Load Firm - choose customer
This commit is contained in:
parent
154d276839
commit
9449550c2d
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,6 @@
|
|||
import agentpy as ap
|
||||
|
||||
|
||||
class Firm(ap.Agent):
|
||||
def setup(self):
|
||||
self.firm_network = self.model.firm_network
|
|
@ -0,0 +1,105 @@
|
|||
import agentpy as ap
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import networkx as nx
|
||||
|
||||
sample = 0
|
||||
sample = 0
|
||||
dct_sample_para = {'sample': sample, 'seed': sample}
|
||||
|
||||
|
||||
class Model(ap.Model):
|
||||
def setup(self):
|
||||
self.sample = self.p.sample
|
||||
self.nprandom = np.random.default_rng(self.p.seed)
|
||||
|
||||
# init graph bom
|
||||
BomNodes = pd.read_csv('BomNodes.csv', index_col=0)
|
||||
BomNodes.set_index('Code', inplace=True)
|
||||
BomCateNet = pd.read_csv('BomCateNet.csv', index_col=0)
|
||||
BomCateNet.fillna(0, inplace=True)
|
||||
|
||||
G_bom = nx.from_pandas_adjacency(BomCateNet,
|
||||
create_using=nx.MultiDiGraph())
|
||||
|
||||
bom_labels_dict = {}
|
||||
for code in G_bom.nodes:
|
||||
bom_labels_dict[code] = BomNodes.loc[code].to_dict()
|
||||
nx.set_node_attributes(G_bom, bom_labels_dict)
|
||||
|
||||
# init graph firm
|
||||
Firm = pd.read_csv("Firm_amended.csv")
|
||||
Firm.fillna(0, inplace=True)
|
||||
Firm_attr = Firm.loc[:, ["Code", "Name", "Type_Region", "Revenue_Log"]]
|
||||
firm_product = []
|
||||
for _, row in Firm.loc[:, '1':].iterrows():
|
||||
firm_product.append(row[row == 1].index.to_list())
|
||||
Firm_attr.loc[:, 'Product_Code'] = firm_product
|
||||
Firm_attr.set_index('Code')
|
||||
G_Firm = nx.MultiDiGraph()
|
||||
G_Firm.add_nodes_from(Firm["Code"])
|
||||
|
||||
firm_labels_dict = {}
|
||||
for code in G_Firm.nodes:
|
||||
firm_labels_dict[code] = Firm_attr.loc[code].to_dict()
|
||||
nx.set_node_attributes(G_Firm, firm_labels_dict)
|
||||
|
||||
# add edge to G_firm according to G_bom
|
||||
for node in nx.nodes(G_Firm):
|
||||
# print(node, '-'*20)
|
||||
list_pred_product_code = []
|
||||
for product_code in G_Firm.nodes[node]['Product_Code']:
|
||||
list_pred_product_code += list(
|
||||
G_bom.predecessors(product_code))
|
||||
list_pred_product_code = list(set(list_pred_product_code))
|
||||
for pred_product_code in list_pred_product_code:
|
||||
# print(pred_product_code)
|
||||
list_pred_firms = Firm.index[Firm[pred_product_code] ==
|
||||
1].to_list()
|
||||
list_revenue_log = [
|
||||
G_Firm.nodes[pred_firm]['Revenue_Log']
|
||||
for pred_firm in list_pred_firms
|
||||
]
|
||||
list_prob = [
|
||||
(v - min(list_revenue_log) + 1) /
|
||||
(max(list_revenue_log) - min(list_revenue_log) + 1)
|
||||
for v in list_revenue_log
|
||||
]
|
||||
list_flag = [
|
||||
self.nprandom.choice([1, 0], p=[prob, 1 - prob])
|
||||
for prob in list_prob
|
||||
]
|
||||
# print(list(zip(list_pred_firms,list_flag, list_prob)))
|
||||
list_added_edges = [
|
||||
(node, pred_firm)
|
||||
for pred_firm, flag in zip(list_pred_firms, list_flag)
|
||||
if flag == 1
|
||||
]
|
||||
G_Firm.add_edges_from(list_added_edges)
|
||||
# print('-'*20)
|
||||
|
||||
self.firm_network = ap.Network(self, G_Firm)
|
||||
|
||||
def draw_network(self):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.rcParams['font.sans-serif'] = 'SimHei'
|
||||
pos = nx.nx_agraph.graphviz_layout(self.firm_network.graph,
|
||||
prog="twopi",
|
||||
args="")
|
||||
node_label = nx.get_node_attributes(self.firm_network.graph, 'Name')
|
||||
node_size = list(
|
||||
nx.get_node_attributes(self.firm_network.graph,
|
||||
'Revenue_Log').values())
|
||||
node_size = list(map(lambda x: x**2, node_size))
|
||||
plt.figure(figsize=(12, 12), dpi=300)
|
||||
nx.draw(self.firm_network.graph,
|
||||
pos,
|
||||
node_size=node_size,
|
||||
labels=node_label,
|
||||
font_size=6)
|
||||
plt.savefig("network.png")
|
||||
|
||||
|
||||
model = Model(dct_sample_para)
|
||||
model.setup()
|
||||
model.draw_network()
|
Binary file not shown.
After Width: | Height: | Size: 4.3 MiB |
Loading…
Reference in New Issue