTEx0fP1Ll266LPPPjO05p49ezRu3DjP85kzZ/qMycjIMLxXAAAAAAAAAEB4ENwBiEqDBg3S9OnTJUlr1qwJep7T6fQKzQYNGhTurQUlPz/f8/jwM/uC0aBBA2VmZmrTpk2SpKKiIq/gLjExUVlZWYbWrD5fkuH5AAAAAAAAAIDaxRl3AKLS0KFDPY/z8/O9quhqsmnTJpWWlkqSTCaThgwZUiv7O5KEhATPY4fDEdIa9erV8zwO9ow8AAAAAAAAAMCxi+AOQFQ6+eSTlZmZ6Xk+e/bsoOYtWLDA83jAgAFq0qRJuLcWlLZt23oe5+TkhLRG1Vl9rVq1UmxsbFj2BQAAAAAAAACIXgR3AKKS2WzWLbfc4nn+6aefyu12H3He3LlzPY9vvvnmGsfOnj1bw4cPV+/evXXzzTcrLy8v5P0e7vzzz/c8/uabbwzPz83N1c6dOyVJZ599dtj2BQAAAAAAAACIXgR3AKLWOeecox49ekiSsrOzNWvWrBrHL1myRBs3bpRUEXZ179494NiVK1fq9ttv1++//66ioiJ9+eWX+sc//hFUOBiMrKwsXXzxxZKk6dOnq6SkxND8jz76SJKUnJysv/zlL2HZEwAAAAAAAAAguhHcAYhaJpNJTz/9tJKTkyVJzz//vIqKivyOtdvtmjJliiQpPT1dDzzwQI1rL1iwQC6Xy+va8uXLtXXr1qPfeKV7771XXbp0UW5uru6++26f+wXyxx9/aNq0aTKZTHrggQfUqFGjsOynvLy8xucAAAAAAAAAgMgiuAMQ1Vq3bq1XXnlFiYmJysnJ0U033aSysjKvMS6XSw8++KB++eUXpaSk6NVXXw057Ao2XAtGcnKy3nrrLfXu3Vtffvmlrr32Wu3Zs6fGOWvXrtXYsWNlt9v1wAMP6IILLgjbfn755Rev5ytXrgzb2gAAAAAAAACAo2eN9AYA4Ej69Omj9957T7fffrt++OEHXXjhhbruuuvUvn17ZWdna8aMGfr555/VoUMHTZkyRR06dDjimkOGDNFbb73lFdRlZWUpMzMzrHtPS0vT22+/rWnTpumNN97QkCFDdO6552rAgAFq0aKF4uPjVVBQoC1btuibb77RN998o86dO+uFF17wtAkNhc1m044dOyRJRUVFWrdunV5++WWvMXfeeaf+9re/qWvXrkpISFBqaqqaNGlyVK8XAAAAAAAAABA6kztcBzoBCEp5ebnWrl3rc/2kk05SbGxsBHYUWXa7XWvWrPG61r17d8XExPiMdTgcmjVrlr744gv9+uuvKiwsVHJysrp06aLzzz9fI0aMkNUa/M8jzJ49Wy+88IJyc3PVp08fTZo0SRkZGUf9mgIpLi7W559/ru+++07r1q3T/v37ZbfblZqaqqZNm+rkk0/WoEGD1K9fv6O+148//qgxY8YYmnPxxRfriSeeOOp7AwAAAAAAAAiekc9Ij3d8fk5wB9Q5fuPxxh9KAAAAAAAAAE5kfEZ6CJ+fc8YdAAAAAAAAAAAAEBUI7gAAAAAAAAAAAIAoQHAHAAAAAAAAAAAARAGCOwAAAAAAAAAAACAKENwBAAAAAAAAAAAAUYDgDgAAAAAAAAAAAIgCBHcAAAAAAAAAAABAFCC4AwAAAAAAAAAAAKIAwR0AAAAAAAAAAAAQBQjuAAAAAAAAAAAAgChAcAcAAAAAAAAAAABEAWukNwDgxGYymdSoUSPFxcXJZDLJ7XbLbOZnCgAAAAAAAAAAJx6COwARZbVa1bp160hvAwAAAAAAAACAiKOsBQAAAAAAAAAAAIgCVNwBiChXebmKt26VbVu2nGWlssTFK7F1S9XLzJQ5NjbS2wMAAAAAAAAAoM4Q3AGIiKKNm7Tr89na9/0PctvtPl83xcSoUf9+anb+uUrO6hCBHQIAAAAAAAAAULcI7gDUKWdJif5469/KnTu/xnFuu117F3+jvYu/UZNhQ9XmL9fIkpBQR7sEAAAAAAAAAKDuccYdgDpTtn+/Vt8x4Yih3eFy587X6jsmqGz//lraGQAAAAAAAAAAkUdwB6BOOEtK9OukB1WyY2dI80t27NSvDzwkZ0lJmHcGAAAAAAAAAEB0ILgDUCf+eOvfIYd2VUqyd2jr9LfDtCMAAAAAAAAAAKILwR2AWle0cZPh9piB7P5ynoo2bgrLWgAAAAAAAAAARBOCOwC1btfns8O73hdzwroeAAAAAAAAAADRgOAOQK1ylZdr3/c/hHXNfd99L1d5ued54W/rVfjbehVv3abS3D1yFBeH9X4AAAAAAAAAANQFa6Q3AOD4Vrx1q9x2e1jXdNvtKt66TclZHSRJexZ97dWKM+3kXur6wH2G1sz7aYVc5eWyJibKkpBQ8b/ERFmTk2SJiwvr/gEAAAAAAAAA8IfgDkCtsm3LrqV1t3uCu/jGjb2+ZklIMLzetrffkW3bdp/rbcb9Rc0vPD/odVx2u/Z9970sCYmyJMRXBIGJh4JAc2ysTCaT4f0BAAAAAAAAAI5/BHcAapWzrLSW1i3zPDbFxHh9zZqYaHy9khK/1y2JxkJAe2GRNk15IfAAs1mWhARZEyuCPEt8QkWwVxXuJSRWfC0hQYmZrVW/V09D9wcAAAAAAAAAHLsI7gDUKktcfC2te6h95eGtOC0Jxu/ptAUI7hKMhYCBAkAPl0vO4mI5gziHr/GgMw0Hd5tfekXOstJD7T4TEmRNTFTayT2VmJFhaC0AAAAAAAAAQN0iuANQqxJbt6yldVt5Hpfu2eP1NYvBiju32y2Hzeb3a0ZDwCMGdwaE0vIzb9ly2QsKfK5npd1iKLgr25+n3197vbLlZ0VFYMX5f/EV16q1/zwUECbIHB9PK1AAAAAAAAAACBHBHYBaVS8zU6aYGJ+quKNhiolRvczWnufFW7d5fd1oe0tXebnkcvn9mtEQ0BkgAAxFKMFdwJafBteyFxQo78flhu8vs1mW+HhP2GdJSFD6n05X8wvOM7SMy26XyWolBAQAAAAAAABwQiG4A1CrzLGxatS/n/Yu/iZsazYa0F/m2FjP8x5PPS6X3S6nzSZnSYksifUMrecqK1dso0ZyltgqWma63Z6vWQ2GgGGtuDMYGrocjooQ0u9aRl9HiAGky1XxfbDZpP0Vl1K7dTW8zLKr/yKX3X6o5WdlxV/ra65WSqeOQa/jdjolSSaLxfAeAAAAAAAAAKCuEdwBqHXNzj83rMFds/OG+1wzx8TInJqqmNRUw+vFpCSrz7TXJFW0zXSVlclpK5HDZlN8k8bG16tfX86SErlKSw3Prc542BY4NDR8Vl+AM/9CYbTaz+1yeV6Lo6hIjqIiz9cCBZOBFG3arLUTJsocG1vR1jMxobL9Z3xF68/EhGrhYKKn5WfVGEu1MdakJK+zFQEAAAAAAAAg3AjuANS65KwOajJsqHLnzj/qtZqec7aSszqEYVf+mUymilaP8fGKbVDf8PyGp/VVw9P6Sqqo9nKWlsppK5GzpOJ/Dput2vNDjx027+dOW4liGzQwdO+awraIVg4aDO6cNQSehteqbF3qKi+Xq7xc9vx8Q/Ora3nF5Wp15Z+DHu92u7V38beVQWBVMFgRBsYkJ1MFCAAAAAAAAMAHwR2AOtHmL9eo8Nd1KtmxM+Q1ElpmKHPsmDDuqnaZLBZZ69WTtZ6x1p2hMsfFqdkF51cEgJXhX1VgaLR9aFgr7oyGhjXc23BwF8EA0lVerk1Tpvr92klPPmao5WfZ/v0qXLfeT6VgxWOzlT/OAQAAAAAAgOMBn/QBqBOWhAR1fegB/frAQyrJ3mF4fkLLDHV9cJLh8OREEpuWqrZ//UtY1kpomaFm5w0/VA1os8lZUupdFRhkKBbOsM1q8Ny/qoq7cAhv61Jjax3ctFkbn3ku4NdNMTHVWnxWnAloqfbcmnio4i/1pG6ql5lp6P4AAAAAAAAA6gbBHYA6E9ewoXo8/YT+eOvfhtpmNj3nbGWOHUNoV4dSu3ZRatcuNY5xu1wVrUCrqvtsNu+WoCWlctpsqte6taF71xS2WRLija1VcnTnDHrfO3yhYbhbl7rtdtkL7LIXFB5xrbbXX2souHMUF2vT1JdkSUw81PazsvVn+p8GypqUFPRaAAAAAAAAAGpGcAegTlkSEtR+/A1qMmSwdn0xR/u++15uu91nnCkmRo0G9Fez84bX6pl2CJ3JbJY1MbGiCq5h+NZNaNlSJz3xqCcIrH7+nzneWHDnCGfFndHQsMaWn0ZDwMi1LnUcLFbej8v8fi2tV09DwV3B2l+0a86Xnjafh87/O9T2s6JCsHo70ASZY2IM7RkAAAAAAAA4VhHcAYiI5KwOSs7qoPZ/v0HFW7fJtm27nGVlssTFKbF1K9XLbC1zbGykt4kIsCYmKKVzp7Cs1WTIYKV26+qpCnRUqwp02qraflZUBzps3m1AnSUlkttdbV8Gw7YaW2UarRwM51l9Rl9H+CoHS3bmaP93PxiaI1UE+Z6WnwkVLT9b/vkypfXsEfQabpdLcrtlslgM3x8AAAAAAACoKwR3ACLKHBvrCfGAcItr1FBxjUIrB6xoBVpWGeLZFJeebnh+TFqanCUlcpWVea6b4+IMh0fhrBw03qYzcLtRi8EwM9TX4bbb5bDb5Sg81ArUaJhZsjNHq268Wea4OJ/z/zpOuEMxycnB78fplMxmmUwmQ3sAAAAAAAAAjoTgDgAAPypagSZUBl0NDM9P69Fdp/57mqSKoMdTyVdadoSZfvZiscianCxnSYncDofh+dUZDdsCndVnsloNt7AMb+WgwQCy8nW4ysrkKiuT/UC+52tmq7G/Du36Yo7+eOvfssTHV2v1WdniM6Fa+89qzyu+Fl9xrVpwGJOcRBUgAAAAAAAAPAjuAESUw+HQzp07FRsbK7PZLJfLpcaNG8vCB9k4jpgsFlmTkgydB1dd66uuVOurrpQkuex23/P/Skqrtf48vCVoZVvQklI5S2yyJtUzdG9HgPP1jAaAUoSDu0D3NplCOzvR5ap8z23SfkPTvXSZdK/qn3Jy0OPthYUqWLPWKxS0JFYGg/XqUQUIAAAAAMBxzm6369NPP9WcOXO0bt06FRYWKjk5WV26dNG5556rESNGKMbgD1vXtqlTp+rll18+6nVmzpypzp07BzXW7XZr7ty5mjVrltasWaMDBw4oMTFRWVlZOvvss3XZZZcpMYTPt+oCwR2AiHK73dq3b5/XtUaNGhHcAQGYY2JkTk1VTGpqndwvvmkTNT33nEPhYGUgGFJwFyAEDIXhysEAwZ0lMcFw2BXJANK2bbs2PP2c36/1/+RDycDvncVbt6l01+7DKgErqwHj42Qymw3tDQAAAAAA1K5ff/1Vt912m7Zu3aoOHTronnvuUbt27bR79259+OGHuvfeezVt2jRNmTJFnTp1ivR2PTZv3nzUa8TFxalRo0ZBjc3Oztbtt9+u1atXq3nz5rrpppvUrVs35eXl6bPPPtNjjz2mN998U0899ZT69et31HsLN4I7AAAQUHKH9kru0D4sa6V27yaT1eo5N7CiGrDE89xhK5Hbbg9qLaOBV6Dz9SzxxtaRwhzcGT5z0P+9Qzk7ce8332rnf//n/4smU0Ur0GptPS2VrWM94V7ioYq/hv1OU2xamqH7AwAAAACA4C1fvlzXXXedbDabBgwYoFdeeUVxcXGSpK5du2rw4MF6+eWXNXXqVI0aNUrTpk1Tr169IrzrCps2bfK5lpSUJGuA40sc1Y6KKSsrk91u17hx45Senn7Ee23ZskVjxozRvn371KlTJ/373/9WWrXPLE4//XT1799fd999t6699lpNmTJFQ4cONf6iahHBHQAAqBONzzxDjc88o8YxLrvd09bTq/XnYW1BrcnG2o4GqvYzGpxJka24C9y6NMyvw+32VFdKeUdcK7lDB0PBXdGmzdr5v08rz/87dB6gNSlJTYYMCnodAAAAAABOBNnZ2fr73/8um82mxo0ba8qUKZ7Qrrrx48dr9erV+vrrr3XDDTdo5syZatasWQR2fEh5ebm2b98uSWrQoIFuu+02DRs2TCkpKQHHr127VlJFgHfXXXfJ7XZr3LhxR7xXQUGBrr32Wu3bt0+JiYl66aWXvEK7KhdddJFWr16t//znP7r99tv13nvvqWvXrqG/yDAjuAMAAFHDHBMjc0yMYlKSw7puowH9VS+zdeW5gIcq/kIKvMLZ8jPBaMvPAJWDBgNAKdytS43dv3R3rvZ/973PdWtysuHgbve8BSpY+8thIWC8V1Wg9bAzAS3x8YYrFAEAAAAAiJSJEyeqoKBAknTbbbcptYYjVO644w59/fXXys/P13333adp06bV1Tb9+v333+V0OpWWlqYPPvhArVq1Cnru/PnztXv3bt15552KjY094vjHHntMO3fulCSNGzdOLVu2DDj2pptu0ieffKLS0lLdddddmjVrVtQc30RwBwAAjnuxDeortkH9sKyVec3Van7BeYdVA1b+z1ZRFeiodh6gs9oYV3m511qWhHhD9w5YOWgwAJQCh4ChMBocBgwgQwhSizZs0L5vvjU8zxwffyjsS6gI/Dr840bFpQfXL1+S3E6nZDYbPicRAAAAAIBgLV68WMuWLZMkNWnSRBdeeGGN4zt06KBTTjlFK1as0JIlS7R06VKddtppdbFVv6rOt5swYYKh0O7gwYP63//+p65duwbV8nPTpk2aNWuWpIrz8MaMGVPj+AYNGujss8/WrFmztHnzZv3vf//TpZdeGvT+ahPBHQAAgAGJrVoqsVXgn9iqicvhqBbolcgcE2NovslsljU5SU5bSUVoVMka6crBRKOVg4ECyLp7Ha7SUrlKS2U/cODQRYMB3J6vF2vzS694B4AJiYpv1kRZt95saC2300kVIAAAAADAx4svvuh5fP755wdVFTZ48GCtWLFCkvT888/r/fffr7X9HcmmTZuUnp6uESNGGJo3c+ZMFRcX66qrrgpq/IsvviiXyyVJOuusswK24qxu8ODBnrDvn//8py666KKA5+7VpcjvAAAA4ARhtlplTk5WTHJorUBbXDxCLS4eIbfbLbfd7mn9GUrBlzk2VpbExIoQze0OaT8VC5llDqJdRXWBwjarwQCwYq0wVg4aDECdthLJ5ZKzuFjO4mLPdYetuIZZ/m2cMlX7f/jR087Tp71ntefWxENtQKuqBasHh5Z6iVQBAgAAAMBxYO3atZ7z3qSK4C4YZ555pp566ilJ0qpVq7Rt2za1bt26VvZ4JJs2bdLgwYMNtaHcu3ev5s+fr/79+yszM/OI4/fv36/58+d7ngf7Pp1++umyWq1yOBzKycnRsmXL1L9//6D3WVsI7gAAAI4xJpNJptjYiv7uaYH72teky6R7JUlul0uusrLKELCi1afTqwWoreJrlW1Aq84HdFQ+r9qPEYHCtpAq7ir3EA6WeIOtSwNUDoYWQJbI7XDIUVQkR1GRygyvcMipM6YbOieyZGeObNnZnhDQExDWSzT8ngAAAAAAwmfBggWex0lJSerUqVNQ89q2bat69eqpuPKHTOfNm6drr722VvZ4JA8++KDhOR9++KGcTqdGjhwZ1PivvvrKU20nSaecckpQ8+rVq6c2bdpo06ZNkireJ4I7AAAARJTJbPYENVKDOrlncqeOalJWdigMrDwTML5ZU8NrheusPnN8vExms8F7h7HlZ4C1QmH07MT9Py7Ttn/P8Ller1079XzuKUNrFfz6q5y2kkOVggmJnlaippgYKgEBAAAAwICvvvrK87hHjx4yB/nvVpPJpI4dO2rlypWSpEWLFkUsuEtPTzc0fsOGDfr+++/Vr18/NWvWLKg51d+nzMxMNWgQ/OcbnTp18gR3ixYt0uTJkw3ttzYQ3AEAAKBONRrQX40GhOcn2BoO6K+kDnsrzw20ec4QrF5BqGo/dRdISFVyURjcmWNjDZ+dGLgC0ni1Xfb7H6lgzVq/XzNZrbIkxFeEeYkJ1c4GTDysJWjFmCZDBhkOUwEAAADgeGGz2bR582bP844dOxqa365dO09wt379+rDurTa98MILkqSLLroo6DmrV6/2PA7lfaqye/du5efnKy0tzdAa4UZwBwAAgGNWqysur/HrbrdbrrIyT+tPR7Vwr3pLUFOM8b8WBzqrzxLGENCoUMK2ujpzsKIV6EE5ig4eeSGzWU2GDjZ0773fLNGBn1b4nP+X0LyZ6p/cy9BaAAAAABBpW7ZskbvamfTNmzc3NL96pVtxcbF27doVdAVbpKxcuVLffPONevbsqYyMjKDm7N+/XwcOHPA8P5r3SZI2b96s3r17G1oj3AjuAAAAcNwymUyyxMdXntVWP6xrZ1x+idLPOqMyBDxU4ZcYwoHfjgDhmVGWhFBCwwAVd4nGKwfD9TqsiYmG22oe3LxZexd/43O9/iknGw7utr79juwHDngFgIcCwcTKSsHqVYIJMsfG0goUAAAAQNhUr7aTZDh0OzyQ2rJlS9QHd1OnTpUkDRs2LOg5VW0uq4TjfSK4AwAAAI5BiRkZSgzyJwCPpPPECXIUF1ec+VdyqBLQabN5tf30tAOtPB/QYbN5tQINZ9gWWggYfZWDobwnB5b/JNv2bGOTzGZZvQK+BMXWT1Onu+8ytIzb7SYABAAAAKA9e/Z4PW/YsKGh+Ye3e8zLyzvaLdWq5cuXa+nSpWrdurW6d+8e9LyjfZ/q1/f+Id9oeJ8I7gAAAIAIS+ncKaR5brdbrvJyT5jndrmPPOkwZqtVloQEn9AtlMArbMFdCG06HQHP6qujykGXS46DB+U4eKgVaKyBA9Gr/P7q69qz8Guf8wDrn9xLGZeONLQWISAAAABw7LId9m+c+HhjP+AYGxtb43rR5uWXX5YkjRw50tC/Y4qLi72eHw/vE8EdAAAAcIwymUyyxMXJEhcnhXh4dsc7b5MkuV0uOUvLPBV/RsMzt8tV0ZLU5ZKrvDykvVSxxBsP21yl4TxzMDz/UAst/CyVq7xcrvJy2QsKPdfjmzQxvNbKG/6u8vwCWRISKtp7Vrb19LT/TIivqBJM8G39WTEn8dB1g//4BQAAAHB0Dg+Q4uLiDM0/fPzhAVc0WbNmjb7//nuZTCade+652rt3b9Bzj/Z9Ojy4i4b3ieAOAAAAgExms6yJFQGPjHUW8cw/9d/TJEkuh6Pa2X8l1dp7lvi2/vSMqWoLWqKEFsbPXQjc8tNYeOZ2u+UsKTV8/3DcW6qhcjDENqiu0lK5Sktlr3ZYu1HxTZvqlNf+aWhO0YaNshcVVQsBq50HGBMT8l4AAACAE0VZWZnX8xiDf4+2Wr3jn8PXiyZvvPGGJKlPnz5q2rSpoeDuaN+nw8dHw/tEcAcAAAAgrMxWq8zJyYpJTq6zezbo01sJzZp5gkJHZVBotF2lq6zM69zAoxFKcBeo3WhIlYNhavESyuvY+b+Z2v/Djz7Xmw4/R+1uuNbQWvt/XC5zjNVTKWhNTKhoI5oQL5PFYnhvAAAAwLHg8JaP5QY7mxw+PjGEf1PUhezsbC1YsECSNGTIEMPzw/0+JYTw759wI7iLMk6nU59//rlmzZqlX375RcXFxWratKm6dOmiK6+8Uv369Yv0FlVWVqaePXvKdRQfaMycOVOdO3f2+7VBgwZp586dIa379ttvq2/fviHvCwAAAMemjEsuDs9CbreaDj+nsiqwomrQUa0q0GkrqQj3ghBam87wVA667Ha5HQ7D9/d77xCr/fyulWC85ebG556Xq9R/FaQ5Ls5zDqAloTLUq/bckljV8jNecenpanBqH8P3BwAAACLh8ADJaCXYsRLcvffee56sYeDAgYbnH/66jL5Ph4+vV6+e4T2EG8FdFNmxY4duvvlm/fLLL+rVq5emTJmitm3batu2bZo2bZrGjh2rYcOG6fHHH4/oL54tW7YcVWiXkJCg9PT0MO7okEBhIAAAABAMS0LCESvC3E5nRavPkmrtP222Q9cqg774ZsZbfgaqkjMa3AUKAEMR0ll9gYI7o2cnOp0BQzupokLSVVYm+4H8I66V3Kmj4eAu+6P/qnTXblkS4r3O/0vO6qCkdm0NrQUAAAAYcXgGcLTBXTQEUoez2+363//+J0lq2rSp2rVrZ7hi7nh8nwjuosSOHTt0xRVXaO/evTrzzDP18ssvy1LZ9qVp06bq27evJk2apA8++EA7duzQu+++G7GSzU2bNnk9j42NVZMmTXx65h7u4MGD2rt3r8aPH69GjRrVODYtLU3169c3tK/09HSlpKQYmgMAAAAYZbJYZE2qJ2tS+P9Bl3XrzbIXFXnOBKyo+LMpuUN7Q+uEq02mJFkSwlc5aDUYAobrvEEptJafB1asVNFv632ut7zyz4aCO7fbrY3PTvEEf9VDwOrn/1V8LcHz2HyEf2MBAADg+HX4Z+j79+83NP/AYedc11YxzdH47rvvlJeXJ0nq3r17SGscj+8T/wqIAuXl5Ro/frz27t2rRo0a6dlnn/WEdtVNmjRJP/74o3799Vfdd999evbZZyOw20PBXVJSkiZOnKjzzz9fcXFxR5w3fvx4bdu2TX/5y1+OOHb06NG66aabjnqvAAAAwLEkuWNWWNaJqV9fXR+eXBn+HaoC9Jz/V+15VUhY1RL08Aq30M7qC1Q5aCwEjHzlYHgqIF1lZdr37XeG72+OjT0U5lWGeyldOqv1VVcaWsftdstkMhm+PwAAACKnXbt2Xs93795taP6ePXtqXC8azJ8/3/M4Kyu0fwu1b+/9Q47Hw/tEcBcFpk+frg0bNkiSbrzxRiUlJfkdZ7Vadf311+uee+7R559/rvPOO0+DBg2qy61KkjZv3iyLxaLXXntNvXv3DmrO0qVL9dVXX2n69OmKiYmp5R0CAAAAJzZLXJzSup8U0ly30ylnaakn3AvlXDpzTKxMMTFy2+3e+zLc8jPSlYP+K/6MVw6GFkC6ysvlKi+XvaDg0L1DaN2z5o4JKtmZ41PR1+y84Wp4WvBnhLvdbkkiBAQAAKgDhwdIu3btMjR/7969nsdpaWlq2LBhWPYVTt9++63ncdu2obWiT09PV1pamvLz8yUd3ft0NPsIJ4K7CDt48KCmTZsmSUpOTtbIkSNrHD98+HA9+OCDKi0t1ZQpU3TmmWfKbDbXxVY9Nm3apBEjRgQd2rlcLj3++OM644wz1K9fv1reHQAAAICjYbJYZK1XL6SAqMopr/1TkuSy2yvP/iuRs8SmuEbG2s647A5Zk5LksNmkozhnWwp35aDB4C7AmX+hMHpOoKSKKsvKCkvlHbresL+xf585ioq07JpxsiYmep/7V/U8IbGi9WfVtcQEWRIqvmb1el4RINIKFAAAILCkpCS1atVK27dvlyRt3LjR0PwtW7Z4Hnfr1i2sewuHjRs3Kjc31/M8LS0t5LU6d+6sH374wbOuEdXfp8zMzICFVXWJvyVH2AcffOBJgs8555wjtpxMSEhQ//79tXDhQm3cuFHff/+9Bg4cWAc7rWCz2bRz505deWXwrVk++eQTbdq0KWKtPQEAAABEhjkmRuaYGMWkJIc0P6ldW/V9999yu91ylZdXa+95eItPW0VA6GkDWu1rlZWDcY2M/YSx2+0OGLgZDc8cYTxz0Gi1nxQ4OLQafB3OkhLJ5ZLj4EE5Dh40vI/qGv1poDrefquhOQdW/SyTyXToPMBqFYSmOv6BVgAAgLowaNAgTZ8+XZK0Zs2aoOc5nU5Pl7+qdaLNypUrvZ4nJ4f2bwap4vVVBXe///67ioqKgl5v3bp1nseDBw8OeQ/hRHAXYXPmzPE8Pv3004Oa07t3by1cuFCSNG/evDoN7kpLSzV69GiddFJwbXdKSko0depUXXjhhT69ZgEAAAAgGCaTSZa4OFni4qSj+ElcQ1wuNTl7iJy2Eq+KNafNJqvBDxXCelZfKJWDgc7qM9ryM5yVgyG0Lt384j9Vvj/P53qHm29U40FnBb2Os6RE+WvWesK/Q9WACTLHxdEKFAAARI2hQ4d6grv8/Hxt2bIlqDPYNm3apNLKs6tNJpOGDBlSm9sMyerVq72eO53OkNcaOnSoHnvsMbndbrndbq1cuVJnnHHGEecVFBRo27ZtnufR8j4R3EXQ7t279csvv3ie9+rVK6h5Xbp08Tz+6quv9NBDD4V9b4E0aNBA9913X9Dj33rrLe3fv1833HBDLe4KAAAAAMLLZLGo3Q3XhWWtmNRUNRk6xNMy1GGrVjlYUlEl6A7ygwqjwZ3L4ZCrvDwsa0Vr5aDRELBs716tf+xJ/180m6sFeodafVqqhXuesC8hQfXaZCq5Y5bRlwIAABCUk08+WZmZmdq6daskafbs2brpppuOOG/BggWexwMGDFCTJk1qa4shq14RKEl79uwJea1mzZqpX79++v777yVVFEwFE9wtWrTIc45zu3bt1LNnz5D3EE4EdxG0atUqzy+K9PR0NW7cOKh5HTp08Dzet2+fdu/eraZNm9bKHo9GXl6epk2bpnPPPVeZmZmR3g4AAAAARES91q3U/sa/Bfy62+2W224/FOiV2DwtPg+v+Evu3MnQvWuq9jNccRfOykGDbTrdLpeclT817rNWQryhtRw1VQ66XHIWF8tZXCz/cae3Zhecbzi42/TiyzJZzF4tP62JCUrr2VNx6Y0MrQUAAI5vZrNZt9xyi2655RZJ0qeffqobb7zxiB0C5s6d63l888031zh29uzZevHFF7V3714NGDBADzzwgBo0aHDUez+SqjCySnFx8VGtd+utt3qCu7lz52rSpElKPMLfOb/88kvP45tuuknmKGm/TnAXQZs2bfI8zsjICHpew4YNZbVa5XA4JEmbN2+OyuDutdde08GDB/XXv/71qNZZunSpZs+erVWrVmn37t0qLS1Venq6Tj75ZF1++eU69dRTw7RjAAAAAKh7JpNJpthYxcbGSmmpYV3bEh+vrg89cCgIrDwP0GGzKbaBsXP/ArXcDGlfBqv9nKVlUuUPvvqsFcpZfWFitHLQ7XZr76Kv/VZYdnngPkPBXUlOjrI/+MirKvBQlWDl+X+JlV9LqPiaOT6eVqAAABxjzjnnHPXo0UOrV69Wdna2Zs2apREjRgQcv2TJEm3cuFGSdPbZZ6t79+4Bx65cuVK33367XC6XpIoga//+/ZoxY0at/p2huLj4qIO6w3Xv3l3Dhw/XnDlzZLPZNH36dI0fPz7g+C1btmjx4sWSpK5du+qcc84J636OBsFdBG3evNnzuHnz5kHPM5lMatSokXbv3i2p4hdYXZ5zF4zc3Fy999576tOnjzp1MvYToVWcTqcmTZqkjz/+WJKUkJCgBg0ayOVyaefOndq5c6c+++wzXX755Zo8ebIsFks4X0KdczgcJ+Q/oKoC6CNdAwAAABCael06B/ya3W4Pep3ETp2Udd89cnnafPr5n62k4uslpZUhYcU19+F/x4+NNXTv8sLCgF9zx8YYW6uoKOixRxQXZ+jervLygG1R3THGXodtd672fv1N0OMlSSZTZZBXEfCZKx83OusMNTrd2OcKbrf7hPw3LAAAteFIn5E+/vjj+vOf/6yioiJNmTJFp59+upL9nLtst9v13HPPSaro8jdx4sQa/34xb948T2hXZfny5dq8eXOtdtHLz8/3ueZ0OmW324/qs+EHHnhAq1evVk5Ojt58801ddNFFAbOX5557Ti6XS4mJiXr66aej6u81BHcRlJd36FDt1FRjP1WZnJzsCe4KCgrCuq9weO2111RWVqarr7465DXuv/9+ff7557r++ut10UUXqW3btp6v/fTTT3rooYe0YcMGffjhhyopKdEzzzwTjq1HzG+//RbpLUSNdevWRXoLAAAAAPwxm6R6iRX/OwKTKj50sEoVwV15udxlZVJZuXIS47VrzZqgb+vKy5Pi46Uy38q7jX9slWn//qDXcmzcdORBQdq1f7/2Gngd7hp+snzLjmyZy8uCXsu5YWPQYw9twF0RutpKJB36TMLWqKFyUlOCX8blUtljT0lxcTLFxUqxsZWP42QdOkjm9HTjewMAAF4O/4z0lltu0dNPP61du3bpr3/9q+68886Kjg2VXC6Xpk2bpl9//VWJiYm6+eablZOTo5ycnID32Lt3r9/rv/32mwpr+MGp/2/v7uNrrv8/jj/Pdna9GWNGLsvVXKRIrspvha+EJKlEuU5CJEoiRS5LTd/IReQq11fDtyIVSoRQQqVclNBsGGaXZzu/P2bHZjtzztnZzhmP++3m1ud8zuf9/rzPqnPm/Tyv9zu/css0zpw5owN2/F6VmxIlSmjOnDnq1q2bYmNj9fzzz+vTTz/Nkb9Mnz5dX331lby9vTV16lRVqVIlX/d1NoI7F8paCurra9+a/Fn/h0xw4nIlzhAdHa2VK1eqePHiat68uUN9fPbZZ4qOjtbChQtz3RCyQYMGWrp0qZ544gkdPXpUGzZsULNmzfIsEQYAAAAAuIbBaJSMRhnsXNYyk0dIiHxffTljn3iTSUpOtoSAtoSI2ZjTJS8vyY7qNmsMPt43vijrrZOt75xn8Pax7+bJtod8N+TjwL3T06XERJmzLD1qlqQHI+zqKu2PP5W6co3k4y2Dj0/GWLwzj71lyBIKXgsIr/4z63NXA0R3+rY8AADOVLNmTb355puaNm2aDh06pBEjRuiRRx5R+fLldfbsWW3cuFF//vmnypcvr0GDBtm0PVeDBg302WefZfyOdVWFChVUtmzZgnwpCg4OVokSJXThwgXLuZIl7VvG3ZoqVapo+fLlGjZsmPbv36+2bdvqhRdeUK1atRQTE6OVK1fq22+/VdmyZTVlyhQ1aNDAKfd1JoI7F8oauPnY+Uty1qDP2WvB5tfcuXOVkpKiTp06ycvLy6E+jh8/rgkTJuQa2mUKCAjQW2+9Zanqmzp1qtq1a1fkl8wEAAAAAOTOYDBkhG5eXjIEBjrUh7F+PRnr15M5PV1KSZGSU2ROyQgBzcnJWSoDM8+lSCnJGf/MDAyvtpO9QWReYZsTQ0B72RtAKq97291XckYYazLJfOXaPEnuOxrmzfhQSxkbNbT5enNamtL/PJolKLwWCspoJAQEALidSpUqadKkSdq+fbt27typpUuX6sqVK/L391flypXVt29fNWvWzOY58urVq2vgwIFatWqVLly4oPDwcPXs2VMeHh4F/Eqk/v3765NPPtGFCxdUr1491ahRw2l9ly9fXkuXLtXmzZsVFRWlGTNm6MKFC/Lz81P16tX1+uuv68knn5SfnfsuFxaCOzdhtrLJtjVZ1511p18kL168qJUrV0qS2rVr51AfPXv2VGxsrB5//PEbXtuwYUOFh4frt99+0+nTp7V9+3ZFRNj37T4AAAAAwK3H4OGRsfymr68K7W/VPj7yrHdXlhAwSyjoSNWbE8dlD3Me9zbY3ZfzAki7f4YJCUpdvirXp7z795WhVCmbuzJfvKT0s2dzrwzkC8YAACfy9PRURESE0+bBmzRpoiZNmjilL3vUrl1b7733XoH1bzAY1KpVK7Vq1arA7lFQCO5cKCAgwHKcbOcv3Ckp136xzdqPq61YsUIJCQkKDg5WvXr1HOrD3n3xHnjgAf3222+SpF27dhXZ4K5mzZoOVygWZSaTKcd6zbVq1ZLRyNsTAAAAgJvQA875O+uFlFRdSE9XWmKS0hITlZaQoLSkpIw97BITlZ6UlGM/QGuq1KypYnVq23zvy7/9Lmu7tN95zz3y8La96u7Mib910uar81a5WjWF1K1r8/WJp07pFyvP1br7bnmHhNjcV8w3W3V86YpcnzN4ecnTz0+e/n7y9L36T7+MPx5+WR/7ytPPX0G1a8o3LMzmewMAij7mSK9JTU3Vr79a+03j1nDr/Vt3I/kJ7rJe7y7Bndls1vLlyyVJjRs3LpRyWinjDSxTUf4f2mg03pLBXW74WQAAAABA3ko3aazSTRpbfd6cnq60pGSlJSZcDfauhnuJSUpLTJDpasCXlpCggHK32fV3MIOV/QENRqO8/f3tWxnIiZWD3kFBdr2OpBTr+xz6BBWT0Z6/l6ZYfx3m1FSZUlNlunTJpq6qDx2iIBv2JcqUfO68/lr4qTz9/WT097eEgp7+firZtIk87a1EBAC4hVt1jtTe1QlvRgR3LlSiRAnL8cWLF+1qe/ny5Vz7caXdu3fr5MmM78ndc889hXbfrJtsZt3MEgAAAACAW5XBw0NGfz8Z/Z2/d0tg1Sqq9eaoq0FgoiUENJtMdm/nYUpIdNq4jHbuOZiWaOXeBoM8fe0Lu9Kc+Do87fx3lhoXp5it23J9LuTeBnYtIXph337Ffr/DEv5ZgkB/P3n6+1uqAo2ZVYL+/vK4BSeVAQAoSAR3LlSlShXL8enTp21ul5aWptjYWMvjqlWrOnVcjvryyy8tx87cSPJGslYcJiQk5HElAAAAAADIL69ixVSivmPbY1yvTOtWKn7XnZaqQNPVMDB7lWDi1YAwIeNcUsZz1y8F6unna9e9rYVtnn5+GXsg2tOXtRDQAZ5+9gV3ed3b3r6uHDuus199Y1cbg9FoCfeyVvxVePopBVVzjzkrAACKEoI7F6pWrZrl+MyZMza3i42NVVpamuWxuwR327Zd+3ZX1lCyoKWnp1uO/e38dh0AAAAAAHAd//Ll5F++nN3tzGaz0pOSri35mZgoHzv3hUs3meTh46P065brtDcAlFxcOWjlS8we3t4yeHra15cDAaTZZJLp8mWZLl9W1p/kbR3a29XPpV9/06E3x16r8PPLqPAz+vsr/LVX7H4tAAAUVQR3LnTnnXdajv/991+dP39eITZsfPzHH39YjsuVK6eSJUsWyPjsceLECcsymZJUvHhxh/qZOXOmFi5cqLCwMM2ePVuhoaE3bJO1yq5YsWIO3RcAAAAAABQdBoPBUtnlqNBm9ym02X0yp6VZ9v5LS0xUuslkf2fmdBmMRpkdaXsde5fKTEtMyr0fB342JieuZORI5WB6crLSk5OVGhdnOW/w9JTsrID8e9kKnV63wbK0p6d/5tKfmYFg3st/Zl7v6eeXEYDauQQsAAD5QXDnQhUqVFB4eLh+++03SdLPP/+sBx988IbtDh06ZDlu2bJlgY3PHvv27bMc+/j4OLRp5t69exUZGSlJOnfunFavXq1+/frdsF10dLTl2F2qDwEAAAAAQNFg8PSUMTBAxsCAG19sRdUBL6jqgBeUnpp6dZnPBKUlJl1b+jMhMSMYTEjMsi9glucsS4AmyNPPvoo7a2GbvQGgZD0EdISzKgc9/f3s3zsx/krGv4OEBEnn7Wp7vbrvTFRQjeo2X58SF6crR49dDQX9slQQ+snDyFQsAODG+LRwsYceesgS3O3YscOm4O7HH3+0HLdq1arAxmaPn376yXKckpIik8kko52/jOzfvz/b4+Trlqqw5ujRo5bjunXr2nVPAAAAAAAAZ/Hw8pKHl5e8CnFFIL+yZRT64APZ9gNMS0iQT+nSdvdlLTxzhP2Vg9b2HLR/W5S0RNdVDl7+9Xf9NumdnP34+6vx0kV29XXlr7+VeuFCzkpAX1+792EEABQdBHcu1rlzZ82ZM0dXrlzRZ599puHDh+cZeF26dEk7d+6UJN11111q0KBBYQ01T1nDM7PZrNjYWJUpU8auPrIuc+nl5aVHH33UpnY7duyQJHl7e+uBBx6w654AAAAAAABFWfG771Lxu+9ySl/Bd9aWh49PtgAwLcs+gukpKTb3ZW/gZW2fQMcqB52356D9S35aqRx0YOnSM599oehNX1rt7/r9AD39syz5mRn2Xb0mpOG9dldBAgBcg+DOxUJCQtSrVy99+OGHOnfunD7//HO1b299895169YpNTVVkjRkyBCr150+fVpvvfWW9uzZo/Lly2vEiBFq2rSp08efKev+dpJkcmBN96ZNm8rDw0Pp6elq27atKleufMM2Z86c0Z49eyRJbdq0cXhvPQAAAAAAgFvdbY+0y/P5dJMp76U/E64Ffh4+Pnbd23rFnQPBnZUQ0BH2BodWA0hHXkcelYOZYaqtK4HeM2u6XcHdpcO/KvrrLdf2Bry6H6BX8eIq2aihzf0AAOxHcOcGnnvuOW3dulW//PKLIiMj1apVK/n6+ua4LjExUbNmzZIkPfHEE2rSpInVPocPH67du3dLko4cOaL+/fvriy++UNmyZQvkNVy8eDHffZQvX16dO3fWkiVL5G/jLxIffPCBTCaTgoKCNHTo0HyPAQAAAAAAALnzMBrlERQkr6Agp/cdGtFMAbfffjWQuhYCepcMsbsvp1bc5TJH58i9XV45aGe13ZW//tbZr77Ocd63bBm7g7szX2zSleMn5OnnK2PWJT/9rh0bLZWDfvL085XB09OuewBFncFgUKlSpeTj4yODwSCz2SwPlsS9ZRHcuQEfHx9Nnz5dTz31lE6fPq1XX31VU6dOzfY/ptls1vDhwxUTE6O7775bo0ePzrPPgwcPZnucmJioX375pcCCO7PZnO2xp4Mfrq+99prOnDmjdevWqUOHDrrrLutLPcyfP19r166Vt7e33n33XZV2YO12AAAAAAAAuJ5f2bLyc9K81e29eijl/Plr1YDZ9v/LrBK87lxCQo6lQD187Q+QrO0T6PLKQbuX/LQWQNq/3GbcTz/r/A+77Grj4eubsfynX5blP/39VG3wizIGBNg9BsDdGY1GVapUydXDgJsguHMTYWFhWrVqlYYMGaJNmzape/fuGjBggG6//XYdO3ZMM2bM0K5du9S2bVuNHz9e3t7eefZXp04dS8WdlLFnXHh4eIGN/4477tCvv/4qSfLw8FCJEiUc6iczxJw7d6569OihRo0aqUWLFqpVq5ZKlSolk8mkP/74Q8uWLdOWLVtUsWJFjR07Ns/qQwAAAAAAANw6gmpUd6idOS0tS6iXZNeefpY+0tNl8PSUOS0t23mjIxV3TgruDEajPLy87Ly3MwNI60t+WpOelKT0pCSlXojLdt7eIPX0hv/p76XLsweAfn7yr1xJt/fsbve4AKAwENy5kVKlSmnBggXaunWrVqxYoddff12xsbEKDQ1V7dq1tXDhQjVq1MimviZPnmzZ4y4sLExDhw5VxYoVC2zsI0eO1Ouvv65z587pmWeeyXWpT1t5enqqb9++6tSpk9auXavPP/9cU6dO1cWLF+Xr66uQkBDVrl1bkydPVps2bW4YYgIAAAAAAAA3YvD0lDEwUMbAQIf7uL1nd1Xu0U3m1NRs+/95eNu3518Gs2QwSNetdGUvR6rknLrnoLOW/PTwsHvvRNOVBKVd/ZM1hk1LTrb79ofHTdTl349cW/LT71oloGeWx8ar+wF6Zrsme3DIUqC4XnpKiq6cOKGEv04qLTlJnj6+8q9UQQGVK8uD+e9bDsGdm/Hw8FDz5s3VvHnzfPVz2223afbs2U4a1Y3de++92rx5s1P7DAkJUe/evdW7d2+n9gsAAAAAAAAUFIPBIIO3tzy8veUVHOxwP3dPfU9ms1npyclKS7h+ec9r+wBaqgQtjxOyLAmaKGOg/UtLWqv2MzoSAjpQcZcbTz8/GQwGp9zbkQpI06XLMl26JNOlS7I/9suu6ZoVdoV3Cf+cUsq5c9eCwsz9AH19ZGAftCLt8pE/dOZ/nyt2x06ZU1NzPG/w8lKppk1Utl0bBVWv5oIRwhUI7gAAAAAAAADADRkMBnn6+srT11feIY5tTeOIoBrVlZ6aorTEpGx7BHqXDLG7L5OTlvx0aLlRK9V+Hr4O9JXknNfhyN6JZ7/+RqfWROU4H3xXXdUZ+6ZdfV369TeZ09KuCwF95eHtbXcwCselJSbq+LwFit6UdzGMOTVVMdu+Vcy2bxX20H90e8/uDlW+omghuAMAAAAAAAAAWJRp3UplWrdySl8lmzRSatzFq5WCVysCLcuIJkrp6Tb149j+eu5ZOWj3vROTcj3vSJh5bNYcXTl+PMd5g6fn1SDv2vKeuS7/efUaY2CgSjVtYvf9ISWfO6dDo8co8Z9TdrWL3rRZlw4dVu2xb8qnZMkCGh3cAcEdAAAAAAAAAKBAVHn+OavPmc1mpaekZFv6M/uSoImWij9jUJDd97a+V5+v3X05q3LQseAu99DQ0895+xea09Jkuhwv0+V4m/oxFitmd3B3dstWXf7t9+v2//OTX7lyKhZew66+iqq0xESHQrtMif+c0qE3x+qudydReXcTI7gDAAAAAAAAABQ6g8EgTx8fefr4SCWcvxRohaefUumWzbNU+2X8KVarpl39mM1mq4GXvRxa8tNKaOjMENBejryOi78c0tmvv8lxPjTi/+wO7k4s/FTpSck5KgE9/fxl9L8WCmaGhO6yFOjxeQscDu0yJZ78RyfmL1SVF5530qjgbgjuAAAAAAAAAAA3naBqVRVUrWr+OzKbVWvUCMvynmmJ1yoE0xKurxJMyHb++qVAPR1ZptNa5aAD4ZnzKgedt9yoI68jZss2pZw/b3sDD4/sS35erfjzLVNGVfpZrwp1pstH/rjhnna2+nfjlyrdormCqldzSn9wLwR3AAAAAAAAAABYYfDwUIl76tvdzrIUaJalPw1G+6fkzWlpuZ63NwRMT02VOTXV7vvnem8Hlhu1vnSpIwGknZWD6ekyxcfLFJ99KVD/ihXsvveRqR8qbt8+S4VfZrVfSKN7VabVf6y2O/O/z+2+V17OfPYFwd1NiuAOAAAAAAAAAAAny7YUaPHiDvdz58RxMqenKy0pOVu1n3dIiF39pCcny8PbW+kpKQ6PJZMjlYPWwjZ7gztzWprSk5Lsvr8z7i1JpksXlXrxklIvXsp23q/cbVbbpKekKHbHTrvvlZfY73eo6oB+8vD2dmq/cD2COwAAAAAAAAAA3JjBw0NGf7+MveVKOtaHMTBQTVYulTktTWmJmUt8Jl1b3vPqUp+mLPsBpiUkZNsfMHNZUO+S9oWGUl5LftoXAqY5KbSTHN0nMPf759XXlRMnnFbtmMmcmqorJ/6i6u4mRHAHAAAAAAAAAMAtwuDpKWNgoIyBgYV63xL31Jd/+fLXQsHERJkSEuVVLMiufqwFZ45wauVgHnv1Jfx10u772CLhr78J7m5CBHcAAAAAAAAAAKBA3d6zu1P6MXh6KPSBiIxlQ69WDGatErRnGU2HKu4SrO3VZz0ETEt2XtiYvd/kAukXrkVwBwAAAAAAAAAAigTvEiVUfcggq89nLAWadDXIuxrqZS4LmmWPQFNCggKrVrX7/laX/MwjBPT08bX7Prbw9PEpkH7hWgR3AAAAAAAAAADgppCxFGiAjIEBBdJ/9ZcHyxR/JUfFn3+Fclbb+FeqUCBj8a9UsUD6hWsR3AEAAAAAAAAAANigRP16drcJqFxZBi8vmVNTnTYOg5eXAipXclp/cB8erh4AAAAAAAAAAADAzcrD21ulmjZxap+l7msqD29vp/YJ90BwBwAAAAAAAAAAUIDKtmvj3P7aPuzU/uA+CO4AAAAAAAAAAAAKUFD1agp76D9O6atM61YKql7NKX3B/RDcAQAAAAAAAAAAFLDbe3aXX/ly+erDr0J5Ve7RzUkjgjsiuAMAAAAAAAAAAChgnn5+qj32TflVKO9Qe78K5VV7zGh5+vk5eWRwJwR3AAAAAAAAAAAAhcCnZEnd9e4ku5fNLNO6le56d5J8SpYsoJHBXRhdPQAAAAAAAAAAAIBbhaefn6r276ewli105rMvFPv9DplTU3NcZ/DyUqn7mqps24fZ0+4WQnAHAAAAAAAAAABQyIKqV1NQ9WqqOqCfrpz4Swl//a205GR5+vjIv1JFBVSuJA9vb1cPE4WM4A4AAAAAAAAAAMBFPLy9LSEewB53AAAAAAAAAAAAgBug4g4AAAAAAAAAAMBFTCaTTp06JW9vb3l4eCg9PV2lS5eWp6enq4cGFyC4AwAAAAAAAAAAcBGz2azY2Nhs50qVKkVwd4tiqUwAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGjqwcA3GrMZnOu51NTUwt5JO7BZDLlOJeammr15wQAAAAAAAAANxPmSK+xNk9+K/0sDOZb6dUCbuDKlSv67bffXD0MAAAAAAAAAACKhPDwcAUEBLh6GIWCpTIBAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG7AYDabza4eBHArSU9PV2JiYo7zRqNRBoPBBSMCAAAAAAAAAMD1zGazTCZTjvN+fn7y8Lg1atEI7gAAAAAAAAAAAAA3cGvEkwAAAAAAAAAAAICbI7gDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguANcLDU1VcnJya4ehlJSUrRr1y5XD6PAxcfH6/Lly64ehlUmk0mff/65q4cBAAAAAAAAIIuNGzcqJibG1cNwCuZI3RvBHeAE8+fP14QJExx64/7zzz/10EMPafXq1UpPTy+A0dnm+++/V7du3TRs2DDFxsa6bBz58ddffyktLS3Pa8xmsyIiIjR69GgdOXKkkEZmu0OHDmnIkCHq06ePTp486erhAAAAAAAAAJC0bNkyNW/eXG+88YaOHz/u6uFYxRxp0UdwBziBwWDQggUL1LJlS02cONGu4Ov48eM6c+aMXn/9dbVv317ffPNNAY7Uuk2bNkmSNmzYoNatW+vTTz91aZDoiFGjRqlHjx46e/as1WuCgoJUpkwZrV69WuvXr7/hh1hh27lzpyTpu+++0yOPPKI5c+bIZDK5eFQAAAAAAACA+zlw4IBWrlxZKPdKSkpSSkqKVqxYoTZt2mjBggWFcl97MUda9BHcAU7g7e0tKePNe/Hixfrhhx9sbnvgwAHL8YkTJ7R3716lpKQ4fYx5SUxM1FdffZXtXKlSpWQwGAp1HPlx9OhR7d69W7t371aHDh20Y8cOq9feddddKlWqlIYOHSpPT89CHOWNffnll5Zjo9GohIQEJSUluXBEAAAAAAAAgPs5cOCAevXqpTfeeEMrVqwo8PtdunTJcvzBBx+oe/fuBX5PezFHenMwunoAwM3Ay8vLcjx58mS1bdvW5rb79++3HE+dOlUtW7Z06ths8fnnn1vWNDYajfr4449Vr169Qh9HfixfvtxyfO7cOa1atUoNGjSwhKpZNW7cWGvWrNG+fft0zz33FOYw83Ty5EkdOnTI8njq1Km6//77XTgiAAAAAAAAwLqLFy+6pFrr2LFj6tevn2VOc/To0TIYDHriiScK7J5xcXGSMuaCW7RoUWD3yQ/mSG8OBHeAExiN1/5XuuOOO2xud/HiRf3yyy+SpMqVK7vsDT9rOXmvXr2KXGgXHx+vtWvXWh6PGjVKzz77rNXrH3zwQXl5eemLL75wqw+l1atXW44bNWp0y30gAQAAAAAAoGjZuXOnhg4d6vJlDM1ms9544w0ZDAZ16tTJ6f2bTCZduHBBUsY8rrtVqEnMkd5MCO4AJ3D0jXr79u2Wb6R069bNJUtT/vTTT5aqv9tuu039+/cvsHuZzeYCeY1LliyxlKpXrVpVXbp0yfP6YsWKqVGjRtq4caNeffXVXL9xUtjS0tIUFRVleTxs2LB895mcnKxly5bp2WeflYcHKyMDAAAAAADAuVq3bq2AgABFR0erVq1aKl26tIKCguTj42NTe5PJpNq1a0uSBg4cqBdffLEgh+uw2NhYpaenS7KvcCM3a9asUbNmzRQaGuqMoVkwR5q7ojhHWjRGCbg5R4O7zH3lihUrpscee8yZQ7LZxx9/bDkePny4/Pz8CuQ+K1euVK9evRQTE+PUflNSUrRw4ULL41dffdWmfx9t27ZVTEyM1qxZ49TxOGrz5s06c+aMJOmhhx5S3bp189VfcnKy+vfvrwkTJmjkyJGWXywAAAAAAAAAZ2rWrJk6deqkWrVqqVSpUjaHdkXJP//8YzmuUqWKw/3Mnz9fI0aMUPfu3RUbG+uMoUlijtSaojpHSnAHuEhCQoK2bNkiSerUqZP8/f3t7iM6OlojR45UYmKiQ2M4cuSIvv76a0lSnTp11LBhQ50/f97pf3bu3KkxY8Zox44dat++vbZt2+bQeHOzbNkySxj44IMPKiIiwqZ2bdu2VYkSJTR79myXl/JL0oIFCyRlhMAvvfRSvvrK/EDavn27pIxv8RSlDyYAAAAAAADAnZw6dcpyXLVqVYf6mD9/viZOnChJOnr0qLp16+a08I450pyK8hwpS2UCTuBIxd0333yjxMREGQwGtWvXTufPn7erfXJysvr27asjR47o2LFjmjVrlooVK2ZXH++//77MZrMk6eDBg2rSpIld7R1x/vx5jRkzRlFRUXaP93qXL1/WRx99JEny9/fX6NGjbW7r4+Ojp556SjNnztTy5cvVtWvXfI1FyvjmTbdu3bJ9kNsrLS1NDz/8cL7Hcr3Mb82MHz++yJSEAwAAAAAAAPmVlJSk/v376/vvv3dKfy+//LJefvnlfPdz9OhRde/eXQsXLlTJkiUd7oc5UtsVlTlSgjvACRzZt2358uWSMvZ969ixY77uv2/fPn344YcaOXKkzW327t1rqfirX7++Fi1aJKOxYN4SUlJSdOedd0qSKlWqpE8//TTfoZ0kzZo1y7Ip7IsvvqjbbrvNrvZdu3bV/PnzNWXKFP3f//2fKlSokK/xlC9fXosXL9avv/6qWrVq2bwu9HvvvadVq1ZJkqZPn6769evnaxx5yQxqAQAAAAAAgFuBr6+vZsyYoVmzZqls2bKqVq2agoODFRQUZHN4079/f+3fv18hISHasGGDevXqpVGjRjlcfZeVIyuxZcUcqf3cfY6U4A5wAnuDu2PHjmn37t2SpHnz5qlp06Z23zM2Nlb33XefJKldu3Z67bXXbG6bnp6uCRMmSJKKFy+uyMjIAgvtpIxvSGSqU6eOSpcune8+T5w4YVm3+Z577lGPHj3s7qN06dLq3bu3pk+frtdee02LFi3K9zctypYtq7Jly9p8/b///qsNGzZIyihjb9myZY5rrly5ooCAgHyNCwAAAAAAALhV+fj4aNCgQQ61/ffff/Xzzz9LylhaslSpUuratavee+89LV261KWVW8yR3pzctxYQuAkcOHBAUVFROc4vWbJEkvSf//zHodBOyqhiy3TvvffatVzn0qVLdfDgQRkMBr3zzjsqU6aMQ2OwVdbgzpFlRa9nNps1atQoJScnKyAgQJMnT3b4w+S5555TmTJl9OOPP2rMmDH5Hpu9IiMjlZycLC8vL40YMSLXa/7zn/9o7Nix+vPPPwt5dAAAAAAAAMCt7X//+59lX7TMldMeffRR/fvvv1q0aJHLxsUc6c2L4A5wgtwq7r766is9++yzeu211yzLYkoZlXIrV66Ur6+vXVVy10tNTbUc21Mtd/bsWU2dOlVSxhuyrRuV5kfW4M4ZlX3Lly/Xnj17JElvvfVWvsq3/fz89MYbb0jK2MQ1c4PYwnDgwAGtW7dOktStWzdVqlQp1+vS09O1ePFitW3bVoMGDcr28wQAAAAAAABQMFJTUy1zuw0aNFCtWrUkZSy/OWTIEEVGRurw4cMuGRtzpDfvHCnBHWCjffv2qV69eqpRo0aOPwMGDLBc16FDB8u5pKQkmc1mvfnmm1q8eLGkjKUxk5KSNHjwYJUvX97h8Tga3I0aNUqXLl1SixYtNGTIkGzPmc1mDRo0SKtWrVJiYqLDY7ueyWSyHHt5eeWrr6NHj2ry5MmSpC5duqh9+/b56k+SWrZsqWeeeUaSNH/+fI0ePTpbRWNBMJvNevvtt2U2m1WuXDkNHDjQ6rWZ61yXK1dOr7zyilOqFgEAAAAAAICCEBUVddNURa1evVp///23JKlnz57Znnv00UcVHh6ufv36KTo6ulDHxRzpzT1HSnAH2Kh+/fpatGiRZs+ere3bt2vnzp2WP5lvkpK0cOHCbM/t3LlTO3bsUJs2bRQdHa3Fixfr7rvvtqw3/Ndff2n+/PnZgjhbZH3TtDUMW7lypbZt26aaNWtqypQpOUqnDQaDunTpovHjxysiIkKTJ0/WmTNn7BpXbpwV3CUmJmrw4MFKSEhQ/fr1rZZNO2L48OGqXbu2pIxvqzzzzDP6999/ndb/9VatWqUDBw5IksaOHZvnJrSZP7Pw8PB8bw4LAAAAAAAAFKQffvhB7dq1U//+/S17wxVFSUlJ+uijjyRJtWvXVosWLbI9bzAYNGnSJF26dEn9+vVTfHx8oYyLOdKbf46U4A6wQ506dRQREaHQ0FCFhIRY/gQGBlquKVasWLbnMv+UKFFCkZGR8vDw0KRJkyyhWbFixTR37lx16NBB+/bts3ksWYM7Wyru/vzzT02YMEG33XabZs6cafVNsHHjxpozZ45MJpM++eQTtWzZUq+++qqOHTtm89iu56ylMkePHq0//vhDVatW1cyZM+Xt7e1wX9fz9vbW7Nmzdfvtt0uSfv75Z7Vr104LFixwetn1+fPnNWXKFEkZFZr3339/ntfb++2RuXPnFvq3fAAAAAAAAABJCggIkNls1tdff60nn3xSUVFRrh6SQyZMmGCZYxs+fHiu2yVVrlxZw4cP1+HDh/Xss8/q7NmzBT4u5khtU5TnSAnugELyyy+/aN26dRo3bpzljU+SSpQoocmTJ+vo0aPq2rWrIiMjLZud5sWeiruEhAQNGjRIgYGBWrBggcqUKZPn9ffcc4+mT58uLy8vmUwmrVu3To888ojGjRunpKSkG47telkr7hwN7qZNm6b169erfPnymjt3roKDgx3qx5rFixfr9OnTWrBggWUJ08uXL2vChAnq0KGD1q1b57TS8HfffVdxcXGSpGrVqt3wens+lObNm6d33nlHjz76qLZt2+boEAEAAAAAAACH+Pr6Wo4//vhjdejQwen32LNnjy5fvuz0fjNt3LjRsrddx44d1ahRI6vXPv300+rYsaMOHz6szp07F+gyocyR2qaoz5EazGaz2dWDAIq6r776yrLPXVRUlGrWrJnteZPJpE6dOqlx48Z67bXXcu1j5MiRWrVqlSTpwQcf1H//+988vy2xfft29e7dW5I0Z84cNWvWzOq1Q4YM0e7du7Vo0SLdcccdNr+uL774QkOGDFHWt4mHH35YU6dOtbkPKWPN5TZt2kiS+vXrl2NvvRuJiorS8OHDVb16dc2ZM0dhYWF2tb+R+fPna+LEiQoKCtInn3yisLAw9e/fXwcPHsx2XalSpdSmTRs1btxYDRs2VFBQkN33+u6779SnTx9nDT1PBoNB8+bNU5MmTQrlfgAAAAAAAEBkZKRmzpwpSfr999/zvNZkMlmWZhw4cKBefPHFG/a/ZcsWDRo0SOHh4frkk08cmqPLy4EDB9SzZ0/Fx8fL19dXmzZtumEhREpKirp166b9+/fLz89PAwYMUM+ePfO1+tj1mCN1TFGcI3XefzUArPrkk09UqVIlDR8+3Oo1r7zyir766ivFxcVpy5YtGjt2rMaNG2f1+qyVb3lV3P33v//VoUOHtHjxYlWuXNmucT/88MM6fPiwZs+ebTm3adMmxcTEKDQ01OZ+8rPH3WeffabXX39d9957r6ZPny6DwaCOHTvq0KFDdvVji8uXL6t3795av369lixZojfeeEPr1q2zPB8bG6uFCxfqhx9+UOfOndW1a1e7+j9//rxGjhwpSapQoYJOnjypwMBAbd68Oc923bt315EjR/R///d/2fZTzM3s2bM1b948SdKsWbOK1AcSAAAAAAAAbl2JiYk6f/58ntfs3r1bw4YNU2pqqg4cOKAePXpo3rx5KlasmFPGcODAAfXq1Uvx8fEqUaKEGjZsqIcfflgdOnRQjx49VKlSpVzbeXt76+OPP1bv3r31888/a8qUKdqwYYNGjBjhlPk55khvrTlSgjugELRu3Vo9evTIdR3kTMWLF1efPn0s6/quXLlSjz/+uOrVq5fr9cnJyZZja5V5hw4d0s6dO7Vs2TKFhIQ4NPaXXnpJu3fv1k8//SRJSk9P18mTJx0O7uz5lslnn32mV199Vd27d9fQoUMtbefNm6fvv/9ed955pwICAnK069q1q44dOyYPDw9t2bLlhus8T5o0SevWrZOnp6dGjhypsmXLSpLeeecdNW3aVJMnT9b58+dVsmRJTZ48Oc/qRmvS09M1fPhwRUdHq1+/frpy5YoWLVokg8Fww383mfshenl53fBaHx8fy3FERITd4wQAAAAAAABcYe7cuZo7d65dbQ4ePGgJ7/K7bOSWLVv0yiuv6PLlywoPD9e0adNUoUIFLVmyROPHj9fy5cvVrl07DR48WOXKlcvRPrNS7bnnntO+ffv0+++/q0ePHqpbt6769u2rFi1aWOb57MEcaYZbaY6U4A4oBBUrVrTpuq5du2rWrFmW9Zm3bt1qNbjLWnFn7U23du3aWrhwod1Vbll5enpq9OjR6tSpk2Xvvdw+mPLiSMXdggULNHv2bE2dOlX/+c9/sj0XHBxsWXozN//++6+kjJ/7jcrYJSk1NdXS7/Vrbnfo0EEPPPCApkyZoieffFJ169a1afzXmzp1qr799lu1bdtWL730ksaPH+9QPwAAAAAAAMDNyNalMp3NZDIpMjJSc+fOlcFgUPfu3TVs2DDLnGuXLl0UFhamIUOGaN26ddq4caMGDRqk3r175yjUCAwM1IIFC/Tuu+9q4cKFkjKq+AYOHKiwsDA98sgjat++vWrUqGHT2JgjvTUR3AFuxN/fX61atdLq1aslKcdeeVllDe6yfoPgevkJ7TLVrl1b7dq10/r163X//ffbvX5y1g1Lb/TNDkl6//33derUKW3YsMHuSsGYmBglJCRIks0fgPHx8ZKyb5ybVfHixfNctvRG1qxZo1mzZqlhw4aaNGlSnpWXAAAAAAAAAArHnj17NH78eP3666+qXbu23nrrrVxDqRYtWmjq1KkaOHCgkpOT9e677+rcuXO5bo3k7e2tkSNH6r777tOoUaMUExMjSYqOjtacOXM0Z84chYaGqnHjxqpTp44qVaqku+66K8c8KHOkty776zIBFKj27dtLkurVq6eHHnrI6nWJiYmWY2tvps40YsQIRURE6PXXX7e7rb3BXdeuXfXee+85tLznn3/+aTkODw+3qU3mh5ItY7PXd999p9GjR6thw4aaPXt2gdwDAAAAAAAAgO2OHj2qIUOG6JlnnlFqaqoiIyO1evXqPCvJmjdvni2omz9/vmXltNw88MAD2rRpk1544QX5+flley4mJkYbNmzQlClTNHfuXB07dixHe+ZIb11U3AFupnHjxho4cKA6d+6c41sHKSkpljc1WyvunCUkJESzZ8/O85ojR47IaDTqjjvuyHbelv34srK3oi+rvXv3Wo4bNmxoU5tLly5JUo4P0Pzau3evXnzxRdWrV0+zZ8/O1r/ZbHbqvQAAAAAAAADkbefOnZo3b562b9+uJk2aaNasWYqIiLC5+qt79+76/vvvtW3bNqWnp9+wXUBAgF566SU9/fTT+vjjj7V27VpLQNa+fXu9+uqrCg0NzbUtc6S3LoI7wA1dv5bz8ePHNXnyZN17773q3bu3JOnKlSuW5wuj4s6auLg4ffbZZ1q9erW8vLz06quv5rgma8WdM5buzMu+ffskZawnfffdd9vUJvObMc78UPrpp5/Ut29fNWrUSFOnTnX6Bx4AAAAAAACAGztw4IA2btyoTZs2KTg4WK1bt9aYMWNUtmxZm9qnpaXJ09PT8njcuHF64oknVLFiRQUGBtrUR1hYmEaNGqUhQ4YoKipKe/bs0bvvvuvQ67EFc6RFG8Ed4MYuXLig6dOna/369XrllVf0xBNPWJ7LGtwV9hueyWTSt99+q6ioKG3ZskVNmjTRiBEjdO+99+Z6fdbqwIIsg05MTLR8KDVu3FhGo21vcZkfSv7+/k4Zx08//aQ+ffroscce04gRI7J9sGdKT093yr0AAAAAAAAA5O6ff/7R/Pnz1aRJE3366ac3DOtWr16thg0bqkKFCpZz27dv15QpU9SzZ0898sgjKl26tNatWycPD/t3IgsICFDXrl3VtWtXu9vaijnSoo/gDigkp06d0v/+9z/16NHjhktbJiUlacGCBZo9e7Zq1qyp1atXZ/uwkK4Fd0ajscCr2DIdOnRIUVFR+t///qdLly6pTZs2WrVq1Q03OLV3qUxHbd261bL3X8uWLW1qk5KSYtmo1dZvyORl165dGjhwoAYNGqRu3bpZvY4ycAAAAAAAAKBglS9fXu+//77N1+/YsUNvvvmmOnfurP79+yskJEQRERE6ePCgRowYoQ8//FAvvviiOnTo4FBwVxiYIy36CO6AApSQkKBNmzZp7dq12r9/v9q1a6fExESrwV1qaqpWrlypGTNm6PLlyxoyZIieffbZXD8ELl68KMl534Cw5syZM9qwYYPWr1+vP/74Q76+vurUqZN69eqlcuXK2dRH5geFVLD78W3cuFFSxodL69atbWqT+XOUpODg4Hzd/+uvv9Y777yjGTNmqEGDBnley7dJAAAAAAAAANdJSEiQr69vtrlXHx8fpaamatGiRYqKitKaNWtUsWJFDRgwQDExMVq6dKlGjBihZcuWacqUKapYsWKe94iMjFSzZs1uOFfoTMyRFn0Ed4CTmc1m7dq1S2vXrtWmTZuUlpamJ554QpMmTdJtt92Wa5vU1FRFRUVpxowZOnXqlBo3bqxx48blqLLLKrN0OSgoyOmv4eLFi/ryyy+1fv167dmzR2azWcWKFVO/fv3UvXt3hYSE2NVfYezHd/78eW3ZskWS1LZtW5uXDz1//rzluFixYg7ff8uWLVq3bp2WL1+u4sWL3/B6PpQAAAAAAAAA13n77bd1//33q23btpZzWVc2Gz9+fLZgbtSoUTp27Jh27dqln3/+WU899ZRWr15tdc5XkiIiItSjRw89+OCDev311xUWFlYwL+Yq5khvDgR3gJP17NlTcXFx8vf3V+fOndWrVy+Fhobmem1CQoJWr16tTz75RKdPn1ZwcLDGjx+vTp063fA+Fy5ckOSc0mVJio+P1zfffKMvvvhC3333nVJTUyVJoaGh6t69u55++mmH71UYwd2yZcuUnJwsg8GgLl262Nwu64dSiRIlHL5/o0aN9OCDD9p8PR9KAAAAAAAAgGvExcXp888/10MPPZTtfNbg7vrnjEaj3n33XT3yyCO6ePGizp8/rxUrVuill16yep/69etr/PjxGjZsmL799lsNGzasQPe3Y4705kBwBzgoOTlZO3bs0KZNm/Tll19azqekpOi5555Tr169rFamnTp1SkuXLtXKlSsVFxcnSXrggQf09ttvq3Tp0jbdP/PNND+ly8eOHdP27du1detW7d692xLWSdJtt92mPn36qFOnTvle3jI+Pt5yXBDBXUpKipYsWSJJatOmjcLDw21uGxsbazkuWbKkw2Owd8lSez6UWOsZAAAAAAAAcJ4FCxYoKSlJAQEB2c57enrm2S4sLEz9+vXT5MmTJeU+J3jo0CH5+vqqSpUqkqRHHnlEe/bs0fLlyzV27Fh99913mjJlitMKMjIxR3rzILgD7PDPP//o+++/17Zt27Rz507Lhp1SxptS165drQZ2V65c0bZt27R27Vpt377d8qbk7++vkSNH2lRllykxMdGyVKY934CIjo7Wtm3btHfvXu3atUtnzpzJcU2FChX0/PPPq0OHDtm+YZIfmeGkVDB78i1ZskQxMTEyGo0aPHiwXW1jYmIsx7aGps6QlpZm87X2fCjxLRUAAAAAAADAutjYWM2fP1+SVLZs2WzPZd3vzprOnTvro48+UkpKih5++OEcz2/evFnBwcGW4E6SRo4cqV27dunEiRPasmWLevTooYULFzp1rpQ50muK+hwpwR1go/79++vrr7/Ocd7Ly0udO3dWv379VKpUKavtP/jgAy1YsCDbuSpVqui///2vqlatatdYTp48aTm25xsQnp6eioyMzFb6nCksLEwvvviiHnvsMRmNzn1ryFzWU3L+nnzR0dH66KOPJEk9evRQpUqV7Gp/+vRpy3Fe61E7m8lksvna3D6Ufv75Z/3++++qXLmyypcvr1KlSunKlSvauXOnM4cJAAAAAAAA3FRGjRqlhIQEBQUFqXz58tmesyW48/f315QpU+Th4aEKFSrkeN5kMmWbD5UkHx8fvfnmm+rZs6ck6ZdfftGMGTM0dOjQfLySa5gjvbnmSAnuABu9/PLL2rFjhxITEy3nWrZsqeHDh2fbpNSaYcOG6cCBA9q/f78kqWnTpvrwww8dKon+9ddfLcfXfyskL6VKldLbb7+tAQMGWM55eXnp+eefV58+fWzerNRe0dHRlns581skaWlpGj58uC5evKg6derY/U0SSfrrr78kZaxRXa5cOaeN7Ubs+TZJ5rVZvykSFham9evXa9y4cUpOTs7Rxt4PZwAAAAAAAOBmN3XqVG3ZskWSVLNmzRzP2xLcSRnbHlmTmJioK1eu5DjftGlTNW7cWD/88IMkafv27U4J7pgjvfnmSG37rxCAqlatqjfffFOSVLx4cU2fPl3Tp0+3KbSTJG9vb33wwQcKDQ3Vgw8+qNmzZzu8jnHmm7skVatWza62LVu2VMeOHS1to6Ki9OKLLxZYaJeammr5xoaz3/QnTJignTt3qly5cpo5c6a8vb3tam82m3X48GFJUuXKlZ22NKgtsu4neCOZH0ZZP5TKlCmjN954Q5s3b1bz5s1ztLFn6VUAAAAAAACgKNq/f78GDRqUa2hzvQkTJmjGjBmWxxERETmuMRgM+R5TXFycTp06letzvXr1shw7a66UOdKbb46U4A6ww2OPPabnn39eq1atUsuWLe1uHxYWpjlz5mjq1KkOvwFevnxZX375paSMCrZ7773X7j5Gjhypdu3aafny5XYv05nVzJkztXnzZp08edLqGsPbt2+3vAFnXdc5v9577z19+umnqlSpkj799FOFhoba3cfWrVstG6/eddddThubLTJ/JraUnmeWjOf2DZSwsDDNmDFDTz31lOXcww8/rN69eztppAAAAAAAAID7+emnn9SnTx9t2rRJ/fv3zzO8mzt3brZtjIoVK2YpbsjKGcFddHS0/vzzz1znS5s1a2YpBHniiSfyfS/mSDPcbHOkLJUJ2Onll1/OV/vw8HCrz61Zs0ZGo1E1atRQpUqV5Ovrm+351NRUvfXWW4qPj5eU8UbvSNVeYGCg3nvvPbvbXc/Dw0PvvPOO/v77b/n7++uOO+7Q7bffrvLly6t48eKKjY3V8uXLLdc3bNgw3/c0mUwaO3asli9frkaNGumDDz5QiRIlrF7//vvvKyQkRBUrVlS5cuUUGhqqgIAAHT58WG+99Zbluty+kVGQGjVqpB49eui+++674bV5fShlGj58uI4ePaouXbqobdu2ThsnAAAAAAAAkCklJUUXL17M85qsWw3FxMTkeW3W6qmEhIQbXp/p2LFj6t+/v2WedPv27RowYIA++uijXCvOypYtq+rVq+v8+fOqVauWBg4cqJCQkBzXZQ3u0tLS5OnpadN4MiUnJ+vXX39VfHy8tm/frmbNmmV73sPDQ5GRkfr7779zrfizFXOkubtZ5kgNZmtlMgAK3ZdffqnVq1fr+++/l8lkUqlSpVS6dGkFBwcrLS1NJ06csOwXJ0kLFy5Uo0aNXDjijFLqLVu2aPr06Tp48KDV67y8vPTNN9+odOnSDt8rOjpaw4YN0759+9SvXz+98MILMhrz/v7BwYMHFRUVpbVr11o+yK9Xu3ZtrVy50u4P4sJy3333KTY2VvXq1dOyZctcPRwAAAAAAADcolJTUzVkyBBt3rzZ1UPJVUREhKZNm2b3cpGZ5s+fr4kTJ0qSBgwYoB49esjf3/+G7cxms06fPq3IyEh98cUXkqTg4GANHjxYXbp0cUolXybmSG/+OVKCO8ANnT9/XitWrNC8efMUFxeX6zWPPfaYJk2aVLgDy4PZbNbq1as1fvx4JSQk5Hi+T58+euWVVxzu/4svvtBbb72lChUq6K233lKdOnXsan/27FmNGTNGX331VbbzQUFBWrx4sWrUqOHw2Apao0aNFBcXp5o1ayoqKsrVwwEAAAAAAMAtLDU1VUuWLFH58uVVrVo1BQcHKzAw0G0DH3ucOnVKbdu2zVY1mB9Dhw5V3759ndKXxBzprTJHSnAHuLGLFy9q5MiROb7B0rFjR40ZM8bhb44UpP3796tbt25KSUmRlFH+/eyzz+q1116Th4f922r+9ddfGj9+vI4cOaKBAweqY8eODvUjZZRRDxgwQFu2bJEklS5dWh9++KHuvvtuh/orLPXq1VNCQoIqV66sTZs2uXo4AAAAAAAAwE3r4MGD+vDDD/XTTz/p8uXLdgWSRqNRAQEBuuuuu/TMM8+oSZMmThkTc6S31hwpwR3g5tLT0/XCCy9o69atKl++vEaMGKGWLVu6elh5GjFihL799lu1aNFCXbp0yXNfv7xERkZq48aNevbZZ/Xkk086Jag8ceKEHnvsMT3++ON68cUXFRwcnO8+C1qdOnUUHh6u3r176+GHH3b1cAAAAAAAAAAUEuZIM9xKc6QEd0ARcPz4cf3yyy9q27ZtkSg5j4+PV2BgYL77OXLkiKpUqeL015yQkGDT2tTuYu/evbrnnntcPQwAAAAAAAAAhYw50gy30hwpwR0AAAAAAAAAAADgBhxbBBUAAAAAAAAAAACAUxHcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAIBbS0xMdPUQAAAAAKBQENwBAAAAANxa8+bNNWnSJP3999+uHorLmM1mffzxx4qLi3P1UAAAAAAUIIPZbDa7ehAAAAAAAFhTr149JSQkyGAwqFmzZnrmmWcUERHh6mEVGrPZrDFjxmjp0qWqVauW5s2bp+LFi7t6WAAAAAAKABV3AAAAAAC35u3tLSkjwNq5c6f++ecfF4+o8GQN7STp8OHD6tmzJ5V3AAAAwE2KijsAAAAAgFu7//77FRMTI0maPXt2oVfbzZ8/XxMnTizUe95IzZo1NX/+fCrvAAAAgJuM0dUDAAAAAAAgLz4+PpbjGjVqFPr9e/ToIW9vb/3yyy+qU6eOKlasqKCgIAUGBspgMNjUx5w5c7RmzRpJ0ssvv6yWLVsW5JABAAAAFFEEdwAAAAAAt5a5VKYkm4MyZ+vSpUu+2metjAsNDVWVKlXyOSIAAAAANyP2uAMAAAAAuLWswd2VK1dcOJLClZiYqBkzZig9Pd3VQwEAAABQSAjuAAAAAABuzdPT03J86dIlF45E+v333zV58mSlpKQU+L02bdqkqVOnqlevXjp37lyB3w8AAACA6xHcAQAAAACKjFOnTtndJj4+XoMGDVJ8fHy+71+1alXt3btXTz31lP76669895eXzD3xdu7cqQ4dOujHH38s0PsBAAAAcD2COwAAAABAkXH06FG724wbN06bNm3SCy+8oKSkpHzd39PTU5MnT9axY8fUsWNHffXVV/nqz5rjx49r9+7dlsdxcXHatm1boVT6AQAAAHAdgjsAAAAAQJFhb9XZsmXLtHbtWknS7t27NWjQIKWmpuZrDLfffrv69eun+Ph4DRw4UNOmTctXf7mZNWuWzGazJKlUqVJauXKlhg4dmm2/PwAAAAA3H4I7AAAAAECRsX//fpuXvNyxY4fefvvtbOfOnDmjHTt25HscvXv3VuXKlWU2m/Xhhx9qxIgRSktLy3e/knTy5Elt2LBBklSsWDEtXLhQ4eHhTukbAAAAgHsjuAMAAAAAuIV9+/bd8JqQkBBt3rz5htcdOHBAAwYMkMlkkiTVq1dPixcv1oYNGxQREZHvsXp7e+vll1+2PF6zZo3GjRuX734laebMmTKZTPL09NTUqVNVpUoVp/QLAAAAwP0R3AEAAAAAXG7v3r169tln9corr+S5lOX//d//ac2aNXn2dfDgQfXp00cJCQny9/fX6NGjtXTpUjVo0MCpY27VqpWqV69uebx06VIdOnQoX30ePnzY8vpGjx6t++67L1/9AQAAAChajK4eAAAAAADg5hIXF6dz587ZfH1KSopefvllmUwmrV+/XrGxsfrwww8VGBiY49qIiAitWLFCx48f1+23357j+Z9++kl9+/bVxYsXVa9ePU2ePFmVKlXK1+uxxmAw6JlnntHo0aMlSWazWcuXL9fYsWMd7nPs2LFKT0/Xc889p86dOztrqAAAAACKCII7AAAAAIDTvfLKKw5Xn+3YsUOvvfaapk2bluO58PBwlS5dWosXL9aoUaOyPff9999r4MCBSk1N1csvv6w+ffrI09PToTHYqk2bNho/frySk5MlSSdOnHC4r3Xr1mn//v1q06aNhg4d6qQRAgAAAChKCO4AAAAAAE5VvHhxzZs3T/Pnz1fVqlUVHh6u4sWLKygoSN7e3jmu/+OPP9SuXTvL47Fjx+rxxx+32n9ERITWrl2rl156yVKVFxUVpVGjRqly5cp69913VbNmTee/sFwEBQWpSZMm2rp1qySpatWqDvUTGxuriRMnqlGjRpo8ebIMBoMTRwkAAACgqGCPOwAAAACA0wUHB2vw4MFq27atqlSpopIlS+Ya2knS9u3bLce1atXSU089JaPR+vdMW7durfj4eC1btkySNG3aNI0YMUJdunTR6tWrCy20y5QZMvr7+6t79+4O9TFq1ChVq1ZNs2bNsvpzyspkMjl0HwAAAADujYo7AAAAAIBLZQ3uWrZsecPrmzRpotDQUC1YsECHDx/Wjz/+qLlz56pp06YFOUyrWrVqpRdeeEHNmzd3aD+9VatW6dKlS5ozZ478/PxueP3Ro0fVr18/TZw4UQ0aNHBkyAAAAADcFBV3AAAAAACXSU5O1o8//mh5bEtw5+npqbZt2+rs2bOKjY3V+vXrXRbaZXrppZdUt25dh9qaTCbNnj1b/v7+N7z2xIkT6tGjh/7++28999xz2X52AAAAAIo+Ku4AAAAAAC7z7bffKikpSZJUsWJF1ahRw6Z27du31/z58xUbG6ugoCCnjSclJUUnT550Wn+Z4uLiLMcxMTE6evSo5fG9996r6OhoRUdH59nH5cuXNXjwYJ09e1aSlJCQoOeee05z585V/fr1nT5mAAAAAIWP4A4AAAAA4DKff/655fjRRx+1uV3t2rUVHh6u3377TcuXL1eXLl2cMh5vb28tXbpUixYtckp/uXn//ff1/vvvO6WvhIQE9enTR3PnzlW9evWc0icAAAAA1yG4AwAAAAC4RGJiorZu3SopY/nLTp062dW+e/fuGjFihKZNm6b27dsrMDDQKeMaNWqUKlSoIB8fH9WqVUthYWEKCgqyaSlLayZPnqxPPvlEkjRx4kR17NjRKWMFAAAAcHNhjzsAAAAAgEts3rxZCQkJkqT7779fZcqUsat9u3btFBoaqnPnzmn69OlOHVv37t3VuXNn1a1bV2FhYfkK7QAAAADAVgR3AAAAAACXWLJkieX4ySeftLu9t7e3nn76aUnSggULdPDgQaeNDQAAAABcgeAOAAAAAFDofvvtN+3fv1+SdMcdd6h58+YO9fP0008rICBAaWlpGjVqlEwmkzOHCQAAAACFiuAOAAAAAFDoFi9ebDl+/vnn5eHh2F9PQ0JC1KtXL0nSr7/+qpkzZzplfAAAAADgCgR3AAAAAIBCFR0draioKElSuXLl1K5du3z116tXL4WGhkqSPvroI+3Zsye/QwQAAAAAlyC4AwAAAAAUqtmzZyslJUWSNHDgQBmNxnz15+/vrwEDBkiS0tLSNHToUJ0/fz7f4wQAAACAwkZwBwAAAAAoNGfPntXKlSslSXXr1tVjjz3mlH6feOIJ1a5dW1JGRd/gwYMt4SAAAAAAFBUEdwAAAACAQhMZGank5GQZDAa98cYbMhgMTunXaDRqwoQJ8vLykiTt3r1br732msxms1P6BwAAAIDCQHAHAAAAACgUBw4c0Nq1ayVJnTp1Ut26dZ3af3h4uJ577jnL488++0zjx4936j0AAAAAoCAR3AEAAAAACpzZbNa4ceNkNptVsWJFjRgxokDu88ILL6hWrVqWx4sWLdIbb7yh9PT0ArkfAAAAADgTwR0AAAAAoMAtWrRIP//8s4xGo9577z0FBAQUyH28vb01bdo0lShRwnJuxYoVGjJkiBISEgrkngAAAADgLAR3AAAAAIACdezYMb333nuSpCFDhjh9iczrlStXTpGRkTIajZZzGzduVKdOnfTHH38U6L2tyVrxx757AAAAAKwhuAMAAAAAFBiTyaThw4crKSlJTz75pPr06VMo923SpIlef/31bOeOHj2qTp06aebMmUpJSSmUcWTKGtalpqYW6r0BAAAAFB0EdwAAAACAAjNp0iQdOHBAzZo105tvvlmo9+7atauGDh2a7VxSUpIiIyPVunVrrVmzRsnJyYUylqwVdwR3AAAAAKwhuAMAAAAAFIioqCgtWrRIjRo10gcffJBt6crC0rdvXw0ePDjH+VOnTmnEiBFq1qyZVq5cWeDjMJlMlmOCOwAAAADWFP7fmgAAAAAAN72ff/5Zo0ePVvPmzfXBBx/I29vb4b6yVqs5on///vLz89M777xj6cvPz08tWrRQ/fr1deedd+arf1tQcQcAAADAFgR3AAAAAACn+uOPP9S3b1898sgjGjNmTL4q7Uwmk86cOWN57OHh2MIxPXv21B133KGhQ4eqbNmymjlzpsqVK+fwuOyVNawjuAMAAABgDcEdAAAAAMBp/vnnHw0YMECvvvqqHn/8cZvafP755zpx4oRCQkIUHBys4OBgBQQEyGAwaP369YqLi7Nc6+vr6/DYIiIitHz5cqWmphZqaCdJKSkplmOCOwAAAADWENwBAAAAAJzmypUrmjZtmqpXr25zmypVquj333/XggULdOzYMavXlShRQiEhIfkaX5UqVfLV3lFZw7qsIR4AAAAAZEVwBwAAAABwmho1ajjUpkaNGhoyZIh+/PFH/fe//9WuXbtyXNeuXTtnDNElsoZ1+d2zDwAAAMDNy2A2m82uHgQAAAAAAFl99NFH+uCDDyyPK1WqpBUrVqh48eKuG1Q+9OrVS4mJierSpYseeugheXt7u3pIAAAAANwQwR0AAAAAwC116dJFe/fuVfPmzTV27FiFhoa6ekgOi4mJKdLjBwAAAFA4CO4AAAAAAG5pz549KlGihKpWrerqoQAAAABAoSC4AwAAAAAAAAAAANyAh6sHAAAAAAAAAAAAAIDgDgAAAAAAAAAAAHALBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANwAwR0AAAAAAAAAAADgBgjuAAAAAAAAAAAAADdAcAcAAAAAAAAAAAC4AYI7AAAAAAAAAAAAwA0Q3AEAAAAAAAAAAABugOAOAAAAAAAAAAAAcAMEdwAAAAAAAAAAAIAbILgDAAAAAAAAAAAA3ADBHQAAAAAAAAAAAOAGCO4AAAAAAAAAAAAAN0BwBwAAAAAAAAAAALgBgjsAAAAAAAAAAADADRDcAQAAAAAAAAAAAG6A4A4AAAAAAAAAAABwAwR3AAAAAAAAAAAAgBsguAMAAAAAAAAAAADcAMEdAAAAAAAAAAAA4AYI7gAAAAAAAAAAAAA3QHAHAAAAAAAAAAAAuAGCOwAAAAAAAAAAAMANENwBAAAAAAAAAAAAboDgDgAAAAAAAAAAAHADBHcAAAAAAAAAAACAGyC4AwAAAAAAAAAAANzA/wP83abrJBXxvwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_name = '额外产能分布P5'\n", + "y_choose = [0, 1, 2, 3]\n", + "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n", + " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n", + " 'palette': sns.color_palette(\"deep\")[0:4]})\n", + "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n", + ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n", + "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n", + "sns.set_theme(style=\"whitegrid\", rc=config)\n", + "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n", + " markers=['o'],\n", + " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n", + " palette=y_prop.loc[y_choose]['palette'].to_list(),\n", + " legend='brief')\n", + "ax.set_title(x_name)\n", + "for item in df_x.groupby('响应变量'):\n", + " for x, y, m in item[1][['水平', '均值', '均值']].values:\n", + " ax.text(x, y+0.05, f'{m:.2f}')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\759130329.py:10: UserWarning: \n", + "The markers list has fewer values (1) than needed (4) and will cycle, which may produce an uninterpretable plot.\n", + " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABtcAAAViCAYAAAB596OXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzddXxT5x4G8CdpmnopFdoCheI+3NlwKzrYhhfX4tZhxcewizPcYTAYMIYNGDZkyHB32iKlQl2i94/SQ0KSJmnTFnm+n8/93JzkvO95U7vc8+T3e0VqtVoNIiIiIiIiIiIiIiIiIjJKnNMLICIiIiIiIiIiIiIiIvpUMFwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIg1xcXE5vQSij1pSUlJOL8Ekb9++hUKhyNQcUVFRUKlUFloREREREX0uGK4REREREWWh8PBwzJ8/P0dvRstkMovNdf/+/UzP8fjxYyQnJ1tgNZanUqnw3XffYcSIEQgJCcnp5aTrzp07uHHjRk4vI0ep1eqcXoJZ/v33309uzR9SKBQYNGgQ5s+fn9NLMer8+fNo1KgR1q1bh/j4+AzNsXbtWrRv3x4XLlyw8OqIiIiI6FPGcI2IiIiIKAu5u7vj2rVraNu2Le7cuZPt13/x4gU6duyI//3vfxaZr3fv3ujWrVumQp2DBw+iXr16WLhwIcLDwy2yLksRi8WYOXMmjh49Cj8/PyxatMii4aQlrVixAl27dsWff/5p9tiXL1/i9u3bWbAqyzA1gFq8eDGmT5+Ox48fZ/GKMk8mk6F///7o1q3bJ7FefRQKBUaPHo1z585h1apVWL16dU4vKV02NjZ49eoVZs+ejXr16mHdunU658jl8nTnuH79Ou7cuQN/f38MGjQIz549y6LVEhEREdGnhOEaEREREVEWEolEmDJlihByZSQIyaizZ8+iXbt2uH37NlauXIlVq1Zlar7IyEiEh4fj4sWL+OGHHzB8+HA8f/7c7Hns7e3x9u1b/PLLL6hfvz4CAwMRExOTqbVZUpUqVTBixAjIZDIsX74c33333UdXxXb//n0cPXoUKSkpGD16NBYsWGBWRVRERATatWuHLl264MiRI1AqlVm4WvOoVCp06tTJpEqhYsWKYcuWLfDz88OcOXOyYXUZd+PGDSQnJ+PSpUto06bNRx3c6pOcnIxhw4bh0KFDwnPz5s3D77//nmNr2rt3L6Kiogy+bmNjIzzOkycPmjRponNO3759sX79er2tH5VKpVYI/ffff2Pr1q1sE0lEREREkOT0AoiIiIiIPndFihRBp06dsGnTJowZMwZWVlbw8/PTe+6qVauyrN3a/Pnz4ejoiM6dO2do/N27d4XHarUaZ8+eRZ06dVCwYEGz5rG1tdU6rly5MnLlypWhNWWVHj164M8//8Tdu3dx//59dOnSBbt374a7u3tOLw0AMHv2bOEGv0QiQXR0NKKiouDm5mbS+LTQ4fLly7h8+TLKly+PLVu2QCqVZtmaTfXPP//g6tWr6NmzJwICAjBw4ECIxfo/F1qhQgUAQJMmTTBq1KhsXKX5jh07JjyWy+VYuXIlJBIJAgICcnBVpomKisLAgQNx7do1AIC1tTU6deqEBg0aoHLlyjm2rqdPn2L27NmYNm0aGjdurPO6tbW18LhPnz7Inz+/1usvX77EhQsXcP78efz111+YNWsWChUqJLz+4MEDJCYmCscjR45E//79s+CdEBEREdGnhuEaEREREVE26NOnD7Zs2QKVSoXp06ejXr16sLe31zmvX79+AIDbt2+jQoUKKFy4MJydneHk5ASRSCSct3v3bqxZswZAaqXVtGnTTFqHoZDCFJcuXdI6XrlyJSpVqmT2PBLJ+/8bMnbsWPzwww8ZXlNWsbKywoQJE9C1a1cAQFhYGBYvXmzy1/lDCoVC631nxv79+3H27FkAQOHChbFgwQKULFnSrDk011KwYEHMmzcv3WAtKSkJdnZ2GVuwmX799VcAqVVDixcvxuXLl7Fs2TK9vy958+aFp6cngoODYWVllS3ry6ijR48Kj/PkyYMtW7aYHUznhFu3bmHIkCF4+fIlAKBGjRqYPHkyChcubHDMmjVrkDdvXjRs2FCreszSAgICcODAAQwePBidO3fGhAkTtH62jf3Obd68WQip3759i0ePHmmFa5p/8woXLow+ffpY+B0QERER0aeK4RoRERERkYUEBwdDJBLBx8dH5zVPT0+UL18eV69eRVRUFM6dO4dGjRrpnKdSqYSALT2abckGDhyIIkWKZG7xJtBs01eqVKkMBWsAtEIQR0fHTK8rq1StWhUlSpTA/fv3AQDR0dEZmuf58+fo168fpkyZgpo1a2ZqTREREZg+fToAoFatWli8eDGcnJzMnkczdOjQoQMKFChg8NyrV69ixIgR2LBhA3x9fc2+ljlevnyJ06dPC8fFixdH//799QZraerVq4cdO3bg6dOnWsHIx+Ty5csIDQ0VjocMGfJJBGs7d+7E9OnTkZKSAg8PDwQGBqJVq1ZGx3l6emLy5MkICgqCn58fOnfubHYAbAqpVIqRI0dixIgR2LZtG169eoVly5YJf2M0K9c+FB0djd9++w0AUK1aNaxYsQIODg5a51y+fFl43K1bt48+wCUiIiKi7MM914iIiIiILGTx4sU4c+aMwde/+uorAICDgwPKlSun83poaChat24thDnpSasiKVy4MOrUqZPBFZsuMTERt27dEo47duyY4bk+pRvUmkFChw4dzB7//Plz+Pv749mzZxgwYADOnz+f4bWoVCqMGTMG0dHR+Oabb7By5UqdYO3hw4daFVKGmPo9ePLkCQYOHIhXr16hb9++6e5vZQnr168X9n+ztrbGsmXLUKNGjXTHpO2jpbkX2MdGc1+yQoUKoX379hab25y99kwVFRWFgIAATJw4EUqlEt27d8fhw4dNCtaA1N+bffv2oWzZstixYwfatGmDjh074tixYxZfb/PmzYVQ9cSJE9iyZYvwWno/5ytWrEB8fDyKFy+OZcuW6QRrwPvKNXt7e7Ru3dqi6yYiIiKiTxsr14iIiIiILCAhIQEnTpyAr68vHj9+rPcce3t7WFlZYcyYMYiPj0d8fLzwmlqtxujRo/Hw4UN069YNq1evRvny5Q1e79WrVwCATp06WfaNGHD27FnI5XIAqeGgqTfZ9dFsb/mxK1OmDABg6NChqF27tllj04K1169fAwCSk5MxYMAArFixIkMVbEuXLsW5c+dQvXp1LFu2TG8bRxcXF8yYMQO7d+/G1KlTkSdPHr1zmdIe9OrVqxgwYIBQsRccHIwBAwZg06ZNOvvmWUJUVBR27twpHHft2jXdiro01atXR65cubBnzx7079//owtvY2NjcfjwYeF4+PDhFlvjyZMnsWzZMqxcuRKurq6Znk+hUGD79u1YunQp3r59i5o1a2LChAkoVqyY2XN5e3tj/fr1WLVqFRYsWICrV68iICAAJUqUwPjx442GpqYSiUTo0qULZsyYASC12q579+4ADIdroaGh2Lp1K3x8fLBmzRo4OzvrnPPw4UMhTG7VqpXFqmyHDh2Kv/76y+Tz7e3t4eTkhLx586J8+fKoV69epitgAeDKlSs4dOgQrly5gpCQECQkJMDW1ha+vr6oV68eunTpYpGfKSIiIqLPFcM1IiIiIiIL+P333xEfH48lS5ZgyZIl6Z47ZcqUdF+PiYnBwIEDsWHDBhQvXlzvOSEhIZBKpdlWTXHkyBHhccuWLfVWeZgqq8K1tPAqM9VhhixevBiLFy/O9DwZDdiOHDmC5cuXo3Tp0li+fLnB/dE8PDwwb948+Pv7o1WrVpg1axYaNGigc56xcGffvn2YOHEiUlJSALzfb6p48eJZUikFAJs2bUJSUhKA1JBw4MCBJo2ztrZG8+bNsX37duzfvx9t2rTJkvVl1I4dO5CYmAgAKFeuHJo1a2aReU+ePIkhQ4ZAJpOhR48e2LBhQ4bDkNDQUBw8eBC//fYbQkJC4OvrixkzZuhtXWsOkUiE/v37w9vbG+PHj4dcLsf9+/fRvXt3dOnSBePGjUu3daOpmjdvjlmzZkGpVCJ37tzC84ZC5J9++glubm7YsGEDPD099Z6jWYX83XffZXqNacaNG4eBAwfixo0bmDp1qlCp6evri/Hjx8Pb21s4Nzk5GbGxsXj06BEuXryILVu2YMOGDShSpAiCgoIyFFDevXsX06ZNw7Vr1/D111+jc+fOKFiwIKRSKUJCQrB8+XIsXboU27Ztw8KFC1G9enWLvXciIiKizwnDNSIiIiKiTAoPD8eyZcsAAAsWLICfn5/Zc9y/fx9t2rSBu7s7goKCUL9+fYM3nRMSEhAVFYXmzZvDxcUl3XkVCoXW/loZIZfLcfLkSeH4+++/NzomPj4+2/dTs7W1xcqVKzFz5kw4OjqidOnScHd3h5OTU5ZUWmWGjY2NyedeunQJY8aMga+vL9asWWP061q1alV06dIFmzdvxqBBgzBkyBAEBASYdK3Y2FhMnToV+/fvBwAULVoU/fv3R8uWLU2qdsuot2/fYuvWrcLx6NGjkStXLpPHd+vWDdu3b8eKFSvQqlUri671xYsXSE5OzvD4bdu2CY/btWtnsLLVHPfv30dgYCBkMplw3L17d2zcuNHsgE2zFa2XlxeCgoLw3XffQSQSISUlBSqVCiqVCmq1Wnj84bGhx2nHJUuWxKhRozBnzhxhv8itW7ciNjYW8+bNy/TXw93dHTVr1sSZM2fQu3dv4Xl9Qf7Jkydx69YtbN68Gfnz5weQ+jfuw7+3aeFaiRIlhJa+pnr58iXy5s2r9zVvb294e3ujVKlS2LVrF27cuAEA8Pf3R926dfWOqVOnDnr06IEXL17gxx9/xMWLF9GzZ0+MHDkSffv2NXldu3fvxuTJk+Hl5YUtW7agcuXKWq9/9dVXcHd3h7+/P6KiotC3b19s27YNZcuWNfkaRERERF8KhmtERERERJnw9u1b9O3bV2idV7RoUeG1/fv3Izg4GL179zYapixbtgz58+fHxo0bkS9fPgDAwYMHUa5cOfj4+GidGxISAgBGq9aUSiVGjBgBHx8fjB071ty3Jrhw4QJiY2MBACVLltS7X5ymo0ePYvr06VixYgVKly6d4etmhI2NDaZNm2bSuQcPHsTbt2/RuXPnDFfTHTlyBLt27cLw4cOz5L3+888/GDp0KDw8PLB+/Xq4ubmZNG7YsGE4ePAgIiMjsXjxYshkMowYMUJ4/cPwSa1WY//+/Zg7dy7CwsJQqVIl9OnTBw0aNMiWNp7Lli0TfsYqV65sdqVQ0aJFUadOHZw5cwZ//PEHvv32W4utLSQkBAMGDBCq6jJj6tSpFliRfg8ePIC/vz82btxo8s8JAHz99ddCuPb69WtMmzbN5N8hQyQSCRwdHZErVy7hv52cnODn54cDBw4I1Y9//vknunTpgooVK2bqegAwZswYNGnSBPXq1ROe0/eze/PmTWzatAkFCxYEAJw/fx6TJk3CypUrUaRIEQCpFWOXL18GALP3x1uyZAnWrVuH1atXo0qVKumeqxn629nZGZ07X758WLt2Lfz9/XH16lXMmzcPrq6uJq1x165dmDhxIgoVKoRNmzbBw8ND73maH8ZISUnBqlWrLFK1S0RERPS5YbhGRERERJQJM2fOxN27dwEAhQoV0tqb6NixYzh06BB27dqFMWPGoHnz5nrnePDgAa5du4Zt27YJwRoA/PvvvwgMDETXrl3RrVs3obLizp07cHR0RKlSpRAeHm5wbXPnzhXaOUqlUgwfPjxD73Hfvn3C48aNG6d7zbdv32LChAmIiYlBly5dMHfu3Ey3lssqlStXRsuWLfH3339j7ty5ZgUSac6dO4dTp07h9OnTaNKkCYYNGybcoM+M8PBwrF+/Hhs2bEC+fPmwceNGrXZxxjg5OWHw4MFCmLNixQrUqlVLaPGmGTrcu3cPHTt2xN27d+Hn54euXbumW6ly+fJllChRAk5OThl8d9qeP3+O7du3A0ht8Th16tQMBXq9evXCmTNn8NNPP6FWrVoG2/2Zq0aNGvj1118hl8tRqlQps9oYDhw4EMePHweQGqx17NjRImuypFatWmHNmjU6z9vY2MDd3R3u7u5wcXGBk5MTZDKZVovYIUOGoHTp0nB2doazs7MQpqXXNrZmzZqYNGmSUMEWGhpqkXCtZMmSKFmypNZz+n6OhgwZIjw+d+4cBg4ciOTkZKHyr0iRIjh79iySk5NhbW1tVuvdJUuWYOnSpQCAvn37mhSwmUsqlWLKlClC+9NZs2ahXr166f79unr1KqZMmQIbGxusWLHCYLAGpP4N12RK6EdERET0JWK4RkRERESUCSVKlMChQ4fg6+uL+fPnCzdzExMTcerUKQCpbeWuXr2K+vXr621PeOvWLaxatUpoUZZGKpVCJpNh3bp1WLdunc44zQoNY9asWYOmTZuiVKlSZry71Pdx9OhR4diUPeU0xw4ZMsTs1mXZxdPTE2PHjsXEiRPRpk0bLF26FBUqVDB5vEKhEIIGtVqN48ePw87ODpMmTcpUS0yVSoWePXvi4cOHAFL3O1u0aBFkMhlkMhnkcrnex5rHKpVKCDri4+MBAHv37tUbrt25cwddu3bF6tWr4ezsbHR927ZtQ+fOnS0WGvz888+Qy+UAgKFDh2oF1OaoXbu2UL02fvx4rF271iLrA2D27w2QWiGVFqwVL15cbztVtVqdLZWB6SlZsiSqVasGLy8vVKhQASVKlICvry/c3d11zg0KChIe+/n5YfDgwWZf77vvvkN8fDxmzZoFkUiEatWqmTX+8uXL6Nu3r7CPnanGjRuHcePGGXw9PDwc/v7+2LRpE44dOwYgtV1kRvY1A1L//vXt2xerVq1C1apVMzSHISVLlkT58uVx/fp1xMXFYceOHRg0aJDec2UymbDfXYcOHYSKPUO++eYbtG/fHjdu3EC+fPlMbilLRERE9KVhuEZERERElAl9+/ZFz549dfY1279/v3Dzt1WrVhg/frze8S9fvkTjxo31VgFpVsgcOHAAefLkMWttQUFBOHToEOzs7LB169YMBQRHjhwR3kfjxo3x008/pXv+xYsXtW7G2tvbo2TJkh9FiKBP+/btsW3bNty5cwfdu3fHihUrULNmTZPG/vPPP4iMjASQGoRu3rzZrHDOELFYjOHDhwtfR8397gDAysoKXl5eyJ8/P/LmzQtPT0/kyZMHnp6e8PLygpeXFzw8PGBlZYVVq1Zh/vz5AGCw4qpdu3bo1KmTyetTKBR4/fp1xt7cBw4dOiQEUFWqVEGfPn0yNd+4cePQpk0bnDlzBkuXLs1Q+GMpc+bMER4HBgbCyspK55xdu3bh9OnT6Natm9khkyVt3rzZ6DlPnjzB77//DgDC3pAZ1aNHD0RGRiIpKUmoMIyLi4NUKjXaQrdKlSpYu3YtNm7ciDJlyqBo0aJC5Vza1zgmJgZ9+/YVgmUAGDlypElVtPb29sLvXOXKlTF9+vR0zx8zZgxu374NIPVDDB/utZZV+z1WrFgR169fB5D6N8JQuPbbb7/hyZMnAGBSu1SpVGr07zwRERERMVwjIiIiIsq0D4M1ILW6BwBy5cplsFri3r176NOnDzw8PLB27Vq4urpqvS6VSoXHjo6OJlUV6VuXg4MDypQpY9bYNHv27BEe9+7d2+gabt68qXU8ffp0fP311xm6dnYQi8UYOnQoBgwYgOTkZAwZMgT79++Hl5eX0bE7duwQHk+bNs0iwVqaRo0aCZUp7u7uaNiwISpVqoRy5cqhQIECJrcm/Pbbb7Fo0SIoFAo0bNhQeD4zQadMJsPTp08zPD5NdHQ0ZsyYASD192T27Nk6e8GZq2jRoujatSs2bNiAJUuWwMHBAT179sz0Ws117NgxXLx4EQBQt25d1KlTR+95NjY2OHLkCI4cOYKSJUuiR48eFt0vzpLmzJkDhUIBIPXnPXfu3Jmab9SoUcLjsLAw9OnTB3ny5MGyZcuMBlKVKlVCpUqVDL4+dOhQrWANSA0ETWnZevbsWURFRcHDwwOxsbFGx2juxVexYsVMVa2aQ7NNbHBwsN5z1Gq1UPXs6uqabrtXIiIiIjIPwzUiIiIiIgs7e/assA9bTEwMatWqle754eHh6Ny5M9avX691w9ScvZ2ywpMnT3DhwgUAqTeNTdkX6dy5c8LjKlWqwM/PL8vWZyn16tWDr68vnj17hri4OCxdulQIfQx59uyZUN2SVYFIYGAgQkND0apVqwyHTh4eHmjZsiWKFy+OunXrWmRd8fHxePDgQabnmTZtGiIiIiASiTBnzhydtqgZNWrUKFy4cAF3797Fzz//DJFIhB49elhkblOkpKRg1qxZAFLDM0NVq0BqlVSaZ8+eZVswY65jx47hxIkTAIA2bdpoBbWZ9fjxY/Tp0wcvX77EgwcP0L9/f6xYsSLDe33t3r0bf/31FwCgTJkyQlXZ5MmTsXPnTlSrVg3ffPMNKlWqpPf36s8//wSQ+mECU1rgpu1RZmdnl63fP8197T4MEtOcP38eL168AAB89dVX2bIuIiIioi8FwzUiIiIiIgtbsWIFgNQqmkWLFumtEoqMjESvXr0gl8thb2+P77//Hi4uLlrnGAvXtm3bhrJly2bZTdNt27ZBrVYDgEnt+mJjY4Ub2QAwcODALFmXpYlEIvj5+WH58uUAgEuXLhkds3nzZqjVatSuXRtjx47NknVVrlwZlStXztDYuLg42NjYQCqVYvbs2emem7bfmanCw8Px4MEDJCUlZTgA+fXXX3HgwAEAqT8n5uwfaIxUKsXChQvRrl07JCQkYNasWbh//z4mT56cZS36NK1evRqhoaEAgAEDBsDX19fguZotEHv06IHGjRtn2bpmzZqFDRs2ZHqeP/74A3/88UfmF2TAv//+i379+mHlypVa4aMpbt++LbRxrFWrFgIDA9GmTRsAqT9n586dw8qVK7Fy5UrkzZsXvXr1QteuXYW/0UlJSThy5Ahy5cqFDh06YO7cuYiJiUGuXLn0Xk+pVCImJgYA9O5Rl5Xi4uKExx9WPadJ2zsOSP3fIyIiIiKyHIZrREREREQWdPbsWVy8eBHW1taYP3++wRuaa9euFUKNmTNn6q3wMta6786dO5g2bRpatWqFUaNGmdTK0FQJCQlCS8iyZcuatFfRxYsXoVQqAQCFChVC7dq1jY5JC+9yWqNGjYRwrXjx4umeGxkZiV27dqFAgQJYsGCB3r20PrRgwQI0bNjQ7CB0586dcHBwQPPmzU1u5ahSqTB8+HCkpKRg2bJleoMBzeD2woUL6N+/v0nzP3v2DM+fP4darcakSZPw008/abUvNcWdO3eEPZ38/PwwdOhQs8abwtfXF7Nnz8awYcOgVCqxe/du3L17F7Nnz0aJEiUsfr00wcHBWLVqFQCgSJEiRkNpzZ8dfe1lDcnIHobjxo1DkSJFkCtXLrOClvXr12Pnzp0AUtuM9u3b1+C5hw8fxtmzZzF16tRMt/hM+1tiqpCQEPTr1w+JiYmoWLEili1bhlevXgmve3t7Y+PGjZg2bRp27NiBly9fYsaMGYiKisKwYcMApO5tmZCQgKFDh8Le3h6Ojo54+fKlwXAtPDwcKpVKmD87vXnzRnjs4+Oj95yzZ88aPYeIiIiIMobhGhERERGRhSiVSqFKaOjQoShZsqTe827evCkEV507dzbYOtHYzWkrKyuo1Wrs27cPR48exZgxY9ClS5dMvIP39u7dK7QaGzFihEljjh8/Ljxu3769STf/p02bhpMnT6Jly5aoV6+eViVPZt24cQNyudyk6q/SpUvDy8sLkZGRCAgISPfcdevWQSwWY/ny5QZvuqdRq9WYOnUqfv31V2zZsgWrV69Od6+oD4WHh2PixIlYs2YNunTpYlLl1b///oszZ84AADp06IDVq1fr3Fh3cnJC7ty58fbtW5w7dw7+/v5o1KgR3NzcDH7fXr16JVTsAant82xtbY220Pzw/QQEBEAmk6FWrVqYPXt2pvZ/M0SlUqFx48b46aefMG7cOKhUKty9exft2rVD586dMXToUDg5OVn8utOmTUNKSgoAYOrUqUaDx4wEUCdPnsTixYuxYMECFCxY0KyxP/zwg1nnX7hwAbt37waQ2hp22rRp6b6ngQMH4p9//sGSJUswf/78bGtt+/btW/Tt2xcRERGoXLkyVqxYobfqTSKRYNq0aXBycsKaNWsAAFu2bBHCte3bt8PV1VVoI+ro6IgXL16gVKlSeq8bFhYmPLZUW1NTpe3pB0DvvpaxsbF4/vy5cOzh4aH1+oULF7B3715cv34dkZGRsLe3h5ubGypVqoRmzZqZ9XeKiIiI6EvEcI2IiIiIyEI2b96M+/fvo3z58jhy5AguXbqEhg0bokmTJkLbLplMhvHjx0OlUqFMmTIYN26cwfmM3XjXrHQpVaqUxVrKyeVy4cazi4uL1t4+6Y35+++/AaSuu3Xr1iZda+jQobh7964Qdvj5+eG7776zSKvLFy9eYPjw4ahduzYGDx6c7s1ikUiEH3/8EQAMhqIAEB0dje3bt2POnDkoVqxYutdXqVSYOHEifv/9dwCp+yL17t0bq1atQtWqVU16D2lh4+3bt7Fo0SI4OzsbHZOYmCg8fvr0KQ4fPqy32qhXr16YP38+gNQb9Zo3601RrVo1jBw50uTzExMT0b9/f7x8+RJVq1bFkiVLzK56M4VSqURgYCBcXV0xfvx4yOVyTJo0CWq1GgqFAps2bcK+ffvQvn17dO7c2WKhyMGDB/HPP/8Ix3fv3jXYri+NZvXR27dv8fjx43TPj4qKwujRoxEXF4dvv/0WM2bMyLJ9DZ8/f46hQ4dCqVTCx8cHS5cu1fv9unbtGipUqAAg9Xd/9uzZ+P777zFgwAAsWLDApJ/ZzAgPD0fv3r3x9OlTNGvWDHPnzjX6czVmzBiEh4fjjz/+QHx8PFQqFW7duoWbN28iKChI+Jvn7OyM+/fvG6zcTdvPDADy5ctnuTdlxJ07d3Dnzh0AqXu9tW3bVuecBw8eaFUGp30QICwsDOPGjdOqagNS/7a9fPkSN2/exMaNG9GsWTNMnjzZ6M8wERER0ZeK4RoRERERkQU8e/YMixYtQqlSpbBu3To4ODjg9OnTWLNmDaZNm4aaNWuiVatWuH//Ph48eABnZ2csWrQo3ZvAxsK1tHZkQGrbwTx58ljkvezduxcvX76ElZUVWrRogY4dO8LX1xcdOnTA999/r7fi59y5c4iOjgYAVKpUCZ6eniZdK3fu3Jg3bx6aN2+OyZMnY8eOHdixYwdKlSqFbt26oVWrVhkOYNL2Azt79qzOjeT0DB8+3Og5gwcPztCaEhMT0bdvX/zyyy+oWbOm0fM1K3+GDx+Odu3aGR1z7tw59OzZEwAwcuRIg238+vXrB29vbxw4cAARERFaP0/6SKVSuLi4oECBAqhbty5q1aplctWZXC7HiBEjcPv2bTRs2BA///wzwsLCtCp/LOWXX37Bn3/+CSC1cnDChAlwd3fH6NGjhWrM6OhorF27FuvXr0flypVRo0YN1KlTRwiJzBUVFSXs9ZVm5syZZs2xdetWbN261eTzExISMH78eBQqVMhgZVVGvXnzBr1790Z0dDQ8PDywbt06vXuK/f7775gwYQKmTZsmVMUVLFgQCxcuRN++fdG+fXssXbo0y1pxhoaGomfPnggODkavXr0wduxYk38mp02bhrt370KhUEAsFmPVqlWoUKECOnXqJJzj5eWltY/khzQrw9LbW8+SkpKSMHXqVCE4CwgI0NsSOCQkROvY0dERz58/R9euXfHmzRvUrl0bHTp0QKVKlZArVy68fPkSe/fuxZo1ayCXy3H48GGEhoZiy5YtGd5bkYiIiOhzxnCNiIiIiCiT5HI5Ro8eDS8vL6xZswaOjo4AgLp166Ju3bq4evUqVqxYgcDAQGFMz549je6BY+wmsWYYYs5+TelRKBRYuXIlgNTwZfjw4ShatCimTZuG2bNnY9myZejTpw969+6tFXodPnxYeJyRSpqGDRuiYsWK+PHHH3Hq1CncvXsX48ePx6JFizBo0CB8//33Ju1tpkmzhWK5cuWElp0fA1PbX5r7nj9Urly5dF9v1aoVWrVqlalrGCOXyzF06FCcPHkSHTt2RFBQEMRiMebNm4cdO3Zk6bU3bdqEYsWK4YcffsDOnTsxaNAgPH36VHhdpVLh0qVLAFJbZWY0XBs/fjyioqLg4+OD169fQy6Xo3z58vjtt9/SHXf58mWhlevgwYMxZMgQo9cqXbo0lEol8uXLhw0bNqBAgQIZWrMhb9++Re/evRESEgJ3d3esW7dO7zUuXLgghDxBQUEA3redrFWrFmbOnIlx48ahQ4cOGD58OLp165bpn2dN9+/fR58+fSCTybBs2TKT9oXUZGtrizVr1uDBgwd4/PgxTp8+jV27dml9qKFQoUI4ePCgwTmCg4OFx+bsY5dRz58/R2BgIK5duwYA8Pf3Nxiea1ZFphk4cCBiY2OxYMECnb/Tvr6+GD58OL755hv06tULSUlJuHXrFmbNmoVp06ZZ/L0QERERfeoYrhERERERZdKsWbOQnJyMjRs36q3uqFixIoYNG4aLFy8KLfsWLVqEU6dOoXv37mjatKnem87GbkRrtvyy1E3rHTt2ICQkBGXLlhX2HuvcuTOSkpIwZ84cxMfHY+HChTh58qRQoSeTyYSWkDY2NmjZsmWGru3q6oqVK1fil19+weLFi6FWqxEWFobJkydj3759WLhwYYar82xtbVGkSJEMjc1JlgwjNCmVyiybW5NMJsPw4cNx/vx5zJ49W6t93dSpU9GgQQMULVrUYGvGihUrCr8zR44cMWmPsTFjxmDfvn0AgAEDBuC7774DABQuXBi///47Fi9ejM2bN0OpVCJ//vxYsGBBptqQrl27FidOnECuXLmwcuVKtG/fHnK5PMPzmSpfvnxZEqz16NEDDx48QJ48ebBx40YULlxY57wbN25g4MCBwv5yarUaK1asQKVKlYSQqW3btrCyssKPP/6IWbNmYd++fZg0aRIqVqyY6XX++eefCAoKQsWKFfHzzz8b/btQp04dvfuSeXp6wtPTEwEBARg1ahSKFy+u9XrBggXx+vVrREVF6W2P+ODBAwCpv6f6vk6ZpVKp8PbtW9y6dQuHDx/G/v37IZPJ4OLiggkTJqTbfjetkjjNunXr8PTpU6xYsQJ169Y1OK5SpUqYPHmy0CZ3165d6N69+yf595OIiIgoK5m/ezIREREREQlOnTqFR48eYevWrQZv8IaGhqJfv35ITExE1apV0a1bN4jFYly7dg0jRoxAkyZN8Pvvv+u05dMMz/RJu7ENaFdpZVR0dDQWL14MZ2dnLFy4UKslYe/evdGtWzfh+Nq1a0JFx8GDBxETEwMAaNy4sbC3T0aIRCIMGjQICxcu1KqM+++//9C/f3/IZLIMzWvsa/mxyqoArEePHpg7d65O6zhLiomJQe/evREcHIwdO3bo7AslEolQr149g8FaeHi4EKzZ29ubHCTFxcUJjzt37qxVieTg4IBx48Zh165dqFmzJjZs2JCpYO38+fOYP38+rK2tsXTp0k86gAgNDUXnzp1x7949FC9eHNu3b9cbGJ07dw7du3dHQkICgNR9GRctWoTjx4/rVG+1atUKa9euRe7cuXH79m107NgR/v7+OHv2bIZ+J+VyOWbMmIF58+Zh8uTJWLt2rcG/u5cvX8bcuXMxePBgrF27Fh4eHnrPe/z4McRiMbp3767zWlqYe/PmTZ3XVCoVHj16BCC1wi2z+wdOmDABpUuX1vlPrVq10K9fPxw8eBAVKlRAUFAQTpw4YXRfy7TvT5o///wTPXr0SDdYS9O2bVuUKVMGQGoQv2XLloy/MSIiIqLPFCvXiIiIiIgyoVq1aqhTp47BEOTt27fo06cPwsPDUbJkSSxfvhzOzs7w8/PD+PHj8fTpU4SGhmL8+PHYunUrFi1aJLSLNHbzOSkpCUBqSGFqm8H0LF68GNHR0Vi2bJnelpU//vgjbt++jStXrgCAsF+W5j5RaVVCmdWsWTM4OTlpVcfcuXMHp0+fNrv926dMszXouHHjMG7cOIvMm5ycjDVr1mDdunWoW7cuhg4ditKlSxs8f+fOnUhOTtYKWNPz4sULDBo0CI0aNUL//v0zFDxottwrXry4yXtpaYYKhkLn0qVLY8OGDWavSdPjx48xbNgwqFQqzJo1C9WqVcvUfDnpxo0bGDRoEMLDw1G3bl3873//E9rbatqzZw8mTZokVOZ9/fXX+Omnn9KtHKtRowZ2796NkSNH4urVq7hw4QIuXLiAfPnyoW3btmjRooXJoeTu3bvh4uKCw4cPG90H7OjRozhx4gTOnj2LFy9eoEePHihZsqTOeUWKFMGCBQv0zlGoUCEAqYHih6HUkydPkJycDMB4+1VTDB06FA0bNtR53srKCs7OzsidO7dZ7X8VCoXWsZubm8l7RYpEIrRr107Yb+7gwYOYOHFitlS7EhEREX0qGK4REREREWVCejd4Y2Nj0b9/fzx9+hSlSpXC+vXr4ezsDCC19daePXswZ84cbNu2DQBw+/Zt9O3bFwcOHICVlZXRcC3txq6Dg4NWdU5G3LhxA9u3b8fQoUMNhlcSiQQzZ85E69atIZfLUahQIdy8eRM3btwAkFrlUaNGjUytQ1Pt2rUxb948DB06VPhaREREmDxes8rNEpV9OUHzZvbIkSNNChavXbuG8ePHp3tOWlWiSqWCjY0NfH19DZ57/fp1TJs2DSqVCkWKFEGtWrWMrkGlUmHevHkoVqyY0XMNefLkifC4RIkSJo/TDNcsETrrExERgf79+yM2NhbTp09HmzZthNc+tSrJzZs3C/sRBgYGomfPnjpBpkKhwM8//4zNmzcDAHLlyoUff/wR7dq10zvnqVOnUKRIEaEqMW/evNi2bRvWrVuHxYsXIyUlBS9evMCyZcuwbNkyFCpUCPXr10f16tVRpUoVvcEeAHTo0MHk93XixAkAqX8Hzp8/jwEDBhg811Bo5eXlBVdXV5w8eVIn2E77kAFgmXDN09NTpy1lZnz4nnr06AEHBweTx2uGxdHR0Xj48KHecJKIiIjoS8W2kEREREREWSAyMhLdunXD9evXUaVKFWzatAm5c+fWOsfOzg6TJ0/GokWLhJueT58+FVqNGbtJHxsbCwBG2zAa2/8pMTERY8aMQatWrYR91gwpXLgwunXrhgIFCqBBgwZaVWv9+vUzubrIVE2aNEG/fv2E4/RCoA+lVfYBMOum8sfKw8MDRYoUMfofb29vo3OlhWteXl5YtGgR7O3t9Z737NkzBAQEQCaTQaFQYPjw4Xj27JnR+X18fDIVrAHa4YU5+3Sl/V4AWROuxcXFoXfv3ggNDcX06dPx/fffa73+qYRrUVFRGDJkCGbMmIFSpUph165d6NWrl87v8NOnT9GxY0chWGvRogUOHDhgMFg7cuQIAgIC4O/vj9DQUOF5sViMPn364MCBA6hfv77ONdatW4f+/fujSpUqaNy4MdasWZPh93br1i08f/4cQOrP+rJly/T+7ZgzZw7u3r2b7lyVK1fGs2fPhPnSaP58Vq5cOcNrzSof/k7rq4pLT+HChbUCunv37llkXURERESfC4ZrREREREQW9vLlS2HvoqZNm2LdunVCxZo+zZo1w7Zt24Q9gdKq4ZRKZbrXSQsR3Nzc0j3P2D5lc+fORbFixTBz5sx0z0szduxY7Nu3DxEREdi/fz8AIH/+/Dp7alnKsGHD8PXXXyN37tyoVKmSyeM0wzVD4dHHztJhZZq0m+bptXl78OABunbtivDwcOE5T09PrFixwujPpiVohhe1a9c2eVzanmt2dnYW//olJCSgX79+ePjwIWbMmKETrAGfRrj2119/oUWLFrhw4QKCgoKwY8cOnaoklUqFLVu24Ntvv8XNmzdRvHhxbNq0Cf/73/8M7l/2+++/Y8SIEZDL5Xjx4oVOwAakBq8rVqzA+vXrUaFCBZ05ateujalTp+rdAw1IDQWN/WfPnj3C+Z06dULevHl1ztm6dSvWrl2LLl264PTp0wa/VlWqVAEAnDx5Uuv5s2fPAgBcXV3NqqzMLh9+oEBzj05TSCQSrQrC6OhoSyyLiIiI6LPBtpBERERERBZ09epVDBs2DGFhYRgwYACGDx+e7g3+a9eu4fbt2+jSpQt27Nihtd+ZsQAjJiYGQGr1UXqMhWutW7dG2bJlTd7PRyQSwc7ODsuWLROq4gYMGGDWfkDmsLKywvLly/Hy5Uuz9u7SbA/o6uqaFUv7ZBnbO+nKlSsYOHCgcEO9SJEiCAwM1Nl3KqtEREQIFXIlSpRId0+vD6WFa5YOVBMTE9G/f3/cu3cPy5cvR7169fSe9zGHa2FhYZg5cyZOnDiBrl27YsCAAXorX69cuYLp06fjzp07yJMnDyZMmIB27doZ/LlRq9VYtGgRfvnlF+E5Gxsb5M2bF0ePHkXPnj11xtSqVQu1atXC6dOnsWHDBpw7d05oS5mebdu2YcmSJSa/502bNmHTpk0GX09ISMDAgQOxbt06VK9eXef1tHDtyJEjQuB37949vHnzBgBQs2bNLAvBM8PFxUXrWPPDBqbSbKeb1oaYiIiIiFIxXCMiIiIispCNGzdi7ty5UKlUAFLboL148cLg+W/evMHAgQMRExMDqVSK77//Hj/99JPweto8+iQnJyMyMhIAhH2NDFEqlVAqlQZvjJvTci/NkydPsG/fPgCp7cOyqmotjVQqNaslJKBdaeHp6WnZBX3i0tujb8OGDZg3bx7kcjlcXV0xePBgdOjQIcvCU32OHDkiPK5Tp47J4+Li4oRQ2pLhWnx8PPr374/Q0FD8+uuv6e499TGGawqFAps2bcLKlSvRpEkT/PXXX8ibN6/OeQ8fPsSSJUtw5MgRuLu748cff0THjh2N7i0ZGBiI48ePC899/fXXmDJlitG/TQDwzTff4JtvvsHr16+NflAAAAYPHoxcuXIhMjISZcuWRd68eeHk5CRUav3999+YOHEiACAoKAjNmzfXmUOpVKJt27aIiIiAm5sbZs6cqTdYA4BSpUrBwcEBly9fxqNHj1C0aFEcPnxYeN2UfRBzQpEiRbSOzdmvMo3mBzMM7YNHRERE9KViuEZERERElElRUVGYOnUq/v77b/j7+8PFxQXz58/H8uXLsXz5cpPmCAoKQpkyZVC6dGnhufQqzoKDg4Wb+EWLFjU6v0wmS/cGubmWLFkCpVIJkUiEadOmCXt4fUw+h3Atqypi9IVrUVFRCAoKwtGjR2FnZ4fevXujb9++OXJTXTO8aN26tcnjNL/n6bViNUdMTAz69u0LAPjtt9+M/ix9jOHaihUrEB0djT/++ENvgHX37l2sWbMGBw8eRNGiRTFt2jS0adPG6J51N27cwMiRIxESEgIgdV/AcePGoUWLFgbHyGQyvRWopgRrabp166b3eZVKhQ0bNgAAypcvj86dO+v9HTp48KAQNvXt21dnDzhNVlZWqFOnDv766y/8+uuvmDRpEg4ePAggNfT/5ptvTF53dvrwfxeePHli9hya1WqW+n0iIiIi+lwwXCMiIiIiyiC1Wo1du3bhf//7H2rVqoVDhw7Bx8cHmzdvBpDaliu9vXwuXbqE3r17AwBmz56tFawBEFou6qN5o7RUqVJG12rJcO3ChQvCzeXvvvsOVatWtci8lqYZtBQoUCDnFpIJmkHNuHHjMG7cOIvMqxk4pP0cz5s3DwkJCejQoQMCAgJyLJAMDw/H5cuXAQDlypVLt0rsQ2mtUgHLhAFhYWHo27cvvv76awwfPtykEDm9itOcMnjwYL3Pnz59GqtWrcLdu3fRtGlTbNq0yaTfZ7lcjuXLl2PVqlVQKBSQSqXw9/fHwIED0w1jT506hSlTpmDt2rUoXLhwht+PIX/88QcePXoEsViMoKAgvcGaWq3G6tWrAaT+jPzwww9G523RogX++usv7N27F7Vq1cLz588BAI0bN/5oK7ry5MmDPHnyCO0rHz58aNZ4mUymFa7ly5fPousjIiIi+tQxXCMiIiIiygC1Wo2+ffvCzc0NW7Zs0WnBlSa9yg/NG/U1a9bUeV0zXPvwJvH58+cBAA4ODihevHi6a61du7bRChRTpaSkYMqUKQBSq1TGjBljkXmzQlpLTrFYnCU38rPbyJEjTWpBd+3aNYwfPz7dc9J+nhISEtC5c2dcu3YNLVu2xJAhQ3I8iNyxY4fQ2vH77783a2xUVJTw2BLh2vjx4xEYGIjatWubPOZjrFwzJDY2FgMGDEC1atVM3s/wypUrmDp1Ku7duwcAaNKkCcaMGWP052bnzp2YMmUKFAoF+vTpgx07dsDDwyPT7yFNSkoKFi9eDCD156Zs2bJ6zzt69Cju3LkDAOjVq5fQTjI99erVg4ODA+Lj47UCblOCuZzUqFEjbNu2DUDq/2ao1WqTq2FfvnwpBMXW1tYGv55EREREXyqGa0REREREGSASibBkyRK91WCWurmenJwMFxcXBAYG6lQRnTt3DkBqcGZoLyxfX1/88ssvaNCggUXWA6RW2D158gTW1tZYuHAhcuXKZbG5Le3x48cAAB8fH9ja2ubwajLPw8PDYIirKSwszOg5aW0hY2NjkS9fPsycOdPkAFKpVOLhw4dmVZSZSiaT4ddffwUAuLm5oVWrVmaN1wzXXF1dM72eVatWGdyrUJ+PsWotPS1btjT53KdPn2LRokU4fPgw1Go16tSpg+HDh6NcuXLpjktKSsKsWbOwY8cO4bkXL16gf//+2Lx5s0nhlik2bNiAly9fwsXFBSNGjNB7TnJyMmbPng0g9fepe/fuJs1tY2ODhg0bYt++fUJ1ZMmSJVGjRg2LrD2rNGvWTAjXIiIicOPGDZQvX96ksWnVeUBqi01LfUCDiIiI6HPBcI2IiIiIKIMMtVnMSLim76Z8zZo1MWTIELi5uWk9f/XqVQQHBwMA2rZti2vXruHZs2do3bq11l5ahlrBZdSRI0ewdetWAKktCqtUqWLR+S0pIiJCaAtp6s3kL5G3tzfmzZtn1pi3b99i0qRJ2Llzp8XXc+DAAWEvrIEDB8Le3t6s8eHh4cJjd3f3TK/HnGANABQKRaav+bG5efMm1q9fj0OHDkGtVqN+/fro27cvKlWqZNLY0aNH49mzZ8Jz1tbWQjtZmUxmkXAtMTERu3fvBpDaDrZjx46oVKkSKlasiIoVK6Jo0aIQiUSYM2cOQkNDAaRWJZrz85UWrqUZNGhQpted1apVq4YyZcrg9u3bAFIDyAULFpg09t9//xUed+7cOUvWR0RERPQpY7hGRERERGRhGQnX9I1p2rSp3nPT9nTLkycP6tWrh6SkJKxduxarV6/GyJEj0bBhQ7Ovb8y9e/cQGBgIAGjfvj26dOli8WtY0oMHD4TH5rT0+9hkVYtBU1vD6RMfH4+3b99acDWpZDIZli5dCiB1f6cOHTqYPYdmuGbJloOmMrdyzdzvr1qtzpa2kykpKTh06BC2b9+Oq1evwt7eHt9//z26d+9uUvVkfHw8li9fjk2bNmm1t23UqBECAwMt3nrU3t4ef/31F8LCwnDz5k1cv34dJ0+eFAI3Z2dnlChRApcuXQKQWrHn5+dn8vyxsbFYtmyZ1nNnzpwx+Df6YyESiRAYGAh/f38AwOHDh9G/f3+jVadKpRLHjh0DABQqVOijf59EREREOYHhGhERERGRhWWkNZypY+7fv4+//voLABAQEAArKys4OjpiyZIlWLZsGQYNGoSqVati/PjxKF26tNnr0Cc0NBT9+/dHYmIi/Pz8MH36dIvMm5WOHz8OILW60JR9yj5WWdVmMDPhWmJiIsLCwszav8kUa9asEaqKxo0bZ/IeYJpevnwpPM6XL5/F1mYqcyvXDH1/nz9/jqioKBQqVAguLi7C8zdv3syynwmVSoWLFy9i//79OHz4MOLi4lC+fHlMnToVLVu2hKOjo9E51Go1du/ejQULFmgFneXKlcOYMWNQvXr1LFl7Gk9PT3h6eqJRo0YYNWoUQkNDcfz4caxcuVII1gDgr7/+Qnh4OJo2bYrWrVvDycnJ4JwpKSkYOHCgENiLxWKoVCr89ttvcHV1NdiC8mNRvXp1+Pv7Y9OmTVCpVBg5ciR27dqVbtXerl27EBwcDFtbWyxcuNBg62EiIiKiLxn/hUREREREZGEZufmtWd2R3rxBQUFQKBQoXrw4vv/+e63XAwICkC9fPkyYMAHt27dHhw4dMGrUqHRvHBsTFhaGnj174vXr12jevDnmzZtndqu89GRVFc7ff/8NAPj2229NCgU+VtlRpWQumUwGmUyG169fw9vb2yJz3rx5E8uXLweQWhnZuHHjDM0TEhIiPPbx8bHI2syhVCrNOl/zb4Xm9zomJgbTpk3DnTt34OjoCE9PT9ja2gr7CALQaRebETKZDBcvXsSxY8dw9OhRxMTEoGLFihg0aBCaNWuGvHnzmjSPWq3G33//jeXLlwstCIHUfR+HDRuG5s2bWzSINZWXlxeCg4OFVqP58+dHREQEkpOTceHCBVy4cAH/+9//8OOPP+r8PQVSv58jRozA5cuXAQCtWrVCly5d0KNHDyQnJ2PFihVITk5GYGCgVkteUyUnJwuPExISMvgujRs/fjyioqKwf/9+PH78GL1798by5cuRO3dunXNPnjyJGTNmwMHBAQsXLsySvRWJiIiIPgcM14iIiIiILCyrwrVly5bh2rVrsLe3x4IFC/SGXG3btoWNjQ1Gjx6NX3/9FSdOnMDPP/+MmjVrmr2mkJAQ9OzZEyEhIWjXrh2mT59ukWBNM0TIivDo1q1bePnyJaRSKXr37m3x+bNTVlUpZUZaddbt27ctEq6FhYUhICAAcrkcVapUwZQpUzI0j0wmw5MnTwAAtra2ORKumfJ7rEnz+6sZzH311VfYs2eP8PurGaqlsUT7199//x3nz59HyZIlMWfOHFSqVMngXpL6qFQqHD58GL/88otWK9YCBQpg0KBBaN26tUXDeHNERUVh2LBhuHjxIkQiEfz9/TFq1CjExcVh7dq12L59OxITExEfH4+JEyeiYMGCqFatmjA+Pj4eI0aMwOnTpwGk7rE2bNgwAMCMGTMwevRoAKn7mD1//hw///yzVpWhIU+fPkVKSgpu3rypFURu3LgRPj4+yJs3L9zc3CwSnqYRiUSYN28eqlWrhrlz5+LKlSto3rw5unXrhkqVKsHBwQGhoaE4dOgQjhw5ggoVKmD69OkoXry4xdZARERE9LlhuEZEREREZGHmVq8AqcFAerZv346lS5fCysoKs2bNQtGiRQ2e27x5c8TFxWHSpEl4/fo1evfujSlTpuCHH34weT13795Fv379EBkZiXHjxqFHjx4mjzVGM1DLivBo69atAIBu3bohf/78Fp8/O2Xk65OSkmLyuVFRUWbP/+bNGwDAkSNHMt1yMyoqCn369EFYWBgqVqyIlStXZqgdJACcPn1a+D0qVapUhiqJMsvctpCafyv0fa/r16+PmjVrIjAwEIcPHxaer1OnDlq2bJnxhb7TqVMndOrUyexxkZGR2LNnD3bu3Ilnz54JzxcvXhz9+vWDn59fjoVqALBnzx7MmTMHUVFR8PT0xOzZs4UPGNjY2CAwMBDdu3fH1KlThRayx48fF8K1V69eoX///rh//z6kUimmT5+Otm3bCvO3atUKL168wIIFCwAAJ06cQKtWrRAUFGS06rJ379548eKFzvMhISHo378/AGDw4MEYMmRIpr8OmkQiETp06IDmzZvj6NGjOHr0KP7880+sW7cOCoUCHh4eqFChAn755Rc0aNDAotcmIiIi+hwxXCMiIiIisrC0G+bR0dEoUaKESWMSExMNvrZ69WrMnz8f1tbWmDt3Lpo1a2Z0vh9++AF3797Ftm3boFQqMWXKFBQoUAA1atQwOvbo0aMYO3YsbG1tsXbt2gxVvaVHM4Awt9LHmJCQEOzbtw8+Pj4YPHiwRefOCRkJam/duiU8NlQZaG1tDQBISkrCpUuXULVqVZPnP3LkCADgzz//xDfffJPhkOfVq1fo06cPHj16hAYNGmD+/Pnp7gMVEhICNzc3veckJCQIQQcAk37Os4JMJoO1tTUaNWqEbt26GT1f83fB0Pfa1tYW8+bNw4MHDxAcHIxOnTph7Nix2d5mUalU4vz58/jtt99w/Phx4XdXLBajbt266NatG2rXrp2ta/rQ48ePMWXKFFy8eBG2trbo3bs3BgwYAGdnZ51zvby88Msvv+DgwYOYMGECbG1tAQDXr19HQEAAwsPDUaZMGcyePRvFihXTGT9gwAAkJyfjl19+AZAaOg8ePBjVqlXDgAEDUKtWLb3fo7QwL6c4Ozujffv2aN++fY6ug4iIiOhTx3CNiIiIiMjC0m46Ozs7Y/v27QbPu3nzJgIDA+Hk5KR3X7DExERMnjwZ+/btg5eXF+bPn48qVaqYvI7AwEBcuHABjx8/hlKpxOTJk3H48GGDN+UVCgX+97//Yd26dWjRogUmTJgAV1dXk69nKs0KHUuHaytWrAAA/Pzzz+kGNZ+K9MK18ePH48yZM3B3d4erqyucnZ2hUCi0bt4bavGnGfqOHDkSAQEBKFiwoBC66ZOUlITDhw/j0KFDAFK/j6NGjUK+fPlQsWJFs95XWoARFRWFIUOGICAgwGhY9Pvvv2Pbtm2wsbFB/vz5kTdvXmHPqJMnTwr7rVlbW6Ndu3ZmrcdS3N3dcerUKZNb+ml+f9P7XbC2tsb06dPh4+MDT0/PTK/TVHFxcfjnn39w/Phx/PPPP4iOjhZeK1CgAFq3bo327dubvDdbVnn48CFWrlyJgwcPQiwWo1OnThg0aBDy5MljdKyfnx/q1KkDlUqFBQsWYM2aNRCJRBgyZAgGDBgAicTwbZPhw4fD2toaixcvFp67ePEiLl68CB8fHzRr1gzNmjVD2bJlLfI+iYiIiOjjwXCNiIiIiMjC0lrTicViFClSxOB5kZGRaNmyJX788Ud4eHhovXb9+nWMHTsWz549Q8uWLTFx4kQhSDBVWsXLd999B6VSiWfPnuH+/fsoWbKkzrnPnz/H2LFjER4ejpUrV6Ju3bpmXcscmi0wzWlhaMzdu3fxxx9/YMSIEWaFkB+z9NoM/vTTT3j06BG2b9+O3377TedrmStXLoM39Vu2bInVq1cjOjoab968weTJk81em0gkQr9+/cwK1tRqNdauXYuFCxciX758WLJkicnjhw8fjgEDBuCPP/7AkiVLcOXKFb3n9e7dGwUKFDB5TZZkb29vVqir+f1NTk5O99zs+JmOiIjA9evXcePGDVy5cgVXrlwR1iiVSlGpUiXUrl0b9evXR5kyZbJ8PcZcvXoVa9aswd9//w1vb2/07dsX33//vdntYIODgzFu3Dg8ePAAtWvXxtixY/X+ndQnICAAefPmxaRJk7QC0pCQEJw6dQre3t4M14iIiIg+QwzXiIiIiIgsLCUlBW5ubggMDEz3vCpVqgh7/KSJj4/H4sWLsXnzZpQoUQKbN2/WOcccpUuXRseOHYV9yD7cz0qtVmPTpk3Ytm0b/P398f3332d4zytTaYZr6bXDNEdKSgrGjBmDFi1aoE+fPhaZ82NgrLKvaNGimDhxIrp164bBgwfjwYMHwmujR482+L308vLC+vXrMX/+fFy8eNHonn9pxGIxPD09UbNmTbRv396swOfx48cICgrCrVu3MHDgQPTt29fsnzVbW1t06NABTZs2xZAhQ3Dx4kWt1xs2bGjxvaqykub3NykpKduuGxERgefPnyM4OBjPnz/HkydPcOvWLWEvMCcnJxQuXBitW7dG2bJlUa5cOZQsWTLL/zaY4vXr19i3bx/27NmDyMhI1KtXD+vXr0eNGjXMbpUZGRmJFStWYNu2bShfvjy2bNliVovUNN9++y18fHwwcuRIhIWFoU6dOhg/fny6H64gIiIiok8bwzUiIiIiIgurW7cuhg0bhly5cqV7nlgsFh4rlUrs2rULixcvhre3N5YuXYoGDRpYZF+lIUOG4MCBA3B0dEThwoW1XhOJRPD29saff/6ZbTfO0yp0nJycUKhQIYvM+b///Q+enp6YPn26Reb7WKTt4fXDDz+gXr16Bs8rWLAg1qxZg2bNmkGhUGDMmDH44Ycf0p27dOnSWLt2LdRqNaKioowGeWKxGK6urum2ydMnNjYWK1euxLZt29CqVSvMnz8fXl5eZs3xIRcXF/zyyy9o2bIlXr16BZFIhG7dumHMmDFmry8naX7NjVWuWUq3bt2QmJiIXLlywdnZGe7u7ihXrhyaNGkCLy8vFChQwKR2ijlh9+7dOH36NCpXrowFCxagRIkSGfobGRMTg3Xr1mHr1q2oUqUKVqxYga+//jpTa6tSpQr27t2LuXPnYtq0aem2WCUiIiKiT59IbWiHayIiIiIiyjZz5szB27dv0aFDB1SoUMHi81++fBmxsbFo0KCBxec216+//gq5XI727dvDwcHBInMuWbIEffr0MbjH2Kfqn3/+ga+vL3x8fEw6//fff0fVqlVzrC3ih168eIHOnTujQYMG6NWrl8nvw1Tr16/H5cuX0bdv3yz5vclq27dvx5w5c9C+fXv4+/tb/OtDum7cuIHp06ejcePGaNu27UcbJBIRERHRx43hGhEREREREWWZ6OhouLi45PQyPkohISHInTs3HB0dc3opXwy1Wm2RimAiIiIi+rIxXCMiIiIiIiIiIiIiIiIykdj4KUREREREREREREREREQEMFwjIiIiIiIiIiIiIiIiMhnDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIiIiIiIiIiIiIiIiMhHDNSIiIiIiIiIiIiIiIiITMVwjIvoIKJVKdO3aFbt3787ppRARERERERERERFROiQ5vQAi+rz8999/OHDgAP777z+8evUKiYmJcHR0hJubG8qWLYtatWqhefPmkEqlOb1UwaJFi7B8+fJMz7N3716UKlXK7HEpKSmYNm0aLl26hHbt2mV6HURERERERERERESUdRiuEZFF3LhxAzNmzMCjR4/QunVrDBkyBF5eXpDL5Xj16hXOnDmDffv2Ye/evZg7dy6mTp2Khg0b5vSyAQCPHj3K9Bw2NjZwd3c3+fyYmBiEhYXhzJkz2LlzJ548eZLpNRARERERERERERFR1mO4RkSZtmnTJsyaNQuVKlXCoUOH4OnpqfV6xYoV4efnh379+qFfv354/vw5AgICEBQUhM6dO+fQqt97+PChznOOjo6QSIz/iUxKSkJKSgr69esHDw+PdM+9ePEievToAbVaDZVKleH1EhEREREREREREVHOEanVanVOL4KIPl07duxAUFAQfH19sXfvXtjZ2aV7/vPnz9GmTRskJSVBIpFg27ZtKF++fDatVpdMJkOFChWgVCrh6uqKkSNHomnTpnB2djY6Vi6Xo2XLllCr1di/f7/RVpeJiYkIDQ0VjpOTk3H48GGsXbtWeG7WrFlsDUlERERERERERET0EWPlGpEeKpUKSUlJOs9LJBKIRKIcWNHHKSIiArNnzwYAdOzYEVZWVpDJZOmO8fb2xnfffYfNmzdDoVBgzpw5WL9+fXYsV6/79+9DqVTCxcUFW7ZsgY+PDwAYfR8AsGXLFjx79gzLli0zaYxEIoGvr6/WcyVLlsSJEyeEtpAKhcKkaxMRERERERERERHlBLVaDYVCofO8nZ0dxGJxDqwo+zFcI9IjKSkJ9+7dy+llfPQOHDiAhIQEAKl/UG/evGnSuGLFigmPL1++jBMnTpi1X5klnTt3DgDQoUMHREdHIzo62qRx8fHxWLZsGcqUKYPcuXOb/N71sbGxER6HhoZmai4iIiIiIiIiIiKinFCyZEk4ODjk9DKyxZcRIRJRlrh165bwOCQkxORxvr6+Wp9gyMkgMyQkBC4uLvj666/NGrd3714kJCSgS5cuWbQyIiIiIiIiIiIiIvoYMVwjogx7+/at8Hjv3r2IiYkxaZxEIoG9vb3eebJbaGgoKleubFa5cnh4OI4ePYpatWrptHkkIiIiIiIiIiIios8bwzUiyjC1Wi08TkxMxLFjx0weK5G870qrOU926927N9q3b2/WmN9++w1KpRLt2rXLolURERERERERERER0ceK4RoRZViRIkW0jmUymUnjVCoV4uPjhePcuXNbdF3mcHFxgYuLi8nnP3/+HOfOnUONGjXg7e2ddQsjIiIiIiIiIiIioo+SxPgpRF8ezaoqTSVLloS1tXU2rybnKRQK3L17V+u5UqVKYfLkybC2tsb169eRL18+DB48GHnz5jU6371796BQKITjZs2aoXDhwhZfd1ZYsWIFAGDMmDEoWrSoRebU3OQzf/78KFeunEXmJSIiIvpcGPr3qKF/txMRERERWRr/TfqeXC7HvXv3dJ7/kr4WX847JTKDSCTS+7y1tTWkUmk2rybn6ft6WFtbI2/evFi6dKnZ8506dUp47Ovri5IlS2ZqfdnlypUrOH36NOrWrYvSpUtbbF7N/d4kEskX+TNGRERElB5D/x79Ej/4RkREREQ5g/8mNc7QffXPEdtCElG2UigU2LNnj3DcuXPnHFyNeRYtWgQA6Nq1aw6vhIiIiIiIiIiIiIhyCsM1IspWe/bswYsXLwCktkDs1KlTDq/INJcuXcK///4LX19ffP311zm9HCIiIiIiIiIiIiLKIQzXiCjbxMbGYuHChQAAKysr/Pzzz59MC8Tly5cDAL777rsvqryZiIiIiIiIiIiIiLQxXCOibDNz5kxEREQAACZMmICqVavm8IpMc+PGDZw7dw4ikQgtW7bM6eUQERERERERERERUQ5iuEZE2WL37t3Yu3cvACAwMBBdunTJ2QWZYfXq1QCAqlWrwtvbO4dXQ0REREREREREREQ5SZLTCyCiz9/ly5cRFBQEkUiESZMmfVLBWkhICI4dOwYAaNSoUQ6vhoiIiIiIiIiIiIhyGsM1IspS9+/fR0BAAFQqFWbNmoVvv/02p5dkll9//RUqlQoAUKdOnRxeDRERERERERERERHlNIZrRJRlHj9+jJ49eyI+Ph7z589H8+bNc3pJZpHL5dizZw8AwMvLC0WKFMnhFRERERGRKf777z8cOHAA//33H169eoXExEQ4OjrCzc0NZcuWRa1atdC8eXNIpdKcXqpR9+7dw8GDB3Hx4kU8f/4ccXFxsLa2Rv78+VGnTh1069YNefPmNWmuRYsWYfny5Zle0969e1GqVKlMz0NERERE9KliuEZEWeLJkyfo3r07YmNjsWjRok+ypeLZs2cRFRUFAPjqq69yeDVEREREZMyNGzcwY8YMPHr0CK1bt8aQIUPg5eUFuVyOV69e4cyZM9i3bx/27t2LuXPnYurUqWjYsGFOL1uvkJAQzJw5EydOnEDVqlXRunVrFC5cGI6Ojnj9+jXWrl2LdevWYfv27Zg5cyb8/PyMzvno0aNMr8vGxgbu7u6ZnoeIiIiI6FPGcI2ILO7p06fw9/dHTEwMlixZgvr16+f0kjLk6NGjwuPixYvn4EqIiIiIyJhNmzZh1qxZqFSpEg4dOgRPT0+t1ytWrAg/Pz/069cP/fr1w/PnzxEQEICgoCB07tw5h1at36lTpzBq1ChIpVIsX75cJwAsW7YsSpYsiYYNGyIxMRGjRo2CnZ2d0X93P3z4UOc5R0dHSCTGbw0kJSUhJSUF/fr1g4eHh3lviIiIiIjoM8NwjYgsKjQ0FD169EB0dPQnHawBwD///CM8Lly4cA6uhIiIiIjSs2PHDsycORO+vr5Ys2YN7OzsDJ7r6+uL1atXo02bNkhKSsLMmTNRpkwZlC9fPhtXbNjp06cREBAAFxcXbNy40WBrcmtra+GxSqUy+m9vmUyG4OBgAICrqytGjhyJpk2bwtnZ2eia5HI5WrZsCbVajX79+pn5joiIiIiIPj/inF4AEX0+wsPD0bNnT0RGRmLhwoWfdLD24MEDhIWFCccuLi45txgiIiIiMig8PByzZ88GAHTt2jXdYC1NwYIF0aFDBwCAQqHAvHnzsnSNpgoODsbIkSOhUCiwcOHCdPf8ffv2rdaxvb19unM/efIESqUSLi4u2LFjB77//nuTgjUA2LZtG549e4YJEyZ8EvvUERERERFlNYZrRGQR8fHx6NOnD0JDQzF79myT91iLiIjApUuXsnh15rty5YrWsZOTUw6thIiIiIjSs3//fiQkJABIDc1M1aJFC+HxxYsX8fLlS4uvzVwTJ05EXFwc6tWrhypVqqR7bsmSJdG7d28UL14cNWrUQGBgYLrnp+23FhgYiAIFCpi8ppiYGCxfvhw1a9ZE3bp1TR5HRERERPQ5Y7hGRJmmUCgwdOhQ3Lt3D5MnT9a6UWHMvn37MH/+/CxcXcZcv35d61ipVObQSoiIiIgoPefOnRMe69tTzJCSJUvCyspKOL58+bJF12WuEydO4MKFCwCAb7/91qQxY8eOxZ9//omNGzeiXLly6Z778OFDeHh4oE2bNmat65dffkFMTAzGjh1r1jgiIiIios8ZwzUiyrTp06fj7NmzGDx4MDp27GjW2PPnz5v1ydnscv/+fa3jN2/e5NBKiIiIiCg9mq28V6xYgYiICJPGSaVSre4EOf3vvbVr1wIAxGIxateubfH5Hz58iIYNG2oFisaEhoZi69ataNmyJUqXLm3xNRERERERfaoYrhFRpuzatQvbt29H27ZtMWTIELPGvnr1CufPn0+3fc/BgwfRvHlzVKlSBcOGDUNUVFRml2ySZ8+eaR2ntRoiIiIioo+LWq0WHsfGxmL79u0mj7W2thYeq1Qqi67LHM+fPxdapRcpUgSOjo4Wv8bUqVMxePBgs8YsXLgQSqXS7HFERERERJ87SU4vgIg+XQ8ePMD06dNRoUIFTJ8+3ayxKpUKU6dOhVwuh6+vr95zrly5glGjRgk3Og4fPozIyEhs3rwZIpEos8s3KCEhIVvDNM0bQpqPiYiIiMi4cuXK4cGDB8JxcnKySeOUSiWio6OF4zx58lh6aSY7duyY8Lho0aJZcg0PDw+zzr937x7279+PFi1aGPz3OhERERHRl4rhGhFliEKhwJgxYyCRSLBw4UJIpVKTxz558gRz5szBiRMnAMBgW8hjx47pfIL40qVLePbsGQoVKpTxxRsRHx+fZXPrExoaKjwOCQnJ1msTERERfepGjhyJ+Ph4XL16Ffnz50enTp1MGvfgwQPI5XLh2NieZVlJc984Hx+fHFuHpgULFgAABgwYkMMrISIiIiL6+DBcI6IMOXDgAO7duwdra2u0bdvW5HEymQyJiYlaz5n7Sdisbtmjbx8KzZZBlnT27Fm8evVKON63bx969eoFZ2fnLLkeERER0efG3d0dixcvNnucZrWYr68vihQpYsllmeXmzZvC4w8rzG7duoXdu3fj8uXLCAsLg42NDdzd3VGmTBk0adIEderUsXhXhytXruDkyZOoW7cuihUrZtG5iYiIiIg+BwzXiChDYmNjAQByuVyrnY65XF1dtTaS19SoUSOsX79eK0wrXrx4lrelcXd3R548ebQ2tff29s70vImJiQgNDYVarUZsbCwuX74sbFyf5sWLF2jfvj169OiB4sWLI1euXABS3zcRERERWYZCocCePXuE486dO+fYWl6/fo2YmBjhOO3ff3FxcZgyZQr279+vMyYsLAy3b9/Gb7/9hurVq+Onn35C/vz5LbamRYsWAQC6du1qsTmJiIiIiD4nDNeIKEcVLFjQ4GuVKlXC/PnzsXjxYoSFhaFq1aoICgrSW1lmaXPnzsWUKVMQFhaG+vXro3Llypme8+bNm/D39zd6XnBwMKZNm6b13P379zN9fSIiIiJKtWfPHrx48QIAzGolmRWCg4O1jh0cHBAVFQV/f388fPgQ5cqVQ9euXVG9enW4ubkhIiIChw8fxtKlS5GQkIALFy7A398fO3fuhJubW6bXc+nSJfz777/w9fXF119/nen5iIiIiIg+RwzXiChDunXrhl69emX5dfz8/ODn55fl1/lQjRo1cPjwYYvOWb16dYZkRERERDksNjYWCxcuBJDaDvznn382a/9gS9PslgAAUqkUI0aMwOPHjzFu3Dh0795dq+1j3rx50atXL9SvXx9dunRBZGQkXrx4gbFjx+p0RciI5cuXAwC+++47i7ebJCIiIiL6XIhzegFERERERERE2WXmzJmIiIgAAEyYMAFVq1bN0fV82GJ9//79+PfffxEUFIQePXoYDLgKFSqEBQsWCMdnzpzBmTNnMrWWGzdu4Ny5cxCJRGjZsmWm5iIiIiIi+pwxXCMiIiIiIqIvwu7du7F3714AQGBgILp06ZKzC0Lqvrya/vzzTzRt2tSkVpXVq1dH48aNheNNmzZlai2rV68GAFStWtUiew4TEREREX2uGK4RERERERHRZ+/y5csICgqCSCRCUFBQtrQ4N4VcLtc6tra2xvjx400e3759e+HxmTNnEBUVlaF1hISE4NixYwCARo0aZWgOIiIiIqIvBcM1IiIiIiIi+qzdv38fAQEBUKlUmDVr1kdRsZZGItHeCr19+/bw8vIyeXzVqlWF1pFKpRJXr17N0Dp+/fVXqFQqAECdOnUyNAcRERER0ZeC4RoRERERERF9th4/foyePXsiPj4e8+fPx7fffpvTS9Jib2+vddywYUOzxjs6OiJv3rzC8b1798xeg1wux549ewAAXl5eKFKkiNlzEBERERF9SSTGTyEiIiIiIiL69Dx58gTdu3dHbGwsFi1a9FG2O3RwcNA6TklJMXsOFxcXvHjxAgDw9u1bs8efPXtWaCf51VdfmT2eiIiIiLT9999/OHDgAP777z+8evUKiYmJcHR0hJubG8qWLYtatWqhefPmkEqlOb1Uo+7du4eDBw/i4sWLeP78OeLi4mBtbQ03Nzd89dVXaNq0Kdzd3TM89x9//IFLly4hJCQE8fHxcHR0hIuLC0qXLo3q1aujVatWOv9m/hgwXCMiIiIiIqLPztOnT+Hv74+YmBgsWbIE9evXz+kl6eXi4qJ1nJSUZPYctra2wuOMhHNHjx4VHhcvXtzs8URERESU6saNG5gxYwYePXqE1q1bY8iQIfDy8oJcLserV69w5swZ7Nu3D3v37sXcuXMxdepUszsXZJeQkBDMnDkTJ06cQNWqVdG6dWsULlwYjo6OCAkJwfLly3HgwAH8/fff6NevH2rUqGHy3E+fPsXMmTNx4cIF+Pn5oVevXsifPz8AICwsDBcuXMDvv/+OgwcPYv78+RgzZgx++OGHrHqrGcJwjYiIiIiIiD4roaGh6NGjB6Kjoz/qYA2ATgvGiIgIs+eQyWTCY0dHR7PH//PPP8LjwoULmz2eiIiIiIBNmzZh1qxZqFSpEg4dOgRPT0+t1ytWrAg/Pz/069cP/fr1w/PnzxEQEICgoCB07tw5h1at36lTpzBq1ChIpVIsX75cJwAsXrw4RCIRhg0bhuTkZCxZsgRSqRTlypUzOvdff/2FMWPGwMfHB3/88Yfef382btwYAwYMwMCBA3Hjxg1MmjQJwcHBGD16tMXeY2ZxzzUiIiIiIiL6bISHh6Nnz56IjIzEwoULP+pgDQB8fHy0Ks+ePHli9hya1WrOzs5mjX3w4AHCwsKE4w8r6YiIiIjIuB07dmDmzJkoUKAA1qxZoxOsafL19cXq1athZ2cHtVqNmTNn4vr169m42vSdPn0aAQEBsLW1xebNmw1W1llZWQmP1Wo1fv/9d5PmHj58OOzs7LBhw4Z0P9jl7u6O1atXw8PDAwCwevVq/PXXX2a+m6zDcI2IjBKJRHB3d0e+fPmQP39+5MuXD2Ix/3wQERER0cclPj4effr0QWhoKGbPnm3yHmsRERG4dOlSFq9OP7FYjFKlSgnHDx8+NHuOmJgY4XG+fPnMGnvlyhWtYycnJ7OvT0RERPQlCw8Px+zZswEAXbt2hZ2dndExBQsWRIcOHQAACoUC8+bNy9I1mio4OBgjR46EQqHAwoULdbosaIqLi9M6trGxSXfulJQUTJo0CSqVCt9++60QmqXHxcUF/fr1E47nzZsHhUJhdFx24N1xIjJKIpGgYMGC8PLygqenJ7y8vLQ+mUBERERElNMUCgWGDh2Ke/fuYfLkyWjRooXJY/ft24f58+dn4erSpxkC3rhxQ+dGRXpkMhnevHkjHFesWNGsa3/4KWmlUmnWeCIiIqIv3f79+5GQkAAgNTQzlea/Vy9evIiXL19afG3mmjhxIuLi4lCvXj1UqVIl3XMLFiyIli1bwsfHB2XKlEHXrl3TPf/UqVN4/fq1MNZUml+n4OBgXL161eSxWYnhGhEREREREX3ypk+fjrNnz2Lw4MHo2LGjWWPPnz+PAgUKZNHKjGvatKnwWKFQaO2BZkxwcDDUajUAwNvbGz4+PmZd+/79+1rHmkEdERERERl37tw54bE5XQhKliypVcBw+fJli67LXCdOnMCFCxcAAN9++61JYzp37ozZs2djwoQJRvfuzejXyc3NDV5eXsJxTn+d0jBcIyKjVAoZkl88QOy1vxFz6QBir/2N5BcPoFLIjA8mIiIiIspiu3btwvbt29G2bVsMGTLErLGvXr3C+fPn0/307MGDB9G8eXNUqVIFw4YNQ1RUVGaXrMXHxweNGzcWjjds2GDy2H///Vd43LlzZ7Ov/ezZM63jtE9dExEREZFpNPevXbFiBSIiIkwaJ5VKtVpy5/SHnNauXQsgtW157dq1LT6/5tfpt99+w4MHD0we6+bmJjzO6a9TGklOL4CIPl7JLx8i9tJBJNw9D7VSrvO6yMoaDqVqwrmqH2zzFsuBFRIRERHRl+7BgweYPn06KlSogOnTp5s1VqVSYerUqZDL5fD19dV7zpUrVzBq1CioVCoAwOHDhxEZGYnNmzdDJBJldvmC0aNH4+TJk5DL5bh+/TqOHz+OBg0aGB2Xtql77ty5hX07TJWQkMAwjYiIiCiT0roIAEBsbCy2b9+OwYMHmzTW2tpaeJz2782c8Pz5c2EP4iJFisDR0dHi19D8Osnlcqxfvx6zZs0yaaxUKhUefyxtzFm5RkQ6VClJCD+4Ai/X/4j4W6f1BmsAoFbKEX/rNF6u/xHhB1dAlZKUzSslIiIioi+ZQqHAmDFjIJFIsHDhQq3/023MkydPMGjQIJw4cQIADLaFPHbsmM6NjkuXLulUfGWWr68vRo8eLRxPnDjR6Kdyz5w5g4sXL0IsFmPevHnIlSuXWdeMj4/P0FqJiIiI6L1y5cppHScnJ5s0TqlUIjo6WjjOkyePJZdllmPHjgmPixYtmiXXyOjXCQAiIyOFx56enhZbU2awco2ItCjiIvFq61TII1+YNS7u6lEkB9+Bd5fJkDi5GR9ARERERJRJ+/fvx71792BtbY22bduaPE4mkyExMVHrOUOVa4ZkxSeLe/TogYiICKxevRqRkZHo3r07Vq9ejfz58+uce+PGDYwcORLW1taYNm0a6tSpY/b1NPf4SKP56WkiIiIiMm7kyJGIj4/H1atXkT9/fnTq1MmkcQ8ePIBc/r6o4cPwKTtp7odm7h6+purRowdCQ0Nx7tw5uLq6om/fviaNi4mJQUhIiHCck18nTQzXiEigSknKULCWRh75Aq+2TUO+Hj9DbGNn4dUREREREWlL+6SvXC7X+tSvuVxdXbX2u9DUqFEjrF+/XitMK168uNlhnKlGjx6N8uXLY+rUqXjy5Alat26Njh07ombNmnBxccHr169x/Phx/PHHH/D19cXUqVNRtWrVDF3L3d0defLk0aqQ8/b2ttRbISIiIvoiuLu7Y/HixWaP06wW8/X1RZEiRSy5LLPcvHlTeOzh4aH12q1bt7B7925cvnwZYWFhsLGxgaurK7y8vFCtWjV89dVXJrVLd3BwMLkNpKa///5baCnp5OSE6tWrmz1HVmC4RkSCyL83ZjhYSyOPCEXk8U3waN7fQqsiIiIiIspaBQsWNPhapUqVMH/+fCxevBhhYWGoWrUqgoKC9FZ9WUrjxo1Rp04dnDhxAn/99RdOnTqFXbt2ISkpCe7u7ihTpgxmz56N5s2bQyLJ3P+tnzt3LqZMmYKwsDDUr18flStXttC7ICIiIiJDFAoF9uzZIxx37tw5x9by+vVrxMTECMdprcbj4uIwZcoU7N+/X2dMWFgY7t69ixMnTqB06dLo37+/TihnKb/99pvwuF27drCxscmS65iL4RoRAQCSXz5E3NWjFpkr7soROJVvANu8xSwyHxERERGRPj169ECPHj2y/Dp+fn7w8/PL8utosrOzy5br1qhRA4cPH87SaxARERGRtj179uDFi9QiB3NaSWaF4OBgrWMHBwdERUXB398fDx8+RLly5dC1a1dUr14dbm5uiIiIwIEDB7Bs2TIkJSXhzp07mDFjBqZNm2bxtZ0/fx5Xr14FkFq1NmDAAItfI6PEOb0AIvo4xF46aOH5Dll0PiIiIiIiIiIiIqJPXWxsLBYuXAggdQ/cn3/+GVKpNMfWo9kiHACkUilGjBiBx48fY9y4cdi5cyfatm0Lb29vSKVS5M2bF927d8eMGTPg7OwMAAgPD8fy5cstui6FQoGZM2cKx0FBQXB1dbXoNTKD4RoRQaWQIeHueYvOmXD3HFQKmXAc899feHtmF6LP70XMpYNIfHJN7zi1SomUl48ge/McssiXUMSEQxEfDWVyAlTyFKjVlt84noiIiIiIiIiIiCg7zJw5ExEREQCACRMmZHj/XEv5cO/i/fv3499//0VQUBB69OhhcD81b29vDB06VDi+efMmzp07Z7F1LV++HA8fPgQA9O7dG61bt7bY3JbAtpBEBFnYM6iVcovOqVbKIXvzXGgNKQt7qtV20qFULdgXrqAzTpkYhxfrA9OfXGwFkZU1RBLrd/8tSf3vtOfePW/nWxYutdrpDFfJkhB9/g+tc7XmkUghspJozP/Bf1tJUs+RSACxxKQNO4mIiIiIiIiIiOjLtnv3buzduxcAEBgYiC5duuTsggAkJiZqHf/5559o2rSpSa0qS5cujapVq+LSpUsAgC1btqBevXqZXtP58+fxyy+/AAC6deuGMWPGZHpOS2O4RkSQhYdkzbxvgoVwTZIrj9ZrIom1/kGmhHwqJdQqJdTy5HRPs3LIpX94ciKiz+w0fh0TOJSpA8+2I3SeVybE4NWv04UQTivAk0g1Qjp9AZ4EsLKGWCIFJBJY5/KEjXdhnWuoVUooE2K0x4qtLPK+iIiIiIiIiIiIyHIuX76MoKAgiEQiTJo06aMI1gBALte+H2ttbY3x48ebPL5u3bpCuHbu3DlERUVlqn3jkydPMGzYMKhUKvTt2xejR4/O8FxZieEaERkNqTI+b4rw+MMwTWSlP1yzZAWdyEr/nzjLXkP/+1DJUyALe2qRaziWq4s8rYfqPK+Mi0Lw0g828RSJDYR2qQEfNAI8zQo9W5/ScK7QUPd9yJIQf+sfAxV+1u9CwLR5P6ggtJIw7CMiIiIiIiIioi/e/fv3ERAQAJVKhVmzZuHbb7/N6SUJJBLte6jt27eHl5eXyeNLlSoFkUgEtVoNpVKJq1evomFD3fuMpnj9+jX69u2LmJgYDBs2DIMGDcrQPNmB4RoRQWRtm0Xz2giP1QrtQMtg8KXI+uBLrbEX3Kd8DZW+r5VaBbVCZvb1RSIxoCdcUybEIOLQSrPm0iK08JTAsWxduDfppXOKIv4tIg78IgR4+CDA023Jqb/aTySxhpWjK6xd8uhcQ61Wv3ufbOFJRERERERERETZ5/Hjx+jZsyfi4+Mxf/58NG/ePKeXpMXe3l7r2NxgzM7ODm5ubsI+cvfu3ctQuBYeHo7u3bsjNDQU48aNQ48ePcyeIzsxXCMiSD18smbePAWEx4qYN1qvGWoLaclwDQavobDYJUQSQ9VxFryGgSDSpBaaJl8ji74fQgtPw4GjKjkBiY/+y9x13nGq0AgeLQbqPK94+wohvwwBrCQfBHLvqvf0BXkG9vKzyVccDsV1N5pVyZKQ9OyW4fDvg3kgtmLYR0RERERERET0GXvy5Am6d++O2NhYLFq0CI0aNcrpJelwcHDQOk5JSTFwpmGOjo5CuPb27Vuzx4eHh8Pf3x/Pnz9HUFDQR9MyMz0M14gIUk9fiKysLd4uUZqnoNZzNvlKQK2UQ62QwcpRf9/d7AilsqMtpEUr8HIyiMyOr1V2fM/TAlWlAmqlAmpZUoav4VSpid5wTRETgbCdP5sxk0hvi05YWcOxTB3krt1e9xpxb/H2nx3phn9a1X1W1oBEkrp/3weviW0dYGXroGddRERERERERESUWU+fPoW/vz9iYmKwZMkS1K9fP6eXpJeLi4vWcVKS+ffNbGzedzAzN5yLjIxE9+7d8fTpU0yZMgUdO3Y0+/o5geEaEUEskcKhVE3E3zptsTkdStVKvaH/joffgHTOfs8mXzH4jt7yLoSTa/+3UvGu5eG7x2mvCa/LoVYohADPrmBZvdcQWdvAtkBpw2PfzQuV0uh6s2fvuBwMpSx5jWwICQ1eI1u+H+ZeQ/2+hWdKotYryvhovSOUiTGIu3rUzOvo51y5Gdyb9dV5XhYRildbp6Qb4OGDAO/9a9pVgDZehWDrU0rnGip5CuQRoTr7AYol1kDaPCKxRd4nEREREREREVF2Cw0NRY8ePRAdHf1RB2sAUKRIEa3jtAo0c8jl7++LOTo6mjwuOjoaPXv2xJMnTz6pYA1guEZE7zhX9bNouOZcNWO9g0ViK4hs7ADYWWwtH7Lx9EXebtONnqdWq94HeQo5oBG8pT1v5aS/As/aJQ9cG/obDfDez6v44Lz31xDb6P9afHIVeDkaRGZHgPeJtRs19D7kKVDGm1++r49z1RZ6wzV55Eu8WDc2/cFiiUnVeQ4la8C5UhOd4Yq4t4i9ekQjwJMa3stPTzCo2R4UYglbeBIR5TCRSAR3d3fY2NgIm6WLxfwgBhERERF9fMLDw9GzZ09ERkZi4cKFH3WwBgA+Pj6wtbVFcnIygNRWlubSDNecnZ1NGpOYmIi+ffvi/v37CAoK+qSCNYDhGhG9Y5u3GJwqNrZIVYxTpSawzVvMAqvKWSKRGCJrG8DaxvjJH5A4u8OlRpssWNV7NvmKI/+AxToBHvQEeOoPAzyt/1bAxquQ3muIxFaQ5PZKDXU0zje0f1p6crSqLDtCwmy4Rrbss5ctQaQJ11ApoJYpoEZyuqdJPQvqfV4RF4nof34zfh0T5KreCm6Neug8L4sIxZs/FpkW4GlW+33w35BIIHXLB6lHAZ1rqJVyKBPjtecVW1nkfRERfUokEgkKFtT/N5+IiIiI6GMRHx+PPn36IDQ0FPPmzTN5j7WIiAg8ffoUVavqbkWS1cRiMUqVKoWrV68CAB4+fGj2HAkJCcLjfPnyGT1fLpdjyJAhuHHjBkaPHm3yHmvx8fG4evUqvv76a7PXaGkM14hI4NawO5KD70Ae+SLDc1i754dbA38LrooMEVvbQOpm/H+sMsPWpyQKDFqm87xarU4NPxQKPWGdRpCnkAktPKXuPnqvIXFyQ65qLfVX72m1+jR0DTmgSq3oMljxlS174JkfOBq8hoHgS5UN17BsSJhz+x5mRxCpSk6A7LX5n+bSJ1fNtnBr0E3n+ZTXT/Fyw7gPFiQ2IbSTpO6zp7Gvn32xynAsWVPnGor4aCQ+uGgw/NPcD1D87r/fz2vNFp5EREREREREABQKBYYOHYp79+5h6tSpaNGihclj9+3bhyNHjmD79u1ZuELDGjVqJIRrN27cQFxcHJycnEwaq1Ao8Pbt+y5IFStWNDomKCgIZ86cQf/+/dG3r+62JYacPXsW06dPx5kzZ0wek1UYrhGRQGxjB+8uk/Fq2zTII0LNHm/tnh/enYMMtjGkz4dIJEq9wW5ljcy28JS654db456ZmkOtVkGtVBhs3WeTtxi8u0wxoYrP8Gt4FxJa5/YytAiIrG1Sz1WrMvV+DAV4UGRD68nPpMove4JIS17DjO+HWgW1PAVquXkbBEucXAF94drb14g4tNKsubSIrYQgLlf11shdu53OKbLwEEQd36ynau+Dlpxae/npbwsqcXaHxNlN5xpqtRoA2MKT6DOlUsggC3sGWXgI1PJkiKxtIfXwgdTTV2ufXyIiIiKinDJ9+nScPXsWgwcPNrvF4fnz51GggG5Hm+zStGlTzJ07F0BqWPbPP//Az8/PpLGvX78W/j+5l5cXfHz0f8A+zapVq7B79258++23GDlypFnrPH/+/EfT0YLhGhFpkTi5IV+PnxH590azWkQ6VWoCtwb+DNYoR4hEYojSubFmZe8EO99yWboG+6KVUGjsNgCAWqVMtw0ndFp2arTcVMphm7+k/vfh6AKH0rX1Vu+plXLt1p2a+/pBrWeyHGwLmQ2VhNkSRFpyD7yc3JMwsyGhSgm1TAk1kg2uV5kQjcRH/2XuOu+41PkOrnU76TyfHHIHrzYHmR7a6a3Qk0JkJYFdoa/0/s1QJsYiOfR+6nkG9wR8fw2IrRj2EWVS8suHiL10EAl3z+v9GyOysoZDqZpwrur3WbQlJyIiIqJP065du7B9+3a0bdsWQ4YMMWvsq1evcP78eQwcONDgOQcPHsSSJUsQHh6O2rVrY/LkyXB1dc3ssgU+Pj5o3Lgxjh5NvR+8YcMGk8O127dvC487dOiQ7rlnz57FggULUKNGDcyYMcOsNSYmJuLQoUNo2LChWeOyCsM1ItIhtrGDh98AOFVoiNhLh5Bw91w6NzNqwblqc97MINIgElul7ouVgf360mPjXQSe35r3iZ7UFp5K7RabSjnENg4Gr+HRZti7ar33e+ypDe7llzavxjnvXrOyz6V/TRYNpbK+9aTBIDJb2o1+JHvgmXoNgyFhNgSR7wJVIWjOzDUk1nrDNVnYM4Tt/NmMicTarTvTAjyJBM6Vm8O5UhPda0SEIubi/g/COgMtQD8IC7Vbd0pgZevED73QJ0uVkmTSh73USjnib51G/K3TcKrYGG4Nu/PnnoiIiIiy1YMHDzB9+nRUqFAB06dPN2usSqXC1KlTIZfL4evrq/ecK1euYNSoUVCpUjslHT58GJGRkdi8ebNFP9A5evRonDx5EnK5HNevX8fx48fRoEEDo+MuXrwIAHBycsL3339v8Lw3b95g9OjRyJcvHxYvXgyJgQ8zGzJv3jxER0cb/DplN4ZrRGSQbd5isG1TDKoWAyB78xyyN8FQy1MgsraBNE8BSPMUZBseoo9cagtPSWoIZcKvq8TZHU5lv8nSNTmUqAbf0ZvfV9kpZDrhn94AT2MPv7TXbLyL6r2G2NYBtj6l9FcQalwLKqXR9eZoVVl2BJEWrfL73ENCM6+hVr0Lp3WrA5VJ8XqHKGLCzaocT0/uup2Qu853Os8nPb+NN3sXmBTgwUi1n23+krDxLqxzDVVyAuRvw3THWkneVRZas6qPDFLEReLV1qlm7wMcd/UokoPvwLvLZEicdNvHEhERERFZmkKhwJgxYyCRSLBw4UJIpabfK33y5AnmzJmDEydOAIDBtpDHjh0TgrU0ly5dwrNnz1CoUKGML/4Dvr6+GD16NGbNmgUAmDhxIvbu3Ys8efIYHHPjxg3cvXsXIpEIAQEByJVL/wet0+aLiYnB6tWr0z3vQ69evcLSpUuxa9cuAIa/TtmN4RoRGSWWSFODNlanEZEFiMRWENnYA5Yt7NNi51vOpFagOi083wVv0AjjJC6eesdK8xSEa4NuGuP1VPh9EO7hg3Av7TWx1Fb/+j7GwOhLuIbBkDAbgkhLBqoGrqGSJUEZ/1bva+ZybdBNb7iWHHofr3fMTH+wZutOKwMBnkQCpwqN4Fiqls5wedRLxN86k9q6VbOSTyLVqBT8sNJPswUoW3h+jFQpSRkK1tLII1/g1bZpyNfjZ1awEREREVGWO3DgAO7duwdra2u0bdvW5HEymQyJiYlaz5lbkfVh4GYJPXr0QEREBFavXo3IyEh0794dq1evRv78+XXOffToEZYsWQIrKyv06dMHX331lcF5L126hFOnTsHKygq9e/c2eT0KhQLx8dofTmXlGhEREVEOy0wLT6l7fkjddf9xaUkOxarCpv8igwEePgjpPtzfT/M5a/d8eq8hklhDkttLo4pQAaTt42cmw/vTfWL77H0uIWG2XCMT33OlIvXnTpaU7ml2hSvofV4W8QJv/9lh/DomcG3oD5cabXSeTwq+g8ijG9LZY89YgPe+GlDq6Qvr3F4611DJU6BKTtSu8hNbWeR9fYoi/96Y4WAtjTwiFJHHN8GjeX8LrYqIiIiISL/Y2FgAgFwuR3R0dIbncXV1hZOTk97XGjVqhPXr12uFacWLF8+ykGn06NEoX748pk6diidPnqB169bo2LEjatasCRcXF7x+/RpHjx7Fn3/+CW9vb/Tq1QulSpVKd86YmBgAgFKpzNTXCWDlGhF9QhQKBV68eAGpVAqxWAyVSoU8efLAyurLvfFDRJQdxDZ2kNpkcYBXojocSlTXeT51vz6FRotOjbBOq9LvfXtPG+8ieq9h7ZYfuaq11Binp12n1jU+rAJUAKrU8MxQYKTS03oxowxXrlnyGobadFrwGgaCr+wJIj+PsFOVGAvZ68cWuYZb457IVa2lzvNJT64hbNecDxYkNjnAg0aA51j2a9gXKq9zDXl0GJKe3tBfKahnDz9h/760c0Vii3wNjEl++dBibVHjrhyBU/kG7LxARERERJ+EggULGnytUqVKmD9/PhYvXoywsDBUrVoVQUFBWXpvtnHjxqhTpw5OnDiBv/76C6dOncKuXbuQlJQEd3d3lCpVCgMHDkSNGjWy9R6xh4cH7O3ts+166WG4RkRGqdVqREREaD3n7u7OcI2I6DOWul/fu323MtnC0zZvUdjm1b8/nqnUahXUCrnBih77IpXg3WWK4fDP0F5+H+zzB6UcVuns1SSytkk9T5259hsGA6NsaD35yQWRBr9WWR9EWnS/QHOuoVZBLU+BWp5i1jVsvIsAesK1lFdPEHFwhVlzaRFLhODNtUFXOFdopHNKcshdRJ/fazDAwwcBXurzUjiWri38XsdeOpjxNeoRe+kQbNswXCMiIiKirNOtWzf06tUry6/j5+cHPz+/LL+OJjs7O4PXlclkuHnzpslzNWrUCPfv37fk8nIcwzUiIiIi+uiJRGKI0mnfKXHKDYlT7ixdg1P5BnAq3wDAu/36FIZDOmOtOw1W+bnkgUPp2nqr94SqPqXmvoCKd+GMWmcuQ6EUsqP1pCVDKYNVftmxB57l3gdyshVoZoNIlQJqmQJqJAMG9nVQxEQg8eFls6aVeheBU9lv3l1ChoS75zO3zg8k3D0HVYsBEEtSN5WPvrgfqsQ4iCTWsC9SSe9+gYr4aMijXkBkJX1f2SfsASh9/5h79BERERERfdEYrhERERERmUkktoJIagXA1qLz2hX6CnaFDG8CrU9qC0+lToBnZZ/L4DU8Wg/VCu2gJ8DTrfLTCPzevSa2c9S/ps+kLaRlQ8IcDCI/ln32PqAZMsvCnlk2zETqmmRvngutIeURoULbSSuHXHrDtaRnNxD+xyLjk79ryymWWH/QYvN9KJerWivYF62kMzQl7BkSH1wyHNxJDBxrXkdinW3tOomIiIiISBfDNSIiIiKiT1hqC0/Ju9DDzuj51q55Ye2aN0vX5FypCZzK1dVuyalvjz2Dz8uE/fmk7vr3HbRydIGtTyn982gGhyql0fVmR+Wa4WtYsgJPqv8aFq3yM3QN879W1rnyCI9l4SEZXlN6ZG+ChXBNonG9TAeqSgXUSgWU6XTudCzztf41hT3F29PbTbtOesQSeLQYAKev6uu8lPjkGmLO7xX25ROnhXUSqbBfn0nHVtawdvWGlb2zzjXUajUr+IiIiIjoi8VwjYiIiIiILEokhH1Zx7FkTTiWrGn0PLVKqacS732QB6Uc1m759I619SkF1wbddEO7tOo+rUBPodUWVKt1p1IOsUR/W9NsqcD7WK+h8TOilidndEnp0ty3TjPgzJ5Kwiy+hkoBGKheU8RGIOmZ6XtgpMej1RA4fVVP5/n4GycQfnCFeRV3VqnVfpBYv6v6Sz3fvlhlSD0K6L6P+LdQRIdpt+nUrPSTWBvci5OIiIiIKCsxXCMiIiIios+WSGyVevM9nT37DLHxLmJwfzxLcSrfEPZFKxsN8KAnwFN/EOBJcnnovYZYagtJbq8PgkAZkIGqOcOtJzNQHacxRmRt2Rar7+d9/33XDLUMVuApM7k/nea1rQxV+VnwGhasJDR8jXRCQpUSapkydT++TJDkctcbriU+vIyIgyuMLFD8LmyTpBvCudRsC7uCZXWGp7x6gsQn1yB6F/jBylqj0k9PmKfnGGIrVvERERERfWEYrhEREREREeUQKztHWBnYu85SnCs2hnPFxjrPq9Xqd+0NtUM6tUJjf70PXpN66u5TBgA2XoXhXK0lYKjVp1bFYOp/lMkJwniph0+WvHdpnveBjSLmjfDY4N5xFm2hmR2tQLOhAu9j3/dQrYJangy1kVOdyjfQ+3zyiwd4e3Kr8eukRySGSGINj9ZD9FbUJjy4hNj/DhvYP+/DVpzvgsJ3x2IrKSB519rTyhoSV29Y2Tpkbr1ERERElGkM14iIiIiIiL5AIpEIeHeDH+YX9mmxK/QV7Ap9leHxUk9fiKysLR7YSPMU1Dq29S0HtUKmdw8xIJv22bNo5RqvYfI1DIaEFriGWgW1PAUiQ206o8OQ9ORa5q8DIE/70XoDvJjLhxD196YPqus0q/mMVPdptPJ0KF4V1q7euu8j7i0UsRHCee8r/ayF/f1YwUdERERfCoZrRERERERElKPEEikcStVE/K3TFpvToVQtiDXaJro37W10jOs3HZC7zndC60ytCjwzjyUuefRew8rJFTb5SwJKOVR655Gn7qdmgkxVfJnIUPClsug1DLXp/Eyq/LLlGjLhP5llndtLb7gWf+cMoo5tMLo+g/vvaRy71P4OtvmK6YxPfvEQySF39FT3WesPBfWFhAz4iIiIKBswXCMiIiIiIqIc51zVz6LhmnPV5hkal5l9+kzhXKERnCs0SvcctVr1vo2mELzphnn69ikDANuCpeGibmc4JNRq05n6uurd3n5pgV/anniG93XLhqqybKmOy6b96b6Qa6S1fUVKYrrnOVdqovf55ODbiDq+2fgi0/OuzaZnu1GwL1xB5+X4u+cRf+NExoK7D4JC69xeENvYZW69RERE9EliuEZEREREREQ5zjZvMThVbIy4q0czPZdTpSawzatbFfOpEInEEFnbZDjgsy9UHvaFymdqDWq1CmqlIjVo1MO5QiPY+ZbTDf/SC/L0HisgNrCHmGUrvgxVx2VHBZ7lriE2GHZmw/uwaNiZhddQKt5VPeqvYJNHvkDio/8yfx0AXh0nwr5IRZ3no8/vxdszuz4I5az1tOV8/7xYov88hxLVIcnloXMNRVwUlAnRhqsFDfzuEhERkWUwXCMiIiIiIqKPglvD7kgOvgN55IsMz2Htnh9uDfwtuKovk0gkNhiAAIC1q7fe1oGW5NrQH671OgshnFohe99K08zWnRInV73XkDi5wSZvsXRDQUBt0nqzY+84ZOXece8YfB/Zsifh53ENlTwFalkS1LKkTF9D6lFAb7gWd+1vvD293fBAsZWeqjz91Xq5v+kAG09fnSmSQ+8j5eVDPQGhRH9F3wfzQmzFNp1E9FkRiURwd3eHjY0NRCIR1Go1xGL9e67S54/hGhEREREREX0UxDZ28O4yGa+2TYM8ItTs8dbu+eHdOYht2j4TIpEIeHejPqvkquqHXFX9DL6uVqsBlUJ/i853xyqFDFAoYJ3bS+8ctr7lACvJu3EKoRWn7rGBKkC5DGkBn/hz3zvuE6sk/Kir/FRKqFVKqOXJRq+Rq3pLvc8nPr6K6DM7jY43SCQWgjavH8bB1qekzinxt/5B/N1z6VT3vQvzNJ+XWENsJQUkEoiFUE8KSW5PiLOopS8REQBIJBIULFgwp5dBHwmGa0RERERERPTRkDi5IV+PnxH590azWkQ6VWoCtwb+DNbIokQiEWD1rgong/fsHYpVgUOxKhleQ2rAp4RaIYfIWn/Q4ly5GeyLVNQJ6VRG9u3TPk59ztDv0CdXVWal/5ZXtlzj3Z6FFrlGdlQSZlXbVLUKankK1PIUwEAFmyw8GIkPLmbuOu/k9Z8BW59SOs+//WcnYi7u11NpZ6ACT6dt5/vnHUrUgMQpt841FHFRUCXF6d27D2IJK/iIiD5DDNeIiIiIiIjooyK2sYOH3wA4VWiI2EuHkHD3nN6bvCIraziUqgXnqs0/6T3WiNKTGvBJDAY5ACB1zw+pe/4sXYd7sz5wa9Rd//55mtV3Hx5/cJ5KIYeVfS6917BycoPUq4jBaj6olCav96OuKjPnGtlRSZgNLU2z5RoGvlYqWSJUyfEWuYaNdxG94VrMpQOIOb/X8NqMhHaaz7vW6wxr17w6cySH3EXK66dawV161X06VYAM+IgyTaWQQRb2DLLwEKjlyRBZ20Lq4QOpp6/BfVHp88VwjYiIiIiIiD5KtnmLwbZNMahaDIDszXPI3gRDLU+ByNoG0jwFIM1TkDcyiLKJSGwFkdQKkNpm2TVy126H3LXbGXxdrVKavN+eoX327AqXh9jGzuA4lUIOKOX69/dTyAHV+6q0z33vuE+u3ajBsDPn30fqz5BpQaJLzW/1Pp9w/wJiLvxp0hx6vavUE0us4dVxEmy8CumcEnf9OBIfXTFe3WdC1Z/EJQ//N5o+G8kvHyL20kEk3D2fzge+asK5qh8/8PUFYbhGREREREREHzWxRJoatPFmBdEXTSS2gkhsBWRiXy3HUrXgWKpWhser1SohaDPUQjNXtZZwKFFdI5T7MKSTGQ4JP6j0E1nrDzMtu3dczgV4KoteIxtagWZHm86s+n4oFVArFVCmwGCbzpTXT5Fw73zmrvNOvt5zYeNVWOf5qBNbEHvt7w/Cund76b07htW7/fSMhHkOJWvCyt5J5xqK2EioZEn6x4mtLPL+6MugSkkyqVW5WilH/K3TiL91Gk4VG8OtYXe2Kv8CMFwjIiIiIiIiIiIygUgkhsjaJt2Az8bTFzaevlm6Do8Wg+DWtI+JbTn1tel8H+RZ2TjovYbEyRXSPAV19uVLCwbNYaiqDBYNpbJo7zhTrvGpVeDlYNtUZXICVImxFrmGbf6SesO16HO7EfvfYf2DxFZG9tmTarXpdGvQDRJnd51pkp7fgjzihf42nPracqa175RIGfB9IhRxkXi1dSrkkS/MGhd39SiSg+/Au8tkSJzcsmh19DFguEZEREREREQfNYVCgRcvXkAqlUIsFkOlUiFPnjywsuLNKSL6Mokk1rAyUOFkKa71u8C1fhe9r6nV6tRKKI2wTaelpkaYJ7Zz1DuPXeEKENs5pdviM73qPkAtzGW4ZePnsXecZUNCA1V+SoXe5zN2DUNfq+y4RjpfK5USapkSaiSbdI3cX/+g9/n422eMVjMZJBJr7ZWXt9tUvfvsxV45gqTnt9IJ61Kr/WBlrVHpp38/P0kud4M/W6RLlZKUoWAtjTzyBV5tm4Z8PX5mBdtnjOEaERERERERfdTUajUiIiK0nnN3d2e4RkSUQ0QiEfDuRn5mOH1VD05f1cvQWLVaDagU79t06qlgAoBcNdrCoXRtPdV9Co2w7t2xUqN1p9ZxasBnaA8xy4ZS2VBVZpUd1zAUEmZD2Pmxt+lUq6CWJ0OdNoVIrPe05BcPkXDnbMavo8Fn4BK9AV7E0fVIuHPWYCinr5pPt1VnalDoWKoWxDb2OtdQxEVBLU/WmQdiSerfko9Q5N8bMxyspZFHhCLy+CZ4NO9voVXRx4bhGhEREREREREREX1SRCIRYJUaAiCdbfhs8xYF8hbN0rXkaTMManlKOq04dY8NVfqJpPrfjJWTG6zd839QyZc6FmqVWesV5+A+exa9hsFqxWy4Rja0G82OtqmqxFgo499a5Bp2vl/pDdeiTm5D/I0T+lalv3VmOi023Rp2h5VDLp2Zkp7dhPxtWLrVeyKJVKPS7/3+fh8GfMkvH2a8KvEDcVeOwKl8A+4b/JliuEZERERERERERESUQWIj+/BZgnuTXgZfU6uUH+yLZ2APPiHAs9U7j33RSpA4uWoEf6lj34eA+vb0e9eiU6Vdvfe57x2XHVV+qk+u3ai5bVPV74Jl09+naz39rWrjrh9H/K3TJs+jSSS1Q8Hha1N/jwHEXjqYoXkMib10CLZtGK59jhiuEREREREREREREX2iRGIriKRWgIHQzFTOlZpkeKxardIK8QyFUrlrt4fTV/VM2F/vg6o/PYFhzu4d94lV+X0ulYRZEHZau+UVgjWVQoaEu+czPJc+CXfPQdVigMG2svTpYrhGRERERERERERERBkmEokhMqGCz9anZJavxbP9GKjkyRqVfAr9YZ5OkKf7vMhK/+1ziZMrrF3z6p3HXAb3LvzY944z9RoWfR8GAtVMvA8b7yLCY1nYM4uuF0h9/7I3z9ka8jPEcI2IiIiIiIiIiIiIPgtiGzuIbeyy9BoeLQP0Pq9Wq4F3YZ7OvnqaIZ/GsUhspXcu+2JVIHHx1KjgU+hp82mgTSfUGjOJALGhKr9PLcAzULmWifdhnSuP8FgWHpLhedIjexPMcO0zxHCNiIiIiIiIiIiIiCiTRCIRILGGSGINcSbnylWtZYbGqdVqQKXQ3mdPJNJ7bu6vf4Ai/q1G6JdeO07Dz0Olgkik/x1bLFwTiQ0GkZm6hkZ1olqenPF50qGWp2TJvJSzGK4REREREREREREREX0GRCIRYGWdugda+l06YedbLsvX49VhHNTyFI2KO/2tOlUKmUaln26YB7Xa4DWsHF0gccmjU90Htcr4AjX26BNZZ27fQkNERtql0qeJ4RoREREREREREREREVmclZ0TYOeUpdfwbDda7/NqlfJ9S02d/fFSQzgr+1zC+VIPnyxZnzRPgSyZl3IWwzUiIiIiIiIiIiIiIvqsiMRWEEntAP1btemQevri/+zdeXycZbn/8e9sSSbJTCb7nnRJQ2kLBSw7iAIuIAioIKKyyiKCx5+CeI5SWY8gKCAirgfcURGQRVYFtFAolNoFumRp9n2ZLdusvz8meZLpQpN2kknaz/v18sXM1Xme+wrSdjLf3NdtstgSexadxaaUgsqE3Q+zx76OfgUAAAAAAAAAAJjTzNYUZRx8bELvmXHwcTJbJ5nuYU4hXAMAAAAAAAAAAAc855GnJ/h+pyX0fpg9CNcAAAAAAAAAAMABL61kkRyHfyQh93Ic8VGllSxKyL0w+xCuAQAAAAAAAAAASMo95SLZckv36R62vDLlnnxhgjrCbES4BgAAAAAAAAAAIMmcalfx578rW17ZXl1vyytT8QUrZU61J7gzzCaEawAAAAAAAAAAAKOsjlyVXnzHlEdEOo74qEovvkNWR+40dYbZwprsBgAAAAAAAAAAAGYTc6pd+adfJcdhp8j71rMa2Py6ouHgTq8zWWzKOPg4OY88jTPWDiCEawAAAAAAAAAAALuQVrJIaWctUuQTVynQ1ahAV5OiwRGZbKlKKahQSkGlzNaUZLeJGUa4BgAAAAAAAAAA8D7M1pRY0MbuNIgz1wAAAAAAAAAAAIBJY+caAAAAAAAAAADA+wiFQmptbVVKSorMZrMikYgKCgpksViS3RqSgHANAAAAAAAAAADgfUSjUfX09MTV8vLyCNcOUIyFBAAAAAAAAAAAACaJcA0AAAAAAAAAAACYJMI1AAAAAAAAAAAAYJII1wAAAAAAAAAAAIBJIlwDAAAAAAAAAAAAJolwDQAAAAAAAAAAAJgkwjUAAAAAAAAAAABgkgjXAAAAAAAAAAAAgEkiXAMAAAAAAAAAAAAmiXANAAAAAAAAAAAAmCTCNQAAAAAAAAAAAGCSCNcAAAAAAAAAAACASSJcAwAAAAAAAAAAACaJcA0AAAAAAAAAAACYJMI1AAAAAAAAAAAAYJII1wAAAAAAAAAAAIBJIlwDAAAAAAAAAAAAJsma7AYA7F/Wrl2rZ555RmvXrlV7e7sGBweVmZmp3NxcLVu2TMcdd5xOO+00paSkJLvVvbJt2zZ96lOfUjAY1D/+8Q+VlZXNyTUAAAAAAAAAAHuHcA1AQmzYsEG33Xabamtr9clPflLXXnutioqKFAwG1d7erlWrVunJJ5/UE088obvuuks333yzTjnllGS3PSWRSETf+c53FAwG5/QaAAAAAAAAAIC9R7gGYJ/95je/0fe+9z0dccQRevbZZ1VYWBj364cffrhOP/10XXHFFbriiivU2Nior3zlK1q5cqUuuOCCJHU9db/5zW+0fv36Ob8GAAAAAAAAAGDvceYagH3ypz/9SbfffrsqKir0y1/+cqdgbaJ58+bpF7/4hex2u6LRqG6//fY5EyS1tLTovvvum/NrAAAAAAAAAAD2DeEagL3W3d2tO++8U5L0hS98QXa7fY/XVFZW6rOf/awkKRQK6e67757WHhPlu9/9rszm6f0jcybWAAAAAAAAAADsGz7FBbDXnn76aQ0MDEiKhWaT9YlPfMJ4vGbNGrW1tSW8t0R6/PHHtWrVKt1yyy1zeg0AAAAAAAAAwL4jXAOw115//XXjcU1NzaSvW7x4sSwWi/H87bffTmhfidTb26s77rhDH/7wh+NCwbm2BgAAAAAAAAAgMQjXAOy1zs5O4/FPf/pT9fT0TOq6lJQUORwO43lXV1fCe0uU2267TeFwWDfffPOcXgMAAAAAAAAAkBiEawD2WjQaNR57vV498sgjk77WZrMZjyORSEL7SpR//vOf+vvf/65vfvObKiwsnLNrAAAAAAAAAAASh3ANwF475JBD4p4PDw9P6rpwOCy32208LygoSGRbCeH3+3XTTTfp6KOP1nnnnTdn1wAAAAAAAAAAJJY12Q0AmLu+/vWvy+/3a926dSorK9PnPve5SV23bds2BYNB4/mOId1scNddd8nr9eq2226b02sAAAAAAAAAABKLcA3AXsvLy9OPfvSjKV/30ksvGY/nzZunhQsXJrKtffb222/rT3/6k775zW+qoqJizq4BAAAAAAAAAEg8xkICmFGhUEiPP/648fyCCy5IYjc7CwQC+s53vqNly5bpoosumrNrAAAAAAAAAACmBzvXZpmtW7fqscce05o1a9TS0qKhoSFlZGSooKBAy5cv10c+8hF98IMflMlkSmqfJ598slpbW/fq2t/85jc6+uijE9wR5orHH3/c+G9nKqMkZ8oDDzyglpYW/fWvf5XFYpmzawAAAAAAAAAApgfh2izR1tam22+/XatXr9YFF1ygG2+8UeXl5YpEImpra9O///1v/e53v9Nf/vIXLV26VPfcc48qKyuT3fZeOfjgg5PdApLE6/Xq3nvvlSRZLBbdcccdSklJSW5TE2zZskW//OUvddVVV+mggw6as2sAAAAAAAAAAKYP4dossH79el155ZXKzc3VM888o+Li4rhfLyws1OGHH67zzjtPl1xyid5991199rOf1aOPPqqysrIkdS25XC5lZ2dP6Zr8/Hw5nc5p6giz3e23366enh5J0re//W0deeSRSe5oXDgc1re//W3Nnz9fV1555ZxdAwAAAAAAAAAwvQjXkqyvr09XXXWV3G63fv/73+8UrE1UVFSke+65R+ecc476+/v1zW9+U3/4wx9msNt4X/jCF3TttdcmbX3MLY899pieeOIJSdINN9ygz3/+88ltaAcPP/yw3nvvPT3yyCPTtptuJtYAAAAAAAAAAEwvc7IbOND99Kc/VV9fnw466CAtXLhwj69fvHixTjjhBEnS2rVrtWbNmuluEdhnb7/9tlauXCmTyaSVK1fq0ksvTXZLcZqamvSjH/1IF154oZYvXz5n1wAAAAAAAAAATD/CtSR77rnnJEnBYHDS1xx33HHG45dffjnhPQGJtHXrVn3lK19RJBLR9773vVm3Y02SVq5cqfz8fH3ta1+b02sAAAAAAAAAAKYfYyGTaHBwUJ2dnZKkuro6/etf/9IHP/jBPV5XXl5uPG5qapq2/oB9VVdXp0suuUR+v18/+MEPdNpppyW7pZ08+uijWr16tR5++GHZ7fY5uwYAAAAAAAAAYGawcy2JhoaG4p7feeedk7pu4ofzgUAgoT0BiVJfX6+LLrpIXq9X991336wM1rq7u/X9739f5557ro499tg5uwYAAAAAAAAAYOYQriVRTk6O8vPzjedju9j2pL+/33hcXFyc8L6AfbV9+3ZdeOGF8ng8uv/++3Xqqacmu6VduvXWW5WamqobbrhhTq8BAAAAAAAAAJg5jIVMIpPJpHvvvVf33nuv3G63Lrzwwkldt2nTJuPxQQcdNF3tAXulpaVFF198sdxut+6//359+MMfTnZLu9TR0aHnn39eJpNJRx999F7d46Mf/ehOtf/93//V2WefPWNrAAAAAAAAAABmFuFakq1YsUK/+93vJv36aDSqF154QZJktVpnzai9N954Q3//+9+1bt06dXR0aHh4WPn5+TriiCN03nnn6aijjkp2i5gB3d3duuSSS9Tb26t777131gZrkpSbm6unnnpqytedeeaZxuOf//znKigoiPv1oqKiGV0DAAAAAAAAADCzCNfmmJdfflmtra2SpFNPPVU5OTlJ7SccDmvlypV69NFHJcXOg8vJyVEkElFra6taW1v11FNP6bzzztNNN90ki8WS1H73VSgUkslkSnYbMy4UCu2x5vf7ddlll6mlpUV33HGHTjrpJAWDwT3eu6enRw0NDVqxYkXC+p2s+fPn79P1ZWVlKi0t3ak+8eueiTUAAAD2d5N5PwoAAABMJ96TjjtQv+6JCNfmkHA4rPvuu0+SlJ6eruuuuy7JHUk33nijnn76aV155ZU6++yztWDBAuPX3n77bd1yyy3aunWr/vznP2toaEh33313Ervdd5s3b052C7PGe++9ZzwOh8P6/ve/r61bt+qyyy5TWVmZNmzYMKn7PPPMM1qzZo1uvvnm6Wp12mzZskW9vb1zfg0AAIC5aOL7UQAAACAZeE964CJcm0N+/etfa8uWLZKkW265ReXl5Unt55lnnlFnZ6d+85vf6LDDDtvp11esWKE//vGPOvfcc1VXV6ennnpKJ554os4666yZbxbT6uGHH9bGjRv1qU99SqeccsqUrt20aZMKCwunqTMAAAAAAAAAABLLnOwGMDmbNm3SD3/4Q0nSDTfcEHcmU7Js375d3/nOd3YZrI3JyMjQTTfdZDy/9957FQ6Hp785zJhXXnlF//jHP3TiiSfqM5/5zJSu7e3t1aZNm973DLHVq1fruuuu05e+9CXdd9998nq9+9oyAAAAAAAAAAB7jXBtDujq6tI111yjUCiklStX6tJLL012S7rkkkt01VVX6dOf/vQeX3vUUUdp8eLFkqS2tjatWrVqutvDDGlubtbDDz+sqqoqXX755VO6NhKJ6KGHHlI4HN5tuLZt2zb9+Mc/VltbmwYHB/Xmm2/q3nvvVTQaTUT7AAAAAAAAAABMGWMhZzmv16srrrhC3d3d+v73v69PfvKTyW5JkvTFL35xSq//0Ic+ZIy0fPPNN3XSSSdNR1vT7uCDD5bNZkt2GzMuFArtND+4urpaN998s1JSUvTggw+quLh40vfbvn27fvCDH+idd96RJJ1wwglatmzZTq978cUXdwrStmzZoqysLM2bN2/qX8g+CgQCcc8XLFig+fPnz7k1AAAA5ppdvR9dsmSJrFa+pQUAAMDM4D3puGAwqM2bNye7jaQ68P5fn0N8Pp8uvfRS1dfX6/7779fJJ5+c7Jb22pIlS4zHc/k3ndVqPSDDtV15/vnntXXrVtlsNp177rmTvi4QCGhwcDCuVlVVtct/r2bzrjfXms3mpPz/sGHDhrjnGzduVHV19ZxbAwAAYH/Ae3MAAAAk24H6npTJYoRrs5bH49Gll16quro6/exnP9Oxxx6b7Jb2SVlZmfG4v78/iZ0gUcbOPgsGg3K73Xt9n5ycHDkcjl3+2qmnnqqHHnpIkUjEqFVXV8/IrrVgMKjt27dLkoaGhlRTU6MHH3ww7jXf+9731NfXpyOOOEIOh0N2u13l5eWzag0AAAAAAAAAQGIRrs1C/f39uuSSS9TU1KRf/vKXWrFiRbJb2mcZGRnG4x13LeHAVllZudtfO+KII/SDH/xAP/rRj9TZ2akjjzxSK1eulMVimfa+Ojs7deaZZ77va3w+n+6++27j+VFHHaXf/va3s2oNAAAAAAAAAEBiEa7NMmM71saCtSOOOCLZLSXExJ1H6enpSewEifLFL35Rl1566bSvc/rpp+v000+f9nV2VFZWpq1bt875NQAAAAAAAAAAibXrA42QFH6/X5dddpkaGhr0q1/9atYGaz/96U913HHH6ZxzzlF3d/ekrpm4W83pdE5XawAAAAAAAAAAANOKcG2WCAQCuvrqq1VTU6Of/exnOvzww/d4TTAY1DXXXKOhoaEZ6DBm7dq1uueee9Tb26v33ntPf/3rXyd1XWdnp/G4qqpqutoDAAAAAAAAAACYVoyFnAWi0ai+9a1vae3atfrJT36io446alLXbd68WatXr5bdbp/mDsetW7cu7vnIyMikrqurqzMeH3rooQntCQAAAAAAAAAAYKYQrs0CDzzwgJ555hndcccdOumkkyZ93XPPPaeKiopp7GxnE0c62mw2nXXWWZO67vXXX5ckpaSk6EMf+tB0tAYAAAAAAAAAADDtGAuZZK+++qp+/OMf68tf/rLOOeecSV/X2tqqRx55ZLfhWltbm6644godfvjhOvPMM41wa18dd9xxMptj/9l84hOf0Lx58/Z4TXt7u9566y1J0umnny6Xy5WQXgAAAAAAAAAAAGYa4VoSdXd364YbbtAxxxyjr371q5O+bt26dbrkkks0MDCw23Dthhtu0KuvvqrBwUFt27ZNV199tdrb2/e557KyMp1//vmSpPT09Eldc9999ykUCsnhcOgb3/jGPvcAAAAAAAAAAACQLIyFTKL7779f/f39qq2t1emnnz6pa7xer3p7e43nuwvXNm3aFPd8aGhIGzduVHFx8d43POpb3/qW2tvb9be//U1nn322li9fvtvXPvzww3r88ceVkpKiu+66SwUFBfu8PgAAAAAAAAAAQLIQriVRT0+PpNgOtu7u7r26x+7CtWXLlmnNmjXGc5vNpsWLF+/VGjtKTU3VAw88oF/96le6+OKLdfTRR+uUU07RkiVLlJeXp1AopJqaGj3yyCN6+eWXVVFRoVtuuUXHHntsQtYHAAAAAAAAAABIFsK1OW534dqdd96pm266SW+99ZYKCwv1jW98Y7ev3RsWi0VXXHGFPvOZz+jxxx/X3//+d917773yeDxKS0tTTk6Oli5dqjvvvFOnn366UlJSErY2AAAAAAAAAABAshCuJdFPfvKTabt3SUmJfv7zn0/b/cfk5OTosssu02WXXTbtawEAAAAAAAAAACQb4RqAPTKZTMrLy1NqaqpMJpOi0ajMZnOy2wIAAAAAAAAAYMYRrgHYI6vVqsrKymS3AQAAAAAAAABA0rH1BAAAAAAAAAAAAJgkdq4B2KNAMKztbV41dng1EggrNcWiyiKn5pc4lWKzJLs9AAAAAAAAAABmDOEagN3a1tSvp/5dr9c2tCkYiuz06zarWccfWqIzT1yg6orsJHQIAAAAAAAAAMDMIlwDsJPB4ZAeemqTnnuj8X1fFwxF9Mo7LXrlnRZ9/JhKXXLmMqWn8ccKAAAAAAAAAGD/xafgAOL0eob0nZ++rpYu/5Sue+6NRm2q79VtVx2n3Cz7NHUHAAAAAAAAAEBymZPdAIDZY3A4tFfB2piWLr9u/NlqDQ6HEtwZAAAAAAAAAACzA+EaAMNDT23a62BtTHOnTw89/W6COgIAAAAAAAAAYHYhXAMgSdrW1L/HM9Ym67nVDdrW1J+QewEAAAAAAAAAMJsQrgGQJD317/qE3u/pVYm9HwAAAAAAAAAAswHhGgAFgmG9tqEtofdctb5NgWA4ofcEAAAAAAAAACDZCNcAaHubV8FQJKH3DIYiamj3JvSeAAAAAAAAAAAkmzXZDQBIvsaO6QnBGtq9qq7IliQ9/0aD1m3rVmWhQxVFTlUUOVSSlyGLhYwfAAAAAAAAADB3EK4B0EhgesY3jkwYCzk0EtJr69v02oRft1rMKivIVHmhQxVFDlWM/rM4l9ANAAAAAAAAADA7Ea4BUGqKZXruaxu/767GTobCsdGRO46PtFnNKs3PjAVuRQ5VFDpVWeRQYW6GLGbTtPQKAAAAAAAAAMBkEK4BUGWRc1ruO694/L5dfYOTvm7svLYdQ7cUq1llBY4JoVtsxGRhTrrMhG4AAAAAAAAAgBlAuAZA80ucslnNu9xdtrdsVnNcuFbb4tnnewZCEdW3eVTfFn+vFJtF5YWZRtg2FrwVZBO6AQAAAAAAAAASi3ANgFJsFh1/aIleeaclYfc8YXmJUkbHQg6PhHbahZZIgWBYdS0e1e0Q4KWlWFRWGAvaKotGg7dCh/Kz7TKZCN0AAAAAAAAAAFNHuAZAknTmiQsSGq6dccIC43G/b0SfPrlKTR0+NXX41N47oEgkmrC1dmc4EFZts1u1ze64uj3VovJChyqNXW6xf+ZmpRG6AQAAAAAAAADeF+EaAElSdUW2Pn5MpZ57o3Gf7/XxY+epuiLbeF6cl6EvfPxg43kwFFZLlz8WtnX61NThVWOHTx29A4pOf+amoZGwtjW5ta3JHVfPSLOqfIfRkhVFDuU4Cd0AAAAAAAAAADGEawAMl5y5TJvqe9XS5d/re5QXOnTJGUvf9zU2q0XzS7I0vyQrrj4SDKulcyxwG/1fp1edfYMzEroNDIe0pbFfWxr74+qZdtto6Bb7X+XoTjeXI5XQDQAAAAAAAAAOMIRrAAzpaVbddtVxuvFnq9Xc6Zvy9eWFDt165bFKT9u7P1pSbRYtLHNpYZkrrj4cCKml06+mTq+aOnxqHN3x1tU3uFfrTJV/KKjNDX3a3NAXV3ek24xz3MaCt4pCp1yO1BnpCwAAAAAAAAAw8wjXAMTJzbLr7q9+UA89tWlKIyI/fuw8XXLG0r0O1t5PWopVVeUuVZW74upDIyE1j+1yGx0v2dTpU3f/UMJ72BXfYFDv1vfq3freuLozI2XCWMnxEZNZmYRuAAAAAAAAADDXEa4B2El6mlVfOfcwfeToSj29ql6r1rcpGIrs9Dqb1awTlpfojBMWxJ2xNlPsqVZVV2TvtPbgcHCH0C0WvPV4hmekL+9AQJvqerWpLj50c2Wmxp3lNha8OdJTZqQvAAAAAAAAAMC+I1wDsFvVFdn6+gUf0DXnHqaGdq8a2r0aCYaVarNoXrFT84qdSrFZkt3mTtLTbDqoMkcHVebE1QeGYqFb4+hZbmPnuvV5ZyZ0c/tH5K4d0Ybanrh6tiN1PGwrdKhyNHTLsNtmpC8AAAAAAAAAwOQRrgHYoxSbZZc7xOaaDLtNi+flaPG8+NDNPxgY3+E2Nl6yw6d+38iM9NXvG1G/b0Tra+JDt9ystPjRkqO73tLTCN0AAAAAAAAAIFkI1wAc8DLTU7Rkfq6WzM+Nq3sHAsY5bmO73Jo6vfL4AzPSV69nWL2eYa3b1h1Xz3PZjaCtcnTHW3mhQ/ZU/kgHAAAAAAAAgOnGJ7EA9igUCqm1tVUpKSkym82KRCIqKCiQxTL7RkImkjMjRcsW5mnZwry4usc/Ypzj1jghePMNzkzo1uMeUo97SO9s6YqrF2TbjdGSYzvdygscSiN0AwAAAAAAAICE4RNXAHsUjUbV0xM/sjAvL2+/D9d2JyszVYdUpeqQqvHQLRqNym2EbvHjJf1DwRnpq6t/SF39Q3p7c6dRM5mkgux0Y6fb2IjJ8kKHUmfheXkAAAAAAAAAMNsRrgFAAphMJmU70pTtSNPyRflGPRqNqt83YgRt4yMmvRoYDk17X9Go1Nk3qM6+Qb31XnzoVpSTEXeWW0WRU2UFmUohdAMAAAAAAACA3SJcA4BpZDKZlONMU44zTYdVFxj1aDSqPu/wToFbU6dPgzMUurX3Dqi9d0Bvvtth1M0mqSh3LHQbHzFZVpApm5XQDQAAAAAAAAAI1wAgCUwmk3Kz7MrNsuvwg+JDtx73sJo6vRNGTHrV3OnT0Eh42vuKRKW2ngG19QzojU0TQjezSSV5o6FbodPY8VaSlymb1TztfQEAAAAAAADAbEG4BgCziMlkUn62XfnZdn1gcaFRj0Si6nEPqanTp8Z2r3GmW3OXXyOBGQjdIlG1dPnV0uXX62o36hazSSX5maoocqhywpluxXkZsloI3QAAAAAAAADsfwjXAGAOMJtNKshJV0FOulYcHB+6dfUPThgvGQvemjv9CgSnP3QLR6Jq7vSpudOn1ybUrRaTSvMzjbBtbLxkcW6GLIRuAAAAAAAAAOYwwjUAmMPMZpOKcjNUlJuho5YWGfVwJKquvkEjbBsbMdnc5VMwFJn2vkLhqBo7fGrs8MXVrRazygoyjbGSFYVOVRY5VJibIYvZNO19AQAAAAAAAMC+IlwDgP2QxWxScV6GivMydPSyYqMejkTV2TugxtGz3MZCt5Yuv0LhmQjdImpo96qh3RtXT7GaVVbgmBC6xUZMFuaky0zoBgAAAAAAAGAWIVwDgAPI2BlpJfmZOvaQCaFbOKL23oEJ4yVjIyZbu/0KhaPT3lcgFFF9m0f1bZ64eorNovLCTFUUOlQ5NmKyyKl8l53QDQAAAAAAAEBSEK4BAGSxxHaOlRU4dNyEeigcUVu3P260ZFOnV63dA4pEZiB0C4ZV1+JRXUt86JaWYlF54fhoybEdb/kuu0wmQjcAAAAAAAAA04dwDQCwW1aLWRVFTlUUOaXl4/VgaDR06/CpccJ4yfbemQndhgNh1TS7VdPsjqvbU62jIyXjg7fcrDRCNwAAAAAAAAAJQbgGAJgym9WsymKnKoudOlGlRj0YCqulyz9hvGQseOvoHdAMZG4aGglpa1O/tjb1x9XT06zGOW4VRQ6VFzpUWeRQjpPQDQAAAAAAAMDUEK4BABLGZrVofkmW5pdkxdVHgmG1dvljYduEEZMdfQOKzkDoNjgc0pbGfm1pjA/dMuy28Z1uxo43p7IdqYRuAAAAAAAAAHaJcA0AMO1SbRYtKM3SgtL40G04EBrf6TYheOvsG5yRvgaGgtrc0KfNDX1xdUe6bfRMN6cRulUWOeVypM5IXwAAAAAAAABmL8I1AEDSpKVYVVXmUlWZK64+PBJSc9f4DrexEZNd/UMz0pdvMKj3tvfpve3xoZszI2XCLjenEbo5M1JmpC8AAAAAAAAAyUe4BgCYddJSrVpUnq1F5dlx9cHhoFq6/Gpsnzhe0qsez/CM9OUdCGhTXa821fXG1V2O1FjgNmG0ZEWRQ450QjcAAAAAAABgf0O4BgCYM9LTbKquyFZ1RXzoNjAUVHOnT40dPjV1eo0db33emQnd3L4RuX0j2lDbE1fPcaaqotCp8h3OdMu022akLwAAAAAAAACJR7gGAJjzMuw2LZ6Xo8XzcuLq/sHA+A630dGSTR0+9ftGZqSvPu+I+rzd+k9Nd1w9x5k2GrQ5VFHoVOXo4/Q0QjcAAAAAAABgtiNcAwDstzLTU7Rkfq6WzM+Nq/sGA8ZIyfHgzSe3f6ZCt2H1eYf1n23xoVteVpoxUnJsp1t5IaEbAAAAAAAAMJsQrgEADjiO9BQtXZCrpQviQzePfyTuLLexx96BwIz01eMZVo9nWO9s7Yqr52fbR8M25/h4yUKH0lL5axwAAAAAAACYaXwqBwDAqKzMVB2SmapDFubF1d2+kbiz3MZGTPoGgzPSV3f/kLr7h7R2S3zoVpCTropCx+hYSaex0y3VZpmRvgAAAAAAAIADEeEaAAB74HKkyuXI16FV+UYtGo3GQrcOnxonBm8dXg0Mh2akr66+QXX1DertzZ1GzWSSinIyJpzpFgveygoylULoBgAAAAAAAOwzwjUAAPaCyWRStjNN2c40La+OD936vMNq7Nh5vOTQyPSHbtGo1N47oPbeAb35bodRN5ukotyx0G18vGRZQaZsVkI3AAAAAAAAYLII1wAASCCTyaTcLLtys+w64qACox6NRtXjHt5hvKRXzZ0+DY2Ep72vSFRq6xlQW8+A3tg0IXQzm1ScO77TrbIwNl6yJD9TNqt52vsCAAAAAAAA5hrCNQAAZoDJZFJ+tl352XZ9YHGhUY9Go+ruHzLOcWscPdOtudOnkcAMhG6RqFq7/Wrt9mv1xnajbjGbVJKfoYrRsG1sxGRJfqasFkI3AAAAAAAAHLgI1wAASCKTyaSCnHQV5KRrxcHjoVskElVX/6AxUnJsvGRzp1+B4PSHbuFIVM2dfjV3+vXahvG61WJSSX6mcZabEbrlZchC6AYAAAAAAIADAOEaAACzkNlsUlFuhopyM3TUkiKjHo5E1dU3GHeWW1OHTy1dPgVCkWnvKxSOGmtqfZtRt1rMKivINM5yqyhyqLLIqcLcDFnMpmnvCwAAAAAAAJgphGsAAMwhFrNJxXkZKs7L0NHLio16OBJVZ+/A6FhJ74TQza9QeCZCt4ga2r1qaPfG1VOsZpUVOOJGS1YUOVWYky4zoRsAAAAAAADmIMI1AAD2A7Ez0jJVkp+pYw+ZELqFI2rrGdhpvGRbt1+hcHTa+wqEIqpv86i+zRNXT7FZVF6483jJgmxCNwAAAAAAAMxuhGsAAOzHLBazygsdKi906PhDx+uhcERt3f640ZJNnV61dQ8oHJmB0C0YVl2LR3Ut8aFbWopFZYWxoK2yaDR4K3QoP9suk4nQDQAAAAAAAMlHuAYAwAHIajGP7hhzSsvH68HQaOjW4VPjhPGS7b0DisxA6DYcCKu22a3aZndc3Z5qUXmhQxWFzgkjJp3Kc6URugEAAAAAAGBGEa4BAACDzWpWZbFTlcVOnahSox4MhdXS5R/d4TY6XrLDp47eAc1A5qahkbC2Nbm1rckdV09Ps46GbuPjJSuLHMpxEroBAAAAAABgehCuAQCAPbJZLZpfkqX5JVlx9UBwLHTzxo2Y7OgbUHQGQrfB4ZC2NvZra2N/XD0jzRp3llvF6IjJbEcqoRsAAAAAAAD2CeEaAADYayk2ixaUZmlBaXzoNhwIje906/CqcXTHW1ff4Iz0NTAc0uaGPm1u6IurZ9ptqix2TgjcYuMlXY7UGekLAAAAAAAAcx/hGgAASLi0FKuqylyqKnPF1YdGQmru9Kl5bJdbp0+NHV519w/NSF/+oaDere/Vu/W9cXVnRsqEXW7jO96yMgndAAAAAAAAEI9wDQAAzBh7qlXVFdmqrsiOqw8OB+MCt7Edbz2e4RnpyzsQ0Ka6Xm2qiw/dXJmpO42WrChyyJGeMiN9AQAAAAAAYPYhXAMAAEmXnmbTQZU5OqgyJ64+MBQL3Ro7fKP/9Kqpw6c+78yEbm7/iNy1I9pQ2xNXz3akjodtE4K3TLttRvoCAAAAAABA8hCuAQCAWSvDbtPieTlaPC8+dPMPBdXU4R3f7dbhU1OnV33ekRnpq983on7fiNbXxIduOc60uLPcKoscKi90KIPQDQAAAAAAYL9BuAYAAOacTLtNS+bnasn83Li6bzAwYbSk13js9s1M6NbnHVafd1j/2dYdV8/LSos7y62y2KnyQofsqbwVAwAAAAAAmGv4RAcAAOw3HOkpWrogV0sXxIduHv9I3FluY4+9A4EZ6avHM6wez7De2doVVy/Itu8wWtKh8gKH0gjdAAAAAAAAZi0+uQEAAPu9rMxUHZKZqkMW5sXV3b4RNXV6J4yWjIVvvsHgjPTV1T+krv4hvb2506iZTFJBdrqxy21sx1tZQabSUnjrBgAAAAAAkGx8QgMAAA5YLkeqXI58HVqVb9Si0WgsdOvwqXGH4G1gaPpDt2hU6uwbVGffoN56Lz50K8rJmHCmWyx4KyvIVIrNMu19AcBcsnbtWj3zzDNau3at2tvbNTg4qMzMTOXm5mrZsmU67rjjdNpppyklJSXZre7Wli1b9Le//U1vvfWWmpub5ff7lZmZKZfLpSVLlujoo4/WmWeeqYyMjL1eIxqN6vnnn9eTTz6pDRs2qL+/X+np6aqurtZHP/pRnXvuuUpPT0/gVwUAAADsH0zRaDSa7CaA2SYQCGjjxo071Q855JBZ/Q34dAkGg9qwYUNc7dBDD5XNZktSRwAw86LRqPq8wxN2uI2PmBwcDiWtL7NJKsodC93GR0yWFWTKZiV0A7B/mOz70Q0bNui2225TbW2tPvnJT+qEE05QUVGRgsGg2tvbtWrVKj355JMKBoPKz8/XzTffrFNOOWUmv5Q92r59u26//Xa9+eabOv3003XSSSeprKxMktTZ2ak333xTf/3rXzU4OCin06nrr79e55133pTXaW5u1je+8Q2tX79eJSUluuqqq7Rs2TL19fXpqaee0t/+9jcVFBTo+9//vo499thEf5kAAABzDp+RjuPzc8I1YJf4wyEef3EAwO5Fo1H1esZCt4k73bwaGgknrS+z2aTi3PGdbpWFTpUXOVSanymb1Zy0vgBgb0zm/ehvfvMbfe9739MRRxyhH/7whyosLNzlvRoaGnTFFVeosbFRJpNJK1eu1AUXXDCt/U/W888/r+uvv17l5eW6//77tWDBgl2+rqenR1/+8peNfyeXX365rrvuukmvU1dXpwsvvFA9PT1avHixfv3rX8vlcsW95oknntC3vvUtWa1W3XPPPfrIRz6y118XAADA/oDPSMfx+TnhGrBL/OEQj784AGDqotGout1DcWFbU4dPzZ0+DQeSF7pZzCaV5GeootAZN2KyJD9TVguhG4DZaU/vR//0pz9p5cqVmjdvnp544gnZ7fb3vV9jY6POOussDQ0NyWq16g9/+IOWL18+bf1Pxr/+9S9deeWVcjqdevrpp5Wfn/++r3e73TrjjDPU3d0tSfrRj36kj33sY3tcx+Px6JxzzlFra6vS09P15JNPqry8fJevvfnmm/WHP/xBqamp+uMf/6ilS5dO/QsDAADYT/AZ6Tg+P+fMNQAAgGlhMplUkJ2ugux0rTh4fPdEJBIL3Ro7vHGjJZs7/QoEpz90C0eiau70q7nTr9cmfE9gtZhUmp+p8tGz3IzQLS9DFkI3ALNYd3e37rzzTknSF77whT0Ga5JUWVmpz372s3r44YcVCoV0991367e//e10t7pbIyMjuvHGGxWJRHTOOefsMViTJJfLpSuuuEK33367JOnuu+/WKaecIqv1/b/N/9///V+1trZKki677LLdBmuSdO211+qxxx7T8PCwvvnNb+rJJ5+UxcLIYQAAAIBwDQAAYAaZzSYV5qSrMCddRy0pMurhSFRdfYNG2Da24625y6dgKDLtfYXCUTV2+NTY4ZPWtxl1q8WssoJM4yy3iiKHKoucKszNkMVsmva+AGBPnn76aQ0MDEiKhWaT9YlPfEIPP/ywJGnNmjVqa2tTSUnJdLS4R6+++qo6OjokTf1rGAvXmpqatG7dOh155JG7fX1NTY2efPJJSVJqaqouvPDC971/Tk6OPvrRj+rJJ59UbW2tHn/8cX3mM5+ZdH8AAADA/opwDQAAYBawmE0qzstQcV6Gjl5WbNTDkag6ewfUuMOZbi1dfoXCMxG6RdTQ7lVDuzeubrOOhW4TxksWOVSYQ+gGYGa9/vrrxuOamhp98IMfnNR1ixcvlsViUTgc2zX89ttv65Of/OS09LgnO34Nk5Wbm6uioiIjmHv77bffN1y7//77FYnE/u748Ic/LKfTucc1TjnlFCOQe+CBB3T22WfvcXccAAAAsL/jHTEAAMAsFjsjLVMl+Zk69pAJoVs4ovbegdHz3HzGiMnWbr9C4ek/UjcYimh7m1fb2+JDtxSbJRa6jY6VrBwdMVmQnS4zoRuAadDZ2Wk8/ulPf6qzzjpLeXl5e7wuJSVFDodDbrdbktTV1TVdLe7RxK/hz3/+s84//3xVV1dP6trc3FwjXHu/r6G3t1cvvvii8fyMM86Y1P1PPPFEWa1WhUIhtbW1ac2aNTruuOMmdS0AAACwvyJcAwAAmIMsFrPKChwqK3Bo4kecoXBE7T0DRtjWOBq8tXX7FY5Mf+gWCIZV3+pRfasnrp6aYlF5QWbsPDdjxKRT+S47oRuAfRKNjv/Z5vV69cgjj+iaa66Z1LUTD58f29GVDBO/hmAwqIceekjf+973JnXtxAPjx3bh7co//vGPuK/xAx/4wKTun5GRofnz5xs76l544QXCNQAAABzwCNcAAAD2I1aLWeWFDpUXOnT88vGzg4KhiNp6/MZYybERk209A4rMQOg2EgirtsWj2pb40M2ealFZwfgOt9iON6fyXGkymQjdAOzZIYccom3bthnPh4eHJ3VdOBw2dq1JUkFBQaJbm7RDDjlEL7/8svF8sl+DFNuRNqawsHC3r/vHP/5hPJ43b55ycnImvcbixYuNcO3ll1/WTTfdNOlrAQAAgP0R4RoAAMABwGY1q7LIqcqi+PN1gqGwWrsH1NThNUZMNrZ71dE7oBnI3DQ0ElZNs1s1ze64enqaVeWFjtFdbrHgrbLIoRwnoRuAeF//+tfl9/u1bt06lZWV6XOf+9ykrtu2bZuCwaDx/JBDDpmuFvfo4osvVktLi15//XXl5OTo8ssvn9R1Ho9Hzc3NxvP3+xrWr19vPD7ooIOm1N/ChQuNxx0dHXK73XK5XFO6BwAAALA/IVwDAAA4gNmsFs0rdmpecXzoFgiG1dLlj4VuxpluPnX0DSg6A6Hb4HBIWxv7tbWxP66eYbeNj5WcMF4y25FK6AYcoPLy8vSjH/1oyte99NJLxuN58+bFBUgzLSMjY9JjICf6xz/+YYyUdDgcOvroo3f5ut7eXvX3j/95WlJSssvX7U5+fn7c89raWq1YsWKK3QIAAAD7D8I1AAAA7CTFZtGC0iwtKM2Kqw8HQqOhmy8ueOvsG5yRvgaGgtrc0KfNDX1x9Uy7zQjaxkM3h1yZhG4AdhYKhfT4448bzy+44IIkdrP3/vznPxuPP/WpTyk1NXWXrxsb6TimuLh4SuvsGK7V1dURrgEAAOCARrgGAACASUtLsaqqzKWqMldcfXgkpOYu34Qz3WLhW1f/0Iz05R8K6r3tfXpve3zo5khPMYK2ygkjJrMyd/0BNIADw+OPP67W1lZJmtIoydlk9erVWrdunaTYrrWrrrpqt6/t6uqKe56bmzultbKzs+Oe9/X17eaVAAAAwIGBcA0AAAD7LC3VqkXl2VpUHv8B7OBw0Bgv2WiEbj71uGcmdPMNBvRufa/ere+Nq2dlpqii0GkEb2NnuzkzUmakLwDJ4/V6de+990qSLBaL7rjjDqWkzK3f+6FQSLfffrvxfOXKlcrJydnt6wcGBuKep6WlTWm9Hf/9DA7OzG5lAAAAYLYiXAMAAMC0SU+zqboiW9UVO4duE89yGxsx2esZnpG+PP6ANvp7tLGuJ67ucqTGneVWOfrPTLttRvoCMP1uv/129fTEfu9/+9vf1pFHHpnkjqbuJz/5iTHq8bLLLtMnP/nJ9339jmHY7sZH7s6O4dqOYR0AAABwoCFcAwAAwIxLT7NpcWWOFlfG77TwDwXV3OFTU6d3wohJr/q8IzPSl9s3IrdvRBtq40O3HGfahF1usdCtvNChDEI3YE557LHH9MQTT0iSbrjhBn3+859PbkN7YfXq1XrwwQclSV/84hd1/fXX7/GakZH4P0Nttqn92bXj63e8HwAAAHCgIVwDAADArJFpt+ng+Tk6eH586OYbDIzvcJswXtLtn5kPePu8w+rzDus/27rj6nlZacY5bmM73soLHUpPI3QDZpu3335bK1eulMlk0o033jgng7X6+nr913/9lyKRiC6//HJdd911k7puxzGQgUBgSuvu+Hq73T6l6wEAAID9DeEaAAAAZj1HeoqWLsjV0gW5cXWPf2TCeEmv8dg7MLUPjvdWj2dYPZ5hvbO1K66en203znGbGLrZU3n7DSTD1q1b9ZWvfEWRSETf+973dM455yS7pSnr6OjQ5ZdfLo/Ho//6r//S1VdfPelr09PT455PdefZjq/PyMiY0vUAAADA/obv7gEAADBnZWWm6pDMVB2yMC+u7vaN7DBaMha++QaDM9JXd/+QuvuHtHZLfOhWkJOuikLH6FlusRGTZYWZSkvhbTkwXerq6nTJJZfI7/frBz/4gU477bRktzRl3d3duuiii9TS0qL//u//1sUXXzyl63cMw6Yaru24c41wDQAAAAc6vosHAADAfsflSJXLka9Dq/KNWjQajYVuHT417hC8DQzNTOjW1Teorr5Bvb2506iZTFJhTroqCp0TznVzqKzQoVSbZUb6AvZX9fX1uuiii+T1enXffffp1FNPTXZLU9bd3a0LL7xQjY2NWrly5V6Ns8zLi/8BhN7e3ild39/fH/c8Pz9/N68EAAAADgyEawAAADggmEwmZTvTlO1M0/Lq+NCtzzscd5bb2IjJweHQtPcVjUodvYPq6B3Umvc6jLrZJBXmZozuchsfL1lWkCmbldAN2JPt27frwgsvlMfj0f33368Pf/jDyW5pynp7e3XRRRdp+/btuummm3T++efv1X2qqqrinnd0dOzmlbvW1RW/C3fhwoV71QcAAACwvyBcAwAAwAHNZDIpN8uu3Cy7Dj+owKhHo1H1esZCN68a22P/bO70aWgkPO19RaJSe8+A2nsG9MamCaGb2aTi3Axjl1vl6I63kvxM2azmae8LmAtaWlp08cUXy+12z9lgze1265JLLlF9ff0+BWtSbKeZy+WS2+2WJLW3t0/p+u7u7rjnCxYs2OteAAAAgP0B4RoAAACwCyaTSXkuu/Jcdh2xOD506+4fMs5xaxzd8dbc6dNIYAZCt0hUrd1+tXb7tXrj+AfkFrNJJfkZO42XLMnPlNVC6IYDR3d3ty655BL19vbq3nvvnZPB2uDgoC6//HJt3bpVK1eu3KdgbczBBx+s1atXS5K2bds2pWvr6uqMx/PmzVNmZuY+9wMAAADMZYRrAAAAwBSYTCYV5KSrICddKw4uNOqRSFRd/YOxoM0YMelVU6dfgeD0h27hSFTNnX41d/r12obxutViUkl+5uhYSed46JaXIQuhG/Yzfr9fX/rSl9TS0qK777570mes9fT0aPv27TryyCOnucM9CwaDuvbaa7VhwwZdd911kz5jze/3a926dTrxxBN3+esnn3yyEa7V19fL5/PJ4XBM6t7vvfee8fiUU06Z1DUAAADA/oxwDQAAAEgAs9mkotwMFeVm6KglRUY9Eomqs29QzZ0+NY6e5dbU4VNLp0+BUGTa+wqFo6PnyPmk9W1G3Woxq6wg0zjLrWL0bLei3AxZzKZp7wtItFAopK9+9avasmWLbr75Zn3iE5+Y9LVPPvmkXnjhBT3yyCPT2OHkrFy5UqtWrdKVV16pyy+/fNLXvfbaa7r11lu1atWqXf76Rz7yEf3v//6votGootGo3nnnHZ100kl7vK/H41FjY6PxfLKBJQAAALA/I1wDAAAAppHZbFJxXoaK8zJ01NLx0C0ciaqzb8AIvsbOdmvp8is4I6FbRA3tXjW0e+PqNutY6DZhvGSRQ4U5hG6Y3W699Va99tpruuaaa6Y8RnH16tWqqKiYps4m7+c//7kee+wxnXPOOfr6178+pWtXr16tysrK3f56cXGxjj32WL3++uuSpGeffXZS4drLL7+saDQqSVq4cKEOO+ywKfUFAAAA7I8I1wAAAIAksJhNKsnLVElepo5ZVmzUw+GIOvoGYyMlR0O3xg6vWrv9CoWj095XMBTR9javtrfFh24pVrPKCsfPcqssdqqi0KGC7HSZCd2QZI8++qgeeeQRnX322br22mundG17e7tWr16tL3/5y7t9zd///nfdf//96u7u1vHHH6/vfve7ysnJ2de247z22mu65557dMwxx+i2226b0rWDg4N69tln9ziy8f/9v/9nhGvPP/+8Vq5cqfT09Pe95rnnnjMeX3vttTKbGScLAAAAEK4BAAAAs4jFYlZpfqZK8zN17CHj9VA4ovaesZ1uXjWOjpds6/YrHJn+0C0Qiqi+1aP6Vk9cPS3FEgvdCh2qHB0tWVHoUH62XSYToRum37Zt23TrrbfqsMMO06233jqlayORiG6++WYFg0HNmzdvl69555139I1vfEORSGxH6XPPPafe3l799re/Tdh/411dXbruuutUWlqqH/3oR7Jap/at+t133y23273br2HMoYceqtNOO03PPvusBgcH9fDDD+vqq6/e7evr6ur06quvSpKWLl2qj3/841PqCwAAANhfEa4BAAAAc4DVYlZ5oUPlhQ4dv7zEqAdDEbX1+ONGSzZ1+NTWM6DIDIRuw4Gwapvdqm12x9XtqRaVFzrix0sWOpXnSiN0Q8KEQiFdf/31slqtuvfee5WSkjLpa+vr6/X9739fL7/8siTtdizkSy+9ZARrY9566y01NDRo/vz5e9/8BN/5znfk8Xj0i1/8QllZWZO+rr29XT/+8Y/16KOPStr91zDRd7/7Xa1fv15tbW365S9/qbPPPlslJSW7fO0Pf/hDRSIRpaen66677uL3LgAAADCKcA0AAACYw2xWsyqLnKoscsbVg6GwWrsHxsdLdsZ2vLX3DGgGMjcNjYS1rcmtbU3uuHp6mnU0dBvd5VYU2/GW4yR0w9Q9/fTT2rJli2w2m84+++xJXxcIBDQ4OBhX29Ourx3tGLjtrbfeekuvvvqqLBaLLrvssklfFwqF5Pf742qT+Rqys7P1y1/+UhdeeKF6enp05ZVX6ne/+91Ood4DDzygl156SSkpKbr33nu1cOHCSfcGAAAA7O8I1wAAAID9kM1q0bxip+YVx4dugWBYrd1+NY6OlxwL3jp6BxSdgdBtcDikrY392trYH1fPSLMaYVvF2NluRU5lO1IJ3bBbbrdbkhQMBo3HeyMnJ0cOh2OXv3bqqafqoYceigvTqqurpxzG7Y7HExu1Gg6H9+lrkCa3c02SFi5cqD/96U+67rrrtG7dOn3iE5/Ql7/8ZS1ZskTd3d36y1/+on/9618qLi7W3XffrRUrVuxTXwAAAMD+hnANAAAAOICk2CyaX5Kl+SXxu1RGgmG1dI7tcBsfMdnZNzgjodvAcEibG/q0uaEvrp5ptxlB23jo5pArk9ANiVNZWbnbXzviiCP0gx/8QD/60Y/U2dmpI488UitXrpTFYpnBDvcsPz9f6enpk359WVmZ/vjHP+rFF1/UE088oQcffFD9/f2y2+2qrq7W//zP/+i8886T3W6fxq4BAACAuckUjc7Et8rA3BIIBLRx48ad6occcsiUznHYXwSDQW3YsCGuduihh8pmsyWpIwAAMFOGR0Jq6fIbZ7k1ju506+ob3PPF08iRnmIEbZUTRkxmZaYmtS9MD96PAgAAINl4TzqOz8/ZuQYAAADgfaSlWlVV7lJVuSuuPjQSUvPoLrfGDq+x463HPTQjffkGA3q3vlfv1vfG1V2ZqSovjJ3jZux4K3LIkX5gfIMHAAAAAJh+hGsAAAAApsyealV1RbaqK7Lj6oPDwfjRkqPBW69neEb6cvtH5PaPaGNdT1w92xEL3SaOmKwsciiT0A0AAAAAMEWEawAAAAASJj3NpsWVOVpcmRNX9w8F1Tx6jtvEM936vCMz0le/b0T9vhFtqI0P3XKcqaoodBojJsceZ9gPvNEuAAAAAIDJIVwDAAAAMO0y7TYdPD9HB8+PD918g4HRoG10l9voY7dvZkK3Pu+I+rzd+k9Nd1w9NytNFRPOcosFbw6lpxG6AQAAAMCBjnANAAAAQNI40lO0dEGuli7Ijat7/COxM90mjpjs9MrjD8xIX72eYfV6hrVuW3zolueyG0Fb5eiIyfJCh+ypfGsFAAAAAAcKvgMEAAAAMOtkZaYqKzNVyxbmxdXdvtHQrcOrxgnBm29wZkK3HveQetxDemdLV1y9INuuiiLnaOAWGy9ZVpiptBS+5QIAAACA/Q3f6QEAAACYM1yOVLkcqTqkajx0i0ajcvtHJuxw86mx3aumTp8GhoIz0ldX/5C6+of09uZOo2YySYU56Tuc6eZQWaFDqTbLjPQFAAAAAEg8wjUAAAAAc5rJZFK2I03ZjjQtX5Rv1KPRqPq8wxPOdBs9163Tp8Hh0LT3FY1KHb2D6ugd1Jr3Ooy62SQV5maMnunmMHa8leZnKoXQDQAAAABmPcI1AAAAAPslk8mk3Cy7crPsOvygAqMejUbV6xk2znGbuONtaGT6Q7dIVGrvGVB7z4DefDc+dCvOy1BFkTMueCvNz5TNap72vgAAAAAAk0O4BgAAAOCAYjKZlOeyK89l1xGL40O3bvfQhLAtFrw1d/o0HAhPe1+RqNTaPaDW7gGt3thu1M1mk0ryMoyz3MZGTJbmZ8pqIXQDAAAAgJlGuAYAAAAAioVuBdnpKshO14qDC416JDIWunknjJj0qrnLr5GZCN0iUbV0+dXS5dfrGg/dLGaTSvIzVVHkUGVhbJdbRZFDxXkZ+13oZjKZlJeXp9TUVJlMJkWjUZnN+9fXCAAAAGDuIFwDAAAAgPdhNptUmJOuwpx0HbmkyKhHIlF19Q+qqcOnxtGz3Jo6fGrp9CkQikx7X+FIVM2dsZ11r02oWy0mleZnGmFbRaFDlcVOFeVmyGI2TXtf08FqtaqysjLZbQAAAACAJMI1AAAAANgrZrNJRbkZKsrN0FFLx0O3cCSqzr6B8fGSoyMmW7r8Cs5A6BYKR9XY4VNjhy+ubrOaVVaQGTdasqLIocKcuRu6AQAAAEAyEK4BAAAAQAJZzCaV5GWqJC9TxywrNurhcETtvQMTRkvGxku2dvsVCkenva9gKKLtbV5tb/PG1VOsZpUVOsZ3uY3ueCvITpd5loRugWBY29u8auzwaiQQVmqKRZVFTs0vcSrFZkl2ewAAAAAOMIRrAAAAADADLBazygocKitw6LgJ9VA4ovaeASNsaxwN3tq6/QpHpj90C4Qiqm/1qL7VE1dPTbGovGB0vORY+FbkVL7LPmOh27amfj3173q9tqFtl7v+bFazjj+0RGeeuEDVFdkz0hMAAAAAEK4BAAAAQBJZLWaVFzpUXujQ8ctLjHowFFFbjz9utGRTh09tPQOKzEDoNhIIq7bFo9qW+NAtLcWicmOn2/iIyXyXXSZTYkK3weGQHnpqk557o/F9XxcMRfTKOy165Z0WffyYSl1y5jKlp/FtLgAAAIDpxXcdAAAAADAL2axmVRY5VVnkjKsHQ2G1dg+oqcM7YcSkV+09A5qBzE3DgbBqmt2qaXbH1e2p1gk73MaDt9ystCmFbr2eIX3np6+rpcs/pb6ee6NRm+p7ddtVxyk3yz6lawEAAABgKgjXAAAAAGAOsVktmlfs1Lzi+NAtEAyrtduvxtHxkmPBW0fvgKIzELoNjYS0talfW5v64+oZadbYaMnRM93GxktmO1J3Ct0Gh0N7FayNaeny68afrdbdX/0gO9gAAAAATBu+2wAAAACA/UCKzaL5JVmaX5IVVx8JhtXSGQvaGtu9ozvdfOrsG5yRvgaGQ9rc0KfNDX1x9Uy7TcccUqT/+uwRRu2hpzbtdbA2prnTp4eefldf+czyfboPAAAAAOwO4RoAAAAA7MdSbRYtLHNpYZkrrj48ElJzl2/CmW6xHW9d/UMz0pd/KKiD5+Uaz7c19e/xjLXJem51gz5yVIWqK7ITcj8AAAAAmIhwDQAAAAAOQGmpVi0qz9ai8vgAamgkpObRoK3RCN186nEnNnSzWsz64GGlxvOn/l2f0Ps/vapeX7/gAwm9JwAAAABIhGsAAAAAgAnsqVZVV2TvtOtrcDhoBG1NY+e6dfrU6xneq3XmFTuVlhr7ljQQDOu1DW373PtEq9a36ZpzD1OKzZLQ+wIAAAAA4RoAAAAAYI/S02xaXJmjxZU5cXX/UFDNHT41dXrjwrc+7/uHblXlLuPx9javgqFIQvsNhiJqaPcyGhIAAABAwhGuAQAAAAD2WqbdpoPn5+jg+TuEboOB8bBtdMxkU4dP/b4RSVJhTrrx2sYO77T0NjFce219m5q7fFpU7tKi8mw5M1KmZU0AAAAA+z/CNQAAAABAwmWmp2jJ/FwtmZ8bV/cOBNTU4VWG3WbURgLhaelhJDh+3273oH7/3BbjeWFOuhG0LSp3aWFZltLTbLu6DQAAAADEIVwDAAAAAMwYZ0aKli3Mi6ulpkzPuWipE85b23HsZGffoDr7BrVqfeysN5NJKivINMK2ReUuzS/J4sw2AAAAADshXAMAAAAAJFVlkXNa7juvePy+XX2D7/vaaFRq7vSrudOvf77dLEmyWkyaV+wcD9wqslVe6JDFbJqWfgEAAADMDYRrAAAAAICkml/ilM1q3ml32b6wWc1x4Vpti2fK9wiFo6pt8ai2xaNnV8dqqSkWLSzNmhC4uVScmyGTicANAAAAOFAQrgEAAAAAkirFZtHxh5bolXdaEnbPE5aXGCMdh0dCamj3JuS+I4Gw3tvep/e29xm1DLtNi8piQdvYOW65WWkEbgAAAMB+inANAAAAAJB0Z564IKHh2hknLDAet3b79YHFBapp7lefdyRha4wZGArqPzXd+k9Nt1HLdqTGdrdNCNycGSkJXxsAAADAzCNcAwAAAAAkXXVFtj5+TKWee6Nxn+/18WPnqboi23i+sMyl71x6tCSp1zOkbU1u1TT3q6bZrdpmt/xDwX1ec0f9vhGtea9Da97rMGqFOelG0LaowqWFpVlKT7MlfG0AAAAA04twDQAAAAAwK1xy5jJtqu9VS5d/r+9RXujQJWcs3e2v52bZdewhdh17SLEkKRqNqr13QLXNbtWM/q+2xa2RQHive9idzr5BdfYNatX6NkmSySSVFTi0qNyl6nKXqspdml+SZYyzBAAAADA7Ea4BAAAAAGaF9DSrbrvqON34s9Vq7vRN+fryQoduvfJYpadN/ltdk8mkkrxMleRl6oOHl0mSwpGoWjp9qmnu17bRwK2hzaNQODrlnt5PNCo1d/rU3OnTP99uliRZLSZVFjtju9vKYyMlKwodsljMCV0bAAAAwN4jXAMAAAAAzBq5WXbd/dUP6qGnNk1pROTHj52nS85YOqVgbXcs5ljAVVns1KlHVUqSgqGwtrd5R3e3xUZKtnT6FEls3qZQOKq6Fo/qWjx6bnWslppi0YKSrNHz27JVXe5ScV6GTCZTYhcHAAAAMCmEawAAAACAWSU9zaqvnHuYPnJ0pZ5eVa9V69sUDEV2ep3NatYJy0t0xgkL4s5Ymw42q0XVFdmj68yXJA2NhFTX4jbObtvW3K+O3sGErz0SCGtzQ582N/QZtQy7TYvKXKOBm0tVZdnKc6URuAEAAAAzgHANAAAAADArVVdk6+sXfEDXnHuYGtq9amj3aiQYVqrNonnFTs0rdib1fDJ7qlXLFuZp2cI8o+YdCIye3xbb3batqV/9vpGErz0wFNR/arr1n5puo5btSFVVuStupGRWZmrC1wYAAAAOdIRrAAAAAIBZLcU2cdfY7ObMSNERiwt0xOICo9brGdK2pvHArbbZLf9QMOFr9/tG9NZ7nXrrvU6jVpCTrkXlLlWPhm4Ly7KUnmZL+NoAAADAgYRwDQAAAACAaZSbZdexh9h17CHFkqRoNKr23gHVNLmNM9zqWj0aCYQTvnZX36C6+gb12vo2SZLJJJUVZMbtbptfkpXUHYAAAADAXEO4BgAAAACY1UKhkFpbW5WSkiKz2axIJKKCggJZLHMzEDKZTCrJy1RJXqZOOqJMkhSORNXS6VNNc7+2NcdCt4Y2j0LhaELXjkal5k6/mjv9+ufbzZIki9mkymLnaNiWreoKlyoKHbJYzAldGwAAANhfEK4BAAAAAGa1aDSqnp6euFpeXt6cDdd2ZSzgqix26tSjKiVJwVBY29u8xu62mma3mjt9iiY2b1M4ElV9q0f1rR49/0ajpNgozoWlWcbutkUV2SrOzZDZbErs4gAAAMAcRLgGAAAAAMAsZLNOPGtuviRpaCSkupaxcZKx0K2jdzDhaweCYW1u6NPmhj6jlpFmVdXo7raxXW55rjSZTARuAAAAOLAQrgEAAAAAMEfYU61atjBPyxbmGTXvQEC1LaO720bPcevzDid87YHhkNbX9Gh9zfguQpcj1Qjaxna5ZWWmJnxtAAAAYDYhXAMAAAAAYA5zZqToiIMKdMRBBUat1zM0vrutKTZS0j8UTPjabt+I3nqvU2+912nUCnLStajcperR0G1hWZbS02wJXxsAAABIFsI1AAAAAAD2M7lZduVm2XXMsmJJsXPrOnoHjbPbaprdqmtxazgQTvjaXX2D6uob1Gvr2yRJJpNUVpAZt7ttfkmWUmz7z5l5AAAAOLAQrgEAAAAAsJ8zmUwqzstQcV6GPnh4mSQpHImqpdNnnN1W0+zW9javQuFIQteORqXmTr+aO/3659vNkiSL2aR5Jc64wK2i0CGLxZzQtQEAAIDpQLgGAAAAAMAByGI2qbLYqcpip049qkKSFAyF1dDuHR0nGQvdmjt9ikQTu3Y4ElVdi0d1LR49tzpWS7FZtLA0ywjbFlVkqzg3Q2azKbGLAwAAAPuIcA0AAAAAAEiSbFbL6G6ybOm4WG1oJKT6Vk9sd1tTbKRke+9AwtcOBMPa3NCnzQ19Ri3DblNVWdaEHW7ZynOlyWQicAMAAEDyEK4BAAAAAIDdsqdatXRBrpYuyDVqvsHA+DjJJrdqW9zq9QwnfO2BoaDW1/RofU2PUXM5Uo2gbWyXW1ZmasLXBgAAAHaHcA0AAAAAAEyJIz1FRxxUoCMOKjBqvZ4h1Ta7R0O3WPDmGwwmfG23b0Rvvdept97rNGoFOelaVDY2TtKlqjKX0tNsCV8bAAAAkAjXAAAAAABAAuRm2ZWbZdfRy4olSdFoVJ19g6ppcmtbc79qmt2qa3FrOBBO+NpdfYPq6hvUaxvaJEkmk1Sanzm+w63CpQUlWUqxWRK+NgAAAA48hGsAAAAAACDhTCaTinIzVJSboRMPL5UkhSNRtXT5Rs9uiwVu29u8CoUjCV07GpVauvxq6fLr5bUtkiSL2aTKYqcRuFVXuFRR6JDFYk7o2gAAANj/Ea4BAAAAAIAZYTGbVFnkVGWRU6ceVSFJCobCamj3xkZJjoZuzZ0+RaKJXTsciaq+1aP6Vo+ef6NRkpRis2hhaZaqRs9uW1TuUklepsxmU2IXBwAAwH6FcA0AAAAAACSNzWqJjW4sz5aOi9WGRkKqb/XEdrc1xc5wa+8dSPjagWBYmxv6tLmhz6hlpFm10Di/LVuLyl3Kd9llMhG4AQAAIIZwDQAAAAAAzCr2VKuWLsjV0gW5Rs03GIjtbpsQuPV5hxO+9sBwSBtqe7ShtseouTJTVVXuUvWEwC0rMzXhawMAAGBuIFwDAAAAAACzniM9RUccVKAjDiowar2eIdU0u1Xb7DaCN99gMOFru/0jentzp97e3GnUCrLtWlSebYyUrCpzKcNuS/jaAAAAmH0I1wAAAAAAwJyUm2VXbpZdxywrliRFo1F19g2qpsmtbc39qml2q67FreFAOOFrd/UPqat/SK9taDNqpfmZWlQRC9uqy7M1vzRLqTZLwtcGAABAchGuAQAAAACA/YLJZFJRboaKcjN04uGlkqRwJKqWLt/oKMlY4La9zatQOJLw9Vu7/Wrt9uuVtS2SJIvZpMoipxG4LSrPVmWRQxaLOeFrAwAAYOYQrgEAAAAAgP3WWMBVWeTUqUdVSJKCoYga2j1xIyWbOryKRBO7djgSVX2bR/VtHj3/RqMkKcVq1sKysbAtdoZbcW6GzGZTYhcHAADAtCFcAwAAAAAABxSb1axF5dlaVJ5t1IZHQqpr9Rhnt9U0u9XeM5DwtQOhiDY39GlzQ59Ry0izjgduFdlaVO5Svssuk4nADQAAYDYiXAMAAAAAAAe8tFSrli7I1dIFuUbNPxgYDdvGA7dez3DC1x4YDmlDbY821PYYNVdmqqrKXaqeELhlZaYmfG0AAABMHeEaAAAAAADALmSmp+jwgwp0+EEFRq3PO6yapljQVtPiVk2TW77BQMLXdvtH9PbmTr29udOoFWTbR3fcubSowqWqMpfS02wJXxsAAADvj3ANAAAAAABgknKcaTp6WbGOXlYsSYpGo+rsG4zb4VbX4tbQSDjha3f1D6mrf0ivbWiTJJlMUml+pqpGz2+rLs/W/NIspdosCV8bAAAA4wjXAAAAAAAA9pLJZFJRboaKcjN04mGlkqRwJKrWLl9c4Fbf6lUoHEno2tGo1NLlV0uXX6+sbZEkWcwmVRY5tahi9Ay38mxVFDlktZgTujYAAMCBjHANAAAAAAAggSxmkyqKnKoocuqUIyskScFQRI3tXuPstppmt5o6vIpEE7t2OBJVfZtH9W0ePf9GoyQpxWrWgtIs4+y2ReUuleRlymw2JXZxAACAAwThGgAAAAAAwDSzWc2qKnepqtyl00ZrwyMh1bd5YmFbU2yHW1vPQMLXDoQi2tLYry2N/UYtPc2qqrLR3W0V2VpU5lJ+tl0mE4EbAADAnhCuAQAAAAAAJEFaqlVL5udqyfxco+YfDKi2xa1to2FbTbNbvZ7hhK89OBzShtoebajtMWquzFTj/LaxkZIuR2rC1wYAAJjrCNcAAAAAAABmicz0FB1WXaDDqguMWp93WDVN/XFnuPkGgwlf2+0f0dubO/X25k6jlp9tN4K2ReUuVZW5lGG3JXxtAACAuYRwDQAAAAAAYBbLcabp6GXFOnpZsSQpGo2qs28wLmyra3FraCSc8LW7+4fU3T+k1ze0G7XS/Ewtqhjd3VaWrQVlWUq1WRK+NgAAwGxFuAYAAAAAADCHmEwmFeVmqCg3QyceVipJCkeiau3yxQVu9a1ehcKRhK/f2u1Xa7dfr6xtkSSZzSZVFjmM3W2Lyl2qLHbKajEnfG0AAIDZgHANAAAAAABgjrOYTaoocqqiyKlTjqyQJAVDETW2e42z22qa3Wrq8CoSTezakUhU29u82t7m1QtvNkqSUqxmzS/NihspWZqfKbPZlNjFAQAAkoBwDQAAAAAAYD9ks5pVVe5SVblLp43WhkdCqmv1GLvbaprdau8ZSPjagVBEWxv7tbWxX9J2SVJ6mlVVZa64wC0/2y6TicANAADMLYRrAAAAAAAAB4i0VKuWLsjV0gW5Rs0/GFBti3t8pGRTv3o8wwlfe3A4pA21PdpQ22PUsjJTRgO3bFVXxP7pcqQmfG0AAIBEIlwDAAAAAAA4gGWmp+iw6gIdVl1g1Pq9w6ppdmvb2EjJJrd8g4GEr+3xB7R2S5fWbukyavnZ9rjdbVVlLmXYbQlfGwAAYG8RrgEAAAAAACBOtjNNRy0t0lFLiyRJ0WhUnX2D47vbmvtV1+LW0Eg44Wt39w+pu39Ir29oN2ql+ZlaVBEbKVldnq35pVlKtVkSvjYAAMBkEK4BAAAAAADgfZlMJhXlZqgoN0MnHlYqSQpHomrt8sVGSjbFQrf6No+CoUjC12/t9qu1269X1rZIkixmkyqLnEbgVlXmUmWxU1aLOeFrAwAA7IhwDQAAAAAAAFNmMZtUUeRURZFTJ6+okCQFQxE1dniNs9tqmt1q6vQpEokmdO1wJKr6No/q2zx6/o1GSVKK1az5pVlxIyVL8zNlNpsSujYAAADhGgAAAAAAABLCZjWrqiy2k+y0Y+dJkoYDIdW3eoyz22qa+9XWM5DwtQOhiLY29mtrY7+k7ZKk9DSrqspccYFbfrZdJhOBGwAA2HuEawAAAAAAAJg2aSlWLZmfqyXzc42afyio2ub+CWe4udXjHkr42oPDIW2o7dGG2h6jlpWZokXl2bHQbXSsZLYjLeFrAwCA/RfhGgAAAAAAAGZUpt2mw6oLdFh1gVHr9w6rpmV8d1tNs1vegUDC1/b4A3p7c6fe3txp1PJc9tHdbS5Vl2erqtylDLst4WsDAID9A+EaAAAAAAAAki7bmaajlhTpqCVFkqRoNKqu/qFY0NYU291W2+LW0Ego4Wv3uIfU4x7S6o3tRq00P8MYJbmoPFsLyrKUarMkfG0AADD3EK4BAAAAAABg1jGZTCrMSVdhTrpOWF4qSYpEomrt9scFbvVtHgVDkYSv39o9oNbuAb3yToskyWw2qbLIMSFwc6my2CmrxZzwtQEAwOxGuAYAAAAAAIA5wWw2qbzQofJCh05eUSFJCoYiauzwxs5ua4qNk2zq9CkSiSZ07Ugkqu1tXm1v8+qFNxslSTarWQtKsmJhW0Vsh1tpfqbMZlNC1wYAALML4RoAAAAAAADmLJvVrKoyl6rKXDrt2HmSpOFASPWtntHALXaGW1vPQMLXDoYi2trUr61N/dJrsZo91aqqMldc4FaQbZfJROAGAMD+gnANAAAAAAAA+5W0FKuWzM/Vkvm5Rs0/FFRtc2xn29j/etxDCV97aCSkjXU92ljXY9ScGSnG2W2xwM2lbEdawtcGAAAzg3ANAAAAAAAA+71Mu02HVRfosOoCo9bvHVZNy/jutppmt7wDgYSv7R0IaO2WLq3d0mXU8lx24+y2ReUuVZVnK9NuS/jaAAAg8QjXAAAAAAAAcEDKdqbpqCVFOmpJkSQpGo2qq38oFrQ1xXa31ba4NTQSSvjaPe4h9biHtHpju1ErycuI2922oDRLaSl8fAcAwGzD384AAAAAAACAJJPJpMKcdBXmpOuE5aWSpEgkqtZuf1zgVt/mUTAUSfj6bT0DausZ0KvrWiRJZrNJFYWO0fPbsrWo3KV5xU5ZLeaErw0AACaPcA0AAAAAAADYDbPZpPJCh8oLHTp5RYUkKRiKqLHDq1rj/LZ+NXb4FIlEE7p2JBJVQ7tXDe1evbimSZJks5q1oCRrNHCLneNWmp8ps9mU0LUBAMDuEa4BAAAAAAAAU2CzmlVV5lJVmUsfPzZWGw6EtL3Va5zdVtPcr9bugYSvHQxFtLWpX1ub+qXXYjV7qlVVZa64wK0g2y6TicANAIDpQLgGAAAAAAAA7KO0FKsOnp+jg+fnGDX/UFB1zW5tMwI3t3rcQwlfe2gkpI11PdpY12PUsjJTRgO38TPcsh1pCV8bAIADEeEaAAAAAAAAMA0y7TYtr87X8up8o9bvG1ZNsztupKTHH0j42h5/QGu3dGntli6jlueyx3a3lbtUXZ6theUuZdptCV8bAID9HeEaAAAAAAAAMEOyHWk6akmRjlpSJEmKRqPq7h8ygraxHW5DI6GEr93jHlKPe0irN7YbtdL8DFWVje9uW1CapbQUPjIEAOD98DclAAAAAAAAkCQmk0kFOekqyEnX8ctLJEmRSFSt3f64wK2+1aNgKJLw9Vu7B9TaPaBX17VIksxmkyoKHaPnt2VrUblL84qdslrMCV8bAIC5inANAAAAAAAAmEXMZpPKCx0qL3To5BXlkqRQOKLGdq+xs62muV+NHT5FItGErh2JRNXQ7lVDu1cvrmmSJNmsZi0oyRoN3GLnuJXmZ8psNiV0bQAA5grCNQAAAAAAAGCWs1rMWljm0sIylz5+bKw2Egxre6tH28bGSTa51drtT/jawVBEW5v6tbWpX3otVrOnWlVV5lLV6Blui8pdKsxJl8lE4AYA2P8RrgEAAAAAAABzUKrNosXzcrR4Xo5RGxgKqrbFHTdSsrt/KOFrD42EtLGuRxvreoyaMyPFCNuqy2MjJbOdaQlfGwCAZCNcAwAAAAAAAPYTGXabli/K1/JF+Uat3zes2ma3tjWNB27egUDC1/YOBPTOli69s6XLqOVlpRlnty0qd6mqPFuZdlvC1wYAYCYRrgEAAAAAAAD7sWxHmo5cUqQjlxRJkqLRqLr7h+J2t9U0uzU0Ekr42j2eYfVsbNfqje1GrSQvQ4vKs0fPb3NpQWmW0lL4mBIAMHfwtxYAAAAAAABwADGZTCrISVdBTrqOX14iSYpEomrt9scFbvWtHgVDkYSv39YzoLaeAb26rkWSZDabVFHoMHa3LSrPVmWxUzarOeFrAwCQCIRrAAAAAAAAwAHObDapvNCh8kKHTl5RLkkKhSNqbPcaO9tqmvvV2OFTJBJN6NqRSFQN7V41tHv14pomSZLNatb8Emdsh9to6FZa4JDFbEro2gAA7A3CNQAAAAAAAAA7sVrMWljm0sIylz5+bKw2HAhpe6s3bpxka7c/4WsHQxFta4qdEzfGnmrRwjKXqspcqh4dK1mYky6TicANADCzCNcAAAAAAAAATEpailUHz8/RwfNzjNrAUFC1Le64kZLd/UMJX3toJKxNdb3aVNdr1BzpKRPGSbpUXZGtbGdawtcGAGAiwjUAAAAAAAAAey3DbtPyRflavijfqPX7hlVrjJOMhW4efyDha/sGA3pna5fe2dpl1PKy0rSoYnycZFV5tjLttoSvDQA4cBGuAQAAAAAAAEiobEeajlxSpCOXFEmSotGouvuH4na31ba4NTgcSvjaPZ5h9Wxs1+qN7UatJC8jdn5bRSxwW1CapbQUPhoFAOwd/gYBAAAAAAAAMK1MJpMKctJVkJOu45eXSJIikajaevzju9ua+lXf6lEgFEn4+m09A2rrGdCr61okSWazSRWFjgkjJbNVWeyUzWpO+NoAgP0P4RoAAAAAAACAGWc2m1RW4FBZgUMf/kC5JCkUjqipw2fsbqtpcquhw6tIJJrQtSORqBravWpo9+rFNU2SJJvVrPklztgOt9HQrbTAIYvZlNC1ARx4BgcHdc455+iWW27R0Ucfnex2Zq1wOKyLLrpIn/rUp/SpT30q2e28L8I1AAAAAAAAALOC1WLWgtIsLSjN0seOidVGgmFtb/Vo29g4yWa3Wrr8CV87GIpoW5Nb25rcRs2eatHCMldc4FaYky6TicANwOR4vV5df/31amhoSHYrk9bV1aW///3v+ve//62Ghgb19fXFdiAXFGjBggX6yEc+ooKCAqWlpSVszZGREd1yyy166623Zn2wJhGuAQAAAAAAAJjFUm0WLZ6Xo8Xzcoza4HBQtS2xnW1j57h19Q8lfO2hkbA21fVqU12vUXOkp0wYJ+nSoops5TgT9wEzgLktGo2qv79f7e3tevnll/Xoo4+qvb19zxfOAuFwWA8++KB+9atfaXBwUB/60Id07bXXqry8XGazWa2trXrhhRf0ne98Rw6HQ1/60pd0+OGH7/V6Ho9HnZ2dWrVqlf7yl7+ovr4+gV/N9CJcm2W2bt2qxx57TGvWrFFLS4uGhoaUkZGhgoICLV++XB/5yEf0wQ9+cFb9dMzIyIgeffRRPfvss9q6datGRkZUUlKiww47TBdccIEOPfTQZLc4J0WjUUUiEUWjiR17sDdCoZ0PFw6FQrPqv0MAAADsv6byftRkMslsNvNeFQD2c+lpNh1ala9Dq/KNmts3Mhq49Wvb6A43t38k4Wv7BgN6Z2uX3tnaZdRys9KMs9vGQrfM9JSErw1g9nriiSf0P//zP7PmM92pCgQC+vrXv64XX3xRqampeuCBB3TqqafGvebwww/XGWecoddff11f/epXddddd+n888/XJz/5yUmvs2bNGl188cXG599zFeHaLNHW1qbbb79dq1ev1gUXXKAbb7xR5eXlikQiamtr07///W/97ne/01/+8hctXbpU99xzjyorK5Pdtt577z197WtfU2Njoz784Q/rpz/9qUpLS7V161b95Cc/0bnnnqsvfOEL+ta3viWbzZbsdme1aDSqwcFBeb1e+f3+XX6AkCy7+stg+/btfGABAACAGbE370ctFovsdrscDocyMzNltfLtLwDs71yOVK04uFArDi6UFPv7o9s9NHp22+hIyRa3BocT/5lLr2dYvZ4OvbGpw6gV52XEBW4LS7OUlsrfR8D+6uSTT9YTTzxhPB8YGNAjjzwSV5vNbrvtNr344ouSpBtvvHGnYG2iFStW6Oqrr9b3v/99PfLII8rKytJJJ500qXWWLVsW9+9keHhYzz33nH71q1/tU/8zjT/NZ4H169fryiuvVG5urp555hkVFxfH/XphYaEOP/xwnXfeebrkkkv07rvv6rOf/aweffRRlZWVJalraePGjbrooos0MDCg888/XzfffLPxa0VFRTrxxBN11VVX6Xe/+51aWlr04IMPymw2J63f2Soajaqrq0sej0fhcDjZ7QAAAAD7hXA4LL/fL78/diZPWlqa8vPzlZmZmeTOAAAzxWQyqSA7XQXZ6Tr+0BJJUiQSVVuPX7XNbm0bDd3qWz0KhBK/e6K9Z0DtPQP617pWSZLZJFUUOY2dbVXlLs0rzpLNyudlwP7A6XTK6XTG1Q455BC9+OKLGhgYSFJXk7Nq1Sr96U9/kiQtWbJE55577h6vWb58uY444gitXbtWv/71r7V8+fJJrZWenq7q6uq42qGHHqpXXnlFdXV1U28+SQjXkqyvr09XXXWV3G63fv/73+8UrE1UVFSke+65R+ecc476+/v1zW9+U3/4wx9msNtxbrdbV199tQYGBlRdXa0bb7xxp9eYzWbdfffdOuWUU/TKK6/o3nvv1de//vUkdDt7RaNRtbW1yev1JruVPUrk4ZQAAADAVO3r+9Hh4WE1NzeruLhYLpcrMU0BAOYcs9mksgKHygoc+tAHyiVJoXBETR0+1TT3j+5yc6uhw6tIJLFj3SJRqaHdq4Z2r15c0yRJslrMml/iHN/hVuFSWYFDFjPTgoD9gdVqlcvlmvXh2oMPPmg8vuCCCyZ93cc+9jGtXbtWw8PD+vOf/6wTTzxxr3vIzc0lXMPk/fSnP1VfX58WL16shQsX7vH1ixcv1gknnKB//etfWrt2rdasWaOjjjpqBjqN98Mf/lBdXbG50tdff/1uR6w4nU5deOGF+vGPf6yf//znOv3007V48eKZbHXWmkvBGgAAALC/aG9vVygUUm5uLmPOAQCSYgHXgtIsLSjN0seOidVGgmFtb/Vo24TArbXbn/C1Q+FI7P7NbkkNkiR7qkULSmO726pHA7fCnHT+3gIwLerq6vT2229Liu34Pfnkkyd97eLFi2W32zU0NKR///vf8ng8ys/P3/OF+wHCtSR77rnnJEnBYHDS1xx33HH617/+JUl6+eWXZzxca25u1mOPPSZJmjdvnj74wQ++7+vPOecc/fjHP1Y0GtU999yjn/3sZzPR5qzX1dW1y2AtLS1NDodDGRkZslqts+KNUyQS0fDwcFwtLS2NMZ8AAACYEVN5PxqNRhUOhzUyMiKfz6eBgYGdDkrv7u6WxWJRdnb2tPYNAJi7Um0WLZ6Xo8XzcozawFBQda2xoC0WiPWrq38o4WsPjYT1bn2v3q3vNWqO9BRjnOSicpcWVWQrx8mUIQD77o033jAel5SUKDc3d9LXWq1WVVVVaePGjQqHw/rnP/+pz372s9PR5qxDuJZEg4OD6uzslBRLh//1r3/tMaiSpPLycuNxU1PTtPW3Ow899JARBp599tl7fH1ZWZkOOuggbd26Va+88orq6+u1YMGCae5ydotGo/J4PHE1k8mksrKyWXkGRCQSkcViiatZrVbCNQAAAMyIqb4ftdlsSktLU1ZWlqLRqLq7u9Xb2xv3mv7+fsI1AMCUZNhtOrQqX4dWje/KcPtGVNsSO7ttW7Nbtc1uuf0jCV/bNxjQO1u79M7WLqOWm5WmqjKXFlWMjpQsd8mRnpLwtQHs3zZv3mw8njdv3pSvLykp0caNGyWJcA0zY2go/idb7rzzzkmFa3a73XgcCAQS3tf7iUQieuGFF4znk52humLFCm3dulWS9OKLL+rKK6+clv7misHBQYXD4bjabA3WAAAAgLnMZDKpoKBAFovFGG0vSSMjIxoeHuZsYQDAPnE5UrXi4EKtOLhQUuwHqrvdQ6OjJGMjJWtb3BocDiV87V7PsHo9HXrz3Q6jVpybMbqzLRa4LSzNUloqHwED2L2+vj7jscPhmPL1OTnjO3zHMoADAX+yJlFOTo7y8/PV3d0tScYutj3p7+83HhcXF09Lb7uzbt06o9/09PRJn5+2ZMkS4/FLL710wIdrO46DTEtLI1gDAAAAplFOTo76+voUCo1/uOnxeAjXAAAJZTKZVJCdroLsdB1/aIkkKRKJqq3Hb5ytVtPUr/pWjwKhyB7uNnXtvQNq7x3Qv/7TKkkym6TyQkdsZ1tFbKTkvOIs2axMIwIQM3ETUGpq6pSvn/h+ur29XX6//4D4rJtwLYlMJpPuvfde3XvvvXK73brwwgsndd2mTZuMxwcddNB0tbdL69ati1vbap3cf0KLFi0yHm/ZskXhcHinsS4HEr8//gDcvfmJAAAAAACTZzKZlJWVFTce0ufzqbCwMIldAQAOBGazSWUFDpUVOPThD8SOewmFI2rq8Blnt9U0u9XY7lU4Ek3o2pGo1NjhU2OHTy+9FTtexmoxa36Jc/T8tljoVlbgkMVsSujaAOaG9PR04/Hg4OCUr99xVHtDQ4OWLVu2z33NdoRrSbZixQr97ne/m/Tro9GoMZbRarXqtNNOm67WdqmmpsZ4XFpaOunrCgoKjMeBQEBNTU2aP39+QnubK6LRaNxPy0pSRkZGkroBAAAADhwOhyMuXAuFQopGozKZ+DARADCzrBazFpRmaUFplj52TKUkaSQY1vY2j2qaxgO31m6/oonN2xQKR4xddFKDJMmeatGC0tjOturRwK0wJ52/I4EDgNPpNB673e4pXz9x9LoU+wG2AwHh2hzz8ssvq7U1tq371FNPjZtnOhNqa2uNxyUlJZO+Lj8/XyaTSdHRdwN1dXVzMlwLhUL7/KYiHA4b/x7GmM1mRSKJHwUw3eZizwAAANh/TPX9qNlsjnsvHo1GFQgEdvppWwAAksEsaWGJQwtLHPr4MbEdboPDQdW1elXb4lZti0e1zR51u4fe/0Z7YWgkrHfre/Vu/fgPoTjSbVpYlqWqMpeqyrJUVZalHCfjlHHg2nHDxO5qO5r4/jMUCikYDCa0r301b94843FNTc2k+pv4db/zzjtxvzYwMJCw3mYzwrU5JBwO67777pMU26p53XXXzXgPEw83zMrKmvR1VqtVdrvd2Fbq8XgS3ttM2Lx5c0LvNzaPdmRkZFJ/EM8mE2fxAgAAADNtb96PTvxBt+HhYUnxY/cBAJitFmZLC7Ot+tghuRoYDqutL6DW3qDaegNq7QtoYDjxPwDtGwzqP9t69J9tPUbNYbeoNNemktwUleTE/peeyg+p4MD13nvv7fE1gUDAeFxfXz/rzvydeD6a2+3WM888o/Ly8kld+9ZbbxmbgcbszWjJuYhwbQ759a9/rS1btkiSbrnllkn/B55IE1Pnqf4hkJKSYvzGOlB+gwEAAAAAAACJlJFm0aISuxaV2CXFdsV4B8Nq7RsN23oDausLaCSY4HmSknxDYW1pCWtLy7BRy860qHQ0bCvNTVFxjk0pVgI3YK6orq5WXl6eenpiQfqqVav0uc99bo/XDQ4O6ne/+13ctVIsBzgQEK7NEZs2bdIPf/hDSdINN9ygM888Myl9TAzFUlNTp3TtxDDuQNkaCgAAAAAAAEwnk8mkrAyrsjKsWlIeC9wi0aj6fCG19QbV2hdQW29A7f1BhcKJD9z6/WH1+4e0qXFotB8p32lVSW6KEboVumyyWji/DZiNzGazPvGJT+jXv/61JOn555/Xqaeeqvz8/N1eE4lE9LOf/UwlJSUqKCjQiy++aPxaRkbGtPc8GxCuzQFdXV265pprFAqFtHLlSn3+859Pdkt7ZeJ5CJxpAAAAAAAAAEwPs8mkPKdNeU6bDp2fLkkKR6Lq9gRj4yT7YjvcutxBRRKct0WjUpcnpC5PSP+pj/2gvsUsFbpssbAtN0WlOSnKc1plNhO4AbPBRz/6UW3YsEHr1q1TIBDQ3XffrW9/+9tyOp07vXZkZES/+MUv1NLSom9/+9v661//GvfrE8dM7s8I12Y5r9erK664Qt3d3fr+97+vT37yk0ntJyMjQ263W9L4GQWTNXG27FxNrw8++GDZbLZ9ukcoFNL27dvjamlpabJaZ/dvxx3PtLDb7UnqBAAAAAeiRLwfDYVCMplMcdfPnz9/1r8XBwBgugSCYTW0+1Tb4lZti0e1LR61dvsVTXDgFo5IbX1BtfUFpZrYRKu0FIsWlDi1sMylReVZqirLUmFOuvF3NTDbhEKhnc5YW7JkyR7fS04ck7hgwQIdeuih09LfvvrVr36lW2+9VY8//riam5t144036stf/rI+/OEPKycnR93d3fr3v/+thx9+WE6nU9/97nfldDo1MjISd5+srKwkfQUzi+8gZjGfz6dLL71U9fX1uv/++3XyyScnu6W4cG3H3zR7MvH16enpiWxrxlit1n0O10wm005vEsxm86zezTdx1+FEs7lnAAAA7D8S9X7UbDbv9F7cZrMRrgEADlg2m01LF6Zp6cLx8W+Dw0HVtXhU09yvbc1u1TS71dU3+D532TvDgbDea+jXew39Rs2RblNVmUuLKrK1qNylReUu5WbxA96YvSbzefHE95+J+Hx5uthsNt1xxx363Oc+p9/85jd67bXXdMstt+iWW24xfn3ZsmW6/PLLdcYZZxhB48QfgrPZbKqoqEhK/zON7yBmKY/Ho0svvVR1dXX62c9+pmOPPTbZLUmSsrOz1draKinW42QFAoG4nW45OTkJ7w0AAAAAAADAvklPs+mQqjwdUpVn1Dz+EdWMBm01zf2qaXbL7ZvaD95Phm8wqHXburVuW7dRy3GmxYK2CpcWlcdCN0d6yvvcBcC+WL58uX7wgx8oGo2qv79fHo9HNptNBQUFxi68iVPqJuYEB9JUiAPjq5xj+vv7dckll6ipqUm//OUvtWLFimS3ZFi4cKE2bdokSWpra5v0dd3d3YpO2E++cOHChPcGAAAAAAAAIPGyMlO14uBCrTi4UJIUjUbV4x42graa5n7VNrs1MBxK+Np93mG9+W6H3ny3w6gV52aoanRn26JylxaWuWRP5aNuIJFMJpNycnL2uFGmr6/PeLxo0aLpbmvW4E+cWWZsx9pYsHbEEUcku6U4VVVVxuP29vZJX9fZ2Wk8Tk9PV2lpaUL7AgBMn9bWVpWUlDD3fgYMDAzM2XNJAQAAABw4TCaT8rPtys+267hDSyRJkUhU7b0DqmnqN3a51bV6FAiGE75+e++A2nsH9O//xCZsmU1SWaFjNGyL7W6bX+KUzWpJ+NoAxg0PDxvHSEnS0UcfnbxmZhjh2izi9/t12WWXqaGhQf/3f/+nww8/PNkt7WTiYYtbt25VJBKZ1DkHNTU1xuNly5bxAS0AzCH33XefGhsb9d3vfldLlixJdjt79NBDDyklJUWf/exn59QogtbWVn3605/Weeedp0svvVQulyvZLe2koaFB8+bNm7b7BwIB3X///briiivkcDimbR0AAAAAiWc2m1San6nS/Ex96APlkqRwOKKmTp+2NY2Pk2xs9yocie7hblMTiUpNHT41dfj0j7eaJUlWi1nzSpxaVO5S9WjoVlbokMXM55JAorS0tBiPLRaLTj755CR2M7PmzidO+7lAIKCrr75aNTU1+sUvfjGpYC0YDOr//b//p7vuukt2+8wc7LlixQq5XC653W75/X7V1taqurp6j9e9++67xuNTTz11OlsEACTY5s2btW3bNn3mM5/R5z73OX3ta1+b1cHH4YcfrvPPP1+///3vdfPNN+vII49MdkuTUlpaqmuvvVa33HKLfv/73+vLX/6yLr744lkVEF5zzTUqLCzUl770pWk5D/aee+7R//3f/+npp5/WnXfeqaOOOirhawAAAACYORaLWfNLsjS/JEsfO6ZSkhQIhrW9zRN3hltLl1/RxOZtCoUjqm12q7bZrWdHa6kpFi0szTJ2ty2qcKk4N4ONAMBeqqurMx4ffPDBysrKSmI3M2v2fFpzAItGo/rWt76ltWvX6ic/+cmkP0javHmzVq9ePWPBmiRZrVadeuqpevTRRyVJr7/++qTCtbfffltSbMs44RoAzB0ej0e1tbWSpHA4rO7u7kntWE6mww47TGeddZaeeOIJffGLX9QXvvAF3XDDDbLZbMlubY8+//nP680339Tzzz+vu+66Sy+88IIeeOAB5efnJ7s1SZLdbteqVau0atWqaV2nra1NV155pZ588kmVl5dP61oAAAAAZlaKzaKDKnN0UOX4OU6Dw0HVtXhU09yvbaOhW1ffYMLXHgmE9d72Pr23ffyMqEy7bcL5bdmqrnApN2vmPm8F5rINGzYYjw+0z/0J12aBBx54QM8884zuuOMOnXTSSZO+7rnnnlNFRcU0drZrF198sR5//HGFw2H97W9/08UXX/y+r6+pqTES7NNOO43z1gBgDlmzZo0ikYik2J/hP/zhD2d9uCZJX/3qV/XMM88oGAzqt7/9rYLBoG6++eZktzUpN954o15//XX5fD6tX79eX/jCF/TXv/5VmZmZe3W/aDQqj8eTkDGTaWlpkqSCggI9/PDD+3y/Hf3+97/X73//e0nSz3/+c4I1AAAA4ACRnmbTIVV5OqQqz6h5/CNxu9tqmt1y+0YSvrZ/KKj/bOvWf7Z1G7UcZ+r47rbybC2qcMmRnpLwtYHZJBgM6sknn9TAwIDOOOMM5eTkvO/r/X6/Nm3aJEmaN2/enJkclCiEa0n26quv6sc//rG+/OUv65xzzpn0da2trXrkkUd04okn7vLX29radNNNN+mtt95SWVmZ/vu/TILB/AABAABJREFU/1vHHXdcQnpetGiRzjrrLD322GN67733tHbtWn3gAx/Y7ev/+te/SorNXL322msT0gMAYGa8+uqrkqSDDjpId95555wI1qTYiMXTTjtNTz75pKTY30X/8z//o9TU1EnfIxQKJWUkY35+vj73uc/p5z//uaTYOWdr166d0g/gjIlGo1q5cqXWrFmj3/zmNyosLNyn3sb+fdhsNi1cuHCf7rUr2dnZxuO5cL4fAAAAgOmTlZmqFQcXasXBse9jotGoetzDqmnuV22LWzVNbtW0uDUwFEz42n3eEb35bofefLfDqBXnZhijJBeVZ2thaZbSUvl4HTPj73//u+6//351d3fr+OOP13e/+909hl9TddNNNxkT615++WU99NBD7/v6l156ScFg7Pffueeee8CNV+V3fxJ1d3frhhtu0DHHHKOvfvWrk75u3bp1uuGGGzQwMLDbnWs33HCD1qxZI0natm2brr76aj377LMqLi5OSO/XX3+91qxZo5aWFt1xxx3685//vMvfPJ2dnfrjH/8oSbr22mu1YMGChKwPAJh+4XBYL730kmw2m+66664pBVOzwac//WkjXLNYLLJYLJO+1ufz6Utf+pLOOussXXDBBdPV4m6df/75RrhWWFi4Vz/9NRas/fnPf5YkXXjhhfscsE3l3yEAAAAAJJLJZFJ+tl352XYdd2iJJCkSiaqjd2B0lGS/aprcqmv1KBAMJ3z99t4BtfcO6F//aZUkmU1SeaFjdKRkbJfb/BKnbFa+b0K86IQDBaN7cbjgO++8o2984xvGZKHnnntOvb29+u1vf5vQQOvZZ581Hr/xxhsaHh42JtjsqKWlRU899ZQk6ZhjjtHhhx++z+vv67+nmUa4lkT333+/+vv7VVtbq9NPP31S13i9XvX29hrPdxeujW3HHDM0NKSNGzcmLFzLycnRgw8+qM9//vPasGGD7rjjDv33f/933GsCgYC+9rWvaXh4WB/96Ed11VVXJWRtAMDMWLNmjfr7+/WVr3xFBx100JSuDQaDe3XG2T//+U95vV6dffbZU752RytWrFBGRoYGBgb06U9/etK70Hw+ny677DKtX79e69evVzQa1ec///n3vWb79u3Gm9xEyc/Pl9vt1nXXXaf29vYpX//www8bwZoU2wG3rwHb2Jv2YDAYd2hxovT39xuP58IbaQAAAADJZTabVJKfqZL8TH3oiDJJUjgcUVOnL26kZEObV+FIYr/HiESlxg6fGjt8+sdbzZIkq8WseSVOLSp3qXo0dCsrdMhiPrB29GBcIBBQV1eX8by5uVnHHHPMlO7x0ksv7fSZw1tvvaWGhgbNnz8/IX1KUnp6ugYGBiRJkUhEvb29uzziKRAI6L//+781NDSk8vJyfelLX0rI+i0tLcbj5ubmhNxzOhGuJVFPT4+k2A627u7uPbx613YXri1btszYuSbFxjctXrx4r9bYnerqav3lL3/Rtddeq4cfflhtbW267LLLVFRUpM2bN+u+++7T5s2bddFFF+mGG2444LaFAsBMePTRR+Vyud730NhoNKpvfetbOu200/ShD33IqD/zzDM64YQTlJWVtcvrHn/8cc2bN2+vfjji5ptvltls1o033jilkG1oaEg33HCDnnvuOd188837tMvKarXq4osvVnt7u775zW9O6pqJwZoU+3d36623StL7BmyrV6/WLbfcMi2B0PXXX5+wezU0NOiLX/yifvvb3+7Vv9uxsaBdXV2T/sGgvUW4BgAAAGBvWCxmzS/J0vySLH306EpJUiAY1vY2j2qb3aO73Nxq6fIp0d92hMIR1Ta7Vdvs1tgeoLQUixaWuUbPb3Opqtyl4twMPis9QDzxxBMKhULG8z/96U86++yz9+oHkneU6B/yPf/883X//fcbz5uamnYK1/r6+nTNNdfoP//5jyorK3XDDTcoPT19n9d+7bXX4n6w+Mknn9Sll14qp9O5z/eeLoRrc9zuwrU777zTOHOtsLBQ3/jGN3b72n0xb948/fWvf9Vzzz2nxx9/XF/96lfl8XhUVFSkww8/XLfffruWLl2a8HUBADH9/f369re/rY997GO69NJLdzm276WXXtITTzyhv/3tb7r66qt1zTXXyGw2a9WqVbrzzjv1ve99T8cff3zcNX6/Xy+88IIeeOABpaRM7dDmNWvW6NFHH1U0GlVdXZ3uv//+Sc8BH3tz+fLLL+vll1+e0rrv57HHHtvra6PRqG655RZJuw/YLrjgAjkcjv/P3l2HRZm1YQC/h24BBUTFQhC7c11bv7W7FQNFxVi7xW5FFDtWRVRcXezORV27sDsoAemegZnvD3ZmQQaYGYZQ7991ee3wvuc950zAwtzznIOIiAhUqVIFJUqUgImJCQwNc/6D6fbt23B0dAQA/P7773BxcZHbbtOmTVi3bh0AwNPTEw0aNFD1LqlMGniVLFkSly9fVnv/Hh4e2LBhAwD1/5FAREREREQ/Lx1tTVQsY46KZczR4d9jCUkivAuMTtu7zT8Sb/yjEBKRoPaxk4SpePY+HM/e/7camZG+9r/LSaZVt9mXNkXRIvpqH5vyV0xMDL58+QKxWIzIyEhcv34dnp6eGdo8efIEvXv3xsCBA1GuXDkYGRlBW1s72wq01q1bY9euXRn+Tra3t0fZsmXVOv/Ro0cjKioKXl5ekEgkcHNzw++//w4zMzN8+fIFd+/exZ9//gmhUIiBAweiVatWKm0hkpCQgICAAEgkEsTExODevXvYuXNnhjaBgYHo0aMHhgwZAnt7e9kHw+3t7dVyX9WB4VoB2rRpU571XaJECdleLXlNR0cHnTt3RufOnfNlPCIi+o/0l5hz587h8uXLcoOc1NS0teYlEgm8vb3RvXt3lCpVCtra2ggJCcGwYcOy7D+7c4q4d+8eVqxYgRUrVijUPv0nt7p27QpnZ+dcja9OOYVknTp1yqeZFJz8rCaTvm6JiIiIiIjygoGeNqrZFkM122KyY9FxyXgb8O9ykv+GbpGxyWofOy5RhEevw/Do9X+rmZmb6Mr2brOzMUMFG1OYGCr3YVcqWBcvXsy0dZI8z58/x6xZs2Rf5/QB1tq1a2PNmjVYv349QkJCUK9ePbi6uqp9X3RNTU3MmTMHPXv2xJ9//ok7d+5g7NixEIlEMDY2RoUKFTBs2DB069YNFhYWePLkiUrjPHnyRPYh4+x8/vxZ9mFnqVevXqk0Zl5guEZERPQdSx9G7d69G3Xr1s3UZu3atdiyZQsA4I8//kCpUmnr0Esr0ooVK5bpk1S5ERAQIAvF2rRpI1tWURHp74+pqSlsbW3VNi/KvfysJhOJRPk2FhEREREREQAUMdJFHQcr1HFIW0ZfIpEgPDpJVtn25nMU3gREIT5R/X+vRMQk4/azL7j97IvsWPGiBukCN1PYljKFvi7f0i+sunfvju7du+dJ3+3bt8/z7RmkHBwc4Orqmm0boVCocv8NGjQoVCGZqvidSERE9B3T0lLuf+XplxmQfsJJU1Mzz0Ksli1bKrWsZPpw7Udbf/7Vq1fw9PTEggULlH7eCgtp4CUSifDu3Tu19x8ZGZlpLCIiIiIiooIiEAhQzFQfxUz10ahaCQBpgVvw1/i0sM0/rbrtXWA0koXqX33jS3gCvoQn4NqjQACAhgAoZWUsq26zszFFuRIm0NZSbwUTEeXs+3xnh4iIiAAgVxvgFsaA50cO11avXg1fX1+EhoZi3bp1atnw19fXF9euXcOIESNgaWmphllmT7pUY2hoaJ5/Yi4pKSlP+yciIiIiIlKFQCBACQsjlLAwQrPaaSvDpKaK4R8ahzefI/H638DtY1AMUsXqXVpfLAE+f4nF5y+xuHTXHwCgpSlAWWuT/yrcSpvBxsoYmho/1t/URIVN4XtXjYiIiBSWm4BM3Wtzq4OGhkZBTyFPXLx4Eb6+vgDSArFBgwZh27ZtKFq0aK76bdiwIa5cuYI2bdqgb9++cHZ2znWf2UlOTttrIKf14FXl4eGBDRs2QFtbO1/3dyMiIiIiIsoNTU0NlLU2QVlrE7RpUAYAIBSl4kNQdIYKt4DQOKj7T52UVAneBkTjbUA0ztxMO6arownbkkXSBW6msC5q+MN9iJWoIDFcIyIi+o7lJowq7OGaKr/037x5EyEhIejatatK48fFxWH69OmYNWsWSpYsqVIf34qPj8fSpUtlXxsYGKBKlSqIiYnJdRCmo6ODefPmoU6dOpg7dy7+/PNPDBw4EMOHD0eRIkVyO/VMpOGaubm52vsG0vb/Gzt2LPr06ZNlJd7hw4fRvn17tVT+ERERERER5RUdbU1ULGOOimX++/spIUmEd4HRaXu3/buPW0hEgtrHTham4vmHCDz/ECE7ZqSvjQr/7t1mZ2MK+9JmKFpEX+1jE/0sGK4RERF9x3ITrqmjSkwsFqu12ix9X9/2m5CQkGOgYmZmhtGjR6NatWoq7SP35MkTXLx4ETdu3MCoUaMwbNgwpfaMk2fFihUIDExbH9/U1BR79uyBg4NDrvr8VseOHWFvb4/Ro0dj27ZtOHjwIEaMGAFHR0fo6uqqbZxatWph4sSJaN68udr6TK9fv35ZnpNIJFiyZAn27t2Lc+fOYfPmzYVyaVMiIiIiIqKsGOhpo5ptMVSzLSY7Fh2XjLcB/1a3/Ru6RcYmq33suEQRHr0Ow6PXYbJj5ia6qFDKDHalTWX7uJkY5u5vYKKfBd+RICIi+o7lJtjKqjLs5s2bEAqFaNasWbbX37p1Cx4eHvDw8FBbJVNW4ZpIJELv3r2xd+9emJmZZXm9g4MDatSogYkTJ+Lw4cNKB2NPnjwBACQmJmLt2rU4duwY3N3dUbFiRSXvSZq///4bBw8eBAAYGxtj586dag/WpOzt7XH48GGMGzcOd+/exerVq3HgwAFMmTJFof3R3r9/n+NSjIMHDwYAfPjwQS1zVsamTZtw8uRJAGlLa86aNQsrVqzgsiZERERERPRdK2KkizoOVqjjYAUg7YOF4dFJssq2N5+j8CYgCvGJIrWPHRGTjDvPv+DO8y+yY1bmBrKgza60KWxLFoGBnur7vRP9qBiuERERfcfyYlnIuLg4jB07Fj179sSUKVPkVoslJSVhzpw58Pf3R8+ePbFlyxbY29urPBeprMI1bW1t/PLLL5g1axY2b96cbR+DBw/G6NGj4ebmhhkzZig1/tOnTzN8XbRoUZQvX16pPqS+fv2KmTNnAkhbCnL79u2oWrWqSn0pyszMDH/88QdmzpyJkydPIjAwUBY0Lly4EKVKlcry2jt37mD+/PnfzV5nx44dQ9GiRTF9+vSCngoREREREZHaCAQCFDPVRzFTfTSqVgJAWuAW/DUer//du+3N5yi8C4yGUJSq9vFDIhIQEpGA64+D/p0PUMrSOG0pSRtTVLAxRbkSRaCjXfi2miDKTwzXiIiIflJZVfzo6ekBSNvb6vDhwzn2ExgYiAULFsDLyyvXVUTpr/82/Bs4cCDatm0Lb29v9O3bN8s+WrRogdKlS2PPnj1o2bIl6tevr/D40so1IG0/s2XLlkFbW/lP6KWkpGDSpEkIDw+HiYkJtm3bhlq1aindjyp0dHSwevVqmJiYYP/+/QCAGzduoFu3btiyZQvq1Kkj97q+ffvCwsICMTExqFy5MqysrFCkSBFWhhERERERERUwgUCAEhZGKGFhhOa10z40mZoqhn9oHN58/rfCzT8SH4NjkJKq3g9MSiSAf0gs/ENicfmePwBAS1OAMtYmadVt/+7fZmNpBE1N9W0bQVTYMVwjIiL6juUm+Miq6i39UoozZ85E69atM7URCoVo164dAKB27drYunWrWkIYkei/ZS6+nZ+NjQ1atWqF5cuXo379+llWlAkEAnTv3h3u7u6YMWMGTpw4AUNDwxzHDgsLQ1BQkOzr/v37w8bGRqX7sWTJEty+fRvm5ubYuXMnKleurFI/qhIIBJg3bx40NDTg5eUFAIiJicGkSZNw5syZLPeua9WqVZZ9+vv7w8rKKtd70OUkKSkJQUFBKlcMEhERERER/Qw0NTVQ1toEZa1N0KZBGQCAUJSKj8ExePM58t8qtygEhMZC3QuUpKRK8C4gGu8ConH2ZtoxXR1N2JYsIgvc7EqbwrqoIT+wST8shmtERETfsdwsC5kVXV1d2W0zMzO5SwkmJ/+3uXL9+vVhZGSklrGTkpJkt+UtWzlw4EBcuHAB06dPx4EDB6ClJf9XmW7dumH9+vUIDAzE2rVrMWfOnBzHvnXrluy2jo4Ohg8frsI9AA4cOID9+/fDysoKu3btgq2trUr9qMOcOXPw9etXnD17FgDw5csXnD9/Hl27dlW6r7Nnz+LAgQNwcXFB165ds3zsc2vmzJm4dOkSJk2ahMGDB/MPMSIiIiIiIgXpaGvCvrQZ7EubocO/xxKSRHgXGJ22d5t/JN4GROFLeILax04WpuL5hwg8/xAhO2akr40KNqayPdzsS5uiaBF9tY+dXwQCAYoVKwZdXV0IBAJIJJI8eV+Gvg8M14iIiL5judkfK6vQoiB/MUxMTJTdlheuNWjQAGXKlIGfnx+2bt2KMWPGyO2nePHi+OWXX3Dt2jXs27cPnTp1Qo0aNbId++bNm7LbXbt2hYWFhdLzv337NpYsWQJ7e3ts374dxYsXV7oPVYWEhMDKyirDMYFAgOXLl+P9+/d4/fo1gLQKNlXo6OggMDAQs2fPxuzZs3M935wsW7YMT548wZo1a/J8LCIiIiIioh+VgZ42qtkWQzXbYrJjMfFCvJXu3/bvfyNikrPpRTVxiSI8eh2GR6/DZMfMTXT/q26zMUMFG1OYGObtCinqoqWlhTJlyhT0NKiQYLhGRET0HcuLcE1eqJVf0leuyauMEggE6NmzJ9asWYPNmzejVatWcHBwkNtXu3btcO3aNYjFYixcuBCHDh3KNjhMX7nm6Oio9Nz9/PwwduxY1K1bFx4eHjA2Nla6D1XdvXsXw4cPx4wZM9CvX78M5/T19bFx40b0798f4eHh+PXXX1UaI/1ykCtWrEC1atVyvObcuXNYt24dAGDnzp2wtrbO8Zrhw4cjKCgIdnZ2mDFjhkpzJSIiIiIioqyZGOqgtoMlajtYyo6FRyfi9ef/Are3/lGISxRl04tqImKScfvZF9x+9kV2zMrcQBa22ZU2hW3JIjDQU37/c6L8xHCNiIjoO5abcC0ryoZr6pxD+so1fX35S0V0794d69atg0gkwpw5c/Dnn3/KDc1atGgBTU1NpKam4unTpzh16hQ6deokt09/f38EBgYCSFvm0s7OTql5+/n5YdiwYWjbti0WLFgAbe20PwKCg4ORkJD9chvBwcGy25GRkXj37p3cdpGRkRmukbYLCwvDuHHjkJSUhPnz5yM+Pj7TkpalS5fG4cOH8erVK5QrV06p+yaVPlyztrZWaLnL9NV/NjY2Cn3CTxqqVq1aVaXqQSIiIiIiIlJe0SL6aFRNH42qpX0oUiKRIDg8/t/lJNNCt3eB0UgWpqp97JCIBIREJOD647R90AUCoJSlMexsTGFvYwq70mYoV8IE2loF92FgIG1Puw9BMfj0JQbJwlTo6miiTHETlCthAh3tgp0b5T+Ga0RERJQr6gzX0leuGRgYyG1TrFgxNGrUCNeuXcOTJ0+wf/9+DBw4MFM7c3Nz1K5dG3fv3gUAbN26NctwLX3V2reVXznx8/ODs7MzJk6ciAEDBmQ4FxYWhmHDhiE2Nlahvjw9PeHp6Zlju+nTp2d5btWqVRAIBHBycspwvHjx4rlapjJ9uEZEREREREQ/NoFAgBLFjFCimBGa1U7biz01VQz/0Di89Y/Ea/+00O1jUDRSUtX7wV+JBPAPiYV/SCwu3/MHAGhpClDW2gQVZEtKmqK0lTE0NfN+a4vXnyNx4tp73PALgihFnOm8tpYGfqleAp1+LQ/70mZ5Ph8qHBiuERERfcfE4sy/1GVHkSAsq+Ui1TWH7ERHR8tuGxkZZdlOuuQjAKxfvx6dO3eGiYlJpnb169eXhWtv3rzBkydP5C5n6OvrCyCt0qpNmzZKzXnz5s3YsGED6tatm+lc9erVceDAAYSHh8PBwQGmpqaycxcuXMCUKVNw9OhRlavJkpKS0L9/fzx79gwAYGlpiZEjR6JHjx4q9ZcdaTVefsmLqkwiIiIiIiJSnaamBspam6CstQla109bmUSUklbN9SbdHm7+IbFQ9590KakSvA2IxtuAaJz9d8t0XR1NlC9RBHal05aUtLcxhXUxQ6Xf18hKQlIKdp14irO3PmXbTpQixtUHAbj6IAC/NSyDoZ2qwkCP0cuPjs8wERHRd0zZYCt9+6x+2SzIcO3Ll//WXLe0tMyyXZs2bTBv3jyIRCJER0fj4MGDGDFiRKZ2NWrUyPD17du3M4VrQqEQ169fBwD07dtX6RBp8+bN2Z63s7OTu8xkmzZtULVqVcyaNQv79u3Ldj84eSQSCaZPny4L1kxMTLB7926FlmtURfrKNVX2pGvbtq1S7dX5uiIiIiIiIqK8oa2lCfvSZv9WbKV9cDQxOQXvAqTLSaaFbl/Cs98yQRXJwlS8+BiBFx8jZMcM9bVhV8r038AtLXQrWkRP6fc6wqMTMWfLPwgIjVPqurO3PuHp+3AsHtUYRYvI3+6CfgwM14iIiL5jygYQKSkpsttZVQblps/cSh+uWVtbZ9nOxMQEtWrVwp07dwCkVYHJC9eqV6+e4evQ0NBMbW7cuIGEhARoa2ujb9++qk5dJdOnT0fv3r2xe/duDBs2TKlrN27ciLNnzwJIqypbv359ngVrQMa9+FasWCG3AvBb586dw7p16wAAO3fuzPY5lRo+fDiCgoIYrhEREREREX2n9HW1UNW2GKraFpMdi4kX4m266rY3/pGIiElW+9jxiSI8ehOGR2/CZMfMjHVhZ2MmC9wqlDJFESPdLPtISEpRKViTCgiNw9ytN7F6fFNWsP3A+MwSERF9x5RdOk+dQZiUOkOQ4OBgAICenh6KFi2abduGDRvKwjU/Pz9ERUVlWHYRAMzMzGBqaoqoqCgAyHQeSAuAAKB9+/YoVqxYpvN5qXr16ujevTvc3NxQp06dTJV2WTl69Cg8PDwApFUaLlq0CI0aNcrLqUIoFMpuW1tbKxTkWVhYyG7b2NigTJkyOV6jpZX26ynDNSIiIiIioh+HiaEOajtYorbDf6vUhEcn4vXn/wK3t/5RiEsUqX3syNhk3Hn+BXee//eBXitzA1SwMYW9jSmqVSgGO5v/9krbdeKpysGalH9ILHadfIYxPRX7O5++PwzXiIiIvmPpw7IbN24gMDAwU5s3b97IbqcPSLKSmpoqux0WFoZ3795laiMSieTezi1p5VqFChVybNugQQPZbYlEgs+fP8sNzxwcHHDr1i0AyLQvmlAoxKVLlwCottShOkyfPh2+vr4YP348jhw5AnNz82zb//PPP5gzZ47s61mzZqFbt255PU2FXjvqlBdBMBERERERERUeRYvoo1E1fTSqlrbKiUQiQXB4PN58/m85yXeB0UgWpubQk/JCIhIQEpGAG4+DMK53TVm49vpzZI57rCnq7M2PaFO/9L9LZtKPhuEaERHRdyx9AHHq1Cno62dez/vr16+y28nJ/y25kFXVW/pwbdWqVVi1alW2c1BXuCYUChERkbZOeuXKlXNs7+DgAIFAILsfSUlJctu1bdsWt27dQqNGjVCvXr0M565du4aYmBjUrl0bVatWzeU9UE2RIkXg6uqKcePGYfz48fjjjz8y7G+W3rNnzzB27FjZYz5u3Lh8CwXVGaIWxvGIiIiIiIioYAkEApQoZoQSxYzQrHYpAEBqqhj+oXF48zkSb/7dx+1jUDRSUpVbyScrWpoaaFqzpOzrE9feq6VfqZPX32NS/zpq7ZMKB4ZrRERE37H04drSpUszVWYBwNq1a7FlyxYAioVr6ftcuXIlunTpkqlNcnKybD8zdVU0ffnyRTanSpUq5djeyMgI5cqVw/v3ab/4li5dWm67Pn36wMrKCs2aNcu0gfGpU6cAFFzVmlTbtm3RvXt3+Pj4YMqUKXB3d4eGhkaGNm/evMGwYcMQHx8PAHBxccHYsWPzbY7pn+fg4GC5FY3fCgv7b417f39/harRpG3Sv1aJiIiIiIjo56SpqYGy1iYoa22CNg3SthoQpaTiQ1CMrLrtjX8U/ENioeTOGQCAstYm0NNNi0mEolTc8AtS5/Rx/XEQxvaqCR1tzZwb03eF4RoREdF3TJml87S0tDKFS/IoG2qoKwR59eqV7Hb9+vUVuubXX3/F+/fvUbNmTRQvXlxuGy0tLbRu3TrT8bi4OFy6dAnW1tZo06aNapNWI1dXVzx58gTnzp3D/PnzsWDBAtnz9eHDBwwdOlS2d9zvv/8OFxeXfJ1f+nBt+vTpSl/v5OSkVPvExESlxyAiIiIiIqIfn7aWJuxLm/273GI5AEBCkgjvA6P/DdzSQrcv4Qk59lXBxlR2+0NQDEQp6t3/W5QixsfgGC4N+QNiuEZERPQdU2TpPG1tbXTv3h2jR4/OUN0lFsv/hVEaalhaWmZZDQYAJUqUQL9+/dCrVy8lZy3f06dPZeMqsucaAAwaNAjv3r3D/PnzlR7vwoULSEpKwsCBA6GlVfC/Eunr62PdunXo3bs3Dh48CJFIhMWLF+Pt27cYNmyYbHnPqVOnYvjw4fk+v/SvNU9Pzwx73mXl0KFDsv3hzp8/jzJlyuR4TZs2bZCamooOHTqoPlkiIiIiIiL6qRjoaaOqbTFUtS0mOxYTL8TbdNVtb/wjERGT8QPCVuYGstufvsTkydwYrv2YCv6dJCIiIlKZtJpIW1sbRkZGctuMGjVKbniU1bKQZmZmcHNzQ9u2baGtrS23ja6uLi5evAhNTfUta/Ds2TMAQJMmTRS+xsbGBjt37lRpvCNHjsDAwAC9e/dW6fq8YGtrCw8PDzg7O8PHxwehoaF4+vQpoqKioKWlhUWLFqF79+4FMjddXV106dIFbdu2Ra1atfJsnNWrV6NatWrQ0NBAXFxclq9rIiIiIiIiouyYGOqgtoMlajtYyo6FRyf+V932ORL6uv+9X5IsTJXXTa4li/KmXypYDNeIiIi+YxoaGujfvz9GjhyZ7bKI8mRVuVarVi2FwhN1BmspKSl4/PgxAKB9+/Zq6zcrQUFBuHPnDvr37w8TE5M8H08ZjRs3xpIlSzBt2jRcv34dQFpVm7u7O5o3b15g8+rfvz/69++f5+PUqFEDYrEY69evx4EDB+Dp6Qk7O7s8H5eIiIiIiIh+fEWL6KNoEX00rGoNIOMHj3V18mZfNF3ut/ZDYrhGRET0HXNyclJoHzV5sqpcKwh3795FTEwMLCws0Lhx4zwf78iRIwDSlpUsbCIiInD+/PkMx8zNzQukgis8PDzLEFYRcXFxstuRkZEwMDDIpnWa5ORkLFiwAL6+vgCAoUOHYv/+/dkuUUpERERERESkivTvqZQpnjcfvi1rXbg+1EvqwXCNiIjoO6ZqsAZkXblWEK5cuQIA6Ny5s1or4uSRSCQ4cuQImjdvjnLlymXZTigU4vTp0+jatWuezie98+fPY+HChQgLCwOQtq9dSEgIAgMDMXDgQPTt2xfjx4+Hubl5vs1nwYIFagli+/Tpo9J1YWFhGDJkCPbt2wdra+tcz4OIiIiIiIhInnIlTKCtpQFRivreL9HW0mC49oNiuEZERPSTSk3NmzW/ExMTlWovkUhw6dIl6OjoYPDgwXkyp/Tu3LkDf39/LF68OMs2IpEI48ePx5UrVxASEoKRI0fm6Zw+ffqExYsXy6q19PT0MGrUKDg5OeHhw4eYPHkywsLCcODAARw/fhzDhg3DwIEDYWpqmqfz6tevH/T19fHx40dUrVoVpUqVgrGxMYyMjBQKdo8dOyZ7nI8cOYJSpUqpPBddXV2VryUiIiIiIiLKiY62Jn6pXgJXHwSorc8mNUpAh8tC/pAYrhEREf2k8ipc++eff5Rqf+vWLQQEBKBPnz6wsrLKkzmld/jwYVSqVAkNGzaUe14sFmPatGmyajo3Nzfo6upiyJAhap9LaGgoNm3ahMOHD0MkEkFTUxNdunTBuHHjUKJECQBAgwYNcOLECSxbtgzHjh1DfHw8PDw8sGPHDnTp0gW9e/dGlSpV1D43qdxU7unp6cluGxoaFrr97YiIiIiIiIjS6/RrebWGax2blFdbX1S4MFwjIiL6SeUmXHN1dYWhoSEMDAygp6cHHR0daGho4MOHDzh48KCsnSLVTd7e3tDV1c1QHRYcHIyEhASV55cVoVCI8+fPY8SIEXj37p3cNjt27MDp06czHFu2bBl0dHTQv39/tczD398fu3btwl9//YWkpCRoa2ujW7duGDlypNylKs3MzLBy5Up069YNy5cvx8uXL5GYmAhvb294e3ujfPny6NChA5o1a4aqVavmarnQwuzQoUOIjIyEs7NzQU+FiIiIiIiIfkD2pc3wW8MyOHvrU677+q1RWdiXNlPDrKgwYrhGRET0k0pJSVH52t9++w0PHz7EtWvX8OjRoyz35LKxscm2n69fv+LSpUsYOXIkSpYsKTseFhYGJycnxMTEqDzH7Hh4eMDDw0OpaxYuXAhdXV306NFDpTElEglu3LiBgwcP4tKlS0hNTYWFhQUGDx6MAQMGKFS116hRIxw5cgTHjx/Hli1b8OHDBwDA+/fvZffJ3Nwc9erVQ/Xq1VGjRg3Y29ujSJEiKs25MPH09MTSpUsBAOXKlUObNm0KeEZERERERET0IxraqSqevg9HQGicyn3YWBljaMe8W2WGCh7DNSIiop+USCRS+drGjRujcePGGDNmDPz9/bF9+3b8+eefGUK24sWLo2bNmtn24+npCUtLy0yVSNWrV8fu3btx/fp1VKpUCeXKlYOJiQmMjIygqfl9rVX+/v17nD59GkeOHEFAQAB0dHTQokULdOvWDc2bN4eWlnK/jmloaKBr167o3LkzLl68CE9PT9y9e1d2PiIiAufOncO5c+dkx8zNzVG+fHlYW1vDwsICtra26NmzZ4Z+k5OTERCgvqUvgLSQVMrf31/lQPfcuXNYt26d7OupU6di3759ebocJhEREREREf2cDPS0sHhUY8zdehP+IbFKX29jZYxFIxvBQI/xy4+Mzy4REdFPKjeVa+nZ2Nhg4cKFaNiwISZNmgSJRAItLS0sXLgw2+AoMjIS+/btw/r166Grq5vpfJUqVb7b8OT58+e4cuUKzp8/j5cvX8LExASNGjXChAkT0KJFCxgZGeV6DA0NDbRt2xZt27bF27dv8ddff+H06dP48uVLprYRERGIiIiApqYmmjZtijJlymRqo62tjR07dsDHxyfXc5PHyclJbX0lJiZi1KhROHz4cL7s00dEREREREQ/l6JF9LF6fFPsOvFUqSUif2tUFkM7VmGw9hPgM0xERPSTEgqFsLCwwNChQ9XSX/v27XH06FEEBQVh3rx5qFevXrbtd+3ahd69e+OXX35Ry/gFKTg4GLdv38adO3dw7do1xMfHo3r16mjTpg3mzZuHGjVq5GnFXYUKFTB9+nRMmzYN9+/fx6VLl/D3339n2FeufPny2LBhA2xtbeX2oaGhgaVLl6JixYowNjZGpUqVUKxYMRgbG0NfXz/P5k5ERERERERUGBnoaWFMr5po06AMTl5/j+uPgyBKEWdqp62lgSY1SqBjk/LcY+0nIpBktUkK0U9MKBTiyZMnmY5Xq1YNOjo6ueo7JSUFb968yXDMzs5O6WXB8pNYLEZiYmKGY/r6+tDQ0CigGRGROjx58gQVK1bM9c+19L5+/YpixYop1Hb27NmYN2+eWscvCFeuXMH27dvh4OCASpUqoWrVqrC3ty8Uy1dKQ7979+5h+PDhKFu2bEFPiYhIJer6ffR7/F2ciIiIiAoHoSgVH4Nj8DE4BsmiVOhqa6KstQnKWptAR7vg3wPIT3n5/vn3guEakRwM1zJiuEZEREREBYnhGhERERFR4cFwDeA740REREREREREREREREQK4sfziIiIiIiIiIiIiIiIspGSkoLAwEDo6OhAQ0MDYrEYlpaWhWJbCMp/DNeIiIiIiIiIiIiIiIiyIZFI8PXr1wzHihUrxnDtJ8VlIYmIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iIiIiIiIiIiIiIiIgUxHCNiIiIiIiIiIiIiIiISEEM14iISC1SU1Pxzz//YNasWXB1dVVr3/7+/oiLi1Pp2idPniA2Nlat88nOsWPH8ObNG5WuDQwMRHx8vJpnlDtisbigp0BKunbtGgIDAwt6GkREREREREREPyyGa0REpLKgoCAcPXoUkyZNQuPGjTF06FD89ddfOHjwIHbv3q22cbZu3YrOnTvj7t27Sl/7+PFjtGrVCtu2bYNQKFTbnLJy7949dO7cGRMnTsTbt2+Vuvb48eP49ddfsXDhQqWvzQtxcXHo3Lkzbt26VdBTkevEiRMICQnJ1zGPHz+OFStWQCQS5eu4yrhz5w7+97//YdGiRQgLCyvo6RARERERERER/XAYrhERkUJiY2Nx584d7N69G5MnT0bz5s3RokULTJ8+HadOnUJUVFSG9qtWrVIpDPuWUCjEuXPnEBgYCEdHR6xYsQKpqakKXz9w4EA0bNgQa9asQZcuXfDkyZNczyk7urq6EIvFOH36NEaPHo3o6GiFrw0PD0d8fDz27duHDh06YMuWLXk405wdOHAAb968wZAhQ7BixYp8CSeV8fjxY3Ts2BFHjhzJl/EiIyOxdOlS/PHHHxgwYEChrQ7T1dWFSCSCl5cX2rRpo9agm4iIiIiIiIiIAK2CngARERUeycnJCAwMREBAAPz9/fHhwwe8f/8eHz58QFBQUKb2AoEAxYoVg6WlJaysrFC0aFGYmppCX18f2tra+PDhA+rVq5erOZ07dw4xMTGyr8uVKwdNTU2l+nB1dcWNGzfw/v17DBw4EH/88Qfq1KmTq3llRUdHBwBQpEgReHt7o0iRIgpfGxERIbvt6OgIZ2dntc9PUbGxsdixYwcAQCKRwMfHBxUqVECPHj3UNsbVq1dRt25dGBkZqXS9rq4uYmJiMGPGDMyYMUNt81LE48ePce7cOQwbNixfx1WEltZ/v941adIEnTt3LsDZEBERERERERH9eBiuERH9BCQSCaKiohAeHo6wsDB8/foVISEh+PLlC0JDQ/HlyxcEBQXh69evkEgksuu0tLRQqlQplC1bFo0aNUKJEiVQokQJWFtby/4rDZPyipeXl+z2vHnz0Lt3b6X7KFasGBwdHbFp0yYkJSVhw4YN2LVrlzqnKaOrqwsAMDIyQtGiRZW6NjQ0VHbbyckJGhoFV2C+adMmWTVivXr1sHPnTtl9U4fjx49jxowZqFatGnbu3KlSwJY+RLp48SIMDQ0Vum7//v3w8PCAtbU1fHx8FB7vy5cv6NatGwBg0KBBhTJYAzI+LjNmzIC5uXkBzoaIiIiIiIiI6MfDcI2I6Afn5uaGv//+GwKBAHp6etDT04O+vj4MDQ1haGgIGxsbVK5cGcbGxjA2NoaJiQlMTEzw+PFjrFixAg4ODhgzZgzs7e3zfe5+fn549OgRAKBXr17o27evyn317dsXW7ZsgVgsRkpKSrZtHzx4ABsbG1hYWCg9jrJVdem9f/8eAGBhYYHixYsrfX1SUhISEhJyHaa8fv0anp6eAAAzMzPMnz8f8fHxiI+Pz1W/Un///Tdmz56N1NRUPHr0CE5OTioFbNra2rLbRYoUgYmJiULX6evrAwA0NDSUeqwSEhJktytXrqzwda9evYKdnV2OYalQKMTatWsxatQopSoev5X+cSEiIiIiIiIiIvVjuEZE9IObNGkSJk2apNQ1X758gYuLCyQSCc6ePYtz586hZ8+emDt3rlqrl3KyYcMGAEDZsmUxe/bsXPVlZWWFGjVq4NGjR9lWHN27dw8jRoyAra0tvLy8oKenp9Q4qoZr0dHRCA8PBwBUrVpV6euTk5Ph4uKC0NBQeHp6qhywpaamYs6cObIAMjIyEh06dFCpL0U9evQIw4cPx44dO5QK2HITZOanrVu34tWrV3BxcUG7du2yDNmWLFkCb29vXLx4ERs3blQ50C7Iikd1SE1NRb9+/TB58mQ0aNCgoKdDRERERERERJQJwzUiyncSiQSJySkQpYihraUBfV0tCASCgp4W/Ss2NhYjRoxAZGQkgLQ9zlxcXNC+ffsMy83lNT8/P1nF3ZIlS2TVRt+KioqCWCxWqM9evXqhadOmqFGjRob9zaSkAUhCQgKePHmCadOmYd26dUq9PlUNfD58+CC7rWy4Jg3Wbty4AQAYPHgw9uzZo1LAtnPnTjx+/BgA0KNHDyxZsqTQfn9+L+Garq4u3r59q3DQ/fnzZwwcOBBnz55V6TnMTbjm4+ODmTNnKtRWX18fxsbGKF++PGrVqoUuXbqgXLlyKo8NAGKxGMuXL5e9BomIiIiIiIiICiOGa0SULz4Gx8D3YQBef47Eu4BoxCWKZOeM9LVhW6oI7EuboVmtUihjrdjSbqR+8fHxGD16NF6/fg1tbW04Oztj1KhReb6vmjzLly8HAAwdOhR169bNst3p06excOHCDHvF5WTdunUKtTt37hzc3NwwefJkhfvOKtjYv3+/wvP08PCAh4eHwmN+6/Xr1yoFbPfu3ZM9Nl27dsXixYsLbbAGoFDPLb30ofTNmzezbLd48WKcOnUKurq6cHd3V7n6MDehY8eOHdGqVSu8efMGzs7OsqVA+/Xrh9GjR8tC7ri4OISEhOD+/fv4888/cevWLWzevBndu3fHrFmzYGxsrPCYEokEkZGRuHXrFry8vHD//n2V509ERERERERElB8YrhFRnrr7/Av+uvIWz96HZ9kmLlGEx2++4vGbrzh06Q2qlC+Kni3tULeSVT7OlGJiYuDs7IyHDx/C2toa7u7uqFmzpkLXvn37Fnfv3kW/fv3UMpfTp0/j/v37qFSpEiZOnCi3zdq1azFo0CD0798fRYsWRWJiIipXroyiRYvC2Ng4QyB44sQJzJw5E9OnT8egQYPUMsesSAOfL1++YOnSpRg7dixMTEzQv39/lCpVCgKBALa2tpmWm1y1ahV8fHwAAMePH1dpv7dvGRoaKtw2JCQEEyZMQEpKCjp16oRu3bqpNbyKiYnBsmXLMGnSJLXcN+D7qVxLH65lF5hJX7PFihVD48aNVR4vu+ctNTUV0dHRWc5DR0cHOjo6qFu3LqpUqYI7d+4AAIYMGQIrq/9+JpuYmKBEiRKoVasWhgwZgmXLlsHLyws+Pj549+4ddu/eDQMDg2znOX/+fJw8eRKJiYk57oNIRERERERERFSYMFwjojwREy/E1iN+8H0YqPS1z96H49n7cDSrVQrO3arBxDD/q6Z+Nh8/fsTo0aPx/v17NGnSBKtWrVK4aiY4OBjOzs4IDAzEu3fvMHPmzFyFHlFRUVi6dCkMDAzg5uYmt2ruwYMH2LJlC3x8fLB27Vr873//y7bPP/74AyKRCIsXL8bjx4+xaNGiLJeZVMXXr19RrFixDMcsLS3x+vVr/Pbbb5gzZw7at2+Ppk2bZtnHq1evAAAlS5ZExYoVZcfFYjHCw8PVFkjJExUVheHDhyMsLAyDBw/GzJkz0b59e2hra2PMmDGoV69ervpPTU3FxIkTcffuXfzzzz/YuHGjSvvKfa/yOwTMKlxLSUnBlClT8OLFC3h6emYIy+RJP+/sloTV0tLC3LlzERgYiCtXruDx48fYsmVLjktgjh8/HsOHDweQ9jr38/PD7NmzkZSUlO11REREREREREQFjeEaEandh6BozN9+CxExuXuD9O+HAXjy7isWODdCWS4VmWfOnz+P2bNnIz4+HuPHj8fo0aMV3rPp06dPGDZsGAID00LUvXv34uPHj3B3d4eRkZFK81m8eDHCwsKwYsUKlC9fXm4bd3d3AEBoaCgGDx6M7du3Z1npc/r0aTx//hwAYGBgABsbGyQmJqotXEtNTUW/fv1w4cKFDMc1NDSwcuVKdOzYERMnTsS1a9ewcOFCaGtrZ+ojKSlJFq7VqVMn0/mWLVuiS5cuGDZsWJaPiari4uIwcuRIvHnzBjNnzsSQIUMAANra2nj16hXGjx+v1vG+fPmCAQMG4PDhw7Czs8tVX9/LspCFIVxLSUnB5MmTcfbsWQCAo6OjQgGbMiZPnowrV64ASFsGdfz48dmGcubm5hlC/NKlS+PSpUs4ffq02uZERERERERERJQXGK4RkVp9CIrGrE03MuyplhsRMUmYufE6lo1pwoBNzcLDw7Fy5UocPXoUpUuXxrZt21CrVi2Fr7958yYmTJiAqKgoAGnBVYcOHdC8eXMIhUKV5rRv3z6cOHEC3bt3R9euXeW2uXTpEm7fvg0gLQCaN29elsFaQkICVq9eDQCoUqUK1q1bBxsbG5XmlpWPHz8iJCRE7jlLS0tMnz4ds2bNgo+PDyQSiWwvufSePn0qWxbv2/3lNDQ0IBaLcejQIRw+fBitW7fG8uXLVQ4v0wsPD8fw4cMRGBiIjRs3olWrVrJz6UNAafCXG126dMHLly9hYGCATZs25TpYA76fcE2Veb569QqDBw9GZGRkrsZO/5ym9/HjR7UHbHZ2dihdujQ+f/6M2NhYPHv2DDVq1FCqj5yWkiQiIiIiIiIiKgwYrhGR2sTECzF/+y21BWtScYkizNt2Ex5TWnCJSDUIDg7Gn3/+iT179kAoFGLEiBEYM2aMQpVcQqEQSUlJ2LVrF7Zs2QKxWAwDAwMMHToUQ4cOhbGxscrzOn36NJYuXQoHBwfMmzdPbpu4uDgsWbIEQFr44+HhgRYtWmTZ59q1axEYGIhGjRph48aNGfYgk0gkaglnHj16hOTk5CzPd+/eHfv378fTp09x5MgR9OzZM1OAdvPmTdntX375JVMfOjo6SElJgZaWFtq2bauWYO3z588YMWIEjI2N4ePjg1KlSmU4L6/CTh3MzMzQqFGjPOm7sFK0EjS9ihUrYvfu3Th16hSqVKmCMmXKwMjISKF99I4fP45ly5YBAI4cOYLixYtn2Vady6MCQIUKFfD582cAyDJ0JiIiIiIiIiL63jFcIyK12XrEL9dLQWYlIiYJ2448wZSBmZfMI8UkJSWhT58+eP36NcRiMTQ1NdGqVSvExMTA1dUVSUlJsn+JiYly/5uampqhzw4dOmD69Om5qnxJSEjAmjVrsG/fPmhqamLYsGG4desWoqKiEBUVhejoaMTExCAmJgbv3r1DYGAgBAIBVq5cmW2w9s8//8DLywv169fHli1boKenl+H8/fv34e7ujtGjR8sNtBR1/fp1AIBIJJIbSAkEAowfPx7Ozs4AgICAgEzh2o0bNwAA9vb2mUIu4L+gq1y5cujcubPKc00/3rRp09CrVy+4uLjI3dcur8K1vKLKvnCBgYEZ9rfLK6qGuA4ODnBwcFD6uvQBnImJicL7J6pD+rFFIvV+0IKIiIiIiIiIqLBguEZEanH3+Rf4PgzM0zH+fhiAZrVLol7lrKswKGt6enqoU6cOXr58CSBtr7Dz589naGNoaIiyZcuidOnSKFmyJEqUKAFra2uYmZnhyJEj8PHxgUgkQpUqVTBr1qxMIZEq9PX14efnB4lEgpSUFEybNk12zsrKCjVq1ECVKlWgp6eH48ePAwAmTpyI9u3bZ9lnWFgYpk6dikqVKmHz5s2ZgjUgbfnFrl27Yvjw4ahWrRqmTJmC+vXrKzX36OhoXLlyBQKBINt9tZo2bYpSpUohIiICzZs3z3AuNjYWT548AZC2t5o80r51dXWVmp88wcHB2LlzJzw9PWFra5tlu/SBW0RERK7HFYvFue7jWxKJRHb78uXLCldh7d+/Hx4eHrC2toaPj4/C43358gXdunVTep6qVK59r+Li4mS3zczMCnAmRERERERERER5h+EaEanFX1fe5ts4DNdUN3LkSBw6dAhCoRACgQCVKlVCw4YNUadOHVSpUgXW1taZrrly5QqmTJmCgIAAWFhY4Pfff0ePHj3UFhgIBALMnTsXvXv3hkQiQe3atdGxY0e0atVKtpxdSEiILNTo2bMnRo4cmWV/ycnJGDNmDPT09LBt27Zsl1Ds2bMntLW1MWPGDAwaNAgtWrTA1KlTsw2d0tuyZQsSExNhZGSU7eMhEAjg4uICDQ0NmJqaZjh348YN2X5rWe2PFRsbCwDQ0sr9/7atra3xxx9/5NgufeVaYV3GMX0lpYWFhdwKPHmkIZyGhoZSVV0JCQnKTfBf38vecOrw4cMHAGn3WZWqOyIiIiIiIiKi7wHDNSLKtY/BMXj2Pjxfxnr2PhyfgmNQxtokX8b70VhZWWHkyJHQ0NBA165dUaJEiSzbfv78GcuWLcPly5ehq6sLZ2dnjBw5Ui37fX2revXqGDduHKpWrYpmzZplOJeSkoKJEyciPDwcTZs2xYIFC7LsRyQSYfLkyfj06RO8vb1RrFixHMfu0qULkpKS4OrqiitXruD69etwdnaGi4tLtmGWr68vdu3aBQAoU6ZMjuP06NFD7vGzZ88CAMqXL4/q1asDAFavXo0pU6YASKsEUmR5vStXrqBOnTowMVH/98arV69y3UeXLl1kVZPqkr4aTtFgrSDkNlyLi4tDSkpKpmC2sPn8+TM+fvwIAKhVq1a+LkdJRERERERERJSfGK4R/QBCIlSrplCUWCxGUlLGvdT0EiWySp0z/3zI0/G/dfqfj+jeokK+jpmelblBgY2tDmPHjs32fHx8PLZu3Ypdu3ZBKBSiXbt2mDJlity9wB48eIDo6Gg0bdo022URFTFmzBi5x5ctW4b79++jatWqcHd3zzLwiouLw5QpU3D9+nXs2rUL5cqVU3jsPn36IDIyEmvXroVIJMLGjRvx5MkTbN26VW5Fmlgsxrx582TLEiq7nKRUcnIy/v77bwCQVeZFRUXh4MGDsnAtKipK1l5a4fat2NhYzJgxQ1aVpo5QI6/2y1Ln8pBCoRDA97U/XHx8fJbnsnp+b9++jYULF2L58uWFtooQANatWye7ndX3MxERERERERHRj4DhGtEPYPiSCwU9hXx1+p8POJ3PgV56J9Z0KbCx81JqaioOHz4MDw8PhIWFoWbNmpgxYwZq1aqV5TUlS5bEqlWr4Orqip49e6Jv376wsrJS25x27doFLy8vlClTBtu3b4ehoaHcdidOnIC7uzsCAgLQq1cvxMXF4dSpU4iPj0dCQgLi4uKQkJCAhIQE2THp7djYWCQnJyM+Ph7a2tqyUMnX1xd+fn6oWbNmpvFSUlJkoZednR2cnJxUun9///03EhISoKmpiS5d0l5Xt2/fzhBsRUdHy24nJibK7cfDwwNRUVGIiopC//79sXv3btmSmqqSBlfqllWApArpHAtz1dq3ateurfQ1rVq1wrlz5zB06FCMGjUK48ePL1T7uInFYqxfvx4nT54EALi4uKBJkyYFPCsiIiIiIiIiorzDcI2I6CcnkUhw4cIFuLu74927dyhVqhTc3NzQoUOHHK+1srLCnj17MGvWLGzatAnbtm1D+/bt4ezsDDs7u1zN6/z581i5ciUsLCywc+fObKuxHj16hICAAADAoUOHcOjQoUxttLS0YGVlhZIlS6JkyZK4ePEigLTlGh0dHVG8eHEYGBigd+/eePHiBQDg69evcsfT0dHBiRMnkJycjPLly6u87J+Pjw+AtPBEGkqeOXMmQyWWv7+/7HZERESmPu7fv4+9e/fK7mODBg2yrY5SlDpDsPTUWREn3QNNV1dXbX3mNT8/vyzPzZkzB8ePH5d7bu7cubhx4wY2b94MPz8/rFu3DsbGxnk1TYVERETg1q1b2LVrF/z8/KCvr4+pU6diwIABBTovIiIiIiIiIqK8xnCNiOgnJRaLceHCBWzatAkvX76EqakpZs6cif79+ytVCaSjo4NVq1bBzMwMnp6eOH78OE6ePImuXbti2rRpMDMzU3pud+/exdSpU2FoaIgdO3bAxsYm2/ZOTk44ePCgLLgxMTFBnTp1cOXKFQBAw4YN8ccff2RYuvLIkSMAgKZNm8LBwUF23M3NDd26dUNSUlK2S0vKWyZTGSEhIfD19ZXNHwBCQ0Nx+fLlDHtrSfcp09bWRkREBOLi4mT73sXExGDGjBkQi8WoUKECVq5ciSpVquRqXlLpQzB5oZ6ypMtBSgMxdfgew7Xs5prd0qrGxsaYOnUqpk+fjhs3bmDAgAHw8vLKkz325OncuXOGarnk5GRZ5aCtrS2GDRuGQYMGZbuPIxERERERERHRj4LhGhHRTyYyMhLHjh2Dl5cX/P39YWhoCBcXFzg5OclCG2UJBAJMnToVycnJOHjwIMRiMXx8fHDt2jXs3LkTFStWVLiv+/fvw9nZGRKJBJs3b84QfGWlRIkS6NSpE4KCgjB48GD8+uuvAICqVavKziu6J1z58uUxadIkXL58Gba2tgrPW1lHjhxBamoq6tSpI1t6csOGDUhOToalpaWsnTRcK1euHOLi4vDu3TvUqFEDEokE06ZNw+fPn9GtWzfMmzcP+vr6aptf+nBNnft8CYVCJCcnqyUQi42NBQC13u/CrEuXLti2bRvevXuHV69eYeHChVi9enW+jL1t27YMS41u374d3t7eAIDly5ejevXq+TIPIiIiIiIiIqLCgOEaEdFP4NOnT7h58yauXr2K69evQyQSQV9fH3379kWfPn2gq6uL9+/fIz4+HvHx8YiLi5Pdlu5Rlv5ref8EAgGKFCmC4sWL48uXLwCAsLAwjBs3DmfOnFEo3Dp9+jRmzJiB1NRUbNiwAfXq1cvU5uvXrwgMDIS/vz8CAgIgkUgwevRozJ8/P0Ngk5SUJLutp6en1OPl6OiIPn36KHWNMkQiEQ4cOAAAGDlyJIC0+37w4EEAgL29vazt69evAQBlypSBRCKBn58fatSoATc3N1y7dg2urq55sgxfSkoKNDQ00LJlS0ycOBEuLi4YPnw4unbtqtIeZ5MmTULp0qXx22+/qa3STLofnYGBgVr6K+wEAgGcnJwwa9YsAMDJkycxZcqUXO+vp4jixYtnqNZ0dHSUhWv79+9nuEZEREREREREPxWGa0REP4GgoCDMmzcvw7HExER4e3vL3iCXx8DAACKRCCKRCMWLF0e/fv1QpEgRmJqaZvonrR5KSEhAz5498e7dOwBpwZ6/vz/Kli2b5TifP3/GunXrcPLkSQBAnz59EB8fj23btiEoKAiBgYEIDAxEUFAQEhMTYWNjg9q1a6N27dqoW7cugMzL7aWvvFK2skkgECgdyCnj1KlT+PLlC+rXr49mzZohICAAs2fPlp1v3rw5gP+CRCAtXDM0NMS1a9cgEAhw8OBB7NixQ61VZen16tULrVu3RqlSpTBt2jR8+vQJc+fOxd69e7Fjxw7ZHnGKGjt2LMzNzTMseZlb4eHhANKeX2WWrkxMTASQtlSlMtfFxMQoN8F/SSQSla6T57fffsOiRYuQmJgIiUSi1mU2lWFra4s6derg/v37OH36NKZPn67SErBERERERERERN8jhmtEP4Ads9vkaf9isThDFRCQVgkk3X9nzb77ePEx93syKapSOXNM7l8n38b7ETRq1AiNGjXCzZs3MxzX1taGnZ0d7O3tUaZMGZQpUwZWVlawsrKChYUF9PT0MGjQINy5cwclSpTAqFGjchzLwMAA69atQ/fu3WV7MhkbG2d7jUAgwPnz52VfHzx4UFbFBQBmZmZo1KgRhg0bhl9//VWhYCd9EJLT+Pntjz/+AABMnToVQFoFkjQksbe3R6tWrQBAtmccANSoUQPGxsbYtGkTPn78iAMHDuTpspVDhgwBADx//hwnTpwAANStWxfu7u4wMDBAfHy8wn35+flh/PjxKF68OHbu3Jlh2cvcCAsLA5C2R58qIWNwcHCehZPpqTNcMzQ0RJMmTXDhwgXUrFkT5cuXV1vfyurduzfu37+P5ORkHD58GCNGjCiwuRARERERERER5SeGa0Q/ACvzvF0STSwWIzFRkOGYvr6+LFyrals0X8O1quWL5vl9/hFNmjQJffr0Qa1atdCsWTPUr18fVapUUWmJv5zY2dnB2dkZGzZsQLVq1VC0aNFs29vY2GDw4MHYvn277JipqSk6deqE3377DbVr15a93hQl3Y8LAMzNzZW7A3no4sWLePXqFTp06CBbSq9Pnz7Q1taGsbEx2rRpI1tC8/LlywDSQtDGjRtDW1sbAoEAgwYNytNgTUoikWDx4sUQi8UAgHv37qFJkyYq9xcTE4P+/ftj165dsLGxydXcEhISZMtCdu/eHcuWLVP42p07d2LlypUoWbKk7DFWREBAgCz4LEgdOnTA9evXsWDBggKdx2+//YalS5ciOjoaBw4cgJOTk9Lfp0RERERERERE3yOGa0SUa01rlcKhS2/ybbxmtUrl3IgyqV69Om7cuJEpaJJIJEhKSlJ66cScjBw5Eh8+fEC/fv0Uaj9q1Cj4+PhAIBDAxcUFPXr0yNXSjF+/fpXdtrCwULkfdRKLxXB3d0eRIkVk+2YBaZV5Tk5OGdomJSXJKg3r1q0LIyMjAEDNmjVx/PhxDBo0KM/n6+npifv378PAwABVq1ZFxYoVZdV2ijp27BhcXV1l1Vs2NjYICAjIdbgmXS4TyLhHnSLUWUmmCGk4qa72v/32G6pVq5ZhD7SCoKenh86dO2Pv3r0IDAzE33//jRYtWhTonIiIiIiIiIiI8gM/XkxEuVbW2gRVymdfmaQuVcoXRRlrk3wZ60ckr4LL29sbTk5OSi3zd+/ePdmealnR0dGBm5sb6tWrp1CfRkZGcHd3x6lTpzBgwIBc73kWHBwsu53bIEddjh8/jjdv3mD69OkoVqxYtm19fX1le4N16NBBdrx58+bw8/PDixcv8nSuL168wJo1a6CpqYm1a9di/fr1OHfuHM6cOQNdXV2F/p07dw7z5s2DRCKBQCDA/PnzsWvXLrUsxfj+/XvZbQcHB6WuVTbsyi1lw7yc5icQCAo8WJPq3bu37Pa+ffsKcCZERERERERERPmH4RoRqUWPFhXyZZyeLe3yZZyfhb+/P1atWoX79+9jxIgRCgdsRkZGGDduHJycnODr66u2SqD69evD1NRULX19+vQJAKClpYXSpUurpc/cSEhIwNq1a9GkSRP06NEjx/ZeXl4AAEtLS3Tp0kV2vG3btgCAbdu25c1EAURFRWH8+PFITk7G3Llz0bx5c5iZmWH58uWYO3cufH19c+zj0KFDmD59OsRiMTQ1NbFs2TKFqxgV8eZNWrWslpYWatSoodS1hb1yLb/nlxv29vaoWbMmAOD69ev4/PlzwU6IiIiIiIiIiCgfMFwjIrWoV7k4mtYqmadjNKtVCnUrWeXpGD+TxMREjB07VhaoKROwOTg44PDhw7CwsMCIESPQoUMHHDp0CEKhMK+nLVdKSkqmY9LKLltbW+jq6ub3lDLZuHEjUlNTsXLlyhzbPn36FLdv3wYADBkyJMO+eDY2NqhSpQrOnj2LV69eqX2eQqEQLi4uCAgIwLx58zIEYr/88gv69u2LcePG4datW1n2sX37dsyZMwdisRh6enpYv349unXrptZ5Pn36FABQtWpVGBgotwejNOzKrxBL2XFSU1PzaCZ5Q1q9JpFIcODAgQKeDRERERERERFR3mO4RkRqM7JbdZib5G4pv6yYm+jBuVu1POn7Z5Samopp06bh5cuXANKWmWvXrh1mzJih8N5rBgYGWL58ORYvXgx/f3/MmTMHLVu2xI4dO5CQkJBnc09JScGTJ0+we/dujB8/Hu3atcOdO3cytBGJRHj8+DGAtP3KVKWu5QPfvXuHvXv3ws3NDUWL5ryEqjSAK126tNxqr549e0IsFmPx4sVqmZ+USCTChAkT8PjxY6xcuRL9+/fP1Gbq1KlwcHDAiBEjcO7cuUzXz5kzB6tXrwaQtpfcnj170Lp1a7XOUywW4/79+wCAVq1aKX29NLzKr3AtfVgWERGR5T9pOP29hWvt27eX7Qno4+ODpKSkAp4REREREREREVHeYrhGRGpjYqiDBc6NYKSvrdZ+jfS1scC5EUwMdXJuTDmSSCSYM2cOzp8/DwAoW7YsPD094e7ujurVq0NDQ7n/NfTq1Qv79u2DpaUlwsLCsGrVKrRs2RJ//PGHWirZoqKi8Pfff8Pd3R2Ojo6oW7cuHB0d8eTJE3Tt2hXHjx9H48aNM1xz7949xMbGAgCaNGmi0riPHz/GqFGjcj3/1NRUzJw5E7///jvq16+fY/vTp0/j9u3bEAgEWLp0qdyqrM6dO8PQ0BB37tyBt7d3rucIpAVjkyZNwsOHD7Fjxw506tRJbjsdHR1s2rQJlpaWmDBhArZs2QKJRIKQkBAMGTIEhw4dAvBfdaN0yUB1evr0KWJiYgAA//vf/5S+Xhqq5Ve4lj6kbdSoUZb/Tp06BQAFVgGqKn19fdnrJSoqCidPnizgGRERERERERER5S2tgp4AEf1YylqbYNmYJpi37SYiYnJfvWBuoocFzo1Q1tpEDbOjlJQUzJw5E8ePHweQtpzbrFmzFK5Wy0r16tVx6NAhODs749WrV4iMjMSKFStw4MABrFixArVr11aon7i4OLx8+RLPnj3D06dP4efnh48fPwJI21urSZMmWLJkCVq1agU9vayrJPfv3w8AMDU1VTlci4+Ph0gkUvq6b6uOtm7diipVqsDJySnHa0NCQrBgwQIAgKOjI+rVqye3nZGREXr16oXdu3dj+fLlqFWrFipWrKj0XKUSEhIwbtw4xMfH4+jRo7Cyyn751aJFi2Lbtm3o27cv1q5di3/++QevXr1CVFQUAKBjx45YvHhxrl9XWbl+/ToAoF69eihTpozS10uXEVVXZWJO0r8mslvKc8aMGThy5Mh3F64BQJ8+fWRLQu7fvx89e/ZUqR9pKA5A9noiIiIiIiIiIipsWLlGRGpX1toEHlNaoFmtUrnqp1mtUvCY0oLBmprExcVh9OjROH78OIyNjbFu3TosWrRIbQFI8eLFsX//ftSpU0d27PPnz3B0dMTVq1ezvXbChAlo3rw56tSpgwEDBmDp0qU4fvw4Pn78iCpVqsDV1RXXrl3D1q1b0aFDh2yDtRcvXuDixYsAgL59+2bYr0wZ0dHRGd7oV1T6qqi4uDh8+vQJc+bMyfE6oVCI33//HVFRUWjRogWmTZuWbfsRI0ZAX18fiYmJGDFiBIKCgpSeK5AW6A0bNgw1atTA3r17cwzWpGxtbbFs2TIAwO3btxEVFQVdXV0sWbIEa9asybNgDYCswkvespWKkIZqBRGuKSIlJUWlYFfd0s87p/tQqVIlVKuWtnTvs2fP8ODBA6XHi4+Pz3Dd5cuXle6DiIiIiIiIiCg/MFwjojxhYqiDKQPrwNWpAaqUz3mPqfSqlC+KecMbYsrAOlwKUk3evHmDHj16wNfXF1WrVsWRI0fw22+/KXStMkvnGRkZYceOHRkq1UQiEaZOnSpbxk8eOzs7BAcHy77W1NRE165d4ePjAx8fHwwYMADm5uY5ji8UCjF79myIxWIULVoUQ4cOVXju34qJiUFoaKjS10lDiNTUVBgZGWHFihXQ1NTM9hqJRIKZM2fi4cOHqF27Ntzd3aGllX1xebFixTB48GAAaQHZwIED8ebNG6Xm6u/vj0WLFmHRokUYP348tLUVX9L10qVLmfZ8EwqFuH79Ot6/f6/UPJTx7NkzvH37FmXLllVpSUjgv8o1ZUMvVSvKpOMpwtTUFFOnTs3xNZNXhEIhoqOj8eDBAzx79kx23NPTEyEhIYiLi8vy2t69e8tuu7q64uXLl4iJickyxExMTERMTAyCgoJw/fp1ODs7IywsTHb+6NGjmDNnDh4/foyvX78iJiYGycnJariXRERERERERES5w2UhiShP1atcHPUqF8en4Bj8/TAAbz5H4W1AFOIS/6vKMNLXRoVSprArbYpmtUqhDCvV1Or06dOYPXs2RCIRxowZg1GjRilVzRUREaHUeAYGBti6dSt69eolW9IxJiYGN27cQLt27eReM2jQIOzcuRPx8fFo1qwZZs+erfRyfxKJBLNmzcKzZ8+gqamJZcuWwdTUVKHr5ImIiEBoaCiio6NRpEgRhechDRIUDW7EYjFmz56NkydPomHDhvDw8Mi2Mi89FxcXnD17Fh8/fkRgYCD69OmD2bNno0ePHgpdb2VlhfXr1yu1z97jx4+xZs0a3L59GwBgZmaGkSNH4uvXr9izZw/OnDmDc+fOoXnz5hg4cCAaNWqk9D5+2fHx8QEAjB07VuUAStnnSOrDhw+y28rcJ2kVmqGhYbbtOnfujFmzZsHEJHc/AxMSElS+9uTJk5g5c2am415eXvDy8kLJkiWzrCjr0KEDli9fjvj4eLx58wZdunQBAJw4cQL29vaZ2i9YsABHjhzJdj6HDh2S7eMHpD3v48aNU+YuERERERERERGpHcM1IsoXZaxN4GhdGUBamJGYnAJRihjaWhrQ19WCQCAo4Bn+eJKSkrBmzRp4enqiTp06WLhwISpUqCC37fDhw5GamgorKytYWFjA3NwcJiYm+PjxI969ewcAOVZSpWdiYoJ169ahZ8+esmAhuzf8TUxMMHDgQFhaWmLgwIFK3Ms0QqEQM2bMwKlTp2BgYIAVK1agWbNm2V4jEAggkUgQEhIi9/ynT58gkUhw/PhxDBo0SOG5SAMbRaqVkpOTMXPmTJw6dQr9+/fH7NmzlXqcpcswDh48GCkpKYiPj8esWbNw5MgRjBkzBo0aNcr2ekVDVolEgmvXrmHnzp24desWgLQKq0GDBmHIkCEwMjICAHTv3h0LFizA7du3cfnyZVy+fBmWlpb47bff8Ouvv6JevXq5Wi4yKioKPj4+qFWrFjp27KhyP9LnRt5z9OzZM+zbtw+mpqYwNjaGkZERdHV1kZycjL1798raKRqASg0aNAguLi7ZtmncuLHC/T19+hT6+vqwsbHJ8DxKJBL4+vrKvlbm9QSkPYfdu3dX6hopQ0NDpZaDXL58OZYvX67SWEREREREREREBYnhGhHlO4FAAAM9xZefI+XdvXsXs2fPhoaGBjZs2IA2bdpk237btm3w8/PDyZMn4eXlJTcIs7OzU2oODg4OGDBgAHbv3g0AKF26dLbtJ06cqFLI+vnzZ0yePBl+fn4oV64c3N3d4eDgkON1VlZW+PLlC7Zs2QITExPY29tDR0cHqamp8PPzk+3rtWLFChgbG6Nr164KzUe6dGBOy9eFhIRg7NixeP/+PZYsWYKePXsq1P+36tatixkzZmRYovHu3bsYMmQIXF1dMWDAAJX6lc7x6NGjOHToEPz9/QEA5cuXx4ABA9CjR49MQZmtrS08PT1x+vRpbN++Hc+fP0doaCg8PT3h6ekJbW1tVKxYEVWrVoWdnR1sbGxQsmRJmJubo0iRIjlWou3fvx9CoRDz58/PVSAvDUDlPUfW1taoWbMmbt++jYMHD2a5DKIy3w9LlixROozLyfXr1+Ht7Y0vX77A3NwcFhYWMDQ0xNevX/Hp0ycAaeGppaWlWsclIiIiIiIiIiKGa0REP5T4+HisWbMGd+/exahRo9C5c2eFKlc0NDRQs2ZN1KxZEyNHjsTMmTNx7do12XlNTc0M+ykpavz48bh58yaMjIxQt27dbNsqG5aIxWLs378fbm5ukEgkmDRpEoYOHapwNVbLli2xf/9+REZGyl0GT0pHRwc1atRQeF6KhGsXL17EnDlzUKdOHWzYsAFWVlYK9y/PoEGDEBwcjJ07d6J06dIYP348mjdvDmNjY6X7CgoKwpUrV3D69Gncv38fEokEJiYm6N69O3r06JHj8wgA7du3R/v27XHnzh3s3r0bV65cgVgshkgkwtOnT/H06dNM1wgEAujo6MDMzAzu7u6oVatWhvNxcXHYu3cvfv/9d4XC0+xIK9bMzc2RkpKS4XvE3NwcvXv3Ru/evREfH489e/Zg06ZNsgpMAKhatSpsbW0VHk/dwRoAjBo1CqNGjcLTp0/x559/wsfHJ8McAah9SU4iIiIiIiIiIkrDcI2I6AeSmJiIJk2aYO7cuSpX9lhYWGDz5s3o3bs3nj9/Di0tLcyfP1+lQMPQ0BCHDx9GamqqWpf+vHPnDpYvX47g4GAMGzYM/fv3h7m5uVJ9TJ48GRoaGrh48SIiIiIy7b9lZGSEatWqYeLEiShXrpzC/UrDNYlEAqFQmCHsCw8Px8qVK/HixQssWbIErVq1UmrO2Zk2bRpKliyJjh07KrVHXFxcHO7fv49bt27h+vXreP36NQCgbNmy6NevH5o3b47GjRtDW1v5atP69eujfv36CAoKwqVLl3DlyhXcuXMnUwgEpAW406dPR58+feQGwlu3bkXlypUxfPhwpefxrVKlSmHhwoXo1q1btuGzoaEhXFxcYG9vjzFjxsiOpa8SLGhVq1ZF1apVMXjwYLi4uMj2OTQ0NMSUKVMKdnJERERERERERD8ogUQikRT0JIgKG6FQiCdPnmQ6Xq1aNYWrYrKSkpKCN2/eZDhmZ2en9L44+UksFiMxMTHDMX19fVZE/OD+/PNP3LhxA6NHj851pZC6fP36FfPnz4dYLEaHDh3QunVr6OrqFvS0Mpg5cyZCQ0MxZcoUVKpUSXb89u3b2Lx5MwYMGIDWrVsX2D6DCQkJOH/+PPz8/PDo0SO8fPkSxsbGsLW1RdWqVVG9enXUrl0bJUqUyJPx4+LicPPmTTx9+hSvX7/G69evERgYiBkzZmDIkCFyrwkODoaLiwv27NkDExOTPJlXTgYNGgSBQABXV9cs9y4saO/fv0fHjh1RsmRJuLu7o0qVKgU9JSIitVHX76Pf4+/iRERERFQ4iEQi+Pn5ZThWvXp1lT6Q/L3Ly/fPvxcM14jkYLiWEcM1KiySk5MhEolgZGRU0FPJUmhoqNx9rr6tYisoX79+xalTp2BlZQUrKyuUKVNG6ao/dYuPj4eurm6WPwcTEhIQGxub6+UzcyM+Ph6GhoYFNr6irl69iiZNmhTq/6cQEamC4RoRERERFTSGa/9huMZlIXO0YcMGjB07tqCnQUREAHR1dQtdpdq35AVrAArNLxbFihXD4MGDC3oaGeQUWhkYGMDAwCCfZiPf9xCsAUDz5s0LegpERERERERERD88lp1kY8OGDdi4cWNBT4OIiIiIiIiIiIiIiIgKiUIZroWEhBT0FLBp0yZs2LChoKdBREREREREREREREREhUihC9dCQkLg6OhYoHM4dOgQ1q9fX6BzICIiIiIiIiIiIiIiosKnUIVr0mDt8+fPBTqPNm3aoGLFigU6ByIiIiIiIiIiIiIiIip8Ck24Jg3WPn36VNBTgampKfbs2cOAjYiIiIiIiIiIiIiIiDIoNOHa9evXcwzWhEIhDhw4kC/zMTU1xYoVK/JlLCIiIiIiIiIiIiIiIvo+aBX0BKR69OiB2NhYLF++XO55iUSCyZMn49KlS6hQoQLq1auX53PS0dHJ8zGIiIiIiIiIiIiIiIjo+1FowjUAGDJkCEQiEdzc3DKdW7JkCS5cuAAAcHR0zO+pERERERERERERERERERWeZSGlWrVqlemYUCjE27dvAQACgQASiSTf/hERERERERERERERERFJFarKtazo6Ohgx44dmDNnDo4dO4YRI0ZkahMdHY1Dhw5h+PDhaj9HREREREREREREREREBHwn4RoAaGlpYcSIETh27BgmT56c6fy7d+9w6NChPDlHREREREREREREREREBBTCZSGzIxAICs05IiIiIiIiIiIiIiIi+vl8V+EaERERERERERERERERUUFiuEZERERERERERERERESkoAIN11JTUwtyeCIiIiIiIiIiIiIiIiKlFFi4lpycjCFDhiApKamgpkBERERERERERERERESkFK2CGvjPP//E3bt3MWzYMFSuXBn6+vrQ19dHQkICAODAgQPQ1dWFnp6e7L9fv34tqOkSERERERERERERERERFUy4JhKJsHPnTggEAjx8+BAPHz7McF4ikWDhwoUFMTUiIiIiIiIiIiIiIiKiLBVIuHb06FF8+fIl2zYSiUTucYFAkBdTIiIiIiIiIiIiIiIiIspRgYRrVapUgZeXF7S1taGhoQGJRAKxWIzk5GR8+vQJ8+bNg4eHB5KTk5GUlISkpCQkJycjKCgI+/btK4gpExERERERERERERERERVMuFa5cuUsz1lYWAAAWrdunenc+/fvGa4RERERERERERERERFRgdEo6AkQERERERERERERERERfS8YrhERUSbnzp3D48ePC3oapCY3btzA0aNHC3oaP61NmzbhwYMHBT0NykNxcXHw8/NT6VqhUIiHDx+qeUYkz7t373Dv3r2CnobM27dvVb42KCgIycnJapwNERERERERKYPhGhERZSIQCNCnTx9MmDABwcHBBT2dLF28eBH+/v45tjt27BhCQ0PzYUaF0+bNmzF9+nQ4OTkp9HgVhP3790MoFGbbJioqCkePHkVKSkqezycoKCjH+SjK19cX/fr1Q9euXXHo0CEkJiaqpd/shIWF5dtr/uHDh0hNTc1VHyEhIWqaTZpbt27hyZMnau0zO0lJSejVqxcGDRqEv//+W+nr+/bti8GDB+P27dt5MLv8sXv3bri6uuLVq1cFPZUsXbt2DQMGDMCQIUMKRcg2evRoDBw4EFeuXIFEIlHq2r179+K3337DqVOn8mh2RERERERElJ3vKlxLSkqCRCLB0aNHM/27ePEiAOTJOSKin03btm0xbNgwnDlzBu3bt8fBgwcLekpy3bhxA+3atcPs2bOzDY1Onz6NVq1aYf78+QgICMjHGRa8J0+e4O7duwCA69evo1OnToXyzdiVK1eidevW8PLyyjLUEovFmD59Otq2bYsDBw6oLfyS586dO2jXrh3OnTuX6750dHQAAC9evICnpyeio6Nz3WdOQkND8b///Q9bt25FTEwM4uPj8+TftWvXMGjQIIwaNQrx8fEqz3f79u1wcnJSW4Xfy5cv0bNnTzg6OqoUdilLT08PQNrrxtnZGcOGDVM4BNbR0YFAIMCtW7fg6OiIfv364evXr7LzSUlJeTJnZcTFxcHd3T3bCrvU1FQcPHgQnTt3xoABA3D9+nW1jB0bG4uDBw+qJVR//vw5AODmzZsYMGAAZs6cmes+c0NHRwd3797FqFGjMHHixEzn3717l+W1jx49QlBQECZNmoQ+ffqw2pyIiIiIiCifaRX0BLKSmpoKTU3NDMe2bt0KANn+IZwX54iIfkYTJkzApUuX8PHjR7i6uiIwMBCTJk0q6GlloK+vD5FIhMOHD+PYsWNwc3ND27ZtM7XT09ODUCjEgQMHcOjQIbi7u6NNmzYFMOP898cff2T4ukOHDmjRokUBzSZr+vr6CAkJwaJFi7Bnzx4cPnwYRYoUydQGAAIDAzF//nzs3r0b3t7eMDMzU/t8unbtilevXmH8+PFo2bIllixZAnNzc5X6Sv/7zJ49e1TuRxn6+vpISEiAm5sb3Nzc8nw8X19fDBkyBN7e3pl+f1PEnDlzsGjRIvTr1w8tW7bErFmzYGNjo/J8tLW1AQC3b9/G7du3MXnyZDg7O6vcn6LjAUClSpWwfPlyaGkp/mu2lpYWRCIRdHV10bdvXxQrVgxA2u/Dffr0QbNmzTB8+HCYmJiofe7ZefnyJXx8fHD06FFER0fjwIED8Pb2Rrly5TK11dXVld0Wi8Wws7NTyxwMDAxw6dIl7Nq1C/PmzUOjRo1U7kv6QQMAqFKlCqZOnaqOKWZp27ZtMDMzQ69eveSelz5mlSpVwqJFizKc+/jxIzp37gxnZ2e4uLhkeI2JRCI8e/ZM9rWGhgasrKzy4B4QERERERFRVgptuBYTE5PhzbJbt27JPj2u7LIpuSEQCPJtLCKiwkRHRwdz5szB8OHDAaR9wKFp06aoW7duAc/sPwYGBrLbgwcPzjIwk76BqaWlhVWrVv00wdqLFy9w9uxZ2dcmJiaoV69ehsetsJAGZ0WKFMGyZcsyBWtAxjfvK1asiI0bN+ZJsCY1adIk3L59G5cvX0aPHj3wxx9/yA0VcqKhkbZQgJaWVr4Ea0DGx2rnzp2oV69ejtdcuHABkydPBgCF9w/bs2cP1qxZAx0dHUycOFGlYE1q9uzZCA0Nxfnz53Hjxg3MnDkT/fr1U6mv9MFWx44dZT/H8kr64KNevXqwtLRU+nqRSAQHBwd06dJFdlxTUxNubm7o168fDh48iDFjxmDAgAG5epyzExoaivv37+PevXu4evVqpkrfqKgoDB8+HAcPHpQFgOnvg5Srq6vawh5NTU2sXbsWffv2xZAhQ9CrVy/MmTNHVi2oqE+fPiEoKEg212XLluX592ObNm3QpUsXnD9/HitWrMg0nvR16uDgAGNj4wznjhw5gpSUFGzatAnXrl3Dzp07ZT8Xnz17JttvrVixYti6dWu+B69EREREREQ/u0IbrkVHR2d4w0xXVxceHh7Q1dWFrq4udHR0oKOjAy0tLWhpaeVJCObv749Ro0apvV8iou/Fr7/+igoVKuDt27cAgKdPnyodrp04cQLPnz/H9OnT1T6/9G+gjxw5Msv/F0iDBn19fbRv317t8yisVqxYAbFYDACws7ODh4cHBg0ahNq1a6N06dIFPLuMpG/M161bN8vXmIaGhiyEaNCgQa4qmxSd0/z589G7d28EBQVhxIgROHr0KIyMjJTqR/qhIENDw7yYplzpvze0tbUzhG2KXKNIe+C/qjwLCws0btxYyVlmpKGhgWXLluHZs2ey6sSYmBiMHDlS6b7S35dffvlFFnDmFQ0NDWhpaam8dKH0cZQXmtna2mLVqlUYOXIklixZgqNHj2LVqlWwtbVVeb5xcXEICAjA69ev8fLlS7x69QqvXr1CWFhYhnb6+vooXrw4LCwsYGlpCVNTUxgbG8PPzw8tW7bM0DZ9uKZuhoaGcHNzQ48ePXDo0CE8e/YMO3bsQNGiRRXuw9fXV3a7Xbt2qFixYl5MNYNy5crB0dER27dvR/fu3bF9+/YMFX1ZPWaJiYnw9vYGANSsWRNr167N8IGDO3fuyG4PHTqUwRoREREREVEBKJThmkQiwatXr1C2bFnZsVq1ahXYfIRCoWy/FCLKPYlEAokwEZLUFAg0tSDQ0WeVaCHWuXNnuLm5wcDAQO6Si9k5efIkpk+fjtTUVIjFYrUvwato9UZevulbWP3999+4efMmgLQqxNWrV8ve6J0wYQL27dsnqxYrDJR5LkUiUR7P5j/Vq1dHixYtcPnyZfj7+8PT0xMuLi5K9SENOPMzXMuryqa8ZmRkhPnz52PEiBEAgHXr1qFLly4oXry4Uv0UxP3PTYCXvrpRnmbNmmHYsGHYuXMnnj17ht69e2PXrl2oXr26Qv37+/tj8eLFCA4ORnh4OFJSUmBoaAhjY2OYmJjA1NQUzZs3x82bNxEQEIDWrVtj0aJFSlV25fXPWTs7O4wZMwZubm54/vw5nJycsH//foUrcS9cuCC7PXjw4LyaZibOzs7Yv38/goOD4eTkhNOnT8sC+qxep3v27EFUVBTs7e2xc+fOTIG+NFzT1dVFz5498/YOEBERERERkVyFMlwD0jYc/9///lfQ0wCQtpG6Mp+MJaLMhKGfEPfsOpKD3iD5yweIk+Jk5zT0jKBbvBx0S9jBqMqv0LEsXBU136PExEQkJiaqpa9SpUpBIBBg1qxZ0NPTQ0REhELXXbt2DTNnzkRqaioAYPfu3RAIBJgxY4Za5gUo/mZuXletFDZJSUlYunSp7OtJkybBwcEBQFqVw4kTJzB58mRs2LCh0Dw2iu5PVRBBfN++fXH58mUAwKtXr5S+Xlq5lp9h5vf8gYWmTZuiTp06uH//PlJTUxEQEPBdhGu5GVP6fZjdz7Tx48fj3LlzCAgIQFxcHFxdXXH06FGF+re2tsaqVatgYGCQ7ffayJEjERAQAGNjY6WXTMyPx3zw4MHw8vJCaGgoXrx4gXXr1mX40Mbnz5/h7e2NadOmZbguKioK9+/fB5BWHVu1atU8n6uUiYkJunfvjr179yIkJAT79++X7f8n7zGLiorCjh07ULJkSezYsSNTsCYSifDgwQMAwP/+9z+Ymprman4BAQFo1aqVQm11dHRgbGyMkiVLolq1amjXrh3q1q2r9M+bmJgYHD16FL6+vnj58iWioqKgo6MDU1NTVKxYEQ0bNkT37t0zLZVJRERERERUmBRouObl5QULC4tMIZqNjQ369+9fQLPKSCKRIDw8nOEakYoS3txH1M0jSPJ/kWUbcVIcEj8+QeLHJ4j6xwd6NpVg2rgbDCrUyceZ/ljCw8Ph6OiIwMBAtfU5Z84czJkzJ1d97Nq1CwKBIE+WiMzO9xw0qGLt2rX4+PEjgLSlPYcMGSI7p62tjZUrV6JXr15YvHgxXF1dC2aS31D0OSqIMLBRo0YoUqQIoqOjFa4USk9aaVdQ4VpsbKxCoXh8fLzstqIhurpC/G8NGTIE9+/fR5EiRWBvb6/09QXxPZ+bMXOqXAMAPT09jBs3TvbzMyQkROH+tbS08nzpQEUD8tzQ09NDnz594OHhAQA4e/ZshnBt3759qFy5cqbrzp49K1uyM/3Pw/zSuXNn7N27FwCQkJAgOy7v55m7uzv09PSwa9cuufvWPXjwQPa92qtXr1zPrUSJErh79y6+fv2KKVOm4NmzZwDSVg1ZunSpbG+9xMREREZG4smTJzh27Bj27duHffv2ydqVL18+x7FSUlKwe/dubNy4EfXr10fv3r1RqVIlGBoaIjIyEo8fP8a+ffuwdOlSrFu3Dq6urujatWuu7yMREREREVFeKLBwLSQkBGvXroWJiQkaNWok+4Pf1NQUXl5eatsEXR1evHih0hs7RD+z1IRYfD2/A/HPrit9bZL/C3w5+AJGVX5F0bZO0DTgJ5eVVapUKXh6euLixYuoVKkSypQpAyMjIxgaGmZ6Azg1NTVXFQf8AELhcv/+fXh6egJI+7DKmjVrMj3nlSpVwu+//47Vq1dDS0sLs2bNKoipfjd0dHQwe/ZsfPr0SaU35qVv6isarh0+fBilS5dG/fr1lR7r2zEBYMyYMUpf36hRI5XHVoe2bdti5syZqFWrlkqhUEGEsPLCtZSUFEyePBkNGjTI9oNj0vnm9LO4Y8eOWL16NcLCwnL1+sgL+RVodurUSRaulSxZUnY8ISEBFy5cwMSJEzNdc/z4cQBpPxMVrdL61vPnz7F+/XqsXbtW6aC8evXqKFOmDIKCgjKERd++Tp8+fYqLFy9i9+7dKFOmjNy+rl27BgAoU6YM6tWrp/Ac4uLi5O4XqaGhARMTE5iYmKBFixaycK179+4ZAjMTExNYWVnBwcEBvXr1wrFjxzB79mw8fPgQ/fv3x759+7LdBzAhIQHjx4/HzZs3sXLlSnTo0CHDeXNzc9ja2qJbt25YsmQJ9u7di+nTpyM+Ph4DBgxQ+H4SERERERHllwIL15YuXYr4+HgkJCSgefPm6NKlCwYMGIAKFSoU1JSy9PXr14KeAtF3JTnkI754L0FqnGKVD1mJe3YNiZ+ewbrfHOhYyn+TibJWqlQphYKAuXPnoly5cnByclL6DemYmBi0bNkSPXv2xOjRo2WfcP/eff369bu8L7GxsZg5cybEYjH09fWxYcMGFClSRG5bJycn3L17F3v27IFYLMbs2bN/uAq/+Ph4CAQChfdkyk6XLl1UvlYadOnq6ubY9vDhw5gzZw709fWxdetWlQOU9OGap6cnGjRokOM1Z8+exe+//w5A8eUvd+7ciZUrV8qWvlSn3FQY5cVrOTIyMtv7KR0zOTlZVvk3f/58nDt3DufOnQOAHFdmyGmpWy0tLTg5OWHHjh2YMmWKMtPPc/n186NMmTIoX7483r9/L9ubDwCOHj2KJk2aQE9PL0P7wMBA2TKKAwcOVCl4ffnyJYYOHYqoqCiMHTsWmzdvVno/5tmzZyM5OTnDntLfPmY3b97Ezp07ZX8Pubu7IzY2FnPnzpW18fX1BZAWfin6mO/Zswd//PEHPD09swztgIzhbk6ViF26dMHXr1+xcuVKREZGYvbs2fD29s6y/cKFC3Ht2jWMHDkyU7CWnnQZ6sePH8PPzw9Lly5Fw4YNsw3uiIiIiIiICkKBhGt///237E0GiUSChIQEeHt7w9vbG/Xr18eAAQPQunVruX/8fvnyRel9N3Ljt99+w9ChQ/NtPKLvXXLIRwR7zcuwp1pupMZFIGivK0oMWsiALY84OzujS5cu8PX1hZubGywsLBS+9vr160hKSoKXlxd8fHzg6OgIFxcXhUIEeTw8PDB27NgCDXmEQiE6dOiAkSNHYujQod9N4CSRSDB16lR8+vQJAoEAS5cule2zJo+GhgZWr16NXr16Ye/evYiIiMDy5cuVfsNYnrdv3+L169do3759rvvKjStXrsDDwwOrV69GtWrV1Nr369ev4ejoiMjISIWvuX79OipWrKhQ24SEBIwcORJ//vkn7OzslJ5f+nAtPyQnJ+freDnJi8q1Y8eOYdmyZTm2O3jwIA4ePJjhmEQiwcKFCwHID9ikP2cUWVpx6NChGDBgAHR0dJCYmJivy40WFi4uLnj+/DlatGghOyZdTvBbf/31lywUXbZsmULPYXauX7+OyZMnw93dXW6lYUpKCmJiYjIdl/4MSr/kqvT7VCgUIiIiAj169JC12bNnD7Zs2SJrO3fuXPj7++PVq1cQCARo1qyZQsu3njhxQva4ODo65hiwKWPQoEHYvXs3QkND8fDhQ/j5+cldOvfly5c4cuQIAKBdu3Y59quhoYGhQ4di4sSJSElJwY4dO3L9vBEREREREalbgYRrjRs3xp49e3Dt2jVcu3YNr169kv3Re+fOHdy5cweWlpbo1asXevfuDUtLSwDAx48f0bdvX3h7e2f41GdeKVmyJNzc3PJ8HKIfRWpCLL54L1FbsCYlTopD8IHFKDXCjUtE5oGyZctixIgR8PDwQI8ePbB9+3aFA4Bjx47JblepUgWtWrVSOVgD0irhduzYkaEaIb/dv38fUVFRWLFiBXx9fbFixYpCtVRxVjZs2IArV64AAGbMmKFQsGViYoJNmzahb9++OHXqFIKDg7Fx40aYm5vnai42NjZwcXFB1apVUbp06Vz1lRu+vr74+PEj+vXrh3HjxmHEiBFqC13s7e2xa9cuHDlyBNWqVUO5cuVQpEgRGBoaZmrbo0cPBAUF4X//+x/mz5+fbb/r1q2TVX+0bt1a5WoN6T5v+UUoFObreDnJi1B8yJAhqF27NoyMjGBjY5Opyqxu3bqIjY2Fo6MjZs+erdIYiu5bpqOjg7dv38LZ2RndunXDuHHjVBpPVcHBwbC2ts7XMdPr1KkTOnXqJPv6xo0bEAgEqFGjRoZ2IpEIf/75JwCga9euKu/3OW/ePJw/f172dXBwMJ4+fZppPCAtSP22fU5OnTqFU6dOZXney8sLQNr+aNIxVNmL7MuXL2oN2HR0dNC0aVMcPnwYAHDr1i254dqZM2dktxX92ZR+aVrp/9uIiIiIiIgKkwIJ17S1tdGgQQM0aNAAU6ZMgb+/P86fP4/z58/j8ePHANL2ZNu4cSO2bNmC5s2byz5ZHxUVhV69euXJpuwSiQQSiQRisRgpKSkQiURITk6GUCjEqlWr0LFjR7WPSfQj+Xp+R66XgsxKalwEws/vhGXXCXnS/8/OyckJ3t7eCAkJwdChQ/HXX3/l+MZpaGgorl9P21PP1tYWW7ZskbufizKGDh2K9u3bo1GjRqhatWqu+lLVpUuXZLdv3ryJzp07Y8+ePdlWgRW0M2fOYOPGjQCAESNGyF1O7/79+6hdu3am0MHW1hZbt27FsGHD8ODBA/Ts2RMrV65E3bp1VZ6Prq4uevTogcmTJ+PAgQMKBwbqlJKSgr///htA2pu5bm5uuHv3LjZv3pzj0nvyCIXCTFV9lSpVQqVKlbK9TiwWIywsDABQvnz5HIPLuLj/PpwwefJklcPA9JVrsbGxClW4xMfHy24r0h4AEhMTARS+yrW8Ii84UAfp96Wi+1/eunUL48aNQ0xMDDZs2IDw8HC4urrmy15zy5Ytw5EjR7Br1y5UqVIlz8dTxN69e9G9e/dMxy9cuICwsDAYGxtj2rRpGb7/Hj9+jGrVquX4mH358kUW7pQuXRqLFy/OdplVbW1trF27Fvv370eJEiVgb2+PIkWKwMjISPb8rlu3Dps2bZJd061bNyxfvjzH+9m3b18AaeH+iRMnsmx38OBBuLq6AgB27NiBX3/9Nce+VZW+sjY0NFRumw8fPshu79q1C2vXrs2xXzMzMxgbGyM2NhaRkZGIjY2V++EFIiIiIiKiglJge66lZ2NjAycnJzg5OcHf3x/Hjh3DiRMn8OnTJ6SkpODSpUuyNzsFAgFiY2MRGxubr3M8c+YMwzWibCS8uY/4Z9fzdIy4Z9dgVOVXGNjVydNxfkb6+vro168f1q9fj/DwcCxbtgzr16/P9pp9+/YhJSUFRYoUwebNm3MdrAFpn8pv06YNpkyZgqNHj2baOyevicVi2bLFAFCrVi3MmjWrUAdr165dw9SpUyGRSNC/f/8s92FaunQpUlNTMWHCBDRv3jzDudq1a8PDwwOjR49GYGAgHB0dMWrUKLi4uKgcjPXr1w9btmzBxo0bZft45ad//vkHUVFRsq+dnZ0xbNgwlYK11atX49mzZ9i6davSy2aGhYXJKjVKlSqVY3vpPq+amppKLdH6rdTUVNntMWPGKH19+qoRRai7Ui45OTlXVbCqVK4FBwejePHieVL1dvHiRUyYMCHHx8nHxwc+Pj5K93/gwAFERkZi1apValnaNSsrVqzA7t27AaR9GKIwBGyfP3/GjRs3sGTJkkznpHP9/fffUbRo0Qznli1bhvj4ePz+++9o3bp1lv3v2bMHIpEIlSpVwq5du2BmZpbjnLS0tODo6Cj33M2bNzMs9wgAnz59wuPHj1G5cuUsf0Z9+vQJDx8+hK2tbYYgXJ704Xhufo4oIn3glVUFqzSEB4DTp09j6NChCgXV+vr6sr/5hEIhwzUiIiIiIipUCkW4lp6NjQ3Gjh2LsWPH4sGDB/D29sb58+eRlJQEIO3NEoFAAGNjYzRp0kRt40okEqSmpiIlJUVWtSYUCmX/goKCIBKJVHpTjuhnEHXzSP6Mc+sow7U80rNnT3h4eEAikeDSpUvZ7uWTnJyMgwcPQlNTE25ubmrbvwUAhg0bhq5du2LFihWYN2+e2vpVxL1792SfvNfW1sbKlSsLdFnDnNy7dw/jxo2DSCTCiBEjsgzWgLT78/TpU4wcORI1a9bE7NmzM7y5+euvv2LTpk0YN24ckpKSsHHjRpw/fx4TJ05Eq1atlJ6biYkJevbsia1bt6JZs2aoWbOmKndRZemXIWvQoAEmT56cZdvIyEjZ8tTfOnToELZv3w4g7Q16Dw8PpQJHf39/2W1FXkvh4eEAAEtLS4WrmORJX7nm6emZbaUNkFZxMnz4cDRr1izbx+pbO3fuxMqVKyGRSORW96li165dOHnyJPbu3QsDA4Nc96eIDx8+YODAgWjTpk2OS3eqonXr1ti1axdSUlJgb2+fKcBr164doqKiMixd6O7ujoMHD8LIyAgXLlxQaJxv+01NTcWkSZNw9uxZpeZ75MgR2R5ZWYmOji4UAZunpyeaNm2aKTy7evUqHj9+jIoVK8rd5y45ORmvX7/GmDFjUK1aNWzcuDHTEsCxsbE4ePAgSpcujR07digUrGUnJCQEU6dOhVgsRvPmzSESiXDjxg1ERkZi2LBhEIvFaNiwITp27Ii2bdtm+Lvj+PHjAIDBgwdj27ZtiIqKgqmpqdxx0u8FKV1eP6+k/8BjVo9PxYoV4evrK/s6qwq39MRiMaKjowGkVUObm5tn+XOaiIiIiIioIBS6cC292rVro3bt2pgzZw6OHj2Kffv24dOnTwDS/pCLjo7GokWLZPsPEFHBEIZ+QpL/i3wZK+nzcwhDP0PHsvAGHt8rKysrVK9eHY8fP4aOjk62b5IfPnwYkZGRmD59eo4fdIiJicHVq1fRuXNnheZRqVIlNGzYEPv370eLFi3QtGlTpe5Hbkj3jQGAPn36FOpg7c6dOxg9ejSSkpIwdepUDB8+PNv26d+kLVmypNy9S5s2bYqdO3di5MiRiIuLw5s3b+Di4oLatWtjyJAhaNGihVLhyeDBg7Fv3z5MnToVx44dy7egJC4uThYmCAQCTJ06Ndv2Pj4+WLlyZY79Xr16FZcvX0bbtm0VnsvTp08BABoaGqhcuXKO7aVLSBYvXlzhMeSRVkhZW1tnCh2+df/+fUyePBnBwcF49eoVACgcsBkYGKBTp07o0qWLwh9Aev78eYbKuvT++ecf2X6348ePx5YtW/J8WdHAwEAMHToUX79+xYEDB6Cnp4cZM2aofZx69epleU66HKi5ubls6UJp5Z5AIFB5H0RNTU2sWbNGtiRppUqVYGZmBhMTE7nh7dSpU3H9+nV06NABc+bMUWiMvKyUy0lcXBx8fHywZs2aTOek1deurq5y72tCQoLs9i+//CJ3b01vb29oa2tj27ZtKFasWK7mGh0djeHDhyMsLAxNmjSBh4eHbK+8mjVryj5cePnyZVy+fBmVKlWCl5cXjIyMkJqaCh8fH1hZWaFr1644cOAAgoKCsgzXQkJCAKQ9N7kNBHPy8eNH2e2sfsY5Ozvj69ev8PPzg729vULLVL5580a23Kw0kGa4RkREREREhUmhDtekTExM4OjoiEGDBuHy5cvYvXs37t69i3/++QedOnXC1KlTZXsQEP2MRFE5fwJYEQItbWgZyX8TJjU6LOOYyXqyfUqi75+Td0meiX5wDqYNu2R5Prv7oY7HSts0bz8FnhcuXbqEli1b5rjcWcuWLfH48WM4OTllWTUjEomwY8cOdO7cGcOGDcu2v4iICDg5OeH58+eyyhhFDBo0CLdu3cKcOXNw6tQpGBsbK3RdbsTGxsqWhDQ0NISLi0uej6mqs2fPYurUqdDT05PtTZoTafBRokQJWXghT926dfHnn3/CxcVF9qbpgwcP8ODBA5iYmKBNmzaoU6cOKlasCDs7u2yX7itVqhRatGiBixcvYvXq1bI9gPLaqVOnZG+ct2/fHtWqVcu2vZOTEywsLCAWi1GpUiUUK1YMxsbG0NHRgYeHBzZs2ABjY2Ns3Lgxxwqwb/n5+QFIq9zIaelUoVAoW8oypz0Pc1KiRAl4enqifv36WX7fJycnY/Pmzdi+fbus0s3a2hpv377F27dvUaFChRzH6devH/r166fU3F6/fo1Zs2ZlGbBJXbt2DV5eXhgyZAhCQ0Ph4uKSoRJQupqBWCzOdG365RcXLVqEFStWZDlOUlKSbIUEIK1yTldXFxMnTlTmbmVLKBTi4sWLaNq0aabXQVxcnOzxV8fyut/S0tJSeGlWaZCpo6OjcqCXnw4fPgwDA4NMH8I4c+YMnj17hl69emW5f6S0usvc3FxulbZQKMSBAwewbt06lCtXLlfzTExMxMiRI/H69Ws0a9YM69evzxRKlipVCgcOHMCYMWNw48YNvHjxArt378bYsWNx5coVBAUFYdmyZdDV1YWxsTECAwOzDLOk4VrJkiXzZJlTqdTUVNneqwYGBlkuJ2tiYqLQnnLpnT9/XnabS/MTEREREVFh9F2Ea1ICgQCtWrVCq1at4Ofnh02bNuHq1atYsGAB/v77byxdujTPP51JVBj5bxytln70SldBiUEL5Z77ukvxZcLyWuz9s4i9n/USV9ndD3U8VuVn/5XrPvLbtGnTULJkSYwZMybbSrOOHTsiLCwMgwcPznJPl+PHj8PIyAgzZ87Mdt+X6OhoODs7482bNwCAVatWQSQSYfTonJ+Dli1bolSpUggICMDSpUuxbNmyHK/JLR8fH9kb7KNGjcqx2qeg7N27F0uXLoWdnR3Wr18vtwJNHmm4psgbrba2tjh06BCmTp2Kq1evyo7HxMTgr7/+wl9//QVzc3NMmjQJvXr1yravQYMG4eLFi9i/fz/atm2Lhg0bKjTf3Dhw4ACAtMofRSuwcqqsLF68uNLBGgA8evQIALJ8gz896ZKQQO7DNWtr6yz7kEgkOHPmDNzc3ODv74+iRYuiY8eO6Ny5M6pWrSr3mjNnzuDVq1eYMGFCruYFAF27dkWJEiVw9+5dvHnzBq9evYKFhQVKlSqFyMhIXL58Gdra2ti6dSt++eUXAGlL223evBnHjh2DnZ0dIiMj8fTpU3z48AFA2hJyEokEEokEYrEYkZGRsp89c+fORffu3XM9b1UEBwfD29sbR44cQdu2beX+/JXuswfguwi0CovU1FR4enqiW7duGT4MEh8fj2XLlqF06dJZViCmpqYiJiYGAFC9enVZxWZ64eHh+P3333P9Mys6OhouLi54+PAhBg0ahJkzZ2b54RV9fX1s3rwZjo6OePTokewDDnv37kWVKlXQtWtXAGkh7OvXr9GmTRu5/QQGBgJIW24/L/3111+ysRwdHWFiYqKWfoVCIf78808A/1XHEhERERERFTbfVbiWXvXq1bFlyxa8ePEC69atw5UrV9ClSxesW7cOtWrVKujpEREVKvr6+nj16hXGjx+vUHsvL68c22T1CfXsuLu7IyUlRbYUVlY0NDTQp08frFmzBj4+PujYsaPsTfa8IBaL4enpCSCtemDIkCF5NpaqEhIS4OrqilOnTmHo0KGYMGGCUsuxKbu0nomJCbZu3Qpvb2+sWLFCVglmY2MDV1dXhZfrbNiwIWxtbfHu3Tu4urri+PHj0NPTU2ouyrh16xZevEhbpnbo0KEoWbJkno2Vk7dv38reeFbk9SutNgGQJ0teC4VCnD59Gjt37sTr169Rq1YtjBs3Du3atcv2tbRnzx4sX74cYrEY9vb2aN++fa7nUr9+fdSrVw/x8fHQ1taWVUD6+PjIwrVvHzMLC4sM1a/SoEGeixcvYsyYMbmepyokEgn++ecf7N+/H5cvX0bjxo2xa9cu2Nraym2f/nm3sLDIr2l+986fP4/AwED06NEjw3EPDw/ExMTA29s7y0rAkJAQ2RKDlStXxuXLlzO1sba2RpcuWVfJKyIoKAgjRozAp0+fMG/ePLl7v31LV1cXHh4e6N69O2xtbfH48WPcv38fhw8flq0YYG1tLVty9lsJCQmyPc3UuR/qty5fvoxFixYBSPs5P3bsWLX17eXlJbsPLi4uhfbDLkRERERE9HP7bsM1qUqVKmHLli24c+cOVq5cCUdHR8ycOVOhP16JiH4W0jfOS5QoIduLqrDr0aMH1q9fD5FIhLlz5+L06dN5FsqcP38eAQEBAIAZM2YU6B5C8rx58wbjx4+HQCDA3r17M1RBiUQihfa6UnQ/rG/17dsXzZo1w9q1a+Hr64sDBw4oHQD07t0by5Ytw6dPn7BhwwZMmTJFpbkoYteuXQDSKp2cnZ3zbBxFSJc1MzMzy3FvQgCyN5OB3FeuSaWmpuLp06c4ffo0Tpw4AZFIhM6dO2PNmjWwt7fP9tq4uDjMmzcPJ0+elB2bNWsW7OzsYGdnl+u5CQSCPFkGsaAdOHAAe/fuRbly5bBp06Ycl20NDg6W3Za37xfJ98cff6Bu3boZqncfP34MLy8vrF27Fg4ODlleKw29AaBs2bKIjY1FcnJytsvcKsvPzw9jxoyBmZkZDh8+nO18pKGZlKWlJQ4cOABjY2NMmzYNLi4uGa4vW7ZshmUT05PuTw1ALd+n6SUmJuLRo0c4ePAgzpw5AwDo1asXXF1dVf5/zLcCAwPh4eEBAPj111/h5OSkln6JiIiIiIjU7bsP16Tq16+Pw4cP4/jx41i5ciU+fvyIWbNmFfS0iIgKFYFAoNY3D/NS0aJF0bJlS5w7dw6BgYHYunWrwvsGKUMikWDLli0AgKZNm2a5zNa3OnXqlOFN8dy6d+9epmPS/e28vLwwYsQIDBw4MFMF2q5du/DixQuMHDky2zdvla1cS8/a2horV65EXFycSmFI165dsXr1aohEIuzevRvdu3dH+fLlVZ5PVp4/fy5bxnLmzJkwNDRU+xjKuHDhAgCgQ4cOCr3xHBb2396Wua1ci4mJke3xFBcXB3Nzc3Tu3Blt2rSBtrY24uLicPfuXaSmpsr9l5iYiI0bN+Lz588AgFq1aqFHjx5o2rQpA6B0JBIJfH194eXlhdjYWABplcJjxozBwIEDFXrepUv/AVB4mdef3Z07d+Dn55dhH6+4uDhMnjwZM2bMyPHnuPR1DaQFUJaWlnj8+DHq16+vlvnt3r0b69atg6OjI8aMGSP3Axvh4eEQCATo0aOH3OUrbWxscPPmTYjFYowaNSrDubJlyyIsLAwhISGZvh/TL3GpyL6JWVmwYAGWLl0q+zo1NVVWwWxpaYmuXbuif//+qFGjhspjfEskEmHSpElISEhArVq1sG7dukzBIxERERERUWHxw4RrUp07d0aLFi3g7u6OHTt2ZFg+iIjoZyddBut70aVLF5w7dw4AsHPnTvTp0wfFixdX6xiXLl3CixcvoKuri7lz5yp83fbt25GSkqLWuaR37949LF++HPXq1cOJEyey3ItJR0cHp0+fxpkzZ9C8eXOMHj061292BgUFyQ13VK0yMjU1RfPmzXHhwgWIRCKsWLECW7duzdUc5dm4cSMAoHHjxmpZujA3/Pz88Pz5cwBQeL+vL1++yG7nNlwzMTFBiRIl8ODBAwBAREQEdu/ejd27d2dqa2pqCgsLCxQrVgz6+vq4efMmEhMToaGhgd9++w0jR45E5cqVczWfH014eDh8fHxw8OBB+Pv7ZzjXrVs3DB06VOG+pPvGFS1aFMbGxmqd549q27ZtMDIywm+//SY7tmjRIvTs2RMDBw7M8XppAKWpqQlbW1tUrFgR169fz3W4lpycjClTpkBHRwfHjx/Pds8zR0dHSCQS9OvXL8vnPSkpCatXr84UMJUrVw5A2p6O//vf/zKce/nyJYC0+1apUiWV78v48eMz9H337l1ZCOjo6IgRI0ao3HdWFixYgEePHqFRo0bYtGkTDAwM1D4GERERERGRuvxw4RoAGBsbK/UGKRHRj04aqn1vnwBv2rQpTExMEBMTg+TkZGzcuFG2x4s6iMVirF+/HgAwZswYlC5dWuFr1R3yfevr16/YunVrjnvNSCsRJRIJrl+/jubNm+cqXDt69CjmzJmDVatWoV27dir3862OHTvKKrmuXr2KBw8eoHbt2mrr38/PD5cuXYKenh4WLFigtn5VJQ2xWrRogSpVqih0jTRcMzY2RpEiRXI9BxcXF9lyqrVr14adnR1KlCiB4sWLw9LSEpaWlihWrBh0dHQQGRkJT09PeHl5QSgUonPnzhg9enSmCkM/Pz84ODgUuqVT80NcXBx8fX1x8uRJ+Pr6QiQSAUgLJ8eMGQN3d3fEx8cr3a80DMmu8lSdVqxYgREjRmQZ2Gfl2rVruHr1KubMmQOBQJBHs8vZ06dPce3aNfTp0wf6+vqy46NGjZKFTjmRhmsODg7Q1dWFg4MDDh06hEmTJuVqbrq6upgwYUKW++tJffz4EW/fvgUAODs7w9nZGZMnT87UrkWLFnKvL1myJPT19XH16tVM4dqjR48AALa2trkKp8zMzFCqVCnZ19bW1nBzc0NoaCi8vb3h5OSk1t8pPDw8cOjQIbRp0wZubm4/5c8YIiIiIiL6vvyQ4RrRz8ZmzGa19CPQynr5qmJD12T4WldPT/amSugxdyQHvJJ3WZ7QLeUAyy5ZLw+Y3f1Q12P1vZEu5fS9fQpcW1sbLVu2xNGjRwGkBT+TJ0+GqampWvo/duwYXr16BQcHh0K3r0v6iozspH9z2d3dHa1bt1Z5zKNHj2LmzJkQi8WYMmUKNDQ0Mr1xq6pmzZpBT08PSUlJANLCJ3WGa6tXr4ZEIsH48eOVCknzQmBgoKzicty4cQpfJ11mNLdVa1K2trbYsmUL6tevn+F1kl5AQAB2796Nv/76CykpKejSpQuGDx+e5fKEDx48wNixYzFy5Ej07t1bbfssFXZCoRC9evXC+/fvZccEAgF69+6NSZMmwdTUVBbUKyMuLk62R5aiIWxu3bp1C8ePH8fChQtRq1atDOek1bhCoRARERGy4wEBAZgwYQLi4uIQHx+PJUuWQFNTM1/m+61169YBAHr27JnhuKLBWkpKCvz8/AAAderUAZC2h/Pz588RHh6e4wcacpJTsAYAp06dkt1u06aN3FDv6NGj6Ny5s9wAS0NDAzVq1MDVq1chFotlbZKTk/H06VMAyPTc5pampiZ69OiBzZs3IyAgAL6+vjnuJ6iorVu3YsOGDejatSuWLl1aYK8tIiIiIiIiZTBcI/oBaJta5vkYmkUsMo6pry97M0e/dJV8Ddf0S1dW+T7nx2NVGEkDje8tXAPSQhlpuCYUCnHr1i2Fg6fsJCUlYf369dDW1sby5ctztSdZQUr/JmTJkiVzbB8YGIiKFSvm2C4lJQWTJk2Cu/v/2bvvuBr7/w/gr9M47VTKLLJlb7c9yg4NZEaSyCjrzkgy05CRiBCRhDtZ2SsZt71HboSKREvz1Dnn90e/c31Lpzqzwvv5ePRw6lzX5/qcWa7Xeb8/m0Reh64sampq6Ny5M65fvw4AzL+ycO3aNfz7779o164dpkyZIrNxJeXj44OCggKYm5uLFZgkJiYCQLFqEWn16dNH6M8fPHiA/fv349y5c9DS0sKkSZMwadIkGBgYCN1eYMqUKcjMzMSqVasQEhKCv//+G6ampjKbb1XFZrPh5eWFcePGoaCgAIaGhvDy8kKnTp2kGvf+/ftMZbG0Y4lKRUUF3759g5OTU6nbnD59ulgAVNSxY8dgYGAgtNJKngoKCnDgwAFER0ejefPmaNOmjUTjPH/+nPnAyV9//QWgsIJNWVkZp06dwuTJk6WaJ4fDYaoaS3P8+HEAha1A3dzcmPkI7N+/Hxs3bsSFCxfg6+srNBzv3Lkzbt++jUePHjEfVLhz5w5z7O7du0t1O4QZPXo0duzYAR6Ph9DQUJmEawEBAdiyZQvGjh0LDw+PSq2KJIQQQgghhBBx/JpnEgkhVYpmy55IuxlRgcfrVWHH+h3weDwmXNPW1q7k2Yiva9euxb6Pj4+Xybg7d+5EYmIiFixYINW6NJVN3E/4165dGxERor9eZRk6du3alQnVsrOzkZKSInZrup9xOBysW7cO6urq8PHxqfSKh3v37uHMmTMwMDCAm5ubyPvl5+czbSFlGa4VlZmZidOnTyM8PBzPnz9HkyZNsGLFCowcORKqqqoijzN79mxkZmYiODgYTk5OGDx4MFatWiWTVpZVWZs2beDo6Ih///0X27dvl8n76e3btwEUVulWVLgmqDZs3rw5E/KUJz4+nglR+/XrhxkzZshtfgLv37/H7NmzoampCT6fjw8fPiAtLQ0AYGNjI/G4V69eBVAY+Pfo0QMAoKqqii5duuDIkSNSh2vv37/HlClTilX+leb79++lBuAAcPHiRcyaNQu7d+8uEToJ1oe7cOECE65FR0cDKPy9IAgOZalu3bro3r07YmJicP36dXz8+FGqSuFNmzZh+/btmDx5MpYuXSrDmRJCCCGEEEKI/FXpcO3kyZMwNzenTzASUsWxa9SHqpEJcj+9lPuxVOu1ALtG5bZ8+9UITkYCQM2aNStvIhKqXr06atasiaSkJACyWTfu06dP2LVrF7p27Ypp06ZJPV5lEjdMUlBQkDrQktTPVVyy+P0eHByMuLg4eHp6Vno7yLy8PGa9t9WrV0NXV1fkfePj48HlcgFAprcjOTkZV69excWLF3Hz5k1wuVz069cPCxcuFKmyhc/nIysrCxkZGfjx4wd+/PiBjIwMNG/eHHXr1kVCQgLOnj2LN2/e4ODBgzJr2VpVOTk5YdKkSTL7oIIgDOnSpQs0NDRkMmZ5pG3laWpqWiFzbdCgAQ4cOIDTp08jKCio2O+yzp07SzzuxYsXAQC9evUqFir36tULnp6eUq8H2axZM+zduxdXrlxBy5YtUa9ePWhpaTH32eLFixEVFYXmzZvj0KFDJX6npaenw8zMDHl5eRg4cCBWrVol9L2ybdu2YLPZiIiIgIuLC5SVlZl2tJ06dZLba9HGxgYxMTHg8/kICwuDq6urRONs2bIF27dvx9SpUyUegxBCCCGEEEIqU5UN13bu3ImNGzfi4cOHmD9/PpSUlJgvQkjVo9PNEl8qIFzT6WYh92P8bn71cA0AGjZsyIRr7dq1k3q81atXQ1tbGxs2bJBJWFeZKrtSSxwNGzZkLhsbG4sVPgkTHx+PwMBAWFlZwcrKStrpSW3t2rWIjY3FjBkz0K9fP7H2LbqWV/369aWax5cvX7B27Vo8f/4cCQkJAAorELt3746hQ4dCXV0dCQkJCA4OLhGaZWZmFvtZZmYmeDweWCwWqlWrBn19feZr4MCBuHHjBmJjY/H27VusWbMGvr6+Us29qlNSUpL6eSvw9u1b/PfffwCAIUOGyGRMUfxK73m6urqYOHEiLCws4ODggAcPHgCAxOuivXjxArGxsQBKrtnWt29feHp6Yv/+/VKvB9msWTOh7XdjY2Nx9uxZAMDy5cuFtns8fvw48vLyoKysDDc3t1KfbyoqKujevTuuXr2KkydPom7duszvSVm0Ti5N//79YWBggOTkZERERMDZ2Vmsyleg8P95AQEBFKwRQgghhBBCfmlVMqkKDw/Hxo0bmU9EhoWFFbteUVERysrKzBebzYaysjJUVFTAZrOhqqoKVVVVqKioQE1NDWpqalBXV4eGhgY0NTWhra2NatWqQUdHB/r6+qhdu7bQ/9wSQkSn3qQjNFr2RNbzGLkdQ7NlL6g37ii38X9XRcM1IyOjypuIFDp16oRbt25h5MiRUp/0PHnyJG7evIl9+/aVu74Uka1atWrB0NAQX758wfLly6Ueb8WKFWjUqBFWrFghg9lJR9Bu0dLSEvPmzRN7/5cv//fhBFHWxCtLrVq1kJiYyARrQOF6VdHR0UylVFFaWlowNDSEoaEhvn//jrdv36Jp06ZYtmwZDAwMYGBgAH19faEVTy9evMCoUaPA5XJx9uxZeHt7yz282b59OywtLVGrVi25Hkfejh07BqBwLcyKDNd+xQ+qaWpqwtHREY6OjgAk/1BBeHg4gML2hr16FW8xbWxsjHbt2uHMmTOYOnUqWrduLd2khfDz8wOPx8PIkSOFtgHNzc3Fvn37AAAjRowo9wMxw4cPx9WrVxEaGoo6deoAKGxxOWzYMJnPXUBJSQmWlpbYuXMn0tLScPr0aVhbW4u8f3h4ODZs2IAJEyaIHKwFBwfD2Ni4zBaahBBCCCGEEFLRquT/rpOTk8Hn88FisZhF3osqKChAQUEBcnJymJ9J21qqRo0a6NSpE/r3748BAwaAzWZLNR4hfyL9gdOQ++EFuJnlrzMiLkVNPVQfaC/zcf8ERdcoa9y4cSXORHLjx48Hm83G1KlTpRqHw+HA09MTa9asQceOFNRWBg8PD/D5fPTs2VOqcS5evAg+n4/w8HCxqyZk7datW1i8eDEGDBiANWvWSDwGABgYGKBGjRpSz8nFxaVEy9PGjRujZcuWaNq0KYyMjJhArehaacuWLcPbt29Ro0YNZo2tsrRo0QKTJk3C3r17oaGhIddgraCgACtWrEBOTs4vH6xxOBxm7cORI0dCU1NT4rHevn2Lq1evwt7+1/odeebMGbFCRS0tLeZyfn6+2MdLTk5mAs0ZM2YIfa6OGzcOjx49gre3N/bv3y/2Mcpy9+5dXLlyBZqamli0aJHQbQ4cOIDk5GQoKyvDycmp3DFNTU2hrq6OFy9e4MWLFwCAoUOHyn39wzFjxiAoKAh8Ph+hoaEih2tXrlzBypUrMWLECLE+YHH06FG4uLhIOFtCCCGEEEIIkY8qGa7Nnj0b1atXx8qVK9GzZ0+w2Wzk5+czX3l5eeBwOMxXXl4ecnNzkZeXh4KCAomO+fXrV0RFRSEqKgo6OjqYMWMGbG1tab03QsSgqK6F2uPckLjfHbzcTJmNq6Cqidrj3KCorlX+xqSEt2/fAihsBdaoUaNKno1k9PT0MH36dKnHycvLw7x582BhYSH9pIhEfq4WkVRubi5CQ0MrvdXp06dPMWvWLNjY2GDp0qWlhkuZmZmlBijx8fFMuztR1kETRa9evdC5c2ekp6fDxsYGgwYNgoGBATIyMvDo0SP07t1brPHi4+NRp04dobfP2dkZUVFRMDMzk8nchcnKyoKzszMSEhJw9OhRuR2nohw+fBjfv3+HsrIyHBwcpBrry5cveP36tcjbV5W/bTdt2iRWuJaZ+b+/K9LT06Gvry/W8QIDA5GXlwdjY+NS28gOGTIEnp6euHPnDk6fPi2zCjAejwdPT08AQKtWrRAfH49q1aoV+zDfly9fEBAQAACYOHEiDA0Nyx1XTU0NpqamOHnyJIDCij5Z/K4sj5GREbp164abN2/i+fPnePz4Mdq2bVvmPrGxsViwYAG6deuGdevWifw8/O+///Dff//9spX3hBBCCCGEkN9XlQzXgMJPjq5cuRLLli1DgwYNRN6Py+UiJycHOTk5yM7ORmZmJrKysoqtJ5KSkoKUlBR8/foVHz9+xMePH4uFcqmpqVi/fj1u3boFf39/qRd+J+RPwq5RH3UmrcLnsDUyqWBT1NRD7XFuYNeQbg2iP5lgTR8TE5M/vgWulpYW7OzsKnsaRAbMzc2LreEmD8+ePcP58+cBAAkJCXj16hWaN2/OXH/r1i0sWLAA8+fPx8SJE0sdJz8/H7a2tuBwOGjdujVatWqFJk2aMGurrVixAjweD4Bs10ry9/eHjo4OcxKbw+HAxcUFd+/eRXBwsNC2dKU5f/48QkNDMXDgQFhaWqJp06bMderq6tixY4fcTn5//foVjo6OeP/+PY4cOQINDQ25HKeiZGZmIjAwEAAwYcIE1K1bV6rx0tLSkJGRIfL2VSFc4/F4iI+PB4/HE7nasWib05SUFLE+LPLixQuEhYWBxWJh1apVpbbGVFFRgZ2dHTZu3Ah3d3e0atVK6jUQASA7OxujRo1Cs2bN8OzZM0yYMAGKiopo1aoV2rdvjw4dOmD37t3Izs5GvXr1MGfOHJHHLvp4GhkZSf18EtXo0aNx8+ZNAEBoaGiZ4VpmZibmzJmD2rVrY/PmzWL930qwjmO9evWkmzAhhBBCCCGEyFiVDdckpaioCE1NTbHa6+Tl5eHRo0c4ffo0jh8/Dg6HAz6fj2vXrmHDhg1YvHixHGdMyO+HXaM+DB388P38bmQ+vy7xOJote6H6QHuqWJPS8+fPAQB9+/at3IkQ8otIT0+Hn58fDh8+jMGDB8Pb2xvBwcGYPHkyAgIC0KlTJ0RGRuLgwYMIDg4ud400ZWVlRERE4MGDB/Dx8WHaAf6scePGMn2d6urqMpfz8/OxYMEC3LhxAwDg5OSEsLAwkQOKqVOnom/fvli2bBn27NmDNm3aYMyYMTA3N4eamhpatGghs3kX9ebNG0yfPh2JiYnw9PREkyZN5HKciuTr64vk5GTUqlVLrBClNKmpqcXW1iyPsJbrFS0tLQ0FBQVIS0uDnp6eSPsIqrCBwiovUeXm5sLV1RVcLheTJ09G165dy9x+8uTJOHjwIJKSkuDs7Izw8HCoqKiIfDxhNDU1MX78eOb71NRUXLt2DZcvX8ahQ4ewe/du5ro6deogJiYGffr0Kbfl7ZYtW3DixAnm+7i4OCxcuBAbN26UeF06UZmZmUFPTw8pKSk4c+YMFi9eXOpjuXLlSnz58gXHjh0T+f9oKSkp8Pb2xpUrV2BgYAB1dXXmQwiEEEIIIYQQUhXId8X5X4SKigq6du2KVatW4fjx46hduzaz3ltISAju3btX2VMk5JejqK6FGhYuqDVmKVTriXfSVbVeC9SyWYoaFi4UrEnp2bNn+Pz5MxQUFDBy5MjKng4hVRqfz8c///yDwYMH49ChQ5gxYwY2btwIExMTeHt7Y9CgQZgyZQoOHDgALS0tHDx4sNxgragOHTrg4MGDWLhwYYnrNDQ04OXlJZc1y3JycuDk5MRU4QGFgcOePXvEGqdhw4YIDQ2Fq6srXr16BTc3N/Tp0wcbNmzA9+/fZTJXLpfLXP73338xfvx4JCYmYuTIkaW28vuV3L9/H4cOHYKCggK8vLykWmtNQNzKtaoQriUnJwMorEoU1Zs3b5jLRdcSLY+7uztiY2PRvXt3/P333+Vur6amhrlz5wIAXr58iblz5yIvL0/k44lCV1cXFhYW8PDwQMuWLYtdd/v2bcydOxc9evTAxo0bweFwhI4RFhbGtJHs27cv03L33LlzWLZsWbHXkqiK7lPe/mw2G5aWlgAKq2IPHz4sdLuHDx/ixIkTYLFYcHJywuDBg8v9MjU1Rc+ePZk18qglJCGEEEIIIaQq+q3DtaCgILGDMWNjYzg7O4PP54PFYoHH42HDhg1ymiEhvz/1Jh1RZ9JqGDpshE53K6g1aAMF1eInExVUNaHWoA10ulvB0GEj6kxaDfXGHStpxr+XCxcuAAD69+8vk9ZWf5LHjx9jzZo1VeJENJHO5s2bcf162VW0r169wvjx47F06VKkpKTAwcEBzs7OxbZZsWIF+vbti9WrV+PQoUNMQCAOFosFBwcHuLi4MD9r1qwZDh48iFatWok9XnmSkpIwfvx4REdHAyj8O8fDwwM3btzA2rVrxR5PQUEBU6dOxeHDh1G/fn2kp6dj586dMDMzw86dOyU6oV9USkphO+Hc3FzY29sjIyMDxsbGWLFihVjjiBMSVJSMjAwsXboUfD4fLi4u+Ouvv2QyblpamljPRcF7Go/HY1qll/dVNLyTxf0pCGOTkpJE3uf9+/fMZVHDNV9fXxw/fhx//fUXAgICSm0H+TNra2t06dIFAHD16lU4OjoiJydH5LmK4sWLFxg1ahTu3LkDIyMjhIWFYe/evejcuTOA/7UPXblyZYl9Q0NDsWrVKgCFrfS3bdsGPz8/GBsbAwCOHTuGKVOm4Nu3b+XOg8fjISMjA3Fxcbhy5Qrz88jISLx79w4ZGRmlVoyNGTOGubxz505cu3YN6enpxQJBwWOdk5OD9+/fi/QVHx9f7HlGf78QQgghhBBCqqLfri1kUW3atMHff/+NEydOiPXJ4J//A/fo0SPcvXuX+c8uIUR87Br1oFdjAoDCE3t8Ti743HywFJXBYqtWiTVgfjc8Hg9nzpyBoqJisRP5pHyPHz+Gvb09fvz4gZycHKxZs+aPf45GRUUhMzOz2MnUX8GGDRuwc+dOqKioYNu2bejZs2eJbc6cOYMFCxYwJ3MtLCyEVpcpKirCz88P8+fPx4ULFzBw4EDY2Nhg9OjRYlWwAYCDgwOSk5PRvXt3mJqayuX5devWLSxcuBDfvn1D7dq1MXfuXFhYWJRZHSdqBZSJiQn++ecfuLi4ICYmBtnZ2diwYQNu376Nbdu2ldvOrjSPHj0CUPj+xePxoKysjA0bNoi9zlplhGu5ubmlXsflcjFv3jzExcXBxsYGjo6O5Y4neE6UVzX15csXJhwRhCtlEawzHBsbi27dupW7/c9Kq6QqGsAUXctYmA8fPgAAnj59ij59+oh03PT0dOayKKGRt7c3du/ejT59+sDf31+s1o4sFgteXl4YMWIEfvz4gVu3bmHChAnw8fERa603YfLz87Fnzx5s27YNubm5sLKywrJly5j/q3Tr1g1Xr17FypUrkZiYiOPHj2PFihVgs9ng8Xjw8vLC3r17oaCggEWLFmHatGkAAG1tbWzfvh0TJ07E9+/fcefOHVhYWGDVqlXo379/qfNJTEyEqalpiZ/fu3cPQ4YMAQBcunQJhoaGJbYxNjZGly5dcOfOHWRlZWH69OkAgOXLl5e5DqW4qHKNEEIIIYQQUhX91uFa165d0axZM6xduxaenp4i7/fzGgXm5uZC/0NJCJEMi8UCS0UNgFplT+W3FhUVhQ8fPmDy5MlVep0iPp8v8cnvolVlXC631BO6Rbcr76Tvs2fPMG3aNPz48QMAcPToUbBYLKxevfqPDdguXryIRYsWgcvlQllZmWkF9jMulyt1pR+fzy/3MRJ1u82bN2Pnzp0ACgMKJycnbN++HT169Ci23YABA2Bubo7jx4/DxMQEq1evLnVMNpsNf39/BAUFYevWrdi/fz/2798PIyMjdOzYESYmJjA2Noaenh6qV68ODQ0NqKqqQkVFpdjzR0lJCe7u7kKPweVykZeXh+zsbKSnp+PHjx9IT0+Hjo4O2rZtW+59w+Fw4O/vj127dkFZWRmzZs3C9OnTmcBrx44d0NfXh4GBAapXr45q1apBQ0MD8fHxuHXrFgCI1J5SS0sLO3bsgKurK06dOgUAuHHjBrZv34558+aVu7+w2/3y5ctiP5s9e7ZEFX1FnxuyDNdiYmKgra0NY2NjaGtrMz+/efMm8vPzARSusfczT09PxMTEwNraGh4eHiIdi81mAyh8PEsLzrhcLp48eQKg8HEV5e9dQQjWvHlzHD9+XKS5xMfHMwFMaWFf0UD17du3aN26danj3b59GwBw+PBhTJo0CdWqVSt3DsbGxnj9+jWAsltb5ubmYvny5Thx4gSsrKywatUqoY9JeerUqYNVq1Zh/vz54PP5eP78OaysrLBgwQJMnDhRohaud+/ehYeHB/777z80bdoUCxcuFBou9u3bF507d4anpyciIiLA5XKRlZWFv//+GxcvXoSRkRE8PT1LfPCvYcOGCA4Ohq2tLVPROHPmTHTs2BHz5s0T+kFBQ0ND5n6VxP79+8u83szMTKrxCSGEEEIIIaSq+q3DNQD4+++/MXz4cAwcOBD9+vUTaR/BCVUAsLOzg6urq7ymRwghcsHj8bB9+3YYGxtLdJK7In3+/BkTJ05EQkKCVOOI0mLtx48fJda3EcWRI0fAYrGwatWqCgvYcnNzkZ2dXe52mZmZzOWMjAymrd7PBNUmglZwonr06BFcXFyYsGLp0qVQVlaGubl5iW2PHz+OZcuWldpCTBSXL18W6TEShFriyMvLw8yZM0sEbEpKSvDy8oK+vj6sra2ZUKM0LBYL06dPx5AhQ+Dv74+oqCh8+vQJnz59QmRkZKn7sdlsqKioMOMXfS7x+Xzk5eUhLy+PCWmKHq9bt26wtbUt9zY+fPgQy5cvR1xcHEaPHg0nJyfUqlWr2DaNGzfGzZs3ceHChVLb8mlpibbepZKSEry9vfHjxw9cu3YNQOG6YpJQVFTE9u3bMWHCBGRlZaFNmzZwcHCQaKyi1VWyXC8rPT0dGzZswIsXL6CjowN9fX0oKyvjv//+Y7b5uYrRy8sL+/fvx/Tp0zF//nyR30MaN27MXF60aBHmzZuHmjVrMj/j8/k4cuQI8xhGRESgRo0a5b7n//z8EldpFXrNmzdn1ixev349fvz4ARMTkxJVh/fu3WPW/0tKSsLEiRNx+PBhqKmV/YGbGTNmYOnSpcjJySk1ZH7//j1cXFzw6dMn+Pj4YMSIERLcwv8ZOnQoPn36BD8/PwCFt33t2rU4ePAg7O3tMXLkyHLfL4DC2xwYGIjr16+jXr168PHxgbm5eZkBnYaGBtasWQMXFxc8fvwYS5cuRUJCAmxsbODq6lpqNWezZs2wb98+ODg4MGva3b9/HxMnTkTdunUxcOBATJ48GbVr15bgHiGEEEIIIYQQIvDbhGvZ2dm4e/cujI2Ni7V1bNCgAcaMGYPly5cjKiqq2KeMSyNoNdOyZUuRFj4nhJCqJjIyEvHx8QgPDy/3hGVlq1OnDvbv34/w8HA0b94cDRs2hJaWFjQ1NatcpZhgPc6KkJ6eDltbW8TFxYm8jyjhy+fPnyVqBSfA4/Hg6uoKZWVlDBo0qNh1VlZWUFVVRWJiIlq2bIkaNWpAS0tL4haB8vJzhTpQGGCJ+zvfyMgI3t7eWLBgAaKionD+/Hk8ffq01PCCw+GU2lKvNPXr18emTZvQokWLMrf79u0b/Pz8cPbsWVhZWWHHjh2oW7eu0G1NTU1hamqKpUuX4sKFC/D19cWnT5+KbSPOc0RRURG+vr6wsLBAQkKC2C0cizIxMcGWLVvg5OSENWvWCH2sRFG0ck2UkFpUw4YNw7BhwxATEwMvLy/ExsYWu15XV5epROLxeFixYgVOnToFb29vjBw5UqxjDRgwAJs3b0ZiYiKePHkCOzu7MrevVq2a0PZ+PxP3Ofiz0sLKGjVqwNzcHCdPnkRqairWrFkj0nhDhgwR6ffU0KFD0bdvX3z48AFNmzYtdh2Xy8W+ffuwefNmtGrVCseOHZPZOl2Ojo5ITk4uFuZ/+PAB+/fvx4cPH4S2kAUKn4PXrl1DcHAwHj58iF69emHz5s0wMzMTee237OxsBAQEICwsDG3btsX69euZteDK0rx5cxw+fBgODg548+YN8/O8vDykpqbK9DVBCCGEEEIIIX+q3yJcO3bsGLy8vJi1GIYPHw53d3dm7YLZs2cjMjIS69atw/r168sdLz4+HiwWCwsXLqxyJ3YJIaQ8nz9/hqenJzw9PdG8efPKno5I6tati/nz51f2NKqUmjVrIiQkBFFRUWjevDkaNGgATU1NaGhoVOnfTUOHDq3sKVS4mjVrws7ODnZ2dsjLy8OzZ8/w9u1bxMXFISkpCampqUhLS0N2djZycnKQm5sLDoeD/Pz8cquI1q9fX2awxuFwsHPnTly8eBHDhw/HlStXRGqxBxSGYoMHD0aPHj0wYcIEpnVb9+7dS239WRptbW0EBgZi2rRpsLa2Fmvfn/Xs2RPHjh2Tam2rogFQTk6OVPMRpmfPnujSpQvc3d1x7NgxAIVtEdeuXQsdHR18//4drq6uyMjIwD///IOGDRuKfQwNDQ0cOHAA27Ztw8uXL4WGYoqKitDS0kLHjh0xYcIE1KhRo9xxBZVn4qxHDBS2ZZw2bVqZIeG6detQs2ZNnD17Ft+/fy+1Jae6ujpatWqFSZMmoW/fviLPQV1dHSYmJsV+duPGDaxfvx58Ph9+fn4iBYzicnNzg66uLrZs2QIzMzN4eHjAwMBA6LavXr3CsWPHcOHCBRgZGcHU1BSbNm2Cvr6+yMfjcrk4duwYtm7dCm1tbQQEBIh9u2rXro3w8HC4u7vj1KlTcHZ2xrRp00SqtCOEEEIIIYQQUj4WX9rFUeSoefPmOHPmDBo0aFDqNhs2bMCuXbuKrb3AYrHQsmVLHD16lPnZ1q1bERAQgKCgIPTs2bPM4y5ZsgSvX79GRESE9DeC/JI4HA6ePn1a4uetW7eW+qREQUFBsU8RA0CTJk1E/hRzZeDxeCVOTqqpqUm03giRLz6fjylTpqB3796wt7ev7OkQQkTA5XKZLx6Px/xNw+fzy63g5PP5uHfvHjp16iRV6Hru3Dns2rULFhYWsLGxkfh3Eo/HqxK/G3bu3ImjR4/CxsYGVlZW0NXVlctxCgoKMGDAANSrVw+urq5o0aIFbty4gTVr1mD8+PGYMGFClbg/inJ3d0ePHj1gamoq8uNcUFAABQWFKnVbbt++jcDAQPD5fIwaNQpDhw6VuNJRVNevX0e3bt1Kvd8yMzMRGhqKzp07o3Xr1mKv9cbn83HmzBls27YNxsbGGD16NHr37i31ByouXbokl9Cxosnq79Ff8W9xQgghhBBSNeTn5zPrXgu0adNGonWef3XyPH/+q6jUcO348eNlfvq1vHAtNDQUq1evZv7DKbgpTZo0gYODQ7F1FrKysmBmZgZ1dXWcOnWqzPYzo0aNwogRI0Rqr0V+TxSuFUfh2q8jNzcXp06dwqhRoyp7KoQQUmlSUlKgq6tbIVWeKSkp0NPTY74PDw/HoEGDoKOjI/dj/6mysrJw4MABmJubl9r+9Ff05s0bREdHw8LCAtWrV6/s6VQ5FK4RQgghhJDKRuHa/1C4VoltIT98+IBly5aBxWJJtNj4q1ev4OnpySycrqamBhsbG1haWpZYSB4obK0zbdo0+Pj4YPPmzVi8eLHQcfl8Pt6+fVtiHRlCCPkVqKqqUrBGCPnjFQ27KvpYNjY2FXbsP5WGhgYcHR0rexoy16RJEzRp0qSyp0EIIYQQQgghRASVVnbi5+eHgoICrFq1Chs3bkRSUpLI+3K5XCxevJhpUTNp0iRcunQJixcvFhqsCUycOBH6+vrYv38/Hj16JHSb/Px8+Pj4oGbNmuLeJEIIIYQQQgghhBBCCCGEEPKbq5Rw7cmTJzh37hxYLBaysrKwc+dOmJqaYsGCBSXKKoU5cOAAXr16hRYtWuDIkSNYtmyZSJ9QVlFRwdSpU5lwruhi9wJsNhtmZmYS3S5CCCGEEEIIIYQQQgghhBDye6uUcC0wMBBAYQtGwVdBQQGioqJgY2ODsWPHIioqSug6GRwOB9u3b4ejoyMOHz6MFi1aiHXscePGQVdXFx8+fIC3t7dMbg8hhBBCCCGEEEIIIYQQQgj5M1RKuLZt2zbcuHEDwcHBmDNnDnr06AE2m80EbY8fP8aCBQsAAIcOHUJ2djazL5vNxqlTpzBv3jyJFp1WU1PDhAkTwOfzcfDgQZw7d05mt4sQQgghhBBCCCGEEEIIIYT83iptzbXq1aujW7dumDVrFnbv3o07d+4gMDAQo0aNgra2NhO0hYSEYODAgYiIiGD21dfXl+rYEydOhJqaGvh8PpYtW4b3799Le3MIIYQQQgghhBBCCCGEEELIH6DSwrWfqaqqom/fvlizZg1u3LiBHTt2YMCAAVBUVMS3b9+wbNkyjB07Fm/fvpX6WDo6Ohg+fDgAIDMzEw4ODvj+/bvU4xJCCCGEEEIIIYQQQgghhJDfW5UJ14pSUlJCnz594O/vjytXrmDu3LmoXr06Hj16BEtLS2zbtg1cLleqY0yYMAEAwGKxEB8fDzs7O3z9+lUW0yeEEEIIIYQQQgghhBBCCCG/qSoZrhVlYGAAJycnXL58GW5ubtDX18eWLVswceJEfPnyReJxmzVrhnbt2oHP54PFYiE2NhZ79uyR4cwJIYQQQgghhBBCCCGEEELI76bKh2sCbDYbEydOxLlz5+Dq6op3795h5MiRuHbtmkj7Dx8+HG/evCn2M0tLSwCAgoICFi1ahMWLF8t83oQQQgghhBBCCCGEEEIIIeT38cuEawLx8fEYMWIEzp8/D3Nzc8yePRsHDhwod79WrVohMDCw2M8GDRoEfX197NmzB/b29vKaMiGEEEIIIYQQQgghhBBCCPlN/FLh2tOnTzFhwgRkZGSgWrVqWL58OUJDQ3H48GGcPHmyzH0tLCxw7tw5fPr0ifmZjo4Ozpw5g65du8p76oQQQgghhBBCCCGEEEIIIeQ38MuEa7dv38bkyZORmppa7Odt2rRBREQE+vfvX+b+Xbt2RY0aNRAUFFTs51paWjKfKyGEEEIIIYQQQgghhBBCCPk9/RLhWk5ODhYuXIjs7Gyh1yspKUFDQ6PccUaOHIljx47hy5cvsp4iIYQQQgghhBBCCCGEEEII+QP8EuGampoagoKCoKOjI9U4VlZWyM/Px65du2QzMUIIIYQQQgghhBBCCCGEEPJH+SXCNQAwMTHB/v37pRrDyMgIHTp0wNGjR/Ht2zcZzYwQQgghhBBCCCGEEEIIIYT8KSo1XFuxYgU+ffok8vZNmjQBn8+X6piWlpbIzc0tsfYaIYQQQgghhBBCCCGEEEIIIeVRqqwDv3z5EuHh4bh9+zaWLVsGBQXRc74HDx4gISFBouNqamqCxWIhPDwcDg4O0NfXl2gcQgghhBBCCCGEEEIIIYQQ8ueptHBt69atAICPHz/C0dFRrH3d3NykPn5eXh6CgoKwZMkSqccihBBCCCGEEEIIIYQQQgghf4ZKaQv58uVLXLp0CQDA5/PF+pJkn9K+Dh06hKSkpMq4CwghhBBCCCGEEEIIIYQQQsgvqFIq1169eoWxY8dCRUUFSkpKzJeCggIUFRXBYrGYNpEsFgssFovZ18fHB9OmTYOenp7Ex8/Ly8PmzZvB4XAQGBiIFStWSH2bCCGEEEIIIYQQQgghhBBCyO+vUsI1S0tLWFpaSrSvj48PrK2t0aBBA6nmcOXKFTx58gRHjhzB5MmTYWxsLNV4hBBCCCGEEEIIIYQQQggh5PdXKW0hq4KhQ4cCALhcLnx8fCp5NoQQQgghhBBS6Pv370hLS6vsaRBCCCGEEEIIKcUfG66ZmZkxly9fvozLly9X4mwIIaRqOXfuHB4/flzZ0yAycuPGDURGRlb2NP5Y27Ztw4MHDyrl2LGxsXIZ99WrV3B0dMTXr1/lMr4o0tPTsXPnTmRkZFTaHEpTUFAg0X75+fkyngn5VcXGxsLMzAxr165FcnJyZU+HEEIIIYQQQshP/thwzdDQEE2aNAEA8Pl8eHh4ICUlpZJnRQghVQOLxYKNjQ1cXFzw+fPnyp5OqS5evIhPnz6Vu93x48crNQSobNu3b4erqyvs7e1Fur8qw8GDB8HhcMrcJi0tDZGRkRIHF+JITEwsdz6iio6Oxrhx42BhYYEjR44gJydHJuOKYsWKFZg8eTKePn0qszG5XC6WLVuGq1evYsSIEbh48aLMxhaHgoICNmzYgL59+2L9+vVV6r1q1qxZ2Llzp9jPVTs7O3h5eVXY+1VcXBxiYmLkMnZ2djaWLFlCwZCEunXrhhkzZiAkJAQDBgzAjh07wOVyK3tahBBCCCGEEEL+3y8ZrskqBOvTpw/4fD5YLBaSk5Ph5OSErKwsmYxNCCG/soEDB2Lq1Kk4c+YMhg4divDw8MqeklA3btzAkCFDsGzZsjJDo6ioKJiamsLDwwPx8fEVOMPK9/TpU9y9excAEBMTg+HDh+P06dOVPKuSvL29YWZmhgMHDpQaavF4PLi6umLgwIEICwuTWfglzJ07dzBkyBCcO3dO6rHYbDYA4OXLlwgJCUF6errUY4pKVVUVt2/fxqhRo9CsWTOZfLVo0QLPnj0DAKSmpmLfvn1yfSxKI7hfs7KyEBwcjFmzZlXKPH7248cP3LhxAxs2bICVlRWePHki8r5v377Fnj17mPcreX/wKzMzE/b29nBwcMDLly+RkpIik6+vX7/C0dERERERsLW1lTpge/PmDVavXo3v37/L6Jb/Guzt7dGjRw/k5OTAz88Pbm5ulT0lQgghhBBCCCH/T6myJyCJJ0+eoGPHjlKP07t3b+zatQtAYZVGjx49oK6uLvW4hBDyO3BxccGlS5cQFxcHd3d3JCQkYP78+ZU9rWLU1NSQn5+Po0eP4vjx4/Dz88PAgQNLbKeqqgoOh4OwsDAcOXIEmzZtwoABAyphxhVvz549xb4fNmwY+vXrV0mzKZ2amhqSkpKwevVq7Nu3D0ePHkW1atVKbAMACQkJ8PDwwN69e3Ho0CHo6urKfD4WFhZ4/fo15s6di/79+2Pt2rXQ09OTaCxFRUXm8r59+yQeRxIqKioAgNq1ayMiIkJm486YMQOPHz9G48aNsXv3biboqkjKysrM5dq1a2PXrl2VMo+fXb9+nWnv+Pr1a8yePRtHjhxBzZo1y9yPw+EgNTUVQGF7yGrVqkFHR0eucxU8P6KjoxEdHS2XY7x79w4uLi44cOAAWCyWRGM0atQIcXFxGDBgAGbOnIkpU6YUe/yF6devHw4dOlTu/S6q9PR0JCcno3HjxjIZTxQsFgsrVqzA0KFDUVBQwISVJiYmIo8hqMI1NjaW30QJIYQQQggh5A/0y4VrxsbGGD58uEzGat++PdTU1KChoQEfHx9069ZNJuMSQsjvgM1mw83NDdOmTQMA7NixA71790anTp0qeWb/U/QDEZMnTy41MBOcQFZSUoKPj88fE6y9fPkSZ8+eZb7X1tZG586dq+QHSQTBWbVq1eDp6VkiWAP+9zgCQLNmzRAQECCXYE1g/vz5+Pfff3H58mVYW1tjz549aNCggdjjKCgUNgpQUlKq0GAN+N99pqCgINNjCwJDPT29Sgu0FBQUwGKxwOfzYWRkVOH3bWmuXLnCXNbR0UFoaKhIAU9SUhL4fD6AwrWB582bJ7c5ChQNqJYsWYIpU6bIbOz+/fsjISEBbdu2xbZt2yQO1oD/tQAdOXIkfH19ceLECfj6+qJZs2ZCt09MTERiYiKSk5NlEq4lJSXB3t4eycnJCAoKQps2bUTe9+HDh8jIyECfPn0kOnb9+vVhZmaGs2fPQkVFBQYGBiLv+/nzZ9ja2iIvLw/79++ngI0QQgghhBBCZOiXawsZEhICfX19mYylrKyMmTNnIjIykoI1QggRolevXsU+pS9oBSeOkydPwsvLS5bTYigp/e8zIo6OjqWevBUEDGpqahg6dKhc5lIVeXl5gcfjAQCaNGmCw4cPw9fXFx8/fqzkmZUkOMnfqVOnUgNcBQUFZruuXbvCyMhI7nPy8PAAi8VCYmIiHBwckJmZKfY4gsBEQ0ND1lMslyDY+10VfQ+oCnJzc3Hp0iXm+yVLloj8PP3y5QtzuV27drKemlBFqyrlpV69ekLDcnHp6OjA29sbLBYLsbGxGDt2LF6+fCl023v37gEArK2tZdIKtXfv3njz5g3S0tJgZ2fHjC+K3NxcTJ8+HTNnzpR4zctBgwaBxWJh1apVIv8/6MuXL7C1tcWnT5/w9etX2Nra4sOHDxIdnxBCCCGEEEJISVXrjIQIatSoIdPxpk+fLtPxCCHl4/P5yCnIRQGPCyUFRagpqUr1iXYiXyNGjICfnx/U1dWFtlwsy6lTp+Dq6goulwsej4clS5bIdG6inhgur33Y7+jatWu4desWgMIqRF9fXzRo0AC2trZwcXFBaGgoUy1WFYjzWApa7lWENm3aoF+/frh8+TI+ffqEkJAQODk5iTWGIOD8HcM1QXBYWapaeHj58mVm/d6GDRtixIgRIu/77t075nLbtm1lPjdhKiKclOVzpGvXrrCyssI///yD7Oxs+Pv7Y9u2bSW2E7S43LJlCzp37iz1cQMDA7Fv3z4AhR8AyMjIEHlfbW1tAIXPjcuXL0s1D1dXV7i6ukq0b1JSEiZNmoT9+/ejfv36Us2DEEIIIYQQQsgvGK4RQn5NH9MSEPPxLt6mxOFd6idkcbKZ6zTY6mioa4RGesboWa8z6unUrcSZ/h5ycnKQk5Mjk7EMDQ3BYrGwdOlSqKqqIiUlRaT9rl+/jiVLloDL5QIA9u7dCxaLhcWLF8tkXoDooVlVOwEvb7m5uVi3bh3z/fz589G8eXMAgJ2dHU6ePIkFCxZg69atVea+EfUkf2UE8WPHjmVOir9+/Vrs/QXhQmWEmYLQMiEhodQWetKo7HCtqn0w4+TJk8zlmTNnivX6evPmDYDCx6xly5Yyn5swFfH6F4TLsuLs7IyTJ0+Cw+EIrcJNS0vDhQsXABS+5qRtF5qbm4sTJ05AVVUVa9euhbm5uVj7q6qqMpft7e2ZVsvCcLlcpt2pvBSdDwDEx8fD1NRUpH3ZbDa0tLRQt25dtG7dGkOGDEGnTp3Emi+fz0dMTAyioqLw6NEjJCUlgcPhQEdHB82aNUOfPn0watSoKtm+mBBCCCGEEEKKonCNECJXDxKf4vir83iZ/F+p22RxsvE06TWeJr1G5MtzMDFojJHNB6FDnVYVONPfy/fv32Fra4uEhASZjenm5gY3NzepxggODgaLxZL4k/eSqmon4OVt48aNiIuLA1DY2rPoOkrKysrw9vbG6NGjsWbNGri7u1fOJH8i6mNUGWFgt27dUK1aNaSnp4u11pKAoNKuMsI1wf1au3ZtREREyGzcGTNm4PHjxzIPTsRVVcJhAEhJScH169cBFK6TNWzYMLH2FwS3jRo1qrBgoSLaQhYUFMh0vJo1a2LQoEE4efIkbG1tARQGNo8fP0a7du3g5eWF3NxcACjWQjEtLQ3q6upirxEYGRmJvLw87N69W6I1R4u+7tlsdplhX1JSEuzs7ODs7Czy2qAeHh5o0qQJrK2tSwRnoqhTpw7u3r2Lb9++YeHChXj+/DmAwrWp161bx9yHOTk5SE1NxdOnT3H8+HGEhoYiNDSU2a5hw4blHuvVq1dwc3NDXl4erK2tMXnyZBgYGODHjx948uQJDh48iLVr12L79u3w8vJC7969xb49hBBCCCGEEFJRKFwjhMjFj7xM7HkQjhsfRV+XROBl8n94mfwfetbrDLsOY6CloimHGf7eDA0NERISgosXL8LExAT169eHpqYmNDQ0SoQYXC5XqhOs379/R/Xq1aWdMpGR+/fvIyQkBABgZGSEDRs2lHjMTUxM4OzsDF9fXygpKWHp0qWVMdVfBpvNxrJly/Dhw4diQaWoBOGCqOHa0aNHUa9ePXTp0kXsY/1MUDmqoKAgdQVPUYL3DKpc+5/w8HAmSHV0dBT7fTU2NhYA0KpV+R8suXfvHtavX4/AwECp1iKuiPtPHm1cFyxYgO7du8PKygpA4fteVFQUVFRUmBC5bdu2MDExYfbZtGkTXr58iS1btqBmzZolxjx79ixycnIwdOhQZp1OPp+P0NBQbN26VaJgDSgeYJYXRqurq+PNmzeYPXs2WrdujUWLFqFr165l7vPt2zeEhYXB398f48ePx5QpU5hWlKJQUFCAtrY2tLW10a9fPyZcs7KyKhaYaWtro2bNmmjevDlGjx6N48ePY9myZXj48CHGjx+P0NBQNGrUqNTj3Lt3Dw4ODmjbti3Cw8OL3S/Vq1eHsbExhg8fjtWrVyM0NBSOjo7w8/PDkCFDRL4thBBCCCGEEFKRKFwjhMjch7R4rIveitScdKnGifl4F8+TY7Gs9xxqFSkBQ0NDkYKA5cuXo0GDBrC3txe7CiQjIwP9+/fHqFGjMHPmTKlO8lYl3759+yVvy48fP7BkyRLweDyoqalh69atqFatmtBt7e3tcffuXezbtw88Hg/Lli2rUkGFLGRlZYHFYsmkCmjkyJES7ysI1wQn7Mty9OhRuLm5QU1NDTt27JA6YJN3+CXrqiRxyeo5u337drRs2VLiSpmCggIcOnQIAFC3bt1iz5esrCzk5eWVuX9qairS0tIAAA0aNCiz/e7r16/h5OSE7Oxs2NraIiQkROL3q6L3n6enJzw9PSUapyw/3/auXbvi33//lWrM2rVrM8EaUBiM9enTB/Xq1cP69evBYrEwaNAg5vZ9+fIFR48eRX5+PiwtLbFx48YSoVXXrl2xcOFCrF+/HmPGjMHEiRNhYGCA1atXo127dhLPVZxwrWjlGZvNRp06dcodX7CW448fP6CgoCDV+13RuZbXqnfkyJH49u0bvL29kZqaimXLljGvgZ9xOBzMnz8f2dnZGDx4cKnBM4vFYgK7Fy9e4O+//0azZs1EqoojhBBCCCGEkIpG4RohRKY+pMXD48rGYmuqSSM1Jx0rrvhhZb/5FLDJyfTp0zFy5EhER0fDz88PBgYGIu8bExOD3NxcHDhwABEREbC1tYWTk5NIIYIw/v7+mD17dqWGPBwOB8OGDYOjoyPs7Ox+mcCJz+dj0aJF+PDhA1gsFtatW8essyaMgoICfH19MXr0aOzfvx8pKSlYv3692C3ThPnvv/8QGxuLoUOHSj2WNK5cuQJ/f3/4+vqidevWMh07NjYWtra2SE1NFXmfmJgYkdc9y87OhqOjIw4fPowmTZpIOk2mck1e5D1+Rdi6dSv8/f3BZrMREBAgUcB28eJFfPnyBQAwbdq0YsFEQkICJk+eLPJ6lRs2bMCGDRtE2vbt27eYPHkyQkJCJKogLvr+5uLiAhsbG7HHKI2VlRU+f/6MrKws5mdcLheZmZkyOwZQGFhduXIFCxcuhKqqKiwtLUtss27dumIVdG/evCkRrunq6iIoKAh+fn7YuXMngoODYWlpCScnJ6nmJ86HVpSVlaGgoAAejwdLS0sYGRmVu4/gPbtNmzaYPXt2ietfvXpV5u8CaUyaNAl79+7F169f8fDhQzx58kRo69zo6GgkJSUBKHxvK4uioiKmT58OFxcXcDgcbNq0CVu2bJHL/AkhhBBCCCFEGhSuEUJk5kdeJtZFb5VZsCaQxcnG2mh/+A5yoxaRcmBsbAwHBwf4+/vD2toaQUFBIgcAx48fZy63bNkSpqamEgdrQGEl3K5du+Dg4CDxGNK6f/8+0tLS4OXlhejoaHh5eQltIVbVbN26FVeuXAEALF68WKRgS1tbG9u2bcPYsWNx+vRpfP78GQEBAVK3DzQyMoKTkxNatWqFevXqSTWWNKKjoxEXF4dx48Zhzpw5cHBwkNkaXU2bNkVwcDCOHTuG1q1bo0GDBqhWrRpTRVKUtbU1EhMTMWjQIHh4eJQ57ubNm5nqDzMzszLbrIlCUFnG4/FEDndEIQjV5NHyTxzSht/btm2Dv78/gMJgfdasWRIFbDt37gRQWJ34cxu7pk2bYv/+/bhz5w5atGiB2rVrQ0tLq1iFUVBQEHx9faGgoIC7d+9CU7NiftcVvf/U1NRk2jq0WrVqMDMzw4QJE5ifZWZmoqCgADk5OWW2Sc3IyICysrJIrVTv3bsHY2PjUtcbO3fuHM6dOwcAGDp0KDw8PEqt6FVQUMDChQtRp04drF69GocPH8aJEyfg7OyMqVOnljuX8ojy/qOoqCjWWoZltR8NDw/HihUrsGLFCowbN07kMUXFZrPRu3dvHD16FABw+/ZtoeHax48fmcuHDh3CpEmToKysXOq4vXr1YkLGK1euoKCgoNxKOkIIIYQQQgipaPS/FEKIzOx5EC51K8jSpOakI/jBYcztJv3JLVKSvb09Dh06hKSkJNjZ2eGff/5B7dq1y9zn69eviImJAQA0atQIgYGBUp8QtrOzw9ChQ9GtWzeR1h2Sh0uXLjGXb926hREjRmDfvn1y++S/LJw5cwYBAQEAAAcHB6HtQO/fv48OHTqUCCMaNWqEHTt2YOrUqXjw4AFGjRoFb29vidcXAgoDBmtrayxYsABhYWGVclK0oKAA165dA1AYAPn5+eHu3bvYvn17mSd1S8PhcEpU9ZmYmBRb00kYHo+H5ORkAEDDhg3LDS+KVvUsWLBA6jAwNzcXAPD582d069ZNqrGEKa/dYWl8fHywa9cumc3jzp07In8ooCySBGxXrlxh1qnKy8vD8OHD4ezsDCsrKyb4aNy4MRo3blzqGE+fPgVQ+HqsqGANkO+aa0eOHCnxmhFUen779q3MqqzExETMmTMHtra2GDt2bJmv2aioqFIfq+TkZKxatQosFgsLFiwQ+YMb48ePh6amJv7++2/k5ubCy8sLLBYLdnZ2Iu1fVNGgTNRwTZzQurT31xMnTsDDwwN8Ph8rV64Em82GtbW1yOOKqmhl7devX4VuU7Rt6YcPH5CZmQldXd1Sx9TU1ISuri6+f/8ODoeDlJQU1KhRQ3aTJoQQQgghhBAZoHCNECITDxKf4sbHe3I9RszHu+hZvzM61JFtezdSWLEwbtw4bNmyBd+/f4enp2e5bZhCQ0NRUFCAatWqYfv27TI5IVynTh0MGDAACxcuRGRkZKmVCPLC4/GYCgcAaN++PZYuXVqlg7Xr169j0aJF4PP5GD9+PBYuXCh0u3Xr1oHL5cLFxQV9+/Ytdl2HDh3g7++PmTNnIiEhAba2tpgxYwacnJwkDsbGjRuHwMBABAQEwNnZWaIxpHHz5k1mDSugsP3p1KlTJQrWfH198fz5c+zYsUPstpnJycnMiXJDQ8Nyt//27RuAwhPs4rRoLY0g/Kpbty4uX74s9XgC48aNw4MHD0pU6iUnJ4s070WLFqFVq1bQ0NCAsbGxxO8fvXv3Rn5+Ptq3b49t27ZJNIYw4jxPBMG2QHJyMs6ePYsBAwZAR0dHpDGePXsGAGjbtq3Ix63qhL1WBM/vuLi4MsO15s2bY/HixZg1axYOHjyIVatWoXPnziW243K5OHfuHA4ePFjiuoKCAri4uCAtLQ3r16+HhYVFsevz8vLg7u4OR0dHoWt6jRgxAikpKcw6dP7+/pgwYYLY7wFF1z1UUFCAq6srIiMjy93Pzc0Nbm5uIh/nwYMHpQbMfD4fbm5uYLPZGD58uMhjiqLoewCHwxG6zeDBg3H27FncvHkTgwYNKjNYEygaSgqrCCaEEEIIIYSQykbhGiFEJo6/Ol9Bx7lA4ZqcjBo1Cv7+/uDz+bh06VKZbbvy8vIQHh4ORUVF+Pn5oX79+jKbx9SpU2FhYQEvLy+sWLFCZuOK4t69e8wn75WVleHt7V2pbQ3Lc+/ePcyZMwf5+flwcHAoNVgDCm/Ps2fP4OjoiHbt2mHZsmXF2nf16tUL27Ztw5w5c5Cbm4uAgACcP38e8+bNg6mpqdhz09bWxqhRo7Bjxw706dMH7dq1k+QmSuzMmTPM5a5du2LBggWlbpuamlrsBHhRR44cQVBQEADA2dkZ/v7+YgWOnz59Yi6L8lz6/v07AKBGjRpltnsTVaNGjdCxY0eJ1hEry6BBg+Di4oIuXbowP4uKisKyZcswcuRILF++vNz5/9w+UVzp6elMcMnlcmXa0lBUFy9exNOnT6GsrAw+n4+CggK0bNkSu3btErkqLCUlBQkJCQAqN1yriBafgtfDgwcP0KtXrzK3NTU1hYODA3bu3AlbW1vMnj0bs2bNKrbN7du3oa6ujgYNGpTY38fHB0+ePMHmzZthZmZW4noVFRWcPHkSJ06cwKBBgzBjxowSH6SYMmUKbt++jStXriArKwuZmZliP88E1aMAoKqqCk9PT/Tp0we1atVCvXr1SlSz9e/fHzk5OViyZAlGjBhR7vibNm1CeHg42rZti8DAwDK3lcV7ys9+/PjBXC4tNGOz2WKF31lZWUhPL+yEUK9ePQrXCCGEEEIIIVWSbBYeIYT80T6mJeBl8n8VcqyXyW/wMS2hQo71p6lZsyYTtrDZ7DI/nX/06FGkpqZi4cKF6NmzZ5njZmRk4MSJEyLPw8TEBH/99RcOHjyI6OhokfeTBcG6MQBgY2NTpYO1O3fuwNHREbm5uVi0aFGZwRpQvBKnbt26MDY2LrFN7969sXv3bqaK6M2bN3BycsK4ceNw7ty5UqsSSjN58mQAhVVK2dmyXYuxLJmZmTh79iyAwrZ3ixYtKnP7iIgIdOvWTeiXn58fs93Vq1fFrv4SVCQpKCigRYsW5W4vaCFZq1YtsY5TGg8PD7i4uKBDhw4yGU9gypQp6Nq1K1gsFrhcLnx8fDBv3jxkZ2cjLCwM06dPL9biUh4EVVAA8Pz5c5muKSeK/Px8+Pj4AADmzJnDfBhBQ0NDrHaLgucIAJGeI8LmIamiYcurV68kHkdUDx8+BFAYWmdkZJS7vbOzM0xMTMDj8bBlyxbs37+/2PWnT58WGhyHhYXh8OHD2LFjh9BgTUBFRQU8Hg9nzpxBWFiY0G3c3d2hqqoKQ0NDiQLcnJwc5jKbzYaCggKGDh2KDh06QF9fH3p6esW+BEG/hoZGieuEfQnWOVVUVCx329LWmpNGXFwcc1mS568wN27cYCrXzM3NZTImIYQQQgghhMgaVa4R8hv4mvVd6M91VLXBVizZ2iqLk42s/JwSP2crKEFHTfiJl2/ZxU9aqvBUoaCgAB1VbcR8vCvBrCV34+M91NOpK9HtkMV9VUOjugSzrlyXLl1C//79yz3h279/fzx+/Bj29valfsI9Pz8fu3btwogRIzB1atlr4KWkpMDe3h4vXrzA169fMW3aNJHmO2nSJNy+fRtubm44ffo0tLS0RNpPGj9+/GBaQmpoaMDJyUnux5TU2bNnsWjRIqiqqiIwMLBEm0dhBOFanTp1igVGP+vUqRMOHz4MJycn5qTpgwcP8ODBA2hra2PAgAHo2LEjmjVrhiZNmjAndoUxNDREv379cPHiRfj6+sLd3V2s2ymp06dPM2He0KFD0bp12dWu9vb2MDAwAI/Hg4mJCfT19aGlpQU2mw1/f39s3boVWlpaCAgIQNeuXcWay5MnTwAAzZo1K7f1IYfDYVpZlrfmIVD4+rK1tcWbN2/EmlNFiImJwdixYxEYGChSO0xJfP78mbnM5XJx6dIljB49Wi7HEiY0NBRxcXFo3749pk2bxlQ4iksQrikrK6Np06Zi7RsVFYXNmzdjz549qFu3rtjH1tTUhI6ODtLS0hAVFYUOHTpg2LBhIrezFBWXy0VMTAzzQYvk5GRMnjwZR48eLbOaSklJCR4eHrCxsQFQ+NqeNGkSgMLXy4ULF+Dl5VVsnwsXLmD37t0ICwsrt6Uvm81GdnY2+vXrh5UrVwrdpk6dOli3bp3ELXKLfrCgtGrwooq2QxRHadW38iR4XAFAXV1dJus65ufnY/v27QAKP/RT3t8ZhBBCCCGEEFJZKFwj5Dcw+5TwNTlW9JuHljVKnqg7HXsZR5+fLvHzFgZN4NF/vtCxFl1eV+ox3qbEiT5ZGfjv/48nye2QxX112Ga7mDOufH///Tfq1q2LWbNmlVlpZm5uzpz0zMrKErrNiRMnoKmpiSVLlpS6DVDYsm369OnMiX8fHx/k5+dj5syZ5c63f//+MDQ0RHx8PNatW8eseSNPERERTPuuGTNmoHr1qhmi7t+/H+vWrUOTJk2wZcsWoRVowgjCNVEqaho1aoQjR45g0aJFuHr1KvPzjIwM/PPPP/jnn3+gp6eH+fPnlxtmTJo0CRcvXsTBgwcxcOBA/PXXXyLNVxqCChQVFZUy20EWVV77tVq1aokdrAHAo0ePABSGluURtIQERAvX9PT0sG/fPly7dg0NGzaEkZERWCwW4uPjmcdl+fLlGDp0aKljvH79GlOmTAEAHDt2TGYVcwLyXDfx/fv3zOX27dvj3LlzFRaupaSkYNu2bVBXV4ePj4/QgIjD4YhUVSYIYBs0aID8/HyRK9EuXLiApUuXgsvlYtKkSdi3b1+Z65iVxsLCAnv37gWPx8OqVauwatUqmbcP5PF4xcIfRUVFTJgwQaTjtGvXDt27d8fNmzeLVV5dv34dOTk5xd5TPn36hEOHDuHw4cMiVZkJArPywsRhw4aVO1Zpilauqaurl7s9l8uV6DgV0dbzZ//88w/T0tTW1hba2tpSjZeTk4OlS5fixYsXMDAwwM6dOyvkwzWEEEIIIYQQIgkK1wghUuHz+XiX+qn8DWXoXerHSvmE9q9MTU0Nr1+/xty5c0Xa/sCBA+VuI8kn1Ddt2oSCggLMmTOnzO0UFBRgY2ODDRs2ICIiAubm5ujRo4fYxxMVj8dDSEgIgMJqK0HYUJVkZ2fD3d0dp0+fhp2dHVxcXMps3fkzcasutLW1sWPHDhw6dAheXl5M9YWRkRHc3d1FXsPrr7/+QqNGjfD27Vu4u7vjxIkTcg1cbt++jZcvXwIA7OzsJKrmkZX//vuPOfEsyvM3KSmJuVynTh2RjlG9enVYWVkV+1nRNZDU1dXLDBmKVtNpa2tLvG5ZTk4Ovn//LrcqNWGKtqObOXMmZs6ciYSEhAp5zL28vJCeng4/P79SA624uDhMnjxZ5HaVsbGxErfvTEhIwKRJkxASEiJ2O9sFCxZAS0sLJ0+eRGJiIjgcjsQBT1lUVVVRvXp1dOzYERMmTBBrHUYbGxvcvn272HP99OnT6NixY7HAytDQEIGBgcXa4JZF3PfFW7duoVmzZmK9Top+CKW88InP5/8y4drly5exevVqAIXv87Nnz5ZonPz8fLx9+xY3b95EaGgokpKSYGNjAxcXl0pZR5EQQgghhBBCREXhGiFEKhwuB1mciltLCShs1ZhbkFehx/zVCUKYOnXqMGtRVXXW1tbYsmUL8vPzsXz5ckRFRcktlDl//jzi4+MBAIsXLxYrtKoIb968wdy5c8FisbB///5iVVD5+fkinUgW9WTzz8aOHYs+ffpg48aNiI6ORlhYGAwMDMQaY8yYMfD09MSHDx+wdevWcteHk0ZwcDAAoEaNGpg+fbrcjiOK8+fPAwB0dXXLXZsQAL5+/cpcFqVyrSpZsWIFbt68iaCgIJiYmFTIMV+8eAGgMEDs3bs36tevjwMHDsDV1VWux7179y4iIyMxYcKEMiuamjZtipCQEFy/fh0mJiYwNDSEpqZmsTAoNTUVffr0AVD43jN+/Hip5iZJxRmbzcbs2bMlDkcEbty4gTp16qBBgwZSjSPM4MGD0axZM2bsrKwsXL58ucScWSyWWO914qyN9+DBA8ycORMtW7ZEcHCwyL8nilaulReuFQ3I3Nzc4OYmvNpeGEHltTzl5OTg0aNHCA8Px5kzZwAAo0ePhru7u0S/YwYOHIgPHz4w32tpacHHxwdDhgyR2ZwJIYQQQgghRF4oXKvisrKyMHz4cISEhFTop8EJERVXwrVBpJXPK6iU4/7qWCxWmWtkVSXVq1dH//79ce7cOSQkJGDHjh1wdnaW+XH4fD4CAwMBAL1798aAAQNE2m/48OHF1nyS1r1790r8TLC+3YEDB+Dg4ICJEyeWqLQIDg7Gy5cv4ejoWOb6QpKuFwQUBj3e3t7IzMwsd90wYSwsLODr64v8/Hzs3bsXVlZWaNiwocTzKc2LFy+YNpZLliyBhoaGzI8hjgsXLgAobCknyonn5ORk5rKolWuyxOPxsH37dpErrQRSUlJw6tQpAMDEiROxdetWmay9VJaCggImXGvTpg1YLBYGDRqE0NBQzJkzR6T2e5LIzs7GsmXL0LZtWyxevLjc7Zs0aYImTZqUer1gvTUA6Nq16y/z/izMo0ePMG3aNAwYMADTp09Hq1atZDp+0dDuwoULyMnJKRFaZ2ZmgsPhiDymoAqew+GU+bxPSEjAjBkzkJOTg3v37sHd3R3r168X6RhFw7Xy2g3n5f3vg0NLliwpt10tUFgRHh4eDl1dXZHmI6qVK1di3br/tQTncrlMBXONGjVgYWGB8ePHo23bthIfY/fu3UhNTcXXr1/x7NkzXLhwAS4uLggMDMTSpUslasVLCCGEEEIIIRWFwrUqLC8vD0uWLGFaSlUl/fv3l3heISEh9J/l34iigkKlHFdZgd6+JPGrtdMcOXIkzp07B6DwJJyNjY3M14S6dOkSXr58CRUVFSxfvlzk/YKCglBQIL+Q9969e1i/fj06d+6MkydPltoei81mIyoqCmfOnEHfvn0xc+ZMqU52AkBiYqLQcEeSYA0oXM+ob9++uHDhAvLz8+Hl5YUdO3ZINUdhAgICAADdu3cvc52xivDkyRMm/Pm5bWNpvnz5wlyWVbi2ZMkSLFmyRKRtFRQU0K9fPyxevBg1a9YEl8tFSkoKunfvXuZ+vCIfsmCz2fj06ZPcw7VXr14xlTqCVoqjR4/Gjh07EBYWBnt7e7kc18fHB1wuF9u3b5dJheu///4LoLBip6xw/Fegrq4OHo+Hc+fO4cKFC9i5cyd69eoll2OdPHkSBgYGaNasWbGff/r0CVOmTEFaWppY450+fRqnT5dcw7U0x44dQ8OGDUWqji0amuvr65e5bXZ2Nho2bIhJkybB0tISampq5Y7fsWNHmJqaityqV1Rz587FoEGDmO/v3r3LBMq2trZwcHCQ+hhGRkZMW1UzMzM4Ozvj1KlTWL58OWxtbTFjxgy4uLiIVWFICCGEEEIIIRWFzk5XMVwuF9++fUN0dDRCQkIQGxtb2VOSuYpqF0UqBluRDQ22eoW2htRgq0NV6df9dH9lEIRqCpUUhkqqd+/e0NbWRkZGBvLy8hAQEMCs8SILPB4PW7ZsAQDMmjVLrLWKZB3y/ezbt2/YsWNHuZUOgkoXPp+PmJgY9O3bV6pwLTIyEm5ubjJvzWVubs5Ucl29ehUPHjyQeH0pYZ48eYJLly5BVVUVK1eulNm4ktq7dy8AoF+/fmjZsqVI+wjCNS0tLVSrVk0m81i+fHmZQePr16+LrTHYvHlzREZGAgA+fPgAJyenctt4Cu5vRUVFhIeHi73mlyRu3rzJXBZ8YKdu3bro06cPdu7cidGjR5fbgk9cV65cQVRUFA4ePFju61JUMTExAAoDwl/t/flnRcNGHx8focEal8vF8uXLYWlpic6dO0t0nK9fv+LWrVswNzcvEbqYmJhg7969uHPnDlq2bAkjIyNoamoWq2Ldvn07Nm3aVGw/S0tLvH79Gt7e3mVWGkpCsJaijo5OuRWV+vr6iIqKEitMGjlyJHM5PDwcw4YNk/iDEEXp6uoW65pRu3Zt+Pn54evXrzh06BDs7e1l/pxlsVgYPnw4NDU1MWPGDAQGBoLFYsHFxUWmxyGEEEIIIYQQWaBwrYpwdHTE/fv3kZ2dLZdF5OVBR0dH7BY0BgYGMj/ZRYCt5muE/lxHVfh9Paxpf/RtULKqgF1GNZhP/6XFvldRVYWCggJ0VLXRUNcIT5NeizFj6TTUrQcWiyXR7ZDVffWrEbRyklerNHlRVlZG//79mZP9kZGRWLBgAXR0dGQy/vHjx/H69Ws0b95cbpUukho8eLBI2xWtbNi0aRPMzMwkPmZkZCSWLFkCHo+HhQsXQkFBoVjlgjT69OkDVVVVptpo7969Mg3XfH19wefzMXfu3AoJd8qSkJDAVFzOmTNH5P0EbUZl2RJSXV291KpHoOxqxPr16yM7OxuvXr0qtaoqMzOTeX0OGTKkwu7769evAygMIjt27Mj8fMKECbhy5Qp27NiBRYsWyex48fHxWLt2LXbt2oVGjRrJZMyPHz/i3bt3AFBsHcXyxMTE4NGjR1KvkSZrRVvPtmvXrsT1XC4Xf//9N06dOoUzZ84gKChIrNstcOLECXC5XPTo0UPo9SYmJqV+kOv79+8ICgoCADRs2BA/fvxgKsusra2xfv167N69W+w5lUUQmovy2pBkzTyBwMBAbNy4EcePH8euXbtk/vteUVER1tbW2L59O+Lj4xEdHY2+ffvK9BgC/fr1g6mpKS5duoTAwECYmpqidevWcjkWIYQQQgghhEiKwrUqYs2aNcw6CwUFBbhx4wZWr15dpVu4TZw4UayThkR+amiI9wl6DbY6NNjinXTRVy9+clZNTY35xHIjPeMKDdca6xkDkOx2VMR9VRUJAo1fLVwDCkMZwcl7DoeD27dvixw8lSU3NxdbtmyBsrIy1q9fL9WaZJWp6MnYunXrlrt9QkJCiVZqwhQUFGD+/PnYtGmTyOvQlUVNTQ2dO3dmQhHBv7Jw7do1/Pvvv2jXrl2xKqzK4uPjg4KCApibm4tctQYUtuMEUKXWWO3evTvCw8OxYsUKodeHhoYiOzsbLBYLjo6OFTKn9PR0PHz4EEBhdWvR9ex69eqFNm3aYP/+/Rg/frxIrwlRpKSkYOPGjTI7wZ+TkwM/Pz/me1FDpnv37mH27NnIycnBt2/f4O7uLlL1UFZWlsRzFVV+fj5zOTc3t9gx+Xw+VqxYwazNl52dDQcHB4kCtn/++QcsFqvUcK0smzdvZubl7u6OpUv/98GhESNGwMfHBxcvXpTqQwo/E4RrjRs3LnHdtWvXMHv2bLHWiSvP/fv3MXPmTOzYsQOqqqoyGxf4X+tVHo+H0NBQuYVrAGBjY4NLly6Bz+dj27Zt2L59u9yORQghhBBCCCGS+DXPJP6GDAwMin1vbGyM48eP4/Hjx5U0I0JE17NeZ0S+PFdhx+tRT/xPuv/JeDweE679ipWjP6/RGB8fL5Nxd+7cicTERCxYsOCXblcrbqVD7dq1ERERIfL2sgwdu3btyoRq2dnZSElJKbOqShQcDgfr1q2Duro6fHx8pKr8kIV79+7hzJkzMDAwgJubm8j75efnMyfhq1K4NnDgQDg7O2Pu3LklqtVzcnKY9peDBw9G06ZNK2ROJ06cYIKcoi3xBJydnWFvbw93d3eZVSG1adNGJuMIBAYG4syZM8z348aNE3uMsLAwpKenw8vLq9z133bt2oVt27aJfQxJDRs2rNxtJAnY7t69i3fv3qFp06blrl/2s4cPH+Lw4cMACtvU/rwuoLa2NgYPHoyVK1eia9eu0NLSEmv80ghe1w0bNixxXZ8+fbBv3z5wOBw0adIELBYLy5cvx4ABA8RaQ23//v3M46upqYmOHTvKZU3QunXronv37oiJicH169fx8eNHuVWrduzYESwWC3w+H9euXUN6errMHhNCCCGEEEIIkQUK16qwX7HChPyZ6unUhYlBY7xM/k/uxzIxaIJ6OrKpRPhTpKWlMZdr1qxZeRORUPXq1VGzZk1m3RpZrPHy6dMn7Nq1C127dsW0adOkHq8yiRsmKSgoSB1oSernKi5x1hUqTXBwMOLi4uDp6Vnp7SDz8vKY9cdWr14tVuvk+Ph4pi20LG/HkiVLsGTJEon37969O1RUVBASEgJnZ+di1x04cAApKSlQUlKq0DWRjh49CqDw/axnz54lru/Zsyc6d+6MmJgYREREwMrKqsLmJipnZ2ekpKTg8OHD6NWrF7y9vcvdJyMjAzY2Nsx7ev369dGyZUt8+/at3Faizs7OqFOnDlgsFkxMTKCnpwctLa1iVX9v3rxB7dq1JV6vKyIiAh4eHgCAM2fOiFw1KM57uiAs/TkYK09+fj7c3d3B5/NRs2ZNLF++XOh2kyZNQmRkJNauXYv169eLdQxhcnJykJ6eDqDk+5/Az+1xly5digkTJqBz584i3YevX7/Grl27ABT+3yEsLEyuQbeNjQ1iYmLA5/MRFhYGV1dXuRxHU1MT2traSE9PB5fLxbNnz8R+3AkhhBBCCCFEnihcI4TIxMjmAyskXBvZfKDcj/G7+dXDNaDwE/+CcE3YWj7iWr16NbS1tbFhwwaZhHWVqbIrtcRRtHLD2NhY7HU7fxYfH4/AwEBYWVlViQBl7dq1iI2NxYwZM9CvXz+x9hWsvQUUhiaysnz5cgwdOrTU61+/fl1mK01lZWUMGzYMwcHBGD16NBPipKWlYefOnQCAMWPGwNjYWGZzLktMTAxevXoFAJg8eXKpz/8lS5Zg9OjRWL9+PXr27IkaNWpUyPxEpaCggNWrV6NJkyawtraGhoZGufusXr2aeT+fPn065syZU27FWlGjR48u8/pr164hIiICGzdulKhSr2iVK5vNhoqKithjlOXYsWO4cuUKAKBLly5i7evn54fY2FiwWCx4eXkx63b+3H69VatWGDRoEI4dO4a//voLFhYWUs1ZULWmoKAg8n1at25dTJgwAbNnz8aBAwfKfG5kZmbC2dkZHA4HLBYLPj4+cq8g7d+/PwwMDJCcnIyIiAg4OzuL1H7y/fv3iI+PR9euXUV+3qqqqjLhZEpKilTzJoQQQgghhBBZ+7XPKBJCqowOdVrLvV1jz3qd0aFOK7ke43dUNFwzMjKqvIlIQdAybOTIkSU+5S+ukydP4ubNm9i8eXOJlrxEvmrVqgVDQ0MoKSmVWjkijhUrVqBRo0alrgdWkU6fPo3w8HBYWlpi3rx5Yu//8uVL5rIoa+KJSl1dHXp6eqV+iVKlNHnyZOTl5RWr5PH390dGRgZ0dXVLVLTJC5/Ph6+vLwBAR0cHNjY2pW7bsmVLTJo0Cenp6Vi0aBFTFVjV2NraihSsnTp1ClFRUVBUVISnpycWLFggVrAmimnTpoHP52P8+PE4cuSITMcW16NHj2BtbY3p06fj77//houLC5YtW8ZcL87vgRs3biA4OBgAMHv27HKrn+bNmwclJSV4eHgwQa6k3rx5A6BwvTVxKgKnTp0KFRUVuLi4lNrekcfjYeHChXj//j0AYO7cuTJdK640SkpKsLS0BFD498Xp06fL3efy5csYPnw4pk2bJlYlbWZmJnP5V2xrTQghhBBCCPm9UbhGCJGZqR1soKtWTS5j66pVg12HMXIZ+3dXdI2yxo0bV+JMJDd+/HgsWLAA69atk2ocDocDT09PrFmzBh07dpTR7Ig4PDw8sH37dqHt/MRx8eJFvH37FgEBASJVTcjTrVu3sHjxYgwYMABr1qyReAygcA3WqlJllZmZiYyMDNSvXx+mpqY4d+4cwsPD8eTJExw8eBAAsGjRIqYKSN7++ecfJoScO3duuWHF3LlzUbt2bdy+fRsbNmyoiCnKRVJSElatWgUFBQV4enrKrUpTRUUFTk5OyM/Ph5ubG/z9/eVyHFG0a9cOu3btgpmZGV6+fIkzZ84wAamOjo7IrW3j4+OxYMEC8Pl8DBw4ELNmzSp2/c+VawDQoEEDWFtbIycnB9OmTZNqnc/nz58DgNjvd4qKivDx8cH9+/exePFioeHwunXrmEo+KysrODk5STxPcY0ZM4Zp6xsaGlru9t7e3sw6iadPn2aq0cqSmZmJ7Oxs5vtf9e8XQgghhBBCyO+LwjVCiMxoqWhiWe850GDLdr1ADbY6lvWeAy0VydaB+dO9ffsWQGFbqkaNGlXybCSjp6eH6dOnF2s7Jom8vDw4ODhI3eqLSK5Xr17o3bu31OPk5uZiz549ld7q9OnTp5g1axZsbGywZcuWUp+jRSswfhYfH48HDx4AKFzjrLI8f/4cBw4cgKurK4YNG4bJkycz4YCgmmfNmjVYtGgReDweevbsWWHtOD9+/MiE661atcLYsWPL3UdDQwOenp5QUFDA7t27sXfvXjnPUvb4fD4WL16MjIwMrFy5EiNHjpTr8SwsLJjWn1u3bkVISIhcj1cWXV1djBkzBpGRkcVam4q6JmFWVhacnJyQmpqK9u3bw8vLq8Q6j8LCNaAwmNXR0UFycjKmTJmCT58+SXQbBGGwJO95RkZG8PLywqlTp7Bw4cJiFWzbt2/H/v37ARQGd6tWrZJofpIyMjJiKgCfP3+Ox48fl7m9oD0mUNhqVpSWoc+ePWMenxYtWoi8hh8hhBBCCCGEVBQK14hM3L59G+7u7hg+fDg6d+6M1q1bo3///li4cCHu3LlT2dMjFaieTl2s7DdfZhVsumrVsLLffNTToZMqkvrvv8K18ExMTKCmplbJs6lcWlpasLOzq+xpEBkwNzcvtoabPDx79gznz58HACQkJJRoEXfr1i04Ojpi/vz5cHNzK3X9vvz8fNja2sLc3BxLlixBaGgo7ty5g6SkJCQlJWHFihXg8XgAgMGDB8v1NgFAdnY2njx5gqNHj+LAgQPMzxctWoRr166hXbt22LNnD/755x/mBHqjRo0wYcIEcDgcxMXFQUdHB+vWrSsRVsgDh8PBggULkJWVBXV1dWzYsEHktQa7devGVPR4enoy68RVtg8fPpQZuAocOHAAN2/exJIlSzBmjPyrt5WUlIodx9vbG1+/fpX7ccuiqKhYrNWqoaFhuftwOBzMnj0br1+/RsuWLREUFAR19ZIf/BG87n6mr6+P1atXAwA+ffqE8ePHM0GzqLhcLh4/fgw9PT2mtbG4BgwYAEdHR0RFRcHOzg6pqanYuXMnNm3aBADo2LEjtm7dCmVlZYnGl0bRNfzKq15r3rw5c9nc3FykauMzZ84wlyuyKo8QQgghhBBCRCVdCQD543G5XLi7u+Po0aMAADU1Nejp6YHH4yEhIQEJCQk4efIkxowZAw8PD5FPhlVVBQUFUp9ILCgoKPFJaR6PV+oJnqqstDkbateG94Cl2PvoCG58vCfx+D3qdcKUdqOhpaL5S94/VYXghGCfPn1+u/ux6GuprNfRz9v9ToreHlHeS/h8fpW/D0SZnzxvR3p6OjZu3IgjR45g0KBBWL9+Pfbu3QtbW1sEBASgY8eOiIyMRFhYGPbs2YOmTZuWORdFRUUcPXoUDx8+hK+vLyIiIoRu16hRI/Tu3Vvq21V0/0+fPuHkyZN48+YNYmNj8ebNGyQkJDCviaKBw7Fjx9CgQQOh4wBAmzZtmMtqamrIzs6W+3OJx+Nh0aJFePLkCRQVFeHr64t69eqJddyZM2fi3r17THvI+Ph4LF26VOZrlgmI8tx8/vw5vL290bhxYwwcOBCmpqbQ1dUtts27d+/g6+uLGTNmYNKkSRX2uh0yZAgT3uTn5+P169fQ19cvd7+i85P167Po8TU0NMocOz8/H/PmzcPNmzfRsWNHBAQElLqP4HUgbL5mZmawtLTEsWPH8PXrV4wdOxaLFi3ChAkTRPpb8MGDB0hLS8OkSZOgqKgo8f0xd+5cJCUl4dixYxgyZAhSU1MBAO3bt0dgYCBUVFRkdl8X/V1Z3mPYv39/6OnpISUlBWfOnIGrq2uJ57CAvb09Zs+eDaBwPcTy5vv+/XtERkYCKHw+mpqalrmPuLefx+OV+Fs8Pz+/1EpGQgghhBBCBIStiVzaOsm/uz/1dhdF4RqRyvLly3Hq1Ck4OjrCwsKiWBXBvXv3sGrVKrx+/RqHDx9GTk4OfH19K3G20hO095EVwSd3c3Nzf7ngMScnp8zrlaCIaW3GonPNNjjz9ipep7wTeexmeg0xpFE/tK1pAvDKPxYp3YsXL/D582coKChg4MCBv919KVjDBSh8HZX26X3BL3w+n//b3QccDoe5nJeXV+rtq+r3geDkKJfLLXN+gpOfBQUFMr8dfD4fJ06cwJYtW5CamgoHBwfMnDkTQOFacWvXroWdnR3mzZuH2rVrY9euXVBSUhJ5Hs2bN0dQUBD27duHLVu2FLtOQ0MDK1euRF5enkRz//btG+Li4hAXF4dnz54xP9+2bVux7XR0dNCvXz906tQJnTp1Ql5eHiZNmgSg8DEo7bY8e/YMy5YtA4vFgpaWFj5//oxx48bB19cX7du3l2jOoli7di3Onj0LJSUlLF++HH/99ZdEj/vatWthb2+PuLg4hIeH4/Hjx1i9erVMW+UKnsP5+fnlzrFPnz7o0qULDh8+DF9fX6xcuRKdOnVigjY1NTUsWrQIw4YNw/Tp0yv0NWtgYIBGjRoxLYV1dHREOv7P78eynHNcXBxzWVlZudSxc3JysGjRIty8eRMDBgzA6tWrwWazS91esJZZae878+fPx927dxEfHw8Oh4O1a9fi2LFjcHFxKbca7dKlSwAKK7WkvS/mzJmD6OhofP/+HUBh9Z6/vz8UFRVlej/n5uYyl3Nycsod29zcHCEhIeBwOAgNDYW9vb3Q7bp37w4HBwcEBQXh2LFjGDx4cKmV9ImJiZg9ezZyc3PRpUsXLF++vMx5SHL7uVwu87tEcJtfvHgh9jiEEEIIIYQA9Lfkn4zCNSKx06dPIykpCSEhIWjXrl2J6zt16oSwsDCMHj0ab9++xcmTJ9GrVy+5rxdCqpa2NVugbc0WiM/4jH8TH+Fd2kd8SI9HVv7/ToZoKKuhfjVDNNSph6512sFQu3Ylzvj3cvnyZQCFJ3JFXaeGFHr69CnOnj2LhQsXVkjrOyI/27dvR9u2bctczyw2Nhbr16/Ho0ePAABTpkxhgjWBxYsXIyUlBd7e3ujRoweaNWuGWrVqiTUXFouFKVOmoKCggAm+mjRpgtWrV6Np06bi3TAArq6uuHnzJrKysoRer6qqivbt26Nr167o0qULmjVrVuz5LMp/At6+fYu5c+eioKAAq1evRvPmzTF9+nSkpKTA0dERc+fOFbmaR1T5+flYs2YNTp48CXV1dXh5eaFHjx4Sj6erq4tt27Zh6tSp+PLlC169eoVx48Zh4sSJsLOzg5aWltRzFgQ1on56T01NDZMnT4aVlRX27t2L0NBQ3L59G+vXr0fDhg3BYrHg6uoq9bwkYW5ujs2bN2Pw4MFyb78qCsHrEkCpLQW/ffuGBQsW4NWrV5g/f75Iz0lBwFI0GCxKQ0MDW7ZswdSpU5GWlgag8DUzffp0NG7cGCEhIaXO5+rVq+jduzeaNGlSzq0r2+nTp7Fp0yYmWAMK12mcNm0aZs6ciV69ekk1Po/HQ1ZWFlJTU3H9+nXm56dOnUL79u1RvXp1aGhoCG17a2VlxazLt3fvXjRr1gxt2rSBmppaiQ+7zJw5E/Xq1cOGDRswatQoWFtbo1u3bqhRowby8vLw6dMnREdH49ixY+Dz+bCzs8PMmTOlXmuVEEIIIYQQQuSF/rdCJPb+/XusW7dOaLAmoKGhAQ8PD+ZT8Zs2bYK5ufkvV6VFpGeoXZsJzfh8PnK5eSjgcaGkoAhVRRUKL+SAx+PhwoULUFRUpPVKxPT06VPMmjULmZmZyMnJwfLly//45+i5c+eQlZUFKyuryp6KWPz9/REcHAwVFRX4+fkxa4gVdeHCBSxdupQJR8zNzTF37twS2ykqKmL9+vVYvHgxrly5AgsLC1hZWcHS0lLsE+hTpkzBt2/f8Ndff6FPnz4SP79GjhyJCxcuFPuZkZER+vTpgx49eqB9+/ZStT989eoVnJycUFBQgI0bNzIBV2BgIBwdHZGamgo/Pz9cu3YNCxcuRLNmzSQ+lsCPHz+waNEi3LlzB/r6+ti0aRNatGgh9bi1atXC9u3bMW3aNHz//h0FBQXYu3cvjh49inHjxmHUqFEwMDCQeHxBqCZuawwtLS3MmTMHlpaW2LBhA65du8as7zdmzBiMHTsWFhYWcmtjKcyECRPQtGlT/PXXXyLvk5KSIrf53L9/n7ks7LXy5MkTLFq0CNWrV8fevXthYmIi0riCasOyKkaNjY2xZcsWODo6IicnB7169cLo0aNhZGRU6mPy+PFjvH//HitXrhRpHsK8ffsW69evZ257/fr1merLffv24dWrV3B2dkarVq1gbm4OU1NTVK9eXezjfPnyBebm5iV+/vDhQ+b9/tSpU6hTp06JberVq4dOnTrh3r17yMrKYt43//77b4wdO7bE9sOGDUPfvn0RFRWF6OhoHDp0COnp6VBSUkK1atXQsGFDODo6wtzcXKLbQgghhBBCCCEVicI1IhE7Ozt8+/YN1tbW5W7bpUsXNG/eHK9evUJiYiJiYmLQp0+fCpglqapYLBbUlMpfzJ5I5/z58/j06RPGjx8v09Znssbn85lQQ5J9Bbhcrkgntcvb5sWLF5g9ezYyMzMBAJGRkWCxWHBzc/tjA7arV69i+fLl4HK5UFZWxvDhw4VuV7TVlqT4fL7I4UR5223fvh3BwcEACk+ez58/Hxs3biwRGPTr1w+DBw/G6dOn0axZM7i5uZU6prKyMnx9fbFv3z7s2LEDhw4dwqFDh2BoaIh27dqhadOmqF+/PvT09KCrqwsNDQ2oqKhARaX4hwiUlJSwePFiocfgcrngcDjIzs5GRkYGfvz4gR8/fkBbWxutW7cutm337t0xZMgQnDt3DoMGDcL48ePRsmXLMu8XUT148ADz5s2Dvr4+NmzYAGNjY+a6xo0bIzg4GM7Ozvjw4QPu37+PcePGoVWrVhg6dCg6duwIIyOjUqt6SvP48WO4ubkhISEBAwcOxOLFi6GjoyOT2wMUBhR79+7FnDlzmFaDmZmZCAoKQnBwMLp37w5TU1P07t0b1apVE3ncos9bSfvOGxoaYuPGjbh06RK8vb2RnJyMuLg4rF+/Hrt378b8+fMxaNAgicYWl5KSUokges6cOcjKykKNGjVgYGAAfX19VK9eHTo6OkhJScHBgweZbUtr0Supe/eEr99aUFCAPXv24OjRo7C3t8eoUaPE+gCXIFwr2l5XmFatWsHHxwdPnjzBjBkzyh03IiICf/31F1q1aiXyXARevXqF4OBgXLp0CTweD0ZGRnBwcMCQIUOY29a3b1+sWLEC79+/x7Nnz/Ds2TN4e3ujQ4cO6NWrF0xMTNCsWTORKjLr1KmDBw8eiD1PgZ07d4q1vYaGBkaPHo3Ro0dLfExCCCGEEEIIqQooXCMSEVSiiapv377Mp7D//fffXzZcMzExkfqEUUFBAd6/f1/sZ6qqqlW+7c3Pa1qUtlYGqRp4PB52794NY2NjLFy4sEo/XomJibC1tUVCQoJU4/Tv37/cbTIzM9GlSxexxz527BiUlJSwcuXKCgvYRF2zqGg7Mw6HU2zNnKIEJ5EFY4vq0aNHcHV1ZQKDlStXQkNDA8OGDSux7bFjx+Dm5lbsWOK6du2aSI9RWFgYwsLCxBo7Ly8P8+bNQ0BAQIkWgz4+PqhZsyasrKxEClVmzpwJc3NzbN26FWfOnEF8fDzi4+PL3IfNZkNFRYWpdin6XOLz+cjLy0NeXl6JFnUsFgt//fUXJk2aJPS17ObmBktLS4naw6moqDCXVVVVmfEjIyPh7u6OoUOHYvny5dDQ0Cixb7NmzXDo0CHMnz8ft27dAgDmRL9g3n379i2x7pswHA4HO3fuRGBgIKpVq4bNmzdj4MCBYt8eUTRu3BiHDh3C7Nmzi4U2BQUFiI6OxvPnz/H9+/cSbUHLUjScKSgokOo919zcHL169cLq1atx+vRpAEBycjKWLFmCuLg4uLi4SDy2NNatW4erV6/izJkzuHDhQqlBur6+PoyMjGT2Xpmbm4ukpCTmeyUlJeb+PXPmDKpVq4bz589LdJ8L3te4XG65+5uamsLU1LTcMdPT03Hp0iXs2rVLrDnduXMHQUFBiImJAVDYXn3MmDEYOnRoicCwc+fOOH78OCIjIxEUFIRPnz6Bx+Ph3r17zHOaxWLByMgIjRo1QvXq1VG9enXo6enB2NgYvXv3FnleVY0s/h4tKChgnp+C/Rs0aFDl/xYnhBBCCCGVr6CgoMTyCi1atPgj/5bMz8/Hy5cvK3salerPe9RJpSjazulXftEpKSlJHa6xWKwSJ5wUFBSErmVRVZR2orwqz/lPFxkZiYSEBISHhws9KV6VGBoaYv/+/QgPD0fz5s3RsGFDaGlpQVNTs8pVirFYrAp73v/48QO2trZMdY0oJk+eXO42nz9/LnPtsfLweDwsXrwYbDa7RBWNtbU11NTUkJiYiJYtW6JGjRrQ0tISu3pJ3hQVFYU+juKub1W/fn34+Phg4cKFiIqKwvnz5/H06dNS12/icDjlVsgIO0Z5bRH19fUl/tBK0dcYi8UCl8vFhg0bcPz4cWzcuBEDBgwoc389PT0EBwdj37598PPzY9rrjRw5Evb29mjatGm5r+OrV6/C09MTycnJmD59OqZOnQptbW2Jbo+odHV1ERwcjC1btmD37t3g8XjQ09PDypUrYWZmJvbrvGj1bX5+vtTvE7q6uvDz80Pv3r2xcuVKZGdnAyisEurTpw86duwo1fiSqFWrFsaOHYuxY8fi/fv32LZtG06cOFFiu5kzZ8q0/be6ujoMDAyQnJwMoPjrV1jILw7B45aXlyez9/Z9+/ZhxIgRIj1GgnQzq48AAQAASURBVDWJT58+jY8fP6JGjRpwdHSEtbU16tevX+a+KioqsLGxgbW1NU6dOoXDhw/jwYMHTOjJ5/Px8eNHfPz4kdmnQ4cOsLS0/GX/fpPV36MKCgol3peUlZX/yBMihBBCCCFEerI4X/wrkrZz0e+A/gdBKoShoSFzOTU1tRJnQsjv7/Pnz/D09ISnpyeaN29e2dMRSd26dTF//vzKnkaVUrNmTYSEhCAqKgrNmzdHgwYNoKmpCQ0NjSoXOhY1dOjQyp5ChatZsybs7OxgZ2eHvLw8PHv2DG/fvkVcXBySkpKQmpqKtLQ0ZGdnIycnB7m5ueBwOMjPzy81iBNYv369TNYbKw+LxcLnz58xf/58NGzYEKdPn4aenp7I+06ZMgVmZmbYvHkzdHR0sGzZsnL3e/jwIQICAnD//n1MnDgR9vb2Mm0BWR42m42FCxeiX79+WLlyJTZu3ChxC92ia3aJG6CWxcLCAi1atICTkxM+ffoEPp+P6OjoSgnXimrQoAF8fHwwaNAgzJs3j7nN06ZNw8SJE2V+vH379mHPnj34+PGjzLof8Pl85vUnq1AlNTUVFy5cQHh4uNDrc3Nz8fjxY9y9excXL17E69ev0aJFCwwdOhS9evVC+/btxQ4mlZSUYGFhAQsLC3z+/BmnTp3C+fPn8fz5cyY8VFNTw8aNG9GvXz+pbyMhhBBCCCGEkEIUrpEKUbRyRvDpa0KI7PH5fCxevBgzZsz4I0OO340gtCG/DhUVFXTs2FGs8IPL5TJfPB6vWOWJpqamvKbKaNq0KVasWIGnT5/i77//RqdOnSQax9DQED4+PuVu9+TJE/j6+qKgoABWVlbYvHlzpVbYduzYUWgFljjy8/Ohra2NAQMGYOTIkTKaWaGmTZvi0KFDmDp1Kl6/fo0GDRrIdHxpmJmZYe7cuTh58iT+/vtv9OzZUy7HadSoEdauXSvTMXNzc9GyZUvY2trK7Pfl3r17sWjRohKv25CQEJw5cwZfv36FsbExmjZtiunTp6Nbt27Q1dWVybEBoHbt2nBwcICDgwOysrLw6NEj3Lt3D3Xq1KFgjRBCCCGEEEJkjMI1UiGKtnFRV1evxJkQ8nvLy8vD8OHDMWrUqMqeCiFERIqKijJtoyeORo0aISIiAsrKyhKHauJSUlLCqlWrYGxsXCHHqwh6enq4ceMGs56erOnr62Pfvn04fvx4lfvgxJQpU+Dg4FDZ0xCbmpoaIiIiZDrmlClThIZlvXv3hoWFhdzbnRaloaGBHj16lFhfkhBCCCGEEEKIbPyaDfdJpQoMDET37t1haWnJrH9RnqLVahV5YoGQP42qqioFa4QQkamrq1d4b/gWLVr8VsEaULhek7yCNQFdXV1MmTJF7scR15+4tkBpSqtCMzY2pr9/CSGEEEIIIeQ3Q+EaEcv9+/exceNGfP/+HS9evMA///wj0n5JSUnM5caNG8treoQQQgghhBBCCCGEEEIIIXJF4RoRy8OHD4t9n5eXJ9J+b9++ZS63adNGpnMihBBCCCGEEEIIIYQQQgipKBSuEbEUbWmjrKyMkSNHirTfzZs3AQBsNht9+/aVx9QIIYQQQgghhBBCCCGEEELkjsK131RiYiKmT5+O9u3bY/jw4Uy4Ja3u3btDQaHwaTNs2DCR1kz5/Pkz7t69CwAYOnQodHR0ZDIXQgghhBBCCCGEEEIIIYSQikbhWhWWkZHBXE5LSxNrX1dXV1y7dg3Z2dmIjY2Fk5MTPn/+LPWcDA0NMXbsWACAurq6SPts3rwZBQUF0NLSwoIFC6SeAyGEEEIIIYQQQgghhBBCSGWhcK2KSkpKwn///cd8f/nyZbH2f/bsWbHvc3Jy8PTpU5nMbfHixejXrx+OHz+Ox48fl7nt3r17cezYMbDZbPj4+KBGjRoymQMhhBBCCCGEEEIIIYQQQkhlUKrsCZBCWVlZ4HK5SE9Px6tXr7Blyxbk5eUx1wcGBiIvLw/Dhg1DrVq1oKSkBFVVVbDZbKHjtWrVCnfu3GG+V1ZWRvPmzWUyVxUVFQQEBGD37t2YMmUKunbtClNTU7Ro0QL6+vooKCjAmzdvcOjQIVy5cgX16tXDqlWr0K1bN5kcnxBCCCGEEEIIIYQQQgghpLKw+Hw+v7InQYBJkyYVC8NE4enpCSsrK6HXJSYmwsPDA3fv3kXNmjWxYMECDBgwQBZTLSYlJQXHjh1DTEwMYmNjkZ6eDlVVVejp6aFly5bo06cPhg4dWmoIWFVxOByhlX6tW7eW+rYIwseimjRpAiWlqpt183g85OTkFPuZmpoas/4eIYQQQggh8iSrv0d/xb/FCSGEEEJI1ZCfn48nT54U+1mbNm2grKxcSTOqPPI8f/6roP9BVBH79++X6Xh16tTBzp07ZTqmMHp6erC3t4e9vb3cj0UIIYQQQgghhBBCCCGEEFLZqOyEEEIIIYQQQgghhBBCCCGEEBFRuEYIIYQQQgghhBBCCCGEEEKIiChcI4QQQgghhBBCCCGEEEIIIUREFK4RQgghhBBCCCGEEEIIIYQQIiIK1wghhBBCCCGEEEIIIYQQQggREYVrhBBCCCGEEEIIIYQQQgghhIiIwjVCCCGEEEIIIYQQQgghhBBCREThGiGEEEIIIYQQQgghhBBCCCEionCNEEIIIYQQQgghhBBCCCGEEBFRuEYIIYQQQgghhBBCCCGEEEKIiChcI4QQQgghhBBCCCGEEEIIIUREFK4RQgghhBBCCCGEEEIIIYQQIiIK1wghhJRw7tw5PH78uLKnQWTkxo0biIyMrOxp/LG2bduGBw8eVPY0fmtcLhc8Hk/s/VxdXfHy5Us5zAjg8/kS7ffu3Tu4ubkhJydHxjMS7diS3I8AkJmZia9fv8p4RoQQQgghhBBCSNVE4RohhJASWCwWbGxs4OLigs+fP1f2dEp18eJFfPr0qdztjh8//kef9N2+fTtcXV1hb28v0v1VGQ4ePAgOh1PmNmlpaYiMjERBQYHc55OYmFjufEQVHR2NcePGwcLCAkeOHKmU0ERg165duHDhgsTBT3ny8vLkMm5ZMjMzMWPGDKxZs0bsfc+fPw8LCwvY2dnh5s2bMptTVlYWzM3NceXKFYnmdOTIEVhZWckt+CvNrl27MHjwYBw8eBC5ubli7Xvv3j0MGjQIAQEBYu9LCCGEEEIIIYT8aihcI4QQUsLAgQMxdepUnDlzBkOHDkV4eHhlT0moGzduYMiQIVi2bFmZoVFUVBRMTU3h4eGB+Pj4Cpxh5Xv69Cnu3r0LAIiJicHw4cNx+vTpSp5VSd7e3jAzM8OBAwdKDbV4PB5cXV0xcOBAhIWFySz8EubOnTsYMmQIzp07J/VYbDYbAPDy5UuEhIQgPT1d6jF/dvLkSZGCrbi4OMyePRuWlpa4ePGiTEO2a9euYeDAgfjnn39kNmZ5Pn/+jPHjxyM6OhqhoaHYuXOnWPurq6sDAB48eIDs7GyZzUtDQwPm5uaYMWMGVq5cKdZz9fz58wAKq8jGjBmDa9euyWxe5VFRUcGHDx+wcuVKjBgxApmZmcWuf/v2ban7Pnz4ENnZ2diyZQsGDx6MEydOyHu6hBBCCCGEEEJIpaFwjRBCiFAuLi4wNjZGdnY23N3d4efnV9lTKkFNTQ35+fk4evQohgwZwpyU/pmqqio4HA7CwsIwaNAgXLhwoYJnWnn27NlT7Pthw4ahX79+lTSb0qmpqSEpKQmrV6/GsGHDhAZQampqAICEhAR4eHhg+PDhSE1Nlct8LCwsMHDgQMydOxczZ85ESkqKxGMpKioyl/ft24datWrJYorFbNy4EWZmZggJCSkzZFNWVgZQGPTt3r0bP378kOq4BQUFuHTpEmxtbTF9+nR8+fIFy5cvx9mzZ8vd9+3bt+jZsyeaNWsm8Vffvn3x+vVrZkw/Pz8cP34cAHD79m28evWqzDmoqKgAACZNmgQzMzMp7omS7O3tUadOHRw8eBBTpkxBRkZGufu8evUKz58/BwC0bdsWFy5cQJ8+fWQ2pxs3bmD9+vWlVpYJ7g91dXUEBARAU1OTuY7P58POzg5z5szB9+/fS+z76NEj5nJBQQEMDQ1lNm9CCCGEEEIIIaSqUarsCRBCCKma2Gw23NzcMG3aNADAjh070Lt3b3Tq1KmSZ/Y/gqoTAJg8eTIGDBggdDvBCWMlJSX4+PiUut3v5uXLl8VCDm1tbXTu3LnY/VZVCIKzatWqwdPTE9WqVSuxjeBxBIBmzZohICAAurq6cpvT/Pnz8e+//+Ly5cuwtrbGnj170KBBA7HHUVAo/CyTkpIS9PT0ZD1NAIWhWUJCAtauXYubN28iMDBQ6HaCKrrq1atj7969xe5TYTZv3gxHR0eoqqoyP0tJScHt27dx/fp1XLlypUTAyePxsGLFCtSuXRtt27YtdexGjRph3759OHHiBJo3bw5jY2NoampCQ0MDABAbG4vJkycDAFq3bi1yVZqSUuGft8+fP4e3tzd69eqFadOm4a+//ip126IBqKyw2Ww4OTnBzc0N9+/fh729PQ4cOFDmfX7kyBEAhe9tvr6+Mg9iO3fujDVr1uDKlSvYuHEjWrRoUex6wf2hq6uLJk2aFLvu5s2bSEpKwvnz53Hv3j3s3r2b2b+goABPnjwBUNhWeMuWLejQoYNM504IIYQQQgghhFQlFK4RQggpVa9evdC4cWP8999/AIBnz56JHa6dPHkSL168gKurq8znJzgRDACOjo5gsVhCtxOczFZTU8PQoUNlPo+qysvLCzweDwDQpEkT+Pv7Y9KkSejQoQPq1atXybMrTlBR1alTp1KfYwoKClBWVkZ+fj66du0KIyMjuc/Jw8MDY8aMQWJiIhwcHBAZGVmsmkcUgtaLgtBIHgSvhdatW5dZZSoI+lRVVYuFPHw+HxwOp0Tws2vXLpw8eRJjxozBu3fv8PjxY7x79w6qqqowMjJChw4dUL9+fTRs2BANGzZE48aNoaWlxRynPI0aNcK8efOEXrd3714Aha9fLy8vsYNJQSB4/fp13Lx5E76+viVe//II1YoaOXIkNm3ahG/fvuHJkyfYvXs3nJychG6blZXFtFJcvny5XF6jbDYbS5YsgYODA2xsbODl5VXsPhG8DoURVMEaGBhg06ZNxYK5Z8+eMW01e/fuTcEaIYQQQgghhJDfHrWFJIRUOD6fj4LsbORnZKAgO1uma/4Q2RsxYgSAwkqKgQMHirXvqVOn4Orqij179sDT01PmcxP1xHhZJ4x/V9euXcOtW7cAFJ5Q9/X1RYMGDWBrawsXFxfk5ORU8gyLq6qPZZs2bZg2mp8+fUJISIjYYwgCzooI1xo3bgx1dXV8+fKlzO1+9u7dO4wePbrEmlrKysr49OkTbt68ia5du2L16tWIjo7Go0ePcOrUKWzbtg2urq4YPXo0OnbsiGrVqokcrJXl8uXLuHLlCoDCCsJGjRqVuu2pU6eErmkmqIYEgJCQEKHBurzDNTabDUtLS+Z7wWtSmCNHjiAjIwODBw+GlZWV3OYkqEDmcDhYtGgRHj9+zFxX2v3x4MEDxMTEQENDA7t27SoRgN+5c4e5PGHCBPlMnBBCCCGEEEIIqUKoco0QUiGy4j7g2/UY/Ih9g6x371GQmclcp6SpCY2GDaDVtAn0e/eCRv2qVVHzK8rJyZFZeGJoaAgWi4WlS5dCVVVV5LWnrl+/jiVLloDL5QIorEJhsVhYvHixTOYFiB60yOJk/68kNzcX69atY76fP38+mjdvDgCws7PDyZMnsWDBAmzdurXK3DelhT4/K606UZ7Gjh2Ly5cvA0Cx9b1EJfgAQdGwR9Z+DkXCwsLw9etXeHh4FKtGKys8ef36NaytrbF06VKMGTMGwP9eYx07diwWEslTWloaVq5cCQDo2rUr0xpSmP3792PNmjXo0qULAgICoK2tzVxX9LZWZjvbvn37IigoCABQv359odsUFBQgJCQEtWvXxqpVq+Q+pylTpuDevXsoKCjAli1bsHv3bgClPz98fX3BZrMREBDAvJcU9e+//wIA6tSpg169ekk9v/79+yMhIaHc7RQVFaGlpQUDAwOYmJigX79+MDMzY9qfykJKSgqGDRuGlJQUXLp0idaSI4QQQgghhBACgMI1Qoicpdy7j4R/jiHjxctStynIzET6k6dIf/IU8UcjoN3CBHWtLaHXqWMFzvT38v37d9ja2op0clJUbm5ucHNzk2qM4OBgsFgsubSILEtlBDKVaePGjYiLiwNQ2NpzypQpzHXKysrw9vbG6NGjsWbNGri7u1fOJH8i6mNUGWFgt27dUK1aNaSnp6NNmzZi75+fnw9AvuHaz0Gzg4MDzMzM8PbtW+zYsYNZm660EFNQJZaTk4P379+Dw+GAzWaLHHrKCp/Px+LFi5nKu3///VdomPOzO3fuYNy4cQgKCkKdOnUAyL8qTVRt2rSBqqoquFwuxo0bJ3SbkydP4suXLwgJCRG63qCs9enTh3lOF/0ghrD7LCoqCo8fP8bmzZvRrVu3Etfn5ubi7t27AABra2uZvEZPnDiBrKwsbNq0CREREQAK14HbunUrmjRpAhaLhYKCAqSlpSE2NhaXLl1CVFQUTpw4gdq1a2PlypXo06eP1PMAgHXr1on8oRJCCCGEEEIIIX8OCtcIIXKRn/ED74J24Vt0jNj7Zrx4iYwXL6HfuxcaOthDWVtLDjP8vRkaGiIkJAQXL16EiYkJ6tevD01NTWhoaJQIMbhcrlQnob9//47q1atLO2UiI/fv32daFxoZGWHDhg0lHnMTExM4OzvD19cXSkpKWLp0aWVM9ZfBZrOxbNkyfPjwoVhQKaqCggIAoodrR48eRb169dClSxeRj/FzoKGpqYnJkydj06ZNmDx5Mg4ePAhNTU2hIWZubi5u3rwJAHBxccHMmTOZ6yo6XNuwYQOuXLkCZWVlbNy4ER07lv4hi3fv3sHW1hZcLhfq6uro27dvsTbDRe8TPp8v95D948ePqFGjBrPWmwCbzcbs2bPRtGlTtGzZssR++fn5CAgIwIwZM0qtsDt9+jQ0NDTQt29fmcyVzWZjwIABOHr0KEaPHs38/Of7KCsrCz4+PvDx8YGZmZnQse7cuYO8vDwoKCiI1c4yMzOz1PULNTU1oampCQsLCyZc69GjR4n7R09PDw0bNsTgwYMxZcoUzJgxA58/f8aMGTOwYcMGqdfYvHbtGk6ePCnVGIQQQgghhBBCfk9VoxcUIeS3khUXh0fO8yUK1or6Fn0dj5znIyvug4xm9mcxNDTElClT0LVrV9SqVavUE+vLly9HUFAQsy6UODIyMtC/f3+sXr0a3759k8W0q4Rf9bb8+PEDS5YsAY/Hg5qaGrZu3VpqFYy9vT369OmDffv2Yc2aNb/l2odZWVnIzs6WyVgjR47E3LlzJQqiBeFa0faMpTl69Cjc3Nzg6OhYbB2r8ggLwcaPHw8VFRW8fv0a3t7eAIRX/l24cAE5OTno1atXsWANqNjqr7179yIoKAjKysrYtGkTBgwYAD09vVK//P39mbaza9aswaJFi1C3bl1mvKLvd5K8v4nrxo0bGDBgAMLDw5nHXMDBwaHUSqqIiAjo6+tj1qxZQq+Pj4/H8uXLMWPGDPj6+pYYW1IzZszAvHnzirX7/Pl3xIMHD+Di4sKEVFevXsWkSZOQWaS1c3R0NIDCCk9B1WB57t+/D1NTU1y6dKnM7Yo+/8prA9yyZUum1S2Px4O7u7tUFWeZmZlYsWKFxPsTQgghhBBCCPm9UeUaIUSmsuLi8GzZimJrqkmDk5KCZ8vc0WrtKmgYC1+rhkhn+vTpGDlyJKKjo+Hn5wcDAwOR942JiUFubi4OHDiAiIgI2NrawsnJSaQQQRh/f3/Mnj27Uts4cjgcDBs2DI6OjrCzs/tlWkry+XwsWrQIHz58AIvFwrp168psp6egoABfX1+MHj0a+/fvR0pKCtavXy+TtYr+++8/xMbGSl01Iq0rV67A398fvr6+aN26tUzHjo2Nha2tLVJTU0XeJyYmBs2aNRNp2+zsbDg6OuLw4cNo0qRJudsLC8GqVauGAQMG4NSpU4iIiICbm5vQcC0yMhK6urrw9PQscV1FteEMDg7G+vXrUb16ddjb25dbtXfy5Encvn0bAGBubo5hw4aV2KZooCZtha4oVFRU8PXrV7i7u0vUbrVFixblbhMUFIRGjRqJvf5dampqiQBdQ0MDY8aMKRZA5ebmAii871JSUphKu5SUFDx48ADz5s0Dh8PBtGnTsGvXLmhqajIBmZmZmUhhVmxsLJycnJCVlQVnZ2ds3rwZpqamYt2e0rRt2xYDBgzAuXPn8OPHD0RERGDatGkSjbVhwwZwOBw0btwY//33n0zmRwghhBBCCCHk90HhGiFEZvIzfuDFyrUyC9YECjIz8WLlGrTb7EctIuXA2NgYDg4O8Pf3h7W1NYKCgkQOAI4fP85cbtmyJUxNTSUO1oDCSrhdu3bBwcFB4jGkdf/+faSlpcHLywvR0dHw8vJCzZo1K20+otq6dSuzbtbixYtFCra0tbWxbds2jB07FqdPn8bnz58REBAAPT09qeZiZGQEJycntGrVCvXq1ZNqLGlER0cjLi4O48aNw5w5c+Dg4CCzsKhp06YIDg7GsWPH0Lp1azRo0ADVqlWDhoZGiW2tra2RmJiIQYMGwcPDo8xxN2/ejEOHDgEoDCsaNWok0nxKu12mpqY4deoUtLW1wWazS4TFiYmJuHXrFjZv3iw0WJd3IMXj8eDt7Y3g4GC0b98emzZtwokTJ2Bqaoq5c+di4sSJJeb88eNHrFy5EgBQv379UquLBFVtQGHrRVkEx2Up+t4XEBCADh06yGTcBw8eMFVtc+bMETtYA4Bjx47By8tL5O0/f/4sdH01gYcPH2LatGlwcXFBYmIiAGDlypXM4yKq/Px8mQdspqamOHfuHADg9u3bEoVr9+7dQ1hYGPz8/HD48GEK1wghhBBCCCGElEDhGiFEZt4F7QJHihZMZeGkpOBd0G40W+Ail/H/dPb29jh06BCSkpJgZ2eHf/75B7Vr1y5zn69fvyImprD1Z6NGjRAYGFjq+jmisrOzw9ChQ9GtWze0atVKqrEkVbRN2a1btzBixAjs27evzCqwynbmzBkEBAQAKGw/J2xdsPv376NDhw4lgopGjRphx44dmDp1Kh48eIBRo0bB29u71LWfRKGiogJra2ssWLAAYWFhFb5uF1DYivHatWsACk/g+/n54e7du9i+fXu57eWE4XA4JcIZExMTmJiYlLkfj8dDcnIyAKBhw4blBpdF2+0tWLBA5DCwtO26d+8OZWVlzPg/9u47vMnybeP4mdXdUlr2LHuIIAiCAwQEFERF3P4Q8VUBFURFHKigIjhQGQ5cuHChiIgKKKioqAiIMkS2QFugjEILLW3SJO8fpaEhSUnStCnw/RwHh0+e3M/93GlLLTl7XffQoZI82/598skn6tevn3r27BnQvKFw8OBBjRw5Un///bceffRR/e9//5PRaNStt96qOXPm6KmnntI///yjZ555xnVNXl6ehg8frkOHDik2NlavvvqqEhISvM5fvHLNZrOV2esoUjxci4+PL3VIXXyuIsEGdv/3f/+nGjVqqKCgQC1atFBycrLi4uJcX9O//fabbr31VtfHrHbt2vrhhx9OOO+LL77oOl66dKkqV67sddx///2nSy65RFJhtfTIkSODeh3+KF7pmZGREfD1VqtVjz76qC666CL16dNHn376aSiXBwAAAAA4RbDnGoCQyFzxZ6n3WDuRfT//oswVf5bpPU5X0dHRuuGGGyRJ+/fv99oe7ngffvihCgoKVKlSJU2bNq3UwZok1apVSz179tT999/vak9WnhwOh6viQZLatm2rN998s0IHa7/88otGjRolp9OpG2+8Uffff7/XcRMmTNCVV16pxYsXezzXrl07vfTSS7JYLEpPT9fAgQM1derUUu3tdMMNN2jz5s2u0K+8/fbbbzp48KDr8eDBgzVx4sSggrXnn39eQ4YMkdVqDfjavXv3uoKdOnXqnHB80X5/JpMpoBatvkKwxMREzZgxQzfddJPX5//66y+NHj3a9fjwcZXHwbRFtVqtJ/xY/fbbb7r66qtVq1YtzZs3TzfddJPrNZhMJg0ePFhSYcVV0Z5eNptNI0eO1Pr162U2m/Xiiy+qcePGPu9R/HtIeXw/Ka8WmsHq06ePLr/8cjVp0kRJSUmuYG3fvn0aNWqUWxiZk5OjJUuWeHw9FOd0OvXVV1/JbDbrzDPPdFWweVO8XWQgX9fBKF49Gkyo+sorr2j//v3stwYAAAAAKFHFfhcAwEkj/fMvyuc+s+eUy31OR1dffbXrjfTvv/9eR44c8Tk2Pz9fM2fOlMlk0osvvqj69UO3H97//d//6b///guohVmorFixQnv27JEkWSwWPffcc2rdunW5r8NfK1as0PDhw2Wz2XT77beX+GawxWLRv//+qyFDhui6667T6tWr3Z7v3LmzXn31VUVFRclut+uVV15Rv3793Cr5ApGQkKCrr75ar7/+uv7++++g5iiN+fPnu447duyokSNH+qyqOXDggDIzM73+ef311/Xmm2/qt99+04gRIwIOHFNTU13H/rTI3L9/vySpWrVqAbVkLCkEa9u2rev548e98847rmD81VdfVb9+/bRr1y6/73s8q9WqESNG6K677vIZsOXn5+vnn3/W+++/r3Hjxnltu9qrVy9XEJqdna2CggLdd999WrRokUwmk55//nl17dq1xLUUBWpVq1Yt8/aWUtm30CwLBQUFGjVqlPbt26e6detq4MCBkgp/0WDcuHE655xzdOONN+rdd991C6sladmyZdq5c6cuueQSNWnSROnp6T7vU3xvwrIO1w4dOuQ69vV33pf169frrbfe0gMPPKBq1aqFemkAAAAAgFMIbSEBlFrOtu3KXvdvudwr+591ytm+Q7H1w7eP06mqevXqat26tVatWqWIiIgS9yeaNWuWDhw4oAcffFAXXHBBifNmZ2dr8eLFuvzyy/1aR4sWLdSpUyd99NFH6tatm7p06RLQ6yiNWbNmuY6vu+66sO4XdiLLli3THXfcoby8PI0aNeqE+woVr9iqXbu2UlJSPMZ06dJF06dP15AhQ3T48GFt2rRJd955p9q1a6dBgwapW7duAe1bdfPNN+vDDz/UqFGj9OWXXyomJsbva0vj8OHDWrBggaTCMGnUqFEljp89e7aee+65E867ePFi/fDDD+rVq5ffa1m7dq2kwqqmli1bnnB8UQvJGjVq+H2P43399deuCrjj/flnYfXv4cOH9e6777rOb9u2TR9//LEkaeDAgZoxY4Zq1KjhCuOOHDniVn3kjdPp1KOPPupqJ3jXXXfplVde8fiaiYyM1EMPPVTiXDExMWrVqpWMRqM6deqkIUOGaMmSJbJYLHr22WfVu3dvbd++XbVq1fJZjWixWHTvvffq5ptvVnR0tNcxoWwXWR6Va06nM6RzPfzww/rtt99Uu3Ztvffee66/N/Hx8friiy80ZswYffXVV/rzzz81bdo0vfvuu65WqJ9++qmMRqNuv/12zZ49u8TKteLtGUvzte2Pbdu2uY79+TtXxG63a/To0TrnnHN0zTXXlMHKAAAAAACnEsI14BSQl7EnJPMYIyyKCPC3vK0HDmj3gm9PPDCEds//VrWvvMLn88G+DofV801Wc2yszHGxXq44uXz//ffq3r37CVu8de/eXatWrdKtt97qswrDZrPprbfe0uWXX67/+7//K3G+zMxM3XrrrVq3bp327NlzwgCoyE033aSlS5fq0Ucf1TfffOO251BZOXTokKslZGxsrO68884yv2ewFixYoFGjRikqKkqvvfbaCSt4pGPhWq1atdz2STpe+/bt9emnn+rOO+90vUm9cuVKrVy5UgkJCerZs6fOPvtsNWvWTE2aNHHbZ+p4derUUbdu3bRo0SI9//zzGjNmTECvM1jffPONcnNzJRW2wjvzzDNLHH/rrbeqatWqcjgcatGihapUqaL4+HhFRETopZde0ssvv6z4+Hi98sor6tixY0BrKaoQbNas2Qlbp1qtVld10In2PCxJ8+bNNXjwYNWsWdNtnjVr1rg+pzabzRX8Fbnssstcx7NmzdJdd93l+p4xffp0TZ8+PaB1/Pzzzxo2bJhefvnlgELZIk899ZT27t2ra6+9Vunp6apcubJefvll136AX375pWbPnq1bb71V1113ncc9/ve//0kq/LhmZWUpNjbWbf+/1atXKy0tTZJ87tsWiJMtXBs/frzmzp2revXq6e2331bt2rXdno+JidHzzz+v2rVr67XXXtPBgwc1YcIEzZgxQ5mZmfr22291xRVXqHnz5oqPj3d9LL0pHq750x61NIr2WpSkiy66yO/r3n77bf3333+aO3duWSwLAAAAAHCKIVwDTgF/Dr4jJPMktDpDZ45/MqBrNjw/Sdlr/wnJ/f21e/4C7Z6/wOfzoXwdda+/VvVuuC7gNVY0DzzwgGrXrq277rqrxEqzvn37au/evbr55puVk5PjdczcuXMVFxenhx9+2OcYScrKytLgwYO1adMmSdLEiRNls9l0xx0n/nrt3r276tSpo7S0NE2YMMGvPeBKa/bs2a42ckOHDlVycnKZ3zMYM2bM0IQJE9SkSRNNnTrVawWaN0Xhmj97aDVq1EifffaZRo0a5bZHW3Z2tj7//HN9/vnnSkpK0n333XfCCo+bbrpJixYt0kcffaRevXqpU6dOfq23NIoqsCIjIzVy5Ei/rjlRZWWNGjUCDtYkuVpiFgVCJSlqCSmVLlxr3Lixq3qsuKuvvtp1XLlyZT3//PMnnMtut0uS7rzzTo0YMcLrmL59+2rTpk0aNmyYhg8fHuSq3R05ckSzZ8/We++9p4KCAp1zzjl69tlnVatWLdeYYcOG6d9//9VTTz2ld955R0899ZTOO+88j7m2b9+uBx98UOvWrZPFYlFkZKQMBoOys7NdY5o0aVLqNRd9rMpS8X3RSjNHUUjWoUMHvfTSSyW2T7z33nuVm5ur999/X9u3b5dU+HfMYrHonnvukVRY6bZixQqfcxS1jIyOji7TtpCbN2/WvHnzJBW2Q/X29eDN9u3b9fLLL+vee+9V3bp1y2x9AAAAAIBTB+EagFIJ5W/Ro+xER0drw4YNuvvuu/0a/8EHH5xwzLnnnhvwOiZPnqyCgoITvgFvNBp13XXX6YUXXtDs2bPVt29fnX/++QHfz18Oh0Pvv/++pMKqikGDBpXZvYKVm5urMWPG6JtvvtEtt9yie+65J6BqoOIVO/5ISEjQ66+/rk8++UTPPvusqxKsbt26GjNmjN/tOjt16qRGjRppy5YtGjNmjObOnauoqKiA1hKIpUuX6t9/C9vU3nLLLR7VOOVp8+bNrlDBn6/f4tU9xUOkUMjMzNQ//xz7BYLc3FxlZmYqKSmpxOuKwpySgqNQ/39gwYIFmjhxotLS0lSrVi2NGDFCV1xxhUcwbDQa9fTTT+uKK65Qenq6brvtNr399tseAW6TJk00e/ZsZWRk6LPPPtPbb7/t9osBjRs3PmF7W3+EssWkL6UN16xWq+6//359++23uvrqqzV27Fi/vo889NBD2rRpkwwGgytoGzVqlKvFY40aNfTPP//I6XR6DfCLKibLstXu1q1bNXToUBUUFKh69eqaNGmSX9cVtTNt3ry5a885AAAAAABOhHANQOmE4LfoUfaK3jytVauWa0+diu6qq67S1KlTZbPZ9Nhjj2nevHllFsp89913rpZmDz30UFAt7MrSpk2bdPfdd8tgMGjGjBluVVA2m83nnlPF+TPGm+uvv14XXnihJk2apJ9//lkff/xxwJUn1157rZ5++mlXdcj9998f1Fr88c4770iSqlWrpsGDB5fZffzx3XffSSqsEvMnvNmz51iL39JUrnnz66+/ugUzNptN119/vQYPHuxW0XY8f8K1UFm2bJlefPFF/fXXX2rYsKHGjRunfv36lfj3MTExUQ899JDuuece2e12zZgxw2d1ZPXq1TVs2DBdccUV+t///qeMjAxVrlxZL7zwQkhaOhYUFJR6jrK8x759+3T33Xdr69atmjJlii655BKfY4//eJhMJr3yyivKyMjQRx99pJYtW+qGG25wPZ+SkqJDhw5p27ZtatCggcd8RRVvoagQLM5ut2vDhg36+uuv9dFHH+nIkSNq27atJk+e7Pfebp9++qn++usvffnll+XS2hMAAAAAcGogXANQKlSunVwMBkOJe2RVJMnJyerevbu+/fZbpaen6/XXX/fZlq40nE6nXnvtNUlSly5d1LNnT7+uu+yyy7Rr166QrcNbS7Wi/e0++OAD3X777RowYIBHBdo777yjf//9V0OGDFHz5s19zh9o5VpxNWvW1HPPPafDhw+fcN8wb/r166fnn39eNptN7777rvr376+GDRsGvR5f1q1b52pj+fDDDys2Nrz7JS5cuFCSdOmll/oVbu7du9d1HOrKteLtPSWpUqVKeu6553TLLbfom2++0fjx473es6gaq6TQoTT/H3A6nfrpp5/02muvacOGDerevbtGjBihTp06+dXCVJJ69+6tV199VRs3btSRI0dOOL5u3boaNmyYvvrqKz355JNq0KCB7Ha7li9fXqq2peURrgVbufb7779r1KhRatu2raZOnaoqVap4jDl48KDsdrvatm2r8ePHezwfGxurypUr68svv9R7773n9vlJSUmRwWDQ2rVrPcK1nTt36tChQ5IKqwSD9fXXX2vRokWux06nUzk5OXI6nYqNjVWHDh3Uv39/XXLJJX5/7WRkZGjixIm644471KhRo6DXBgAAAAA4/RCuASgVf9/AQsVwsoWhV1xxhb799ltJ0vTp03Xdddf5XY3gr++//17//vuvIiMj9dhjj/l93Ztvvlmmb6avWLFCzzzzjDp06KCvvvrKZ/u+iIgIzZs3T/Pnz1fXrl11xx13qE2bNqW6986dO70GLcEEa1JhdVHXrl21cOFC2Ww2Pfvss3r99ddLtUZvXnnlFUnSeeedpz59+oR8/kCsXr1a69atkyT179/fr2t2797tOg5luJadne0KJS644AItWbJEknTWWWdp8uTJGjp0qC6//HI99dRTHtVMVqtVUmHlUigdOHBAs2bN0rx581S/fn0NHDhQXbt2VUxMTFDz9e/fX88884wuvvhiv8ZfccUVuvbaayUVtsi855579Msvv2jKlCnq1atXUGso3hby0KFDyszMDGqe4xUFU8ffw1+vvfaafvrpJ02ePLnEvf+mTJmiuXPn6oEHHvD59ZeZmanx48d7fD+KiopSzZo19ffff+uyyy5ze279+vWu4zPOOCPg9Rfp3r27HnjgAdfjnJwcXXXVVbLZbDr77LP15ptvBjznE088oVq1aoW9yhUAAAAAcPIhXANQOrRQOikUhWonW8urLl26KCEhQdnZ2crPz9crr7yicePGhWx+h8OhqVOnSpLuuuuugPYDCnXId7x9+/bp9ddfV3JyconjiioRnU6nlixZoq5du5YqXJszZ44effRRTZw4Ub179w56nuP17dvXVcm1ePFirVy5Uu3atQvZ/KtXr9b333+vqKgoPfHEEyGbN1jvvvuuJKlbt25+BwpF4Vp8fLwqVaoUsrV89dVXysvLU6tWrXTuuee6wjVJuvDCCzVixAhNmjRJI0aM0MiRI92ChqJwraTWjMGE9gcOHFCbNm00aNCgoFuWFte/f3/l5ua6ArMTKfp7s3fvXg0ZMsS1H93999+vt99+u8QQypfiYftdd90V8PX+yM/PD/ianj17aujQoSWOcTqd+v7773X48GGNGTNGX3/9taZPn+7xeS+puqthw4ZavHixxy8p/P33367j1q1bB7z+IjExMapTp47buR49emj+/PlasmSJUlNTVbduXb/nmzdvnhYvXqxPP/00JF+DAAAAAIDTC+EacAo4+41pIZnHGBH4m0vNR92n9c9M1KH1G0KyBn/Et2iupvf6bg8YzOtodv+9clg9KwLMYW4rFyq5ubmSFHRVSLhYLBZ1795dc+bMkVQY/IwcOVKJiYkhmf/LL7/Uhg0b1Lx5c916660hmTNUStoPqbjo6GjX8eTJk9WjR4+g7zlnzhw9/PDDcjgcuv/++2U0Gv2uBDqRCy+8UFFRUcrLy5NUGD6FMlx7/vnn5XQ6dffddwcUkpaF9PR0V8Xl8OHD/b6uqM1oqFtCzpo1S1Jh4LNlyxZJ7oHY4MGDtXjxYv3111964YUX1KBBA1d71KLvHcFWLXrzxx9/aMiQIX61cAxUUVgerPz8fN1xxx366KOPAt4frHi49v7776tjx44eY3bt2hXwfnp//PGHBg4c6HEPf/nT7vDPP/9URkaGpMK2mS+99JJHsLZo0SJ16NDBZ/Dbrl07LVmyRBs3blTTpk3d5pakBg0ahOx7d5HrrrtO8+fPl8Ph0EcffaQHH3zQr+sOHjyop556SoMGDVKrVq1CuiYAAAAAwOmBcA04BURVrxa2e0dUrqxKrc4o13Ct0hktQ/6aIypXDul8FU1RoHGyhWtSYShTFK5ZrVYtXbrU7+CpJHl5eZo6daosFoueeeaZUu1JFk7F2/XVrl37hOPT09PVrFmzE44rKCjQfffdp8mTJ/u9D11JoqOj1aFDB/3yyy+S5PpvKPz000/6448/dNZZZ2nQoEEhmzdYEydOVEFBgfr27RtQG7ydO3dKkkd1Tmn88ccfWrdunbp27aru3btr8+bNktz37jIajXr88cfVr18/OZ1Ovf322+rZs6dyc3Nlt9slSQkJCT7vEWjlWseOHfX6669r6dKlOuOMM1SnTh3Fx8e7BcXe2Gw23Xbbbdq4caMk6ZZbbtHgwYM1c+ZMZWRk6O677/Z7DScKuaKiovyeq0hBQYESEhLUrVs3paSkeDyfm5urW265Re3bt9ewYcP8rn6NjIzUFVdcoWuuuUYdOnQIal0nqnj7/PPPJRW2en7yySdlsViUk5Pjen716tW65557VLduXb3xxhteK8TOOeccSdIPP/zgCtcOHz6sVatWSSps1xpqnTp1Ur169bRjxw7Nnj1bI0aM8Otz9/TTTys+Pj6grxkAAAAAAIo7Od9JBFChVOl8gdJmzS6/+3XpXG73OhU4HA5XuFbSG+QV1fHVH2lpaSGZ94033tDOnTs1cuRItWjRIiRzhkOge2HVrFlTs2f7//c1lKFjx44dXaFabm6uMjMzfe4l5y+r1aoJEyYoJiZGEydODPneYIFasWKF5s+fr6pVq+rRRx/1+zqbzeZqCxnKcG3q1KmKiopyraUoCDs+EGvevLkuvvhiLViwwLWvV/G9vqpUqeLzHsG0hezYsaPXyq6SPPLII65grV+/fnrwwQdlMBh0/fXXq0ePHho0aJDXUOt4zz77rL766it9/PHHAbURPJE+ffro2muv9dlCMyYmRq+//rpuuOEGffXVV/q///s/DRky5IRh0FlnnaWzzjor6HUdOXJEt956qyvkKonT6dQtt9zi8/mtW7fqhhtu0Ny5cz3+7rZp00aRkZH67rvvXG0oly5d6vp6KotwzWAw6JprrtELL7yggwcP6ptvvtFVV11V4jW//PKLvvzyS82YMSOoEBUAAAAAAIlwDUAIxKbUV0LLFspe92+Z3yvhjJaKrR/elm8nm4MHD7qOq1evHr6FBCk5OVnVq1d3tSwLxb5xqampeuutt9SxY0fddtttpZ4vnAINk4xGY6kDrWAdX8VlMBhKPec777yjbdu26emnnw57O8j8/HzXfm/jxo1T5QAqYtPS0lxVYqF6Hb/++qtWrFihxx9/3BUiFd2jeOVakRtuuEELFixQ165dJRXu+1ekpO8dwYRrgZoyZYqrvWW3bt00fvx419dP5cqV1aNHD40fP15vvvlmifO8/PLLevvttyVJgwYN0kcffRSy74vF/159+OGHioqKUr9+/dz+jtavX19Tp07VoEGD9Oqrr+qrr77S888/X6rw7ETi4+M1ffp0vffee2rSpIkaN26shIQExcXFyWg0atasWXryyScVHR2tuXPnev143HjjjVq7dq0aN26sKVOmeP0eEhERoTZt2mjZsmVavXq1Wrdurfnz50sqDBYvuOCCMnl9/fv319SpU2Wz2fThhx+eMFwr+vzfcccdfs1fvH3p5Zdf7vH/oBUrVgS4YgAAAADAqYBwDUBI1L7qynIJ12r371fm9zjVnOzhmiQ1bNjQFa6F4k3ocePGKSEhQS+88EJIwrpwCnelViAaNmzoOk5JSQkofPImLS1Nr732mvr376/+/fuXdnmlNn78eG3cuFFDhw5Vt27dArp269atruP69euXei0Oh0OTJk3SJZdcohtuuMHtvHQsZCuuU6dOGjVqlGv83r17JRUGsiUFft6CulB644039Oqrr0oqbD04ZcoUj4rKW265RVdeeaW+++479erVy2MOm82mcePGaebMma5z+fn5evzxxzV58mRFRkYGvb4vvvhCV155pdu5gwcPaurUqXrrrbd0991365JLLnGFge3bt9eoUaM0YcIEpaam6qabbnKF/b688847Wr16tW655Ra1bt064DXGx8dr2LBhHuetVqsrkBwyZIjXz/Pq1au1du1aSdLdd9+txo0b+7xP165dtWzZMn3wwQcaM2aMvv/+e0nH9lwsC1WqVFH37t317bff6p9//tGqVavUpk0bn+Ofe+65E7bJLG7UqFFauXKlpMKvRX/beQIAAAAATm0n9zuKACqMpPZnq0qXsvmt9CJVunRWUvuzy/Qep6Li4VooW6CVp/bt20uSrrjiCrVr165Uc3311Vf67bffNGXKFFWtWjUUy4OfatSooTp16shsNuuxxx4r9Xxjx45Vo0aNNHbs2BCsrnS++eYbzZw5U1deeaXuvffegK//999jv5zgz554JzJjxgzl5ORo/PjxbueLgjBfgdhtt92m2NhYSdJ///0nqbCSrqTwqSwr1yZOnKgXXnhBktSkSRNNmzbN61qaN2+uK664Qo899phH69hdu3bppptu0syZM2UwGHTBBRfozTff1C+//OJzPn9t2bJFL7/8ssf5ojm3bt2q8ePHu31+JWngwIGuPcqsVqvH5+l4N910k6sF4s0336w///wz6DUX98EHH2jXrl2qX7++br31Vq9jXnvtNUmFgfiJ9l/s27evjEaj5s+frzfffNNV9XWiarLSuuaaa1zHH330UYljq1atqjp16vj9p/jXR9H3sOJ/AAAAAACnJ8I1ACHT8PbbFFFG7eYikpLU8Hbvb/yhZMXfaC6p4qAiu/HGGzVy5EhNmDChVPNYrVY9/fTTeuqpp3T22QS14fD4449r2rRppW4Rt2jRIm3ZskWvvPJK2PdN+v333/XQQw+pZ8+eeuqpp4KeQyp8479atWqlWk9aWpo++OADvfnmm4qLi3N7rqCgQJJc+2CVpGh/sxNVSpVFuHbkyBHdc889euutt1znWrVq5fF6irv33nuVn5+vu+++W1arVZI0Z84c9evXT+vWrdN1112nb775RtOnT1eXLl1C0pb0448/9toi0WKxuI7ffvtttWzZ0u15g8GgMWPGuCpnDxw44HX+ZcuW6YcffpDZbNbzzz+vvn37aunSpbrxxht11113lWoPyuzsbL3++uuSCvez87ZX3OrVq13VZ3fdddcJK32rV6+u9u3by2q1ukK5evXqlVlLyCIXXHCBateuLUmaN2+eMjMzy/R+AAAAAAAQrgEIGUtCvFqOfVTmEt78DIY5Lk4txz4qS0J8SOc9XWzZskVSYWu3Ro0ahXk1wUlKStLgwYM9WsEFKj8/X7fffrv69esXmoUhYJ07d1aXLl1KPU9eXp7efvvtsLc6XbNmje666y5dd911mjp1qs+v0cOHD/ucIy0tzdV27rzzziv1mmbMmKFJkyZ5raopCtX8Cdf++OMPSSqxXaEU+raQ27Zt0/XXX6/58+crNjbW789x9erVdf/99+uff/7Rww8/rFtvvVXjx4/X9ddfrx9//FFPPvlkSL8H7t69WzNnzvQahhZv1xoTE+P1+iZNmqh3796SpPPPP9/rmO3bt7tahhqNRj3zzDOusYsWLdLll1+uRYsWBbX+l19+WQcPHlS1atVkNBp16NAht+ftdrsef/xxSdKZZ56pvn37+jXv5Zdf7vZ48ODBIQkyS1JU1ScV/hJF0f58AAAAAACUFfZcAxBSsSn11Wr8k1r3xFOyhuA3xyOSktRy7KOKTSn9HkSnq82bN0uSWrRooejo6DCvJrzi4+N1yy23hHsZCIG+ffu67eFWFtauXavvvvtOkpSenq7169erefPmrud///13jRw5Uvfdd58GDBjgcx6bzaaBAwfKarXqzDPPVKtWrdSkSRPX3mpjx451BVSXXHJJqdf98MMP+3zO38q1zZs3Kz09XWazWd27dy9xrLf924I1a9YsjR8/Xrm5uerevbvGjh2rsWPHuvZcPJEBAwZo6dKl+vrrr9WgQQMtWrRIlSpVCtn6ihs/frysVqvXENPfvRzvvfde/fvvv7rrrru8Pn/w4EFlZ2e7HlssFk2dOlX9+/fX9u3blZOTo3vuuUeffvqpR3XciZx11llyOp1as2aNhg0bJqvVqsaNG6tt27Zq166d1qxZo3/++UcREREaN25cUPtTGo1GderUKeDrgtG/f3+9/PLLKigo0CeffKLbbrvtpN9TEwAAAABQcRGuAQi52JT6OmvKi9r65nTt+/mXoOep0qWzGt5+KxVrpfTPP/9Ikrp27RrehQAniaysLL344ov69NNPdckll+i5557TO++8o5tvvlmvvPKK2rdvrzlz5uijjz7SO++8c8I90iwWi2bPnq2VK1dq4sSJmj17ttdxjRs3LvO/p/n5+ZIKWzlarVavrQAl6YsvvpAk9ejRw2vbw+JC0RYyLS1Njz/+uH755RelpKRo1KhR6tGjR1BzTZgwQVu2bNHWrVs1dOhQTZ48OeQVju+//74rePVWDedvqFO3bl3Nnz/f5/P79+/3qCiLi4vTpEmTdM0118hut8tms2nWrFkaM2ZMAK9A6tOnj/r06SOp8Ovi999/1w8//KAff/xRM2fOdI2rUaOGVq9erapVq6pKlSolzrlkyRI98cQTrscOh0O33367PvzwQyUnJwe0vkBVr15dF154ob7//nulp6dr8eLFJwyG/VH867ss9xcEAAAAAJxc+HVOAGXCkhCvZiPvUYvHRivhjMB+mz7hjJZq8dhoNRt5D8FaKa1du1a7du2S0WjUFVdcEe7lABWa0+nU559/rksuuUSffPKJhg4dqkmTJqlFixZ67rnndPHFF2vQoEH64IMPFB8fr48++uiEwVpx7dq100cffaT777/f47nY2Fg9++yzZV5pExkZqRtvvFFffvmlIiIi9PXXX+uOO+5w7VEmSTk5OZo1a5bMZrPPiqriiirXgqlgy8vL02uvvaa+fftq/fr1Gjt2rL755puggzVJSkhI0HvvvacGDRpo5cqVuuyyy/Txxx+HrH3lxx9/7Lb/o7c96UL1eUxLS9OePXs8zp9xxhm67rrrXI+LV7cFIzIyUl27dtWYMWN08cUXuz23Y8cOjRkzRl26dNF9993ndT1SYYvU4cOHy2azqX79+rrpppskSf/995/+7//+L6h90Ip/TRVVXZak+Mfkgw8+CPh+3qSnp7uOt2/fHpI5AQAAAAAnPyrXAJSppPZnK6n92crZvkP7fv5FhzZtVs6WrSootv+QOS5OsY0aKr5JY1Xp0lmx9euFccWnloULF0qSunfv7mpBB/+sWrVKX331lR555JEy3y8IZWvKlClq166dOnfu7HPM+vXr9cQTT7j2Prv99ts1YsQItzFjx45VZmamxo0bpy5duqhly5aqWbNmQGsxGAy6/fbbVVBQoMmTJ0uSmjVrpueee86t5WQgfvrpJy1btkxS4X5TJYUYd9xxh+t4zpw5Gj16tOx2u4YNG6aXX35ZERER+uCDD3Tw4EENGjRITZs2PeH9i0Irf8KP4td89dVXmjx5siIiIvTQQw/pyiuvVGRkpN9zFLHb7Vq2bJnmz5+vv//+W7NmzVK1atX03nvv6bbbbtPGjRv1+OOP67PPPtMdd9yhiy66KOjwa86cOa59yCSpQYMGQX/e/LFp0yafoeCdd96pzz//XPn5+SHZx/DAgQO65557tHTpUsXExGj06NFq3769pk2bpq+//lp2u13ffPONNm3apFmzZrl9rv7880/deeedys3NVdu2bfXqq68qKSlJe/fu1YIFC7R+/XpdddVVmjJlitcw8niHDx9WTk6O5s6d6zr322+/6c8//1Tjxo0VHR3tteqyc+fOqlmzpnbt2qVff/1Vb731lvr376/o6Gi/2iJbrVbl5eXJ4XBo//79mjlzplJTU13Pjxs3TqNHj1bz5s0VHR2tyMjIoL5mAQAAAAAnP8I1AOUitn49xd70P0mF1SH2I3lyFthkMFtkio4ivCgDDodD8+fPl8lk0j333BPu5ZxUVq1apVtvvVWHDh3SkSNH9NRTT532X6Pz5s3T4cOHde2114Z7KQF54YUX9MYbbygyMlKvvvqqLrjgAo8x8+fP18iRI11VMv369fNaXWYymfTiiy/qvvvu08KFC9WrVy9dd911uuaaawKqYJMKw7u9e/fqvPPO00UXXRT011dBQYGmTJmi3NxcSdI333yjb775JuB5fvrpJ911110aPXq0XnvtNdWtW1fDhw/369qi8OdE+7hJhd//582bp2nTpql69eoaPXp0UGFX8UBt4cKFMplMGjRokB544AFX6FK9enV9+umnevzxxzVnzhz9888/GjZsmFJSUtS7d29ddNFFatmypUwmk9/3LQpEpcKvh0ceecTruOKfz71793rdl+1EduzYoW3btkkq3N/v3HPPdXu+atWqGjNmjFatWqW+ffsGPH9x3333nZ566illZGTorLPO0nPPPef6hYznnntOQ4YM0WOPPaY///xTGzdu1N9//62OHTtKKvyae+ihh2S1WtW7d289++yzrsDpmWeeUUZGhv766y/t3LlTN954o+69917ddNNNPluSStLll1/uVjEmFbbIvPHGGyVJTz/9tPr37+9xndFo1NVXX62XXnpJkjRx4kRNnDhRF198saZOnXrCj8PXX39d4p6F27Zt0+DBg12Phw0b5vffEwAAAADAqYVwDUC5MxgMMsdESzrxb5EjePPmzdP27dt18803q0mTJuFejk9OpzOodnJF1xax2+0+K2eKjztRdc3atWt12223ufY5mjVrlgwGg8aNG3faBmyLFi3SqFGjZLfbZbFYdOWVV3odZ7fbS70nkdPp9KsCyp9xU6ZM0RtvvCGpcE+pO++8U9OmTdP555/vNq5nz57q27evvvzyS7Vo0ULjxo3zOWdERIReeuklvfnmm3r55Zc1Y8YMzZgxQ3Xr1tXZZ5+tFi1aKCUlRUlJSUpOTlZsbKyioqIUGRnp9vVjNpt97pFlt9uVn5+v3NxcZWVl6dChQ8rKylJiYqLatGnjNtZsNuvdd9/V4MGD9ddff+mZZ57x+fk5EYfDoVtvvVWS9MorryguLs6v64o+D8VbS5YkNTVVb7zxhmrVquXX+KysLEmFH5fff//dFahlZmaqevXqGjZsmK655hqvYU10dLSeffZZnXvuuXruuee0f/9+bdu2TdOmTdO0adMUExOjli1bqlGjRqpbt66SkpIUFxcnp9OpSy65xGO+p59+WrNmzVJMTIyuvPJKtWvXzuuai3+up0yZomeeeUY1atTw6/VKhSHOQw895Ho8ZMgQjR07VldddZXbuKuvvlpXX3213/MeLy0tTePGjdPixYuVlJSk0aNHa8CAAR6BY6NGjfThhx/qww8/1DPPPCObzSan06lp06Zp6tSpio6O1ujRo3XDDTe4XRcdHa0333xTgwYN0tq1a2Wz2fTcc8/pww8/1N13361LL71UFovFY10//PBD0K9p2LBhGjZsWFDX9u/f32toBwAAAADA8QxOduYGPFitVq1Zs8bj/Jlnnlnib1r7o6CgQJs2bXI716RJE5nNFTfrdjgcOnLkiNu56OjoMt8bCMFzOBy67LLLVFBQoDlz5vjVDitcdu7cqQEDBnhUKVQ01157rZ588slyC9jy8vJc1Ugl+fnnn/Xggw9Kkt5//32fQerjjz+ub7/9VjVr1tTs2bP9Xsfff/+tu+++21WVZDQaNXHiRK+VMrNnz9YjjzwSsr2tykJkZKTXgM3pdGrixIm66qqr1KhRI7/mSk1N1UsvvaR58+b5VbUVERGhyMhI1/9Hin8tOZ1O5efnKz8/32Mug8Ggc889VwMHDlS3bt28zn3kyBH9+OOP6tOnj19r92bq1KmaNm2aJk+e7LHvVklat26t/Px8XXXVVW57kYXCnj17dPHFF3v8XYiPj9fQoUN10003+d2W79ChQ3r55Zf14Ycflvj5atu2rc4///xSVSRt2bJFffv2DdnfhUqVKmn27NlBVcB5k5qaqjfffFNffPGFIiMjdcstt2jQoEGKjY094bWZmZk6fPiwHnnkES1btkznnHOOJkyYoLp16/q8JisrS3feeadWrFjhdj4hIUHdu3fX9ddfr7Zt25b6deHUFqqfR0/Gn8UBAABQMdhsNq1evdrtXOvWrb3+0uCprizfPz9Z8C8IADgFzZkzR2lpaZo5c2aFDtYkqVatWpoxY4Zmzpyp5s2bq2HDhoqPj1dcXFyFqxRzOp3ltqasrCwNHDjQ1RbOHwMHDjzhmF27dnm0lwuEw+HQgw8+KIvF4hHA9O/fX1FRUdq5c6fOOOMMVatWTfHx8YqKigr6fmXBWxtAg8GgBx54IKB56tatq+eee04jR47UvHnz9N1332nNmjU+gxur1ep3dVeR+vXra/LkyWrZsmWJ46Kjo0sVrM2ZM0dvvPGGnn/++YCCNUmuytP8/Pyg7+/LTz/95BGsXXXVVbr//vuVlJQU0Fzx8fF6+OGHdeutt+rjjz/Wp59+qn379rmeT0xM1EsvvaRzzjmn1Otu1KiRxo8frxdeeMHtHsHo2LGjxowZE5JgbfXq1frggw/0zTffqHnz5nrooYd02WWXKSEhwa/rnU6n5s+fr+eff16VKlXSU089pauvvvqE3xcrVaqkd955Rw888IDmz5/vOm+1WnXo0CEdPHiwNC8LAAAAAIByR+Ua4AWVa+6oXDu57Nq1S5dffrmeeOKJUr3ZjvDLyMjQvHnz1Lx5czVo0EBxcXGKjY2tcKEjjsnPz9fatWu1ZcsWbdu2TRkZGTpw4IAOHjyo3NxcHTlyRHl5ebJarbLZbCesePv44499th4MlR9//FH33Xefnn32WfXq1Svg65s3by5JGjp0aMj3d3Q6nRo4cKCWLVumqlWr6tlnn/WoOgyW1WrVkiVL9MMPP2jx4sV6/PHH1aNHj5DMXcTpdCojI0O5ubkBt0w1mUyqWrWqX9VkJcnIyNCXX36pr776ShaLReedd56uuOKKgNsFL126VJMmTVJqaqqGDBmiG264IeCfiZxOp9566y1NnjxZF154oSZMmKDExMSA5sDpi8o1AAAAhBuVa8dQuUa4BnhFuOaOcO3k4XQ6NWjQIHXp0sW1dxKAis1ut7v+OBwOVwjjdDrLvILzu+++0/PPP68XXnhBZ555ZsDXOxwOPfLII7rtttv8bqcZqLS0NA0fPlyvvvqqatasWSb3KPqYn4rB9YwZM1SvXj2dffbZfu+jV9zq1as1adIk5ebm6uqrr9all16qmJiYUq1p5cqVrr0JAX8RrgEAACDcCNeOIVyjLSQAnFLy8/N12WWX6eqrrw73UgD4yWQyeW1VWR7WrVunmTNnqnLlykFdbzQa9fTTT4d4Ve7q1Kmjzz77rEzf+D4VQ7UiN910U9DXWq1Wff/993rkkUfUuHHjkK2prKsxAQAAAAAoa4RrAHAKiYqKIlgD4LdQt3EsK1SUhEdERITuvffecC8DAAAAAIAKh55uAAAAAAAAAAAAgJ8I1wAAAAAAAAAAAAA/Ea4BAAAAAAAAAAAAfiJcAwAAAAAAAAAAAPxEuAYAAAAAAAAAAAD4iXANAAAAAAAAAAAA8BPhGgAAAAAAAAAAAOAnwjUAAAAAAAAAAADAT4RrAAAAAAAAAAAAgJ8I14ByZjAYPM45nc4wrAQAAAA4vTgcDo9zRiP/LAYAAAAQGP4VAZQzb/94LygoCMNKAAAAgNOL3W53e2wwGLz+8hsAAAAAlIRwDShnBoNBZrPZ7VxOTk6YVgMAAACcPg4dOuT22Gw2E64BAAAACBjhGhAGcXFxbo+P/0c+AAAAgNByOp3KyspyOxcfHx+m1QAAAAA4mRGuAWGQkJDg9jgvL0+HDx8O02oAAACAU19mZqZHO/ZKlSqFaTUAAAAATmaEa0AYxMTEyGQyuZ1LS0sjYAMAAABCzOl0as+ePdqzZ4/b+cjISEVFRYVpVQAAAABOZuYTDwEQagaDQZUqVVJmZqbrnNPpVGpqqqKiohQfH6/Y2FiZTCYZjeHPwB0Oh8fm7wUFBRVibQAAADj1BfLzqNPplN1uV35+vg4dOqScnBw5HA6PcZUrVy6z9QIAAAA4tRGuAWFSrVo1FRQUKDs72+18Xl6e8vLytHfv3jCtzJPT6ZTT6XQ7ZzAY2PwdAAAA5SLUP49Wq1ZNiYmJIVgZAAAAgNMR4RoQJgaDQbVq1ZIkj4ANAAAAQNmoWbMmwRoAAACAUiFcA8KoKGAzm83KysryaHVTkeTl5bk9jo6ODtNKAAAAcDoq7c+jUVFRqlq1quLi4kK5LAAAAACnIcI1IMwMBoOqV6+uatWqKTc3V9nZ2Tp8+LAKCgrCvTQAAADgpGUymRQdHa34+HjFxcXJbOafvwAAAABCg39dABWEwWBQbGysYmNjJRXuK+FwODz2lggHm82mdevWuZ1r0KCBLBZLmFYEAACA00kgP48aDAYZjUb2BwYAAABQZgjXgArKYDDIZDKFexmS5DXgM5vN/PYvAAAAygU/jwIAAACoSIzhXgAAAAAAAAAAAABwsiBcAwAAAAAAAAAAAPxEuAYAAAAAAAAAAAD4iXANAAAAAAAAAAAA8BPhGgAAAAAAAAAAAOAnwjUAAAAAAAAAAADAT4RrAMpUbm6uLr74Yv3xxx/hXkrQ7Ha7BgwYoNmzZ4d7KQAAAAAAAACAMDOHewEATl3Z2dkaNWqUtm3bFu6lBC0/P19PPvmkli9frv79+wc9z5QpU/Tqq6+Wej1z5sxRixYtSj0PAAAAAAAAACA4hGsAQsbpdOrAgQPatWuXfvzxR82aNUu7du0K97IClpWVpYyMDC1ZskSfffaZtm7dWuo5N2/eXOo5IiMjVaVKlVLPAwAAAAAAAAAIHuEagFKbM2eORo8eLYfDIafTGe7lBGXZsmUaNGiQnE6nHA5HyOfftGmTx7m4uDiZzSf+NnzkyBHl5+dr8ODBqlq1asjXBgAAAAAAAADwH+EagFLr3r275syZ43qck5OjTz75xO1cRdeqVSu39ebl5WnBggWaPn16qee2Wq3asWOHJCkpKUn33XefLr74YiUkJJzwWpvNpr59+8rpdGrw4MGlXgsAAAAAAAAAoHQI1wCUWkJCgkdQdOaZZ2rhwoXKyckJ06oCExMTo6ZNm7qda926tRYvXqwtW7aUau6tW7fKbrcrMTFRM2fOVL169fy+9qOPPtK2bdv0xhtvKCIiolTrAAAAAAAAAACUnjHcCwBwajKbzUpMTAz3MkotOTm51HMU7bf24IMPBhSsZWVl6dVXX9W5556rCy+8sNTrAAAAAAAAAACUHuEaAJSxTZs2qWrVqrriiisCum7atGnKysrSAw88UEYrAwAAAAAAAAAEinANAMrYpk2bdNFFF8lkMvl9TVpamj788EP17dtXLVu2LMPVAQAAAAAAAAACwZ5rAFDGnnjiiYCvmTx5sux2u4YNG1YGKwIAAAAAAAAABItwDQDKWNWqVQMav379en399de69NJLlZKSUjaLAgAAAAAAAAAEhbaQAFDBTJo0SZI0dOjQMK8EAAAAAAAAAHA8wjUAqEBWrlypxYsXq0uXLmrSpEm4lwMAAAAAAAAAOA7hGgBUIFOmTJEkDRgwIMwrAQAAAAAAAAB4Q7gGABXE8uXLtXTpUqWkpKhz587hXg4AAMApIzc3VxdffLH++OOPcC8laHa7XQMGDNDs2bPDvRQAAADgtEe4BgAVxKuvvipJuvrqq2UwGMK8GgAAgFNDdna27r33Xm3bti3cSwlafn6+xowZo+XLl5fbPTdu3KhWrVqpWbNmSktLK7f7AgAAACcDc7gXAACQVq9erd9++00Gg0F9+/YN93IAAABOWk6nUwcOHNCuXbv0448/atasWdq1a1e4lxWwrKwsZWRkaMmSJfrss8+0devWcru3w+HQo48+KpvNVm73BAAAAE4mhGsAUAG8+eabkqQOHTqoZs2aYV4NAADAyWfOnDkaPXq0HA6HnE5nuJcTlGXLlmnQoEFyOp1yOBxhW8f777+vVatWhe3+AAAAQEVHuAYAYZaamqpFixZJknr06BHm1QAAAJycunfvrjlz5rge5+Tk6JNPPnE7V9G1atXKbb15eXlasGCBpk+fXm5rSEtL05QpU8rtfgAAAMDJiHANAMLs448/dv1m8gUXXBDm1QAAAJycEhISlJCQ4HbuzDPP1MKFC5WTkxOmVQUmJiZGTZs2dTvXunVrLV68WFu2bCmXNYwdO1ZGI9uzAwAAACXhJ2YACCObzaYvvvhCklSjRg01atQozCsCAAA4dZjNZiUmJoZ7GaWWnJxcLvf54osvtGTJEj355JPlcj8AAADgZEW4BgBh9OuvvyozM1NS4W8lAwAAAOGwf/9+PfPMM+rWrZsuvfTScC8HAAAAqNAI1wAgjBYuXOg6Pr4FEAAAAFBennrqKdntdj3xxBPhXgoAAABQ4RGuAUAY/fLLL67jhg0bhnElAAAAOF398MMPmjdvnh544AFVr1493MsBAAAAKjzCNQAIk40bNyojI8P1+FTYDwQAAAAnl8OHD+vxxx9Xx44dde2114Z7OQAAAMBJgXANAMJk5cqVbo/j4+PDtBIAAACcriZOnKjs7Gw99dRT4V4KAAAAcNIgXAOAMFm1apXbY7vdHqaVAAAA4HS0YsUKzZw5U3fffbfq1asX7uUAAAAAJw3CNQAIkw0bNrg93rNnT5hWAgAAgNON1WrVo48+qlatWunmm28O93IAAACAkwrhGoAKbd68eerdu7fat2+vESNGKDMzM9xLCplt27a5Pc7JyQnPQgAAAHDaeeWVV5SWlqbx48fLZDKFezkAAADAScUc7gUAOHU5nU6vx/5auXKlRo4cKYfDIUlasGCB9u/frxkzZshgMIRsnSUp7WvwJScnhzANAAAAYbF+/Xq99dZbGjp0qJo1axbu5QAAAAAnHSrXAJQJq9Xq1uYwNTU14DkWLVrkCtaKLF++3KPiqyylpaW5joN5Db4cPnw4ZHMBAAAA/rLb7XrkkUfUoEEDDRkyJNzLAQAAAE5KhGsAysScOXNUUFDgejxz5kzZbLaQzH184FZWfv31V+3atcv1eO7cucrOzg7J3N5a71gslpDMDQAAAPjy7rvvat26dRo/frwiIiLCvRwAAADgpERbSACllp2drd27d8vhcOjAgQNasmSJ3n//fbcxa9as0bXXXqsBAwaoQYMGiouLk8ViUYMGDXzO26NHD73zzjtuYVrTpk2VkpIS8teQm5urtLQ0OZ1OZWdna8WKFZo+fbrbmPT0dF111VUaNGiQmjZtqkqVKrnWFKgqVaqoWrVqbtV9NWvWLN2LAAAAAEqwY8cOTZ06VQMHDlSbNm3CvRwAAADgpEW4BqDUFi1apIcffviE49atW6fRo0e7HteuXVs//PCDz/Ht2rXTCy+8oKlTpyojI0MdOnTQmDFjymTD9TVr1mjgwIEnHLdjxw49+eSTbuc2bNgQ1D0nTpyoxx9/XBkZGerWrZvOPvvsoOYBAAAA/DFmzBhVrVpV99xzT7iXAgAAAJzUCNcAlFr//v3Vv3//Mpm7T58+6tOnT5nMXVzHjh2DDsmC1alTJy1YsKBc7wkAAIDT06xZs/T777/r3XffVXR0dLiXAwAAAJzU2HMNAAAAAIBT2N69e/Xcc8/pmmuu0bnnnhvu5QAAAJx2cnNzdfHFF+uPP/4I91KCZrfbNWDAAM2ePTvcS6kQqFwDAAAAAOAUNm7cOEVGRurBBx8M91IAAABOO9nZ2Ro1apS2bdsW7qUELT8/X08++aSWL18e0g5mTqdT3377rebOnavVq1frwIEDiomJUdOmTdWrVy9dc801iomJCdn9QolwDQAAAACAU9Tu3bv17bffymAwqGPHjkHN0atXL49zEyZMUL9+/Uq5OgAAgFOP0+nUgQMHtGvXLv3444+aNWuWdu3aFe5lBSwrK0sZGRlasmSJPvvsM23dujWk86empmrkyJFatWqVatWqpeHDh6tVq1bKzMzUV199pQkTJuitt97Sc889VyG7LxCuAQAAAABwikpOTtZXX30V8HWXXXaZ6/iNN95QtWrV3J6vUaNGqdcGAABwKpkzZ45Gjx4th8Mhp9MZ7uUEZdmyZRo0aJCcTqccDkeZ3WfLli0aOHCg9u3bp+bNm+u9995TYmKi6/nOnTvrvPPO00MPPaTbb79dkyZNUs+ePctsPcEgXAMAAAAA4BRlsVjUtGnTUs2RkpKiOnXqhGhFAAAAp6bu3btrzpw5rsc5OTn65JNP3M5VdK1atXJbb15enhYsWKDp06eH7B5ZWVm6/fbbtW/fPsXExOjll192C9aK9OvXT6tWrdJHH32kkSNH6uOPP9YZZ5wRsnWUFuEaAAAAAAAAAABAKSQkJCghIcHt3JlnnqmFCxcqJycnTKsKTNF+Z8W1bt1aixcv1pYtW0JyjwkTJig9PV2SdOutt6pu3bo+xw4fPlyzZ89WXl6eHnjgAc2dO1cmkykk6ygtY7gXAAAAAAAAAAAAcKoxm81eq7JONsnJySGZZ9OmTZo7d64kKTIyUgMHDixxfFJSkmv/382bN+uLL74IyTpCgXANAAAAAIASzJs3T71791b79u01YsQIZWZmhntJAAAAwEnnpZdecu3l1q1bN49KP28uuugi1/Err7yigoKCMltfIAjXAAAAAACnrOKbyQezsfzKlSs1cuRIbd26VYcOHdKCBQt09913l+sm9aV9DQAAAEC47d+/XwsXLnQ97tu3r1/Xde7cWWZz4Q5nO3fu1LJly8pkfYEiXANwQgaDQVWqVFHt2rVVp04d1a5dW0Yj3z4AAABQsVmtVu3Zs8f1ODU1NeA5Fi1a5Prt2iLLly/Xtm3bSrs8v6WlpbmOg3kNgbJarSU+BgAAAAL1/fffu/1cffbZZ/t1XWxsrBo0aOB6/N1334V8bcHg3XEAJ2Q2m1W/fn3VqFFD1atXV40aNSrMxpEAAACAL3PmzHFrGzNz5kzZbLaQzH184FZWfv31V+3atcv1eO7cucrOzi7Te65Zs8bt8V9//VWm9wMAAMCp7/vvv3cdp6SkKCkpye9rmzdv7jr+8ccfQ7quYJnDvQAAAAAAAEorOztbu3fvlsPh0IEDB7RkyRK9//77bmPWrFmja6+9VgMGDFCDBg0UFxcni8Xi9puwx+vRo4feeecdtzCtadOmSklJCflryM3NVVpampxOp7Kzs7VixQpNnz7dbUx6erquuuoqDRo0SE2bNlWlSpVcawqGzWbTf//9J0k6cuSINm3apGnTprmNefrpp5WZmal27dopPj5e0dHRqlu3blD3AwAAwOlp1apVruNmzZoFdG2jRo1cx7t379bBgweVmJgYqqUFhXANwAlZ7TZtP5im1Kydyi+wKtIcobqVaql+Yh1FmCzhXh4AAACgRYsW6eGHHz7huHXr1mn06NGux7Vr19YPP/zgc3y7du30wgsvaOrUqcrIyFCHDh00ZsyYMunksGbNGg0cOPCE43bs2KEnn3zS7dyGDRuCumdGRoYuu+yyEsccOnRIzz//vOvxOeecoxkzZgR1PwAAAJx+9u/frwMHDrge16pVK6Drq1at6vZ48+bNat++fUjWFizCNQA+bd6/TfM3/ailqStlcxR4PG8xmtWpbjv1btJNjZNTyn+BAAAAwFH9+/dX//79y2TuPn36qE+fPmUyd3EdO3YMOiQLVp06dcr9ngAAADi9bNq0ye1xzZo1A7r++HBty5YthGsAKp4jtjzNWPW5Fm1ZUuI4m6NAv2xfpl+2L1OPRhfopjZXKdoSVU6rBAAAAAAAAABUdHv27HF7nJycHND1lStXdnucmZlZ6jWVFuEaADeZuQc1bvEUpR/aHdB1i7Ys0b97NuuxriOUFJNYNosDAAAAAAAAAJxUcnJy3B5HRQVWoBEREeH2ODc3t9RrKi1juBcAoOI4YssLKlgrkn5ot8b9NEVHbHkhXhkAAAAAAAAA4GR0fBgWGRkZ0PXHh2vHh3XhQLgGwGXGqs+DDtaKpGfv1gerZodoRQAAAAAAAACAk1l+fr7bY4vFEtD1x48/fr5wIFwDIEnavH/bCfdY89fCLb9o8/5tIZkLAAAAAAAAAHDyOr4NpNVqDej648dHR0eXek2lRbgGQJI0f9OPFXo+AAAAAAAAAMDJJyYmxu1xoJVnx4+PjY0t9ZpKyxzuBQAIP6vdpqWpK0M659LUlRrSYYAiTIUluz9tW6rD+TkyGU0yG82qGV9NZ1Rr6nFdgb1AmzO3y2w0yWw0yXT0j9loVlJ0osxGU0jXCQAAAAAAAAAoO8eHYYGGa8dXrhGuAagQth9Mk81RENI5bY4C7TiYrsbJKZKkDfu2uLWdPL9ee6/hWnb+YY354Xmvc07uPVa1Emp4nH9zxUf6adtSmY3mwiDOUBjMdahzlga1vcZj/OH8HL30xzsyGc0yG0wyGY2uAO/6My9XYlSCxzWrdq9TWtauo+MKx5oMJlWPq6KmVRp6jC+wFyg1e5crIDQfvZfZaFJcRKyMRgqHAQAAAAAAAJz6qlSp4vZ4//79AV1/4MABt8dVq1Yt9ZpKi3ANgFKzdpbJvDuyjoVrVWOS3Z4z+ahAK3Dafc5nNnr/lmW121x/ijucn+N1fF5Bvv7a9Y/X565scbHX87/uWKHF//3ucb5z/XO8hmsH87L14HcTvM41tc8TqhFfzeP82ytn6tcdK1whXFHVXofabXRj634e4w/lH9abKz52r/A7em3/lr2VEBXvcc3ajA3afXiPKxw0m0wyGUyqGpusBpXreowvcNi1J2efKxwsHkRGmCwyGggJAQAAAAAAAPjWuHFjt8e7d+8O6Po9e/a4PW7UqFGp11RahGsAlF8Q2AaSfs9rPzavxeT+7cZXUGZ3+A7XfAVyvq7x1UKyoIQqvUDvEUxI6OuaXOsRHco/7HG+SVIDr+OP2PK0NM17O88+zS6SZ/2dtHjb7/p52x8e57ukdNSwjoM8zh84clD3zHvc6z1evnScqsVV8Tj//l+z9EfaX64Qrij0O7t2a119Rh+P8dn5h/X+37OKBXgmV4Xg5c16Ki7Ss8x7/d4t2puzv1glYeE1yTGVVSehpsd4u8OurLxDbuFg0b0MBoPX1wcAACoOg8GgKlWqKDIyUgaDQU6nk04AAAAAwEmiatWqSkxM1MGDByVJu3btCuj6vXv3uj1u2NCz2KG8Ea4BUKQ5omzmNR2b12Z3D7TMhtAFX76CrKCq43ysy3eAF3hI6Ouaivg6CoIIOw/mH9Le3EyP8/USa3sdn2vN9Rr4SVKvRl28hmsLt/ysX7Yv8zjftcG5uvOcgR7n9+Vmavg3Y7ze45W+T6lqbLLH+Q9WzdafO9ccrQY0u0K/s2u10uXNe3mMz847pE/Xfu2xV6DZaNIljbsqJiLa45rN+7cp88hBt/ahJoNJlaMTVD3Os7zd4XAot+AI4SAA4LRjNptVv379cC8DAAAAQJBatGih338v7Ay2cePGgK7dsmWL6zglJUVxcXEhXVswCNcAqG6lWmUyb71Kx8KUvbnufXR9VZWVGEr5DOQCDKXsQQRfvkKpAEOsktYVcAWe3XcQ6fvj6/A+PoSvw1dA6vN1lNgKNMCPVQhfx77cA0rP9ixRrxVf3ev4w9YcfbflZ6/PdU0512u4Nm/jD1qyY7nH+e4Nz9fQDgM8zmfk7NOIeWPd128orMab2udJJcUkelzz8eovtXr3v64qv6L/tq3ZSpc06eoxPjv/sL7891u3cNB0tN3oRQ3PV5QlyuOabQdSlZV/6Og4s+s+lSLjva7J4XTI4XTKZDASDgIAAAAAAJwGunfv7grXtm7dqkOHDik+3nNbG2/WrVvnOr7ooovKZH2BIlwDoPqJdWQxmmUroWosUBaj2a1SKb/AqvqVaqvAaZfdYfe6H5hUcqVUyIKWIFo2BlxVVsLHMtCqPZ9hnNN7UBbMuoJ6HSFqoRlUgOfj8xFMBV6g1YcmHy2ogvnaDUVoa3c6ZLc7fLbG2nV4j7Yc2O5xPjkmyev47PxD+mrDIq/PnV+vvddwbc6/3+q31D89zvdoeIEGd/if55oO7dG985+QdCwcLKoOfOHiR5UYXcnjmk/Xfq1/9myU2Wh0VfiZjCadVaOlLmp0gZfXcVgLNi12hYPFW4h2rt/Ra8VuWtYuHbbmHGtnejQkjIuIVUJk+H8jCgBOZ1a7TdsPpik1a6fyC6yKNEeobqVaqp9YRxEmS7iXBwAAAOAEevbsqQkTJsjpdMrpdGrlypW68MILT3hdVlaWtm8/9t5Wjx49ynKZfiNcA6AIk0Wd6rbz2mYvWJ3qtnN7o2N4p1v8uq5RUn19dPVLKnDaVeAokN1hl93hUIGjQBE+2lde16qvLm7cRQUOuwocheGd3Wn3uveWJFWKjFffZj2Ozl14n6LQz+IjaKkWm6z6iXVcayq6T6yXaiQpxCFhMFV+vgKjgEPCELaeDLDyMJh1hfJ1+K7A8/WxDSLsDOXnoxy+rkL1OorfoygctNptkiSjj2tSs3bq372bPM5X8hHUZ+Vla9Y/33h9rkPtNl7DtU/Xfu11H8OejTrr9vY3epxPy96lUQueOtYGtFgL0Wd6Pew1kJu9br427Nsik6u1Z2G42Lp6C3VJ6egxPjv/sH7c+ptbOFgULnas29brG8q7D+/VEVvesUrFo+FitCVKMRbv37MAoKLavH+b5m/6UUtTV3r9RTCL0axOddupd5NuapycUv4LBAAAAOCXmjVr6txzz9Vvv/0mSZo/f75f4dqPP/4op9MpSWrUqJHOOuusslym3wjXAEiSejfpFtJwrXeTbkFdZzAYZDaZZZZZUqRf1zRMCmz/jSqxSRp41lUBXfN/7a4LaHyjpPp6+8rn3cLBogDPbPL+rbd/y97q2uC8Y6GiszDES0ms63V8QmScejXq4hZEFoV+voKTylGVVCOuqmtc0ZqifASXwQRfvgI8X687qJAw0Oq4ULaeDGEoZQ+0hWYQFZGhbKEZcNvUYCoJy+F1hKwi0m53hYM6Gg4WMcp7u8utmTv0165/PM7HWKK9hmsHjhzUh6u/8DrXWTVbeg3XPvh7tpal/+1x/uLGF+rWs6/3OJ+WtUuPfj/RLYgrCubGXXS/4iI89z388t/vtCVzuyscLNoHsFX1ZupUt53H+Oz8w/ptx4pibUaPVQe2rXmGLF5ex77cTFntNo81RZoivI4HcGo5YsvTjFWfa9GWJSWOszkK9Mv2Zfpl+zL1aHSBbmpzlaK9VFkDAAAAJ7N58+bppZde0t69e3X++edr7NixSkry3pWoIrv33ntd4dq3336rMWPGKCYmpsRrFixY4DoePny4z+5N5Y1wDYAkqXFyino0uuCEb2D4o2ejzqf9bw4XtZILRPOqjQMaXy2uim5rf0NA1ww956aAxjdOqq9pl01wBXEF9oLCMMFh9xk4XNasp86r294VDhYFeU18fE3ERcaqS0pHtyCy6FpfwUlsRIwqR1VyhYNF4aLZZ8tG36FUwCFhSFuBhi4kLI8qv0BbewbTbjTgvfx8hLahbQUautDW5+soh5DQ13ir3aZc2xGvzxnl/e/Uhn1btGLnao/zZqPJa7i2P/eA3l450+tcb1/5vNew7J2Vn2p5+iqP872bdNMt7a71OJ+atVNPLZ56rJKwWFg4pts9Xqv2vt7wvbYdTHWFg0XXtqzaRO1rt/YYfyj/sFakr3bbk7Ao9DujWjOvn/esvOzC72fHVRKajCYZDRXjHwRARZOZe1DjFk9R+iHPvU9LsmjLEv27Z7Me6zrC656fAAAAQDgUVV0df+yvlStXauTIkXI4CrsmLViwQPv379eMGTPKbS/70r6GIq1bt1bv3r01f/585ebm6t1339Wdd97pc/yWLVv0008/SZLOOOMMXXLJJUHfO9QI1wC43NTmKv27Z3PAb2QUVzuhhga06R/CVSGczCazkmMqB3RN6xotAhpfK766hnUcFNA195x7q9fzvv7n3qhyfU3u83ixVqBHQz+n3eeb272bdFeH2me5tRotcBSoRdUmXsfHRcSqU512RwO/Ardg0VeoEWGyKNoS5VpXUWvJkFbHhXJ/ukCrykIYEvpsaRpEu9HAW4GGLiQMtLIzlCFhoO1ipSA+HyFsYxtoMGy123QgL8vrcwYflYRrM9Zr5a61nk84nV7Dtb05+zVt+Qyvc73b/0WZjZ4B3mvLP9CfO9d4nO/TtLsGtb3G43xq1k5NXPKaR6tRk9Gkhzvf6XXfwwWbFista5dbhZ/ZaFKzKo3UpkZLj/GH83O0OmO929jCikKTmiQ38PoxzrUekUMOtyCyvP4Rh9PLEVteUMFakfRDuzXupyma0ONBKtgAAAAQdlarVXv27HE9Tk1NVadOnQKaY9GiRa5grcjy5cu1bds2NWjQICTrPJG0tDTXcWpqaqnmGjt2rFatWqWdO3fqrbfeUr9+/VSrVi2vY1988UU5HA7FxMRo4sSJFerfoYRrAFyiLVF6rOsIjftpitKzA39Do3ZCDT124QjeyEDY+PofbIQ5QrXiqwc0l7c31ktSp1JN3Xf+7QFd82Bn99/McTqdhSGEj9fRsHI9PdtrdLGAsLDKz+7wHRL2bNRFZ9U4wxUOFgV+zao08jo+xhKttjXPONY6tFi46Kvs3mAwyGgwynHcvnNBhYQ+XkeBw/uedqGs8iuX/el8BUYhDAl9v47AKzsDrsALY2gbzOsI6z6UPu6RV5Cv3Yf3en3O4OPvx1+71nptN3pZsx5ew7Xdh/dq8u9veZ3r/asme339U5a+rb+OCyJNBqMua95TN7bu5zF+x8F0vbT0nWKVhGaZjUaZDCbdf/4Qr/uoLtqyRDsPZRyrCDwaLjZJbqCW1Tx/sSHHmqv1+7a4gkHXnoRGk+pXqu31e5bVbpNRBsLBCmzGqs9L9YtekpSevVsfrJrtdb9MAAAAoDzNmTNHBQXH/r06c+ZM9evXTxZL6bc7OD5wKyu//vqrdu3a5Xo8d+5cDRgwIOj5KleurLfeeksDBw7Uvn37NGTIEH3wwQeqVKmS27hXXnlFixYtUkREhCZPnqxGjby/lxUuhGsA3CTFJGpCjwf92uOiuJ6NOmtAm/4Ea0ApFO056EuUJUoNKnvfg8+X8+qdHdD4lMp19HCXYQFd81jXEZIkh9Mhh8Ph2gfQYvT+g2LDyvX1ZPf7XcFgUejncDp8vtndrcG5OqNak2Nh39Hgr7GPPRejzZFqWbXJsSDy6Jrk9B3C+mwLGWDwVRQ2BnSPAMMfg8HgM+z0FTL5eh0lhYS+XkegYWdIW4GWR9gZTLgW8J6EZf86yjrstDt9/0PuSEGetmele3/Sx9/BP9JWatXufz3OX9G8l9dwLT17t5795VWvc31w1RRFGD0DvIlLXtOq3eskFX59F1XuXdr0Il3bqq/H+NSsnXp9+YdHxxkLw7ujlXsjOv2f1+/Zi//7XXty9nnsL9iwcj01rdLQY3yu9Yi2HthRrJLQLJPBKLPRpBrx1bz+PXQ6nadkOLh5/7aQtCiXpIVbflG3Bued9q3KAQAAUH6ys7O1e/duORwOHThwQEuWLNH777/vNmbNmjW69tprNWDAADVo0EBxcXGyWCwlVqD16NFD77zzjluY1rRpU6WkpIT8NeTm5iotLU1Op1PZ2dlasWKFpk+f7jYmPT1d119/vXr06KE6deooLi5OklS3rv/vWTVq1EgzZ87U/fffr7/++kuXXnqp7rjjDrVs2VJ79+7VZ599pp9//lk1a9bU888/r/bt24f0dYYC4RoAD9GWKA1u/z91b3C+5m/6UUtTV8rm5U1Oi9GsTnXbqXeTbrxxAUBGg1FGk1FmmSVF+hwXExGt5lUD+22jrg3ODWh8w6T6erz7fQFd8+RF97v2Fywe4EWZvb+WBpXr6pELh7u3Gj0aEvpyQf0OapLcwCP0S0ms7XV8pClCjSrXd40rWldJb6oH2haypKAs0CAy0Aoxo8FY5mGn0WAsISQMzeswyHfYGXhL0xKCyABfR2j3bwxd2BnOfSiLr8vhdMhhd8hmt8nhY64ca6427t/q/SY+vnZ/2b5MazLWe5zv1+Jir+HajqydenLxZK9zfXT1SzKaPD/vE35+SWszNhyrDDwa5PVu2k39WlzsMT41a6fe/etTt3CwKMwb2uEmr5/HJduXa3/uAY/WoSmV63r9RY8jtjylZ+92b0969F5J0Yl+hYHzN/14wjGBmL/pRw1PviWkcwIAAAC+LFq0SA8//PAJx61bt06jR492Pa5du7Z++OEHn+PbtWunF154QVOnTlVGRoY6dOigMWPGyGTy/u+e0lizZo0GDhx4wnGpqal655133M599NFHAd2rTp06+vjjj7Vw4ULNmTNH06ZN04EDBxQdHa2mTZtq9OjRuvbaaxUd7bkFQ0VAuAbAp8bJKRqefIuGdBigHQfTtSMrXfl2qyJNEapXqbbqJdZWhKn0JcwAUBEUVQ6a/fzxKD4yzmvLvZL0anxhQOObVmmop3s9FNA1Y7rdK5vDdjSIcxRWBjrtiouI9To+pXId3X/+EI/9BUvan7hjnbZKSazjCiILgz+H6iTU9Do+wmRRnYSaroCwMCz03c5UCl3Q4mu8FMT+dAGuSQqmqqzsw07f1Y1lH3aWVHUZeDBcQtjpq3o0hPs3Bhp2hnLfw4Kj+3Ta7Q7JbnOdzy+weh1/KD9HazI2eH3uzg7e/+H8/dYl+mfPRo/z/Vv29hqu/XcgVY//+KLXuT6+5mWvH+N3Vn6qW9pdK6mwZefS1JVerw/W0tSVGtJhgOvn1W0H0+RwOBRhsighKl4JkXEhvR8AAABOb/3791f//v3LZO4+ffqoT58+ZTJ3cR07dtSGDd7/7VCc1WrVmjWe+4sHymAwqFevXurVq1ep5ypvhGsATijCZFHj5BSq0wDgJBBpjlCkPNvh+ZIYlaBz6pwV0D0ua94joPEtqjbRi73HBHTNIxcOl9VuOy7AsysxKsHr+PqV6mh4x1s89hcsydm1zlTthBpulYR2R4FqxFX1Ot5kNKlqTJIrHCyqJPQVYkklBFkBhoS+qr1KvEeArUBLDAlDtD9dya8jNC00SwoiC+yBfT5KCnlDVtlZQtWlz9cRokA1uLAziMpOH0FklZjKruPtB9O8dkooDZujQDsOprt+hv1u80+utpP9Wlzsdb/ALZnb9czPr8hisshiMivCFKEIo1kWk0WPXni311agP279TXtzMxVhsijCZJHFWHhtSmJdpVSu4zHearcpKy9blqPjI4wW9gEEAAAATjKEawAAAKhw4iK9V9r5khSTqM4p5wR0zVVnBPZbf2dWb65XLhsf0DUPXnCn8uz5bq1GCxx2VY1N8jq+XqVaGtz+f8eq/I5WExrk+0331jVaqFpsFY8g0tc9DAaD4iPj3MbanY7QVvn5Cgl9jC/pHoFWlZUYdvpcV+jCzsBfR2CBXzDXBBfaBvY6ggk7E6LiXcepWTt9rqU0dmQdC9eqxiS7zvvqvpBXkK+s/ENen/MVRP68/Q+vVX5XtezjNVzbvH+bR5WfQQZZTGa913+S18/jjL8/V1r2rsJAzmhxhX/tap6pdrVaeYzPysvWur2bFGGKkMVoLgz9TBZZjGbVrVSLIA8AAAAoJcI1ACdUUFCg9PR0RUREyGg0yuFwqFq1amXS1xcAgFNJUkxiQOOrxiarR6MLArrGW/VNSdrWbKXp/Sa6nXM6nSVW+t133u3KK8g/tr/g0QrBmvHVvY6vW6mWbj7r6qPjjlX6mXyEE5LUvGpjJUZXcgv9Chx2VY6u5OMKpyJNEYVji+11WHJI6L3tpu/Wk0EEXwEGeMGEhKGqjgsq7Ay03WgJr8NYLDT21dKytPLtx+a1FKs6sxi9h2u2Ym02i7MYzT4r8Ky+rvFS5SZJNofneKecKnDYfX68Nu7/Txv2bfE4nxhVyWu4lpq1U5N+e8vjvEEGfXLtK17v8fTPL2vz/m2FgZzJ7Aryejbuou4Nz/MYv+vQHi3a8otr/LGqPYu6NTjXa4C3N2e/nE7nscpAo0Vmk++PLQAAAFBREa4BOCGn06l9+/a5natSpQrhGgAAp4iiPQd9qRFfLaD5asRV1aXNLgromqK9t/zVvnYbzbh6iqSj4aDT4aoQ9OXuTrco15Yne7EqvwKHXfUq1fI6vk5CTV1/5uWucLAo9CvpY9Wocj3FWqLd9he0O+xKiIz3Ot7h9BH4BdVCM7D96colJCwhNCneBjLS7H8720BEmo7NayvWFtRX8OU7KPO9z7CvQM5XdZzPAC+oe/h6Hd7DTovJ7LNq7XB+jg5ZcyTluJ3v6KOSL+PwPn21YZHHeZPR5DWMk6Qpv7+tjfu3epy//szL1b9lb4/zm/dv04erv5DlaGvOosAvwmzRbWff4PUef+/6R7m2PEUcDQgtxsL2m1ViKivRZ1gPAAAABIZwDQAAAMBJzWAwyGwwlVjtJUn1EmsHNG/thBpe3/AvydBzbgpofKe67TTz2lddYVxRQGj3EbpJ0p3nDFSu7cix/QWddhXY7WqUVM/r+Frx1XVli0uOVQQ67bI7HD7DH6mw+jDCaDkaEBa41hVrifE6PphWoPtyD7jdryzUq3Tsc743d7/r2NdrDyZc83mNj+o4X8FXSZ8P3xV1PgI8L9VxUrCvw/8KPEmK8LEmyffr8PV1kpV/yGvLzUhThM9wbeaar7TlwHaP8/9rfaWuaNHL4/zfu9bphV9fd6ums5gsirZEaXyPB7zeY+76hTqYl10Y4B0dH2GyqHmVRkqpXNdjfK7tiPbnHijW1vNYZaCvdqMAAACo2AjXAAAAACCMiioHzX7+86xoDzF/1UusHXCweM+5twY0/tw6Z6v9VW2OC/DscjqdPq9pV/NYO8P6iXVkMZrdqtlKy2I0u73urZk7ij0XWFVZRAkhYaCVaL7vUULw5ePjEtp7hOZ1+KoKLOkeoazy8/06fFX5WZV/9E9xMZZon/dYsn2Zth1M8zg/8KyrvYZr6/Zs1HNLXvM4H2mO1IyrJnu9x8t/vKu9OfuPhnfHwrgL6p+js2q29Bi/N2e/1mZscAV9ha06IxRpivD5PcPpdLL/HgAAQJAI1wAAAAAApWI0GhVpjFCk/G/vWPwN/wiTRZ3qttMv25eFbE2d6rZzhTZOp1PjLrpfNnuBrHaroixRXq85o1pTjTj3/46Os8lmt8lqt5XYtrJJcgNViU2Wrdh4q8Om2Ajv4YzvqrLAAzzfFXi+20L6vkdgFXXl0UIz0P3sQnuPkl6Hr49VYG06S6pW/C9zh1Kzd3mcb5RU32u4tiVzu6Ytn+FxPjYiRu9c+YLXezzw3QTtzN59rOXm0QDvypaXqEtKR4/xWzN36PutS44FeMbCAC/GEq2ejTt7vceOg+lyynmspWexe5XUmhYAAKCiI1wDAAAAAIRd7ybdQhqu9W7SzXVsMBhcAUKMfFckVYurompxVQK6zz3n3RbQ+AvqddCZ1Zu7Ajyr3SabwyZTCfvTXdz4Qh225rjCQaujQDa7TdVik72ONxoMio+IldVROL6ogjCY4MtXkOUzYCqxLaSP0C/gSsLyuEfgFXihfB2BVysG/vmw2q2yOQoKK0ZtR1zn8wryvY7ffXiPFm75xeN8pch4n+HapN/fUnr2bo/z/9fuOl3SpKvH+VW71+mj1XNc7TmLwriEyDjd3v5Gr/dYsn2Z8gusxwLCo9fUTqihpOhEj/EOR2HbXVpyAgCA0iBcAwAAAACEXePkFPVodIEWbVlS6rl6NuoccPvM8hJlifJZOefLlS0vCWh81wbnqmuDc12PCxx22ew2n3vjSdKdHQfqiC2/sALPcTT0sxcoJdGzzaEkJcUk6qwaLWVzHKvys9kLVCU2yec9Am/ZGMq2kKHbny7gVqBBVCtaj2tTWcRnC82gKiIrXrViVt4h/Xcg1eN8UnSibvdxj0/Xfq3dh/d6nB/c/kb1aOQZ+v2W+qemLn1bJoNREaYIV9vN5OjKeqrHKK/3+GDVF8qx5rrabRbtt9e2ZiulVK7jMT4775B2H97rCvoKK/eOVvr5qGoFAAAnF8I1AAAAAECFcFObq/Tvns1KP+RZ6eKv2gk1NKBN/xCu6uRnNppkPkELvrbF9sDzx9m1ztTZtc4M6JpJl4xxVd3ZXFV7BaqTUMPr+EZJ9XX1GX1ktRe7xmFT5ahKPu+REBEngwqDI6vDJrujMFAMZcvGcLaeDGUQGapqxWACPF9VfiH9WJ2gktDudOhIQZ6OHL3cKN/7z/2+Y4X25mZ6nE+MSvAarv216x+9suw9j/PJ0ZU17fIJXu8x/qepyso75NZ202KyqHeTrmpVvbnH+LSsXVqd8e/RsUWVfmbFWKLVslpTr/fIK8iX2WiWyWBkvz0AAEqJcA0AAAAAUCFEW6L0WNcRGvfTFK+t5E6kdkINPXbhCEUHWBmG8pEY7TsU86ZplYZqWqVhQNdM6jPW7bHD4ZDNUeBzf69zardRrfhqrkq9oqq9WEuMz3ucVfMM5dry3AI/m71AsRHerwmuhWagrSeDaAvpo9otwuR9j0Ff1XHB3MN3gBfCNp0hrFYMuE1nEJWEO7J26sCRLI/zHeu09Tp+4/6tevevzzzOV4tN1st9n/J6zX3zn9S+3EwZDAZX602Lyaxb2l6rTnXbeYxfm7FBP/z3myKOBn1FAV6lyAT1btrNyx2kDfu2yOksDLSPVe1ZFBcZW2JoDQAnA4PBoCpVqigyMlIGg0FOp5M2w6cxwjUAAAAAQIWRFJOoCT0e1IxVnwfUIrJno84a0KY/wRrcGI1GRRq9h0VScPvsjTj31oDG927aTV0bdHJV0xW10CypmvCaVpcqv8Dq0Xazqo+2m5HmCFWNSXKrDLQ5CkoOjAIM8MqjLWQo23SeKtWKZdGm0+l0Kt9uVf7R9qMOp8Pr+J2HMrTEy16YNeOr+QzXXvz1TR3I8wwJh3e8RZ1TzvE4/+uO5fp07dfFwr7CAK9qbBUN9rHP3oJNi2V32Ivty1fYprNxUoqSYhI9xlsLrCpw2GUxmWU2mqnaAxA0s9ms+vXrh3sZqCAI1wAAAAAAFUq0JUqD2/9P3Rucr/mbftTS1JWyeakcsRjN6lS3nXo36VZh91gDIo4GAIG4vHmvgMb3atxFvRp3cTvncDrkcHgPTSTpkS7DZTtadecK8Bw21ankvU1nrfjq6lS3nSvoK6ryq5NQ0+t4p9NZQitJX4FRYOOlwPfA87WfXXm00AyqWtFXEBnCakXf9yj7asXsvMPadWiPx/m6Pr6uJOmzf77RofzDHufvOfc2nVfvbI/zi7f9rrf+/KTYWgr3wKuXWFtPdB/p9R6vLntfNrvNVXlXVOV3Qb0OqpdY22P83pz92nVojyvoK9pvL9ocGXDVLgDg5EC4BgAAAACokBonp2h48i0a0mGAdhxM146sdOXbrYo0Rahepdqql1ibNmOAD0aDUUaT71ZVrao3C2i+c+qcpXPqnBXQNe9dNckVxhVV7VntNtWMr+Z1fOvqzRVhsriCPqu9QFa7VdVivVcXOpwO1Yiv5nEPm70g8BaaPr6XOJ1Or+G+VEKbTl8tNM2+7+EzlPLREjOo9paBthsNsB2mVFGrFd3HF1V3HrHl+bzHsrS/lWs74nG+cVKK13Btefoqr20661aqpRcueczrPUYuGCer3XZc202Lrjmjr5pXbeQxftP+/7QmY/3RPfbMruA+ITJerWu08HqPg0eyZHbNb5bRQPs6oDSsdpu2H0xTatZO5RdYFWmOUN1KtVQ/sQ4/k56GCNcAAAAAABVahMmixskpVKcBJxGDwaAoc6SizJF+XxPoPntGg1GTeo/1OO90On1ec1HD83Vm9WayHq2+Kwr8EiLjvY53OB26MKXT0f31irXdtNsUFxHr9ZpAQyy70+FzzYG3hfT+Vp/D4ZDdYfdxD/9CqWP3KCGIDLi9ZXlUK4YuwAtlteKew/tcrTmL69O0u9fx/+7drE/WzPU43yCxrs9wbcS8x3Wk4FiIWBi0mXXPubeqbc1WHuOXpf2txduWugd+RrOqxVXxua6VO9fKaDAe22fPWNjaMymmckB//4GKbPP+bXRTgAfCNQAAAAAAAJwyStpTq0pskqr42LvOG5PRpLs63hzQ/a8/83Jd3bLP0Uq6gqPBnE1mH1VoknRru+tdrTaLt91MiqnsdXxCZJzqVqrlUbXnK8zwVYUmBdEW0kfAVOAokFPeQ8JQ3cPusMvuY4+4U75aMYiQ8Ph7FDgKVOAokEHeK9h2HsrQivRVHuebJKX4DNde/O0NrwHmQ53vUrtangHegk2L9cW6BYUtNIu13ayXWNvnPnufrv36WIBnPFbl16p6MyVFJ3qMz7HmKq8g3xUOWkwWmUrY5xLw5Ygtz699gG2OAv2yfZl+2b5MPRpdoJvaXMU+wKcBwjUAAAAAQIVWUFCg9PR0RUREyGg0yuFwqFq1ajKZeKMMQMVjNBgVYY5QhCL8Gm82mnRxkwsDukefpt19hh3eWIxmPd3zIVelnvVo602bvUA14qp6vaZRUn11a3Ce65qiwK9+Yh2v432FWIX3DyxcC7RVpRRE60mfLTcDv0d5VCv6bqFZUasVvd/jsDVXB/KyPM6XFIrPXjdfDi+h6iMXDvcarn27+SePKj+jwagWVRtrbLd7vd7j6Z9flsFgPBr2HQv+LmlyoWoleO5FmZa1S+mHdrv22CvaZy/WEq1qcd5b2eLkkpl7UOMWT1H6od0BXbdoyxL9u2ezHus6QkkxiWWzOFQIhGsAAAAAgArN6XRq3759bueqVKlCuAYAfjIajWqUVD+gazrVbadOddv5PT4mIlozr31Vdoe9MMBzHGuhWSU22ec9asZXl9Vulc1RcLRyz6aa8dW9jnc4HWqSlFJs/mOVgYG30Aws8CvpmkDbdFq9tIM88T18hVjeQ9xQViv6Gl9e1YregjUpsGpFX3NIhT9n/LXrH6/Pdazb1mu49nvqn/rsn288zreo2lhPdB/p9R7/N+d+mQ0mVxBXVFl369nXq6GXv5+rdq/T2owNrvERR9tuVomt7LWtp1RYfXh8QGgymkoML+HpiC0vqGCtSPqh3Rr30xRN6PEgFWynMMI1AAAAAAAAAKVmMBhkNpllNpkVo+gTjg90n70YS7TG93wwoDX1a3GxujU4rzDAs9tc++1VikzwOt5oMOqSJl1dQV/xtpuxETFer3E6nTIajB4BTlABXsBtIQMbX3iP0IRrwVQrBlrlV9LrKI9qxUCvKalaMcea6/U5X8Hpv3s36cv133mcP6NaU6/hmsPh0D3zHvc4b5BBY7vdq5bVmng898PWX7Vk+/KjYZ/5WJvOSrV0abOLPMY7nU79sn3ZsYDQaHYd146vrqhTJEiaserzoIO1IunZu/XBqtm63Ue7U5z8CNcAAAAAAAAAnJKSohO9tg70JdoSpf9rd11A97il3bW6pd21sjvsRyvpCivqfO3zFWWO0rCOg44FeI6joZ/dpsQo76Ff1dhkNU1u6KrUKwr+4iPivI73taeb5HsvOKuPwCjCR8BU4j1CVB3na00l3cNXgOezyi+IAC+U1Yq+23SGplrRKafPde08tEdr92zwON+mRkuv4VqBo0Av//Gu17nGXXS/mlVp5HF+5pqv9M3G74vtsVdYVdeiamPddvYNHuPtDrve+3uWq1LPYjK7jjvWOUuJ0ZU8rjl4JEs5tiNu++wVhX+BVu1t3r/thHus+Wvhll/UrcF5apycEpL5ULEQrgEAAAAAAABAKZmMJpmMJp2odifSHKEuKR0Dmvvy5j11efOefo9PiIzX5N5jXZV6xav2fIWNrao1k8VoLhbgFQZ+3loWSoVBS7Q5SlaHzWN/N58hk8+940LXptNXRV1QVX4hCglDe4/AX0eows5gqhXzCvJdf4qr6qNdrM1u04JNi70+1yipvtdw7euN32vu+oUe58+q0VKjLxzucd5qt+mJHycpwmRRlClC954/2PUxmr/pR6/3Dtb8TT9qePItIZ0TFQPhGgAAAAAAAACcQsxGk9e9wkpyXr2zdV69s/0eXyUmSe9dNUlSYUtCm+PYHniVIuO9XtOrURedWa350Wq9owGew6Y6CTW9jjcajDqzejNXZV9hSFh4j0gfFVy+qsSCqY4LNGSKCGAfuBPfw0cFnq+WmyVUEgZ+j7KvVvT9Osq+WtFqt2rT/v8kSQ0r13PNa7XbtDR1pc/7B2Np6koN6TDA59px8iJcAwAAAAAAAAAEzWg0KtIYoUiz9zCjSOPklIBa5FWOrqTHut4T0FpubnuNrj7jUlcQVxTk+Wq5GWWOVL8WF7sq9ayu4M+mGLP3OkSzyaxYS7SrBWgRn+FPSaFUgCGTz5CwpMq1AAO54CrwAq1WDF0lYaBtOouHnY2KVWZuP5hW4h58wbA5CrTjYDqtIU9BhGsAAAAAAAAAgFNCQmScEiK970Xna/yNrfsFdI/B7W/U4PY3SpKcTqeras/X/l6Voyrp/vOHHG3RWSCr3eqqxouJiPZ6Tb1KtdSmRgtZj44vCv8qR3sPCYMJvny30Aw8XAt0T7tQBniluUfx9pSpWTt93rs0dmQRrp2KCNcAAAAAAAAAAAiCwWBQhMlSYtu/aEuUzqlzVkDz9mtxsfq1uNjv8bXiq+u1y58+2j6zWIDnsCk2ItbrNZ3qtlXN+GrHqvzsNlkdBWqSlOJ1vENOVY6udKzKz26TU05JgQd4PqvpgqjAC/gexarpzEaT6zi/wHtL0dLK99GqFCc3wjUAAAAAAAAAAE5iJqNJSdGJAV1zbt2zdW5d//fZq5NQU69f/ozrsdPplN3pkM1uU5Q50us1/Vteoq4NOh3bN+9o2816lWp7HR9pjlCH2m2Oji1whX42e0HAbTf92TOvwGF3u3dZ8LU/IE5uhGsAAAAAAAAAACAgBoNBZoPJrfrreA2T6quh6vt8/njV46pq1AVDA1rHiE7/p/yCfNceeEVVdZWi4r2OT4xK0A1nXiGbw6aa8dVc5+tWqhXQff3lK0jEyY1wDQAAAAAAAAAAnJSiLVGKtkT5Pb5ydCVd2fISj/P1E+vIYjTL5vDeZjIYFqNZ9RIJ105FxnAvAAAAAAAAAAAAIJwiTBZ1qtsupHN2qtuuxP34cPIiXAMAAAAAAAAAAKe93k26Vej5UHEQrgEAAAAAAAAAgNNe4+QU9Wh0QUjm6tmosxonp4RkLlQ8hGsAAAAAAAAAAACSbmpzlWrH1yjVHLUTamhAm/4hWhEqIsI1AAAAAAAAAAAASdGWKD3WdYRqJwQXsNVOqKHHLhyhaEtUiFeGioRwDQAAAAAAAAAA4KikmERN6PFgwC0iezbqrAk9HlRSTGLZLAwVhjncCwAAAAAAAAAAAKhIoi1RGtz+f+re4HzN3/SjlqaulM1R4DHOYjSrU9126t2kG3usnUYI1wAAAAAAAAAAALxonJyi4cm3aEiHAdpxMF07stKVb7cq0hShepVqq15ibUWYLOFeJsoZ4RoAAAAAAAAAAEAJIkwWNU5OoToNkthzDQAAAAAAAAAAAPAblWsAAAAAAAAAAAAlKCgoUHp6uiIiImQ0GuVwOFStWjWZTKZwLw1hQLgGAAAAAAAAAABQAqfTqX379rmdq1KlCuHaaYq2kAAAAAAAAAAAAICfCNcAAAAAAAAAAAAAPxGuAQAAAAAAAAAAAH4iXAMAAAAAAAAAAAD8RLgGAAAAAAAAAAAA+IlwDQAAAAAAAAAAAPAT4RoAAAAAAAAAAADgJ8I1AAAAAAAAAAAAwE+EawAAAAAAAAAAAICfCNcAAAAAAAAAAAAAPxGuAQAAAAAAAAAAAH4iXAMAAAAAAAAAAAD8RLgGAAAAAAAAAAAA+IlwDQAAAAAAAAAAAPAT4RoAAAAAAAAAAADgJ8I1AAAAAAAAAAAAwE+EawBQAdjtdg0YMECzZ88O91IAAAAAAAAAACUwh3sBKFlOTo4uu+wyvf/++6pTp064lwOckM1m05dffqn58+dr3bp1ys7OVnx8vFq2bKk+ffroiiuukMViCfcyfdqzZ4/mzZunX375Rdu2bVNmZqYMBoOqVaumhg0bqnfv3rrooosUExMTsnvm5+frySef1PLly9W/f/+QzQsAAAAAAAAACD3CtQosPz9fDz/8sNLT08O9lBLl5+dr1qxZmj9/vjZs2KD8/HzVqlVLZ511lm688Ua1bt063EtEOfnnn3903333adu2bWrSpIkefvhhNWrUSLt379ann36qRx55RNOnT9ekSZPUvHnzcC/Xjd1u17Rp0zR9+nTl5uaqa9euGj58uOrWrSuj0aj09HR99913euihh5SUlKRx48apa9euQd8vKytLGRkZWrJkiT777DNt3bo1dC8GAAAAAAAAAFBmCNcqGLvdrn379unnn3/W+++/r40bN4Z7SSVat26d7rnnHm3fvl3dunXTa6+9ptq1a2vDhg169dVXdc0112jAgAF66KGHKnS1Ekpv+fLlGjx4sHJzc3X++edr2rRpioyMlCSdccYZuuiii/Tqq69qypQpuvHGGzV9+nS1bds2zKsuZLVadd9992nhwoWKjIzUK6+8oh49eriNadu2rfr27avly5dr+PDhGjJkiEaOHKnBgwf7fZ9ly5Zp0KBBcjqdcjgcoX4ZAAAAAAAAAIByQLhWQQwZMkR//vmncnNzZbfbw70cv6xZs0Y333yzcnJydP311+uJJ55wPVejRg117txZQ4cO1QcffKC0tDRNmzZNRiPb/J2KUlNTdddddyk3N1fVqlXTpEmTXMFacXfeeadWrVqlxYsXa+jQoZozZ45q1qwZhhW7e+qpp7Rw4UJJ0mOPPeYRrBXXoUMHTZw4UbfffrteeOEFValSxe9Wjq1atdKcOXNcj/Py8rRgwQJNnz69VOsHAAAAAAAAAJQfko4K4qmnntKcOXP03Xff6dtvv9WYMWNkMBjCvSyfDh48qDvvvFM5OTlq2rSpHnvsMY8xRqNRzz//vBISErR48WJNnjy5/BeKcjF69GhlZWVJku677z5VqlTJ59j7779fUuHX0KOPPlou6yvJkiVLNHPmTElSy5Ytdc0115zwms6dO6tbt26SpHHjxmnv3r1+3SsmJkZNmzZ1/WndurUeeOABNWrUKPgXAAAAAAAAAAAoV4RrFUTVqlVVp04d1alTRykpKfrf//5Xofcqe/HFF7Vnzx5J0qhRo2Q2ey+CTEhI0MCBAyVJb7zxhtavX19ua0T5+Omnn7Rs2TJJUvXq1XX55ZeXOL5JkyY6++yzJRUGW0uXLi3zNZZk2rRpruMbb7zR7+uKvq5zc3M1adKkUq0hOTm5VNcDAAAAAAAAAMoP4VoFFhMTE+4leJWamqrZs2dLklJSUtSlS5cSx1955ZWSJKfTWeoQAhXPSy+95Dru27evTCbTCa+56KKLXMfhrGjcsmWLVqxYIUkyGAzq3r2739e2b99ecXFxkqS5c+e6KvcAAAAAAAAAAKc2wjUE7J133pHNZpMk9evX74Tj69Spo2bNmkmSFi9erK1bt5bl8lCO1qxZozVr1rge9+3b16/runbt6jr+66+/tH379lAvzS/Fq+Zq1aoVUAWZxWLRWWedJUmy2WyuPdsAAAAAAAAAAKc2wjUExOFw6LvvvnM97ty5s1/XtW/f3nVMCHHqWLRokes4Li5OzZs39+u6hg0bKjY21vW4+NdUefr3339dxykpKQFf36BBA9fx999/H4olAQAAAAAAAAAqOMI1BOSvv/7S3r17JRW2rfQ3TGnZsqXruHggg5Nb8UCpTZs2Mhr9+5ZiMBhc1YyS9OOPP4Z8bf7IzMx0HcfHxwd8fY0aNVzH7CcIAAAAAAAAAKcHwjUE5K+//nIdN2vWTGaz2a/rmjRp4jpev3697HZ7yNeG8pWbm6vNmze7HhcPy/zRqFEj13G4gqkjR464jiMjIwO+Pjo62nW8c+dOHT58OCTrAgAAAAAAAABUXP4lI8BRmzZtch3Xrl3b7+uqVavmOrZardqxY4dbS72TRUFBgQwGQ7iXUe4KCgo8zm3YsEFOp9P1uHr16q69+PxRfH+znJwc7dixQzVr1izdQgMUFRXlOj58+HBA6/dm8+bNOuOMMwK+zuFwuI7tdnup1wEAAHCq8fbzqLdzAAAAQFnhZ9JjTtfXXRzhGgJSvFKpVq1afl9XtWpVGQwGVxizZcuWkzJcK75H1+nul19+cXucn5+v1atX+319fn6+2+Pvv/9erVu3Dsna/FW8gjI9PT2g9UvulZyStHr16qCqMnNyclzHqampAa8DAADgdLRu3bpwLwEAAACnOX4mPX3RFhIBKb5HVaVKlfy+zmw2u7XQy8rKCum6UP4OHjzo9jghISGg64/f4yw7O7u0SwpY8YA4LS0t4OtXrlzp9rh4m0kAAAAAAAAAwKmJcA0BKV5hU7ylnj8iIiJcx7m5uSFbE8Lj+CCp+OfXH8fv13d8JVt5KL4X4OHDh5Wamur3tcuXL1d6errbuby8vJCtDQAAAAAAAABQMRGuISDFQ7HIyMiAri0exhUP6XByOj5ICjRcs1gsbo/DUfXVtGlTValSxfV4yZIlfl2Xm5urDz74wO1ayfM1AQAAAAAAAABOPey5hnLjcDhcx0bjyZnrtmjR4rQMUAoKCjz6B8fFxbk9btWqlerUqeP3nMeHacnJyeW+55okDR48WBMmTJAkLVy4UMOGDVPt2rV9jrfb7Ro5cqSaNWumOnXq6JNPPnE917Jly6BeQ2xsrOu4bt26Yfk4AAAAVGTefh5t2bKlRzcEAAAAoKzwM+kxNptN//77b7iXEVan32cdpRIbG+vaayvQFnhWq9VtnpOR2Ww+LcM1b4rvoScVhqeBfGzsdrvb47i4uLB8bAcOHKjff/9dP/74o/Ly8jR8+HC99957SkpK8hh75MgRPfroo9qyZYvee+89vfzyy27PV6pUKajXUDxsNplMfI0BAAD4gZ/NAQAAEG6n68+kTqcz3EsIu5OzfAhhUzwUC3SPrOLjY2JiQrYmhMfx4VqgXw/Fw1YpfF8TBoNBU6dO1VVXXSVJ2rhxoy6//HJ98skn2rNnj+x2u3bv3q2ZM2eqX79+Sk1N1UcffaTq1at77B1YqVKlcLwEAAAAAAAAAEA5IlxDQCpXruw6zsrK8vs6q9XqVunmrSoIJ5fjqw9LG66Fs5oxIiJCEyZM0Keffqq+ffuqoKBAY8eOVefOndWyZUv16NFDX3zxhW677TZ9/PHHrq/fw4cPu+awWCyqV69euF4CAAAAAAAAAKCc0BYSAWnUqJHWrl0rSdq5c6ff1+3du9etVLRRo0YhXxvKV5UqVdwe79+/P6DrDxw44Pa4atWqpV5TabVp00YvvPCCnE6nDhw4oKysLFksFlWrVk0REREe4/ft2+c6btiw4WnZXxkAAAAAAAAATje8E4yANG7c2HW8a9cuv6/LyMhwHcfExKh27dohXRfK3/EB6e7duwO6fs+ePSXOF04Gg0FJSUknrLAs/nXdtGnTsl4WAAAAAAAAAKACoC0kAtK6dWvX8YYNG+RwOPy6btOmTa7jVq1ayWAwhHxtKF/Hh2GBhK1SYTVjkcTERCUnJ4dkXeUlNzfX7TV06tQpjKsBAAAAAAAAAJQXwjUEpH379kpMTJRUuN/U5s2b/brun3/+cR336NGjLJaGchYXF+e2x9jGjRsDun7Lli2u41atWoVsXeWleGBsNpv5ugYAAAAAAACA0wThGgJyfIjw22+/+XXdihUrJBW22yOEOHV0797ddbx69Wq/r7Pb7dqwYYPXeU4WxV/vOeec4wqdAQAAAAAAAACnNsI1BGzQoEEymUySpC+//PKE4zdt2uSqUurduzf7rZ1Cevbs6To+ePCgWzVaSTZt2qS8vDxJJ2/g+uuvv7qOb7jhhjCuBAAAAAAAAABQngjXTlE7d+7U4MGD1bZtW1122WV+V5j5o0mTJrriiiskSevWrdOff/5Z4vjPP/9ckmQymTR8+PCQrQPh165dO6WkpLgez5s3z6/rFi1a5Do+//zzVb169VAvLSA2m02ff/653n//fWVmZp5w/MGDB13hWsuWLd1CRgAAAAAAAADAqY1wrQLLzs52HR88eDCgax988EH99NNPys3N1caNG3XnnXdq165dIVvbqFGjVKdOHUnSM888I6fT6XVcRkaGPv74Y0nS8OHD1bBhw5CtAeFnNBp1zz33uB5/+eWXPr8Wivv2229dxyNGjChx7Lx589S7d2+1b99eI0aM8Cv8CtTjjz+u0aNHa/z48Ro5cuQJx3/yySeyWq2SCtdvMBhCviYAAAAAAAAAQMVEuFZBZWRkaPPmza7HP/zwQ0DXr1271u3xkSNHtGbNmpCsTZKSkpI0bdo0JSQkaPXq1XrmmWc8xlitVt1zzz3Ky8tTr169NHTo0JDdHxXHJZdcojZt2kiSUlNTNXfu3BLHL1myRBs3bpQk9erVS61bt/Y5duXKlRo5cqS2bt2qQ4cOacGCBbr77rv9CvACMX/+fNfx0qVLXS0rvUlNTdWbb74pqbDNadeuXUt9/+KvJ9SvDQAAAAAAAAAQWoRrFUROTo6ys7OVmpqqhQsX6rbbblN+fr7r+ddee00TJ07UunXrlJmZqezsbFfljDetWrVye2yxWNS8efOQrrlp06b67LPP1LRpU7377rsaPny4/v77b+3evVs//vijrr32Wq1cuVI333yzJk+eTHXPKcpgMGjixImKj4+XJE2ePFmHDh3yOtZms2nSpEmSpKpVq2rs2LElzr1o0SI5HA63c8uXL9e2bdtKv/BiYmJiXMcOh0P79+/3Os5qtWrUqFE6fPiwmjZtqnHjxoXk/mlpaa7j1NTUkMwJAAAAAAAAACgbhGsVxNChQ9WhQwf16NFDw4YNc1X2FLHb7Xrrrbd05ZVX6txzz1WHDh309ddf+5zv2Wef1YUXXqiYmBg1aNBAkyZNUr169UK+7pSUFH3++eeaOHGiDh8+rLvvvlsXX3yxnnnmGTVv3lyzZ8/W6NGjZTKZQn5vVBz169fXtGnTFBMTo507d2r48OFu4bBUGFo98cQTWrt2rRISEvTaa6+pSpUqQd3v+MCttK6//nq3xzt27PAYk5mZqUGDBumvv/5S8+bN9fbbb7sCxdL49ddf3Vq2zp07160lLAAAAAAAAACgYjE46UEGeLBarV7baJ555pmKiIgIw4rCy2azafXq1W7nWrduLYvF4nZu/fr1GjlypDZv3qyUlBQNHjxYjRs3VmpqqmbMmKG///5bTZo00aRJk9SkSZMT3nflypX63//+5xamNW3aVHPmzAlpYGu32/X000/rgw8+kNPpVOvWrTVixAhVrlxZu3fv1vLly/Xpp5/KarXqhhtu0H333afo6OiA75Obm6u0tDQ5nU5lZ2drxYoVmj59ukelX7169TRo0CA1bdpUlSpVklT4ugEAAE5X/v48CgAAAJQVfiY9hvfPCdcAr/jm4C6Q/3EUFBRo7ty5+uabb/TPP/8oOztb8fHxatmypfr27asrrrhCZrPZ73vPmzdPU6dOVUZGhjp06KAxY8aoTp06pX5N3qxfv16ffvqpli1bprS0NNlsNsXHx6tx48bq1KmTrrzyStWuXTvo+f/44w8NHDgwqGs3bNgQ9H0BAABOdryRAQAAgHDjZ9JjeP+ccA3wim8O7vgfBwAAAMKJn0cBAAAQbvxMegzvn7PnGgAAAAAAAAAAAOA3wjUAAAAAAAAAAADAT4RrAAAAAAAAAAAAgJ8I1wAAAAAAAAAAAAA/Ea4BAAAAAAAAAAAAfiJcAwAAAAAAAAAAAPxEuAYAAAAAAAAAAAD4iXANAAAAAAAAAAAA8BPhGgAAAAAAAAAAAOAnc7gXAKDiMxgMqlKliiIjI2UwGOR0OmU0ks0DAAAAAAAAAE4/hGsATshsNqt+/frhXgYAAAAAAAAAAGFH6QkAAAAAAAAAAADgJyrXAJyQw2pVzrZtyt2eKnt+nkyRUYqpX1exKSkyRkSEe3kAAAAAAAAAAJQbwjUAPh3auEm7vp6nfb/9LqfN5vG8wWJRlfPOVc2+fRTftEkYVggAAAAAAAAAQPkiXAPgwX7kiP575z1lfLuwxHFOm017f/pZe3/6WdUv7qkGt9wsU3R0Oa0SAAAAAAAAAIDyx55rANzk79+vVfc/eMJg7XgZ3y7UqvsfVP7+/WW0MgAAAAAAAAAAwo9wDYCL/cgR/TPmCR1JSw/q+iNp6fpn7JOyHzkS4pUBAAAAAAAAAFAxEK4BcPnvnfeCDtaKHElN07Z33w/RigAAAAAAAAAAqFgI1wBIkg5t3BRwK0hfdi/4Toc2bgrJXAAAAAAAAAAAVCSEawAkSbu+nhfa+b6ZH9L5AAAAAAAAAACoCAjXAMhhtWrfb7+HdM59v/4mh9Ua0jkBAAAAAAAAAAg3c7gXACD8crZtk9NmC+mcTptNOdu2K75pE0lS5p8rVZCVpYikJEUkJysiOVnmmOiQ3hMAAAAAAAAAgLJGuAZAudtTy2jeHa5wLfe/bdo+40PXc/HNmqn1cxPK5L4AAAAAAAAAAJQVwjUAsufnldG8+a5jg8Xi9lxEclLA822f8aEKcnIVkZykyOQkVxVcZLWqMkVGlnq9AAAAAAAAAACcCOEaAJkio8po3mOB1/FtJ4MJ1/b+vET5e/Z4nG84+DbVvLR34AsEAAAAAAAAACBAhGsAFFO/bhnNW891nHdcKBaRFFi45nQ6Zc3M9PpcoEFd/v5MbX39DUUkJXtUwUUkJ8kcExPQfAAAAAAAAACA0wfhGgDFpqTIYLF4VJeVhsFiUWxKfdfjnC1b3Z4PNFwryM6Ws6DA63MRyckBzZW/Z48y/1ju83ljVFRh4JacfDR0KwrgCsO3iOQkRSQmymAyBXRfAAAAAAAAAMDJj3ANgIwREapy3rna+9PPIZuzyvnnyRgRIUlyWK2SJHNCggqysyVJkUFUm/kSaFDnqwKuiCMvT0fSd+pI+k7fg4xGRSQmqs7V/WlJCQAAAAAAAACnEcI1AJKkmn37hDRcKx44GSMi1OaF5yRJDptN1sxMWRITA5rPZyBmNCoisVJgc5UQ1PnN4ThhSOf1soICZXz7HVVwAAAAAAAAAHCSIlwDIEmKb9pE1S/uqYxvF5Z6rhqX9FJ80yZenzNaLIqqXj3gOSMqV1b1Xj1k3Z8pa2am8vdnqiA7WxGVAw+m8vfvD/j+PtcVYAWeNTNTW9+Y7n7yaBXcmU+PU1SNGiFbGwAAAAAAAAAg9AjXALg0uOVmZf+zTkfS0oOeI7puHaUMGhjCVRWKa9RQje+6w+2cw2aTLftQwHMFU3HmS6D7vXmtmjtaBWeOiw9orsNbturQ+vVUwQEAAAAAAABAOSJcA+Biio7WGU+O1T9jn9SR1LSAr4+uW0dnPDFGpujoMlidJ6PFEvDebZJUue1ZMkVGyZrpXgUXjFDt92aMjJQpNiaguQ6s/Es7PvjouIkKq+AikpMUkVQYuEUmJ7uOi/5rjgnsXgAAAAAAAACAQoRrANxEJierzcRn9N877wXUIrLGJb2UMmhguQVrpVGtezdV697N7VzRXnDW/YVhmzVzf2ELSlcbyv2yZh6Q02Y7dlEI93uLSE6SwWAo/VxHq+BOVJ1njIpSZHKSIo4Gb3Wvu1rRtWoFdH8AAAAAAAAAOB0RrgHwYIqOVuM7h6p6j4u065v52vfrb+6h0lEGi0VVzj9PNS/t7XOPtZNF0V5wJe0H53Q6VXDokCuEsx06HLL93gKtgJMka2bwe8c58vJ0JH2njqTvlCTV7t8voOtthw7JdjCLKjgAAAAAAAAApx3CNQA+xTf9//buPD6q6u7j+Hf27JlMCBAQCHsAhYKiIrYo4lJEqUutUivqI7igqKhVlGqlWrVWEbGICy611rUoqKgVF9SiAoqgIoIgO7Jksm+zPn8kGRKSSeZOJvvn/Xr56r137vmdE5/XIyHf/M7pr+QB/dVv2hUq3rpNJdu2y19eLovDoYRePZWY1Utmu72ll9lsTCaTbCkpsqWkKDErK6oalvh4Obp0rtUF5zB4dpsUvgsuGka318xdtVqb5j4iqWYXXEKPHuoz9f9iti4AAAAAAAAAaG0I1wA0yGy3h4I2NE7P889Tz/PPO9gFl1Ox5aQtJcVwrfIYhWtmu12WxMSo567eBecrLDQ8f8mOnZJJsrvSZU1o/duKAgAAAAAAAOjYCNcAoAXU6ILrnWV4fDAYVHz3bjLbbfLkuBX0+aJeS8zOe1N021v+9ORTyvt6raSKzj57ukt2V0UnnCN0ffB8OLsz1fB2nAAAAAAAAAAQK4RrABrk8/m0a9cu2e12mc1mBQIBde7cWRYCjhZjMpl0xN2zJalWF1zVmXDV/7c8xy1fQUGdtezRbEkZ5rw3u8HtJaWa59D5S0tVunOXSnfuCj/AbJY9zSm7K70yiEuTI73iOuOEMYaDQgAA0P54vV4tXrxYb7/9ttavX6+CggIlJydr8ODBGj9+vCZOnCibzdbSy6xh7ty5mj9/fqPrvP766xo0aFCLzQEAAAB0BIRrABoUDAZ14MCBGs86depEuNZKRNoFF/B6Q4FbeY5bHneOPDluxXXpbHjOsJ1rUQV1Bre3DAQqQsMct7Tp4GNrSoo6n3iC4fkBAED78t1332nGjBnaunWr+vfvr5kzZ6pv3776+eef9fLLL+u2227TwoULNWfOHGVnZ7f0ckN+/PHHRtdwOBzq1KlTi84BAAAAdASEawDQQZhtNsV16aK4Ll0aXcvjzq3zudFtIf1lZfIXlzR6PZLkiKJr7sd/PKrcL7+q2G6ycvtJR3q6krMHKvXwITFZFwAAaD6rVq3S1KlTVVJSotGjR+vRRx+Vw+GQJA0ZMkQnnXSS5s+fr7lz52rSpElauHChhg8f3sKrrrBp06Zaz5KSkmS1NvzX9tLSUpWXl2vq1KnKyMho0TkAAACAjoBwDQBg2JGP/SO03aTHnRvqgkvq18dQnXAdcNGI5ry38n37D3bBVZN5xumGw7VgICCT2Wx4DQAAIDZ27NihadOmqaSkRJ07d9acOXNCwVp1V111ldauXauPPvpIV1xxhV5//XVlZma2wIoP8ng82r59uyTJ5XJpxowZOvXUU5WSktLgWK/XqwkTJigYDGrq1KktOgcAAADQURCuAQAMM9vtiuvaVXFduzaqjicvLzYLUpThWk6Ys+MM1goGg/r8d7+XNSmp8hy4g11wVdcVz9NlTYg3vE4AANCwW2+9Vfn5+ZKkGTNmKDU1Ney7N954oz766CPl5eVp1qxZWrhwYXMts05btmyR3++X0+nUSy+9pJ49e0Y89t///re2bt2qxx9/XHa7vUXnAAAAADoKwjUAQItJHTJYo155QZ7c3FpnwXly3JXdcRX3QZ+v3lr2KLaFDHfem8Pg2XG+ggIFPJ6KM+0aOEPOEh9fLYBLl6NaGGdPT5cjI0N2Z/gfBgIAgNqWL1+ulStXSpK6dOmiM888s973+/fvryOPPFJffvmlPv30U33++ec69thjm2Opdao6C+3mm282FHrl5+dr/vz5GjVqlMaMGdPicwAAAAAdBeEaAKBFme32Bs+CCwaD8hUWVgZwORUhViiAy1F5jltxBrdzqu+8N6NBXbmB7S39paUq3blLpTt31fl5+nGjlH3zjYbmBwCgo5s3b17oesKECbJYLA2OOemkk/Tll19Kkh566CG9+OKLTba+hmzatEkZGRmaOHGioXGPPvqo8vPz9cc//rFVzAEAAAB0FIRrAIBWz2QyyZaSIltKihJ7Z8WkZn3nvRkN1xrqVjMimg68jQ/OlczmWl1w8d27sw0lAKDd++abb/TNN9+E7idMmBDRuBNOOEF/+9vfJElr1qzRtm3b1KtXryZZY0M2bdqkk046KaJQsMrOnTv1/PPPa8KECRo8eHCrmAMAAADoKAjXAAAdki0tTYP+dGudXXBGz1zzhDm7LRrRnPd24H8r6tw2M/vWm5V+zNGxWhoAAK3SsmXLQtdJSUnKzs6OaFyfPn2UmJio4uJiSdJ///tfTZkypUnW2JA777zT8JiHHnpIfr9fV199dauZAwAAAOgoCNcAAB2SNSFerqOOjEmt+rrgjIrmvLdw59EZDeqKtvykrU8/W+dZcHaXS3ZnqkwGftsdAIDm8P7774euhw0bJrPZHNE4k8mkgQMH6quvvpIkffjhhy0WrmVkZBh6f8OGDXrzzTd1+umnKysrq9XMAQAAAHQUhGsAADRSl5NPUtKA/nV2wXly3PIVFkZcK5bnvRkN18r27FH+um/Cv2A2y57mlN2VLnu662AAFwrhXLK70tmKEgDQbIqLi/Xjjz+G7gcOHGhofN++fUPh2oYNG2K6tqY0Z84cSdIVV1zRpucAAAAA2irCNQAAGsmRkSFHPb8NHvB45HG7Q2FbRQhXGb65Dz4L+nyxO+/NbJbdmWqsVkMdeIFAKDzUpvCvWeLj1eeKqep8wq8MzQ8AgFGbN29WMBgM3Xfr1s3Q+OrdXMXFxdqzZ48yMzNjtr6m8NVXX+mjjz7SmDFj1L9//zY7BwAAANCWEa4BANDEzHa74rp2VVzXrmHfCQaD8hUUyJqUZKh2uHDNnuY0vIVjeYzOjvOXlsoS5zA0xltQoL3/XVZjG0pHukuWeLrgAADhbdpU87c9jAZjh26VuHnz5lYfrs2dO1eSdOGFF7bpOQAAAIC2jHANAIBWwGQyyZZqrNNMkhJ69FC3MyfU6oKzu4yd3SbV0wUXBbvBs+NKd+3Wtueer/XckpCgoxY+zlaTAIA67du3r8Z9usE/f5xOZ417dwz/LGwKq1at0ueff66srCz98pe/bLNzAAAAAG0d4RoAAG1YyqBspQzKrvEsGAzKX1pmuFaD20IaYPS8t3DBXtDvlyU+zlCt3DVfq3jzFrrgAKADKC4urnEfF2fszwy73V7jvqSkpNFrakrz58+XJJ177rkymUxtdg4AAACgrSNcAwCgnTGZTFF1enUee6KS+vap8yw4Q2J43ps93WX4B3vuL1bp57ffqfXckpAgu8tVEbpVBm6h+8oQzu5MNbydJgCg5RwahjkcxrYlPvT9Q8O61mTdunVasWKFTCaTJkyY0GbnAAAAANoDwjUAACBJ6jJubK1nVWfBHQzccipDt1x53DkVz3Pc8hUWhsbE8rw3ox1wkuRx113LX1Ki0pISle7cGX6w2Sx7mlN2V7rs6S71vWKK7GlphtcAAGge5eXlNe5tNpuh8VZrzb8SH1qvNXniiSckSSNHjmyyc+GaYw4AAACgPSBcAwAAYVWdBWdLTZX69A77XsDjkcftVnmOWwGPx/A84baFdBg8O0dq5PaWgUBFeJjjljZJ/a+ZZmh4+f4D8uTl0QUHAM3k0G0gPQb/DDr0/YSEhEavqSns2LFDy5YtkySNGzeuzc4BAAAAtBeEawAAoNHMdrviunZVXNeuUY13dOqkhKxetbvgXMa7xspjdHac2eGQJdHYD1n3fbRc2//178oCB7vgUoYMUu9LJsdkXQCAgw4Nw4x2nrWVcO2FF15QIBCQJB1//PFtdg4AAACgvSBcAwAALS5r8h+UNfkPkmp2wdmdTkN1gn6/vPn5MVmT3ZVm+Ly3Gl1z1brgbCnJhucv+H6DTFarHOnpsqWm0AUHAHVITEyscd/YcO3Qeq2B1+vVa6+9Jknq2rWr+vbt2ybnAAAAANoTwjUAANCqNKYLzl9WJucvhlWcDed2y1dYFPU67NFsSRnmvDd7uvGz4378x6Mq3VF5PpzZLHtaWsV2k+kuOdJdoWt7errsropnlvh4w/MAQFvWqVOnGvc5Yc7wDCc3N7fGfUZGRqPXFGv/+9//5K7cPnno0KFtdg4AAACgPSFcAwAA7YY1MVFD7pgVuveXl8vjzpXHnRPqIivPcR+8d7vlcecq6PPVqmV3GQ/Ewp33Fl1Qd2gXXI48OTnSpvBjLAkJtQK4+O7d1HnsiYbnB4C2oF+/fjXuf/75Z0Pj9+3bV+O+NXZsvffee6HrAQMGtNk5AAAAgPaEcA0AALRbFodD8ZldFZ8ZvgsuGAjIV1hYGbq5K0MstxJ69TI8X7jz3owGdf6yMvmLSwzP7y8pUWlJiUp37gw9S8jqZThcC/h8Mlv5NhFA63douLZnzx5D4/fv3x+6djqdSo/ilyGa2ieffBK67tOnT5udAwAAAGhP+KkJAADo0Exms2ypqbKlpkp9ekddJ+j3y19cXOdnDoPbQobrgIuG0bkl6fu//FWFGzfV6oJLO3KEUgYPitnaAKCxkpKS1LNnT23fvl2StHHjRkPjN2/eHLo+/PDDY7q2WNi4caP27t0buncaPIu0tcwBAAAAtDeEawAAADFgslh07EvP190F17OHoVrlBs8Mqk80W1KW5+TU2QVnSUw0FK4Fg0EFyso4Cw5Akxo7dqyeeeYZSdK6desiHuf3+/XDDz/UqNPafPXVVzXuk5OT2+QcAAAAQHtDuAYAABAjseqC8xeXyGS11nkWnFGNPu+tGofBWr6CAq286NI6z4Kzp6fLXnntSE+XLTVFJovF8FoB4OSTTw6Fa3l5edq8eXNEZ6dt2rRJZWVlkiSTyaRx48Y15TKjsnbt2hr3fr+/Tc4BAAAAtDeEawAAAK1M+qhjNOrVF+UrKKjVBVfj3u2Wr7Co3lqxPO/NbnCLyaoz6OrqgqvFbJY9La1aAFcZvlUGcPHduxkO9wB0DCNGjFBWVpa2bt0qSVq6dKmuueaaBsctW7YsdD169Gh16dKlqZYYteqddZK0b9++NjkHAAAA0N4QrgEAALRCJpMpoi44f3m5PO5cedwV4dvBAK7iPr5bpqF5w3WtScbDtfpq1RIIVAaIOaorLsw843T1uexSQ/MD6BjMZrOuu+46XXfddZKkxYsX6+qrr5bJZKp33Lvvvhu6vvbaa+t9d+nSpZo3b57279+v0aNH64477pDL4C8vRKMqMKxSHOZsz9Y+BwAAANDeEK4BAAC0YRaHQ/GZXRWf2TUm9Tw59YRrBn+Q7Inl2XEG5w4Gg/r21j/JlppS0QXnSqvshEtXUr9+siZwDhzQnpx22mkaNmyY1q5dqx07dmjJkiWaOHFi2Pc//fRTbdy4UZJ0yimnaOjQoWHf/eqrr3TDDTcoEAhIkt555x3l5OToueeeazDAa4zi4uImD7qaYw4AAACgPSJcAwAAQEhi3z46/K+zQ11wHndFJ5y/pEQWh8NQrfqCOqOiOe+tYP33dX429O/3Kbl/v1gsC0ArYTKZdP/99+ucc85RYWGhHnroIY0dO1bJycm13vV6vZozZ44kKSMjQ3fccUe9tZctWxYK1qqsWrVKW7duVe/e0Z+v2ZCiovq3/W0rcwAAAADtEeEaAAAAQqwJCUodMiQmtcpjGK5Fe95bnbUMdsG5V3+pHS+9UudZcI70intLXJyhmgBir1evXnr00Uc1depU7d69W9dcc40ee+wxOar9YkAgENCdd96pb7/9VikpKVqwYIE6deoU1XyHBm6xZrFYaj2z2Wxtbg4AAACgPSJcAwAAQJPoOel36nziGHnctc+C87jd8rhzFfT5IqoVs/PezGbZnamGapXt3qOijZvqPAuuiiUx4WDY5nJVbkOZXiOEs6WmyFTHD7IBxM7IkSP1wgsv6IYbbtBnn32mM888U1OnTlW/fv20Y8cOPffcc/r666/Vv39/zZkzR/3792+w5rhx4/T000/XCNMGDBigrKysJvxKpE6dOqlz587at29f6FlmprFzNFvDHAAAAEB7RLgGAACAJuFIT693O8dgICBvQeHBwC3HrfKcnFDw5qm89hUWxey8N3ua03DAVR7B2XH+4hKVFpeodMfO8C+ZzRo8a6bSjhxhaH4AxmRnZ2vx4sVasmSJ3nrrLd1///0qKChQcnKyBg8erL/+9a+aOHGirNbI/jo8YsQIPfDAA3r44Ye1d+9ejRw5UrfffnudXV+xdv/99+vPf/6z9u7dqxNPPFFHHnlkm5wDAAAAaG8I1wAAANAiTJVdZHZnqtSnT9j3/OXlMTvvze4ydnabVE8XnFGBgKwpKYaGlO7erX3vf0gXHGCQ1WrV2WefrbPPPjsm9caPH6/x48fHpJYRxx57rN555502PwcAAADQ3hCuAQAAoFUzGqxJUurQIxQMBkNbUlb9r9HtJaXwQV00jHbgFf+0VTtfXVTruSUxQcc8/0+ZTKZYLQ0AAAAAAESIcA0AAADtTurhQ5R6+JBaz4N+v+FaMQvXojjvLdzcttRUw8Havo+Wq3TnrsoOuHQ5Kjvh6IIDAAAAAMAYwjUAAAB0GNGESIf99hyV7d1bqwvOV1RkqE4sz3sz2gEnSTkrPpP7i1W1npssFtmcTtnTXZWBW+UWlNW2obSnu2SJizM8JwAAAAAA7RHhGgAAAFCPLuPG1vncX15eEbRVhW45bpXnuOVx5xwM4dy5Cvp8kmJ73psjPYpaYbrggn6/PDk58uTkqL640JKYIHtaReg26LZbotquEwAAAACA9oBwDQAAAIiCxeFQfGam4jMzw74TDATkLSiUx52joD9geI5wgVg0Z8eVN3J7S39xiUqLS1S+b5/MdruhscXbtsubn08XHAAAAACgXSBcAwAAAJqIqfKcNaNnrVVJ7NO7orOsVhecsXAt6PfLm58f1RoOZU93GT7v7ee339XPb78TurckJsjucil91LHq9fsLYrIuAAAAAACaC+EaAAAA0Er1uezS0HX1Lji7M81QHU9unhQw3jlXF3s0W1K6a54dV9UF5x2UZ7iWe+UqmePi6IIDAAAAALQYwjUAAACgDWhUF1wwoPTRo+o8C84oo11zUn3bWxoP6jY+9LD8xSWh+6ouOEd6uuyuijPh7Oku2V3pclRe21JTZTKbDc8FAAAAAEBdCNcAAACAds6RkaHsP94Yuq/eBefJccuT41Z5Tk5F8FYVwOW45Ssqql2rUzSda7l1Pjca1PnLymoEa9LBLrjSHTvDjjNZLLKlpVWEbZUBXFLfPuo89kRD8wMAAAAAIBGuAQAAAB1OjS64Pn3CvucvLz8YuFUGcMkD+xuaK+j3y5OXV+dnjnRj4Vq4DriI1nDggDwHDoSepR05wnC45isqliUhni64FmAymdSpUyc5HA6ZTCYFg0GZ+b8DAAAAgBZCuAYAAACgThaHQ/GZmYrPzIy6hrewSNaEhDq74OwGw7XynJyGX4qQ0bklad0tt6ps956aXXAulzJO+JWSBxgLHWGM1WpVr169WnoZAAAAACCJcA0AAABAE7I7U3XM88/W2QXn6NzZUC2PO7rOtTrXFcV5bx63u84uuOSBAwyFawGfT77CQs6CAwAAAIA2inANAAAAQJOLRRdc0OuVNSmpzi44o2Jx3luolsEuuJLt27X2+pvqPAvOnp5e2RGXJkd6uuzpLlni4gzVb48CHo+Kt25VybYd8peXyeKIU0KvHkrMypLZbm/p5QEAAADoYAjXAAAAALQJXU4epy4nj6uzC676vcedI487V0G/P2wtuyvN0Nz1nfdmNFzzuHMl1X0WXF0siQmyu1wVYVsohHPJ7kpXUp8sOTIyDM3flhRu3KQ9by7VgRWfKej11vrcZLOp03GjlDlhPFtzAgAAAGg2hGsAAAAA2pRIuuCCgYC8BQWVgVuOynPcFQFcZQgX17WroTnrO+/NaBecx+DZcf7iEpUWl6h0x85an/Wa/AcddvZvDNVrC/ylpfrp6We199336n0v6PVq//KPtX/5x+py6snqfclkWeLjm2mVAAAAADoqwjUAAAAA7Y7JbJbd6ZTd6ZT69ml0vXDnvVmTkmRxOIzVqqcLziiHwbPjvAUF+va22ys74NIrO+BccqS7lDr0iFaxBWV5To6+u/1Ole7cZWjc3nffU8F36zVk9h2G/70AAAAAgBGEawAAAADQANfRR2vYg/fX7ILLcctktRiuVR7DcM3olpTlB3JUsn2HSrbvqPXZUU890eLhmr+0NKpgrUrpzl367o7ZGnb/vXSwAQAAAGgyhGsAAAAA0ABrQryS+vZp0i64aBg/7y3M3Gaz7M5UQ7V+fve/2vPm0jq74KrubSkpMpnNEdf86elnow7WqpTu2Kmtz/xTfa+8vFF1AAAAACAcwjUAAAAAaEYDrp+u8v0HanXBeXJy5HG7VZ7jlr+4OKJasTrvzZ7mlMlirAuvdPeesF1wVUwWi2xpaRWBm8tVEcClp4dCuMQ+vWVNTJQkFW7c1OAZa5H6+Z3/qvNJY5U8oH9M6gEAAABAdYRrAAAAANCMbCkpsqWk1NsF5y8vrwzbcuXJcau8MnirCOHc8rhzFPD6Ynbem91l/IyySDrwgn6/PAcOyHPgQK3PTFarjnn+2dD9njeXGl5Dffa89TbhGgAAAIAmQbgGAAAAAK2MxeFQfLduiu/WLew7wWDQcN1w570Z3V5SCh/URSoxq1fojLeAx6MDKz5rVL1DHfjfCvWbdoXMdntM6wIAAAAA4RoAAAAAtEEmk8nwmM4n/Erx3bvV6oKL65xhuFZjw7Wkfn1D18Vbtyro9Taq3qGCXq+Kt26jew0AAABAzBGuAQAAAEAHkXrE4Uo94vBG1wkGgxFtC1kfR+fOoeuSbeHPbWuMkm3bGwzXNi94QqW7d8uelia7K032tDTZ0tJkdzkrnqWlyRIf3yTrAwAAANA2Ea4BAAAAAIwJBNR32pWVHXAHz4bzuCuug35/gyVM1oN/HfWXlzXJMv3l5Q2+U7jhBxX/9FO975jj4iqCN6ezMnhLCwVvdldlGJeWJltKcqyWDgAAAKAVI1wDAAAAABhisljU+YRf1flZMBCQt6CgctvJHJXnuKttQ5kjj9ut8hy3gj5faIzFEdck67Q4HA2+48nNbfCdQFmZynbvUdnuPeHnSkzQsf9+ztD6AAAAALRNhGsAAAAAgJgxmc2yO52yO51S3z5h3wtUO2MtoVePJllLQq+e9X4e9Pvlzc+PyVz2tDTDY3a8/KoKN2wIdb7Z0yo64xJ69lDCYYfFZF0AAAAAYo9wDQAAAADQ7Mw2W+g6MStLJptNwWqBW2OZbDYlZvWq9x1PXr4UDMZkvmjCtcIfNir3yzW1nncdf5r6Xj4lFssCAAAA0AQI1wAAAAAALcpst6vTcaO0f/nHMavZafRxMtvt9b7jjWBLyEjZogjXwm1JaTSoCwaDWnnRpbImxFfrgqs6D84ZuranpcmanCyT2Wx4rQAAAAAOIlwDAAAAALS4zAnjYxquZZ7+6wbfsaU5lXXxRfLk5lb8486VNzdXntw8+UtKDM1ndxkP17y5eXXXSnMaquMvKZGvoEC+ggKV/by33ndNFotsTmcobLOFgreKEC4uM1MJPdiSEgAAAKgP4RoAAAAAoMUlD+ivLqeerL3vvtfoWl1PO0XJA/o3+J4jPV3dz5pY52f+8vJqYVtF8ObJzZU3Ny8Uxnlzc+XNL5AURbeZ3y9PXl6dnxntggvXARd23pwceXJy6vzcdcxIDbr1FkPzAwAAAB0N4RoAAAAAoFXofclkFXy3XqU7d0VdI77HYcq6+KJGr8XicCg+s6viM7vW+17A55M3L19mR/1bUB7KW1goBQJ1fma0C87jjt32ltGcHff1jD8qUF5W2QnnDG1LmTbyKCUc1j1mawMAAABaC8I1AAAAAECrYImP15DZd+i7O2ardMdOw+PjexymIXfeLkt8fBOsrm5mq1WOTulRjet54aSKzrjKrriqzjijAVe47SWjEc3ZcaW7dilQVlYrFHV0zjAUrgW8XvmKi2VLSeFcOAAAALRqhGsAAAAAgFbDkZ6uYfffq5+eftbQFpFdTztFWRdf1KzBWmNYk5LU47fn1HoeDAYN1zKyLWRDjHbN+UpKFSgrq7uWwaCu+KetWnfTLZLZLLvTWXke3MFOOFvawbPh7K402ZxOmW02Q3MAAAA0B6/Xq8WLF+vtt9/W+vXrVVBQoOTkZA0ePFjjx4/XxIkTZWsj38ds2LBBS5cu1cqVK7Vt2zYVFhbKZrMpPT1dQ4cO1amnnqpOnToZrpuXl6c333xTn376qTZs2KDcyu9pnU6nBg0apOOPP15nnXWWEhMTY/0lxQThGgAAAACgVbHEx6vfVVeoy7iTtOett3XgfysU9HprvWey2dRp9HHKPP3XEZ2x1haYTCbDY9JHHSNH54xqXXB5oTPhPO5ceQsKpAhDO+Ndc+GDvajPjgsE5HG75XG7Vby5/jHW5GTZXYeEb640pR5xuBKzsgzNDwAAEAvfffedZsyYoa1bt6p///6aOXOm+vbtq59//lkvv/yybrvtNi1cuFBz5sxRdnZ2Sy83rB07dujuu+/Whx9+qJEjR+rMM89Unz59lJSUpB07dmj+/Pl666239P7772vq1Kk69thjI6rr8/n0+OOP64knntDgwYN1yimn6OKLL1ZSUpJycnK0atUqvfrqq/rwww81b9483XbbbTrzzDOb+Ks1jnANAAAAANAqJQ/or+QB/dVv2hUq3rpNJdu2y19eLovDoYRePZWY1Utmu7GzztqjuC5dFNelS9jPg36/PHl5FUFbbm7N69xcedyVYVye8S0p6+uaa46z43yFhfIVFqpk2/Yaz3tfdomhcC0YCMhXXCxrUlJUAScAAIAkrVq1SlOnTlVJSYlGjx6tRx99VA6HQ5I0ZMgQnXTSSZo/f77mzp2rSZMmaeHChRo+fHgLr7q25cuX64YbbpDdbtf8+fN10kkn1fh8wIABMplMuvbaa1VWVqZ58+bJbrfriCOOqLduaWmprrjiCn3++eeaM2eOxo8fX+udMWPGaMqUKbr66qu1cuVK3XTTTdq+fbuuvvrqmH6NjUW4BgAAAABo1cx2eyhog3Emi0WO9HQ50us/Gy4YCBiuHS4QsyQkyFL5g6RI1dcFZ1Q0IeHqS6fKZLOFtp60VW5H2fOC82RLTY3Z2gAAQPu0Y8cOTZs2TSUlJercubPmzJkTCtaqu+qqq7R27Vp99NFHuuKKK/T6668rMzOzBVZct48//ljTpk2T0+nUs88+q759+9b5nsViCV0Hg0H95z//0eTJk+utfffdd+vzzz9XdnZ2ncFaldTUVD366KMaP3689u7dq3nz5qlXr14644wzovuimgAnBAMAAAAAAJnMZpnMxn5MkDIoWwNuuF5Zl16s7mdNVMYJY5Q6bKhShgwyPH8sz44zvCVlZUgY9HpVvm+/Cn/YKPfnX+jnt98xPHf5/gMq/GGjyvbtU6CO7UwBAED7dOuttyo/P1+SNGPGDKXW88s5N954o6SKc8dmzZrVLOuLxPbt2zVjxgz5fD499NBDYYM1SSosLKxxX1eQWN3evXu1aNGiiN6VpKSkJF1zzTWh+7vuuktFRUUNjmsudK4BAAAAAFo1n8+nXbt2yW63y2w2KxAIqHPnzjV+WxYtw5HRSRkZx8ekVizDNXua09D74brmTBaLrMnJhmrt/+RTbXv2udC9NTmp5plw1briqp8XZ02INzQPAABoPZYvX66VK1dKkrp06dLgGWH9+/fXkUceqS+//FKffvqpPv/884jPLGtKs2bNUmFhoU488UQdddRR9b7bq1cvTZgwQWvXrlVKSoouuOCCet//9ttv5ff7JUkbN27Uvn371Llz53rHjB8/Xn/+85/l8/mUl5en9957T2eddZaxL6qJEK4BAAAAAFq1YDCoAwcO1HjWqVMnwrV2pv8101Sek1PtPLiKs+E8udXPh8tV0OdrsFaszo6zOZ2Gu/kO3SrTV1gkX2GRtH1HvePMcXE1wzdXmrqdcXq95+kBAIDWYd68eaHrCRMmRPR96kknnaQvv/xSkvTQQw/pxRdfbLL1ReLDDz/UF198IUkRB1iTJk3SpEmTIno3GAyGrktLS/Xyyy83eI5aYmKisrKy9OOPP0qS1q9fT7gGAAAAAABQxZaaWnG2WZ/w7wSDQfmKiirCtsrgrSqEqwrg/CWlssQb6wLz5ObV+dzuMhbSSdGfHRcoK1PZnp9Vtufn0LMuJ401NndBgcr27qvoiHM6ZSKABgCgyX3zzTf65ptvQvcTJkyIaNwJJ5ygv/3tb5KkNWvWaNu2berVq1eTrDESCxculCSZzWaNHj065vWHDRumxMREFRcXS5K6desW0bjkarsIeFvRltuEawAAAAAAoE0wmUyyJSfLlpyshJ49Y1b30G6zKkY74KRYnx3nNPR+7ldfa9OcuRU3JpNsKSmyu9IUf1h3DbxxRszWBQAADlq2bFnoOikpSdnZ2RGN69OnT42w6b///a+mTJnSJGtsyLZt27Rq1SpJUt++fZWUlBTzOTIyMvTCCy9oyZIlEW2dWaX6OWuZmZkxX1e0CNcAAAAAAECH1nPS+epy0ony5NXsgkvs3dtwrZiFa2azbCkphobU6JoLBuXNz5c3P1/ByvNNjMj9ao18hUWypTlDZ8NZEhJkMpkM1wIAoD17//33Q9fDhg2TOcItpU0mkwYOHKivvvpKUsW2jC0VrlUPCPv169dk8wwcOFA33XRTxO+XlpZq27Ztofujjz66KZYVFcI1AAAAAADQodmdqbI7U2NSy1/52+eNZY/mvLdwZ8dF0YG3+423lPfVmhrPzHa77K7KM+Gq/nGlVQRwldf2tDRZk5MNrx0AgLaopKQkdB6YVBEeGdG3b99QuLZhw4aYrs2IFStWhK579OjRYus41LJly+TxeCRJQ4YM0fDhw1t4RQcRrgEAAAAAAMTIyGefkr+4pPI8uNwanXCe3Fx5c/NC1/7ikrB1ognEwoVr0WxvWdfZcQGPR2U/71XZz3vrHWuyWGRzpsqeVhHEDZr5R85/AwC0S5s3b1YwGAzdR3qOWJWMjIzQdXFxsfbs2dMiWx9WPzOu+pok6dtvv9WiRYu0evVq7d27Vw6HQy6XS127dtXRRx+toUOHNklne35+vubOrdjuOi4uTrNnz475HI1BuAYAAAAAABAjJpNJ1qREWZMSldDjsHrf9ZeXVwZvFdtRVoRvFYGco3NGvWPrEvbsOFcUQV2YWpEI+v3y5LjlyXHLkphgOFgr/GGjyg8cCIVzdleaLA5H1OsBAKCpVO9ak4yfCXZokLV58+ZmD9d+/vln5efnh+5TUyu6+QsLC/XnP/9Zb775Zq0xe/fu1ffff68PP/xQgwcP1uWXX17ra2mM3bt367rrrtOOHTvkdDo1Z84cHX744TGrHwuEawAAAAAAAC3A4nDI0rWr4rp2jUk9X0FBnc+Ndq4F/X55w9QyKpquub3vva+97y2r8cySkKDOJ45Rn6mXxWRdAADEwr59+2rcp6enGxrvdDpr3Lvd7sYuybDt27fXuE9MTJTb7dZFF12kTZs26YgjjtCFF16oY445Runp6Tpw4IDeeust/eMf/1BpaanWr1+vu+66q1GdZR6PR7m5uVq/fr0+/PBDvfHGGwoEArrgggt01VVXqXPnzo39MmOOcA0AAAAAAKAd+MXcB+UrLAxtR1m1DWXKkMGG6njy8qVqW1w1RjThWl3bW/pLSmpsuxWp7f9+USarNXQeXMV5cU7ZUlLYqhIA0GglJTW3eI6LizM03m6311uvORwaENrtdl1//fXavHmzZs6cqcmTJ9fY9rFbt26aPHmyMjMzdeedd6qgoED79+/X/Pnzdfzxxxuef9myZZo2bVqNZy6XS/fee6/GjBkT3RfVDAjXAAAAAAAA2gGT2SxbaqpsqalKzMqKuk6gvEzxhx1WeS5ccaPW1JJnxwWDQe16bbECHk/tDyv/XVWFbhXBm7PGvd2VJpvTKbPNZvhrAAB0DIeGYQ6D2xgf+n5xI//cjUZeXl6N+zfffFOff/65/vznP+uCCy4IOy4zM1PTp0/XXXfdJani3LYVK1bohBNOMDT/scceqxdffFGFhYXauXOn1q1bpw8//FBTp07V4Ycfrttuu00jRoww+mU1OcI1AAAAAAAAhMR366YR/5grqfJcuLxDzoTLzat2PlzldX7d3W6xPO/NaC1/SUndwZokBQLyVn4NDf0Y05qcJOfw4Rp4w3WG5gcAtH/l5eU17m0GfyHDaq0Z0RxarzkcGhC+8cYbOvXUU+sN1qoMHjxYI0eO1KpVqyRJ//rXvwyHa0lJSRo+fHjoftKkSSotLdVzzz2nhx56SBdccIEuvfRS3XTTTTKbzYZqNyXCNQAAAAAAANTJ4nDI0qWL4rp0qfe9oN8vT15+ZfiWG9qaMiV7oKH5gn5/RVBXB6Oda+E64IzyFRYpEMUPO3e/8ZYCHk+oC87uqtiW0pqUVGN7LQBA23XoNpCecL/UEcah7yckJDR6TUZ5vd4a9zabTbfeemvE48eMGRMK11asWCG32y2Xy9WoNcXHx2vq1Knq1auXpk+frqeeekoHDhzQ/fff36i6sUS4BgAAAAAAgEYxWSxypLvkSG/cD9P8paWK69pFHneuAmVlNT4zusVkuA64aETTgbfnzaUq+/nnWs/7TP0/ZZ4+PhbLAgC0sPj4+Br3RjvPWkO4dmj33DnnnKOuXbtGPH7QoEEymUwKBoPy+/1as2aNTjrppJis7dRTT9VZZ52l1157TUuWLNHw4cM1adKkmNRuLMI1AAAAAAAAtArWpCQd+egjkiqCtoNdcHmKz4z8B32S5M3Ni9m6ojnvLVznnM1pvAPvx3nzZUtLkz3NefA8uKqz4dKcMtvthmoCAGIjMTGxxn1jw7VD6zWHQwM9o8FYfHy80tPTdeDAAUnShg0bYhauSdKUKVP02muvSZIefvhhnXnmmUpKSopZ/WgRrgEAAAAAAKDVscTHKz4+XvHdukU13pqSrLQjR4QCOm9+gRQIRFXLaNecv7Q07FaSRrvgyvcfUO6XX9X7jjUpSbZqwZs9rWb4Zqt8bomPZ0tKAIihTp061bjPyckxND73kF/EyMjIaPSajGpsQChVnJtWFa4d+jU1Vt++fdWnTx9t2bJFubm5evPNN3X++efHdI5oEK4BAAAAAACg3Ukb/gulDf9F6L7iPLcCefIqzoOrOB8uTx53ZfhW7ay4oM9Xo5bRQKy+LSntaU5jtSL4IaWvqEi+oiKV7thZ73uH/fYc9bqwdWynBQDtQd++fWvc/1zHdsD12bdvX731moPT6axxX1paariGw+EIXUcTzjXkiCOO0JYtWyRJy5YtI1wDAAAAAAAAmoPJYqno6nKlSX3CvxcMBuUrKqoI29y58uTlKalvPQPq4K0nEGvJs+NsqSmG3g/4fPrhb3+XzVnVEecMdcUl9OwhS7UfpgJAR3RoGLZnzx5D4/fv3x+6djqdSk9Pj8m6jDj0a6jqQDPC6/WGrptiy8bq/16+//77mNePBuEaAAAAAAAAUMlkMsmWnCxbcrISevaMqobZbpfzF8Mqt6TMk6+gQJJkSUgwHEjVF9QZZfTsOG9evtxfrKrzs1/MfVCJWb1isSwAaLOSkpLUs2dPbd++XZK0ceNGQ+M3b94cuj788MNjurZI9ejRQ3FxcSorK5OkUIeYEdXDtZSU8L/IsWvXLq1du1ZHHXWUOnfuHHF9e7WzRfPz8w2vrykQrgEAAAAAAAAxlDxwgIbceXvoPuD1ypuXL19xkeFakWwLGSnDXXP1zG10q8wDn/5P2//9Yuj8N3tatbPhqt1bEhM4Fw5AmzJ27Fg988wzkqR169ZFPM7v9+uHH36oUaclmM1mDRo0SGvWrJEkbdq0yXCN4uLi0HX37t3rfGfdunW6+OKLVVxcrIyMDC1ZskQulyui+kVFB//8rC+8a06EawAAAAAAAEATMttscmR0kiOjk+Gxzl8Mk9lmO3g2XF7FOXEBj8dwrVidHWeyWmVNTjZUq2zvPpXu2q3SXbvrfc9st8tWuf2kvTJ4s1W7tqelKa5bJltSAmg1Tj755FC4lpeXp82bN0d0dtqmTZtC3WImk0njxo1rymXWa9y4caFwbd26dSosLFRyhP+d9/l8yq32yxjDhw+v872//vWvoRBu//79WrJkiS6++OKI5qi+VWXPKLvKY41wDQAAAAAAAGilOo0+Tp1GH1fjWTAYlL+kpGLbSXeuvLl5lVtQVt3nhu79xSWhcca3haw7XLM5nYa7yyLtwAt4PCrfu0/le/eFfWfwHbOUNqLuH94CQHMbMWKEsrKytHXrVknS0qVLdc011zQ4btmyZaHr0aNHq0uXLk21xAadeuqpuv/++yVVhGWffPKJxo8fH9HYn3/+WcFgUJLUtWtX9ejRo873Dj0rrXq3W0Oqd/j96le/inhcUyJcAwAAAAAAANoQk8kka2KirImJSjjssHrf9ZeXV3S75ebJEhdnaB5Pbl6dz42GdFL4LrhoGJ2/YP332rzg8To64VzqNHpUzNYFoGMym8267rrrdN1110mSFi9erKuvvrrBX0J49913Q9fXXnttve8uXbpU8+bN0/79+zV69GjdcccdEW+pGIkePXro5JNP1nvvvSdJeuaZZyIO17777rvQ9e9+97uw76Wnp2vXrl2h+zFjxkRUf9euXaHg0uFw6KyzzopoXFMzt/QCAAAAAAAAADQNi8OhuC5dlJI90PDYpH591eXUU+Q6eqSS+veTPT1dJotFdpfTcC1vC54dV7Zvn0q2bVfe12u174OPtOs/r+mnJ5/S5kcfMzx3wOsNdWgAQJXTTjtNw4YNkyTt2LFDS5Ysqff9Tz/9VBs3bpQknXLKKRo6dGjYd7/66ivdcMMN2rJliwoLC/XOO+9o+vTpMf9v0Y033iibzSZJWrt2rT744IOIxq1cuVKSlJycrN/+9rdh3zv11FND171799bhhx8eUf2XX3459LVOnjxZmZmZEY1ranSuAQAAAAAAAKjFddSRch11ZI1nwUAgqvPeIt0WsiEmi0W2FGPnvXnDduA5Dc+/+dHHtf/jT2SvPBeu5nlwzor7yrPhbCkpMlkshucA0PaYTCbdf//9Ouecc1RYWKiHHnpIY8eOrfPcMq/Xqzlz5kiSMjIydMcdd9Rbe9myZQoEAjWerVq1Slu3blXv3r1j9jVkZWXpxhtv1D333CNJmjVrll5//XV17tw57Jh169bp+++/l8lk0rRp05Samhr23csvv1xLly6tsY1kQzZu3KinnnpKknTUUUdp+vTpBr6ipkW4BgAAAAAAACAiJrPZ8PaSktTrogtVvn9/xZlweXnyuCvOhPPm5slXVBRxHZszVSazsc24wgV7RjvgqmoFvV6V79uv8n3763/ZbJYtNbVmEFcZvNnT0pR21AiZK7tEALR9vXr10qOPPqqpU6dq9+7duuaaa/TYY4/J4XCE3gkEArrzzjv17bffKiUlRQsWLFCnTp2imu/QwC0WLr74Yh04cEBPPPGEcnJyNHnyZD3xxBM6rI4tiH/88UfNmzdPFotFl112Wb3dd5LkdDr15JNP6rLLLtPWrVv10EMPafr06TKH+W/66tWrNX36dHk8Ho0cOVLz5s0Ldda1BoRrAAAAAAAAAJpUp+PCn20W8Hjkyc2rDNtyQ8Fb6L7qs/yC6M57CxOuRVPL0PaWgYC8lV9DsX6q9fGoV14wNHfQ76cTDmjlRo4cqRdeeEE33HCDPvvsM5155pmaOnWq+vXrpx07dui5557T119/rf79+2vOnDnq379/gzXHjRunp59+ukaYNmDAAGVlZTXJ13DjjTdq2LBhuvPOO7VlyxadeeaZOv/88zVq1Cg5nU79/PPPeu+99/TGG28oMzNTl156qQYNGhRR7f79+2vRokW666679Oijj2rp0qU6++yzNXjwYHXq1EmFhYXavHmz3n//fX366adKSEjQFVdcoauvvrpVBWuSZAqySTBQi8fj0TfffFPr+RFHHCG73d4CK2pZXq9X69atq/Fs6NChre4/aAAAAGif+H4UACBVhEv+0jJZkxINjfvmtttV8O13tZ53P/s3ypr8B0O1Vl50qbz5+YbG1MWSmKhj//1PQ2O2Pf+Cdi95s0b3my0tTUn9+qrzCb9q9JoA1M/I96Q+n09LlizRW2+9pe+++04FBQVKTk7W4MGDNWHCBE2cOFFWa+S9T0uXLtXDDz+svXv3auTIkbr99tvr7CaLpdLSUn344Yd699139eOPP2r//v0qLS1Vp06dNGjQIGVnZ+vYY4+VpVrob+Tn5z/++KMWLVqk1atXa9u2bSoqKlJCQoLS0tI0cOBAHXvssRo/frzSovhFiOZA5xoAAAAAAACAVs9ksRgO1iSp+8QzlHbkiIotKXMPdsU56jlHqC5Bv1/eggLD89clqg48d64CZWUq271HZbv3hJ6njzrGcLhWsnOXLPHxsjtT6YYDmoDVatXZZ5+ts88+Oyb1xo8fr/Hjx8ekVqTi4+PDzhuuOcWIfv366Y9//GOjarQkwjUAAAAAAAAA7Zbr6JFyHT2y0XU8eXlSjDYBs7tityVlNGfHrZ99l8r37qs4Fy4lpaITzuWsOBeu6h9XWrV7p8wdcDcnAAiHcA0AAAAAAAAAGmBLSdHQv90T6nyr6ITLq3mfny9VOxcpbC2n0/D8sTo7LhgMypubV3ETCMiblydvXp6Kax8LV4MlMTEUulVsSelUQo/D1GXcSYbmB4D2gHANAAAAAAAAABpgttmUPHBAve9UbR15MHzLlacygPPm5srjrriO65xheP6w4ZrBLjh/cYkCHo/h+f3FxSotLlbpzp2hZ8kDBxgO18r375fZbpc1OVkms9nwOgCgNSBcAwAAAAAAAIAYMFksoW0V1Sd2dYN+v7z5dZ/3ZrRzLVxIF41otqTc+OBcFaz/XiaLRTans2L7SadTXcaNVfqxx8RsbQDQlAjXAAAAAAAAAKCVO+Lu2aGOuIOdcLlydOlsqE4swzV7mtPwGI+7Yv6g3y9PTo48OTmSJOcvhhmqE/D55P5iZeUWlRXbVVocDsPrAYBoEK4BAAAAAAAAQCtmsliUMnhQTGpVhVuxEM15b7E6O86bm6sf/vZAjWeWhATZ05yhsK2qi/DQe0tigkwmk6H5AKA6wjUAAAAAAAAA6CAyfnW80oYPO6QLLi90Xb0rrqGz2YxuC+kvLVWgvLzOz4yeHVdXSOgvKVFpSYlKd+2ud6zZbpctzRkK21zHHq3OJ4wxND+Ajo1wDQAAAAAAAAA6CJPZLFtqqmypqUrMygr7XjAYlL+kJBTCeXPzQuFbxX2u4rtnGpq7vq45o1tMNmZ7y4DHo/K9+1S+d58kKS6zq+Ea7tVfypaSUtEZ50yV2WaLej0A2h7CNQAAAAAAAABADSaTSdbERFkTE5Vw2GExqemtJxAz2gUX07PjDHbNBXw+ff+Xv9Z4Zk1Olt2Vpv7XXqOkvn1itjYArRPhGgAAAAAAAACgyaUMHqSjnno81PlW0QmXJ19RkSwOh6Fa3ty8mK3L8Hlvefm1nvkKC+UrLJTJauxH7iU7d8q9crXsVdtUuirOiLMmJXEuXCtjMpnUqVMnORwOmUwmBYNBmc3mll4WWgjhGgAAAAAAAACgyZksFjnS0+VIT290raDfL3NcnAJlZY2uFcuuOaNBXdHGTdr27HO1nptstlDgZnM6ZXdVnA9nqwzgqs6Ls6WmyGSxGJoT0bFarerVq1dLLwOtBOEaAAAAAAAAAKBN6fWH36vXH34vX0npwS44d8X/1rrPy5OvsChsLaPbQoY7O85ktcqanBSTWkGvV+X79qt83/76C5jNsqVWnP2WNfkPcv5imKH5AUSHcA0AAAAAAAAA0CZZE+JlTYhXfPdu9b4X8Horg7e8UOhWFcDZXS5Dc4Y7O86e5jS8laMnL8/Q+7UEAvLm5smbm6dgIGBs7txc7f/409B2lFWdcdaE+MatqZ0KeDwq3rpVJdt2yF9eJosjTgm9eigxK0tmu72ll4dmRrgGAAAAAAAAAGjXzDab4jp3Vlznzo2u5S8vl8lqVdDnq/Hc6PaSUvjOtWgY3ZKyZPsObX3qmVrPzXFxOub5Z2U2eH5ce1W4cZP2vLlUB1Z8pqDXW+tzk82mTseNUuaE8Uoe0L8FVoiWwP93AAAAAAAAAAAQoe4Tz1C3MyfIV1RUuQVlnjy5ubI44gzXCtcFF41YnR1nttkMB2v7PvpYhd9/X/tMuLQ02Z2pbfJcOH9pqX56+lntffe9et8Ler3av/xj7V/+sbqcerJ6XzJZlni6/9o7wjUAAAAAAAAAAAwwmUyyJSfLlpyshJ49o64Tl5kpX3GxPO5c+QoLo1+PxSJbSrKhMeG65oyeQSdJ+eu+0b73P6j7Q5NJtpQU2V2VYVtamuxpzpr3lYFca9lesTwnR9/dfqdKd+4yNG7vu++p4Lv1GjL7DjnS05todWgNCNcAAAAAAAAAAGgB/adPC10HvF5582qfCefNy6u8zqvolMvLkw45X83mTJXJbDY0d/iz46LY3rK+DrxgUN78fHnz86WfttZbx5KYqOEPz5GjU8sFU/7S0qiCtSqlO3fpuztma9j999LB1o4RrgEAAAAAAAAA0MLMNpscGRlyZGTU+17Q75e3sLAieKsM4RQMGp4vXCAWzdlxsdre0l9cbLgDL/erNcpd/WWtLjh7uku2lBTDa/jp6WejDtaqlO7Yqa3P/FN9r7y8UXXQehGuAQAAAAAAAADQRpgsFtmdTtmdTkm9o65jc6Ypvns3efLy5C8uCT23pzkN1wq3xaRRlsREw1tDFqz/XnveervW8+TsgRp6318N1SrcuKnBM9Yi9fM7/1Xnk8YqeUD/mNRD60K4BgAAAAAAAABAB9PnskskXSJJ8peXV3bB5cmWaqzbK+j3y1tQEJM1xXJLymhq7XlzqeEx9dZ7623CtXbK2CasAAAAAAAAAACgXbE4HIrr2lUpg7IV362bobEBj0ddTjlZrqNHKql/P9nT02WyWKJah90Vuy0pjdYKeDw6sOIzw/PX58D/Vijg8cS0JloHOtcAAAAAAAAAAEBULPHx6ndVzbPFgoGAfIWF8uTmyuOuOBfOm5sXuq64r/isevgUTbjmyc2r87nN6TRUp3jrVgW9XsPz1yfo9ap46za619ohwjUAAAAAAAAAABAzJrNZttRU2VJTlZiVFfa9YDAof0lJKISzJiUanivstpAGg7qSbTsMzx1Z3e2Ea+0Q4RoAAAAAAAAAAGh2JpNJ1sREWRMTlXDYYYbHB4NBuY46Sh53jjzuvIqOuPx8KRg0fOaav7zM8PyR1S1vkrpoWYRrAAAAAAAAAACgzTGZTOp39ZU1ngX9fnny8g13wVkccbFcWrW6jiapi5ZFuAYAAAAAAAAAANoFk8UiR7rL8LiEXj2aYDVSQq+eTVIXLcvc0gsAAAAAAAAAAABoSYlZWTLZbDGtabLZlJjVK6Y10ToQrgEAAAAAAAAAgA7NbLer03GjYlqz0+jjZLbbY1oTrQPhGgAAAAAAAAAA6PAyJ4yPbb3Tfx3Temg9CNcAAAAAAAAAAECHlzygv7qcenJManU97RQlD+gfk1pofQjXAAAAAAAAAAAAJPW+ZLLiD+veqBrxPQ5T1sUXxWhFaI0I1wAAAAAAAAAAACRZ4uM1ZPYdiu9xWFTj43scpiF33i5LfHyMV4bWhHANAAAAAAAAAACgkiM9XcPuv9fwFpFdTztFw+6/V4709CZaGVoLa0svAAAAAAAAAAAAoDWxxMer31VXqMu4k7Tnrbd14H8rFPR6a71nstnUafRxyjz915yx1oEQrgEAAAAAAAAAANQheUB/JQ/or37TrlDx1m0q2bZd/vJyWRwOJfTqqcSsXjLb7S29TDQzwjUAAAAAAAAAAIB6mO32UNAGcOYaAAAAAAAAAAAAECE61wAAAAAAAAAAAOrh8/m0a9cu2e12mc1mBQIBde7cWRaLpaWXhhZAuAYAAAAAAAAAAFCPYDCoAwcO1HjWqVMnwrUOim0hAQAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhAjXAAAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhAjXAAAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhAjXAAAAAAAAAAAAgAgRrgEAAAAAAAAAAAARIlwDAAAAAAAAAAAAIkS4BgAAAAAAAAAAAESIcA0AAAAAAAAAAACIEOEaAAAAAAAAAAAAECHCNQAAAAAAAAAAACBChGsAAAAAAAAAAABAhKwtvQCgNQoGg3U+93q9zbyS1sHn89V65vV6w/57AgAAAGKJ70cBAADQ0vie9KBwPyfvSP8uTMGO9NUCESouLtaGDRtaehkAAAAAAAAAALQJ2dnZSkxMbOllNAu2hQQAAAAAAAAAAAAiRLgGAAAAAAAAAAAARIhwDQAAAAAAAAAAAIgQ4RoAAAAAAAAAAAAQIVMwGAy29CKA1iYQCKi0tLTWc6vVKpPJ1AIrAgAAAAAAAACg5QWDQfl8vlrP4+PjZTZ3jJ4uwjUAAAAAAAAAAAAgQh0jQgQAAAAAAAAAAABigHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAZA+fn5+s9//tPSywAAAAAAAAAAoNUjXAOgTz/9VLfeequuueYa5ebmtvRyAAAAgFr++c9/qri4uKWXAQAAgA6mqKhIS5culcfjaemloBUhXAOgd999V5L03//+V2eccYa++eabmNX2+/167LHHNGfOnJjVBAAAQMczZ84cnXDCCXrwwQe1f//+ll4OAAAAOoi4uDi9/vrrOvHEE7VgwQKVlJS09JLQCpiCwWCwpRcBoOUUFhZq9OjRKi8vlySdd955uuOOO2S1Whtd+5NPPtHf//53bdiwQZJ0991369xzz210XQAAAHQ8o0aNktvtliR17dpVb7zxhlJSUlp4VQAAAOgISkpKdN5552nTpk3q1q2bFi5cqD59+rT0stCC6FwDOri33347FKwdd9xxuvPOOxsVrHk8Hr355ps655xzdNlll4WCNUn685//rJUrVzZ6zQAAAOh4bDabJCk+Pl6PPfYYwRoAAACaTUJCgv7+97/LarVq9+7dmj59eksvCS2s8a0pANq0V155RZLkcDg0e/Zsmc3GM3efz6evvvpKS5cu1dtvv628vLwan7tcLmVnZ6tPnz7asGGDjj766FgsHQAAAB2I3W6XdPB7SwAAAKA5ZWdn6ze/+Y1effVVbdq0SUVFRUpKSoq6XmPHo2URrgEd2A8//KB169ZJkn7/+9+rR48etT4fOHBgnWNzcnL08ccfa/ny5fr0009VWFgoqeI3iocNG6ahQ4dq+PDhGjp0aK26AAAAgFEWi6WllwAAAIAO7uKLL9Z//vMfZWdnNyoYc7vdmjx5ssaOHavrr78+hitEcyFcAzqwl156SVJFW/OUKVNqfX7++efrjDPO0JVXXql9+/bpm2++Cf2zZcsWORwO9e3bV4cddpi+//57SdIHH3ygzp07N+vXAQAAgPYvmh0WAAAAAEnKy8tTIBBodJ309HTdcsstOuaYY0LnARtVUlKiq666Shs3btTGjRuVnJysyy67rNFrQ/MiXAM6qJKSEi1evFhSRYjmcrlqvWO1WvXSSy/ppZdeUrdu3TRw4EANGjRIJ554orKzs9WzZ0+ZzWa98sormjVrliR+oxgAAABNozHnAgMAAKBje//99zVr1qyYBGyxdv/99yspKUnnn39+Sy8FBvC3E6CDeu2111RUVCS73a5LLrmkznccDock6fLLL9eMGTPC1oqPjw9dt8Y/oAAAAIDi4mIlJCTIZDK19FIAAADQzM455xx17dpVRUVF6tevn1wulxITE0Pn+gJGsa8G0AEFAgE9++yzkqSJEyeG3cax6g+Xhn4AERcXF7r2+XwxWiUAAADam8WLF8vr9UY1trGh2G233aapU6cqLy+vUXUAAADQNo0ePVqnnnqq+vbtq7S0tFrBWrTbPNbl+++/pwmhnaNzDeiA3n//fW3btk2SdN5554V9z2azRVSveudatD8sAQAAQPv3+OOPa8GCBbrttts0ePBgQ2OrfjgRCAQM/+Dj008/1dtvvy1JOuusszR37lwNHTrUUA0AAAC0b1dddZXS09M1efJkHX300VHXWbRokf70pz/p5JNP1t/+9je649opwjWgA3riiSdC11dddZXuuOMOnXzyybXei/T8tOqda4RrAAAACMfhcOi7777T//3f/0VdY8+ePRo1alSjxq9bt45wDQAAADXYbDYtW7ZMy5Yti0m9t99+W36/X/PmzYtJPbQuhGtAB/PBBx9o7dq1oftgMKjevXvX+W6k4VpiYmLouqysrHELBAAAQLtVtTNCdna2Fi9ebGjsxIkTtWHDBnXv3l0ffPCBobFffPGFLrroIknSrbfeqgsvvNDQeAAAALR/DodDkpSZmalFixZFXeeBBx7Qq6++qm7duumPf/xjrJaHVoZwDehAgsGg5s6dK0lKSEhQSUmJ+vTpo379+tX5fqTnWhCuAQAAIBKtYUuccN/7AgAAoGOrOvrGbDbL5XJFXacqpOvevbt69OgRk7Wh9TG39AIANJ+33npLGzZs0MCBAzVhwoQG348mXCsvL496fQAAAGjfzGb+CgoAAIDWqSoUi5WqM4PRPvE3G6CDKC0t1d///nfZbDbdd999oS15YiEpKSl0XVJSEtFaAAAA0PFYrWyeAgAAgNYpGAzGtJ7f749pPbQuhGtAB7FgwQLt2bNHN998swYNGhTT2na7PbTFT1FRUYPrOPfcc5WTkxPTNQAAAKD1i3RnBAAAAKC5xXpHLq/XG9N6aF34tUGgA9i+fbueeuopnXbaafrDH/5geLzP51NxcXG97yQmJsrj8SgvLy/su//61780Z84cSdJFF12kf/7zn0pPTze8HgAAALRNhGsAAABorcrKyiRJu3bt0sCBAxtdj9272jfCNaCdCwaD+tOf/qR+/frp3nvvjarGk08+qSeffDKid++55x7dc889Db73448/ErABAAB0MIRrAAAAaK2qOtcyMzO1aNGiqOs88MADevXVVxvc4QttG+Ea0M699NJL2rJli1555RXFx8dHVWPq1Km6+uqr633n5ptv1ttvv60TTjhBDz/8cMS1OXcDAACg4yBcAwAAQGtVVlamww8/XJMmTZLL5Yq6TmZmpi644AJNmDAhhqtDa8NPtYF2bM+ePXrssce0cOFCde3aNeo6ZrNZDoej3nd69eolqWILyobeBQAAQMcU60PiAQAAAKPWrFmjX/ziF7V+8evhhx9WZmZmo+s31KTw5ptvKjs7W/369Wv0XGg55pZeAICmExcXp7lz52rAgAFNPlfPnj0lSTt27JDf72/y+QAAAND2EK4BAACgpc2dO1e///3v9cMPP9R4HotgrSEvvPCCbrzxRv3hD3/Qhg0bmnw+NB0614B2LC0tTWlpac0yV1Xnmtfr1U8//cRvXgAAAKCWQCDQ0ksAAABAB2e1WvXZZ5/pzDPPbLE1uN1uXXTRRXr99dfVrVu3FlsHoke4BiAmhgwZIqvVKp/Pp5UrVxKuAQAAoJaqHQ4CgYDcbrehsVXBXDRjCwsLQ9c+n8/QWAAAALQvVmtFLDJs2DAtWLCgWee+6qqrtGbNGsXFxenmm28mWGvDCNcAxER8fLyys7P17bff6osvvtCkSZNaekkAAABoZarCtY0bN2rUqFFR1dizZ0/UYyWptLQ06rEAAABo+ywWS+h/XS5Xs85ts9kkSYMHD9Y555zTrHMjtgjXAMTMiBEj9O233+rzzz+Xx+OR3W5v6SUBAACgFfF6vZKk7OxsLV682NDYiRMnasOGDerevbs++OADQ2O/+OILXXTRRZII1wAAADq6qs61cLZv3y6TyaQePXoYqvvZZ5/p7bff1uzZsxuzPLQR5pZeAID244QTTpAk5eXl6aOPPmrRtQAAAKD1qQrXohEMBmOyBsI1AACAjq2hcG3nzp06/fTT9cgjj+jAgQNyu90N/rN+/XpNnz5dL730kubNm9dMXwlaEp1rAGLmmGOOUVpamnJzc7Vo0SKdcsopLb0kAAAAtCJlZWXq3bu3pk+f3uxzp6en6+yzz9bYsWObfW4AAAC0Hg2Fa3a7XeXl5Zo3b15UQdkjjzyio446qlFbmaP1I1wDEDNWq1WnnHKKXnrpJS1fvlwbN27UgAEDWnpZAAAAaCWuv/56nXjiiaFzLprLEUccoeXLl4fOuAAAAEDH1dD3otWPunn11Vd1xBFHNFjT7XaHwrRLL72UYK0DYFtIADF1wQUXSJICgYAefPDBet9dunSpXn755eZYFgAAAFqBcePGRR2sNWZbyISEBII1AAAASIqsc60xxowZ06jxaBsI1wBELRAIaPHixZoyZYr8fr8kadCgQRo9erQk6cMPP9Qnn3wSdvy7776r3NzcZlkrAAAA2odYnb0GAACAjqmhcK2xv5QVCAQaNR5tA+EagKgsW7ZMEydO1Hvvvaf777+/xm8gX3755aHr2267Tfn5+bXG+/1+ffbZZ+rZs2ezrBcAAADtA+EaAAAAGsNsrj8WaWznWlUTAto3wjUAhqxYsUK//e1vdf311+v888/XI488IqfTWeOdY445Rqeccookae/evbrllltq/cbG2rVrlZ+fr+7duzfX0gEAANCGVX0/SbgGAACAxmgo/PL5fE1aH+1D/f2PANqtSNqTq7/z9ddf68EHH9QXX3yh7t2764UXXtDhhx8eduzMmTP1ySefqLS0VB988IHuu+8+zZw5M/R51XaRXbp0acRXAQAAgI6iKlQjXAMAAEBjNBR+eTye0HVRUZHcbneDNavv3FV9PNovwjWgg6r6Q6S+H07k5eVJkl5++WUtWLBAknT00UdrwoQJeuutt5SRkRE2HOvWrZtuu+02zZo1S5L0zDPPyGQy6eabb5bJZAqFa2lpabH6kgAAANCOVX3/yhkWAAAAaAyv11vv59XDsYsvvthw/dLSUsNj0PYQrgEdVFV7c7g25927d2vfvn2SFPrtjLPOOkt/+ctfFAgEdMkll+jkk0/WpEmTNG3aNCUnJ9eq8dvf/lZr1qzRf/7zH0nS008/rS1btujaa6/Vd999J6nxexgDAACgY6j6pTDCNQAAADSGkc61V199VUcccUSDNd1ut0aNGiVJKisra9wC0SZw5hrQQVWFauF+U8NkMtU4S+2SSy7RvffeK5vNJofDofnz5ysjI0NPP/20fv3rX2v16tV11rnzzjv161//OnS/fPlynXvuuaEfilRvmQYAAADCqfr+kTMsAAAA0BgNnalWFa6lpaXV+PloJPr27av+/ftHuzS0IYRrQAdVFaqVl5fX+XlmZqYefPBBmc1mXXTRRbrllltqfO50OvWPf/xDdrtd+/fv15QpU7Rt27ZadWw2mx544AFddtllslgskmr+tvHu3btj9SUBAACgHWNbSAAAAMRCQ+Gaw+HQjBkz9P7776tHjx4R1YyPj9dTTz2lpUuXasSIEWHf4/zg9oNwDeigqv4Qqa9NefTo0VqwYIFmzpxZ5+fZ2dm65pprJEklJSV644036nzPYrHopptu0iuvvKLjjz++xmdr1qyJZvkAAADoYKrCtYZ+GAIAAADUp6GdEEaMGKHLL79ciYmJEdeMj4/X6NGjJUnr1q3TY489piVLlmj16tXauXOnPB6PiouLtXXrVkkVDQlo2zhzDeigqjrXSkpK6n1vzJgx9X5+ySWX6MUXX9SuXbvUpUuXet8dMmSIFi5cqA0bNujf//633n33XW3ZssXYwgEAANAhNbStOQAAABCJpv5lrZ49e2rz5s1677339NFHH8nj8chkMslisYTmTktLa9I1oOnRuQZ0UB6PR8cff7zmzJnTqDo2m01XXnmlnE6nTjvttIjGZGdna/bs2friiy902223NWp+AAAAdAxVoZrX66V7DQAAAFFr6u8lnU6nzjrrLM2bN0/Lly/X1KlTZbVaa8w7fPjwJl0Dmp4pyCafQIe0d+/eBjvNIhUMBrV9+3b16tUrJvUAAACAQ/3iF79Qz549NWPGDJ1wwgktvRwAAAC0URdffLH8fr+uu+46HXnkkc0y5+rVqzVlyhSVlJTosMMO06uvvkr3WhtHuAYAAAAAaPXeeOMNnX766TKb2YAFAAAA0du+fbt69uzZ7PP+61//0vbt23XVVVfJ6XQ2+/yILcI1AAAAAAAAAAAAIEL8yh8AAAAAAAAAAAAQIcI1AAAAAAAAAAAAIEKEawAAAAAAAAAAAECECNcAAAAAAAAAAACACBGuAQAAAAAAAAAAABEiXAMAAAAAAAAAAAAiRLgGAAAAAAAAAAAARIhwDQAAAAAAAAAAAIgQ4RoAAAAAAAAAAAAQIcI1AAAAAAAAAAAAIEKEawAAAAAAAAAAAECECNcAAAAAAAAAAACACBGuAQAAAAAAAAAAABEiXAMAAAAAAAAAAAAiRLgGAAAAAAAAAAAARIhwDQAAAAAAAAAAAIgQ4RoAAAAAoNFKS0tbegkAAAAA0CwI1wAAAAAAjTZ27Fjde++92r59e0svpcUEg0E98cQTysvLa+mlAAAAAGhCpmAwGGzpRQAAAAAA2rbhw4erpKREJpNJv/zlL3XhhRdqzJgxLb2sZhMMBnXnnXfqhRde0ODBg/X000/L6XS29LIAAAAANAE61wAAAAAAjWa32yVVhEyfffaZdu7c2cIraj7VgzVJWr9+vS655BI62AAAAIB2is41AAAAAECjHX/88dq/f78k6fHHH2/2rrVnnnlG99xzT7PO2ZBBgwbpmWeeoYMNAAAAaGesLb0AAAAAAEDb53A4QtcDBw5s9vkvvvhi2e12ffPNNzr88MPVs2dPJScnKykpSSaTKaIaTz75pBYtWiRJmjFjhsaNG9eUSwYAAADQRhGuAQAAAAAarWpbSEkRh1mxNmnSpEaNr95hlpGRob59+zZyRQAAAADaI85cAwAAAAA0WvVwrbi4uAVX0rxKS0v16KOPKhAItPRSAAAAADQTwjUAAAAAQKNZLJbQdUFBQQuuRPrhhx903333yePxNPlc7777rh566CFdeumlysnJafL5AAAAALQ8wjUAAAAAQEzt2rXL8JiioiJNnz5dRUVFjZ6/X79++vLLL/W73/1O27Zta3S9+lSd0fbZZ5/pN7/5jVavXt2k8wEAAABoeYRrAAAAAICY2rx5s+Exd911l959911deeWVKisra9T8FotF9913n7Zs2aKzzz5by5Yta1S9cH766SetXLkydJ+Xl6fly5c3S8ccAAAAgJZDuAYAAAAAiCmj3VsvvviiXnvtNUnSypUrNX36dHm93katoXfv3rriiitUVFSkq6++Wo888kij6tXlscceUzAYlCR16tRJr7zyim644YYa588BAAAAaH8I1wAAAAAAMbVmzZqIt3dcsWKF/vKXv9R4tmfPHq1YsaLR6/i///s/ZWVlKRgMat68eZo5c6b8fn+j60rSjh079MYbb0iSUlJS9M9//lPZ2dkxqQ0AAACgdSNcAwAAAABE7KuvvmrwHZfLpffee6/B99atW6dp06bJ5/NJkoYPH67nn39eb7zxhsaMGdPotdrtds2YMSN0v2jRIt11112NritJCxYskM/nk8Vi0UMPPaS+ffvGpC4AAACA1o9wDQAAAAAQkS+//FJ/+MMfdNNNN9W7beOvfvUrLVq0qN5a3377rS677DKVlJQoISFBt99+u1544QUdddRRMV3zKaecogEDBoTuX3jhBX333XeNqrl+/frQ13f77bdr9OjRjaoHAAAAoG2xtvQCAAAAAADNLy8vTzk5ORG/7/F4NGPGDPl8Pi1ZskQHDhzQvHnzlJSUVOvdMWPG6OWXX9ZPP/2k3r171/r866+/1tSpU5Wfn6/hw4frvvvuU69evRr19YRjMpl04YUX6vbbb5ckBYNBvfTSS5o9e3bUNWfPnq1AIKApU6bo/PPPj9VSAQAAALQRhGsAAAAA0EHddNNNUXdxrVixQrfccoseeeSRWp9lZ2erc+fOev755zVr1qwan/3vf//T1VdfLa/XqxkzZuiyyy7nak0HAAAKEUlEQVSTxWKJag2RGj9+vO6++26Vl5dLkrZu3Rp1rcWLF2vNmjUaP368brjhhhitEAAAAEBbQrgGAAAAAB2Q0+nU008/rWeeeUb9+vVTdna2nE6nkpOTZbfba72/adMmTZgwIXQ/e/ZsnXPOOWHrjxkzRq+99pquu+66UHfb66+/rlmzZikrK0v333+/Bg0aFPsvrA7JyckaNWqUPvroI0lSv379oqpz4MAB3XPPPTrmmGN03333yWQyxXCVAAAAANoKzlwDAAAAgA4qNTVV1157rU4//XT17dtX6enpdQZrkvTpp5+GrgcPHqzf/e53slrD/77maaedpqKiIr344ouSpEceeUQzZ87UpEmT9J///KfZgrUqVUFgQkKCJk+eHFWNWbNmqX///nrsscfC/nuqzufzRTUPAAAAgNaNzjUAAAAAQIOqh2vjxo1r8P1Ro0YpIyNDzz77rNavX6/Vq1dr4cKFOu6445pymWGdcsopuvLKKzV27Nioznd79dVXVVBQoCeffFLx8fENvr9582ZdccUVuueee3TUUUdFs2QAAAAArRSdawAAAACAepWXl2v16tWh+0jCNYvFotNPP1379u3TgQMHtGTJkhYL1qpcd911Gjp0aFRjfT6fHn/8cSUkJDT47tatW3XxxRdr+/btmjJlSo1/dwAAAADaPjrXAAAAAAD1+vjjj1VWViZJ6tmzpwYOHBjRuDPPPFPPPPOMDhw4oOTk5Jitx+PxaMeOHTGrVyUvLy90vX//fm3evDl0P3LkSO3du1d79+6tt0ZhYaGuvfZa7du3T5JUUlKiKVOmaOHChRoxYkTM1wwAAACg+RGuAQAAAADqtXTp0tD1xIkTIx43ZMgQZWdna8OGDXrppZc0adKkmKzHbrfrhRde0HPPPReTenV58MEH9eCDD8akVklJiS677DItXLhQw4cPj0lNAAAAAC2HcA0AAAAAEFZpaak++ugjSRVbPZ577rmGxk+ePFkzZ87UI488ojPPPFNJSUkxWdesWbPUo0cPORwODR48WF26dFFycnJE2zaGc9999+mpp56SJN1zzz06++yzY7JWAAAAAO0LZ64BAAAAAMJ67733VFJSIkk6/vjj1bVrV0PjJ0yYoIyMDOXk5Ogf//hHTNc2efJknX/++Ro6dKi6dOnSqGANAAAAACJFuAYAAAAACOvf//536Pq8884zPN5ut+uCCy6QJD377LP69ttvY7Y2AAAAAGgJhGsAAAAAgDpt2LBBa9askST16dNHY8eOjarOBRdcoMTERPn9fs2aNUs+ny+WywQAAACAZkW4BgAAAACo0/PPPx+6vvzyy2U2R/dXSJfLpUsvvVSS9P3332vBggUxWR8AAAAAtATCNQAAAABALXv37tXrr78uSerevbsmTJjQqHqXXnqpMjIyJEnz58/XqlWrGrtEAAAAAGgRhGsAAAAAgFoef/xxeTweSdLVV18tq9XaqHoJCQmaNm2aJMnv9+uGG26Q2+1u9DoBAAAAoLkRrgEAAAAAati3b59eeeUVSdLQoUN11llnxaTub3/7Ww0ZMkRSRWfctddeGwrwAAAAAKCtIFwDAAAAANQwZ84clZeXy2Qy6U9/+pNMJlNM6lqtVv31r3+VzWaTJK1cuVK33HKLgsFgTOoDAAAAQHMgXAMAAAAAhKxbt06vvfaaJOncc8/V0KFDY1o/OztbU6ZMCd2/9dZbuvvuu2M6BwAAAAA0JcI1AAAAAIAkKRgM6q677lIwGFTPnj01c+bMJpnnyiuv1ODBg0P3zz33nP70pz8pEAg0yXwAAAAAEEuEawAAAAAASRUh19q1a2W1WvXAAw8oMTGxSeax2+165JFHlJaWFnr28ssv6/rrr1dJSUmTzAkAAAAAsUK4BgAAAADQli1b9MADD0iSrr/++phvB3mo7t27a86cObJaraFn77zzjs4991xt2rSpSecOp3rnHOfAAQAAAAiHcA0AAAAAOjifz6ebb75ZZWVlOu+883TZZZc1y7yjRo3SrbfeWuPZ5s2bde6552rBggXyeDzNso4q1QM1r9fbrHMDAAAAaDsI1wAAAACgg7v33nu1bt06/fKXv9Qdd9zRrHP//ve/1w033FDjWVlZmebMmaPTTjtNixYtUnl5ebOspXrnGuEaAAAAgHAI1wAAAACgA3v99df13HPP6ZhjjtHcuXNrbNPYXKZOnaprr7221vNdu3Zp5syZ+uUvf6lXXnmlydfh8/lC14RrAAAAAMJp/r81AQAAAABahbVr1+r222/X2LFjNXfuXNnt9qhrVe/6isZVV12l+Ph4/e1vfwvVio+P10knnaQRI0boiCOOaFT9SNC5BgAAACAShGsAAAAA0AFt2rRJU6dO1RlnnKE777yzUR1rPp9Pe/bsCd2bzdFtknLJJZeoT58+uuGGG5SZmakFCxaoe/fuUa/LqOqBGuEaAAAAgHAI1wAAAACgg9m5c6emTZumP/7xjzrnnHMiGrN06VJt3bpVLpdLqampSk1NVWJiokwmk5YsWaK8vLzQu3FxcVGvbcyYMXrppZfk9XqbNViTJI/HE7omXAMAAAAQDuEaAAAAAHQwxcXFeuSRRzRgwICIx/Tt21c//PCDnn32WW3ZsiXse2lpaXK5XI1aX9++fRs1PlrVA7XqQRsAAAAAVEe4BgAAAAAdzMCBA6MaM3DgQF1//fVavXq1Hn74YX3xxRe13pswYUIsltgiqgdqjT1DDgAAAED7ZQoGg8GWXgQAAAAAoO2ZP3++5s6dG7rv1auXXn75ZTmdzpZbVCNceumlKi0t1aRJk3TqqafKbre39JIAAAAAtEKEawAAAACAqE2aNElffvmlxo4dq9mzZysjI6OllxS1/fv3t+n1AwAAAGgehGsAAAAAgKitWrVKaWlp6tevX0svBQAAAACaBeEaAAAAAAAAAAAAECFzSy8AAAAAAAAAAAAAaCsI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACJEuAYAAAAAAAAAAABEiHANAAAAAAAAAAAAiBDhGgAAAAAAAAAAABAhwjUAAAAAAAAAAAAgQoRrAAAAAAAAAAAAQIQI1wAAAAAAAAAAAIAIEa4BAAAAAAAAAAAAESJcAwAAAAAAAAAAACL0/1z9wjsC2ZRkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_name = '额外产能分布参数P6'\n", + "y_choose = [0, 1, 2, 3]\n", + "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n", + " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n", + " 'palette': sns.color_palette(\"deep\")[0:4]})\n", + "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n", + ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n", + "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n", + "sns.set_theme(style=\"whitegrid\", rc=config)\n", + "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n", + " markers=['o'],\n", + " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n", + " palette=y_prop.loc[y_choose]['palette'].to_list(),\n", + " legend='brief')\n", + "ax.set_title(x_name)\n", + "for item in df_x.groupby('响应变量'):\n", + " for x, y, m in item[1][['水平', '均值', '均值']].values:\n", + " ax.text(x, y+0.05, f'{m:.2f}')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAVjCAYAAAAowfCGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzddXhTZxsG8Dtt2lL30gKFUqzA0CHDPhyG+2BIoWjR4TIYUpzhZTAcynDXMdzd3d2q1C1p8v3R9SwhSRurUO7fde3i5Mh73oS2o7nzPK9ILpfLQURERERERERERERERES5lkl2T4CIiIiIiIiIiIiIiIiIMhdDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIi0kFiYiKuXbuW3dMgIiIiIiLSCUNBIiIiIiLKNvv374dUKk33nHfv3uHz589ajRcTEwO5XG6MqWWKtWvXYuPGjRk+5+xirNfu/v37RhknJ4mNjcWRI0cwatQoVKtWDV26dMG+ffuMeo9jx45h+/btBn19vH79GlOnTkV4eLgRZ5Z1rl+/jtevX2f3NLBnzx5Mnz79q30d9SGTydCjRw+sWLECUVFR2T0dIiIiIsoEDAWJiIiIiL4iMpkM3bt3x/Hjx7N7KgYLDQ3F6NGj0blzZ7x9+1bjeQ8fPkT9+vUxf/58REREpDvmpUuX0LJlSxw+fDhHhoMVKlTA1KlT0bJlS1y9ejW7p6Pk9evXaNu2La5cuWLQOLGxsejYsSPGjRuH6OhoI80u68XHx+PixYtYsmQJunXrhqpVq2Lw4MHYt28f4uPjAQATJ07Eo0ePjHbPyMhITJgwAc2aNcPBgwf1+hq+cOEC/vrrLzRo0ABLlixBXFyc0eaXFa5fv45GjRqhW7du2LNnDxISEpSOz5s3D7NmzUJsbGymzyUoKAgNGjTAwoULERMTk+n3y24mJiYYNmwYlixZgnr16mHJkiVITk7O7mkRERERkRExFCQiIiIi+oqYmJigefPmGDBgAIYMGZJhSGYsycnJmD17tlEDkL///hsymQy3b99G69atsXfvXrXnWVpaIi4uDsuXL0f9+vWxYsUKjWPa2NjgyZMn+OWXX9CyZUscO3bMaPM1hvLly6NVq1Z4/vw5unXrhmnTpkEikWT3tAAAhQoVQps2bdCtWzeMGjVK76+tM2fOQCKRYNeuXWjWrBlOnTpl3IlmgujoaFy7dg1//fUXfv31V7Rp0waVK1dGjx49EBgYiCtXrqit3ktISMCgQYOMVlWVJ08eAMCrV68wfPhwDBo0SOcxLl68CCA11AwMDESjRo1w/fp1o8wvK7i5uQEArly5gjFjxqBmzZq4d++ecLxVq1bYunUrfvzxRxw6dCjT5mFmZgYg9XXcvn07Hj9+nGn3ykhKSkqW3atcuXIYPHgwYmNjERgYiI4dOyIyMjLL7k9EREREmUuc3RMgIiIiIiLdtG/fHps3b8Y///yDe/fuYf369fD09MyUe8lkMhw5cgQLFizAq1evsHfvXvz111/w9vY2eGzFN/Tj4+Nx9OhR1KxZE87OzkrnWVpaCtvOzs5o0KCBxjGtra2F7ejoaDg6Oho8T2MbMmQIDh48CIlEgg0bNkAikWDKlCnZPS0AgK+vL96+fYugoCCcP38eM2bMQJ06dXQa48iRI8J2SEgI+vXrh1GjRqF3795Gnq1uIiIi8OHDB7x79w5v377F27dv8fLlS7x8+RKhoaFqrzE3N4e7uzvy5cuHvHnzIm/evHB2doaDgwNsbGxgbm4OuVyOqKgo2NvbGzxHsfi/X9FLlSqFgIAAna6Xy+VKlZ4uLi4YP348vv/+e4PnllW+/P7v0KEDvvvuO+Fx0aJFERAQgJEjR2LYsGE4dOgQpk6davTv9bRQEADWrFmDEiVKqJzz7NkzODo6qsxZ0ebNm1G3bl24u7vrNY/169fjxIkT+PPPP5V+FmYmPz8/7Nq1Cy9evMCDBw8wbdo0zJ07N0vuTURERESZi6EgEREREdFXRiQSYdCgQejfvz/ev3+PkSNHYuvWrTqNERMTA1tbW43Hg4ODsX//fmzduhVv3rwR9oeHh8PPzw8bN25EgQIF9H4OHz58wK1bt4THEyZMQJcuXdSea2FhIWwPGDAg3UDS3Nxc2P7ll19yZBiSP39+NGnSRFiPbufOnfj111+VnmdGpFKpUoBkTKNHj8bt27dx+/Zt+Pv7Y+DAgRg8eLBW18bHxytVBlasWBG//PILfvjhh0yZKwDExcUhIiICoaGhCAsLQ2hoKEJCQhAcHIzg4GB8/PgRwcHBQstPRSYmJihZsiTKly8PDw8P5MuXT+lPFxcXiESiTJv7lxSDqHr16qUbNqnz6NEjpfU3hw8fjqZNmxptflnB1dVV6fFPP/2kck6LFi1w4sQJHDp0CEePHsWDBw+wYsUKFC1a1GjzUPz+UvywgaLbt29j2rRp6NWrF5o0aaJy/J9//sGiRYuwZs0abNiwAe7u7ggJCdG6Fenp06cxe/ZsAEC/fv2wfPnyLAkGxWIxunbtKoTSFy5c0HusO3fuoFixYlkWaBIRERFR+hgKEhERERF9herUqQM3NzeEhITg1q1bePXqFby8vJTOSUxMxJMnT1C2bFmV60ePHo3vvvsOffv2FYKIp0+f4syZMzh+/Dhu3rwJmUwmnG9qagoXFxe4ubnB0tIS69atw6+//goTE/1WJNi9e7ewXlr+/PnVvvGfRpfwK7OCMmNr166dEAqamprC1NRU62tjYmLQu3dvtGrVCp07dzb63MzMzDBr1iy0bNkSEokES5YsQWxsLMaNG5fhtUeOHBHWgHNycsIff/wBJycno88xTZs2bZCYmAgzMzNYWFggT548sLKygrW1NaytrVGiRAl8//33sLW1ha2tLezs7IT/bt68icmTJ8PMzAw//fQT/ve//2XaPLVl6NdvWutQIDVca9GihaFTynIuLi5KjzWtaTdx4kScO3cO0dHReP/+PXr16oWDBw/CxsbGKPPQ5u/CzMxMaNMaGBio8bw3b96ga9eu2LlzJ2JjY9GjRw+EhIToNJ/Lly+jb9++WL58OaysrHS6Vh/NmzfH1KlTIZfL0bx5c73GOHbsGIYPH45KlSrhzz//VPrQBhERERFlj6/jN2YiIiIiIlJiYmKC+vXrY/PmzXBzc0P+/PmVjicmJmLAgAG4fv06li5diho1aigdl8vlWLx4MQ4fPoyiRYvi6tWrCA0NhbOzM4oUKYIOHTrA29sb3t7eKFy4MDw8PIwWuMnlcuzatUt4PHDgQKUKqS/pEphlZlXXiRMnEB0djdatWxs8VqVKlWBtbY24uDi0a9dO69c2JiYGvXr1Eir55HK5xgpLQ3h7e8PPz09Yv3HdunX4/vvv0ahRo3Sv2717t7A9ceLETA0Ev7yfLj5+/IiFCxcCAG7duoU+ffqgfPny+O2335RaVWY1Xb7W1fnnn3+EbV9f368yhHF0dISJiYnwoQRNoaCjoyP69euH33//HQDw6dMnXLhwIcOvUW2l9zMpjeLre/z4cZXq6bFjx2L37t0oVqwYJk2aBHt7e9jb22Pz5s349OkTSpcuLVTQRUVFoUqVKgBSP7TRq1cvnecsl8vx8uVL4QMXhvLw8IC1tTXatGmD58+f63Tt1atXERAQgJSUFJw/fx7Dhg3DokWLvpoPbhARERHlVvzXGBERERFRDvPixQut3tRNC1x69Oih1OITAKZPn47z588DSG25+WUwmPaG95MnT+Dn5wdfX18UKVIEdnZ2xnoaGl26dAnv3r0DABQuXDjDkE3fakRjS0hIwJgxY3D48GFMmTIFefPm1XsssViMHj164OPHjxg9erRW1ygGgkBqADB16lQAyJRgsHfv3ti4cSPi4uIAABs2bEg3cHnx4gUuXboEAGjWrJnadoo5QUxMDPr27YvIyEgAqX8XLVq0QI8ePeDj45OtczMkFHzz5o3QktfGxgadOnUy0qyylqmpKRwdHREeHg4Aatu+punQoQMWL16MpKQkAKkhlrFo83NHm+AQSK3srly5svC4QIECKgFiWoUtAL2rHUUiEc6cOYOZM2fqdb0mxvggxLFjxzB27FjMmTNH7Ws7ZMgQpVA7I1ZWVrC1tUW+fPlQrlw51KlTB9WqVdP6+tGjR2Pv3r1an6/J1atXs+T/m0RERETGwlCQiIiIiCiHuXDhghD2aGPOnDmYM2eOxuNpVYOKwaDim9lt27bVf7J62Llzp7A9ePBgg6ujskraa3by5EmcPHnSaOMqVk3qSi6XC+t+GTsYtLe3R8eOHbFmzRoAyHAdtE2bNgEA8ubNi0mTJhl1LsaS9r3w5MkTAEC5cuUwbdo0FC9ePJtnlsqQADytHS2Q+rWgT1CRnJyMqVOnwt/fX6X6OCs5OzsLoaDiGolfsre3R506dfDPP/+gcePGKFOmDIDUNqpSqRS1atXSew7a/FwyZtWbMUJBIPVDIq6uroiOjkapUqXg7u4utNPVtpJ64sSJ2L59O4YNG4a+ffvqPRddjBs3Dv3798edO3cwZcoUpKSkAAC8vLzw66+/KgW+iYmJiI6OxrNnz3DlyhX89ddfWLduHYoUKYKJEydqtYbps2fPDJ6zs7Mz8uTJY/A4RERERFmJoSARERERUQ7TtWtXODg4ICoqCqVKlYKlpSUKFCig1Zu6kydPRmJiIsaOHQsHBweN52VXEBcWFobDhw8DAEqUKIGmTZtmyzz0oRiktm7dOsveLNdGZrVN7dSpE9auXQu5XJ5uFU58fDz27NkDExMTzJ49G/b29pkyH0PExsaiX79+uHbtGkxMTDBo0CD0799f6yAuKSkJ7969Q5EiRTJtjunNJS4uDi9fvtTY3nT//v0AAEtLS/To0UPne8vlcowbNw4HDhzAmTNnsGbNGp2e64cPH3Dy5El06NDB4LalLi4uQnCbXigIpAZYzZs3R4MGDQCkBoL9+/dHSkoK/vjjD73XitTme0rf5ymRSLBixQr06tVLCJWMFQoCqZW6+rpz5w527NgBmUyGefPm4dGjR5g+fbrQ5jSzeHh4wMPDAyVLlsSOHTtw584dAKltcGvXrq32mpo1a6JHjx54//49xo4diytXrsDPzw/Dhw9Hnz59NN5LJpOptEMViUSwtbXV6udBXFwcJBIJRo8e/VW26CUiIqJvG0NBIiIiIqIcqHnz5gBSg4hGjRqhY8eO6NevX4Zh3tWrV/Hs2TOcPXsWEyZM0NjCMbvWddqyZQskEgkA4JdffsnUNQDVCQ4ORkJCAry8vHS+VjEUdHBwyNRwKKcoVKgQfvzxR5w+fTrdoGnTpk2IiYmBv7+/Vi38EhISMGXKFAwaNEiljWJm+PTpEwYMGID79+/DyckJ8+bNQ/Xq1bW+Xi6XY+zYsTh16hTmz5+PunXrZso8NX0/xMXFoU+fPnj48CFWrlyJSpUqKR2/e/cuXr16BSA1cNKndatcLkdUVBSA1NerS5cuWL16NUqXLq319QEBAVixYgX69u1rUDjo7OwsbGcUCrq4uAhtbdMCwbSAbeDAgViyZInGUCk96v4u1qxZgw8fPmDChAkA9K/sfPHiBRYvXoydO3dizJgxaNy4sVKbVENDQX0lJiZi3LhxQpVely5d0LRpU72e57p16/Dzzz/DwsJC52sVq++0CSPz58+P1atXw9fXFzdv3sTcuXPh5OSEdu3aqT3/3bt3SExMBAB4enpixIgRqFOnjlb3ioyMRKNGjVCsWDGjtFUlIiIiymoMBYmIiIiIcjALCwsMGTIEv/76K86fP49FixbBxcVF7bkfP34UWqKFh4fjxo0bqFevnto3ZbMjFExOTsaWLVsApLZtrF+/fpbePzg4GL6+voiPj0dQUBAKFy6s0/WKoWBWh5nZKSAgAI8ePdK4hmJcXBxWrVqFKlWqYMiQIRmOl5CQAH9/f1y6dAlXrlxBUFBQpgaDN27cwJAhQxAaGopKlSph/vz5Oq0HKZPJMH78eBw6dAhA6hqdY8aM0asaLzY2FsHBwRqPf/jwQdj+/Pkznj9/DplMhkmTJuH69esAgD59+qgEg1u3bgWQ2k5z/vz5Wq9196Xu3bsL65k6OztrtbZpmrRA5dOnTwgICBDa2hpq8eLFWLx4sV7XJicnY9CgQRqDQalUqjF0jI6OFrYjIiKwf/9+LFy4EEBq8Dp58mStK66/fB3TqiDfv38vBHBpa3cCgK2trVbjapKUlISRI0eifv36+PHHH7VucTl9+nQ8e/YMpqammDhxotp1Ke/fv49169ZhxowZGr/Ozp49i5kzZ+LEiRNYtmwZrK2tDXo+2jA3N8fkyZPRqlUrAMDMmTNRp04dpYA5zdOnTwEABQsWxNatW4X1ebWxdOlSxMbGYuLEicaZOBEREVEWYyhIRERERJTDtW3bFkFBQbh27Rp++uknbNiwQe16X4rr3E2ePFntG7ppsiMU3LdvH0JDQwEAw4YNUzr2+fNnREREqL3u3bt3wnZoaKhK2zdtzk1ISMCIESOEaqpu3bohKCgI3t7eWs//aw8FQ0JCMlwXUBNnZ2eNr/uePXuQlJSEwYMHC6+vJnK5HFOnTsWlS5cApIYivr6+mRIMSqVSLFu2DH/++Sfkcjn8/f0xePBgnb724+PjMWrUKBw7dkzYJ5PJ8Mcff8DR0VEIILRlamqKgIAA4fmnZ+PGjdi4caPaOfXp0wcrVqxA5cqVERwcjD179gAAhg8fjpo1a+o0pzRSqVQIr6ysrLB7926dKv2+DJ7Wrl2rU/iq6PTp05g9ezYAoGXLlvD399drnDSanodIJMLcuXOF10+TDh06KD1Oq3jWdj3WL0PBR48eAQDKli0rtFA2ZihoYWGBMmXKYMyYMZgxYwY6duyInj17wtHRUeM1u3btwrZt22BlZYWFCxeqDVFlMhmmT5+O69evIywsDIGBgSpVjQkJCZg2bRoA4PLly+jVqxdWrlxp8HPSho+PD8qVK4fbt28jJiYGW7duxYABA1TOS/vwzLRp03QKBF+/fo1NmzahTZs2KFGihNHmTURERJSVGAoSEREREeVwIpEIQ4cOhb+/P96/f4/Bgwdjx44dKi3djh49CiA18EovEAT0b3unL6lUij///BNAapXgly0m5XI5hg4dKlTQaDJ//nzMnz9fq3umd25oaKgQRmkbDGb1a2ZssbGx6NGjB0JCQjJl/G7duul1XVowuH79enh6ehplLpcuXcKsWbPw8OFDeHl5YebMmahYsaJOY7x8+RK//PILHj9+DCD1+7Bhw4b4+eefUbVqVb3W5bS0tMTy5ctx8eJFlC1bVqWKac+ePRgzZgwAYNCgQRg8eHCGY65btw4SiQTlypXDTz/9pPOc0iQnJwvbFhYWOrf+/LJqzNvbG+7u7nrNRfFrNDk5OdNa9ZqammLWrFmoV68eChcurPRhi+XLl2P58uUAgIMHD8LDw0Pl+rSvjYxoCgUVW9gaMxQEgL59+yIiIgJr167FihUrsG3bNsyaNUtt69srV65g4sSJcHd3x/Lly+Hj46N2zDVr1ggVqxcuXECPHj2wceNGpWr0GTNmCB8OcHV1RZkyZRASEpIloSAAVKhQAbdv3wYAnDp1Sm0o+OTJE5QpUwZVq1bVaey5c+dCLBZrVRFNRERElFMxFCQiIiIi+grUqVMHXl5eePXqFe7fv49bt24phRyhoaG4dOkSihcvjtGjR2c4XlYHXPv27cPbt28BALdv30bPnj0xaNAg4Tk4OTlh/fr12LBhA4oVK4YSJUrAwcEBtra2ePv2rVBNM3PmzHSrc54/f671ubpSfM30qRS8ePEigoOD9V6HKjY2FmPGjMGvv/6qtlI0I97e3tiwYQP++ecf+Pj4wNvbG7a2trC1tdUp4OratSuuXr0KAJg3b56w/mV2Cw4OxqVLl7Bjxw5cuXIFNjY2+OWXX9C7d2+lgCslJQUJCQlITExEQkICkpKSlB4nJibi7du3WLJkibDOW40aNTB69GiNYYku8uTJo3FNQm0qCBVFRUVh69atMDMzQ0BAgEHf12lrfQKaK+vS82UoaEg1squrq7CdVl2cWUQiERo3bqyyX/EDCnny5FHbAlPx9U6vHfKXoeCDBw8ApFYKpkmr4jU1NTVau83Ro0fj9evXOHHiBCIjIzF48GDs2rULxYsXF865du0aBg4ciJIlS+KPP/6Am5ub2rEuXryo9CGLH374AdOmTVMKBA8dOoRt27YBABo0aICZM2fCzs7OKM9FW4rh7Zs3b9Se8+zZMzRr1kyncW/evIkjR47A399f7wpYIiIiopyAoSARERER0VdAJBKhdevWwppWX75pfPDgQZiYmGD27NlavaGflaGgRCLBsmXLlPbdvXtXZS0vJycn/PLLL1k2L10pvmZfvn7x8fGwsrJK93pHR0f0798fZcqU0avy6e7duzh27BjOnz8Pf39/9OzZU+fwxsvLC/369dP53orS1kADoNI6MLtERUWhadOmiI2NFfa5uLjg77//xu7du5GYmCiEforhlyIbGxuIxWJERkYK+woUKICxY8eiYcOGmf0UAKQGL7rYuHEj4uLiMGLECIMDS8VKQX3XJFRkyBiKwdSnT58Mnos+0oI7ba1bt04lUJs/fz6OHTsGmUwm7Hv//r3QKrlcuXLC/rQ1DG1tbY3Wnjjt/wmtW7fG+/fvIZFIcOHCBRQvXhzPnz/HgQMHsGrVKjRv3hyTJk2CmZkZkpOTIZFIkJSUhKSkJCQmJuLdu3cYOnQoUlJSIBKJMGjQIAwcOFBpnrdv38bYsWNhZmaGkSNH6rXmpjEo/r9R8eeBoqVLl+r8s2vOnDmwsbFBz549DZofERERUXZjKEhERERE9JVo2LAhFi5ciIoVK6qsZ7Rjxw707dsXpUqVUtovlUoxc+ZMWFpaYsSIEcKbuPqGguvXr8f169cxa9asDEOwNJs2bVKp2Bg3bly6lTU5kaZQUCKRCGs9prdmV9p6V8OGDcOOHTt0DvTu3r0LIHXNrgULFmDv3r1YuHBhlq9tpVj1ZKyKJkPZ29uja9euQotaACrrG1pZWaF48eLw8vKCp6cnChQoAA8PD3h4eMDNzQ07duxAYGCgcK6/vz/8/Pz0qprTx8uXL3UKwCIiIrBu3TpUqFABvXr1Ujq2Y8cONGjQAA4ODlqPpxgK6vucTU1NhdDYkEpBOzs72NraIiYmBsHBwUhJScmwmvXs2bO4fv06hgwZYvCHHkJCQhAcHKzTNWlfU4rSWmYqhoJprS0LFCgAFxcXYX9aGG3syjo7OztMmzYNfn5+AIDChQsDSF23cenSpQBS29bu2rVL7fWKf6cWFhaYM2cOfvzxR6Vz3rx5gwEDBsDd3R1z585VqoDMaorrpmpaL1DXSusTJ07gxo0b6NevH+zt7Q2aHxEREVF2YyhIRERERJRDJCYmKr0x/yU3Nze0adMGXbt2FapKAOD+/ftISkpS2R8XF4cxY8bg8uXLAFJDh99//13rME9RXFwcxo8fj7///htA6pvAy5YtU7vOlqLo6GjhjedOnTphy5YtAKDXemzZTVMoaGZmhho1auDXX39VqYj8Uvfu3dG/f3/Mnz8fY8eO1en+9+7dU3rs7Oys9XqIxqT4NZpTQkEA8PPzw19//SVUB+XPnx81a9ZElSpVULZsWXh6eqqtwLp+/bqwnqWJiQnatm2L4cOHK7WwzAq6VgnOnTsXJiYmWLBggcr30++//4558+Zh9OjRaNOmjVbjGSMUVAy/DK029PT0xIMHDyCVSvHhw4cM15s8cOAA9uzZgwcPHmDu3LkGhWvXrl1Tenzx4kW0bdtW759biq9L2pp8FSpUUDonrXowM0Kn6tWro27durh3756wjuFPP/2EP/74A7GxscL8ChUqhHLlyqFUqVLw9vaGt7c3tm/fjuXLl8PW1hbLli1D5cqVlcZ+9+4dfH19Ubt2bYwfPz7bfyYorkdpjDVKZTIZFixYACsrq2yrfiQiIiIyJoaCREREREQ5xIcPH9CzZ098/PhRab+pqanSm9EHDx4EkNrGMa2Cw9zcHHXq1FE7btob/GfOnIGfnx+WLFmiFGrpU2n28OFDdOjQAUuXLk23KiQwMBCRkZFo2rQpunTpIoSCXyPFQOnLcKBr165o1KgRtmzZgk6dOmkco27duihYsCDWr1+PevXqoUqVKlrfP61SEEj9O505c6ZR2jzqSrH9ZnYHAIocHBzQp08ffPr0Ce3bt8d3332X7vkhISGYN28e9u7dC7lcjipVqmDcuHEq1bZZ5cv1BLds2QJ3d3e1YdTt27exd+9erFixQiWYf/TokVB1NnbsWOzatQtz587NcB00Q9cUBJSrSI0VCgLA27dv0w14kpKScOzYMQCpFXDt2rXDkiVL9K6i/TIUnDFjBpYtWwZ/f3+0bdtW5ypIxZa7Z86cAaAaCqa1U1YXCmpTKZmR8ePH4927d8Lfi42NDX766SccP34cnTt3RqNGjZAvXz6la7Zt24bly5fD1dUVq1atUtuidurUqfj111/RqFEjg+ZnLFeuXBG2a9WqZfB4Bw8exJMnT9C5c2eNlYdEREREXxOGgkREREREOYS3tzc2b96MvXv3omTJkihWrBjs7e01Bi9z587FypUrASgHRtpQDLgOHTqk9pwZM2bg3LlzyJcvH1atWqX2nDx58mi8x6NHj7Bx40YULlwYU6dOxYcPH3SaY06jGJp82Z7Q09MT9evXx6xZs1ClShWNFXwikQht27bFwoULMXbsWOzfv1+rYC00NFTp9evcubNRqmD0oVhRltYeMafw9/fP8Jzk5GSsW7cOy5YtQ3x8PAoVKoRRo0ZpXDfw+vXrcHd317nloC6SkpJw7tw5pX3e3t6YMmUKgoKCMHnyZHz//fcAUiuXpkyZgrFjx6JGjRoqYx0/flzY9vHxwaBBgzIMBAHDKwUVgy9TU1Ot18VLTk5We7+0NpcA8Pz5c6HCTZ1Tp04prR8XHByMkydP6h0KKgZLQGrl5ZgxY/Dbb78hKCgIM2bM0KlFZlol3uXLl4VWyl+GgmkVbl+2ID537hxmzJiBVatWqYR2uvD09FT5mTFgwAAMHz5cbYD7999/Y9KkScifPz/Wrl2LQoUKqR132bJlWbpGbXoePHggBMmWlpZo3bq1QeOlpKRgyZIlAFI/+EFERESUG+SMf7kREREREREAwMPDA/7+/qhduzby5cuXaZVYim/ge3l5oUiRIir/pbUZFYvFao8XKVJEY1Ail8sxefJkWFpa4o8//oCNjU2mPI+slJiYKGyrq9rp2rUrEhISMGbMGEilUo3jtGnTBiYmJnj//j0WLFig1b0Vq8jMzc3Ru3dvHWZuXHFxccK2sdc/y2yHDh1Cs2bNMG/ePJiZmWHcuHE4ePCgxkAQAMLCwtCqVSv4+fnh8OHD6f7d6uvMmTNKrysAVKlSBbNnz8aTJ0/QpUsXTJo0CYmJibh79y5q1KiBbt26qR3r6NGjwvaUKVNQtWpVreZgaCio+LpoW0kXHx+Pn3/+GZs2bVI5VqxYMWH7+fPn6Y5z4MABYdvExAS7du3SKiBW58OHD3j69KnSPh8fH8yePRsA8PTpU3Tp0kWndq9SqRQRERGYOnUqgNQ1KxUDS7lcLlSIK1ajnT9/HgMGDMDz58/h6+urUkVuiNDQUNja2qoNBE+ePIlRo0ahcOHC2LRpk8ZAMI1iy87skpCQgClTpgjVqgMHDoS7u7tBY+7fvx+vXr1C9erVUaRIEWNMk4iIiCjbMRQkIiIiIvoGKYaCiutdGcuGDRtw69Yt/P7777nmzdSEhARhW10oWLVqVRQqVAh37tzB8uXLNY7j7u4uVHht3LgRt2/fzvDeigFE69ats3y9O0Vp4ZW1tbXObRS/lJSUhN9//11pLczMcOXKFXTo0AHDhg3Dx48f0b17dxw9ehQ9evTIsM1l48aNsXnzZrx+/Rq//PIL6tati+XLlyMmJsZo8zt8+DCA1HUiFTVr1gxdu3aFXC7Hli1b0LFjRxQoUAAjRoxQO86TJ0/w8OFDAED9+vVRvnx5redgaPtQxVDQ1NQU7969y/C/4cOH4969e5gyZQpWr16tNJ5iKPjo0SON942IiMDJkyeFx/Xr10fRokV1nn+a06dPq93foEEDdOzYEUBqgDp27FitA2KJRIKoqCiEh4cDSP1ZUr58eZQpUwZlypRB2bJlkZSUBAD466+/hP29evUS9r99+xa+vr749OmT3s8NSA0Dx40bhylTpqg9furUKQwZMgSlS5fGxo0bhWAtMjISy5cvF+aTJjY2FkOGDEGLFi0we/ZsXLlyRen/L1nh9evX8PPzw61btwAAvr6+6NOnj0FjymQy/PnnnwCADh06GDpFIiIiohyD7UOJiIiIiL5BmREEpnnz5g3mz5+PUaNGoV69epl2n6ymWCmoLgwTiURo37495s2bh2XLlqF+/fpq1+ACgCZNmuDs2bOQyWQICAjA9u3b023Bp1gp6Ovra8CzMExycjLi4+MBqF/7TBdxcXHo378/Ll++jPPnz2PNmjVGX7Pr6tWrCAwMxOXLlyESidCsWTMMGzZM59arxYoVw9atW9GrVy88fvwY8+fPx4oVK9CzZ0/07NkTlpaWes8xKSkJJ06cAAC0a9cOK1asUDo+atQonDx5Eu/fv8ejR48wYsQIrFu3Tu1Ye/fuBZAaymkKDjUxtFJQMVSMj49H/fr1dbp+zpw5cHNzQ4sWLQAARYoUQZ48eZCYmIhHjx5pXFdvz549Svfu3r27znNXlNZ+NX/+/Hj//r3SsZEjR+Lw4cOIiorCp0+f8PbtW63GlEgkKFy4MFauXAlfX1/UqFEDvXr1Eo5funRJqBqeMmWKUiD6JX0rVRMTE7F27VqsXr0afn5+GDBggMo5//zzD0aOHInq1atj4cKFSl/XDg4OePLkCZo2bYrJkycL6/XZ2dlh8+bN2LNnD+bMmYM1a9bA0dERjRs3RocOHTJc21MfMpkMnz9/xr1793D48GEcOHAAycnJcHBwwPjx49GyZUuD73H48GG8fPkS1tbWuer/Y0REREQMBYmIiIiIcrHnz5/D09NT5U3+tKo3ExOTDCuldCGRSDBy5Ei0atVK6U3v3ECxUlBTCNS2bVssWrQIEokEEyZMwLZt29SGfXXr1oWpqSlSUlJw7949HDx4UAhDvvT27VshnKhSpUq6gUFm+/z5s7BtSOvQqKgo9O3bV6jsefjwIbp164a1a9fCzc3NoDmmpKTg+PHjWLduHa5fvw4AqFGjBoYPH25QQOHq6oq//voLvXv3xu3btxEbG4vFixdj9+7dmD9/vk5rzCk6c+YM4uPjkT9/ftSqVUslFMyTJw9GjRqFoUOHAkitGr179y7KlCmjdF5ycjJ2794NIDVc1LVC19BQUPF6FxcXIehMT5MmTfD+/XuIRCL07t0bTZs2FY6JxWKULl0a169fR0JCAp4+fao2ZN+xY4ewXapUKVSuXFnnuaeJiIgQqnI7deqEefPmKR23s7ODr68vAgMDYWZmprRWY3ohaFp13XfffYcdO3agcOHCatd1NTMzQ4sWLdJdq1VXMpkMe/fuxaJFi5CQkIDFixerrM8ol8uxZs0azJ07Fx07dsRvv/2mNoANCAhA69at0bt3b3Ts2BHjx4+HhYUFRCIR2rRpg5o1a2Ls2LE4d+4ctmzZgi1btqBu3bqYM2eO3j8vxo8fjwkTJqg8p7Q2oXny5EH58uXx448/ok2bNkLba0OlraPbqFEjo/59EBEREWU3hoJERERERLnUkydP0K1bN5QvXx6BgYFKb/SnVXul9+Z/2puuupg7dy7y5s2LiRMn6j7hHE6xUlDTG88uLi6oVq0azp49i7t372LTpk3o2rWrynlOTk6oWLEirl69CgBYvny5xlBQsUrw559/1mnOSUlJGDBgAM6dO6fTddp49OiR0rpohnr27Bm6du2K9evXw8PDQ+frnz9/jgMHDmD37t3C2mvff/89hg4diipVqqR7rUwmQ3x8POLi4hAbG4u4uDi1/8XHx6NYsWK4c+eO8P3x9u1bdO/eHZs2bULJkiV1nnfaenidOnXSWC3auHFjeHt748WLFwBS1zn80pEjRxAeHg4bGxshQNSFYltIQ0NBe3t7WFhYZHhN2veUp6cnRo4cqXK8fPnyQrB79epVlVDw2rVrSusNGvpBhH/++QdSqRQlSpRApUqV1J7TpUsXrF69Gj/88IPSz4F169apBNrz58/HixcvlKoXvb29Vca8fPkyAKBAgQJ6vfbqyOVyHD16FIsXL8bTp09RpEgRBAUFoWDBgkrn3b9/H7Nnz8a1a9cwZswY9OjRQ+OY1tbWmDFjBrp164atW7fi6dOnWL16tfA6uLq6YtWqVfj999+FdrAnT57EmDFjsGzZMr2ex5AhQ9QGrqamprCzs4Ojo6PBbYy/dPXqVdy/fx9AattYIiIiotyEoSARERERUQ6TnJysVSCnuG7Tl+s8vXnzBn5+foiMjMSpU6fwyy+/YPHixUJVYFrVm42Njcbx9QkFvb29MWLECLVVJjmFXC7HypUr0blz53Sf/5eioqKE7fSuS2sNCgCLFy9Gy5Yt1VbJVKlSRQgFnz59qrb6C0itJANS33Bv2LCh1vMFAAsLCyxbtgwzZsyApaUlSpUqBRcXF9jZ2elV/bJ582Zs2LABQGoA065dO0yaNAnFixdHly5ddB5PHV1DkdWrV2PTpk149+6dsE8kEqFWrVooW7YsTpw4gf3792sM+uLi4pSqQIHUClo7OzvY29vDwcFB+NPBwQEeHh749ddf8ccffyAyMhJAasi+ePFinYOPkJAQHD9+HNbW1ujYsSOePn2q9jwTExP069cPY8aMgVgsVluVuHHjRgDAwIEDldYmTE5ORt++fTFr1ixhfTh1jFkpqG1VWEY/h6pWrSqES5cvX0a3bt2Ujqd9LQJA4cKFlSoN9bF9+3YAQLdu3TT+/HN0dMS0adPg6emp1IbZ09MTBQoUUDq3X79+KFmyZLrV2J8/f8bjx48BAC9fvkTr1q0xbtw4VKtWTa/nIJFI8Pfff2PlypV48uQJAKBWrVpYsGABbG1thfO2bt2KjRs3Cvf29vbG3bt3MXDgQCQmJgr/JSUlISEhAUlJSUhMTIRYLIa9vT0iIyNx48YNTJ06FTNnzhTGFYlEGD16NGxsbLBo0SIAwIkTJxAeHq6yZqY28ubNi+LFi+v1Wujrr7/+ApBarfrDDz9k6b2JiIiIMhtDQSIiIiKiHObQoUMYN26cTuv+ZdS68MSJExg+fDgWLFgAsVgstIFMbw03fULBjh076nxNVpLL5Zg4cSK2bduGEydOYNWqVVoHg58+fRK202tx2bBhQ0yaNAkSiQRRUVHYunUr+vTpo3JeuXLllB5fvnxZbUvItCq/Tp066dXq1dzcHJMnT9b5OnVu3LghbLdv3x7e3t5o0qQJVq9ejQkTJqS7LmJmqVChAubMmaO0Ty6X48yZM0KgmkYkEsHR0RF58+aFp6cnnJyccP/+faHabMOGDShWrBjs7e0zfC4FChTAgAEDhO8Txa8PbW3btg0SiQS9evWCvb19ut9zLVu2xJYtW+Dl5aUSrty+fRs3btxAsWLFVNacNDc3h5eXFzp37oygoCCV4CqN4rp82lT5fUnxgwnarDcpk8kyDAUrV64MMzMzSCQSnD9/HsnJyUJg+e7dOxw7dkw419/f36Cvv5s3b+L+/fvw9PRE69atcfv2bY3nNmvWDACE9reKPn36BLlcDg8PD61ayp45c0b4exeLxXj8+DF69OiBwYMHY9CgQTo9h8OHDyMgIADh4eHCvlatWmHGjBkq1XQVKlRQ+rnw4sULoRIVSG1lWqNGDZQvXx6FChVCwYIFUaBAATg4OOD69evo3LkzgNQKVcVQMM2AAQPw9OlToTVqXFycXqFgVouIiBDWlSxXrpxOHxwhIiIi+howFCQiIiIiymFat24NR0dHxMfHo2TJkhpbo61cuRJbtmwBAOFNzIykpKRALBYjIiICQGrViyb6hIK6SEpKUqru0kTxnNDQUKV2gbqeu379emzbtg1AagjQu3dvrYNBxdAnvfaWdnZ2qFChAq5cuQIAOHr0qNpQ8MvAICQkROWc8+fPIz4+HmZmZujUqVOGc8xMr169ElrqFStWTGiD2KBBA0ydOhUnT55Md121zFKxYkXUrVsXJ0+eVNpfqFAhlClTBiVKlECxYsVQsGBBtetrjh8/Xvg6yZcvX7rfE4rq1auHzp07CxV6iuvLaUMqlWLr1q2wsrISWjYqfs99+f1nYmKCtWvXqq3CXbJkCUxMTDB16lS1Py/69++PXbt2oVu3bti4cSPy5cunco6h7UMVr9dmXciEhAThOSpWsCmysrLC999/j0uXLiE+Ph7nz59H3bp1AaT+/JNKpQBS/66bN2+u85wVpf09Dho0yKB1VkUiEbp37w5/f3+0adMmw/P3798PAPDy8oJMJsObN29QunRppZaj2qpZsyZsbGyEULBVq1aYPXu20vqFaYoXL46WLVtiz549AFJD7vr166NGjRooXbo0Vq9ejd27d6NZs2YqFZjff/89SpQogcePH6NOnToa5/Pbb7/h7NmzkEgk6Vap5iR///23EJDru04oERERUU7GUJCIiIiIKAeqXbt2hucovpGuqfpHk7Q1yfLnz6/xnMwOBc3MzLBq1Srs2rVL62vmz5+P+fPnG+3cmzdvok+fPli1ahWsra3TPTdtnbo8efJkWPHyww8/CKHgnTt3EBkZCQcHB6VzHB0d4eDgILSg/PI4kLrGGQA0bdoULi4u6d4zs61du1bY/vHHH4XtvHnzonz58li4cCHq1KmTLa1jhw4dips3b6Ju3bqoXbs2qlatmm4VrLEMHz4cx44dQ3BwMFq3bq3TtUePHkVISAj8/f3VBpHqvv8sLS1V9l28eBFnzpyBn58fKlSooPZeefPmRfPmzbFz5074+flh8+bNKq+P4pqZhlYKavPzKDY2VthOr7KwUaNGwrqau3fvRt26dfH27Vvs3LlTOGfEiBEGrSsXHh6Ow4cPo2jRomjZsiUA/X/+5c2bF1OmTIGfnx/Onj2LgIAAjR86CA8Px8WLFwEALVq0wN69ewGkBu2agtL0pLXs7NixI8qVK4cZM2aoDQTTDBkyBA8ePMDQoUNRt25dlUrLz58/Y9SoUThw4ABmzZql9DXTokULfPjwASNGjNA4vpOTE6ZPn44HDx4Yba3EzHb06FFhO6vblhIRERFlBYaCREREREQ53KtXryAWi3UO/jQJDw9HfHw8gNQKm+xiYmKC6dOno2jRorCzsxPWu7O1tYWVlVW2zUuTtErBokWLZnhu1apVhW25XI43b96oDf18fHyEwKNSpUpKx5KTk4UK0C9bQma14OBgIby1trZWWT+wXbt2mDBhAnbs2JEtLWR9fHxw4cIFtYFkREREpgWENjY2mD9/Pg4fPqzzeo9//fUX8ubNi379+gn70qsUVCcuLg4TJ06Ej48Phg8fnu65HTt2xM6dO/Hq1SsMHjwY69evVwrSFEM9fUJBxVDR09Mzw/NjYmKE7fRCwYYNG2L69OlISUnBiRMn8OnTJ8ydO1eo5qpYsSIaN26s83wVpbVx/e2334RgzJAPRfzwww/w9/fH0qVL8fTpUyxfvlxtdebBgweFasfmzZsLoaAhSpYsiYCAAPzwww8ZBqX58+fHvn370g0OgdQ2rl8G1+3atUPVqlXVPi9FjRs3NvjvJ6vExcXh2rVrwuO0amgiIiKi3CTrF3wgIiIiIiKdrF+/Hs2bN8fq1auRkpKi8bzQ0FD0798fr1+/Tne8N2/eCNvFihXTeF5mVwoCqcFgr1690KFDB5QuXRp58+bNkYFgcnKy0HK1VKlSGZ7v4+Oj9Ea7YmCiqFGjRgCAatWqoXLlykrHzp49i+joaFSsWBHfffedvlM3ij/++APJyckAgG7duqkEBC1btoSzszPmz5+vtg1qVlAXCEZHR6N169ZCy1htyWQy7NmzB3FxcRmeW6lSJUyYMEGnCsmLFy/i2rVrGDVqlNLXuy7fc4mJifjll18QFRWFwMDADCuxypUrBx8fHwDAtWvXsHr1aqXjhrYPTat4BYCCBQtmeL5iKJheaOvm5ob//e9/AFLXPRw6dCgOHz4MILVV59ixY3Weq6K4uDgEBQWhbdu2+OGHH4T9hv78GzBgAIoXL44nT56ga9euKt8XKSkpCAoKAgDUqFEDXl5eBt1PUevWrbVu15lRIGhqaoo+ffqonOfk5KRTe02ZTKb0NZITXblyRWltTXUf5CAiIiL62jEUJCIiIiLKwSQSCQ4dOoSEhATMmTMH7dq10xj6ubq6ws3NDc2bN8fSpUuV3txUlLYuHJAaFGgik8kMm7wRnT59GqdPn862+3/69EkICUqWLJnh+TY2NihcuLDwWFNI0rFjR/zxxx9YuXKlypvuBw8eBJD9VYK3bt3C9u3bAaQ+r549e6qcY2FhgZ9//hmRkZEYO3ZslgTK2pg2bRqCg4MxceJEnYJBuVyOly9fom7dupgxYwbevn1r1HktWrQIlSpVQosWLVTuq277S5GRkWjRogXOnj0Lb29vrFy5EqNGjcKQIUPQt29f+Pr6omPHjmjVqhUaN26MOnXqoGbNmsJacwCwbt06pXsoBtd58uTR+Tl9/vwZQGpbYG3aLioGRBlVcipWn968eVPY7tSpU7o/w9Td60tpwdzo0aOV9hv6NWxmZiasKfj+/XuMGzdO6fjBgweFryvFatHcKCkpCUOGDEGnTp0QHByc3dPR6MaNG0qP7ezssmkmRERERJmHoSARERERUQ52+vRppTXnBgwYkG4Vzvjx41G8eHEsWrQInTp1Uhtm3LlzBwDg5eWV7jp1OSXYAYAVK1agf//+WL9+vcZz3rx5Y/TwJs3jx4+F7SpVqmh1Ta1atQAA5cuX11i1IxaL0aBBA5iZmSntj42NxfHjx+Hh4aFzW0pjkkqlmDRpkhAQT5gwQWOrxy5dusDOzg7nz5/HqlWrsnKaam3evFloxyiXy3UKBk1NTTFs2DAEBgbi0KFDaNSoEQYPHqwSGujjzJkzePz4MWbOnKn3GA4ODihTpgyA1JBs27Zt2LdvH/755x+cPn0az549g52dHerUqYMRI0Zg9erVOHnyJH7//XdhjIiICCHIAwwPBdMqkH18fLSqNFQMKF1dXdM9t06dOipVzXnz5sXIkSO1mlv79u3VVn3GxMRg7dq1mDZtmkr1qyE//+Lj4zFt2jRs2rQJRYoUAQCcO3cOT58+FcZeuXIlAKBChQpK7YZzm6ioKPj5+eHo0aN4+fIlunbtKqzPmtPcunVL6XFaa1ciIiKi3IRrChIRERER5WCKIcaECROEdpOamJubY86cOWjbti3u3buHDh06ICgoSKjckclkOH/+PIDUN9rTk1NCwdOnTwvrPM2YMQPPnz/HxIkTVdbLio+PR79+/dC6dWv4+/vD0tLSaHO4d+8egNRWhtqsKQikttl8/vw5Jk+erPP9jh49isTERHTt2jXDdcEy07x58/Do0SMAQNOmTYXKJ3WcnJwwdOhQBAQEYP78+ShUqFCGX6+Z5erVq5g+fbrSvqpVq8LGxgZyuTzDlomK1+zZswfDhw/HkSNHcOTIEVSoUAF9+/ZFvXr19Jrb4sWLMXr0aLXhvmJ1bkaVuqNGjcKJEyeQkJAAExMTVKtWDT/++COqVq2qca3QsmXLQiwWQyqVwt3dXak9YkJCgrCtTyj48uVLAOlXHytSbKeZUatLkUiEli1bYt68ecK+mjVrwsbGJsP7vHr1CrGxsbC2tlY5tnr1arRp0wb169fXas7auHjxIiZMmAArKyts3LgRp06dwsSJEwGkBmQAsGfPHjx58gQikQijRo0y+J53795Fz549ER0dbfBYX0pJSUGJEiWMNt6bN2/QpUsXBAUFGW2dXGN58uSJ0uOQkBC4ubll02yIiIiIMgdDQSIiIiKiHOrp06c4c+YMAKB+/foqrQY1KVKkCPr164dFixbh8+fPGDp0KA4cOAATExPcvn0bYWFhAIAmTZqkO05OaB8qkUiUqptMTU0REhKCV69eqYRzPj4+WLNmDXr27Il9+/bh119/NVqVXVrL1Zo1a2p9jaenp8q6bdravXs3rKys8NNPP+l1vTEcO3YMa9asAQDkz58fAQEBGV7z888/Y8eOHXjw4AFGjhyJdevWoWLFipk9VSX37t2Dv7+/0D63YMGCCAgIQLVq1fQaz8XFBWvXrsXvv/+OtWvX4ubNm+jfvz9KliyJQYMGoUGDBlqPFR0djerVq+Pnn39We1zxey6jUN7DwwO9e/fGvXv3MGbMGKV2tZpYW1ujevXquHXrFhYtWgQTk/+aBymGgroG6nK5XAjOa9SoodU1aVVzADIMh968eaPyvbRz506UKlUKXbt2Tffac+fOIV++fGqPvXjxQiloVKTNzz/FdRjj4uIwadIkbN26FaVLl8aaNWtgb2+P5s2bY/bs2TA1NUWpUqUQGRmJ2bNnAwA6dOiA77//PsP7AKkfEGnSpAlsbW1VjpUpUwZr1qzBqlWrULJkSRQrVgz29vawtbXV+0MFq1atwq5du2Bqaor9+/frNUZ69AmeM1NkZKRKm1lt1hQlIiIi+towFCQiIiIiyqFWr14NuVwOBwcHTJkyRadre/XqhS1btiA4OBjPnz/H+/fv4enpKawNV7p0aZQvXz7dMXJCKLh8+XIhPDAzM8OaNWvSbd9ZpEgRbNq0CX5+fhg0aBDq1KmD3377zaCKFKlUitu3bwNIrZbLbB8+fMCVK1fQuXPnbFvT6vnz58IaaC4uLli1apXaMOJLJiYmmDFjBjp16oTExET07dsXK1euRIUKFTJ7ygBSw9vevXsjNjYWQGq15siRIw0OIExNTTF27Fj4+PhgwoQJkEgkePjwIQYOHIiKFSti0qRJ8PHxyXAcOzs7DB8+XONxxSAwJSUlw/H8/f11Dn2mT5+OlJQUeHh4KO1XDEB0DQWfPn2K6OhoWFpaonr16sL+v/76CzExMfD29oa3tzcKFSoEc3NzvHz5EqdOnQKQGm6qq+JLExsbi/79+yu1UU7bnjZtGmxtbdGqVSuN16cXCi5cuFApGFWkzeuv2ALV19cXkZGRKF26NNauXSt871pbW6NVq1YoVKgQrKysMGPGDHz+/BkuLi5atz8FUkO6qlWravw+LFOmDBYtWqT1eBlR/NmT1gI1N1OsXCUiIiLKzbimIBERERFRDvTx40ccOHAAIpEIM2fOzHDNrS9ZWFjA19cXAGBvbw93d3dERkbi0KFDAICBAwdmOEZ2h4KPHz/G8uXLhcdTp07Vaj2//PnzY8OGDShQoABOnTqFFi1aYO3atXo/n6tXryI6Ohqurq5KgUdm2b17N4DUQCs7fPjwAb169UJ0dDQcHR2xbt06eHt7a319yZIlMWPGDACpa7b5+fkJX3eZ6eLFi+jWrRs+f/4MR0dHLF++HBMmTDBqRVLr1q2xatUqpbaVN27cQPv27bFz506Dx9elUhCAXlVgbm5uKoEgAKXWk7qGgqdPnwaQWiWo+HpXqVIFb968wYgRI9C8eXOUK1cOtWrVQosWLRAfHw8AwtqI6iQnJ2Po0KF49uwZRCIRJkyYgE2bNgmvv1wux5gxY7Bu3TqN11++fBl58+ZVe1xTIAho93dx9+5dYTsyMhJFixZVCgTTTJgwAT169MCJEyewY8cOiMVizJs3T+P6nJrmk5WVazmlfXRWSfsgAREREVFux1CQiIiIiCgHmjt3LiQSCfz8/PReu6xNmzYwNzeHr68vzMzMsHz5ciQkJKBWrVparaFl7FBQl/GSkpIwcuRIJCcnAwCGDBmS7np2X8qbNy/Wrl0LV1dXxMfHY9asWejcuTPevn2r87xPnjwJAGjZsiVMTU11vl4Xcrkcu3fvRp06ddJtB5mcnIw9e/YY/f4vX75Ely5d8PHjR7i6umLt2rUoVqyYzuM0a9YM/fv3B5DalnLYsGEICAhQalFpTJs3b0afPn0QFxeHKlWqYO/evRmumamvH374AevWrVMKdCQSCcaPH49jx44ZNLYuawoam2KllDZr9Sk6fvw4AKB9+/ZK+4sXL46ZM2fi4MGDqFKlCmQyGUJCQoTWrkDq14o6ycnJGDhwIM6ePQtTU1NMnz4d3bp1Q5EiRbB48WKYmZkBSP2emTlzJqZNm6Y0LgBcv34d8fHxOn+oAlCuFNRUNZgWbAKpYevKlSvVBn2mpqZ49eoVRo8eDblcjlGjRuGHH37QeT6hoaE6XWOItK+/7AgHExMThe2sCkLV/WxP+xojIiIiyk0YChIRERER5TA3btzAgQMHULFixXRbDWbE2dkZy5cvR79+/fDu3Tts3LgRTk5OmDlzplbXp70Rrk0bPWObNWsWnjx5AgDo2rWrVpWNXypYsKCwrhcA3Lx5E61bt9YpuJHL5Th+/DjMzc3RvXt3neegqytXruDt27fo0aOHxnMkEgmGDBmCMWPGKFVSGurChQvo1KkTPnz4gAoVKmDnzp0oWbKk3uMNHToUvXv3Fh5v3LgRzZs3Nzg4U5SYmIixY8di8uTJkMlkGDhwINatW6exMkwdfUKPMmXKYOXKlbCyslIaZ9asWTqPpSi7QsGIiAilUFCXCrZXr17h5s2b8PT0RO3atdWeU6hQIaxfvx5t27ZV2t+8eXP8+OOPKucnJSVhwIABOHPmDCwsLDB//ny0a9dOOF6jRg3MmjVLqdJvw4YN+Omnn/D8+XNh39mzZwEATk5OWj+fNIqv/5dhY5qxY8eiePHiMDc3x9KlSzW2KY2Li8PgwYMRExODn376Kd3vb00SExPx4sULna/TV9rzz6qvw5cvX+LRo0fYvn27sIYrAKxfvx6nTp3CkydPlNq1GluRIkVgYWGhtE/T3ycRERHR14yhIBERERFRDpKSkoLp06fDy8sLS5cuTbdSQSqVZjhe9erVIRaLMX78eCQnJ2PWrFlaV82kvRmszX20ofjGenpBzL59+7Bp0yYAQNu2bTFhwgS971m8eHGl1zE2NhaDBw/G0aNHtbr+0qVLePfuHdq0aaNT0KSvHTt2oGTJkhqriGQyGUaPHi1UL86fP19j60RtpaSkYMmSJejduzciIyPx888/Y8OGDUZ5vqNGjVIKdN+9e4eBAwfi559/xrlz5wwa++3bt/j555+xe/dulC5dGtu3b8eQIUNUKn5iY2PTbQ347Nkzve5frlw5zJkzByKRSGlOYWFheo0HZF8oqBjU2tra6hSibdu2DQDQvXv3dNtxmpiYICAgAEWLFoWJiQl69uyJOXPmqJwXERGBnj174uzZsyhQoAC2bNmiNjhs3rw5ZsyYofT3/eDBA7Ru3RozZ85ERESE8DWma+UjoPxhCE2hoKWlJQIDAzF16lSNbVATEhLg7++PJ0+e4KeffkJAQIDOcwFSQ8FLly7pda0+FJ9/VlQL9urVC61atcKECROU7v327Vv069cPLVq0EP6/kBlsbGwwa9YseHh4wMbGBj179oS7u3um3Y+IiIgou+i+AAEREREREWWaZcuW4cOHD9iyZQscHR0BAEeOHEFoaCi8vb1RoEABuLq6IiEhARcvXtRqzDVr1uDSpUsYOnSoxkoedYxdKahN5c2jR48wceJEAKntT6dPn64UuuijUqVKmDZtGsaMGSPMY9y4cShfvnyGAemWLVtgYWGBfv36Cfs+fvyo1DbQWJKTk3HkyBH06dNHqdpJ0apVq1TW55s5cybMzc3RuXNnne/57NkzjB8/Hrdu3YKnpyd+++03nb5GtDFkyBB4eHhgypQpwt/7jRs30KtXLxQvXhw///wzmjZtCgcHB63H3Lt3L6ZPnw65XI6xY8fC19dXY2vX69evIyAgAJGRkXBzc4OLiwucnJxgb2+PT58+4fbt28K5uq6l17BhQ7Rv3x7bt28X9hkSoCh+rxkjjE9JScGwYcNQqlQplClTBj4+PnB2dlY65+bNm1i0aJHwuFy5clqPHxMTg61bt8LLywudOnXK8HwzMzNMmDABLi4uatvSPn78GP3798f79+9Rq1YtzJ07N92vizZt2sDGxgYjR44UWk4mJydj3bp12LZtm/B9qk8LSm1+XgGAl5cXvLy81B5LSEhA3759ceXKFXTp0gW//fabVj/PkpKSlB6HhYUhPj4e586dw4sXL3Ra41Nfis9fKpVmeivNEydOZOr42mjatCmaNm2a3dMgIiIiylQMBYmIiIiIcogbN25g+/btWL9+PQoVKiTsL1iwIM6dO4e5c+eqDaPSa3F2/vx5zJs3D507dxbWeNNWWkChuL6TIRTfWE9bK1BRcHAw/P39kZCQgM6dO2PixIkGB4JpWrdujfv37yMoKAhAapixb98+9OrVS+M1YWFhOH78OPr164f8+fML+0NDQ9GrVy9ER0cbZW5fCgwMRGBgoE7XBAQEwMLCQqnFYnri4uKwYsUKrF69GiKRCAMGDIC/v79K+zxj6dChAwoXLowhQ4YotQB88uQJpkyZghkzZqBmzZqoX78+6tSpozGs/fTpEyZNmoQLFy6gS5cu8Pf3zzBMrF27No4fP46nT59i586d2Lp1q8bvoy8DM20MHz4chw8fRkxMDDw8PPQaI41iEGOMMF4ul6N27do4cuQIAgMDIZVK4eTkhIIFC8LW1hbv37/Hy5cvlYLMFi1aaD3+hg0bEBsbi99//13r0KhatWpq9x89elRYc2/MmDHo0aNHupWHaRo2bIjNmzdj2LBhePXqlbBf8e/43bt3Ws1NkWIom14oqElERAQGDx6MO3fuICAgAB07dszwGltbWwCpazR26tQJTk5OwuubNqdffvkF+/btM9rPRk0Uf0ZLJBKur0dERESUSzAUJCIiIiLKIW7duoX169erVJ34+PggICAAw4YNQ2BgIDZt2qT0Jn6DBg3Ujnf37l0MGTIErVq1wm+//abzfDIzFPyyEiY2Nhb+/v74+PEjhgwZotcaghkZPXo0bt68ibt37wJAhm0eg4KC4Obmhr59+yrtL1u2LNatW4dz586hZMmSKFy4MOzs7GBjY6OxWi2nkEql2LVrFxYvXoyoqCi0adMGffv2haenZ6bfu1KlSti7dy/Gjx+P06dPKx2TSCQ4d+6c8LXWoUMHleu3bduGwMBA/Pjjj5g8eTI8PDx0un+xYsUwduxY+Pn5YeTIkbhy5YrScX3XjExbp3PYsGEYOHCgVkGWJorfI8YIBcViMdq1a4d27dohNDQUf/31F4KCgnDr1i2155coUQLNmzfXauzw8HCsWrUK7du3R7169fSeY0JCAmbOnImtW7eiVq1amDx5MgoUKKDTGKVKlcKePXvw559/IigoSCX0PXv2LIYNG6bTmIoBrboPMaTn/v37GDRoEEQiETZu3IiyZctqdV3ZsmVx//59PH36FHXq1FF7Tt26dTM9EASUvxb1CUWJiIiIKGdiKEhERERElEP07Nkz3eOOjo6YOHEiihcvjkmTJgEAypQpgyFDhqic+/DhQ/Tu3Rtdu3bV+c3wNGmhhFQqNUqliOIb6wkJCcJ2fHw8+vbti5cvX2LevHlahxK6MjMzw5w5c9C6dWskJSWlGzx8/vwZGzduxOLFi9VWz5UuXRqlS5fOlHlmBolEgn379mHZsmUIDw9Hp06d0KNHjyxZJ1GRq6srVqxYgS1btmDevHlCtWX9+vUxZcqUdNu5isViHDhwAPb29gbNIW/evFi5ciVat26Nly9fAgBatWoFX19fvcds2LAhzp8/b/DcDAmiMuLq6ophw4ahc+fOGDZsGK5fv6503M3NDYsWLYJYrN3bBHPnzoWnp6fQ7lcfd+7cwahRo2BiYoIFCxYY1LrR0tISw4YNQ+/evXH48GEcPHgQV69ehVQqxf3793Hnzh2twzlAOZT98kMM6dm+fTtmzZqFjh07YvDgwTq1pB04cCAeP36MGzduqBxzdXVF165dlVoZZybFIDAxMdHgr20iIiIiyhkYChIRERERfWU6deqEPXv2oEqVKhgwYADy5MmjdPzy5csYM2YMxo0bh9atW+t9n7T2eeXLlzdonbQ06kLB2NhY9O/fH+Hh4diyZQt8fHwMvk96vL290b9/f6xZswZNmjTReN7atWvx008/oUaNGpk6n8wWHx+PzZs3Y8OGDfD09ES/fv3w448/Cm0Ks0unTp3QqFEjLF68GK9fv8Yff/yRYfVT27ZtjXb/PHnyoH379ti7dy/69etnlCDaGKGJYstKOzs7g8dTJ2/evFi1ahVatWqFN2/eAEhtsTplyhStqy8vXrwoVDbr23L2w4cPmDBhAgYPHoymTZsaVGGpyNbWFh06dECHDh0QExODq1ev4unTpzp/qCEtoHV3d4e7u3uG5798+RKTJk2CmZkZNm3ahBIlSug8d1dXV2zevBlxcXGIiYkR9ltbW2f592xa1a6Dg4PR1pUlIiIiouwnkhvjt3siIiIiIspSKSkpaltVyuVy/Prrrxg0aJDSOnj6mDhxIpo1a4aqVasaNE6agwcPYvjw4ahVqxaGDRsGV1dX9OvXD2XKlMHYsWNhZWVllPtoIyQkBG5ubhqPjx8/HpMmTYK5uXmWzSkzhISEYM+ePWjRooXO7Tazilwuz5J2iF9KTk7OcX+/f//9N+7cuYO2bduiWLFimXqvoKAgPHv2DO3bt9epgg4ATp48iTJlysDFxUXv+8vlcsjlcqOFgcZ27NgxBAcHo0OHDhl+nVy+fBmbN29Gz549dX4tc6qNGzeiYMGCqFatmtbVo0RERESU8zEUJCIiIiKiLPHo0SMAEKoBnz9/js+fP6NSpUrZOS0iIoNkV7BNRERERKQrhoJEREREREREREREREREuVzO7NNBREREREREREREREREREbDUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcgwFiYiIiIiIiIiIiIiIiHI5hoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLMRQkIiIiIiIiIiIiIiIiyuUYChIRERERERERERERERHlcuLsngApe/z4MXbt2oUrV67g3bt3SEhIgLW1Ndzc3FCuXDk0bNgQ//vf/yASibJ7qkpSUlJw8uRJHD16FHfu3MGnT58gkUjg4OCA8uXLo3PnzqhevXqG47x8+RI//vijQXO5evUq7Ozs1B4rUaKE3uMeP34cBQoU0Pt6IiIiIiKi9Fy/fh0HDx7E9evX8fHjR8THx8PGxgbOzs747rvvUL16dTRp0gTm5ubZPdUMPXr0CIcOHcKVK1fw+vVrxMTEwMzMDAUKFEDNmjXRrVs35MuXT6uxFi1ahKVLlxo8pz179qBkyZIGj0NERERE9LUSyeVyeXZPgoAPHz5g+vTpuHjxIjp37ox69erB09MTMpkMHz58wNmzZ/HXX38hKioKpUuXxoIFC1CoUKHsnjYA4MqVK5g0aRKioqLQsWNH1K1bF+7u7pBIJLhw4QICAgKQnJyMrl27Yvz48TAx0VygevToUQwaNEjvubi6uuLEiRMaf0nWNxS0s7PD1atX9Z5XVpHJZEhISFDZLxaLc1yQTEREREREqe7du4eZM2fi+fPnaN68OapVqyb8TvXp0ydcuHABBw4cgEQigaurK3777TfUrVs3u6et1rt37zBr1iycPn0a33//PZo0aYLChQvD2toanz59wvr163Hz5k1YWVlhypQpWn0odNiwYTh27JhB87KwsMDhw4fh4uJi0DhERERE9PWSy+WQSqUq+y0tLdPNLXIThoI5wO3bt9GvXz84Oztj1apV8PDwUHvep0+f4OfnhxcvXsDR0RE7duzI9sq1jRs3Yvr06ahduzZmzJgBR0dHlXP8/Pxw4cIFAMDgwYPTDf2WLl2KRYsWCY+trKzg6uqa4TdkZGQkPn/+jAULFqBp06YazytRogRcXV1hY2OT0VNTUrp0acybN0+na7JDXFwcHj16lN3TICIiIiIiLR0+fBgbNmxAiRIlMHjwYLW/UwHAx48fMWfOHAQHB0MkEqFHjx5o2LBhFs82fbdu3cKSJUsgFovRp08ffP/99yrnhIaG4pdffgEAiEQijBgxAhUrVkx33BEjRuDjx49K+ywtLWFqaprhnJKSkiCRSNC+fXu0bdtWh2dDRERERN8KHx8fWFtbZ/c0sgTbh2aziIgI+Pv7IzIyEhs3btQYCAKAu7s7FixYgDZt2uDz588YPXo0Nm3alIWzVbZz504EBASgfv36WLx4McRi9V9O0dHRwvbff/+dbij49OlTAKkVf5MnT0adOnU0jptGJpOhffv2KFWqVLqBYJrhw4fzl0EiIiIiIsp2x48fR1BQENzd3TFmzBhYWFhoPNfDwwNjxozBuHHjkJSUhKCgIBQuXBhFixbNwhlrdvv2bcyfPx82NjYYP3488ufPr/Y8xSBPLpdj586d6YaCEokEwcHBAFI7uHTs2BFVqlTR6k0bqVSK0aNHQy6Xo0WLFjo+IyIiIiKi3OfbqIfMwf78809ERESgRIkSKFKkSIbn+/j4oGbNmgBS15u4cuVKZk9RrVevXmHy5MlwcHDArFmz0g3u8ubNK2yXLVs23XGfPXsGa2trbNiwAQ0aNMgwEASAXbt24fHjx5gwYYL2T4CIiIiIiCgbRUZGCh/ybNy4cbqBYBp3d3fUq1cPQOq67ps3b87UOWorODgYgYGBSElJwZAhQzQGggAQExOj9Dij5/3x40fIZDLY2NhgypQpqFu3rtaf4j569Cg+ffoEX19fmJmZaXUNEREREVFuxlAwmx0+fBhA6qcftVW9enVh++TJk0afkzZmzZqF5ORktG/fHnZ2dumeO3/+fCxbtgyrV6/G1KlTNZ4nlUrx8uVL9OzZE4ULF9ZqHnFxcVi4cCF++ukneHt76/QciIiIiIiIssv58+eF9cDd3d21vq5atWrC9sOHDxEWFmb0uelq5cqViI+PR/ny5eHj45PuuYUKFULz5s3h6emJ0qVLo2vXrume/+7dOwBAly5dlD5wmpHY2Fjs3r0bpUuXRoUKFbS+joiIiIgoN2P70GwUHx8vtEF5/vw5zpw5g//9738ZXufp6Slsv3nzJtPmp8nVq1eFMLJx48YZnp8nTx7h06zpefXqFVJSUtCpUyet57Jq1SokJCRg8ODBWl9DRERERESU3e7duydsv337FuXKldPqOi8vL5iYmEAmkwEAHj16JHSTyQ43btzAgwcPAAC1a9fW6prOnTujc+fOWp379u1bODg4oFatWjrNa8+ePYiLi0OXLl10uo6IiIiIKDdjKJiN0j4Vmmb27NlahYKWlpbCdnJystHnlZFdu3YJ8yhVqpTRxjU1NUX//v3h4uKi1fnBwcFYu3YtevXqBScnJ6PN42umqd2qj4/PN9kuRyqV4uHDh0r7SpYsqVVbWiIiIiIiQ6X371HF3wf379+PPn36aP27kJ2dHSIjIwGkfgizTJkyRpuzrubNmwcAMDExQceOHWFjY2PU8VeuXIlGjRppHZoCwPv373Hs2DE0bdqUawkSERHRN43vjyqTSCR49OiRyv5v6fX4dp5pDuTk5ARXV1eEhoYCgFA1mJHPnz8L2x4eHpkyN02Sk5Nx7NgxAECRIkWM+s1SuHBhDBkyROvzFy9eDFNTU3Tv3t1oc/jaiUQitfvNzMxgbm6exbPJfupeDzMzs28yICUiIiKirKftv0djYmKwa9cuDBo0SKtxFa8XiUTZ9m/9169f4/r16wBSfz/MjA9rpi1Boctz/OOPP4T1Db/F34OIiIiI0vD9Ue1oel89N+KagtlIJBJh4cKFqFy5MooVK4bRo0drdZ1im5kSJUpk1vTUun79OqKjowGkrgWRXZ4/f47du3eja9euGa5pSERERERElNN8Wd2XmJio1XUpKSlClSAAuLm5GXNaOkn7wCgAFC1aNFPu4erqCldXV63Pf/ToEQ4cOIAmTZrAy8srU+ZERERERPS1YqVgNqtUqRL++usvrc+Xy+U4cuQIgNSS1iZNmmTW1NRSLK398pfPy5cv49ChQ3j8+DHi4+Ph5OSEggULon79+qhRo4ZRqwoXLFgAU1NT+Pr66j2GXC7H8ePHcezYMdy6dQuhoaGQSCTImzcvqlWrhp9//hklS5Y02pyJiIiIiIjSDB8+HLGxsbh58yYKFCiAn3/+Wavrnjx5AolEIjzOztahFy5cELY9PT2zbR6KFixYAADw9/fP5pkQEREREeU8DAW/MidPnsT79+8BAA0aNMjytfQeP34sbDs4OAAAPn78iLFjx+LSpUsq51+8eBFbt25F6dKlMWvWLBQvXtzgOdy7dw9Hjx5F69at4ezsrNcYCQkJGDp0KE6dOgUAsLKygqOjIyIiIvDmzRu8efMGO3bsgL+/v04tTXMqqVT6TZVAp5FKpVrtIyIiIiLKDOn9e9Te3l5Yjy+NYtinyT///CNse3l5oWDBglpdlxnu3LkjbDs5OSnN4/79+9izZw+uX7+OkJAQWFhYwNnZGaVKlULDhg1RvXp1o/+OcvPmTZw6dQq1atWCl5dXtr0uRERERDkF3x9V9i0/9zQMBb8iKSkpWLRoEYDUEGvkyJFZPodnz54J2zY2Nnjz5g26dOmCsLAwtGnTBm3atEHp0qVhamqK+/fvY+nSpTh//jzu37+PHj16YOvWrQZ/gjQwMBAA0K1bN72uT0lJwcCBA3H37l2MGDECzZs3R758+QAAMpkMZ86cQUBAAN6/fy+sRTFs2DCD5pzdvlxM9lv24MGD7J4CEREREX3DDPn3aEpKCrZv3y48rlWrllIwl5XCw8OFpSUAIDo6Gnfu3EF8fDzWrFmjVEWYJjg4GA8ePMCOHTtQqlQp9OvXT6fWoBmZNWsWAKB69erZ9roQERER5XR8f/TbxlDwK7J+/XqhfWdAQEC2tGeJiooStkUiEYYMGQKpVIqNGzeiYsWKSudWqlQJq1evxqRJk7B161aEh4dj9OjR2Lx5s973v3fvHk6dOoUSJUrgu+++02uM1atXIzY2Ftu3b1dZY8LExAR16tRBqVKl0Lp1a4SHh2P58uWoWbMmKleurPe8iYiIiIiIDHXmzBmEhYUBSF1rr0GDBtk2l5CQEKXHefLkQXR0NKZNm4Z3797B29sbjRs3RqlSpWBvb4/IyEhcvnwZu3btQkJCAh48eIBp06YhICAA9vb2Bs/n4cOHuH//Ptzd3VG2bFmDxyMiIiIiyo1MsnsCpJ179+5h/vz5AIAxY8agRYsW2TKPuLg4YXvXrl148eIFli9frhIIphGJRJg4caLQNvTGjRs4efKk3vdftmwZAKBly5Z6j/Hy5Uv8/vvv6S467+bmhlGjRgFIXXvwy7Y+REREREREWSkuLg7btm0DkPphRn9/f5iZmWXbfD5//qz02MzMDIGBgXj//j26deuGqVOnolatWnB2doZYLIaLiwuaNWuGadOmwc7ODgAQGhqKpUuXGmU+u3fvBgDUrVv3m1w6gYiIiIhIGwwFvwIhISEYNGgQpFIpJk6ciJ49e2bbXBRDwXv37mHAgAEZfgpTLBZj4MCBwuOtW7fqde+XL1/i+PHjAIDmzZvrNcbgwYMxevRoVKtWLcNzW7RoAUdHRwCpa1Motk4lIiIiIiLKSkFBQULnlu7du6NkyZLZOp+YmBilx2nLRvj5+aFJkyYagzkPDw+lddvv3r1rcKvPZ8+e4d69exCJRKhevbpBYxERERER5WZsH5rDRUdHo2/fvggNDcWcOXMMqpAzBsWF2j08PLQOKOvVqwcLCwskJSXh3LlzSE5Ohrm5uU73Xr9+PeRyOUqUKAF3d3edrk0zaNAgrc8Vi8WoWbMm9u/fDwC4fPkyihYtqtd9s1vJkiWz9VPE2UUqlar0yC5VqhTEYv7oIyIiIqLMZ6x/j+7Zswdnz54FAIwcORI9evQw1hT1duXKFaXHFy5cQMOGDTF8+PAMry1btiwuXrwofOjz/Pnz6Nq1q95zWbNmDQDg+++/R926dfUeh4iIiCi34fujyiQSCR4+fJjd08hW3+bf/FciJiYGPXv2xIsXLxAYGIh69epl95RgaWmJ2NhYAEDXrl21DvbMzc1RrFgx3Lt3DxKJBI8fP0aZMmW0vm9cXBz27dsHAKhRo4buE9dTqVKlhFDwa/5hIRaLv8lQUB2+FkRERESUnXT99+i1a9cwZcoUiEQi/Pbbb+jSpUsmzk57MplM6bGZmRkmTJig9XPr0KGDEApeuHABMTExcHJy0nkeb9++xYkTJwAAjRo14r/1iYiIiDLwLb8/KpfLs3sK2Y7tQ3OoqKgo9OjRA8+ePcPy5ctzRCAIANbW1sK2paWlTtfmzZtX2A4ODtbp2n/++UdoXfr999/rdK0hChQoIGx/uWYGERERERFRZnr8+DEGDhwImUyGmTNn5phAEIDKp8vbtWunU0eXypUrCy1GU1JScPPmTb3msXnzZiGgrFmzpl5jEBERERF9KxgK5kCfP39G9+7d8fLlS6xatUqr9e+yir29vbAdHx+v07WKgaKu1x45ckTYLlGihE7XGsKQORMREREREenr+fPn8PPzQ2xsLObNm4c2bdpk95SUWFlZKT2uX7++Ttfb2NggX758wuNHjx7pPAeJRILdu3cDANzd3VGkSBGdxyAiIiIi+pYwFMxhoqKi0LNnT7x58warVq1CpUqVsntKSry9vYXtiIgIna5VXI9QMWzLSFJSEi5dugQAsLCwUKrey2yKLXG+/KWXiIiIiIgoM7x48QLdu3dHdHQ0Fi1ahCZNmmT3lFR8+TtdUlKSzmM4ODgI2/p0Zjl//rzwe2nZsmV1vp6IiIiI6FvDUDAHiY2NRa9evfDq1SusXr0aFStWzO4pqShWrJiw/eLFC52uTUxMFLYVKw4zcu3aNSQkJAjXpbWY0YVMJsO0adNQtWpVdO/eXRgvI4rVgXZ2djrfl4iIiIiISBcvX76Er68voqKiEBgYiAYNGmT3lNRSDPQAaP07lqI8efII2/qEikePHhW2ixcvrvP1RERERETfGoaCOURycjIGDBiAp0+fYvny5ahQoUKG10gkEgwaNEivX770pRhUPn78WKdrIyMjhe3ChQtrfd2NGzeEbRsbG53umebAgQPYsGEDIiMjcenSJRw7dkyr6xTXPixatKhe9yYiIiIiItLGu3fv0KNHD0RGRmLx4sWoW7dudk9Joy9bdYaFhek8RnJysrCtz+96Z8+eFbYVu9oQEREREZF6DAVzALlcjrFjx+L69etYvHgxqlSpotV1Dx8+xMWLF2FpaZnJM/xPlSpVhE+Efvz4Uadg8N27dwAAT09PODs7a33drVu3hG19A9AvF63X9lOoz549E7bZjoaIiIiIiDJLaGgo/Pz8EB4ejoULF+boQBBI/b1OsdJP104ygPLvZbp2Znny5InShzi/rFwkIiIiIiJVDAVzgD/++AMHDx7EtGnTULt2ba2vO3z4MAoWLJiJM1MlFovRrFkz4fHBgwe1ui4sLAyhoaEAoHP7m+fPnwvbISEhOl2bRvEXTAcHB63ncPHiRQCAq6trjmznSkREREREX7/Y2Fj07t0b7969w+zZs7X+fSUsLAxXr17N5NmpZ2JigpIlSwqPnz59qvMYUVFRwnb+/Pl1ulaxowwA2Nra6nx/IiIiIqJvDUPBbHb69GksWbIE/fv3R5s2bbS+7v3799iyZYvGUPDDhw/o27cvKlSogBYtWuDChQvGmjL8/f1hZWUFANi4caPSL3KanDt3DgBgamqKbt26aX2v5ORkfPr0SXickpKi42xT1axZU9ju0qWLVp8ivXXrFt68eQMA+Omnn2BqaqrXvYmIiIiIiDSRSqUYMmQIHj16hEmTJil9CDMj+/btw7x58zJxdulTDC/v3LmDmJgYra9NTk5W+tCnNktoKLp9+7bSY31/VyQiIiIi+pYwFMxGoaGhGDNmDH744QcMGTJE6+tu3rwJPz8/xMXFaQwFx4wZg9OnTyM+Ph5PnjzBgAED8PHjR6PM283NTZhvbGwsAgIC0j1fLpdj3bp1AIAhQ4bo9AnQmJgYyOVyveeapnLlykIVZlqgmR65XI758+cDSP3Eap8+fQyeAxERERER0ZemTp2K8+fPY9CgQejUqZNO1168eDHLu8coaty4sbAtlUqV1vjLyJs3b4Tf9Tw8PODp6anTvb9cykLfrjJERERERN8ScXZP4FsWGBiIz58/49mzZ2jatKlW10RHRyM8PFx4rOkXwHv37ik9TkhIwN27d+Hh4aH/hBX4+fnh7du32LhxIw4cOID8+fNj2LBhEIlESufJ5XLMmjULDx8+ROvWrdGvXz+d7vNlIGhion+OPWfOHPTt2xdBQUFo0KABvLy81J4nk8kwe/ZsXL58GXZ2dli4cGGWrttIRERERETfhh07dmDLli1o3bo1Bg8erNO1Hz9+xMWLF9G/f3+N5xw6dAiBgYEIDQ1FjRo1MGnSJDg5ORk6bYGnpycaNmyIo0ePAgDWrVun9e+2ly5dErY7d+6s871fvXql9DguLk7nMYiIiIiIvjUMBbNRWFgYgNSKwbT19nSlKRT87rvvcOXKFeGxmZkZfHx89LqHJr/99huKFCmCuXPnYvny5bh16xZ69uwJHx8fSKVSPHz4EEFBQbhz5w5GjBiBvn376nwPZ2dnODg4IDIyUnisLwcHBwQFBWHRokVo06YN6tSpg7p166J48eJwdnZGYmIi7t27h6CgINy4cQOlSpXCjBkzlNbJICIiIiIiMoYnT55g6tSpKF++PKZOnarTtTKZDFOmTIFEItH4YccbN25gxIgRkMlkAFLXpA8PD8eGDRtUPsxpiJEjR+LUqVOQSCS4ffs2Tpw4gXr16mV43T///AMAcHR0RMeOHXW6Z1xcHENAIiIiIiI9MBT8ymkKBWfPno3Jkyfj6tWryJs3L0aMGGH0tjIikQhdunRB48aNcejQIRw/fhwBAQEICwuDhYUFChQogNq1a+P333+Hu7u73veYMmUKpk+fjqSkpHQ/BauNPHnyYMyYMfD19cXOnTuxZcsWvHjxAjExMbC2toaTkxMqVKiAnj17on79+gZVJhIREREREakjlUoxatQoiMViLFy4EObm5lpf++LFC8yZMwcnT54EoPl3wmPHjgmBYJqrV6/i1atXKFy4sP6T/4KXlxdGjhyJmTNnAgAmTJiAPXv2wM3NTeM1586dw5UrV2BiYoK5c+fC3t5ep3vGxsYaNGciIiIiom8VQ8FstHTp0kwbO1++fFixYkWmja/IxcUFvr6+8PX1zZTxf/zxR/z4449GHdPDwwODBg3CoEGDjDouERERERFRRg4cOIBHjx7BzMwMrVu31vq65ORkxMfHK+3TVCmoyZdBoTH06NEDYWFhWLlyJcLDw9G9e3esXLkSBQoUUDn3zp07GD58OMzMzBAQEICaNWvqfD9TU1OVfWZmZnrNnYiIiIjoW8JQkIiIiIiIiCgLpS2PIJFIhG19ODk5wdbWVu2xBg0aYO3atUohYPHixXUOEbU1cuRIlCtXDlOmTMGLFy/QsmVLdOrUCdWqVYODgwM+ffqEEydOYO/evfDy8sKUKVNQuXJlve7l4uICNzc3hISECPs8PDyM9VSIiIiIiHIthoJEREREREREX6FChQppPFaxYkXMmzcPixcvRnBwMCpXroyJEyeqrbIzloYNG6JmzZo4efIk/vnnH5w+fRo7duxAQkICXFxcULp0acyePRtNmjSBWGzY2xG///47Jk+ejODgYNStWxfff/+9kZ4FEREREVHuJZLL5fLsngQRGUdycjLu3r2rsr9MmTI6rVOSW0gkEty5c0dpX9myZdlaiIiIiIiyBP89SkRERETZif8eVcb3zwGT7J4AEREREREREREREREREWUuhoJEREREREREREREREREuRxDQSIiIiIiIiIiIiIiIqJcjqEgERERERERERERERERUS7HUJCIiIiIiIiIiIiIiIgol2MoSERERERERERERERERJTLibN7AkRERERERES5kUgkgouLCywsLCASiSCXy2Fiws/mEhERERFR9mAoSERERERERJQJxGIxChUqlN3TICIiIiIiAsD2oURERERERERERERERES5HisFiYiIiIiIiDKBTJqM5OBXSA59C7kkESKzPDB39YR5Xi+YiM2ze3pERERERPSNYShIREREREREZESJH54i+uohxD28CHmKROW4yNQM1iWrwa5yU+TJVywbZkhERERERN8ihoJERERERERERiBLSkD48fWIuXk03fPkKRLE3juD2HtnYFuhIZzrd4eJhWUWzZKIiIiIiL5VXFOQiIiIiIiIyEDSmHC8Xzsmw0DwSzE3j+L92jGQxoRn0syIiIiIiIhSMRQkIiIiIiIiMoAsKQEfN06BJPy9XtdLwt/j46YAyJISjDwzIiIiIiKi/zAUJCIiIiIiIjJA+PH1egeCaSRh7xB+IshIMyIiIiIiIlLFUJCIiIiIiIhIT4kfnurcMlSTmBtHkPjhqVHGIiIiIiIi+hJDQSIiIiIiIiI9RV89ZOTx/jbqeERERERERGkYChIRERERERHpQSZNRtzDi0YdM+7hBcikyUYdk4iIiIiICGAoSERERERERJQuuVyOlLgoJH14hqRPL4T9ycGvIE+RGPdeKRIkh7w26phEREREREQAIM7uCRARERERERFlJ3mKBNKYCEijQiGNCkv9Mzrtz9R98n+r95zqdoWFuzcAIDn0babMJznkDfLkK5YpYxMRERER0beLoSARERERERHlerLkBCS+fgCJEPT9GwBGhyIl5jMAuXYDmf73a7Rckpgpc5VLkjJlXCIiIiIi+rYxFCQiIiIiIqKvllwuQ0pspFDZZ2JpA6vC5VTOS4mPxqdtMwy/YYpU2BSZ5TF8PDVEZhaZMi4REREREX3bGAoSERERERFRjiWTJgsVfYrVff+1+QwHZP8FdVbFKqkNBcW2TgBE0LoiUANJVIiwbe7qadBYmpi7FcyUcYmIiIiI6NvGUJCIiIiIiIiylVwuQ/yTq8pr+aW19oyL0mksaVSo2v0iUzOY2joiJSbCoLkmfXwubJvn9YLI1AzyFIlBYyoSmZrB3K2Q0cYjIiIiIiJKw1CQiIiIiIiIMoVcloKUmIh/1/ELA+Qy2Japo+ZMEUL2LYY82fA1+jSFggAgtnM1OBRMDn8PmSQJJmYWMBGbw7pkNcTeO2PQmIqsS1aHidjcaOMRERERERGlYShIREREREREepElJyi08fziz6hQSGMiALlMOF9s56I2FBSJRBDbuUAS9s7wOSXFQ5YYB5M81irHxPYuSHr/ON3rTfLYQGznArG9K8T2//6Z9tjOFaY29hCJTITz7So3NWooaFe5idHGIiIiIiIiUsRQkIiIiIiIiNIV/+w6ksPe/xv6/dfaU5YQq9M40pgIyGUpEJmYqhwT27saJRQEAGl0GMzVhIJmDnlhaucCsZ0LzNJCPzvF8M8VJhaWOt0rT75isK3QEDE3jxo8b9uKjZAnXzGDxyEiIiIiIlKHoSAREREREdE3SC6VKFf3xUTAsWZ7ted+Pr8TSe/Sr7DT7qYypMREQGzvqnJIbKe6T1cisTnE9q6QSZLUHneq2wVOdbsYfJ8vOdfvjsQ3DyAJf6/3GGYuBeBcz9eIsyIiIiIiIlLGUJCIiIiIiCiXkcvlkCXGfdHW89+Wnv+2+0yJi1S5zr5SEw1tN12NEwoitYpPbSioZt+XTK3tFVp5/lfdl9bq08TSFiKRyCjz1IWJhSU8ukzCx00BelU7mrkUgEfniTpXKRIREREREemCoSAREREREdFXLOH1PSS+e/Jf6PdvCChPTtR5LE1tN8V2LsaYKgBAEhWKPJ4lVfabOeaF2CGv2nX8Uv90homZhdHmYWxiW2fk7zEL4cfX69RK1LZiIzjX82UgSEREREREmY6hIBERERERUQ4jS078r8Lv36DPvnIzmFrbq5wb++A8Ym4cMcp9JVGhMHcrpLLfTIsqvoyYWFhBbO+qdj1BALApVQM2pWoYfJ/sZGJhCdem/rAtXx/RV/9G3MMLkKdIVM4TmZrBumR12FVuwjUEiYiIiIgoyzAUJCIiIiIiykJyuRyy+GhI1LT0TAsCZQkxKtdZepeHpZpQ0BiBXRppVKja/Rmv9yeCqa3jv1V9/1X4mf3b1lNs56K2LWlulSdfMeRpVQyyZv5IDnmN5JA3kEuSIDKzgLlbQZi7FYKJ2Dy7p0lERERERN8YhoJERERERESZJOnjC8Q/u5Ya+kX/G/5Fh0EuTdZ5LP0DOx3uER2m/h4ObjBzyqfc1jMt/LN3hdjWCSJTM6PNI7cwEZunBoSsBiQiIiIiohyAoSAREREREZEOZIlxkEaHpVb6/Rv22ZSsDguPIirnJn14is9nthrlvhoDO2O09rSyg9jOBaZWqpWIAGDu6gnP/oEG34eIiIiIiIiyD0NBIiIiIiKif8nlMqTEfP5vPT+ldf1SQ0BZUrzKdWI7F7WhoNjexWhz01gpmNE9TEwhtnVWaOup+qeJeR6jzZP+I5VK8f79e5ibm8PExAQymQxubm4wNVW/rmIauVyG6GuHAZEI9pWaZNFsiYiIiIgot2MoSERERERE3yTJ50+IuXNSobVnKKTREYBMqvNYmgM7Y673p75S0NTGEeZuhWBq6/zfGn7/rukntneFqY0DRCbph1CUOeRyOcLClP/eXFxc0g0FJZHBCD3wBxJf34dIbA5LrzIwdymQ2VMlIiIiIqJvAENBIiIiIiLKFeRyOWQJMf9W9v0X9Fl4+sDGp5rK+SlxkYg8t8Mo99a83p/hlYKmNo4Q27nA3NVT7XGRiSkK9Jlv8H0oe8nlMsTcOILw4xsglySm7pMmI3T/EuTrPp3BLhERERERGYyhIBERERERfRXkKVJIYyKUWnkqbUeHQS5JUrnONjlRbSgotjNiFZ+G9f5MLKxgkscassQ4tcdFpmaplX12itV9/27bu0Js6wyR2Mxo86ScK3jnXMQ/vqyyP+nDU0Rd3g+Haq2zflJERERERJSrMBQkIiIiIqIcJyUxDpEXdims6ReGlNjPgFym81iaAjtTGwfAxBSQpRg4W82VggBg6V0ecmmy0M5TcT0/U2s7iEQmBt+fvn5W3uXVhoIA8Pn0FlgV/V5jtSgREREREZE2GAoSEREREVGmk8tlSImN+m/tvqhQSKPDILZzUVsBJTIxQdTFPUa5t6bATmRiCrGtM6RRIfoNLDKB2NYpNeRzcINcLodIJFI5LW+b4fqNT98U2woNEffoEhJe3lY5Jk+RpLYR7TGDbUSJiIiIiEhvDAWJiIiIiMhgMmkyUqLDII0Kg0Qh9BP+jA4DUqQq11nkK6Y2FDQxt4SJpQ1kCbEGz00aHaYxsBPbu2oMBUVmef5t7ZlW4eciVPmZ2bvC1NaJAQ0ZjUgkgmuz/ni7YhjkyQkqx5M+PkPkxb1wrNE2G2ZHRERERES5AUNBIiIiIiLSWcTJjZBEfBSCv5S4SL3G0dTaE0hd8y/ZCKGgXJIEWUIMTK3sVI5ZFvoOplZ2SoFf2tp+JpY2aoNEoswitneFc8MeCDu4TO3xz2e2wrpYJZi7FczimRERERERUW7AUJCIiIiI6Bsnl6UgJSYC0ui0Kr/UoA9yGVyb9Vd7TeyDc5BG6tl2U0FK7GfIpRKIxGYqx8T2LkgOfqnfwKbi1IDv35BPnqJ+3UDH//2k3/hEmcS2XH3EPbyEhBc3VQ/KpAjZvwT5e8yAyJS/zhMRERERkW74WwQRERERUS4nS05Ubuf55XZMBCCXqVwnEpvDpam/5rabRggFgdRqQTMnD9V72LlqvMYkj/W/bT2/qPD7t8rP1MYeIpGJUeZHlJXS2oi+WzEUsqR4lePJn54j8uIeONZsnw2zIyIiIiKirxlDQSIiIiKiXCby0j4kvn2QWvEXHar3unxyaTJk8dEwtbZXOZZeYKcrTaFgngIlkJIQDbMv2nqK7V1gYmFltPsT5TRiO2c4N/RD6IE/1B7/fHY7rIpVgkVer6ydGBERERERfdUYChIRERER5WDyFAmk0eH/VfX9G/RJo0KRt+OvMBGbq1yT+PYh4p9cNcr9pdFh6kNBexe9xxSJzf+t6nP5d+0+W7Xn2ZSuCZvSNfW+D9HXzKZsXcQ9uoT4Z9dVD8qkCN2/BPn9ZrGNKBERERERaY2/PRARERERZaOUxDiFwE+hree/f6bERgKQq782Ohwm6tpuGhDYfUkaFQoLjyKq90ivtaeVnVJrT7Mv2nuaWNqqbUlKRP8RiURwaeqf2kY0MU7leHLwS0Se38V1MYmIiIiISGsMBYmIAFy/fh0HDx7E9evX8fHjR8THx8PGxgbOzs747rvvUL16dTRp0gTm5qrVGDnNo0ePcOjQIVy5cgWvX79GTEwMzMzMUKBAAdSsWRPdunVDvnz5tBpr0aJFWLp0qcFz2rNnD0qWLGnwOEREuUHM3VOIe3ABkn+DP7maNcO0JY0K1XktPl1JokLV7rfI6wWbMnUUwr7/1vYzMbMw2v2JvmViWyc4N+qJ0H2Bao9/Pr8DVsUrwcLdO4tnRkREREREXyOGgkT0Tbtz5w6mTZuGZ8+eoWXLlhg8eDDc3d0hkUjw8eNHnDt3Dvv27cOePXvw+++/Y8qUKahfv352T1utt2/fYvr06Th58iQqV66Mli1bwtvbGzY2Nvj06RNWr16NNWvWYMuWLZg+fTqaNm2a4ZjPnj0zeF4WFhZwcTFexQoRUU4ikyQpV/cJrT3D4NK4F8zdCqlcI4n4pL4doB6k0WFq94vt9Q8FRRZWMPu3rafY3hUWap4DAFjkKwq3loP1vg8Racfmu9qIe3gJ8U/VtASWpaS2Ee05GyJTs6yfHBERERERfVUYChLRNysoKAgzZ85ExYoV8ffffyNv3rxKxytUqICmTZuib9++6Nu3L16/fo2BAwdi4sSJ6Ny5czbNWr3Tp09jxIgRMDc3x9KlS1WCy++++w4+Pj6oX78+4uPjMWLECFhaWqJu3brpjvv06VOVfTY2NhCLM/7fR0JCApKSktC3b1+4uhqvYoWIKKvI5XLI4qOF0E+iJvyTxUdrvF4S8VFtKGjM1p6aqvjEdpruIYKpjaNKZV/an2b2rjDJY220+RGR4VLbiPbDuxUPIUuIVTmeHPIaMbdOwO77xtkwOyIiIiIi+powFCSib9LWrVsxffp0eHl5YdWqVbC0tNR4rpeXF1auXIlWrVohISEB06dPR+nSpVGuXLksnLFmZ86cwcCBA+Hg4ID169ejSBHVdZ8AwMzsv0+Py2QyBAYGphsKJicn482bNwAAJycnDB8+HI0bN4adnV2Gc5JIJGjevDnkcjn69u2r4zMiIso+8S9uI+rSXqHaTy5N1nssjYGdAVV8X5JquIeZoztsy9VXE/w5s5qI6CsktnGES+PeCNmzUGm/yNQMjnU7w7ZCg+yZGBERERERfVUYChLRNyc0NBSzZ88GAHTt2jXdQDBNoUKF0LFjR6xbtw5SqRRz587Fhg0bMnuqGXrz5g2GDx8OqVSKhQsXagwEAeDz589Kj62srNId+8WLF0hJSYGDgwO2bt2KggULaj2vTZs24dWrV1ixYsVXsQ4jEeVOsqR4oaovtcovVKj6s6/cDDalaqhekxyPhJe3jXJ/TYGdIev9mVjaKoV8eTzVr9dqamUL1+YD9L4PEeU81qVqwurhRcQ/vgwAsMhXDK4tBsHcpUA2z4yIiIiIiL4WDAWJ6Jtz4MABxMXFAUgN+7TVrFkzrFu3DgBw5coVfPjwAfny5cuMKWptwoQJiImJQd26dVGpUqV0z/Xx8UGvXr1w9uxZODk5YeTIkemen7ae4JgxY3QKBKOiorB06VJUq1YNtWvX1vo6IiJdyOUypMRGfrGeX6jSY1lSvMbrk73Kqt1vZkBg9yWN6/3ZOau/QGQCsZ2zSkvP1Fafqdsm5nmMNj8i+rqIRCK4/NgX7z88hX3lZrCv2gIiE9PsnhYREREREX1FGAoS0TfnwoULwvbTp0/xv//9T6vrfHx8YGpqipSUFADAtWvX0LJly0yZozZOnjyJy5dTPynepk0bra4ZPXo0Ro8erdW5T58+haurK1q1aqXTvJYtW4aoqCit70NEpK3k0LcI+2fVv8FfOCCT6j2WxsAuC1p7mphZwL5qS5ha2UJs5yqs72dq48g3+IkoXWIbB3j2XwITM4vsngoREREREX2FGAoS0TcnODhY2P7zzz/RqlUruLi4ZHidubk5bG1tERkZCQAICQnJrClqZfXq1QAAExMT1Kih2gLPUE+fPkX9+vVhaqr9G9Tv3r3Dxo0b0bx5c5QqVcrocyKi3EEul0OWEKtQ2adc4WdZpCKcandSuU5kaorE1/eMMgeNgZ2VHURic73WEjS1dhACPrGdK8zSaenn3KC7zuMTEQHIMBCUy+WAXMYPGRARERERkQqGgkT0zZHL5cJ2dHQ0tmzZgkGDBml1rZmZmbAtk8mMPjdtvX79GlevXgUAFClSBDY2Nka/x5QpU3S+ZuHChUhJSdH69SSi3EkuS4E0JhzSqDCVlp6pf4ZBLknUeL2prfr2mqZ2GX+AQ1uaQkGRSASxnQskER++uLlYoaVnavBnptDe09TOGSZirqFKRNlLGh2O0EN/wtytIJzrdcvu6RARERERUQ7DUJCIvjllypTBkydPhMeJiZrfmFaUkpIiVAkCgJubm7GnprVjx44J20WLFs2Ue7i66tZC79GjRzhw4ACaNWsGLy+vTJkTEeVcsuREfNoyDZKoUKTERABy/T84obGKT2wOU2sHpMRF6j22cI/ocMjlMohEJirH7Co1gTxForSmn6m1vdpziYhyArlcjti7pxF+ZDVkSfFIeHEL1sWrIE+BEtk9NSIiIiIiykEYChLRN2f48OGIjY3FzZs3UaBAAfz8889aXffkyRNIJBLhcZkyZTJrihlSXBfR09Mz2+ahaMGCBQAAf3//bJ4JERlCLpchJS5Kubov6r8qP7G9K9w7jFG5TmRmgaSPz/Vqu/klTev9Aalr/ukcCopMYGrrpFTZJ7ZzAWQpgKlq0GdfuamOMyYiyj7SmM8I+/tPxD+99t9OuQyh+5cgf++5XH+QiIiIiIgEDAWJ6Jvj4uKCxYsX63ydYnWel5cXihQpYsxp6eTu3bvC9pcVfffu3cOuXbtw7do1BAcHw8LCAi4uLihdujQaNWqEmjVrQiQSGXU+N27cwKlTp1C7dm0UK1bMqGMTkXHJpMlIiQ4XQj5JWuinsK4fUqSar0+KV7tfJBJBbO8CSfgHtcd1mmNCDGTJiTAxz6NyTGzngqQPT5XvbWahVNUn/Jm2vp+tM9fWIqJcSS6X4eOmyZCEvVM5Jon4gM+nN8O5QY+snxgREREREeVIDAWJiLQglUqxe/du4XHnzp2zbS6fPn1CVFSU8Nje3h4AEBMTg8mTJ+PAgQMq1wQHB+P+/fvYtm0bqlatihkzZqBAgQJGm9OiRYsAAF27djXamERkXJ+2zkDSx+cGt95Mr+2m2N7VKKFg6n3CYO6i+nPKpkxt5PH0UVjbzxUmljZG/7ADEdHXQCQygVOdLgjeMVvt8ajLB2Bd4gfk8fTJ4pkREREREVFOxFCQiEgLu3fvxvv37wFAp5ajmeHNmzdKj62trREREQFfX188ffoUZcqUQdeuXVG1alU4OzsjLCwMhw8fxpIlSxAXF4fLly/D19cX27dvh7Ozs8HzuXr1Ki5dugQvLy/UqlXL4PGISDO5LAUpsZ+Flp6SqFClCj95chIKDlqm9tqU+GijrMUHmRQpsZEQ2zqpHBLb6bYWKQDARAyxnfN/VX12qX+aWtmpPd26eGXd70FElItZl6gCm+/+h9h7Z9QclSNkfyAK9JnPNqJERERERMRQkIgoI9HR0Vi4cCEAwNTUFLNmzYK5uXm2zSckJETpsbm5OYYNG4bnz59j3Lhx6N69u1LFTL58+dCzZ0/UrVsXXbp0QXh4ON6/f4/Ro0dj9erVBs9n6dKlAID27duzUofIQLLkRIV1/BTW9BP+DAfksgzGSICJuaXKfrG9attNfUmjQtWHgvaqoaBJHmsNbT1TH5vaOKitOiQiIu05N+qJhFd3kRL7WeWY9PMnRJzcCJdGPbNhZkRERERElJMwFCQiysD06dMRFhYGABg/fjwqV87eKpXIyEilxwcOHMClS5cwefLkdCsYCxcujAULFsDX1xcAcO7cOZw7dw41a9bUey537tzBhQsXIBKJ0Lx5c73HIfoWyOVyAFAbnocdXonYB+chS4gx+D7SqDCYu3qq7FcX2Ol/j1CgQAmV/VZFKsIkjw3MFNbzM7GwMtp9iYhIPVNLW7g09Ufwtplqj0dfPQjrElVhWah0Fs+MiIiIiIhyEoaCRETp2LVrF/bs2QMAGDNmDLp06ZK9EwIQHx+v9Hj//v1o3LixVi1Nq1atioYNG+Lo0aMAgKCgIINCwZUrVwIAKleuDA8PD73HIcoN5CkSSKPDlSv7lLbD4DngD4jtVNv2ylOkRgkEgdTATm0oqEdrT5HYXKGl53+VfhYFiqs938LDGxYe3jrfh4iIDGddrBJsytZB7J1Tao+HHvgjtY2oeZ6snRgREREREeUYDAWJiDS4du0aJk6cCJFIhN9++y1HBIIAIJFIlB6bmZnh119/1fr6du3aCaHguXPnEBERAScn1TaAGXn79i2OHTsGAGjQoIHO1xN9bWSJcf+u4RemGvxFhf3bsk2e7hjS6FC1oaBRq/iiw9TuV9va08pOWMMvLfQzUwj/TKzs2BaYiOgr4tywJxJe3EFKbITKMWlkMCJO/gWXxr2zYWZERERERJQTMBQkIlLj8ePHGDhwIGQyGWbOnIk2bdpk95QEYrHyj+527drB3d1d6+srV64MkUgEuVyOlJQU3Lx5E/Xr19d5Hps3b4ZMlrq2mSHVhkQ5gVyWAgAQmZiqHIu8tA+fz22HPCle5ZiupFFhQAHV/WJ7F4PH/u8eoWr3W3gUgUtTf6WKPxMzC6Pdl4iIsp9pHmu4NuuPT1unqz0efe3v1DaiXmWyeGZERERERJQTMBQkIvrC8+fP4efnh9jYWMybNw9NmjTJ7ikpsbJSXp9L10DPxsYG+fLlw/v37wEAjx490nkMiUSC3bt3AwDc3d1RpEgRna4nymoySZJSG0+lSr/oUEijw+HeYSysilZUuVZkKjZKIAhoDuz0qRQUmVtCbO+qVNkntneBubv69p1iWyfYVWio832IiOjrYlW0ImzL1UPM7RNqj4ceWJraRtTCMotnRkRERERE2Y2hIBGRghcvXqB79+6Ijo7GokWLcmRbTGtra6XHSUlJOo/h4OAghIKfP3/W+frz588jIiK1LVXZsmV1vp7ImORyOWTx0UptPSUKbT2l0aGQxUdnOI4xAzud76FmvT9TG0elqr7/gr/U/0zzWKsZiYiICHBu0APxL24jJSZc5Zg0KgThJ4Lg2qRfNsyMiIiIiIiyE0NBIqJ/vXz5Er6+voiKikJgYCDq1q2b3VNSy8HBQelxQkKCzmPkyZNH2NYnVExbkxAAihcvrvP1RLqQp0ghl6WobXUZ9/gKQvYsgFyabPB9dFmLz+j3sHOGa/OB/4V+ts4Qic2Mdl8iIvq2mOSxhmvzAfi0eara4zE3jsDa5wdYFS6XxTMjIiIiIqLsxFCQiAjAu3fv0KNHD0RGRuboQBCASqvOsDD1IUN6kpP/C1BsbGx0vv7s2bPCtre3+laFRNqSJSX818ZTqdIvtfIvJfYznOp0hkN11bU9TSxtjBIIAsatFDSxtFVq6Zla6ecKc+f8as8XmZjCtlw9ne9DRESkiZV3edhWaPh/9u47TKr6bv/4faZt74XeRKQpKgKKoCjFgmA0RY1YABUbml+ij+VJbBgMPtYIFlBjJUosURGkqIgFFBQEQUAQ6WV7L9PO7w9kZN0Z2IXdOTOz79d1eTkzn1NuiEnGvfl+j8pXLgw6L3j/KbWf8JhscYlB5wAAAABiD6UggBYvPz9f48aNU2FhoR5//PGILgQlqUOHDoqPj1dNTY2kfVueNtaBqwNTU1Mbde4PP/ygvXv3Bt7/euUicCDT9MtXUfpL4Xfgs/z2b+1ZU3nI64Qu7LKbLKsnxD3s8Uky4hJ/ea6gYZMjJfOXVX2/2tbTkZolm4vnNAEArJc17ApV/7gy6Ep1b0WxaratU2K3kyxIBgAAAMAKlIIAWrSKigpdffXV2rFjhx5++OEGP0OwoKBAP/30k/r379/MCeuz2Wzq2bOnVq5cKUnauHFjo69RWloaeN2uXfCVS6GsWLGizvuUlJRG3x+xw+91y/TUyp5Q/58Dd8EO7XjuFsnnPeL7hCrsHClZkmGTTP8R3yPU1p6SlPubP8kenyRHarbsKZkybPYjvh8AAM3NFpeo7FE3aM+/J9X53JXbWTnn36S4Vp2tCQYAAADAEpSCAFosr9erm2++WevXr9d9992n8847r8Hnvvfee1qwYIFef/31ZkwY2vDhwwOl4OrVq1VeXt7gcs7tdisvLy/w/sQTT2zUvVetWlXnvc/na9T5iB6macpfXVFnW0/vAdt6esvy5assVVLvwWp1wZ/rne9IzmiSQlAKXdgZNrvsKZnyHaTQ+zV7UvqvVvhly5Gac9BtQpO69Wt0ZgAAIkFil+OV2vdsla2YL9nsSh/0O2UM+q0MO8+uBQAAAFoaSkEALdb999+vL774QhMnTtQll1zSqHOXLl2qjh07NlOyQzv77LP10EMPSdpXbn722WcaOXJkg87dtm2bTNOUJLVp00YdOnRo1L03bNhQ5/2BBSOii+n3yVdetO/5fUEKP29pgUxPzSGv4y0NXsjZfr3t5hHwlubLNE0ZhlFv5kzL+aUUtDt+KfsO+Lvz5/LPnpotm8N1xHkAAIgmmcMul7e8UBmnXay4NjwPGgAAAGipKAUBtEhvvvmmXn/9dV1wwQW66aabGnXu7t27tXTpUl1//fUhj5k7d66mTp2q/Px8DRo0SPfcc48yMzOPNHZAhw4dNGLECC1cuFCS9OKLLza4FPzyyy8Dry+99NJG33vLli113ldWHvp5cLCG310tf02lHKn1n7tn+n3a8n9jZPo8R3yfUM/7kyRnWrbceduO+B7mz78We0JyvVnmsCskSY7UHNmT02QYtiO+HwAAscTmSlDri+60OgYAAAAAi1EKAmhxfvjhB91///064YQTdP/99zfqXL/fr/vuu08ej0edO3cOesyKFSt0yy23yO/f94yzefPmqbCwUK+88krQVU6H69Zbb9Unn3wij8ejVatW6eOPP9bQoUMPed78+fMlSRkZGbr44osbdc/KykpKwAhhmn75Kkv3rewrq7/Cz1uWL391hZw5HdRhwuP1zjdsdtmT0g76HL2G8lUUy/R5Zdjrf61wpOY0vBQ0bLInZ8iRlhNY2bdvW899K/5scQlBT4tvd8yRxAcAAJJ8laWS3SF7fJLVUQAAAAA0E0pBAC2K1+vV//zP/8jhcOjxxx+Xy9XwbQQ3b96s//u//9OiRYskKeT2oR9++GGgENxv+fLl2rJli7p06XL44X+lc+fOuvXWW/WPf/xDkvS3v/1N77zzjnJzc0Oe8/nnn2vZsmWy2Wx6+OGHlZaW1qh7VlRUHFFmNJzp9ezb0vOAbT09pfnyleX//PfCBq3yO9i2m460nCYpBWX65S0vkjO9/j97Bz6nz3C46j3Db3/h50jNkSMlM2ixCAAAmlfF+qUq+GCGErv2Ve75jdtFAwAAAED04CdvAFqUOXPmaP369XI6nbrgggsafJ7b7VZVVd3nooVaKRjKr4vCpjB27FgVFBTo2WefVWFhoa688ko9++yzat++fb1jV69erb/85S9yOp2aNGmSBg8e3Oj72e32ep85nc7Dyt6SmaYpf22VfOWFcuUEL5d3vnC73Hlbj/xe7pqQ22460nKk7euO+B7SvvIxWCmYNuA8pRw/dN9Kv4SUJl0tCwAAjoyvqkwF859T5fdfSJIqvvtEST1OUdIx/a0NBgAAAKBZUAoCaFHKysokSR6PRyUlJYd9nczMTKWkpASdDR8+XC+88EKdEvCYY45pdInYULfeequOP/543Xfffdq8ebPOP/98XXLJJRo4cKDS09O1Z88effzxx3r33XfVuXNn3Xffferf//B+0JOdna3c3Fzl5eUFPmvTpk1T/VJihun3yVdRcsB2nr+s9Nu/8s90V0sy1OWO10Nsu5ndJKWgtK+wC1oKBnnWYEg2uxypWb+s6vvVar9ghaAkOTPbHm5sAADQjCo3fKWCD6bv2zb0AAVzn1F8hx6yJwT/rgsAAAAgelEKAsBh6NSpU8hZ37599cgjj+iJJ57Q3r171b9/f919991BV9k1lREjRmjw4MFatGiR5s+fr8WLF+vNN99UdXW1srOz1bt3bz344IM699xz5XAc2f/0P/TQQ7r33nu1d+9enXnmmTrppJOa6FcRPfye2p+Lvl9KvgO3+fSWF0p+XwOuZMpbXihneqt6kwO33TxS3rICxbWuv3XtgfewxSX+qujLkSM1O/B3e3K6DFvz/TMMAADCx/R5VPTxK/UKQUnyVZaocMG/lPubP1mQDAAAAEBzohQE0KJcfvnlGj9+fLPfZ+TIkRo5cmSz3+dACQkJYbnvKaeconnz5jXrPaxkmqb8VWXylObLldtRNkf9504WzH1GFWs+bZL7eUsLmr8ULM0P+nlS95MV3767HKnZssUnNdn9AABAZDPsTuWMmqhdL/9NkllvXrHmUyV1P0VJPU4OfzgAAAAAzYZSEADQopg+j7zlRb+s9CstqLfiz/S6JUntrno4+Aq7xmy7eQihCrvGlIKGw1VnVd/+LT0D71Ozgp5nT0qTPSntsHIDAIDoFt+hh9JOHq3Sr94LOi+YN13xHXvKnpga5mQAAAAAmgulIAAgpvjdNfKW7N33/L7SgjrP9POW5ctXXqxgfyI+GG9p/iG33TxSDSkFbYmpQUs/589bfdoSU2UYRpNlAgAALUPGkEtUtelreQp31Zv5KktVMP85tbrwLxYkAwAAANAcKAUBAFHDNP3ylRfLW1YgR3orOZLT6x1T9s08FX38SpPcz1t25Kv4Dn2PgqCfu3I7qf21/9y3tacrvsnuBwAAsJ/NGaec0Tdp10t/lUx/vXnl91+oosdAJfccaEE6AAAAAE2NUhAAEDH8ntqft/Hcv5Xnr1b7lRVJfq8kKWf0RKX0ObPeNZp2FV/wwq5RW3u64n9e4ffz6r60nAPe58gepNiU9v2QzpXd/nBiAwAANFh8u2OUdsr5Kl36TtB5wbwZSujYiy3HAQAAgBhAKQgACBu/u0aewp11ij5Pab58ZQXylObLX1XW4Gs1RWF36HuEWCl4wDMF7Unpv3qG38+l389bfdrik9jaEwAARLSM0y9W1cav5SnYUW/mrypTwbxn1ep3t1qQDAAAAEBTohQEADQJ0+eVt6JI3tJ82RPTgq5yq9m+Tnte/3uT3C90YdeEpWBFUdDPba54dbjhSTlSsmQ4nE12PwAAACvYHK5924i+eGfwbUTXL1XF918oudcgC9IBAAAAaCqUggBilmEYys7OVlxcnAzDkGmastlsVseKWv7a6l+28Qys9Nu3ws9bViBfeVHgh0hpJ49W1vCx9a7RtM/iC14K2pPTJLtD8nkPeQ1bQnJgW89fVvhlBz472DZZzozWh50dAAAg0sS3PVrpAy9QyZK3g84L5j2r+I69gz7TGQAAAEB0oBQEELMcDoc6depkdYyoYfo8qt3z08/P7iv4pfz7+b2/pqLB1wrP1p7B72EYNjlSs+UtyZMjJbPOVp6//rstLqHJ8gAAAES7jNMuUuXGr+XJ31Zv5q8uV8G8GWr1u/9ha3QAAAAgSlEKAkAL4Pe65SsrkLe0QIbDqfgOPesd46uu2LdlVBMItbWnzRknW2Jqo54dGIqvulymaQb9oVS7Kx+QLSFZhs1+xPcBAABoKQyHU7mjJ2rnC3cE3Ua0asNXqvz+cyX3Ps2CdAAAAACOFKUggJjl97rl3rtF7vztMj01MpzxcuV0kKtVZ9kcLqvjNRnTNOWvqThgVV/dFX7e0nz5KksCxyd06aM2l95T7zr2pIZvu3koobb2lPY988/dgFLQnpRWd0vPOqv8cvaVfiH+lPrBtv0EAABAaHFtuip90G9V8vmbQecF855TfMdj5UjJCHMyAAAAAEeKUhBAzKnZtVFly+eqct1SmT5Pvblhdyqp50Cl9h+p+LbdLEh4eGq2r5e3NH/fM/wC5d++4s901zT4OqFW8QW23Szec8RZfZWl8ntqZXPG1Zs50rLlztsqR2pWvWf47S/8HKlZQc8FAABA88sY/HtV/bBc7ryt9Wb2pFT5q8slSkEAAAAg6lAKAogZ/tpqFX70kspXLjzocabPo4o1n6pizadKOXGEsoZdaemz5fzuml+e2+epUXKPgUGP2/Pmg02y7aa3tCDktpuOtJwmKQVtcYnyVZXKlpZbb5Z7/k0ynHEyDNsR3wcAAABNz7A7lTP6Ju184XbJ79v/qdJOGa2M0y/hD28BAAAAUYpSEEBM8JYXavfM++Qp3Nmo88pXLlTNtu/VZsw9cqRkNXku0zTlqyyts5VnYIVfaYG8ZfnyV1cEjrcnpYUsBRu67eYhM/k88lWWypGcHvQeh2bInpJRbztPZ2DVX7Zs8Ukhz7a5rCtgAQAA0DBxrbsoY9DvVfzZLDkz2yhn9ETFt+9hdSwAAAAAR4BSEEDU89dWH1YhuJ+ncKd2/3uS2o2dctgrBmt2/iBPwY4Dir+CQPEXbAvTUA657eaeHw8r3695S/ODloLOtBwZDlfdrTwPLP/SsuVIyZJh5/8+AAAAYl36oN/KcLqU2u9cVgcCAAAAMYCf6gKIeoUfvXTYheB+noIdKvz4ZeWce22dz301lT+Xe/uKvtSTzg667WXxJ/9W9ZbvjijDft6yArmy2tX73JnWkFV8h2ZLTJW/tiroLH3QhUo/7Q9BtxYFAABAy2LYHUofeIHVMQAAAAA0EUpBAFGtZtfGQz5DsKHKVyxQyvFDFd+22773qxcpf/a0Osck9ThFjuSMeuc6mqiwk/Y98y9YKdige9jscqRmBV/h9/P7g/0pb8PuPJLoAAAAaGGqNq2QK7eTHKlNvxU/AAAAgKZFKQggqpUtn9vE1/tA8b/ZVwom9Rio/LnPSD5vYO4tLQheCjboWXwN4y3ND/q5IzVHRlyinGnZwUu/1BzZk9Nl2OxNlgUAAAAIxl9TqYKFL6pi9cdKOOpEtb7kr+w2AQAAAEQ4SkEAUcvvdaty3dImvWbluiXyn3edbA6XbK54uXI7yb37l+f4ecvypXbd6p3nSMtukvvbkzMk0x90lti9v7r0eKVJ7gMAAAAcrqofVyp/ztPylRdKkqo3r1T5qo+UesJwi5MBAAAAOBhKQQBRy713i0yfp0mvafo8cudtDWwhGtf6qLqlYGlB0PMasrWnYXfW2caz7kq/HDlSsmQ4Qm/fGexZhgAAAEC4+D21KlzwL5V/+2G9WeHCF5XY5fgm3VYfAAAAQNOiFAQQtdz525vnunnbAqWgIy23zizk1p5pObIlpAR5ht8v23zak9LYUgkAAABRy7A75M7bGnRmuquVP+dptf7jXXznBQAAACIUpSCAqGV6aprpurWB14GVe4ZNjpRM2VxxQc9xZrRW57+82Cx5AAAAgEhg2OzKGT1RO5+7NeiOHdU/rVL5yoVK7XuWBekAAAAAHAqlIICoZTjjm+m6vxR/yT0HKrnHKbKnZMqw2ZvlfgAAAEC0cGW3V8YZf1TRRy8HnRd+9JISjjpBzvTcoHMAAAAA1uEBVQCiliunQ/NcN7dj4PX+7UApBAEAAIB90gaMUly77kFnprtG+XOekmn6w5wKAAAAwKFQCgKIWq5WnWXYnU16TcPulCu3U5NeEwAAAIgl+7YRvVGGwxV0XrPlO5V9syDMqQAAAAAcCqUggKhlc7iU1HNgk14zqeepsoX44QYAAACAfVxZ7ZRxxqUh50UfvyxP8Z4wJgIAAABwKJSCAKJaav+RTXy9c5v0egAAAECsSus/UnHtewSdmZ5a5b/PNqIAAABAJKEUBBDV4tt2U8qJI5rkWil9z1J8225Nci0AAAAg1hk2u3IPto3otrUq+3pemFMBAAAACIVSEEDUyxp2pZxZ7Y7oGs7s9soaekUTJQIAAABaBmdmW2UOvSzkvOjjV+Qp2h3GRAAAAABCoRQEEPVscQlqM+YeObPbH9b5zuz2anPp3bLFJTRxMgAAACD2pfY7V/EdewWdmV638mZPk+n3hTkVAAAAgF+jFAQQExwpWWo3dkqjtxJN6XuW2o2dIkdKVjMlAwAAAGKbYdiUM+pGGc64oPPaHetVunxumFMBAAAA+DVKQQAxwxaXoJyR16ntuClKPnaIDLsz6HGG3ankY4eo7bgpyjn3WlYIAgAAAEfImdFamUMvDzkv/uTfchfuDGMiAAAAAL/msDoAADS1+LbdFP+bbvKfd53ceVvlztsm01MrwxknV25HuXI7yeZwWR0TAAAAiCmpJ52tyvVfqmbrmnqzlOOHypGSaUEqAAAAAPtRCgKIWTaHa19B2Lab1VEAAACAmLd/G9Edz/5ZprtGkuRIzVbOqBuV0KWPxekAAAAAsH0oAAAAAABoEs70XGUNvUKSlHLiCLWf8BiFIAAAABAhWCkIIGZ5vV7t3LlTLpdLNptNfr9fubm5stvtVkcDAAAAYlZK37Pkat1F8e2OsToKAAAAgANQCgKIWaZpqqCgoM5n2dnZlIIAAABAMzIMg0IQAAAAiEBsHwoAAAAAAMLG765RwYLn5c7fZnUUAAAAoEVhpSAAAAAAAAiL6m3fK3/2NHlL9qp2xwa1HfsPGTZ28gAAAADCgZWCAAAAAACgWfk9tSpY+IJ2v3K3vCV7JUm1u39UydJ3rA0GAAAAtCCUggAAAAAAoNn4Kku187lbVLbsfUlmnVnxp/+RO2+rNcEAAACAFoZSEAAAAAAANBtbYqocGW2CD/1e5b03VabPG95QAAAAQAtEKQgAAAAAAJqNYRjKGXmdbPFJQefuvT+pZMnbYU4FAAAAtDyUggAAAAAAoFk5UrOUddb4kPPiz99U7Z6fwpgIAAAAaHkoBQEAAAAAQLNLPnaIErv1Cz70+5Q/e5pMnye8oQAAAIAWhFIQAAAAAAA0O8MwlH3udbLFJwedu/O2qPjzt8KcCgAAAGg5KAUBAAAAAEBYOFIylH321SHnJV+8pdrdm8OYCAAAAGg5KAUBAAAAAEDYJPUerMTuJwcfmn7lzZ4q08s2ogAAAEBToxQEAAAAAABhYxiGss+ZIFtCStC5J3+bij9/I8ypAAAAgNhHKQgAAAAAAMLKkZyu7HOuCTkvWfJf1ezaFMZEAAAAQOyjFAQAAAAAAGGX1PNUJfUYGHxo+pU/e6r8Xnd4QwEAAAAxjFIQAAAAAACE3b5tRK+RLTE16NxTsEPFn84KcyoAAAAgdlEKAgAAAAAAS9iT0pR97oSQ89Iv35OneE8YEwEAAACxi1IQAAAAAABYJrnHQCX1GlTvc3tSulr9/jY5M1pbkAoAAACIPQ6rAwAAAAAAgJYt++yrVbN1jXyVpZKk5GNPV9ZZ42VPSLE4GQAAABA7WCkIAAAAAAAsZU9MVfY51wZWB+b+5k8UggAAAEATY6UgAAAAAACwXFKPk5VwVB/ZXAlWRwEAAABiEisFAQAAAABARDhUIWia/jAlAQAAAGIPpSAAAAAAAIh4Nbs2acezt6h62/dWRwEAAACiEqUgAAAAAACIWKbXo6JFM7XrxTvlyd+m/PeflN9dY3UsAAAAIOpQCgIAAAAAgIhUu3uzdvzrNpUseVv6eetQb/EeFX0y0+JkAAAAQPShFAQAAAAAABHHU7xHO1+8Q578bfVmZcvnqnrrWgtSAQAAANGLUhAAAAAAAEQcZ0ZrpRw3JOQ8//1p8rurw5gIAAAAiG6UggAAAAAAICJlDR8re0pW0Jm3JE9FH78a5kQAAABA9KIUBAAAAAAAEckWn6Sc864POS/7Zp6qf1odxkQAAABA9KIUBAAAAAAAESux64lKOWF4yHn+nKfkr2UbUQAAAOBQKAUBAAAAAEBEyxp+pRyp2UFn3tJ8FX70cpgTAQAAANGHUhAAAAAAAEQ0W1yiskfdEHJevnKBqjZ/G75AAAAAQBSiFAQAAAAAABEvscvxSul7Vsh5/pyn5a+pDGMiAAAAILpQCgIAAAAAgKiQNfQKOdJyg858ZQUq/PClMCcCAAAAogelIAAAAAAAiAq2uATlHGwb0VUfqWrTijAmAgAAAKIHpSAAAAAAAIgaCZ2PU+pJ54Sc5895Wj62EQUAAADqoRQEAAAAAABRJXPoZXKktwo681UUqXDhC2FOBAAAAEQ+SkEAAAAAABBVbK4E5Yy+MeS8auPX8laUhC8QAAAAEAUoBQEAAAAAQNRJ6Nhbqf1H1vs8sfvJaj/hcTmS08MfCgAAAIhgDqsDAAAAAAAAHI7MM8aoatMKeYv3yBafrOyzr1ZS78EyDMPqaAAAAEDEoRQEAAAAAABRyeaKV+7oiSr58l1ln3OtHCkZVkcCAAAAIhalIAAAAAAAiFrxHXqqdYeeVscAAAAAIh7PFAQAAAAAADHNW5pvdQQAAADAcpSCAAAAAAAgJpl+n4q/eEvbnpqoyvVfWh0HAAAAsBTbhwIAAAAAgJjjzt+u/NlTVbv7R0lS/gfTFd+hp+xJaRYnAwAAAKzBSkEAAAAAABAzTL9PJUvf0Y7nbw0UgpLkrypTwfznLEwGAAAAWItSEAAAAAAAxAx3/nYVLZop+bz1ZpXrlqhi3RILUgEAAADWoxQEAAAAAAAxI65VZ6UPvCDkvGDes/JVloYvEAAAABAhKAUBAAAAAEBMyTjtIjlzOgSd+avKVDBvhkzTDHMqAAAAwFqUggAAAAAAIKYYDqdyR02UjOA/9qhc/6Uqv/8izKkAAAAAa1EKAgAAAACAmBPX9miln/rbkPOC+c/KW1EcxkQAAACAtRxWB0BdGzZs0Ntvv61ly5Zpx44dqq6uVlJSknJzc3X88cdrxIgROv3002UYhtVR6/D5fFq0aJEWLlyo1atXa8+ePfJ4PEpPT9cJJ5ygSy+9VKeeeuohr/PTTz/pnHPOOaIsy5cvV2pq6iGPKy8v12uvvaaFCxdq06ZNMk1T7du314ABAzRmzBh17dr1iHIAAAAAAKyVcdrvVbVxudx5W+vN/NUVKvhgulr9/vaI+3dsAAAAoDmwUjBC7Nq1SzfeeKP++Mc/yul06q677tLcuXP10Ucf6ZlnntGIESO0YMECTZgwQb/73e+0dWv9f6GxyrJlyzRq1Cjdfffdatu2rR588EHNnz9f8+fP15/+9CctXrxY48aN0/333y+/33/Qa23atOmIsuTk5Cg+Pv6Qxy1ZskTnnHOOHnnkER199NF6+eWXNWfOHE2cOFFLly7VqFGjNH369CPKAgAAAACwlmF3Kmf0RMlmDzqv+mG5KtZ+FuZUAAAAgDVYKRgBVq1apWuvvVZZWVmaM2eO2rRpU2feqlUrnXjiibrooos0btw4rV27VhdffLHefPNNtW/f3qLU+8ycOVOTJ0/WkCFD9MADDygjI6PO/A9/+IPmzp2rJUuW6NVXX1VGRoYmTpwY8nobN26s8z4xMVE5OTmy2Q7eX5eUlKi4uFj/+7//K5fLddBjFy1apJtuukkej0e33HKLJkyYEJi1a9dOQ4YM0ZgxY/Too49q9+7duvfeew96PQAAAABA5IprfZTSB/1OJZ/9J+i8cP7zSuh0rBwpmWFOBgAAAIQXpaDFioqKdN1116mkpEQzZ86sVwgeqHXr1nrsscd04YUXqri4WLfddpv+/e9/hzFtXW+99ZYmTZqkYcOG6YknnpDDEfwfp7KyssDrDz74oEGlYE5Oju69916dccYZIa+7n9/v1+9//3v16tVLI0eOPOixW7du1V/+8hd5PB6dfvrpdQrB/RISEvT444/r3HPP1WuvvaaePXvq4osvPuh1AQAAAACRK2PQb1X1w3K59/5Ub+avqVDB3GfU6qI72UYUAAAAMY3tQy32zDPPqKioSN27d2/QM+x69OihwYMHS5K++eYbLVu2rLkjBrVlyxbde++9Sk9P15QpUw5a3LVq1Srwuk+fPge97qZNm5SUlKRXXnlFw4cPP2QhKElvv/22NmzYoL/97W+HPHbSpEmqqqqSzWbTbbfdFvK4jh07avTo0ZKkf/zjH8rPzz/ktQEAAAAAkemXbUSD/ztm1aZvVPHdJ2HNBAAAAIQbpaDF5s2bJ0nyeDwNPufUU08NvF60aFGTZ2qIKVOmyO126/e//71SU1MPeuyjjz6qp59+Ws8//7zuv//+kMd5vV799NNPGj9+vLp06dKgHJWVlXr88cd10UUX6aijjjrosV9//bU+//xzSft+D7t163bQ4y+88EJJUnV1tZ5++ukG5QEAAAAARKa4Vp2VcdofQs4LF/xL3rLCMCYCAAAAwotS0EJVVVXau3evJOnHH3/Up59+2qDzOnToEHi9bdu2Zsl2MMuXLw+UkWefffYhj4+Pj9fQoUM1ePDgg67827Jli3w+ny655JIGZ3nuuedUXV2tm2666ZDHPvvss4HXv/nNbw55fL9+/ZSeni5JeuONN1RRUdHgXAAAAACAyJM+8AK5Wgf/A6X+2irlz31apmmGORUAAAAQHpSCFqqurq7z/sEHH2zQeQkJCYHXbre7STM1xNtvvx3I0atXrya7rt1u1/XXX6/s7OwGHb9371698MILGjt2rDIzD/5A+PLycn3xxReB96eddlqD8pxwwgmS9v0+f/LJJw3KBQAAAACITIbdodzRN4XcRlSmX6a7JryhAAAAgDChFLRQZmamcnJyAu/3rxo8lOLi4sDrNm3aNHmug3G73frwww8lSV27dm3QM/8aqkuXLrr55psbfPwTTzwhu92uK6+88pDHLlq0KLBFa+fOnZWRkdGgexxYeu7/dQMAAAAAopcrt6MyTr+4zmeGK0HZI69T60vuki0uIcSZAAAAQHSjFLSQYRh6/PHH1b9/f3Xr1k233XZbg85bs2ZN4HX37t2bK15Q33zzjcrKyiRJnTp1Cuu9D/Tjjz/qv//9ry677LJDPtNQklauXBl4feyxxzb4Pgc+d3Dt2rWNCwkAAAAAiEjpA3+juDZHS5ISOh+n9hMeVeqJI2QYhsXJAAAAgObTdMu8cFj69eunV199tcHHm6apBQsWSJIcDofOPffc5ooW1Pr16wOvc3Nz68y++uorzZ07Vxs2bFBVVZUyMzPVsWNHDRs2TIMGDWrSVYWPPfaY7Ha7rrjiigYdv3HjxsDrdu3aNfg+B/4ad+zYoZqaGsXHxzc8KAAAAAAg4hg2u3JGT1TNtu+V0vcsykAAAAC0CJSCUWbRokXauXOnJGn48OGHfJZeU9uwYUPgdXp6uiRp9+7duuOOO/Tll1/WO37p0qWaNWuWevfurSlTpuiYY4454gxr1qzRwoULdcEFFygrK6tB52zatCnwum3btg2+14GloN/v15YtW9SjR4+Gh40QXq+3Rf5LrtfrbdBnAAAAQHPg+2hkM9JbKyG9Nf+ZAACAmMX30bpa8q99P0rBKOLz+fTPf/5TkpSYmKhbb7017BkOLNeSk5O1bds2jRkzRgUFBbrwwgt14YUXqnfv3rLb7Vq7dq2eeuopffHFF1q7dq3Gjh2rWbNmqUOHDkeUYerUqZKkyy+/vEHH+/3+Os9hTEtLa/C9kpOT67wvKSlp8LmRZN26dVZHiBjff/+91REAAADQgvF9NIqYppx718vTqofUAv+QJQAAiE18H23ZeKZgFHnppZcC23dOmjTpiMu1w1FaWhp4bRiGbr75Znm9Xs2cOVNTpkzRySefrOTkZCUkJKhfv356/vnndfHF+x7gXlhY2ODnJoayZs0affLJJ+revXuDnw1YVVVV531jtv+Mi4s76LUAAAAAALHHVlmk5GWvKvnb/8q1feWhTwAAAACiAKVglFizZo0effRRSdLtt9+u0aNHW5KjsrIy8Prtt9/W5s2bNX36dPXt2zfo8YZh6O677w5sG7pixQotWrTosO//9NNPS5LOP//8w8osNa4U/PWxv74WAAAAACCGmKbitn6t1CXPy1m8XZKUuOEj2apKrM0FAAAANAFKwSiQl5eniRMnyuv16u6779b48eMty3JgKbZmzRrdcMMN6tOnz0HPcTgcuvHGGwPvZ82adVj3/umnn/TRRx9JkkaNGtXg8379LD3TNBt8rt/vr/PeZuO/MgAAAAAQi2zVpUpePlOJ6xbI8HkCnxs+jxLXvC814t8lAQAAgEjEMwUjXFlZmSZMmKD8/Hz93//9X6NWyDUHj+eXfzFq06ZNgwvKoUOHKi4uTrW1tfr888/ldrvlcrkade+XXnpJpmmqe/fuat26dYPPS0pKqvO+pqamwefW1tYe9FrRomfPnnI6nVbHCDuv11tvj+xevXrJ4eB/+gAAAND8+D4aXTxFu7X3iz0KVv05i7api2+3UvqeE/ZcAAAAh4vvo3V5PB6tW7fO6hiWapn/yUeJ8vJyjR8/Xps3b9bUqVM1dOhQqyMpISFBFRUVkqTLLruswcWey+VSt27dtGbNGnk8Hm3YsEHHHXdcg+9bWVmp9957T5I0aNCgRmVOTEyUYRiBFYK/LvoOxu1217tWNHI4HC2yFAyG3wsAAABYie+jkcvZqqMyzxyjwoUvBJ2XLn5NKcf0lzOj4X9IFQAAINK05O+jjdlFMFaxF2KEKi0t1dixY7Vp0yZNnz49IgpBqe5KuYSEhEad26pVq8DrvXv3Nurc+fPnB7YuPemkkxp1rmEYSk9PD7wvLS1t8Lnl5eV13mdmZjbq3gAAAACA6JHaf6TiO/QMOjM9tcqfPU2m6Q86BwAAACIdpWAEKi4u1pVXXqmffvpJzz33nAYOHGh1pIC0tLTA66qqqkade2Ch2NhzFyxYEHjdvXv3Rp0rSV27dg283r17d4PPO7C8dDqd6tSpU6PvDQAAAACIDoZhU87oiTKccUHnNdvXqWz53DCnAgAAAJoGpWCEKS0t1fjx47Vt2zY999xz6tevn9WR6jjqqKMCr4uKihp17oHPI2zMs/lqa2v15ZdfSpLi4uLUvn37Rt1Xko4++ujA6127djX4vANLwY4dO7bYZdUAAAAA0FI4M1or88zLQs6LFs2Uu7Dh/14JAAAARApKwQhSUVGhq666Slu2bNHzzz+vvn37Wh2pnm7dugVeb968uVHn1tTUBF4fuOLwUL7++mtVV1cHzjMMo1H3laQ+ffoEXq9fv77B523cuDHw+vjjj2/0fQEAAAAA0Se13zmK79Q76Mz0upX//jSZfl+YUwEAAABHhlIwQrjdbt1www3auHGjpk+frhNPPPGQ53g8Hk2cODFQmIXDgUXlhg0bGnVuSUlJ4HWXLl0afN6KFSsCr5OTkxt1z/3OPPNM2e12SdKmTZtUUVHRoPPWrl0beD1s2LDDujcAAAAAILoYhk05o26U4YwPOq/dsUGly+aEORUAAABwZCgFI4Bpmrrjjjv0zTff6IknntCAAQMadN66deu0dOlSJSQkNHPCXwwYMEDp6emS9j2brzHF4I4dOyRJHTp0UFZWVoPP+/bbbwOvD7cAzczMDPy++v3+wHakB+N2u7Vq1SpJUmJiogYPHnxY9wYAAAAARB9neitlDbs85Lz4k3/LXbAjjIkAAACAI0MpGAGefPJJzZkzR3//+981ZMiQBp83b948dezYsRmT1edwOHTeeecF3s+Z07A/GVlQUKD8/HxJ0vDhwxt1zx9//DHwOi8vr1HnHmj8+PGB1++8884hj1+yZInKy8slSWPGjFF8fPA/IQoAAAAAiE0pfc9SQufjgs5Mn0f5s9lGFAAAANGDUtBiixcv1rRp03T99dfrwgsvbPB5O3fu1Ouvvx6yFNy1a5cmTJigE088UaNHj9aSJUuaKrKuu+46JSYmSpJmzpyp0tLSQ57z+eefS5Lsdrsuvzz0n7T8NbfbrT179gTe+3yH/y9bp59+uk4++WRJ0ieffKLt27cf9Pi33npL0r4tS6+++urDvi8AAAAAIDoZhk3Zo26Q4QqxjeiujSr9anaYUwEAAACHh1LQQvn5+br99tt1yimn6Oabb27weStXrtS4ceNUWVkZshS8/fbbtXjxYlVVVemHH37QDTfcoN27dzdJ7tzc3EDeiooKTZo06aDHm6apF198UZJ08803q127dg2+V3l5uUzTPOysvzZp0iSlpaXJ4/HooYceCnncmjVrtHDhQknSPffcE9gyFQAAAADQsjjTcpU1fGzIedHi1+TOP/gfOgUAAAAigcPqAC3Z1KlTVVxcrE2bNmnkyJENOqesrEyFhYWB96FKwTVr1tR5X11dre+++05t2rQ5/MAHGDdunLZv366ZM2fq/fffV7t27fTnP/9ZhmHUOc40TU2ZMkXr1q3TBRdcoGuvvbZR9/l1IWizHVmP3blzZ/3zn//UhAkTNH/+fL3yyiv1Vi6WlJTolltukWmaGjt2rM4///wjuicAAAAAILqlnDBcleuXqnrzqvpDn1f5s6eq7dh/yLDZwx8OAAAAaCBKQQsVFBRI2rdicP/z9horVCl47LHHatmyZYH3TqdTPXr0OKx7hHLXXXepa9euevjhhzV9+nR9++23Gj9+vHr06CGv16t169bp5Zdf1urVq3XLLbdowoQJjb5HVlaW0tPTVVJSEnh/pAYOHKiZM2fqT3/6kyZPnqyNGzfq4osvVkZGhr799ls9+uij2rVrl/7nf/6HbUMBAAAAADIMQznn3aDtM/4ss7aq7szhUvKxp0u/+kOyAAAAQKShFIxyoUrBBx98UPfee6+WL1+uVq1a6ZZbbgl57OEyDENjxozR2Wefrblz5+qjjz7SpEmTVFBQoLi4OLVv315DhgzRQw89pNatWx/2Pe677z5NnjxZtbW1uv7665ske58+fTRnzhy9++67mj17tiZMmKDKykq1a9dOp59+ui6//HJ16dKlSe4FAAAAAIh+jtRsZQ0fq4I5TwU+i2vfXTmjJsqV1dbCZAAAAEDDGGZTPrANgKXcbre+++67ep8fd9xxcrlcFiSylsfj0erVq+t81qdPHzmdTosSAQAAoCXh+2jsMU1Te2ZNVs2WNco481Kl9T+PLUMBAEDE4vtoXfz8nJWCAAAAAAAADWIYhnJGXi+/u1qu7PZWxwEAAAAahVIQAAAAAACggRypR/6sewAAAMAKNqsDAAAAAAAAxApvWYEK5j8v0+exOgoAAABQBysFAQAAAAAAjpBpmipf9bEKP3xRZm2VbAnJyjz9YqtjAQAAAAGUggAAAAAAAEfAW1ao/LlPq/rHlYHPSr54S0nH9Fdc66MsTAYAAAD8gu1DAQAAAAAADlP1lu+0Y8b/q1MISpL8PuXPnso2ogAAAIgYlIIAAAAAAACHyZndQbLZg87cedtU/NmbYU4EAAAABEcpCAAAAAAAcJgcyenKPueakPOSJW+rdtemMCYCAAAAgqMUBAAAAAAAOAJJPU9VUo9Tgg9Nv/JmT5XpZRtRAAAAWItSEAAAAAAA4AgYhqHscybIlpgadO4p2KHiz2aFORUAAABQF6UgAAAAAADAEbInpR18G9Gl76pm58YwJgIAAADqohQEAAAAAABoAsk9T1VSr0HBh6Zf+bOnyu91hzcUAAAA8DNKQQAAAAAAgCaSffbVsielBZ15CneqePHrYU4EAAAA7EMpCAAAAAAA0ETsianKPufakPPSL99TzY71YUwEAAAA7EMpCAAAAAAA0ISSepys5N6nhZiayp/9pPye2rBmAgAAACgFAQAAAAAAmljWWVfJnpQedOYp2qXixa+FNxAAAABaPEpBAAAAAACAJmZPTFH2yOtCzku/el8129eFMREAAABaOkpBAAAAAACAZpB0TH8lHzckxNRU/txnZJr+sGYCAABAy0UpCAAAAAAA0EyyRoyXPTmj3ueu1kep1YV/kWHwoxkAAACEB988AQAAAAAAmok9IVk5I6//5QObXRmnX6J2Y/8hV24n64IBAACgxXFYHQAAAAAAACCWJXY7Scl9zpR77xbljJ6ouFadrY4EAACAFohSEAAAAAAAoJlln32VDLtDht1pdRQAAAC0UJSCAAAAAAAAzczmSjjkMaZpyjCMMKQBAABAS8QzBQEAAAAAACxkmqYqvv9CO/91u/y11VbHAQAAQIxipSAAAAAAAIBFfJWlKpg3Q5Xrv5QkFX78snLOvdbiVAAAAIhFlIIAAAAAAAAWqFi3VAXzZshfVRb4rHzFAiV1P0WJRx1vYTIAAADEIrYPBQAAAAAACLOybz9U3tsP1ykE98uf85T8tVUWpAIAAEAsoxQEAAAAAAAIs+Seg+RIywk685UVqPDDl8KcCAAAALGOUhAAAAAAACDMbHEJyhl1Y8h5+bcfqurHlWFMBAAAgFhHKQgAAAAAAGCBhM7HKfWkc0LO8+c8JV9NZRgTAQAAIJZRCgIAAAAAAFgkc+hlcqTnBp35yotUuPDF8AYCAABAzKIUBAAAAAAAsIjNlaCcURNDzitWf6yqjd+EMREAAABiFaUgAAAAAACAhRI69VZq/5Eh5/lzn5avuiKMiQAAABCLKAUBAAAAAAAslnnGGDkyWged+SqKVbjwX2FOBAAAgFhDKQgAAAAAAGAxmyteOaNulGQEnVd8t1iVPywPbygAAADEFEpBAAAAAACACJDQsZfSBpwXcl4w9xn5qsrDmAgAAACxhFIQAAAAAAAgQmSccamcmW2CznyVJSpc8HyYEwEAACBWUAoCAAAAAABECJszTjmjJyrkNqJrP1Pl+i/DGwoAAAAxgVIQAAAAAAAggsS376G0U0aHnJd+/YFM0wxjIgAAAMQCSkEAAAAAAIAIk3H6JXJmtav7oWFT2sAL1PqSv8owgq8kBAAAAEKhFAQAAAAAAIgwgW1EjX0/unFmtVXbKycra+jlsjlcFqcDAABANHJYHQAAAAAAAAD1xbc7RukDL5Dp9yrj9Etkc8ZZHQkAAABRjFIQAAAAAAAgQmWccSlbhQIAAKBJsH0oAAAAAABAhGpIIeitKGn+IAAAAIh6lIIAAAAAAABRyFddobz3pmrHjP9HMQgAAIBDohQEAAAAAACIMlWbvtGOGX9WxXefyF9droJ5M2SaptWxAAAAEMF4piAAAAAAAECU8NdUqmDhi6pY/XGdz6s2fKXKtZ8r+djTLEoGAACASMdKQQAAAAAAgChRtnJhvUJwv4L5z8lbXhzmRAAAAIgWlIIAAAAAAABRIm3AeXLldg4689dUqOCDZ9hGFAAAAEFRCgIAAAAAAEQJw+5Uzvk3STZ70HnVxq9VsWZxmFMBAAAgGlAKAgAAAAAARJG4Vp2VMfgPIeeFC/4lb1lhGBMBAAAgGlAKAgAAAAAARJn0Uy+Uq/VRQWf+mkrlz2UbUQAAANRFKQgAAAAAABBlDLtDuaMnSjZH0Hn1jytUsXpRmFMBAAAgklEKAgAAAAAARCFXbidlnH5RyHnBwhfkLSsIYyIAAABEMkpBAAAAAACAKJU+8ALFtekadGbWVil/ztNsIwoAAABJlIIAAAAAAABRy7DZlTP6JskeYhvRzd+q/NuPwpwKAAAAkYhSEAAAAAAAIIq5cjoo8/RLQs4LP3xRntK8MCYCAABAJKIUBAAAAAAAiHJpp5yvuLbdgs5Md7UK3n+KbUQBAABaOEpBAAAAAACAKLdvG9GJMuzOoPPqLd+pfMWCMKcCAABAJKEUBAAAAAAAiAGu7PbKOOPSkHO2EAUAAGjZgj+FGgAAAAAAAFEnbcB5qtzwpWp3bAh85kjLVc6oG5TQ+TgLkwEAAMBqrBQEAAAAAACIEYbNrpxRE2U4XJKk1L5nq/2ERykEAQAAwEpBAAAAAACAWOLKaqvsc66RIzVbCV36WB0HAAAAEYJSEAAAAAAAIMakHD/U6ggAAACIMGwfCgAAAAAA0ML43dWq3vKd1TEAAAAQRpSCAAAAAAAALUj1lu+0Y8ZftGfWA/IU7bI6DgAAAMKEUhAAAAAAAKAF8LtrVDD/Oe2eea+8pXkyvW7lzX5Spt9ndTQAAACEAaUgAAAAAABAjKve9r12PPsXlX39QZ3Pa3esV+nyORalAgAAQDhRCgIAAAAAAMQ4T/42eUv2Bp0Vf/Ka3IU7w5wIAAAA4UYpCAAAAAAAEONS+p6l+M7HBZ2ZXrfyZ09jG1EAAIAYRykIAAAAAAAQ4wzDppzzbpDhig86r935g0q/mh3mVAAAAAgnSkEAAAAAAIAWwJmeq6xhV4acFy9+Xe787WFMBAAAgHCiFAQAAAAAAGghUk4coYQuxwedmT4P24gCAADEMEpBAAAAAACAFsIwDOWcd70MV0LQee3uTSpZ+m6YUwEAACAcKAUBAAAAAABaEEdajrJGjA05L/5sltx528IXCAAAAGFBKQgAAAAAANDCpBw/TAlHnRh86PMqb/Y0mT5veEMBAACgWVEKAgAAAAAAtDD7txG1xSUGnbv3/KiSpe+ENxQAAACaFaUgAAAAAABAC+RIzVLWiHEh58WfvaHavVvCFwgAAADNilIQAAAAAACghUruc6YSjz4p+NDvVT7biAIAAMQMSkEAAAAAAIAWyjAMZY+8Trb4pKBz996fVPLF22FOBQAAgOZAKQgAAAAAANCCOVIylXXW+KAze3Km4toeHeZEAAAAaA4OqwMAAAAAAADAWsnHDlHlui9VtXH5L5/1OUNZw8fJnpBsYTIAAAA0FUpBAAAAAACAFm7fNqLXaseMdTJsDmWPvE5Jx/S3OhYAAACaEKUgAAAAAAAA5EjOUOs/3ClndjvZE1KsjgMAAIAmRikIAAAAAAAASVJ8hx5WRwAAAEAzsVkdAAAAAAAAANGhZucPKl0+1+oYAAAAOAysFAQAAAAAAMBB+b1uFX86S6VfvidJimt3jOLbHm1xKgAAADQGKwUBAAAAAAAQUs2uTdr5/P+odOk7kumXTL/yZ0+V3+u2OhoAAAAagVIQAAAAAAAAQZUsfUe7XrxTnoIddT73FOxQ8aezLEoFAACAw0EpCAAAAAAAgKAcGa32rQ4MovTL91Sz84cwJwIAAMDhohQEAAAAAABAUMk9Biqp9+Dgw/3biHpqwxsKAAAAh4VSEAAAAAAAACFln3W17EnpQWeewl0qXvx6eAMBAADgsFAKAgAAAAAAICR7Yoqyz7025Lz0q9mq2b4+jIkAAABwOCgFAQAAAAAAcFBJ3Qco+djTQ0xN5bGNKAAAQMSjFAQAAAAAAMAhZZ01XvbkjKAzb/EeFX3y7zAnAgAAQGNQCgIAAAAAAOCQ7Akpyh55Xch52bI5qt62NoyJAAAA0BiUggAAAAAAAGiQpG79lNznjBBTU/mzn5TfXRPOSAAAAGggSkEAAAAAAAA0WNaI8bInZwadeUv2qmjRq2FOBAAAgIagFAQAAAAAAECD2eOTlHPe9SHnZV9/oOot34UxEQAAABqCUhAAAAAAAACNknh0X6UcPyzkPP/9p+R3V4cxEQAAAA6FUhAAAAAAAACNljX8StlTsoLOvKV5Kv70P2FOBAAAgIOhFAQAAAAAAECj2eKTlDPqhqCzpB6nKH3gBeENBAAAgINyWB0AAAAAAAAA0SnxqBOUcuIIla9cKEmyJaQo+5xrlNTzVBmGYXE6AAAAHIhSEAAAAAAAAIcta9iVqt78rVytj1L2ORPkSE63OhIAAACCoBQEAAAAAADAYbPFJajt2CmyJ6WxOhAAACCC8UxBAAAAAAAAHBFHcvohC0HTNMOUBgAAAMFQCgIAAAAAAKDZmD6vij/7jwo+mGF1FAAAgBaN7UMBAAAAAADQLNx5W5X33lS59/4kSUo6pp8Sjz7J4lQAAAAtEysFAQAAAAAA0KRMv0/FX7ylHc/fFigEJSl/zjPyVVdYmAwAAKDlohQEAAAAAABAk8p7958q/uTfkt9b53NfRZEKP3zBolQAAAAtG6UgAAAAAAAAmlTqSedIMoLOKlZ/osofloc3EAAAACgFAQAAAAAA0LQSOvZS6oDzQs4L5j4jX3V5GBMBAACAUhAAAAAAAABNLvOMS+XMbBN05qssUeGCf4U5EQAAQMtGKQgAAAAAAIAmZ3PGKWfURIXcRnTNp6rc8FV4QwEAALRglIIAAAAAAABoFvEdeijt5NEh5wUfTJevqiyMiQAAAFouSkEAAAAAAAA0m4whl8iZ1TbozFdZqoL5z4U5EQAAQMtEKQgAAAAAAIBmY3PGKWf0TZIR/MdQld9/oYp1S8OcCgAAoOWhFAQAAAAAAECzim93jNJOOT/kvGDeDPkqS8OYCAAAoOWhFAQAAAAAAECzyzj9Yjmz2wed+avKVDD/2TAnAgAAaFkoBQEAAAAAANDsbA7XwbcRXbdUFd9/EeZUAAAALQelIAAAAAAAAMIivu3RSh94Qch5wbxn5a0oCVseAACAloRSEAAAAAAAAGGTcdpFcuZ0DDrzV5erfNVHYU4EAADQMlAKAgAAAAAAIGwMh1O5oyfW20bUiEtU9nk3KP3U31qUDAAAILZRCgIAAAAAACCs4tp0VfqgX8q/hKOOV4cJjyn1hGEyDMPCZAAAALHLYXUAAAAAAAAAtDwZg3+vmq1rlXzcEKWcMJwyEAAAoJlRCgIAAAAAACDsDLtTbS6/nzIQAAAgTNg+FAAAAAAAAJY4VCFo+n3y11SGKQ0AAEBsoxQEAAAAAABAxHEX7tKuV+5S3rv/lGmaVscBAACIemwfCgAAAAAAgIhhmn6VLZ+rokUzZXrdkqSK1YuUcvxQi5MBAABEN0pBAAAAAAAARARP0W7lv/+karavq/N54cIXlNDleDlSsyxKBgAAEP3YPhQAAAAAAAARIX/O0/UKQUny11Ypf87TbCMKAABwBCgFAQAAAAAAEBGyz7lasgff2Kp680qVr/oozIkAAABiB6UgAAAAAAAAIoIrp6MyT7845Lxw4YvyluaHMREAAEDsoBQEAAAAAABAxEg75TeKa9st6Mx0V7ONKAAAwGGiFAQAAAAAAEDEMGx25YyeKMPuDDqv/mmVylcuDHMqAACA6EcpCAAAAAAAgIjiym6vjDP+GHJe+NFL8pTkhTERAABA9KMUBAAAAAAAQMRJGzBKce26B52Z7hrlz3lKpukPcyoAAIDoRSkIAAAAAACAiLNvG9EbZThcQec1W75T2TcLwpwKAAAgelEKAgAAAAAAICK5stop44xLQ86LPn5ZnuI9YUwEAAAQvSgFAQAAAAAAELHS+o9UfIeeQWemp1b577ONKAAAQENQCgIAAAAAACBiGTa7ckYdZBvRbWtV9vW8MKcCAACIPpSCAAAAAAAAiGjOzDbKHHpZyHnRx6/IU7Q7jIkAAACiD6UgAAAAAAAAIl5qv3MV37FX8KFhyJ23NbyBAAAAogylIAAAAAAAACKeYdj2bSPqjK/zeXyHnmp/9SNK6nGKRckAAACiA6UgAAAAAAAAooIzo3VgG1HD4VLWiHFqc/kkOTPbWJwMAAAg8jmsDgAAAAAAAAA0VOpJZ8tbslcpJ54lV1Zbq+MAAABEDUpBAAAAAAAARA3DsClr+FirYwAAAEQdtg8FAAAAAABATPGU5slTtNvqGAAAABGFUhAAAAAAAAAxwTRNla1cqB0z/qy8d/8p0++zOhIAAEDEYPtQAAAAAAAARD1vWYHy5zyl6s2rJEm1uzaq9Mv3lH7qhRYnAwAAiAyUggAAAAAAAIhapmmqYvUiFSx8QWZtVZ1Z0aevK7HbSXLldLQoHQAAQORg+1AAAAAAAABEtYrvv6hXCEqSfF7lvTdNps8b/lAAAAARhlIQAAAAAAAAUcswDOWcd4NscYlB5+49P6pk6TvhDQUAABCBKAUBAAAAAAAQ1RypWcoaMS7kvPizN+TO2xrGRAAAAJGHUhAAAAAAAABRL7nPmUro2jf40O9V3ntT2UYUAAC0aJSCAAAAAAAAiHqGYShn5HWyxScFnbv3/qSSJW+HORUAAEDkoBQEAAAAAABATHCkZinrrPEh58Wfv6naPT+FMREAAEDkoBQEAAAAAABAzEg+dogSu/ULPvT7lD97qkyfJ7yhAAAAIgClIAAAAAAAAGKGYRjKPvc62eKTg87deVtV/PlbYU4FAABgPUpBAAAAAAAAxBRHSoayz7465Lzki7dUu3tzGBMBAABYj1IQAAAAAAAAMSep92Aldj85+ND0K2/2VJlethEFAAAtB6UgAAAAAAAAYo5hGMo+Z4JsCSlB5578bSr+7D9hTgUAAGAdSkEAAAAAAADEJEdyurLPuSbkvGTpO6rZtSmMiQAAAKxDKQgAAAAAAICYldTzVCX1GBh0Fte6i2yu+DAnAgAAsIbD6gAAAAAAAABAc9m3jeg1qt62Vv6qsn0f2hzKOP0ipQ+8QIbNbm1AAACAMGGlIAAAAAAAAGKaPSktsI2oq1UXtb/q/5Qx6HcUggAAoEVhpSAAAAAAAABiXnLPU6XfSknHDJBh50diAACg5eEbEAAAAAAAAFqE5J6nWh0BAADAMmwfCgAAAAAAgBbPNE2Vr/lUNTs2WB0FAACgWbBSEAAAAAAAAC2at6JEBR9MV9UPy+TMbKN2Vz8imzPO6lgAAABNipWCAAAAAAAAaJFM01TF919ox4z/p6oflkmSPEW7VfzJvy1OBgAA0PRYKRhhNmzYoLffflvLli3Tjh07VF1draSkJOXm5ur444/XiBEjdPrpp8swDKuj1uHz+bRo0SItXLhQq1ev1p49e+TxeJSenq4TTjhBl156qU499fD27Xe73Zo3b54++ugjff/998rLy5PP51NOTo5OOukkXXnllTruuOMOeZ0dO3Zo2LBhh5XB6XRqxYoVcrlch3U+AAAAAACILKbPq7x3Hlfl+qX1ZqXL5iix+8lK6NjLgmQAAADNg1IwQuzatUuTJ0/W0qVLdemll+quu+5Shw4d5Pf7tWvXLn322Wd69dVX9cYbb6h379567LHH1KlTJ6tjS5KWLVume+65R6Wlpbr44os1ZswYtW7dWh6PR0uWLNGkSZO0cOFCXXbZZfrrX/8qm63hC1QXLFigyZMny+Fw6JJLLtG1116r3NxcVVVVad68eXr00Uc1Z84c/fnPf9aECROa7dfYtWtXCkEAAAAAAGKIYXfIcIXaItRU/vtPqv3Vj8jmig9rLgAAgOZCKRgBVq1apWuvvVZZWVmaM2eO2rRpU2feqlUrnXjiibrooos0btw4rV27VhdffLHefPNNtW/f3qLU+8ycOVOTJ0/WkCFD9MADDygjI6PO/A9/+IPmzp2rJUuW6NVXX1VGRoYmTpzYoGs/8sgjmjFjhi666CL97//+rxISEurMJ0yYoDfffFNbt27VI488otzcXF1wwQWHvG6bNm0UH9+4L/SDBg1q1PEAAAAAACDyZY0Yr+rNq+WrKKo38xbvUdGimco++yoLkgEAADQ9SkGLFRUV6brrrlNJSYlmzpxZrxA8UOvWrfXYY4/pwgsvVHFxsW677Tb9+9/W7XH/1ltvadKkSRo2bJieeOIJORzB/3EqKysLvP7ggw8aVApOnTpVM2bM0JgxY3T33XeHPO7Aa8+dO7dBpeCDDz6ok08++ZDHAQAAAACA2GaPT1LOeddpz6wHgs7Lvp6rpB6nKKFT7zAnAwAAaHoN38cRzeKZZ55RUVGRunfvrq5dux7y+B49emjw4MGSpG+++UbLli1r7ohBbdmyRffee6/S09M1ZcqUkIWgtG+l4359+vQ55LWXLVumJ598Ul26dNGdd9550GMbe20AAAAAAIADJR59klKOHxpynv/+NPnd1WFMBAAA0DxYKWixefPmSZI8Hk+Dzzn11FP16aefSpIWLVqkAQMGNEu2g5kyZYrcbreuuOIKpaamHvTYRx99VEuWLJHL5dIpp5xy0GP9fr8eeOABmaapK664Qk6n86DHv/LKK/rqq6+UlpZmye8DAAAAAACIflnDx6pq8yr5ygvrzbwleSr6+FVln3ONBckAAACaDisFLVRVVaW9e/dKkn788cdA0XcoHTp0CLzetm1bs2Q7mOXLl2vRokWSpLPPPvuQx8fHx2vo0KEaPHjwQVcUStJ7772ndevWSZLOOuusQ147NTVVI0aMoBAEAAAAAACHzRafpJzzrg85L/tmnqp/Wh3GRAAAAE2PUtBC1dV1t5548MEHG3ReQkJC4LXb7W7STA3x9ttvB3L06tWrWa7duXNnZWdnN+m1AQAAAAAAQknseqJSThgecp4/5yn5a9lGFAAARC9KQQtlZmYqJycn8H7/qsFDKS4uDrxu06ZNk+c6GLfbrQ8//FCS1LVr10Ou/GuM/Px8LV++XJLUvXv3JrsuAAAAAABAQ2QNv1KO1OB/SNlbmq/Cj14OcyIAAICmQyloIcMw9Pjjj6t///7q1q2bbrvttgadt2bNmsDrcJdn33zzjcrKyiRJnTp1atJrL168WH6/v1muDQAAAAAAcCi2uERlj7oh5Lx85QJVbf42fIEAAACaUNMt88Jh6devn1599dUGH2+aphYsWCBJcjgcOvfcc5srWlDr168PvM7Nza0z++qrrzR37lxt2LBBVVVVyszMVMeOHTVs2DANGjTokKsKQ13bNE0tWrRICxcu1MaNG+XxeJSdna2jjjpKw4cP18knn3xYvxav16v3339fixcv1nfffafCwkKZpqk2bdro9NNP15gxY9SxY8fDujYAAAAAAIhOiV2OV0rfs1S+YkHQef6cp9Xhmkdli08KczIAAIAjQykYZRYtWqSdO3dKkoYPH67MzMyw3n/Dhg2B1+np6ZKk3bt364477tCXX35Z7/ilS5dq1qxZ6t27t6ZMmaJjjjmmUdfeuHGjbrvtNn3//ff1jv/888/18ssva+DAgfrHP/7RqK1UCwsLdf3112vVqlWSpJSUFGVkZKigoECbN2/W5s2b9frrr+vOO+/UJZdc0uDrRiqv1yvDMKyOEXZer7dBnwEAAADNge+jQPRKPe2PqvpxpXyl+fVmvrIC5S94QZnnXmtBMgAAGo7vo3W15F/7fpSCUcTn8+mf//ynJCkxMVG33npr2DNs2rQp8Do5OVnbtm3TmDFjVFBQoAsvvFAXXnihevfuLbvdrrVr1+qpp57SF198obVr12rs2LGaNWuWOnTo0KBrr169WmPHjpXH49Hll1+u0aNHq1u3bvL7/frmm2/0z3/+U2vXrtXSpUsD195fJh5MVVWVxo0bp5KSEt11110aOXJkoFx1u92aN2+eJk+erJKSEt1zzz2y2Wy66KKLjuw3zmLr1q2zOkLECFYwAwAAAOHC91EgejiOGaGU5f8OOqv8bpH2xLeRN6tzeEMBAHCE+D7asvFMwSjy0ksvBbbYnDRpUshyrTmVlpYGXhuGoZtvvller1czZ87UlClTdPLJJys5OVkJCQnq16+fnn/+eV188cWS9q3OO9hzEw+8dnV1tW666SZlZWXpnXfe0d/+9jcdf/zxSkxMVHJysoYMGaJZs2ZpyJAhkqQtW7bo73//e4N+DQ8++KC8Xq/++9//6rLLLquz2tLlcun888/XK6+8ovj4eEnS5MmTtWXLlgb/HgEAAAAAgOjnzeqsmo4n1fvclKHqo06VN6O9BakAAAAOH6VglFizZo0effRRSdLtt9+u0aNHW5KjsrIy8Prtt9/W5s2bNX36dPXt2zfo8YZh6O677w5sG7pixQotWrSo3nE1NTXy+XyB988//7xqamr0r3/9S127dg16bafTqUceeUTZ2dmSpPfff7/OcwlD2blzp6ZOnaqsrKyQxxxzzDG65pprAtmmTp16yOsCAAAAAIDYUn3MmfIlpAfe+5KzVT7wStUcc4ZkYwMuAAAQXSgFo0BeXp4mTpwor9eru+++W+PHj7csy4Gl4Jo1a3TDDTeoT58+Bz3H4XDoxhtvDLyfNWvWQa+7/9p/+9vfDrkaMiUlJfD7YZqm3nzzzZDHpqen6/rrr9c999wTsmg80KWXXiq73S5Jmj9/fp2VjAAAAAAAoAVwuFR13CiZhk01XQaqbOB4+dLaWp0KAADgsBimaZpWh0BoZWVluuKKK7Rx40b94x//0Pnnn29pnl69egVW9LVp00YLFiyQy+U65Hlut1v9+vVTbW2tnE6nVqxYUee8PXv2BLYClaQTTjghaHkYzK5du3TmmWdKktq1a6ePP/64Mb+kg/rjH/+oFStWSJJmzJhRJ2Mkcrvd+u677+p93rNnTzmdTgsSWcvr9dbbI7tXr15yOPjTnAAAAGh+fB8FYoe3rECO1GyrYwAA0Ch8H63L4/Fo3bp19T4/7rjjGtRzxIKW+Z98lCgvL9f48eO1efNmTZ06VUOHDrU6khISElRRUSFJuuyyyxr8XxSXy6Vu3bppzZo18ng82rBhg4477rg61z3Q2LFjG5ypbdu2ysjIUHFxsXbu3KmioqI6zwk8Er169QqUgt9//33El4KhOByOFlkKBsPvBQAAAKzE91EgOjmz2lgdAQCAJtGSv4+yRo7tQyNWaWmpxo4dq02bNmn69OkRUQhKUlJSUuD1r4u8Q2nVqlXg9d69e0NeV5ISExMP+9p5eXmNOvdg2rf/5aHhxcXFTXZdAAAAAAAQG3zV5cp795+q3LDM6igAAAAHxUrBCFRcXKxx48Zp27Zteu6559SvXz+rIwWkpaUFCr2qqqpGnXtg8ffrcx0Oh5KSkgLPFvz1MwYbc+3GntvQ6zb21wsAAAAAAGJb5Q/LVTD3GfkqS1T902rFd+gpe2KK1bEAAACCYqVghCktLdX48eMjshCUpKOOOirwuqioqFHnejyewOtfrwxs7msfLr/fH3jd2NWLAAAAAAAgNvlqKpU3e6r2vjFFvsqSfZ9VlqhgwXPWBgMAADgISsEIUlFRoauuukpbtmzR888/r759+1odqZ5u3boFXm/evLlR59bU1ARep6WlhfXa1dXVuuWWWzRgwAD96U9/avDewQeuDkxNTW1UJgAAAAAAEHv87hrtfPYvqlj9Sb1Z5drPVbn+y/CHAgAAaABKwQjhdrt1ww03aOPGjZo+fbpOPPHEQ57j8Xg0ceJEVVdXhyHhPgcWlRs2bGjUuSUlJYHXXbp0Oei1169f36hr73/eX2JionJzc+vNX3zxRb3//vsqLS3VvHnztHLlygZd98BnHx599NGNygQAAAAAAGKPzRWvpF6DQs7zP5guX2VpGBMBAAA0DKVgBDBNU3fccYe++eYbPfHEExowYECDzlu3bp2WLl2qhISEZk74iwEDBig9PV2StHv37kYVgzt27JAkdejQQVlZWfXmw4YNk91ulyStWrVKpaUN+wJdW1urgoICSVKfPn0C1zjQr0vA2traBl1706ZNgdd9+vRp0DkAAAAAACC2ZQy5RM6sdkFn/qoyFcxnG1EAABB5KAUjwJNPPqk5c+bo73//u4YMGdLg8+bNm6eOHTs2Y7L6HA6HzjvvvMD7OXPmNOi8goIC5efnS5KGDx8e9JjMzEyddtppkiSv16t58+Y16NobNmwIbAca6topKb885Ltz584NelZjbW2tVqxYIUk67rjj1LZt2wblAQAAAAAAsc3mcCln9E2SEfxHa5Xrlqji+y/CnAoAAODgKAUttnjxYk2bNk3XX3+9Lrzwwgaft3PnTr3++ushS8Fdu3ZpwoQJOvHEEzV69GgtWbKkqSLruuuuU2JioiRp5syZDVrR9/nnn0uS7Ha7Lr/88pDH/fnPf5bNtu8fyxkzZsjj8Rzy2p9++qmkfc/8++1vfxv0mP1loyRNmDBBTqfzkNf98MMPA88U/OMf/3jI4wEAAAAAQMsR366b0gdeEHJeMO9ZeStKwpYHAADgUCgFLZSfn6/bb79dp5xyim6++eYGn7dy5UqNGzdOlZWVIUvB22+/XYsXL1ZVVZV++OEH3XDDDdq9e3eT5M7NzQ3kraio0KRJkw56vGmaevHFFyVJN998s9q1C769hiT16NFDY8aMkbRvu9EnnnjioNeurq7W66+/Lkm6++67lZSUFPS4kSNHqmfPnpIUKDQPpra2VtOmTZMknXDCCY0qbAEAAAAAQMuQcdpFcuZ0CDrzV5erYN6MwO5GAAAAVnNYHaAlmzp1qoqLi7Vp0yaNHDmyQeeUlZWpsLAw8D5UKbhmzZo676urq/Xdd9+pTZs2hx/4AOPGjdP27ds1c+ZMvf/++2rXrp3+/Oc/yzCMOseZpqkpU6Zo3bp1uuCCC3Tttdce8tp33nmndu7cqY8//ljPPvus2rZtG3Slntfr1R133KH8/Hxdf/31Gj16dMhrulwuTZs2TVdddZWeeuop9e/fX9nZ2UGPdbvduv3227V582a1adNGDz/8cGD1IgAAAAAAwH6Gw6ncURO188U7JdNfb1614StVfv+FknsPtiAdAABAXZSCFiooKJC0b8Xg/uftNVaoUvDYY4/VsmXLAu+dTqd69OhxWPcI5a677lLXrl318MMPa/r06fr22281fvx49ejRQ16vV+vWrdPLL7+s1atX65ZbbtGECRMadF273a4nnnhCzzzzjKZPn657771XS5Ys0aWXXqquXbuqpqZGK1eu1L/+9S/t3r1bU6ZMadBKvvbt22vWrFl68MEHdfbZZ+uss87SGWecoS5duigrK0tlZWVasWKFXnzxRf3www86+eST9cADD6h9+/ZH+lsFAAAAAABiVFzbo5V+6m9V8sWbQecF859VfKfeciRnhDkZAABAXYbJHgaWueGGG/TRRx8d0TU++eSToKv/du3apXvvvVfLly9Xq1atdMstt2jEiBFHdK9QCgoKNHfuXH300Ufavn27CgoKFBcXp/bt22vIkCG65JJL1Lp168O69o4dOzRnzhx98skn2rVrlwoLC5WUlKQuXbpo6NChuuiii5Sent7o627evFlvvfWWli1bpq1bt6qyslIpKSnKycnRSSedpBEjRmjQoEGHldlKbrdb3333Xb3PjzvuOLlcLgsSWcvj8Wj16tV1PuvTp0+DnikJAAAAHCm+jwIth+nzaOe/bpc7b2vQeeIx/dXq97fX22EJAIDmxPfRuvj5OaUgEFP4H7W6+D89AAAAWInvo0DLUrtns3a+cIfk9wWd55x/s1KOGxLmVACAlozvo3Xx83OJB6UBAAAAAAAARyiu9VFKH/S7kPPCBc/LW14UxkQAAAB1UQoCAAAAAAAATSBj0G/latUl6MxfU6mCuc+ITbsAAIBVKAUBAAAAAACAJmDYncoZPVGyOYLOqzatUO2uTWFOBQAAsA+lIAAAAAAAANBE4lp1Vsbg39f73JHeSm0uv0/x7bpZkAoAAEAK/seWAAAAAAAAAByW9FMvVOUPy+Tes1mSlNrvXGWeeZlsrniLkwEAgJaMlYIAAAAAAABAEzLsDuWOvknOrLZqM+ZeZZ99NYUgAACwHCsFAQAAAAAAgCbmyu2o9hMel2GzWx0FAABAEisFAQAAAAAAgGZxqELQ766WaZphSgMAAFo6SkEAAAAAAAAgzKp/Wq0dM/6s8m8/tDoKAABoIdg+FAAAAAAAAAgTv7taRR+9orIV8yVJhR++qISjjpczLdfiZAAAINaxUhAAAAAAAAAIg+qta7Rjxl8ChaAkme4aFbz/FNuIAgCAZkcpCAAAAAAAADQzX1WZ9rw+Wd7SvHqz6i3fqXzFAgtSAQCAloRSEAAAAAAAAGhm9sRUZZzxx5Dzwo9elqdkbxgTAQCAloZSEAAAAAAAAAiDtP7nKa59j6Az01Oj/PeflGn6w5wKAAC0FJSCAAAAAAAAQBgYNrtyR98ow+EKOq/ZulZlX88LcyoAANBSUAoCAAAAAAAAYeLMbKvMM8eEnBctelWe4j1hTAQAAFoKSkEAAAAAAAAgjFL7j1R8h55BZ6anVvmzp7GNKAAAaHKUggAAAAAAAEAYGYZNOaMnynDGBZ3XbF+nsuVzw5wKAADEOkpBAAAAAAAAIMycGa2VeeZlIedFi2bKXbgrjIkAAECsoxQEAAAAAAAALJDa7xzFd+oddGZ63cp/f5pMvy/MqQAAQKyiFAQAAAAAAAAsYBg25Yy6UYYzPui8dscGlS6bE+ZUAAAgVlEKAgAAAAAAABZxprdS1rArQs6LF78md8GOMCYCAACxilIQAAAAAAAAsFBK37OU0Pm4oDPT61b+bLYRBQAAR45SEAAAAAAAALCQYRjKHnWDDFfwbUS95UXyluaHORUAAIg1lIIAAAAAAACAxZxpucoaPrbe5ynHD1WHCY/JmdE6/KEAAEBMcVgdAAAAAAAAAICUcsJwVa5fqurNq2RPzlTOedcp8eiTrI4FAABiBKUgAAAAAAAAEAEMw1DOeTeo+PO3lHnmGNkTkq2OBAAAYgilIAAAAAAAABAhHKnZyhl5rdUxAABADOKZggAAAAAAAEAUqd21SabPa3UMAAAQZSgFAQAAAAAAgCjg99Sq8MOXtPOFO1Sy5L9WxwEAAFGG7UMBAAAAAACACFez8wflz54qT+EuSVLx528q8Zj+imvV2dpgAAAgarBSEAAAAAAAAIhQfq9bhR+/ol0v/TVQCP48UP7saTJ9HuvCAQCAqEIpCAAAAAAAAEQof3Wlyld+KJn+ejP33p9U/MXbFqQCAADRiFIQAAAAAAAAiFCOlAxlnX1VyHnJF2+pdvfmMCYCAADRilIQAAAAAAAAiGDJvU9T4jEDgg/9PuW/P5VtRAEAwCFRCgIAAAAAAAARzDAMZZ87QbaE5KBzd942FX/2ZphTAQCAaEMpCAAAAAAAAEQ4R3KGss++JuS8ZMnbqt21KYyJAABAtKEUBAAAAAAAAKJAUq9BSupxSvCh6Vfe7KkyvWwjCgAAgqMUBAAAAAAAAKKAYRjKPmeCbImpQeeegh0q/mxWmFMBAIBoQSkIAAAAAAAARAl7UpqyzznINqJL31XNzh/CmAgAAEQLSkEAAAAAAAAgiiT3PFVJPU8NPjT9yp89TX6vO7yhAABAxKMUBAAAAAAAAKJM9jnXyJ6UFnTmKdyp4sWvhzkRAACIdJSCAAAAAAAAQJSxJ6Yq+5xrQ85Lv3xPNTvWhzERAACIdJSCAAAAAAAAQBRK6nGyknoPDjE1920j6qkNayYAABC5KAUBAAAAAACAKJV91tWyJ6UHnblaHyXT5w1vIAAAELEoBQEAAAAAAIAoZU9MUfa5dbcRtSWmKve3t6rVhX+RPT7JomQAACDSOKwOAAAAAAAAAODwJXUfoOTjhqjiu8VK6nGKss+ZIHtSmtWxAABAhKEUBAAAAAAAAKJc1ojxSuzWT0k9BsowDKvjAACACEQpCAAAAAAAAEQ5e0KyknueanUMAAAQwXimIAAAAAAAABDjTJ9HJV++J7+72uooAADAIqwUBAAAAAAAAGJY7d4tyn9vqtx5W+Qt2avsc66xOhIAALAApSAAAAAAAAAQg0yfVyVL/qviz9+Q/D5JUtk385TU4xQldD7O4nQAACDc2D4UAAAAAAAAiDGekr3a+eKdKv709UAhuF/++0/JX8s2ogAAtDSUggAAAAAAAECMsSekyFdVFnTmLc1T4ccvhzkRAACwGqUgAAAAAAAAEGNscYnKGXVDyHn5igWq2rwqjIkAAIDVKAUBAAAAAACAGJTY5XilnHhWyHn+nKfkr60KYyIAAGAlSkEAAAAAAAAgRmUNu0KOtJygM19ZgQo/fCnMiQAAgFUoBQEAAAAAAIAYZYtLUM6oG0POy7/9UFU/rgxjIgAAYBVKQQAAAAAAACCGJXQ+TqknnRNynj/nKflqKsOYCAAAWIFSEAAAAAAAAIhxmUMvkyM9N+jMV16kwoUvhjcQAAAIO0pBAAAAAAAAIMbZXAnKGTUx5Lxi9ceq2vhNGBMBAIBwoxQEAAAAAAAAWoCETr2V2n9kyHn+3Gfkq64IYyIAABBOlIIAAAAAAABAC5F5xhg5MloHnfkqilS48IUwJwIAAOFCKQgAAAAAAAC0EDZXvHJG3SjJCDqv+O4TVf6wPKyZAABAeFAKAgAAAAAAAC1IQsdeShtwXsh5wdxn5K+pDGMiAAAQDpSCAAAAAAAAQAuTccalcma2rfe5LS5RmUMvkxGXaEEqAADQnCgFAQAAAAAAgBbG5oxTzui624gmdD1R7Sc8rpQ+Z8owgm8vCgAAopfD6gAAAAAAAAAAwi++fQ+lnTJaZSs/VNbwsUo5fihlIAAAMYxSEAAAAAAAAGihMk6/RGn9z5MjNdvqKAAAoJlRCgIAAAAAAAAtlM0ZJ5szzuoYAAAgDHimIAAAAAAAAICg3AU7tGfWA/JVllodBQAAHCFKQQAAAAAAAAB1mH6fSr58Tzufu1VVm75RwbwZMk3T6lgAAOAIsH0oAAAAAAAAgABP0S7lzZ6m2h0bAp9Vrv9SleuWKLnXIAuTAQCAI8FKQQAAAAAAAACSpJod67Xj2VvqFIL7FcybIW9FsQWpAABAU6AUBAAAAAAAACBJimvdVc7M1kFn/uoKFXzANqIAAEQrSkEAAAAAAAAAkiTD4VTOqJskI/iPDat+WKbKtZ+HORUAAGgKlIIAAAAAAAAAAuLaHKX0Qb8LOS+Y/5y85WwjCgBAtKEUBAAAAAAAAFBHxuDfyZXbOejMX1Ohgg+eYRtRAACiDKUgAAAAAAAAgDoMu1M5598k2exB51Ubv1bFd4vDnAoAABwJSkEAAAAAAAAA9cS16qyMwb8POS9c8Ly8ZYVhTAQAAI4EpeAhTJs2zeoIAAAAAAAAgCXST/2tXK26BJ35a6uUP5dtRAEAiBaUggcxbdo0Pfnkk1bHAAAAAAAAACxh2B3KPf8myeYIOq/+cYUqVi8KcyoAAHA4IrIU3Lt3r9UR9NRTT7FKEAAAAAAAAC2eK7eTMk6/KOS8YOEL8pYVhDERAAA4HBFXCu7du1dXXHGFpRneeOMNPfHEE5ZmAAAAAAAAACJF+sALFNema9CZWVul/DlPsY0oAAARLqJKwf2F4LZt2yzNMWLECHXv3t3SDAAAAAAAAECkMGx25YyeKNlDbCO6eZXKv/0wzKkAAEBjREwpuL8Q3Lp1q9VRlJ6erpdeeoliEAAAAAAAAPiZK6ejMk+/JOS8+NNZ8nvdYUwEAAAaI2JKwc8///yQhaDb7dZrr70Wljzp6el68MEHw3IvAAAAAAAAIBqknXK+4tp2q/d5fKfeanvlZNkcLgtSAQCAhoiYUvB3v/ud7rjjjpBz0zR1yy236P7779fy5cvDksnl4ksMAAAAAAAAsN/+bUQNu3Pfe2ecss66Sm3G3CtneiuL0wEAgIMJvgm4RcaOHSuPx6NHH3203mzy5MlauHChJOmKK64IdzQAAAAAAAAAklzZ7ZVxxh9V9cNy5Yy6Uc7MNlZHAgAADRAxKwX3GzZsWL3P3G63Nm3aJEkyDEOmaYbtLwAAAAAAAAB1pQ0YpTaXT6IQBAAgikTUSsFQXC6XnnvuOf3tb3/Tu+++q2uuuabeMaWlpXrjjTd09dVXN/kMAAAAAAAAwC8Mm/2Qx/i9bp4xCABABImKUlCSHA6HrrnmGr377ru65ZZb6s1//PFHvfHGG80yAwAAAAAAANAwpmmqfMUCFX/2H7W9crKcGa2tjgQAABSB24cejGEYETMDAAAAAAAAUJenNE97Xpukgnkz5KssUf77T8o0/VbHAgAAirJSEAAAAAAAAEDkMU1TZSsXaseMv6j6p9WBz2u2fa+yrz+wMBkAANiPUhAAAAAAAADAEanasEwFc5+R6a6uNyv6+FV5inZZkAoAABzI0lLQ5/NZeXsAAAAAAAAATSCxe3/Fd+oddGZ63cqb/aRMPz8LBADASpaVgrW1tRo7dqxqamqsigAAAAAAAACgCRiGTTnn3SDDGR90XrtjvUqXzw1zKgAAcCCHVTf+z3/+o+XLl2v8+PHq1auXEhISlJCQoKqqKknSa6+9pri4OMXHxwf+XlBQYFVcAAAAAAAAAAfhzGitrGGXq2Des0HnxZ/8W4lH95Urq12YkwEAAMmiUtDj8ej555+XYRhauXKlVq5cWWdumqYmTZpkRTQAAAAAAAAAhyml71mqXP+lqrd8V29met3Knz1Nba/4uwyb3YJ0AAC0bJZsH/rOO+9oz549Mk0z6F+SDjoDAAAAAAAAEHkMw6bsUTfIcIXYRnTnDyr9anaYUwEAAMmilYK9e/fWq6++KqfTKZvNJtM05ff7VVtbq61bt+qee+7R1KlTVVtbq5qaGtXU1Ki2tla7du3SzJkzrYgMAAAAAAAAoAGcabnKGnalCj6YHnRevPh1JXbrJ1d2+zAnAwCgZbOkFOzVq1fIWU5OjiRp+PDh9WabN2+mFAQAAAAAAAAiXMqJI/ZtI/rTqnoz0+fZt43olZPZRhQAgDCyZPtQAAAAAAAAALHLMAzlnHe9DFdC0Hntro0q/fLdMKcCAKBloxQEAAAAAAAA0OQcaTnKGjE25Lzo01ly520LXyAAAFo4SkEAAAAAAAAAzSLl+GFKOOrE4EOfV3mzp8n0ecMbCgCAFsqSZwoerpqaGpmmqXfeeafeLC8vT5KaZQYAAAAAAACg8fZvI7pjxv+Tv7aq3ty950eVLH1HGYN/b0E6AABalogtBX0+n+z2ug8anj59uiTpzjvvDHlec8wAAAAAAAAAHB5HapayRoxT/vtPBp1Xb/5W6adeKMNmDzoHAABNI2JLwbKyMmVkZATef/nll5o/f74kyTTNsOUwDCNs9wIAAAAAAABiUXKfM1W5/ktVbfrmlw/tDmWefonSTjmfQhAAgDCI2FKwtLS0TikYFxenqVOnKi4uTnFxcXK5XHK5XHI4HHI4HM1S3m3fvl3XXXddk18XAAAAAAAAaEkMw1D2yOv2bSNaU6m4Nl2VM3qiXDkdrY4GAECLEZGloGma2rBhgzp37hz47MQTQzyQOAzcbrdcLpdl9wcAAAAAAACinSMlU9lnXyNPaZ7SB17A6kAAAMLMZnWAUL7//nurIwSUl5dbHQEAAAAAAACIesnHnqaMQb+jEAQAwAKWloKvvvpq4DmBB+rQoYMuvfRSCxLVZ5qmCgsLrY4BAAAAAAAAxDzTNFW7d4vVMQAAiEmWlYJ79+7VY489pilTpqisrCzweXp6ul599VW1atXKqmj1rFu3zuoIAAAAAAAAQEzzlhdr7xtTtPP5/1Ht7h+tjgMAQMyxrBR84IEHVFlZqT179uiMM87Qfffdp02bNikzMzOiCkFJKigosDoCAAAAAAAAEJNM01TFms+0Y8b/U9XGryXTr7zZU2V6PVZHAwAgplhSCi5evDiwbahpmqqqqtLrr7+u0aNH68orr9SCBQvk9/uDnrtnz55wRtU555yjcePGhfWeAAAAAAAAQEvgrSjR3rceUt67j8tfUxH43JO/XcWf/cfCZAAAxB5LSsFTTz1VL730kq6++mp1795d0r5y0DRNLVu2TH/605905plnatq0acrLywuct2XLFl1wwQXasmVLWHK2a9dOjz76aFjuBQAAAAAAALQ0NdvXqWrDV0FnJUvfUc2uTWFOBABA7DJM0zStDrF9+3YtWLBACxYs0KpVqwKfG4Yhu92uM844Q3/4wx/0yiuv6PPPP1dKSopSU1ObPMf+YtLv98vr9crj8ai2tlZut1sPPfSQRo0a1eT3BJqS2+3Wd999V+/z4447Ti6Xy4JE1vJ4PFq9enWdz/r06SOn02lRIgAAALQkfB8FgIbZ+/bDqly3NOjMmd1e7a56SDZHy/u5BgAcKb6P1sXPzyWH1QEkqUOHDrrqqqt01VVXafv27Xr33Xc1e/Zsbd26VV6vVx999JE++ugjSfuKwvLycpWXl4c14wcffEApCAAAAAAAADSx7LOvUfXWtfJXldWbeQp2qPjTWcoaerkFyQAAiC0RUQoeqEOHDpo4caImTpyoFStW6PXXX9eCBQtUU1MjaV8paBiGUlJSNHjw4Ca7r2ma8vl88nq9gVWCbrc78NeuXbvk8XhabIMOAAAAAAAANAd7Upqyz52gvLceDjov/fI9JR0zQPHtu4c5GQAAsSXiSsED9e3bV3379tXf/vY3vfPOO5o5c6a2bt0qSSovL1dpaanuv/9+tW3b1uKkAAAAAAAAAA5Xco+Bquw1SJXff1F/aPqVP3ua2l39sGzOuPCHAwAgRtisDtAQqampuuKKKzRv3jw9+eST6t+/v0zT1JIlSzR69Gi9/vrrVkcEAAAAAAAAcASyz75G9qT0oDNP0S4VL+ZngAAAHImoKAX3MwxDw4YN0yuvvKL//Oc/GjJkiCorK3Xffffp+uuvV3FxsdURAQAAAAAAABwGe2KKss+9NuS89KvZqtm+PoyJAACILVFVCh6oT58+euaZZ/Tf//5XQ4YM0aJFi/Sb3/xGK1eutDoaAAAAAAAAgMOQ1H2Ako89PcTUVN7sqfJ7asOaCQCAWBG1peB+PXv21DPPPKOXX35Zubm5uuKKK/Tvf//b6lgAAAAAAAAADkPWWeNDbiPqLd6jokUzwxsIAIAYEfWl4H4DBgzQm2++qcmTJ+upp57SAw88YHUkAAAAAAAAAI1kT0hR9sjrQs7Lls9R9ba1YUwEAEBsiJlScL/zzz9fH3zwgXw+n5577jmr4wAAAAAAAABopKRj+iu5zxkh5/mzn5TfXRO+QAAAxACH1QGaQ0pKiu666y6rYwAAAAAAAAA4TFkjxqt682r5Korqzbwle1W06FVln321BckAAIhOMbdSEAAAAAAAAED0s8cnKee864MPDZts8ckyTTO8oQAAiGIxuVIQAAAAAAAAQPRLPLqvUo4fqvJVHwc+c+Z0VO7oiYpr09XCZAAARB9KQQAAAAAAAAARK2v4WFVtXiVfRbHSB16gjNMukuFwWh0LAICoE9Gl4OzZszVq1CgZhmF1FAAAAAAAAAAWsMUnKfeCP8lwxCm+7dFWxwEAIGpFbCk4Y8YMPfbYY1q5cqX+8pe/yOFwBP4CAAAAAAAA0HIkdOxtdQQAAKJeRDZss2bN0mOPPSbTNPXaa6/ptddeqzO32+1yOp2Bv1wul5xOp+Li4uRyuRQfH6/4+HjFxcUpISFBCQkJSkxMVFJSkpKTk5Wamqq0tDSlp6crOztbbdq0UUJCgkW/WgAAAAAAAABHwldVrsoflin1hGFWRwEAIGJFZCmYn58v0zRlGIZM06w393q98nq9qq6uDnx2pFuM5ubmql+/fho6dKhGjBghl8t1RNcDAAAAAAAA0PwqNyxTwQfT5asskSM1S4lHnWB1JAAAIlJEloITJ05UVlaW7rvvPg0ePFgul0sejyfwV21trdxud+Cv2tpa1dTUqLa2Vl6v97DumZeXp7lz52ru3LlKT0/XddddpyuuuILnGQIAAAAAAAARyFddrsIF/1LFmk8Dn+W//5Q6THhMtvgkC5MBABCZIrIUlKQ//vGPuu+++/TXv/5VXbp0afB5Pp9P1dXVqq6uVlVVlSoqKlRZWany8nKVl5errKxMRUVFKioqUl5enrZt26Zt27bVKROLi4s1ZcoULV26VFOnTpXT6WyOXyIAAAAAAACAw1C1eZXy33tCvsqSOp/7ygtV+OGLyhl1ozXBAACIYBFbCh4uu92u5ORkJScnN/ic2tpaffvtt5ozZ47effddud1umaapxYsX65FHHtEdd9zRjIkBAAAAAAAANIZht9crBPcrX/WxknoMVOLRfcMbCgCACGezOkAkiIuL08knn6xJkybp3XffVZs2bQLPM3z55Zf19ddfWx0RAAAAAAAAwM8SOh2r1H4jQ87z5zwtX3VFGBMBABD5YroUfPbZZxtd6HXu3Fl/+tOfZJqmDMOQ3+/XI4880kwJAQAAAAAAAByOzDPHyJHROujMV1Gkwg9fCHMiAAAiW0yXgn369NFtt92miorG/amgTp061Xn/7bffavny5U0ZDQAAAAAAAMARsLnif352oBF0XrH6E1X+wM/0AADYL6ZLwZNPPlndu3fX5MmTG3We3W6v837UqFFq3759U0YDAAAAAAAAcIQSOvZS6oDzQs4L5j4jX3V5GBMBABC5YroUlKTbbrtNs2fP1qJFixp8Tnn5L18Uxo0bp4ceekht2rRpjngAAAAAAAAAjkDmGZfKmRn8Z3e+yv/P3n2HR1Ulbhx/ZzLphXQ6iog0QUEEFRWlqQgKqEizAIpKcdfVBawoVlZFkSJNl0VQUMRCkY4gUldFiog0KaGl9zLJzO8PfswSM0P6vSnfz/P4PHfuuffMm8iuQ96cc5MUv+pjgxMBAFAxVZlSMCMjQxs2bNDRo0fznW/YsKH69u2rF198USkpKUWaKy4uTpLUokULjR49usyzAgAAAAAAACgbVm9fRfUcKY/biO7ZqPT924wNBQBABVQlSsGvvvpKnTp10uOPP67bb7+9wHMER44cqYyMDL3xxhtFmu/EiROyWCx65plnZLG4/zABAAAAAAAAoGLwq9dUNdr39Dge990M5WUUbcEAAABVVaUvBd99910999xzSkpKktPplNPp1JIlS/Twww+7rgkPD9eQIUP0zTffaNOmTYXOefz4cTVr1kzXXXddOSYHAAAAAAAAUFbCOvaTd0Qdt2N56cmKWznb4EQAAFQsppaC33zzTanunz9/vmbNmiVJ+Vb0XX755XrwwQfzXTt48GCFhoZq3LhxyszMvOi8Bw4cUK9evUqVDQAAAAAAAIBxzm0jOkqyuP+RZ/pvPyrt9y0GpwIAoOIwrRQ8evSonn/+eX377bcluv/333/Xm2++KYvFIqfTKT8/Pz388MP65ptvtGTJEt111135rg8MDNQjjzyimJgYTZo0yeO8TqdThw4d0m233VaiXAAAAAAAAADM4Vf3CtW47i6P43HfzVReerKBiQAAqDhMKwUnTpyo3NxcjR8/Xu+9957OnDlT5Hvz8vI0duxY5ebmymq16oEHHtDatWs1duxYNWnSxON9gwYNUmRkpD755BPt3LnT7TV2u11vv/22atasWdwvCQAAAAAAAIDJwm6+X96R9dyOOTJS2EYUAFBtmVIK7tq1SytXrpTFYlF6erpmzpypzp076+mnn9auXbsKvX/evHn6/fff1bx5c33xxRd6/vnnFR4eXuh9vr6+GjJkiKtUzM7OLnCNj4+PunTpUqKvCwAAAAAAAIC5rDYfj9uI2sJqqca13U1IBQCA+UwpBadPny7p3Fad5//Jzc3V8uXLdf/996tfv35avnx5vucEnpeTk6MPP/xQjz32mD7//HM1b968WO/dv39/hYWF6ejRo/rXv/5VJl8PAAAAAAAAgIrDr87lCr2+1wVnLAq59k7Ve3Si/Oo3MysWAACmMqUUnDZtmn788Uf9+9//1qhRo9ShQwf5+Pi4CsJff/1VTz/9tCRpwYIFysjIcN3r4+OjpUuX6qmnnpLNZiv2e/v7+2vgwIFyOp369NNPtXLlyjL7ugAAAAAAAABUDGE39ZV3VAPZQmuq9gOvKLLbEFm9fc2OBQCAaSxOp9NpdghJysrK0tatW7VmzRqtXr1aycnnHvhrsVgUERGhf/zjH+rTp0+ZvFdSUpJuvfVWZWZmKigoSF988YUaNmxYJnMDZsrJydHu3bsLnG/ZsqV8fHxMSGQuu91eYEviVq1aydvb26REAAAAqE74PAoA5rMnnpZXYKisPn5mRwEAw/F5ND9+fm7SSkF3/Pz8dMstt+i1117Tjz/+qBkzZqhr167y8vJSXFycnn/+efXr10+HDh0q9XuFhoaqZ8+ekqS0tDQ9+uijio+PL/W8AAAAAAAAACoO77BaFIIAAPy/ClMKXshms6ljx46aPHmy1q9fryeffFIRERHauXOnevfurWnTpikvL69U7zFw4EBJ51YinjhxQoMHD9bZs2fLIj4AAAAAAACASiDj8E7FfjdDFWQzNQAAylWFLAUvFBUVpeHDh2vdunV64YUXFBkZqQ8++ECDBg3S6dOnSzxvkyZNdPXVV8vpdMpiseiPP/7Qxx9/XIbJAQAAAAAAAFREjuxMxS6frtOfvarUn1cpbc8GsyMBAFDuKnwpeJ6Pj48GDRqklStXasyYMTp8+LDuvvtubdhQtP9g9+zZUwcOHMh3rnfv3pIkq9Wqf/7znxo7dmyZ5wYAAAAAAABQcWQe2aUTs55S6i+rXefiV32s3NQEE1MBAFD+Kk0peN6JEyd01113adWqVerRo4dGjhypefPmFXrflVdeqenTp+c7d9tttykyMlIff/yxhg4dWl6RAQAAAAAAAFQASVu/1alPX1Fucmy+846sdMUtn842ogCAKq1SlYK7d+/WwIEDlZKSoho1aujFF1/U/Pnz9fnnn2vJkiUXvbdXr15auXKljh8/7joXGhqq7777Tu3bty/v6AAAAAAAAABM5t+wlWS1uR3LOPiT0natNzgRAADGqTSl4NatW/XQQw8pMTEx3/lWrVpp8eLF6tSp00Xvb9++vaKjozVr1qx854ODg8s8KwAAAAAAAICKx7fmpQq76T6P43Gr/63clHgDEwEAYJxKUQpmZmbqmWeeUUZGhttxm82mwMDAQue5++679dVXX+n06dNlHREAAAAAAABAJRB6Q2/51GrkdsyZnaHY2RFQOgABAABJREFUZdPYRhQAUCVVilLQ399fs2bNUmhoaKnm6dOnj+x2u2bPnl02wQAAAAAAAABUKharl6LvGil5ud9GNPPwTqX+utbgVAAAlL9KUQpKUrNmzfTJJ5+Uao769eurTZs2WrRokeLi4sooGQAAAAAAAIDKxCeqgcJvvt/jePzqOcpNjjUwEQAA5c/UUnDcuHE6fvx4ka9v3LhxqZfu9+7dW1lZWQWeLQgAAAAAAACg+qhx3d3yrdPY7ZgzJ5NtRAEAVY77NfIG2LdvnxYuXKitW7fq+eefl9Va9H7y559/VkxMTIneNygoSBaLRQsXLtSjjz6qyMjIEs0DAAAAAAAAoPKyWL0U1XOkYmY/I2eevcB45pFdSv1ltULadDMhHQAAZc+0UnDKlCmSpGPHjumxxx4r1r0vvPBCqd8/Oztbs2bN0rPPPlvquQAAAAAAAABUPj6R9RR2S38lrJ3rdjx+7X/kf9nV8g6NNjgZAABlz5TtQ/ft26e1a889rNfpdBbrn5Lc4+mfBQsW6MyZM2Z8CwAAAAAAAABUADXa9ZBv3SZux5w5Wf+/jajD4FQAAJQ9U1YK/v777+rXr598fX1ls9lc/1itVnl5eclisbi2E7VYLLJYLK573377bT3yyCMKDw8v8ftnZ2dr0qRJysnJ0fTp0zVu3LhSf00AAAAAAAAAKp9z24iOOLeNaG5OgfGsP3cr5adVqtH2dhPSAQBQdkwpBXv37q3evXuX6N63335b99xzjxo2bFiqDOvXr9euXbv0xRdf6KGHHtKll15aqvkAAAAAAAAAVE4+EXUVdssAJayZ43Y8Yd1cBTS6Wt5htYwNBgBAGTJl+9CKoHv37pKkvLw8vf322yanAQAAAAAAAGCmGtd2l1/9Zm7HnPZsJWz4zOBEAACUrWpbCnbp0sV1vG7dOq1bt87ENAAAAAAAAADMZLF6KarHCFlsPgXGgq/uoqg7HjMhFQAAZceU7UMrgnr16qlx48Y6ePCgnE6nXn75ZV199dWlelZhWdi/f78WL16s7du368SJE8rMzFRgYKCio6N11VVXqWvXrrr55pvzPWexIsjLy9P69eu1evVq7dq1S6dPn5bdbldoaKiuvvpqDRgwQDfccEOJ5s7JydGKFSu0du1a/fbbbzp79qzy8vIUFRWla665Rg899JBatmxZ7HljY2M1b948rV+/XseOHZOXl5fq1aunm2++WQMGDFDt2rVLlBcAAAAAAACVk3d4bYV3GqT4VR9LkryCIxR15xMKaNTa5GQAAJRepVwpmJCQUCbzdOzYUU6nUxaLRbGxsRo+fLjS09PLZO7iOnnypEaMGKH+/fvL29tbL774opYvX661a9dq+vTp6tq1q1atWqVhw4bpnnvu0dGjR03J6c727dvVo0cPvfTSS6pTp44mTJiglStXauXKlfrb3/6mDRs2aPDgwXr11VflcDiKNfeqVavUtWtXTZo0SVdeeaUmTZqktWvXavny5erfv7+WLl2qvn37aubMmcWad8mSJbrttts0e/ZsdejQQQsWLNDXX3+thx56SN9++61uu+02LV68uFhzAgAAAAAAoPILaXuH/Bq0UPBVnVR/2HsUggCAKqNSrhTctWuXrrnmmlLPc/PNN2v27NmSJIvFog4dOiggIKDU8xbXr7/+qscee0wRERFatmxZgRVqNWvWVOvWrdW3b18NHjxYe/fu1f33369FixapXr16hue90Pz58/X666+rY8eOeuONNxQWFpZv/L777tPy5cu1efNmzZs3T2FhYRo5cmSR5n733Xc1c+ZM9e3bV88995z8/f3zjQ8bNkyLFi3S0aNH9e677yo6Olq9evUqdN4FCxZo3Lhxslgseuedd9SjRw/XWP369dWxY0fde++9evbZZxUfH69HH320SHkBAAAAAABQ+VksVtXq/4KsbrYRBQCgMqt0KwUvvfRS9ezZs0zmat26tfz9/RUREaGPPvpIo0aNMnxbzoSEBD3++ONKSkrSBx98cNEtK2vVqqX33ntPVqtViYmJGj16tIFJC/ryyy81fvx43XLLLZo8eXKBQvC8lJQU1/F3331XpLknT56smTNnauDAgXr11VcLFILu5l6+fHmh8/70008aP368JKlfv375CsHzIiIiNGHCBEnSxIkTtWHDhiJlBgAAAAAAQNVQlELQmZdrQBIAAMpOpSsF586dq8jIyDKZy9vbW0888YS+/vprXX/99WUyZ3FNnz5dCQkJatKkiRo1alTo9U2bNtWNN94o6VzBtX379vKO6Naff/6pl19+WaGhoXrrrbdks3ledFqzZk3XcatWrQqde/v27Zo6daoaNmyoZ5999qLXFmduh8OhF198UXl5eQoMDNSTTz7p8dp27dqpXbt2rnuys7MLzQ0AAAAAAICqz2HPVvzqf+vU/JfldOSZHQcAgCKrdNuHRkdHl+l8w4YNK9P5imvFihWSJLvdXuR7brjhBm3cuFGStH79erVr165csl3MW2+9pZycHD344IMKCQm56LUTJ07U5s2b5ePjo+uuu+6i1zocDr3xxhtyOp168MEH5e3tfdHrP/nkE23btk01atQo9PuwZMkSHTp0SJLUo0cPhYeHX/T63r17a/v27Tpz5ozmzZunoUOHXvR6AAAAAAAAVG1ZJ35X7JIpsieckiQlb1+m0OvuMjkVAABFU+lWClYlGRkZOnPmjCTp0KFDrqKvMPXr13cdHzt2rFyyXcyOHTu0fv16SdJtt91W6PV+fn7q1KmTbrzxxouuKJSkb7/9Vvv27ZMkdevWrdC5Q0JC1LVr1yIVo7NmzXId33333YVef8stt8jLy0uSNGfOHDmdzkLvAQAAAAAAQNXjsGcrfu1/dPI/L7gKQUlK/P5T5cSdMDEZAABFRylooszMzHyvzz/HrjAXPl8vJyenTDMVxeLFi105mjdvXi5zX3rppWW2TawkHTx4UAcOHJAkBQcHq3Xr1oXeEx4erssuu0ySdPbsWe3cubPM8gAAAAAAAKDyiF/9byVv/VZS/l8ad+bZFbtkCtuIAgAqBUpBE4WHhysqKsr1+vyqwcIkJia6jmvXrl3muS4mJydHa9askSQ1atSo0JV/xREbG6sdO3ZIkpo0aVJm80rS6tWrXcdXXXWVrNai/dG/sPQ8/3UDAAAAAACgegnrcI8sPv5ux7JPHvj/whAAgIqNUtBEFotF77//vq699lo1btxYo0ePLtJ9e/bscR2XdXlWmJ9++kkpKSmSpEsuuaRM596wYYMcDke5zP3LL7+4jlu0aFHk+y6//HLX8d69e8s0EwAAAAAAACoHW40oRXR52ON4wsYFyok1/jE/AAAUR9kt80KJtG3bVvPmzSvy9U6nU6tWrZIk2Ww23XHHHeUVza3ff//ddRwdHZ1vbNu2bVq+fLn279+vjIwMhYeHq0GDBurcubM6dOhQ6KpCT3M7nU6tX79eq1ev1oEDB2S32xUZGanLLrtMXbp0Ufv27QvNfX7rUEmqW7duode7y3Hw4MEi3wcAAAAAAICqJfjqzkr/fYsyD+8sOJiXq7PfTlHdh9+QxYsfuQIAKib+C1XJrF+/XjExMZKkLl26KDw83ND3379/v+s4NDRUknTq1CmNHTtWW7duLXD9li1btHDhQrVo0UJvvfWWrrjiimLNfeDAAY0ePVq//fZbges3bdqkuXPn6vrrr9ebb77pcSvV9PR0nTx50vW6Tp06F/0aL1SzZk3XcWxsrFJTUxUcHFzk+wEAAAAAAFA1WCwWRd05XCdm/l2O7IwC4zmnDylpy9cKu/FeE9IBAFA4SsFKJC8vT5MmTZIkBQQE6JlnnjE8w4Wr5YKCgnTs2DENHDhQcXFx6t27t3r37q0WLVrIy8tLe/fu1bRp0/Tjjz9q7969evjhh7Vw4ULVr1+/SHPv2rVLDz/8sOx2ux544AH17NlTjRs3lsPh0E8//aRJkyZp79692rJli2vu82XihRISEvK9rlGjRpG/3qCgoHyvk5KSKmUpmJubK4vFYnYMw+Xm5hbpHAAAAFAe+DwKAFWQf4hCOz2ohO+mux1O/OFz+VzWWj5RDQwOBgAF8Xk0v+r8tZ9HKViJ/Oc//3FtsTl+/HiP5Vp5Sk5Odh1bLBY9+eSTys3N1fz589WmTZt817Zt21YfffSRxo0bp4ULFyo+Pl6jR4/WZ599VujcmZmZGjVqlCIiIjR9+nQ1atQo37UdO3bUDTfcoBEjRmjDhg36888/9dprr+mdd94pMG96enq+135+fkX+en19ffO9zsgo+FtglcG+ffvMjlBhuFt1CgAAABiFz6MAUAU4wxQYdbl8Yt08asaRp5gv31XqdQ9LVi/DowFAYfg8Wr1ZzQ6AotmzZ48mTpwoSRozZox69uxpSo4LC7bFixfr8OHDmjFjRoFC8DyLxaKXXnrJtW3ozz//rPXr1xe4LisrS3l5ea7XH330kbKysvTxxx8XKATP8/b21rvvvqvIyEhJ0tKlS/M9l/C8vxZ5xSkF/3rtXwtGAAAAAAAAVDMWizJa3CGHzf3PmGwpZ+R3eLPBoQAAKBylYCVw9uxZjRw5Urm5uXrppZc0ZMgQ07JcWIrt2bNHw4cPV6tWrS56j81m04gRI1yvFy5ceNF5z8/9wgsvFLoaMjg42PX9cDqdWrRoUYFr/rptptPpvOicF3I4HPleW638TwYAAAAAAKC6c/oFK7NZV4/jfod+lFfKGQMTAQBQOBqOCi4lJUXDhg1TbGys/vWvf2ngwIGm5rHb7a7j2rVrF7mg7NSpk2srzk2bNiknJ8fjvJJ09dVXF3k15B133OE6XrduXYHxwMDAfK+zsrKKNK8kZWdnX3QuAAAAAAAAVE85da5UTlRjt2MWp0MBu5dIjjy34wAAmIFnClZgqampGjJkiA4fPqzJkyerU6dOZkeSv7+/0tLSJEmDBg2Sj49Pke7z8fFR48aNtWfPHtntdu3fv18tW7bMN++FHn744SJnqlOnjsLCwpSYmKiYmBglJCQoPDzcNR4QEJDv+r8WfRfz12v/Oldl0axZM3l7e5sdw3C5ubkF9shu3ry5bDb+rw8AAADlj8+jAFD15TVqoNMfPyNHVsFHzthSz+qS1AOqcVNfE5IBAJ9H/8put2vfvn1mxzBV9fw3XwkkJydryJAhOnTokGbMmKHrr7/e7EiSzq2UO18K/rXIK0zNmjW1Z88eSdKZM2fylYJ/XYFX3PKtZs2aSkxMlHRuu9ULS8GwsLB81yYnJxd53vNfq3RuG9K/zlVZ2Gy2alkKusP3AgAAAGbi8ygAVC3eYdGKvO1Rnf3mfbfjKVu/VnCz6+Vb+zJjgwGAB9X582hxHi1WVbF9aAWUmJiohx56SEeOHNHs2bMrTCEoSTVq1HAdZ2RkFOveC4u/v95rs9nyjf/1GYPFmfuv9wYGBqp27dqu16dOnSryvGfO/G/v9zp16lTalYIAAAAAAAAoH4EtblRAk/buB50Opf+xzdhAAAB4QClYwZxfIXjs2DHNnj1bbdu2NTtSPpdd9r/fakpISCjWvRc+N9Dds/nKc+7LL7/cdXzy5Mkiz3thKdioUaNiZQIAAAAAAEDVZ7FYFHn7MFn9g/Od9wqsoZr3jFZ4x/4mJQMAID9KwQokLS1NQ4cO1Z9//qmPPvpIbdq0MTtSAY0b/+/hyYcPHy7WvVlZWa7jC1ccGjF3q1atXMe///57kec9cOCA6/iqq64qViYAAAAAAABUD7agUEXe/qjrdWDzDqo37H0FNvWwghAAABNQClYQOTk5Gj58uA4cOKAZM2aodevWhd5jt9s1cuRIZWZmGpDwnAuLyv379xfr3qSkJNdxw4YNLzp3cYo7Sa7nCQYEBCg6OrrAeNeuXV3HO3fuLPK855+BKEldunQpViYAAAAAAABUH4HNblBwm26K7vO0avb+h7wCQsyOBABAPpSCFYDT6dTYsWP1008/6YMPPlC7du2KdN++ffu0ZcsW+fv7l3PC/2nXrp1CQ0MlnXs2X3GKwRMnTkiS6tevr4iIiALjnTt3lpeXlyTp119/VXJycpHmzc7OVlxcnKRzKwLPz3GhZs2aqUGDBpLOFYj79u0rdN7Y2FgdPXrUlblp06ZFygMAAAAAAIDqx2KxKOqOxxTU7AazowAA4BalYAUwdepULVu2TK+99po6duxY5PtWrFjhKrqMYrPZdOedd7peL1u2rEj3xcXFKTY2VpLnFXfh4eG66aabJEm5ublasWJFkebev3+/nE7nReeWpCFDhriOv/7660LnXbVqlWveoUOHFikLAAAAAAAA4Ikz1y570hmzYwAAqilKQZNt2LBBU6ZM0RNPPKHevXsX+b6YmBgtWLDAYyl48uRJDRs2TK1bt1bPnj21efPmsoqsxx9/XAEBAZKk+fPnF2lF36ZNmyRJXl5eeuCBBzxe99RTT8lqPffHcubMmbLb7YXOvXHjRklSSEiI+vTp4/G6++67T5deeqmkc6VgamrqRef98ssvJUn16tXTvffeW2gOAAAAAAAAwJPsU4cV8+/ROr3gdTns2WbHAQBUQ5SCJoqNjdWYMWN03XXX6cknnyzyfb/88osGDx6s9PR0j6XgmDFjtGHDBmVkZOiPP/7Q8OHDderUqTLJHR0d7cqblpam8ePHX/R6p9OpOXPmSJKefPJJ1a1b1+O1TZs21cCBAyWd2270gw8+uOjcmZmZWrBggSTppZdeUmBgoMdrbTab3nzzTfn4+CgpKUnTpk3zeO2qVau0d+9e1z3e3t4XzQEAAAAAAAC448yzK2HjQsXMGaucs8dkj49R4sYFZscCAFRDNrMDVGeTJ09WYmKiDh48qO7duxfpnpSUFMXHx7teeyoF9+zZk+91Zmamdu/erdq1a5c88AUGDx6s48ePa/78+Vq6dKnq1q2rp556ShaLJd91TqdTb731lvbt26devXrpscceK3TuZ599VjExMVq3bp1mzZqlOnXqqH///gWuy83N1dixYxUbG6snnnhCPXv2LHTuNm3a6NVXX9XYsWM1Z84cXXPNNQW2HD1+/LjGjRsnSRo9enSRn/EIAAAAAAAAXCj7zJ+KXTJFOWeO5DufvHWJApu0l1+9piYlAwBUR5SCJoqLi5N0bsXg+eftFZenUvDKK6/U9u3bXa+9vb3VtGnZfsh48cUX1ahRI73zzjuaMWOGdu7cqSFDhqhp06bKzc3Vvn37NHfuXO3atUtPP/20hg0bVqR5vby89MEHH2j69OmaMWOGXn75ZW3evFkDBgxQo0aNlJWVpV9++UUff/yxTp06pbfeeqtYW6/26tVLYWFhGj16tP7+979ryJAh6tGjh/z9/bVlyxa9//77ysjI0Ntvv6277rqrpN8eAAAAAAAAVHPJ25YUKATPcSp2yRTVfeRdWb19Dc8FAKieLE6n02l2iOpq+PDhWrt2banm+P77792u/jt58qRefvll7dixQzVr1tTTTz+trl27luq9PImLi9Py5cu1du1aHT9+XHFxcfL19VW9evXUsWNH9evXT7Vq1SrR3CdOnNCyZcv0/fff6+TJk4qPj1dgYKAaNmyoTp06qW/fvgoNDS3R3ElJSfriiy+0atUqHTt2THa7XfXr19fNN9+sQYMGqWbNmiWa10w5OTnavXt3gfMtW7aUj4+PCYnMZbfbtWvXrnznWrVqxXawAAAAMASfRwEAeZmpOjHj78pLT3I7XqNdD0V0HWxsKADVBp9H8+Pn55SCQJXC/6nlx3/0AAAAYCY+jwIAJCn9jx0688VbHkYtqv3AePk3aG5oJgDVA59H8+Pn55LV7AAAAAAAAAAAUFUFXnGtglre4mHUqdilU+XIyTIyEgCgmqIUBAAAAAAAAIByFNF1sLyCwt2O5SaeVsL6+QYnAgBUR5SCAAAAAAAAAFCOvPyDFHXn4x7HU/67XJlH9xiYCABQHVEKAgAAAAAAAEA5C7j8GgVf1cnj+LltRDMNTAQAqG4oBQEAAAAAAADAABFdHpZXcITbsdyks0pYN8/gRACA6oRSEAAAAAAAAAAMYPULVNSdT3gcT/lphTKP7DIwEQCgOqEUBAAAAAAAAACDBDRqreCru3gcj106VY7sDAMTAQCqC0pBAAAAAAAAADBQRJeHZAuJdDuWmxKn+LVzDU4EAKgOKAUBAAAAAAAAwEBW3wBF9hjucTz1l9XKOLzTuEAAgGqBUhAAAAAAAAAADBbQ8CoFt+nmdszqFyRnTrbBiQAAVZ3N7AAAAAAAAAAAUB1FdHpQmYd2Kjf5rOtcwOXXKLL747IFh5uYDABQFbFSEAAAAAAAAABMYPX1V9T/byNq9Q1QVM9Rqtn3WQpBAEC5YKUgAAAAAAAAAJjE/9KWiuz+uAIatZEtJMLsOACAKoxSEAAAAAAAAABMFNK6q9kRAADVANuHAgAAAAAAAEAFlhN7XJnH9podAwBQybFSEAAAAAAAAAAqIKcjT8nblihxwwJZ/YNUb9j78vIPMjsWAKCSYqUgAAAAAAAAAFQwOfExOjn3BSWs+0TOPLvy0hIVv/pjs2MBACoxVgoCAAAAAAAAQAWSvH2pEtbPlzM3J9/5tN0bFNjkOgU2aWdSMgBAZcZKQQAAAAAAAACoQHJT4goUgufFfTdDeRmpBicCAFQFlIIAAAAAAAAAUIGEdewv7/A6bsfy0pMUt2q2wYkAAFUBpSAAAAAAAAAAVCBWb19F3TVKsrj/8W363k1K/32rwakAAJUdpSAAAAAAAAAAVDB+da9Qjevu8jge+90M5aUnG5gIAFDZUQoCAAAAAAAAQAUUdvP98o6s53bMkZGiuJVsIwoAKDpKQQAAAAAAAACogKw2H0X1GOl5G9F9m5X2248GpwIAVFaUggAAAAAAAABQQfnVbazQ63t5HI9bMUu5aUmG5QEAVF6UggAAAAAAAABQgYXd1FfeUfXdjjkyUxW3YqacTqfBqQAAlQ2lIAAAAAAAAABUYBabt6J7jvK4jWjG/m1K/22TwakAAJUNpSAAAAAAAAAAVHC+tRsp9IY+HsfjVs5WblqigYkAAJUNpSAAAAAAAAAAVAJhN90rn+hL3I45MtMU990MthEFAHhEKQgAAAAAAAAAlYDFy1tRPUdKVi+34xl/7FDano0GpwIAVBaUggAAAAAAAABQSfjWukyhHe5xO+Z3aUv5NWhmcCIAQGVhMzsAAAAAAAAAAKDowjr0UcYfO5Rz5ogkyeLtp4jODyi4TTdZLKwDAQC4x38hAAAAAAAAAKAS+d82ojb5XdJC9YZNVMg1t1MIAgAuipWCAAAAAAAAAFDJ+Na8VHUeel2+tS+jDAQAFAmlIAAAAAAAAABUQn51Ljc7AgCgEuFXSAAAAAAAAACginE6HUr+73dK3f292VEAABUEKwUBAAAAAAAAoAqxJ51V7NKpyjq6RxbfAPk3aCFbjSizYwEATMZKQQAAAAAAAACoApxOp1J+XqUTs55S1tE9585lZyh22YdyOp0mpwMAmI1SEAAAAAAAAAAqOafTqTNfvKW472bImZOVbyzzyK9K3bnGpGQAgIqCUhAAAAAAAAAAKjmLxSK/+s08jsevmSN78lkDEwEAKhpKQQAAAAAAAACoAmq07ynfule4HXPmZCl26TQ5nQ6DUwEAKgpKQQAAAAAAAACoAixWL0X1HCmLzcfteNafu5X68yqDUwEAKgpKQQAAAAAAAACoInwi6irslv4ex+PXfiJ70hkDEwEAKgpKQQAAAAAAAACoQmpce6d86zV1O+a0Zyl26VS2EQWAaohSEAAAAAAAAACqEIvVS1E9RnjeRvToXqX8d4XBqQAAZqMUBAAAAAAAAIAqxieijsJvHehxPGH9PNkTThmYCABgNkpBAAAAAAAAAKiCQq7tLr/6zdyOOe3ZbCMKANUMpSAAAAAAAAAAVEEWi1VRPUfK4u3rdjzr+D6l7FhucCoAgFkoBQEAAAAAAACgivIOq6XwWwd5HE9YP1858ScNTAQAMAulIAAAAAAAAABUYSFtb5ffJS3cjjlzcxS7dIqcjjyDUwEAjEYpCAAAAAAAAABVmMViVVSPEbJ4+7kdzz6xX2l7fjA4FQDAaJSCAAAAAAAAAFDFeYfWVETnBwuct3h5K7zzgwq68iYTUgEAjGQzOwAAAAAAAAAAoPwFt+mm9N+3KPPP3ZIk3zqNFdVzpHwi65mcDABgBFYKAgAAAAAAAEA1YLFYFNljuKwBIQrv9IDqPPQ6hSAAVCOsFAQAAAAAAACAasK7RrQajJgmq4+/2VEAAAZjpSAAAAAAAAAAVCOFFYJOp1NOp8OgNAAAo1AKAgAAAAAAAAAkSbmpCTq98A0lbf7a7CgAgDLG9qEAAAAAAAAAUM05nU6l7dmg+FUfy5GVrswjuxTY+Br5RF9idjQAQBlhpSAAAAAAAAAAVGO5aYk688UExX47WY6s9HMnHbk6u2SKnHm55oYDAJQZSkEAAAAAAAAAqKacjjydnPuCMg7sKDCWc/qwkrZ8bXwoAEC5oBQEAAAAAAAAgGrKYvVS2I33eRxP/OELZZ/507hAAIByQykIAAAAAAAAANVYUMuOCmjc1v2gI1exS6bImWc3NhQAoMxRCgIAAAAAAABANWaxWBR5x+Oy+gW5Hc85c0SJPy42OBUAoKxRCgIAAAAAAABANWcLDlPEbUM9jif9+KWyTx02MBEAoKxRCgIAAAAAAAAAFNTiJgVc0c79oCNPsUsny5nLNqIAUFlRCgIAAAAAAAAA/n8b0cdk9Q92O55z9pgSN31hcCoAQFmhFAQAAAAAAAAASJJsQaGKvO0Rj+NJm79S9smDBiYCAJQVSkEAAAAAAAAAgEtg8w4KbHqd+0GnQ2eXsI0oAFRGlIIAAAAAAAAAABeLxaLI24fJGhDidtwed0KJPyw0OBUAoLQoBQEAAAAAAAAA+XgF1lDk7Y96HE/a8o2yYv4wMBEAoLQoBQEAAAAAAAAABQQ1u0GBzW5wP+h0KHbJFDns2caGAgCUGKUgAAAAAAAAAMCtyNsflVdgDbdj9sTTyjr+u8GJAAAlRSkIAAAAAAAAAHDLKyBEkbc/VuC8T/Qlqjt4ggIuu8qEVACAkrCZHQAAAAAAAAAAUHEFNm2vwBY3Kn3vJsliVWiHexR24z2yeHmbHQ0AUAyUggAAAAAAAACAi4rs9ogcGSkKv3WQfGs3MjsOAKAEKAUBAAAAAAAAABflFRCs2gPGmR0DAFAKPFMQAAAAAAAAAFBqeenJcuRkmR0DAOABpSAAAAAAAAAAoFTSft+i4zP/roTv55sdBQDgAduHAgAAAAAAAABKJC8jVXGrZit97yZJUsqO5Qpscp38L2lhcjIAwF+xUhAAAAAAAAAAUGzp+7frxMy/uwrB82KXTpUjJ9OkVAAATygFAQAAAAAAAADF4rBnK27lLOWlJxUYy006o4R184wPBQC4KEpBAAAAAAAAAECxWL19FXXncI/jKT+tUOafuw1MBAAoDKUgAAAAAAAAAKDYAhq1VvDVXTyOxy6dKkc224gCQEVBKQgAAAAAAAAAKJGILg/JKyTS7Vhucqzi1801OBEAwBNKQQAAAAAAAABAiVh9Ay66jWjqz6uUcfhXAxMBADyhFAQAAAAAAAAAlFjAZVcpuHU3j+Oxy6bJkZ1hYCIAgDuUggAAAAAAAACAUono/KBsNaLcjuWlxCl+zX8MTgQA+CtKQQAAAAAAAABAqVh9/RXVY4TH8dSda5Rx6BcDEwEA/opSEAAAAAAAAABQav6XtlTINbd7HI9dNk15WekGJgIAXIhSEAAAAAAAAABQJsI7DZItNNrtWF5qguJXzzE2EADAhVIQAAAAAAAAAFAmrD7+iuox0uN42q51yjjwk4GJAADnUQoCAAAAAAAAAMqM/yUtFHJtd4/jscs/VF5mmoGJAAASpSAAAAAAAAAAoIyF3zJQtrBabsesPv7KS08yNhAAgFIQAAAAAAAAAFC2rD5+iuoxQpLlgrMW1Wh/l+o+8o58IuuZFQ0Aqi2b2QEAAAAAAAAAAFWPf4PmqtHuTiVvXypbWC1F9xwlv/pNzY4FANUWpSAAAAAAAAAAoFyE3TJAVv9g1WjfU1ZvX7PjAEC1RikIAAAAAAAAACgXVm9fhd14r9kxAADimYIAAAAAAAAAABNlHPpFeRkpZscAgCqPUhAAAAAAAAAAYDhHVrpil07T6QWvKW7lbLPjAECVx/ahAAAAAAAAAABDZRzeqdil05SXGi9JSv/tR6U1vU5BzW4wORkAVF2UggAAAAAAAAAAQzhyshS/Zo5Sf1ldYCxuxSz5N2ghr8AaJiQDgKqP7UMBAAAAAAAAAIawWL2UdeJ3t2OOjBTFrZgpp9NpcCoAqB4oBQEAAAAAAAAAhrDYvBXdY6Rkcf+j6fTftyp932aDUwFA9UApCAAAAAAAAAAwjG+dyxV6Q2+P43ErZio3LdHARABQPVAKAgAAAAAAAAAMFXbjffKJbuB2zJGZprjvZrCNKACUMUpBAAAAAAAAAIChLDZvRfUYJVm93I5n/LFDaXt/MDgVAFRtlIIAAAAAAAAAAMP51r5MoTf08Tgev/Ij5aayjSgAlBVKQQAAAAAAAACAKcJuvEc+0Ze6HXNkpSnuu+lsIwoAZYRSEAAAAAAAAABgCouXt6Luusg2ogf+q7TdGwxOBQBVE6UgAAAAAAAAAMA0vjUvVdiN93kcj1/1kXJT4g1MBABVE6UgAAAAAAAAAMBUoTf0lk+ty9yOObIzFLv8Q7YRBYBSohQEAAAAAAAAAJjK4mVTdM+RktXmdjzz0C9K/XWdwakAoGqhFAQAAAAAAAAAmM4n+hKF3dzX43j8mjnKTYkzMBEAVC2UggAAAAAAAACACiH0+l7yrd3I7VhQixtl9Q00OBEAVB2UggAAAAAAAACACsFi9VJUz1GS1/+2EbWFRKrWgJcUdcdjsvr6m5gOACo3SkEAAAAAAAAAQIXhE1Vf4Tf3kyQFX91F9Ya9p4CGV5mcCgAqP/dPbQUAAAAAAAAAwCQ1rrtLvvWayL9Bc7OjAECVwUpBAAAAAAAAAECFYrF6UQgCQBmjFAQAAAAAAAAAVCqOnCzFr5kje9IZs6MAQKXB9qEAAAAAAAAAgEoj89hvil06VbmJp5V9+ohqDxwni4X1LwBQGEpBAAAAAAAAAECF57BnK+H7T5WyfZkkpyQp6+gepfy0UjXa3mFuOACoBCgFAQAAAAAAAAAVWm5KvE7NHyd7wqkCYwnrPlFAo9byDqtlQjIAqDxYUw0AAAAAAAAAqNC8gsPkFRjqdsxpz1bs0qlyOh3GhgKASoZSEAAAAAAAAABQoVksVkX1GCGLt6/b8axjvynlv98ZnAoAKhdKQQAAAAAAAABAhecdXlvhtw7yOJ6wbp7sCScNTAQAlQulIAAAAAAAAACgUghpe7v8LmnhdsyZm6OzS6bK6cgzOBUAVA6UggAAAAAAAACASsFisSrqzuGyePu5Hc8+8buSdywzOBUAVA6UggAAAAAAAACASsM7rJYiOj/gcTzx+8+UEx9jYCIAqBwoBQEAAAAAAAAAlUpwm27yv7Sl2zFnbo5il0xhG1EA+AtKQQAAAAAAAABApWKxWBXZY7gsPh62EY35Q8nblhicCgAqNkpBAAAAAAAAAECl410jWhGdH/I4nrhhgXJijxuYCAAqNkpBAAAAAAAAAEClFNy6q/wbXuV2zJlnZxtRALgApSAAAAAAAAAAoFKyWCyK6jFcFt8At+PZpw4qacs3BqcCgIqJUhAAAAAAAAAAUGnZQiIV0eUi24j+sFC5KfEGJgKAiolSEAAAAAAAAABQqQVf1Vn+l7UucN4rMFQ1+zwjW0iECakAoGKhFAQAAAAAAAAAVGoWi0VRdz4h6wXbiAa1uEn1hr2vwCuuNTEZAFQcNrMDAAAAAAAAAABQWraQCEV0G6KEdZ8o8vbHFNi0vdmRAKBCoRQEAAAAAAAAAFQJQS1vUcAV7eTlF2h2FACocNg+FAAAAAAAAABQJVgslkILQafTaVAaAKhYKAUBAAAAAAAAANVC9smDipn9jLJPHzY7CgAYjlIQAAAAAAAAAFClOXPtSvj+U8XMeVY5Z/9U7JIpcubZzY4FAIaiFAQAAAAAAAAAVFnZpw4r5t+jlfTjl5LTIUnKOXtUiZsWmZwMAIxFKQgAAAAAAAAAqJJyYo8pZs5Y5Zw9VmAs6cfFyj51yIRUAGAOSkEAAAAAAAAAQJXkHVlfAY3buh90OnR2yWQ5c9lGFED1QCkIAAAAAAAAAKiSLBaLou54TNaAELfj9tjjSvzhc4NTAYA5KAUBAAAAAAAAAFWWV2ANRd7+qMfxpC1fKyvmgIGJAMAclIIAAAAAAAAAgCotqNkNCmx2vftBp0OxSybLkZtjbCgAMBilIAAAAAAAAACgyou87VHP24jGxyhx40KDEwGAsSgFAQAAAAAAAABVnldgDUXeMczjePLWb5V1Yr+BiQDAWJSCAAAAAAAAAIBqIajp9QpscaP7QadDsUumyGHPNjYUABiEUhAAAAAAAAAAUG1EdntEXoGhbsfsCSeVuOEzYwMBgEEoBQEAAAAAAAAA1YZXQLAi73jM43jytqXKOr7PwEQAYAxKQQAAAAAAAABAtRLYpJ2CrrzZw6hTZ9lGFEAVRCkIAAAAAAAAAKh2IroNkVdQmNux3MTTSlg/3+BEAFC+KAUBAAAAAAAAANWOl3+wIrs/7nE8be8PystMMzARAJQvSkEAAAAAAAAAQLUU2LitglrdUuB8wBXXqt6jE+XlH2R8KAAoJzazAwAAAAAAAAAAYJaIrkOUeXiX8tISZPULUsRtQxXU4iZZLBazowFAmaIUBAAAAAAAAABUW15+gYq68wml/LRCkd0fly043OxIAFAuKAUBAAAAAAAAANVawOVtFHB5G7NjAEC54pmCAAAAAAAAAAAUIjct0ewIAFAqlIIAAAAAAAAAAHjgdOQp8cfFOj7lCWUc+dXsOABQYpSCAAAAAAAAAAC4kRN7XCfnPKfE7+fLmWdX3NJpcmRnmB0LAEqEUhAAAAAAAAAAgAs4HXlK2vK1Yj76p7JPHXSdz02JU/zauSYmA4CSoxQEAAAAAAAAAOAC2ScPKmHdJ3Lm2QuMpf6yWhmHdxofCgBKiVIQAAAAAAAAAIAL+NVropBrbvc4Hrt0mhxZ6QYmAoDSoxQEAAAAAAAAAOAvwjsNki002u1YXmq84tfMMTYQAJQSpSAAAAAAAAAAAH9h9fFXVI8RHsdTf12njIM/GZgIAEqHUhAAAAAAAAAAADf8L7lSIW27exyPXTZdeZlpBiYCgJKjFAQAAAAAAAAAwIPwWwfKFlbL7VheWoLi1/zb4EQAUDKUggAAAAAAAAAAeGD18fv/bUQtbsfTdn2v9D92GBsKAEqAUhAAAAAAAAAAgIvwb9BcIe3u9Dget3y68jJTDUwEAMVnMzsA8tu/f78WL16s7du368SJE8rMzFRgYKCio6N11VVXqWvXrrr55ptlsbj/rRSz5OXlaf369Vq9erV27dql06dPy263KzQ0VFdffbUGDBigG264oUhzNWnSpMQ51q5dq3r16rkdO3HihDp37lyieb29vfXzzz/Lx8enxNkAAAAAAAAAVF7htwxQ5sGfZE84VWAsLz1J8as+VvTdfzMhGQAUDSsFK4iTJ09qxIgR6t+/v7y9vfXiiy9q+fLlWrt2raZPn66uXbtq1apVGjZsmO655x4dPXrU7Mgu27dvV48ePfTSSy+pTp06mjBhglauXKmVK1fqb3/7mzZs2KDBgwfr1VdflcPhKLccISEhHgvB0mrUqBGFIAAAAAAAAFCNWb19FdVzpDxuI7pno9L3bzM2FAAUAysFK4Bff/1Vjz32mCIiIrRs2TLVrl0733jNmjXVunVr9e3bV4MHD9bevXt1//33a9GiReVWghXV/Pnz9frrr6tjx4564403FBYWlm/8vvvu0/Lly7V582bNmzdPYWFhGjlyZKHzRkVFKSgoqFhZWrRoUaTrateuLT8/v2LN3aFDh2JdDwAAAAAAAKDq8avXVDXa91Tytm/djsd9N0N+9ZvJKyDE4GQAUDhKQZMlJCTo8ccfV1JSkubPn1+gELxQrVq19N5776l3795KTEzU6NGj9emnnxqYNr8vv/xS48ePV+fOnfXBBx/IZnP/xyklJcV1/N133xWpFPzHP/6hPn36lFnWC02YMEHt27cvl7kBAAAAAAAAVG1hHfsp4+B/ZY8/WWAsLz1ZcStnq2bvf5iQDAAuju1DTTZ9+nQlJCSoSZMmatSoUaHXN23aVDfeeKMk6aefftL27dvLO6Jbf/75p15++WWFhobqrbfe8lgISudWOp7XqlUrI+IBAAAAAAAAQLk4t43oKMni/sfrjsxUOezZBqcCgMKxUtBkK1askCTZ7fYi33PDDTdo48aNkqT169erXbt25ZLtYt566y3l5OTowQcfVEjIxZfCT5w4UZs3b5aPj4+uu+46gxICAAAAAAAAQPnwq3uFalx3l5K3fO06Z/HxU0TnhxTcuqssFvfPHQQAM1EKmigjI0NnzpyRJB06dEgbN27UzTffXOh99evXdx0fO3as3PJ5smPHDq1fv16SdNtttxV6vZ+fnzp16lTesQAAAAAAAADAMGE336+MA/+VPe6E/C5tqag7h8s7NNrsWADgEaWgiTIzM/O9njBhQpFKQX9/f9dxTk5OmecqzOLFi105mjdvbvj7AwAAAAAAAIDZrDYfRfUcpZxTBxXcppssHrYTBYCKglLQROHh4YqKilJsbKwkuVYNFiYxMdF1XLt27XLJ5klOTo7WrFkjSWrUqNFFnyUIAAAAAAAAAFWZX53L5VfncrNjAECR8KsLJrJYLHr//fd17bXXqnHjxho9enSR7tuzZ4/ruEmTJuUVz62ffvpJKSkpkqRLLrnE0PcGAAAAAAAAgMrE6XQo/Y8dcjqdZkcBAFYKmq1t27aaN29eka93Op1atWqVJMlms+mOO+4or2hu/f77767j6Oj8+2Nv27ZNy5cv1/79+5WRkaHw8HA1aNBAnTt3VocOHUq0qtDpdGrt2rVas2aNdu7cqdjYWNntdtWsWVPXX3+9+vfvr2bNmpXoa8nNzdXSpUu1YcMG7d69W/Hx8XI6napdu7ZuvvlmDRw4UA0aNCjR3AAAAAAAAACqN3viacUunaqsY78putffFdTiJrMjAajmKAUrmfXr1ysmJkaS1KVLF4WHhxv6/vv373cdh4aGSpJOnTqlsWPHauvWrQWu37JlixYuXKgWLVrorbfe0hVXXFHk98rMzNTf//53ff/995KkgIAAhYWFKSEhQceOHdOxY8e0aNEiPf7443ryySeL9XXEx8friSee0K+//ipJCg4OVlhYmOLi4nT48GEdPnxYCxYs0LPPPqt+/foVa+6KKDc3VxaLxewYhsvNzS3SOQAAAKA88HkUAIDqyel0KO2X1Ure8Kmc9mxJUtyKWbLVaSKvoDCT06E64fNoftX5az+PUrASycvL06RJkySdK8ieeeYZwzMcPHjQdRwUFKRjx45p4MCBiouLU+/evdW7d2+1aNFCXl5e2rt3r6ZNm6Yff/xRe/fu1cMPP6yFCxeqfv36hb5PXl6eRowYod27d+vpp59Wjx49VKdOHUmSw+HQxo0bNX78eMXExGjq1KnKy8vTU089VaSvISMjQ4MHD1ZSUpJefPFFde/e3VWu5uTkaMWKFXr99deVlJSkcePGyWq1qm/fviX4blUc+/btMztChfHbb7+ZHQEAAADVGJ9HAQCo2qwZSQrYs0zeCUfznXdkpevPLyYqvc29UjX85X1UHHwerd4sTjYzrjQ+/vhjTZgwQZL0zjvvqGfPnoZn6Nq1q44dOyZJeumll/TFF1/ozJkzmjp1qtq0aVPgeqfTqXHjxmnhwoWSpDZt2uizzz676Hs0adJEDRs2VFpamubNm6dLL73U7XVnz55Vr169FB8fL4vFok8++UTXXnutx3lPnDihzp07q2HDhrJarfrkk08UERHh9to//vhD9913n7KysuTn56dvvvnGY46KJCcnR7t37zY7BgAAAAAAAFAteaWcUfCWf8vidLgdT2/ZUzl1WxqcCsDFtGzZUj4+PmbHMITV7AAomj179mjixImSpDFjxphSCEpSenq663jx4sU6fPiwZsyY4bYQlCSLxaKXXnrJtW3ozz//rPXr1xf6PkeOHNHbb7990SIuOjpa//znPyWdKx/ffffdIn0NMTExmjx5ssdCUJKuuOIKPfroo5KkrKwsTZ48uUhzAwAAAAAAAKi+8kJqKqtRB4/j/vtWy5KVamAiAPgfSsFK4OzZsxo5cqRyc3P10ksvaciQIaZlubAU3LNnj4YPH65WrVpd9B6bzaYRI0a4Xp9fNejJqFGjNHr0aF1//fWF5unZs6fCws7tw/3LL7/k2970r0JDQ/XEE09o3LhxatSoUaFzDxgwQF5eXpKklStXKjk5udB7AAAAAAAAAFRvWZfdoNyQmm7HrLlZCtj7ncQGfgBMwDMFK7iUlBQNGzZMsbGx+te//qW77rrL1Dx2u911XLt27SIXlJ06dZKvr6+ys7O1adMm5eTkeFyOO3LkyCLnsdlsuvHGG7VkyRJJ0rZt23T55Ze7vTYoKEh///vfizx3eHi4rrrqKv3888+y2+3auXOnOnbsWOT7K5JmzZrJ29vb7BiGy83NLbBHdvPmzWWz8X99AAAAKH98HgUAoPrKqROuM3Ofkxx5BcZ8Yg+qljVRgS1vMT4YqhU+j+Znt9u1b98+s2OYqnr+m68kUlNTNWTIEB0+fFiTJ09Wp06dzI4kf39/paWlSZIGDRpU5H12fXx81LhxY+3Zs0d2u1379+9Xy5Zls3d28+bNXaVgWf8Punnz5vr5558lnXsAa2UtBW02W7UsBd3hewEAAAAz8XkUAIDqwbvu5Qq7qa8SN3zmdjxx3VwFXd5GthDPjzgCykN1/jzqZIUu24dWVMnJyXr44Yd18OBBzZgxo0IUgpIUGBjoOvb39y/WvTVr/m/J/JkzZ8osU7169VzHiYmJZTZvec8NAAAAAAAAoOoKvaG3fGq5f4yRMztDscumUVIAMBSlYAWUmJiohx56SEeOHNHs2bOL9Gw9o9SoUcN1nJGRUax7LywUi3uvGfOW99wAAAAAAAAAqi6L1UvRd42UvNxv2Jd5eKdSd641OBWA6oxSsIJJTk7WkCFDdOzYMc2ePVtt27Y1O1I+l112mes4ISGhWPde+DzCC8u20nI4HK7jgICAMpu3vOcGAAAAAAAAULX5RDVQ+M33exyPXzNHucmxBiYCUJ1RClYgaWlpGjp0qP7880999NFHatOmjdmRCmjcuLHr+PDhw8W6Nysry3V84YrD8xwOh1577TW1b99eDz30kDIzM4s074Ur+EJCQtxek5mZqaefflrt2rXT3/72tyIvyy/K3AAAAAAAAADgSY3r7pZvncZux5w5mWwjCsAwlIIVRE5OjoYPH64DBw5oxowZat26daH32O12jRw5ssjlWVm4sKjcv39/se5NSkpyHTds2LDA+NKlS/XJJ58oKSlJW7du1Zo1a4o074XPJ7z88svdXjNnzhwtXbpUycnJWrFihX755ZcymxsAAAAAAAAAPLFYvRTVc6QsXt5uxzOP7FLqL6sNTgWgOqIUrACcTqfGjh2rn376SR988IHatWtXpPv27dunLVu2yN/fv5wT/k+7du0UGhoqSTp16lSxisETJ05IkurXr6+IiIgC438t6rKzs4s078GDB13HrVq1cntNec4NAAAAAAAAABfjE1lPYR37eRyPX/Mf2ZPOeBwHgLJAKVgBTJ06VcuWLdNrr72mjh07Fvm+FStWqEGDBuWYrCCbzaY777zT9XrZsmVFui8uLk6xsef2xu7SpYvbay7cnjM0NNTjdX+1ZcsWSVJUVJTHLVeDg4Ndx5deemmRntWYnZ2tn3/+WZLUsmVL1alTp0h5AAAAAAAAAOCvarTvKd+6V7gdc9qzFLt0mpxOh8GpAFQnlIIm27Bhg6ZMmaInnnhCvXv3LvJ9MTExWrBggcdS8OTJkxo2bJhat26tnj17avPmzWUVWY8//rgCAgIkSfPnz1dycnKh92zatEmS5OXlpQceeMDtNTfeeKPreODAga4ViRezc+dOHTt2TJLUt29feXl5ub3upptuch0PGzZM3t7ul+pfaM2aNa5nCvbv37/Q6wEAAAAAAADAE9c2ojafgmM2HwU0LnwhAwCUBqWgiWJjYzVmzBhdd911evLJJ4t83y+//KLBgwcrPT3dYyk4ZswYbdiwQRkZGfrjjz80fPhwnTp1qkxyR0dHu/KmpaVp/PjxF73e6XRqzpw5kqQnn3xSdevWdXvdtdde61opeb50LGzeiRMnSpLq1q2rRx991OO13bt3V7NmzYo8d3Z2tqZMmSJJuvrqq4tV2AIAAAAAAACAOz4RdRV2y4B853zrNlHdR95VaPueslj4kT2A8mMzO0B1NnnyZCUmJurgwYPq3r17ke5JSUlRfHy867WnUnDPnj35XmdmZmr37t2qXbt2yQNfYPDgwTp+/Ljmz5+vpUuXqm7dunrqqadksVjyXed0OvXWW29p37596tWrlx577LGLzvuvf/1Lw4YN09y5c9WlSxddeumlbq9zOByaMGGCtm3bppCQEL3//vsXfbaij4+PpkyZoqFDh2ratGm69tprFRkZ6fbanJwcjRkzRocPH1bt2rX1zjvvyGrlP8YAAAAAAAAASq/Gtd2V/vtW5Zw6pLBb+qtGux6yWN3vgAYAZYlS0ERxcXGSzq0YPP+8veLyVApeeeWV2r59u+u1t7e3mjZtWqL38OTFF19Uo0aN9M4772jGjBnauXOnhgwZoqZNmyo3N1f79u3T3LlztWvXLj399NMaNmxYoXOGhoZq7ty5mjRpknr37q1bbrlFt956q6644gpFREQoKytLe/bs0dy5c/Xzzz+refPmeuONN1yrAC+mXr16WrhwoSZMmKDbbrtN3bp10y233KKGDRsqIiJCKSkp+vnnnzVnzhz98ccfat++vd544w3Vq1evLL5dAAAAAAAAACCL1UvRd42SMy9XPpH87BGAcSxOp9Npdojqavjw4Vq7dm2p5vj+++/drv47efKkXn75Ze3YsUM1a9bU008/ra5du5bqvTyJi4vT8uXLtXbtWh0/flxxcXHy9fVVvXr11LFjR/Xr10+1atUq9rynTp3Sl19+qc2bN+vw4cNKTU1VYGCgwsPD1bp1a3Xq1EmdO3cu0Sq+w4cP68svv9T27dt19OhRpaenKzg4WFFRUbrmmmvUtWtXdejQodjzmi0nJ0e7d+8ucL5ly5by8Sm4V3lVZ7fbtWvXrnznWrVqVaRnSgIAAAClxedRAAAAmInPo/nx83NKQaBK4f/U8uM/egAAADATn0cBAEBJ5abEK/m/yxV+60CeM4gS4/Nofvz8nO1DAQAAAAAAAACoEJxOp9J2rVfc6n/LmZ0hW1CYarTrYXYsAFUEpSAAAAAAAAAAACbLTYlX7PLpyjz0s+tcwvr58m/URj4RdUxMBqCqYN0xAAAAAAAAAAAmyji8UydmPZWvEJQkZ26OYpdMkdORZ1IyAFUJpSAAAAAAAAAAACbyDq/jsfjLjtmv5O1LDU4EoCqiFAQAAAAAAAAAwETeodGK6PyQx/HE7z9TTtwJAxMBqIooBQEAAAAAAAAAMFlw667yb9jK7Zgzz842ogBKjVIQAAAAAAAAAACTWSwWRd05XBYff7fj2ScPKHnrtwanAlCVUAoCAAAAAAAAAFAB2GpEKaLLwx7HEzYuUE7sMeMCAahSKAUBAAAAAAAAAKgggq/uLP/LrnY/mJers99OkTMv19BMAKoGSkEAAAAAAAAAACqI89uIWn0D3I7nnD6kpC1fGxsKQJVAKQgAAAAAAAAAQAViC4lQRNfBHscTf/hCOWePGpgIQFVAKQgAAAAAAAAAQAUT1OpWBVx+jftBR67OfjuZbUQBFAulIAAAAAAAAAAAFYzFYlHkHY/J6hfodjznzBElbV5scCoAlRmlIAAAAAAAAAAAFZAtJEIR3YZ4HE/ctEjZp48YmAhAZUYpCAAAAAAAAABABRV0ZUcFNL7W/aAjT3HLP5TT6TQ2FIBKiVIQAAAAAAAAAIAK6n/biAYVGPOp2VCRdw6XxWIxIRmAyoZSEAAAAAAAAACACswWHKbI2x753wmrl8Juvl91B78l35qXmpYLQOViMzsAAAAAAAAAAAC4uMAWNyrg9y3KTTytqJ6j5FurodmRAFQylIIAAAAAAAAAAFRwFotFUT1GyOrtI4uXt9lxAFRClIIAAAAAAAAAAFQCXn6BhV7jdDp5xiAAt3imIAAAAAAAAAAAVUDabz/q1LyX5MjNMTsKgAqIlYIAAAAAAAAAAFRieenJils5S+n7tkiSEjcuVESnB0xOBaCioRQEAAAAAAAAAKCSSvt9i+K+mylHRorrXPLWbxXYpL386l5hYjIAFQ3bhwIAAAAAAAAAUAkl//c7nf3ynXyFoCTJ6VDsksly2LPNCQagQqIUBAAAAAAAAACgEgpq3kFegTXcjtnjTypx4wKDEwGoyCgFAQAAAAAAAACohLwCQhR5+2Mex5O3LlHWid8NTASgIqMUBAAAAAAAAACgkgps2l5BV97sYdSp2CVT2EYUgCRKQQAAAAAAAAAAKrWIbkPkFRjqdsyecEoJ339qbCAAFRKlIAAAAAAAAAAAlZiXf7Aiuz/ucTxl+zJlHvvNwEQAKiJKQQAAAAAAAAAAKrnAK65VUMtbPIw6Fbt0qhw5WUZGAlDBUAoCAAAAAAAAAFAFRHQdLK+gcLdjuYmnlbB+vsGJAFQklIIAAAAAAAAAAFQBXv5BirrzItuI/ne5Mo/uMTARgIqEUhAAAAAAAAAAgCoi4PJrFNSqk8fx2CVT5cjJNDARgIqCUhAAAAAAAAAAgCokouvD8gqOcDuWm3xWCWs/MTgRgIqAUhAAAAAAAAAAgCrEyy9QUXc+4XE85eeVyjyyy8BEACoCSkEAAAAAAAAAAKqYgEatFXx1F4/jSVu/NTANgIqAUhAAAAAAAAAAgCooostDsoVE5j9psarG9b1U877R5oQCYBpKQQAAAAAAAAAAqiCrb4Aiewx3vfYOr6M6D76miE4PyGrzMTEZADPYzA4AAAAAAAAAAADKR0DDqxRyze2y2HwU1rGfrN6+ZkcCYBJKQQAAAAAAAAAAqrCI2x6RxWIxOwYAk7F9KAAAAAAAAAAAVVhRCsG8zFQDkgAwE6UgAAAAAAAAAADVVF5Wus4umawTs/6hvKx0s+MAKEeUggAAAAAAAAAAVEMZB3/WiZl/V9qu75WXmqD41f82OxKAcsQzBQEAAAAAAAAAqEYcWemKX/Mfpf66Nt/5tF3rFdj0OgU2bmtSMgDliZWCAAAAAAAAAABUI0nbvi1QCJ4Xt3y68jLTDE4EwAiUggAAAAAAAAAAVCOhN/SRLayW27G8tETFr/7Y4EQAjEApCAAAAAAAAABANWL19lV0z1GSLG7H03ZvUPr+7caGAlDuKAUBAAAAAAAAAKhm/Oo3VY32PT2Ox303Q3kZqQYmAlDeKAUBAAAAAAAAAKiGwjr2k3dEHbdjeelJils12+BEAMoTpSAAAAAAAAAAANWQ1dtXUT1HSRb3VUH63k1K/32rwakAlBdKQQAAAAAAAAAAqim/uleoxnV3eRyP/W6G8tKTDUwEoLxQCgIAAAAAAAAAUI2F3Xy/vCPruR1zZKQobiXbiAJVAaUgAAAAAAAAAADVmNXmo6geIz1vI7pvs9J++9HgVADKGqUgAAAAAAAAAADVnF/dxgq9vpfH8bgVs5SblmRYHgBlj1IQAAAAAAAAAAAo7Ka+8o6q73bMkZmquBUz5XQ6DU4FoKxQCgIAAAAAAAAAAFls3oruOcrjNqIZ+7cpnW1EgUqLUhAAAAAAAAAAAEiSfGs3UugNfTyO58QeMzANgLJkMzsAAAAAAAAAAACoOMJuulcZB3Yo5+xR1zlbjWhF9Rgu/0tbmpgMQGmwUhAAAAAAAAAAALhYvLwV1XOkZPWSJAW36aZ6j06kEAQqOVYKAgAAAAAAAACAfHxrXaaILg/LO6KuAi67yuw4AMoApSAAAAAAAAAAACigxrXdzY4AoAyxfSgAAAAAAAAAACg2R06msk7sNzsGgCJipSAAAAAAAAAAACiWzKN7FLt0qhyZaao37H3ZQiLMjgSgEKwUBAAAAAAAAAAAReLIyVLcyo90at445SadlSM7Q7HLPpTT6TQ7GoBCsFIQAAAAAAAAAAAUKuv4Pp1dMkW5iafznc88/ItSf12nkKs7m5QMQFGwUhAAAAAAAAAAABQq89i+AoXgefFr5ig3OdbgRACKg1IQAAAAAAAAAAAUKvT6u+Vb+3K3Y062EQUqPEpBAAAAAAAAAABQKIvVS1E9R8ri5e12PPPIr0r9ZbXBqQAUFaUgAAAAAAAAAAAoEp+o+grr2M/jePza/8iedNbARACKilIQAAAAAAAAAAAUWY32PeVb9wq3Y86cLMUumyan02FwKgCFoRQEAAAAAAAAAABF5tpG1Objdjzrz91K/XmVwakAFIZSEAAAAAAAAAAAFItPRF2F3dLf43j82k9kTzxtYCIAhaEUBAAAAAAAAAAAxVbj2jvlW6+p2zGnPUuxS9lGFKhIKAUBAAAAAAAAAECxWaxeiuoxwvM2osf2KuW/KwxOBcATSkEAAAAAAAAAAFAiPhF1FH7rQI/jCevnyZ5wysBEADyhFAQAAAAAAAAAACUWcm13+dVv5nbMac9W7NKpbCMKVACUggAAAAAAAAAAoMQsFquieo6UxdvX7XjW8X1K2bHc4FQA/opSEAAAAAAAAAAAlIp3WC2F3zrI7ZhXUJi8w2sbnAjAX9nMDgAAAAAAAAAAACq/kLa3K33/VmUd3es6F9TyFkV0HSwv/yATkwGQWCkIAAAAAAAAAADKgMViVVSPEbJ4+8krMFQ17xur6LtGUQgCFQQrBQEAAAAAAAAAQJnwDq2pmveNlm/Ny+QVEGx2HAAXoBQEAAAAAAAAAABlJqDhVWZHAOAG24cCAAAAAAAAAADDZMUcUOqv68yOAVQ7rBQEAAAAAAAAAADlzplrV+IPC5W05RvJapVvncbyiapvdiyg2mClIAAAAAAAAAAAKFfZJw/qxMf/VNLmrySnQ8rLVeySKXI68syOBlQblIIAAAAAAAAAAKDcJG1erJg5z8oeezzf+exTB8+tGgRgCEpBAAAAAAAAAABQbrwCQ8+tDnQjceNC5Zw9amwgoJqiFAQAAAAAAAAAAOUmqNWt8m/Uxv2gI1dnl0yRMy/X2FBANUQpCAAAAAAAAAAAyo3FYlFU98dl9Q1wO55z+vC5Zw0CKFeUggAAAAAAAAAAoFzZQiIU0W2ox/HETYuUfeZP4wIB1RClIAAAAAAAAAAAKHdBLTsqoHFb94OOXMUumSJnnt3YUEA1QikIAAAAAAAAAADKncViUeQdj8vqF+R2POfMESX+uNjgVED1QSkIAAAAAAAAAAAMYQsOU8RtnrcRTfrxS2WfOmxgIqD6oBQEAAAAAAAAAACGCWpxkwKuaOd+0JGn2KWT2UYUKAeUggAAAAAAAAAAwDDnthF9TFb/YLfjOWePKfGHRQanAqo+SkEAAAAAAAAAAGAoW1CoIm97xON40ubFyj550MBEQNVHKQgAAAAAAAAAAAwX2LyDApte537Q6dDZJZPlzGUbUaCsUAoCAAAAAAAAAADDWSwWRd4+TNaAELfj9rgTSty82OBUQNVFKQgAAAAAAAAAAEzhFVhDkbc/6nYsoEl7hbS5zeBEQNVlMzsAAAAAAAAAAACovoKa3aD0ZluUvm+zJMnqH6TI2x5VYPMOslgsJqcDqg5KQQAAAAAAAAAAYKrI2x9V1rG98q17hSLveEy2oDCzIwFVDqUggDLldDrlcDjkdDrNjqLc3Fy35/jtIgAAABihOJ9HLRaLrFYrn1UBAEC15RUQorpD3pZXcDifiYByQikIoNSysrKUnJys1NRU5ebmVohCUJLbHEeOHOFDBQAAAAxR3M+jFotFNptNwcHBqlGjhvz8/Mo7IgAAQIViC4kwOwJQpVEKAigRp9OppKQkJSYmKjs72+w4AAAAQKXndDplt9uVkJCghIQE+fr6KiwsTKGhofxiGwAAqPaceblK2vyVHPYsRXR6wOw4QKVEKQigROLj4xUbG2t2jELx29UAAAAwU2k+j2ZnZ+v06dPKy8tTZGRkGaYCAACoXHLOHtPZJZOVc/qwJIsCG7eVX/1mZscCKh2r2QEAVD5JSUmVohAEAAAAqoLY2FglJSWZHQMAAMBwTkeeEn9crBMf//P/C0FJcurskily5GSZmg2ojFgpCKBY0tLSdOrUqQLnbTabatSooeDgYHl5eclqNf93DhwOh7Ky8n848PPzqxDZAAAAUPUV5/Oow+FQXl6eUlNTlZycrNzc3Hzjp06dks1mU1BQULlmBgAAqEjOfPmOMv7YXuB8buJpJXw/X5HdhpqQCqi8KAUBFIu7FYLR0dEKDw+vcM85cTgc8vLyynfOZrNRCgIAAMAQJfk86u/vr6ioKCUkJOjs2bP5xmJjYykFAQBAtRJydRe3paAkpexYrsAm18n/khYGpwIqL34yDqDIcnNzC/ymc0REhCIiIipcIQgAAABUVhaLxfU5+0JZWVkFVhACAABUZQGNr1FQq04ex2OXTpUjJ9PAREDlRikIoMjS0tLyvbZarYqKijIpDQAAAFC1RUVFFVhV+NfP5AAAAFVdRNeH5RUc7nYsN+mMEtbNMzgRUHlRCgIostTU1Hyvg4KCWCEIAAAAlBOLxaLAwMB85/76mRwAAKCq8/ILVNSdwz2Op/y0Qpl/7jYwEVB5UQoCKLLMzPxL8XmeCQAAAFC+goOD873+62dyAACA6iCgUWsFX93F43js0qlyZPM5CSgMpSCAInE6ncrLy8t3ztfX16Q0AAAAQPXw18/ceXl5cjqdJqUBAAAwT0SXh+QVEul2LDc5VvFr5xqcCKh8KAUBFInD4ShwzsvLy4QkAAAAQPXh7jO3u8/mAAAAVZ3VN+Ci24im/rJKGYd/NTARUPlQCgIoEne/jczzBAEAAIDy5e4zNysFAQBAdRVw2VUKbt3N43jssmlyZGcYmAioXCgFAQAAAAAAAABApRDR+UHZakS5HctLiVP8mv8YnAioPCgFAQAAAAAAAABApWD19VdUjxEex1N3rlHGoV8MTARUHpSCAAAAAAAAAACg0vC/tKVCrrnd43jssmnKy0o3MBFQOVAKAgAAAAAAAACASiW80yDZQqPdjuWlJij113UGJwIqPkpBAAAAAAAAAABQqVh9/BXVY2SB8xYff0Xe+YRqtOthQiqgYqMUBAAAAAAAAAAAlY7/JS0U0rb7/143vEr1h72nkKu7yGKxmJgMqJhsZgcAAAAoDzExMapTpw5/CTBAenq6AgMDzY4BAAAAAKiGwm8dqKzj+xTSppuCW3fl5wDARbBSEAAAVEmTJk1Sv3799Ntvv5kdpUj+/e9/a/78+crNzTU7SrHExMSoc+fOmjhxopKSksyO49aff/5ZrvPn5OTo3XffVWpqarm+DwAAAACgIKuPn+oO/ZdC2nSjEAQKQSkIAACqpH379mnnzp2699579eqrr1b4wqZ169Z69dVXddddd2nHjh1mxymyunXratSoUZoxY4Y6d+6s2bNnV7hic+TIkRo6dKi2bNlSLvO/9957mjlzpu666y5t3769XN4DAAAAAOCZxXLxqsPpyJMjJ8ugNEDFxfahAACgyklOTtbBgwclSXl5eYqNjZXVWrF/F+rqq6/W3Xffra+//loPPPCABg0apDFjxsjb29vsaIUaOHCgtm3bppUrV+rtt9/WqlWrNHXqVEVFRZkdTZLk7++vTZs2adOmTeX6PidPntRjjz2mb7/9VvXr1y/X9wIAAAAAFI094aTOLpkq79BoRd/9N7PjAKaiFAQAAFXO9u3b5XA4JEl33HGHJk6cWOFLQUl68skntWzZMtntdn3yySey2+165ZVXzI5VJC+++KI2b96s1NRU/frrrxo0aJC+/PJLBQUFlWg+p9Op5ORkhYaGljqbn5+fJCk6Olpz5swp9Xx/NX/+fM2fP1+SNHPmTApBAAAAAKgAnE6HUnYsV8L6+XLm5ij7xO8KbHKdApu2NzsaYBpKQQAAUOVs2LBBktSkSRNNmDChUhSC0rmtOO+44w59++23kqQvv/xSzz33nHx9fYs8R25urmw24z/iRUVFqX///po5c6akc8/x++mnn9SxY8diz+V0OvXSSy9p+/btmjt3rmrWrFmqbOe/H97e3mrUqFGp5nInLCzMddy8efMynx8AAAAAUDz2xNOKXTpVWcd+y3c+bsUM+TVoJq+AEJOSAeaqHD8hAwAAKKK8vDytWbNG3t7eevvtt4tVqFUE99xzj+vYy8tLXl5eRb43NTVVAwcO1Keffloe0QrVr18/13HNmjV17bXXFnuO84Xg559/rj///FMPPvigzpw5U6pcxfkeAgAAAAAqN6fTqbNfTSxQCEpSXnqy4lbONiEVUDGwUhAAAFQp27dvV2JiokaMGKEmTZoU61673V6iZ/itW7dOKSkp6tWrV7Hv/au2bdsqMDBQ6enpuueee4q86i81NVVDhw7Vr7/+ql9//VVOp1MDBw686D1HjhxxbbNaVqKiopSUlKRnnnlGp06dKvb9c+bM0eeff+56fb4YLM2KQYvFIuncv99Dhw6VaI6LSUxMdB07nc4ynx8AAAAAUHQWi0URtz2qk/95TnIW/Dtv+m8/Kq3p9Qpqdr0J6QBzUQoCAADDLVq0SKGhoerSpYvHa5xOp8aOHas77rhDt9xyi+v8smXLdOONN6pGjRpu7/vqq6906aWX6vHHHy92rldeeUVWq1UvvvhiscrBzMxMjRkzRitWrNArr7xSqu0ubTabHn74YZ06dUqjR48u0j0XFoLSue/dq6++KkkXLQa3bNmi8ePHl0uR9c9//rPM5vrzzz/1wAMP6JNPPinR9/b89rFnz55V9+7dyyyXO5SCAAAAAGA+v7qNFXr93Ura/JXb8bgVM+XfoLm8At3/bAGoqigFAQCA4RITE/X888/rtttu05AhQ9xu77hmzRp9/fXX+uabbzR8+HCNHDlSVqtVmzZt0oQJE/Tmm2+qQ4cO+e5JS0vTqlWrNHXqVPn4+BQr0/bt27Vo0SI5nU4dOnRIkydPVnh4eJHuPV8grl+/XuvXry/W+17M4sWLS3yv0+nU+PHjJXkuBgcMGKDg4GAlJCSoRYsWqlOnjkJCQhQYGOhaXefJtm3b9OCDD0qS/va3v2n48OFur5s2bZomTZokSZo7d67atzf+ge7ni7q6detq3bp1ZT7/5MmTNWXKFEkq85WXAAAAAICSCbvpfqUf+K/ssccLjDkyUhS3Yqai+zxT6N9/gaqEUhAAABju/HP+Vq5cqXXr1rn9AJ6XlyfpXKGzYMEC9enTR/Xq1ZO3t7fOnDmjIUOGeJz/YmNF8d///lcTJkzQhAkTinT9hasKe/XqpWHDhpXq/ctSYX+56dmzp0FJzGPk6r3zf24BAAAAAOay2LwV3WOkYuY8634b0d+3Kn3fZgU17+DmbqBqohQEAACGu7BEmzNnjtq2bVvgmvfee0/Tp0+XJH388ceqV6+eJLlWAEZGRmru3LlllunEiROuMq9r166u7TeL4sKvJzQ0VI0aNSqzXCg9I1fv2e12w94LAAAAAHBxvnUuV+gNvZX045dux+NWzJRfg+ayBYUZnAwwB6UgAAAwnM1WvI8gDRs2dB2f32rUy8ur3Mq3Tp06FWv70QtLwaq27cj+/fs1d+5cvfLKK8X+91ZRnC/q7Ha7Dh06VObzJyYmFngvAAAAAEDFEHbjfco4sEM5Z48VGHNkpinuu5mqee/oKvf3ecCdyvmTHQAAUKldWKIVV0UspqpyKfjOO+9o48aNOnv2rCZNmqSAgIBSz7lx40b98MMPevTRRxUdHV0GKS/u/JaeZ8+eVffu3cv1vbKyssp1fgAAAABA8Vhs3orqMUoxc8ZKjoKPfMj4Y7vS925S0JU3mZAOMFbF+6kaAACo8kpT7J1fKViRWK1WsyOUizVr1mjjxo2SzhV5DzzwgGbOnKmIiIhSzXvddddp/fr16tq1q/r166dhw4aVes6Lyc7OliTVrVtX69atK/P5J0+erClTpsjb29vQ5xcCAAAAAIrGt/ZlCu1wj5J++NzteNzK2fK75ErZgtlGFFVb1fwJFgAAqNBKU6JV9FKwJCsFt2zZoq+//rrE75+WlqYRI0YoJiamxHP8VXp6ut544w3X64CAALVo0UIpKSmlntvHx0fjxo3T66+/rs8//1xdunTRu+++q+Tk5FLP7c75UjA8PLxc5o+MjNTIkSO1bt06NW7c2O01ixYtUkZGRrm8PwAAAACgcGEd+sgn+lK3Y46sNMV9N51f9ESVRykIAAAMV5pSsCxW5TkcjlLPcaELM/01X1GKoLCwML388sslft7d7t27tWbNGt15552aPn26cnJySjTPhSZMmOAqGUNDQ/XZZ59p/Pjx+Z7vWFo9evTQwoULFR4erpkzZ6pr166aNWuWq8QrK61bt9aHH36ozz93/xuhpdW/f3+NGjXK7VaoTqdTr732mp5//nn97W9/U25ubrlkAAAAAABcnMXLW1F3jZKs7n/ZOOPAf5W2e4PBqQBjsX0oAAAwXGmKPU8r8bZs2aKcnBx17Njxovdv3bpVkydP1uTJk8ts5ZinUtBut6tv37765JNPFBbmeQuSpk2b6qqrrtJTTz2lRYsWycfHp1jvv3v3bklSZmam3nvvPX3zzTd6//331aRJk2J+Jeds2LBBCxculCQFBwfro48+UtOmTUs0V2GuuOIKLVq0SKNGjdKOHTv0zjvv6LPPPtMzzzxTpOf/HT58uNDf5HzooYckSUeOHCmTzMUxbdo0LV26VNK5LVife+45TZgwoco9exIAAAAAKgPfmpcq7Mb7lLhxgdvx+FUfyf/SlrKFlN8jLgAzUQoCAADDlcf2oWlpaRo5cqTuvfdePfPMMwoICChwTVZWll544QUdP35c9957r6ZPn64rrriixFnO81QKent7q0OHDnruuef04YcfXnSOhx56SE888YQmTpyosWPHFuv99+zZk+91RESELrvssmLNcV5cXJyeffZZSee2DJ01a5auvPLKEs1VVGFhYfr444/17LPPaunSpYqJiXEVpOPHj1e9evU83rt9+3a9/PLLlWaLl2+++UYREREaM2aM2VEAAAAAoFoKvaG30v/YrpzThwuMOfNylX36MKUgqixKQQAAUKl4WmHl5+cn6dyz2xYtWlToPDExMXrllVc0b968Uq/auvD+v5aWgwYNUrdu3bRgwQL169fP4xy33nqrGjRooP/85z/q1KmT2rVrV+T3P79SUDr3vL4333xT3t7exfgKzsnNzdU//vEPxcfHKyQkRDNnzlTr1q2LPU9J+Pj46J133lFISIg+/fRTSdKPP/6o3r17a/r06brmmmvc3tevXz9FRUUpJSVFzZs3V82aNVWjRg1W4gEAAAAA3LJ42RTdc6ROfDRacvzvEQ++9ZoquudIeYfXNjEdUL4oBQEAgOFKU9h4WmV44Zabzz77rLp06VLgmpycHN1xxx2SpDZt2mjGjBllUh7Z7XaP+erXr6/OnTvrrbfeUrt27Tyu4LNYLOrTp4/ef/99jR07VkuWLFFgYGCh7x0bG6uTJ0+6Xg8YMED169cv0dfx+uuva9u2bQoPD9dHH32k5s2bl2iekrJYLBo3bpysVqvmzZsnSUpJSdE//vEPfffdd25Xf0pS586dPc55/Phx1axZs9hbshZXVlaWTp48WeIVmgAAAAAA4/hEX6Kwm/sq8ftPZbH5KOyWAapxbXdZPDxvEKgqSr53FwAAQAmVZvtQT3x9fV3HYWFhqlevXoF/6tat67qmXbt2CgoKKpP3zsrKch2729500KBByszM1JgxY5Sbm1tg/LzevXvLarUqJiZG7733XpHee+vWra5jHx8fPfLII8VI/j+fffaZPv30U9WsWVPz5s0zvBC80AsvvKDbb7/d9fr06dNatWpVieZasWKFbr/9di1atOii3/vSevbZZ9WrVy/NmTOn0mxlCgAAAADVWej1vRTcupvqPvKOQtv3pBBEtcBKQQAAYLjSlCaeVvaVR9FYVJmZma5jd6Vg+/btdckll2jXrl2aMWOGRowY4XaeWrVqqUOHDvrhhx80f/589ezZU1ddddVF33vLli2u4169eikqKqrY+bdt26bXX39dV1xxhWbNmqVatWoVe46SOnPmjGrWrJnvnMVi0VtvvaXDhw/rjz/+kHRuxWBJ+Pj4KCYmRs8//7yef/75UuctzJtvvqndu3fr3XffLff3AgAAAACUnMXqpajuj5kdAzAUpSAAADBceZSC7so4o1y4UtBmK/jxymKx6N5779W7776rDz/8UJ07d1bTpk3dznXHHXfohx9+kMPh0Pjx4/XFF19ctPC8cKXggw8+WOzsu3bt0siRI9W2bVtNnjxZwcHBxZ6jpHbs2KFHHnlEY8eOVf/+/fON+fv7a+rUqRowYIDi4+N10003leg9Ltw2dMKECWrZsmWh96xcuVKTJk2SJH300UeqXbvw50k88sgjOnnypBo3bqyxY8eWKCsAAAAAoGLJTY6VLBbZQiLNjgKUCUpBAABguPLYXrG4pWBZZrhwpaC/v7/ba/r06aNJkybJbrfrhRde0Oeff+627Lv11lvl5eWlvLw87dmzR8uWLVPPnj3dznn8+HHFxMRIOrcdauPGjYuVe9euXRoyZIi6deumV155Rd7e3pKkU6dOKSMj46L3njp1ynWcmJioQ4cOub0uMTEx3z3nr4uNjdWoUaOUlZWll19+Wenp6QW2Pm3QoIEWLVqk/fv3q2HDhsX62s67sBSsXbu2GjVqVOg9F662rF+/vi655JJC7zlfBl955ZUlWq0JAAAAAKg4nE6nUneuVfyaOfKrc7lqDRjn8ZeUgcqEUhAAAFRLZVkKXrhSMCAgwO01kZGRuv766/XDDz9o9+7d+vTTTzVo0KAC14WHh6tNmzbasWOHJGnGjBkeS8ELVwn+daVdYXbt2qVhw4bpqaee0sCBA/ONxcbGasiQIUpNTS3SXHPnztXcuXMLvW7MmDEex95++21ZLBYNHTo03/latWqVajvTC0tBAAAAAAAKk5sSr9hl05R5eKckKfPP3Ur9eZVCrrnN3GBAGaAUBAAAhnM4HMW6vigFXnF/Y6+4GS4mOTnZdRwUFOTxuvNbg0rSBx98oLvuukshISEFrmvXrp2rFDxw4IB2797tdtvLjRs3Sjq3sq1r167Fyvzhhx9qypQpatu2bYGxVq1a6bPPPlN8fLyaNm2q0NBQ19jq1av1zDPP6Ouvvy7x6r2srCwNGDBAe/fulSRFR0frscce0z333FOi+S7m/OpHo5THKlgAAAAAQPlzOp1K27Ve8av/LUd2/t1z4tfOlX+jq+UdWtOkdEDZoBQEAACGK24hd+H1nso/M0vB06dPu46jo6M9Xte1a1eNGzdOdrtdycnJWrhwoR599NEC11111VX5Xm/btq1AKZiTk6NNmzZJkvr161fs8uvDDz+86Hjjxo3dbkfatWtXXXnllXruuec0f/78iz7v0B2n06kxY8a4CsGQkBDNmTOnSNt6lsSFKwVL8szFbt26Fev6svxzBQAAAAAwkNOhlJ1rChSCkuS0Zyl26TTVHjhOFkvx/h4MVCSUggAAwHDFLU5yc3Ndx55WYpVmztK6sBSsXbu2x+tCQkLUunVrbd++XdK5VXfuSsFWrVrle3327NkC1/z444/KyMiQt7e3+vXrV9LoJTJmzBj17dtXc+bM0ZAhQ4p179SpU7VixQpJ51bxffDBB+VWCEr5nzU5YcIEtysu/2rlypWaNGmSJOmjjz666L/T8x555BGdPHmSUhAAAAAAKimL1UtRPUYqZvbTcubmFBjPOrpHKT+tVI22d5iQDigblIIAAMBwxd1isSwLvPPKsrw5deqUJMnPz08REREXvfa6665zlYK7du1SUlJSvu05JSksLEyhoaFKSkqSpALj0rniSpK6d++uyMjI0n0BxdSqVSv16dNHEydO1DXXXFNgZaMnX3/9tSZPnizp3MrOV199Vddff315RlVOzv/+Ile7du0iFZBRUVGu4/r16+uSSy4p9B6b7dzHakpBAAAAAKi8fCLqKPzWgYpf/W+34wnrPlFAo9byDqtlcDKgbFAKAgAAw11Y8v3444+KiYkpcM2BAwdcxxcWO57k5eW5jmNjY3Xo0KEC19jtdrfHpXV+peDll19e6LXt27d3HTudTh07dsxt6de0aVNt3bpVkgo89y8nJ0dr166VVLItMcvCmDFjtHHjRj355JP66quvFB4eftHrN2/erBdeeMH1+rnnnlPv3r3LO2aR/uyUpfIosAEAAAAAxgm5trvSf9+qrOP7Cow57dmKXTJFtR8YzzaiqJQoBQEAgOEuLE6WLVsmf3//AtfExcW5jrOzs13HnlYZXlgKvv3223r77bcvmqGsSsGcnBwlJCRIkpo3b17o9U2bNpXFYnF9HVlZWW6v69atm7Zu3arrr79e1157bb6xH374QSkpKWrTpo2uvPLKUn4FJVOjRg299NJLGjVqlJ588kl9/PHH+Z7fd6G9e/dq5MiRru/5qFGjDCszy7L8rYjvBwAAAAAoWxaLVVE9RujErH+430b0+D6l7FiuGu16mJAOKB1KQQAAYLgLS8E33nijwEo4SXrvvfc0ffp0SUUrBS+c81//+pfuvvvuAtdkZ2e7ntdXVivITp8+7crUrFmzQq8PCgpSw4YNdfjwYUlSgwYN3F53//33q2bNmurYsaMsFku+sWXLlkkyb5Xged26dVOfPn20ePFiPfPMM3r//fdlteb/TckDBw5oyJAhSk9PlyQNHz5cI0eONCzjhf+eT5065XYF6V/Fxsa6jo8fP16k1X/nr7nwzyoAAAAAoHLyDq+t8E4PKH7VR27HE9bPV8DlbeQdXsfgZEDpUAoCAADDFWeLRZvNVqAUc6e4ZUxZlTf79+93Hbdr165I99x00006fPiwrr76atWq5f45BDabTV26dClwPi0tTWvXrlXt2rXVtWvXkoUuQy+99JJ2796tlStX6uWXX9Yrr7zi+vd15MgRDR482PVsxL/97W8aPny4ofkuLAXHjBlT7PuHDh1arOszMzOL/R4AAAAAgIonpO3t57YRPba3wJgzN0dnl0xVnQfGy2L1MiEdUDKUggAAwHBF2WLR29tbffr00RNPPJFvNZ3D4XB7/fkyJjo62uPqO0mqU6eO+vfvr/vuu6+Yqd3bs2eP632L8kxBSXrggQd06NAhvfzyy8V+v9WrVysrK0uDBg2SzWb+Rzl/f39NmjRJffv21cKFC2W32/Xaa6/p4MGDGjJkiGsb2H/+85965JFHDM934Z+1uXPn5numoydffPGF6/mHq1at0iWXXFLoPV27dlVeXp7uvPPOkocFAAAAAFQY57YRHa4Ts56W017w0R/ZJ35X8o5lCm1/lwnpgJIx/ydJAACg2jm/esvb21tBQUFur3n88cfdll6etg8NCwvTxIkT1a1bN3l7e7u9xtfXV2vWrJGXV9n9Ft/eved+Y/DGG28s8j3169fXRx+534KkMF999ZUCAgLUt2/fEt1fHho1aqTJkydr2LBhWrx4sc6ePas9e/YoKSlJNptNr776qvr06WNKNl9fX919993q1q2bWrduXW7v884776hly5ayWq1KS0vz+OcaAAAAAFB5eIfVOreN6MpZbscTv/9MAY3ayCeynsHJgJKxFn4JAABA2bJarRowYIDWrFmjpk2bur3G0yo4TysFW7durTvvvNNjIXheWRaCubm5+vXXXyVJ3bt3L7N5PTl58qS2b9+u3r17KyQkpNzfrzhuuOEGvf7665KkTZs2KSkpSf7+/po6dapphaAkDRgwQP/617/UpUsX+fj4lNv7XHXVVZKkDz74QF27dtWBAwfK7b0AAAAAAMYJuaab/C5t6XbMmZuj2KVT5XTkGZwKKBlWCgIAAMMNHTq0SM8JdMfTSkEz7NixQykpKYqKitINN9xQ7u/31VdfSTq3/WhFk5CQoFWrVuU7Fx4ebsqKufj4eI/lcVGkpaW5jhMTExUQEFDoPdnZ2XrllVe0ceNGSdLgwYP16aefXnQrWwAAAABAxWexWBV153CdmPWUnDluthGN+UPJ25Yo9PpexocDiolSEAAAGK6khaDkeaWgGdavXy9Juuuuu8p0BaI7TqdTX331lW655RY1bNjQ43U5OTlavny5evXqVa55LrRq1SqNHz9esbGxks49t/HMmTOKiYnRoEGD1K9fPz355JMKDw83LM8rr7xSJgXy/fffX6L7YmNj9fDDD2v+/PmqXbt2qXMAAAAAAMzjHRqtiM4PKe67GW7HEzcsUMDl18gnqr7ByYDioRQEAACVSl5e+WzJkZmZWazrnU6n1q5dKx8fHz300EPlkulC27dv1/Hjx/Xaa695vMZut+vJJ5/U+vXrdebMGT322GPlmuno0aN67bXXXKvj/Pz89Pjjj2vo0KH65Zdf9PTTTys2NlafffaZvv32Ww0ZMkSDBg1SaGhouebq37+//P399eeff+rKK69UvXr1FBwcrKCgoCIV0t98843r+/zVV1+pXr2SPxvC19e3xPcCAAAAACqO4NZdlf77VmUe+bXAmHdUA6kUvwANGIVSEAAAVCrlVQpu3ry5WNdv3bpVJ06c0P3336+aNWuWS6YLLVq0SM2aNdN1113ndtzhcGj06NGu1YsTJ06Ur6+vHn744TLPcvbsWU2bNk2LFi2S3W6Xl5eX7r77bo0aNUp16tSRJLVv315LlizRm2++qW+++Ubp6emaPHmyZs+erbvvvlt9+/ZVixYtyjzbeaVZKenn5+c6DgwMrHDPbwQAAAAAGM9isSjqzid0fOZTcub8/y8WW20Ku+k+hV7fSxYv6hZUfPwpBQAAlUppSsGXXnpJgYGBCggIkJ+fn3x8fGS1WnXkyBEtXLjQdV1RVpMtWLBAvr6++VbjnTp1ShkZGSXO50lOTo5WrVqlRx99VIcOHXJ7zezZs7V8+fJ859588//Yu+uwqNL3DeD30C2goCgoNpira6zdujbWuhaKioGxtrv2YmAXFsbagYHd3d3dhRh01zDz+4PfnC8jDMwwA0Pcn+vaayfOec8zxDic+7zP6wUDAwP07NlTI3V8/vwZGzduxL59+xAXFwd9fX106tQJgwcPTrOlqZWVFebPn49OnTph7ty5ePHiBWJjY7Fr1y7s2rULpUqVQtu2bdGoUSNUqlRJrbayOdmePXsQGhqKQYMGabsUIiIiIiIiUoNeARsUbNEPQUdXw6BwSdi0Hw7Dwo7aLotIaQwFiYiIKFcRi8WZ3vf333/H/fv3cfnyZTx48EDhmnMODumvARAUFISzZ89i8ODBKFasmPB4YGAgBgwYgIiIiEzXmB5vb294e3urtI+npycMDQ3RpUuXTB1TKpXi6tWr8PX1xdmzZ5GUlAQbGxv07dsXvXr1UmqWZJ06dbB//34cOnQIa9aswfv37wEA7969E16TtbU1atasiSpVqqBq1aooV64cChQokKmac5ItW7Zgzpw5AICSJUuiRYsWWq6IiIiIiIiI1GFetRlEOnowq1ifswMp1+FPLBEREeUqiYmJmd63bt26qFu3LoYNG4bPnz9j3bp12L17t1w4WKRIEfzyyy/pjrNlyxbY2tqmmvlVpUoVbNq0CVeuXIGzszNKliwJCwsLmJmZQVdXN9N1a8O7d+9w7Ngx7N+/H/7+/jAwMECTJk3QqVMnNG7cGHp6qn2M1NHRgYuLCzp06IAzZ85gy5YtuH37tvB8SEgITp48iZMnTwqPWVtbo1SpUrCzs4ONjQ1Kly6Nrl27yo0bHx8Pf39/9V7sTwIDA4Xbnz9/znQQffLkSSxbtky4P378eGzfvj1L26YSERERERFR1hKJRDCv0ljbZRBlCkNBIiIiylXUmSmYkoODAzw9PfHbb79hzJgxkEql0NPTg6enZ7qBV2hoKLZv347ly5fD0NAw1fMVK1bMtaHPs2fPcP78eZw6dQovXryAhYUF6tSpg1GjRqFJkyYwMzNT+xg6Ojpo2bIlWrZsiTdv3mDfvn04duwYvn37lmrbkJAQhISEQFdXFw0bNkSJEiVSbaOvr4/169fDz89P7drSMmDAAI2NFRsbiyFDhmDv3r3Zsg4lERERERERZT+pVIroZ1egX8iBrUUpx2EoSERERLlKQkICbGxs4ObmppHx2rRpgwMHDiAgIADTp09HzZo1091+48aN+OOPP1CvXj2NHF+bvn79ips3b+LWrVu4fPkyoqOjUaVKFbRo0QLTp09H1apVs3SGY5kyZTBx4kRMmDABd+/exdmzZ3Hx4kW5dRNLlSqFFStWoHTp0mmOoaOjgzlz5qB8+fIwNzeHs7MzChUqBHNzcxgbG2dZ7UREREREREQ/S4oOR+BxH8S8vAmDwiVRzG0uW4xSjiKSKlpMh4hynYSEBDx+/DjV45UrV4aBgYFaY4vFYrx+/VrusbJly6rcPi47SSQSxMbGyj1mbGwMHR0dLVVERJrw+PFjlC9fXu33tZSCgoJQqFAhpbadPHkypk+frtHja8P58+exbt06ODk5wdnZGZUqVUK5cuVyRJtTWVh5584dDBw4EI6OjtouiYgoUzTxeTQ3fg4nIiIiyo+inl1F0Mn1kMRECI9ZNegOq4Z/aK2mxMREPHr0SO6xKlWqQF9fX0sVaVdWnj/PLfhXBBEREeUqlStX1viYygaCADB79myNH18bmjRpgiZNmmi7jDTZ2dnBxcUFLi4u2i6FiIiIiIiIKF0ScQICDy1H9PPrqZ4LvboXJuVqwrBISS1URpQap8sQERERERERERERERFlgkhXH9IkcdpPSpIQeNgb0qTE7C2KSAGGgkRERERERERERERERJkgEolQqPVg6Bibpfl8wo+PCL2yN5urIkob24fmMC9fvoSfnx9u3boFf39/xMbGwtTUFLa2tqhatSpatGiBhg0bQiQSabtUOUlJSTh//jxOnz6NR48e4du3b0hMTISlpSV++eUX9OzZE3Xr1lVqrPLly2e6jrNnz8Le3l6pbQMDA7Ft2zacP38enz59gq6uLuzt7dGwYUP07NkTdnZ2ma6DiIiIiIiIiIiIiPIHPTMrFGrljh8HlqT5fNhVP5iWqwVDu9LZXJlq7t69i6NHj+Lu3bv4+vUrYmJiYGZmhoIFC6JSpUqoW7cuWrdunSvW33vx4gWOHTuGW7du4ePHj4iMjIS+vj4KFiyIKlWqoFWrVkovJ3Pz5k24urqqVc/q1avRtGlTtcbQBIaCOURAQABmz56N69evo2fPnpg6dSocHBwgkUgQEBCAy5cvY9u2bdizZw8qVqyIJUuWoESJEtouGwBw69YtTJ8+HeHh4ejevTt69eqFIkWKIDExEdeuXYOnpydOnz6N3r17Y/LkydDRyZoJqhYWFkoHgocPH8b06dMRHx8PV1dXzJ8/H6amprh9+zaWLVuGzZs3Y8aMGejcuXOW1EpEREREREREREREeYdphXoweX4NMS9vpn5SKsGPw96w778AIj397C8uA48ePcKsWbPw5s0bdOjQASNGjBDO8X/9+hVXrlzBoUOHcODAASxYsAD//vsvmjVrpu2y0/T582fMnj0b58+fR82aNdGhQweUKlUKZmZm+Pz5M1atWoWjR4/i7NmzGDRoEH777bdsqatSpUrZcpyMMBTMAR4+fIjBgwejYMGCOHr0aKoZaoULF0a1atXwxx9/wM3NDU+fPkX37t2xd+9epUOwrLJ9+3bMnj0bjRo1wpw5c2BlZSX3fLdu3XDs2DFcu3YN27Ztg5WVFYYPH57huDY2NjAzS3u6tSIVK1ZUartdu3Zh+vTpEIlEWLhwIdq1ayc85+DggEaNGqFr1674559/EBwcDHd3d5XqICIiIiIiIiIiIqL8RSQSwab1YHz+/BySmIhUzycGfkbo5d2wbtJLC9UptmXLFnh5eaF69eo4fvw4ChcuLPd8tWrV0KZNGwwaNAiDBg3Cx48fMWzYMEybNg09e/bUUtVpu3jxIsaOHQsDAwOsWrUqVXBZrlw5iEQi/PXXX4iLi4O3tzcMDAxQuXJlpcY3MTHJ1CzJQoUKwdbWVuX9sgJDQS0LCQnBkCFDEBYWhu3bt6fbsrJIkSJYsmQJOnXqhNDQUEyYMAE7duzIxmrl7du3D56enmjWrBmWL18OPb20f5wiIv73Bnj8+HGlQsExY8ZkySy9u3fvwtPTEwDw559/ygWCMgULFsS8efPQp08fLF68GOXKlUOjRo00XgsRERERERERERER5R26pgVQ6Hd3/PBblObzYdcPwKR8bRgVLZPNlaXN19cXs2fPhqOjI9avXw9jY2OF2zo6OmLdunXo2LEjYmNjMXv2bFSsWBFVq1bNxooVu3TpEoYNGwZLS0ts3rwZpUun3apVV1dXuC2VSrFv3z707dtXqWNMnTo113cXzJo+jqS0NWvWICQkBOXLl1f4Q5qSk5MT6tevDyA54Lp161ZWl5imDx8+YMaMGbC0tMTcuXMVBoIA5K4sqFKlSnaUlyaJRIKpU6ciKSkJpqamGDlypMJta9WqhVq1agn7xMfHZ2OlRERERERERERERJQbmTnXhalz3bSflEoQeNgbEnFC9haVhsDAQMybNw8A0Lt373QDQZkSJUqge/fuAACxWIyFCxdmaY3K+vTpE8aMGQOxWIylS5emm7VERkbK3Tc0NMzq8nIUhoJaduLECQBAYmKi0vvUrfu/N5Tz589rvCZlzJ07FwkJCejatSssLCzS3Xbx4sVYvXo1NmzYgJkzZ2ZThakdPnwYb9++BQC0a9cO1tbW6W7fqVMnAMD379+xbdu2LK+PiIiIiIiIiIiIiHK/Qq0GQsck7fPmiUH+CL3km80VpXbkyBFER0cDSA77lNW2bVvh9q1btxAQEKDx2lQ1ZcoUREZGonHjxqhRo0a625YoUQLt2rWDg4MDKlasiN69e2dTlTkDQ0EtiomJwffv3wEAb9++xaVLl5Taz8HBQbj96dOnLKktPbdv3xbCyFatWmW4vZGREZo2bYr69eunO6Mwq61bt0643bFjxwy3b9y4sTCVeNOmTZBKpVlWGxERERERERERERHlDbqmBVCo9SCFz4ffOIQ4/5fZWFFq165dE26/fv1a6f2cnJzkWnDeuXNHo3Wp6vz587h58yaA/030yUjPnj0xb948TJ48GaVKlcrK8nIchoJaFBsbK3dfNlU3Iymn8SYkZP80Yz8/P6GOChUqZPvxM+PNmzfCG5u5uTmqVauW4T7W1tbCG8KPHz/w4MGDrCyRiIiIiIiIiIiIiPIIM6c6MK1YP+0npRIEHl4BSaL2lq2STVgCkpc5CwoKUmo/AwMDmJubC/d//Pih8dpUsWHDBgCAjo4O6tWrp9VacgOGglpkbW0NGxsb4X7KX8L0hIaGCrft7Ow0Xld6EhIScObMGQBA6dKltTrzTxWnT58WbletWhU6Osr96KcMPWWvm4iIiIiIiIiIiIgoI4VaDoSuqWWazyWGBCD04q7sLSiFlJ3xIiIisGuX8rXo6+sLtyUSiUbrUsXHjx9x+/ZtAMl5hZmZmdZqyS0YCmqRSCTC0qVLUbNmTZQtWxYTJkxQar8nT54It8uXL59V5aXp7t27iIiIAKBan2Ftu3//vnC7YsWKSu9XpkwZ4fbTp081WhMRERERERERERER5V26JuYo1HqwwufDbx5G3JdX2VjR/1SuXFnuflxcnFL7JSUlISwsTLhva2urybJUknIiT8pz+aRY7pjmlYfVqFED27ZtU3p7qVSKU6dOAQD09PTQunXrrCotTS9evBBu//zLfvPmTRw7dgwvX75ETEwMrK2tUbx4cTRr1gz16tXL1KxCqVSKs2fP4syZM3jw4AECAwORmJiIwoULo06dOujRowecnZ0zHCdlT+RixYopffyUr/HNmzeqFU9ERERERERERERE+Zpp+Vowq9QQUU8uyT8h0oFlHRcYFi6plbrGjBmDqKgo3L9/H/b29ujRo4dS+7169QqJiYnC/Z/DxeyUcl1EBwcHrdWRmzAUzGXOnz+PL1++AACaN28Oa2vrbD3+y5f/W/zU0tISAPD161f8/fffuHHjRqrtr1+/Dl9fX1SsWBFz585FuXLllD5WbGwsRo0ahQsXLgAATExMYGVlhZCQEHz69AmfPn3C3r17MWTIEIwcOVLhONHR0QgICBDuFy1aVOkaChcuLNwODAxEZGSkXL/k3EIsFkMkEqk9Rsop5UDy1HBtTg/PrNxYMxERERHlHap8HpVIJKk+hycmJqZ6jIiIiIhyLosmroh5/xiS6OSlwfSsi8K6rQcM7cpALAWQImTTJLFYrPCxAgUKYNGiRXLPJSpRx8mTJ4Xbjo6OKF68uFL7ZYVHjx4Jt62treXqePr0KQ4cOIC7d+/ix48fMDQ0hLW1NYoUKYJatWqhSpUqap0z//79O44cOYLbt2/j/fv3CAsLg4mJCezt7dGsWTN06tQJBQoUUOv1ZQWGgrlIUlISli1bBiA5IBs3bly215BytpyZmRk+ffqEXr16ISgoCJ06dUKnTp1QsWJF6Orq4unTp1i1ahWuXr2Kp0+fol+/fvD19VUqsU9KSsKwYcPw+PFjjB07Fu3atRPCPIlEgkuXLsHT0xNfvnzBypUrkZSUhNGjR6c5VkhIiNx9VX4Rf+5BHBYWlitDwefPn2t0PCMjIwDJU8p1dXU1OnZWi42N1XYJRERERJSPqfp5NCkpSQgAZS2dnj17pvG6iIiIiChr6ZdvDtN7exFfsjZiyzREYGAMEPgo4x01TJ3PkklJSdizZ49wv0GDBnLBXHYKDg4WljoDktdFfPToEWJiYvDff//JzSKU+f79O54/f47z58+jQoUKGDx4MGxsbFQ+tq+vL2bPno34+Hi5x8PCwhAQEIBbt25h3bp1mDVrFpo0aaL6i8tCDAVzkc2bNwvtOz09PbUyHTY8PFy4LRKJMHLkSIjFYmzfvh3Vq1eX27ZGjRrYsGEDpk+fDl9fXwQHB2PChAnYuXNnhsfZsGEDoqKisGfPHjg6Oso9p6Ojg8aNG6NChQpwcXFBcHAwfHx8UL9+fdSsWTPVWNHR0XL3ZYGWMgwNDeXux8TEKL0vEREREREREREREREAJNqWRUSDwZCYZm/3P026dOkSgoKCAAA2NjZo3ry51mr58eOH3H0jIyNERERg1qxZ8Pf3R6lSpdCqVStUqFABBQoUQFhYGG7evAk/Pz/Exsbi2bNnmDVrFjw9PVU67ubNmzFnzhzUrl0bnTt3RtWqVVG4cGEkJCTg+fPn+O+//4Sv0/Dhw7Fo0SL8/vvvmnzpatHRdgGknCdPnmDx4sUAgIkTJ6J9+/ZaqSNlwObn54d3797Bx8cnVSAoIxKJMG3aNKFt6L1793D+/PkMj/P+/XssWLAgVSCYkq2tLcaPHw8gee3Bn6c6y/wc5KkSCv687c8BIxERERERERERERGRMnJzIBgdHY3du3cDSJ64M2TIEOjr62utntDQULn7+vr68Pb2xpcvX9CnTx/MnDkTDRo0QMGCBaGnp4dChQqhbdu2mDVrFiwsLAAkLxm2atUqpY957do1zJ8/H56entiyZQtcXFxQsmRJmJiYwNLSEnXq1MHatWvRt29fAMmtWv/++298+vRJcy9cTQwFc4EfP35g+PDhEIvFmDZtGvr376+1WlKGYk+ePIGHhweqVKmS7j56enoYNmyYcN/X1zfd7UeMGIEJEyagTp06GdbTvn17WFlZAQDu378v195U5ue+wKqsvfHzWh86OvyVISIiIiIiIiIiIiLNEiXEwuTRIegFf9B2KWnasmWL0Emwb9++cHZ21mo9kZGRcvdly5i5ubmhdevWCtcLtLOzw8iRI4X7jx8/TrPVaFoOHz6MIUOGoHv37gq3EYlEmDBhAipUqAAgefmAmTNnKjV+dmD70BwuIiICgwYNQmBgIObPn48OHTpotZ6UC3Xa2dkpHVA2bdoUhoaGiI+Px5UrV5CQkAADA4M0tx0+fLjS9ejp6aF+/fo4fPgwAODmzZsoU6aM3DampqZy92XrcCjj557AP4+VWzg7O6t91YZYLMb79+/lHjMyMoKeXs5+G/l5zRZjY2MtVUJERERE+ZG6n0fFYrFwQkO2b8mSJXP853AiIiIiUl7sm7sIubwJkuhQmER/RxG3BdAxUL7jnSJisTjVGoIVKlRQ+bPkgQMHcPnyZQDAuHHj0K9fP7VrU9etW7fk7l+7dg0tWrTAmDFjFO6TmJiI58+fo0KFCqhZsyZu374NANi2bRsaN26scD/Z5/EyZcpg6NChGdamp6eHIUOGCOHj5cuX8eHDh3Q7I2YX/hWRg0VGRqJ///549+4dvL290bRpU22XBGNjY0RFRQEAevfurTDY+5mBgQHKli2LJ0+eIDExES9fvkTlypU1UlOFChWEUPD58+epnjcxMZG7/3PQl56ft/15rNxCT09P7VBQJBKlurpCR0cnR8+e/Hmmp0xOrpmIiIiI8g5NfB7V0dFJ9TlcX1+foSARERFRHpAUF43g0xsR9eh/S24lhQci8tJOFGo9KEuOqeq54jt37uDff/+FSCTC1KlT0atXryypS1U/f9bW19fHlClT0n1tKbsINmrUSAgFr127hpCQEFhbp93etVatWrh79y4SExOV/hzepEkTmJiYICYmBlKpFMeOHYOHh4dS+2YlnhnPocLDw9GvXz+8efMGPj4+OSIQBORnyql6hWvhwoWF29+/f9dYTfb29sLtn/sIAxDai8rIpjgrQxaAAsmh2M9jERERERERERERERGpKikuGv5rR8sFgjIR904i5v1DLVQl7+XLlxg2bBgkEgm8vLxyTCAIIFU416VLFxQpUkTp/Z2dnYWL75KSknD//v10tzczM1MpHzAwMEDNmjWF+48ePVJ636zEUDAHCg0NRd++ffH+/XusX79eqbX1skuBAgWE2zExMSrtmzJQVHVfdcY1NTWFnZ2dcP/r169Kj50yvCxatGiunSlIlB+cPHkSDx9q/8MSacbVq1dx4MABbZeRb61atQr37t3TdhmUhaKiojL9B0lCQkKGfyyRZrx9+xZ37tzRdhmCtNbvVlZAQIBKHTuIiIiIiPI6XSNTmJSprvD5oCOrIInX3Hl0Vb19+xZubm6IiorCokWL0KlTJ63Vkpafz9U3a9ZMpf2NjY1RsGBB4f6LFy80UldKpUuXFm6/fv1a4+NnBkPBHCY8PBz9+/fHp0+fsH79etSoUUPbJckpVaqUcDskJESlfVOuR6jJtflSThNWFNqlXGcwICBA6bFThoIpf4GJKOcRiUTo3r07Ro0apVL4n93OnDmDz58/Z7jdwYMH8ePHj2yoKGdavXo1Jk6ciAEDBij19dKGHTt2ICEhId1twsLCcODAAYjF4iyvJyAgIMN6lHXp0iX06NEDLi4u2LNnT6r1sLJCYGBgtv3M379/H0lJSWqNocmuBwBw48YNPH78WKNjpicuLg7dunVDnz59cPHiRZX3//PPP9G3b1/cvHkzC6rLHps2bcK0adPw8uVLbZei0OXLl9GrVy/069cvR4SDQ4cORe/evXH+/Hm5tjvK2Lp1K37//XccPXo0i6ojIiIiIsp9CjbrC70CNmk+J44IQvCZzdlcUbJ3796hb9++iIiIwLJly9C6dWut1JGenzOGzFyEaGZmJtxOqwuhulJ2T1Slg2FWYiiYg0RFRWHAgAH48OEDNmzYgOrVFV8loC1ly5YVbr97906lfePi4oTbKWccykgkEsyaNQu1a9dG3759lT4BmXJ2oIWFRZrbVKlSRbitSuKfMr2vWrWq0vsRUfZr2bIl+vfvj+PHj6NNmzbw9fXVdklpunr1Klq3bo3JkyenG3YdO3YMzZo1w4wZM+Dv75+NFWrf48ePhZ7uV65cQfv27XPkSeT58+ejefPm2LZtm8IwTiKRYOLEiWjZsiV27typsdAuLbdu3ULr1q1x8uRJtceSrRn8/PlzbNmyJVs+uP748QOtWrWCj48PIiIiEB0dnSX/Xb58GX369MGQIUMQHR2d6XrXrVuHAQMGaGxG5YsXL9C1a1e4urpmKqRTlZFR8oL1t27dwqBBg9C/f3+lw2sDAwOIRCLcuHEDrq6u6NGjB4KCgoTnU37m05aoqCgsXbo03RmNSUlJ8PX1RYcOHdCrVy9cuXJFI8eOjIyEr6+vRi4GePbsGQDg+vXr6NWrF/755x+1x1SHgYEBbt++jSFDhmD06NGpnn/79q3CfR88eICAgACMGTMG3bt35+x+IiIiIiIAOobGsGmreJ25yAdnEPM2ezu1vH//Hq6urggPD4e3tzeaN2+ercdXlqWlpdz9zFzQbGhoKNzOis4mKScxZccF18pgKJhDJCQkwMPDA69fv4aPjw+qVauW4T6JiYkYPnx4tv4wpQwqVb2qOiwsTLhdsmTJVM8fOXIEW7duRVhYGG7cuIEzZ84oNW7KK/VTzghMqUWLFsLtBw8eKFcwgCdPngi3c+qbHxH9z6hRo+Do6IiYmBhMmzYNixcv1nZJqRgbGyMxMRF79+5F69atcerUqTS3MzIyQkJCAnbu3IlWrVrh9OnT2Vyp9vz3339y99u2bYsmTZpoqRrFjI2N8f37d8ycORNt27ZNMziTrb/75csXzJgxA+3bt8+SK88AwMXFBS1btsTIkSMxdOhQlWf0p6Srqyvc3rx5s0o9+TPL2NgYMTExWLx4MWrWrInq1atnyX8DBw5EYmIiLl26hH79+mV6xuCUKVPg6OiIHj16YOjQoWrPaJUthH7z5k0MGjQIa9euVWs8ZY8HJK+jMHfuXKUXSwf+t3aDoaEh/vzzTxQqVAhActDWvXt3LF68GBEREZotWgkvXrzAnDlz0LRpU6xevRpDhgzB+/fv09w25R9/EolE7uI3dZiYmODs2bNo164drl+/rtZYsgskAKBixYoYP368uuWla+3atdizZ4/C52VfM2dnZ8ycOVPuuQ8fPqBDhw5YtmyZXIcQIPnvlqdPnwr3dXR05K6YJSIiIiLKz4xLVoFF9VYKnw88uhqSuMxf1KoKf39/9OvXD2FhYVi+fHmOPB8j83Nnv5QXqyor5d8uKWcNakrKcw45ZWkyhoI5gFQqxd9//427d+9i+fLlqFWrllL7PX/+HNevXxdOOGaHWrVqCQn8169fVQoGZTNdHBwc5Hr1yvx8JbeyyXzKtU1SzghMydnZGcWLFweQPA34+fPnGY4bGBiIjx8/CjU7OTkpVQ8RaY+BgQGmTJki3Pfx8ckR7dZSSvkBoG/fvnIXLaQkO/Gqp6eHBQsWKNwur3n+/DlOnDgh3LewsEDNmjVzzAenlGT//hYoUABeXl5pzoJPGTqUL18e69evV2lRalWNGTMGFStWxLlz59ClSxeFYUhGdHSSPyLq6enB2tpakyUqlPJrtWHDBjx69CjD/xYtWiTso8z2jx49wtixYwEkv1+MHj1aLgBV1eTJk9GyZUucO3cObdu2xc6dOzM9VspArl27dhg4cGCmx1JGylCwZs2asLW1zdT+Tk5O6Nixo/C4rq4uFi9ejF27dqFFixbYsmWL2q1a0/Pjxw8cP34cM2fORLNmzdCxY0ds3rxZCOnDwsIwcODANP84TPk1mDZtmsZCKl1dXSxZsgT6+vro168fpkyZkqnZkx8/fhTa3uvr68PLyyvLfx9btGiBmTNnwt3dPc0LC2Q/p05OTjA3N5d7bv/+/RCLxVi1ahV69Oghd6HE06dPhc/2hQoVgo+PT7ZcbEBERERElFtYN+sDvQJp/12WFBmM4DObsryGwMBAuLm5ITg4GEuXLs3RgSCQfM5e1gUHUL2zISAfCirqQhgTE4Pp06ejTZs2+Oeff1TqApWyy+HPf0NpC0PBHGDlypU4evQoZs2ahUaNGim934kTJ4SgK7vo6emhbdu2wn1l27kFBQUhMDAQgOIZdyl/6SwtLZWemSe7AtvGxibdlqv9+/cXbh84cCDDcU+dOiWslTJgwAClaiEi7WvQoIHcrOGUM36VdfjwYcybN0+TZQlSnvgfPHgwRCJRmtvJAhJjY2O0adMmS2rJiebNmyesFVu2bFns3r0bCxcuxKdPn7RcWWqyQKFGjRoK1wDW0dERtqtduzYcHByyvKYZM2ZAJBIhICAA7u7uiIqKUnkc2b9/mlwDOCMpfzf09fVhaGiY4X8p91Fme0NDQyEEtLGxQd26ddWqWUdHB15eXihWrBji4+MxY8YM+Pj4qP3669WrJwSzWUVHR0elmYE/k30d0wpVS5cujQULFiA8PByzZ89Gt27d0m0rqYyoqCi8ePEChw4dwvz58zFgwADUr18fDRo0wKhRo7Bt2zb4+/vD2NgYJUuWRK1atdCuXTv07t0b7du3x6NHj1KNmTIU1DRTU1MsXrwYhoaG2LNnD3r06IHg4GCVxrh06ZJwu3Xr1ihfvrymy0ylZMmScHV1xaVLl9C5c2e5VvqA4q9ZbGwsdu3aBQD45ZdfsHz5crkLJW7duiXcdnNzU/jHNhERERFRfqVjYAyb9sMUPh/58Bxi3tzNsuNHRUVh4MCB8Pf3x7x585Q+Nx8UFCTX4SQ76ejowNnZWbj/898vyki5rEixYsXS3Gbu3LnYtWsX3r59Cz8/Pxw7dkzp8VNebFmiRAmV68sKDAW17OLFi1ixYgWGDh2KTp06Kb3fly9fsGvXLoWhYEBAAAYNGoRq1aqhffv2uHbtmqZKxpAhQ4QZG9u3b1dqnSHZGi26urro06dPmtvUr19fuN2rV69UPYHT8uDBA+FE8R9//JHu1f7dunWDo6MjgORQMDIyMt2x9+3bBwCwt7dH165dM6yFiHKODh06AEieldeyZUuV9j1y5AgmTpyI//77D15eXhqvTdlZSVl5sjqnunjxonChh4GBARYuXCicoB41alSO6b0uk1O/l1WqVBGu5vv8+TO2bNmi8hiyYDY7Q0F1Zuxpk5mZGWbMmCHcX7ZsGb59+6byONp4/eoEjylnk6alUaNGwgVZT58+xR9//JFmMKfI58+fMXjwYHTo0AH16tVDs2bN4OHhgQ0bNuDx48cwMTFB48aNYW9vDyD5orPr16/jwYMHOHHiBLZu3YpFixZh6tSpGDVqFJo2bZrqGFn9u1m2bFkMG5b8R/2zZ88wYMAAuatEM5KybXTfvn01Xp8igwYNgqmpKb5+/YoBAwbIXVig6Od08+bNCAsLQ7ly5bBhwwYULVpU7nlZKGhoaMjP1UREREREChiXqASLGq0VPh94dA2SYlW/8DcjYrEYI0eOxIsXLzB9+nS5SUEZOXTokFwXn+yWMrx89OhRhuf8UxKLxXJLvCha0u3kyZNy91VZPiTl7MVKlSopvV9WYiioRYGBgZg4cSJ+++03jBw5Uun97t+/Dzc3N0RHRysMBSdOnIiLFy8iJiYGr169goeHB75+/aqRum1tbYV6o6Ki4Onpme72UqkUmzZtAgCMHDlSYeJes2ZNYaakMm3ipFKpsF5YsWLF4O7unu72enp68PLygoGBAcLCwrBq1SqF2546dQpPnz4V9smPJ+cpNalUCkl8DJJiIiCJjxFm0pBmxMbGIiQkRCP/2dvbQyQSYdKkSTAyMlJ6v4MHD2LChAlCq7tNmzZh7ty5Gn2dyr6fZPUsoZwmLi4Oc+bMEe6PGTNGaNvs5uaGxMREjB07VgircgJlZ1kpmg2alf7880/htqprAAP/mymYnS3KtfF10pSGDRvi119/BZC8XoCsZboqtBEKqnNM2XtUeu9pI0eOFEK7qKgoTJs2Tenx7ezssGDBAvj5+eHq1au4efMmzp07h4MHD2Lr1q3w9vbGrFmzhJnh5ubmKrfWzI6ved++fYXWrM+fP8eyZcvknv/06RPmz5+far+wsDDcvZt8FXCNGjWy9Y9HCwsLdO7cGUDy2t07duwQnkvraxYWFob169ejWLFiWL9+fap1OBITE3Hv3j0AQKtWrZS68C89/v7+KF++vFL/Va5cGXXr1kW3bt3g6emJ27dvZ+rzW0REBLZs2YKBAweifv36qFSpEqpXr46mTZti6NCh2Lx5s0onH4iIiIiIFLFu0ht6lmkvbZAUFYLg0xs1fsyZM2fi6tWrGD58uNz5BGVcv34927sZptSq1f/WYhSLxbh8+bLS+3779k34+6BIkSIKuzuJxWK5+7K//zMilUrx+PFj4b663Yo0JfM9g0ht3t7eCA0NxZs3b5RuDRcRESHXekjRL9zP7fJiY2Px+PFj2NnZZb7gFNzc3PD582ds374dR44cQbFixTB69OhUJ/SkUinmzp2L58+fw8XFBYMHD0533Pnz52PQoEHYsmULmjdvLszs+5lEIsG8efNw8+ZNWFhYYOnSpUqduKxevTpmzpyJv//+G5s2bcKvv/6aair058+fMX36dADAhAkTlF7jkfKmhB8fEfX0CuIDXiP+23tI4v53NY6OkRkMi5SEYdGyMKvYAAa22vsHMC8IDg6Gq6srvnz5orExp0yZIrfGYGZs3LgRIpEIEydO1FBVysnNAUlmLFmyBB8+fACQ3AK2X79+wnP6+vqYP38+unXrhlmzZqkULGQlZb9H2gh469SpgwIFCiA8PFzhervpkfXU11YoGBkZmeZ6Zj9L2eZDme0BZNmM0379+uHu3bsoUKAAypUrp/L+2vidV+eYGc0UBAAjIyOMGDFCeP/8/v270uPr6elleYtJddqnKsvIyAjdu3eHt7c3gOT2///884/w/Pbt21GhQoVU+504cUL4wzPl+2F26dChA7Zu3QpAfg2MtN7Pli5dCiMjI2zcuDHNdRnv3bsn/K5269ZN7dqKFi2K27dvIygoCOPGjcPTp08BJF/VO2fOHBQqVAhA8u96aGgoHj9+jIMHD2L79u3Yvn27sF2pUqUyPJZYLMamTZuwcuVK1KpVC3/88QecnZ1hamqK0NBQPHz4ENu3b8ecOXOwbNkyTJs2DS4uLmq/RiIiIiLKv3QMjGDTfji+bp0GIPUFbVGPL8DU6TeYlqupkePt3bsXu3btgouLC0aMGKHSvl+/fsX169cxdOhQhdscO3YM3t7eCAwMRL169TB9+nSNrpXu4OCAFi1aCJ1WNm3apHTWIvtbAgC6d++ucLuyZcvi/v37AJLPWSkb7j1+/FhYUs3e3h6//fabUvtlNYaCWhQUFAQgecag7IdDVYpCwUqVKsmt3aGvry/MuNCUqVOnonTp0li4cCF8fHzw4MED9O/fH05OThCLxXj+/Dm2bNmCR48eYezYsRg0aFCGY1paWmLLli1YtmwZOnXqhMaNG6NJkyYoV64cChYsiLi4ODx58gRbtmzBvXv3UKFCBcyZM0eud3BGXFxcYGVlhQkTJmDUqFHo378/2rVrB2NjY1y/fh1Lly5FTEwMFixYILQgpPwn5vVdhF3fj7jPzxVuI4mLQuyHx4j98Bhh1/xg5OAMy7qdYFJGuatFSJ69vT22bNmCM2fOwNnZGSVKlICZmRlMTU1TnbhOSkpSa4ZHcHAwChYsqG7JpCF3794VWlw6ODhg0aJFqb7nzs7O+Ouvv7Bw4ULo6elh0qRJ2ig11zAwMMDkyZPx8ePHTAUKsjBC2VBw7969KF68uFoX0qS88k7WclEVderUyfSxNaFly5b4559/UK1atUyFWdoIj9MKBcViMcaOHYvatWujZ8+eCveV1ZvRe3G7du2wcOFCBAYG5rgLrbIriG3fvr0QCqbsmBETE4PTp09j9OjRqfY5dOgQgOT3xGbNmmXquM+ePcPy5cuxZMkSlQP+KlWqoESJEggICJALuX7+OX3y5AnOnDmDTZs2KVwfQ3albokSJVCzpvInLqKiolLNOpTVYGFhAQsLCzRp0kT4Q75z585yQZ+FhQUKFy4MJycndOvWDQcPHsTkyZNx//599OzZE9u3b0fp0qUVHj8mJgYjR47E9evXMX/+/FQtlKytrVG6dGl06tQJs2fPxtatWzFx4kRER0ejV69eSr9OIiIiIqKfGRevAItabRFx60iazwcdWwMjByfoGpurdZxXr15h5syZ+OWXXzBz5kyV9pVIJPj333+RmJiocGLPvXv35Lo+nThxAsHBwdi6datG/x4bN24cLly4gMTERDx8+BDnzp1LcwmJn8nyE3Nz83QvYOzSpYsQCjZu3FjpumTdEwHA3d09x0wAYCiYyykKBefNm4cZM2bg9u3bKFy4MMaOHavxabwikQi9evVCq1atcOzYMZw9exaenp4ICgqCoaEh7O3t0ahRIyxYsABFihRRelwjIyNMnDgRrq6u2LdvH3bt2oV3794hMjISpqamsLa2RrVq1dC/f380a9YsUyfRGjVqhJMnT2LPnj04deoUfH19kZiYCAcHB3Tp0gW9e/dO80pnyvuSYiIRdGo9op9eUXnfuM/P8c33OcwqNkDBlgOga6LeP8z5kb29vVIBxtSpU1GyZEkMGDBA5feAiIgING3aFF27dsXQoUOFGQW5XVBQUK58LZGRkfjnn38gkUhgbGyMFStWoECBAmluO2DAANy+fRubN2+GRCLB5MmTc8wHKk2Jjo6GSCRSqo12Rjp27JjpfWUBnaGhYYbb7t27F1OmTIGxsTF8fHwyHfykDAW3bNmC2rVrZ7jPiRMn8NdffwFQvk3qhg0bMH/+/CxpAa3OjK6s+FkODQ1N93XKjhkfHy/MtJwxYwZOnjwprJmQXjAIZNwSWU9PDwMGDMD69esxbtw4VcrPctn1/lGiRAmUKlUK7969k2t3f+DAAdSvXx9GRkZy23/58kVot9m7d+9MfdZ98eIF3NzcEBYWhuHDh2P16tUwMDBQaYzJkycjPj5e7g/8n79m169fx4YNG4Q2rkuXLkVkZCSmTp0qbHPp0iUAyaGdsl/zzZs347///sOWLVsUho2AfCid0czPjh07IigoCPPnz0doaCgmT56MXbt2Kdze09MTly9fxuDBg9NdU0XWrvzhw4d49OgR5syZg99++y3dwJGIiIiIKCPWjXsi9s1dJIakXhIsKToMwaf+g23HvzI9vlgsxvjx46Gnp4elS5eq9PfCu3fvMH/+fJw/fx6A4ozizJkzqZaBuX37Nj58+ICSJUtmuvafOTo6Yty4cfDy8gKQ3DnswIEDwlIOaXn06BGeP38OkUiEYcOGKTwXBSSHgkeOHMGNGzeELlcZuXnzJo4fPw4guatJejMRsxtDQS1Kb007dRUtWhRr167NsvFTKlSoEFxdXeHq6qrRce3s7DB8+HAMHz5co+PKWFpawt3dPcO1CCn/iP/+Ad92zUZSlHIt6BSJenoZsR+fwq7HFBjYKj6RRZk3aNAgdOzYEZcuXcLixYthY2Oj9L5XrlxBXFwctm3bBj8/P7i6usLDw0Op8CMt3t7eGD58uFbDqYSEBLRt2xaDBw+Gm5tbrgnKpFIpxo8fj48fP0IkEmHOnDnpzmrX0dHBwoUL0a1bN2zduhUhISGYO3euyie60/LmzRu8evVK6RYTWeX8+fPw9vbGwoULUblyZY2O/erVK7i6usotop2RK1euoHz58kptGxMTg8GDB2P37t0oW7asyvX93KM/q8XHx2fr8TKSFTMFDx48KPxRlB5fX1/4+vrKPSaVSoV1o9MKBmXvM8q04HRzc0OvXr1gYGCA2NjYbG1Lm1N4eHjg2bNnaNKkifCYrO3kz/bt2yeEuV5eXkp9D9Nz5coVjB07FkuXLk1zZqdYLEZERESqx2XvQSlb88p+TxMSEhASEoIuXboI22zevBlr1qwRtp06dSo+f/6Mly9fQiQSoVGjRkq1+T18+LDwdXF1dc0wGFRFnz59sGnTJvz48QP379/Ho0eP0myx/OLFC+zfvx8A0Lp16wzH1dHRgZubG0aPHg2xWIz169er/X0jIiIiovxNR98QNu2GI2DLFKTZRvTJZVjWccn0uccjR47gxYsX0NfXV6kFfkJCgtwSAwAUzhRU5OegUBP69euHoKAgrFu3DsHBwejbty/WrVsnrHOf0ps3b+Dt7Q1dXV0MHDgww2VXdHR0sHLlSgwfPhy7du1CuXLl0K1bN4Xn3+7du4e//voLEokE5cqVw8qVK3PUuTqGgkRESA4Ev26bLrdmoDqSokIQsHUaivbxZDCYBRwdHeHu7g5vb2906dIF69atUzq4OHjwoHC7YsWKaNasWaYDQSB55uH69eu1eoHB3bt3ERYWhnnz5uHSpUuYN29erpjtvGLFCuGqsr///lupQM7CwgKrVq3Cn3/+iaNHj+Lr169YuXKl2v3oHRwc4OHhgUqVKml1gexLly7hw4cP6NGjB0aMGAF3d3eNhUXlypXDxo0bsX//flSuXBklS5ZEgQIFYGpqmmrbLl26ICAgAK1atcKMGTPSHXfZsmXCbJvmzZtnenaMbB3D7JKQkJCtx8tIVvyB0K9fP1SvXh1mZmZwcHBINauvRo0aiIyMhKurKyZPnpypYyi7Lp+BgQHevHmDQYMGoVOnTiqvVaGur1+/amxt7cxo37492rdvL9y/evUqRCIRqlatKrddYmIidu/eDSC55X1m17OdPn06Tp06Jdz/+vUrnjx5kup4QHIA/PP2GTl69CiOHj2q8Plt27YBSL5QUXaMzKy19+3bN40GgwYGBmjYsCH27t0LALhx40aaJwBkV/QCyr83pWxhLPu3jYiIiIhIHUYOTihQuz3Cbx6Se1zPsjBs2g1T65xjWFgYgOTPu7LbmWFtbQ1z87S7pTVv3hwbN26UCwHLlSuncoiorHHjxqFq1ar4999/8e7dO3To0AF//vkn6tSpA0tLS3z79g2nT5/G4cOHYWdnh/79+yu9LJmZmRk2bNiAzZs3Y+7cuVizZg2aNm2K6tWrw9bWFgYGBvj69StOnz6N48ePQyKRoHPnzpgwYQKsrKyy5PVmFkNBIsr3kmIi8W3XbI0FgjKSuCh83TkL9u6L2Uo0CwwYMAC7du3C9+/f4ebmhn379mV4wvfHjx+4ciW5NWzp0qWxZs2aNNcrUoWbmxvatGmDOnXqoFKlSmqNlVlnz54Vbl+/fh0dOnTA5s2bNb6WrCYdP34cK1euBJDcVz2ttot3795F9erVU4UlpUuXho+PD/r374979+6ha9eumD9/PmrUqJHpegwNDdGlSxeMHTsWO3fuVDro0CSxWIyLFy8CSP5QvnjxYty+fRurV6/OsEVjWhISElLNonR2ds7wA69EIhHWOi5VqlSGgWtU1P/eO8eOHZvpEDPlTMHIyEilZhRFR0cLt5XZHgBiY2MB5LyZglkloyseM0v2e6ns+q43btzAiBEjEBERgRUrViA4OBjTpk3LlrUUvby8sH//fmzcuBEVK1bM8uMpY+vWrejcuXOqx0+fPo3AwECYm5tjwoQJcr9/Dx8+ROXKlTP8mn379k2ujc+sWbPSbcerr6+PJUuWYMeOHShatCjKlSuHAgUKwMzMTPj+Llu2TK7LSadOnTB37twMX+eff/4JIPkP/8OHDyvcztfXF9OmTQMArF+/Hg0aNMhw7MxKOZP5x48faW7z/v174fbGjRuxZMmSDMe1srKCubk5IiMjERoaisjISIUnR4iIiIiIlGXV6E/EvLmDxOAAAIDFr7/Dumlv6BjkjA4s6V28V716dSxatAjLly/H9+/fUbNmTUybNk3pvyMzo0WLFqhfvz7Onz+PkydP4uLFi9i7dy9iY2NRqFAhODs7Y+jQofjtt99UrkNXVxf9+/fHH3/8gcOHD+Py5cs4c+YMQkJCIBKJYG1tjaJFi8LDwwMtW7bMVBel7MBQkIjyvaBT69VuGapIUlQIgk9tgK3LqCwZPz8zNjZGjx49sHz5cgQHB8PLywvLly9Pd5/t27dDLBajQIECWL16tdqBIJA8C6JFixYYN24cDhw4kGptqKwmkUiEtb+A5D7lkyZNytGB4OXLlzF+/HhIpVL07NlT4Tpjc+bMQVJSEkaNGpVqIefq1avD29sbQ4cOxZcvX+Dq6oohQ4bAw8Mj04Fejx49sGbNGqxcuVJYpy47Xbt2Te7qvEGDBqF///6ZCgQXLlyIp0+fwsfHR+X2qoGBgcLMmLTabPwsKCgIQPKHY1Va+f4sKSlJuD1s2DCV9085S0cZmp6ZGB8fr9as48zMFPz69SuKFCmSJbMMz5w5g1GjRmX4dfLz84Ofn5/K4+/cuROhoaFYsGCBRloAKzJv3jxhcXc3N7ccEQx++vQJV69exezZs1M9J6v1r7/+QsGCBeWe8/LyQnR0NP766y80b95c4fibN29GYmIinJ2dsXHjRqWuStXT01O4FMD169fl2oICwMePH/Hw4UNUqFBB4XvUx48fcf/+fZQuXVouwE9LylBfnfcRZaScHa1oxrDs4gEAOHbsGNzc3JQK2I2NjREZGZnu2EREREREqtDRN4RN+xH4cWApbNoOhbGjZpYa6devX5oXaGtamzZtsn2pFmNjY4XHTUhIwOPHj9Ua38zMDD169ECPHj3UGkdbGAoSUb4W8/ouop9eydJjRD29DLOKDWBS9tcsPU5+1LVrV3h7e0MqleLs2bPprlUVHx8PX19f6OrqYvHixRpbnwgA+vfvDxcXF8ybNw/Tp0/X2LjKuHPnjjDTQV9fH/Pnz9dq+8uM3LlzByNGjEBiYiLc3d0VBoJA8ut58uQJBg8ejF9++QWTJ0+WOynboEEDrFq1CiNGjEBcXBxWrlyJU6dOYfTo0WjWrJnKtVlYWKBr167w8fFBo0aN8Msvv2TmJWZaynZ1tWvXxtixYxVuGxoaKqw59rM9e/Zg3bp1AJKDBW9vb5WC0s+fPwu3lflZCg4OBgDY2tqqdbVfypmCW7ZsSXdmE5A8w2fgwIFo1KhRul+rn23YsAHz58+HVCpNczZlZmzcuBFHjhzB1q1bYWJiovZ4ynj//j169+6NFi1aZNjiNTNkbV7EYjHKlSuXKnhs3bo1wsLC5FpcLl26FL6+vjAzM8Pp06eVOs7P4yYlJWHMmDE4ceKESvXu379fWANOkfDw8BwRDG7ZsgUNGzZMFfpduHABDx8+RPny5dNcxzE+Ph6vXr3CsGHDULlyZaxcuTJVq+jIyEj4+vqiePHiWL9+vdptar5//47x48dDIpGgcePGSExMxNWrVxEaGor+/ftDIpHgt99+Q7t27dCyZUu5gPDQoeQWR3379sXatWsRFhYGS0vLNI+Tcq1TW1tbtWrOiCy0A6Dw61O+fHlcunRJuK9oRmFKEokE4eHhAJJnn6vb1pqIiIiISMaoWDk4DPWGSCfrZthR/sFQkIjytbDr6Z9A1NhxbhxgKJgFChcujCpVquDhw4cwMDBI9+T+3r17ERoaiokTJ6J+/frpjhsREYELFy6gQ4cOStXh7OyM3377DTt27ECTJk3QsGFDlV6HOmTrIgFA9+7dc3QgeOvWLQwdOhRxcXEYP348Bg4cmO72KU8uFytWLM2e8w0bNsSGDRswePBgREVF4fXr1/Dw8ED16tXRr18/NGnSRKXQp2/fvti+fTvGjx+PgwcPZlvAExUVJYQgIpEI48ePT3d7Pz8/zJ8/P8NxL1y4gHPnzqFly5ZK1/LkyRMAyQtpV6hQIcPtZa1GixQpovQx0iKbkWZnZ5cqLPnZ3bt3MXbsWHz9+hUvX74EAKWDQRMTE7Rv3x4dO3ZUehbms2fP5GYypnTt2jUsXrwYADBy5EisWbMmy9vPfvnyBW5ubggKCsLOnTthZGSEv//+W+PHqVmzpsLnZG1jra2thfBDNlNS1jYlM3R1dbFo0SKhda2zszOsrKxgYWGRZug8fvx4XLlyBW3btsWUKVOUOkZWzkzMSFRUFPz8/LBo0aJUz8lmuytqpxMTEyPcrlevXpprx+7atQv6+vpYu3YtChUqpFat4eHhGDhwIAIDA1G/fn14e3sLa0H+8ssvGD58OIYPH45z587h3LlzcHZ2xrZt22BmZoakpCT4+fmhcOHCcHFxwc6dOxEQEKAwFPz+/TuA5O9NVq+38eHDB+G2ove4QYMGISgoCI8ePUK5cuWUamf6+vVroS1xWkE6EREREZE6MgoEJYnx0NHPfPcayj8YChJRvpXw4yPiPj/PlmPFfXqGhB+fYGCbcwObnObs2bNo2rRphifVmjZtiocPH2LAgAEKZyklJiZi/fr16NChA/r375/ueCEhIRgwYACePXsmzERSRp8+fXDjxg1MmTIFR48ezZZ1hCIjI4XWoaampvDw8MjyY2bWiRMnMH78eBgZGWHNmjWp2oGmRRbYFC1aVAhd0lKjRg3s3r0bHh4ewsnee/fu4d69e7CwsECLFi3w66+/onz58ihbtmy6LR7t7e3RpEkTnDlzBgsXLhTWuMpqR48eFU74t2nTBpUrp98OZMCAAbCxsYFEIoGzszMKFSoEc3NzGBgYwNvbGytWrIC5uTlWrlyZ4Yy7nz169AhA8kyZjFrsJiQkCC1PM1rTMyNFixbFli1bUKtWLYW/9/Hx8Vi9ejXWrVsnzCy0s7PDmzdv8ObNG5QpUybD42SmxcerV68wadIkhcGgzOXLl7Ft2zb069cPP378gIeHh9zMS5FIBJFIJLfIukzKNp0zZ87EvHnzFB4nLi4OcXFxwv2NGzfC0NAQo0ePVuVlpSshIQFnzpxBw4YNU/0cREVFCV9/TbRh/pmenp7SLXxlAayBgUGumJm1d+9emJiYpLp45Pjx43j69Cm6deumcH1U2Ww6a2vrNGfFJyQkYOfOnVi2bBlKliypVp2xsbEYPHgwXr16hUaNGmH58uWpwlR7e3vs3LkTw4YNw9WrV/H8+XNs2rQJw4cPx/nz5xEQEAAvLy8YGhrC3NwcX758URjCyULBYsWKZWmYlpSUJKwtbGJiorDtsIWFhVJrJqZ06tQp4Xa7du0yXyQRERERkYpiPzxG4JGVsG7aB2YV6mm7HMrhGAoSkdYkhmXcikkZIj196JmlfVV5Unig/DHjjaCjowMACL97Mq1dskz4vZOw/K2jwufTex2a+FrpW2ZtOy5NmzBhAooVK4Zhw4alO7OvXbt2CAwMRN++fRWuWXTo0CGYmZnhn3/+SXddo/DwcAwaNAivX78GACxYsACJiYkYOnRohvU2bdoU9vb28Pf3x5w5c+Dl5ZXhPury8/MTgoEhQ4ZkOLtKW7Zu3Yo5c+agbNmyWL58eZoz/tIiCwWVOUFcunRp7NmzB+PHj8eFCxeExyMiIrBv3z7s27cP1tbWGDNmDLp165buWH369MGZM2ewY8cOtGzZEr/99ptS9apj586dAJJnWik74y2jmaxFihRRORAEgAcPHgCAwmAiJVnrUED9UNDOzk7hGFKpFMePH8fixYvx+fNnFCxYEO3atUOHDh1QqVKlNPc5fvw4Xr58iVGjRqlVFwC4uLigaNGiuH37Nl6/fo2XL1/CxsYG9vb2CA0Nxblz56Cvrw8fHx/Uq5f8B5itrS1Wr16NgwcPomzZsggNDcWTJ0/w/v17AMmtBqVSKaRSKSQSCUJDQ4X3nqlTp6Jz585q150ZX79+xa5du7B//360bNkyzfdf2TqSAHJFEJdTJCUlYcuWLejUqZPcRSzR0dHw8vJC8eLFFc74TEpKQkREBACgSpUqwgzZlIKDg/HXX3+p/Z4VHh4ODw8P3L9/H3369ME///yj8KIbY2NjrF69Gq6urnjw4IFwYcbWrVtRsWJFuLi4AEgOj1+9eoUWLVqkOc6XL18AAA4ODmrVnpF9+/YJx3J1dYWFhYVGxk1ISMDu3bsB/G82MhERERFRVpMkxCLk3DZE3E3uPBR0Yh2MileEnpmldgujHI2hIBFpzeeVGQctyjAqXhFF+3im+VzQRuXXmcpqkXdPIPKu4jWS0nsdmvhalZq8T+0xspOxsTFevnyJkSNHKrX9tm3bMtxG0YyA9CxduhRisVhomaaIjo4OunfvjkWLFsHPzw/t2rUTwoGsIJFIsGXLFgDJszWyY3FoVcXExGDatGk4evQo3NzcMGrUKJXa9qnagtHCwgI+Pj7YtWsX5s2bJ8y8c3BwwLRp05Ru6/rbb7+hdOnSePv2LaZNm4ZDhw7ByMhIpVpUcePGDTx/njxr2c3NDcWKFcuyY2XkzZs3wglzZX5+ZbN7gOSZfpqWkJCAY8eOYcOGDXj16hWqVauGESNGoHXr1un+LG3evBlz586FRCJBuXLlNLKoea1atVCzZk1ER0dDX19fmHHq5+cnhII/f81sbGzkZhvLApK0nDlzBsOGDVO7zsyQSqW4du0aduzYgXPnzqFu3brYuHEjSpcuneb2Kb/vNjY22VVmrnfq1Cl8+fIFXbp0kXvc29sbERER2LVrl8KZl9+/fxfWEa1QoQLOnTuXahs7Ozt07Kj44iNlBAQEwN3dHR8/fsT06dPTXNvwZ4aGhvD29kbnzp1RunRpPHz4EHfv3sXevXuFC7Hs7OyE1sQ/i4mJEdbs0+R6vz87d+4cZs6cCSD5fX748OEaG3vbtm3Ca/Dw8MixF+kQERERUd4R+/EpAo+sgDjFRAJJbCSCTqxF4S7j2c6eFGIoSEREOZLshH/RokWFtdZyui5dumD58uVITEzE1KlTcezYsSwLk06dOgV/f38AwN9//63VNbLS8vr1a4wcORIikQhbt26Vm3WWmJio1Fpuyq739rM///wTjRo1wpIlS3Dp0iXs3LlT5eDijz/+gJeXFz5+/IgVK1Zg3LhxmapFGRs3bgSQPLNs0KBBWXYcZcja31lZWWW49iYA4SQ4oP5MQZmkpCQ8efIEx44dw+HDh5GYmIgOHTpg0aJFKFeuXLr7RkVFYfr06Thy5Ijw2KRJk1C2bFmULVtW7dpEIlGWtMvUtp07d2Lr1q0oWbIkVq1alWF7369fvwq301rXjtL233//oUaNGnKzpR8+fIht27ZhyZIlcHJyUrivLKwHAEdHR0RGRiI+Pj7ddsiqevToEYYNGwYrKyvs3bs33XpkYZ+Mra0tdu7cCXNzc0yYMAEeHh5y+zs6Osq110zp48ePwm1N/J6mFBsbiwcPHsDX1xfHjx8HAHTr1g3Tpk3L9L8xP/vy5Qu8vb0BAA0aNMCAAQM0Mi4RERERkSLiyBB83eEJSMSpnot5eRPRz67ArGLG62JT/sRQkIiIcjSRSKTRk55ZqWDBgmjatClOnjyJL1++wMfHR+l1sVQhlUqxZs0aAEDDhg0VtmP7Wfv27eVO5qvrzp07qR6Trd+4bds2uLu7o3fv3qlm/G3cuBHPnz/H4MGD0z3prOpMwZTs7Owwf/58REVFZSrEcXFxwcKFC5GYmIhNmzahc+fOKFWqVKbrUeTZs2dCu9N//vkHpqamGj+GKk6fPg0AaNu2rVInzAMD/9eiWd2ZghEREcIaZlFRUbC2tkaHDh3QokUL6OvrIyoqCrdv30ZSUlKa/8XGxmLlypX49OkTAKBatWro0qULGjZsyOAqBalUikuXLmHbtm2IjIwEkDwze9iwYejdu7dS33dZi0gASrcDzu9u3bqFR48eya1TFxUVhbFjx+Lvv//O8H1c9nMNJAdntra2ePjwIWrVqqWR+jZt2oRly5bB1dUVw4YNS/NCk+DgYIhEInTp0iXNNqcODg64fv06JBIJhgwZIveco6MjAgMD8f3791S/jylboSqzLqgi//77L+bMmSPcT0pKEmaM29rawsXFBT179kTVqlUzfYyfJSYmYsyYMYiJiUG1atWwbNmyVIEpEREREZGm6Zlbw7JuJ4Rd2ZPm80En1sOoeCXomVtBJBKhUKFCMDQ0hEgkglQq5WfWfI6hIBER5Wiydmm5RceOHXHyZPJ6lRs2bED37t1RpEgRjR7j7NmzeP78OQwNDTF16lSl91u3bh3E4tRXkWnKnTt3MHfuXNSsWROHDx9WuNaYgYEBjh07huPHj6Nx48YYOnSo2idpAwIC0gylMjury9LSEo0bN8bp06eRmJiIefPmwcfHR60a07Jy5UoAQN26dTXS4lIdjx49wrNnzwBA6fXsvn37JtxWNxS0sLBA0aJFce/ePQBASEgINm3ahE2bNqXa1tLSEjY2NihUqBCMjY1x/fp1xMbGQkdHB7///jsGDx6MChUqqFVPXhMcHAw/Pz/4+vri8+fPcs916tQJbm5uSo8lWxexYMGCMDc312idedXatWthZmaG33//XXhs5syZ6Nq1K3r37p3h/rLgTFdXF6VLl0b58uVx5coVtUPB+Ph4jBs3DgYGBjh06FC6a/q5urpCKpWiR48eCr/vcXFxWLhwYaqTDCVLlgSQvGZpq1at5J578eIFgOTX5uzsnOnXMnLkSLmxb9++LYSXrq6ucHd3z/TYivz777948OAB6tSpg1WrVsHExETjxyAiIiIiSotV/S6IeXUbCT8+pHpOz9IGCYEfoWtmCT09vSxt00+5D0NBIiLKkWRhYG67eqlhw4awsLBAREQE4uPjsXLlSmENI02QSCRYvnw5AGDYsGEoXry40vtqOpz8WVBQEHx8fDJcS0k281MqleLKlSto3LixWqHggQMHMGXKFCxYsACtW7fO9Dg/a9eunTBz7sKFC7h37x6qV6+usfEfPXqEs2fPwsjICP/++6/Gxs0sWfjWpEkTVKxYUal9ZKGgubk5ChQooHYNHh4eQtvd6tWro2zZsihatCiKFCkCW1tb2NraolChQjAwMEBoaCi2bNmCbdu2ISEhAR06dMDQoUNTzeh89OgRnJycclyL3ewQFRWFS5cu4ciRI7h06RISExMBJIeqw4YNw9KlSxEdHa3yuLIQJ72Zvpo0b948uLu7K7zQQJHLly/jwoULmDJlilbX03jy5AkuX76M7t27w9jYWHh8yJAhQliWEVko6OTkBENDQzg5OWHPnj0YM2aMWrUZGhpi1KhRCtePlPnw4QPevHkDABg0aBAGDRqEsWNTr9vcpEmTNPcvVqwYjI2NceHChVSh4IMHDwAApUuXVitUs7Kygr29vXDfzs4Oixcvxo8fP7Br1y4MGDBAo58pvL29sWfPHrRo0QKLFy/Ol+8xRERERKQ9Il192LQfji8bJwKSJACArqklCrUeBNPytbVcHeVkDAWJiChHkrX8ym1X3evr66Np06Y4cOAAgOTAauzYsbC0tNTI+AcPHsTLly/h5OSU49YtSjkDJj0pT4ovXboUzZs3z/QxDxw4gH/++QcSiQTjxo2Djo5OqhPOmdWoUSMYGRkhLi4OQHJopslQcOHChZBKpRg5cqRK4W5W+PLlizDDdcSIEUrvJ2tHq+4sQZnSpUtjzZo1qFWrltzPSUr+/v7YtGkT9u3bB7FYjI4dO2LgwIEK21jeu3cPw4cPx+DBg/HHH39obB2xnC4hIQHdunXDu3fvhMdEIhH++OMPjBkzBpaWlsIFBqqIiooS1oBTNjxW140bN3Do0CF4enqiWrVqcs/JZj8nJCQgJCREeNzf3x+jRo1CVFQUoqOjMXv2bOjq6mZLvT9btmwZAKBr165yjysbCIrFYjx69AgA8OuvvwIAnJ2d8ezZMwQHB2d4IUZGMgoEAeDo0aPC7RYtWqQZRh44cAAdOnRIM3jT0dFB1apVceHCBUgkEmGb+Ph4PHnyBABSfW/Vpauriy5dumD16tXw9/fHpUuXMlwvU1k+Pj5YsWIFXFxcMGfOHK39bBERERFR/mZYpCSs6ndF6CVfmJSvBZu2HtA1lu/qIREnIOH7ByQEfoY0MQ4ifSMY2DjAoLAjdPR4YVt+xFCQiLTGYdhqjYwj0lN8greQ2yK5+4ZGRsKJqB8HlyLe/2Vau2UJQ3sn2HZUvL5ceq9DU1+r3EQWxOS2UBBIDpNkoWBCQgJu3LihdGCWnri4OCxfvhz6+vqYO3euWmvuaVPKk6fFihXLcPsvX76gfPnyGW4nFosxZswYLF26VOl1FtNjbGyMmjVr4vLlywAg/F8TLl68iJs3b+KXX35Bv379NDZuZi1YsABisRjt2rVTKegJCAgAALnZOepq1KhRmo/fu3cPW7duxcmTJ2Fubo4+ffqgT58+sLGxSXe8fv36ISoqCp6entiyZQsmTJiAZs2aaazenMrAwADz5s1Djx49IBaLYW9vj3nz5qFGjRpqjXv37l1hJre6YynL0NAQQUFB8PDwULjN0aNH5YKrlPbv3w8bG5s0Z7ZlJbFYjG3btuHSpUtwcnJClSpVMjXO06dPhQtlfvvtNwDJMwb19fVx5MgR9O3bV606ExIShFmkihw8eBBAcsvYKVOmCPXIbN26FUuWLMHp06excOHCNEP9mjVr4saNG3jw4IFwgcWtW7eEY9etW1et15GWbt26wcfHBxKJBNu3b9dIKLhy5UosX74cf/75J2bMmKHVWahERERERJZ1O0MqBawadIVI9L8L9OICXiPi9jFEP78OaVLqz/siXX2YOteBRc02MCpaNjtLJi3LnWcTiShP0Le0zfJj6BaQP1msb2wshILGxStmayhoXLxCpl9zdnytchKJRCKEghYWFlquRnW1a8u3afD399fIuGvXrkVAQADGjh2r1rpL2qbqjAo7Ozv4+fkpvb0mw9LatWsLYWBMTAxCQkJUbmH4s4SEBMyZMwcmJiZYsGCB1meY3LlzB8ePH4eNjQ2mTJmi9H6JiYlC+1BNhoIpRUVF4ejRo/D19cXTp09RtmxZTJ8+HR07doSRkZHS4wwfPhxRUVHYuHEjPDw88Pvvv8PT01MjLU9zsipVqmDw4MG4efMmVq9erZH30xs3bgBInhWdXaGgbHank5OTEE5lxN/fXwh/mzRpgiFDhmRZfTLv37/H8OHDYWZmBqlUio8fPyIsLAwA0L1790yPe+HCBQDJFyrUq1cPAGBkZIRatWphz549aoeC79+/R79+/eRmWioSHBysMLgHgDNnzmDYsGHYsGFDqrBMtv7h6dOnhVDw0qVLAJL/XZAFnppUrFgx1K1bF1euXMHly5fx6dMntWZmL126FKtXr0bfvn0xadIkDVZKRERERJQ5Il09WDXoJnz+lsTHIvjsZkTeP53uftKkREQ9uYSoJ5dgXq0FCjbrCx3DtDv2UN7CUJCI8i2zivURdk35oEH94zXItmPldrKTqABQuHBh7RWSSQULFkThwoXx/ft3AJpZF/Hz589Yv349ateujYEDB6o9njapGoLp6OioHcRl1s+z5jQxI2Tjxo348OEDvLy8tN42ND4+XljPcObMmbCyslJ6X39/fyQlJa9boMnXERgYiAsXLuDMmTO4du0akpKS0KRJE4wbN06pmURSqRTR0dGIiIhAZGQkIiMjERERAScnJxQrVgxfvnzBiRMn8Pr1a+zYsUNjrX1zKg8PD/Tp00djF1jIQpxatWrB1NRUI2NmRN2Wr82aNcuWWkuWLIlt27bh6NGjWLdundy/ZTVr1sz0uGfOnAEANGjQQC4Mb9CgAby8vNRe77R8+fLYtGkTzp8/j4oVK6J48eIwNzcXvmZ///03jh07BicnJ+zatSvVv2nh4eFo3rw54uPj0bJlS3h6eqb5Xlm1alUYGBjAz88Po0aNgr6+vtC2uEaNGln2u9i9e3dcuXIFUqkUO3fuxMSJEzM1zvLly7F69Wr0798/02MQEREREWUF2edvcWQwvm7/F4nBX1TaP/L+acR9ega7XtOhZ67e8gSU8zEUJKJ8y8C2BIwcnBH3+XmWH8uoeAUY2Gr35H9ukttDQQAoVaqUEAr+8ssvao83c+ZMWFhYYNGiRRoJGbVJ2zPjVFGqVCnhtqOjo0qhWVr8/f2xZs0adO7cGZ07d1a3PLXNnj0br169wpAhQ9CkSROV9k25Vl2JEiXUquPbt2+YPXs2nj59ii9fkv940dPTQ926ddGmTRuYmJjgy5cv2LhxY6qwLyoqSu6xqKgoSCQSiEQiFChQAIUKFRL+a9myJa5evYpXr17h7du3mDVrFhYuXKhW7Tmdnp6e2j+3Mm/fvsWbN28AAK1bt9bImMrITe95VlZW6N27N1xcXODu7o579+4BQKbX/Xv27BlevXoFIPWahI0bN4aXlxe2bt2q9nqn5cuXT7NN86tXr3DixAkAwNSpU9NsC3rw4EHEx8dDX18fU6ZMUfjzZmhoiLp16+LChQs4fPgwihUrJvw7qYkW24o0bdoUNjY2CAwMhJ+fH/766y+VZhoDyTP1V65cyUCQiIiIiHIsSXxspgJBmcTgL/i6wxPF+s3ljME8jqEgEeVrlnU64Vs2hIKWdVyy/Bh5ScpQ0MHBQXuFqKFGjRq4fv06OnbsqPbJ2sOHD+PatWvYvHlzhuunkWYVKVIE9vb2+PbtG6ZOnar2eNOnT0fp0qUxffp0DVSnHllbzk6dOmH06NEq7//8+f/eO5VZ8zE9RYoUQUBAgBAIAsnrsV26dEmYmZaSubk57O3tYW9vj+DgYLx9+xblypXD5MmTYWNjAxsbGxQqVCjNGWbPnj1D165dkZSUhBMnTmD+/PlZHjqtXr0anTp1QpEiRbL0OFlt//79AJLXes3OUDA3rp9qZmaGwYMHY/DgwQAyfzGEr68vgOQ2mA0ayHcccHR0xC+//ILjx4+jf//+qFy5snpFp2Hx4sWQSCTo2LFjmu1i4+LisHnzZgBAhw4dMryQp3379rhw4QK2b9+OokWLAkhuhdq2bVuN1y6jp6eHTp06Ye3atQgLC8PRo0fRpUsXpff39fXFokWL0KtXL6UDwY0bN8LR0VHliy2IiIiIiDIr+OzmTAeCMolB/gg+twU2rQdrqCrKiXLPZbdERFnApOyvMK1YP0uPYVaxAUzK/Jqlx8hrUq7BV6ZMGS1Wknk9e/bE2LFjMWfOHLXGSUhIgJeXF2bNmoVff+XPkTbMmDEDq1evRv366r1XnDlzBm/fvsXKlStVnqWiadevX8fff/+NFi1aYNasWZkeAwBsbGxga6v+uqejRo1K9ViZMmXQsWNHjB8/HsuXL4efnx9u3bqFO3fu4MCBA1ixYgWqVasGALC1tUWzZs1QpUoV2NnZKWw5WaFCBfTp0wcAYGpqmqWBoFgsxuTJk/H69etcHwgmJCQIa3t27NgRZmZmmR7r7du32LBhg6ZKyzbHjx9XaXtzc3PhdmJiosrHCwwMFILYIUOGpPmz2qNHD0ilUsyfP1/l8TNy+/ZtnD9/HmZmZhg/fnya22zbtg2BgYHQ19eHh4dHhmM2a9YMJiYmePbsmdAWtU2bNlm+vucff/whtFTavn270vudP38e//77Lzp06KDShSF79+6FWCxWuU4iIiIiosyIC3id4RqCyoq8dwpxAa81MhblTAwFiSjfK9RyIHTNsma9Ml0zaxRsOSBLxs7L3r59CyC5ZVzp0qW1XE3mWFtbY9CgQWrPcImPj4e7uztcXFw0UxiprEGDBmjYsKHa48TFxeG///7Tekvcx48fY9iwYejevTuWL1+u8Gc0KipK4Rj+/v5CW0Rl1vlTRoMGDVCzZk2UK1cOU6dOxZUrV3D06FFMmTIF5cqVQ6tWrVCxYkWlwwN/f39IJJI0n/vrr79ga2uLNm3aaKT2tERHR2PIkCG4d+8eZs6cmWXHyS67d+9GcHAw9PX14e7urtZY3759w8uXL5XeXhNreWrC0qVLVdo+5e9QeHi4ysdbs2YN4uPj4ejoqLDdcOvWrWFpaYlbt27h6NGjKh9DEYlEAi8vLwBApUqV4O/vj4SEBLltvn37hpUrVwIAevfuDXt7+wzHNTY2RrNmzYT7urq6GDRokMbqVsTBwQF16tQBADx9+hQPHz7McJ9Xr15h7NixqFOnDubMmaP0z+GbN2/w5s2bXNvpgIiIiIhyn4jbxzQ8nmoXRFLukvt68RARaZiuiTnsekxBwNZpkMQpPgmuKh0jM9j1mAJdE/OMNyY5sjWrnJ2d01y/KD8xNzeHm5ubtssgDWjXrp3cGoVZ4cmTJzh16hQA4MuXL3jx4gWcnJyE569fv46xY8dizJgx6N27t8JxEhMT4erqioSEBFSuXBmVKlVC2bJlhbUDp0+fLgRumlwLzNvbG5aWlsLJ94SEBIwaNQq3b9/Gxo0b02xfqMipU6ewfft2tGzZEp06dUK5cuWE50xMTODj45NlJ+1//PiBwYMH4/3799izZw9MTU2z5DjZJSoqCmvWrAEA9OrVC8WKFVNrvLCwMERERCi9fU4IBSUSiRA0Kzu7NGU73JCQEJUucnn27Bl27twJkUgET09PheG9oaEh3NzcsGTJEkybNg2VKlVSe41PAIiJiUHXrl1Rvnx5PHnyBL169YKuri4qVaqEatWqoXr16tiwYQNiYmJQvHhxjBgxQumxU34/HRwc1P55Ula3bt1w7do1AMmzBatWrapw26ioKIwYMQJ2dnZYtmyZwpnHaZGtU1q8ONeSJiIiIqKsJxEnIPr5dY2OGf38GiRth0BHz0Cj41LOwJmCREQADGxLoGgfT43NGNQ1s0bRPp4wsFX/xFx+9PTpUwBA48aNtVsIUS4RHh6O6dOno1u3bihTpgwOHDiAFi1aoG/fvrhz5w4A4MCBA1iyZAk2btyYbiAIAPr6+vDz84Onpyc+fPgAT09P9OnTBw0bNkTDhg1x5coVAMntPTX5e2plZSUEBomJiRg7diyuXr2KhIQEeHh4CLOIldG/f3+sW7cODx48QPv27dGtWzfs2bMHsbGxAJLbiKZs76gpr1+/Rvfu3fHs2TNMmzYNZcuW1fgxstvChQsRGBiIIkWKqBT+KBIaGiq3dmxGpFKp2sdUV1hYGMRisUp1p/x5/fbtm9L7xcXFYeLEiUhKSoKrqytq166d7vZ9+/ZF4cKFERUVhb/++gvx8fFKH0sRMzMz9OzZE15eXjh8+DCuXr2KmTNnwsbGBrt27cKwYcOE2cJFixbFlStXEBcXl+G4y5cvx6FDh4T7Hz58wLhx45CUlKR2zRlp3rw5rK2TP+cdP34cISEhCrf9999/8e3bN3h7eyvdKjckJAR///03zp8/DxsbG5iYmGikbiIiIiKi9CR8/wBpkurLFaRHmpSIhB8fNTom5RwMBYmI/p+BbQnYuy+GWcUGao1jVrEB7N0XMxDMpCdPnuDr16/Q0dFBx44dtV0OUY4mlUqxb98+/P7779i1axeGDBmCJUuWwNnZGfPnz0erVq3Qr18/bNu2Debm5tixYwfKly+v9PjVq1fHjh07MG7cuFTPmZqaYt68eVmyJl9sbCw8PDyEWY/A/9qvqqJUqVLYvn07Jk6ciBcvXmDKlClo1KgRFi1ahODgYI3UmjLMuHnzJnr27ImAgAB07NhRYcvH3OTu3bvYtWsXdHR0MG/ePLXWEpRRdaZgTggFAwMDASTPAlXW69f/W4cj5Vq5GZk2bRpevXqFunXrYsKECRlub2xsjJEjRwIAnj9/jpEjR2okGEzJysoKLi4umDFjBipWrCj33I0bNzBy5EjUq1cPS5YsSdVmVGbnzp1Cu9HGjRujQYPkz1snT57E5MmTMxUMptwno/0NDAzQqVMnAMmzkHfv3p3mdvfv38ehQ4cgEong4eGB33//PcP/mjVrhvr16wtrQLJ1KBERERFll4TAz1kz7o9PWTIuaR9DQSKiFHRNzGHrMgpF/pgEo+IVVNrXqHgFFOk+CbYuo9gyVA2nTycvjNy0aVONtEDLTx4+fIhZs2bliBPopJ5ly5bh8uXL6W7z4sUL9OzZE5MmTUJISAjc3d3x119/yW0zffp0NG7cGDNnzsSuXbuEYEMVIpEI7u7uGDVqlPBY+fLlsWPHDlSqVEnl8TLy/ft39OzZE5cuXQIAODo6YsaMGbh69Spmz56t8ng6Ojro378/du/ejRIlSiA8PBxr165F8+bNsXbtWrVnKMlmG8XFxWHAgAGIiIiAo6Mjpk+frtI4qoQb2SUiIgKTJk2CVCrFqFGj8Ntvv2lk3LCwMJV+FmXvaRKJBCEhIUr9lzJ01MTXUxYif//+Xel93r9/L9xWNhRcuHAhDh48iN9++w0rV65Uel3aLl26oFatWgCACxcuYPDgwcKsWE159uwZunbtilu3bsHBwQE7d+7Epk2bULNmTQD/azP777//ptp3+/bt8PT0BAD06NEDq1atwuLFi+Ho6AgA2L9/P/r164egoKAM65BIJIiIiMCHDx9w/vx54fEDBw7g3bt3iIiIULie6B9//CHcXrt2LS5evIjw8HC5IFP2vY6NjcX79++V+s/f31/u54yfX4iIiIgou0gTM+7YkblxNXuhIeUcXFOQiCgNJmV/hUnZX5Hw4xOinl5G/Nc3iP/6Tm7NQR0jMxjalYKhXRmYVWwAA1uuHaMuiUSC48ePQ1dXVy6AoIw9fPgQAwYMQGRkJGJjYzFr1qwcsQ6XNh07dgxRUVFyJ4Fzg0WLFmHt2rUwNDTEqlWrUL9+/VTbHD9+HGPHjhVOQru4uKQ5m09XVxeLFy/GmDFjcPr0abRs2RLdu3dHt27dVJoxCADu7u4IDAxE3bp10axZsyz5+bp+/TrGjRuHoKAg2NnZYeTIkXBxcUl3NqKyM86cnZ2xb98+jBo1CleuXEFMTAwWLVqEGzduYNWqVTAyMspUzQ8ePACQ/P4lkUigr6+PRYsWqbyOoDZCwfTaPSYlJWH06NH48OEDunfvjsGDB2c4nuxnIqNZat++fRNCHVkolB6xWAwAePXqFerUqZPh9j9TNHMtZXAkO4YiHz8mt855/PgxGjVqpNRxw8PDhdvKhF3z58/Hhg0b0KhRI3h7e8PQ0FCp4wDJX/t58+ahQ4cOiIyMxPXr19GrVy8sWLBApbUM05KYmIj//vsPq1atQlxcHDp37ozJkycLs0br1KmDCxcu4N9//0VAQAAOHjyI6dOnw8DAABKJBPPmzcOmTZugo6OD8ePHY+DAgQAACwsLrF69Gr1790ZwcDBu3boFFxcXeHp6omnTpgrrCQgIQLNmzVI9fufOHbRu3RoAcPbsWdjb26faxtHREbVq1cKtW7cQHR2NQYMGAQCmTp2aYVtlVXCmIBERERFlF5F+5v6WzXhc5f8eodyFoSARUToMbIvD2rYXgOSZCtKEOEiTEiHS1YfIwCjfhy6aduzYMXz8+BF9+/bN0etwSaXSTJ+0TzmLLykpSeGJ6JTbZXSy+smTJxg4cCAiIyMBAHv37oVIJMLMmTPz7c/omTNnMH78eCQlJUFfX19oGfezpKQktWdWSqXSDL9Hym63bNkyrF27FkBysOLh4YHVq1ejXr16ctu1aNEC7dq1w8GDB+Hs7IyZM2cqHNPAwADe3t5Yt24dVqxYga1bt2Lr1q1wcHDAr7/+CmdnZzg6OsLa2hoFCxaEqakpjIyMYGhoKPfzo6enh2nTpqV5jKSkJMTHxyMmJgbh4eGIjIxEeHg4LC0tUbVq1Qy/NgkJCfD29sb69euhr6+PYcOGYdCgQUJQ5+Pjg0KFCsHGxgYFCxZEgQIFYGpqCn9/f1y/nrygujJtTM3NzeHj44OJEyfiyJEjAICrV69i9erVGD16dIb7p/W6nz9/LvfY8OHDMzWDMuXPhiZDwStXrsDCwgKOjo6wsLAQHr927RoSE5PXndDX10+1n5eXF65cuYIuXbpgxowZSh3LwCB5EfqEhASFgV9SUhIePXoEIPn76uXlleG4svDOyckJBw8eVKoWf39/IThSFFKmDILfvn2LypUrKxzvxo0bAIDdu3ejT58+KFCgQIY1ODo64uXLlwDSb4EaFxeHqVOn4tChQ+jcuTM8PT3T/J5kpGjRovD09MSYMWMglUrx9OlTdO7cGWPHjkXv3r0z1er39u3bmDFjBt68eYNy5cph3LhxaYaijRs3Rs2aNeHl5QU/Pz8kJSUhOjoaEyZMwJkzZ+Dg4AAvLy9hVqFMqVKlsHHjRri6ugozSIcOHYpff/0Vo0ePTrU9ANjb2wtf18zYunVrus83b95crfGJiIiIiLKTgU3WXJDGyQ95F0NBIiIliUQiiAyNARhru5Q8SSKRYPXq1XB0dMzUyfns9PXrV/Tu3RtfvnxRaxxlWvFFRkamWr9JGXv27IFIJIKnp2e2BYNxcXGIiYnJcLuoqP/NuI2IiBDaL/5MNrtH1jJQWQ8ePMCoUaOEkGXSpEnQ19dHu3btUm178OBBTJ48WWGrOWWcO3dOqe+RLIxTRXx8PIYOHZoqGNTT08O8efNQqFAhdOnSRQhjFBGJRBg0aBBat24Nb29vHDt2DJ8/f8bnz59x4MABhfsZGBjA0NBQGD/lz5JUKkV8fDzi4+OFcCnl8erUqQNXV9cMX+P9+/cxdepUfPjwAd26dYOHhweKFCkit02ZMmVw7do1nD59WmH7RnNz5do26+npYf78+YiMjMTFixcBJK+blxm6urpYvXo1evXqhejoaFSpUgXu7u6ZGivlbDZNrgcXHh6ORYsW4dmzZ7C0tEShQoWgr6+PN2/eCNv8PGt03rx52Lp1KwYNGoQxY8Yo/R5SpkwZ4fb48eMxevRoFC5cWHhMKpViz549wvfQz88Ptra2Gb7n//zzpSpFMyKdnJwgEokglUoxd+5cREZGwtnZOdUszzt37gjrW37//h29e/fG7t27YWyc/ueBIUOGYNKkSYiNjVUYjr9//x6jRo3C58+fsWDBAnTo0CETr/B/2rRpg8+fP2Px4sUAkl/77NmzsWPHDgwYMAAdO3bM8P0CSH7Na9asweXLl1G8eHEsWLAA7dq1SzdYNDU1xaxZszBq1Cg8fPgQkyZNwpcvX9C9e3dMnDhR4ezZ8uXLY/PmzXB3dxfWbLx79y569+6NYsWKoWXLlujbty/s7Owy8RUhIiIiIsrbDAo7QqSrD2mSen83pSTS1YeBLVvi51UMBYmIKEc4cOAA/P394evrm+GJVm0rWrQotm7dCl9fXzg5OaFUqVIwNzeHmZlZjpuZJ5VKs62m8PBwuLq64sOHD0rvo0xo9PXr10y1DJSRSCSYOHEi9PX10apVK7nnOnfuDCMjIwQEBKBixYqwtbWFubl5pltJZhVdXd1Uj4lEIkyYMEGlcRwcHDB//nyMHTsWx44dw6lTp/D48WOFoUtCQoLC1ouKlChRAkuXLkWFCumvyxoUFITFixfjxIkT6Ny5M3x8fFCsWLE0t23WrBmaNWuGSZMm4fTp01i4cCE+f5ZfTF2VnxFdXV0sXLgQLi4u+PLli8qtPlNydnbG8uXL4eHhgVmzZqX5vVJGypmCyoTrymrbti3atm2LK1euYN68eXj16pXc81ZWVsLML4lEgunTp+PIkSOYP38+OnbsqNKxWrRogWXLliEgIACPHj2Cm5tbutsXKFAgzTaQP1P1Z/BnikJWW1tbtGvXDocPH0ZoaChmzZql1HitW7dW6t+pNm3aoHHjxvj48SPKlSsn91xSUhI2b96MZcuWoVKlSti/f7/G1qEbPHgwAgMD5S5C+PjxI7Zu3YqPHz+m2WoYSP4ZvHjxIjZu3Ij79++jQYMGWLZsGZo3b6702oYxMTFYuXIldu7ciapVq2Lu3LnCWofpcXJywu7du+Hu7o7Xr18Lj8fHxyM0NFSjvxNERERERHmJjp4BTJ3rIOrJJY2NaepcFzp6GV9MSLkTQ0EiItK6r1+/wsvLC15eXnByctJ2OUopVqwYxowZo+0ycpTChQtjy5YtOHbsGJycnFCyZEmYmZnB1NQ0x4WlKbVp00bbJWS7woULw83NDW5uboiPj8eTJ0/w9u1bfPjwAd+/f0doaCjCwsIQExOD2NhYxMXFISEhAYmJiRnO2po7d266gWBCQgLWrl2LM2fOoH379jh//rxSrRiB5DDv999/R7169dCrVy+hxV/dunUVtohVxMLCAmvWrMHAgQPRpUsXlfb9Wf369bF//3611m5LGVzFxsaqVU9a6tevj1q1amHatGnYv38/gOT2mbNnz4alpSWCg4MxceJEREREYN++fShVqpTKxzA1NcW2bduwatUqPH/+PM0wT1dXF+bm5vj111/Rq1cv2NraZjiubKafbA07ZTk6OmLgwIHphptz5sxB4cKFceLECQQHByts3WpiYoJKlSqhT58+aNy4sdI1mJiYwNnZWe6xq1evYu7cuZBKpVi8eLFSwaiqpkyZAisrKyxfvhzNmzfHjBkzYGNjk+a2L168wP79+3H69Gk4ODigWbNmWLp0KQoVKqT08ZKSkrB//36sWLECFhYWWLlypcqvy87ODr6+vpg2bRqOHDmCv/76CwMHDlRqZiMRERERUX5mUbONRkNBi5qtNTYW5TwiqboL6RBRjpGQkIDHjx+nerxy5cpqn1ARi8VyV24DQNmyZZW+clwbJBJJqhOrxsbGmVpTh7KOVCpFv3790LBhQwwYMEDb5RCREpKSkoT/JBKJsF6aVCrNcMasVCrFnTt3UKNGDbXC4pMnT2L9+vVwcXFB9+7dM/3vkUQiyRH/LqxduxZ79+5F9+7d0blzZ1hZWWXJccRiMVq0aIHixYtj4sSJqFChAq5evYpZs2ahZ8+e6NWrV474eqQ0bdo01KtXD82aNVP6+ywWi6Gjo5OjXsuNGzewZs0aSKVSdO3aFW3atMn0zFJlXb58GXXq1FH4dYuKisL27dtRs2ZNVK5cWeW1DKVSKY4fP45Vq1bB0dER3bp1Q8OGDdW+EOTs2bNZEpZqgyY+j+bGz+FERERElL0Cj61B5P3Tao9jXr0lbFoP1kBFOVNWnj/PLRgKEuUhDAXlMRTMHeLi4nDkyBF07dpV26UQEWlNSEgIrKyssmVWbUhICKytrYX7vr6+aNWqFSwtLbP82PlVdHQ0tm3bhnbt2ilsk5sbvX79GpcuXYKLiwsKFiyo7XJyJIaCRERERJQdJPGx+LJxIhKDv2R6DP1C9ijWby50DHP2sj7qYCjIUJAoT2EoKI+hIBERERFpE0NBIiIiIsou4shgfN3hicQgf5X31S9kD7ue06Bnnrcv9mMoCPDMOBERERERERERERERUS6mZ14QxfrNhXm1FirtZ169JYr1m5vnA0FKxksLiYiIiIiIiIiIiIiIcjkdQ2PYtBkC81+aIeL2cUQ/vwZpUmKq7US6+jB1rguLmq1hVLSsFiolbWEoSERERERERERERERElEcYFS0Lo45lIWk7BAk/PiLhxydIE+Mh0jeEgW1xGNiWgI5e/miXSfIYChIREREREREREREREeUxOnoGyQEhZwPS/+OagkRERERERERERERERER5HGcKEhERERERERERERER5TFisRhfvnyBgYEBdHR0IJFIYGtrC11dXW2XRlrCUJCIiIiIiIiIiIiIiCiPkUqlCAoKknusUKFCDAXzMbYPJSIiIiIiIiIiIiIiIsrjGAoSERERERERERERERER5XEMBYmIiIiIiIiIiIiIiIjyOIaCRKQUkUiU6jGpVKqFSoiIiIiI8g+JRJLqsbQ+mxMREREREWWEoSARKUVHJ/XbhVgs1kIlRERERET5R1JSUqrH0vpsTkRERERElBH+JUFEShGJRNDT05N7LDo6WkvVEBERERHlDz9/5tbT0+NMQSIiIiIiyhSGgkSkNDMzM7n7kZGRWqqEiIiIiCh/+Pkz98+fyYmIiIiIiJTFUJCIlGZhYSF3Py4uDlFRUVqqhoiIiIgob4uKikJcXJzcYz9/JiciIiIiIlIWQ0EiUpqJiQl0dXXlHvP392cwSERERESkYVFRUfD395d7TFdXFyYmJlqqiIiIiIiIcju9jDchIkomEolQoEABhISECI9JpVJ8/vwZRkZGMDc3h6mpKXR1daGjo/1rDiQSCZKSkuQeE4vFOaI2IiIiIsr7VPk8Kts2OjoakZGRqWYIAkCBAgW4niAREREREWUaQ0EiUomtrS3EYjEiIiLkHo+Li0NcXBwCAwO1VFlqUqkUUqlU7jGRSMQTKURERESULTT5edTCwgK2traaKo2IiIiIiPIhTpchIpWIRCIULVqUa5kQEREREWUTCwsLFC1alBe3ERERERGRWjhTkIhUJgsG9fT0EB4enqolUk7yc9slY2NjLVVCRERERPmROp9HdXV1UaBAAdja2jIQJCIiIiIitTEUJKJMEYlEKFy4MGxtbRETE4OIiAhERUVBLBZruzQiIiIiolxLT08PZmZmsLCwgImJCcNAIiIiIiLSGIaCRKQWkUgEU1NTmJqaAkheN0UikaRaO0UbEhMT8ezZM7nHSpYsCX19fS1VRERERET5iSqfR0UiEXR0dBgCEhERERFRlmEoSEQaJRKJoKurq+0yACDNYFJPTw96enzrIyIiIqKsx8+jRERERESUk+houwAiIiIiIiIiIiIiIiIiyloMBYmIiIiIiIiIiIiIiIjyOIaCRERERERERERERERERHkcQ0EiIiIiIiIiIiIiIiKiPI6hIBEREREREREREREREVEex1CQiIiIiIiIiIiIiIiIKI9jKEhERERERERERERERESUxzEUJCIiIiIiIiIiIiIiIsrjGAoSERERERERERERERER5XEMBYmIiIiIiIiIiIiIiIjyOIaCRERERERERERERERERHkcQ0EiIiIiIiIiIiIiIiKiPI6hIBEREREREREREREREVEex1CQiIiIiIiIiIiIiIiIKI9jKEhERERERERERERERESUxzEUJCIiIiIiIiIiIiIiIsrj9LRdABFpjlQqTfPxxMTEbK4kZxCLxakeS0xMVPh1IiIiIiLSJH4eJSIiIiJt4udReYrOk+enr4dImp9eLVEeFx0djRcvXmi7DCIiIiIiIiIiIiKiXMHJyQmmpqbaLiNbsH0oERERERERERERERERUR7HUJCIiIiIiIiIiIiIiIgoj2MoSERERERERERERERERJTHMRQkIiIiIiIiIiIiIiIiyuNEUqlUqu0iiEgzJBIJYmNjUz2up6cHkUikhYqIiIiIiIiIiIiIiLRPKpVCLBanetzY2Bg6OvljDh1DQSIiIiIiIiIiIiIiIqI8Ln9En0RERERERERERERERET5GENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVxDAWJiIiIiIiIiIiIiIiI8jiGgkSUK4WHh2Pfvn3aLoOIiIiIKF1btmxBdHS0tssgIiIiIiJiKEhEudOVK1cwadIkjBgxAqGhodouh4iIiIgoTUuWLEHjxo2xePFiBAYGarscIiIiIsonoqKicOzYMSQkJGi7FMpBGAoSUa508uRJAMCpU6fQvn17PH78WGNjJyUlwcfHB0uWLNHYmERERESUPxkZGSEiIgI+Pj7o2rUrIiIitF0SEREREeUDRkZGOHDgAJo0aYI1a9YgJiZG2yVRDsBQkIhyncjISFy4cEG436RJEzg7O2tk7MuXL6Nz585YvHgx1qxZg71792pkXCIiIiLKn/T19QEAxsbG8PHxgYWFhZYrIiIiIqL8QE9PD0uXLoWVlRWWLFmCtm3b4t27d9oui7SMoSAR5TrHjx9HfHw8AKBu3br4999/oaenl+nxEhIScOTIEXTp0gUDBw7EixcvhOdmzJiBW7duqV0zEREREeVPBgYGAABra2s4OTlpuRoiIiIiyk9MTEywcOFC6OnpISAgACNHjtR2SaRlmT+LTkSkJXv27AEAGBoawtPTEzo6ql/fIBaLce/ePRw7dgzHjx9HWFiY3POykzalSpXCixcvUKtWLU2UTkRERET5jK6urrZLICIiIqJ8zMnJCS4uLti7dy9ev36NqKgomJmZZXo8dfcn7WIoSES5ysuXL/Ho0SMAQK9eveDg4JDq+fLly6e5b3BwMC5duoSLFy/iypUriIyMBJDc0qlq1aqoUqUKqlWrhipVqqQal4iIiIgoMzJzARsRERERkSb169cP+/btg5OTk1qBXkhICPr27YumTZti9OjRGqyQsgtDQSLKVXx9fQEkT313d3dP9fyff/6J9u3bY+jQofjx4wceP34s/Pfu3TsYGhqidOnSsLe3x/PnzwEA586dg62tbba+DiIiIiLKH9Rpc09ERERE+VtYWBgkEona4xQsWBB///03ateujZCQkEyNERMTAw8PD7x69QqvXr2Cubk5Bg4cqHZtlL341wkR5RoxMTE4ePAggOTwz9raOtU2enp68PX1ha+vL4oWLYry5cvD2dkZTZo0gZOTE4oXLw4dHR3s2bMHU6ZMAcCWTkRERESUc0VHR8PExAQikUjbpRARERFRNjt79iymTJmikWBQ0xYsWAAzMzP8+eef2i6FVMBQkIhyjf379yMqKgoGBgZwc3NLcxtDQ0MAwODBgzFmzBiFYxkbGwu3c+I/qkRERESUcxw8eBBt2rSBvr6+yvuqG+ZNnjwZ0dHRWLBgASwtLdUai4iIiIhyly5duqBIkSKIiopCmTJlYG1tDVNTUxgYGGi7NMqlGAoSUa4gkUiwefNmAEDHjh0VtvuU/YOY0ckXIyMj4bZYLNZQlURERESUF61duxZr1qzB5MmTUaFCBZX2lV2AJpFIVG7VdOXKFRw/fhwA0KlTJyxbtgxVqlRRaQwiIiIiyt3q1auX7vMhISFpdlTLjOfPn6N8+fJcFzsPYyhIRLnC2bNn8fHjRwDAH3/8oXA7Za/eTjlTMDExUb3iiIiIiChPMzQ0xNOnTzFgwIBMj/H161fUqVNHrf0fPXrEUJCIiIiI5Hh4eKBgwYLo27cvatWqlelx/Pz8MHXqVLRo0QLz58/nbMQ8iqEgEeUK69atE257eHhg+vTpaNGiRartlF0fMOVMQYaCRERERJQe2YVnTk5OwhrXyurYsSNevHiBYsWK4dy5cyrte/PmTbi6ugIAJk2ahN69e6u0PxERERHlffr6+jhz5gzOnDmjkfGOHz+OpKQkeHt7a2Q8ylkYChJRjnfu3Dk8fPhQuC+VSlGyZMk0t1U2FDQ1NRVux8XFqVcgEREREeVpOeEq6TJlymi7BCIiIiLKgQwNDQEAdnZ28PPzy/Q4ixYtwt69e1G0aFFMmDBBU+VRDsNQkIhyNKlUimXLlgEATExMEBMTg1KlSik8KZLRWoIyDAWJiIiISFlcU4WIiIiIcirZMkk6OjpqrS0oCxeLFSsGBwcHjdRGOQ//siGiHO3o0aN48eIFypcvj3bt2mW4fWZCwfj4+EzXR0RERER5n54er6clIiIiopxJFuZpikQi0eh4lLMwFCSiHCs2NhYLFy6Evr4+5s2bJ6zloglmZmbC7ZiYGKVqISIiIqL8SdkLz4iIiIiIsptUKtXoeElJSRodj3IWhoJElGOtWbMGX79+xcSJE+Hs7KzRsQ0MDIS1YaKiojKso2vXrggODtZoDURERESUOzAUJCIiIqKcStNd0BITEzU6HuUs7IFCRDnSp0+f8N9//+H3339Hnz59VN5fLBYjOjo63W1MTU2RkJCAsLAwhdtu27YNS5YsAQC4urpiy5YtKFiwoMr1EBEREVHuxVCQiIiIiHKquLg4AMCXL19Qvnx5tcdjx7S8jaEgEeU4UqkUU6dORZkyZTB37txMjbF+/XqsX79eqW29vLzg5eWV4XZv3rxhMEhERESUDzEUJCIiIqKcSjZT0M7ODn5+fpkeZ9GiRdi7d2+GXdUod2MoSEQ5jq+vL969e4c9e/bA2Ng4U2MMGjQIw4cPT3ebiRMn4vjx42jcuDGWL1+u9Nh6enzrJCIiIspPNL1OCxERERGRpsTFxaFSpUro2bMnrK2tMz2OnZ0devTogXbt2mmwOsppeGabiHKUr1+/wsfHBxs2bECRIkUyPY6Ojg4MDQ3T3aZEiRIAkluVZrQtEREREeVfDAWJiIiISNvu37+PX375JVUXi+XLl8POzk7t8TOaYHHkyBE4OTmhTJkyah+LtEdH2wUQEaVkZGSEZcuWoVy5cll+rOLFiwMAPn/+jKSkpCw/HhERERHlThKJRNslEBEREVE+t2zZMvTq1QsvX76Ue1wTgWBGdu7ciXHjxqFPnz548eJFlh+Psg5nChJRjmJlZQUrK6tsOZZspmBiYiLev3/Pq1yIiIiIKE2yC8gkEglCQkJU2lcWKGZm38jISOG2WCxWaV8iIiIiylv09PRw/fp1dOjQQWs1hISEwNXVFQcOHEDRokW1VgdlHkNBIsq3KlasCD09PYjFYty6dYuhIBERERGlSRYKvnr1CnXq1MnUGF+/fs30vgAQGxub6X2JiIiIKPfT00uOc6pWrYo1a9Zk67E9PDxw//59GBkZYeLEiQwEczGGgkSUbxkbG8PJyQlPnjzBzZs30bNnT22XREREREQ5UGJiIgDAyckJBw8eVGnfjh074sWLFyhWrBjOnTun0r43b96Eq6srAIaCRERERPmdrq6u8H9ra+tsPba+vj4AoEKFCujSpUu2Hps0i2sKElG+Vr16dQDAjRs3kJCQoOVqiIiIiCgnkoWCmSGVSjVSA0NBIiIiovxNNlNQkU+fPuHz588qj3v9+nVMmzYts2VRLsNQkIjytcaNGwMAwsLCcOHCBa3WQkREREQ5U1xcHEqWLImRI0dm+7ELFiwId3d3NG3aNNuPTUREREQ5R0ahoL+/P9q2bYsVK1YgKCgIISEhGf737NkzjBw5Er6+vvD29s6mV0LaxPahRJSv1a5dG1ZWVggNDYWfnx9atmyp7ZKIiIiIKIcZPXo0mjRpIrRsyi6VK1fGxYsXhXZNRERERJR/ZRQKGhgYID4+Ht7e3pkK+FasWIEaNWqotQ425XwMBYkoX9PT00PLli3h6+uLixcv4tWrVyhXrpy2yyIiIiKiHKR58+aZ3led9qEmJiaZ3peIiIiI8paMLlAzMDAQbu/duxeVK1fOcMyQkBAhBOzfvz8DwXyA7UOJKN/r0aMHAEAikWDx4sXpbnvs2DHs3r07O8oiIiIiojxEU2sLEhEREVH+pMxMQXU0atRIrf0pd2AoSET5ikQiwcGDB+Hu7o6kpCQAgLOzM+rVqwcAOH/+PC5fvqxw/5MnTyI0NDRbaiUiIiKivIOhIBERERGpI6NQUN2W8xKJRK39KXdgKEhE+caZM2fQsWNHnD59GgsWLJCbcj948GDh9uTJkxEeHp5q/6SkJFy/fh3FixfPlnqJiIiIKPeTnVxhKEhERERE6tDRST/OUXemoGwCBeVtDAWJKM+7du0aunXrhtGjR+PPP//EihUrYGlpKbdN7dq10bJlSwDA9+/f8ffff6e6Oubhw4cIDw9HsWLFsqt0IiIiIsrlZGEgQ0EiIiIiUkdGoZ1YLM7S8SlvSH++KRFRDqLMFPaU2zx48ACLFy/GzZs3UaxYMezcuROVKlVSuO8///yDy5cvIzY2FufOncO8efPwzz//CM/L2ooWLlxYjVdBRERERPmJ7OQK2zERERERkToyCu0SEhKE21FRUQgJCclwzJTd0lLuT3kXQ0EiyjVk//Cld5V1WFgYAGD37t1Ys2YNAKBWrVpo164djh49ChsbG4WhXtGiRTF58mRMmTIFALBp0yaIRCJMnDgRIpFICAWtrKw09ZKIiIiIKI+TfXZlKEhERERE6khMTEz3+ZShXr9+/VQePzY2VuV9KPdhKEhEuYZsCryiqfABAQH48eMHAAhXwnTq1AkzZ86ERCKBm5sbWrRogZ49e2LYsGEwNzdPNUa3bt1w//597Nu3DwCwceNGvHv3Dn/99ReePn0KQP3+3ERERESUf8jCQLZjIiIiIiJ1qDJTcO/evahcuXKGY4aEhKBOnToAgLi4OPUKpFyBawoSUa4hCwMVXRUjEonk1gp0c3PD3Llzoa+vD0NDQ6xatQo2NjbYuHEjWrdujTt37qQ5zr///ovWrVsL9y9evIiuXbsKJ3RSTqsnIiIiIkoP24cSERERkSZktGagLBS0srKSO0eqjNKlS6Ns2bKZLY1yEYaCRJRryMLA+Pj4NJ+3s7PD4sWLoaOjA1dXV/z9999yz1taWmLlypUwMDBAYGAg3N3d8fHjx1Tj6OvrY9GiRRg4cCB0dXUByJ/ECQgI0NRLIiIiIqI8ThYKZnQSh4iIiIgoPRl9njQ0NMSYMWNw9uxZODg4KDWmsbEx/vvvPxw7dgzVq1dXuF16yzlR7sJQkIhyDdk/fOlNZa9Xrx7WrFmDf/75J83nnZycMGLECABATEwMDh8+nOZ2urq6GD9+PPbs2YP69evLPXf//v3MlE9ERERE+VBG3S6IiIiIiJSRUfvQ6tWrY/DgwTA1NVV6TGNjY9SrVw8A8OjRI/j4+ODQoUO4c+cO/P39kZCQgOjoaHz48AFA8mQKyt24piAR5RqyEykxMTHpbteoUaN0n3dzc8OuXbvw5csXFC5cON1tK1asiA0bNuDFixfYsWMHTp48iXfv3qlWOBERERHlW7LPsImJiRCLxdDT45/hRERERKS6rO48Ubx4cbx9+xanT5/GhQsXkJCQAJFIBF1dXeHYVlZWWVoDZT3OFCSiXCMhIQH169fHkiVL1BpHX18fQ4cOhaWlJX7//Xel9nFycoKnpydu3ryJyZMnq3V8IiIiIso/EhMTUb58efj4+DAQJCIiIqJMy+pQ0NLSEp06dYK3tzcuXryIQYMGQU9PT+641apVy9IaKOuJpGwGS0S5xPfv3zOc2acsqVSKT58+oUSJEhoZj4iIiIgoLYcPH0bbtm2ho8NrcomIiIgo8/r164ekpCSMGjUKv/76a7Yc886dO3B3d0dMTAzs7e2xd+9ezhbM5RgKEhERERERERERERER5WCfPn1C8eLFs/2427Ztw6dPn+Dh4QFLS8tsPz5pFkNBIiIiIiIiIiIiIiIiojyO/UuIiIiIiIiIiIiIiIiI8jiGgkRERERERERERERERER5HENBIiIiIiIiIiIiIiIiojyOoSARERERERERERERERFRHsdQkIiIiIiIiIiIiIiIiCiPYyhIRERERERERERERERElMcxFCQiIiIiIiIiIiIiIiLK4xgKEhEREREREREREREREeVx/9fevQZpWddvAL/W3dY4bBxqs4YJD5AgFjM4Ng4lMUOOOUpWSh42G5SAJBgRdixpkEbCkBpFcjMkSYghBAoIJyfHXlhTOCFEkpEOA5KHcTg1ZLjAsvD8XzTu4F/JdffZfdyHz+fVfT9739/f9ey7nWt/960UBAAAAAAAgDKnFAQAAAAAAIAypxQEAAAAAACAMqcUBAAAAAAAgDKnFAQAAAAAAIAypxQEAAAAAACAMqcUBAAAAAAAgDKnFAQAAAAAAIAypxQEAADglHXo0KFSRwAAAOgUSkEAAABOWaNGjcrdd9+dF198sdRRSqZQKOSnP/1pDhw4UOooAABAB6ooFAqFUocAAACAUhg2bFgaGxtTUVGRESNG5IYbbsjIkSNLHavTFAqF3HnnnVmxYkWGDBmShx9+OL179y51LAAAoAPYKQgAAMApq7q6Osl/y7GnnnoqL7/8cokTdZ4TC8Ek2bZtW2666SY7BgEAoEzZKQgAAMAp6+KLL87evXuTJIsWLer0XYJLlizJ3LlzO3XNd3LeeedlyZIldgwCAECZqSp1AAAAACiV008/veV40KBBnb7+jTfemOrq6vztb3/LJz7xifTv3z81NTXp2bNnKioqWjXjoYceypo1a5Ik06dPzyWXXNKRkQEAgC5KKQgAAMAp643HhyZpdQlXbHV1de26/8QdfbW1tRkwYEA7EwEAAOXIOwUBAAA4ZZ1YCr7++uslTNK5Dh06lJ/85Cc5fvx4qaMAAACdRCkIAADAKauysrLl+LXXXithkuT555/PvHnz0tTU1OFrPf7447nvvvsybty47N+/v8PXAwAASk8pCAAAAEleeeWVd33PwYMHc8stt+TgwYPtXn/gwIHZvHlzrr322vzzn/9s97z/5Y13ED711FP50pe+lE2bNnXoegAAQOkpBQEAACDJjh073vU9c+bMyeOPP55Jkybl8OHD7Vq/srIy8+bNy86dO3PVVVfld7/7XbvmncwLL7yQjRs3tpwfOHAgv//97ztlhyIAAFA6SkEAAABI3vVuuUceeSRr165NkmzcuDG33HJLjh492q4MZ599dm6++eYcPHgwU6ZMSUNDQ7vmvZ0HH3wwhUIhSfKhD30oq1evTn19/ZverwgAAJQfpSAAAAAk2bJlS6sfA7phw4Z873vfe9Nnr776ajZs2NDuHF//+tdz1llnpVAo5P7778+MGTNy7Nixds9NkpdeeimPPvpokuQDH/hAfv7zn2fw4MFFmQ0AALy3KQUBAAAoe3/5y1/e8Zq+ffvmiSeeeMfrtm7dmsmTJ6e5uTlJMmzYsCxfvjyPPvpoRo4c2e6s1dXVmT59esv5mjVrMmfOnHbPTZKFCxemubk5lZWVue+++zJgwICizAUAAN77lIIAAACUtc2bN+drX/tabrvttv/5eM/PfvazWbNmzf+c9eyzz2b8+PFpbGxM9+7dM2vWrKxYsSIXXnhhUTNfeumlOffcc1vOV6xYkb///e/tmrlt27aW7zdr1qx85jOfadc8AACga6kqdQAAAABorQMHDmT//v2tvr6pqSnTp09Pc3Nz1q9fn3379uX+++9Pz54933LtyJEjs2rVqrzwwgs5++yz3/Lzv/71r5k4cWL+/e9/Z9iwYZk3b17OPPPMdn2fk6moqMgNN9yQWbNmJUkKhUJWrlyZ2bNnt3nm7Nmzc/z48UyYMCHXXXddsaICAABdhFIQAACALuW2225r8665DRs25Pbbb09DQ8NbfjZ48OB8+MMfzvLlyzNz5sw3/exPf/pTpkyZkqNHj2b69OkZP358Kisr25ShtS6//PLcddddOXLkSJJk165dbZ7161//Olu2bMnll1+e+vr6IiUEAAC6EqUgAAAAXUbv3r3z8MMPZ8mSJRk4cGAGDx6c3r17p6amJtXV1W+5fvv27Rk9enTL+ezZs3P11VefdP7IkSOzdu3a3HrrrS27CdetW5eZM2fmrLPOyg9/+MOcd955xf9ib6OmpibDhw/Pk08+mSQZOHBgm+bs27cvc+fOzUUXXZR58+aloqKiiCkBAICuwjsFAQAA6FJ69eqVqVOn5oorrsiAAQPywQ9+8G0LwST54x//2HI8ZMiQXHvttamqOvn/x1522WU5ePBgHnnkkSRJQ0NDZsyYkbq6uvzqV7/qtELwDW8UmN27d8/YsWPbNGPmzJn5+Mc/ngcffPCkv6cTNTc3t2kdAADgvc1OQQAAAMrWiaXgJZdc8o7XDx8+PLW1tVm6dGm2bduWTZs2ZfHixfn0pz/dkTFP6tJLL82kSZMyatSoNr2/8Je//GVee+21PPTQQ+nWrds7Xr9jx47cfPPNmTt3bi688MK2RAYAAN6j7BQEAACgLB05ciSbNm1qOW9NKVhZWZkrrrgie/bsyb59+7J+/fqSFYJvuPXWWzN06NA23dvc3JxFixale/fu73jtrl27cuONN+bFF1/MhAkT3vS7AwAAuj47BQEAAChLf/jDH3L48OEkSf/+/TNo0KBW3XfllVdmyZIl2bdvX2pqaoqWp6mpKS+99FLR5r3hwIEDLcd79+7Njh07Ws4/9alPZffu3dm9e/f/nPGf//wnU6dOzZ49e5IkjY2NmTBhQhYvXpwLLrig6JkBAIDOpxQEAACgLD322GMtx1/84hdbfd/555+fwYMH57nnnsvKlStTV1dXlDzV1dVZsWJFli1bVpR5b+fee+/NvffeW5RZjY2NGT9+fBYvXpxhw4YVZSYAAFA6SkEAAADKzqFDh/Lkk08m+e8jQceMGfOu7h87dmxmzJiRhoaGXHnllenZs2dRcs2cOTMf+9jHcvrpp2fIkCE544wzUlNT06rHe57MvHnz8rOf/SxJMnfu3Fx11VVFyQoAAJQX7xQEAACg7DzxxBNpbGxMklx88cX5yEc+8q7uHz16dGpra7N///78+Mc/Lmq2sWPH5rrrrsvQoUNzxhlntKsQBAAAaC2lIAAAAGXnF7/4RcvxNddc867vr66uzvXXX58kWbp0aZ599tmiZQMAACgFpSAAAABl5bnnnsuWLVuSJOecc05GjRrVpjnXX399evTokWPHjmXmzJlpbm4uZkwAAIBOpRQEAACgrCxfvrzl+Bvf+EZOO61tf/r27ds348aNS5L84x//yMKFC4uSDwAAoBSUggAAAJSN3bt3Z926dUmSfv36ZfTo0e2aN27cuNTW1iZJHnjggTz99NPtjQgAAFASSkEAAADKxqJFi9LU1JQkmTJlSqqqqto1r3v37pk8eXKS5NixY6mvr8+//vWvducEAADobEpBAAAAysKePXuyevXqJMnQoUPz5S9/uShzv/KVr+T8889P8t+diFOnTm0pHgEAALoKpSAAAABlYf78+Tly5EgqKipyxx13pKKioihzq6qq8v3vfz/ve9/7kiQbN27M7bffnkKhUJT5AAAAnUEpCAAAQJe3devWrF27NkkyZsyYDB06tKjzBw8enAkTJrSc/+Y3v8ldd91V1DUAAAA6klIQAACALq1QKLpucpYAAASMSURBVGTOnDkpFArp379/ZsyY0SHrTJo0KUOGDGk5X7ZsWe64444cP368Q9YDAAAoJqUgAAAAXdqyZcvyzDPPpKqqKvfcc0969OjRIetUV1enoaEhffr0afls1apVmTZtWhobGztkTQAAgGJRCgIAANBl7dy5M/fcc0+SZNq0aUV/bOj/169fv8yfPz9VVVUtn/32t7/NmDFjsn379g5d+2RO3KnoPYcAAMDJKAUBAADokpqbm/Ptb387hw8fzjXXXJPx48d3yrrDhw/Pd77znTd9tmPHjowZMyYLFy5MU1NTp+R4w4lF4NGjRzt1bQAAoOtQCgIAANAl3X333dm6dWtGjBiR7373u5269le/+tXU19e/6bPDhw9n/vz5ueyyy7JmzZocOXKkU7KcuFNQKQgAAJyMUhAAAIAuZ926dVm2bFkuuuiiLFiw4E2P8+wsEydOzNSpU9/y+SuvvJIZM2ZkxIgRWb16dYfnaG5ubjlWCgIAACfT+X81AQAAQDs888wzmTVrVkaNGpUFCxakurq6zbNO3GXXFt/85jfTrVu3/OAHP2iZ1a1bt3zuc5/LBRdckE9+8pPtmt8adgoCAACtoRQEAACgy9i+fXsmTpyYL3zhC7nzzjvbtUOwubk5r776asv5aae17WE6N910U84555zU19fnox/9aBYuXJh+/fq1Ode7dWIRqBQEAABORikIAABAl/Dyyy9n8uTJ+da3vpWrr766Vfc89thj2bVrV/r27ZtevXqlV69e6dGjRyoqKrJ+/focOHCg5dr3v//9bc42cuTIrFy5MkePHu3UQjBJmpqaWo6VggAAwMkoBQEAAOgSXn/99TQ0NOTcc89t9T0DBgzI888/n6VLl2bnzp0nva5Pnz7p27dvu/INGDCgXfe31YlF4IkFIQAAwImUggAAAHQJgwYNatM9gwYNyrRp07Jp06b86Ec/yp///Oe3XDd69OhiRCyJE4vA9r4jEQAAKF8VhUKhUOoQAAAA0FkeeOCBLFiwoOX8zDPPzKpVq9K7d+/ShWqHcePG5dChQ6mrq8vnP//5VFdXlzoSAADwHqQUBAAA4JRTV1eXzZs3Z9SoUZk9e3Zqa2tLHanN9u7d26XzAwAAnUMpCAAAwCnn6aefTp8+fTJw4MBSRwEAAOgUSkEAAAAAAAAoc6eVOgAAAAAAAADQsZSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5pSCAAAAAAAAUOaUggAAAAAAAFDmlIIAAAAAAABQ5v4Pgwe3rFhhKK8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_name = '新供应关系构成概率P7'\n", + "y_choose =[1]\n", + "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n", + " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n", + " 'palette': sns.color_palette(\"deep\")[0:4]})\n", + "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n", + ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n", + "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n", + "sns.set_theme(style=\"whitegrid\", rc=config)\n", + "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n", + " markers=['o'],\n", + " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n", + " palette=y_prop.loc[y_choose]['palette'].to_list(),\n", + " legend='brief')\n", + "ax.set_title(x_name)\n", + "for item in df_x.groupby('响应变量'):\n", + " for x, y, m in item[1][['水平', '均值', '均值']].values:\n", + " ax.text(x, y+0.0005, f'{m:.2f}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_27216\\1838672856.py:10: UserWarning: \n", + "The markers list has fewer values (1) than needed (3) and will cycle, which may produce an uninterpretable plot.\n", + " ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABtcAAAVjCAYAAACyq3AyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd1hTZxsG8DshCRtZIigIah249657VKyr1j1wj7rqrrs46q6rtVZrxdGq1drWXWfdWz9xoVZEcSFDlozM7w9KTCCBJASCeP+uy6vnnJx3HESLufM+r0ClUqlARERERERERERERERERDkSWnoCRERERERERERERERERO8LhmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkRERERERERERERERGQghmtEREREREREREREREREBmK4RkREREREOZLJZJaeQqEkl8stPQWiAu3BgweWngIRERERURYM14iIiIiI3nOpqam4dOlSno7x7bffYtiwYYiOjs7TcQxx5MgRzJ49G48fP7b0VHJtzZo1mDFjBp48eWLpqeS5Xbt2IS4uztLTMKunT5/maf+XLl3C4cOH83SMgm7OnDno0qUL9u/fD4VCYenpEBEREREBYLhGRERERPTeU6lU6N+/P4YMGYJ79+6Zvf87d+5g8+bNOHXqFDp27IiTJ0+afQxjCIVC7Ny5EwEBARg1ahSuX79u0fnkhkgkwu7du9GuXTtMnDixUK/S2b17N1q1aoX169cjNTUVAKBQKPDo0SMLz8x07du3x+zZs/Hq1as86d/GxgYTJkzAhAkTEB8fnydjFHQSiQR3797FxIkT0bp1a/z111+WnhIREREREUSWngAREREREeWOtbU1AODMmTM4c+ZMno4VExODDRs2oFGjRpBIJHk6lj4Z4yqVShw7dgz//vsvdu7cCWdnZ4vMR1NaWpr698MQNjY2ANJDpv3798PPzw/lypXTe/+rV6+wcuVKBAUFGTVOdmQyGVQqVZ7/flpZWSExMRHLly/HL7/8gilTpqBOnToIDAxE2bJlMXToUDRs2DBP52BuIpEIO3fuxJ9//olevXph+PDhcHV1NVv/1apVw7Bhw/DDDz/gxo0bWLZsGWrVqmW2/t8HYrFYfezi4oLatWtbcDZEREREROkYrhERERERveeEQiEkEgmkUim8vb2xfv16s/YfExODfv36AQCqV6+OTZs2WSxYA7TfbPfw8MCWLVsKRLAGpK/OOnXqFKZOnYoyZcrkeL+tra36uHPnzhgzZky292/atAl//PEHHj9+jO+//x7u7u65nvORI0fw888/Y/Xq1ShRokSu+9NHJHr3z09bW1uUK1cOHh4e+Omnn9CnTx8MHDgQdevWxfTp0+Hv759n8zAniUSC5ORkpKWlYefOnShXrhy6du1q1jG++OILHDp0COHh4QgMDMT8+fPRuXNns46hT0REBBYsWICFCxfCxcUlX8bMTPP7ZuXKlXn6PUpEREREZCiWhSQiIiIiKgQyVjGJxWKUKVPGrL9KliypHqdUqVJmWzFlKs1wzc/PD8WKFbPgbLT17t0bEokEnTp1wvLly5GWlpbt/Rkr1wDkuGorNjYWv/32GwDgf//7H7p164bQ0NBcz/mTTz5BcnIyPvvsM5w7dy7X/emjGZL88MMPKFu2LACgQoUKWLp0KQQCAS5fvozPP/8cwcHBeTYPc8r4XrS1tcWePXvMHqwB6QHe9OnTAaSvMpw2bRouXLhg9nEyi4iIQP/+/XHy5EkEBgYiNjY2133evXsXMTExRrXR/L4RCAS5ngMRERERkTkwXCMiIiIiKgSsrKwsPYV8o/lme0EjEAiwYMECODs7Y/369ejSpQvu37+v936h0PB/kq1duxbJycnq8/LlyyMpKSlX8wXSv3fGjRuHuLg4DB8+HAcPHsx1n/rGyZD597BFixbo27cvAEAul2PhwoU4ffp0nsxDoVCYra+McM3a2hqlS5c2W7+ZNW3aFDVq1ACQXg7122+/Vb+WkpKCwMBAlC9f3qy/WrVqhRcvXgAA7t+/j4EDB0IqlebqOS5cuIDmzZtj9uzZePz4sUFtjPkzkllkZKRZf7+JiIiIiDIU3H+VEhERERGRwXLzBvT7pqA/a5EiRRAUFIQvvvgCjx49Qs+ePbFhw4Zc7RX1/Plz7NixA0B6kLNgwQJ06NDBXFNGmzZtUKpUKTx+/BgTJ05EamoqPvvsM7P1D2iv0lOpVFlenzhxIv7++2+8fv0aAHDjxg00adIkx37/+usvVKtWDX5+fjneGxERgSFDhmDu3LmoV6+e4ZPXw9xB75s3b3DlyhW0bt06yyqtwYMHY/To0QCABw8eqK/b2trixx9/xPz58+Hg4ICKFSuiaNGicHR01Co7aqzXr19jwIABANL3Ops8eXKuy8Ha2NioS2ju2rUL7dq1w+LFi7VWo2Zm6gcHMlbeVa9eHcuWLfugPoBARERERHmP4RoRERERUSGQETjJZDI8evTIrH1rlnFTKpVm7dsUBT1cA4CWLVuiXr16uHTpEpKTkzF27Fj8/fffcHR0NKm/JUuWQCaTwcbGBj/++CPq169v1vkKhUIEBgbi66+/hlKpxKxZs1CqVCn1ailzsLOzUx/LZLIsr9va2mLkyJEICgoCAFSuXNmgfi9evIhp06bh008/Rd++fWFvb6/zPqVSiQkTJiA8PByDBg3CtGnT1KvlTGXu70WFQoExY8agQoUKGDVqlFbI1rx5c7i5uSEmJibLnnQ2NjaYP3++WeeiWf61ZcuWaNy4ca771AznvLy8MHjw4GyDNcC0r3FGsPbixQu8ePECKpUKy5YtyzEMzfhzaig7Ozs4OjqiePHiqFatGpo1a4YGDRoYPV8AiI+Px969e3HlyhWEhobizZs3SE5OhqOjIzw8PFCjRg20adMGjRo1Mql/IiIiIjIvhmtERERERIVAxhvQz549Q0BAQJ6No2vFUX57X/ZdGj16NC5dugQgPaA8fvw4OnfubHQ/ly5dwuHDhyEWi7FmzRqzB2sZOnTogMWLFyMlJQVyuRwrVqzAli1bzNa/ZuilK1wDgM8++wzr1q1DkSJF0KxZM4P6FYvFUCgU+Ouvv/DXX38Z1EYul2PBggUoX7486tSpY1AbXcwdrmUEWqGhoeqQbenSpShXrhxEIhFat26NHTt2qFewvW80g7T+/fujUqVKObbR/Bq3bNnSpHEPHToEADkGbNOmTcPIkSMREhKCoKAgdUlJPz8/TJ8+HV5eXup7U1NTkZCQgH///ReXL1/Gtm3bEBwcjDJlymD27NkG/zmVy+VYu3Ytfv75ZwDAp59+itGjR8PLywv29vaIj4/H/fv3cfDgQezYsQMVK1bEwoULUaFCBZO+FkRERERkHgzXiIiIiIgKgYzQq1SpUjh8+LBZ+3716hWaNm0KoGCsXHtfyrvVrVsXZcqUUa8klMvlRvchl8sxf/58CIVCLF261KAyiaZycHBAo0aNcOzYMQDapQfNQXPlmr69u2xsbLBu3TrY29tj06ZNGDhwYI6/35qBzZYtW7It99ivXz9cvnwZAoEA69aty1WwBpj/e1Ez+LGxsUH37t1RtmxZ9bWhQ4eiTJkyZllFZgmmlNHUDNODg4Ph4eFh8vgymSzbOXh5ecHLywv+/v7YvXs3QkJCAKQHgRl/B2bWuHFjDBgwAM+fP8dXX32Fy5cvY+DAgZgwYQKGDh2a7XxSUlIwdOhQXLlyBbVr18bq1avh5uaW5b4GDRpgwIAB2L59O+bOnYtu3bphxYoVaNWqlRFPT0RERETmVPDrqRARERERUY7yK/TKWMlR2MTFxZnU7sWLF9mWFszYF83JyQkff/yx0f1v3rwZDx48wNdff4127drleP/Vq1fxww8/GD1OBs2Sc4aWZTSU5sq11NRUvff5+/vju+++w9KlSzF79uwc+zUlsBEKhXrDEmPktIry/v37RvWn+SxlypRBnz59tMbw9vZG//79jZtkAWLKSj/N5/fx8UGZMmVM/mXMHnSaewQa0q5EiRLYuHEjatSoAaVSiWXLluH333/Pts348eNx5coVlCpVCj/99JPOYE1Tr169MG7cOEilUowfPx43b9407GGIiIiIyOwYrhERERERFQL5FXoVhHDN3GUhg4OD0a5dO6ODEAC4fPmy3lVYANCnTx80b94cGzZsQLFixYzq+/nz51izZg3Gjx+PHj165Hh/dHQ0xo8fj9WrV+PcuXNGjZUhYyWXUCjE4MGDTepDH81wLSkpSe99CxYswN69ewEAu3fvxooVK7LttyDuwadQKDBr1ix06dIFe/bsMbidKUHh+8SUlX4F8fdXH4lEgq+//lp9vnDhQq09KzUdPnwYJ0+eBADMnDnT4OBvyJAh8Pb2hlQqxezZswtEqV4iIiKiD1Hh/smdiIiIiOgDkV9vsOrbK+t9FRwcjIULFwIAAgMDERwcbNReRmfOnEFaWpq69KMukydPBgCd90RFRWkda96zaNEiNGjQAK1bt862/wxz587F69evAQCTJk3CH3/8AU9PT4OfBQDKli2LwMBA1K9fHw0aNFBfl8vlGD9+PI4cOWJUf/qMHDnS4HvXrVsHDw8P9OnTR+frpgZSKSkpiI+PN6lthoywWaVS4dWrVwDSV5HOnz8fx48fBwBMnz4diYmJCAwMzLE/gUAAoVBo0ErUR48e4dGjR2jTpo1Rc75+/Tq2bt2KxYsXQyKRGNU2t96X/RJzo0KFCqhWrRpu3ryJxMRE7Ny5E1988UWW+3799VcA6SvejCnzKRKJ8Nlnn2H16tUIDQ3FtWvXULt2bbPNn4iIiIgMw3CNiIiIiKgQyAi9Hj9+jPLly+fZONmt0srOixcvzBbMZYQYQHp5wSdPnpjUz9GjR7F06VL1+Zs3bzBgwACDA7akpCQcP34cKSkpCAgIMGkOmpYuXao1nwwnTpwwuq/Y2Fh8+eWX2Lp1q9aeZIaYPn16lmsikQjffvstgoKCIJFIULNmTXh5ecHZ2dngfsPCwjB69GgAwOeff45BgwYZ3Da7FU+mrmxSKBSYMGECrl27ZlJ7TfHx8XrLTKpUKnzzzTeIj4/H2LFjc+zL0AAqKSkJY8aMQePGjTFr1iz4+fnl2ObatWsYOnQo3r59i4SEBKxduxbW1tYGjWcO79MqtNyoUaOGumTjP//8kyVcUygUuHr1KgCgUqVKRvevGaZdvHiR4RoRERGRBTBcIyIiIiIqBDL2sPL29sb69evN2ndMTAz69esHAEhOTjapj4cPH2L06NEmh3P6hISEGL1yJztv3rxBYGAgNm/enGPAtmXLFqSkpKBOnTrYtm2b2eZgioiICAQEBKi/vqVLl0ajRo3w+vVrlChRwixjiMVizJ8/P1ftM4hEIpQpU8Yc0zI5sHFwcMBPP/2E9evXo0SJEihfvjxcXFxgb29vcODUs2dPPHjwAM7OziaFoLoIhUKDyq9mBI5nz55F27ZtjR7n7NmzWLp0KWbOnGl02/xkztVuaWlp+RImenl5qY+fPn2a5fXY2NhcldgtWrSo+lhz9SsRERER5R+Ga0RERERE7zmpVKouI2dtbW220CJDxl5ZLi4u6NKli9Zrp06dgoeHB/z9/bPto2nTpti2bRvi4uLg6+uL4sWLmxyKhISEoFevXgDS9wgLDg42qZ/s5DS3u3fvYsOGDQAAR0dHs49vrMWLF0MqlcLZ2RnTpk1Dp06dClwJPs2vU3Z7rhkrN89pZ2eHL7/80uT2mt8nmnvK5Yahz6NZDrNPnz56y2Zqun79ujpMa9KkSa6e3RSWXLl28OBBLF++HMHBwfDx8cnTsXLaX1CzHOeNGzcgl8uNKm+qGczZ2NiYOEsiIiIiyg2Ga0RERERE77m0tDSUKVMGXbt2RefOnc3ev1gsxqhRozBo0CA4ODior9++fRtffvkl7O3tsX379hzfsK5WrZpZ5hMbG6s+lslkJu+5ZaqLFy9i3Lhx6lV8pUuXztfxM7tw4QKOHj2KKlWq4LvvvjN6n7X84uTkpN5PzJzhWmErNWhKuObi4mJQqP78+XP18ZAhQ7T+PBdmx44dw+TJkyGXyxEYGIht27ahePHieTZeYmKi+tjV1TXL60WKFIGHhwdev36NqKgo7NixA3379jW4f81SuBUrVszdZImIiIjIJAzXiIiIiIjec46Ojjh48GCe9e/m5pZlr6hnz55hxIgRSE5ORnJyMgYPHozt27fDzc0tz+aRISYmRn18584dxMfHo0iRInk+LgA8evQIw4YNQ1pamvpaixYt8mVsIL0EnGZJOIVCgW+++QbNmzfHypUrzbKKJTY2Fs7OzmYPraysrODi4oKYmBizhmuFjaFf9+z2obOEhISEHEsURkZGqo9jY2Px6NGjHPvV/F6JiIjQ+rNniPv372PKlCmQy+UA0gPGjICtWLFiRvVlqNevX6uP9X3ooE2bNupyskuXLkX58uVRp04dg/rPKEHq4OCAli1b5nK2RERERGQKhmtERERERAVYUlKS1hvSBYFcLsf48eO13kh/8uQJhg4dii1btuT5ahjNr4dMJsOJEyeylKvMK+Hh4Vpv7nfq1Am1atXKl7Fv3ryJYcOGoX379pg1axYEAgFevnyJBg0aYMqUKWZbwTdjxgwkJSVh6dKlZl8F5+7ujpiYGERHR5u1X3N4+vQpSpYsaelpmLRyrSAQCoWYMWMGbty4YdD9P/74I3788UejxhgwYIAJM8vq6dOn6N+/P7Zt26YVVpvL5cuX1ccff/yxznsGDRqEPXv2IDk5GampqRg2bBgWLlyITz75JNu+IyIisG/fPgDAqFGjPpjVh0REREQFTcH6aZyIiIiIiLRYWVlh3rx5uHDhgqWnkqM7d+5g9OjRWL9+vdaeQub2+PFj9bGXlxf+/vvvfAvXWrZsiaCgIFy8eBF16tRBz54982XcU6dOYdy4cUhJScEvv/yC+Ph4LFq0CN7e3pg+fbpRfT1+/Fi9R19mYWFh6lUxnTp1woIFC9CqVSuT561UKvHy5UuUKFECAFCsWDHcv38fr169MrnPzMyxt5xCocDAgQPRqFEjTJ8+/b3Yx6qghWsODg7YuHEjNm7ciFKlSqFChQpwcXGBk5NTrv4+OHr0KBo0aPDehEh3797F3bt3AQC2trZ6S/WWKFECs2fPxldffQUASE5Oxrhx49C1a1dMnjwZLi4uWdq8ffsWX375JaRSKdq0aWO2sJGIiIiIjFewfhonIiIiIiIttra2+PHHH3H+/Hn4+PigZMmS6jeqv/rqK/zxxx8A0sOXnFYZ9evXD5cvX0alSpWwZ8+ePJ97XtEM1wYPHowlS5YgNjZW595GeaFnz546Q7XIyEj0798f4eHheT6H/fv3IzExEatXrzY6CLp58yZmzJihLpOnT1xcHDZt2oSGDRvCzs7O6DnK5XJMnToVV65cwW+//QZPT091yJaamponv2f9+/c3qZ2VlRUWLFiAAQMG4MaNG1i9ejVKlSpl1rkZytCwMLdlIVUqVa7a62Jvb5+lhGxu7dixAzNmzEC/fv3Qr18/ODs7m7V/c0pJSUFQUJD6aztq1Khs/17u0qULkpOTMX/+fHXg/fvvv+PYsWMIDAxE//794ejoCCC9nOW4ceNw+/ZtfPbZZ5g7d26h22+QiIiI6H3CcI2IiIiIqICztrZG8+bNLT0NLcnJybhz547BewSZi0KhUIdX1tbW6N69O1atWoXt27dj1KhR+TqXzIoVK4YtW7ZgyZIlKFu2LCpUqAAnJyc4OTmZZXWVLjkFZLp07twZHh4eiI6Ohr+/Pzw8PNRzvHr1Kvr06QMACAgIwLJly9Qhjkwmw9OnTw0eZ/ny5Th+/DgAYNiwYfj111/V4RoAvHjxwuzh2uLFi1GlShW9r0+dOhW3bt3S+Vr9+vXRs2dPbN++HZ9//jmWL1+OZs2amXV+hsivspB5Ea7lBRsbG8THx+O7777Dzz//jGXLlhXIfcaePHmCqVOn4n//+x+A9KB36NChObbr06cPypUrh+nTp6v/fMXHx2P16tX46aef0KFDB3h4eODnn3+GnZ0dvv32W7Rv3z4vH4WIiIiIDMBwjYiIiIiIjKJUKjFhwgScPn0aU6ZMydfSZA8fPkRKSgoAoHz58rC2tkbTpk2xfft2DBs2DGKxON/mokuxYsWwfPlyi87BEA0bNszxntKlS2utjhKLxdi9ezd+/vlno8e7f/8+xo0bh+7du6uvPXv2DJUrVza6r8w0wygvLy+UKVNG7722trbZ9vXll1/i0KFDiIuLwxdffIGgoCB069Yt13PMC5rh2ps3b/Do0aMc2xS0/RsNYW1trT7u3LmzRQJPXZRKJd68eYPbt2/j8OHD2L9/P6RSKZydnTFjxgx07NjR4L7q1KmD33//Hb1798bDhw/V15OTk7Fz504AgKenJ3777TcUK1bM7M9CRERERMZjuEZEREREVAg8ffoUb9++zfaejFAKAGJiYjBv3jyta4Z68+YNbt68CQBYuHAh7t+/j6CgoDzdZy1DxrgAULNmTQBAx44dsX//fhw8eBCdOnXK8zl8yKZOnYoSJUrAxsYGVatWRbFixVCkSBEAQMWKFaFQKFC3bl1s3bpVZ3vNkp6hoaH45JNPcj0nc67AcnZ2xogRI7Bo0SIoFArMmjULHh4eaNq0qdnGMBfN4POXX37BL7/8YlR7S69cW7hwIXr16gU/P79s79N8zsGDBxtdDjM0NBQJCQmoW7euKdMEAMyYMQMzZ87UuqZUKtVfQxsbG1SvXh2ffPIJunTpYnQZ1StXrmDq1KmIjY3FzJkz8eTJE/z+++9ITk5W3/Pq1St07doV33zzDZo0aWLysxARERGReTBcIyIiIiIqBPr162fU/W5ubujTpw9Wr14NPz8/qFQqXL16FX379s2xbWhoqDrksrOzg7e3d769UX/9+nX1cUa41qRJE/j4+GDt2rVo3759rsvlvY8iIyPzbUWLId8j+pQsWRI2NjZITU3FvXv3zDgr8+nevTt++OEHxMfHQ6VS4ZtvvkHjxo1zvceZuWnOZ/To0RgzZkyObU6fPq0uVWjJcO3evXsIDg7Grl27MG/evGzLHObm656UlIRx48bh9evX+PHHH00O2MaOHauzFKWVlRWcnJzg4uJi8t87W7duxcKFC+Hk5IRt27apV3OOGzcOP//8M4KDg9UhW1RUFIYNG4Zx48Zh5MiRJo1HRERERObx4f2rk4iIiIioEDp16hQ8PT2zvadfv364fPmy+rxOnTrqFUZxcXFo0aIFPv/8c9jY2GTbz+TJk9XHixYtQtu2bXMxc8OpVCqcO3cOQPqb2vXr1weQXhawZ8+eWLp0KXbt2oVevXrly3wKivPnz2PkyJGYNGmS0SFrfrOyskKFChXwv//9D3fv3rX0dHSyt7dH165d1eUvw8PDcefOHVStWjVfxjd0zzVT9tvTpFAoctU+N1atWgUAePv2LSZMmIBLly5hxowZWiUgM+Rmv8LZs2er92gcPny4yQFbsWLFUK5cOZPnoU9wcDAWLlwIiUSCH3/8UatMqqOjI8aNG4c+ffpg3rx5OHz4MID0vwdXrlyJ1NRUjB8/3uxzIiIiIiLDCC09ASIiIiIisjxnZ2f4+Pjg9OnT2d4XHx+Pv//+GwDg6+uL1q1b58f0AKSvdomKigKQvmotoxwhAHTt2hW2trb4/vvvtUqpFXYXLlzAyJEjkZqaivnz52PLli2WnlKOMgKE169f4/Xr17nuLy9WYLVr107r3Ngyf7lh6PPkNhxTKpW5am+qq1ev4uTJk+rzjz/+WB2U66IZrhnze71582YcOHBAfZ6cnIyRI0catDddfrhw4QIWL14MIH1lXLVq1XTe5+7ujlWrVmHZsmVa4eO6detw6NChfJkrEREREWXFcI2IiIiIiAAAdevWxb59+7K9Z9euXUhLSwMABAYGQijMv39SnDhxQn3cqlUrrddcXFzQp08fREVFYcOGDfk2J0u6cOECRowYgdTUVPW1BQsWFPiArVatWurjjJWIBU3VqlXh4eEBAKhevTo++ugjC88oq/dx5ZpSqcSCBQvU5wEBAfjpp58QEBCgc9UaYFq4dvjwYSxatEirj8mTJ+P06dMoU6aMibM3H4VCga+//hpKpRJeXl4YMGBAjm06dOiAzZs3awW98+fPR1JSUh7OlIiIiIj0YVlIIiIiIiICADRt2hTDhg3Dy5cv4eXlleV1qVSqDm7c3d3x2Wef5dvcVCoV9uzZAwAQiUT49NNPs9wzdOhQ7NixAxs2bEC7du3ypIybSqVCUFAQtm/fbva+zWXBggVQqVQIDAy09FR00izLd+bMGXTp0sWCs9GvTZs22LlzJ2bOnGnpqeiU23DNEivXduzYoS4HWqpUKcyfPz/HNpqBmiFzvnr1KiZPnqy+VyQSYcGCBejcubNpk84DZ86cUZer7NGjB8RisUHtatSogZUrV2L48OFQqVSIjo7GX3/9hT59+uThbImIiIhIF4ZrRERERESFwNOnT/H27dts70lJScn29Xr16sHBwQG//PILJk2alOX1ffv2ITIyEkB6kGVra2v6hI10/vx5PH/+HEB6GTl3d/cs9zg7O2PAgAH47rvvMH36dOzcuRNWVlZmnYdAIMCcOXNQpEgRJCQkoFKlSvDy8oKjoyPs7e1zbC+TyTBo0CB4enri66+/NqiNqfNUqVS52q8qr7i7u6NChQoIDQ3FuXPnoFQqc7UC0pSQyJA2o0aNQtu2bVGlShVTppXncrvyLL9XrkVHR2PFihUAAAcHB3z//fcGff9rhms5zTkkJAQjR46EVCoFAFhbW2PFihVo2bJlLmZufpplMZs3b25U26ZNm6JLly7qDxscPXqU4RoRERGRBTBcIyIiIiIqBPr165frPsRiMZo3b44dO3Zg8ODBcHFxUb8mk8nwww8/AAA8PDzQq1evXI9njODgYPXxwIED9d43aNAg7N69G7du3UJwcDAGDx5s9rkIBAKMHz/epLabNm1CTEwMYmJiMHnyZKxatQoVKlQw8wwLvmbNmiE0NBRxcXG4dOkSGjRoYHJfpuy5ZkgbV1dXrVV2+SW/9lzL7co3YwUFBSEhIQFCoRDLly83qTxjdnO+evUqhg0bpv6QgYuLC9auXYuaNWuaPOe8cv/+fQDpf+eaUnI0MDBQHa6FhoaadW5EREREZBjuuUZEREREVAicOnUK9+/fz/aXIUFB165dkZiYiO+//17r+u7duxEREQEAGD16tN79kfLCxYsXcfr0aQDp+1/Vq1dP77329vaYNWsWAGDVqlUF6o3niIgIrF69Wn0eHh6Onj17IiQkxIKzMl5KSgp+//33XPXxySefqI93796dq75MLW9oibKIhjA0XJPJZLkaJz/DtV27duHIkSMAgK+++grNmjUzuK3mc+qb87lz5zBkyBB1sObn54edO3cWyGANAN68eQMgfbWtSGT8Z54rVKig3nuNe64RERERWQbDNSIiIiIiUqtbty4qVKiAHTt2ICwsDED6m7dr164FAFSsWBHdunXLt/moVCosXbpUfT558uQc27Rq1QqtW7dGWloaxowZg4SEhLycokEUCgW++uorJCcnq6+1aNECe/bsQdWqVS04M+PI5XJ8+eWXePToUa768ff3V6/YOXLkCOLi4vTeGxISkm0QZmpIlt8rt8xNc+Xad999h/Lly+f4a+jQoeo2uQ3nDBUeHo5vvvkGQPqKK2P3AtT8/c0o96hp165dGD58uLrsbd26dbFjxw74+vrmYtZ5KyMYy833YEZJTWdnZ3NMiYiIiIiMxHCNiIiIiIgAvHsTOzAwEDKZDJMmTYJUKsV3332H169fAwBmzJiRq/2xjPXTTz/h9u3bAICAgADUrl3boHazZs1CkSJF8PTpU4wcORKpqal5Oc0cLV++HFevXgUAFClSBCtXrsQPP/yA0qVL621z4cIF/P777wVqhdWcOXMQHh6OsWPH5rqvjJBWKpVi165deu8bP358tt9zml8fpVIJuVyu95cx+3dZiillIfv06YODBw/m+Gv+/PnqNrqCKnOTyWSYOHEikpOT0blzZ0ybNs3oPtLS0tTHmn+O5XI55s+fj5kzZ6qDwr59+2LTpk1aJW0Loow/9/Hx8TnulamLXC5XB9KmlJUkIiIiotzjnmtERERERB+g5ORk3L17F7du3UJISAju3r2Lbt26YciQIejYsSPWr1+PO3fuYNKkSTh+/DgA4PPPPzc43DKHkJAQrFq1CgBQtGhRdblHQxQrVgwLFy7EqFGjcPXqVYwePRrfffcdbGxs8mq6eh06dAgbN24EAFSqVAnfffcdihcvnmM7f39/LFq0CFu3bsX06dMtsv+XplWrVuH333/Htm3bjP46KhQK3LhxA6dOnULHjh1RtmxZdOnSBStWrEBqaip++ukn9OzZE46OjlrtYmJitMIVfX1nGDBggMFzKqgr1wwN1zTn7+LiYtAeZs+fP1cf29raGj85I61YsQK3b99Gu3btsGDBAggEAqP70Pz9zwhSo6OjMWnSJFy4cAEAYGNjg9mzZ6Nr167mmXge+/TTT7F//34olUqcPXsWbdu2Nar9rVu31IFimzZt8mKKRERERJQDrlwjIiIiIirkpFIpQkND1Ssd7t+/j1q1amHYsGG4ceMGmjZtih07dmDIkCEAAJFIhClTpgAA/v77b8jlcnh5eZm06sRUMTExmDBhAmQyGUQiEZYuXQpXV1ej+mjZsiUGDhwIADhz5gwGDBiQbfnBvHDjxg1MnToVANC+fXv8+uuvBgVrQHq5t02bNkEul6Nfv34YP348IiMj83K6eu3cuRNr165F3759DQ5YY2Ji8Mcff+DLL79E/fr1MXv2bHh6eqJEiRIA0lfwffbZZwCAuLg4/PTTT1n6uHPnTo5l7zTDtaVLl+LIkSN6f2mW4MwptLMUY1euVaxYER9//LHB/ZcrVw7BwcHqr31e2blzJzZu3IgOHTpg+fLlJu0tBqR/n4wYMQJHjhxBo0aNcPz4cXTo0EEdrH300UfYtWvXexOsAUCzZs3UYfmPP/5o8O95ht9++w0AUKJEiffquYmIiIgKE65cIyIiIiIqJJRKJZ4+fYqHDx/i/v37ePjwIR4+fIgnT55orXJxd3fHggULULduXUgkEp19tWjRAhUqVEBoaCgAoEuXLnBwcMiX50hMTMTgwYMREREBAJg7dy4aNGhgUl8TJ07EzZs3ce3aNdy4cQNdu3bFihUr8mWfs0ePHuGLL75AWloaBg0ahClTphi9csfV1RWbN29G7969cfDgQZw5cwZTpkxB9+7d82jWWR0/fhxBQUHw9vbGhAkTcrz/8ePH6Nq1K+7cuQOhUIjmzZtj9erVOn8PBw0ahN9++w1yuRzBwcHo1KmTVqnMu3fvZlnNlplmuFasWLFs99rSXHFn6VKh+hhaBtTZ2Rnff/89WrVqZXDfNWvWxJ9//gkrKytTp2eQjO+Zfv36YcaMGSatWMuwfPlyAMDbt28xa9YsdbAEAD169MC0adPyZRWeOQkEAixZsgR9+vTBnTt3sHjxYnz11VcGtb1y5Qr+/PNPSCQSLFq0CNbW1nk8WyIiIiLSheEaEREREdF7SCqVIjk5WX0+ZMgQREREZAkMHBwc0KhRI9StWxd//fUXHjx4ADc3NzRu3Djb/nft2qUO1gBg3bp1cHV1Rb9+/cz7IJm8ffsWI0aMwL179yASifD111/namWGSCTC999/j759++Lff//Fs2fP0Lt3b4wYMQLDhg3TGy7m1uPHjxEYGIi4uDjMmDED/fv3N7kvNzc3/Pjjj+jRowfi4uIwa9YsnDx5EosXL4aTk5MZZ53VjRs3MGHCBCiVSsyfPx92dnZaryclJeH8+fM4fvy4OuSKioqCQqHA0KFD0atXr2xX6vn4+KBr167YuXMnUlNTMXHiROzcuVP9+3L37l3Y29tnO0dTyjuWKVPGIiVCDWHoKiZfX99sg0Rd8iMgv3HjBiZPnozp06ejb9++Zulz3759WLp0qXrlppeXF+bPn5/j32O5ofl3qSn7ouXEy8sLW7ZswYgRI7Bp0ybExsZi5syZ2f6ZPn36NCZOnAgbGxssXbrU4qViiYiIiD5kDNeIiIiIiAq4S5cu4fHjxwgPD8fjx48RFhaG58+fa63YefjwIYD0lTk1a9ZEgwYNUK9ePVSuXFm9SuXUqVMGjXfy5EnMmTMHAoEAI0aMwJ9//omXL19i/vz5ePjwIWbOnJknodTr168xfPhw3L17F3Z2dli5ciWaNm2a635dXFzw888/o1evXnj+/DlkMhnWrFmDffv2YcKECWjTpk2uVtZkdv36dYwZMwZJSUlYvXo1Wrdunes+/fz8sGrVKgwePBhyuRwnTpxA7969sXnzZri5uZlh1uk0S/c9fvwY27ZtQ2pqKnr06IEGDRpAJpPh1q1buHjxIs6dO4ebN2+q934CgJIlS2LgwIHo2rWrwStqxo4diwMHDiApKQl3797FkiVLMHPmTADpZSErVqyYbXvN8XPi5eWFBQsWoEuXLmZZvWXoKjNT+jTmuQoKuVyOb775BuvXrzfL/ox3797F/Pnzce3aNQDp3599+vTB2LFj8yQofPz4MdLS0nDr1i3cuXNHfX3z5s3w8fFB8eLF4ebmZrY/c97e3vj999+xcuVK/Prrrzh+/Dg6duyIevXqwcvLCyKRCPHx8QgNDcXx48dx9epV1K1bF3PnzkWpUqXMMgciIiIiMg3DNSIiIiKiAm7Xrl3Yt2+fztcEAgH8/f3x8ccfo0GDBqhVq1augq9Tp05h3Lhx6rJlHTt2xGeffYa+ffsiMjISO3fuxK1bt7BkyRKULVvW5HEyCw0NxYgRI/Dy5UsUK1YM33//PapUqWK2/osVK4bg4GD1cwBAeHg4xo4di/Lly2PgwIFo165drlYzSaVSBAcHY/Xq1XB2dsbWrVvNVn5SqVSiatWqGDNmDFasWAEgPVD98ssvsXnzZgiF5tlOOzY2Vn184MABAOlfu4w9+IYPH45z585laVe5cmUMHjwYbdu2NTq0cnd3x4QJEzB37lwAwNatW+Hs7Iz+/fvj2bNnOX4fyOVyCIVCfPrppyhXrly29y5ZssSoueU07qtXr8zWH5C+ai0jXMuPPeFevHgBT09Pnd8/MTEx6mOxWGxQfyKRCNu3bzd5f7UMISEhWLduHU6cOKFeydekSRNMmTLFrH/vZDZ48GA8f/48y/WIiAgMHz4cADB69GiMGTPGbGNaW1tj6tSpGDp0KPbu3YuLFy9i8eLFePPmDRQKBYoUKQJvb2/UqlULX331lVn/XiQiIiIi0wlUxu6cS0RERERE+So2Nhbt2rVDXFwcgPQ3sD/++GO0atUKzZo1g7u7u0H99OvXD5cvX0alSpWwZ8+eLK8fOXIEEyZMgL29PVasWIGGDRuqX3vy5AkGDhyofuNZLBajZ8+e6NOnT65XUPzyyy9YsmQJUlNT0alTpxxLo+XGq1evMGzYMNy/fz/La05OTmjXrh1atmyJBg0aGBVSBgcH4+eff0ZkZCRsbGwwbtw4uLi4IC0tDampqUhLS1MfS6VSpKamah1rvp5xrHluY2OjXjHz6tUrrQBg/vz56Natm1m+PhMnTsT+/fu1rq1evRpt27YFAISFhaFz587q4Kdx48YYMmSIyXviZVCpVBgyZAjOnj2rvtaiRQucOHECTZo0wYYNG/S23b59O2rWrIny5cvnag66zJgxA1ZWVihZsiS8vLzg4eEBJycnqFQq7N69G1u3bgUAeHh44MyZM7keTy6Xo1KlSgAAT09Pg1ebmmrEiBG4ePEiihcvDh8fH3h5ecHd3R22trY4cOCAevXWqFGjMHbs2Dydi0KhwLlz5xAcHKwOcAUCAZo0aYIvvvgC1atXz9PxiYiIiIiMwXCNiIiIiOg9sGfPHsyaNQv9+/fHgAEDUKxYMaP7yC5c27lzJ+bOnYty5cphzZo18Pb2ztI+KioKI0aMwO3bt7WuV6lSBS1btkSZMmXg6+sLPz8/g0oCRkdHY8aMGfjnn39QtGhRzJ07Fy1atDD6uYyVlJSEcePGaQU5mhwcHDBnzhx07NjR4D4vXbpk0r5qtra28PLygpeXF4oVKwYPDw/1r6JFi8Ld3R1FixbV+nqeO3cOgwYNUp/XrVtXHfLk1uTJk7F37171ua5ga+PGjVi6dKl6ZaO5xMXFoUePHggPD9e6XqVKFezevdts4xjjwoULOH36NE6cOJFlXprq1KmDbdu25Xq8tLQ09WpHV1dXXLhwIdd95iQqKgpbt27Fpk2bIJVKdd6zbt06NG/ePE/Gf/z4Mf744w/8+eef6lWl3t7eCAgIQPfu3eHj45Mn4xIRERER5QbDNSIiIiKi98StW7dyVRJMV7imUCiwePFibNmyBf369cOkSZOyDcZSUlIwa9YsvWUqnZ2dERQUhE8++URvHzKZDFu3bsX3338PlUqF/v37Y9CgQXm2Wk0XuVyONWvWYMOGDeq96ypVqoTJkyebvApr9OjROHr0aJbrEokEpUuXRtmyZdUBpLe3N7y9veHq6mrSWD179sSNGzcAAK1atcL3339vUj+ZyeVyjBkzBidOnICVlRX27duHMmXKaN2jVCrx999/o127dmYZU9OLFy8wcOBArSCraNGieoPQ/HT16lV89913OgMvc60eTEpKQq1atQAA9vb2uH79eq77NNSTJ08wfPhwPH78WOt66dKlsXfvXoNLQxri7t27OHbsGI4dO6ZeRern54e2bduibdu26tV7REREREQFFcM1IiIiIqIPROZwLSYmBlOmTEFYWBi++eYbo0KlQ4cO4euvv1aXqqxUqRK++uor1K1bV28blUqF48ePY9myZYiMjETfvn0xePBgODs75/LJTPe///0PU6dOhYeHB3766SeDVtzp8/TpUwQEBECpVKJWrVpo3rw5atWqhYoVK5o1mACAs2fPYvDgwQDSS1LmtiyjprS0NAwdOhQ+Pj5YsGCB2fo1VFxcHKZMmaJVEvHYsWMFZgXTjz/+iG+//VZ93rRpU6xbt84s+97Fxsaqfy+9vb1x/PjxXPdpjJiYGPTu3VsdblaqVAlr1qxBiRIlctVvfHw8Lly4gLNnz+LcuXN48eIFXFxcUK9ePTRo0AANGzZEyZIlzfAERERERET5g+EaEREREdEHIiNcq1atGsaPH49p06ahTZs2GDt2LBwcHIzuLz4+HuvXr8f58+exfft22NjY6LxPoVBg//792LBhAwQCAbp06YLOnTubvGrL3FJSUpCSkmKW+Rw+fBhVqlTJdRhhiMGDB6NSpUqYMGGC2ft++/YtUlJSDN7Pz9xUKhU2bdqEFStWQCqVYsmSJejUqZNF5qLL8OHDcfbsWfTr1w8TJkwwan++7ERGRmLx4sXo0qULGjVqZJbAzliXL1/G1KlTMWTIEPTo0QMikcjoPl6+fIn//e9/uHbtGq5du4aHDx+iVKlSqFy5MqpWrYoaNWqgfPnyEAgEefAERERERER5j+EaEREREdEHol+/fnBxccHEiROxcuVKDB8+HBUqVMh1vyqVKts3yQ8fPowLFy6ga9eu6v2kiAzx77//YuHChahcuTLGjx9v6emo3blzB05OTgVmNZ25KZVKo4O9xMREjBkzBjExMXB1dUWZMmVQpkwZlCtXDpUqVYKdnV0ezZaIiIiIKP8xXCMiIiIi+kCEhYWhdOnSlp4GERVCCoUCb9++zde9E4mIiIiILIXhGhEREREREREREREREZGB8r+AOxEREREREREREREREdF7iuEaERERERERERERERERkYFElp4AERERERERkTldu3YNBw4cwLVr1/Dy5UskJyfDwcEBbm5uqFy5Mho2bIh27dpBIpFYeqo5Cg0NxcGDB3H58mU8efIEiYmJEIvF8Pb2RuPGjdGvXz8UL17c6H5TUlJw4MABXLx4EXfu3EFsbCzevn0LOzs7uLu7o1q1amjevDlatWoFoZCfyyUiIiIi0sQ914iIiIiIiKhQCAkJwfz58/Hvv/+iY8eOaNy4MTw9PSGTyfDy5UucPXsWe/fuhUwmQ9GiRREUFISWLVtaeto6RUREYMGCBTh58iTq1KmDgIAAlC5dGg4ODnj16hU2btyI69evw87ODgsWLEBAQIDBff/yyy9YtWoVkpOT0bZtWzRo0AA+Pj5wdHREUlISHj16hCNHjuD8+fMoWbIk5s+fj3r16uXh0xIRERERvV8YrhEREREREdF7b8uWLVi4cCFq1qyJb7/9FsWKFdN5X3h4OIYNG4YnT55AIBBg9uzZ6N27dz7PNnunTp3CxIkTIZFIMG/ePJ0B4LNnz9TXhUIh1q5di+bNm2fbr0KhwKRJk3Dw4EF89NFH+OGHH1CyZEm99x87dgwTJkyATCbDzJkz0adPn9w9GBERERFRIcFwjYiIiIiIiN5rO3fuxOzZs+Hn54c///wTtra22d7/5MkTdOrUCSkpKRCJRPj1119RrVq1fJpt9k6fPo0vvvgCzs7O2Lx5M8qUKaPzvsjISDRp0kR9XqlSJezZsyfbvufPn4+tW7fC1dUVe/fuRdGiRXOcz759+zBp0iQIBAKsWbMGrVu3Nu6BiIiIiIgKIRZOJyIiIiIiovdWVFQUFi9eDADo27dvjsEaAPj6+qJHjx4AALlcjmXLluXpHA319OlTTJgwAXK5HCtXrtQbrAHAmzdvtM7t7Oyy7TskJATbtm0DAHz55ZcGBWsA0KFDB9SuXRsqlQpBQUF4+/atQe2IiIiIiAozhmtERERERET03tq/f7868PH19TW4Xfv27dXHly9fxosXL8w+N2PNnDkTiYmJaNasGWrXrp3tvRUqVMDgwYNRrlw51K9fH1OnTs32/u3bt0OlUsHa2hqdOnUyal7dunUDkB5kHjt2zKi2RERERESFEcM1IiIiIiIiem+dP39effzw4UOD21WoUAFWVlbq86tXr5p1XsY6efIkLl26BADo0qWLQW2mTJmCffv2YfPmzahSpUq292b0/dFHH8HGxsaouWkGfRcvXjSqLRERERFRYcRwjYiIiIiIiN5bkZGR6uN169YhOjraoHYSiQSOjo7q89evX5t9bsbYuHEjAEAoFKJRo0Zm7z8qKsrkth4eHmbph4iIiIiosGC4RkRERERERO8tlUqlPk5ISMCOHTsMbisWi9XHSqXSrPMyxpMnT3DlyhUAQJkyZeDg4GD2MSQSCYD01X1xcXFGtZXL5epjY1e9EREREREVRgzXiIiIiIiI6L2VuRxiamqqQe0UCoVWyKS5Oiu/ae5j9tFHH+XJGGXLlgUASKVS/Pjjj0a1ffLkifq4YsWKZp0XEREREdH7SGTpCRARERERERGZasKECUhKSsKNGzfg7e2NXr16GdTuwYMHkMlk6vOc9izLS5r7xvn4+OTJGG3atMGNGzcAAMHBwahSpQoCAgIManvixAkA6SUrO3TokCfzIyIiIipMrl27hgMHDuDatWt4+fIlkpOT4eDgADc3N1SuXBkNGzZEu3bt1NUFCrLQ0FAcPHgQly9fxpMnT5CYmAixWAxvb280btwY/fr1Q/HixQ3qa9WqVVi7dm2u5/Tnn3/C398/1/3kBsM1IiIiIiIiem+5u7tj9erVRrfTXC3m5+eHMmXKmHNaRrl165b6uGjRolqv3b59G3v27MHVq1cRGRkJa2truLu7o1KlSmjTpg0aN24MgUCQ4xjdu3fHpk2b8Pr1ayiVSkyePBmxsbHo27dvtu0SEhKwbds2AEDv3r3zLPwjIiIiKgxCQkIwf/58/Pvvv+jYsSPGjBkDT09PyGQyvHz5EmfPnsXevXvx559/YunSpQgKCkLLli0tPW2dIiIisGDBApw8eRJ16tRBx44dUbp0aTg4OODVq1fYuHEjfv75Z+zYsQMLFiww6INb//77b67nlfHzsKUJVJoF6omIiIiIiIgKOblcjjZt2uD58+cAgOnTpyMwMNAic3n16hWaNm2qPl+yZAk6deqExMREfP3119i/f3+27evVq4dvvvkG3t7eOY51/vx5DB06VGsPtRYtWmDWrFk6P20sl8sxevRonDx5EtWrV8fmzZu55xoRERGRHlu2bMHChQtRs2ZNfPvttyhWrJjO+8LDwzFs2DA8efIEAoEAs2fPRu/evfN5ttk7deoUJk6cCIlEgnnz5ukMAJ89e6a+LhQKsXbtWjRv3jzbfj/55BM8fvxY65qDgwNEopzXgaWkpCAtLQ1jxozB6NGjjXiavMFwjUgHpVKJlJSULNdFIpFBnwolIiIiIqKCa8+ePZgzZw4AoESJEti7d6/FSvJcuXIFgwYNUp+vWrUK1atXx+DBg/Hvv/+icuXK6N27N+rUqQM3NzdER0fjyJEj+OGHH/D27Vv1M/zyyy9wc3PLcbzjx49j6tSpSEtLU1+zsbFB9+7dMXDgQPWngOPi4jBt2jScPXsWjRo1wvLly2Fvb2/mpyciIiIqHHbt2oW5c+fC19cXu3btgq2tbbb3P336FJ9//jlSUlIgEomwefNmVK1aNZ9mm72zZ89i7NixKFKkCDZu3IjSpUtnuUelUuHFixf45JNP1Nf8/f2xZ88eCIVCnf1KpVJUr14dCoUCrq6umDBhAtq2bQsnJ6cc5ySTyfDpp59CpVJh//79BaKcJstCEumQkpKC0NBQS0+DiIiIiIjM7O3bt/j2228BpH/CdtCgQbh//77F5nP9+nWt8xcvXmD9+vV49OgR+vXrh08++QQCgQBRUVGIiooCANSsWRNz585FUFAQEhIS8Pz5c4wZMwbTpk3LcTwPDw8EBQVh3bp1CA8PBwCkpqZiy5Yt+PXXX1G3bl34+vriwIEDkMvlCAwMRJs2bRAWFmb2ZyciIiIqDOLi4rB06VIAQLNmzQwufdisWTMcOnQIcrkc8+fPx6xZs/JymgaJjIzEjBkzIJfL8cUXX+Dt27daJcw1PXnyROtcpVIhJSVF7weywsLCoFAo4OzsjJ07d6JkyZIGz+vXX39FeHg41q9fXyCCNQDQHSESERERERERFUJbtmxBfHw8ACAwMNDiG6EnJiZqnZ87dw537tzBwIED0a5dO72VM7y8vDB27Fj1+a1btxASEmLQmCVLlsTcuXNRsWJFretyuRznz5/H9u3bIZPJMGfOHLRt25bVO4iIiIiyce7cOXUVNE9PT4PbNWjQQH187949REdHm31uxtqwYQOSk5NRvXp1VKhQIdt7fX198emnn8LHxweVKlXKcS/fjNBx6tSpRgVr8fHxWLt2LRo0aKBVTt3SGK4RERERERHRB+HUqVM4c+YMAKBPnz5o3bq1hWcErfKMQPqbM3Xr1kWrVq1ybFuxYkXUqVNHfX748GGDxoyIiMCMGTNw//59dOvWDZ07d4ajo6PWPSkpKQgKCsLp06cN6pOIiIjoQ3X79m31cUREhMHt/Pz8tEooWrqS2vXr13H37l0AMDjE6t27NxYvXowZM2boLB+p6eHDhyhatCg6depk1Lx++OEHxMfHY8qUKUa1y2sM14iIiIiIiKjQCw0NxcaNGyEQCDBw4EC0b9/e0lMCkL5aTJNIJEK/fv0Mbq/5xkdISAgSEhKyvf/y5cuYNWsWIiMjMXHiRHTp0gXdu3fHmjVr0K9fP62QLTk5GevWrcPGjRuhVCoNnhMRERHRh+TNmzfq4z///FNdJSEnIpEIdnZ2OvuxhP379wMABAIBKleubPb+Hz58iJYtW8LKysrgNs+ePcMvv/yCTz/9NEvVBUtjuEZERERERESF2tOnT/Htt99CqVRi+PDhBWLFWobMby40a9YMbm5uBrf39/dXl21UKpV4+PCh3nsvX76M1atXQyaTYdSoUahevbr6NYlEgnbt2mHFihVo3bq1VinI48ePY926dQbPiYiIiOhDolKp1MfJyck4duyYwW1FIpHOfvLbq1ev1CvnSpQooRX6mUtQUBBGjx5tVJuVK1dCoVAY3S4/iHK+hejDo/mXmqYKFSpALBbn82wsTy6X4969e1rX/P399X6diIiIiIjMKTc/j4aFhWHJkiVITU3FkiVL0LZt27yapkky75P2+eefo0qVKkb14eXlhRcvXgAAUlNTdbYPCwvDjz/+CKVSiR49emDQoEF6+6tXrx4uXLiAyZMnqz95ffbsWdStWxcDBw40am5EREREhYW+n0lr166tVQ6ySJEiBv08p1Ao8PbtW/V51apVjf450FyuXbumPq5UqVKO85DJZDrLWGb383nRokWNmlNoaCj279+P9u3bw8/Pz6i2+YHvjBPpoG/DbrFYDIlEks+zsTxdXw+xWPxBBo1ERERElP9M/Xk0LCwMQ4YMQWJiIlatWmXQPmb5rUiRIlrnCoXC6H9zuLi4qMO1hIQEne0XLVqElJQU2NnZYfz48TmO0bRpU+zcuRP9+vVDVFQUAGDt2rXo0KEDihcvbtT8iIiIiAoDfT+TTpo0CcnJybhx4wa8vb3Rt29fg36eu3fvHmQymfq8evXqFnvv+dKlS+pjX19fk+eh7311U6xYsQIAMGLECLP1aU4M14iIiIiIiKjQefz4Mfr374/4+HisWbMGzZs3t/SUdHJ2dtY6T0lJMboPGxsb9XFaWlqW1x8+fIgLFy4AANq3bw8XFxeD+i1VqhQ2bNiA7t27QyqVIjU1FVu3bsXUqVONniMRERFRYeXu7o7Vq1cb3U6zfKSfnx/KlCljzmkZ5datW+rjzCvMbt++jT179uDq1auIjIyEtbU1XF1d4enpibp166Jq1apmDdUA4Pr16/jnn3/QtGlTlC1b1qx9mwvDNSIiIiIiIipUnj17hgEDBiAuLq5AB2sAsryJEh0dbXQfUqlUfezg4JDl9ZMnT6qPjf1a+Pv7Y/jw4VizZg2A9DeBGK4RERER5Y5cLscff/yhPu/du7fF5vLq1St1KXDgXWWFxMREfP3119i/f3+WNpGRkbh37x5OnjyJihUrYvjw4UaXfczOqlWrAAB9+/Y1W5/mxnCNiMzq2rVrOHDgAK5du4aXL18iOTkZDg4OcHNzQ+XKldGwYUO0a9fuvSivGRoaioMHD+Ly5ct48uQJEhMTIRaL4e3tjcaNG6Nfv34Gl8S5dOkS+vfvn6v5/PDDD2jRokWu+iAiIiIq7KKiojBw4EDExMRg5cqVBTpYAwAfHx/Y2NggNTUVQHopS2NprlZzcnLK8vr9+/fVx/7+/kb337t3b6xbtw4ymQxPnz5FcnJynmxyT0RERPSh+OOPP/D8+XMAgLe3N3r16mWxuTx9+lTr3N7eHrGxsejfvz8ePnyIKlWqoG/fvqhXrx7c3NwQHR2NAwcO4Pvvv0dKSgru3r2L+fPnY+7cuWaZz5UrV3Dx4kX4+fnh448/NkufeUFo6QkQUeEQEhKC7t27Y+jQoVAqlRgzZgx+/vlnbN26FbNnz0a1atVw4MABTJkyBS1atMDx48ctPWW9IiIiMGLECHTq1AnXr19Hx44dsWLFCuzYsQNLly6Fg4MDfv75Z7Rv3x4HDx7Mt3lVrlw538YiIiIieh8lJSVhyJAhePbsGRYvXmzwHmvR0dG4cuVKHs9ON6FQqBV4PXz40Og+ND9pXKJEiSyvx8XFqY/d3d2N7t/V1VVrE/nExESj+yAiIiKidAkJCVi5ciUAwMrKCosWLbLoQoTXr19rnUskEowfPx6PHj3CtGnTsGvXLnTu3BleXl6QSCQoXrw4AgMDMX/+fPUHu6KiorB27VqzzCejn88//9zs5SbNiSvXiCjXtmzZgoULF6JmzZo4dOgQihUrpvV6jRo1EBAQgGHDhmHYsGF48uQJRo0ahdmzZ1t0ybMup06dwsSJEyGRSLB27Vq0bNlS6/XKlSujQoUKaNmyJZKTkzFx4kTY2toa/IloOzs7k/5n6e7uDg8PD6PbEREREX0o5HI5xo4di9DQUAQFBaF9+/YGt927dy+OHDmCHTt25OEM9WvVqhVu3LgBIP1Da4mJiXB0dDSorVQq1XpDpEaNGlnusbW1VR/L5XKTfh61t7dXHxu6ZxsRERERZbVgwQJ1KfAZM2agTp06Fp2P5gexAGD//v24ePEivv7662xX1Hl5eWHs2LGYP38+gPR9286fP49mzZqZPJeQkBCcP38eAoEAn376qcn95AeGa0SUKzt37sSCBQvg5+eHn376Sesf7pn5+flhw4YN6NSpE1JSUrBgwQJUqlQJ1apVy8cZ63f69GmMGjUKzs7O2Lx5s95NRMVisfpYqVQatY/HrFmz8Nlnn5llvkRERET0zrx583Du3DmMHj0aPXv2NKrthQsXULJkyTyaWc7atm2LpUuXAkgPv86cOYOAgACD2j59+hQqlQpA+hscPj4+We4pXbq0+vjFixf46KOPjJ5jVFQUAKBkyZLvRYl3IiIiooJoz549+PPPPwEAU6dORZ8+fSw7IQDJycla5/v27UPbtm0NKlVZsWJF1KlTR10FYtu2bbkK1zZs2AAAqFOnDry8vEzuJz+wLCQRmSwqKgqLFy8GkL65ZHbBWgZfX1/06NEDQPobB8uWLcvTORrq6dOnmDBhAuRyOVauXKk3WAOAN2/eaJ1zvwkiIiIiy9q9ezd27NiBzp07Y8yYMUa1ffnyJS5cuABfX1+99xw8eBDt2rVD7dq1MW7cOMTGxuZ2ylp8fHzQunVr9XlwcLDBbS9evKg+1lcVQvNTv6dPnzZ6fpGRkeo9Qdq0aWN0eyIiIqIPzbVr1zB37lx06tQJdevWReXKlVG7dm1MmzYNANC5c2f07dvXwrNMJ5PJtM7FYjGmT5+uPg8NDcW3336Lnj17okGDBqhcuTLq1auHqVOn4pdfftGqnHD+/HmTf1aOiIjAsWPHAKRXdnjw4AEqV66M8uXL49mzZyb1mZcYrhGRyfbv34+3b98CQLZvRmSmWaLn8uXLePHihdnnZqyZM2ciMTERzZo1Q+3atbO9t0KFChg8eDDKlSuH+vXrY+rUqfk0SyIiIiLK7MGDB5g3bx6qV6+OefPmGdVWqVQiKCgIMplMa08xTdevX8fEiRMRFhaGxMREHD58GGPHjlWvFjOXSZMmqSsk3Lx5EydOnDCo3d9//w0gvVRjxofYMitXrhy6dOkCID24S0lJMWpuu3btAgA4Ojpi4MCBRrUlIiIi+pCEhISge/fuGDp0KJRKJcaMGYOff/4ZCxYsgEKhgEAggJWVFf7880+0aNECx48ft/SUIRJpFzjs2rUrPD09ERERgREjRqBTp064fv06OnbsiBUrVmDHjh345ptvYGtriwMHDmDz5s3qtgqFQl3u3Fjbt2+HUqkEADRs2BAzZ87MEvwVJAzXiMhk58+fVx8bs/F6hQoVYGVlpT6/evWqWedlrJMnT+LSpUsAoH7TISdTpkzBvn37sHnzZlSpUiUvp0dEREREesjlckyePBkikQgrV640qlxhWFgYvvjiC5w8eRIA9JaFPHbsmPof+RmuXLmC8PBwk+eti5+fHyZNmqQ+nzlzZpbN5TM7e/YsLl++DKFQiGXLlqFIkSJ6750xYwYqVqyIyMhIfPXVV1meSZ/Hjx9j48aNEAgEmDNnDtzd3Q17ICIiIqIPzJYtW9CjRw+IxWIcOnQIX3/9NVq1agVbW1ssXrwYUqkUK1aswMGDB+Hr64uoqCiMGjUKv/76q0XnnbkqV8uWLXHq1Cl06dIFISEhWLt2LbZt24bevXujfv36qFy5Mlq2bIlRo0YBANLS0rTah4aGGj0HmUyGP/74AwDg6emJc+fO4ebNmyY+Uf7gnmtEZLLIyEj18bp169CpUyeD/rEtkUjg6Oio3iwzpzcN8trGjRsBAEKhEI0aNbLoXIiIiIjIcPv370doaCjEYjE6d+5scDupVJplbwl9K9f0MTScMsaAAQMQHR2NDRs2ICYmBoGBgdiwYQO8vb2z3BsSEoIJEyZALBZj7ty5aNy4cbZ9Ozo6YtOmTRg1ahQOHz6MpKQkLFy4EB4eHnrb3Lp1C6NHj4ZMJsOcOXPQoUOHXD8jERERUWG0c+dOLFiwAH5+fvjpp5/U2+eEhYUhMDAQCQkJWLVqFVq1agUgfW+xTp06ISUlBQsWLEClSpVQrVo1i8zd3t5e6/z69etYv349nJ2dsXnzZr3b52guntCUeUsdQ5w7d05dTrJs2bJYtWqV0X3kN4ZrRGQyzVI4CQkJ2LFjB0aPHm1Q24ySN0DevDFhqCdPnqg33CxTpgwcHBwsNhciIiIiMk7Gh7VkMpn62BSurq5wdHTU+VqrVq2wadMmrZ9Zy5UrZ3QYZ6hJkyahWrVqCAoKQlhYGDp27Kje38LZ2RmvXr3CiRMn8Ndff8HPzw9BQUGoU6eOQX07Oztjy5Yt2LhxIzZs2IBWrVohICAAjRo1QokSJWBjY4P4+Hg8evQIp0+fxunTp+Hv74/Vq1db7M0eIiIiooIuKioKixcvBgD07dtXHaw9fvwY/fv3R3x8PNasWYPmzZur2/j6+qJHjx4IDg6GXC7HsmXLsHXrVovM39nZWet848aNkMvlWLlypd5gDQASExN1Xs+8ks0QR48eVR+Hh4dDKCz4RRcZrhGRyapUqYIHDx6oz1NTUw1qp1AotN78yO7TsnktY5NMAPjoo48sNg8iIiIispzs9g+uWbMmli9fjtWrVyMyMhJ16tTB7Nmz9X5S1xxat26Nxo0b4+TJk/j7779x6tQp7N69GykpKXB3d0elSpWwePFitGvXLsseGTmxsrLCsGHD0KdPH+zfvx/nzp3DqlWrEBMTA5lMhiJFisDT0xM1a9bEpk2b0KBBgzx6SiIiIqLCYf/+/Xj79i2Adz9XPnv2DAMGDEBcXFyWYC1D+/btERwcDAC4fPkyXrx4geLFi+fbvDNkDtBSU1PRvHlz1K5dO9t2vr6++PTTT3Hz5k1ERUWp3xs2ZfHCmTNn1McRERH49ttvMWHCBKP7yU8M14jIZBMmTEBSUhJu3LgBb29v9OrVy6B2Dx480NqM0pJ7lmnuG+fj42OxeRARERGR8QYMGIABAwbk+TgBAQEICAjI83E02dra5um49vb26NGjB3r06JEn/RMRERF9KDTfX3z48CH8/f0xcOBAxMTEYOXKlTqDNQCoUKECrKysoFAoAABXr15Fx44d82XOmnx8fGBjY6O1cKJLly4Gte3duzd69+6NqVOnIiIiAgDg5ORk1PgPHjzQ2n6oevXqaN++PcM1Iiq83N3dsXr1aqPbaa4W8/Pzy3Z5cV67deuW+rho0aJar92+fRt79uzB1atXERkZCWtra/Unhdu0aYPGjRtDIBCYPHZkZCT279+PK1eu4PHjx4iLi4OdnR28vb3RsmVLdOnSJdtN6YmIiIiIiIiIiMiyNIOhH374AXv27MGzZ8+wbNky9R5rukgkEjg6OqorfF27ds0i4ZpQKIS/vz9u3LihvtaoUSOj+shYuQcAJUqUMKrt9evXtc5HjBhhVHtLYbhGRPlKLpfjjz/+UJ/37t3bYnN59eoV4uPj1ecZQVZiYiK+/vpr7N+/P0ubyMhI3LlzB7/99hvq1auHb775RucG8znJ2OQ0cw3iuLg4vHjxApcvX8aGDRswf/58vZ9uISIiIiIiIiIiIstSqVTq48TERCQmJiIoKAjt27fPsa1YLFYfnzp1Kk/mZ4hatWpphWuaz5QTuVyON2/eqM9r1Khh1Ng3b97UOs+8B1xBVfB3hSOiQuWPP/7A8+fPAcCoUpJ54enTp1rn9vb2iI2NRa9evbB//35UqVIFixcvxj///INbt27h5MmTmDp1Kuzt7QEAly5dQv/+/RETE2PUuJs3b8bs2bNRvXp1LF68GIcPH8aNGzdw6dIlBAcHo0mTJgCA6OhojB49GocPHzbPAxMREREREREREZFZZd7ypmbNmujZs2eO7RQKhXrVGgB4eXmZe2oGEwq1oyLNPdBy8urVK3UY5+npafTWO3fv3tU6f/36tVHtLYXhGhHlm4SEBKxcuRJA+kbqixYtgkQisdh8Mv9FLZFIMH78eDx69AjTpk3Drl270LlzZ3h5eUEikaB48eIYNGgQfv/9d7i5uQEAnj9/jilTphg85vnz57FkyRLMnTsXW7ZsQefOnVGqVCnY2dnB2dkZDRo0wPr16xEYGAgg/ZMfX331VZYgkIiIiIiIiIiIiCxvwoQJqFSpEgDA1dUVy5YtM6jdgwcPIJPJ1OcVK1bUe+/BgwfRrl071K5dG+PGjUNsbGzuJp1J5oArODjY4LZ37txRH5uyn++///6rda5ZYrIgY7hGRPlmwYIFiI6OBgDMmDEDderUseh8ND8ZAgD79+/HxYsXMXv2bAwYMEDvfmqlSpXCihUr1Odnz57F2bNnDRpz3759GDFiRLb/oxEIBJgyZYr6f6gpKSmYN2+eQf0TERERERERERFR/omNjcWjR49QvXp1nDp1yuA9x44dO6Z1XrNmTZ33Xb9+HRMnTkRYWBgSExNx+PBhjB071qjSjTm5deuW1vnNmzdx4sQJAMDt27cxd+5cdOzYEfXq1UOTJk3QvXt3bNiwATdv3sSlS5cAAI6OjujWrZtR4545cwZyudw8D5HPuOcaEeWLPXv24M8//wQATJ06FX369LHshAAkJydrne/btw9t27Y1qFRlvXr10Lp1axw9ehQAsGXLFjRu3Fjv/RlB3UcffYSRI0fm2L9IJMKIESMwduxYAOn/owkPD4efn1+ObYmIiIiIiIiIiCjvyeVyTJ48GSKRCCtXrjS4SpdcLsdvv/2mda1kyZI67z127BiUSqXWtStXriA8PBylSpUybeIaXr16hfj4+CzXp0+fjlq1amUJAQEgMjIS9+7dw8mTJ9XXRo0ahSJFihg8rlQqxdy5c02bdAHAcI2I8tzVq1cxe/ZsCAQCzJo1q0AEawC0ll0D6RuITp8+3eD2Xbt2VYdrZ8+eRWxsLFxdXXXeW7duXVy7dg0ymQwikWF/9TZv3hx2dnZITk6GSqXCwYMH8cUXXxg8PyIiIiIiIiIiIso7Bw4cQGhoKMRiMTp37mxwu+TkZEilUq1rxn6oPnPgZqrM29FkLCh48+YNjh07hvLly2PQoEGoV68e3NzcEB0djQMHDmDNmjVIS0sDkL5qzdfX16hxv//+e7x48SLLdbFYbPrD5COWhSSiPHX//n2MGjUKSqUSCxcuLDDBGoAsIVfXrl3h6elpcPs6deqoV6QpFArcuHEj2/sdHBzg4uJicP8SiUSrdGZISIjBbYmIiIiIiIiIiChvJSQkAEj/EH9cXJzBvzIHa66urnB0dNQ5RqtWrSAUakc55cqVM1uFq9evX2udd+/eHeXKlVOfR0RE4MGDB/j3339x//593LlzBw8fPoRUKlXPKzExEWvXrjV4zNDQUPz0008YMWIEPDw8tF7z8vLKxdPkH4ZrRJRnHj16hIEDByIpKQnLly9Hly5dLD0lLXZ2dlrnLVu2NKq9g4MDihcvrj4PDQ01y7w0lSlTRn388OFDs/dPRERERERERERElpXdqq+aNWti+fLlKFWqFOzs7NC0aVP88MMPsLKyMsvYcXFxWuf79+/HgwcPMGPGDKxYsQJNmjTBqVOnMHHiRPTu3RvffPMNkpKS8MUXX+Crr75St7t16xbOnz+f43gKhQIzZsxAqVKlMHz4cCxdulT9bO3bt0etWrXM8lx5jWUhiShPhIWFITAwEAkJCVi1ahVatWpl6SllYW9vr3WesYzZGM7Oznj+/DkA4M2bN2aZl6ZixYqpj3XVPiYiIiIiIiIiIiLL6NevHwYNGmTw/Xv27MG0adMAAFOnTjW4bUBAAAICAkyaY06Sk5O1zvft24e2bduif//+6rEzk0qluHXrFoD06l5XrlwBAGzbtg3NmjXLdrzg4GDcvXsXO3bsgEQiQf369XH48GEzPEn+4so1IjK7x48fo3///oiPj8eaNWsKZLAGpAdjmlJSUozuw8bGRn1sSjiXE83VdabMj4iIiIiIiIiIiCzv6tWrmD17NgQCAWbPnm1UKJeXZDKZ1rlYLMb06dMNbt+0aVP18fnz5xEbG6v33qdPn2L16tXo378/qlWrZvxkCxCGa0RkVs+ePcOAAQMQFxeH1atXo3nz5paekl6aJRcBIDo62ug+NOsjOzg45HpOmSkUCvVx5jKWREREREREREREVPDdv38fo0aNglKpxMKFC9GnTx9LT0lNJNIucNi1a1d4enoa3N7f3x8CgQBA+nuZN27c0Hvv7NmzUbRoUXz55ZcmzbUgYbhGRGYTFRWFgQMHIiYmBitXrizQwRoA+Pj4aK08CwsLM7oPzdVqTk5OOu9JTk7GnDlzEBAQgGnTpmXZsDQ7msuy9W1qSkRERERERERERAXTo0ePMHDgQCQlJWH58uXo0qWLpaekJfMH+lu2bGlUe1tbW7i5uanPQ0NDdd63e/duXLhwAfPmzYOtra3xEy1gGK4RkVkkJSVhyJAhePbsGRYvXmxwKcjo6Gh1Td78JhQK4e/vrz5/+PCh0X1o7oNWokQJnfcsWrQIO3bswKNHj7Bnzx4cPHjQ4P41l1Fnt7EpERERERERERERFSxhYWEIDAxEQkICVq1ahXbt2ll6SlnY29trnZuy9Y1mRa83b95keT0qKgpLlixBt27d0KBBA+MnWQAxXCOiXJPL5Rg7dixCQ0MxZ84ctG/f3uC2e/fuxfLly/NwdtnTDAFDQkKQmJhocFupVIrXr1+rz2vUqKHzvr///lvrPCIiwuAxNFfTVa5c2eB2REREREREREREZDmPHz9G//79ER8fjzVr1hi8GCG/OTs7a52npKQY3Ye1tbX6WFc4N2/ePFhbW2Pq1KlG911QiXK+hYgoe/PmzcO5c+cwevRo9OzZ06i2Fy5cQMmSJfNoZjlr27Ytli5dCiA9JDxz5gwCAgIMavv06VOoVCoAgJeXF3x8fHTeJ5fLtc5r1aplUP8qlQq3bt1Snzds2NCgdkRERERERERERGQ5z549w4ABAxAXF4c1a9YU6O1zypQpo3UeHR1tdB8ymUx9rLmKDQBevXqFv//+GwKBAPXq1TNpjm3atMly7ZtvvkHnzp1N6s8cGK4RUa7s3r0bO3bsQOfOnTFmzBij2r58+RIXLlzAyJEj9d5z8OBBrFmzBlFRUWjUqBHmzJkDV1fX3E5bzcfHB61bt8bRo0cBAMHBwQaHaxcvXlQf9+7dW+99ZcuWVW/k+fHHHxsckt26dQtRUVEAAG9vb9SvX9+gdkRERERERERERGQZUVFRGDhwIGJiYrBy5coCHawB6e+P2tjYIDU1FYB2JS1DaYZrTk5OWq+5ublh3759RvfZoUMH9fH69evh4eGh9bqnp6fRfZoTwzUiMtmDBw8wb948VK9eHfPmzTOqrVKpRFBQEGQyGfz8/HTec/36dUycOBFKpRIAcPjwYcTExGDr1q0QCAS5nb7apEmT8M8//0Amk+HmzZs4ceIEWrRokWO7jHKPLi4u6NGjh977unbtqg7XmjVrZvC8goOD1cdDhw416zMTERERERERERGReSUlJWHIkCF49uwZli1bZnApyOjoaDx+/Bh16tTJ4xlmJRQK4e/vr37/8uHDh0b38fbtW/VxiRIltF4Ti8UoV65crubo5+cHb2/vXPVhbtxzjYhMIpfLMXnyZIhEIqxcuRISicTgtmFhYfjiiy9w8uRJANBbFvLYsWPqYC3DlStXEB4ebvK8dfHz88OkSZPU5zNnztTaS02Xs2fP4vLlyxAKhVi2bBmKFCmi996uXbuqV50ZOvdLly7h0KFDANL3cssuvCMiIiIq7AQCAdzd3VGiRAl4e3ujRIkSEAr5z1kiIiIiKjjkcjnGjh2L0NBQzJkzB+3btze47d69e7F8+fI8nF32NEPAkJAQJCYmGtxWLpfjzZs36vMaNWqYdW4FFVeuEZFJDhw4gNDQUIjFYqNq20qlUiQnJ2td07dyTZ/MgZs5DBgwANHR0diwYQNiYmIQGBiIDRs26PxEREhICCZMmACxWIy5c+eicePG2fYtFArx/fffY/To0dixYwfKlSuHbt266V2Jdv36dYwbNw5KpRLlypXD999/z1VrRERE9EETiUTw9fW19DSIiIiIiPSaN28ezp07h9GjR6Nnz55Gtb1w4YLeBQj5oW3btli6dCmA9LDszJkzBm+d8+rVK6hUKgDppRp9fHzybJ4FCcM1IjJJQkICgPR6unFxcSb34+rqCkdHR52vtWrVCps2bdIK08qVK2d0GGeoSZMmoVq1aggKCkJYWBg6duyInj17okGDBnB2dsarV69w4sQJ/PXXX/Dz80NQUJDBS7UdHBywceNGbN68GYsWLcK6devQokUL1KxZEx4eHpBIJHj58iWOHj2KQ4cOQalU4rPPPsOUKVPg4uKSJ89LREREREREREREubd7927s2LEDnTt3xpgxY4xq+/LlS1y4cAEjR47Ue8/BgwexZs0aREVFoVGjRpgzZw5cXV1zO201Hx8ftG7dGkePHgWQvl2NoeHanTt31McfUvUthmtEZFHZfQK5Zs2aWL58OVavXo3IyEjUqVMHs2fPhpWVVZ7Np3Xr1mjcuDFOnjyJv//+G6dOncLu3buRkpICd3d3VKpUCYsXL0a7du0gEhn3V6iVlRUGDRqE7t27Y9++fThz5gyOHTuG2NhYCAQCuLq6onjx4vjiiy/Qpk0blC1bNo+ekoiIiOj9opRLIY0MhzQqAipZKgRiG0iK+kBSzA9CkeHlyYmIiIiIzO3BgweYN28eqlevjnnz5hnVVqlUIigoCDKZTO+CguvXr2PixInqBQiHDx9GTEwMtm7datZqV5MmTcI///wDmUyGmzdv4sSJE2jRokWO7S5fvgwAcHR0RLdu3cw2n4KO4RoRmaRfv34YNGhQno8TEBBg8KckzMXW1jZPx3VwcECvXr3Qq1evPOmfiIiIqLBIffEQCVcO4u29C1ApZFleF1iJYe/fAE51AmBTnB9MIiIiIqL8JZfLMXnyZIhEIqxcuRISieEf/AoLC8OSJUtw8uRJANBbFvLYsWNZtsm5cuUKwsPDUapUKdMnn4mfnx8mTZqEhQsXAgBmzpyJP//8Ex4eHnrbhISE4N69exAIBBg1ahSKFClilrlIpdJszwsChmtERERERERUoCjTUhBzfDMSbxzN9j6VQoak26eRdPs0HGu0hlvLQAitbfNplkRERET0oTtw4ABCQ0MhFovRuXNng9tJpVIkJydrXTN2K5zMgZs5DBgwANHR0diwYQNiYmIQGBiIDRs2wNvbO8u9//77L9asWQMrKysMGTIEVatWNds8bt26pXV+48YNlC5d2mz9mwPDNSIiIiIiIiow5IkxePlLEGQxz41ql3jjKFKf3oVXnzkQObrl0eyIiIiIiN5JSEgAAMhkMsTFxZncj6urKxwdHXW+1qpVK2zatEkrTCtXrpzRYZyhJk2ahGrVqiEoKAhhYWHo2LEjevbsiQYNGsDZ2RmvXr3C0aNHsW/fPnh5eWHQoEHw9/c3eTyZTIbHjx8DAFJSUvDw4UP88MMPWvcsXLgQsbGxqFmzJhwdHWFrawsfH59cPWduMVwjIiIiIiKiAkGZlmJSsJZBFvMcL3+dixIDFnEFGxERERG9N3x9ffW+VrNmTSxfvhyrV69GZGQk6tSpg9mzZ8PKyirP5tO6dWs0btwYJ0+exN9//41Tp05h9+7dSElJgbu7O/z9/TFy5EjUr18/1/OIjIxEhw4dsr0nMTERy5YtU5/XrVsXW7duzdW4uSVQqVQqi86AqACSSqVZlp4CQJUqVYyqm1tYyGQyhISEaF2rWrUqxGKxhWZERERERIVR1MF1OZaCNIRjzTYo2m64GWZERERERJSO75G+w/fPAaGlJ0BERERERESU+uKhWYI1AEi8fgSpLx6apS8iIiIiIqLMWBaSiIiIiIiILC7hykEz93cINp3KmrVPIiIiIvpwCQQCuLu7w9raGgKBACqVCkIh1y99qBiuERERERERUa6oVCqo5NL0XzIpVAoZVDIplHIpVPK09GtymfoepUwKobUtHKs0BQAo5VK8vXfBrHN6e+88lO1HQChKL0sT/fdGyOMiAaEVXJv1hqRo1g3Q3z68ipSwmxAIhYBQCIHQChBYqY8FQiEgEAJCK53n6jZCIWxLVoKVnVOWMeQJ0ZAnvtG4/7/2mv0INK7ruo+IiIiI8p1IJMp2bzT6sDBcIyIiIiIiKsTkSXFQJsdDKZNCpfgv/NIIuTRDL5Us7b9j2X/BmPb9Hl0mQOTommWMqP3fIynkpFHzcqzZRh2uSSPDoVLIzPK8GVQKGaSvn8CmeFn1efK/1wAAzg066WyT9uw+Eq6aZwVd8f7zdYZrCdePIO7c77nr/L/QzavPHNh4V8jyctzFvUi4/ve7YE5g9V8bzdBQqB0IZj7/r51zwy4Qu3plGSPlcQhSI0K1gz9dwaBGvxl9ap0LrWBdrBSENvZZxlAkJ0CZlqzxDNnNlaEjEREREeUfhmtERERERER5RKVSQiWXQWAlSg8BMpG+fgpZ7EuoFBlBV9ZASzvkkmUKxt6FYcX7z4fYxTPLGG9ObUfi/46Z5XmUacmAjnBNIDJ+E3dxEQ/1sTQqIlfz0kf6+qk6XBNpjAc9QYxKpTTf4Dp+vwFApVTkvm+lIr0fPc+hSI6H/M2r3I8DwLF6S93hWngI4s7/YZYxigcu0BkSxl/ah7jzewzsRZBtgOj5+VRYF/8o6xhXDyPp9qkswaDOAO+/lYz6xnCq1Vbr+zpD6rNQpL16rCN8zLxqUajRn1WmuaRfF7l4Qii2zjKGUpYGlUKetQ+BwMCvHxEREeVEKZdCGhkOaVQEVLJUCMQ2kBT1gaSYn7paAn04GK4REREREdEHQaVSaoRWMqjkaVDKpBC7eul8szol/BbSXj5SB1rKTKGXdsiVNRhTyqWAQg4A8B62UmcZwoTrfyPh2mGzPJ9SmqrzusCM/9BXyaQ6r5v0ZoLVu3+OqmS6555bKlma+lgzANQVdAIAzBF8ZYyhbyWV0owBnr4x3peQMIPAHGOoAKVc/eiqzK/q+ZrIE6KQ9vyBEePoZ1++ns5w7e2DK4i/8KdZxig+YCFsSpTLcv3Nmd90jyEQZhPoaYZw786LdhwL62J+WbpKvHkCb0Mvpq86FGSUSrXKEgBCqCcs1AgRHSo30bkKNu1VGGQxL3TPUWeomfm+dyGolZ0jBFZ824uIiHIv9cVDJFw5iLf3LuistiCwEsPevwGc6gSoP9hFhR9/yiAiIiIionynUio0Qi79AZWNXxVY6SgXlxR6ASlhIf/dn6YRaMmy9JE56MqsxJDlOt9IfvvgMhKumKdEoEquO5Qya/ClbwxxPoxhynNo/H4IxDamTilbAo3QVCXXeCMkPwIjPZvbm3N1nEDfGGYM8PSFhGYdQ89zmDMktGygas4g0sivlUoJqJR6Q0edTfT8XSmNjlCXVs0tm5KVdIZrSXfOIP7iXrOMoS+IjDmxFfEX9+oPArVWLWaEkZnLkqZfd/9kKCTu3jqe4yySH93Qsxox5/0cNcewL1sbVvZFsowhjXkOeXy0dnAq0LNPo86yrZr/FXGVIxGRDsq0FMQc34zEG0ezvU+lkCHp9mkk3T4Nxxqt4dYyEEJr23yaJVkKwzUiIiIiog+cOuiSaZYhlGntwaW+phFYOVRuCpGjS5b+Em4cw9u7ZzOt9NJe/QWl7jdvMysxcDGsdJRyS3v2AIk3juT62YH8Cr507yeWL+GaGcdQytN0XhfoWPmXE1n8a/WxrlV95iDxKKk+lmuMlx+ryvIlzMmHMfSFhGZdgZcvYaclx3jPAlULjpFvfwZVSqgUSuC/335DQkddNFfHakp7+S+Sbv1jYq/arAcu1hmuJd44ivhL+8wyRvGBi2Gj4/+1sad3IvH631nLoWqEkFmCwYxgT6Ad4Lk276uzdPHb+5eRGnE36ypEnftCZr+fo41vJZ0fyJEnREPxNiHrCsds93PUCCeJ6IMkT4zBy1+CIIt5blS7xBtHkfr0Lrz6zIHI0S2PZkcFAcM1IiIiIqICxOCgK1NopZJJoczYf0smhXPDLjrfxIq7+BcSrh7SWi1m6hvxNj4VdIZr8rhIpITfMqnPzJT5EXzpeXNUKDI+MNJHbyhlwl5l+pi1ZKO+MfSGhDk8h9AKApEEApEYQpEEArEEyrQU9cuSYn4QWIl1ltkxlcBKDImHr/pc7O6DInU/hUqlhNDOUWcbiYcv7MrV/W+ljwJQKtNXmmXscaZUpgcMSkXW65rnKqVW2UtN5i2nmB8BRd6vxsqXoKXQfK0sGdrmR6DK0DbrGJYLO5VpyVC8jTfLGM4NP9N5PeXpHSRc3m+WMUoMWgIrrzJZrsdf2od4k8cQaIVxxfvNh7VnqSx3xZ3fg8Rbp3QEi9nt56g7LHRp+BlERYpmGSM57CbSXv6rEQzmsCpRoCMo/O9+STFfCCVZV9UoUhKhkqZmDVAzz5UrHamQU6almBSsZZDFPMfLX+eixIBFXMFWiDFcIyIiIiIygCIlCYrk+PRQSyEzPOjSuJZxv3vrgVpv+meI/Wc74s7tNst8HSo30RmuKdNSII+PMssYJgctRo2RH6UO9TyHOcfQE3zlS8nGzGP8F3QJxZL/Ai+NX2JJevj137HASpz+X5EEQpG1zu8pAHCo2Bg23hWy9pHRj7436zOmJJLA3r8Bkm6fNunZdbH3b6gVLDrXbZ9jG6eabeBUs43Z5qCLe5vBcGsZqB3gKZWASvEuuMtYWaM+z/x6eqk/URF3nWM4VG4CSTE/dR/qwC+jrfpapj61QsP0MYTWWVeBAIDIxRM2Pv7/3a8ZRiqyjqPuV6nxbOn3Q6XUGxKaN2jJjzEsFxjly15++RKoMrTNMkZhWQWbH/tQ5smfQdW7v5cBQE+oJE96A1n0s1yM845TjTa6w7V/ryHhygGzjFFi8FJYe5bOcv3NmV2GjWHAfo6ePaZDUrRklqbxVw7g7b0LOlcMvgv0Ms6zrprUHMOpVjudH/RKjQiFNOqp4fs0ZrOKUeTsofODSkq5FFAqtefO0LHQiDm+2eRgLYMs+hliTmxB0XbDzTQrKmgYrhERERHReyHjTQ1dbwDJ3ryCLPr5f6u8tPftUmY6f/e6LFMwlgaVXAaPzuNh410+yxjxl/cj7uwuszyLvk+BC/SsdDGFvqBFmB+BkVlXlVlwr7J8CAmFElsIrO00wiix/oDqv2OhWAKBlfY1gVgCax2f1gcAx2ot4FCx8bv7cwi6TCFycoPIKXdlb5zqBJg1XHOq085sfZmTwEpk1j/rutj4VICNT4U8HcO5fkc41++Y635UKv0F+Vyb94FLo8+0Az99gV3mYDBT0Kdrfy8AsC9fNz2k1NWvrlWLKoXOkFClVOpcBQIAIgcXiN29swamWeb8LtTUu4ea3iDyfVuNlQ9jMLQ1XKEJCfMhtC00X6tcjmHAfo76vkdlsa+QGnHPsHFyYO/fUGe4lnT3HBKummffXH1788Ye35p1DK1ypZn2c9QV7AnSr3t0/hISt+JZxki4cQzJ/17LPgjUuYox6+pIh0of6ywxm/YqDLI3kTpWOGrvESnQ90waIajQ1iFPfs7Mb6kvHua4x5qhEq8fgWO1FrApXtYs/VHBwnCNiIiIiIymUsjflRVUpAdUIkc3nSUv0l6GITXi7rswK0vI9a484buVXmnawZhMCqiU8Ow1G3alq2UZI+nOWbw5td0sz6ZMS9Z53ZyhlN5Sh/mxisms+29ZLvgyZ6lDfc9h5eAKiWfp/1ZtiTVCLut3JQ4zr/5Sr/LSPhe7eukcw6lGazjVaG22Z9FFKLEF9LzpX5DYFC8LxxqtzfJmhmPNNnwT4z2R3af8rWwdAFuHPB3frkwN2JWpkadjuDTpDpcm3Y1qkzXgSz8X2tjpHuPjbnCq1VZHG/2lS7OUOv3vuq43XwHAtnQ1CK1tswSB6lAy2xWX7+6DSgmhnn0ahda2sLIvoncMY7wXAYVhg+i+ri+ANUVhD1TN+rUqJKFtPnytCsufQb2Bqq6vlan7OSp070UsjXyM5AeXDe0lW7Z+VXXv3/i/40i4dtgsY+gLIqOP/IzE60d0hnYZIWBGMJhtqVOhEO7thkPsXCzrc9w+jdTw21nH0Lufo0ZQaCWCY7WWEFilfz8lXDFPMJsh4coh2HTiz6WFEcM1IiIioveYSqUClPL04EqWaYWW4t3KLWuvMhA5ZP1UZ0r4Lby9f1kj5ErTDrm09v3SDroy8+wxHXYf1dIxRghiT2w1z/PmRyhl0ZVS79sYevYRM8fvh5Uo2wBN7FYc9v4N/ytdqL+coTAjCBNrrApTl0S0Tg/I9OyD4ODfAA7+DXL/LGQwt5aBSH16N1dleMTu3nBr0d+MsyLKfwKBELASwtACYyInd4icdJcJNRcH/4Zw8G+Yp2O4tRoAt1YD9L6ucxWjKnNZ0vSAT1/Z1CL1O8K+UqP0lUY6VyEqMoWGyqyv/zeWUE/4a+NTQWMuelY7GrKfo0oJgSibt+4EQrOEbPpWfOXHvm7mDAkLTZiTD1+rfCkxa8k9CfMlUH2/9lbMj6+Vvj8fKoUsfV9dhczwwFEPff9WS4sIReLN4yb1KfEqoy4LrpRL08uWmtHbe+ehbD/CrB8OpIKB4RoRERGRmaiDLq1ShJoBVVrWvbnkUth9VEvnqpa39y8h4cbRLCu9lJn28DLkH9rFPp8KUfm6Wa6nRYabrWSKJVcxCazet1Aq78sQKs0YEmruu/WudKG13r2YrIuVhnPDzwwqZygUv+tPKwTT9ynh/9j6VYGtXxWjn4UKNqG1Lbz6zMHLX+eatHeN2N0bXr1nc+N4okJKHTrmouqYxN0bEndv801KB8dqLeBYrUWejlG0/UgUbT8y/edPPXsavls9mDkYzLRaUU/ZVKdabWFXupreEqk5BYMZ16FUQmite9WlxMMXdh/V0lPmNYf9HDOHlVb5se9hfoQ5eR9K6Q9U36+Q0LKB6vsWPltu30PzjmH+P4OapdWlkeHpQaAZqRQySF8/YVWFQojhGhHlSCAQwN3dHdbW1hAIBFCpVBDq+58yEVEBoVKpAIX83Z5aikwBVaayhO8Csf9KEv53zbF6S52bfSfeOoW4s7uylDM05R9AVk5uOsM1eUIMUh7dMOn5M8uP0noque5/hORLiUCzlmzMw9VY/9H3iUuhSHeZLK15ZARdWoGXtUZI9V8ZwiJFdba38S4P9/ZfaJcz/C/0ynJNZFjQlZm1V2lYe2X9c0NkCJGjG0oMWISY45uNKhHpWLMN3Fr0Z7BGRB8UgUDwX2k1Kwhgvg/pAIBN8Y+A4h+Ztc/MitT9FEXqfpqnY7gHDId7m0FZS5kasp9jplWMVvbOOsdwrNI0/Q16XcFgtv1mDSuFYhudY4idi8G6RLlsy65mO4ZSo/RgvqyOKyQlNPWGOe9Z2VSLhrYFO1AVF/FQH0ujIkzuJzvS108ZrhVCDNeIKEcikQi+vr6WngYRFRJKaSoUyfGZVmJl2oNLlqkMocbrmvc6N+wCW9/KWcZIuH4E0YfWw4gq93rZ+FTQGa6pZGmQxb7Mdf/pfVlwpVS+lFM03xs9+fO10hcSZg2+sqzo0htSibX24ZIUK6VzDBu/KvDqO1djRZeOfowMujITu3rp3f+LqKAQWtuiaMAIOFZviYQrh/D23nmdnyIWWIlh798QTnXa8Q0LIiLSSSiSAHlcji0/VtS7fNwNLh93y1UfGeGbvqDFrWUgXD7unmUvRvUqRJ0lUnXv52hl66RzDPvy9SB2KaajvZ79HHWWg/0viNTzwTQr+yIQu3rpCDCN388xf1auFbC940ylN7Qt4CU0rd5FJCpZqun9ZEMl0/0BTnq/MVwjIiL6wKhUKgAqnT9cyxPfQBr1VM+KLj1Bl0bZw/RfaVDKpHBr2R/25etlGSPp9mlEH/rRLM/iUOlj3S8IrWCOYA3ILmgxY2CUD8GXOUsE6pMvz6F3DGvtIEok1rEH17vVWMJM5Qo1SxRalyincwy7MjVQcsz6XK3oyonIwRkiB2ez9kn0PrMpXhY2ncpC2X4EpK+fQPr6KVSyNAjE1pB4lITEw5f7VxARERkoo7SqPlb2RWBlXyRP52Bfvi7sdZSrNye3lv3h1tLw/VezW8VoZac7JHRp2hNOtQOyDe30rWLMCCwzAkl9pdZtS1eD0MYh5z4N2M9R37/7BCJrCG0d1M+uGZQaS6CvZq85g0i9Y+QiwFO8W9Up0LNyNLcE4pwrlND7h+EaEeVIKZdCGhkOaVQEVLJUCMQ2kBT1gaSYH9/MIMollUqVvrmv7F05QitbRwhtsv5wLY15gdTwEJ2BllJH2cOMUojKzNfkMhTtMAqOVZtnGSMl7Aai9n9vlmdTpCTqvG7WlVL5USLQgqGUWUs2Kiz3HFa2ThAXLakRaIk1Aq2s5Qy1QrFMJQrFLp46x7AvVwelpm4327PoIpTYQCjJm39sEVH2hCJJetDG1WlERERkZqbs5yh2Lgaxc7G8mxQAxyrN4FilWZ6OUTRgOIoGDM9yXWs/R737Lmbav1FPMFukQWc4VG6SZSVkzv1mWmGoUuot/23tXSF93jnuPZl1bM1tASRFfczwVc1K4lEyT/oly2K4RkR6pb54iIQrB/H23oVsyvA0gFOdAL7RQYWCSqVS75ulb9WWxK0ERDr2MUp7FYak26ehksv+C7PStPbh0upHKwiTIfMKK/eAkXCq0SrrGC8eIvrwBvM8a34ERnrHMN8ntvSulMqP1Vj58rUyzxgCkUTvQj6RoxvsytXNtpzhu9Vf1u9WbOlY/aUrFAYAW99K8Bm2wizPQkRERERERHlLez/H3LEu5gcU8zPDrPQrUvsToPYnue5HUswPAiuxzvdBTSWwEkPiwe12CiOGa0SUhTItxaAN5FUKGZJun0bS7dNwrNEabi0DuYE8mc27oEtzNZbsv4AqTetaxsotG58K6T+0ZZIaEYq4i38aUM5Qd8Chyf2ToXCqlfUHNlnsS8Rf2meOR7dsab33bTWWJcM1k34/BJlKEYohFEsgtHXQebfIxRNF6nfMsZyhMFOfApG1evUXrETp/zDSw9qrNDy7TTXhWYiI8o9cLsfz588hkUggFAqhVCrh4eEBKysjPmJORERERJQNoUgCe/8GSLp92mx92vs3ZOWvQorhGhFpkSfG4OUvQZDFPDeqXeKNo0h9ehdefeZA5OiWR7MjS1GplDqDKGWmc+1r/63+kqWv4LIrVxe2vpWy9J38+CZijm7SUc7Q+E8JubUZpDNcU7yNQ/KDK6Y8ehYWDaWsCmpgpG8MPXuVFZSSjQKh9iosHftvCcQSiF29dDaXuPvAvd1wHeUMrd9d0wzEDAi6sozhVhxuLQMNvp+IqLBSqVSIjo7Wuubu7s5wjYiIiIjMyqlOgFnDNac67czWFxUsDNeISE2ZlmJSsJZBFvMcL3+dixIDFnEFWz5QyWVQJCdAJU/7L9DSLmWYvjorTSPk0lyxpX2fY9UWsK9QL8sYbx9exevfl5llObyVo5vOcE0ll0EWFZHr/gFLlzp8z4IvSz6HSKzjYjZBl2bZwUzXbHwq6BxD4uELz96z/wu6NPsQq1d+QWhc0JWZyNEVTjXbmNyeiIiIiIiIiAoWm+Jl4VijdY4VvQzhWLMNt9IpxBiuEZFazPHNJgdrGWTRzxBzYguKtsu6GeqHRJGSBOnr8EzlDNMyrfz6r8Sh+tq7IExzRViRuh107r+V/PgmIn9baJb52niX13ldILQyW51po4IWE+ldVZYfq7HM+Bz5UupQkU3JxoygS73qSmxQ0JVRjjAjGJN4ltY5hsSzNHxGrdUqcZjboCszK1sH2JWqZrb+iIiIiIiIiOjD4NYyEKlP7+bqfVKxuzfcWvQ346yooGG4RkQAgNQXD83yiQwASLx+BI7VWuT7JzNUKqVWmCUQW8NKxz5G8sRYJD+6ri49qLWiSyaFSiHVCsHerQpLy7L/l/PH3eHS6LMsY6S9eIhXO+ab5bkUSW90XjdnvWal3sDInCul0nReF4qszTdGIdlHTF+pQ6G1HcSuxTUCrXehl1BsrbXyS2eZQ40ShSJnD51jSLzKoNS038wadGV5DpEEQudiedY/EREREREREZGphNa28OozBy9/nQtZ9DOj24vdveHVezYrexVyDNeICACQcOWgmfs7BJtO6eGaSqWCLPal1r5cIid3iF08s7STvXmFxP8dg1Jrf680dRCmzLwvl/xdMAaFXKsvl497wKVJ96xjxDxH9IEfzPKcKrnuwMi8K6XyYzVW3q8qs2TwZbYxBEJApdT5ktDOCbZlamYbaGnvw2X97lqmEohW1vY6x5AU9YHPyDXmeRY98jJUIyIiIiIiIiJ6H4gc3VBiwCLEHN9s1IIEx5pt4NaiP4O1DwDDNSKCUi7F23sXzNrn23vnoWw/Ij08EAjw+q+VkL58pH7duVFXuDbrnaWdIukN4s7/YZY56Ct7lz9hjvlWY+ktdfie7SNm9pKNQqt3q7Os0gMqK1snnbda2TvDqU6AdjnDTCFY1mvpfWrt2SW00jsdsbMHvHrOMO1ZiIiIiIiIiIioQFCpVBAIBBBa26JowAg4Vm+JhCuH8PbeeZ3bpwisxLD3bwinOu20Knll9EOFE8M1IoI0Mtxs+2plUClkkL5+ov4firVnaa1wLT9WMekrrZcfoZQ5SwRatNShocGXUPRfECXWu2pLUrSkzqZWDi5wazNYa1WXUJR19Zcwc7/ZBF2ZiRyc4d5msMH3ExERERERERHRh+nQ+XA0rl4CTvbp74vZFC8Lm05loWw/AtLXTyB9/RQqWRoEYmtIPEpC4uGb5b3AhLdSnL35HAENS1niESgfMFwjIkijIvKm39dP1eGaqIj2/k4qvXt85UMZwkJTslHPGOqgSyOIshJnvaYRVtl4l9fZlZWjGzx7TP+vjfW7VV4afQpExgVdWcawsUeROgEmtyciIiIiIiIiIjKHB0/f4Ic9Idh+9D6+6FoNDap4qV8TiiTpQZvG6jRdLtx6ibW/30RcYho+8nZGuZIueT1tsgCGa0QElSw1j/p9tx9Z5tAsX1aV6VuNZdYx9ISEVuKMwQwMujKCK3GWPbskRX10jiFydIX3iDWZ7hfnKujKTCi2ht1HtczWHxERERERERERUUG170wYACAuMQ3fBF9GmRJF0K6hH5rW8IaNtf44JTVNjlM3nuHQ+XA8eh6vvr7/bBgm9OZ7a4URwzUigkBsk0f9vtt3LHMIpZKnZb49vY0Z9yrTu4+Y2AaiIh5aq7eEGiUJswu6MpcoFDm56xzDytEVpab9ZtagK8tzWIkgcSueZ/0TERERERERERF9KKQyBc6FvNC69uh5PL7bdRPr9tyCn5cTPvIuAg9XO4hFQsjkSryOTca/z+IR/jIBcoUyS59nb77A6G7VIRHn3XuEZBkM14hI78qoXPfr8W6PLXn8a+0XlQqdbYQSG9iWqpptoKW9N9e7IEwrLBNLILS21zmGlZ0jSo7+wWzPqYtAIAAE/J8mERERERERERHR++DxiwTI5FkDMgCQK5T491kc/n0WZ1SfMrkS4S8TWBqyEGK4RkSQFPODwEoMlUJ3iUNTCKzEkHj4qs9dmvSEa7M+/wVgYggEQp3thNa28Oo9x2zzICIiIiIiIiIiIsrJk1cJedIvw7XCSfe720T0QRGKJLD3b2DWPu39G2rtbSZycIaVnSOEYmu9wRoRERERERERERGRJaRJdVfaynW/srzplyyL73ATEQDAqU6AmftrZ9b+iIiIiIiIiIiIiPKKtSRvtnix5n5rhRLDNSICANgULwvHGq3N0pdjzTawKV7WLH0RERERERERERERmZtMrkDok1j1ua+nU56M4+eVN/2SZTFcIyI1t5aBELuVyFUfYndvuLXob6YZEREREREREREREZnPm4RU/HI4FIPmHcWPe26pr5cq7gSxyLyRiVgkZLhWSIksPQEiKjiE1rbw6jMHL3+dC1n0M6Pbi9294dV7NoTWtnkwOyIiIiIiIiIiIiLT/BsRh71nHuHM/55DrlABAJJSZEhNk8PGWgSJ2AqNqhbHP9eNf19Un8bVikPCspCFEsM1ItIicnRDiQGLEHN8MxJvHDW4nWPNNnBr0Z/BGhERERERERERERUICoUSF26/xN7TYbgXHpvldblCidP/e4429XwBAB0+Lm3WcO3TxqXN1hcVLAzXiCgLobUtigaMgGP1lki4cghv752HSiHLcp/ASgx7/4ZwqtOOe6wRERERERERERFRgZCYLMXfF5/gwLnHiI5Lyfbeg+ceq8O1ciVd8El9Xxy++CTXc/ikgR/KlXTJdT9UMDFcIyK9bIqXhU2nslC2HwHp6yeQvn4KlSwNArE1JB4lIfHwhVAksfQ0iYiIiIiIiIiIiPD0VQL2ngnDyWvPIJUpDGrz6Hk8Ltx6iQZVvAAAAztUxu2wGDx7nWTyPHyKOWLgp5VMbk8FH8M1IsqRUCRJD9q4Oo2IiIiIiIiIiIgKEKVShWuhkdh7Jgz/exBldHsbiRXuP4lFvUqeEAoFsLMRYf6Ihpj14wVERCYa3Z9PMUfMG94AdjaMXwoz/u4SEREREREREREREdF7JTlVhuNXIrD/bBheRL81ur2Hqx0+bVQKrev5wsFWrPWaWxFbLBvbBJv23TaqROQnDfww8NNKDNY+APwdJqIcyeVyPH/+HBKJBEKhEEqlEh4eHrCysrL01IiIiIiIiIiIiOgD8irmLfaffYyjl58gOVVudPvKZdzQ8ePSqFvJC1ZCgd777GxEGNWtOlrX88X+s2E4e/MFZHJllvvEIiEaVyuOTxuX5h5rHxCGa0SUI5VKhejoaK1r7u7uDNeIiIiIiIiIiIgoz6lUKtx6FI29p8Nw+e4rqFTGtReLhGhawxsdPi6N0iWKGNW2XEkXTOhdC6O7VUf4ywSEv0xAmkwBa7EV/Lyc4OflBImY75N+aBiuFTD379/Hnj17cPnyZTx79gwpKSmwt7eHh4cHqlWrhtatW6NJkyYQCPQn6pagUChw8uRJHD16FCEhIXj16hVkMhmcnZ1RvXp19O7dGw0bNrT0NImIiIiIiIiIiIjoPZEmU+DU9WfYdyYM4S8TjG7v4miN9o1KoW19Pzg7WudqLhKxFcqVdOHqNALAcK3AePHiBRYsWIALFy6gd+/emDVrFnx8fKBUKvHixQucOXMG27Ztw65du1CpUiWsWLECvr6+lp42AODy5cuYM2cO4uPj0aNHD/Tp0weenp6QyWQ4f/485s6di6NHj6Jv376YMWMGhEKhpadMRERERERERERERAVUTHwKDpx7jMMXniAxWWp0+7I+zuj4cWk0qlYCYhHfjybzY7hWANy8eRPDhw+Hm5sbDhw4AC8vL63XixUrhho1aqB79+4YOHAg7ty5gx49emD37t3w9va20KzT/fLLL1iwYAGaNm2Kb775Bi4u2ql9t27dcPDgQZw/fx7btm2Di4sLRo8ebaHZEhEREREREREREVFBFfokFvtOh+FcyAsolMbVfhQKBWhUtTg6flwa5X1dzF79TS6X4/nz55BIJBAKhVAqlfDw8ODWOR8ohmsWFhsbixEjRiAuLg6//PJLlmBNk6enJ1asWIEuXbrgzZs3mDJlCn799dd8nK2233//HXPnzkXLli2xevVqiES6v50SEt4t1z106BDDNSIiIiIiIiIiIiICAMgVSpy7+QL7zoTh/tM3Rrd3tBPjkwZ+CGhYCu7Otnkww3QqlQrR0dFa19zd3RmufaAYrlnYunXrEBsbiwoVKqBMmTI53l+hQgU0btwYp0+fxrVr13D58mXUrVs3H2aqLTw8HF9//TWcnZ2xaNEivcEakL7y7vbt2wCAqlWr5tcUiYiIiIiIiIiIiKiAik9Kw+GL4Th4LhyxCalGty/p6YiOH5dG05resJEw6qD8xe84Czt8+DAAQCaTGdymYcOGOH36NADg5MmTFgnXFi1aBKlUiv79+8PJySnbe7/99lucP38eEokE9evXz6cZEhEREREREREREVFB8/hFPPadCcM/159BJlca1VYgAOr4e6Ljx6VRtay72Us/EhmK4ZoFJScnIzIyEgDw6NEjnD59Gk2aNMmxnY+Pj/r46dOneTY/fa5cuYKTJ08CANq2bZvj/TY2NmjRokVeT4uIiIiIiIiIiIiICiCFUoUrd19h7+kw3HoUnXODTGytRWhdtyTaNy6F4u4OeTBDIuMwXLOglJQUrfPFixcbFK7Z2r6rGyuVSs0+r5zs2bNHPY+KFSvm+/hEREREREREREREVPC9TZHh6OWn2H82DJGxyUa393Kzx6cfl0KrOiVhZyPOgxkSmYbhmgW5urqiaNGiiIqKAgD1KracvHnzblNHLy+vPJmbPlKpFMeOHQMAlClTJtu91oiIiIiIiIiIiIjow/M8Kgn7z4Th+NWnSElTGN2+etmi6NCkNGpXKAahkKUfqeBhMmJBAoEAK1euxMqVKxEXF4f+/fsb1O727dvq4/Lly+fV9HS6du0aEhISAAC+vr75OjYRERERERERERERFUwqlQo3HkRh35kwXL1n2EISTRKREM1r+6BD49Lw9XLKgxkSmQ/DNQurXbs2tm3bZvD9KpUKR44cAQCIRCK0a9cur6amU2hoqPrYw8ND67VLly7h4MGDuH//PpKTk+Hq6oqSJUuiZcuWaNSoEVe5ERERERERERERERUyqWlynLwWgX1nwxARmWR0e/ciNghoVApt6/vByV6SBzMkMj+mHe+ZkydP4vnz5wCAVq1awdXVNV/Hv3//vvrY2dkZAPDy/+zdeXhU9d3+8XtmspOFJEAIZJ3IoiAIspMERVBBEqvdrFoXbLVa9fm19SnaVq1aq7gratWqda+21koCihuUTEIgbMoismSSQBYghOzrbL8/fEhBthzIZLK8X9fV6zqTOZ8zd9DKZO58v6eiQnfeeadWr1591Pn5+fl67733NGrUKD388MMaPnx4V0X1CqfTKZOp7y1DdjqdHfoaAAAA4A28HwUAAOh+Kmua9fGqEn2+do8amh2G50ck9Ne81GRNHhUjP4tZkuRwGL9OV+E96X/11e/7cJRrPYjL5dLTTz8tSQoJCdEdd9zR5Rl27drVfhwaGqrdu3frqquu0oEDB3TZZZfpsssu06hRo2SxWLR161Y9//zzysvL09atW3XdddfpvffeU3x8fJfn7izbtm3zdYRu4+uvv/Z1BAAAAPRhvB8FAADoeh6PR7sr27Rme4O2lTbL4zE2bzZLoxJCNGVEqIZGB0iq1NdbK72StSvwnrTvolzrQV5//fX2bRnvv/9+n5RUtbW17ccmk0m33367nE6n3n77bY0fP/6IcydMmKBXXnlF9957r9577z1VVVXpt7/9rf7+9793dWwAAAAAAAAAwClyujzaUtKkNdsbVFFtfHVZSKBZE4b108RhoQoLtnghIdC1KNd6iC1btuiJJ56QJC1YsEAZGRk+ydHY2Nh+/MEHH8hut+utt97SmDFjjnm+yWTSPffco40bN2rHjh3asGGDVqxYofPPP7+rIgMAAAAAAAAATkF9s0vrdjZo3a5GNba4Dc8PjvTX5BGhGp0YIn9L37vdDnovyrUeYP/+/br11lvldDp1zz336KqrrvJZlsPLtS1btuhXv/rVcYu1Q/z8/PTLX/5S//M//yNJeu+99yjXAAAAAAAAAKCbKj/47daPW0qa5DLYqZlM0si4YE0eEarEgQEymSjV0PtQrnVzdXV1uvHGG1VZWalHHnlEmZmZPs1z+A0lY2NjNX/+/A7NzZw5U4GBgWptbVVubq7a2toUEBDgrZhec+aZZ8rf39/XMbqc0+k8av/gs846S35+/CcEAAAA3sf7UQAAAO9zudxa8/U+Lc0r1rbiasPz/YL8dMHEeM2dmqhBUSFeSOhbvCf9L4fDoW3btvk6hk/1vX/qPUh9fb3mz58vu92uRYsWaebMmb6OpODgYDU0NEiSrr766g4XZAEBARo2bJi2bNkih8Oh7du36+yzz/ZmVK/w8/Prk+XasfBnAQAAAF/i/SgAAEDnqG9q06erS7R0VZEqq5sNz8cNClVGmlXnnxuv4MC+VTn01fekHo/H1xF8rm/9m96D1NbWav78+SosLNSLL76oqVOn+jqSJKlfv37t5VpwcLCh2ZiYGG3ZskWStG/fvh5ZrgEAAAAAAABAb7B7b52yc4u0fN0etTlchufHjxykzDSrxg0fJLOZrR/Rt1CudUPV1dW6/vrrtXv3br388suaMGGCryO1i4iI0L59+yRJTU1Nhmb79evXfmx0FgAAAAAAAABwetxuj9Z/s09ZNru+3FFpeD4wwKILJsRrXqpV8TFhXkgI9AyUa93MoRVrh4q18ePH+zrSEaxWq3bs2CFJOnjwoKHZw+/XdnjRBgAAAAAAAADwnqYWh5av26Nsm13lBxoNzw+KDNa8VKtmT05UaHDf2wYR+C7KtW6koaFBN9xwg4qLi/Xqq69q3Lhxvo50lGHDhmnZsmWSJLvdbmi2paWl/TgiIqJTcwEAAAAAAAAAjrS3qlFLcov0WUGJmlqchudHWaOVmWbV5FGDZbGYvZAQ6Jko17qJtrY23XLLLdq5c6f++te/dqhYczgc+tWvfqVHH33U8P3PTtXhK+m2b99uaLampqb9ODk5ubMiAQAAAAAAAAD+j8fj0ebCA8rKsavg673yeIzN+1nMmjF+qDLTUmQdyiIJ4Fgo17oBj8ejO++8U+vXr9fzzz+vSZMmdWhu27Ztys/P77JiTZImTZqk/v37q6amRhUVFdq+fbtGjBjRodnS0lJJUnx8vKKjo70ZEwAAAAAAAAD6lFaHSys3lCrbZldxRZ3h+ciwQM2dnqyLpySpf1igFxICvQflWjfw3HPPaenSpXr44Yc1Y8aMDs8tW7ZMCQkJXkx2ND8/P11yySV6++23JUlLly7tULl24MABVVZ+e4PMWbNmeTUjAAAAAAAAAPQVVbXN+mhVsZblF6uusc3w/LD4/spMs2r62KHy92PrR6Aj+H+Kj61cuVLPPvusbr75Zl122WUdnisrK9O777573HKtvLxcN954o8aNG6eMjAytWrWqsyLrF7/4hUJCQiRJb7/9tmpra086k5ubK0myWCz66U9/2mlZAAAAAAAAAKAv2l5yUI++tU43/Okz/ePzHYaKNbPZpNSxQ/TobWl6/H/Sdd658RRrgAGsXPOhyspKLViwQFOmTNHtt9/e4bmNGzdqwYIFamxsPG65tmDBAhUUFEiSduzYoVtuuUUff/yxYmNjTzv3oEGDdPvtt+vhhx9WQ0OD7r//fj3++OPHPd/j8ei1116TJN1+++0aOnToaWcAAAAAAAAAgL7G6XIr76tyZdvs2r672vB8WIi/LpqSpLnTkjUwsutuNwT0NpRrPrRo0SJVV1dr165dmjt3bodm6urqVFVV1f74eOXali1bjnjc3NyszZs3d0q5JknXX3+99uzZo7fffltLlizR0KFD9atf/Uomk+mI8zwejx5++GFt27ZN3/ve93TTTTd1yusDAAAAAAAAQF9R29CqZauL9VFesQ7WtRieTxgcpsw0q2aMj1NQALUAcLr4f5EPHThwQNK3K9gO3Y/MqOOVa6NHj25fuSZJ/v7+Gjly5Cm9xvHcfffdSklJ0WOPPaYXX3xRX375pebPn6+RI0fK6XRq27ZteuONN7Rp0yb95je/0Y033tiprw8AAAAAAAAAvVlxRZ2ycgq1ckOp2pxuQ7MmkzTxzMHKTLNqzLABRy2MAHDqKNd6uOOVawsXLtQf//hHrV27VjExMfrNb35z3HNPlclk0lVXXaWLLrpIH330kb744gvdf//9OnDggAIDAxUXF6cZM2bo0Ucf1eDBgzv1tQEAAAAAAACgN3K5PVr79V5l2+zatOuA4fngQD/NnpSgS1KTNWRAqBcSAqBc86Hnn3/ea9ceMmSIXnrpJa9d/3ADBgzQNddco2uuuaZLXg8AAAAAAAAAepvGZoc+K9itpXl27a1qMjwfG91P81KTNWtSgkKC/L2QEMAhlGsAAAAAAAAAAPhIeWWDsm12fbFut5pbXYbnxw4boMy0FJ17ZowsZrZ+BLoC5RoAAAAAAAAAAF3I4/Fo445KZdvsWrdtn+H5AD+zzp8Qr4xUqxJjw72QEMCJUK4BAAAAAAAAANAFWtqcWrG+VNk2u/bsqzc8Hx0RpEumJ+vCyYmKCA30QkIAHUG5BgAAAAAAAACAF+2vbtJHeUX6ZHWJGpodhudHJkYqMy1FU8fEys9i9kJCAEZQrgEAAAAAAAAA0Mk8Ho+2FR9UVo5d+Vsq5HZ7DM37WUxKHTtUGWlWDU+I9FJKAKeCcg0AAAAAAAAAgE7icLpk+7Jc2bZC7SqtNTwfERqgi6cmae60ZEWFB3khIYDTRbkGAAAAAAAAAMBpqq5v0bJVxfoov1g19a2G561DIpSRZlX6uKEK8Ld4ISGAzkK5BgAAAAAAAADAKdpVWqNsm105G8vkdLkNzZpN0uTRscpMs2qUNVomk8lLKQF0Jso1AAAAAAAAAAAMcLncWr1lr7Jshfq66KDh+X5Bfpo9OVHzUq2KiQrxQkIA3kS5BgAAAAAAAABAB9Q3temzNSVaklekyupmw/NDB4YqI82qmRPiFRzIx/NAT8X/ewEAAAAAAAAAOIE9++qVbbNr+fo9am1zGZ4fP2KQMtKsGj9ikMxmtn4EejrKNQAAAAAAAAAAvsPt9mjD9v3KyinUxh2VhucDAyyaOSFeGalWxceEeSEhAF+hXAMAAAAAAAAA4P80tzr1xdrdWpJrV1llo+H5QZHBumS6VRdOTlBoSIAXEgLwNco1AAAAAAAAAECft7eqUUtyi/RZQYmaWpyG50dZo5WZZtXkUYNlsZi9kBBAd0G5BgAAAAAAAADokzwej7YUVinLVqiCrXvl9hib97OYNWP8UGWkWpUS198rGQF0P5RrAAAAAAAAAIA+pc3h0soNpcqy2VVcUWd4PjIsUHOmJeviqYmKDAvyQkIA3RnlGgAAAAAAAACgT6iqbdZHq4q1LL9YdY1thufPiO+vzDSrUscOlb8fWz8CfRXlGgAAAAAAAACgV9teclBZNrvyviqXy+Dej2azSdPOjlVmWopGJkXKZDJ5KSWAnoJyDQAAAAAAAADQ6zhdbuV9Va5sm13bd1cbng8L8ddFU5I0d1qyBkYGeyEhgJ6Kcg0AAAAAAAAA0GvUNrTqk9Ul+mhVkapqWwzPJwwOU2aaVTPGxykogI/QARyN/zIAAAAAAAAAAHq84oo6ZeUUauWGUrU53YZmTSZpwpkxykyzauywgWz9COCEKNcAAAAAAAAAAD2Sy+3R2q/3Kttm16ZdBwzPBwf6adakBM1LTdaQAaFeSAigN6JcAwAAAAAAAAD0KI3NDn2+dreW5Nq1t6rJ8Pzg6BBlpFo1a1KCQoL8vZAQQG9GuQYAAAAAAAAA6BHKKxuUnWvXF2t3q7nVZXh+7LABykxL0blnxshiZutHAKeGcg0AAAAAAAAA0G15PB59uaNSWTa71n+zTx6PsfkAP7POOzdeGWlWJcWGeyckgD6Fcg0AAAAAAAAA0O20tDm1Yn2psm127dlXb3g+OiJIl0xP1oWTExURGuiFhAD6Kso1AAAAAAAAAEC3UVndrKV5dn26pkT1TQ7D8yMTI5WZlqKpY2LlZzF7ISGAvo5yDQAAAAAAAADgUx6PR9uKDyrLZlf+5gq53cb2frSYTUodO1SZ6VYNT4j0UkoA+BblGgAAAAAAAADAJxxOl2xflivbVqhdpbWG58P7BWjO1CTNmZak6IhgLyQEgKNRrgEAAAAAAAAAulR1fYuWrSrWR/nFqqlvNTyfPCRcmWlWpY+LU4C/xQsJAeD4KNcAAAAAAAAAAF1iV2mNsm125Wwsk9PlNjRrNkmTR8cqI82q0dZomUwmL6UEgBOjXAMAAAAAAAAAeI3L5dbqrXuVbbNrq73K8Hy/ID/NnpyoS6Yna3B0Py8kBABjKNcAAAAAAAAAAJ2uoalNn64p0dK8Iu2vbjY8P3RgP2WkWjVzYoKCA/koG0D3wX+RAAAAAAAAAACdZs++emXb7Fq+fo9a21yG58ePGKSMNKvGjxgks5mtHwF0P5RrAAAAAAAAAIDT4nZ7tGH7fmXb7Nqwfb/h+cAAi2ZOiFdGqlXxMWFeSAgAnYdyDQAAAAAAAABwSppbnVq+dreyc+0qq2w0PD8oMliXTLfqwskJCg0J8EJCAOh8lGsAAAAAAAAAAEP2VjVqaV6RPltTosYWp+H5UdZoZaZZNXnUYFksZi8kBADvoVwDAAAAAAAAAJyUx+PRlsIqZdkKVbB1r9weY/N+FrPSxw1VZppVKXH9vZIRALoC5RoAAAAAAAAA4LjaHC6t3FCq7Fy7isrrDM9HhgVqzrRkXTw1UZFhQV5ICABdi3INAAAAAAAAAHCUqtpmfbyqWB/nF6uusc3w/Bnx/ZWZZlXq2KHy92PrRwC9B+UaAAAAAAAAAKDdjt3VysqxK/erMrkM7v1oNps09exYZaZZdWZSlEwmk5dSAoDvUK4BAAAAAAAAQB/ndLm1alO5smx2bS+pNjwfGuyvi6Yk6pLpVg2MDPZCQgDoPijXAAAAAAAAAKCPqm1o1adrSrQ0r0hVtS2G5+NjwpSZZtV558YpKICPmwH0DfzXDgAAAAAAAAD6mOKKOmXb7PrP+j1qc7oNzZpM0oQzY5SZZtXYYQPZ+hFAn0O5BgAAAAAAAAB9gMvt0bqv9yrLZtemXQcMzwcHWjRrUqLmpSZryIBQLyQEgJ6Bcg0AAAAAAAAAerGmFoc+K9itJbl27a1qMjw/ODpE81KtmjUxQf2C/b2QEAB6Fso1AAAAAAAAAOiFyisblJ1r1xdrd6u51WV4fswZA5SZZtWEswbLYmbrRwA4hHINAAAAAAAAAHoJj8ejr3ZWKstm17pt++TxGJsP8DNrxvg4ZaanKCk23DshAaCHo1wDAAAAAAAAgB6upc2p/6wvVXauXbv31huej44I0iXTk3Xh5ERFhAZ6ISEA9B6UawAAAAAAAADQQ1VWN2tpnl2frilRfZPD8PyIxEhlplk1bcwQ+VnMXkgIAL0P5RoAAAAAAAAA9CAej0fbig8qy2ZX/uYKud3G9n60mE1KHTtUmelWDU+I9FJKAOi9KNcAAAAAAAAAoAdwON2yfVmmbFuhdpXWGp4P7xegOVOTNGdakqIjgr2QEAD6Bso1AAAAAAAAAOjGqutbtCy/RB+vKlJ1favh+aTYcF2ablX6uDgF+Fu8kBAA+hbKNQAAAAAAAADohgpLa5RlsytnY5mcLrehWZNJmjxqsDLTUjQ6JVomk8lLKQGg76FcAwAAAAAAAIBuwuVya/XWvcq22bXVXmV4vl+Qn2ZPTtQl05M1OLqfFxICACjXAAAAAAAAAMDHGpra9Oma3VqaZ9f+6mbD80MG9FNGmlUzJ8QrJMjfCwkBAIdQrgEAAAAAAACAj+zZV6/sXLuWr9uj1jaX4flxwwcqMz1F40cMktnM1o8A0BUo1wAAAAAAAACgC7ndHm3Yvl/ZNrs2bN9veD4wwKKZ58YrI82q+JgwLyQEAJwI5RoAAAAAAAAAdIHmVqeWr92t7NwilVU2GJ4fGBmsedOTdeHkRIWGBHghIQCgIyjXAAAAAAAAAMCL9h1s0pJcuz5bU6LGFqfh+VHWaGWkWTVl1GBZLGYvJAQAGEG5BgAAAAAAAACdzOPxaIu9Stk2u9ZsqZDbY2zez2JW+rihykiz6oy4/l7JCAA4NZRrAAAAAAAAANBJ2hwu5WwsVZbNrqLyOsPz/cMCNXdqki6elqTIsCAvJAQAnC7KNQAAAAAAAAA4TVW1zfp4VbGWrS5WbUOb4fkz4iKUkZaitHOGyN/P4oWEAIDOQrkGAAAAAAAAAKdox+5qZeXYlftVmVwG9340m02aenasMtOsOjMpSiaTyUspAQCdiXINAAAAAAAAAAxwutzK31ShLFuhvimpNjwfGuyvi6Ykau70ZA2KDPFCQgCAN1GuAQAAAAAAAEAH1DW26ZPVxVqaV6Sq2hbD8/ExYcpIs+r88XEKCuSjWQDoqfgvOAAAAAAAAACcQElFnbJsdv1n/R61Od2G5yecGaPMNKvOGT6QrR8BoBegXAMAAAAAAACA73C5PVr39V5l2ezatOuA4fngQIsumJigjFSrhgwM9UJCAICvUK4BAAAAAAAAwP9panHo84Ldys61a29Vk+H5wdEhmpdq1ayJCeoX7O+FhAAAX6NcAwAAAAAAANDnlR9o0JLcIn1esFvNrU7D82POGKDMNKsmnDVYFjNbPwJAb0a5BgAAAAAAAKBP8ng8+mpnpbJsdq3btk8ej7H5AD+zZoyPU0aaVclDIrwTEgDQ7VCuAQAAAAAAAOhTWtqcWrmhVFk2u3bvrTc8HxUepEumJ+uiKYmKCA30QkIAQHdGuQYAAAAAAACgT6isbtZHq4r0yepi1Tc5DM+PSIxUZppV08YMkZ/F7IWEAICegHINAAAAAAAAQK/l8Xj0TXG1smyFWrW5Qm63sb0fLWaTUscOVWa6VcMTIr2UEgDQk1CuAQAAAAAAAOh1HE63cr8qU5bNrl17agzPh/cL0MVTkzR3WpKiI4I7PyAAoMeiXAMAAAAAAADQa9TUt+rj/GJ9vKpI1fWthueTYsOVmWZV+vg4BfpbvJAQANDTUa4BAAAAAAAA6PHsZbXKshVq5YYyOV1uQ7MmkzR51GBlpqVodEq0TCaTl1ICAHoDyjUAAAAAAAAAPZLL7dGaLRXKstm11V5leD4kyE+zJyVqXmqyBkf380JCAEBvRLkGAAAAAAAAoEdpaGrTp2t2a2meXfurmw3PDxnQTxlpVs2cEK+QIH8vJAQA9GaUawAAAAAAAAB6hD376rUk164v1u1Ra5vL8Py44QOVmZ6i8SMGyWxm60cAwKmhXAMAAAAAAADQbbndHm3Yvl/ZNrs2bN9veD4wwKKZ58ZrXmqyEgaHeyEhAKCvoVwDAAAAAAAA0O00tzq1fN0eZdvsKqtsMDw/oH+w5k1P1oVTEhUWEuCFhACAvopyDQAAAAAAAEC3se9gk5bk2vXZmhI1tjgNz5+VHKXMtBRNGT1YFovZCwkBAH0d5RoAAAAAAAAAn/J4PNpir1K2za41Wyrk9hib97OYlT5uqDJSrTojvr9XMgIAcAjlGgAAAAAAAACfaHO4lLOxTNk2u+zltYbn+4cGas60JM2ZmqTI8CAvJAQA4GiUawAAAAAAAAC61MG6Fn20qkjL8otV29BmeD4lLkKZaValnTNU/n4WLyQEAOD4KNcAAAAAAAAAdImde6qVlWNX7ldlcrqM7f1oNklTzx6ijDSrzkqOkslk8lJKAABOjHINAAAAAAAAgNc4XW7lb65QVk6hvimpNjwfGuyvi6Ykau70ZA2KDPFCQgAAjKFcAwAAAAAAANDp6hrb9MnqYn2UV6QDtS2G5+NjQpWRlqLzx8cpKJCPMQEA3Qd/KwEAAAAAAADoNCUVdcrOtWvF+lK1OVyG5yecGaPMNKvOGT6QrR8BAN0S5RoAAAAAAACA0+J2e7Ru2z5l2Qr11c4DhueDAy26YEKC5qVZNXRgqBcSAgDQeSjXAAAAAAAAAJySphaHPi/YrSW5RaqoajQ8HxMVonmpVs2elKB+wf5eSAgAQOejXAMAAAAAAABgSPmBBi3JLdLnBbvV3Oo0PH92ygBlpls18azBspjZ+hEA0LNQrgEAAAAAAAA4KY/Ho007DyjLZtfabXvl8Rib9/cz67zxccpIsyp5SIR3QgIA0AUo1wAAAAAAAAAcV0ubUys3lCrbZlfJ3nrD81HhQZo7PUkXT0lSRGigFxICANC1KNcAAAAAAAAAHOVATbOW5hXpk9XFqm9yGJ4fkRCpjDSrpo0ZIn8/sxcSAgDgG5RrAAAAAAAAACR9u/Xj9pJqZdnsyttULrfb2N6PFrNJ08cOUWaaVSMSo7yUEgAA36JcAwAAAAAAAPo4h9OtvK/KlGWza+eeGsPzYSEBunhqoi6ZnqzoiODODwgAQDdCudbNbN++XR988IEKCgpUWlqq5uZm9evXT4MGDdLYsWM1e/Zspaeny2Qy+Tpqh1x77bVavXq1HnroIV1++eW+jgMAAAAAAIDD1NS3atnqYn28qkgH61oNzyfFhiszzar08XEK9Ld4ISEAAN0P5Vo3UV5ergcffFD5+fm68sordffddys+Pl5ut1vl5eWy2Wx666239M9//lOjRo3Sk08+qcTERF/HPqF//vOfWr16ta9jAAAAAAAA4DvsZbXKshUqZ2OZHE63oVmTSZp01mBlplt1dsqAHvNL4AAAdBbKtW7gq6++0k033aTo6GgtXbpUsbGxRzwfExOjcePG6Uc/+pGuv/56bd26VT/+8Y/1/vvvKy4uzkepT2z//v165JFHfB0DAAAAAAAA/8fl9mjNlgpl2ezaaq8yPB8S5KfZkxI1LzVZg6P7eSEhAAA9A+Wajx08eFC/+MUvVFNTo7fffvuoYu1wgwcP1pNPPqnLLrtM1dXV+u1vf6t33nmnC9N23H333ae6ujpfxwAAAAAAAOjzGpod+mxNiZbkFWn/wSbD80MG9FNGmlUzJ8QrJMjfCwkBAOhZKNd87IUXXtDBgwc1cuRIpaSknPT8kSNHKjU1VTk5OVq/fr0KCgo0adKkLkjacR9//LG++OILTZo0SQUFBb6OAwAAAAAA0CeV7q9Xts2u5ev2qKXNZXj+nOEDlZlm1bkjY2Q2s/UjAACHUK752LJlyyRJDoejwzPTpk1TTk6OJGnFihXdqlyrra3Vn/70J11xxRUaNGgQ5RoAAAAAAEAXcrs92rhjv7Jsdm34Zr/h+QB/i2ZOiFdGarISBod7ISEAAD0f5ZoPNTU1ad++fZKkwsJC5eTkKD09/aRz8fHx7ce7d+/2Wr5T8dBDD8nf31933HGH3njjDV/HAQAAAAAA6BOaW51avm6PluTaVbq/wfD8gP7Bmjc9WRdOSVRYSIAXEgIA0HtQrvlQc3PzEY8XLlzYoXItODi4/bitra3Tc52qvLw8/fvf/9ZLL72k0NBQX8cBAAAAAADo9fYfbNKSvCJ9uqZEjc0d3xnpkLOSo5SZlqIpowfLYjF7ISEAAL0P5ZoPRUVFaeDAgaqsrJSk9lVsJ1NdXd1+HBsb65VsRjU1Nenuu+9WZmamZsyY4es4AAAAAAAAvZbH49FWe5WybHat2VIht8fYvJ/FrPRxQ5WRatUZ8f29khEAgN6Mcs2HTCaTnnrqKT311FOqqanRNddc06G5LVu2tB+PGDHCW/EMefLJJ9XS0qLf/e53vo4CAAAAAADQK7U5XMrZWKZsm1328lrD8/1DAzVnWpLmTE1SZHiQFxICANA3UK752IQJE/TWW291+HyPx6NPP/1UkuTn56c5c+Z4K1qHffnll3rrrbf0+OOPKzIy0tdxAAAAAAAAepWDdS36aFWRluUXq7bB+C1CUuIilJlmVdo5Q+XvZ/FCQgAA+hbKtR5mxYoVKisrkyTNmjVLUVFRPs3T1tam3//+9zr//PM1d+5cn2YBAAAAAADoTXbuqVaWza7cL8vkdBnb+9FskqaePUQZaVadlRwlk8nkpZQAAPQ9lGs9iMvl0tNPPy1JCgkJ0R133OHjRNKLL76o/fv3629/+5uvo3QJp9PZJ9+MOp3ODn0NAAAA8AbejwLoS5wut9Zs3acluUXavrvG8Hy/ID/NnpSgi6cmalBk8LfX5L+ZAHDaeE/6X331+z4c5VoP8vrrr+ubb76RJN1///2Kj4/3aZ6dO3fqxRdf1L333qtBgwb5NEtX2bZtm68jdBtff/21ryMAAACgD+P9KIDepqnVpfW7GrV2Z6PqmlyG5weE+2nyiFCNTQ5RgF+b9u7Zqb17vBAUANCO96R9F+VaD7FlyxY98cQTkqQFCxYoIyPDp3ncbrd+//vfa8KECfrhD3/o0ywAAAAAAAA91f4ah1Zvb9Cm4ibDWz9K0rAhQZo8IlQpgwP75G47AAD4AuVaD7B//37deuutcjqduueee3TVVVf5OpLeeOMN7dy5U1lZWb6OAgAAAAAA0KO4PR7tLG/R6m8aVLSv1fC8v59J46whmjQ8VAPC/b2QEAAAnAjlWjdXV1enG2+8UZWVlXrkkUeUmZnp60jas2ePnn76af3P//yPz7emBAAAAAAA6ClaHW5ttDeqYHujDjYYv19N/34WTRoeqnEp/RQcYPZCQgAA0BGUa91YfX295s+fL7vdrkWLFmnmzJm+jiRJuueeezR8+HBdc801vo7S5c4880z5+/e93whzOp1H7R981llnyc+P/4QAAADA+3g/CqCn21vVqKWrSrR8XamaW42XaqOtUbpkepImnBkji5mtHwHAF3hP+l8Oh0Pbtm3zdQyf6nv/1HuI2tpazZ8/X4WFhXrxxRc1depUX0eSJP3rX//S2rVr9eGHH8ps7nu/IeXn59cny7Vj4c8CAAAAvsT7UQDdncfj0aZdB5SVY9fabXvlMXg7NX8/s84bH6eMNKuSh0R4JyQA4LT01fekHqN/qfVClGvdUHV1ta6//nrt3r1bL7/8siZMmODrSJKkyspKLVy4UDfffLPOOOMMX8cBAAAAAADodlodLv1nfamybYUq2VtveD4qPEhzpyfp4ilJiggN9EJCAABwuijXuplDK9YOFWvjx4/3daR277//vmpra/XKK6/ob3/720nPb2traz++77779Oc///mI51944YVuUxwCAAAAAACcjgM1zfpoVZGW5Zeovqnt5APfMSIhUhlpVk0bM0T+fn1vtyAAAHoSyrVupKGhQTfccIOKi4v16quvaty4cb6OdISrrrpKGRkZHT7/7bff1quvvipJuv3223XRRRcd8fzAgQM7NR8AAAAAAEBX8ng82l5SrSybXXmbyuV2G9smy2I2afqYIcpIt2pkYpSXUgIAgM5GudZNtLW16ZZbbtHOnTv117/+tUPFmsPh0K9+9Ss9+uijCg4O9nrG8PBwhYeHd/j8sLCw9uPIyEjFxcV5IxYAAAAAAECXcjjdyvuqTFk2u3buqTE8HxYSoIunJuqS6cmKjvD+ZzoAAKBzUa51Ax6PR3feeafWr1+v559/XpMmTerQ3LZt25Sfn98lxRoAAAAAAEBfV1Pfqk9WF+ujVUU6WNdqeD4pNlwZaVbNGB+nQH+LFxICAICuQLnWDTz33HNaunSpHn74Yc2YMaPDc8uWLVNCQoIXkwEAAAAAAKCovFZZOXat3Fgqh9NtaNZkkiadNVgZaVaNOWOATCaTl1ICAICuQrnmYytXrtSzzz6rm2++WZdddlmH58rKyvTuu+8qLS3tmM+Xl5frj3/8o9auXau4uDjdddddmjZtWmfFBgAAAAAA6NVcbo8KtlYoy2bXlsIqw/MhQX6aNSlB86ZbFTugnxcSAgAAX6Fc86HKykotWLBAU6ZM0e23397huY0bN2rBggVqbGw87sq1BQsWqKCgQJK0Y8cO3XLLLfr4448VGxvbKdk7wuPxHPMYAAAAAACgu2poduizNSVaklek/QebDM/HDuinjFSrLpgYr5Agfy8kBAAAvka55kOLFi1SdXW1du3apblz53Zopq6uTlVV//1tqeOVa1u2bDnicXNzszZv3tyl5VppaWn7cUlJSZe9LgAAAAAAgFGl++u1JLdIX6zdrZY2l+H5c4YPVGaaVeeOjJHZzNaPAAD0ZpRrPnTgwAFJ365gq6ysPKVrHK9cGz16dPvKNUny9/fXyJEjT+k1OsLtdquhoUGSVFtbq9WrVys7O7v9+TfeeEPx8fGaMmWKIiIiZLFY1K8fWyIAAAAAAADf8Xg82ri9Ulm2Qq3/Zr/h+QB/i2ZOiFdGarISBod7ISEAAOiOKNd6uOOVawsXLmy/51pMTIx+85vfHPfczlBeXq4LLrjguM83NzfrD3/4Q/vjSZMm6c033/RaHgAAAAAAgONpaXVq+fo9yrbZVbq/wfD8gP7BumR6si6akqiwkAAvJAQAAN0Z5ZoPPf/881679pAhQ/TSSy957frfFRcXp+3bt3fZ6wEAAAAAABi1/2CTluQV6dM1JWpsdhiePzMpSpnpVk0dHSuLxeyFhAAAoCegXAMAAAAAAECv5fF4tNVepSybXWu2VMjtMTbvZzEp7ZyhykxL0Rnx/b2SEQAA9CyUawAAAAAAAOh12hwu5WwsU3auXfayWsPz/UMDNWdakuZMTVJkeJAXEgIAgJ6Kcg0AAAAAAAC9RnVdiz5aVaxl+cWqaWg1PG8dGqHMNKvSxw2Vv5/FCwkBAEBPR7kGAAAAAACAHm/nnmpl2ezK/bJMTpexvR/NJmnK2bHKTEvRWclRMplMXkoJAAB6A8o1AAAAAAAA9Egul1urNlco22bXtuKDhuf7BfvrosmJumR6sgZFhXghIQAA6I0o1wAAAAAAANCj1De16ZPVJVqaV6QDNc2G5+MGhSozzarzz41XUCAfjwEAAGN49wAAAAAAAIAeoWRvnbJtdq1YX6o2h8vw/IQzY5SRZtW44QPZ+hEAAJwyyjUAAAAAAAB0W263R+u+2afsHLu+3FlpeD4owKJZExM0L82qoQNDvZAQAAD0NZRrAAAAAAAA6HaaWhz6fO1uLcktUsWBRsPzg6JClJGarFmTEhUa7O+FhAAAoK+iXAMAAAAAAEC3UXGgUUty7fqsYLeaW52G589OGaCMNKsmjRosi5mtHwEAQOejXAMAAAAAAIBPeTwebdp1QNk2uwq+3iuPx9i8v59ZM8bFKTPdquQhEd4JCQAA8H8o1wAAAAAAAOATrQ6X/rO+VNm2QpXsrTc8HxUeqLnTknXx1CRFhAZ6ISEAAMDRKNcAAAAAAADQpQ7UNOujVUVall+i+qY2w/PDE/orIy1F08cMkb+f2QsJAQAAjo9yDQAAAAAAAF3im5KDysqxa9WmcrncxvZ+NJtNSh0zRBnpVo1MjPJSQgAAgJOjXAMAAAAAAIDXOJxu5W0qV7atUDt21xieDwsJ0MVTEzV3WrIG9A/u/IAAAAAGUa4BAAAAAACg09U2tGpZfrE+WlWkg3WthucTB4cpIy1F550bp0B/ixcSAgAAnBrKNQAAAAAAAHSaovJaZeXYtXJjqRxOt6FZk0madNZgZaRZNeaMATKZTF5KCQAAcOoo1wAAAAAAAHBaXG6PCrbuVbbNrs2FBwzPBwf6afbkBM2bblXsgH5eSAgAANB5KNcAAAAAAABwShqaHfq8oERLcou072CT4fnYAf2UkWrVBRPjFRLk74WEAAAAnY9yDQAAAAAAAIaUVTYo22bXF2t3q6XNZXj+nGEDlZlu1bkjY2Q2s/UjAADoWSjXAAAAAAAAcFIej0cbt1cqy1ao9d/sNzwf4G/R+efGKSPNqsTB4V5ICAAA0DUo1wAAAAAAAHBcLa1OrVi/R1k2u0r3NxieHxARpEtSrbpwcqLC+wV4ISEAAEDXolwDAAAAAADAUfYfbNLSvCJ9sqZEjc0Ow/NnJkUpM92qqaNjZbGYvZAQAADANyjXAAAAAAAAIOnbrR+/LjqoLFuhVm+ukNtjbN7PYlLqOUOVmWbVsPhI74QEAADwMco1AAAAAACAPs7hdClnY5mybHbZy2oNz/cPDdTFU5M0Z1qSosKDvJAQAACg+6BcAwAAAAAA6KOq61r0cX6xPs4vVk19q+F569AIZaZZlT5uqPz9LF5ICAAA0P1QrgEAAAAAAPQxu/bUKMtWKNuXZXK6jO39aDZJU86OVWZais5KjpLJZPJSSgAAgO6Jcg0AAAAAAKAPcLncyt9Soawcu7YVHzQ83y/YXxdOTtQl05MVExXihYQAAAA9A+UaAAAAAABAL1bf1KZPVpdoaV6RDtQ0G56PGxSqjDSrZp4br6BAPkoCAADgHREAAAAAAEAvVLK3Ttk2u1asL1Wbw2V4/tyRg5SZlqJzhg+U2czWjwAAAIdQrgEAAAAAAPQSbrdH67/ZpyybXV/uqDQ8HxRg0cwJ8cpIsypuUJgXEgIAAPR8lGsAAAAAAAA9XFOLQ1+s3aMluXaVH2g0PD8oKkTzpidr9uREhQb7eyEhAABA70G5BgAAAAAA0EPtrWpUdq5dnxfsVlOL0/D86JRoZaZZNWlUrCxs/QgAANAhlGsAAAAAAAA9iMfj0aZdB5Rts6vg673yeIzN+/uZNWNcnDLSrLIOjfBOSAAAgF6Mcg0AAAAAAKAHaHW4tHJDqbJtdhVX1BmejwoP1Nxpybp4apIiQgO9kBAAAKBvoFwDAAAAAADoxqpqm7U0r0jL8ktU39RmeH5YfH9lpqdo+pgh8vczeyEhAABA30K5BgAAAAAA0A19U3JQ2Tl25W0ql8ttbO9Hs9mk6WOGKDPNqhGJkTKZuJ8aAABAZ6FcAwAAAAAA6CYcTrfyNpUr21aoHbtrDM+HhQTo4qmJmjstWQP6B3d+QAAAAFCuAQAAAAAA+FptQ6uW5Rfro1VFOljXang+YXCYMtOsmjE+TkEBfNwDAADgTbzbAgAAAAAA8JGi8lpl2+z6z4ZSOZxuQ7MmkzTxzMHKTLNqzLABbP0IAADQRSjXAAAAAAAAupDL7VHB1r3Kttm1ufCA4fngQD/NnpSgS1KTNWRAqBcSAgAA4EQo1wAAAAAAALpAY7NDnxWUaElukfYdbDI8HxvdT/PSkjVrYoJCgvy9kBAAAAAdQbkGAAAAAADgRWWVDVpis+uLdbvV3OoyPH/OsIHKSLdqwsgYmc1s/QgAAOBrlGsAAAAAAACdzOPxaOOOSmXb7Fq3bZ/h+QA/s86fEK+MVKsSY8O9kBAAAACninINAAAAAACgk7S0OrVi/R5l59q1Z1+D4fkBEUGaOz1ZF01JUni/AC8kBAAAwOmiXAMAAAAAADhN+6ubtDS3SJ+uKVFDs8Pw/JlJUcpIs2rq2bHys5i9kBAAAACdhXINAAAAAADgFHg8Hn1ddFDZNrvyN5fL7TE272cxKfWcocpMs2pYfKR3QgIAAKDTUa4BAAAAAAAY4HC6ZPuyTFk2uwpLaw3PR4QGaM7UZM2ZlqSo8CAvJAQAAIA3Ua4BAAAAAAB0QHVdiz7OL9bH+cWqqW81PG8dEqGMNKvSxw1VgL/FCwkBAADQFSjXAAAAAAAATmBXaY2ycgpl+7JMTpexvR/NJmny6Fhlplk1yhotk8nkpZQAAADoKpRrAAAAAAAA3+FyubV6y15l2Qr1ddFBw/P9gv114eREXTI9WTFRIV5ICAAAAF+hXAMAAAAAAPg/9U1t+nR1iZauKlJldbPh+bhBocpIs+r8c+MVHMjHLgAAAL0R7/IAAAAAAECft3tvnbJzi7R83R61OVyG58ePHKTMNKvGDR8ks5mtHwEAAHozyjUAAAAAANAnud0erf9mn7Jsdn25o9LwfFCARTMnxGteqlXxMWFeSAgAAIDuiHINAAAAAAD0KU0tDi1ft0fZNrvKDzQanh8UGax5qVbNnpyo0GB/LyQEAABAd0a5BgAAAABAN+dyuXTttdfq8ssv1+WXX+7rOD3W3qpGLckt0mcFJWpqcRqeH2WNVmaaVZNHDZbFYvZCQgAAAPQElGsAAAAAgF5l/fr1Wrp0qdavX6+Kigo1NTUpNDRU0dHRGj16tKZNm6Y5c+YoICDA11E7pLW1Vffff7/Wrl3bacXa/v379dFHH8lms6m4uFgHDx6UyWTSoEGDZLVaNWfOHF1wwQUKCQnplNfzJY/Ho82FB5SVY1fB13vl8Rib97OYNWP8UGWmpcg6NMI7IQEAANCjUK4BAAAAAHqFTZs26U9/+pN27dqlzMxM3XbbbRo8eLAcDocqKiqUm5urrKwsffjhh3r00Ud133336YILLvB17GOqra3Vvn37lJubq3/+85+y2+2dcl2Xy6W//OUveuWVV9TU1KTzzjtPt912m+Lj42U2m1VWVqZPP/1Ud955p6KiovTAAw/ovPPO65TX7mqtDpdWbihVts2u4oo6w/ORYYGaOz1ZF09JUv+wQC8kBAAAQE9FuQYAAAAA6PHeeOMNPfTQQxo/frw+/vhjxcTEHPH8uHHjNHfuXN1444268cYbVVJSol/+8pe65557dOWVV/oo9ZEKCgp03XXXyePxyO12d/r129ra9Otf/1qfffaZAgMD9dxzz2nWrFlHnDNu3DjNmzdPa9eu1W233aabbrpJv/nNb3TjjTd2eh5vqapt1tK8Ii3LL1F9U5vh+WHx/ZWZZtX0sUPl78fWjwAAADga5RoAAAAAoEd777339OCDDyopKUkvv/yygoODj3tuUlKS/vrXv+rSSy9Vc3OzHnzwQY0aNUpjx47twsTHNnr0aH344Yftj1taWrRs2TK98sornXL9P/3pT/rss88kSXffffdRxdrhJk6cqEcffVQ///nP9fjjj2vAgAHd/l5v20sOKstmV95X5XK5je39aDabNH3MEGWmWTUiMVImk8lLKQEAANAbUK4BAAAAAHqsyspKLVy4UJJ09dVXn7BYOyQxMVE//vGP9dprr8npdOqxxx7Tm2++6e2oJxUSEqLhw4cf8bUxY8boP//5jwoLC0/r2rm5uXrvvfckSWeddZZ++MMfnnQmLS1N559/vpYvX64HHnhAaWlpGjhw4Gnl6GxOl1t5X5Ur22bX9t3VhufDQvx10ZQkzZ2WrIGRJ/93BwAAAJAk9jcAAAAAAPRYS5YsUWNjo6RvS7OOuuSSS9qPCwoKVF5e3unZOkt0dPRpX+Mvf/lL+7GRbTCvueYaSVJTU5OefPLJ087RWWobWvXe59t1w58+02NvrzdcrCUMDtOtPxyrV+++UNdechbFGgAAAAxh5RoAAAAAoMdatWpV+/HOnTuVnp7eobmRI0fKYrHI5XJJktatW6fMzEyvZPS1wsJCrVu3TpJkMpk0c+bMDs9OmDBBoaGhamhoUFZWlhYsWKCIiAhvRT2povJaZdvs+s+GUjmcxu5LZzJJE88crMw0q8YMG8DWjwAAADhllGsAAAAAgB5r37597ccvvPCCLr30Ug0YMOCkcwEBAQoLC1NNTY0kaf/+/d6K6HOrV69uPx4yZIihlXD+/v4655xzlJubK4fDoc8++0w/+MEPvBHzuFxuj9Z+vVdZOXZtLjxgeD440E+zJyXoktRkDRkQ6oWEAAAA6Gso1wAAAAAAPZbH42k/rqur07vvvqtbb721Q7P+/v7tx263sVVQPcm2bdvaj5OSkgzPJycnKzc3V5L0xRdfdFm51tjs0GcFu7Uk1659B5sMz8dG99O81GTNmpSgkCD/kw8AAAAAHUS5BgAAAADosc4++2zt2LGj/XFLS0uH5lwuV/uqNUkaNGhQZ0frNg4ePNh+HBYWZnh+8ODB7cfffPNNp2Q6kbLKBi2x2fXFut1qbnUZnh87bIAy01J07pkxspjZ+hEAAACdj3INAAAAANBj/frXv1ZDQ4M2btyouLg4/eQnP+nQ3I4dO+RwONofn3322d6K6HPNzc3tx4GBgYbng4OD24/Ly8vV0NCg0NDO3V7R4/Fo445KZdvsWrdt38kHviPAz6zzJ8QrI9WqxNjwTs0GAAAAfBflGgAAAACgxxowYICeeeYZw3Off/55+3FSUpJSUlI6M1a3EhIS0n7c1GR8e0WLxXLE4+LiYo0ePfq0c0lSS5tTK9aXKttm15599YbnoyOCdMn0ZF00JUnh/QI6JRMAAABwMpRrAAAAAIA+xel06t///nf74yuvvNKHabwvPPy/K7kO3wqzo0pLS494XF9vvAT7rv3VTfoor0ifrC5RQ7Pj5APfMTIxUplpKZo6JlZ+FvNp5wEAAACMoFwDAAAAAPQp//73v1VWViZJhraS7KkOX5W3c+dOw/PLly8/4nFjY+Mp5fB4PPq66KCybXblb6mQ2+0xNO9nMSl17FBlpFk1PCHylDIAAAAAnYFyDQAAAADQZ9TV1empp56S9O12hw8//LACAnr3doLnnHNO+3FNTY127Nih4cOHd2j2888/V2Fh4RFfM7q1pMPpku3LcmXZClVYWmtoVpIiQgN08dQkzZ2WrKjwIMPzAAAAQGejXAMAAAAA9BkPPvigDhw4IEn6/e9/r4kTJ/o4kfeNGzdOQ4cObV+tt3jxYv3v//7vSecaGhr05z//+YhZSR0uI6vrW7RsVbE+yi9WTX2r4dzWIRHKSLMqfdxQBfhbTj4AAAAAdBHKNQAAAABAn/DBBx/oww8/lCQtWLBAV111lW8DdRGLxaL58+frgQcekCS99dZb+slPfqK4uLjjzrhcLt11112yWq2Kj4/XO++80/5cv379Tvh6u0prlG2zK2djmZwut6GsZpM0eXSsMtOsGmWNlslkMjQPAAAAdAXKNQAAAABAr7du3Trdc889MplMuvvuu/tMsXbIVVddpdzcXK1YsUItLS26+eab9frrrysqKuqoc5ubm/WHP/xBO3fu1Ouvv65nn332iOdDQ0OPmnG53Fq9Za+ybIX6uuig4Xz9gvw0e3Ki5qVaFRMVYngeAAAA6EqUawAAAACAXm379u365S9/KbfbrYceekiXXXaZryN1OZPJpGeeeUZ//OMf9a9//Us7duxQZmambr31Vs2cOVPR0dGqrKzUypUr9eqrryoiIkLvvPOOoqKijrrHWkRERPtxQ1ObPlldoqWrilRZ3Ww419CBocpIs2rmhHgFB/IRBQAAAHoG3rkCAAAAAHqtwsJCXX/99WpoaNDjjz+uOXPm+DqSzwQEBOjPf/6zfvzjH+uNN95QXl6e7r33Xt17772SJH9/f40ePVo/+9nPdPnll8ti+fY+Zw0NDe3X8Pf3V0JCgnbvrVN2bpFWrN+j1jaX4SzjRwxSZrpV44YPktnM1o8AAADoWSjXAAAAAAC9kt1u17XXXqu6ujo9/fTTmjVrlq8jdQtjx47V448/Lo/Ho+rqatXW1srf31+DBg1SQEDAUecfOHCg/Th2aILuf6VAG3dUGn7dwACLZk6IV0aqVfExYaf1PQAAAAC+RLkGAAAAAOh1ioqKdM0116i2tlaLFi3S+eef7+tI3Y7JZFJUVNQx77t2uL379rUfVzvCDRdrgyKDdcl0qy6cnKDQkKPLOwAAAKCnoVwDAAAAAPQqpaWluu6661RTU0Oxdhr2VjXqg+XbdKDyv2VaSPQZHZ4fZY1WZppVk0cNlsVi9kZEAAAAwCco1wAAAAAAvUZlZaWuv/56VVVV6amnnqJYM8jj8WhLYZWybIVas3Wvmg7u/u+TJrNCB4864byfxawZ44cqI9WqlLj+3g0LAAAA+AjlGgAAAACgV2hoaNDPfvYzlZaW6rHHHuvwPdYOHDigoqIiTZw40csJu682h0srN5Qqy2ZXcUVd+9dbava0H4dEp8gSEHLM+ciwQM2Zlqw5U5PUPyzQ63kBAAAAX6JcAwAAAAD0eE6nU7fffru++eYb3Xfffbrkkks6PJuVlaVPP/1U7777rhcTdk9Vtc36aFWxluUXq66x7ajnmyp3tB9HJE456vkz4vsrM82q1LFD5e/H1o8AAADoGyjXAAAAAAA93gMPPKC8vDzdeuutuuKKKwzN5ufnKyEhwUvJug+Hw6GsrCw1NjZq5NjpWrm5Wnlflcvl9hzzfFdbk5oO7JQkBYYPUejg0ZIks9mkaWfHKjMtRSOTImUymbrsewAAAAC6A8o1AAAAAECP9v777+vdd9/V9773Pd12222GZisqKpSfn6+bb775uOd89NFHWrRokSorKzV9+nTde++9ioqKOt3YXe7ee+/Vv/71L0lSyIBhipvy8xOeX1OyWh63U5IUPeIihfcL0EVTkjR3WrIGRgZ7PS8AAADQXVGuAQAAAAB6rB07duiBBx7QOeecowceeMDQrNvt1n333SeHw6GkpKRjnrNhwwb95je/kdvtliQtW7ZMVVVVevPNN7tsxZbH4znmcUfVNrTqk9Ul+nDxkvavNR3YJbfLIbPF/5gzjqaDqi78jyQpJvlc3XnrFZoxPk5BAXyMAAAAAPCuGAAAAADQIzmdTv3v//6v/Pz89NRTTykgIKDDs3a7XY888ohWrFghScfdFvLzzz9vL9YOWbt2rYqLi5WcnHzq4Q0oLS1tP96zZ0+H54or6pSVU6iVG0rV5nRLlgDJ2fp/z3rkam2QOSTyqDm3y6mKjX+X29mi+ESrPvjHCwoPDz/dbwMAAADoNSjXAAAAAAA90pIlS/TNN9/I399f3/ve9zo819bWpqampiO+dryVa8fz3cLNW/Ly8lRRUdH+OCsrS/Pnzz9u2eVye7T2673Kttm1adeBI57rnzhFVTs+a3/saDog/++Ua/5qUc22d9RSXaKRI0fq5ZdfplgDAAAAvoNyDQAAAADQI9XU1EiSHA5H+/GpiIqKUlhY2DGfmzVrlv72t78dUaYNHz7ccBnXEU1NTSotLZXH41FdXZ3WrVunV1555YhzysrK9P3vf1/XXXedhg8froiICEnS0Phkfb52t5bk2rW3qulYl1fUsAvkamtSTfEqSR4d+GaZokd4ZAkIUZhfq6L99mv9qk/V1tama665Rr/+9a8VHMy91QAAAIDvolwDAAAAAPRpiYmJx31u/Pjxevzxx/XMM89o3759mjhxou655x5ZLJZOz7F582Zdc801Jz1v9+7duv/++4/42tjvP67mVtcJ50wmswaNvlQRCZNUU7JGzQcLtXf9G5LHpfDwcIWccYbmz5+vyy67TEOHDj2t7wUAAADozSjXAAAAAAA90nXXXafrrrvO668zd+5czZ071+uvM3nyZG3fvv2k53k8Hn25o1JZNrvWf7NPHo9OWqwdLixqqDIv/B9lpFqVGMuWjwAAAIBRlGsAAAAAAPQALW1OrVhfqmybXXv21Ruej44I0iXTk3Xh5ERFhAZ6ISEAAADQN1CuAQAAAADQje2vbtJHeUX6ZHWJGpodhudHJkYqMy1FU8fEys9i9kJCAAAAoG+hXAMAAAAAoJvxeDzaVnxQWTa78jdXyO32GJq3mE1KHTtUmelWDU+I9FJKAAAAoG+iXAMAAAAAoJtwOF2yfVmubFuhdpXWGp6PCA3QxVOSNGdakqIjgr2QEAAAAADlGgAAAAAAPlZd36Jlq4r1UX6xaupbDc8nDwlXZppV6ePiFOBv8UJCAAAAAIdQrgEAAAAA4CO7SmuUbbMrZ2OZnC63oVmzSZo8OlYZaVaNtkbLZDJ5KSUAAACAw1GuAQAAAADQhVwut1Zv3atsm11b7VWG5/sF+Wn25ETNS7UqJirECwkBAAAAnAjlGgAAAAAAXaChqU2frinR0rwi7a9uNjw/dGA/ZaRaNXNigoID+XEeAAAA8BXejXcz27dv1wcffKCCggKVlpaqublZ/fr106BBgzR27FjNnj1b6enp3Wq7j/Xr1ysrK0vr169XeXm52traFBYWptjYWJ1zzjm65JJLdO655/o6JgAAAAD4xJ599cq22bV8/R61trkMz48fMUgZaVaNHzFIZnP3+VkQAAAA6Kso17qJ8vJyPfjgg8rPz9eVV16pu+++W/Hx8XK73SovL5fNZtNbb72lf/7znxo1apSefPJJJSYm+jTzjh07dP/998tut+vqq6/WQw89pCFDhqitrU179uzRF198oXfffVdvv/22pk+frkcffVTR0dE+zQwAAAAAXcHt9mjD9v3KyinUxh2VhucDAyyaOSFeGalWxceEeSEhAAAAgFNFudYNfPXVV7rpppsUHR2tpUuXKjY29ojnY2JiNG7cOP3oRz/S9ddfr61bt+rHP/6x3n//fcXFxfkk8/Lly/XrX/9ao0eP1scff6yIiIgjno+NjdWkSZP0/e9/X/Pnz1deXp6uvPJK/eMf/zjqXAAAAADoLZpbnVq+dreyc+0qq2w0PD8oMliXTLfqwskJCg0J8EJCAAAAAKfL7OsAfd3Bgwf1i1/8QjU1NXrmmWeOKtYON3jwYD355JMym82qrq7Wb3/72y5M+l+FhYX6f//v/8lsNuuZZ545YVk2fPhwPfDAA5Kk4uJi/elPf+qqmAAAAADQZfZWNeqVrC26/v5P9MK/Nxsu1kZZo3XXtRP10l2zdPn5Z1CsAQAAAN0YK9d87IUXXtDBgwc1cuRIpaSknPT8kSNHKjU1VTk5OVq/fr0KCgo0adKkLkj6X0888YRaW1uVmpqqqKiok55//vnn64wzztCuXbu0ZMkS3X777YqPj++CpAAAAADgPR6PR1sKq5RlK1TB1r1ye4zN+1nMSh83VJlpVqXE9fdKRgAAAACdj3LNx5YtWyZJcjgcHZ6ZNm2acnJyJEkrVqzo0nKtqamp/bWNZJ46dap27dolt9utnJwcXXXVVd6KCAAAAABe1eZwaeWGUmXn2lVUXmd4PjIsUHOmJeviqYmKDAvyQkIAAAAA3kS55kNNTU3at2+fpG+3WszJyVF6evpJ5w5f9bV7926v5TuWsrIytbW1SZLy8/P1zTffaOTIkSedO/zecCUlJV7LBwAAAADeUlXbrI9XFevj/GLVNbYZnj8jvr8y06xKHTtU/n7cpQEAAADoqSjXfKi5ufmIxwsXLuxQuRYcHNx+fKjo6iqHZ3Y4HHriiSf00ksvnXQuJCSk/birMwMAAADA6dixu1pZOXblflUml8G9H81mk6aeHavMNKvOTIqSyWTyUkoAAAAAXYVyzYeioqI0cOBAVVZWSlL7KraTqa6ubj+OjY31SrbjSUhIUFBQkFpaWiSdWuYhQ4Z4JRsAAAAAdBany61Vm8qVZbNre0n1yQe+IzTYXxdNSdQl060aGBl88gEAAAAAPQblmg+ZTCY99dRTeuqpp1RTU6NrrrmmQ3NbtmxpPx4xYoS34h1T//799dhjj+mvf/2rWltbdfvtt3dozpeZAQAAAKCjahta9cnqEn20qkhVtS2G5+NjwpSZZtV558YpKIAfuQEAAIDeiHf6PjZhwgS99dZbHT7f4/Ho008/lST5+flpzpw53op2XLNnz9bs2bM7fH5jY6Nyc3MlSZGRkZo2bZq3ogEAAADohUwmkwYMGKDAwECZTCZ5PB6ZzZ17z7Liijpl2+z6z/o9anO6DeaTJpwZo8w0q8YOG8jWjwAAAEAvR7nWw6xYsUJlZWWSpFmzZikqKsrHiU7ugw8+UFNTkyTp8ssvl7+/v48TAQAAAOhJ/Pz8lJiY2OnXdbk9Wvf1XmXZ7Nq064Dh+eBAi2ZNStS81GQNGRDa6fkAAAAAdE+Uaz2Iy+XS008/LUkKCQnRHXfc4eNEJ9fQ0KAXX3xRkjRo0CD94he/8HGi0+N0Ovvkb6E6nc4OfQ0AAADoDBaL5ZRWprndbrlcrpOe19Ti0BfrSvXRqhLtO9hk+HViokI0d1qiZk6IU7+gb3950OFwGL4OAAAAeg4+I/2vvvp9H45yrQd5/fXX9c0330iS7r//fsXHx/s40ck9+eSTqqyslL+/vx5//HGFh4f7OtJp2bZtm68jdBtff/21ryMAAACgl+nfv78SExOPKtbaHC4VldepZG+dWttcCgywKHFwuJKHhCvA39J+ntlsltvtVklJiWpqao66flWdQ2t2NOpLe6PanB7D+ZJjAjV5RKiGDwmS2Vyvwh38fAAAANCX8Rlp30W51kNs2bJFTzzxhCRpwYIFysjI8HGik1u+fLneeust+fn56ZFHHtGkSZN8HQkAAABANxUdHa3ExMQjdorYsbta2Ta78jaVy3GM+6D5+5k1fcwQZaRZNTwhUtK3W0harVaVlJSoqqpKHo9H9r2tWr29QTvLWwzn8rNIY5L6afKIUMX0Z4t7AAAAAJLJ4/EY/3U9dKn9+/frRz/6kfbu3au7775bV111la8jndTOnTv1k5/8RK2trXryySc1a9YsX0cypK2tTZs3b/Z1DAAAAKBP6N+/v6xWa3ux1tTi1N+yt2jZ6pIOX+PiKYm6PmO0QoK+/R1Sj8ejT/O26r3lJaqsNb5tTViwRZOG99P4lH7qF2Q5+QAAAADQx5199tkKCAjwdYwuwcq1bq6urk433nijKisr9cgjjygzM9PXkU6qvLxcN954o1wul1566SVNnTrV15EAAAAAdFN+fn5HrFirqm3WH15YpdL9DYaus2x1ibbYq/SnX0xTdESwTCaTpo4brrc+L5XU8XItLjpAk0eE6qyEYFnMfe9+ywAAAABOjpVr3Vh9fb2uv/567dixQ0899ZRmzpzp60gntXfvXl199dWqq6vTyy+/rDFjxvg60ik53sq1M888U/7+fW8rGKfTedT+wWeddZb8/OjnAQAAcHosFkv7PdaaWpz6zdMrDRdrh4uPCdNjt6e3r2DL31yhP79WcOIMZpOmjYnVvOlJGhbf/5RfGwAAAL0Xn5H+l8Ph0LZtR99/mJVr8Lna2lrNnz9fhYWFevHFF3vE6q+ysjJde+21amxs1BtvvKGRI0f6OlKn8/Pz65Pl2rHwZwEAAIDO9rfsLadVrEnSnn31+tuSrfrlD8ZKkqaeHauUoREqLKs96tzwfgGaMzVJc6YlKToi+LReFwAAAH1PX/2MlDVblGvdUnV1ta6//nrt3r1bL7/8siZMmODrSCe1Z88eXXPNNXI4HHrrrbeUkpLi60gAAAAAepAdu6sN3WPtRJblF2v2pAQNT4iUJM2ZlqRn//lV+/PJQ8KVmWZV+rg4BfhzPzUAAAAAxlCudTOHVqwdKtbGjx/v60gnVVpaqmuvvVZOp1NvvvmmkpOTfR0JAAAAQA+TbbN36vWW5Nr16yvPlSTNGBenl/69WeeeGaOMNKtGW6Pb7/EGAAAAAEZRrnUjDQ0NuuGGG1RcXKxXX31V48aN83Wkk9q3b5+uu+46tbW16a233lJSUpKvIwEAAADoYdocLuVtKu/Ua+Z+Va5bf3iOAvwtCgr004t3zdKA/mz9CAAAAOD0mX0dAN9qa2vTLbfcop07d+rFF1/sULHmcDh06623qrm5uQsSHq22tlY33HCDGhsb9dprr3WoWNu3b5/uuOMO74cDAAAA0GMUldfJ4XR36jUdTreKK+raH1OsAQAAAOgslGvdgMfj0Z133qn169frmWee0aRJkzo0t23bNuXn5ys4uOt/SDxUBpaXl+vll1/WGWec0aG5DRs2aMeOHV5OBwAAAKAnKdlbd/KTTsHh5RoAAAAAdBa2hewGnnvuOS1dulQPP/ywZsyY0eG5ZcuWKSEhwYvJju/ee+/VV199pZdeekmjRo3q8JwvMwMAAADonlrbXN65rsM71wUAAADQt7FyzcdWrlypZ599VjfffLMuu+yyDs+VlZXp3XffPW5RVV5erhtvvFHjxo1TRkaGVq1a1VmR9fe//10ffPCB7r33Xk2bNq3Dc5s2bdJnn31GuQYAAADgCIEBFu9c19871wUAAADQt1Gu+VBlZaUWLFigKVOm6Pbbb+/w3MaNG3X99dersbHxuEXVggULtHLlSjU1NWnHjh265ZZbVFFRcdqZd+zYoYceekiXX365fvjDH3ZoxuPxaOXKlbrpppvkcrko1wAAAIA+rrahVeu37Wt/nDg43CuvkxTrnesCAAAA6NvYFtKHFi1apOrqau3atUtz587t0ExdXZ2qqqraHx+vqNqyZcsRj5ubm7V582bFxsaeemBJCxcuVGtrq1avXq2LL764QzPV1dWqqalpf0y5BgAAAPRNu/fWKctm14p1e5QwOFznnhkjSUoeEi5/P7McTnenvZa/n5lyDQAAAIBXUK750IEDByR9u4KtsrLylK5xvKJq9OjRKigoaH/s7++vkSNHntJrHO5Q5vLy8lO+BuUaAAAA0Hd4PB5t2L5fWTl2bdi+v/3rxRV1aml1KijQTwH+Fk0fM0T/2VDaaa+bOnaIAtgWEgAAAIAXsC1kD3e8omrhwoWaMWOGQkJClJycrCeffLJblFr+/v6nvXoOAAAAQPfX0ubUsvxi/fLR5frjX1cfUaxJktPlVs6XZe2PM9Ksnfr681I793oAAAAAcAgr13zo+eef99q1hwwZopdeeqnTr7t48eJOvyYAAACA3qOqtllL84q0LL9E9U1tJzz3o7wiXTg5UZI0PCFSF09J1LLVJaed4eKpSRqeEHna1wEAAACAY6FcAwAAAACctl17arQ4p1C2L8vkcns6NFNYVqv8zRWaeva3u1tcnzFaW+xVKt3fcMo54mPCdP28Uac8DwAAAAAnQ7kGAAAAADglLrdHa7ZUaHFOob4uOmh4Pio8SJXVTfJ4PDKZTAoJ8tOffjFNd7+Yrz376g1fLz4mTA/cNFUhQfyoCwAAAMB7+IkDAAAAAGBIY7NDnxXsVnauXfsPNhmePyO+vy5NT9H0MUPk73fkrcCjI4L12O3p+lv2FkNbRF48NUnXzxtFsQYAAADA6/ipAwAAAADQIRUHGrUk167PCnarudVpaNZskiaPjtWl6Sk6KzlKJpPpuOeGBPnplz88R7MnJ2pJrl25X5XL4XQfdZ6/n1mpY4doXqqVe6wBAAAA6DKUawAAAACA4/J4PNpir1JWTqHWbN0rT8dup9YuJMhPF05O1LxUq2KiQgzNDk+I1K+vPFe3/vAcFVfUqbiiTq0OlwL9LUqKDVdSbLgC/C3GAgEAAADAaaJcAwAAAAAcxeF0y/ZlqRbn2GUvqzU8Pzg6RBlpVs2amKCQIP/TyhLgb9HwhEhWpwEAAADoFijXAAAAAADtahtatSy/WEvzilRd32p4fnRKtDLTUjRp1GBZzMff+hEAAAAAeirKNQAAAACASirqlGWz6z/r96jtGPc3OxE/i0np4+KUkWbVGXH9Oz2b0+lUWVmZAgICZDab5Xa7NWjQIFksbAkJAAAAoOtRrgEAAABAH+V2e7Rh+34tzinUlzsqDc+H9wvQnGlJmjstWVHhQV5I+C2Px6MDBw4c8bUBAwZQrgEAAADwCco1AAAAAOhjWlqdWrF+j7JsdpXubzA8nzA4TJemp2jG+DgF+lNwAQAAAOhbKNcAAAAAoI84UNOspXlFWpZfrIZmh+H5CWfG6NJ0q8YOGyiTifupAQAAAOibKNcAAAAAoJfbsbtai3MKlfdVuVxuj6HZAH+LLpgQr4w0q+JjwryUEAAAAAB6Dso1AAAAAOiFXC63Vm/Zq8U5hdpWfNDwfHREkOalWnXRlESFhQR4ISEAAAAA9EyUawAAAADQizQ2O/RZQYmybXbtr242PD8svr8uTU/R9LFD5GcxeyEhAAAAAPRslGsAAAAA0AtUHGhUdq5dnxeUqLnVZWjWbJKmjhmiS9NSNDIpkvupAQAAAMAJUK4BAAAAQA/l8Xi0xV6lxSsLVfD1XnmM3U5N/YL8dOGUJM2bnqxBUSHeCQkAAAAAvQzlGgAAAAD0MA6nS7Yvy7R4pV328lrD87ED+ikj1aoLJsYrJMjfCwkBAAAAoPeiXAMAAACAHqK2oVUf5xfro7wiVde3Gp4fc8YAXZqeoglnxshsZutHAAAAADgVlGsAAAAA0M0VV9QpK6dQ/9lQKofTbWjWz2LWjPFDdWl6ipKHRHgpIQAAAAD0HZRrAAAAANANud0erf9mn7Jy7PpyZ6Xh+YjQAM2dlqw5U5MUGR7khYQAAAAA0DdRrgEAAABAN9LS6tTy9XuUlWNXWWWD4fmk2HBdmm5V+rg4BfhbvJAQAAAAAPo2yjUAAAAA6AYqq5u1NM+uT1aXqKHZYXh+4lkxujQtRWOGDZDJxP3UAAAAAMBbKNcAAAAAwId27K7W4pWFyt1ULrfbY2g2MMCiWRMTlJFm1dCBoV5KCAAAAAA4HOUaAAAAAHQxl8ut/C0VWryyUN+UVBueH9A/WBmpybpwcqJCQwK8kBAAAAAAcDyUawAAAADQRRqaHfp0dYmW5NlVWd1seH5EYqQuTU/R1LNj5WcxeyEhAAAAAOBkKNcAAAAAwMvKKxuUbbPr87W71dLmMjRrNps0fcwQZaZbNTIxyksJAQAAAAAdRbkGAAAAAF7g8Xi0adcBZeXYtXbbXnmM3U5N/YL9ddHkRF2SmqxBkSHeCQkAAAAAMIxyDQAAAAA6UZvDpZyNpVqcY1dxRZ3h+SED+ikzPUUzJ8QrOJAf2QAAAACgu+EnNQAAAADoBNX1LVq2qlgfrSpWTUOr4fmxwwbo0vQUnTsyRmazyQsJAQAAAACdgXINAAAAAE5DUXmtsnLs+s+GUjldbkOz/n5mnTc+ThlpViUPifBSQgAAAABAZ6JcAwAAAACD3G6P1n2zT4tXFmrTrgOG5/uHBWrutGTNmZqk/mGBXkgIAAAAAPAWyjUAAAAA6KDmVqeWr92tLJtd5QcaDc8nxYbr0vQUzRg/VP5+Fi8kBAAAAAB4G+UaAAAAAJzE/uomLc0t0idrStTY7DA0azJJE88crEtnWHV2ygCZTNxPDQAAAAB6Mso1AAAAADiOb0oOavHKQq3aXCG322NoNjDAolkTE5SZZtWQgaFeSth7eDweud1ueTxH/zk7nc5jfo2iEgAAAF2lu74nNZlMMpvNPs/R11CuAQAAAMBhnC638jdVaHFOobbvrjY8P6B/sDJSk3Xh5ESFhgR4IWHv0dLSotraWtXX18vpdB6zWJN0zK8XFRXxAQIAAAC6THd+T2oymeTn56ewsDBFREQoKCjI15F6Pco1AAAAAJDU0NSmT1aXaEmuXQdqWwzPj0yMVGZ6iqadHSuLxeyFhL2Dx+NRTU2Nqqur1dra6us4AAAAQI/n8XjkcDh08OBBHTx4UIGBgYqMjFT//v27RfnXG1GuAQAAAOjTyioblJVTqC/W7VFrm8vQrNls0vQxQ3RpulUjEqO8lLB3qaqqUmVlpeE5fvsWAAAAvtZT3pO2trZq7969crlcGjBggK/j9EqUawAAAAD6HI/Ho007D+jDnEKt27bP8HxosL8umpKoS6ZbNTAy2AsJe6eamppTKtYAAAAAGFdZWSk/Pz/179/f11F6Hco1AAAAAH1Gm8OllRtKlWWzq7iizvD80IH9lJmeopnnxisokB+njGhoaFBFRcVRX/fz81NERITCwsJksVhkNh+9pabb7VZLy5FbdQYFBR3zXAAAAMAbuut7UrfbLZfLpfr6etXW1srpdB7xfEVFhfz8/BQaGuqjhL0TPw0CAAAA6PWq61r00apifZxfpNqGNsPz5wwbqMx0q84dGSOzmXsWnIpjrVgbNGiQoqKiTnofCLfbLYvFcsTX/Pz8fP5BBgAAAPqO7v6eNDg4WAMHDtTBgwe1f//+I56rrKykXOtklGsAAAAAei17Wa0W5xQqZ2OZnC63oVl/P7POGx+nzPQUJcWGeylh3+B0Oo/6Ld/o6GhFR0f7KBEAAADQ+5hMJkVHR8vlcqmqqqr96y0tLXI6nfLzoxLqLPxJAgAAAOhVXG6P1n29V4tz7NpceMDwfP+wQM2dlqw5U5PUPyzQCwn7noaGhiMem81mDRw40EdpAAAAgN5t4MCBqq6ultv9318wbGho4N5rnYhyDQAAAECv0Nzq1OcFu5Vts6uiqtHwvHVIhDLTrUofN1T+fpaTD6DD6uvrj3gcGhp60q0gAQAAAJwak8mkfv36HfE+vL6+nnKtE1GuAQAAAOjR9h9sUnauXZ+tKVFji/PkA4cxmaRJZw3WpekpGp0STeHjJc3NzUc85n4PAAAAgHeFhYUdUa599z05Tg/lGgAAAIAex+Px6Jviai3OKVT+5nK5PcbmgwMtmjUpUfNSkzVkAEWPN3k8HrlcriO+FhjIdpsAAACAN333PbfL5ZLH4+EXCjsJ5RoAAACAHsPpcivvq3ItzinUzj01hucHRQYrI82qWZMSFRrs3/kBcZTD7/NwiMXCtpsAAACANx3rPbfb7ea9eCehXAMAAADQ7dU3tWlZfrGW5hWpqrbF8PyZSVG6ND1FU0YPlsVi9kJCHI/Hc/SyQn5bFgAAAPCuY73nPtZ7c5wayjUAAAAA3daeffXKttn1xbo9anO4Tj5wGIvZpNSxQ5WZbtXwhEgvJQQAAAAA9DWUawAAAAC6FY/Hoy93VGpxTqHWf7Pf8HxYiL8unpqkudOSNaB/sBcSAgAAAAD6Mso1AAAAAN1Cq8Ol/6wvVZatULv31hueHzowVJemW3X+ufEKCuRHHQAAAACAd/ATJwAAAACfOljXoo/yivRxfrHqGtsMz48bPlCZ6SkaP2KQzGbu5QUAAAAA8C7KNQAAAAA+sau0Rlk5hbJ9WSany9iNtQP8zDrv3HhlpluVODjcSwkBAAAAADga5RoAAACALuNye1Swda8W5xRqq73K8HxUeKDmTk/WxVOSFBEa6IWEAAAAAACcGOUaAAAAAK9ranHo84Ldys61a29Vk+H5lLgIXZqeotSxQ+XvZ/ZCQgAAvlVWVqYhQ4bIZGKrYW9rbGxUv379fB0DAADDKNcAAAAAeM2+g03Kttn1WUGJmlqchmZNJmnK6Fhlplk1yhrNh5wAgC7x9NNPq6SkRPfee6/OOussX8c5qb/97W8KCAjQj3/8Y/n59ZyP+srKyvT9739fP/rRjzR//nz179/f15GOUlxcrKSkJK9dv62tTYsWLdKNN96osLAwr70OAKDz8SufAAAAADqVx+PRVnuVHnq9QDf++TMtzik0VKwFB/opM92ql+6apd9dN0mjUwZQrAEAusy2bdv05Zdf6gc/+IEeeOAB1dfX+zrSCY0bN04PPPCAMjMztXbtWl/H6bChQ4fqtttu04svvqgLLrhAL7/8spxOY7+I42233nqrbrjhBuXn53vl+k8++aReeuklZWZmqqCgwCuvAQDwjp7z6ywAAAAAujWH0628TeVanFOoXXtqDM8PigpRRqpVF05OUEiQf+cHBADgJGpra7Vr1y5JksvlUmVlpczm7v276eecc44uvfRSffjhh/rpT3+qq6++WgsWLJC/f/f/u/Sqq67SmjVr9Mknn+jRRx/Vp59+queee04DBw70dTRJUnBwsHJzc5Wbm+vV1ykvL9dNN92krKwsxcfHe/W1AACdg3INAAAAwGmpa2zTJ6uLtSS3SAfrWgzPj7JGKzPNqsmjY2Uxs0INAOA7BQUFcrvdkqQ5c+boiSee6PblmiTdfvvtWrp0qRwOh9588005HA7dd999vo7VIXfffbdWrVql+vp6ffXVV7r66qv1r3/9S6Ghoad0PY/Ho9ra2k7ZZjIoKEiSNGjQIL322munfb3vevvtt/X2229Lkl566SWKNQDoQSjXAAAAAJySPfvqlWWza/m6PWpzuAzNWswmpY0bqkvTUnRGfH/vBAQAwKCVK1dKkkaMGKGFCxf2iGJN+naLxTlz5igrK0uS9K9//Uu/+93vFBgY2OFrOJ1On9yzbeDAgfrJT36il156SdK39zlbv369ZsyYYfhaHo9H99xzjwoKCvTGG28oJibmtLId+vPw9/dXSkrKaV3rWCIjI9uPe8L9/QAA/9Uz3iEAAAAA6BY8Ho82bN+ve/+ar1seWa5l+cWGirWwkAD9aNZwvfKH2frNledSrAEAug2Xy6XPP/9c/v7+evTRRw0VU93B97///fZji8Uii8XS4dn6+npdddVVeuedd7wR7aSuuOKK9uOYmBhNnDjR8DUOFWv/+Mc/VFxcrGuuuUb79u07rVxG/gwBAH0LK9cAAAAAnFSrw6X/rN+jxTl27dlXb3g+PiZMl6ZbNWN8nIIC+DEEAND9FBQUqLq6Wr/85S81YsQIQ7MOh+OU7nG2fPly1dXV6Xvf+57h2e+aMGGC+vXrp8bGRn3/+9/v8Cq0+vp63XDDDfrqq6/01VdfyePx6KqrrjrhTFFRUfv2mZ1l4MCBqqmp0R133KGKigrD86+99pr+8Y9/tD8+VLCdzgo2k+nb7aodDocKCwtP6RonUl1d3X7s8Xg6/foAAO/hp1oAAAAAx1VV26yPVhXr41XFqm9qMzw/fsQgXZqeonEjBrZ/QAUAwKl6//331b9/f82aNeu453g8Ht15552aM2eOzjvvvPavL126VKmpqYqIiDjm3L///W8lJSXpF7/4heFc9913n8xms+6++25DJVtzc7MWLFigZcuW6b777jutbQz9/Px03XXXqaKiQr/97W87NHN4sSZ9+2f3wAMPSNIJC7b8/Hzdf//9XimE/vd//7fTrlVcXKyf/vSnevPNN0/pz/bQtqD79+/X3LlzOy3XsVCuAUDPQrkGAAAA4Ci79tRosa1QuV+Wyeky9mFPgL9FMyfEKyM1WQmDw72UEADQF1VXV+v3v/+9LrroIs2fP/+Y2/Z9/vnn+vDDD7V48WLdcsstuvXWW2U2m5Wbm6uFCxfqoYce0vTp04+YaWho0KeffqrnnntOAQEBhjIVFBTo/fffl8fjUWFhoRYtWqSoqKgOzR4q4lasWKEVK1YYet0T+eCDD0551uPx6P7775d0/ILtyiuvVFhYmA4ePKhRo0ZpyJAhCg8PV79+/U76yzRr1qzRNddcI0n6n//5H91yyy3HPO/555/X008/LUl64403NHny5FP9lk7ZocJr6NChWr58eadff9GiRXr22WclqdNXAgIAvItyDQAAAIAkyeX2qGBrhRbn2LXVXmV4Pio8UJdMt+riqUkK72fsg0kAADri0H3QPvnkEy1fvvyYRY7L9e29QD0ej959911dfvnliouLk7+/v/bt26f58+cf9/oneq4j1q1bp4ULF2rhwoUdOv/wVW7f+973dOONN57W63emk5VkGRkZXZTEd7pyNdmhf28BAD0D5RoAAADQxzW1OPRZwW5l2+zad7DJ8PwZcRG6ND1F08cOlb+f2QsJAQD41uFl1GuvvaYJEyYcdc6TTz6pF154QZL06quvKi4uTpLaV6QNGDBAb7zxRqdlKi0tbS/FZs+e3b6tYkcc/v30799fKSkpnZYLp68rV5M5HI4uey0AwOmjXAMAAAD6qL1VjcrOteuzNbvV3Oo0NGs2SVPOjlVmWorOSo7ifmoAgC7h52fso6zk5OT240NbSFosFq+VWDNnzjS0reTh5Vpv+7t0+/bteuONN3TfffcZ/ufWXRwqvBwOhwoLCzv9+tXV1Ue9FgCgZ+iZf7MBAAAAOCUej0dfFx3U4pxCrdlSIbfB3Y6CA/104eREzUtN1uDoft4JCQDAcRxeRhnVHQue3lyuPfbYY8rJydH+/fv19NNPKyQk5LSvmZOTI5vNpp///OcaNGhQJ6Q8sUNbNe7fv19z58716mu1tLR49foAgM7V/d5VAAAAAOh0DqdbuV+VaXFOoQpLaw3PD44OUUaaVbMmJigk6NQ/2AQA4HScTkF2aOVad2I2987tlD///HPl5ORI+rYQ++lPf6qXXnpJ0dHRp3XdKVOmaMWKFZo9e7auuOIK3Xjjjad9zRNpbW2VJA0dOlTLly/v9OsvWrRIzz77rPz9/bv0/m4AgNPXO/8GBwAAACBJqm1o1Xufb9fPHvxUT7yzwXCxNjolWr+/fpJeuHOWMtNSKNYAAD51OmVUdy/XTmXlWn5+vj788MNTfv2Ghgb98pe/VFlZ2Slf47saGxv15z//uf1xSEiIRo0apbq6utO+dkBAgO699149+OCD+sc//qFZs2bp8ccfV22t8V8c6ohD5VpUVJRXrj9gwADdeuutWr58uYYNG3bMc95//301NRm/Jy4AwLtYuQYAAAD0QiV765Rts2vFuj1qc7oNzfpZTEofF6eMNKvOiOvvnYAAAJyC0ynXOmOVmNvt7tTVZodf67vXbWpqOulWipGRkbr55pt19tlnn9J95DZv3qzPP/9ceXl5+sUvfqH58+cbumfcsSxcuLC9rOvfv79ef/11jRw58rSu+V3z5s3T8OHDdfPNN+ull17Se++9p5///Oe65pprFBgY2GmvM27cOP3qV7/Seeed12nXPNxPfvKT4z7n8Xj04IMP6s0339Qnn3yiv/zlL91ya1MA6Kv4LzIAAADQS7jdHm3csV+LVxZq445Kw/Ph/QI0Z1qS5k5LVlR4kBcSAgBwek6n2DreyrD8/Hy1tbVpxowZJ5xfvXq1Fi1apEWLFnXaSqbjlWsOh0M/+tGP9OabbyoyMvK48yNHjtTYsWP1q1/9Su+//77hYmzz5s2SpObmZj355JNavHixnnrqKY0YMcLgd/KtlStX6r333pMkhYWF6ZVXXun0Yu2Q4cOH6/3339dtt92mtWvX6rHHHtPf//533XHHHR26P5rdbj/pVozXXnutJKmoqKhTMhvx/PPPa8mSJZK+3Vrzd7/7nRYuXNjr7s0HAD0V5RoAAADQw7W0ObVifamycgpVur/B8HzC4DBlpqXovHPjFOjf/bbMAgDgEG9sC9nQ0KBbb71VP/jBD3THHXccc7VYS0uL/vCHP2jPnj36wQ9+oBdeeEHDhw8/5SyHHK9c8/f31/Tp0/W73/1Of/nLX054jWuvvVY333yznnjiCd15552GXn/Lli1HPI6OjpbVajV0jUMOHDigu+66S9K3W0H+9a9/1ejRo0/pWh0VGRmpV199VXfddZeWLFmisrKy9qLx/vvvV1xc3HFnCwoK9Mc//rHH3Ots8eLFio6O1oIFC3wdBQAgyjUAAACgx6qqbdbSvCItyy9WfZPD8PyEM2OUmWbVOcMH8lvQAIBe73h/1wUFfbta+/3339f7779/0uuUlZXpvvvu01tvvXXaf38ePv/d8u/qq6/WhRdeqHfffVdXXHHFca9x/vnnKyEhQa+//rpmzpypSZMmdfj1D61ck769n9lDDz0kf3/j91d1Op369a9/raqqKoWHh+ull17SuHHjDF/nVAQEBOixxx5TeHi43nnnHUlSXl6eLrvsMr3wwgs699xzjzl3xRVXaODAgaqrq9NZZ52lmJgYRURE8J4IANAhlGsAAABAD7NzT7UWr7Qr96syudzGfts6wN+iCybGKyPVqviYMC8lBADAO06n+DjeqrfDt1K86667NGvWrKPOaWtr05w5cyRJ48eP14svvtgpJYzD8d9fjvluvvj4eF1wwQV6+OGHNWnSpOOuKDOZTLr88sv11FNP6c4771R2drb69et30teurKxUeXl5++Mrr7xS8fHxp/R9PPjgg1qzZo2ioqL0yiuv6Kyzzjql65wqk8mke++9V2azWW+99ZYkqa6uTr/+9a/18ccfH/fedRdccMFxr7lnzx7FxMSc9j3oTqalpUXl5eWnvGIQAOAbnXcHVgAAAABe43K5lbepXL9dZNOvn8rRyo2lhoq16IggXTP3TL12z4W65ftjKdYAAD3S6WwLeTyBgYHtx5GRkYqLizvqf0OHDm0/Z9KkSQoNDe2U125paWk/Pta2lVdffbWam5u1YMECOZ3O417nsssuk9lsVllZmZ588skOvfbq1avbjwMCAvSzn/3MQPL/+vvf/6533nlHMTExeuutt7q8WDvcH/7wB1188cXtj/fu3atPP/30lK61bNkyXXzxxXr//fdP+Gd/uu666y5973vf02uvvdZjtqgEALByDQAAAOjWGpsd+qygRNk2u/ZXNxueHxbfX5emp2j62CHys/C7dQCAnu10yofjrTTzRmHXUc3N//27/Vjl2uTJk5WYmKhNmzbpxRdf1C9/+ctjXmfw4MGaPn26bDab3n77bWVkZGjs2LEnfO38/Pz24+9973saOHCg4fxr1qzRgw8+qOHDh+uvf/2rBg8ebPgap2rfvn2KiYk54msmk0kPP/yw7Ha7duzYIenbFWynIiAgQGVlZfr973+v3//+96ed92Qeeughbd68WY8//rjXXwsAcPoo1wAAAIBuqOJAo7Jz7fq8oETNrS5Ds2aTNPXsIbo0PUUjkyK5dwgAoNfwRrl2rFKrqxy+cs3P7+iP6Uwmk37wgx/o8ccf11/+8hddcMEFGjly5DGvNWfOHNlsNrndbt1///365z//ecLi8PCVa9dcc43h7Js2bdKtt96qCRMmaNGiRQoL67pV8WvXrtXPfvYz3XnnnfrJT35yxHPBwcF67rnndOWVV6qqqkppaWmn9BqHbwe5cOFCnX322Sed+eSTT/T0009Lkl555RXFxsaedOZnP/uZysvLNWzYMN15552nlBUA0PUo1wAAAIBuwuPxaIu9SotXFqrg670y+vlhSJCfLpycqIxUqwZFHfveIgAA9GTe2DbPaLnWmRkOX7kWHBx8zHMuv/xyPf3003I4HPrDH/6gf/zjH8cszc4//3xZLBa5XC5t2bJFS5cuVUZGxjGvuWfPHpWVlUn6dpvLYcOGGcq9adMmzZ8/XxdeeKHuu+8++fv7S5IqKirU1NR0wtmKior24+rqahUWFh7zvOrq6iNmDp1XWVmp2267TS0tLfrjH/+oxsbGo7a0TEhI0Pvvv6/t27crOTnZ0Pd2yOHlWmxsrFJSUk46c/jqv/j4eCUmJp505lCpOnr06FNaPQgA8A3KNQAAAMDHHE6XbF+WaXGOXfayWsPzsdH9lJFm1QUT4xUS5O+FhAAA4JDOLNcOX7kWEnLsX4wZMGCApk6dKpvNps2bN+udd97R1VdffdR5UVFRGj9+vNauXStJevHFF49brh2+au27K79OZtOmTbrxxhv1q1/9SlddddURz1VWVmr+/Pmqr6/v0LXeeOMNvfHGGyc9b8GCBcd97tFHH5XJZNINN9xwxNcHDx58WttUHl6uAQDwXZRrAAAAgI/UNrTq4/xifZRXpOr6VsPzZ6cMUGa6VRPPGiyLma0fAQC9n9vtNnR+R4owo9snG81wIrW1//2lmtDQ0OOed2jLR0l65plnlJmZqfDw8KPOmzRpUnu5tnPnTm3evPmY2xnm5ORI+nal1ezZsw1l/stf/qJnn31WEyZMOOq5MWPG6O9//7uqqqo0cuRI9e/fv/25zz77THfccYc+/PDDU15N1tLSoiuvvFJbt26VJA0aNEg33XSTvv/975/S9U7k0Gq8ruKNVZkAAO+hXAMAAAC6WElFnRbnFOo/G0rlcBr7gM7PYlL6uDhlplmVEtffOwEBAOimjBZbh59/vBLNl+Xa3r17248HDRp03PNmz56te++9Vw6HQ7W1tXrvvff085///Kjzxo4de8TjNWvWHFWutbW1KTc3V5J0xRVXGC6R/vKXv5zw+WHDhh1zm8nZs2dr9OjR+t3vfqe33377hPeDOxaPx6MFCxa0F2vh4eF67bXXOrRd46k4fOXaqdyT7sILLzR0fmf+ewUA8D7KNQAAAKALuN0ebdi+X4tXFurLnZWG58P7BWjOtCRdMi1ZkeFBXkgIAED3Z7SAcDqd7cfHWxl0Otc8XYeXa7Gxscc9Lzw8XOPGjVNBQYGkb1eBHatcGzNmzBGP9+/ff9Q5eXl5ampqkr+/v6644opTjX5KFixYoB/96Ed67bXXNH/+fEOzzz33nJYtWybp21VlzzzzjNeKNenIe/EtXLjwmCsAv+uTTz7R008/LUl65ZVXTvjP9JCf/exnKi8vp1wDgB6Gcg0AAADwopZWp5av36OsHLvKKhsMzycODlNmeorOGx+nAH/LyQcAAOjFjG6d15lF2CGdWYJUVFRIkoKCghQdHX3Cc6dMmdJerm3atEk1NTVHbLsoSZGRkerfv79qamok6ajnpW8LIEmaO3euBgwYcHrfgEFjxozR5ZdfrieeeELnnnvuUSvtjufDDz/UokWLJH270vCBBx7Q1KlTvRlVbW1t7cexsbEdKvIGDhzYfhwfH6/ExMSTzvj5ffvxLOUaAPQslGsAAACAFxyoadaSXLs+WV2ihmaH4fkJZ8bo0nSrxg4baHi7KgAAeqvDy7K8vDyVlZUddc7OnTvbjw8vSI7H5XK1H1dWVqqwsPCocxwOxzGPT9ehlWtnnHHGSc+dPHly+7HH49Hu3buPWZ6NHDlSq1evlqSj7ovW1tamL774QtKpbXXYGRYsWKCcnBzdfvvt+ve//62oqKgTnr9q1Sr94Q9/aH/8u9/9Tpdddpm3Y3bo353O5I0iGADgPZRrAAAAQCfasbtai1cWKndTudxuY79dHxhg0cwJ8cpMsypuUJiXEgIA0HMdXkAsXbpUwcHBR51z4MCB9uPW1tb24+Oteju8XHv00Uf16KOPnjBDZ5VrbW1tOnjwoCTprLPOOun5I0eOlMlkav8+WlpajnnehRdeqNWrV2vq1KmaOHHiEc/ZbDbV1dVp/PjxGj169Gl+B6cmIiJC99xzj2677TbdfvvtevXVV4+4v9nhtm7dqltvvbX9z/y2227rslKwM0vU7vh6AIDTQ7kGAAAAnCaXy638LRVavLJQ35RUG54fEBGkS1KtumhKosJCjv3hEgAAOLJc+/Of/3zUyixJevLJJ/XCCy9I6li5dvg1H3nkEV166aVHndPa2tp+P7POWtG0d+/e9kxnnnnmSc8PDQ1VcnKy7Ha7JCkhIeGY5/34xz9WTEyMZsyYcdTq96VLl0ry3aq1Qy688EJdfvnl+uCDD3THHXfoqaeektlsPuKcnTt3av78+WpsbJQk3XLLLbr11lu7LOPh/5wrKiqOuaLxuyor/3tf3T179nRoNdqhcw7/dxUA0P1RrgEAAACnqKHZoU9Xl2hJnl2V1c2G54cn9Nel6SmaNmaI/Czmkw8AANDHGdk6z8/Pr0NbKxstNTqrBNm+fXv78aRJkzo0k5aWJrvdrnPOOUeDBw8+5jn/n727Dosqff84/h667UDFALt71VWs1d01wO5uMXZtXXNdu1271sJaXQPbNVbswG4FRQFFVLph5vcHP+YLUjO0er+ua68dZs5zzj3DgMP5nPt59PT0+OGHHxLcHxQUxJkzZ7C0tKRZs2apKzodTZs2jfv373Py5ElmzJjB77//rv5+vXz5kr59+6rXjvvll19wcHDI1PrihmsTJkzQenz//v212j40VPvPkkIIIbKOhGtCCCGEEEJoyetDEIed3Th94zVhEdEpD4hDR0dBvUqW2NvaULZ4T1bD2wABAABJREFU8muMCCGEECI+TabO09fXp127dgwdOjRed5dSqUx0+9hQI3/+/El2gwEUKlSIrl270rFjRy2rTtyDBw/Ux9VkzTWAnj174urqyowZM7Q+3r///ktYWBg9evRATy/rTwkaGxuzfPlyOnXqxJ49e4iMjGTWrFm8ePGCfv36qaf3HDduHAMGDMj0+uK+17Zt2xZvzbuk7N27V70+3KlTpyhWrFiKY5o1a0Z0dDQtW7ZMfbFCCCEyXdb/SyqEEEIIIcQXQKVScd/1A4fOu3Hj8TuSmFkqSaZGevxYpzgt65cgfy6TjClSCCGE+MrFdhPp6+tjZmaW6DZDhgxJNDxKalrIXLlysWTJEpo3b46+vn6i2xgaGnL69Gl0dXVTWXlCDx8+BKB+/foaj7GysmLTpk2pOt6BAwcwMTGhU6dOqRqfEWxsbFixYgWDBg1i//79vH//ngcPHuDn54eenh5//PEH7dq1y5LaDA0Nsbe3p3nz5lSrVi3DjrNo0SIqVaqEjo4OQUFBSb6vhRBCZC8SrgkhhBBCCJGMyKhozt/yxOmCKy+9ArQeb5nXFLsG1jStVRRjQ/n4LYQQQqSFjo4O3bp1Y/DgwclOi5iYpDrXqlWrplF4kp7BWlRUFHfv3gWgRYsW6bbfpHh5eXH9+nW6deuGhYVFhh9PG/Xq1WP27NmMHz+eixcvAjFdbcuWLaNRo0ZZVle3bt3o1q1bhh+nSpUqKJVK/vzzT3bt2sW2bdsoVapUhh9XCCFE2shf90IIIYQQQiTCLzCc45dfcuzyK/yCtF9bpXLJvNjb2lCzXAF0dFJe70UIIYQQKevfv79G66glJqnOtaxw48YNAgICyJcvH/Xq1cvw4x04cACImVYyu/n06ROnTp2Kd1/u3LmzpIPr48ePSYawmggKClLf9vX1xcQk5dkKwsPD+f3333F2dgagb9++7Ny5M9kpSoUQQmQ9CdeEEEIIIYSI46WXP07Obvx3y4OoaO1Orujp6tCwemHsbW0oUShHBlUohBBCfLtSG6xB0p1rWeHcuXMA2NnZpWtHXGJUKhUHDhygUaNGlChRIsntIiIiOHbsGG3atMnQeuI6deoUM2fOxMfHB4hZ187b2xtPT0969OhBly5dGDlyJLlzZ846tadOneL3339PlyC2c+fOqRrn4+NDnz592LFjB5aWlmmuQwghRMaQcE0IIYQQQnzzlEoVN594c+i8K/defNB6fA4zA1rUK8HP9YqTy9woAyoUQgghRFpFR0dnyH5DQ0O12l6lUnHmzBkMDAzo3bt3htQU1/Xr13nz5g2zZs1KcpvIyEhGjhzJuXPn8Pb2ZvDgwRlak7u7O7NmzVJ3axkZGTFkyBD69+/P7du3GTNmDD4+PuzatQsnJyf69etHjx49yJkzZ4bW1bVrV4yNjXn16hUVK1akSJEimJubY2ZmplGwe+jQIfXrfODAAYoUKZLqWgwNDVM9VgghRMaTcE0IIYQQQnyzQsOjOHvjNU4X3PD6EKz1+OKWFtjbWmNbrQgG+hl71bkQQggh0iajwrXLly9rtf3Vq1fx8PCgc+fOFChQIENqimvfvn2UK1eOOnXqJPq4Uqlk/Pjx6m66JUuWYGhoSJ8+fdK9lvfv37N69Wr27dtHZGQkurq62NvbM2LECAoVKgTAd999x+HDh5k7dy6HDh0iODiYFStWsHHjRuzt7enUqRMVKlRI99pipaVzz8jofxdZmZqaZrv17YQQQqQfCdeEEEIIIcQ3571vCEcvvuTkNXeCQyO1GqtQQK1yBbGztaZyybxpmp5KCCGEEJknLeHatGnTMDU1xcTEBCMjIwwMDNDR0eHly5fs2bNHvZ0mnwt2796NoaFhvO6wt2/fEhISkur6khIREcGpU6cYOHAgrq6uiW6zceNGjh07Fu++uXPnYmBgQLdu3dKljjdv3rB582b++ecfwsLC0NfXp23btgwePDjRqSpz5crFggULaNu2LfPmzePJkyeEhoaye/dudu/ejbW1NS1btqRhw4ZUrFjxq/08tnfvXnx9fRk0aFBWlyKEEOIzEq4JIYQQQohvxhP3Txw678rl+29RKrVbS8PQQJcfahXFroE1hfKZZVCFQgghhMgoUVFRqR77008/cfv2bS5cuMCdO3eSXJPLysoq2f18+PCBM2fOMHjwYAoXLqy+38fHh/79+xMQEJDqGpOzYsUKVqxYodWYmTNnYmhoSPv27VN1TJVKxaVLl9izZw9nzpwhOjqafPny0bt3b7p3765R117dunU5cOAATk5OrF27lpcvXwLg5uamfk65c+emVq1aVK5cmSpVqlC6dGly5Pjy177dtm0bc+bMAaBEiRI0a9YsiysSQggRl4RrQgghhBDiqxYdreTyvbcccnbl6WtfrcfnzWlM6/olaP5dMcxMDDKgQiGEEEJkhshI7brV46pXrx716tVj2LBhvHnzhg0bNvD333/HC9kKFixI1apVk93Ptm3byJ8/f4JOpMqVK7NlyxYuXrxIuXLlKFGiBBYWFpiZmaGr+2VNPe3m5saxY8c4cOAAHh4eGBgY0LhxY9q2bUujRo3Q09PudKSOjg5t2rTBzs6O06dPs23bNm7cuKF+/NOnT5w8eZKTJ0+q78udOzfW1tZYWlqSL18+bGxs6NChQ7z9hoeH4+HhkbYn+xkfHx/17Tdv3qQ60D158iTLly9Xfz1u3Dh27NiRodNhCiGE0I6Ea0IIIYQQ4qsUFBLByavuHLn0kg9+oVqPL1ssF3a2NtSrZImurk4GVCiEEEKIzJSWzrW4rKysmDlzJnXq1GH06NGoVCr09PSYOXNmssGRr68vO3bs4M8//8TQ0DDB4xUqVPhiw5NHjx5x7tw5Tp06xZMnT7CwsKBu3br8+uuvNG7cGDOztHf96+jo0Lx5c5o3b86LFy/4559/OHbsGO/evUuw7adPn/j06RO6urrY2tpSrFixBNvo6+uzceNG9u/fn+baEtO/f/9021doaChDhgxh3759mbJOnxBCiJRJuCaEEEIIIb4qnj5BODm7cubmG8IjtFtbRUdHQf3KhbCztaZMsdwZVKEQQgghskJERAT58uWjb9++6bK/Fi1acPDgQby8vJg+fTq1atVKdvvNmzfTqVMnvv/++3Q5flZ6+/Yt165d4/r161y4cIHg4GAqV65Ms2bNmD59OlWqVMnQjruSJUsyYcIExo8fj4uLC2fOnOH8+fPx1pWztrZm5cqV2NjYJLoPHR0d5syZQ5kyZTA3N6dcuXLkzZsXc3NzjI2NM6x2IYQQXwcJ17KZp0+fsn//fq5fv46HhwehoaGYmpqSP39+qlSpQrNmzbC1tc1WC7WGh4ezb98+jh8/ztOnTwkPD6dQoUJUrVqVbt26Ubly5awuUQghhBBfOZVKxb3nHzjo7MrNx95ajzc11uenOsVo+b01+XLJyRQhhBDia9SzZ09mzZqFgUH6TfM8Z84c8ubNq9G2Hz9+ZPr06el27Kxy7tw5NmzYQNmyZalWrRo9e/akdOnSWTJ9pUKhoGbNmtSsWZMJEyaoQ7+bN28yYMAAihcvnuL4Pn36ZEqtQgghvi4KVVIrsIpM5eXlxezZs7ly5QrdunWjSZMmWFlZoVQq8fLy4sKFCzg6OuLv70+FChVYunRpoi3tme3Ro0f8+uuvuLu707hxYwYOHEjhwoV5+vQpq1ev5s6dO/To0YOJEyeir6+f1eVqLCIigvv37ye4v1KlSun6IfxLERkZyb179+LdV7ly5S/qeyqEEOLrFBEZjfNtDw45u/HqbYDW4wvnM6V1Axua1rTCyFCuOxMiI0RFRfH8+fN495UqVUqrNXeUSiWhofGndzU2NkZHR6ZsFUIIIYQQmeNL+0yaHp/DkyLnz6VzLVu4e/cugwcPJk+ePBw9ehRLS8t4jxcoUIBq1arRqVMn+vbty8OHD+ncuTP79u2jSJEiWVQ13L9/n969exMcHEyXLl34/fff1Y8VLFiQBg0aMGTIEBwdHfHw8GDNmjXZ9heNEEIIIb4svoFhHL/8iuOXX+EXFK71+Cql8mJva0ONsgXQ0ck+MwIIIYQQQgghhBAi+5OkI4t9+vSJIUOG4Ofnx59//pkgWIurYMGCLF26FB0dHXx9fRk/fnwmVhqfn58fDg4OBAcHU7p0aaZOnZpgGx0dHRYtWoSFhQX//fcfy5Yty/xChRBCCPFVeenlz7Ldt+j3x7/sOvVUq2BNX0+HZrWLsmJsY2YN+Z5a5QtKsCaEEEIIIYQQQgitSedaFlu7di2fPn2ibNmySS6wGlfZsmWpX78+zs7OuLi4cP36dWrXrp0Jlca3ZMkS3r9/D8C4ceOSbCW1sLCgV69erFy5kvXr19OiRQvKli2bmaUKIYQQ4gunVKq4+dibQ86u3HvxQevxOc0NaVGvBD/XLU5Oc8MMqFAIIYQQQgghhBDfEulcy2InTpwAYta00lS9evXUt8+dO5fuNaXkzZs37N+/H4DixYtja2ub7PZt27YFQKVSsXTp0gyvTwghhBBfh9DwKI5cdGPI/DP88dc1rYO1EoUs+LVLNf6a0oyuzctIsCaEEEIIIYQQQoh0IZ1rWSgkJARvb28AXF1dcXZ2TjGoArCyslLffv36dYbVl5TNmzerw8A2bdqkuH2RIkUoU6YMT58+5b///sPNzQ1ra+sMrlIIIYQQX6r3viEcufiSU1dfERwWpdVYhQJqly+Iva0NFW3yoFDItI9CCCGEEEIIIYRIXxKuZaHQ0NB4X8+fP1+jcM3Y2Fh9OyIiIt3rSo5SqeTUqVPqrxs0aKDRuJo1a/L06VMA/v33XwYPHpwh9QkhhBDiy6RSqXjq7stBZ1eu3H+LUqnSaryRgS4/1C5K6wbWFMprlkFVCiGEEEIIIYQQQki4lqVy585Nvnz58PHxAVB3saXE19dXfdvS0jJDakvK7du31fWamJhovH5a+fLl1bdPnz4t4ZoQQgghAIiKVnL5nheHnF159tpP6/H5cxnTqr41zb4rhpmxfvoXKIQQQgghhBBCCPEZCdeykEKhYNmyZSxbtgw/Pz969eql0bgHDx6ob5cpUyajykvU7du34x1bT0+zt1CpUqXUt588eUJ0dDS6urrpXp8QQgghvgxBIRGcuOrO0YtufPAP03p8ueK5sbe1oU7FgujqyjLCQgghhBBCCCGEyDwSrmWxmjVr4ujoqPH2KpVKPS2jnp4eP//8c0aVlqjnz5+rbxcuXFjjcfnz51ffjoiI4PXr15QoUSJdaxNCCCFE9ufxPhCnC26cvfmG8Ihorcbq6ij4vkoh7G1tKF00VwZVKIQQQgghhBBCCJE8Cde+MOfOncPT0xOAH374gdy5c2fq8V+8eKG+XahQIY3H5cuXD4VCgUoVs36Kq6vrFxmuRUVFoVAosrqMTBcVFaXRfUIIIURiVCoV91585PDFl9x66qP1eDNjfZp/Z8VPdYuRN0fM2rORkZHpXaYQIoNERUWp/w6IpVQqUSqVad53euxDCCGEEEKItMiun0mVSmWCz+GRkZEJ7ksNOTcs4doXJTo6muXLlwMx652NHTs202v49OmT+naOHDk0Hqenp4exsTEhISEA+Pv7p3ttmeHx48dZXUK28ejRo6wuQQghRDYXGaXivnsIV58E8t5f+w/eeSz0qFPGjColTDDQi8DL/TleGVCnECLzGBkZARAWFpbmaeJDQ0PToyQhhBBCCCFSLTt/Jo2OjlYHaWFhMcsxyDnd9CPh2hdk69atPHnyBICZM2diZWWV6TUEBwerb8f+YawpAwMDdbgW+38hhBBCfH0CQ6O58TyIm8+DCQnX/go+m4KG1Clrho2lETrfYMe4EEIIIYQQQgghsjcJ174QDx48YMmSJQBMmDCB1q1bZ0kdcUMxQ0NDrcbGDePihnRCCCGE+Dq89Y3g6pMg7ruHoO2sGLo6UKWEKXXKmJE/p37GFCiEEEIIIYQQQgiRDiRc+wK8f/+e4cOHExUVxbRp0+jevXtWl5Qqceee1dHRycJKhBBCCJFelEoVz7zCuPIkEPf3EVqPNzPSoVZpM2qWNMXUKG1TxAkhhBBCCCGEEEJkBgnXsrmAgAAGDRqEj48PCxYswM7OLkvrMTU1xc/PD/jfPK2aioj43wk3U1PT9Cwr05QrVw59/W/vavqoqKgE8/GWL18ePT35FSKEEN+q0PAozt704OjlV7z7qP10zyUKWdC6fgm+r2yJvp5cdCPE1ywqKoqXL1/Gu8/IyEjrz5Kfr2dhbGyc5tqEEEIIIYTQxpf0mTQqKgrF/y+1EFtniRIl0uWcbmRkJI8fP07zfr5kcmY8GwsMDKRfv364ubmxYsUKmjRpktUlxQvXwsPDtRobd3sTE5P0LCvT6OnpfZPhWmLktRBCiG+T96cQjlx049Q1d0LCorQaq1BAnYqW2DWwpoJ1HvWHfCHE102hUCT4edfR0dFqNgtlEnPNyowYQgghhBAis3xpn0l1dHQSfA7X19dPl3BNpVKleR9fOgnXsil/f3/69euHq6sr69ato27dulldEgC5cuXC09MTiKlRUxEREfE63XLnzp3utQkhhBAiY6hUKh6/+sQhZ1eu3n+LUsvP0MaGujSrXYzWDawpmOfL7F4XQgghhBBCCCGEiCXhWjbk6+tL3759ef36NRs3bqRmzZpZXZKajY0NDx48AMDLy0vjcT4+PvHSbBsbm3SvTQghhBDpKypaycW7XhxyduXFGz+tx+fPbULr+tY0q10UU2PpdhZCCCGEEEIIIcTXQcK1bCa2Yy02WKtevXpWlxRPyZIl1bffvn2r8Thvb2/1bRMTEwoXLpyudQkhhBAi/QQER3Dy6iuOXHzJpwDt1lgFKF8iN/a2NnxX0RJdHZn6UQghhBBCCCGEEF8XCdeykaCgIPr378+rV6/466+/qFatWlaXlEDlypXVt58+fYpSqdRoTtnnz5+rb1esWFHWWBFCCCGyoTfegThdcOPszTdEREZrNVZXR0GDqoWxs7WmlFWuDKpQCCGEEEIIIYQQIutJuJZNRERE4ODgwPPnz9mwYYNGwVpkZCSjRo1i4cKFGBsbZ0KVULNmTXLmzImfnx9BQUG8ePGC0qVLpzju4cOH6ts//PBDRpYohBBCCC2oVCpuP/PBydkVlyfvtR5vbqLPT3WL0/L7EuTJkTmfR4QQQgghhBBCCCGykoRr2YBKpWLixIm4uLiwevVqateurdG4x48fc+XKlUwL1gD09PT44Ycf2LdvHwCXL1/WKFy7efMmAAqFQsI1IYQQIhsIj4zmP5c3HHJ24413oNbji+Q3w87WhsY1imBkIB8phRBCfHuio6O5du0aR44cQU9Pj5kzZ6bbvt+8eUOuXLkwMzPTeuz9+/cpXrw45ubm6VZPcg4dOkT58uUpVaqU1mM9PT3JmTMnpqamGVBZ6mg6Q4/IPi5cuIC1tbUsQSKEECJTyaeFbGDVqlUcPXqUWbNm0bBhQ43HnThxgqJFi2ZgZYnr06cPurq6QMyH6JQ8f/4cV1dXAH7++Wf5sCOEEEJkoU8BYWw//pi+M0+xcu9drYO1aqXzMWNgHVaNa8LPdYtLsCaEEOKb4uXlxcGDBxk9ejT16tWjb9++/PPPP+zZs4ctW7ak23HWrVuHnZ0dN27c0Hrs3bt3adq0KevXryciIiLdakrKzZs3sbOzY9SoUbx48UKrsU5OTjRo0ICZM2dqPTYjBAUFYWdnx9WrV7O6lEQdPnw43pr2mcHJyYn58+cTGRmZqcfVxvXr1/nxxx/5448/8PHxyepyhBBCfCMkXMti58+fZ+XKlQwdOpS2bdtqPM7T05Pdu3cnGa55eXkxaNAgqlWrRuvWrbl8+XJ6lUypUqWwt7cH4NGjR7i4uCS7/T///AOArq4uI0aMSLc6hBBCCKG5Fx5+LN7pQv9Zp/j79DMCQzQ/2Wagp8OPdYqxclxjZg6uR42yBdDRkfVThRBCfN0CAwO5fv06W7ZsYcyYMTRq1IjGjRszYcIEjh49ip+fX7ztFy5cmKow7HMRERGcPHkST09PevXqxfz584mO1nwt1B49elCnTh0WL16Mvb099+/fT3NNyTE0NESpVHLs2DGGDh2Kv7+/xmM/fvxIcHAwO3bsoGXLlqxduzYDK03Zrl27eP78OX369GH+/PmZEk5q4+7du7Rq1YoDBw5kyvF8fX2ZM2cOf/31F927d8fT0zNTjqstQ0NDIiMjcXR0pFmzZukadAshhBBJkUuNs5CPjw8TJkygTp06jBw5UuNxt2/fZsKECQQHBycZrk2YMIHr168D8OzZMxwcHDh+/DiWlpbpUvu4ceO4fv06Hh4ezJs3j7///huFIuFJNm9vb3bt2gXAiBEjsLa2TpfjCyGEECJl0UoV1x++5ZCzGw/dPmo9PreFIS2+L8FPdYqTw8wwAyoUQgghslZ4eDienp54eHjw5s0bXr58iZubGy9fvsTLyyvB9gqFgrx585I/f34KFChAnjx5yJkzJ8bGxujr6/Py5Utq1aqVpppOnjxJQECA+usSJUqoZ4/R1LRp07h06RJubm706NGDv/76ixo1aqSprqQYGBgAkCNHDnbv3k2OHDk0Hvvp0yf17V69ejFo0KB0r09TgYGBbNy4EYhZvmP//v2ULFmS9u3bp9sx/vvvP2rWrJmq6T4hJkQKCAhg4sSJTJw4Md3q0sTdu3c5efIk/fr1y9TjakJP73+nN+vXr4+dnV0WViOEEOJbIeFaFlqxYgW+vr68ePGCFi1aaDQmICCAjx//d3IsqXDtwYMH8b4ODQ3l/v376Rau5c6dmzVr1tC9e3fu3bvHvHnzmDRpUrxtIiIi+PXXXwkLC6N58+YMGTIkXY4thBBCiOSFhEXy7/XXHL7ghvenEK3H2xTJgb2tDfWrFEZfTyY6EEII8eVRqVT4+fnx8eNHfHx8+PDhA97e3rx7947379/z7t07vLy8+PDhAyqVSj1OT0+PIkWKULx4cerWrUuhQoUoVKgQlpaW6v/HhkkZxdHRUX17+vTpdOrUSet95M2bl169erF69WrCwsJYuXIlmzdvTs8y1QwNYy7AMTMzI0+ePFqNff/+vfp2//79s3Sts9WrV6u7EWvVqsWmTZvUzy09ODk5MXHiRCpVqsSmTZtSFbDFDZFOnz6t8Vp1O3fuZMWKFVhaWrJ//36Nj/fu3Tv1LEs9e/bMlsEaxH9dJk6cSO7cubOwGiGEEN8KCdey0IcPH4CYDrbUzgmdVLhWsWJFdecagL6+PmXLlk3VMZJSunRp9u7dy4gRI9iyZQteXl7079+fggUL8vjxY5YvX87jx4/p3bs3EyZMSLSzTQghhBDp593HYA5fdOPfa68JDY/SaqxCAXUqWmLXwJoK1nnk320hhBBfrCVLlnD+/HkUCgVGRkYYGRlhbGyMqakppqamWFlZUb58eczNzTE3N8fCwgILCwvu3r3L/PnzKVu2LMOGDaN06dKZXvu9e/e4c+cOAB07dqRLly6p3leXLl1Yu3YtSqWSqKjkPxfcunULKysr8uXLp/VxtO2qi8vNzQ2AfPnyUbBgQa3Hh4WFERISkuYw5dmzZ2zbtg2AXLlyMWPGDIKDgwkODk7TfmOdP3+eyZMnEx0dzZ07d+jfv3+qAjZ9fX317Rw5cmBhYaHROGNjYwB0dHS0eq1CQv53kVb58uU1Hvf06VNKlSqVYlgaERHB0qVLGTJkiFYdj5+L+7oIIYQQmUXCtS9cUuHa/PnzmTFjBjdu3KBAgQKMGTMmyW3Tonjx4vzzzz+cOHGCAwcOMHLkSPz9/SlYsCDVqlVj9uzZVKhQId2PK4QQQogYKpWKRy8/ccjZlWsP3qJUpTwmLmNDPZp9V5TW9a0pmEezq5+FEEKI7Gz06NGMHj1aqzHv3r3DwcEBlUrFiRMnOHnyJB06dGDq1Knp2r2UkpUrVwIxf2tPnjw5TfsqUKAAVapU4c6dO8l2HN28eZOBAwdiY2ODo6MjRkZGWh0nteGav7+/emaeihUraj0+PDwcBwcH3r9/z7Zt21IdsEVHRzNlyhR1AOnr60vLli1TtS9N3blzhwEDBrBx40atAra0BJmZad26dTx9+hQHBwd+/vnnJEO22bNns3v3bk6fPs2qVatSHWhnZcdjeoiOjqZr166MGTOG7777LqvLEUIIoSEJ17LQ6tWrM2zfhQoVYv369Rm2/7gMDAyws7OTOa2FEEKITBQZpeTiXU+cnF154eGv9fj8uU2wa2BNs9pFMTGSq32FECIjqVQqQsOjiIxSoq+ng7GhnnQIZyOBgYEMHDgQX19fIGaNMwcHB1q0aBFvurmMdu/ePXXH3ezZs9XdRp/z8/NDqVRqtM+OHTtia2tLlSpV4q1vFis2AAkJCeH+/fuMHz+e5cuXa/X+TG3g8/LlS/VtbcO12GDt0qVLAPTu3ZutW7emKmDbtGkTd+/eBaB9+/bMnj072/58finhmqGhIS9evNA46H79+jU9evTgxIkTqfoepiVc279/f4JlTpJibGyMubk51tbWVKtWDXt7e0qUKJHqYwMolUrmzZunfg8KIYT4cki4JoQQQgjxBfEPCufE1Vccu/SSTwHhWo+vYJ0He1tralewRFcne544EkKIr8GrtwE43/bg2WtfXD38CQqNVD9mZqyPTZEclC6ai4bVilDMUrOp3UT6Cw4OZujQoTx79gx9fX0GDRrEkCFDMnxdtcTMmzcPgL59+1KzZs0ktzt27BgzZ86Mt1ZcSpYvX67RdidPnmTJkiWMGTNG430nFWzs3LlT4zpXrFjBihUrND7m5549e5aqgO3mzZvq16ZNmzbMmjUr2wZrQLauLa64ofSVK1eS3G7WrFkcPXoUQ0NDli1bluruw7SEjq1ataJp06Y8f/6cQYMGqacC7dq1K0OHDlWH3EFBQXh7e+Pi4sLff//N1atXWbNmDe3ateO3337D3Nxc42OqVCp8fX25evUqjo6OuLi4pLp+IYQQWUfCNSGEEEKIL8DrdwE4XXDj3M03RERpdrV6LD1dBfWrFsa+gQ0lrXJmTIFCCCEAuPHoHf+ce8FDt49JbhMUGsnd5x+4+/wDe888p4J1Hjo0KUXNcgUysVIREBDAoEGDuH37NpaWlixbtoyqVatqNPbFixfcuHGDrl27pkstx44dw8XFhXLlyjFq1KhEt1m6dCk9e/akW7du5MmTh9DQUMqXL0+ePHkwNzePFwgePnyYSZMmMWHCBHr27JkuNSYlNvB59+4dc+bMYfjw4VhYWNCtWzeKFCmCQqHAxsYmwXSTCxcuZP/+/QA4OTmlar23z5maaj7Ftbe3N7/++itRUVG0bt2atm3bpmt4FRAQwNy5cxk9enS6PDf4cjrX4oZryQVmse/ZvHnzUq9evVQfL7nvW3R0NP7+/knWYWBggIGBATVr1qRChQpcv34dgD59+lCgwP9+J1tYWFCoUCGqVatGnz59mDt3Lo6Ojuzfvx9XV1e2bNmCiYlJsnXOmDGDI0eOEBoamuI6iEIIIbI/CddSsHLlSoYPH57VZQghhBDiG6RSqbj19D2Hzrty+5mP1uPNTQz4uV5xWtQrTp4ciU8tJYQQIn0EBEew7sA9nG97aj32odtHHrp9pGG1IgxqWwkL08zvmvrWvHr1iqFDh+Lm5kb9+vVZuHChxl0zb9++ZdCgQXh6euLq6sqkSZPSFHr4+fkxZ84cTExMWLJkSaJdc7du3WLt2rXs37+fpUuX8uOPPya7z7/++ovIyEhmzZrF3bt3+eOPP5KcZjI1Pnz4QN68eePdlz9/fp49e8ZPP/3ElClTaNGiBba2tknu4+nTpwAULlyYMmXKqO9XKpV8/Pgx3QKpxPj5+TFgwAB8fHzo3bs3kyZNokWLFujr6zNs2DBq1aqVpv1HR0czatQobty4weXLl1m1alWq1pX7UmV2CJhUuBYVFcXYsWN5/Pgx27ZtixeWJSZu3clNCaunp8fUqVPx9PTk3Llz3L17l7Vr16Y4BebIkSMZMGAAEPM+v3fvHpMnTyYsLCzZcUIIIbInCdeSsXLlSlatWiXhmhBCCCEyVVhEFOdcPDh8wZU33kFaj7cqYI69rTWNalhhqP9lXOEshBBfspde/szYcJVPAWk7QXr+tgf3XT/w+6C6FJepIjPMqVOnmDx5MsHBwYwcOZKhQ4dqvGaTu7s7/fr1w9MzJkTdvn07r169YtmyZZiZmaWqnlmzZuHj48P8+fOxtrZOdJtly5YB8P79e3r37s2GDRuS7PQ5duwYjx49AsDExAQrKytCQ0PTLVyLjo6ma9eu/Pvvv/Hu19HRYcGCBbRq1YpRo0Zx4cIFZs6cib5+wrVdw8LC1OFajRo1EjzepEkT7O3t6devX5KvSWoFBQUxePBgnj9/zqRJk+jTpw8A+vr6PH36lJEjR6br8d69e0f37t3Zt28fpUqVStO+vpRpIbNDuBYVFcWYMWM4ceIEAL169dIoYNPGmDFjOHfuHBAzDerIkSOTDeVy584dL8QvWrQoZ86c4dixY+lWkxBCiMyTLcM1b2/vdP3HLjVWr17NypUrv5gPLkIIIYT48n30D+XopZecuPKKwJDIlAd8pnrZ/Njb2lCtdD75DCOEEJnkpZc/v62+FG9NtbT4FBDGpFUXmTusvgRs6ezjx48sWLCAgwcPUrRoUdavX0+1atU0Hn/lyhV+/fVX/Pz8gJjgqmXLljRq1IiIiIhU1bRjxw4OHz5Mu3btaNOmTaLbnDlzhmvXrgExAdD06dOTDNZCQkJYtGgRABUqVGD58uVYWVmlqrakvHr1Cm9v70Qfy58/PxMmTOC3335j//79qFQq9VpycT148EA9Ld7n68vp6OigVCrZu3cv+/bt44cffmDevHmpDi/j+vjxIwMGDMDT05NVq1bRtGlT9WNxQ8DY4C8t7O3tefLkCSYmJqxevTrNwRp8OeFaaup8+vQpvXv3xtfXN03Hjvs9jevVq1fpHrCVKlWKokWL8vr1awIDA3n48CFVqlTRah8pTSUphBAi+8p24Zq3tze9evXi5MmTWVbD3r17+fPPP7Ps+EIIIYT4tjx/44uTsxsX7ngSrVRpNdZAX5cmNa2wa2CNVQHNF1IXQgiRdgHBEczYcDXdgrVYQaGRTF9/hRVjG8sUkeng7du3/P3332zdupWIiAgGDhzIsGHDNOrkioiIICwsjM2bN7N27VqUSiUmJib07duXvn37Ym6e+n97jx07xpw5cyhbtizTp09PdJugoCBmz54NxIQ/K1asoHHjxknuc+nSpXh6elK3bl1WrVoVbw0ylUqVLuHMnTt3CA8PT/Lxdu3asXPnTh48eMCBAwfo0KFDggDtypUr6tvff/99gn0YGBgQFRWFnp4ezZs3T5dg7fXr1wwcOBBzc3P2799PkSJF4j2eWIddesiVKxd169bNkH1nV5p2gsZVpkwZtmzZwtGjR6lQoQLFihXDzMxMo3X0nJycmDt3LgAHDhygYMGCSW6bntOjApQsWZLXr18DJBk6CyGE+Dplq3AtNliL/UcpqzRr1gxHR8d0uVJJCCGEECIx0UoVVx+8xcnZlUcvP2k9PreFEa3ql+DHOsXlxKsQQmSRdQfupXkqyKR8Cghj/YH7jO2RcMo8oZmwsDA6d+7Ms2fPUCqV6Orq0rRpUwICApg2bRphYWHq/0JDQxP9f3R0dLx9tmzZkgkTJqSp8yUkJITFixezY8cOdHV16devH1evXsXPzw8/Pz/8/f0JCAggICAAV1dXPD09USgULFiwINlg7fLlyzg6OlK7dm3Wrl2LkZFRvMddXFxYtmwZQ4cOTTTQ0tTFixcBiIyMTDSQUigUjBw5kkGDBgHg4eGRIFy7dOkSAKVLl04QcsH/gq4SJUpgZ2eX6lrjHm/8+PF07NgRBweHRNe1y6hwLaOkZl04T0/PeOvbZZTUhrhly5albNmyWo+LG8BZWFhovH5ieoh77MjI9L3QQgghRPaWbcK12GDN3d09y9vcc+bMydatW+nduzfPnj3L0lqEEEII8XUJDo3k3+vuHL74kvefQrQeX9IqJ/YNrPm+SmH09bS/KlgIIUT6uPHoHc63PTP0GOdve9CwemFqlU+6C0MkzcjIiBo1avDkyRMgZq2wU6dOxdvG1NSU4sWLU7RoUQoXLkyhQoWwtLQkV65cHDhwgP379xMZGUmFChX47bffEoREqWFsbMy9e/dQqVRERUUxfvx49WMFChSgSpUqVKhQASMjI5ycnAAYNWoULVq0SHKfPj4+jBs3jnLlyrFmzZoEwRrETL/Ypk0bBgwYQKVKlRg7diy1a9fWqnZ/f3/OnTuHQqFIdl0tW1tbihQpwqdPn2jUqFG8xwIDA7l//z4Qs7ZaYmL3bWhoqFV9iXn79i2bNm1i27Zt2NjYJLld3MDt0yftL3z6nFKpTPM+PqdS/W+Gg7Nnz2rchbVz505WrFiBpaUl+/fv1/h47969o23btlrXmZrOtS9VUND/1kfOlStXFlYihBAis2WbcO3ixYu4u7snu01ERAT//PMPXbt2zfB6cubMyfz581P1IUIIIYQQ4nNvPwRz+KIbp6+7ExoenfKAOHQUULdSIexsrSlXPHeWX4gkhBAC/jn3ItOOI+Fa6g0ePJi9e/cSERGBQqGgXLly1KlThxo1alChQgUsLS0TjDl37hxjx47Fw8ODfPny8csvv9C+fft0CwwUCgVTp06lU6dOqFQqqlevTqtWrWjatKl6Ojtvb2/1+YgOHTowePDgJPcXHh7OsGHDMDIyYv369clOodihQwf09fWZOHEiPXv2pHHjxowbNy7Z0CmutWvXEhoaipmZWbKvh0KhwMHBAR0dHXLmzBnvsUuXLqnXW0tqfazAwEAA9PTSftrK0tKSv/76K8Xt4nauZddpHON2UubLly/RDrzExIZwOjo6WnV1hYRofyEYfDlrw6WHly9fAjHPOTVdd0IIIb5c2SZca9++PYGBgYkudAsxV+eMGTOGM2fOULJkyVS1v2tL0w8pQgghhBCJUalUPHD7iJOzK9cevkOl3XJqmBjp0fy7YrSqb02B3LLYuRBCZBev3gbw0O1jphzrodtH3N8GUMzSIlOO97UpUKAAgwcPRkdHhzZt2lCoUKEkt339+jVz587l7NmzGBoaMmjQIAYPHpwu6319rnLlyowYMYKKFSvSsGHDeI9FRUUxatQoPn78iK2tLb///nuS+4mMjGTMmDG4u7uze/du8ubNm+Kx7e3tCQsLY9q0aZw7d46LFy8yaNAgHBwckg2znJ2d2bx5MwDFihVL8Tjt27dP9P4TJ04AYG1tTeXKlQFYtGgRY8eOBWI6gTSZXu/cuXPUqFEDC4v0/9lIj2VC7O3t1V2T6SVuN1x2PmeV1nAtKCiIqKioBMFsdvP69WtevXoFQLVq1TJ1OkohhBBZL9uEawB9+vQhMjKSJUuWJHhs9uzZ/PvvvwD06tUrs0sTQgghhNBYZFQ0F+54csjZDTdPf63HF8xjQusG1vxQqygmRl/W+h9CCJEZ3vuGYhSqyrKpx45ffpmpxzt2+RXtGpfM1GPG9aVf4DF8+PBkHw8ODmbdunVs3ryZiIgIfv75Z8aOHZvoWmC3bt3C398fW1vbZKdF1MSwYcMSvX/u3Lm4uLhQsWJFli1blmTgFRQUxNixY7l48SKbN2+mRIkSGh+7c+fO+Pr6snTpUiIjI1m1ahX3799n3bp1if5cKZVKpk+frp6WUNvpJGOFh4dz/vx5AHVnnp+fH3v27FGHa35+furtYzvcPhcYGMjEiRPVXWnpEWpk1HpZ6Tk9ZEREBPBlrQ8XHByc5GNJfX+vXbvGzJkzmTdvXrbtIgRYvny5+nZSP89CCCG+XtkqXIOYKQE+D9ciIiJ48SJmyg2FQhFvjumM9i21sgshhBAibfyDwjl+5RXHLr3ENzBc6/EVbfJgb2tDrfIF0dWRzyBCCJGUkUsvZXUJmerY5Zccy+RAL67Di+2z7NgZKTo6mn379rFixQp8fHyoWrUqEydOpFq1akmOKVy4MAsXLmTatGl06NCBLl26UKBAgXSrafPmzTg6OlKsWDE2bNiAqalpotsdPnyYZcuW4eHhQceOHQkKCuLo0aMEBwcTEhJCUFAQISEhhISEqO+LvR0YGEh4eDjBwcHo6+urQyVnZ2fu3btH1apVExwvKipKHXqVKlWK/v37p+r5nT9/npCQEHR1dbG3j3lfXbt2LV6w5e//vwuTQkNDE93PihUr8PPzw8/Pj27durFlyxb1lJqpFRtcpbekAqTUiK0xO3etfa569epaj2natCknT56kb9++DBkyhJEjR2arddyUSiV//vknR44cAcDBwYH69etncVVCCCEyW7YL1xJjYGDAxo0bmTJlCocOHWLgwIEJtvH392fv3r0MGDAg3R8TQgghhEiO+9sADjm78t8tDyKjtLs6WU9XgW21Itg1sMamSM6MKVAIIYQQaiqVin///Zdly5bh6upKkSJFWLJkCS1btkxxbIECBdi6dSu//fYbq1evZv369bRo0YJBgwZRqlSpNNV16tQpFixYQL58+di0aVOy3Vh37tzBw8MDgL179yZ67kJPT48CBQpQuHBhChcuzOnTp4GY6Rp79epFwYIFMTExoVOnTjx+/BiADx8+JHo8AwMDDh8+THh4ONbW1qm+EHn//v1ATHgSG0oeP348XifWmzdv1Lc/ffqUYB8uLi5s375d/Ry/++67ZLujNJWeIVhc6dkRF7sGmqGhYbrtM6Pdu3cvycemTJmCk5NToo9NnTqVS5cusWbNGu7du8fy5csxNzfPqDI18unTJ65evcrmzZu5d+8exsbGjBs3ju7du2dpXUIIIbLGFxGuQcwHpoEDB3Lo0CHGjBmT4HFXV1f27t2bIY8JIYQQQnxOqVRx6+l7Djm7cueZj9bjLUwN+LlecVrWK0EuC6MMqFAIIYQQcSmVSv79919Wr17NkydPyJkzJ5MmTaJbt25adQIZGBiwcOFCcuXKxbZt23BycuLIkSO0adOG8ePHkytXLq1ru3HjBuPGjcPU1JSNGzdiZWWV7Pb9+/dnz5496uDGwsKCGjVqcO7cOQDq1KnDX3/9FW/qygMHDgBga2tL2bJl1fcvWbKEtm3bEhYWluzUkolNk6kNb29vnJ2d1fUDvH//nrNnz8ZbWyt2nTJ9fX0+ffpEUFCQet27gIAAJk6ciFKppGTJkixYsIAKFSqkqa5YcUOwxEI9bcVOBxkbiKWHLzFcS67W5KZWNTc3Z9y4cUyYMIFLly7RvXt3HB0dM2SNvcTY2dnF65YLDw9Xdw7a2NjQr18/evbsmew6jkIIIb5uX0y4BslP0ZjZjwkhhBDi2xQWEcW5m29wuuCGx/sgrccXLWiOva0NDasXwVA/bWu1CCGEECJlvr6+HDp0CEdHR968eYOpqSkODg70799fHdpoS6FQMG7cOMLDw9mzZw9KpZL9+/dz4cIFNm3aRJkyZTTel4uLC4MGDUKlUrFmzZp4wVdSChUqROvWrfHy8qJ37940aNAAgIoVK6of13RNOGtra0aPHs3Zs2exsbHRuG5tHThwgOjoaGrUqKGeenLlypWEh4eTP39+9Xax4VqJEiUICgrC1dWVKlWqoFKpGD9+PK9fv6Zt27ZMnz4dY2PjdKsvbriWnut8RUREEB4eni6BWGBgIEC6Pu/szN7envXr1+Pq6srTp0+ZOXMmixYtypRjr1+/Pt5Uoxs2bGD37t0AzJs3j8qVK2dKHUIIIbKvLypcE0IIIYTIKh/9Qzly8SUnr74iMET76X1qliuAva01VUrlkwt4hBBCiAzm7u7OlStX+O+//7h48SKRkZEYGxvTpUsXOnfujKGhIW5ubgQHBxMcHExQUJD6duwaZXG/Tuw/hUJBjhw5KFiwIO/evQPAx8eHESNGcPz4cY3CrWPHjjFx4kSio6NZuXIltWrVSrDNhw8f8PT05M2bN3h4eKBSqRg6dCgzZsyIF9iEhYWpbxsZadcV36tXLzp37qzVGG1ERkaya9cuAAYPHgzEPPc9e/YAULp0afW2z549A6BYsWKoVCru3btHlSpVWLJkCRcuXGDatGkZMg1fVFQUOjo6NGnShFGjRuHg4MCAAQNo06ZNqtY4Gz16NEWLFuWnn35Kt06z2PXoTExM0mV/2Z1CoaB///789ttvABw5coSxY8emeX09TRQsWDBet2avXr3U4drOnTslXBNCCCHhmhBCCCFEcp699uWQsyuX7noRrVRpNdbQQJemNa1o3cCaIvmzdo0IIYQQ4lvi5eXF9OnT490XGhrK7t271SfIE2NiYkJkZCSRkZEULFiQrl27kiNHDnLmzJngv9juoZCQEDp06ICrqysQE+y9efOG4sWLJ3mc169fs3z5co4cOQJA586dCQ4OZv369Xh5eeHp6YmnpydeXl6EhoZiZWVF9erVqV69OjVr1gQSTrcXt/NK284mhUKhdSCnjaNHj/Lu3Ttq165Nw4YN8fDwYPLkyerHGzVqBPwvSISYcM3U1JQLFy6gUCjYs2cPGzduTNeusrg6duzIDz/8QJEiRRg/fjzu7u5MnTqV7du3s3HjRvUacZoaPnw4uXPnjjflZVp9/PgRiPn+ajN1ZWhoKBAzVaU24wICArQr8P+pVNp9Zk7OTz/9xB9//EFoaCgqlSpdp9nUho2NDTVq1MDFxYVjx44xYcKEVE0BK4QQ4uuRpeFadHS0xtMUCCGEEEJkluhoJVcfvOOQsyuPX2m/5kbeHEa0rG/Nj3WKYW6i/ZXOQgghkvfnqO8xMjKKtx5OZlq8wyVV/z6kVrkSuRnTrUamHe9rULduXerWrcuVK1fi3a+vr0+pUqUoXbo0xYoVo1ixYhQoUIACBQqQL18+jIyM6NmzJ9evX6dQoUIMGTIkxWOZmJiwfPly2rVrp16Tydw8+YtqFAoFp06dUn+9Z88edRcXQK5cuahbty79+vWjQYMGGgU7cYOQlI6f2f766y8Axo0bB8R0IMWGJKVLl6Zp06YA6jXjAKpUqYK5uTmrV6/m1atX7Nq1K0OnrezTpw8Ajx494vDhwwDUrFmTZcuWYWJiQnBwsMb7unfvHiNHjqRgwYJs2rQp3rSXaeHjE7PO740bN1IVMr59+zbDwsm40jNcMzU1pX79+vz7779UrVoVa2vrdNu3tjp16oSLiwvh4eHs27ePgQMHZlktQgghsl6WhWvh4eEMGDCADRs2ZOjVUUIIIYQQmgoOjeTUNXeOXHTjvW+o1uNLF82Jva0N9SoXQk83a074CiHEtyB/LmOMjY2zLFyraJMnU8O1itZ5KJD725gGLj2NHj2azp07U61aNRo2bEjt2rWpUKFCqqb4S0mpUqUYNGgQK1eupFKlSuTJkyfZ7a2srOjduzcbNmxQ35czZ05at27NTz/9RPXq1bV+f8euxwWQO3du7Z5ABjp9+jRPnz6lZcuW6qn0OnfujL6+Pubm5jRr1kx94fXZs2eBmBC0Xr166Ovro1Ao6NmzZ4YGa7FUKhWzZs1CqVQCcPPmTerXr5/q/QUEBNCtWzc2b96MlZVVmmoLCQlRTwvZrl075s6dq/HYTZs2sWDBAgoXLqx+jTXh4eGhDj6zUsuWLbl48SK///57ltbx008/MWfOHPz9/dm1axf9+/fPsn+HhBBCZL0sC9f+/vtvbty4Qb9+/ShfvjzGxjF/HMVeubRr1y4MDQ0xMjJS///Dhw9ZVa4QQgghvmJeH4I4fMGNMzdeExoerdVYHQXUrVyINrY2lC2efU5kCSGEyDi21Yqw98zzTDtew2pFUt5IJFC5cmUuXbqUIGhSqVSEhYVpPXViSgYPHszLly/p2rWrRtsPGTKE/fv3o1AocHBwoH379mm6+DjuOZN8+fKlej/pSalUsmzZMnLkyKFeNwtiOvP69+8fb9uwsDB1p2HNmjUxMzMDoGrVqjg5OdGzZ88Mr3fbtm24uLhgYmJCxYoVKVOmjLrbTlOHDh1i2rRp6u4tKysrPDw80hyuxU6XCfHXqNNEenaSaSI2nEyv7X/66ScqVaoUbw20rGBkZISdnR3bt2/H09OT8+fP07hx4yytSQghRNbJknAtMjKSTZs2oVAouH37Nrdv3473uEqlYubMmVlRmhBCCCG+ESqVigeuHznk7Mr1R+/Q9pyDqZEezesUp9X3Jcgv3QRCCPFNKW5pQQXrPDx0+5jhx6pgnYdilhYZfpyvVWIdXLt37+bw4cNs2LABU1NTjfZz8+ZNcuXKlWz3lIGBAUuWLNG4NjMzM5YtW0bp0qXTZV2ut2/fqm+nNchJL05OTjx//pw5c+aQN2/eZLd1dnZWrw3WsmVL9f2NGjViwYIFPH78mHLlymVYrY8fP2bx4sXo6uqydOlSqlSpgp2dHRUrVqRNmzYa7cPJyYnp06ejUqlQKBRMnz5d47A1JW5uburbZcuW1WqstmFXWmkb5qVUn0KhyPJgLVanTp3Yvn07ADt27JBwTQghvmFZ0rt88OBB3r17h0qlSvQ/INnHhBBCCCFSKzIqmjM3XvPrkvP8tuYS1x5qF6xZ5jVlcNtKbJ72I/1aV5BgTQghvlHtG5fMlON0aFIqU47zrXjz5g0LFy7ExcWFgQMHaryOlpmZGSNGjKB///44Ozun2/mJ2rVrp0uwBuDu7g6Anp4eRYsWTZd9pkVISAhLly6lfv36tG/fPsXtHR0dAcifPz/29vbq+5s3bw7A+vXrM6ZQwM/Pj5EjRxIeHs7UqVNp1KgRuXLlYt68eUydOhVnZ+cU97F3714mTJiAUqlEV1eXuXPnpluwBvD8eUy3rJ6eHlWqVNFqbHbvXPuSzveVLl2aqlWrAnDx4kVev36dtQUJIYTIMlnSuVahQgUcHR3R19dHR0cHlUqFUqkkPDwcd3d3pk+fzooVKwgPDycsLIywsDDCw8Px8vJix44dWVGyEEIIIb5wfoHhHL/yimOXX+IXGK71+Mol82LXwJpa5Quio6PIgAqFEEJ8SWqVL4httcI43/ZMeeNUalitCDXLFciw/X9rQkNDGT58uDpQiw3YNOlgK1u2LPv27WPmzJkMHDgQGxsb+vbti729fYas4ZaSqKgo9PTin9J5/PgxADY2NhgaGmZ6TZ9btWoV0dHRLFiwIMVtHzx4wLVr1wDo06dPvNfUysqKChUqcOLECYYMGUKZMmXStc6IiAgcHBzw8PBI0Gn2/fff06VLF0aMGMG6deuoU6dOovvYsGEDixYtAmKmDly8eDE//PBDutb54MEDACpWrIiJiXYXd8WGXZkVYml7nOho7aZlz2qdOnXizp07qFQqdu3axYQJE7K6JCGEEFkgS8K18uXLJ/lY7LzgiX0IcXNzk3BNCCGEEFp59TYAJ2dX/rvlQWSUdlfR6unq0LB6YextbShRKEcGVSiEEOJLNbhtZR64fuRTQFi67zu3hRGD2lZK9/1+q6Kjoxk/fjxPnjwBYqaZ++mnn+jXr5/Ga6+ZmJgwb948atSowcyZM5kyZQrLly+nT58+dOvWTevAQ1NRUVE8fvwYFxcXbt26xfPnz5k6dSr16tVTbxMZGcndu3eBmPXKUkupVKKjk/ZJjlxdXdm+fTsbN24kT548KW4fG8AVLVo00W6vDh068PvvvzNr1iz1lHzpITIykl9//ZW7d++yYMECWrdunWCbcePGce/ePQYOHMiiRYv48ccf443//fff2bt3LxCzltzatWvVnU3pRalU4uLiAkDTpk21Hh8bXmVWuBY3LPv06VOS20VERCTY/kvQokUL5syZQ1BQEPv37+eXX35J03qJQgghvkxZEq4JIYQQQmQkpVKFyxNvnJzduPPcR+vxOcwMaFGvBD/XK04uc/lDWQghROIsTA34fVBdJq26SFBoZLrt18xYn98H1cXCNPM7or5GKpWKKVOmcOrUKQCKFy/OH3/8Qe3atVO1v44dO1KmTBmGDRvG+/fvWbhwIRs3bmTQoEH06NEjzZ1sfn5+3L17l9u3b3Pr1i3u3buHQqGgSZMmtGnThgYNGqCvrx9vzM2bNwkMDASgfv36qTru3bt3WbVqVZqnX4yOjmbSpEn88ssvGr3Gx44d49q1aygUCubMmZNoSGlnZ8eiRYu4fv06u3fvpkuXLmmqEWKCsdGjR3P79m02btxI3bp1E93OwMCA1atX06lTJ3799Vd++eUXBg8ezPv37xk9ejQ3b94EYrobV61alSFrgz148ICAgACAeOGepuIuwZIZ4k4LmdTrGldsyPalMDY2pnXr1uzatQs/Pz+OHDlChw4dsrosIYQQmUzCNSGEEEJ8NcLCozjr8gYnZzc8fYK0Hl/c0gJ7W2tsqxXBQF83AyoUQgjxtSluacHcYfWZvv5KunSw5bYw4vdBdSluaZEO1YmoqCgmTZqEk5MTEDOd22+//aZxt1pSKleuzN69exk0aBBPnz7F19eX+fPns2vXLubPn0/16tU12k9QUBBPnjzh4cOHPHjwgHv37vHq1SsgZm2t+vXrM3v2bJo2bZpsZ8zOnTsByJkzZ6rDteDgYCIjtQ+JP+86WrduHRUqVKB///4pjvX29ub3338HoFevXtSqVSvR7czMzOjYsSNbtmxh3rx5VKtWLU3TQ4aEhDBixAiCg4M5ePAgBQokP/1qnjx5WL9+PV26dGHp0qVcvnyZp0+f4ufnB0CrVq2YNWtWmt9XSbl48SIAtWrVolixYlqPj4qKArRfCy214r4nnj59muR2EydO5MCBA19cuAbQuXNndu3aBcT8/KU2XIsNxQH1+0kIIcSXQcI1IYQQQnzxfHxDOXrJjZNX3VPVOVCrfAHsbW2oXDIvCoWspyaEEEI7xS0tWDG2MesP3Of8bY9U76dhtSIMaltJOtbSSVBQEKNGjcLZ2Rlzc3NmzZrFTz/9lG77L1iwIDt37mTQoEHqKftev35Nr169WLlyJY0aNUpy7K+//sqdO3d4+/ZtgscqVKhA+/bt+fnnn8mdO3eKdTx+/JjTp08D0KVLl1R3zvn7+8c70a+puF1RQUFBuLu7M2fOnBTHRURE8Msvv+Dn50fjxo0ZP358stsPHDiQPXv2EBoaysCBA9m9ezeFChXSul5vb29++eUX6tWrx9ChQxN0ASbFxsaGuXPnMmzYMPX6cIaGhkybNi3Du5aOHj0KQLdu3VI1PjZUy4pwTRNRUVFERkZq/L3IKHHrTuk5lCtXjkqVKnH//n0ePnzIrVu3NA7VYwUHB3Pr1i3112fPnk1VZ6IQQois8UWFa2FhYahUKg4ePJjgsffv3wNkyGNCCCGEyJ6eun/ikLMbl+55oVRqN82NoYEuP9QqSusG1hTOZ5ZBFQohhPhWWJgaMLZHDRpWL8w/517w0O2jxmMrWOehQ5NS1CyXfPeM0Nzz588ZPnw4r169omLFiixbtgwrKyuNxmozdZ6ZmRkbN26kf//+6pPkkZGRjBs3jjNnzmBhkXgHYqlSpTh+/Lj6a11dXVq3bk2vXr2oUKGCxsePiIhg8uTJKJVK8uTJQ9++fTUe+7mAgIBUnQeJDSGio6MxMzNj/vz5KY5RqVRMmjSJ27dvU716dZYtW4aeXvKnqPLmzUvv3r1Zu3Yt3t7e9OjRg3Xr1lGqVCmNa33z5g3z58/njz/+0GocwJkzZ5g1a1a8+yIiIrh48SLVq1fH2tpaq/1p6uHDh7x48YLixYunOniJ7VzTNvRKbUdZ7PE0kTNnTgYOHIiubtbMGhEREUFoaCiurq48fPhQff+2bdsYNGgQpqammJkl/rdCp06duH//PgDTpk1j0aJFFCpUCDMzs0TXLgwNDSUyMpKgoCDc3NxYs2YNPj7/m8L+4MGD6Ovr07FjRwoXLoyBgQGGhoYYGhqm87MWQgiRHrJtuBYdHZ3gH9Z169YBMGnSpCTHZcRjQgghhMg+oqOVXL7/FidnV564+2o9Pm9OY1rXL0Hz74phZiKdAUIIIdJXrfIFqVW+IO5vAzh/24Pnr/144eEXr7PazFifkkVyUqpoThpWK0IxmQIyXR07dozJkycTGRnJsGHDGDJkiFbdXJ8+fdLqeCYmJqxbt46OHTuqp3QMCAjg0qVL/Pzzz4mO6dmzJ5s2bSI4OJiGDRsyefJkraf7U6lU/Pbbbzx8+BBdXV3mzp1Lzpw5NRqXmE+fPvH+/Xv8/f3JkSOHxnXEdkNpGtwolUomT57MkSNHqFOnDitWrEh2ysu4HBwcOHHiBK9evcLT05POnTszefJk2rdvr9H4AgUK8OeffyYafCTl7t27LF68WN2tlitXLgYPHsyHDx/YunUrx48f5+TJkzRq1IgePXpQt25drfafkv379wMwfPjwVAdQ2n6PYr18+VJ9W5vnFDu9qKmpabLb2dnZ8dtvvyUZQmsqJCQk1WOPHDmS6DlBR0dHHB0dKVy4MGfPnk10bMuWLZk3bx7BwcE8f/4ce3t7AA4fPkzp0qUTbP/7779z4MCBZOvZu3cve/fuVX89fPhwRowYoc1TEkIIkUmybbgWEBBArly51F9fvXqVkydPApm3ACsgU0MJIYQQ2URQaCSnrrpz5JIbPr6hWo8vUywX9rY21Ktkia5u+p3wEEIIIRJTzNKCXpblgZi/YUPDo4iMUqKvp4OxoZ78rZkBwsLCWLx4Mdu2baNGjRrMnDmTkiVLJrrtgAEDiI6OpkCBAuTLl4/cuXNjYWHBq1evcHV1BUixkyouCwsLli9fTocOHdTBQnIn/C0sLOjRowf58+enR48eWjzLGBEREUycOJGjR49iYmLC/PnzadiwYbJjFAoFKpUKb2/vRB93d3dHpVLh5OREz549Na4lNrDRpFspPDycSZMmcfToUbp168bkyZO1ep0NDQ2ZPXs2vXv3JioqiuDgYH777TcOHDjAsGHDqFu3brLjNQ1ZVSoVFy5cYNOmTVy9ehWI6bDq2bMnffr0UXcytWvXjt9//51r165x9uxZzp49S/78+fnpp59o0KABtWrVStM6bH5+fuzfv59q1arRqlWrVO8n9nuT2Pfo4cOH7Nixg5w5c2Jubo6ZmRmGhoaEh4ezfft29XaaBqCxevbsiYODQ7Lb1KtXT+P9PXjwAGNjY6ysrOJ9H1UqFc7OzuqvtXk/Qcz3sF27dlqNiWVqahpvWseUzJs3j3nz5qXqWEIIIbKfbBuu+fv7xwvXDA0NWbFihbod2sDAAAMDA/T09NDTy5g/TN68ecOQIUPSfb9CCCGE0JyXTxBOF9w4c+M1YRHaXW2ro6Pg+8qFsLO1pmyxlNcsEUIIITKCQqHAxChr1xL62t24cYPJkyejo6PDypUradasWbLbr1+/nnv37nHkyBEcHR0TDcK0nTawbNmydO/enS1btgBQtGjRZLcfNWpUqs5lvH79mjFjxnDv3j1KlCjBsmXLKFu2bIrjChQowLt371i7di0WFhaULl0aAwMDoqOjuXfvnnpdr/nz52Nubk6bNm00qid26sDw8PBkt/P29mb48OG4ubkxe/bsVK9TVrNmTSZOnBhvisYbN27Qp08fpk2bRvfu3VO139gaDx48yN69e3nz5g0A1tbWdO/enfbt2ycIymxsbNi2bRvHjh1jw4YNPHr0iPfv37Nt2za2bduGvr4+ZcqUoWLFipQqVQorKysKFy5M7ty5yZEjR4qdaDt37iQiIoIZM2ak6bxXbACa2PfI0tKSqlWrcu3aNfbs2UNQUFCi+9Dm52H27Nlah3EpuXjxIrt37+bdu3fkzp2bfPnyYWpqyocPH3B3dwdiwtP8+fOn63GFEEKIpGTLcE2lUvH06VOKFy+uvq9atWpZVk9ERESqFwQWQgghhPZUKhX3XnzAydmNG4/foW3TuqmxPj/VKUbL763Jlyv1VwsLIYQQInsLDg5m8eLF3LhxgyFDhmBnZ6dR54qOjg5Vq1alatWqDB48mEmTJnHhwgX147q6unTq1EnrekaOHMmVK1cwMzOjZs2ayW6rbViiVCrZuXMnS5YsQaVSMXr0aPr27avx+YomTZqwc+dOfH19k10aw8DAgCpVqmhclybh2unTp5kyZQo1atRg5cqVFCiQtvUFe/bsydu3b9m0aRNFixZl5MiRNGrUCHNzc6335eXlxblz5zh27BguLi6oVCosLCxo164d7du3T/H7CNCiRQtatGjB9evX2bJlC+fOnUOpVBIZGcmDBw948OBBgjEKhQIDAwNy5crFsmXLEpz3CgoKYvv27fzyyy8ahafJie1Yy507N1FRUfF+RnLnzk2nTp3o1KkTwcHBbN26ldWrV6s7MAEqVqyIjY2NxsdL72ANYMiQIQwZMoQHDx7w999/s3///ng1Auk+JacQQgiRnGwZrgE8evQo1Qu1prfAwEDy5MmT1WUIIYQQX72IyGicb3twyNmNV28DtB5fKK8pdg2saVKrKMaG2fZjjhBCCCHSSWhoKPXr12fq1Kmp7uzJly8fa9asoVOnTjx69Ag9PT1mzJiRqkDD1NSUffv2ER0dna4z7Fy/fp158+bx9u1b+vXrR7du3cidW7uu/DFjxqCjo8Pp06f59OlTgvW3zMzMqFSpEqNGjaJEiRIa7zc2XFOpVAkuTv748SMLFizg8ePHzJ49m6ZNm2pVc3LGjx9P4cKFadWqlVZrxAUFBeHi4sLVq1e5ePEiz549A6B48eJ07dqVRo0aUa9ePfT1te82rV27NrVr18bLy4szZ85w7tw5rl+/niAEgpgAd8KECXTu3DnRQHjdunWUL1+eAQMGaF3H54oUKcLMmTNp27ZtsuGzqakpDg4OlC5dmmHDhqnvi9slmNUqVqxIxYoV6d27Nw4ODup1Dk1NTRk7dmzWFieEEOKbolBl5gJmn3F0dCRfvnzxQjQ3NzcGDx6Mo6Njmq9kSis3NzdatGiBk5NToguRiq9XREQE9+/fT3B/pUqVvskuxsjISO7duxfvvsqVK6fqjw0hhEiMb2AYJy6/4tjlV/gFJT+lUGKqlMqLna0NNcsWQEdH1rARQojsJCoqiufPn8e7r1SpUlqti6NUKgkNjb/eprGxsXQoiHT1999/c+nSJYYOHZrmTqH08uHDB2bMmIFSqaRly5b88MMPGBoaZnVZ8UyaNIn3798zduxYypUrp77/2rVrrFmzhu7du/PDDz9k2TqDISEhnDp1inv37nHnzh2ePHmCubk5NjY2VKxYkcqVK1O9enUKFSqUIccPCgriypUrPHjwgGfPnvHs2TM8PT2ZOHEiffr0SXTM27dvcXBwYOvWrVhYWGRIXSnp2bMnCoWCadOmJbl2YVZzc3OjVatWFC5cmGXLllGhQoWsLkkI8ZX70j6Tpsfn8KTI+fMsDNe8vb1p0aIFFhYWHDp0SP1h4dOnT0RGRmZ5sAb/C9fmz5+Pvb19VpcjMpH8cohPwjUhREZ56eWPk7Mb/93yICpaqdVYPV0dGlUvgp2tNSUKaX61shBCiMwl4ZoQqRceHk5kZCRmZmZZXUqS3r9/n+g6V9lliY0PHz5w9OhRChQoQIECBShWrJjWXX/pLTg4GENDwyR/D4aEhBAYGJil58aCg4MxNTXNsuNr6r///qN+/frpcqJYCCFS8qV9JpVwLWNl2b88c+bMITg4mJCQEBo1aoS9vT3du3fPllfDfPjwIatLEEIIIb4aSqWKm4+9OeTsyr0X2v8bm9PMkBb1ivNTveLkMk//9RyEEEIIIbILQ0PDbNep9rnEgjUg25xYy5s3L717987qMuJJKbQyMTHBxMQkk6pJ3JcQrAE0atQoq0sQQgjxjcqScO38+fOcPHkSiJmTOyQkhN27d7N7925q166tnjIgscT33bt3FCxYMNNq/emnn+jbt2+mHU8IIYT4WoWGR3HmxmucLrjx9kOw1uOLW1pgb2uDbbXCGOjrZkCFQgghhBBCCCGEEEKkLEvCtXr16rF161YuXLjAhQsXePr0KbGzU16/fp3r16+TP39+OnbsSKdOndRXQb169YouXbqwe/duihcvnuF1Fi5cmCVLlmT4cYQQQoiv2XvfEI5efMnJa+4EhyZczD05CgXUKlcQO1trKpfMm2VrdQghhBBCCCGEEEIIEStLwjV9fX2+++47vvvuO8aOHcubN284deoUp06d4u7du0DMmmyrVq1i7dq1NGrUiI4dO7J9+3b8/Pzo2LFjhizoqlKpUKlUKJVKoqKiiIyMJDw8nIiICBYuXEirVq3S/ZhCCCHE1+rJq08ccnbl8v23KJXaLfFqZKDLD7WK0rqBNYXyZd81RoQQQgghhBBCCCHEtydbrPZpZWVF//796d+/P2/evOHQoUMcPnwYd3d3oqKiOHPmDGfOnAFAoVAQGBhIYGBgptZ4/PhxCdeEEEKIFERFK7l8zwsnZzeevvbVenzenMa0rm9N8zrFMDPWz4AKhRBCCCGEEEIIIYRIm2wRrsVlZWXF8OHDGT58OLdu3WL37t2cOnWKsLAwICZcUygUmJubU79+/XQ7rkqlIjo6mqioKHXXWkREhPo/Ly8vIiMj0deXE31CCCHE54JCIjhx1Z2jF9344B+m9fiyxXJh39CGuhUt0dVNuOaqEEIIIYQQQgghhBDZRbYL1+KqXr061atXZ8qUKRw8eJAdO3bg7u4OQGBgIP7+/vzxxx8UKlQoiysVQgghvk2ePkE4Obty5uYbwiOitRqro6OgfuVC2NlaU6ZY7gyqUAghhBBCCCGEEEKI9JWtw7VYFhYW9OrVi549e3L27Fm2bNnCjRs3uHz5Mq1bt2bcuHF06dIlq8sUQgghvgkqlYq7z3045OzGzcfeWo83M9bnxzrFaPm9NflyGWdAhUIIIYQQQgghhBBCZJwvIlyLpVAoaNq0KU2bNuXevXusXr2a//77j99//53z588zZ84ccuXKldVlCiGEEF+liMho/rvlgZOzK+7vtF/7tHA+U+xsbWhSwwojwy/qI4gQQgghhBBCCCGEEGpf7JmtypUrs3btWh4/fszy5cs5d+4c9vb2LF++nGrVqmV1eUIIIcRXwzcgjGOXX3H8ykv8gyK0Hl+1VD7sG9pQvUx+dHQUGVChEEIIIYQQQgghhBCZ54sN12KVK1eOtWvXcv36dRYsWECvXr2YNGkS3bp1y+rShBBCiC+am6c/h5xdcb7tSVS0Uqux+no6NKpeBHtbG4pZWmRQhUIIIYQQQgghhBBCZL4vPlyLVbt2bfbt24eTkxMLFizg1atX/Pbbb1ldlhBCCPFFiVaquPHoHU7Obtx3/aD1+JzmhrT8vgQ/1SlOTnPDDKhQCCGEEEIIIYQQQois9dWEa7Hs7Oxo3Lgxy5YtY+PGjQwYMCCrSxJCCCGyvZCwSE7feM2RCy95+zFY6/HWhXJgZ2uNbbXC6OvpZkCFQgghhBBCCCGEEEJkD19duAZgbm7O1KlTs7oMIYQQItvz/hTCkYtunLrmTkhYlFZjFQqoXb4g9g1tqGidB4VC1lMTQgghhBBCCCGEEF+/rzJcE0IIIUTSVCoVj199wsnZjSv3vVCqtBtvbKjLD7WL0bq+NZZ5TTOmSCGEEEIIIYQQQgghsikJ14QQQohvRFS0kot3vXByduX5Gz+tx+fPZUzrBtY0q10MU2P99C9QCCGEEEIIIYQQQogvgIRrQgghxFcuMCSCE1decfTSSz76h2k9vlzx3Ng3tKFOhYLo6upkQIVCCCGEEEIIIYQQQnw5snW4dvjwYVq1aiVruAghhBCp8MY7EKcLbpy9+YaIyGitxurqKKhfpTB2ttaULporgyoUQgghhBBCCCGEEOLLk23DtfXr17N06VJu377N6NGj0dPTU/8nhBBCiMSpVCpuP/PBydkVlyfvtR5vbqLPT3WL0/L7EuTJYZwBFQohhBBCCCGEEEII8WXLlknVnj17WLp0KSqVil27drFr1654j+vq6qKvr6/+z8DAAH19fQwNDTEwMMDIyAgjIyMMDQ0xNjbG2NgYExMTTE1NMTMzw8LCghw5cpAzZ07y5s2LpaUlxsZyAlEIIcSXKzwymv9c3uB0wY3X7wK1Hl8kvxl2tjY0rlEEI4Ns+fFACCGEEEIIIYQQQohsIVuePfPx8UGlUqFQKFCpVAkej4qKIioqitDQUPV9aZ06Mn/+/NSsWZMmTZrQrFkzDAwM0rQ/IYQQIjN8Cgjj2KWXHL/yioDgCK3HVyudDztbG6qXyY+OjkzDLIQQQgghhBBCCCFESrJluDZ8+HDy5MnD77//Tv369TEwMCAyMlL9X3h4OBEREer/wsPDCQsLIzw8nKioqFQd8/379xw7doxjx46RM2dOhgwZQq9evWS9NyGEENmSq4cfh5xduXDHk6johBeiJMdAT4fGNa1o3cCaYgUtMqhCIYQQQgghhBBCCCG+TtkyXAPo2rUrv//+O5MnT6ZEiRIaj4uOjiY0NJTQ0FBCQkIICgoiODiYwMBAAgMDCQgI4NOnT3z69In379/z+vVrXr9+HS+U8/X1Zd68eVy5coUVK1agr6+fEU9RCCGE0Eq0UsX1h+9wuuDKA9ePWo/PbWFIi3ol+KlucXKYGWZAhUIIIYQQX56TJ09SsGBBqlSpktWliHRw6dIlfHx8aNOmTVaX8k1avXo1derUoXr16lldisggQUFBuLm5UblyZa3HRkRE8PDhQ6pVq5YBlYm4XF1d8fX1pWbNmlldCgAvXrygZMmSqRrr5eVFnjx5MDSU8xgie8m24Vpq6erqYmZmhpmZmcZjwsPDuXPnDkePHuXQoUNERESgUqk4f/48ixcvZuLEiRlYsRBCCJG8kLBITt94zZELL3n7MVjr8TZFcmBva0P9KoXR19PJgAqFEEIIIb5cCoWCzp0789NPPzFhwgQsLS2zuqREnT59mjJlymBlZZXsdocOHaJu3brkz58/kyrLXtasWcONGzc4fPgwM2bMSPH1ygo7d+6kQ4cOyS5J4ufnx3///UerVq3Q08vY03deXl7kzZs3XZZIcXZ2Zvny5ZQrV47u3bvTqlUrjI2N06HKpMUuL5MZ7/nbt29TuXJldHV1U70Pb29vChQokG41Xb16FVNTUypVqpRu+0xOWFgYHTt2pHbt2gwYMICGDRtqNb5Lly7UqVMHBwcHvvvuuwyqMmNt2bIFNzc3unfvTpkyZbK6nERduHCBuXPnUrduXYYPH57lIdvQoUMpUKAA/fv3p1GjRlrNFrd9+3ZOnDjB2LFjadmyZQZWKYR25AwbYGhoyHfffcfMmTM5dOgQlpaW6vXetm3bxs2bN7O6RCGEEN8g708hbHJ6QN8/TrHh4AOtgjWFAupWsmTesPos/bUhjWtYSbAmhBBCCJGI5s2b069fP44fP06LFi3Ys2dPVpeUqEuXLvHzzz8zefJk3rx5k+R2x44do2nTpsyYMQMPD49MrDDr3b9/nxs3bgBw8eJFWrduzdGjR7O4qoQWLFjADz/8gKOjIxERia+brFQqmTBhAs2bN2fXrl1Jbpcerl+/zs8//8zJkyfTvK/YgO7x48ds27YNf3//NO8zJe/fv+fHH39k3bp1BAQEEBwcnCH/XbhwgZ49ezJkyBCCg7W/6DHWhg0b6N+/P7du3UqX5//kyRM6dOhAr169OH/+fLrsMzlGRkZAzPtm0KBB9OvXT+NlegwMDFAoFFy9epVevXrRtWtXPnz4oH48LCwsQ2rWRlBQEMuWLeP27dtJbhMdHc2ePXuws7Oje/fuXLx4MV2OHRgYyJ49e1K97FFcjx49AuDKlSt0796dSZMmpXmfaWFgYMCNGzcYMmQIo0aNSvC4q6trkmPv3LmDl5cXo0ePpnPnzty9ezcjSxVCY19d51pcGzZsoFq1alol88WLF+eXX35hwoQJKBQKlEolixcvZteuXRlYqRBCCBFDpVLx6OUnnC64cvX+W5TaLaeGsaEezb4rSuv61hTMY5oxRQohhBBCfGV+/fVXzpw5w6tXr5g2bRqenp6MHj06q8uKx9jYmMjISPbt28ehQ4dYsmQJzZs3T7CdkZERERER7Nq1i71797Js2TKaNWuWBRVnvr/++ive1y1btqRx48ZZVE3SjI2N8fb25o8//mDr1q3s27ePHDlyJNgGwNPTkxkzZrBlyxZ2795Nrly50r2eNm3a8PTpU0aOHEmTJk2YPXs2uXPnTtW+4nZ0bd26NdX70YaxsTEhISEsWbKEJUuWZPjxnJ2d6dOnD7t3705VB9uUKVP4448/6Nq1K02aNOG3335LU4dl7HI2165d49q1a4wZM4ZBgwalen+aHg+gXLlyzJs3T6vuSj09PSIjIzE0NKRLly7kzZsXiAmsOnfuTMOGDRkwYAAWFpm7PviTJ0/Yv38/Bw8exN/fn127drF79+5ElyuKOz2hUqmkVKlS6VKDiYkJZ86cYfPmzUyfPp26deumel+xFxoAVKhQgXHjxqVHiUlav349uXLlomPHjok+HvualStXjj/++CPeY69evcLOzo5Bgwbh4OAQ7z0WGRnJw4cP1V/r6Oika+enEGnxVYdrlStXZvz48Tg5OWk1TWSxYsXifX3nzh1u3LhBrVq10rtEIYQQAoDIKCWX7npy6IIbL974aT2+QG4TWjewplntopgYyVqhQgghhBDaMDAwYMqUKQwYMACAdevWYWtrm+XTaMVlYmKivt27d+8kA7PYE5h6enosXLjwmwnWHj9+zIkTJ9RfW1hYUKtWrXivW3YRG5zlyJGDuXPnJgjWIP7J+zJlyrBq1aoMCdZijR49mmvXrnH27Fnat2/PX3/9lWiokBIdnZjZMvT09DIlWIP4r9WmTZs0On/377//MmbMGADu3bun0XG2bt3K4sWLMTAwYNSoUWmaGnLy5Mm8f/+eU6dOcenSJSZNmkTXrl1Tta+4wVarVq3Uv8cyStzgo1atWlpPx6mvr09kZCRly5bF3t5efb+uri5Lliyha9eu7Nmzh2HDhtG9e/c0vc7Jef/+PS4uLty8eZP//vsvQaevn58fAwYMYM+ePeoAMO5ziDVt2rR0C3t0dXVZunQpXbp0oU+fPnTs2JEpU6aouwU15e7ujpeXl7rWuXPnZvjPY7NmzbC3t+fUqVPMnz8/wfFi36dly5bF3Nw83mMHDhwgKiqK1atXc+HCBTZt2qT+vfjw4UPCw8MByJs3L+vWrcv04FWIpHzV4dp3331HmTJlmD17NnPnztV43Oe/tFu1akWRIkXSuzwhhBCCgOAITlx5xdFLL/kUoP0UGOVL5Mbe1obvKlqiq6P5nOVCCCGEECK+Bg0aULJkSV68eAHAgwcPtA7XDh8+zKNHj5gwYUK61xf3BPrgwYOTXK8mNmgwNjamRYsW6V5HdjV//nyUSiUApUqVYsWKFfTs2ZPq1atTtGjRLK4uvtgT8zVr1kzyPaajo6MOIb777rsMXztOX1+fGTNm0KlTJ7y8vBg4cCAHDx7U6mJ1iJmJA8DUNPNm0Yj7s6Gvrx8vbNNkjCbbw//OF+bLl4969eppWWV8Ojo6zJ07l4cPH6q7EwMCAhg8eLDW+4r7XL7//nt1wJlRdHR00NPTS/XUhbGvY2KhmY2NDQsXLmTw4MHMnj2bgwcPsnDhQmxsbFJdb1BQEB4eHjx79ownT57w9OlTnj59io+PT7ztjI2NKViwIPny5SN//vzkzJkTc3Nz7t27R5MmTeJtGzdcS2+mpqYsWbKE9u3bs3fvXh4+fMjGjRvJkyePxvtwdnZW3/75558zZV24EiVK0KtXLzZs2EC7du3YsGFDvI6+pF6z0NBQdu/eDUDVqlVZunRpvAsOrl+/rr7dt29fCdZEtvJVh2sA48ePp3Xr1jRv3lzjqQACAwPVt/v27ZshH4qFEEJ82954B3LI2ZVzLh5EREZrNVZXR0GDaoWxb2BDSaucGVOgEEIIIcQ3yM7OjiVLlmBiYpLolIvJOXLkCBMmTCA6OhqlUpnu69to2r2RkSd9s6vz589z5coVIKYLcdGiReoTvb/++is7duxQd4tlB9p8LyMjIzO4mv+pXLkyjRs35uzZs7x584Zt27bh4OCg1T5iA87MDNcyqrMpo5mZmTFjxgwGDhwIwPLly7G3t6dgwYJa7Scrnn9aAry43Y2JadiwIf369WPTpk08fPiQTp06sXnzZipXrqzR/t+8ecOsWbN4+/YtHz9+JCoqClNTU8zNzbGwsCBnzpw0atSIK1eu4OHhwQ8//MAff/yhVWdXRv+eLVWqFMOGDWPJkiU8evSI/v37s3PnTo07cf/991/17d69e2dUmQkMGjSInTt38vbtW/r378+xY8fUAX1S79OtW7fi5+dH6dKl2bRpU4JAPzZcMzQ0pEOHDhn7BITQ0lcTroWEhHDjxg2KFy8eb1rHEiVK0KlTJ6ZOncqxY8c0SrdjF9KsUKEC48ePz7CahRBCfFtUKhW3n/lwyNmVW0/eaz3e3MSAn+sVp0W94uTJkX1ODgghhBBCZKXQ0FBCQ0PTZV9FihRBoVDw22+/YWRkxKdPnzQad+HCBSZNmkR0dMxFU1u2bEGhUDBx4sR0qQs0P5mb0V0r2U1YWBhz5sxRfz169GjKli0LxFwwffjwYcaMGcPKlSuzzWuj6fpUSXUnZqQuXbpw9uxZAJ4+far1+NjOtcwMM7PidUovtra21KhRAxcXF6Kjo/Hw8PgiwrW0HDP25zC532kjR47k5MmTeHh4EBQUxLRp0zh48KBG+7e0tGThwoWYmJgk+7M2ePBgPDw8MDc313rKxMx4zXv37o2joyPv37/n8ePHLF++PN5FG69fv2b37t0Jzl37+fnh4uICxHTHVqxYMcNrjWVhYUG7du3Yvn073t7e7Ny5U73+X2KvmZ+fHxs3bqRw4cJs3LgxQbAWGRnJrVu3APjxxx/JmTNnmurz8PCgadOmGm1rYGCAubk5hQsXplKlSvz888+pmio6ICCAgwcP4uzszJMnT/Dz88PAwICcOXNSpkwZ6tSpQ7t27RJMlSm+DF9FuHbgwAHmz5+Pv78/AK1bt2batGnqH8jhw4dz8OBB5syZw7x581Lcn4eHBwqFgrFjx37R/0ALIYTIHsIjozl38w1OF9x44x2Y8oDPWBUwx97WmobVi2Bk8FX80y2EEEJ8U1QqFaqIUFTRUSh09VAYGMvfmuno48eP9OrVC09Pz3Tb55QpU5gyZUqa9rF582YUCkWmz4bzrb23li5dyqtXr4CYqT379OmjfkxfX58FCxbQsWNHZs2axbRp07KmyM9o+j3KijCwbt265MiRA39/f407heKK7bTLqnAtMDBQo1A8ODhYfVvTED29QvzP9enTBxcXF3LkyEHp0qW1Hp8VP/NpOWZKnWsARkZGjBgxQv3709vbW+P96+npZfjUgZoG5GlhZGRE586dWbFiBQAnTpyIF67t2LGD8uXLJxh34sQJ9ZSdcX8fZhY7Ozu2b98OxDTDxErs99myZcswMjJi8+bNia5bd+vWLfXPaseOHdNcW6FChbhx4wYfPnxg7NixPHz4EIBq1aoxZ84c9dp6oaGh+Pr6cv/+fQ4dOsSOHTvYsWMH1apVY/bs2RoF4FFRUWzZsoVVq1ZRu3ZtOnXqRLly5TA1NcXX15e7d++yY8cO5syZw/Lly5k2bRpt2rRJ83MUmeuLP0O3ePFiNm7cqL4yBmLmOHdzc2Pfvn0A5M6dm379+rFq1SpatWpF/fr1k93nmzdvKFeuHHXq1MnQ2oUQQnzdPvqHcuzyK45ffkVgSITW46uXzY+9rQ3VSuf75k6SCCGEEF+6iPfuBD28SLjXc8LfvUQZFqR+TMfIDMOCJTAsVAqzCg0wyJ+91oP60hQpUoRt27Zx+vRpypUrR7FixTAzM8PU1DTBZ6jo6Og0dRx8/PhRq3VvRMZycXFh27ZtAFhZWbF48eIE3/Ny5crxyy+/sGjRIvT09Pjtt9+yotQvhoGBAZMnT8bd3T1VJ+ZjT+prGq7t27ePokWLUrt2ba2P9fkxAYYNG6b1+Lp166b62OmhefPmTJo0iWrVqqUqFMqKEDaxv0+joqIYM2YM3333Hd26dUtybGy9Kf0ubtWqFYsWLcLHxydN74+MkFl/n7du3VodrhUuXFh9f0hICP/++y+jRo1KMMbJyQmI+Z2oaZfW5x49esSff/7J0qVLtQ7KK1euTLFixfDy8ooXFn3+Pn3w4AGnT59my5Yt8Wahi+vChQsAFCtWjFq1amlcQ1BQUKLrRero6GBhYYGFhQWNGzdWh2vt2rXD2tpavZ2FhQUFChSgbNmydOzYkUOHDjF58mRu375N9+7d2bBhQ7ztPxcSEsLIkSO5cuUKCxYsoGXLlvEez507NzY2NrRt25bZs2ezfft2JkyYQHBwMN27d9f4eYqsl6Xh2qFDh7C3t0/1+B07drBhwwYUCgUKhUIdsJUsWZJevXrF27Zv377s2LGD6dOnc+TIkWR/MTx//lySYiGEEKn24o0fh5xduXDHk2ilKuUBcRjo69K4RhHsbW2wKiDTAgghhBBfmpDnLvhdOUDYm8dJbqMMCyL01X1CX93H7/J+jKzKkbNeW0xK1sjESr8uRYoU0SgImDp1KiVKlKB///5an5AOCAigSZMmdOjQgaFDh6qvcP/Sffjw4Yt8LoGBgUyaNAmlUomxsTErV64kR44ciW7bv39/bty4wdatW1EqlUyePPmru3gtODgYhUKh8ZpMyUnLubrYoMvQ0DDFbfft28eUKVMwNjZm3bp1qQ5Q4oZr27Zt47vvvktxzIkTJ/jll18Azae/3LRpEwsWLIh3gX96SUuHUUa8l319fZN9nrHHDA8PV3f+zZgxg5MnT3Ly5EmAZAM2SHmqWz09Pfr378/GjRsZO3asNuVnuMz6/VGsWDGsra1xc3NTr80HcPDgQerXr4+RkVG87T09PdXTKPbo0SNVweuTJ0/o27cvfn5+DB8+nDVr1mBgYKDVPiZPnkx4eDjFixdX3/f5a3blyhU2bdpEyZIlgZgutsDAQKZOnarextnZGYgJvzR9zbdu3cpff/3Ftm3bkgztIH64m1Inor29PR8+fGDBggX4+vryxx9/sHnz5iS3nzlzJhcuXGDw4MEJgrW4Yqehvnv3Lvfu3WPOnDnUqVMHGxubZOsR2UeWhWvu7u7qDzN2dnZaj3/y5Alz585Vh2rGxsZ07tyZtm3bUqZMmQTbm5qaMmDAABYuXMjy5cuTnPdcpVLh6urKjz/+qHVNQgghvl3RShXXHrzF6YIbD90+aj0+t4URreqX4Mc6xbEw1e6DqxBCCCGyXnRIIB9ObST44UWtx4a9ecy7PY8xq9CAPM37o2siF9hklEGDBmFvb4+zszNLliwhX758Go+9ePEiYWFhODo6sn//fnr16oWDg4NGIUJiVqxYwfDhw7M05ImIiKBly5YMHjyYvn37fjGBk0qlYty4cbi7u6NQKJgzZ456nbXE6OjosGjRIjp27Mj27dv59OkT8+bN0/qEcWJevHjBs2fPaNGiRZr3lRbnzp1jxYoVLFq0iEqVKqXrvp89e0avXr3w9fXVeMzFixcTPT+XmJCQEAYPHszff/9NqVKltK4vbriWGcLDwzP1eCnJiM61Q4cOMXfu3BS327NnD3v27Il3n0qlYubMmUDiAVvs7xlNplbs27cv3bt3x8DAgNDQ0EydbjS7cHBw4NGjRzRu3Fh9X+x0gp/7559/1KHo3LlzNfoeJufixYuMGTOGZcuWJdppGBUVRUBAQIL7Y38HxZ1yNfbnNCIigk+fPtG+fXv1Nlu3bmXt2rXqbadOncqbN294+vQpCoWChg0bajR96+HDh9WvS69evVIM2LTRs2dPtmzZwvv377l79y4PHz6kQoUKCbZ78uQJBw4cAODnn39Ocb86Ojr07duXUaNGERUVxcaNG9P8fROZJ8vCtSVLlhAVFcXMmTNxdXWlW7duic6tmpjo6GgmTpxIVFQUurq6dOvWjaFDh6a4+GSPHj3YvHkz27dv56effqJq1aoJtomMjGThwoUa1yKEEOLbFhIWyb/XX3P4ghven0JSHvCZklY5sbe14fvKhdDXyx4LrAshhBBCO+Her3i3ezbRQZqt25OUoIcXCHV/iGXXKRjkT5+TQSK+4sWLM3DgQFasWEH79u3ZsGGDxgHAoUOH1LcrVKhA06ZNUx2sQUwn3MaNG+N1I2Q2FxcX/Pz8mD9/Ps7OzsyfP/+LOB+ycuVKzp07B8DEiRM1CrYsLCxYvXo1Xbp04ejRo7x9+5ZVq1aleC4pJVZWVjg4OFCxYkWKFs26KV6dnZ159eoVXbt2ZcSIEQwcODDdQpfSpUuzefNmDhw4QKVKlShRogQ5cuTA1NQ0wbbt27fHy8uLH3/8kRkzZiS73+XLl7N7924Afvjhh1R3a8Su85ZZIiK0n/I/I2VEKN6nTx+qV6+OmZkZVlZWCbrMatasSWBgIL169WLy5MmpOoam65YZGBjw4sULBg0aRNu2bRkxYkSqjpdab9++xdLSMlOPGVfr1q1p3bq1+utLly6hUCioUqVKvO0iIyP5+++/AWjTpk2q1/ucPn06p06dUn/99u1bHjx4kOB4EBOkfr59So4ePcrRo0eTfNzR0RGIWR8t9hipmWHu3bt36RqwGRgYYGtrq16G6saNG4mGa8ePH1ff1vR3U9ypaWP/bRNfhiwJ1+7du8fJkydRKBQEBwezfv16Nm3axI8//kjv3r1TXDDV0dGRJ0+eUL58eWbNmpXo4o2JMTQ0pF+/fixYsICJEydy6NChBB+EDQwM+OGHH1L93IQQQnwb3n0M5vBFN/699prQcO2ulNRRQJ1Kltg1sKF8idxfzBXCQgghhEgo3PsVbx2nx1tTLS2igz7htX0ahXrOlIAtg/Tv35/du3fj7e1N3759+eeff1I8cfr+/XsuXozpSrSxsWHt2rWJrueijb59+9KiRQvq1q1LxYoV07Sv1Dpz5oz69pUrV7Czs2Pr1q3JdoFltePHj7Nq1SoABg4cmOh0ei4uLlSvXj3B52wbGxvWrVtHv379uHXrFh06dGDBggXUrFkz1fUYGhrSvn17xowZw65duzQODNJTVFQU58+fB2JO5i5ZsoQbN26wZs2aFKfeS0xERESCrr5y5cpRrly5ZMcplUp8fHwAsLa2TjG4DAr63+/NMWPGpDoMjNu5FhgYqFGHS3BwsPq2JtsDhIaGAtmvcy2jpHR+NrVify41Xf/y6tWrjBgxgoCAAFauXMnHjx+ZNm1apqw1N3fuXA4cOMDmzZsTDVKywvbt22nXrl2C+//99198fHwwNzdn/Pjx8X7+7t69S6VKlVJ8zd69e6cOd4oWLcqsWbOSnWZVX1+fpUuXsnPnTgoVKkTp0qXJkSMHZmZm6u/v8uXLWb16tXpM27ZtmTdvXorPs0uXLkBMuH/48OEkt9uzZw/Tpk0DYOPGjTRo0CDFfadW3M7a9+/fJ7rNy5cv1bc3b97M0qVLU9xvrly5MDc3JzAwEF9fXwIDAzE3l1kMvgRZEq7FtnnGnbs3KiqKY8eOcezYMapUqUKvXr0SPdkYERHBmjVrGDx4MCNGjND6Q0vXrl3ZsGED7u7uLFiwIN48rkIIIURyVCoVj15+4pCzK9cevEXL5dQwMdKj+XfFaFXfmgK5074WghBCCCGyVnRIIO92z063YC2WMiyIt7tmUWTgEpkiMgMYGxvTtWtX/vzzTz5+/MjcuXP5888/kx2zY8cOoqKiyJEjB2vWrElzsAYxV+U3a9aMsWPHcvDgwQRr52Q0pVKpXhsJoFq1avz222/ZOli7cOEC48aNQ6VS0a1btyTXYZozZw7R0dH8+uuvNGrUKN5j1atXZ8WKFQwdOhRPT0969erFkCFDcHBwSHUw1rVrV9auXcuqVavU63hlpsuXL+Pn56f+etCgQfTr1y9VwdqiRYt4+PAh69at03raTB8fH3WnRpEiRVLc/sOHD0BMyKLNFK2fi46OVt8eNmyY1uPjdo1oIr075cLDw9PUBZuaizXfvn1LwYIFM+RCz9OnT/Prr7+m+Drt37+f/fv3a73/Xbt24evry8KFC9NlatekzJ8/ny1btgAxF0Nkh4Dt9evXXLp0idmzZyd4LLbWX375hTx58sR7bO7cuQQHB/PLL78k21SydetWIiMjKVeuHJs3byZXrlwp1qSnp0evXr0SfezKlSvxpnuEmKWi7t69S/ny5ZP8HeXu7s7t27exsbGJF4QnJm44npbfI5qI262b1Ps7NoQHOHbsGH379tUoqDY2NiYwMBDIft2xImlZEq6tXr2ajx8/8uzZM27dusWtW7e4ceOG+o1z9+5dxowZA8Du3bv55Zdf1AuyGhgYcOTIkVQvtmtsbEz37t1ZuXIlO3fupHbt2rK+mhBCiGRFRim5eNeTQ86uuHr4az2+YB4TWte35ofaRTEx0v4PXCGEEEJkTx9ObUzzVJBJiQ76xMdTm8jf5tcM2f+3rkOHDqxYsQKVSsWZM2eSXcsnPDycPXv2oKury5IlS9Jt/RaAfv360aZNG+bPn8/06dPTbb+auHnzpvrKe319fRYsWJCl0xqm5ObNm4wYMYLIyEgGDhyYZLAGMc/nwYMHDB48mKpVqzJ58uR4JzcbNGjA6tWrGTFiBGFhYaxatYpTp04xatQomjZtqnVtFhYWdOjQgXXr1tGwYcNElyHJSHGnIfvuu+/U59QS4+vrG+9i97j27t3Lhg0bgJgT9CtWrNAqcHzz5o36tibvpY8fY9aqzp8/v8ZdTImJ27m2bdu2ZDttIKbjZMCAATRs2DDZ1+pzmzZtYsGCBahUqkS7+1Jj8+bNHDlyhO3bt6vPfWa0ly9f0qNHD5o1a5bi1J2p8cMPP7B582aioqIoXbp0ggDv559/xs/PL97UhcuWLWPPnj2YmZnx77//anScz/cbHR3N6NGjOXHihFb1HjhwQL1GVlL8/f2zRcC2bds2bG1tE4Rn//33H3fv3qVMmTKJrnMXHh7Os2fPGDZsGJUqVWLVqlUJpgAODAxkz549FC1alI0bN2oUrCXH29ubcePGoVQqadSoEZGRkVy6dAlfX1/69euHUqmkTp06tGrViubNm8cL2pycnADo3bs369evx8/Pj5w5cyZ6nLhrQebPnz9NNackNvwCkqynTJkyODs7q79OqsMtLqVSib9/zLkmQ0PDNE9XLDJPlq25lidPHurWrau+OiQsLIyrV69y+vRp/v33X/Ubatu2bRw9epTRo0erW15TG6zF6tGjB5s2bSI0NJTJkydTunRpSpQokbYnJIQQ4qvjHxTOiSuvOHrpJb6B2k/9UdEmD/a2NtQqXxBdHZn6UQghhPiahDx3IfjhxQw9RtDDC5hVaIBJqRoZepxvUYECBahcuTJ3797FwMAg2ZPk+/btw9fXlwkTJlC/fv1k9xsQEMB///2HnZ2dRnWUK1eOOnXqsHPnTho3boytra1WzyMtYteNAejcuXO2DtauX7/O0KFDCQsLY9y4cQwYMCDZ7eOepC1cuDDFixdPsI2trS2bNm1i8ODBBAUF8fz5cxwcHKhevTp9+vShcePGWoUnvXv3ZseOHYwbN45Dhw5lWlASFBSkDhMUCgXjxo1Ldvv9+/ezYMGCFPf733//cfbsWZo3b65xLQ8ePABAR0dHoyVcYqeQLFiwoMbHSExsB4mlpWWC0OFzLi4ujBkzhrdv3/L06VMAjQM2ExMTWrdujb29vcZdgY8ePYrXWRfX5cuXWbJkCQAjR45k7dq1GT6tqKenJ3379uXDhw/s2rULIyMjJk6cmO7HqVWrVpKPxU4Hmjt3bnWIENu5p1AoUh0s6OrqsnjxYvWUpOXKlSNXrlxYWFgkGt6OGzeOixcv0rJlS6ZMmaLRMTKyUy4lQUFB7N+/n8WLFyd4LLb7etq0aYk+15CQ/60P//333ye6tubu3bvR19dn/fr1aT737u/vz4ABA/Dx8aF+/fqsWLFCvVZe1apVGT58OMOHD+fs2bOcPXuWcuXK4ejoiJmZGdHR0ezfv58CBQrQpk0bdu3ahZeXV5Jhlre3NxDzvUlrIJiSV69eqW8n1eU9aNAgPnz4wL179yhdurRG01Q+f/5cPd1sYoG0yL6yLFz7nJGREY0aNaJRo0bMmDGDS5cusW/fPs6dO8eHDx+YPHkyf//9N7Nnz071AqexcubMSevWrfn7778JCgpi4MCB7NmzJ8V/gIUQQnwb3N8FcPiCG+duviEiSqnVWD1dBbbVitC6gTUli+TMmAKFEEIIkeX8riR/lXu6HefqQQnXtHTmzBmaNGmS4smpJk2acPfuXfr3759k10xkZCQbN27Ezs6Ofv36Jbu/T58+0b9/fx49eqTujNFEz549uXr1KlOmTOHo0aOZss5KYGCgekpIU1NTHBwcMvyYqXXixAnGjRuHkZERa9euTTDNY2Jig49ChQqpw4vE1KxZk7///hsHBwf1SdPYGZYsLCxo1qwZNWrUoEyZMpQqVSrZqfuKFClC48aNOX36NIsWLVKvAZTRjh49qj5x3qJFCypVqpTs9v379ydfvnwolUrKlStH3rx5MTc3x8DAgBUrVrBy5UrMzc1ZtWpVih1gn7t37x4Q07mR0tSpERER6qksU1rzMCWFChVi27Zt1K5dO8mf+/DwcNasWcOGDRvUnW6Wlpa8ePGCFy9eULJkyRSP07VrV7p27apVbc+ePeO3335LMmCLdeHCBRwdHenTpw/v37/HwcEhXiegQqFAoVCgVCb8+zTu9HR//PEH8+fPT/I4YWFhhIWFqb/evHkzhoaGjBo1SpunlayIiAhOnz6Nra1tgvdBUFCQ+vVPj+l1P6enp6fx1KyxQaaBgcEX0Sm0b98+TExMElyEcfz4cR4+fEjHjh2TXD8ytrsrd+7ciXZpR0REsGvXLpYvX57mBpTQ0FAGDx7Ms2fPaNiwIX/++WeCULJIkSLs2rWLYcOGcenSJR4/fsyWLVsYPnw4586dw8vLi7lz52JoaIi5uTmenp5JBvax4VrhwoUzNJSKjo5Wr71qbGxM7dq1E93OwsJCozXl4jp16pT6dqtWrVJfpMh02SZci0tPT4+GDRvSsGFDfHx82Lt3Lzt37uTOnTu0bduWIUOGMHjw4DS1jHfv3p2///4bhUKBh4cHffv2ZePGjRnePiqEECJ7UipV3H72nkPnXbn9zEfr8RamBvxcrzgt6pUgt0XmrpchhBBCiMwV8d6dsDePM+VYYa8fEfH+NQb5s29XUXYzfvx4ChcuzLBhw5LtNGvVqhU+Pj707t07yTVdnJycMDMzY9KkScmu++Lv78+gQYN4/vw5AAsXLiQyMpKhQ4emWG+TJk0oUqQIHh4ezJkzh7lz56Y4Jq3279+vPsE+ZMiQbHux8fbt25kzZw6lSpXizz//TLQDLTGx4ZomJ1ptbGzYu3cv48aN47///lPfHxAQwD///MM///xD7ty5GT16NB07dkx2Xz179uT06dPs3LmT5s2bU6dOHY3qTYtdu3YBMZ0/mnZgpdRZWbBgQa2DNYA7d+4AJHmCP67YKSEh7eGapaVlkvtQqVQcP36cJUuW8ObNG/LkyUOrVq2ws7OjYsWKiY45fvw4T58+5ddff01TXQBt2rShUKFC3Lhxg+fPn/P06VPy5ctHkSJF8PX15ezZs+jr67Nu3Tq+//57IGZquzVr1nDo0CFKlSqFr68vDx484OXLl0DMFHIqlQqVSoVSqcTX11f9u2fq1Knqmb8y29u3b9m9ezcHDhygefPmif7+jV1nD/giAq3sIjo6mm3bttG2bdt458ODg4OZO3cuRYsWTbIDMTo6moCAAAAqV66s7tiM6+PHj/zyyy9p/p3l7++Pg4MDt2/fpmfPnkyaNCnJ8/fGxsasWbOGXr16cefOHfUFDtu3b6dChQq0adMGiAlhnz17RrNmzRLdj6enJwBWVlZpqj0l//zzj/pYXbt2TbcLYSIiIvj777+B/3XHii9HtgzX4sqXLx8ODg4MGDCAv//+m7/++os///yTCxcusHTp0lS3jpcpU4aqVaty584dFAoFz54946+//sqQVmghhBDZV1hEFOdcPHBydsXjfZDW44sWNMeugQ2NahTBUD/1F30IIYQQQnPR/j5Ehhuho6OTpv0o9PTRM0t8CqFIv6TXyPB3OZmm42rL/9ZJctaxT/Lx1D4PTenn/LIuQjU2Nubp06eMHDlSo+0dHR1T3CZ2SQttLFu2jKioKPVUWEnR0dGhc+fOLF68mP3799OqVSv1SfaMoFQq2bZtGxDTPdCnT58MO1ZqhYSEMG3aNI4ePUrfvn359ddftZqOTdup9SwsLFi3bh27d+9m/vz56k4wKysrpk2bpvF0nXXq1MHGxgZXV1emTZuGk5MTRkYZd+Hd1atXefw4Jujv27cvhQsXzrBjpeTFixfqE8+avH9ju00gpvMsvUVERHDs2DE2bdrEs2fPqFatGiNGjODnn39O9r20detW5s2bh1KppHTp0rRo0SLNtdSuXZtatWoRHByMvr6+ugNy//796nDt89csX7588bpfY4OGxJw+fZphw4aluc7UUKlUXL58mZ07d3L27Fnq1avH5s2bk5x1LO73PV++fJlV5hfv1KlTeHp60r59+3j3r1ixgoCAAHbv3p1kJ6C3t7d6ncXy5ctz9uzZBNtYWlpib5/05wxNeHl5MXDgQNzd3Zk+fXqia799ztDQkBUrVtCuXTtsbGy4e/cuLi4u7Nu3T/0Zz9LSUj3l7OdCQkLUa5ql53qonzt79ix//PEHEPN7fvDgwem2b0dHR/VzcHBwyLYXu4jEZftwLZaBgQE9evSgc+fOODo6snbtWuzt7VmwYAENGzZMcXzr1q1ZsmQJpUqVUt/Xtm1b7ty5g46ODqNHj6Z///4Z+RSEEEJkIx/9Qzl66SUnrrwiMCQy5QGfqV42P/a2NlQrnU/mwxZCCCEy2YfNmnVnpMSoaAUK9ZyZ6GNvVqXccZRZAl1OEOhyIsnHM/p5WE/+J837yEyxJ84LFSqkXosqu2vfvj1//vknkZGRTJ06lWPHjmVYKHPq1Ck8PDwAmDhxYpauIZSY58+fM3LkSBQKBdu3b4/XBRUZGanRWlearof1uS5dutCwYUOWLl2Ks7Mzu3bt0joA6NSpE3PnzsXd3Z2VK1cyduzYVNWiic2bNwMxnU6DBg3KsONoInZas1y5cqW4NiGgPpkMae9cixUdHc2DBw84duwYhw8fJjIyEjs7OxYvXkzp0qWTHRsUFMT06dM5cuSI+r7ffvuNUqVKxTuXmFoKhSJDpkHMart27WL79u2UKFGC1atXpzht69u3b9W3E1v3SyTur7/+ombNmvG6d+/evYujoyNLly5Ncv0v+F9nF0Dx4sUJDAwkPDw82WlutXXv3j2GDRtGrly52LdvX7L1fH5hVP78+dm1axfm5uaMHz8eBweHeOOLFy8eb9rEuNzd3dW30+PnNK7Q0FDu3LnDnj17OH78OAAdO3ZkypQpKU7zqilPT09WrFgBQIMGDSSb+AJ9MeFaLA8PD+zs7GjXrh1//vknw4cPZ8KECfTo0SPZcRUrVmTt2rXxFn388ccfWbFiBYsXL05Vu7sQQogvz7PXvjg5u3HxrifRSpVWYw30dWla04rWDayxKpDxa2EIIYQQQojUUygU6XryMCPlyZOHJk2acPLkSTw9PVm3bp3G6wZpQ6VSsXbtWgBsbW2TnGbrc61bt453Ujytbt68meC+2PXtHB0dGThwID169EjQgbZ582YeP37M4MGDkz15q23nWlyWlpYsWLCAoKCgVIUhbdq0YdGiRURGRrJlyxbatWuHtbV1qutJyqNHj9TTWE6aNAlTU9N0P4Y2/v33XwBatmypUbjp4/O/qfjT2rkWEBCgXuMpKCiI3LlzY2dnR7NmzdDX1ycoKIgbN24QHR2d6H+hoaGsWrWK169fA1CtWjXat2+Pra2tBEBxqFQqnJ2dcXR0JDAwEIjpFB42bBg9evTQ6PseO/UfoPE0r9+669evc+/evXjreAUFBTFmzBgmTpyY4u/x2Pc1xARQ+fPn5+7du0muGaatLVu2sHz5cnr16sWwYcMSvWDj48ePKBQK2rdvn+iscVZWVly5cgWlUsmQ/2PvrsOi2r4+gH+H7pJQEEQwQOwusBsFRcXERBQDFFvsQGxFRUCvHZhgoF4bsb3YqCiKCiiiIA2T7x+8Mz+QmCZ0fZ7nPneYOWfvPcNwZjzrrLUmTy7ymKWlJVJSUpCcnFzs77FwiUtR+iaWZvny5VizZo3gZw6HI8hgNjY2hrOzM0aMGIEmTZqAy+UiNzdX4rn4WCwWZs2ahZycHDRr1gxbt26VuiIDKX9VKrj24sULeHh44PDhw6hduzYWL14MJycn+Pr6QldXt8yapM7OzpgwYQK8vb0FNVj19PRw8eLFcmkWTAghpOJwOFzcf/UN4bfi8Do+Vez9q+mqoV+H2ujV1hI6mpXryl5CCCGEEFIyfhmsqsLJyQmXLxeUHN2zZw9cXV0lboVRmmvXruH169dQVVXF4sWLRd4vJCQEbDZbpmsp7PHjx1i7di1atWqFc+fOldqLSUVFBREREbh48SI6d+6MKVOmoEmTJlLNnZSUVGJwR9IsIz09PXTu3BlXrlwBi8WCv78/goKCpFpjSXbs2AEAaN++vUxKF0rj+fPniImJAQCR+319+/ZNcFva4JqOjg5MTU0RHR0NAEhNTcW+ffuwb9++Ytvq6enByMgIhoaGUFdXx71795CbmwsFBQX07t0bHh4eaNCggVTr+dP8/PkTp0+fRmhoKL58+VLksYEDB2LcuHEij8XvG1etWjU6Hyui4OBgaGlpoXfv3oL7Vq5cicGDBwtNNgH+F4BSVFSEtbU16tevj6ioKKmDa/n5+Zg9ezZUVFRw9uzZMnueubm5gcfjldmrLC8vDxs2bCgWYKpduzaAgp6OvXr1KvLYmzdvABQ8N1tbW4mfy4wZM4qM/ejRI0EQ0M3NDe7u7hKPXZrly5fj6dOnaNeuHXbu3AkNDQ2Zz0Hkr8oE1+7fvw9PT89ikeHGjRvj9OnTyM/PL3P/Nm3awNjYGCEhIVix4n/lMuhATgghf67sXBauPPyEc7c/4Hua+FcW1TXXwwAHa3RsYgolRbqCiBBCCCGkKuAH1araFeAODg7Q0dFBRkYG8vPzsWPHDkGPF1ngcrnYtm0bAGDq1KmwsLAQeV9ZB/l+9+PHDwQFBQntNcPPROTxeIiKikLnzp2lCq6FhYXB19cX69evR58+fSQe53eOjo6CTK6bN28iOjoazZs3l9n4z58/x7Vr16Cmpobly5fLbFxJ8YNYXbp0gZ2dnUj78INr2tra0NXVlXoNnp6egnKqzZs3R926dWFqaorq1avD2NgYxsbGMDQ0hIqKCtLS0nDgwAEcOnQITCYTAwYMwJQpU4plGD5//hw2NjaVrnRqecjKykJkZCTOnz+PyMhIsFgFrRT09PQwdepUbNmyBdnZ2WKPyw+GlJV5Kkv+/v5wd3cvNWBfmtu3b+PmzZvw9fWt0DYQL1++xO3bt+Hq6gp1dXXB/ZMnTxYEnYThB9dsbGygqqoKGxsbnDhxArNmzZJqbaqqqvD29i61vx5ffHw83r9/DwCYNGkSJk2aBB+f4uW9u3TpUuL+ZmZmUFdXx82bN4sF154+fQoAsLa2lio4pa+vj5o1awp+rlGjBjZt2oTv37/j2LFjmDBhgky/UwQEBODEiRPo0aMHNm3a9FceY/4UVSK4lpubi9mzZyMnJ6fEA5qSkpJIKf9OTk7YvXs3PD095f7FkBBCSMX5+iMb56I+4OrDT8jNF68WtgIDaNfIFE4O1rCx1Kd+aoQQQgghVQy/lFNVuwpcWVkZXbt2RVhYGICCwI+Pjw/09PRkMn54eDjevn0LGxubStfXpXBGRlkKn1zesmULunfvLvGcYWFhWLBgAbhcLmbPng0FBYViJ24l1alTJ6ipqSEvLw9AQfBJlsG1DRs2gMfjYcaMGWIFSeUhMTFRkHE5ffp0kffjlxmVNmuNz9raGrt27ULr1q2LvE8KS0hIwL59+3Dq1Cmw2Ww4OTlh4sSJpZYnjI6OxrRp0+Dh4YGhQ4dK3MuvqmEymRgyZAg+fPgguI/BYGDo0KGYNWsW9PT0BIF6cWRlZQl6ZIkahJXW/fv3cfbsWaxYsQLNmjUr8hg/G5fJZCI19X8VbhISEuDt7Y2srCxkZ2dj9erVUFRULJf1/m7r1q0AgMGDBxe5X9TAGpvNxvPnzwEALVq0AADY2toiJiYGP3/+FHpBgzDCAmsAcOHCBcHtHj16lBjUCwsLw4ABA0oMYCkoKKBJkya4efMmuFyuYJv8/Hy8fPkSAIr9bqWlqKgIFxcXBAYGIiEhAZGRkUL7CYoqKCgI27dvh7OzM9asWVNh7y0iG1UiuKauro6QkBCMGzcO6enpEo8zaNAgBAYGYvfu3fD19ZXhCgkhhFQ0Ho+Hl3E/ER4Zh4cx3yBuFSANNSX0bFMLjh2tYGJQtU7EEEIIIYSQ/+EHNKpacA0oCMrwg2tMJhP3798XOfBUlry8PGzbtg3KyspYu3atVD3JKlLhk5BmZmZCt09MTET9+vWFbsdmszFr1ixs2bJF5D50ZVFXV0erVq1w+/ZtABD8XxZu3bqFBw8eoGnTphg7dqzMxpXU+vXrwWaz4ejoKFbAJCkpCQCKZItIq1OnTiXeHx0djYMHD+Ly5cvQ1tbG6NGjMXr0aBgZGZU53tixY5GVlYUVK1bgwIEDmDt3Lrp16yaz9VZWKioq8Pf3x/Dhw8Fms1GzZk34+/ujZcuWUo3733//CTKLpR1LVKqqqvjx4wc8PT1L3ebChQtFAkCFnTlzBkZGRiVmWskTm83GoUOHEBkZCRsbGzRu3FiicV69eiW44KRt27YACjLYlJWVcf78eYwZM0aqdTKZTEFWY2nCw8MBFJQC9fX1FayH7+DBg9i8eTOuXLmCDRs2lBgcb9WqFe7fv4+nT58KLlR4+PChYO727dtL9TxKMmTIEAQFBYHL5eLw4cMyCa7t2LED27Ztw7Bhw7Bs2TK6mPsPUGW+Tdna2uLgwYMYMGCAxGOYm5ujefPmOHnyJCZPngxDQ0MZrpAQQkhFYLE5uP00EeG3PuBDkvgXYNSopon+9lbo1socGmp/x5WIhBBCSFVnOG4jVNXUpC7Rw1Aq/bPffGpgqY99D9+C/IS3Us0tDtWaNjB28ir1cUmfx5+Iy+UKgms6OjoVvBrxtWnTpsjPCQkJMhk3ODgYSUlJ8PHxkaovTUUT9wr/GjVq4PTp0yJvL8ugY5s2bQRBtZycHKSmpopdmu53TCYTa9asgYaGBtavX1/hGQ+PHz/GxYsXYWRkJNZF7CwWS1AWUpbBtcKysrJw4cIFhIaG4tWrV6hbty6WLl0KJycnqKmpiTzOtGnTkJWVhb1798LT0xO9e/fGihUrZFLKsjJr3LgxPDw88ODBAwQGBsrkeHr//n0ABVm65RVc42cb2tjYCII8wiQkJAiCqF26dMHkyZPltj6+jx8/Ytq0adDS0gKPx8OnT5/w69cvAICrq6vE4968eRNAQcC/Q4cOAAA1NTW0bt0aJ06ckDq49vHjR4wdO7ZI5l9pfv78WWoAHACuXr2KqVOnYs+ePcWCTvz+cFeuXBEE1yIjIwEUfC7wA4eyZGZmhvbt2yMqKgq3b9/G58+fpcoU3rJlCwIDAzFmzBgsXLhQhislFalCg2tLly7FxIkTy2x4WFjdunWlbkg8cOBAREdHIyQkBAsWLJBqLEIIIRUnPSsfF+/FI+LOR6Rllt13sySNrA0xwMEKrRpUh6ICXS1ECCGEVCWKukZQVleXa08tZT3jUh9Tt7Ar1+CaukWDMtdTFkn3q6r4JyMBwMTEpOIWIqFq1arBxMQEycnJAGTTN+7Lly/YvXs32rRpg4kTJ0o9XkUSN5ikoKAgdUBLUr9ncckiQ2Hv3r2Ij4+Hn59fhZeDzM/PF/R7W7lyJfT19UXeNyEhARxOQfl+WT6PlJQU3Lx5E1evXsXdu3fB4XDQpUsXzJ49W6TMFh6Ph+zsbGRkZCAzMxOZmZnIyMiAjY0NzMzMkJiYiEuXLuHdu3c4cuSIzEq2Vlaenp4YPXq0zC5U4AdDWrduDU1NTZmMKYy0pTy7detWLmutXbs2Dh06hAsXLiAkJKTIZ1mrVq0kHvfq1asAAHt7+yJBZXt7e/j5+UndD7J+/frYt28fbty4ATs7O1hYWEBbW1vwms2fPx8RERGwsbHBsWPHin2mpaeno3v37sjPz0fPnj2xYsWKEo+VTZo0gYqKCk6fPg1vb28oKysLytG2bNlSbn+Lrq6uiIqKAo/Hw9GjRzFv3jyJxtm2bRsCAwMxfvx4iccglVOFBddev36N0NBQ3L9/H4sWLRLrC2N0dDQSExMlmldLSwsMBgOhoaFwd3en7DVCCKliPn3NQHhkHG5GJ4DF5oq1r5KiAhyamWGAvRWsa+rJZ4GEEEII+eNp2XXEr7uiZ8NIP599uc1V1VX14BoAWFlZCYJrTZs2lXq8lStXQkdHBxs3bpRrQLo8VHSmljisrKwEty0tLcUKPpUkISEBu3btwqBBgzBo0CBplye11atXIzY2FpMnT0aXLl3E2rdwL69atWpJtY5v375h9erVePXqleBcoZKSEtq3b4++fftCQ0MDiYmJ2Lt3b7GgWVZWVpH7srKywOVywWAwoKurC0NDQ8F/PXv2xJ07dxAbG4u4uDisWrUKGzZskGrtlZ2SkpLU71u+uLg4vH//HgDQp08fmYwpiqp0zNPX18eoUaPg7OwMd3d3REdHA4DEfdFiYmIQGxsLoHjPts6dO8PPzw8HDx6Uuh9k/fr1Syy/Gxsbi0uXLgEAFi9eXGK5x/DwcOTn50NZWRm+vr6lvt9UVVXRvn173Lx5E+fOnYOZmZngc1IWpZNL07VrVxgZGSElJQWnT5+Gl5cXVFRUxBojODgYO3bsoMDaH6rCgmvbt28HAHz+/BkeHh5i7SuLfmn5+fmUvUYIIVUEl8tD9NvvCL8Vh6fvUsTeX1dLBX3a1Ubf9pbQ1xG9BAghhBBCSElUjGtBzdwWeV9ey30uNYsGUDGu2AyVqqRwcE3UKjmVTcuWLXHv3j04OTlJfdLz3LlzuHv3Lvbv3y+0vxSRrerVq6NmzZr49u0bFi9eLPV4S5cuhbW1NZYuXSqD1UmHX25x4MCBmDlzptj7v379v2OnKD3xylK9enUkJSUVuQifzWYjMjJSkClVmLa2NmrWrImaNWvi58+fiIuLQ7169bBo0SIYGRnByMgIhoaGJWY8xcTEYPDgweBwOLh06RLWrVsn9+BNYGAgBg4ciOrVq8t1Hnk7c+YMgIJemOUZXKuK/SW1tLTg4eEhOF8u6UUFoaGhAArKG9rbF71Ix9LSEk2bNsXFixcxfvx4NGrUSLpFl2DTpk3gcrlwcnIqsQxoXl4e9u/fDwAYMGCA0Ati+vfvj5s3b+Lw4cMwNTUFUFDisl+/fjJfO5+SkhIGDhyI4OBg/Pr1CxcuXMDAgQNF3j80NBQbN27EyJEjRQ6s7d27F5aWlmJftEAqRoUcYV6/fo1r164BgERlHqUtDcl37NgxjB8/vspezUYIIX+6vHw2rv/3BWcjPyAxJUvs/WtV14aTgzU6Na8JFeWqc5UrIYQQQio/vXYD8a0cgmt67ZzlPsefpHCPsjp16lTgSiQ3YsQIqKioYPz48VKNw2Qy4efnh1WrVqFFixYyWh0Rx7Jly8Dj8dCxY0epxrl69Sp4PB5CQ0PF6hcmD/fu3cP8+fPRo0cPrFq1SuIxAMDIyAjGxtKXrvX29i5W8rROnTqws7NDvXr1YG5uLgioFe6VtmjRIsTFxcHY2FjQY6ssDRo0wOjRo7Fv3z5oamrKNbDGZrOxdOlS5ObmVvnAGpPJFPQ+dHJygpaWlsRjxcXF4ebNm5gwYYKsllcuLl68KFZQUVtbW3CbxWKJPV9KSoogoDl58uQS36vDhw/H06dPsW7dOhw8eFDsOcry6NEj3LhxA1paWpgzZ06J2xw6dAgpKSlQVlaGp6en0DG7desGDQ0NxMTEICYmBgDQt29fufc/HDp0KEJCQsDj8XD48GGRg2s3btzA8uXLMWDAALEusDh58iS8vb0lXC0pbxUSXHvz5g2GDRsGVVVVKCkpCf5TUFCAoqIiGAyG4I+ewWAUqbW6fv16TJw4Uaqa2fn5+di6dSuYTCZ27dpVKa76IYQQ8j8pabm4cOcDLt//hKxc8b9ItrQ1gZODFZrUNZJJbwNCCCGEkN9p1G0BTbuOyH4VJbc5tOzsoVGHgiLiiIuLA1BQCsza2rqCVyMZAwMDTJo0Sepx8vPzMXPmTDg7O0u/KCKR37NFJJWXl4fDhw9X+MXhL168wNSpU+Hq6oqFCxeWGlzKysoqNYCSkJAgKHcnSh80Udjb26NVq1ZIT0+Hq6srevXqBSMjI2RkZODp06dwcHAQa7yEhASYmpqW+Py8vLwQERGB7t27y2TtJcnOzoaXlxcSExNx8uRJuc1TXo4fP46fP39CWVkZ7u7uUo317ds3vH0res/TynI+YMuWLWIF17Ky/ndxcXp6uthtjXbt2oX8/HxYWlqWWka2T58+8PPzw8OHD3HhwgWZZYBxuVz4+fkBABo2bIiEhATo6uoWKaf47ds37NixAwAwatQo1KxZU+i46urq6NatG86dOwegIKNPFp+Vwpibm6Ndu3a4e/cuXr16hWfPnqFevXpl7hMbGwsfHx+0a9cOa9asEfl9+P79e7x//77KZt7/jSokuDZw4ECxUigLW79+PVxcXFC7dm2p1nDjxg08f/4cJ06cwJgxY2BpaSnVeIQQQqT39lMqzkZ+QNTzJHC54mUpq6oooltLc/S3t0JNY23hOxBCCCGESMmw50TkfYoBJytV5mMrahmgWs+qdWV+ZcDv6WNra1tif5e/iba2NsaNG1fRyyAy4OjoWKSHmzy8fPkS//77LwAgMTERb968gY2NjeDxe/fuwcfHB7NmzcKoUaNKHYfFYsHNzQ1MJhONGjVCw4YNUbduXUFvtaVLl4LLLeidLcteSQEBAdDT0xOcxGYymfD29sajR4+wd+/eEsvSlebff//F4cOH0bNnTwwcOLDIiXQNDQ0EBQXJ7eT39+/f4eHhgY8fP+LEiRPQ1NSUyzzlJSsrC7t27QIAjBw5EmZmZlKN9+vXL2RkZIi8fWUIrnG5XCQkJIDL5Yqc7Vi4zGlqaqpYF4vExMTg6NGjYDAYWLFiRamlMVVVVTFu3Dhs3rwZS5YsQcOGDaXugQgAOTk5GDx4MOrXr4+XL19i5MiRUFRURMOGDdGsWTM0b94ce/bsQU5ODiwsLDB9+nSRxy78+zQ3N5f6/SSqIUOG4O7duwCAI0eOYNmyZaVum5WVhenTp6NGjRrYunVriSVmS8Pv42hhQeXAq4qq09VRxvr27QsA4HA4WL9+fQWvhhBC/l4cDhe3nyZizrZIzN52G5FPE8UKrBnqqmFsvwbYu7gnprg0ocAaIYQQQsqNooY2agz3hYKa5CWuSqKgpoUaw32hqEHfa8T16tUrAEDnzp0rdiGEVBHp6elYunQphgwZgjp16iAsLAw9evTAmDFj8PjxYwBAWFgYNm/ejL1795YZWAMAZWVlnD59GitWrEB8fDxWrFiB0aNHw8HBAQ4ODoiKKsj2rVOnjkz/TvX19QUn3lksFnx8fHDnzh0wmUx4enoKslpFMX78eISEhODp06fo378/hgwZghMnTiA3NxdAQXnIwmX7ZOXdu3dwdXVFTEwMlixZgrp168p8jvK2YcMGpKSkoHr16mIFUUqTlpZWpLemMLJqLSSNX79+gc1mi7Xuwu/Xb9++ibxfXl4e5s2bBw6HAzc3N7Rp06bM7ceMGQMTExNkZWXBy8sL+fn5Is9VGi0tLYwYMQJ+fn44d+4c7ty5g5UrV8LIyAjHjh3D1KlTBdmrpqamiIqKQl5entBxt23bhrNnzwp+jo+Px+zZs8HhcKReszDdu3cXVNG7dOkS0tLSSt12+fLl+PbtGwICAkQugZqamor58+fjxo0bMDIygoaGhkzWTeTvrw2uFU7fvn79Oq5fv16BqyGEkL9PVi4Lp2+8h7vfVaw7+BhvPpX+5aQk9S30MXdUS4Qs6gGXrnWhraEifCdCCCGEEBlTMa4F09EroKgleeuCwhS1DGA6egVUjKW/evxv8/LlS3z9+hUKCgpwcnKq6OUQUqnxeDycOnUKvXv3xrFjxzB58mRs3rwZtra2WLduHXr16oWxY8fi0KFD0NbWxpEjR1C/fn2Rx2/evDmOHDmC2bNnF3tMU1MT/v7+culZlpubC09PT0EWHlAQcPjnn3/EGsfKygqHDx/GvHnz8ObNG/j6+qJTp07YuHEjfv78KZO1Fg4KPHjwACNGjEBSUhKcnJxKLeVXlfz33384duwYFBQU4O/vL1WvNT5xM9cqQ3AtJSUFQEFWoqjevXsnuF24l6gwS5YsQWxsLNq3b4+5c+cK3V5dXR0zZswAALx+/RozZsyQSYCtMH19fTg7O2PZsmWws7Mr8tj9+/cxY8YMdOjQAZs3bwaTySxxjKNHjwrKSHbu3FlQcvfy5ctYtGiRRAG2wvsI219FRUVQha9wD8HfPXnyBGfPngWDwYCnpyd69+4t9L9u3bqhY8eOgh55VBKyaqmQspCVQc2aNVG3bl28f/8ePB4Py5YtQ9OmTaXq5UYIIUS4pJQsnLv9AVcffUYeU7wvQAoKDLRrVAPODtawsaTjNSGEEEIqBxXjWqjpvgk//92DrFe3JR5Hy84e1XpOoIw1CV25cgUA0LVrV5mUtvqbPHv2DOfOncOiRYsqRRk1IrmtW7eiefPmZfZ7e/PmDZYvXy7IHnF3d4eXl1eRbZYuXYrU1FSsXLkSDg4OaNCgAWrUqCHWWhgMBtzd3cFms7FlyxYAQP369bFu3boiJSdlJTk5GZMnT0ZMTAwAwNLSEmPHjoWjo6NEmWYKCgoYP3482rVrBy8vL3z69AnBwcE4dOgQpkyZggkTJkBRUVHi9aamFpQUzsvLw4QJE8BisWBpaYmlS5eKNY44QYLykpGRgYULF4LH42HmzJlo27atTMb99euXIFglCn5wjcvlCl5vYQoH72TxevKDscnJySK/7z9+/Ci4LWpwbcOGDQgPD0fbtm2xY8eOUstB/s7FxQXh4eF4+PAhbt68CQ8PDwQGBsq0tHJMTAymTZuGxMREmJubY926dcjPz8eOHTvw6NEjQfnQHz9+YPXq1UX2PXz4MFatWgUAGD58OBYvXozs7GwMGTIE8fHxOHPmDBITE7F582ahvem4XC6ysrKQmpqKGzduCO4PCwtDixYtYGhoCC0trRID/0OHDsWePXsAAPv27UP9+vXRuHFjqKurC14r/u86Nze3yO9QHPT9pWqpksG11NRUqXuuAUCnTp3w7t07MBgMpKSkwNPTE3v27Kny9YwJqUxycnIwcOBArFixQmg6Ovlz8Xg8vIj7gfBbH/Do9TeIe/GYppoSerW1RL+OtWGsT+nxhBBCCKl8FDW0YezsDS07e/y6H4a8zzEi76tm0QB67ZyhUaeFHFf4Z+Nyubh48SIUFRXh7e1d0cupUp49e4YJEyYgMzMTubm5WLVq1V8fYIuIiEBWVhaGDh1a0UsRy8aNGxEcHAxVVVXs3LkTHTt2LLbNxYsX4ePjIwgaODs7l5hdpqioiE2bNmHWrFm4cuUKevbsCVdXVwwZMkSsDDagIHiXkpKC9u3bo1u3bnJ5f927dw+zZ8/Gjx8/UKNGDcyYMQPOzs5lZseJmgFla2uLU6dOwdvbG1FRUcjJycHGjRtx//597Ny5E2pqahKt+enTpwAKjl9cLhfKysrYuHGj2OclKyK4VlYZPw6Hg5kzZyI+Ph6urq7w8PAQOh7/PSEsa+rbt2/IyMhAfHw8LC0thY7LZrMBALGxsWjXrp3Q7X9XWiYVv29g4TlK8+nTJwDAixcv0KlTJ5HmTU9PF9z+8eOH0O3XrVuHPXv2oFOnTggICICqqqpI8wAFr72/vz8GDBiAzMxM3Lt3DyNHjsT69evF6vVWEhaLhX/++Qc7d+5EXl4eBg0ahEWLFgmyGNu1a4ebN29i+fLlSEpKQnh4OJYuXQoVFRVwuVz4+/tj3759UFBQwJw5czBx4kQAgI6ODgIDAzFq1Cj8/PkTDx8+hLOzM1asWIGuXbuWup6kpCR069at2P2PHz9Gnz59AADXrl1DzZo1i21jaWmJ1q1b4+HDh8jOzhZk/M2dO1em/U0pc61qqZLBtefPn6NFC+n/0eHg4IDdu3cDKDiQdOjQgWqaEiJDGRkZmDNnDuLj4yt6KWXaunUrdu7cKfU4YWFhsLW1Fbrdr1+/cP78eURFReHNmzeCWs16enqwtbVFx44dMXDgwD8i0M9kcRD5JBFnb8fhY5LopRv4TA01McDeCl1bWUBdtUp+ZBFCCCHkL6NRtwU06rYA8/tnZL26jfyv75H/9QO4eVmCbRTUtKBawwqqNepAy84eKsbUuF5aERER+PTpE8aMGVOp+xTxeDyJT34XLm/G4XBKPaFbeDthJ31fvnyJiRMnIjMzEwBw8uRJMBgMrFy58q8NsF29ehVz5swBh8OBsrKyoBTY7zgcjtQl53g8ntDfkajbbd26FcHBwQAKAhSenp4IDAxEhw4dimzXo0cPODo6Ijw8HLa2tli5cmWpY6qoqCAgIAAhISHYvn07Dh48iIMHD8Lc3BwtWrSAra0tLC0tYWBggGrVqkFTUxNqampQVVUt8v5RUlLCkiVLSpyDw+EgPz8fOTk5SE9PR2ZmJtLT06Gnp4cmTZoIfW2YTCYCAgKwe/duKCsrY+rUqZg0aZIg4BUUFARDQ0MYGRmhWrVq0NXVhaamJhISEnDv3j0AEKk8pba2NoKCgjBv3jycP38eAHDnzh0EBgZi5syZQvcv6Xm/fv26yH3Tpk1Dw4YNxR6r8HtDlsG1qKgo6OjowNLSEjo6OoL77969CxaLBaCgx97v/Pz8EBUVBRcXFyxbtkykuVRUCto8MJnMUgNnHA4Hz58/B1Dwe/Xz8xM6Lj8IZmNjg/DwcJHWkpCQIAjAlBbsKxxQjYuLQ6NGjUod7/79+wCA48ePY/To0dDV1RW6BktLS7x9+xZA2aUt8/LysHjxYpw9exaDBg3CihUrSvydCGNqaooVK1Zg1qxZ4PF4ePXqFQYNGgQfHx+MGjVKohKujx49wrJly/D+/XvUq1cPs2fPLjG42LlzZ7Rq1Qp+fn44ffo0OBwOsrOzMXfuXFy9ehXm5ubw8/NDq1atiuxnZWWFvXv3ws3NTZDROGXKFLRo0QIzZ84stj1QUMmO/7pK4uDBg+ByuYL+i7/r3r27VOOTqqfKnam0tLRE//79ZTJWs2bNoK6uDk1NTaxfv16iKxgIIf/D4/GQlpaGr1+/4saNGzh58iS+fv1a0csS6v3791KPoaqqKjT9nM1mIzg4GCEhIWjQoAF69uyJsWPHQktLCz9//sSjR49w8uRJ3LhxAwEBAVi0aBEGDBgg9doqQlpmHi7djUfE3Xj8yhK/XnfjOoZwcrBGS1sTKCj8nf+oJ4QQQkjVpmJsAQPjkQAKvifzmHngcVhgKCqDoaL21wYu5IHL5SIwMBCWlpYSneQuT1+/fsWoUaOQmJgo1TiilFjLzMws1t9GFCdOnACDwcCKFSvK7X2al5eHnJwcodtlZf0vSJ2RkVFqmTd+tok4peCAgkwib29vQbBi4cKFUFZWhqOjY7Ftw8PDsWjRoiIZLOK6fv26SL8jflBLHPn5+ZgyZUqxAJuSkhL8/f1haGgIFxcXQVCjNAwGA5MmTUKfPn0QEBCAiIgIfPnyBV++fEFYWFip+6moqEBVVVUwfuH3Eo/HQ35+PvLz8wVBmsLztWvXDm5ubkKf45MnT7B48WLEx8djyJAh8PT0RPXq1YtsU6dOHdy9exdXrlxBcnJyieOIWjJSSUkJ69atQ2ZmJm7dugWgoK+YJBQVFREYGIiRI0ciOzsbjRs3hru7u0RjFc6ukmW/rPT0dGzcuBExMTHQ09ODoaEhlJWVi5xD+T2L0d/fHwcPHsSkSZMwa9YskY8hderUEdyeM2cOZs6cCRMTE8F9PB4PJ06cEPwOT58+DWNjY6HH/N/fX+IqLUPPxsYGDAYDPB4Pa9euRWZmJmxtbYtdJP348WNB/7/k5GSMGjUKx48fF1pycfLkyVi4cCFyc3NLDTJ//PgR3t7e+PLlC9avXy/1+aO+ffviy5cv2LRpE4CC57569WocOXIEEyZMgJOTk9DjBVDwnHft2oXbt2/DwsIC69evh6OjY5kBOk1NTaxatQre3t549uwZFi5ciMTERLi6umLevHmlXnxev3597N+/H+7u7oKedv/99x9GjRoFMzMz9OzZE2PGjBG7pC0hoqpywbUDBw4IPYEtKmVlZUyZMgWDBg2S2ZiE/I3CwsKwcOFCcLncStEsVlyFG8XyaWlpiVSfOjc3F/n5+Zg0aRKMjIzK3G7y5Mm4f/8+Nm/ejL59+xbbplOnTnB3d8e0adPw8OFDzJkzB58/f8a0adPEe0IV6GNSOs5GfsDN6ASwOeL9I1NJUQGdm9fEAAcr1DYVfiUXIYQQQkhVwWAwwFBVByC7/iXkf8LCwpCQkIDQ0FCZ9oiRB1NTUxw8eBChoaGwsbGBlZUVtLW1oaWlVekCrjwer9zWlJ6eDjc3N7GqnogSfPn69atUF1JzuVzMmzcPysrK6NWrV5HHBg0aBDU1NSQlJcHOzg7GxsbQ1taWuESgvJTUE4zBYGDu3LlijcPvk+Tj44OIiAj8+++/ePHiRanBCyaTWWpJvdLUqlULW7ZsQYMGDcrc7sePH9i0aRMuXbqEQYMGISgoCGZmZiVu261bN3Tr1g0LFy7ElStXsGHDBnz58qXINuK8RxQVFbFhwwY4OzsjMTFRqooztra22LZtGzw9PbFq1SqJ+7cVzlwTJUgtqn79+qFfv36IioqCv78/YmNjizyur68vyETicrlYunQpzp8/j3Xr1sHJyUmsuXr06IGtW7ciKSkJz58/F1pmT1dXt8Tyfr8T9z34u9KClcbGxnB0dMS5c+eQlpYm6AkmTJ8+fUT6nOrbty86d+6MT58+oV69ekUe43A42L9/P7Zu3YqGDRvizJkzMuvT5eHhgZSUlCLB/E+fPuHgwYP49OlTiSVkgYL34K1bt7B37148efIE9vb22Lp1K7p37y5y77ecnBzs2LEDR48eRZMmTbB27Vq0bt1a6H42NjY4fvw43N3di5zfy8/PR1pamkz/Jgj5XZULrhkbG8t0vEmTJsl0PFnLzs5G//79ceDAgRLrvRJSGXTt2rXIFWvZ2dk4duxYmVexVRZMJhOfP38GABgYGGDWrFno1atXkZIHpWGxWHB0dASPxxN6LFm9ejXu378PGxubEgNrfLq6uggMDETfvn2RnJyMgIAA1KpVS2YZu/LA5fLw+E0ywm/F4fl74bXAf6enpYo+7S3Rp70l9LUr1z9ECSGEEEJI5fb161f4+fnBz88PNjY2Fb0ckZiZmWHWrFkVvYxKxcTEBAcOHEBERARsbGxQu3ZtaGlpQVNTs9IFHQsr6992fyoTExOMGzcO48aNQ35+Pl6+fIm4uDjEx8cjOTkZaWlp+PXrF3JycpCbm4u8vDwwmUywWCyhWURr164tM7DGZDIRHByMq1evon///rhx44ZIJfaAgqBY79690aFDB4wcOVJQuq19+/allv4sjY6ODnbt2oWJEyfCxcVFrH1/17FjR5w5c0aq3laFA0CllauTRseOHdG6dWssWbIEZ86cAVBQFnH16tXQ09PDz58/MW/ePGRkZODUqVOwsrISew5NTU0cOnQIO3fuxOvXr0sMiikqKkJbWxstWrTAyJEjRTpHzM884/f4EpWlpSUmTpxYZpBwzZo1MDExwaVLl/Dz589SS3JqaGigYcOGGD16NDp37izyGjQ0NIq1Hrlz5w7Wrl0LHo+HTZs2iRRgFJevry/09fWxbds2dO/eHcuWLSv1YvI3b97gzJkzuHLlCszNzdGtWzds2bJFrCQWDoeDM2fOYPv27dDR0cGOHTvEfl41atRAaGgolixZgvPnz8PLywsTJ04UKdOOEGkweFUxzeQvkZ+fjzlz5uDy5culNlOsaHl5eYLeUa9evUJaWhry8vKgra0Nc3NztGrVCoMHD0bt2rUreqliYTKZePHiRbH7GzVq9FcemFkslqCuNV/jxo3LrOPMZrPRunVrZGdnAyjIOm3Tpo1c1ymJN2/ewMnJCXp6ejhx4gQsLETvd7F//36sWbMGwcHBZTalTU5ORpcuXcDhcNCkSRMcP35c6NgnTpyAr68vgIJebNeuXRP7y6C85eazcf3RZ5y9/QFJP7LF3t+yhg6cHKzh0MwMKsqSXaFHCCGEkMqPzWYXqxRQt25dka9kBlBifwt1dXWJeoCQPwePx8PYsWPh4OCACRMmVPRyCCEi4HA4gv8KV7/h8XhCMzh5PB4eP36Mli1bShV0vXz5Mnbv3g1nZ2e4urqK9XlUGJfLrRSfQ8HBwTh58iRcXV0xaNAg6Ovry2UeNpuNHj16wMLCAvPmzUODBg1w584drFq1CiNGjMDIkSMrxetR2JIlS9ChQwd069ZN5N8zm82GgoJCpXou9+/fx65du8Dj8TB48GD07dtX4kxHUd2+fRvt2rUr9XXLysrC4cOH0apVKzRq1EjsXm88Hg8XL17Ezp07YWlpiSFDhsDBwUHqCyquXbsml6AjX1X7TiqL7+GlofPnVTBz7U/H4XDw48cPREZG4sCBA8VSriuTixcvYvny5eDxeBg2bBhGjBgBU1NTaGhoIC0tDU+ePMGRI0ewZ88eDB06FAsWLKj0JTqI7CgpKUFPT08QXKus+LXC582bJ1ZgLT09HTt37kS7du3KDKwBBU3C+VcwxcbG4vv370KvsOrbty+WLVsGNpuNX79+4cqVK2JfTScv39NycCHqIy4/+ITsXPHqlzMYQCvb6nDqZIVG1oaV+ipUQgghhBBSueXn56N///4YPHhwRS+FECIiRUVFiYMCDAYDrVq1knoNvXr1KlbmUxKV5WT64MGD4e7uLvd/XyspKeHUqVMwMDAQ3JeQkICjR49CT09PrnNLasWKFWLvI4uggyxlZ2fj2bNnWL16danlT+XB3t6+zMe1tLTg4eEh8fjv37/H169fsX//flSrVk3icX4nz8AaIb+rXEeLv5iHhwf+++8/5OTklJpGXJkEBQVh06ZNsLOzw+7du4t8sAIF5fWsra0xaNAgrFy5EkeOHMGbN2+wd+9eqepREyJr7969g5GRkdj1wAMDA5Geni5SnfrCCcK5ubk4fvy40D5qmpqasLS0FAT/YmJiKjy49uZTKsJvxeHui6/gcsVLelZTUUT3Vhbob28FU6PKlYFHCCGEEEKqJjU1NQqsEUL+er+fkyvPuVxdXctt7r+VpqamVEGsyqpu3bqoW7duRS+DEKlQcK2SWLVqlaBGMpvNxp07d7By5UpUxqqdt27dwqZNm6ClpYUdO3aU+SGuoKCAxYsX4/Xr13jy5AkWL16MTZs2leNqCSnbu3fv0K1bN7GunEtISMDhw4fh6OgotNEyADRp0gSampqCLD5TU1OR5tHW1hbcFlabXl44HC7uPv+K8Mg4vP2cJvb+RvrqcOxghZ5tLKCl8XekhBNCCCGEEEIIIYQQQv5sFFyrJH5vDGlpaYnw8HA8e/asglZUOn9/fwDA8OHDUaNGDaHbKygoYMaMGRg3bhwuXLiAsWPHonHjxvJeJiEiWb58udj7bNmyBRwOR2j2GZ+RkRGOHj2Ks2fPwsTEBAMGDBBpv6ysLMFtUf7WZCkrh4l/H3zCuaiP+PFL/IbINrX04dTJGu0a1oCiYuUolUEIIYQQQgghhBBCCCGyQMG1SkxDQ6Oil1BMbGws4uLiAACdO3cWeb+2bdtCW1sbmZmZuHjxIgXXSKXxe2BbmDdv3uD8+fPo168fLC0tRd6vfv36mDNnjsjb5+bm4tOnT4KfW7duLc4yJZaYkoVztz/g2qPPyGOKV6JWQYGBjo1NMcDBCvVrlV9ZCkIIIYQQQgghhBBCCClPFFwjYomPjxfcFqems4KCAiwsLPDq1asiYxBS1WzevBkAMHnyZLnOc/XqVTCZTACAnZ0dmjVrJre5eDwenr/7gfDbcXgUkyz2/lrqyujVthb6dbCCkb66HFZICCGEEEIIIYQQQgghlQcF14hY2Gy24HZcXBysrKxE3ldZWRkAwOGIlw1DSGURHR2NmzdvolOnTnJtupqeno6tW7cCKGjSvmLFCrnMw2RxcCs6AWdvf0D81wyx9zcz0kR/e2t0a2kONVX6OCGEEEIIIYQQQgghhPwd6GwoEYuFhYXg9j///IPu3buDwWCItG9iYiIAwNraWi5rI0Te+AGvUaNGyW2OpKQkeHt748uXL9DT08PmzZvRsGFDmc6RlpmHi3fjcfFuPH5l5Yu9f9O6RhjgYIUWNiZQUBDt758QQgghhBBCCCGEEEL+FBRcI2Jp0KABTE1NkZSUhOjoaGzcuBGzZ88Wut+bN2+QkpICAHB0dJT3MgmRuUePHuH+/fuwtLSEvb29zMZlMplIS0tDTEwMbty4gXPnzoHL5WL48OHw9PSEsbGxzOb6mJSO8Mg43IpOBJvDFWtfZSUFdG5eEwMcrGFZQ0dmayKEEEIIIYQQQgghhJCqhoJrRCwKCgrw9PSEr68vACAkJASZmZlYtGgRVFRUSt1v+/btAID+/fvDzs6uXNZKiCzt3LkTADB48GCRszWFuXr1KqZOnVrkPgMDA6xduxadOnWSyRxcLg+PYr7h7O0PeP7+h9j762mrol+H2ujd1hJ62qoyWRMhhBBCCCGEEEIIIYRUZRRcI2IbPHgw7t+/j/PnzwMAjh07hujoaCxduhQtW7Ystv0///yDK1euwM7ODsuWLSvn1coWm82WWWClKinca6+s+37H4/GKbM9isWS6rvLy4sUL3L17FwwGA7169ZLZ82jRogUOHTqErKwsJCQk4MWLF7h58yYmTZoEOzs7zJ8/H82aNZNo7Nx8Nm78l4ALd+Lx9WeO2PvXrqEDx46W6NikBpSVFAGgyv7+CCGEEFKx2Gx2ke+FAMDlcsHlipdJXxJZjEEIIYQQQog0Kut3Ui6XW+x7OIvFKnafJEQ5N/yno+AaERuDwYC/vz80NDRw/PhxAEBsbCxGjhwJBwcHeHh4oGXLlsjLy8PGjRtx4MABdO/eHf7+/tDS0qrg1Uvn9evXFb2ESiMmJkboNkwmU3D7w4cPUFNTk+eS5Gbz5s0AABsbG6SkpAhKnMqCgoICdHR00KBBAzRo0ADOzs64fPkyjh8/jtGjR6Nfv34YPnw4FBQURBrvVzYbD2Oz8N/7bOSzxP+grF9TDW3ra8HSWBUMRipex6SKPQYhhBBCSGn43wfz8vKgqKgo1Vi5ubmyWBIhhBBCCCESq8zfSTkcjiCQlpeXB0C0c7pENBRcIxJRUlLCypUr4eDgAH9/f3z58gUAEBkZicjISNStWxcZGRlQUlLCxo0bqc8aqbK+f/+Ox48fA0CJmZmypqqqigEDBqB69erYsmULLly4gPT0dHh6epa6D4/Hw5cfTNx/m4XXX3Ih7sUnKkoMNLPSROv6WqimTR8LhBBCCCGEEEIIIYQQUhY6i0qkYmZmBkNDQ2RmZoLJZCInp6D83Lt37wAAzZo1Q7169SpyiYRI5erVq4IrPBo3blxu87Zu3RoODg6IjIxEVFQU6tatix49ehTZhsPlIeZzLu6/zULiT2YpI5VOV1MRbeppoZm1JtRVRMuMI4QQQgghhBBCCCGEkL8dnU0lEtuzZw+GDh2K3NxcnD59GpGRkZg7dy6qVasm2ObJkydwcXHB4cOHK3ClhEiGzWYjMjISAGBgYAAzM7Nynb9///6C2ydPnhSkmefkcxEVk4GtZ7/h1N1UsQNr5kYqGNrRADP6V0d7W20KrBFCCCGEEEIIIYQQQogYKHONSGTFihU4fPgwGjVqhAMHDkBDQwMAMGHCBAwbNgy7d+9GSEgIWCwWmEwmVqxYga9fv2L27NkVvHLp2NraQllZuaKXUe7YbHaxerwNGjSAklLZhxAVFRXBbSsrq3LN/JKFW7duISMjAwDQvHnzcl9/48aNsXPnTnz8+BGZmZl49jIWvGrNcPO/r8hnccQaS1GBgfaNa8CxgyXqmuvJZ8GEEEIIISVgs9n4+PFjkfvU1NSEfpf83e/9LNTV1aVeGyGEEEIIIeKoSt9J2Ww2GAwGgP+ts3bt2mJ/Dy8Ji8XC69evpR6nKqPgGhFbcHAwDh8+DG1tbWzevFkQWOPT1NSEl5cXevfuDW9vb3z48AEAEBISgho1amDkyJEVsWyZUFJS+iuDayUR5bXgH7xF3b6yuXHjhuC2jY1Nhay/cePGgpNRuw+FoWabakL2KEpbQxm92lqiX4faMNSrvB/2hBBCCPlzMRiMIt8LAUBBQQEKCqJnz3O53BLvF2cMQgghhBBCpFHVvpMqKCgU+x6urKwsk+Aav43O36xy/tZJpRUfH49t27YBAHx8fGBubl7qtvXr10doaCiaNWsmuG/dunVISEiQ+zoJkYXbt28LbltZWZXr3PksDv598AlPP2T/776MRJH3NzPSgqdLY/yzuCfG9GtAgTVCCCGEEEIIIYQQQgiREcpcI2I5ePAgWCwWdHV14eLiInR7HR0dBAUFYfDgwfj8+TPy8vKwb98++Pr6lsNqCZFcbGwskpOTBT/r6elJNV5iYiKePXuGli1bwtjYuNTt0jLycOHuR1y8G4+MbCYyc/93RQyHmVvqfnxN6xnBycEazesbQ0GBIXR7QgghhBBCCCGEEEIIIeKh4BoRC79Mnr29fZF+WmXR1dXF0qVLMWHCBADAlStXKLhGKr3o6OgiP2tra0s81vPnzzF27FhkZ2fDyMgIZ8+ehYGBQZFtPiSmIzwyDpFPEsDm/C+tmsvOE9xWVC45+0xFSQFdWpqjv70ValXXkXidhBBCCCGEEEIIIYQQQoSj4BoRWXZ2NhITC8rS2djYiLVvx44dYWFhgc+fP+Pbt2/IyMiAjg4FAUjl9ezZsyI/czgcicdas2YNsrMLyjumpKTg7NmzGDt2LDhcHh7FfEN4ZBxexv0scV92fpbgtrJm0X5rBjqq6NuhNnq3tYSulqrE6yOEEEIIIYQQQgghhBAiOgquEZFlZf3vJL8kJfJsbW3x+fNnAEB+fr6slkWIXLx9+7bIz9+/f5d4rNevXxf5+Vd6Js7ejsP52x/x9Wd2KXsVyM/4KritaVwQ1LYy04WTgzXsm5pBWYlaZxJCCCGEEEIIIYQQQkh5ouAaEZm+vj4YDAZ4PJ4gC0ccPF5BqTtFRcViJfEIKU1ERAQCAgKQkpKCDh06YOnSpeXy/omPjy/ysyTveb5q1aoJsj4B4NpbZVz7/FLofqycNLCyfwAAGApK6NytN0Y4toadVTUwGNRPjRBCCCGEEEIIIYQQQioCpTwQkamoqKBRo0YAgDdv3oi9/6dPnwAALVq0gKKiokzXRionfkD199uiio6Oho+PDz58+IDMzExcunQJM2bMkGgscWRnZ0sVTCuMx+OhZdtOgp+VNY0A9Roi7Zv++QGAguc6fMRorPHqi4bWhhRYI4QQQgghhBBCCCGEkApEwbU/VFJSEiZNmoRmzZqhf//+uHv3rkzGHTNmDADg+vXryMzMFHm/hIQExMbGAgCGDBkik7WQyo3JZBYppfjlyxexx7h69Sq4XG6R+x49elQsq0zWCpdAlRSLzcXN/75g1tZIvMysByU13f9/RLTAoCbjFzLibwMAWrZsiYXzfaReEyGEEEIIIYQQQgghlcnPnz/x69evil4GIWKj4FollpGRIbgt7gFm3rx5uHXrFnJychAbGwtPT098/fpV+I5CODo6olevXkhPT4efn5/I+23duhU8Hg/t2rXDgAEDpF4HqfzCwsLAZrMFP4eGhoLFYslk7N8DbrJWUmalsrKySPtmZDNx4losJq6+go1HovH+yy8oqmjArM0EKKnpgpX9Az/eXgaPV/JzaFDbAC6tVfH5bhDYbBZatWqF7du3izw/IYQQQgghRDyXL1/Gs2fPKnoZREbu3LmDsLCwil7GX2vnzp2Ijo6ukLn5F3XL2ps3b+Dh4SFVL3ZppaenIzg4uMi5wsqi8LkfccjqHBGp+mJjY9G9e3esXr0aKSkpFb0cQkRGwbVKKjk5Ge/fvxf8fP36dbH2f/myaD+n3NxcvHjxQiZr27BhA7p3745Tp05h2bJlYDKZZW4fFBSEs2fPws7ODgEBATJZA6lcMjIyEBsbizdv3uDevXtYv349Vq5cWWSbFy9eYOjQoTh16hSio6MRGxuLjx8/ljlu9+7doaBQ9DBVr149WFpayvopFGFoaAhjY+Mi99WoUXYpxy/Jmdhx8hnGrfwXByJeIzUjr8jjqtrVYWHvBW3TJkh9dw3xN9bj57vryP7+FqzMJNTVz0B3qxT8eLIPfku8kJubi8mTJ2Pv3r3Q19eX+XMkhBBCCCGEFGAwGHB1dYW3t7dMLkqVl6tXr4pUESQ8PLxCgwAVLTAwEPPmzcOECRMkqqBSHo4cOSL0XMqvX7+KXbQqL0lJSULXI6rIyEgMHz4czs7OOHHiBHJzc2UyriiWLl2KMWPGyOz8FwBwOBwsWrQIN2/exIABA3D16lWZjS0OBQUFbNy4EZ07d8batWsr1bFq6tSpCA4OFvu9Om7cOPj7+5fb8So+Ph5RUVFyGTsnJwcLFiygwJCE2rVrh8mTJ+PAgQPo0aMHgoKCwOFwKnpZhAjF4Mm7eRERSXZ2NjgcDtLT0/HmzRts27atyBU3ioqKGDduHPr164fq1atDSUkJampqUFFRKXG80aNH4+HDh4KflZWVERERAQsLC5msl8fj4dChQ9i6dSt0dHQwbNgwtG3bFtWrVweDwcDPnz/x7NkznDhxAq9fv8bw4cMxZ84cqKqqymR+eWMymSV+GWvUqFGpr/mfjMVi4fnz50Xua9y4sSCb6vTp01iwYIHY45qZmQkNHEdERGDbtm1ITk5Gq1atsGTJEtSsWVPsucR1//59LFu2DMnJyejSpQs2btxYrNcZj8fDk9gUhEfGIfqN6F8G8zOTkfHlMZi/4sHNTwUzLxeamhrQ19dH/fr10bZtW/Tt25eCaoQQQgj5I7DZbLx7967IfXXr1oWSkpLIY3C53GInaNXV1YtdiEWIpNatW4c9e/ZAQ0MD8+fPh6ura0UvqZjly5fjxIkTcHJywuTJk2Fubl7idh4eHrh79y5cXFwwceLEcvn3U2Xx4sULDB48WPCzuro6Vq9ejX79+lXgqopr2rQpdHR0MGnSJAwdOrTE8wypqalo164dzMzM4O7uDhcXF7mdjwgLC0NAQADmzp2LXr16STWWm5sbHjx4AKDg4tiQkBBUr15dFssUaty4cTJri1Ka1q1bY8+ePeV+big/Px+NGzcW/GxnZ4djx45V+DmqzMxMtGvXDiwWC/Xr18eqVauKrLMs7dq1Q2pqKlRUVODi4oIZM2bAwMBAbmt9+fIlXFxc4ODggFmzZsHExEQm47LZbPj4+ODhw4ewsrLCgQMHYGRkJPF47969w7Fjx+Dp6Ylq1arJZI1VAY/Hw4QJE3Dnzh0AwKBBg8SqmlZeqtp3Ull8Dy8NnT+n4Fql8XswTBR+fn4YNGhQiY8lJSVh2bJlePToEUxMTODj44MePXrIYqlFZGVlITw8HFFRUXj9+jXS0tLA4/Ggq6sLa2trtG7dGoMGDSq3L1KyQgeHooQF1/42+SwObv73BeGRH/AlWfTeg3w1jbUwwMEaXVrUhJqK9B9mhBBCCCGVGQXXSFXAZDLRv39/QX9nDw8PzJo1q2IX9Rt+ABAouIB206ZN6NmzZ7HtvLy8cOnSJQCAkpIStmzZIpfzAZXRzJkzERERIfh58ODBWLRoETQ0NCpwVcXxgwoAYGFhgZMnT0JXV7fINrm5uWjatKngZ0tLSxw7dkxuF2H6+/vjn3/+QdeuXbF69WqJgxyFA1z37t2Ta7Dkd5MnT8aNGzdQo0YNnD59WqbjPnv2DHXq1MGZM2cq5LwQl8uFra0tAAieX3m+tqWJiIjAzJkzBT+bmJjgxIkTQgNXTCYTjRs3Bo/HA4PBgIeHB7y8vOT6uf7u3Ts4OjrKbXy+li1b4tChQ8Uu0BYVl8uFu7s7njx5gilTpmDs2LFCz7916dIFx44dk1nAMD09HSkpKahTp45MxhPVp0+f0LdvX0EWZFhYmOB9Lwp+Fq48K15Vte+kFFyTLzqrW0kcPHhQpuOZmpoiODhYpmOWREtLCyNHjsTIkSPlPhchFe1nei4i7sbj4t14ZOaIXzKjeX1jDHCwQrN6xlBQkOxLFiGEEEIIIUT2VFRU4Ovri4kTJwIoaG/g4OCAli1bVvDK/qdwgGjMmDGlBsz4FWOUlJSwfv36vyaw9vr1a0FQEQB0dHTQqlWrShdYAwpOxAKArq4u/Pz8igXWABSp/FO/fn3s2LFDrtVNZs2ahQcPHuD69etwcXHBP//8g9q1a4s9Dv8Es5KSUrkHf/ivmYKCgkzn5vdlNzAwqLATxgoKCmAwGODxeDA3N68UgTUAuHHjhuC2np4eDh8+LFKAJzk5Gfx8j+7duxcJ0MlL4QDVggULMHbsWJmN3bVrVyQmJqJJkybYuXOnxIE14H8lQJ2cnLBhwwacPXsWGzZsQP369UvcPikpCUlJSUhJSZFJcC05ORkTJkxASkoKQkJCRM5EBIAnT54gIyMDnTp1kmjuWrVqoXv37rh06RJUVVXFygD8+vUr3NzckJ+fj4MHD8q9pQwhAAXXCCFEqPcJvxAeGYeop4lgc8RL9lVRUkCXluYYYG8Fi+o6clohIYQQQgghRFr29vaoU6eOoP/5y5cvxQ6unTt3DjExMZg3b57M11f4KnMPD49ST97yAwzq6uro27evzNdRWfn7+4PL5QIouCo/ICAAo0ePRvPmzWXWIkNW+Cf5W7ZsWep7TEFBAcrKymCxWGjTpk2pZUBluaZly5Zh6NChSEpKgru7O8LCwqClpSXWOPyAiaampjyWWabKmjkiK0pKSmCxWBW9DIG8vDxcu3ZN8POCBQtEfp9++/ZNcLtwhqY88YOk8mRhYVFisFxcenp6WLduHcaMGYPY2FgMGzYMR44cKTGL6/HjxwAAFxcXqef93bhx4xAUFCTyZ2FeXh4mTZqErl27YuHChRIdt3r16oXLly9jxYoVMDQ0FGmfb9++wc3NTdBn083NDQcPHkStWrXEnp8QcVBwjRBCSsDh8vDw1VeER37Aqw8/xd7fQEcVfTvURu+2ltDVqhq9BgkhhBBCCPnbDRgwAJs2bYKGhkaJJRfLcv78ecybNw8cDgdcLleivtRlEfXE8N9Yvv/WrVu4d+8egIIsxA0bNqB27dpwc3ODt7c3Dh8+LMgWqwzE+V2WZzClcePG6NKlC65fv44vX77gwIED8PT0FGsMfoDzTwyuVXRnncoWPLx+/Tqys7MBAFZWVhgwYIDI+3748EFwu0mTJjJfW0lkUQZPGFm+R9q0aYNBgwbh1KlTyMnJQUBAAHbu3Flsu8jISADAtm3b0KpVK6nn3bVrF/bv3w+g4AKAjIwMkffV0Sm4qPz69eu4fv26VOuYN2+exBeqJCcnY/To0RRgI3JHwTVCCCkkJ4+FKw8/49ztD0hOzRF7/zo1deHkYI0OTcygrFS5vvgSQgghhJCKwePxkMvOA5vLgZKCItSV1KQqGUWKys3NLdb/RFI1a9YEg8HAwoULoaamJuiLJczt27exYMECcDgcAMC+ffvAYDAwf/58mawLED1oVtlOwMtbXl4e1qxZI/h51qxZsLGxAVCQdXHu3Dn4+Phg+/btlea1EfUkf0UcJ4YNGyY4Kf727Vux9+cHFyoimMkPWiYmJpZaQk8aFR1cq2yfG+fOnRPcnjJlilh/X/weUIqKirCzs5P52kpSHn///OCyrHh5eeHcuXNgMpn4/Plzscd//fqFK1euACj4m5O2XGheXh7Onj0LNTU1rF69WuwedWpqaoLbEyZMEJRaLgmHwxGUO5WXwusBgISEBHTr1k2kfVVUVKCtrQ0zMzM0atQIffr0ETubncfjISoqChEREXj69CmSk5PBZDKhp6eH+vXro1OnThg8eHClLF9MREPBNUIIAfDtZzbORX3AlQefkZvPFmtfBgNo27AGnBys0aC2QaX7wksIIYQQQsrf51+JiPr8CHGp8fiQ9gXZzP9duKWpogErfXNYG1iio0UrWOiZVeBKq76fP3/Czc0NiYmJMhvT19cXvr6+Uo2xd+9eMBgMuZSILMvf9u+RzZs3Iz4+HkBBac/CfZSUlZWxbt06DBkyBKtWrcKSJUsqZpG/EfV3VBHBwHbt2kFXVxfp6eli9Vri42faVURwjf+61qhRA6dPn5bZuJMnT8azZ89kHjgRV2UJDgNAamoqbt++DaCgT1a/fv3E2p8fuLW2ti63wEJ5lIVks8U7nySMiYkJevXqhXPnzsHNzQ1AQcDm2bNnaNq0Kfz9/ZGXlwcARUoo/vr1CxoaGmL3CAwLC0N+fj727NkjUc/Rwn/3KioqZQb7kpOTMW7cOHh5eYncG3TZsmWoW7cuXFxcigXORGFqaopHjx7hx48fmD17Nl69egUAaNasGdasWSN4DXNzc5GWloYXL14gPDwchw8fxuHDh9GsWTOsXr0a1atXFzrXmzdv4Ovri/z8fLi4uGDMmDEwMjJCZmYmnj9/jiNHjmD16tUIDAyEv78/HBwcxH4+pOJRcI0Q8tfi8Xh49eEnzt7+gAcvv4Ir5kVo6qpK6NmmFhw71kb1auVf8oIQQgghhFQ+0UkvEP7mX7xOeV/qNtnMHLxIfosXyW8R9voybI3qwMmmF5qbNizHlf45atasiQMHDuDq1auwtbVFrVq1oKWlBU1NzWJBDA6HI9UJ1p8/f6JatWrSLpnIyH///YcDBw4AAMzNzbFx48Ziv3NbW1t4eXlhw4YNUFJSwsKFCytiqVWGiooKFi1ahE+fPhUJVIqKH1wQNbh28uRJWFhYoHXr1mLP9Tt+5qiCgoLUGTyF8Y8ZlLn2P6GhoYJAqoeHh9jH1djYWABAw4bCP/ceP36MtWvXYteuXSL34CpJebx+8ijj6uPjg/bt22PQoEEACo57ERERUFVVFQSRmzRpUqQf25YtW/D69Wts27YNJiYmxca8dOkScnNz0bdvX0GfTh6Ph8OHD2P79u0SBdaAogFMYcFoDQ0NvHv3DtOmTUOjRo0wZ84ctGnTpsx9fvz4gaNHjyIgIAAjRozA2LFjBaUoRaGgoAAdHR3o6OigS5cuguDaoEGDYGVlJdhOR0cHJiYmsLGxwZAhQxAeHo5FixbhyZMnGDlyJEJCQops/7vHjx/D3d0dTZo0QWhoaJHXpVq1arC0tET//v2xcuVKHD58GB4eHti0aRP69Okj8nMhlQMF1wghfx0Wm4uoZ4kIj4xDXEK62PubGGigv70VerS2gIba39fPgBBCCCGEFJeZn4V/okNx5/Njsfd9nfIer1Peo6NFK4xrPhTaqlpyWOGfrWbNmiIFAhYvXozatWtjwoQJYmeBZGRkoGvXrhg8eDCmTJki1UneyuTHjx9V8rlkZmZiwYIF4HK5UFdXx/bt26Grq1vithMmTMCjR4+wf/9+cLlcLFq0qFIFKmQhOzsbDAZDJllATk5OEu/LD67xT9iX5eTJk/D19YW6ujqCgoKkDrDJO/gl66wkccnqPRsYGAg7OzuJM2XYbDaOHTsGADAzMyvyfsnOzkZ+fn6Z+6elpeHXr18AgNq1a5dZfvft27fw9PRETk4O3NzccODAAYmPV4VfPz8/P/j5+Uk0Tll+f+5t2rTBgwcPpBqzRo0agsAaUBAY69SpEywsLLB27VowGAz06tVL8Py+ffuGkydPgsViYeDAgdi8eXOxoFWbNm0we/ZsrF27FkOHDsWoUaNgZGSElStXomnTphKvVZzgWuHMMxUVFZiamgodn9/LMTMzEwoKClId7wqvVVipXicnJ/z48QPr1q1DWloaVq5cib1795a4LZPJxKxZs5CTk4PevXuXGnhmMBiCgF1MTAzmzp2L+vXrlxm0I5UPBdcIIX+N9Kx8XLofj4g7H5GaUfaXvZLYWVWDk4MVWtvVgKLCn/UPMUIIIYQQIrlPvxKwJnI70nLFv3CrsKjPj/AqJRaLHKZTqUg5mTRpEpycnBAZGYlNmzbByMhI5H2joqKQl5eHQ4cO4fTp03Bzc4Onp6dIQYSSBAQEYNq0aRUa5GEymejXrx88PDwwbty4KhNw4vF4mDNnDj59+gQGg4E1a9YI+qyVREFBARs2bMCQIUNw8OBBpKamYu3atWKXTCvJ+/fvERsbi759+0o9ljRu3LiBgIAAbNiwAY0aNZLp2LGxsXBzc0NaWprI+0RFRYnc9ywnJwceHh44fvw46tatK+kyBZlr8iLv8cvD9u3bERAQABUVFezYsUOiANvVq1fx7ds3AMDEiROLBCYSExMxZswYkftVbty4ERs3bhRp27i4OIwZMwYHDhyQKIO48PHN29sbrq6uYo9RmkGDBuHr16/Izs4W3MfhcJCVlSWzOYCCgNWNGzcwe/ZsqKmpYeDAgcW2WbNmTZEMunfv3hULrunr6yMkJASbNm1CcHAw9u7di4EDB8LT01Oq9Ylz0YqysjIUFBTA5XIxcOBAmJubC92Hf8xu3Lgxpk2bVuzxN2/elPlZII3Ro0dj3759+P79O549e4ZXr16V2C8wMjISycnJAAqObWVRVFTEpEmT4O3tDSaTiS1btmDbtm1yWT+RDwquEUL+eJ++ZeDc7Q+48fgLmGzxaqQrKTJg39QMAxysUaemnnwWSAghhBBCqqxPvxKw7MbmIj3VpJGWm46lNzZheZdZFGCTA0tLS7i7uyMgIAAuLi4ICQkROQAQHh4uuG1nZ4du3bpJHFgDCjLhdu/eDXd3d4nHkNZ///2HX79+wd/fH5GRkfD39y+xhFhls337dty4cQMAMH/+fJECWzo6Oti5cyeGDRuGCxcu4OvXr9ixY4fU5QPNzc3h6emJhg0bwsLCQqqxpBEZGYn4+HgMHz4c06dPh7u7u8x6dNWrVw979+7FmTNn0KhRI9SuXRu6urqCLJLCXFxckJSUhF69emHZsmVljrt161ZBBlT37t1hbW0t1Tr5mWVcLlfk4I4o+EE1eZT8E4e0we+dO3ciICAAQEFgferUqRIF2IKDgwEUZCf+XsauXr16OHjwIB4+fIgGDRqgRo0a0NbWLpJhFBISgg0bNkBBQQGPHj2Cllb5ZGsXfv3U1dVlWjpUV1cX3bt3x8iRIwX3ZWVlgc1mIzc3t8wyqRkZGVBWVhaplOrjx49haWlZar+xy5cv4/LlywCAvn37YtmyZaVm9CooKGD27NkwNTXFypUrcfz4cZw9exZeXl4YP3680LUII8rxR1FRUaxehmWVHw0NDcXSpUuxdOlSDB8+XOQxRaWiogIHBwecPHkSAPDo0aMSg2ufP38W3D527BhGjx4NZeXSq17Z29sLgow3btwAm80WmklHKg/6TRFC/khcLg9PYr8j/FYcnsSmiL2/toYK+ra3RJ/2lqimW/6NmAkhhBBCSOWXmZ+FNZHbZRZY48tm5mB1ZAA29PKlEpFyMGHCBBw7dgzJyckYN24cTp06hRo1apS5z/fv3xEVFQUAsLa2xq5du6Q+ITxu3Dj07dsX7dq1E6nvkDxcu3ZNcPvevXsYMGAA9u/fL7cr/2Xh4sWL2LFjBwDA3d29xHKg//33H5o3b14sGGFtbY2goCCMHz8e0dHRGDx4MNatWydxfyGgIMDg4uICHx8fHD16tEJOirLZbNy6dQtAQQBo06ZNePToEQIDA8s8qVsaJpNZLKvP1ta2SE+nknC5XKSkFPz728rKSmjwonBWj4+Pj9TBwLy8PADA169f0a5dO6nGKomwcoelWb9+PXbv3i2zdTx8+FDkiwLKIkmA7caNG4I+Vfn5+ejfvz+8vLwwaNAgQeCjTp06qFOnTqljvHjxAkDB32N5BdYA+fZcO3HiRLG/GX6m548fP8rMykpKSsL06dPh5uaGYcOGlfk3GxERUervKiUlBStWrACDwYCPj4/IF26MGDECWlpamDt3LvLy8uDv7w8Gg4Fx48aJtH9hhQNlogbXxAlal3Z8PXv2LJYtWwYej4fly5dDRUUFLi4uIo8rqsKZtd+/fy9xm8JlSz99+oSsrCzo6+uXOqaWlhb09fXx8+dPMJlMpKamwtjYWHaLJnJFwTVCyB8lj8nGjf8ScDYyDgnfxU+/NzfRhpODFTq3MIeqsuSNzgkhhBBCyJ/vn+hQqUtBliYtNx17o49jRjvprx4nRamrq2P48OHYtm0bfv78CT8/P6FlmA4fPgw2mw1dXV0EBgbK5ISwqakpevTogdmzZyMsLKzUTAR54XK5ggwHAGjWrBkWLlxYqQNrt2/fxpw5c8Dj8TBixAjMnj27xO3WrFkDDocDb29vdO7cuchjzZs3R0BAAKZMmYLExES4ublh8uTJ8PT0lDgwNnz4cOzatQs7duyAl5eXRGNI4+7du4IeVkBB+dPx48dLFFjbsGEDXr16haCgILHLZqakpAhOlNesWVPo9j9+/ABQcIJdnBKtpeEHv8zMzHD9+nWpx+MbPnw4oqOji2XqpaSkiLTuOXPmoGHDhtDU1ISlpaXExw8HBwewWCw0a9YMO3fulGiMkojzPuEHtvlSUlJw6dIl9OjRA3p6eiKN8fLlSwBAkyZNRJ63sivpb4X//o6Pjy8zuGZjY4P58+dj6tSpOHLkCFasWIFWrVoV247D4eDy5cs4cuRIscfYbDa8vb3x69cvrF27Fs7OzkUez8/Px5IlS+Dh4VFiT68BAwYgNTVV0IcuICAAI0eOFPsYULjvoYKCAubNm4ewsDCh+/n6+sLX11fkeaKjo0sNMPN4PPj6+kJFRQX9+/cXeUxRFD4GlBYU7N27Ny5duoS7d++iV69eZQbW+AoHJUvKCCaVFwXXCCF/hJ/pubhw5yMu3YtHZo74pRpa2BhjgIM1mtUzqjJ9BgghhBBCSMWJTnqBO58fy3WOqM+P0LFWKzQ3lW3/JAIMHjwYAQEB4PF4uHbtWpllu/Lz8xEaGgpFRUVs2rQJtWrVktk6xo8fD2dnZ/j7+2Pp0qUyG1cUjx8/Flx5r6ysjHXr1lVoWUNhHj9+jOnTp4PFYsHd3b3UwBpQ8HxevnwJDw8PNG3aFIsWLULjxo0Fj9vb22Pnzp2YPn068vLysGPHDvz777+YOXMmunXrJvbadHR0MHjwYAQFBaFTp05o2rSpJE9RYhcvXhTcbtOmDXx8fErdNi0trcgJ8MJOnDiBkJAQAICXlxcCAgLECjh++fJFcFuU99LPnz8BAMbGxmWWexOVtbU1WrRoIVEfsbL06tUL3t7eaN26teC+iIgILFq0CE5OTli8eLHQ9f9ePlFc6enpgpP5HA5HpiUNRXX16lW8ePECysrK4PF4YLPZsLOzw+7du0U+j5KamorExEQAFRtcK48Sn/y/h+joaNjb25e5bbdu3eDu7o7g4GC4ublh2rRpmDp1apFt7t+/Dw0NDdSuXbvY/uvXr8fz58+xdetWdO/evdjjqqqqOHfuHM6ePYtevXph8uTJxS6kGDt2LO7fv48bN24gOzsbWVlZYr/P+NmjAKCmpgY/Pz906tQJ1atXh4WFRbFstq5duyI3NxcLFizAgAEDhI6/ZcsWhIaGokmTJti1a1eZ28rimPK7zMxMwe3SgskqKipiBb+zs7ORnl5woZaFhQUF16oYCq4RQqq02M9pOBv5AVHPEsHhlvwPhNKoKCuia0tzDLC3grmJtpxWSAghhBBC/kThb/4tp3muUHBNDkxMTNC4cWM8e/YMKioqZV6df/LkSaSlpWHevHno2LFjmeNmZGTg5s2bIp0kBApK7bVt2xZHjhxBly5dZB4UKAu/bwwAuLq6VurA2sOHDzFlyhTk5eVhzpw5mDhxYpnbF87EMTMzg6WlZbFtHBwcsGfPHnh4eCArKwvv3r2Dp6cnmjdvjrFjx6JLly5iZW2MGTMGhw8fxpw5cxAeHl6kx5Q8ZWVl4dKlSwAKyt7NmTOnzO1Pnz6NdevWCR335s2buH79Onr27CnyWvgZSQoKCmjQoIHQ7fklJKtXry7yHGUR1uNNUoVLj3I4HGzatElQ5vHo0aP48uULtm7dKtcSh/wsKAB49eoVUlNTyzXAxmKxsH79egDA9OnTERISgszMTGhqaop1gTL/PQJApPdISeuQJCMTKBpsefPmjURjiOPJkycACoLW48aNg46OTpnbe3l54fbt23j9+jW2bdsGHR0djB49WvD4hQsXSvyMOHr0KI4fP46goCC0b9++1PFVVVWRk5ODixcvQldXF8uXLy+2zZIlS3Dv3j0YGhpK9P7Kzc0V3FZRUYGCgkKZPTH5gX5NTU2R5uP3OVVUVKyQAHN8fLzgtqyyvO/cuSPIXHN0dJTJmKT8UHCNEFLlcDhc3H/1DeG34vA6XvwmxdV01dCvQ230amsJHU3xUtwJIYQQQgj5/CsRr1Pel8tcr1Pe4fOvRFjomZXLfH+Ca9euoWvXrkJP+Hbt2hXPnj3DhAkTSr3CncViYffu3RgwYADGjy+7RGdqaiomTJiAmJgYfP/+XWgAiG/06NG4f/8+fH19ceHCBWhry//Cv8zMTEFJSE1NTXh6esp9TkldunQJc+bMgZqaGnbt2lWszGNJ+CffTU1NsWnTplK3a9myJY4fPw5PT0/BSdPo6GhER0dDR0cHPXr0QIsWLVC/fn3UrVtXcGK3JDVr1kSXLl1w9epVbNiwAUuWLBHreUrqwoULyMkp6PvYt29fNGpUdjB+woQJMDIyApfLha2tLQwNDaGtrQ0VFRUEBARg+/bt0NbWxo4dO9CmTRux1vL8+XMAQP369YUGmphMpqCUpbCeh0DB35ebmxvevXsn1prKQ1RUFIYNG4Zdu3aJVA5TEl+/fhXc5nA4uHbtGoYMGSKXuUpy+PBhxMfHo1mzZpg4caIgw1Fc/OCasrIy6tWrJ9a+ERER2Lp1K/755x+YmYn/mailpQU9PT38+vULERERaN68Ofr16ydyOUtRcTgcREVF4ezZswAKgshjxozByZMny8ymUlJSwrJly+Dq6gqg4G+bH1xjMpm4cuUK/P39i+xz5coV7NmzB0ePHhUa7FFRUUFOTg66dOlSYmANKDhmrlmzRuISufxjEYBSs8ELK1wOURylZd/KE//3ChQ8t8KZrJJisVgIDAwEUHDRj7DvGaTyoeAaIaTKyM5l4crDTzh3+wO+p+UK3+E3dcz14ORgjY5NTKGkKF2jZEIIIYQQUnF+5KRClatWrLyQnpoOVBSLX9GezcxBNqv490cVBSXoqeuWOMf37J8l3q+npoOoz48kWLXk7nx+DAs9M5k/D1FfK2PNahKsuuLMnTsXZmZmmDp1apmZZo6OjoKTntnZ2SVuc/bsWWhpaWHBggWlbgMUlGybNGmS4MT/+vXrwWKxMGXKFKHr7dq1K2rWrImEhASsWbNG0PNGnk6fPi0o3zV58mRUq1Y5f8cHDx7EmjVrULduXWzbtq3EDLSS8INromTUWFtb48SJE5gzZw5u3rwpuD8jIwOnTp3CqVOnYGBggFmzZgkNZowePRpXr17FkSNH0LNnT7Rt21ak9Urj6NGjAAoyOsoqB1mYsMzK6tWrix1YA4CnT58CKAhaCsMvCQmIFlwzMDDA/v37cevWLVhZWcHc3BwMBgMJCQmC38vixYvLzJJ5+/atIAvtzJkzMsuY45Nn38SPHz8Kbjdr1gyXL18ut+Baamoqdu7cCQ0NDaxfv77EABGTyRSp1CI/AFu7dm2wWCyRyzNeuXIFCxcuBIfDwejRo7F///4y+5iVxtnZGfv27QOXy8WKFSuwYsUKmZcP5HK5RYI/ioqKGDlypEjzNG3aFO3bt8fdu3ehq/u/z/Xbt28jNze3yDHly5cvOHbsGI4fPy5SFhc/YCYsmNivXz+hY5WmcOaaKNm7HA5HonnKo6zn706dOiUoaTp8+HCpL4TJzc3FwoULERMTAyMjIwQHB5fLxTVEtii4Rgip9L7+yMa5qA+4+vATcvPF++BVYADtGpligIMVbC0NqJ8aIYQQQsgfYM71NSXev7TLTNgZF78S/kLsdZx8daHY/Q2M6mJZ11kljjXtvG+pc8Slxou+WBl4///zyfp5iPpaHXcNFHPFFUtdXR1v377FjBkzRNr+0KFDQrdp166d2OvYsmUL2Gw2pk+fXuZ2CgoKcHV1xcaNG3H69Gk4OjqiQ4cOYs8nKi6XiwMHDgAoyLYqXPKussjJycGSJUtw4cIFjBs3Dt7e3mKVaBQ360JHRwdBQUE4duwY/P39BdkX5ubmWLJkicjlOtu2bQtra2vExcVhyZIlOHv2rFwDLvfv38fr168BAOPGjZMom0dW3r9/LzjxLMr7Nzk5WXDb1NRUpDmqVauGQYMGFbmvcA8kDQ2NMoMMhbPpdHR0JC4rl5ubi58/f8otS60khcvRTZkyBVOmTEFiYmK5/M79/f2Rnp6OTZs2lRrQio+Px5gxY5CaKlp1odjYWDRv3lyi9SQmJmL06NE4cOCA2OVsfXx8oK2tjXPnziEpKQlMJlPiAE9Z1NTUUK1aNbRo0QIjR44Uqw+jq6sr7t+/X+S9fuHCBbRo0aJIwKpmzZrYtWuXyGUyxT0u3rt3D/Xr1xfr76TwRSjCymDyeLwqE1y7fv06Vq5cCaDgOO/h4SHROCwWC3Fxcbh79y4OHz6M5ORkuLq6wtvbu0LKXBLpUXCNEFIp8Xg8vPrwE+GRcXjw6hvEzfjWUFNCzza14NjRCiYG5VPrnhBCCCGE/Pl4PB4+pH0p1zk/pH2ukBJIVRU/CGNqairoRVXZubi4YNu2bWCxWFi8eDEiIiLkFpT5999/kZCQAACYP3++WEGr8vDu3TvMmDEDDAYDBw8eLJIFJWq/JUl7Mg0bNgydOnXC5s2bERkZiaNHj8LIyEisMYYOHQo/Pz98+vQJ27dvx+zZsyVaiyj27t0LADA2NsakSZPkNo8o/v23oA+lvr6+0N6EAPD9+3fBbVEy1yqTpUuX4u7duwgJCYGtrW25zBkTEwOgIIDo4OCAWrVq4dChQ5g3b55c53306BHCwsIwcuTIMjOa6tWrhwMHDuD27duwtbVFzZo1oaWlVSQYlJaWhk6dOgEoOPaMGDFCqrVJknGmoqKCadOmYdq0aVLNfefOHZiamqJ27dpSjVOS3r17o379+oKxs7Ozcf369WJrZjAYYh3rxLnYPDo6GlOmTIGdnR327t0r8udE4cw1YcG1wgEyX19f+PqWfDFQSfiZ1/KUm5uLp0+fIjQ0FBcvXgQADBkyBL6+vhIFBXv27IlPnz4JftbW1sb69evRp08fma2ZlD8KrhFCKhUWm4vbTxMRHhmHD4npYu9fo5omHO1ro3srC2ioSfYPKkIIIYQQQkrD5DCRzcwRvqEMZTNzkMfOL9c5/wQMBqPMHlmVSbVq1dC1a1dcvnwZiYmJCAoKgpeXl8zn4fF42LVrFwDAwcEBPXr0EGm//v37F+n5JK3Hjx8Xu4/f3+7QoUNwd3fHqFGjimVa7N27F69fv4aHh0eZ/YUk7RcEFAR61q1bh6ysLKF9w0ri7OyMDRs2gMViYd++fRg0aBCsrKwkXk9pYmJiBGUsFyxYAE1NTZnPIY4rV64AKCgpJ8oJ/5SUFMFtUTPXZInL5SIwMFDkTCu+1NRUnD9/HgAwatQobN++XaLMVnGw2WxBcK1x48ZgMBjo1asXDh8+jOnTp4tUfk8SOTk5WLRoEZo0aYL58+cL3b5u3bqoW7duqY/z+60BQJs2barM8bkkT58+xcSJE9GjRw9MmjQJDRs2lOn4hYN2V65cQW5ubrGgdVZWFphMpshj8i/SYTKZZb7vExMTMXnyZOTm5uLx48dYsmQJ1q5dK9IchYNrwsoN5+f/73vNggULhJarBQoywkNDQ6Gvry/SekS1fPlyrFnzv6oIHA5HkMFsbGwMZ2dnjBgxAk2aNAGXyy3yPEW1Z88epKWl4fv373j58iWuXLkCb29v7Nq1CwsXLpSoFC+peBRcI4QIxWAwYGhoCFVVVTAYDPB4vGL9LaSVnpWPS/ficeHOR6Rlin/ioJG1IQY4WKFVg+pQVKDSj4QQQgghRD44XG6FzMvisitk3qqsqmX7OTk54fLlywAKTsK5urrKvCfUtWvX8Pr1a6iqqmLx4sUi7xcSEgI2W37vwcePH2Pt2rVo1aoVzp07V2p5LBUVFURERODixYvo3LkzpkyZgiZNmkg1d1JSUonBHUkCa0BBP6POnTvjypUrYLFY8Pf3R1BQkFRrLMmOHTsAAO3bty+zz1h5eP78uSD483vZxtJ8+/ZNcFtWwbUFCxZgwYIFIm2roKCALl26YP78+TAxMQGHw0Fqairat29f5n7cQp8BKioq+PLli9yDa2/evBFk6vBLKQ4ZMgRBQUE4evQoJkyYIJd5169fDw6Hg8DAQJlkuD548ABAQcZOWcHxqkBDQwNcLheXL1/GlStXEBwcDHt7e7nMde7cORgZGaF+/fpF7v/y5QvGjh2LX79+iTXehQsXcOFC8RLTpTlz5gysrKxEyo4tHDQ3NDQsc9ucnBxYWVlh9OjRGDhwINTV1YWO36JFC3Tr1k3kUr2imjFjBnr16iX4+dGjR4KAspubG9zd3aWew9zcXFBWtXv37vDy8sL58+exePFiuLm5YfLkyfD29qZ2NlUMBdcIIUIpKSmhVq1achn707cMnI38gJv/fQGTLd6JCiVFBhya1cQAeytY19STy/oIIYQQQggpTFHGF5mJSlmB/vkuKn5QTdYXBMqbg4MDdHR0kJGRgfz8fOzYsUPQ40UWuFwutm3bBgCYOnWqWL2KZB3k+92PHz8QFBQkNNOBn+nC4/EQFRWFzp07SxVcCwsLg6+vr8xLczk6OgoyuW7evIno6GiJ+0uV5Pnz57h27RrU1NSwfPlymY0rqX379gEAunTpAjs7O5H24QfXtLW1oaurK5N1LF68uMxA49u3b4v0GLSxsUFYWBgA4NOnT/D09BRaxpP/eisqKiI0NFTsnl+SuHv3ruA2P7vFzMwMnTp1QnBwMIYMGSK0BJ+4bty4gYiICBw5ckTo36WooqKiABQECKva8fl3hYON69evLzGwxuFwsHjxYgwcOBCtWrWSaJ7v37/j3r17cHR0LBZ0sbW1xb59+/Dw4UPY2dnB3NwcWlpaRbJYAwMDsWXLliL7DRw4EG/fvsW6devKzDSUBL+Xop6entCMSkNDQ0RERIgVTHJychLcDg0NRb9+/SS+EKIwfX39Ij0Ua9SogU2bNuH79+84duwYJkyYIPP3LIPBQP/+/aGlpYXJkydj165dYDAY8Pb2luk8RL6q9pGMEFIlcbk8PH6djMVBdzFt/Q38++CTWIE1HU0VuPaoh398e2Lm8OYUWCOEEEIIIeVGRVEFmirl29NXU0UDakpVt3xWeeOXcpJXqTR5UVZWRteuXQU/h4WFiZ2RUJbw8HC8ffsWNjY2cst0kVTv3r1FOoFfOLNhy5YtGDZsmMRzhoWFYcGCBWCxWJg9e7Yga1AWOnXqVKRnHj/4JCsbNmwAj8fDjBkzyiW4U5bExETBazd9+nSR9+OXGZVlSUgNDQ0YGBiU+l9ZJ+Fr1aqFnJwcvHnzptRtsrKyBMG4Pn36lNtrf/v2bQAFgcgWLVoI7h85ciR+/fol88zIhIQErF69Grt374a1tbVMxvz8+TM+fPgAAEX6KAoTFRWF7du3y2QNslS49GzTpk2LPc7hcDB37lycOnUKkyZNKrEUrijOnj0LDoeDDh06lPi4ra0txowZg5YtW8LExKRIYO3nz58ICQkBAFhZWRXpH+ni4iJyqUdx8IPmovxtKCoqSpyltWvXLixZsgSTJk0SfObLkqKiIlxcXAAU/D1ERkbKfA6+Ll26oFu3bgAKnteLFy/kNheRPbr0jRAiFJPFwcekDHz6loF8JgeqKoqoVV0HtU11oKIsegPZPCYbNx5/wdnbH5DwPUvsddSqro0BDtbo3LymWPMSQgghhJA/y/quC6GqplbsKmI9tZKv3O9Xrys61y5etkuljGyw7Y6rSrxfT00HVvrmeJH8VowVS8dK3wIMBkPmz6Mkpc1RlfDLp1W14BpQEJThn7xnMpm4f/8+evfuLfW4eXl52LZtG5SVlbF27VqpepJVJEXF//070MzMTOj2iYmJxUqplYTNZmPWrFnYsmWLyH3oyqKuro5WrVoJgiL8/8vCrVu38ODBAzRt2rRIFlZFWb9+PdhsNhwdHUXOWgMKynECKJItUtHat2+P0NBQLF26tMTHDx8+jJycHDAYDHh4eJTLmtLT0/HkyRMABdmthfvZ2dvbo3Hjxjh48CBGjBgh0t+EKFJTU7F582Y0atRIJuPl5uZi06ZNgp9FDa49fvwY06ZNQ25uLn78+IElS5aIlD2UnZ0t8VpFxWKxBLfz8vKKzMnj8bB06VJBb76cnBy4u7sjJCRErMAiAJw6dQoMBqPU4FpZtm7dKljXkiVLsHDhQsFjAwYMwPr163H16lV0795d7LFLww+u1alTp9hjt27dwrRp08TqEyfMf//9hylTpiAoKKjIBQ2ywC+9yuVycfjwYXTu3Fmm4xfm6uqKa9eugcfjYefOnQgMDJTbXES2qua3KUJIuYj9nIZztz/gzvMksErILFNWUkCHxqbob2+FehalNxP9mZ6L81EfcelePLJyWaVuV5qWtiZwcrBCk7pGVHuYEEIIIYTAUMMA6urqIpfo0VTREDvbzFiz9CwaawPLcg2u1TGwBCD751ESSeaoTLhcriC4JusyaeWBX/KNLyEhQSbjBgcHIykpCT4+PrC1tZXJmBWhcHBNFDVq1MDp06dF3l6WQcc2bdoIgmo5OTlITU0ttZecqJhMJtasWQMNDQ2sX79e7NdD1h4/foyLFy/CyMgIvr6+Iu/HYrEEJ+ErU3CtZ8+e8PLywowZM6CvX/QcR25uriADsXfv3qhXr165rOns2bOCQE7hknh8Xl5emDBhApYsWYI9e/bIZM7GjRvLZBy+Xbt24eLFi4Kfhw8fLvYYR48eRXp6Ovz9/YX2f9u9ezd27twp9hyS6tevn9BtJAmwPXr0CB8+fEC9evWE9i/73ZMnT3D8+HEABWVqf+8LqKOjg969e2P58uVo06YNtLW1xRq/NPy/aysrq2KPderUCfv37weTyUTdunXBYDCwePFi9OjRQ6weagcPHhT8frW0tNCiRQu59AQ1MzND+/btERUVhdu3b+Pz589yy1Zt0aIFGAwGeDwebt26hfT0dJmVyyXyRcE1QkgxOXls7D33EpfufypzOxabi5vRCbgZnYDebWthXP+G0FD732ElKSULhy+/wZ1nSeBwxWsmrqqiiG4tzdHf3go1jWXzIU8IIYQQQogsdLRohbDXsishJ0wHC/GudP+bFS6jaGJiUnELkVC1atVgYmIi6Fsjix4vX758we7du9GmTRtMnDhR6vEqkrjBJAUFBakDWpL6PYtLFheK7t27F/Hx8fDz86vwcpD5+fmC/mMrV64sFowqS0JCAjgcDgDRyseJasGCBViwYIHE+7dv3x6qqqo4cOAAvLy8ijx26NAhpKamQklJqVx7Ip08eRJAwfGsY8eOxR7v2LEjWrVqhaioKJw+fRqDBg0qt7WJysvLC6mpqTh+/Djs7e2xbt06oftkZGTA1dVVcEyvVasW7Ozs8OPHD6GlRL28vGBqagoGgwFbW1sYGBhAW1u7SNbfu3fvUKNGDYn7dZ0+fRrLli0DAFy8eFHkrEFxjun8YOnvgTFhWCwWlixZAh6PBxMTEyxevLjE7UaPHo2wsDCsXr1aJiUic3NzkZ6eDqD48Y/v996TCxcuxMiRI9GqVSuRXsO3b99i9+7dAAqy048ePSrXQLerqyuioqLA4/Fw9OhRzJs3Ty7zaGlpQUdHB+np6eBwOHj58qVE2Yqk/FFwjRBSxM/0XPjuuit22cZL9z/h5YefWDW5ParpFtTB19JQwfP3P8QKrBnqqqFfRyv0alsL2hplX41ECCGEEEJIRbDQM4OtUR28Tnkv97lsjerCQk82pb7+BlU9uAYUXPHPD66V1MtHXCtXroSOjg42btwok2BdRaroTC1xFM7csLS0FCv4VJKEhATs2rULgwYNqhQBlNWrVyM2NhaTJ09Gly5dxNqX33sLKAiayMrixYvRt2/fUh9/+/ZtmaU0lZWV0a9fP+zduxdDhgwRBHF+/fqF4OBgAMDQoUNhaWkpszWXJSoqStADbsyYMaW+/xcsWIAhQ4Zg7dq16NixI4yNjctlfaJSUFDAypUrUbduXbi4uBTpC1aalStXCo7nkyZNwvTp04VmrBU2ZMiQMh+/desWTp8+jc2bN0uUqVc4y1VFRQWqqrLti3rmzBncuHEDANC6dWux9t20aRNiY2PBYDDg7+8PPT09AAXlKgtr2LAhevXqhTNnzqBt27ZwdnaWas38rDUFBQWRX1MzMzOMHDkS06ZNw6FDh8p8b2RlZcHLywtMJhMMBgPr16+XewZp165dYWRkhJSUFJw+fRpeXl4ivQ8/fvyIhIQEtGnTRuT3rZqamiA4mZqaKtW6Sfmp2t+qCCEylZPHliiwxpfwPQuLg+4hJ68gHVtHUwWeLk1E2reehR7mjGqBkEU9MLhrXQqsEUIIIYSQSs3JpucfNc+fonBwzdzcvOIWIgV+yTAnJ6diV/mL69y5c7h79y62bt0KIyMjWSyPiKh69eqoWbMmlJSUSs0cEcfSpUthbW1daj+w8nThwgWEhoZi4MCBmDlzptj7v379WnBblJ54otLQ0ICBgUGp/4mSpTRmzBjk5+cXyeQJCAhARkYG9PX1i2W0yQuPx8OGDRsAAHp6enB1dS11Wzs7O4wePRrp6emYM2eOICuwsnFzcxMpsHb+/HlERERAUVERfn5+8PHxESuwJoqJEyeCx+NhxIgROHHihEzHFtfTp0/h4uKCSZMmYe7cufD29saiRYsEj4vzOXDnzh3s3bsXADBt2jShWW8zZ86EkpISli1bJgjkSurdu3cACvqtiZMROH78eKiqqsLb27vU8o5cLhezZ8/Gx48fAQAzZsyQaa+40igpKWHgwIEACr5fXLhwQeg+169fR//+/TFx4kSxMmmzsv53LrYqlrX+W1FwjRAisPfcS4kDa3xfkjOx9/wrwc/tGtWAtVnJdYIVGECHJqZYP90eG706waFZTSgp0mGJEEIIIYRUfs1NG8m9XGNHi1ZobtpQrnP8aQr3KKtTp04FrkRyI0aMgI+PD9asWSPVOEwmE35+fli1ahVatGgho9URcSxbtgyBgYEllvMTx9WrVxEXF4cdO3ZATU1NRquTzL179zB//nz06NEDq1atkngMADAyMqo0WVZZWVnIyMhArVq10K1bN1y+fBmhoaF4/vw5jhw5AgCYM2eOIAtI3k6dOiUIQs6YMUNosGLGjBmoUaMG7t+/j40bN5bHEuUiOTkZK1asgIKCAvz8/OSWpamqqgpPT0+wWCz4+voiICBALvOIomnTpti9eze6d++O169f4+LFi4IAqZ6ensilbRMSEuDj4wMej4eePXti6tSpRR7/PXMNAGrXrg0XFxfk5uZi4sSJUvX5fPWq4FyguMc7RUVFrF+/Hv/99x/mz59fYnB4zZo1gky+QYMGwdPTU+J1imvo0KGCsr6HDx8Wuv26desEfRIvXLggyEYrS1ZWFnJycgQ/V9XvL38jOotNCAEAxH5OE9pjTVSX7sUj9nOa4Oc+7S2LPK6ppoSBnesgZGEPzHdrBRvLiqmBTwghhBBCiDTGN3eFvrp8Gs7rq+tiXPOhchn7TxYXFwegoCyVtbV1Ba9GMgYGBpg0aVKRsmOSyM/Ph7u7u9Slvojk7O3t4eDgIPU4eXl5+Oeffyq81OmLFy8wdepUuLq6Ytu2baW+RwtnYPwuISEB0dHRAAp6nFWUV69e4dChQ5g3bx769euHMWPGCIID/GyeVatWYc6cOeByuejYsWO5leP8/PmzILjesGFDDBs2TOg+mpqa8PPzg4KCAvbs2YN9+/bJeZWyx+PxMH/+fGRkZGD58uVwcnKS63zOzs6C0p/bt2/HgQMH5DpfWfT19TF06FCEhYUVKW0qak/C7OxseHp6Ii0tDc2aNYO/v3+xPo8lBdeAgsCsnp4eUlJSMHbsWHz58kWi58APBktyzDM3N4e/vz/Onz+P2bNnF8lgCwwMxMGDBwEUBO5WrFgh0fokZW5uLsgAfPXqFZ49e1bm9vzymEBBqVlRSoa+fPlS8Ptp0KCByD38SMWj4BohBABw7vYH4RuJ4XzU/8br9P8ZaTUMNeExsBH2LumF8f3tYGygIdM5CSGEEEIIKU/aqlpY5DAdmiqy/V6rqaKBRQ7Toa0qelklUuD9+4I+eLa2tlBXV6/g1VQsbW1tjBs3rqKXQWTA0dGxSA83eXj58iX+/fdfAEBiYmKxEnH37t2Dh4cHZs2aBV9f31L797FYLLi5ucHR0RELFizA4cOH8fDhQyQnJyM5ORlLly4Fl8sFAPTu3VuuzwkAcnJy8Pz5c5w8eRKHDh0S3D9nzhzcunULTZs2xT///INTp04JTqBbW1tj5MiRYDKZiI+Ph56eHtasWVMsWCEPTCYTPj4+yM7OhoaGBjZu3Chyr8F27doJMnr8/PwEfeIq2qdPn8oMuPIdOnQId+/exYIFCzB0qPwvLlFSUioyz7p16/D9+3e5z1sWRUXFIqVWa9asKXQfJpOJadOm4e3bt7Czs0NISAg0NIp/L+H/3f3O0NAQK1euBAB8+fIFI0aMEASaRcXhcPDs2TMYGBgIShuLq0ePHvDw8EBERATGjRuHtLQ0BAcHY8uWLQCAFi1aYPv27VBWVpZofGkU7uHHz2QtjY2NjeC2o6OjSNnGFy9eFNwuz6w8Ij3pLoMihPwRmCwO7jxPkumYUc+SMG1IU6goK0JNVQmrPNrBtnY1KCjI/8soIYQQQggh5cVCzwzLu8zC6sgApOUKL/0jjL66LhY5TIeFHl21LAn+CcHOnaU1Y7gAAIYfSURBVDtX7EIIqSLS09OxadMmHD9+HL1798a6deuwd+9ejBkzBjt27EDLli0RFhaGI0eOYO/evUJ7pCkrK+P06dOIjo7G+vXrcfr06RK3q1Onjsz/ThMSEnD+/Hm8e/cOb9++xbt375CYmCjICCkccAgPD0ft2rVLHatp06bYv3+/YL+8vDyZrrUkXC4Xc+fOxfPnz6GoqIiNGzfC0tJSrDGmTp2K//77D/fu3cPGjRuRmJiIRYsWybxnmThiYmLg7++PunXromfPnujevTv09fWLbBMXF4cNGzZgypQpGDNmTLmtrV+/foLgDYvFQmxsbIWXKi08v7ByoCwWC97e3rh79y5atGiBwMBAaGtriz1nz549MWjQIJw+fRrfv3/HsGHDMHfuXIwaNUqkoPKTJ0/w69cvjB49Wqrgl7e3N75//47Tp0+jT58+SEsrqIrVrFkzBAcHV9hFM927d4eBgQFSU1Nx6dIleHl5FXsP802cOFFQkrNhQ+GlvT9+/IiwsDAAQN++fdGjRw+ZrZvIH2WuEULwMSkDLHbJV7BIisXmIv5rhuBnO2tDCqwRQgghhJA/koWeGTb08kVHi1ZSjdPRohU29PKlwJqEXr58ia9fv0JBQUHu5cQIqep4PB5OnTqF3r1749ixY5g8eTI2b94MW1tbrFu3Dr169cLYsWNx6NAhaGtr48iRI0IDa4U1b94cR44cwezZs4s9pqmpCX9//1Kz34RJSUnBgwcPcPToUezatUtw/44dO+Dj44Ndu3bhxo0byMrKQo8ePbB48WKcO3dOECwDUGYA4Pnz51i4cCEYDAZ0dXWRlJSEYcOG4fHjxxKtV1TLli3DxYsXoaSkhNWrV6Nr165ij6GgoIBNmzYJAofHjh2Dq6sr3r17J9O18rOgSuqP9bs+ffrg4sWLaNOmDTZs2ICOHTti/PjxOHnyJDIyMsBmszF37lw4OTnB29tbpusUxsLCAnXr1hX8XKNGjXKdvyRJSf+7+L2sYFJubi6mTJmCa9euoXfv3ti3bx90dUsvVS3sd7Vo0SKYm5sDKMiGW7VqFQYPHowHDx4IXfOtW7cAFM3wkgSDwcDcuXNhaGgoCKxZWFhgz549QgON4ir8egh7bVRUVDBw4EAABa9NaRcNAAWBOH72WXh4eJFear9LSEjAlClTkJeXh3bt2sHPz0+cp0AqAQquEULw6VuG8I0kUDi4RgghhBBCyJ9MW1ULM9qNx3x7T9ga1RW+QyG2RnUx334qZrQbT6UgpXDlyhUAQNeuXVGrVq0KXk3V8uzZM6xatarUnjyk6ti6dStu375d5jZv3rzBiBEjsHDhQqSmpsLd3R1eXl5Ftlm6dCk6d+6MlStX4tixY0hJSRF7LQwGA+7u7kUCJvXr18eRI0dEyuj4nZeXF5o3b46OHTvCzc0Ny5YtK3KSW11dHR07dsTcuXNx5swZ3L9/HwEBARg1ahTq1asnUgbOu3fvMGnSJLBYLKxbtw5Hjx5FtWrVkJqairFjx2Lfvn0y/zthsViYP38+QkNDoaGhgcDAQMGJfEkYGBhg7969gn5iMTExGDhwIDZs2ICMDNmcp+EHIwr3xiqLuro6Jk6ciKtXr2L8+PF49OgRFi1ahA4dOmDIkCHg8XhYsmSJTNYmLn5fSkdHx0rRq5PfkxAoPbjG7492//59LFiwAFu2bBGanch/37JYrBIf19LSQnBwcJGMrJcvX8LNzQ39+/cvM3vz2rVr6NKli1gB+JKEh4fD0dERP378ENz3+fNnjBo1Cjdv3pRqbKAgKJyRkYH4+HjcuHFDcH9YWBg+fPiAjIyMUstnFi4hum/fPkRFRSEjI6PE19PLywvr1q3Dp0+f4OjoiKCgILx69Qo/fvxAQkIC7t27h9WrV8PR0RFJSUmYNGkSdu/eLVIJSVK5UFlIQgjymcKvNJJoXJZ8xiWEEEIIIaSyam7aCM1NG+Hzr0Tc+fwY71Pj8SHtM7KZ/7tyWVNFA1b6FqhjYIkOFi0pU00GuFwuLl68CEVFxXLPfKjqnj17hgkTJiAzMxO5ublYtWpVufSWqswiIiKQlZVVLn2fZGnjxo0IDg6Gqqoqdu7ciY4dOxbb5uLFi/Dx8REER5ydnUvMLlNUVMSmTZswa9YsXLlyBT179oSrqyuGDBki9gl0d3d3pKSkoH379ujWrZvE76/Bgwfj0qVLRe6rVasWunbtCgcHB7Rs2VKq8ocxMTEYP348WCwWdu7ciU6dOgEoOJE+ZswYpKamws/PD9euXcPChQtha2sr8Vx8mZmZmD59Ou7duwcjIyPs2rVLosDj72rUqIF//vkHo0aNwo8fP8BisRASEoJjx45h9OjRGDZsGExMTCQeX9zgGp+2tjZ8fHwwdOhQrFmzBtevX0dMTAyAguDW6NGjMWTIkHItYzl27FjY2NigQ4cOIu/z8+dPua3n4cOHZT7+9OlTTJ8+HYaGhggNDYWdnZ1I4/KDRvn5+aVuY2VlheDgYIwZMwY5OTno0qULhg8fDgsLi1J/J9HR0YiLi8PatWtFWkdJ3r17hxUrVgieu6WlJaZMmYKPHz8iJCQEMTEx8PDwQOPGjeHs7IxevXrB0NBQ7HmSkpLQrVu3Yvc/fvwYffr0AVAQKCyp152lpSVat26Nhw8fIjs7GzNmzAAAzJ07t8T+pk5OTujWrRvOnj2LGzdu4ODBg/j16xeUlZWhp6cHa2trTJs2Dc7OzhI9F1I5UHCNEAJVFdGa44o9rrJ8xiWEEEIIIaSys9AzEwTNeDwe8tj5YHHZUFZQgpqS6l8fvJC1iIgIfPr0CWPGjClS4quy4fF4IpVRK21fPg6HU+pJ7cLbCTvx/fLlS0ycOBGZmZkAgJMnT4LBYGDlypV/7Xv06tWrmDNnDjgcDpSVlUvNIOJwOFJnMPF4PJGCE6Jst3XrVgQHBwMoOHnu6emJwMDAYgGDHj16wNHREeHh4bC1tcXKlStLHVNFRQUBAQEICQnB9u3bcfDgQRw8eBDm5uZo0aIFbG1tYWlpCQMDA1SrVg2amppQU1ODqmrRY5ySklKpWUkcDgf5+fnIyclBeno6MjMzkZ6eDj09PTRp0qTItvb29nB0dERERAT69u2LMWPGoHHjxmW+LqJ6/PgxpkyZAiMjI2zfvh1WVlaCx+rVq4djx45h0qRJiI+Px8OHD+Hs7IzGjRtjwIABaN26NWrVqiV21kl0dDTmzJmDhIQE9O3bF0uWLCm1j5MkateuLVj3hw8fABQE83bu3Ing4GDY29ujV69e6NKlC/T09EQel8fjCbJ1SsuCEsbc3ByBgYH4999/sXLlSnz//h0fP37EihUrsGvXLsyfPx/9+vWTaGxxKSkpFQtEu7u7Izs7GyYmJjA2NoaRkREMDQ2hr6+Pnz9/FikxKutAYGllGNlsNnbt2oVjx45hypQpGDZsGBQVRT/vxv/sKSu4BgCNGzfGtm3bBEE8YY4fP44OHTpI9LcYExOD4OBgXL58GVwuF7Vq1YKnpyf69+8veG7dunXD/PnzERcXh+fPn+P58+dYtWoVWrVqhc6dO8POzg4NGjQQqddczZo18fbtW7HXyXfw4EFwuVzk5uaKtL2WlhZGjBiBESNGSDwnqdwouEYIQa3qOnIZ17KGfMYlhBBCCCGkKmEwGFBXVkPpnVOINLhcLgIDA2FpaYmZM2dW9HLK9PXrV4waNQqJiYlSjdO2bVuh22RmZoqc0VDYiRMnwGAwsGLFinILsOXl5ZXZl4YvKytLcDsjIwOpqaklbsdkMgEUvDdK26YkT58+hbe3tyCQtXDhQigrK8PR0bHYtuHh4Vi0aFGpJcREcf36dZF+R/ygljjy8/MxZcqUYgE2JSUl+Pv7w9DQEC4uLkIDAwwGA5MmTUKfPn0QEBCAiIgIfPnyBV++fEFYWFip+6moqEBVVVUwfuH3Eo/HQ35+PvLz84sFZxgMBtq1awc3N7cSx120aBGcnJzg4OAg7CUQ2ZkzZ7B48WL069cPS5YsgaamZrFtatWqhdDQUMycORN3794FAMGJfv66O3fuXKQHXGmYTCaCgoIQGBgIXV1dbNu2Db169ZLZ8ynM3Nwcx44dw9SpU/Ho0SPB/Ww2Gzdu3MDz58/x9etXQY8oURT+nfH/1iTVs2dPtGnTBitWrMD58+cBAN+/f8esWbMQGxtbYcf0VatW4datW7hw4QIuXrxYaiDd0NAQRkZGMps3Ly8P3759K/Gxf//9F5qamrhy5UqZvdhKwz+uifI7s7e3h729vdDt0tPTcfnyZezZs0estTx48ADBwcGIiooCALRq1QpDhw5Fv379igUMGzdujPDwcISFhSEoKAhfvnwBl8vFgwcPBIFIBoMBc3NzWFtbw9DQENWqVYOBgQEsLS0FGaiEyAMF1wghqG2qA2UlBbDYkv+j4HfKSgoUXCOEEEIIIYTIXVhYGBISEhAaGirRCcfyZGpqioMHDyI0NBQ2NjawsrKCtrY2tLS0Kl2mGI/HK7c1paenw83NDfHx8SLvU1rwpbCvX7+iXbt2Eq+Ly+Vi3rx5UFZWLhb8GDRoENTU1JCUlAQ7OzsYGxtDW1u70vXMKSmzhcFgYO7cuWKNY25ujnXr1sHHxwcRERH4999/8eLFi1Izl5hMptiBl1q1amHLli1o0KBBqdsYGBjILLDGYrGwceNGhIeHY/PmzejRo0eZ2+vp6eGff/7B/v37sWnTJkEGkJOTEyZMmIB69eoJnfPmzZvw8/NDSkoKJk2ahPHjx0NHR77nTnR1dfHPP/9g27Zt2LNnD7hcLgwMDLB8+XJ0794dCgoKYo1X+Hcuaeba7+vbuHEj7O3tsXz5ckGgPSgoCA4ODmjRooXUc4jLxMQEQ4cOxdChQ/Hx40fs3LkTZ8+eLbbdlClTZHqcVFNTg5GRkaDHYeHfTd++faUaW9TMNXHs3bsXAwYMQPPmzYVuGxcXh3PnzuHChQv4/PkzjI2N4eHhARcXF6F9UpWVlTFkyBAMHDgQ58+fx/HjxxEdHS0IevJ4PHz+/BmfP38W7NO8eXOpehcSIgoKrhFCoKKsiA6NTXEzOkFmY3ZsYgoVKgtJCCGEEEIIkaOvX7/Cz88Pfn5+sLGxqejliMTMzAyzZs2q6GVUKiYmJjhw4AAiIiJgY2OD2rVrQ0tLC5qampUu6FiYtCe7qyITExOMGzcO48aNQ35+Pl6+fIm4uDjEx8cjOTkZaWlp+PXrF3JycpCbm4u8vDwwmUywWCyhgZi1a9eWGViTFQaDga9fv2LWrFmwsrLChQsXYGBgIPK+Y8eORffu3bF161bo6elh0aJFQvd78uQJduzYgf/++w+jRo3ChAkTxCrFKC0VFRXMnj0bXbp0wfLly7F582ZYW1tLNFbh4Iy0mWuFOTs7o0GDBvD09MSXL1/A4/EQGRlZIcG1wmrXro3169ejV69emDlzpuA5T5w4EaNGjZL5fPv378c///yDz58/yyzrqnApTyUl2YQD0tLScOXKFYSGhpb4eF5eHp49e4ZHjx7h6tWrePv2LRo0aIC+ffvC3t4ezZo1E6usJVCwdmdnZzg7O+Pr1684f/48/v33X7x69UoQPFRXV8fmzZvRpUsXqZ8jIcIweNIWiCbkD8RkMvHixYti9zdq1Khcm6qWp9jPafDZGimz8TZ6OaCehexqhRNCCCGEkKqJzWbj3bt3Re6rW7euWCd3Supvoa6uLvbV9uTPwuPxMHbsWDg4OGDChAkVvRxCiAg4HI7gPy6XWyTzRN4ZnC9evMDChQuxdOlSvHjxAo0aNULLli3lNh9QUDpyw4YNYLPZGDRoEPr06VNi2cmqJDk5GY6OjujRowecnJzQpk0bmY7/48cPjB8/Hm/fvoW/vz+cnZ1lOr40QkJCcO7cOcydO7dYn7bKLDc3FyNHjoSbmxv69u0rk3ObmzdvRrNmzdC5c+ci9x84cAAXL17E9+/fYWlpiXr16qFRo0Zo166dTHsKFpadnY2nT5/i8ePHMDU1xZAhQ+QyD1D1vpPK4nt4af7G8+e/o+AaISX4Ww8OO048xaX7n6Qep3c7S0wd3ET4hoQQQggh5I9HwTUiL3l5eTh//jwGDx5c0UshhFQBOTk5UFZWhrKycrnNGRMTAw0NDVhaWpbbnPLGYrHA4/Hken4sLS0N4eHhGDFiRKU6D8discr1/VOZpaWllRgsi4+Ph4GBgdzLnVaUqvadlIJr8kVlIQkhAuP6N8TLDz+R8D1L+MalMDfRxjhH8ZtmE0IIIYQQQog41NTUKLBGCBGZhoZGuc9ZHmUuy1t5BJf09fUxduxYuc8jLgqs/U9pWWh/UiCZEGEqZ0iVEFIhNNSUsGpye5ibaEu0v7mJNlZ6tIOGGsXtCSGEEEIIIYQQQgghhPyZKLhGCCmimq46NsxwQO+2tcTar3c7S2yY4YBquupyWhkhhBBCCCGEEEIIIYQQUvEovYQQUoyGmhKmDmmKHm1q4XzUB0Q9SwKLzS22nbKSAjo2MYVjRyvUs5BPU1JCCCGEEEIIIYQQQgghpDKh4BohpFT1LPQxa0QLTBvSFPFfMxD/NQP5LA5UlRVhWUMHljV0oKKsWNHLJIQQQgghhBBCCCGEEELKDQXXCCFCqSgrop6FPmWnEUIIIYQQQgghhBBCCPnrUc81QgghhBBCCCGEEEIIIYQQQkREmWuEEKHYbDYSExOhoqICBQUFcLlcGBsbQ1GRSkISQgghhBBCCCGEEEII+btQcI0QIhSPx8OPHz+K3GdoaEjBNUIIIYQQQgghhBBCCCF/HSoLSQgh/8fefYfJVZZ9AH52d3bTO+mFhBJCC4JI50OQohSRpkgJRZqooKAiLSKggFIE0Q8QBCkCAgEsIB8d6VUCQggQIJVU0naTbJvvj7DLLjuTnNmd3dlk7/u6vJw585ZnhiR7dn7nfQ8AAAAAACQkXAMAAKDVFBUVNTmWTqcLUAkAAHQctbW1TY5lOjeneYRrAAAAtJri4qa/dlZXVxegEgAA6DhqamqaHMt0bk7z+CQBAABoNUVFRZFKNb7dd3l5eYGqAQCAjuHz59ypVMrKtTwSrgEAANCqunfv3uj5kiVLClQJAAB0DJ8/5/78OTktI1wDAACgVfXs2bPR8+XLl8fSpUsLVA0AAKzdli5dGsuXL2907PPn5LSMcA0AAIBW1bVr1ygpKWl0bPr06QI2AADIs6VLl8b06dMbHSspKYmuXbsWqKK1U2r1TQAAAKD5ioqKolevXrFgwYL6Y+l0OqZNmxadO3eOHj16RLdu3aKkpCTjTdZra2ub3JC9urraDdkBAGgz7fWctK6u8vLyWLJkSZMVaxERvXr1cr+1PBOuAQAA0OoGDBgQ1dXVsXjx4kbHly9fHsuXL4+5c+dm7ZtOpyOdTjc6VlRU5AsCAADazJp6TtqzZ88YMGBAoctY67jMDwAAgFZXVFQUQ4YMca8HAABoIz179owhQ4a0+wBwTWTlGgAAAG2iLmBLpVKxaNGiJtvqrMrnt7fp0qVLvssDAIBVWlPOSUtKSqJXr14xYMAAwVorEa4BAADQZoqKimLgwIExYMCAqKioiMWLF8fSpUujurq60KUBAMAaK5VKRffu3aNnz57RtWtXoVorE64BAADQ5oqKiqJbt27RrVu3iFh5D4va2tom97GIiKiqqoq33nqr0bFRo0ZFaWlpm9QKAADt9Zy0qKgoiouLhWltTLgGAABAwRUVFUVJSUnG1zIFbqlUKlIpv9ICANA2nJPSUHGhCwAAAAAAAIA1hXANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi41s6Vl5fHbrvtFtOnTy90KQAAAAAAAB1eqtAFkN2KFSvizDPPjBkzZhS6lNWqqamJxx9/PB5++OGYOHFifPzxx1FVVRW9e/eOL3zhC3HYYYfFDjvsUOgyAQAAAAAAWkS41s7U1NTEvHnz4qmnnoqbb745Jk+eXOiSVuvFF1+Mn//857Fo0aL41re+FYcffngMGjQoqqqq4tlnn43zzz8/Hn744TjiiCPi7LPPjuJiCyYBAAAAAIA1k3CtnTjxxBPjlVdeiYqKiqipqSl0OYnddttt8ctf/jJ22WWX+NWvfhV9+vRp9PohhxwSDzzwQDz77LNx6623Rp8+feL73/9+gaoFAAAAAABoGeFaO3HhhRfGihUrIiKiuro6nnnmmbjgggsinU4XuLLs7rnnnjj//PPjK1/5Slx11VWRSmX+47R48eL6xw8++KBwDQAAAAAAWGMJ19qJ/v37N3o+cuTIuP/+++P1118vUEWr9uGHH8Z5550XvXv3josvvjhrsBYRMXDgwHjzzTcjImLs2LFtVSIAAAAAAEDeCdfasa5duxa6hKwuvvjiqKysjHHjxkXPnj1X2fbyyy+PZ599NsrKymK77bZrowoBAAAAAADyT7hGzl566aV4/PHHIyJir732Wm37zp07x2677dbaZQEAAAAAALS64kIXwJpnwoQJERHRpUuX2GSTTQpcDQAAAAAAQNsRrpGTysrKeOSRRyIiYv3111/lvdYAAAAAAADWNsI1cvLKK6/E4sWLIyJi3XXXLXA1AAAAAAAAbcuyI3IyadKk+scDBgxo9NoLL7wQDzzwQLzzzjtRUVERffv2jREjRsRXvvKV2HHHHa1yAwAAAAAA1njSDnLyzjvv1D/u3bt3RETMmjUrfvazn8Xzzz/fpP1zzz0Xd955Z2y66aZx8cUXx+jRo9uqVAAAAAAAgLwTrpGT9957r/5x9+7dY+rUqXH44YfHvHnz4oADDogDDjggNt100ygpKYn//ve/8Yc//CGeeeaZ+O9//xtHH3103HnnnTF8+PACvoOWqa6ujqKiokKX0eaqq6sTHQMAgNbgfBQAgEJzTvqZjvq+GxKukZNFixbVPy4qKopTTjklqqur47bbboutttqqUdutt946brjhhvj5z38ed955Z8yfPz9++tOfxu23397WZefN22+/XegS2o233nqr0CUAANCBOR8FAKDQnJN2XMWFLoA1S3l5ef3jCRMmxJQpU+Laa69tEqzVKSoqivHjx9dvB/nqq6/G448/3ia1AgAAAAAA5JtwjZw0DNfefPPNOPnkk2Ps2LGr7JNKpeJ73/te/fM777yz1eoDAAAAAABoTcI1clJVVVX/ePDgwXHssccm6rfbbrtFp06dIiLi6aefjsrKylapDwAAAAAAoDW55xo56dKlSyxdujQiIo444ogoKytL1K+srCw23HDDePPNN6Oqqireeeed2HzzzVuz1Fax8cYbR2lpaaHLaHPV1dVN9g/eZJNNIpXyTwgAAK3P+SgAAIXmnPQzVVVV8fbbbxe6jILqeP/VaZFu3brVh2tdunTJqe/AgQPjzTffjIiI2bNnr5HhWiqV6pDhWiY+CwAACsn5KAAAhdZRz0nT6XShSyg420KSk169etU/rqioyKlvt27dmt0XAAAAAACgPRCukZP11luv/vGCBQty6tvwfm0NgzYAAAAAAIA1hXCNnGy44Yb1j6dMmZJT3+XLl9c/brgCDgAAAAAAYE0hXCMnW221Vf3jd955J6e+CxcurH88atSofJUEAAAAAADQZoRr5GSbbbaJ3r17R0TErFmzcgrYpk+fHhERw4cPj379+rVGeQAAAAAAAK1KuEZOUqlU7LPPPvXP//nPfybqN2/evJg7d25EROy+++6tUhsAAAAAAEBrE66tpWbOnBknnHBCbLnllrHffvvFs88+m7exTzrppOjatWtERNx2222xaNGi1fZ5+umnIyKipKQkjjzyyLzVAgAAAAAA0JaEa+3Y4sWL6x83vF9ZEmeccUY8+eSTUVFREZMnT46TTz45Zs2alZe6BgwYEKecckpERCxdujTOP//8VbZPp9Nx0003RUTEKaecEkOHDs1LHQAAAAAAAG1NuNZOzZ49O957773654899lhO/d98881Gz5ctWxZvvPFGXmqLiDjmmGPi8MMPj4iIf/zjH3H55ZdHOp1u0i6dTsfFF18cb7/9dnzjG9+IE088MW81AAAAAAAAtLVUoQtgpfLy8qipqYlFixbFpEmT4qqrrooVK1bUv37NNdfEihUrYp999olBgwZFKpWKzp07R1lZWcbxNttss3jxxRfrn5eWlsaYMWPyWvO5554b66+/flx66aVx7bXXxn/+85849thjY8yYMVFdXR1vv/123HzzzTFx4sQ4/fTT44QTTsjr/AAAAAAAAG2tKJ1puRFt7sgjj2wUhiVx0UUXxYEHHpjxtZkzZ8Z5550XL730UgwcODBOP/302GOPPfJRahPz5s2LBx54IB599NGYNm1azJs3Lzp16hTDhg2LXXbZJQ499NAYNGhQq8zdWiorKzOu9Nt8882zBpprs6qqqpg4cWKjY2PHjo3S0tICVQQAQEfifBQAgEJzTvoZ359budZu3HLLLXkdb8iQIXHdddfldcxs1llnnRg3blyMGzeuTeYDAAAAAAAoFPdcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcK2dKy8vj9122y2mT59e6FIAAAAAAAA6POFaO7ZixYo488wzY8aMGYUupdmOOuqo2GijjWLChAmFLgUAAAAAAKDFUoUugMZqampi3rx58dRTT8XNN98ckydPLnRJzXbXXXfF888/X+gyAAAAAAAA8ka41k6ceOKJ8corr0RFRUXU1NQUupwWmzNnTvz6178udBkAAAAAAAB5JVxrJy688MJYsWJFRERUV1fHM888ExdccEGk0+kCV9Y8v/jFL2Lx4sWFLgMAAAAAACCvhGvtRP/+/Rs9HzlyZNx///3x+uuvF6ii5nvwwQfj0UcfjW222SZefPHFQpcDAAAAAACQN8WFLoDsunbtWugScrZo0aK48MIL49BDD43tt9++0OUAAAAAAADklXCNvLrooouitLQ0fvzjHxe6FAAAAAAAgLyzLSR588wzz8S9994b1113XXTv3r3Q5QAAAAAAAOSdlWvkRUVFRZx77rnx9a9/PXbZZZdClwMAAAAAANAqhGvkxRVXXBHLly+Ps846q9ClAAAAAAAAtBrbQtJi//nPf+LWW2+Nyy67LPr06VPocgAAAAAAAFqNcI0WqaysjLPPPjt23XXX2HvvvQtdTqurrq6OoqKiQpfR5qqrqxMdAwCA1uB8FACAQnNO+pmO+r4bEq7RItdee23MmTMnbrzxxkKX0ibefvvtQpfQbrz11luFLgEAgA7M+SgAAIXmnLTjcs81mu3dd9+Na6+9Nn7605/GgAEDCl0OAAAAAABAqxOu0Sy1tbVx9tlnx9Zbbx2HHHJIocsBAAAAAABoE7aFpFluvvnmePfdd+Nvf/tboUsBAAAAAABoM8I1cjZt2rS48sor49RTT43hw4cXupw2tfHGG0dpaWmhy2hz1dXVTfYP3mSTTSKV8k8IAACtz/koAACF5pz0M1VVVfH2228XuoyC6nj/1Wmx8ePHx+jRo2PcuHGFLqXNpVKpDhmuZeKzAACgkJyPAgBQaB31nDSdThe6hIITrpGTe+65J1566aW47777orjYLfsAAAAAAICORTpCYnPnzo1LLrkkvvvd78YGG2xQ6HIAAAAAAADanJVrJHb33XfHokWL4oYbbogbb7xxte0rKyvrH//iF7+IX/3qV41ev+aaa2LrrbfOe50AAAAAAACtRbhGYocffnjst99+idvfdttt8ac//SkiIk455ZTYa6+9Gr3ev3//vNYHAAAAAADQ2oRrJNazZ8/o2bNn4vY9evSof9ynT58YNmxYa5QFAAAAAADQZtxzDQAAAAAAABISrgEAAAAAAEBCwrW11MyZM+OEE06ILbfcMvbbb7949tlnC10SAAAAAADAGk+41o4tXry4/vHChQtz6nvGGWfEk08+GRUVFTF58uQ4+eSTY9asWXmucNXS6XTGxwAAAAAAAGsq4Vo7NXv27Hjvvffqnz/22GM59X/zzTcbPV+2bFm88cYbeaktqenTp9c//uijj9p0bgAAAAAAgNaQKnQBrFReXh41NTWxaNGimDRpUlx11VWxYsWK+tevueaaWLFiReyzzz4xaNCgSKVS0blz5ygrK8s43mabbRYvvvhi/fPS0tIYM2ZMq9VfW1sbS5cujYiIRYsWxfPPPx9///vf61+/+eabY/jw4bHddttFr169oqSkJLp169Zq9QAAAAAAALQG4Vo7cdJJJzUKwz6vpqYmrr/++rj++uvrj1100UVx4IEHZmx/ySWXxHnnnRcvvfRSDBw4ME4//fQYMWJE3uuuM3PmzPjKV76S9fVly5bFOeecU/98m222iVtuuaXV6gEAAAAAAGgNwrV2It9B05AhQ+K6667L65irMmzYsHjnnXfabD4AAAAAAIBCcM81AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAADAWq2ioiL22muveOGFFwpdSrPV1NTEEUccERMmTCh0KQAA0OEJ1wAAAFhrLV68OH70ox/Fhx9+WOhSmm3FihUxfvz4eOmll9pszsmTJ8dmm20WG220UUyfPr3N5gUAWBu52Gvtkyp0AQAAAJAv6XQ6Pvnkk5g1a1Y8/vjjcffdd8esWbMKXVbOFi1aFLNnz46nn3467rrrrpgyZUqbzV1bWxvnnHNOVFVVtdmcAABrq8WLF8dPfvKTNf5ir/PPPz9eeumlOPDAA9tkzsmTJ8eBBx4YVVVV8eijj8awYcPaZN6khGsAAACs8e67774466yzora2NtLpdKHLaZYXX3wxjj766Ein01FbW1uwOm6++eZ4/fXXCzY/AMCazMVeLbcmXOwlXAMAAGCNt9tuu8V9991X/7y8vDzuuOOORsfau80226xRvcuXL49//etfccMNN7RZDdOnT48rr7yyzeYDAFhbuNgrf9aEi72EawAAAKzxevbsGT179mx0bPPNN4+HH344ysvLC1RVbrp27RqjR49udGzs2LHxxBNPxPvvv98mNfz85z+P4mK3ZwcAyJWLvfJjTbnYS7gGAADAWimVSkXv3r3XmHAtm379+rVJuHbvvffG008/HZdffnmcdtpprT4fAMDaxMVe+bGmXOzV/isEAAAAWtX8+fPj4osvjl133TX22WefQpcDALBWqLvYa03Xr1+/Npmn7mKv888/v03mawnhGgAAAHRwF154YdTU1MQvfvGLQpcCAEAHtKZd7CVcAwAAgA7sscceiwceeCB++tOfxsCBAwtdDgAAHdCadrGXcA0AAAA6qKVLl8Z5550X2267bXzzm98sdDkAAHRAa+LFXsI1AAAA6KB+85vfxOLFi+PCCy8sdCkAAHRAa+rFXsI1AAAA6IBefvnluPPOO+OUU06JESNGFLocAAA6oDX1Yi/hGgAAAHQwlZWVcc4558Rmm20WRx11VKHLAQCgA1qTL/YSrgGtqqKiIvbaa6944YUXCl1Ks9XU1MQRRxwREyZMKHQpAACQF7///e9j+vTp8ctf/jJKSkoKXQ4AAB3Mmn6xV6rQBQBrr8WLF8dPfvKT+PDDDwtdSrOtWLEizj///HjppZfiwAMPzNu4kyZNivvvvz9eeumlmDZtWixdujS6d+8evXv3jk022SS23Xbb2G+//aJbt255mxMAACJWnotef/31cdJJJ8VGG21U6HIAAOiA6i72uueee9bIi72Ea+1ceXl57LfffnHzzTfHsGHDCl0OrFI6nY5PPvkkZs2aFY8//njcfffdMWvWrEKXlbNFixbF7Nmz4+mnn4677rorpkyZkrexP/jgg/jlL38ZL7zwQuy9995x7LHH1v/dnj17drzwwgtxzz33xAMPPBCXXXZZ/OQnP1mjbuQJAED7VlNTE2effXaMGjUqTjzxxEKXAwBAB7Q2XOwlXGvHVqxYEWeeeWbMmDGj0KWs0iuvvBJ/+9vf4pVXXomZM2dGZWVl9OjRIwYPHhxf+MIXYp999okvfvGLhS6TVnTffffFWWedFbW1tZFOpwtdTrO8+OKLcfTRR0c6nY7a2tpWmeOhhx6Kn/zkJzF8+PC4//77Y7311mvSZo899oiTTjopvvvd78bEiRPj3HPPjalTp8aPf/zjVqkJAICO5aabboq33nor7rjjjigrKyt0OQAAdDBry8VewrV2pqamJubNmxdPPfVU3HzzzTF58uRCl5TV5MmT4/zzz48pU6bEEUccERdddFEMGTIkKisrY9q0afHoo4/GHXfcEbfddlvsuOOO8Zvf/Cb69etX6LJpBbvttlvcd9999c/Ly8vjjjvuaHSsvdtss80a1bt8+fL417/+FTfccENexn/qqafihz/8YfTs2TNuuumm6N+/f9a266yzTvzxj3+MfffdN+bOnRt//OMfY/PNN4+99torL7UAANAxTZ06Na666qoYN25cbLHFFoUuBwCADmhtudhLuNZOnHjiifHKK69ERUVF1NTUFLqc1XrsscfitNNOi8022ywefPDB6NWrV6PXBw8eHNtss00cdNBBceyxx8YzzzwThx12WPz1r39t0pY1X8+ePaNnz56Njm2++ebx8MMPR3l5eYGqyk3Xrl1j9OjRjY6NHTs2nnjiiXj//fdbNPaKFSvi3HPPjdra2jjggANWGazV6d27d5xwwgnxy1/+MiIiLr300vjKV74SqZR/tgEAaJ7x48dH//7944c//GGhSwEAoANamy72Ki50Aax04YUXxn333Rf/93//Fw899FCMHz8+ioqKCl1WRu+//3788Ic/jOLi4rjqqqtWGZaNHj06LrjggoiI+PDDD+PCCy9sqzIpsFQqFb179y50GS2Wj9WWTz75ZHz88ccREbHuuusm7rfPPvvUP546dWq89tprLa4FAICO6e67747nnnsuLrjggujSpUuhywEAoANamy72Eq61E/37949hw4bFsGHDYuTIkXH44YfH2LFjC11WRpdffnmsWLEitttuu+jbt+9q2++6666xwQYbRETEP/7xj5g2bVprlwjtyrPPPlv/+N13303cr1+/fjFo0KD65y+//HJe6wIAoGOYO3du/PrXv45DDjkktt9++0KXAwBAB7S2XewlXGvHunbtWugSmqioqIinnnoqIiKqqqoS96v7Ba62tra+P3QUs2fPrn/817/+Nad7KTZcOTdnzpy81gUAQMdwwQUXRKdOneKMM84odCkAAHRAa+PFXm7eQ05mzJgRlZWVERHx3HPPxaRJk2LMmDGr7Tds2LD6xx999FGr1QftUTqdrn9cVVUVN954Y1x00UWJ+ja8qeeacD9GAADal48//jgeeuihKCoqim233bZZY+y5555Njv3qV7+Kb3zjGy2sDgCAjmBtvNhLuEZOli1bVv+4qqoqLr/88rjuuutW26/hKry6cA46is033zwef/zx+ufLly9P3Hf+/Pn1jwcOHJjXugAAWPv169cv/v73v+fcb7/99qt/fN1118WAAQMavd5w+3IAAMhmbb3YS7hGTkaMGBGdO3euDwcabne3Kp988kn94yFDhrRKbdBeHX300TF9+vR49tlno2/fvnH88ccn6rdo0aJG9yjcfPPNW6tEAADWUqWlpTF69OgWjTFy5MhGu5EAAEBSa+vFXsI1ctK7d++49NJL449//GOsWLEiTjnllET93nzzzfrHG220UWuVB+1St27dEm8D2dCjjz5av6Vkjx49mn1lBwAAAABAIaytF3sJ18jZHnvsEXvssUfi9uXl5fH0009HRESfPn1ihx12aK3SYK3y17/+tf7xgQceGJ06dSpgNQAAAAAARAjXaAMTJkyIioqKiFgZEJSWlha4ouarrq6OoqKiQpfR5qqrqxMd+7y6VVd17auqqvJaV1uora2tf1xTU9Nm7+H555+P1157LSJWrlr7zne+s0Z+fgAA+dDc89GI/JyTPvjgg/GHP/wh5s2bFzvssEOcffbZ0bdv35zHaa5CnZPWWVPP5QEA8sl3pCvV1NQkPhdfmwnXaFVLly6Na6+9NiIiBgwYECeddFKBK2qZt99+u9AltBtvvfXWattUVlbWP54yZUp07ty5NUtqFeXl5fWPp02bFhMnTmz1OWtqauK8886rf37kkUfG9OnTY/r06a0+NwDAmiLJ+WhE43PS999/P+dz0smTJ8cvfvGL+i9FHnroofjoo4/i3HPPbbML75YuXVr/eOrUqW1yTtrQpEmTYv78+W06JwDAmqCtviN97rnn4p577omFCxfG5ptvHsccc0z07Nkz53Ga6/PfkfqePKK40AWwdrviiiti7ty5UVpaGpdddlmb/oWHNdW9995bH6Ttu+++sdNOOxW4IgCANVN1dXV88skn9c/nzJmT8xgvv/xyo6uNI1aGTR9//HGL60tq7ty59Y+b8x5y9fmrqdfEq6sBANqjz59XJjF58uS4+uqrY+bMmVFRUREvvPBC/Pa3v23WWM3VcK62nLc9E67Rah577LG49dZbI5VKxa9//evYZpttCl0StHtvvvlm3HvvvRERsddee8W3v/3tAlcEALDmeuqpp6Kmpqb++aOPPpq3LWwabo3Tmt54441Gq8aeeeaZRlcOt4YpU6Y0ej558uRWnQ8AYG3lYq/mabjaL9Pz9sC2kLSKd999N376059GWVlZXHHFFbH77rsXuiRo92bOnBlXXnllpNPp2G+//QRrAAA5KC8vjwULFkQ6nY4lS5bExIkT41//+lejNlOmTInx48fHnnvuGUOGDIkuXbpEKpWKwYMHZx136623jn/+85+NvtAYPnz4Kvs01/Lly2Pu3LmRTqejvLw83nnnnfjHP/7RqM3cuXPjnHPOib333juGDRsW3bt3r6+pOaqrq2PWrFkREbFixYqYPn16/cVedW699dZYsmRJjB49Orp27RqdOnWKAQMGNGs+AICOJNPFXjvvvHOkUi2PZgp5sdc+++wT3bp1a9U5G3rttddivfXWa7X5mkO4Rt7NnDkzTjjhhKipqYnrrrsutt9++0KXlDcbb7xxlJaWFrqMNlddXd1k/+BNNtlktT8EysrK6h+vt956MXbs2FaprzU1/CExfPjwVnsPH3/8cfz0pz+N8vLy+MEPfhAnnnhiq8wDALAmSnI+et9998U555yz2rE+/PDDuO666+qfDxkyJP7v//4va/uxY8dGt27d4g9/+EPMnj07vvjFL8Y555wTQ4cObcY7WbUXX3wxzjjjjNW2mz17dtx4442Njr355pvNmnPGjBkxbty4VbapqKiI22+/vf751ltvHTfddFOz5gMAWFOt7px08eLFMXv27KitrY2FCxfGM888E7feemuj9lOmTImLLrooDjvssBg5cmR07949SktLY+TIkVnnrampiQceeKBRmLbhhhvGnnvuGSUlJfl7g7HyvG/GjBmRTqdj8eLF8corrzQ575s7d26cf/75sfvuu+flYq+qqqr44IMPIiJi2bJl8e6778b//u//Nmpz0UUXxYIFC2KrrbaKHj16RJcuXZo9X74I18irjz/+OMaNGxfl5eXx5z//eY0MU1YllUp1yHAtkySfRcMbvK+pn11x8We755aUlLTKe5g7d24cd9xxMX369DjzzDPj6KOPzvscAABrm8+fXx5yyCFxyCGHtMpcX//61+PrX/96q4zd0I477hjvvPNOq8/T0MiRI9t8TgCAtUXDc9Inn3wyzjzzzNX2efvtt+Pcc8+tfz506NB47LHHsrbfZptt4rLLLourrroqZs+eHV/60pdi/Pjx0blz55a/gc+ZNGnSai+8ioiYNm1ak4u9/vKXvzRrztmzZ8d+++23yjZLliyJSy+9tP75NttsE7fcckuz5ssX4Rp5M2PGjDjqqKOivLw8br755hgzZkyhS4J2b+7cuTFu3Lj46KOPYvz48XH44YcXuiQAAAAAIEcHHnhgHHjgga0y9t577x177713q4zd0LbbbpvowqvKysomWzc217Bhw9bIi72Ea+TFtGnTYty4cVFVVRW33nprrL/++oUuCdq9+fPnx1FHHRUffPBBnHfeeXHooYcWuiQAAAAAAFZDuEaLTZ8+PY466qiorq6OW265JUaNGlXokqDdW7hwYRxzzDExZcoUwRoAAAAAwBpEuEaLzJ49O44++uiorKyMW2+9dZU3XgRWqqioiOOPPz7eeeedGD9+vGANAAAAAGANUlzoAlhzLVq0KL7zne9EeXl53HTTTYmCtdmzZ8ePf/zj1i8O2qmqqqr4wQ9+EBMnTowf//jHie+xtnTp0vj3v//dytUBAAAAALA6wjWapbKyMk4++eSYOXNmXH/99bHBBhsk6vfqq6/G5MmTW7k6aL/Gjx8fTz/9dJx44olx/PHHJ+73zDPPxJlnntmKlQEAAAAAkIRtIWmWn//85/H666/HddddF5tuumnifv/6179ixIgRrVgZtF/XXXddTJgwIQ444IA47bTTcur73HPPxbrrrttKlQEAAAAAkJSVa2upmTNnxgknnBBbbrll7LfffvHss8/mbezbb789JkyYED//+c9jhx12SNxv4sSJ8fDDDwvXyMkDDzwQX/va12LrrbeOU089NRYsWFDokprlmWeeiSuuuCK22267uPDCC3PqW1FREQ8++KBwDQAAAACgHRCutWOLFy+uf7xw4cKc+p5xxhnx5JNPRkVFRUyePDlOPvnkmDVrVotrmjx5clx00UVx4IEHxiGHHJKoTzqdjieffDJOPPHEqKmpEa51IOl0OuPjpF599dU4/fTTY8qUKbFkyZL417/+Faecckqzxmqulr6HiIg5c+bEj3/84xg6dGhcddVVkUrltmj40ksvjYULFya6ryEAAAAAAK3LtpDt1OzZs+O9996rf/7YY4/FZpttlrj/m2++2ej5smXL4o033ojBgwe3qK5LLrkkVqxYEc8//3x89atfTdTnk08+aRQOCtc6hsrKypgzZ07982nTpsV2222X0xiPPPJI1NbWNjr20ksvxYcffhijRo3KS52rM3369PrH06ZNa9YY55xzTixatCj++Mc/Rq9evRL3mzVrVlx99dVx9913R4S/OwAAAAAA7YFwrZ0oLy+PmpqaWLRoUUyaNCmuuuqqWLFiRf3r11xzTaxYsSL22WefGDRoUKRSqejcuXOUlZVlHG+zzTaLF198sf55aWlpjBkzpsV1zps3LyJWbjvZXAKCjuG+++6L6urq+ud33nlnfOMb34jS0tIWj/35wK21PPPMM41WfP7tb3+LY489Nnr27Jl4jJdeeimefPLJKCkpie985zuJ+1VXV8fSpUsbHbNyDQAAAACg8IRr7cRJJ53UKAz7vJqamrj++uvj+uuvrz9Wtz1jJpdcckmcd9558dJLL8XAgQPj9NNPbxehVmlpaYtXz9H+LF68OD7++OOora2NTz75JJ5++um4+eabG7V544034pvf/GYcccQRMWrUqOjevXuUlpaucgXa7rvvHjfeeGOjMG306NGtEjJVVFTE9OnTI51Ox+LFi+Pll1+OG264oVGbGTNmxEEHHRRHH310jB49un4V2ujRo7OOu2jRoohY+Xc41+1dP689/B0GAAAAAOjohGvtxC233JLX8YYMGRLXXXddXseMiLj//vvzPiZrvkceeSTOPPPM1bZ766234qyzzqp/PnTo0Hjssceytt9qq63isssui6uuuipmz54dX/rSl2L8+PFRUlKSl7obeuONN2LcuHGrbTd16tQ4//zzGx1755138l7P5/Xv3z+6du3a6vMAAAAAALBqRel0Ol3oIqC9qaysjDfeeKPJ8c033zzrVpxrs6qqqpg4cWKjY2PHjs3LFo8AALA6zkcBACg056Sf8f15RHGhCwAAAAAAAIA1hXANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJpQpdAAAAAKxKUVFRrLPOOtGpU6coKiqKdDodxcWuFQUAoO04J6Uh4RoAAADtWiqVinXXXbfQZQAA0IE5J6UhsSoAAAAAAAAkZOUaAAAA7VplTVV8tHB6TFs0M1ZUV0anVFkM7zUk1u09LMpKSgtdHgAAHYBzUhoSrgEAANAuvTf/w3jw3cfj+WmvRlVtdZPXS4tTsd3wreJrG+4aG/Qb2fYFAgCw1nNOSibCNQAAANqVZVXL45bX74lH3n96le2qaqvj3x+9GP/+6MXYff2d4sgtDooupZ3bqEoAANZmzklZFeEaAAAA7caCioVxwRNXxowlH+fU75H3n46357wX53751OjbtXfrFAcAQIfgnJTVKS50AQAAABCx8urg5nyJUWfGko/jgievjGVVy/NcGQAAHYVzUpIQrgEAANAu3PL6Pc3+EqPOjMUfx62vT8hTRQAAdDTOSUlCuAYAAEDBvTf/w9XezyKph9//d7w3/8O8jAUAQMfhnJSk3HMNAACAvEin01GTro3q2uqoqa2J2nRt9OjUPWPbDz+ZFiN6D43iopXXfD747uN5reXBdx+PH/Q7JiIiqmur4++THol0pCMiYtMBo2OjddZv0mf20rnx7NRX6p8XFRVFRERxUXF8fcweGed56sMX4pNlixr0Wfn/G/ffMDbsN6pJ+znl8+PF6a81OV5cVBx7j94t4xzPTn05Fi5f3OT46H7rxQb9RjY5Prd8frwy840McxTFnhvsknGOF6a/FosyzLFB31GxXt8RTY7Pq1gQ/5n13wxzFMdu6+2YcY6XZ7wei1csbXJ8vT7rxsg+w5ocX1CxMCbOfjvjHP8zctuMc7w2681YsqK8yfGRvYfFiN5Dm86xbGG8NWdygyOf/TffYcQXM84x8eO3Y2lleZM+I3oPiWE9Bzdpv3DZopg07/2M72ObYV/IOMd/50yO8sqKJseH9RocQ3oMbHJ80fLF8e78DzK8j6LYasjmGeeYNPf9qKiqaNJnSM+BMah7/ybtFy9fElM+mZpxjrGDNs44x3vzP4yKqmVNjg/qMSAGdOvX5PiSFUvjo4XTM86xyYDRGef44JNpGbfdGtC9X6zTtW+T40sry2P6oqarEYqLimL0OutlnGPqwhmxvHpFk+PrdO2b8X46FZXLYuaS2RnnWK/vuhnnmLn441heXdnkeN8uvaJ3l15N56haFnOWzm9yvKgoYt3eTf8+RUR8vHRuVGaYo3fnntGzc48mx5dXLY95yz5pOkcUxdCegzLOMa98QVTWVjVqGxHRo6xbdO/UrUn7FdWV8cnyBv+GNug3oPs6Gef4ZNmiqKqtbtKnW2nX6FrWpUn7yurKWFy5tEH7ovr/z3Y/pMXLl0R1uqZJny6pTtG5tHOT9lU1VVHe4M96w/eR6bONiCivrIiadG2TPp1KyqIsVdakfXVtTSyvXt6gfVH9425lXTPOsbx6RdQ2mmNln9LiVKRKmn4tXFtb2+izbahThpoiIqprqut/vjZUXFQcJcUlTedI10Y63bR9RGRsHxFZ20d89rMa8qU1z0lZuwjXAAAACiydTkdtujaqa2vqQ6lMX0JGRHz4yfRYVr0samprorq2NmrSK/uM6DUkBvUY0KT9jMUfxwvTX6sfuy74SpWUxhFbHJBxjmtfui0+Xjonaur6pGuiprY2vrHxnrHTuts0af/8tFfjyuduaPQlYcTKL1NvOODSjHPc+9a/4kc7Hh8REZU1VfH8tFdX+Rnl6vlpr8aJXzoiykpKI1Wcihemv1YfDBw29hsZw7VZS+bE7W/c3+R4aXEqa7j20LtPxLsLPmxy/LCx38gYrs1c/HHc/J97Ms6RLVz75zuPZp0jU7g2Y/HH8adX78w4R7Zw7W9v/1/WOTKFa9MXzYrrXv5LxjmyhWv3vvWvrHNkCtemLpoRf3jx5oxzZAvX7n7zn1nnyBSuTV04I656/saMc2QL1+58429Z58gUrn24cHpc/uwfM85x2yG/yzjHX16/N+sc39h4rybHP/hkWvz66WtymuOW/9yd0xxTPpkav3rq6pzmuPHVO3Oa4/0FH+U8x/Uv/yWnOd6b/2HOc1z70q05zTF5/pSc5/j9C3/ObY55uc/xu+f+lNMck+a9n/McVzz7x5zmeHvuuznPcenT1+Q0x1vNmOOSf/8hpzn+O2dyznP86snf5TTHm7Mn5TzHBY//Nqc5Js5+O+c5fv7YZbnN8XHuc5zzyK8zzvHtzfePAzb5apPj/5n1VlyUYY5USSpuO/iqjHOc++il8V6jixRWOnTz/WP/jfdscvz1j9+KX//7fzPO8ecDr8g4xy8evyLjKqZDNts343nGxI/fjsueue6zA5/miKXFqbj+G7/JOMcFT1wZUxZ81KDPyk4Hb7J37LPRV5q0f3P2pLji2eubtC8tTsU1X78o4xwXPXV1TFkwtUmfAzf+anxt9K4Z5ngnftfwZ22D93H1vhdmnOPX//7f+OCTaU367D9mz/jqhl9u0v6tOZPj9y/8OeP7+O3e52Wc49Jnro2PPpkew3sNiZ/u/N2IaP1zUtYuwjUAAGCNVltbG9XplaFRbbo2updlDqWmLpwRFVXLVoZM6Zr6sGl4ryExOEMoNXPJ7Hh+2qsrA6ZP21fX1kSqOJU1lPrjy3+JWUvmNBq/prYm9huzR8Yw4KUZr8flz/4xamprGh3vVtolbjzw8oxzXP3CTTF10Ywmx4/e8pDYu0fTcGbG4o/jjjf+1uR419IuWd/He/M/iI8yzLFw+ZKM7YuLipsEaxHR6Kr/z2u4suKjhdOzXinfXFW11TF14Yz68Gm9viM+t+oGAFiTZV+1ls64mi5WsQKutrYm47lMxnFi5YVRuZ67VFZXxoqapqtHazPMW3d8WXXTlbnVxdm/0l9etbzRKso62Wqtrq2JJZVNV3yXrmKOpSvKY9GKpueEmd7byjmqG61QTTLHouWLY36GlbOZVhFHrAzF5lYsyGmOTyoWxuzyeY1WX7fFOSlrD+EasFpFRUWxzjrrRKdOnaKoqCjS6XQUF7tlIwCs6WrTtZ+uZFoZHiUNper6ZAulZi2ZszKUahAwVdfWRElxcRyxxYEZ57jhlTti5pKPV67EarBaat/RX4ldRm3XpP3LMybWh1INv/ToUto569XCV79wU3zYaLuxlcZ94aDYd6PdmxzPFkp1SXVeRSj1YXywcFqT44uyhFJFUdQkWIuIqM7yJUtEREmW87DqDOOsbJ95i6VM8za3T6oZczTcimvaoplZ27XE1EWffZHRv2vTLeg+L9sXaKvuk2t7c5jDHOYwR0vmAMin/g22KW6Lc1LWHsI1YLVSqVSsu27mfeEBoCOqC6VqPr3CNdt9LqYtmhnllcsaBVI16ZoY1nNwxlDq46Vz4/lpr3624ildE9U11VG8ilDqT6/eGTMWf/y57ftqYu/Ru8WXR23fpP2rM9+My565NqrTNY3uX9Ep1SluOei3Gef4/Yt/brwty6eO2OLAjFvYzFwyO+PWep1KyrK+j3fnf5BxVVGm+0xFrLxvTXWGq0qbExhlDaWKsrXPfjVr1lAqywqu5oRSqSx1ZeuT9X2sYlVZKstVvtneR3MCvNLiz7bGWZHhHkD50PAK6tIM95ZJrC3u52IOc5jDHOZINMfaEhKawxzmaB9zNDwfb4tzUtYewjUAANpMOp2uD4Bqa2sz3nQ+YuW9fMqrKhoFUjW1NTGk56AY0mNgk/azl86N5z63fV/dl/pHfuGgjHPc9NpdMX3RrCbb9311wy/Hruvt0KT9f2a9Fb955pr6+2HVKSspjVuz3LvhDy/eHO83vOfBp7Ldg2Lm4tnxl4n3NTleWlKaNZR6b/6H8V6Ge1BkC6WKijJvC1PoMCfXUKo5YU6u7yNb8NWc99EWq8qyhX6pLCvdampXBqyZtlTKVxBZk67NOkc6Pvt71ClVlrF/S3Uq+Wzcqpr8bvEDwBquAwSR5jCHOVY/R8Pz27Y4J2XtIVwDVquypio+Wjg9pi2aGSuqK6NTqiyG9xoS6/Ye5macAG0knU5HTYPVUtlCqRmLP47yyoom2/cN6TkwYyg1p3x+PDf1lcYB06crmrKFUjf/556YtmhGo0CqOl0Te22wS+y23o5N2k/8+O349dP/W7/Kq06qOBV/yXLT8v996ZZ4N8MNxbPdtHzWkrkZQ6mS4pKs7+Pd+R9knCPT/QAiPg2laqqaHG+TMKcZK6WyhSBZVyQ1Z4vArKuxcg9zsr/3/IU5+Qq+0ul01KZro7io6fvMdSVatveRjnTU1tZm3Io7X0FkxMpVmJlqWNV/w0yyve+6PqkMq8YWrVha/3h4ryFZ+7fEiF5D6x8XFxXHRv3Wi4iIvl16Z2zfrbRrbNhv1MonDVZ2Zqq/zrCegz+7WrrBRdO9O/fM2L5LqkuM6j28yfFVfYaDuvfP+O9Pz049MrbvnOoUw3sOzjBH9vfRv1u/WFbV9L4u2baL7VRSFoO7N12Bu6rPqm+X3jGw2zpNjncrzbz6t6ykLPp37ZvTHD0794h+Xfo0Od4l1Tlj+9LiVPTp3CsiGl/1vqp7tHQv6xq9Pv3sG/bJ9rtRSVFJ9Pj0c2x4Xf2q5uhS2im6lXZJ3Ke4qLj+PTZ6H6v4fa20pLT+y76GfbL9u1QUxfXzN6xpVX92i4uKo+TTfysb9imK7F921r1mu0AA2sLc8vn1j9vinJS1h3ANyOq9+R/Gg+8+Hs9PezXjFe6lxanYbvhW8bUNd7VvMNBu1X0JXhcAdS3NHErNXPxxlFcti+ra6k8DqdqoSdfE4B4DMoZSc8vnx3PTXmm8fV9tbaTTtVnDnFtfnxBTF86oD77q+u6x/s7xlfV3atL+zdmT4uJ//6FJKFVSVBy3f/P3Gee45sVb4p35U5oc/9Zm+8VBm+7d5PjHS+bEbRPvbXK8uKh4laHUO/Peb3J8wbKFGdtHrLxQ4/NWGUq1wzAn+zZ5uYc5uYYghQ5zsr33bKFf88KcXIPI7L/K1KRrMwabOf/3yPJZ1dVVXJLDf48ct4WMWPn5lhU3vcq1YZ+S4pJIFaciVVSc9TPpVto1Rvdb79O2xVFSVBIlxSv/13Br0IZ2HLFNbNhvVH3bVHEqUsUlsX7fzFuFD+81JM7e5QdRUlQSqU/Hrnuc7V69e63/P/WP1+09LEqLU3m9gXxpcSpG9P7si4z9N94z9t94z1X2Gb3OevHL3X+a0zwnbzsup/Zj+q8fl+x1Vk59Ttn+2Jzab9x/w7jsa+Nz6vOjHY7Lqf0mA0bHlfv8Iqc+P97pxJzabzpgdPx+v1/m1OdnO5+cU/vNBo6Ja/e/OKc+Z+3yg5zajx20cdxwwKU59Tn3yz/Mqf0WgzaJPx+U+X6T2fxit9Nyav+FwZvEbVkuisnmwt1/klP7LQdvFnd+6w+tOscWgzaJvxxyddMXsvx7GLHys8r0akmGn8sREWMHbhw3Z9pqeRVzjN/1h41WxtfJFqhuPnDj+FOOf67O3uUHjc4p62RbUbHZgI3iuv0vyWmOn+188mcrvBu83S6lmQPuTfuPjj/U/T1PmKf+eKcTPztfa/CZZtume5P+o+Oqfc5v0n5VTtvh+KisrWrSp0en7hnbb7zOBnF53b+7Cd/HKdsfG5UZtqDr1TnzhRMbrbN+/HrPs6PpJNnD6u9te1SDbe4+65PtIpPR/daLX+1+xiqqbuqkLx0Ry6tXNDm+ToaLIyIiNuw7Ks7f7fQMr2R/H8d98duxvLrpBSADMlywERGxQd+RMf7Lp+Y0xzFbfTPjRSaDuvfP2H79PuvGWf/z/aYzrGKl1LgvHBwVVRVNjmf6fTMiYlSfEfHTnU6KiOQXKBy+xQFRXlnxaZ/PemW66CYiYlTv4XHaDsc3ab+qOQ7d/OuxtLK8SZ91ew3L2H7d3sPilO2OWdm+wRtZ1Wd18Kb7fDZHg06j+jS9QCliZXh18jbjmrRf1RwHbvLVWLxiafQo++zvdVuck7L2EK4BTSyrWh63vH5PPPL+06tsV1VbHf/+6MX490cvxu7r7xRHbnFQ1hNmYM1UW1tbf/+mbH+/Zy6ZHRWVK0OphqulBnXvH0N6DmrSfl7Fgnh26itNtu+rXUUo9ZeJ98WHn0yrD7BWhl/Vsfv6O8Xu6+/cpP1/50yOi5/6fX3tdYqiKOsXNte+fFu8Pfe9Jse/udm+cfCm+zQ5Pnvp3Lj19aahVMTK+1BlOol/d/4HGeeYnzWUKsocSuUxzMn2xX5tujbnMCfXUGqVK3Oy3usq95U5WYOWPG11uMo58rQaq66uXMKc7FsEriLMSddEWSRfKVVd2/QLuohVv4/q2pqM42Vfida8UCrT641CqU/DqJXBUeaxupV1iQ37jVoZFjUIpFJFJVm/N9th+NaxXp9168et67t+35EZ2w/tOSjO+p8frAy9Pg2x6kKpbKtzztjp5CgqKoriouJVfmFQZ0TvoTl/+bxbhq1RV6VbWdfYYtAmOfVp+P7KSkpju+Fbxb8/ejGnMVZlu+Fb2WUBOoBM5yqra1+c405kq1oBmEndz4tcdE51yql9qrgk68rSbLKFT9mUlpRG7xzfe88swVA2ZamyWCeVOYTJJlswlE2nVFnWgCSbdbrlVlPn0s4xrDRzeJFNrjV1Le0SI/tkDi+yGZrh97FV6VbWNeeLp3MNDbp36hZj+m+QU5/1+o7IqX2PTt1js4FjcupTv3I9oZ6de8QXBm+aU58x/dfPqX3vzj1j66Fb5NRn0wGjc5ujS6/YbvhWOfUZO2jjnNr37dI7dlp3m5z6bDVks5za9+vaJ+P9plcl02frnJRcCNeARhZULIwLnrgyZiz5OKd+j7z/dLw9570498unRt+uvVunOFiD1DbYvq9zllDq4yVzYmllRaOAqbq2JgZ1XydjKDW/4pOVodTntu+rrq2JI7OEObdPvD8+XDgtqmsb31Nq1/V2iD03+J8m7d+e+2786qnf17dreBXand/8Q8Y5rnvptnhr7rtNjh+86d7xzc32a3J8ztJ5cevrEzJ+JqsKpf47Z3KT4/MqPsk4TlFkvmFwocOcQq7Madb7yBLm5BpK5TfMaV4otbqgpVH7ZoQ5uc6RPYhc9RyZvtzLOSRczRyRaY4GfYqLihsER5m/0Oxa1iU27DvyszCqQTiVzfbDvxgj+wyvb1sXfK2f5cuUIT0GNgqlGq6YKivO/Mvrj3c8MYo+3aIsSSg1vNeQnFcxZbpf36p0K+saXxjc/FBqbfK1DXfN6xcZX9tw17yNBQBAx+CclKTWzt/KgGZZVrW8WcFanRlLPo4LnrwyfrX7GVaw0WzpdLp++75OJWUZv/z8eOncKK+sqF+9VLdaamC3zKHUgoqF8ey0lxsFWHWh1BFbHJDxatc73vhbfPDJtPo56mraddT2secGuzRpP3nelLjwyavq2zXchuCOQ36fMcy57uW/xJtz3mly/MBNvhqHbr5/k+NzyufFLa/f0/RDi4jDx34j4xfs7y34IN6Y3XSOsRWZrzQriqJYkWFLj4js98zJd5iTcY6cw5zspziFDHPaemXO52vKZHXvI1OYk/McLQxzksyxulAql7qa+2c3Y58Gn29RUVGkij7bXi+TrqWdY4NPQ6nPr5bKdjPu7YZvFSN6D23UPlVcEuv1ybx93+DuA+Ks//l+k0CqpKgk67ZQp+9wfBRFUZQUlyQKpYb1HBy/3CO3LYVyDaW6lnXJOZTKdeUBbWuDfiNj9/V3Wu3uCUnssf7Oti0HACBnzklJSrgG1Lvl9XuaHazVmbH447j19Qlx/NaH5akqkkqn01Hz6WqpspLSjF9+zv40lPr8/Z76d+uXcbuIBcsWxrNTX26ySqqmtiYOH3tAxsDor2/+I6Ys+Ki+bV37XUZuF3tt2DSUenf+B3HhE1fVb9/X8D4Dfzn4dxmDlj++/Jd4Y/akJse/sfFecdjYbzQ5Prdiftz8n8yh1Lc3/3rGlTnvzf8wJs5+u8nxzQZslHGciMi4z3xE22yzVpO3bdZWHUqlMpw65DPMqa6tzinAE+Zk6JPjCrzVrSrLpa6s7VfzZzdjXQ1DqU9DnboQKJMupV1i/T7rfhYUNQinsoVB2w7bMob1HNxoa8CSopKs284M7L5OnPk/38t4T6lOqcyh1A93OC6KYuVnlmTbqiE9B8Wvcgylct3+ZGUoldsWNkIp2sqRWxwUb895r0XnpEN7Doojtjgwj1UBANCROCclCeEaEBErg4R8XJEREfHw+/+OXUftsMZcmZFOp+u38CvNEkrNWTqvfvu+z1ZL1Ub/bn0zhlILly2Kp6e+3CSQqknXxKGb75/xy+y7//vPeG/BR/Xb8dWtltp55Lbx1Q2/3KT9+ws+ivOf+G19+4Y3pr714Ksy7ud8/St3xOsfv9Xk+NfH7BlHbHFAk+PzyhdkDaW+tdl+UVbc9Mvk9+Z/EP/JMMcmAzbMOE5ExLIMNyaOaJswJ+s2a/kOWlp5juramsj01X4hw5zmbhGYS12tFeYkab+qzypbXdnCy+yfbfYwJmlddfeHyjZW59LOsV6fEQ0CpuL61U/FGULhiIhthn4hhvQY2GR11XpZbi49oHu/+NnOJ9fP0TCcyrbS+ZTtj42Ilf9dMgX5nze4x4C4aM+frbZdQzmHUqVdYsvBue39b299yE2X0s5x7pdPjQuevDJmLM79y4yhPQfFubucahcFAACazTkpSQjXgIiIePDdx/M+3g/6HRMRK+89NWXBR5+tYkrXRL+ufWJYz6Y3+124fHE889FLGe4pVRuHbrZfxhUtE956MN6d/0GjIKu6tiZ2HLF17D16tybtpyyYWh9K1a2WqnPzQb/NeCPpG169I16b9d8mx/fbaPc48gsHNTk+r+KTuPk/d2f8bA7eZO+M4cK78z+M12a92eT4Rutkv+HtsqrMoVSbhDnpPIU5zQhB8hrm5LrCKMfwZ5V1tUGYk/OKrzyEOfU15THAy/1eZS3/rEo+va9UcZZVT11SK0OphgFTXWCUrc+Xhm4RA7v3bxRgpYpLYlSfzCul+nfrF2fsfHKT8UuKSqJrlhvS/2Dbo+MH2x5dv1JqdVv4DerePy7e88xVtvm8XUZtl1P7rqVdYqshm+fURygFHVffrr3jV7ufEbe8fk9OF3/tsf7OccQWB/oSAwCAFnNOyuoI14CorKmK56e9mtcxn5/2apz4pSOirKQ0iouK4/pX7ogpn0ytf32f0V+Jo7Y8uEm/BRUL489ZQqkDN/lqxnDt3fkfxCsz32hyfMO+I7PWV1G1LOPx7OFBbqtN1paVOavcIjDH4CSfW+tlq6s5wVfWFUYFDL6qa6tzniPXz6o1/+wW14dSWVZKpTrFqD7DV957qiTV6J5S2f5cbz1kbAzo1q9RIFVSVBKjsqyUWqdrn/jpTt+NVHHT7fu6l3XL2OfkbcbFyduM+7Tt6kOpAd3XyTmU+p+R2+bUvktp5/hirqFUlu0JAdYkXUo7xwlbHx67jdoxHnz38Xh+2qtRleHnY2lxKrYbvlV8bcNd15hdEwAAWDM4J2VVhGtAfLRwesYfDC1RVVsdUxfOqP+Bsl7fEY3CtTa5h1HWbdnyF0o1K8zJV/BV0gYBXj4/q7yGOZlDm4KulGrOCrzmhFK9hze691T9lnxZ+nxx8ObRr0vvJtv3jeydOZTq26V3/HSnkz5tn2q0WqpnWfeMfb77pSPjpC8dUb993+ruK9W/W7+4ZM+zVtnm83INpTqXdo6th47NqU+2e2YBUDgb9BsZP+h3TJz4pSNi6sIZMXXRjFhRUxmdSspiRK+hMaL3UCtdAQBoVc5JyUS4BsS0RTNbZdypiz4L1/p37dfotbYJpWozHs9nmJNtjmbdtyrrHK0X5tQp5Eqp5n1WjfsUFRWtDHayhVIlnWJk72H19576/GqpTLYcvFn07tKrUSCVKi6Jkb2HZWzfu0uv+MlOJ9WHUQ1XS/XslDmUOmHrw+KEL367vo7VhVLrdO0bl+yVWyi188htYufYJnH7laHUFjnNIZQCoLWVlZTGBv1GuhIYAICCcU5KQ8I1IFZUV7bOuDWfjVv6ue0cWzNoaQ9zNCf4yudWh0nrKoqilaFOZN7+rlNJWazbe1ikGm7FV/xZeJTJFwZvEj07da8PjOrCqXWzhVKde8WPdzyxwdifrZbq3blnxj7Hf/GwOG6rQxOHUn279o5f73X2Ktt8Xs6hVKpTfCnHUCrT/f0AAAAAgPZNuAa02qqTTiWfjVtV03hlVHNCqezbPLZ9KFU/TpZbMpWlymLdXkMbBUx1IVO2ercYtEl0L+v2afvi+tVS2UKpXp16xI93PLHRvaTqAqreXXpl7HPsF78Vx2z1zfoVXMVZVsvV6dOlV/wmx1Bqp3W3iZ3WTR5KdUqVxTbDvpDTHFZKAUDHUl1dHTNmzIiysrIoLi6O2traGDBgQJSsYptsAADIJ+ekNCRcA2J4ryGtMu6IXkPrH8+tmF//ONu9oSJWLq8e0WtolBQXN1gtlYqS4pIozRJKjR00JrqUdm6yfd+ILO+rZ1n3OH3HExqskCqun6dv1z4Z+xy91Tdj3JYH19dUXFQcRUVZkrWI6N25Z/zmq+dkfT2Tndb9Uuy07pcSty9rRihlpRQAsCZKp9Mxb968RsfWWWcdX2QAANBmnJPSkHANiHV7D4vS4lRUZbnvVnOUFqdiRO/PwrWjv/DNOHarQ6NkNaFUz8494tIcQ6kdR3wpdhyRWyi17bAtc5pDKAUAAAAAQETEqvcDAzqEspLS2G74Vnkdc7vhW0VZSelnc6RKI1VcsspgDQAAAAAA2jvhGhAREV/bcNd2PR4AAAAAALQHwjUgIiI26Dcydl9/p7yMtcf6O8cG/UbmZSwAAAAAAGhPhGtAvSO3OCiG9hjUojGG9hwUR2xxYJ4qAgAAAACA9kW4BtTrUto5zv3yqTG0Z/MCtqE9B8W5u5waXUo757kyAAAAAABoH4RrQCN9u/aOX+1+Rs5bRO6x/s7xq93PiL5de7dOYQAAAAAA0A6kCl0A0P50Ke0cJ2x9eOw2asd48N3H4/lpr0ZVbXWTdqXFqdhu+FbxtQ13dY81AAAAAAA6BOEakNUG/UbGD/odEyd+6YiYunBGTF00I1bUVEankrIY0WtojOg9NMpKSgtdJgAAAAAAtBnhGrBaZSWlsUG/kVanAQAAAADQ4bnnGgAAAAAAACRk5RqwWtXV1TFjxowoKyuL4uLiqK2tjQEDBkRJSUmhSwMAAAAAgDYlXANWK51Ox7x58xodW2eddYRrAAAAAAB0OLaFBAAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAklCp0AdAepdPpjMerqqrauJL2obq6usmxqqqqrJ8TAADkk/NRAAAKzTnpZ7J9T96RPouidEd6t5BQeXl5TJo0qdBlAAAAAADAGmHMmDHRrVu3QpfRJmwLCQAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIrS6XS60EVAe1NbWxvLli1rcjyVSkVRUVEBKgIAAAAAgMJLp9NRXV3d5HiXLl2iuLhjrOkSrgEAAAAAAEBCHSNCBAAAAAAAgDwQrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAAAAASEi4BgAAAAAAAAkJ1wAAAAAAACAh4RoAAAAAAAAkJFwDAAAAAACAhIRrAAAAAAAAkJBwDQAAAAAAABISrgEAAAAAAEBCwjUAAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANiEWLFsU999xT6DIAACCrm2++OcrLywtdBgAAgHANiHj66afjrLPOih/84AfxySefFLocAABo4oorrogvf/nLcfnll8fcuXMLXQ4AAB3E0qVL44EHHojKyspCl0I7IlwD4qGHHoqIiP/7v/+L/fbbL9544428jV1TUxPXXnttXHHFFXkbEwCAjqdz586xePHiuPbaa+Pggw+OxYsXF7okAAA6gM6dO8d9990Xu+66a1xzzTVRUVFR6JJoB4Rr0MEtWbIknnjiifrnu+66a2y88cZ5Gfvf//53HHjggXH55ZfHNddcE3fffXdexgUAoOMpLS2NiIguXbrEtddeGz179ixwRQAAdASpVCp++9vfRp8+feKKK66IffbZJ6ZMmVLosigw4Rp0cA8++GCsWLEiIiJ22GGH+MUvfhGpVKrZ41VWVsY//vGPOOigg+K4446LSZMm1b923nnnxYsvvtjimgEA6HjKysoiIqJv374xZsyYAlcDAEBH0rVr17j00ksjlUrFzJkz45RTTil0SRRY879BB9YKd911V0REdOrUKc4///woLs49c6+uro5XX301HnjggXjwwQdj4cKFjV6v+wJkvfXWi0mTJsU222yTj9IBAOhASkpKCl0CAAAd2JgxY+Ib3/hG3H333fHuu+/G0qVLo3v37s0er6X9KSzhGnRg77zzTkycODEiIg4//PAYPnx4k9c32mijjH3nz58fTz31VDz55JPx9NNPx5IlSyJi5XY9W2yxRYwdOza23HLLGDt2bJNxAQAgV825CAwAAPLp6KOPjnvuuSfGjBnTomBswYIFcdRRR8Vuu+0WP/rRj/JYIW1FuAYd2J133hkRK5c1H3/88U1eP/TQQ2O//faL7373uzFnzpx444036v83ZcqU6NSpU6y//voxbNiwePvttyMi4rHHHosBAwa06fsAAGDt15KtywEA6NgWLlwYtbW1LR6nX79+8bOf/Sy23XbbWLBgQbPGqKioiJNPPjkmT54ckydPjh49esRxxx3X4tpoW347gQ6qoqIi7r///ohYGaL17du3SZtUKhV33nln3HnnnTFkyJDYaKONYuONN45dd901xowZEyNGjIji4uK466674pxzzokI2/UAANA+lZeXR9euXaOoqKjQpQAA0MYeffTROOecc/ISsOXbb37zm+jevXsceuihhS6FHAjXoIO69957Y+nSpVFWVhbHHHNMxjadOnWKiIgTTzwxTjvttKxjdenSpf5xe/wBBQBA+3D//ffH3nvvHaWlpTn3bWkodvbZZ0d5eXn85je/id69e7doLAAA1iwHHXRQDBo0KJYuXRobbLBB9O3bN7p16xZlZWWFLo01lHANOqDa2tr485//HBER+++/f9ZtHOt+uKzui4zOnTvXP66urs5TlQAArG2uu+66uOaaa+Lss8+OTTbZJKe+dRdx1dbW5rwFz9NPPx0PPvhgREQccMABceWVV8bYsWNzGgMAgDXbjjvuuMrXFyxYkHF3r+Z4++23Y6ONNnLf4LWYcA06oEcffTQ++uijiIj45je/mbVd0iuKG65cq6qqallxAACstTp16hT//e9/4zvf+U6zx5g1a1Zsv/32Leo/ceJE4RoAAI2cfPLJ0a9fvzjqqKNim222afY4EyZMiHPPPTf22GOP+PWvf2113FpKuAYd0B//+Mf6xyeffHL8/Oc/jz322KNJu6T3T2u4ck24BgBANnUXb40ZM6b+/r9J7b///jFp0qQYOnRoPPbYYzn1feGFF2LcuHEREXHWWWfFEUcckVN/AADWfqWlpfHII4/EI488kpfxHnzwwaipqYnf/e53eRmP9kW4Bh3MY489Fq+//nr983Q6HaNGjcrYNmm41q1bt/rHy5cvb1mBAACstdrDVbsbbLBBoUsAAKAd6tSpU0REDB48OCZMmNDscS677LK4++67Y8iQIfHTn/40X+XRzgjXoANJp9Nx5ZVXRkRE165do6KiItZbb72sXzAkvWm8cA0AgCTccwIAgPaq7tY3xcXFLbr3Wl1IN3To0Bg+fHheaqP98ZsNdCD//Oc/Y9KkSbHRRhvFvvvuu9r2zQnXVqxY0ez6AABYu6VSru8EAKB9qgvF8qW2tjav49G+CNegg1i2bFlceumlUVpaGpdcckn9/S7yoXv37vWPKyoqEtUCAEDHk/TiLQAAaGvpdDqv49XU1OR1PNoX4Rp0ENdcc03MmjUrzjjjjNh4443zOnZZWVn9/TOWLl262joOPvjgmD9/fl5rAACg/ROuAQDQXuV7R66qqqq8jkf7Yk8O6ACmTp0af/rTn+KrX/1qHHnkkTn3r66ujvLy8lW26datW1RWVsbChQuztr311lvjiiuuiIiIcePGxc033xz9+vXLuR4AANZMwjUAANqr5cuXR0TEjBkzYqONNmrxeHbvWrsJ12Atl06n49xzz40NNtggLr744maNcf3118f111+fqO1FF10UF1100WrbvffeewI2AIAORrgGAEB7VbdybfDgwTFhwoRmj3PZZZfF3XffvdodvlizCddgLXfnnXfGlClT4q677oouXbo0a4wTTjghvv/976+yzRlnnBEPPvhgfPnLX46rrroq8dhuag8A0HHk+z4WAACQL8uXL4/NNtssDjvssOjbt2+zxxk8eHB8+9vfjn333TeP1dHe+FYb1mKzZs2Ka6+9Nm644YYYNGhQs8cpLi6OTp06rbLNuuuuGxErt6BcXVsAADom4RoAAIX22muvxRe+8IUmuypcddVVMXjw4BaPv7pFCv/4xz9izJgxscEGG7R4LgqnuNAFAK2nc+fOceWVV8bo0aNbfa4RI0ZERMS0adOipqam1ecDAGDNU1tbW+gSAADo4K688so4/PDD45133ml0PB/B2urcfvvt8eMf/ziOPPLImDRpUqvPR+uxcg3WYn369Ik+ffq0yVx1K9eqqqrigw8+cOUFAABN1F2EVVtbGwsWLMipb10w15y+S5YsqX9cXV2dU18AANYuqVQqnnvuufj6179esBoWLFgQ48aNi/vuuy+GDBlSsDpoPuEakBebbrpppFKpqK6ujhdffFG4BgBAE3Xh2uTJk2P77bdv1hizZs1qdt+IiGXLljW7LwAAa75UamUsssUWW8Q111zTpnOffPLJ8dprr0Xnzp3jjDPOEKytwYRrQF506dIlxowZE2+++Wa88MILcdhhhxW6JAAA2pmqqqqIiBgzZkzcf//9OfXdf//9Y9KkSTF06NB47LHHcur7wgsvxLhx4yJCuAYA0NGVlJTU/3/fvn3bdO7S0tKIiNhkk03ioIMOatO5yS/3XAPyZquttoqIiOeffz4qKysLXA0AAO1NXbjWHOl0Oi81CNcAADq2upVr2UydOjWmTZuW87jPPfdcjB8/vrllsYYRrgF58+UvfzkiIhYuXBhPPPFEQWsBAKD9Wb58eYwaNSpOOeWUNp+7X79+cfzxx8duu+3W5nMDANB+rC5cmz59euyzzz5x9dVXx7x582LBggWr/d9bb70Vp5xyStx5553xu9/9ro3eCYVkW0ggb7bddtvo06dPfPLJJzFhwoTYc889C10SAADtyI9+9KPYdddd67fiaSubb755PPnkk/Xb8AAA0HGtLlwrKyuLFStWxO9+97tmBWVXX311bL311i26TzDtn3ANyJtUKhV77rln3HnnnfHkk0/G5MmTY/To0YUuCwCAdmL33Xdvdt+WbAvZtWvXZvcFAGDtsroLvcrKyuof33333bH55puvdswFCxbUh2nHHnusYK0DsC0kkFff/va3IyKitrY2Lr/88lW2feCBB+Kvf/1rW5QFAMBaIl/3XgMAoGNKsnKtJXbZZZcW9WfNIFwDmq22tjbuv//+OP7446OmpiYiIjbeeOPYcccdIyLi8ccfj3//+99Z+z/00EPxySeftEmtAACsHYRrAAC0xOrCtZZuJV5bW9ui/qwZhGtAszzyyCOx//77x8MPPxy/+c1vGi2nPvHEE+sfn3322bFo0aIm/WtqauK5556LESNGtEm9AACs2eq+pBCuAQDQEsXFq45FWrpyrW4RAms34RqQk2effTYOOeSQ+NGPfhSHHnpoXH311dG7d+9GbbbddtvYc889IyJi9uzZ8bOf/azJFRuvv/56LFq0KIYOHdpWpQMAsAarC9WEawAAtMTqwq/q6upWHZ+1w6rXPwJrrSTLkxu2+c9//hOXX355vPDCCzF06NC4/fbbY7PNNsva98wzz4x///vfsWzZsnjsscfikksuiTPPPLP+9brtIgcOHNiCdwEAQEdR9yWFbXYAAGiJ1YVflZWV9Y+XLl0aCxYsWO2YDXfuatiftZdwDTqouh8iq7ryd+HChRER8de//jWuueaaiIjYZpttYt99941//vOf0b9//6zh2JAhQ+Lss8+Oc845JyIibrrppigqKoozzjgjioqK6sO1Pn365OstAQCwFqs7bxWuAQDQElVVVat8vWE4dvTRR+c8/rJly3Luw5pHuAYdVN3y5mzLnGfOnBlz5syJiKi/OuOAAw6ICy64IGpra+OYY46JPfbYIw477LD43ve+Fz169GgyxiGHHBKvvfZa3HPPPRERceONN8aUKVPi1FNPjf/+978R0fI9jAEA6BjqQjXb7AAA0BK5rFy7++67Y/PNN1/tmAsWLIjtt98+IiKWL1/esgJZI7jnGnRQdaFatis1ioqKGt1L7ZhjjomLL744SktLo1OnTvGHP/wh+vfvHzfeeGN87Wtfi5dffjnjOL/4xS/ia1/7Wv3zJ598Mg4++OD6L0caLpkGAIBsbAsJAEA+rO6eanXhWp8+fRp9P5rE+uuvHxtuuGFzS2MNIlyDDqouVFuxYkXG1wcPHhyXX355FBcXx7hx4+JnP/tZo9d79+4dv//976OsrCzmzp0bxx9/fHz00UdNxiktLY3LLrssjjvuuCgpKYmIxl+IzJw5M19vCQCAtVhduNbSG8wDANCxre58slOnTnHaaafFo48+GsOHD080ZpcuXeJPf/pTPPDAA7HVVltlbbeqW/SwZhGuQQdV90NkVcuUd9xxx7jmmmvizDPPzPj6mDFj4gc/+EFERFRUVMTf//73jO1KSkriJz/5Sdx1112x0047NXrttddea075AAB0MKvbeQEAAJJY3baQW221VZx44onRrVu3xGN26dIldtxxx4iImDhxYlx77bXxt7/9LV5++eWYPn16VFZWRnl5eXz44YcRsXJBAms291yDDqruS4mKiopVtttll11W+foxxxwTd9xxR8yYMSMGDhy4yrabbrpp3HDDDTFp0qT4y1/+Eg899FBMmTIlt8IBAOiQ6s5fq6qqorq6OlIpv84CAJC71t4JYcSIEfH+++/Hww8/HE888URUVlZGUVFRlJSU1M/dp0+fVq2B1mflGnRQlZWVsdNOO8UVV1zRonFKS0vju9/9bvTu3Tu++tWvJuozZsyYOP/88+OFF16Is88+u0XzAwDQMVRVVcVGG20U1157rWANAIBma+1wrXfv3nHAAQfE7373u3jyySfjhBNOiFQq1WjeLbfcslVroPUVpW3yCR3S7NmzV7vSLKl0Oh1Tp06NddddNy/jAQDA5/3973+PffbZJ4qLXSMKAEDzHX300VFTUxM//OEP44tf/GKbzPnyyy/H8ccfHxUVFTFs2LC4++67rV5bwwnXAAAAAACADmHq1KkxYsSINp/31ltvjalTp8bJJ58cvXv3bvP5yS/hGgAAAAAAACRkPw0AAAAAAABISLgGAAAAAAAACQnXAAAAAAAAICHhGgAAAAAAACQkXAMAAAAAAICEhGsAAAAAAACQkHANAAAAAAAAEhKuAQAAAAAAQELCNQAAAAAAAEhIuAYAAAAAAAAJCdcAAAAAAAAgIeEaAAAAAAAAJCRcAwAAAAAAgISEawAAAAAAAJCQcA0AAAAAAAASEq4BAAAAAABAQsI1AAAAWmzZsmWFLgEAAKBNCNcAAABosd122y0uvvjimDp1aqFLKZh0Oh1//OMfY+HChYUuBQAAaEVF6XQ6XegiAAAAWLNtueWWUVFREUVFRbHzzjvHEUccEbvsskuhy2oz6XQ6fvGLX8Ttt98em2yySdx4443Ru3fvQpcFAAC0AivXAAAAaLGysrKIWBkyPffcczF9+vQCV9R2GgZrERFvvfVWHHPMMVawAQDAWsrKNQAAAFpsp512irlz50ZExHXXXdfmq9ZuuummuOiii9p0ztXZeOON46abbrKCDQAA1jKpQhcAAADAmq9Tp071jzfaaKM2n//oo4+OsrKyeOONN2KzzTaLESNGRI8ePaJ79+5RVFSUaIzrr78+JkyYEBERp512Wuy+++6tWTIAALCGEq4BAADQYnXbQkZE4jAr3w477LAW9W+4wqx///6x/vrrt7AiAABgbeSeawAAALRYw3CtvLy8gJW0rWXLlsX//u//Rm1tbaFLAQAA2ohwDQAAgBYrKSmpf7x48eICVhLxzjvvxCWXXBKVlZWtPtdDDz0Uv/3tb+PYY4+N+fPnt/p8AABA4QnXAAAAyKsZM2bk3Gfp0qVxyimnxNKlS1s8/wYbbBCvvPJKfOtb34qPPvqoxeOtSt092p577rn4xje+ES+//HKrzgcAABSecA0AAIC8ev/993Puc+GFF8ZDDz0U3/3ud2P58uUtmr+kpCQuueSSmDJlShx44IHxyCOPtGi8bD744IN48cUX658vXLgwnnzyyTZZMQcAABSOcA0AAIC8ynX11h133BH33ntvRES8+OKLccopp0RVVVWLahg1alScdNJJsXTp0vj+978fV199dYvGy+Taa6+NdDodERHrrLNO3HXXXXH66ac3uv8cAACw9hGuAQAAkFevvfZa4u0dn3322bjgggsaHZs1a1Y8++yzLa7jO9/5TowcOTLS6XT87ne/izPPPDNqampaPG5ExLRp0+Lvf/97RET07Nkzbr755hgzZkxexgYAANo34RoAAACJvfrqq6tt07dv33j44YdX227ixInxve99L6qrqyMiYsstt4zbbrst/v73v8cuu+zS4lrLysritNNOq38+YcKEuPDCC1s8bkTENddcE9XV1VFSUhK//e1vY/3118/LuAAAQPsnXAMAACCRV155JY488sj4yU9+ssptG//nf/4nJkyYsMqx3nzzzTjuuOOioqIiunbtGuPHj4/bb789tt5667zWvOeee8bo0aPrn99+++3x3//+t0VjvvXWW/Xvb/z48bHjjju2aDwAAGDNkip0AQAAALS9hQsXxvz58xO3r6ysjNNOOy2qq6vjb3/7W8ybNy9+97vfRffu3Zu03WWXXeKvf/1rfPDBBzFq1Kgmr//nP/+JE044IRYtWhRbbrllXHLJJbHuuuu26P1kU1RUFEcccUSMHz8+IiLS6XTceeedcf755zd7zPPPPz9qa2vj+OOPj0MPPTRfpQIAAGsI4RoAAEAH9ZOf/KTZq7ieffbZ+NnPfhZXX311k9fGjBkTAwYMiNtuuy3OOeecRq8988wz8f3vfz+qqqritNNOi+OOOy5KSkqaVUNSe++9d/zyl7+MFStWRETEhx9+2Oyx7r///njttddi7733jtNPPz1PFQIAAGsS4RoAAEAH1Lt377jxxhvjpptuig022CDGjBkTvXv3jh49ekRZWVmT9u+++27su+++9c/PP//8OOigg7KOv8suu8S9994bP/zhD+tXt913331xzjnnxMiRI+M3v/lNbLzxxvl/Yxn06NEjtt9++3jiiSciImKDDTZo1jjz5s2Liy66KLbddtu45JJLoqioKI9VAgAAawr3XAMAAOigevXqFaeeemrss88+sf7660e/fv0yBmsREU8//XT940022SS+9a1vRSqV/XrNr371q7F06dK44447IiLi6quvjjPPPDMOO+ywuOeee9osWKtTFwR27do1jjrqqGaNcc4558SGG24Y1157bdbPqaHq6upmzQMAALRvVq4BAACwWg3Dtd1333217bfffvvo379//PnPf4633norXn755bjhhhtihx12aM0ys9pzzz3ju9/9buy2227Nur/b3XffHYsXL47rr78+unTpstr277//fpx00klx0UUXxdZbb92ckgEAgHbKyjUAAABWacWKFfHyyy/XP08SrpWUlMQ+++wTc+bMiXnz5sXf/va3ggVrdX74wx/G2LFjm9W3uro6rrvuuujatetq23744Ydx9NFHx9SpU+P4449v9NkBAABrPivXAAAAWKWnnnoqli9fHhERI0aMiI022ihRv69//etx0003xbx586JHjx55q6eysjKmTZuWt/HqLFy4sP7x3Llz4/33369//qUvfSlmz54ds2fPXuUYS5YsiVNPPTXmzJkTEREVFRVx/PHHxw033BBbbbVV3msGAADannANAACAVXrggQfqH++///6J+2266aYxZsyYmDRpUtx5551x2GGH5aWesrKyuP322+OWW27Jy3iZXH755XH55ZfnZayKioo47rjj4oYbbogtt9wyL2MCAACFI1wDAAAgq2XLlsUTTzwRESu3ejz44INz6n/UUUfFmWeeGVdffXV8/etfj+7du+elrnPOOSeGDx8enTp1ik022SQGDhwYPXr0SLRtYzaXXHJJ/OlPf4qIiIsuuigOPPDAvNQKAACsXdxzDQAAgKwefvjhqKioiIiInXbaKQYNGpRT/3333Tf69+8f8+fPj9///vd5re2oo46KQw89NMaOHRsDBw5sUbAGAACQlHANAACArP7yl7/UP/7mN7+Zc/+ysrL49re/HRERf/7zn+PNN9/MW20AAACFIFwDAAAgo0mTJsVrr70WERHrrbde7Lbbbs0a59vf/nZ069Ytampq4pxzzonq6up8lgkAANCmhGsAAABkdNttt9U/PvHEE6O4uHm/Qvbt2zeOPfbYiIh4++2345prrslLfQAAAIUgXAMAAKCJ2bNnx3333RcREUOHDo199923ReMde+yx0b9//4iI+MMf/hAvvfRSS0sEAAAoCOEaAAAATVx33XVRWVkZERHf//73I5VKtWi8rl27xve+972IiKipqYnTTz89FixY0OI6AQAA2ppwDQAAgEbmzJkTd911V0REjB07Ng444IC8jHvIIYfEpptuGhErV8adeuqp9QEeAADAmkK4BgAAQCNXXHFFrFixIoqKiuLcc8+NoqKivIybSqXiV7/6VZSWlkZExIsvvhg/+9nPIp1O52V8AACAtiBcAwAAoN7EiRPj3nvvjYiIgw8+OMaOHZvX8ceMGRPHH398/fN//vOf8ctf/jKvcwAAALQm4RoAAAAREZFOp+PCCy+MdDodI0aMiDPPPLNV5vnud78bm2yySf3zW265Jc4999yora1tlfkAAADySbgGAABARKwMuV5//fVIpVJx2WWXRbdu3VplnrKysrj66qujT58+9cf++te/xo9+9KOoqKholTkBAADyRbgGAABATJkyJS677LKIiPjRj36U9+0gP2/o0KFxxRVXRCqVqj/2r3/9Kw4++OB49913W3XubBqunHMfOAAAIBvhGgAAQAdXXV0dZ5xxRixfvjy++c1vxnHHHdcm826//fZx1llnNTr2/vvvx8EHHxzXXHNNVFZWtkkddRoGalVVVW06NwAAsOYQrgEAAHRwF198cUycODF23nnn+PnPf96mcx9++OFx+umnNzq2fPnyuOKKK+KrX/1qTJgwIVasWNEmtTRcuSZcAwAAshGuAQAAdGD33Xdf3HLLLbHtttvGlVde2WibxrZywgknxKmnntrk+IwZM+LMM8+MnXfeOe66665Wr6O6urr+sXANAADIpu1/awIAAKBdeP3112P8+PGx2267xZVXXhllZWXNHqvhqq/mOPnkk6NLly7x61//un6sLl26xFe+8pXYaqutYvPNN2/R+ElYufb/7d0hS2txHMfh3wwiGOYGBjEITtzLGFgsmmxrGiwmEez6DhQR66JGg+9B1BcgghgEw8qKCCrstjG4CL97dvFc754nnQP/P3z7h+0AAAAZ4hoAAMAYenh4iO3t7VhfX4+Dg4ORfrH2+fkZLy8vg/eJiWJ/krK5uRmLi4uxt7cXc3NzcXZ2FvPz84V3/anhoCauAQAAXxHXAAAAxszz83Ps7OzE/v5+bGxspO5cXV3F09NT1Ov1qFarUa1WY3p6OiqVSlxeXkav1xucnZqaKryt1WrF+fl5fHx8fGtYi4h4f38fPItrAADAV8Q1AACAMfP6+honJyexvLycvtNoNOL+/j46nU48Pj5+ea5Wq0W9Xh9pX6PRGOl+UcNBbTi0AQAADBPXAAAAxkyz2Sx0p9lsxu7ubtze3sbx8XFcX1//dm5tbe1vTCzFcFAb9RtyAADA/6vS7/f7ZY8AAADg5zk9PY2jo6PB+8LCQlxcXMTMzEx5o0awtbUVb29v0W63Y3V1NSYnJ8ueBAAA/IPENQAAAAprt9txd3cXKysrcXh4GLOzs2VPKqzb7f7o/QAAwPcQ1wAAACjs5uYmarVaLC0tlT0FAADgW4hrAAAAAAAAkDRR9gAAAAAAAAD4KcQ1AAAAAAAASBLXAAAAAAAAIElcAwAAAAAAgCRxDQAAAAAAAJLENQAAAAAAAEgS1wAAAAAAACBJXAMAAAAAAIAkcQ0AAAAAAACSxDUAAAAAAABIEtcAAAAAAAAgSVwDAAAAAACAJHENAAAAAAAAksQ1AAAAAAAASBLXAAAAAAAAIElcAwAAAAAAgCRxDQAAAAAAAJLENQAAAAAAAEgS1wAAAAAAACBJXAMAAAAAAIAkcQ0AAAAAAACSxDUAAAAAAABIEtcAAAAAAAAgSVwDAAAAAACAJHENAAAAAAAAksQ1AAAAAAAASBLXAAAAAAAAIElcAwAAAAAAgKRfe7/c5LQUVOEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_name = '最大尝试时间步P8'\n", + "y_choose=[0,1,2]\n", + "y_prop = pd.DataFrame({'y_name': ['系统恢复用时R1', '产业-企业边累计扰乱次数R2', '产业-企业边最大传导深度R3', '产业-企业边断裂总数R4'],\n", + " 'line_style': [(1, 0),(3, 1), (1,1), (3,2,1,2)],\n", + " 'palette': sns.color_palette(\"deep\")[0:4]})\n", + "df_x = df.loc[df['自变量'] == x_name, 'level':].set_index('level').stack(\n", + ").reset_index().rename(columns={'level': '水平', 'level_1': '响应变量', 0: '均值'})\n", + "df_x = df_x.loc[df_x['响应变量'].isin(y_prop.loc[y_choose]['y_name'])]\n", + "sns.set_theme(style=\"whitegrid\", rc=config)\n", + "ax = sns.lineplot(data=df_x, x=\"水平\", y=\"均值\", hue=\"响应变量\", style=\"响应变量\",\n", + " markers=['o'],\n", + " dashes=y_prop.loc[y_choose]['line_style'].to_list(),\n", + " palette=y_prop.loc[y_choose]['palette'].to_list(),\n", + " legend='brief')\n", + "ax.set_title(x_name)\n", + "for item in df_x.groupby('响应变量'):\n", + " for x, y, m in item[1][['水平', '均值', '均值']].values:\n", + " ax.text(x, y+0.05, f'{m:.2f}')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "iiabm_py3.8.8", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/anova_visualization.py b/anova_visualization.py new file mode 100644 index 0000000..80baf13 --- /dev/null +++ b/anova_visualization.py @@ -0,0 +1,14 @@ +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns + +df_anova = pd.read_csv('analysis/anova.csv', index_col=0) +df_anova = df_anova.stack().reset_index() +df_anova.rename(columns={'level_0': 'x', + 'level_1': 'y type', + 0: 'p value'}, inplace=True) +print(df_anova) +sns.set_theme(style="whitegrid") +g = sns.catplot(data=df_anova, kind="bar", x="x", y="p value", hue="y type") +g.set_xticklabels(rotation=30) +plt.show() diff --git a/conf_db_prefix.yaml b/conf_db_prefix.yaml index 42cedea..1391188 100644 --- a/conf_db_prefix.yaml +++ b/conf_db_prefix.yaml @@ -1 +1 @@ -db_name_prefix: test +db_name_prefix: with_exp diff --git a/conf_experiment.yaml b/conf_experiment.yaml index 5566629..83d2795 100644 --- a/conf_experiment.yaml +++ b/conf_experiment.yaml @@ -1,7 +1,7 @@ # read by ControllerDB # run settings -meta_seed: 0 +meta_seed: 1 test: # only for test scenarios n_sample: 1 diff --git a/controller_db.py b/controller_db.py index bb1b520..5e4ab77 100644 --- a/controller_db.py +++ b/controller_db.py @@ -54,24 +54,13 @@ class ControllerDB: # fill dct_lst_init_disrupt_firm_prod list_dct = [] if self.is_with_exp: - str_sql = "select e_id, count, max_max_ts, " \ - "dct_lst_init_disrupt_firm_prod from " \ - "iiabmdb.without_exp_experiment as a " \ - "inner join " \ - "(select e_id, count(id) as count, max(max_ts) as max_max_ts "\ - "from iiabmdb.without_exp_sample as a " \ - "inner join (select s_id, max(ts) as max_ts from " \ - "iiabmdb.without_exp_result where ts > 0 group by s_id) as b "\ - "on a.id = b.s_id " \ - "group by e_id) as b " \ - "on a.id = b.e_id " \ - "order by count desc;" + with open('SQL_export_high_risk_setting.sql', 'r') as f: + str_sql = f.read() result = pd.read_sql(sql=str_sql, con=engine) result['dct_lst_init_disrupt_firm_prod'] = \ result['dct_lst_init_disrupt_firm_prod'].apply( lambda x: pickle.loads(x)) - list_dct = result.loc[result['count'] > 10, - 'dct_lst_init_disrupt_firm_prod'].to_list() + list_dct = result['dct_lst_init_disrupt_firm_prod'].to_list() else: for _, row in Firm.iterrows(): code = row['Code'] @@ -82,10 +71,11 @@ class ControllerDB: # list_dct = [{'140': ['1.4.5.1']}] # list_dct = [{'133': ['1.4.4.1']}] # list_dct = [{'2': ['1.1.3']}] - list_dct = [{'135': ['1.3.2.1']}] + # list_dct = [{'135': ['1.3.2.1']}] # list_dct = [{'79': ['2.1.3.4']}] # list_dct = [{'99': ['1.3.3']}] # list_dct = [{'41': ['1.4.5']}] + # list_dct = [{'168': ['1.1.2']}] # fill g_bom BomNodes = pd.read_csv('BomNodes.csv', index_col=0) @@ -128,8 +118,7 @@ class ControllerDB: dct_lst_init_disrupt_firm_prod, g_bom, n_max_trial, prf_size, prf_conn, cap_limit_prob_type, cap_limit_level, - diff_new_conn, crit_supplier, - proactive_ratio, remove_t, netw_prf_n): + diff_new_conn, remove_t, netw_prf_n): e = Experiment( idx_scenario=idx_scenario, idx_init_removal=idx_init_removal, @@ -143,8 +132,6 @@ class ControllerDB: cap_limit_prob_type=cap_limit_prob_type, cap_limit_level=cap_limit_level, diff_new_conn=diff_new_conn, - crit_supplier=crit_supplier, - proactive_ratio=proactive_ratio, remove_t=remove_t, netw_prf_n=netw_prf_n ) diff --git a/doc/anova实验设计20230710.docx b/doc/anova实验设计20230710.docx new file mode 100644 index 0000000..8a9b82c Binary files /dev/null and b/doc/anova实验设计20230710.docx differ diff --git a/doc/anova结果简介20230707.docx b/doc/anova结果简介20230707.docx new file mode 100644 index 0000000..e666b5b Binary files /dev/null and b/doc/anova结果简介20230707.docx differ diff --git a/doc/graph.zip b/doc/graph.zip new file mode 100644 index 0000000..4e55cee Binary files /dev/null and b/doc/graph.zip differ diff --git a/doc/graph/count_dcp_network.png b/doc/graph/count_dcp_network.png new file mode 100644 index 0000000..f2288de Binary files /dev/null and b/doc/graph/count_dcp_network.png differ diff --git a/doc/graph/count_dcp_prod_network.png b/doc/graph/count_dcp_prod_network.png new file mode 100644 index 0000000..a257004 Binary files /dev/null and b/doc/graph/count_dcp_prod_network.png differ diff --git a/doc/graph/p1.png b/doc/graph/p1.png new file mode 100644 index 0000000..a8184ef Binary files /dev/null and b/doc/graph/p1.png differ diff --git a/doc/graph/p3.png b/doc/graph/p3.png new file mode 100644 index 0000000..07636fc Binary files /dev/null and b/doc/graph/p3.png differ diff --git a/doc/graph/p5.png b/doc/graph/p5.png new file mode 100644 index 0000000..30dc8a4 Binary files /dev/null and b/doc/graph/p5.png differ diff --git a/doc/graph/p6.png b/doc/graph/p6.png new file mode 100644 index 0000000..2a5c9c4 Binary files /dev/null and b/doc/graph/p6.png differ diff --git a/doc/graph/p7.png b/doc/graph/p7.png new file mode 100644 index 0000000..7ee1afd Binary files /dev/null and b/doc/graph/p7.png differ diff --git a/doc/graph/p8.png b/doc/graph/p8.png new file mode 100644 index 0000000..98a27ff Binary files /dev/null and b/doc/graph/p8.png differ diff --git a/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0817.docx b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0817.docx new file mode 100644 index 0000000..38403d5 Binary files /dev/null and b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0817.docx differ diff --git a/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0819.docx b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0819.docx new file mode 100644 index 0000000..455c9aa Binary files /dev/null and b/doc/产业链供应链风险节点识别与韧性影响因素研究 - 0819.docx differ diff --git a/doc/会议20230712.docx b/doc/会议20230712.docx new file mode 100644 index 0000000..dcddeac Binary files /dev/null and b/doc/会议20230712.docx differ diff --git a/doc/修改20230818.docx b/doc/修改20230818.docx new file mode 100644 index 0000000..1e5be39 Binary files /dev/null and b/doc/修改20230818.docx differ diff --git a/doc/新疆会议投稿20230711.pptx b/doc/新疆会议投稿20230711.pptx new file mode 100644 index 0000000..89887e1 Binary files /dev/null and b/doc/新疆会议投稿20230711.pptx differ diff --git a/doc/新疆会议投稿版本.docx b/doc/新疆会议投稿版本.docx new file mode 100644 index 0000000..282bcc2 Binary files /dev/null and b/doc/新疆会议投稿版本.docx differ diff --git a/doc/薄弱点分析20230709.docx b/doc/薄弱点分析20230709.docx new file mode 100644 index 0000000..6bb073e Binary files /dev/null and b/doc/薄弱点分析20230709.docx differ diff --git a/doc/论文0618.docx b/doc/论文0618.docx new file mode 100644 index 0000000..cfd7c5d Binary files /dev/null and b/doc/论文0618.docx differ diff --git a/doc/论文0709.docx b/doc/论文0709.docx new file mode 100644 index 0000000..7a87de6 Binary files /dev/null and b/doc/论文0709.docx differ diff --git a/firm.py b/firm.py index 10c1166..e322b84 100644 --- a/firm.py +++ b/firm.py @@ -1,5 +1,4 @@ import agentpy as ap -import math class FirmAgent(ap.Agent): @@ -7,7 +6,7 @@ class FirmAgent(ap.Agent): self.firm_network = self.model.firm_network self.product_network = self.model.product_network - # self para + # self parameter self.code = code self.name = name self.type_region = type_region @@ -15,7 +14,7 @@ class FirmAgent(ap.Agent): self.dct_prod_up_prod_stat = {} self.dct_prod_capacity = {} - # para in trial + # parameter in trial self.dct_n_trial_up_prod_disrupted = {} self.dct_cand_alt_supp_up_prod_disrupted = {} self.dct_request_prod_from_firm = {} @@ -26,24 +25,27 @@ class FirmAgent(ap.Agent): self.str_cap_limit_prob_type = str(self.p.cap_limit_prob_type) self.flt_cap_limit_level = float(self.p.cap_limit_level) self.flt_diff_new_conn = float(self.p.diff_new_conn) - self.flt_crit_supplier = float(self.p.crit_supplier) - # init size_stat (self para) + # initialize size_stat (self parameter) # (size, time step) self.size_stat.append((revenue_log, 0)) - # init dct_prod_up_prod_stat (self para) + # init dct_prod_up_prod_stat (self parameter) for prod in a_lst_product: self.dct_prod_up_prod_stat[prod] = { - # (Normal / Disrupted / Removed, time step) - 'status': [('N', 0)], - # have or have no supply - 'supply': dict.fromkeys(prod.a_predecessors(), True) + # status: (Normal / Disrupted / Removed, time step) + 'p_stat': [('N', 0)], + # supply for each component and respective disrupted supplier + # set_disrupt_firm is refreshed to empty at each update + 's_stat': {up_prod: {'stat': True, + 'set_disrupt_firm': set()} + for up_prod in prod.a_predecessors()} + # Note: do not use fromkeys as it's a shallow copy } - # init extra capacity (self para) + # initialize extra capacity (self parameter) for product in a_lst_product: - # init extra capacity based on discrete uniform distribution + # initialize extra capacity based on discrete uniform distribution assert self.str_cap_limit_prob_type in ['uniform', 'normal'], \ "cap_limit_prob_type other than uniform, normal" if self.str_cap_limit_prob_type == 'uniform': @@ -52,59 +54,73 @@ class FirmAgent(ap.Agent): extra_cap = self.model.nprandom.integers(extra_cap_mean-2, extra_cap_mean+2) extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap) - # print(firm_agent.name, extra_cap) self.dct_prod_capacity[product] = extra_cap elif self.str_cap_limit_prob_type == 'normal': extra_cap_mean = \ self.size_stat[0][0] / self.flt_cap_limit_level extra_cap = self.model.nprandom.normal(extra_cap_mean, 1) extra_cap = 0 if round(extra_cap) < 0 else round(extra_cap) - # print(firm_agent.name, extra_cap) self.dct_prod_capacity[product] = extra_cap - def remove_edge_to_cus_disrupt_cus_up_prod(self, disrupted_prod): - # para disrupted_prod is the product that self got disrupted + def remove_edge_to_cus(self, disrupted_prod): + # parameter disrupted_prod is the product that self got disrupted lst_out_edge = list( self.firm_network.graph.out_edges( self.firm_network.positions[self], keys=True, data='Product')) for n1, n2, key, product_code in lst_out_edge: if product_code == disrupted_prod.code: + # update customer up product supplier status + customer = ap.AgentIter(self.model, n2).to_list()[0] + for prod in customer.dct_prod_up_prod_stat.keys(): + if disrupted_prod in \ + customer.dct_prod_up_prod_stat[ + prod]['s_stat'].keys(): + customer.dct_prod_up_prod_stat[ + prod]['s_stat'][disrupted_prod][ + 'set_disrupt_firm'].add(self) + # print(f"{self.name} disrupt {customer.name}'s " + # f"{prod.code} due to {disrupted_prod.code}") # remove edge to customer self.firm_network.graph.remove_edge(n1, n2, key) - # customer up product affected conditionally - customer = ap.AgentIter(self.model, n2).to_list()[0] - lst_in_edge = list( - self.firm_network.graph.in_edges(n2, - keys=True, - data='Product')) - lst_select_in_edge = [ - edge for edge in lst_in_edge - if edge[-1] == disrupted_prod.code - ] - prob_lost_supp = math.exp(-1 * self.flt_crit_supplier * - len(lst_select_in_edge)) - if self.model.nprandom.choice([True, False], - p=[prob_lost_supp, - 1 - prob_lost_supp]): - customer.dct_n_trial_up_prod_disrupted[disrupted_prod] = 0 - for prod in customer.dct_prod_up_prod_stat.keys(): - if disrupted_prod in \ - customer.dct_prod_up_prod_stat[ - prod]['supply'].keys(): - customer.dct_prod_up_prod_stat[ - prod]['supply'][disrupted_prod] = False - status, _ = customer.dct_prod_up_prod_stat[ - prod]['status'][-1] - if status != 'D': - customer.dct_prod_up_prod_stat[ - prod]['status'].append(('D', self.model.t)) - print(self.name, disrupted_prod.code, 'disrupt', - customer.name, prod.code) + def disrupt_cus_prod(self, prod, disrupted_up_prod): + # parameter prod is the product that has disrupted_up_prod + # parameter disrupted_up_prod is the product that + # self's component exists disrupted supplier + num_lost = \ + len(self.dct_prod_up_prod_stat[prod]['s_stat'] + [disrupted_up_prod]['set_disrupt_firm']) + num_remain = \ + len([u for u, _, _, d in + self.firm_network.graph.in_edges(self.get_firm_network_node(), + keys=True, + data='Product') + if d == disrupted_up_prod.code]) + lost_percent = num_lost / (num_lost + num_remain) + lst_size = \ + [firm.size_stat[-1][0] for firm in self.model.a_lst_total_firms] + std_size = (self.size_stat[-1][0] - min(lst_size) + 1) \ + / (max(lst_size) - min(lst_size) + 1) + + # calculate probability of disruption + prob_disrupt = 1 - std_size * (1 - lost_percent) + if self.model.nprandom.choice([True, False], + p=[prob_disrupt, + 1 - prob_disrupt]): + self.dct_n_trial_up_prod_disrupted[disrupted_up_prod] = 0 + self.dct_prod_up_prod_stat[ + prod]['s_stat'][disrupted_up_prod]['stat'] = False + status, _ = self.dct_prod_up_prod_stat[ + prod]['p_stat'][-1] + if status != 'D': + self.dct_prod_up_prod_stat[ + prod]['p_stat'].append(('D', self.model.t)) + # print(f"{self.name}'s {prod.code} turn to D status due to " + # f"disrupted supplier of {disrupted_up_prod.code}") def seek_alt_supply(self, product): - # para product is the product that self is seeking - print(f"{self.name} seek alt supply for {product.code}") + # parameter product is the product that self is seeking + # print(f"{self.name} seek alt supply for {product.code}") if self.dct_n_trial_up_prod_disrupted[ product] <= self.model.int_n_max_trial: if self.dct_n_trial_up_prod_disrupted[product] == 0: @@ -120,18 +136,12 @@ class FirmAgent(ap.Agent): if self.is_prf_conn: for firm in \ self.dct_cand_alt_supp_up_prod_disrupted[product]: - out_edges = self.model.firm_network.graph.out_edges( - self.model.firm_network.positions[firm], keys=True) - in_edges = self.model.firm_network.graph.in_edges( - self.model.firm_network.positions[firm], keys=True) - lst_adj_firm = [] - lst_adj_firm += \ - [ap.AgentIter(self.model, edge[1]).to_list()[ - 0].code for edge in out_edges] - lst_adj_firm += \ - [ap.AgentIter(self.model, edge[0]).to_list()[ - 0].code for edge in in_edges] - if self.code in lst_adj_firm: + node_self = self.get_firm_network_node() + node_firm = firm.get_firm_network_node() + if self.model.firm_network.graph.\ + has_edge(node_self, node_firm) or \ + self.model.firm_network.graph.\ + has_edge(node_firm, node_self): lst_firm_connect.append(firm) if len(lst_firm_connect) == 0: # select based on size or not @@ -163,10 +173,10 @@ class FirmAgent(ap.Agent): else: select_alt_supply = \ self.model.nprandom.choice(lst_firm_connect) - print( - f"{self.name} selct alt supply for {product.code} " - f"from {select_alt_supply.name}" - ) + # print( + # f"{self.name} selct alt supply for {product.code} " + # f"from {select_alt_supply.name}" + # ) assert select_alt_supply.is_prod_in_current_normal(product), \ f"{select_alt_supply} \ does not produce requested product {product}" @@ -179,17 +189,17 @@ class FirmAgent(ap.Agent): select_alt_supply.dct_request_prod_from_firm[product] = [ self ] - print( - select_alt_supply.name, 'dct_request_prod_from_firm', { - key.code: [v.name for v in value] - for key, value in - select_alt_supply.dct_request_prod_from_firm.items() - }) + # print( + # select_alt_supply.name, 'dct_request_prod_from_firm', { + # key.code: [v.name for v in value] + # for key, value in + # select_alt_supply.dct_request_prod_from_firm.items() + # }) self.dct_n_trial_up_prod_disrupted[product] += 1 def handle_request(self): - print(self.name, 'handle_request') + # print(self.name, 'handle_request') for product, lst_firm in self.dct_request_prod_from_firm.items(): if self.dct_prod_capacity[product] > 0: if len(lst_firm) == 0: @@ -201,22 +211,12 @@ class FirmAgent(ap.Agent): lst_firm_connect = [] if self.is_prf_conn: for firm in lst_firm: - out_edges = \ - self.model.firm_network.graph.out_edges( - self.model.firm_network.positions[firm], - keys=True) - in_edges = \ - self.model.firm_network.graph.in_edges( - self.model.firm_network.positions[firm], - keys=True) - lst_adj_firm = [] - lst_adj_firm += \ - [ap.AgentIter(self.model, edge[1]).to_list()[ - 0].code for edge in out_edges] - lst_adj_firm += \ - [ap.AgentIter(self.model, edge[0]).to_list()[ - 0].code for edge in in_edges] - if self.code in lst_adj_firm: + node_self = self.get_firm_network_node() + node_firm = firm.get_firm_network_node() + if self.model.firm_network.graph.\ + has_edge(node_self, node_firm) or \ + self.model.firm_network.graph.\ + has_edge(node_firm, node_self): lst_firm_connect.append(firm) if len(lst_firm_connect) == 0: # handling based on size or not @@ -254,14 +254,21 @@ class FirmAgent(ap.Agent): down_firm.dct_cand_alt_supp_up_prod_disrupted[ product].remove(self) - print( - f"{self.name} denied {product.code} request " - f"from {down_firm.name} for lack of capacity" - ) + # print( + # f"{self.name} denied {product.code} request " + # f"from {down_firm.name} for lack of capacity" + # ) def accept_request(self, down_firm, product): - # para product is the product that self is selling - prod_accept = self.flt_diff_new_conn + # parameter product is the product that self is selling + # connected firm has no probability for accepting request + node_self = self.get_firm_network_node() + node_d_firm = down_firm.get_firm_network_node() + if self.model.firm_network.graph.has_edge(node_self, node_d_firm) or \ + self.model.firm_network.graph.has_edge(node_d_firm, node_self): + prod_accept = 1.0 + else: + prod_accept = self.flt_diff_new_conn if self.model.nprandom.choice([True, False], p=[prod_accept, 1 - prod_accept]): self.firm_network.graph.add_edges_from([ @@ -275,25 +282,25 @@ class FirmAgent(ap.Agent): for prod in down_firm.dct_prod_up_prod_stat.keys(): if product in down_firm.dct_prod_up_prod_stat[ - prod]['supply'].keys(): + prod]['s_stat'].keys(): down_firm.dct_prod_up_prod_stat[ - prod]['supply'][product] = True + prod]['s_stat'][product]['stat'] = True down_firm.dct_prod_up_prod_stat[ - prod]['status'].append(('N', self.model.t)) + prod]['p_stat'].append(('N', self.model.t)) del down_firm.dct_n_trial_up_prod_disrupted[product] del down_firm.dct_cand_alt_supp_up_prod_disrupted[product] - print( - f"{self.name} accept {product.code} request " - f"from {down_firm.name}" - ) + # print( + # f"{self.name} accept {product.code} request " + # f"from {down_firm.name}" + # ) else: down_firm.dct_cand_alt_supp_up_prod_disrupted[product].remove(self) - print( - f"{self.name} denied {product.code} request " - f"from {down_firm.name}" - ) + # print( + # f"{self.name} denied {product.code} request " + # f"from {down_firm.name}" + # ) def clean_before_trial(self): self.dct_request_prod_from_firm = {} @@ -305,17 +312,21 @@ class FirmAgent(ap.Agent): # update the status of firm for prod in self.dct_prod_up_prod_stat.keys(): - status, ts = self.dct_prod_up_prod_stat[prod]['status'][-1] + status, ts = self.dct_prod_up_prod_stat[prod]['p_stat'][-1] if ts != self.model.t: - self.dct_prod_up_prod_stat[prod]['status'].append( + self.dct_prod_up_prod_stat[prod]['p_stat'].append( (status, self.model.t)) + # refresh set_disrupt_firm + for up_prod in self.dct_prod_up_prod_stat[prod]['s_stat'].keys(): + self.dct_prod_up_prod_stat[prod][ + 's_stat'][up_prod]['set_disrupt_firm'] = set() def get_firm_network_node(self): return self.firm_network.positions[self] def is_prod_in_current_normal(self, prod): if prod in self.dct_prod_up_prod_stat.keys(): - if self.dct_prod_up_prod_stat[prod]['status'][-1][0] == 'N': + if self.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] == 'N': return True else: return False diff --git a/firm_n_prod.csv b/firm_n_prod.csv new file mode 100644 index 0000000..2775e46 --- /dev/null +++ b/firm_n_prod.csv @@ -0,0 +1,172 @@ +code,n_prod +0,1 +1,1 +2,1 +3,4 +4,1 +5,4 +6,5 +7,1 +8,1 +9,2 +10,1 +11,1 +12,1 +13,17 +14,2 +15,1 +16,4 +17,1 +18,1 +19,1 +20,1 +21,1 +22,24 +23,10 +24,1 +25,1 +26,7 +27,1 +28,1 +29,1 +30,1 +31,7 +32,1 +33,4 +34,1 +35,1 +36,1 +37,6 +38,5 +39,1 +40,4 +41,7 +42,3 +43,2 +44,1 +45,9 +46,1 +47,9 +48,1 +49,8 +50,1 +51,1 +52,1 +53,15 +54,3 +55,6 +56,2 +57,4 +58,7 +59,1 +60,5 +61,1 +62,5 +63,3 +64,1 +65,1 +66,1 +67,1 +68,3 +69,1 +70,2 +71,1 +72,1 +73,1 +74,2 +75,1 +76,1 +77,2 +78,5 +79,16 +80,2 +81,4 +82,4 +83,1 +84,3 +85,2 +86,1 +87,1 +88,1 +89,3 +90,1 +91,1 +92,1 +93,1 +94,1 +95,2 +96,2 +97,3 +98,1 +99,6 +100,1 +101,1 +102,2 +103,1 +104,1 +105,1 +106,6 +107,1 +108,2 +109,1 +110,1 +111,3 +112,1 +113,1 +114,1 +115,2 +116,1 +117,11 +118,1 +119,1 +120,1 +121,1 +122,1 +123,1 +124,2 +125,1 +126,7 +127,2 +128,1 +129,2 +130,5 +131,5 +132,1 +133,2 +134,1 +135,11 +136,1 +137,6 +138,1 +139,1 +140,7 +141,1 +142,3 +143,5 +144,4 +145,1 +146,1 +147,1 +148,3 +149,4 +150,1 +151,1 +152,1 +153,2 +154,6 +155,1 +156,1 +157,1 +158,1 +159,1 +160,1 +161,3 +162,2 +163,6 +164,1 +165,4 +166,1 +167,1 +168,7 +169,1 +170,1 diff --git a/model.py b/model.py index 034487c..0d41cd6 100644 --- a/model.py +++ b/model.py @@ -10,7 +10,7 @@ import json class Model(ap.Model): def setup(self): - # self para + # self parameter self.sample = self.p.sample self.int_stop_ts = 0 self.int_n_iter = int(self.p.n_iter) @@ -23,15 +23,15 @@ class Model(ap.Model): # external variable self.int_n_max_trial = int(self.p.n_max_trial) self.is_prf_size = bool(self.p.prf_size) - self.proactive_ratio = float(self.p.proactive_ratio) + # self.proactive_ratio = float(self.p.proactive_ratio) # dropped self.remove_t = int(self.p.remove_t) self.int_netw_prf_n = int(self.p.netw_prf_n) - # init graph bom + # initialize graph bom G_bom = nx.adjacency_graph(json.loads(self.p.g_bom)) self.product_network = ap.Network(self, G_bom) - # init graph firm + # initialize graph firm Firm = pd.read_csv("Firm_amended.csv") Firm['Code'] = Firm['Code'].astype('string') Firm.fillna(0, inplace=True) @@ -49,7 +49,7 @@ class Model(ap.Model): firm_labels_dict[code] = Firm_attr.loc[code].to_dict() nx.set_node_attributes(G_Firm, firm_labels_dict) - # init graph firm prod + # initialize graph firm prod Firm_Prod = pd.read_csv("Firm_amended.csv") Firm_Prod.fillna(0, inplace=True) firm_prod = pd.DataFrame({'bool': Firm_Prod.loc[:, '1':].stack()}) @@ -122,11 +122,12 @@ class Model(ap.Model): # nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm.csv') # nx.to_pandas_adjacency(G_FirmProd).to_csv('adj_g_firm_prod.csv') - # unconnected node + # connect unconnected nodes for node in nx.nodes(G_Firm): if G_Firm.degree(node) == 0: for product_code in G_Firm.nodes[node]['Product_Code']: - # unconnect node does not have possible suppliers + # unconnected node does not have possible suppliers, + # therefore find possible customer instead # current node in graph firm prod current_node = \ [n for n, v in G_FirmProd.nodes(data=True) @@ -135,10 +136,10 @@ class Model(ap.Model): lst_succ_product_code = list( G_bom.successors(product_code)) - # different from for different types of product, + # different from: for different types of product, # finding a common supplier (the logic above), - # for different types of product, - # finding a custormer for each product + # instead: for different types of product, + # finding a customer for each product for succ_product_code in lst_succ_product_code: # for each product successor (finished product) # the firm sells to, @@ -187,14 +188,14 @@ class Model(ap.Model): # nx.draw(G_FirmProd) # plt.show() - # init product + # initialize product for ag_node, attr in self.product_network.graph.nodes(data=True): product = ProductAgent(self, code=ag_node.label, name=attr['Name']) self.product_network.add_agents([product], [ag_node]) self.a_lst_total_products = ap.AgentList(self, self.product_network.agents) - # init firm + # initialize firm for ag_node, attr in self.firm_network.graph.nodes(data=True): firm_agent = FirmAgent( self, @@ -210,7 +211,7 @@ class Model(ap.Model): self.firm_network.add_agents([firm_agent], [ag_node]) self.a_lst_total_firms = ap.AgentList(self, self.firm_network.agents) - # init dct_lst_init_disrupt_firm_prod (from string to agent) + # initialize dct_lst_init_disrupt_firm_prod (from string to agent) t_dct = {} for firm_code, lst_product in \ self.dct_lst_init_disrupt_firm_prod.items(): @@ -222,123 +223,123 @@ class Model(ap.Model): self.dct_lst_init_disrupt_firm_prod = t_dct # set the initial firm product that are disrupted - print('\n', '=' * 20, 'step', self.t, '=' * 20) + # print('\n', '=' * 20, 'step', self.t, '=' * 20) for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items(): for product in a_lst_product: assert product in firm.dct_prod_up_prod_stat.keys(), \ f"product {product.code} not in firm {firm.code}" firm.dct_prod_up_prod_stat[ - product]['status'].append(('D', self.t)) - print(f"initial disruption {firm.name} {product.code}") + product]['p_stat'].append(('D', self.t)) + # print(f"initial disruption {firm.name} {product.code}") - # proactive strategy - # get all the firm prod affected - for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items(): - for product in a_lst_product: - init_node = \ - [n for n, v in - self.firm_prod_network.nodes(data=True) - if v['Firm_Code'] == firm.code and - v['Product_Code'] == product.code][0] - dct_affected = \ - nx.dfs_successors(self.firm_prod_network, - init_node) - lst_affected = set() - for i, (u, vs) in enumerate(dct_affected.items()): - # at least 2 hops away - if i > 0: - pred_node = self.firm_prod_network.nodes[u] - for v in vs: - succ_node = self.firm_prod_network.nodes[v] - lst_affected.add((succ_node['Firm_Code'], - succ_node['Product_Code'])) - lst_affected = list(lst_affected) - lst_firm_proactive = \ - [lst_affected[i] for i in - self.nprandom.choice(range(len(lst_affected)), - round(len(lst_affected) * - self.proactive_ratio), - replace=False)] + # # proactive strategy (dropped) + # # get all the firm prod affected + # for firm, a_lst_product in self.dct_lst_init_disrupt_firm_prod.items(): + # for product in a_lst_product: + # init_node = \ + # [n for n, v in + # self.firm_prod_network.nodes(data=True) + # if v['Firm_Code'] == firm.code and + # v['Product_Code'] == product.code][0] + # dct_affected = \ + # nx.dfs_successors(self.firm_prod_network, + # init_node) + # lst_affected = set() + # for i, (u, vs) in enumerate(dct_affected.items()): + # # at least 2 hops away + # if i > 0: + # pred_node = self.firm_prod_network.nodes[u] + # for v in vs: + # succ_node = self.firm_prod_network.nodes[v] + # lst_affected.add((succ_node['Firm_Code'], + # succ_node['Product_Code'])) + # lst_affected = list(lst_affected) + # lst_firm_proactive = \ + # [lst_affected[i] for i in + # self.nprandom.choice(range(len(lst_affected)), + # round(len(lst_affected) * + # self.proactive_ratio), + # replace=False)] - for firm_code, prod_code in lst_firm_proactive: - pro_firm_prod_code = \ - [n for n, v in - self.firm_prod_network.nodes(data=True) - if v['Firm_Code'] == firm_code and - v['Product_Code'] == prod_code][0] - pro_firm_prod_node = \ - self.firm_prod_network.nodes[pro_firm_prod_code] - pro_firm = \ - self.a_lst_total_firms.select( - [firm.code == pro_firm_prod_node['Firm_Code'] - for firm in self.a_lst_total_firms])[0] - lst_shortest_path = \ - list(nx.all_shortest_paths(self.firm_prod_network, - source=init_node, - target=pro_firm_prod_code)) + # for firm_code, prod_code in lst_firm_proactive: + # pro_firm_prod_code = \ + # [n for n, v in + # self.firm_prod_network.nodes(data=True) + # if v['Firm_Code'] == firm_code and + # v['Product_Code'] == prod_code][0] + # pro_firm_prod_node = \ + # self.firm_prod_network.nodes[pro_firm_prod_code] + # pro_firm = \ + # self.a_lst_total_firms.select( + # [firm.code == pro_firm_prod_node['Firm_Code'] + # for firm in self.a_lst_total_firms])[0] + # lst_shortest_path = \ + # list(nx.all_shortest_paths(self.firm_prod_network, + # source=init_node, + # target=pro_firm_prod_code)) - dct_drs = {} - for di_supp_code in self.firm_prod_network.predecessors( - pro_firm_prod_code): - di_supp_node = \ - self.firm_prod_network.nodes[di_supp_code] - di_supp_prod = \ - self.a_lst_total_products.select( - [product.code == di_supp_node['Product_Code'] - for product in self.a_lst_total_products])[0] - di_supp_firm = \ - self.a_lst_total_firms.select( - [firm.code == di_supp_node['Firm_Code'] - for firm in self.a_lst_total_firms])[0] - lst_cand = self.a_lst_total_firms.select([ - firm.is_prod_in_current_normal(di_supp_prod) - for firm in self.a_lst_total_firms - ]) - n2n_betweenness = \ - sum([True if di_supp_code in path else False - for path in lst_shortest_path]) \ - / len(lst_shortest_path) - drs = n2n_betweenness / \ - (len(lst_cand) * di_supp_firm.size_stat[-1][0]) - dct_drs[di_supp_code] = drs - dct_drs = dict(sorted( - dct_drs.items(), key=lambda kv: kv[1], reverse=True)) - for di_supp_code in dct_drs.keys(): - di_supp_node = \ - self.firm_prod_network.nodes[di_supp_code] - di_supp_prod = \ - self.a_lst_total_products.select( - [product.code == di_supp_node['Product_Code'] - for product in self.a_lst_total_products])[0] - # find a dfferent firm can produce the same product - # and is not a current supplier for the same product - lst_current_supp_code = \ - [self.firm_prod_network.nodes[code]['Firm_Code'] - for code in self.firm_prod_network.predecessors( - pro_firm_prod_code) - if self.firm_prod_network.nodes[code][ - 'Product_Code'] == di_supp_prod.code] - lst_cand = self.model.a_lst_total_firms.select([ - firm.is_prod_in_current_normal(di_supp_prod) - and firm.code not in lst_current_supp_code - for firm in self.model.a_lst_total_firms - ]) - if len(lst_cand) > 0: - select_cand = self.nprandom.choice(lst_cand) - self.firm_network.graph.add_edges_from([ - (self.firm_network.positions[select_cand], - self.firm_network.positions[pro_firm], { - 'Product': di_supp_prod.code - }) - ]) - print(f"proactive add {select_cand.name} to " - f"{pro_firm.name} " - f"for {di_supp_node['Firm_Code']} " - f"{di_supp_node['Product_Code']}") - # change capacity - select_cand.dct_prod_capacity[di_supp_prod] -= 1 - break - # nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm_proactive.csv') + # dct_drs = {} + # for di_supp_code in self.firm_prod_network.predecessors( + # pro_firm_prod_code): + # di_supp_node = \ + # self.firm_prod_network.nodes[di_supp_code] + # di_supp_prod = \ + # self.a_lst_total_products.select( + # [product.code == di_supp_node['Product_Code'] + # for product in self.a_lst_total_products])[0] + # di_supp_firm = \ + # self.a_lst_total_firms.select( + # [firm.code == di_supp_node['Firm_Code'] + # for firm in self.a_lst_total_firms])[0] + # lst_cand = self.a_lst_total_firms.select([ + # firm.is_prod_in_current_normal(di_supp_prod) + # for firm in self.a_lst_total_firms + # ]) + # n2n_betweenness = \ + # sum([True if di_supp_code in path else False + # for path in lst_shortest_path]) \ + # / len(lst_shortest_path) + # drs = n2n_betweenness / \ + # (len(lst_cand) * di_supp_firm.size_stat[-1][0]) + # dct_drs[di_supp_code] = drs + # dct_drs = dict(sorted( + # dct_drs.items(), key=lambda kv: kv[1], reverse=True)) + # for di_supp_code in dct_drs.keys(): + # di_supp_node = \ + # self.firm_prod_network.nodes[di_supp_code] + # di_supp_prod = \ + # self.a_lst_total_products.select( + # [product.code == di_supp_node['Product_Code'] + # for product in self.a_lst_total_products])[0] + # # find a dfferent firm can produce the same product + # # and is not a current supplier for the same product + # lst_current_supp_code = \ + # [self.firm_prod_network.nodes[code]['Firm_Code'] + # for code in self.firm_prod_network.predecessors( + # pro_firm_prod_code) + # if self.firm_prod_network.nodes[code][ + # 'Product_Code'] == di_supp_prod.code] + # lst_cand = self.model.a_lst_total_firms.select([ + # firm.is_prod_in_current_normal(di_supp_prod) + # and firm.code not in lst_current_supp_code + # for firm in self.model.a_lst_total_firms + # ]) + # if len(lst_cand) > 0: + # select_cand = self.nprandom.choice(lst_cand) + # self.firm_network.graph.add_edges_from([ + # (self.firm_network.positions[select_cand], + # self.firm_network.positions[pro_firm], { + # 'Product': di_supp_prod.code + # }) + # ]) + # # print(f"proactive add {select_cand.name} to " + # # f"{pro_firm.name} " + # # f"for {di_supp_node['Firm_Code']} " + # # f"{di_supp_node['Product_Code']}") + # # change capacity + # select_cand.dct_prod_capacity[di_supp_prod] -= 1 + # break + # # nx.to_pandas_adjacency(G_Firm).to_csv('adj_g_firm_proactive.csv') # draw network # self.draw_network() @@ -349,35 +350,35 @@ class Model(ap.Model): # reduce the size of disrupted firm for firm in self.a_lst_total_firms: for prod in firm.dct_prod_up_prod_stat.keys(): - status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1] + status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1] if status == 'D': size = firm.size_stat[-1][0] - \ firm.size_stat[0][0] \ / len(firm.dct_prod_up_prod_stat.keys()) \ / self.remove_t firm.size_stat.append((size, self.t)) - print(f'in ts {self.t}, reduce {firm.name} size ' - f'to {firm.size_stat[-1][0]} due to {prod.code}') + # print(f'in ts {self.t}, reduce {firm.name} size ' + # f'to {firm.size_stat[-1][0]} due to {prod.code}') lst_is_disrupt = \ [stat == 'D' for stat, _ in - firm.dct_prod_up_prod_stat[prod]['status'] + firm.dct_prod_up_prod_stat[prod]['p_stat'] [-1 * self.remove_t:]] if all(lst_is_disrupt): # turn disrupted firm into removed firm # when last self.remove_t times status is all disrupted firm.dct_prod_up_prod_stat[ - prod]['status'].append(('R', self.t)) + prod]['p_stat'].append(('R', self.t)) - # stop simulation if any firm still in disrupted except inital removal + # stop simulation if any firm still in disrupted except initial removal if self.t > 0: for firm in self.a_lst_total_firms: for prod in firm.dct_prod_up_prod_stat.keys(): - status, _ = firm.dct_prod_up_prod_stat[prod]['status'][-1] + status, _ = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1] is_init = \ firm in self.dct_lst_init_disrupt_firm_prod.keys() \ and prod in self.dct_lst_init_disrupt_firm_prod[firm] if status == 'D' and not is_init: - print("not stop because", firm.name, prod.code) + # print("not stop because", firm.name, prod.code) break else: continue @@ -390,19 +391,27 @@ class Model(ap.Model): self.stop() def step(self): - print('\n', '=' * 20, 'step', self.t, '=' * 20) + # print('\n', '=' * 20, 'step', self.t, '=' * 20) # remove edge to customer and disrupt customer up product for firm in self.a_lst_total_firms: for prod in firm.dct_prod_up_prod_stat.keys(): # repetition of disrupted firm that last for multiple ts is ok, # as their edge has already been removed - status, ts = firm.dct_prod_up_prod_stat[prod]['status'][-1] + status, ts = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1] if status == 'D' and ts == self.t-1: - firm.remove_edge_to_cus_disrupt_cus_up_prod(prod) + firm.remove_edge_to_cus(prod) + + for firm in self.a_lst_total_firms: + for prod in firm.dct_prod_up_prod_stat.keys(): + for up_prod in firm.dct_prod_up_prod_stat[prod][ + 's_stat'].keys(): + if firm.dct_prod_up_prod_stat[prod][ + 's_stat'][up_prod]['set_disrupt_firm']: + firm.disrupt_cus_prod(prod, up_prod) for n_trial in range(self.int_n_max_trial): - print('=' * 10, 'trial', n_trial, '=' * 10) + # print('=' * 10, 'trial', n_trial, '=' * 10) # seek_alt_supply # shuffle self.a_lst_total_firms self.a_lst_total_firms = self.a_lst_total_firms.shuffle() @@ -410,12 +419,12 @@ class Model(ap.Model): for firm in self.a_lst_total_firms: lst_seek_prod = [] for prod in firm.dct_prod_up_prod_stat.keys(): - status = firm.dct_prod_up_prod_stat[prod]['status'][-1][0] + status = firm.dct_prod_up_prod_stat[prod]['p_stat'][-1][0] if status == 'D': for supply in firm.dct_prod_up_prod_stat[ - prod]['supply'].keys(): + prod]['s_stat'].keys(): if not firm.dct_prod_up_prod_stat[ - prod]['supply'][supply]: + prod]['s_stat'][supply]['stat']: lst_seek_prod.append(supply) # commmon supply only seek once lst_seek_prod = list(set(lst_seek_prod)) @@ -435,11 +444,9 @@ class Model(ap.Model): # reset dct_request_prod_from_firm self.a_lst_total_firms.clean_before_trial() - # do not use: - # self.a_lst_total_firms.dct_request_prod_from_firm = {} why? def end(self): - print('/' * 20, 'output', '/' * 20) + # print('/' * 20, 'output', '/' * 20) qry_result = db_session.query(Result).filter_by(s_id=self.sample.id) if qry_result.count() == 0: @@ -448,11 +455,11 @@ class Model(ap.Model): for prod, dct_status_supply in \ firm.dct_prod_up_prod_stat.items(): lst_is_normal = [stat == 'N' for stat, _ - in dct_status_supply['status']] + in dct_status_supply['p_stat']] if not all(lst_is_normal): - print(f"{firm.name} {prod.code}:") - print(dct_status_supply['status']) - for status, ts in dct_status_supply['status']: + # print(f"{firm.name} {prod.code}:") + # print(dct_status_supply['p_stat']) + for status, ts in dct_status_supply['p_stat']: db_r = Result(s_id=self.sample.id, id_firm=firm.code, id_product=prod.code, diff --git a/oa_with_exp.csv b/oa_with_exp.csv index 5ee736e..9bbc6a7 100644 --- a/oa_with_exp.csv +++ b/oa_with_exp.csv @@ -1,37 +1,37 @@ -X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18,X19,X20,X21,X22,X23 +X12,X1,X2,X3,X13,X14,X15,X16,X4,X5,X6,X7,X8,X9,X10,X11,X17,X18,X19,X20,X21,X22,X23 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1 -2,0,0,0,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2 -0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1,1,2,2,2,2 -1,0,0,0,1,1,1,2,2,2,0,0,1,1,1,1,1,1,2,0,0,0,0 -2,0,0,0,2,2,2,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1 -0,0,0,1,0,1,2,0,1,2,1,1,0,0,0,1,1,1,2,0,1,1,2 -1,0,0,1,1,2,0,1,2,0,1,1,0,0,0,1,1,1,0,1,2,2,0 -2,0,0,1,2,0,1,2,0,1,1,1,0,0,0,1,1,1,1,2,0,0,1 -0,0,1,0,0,2,1,0,2,1,1,1,0,1,1,0,0,1,2,1,0,2,1 -1,0,1,0,1,0,2,1,0,2,1,1,0,1,1,0,0,1,0,2,1,0,2 -2,0,1,0,2,1,0,2,1,0,1,1,0,1,1,0,0,1,1,0,2,1,0 -0,0,1,1,1,2,0,2,1,0,0,1,1,0,1,0,1,0,2,2,1,0,1 -1,0,1,1,2,0,1,0,2,1,0,1,1,0,1,0,1,0,0,0,2,1,2 -2,0,1,1,0,1,2,1,0,2,0,1,1,0,1,0,1,0,1,1,0,2,0 -0,0,1,1,1,2,1,0,0,2,1,0,1,1,0,1,0,0,1,2,2,1,0 -1,0,1,1,2,0,2,1,1,0,1,0,1,1,0,1,0,0,2,0,0,2,1 -2,0,1,1,0,1,0,2,2,1,1,0,1,1,0,1,0,0,0,1,1,0,2 -0,1,0,1,1,0,2,2,2,0,1,0,0,1,1,0,1,0,1,1,0,1,2 -1,1,0,1,2,1,0,0,0,1,1,0,0,1,1,0,1,0,2,2,1,2,0 -2,1,0,1,0,2,1,1,1,2,1,0,0,1,1,0,1,0,0,0,2,0,1 -0,1,0,1,1,1,2,2,0,1,0,1,1,1,0,0,0,1,0,0,2,2,1 -1,1,0,1,2,2,0,0,1,2,0,1,1,1,0,0,0,1,1,1,0,0,2 -2,1,0,1,0,0,1,1,2,0,0,1,1,1,0,0,0,1,2,2,1,1,0 -0,1,0,0,2,1,0,1,2,2,1,1,1,0,1,1,0,0,0,2,0,1,1 -1,1,0,0,0,2,1,2,0,0,1,1,1,0,1,1,0,0,1,0,1,2,2 -2,1,0,0,1,0,2,0,1,1,1,1,1,0,1,1,0,0,2,1,2,0,0 -0,1,1,1,2,1,1,1,0,0,0,0,0,0,1,1,0,1,2,1,2,0,2 -1,1,1,1,0,2,2,2,1,1,0,0,0,0,1,1,0,1,0,2,0,1,0 -2,1,1,1,1,0,0,0,2,2,0,0,0,0,1,1,0,1,1,0,1,2,1 -0,1,1,0,2,2,2,1,2,1,1,0,1,0,0,0,1,1,1,0,1,0,0 -1,1,1,0,0,0,0,2,0,2,1,0,1,0,0,0,1,1,2,1,2,1,1 -2,1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,2,0,2,2 -0,1,1,0,2,0,1,2,1,2,0,1,0,1,0,1,1,0,0,1,1,2,0 -1,1,1,0,0,1,2,0,2,0,0,1,0,1,0,1,1,0,1,2,2,0,1 -2,1,1,0,1,2,0,1,0,1,0,1,0,1,0,1,1,0,2,0,0,1,2 +1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1 +2,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2 +0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2 +1,0,0,0,1,1,1,2,0,0,1,1,1,1,1,1,2,2,2,0,0,0,0 +2,0,0,0,2,2,2,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1,1 +0,0,0,1,0,1,2,0,1,1,0,0,0,1,1,1,1,2,2,0,1,1,2 +1,0,0,1,1,2,0,1,1,1,0,0,0,1,1,1,2,0,0,1,2,2,0 +2,0,0,1,2,0,1,2,1,1,0,0,0,1,1,1,0,1,1,2,0,0,1 +0,0,1,0,0,2,1,0,1,1,0,1,1,0,0,1,2,1,2,1,0,2,1 +1,0,1,0,1,0,2,1,1,1,0,1,1,0,0,1,0,2,0,2,1,0,2 +2,0,1,0,2,1,0,2,1,1,0,1,1,0,0,1,1,0,1,0,2,1,0 +0,0,1,1,1,2,0,2,0,1,1,0,1,0,1,0,1,0,2,2,1,0,1 +1,0,1,1,2,0,1,0,0,1,1,0,1,0,1,0,2,1,0,0,2,1,2 +2,0,1,1,0,1,2,1,0,1,1,0,1,0,1,0,0,2,1,1,0,2,0 +0,0,1,1,1,2,1,0,1,0,1,1,0,1,0,0,0,2,1,2,2,1,0 +1,0,1,1,2,0,2,1,1,0,1,1,0,1,0,0,1,0,2,0,0,2,1 +2,0,1,1,0,1,0,2,1,0,1,1,0,1,0,0,2,1,0,1,1,0,2 +0,1,0,1,1,0,2,2,1,0,0,1,1,0,1,0,2,0,1,1,0,1,2 +1,1,0,1,2,1,0,0,1,0,0,1,1,0,1,0,0,1,2,2,1,2,0 +2,1,0,1,0,2,1,1,1,0,0,1,1,0,1,0,1,2,0,0,2,0,1 +0,1,0,1,1,1,2,2,0,1,1,1,0,0,0,1,0,1,0,0,2,2,1 +1,1,0,1,2,2,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,2 +2,1,0,1,0,0,1,1,0,1,1,1,0,0,0,1,2,0,2,2,1,1,0 +0,1,0,0,2,1,0,1,1,1,1,0,1,1,0,0,2,2,0,2,0,1,1 +1,1,0,0,0,2,1,2,1,1,1,0,1,1,0,0,0,0,1,0,1,2,2 +2,1,0,0,1,0,2,0,1,1,1,0,1,1,0,0,1,1,2,1,2,0,0 +0,1,1,1,2,1,1,1,0,0,0,0,1,1,0,1,0,0,2,1,2,0,2 +1,1,1,1,0,2,2,2,0,0,0,0,1,1,0,1,1,1,0,2,0,1,0 +2,1,1,1,1,0,0,0,0,0,0,0,1,1,0,1,2,2,1,0,1,2,1 +0,1,1,0,2,2,2,1,1,0,1,0,0,0,1,1,2,1,1,0,1,0,0 +1,1,1,0,0,0,0,2,1,0,1,0,0,0,1,1,0,2,2,1,2,1,1 +2,1,1,0,1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,2,0,2,2 +0,1,1,0,2,0,1,2,0,1,0,1,0,1,1,0,1,2,0,1,1,2,0 +1,1,1,0,0,1,2,0,0,1,0,1,0,1,1,0,2,0,1,2,2,0,1 +2,1,1,0,1,2,0,1,0,1,0,1,0,1,1,0,0,1,2,0,0,1,2 diff --git a/oa_with_exp.xlsx b/oa_with_exp.xlsx index a880df4..4deb8cb 100644 Binary files a/oa_with_exp.xlsx and b/oa_with_exp.xlsx differ diff --git a/oa_without_exp.csv b/oa_without_exp.csv index 66c1886..216d380 100644 --- a/oa_without_exp.csv +++ b/oa_without_exp.csv @@ -1,2 +1,2 @@ -X1,X2,X3,X4,X5,X6,X7,X8,X9,X10 -0,0,0,0,0,0,0,0,0,0 +X1,X2,X3,X4,X5,X6,X7,X8 +0,0,0,0,0,0,0,0 diff --git a/orm.py b/orm.py index 649bff0..f497b0e 100644 --- a/orm.py +++ b/orm.py @@ -60,8 +60,6 @@ class Experiment(Base): cap_limit_prob_type = Column(String(16), nullable=False) cap_limit_level = Column(DECIMAL(8, 4), nullable=False) diff_new_conn = Column(DECIMAL(8, 4), nullable=False) - crit_supplier = Column(DECIMAL(8, 4), nullable=False) - proactive_ratio = Column(DECIMAL(8, 4), nullable=False) remove_t = Column(Integer, nullable=False) netw_prf_n = Column(Integer, nullable=False) diff --git a/product.py b/product.py index 09238f9..78d33fa 100644 --- a/product.py +++ b/product.py @@ -9,6 +9,7 @@ class ProductAgent(ap.Agent): self.name = name def a_successors(self): + # find successors of a product, return in AgentList (ProductAgent) nodes = self.product_network.graph.successors( self.product_network.positions[self]) return ap.AgentList( @@ -16,6 +17,7 @@ class ProductAgent(ap.Agent): [ap.AgentIter(self.model, node).to_list()[0] for node in nodes]) def a_predecessors(self): + # find predecessors of a product, return in AgentList (ProductAgent) nodes = self.product_network.graph.predecessors( self.product_network.positions[self]) return ap.AgentList( diff --git a/test.ipynb b/test.ipynb index e52427d..5015e92 100644 --- a/test.ipynb +++ b/test.ipynb @@ -357,6 +357,231 @@ "\n", "lst[-5:]" ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
e_idn_disrupt_sampletotal_n_disrupt_firm_prod_experimentdct_lst_init_disrupt_firm_prod
038350300.0b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
122750250.0b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
28350200.0b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
313550200.0b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
417950200.0b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
...............
90762456.0b'\\x80\\x05\\x95\\x14\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
91892454.0b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
92902454.0b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
933352454.0b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
944492453.0b'\\x80\\x05\\x95\\x15\\x00\\x00\\x00\\x00\\x00\\x00\\x00...
\n", + "

95 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " e_id n_disrupt_sample total_n_disrupt_firm_prod_experiment \\\n", + "0 383 50 300.0 \n", + "1 227 50 250.0 \n", + "2 83 50 200.0 \n", + "3 135 50 200.0 \n", + "4 179 50 200.0 \n", + ".. ... ... ... \n", + "90 76 24 56.0 \n", + "91 89 24 54.0 \n", + "92 90 24 54.0 \n", + "93 335 24 54.0 \n", + "94 449 24 53.0 \n", + "\n", + " dct_lst_init_disrupt_firm_prod \n", + "0 b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "1 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "2 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "3 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "4 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + ".. ... \n", + "90 b'\\x80\\x05\\x95\\x14\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "91 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "92 b'\\x80\\x05\\x95\\x16\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "93 b'\\x80\\x05\\x95\\x17\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "94 b'\\x80\\x05\\x95\\x15\\x00\\x00\\x00\\x00\\x00\\x00\\x00... \n", + "\n", + "[95 rows x 4 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with open('SQL_export_high_risk_setting.sql', 'r') as f:\n", + " contents = f.read()\n", + "\n", + "import pandas as pd\n", + "from orm import engine\n", + "result = pd.read_sql(sql=contents, con=engine)\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAVT0lEQVR4nO3dz4vV973H8fc5M0SqZKOi2WQIxZiCFbqRhBYpI8FFuTeQ20VzjX9CN4WUghSNhVouhNvN3d277JTclZdw6aKk4y1Cb4JdtDFZRKUk48aIIxQ7pnrHOXcRJxl1fpwz31+fz+f7eOySSb7n6OrF+zlnZjAajUYBAADbNOz6DQAAkDeDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoBKDEgCASgxKAAAqMSgBAKjEoAQAoJLprt9A15buLccni0txf3klnpoexnN7dsWuHb3/awEAGFsvl9PVz+7E3PsLceHjm7Fw+26M1nxtEBEzu3fG7Av74vUXZ+L5/U939TYBALIwGI1Go63/szJcv303Tp2/HBev3Yqp4SAerGz8R1/9+tEDe+Pcq4fj2d07W3ynAAD56M2gfPvSQpx556NYXhltOiQfNzUcxPRwEGdfORSvHZlp8B0CAOSpF4Py3y5cjbd+e6Xyc944fjB+OPt8De8IAKAcxX/K++1LC7WMyYiIt357Jf7z0kItzwIAKEXRg/L67btx5p2Pan3m6Xc+iuu379b6TACAnBU9KE+dvxzLE3y/5DiWV0Zx6vzlWp8JAJCzYgfl1c/uxMVrtyb6AM44HqyM4uK1W3Ht5p1anwsAkKtiB+Xc+wsxNRw08uyp4SB+9Z7vpQQAiCh4UF74+Gbt18lVD1ZGceHKzUaeDQCQmyIH5d/uLcdCwx+cWVi8G0v3lht9DQCAHBQ5KD9dXIqmf7jmKCI+WVxq+FUAANJX5KC8v7xS1OsAAKSsyEH51HQ7f6y2XgcAIGVFLqLn9uyKZj7f/ZXBw9cBAOi7Igflrh3TMbN7Z6OvMbNnZ+zaMd3oawAA5KDIQRkRMfvCvkZ/DuXswX2NPBsAIDfFDsrXX5xp9OdQnnxpppFnAwDkpthB+fz+p+Pogb21XymnBhFHD+yNA/uervW5AAC5KnZQRkSce/VwTNc4KEejUSz/3/34h2f8Hm8AgFVFD8pnd++Ms68cqu15g8Eg9l//n/jnfzweZ8+ejQcPHtT2bACAXBU9KCMiXjsyE28cP1jLs358/IX437l/jTfffDPOnj0bx48fjxs3btTybACAXA1Go1HTv6UwCW9fWogz73wUyyujiT6sMzUcxPRwED975VD84MhXH8SZn5+PEydORETEr3/96zh27Fjt7xkAIAfFXyhXvXZkJt790Xfj21/fExGx5Yd1Vr/+7a/viXd/9N1HxmRExLFjx+JPf/pTfPOb34yXX35ZAgcAeqs3F8q1rn52J+beX4gLV27GwuLdWPsXMIgvfmj57MF9cfKlmS0/zf3gwYP4+c9/Hm+++WbMzs7G3NxcPPPMM42+fwCAlPRyUK61dG85PllcivvLK/HU9DCe27NrW78BRwIHAPqq94OyTjdu3IiTJ0/G/Px8nDlzJn7605/G1NRU128LAKBRBmXNJHAAoG8MyoZI4ABAX/TmU95t8ylwAKAvXCgbJoEDAKUzKFsigQMApZK8WyKBAwClcqFsmQQOAJTGoOyIBA4AlELy7ogEDgCUwoWyYxI4AJA7gzIREjgAkCvJOxESOACQKxfKxEjgAEBuDMpESeAAQC4k70RJ4ABALlwoEyeBAwCpMygzIYEDAKmSvDMhgQMAqXKhzIwEDgCkxqDMlAQOAKRC8s6UBA4ApMKFMnMSOADQNYOyEBI4ANAVybsQEjgA0BUXysJI4ABA2wzKQkngAEBbJO9CSeAAQFtcKAsngQMATTMoe0ICBwCaInn3hAQOADTFhbJnJHAAoG4GZU9J4ABAXSTvnpLAAYC6uFD2nAQOAFRlUBIREjgAsH2SNxEhgQMA2+dCySMkcABgUgYl65LAAYBxSd6sSwIHAMblQsmmJHAAYCsGJWORwAGAjUjejEUCBwA24kLJRCRwAOBxBiXbIoEDAKskb7ZFAgcAVrlQUokEDgAYlNRCAgeA/pK8qYUEDgD95UJJrSRwAOgfg5JGSOAA0B+SN42QwAGgP1woaZQEDgDlMyhphQQOAOWSvGmFBA4A5XKhpFUSOACUx6CkExI4AJRD8qYTEjgAlMOFkk5J4ACQP4OSJEjgAJAvyZskSOAAkC8XSpIigQNAfgxKkiSBA0A+JG+SJIEDQD5cKEmaBA4A6TMoyYIEDgDpkrzJggQOAOlyoSQrEjgApMegJEsSOACkQ/ImSxI4AKTDhZKsSeAA0D2DkiJI4ADQHcmbIkjgANAdF0qKIoEDQPsMSookgQNAeyRviiSBA0B7XCgpmgQOAM0zKOkFCRwAmiN50wsSOAA0x4WSXpHAAaB+BiW9JIEDQH0kb3pJAgeA+rhQ0msSOABUZ1BCSOAAUIXkDSGBA0AVLpSwhgQOAJMzKGEdEjgAjE/yhnVI4AAwPhdK2IQEDgBbMyhhDBI4AGxM8oYxSOAAsDEXSpiABA4ATzIoYRskcAD4iuQN2yCBA8BXXCihAgkcAAxKqIUEDkCfSd5QAwkcgD5zoYQaSeAA9JFBCQ2QwAHoE8kbGiCBA9AnLpTQIAkcgD4wKKEFEjgAJZO8oQUSOAAlc6GEFkngAJTIoIQOSOAAlETyhg5I4ACUxIUSOiSBA1ACgxISIIEDkDPJGxIggQOQMxdKSIgEDkCODEpIkAQOQE4kb0iQBA5ATlwoIWESOAA5MCghAxI4ACmTvCEDEjgAKXOhhIxI4ACkyKCEDEngAKRE8oYMSeAApMSFEjImgQOQAoMSCiCBA9AlyRsKIIED0CUXSijI2gR+7NixmJubi/3793f9tgAonEEJBVpN4IPBIObm5iRwABoleUOBVhP4oUOHJHAAGudCCQWTwAFog0EJPSCBA9AkyRt6QAIHoEkulNAjEjgATTAooYckcADqJHlDD0ngANTJhRJ6TAIHoA4GJSCBA1CJ5A1I4ABU4kIJfEkCB2A7DErgCRI4AJOQvIEnSOAATMKFEtiQBA7AOAxKYEsXLlyIEydORERI4AA8QfIGtjQ7OyuBA7AhF0pgbBI4AOsxKIGJSeAArCV5AxOTwAFYy4US2DYJHIAIgxKogQQO0G+SN1CZBA7Qby6UQG0kcIB+MiiB2kngAP0ieQO1k8AB+sWFEmiMBA7QDwYl0DgJHKBskjfQOAkcoGwulEBrJHCAMhmUQOskcICySN5A6yRwgLK4UAKdkcABymBQAp2TwAHyJnkDnZPAAfLmQgkkQwIHyJNBCSRHAgfIi+QNJEcCB8iLCyWQLAkcIA8GJZA8CRwgbZI3kDwJHCBtLpRANiRwgDQZlEB2JHCAtEjeQHYkcIC0uFAC2ZLAAdJgUALZk8ABuiV5A9mTwAG65UIJFEMCB+iGQQkURwIHaJfkDRRHAgdolwslUCwJHKAdBiVQPAkcoFmSN1A8CRygWS6UQG9I4ADNMCiB3pHAAeoleQO9I4ED1MuFEugtCRygHgYl0HsSOEA1kjfQexI4QDUulAAPSeAA22NQAjxGAgeYjOQN8BgJHGAyLpQAG5DAAcZjUAJsQQIH2JzkDbAFCRxgcy6UAGOSwAHWZ1ACTEgCB3iU5A0wIQkc4FEulADbJIEDfMGgBKhIAgf6TvIGqEgCB/rOhRKgJhI40FcGJUDNJHCgbyRvgJpJ4EDfuFACNEQCB/rCoARomAQOlE7yBmiYBA6UzoUSoCUSOFAqgxKgZRI4UBrJG6BlEjhQGhdKgI5I4EApDEqAjkngQO4kb4COSeBA7lwoARIhgQO5MigBEiOBA7mRvAESI4EDuXGhBEiUBA7kwqAESJwEDqRO8gZInAQOpM6FEiATEjiQKoMSIDMSOJAayRsgMxI4kBoXSoBMSeBAKgxKgMxJ4EDXJG+AzEngQNdcKAEKIYEDXTEoAQojgQNtk7wBCiOBA21zoQQolAQOtMWgBCicBA40TfIGKJwEDjTNhRKgJyRwoCkGJUDPSOBA3SRvgJ6RwIG6uVAC9JQEDtTFoAToOQkcqEryBug5CRyoyoUSgIiQwIHtMygBeIQEDkxK8gbgERI4MCkXSgDWJYED4zIoAdjU/Px8nDhxIgaDgQQOrEvyBmBTx44dk8CBTblQAjAWCRzYiEEJwEQkcOBxkjcAE5HAgce5UAKwLRI4sMqgBKASCRyQvAGoRAIHXCgBqIUEDv1lUAJQKwkc+kfyBqBWEjj0jwslAI2QwKE/DEoAGiWBQ/kkbwAaJYFD+VwoAWiFBA7lMigBaJUEDuWRvAFolQQO5XGhBKATEjiUw6AEoFMSOORP8gagUxI45M+FEoAkSOCQL4MSgKRI4JAfyRuApEjgkB8XSgCSJIFDPgxKAJImgUP6JG8AkiaBQ/pcKAHIggQO6TIoAciKBA7pkbwByIoEDulxoQQgSxI4pMOgBCBrEjh0T/IGIGsSOHTPhRKAIkjg0B2DEoCiSODQPskbgKJI4NA+F0oAiiSBQ3sMSgCKJoFD8yRvAIomgUPzXCgB6AUJHJpjUALQKxI41E/yBqBXJHConwslAL0kgUN9DEoAek0Ch+okbwB6TQKH6lwoASAkcKjCoASANSRwmJzkDQBrSOAwORdKAFiHBA7jMygBYBMSOGxN8gaATUjgsDUXSgAYgwQOGzMoAWACEjg8SfIGgAlI4PAkF0oA2AYJHL5iUAJABRI4SN4AUIkEDi6UAFALCZw+MygBoEYSOH0keQNAjSRw+siFEgAaIIHTJwYlADRIAqcPJG8AaJAETh+4UAJACyRwSmZQAkCLJHBKJHkDQIskcErkQgkAHZDAKYlBCQAdksApgeQNAB2SwCmBCyUAJEACJ2cGJQAkRAInR5I3ACREAidHLpQAkCAJnJwYlACQMAmcHEjeAJAwCZwcuFACQAYkcFJmUAJARiRwUiR5A0BGJHBS5EIJABmSwEmJQQkAGZPASYHkDQAZk8BJgQslABRAAqdLBiUAFEQCpwuSNwAURAKnCy6UAFAgCZw2GZQAUDAJnDZI3gBQMAmcNrhQAkAPSOA0yaAEgB6RwGmC5A0APSKB0wQXSgDoIQmcOhmUANBjEjh1kLwBoMckcOrgQgkASOBUYlACAF+SwNkOyRsA+JIEzna4UAIAT5DAmYRBCQBsSAJnHJI3ALAhCZxxuFACAFuSwNmMQQkAjE0CZz2SNwAwNgmc9bhQAgATk8BZy6AEALZNAidC8gYAKpDAiXChBABqIIH3m0EJANRGAu8nyRsAqI0E3k8ulABA7STwfjEoAYDGSOD9IHkDAI2RwPvBhRIAaJwEXjaDEgBojQReJskbAGiNBF4mF0oAoHUSeFkMSgCgMxJ4GSRvAKAzEngZXCgBgM5J4HkzKAGAZEjgeZK8AYBkSOB5cqEEAJIjgefFoAQAkiWB50HyBgCSJYHnwYUSAEieBJ42gxIAyIYEnibJGwDIhgSeJhdKACA7EnhaDEoAIFsSeBokbwAgWxJ4GlwoAYDsSeDdMigBgGJI4N2QvAGAYkjg3XChBACKI4G3y6AEAIolgbdD8gYAiiWBt8OFEgAo3lYJfGVlJYZDd7bt8jcHABRvamoqTp8+He+++258+OGH8a1vfSvm5+cjIuL27dvxjW98I37xi190/C7z5UIJAPTKjRs34uTJkzE/Px+nT5+OS5cuxW9+85v42te+FgsLC7F3794tn7F0bzk+WVyK+8sr8dT0MJ7bsyt27Zhu4d2nyaAEAHpnNYGfOXPmy383HA7jJz/5SZw7d27d/+fqZ3di7v2FuPDxzVi4fTfWDqhBRMzs3hmzL+yL11+cief3P93sHyAxBiUA0EvvvfdefOc734mVlZUv/916V8rrt+/GqfOX4+K1WzE1HMSDlY2n0+rXjx7YG+dePRzP7t7Z6J8hFb6HEgDonc8//zy+//3vPzImIyL+/ve/x1tvvfXlP799aSFe/uXv4w9/WYyI2HRMrv36H/6yGC//8vfx9qWFmt95mlwoAYDe+etf/xrf+9734o9//GPcv38/Ir5I3quf9v7000/jv65+Hm/99krl13rj+MH44ezzlZ+TMoMSAOit5eXluHr1anzwwQfx5z//OX73u9/Fhx9+GKf+47/j3z+4W9vr/Ms/HY4fHJmp7XmpMSgBANa4fvtuvPzL38e95ZWt/+Mx7Zgexrs/+m6x31PpeygBANY4df5yLG/xvZKTWl4Zxanzl2t9ZkoMSgCAh65+dicuXru15YdvJvVgZRQXr92Kazfv1PrcVBiUAAAPzb2/EFPDQSPPnhoO4lfvlfmpb4MSAOChCx/frP06uerByiguXLnZyLO7ZlACAETE3+4tx8Lt+j7ZvZ6FxbuxdG+50dfogkEJABARny4uRdM/+mYUEZ8sLjX8Ku0zKAEAIuJ+jT8mKIXXaZNBCQAQEU9NtzOL2nqdNpX3JwIA2Ibn9uyKZj7f/ZXBw9cpjUEJABARu3ZMx0zDv8lmZs/O2LVjutHX6IJBCQDw0OwL+xr9OZSzB/c18uyuGZQAAA+9/uJMoz+H8uRLM408u2sGJQDAQ8/vfzqOHthb+5VyajiIowf2xoF9T9f63FQYlAAAa5x79XBM1zwop4eDOPfq4VqfmRKDEgBgjWd374yzrxyq9Zk/e+VQPNvwB366ZFACADzmtSMz8cbxg7U868fHX4gfHCnzeydXDUajUdO/ZQgAIEtvX1qIM+98FMsro4k+rDM1HMT0cBA/e+VQ8WMywqAEANjU9dt349T5y3Hx2q2YGg42HZarXz96YG+ce/Vw0Zl7LYMSAGAMVz+7E3PvL8SFKzdjYfFurB1Qg/jih5bPHtwXJ1+aKfbT3BsxKAEAJrR0bzk+WVyK+8sr8dT0MJ7bs6vI34AzLoMSAIBKfMobAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBKDEoAACoxKAEAqMSgBACgEoMSAIBK/h8EZccnAqL14wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import networkx as nx\n", + "\n", + "G = nx.MultiDiGraph()\n", + "G.add_edge(1, 2)\n", + "nx.draw(G)\n", + "G.has_edge(1, 2, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n" + ] + } + ], + "source": [ + "s = set()\n", + "s.add(1)\n", + "s.add(2)\n", + "s.add(1)\n", + "len(s)\n", + "if s:\n", + " print(1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/xv_with_exp.csv b/xv_with_exp.csv index e002363..ce2bf23 100644 --- a/xv_with_exp.csv +++ b/xv_with_exp.csv @@ -1,4 +1,4 @@ -n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,diff_disrupt,proactive_ratio,remove_t,netw_prf_n -15,TRUE,TRUE,uniform,5,0.3,2,0.5,0.3,3,3 -10,FALSE,FALSE,normal,10,0.5,1,1,0.5,5,2 -5,,,,15,0.7,0.5,2,0.7,7,1 +n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n +7,TRUE,TRUE,uniform,5,0.3,3,3 +5,FALSE,FALSE,normal,10,0.5,5,2 +3,,,,15,0.7,7,1 diff --git a/xv_without_exp.csv b/xv_without_exp.csv index 027114d..caa6fef 100644 --- a/xv_without_exp.csv +++ b/xv_without_exp.csv @@ -1,2 +1,2 @@ -n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,crit_supplier,proactive_ratio,remove_t,netw_prf_n -10,TRUE,TRUE,uniform,10,0.5,0.01,1,5,2 +n_max_trial,prf_size,prf_conn,cap_limit_prob_type,cap_limit_level,diff_new_conn,remove_t,netw_prf_n +5,TRUE,TRUE,uniform,10,0.5,5,2