anova
This commit is contained in:
parent
475ba35613
commit
228a066cf6
|
@ -12,9 +12,8 @@
|
||||||
"console": "integratedTerminal",
|
"console": "integratedTerminal",
|
||||||
"justMyCode": true,
|
"justMyCode": true,
|
||||||
"args": [
|
"args": [
|
||||||
"--exp", "without_exp",
|
"--exp", "with_exp",
|
||||||
"--job", "24",
|
"--job", "24",
|
||||||
"--reset_db", "True",
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,4 +1,34 @@
|
||||||
select id, e_id, idx_sample, seed, ts_done from iiabmdb.without_exp_sample where is_done_flag != -1 order by ts_done;
|
select id, e_id, idx_sample, seed, ts_done from iiabmdb.without_exp_sample where is_done_flag != -1 order by ts_done;
|
||||||
select count(id) from iiabmdb.without_exp_sample where is_done_flag != -1;
|
select count(id) from iiabmdb.without_exp_sample where is_done_flag != -1;
|
||||||
select count(id) from iiabmdb.without_exp_sample;
|
select count(id) from iiabmdb.without_exp_sample‘;
|
||||||
select count(id) from iiabmdb.without_exp_sample where is_done_flag != -1;
|
select count(id) from iiabmdb.with_exp_sample where is_done_flag != -1;
|
||||||
|
|
||||||
|
select * from
|
||||||
|
(select distinct idx_scenario, n_max_trial, crit_supplier, firm_pref_request,
|
||||||
|
firm_pref_accept, netw_pref_cust_n, netw_pref_cust_size, cap_limit,
|
||||||
|
diff_new_conn, diff_remove from iiabmdb.with_exp_experiment) as a
|
||||||
|
inner join
|
||||||
|
(
|
||||||
|
select idx_scenario,
|
||||||
|
sum(n_disrupt_s) as n_disrupt_s, sum(n_disrupt_t) as n_disrupt_t from
|
||||||
|
iiabmdb.with_exp_experiment as a
|
||||||
|
inner join
|
||||||
|
(
|
||||||
|
select e_id, count(n_s_disrupt_t) as n_disrupt_s,
|
||||||
|
sum(n_s_disrupt_t) as n_disrupt_t from
|
||||||
|
iiabmdb.with_exp_sample as a
|
||||||
|
inner join
|
||||||
|
(select a.s_id as s_id, count(id) as n_s_disrupt_t from
|
||||||
|
iiabmdb.with_exp_result as a
|
||||||
|
inner join
|
||||||
|
(select distinct s_id from iiabmdb.with_exp_result where ts > 0) as b
|
||||||
|
on a.s_id = b.s_id
|
||||||
|
group by s_id
|
||||||
|
) as b
|
||||||
|
on a.id = b.s_id
|
||||||
|
group by e_id
|
||||||
|
) as b
|
||||||
|
on a.id = b.e_id
|
||||||
|
group by idx_scenario) as b
|
||||||
|
on a.idx_scenario = b.idx_scenario;
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,28 @@
|
||||||
|
,n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove,X10,X11,X12,X13,n_disrupt_s,n_disrupt_t
|
||||||
|
0,15,2.0,2.0,2.0,0.5,2.0,4,0.5,0.5,0,0,0,0,888.0,2114.0
|
||||||
|
1,15,2.0,2.0,2.0,1.0,1.0,2,1.0,1.0,1,1,1,1,1297.0,2810.0
|
||||||
|
2,15,2.0,2.0,2.0,2.0,0.5,1,2.0,2.0,2,2,2,2,1826.0,3809.0
|
||||||
|
3,15,1.0,1.0,1.0,0.5,2.0,4,1.0,1.0,1,2,2,2,1372.0,3055.0
|
||||||
|
4,15,1.0,1.0,1.0,1.0,1.0,2,2.0,2.0,2,0,0,0,2118.0,4519.0
|
||||||
|
5,15,1.0,1.0,1.0,2.0,0.5,1,0.5,0.5,0,1,1,1,815.0,2073.0
|
||||||
|
6,15,0.5,0.5,0.5,0.5,2.0,4,2.0,2.0,2,1,1,1,2378.0,5528.0
|
||||||
|
7,15,0.5,0.5,0.5,1.0,1.0,2,0.5,0.5,0,2,2,2,968.0,2300.0
|
||||||
|
8,15,0.5,0.5,0.5,2.0,0.5,1,1.0,1.0,1,0,0,0,1531.0,3317.0
|
||||||
|
9,10,2.0,1.0,0.5,0.5,1.0,1,0.5,1.0,2,0,1,2,881.0,1972.0
|
||||||
|
10,10,2.0,1.0,0.5,1.0,0.5,4,1.0,2.0,0,1,2,0,1298.0,2763.0
|
||||||
|
11,10,2.0,1.0,0.5,2.0,2.0,2,2.0,0.5,1,2,0,1,1717.0,3837.0
|
||||||
|
12,10,1.0,0.5,2.0,0.5,1.0,1,1.0,2.0,0,2,0,1,1327.0,2855.0
|
||||||
|
13,10,1.0,0.5,2.0,1.0,0.5,4,2.0,0.5,1,0,1,2,2126.0,4788.0
|
||||||
|
14,10,1.0,0.5,2.0,2.0,2.0,2,0.5,1.0,2,1,2,0,801.0,1814.0
|
||||||
|
15,10,0.5,2.0,1.0,0.5,1.0,1,2.0,0.5,1,1,2,0,2442.0,5980.0
|
||||||
|
16,10,0.5,2.0,1.0,1.0,0.5,4,0.5,1.0,2,2,0,1,991.0,2186.0
|
||||||
|
17,10,0.5,2.0,1.0,2.0,2.0,2,1.0,2.0,0,0,1,2,1311.0,2776.0
|
||||||
|
18,5,2.0,0.5,1.0,0.5,0.5,2,0.5,2.0,1,0,2,1,879.0,1909.0
|
||||||
|
19,5,2.0,0.5,1.0,1.0,2.0,1,1.0,0.5,2,1,0,2,1354.0,3132.0
|
||||||
|
20,5,2.0,0.5,1.0,2.0,1.0,4,2.0,1.0,0,2,1,0,1727.0,3673.0
|
||||||
|
21,5,1.0,2.0,0.5,0.5,0.5,2,1.0,0.5,2,2,1,0,1379.0,3184.0
|
||||||
|
22,5,1.0,2.0,0.5,1.0,2.0,1,2.0,1.0,0,0,2,1,2145.0,4658.0
|
||||||
|
23,5,1.0,2.0,0.5,2.0,1.0,4,0.5,2.0,1,1,0,2,810.0,1764.0
|
||||||
|
24,5,0.5,1.0,2.0,0.5,0.5,2,2.0,1.0,0,1,0,2,2412.0,5783.0
|
||||||
|
25,5,0.5,1.0,2.0,1.0,2.0,1,0.5,2.0,1,2,1,0,915.0,1973.0
|
||||||
|
26,5,0.5,1.0,2.0,2.0,1.0,4,1.0,0.5,2,0,2,1,1336.0,3087.0
|
|
|
@ -0,0 +1,156 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from orm import engine
|
||||||
|
from scipy.stats import f
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file needs to define the info in the *main* block,
|
||||||
|
and then run the anova function.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def do_print(lst_value, str_col):
|
||||||
|
"""
|
||||||
|
Just for friendly-looking printing
|
||||||
|
|
||||||
|
:param lst_value:
|
||||||
|
:param str_col:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
str_data = '\t'.join(
|
||||||
|
[str(round(e, 4 if 'P value' in str_col else 3)) for e in lst_value])
|
||||||
|
print(f'{str_col}\t{str_data}')
|
||||||
|
|
||||||
|
|
||||||
|
def anova(lst_col_seg, n_level, oa_file, result_file, alpha=0.1):
|
||||||
|
"""
|
||||||
|
Give the files and info, compute the significance of each X for each Y
|
||||||
|
|
||||||
|
:param lst_col_seg: record the number of X, E, and Y.
|
||||||
|
:param n_level:
|
||||||
|
:param oa_file:
|
||||||
|
:param result_file:
|
||||||
|
:param alpha: significance level, usually 0.1, 0.05, 0.01
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
# read and check the files
|
||||||
|
df_oa = pd.read_csv("oa_with_exp.csv", index_col=None)
|
||||||
|
df_res = result_file
|
||||||
|
assert df_res.shape[1] == sum(lst_col_seg), 'the column number is wrong'
|
||||||
|
assert df_oa.shape[1] == lst_col_seg[0] + \
|
||||||
|
lst_col_seg[1], 'the column number is wrong'
|
||||||
|
lst_head = [f"{idx+1}_{ind_name}" for idx,
|
||||||
|
ind_name in enumerate(df_res.columns)]
|
||||||
|
|
||||||
|
# The three lines below define some coefficients for further computation
|
||||||
|
n_col_input = lst_col_seg[0] + lst_col_seg[1]
|
||||||
|
n_exp_row = df_res.shape[0]
|
||||||
|
n_degree_error = n_exp_row - 1 - (n_level - 1) * lst_col_seg[0]
|
||||||
|
|
||||||
|
df_output = df_res.iloc[:, n_col_input:]
|
||||||
|
|
||||||
|
print("Source\tSource\t" + '\t'.join(lst_head[:lst_col_seg[0]]) + "\te")
|
||||||
|
print("DOF\tDOF\t" + '\t'.join([str(n_level-1)]
|
||||||
|
* lst_col_seg[0]) + f"\t{n_degree_error}")
|
||||||
|
|
||||||
|
lst_report = []
|
||||||
|
|
||||||
|
# start to loop each Y
|
||||||
|
for idx_col in range(lst_col_seg[2]):
|
||||||
|
str_ind_name = lst_head[idx_col+n_col_input]
|
||||||
|
|
||||||
|
df_y_col = df_output.iloc[:, idx_col] # the y column
|
||||||
|
df_y_col_repeated = np.tile(
|
||||||
|
df_y_col, (n_col_input, 1)).T # repeat the y column
|
||||||
|
big_t = df_y_col.sum() # the big T
|
||||||
|
|
||||||
|
# generate T1, ..., T(n_levels)
|
||||||
|
lst_2d_big_t = [] # Table 1, row 10, 11, 12
|
||||||
|
for level in range(n_level):
|
||||||
|
arr_big_t = np.sum(df_y_col_repeated *
|
||||||
|
np.where(df_oa == level, 1, 0), axis=0)
|
||||||
|
lst_2d_big_t.append(arr_big_t.tolist())
|
||||||
|
arr_big_t_2 = np.power(np.array(lst_2d_big_t), 2)
|
||||||
|
arr_s = np.sum(arr_big_t_2, axis=0) / (n_exp_row / n_level) - \
|
||||||
|
big_t * big_t / n_exp_row # Table 1, last row
|
||||||
|
assert arr_s.size == n_col_input, 'wrong arr_s size'
|
||||||
|
|
||||||
|
# so far, the first table is computed. Now, compute the second table
|
||||||
|
df_s = pd.DataFrame(arr_s.reshape((1, n_col_input)),
|
||||||
|
columns=lst_head[:n_col_input])
|
||||||
|
do_print(arr_s.tolist(), f'{str_ind_name}\tS') # Table 2, col 2
|
||||||
|
|
||||||
|
df_s_non_error = df_s.iloc[:, :lst_col_seg[0]] / (n_level - 1)
|
||||||
|
ms_of_error = \
|
||||||
|
df_s.iloc[:, lst_col_seg[0]:].sum().sum() / n_degree_error
|
||||||
|
|
||||||
|
do_print(df_s_non_error.values.tolist()[
|
||||||
|
0] + [ms_of_error], f'{str_ind_name}\tMS') # Table 2, col 4
|
||||||
|
|
||||||
|
arr_f = df_s_non_error / ms_of_error
|
||||||
|
# Table 2, col 5
|
||||||
|
do_print(arr_f.values.tolist()[0], f'{str_ind_name}\tF ratio')
|
||||||
|
|
||||||
|
# from scipy.stats import f
|
||||||
|
arr_p_value = f.sf(arr_f, n_level - 1, n_degree_error)
|
||||||
|
# Table 2, col 6
|
||||||
|
do_print(arr_p_value.tolist()[0], f'{str_ind_name}\tP value')
|
||||||
|
|
||||||
|
lst_sig = [c for c, p in zip(
|
||||||
|
lst_head[:lst_col_seg[0]], arr_p_value[0].tolist()) if p < alpha]
|
||||||
|
|
||||||
|
if len(lst_sig) > 0:
|
||||||
|
lst_report.append(
|
||||||
|
f"For indicator {str_ind_name}, the sig factors are {lst_sig}")
|
||||||
|
|
||||||
|
for s in lst_report:
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# prep data
|
||||||
|
str_sql = """
|
||||||
|
select * from
|
||||||
|
(select distinct idx_scenario, n_max_trial, crit_supplier,
|
||||||
|
firm_pref_request, firm_pref_accept, netw_pref_cust_n,
|
||||||
|
netw_pref_cust_size, cap_limit, diff_new_conn, diff_remove
|
||||||
|
from iiabmdb.with_exp_experiment) as a
|
||||||
|
inner join
|
||||||
|
(
|
||||||
|
select idx_scenario,
|
||||||
|
sum(n_disrupt_s) as n_disrupt_s, sum(n_disrupt_t) as n_disrupt_t from
|
||||||
|
iiabmdb.with_exp_experiment as a
|
||||||
|
inner join
|
||||||
|
(
|
||||||
|
select e_id, count(n_s_disrupt_t) as n_disrupt_s,
|
||||||
|
sum(n_s_disrupt_t) as n_disrupt_t from
|
||||||
|
iiabmdb.with_exp_sample as a
|
||||||
|
inner join
|
||||||
|
(select a.s_id as s_id, count(id) as n_s_disrupt_t from
|
||||||
|
iiabmdb.with_exp_result as a
|
||||||
|
inner join
|
||||||
|
(select distinct s_id from iiabmdb.with_exp_result where ts > 0) as b
|
||||||
|
on a.s_id = b.s_id
|
||||||
|
group by s_id
|
||||||
|
) as b
|
||||||
|
on a.id = b.s_id
|
||||||
|
group by e_id
|
||||||
|
) as b
|
||||||
|
on a.id = b.e_id
|
||||||
|
group by idx_scenario) as b
|
||||||
|
on a.idx_scenario = b.idx_scenario;
|
||||||
|
|
||||||
|
"""
|
||||||
|
result = pd.read_sql(sql=str_sql,
|
||||||
|
con=engine)
|
||||||
|
result.drop('idx_scenario', 1, inplace=True)
|
||||||
|
df_oa = pd.read_csv("oa_with_exp.csv", index_col=None)
|
||||||
|
result = pd.concat(
|
||||||
|
[result.iloc[:, 0:9], df_oa.iloc[:, -4:], result.iloc[:, -2:]], axis=1)
|
||||||
|
result.to_csv('analysis\\experiment_result.csv')
|
||||||
|
|
||||||
|
# 9 factors (X), 4 for error (E), and 2 indicators (Y)
|
||||||
|
the_lst_col_seg = [9, 4, 2]
|
||||||
|
the_n_level = 3
|
||||||
|
anova(the_lst_col_seg, the_n_level, "oa25.txt", result, 0.1)
|
Binary file not shown.
|
@ -1 +1 @@
|
||||||
db_name_prefix: without_exp
|
db_name_prefix: with_exp
|
||||||
|
|
|
@ -94,6 +94,7 @@ class ControllerDB:
|
||||||
df_xv = pd.read_csv("xv.csv", index_col=None)
|
df_xv = pd.read_csv("xv.csv", index_col=None)
|
||||||
# read the OA table
|
# read the OA table
|
||||||
df_oa = pd.read_csv("oa_with_exp.csv", index_col=None)
|
df_oa = pd.read_csv("oa_with_exp.csv", index_col=None)
|
||||||
|
df_oa = df_oa.iloc[:, 0:9]
|
||||||
for idx_scenario, row in df_oa.iterrows():
|
for idx_scenario, row in df_oa.iterrows():
|
||||||
dct_exp_para = {}
|
dct_exp_para = {}
|
||||||
for idx_col, para_level in enumerate(row):
|
for idx_col, para_level in enumerate(row):
|
||||||
|
|
|
@ -1,28 +1,28 @@
|
||||||
X1,X2,X3,X4,X5,X6,X7,X8,X9
|
X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13
|
||||||
0,0,0,0,0,0,0,0,0
|
0,0,0,0,0,0,0,0,0,0,0,0,0
|
||||||
0,0,0,0,1,1,1,1,1
|
0,0,0,0,1,1,1,1,1,1,1,1,1
|
||||||
0,0,0,0,2,2,2,2,2
|
0,0,0,0,2,2,2,2,2,2,2,2,2
|
||||||
0,1,1,1,0,0,0,1,1
|
0,1,1,1,0,0,0,1,1,1,2,2,2
|
||||||
0,1,1,1,1,1,1,2,2
|
0,1,1,1,1,1,1,2,2,2,0,0,0
|
||||||
0,1,1,1,2,2,2,0,0
|
0,1,1,1,2,2,2,0,0,0,1,1,1
|
||||||
0,2,2,2,0,0,0,2,2
|
0,2,2,2,0,0,0,2,2,2,1,1,1
|
||||||
0,2,2,2,1,1,1,0,0
|
0,2,2,2,1,1,1,0,0,0,2,2,2
|
||||||
0,2,2,2,2,2,2,1,1
|
0,2,2,2,2,2,2,1,1,1,0,0,0
|
||||||
1,0,1,2,0,1,2,0,1
|
1,0,1,2,0,1,2,0,1,2,0,1,2
|
||||||
1,0,1,2,1,2,0,1,2
|
1,0,1,2,1,2,0,1,2,0,1,2,0
|
||||||
1,0,1,2,2,0,1,2,0
|
1,0,1,2,2,0,1,2,0,1,2,0,1
|
||||||
1,1,2,0,0,1,2,1,2
|
1,1,2,0,0,1,2,1,2,0,2,0,1
|
||||||
1,1,2,0,1,2,0,2,0
|
1,1,2,0,1,2,0,2,0,1,0,1,2
|
||||||
1,1,2,0,2,0,1,0,1
|
1,1,2,0,2,0,1,0,1,2,1,2,0
|
||||||
1,2,0,1,0,1,2,2,0
|
1,2,0,1,0,1,2,2,0,1,1,2,0
|
||||||
1,2,0,1,1,2,0,0,1
|
1,2,0,1,1,2,0,0,1,2,2,0,1
|
||||||
1,2,0,1,2,0,1,1,2
|
1,2,0,1,2,0,1,1,2,0,0,1,2
|
||||||
2,0,2,1,0,2,1,0,2
|
2,0,2,1,0,2,1,0,2,1,0,2,1
|
||||||
2,0,2,1,1,0,2,1,0
|
2,0,2,1,1,0,2,1,0,2,1,0,2
|
||||||
2,0,2,1,2,1,0,2,1
|
2,0,2,1,2,1,0,2,1,0,2,1,0
|
||||||
2,1,0,2,0,2,1,1,0
|
2,1,0,2,0,2,1,1,0,2,2,1,0
|
||||||
2,1,0,2,1,0,2,2,1
|
2,1,0,2,1,0,2,2,1,0,0,2,1
|
||||||
2,1,0,2,2,1,0,0,2
|
2,1,0,2,2,1,0,0,2,1,1,0,2
|
||||||
2,2,1,0,0,2,1,2,1
|
2,2,1,0,0,2,1,2,1,0,1,0,2
|
||||||
2,2,1,0,1,0,2,0,2
|
2,2,1,0,1,0,2,0,2,1,2,1,0
|
||||||
2,2,1,0,2,1,0,1,0
|
2,2,1,0,2,1,0,1,0,2,0,2,1
|
||||||
|
|
|
|
@ -1,2 +1,2 @@
|
||||||
X1,X2,X3,X4,X5,X6,X7,X8,X9
|
X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13
|
||||||
1,1,1,1,1,1,1,1,1
|
1,1,1,1,1,1,1,1,1,1,1,1,1
|
||||||
|
|
|
2
xv.csv
2
xv.csv
|
@ -1,4 +1,4 @@
|
||||||
n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove
|
n_max_trial,crit_supplier,firm_pref_request,firm_pref_accept,netw_pref_cust_n,netw_pref_cust_size,cap_limit,diff_new_conn,diff_remove
|
||||||
15,2,2,2,0.5,2,4,0.5,0.5
|
15,2,2,2,0.5,2,4,0.5,0.5
|
||||||
10,1,1,1,1,1,2,1,1
|
10,1,1,1,1,1,2,1,1
|
||||||
5,0.5,0.5,0.5,2,0.5,0,2,2
|
5,0.5,0.5,0.5,2,0.5,1,2,2
|
||||||
|
|
|
Loading…
Reference in New Issue